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Preface

This book is the third in a series of four volumes devoted respectively to

(1) Nonrelativistic Quantum Mechanics

(2) Relativistic Quantum Field Theory

(3) Exercises and problems, with fully worked out solutions, on the subjects
treated in Volume 1.

(4) Exercises and problems, with fully worked out solutions, on the subjects
treated in Volume 2.

The first two volumes were self-contained in the sense that the only prerequisites
were a knowledge of integral calculus and partial differential equations, as well as
Newton’s mechanics of point masses and Maxwell’s theory of electromagnetism.

Each chapter was complemented by ten problems, and the present volume
constitutes the full solution of the hundred exercises contained in Volume 1.
For the convenience of the reader, each question is reproduced in this book,
followed immediately by the solution. Beside solving the problem, many of
the expositions include additional didactic material. Where feasible, algebraic
answers are given; but in some places recourse to approximate methods was
necessary. Some of the numerical results were obtained by using Mathematica
(which is a trademark of Wolfram Research Inc.), but for readers without access
to this system, many of our numerical answers can be checked by means of a
scientific calculator. Since only a few examples are solvable in algebraic closed
form, numerical exercises are important for exploring the intricacies of quantum
mechanics.

We acknowledge the assistance afforded by perusal of the works listed in the
references, in particular Atkins, P.W., (1983b), Gol’dman, L.I. and Krivchenkov,
V.D., (1961), Haar, D. ter, (1975) and Kok, L.P. and Visser, J., (1996). These
books of solutions to quantum mechanics problems may be rightly seen as our
precursors in the art of solving exercises in quantum mechanics; but, if we have
sometimes taken over solutions from these authors, we have always added details,
in order to enhance the pedagogical quality.

v



vi Preface

It cannot be emphasized too strongly that the temptation for a student
to look immediately at the worked-out answers is self-defeating. Look at the
answers, certainly, but only after you have engaged in serious battle. Physics
cannot be learned just by reading or listening, but only by thinking, writing and
worrying.

Despite the plethora of books of instruction on these subjects, we hope that
our work will fill a need, and we believe our approach to be pedagogically sound,
given its attention to mathematical detail combined with physics.

The drawings on the covers of the volumes are ambiguous representations.

Volume 1: a duck, or is it a rabbit?

Volume 2: a vase, or are there two faces?

Volume 3: a young, or is it an old woman?

Volume 4: an American Indian, or is it an Eskimo?

The simultaneous existence of two pictures is perhaps the closest metaphor we
can find to the fundamental mystery of quantum mechanics, namely the linear
superposition of two aspects of reality, each of which separately can be pictured,
and whose combination can barely be comprehended by the eye of introspection,
but which can be apprehended by the power of mathematical language.

February 2003,
David Atkinson (The Netherlands)

Mahouton Norbert Hounkonnou (République du Bénin).
Porter Wear Johnson (United States of America)
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Chapter 1

Transition from Classical to Quantum
Mechanics

1.1 Axioms of Linear Vector Spaces

From the axioms of the theory of linear vector spaces prove:

(1) Any linear operator can be written in the form A +iB, where A and B
are Hermitian operators.

(2) If A and B are Hermitian operators, so is i[A4, B].

(3) For any vector ¢, S(¢, ATA¢) > 0.

Solution
(1) Let C be a linear operator and define

A= (C+cCh)/2 B =—i(C-C")/2.

Then clearly A = Af, B = Bt and A+ iB = C. In this demonstration, it has
been tacitly assumed that C' exists, i.e., for any ¢ and % in the Hilbert space
on which C acts as a linear operator, C¢ is a vector in the space, and thus that
S(v,C¢) is finite. This is equivalent to requiring C to be a bounded operator.
For an unbounded operator, one can make still make sense of the theorem, on
condition that one restricts the space to a subspace of the Hilbert space, namely
the intersection of the range and the domain of C, for on this space C and Ct
are both bounded.

(2) For any bounded, linear, Hermitian operators, A and B,

[i(AB — BA)]' = —i(BA — AB) = i(AB — BA).
(3) For any bounded, linear operator, A,

S(¢, ATA¢) = S(A¢, Ad) = S(x,x) 2 0,

1



2 Transition from Classical to Quantum Mechanics

where x = A¢, and the third property of the scalar product has been used. Here
we have implicitly used the property (A"))r = A. This follows from

S, Ag) = S(Aly,8) = S(¢, Aly)*
5((41) ¢,9)* = S(v, (41 9).

Since ¢ and 1 can be any vectors in the space, for example two vectors in a
basis, the required result follows.

1.2 Orthonormal Basis of a Hilbert Space

Suppose that {e,} is an orthonormal basis of a Hilbert space, H, and let A be
a linear operator on . The trace of A with respect to the basis is defined by

TrA =) (en|Alen).

(1) Demonstrate that TrA is independent of the choice of the orthonormal
basis.
(2) If A and B are linear operators on #, show that

S(A,B) = Tr(A“B)
satisfies the axioms of the scalar product.

Solution
(1) Let {f,.} be any other orthonormal basis. Then

TrA= (ealdlen) = D (ealdlfm)(fmlen)
= ZZ(fmlenMenlAlfm) = Z(fmlAlfm) ’

where use has been made of the fact that both sets of basis vectors, {e,} and
{fn}, span the space.

(2) Let {en} be an orthonormal basis. Then the three axioms pertaining to the
scalar product are satisfied as follows:

() [S(4, B = {Tr(A!B)}" = {5, (eal 4" Blen)}".

Insert a unit operator between Af and B:

[S(4,B)]* = D (en|Allem)*(em|Blen)*

m,n

= ) (emlAlen)(ea|Btlem) = [S(B, 4)].

m,n



Linear Operators on a Hilbert Space 3
(b) S(A,cB+dC) =Y, (en|Al(cB +dC)le,) -

= ¢ (en|A'Blen) +d ) (ea|AIClen)
= ¢S(4,B)+dS(4,C).

(c) S(4,4) = Zm’n(en|A7|em)(em|A|en) =Y |{em|Alen)|? . Thus
(i) S(A, A) > 0 unless {e,,|Ale,) = 0 for all (m,n) i.e., A=0.
(ii) S(A,A) =0if A =0, for then (en|Ale,) = 0 for all (m,n).

1.3 Linear Operators on a Hilbert Space

Suppose that A and B are linear operators on a Hilbert space, #, and that
(¥|Al) = (¢|B|y) for all ¢ € H. Show that necessarily (¢|Al) = (¢|B|v) for
all ¢ € # and ¥ € H. Under these conditions, i.e., when all matrix elements of
A and B are equal, we write A = B as an identity of two operators on a given
Hilbert space.

Solution
Consider the identity,

4o|Alp) = (p+9|Alp+1)— (- Y| Alp—) —i(P+itp| A|p-+ivh) +i(p—it| A|p—it))

and the corresponding identity obtained by .replacing A by B. Since all matrix
elements on the right-hand side are diagonal, their values are independent of
whether A or B appears in them. Hence the non-diagonal matrix element on
the left-hand side must also be independent of whether A or B occurs. This
demonstrates the proposition that equality of diagonal matrix elements implies
equality of non-diagonal matrix elements.

Note that this proof worked because, while a ket is linear, i.e., [cd) = c|¢), a
bra is antilinear, (c¢| = c*(@|. In terms of the vector space scalar product,

S(co,dyp) = c*dS(p,v) .

Thus the fact that the vector space is defined on the field of complex numbers
is essential. On a real Hilbert space, the above proof would not work. Notice
also that the operator equality, A = B, is valid as a statement restricted to
the space for which the diagonal matrix elements are equal. This should not be
regarded as a shortcoming, since, strictly speaking, any operator is fully defined
only when one specifies the space on which it acts, or more generally on which
it is densely defined.



4 Transition from Classical to Quantum Mechanics

1.4 Spaces of Functions

Consider the following spaces of functions of all %, such that, respectively

o0
"o / dz [(z)[? < oo
Q / dz | (z)|)?[1 + |z|"] < 00, forn=0,1,2,....
oo
E l/ dzy*(z)d(z)| < oo, forall ¢ € 2.
—00
Show that
(1) QCcHCE.
(2) z ¢ H. ' .
(3) sechz e, HE2g0, =|REcH,
(4) z?cosz ¢ H, <z’cosz€E.
(5) e* ¢ E.
Solution

(1) Clearly, every element of 2 belongs to H. Furthermore, since ¢(z) = (1 +
a:z)“% is clearly square integrable, but equally clearly does not belong to f, it
follows that Q C H. To prove # C Z, we shall use the Schwarz inequality. This
states that, for any 1, and v, in a vector space equipped with a scalar product

S,
IS (W1, %2)|* < S(%1,%1)S (W2, ¥2) - (1.1)

To prove this theorem, consider any real or complex number A. Then

S(¥1 + M2, 91 + A2) >0,

and expanding this, we find
S(¢17 "pl) + l)\|2s(¢2’ ¢2) + AS(¢17¢2) + Al"‘g("p% ¢1) Z 0. (12)

If 95 is not the null vector (when the theorem is trivially true), define

)\ = _S(¢2,%)
S(¥2,v2)

The last three terms in Eq.(1.2) satisfy

IS(¢1’ ¢2)|2

IAPS (2, %2) = —AS(%1,92) = —A*S (W2, %1) = v
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Hence the inequality (1.2) yields

[S(1,2)]2
S(¥1,91) > S t2)

and this is equivalent to Eq.(1.1). In the case that the scalar product is

St = [ " do i (@)a(o),

the Schwarz inequality takes on the form

2 00 oo
< / dz [ () ? / dz [ ().

/ : dz 3 (=)ba(2)

We shall now use this integral form of the Schwarz inequality to investigate the
space =. Insert ¢;(z) = [1 + |z|*]~2¢(z) and 9(z) = [1 + |z|*]24(z) into the
above inequality, thus yielding

2 00 oo
< / da[L+[a] ! (o) / dz [1+ [2[™] |$(z) 2

i : dz " (2)9(z)

We are free to choose n as we like; and if ¢ € 2 then the second integral is
finite for any n. If 9 € H, then the first integral is finite for n = 0. This shows
that any square integrable function lies also in the space E. On the other hand,
there are functions that do not lie in H, but which do lie in =. Take for example
¥(z) = 1 and choose n = 2. The first integral is in this case [*._dz [l + z%|7?,
which converges. Hence ¢(z) = 1 lies in E, and so H C E.

(2) Clearly z does not belong to #, because [ _LL dz z?> = 2L?, and which diverges
as L — oo.

(3a) Since sech z tends exponentially to zero as |z| — oo, it belongs to (2, since

oo
/ drsech’z [1 + |z|"] < 00, forn=0,1,2,...

—00

(3b) Clearly #2Z & Q, since §%:—"‘5[1 + |z|™] is not integrable for n =1,2,3,...
(3c) On the other hand, S22 ¢ 7, since

T

o sn2 1 oo
/ dmsmz””<2/d:c+2/ % _4.
—00 T 0 1 T

(4) It is clear that z?cosz is not square integrable, so it does not belong to .
On the other hand, it does belong to =, since

oo 2 o0 oo
l/ dzz?cosz d(z)| < / dzzcos® z [1 + |z|"] ! / dz |¢(z)*[1 + |z|™],
oo —00 —oo




6 Transition from Classical to Quantum Mechanics

for any n, where we have used the Schwarz inequality again. The first integral
above is finite if we choose n = 6, for example, and the second integral is
guaranteed to be finite for any ¢ € Q.

(5) Consider ¢(z) = sechz, which was shown in solution (3a) to belong to the
space . We have e ®sechz — 2, in the limit £ — —o00, so that e~*¢(z) is not
integrable. Hence e™* does not belong to the space E.

1.5 Representations of Delta Funtion

By introducing a suitable space of test functions, justify the following represen-
tations of the Dirac delta distribution:

€
@) 8@) = iy 2 o
1sinNz
(b) i(z) =

N—+oo 1r T

Solution
(a) Let g(z) be an infinitely differentiable function of finite support. Then,
setting £ = ye, we find

e [® . g(z) / 9(ye) *_dy _
gl—%ﬂ[mdw$2+62 N 1rs—}0 dy 2+1 7r() 2+1—g(0)'
The y-integral can be performed by making the substitution y = tané.
(b) With the same space of test functions, and with z = z/N,

im 7 [ oo™ = im 2 [ dnate/

N—=oo
~4(0) / =222 = g(0).

The z-integral can be evaluated by writing S22 = e’ ;1:— " and then by closing

the integration contour in the upper half z—plane for e'* and in the lower half
z-plane for e~%%.

1.6 Schur’s Lemma

Let G be the space of complex differentiable test functions, g(z), of finite support,
where z is real. It is convenient to extend G slightly to encompass all functions,
g, such that g(z) = g(z) + ¢, where g € G and c is any constant. Let us call the
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extended space G. Let q and p be linear operators on G such that
qg(z) = zg(z),
po(z) = ~izg(z) = ~ig'(2).

Suppose M to be a linear operator on G that commutes with q and p. Show
that

(1) q and p are Hermitian on G.
(2) M is a constant multiple of the identity operator.

Solution
We shall equip the space G with the scalar product

stho) = [ def @),
for any f and g in G. Clearly
Sthao) = [ deaf(@ga).
On the other hand
S(f,4'9) = S(af.9) == /_ : dzzf*(z)g(z) .

since z is real. Hence S(f,qg) = S(f,q'g) for all f and g in G, and thus g = g'.
For the operator p,

Sth.pe) =i [ " gz f(2)d (@),

—00

and

I

Sh'e)=56h,e) = [ do[-if @] 9(a)
= i /_ def"* (2)g(z).
We perform an integration by parts:

5(f,#'9) = ilf(0)g(o0) - f(-oo)o(-o0)] =i [ " dof*(2)g ().

Now the integrated term vanishes, since f(c0) = f(—o0) and g(00) = g(—00)
for f and g in G. Thus indeed pf = p.
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Since [M, g] = 0, it follows that [M,¢"] = 0, n = 1,2,3,... and hence that
[M, e*9] = 0, Thus any function of the operator, g, that has a Fourier transform,

fa)= [ afwen, (13)
—00
also commutes with M. For such a function,

Mf(q)g(x) = f(g)Mg(z).

Since gg(z) = zg(z), ¢g"g(z) = z"g(z) and e'*%g(z) = e**®g(z) and hence any
Fourier transformable function, (1.3), satisfies

f(9)g(z) = f(z)g(z),
and so
Mf(z)g(z) = f(q)Mg(z).
It follows now that and if we choose g(z) = 1 in the above expression, we find
Mf(z) = f(gym(z) = f(z)m(z), (1.4)

where m(z) is the function of = that arises by letting the operator M act on the
unit function. Certainly the unit function belongs to G, and we are sure that
the function m(z) lies in the space G. [N.B. This is the reason we had to extend
the space of test functions from G to G. In G the above statements are not
true!] Since Eq.(1.4) holds for any Fourier transformable function, it certainly
holds if we replace f(z) by g(z), or by ¢'(z):

Mg(z) = g(z)m(a) (1.5)
Mg@ = g(@)m(c). (L6)

Now consider the fact that M commutes with p. This implies
pMg(z) = Mpg(z) = —iMg'(z).

From Eq.(1.5) we write the left side in the form pg(z)m(z) = —i 2 [g(z)m(z)],
whereas from Eq.(1.6) we have, for the right side, —ig'(z)m(z). Hence

d
2 [o@Im(z)] = o @m(a),
and this implies m/(z) = 0 or m(z) = &, a constant. Then Eq.(1.5) reads

My(z) = kg(),

or in other words, M = kI, where I is the unit operator on G.
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1.7 Commutators
Given that [q, p] = th, show that

(1) [a7',p] = —ihq~?

(2) [a",p] = ihng™~! n=x41,42 43,..
(3) [exp(itq), p] = —htexp(itq).

(4) [a7%,p] = —jihq

(5) [a%,p] = 3ihq™?

Solution

(1) a*(ap — pa)q~! = ihq~2 so that pq~! — q~'p = ihq~>

and hence [q~1,p] = —ihq~2

(2) Suppose that [q", p] = ihinq™ ! is true for some value of n. Multiplying this
by the operator q from the left, we have q"*'p — qpq™ = iinq™.

The left-hand side can be written [q"*!, p] — [q, p]q™ = [q"*}, p] — ihq" so if
we transfer the term —ifhiq™ to the other side, we find [q"*!, p] = ih(n + 1)q",
which has the same form as what we supposed in the first place, excepting only
that n has been replaced by n + 1.

Since we know that [q",p] = ifinq"~! is true for n = 1, our demonstration
establishes its truth for n = 2. In turn, this new truth establishes the result for
n = 3, and so on. The validity of the formula for general n is thus established.
The method that has been used is called mathematical induction.

(3) With use of the previous result, we find

[exp(itq), p] Z (Zt) [a",p] = zhz @)" t) htz (Zt)"’

n=0 n=1 n=0

where n has been replaced by n — 1 in the last step. We recognize the last sum
as being exp(itq), so

[exp(ita), p] = —Atexp(itq) .

(4) Consider the Fourier integral

qi=x / T8 ep(ita) (1.7)
—oo V1 ' '
The constant x can be evaluated by substituting s = tq, yielding
1 _t [ ds
q 2 = K‘,q 2

e.
VA
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Thus we find k™1 = [*0 —%e"’ = /7. From the result of part (3) above, we
can compute

[a7%,p] = n/_w % lexp(ita), p]
= —hk / ~ dtv/t exp(itq)
= —hrq % /—00 ds\/s *° . (1.8)

By an integration by parts, we see that |

i [ ds , i

0o
d is=_ 22 ats —
/_,,o Weet=5 | & =5

where the above manipulations must be understood in the sense of distributions:
as an ordinary function, the integral does not exist, but once it is convoluted
with a suitable test function, for example one with infinitely many derivatives
and of finite support, the integration by parts is allowed. On combining this last
result with Eq.(1.8), we find

l[a~%,p] = ~}ihq~*
(5) Using the previous result, we have
a*[a~#,pla? = —}ikqiq
which gives

1

pq? —q’p = —zihq™ 2,

or in other words, [q%, p| = %ihq‘% .

1.8 Classical Poisson Bracket

In one space dimension, consider the classical Poisson bracket of the square of
the coordinate and the square of the conjugate momentum, {q?, p?}.

(1) Show that the quantum mechanical commutator, [q?, p?], divided by iA,
does not correspond to that Poisson bracket.

(2) How must one rewrite the classical Poisson bracket so that the commu-
tator does so correspond?
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Solution
(1) The classical Poisson bracket is

_ aqz ap2 6q2 apz _

2 2
= - = 4qp, 1.9
{¢*,p"} 5 9p  Op 0g — P (1.9)
whereas the quantum mechanical commutator is
[a®,p?] = ¢’p” - p*’a® = alq,p’] + [a,P?]a. (1.10)
Now
[a,p?] = [, PP + Pla, p] = 2ikp, (1.11)
)

[a®, p?] = 2ifi(ap + pa) (1.12)
and indeed this is not of the same form as i}k times the classical Poisson bracket
of g% and p?.

(2) One only has to rewrite the classical Poisson bracket in the form
{¢*,p°} =2(ap + pq) , (1.13)

which is allowed, since the order of writing ¢ and p does not matter classically.
This form clearly does correspond to the commutator of 2 and p?, divided by k.
In general, one must always rearrange the right-hand side of any Poisson bracket
of observables such that, when quantized, it gives a Hermitian expression. qp is
not Hermitian, since

(ap)! = pq,

but qp + pq is Hermitian.

1.9 Time-Dependent Schrédinger Equation

Suppose that (t, Z) satisfies the time-dependent Schrodinger equation, with a
real, time-independent potential. Define the probability density by

P(t,%) = [y(t, %)
(1) Show that

%P(t,:z)+6 7t &) =0,
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where the probability current is defined by
7(6,8) = ooy (,8) Y 9(t ).

Discover thereby the meaning of the symbol 3
(2) Show that, for a square integrable ¥(t,Z),

d 3 oy
E/d 2 P(t,3) =0,

the integral being over all space. Give a physical interpretation of this
result.
(3) Evaluate next

d [ 3
E/Vd zP(t,Z),

in terms of 7'(t, ), the integral now being over a finite volume, V. Give
a physical interpretation of this result.

Solution
Consider the time-dependent Schrédinger equation, and its complex conjugate:

L0 A2 o Ny
'Lh&'ll)(t,l’) = —%V 1/J(t,:z:)+V(:z:)1,b(t,a:)
2
—z‘h%gb*(t,:}:‘) = —é%vzw*(t,z)+V(f)¢*(t,i‘),

where the reality of the potential has been used. Multiply the equation for 3 by
1* and that for * by 1 and subtract one result from the other:

) .0 - 0 .., .
ih {")b Bft"‘)b(t’ :1:) + ¢a¢ (t,iL’)}
h2
= o {¥ DV ) - (2, H) V(D)
This can be rewritten
0 . - ih = S - NSk ly
s e} = V- {9 @,2) V6 2) - 9(t,5)99 ¢, 2)]
which is equivalent to

0 -
EP(t’i) +V -7(,2)=0, (1.14)
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where the density is P(t,#) = |#(t,&)|?, and where the current is

it,E) = --2%{¢*(t,5)w(t,5)—¢(t,5)w*(t,z)},
def th ... & -
= —gn‘%b (t,Z)V y(t,Z).
(2) From Eq.(1.14) we find
%/di"mp(t,i):—/d%ﬁ 7, E),

and this vanishes for a square-integrable (¢, #), since for such a solution the
probability current, 7(¢,Z ), vanishes exponentially at spatial infinity. The left-
hand side above is interpreted as the probability that the particle described
by the wave function, (¢, ), is found to be somewhere in space at all times.
This is sometimes referred to as the conservation of probability, and usually one
normalizes this time-invariant integral to unity.

(3) In the case of a finite integration volume,

i/d%:P(t,:i’) = —/dszz:ﬁ -7, %)
= —/dSr'i -7, %),
s

where S is the surface of the volume V and 7 is the unit vector normal to the
surface. This is an application of the Gaufl theorem. The interpretation is that
the rate of change of the probabilty of finding the particle in the volume V is
equal to minus the current density, integrated across the boundary of the volume.
This is clearer if one thinks of an ensemble of particles described by the wave
function 9(¢,&). Then the left-hand side of the above equation is proportional
to the rate of increase of the number of particles that are inside V, and the
right-hand side is proportional to the rate at which particles enter V through
its surface.

1.10 Bell’s Theorem with Photons

Two photons fly apart from one another, and are in oppositely oriented circularly
polarized states. One strikes a polaroid film with axis parallel to the unit vector
d, the other a polaroid with axis parallel to the unit vector b. Let P, (a, b ) be
the joint probability that both photons are transmitted through their respective
polaroids. Similarly P__ (@, b) is the probability that both photons are absorbed
by the polaroids, P, _ (&, b) is the probability that the photon at the @ polaroid is
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transmitted, while the other is absorbed, and finally P_ . (d, b) is the probability
that the photon at the @ polaroid is absorbed, while the other is transmitted.
The classical realist assumption is that these probabilities can be separated:

Pi;(@,b) = / d\p(\)Pi(@, ) P;(, ),

where i and j take on the values + and —, where X signifies the so-called hidden
variables, and where p(}) is a weight function.
The correlation coefficient is defined by

C(@,8) = Py4(&,8) + P__(@,B) — P,_(@,) — P_4(@,B),

and so we can write

P

C(@,b) / do(N)C(@,NCE,N),
where

C(&:,A) = P+(&',A)—P_(&.,A),
C@®,\) = P.(B,)\)-P_(b,)).

It is required that

(a) p(A) >0

(b) / dip()) =1

(c) ~1<C(@,N<1 and -1<0C(b,2)<1.
The Bell coefficient,

B=0(E,b)+C(@,b") +C(@@',b) - C@',b'),

' combines four different combinations of polaroid directions.

(1) Show that the above classical realist assumptions imply |B| < 2.
(2) Show that quantum mechanics predicts

C(&,i;)=2(a-b‘)2-1.

(3) Show that the maximum value of the Bell coefficient is 2\/_ according
to quantum mechanics.

(4) Cast the quantum mechanical expression for C(a, b) into separable form.
Which of the classical requirements, (a), (b) or (c) above is violated?
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Solution
(1) With the separability assumption,

C@@,b) = / dA\p(N)C(@,\)C(b,N),
it follows that the Bell coefficient can be written in the form
B = C(a,b)+cC(@,b")+C(@@',b)-cC(@’,b")
_ / N {C@, N[CE, N +CE,X)] +C@', N[CE, N - CF', )]}
Since |C(a@, )| and |C(@’, A)| are both not larger than unity, we have
1B| < / p(N){|CE, %)+ CE Y| +|CE,» - CE', N},
where the positivity of the weight function has been used. Suppose _1';hat, for
a given A, Cum(A) is the maximum and Cp,()) is the minimum of C(b,\) and
C(b’, ), so that Cpr(A) > Cpy(A). Then
IB| < / Ap(N){|Cn(X) + Cr()]| + Car () = Cm(N) }
Now in the case Cp(A) > 0, we have |Cum(X) + Crm(A)| = Cr(A) + Cm(R), so
Bl < [ ax){Cn() + Cnlh) + OarlX) - Cm(V)}
= 2 [ DpCw ()
< 2 [aw =2,

where the normalization of the weight function has been taken into account.
However, if Ci(A) < 0, we have |Cam(A) + Cm(X)| = —Car(X) — Cm(R), so then

Bl < [ @) - Cu() - Cn() +Cu(3) - GV}
= 2 [ Dpicn]
< 2/dAp(,\)=2.
In all cases, then, we have shown that |B| < 2.

(2) A photon, traveling in the y direction, might have right- or left-handed
circular polarization. The corresponding quantum states will be written |R) and
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|L) respectively. These circular polarization states can be expressed as coherent
superpositions of linearly polarized states in the z and the z directions:

[B) = (l2) +ilz))/v2
L) = (l2) —ilz))/v2. (1.15)

Under a rotation of the coordinate axes by an angle  about the y direction,
|R) — €*®|R) and |L) — e~*|L), or equivalently

(B)-(2)-(0 ~2=0) () aw

If each photon is in a state of right-handed circular polarization, we write the
corresponding state vector |R;)|Rz). However, since the photons are moving in
opposite directions, one along the positive, and the other along the negative y
axis, it follows that the actual directions in which the electric fields rotate, in
time, in the vicinity of the two photons, are opposed to one another. The same
holds for a state, |L1)|L2), corresponding to each photon’s being in a state of
left-handed circular polarization. The linear combination of these two states,

|EPR) = (|R1)|R2) + |L1)|L2)) /V2, (1.17)

corresponds to the more general situation in which the photons are in oppositely
oriented states of circular polarization, where the sense of this polarization is
not specified. From Eq.(1.15), we see that this entangled, or Einstein-Rosen-
Podolsky state, can also be written in the form

|EPR) = (|z1)|22) — |1)|z2)) /V2, (1.18)

which is a superposition of states of linear polarization. A more detailed justifi-
cation of the Einstein-Rosen-Podolsky form, Egs.(1.17)-(1.18), will be given in
Volume 2, using the second quantization of the electromagnetic field.

Suppose now that a measurement of linear polarization is made on photon 1
in the z direction, and of photon 2 in the 2’ direction, i.e., the z direction after
a rotation of the axes about the y axis. The probability amplitude associated
with this measurement on the EPR state is

(EPR|z21,24) = (22|22 cos 0 — z25in0)/v/2 = cos 0//2,

where the first equality is a consequence of the orthonormality of the states |z;)
and |z;). The probability that photon 1 is found to have linear polarization in
the direction z, and photon 2 in the direction 2, is

P, (@,b) = I(EPRIzl,z;)|2 = lcos®9,
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where we suppose @ to be in the direction z and b to be in the direction z’.

Suppose next that the linear polarization of photon 1 were measured in the
z direction, and that of photon 2 again in the 2’ direction. The probability
amplitude is

(EPR|xy,25) = — (3|23 cos @ — z35in0)/v/2 = sinf/V2.

If photon 1 has polarization in the z direction, then it will not be transmitted
by a polarizer in the direction z: it will be absorbed. Hence

P_(@,8) = |(EPR|z1,2)|* = L sin?4.
Similarly,
P,_(&,b) = I(EPRlzl,:r:'z)l2 = 1lsin?0
P__(d@,8) = |(EPR|zy,a})|° = Llcos?6.
The correlation coefficient is accordingly

C@,b) = Py (@,b)+P-_(@,b)~ Py_(d,b) - P-+(@,b)

= cos20 —sin?0 = 2cos26 —1 = cos20.

Since @ and b are unit vectors at an angle 6 to one another, it follows that
d -b = cosf, and hence

C(&,E):z(& -5’)2—1.

(3) Suppose the angle between the vectors @' and @ is z/2, between @ and
b is y/2, and between b and b’ is z/2. Then the angle between @’ and b’ is
(z +y+ 2)/2; and, according to quantum mechanics, the Bell coefficient has the
form

B =cosz+cosy+cosz—cos(z+y+2).

This function of z,y, z, has its turning points when

98 _ sinz 4 sin(z + =0
e = inz +sin(z+y+2) =
98 _ siny + sin(z + =0
5y iny +sin(z+y+2) =
0B : .

5 = —sinz+sin(z+y+2)=0.

and therefore

sinz = siny = sinz =sin(z + y + 2),
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with a solution £ = y = z and 3z = 7 — z, i.e., £ = 3. For this turning point,

T 3 3 1
B =3cos— —cCcos — = — — =2V2.
s4 0 I \/5+ 5

This is a maximum, for at it,
0B _ 0’B _ 6’B
0z2 ~ Oy? 022

(4) Let the vector @ be at an angle §, with respect to some direction in the z2
plane, and let b be at an angle 6, with respect to the same direction. Then

C(@,b) = cos2(f, — 6b)
= cos 20, cos 26 + sin 20, sin 20,
= [ ac@ N6,

= —cosm/4 + cos3m/4 = -v2<0.

with the assignments
p(A) = §A+1)+8(A-1)
C(@,1) = cos26, C(a@,-1) =sin26,
C(b,1) = cos206, C(b,~1) =sin206,.

We see that (a) p(A) > 0 and (c) —1 < C(@, \) and —1 < C(b, \), for A = £1,
but [dAp(A) =1+ 1 =2, so that the normalization condition (b) is violated.



Chapter 2

Three-Dimensional Harmonic Oscillator

2.1 Recurrence Relation for Hermite Polynomial

Prove the recurrence relation for the Hermite polynomial,

H,(z) =2zH,_1(z) — H,_,(z),

22 d\" g2
H,(z)=e (—ED-) e .

Deduce a second-order differential equation satisfied by the Hermite polynomial.
Work out Ho(z), Hi(z), H2(z), Hs(z) and Hy(z) and sketch them graphically.

Solution
On using the rule for differentiating the product of two terms, we find

n n+1
H,(z) = 2we® (—Ed;) e ™ — e® (—%) e

= 2zHp,(z)— Hpy1(z). (2.1)

After replacing n by n — 1, and rearranging terms, we obtain the recurrence
relation that was to be proved. We can also write Eq.(2.1) in the form

H!(z) = 2zH,(z) - 2(-1)"e*" (ad;)n (ze ), (2.2)

where one differential operator, %, has been allowed to work on the factor e—*".
However, by the Leibniz rule for repeated differentiation of a product,

(_d%)“ (z e_z.z) =z (%)n e +n (%)n—l e , (2.3)

19
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and on using this in Eq.(2.2) we find
H'!(z) = 2zH,(z) — 2zH,(z) + 2nH,_1(z) = 2nH,_1(z) . (2.4)
On comparing Eq.(2.1) and Eq.(2.4) we obtain
2c¢H,(z) — Hpy1(z) = H), (z) = 2nHp-1(2), (2.5)
and so we obtain the three-term recurrence relation
Hp1(z) — 2zH,(z) + 2nH,—1(z) =0. (2.6)

This can be easily converted into a differential equation by repeated use of
Eq.(2.4). Indeed, H,(z) = H. ,(z)/[2(n + 1)], while 2nH,_(z) = H,(z),
and a further application of Eq.(2.4) yields HJ (z) = Hj,,;(x)/[2(n + 1)]. After
replacing n by n — 1, and rearranging terms, we obtain

H]/(z) — 2zH, (z) + 2nH,(z) =0,

which is the required differential equation.

We can evaluate the Hermite polynomials sequentially from the recurrence
relation, H,(z) = 2zH,_1(z) — H!,_,(z), starting with Ho(z) = 1. We find
Hy(2) = 22, Ha(2) = 422 — 2, H3(z) = 82% — 12z, Hy(2) = 162% — 4822 + 12. In
graphical form:

20;
H,
10}
H,
| - z ] Hy
. > 2
-10f
_20.
_30.

Fig. 2.1 Hermite Polynomials

This graph was generated by the Mathematica command line:
Plot [{HermiteH[0,x],HermiteH[1,x],HermiteH[2,x], HermiteH[3,x],
HermiteH[4,x] },{x,0,2}, PlotRange —> {-30,20}]
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We may also obtain the Hermite polynomials from a generating function,
exp(2zt — t?), which is expanded in powers of ¢ to define the polynomials h,(z):

e2et—t _ Z (). 2.7)

n—O

The functions h,(z) are given by

(:B) e2%t— t? — ea:z_a_:_ e—(z—-t)2
t=0 ot t=0
We may use the identity d,g9(z — t) = —0,g(x — t) to obtain
2 O™ 2 2 O" 2
— n z? —(a:—t) - nett g%
) = (167 e | eaye T

The polynomials h,(z) are thus precisely the Hermite polynomials H, a(z)-
This generating function provides a simple way of investigating the orthog-
onality properties of the Hermite polynomials. Consider the double series

Z Z il tn m(z)Hp(z) = exp(2sz — 5% + 2tz — t2),

m=0 n—O

multiply both sides by e"”z, and integrate:

n 0
Yo e HEm ) - [ o crssmaci

2st/ dz e~ (z—s—t)2

— 23t (2.8)

Now the last expression can be written as a series:

Jrest = v Z (23t)m ,

m=0

and this shows immediately that the terms with m # n, on the left-hand side

of Eq.(2.8), are zero. For m = n, we can read off the value of the integral,
obtaining finally

/ " do ¢ o (2) Ho () = /72 mi 6,
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2.2 One Dimensional Harmonic Oscillator

Two particles, each of mass m, move in a one-dimensional harmonic oscillator
well. In addition, there is an interaction, V(g), which depends only on the
separation between the particles, ¢ = g1 — g2-

(1) Show that the Schrodinger equation can be separated into two equations,
each of one variable only.
(2) Find the energy eigenvalues in the case that V(g) = M>.

Solution
(1) Let us write the Hamiltonian in the form

2 2
_h p3 2 2 —a). 2.9
H=o -+~ +pg+pg+ V(g — a2) (2.9)

We now make the canonical transformation from the conjugate pairs (g1, p1) and
(g2,p2) to the pairs (g,p) and (Q, P), defined by

q9 = q1—q
Q = 3(q+g)
p = j3(p1—p2)
P = pr+p2.

The Hamiltonian can be written
H = H; + H,, (2.10)

where

4m m 2

In configuration representation, the Schrodinger equation for this system is

h? h? - -

{—RVZR - -T—n-V,z, +2uR? + Lur® + V(r)} Y(R,7) = Ey(R,T)
This partial differential equation is separable: set 1/)(R ,T) = tIJ(Ii )¢(7) , so that,
after dividing both sides of the above equation by gb(ﬁ ,7), we find
L2 -
ET e v fen)
() B

The first term on the left is a function only of R, while the second term on the
left is a function only of 7. Since the sum is a constant, it follows that each must

{—-%V% + 2pR2} ®(R)
&(R)
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be constant (the terms separately depend on different independent variables, and
thus neither can vary). Let us call these constants E; and E; respectively. Then
E = E; + E; and the equation separates into two Schrédinger equations, one in
the variable B , and the other in the variable 7.

(2) If V(q) = A\g?, we have

2

H=5 (r+ %) 2, (2.12)

and we can write the energy eigenvalues as
E = Ey + E» = h[njw; + nowz + (w1 +w2)]

where n; and ny can take on the values 0, 1, 2, ..., and where

w1 =12p/m  wy = /202X + p)/m.

2.3 Mean and Uncertainty

Let g and p be the Cartesian coordinates of the position and momentum oper-
ators of a particle in a quantum mechanical one-dimensional simple harmonic
oscillator. Let |n) be the normalized eigenvector of the Hamiltonian belonging
to the eigenvalue (n + 3)Aw . The mean, g, and the uncertainty, Ag, of ¢ in the
state |n) are defined by § = (n|g|n) and (Aq)? = (n|¢?|n)—@*, and similarly
for p. Calculate AgAp for the nth excited state.

Solution

The relation between the position operator and the ladder operators a and at is

q= \/ 21:w (a+a), (2.13)

where w = 1/2)/m, and the normalized eigenvectors of the oscillator satisfy

aln) = +/nijn-1)
afln) = Va+1ijn+1).

Since (ni|n2) = 0 if n; # ny, we see that g = (n|g|n) =0, and

(A0? = (nlg’In) =T = s~ (njaa’ + alaln)
- 2—% {(n+1){n+1n+1) +nfn— 1jn — 1)}

= (n+ g)%. (2.14)
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The relation between the momentum operator and the ladder operators is

p=-iyf m;’h(a ~ah, (2.15)

and so also the mean value of the momentum is zero, p = 0, while

(Ap)? = (nlp’|n) - P
= —m;)—h(nlaaf + ala|n)
= (n+ H)hmw. (2.16)

Therefore
AgAp="Hh(n+3),
and, in particular, for the ground state, n = 0,
AqAp = 3R,
which is the smallest value allowed by the Heisenberg Uncertainty Principle,

AgqAp > ih.

2.4 Classically Forbidden Region

Calculate the probability of finding a particle in the ground state of an isotropic
harmonic oscillator to be in a classically forbidden region.

Solution

The potential energy is V(r) = Ar? = Imw?r?, and the ground state energy is
3hw. Classically, the total energy can never be less than the potential energy,
so the classically forbidden region is defined by r» > a, where -;-mcuza2 = 3hw, so

1
a=,/ 3k The non-normalized ground state wave function is ¥o(r) = e 3%

where R is the scaled radial variable, given by R = /mw/hr. We see therefore
that r = a corresponds to R = /3. The probability that the particle is outside
the classically allowed region is therefore

[2dre?lgo(r)? [73dR R? e F 3 V3e 3+ [ZdR e~ R
J57 drr2|yo(r)[? [;°dRR?e~F* J dRe B

2\/§e‘3 + _E_f dR e~ F* ~0.1116.
s BN
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This numerical result can be obtained by integrating the last term numerically, or
looking up the value of the complementary error function, erfc (v/3), in statistical
tables, or by using Mathematica. The command line

2.xSqrt[3/Pi]*Exp[—3] + Erf[Sqrt[3.], Infinity]
returns the value 0.11161. We conclude that the probability that a quantum
particle, in the ground state of an isotropic harmonic oscillator potential, lies
outside the region that is permitted classically is 11.16%.

2.5 Thomas-Reiche-Kuhn Sum Rule

The Thomas-Reiche-Kuhn sum rule for a particle of mass m in one dimension is

2
‘;(Ek — E.)|(klgln)[? = ;_m

Here g is the operator whose eigenvalues give the position of the particle, E,, is
the nth energy level, and |n) is the corresponding eigenvector.

(1) Check this sum rule for the simple harmonic oscillator.
(2) Prove it for a general potential.

Solution
(1) Since B, = hw(n + 1), then Ey — E, = (k — n)fw.

From q = 4/ k_(a+ at), it follows that

2mw

(klaln) = 4/ 5—(kl(a +at)in)

\/Ent_w {Vn(kln - 1) + VAT L(kln + 1)}
= V 5—% {Vnkm-1+ Vn+ Lok ni1} - (2.17)

I

Thus we find

h
|(klalm)* = 5 {ndkm-1 + (n+ 1)dk,n41} (2.18)

2
> (B~ B\ (Hlalm)P = 53k~ n) {nbines + (n+ Déns}
k k

K2 K2
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(2) The canonical momentum of a particle in a conservative potential, in one
dimension, is given by

. m
p=mg= E[q, Hi, (2.20)

where we have used the Hamilton-Poisson-Heisenberg equation of motion for the
position operator, g. This relation can also be obtained without explicit use of
the equation of motion if one recalls that ¢ commutes with the potential, which
is a function only of g. Hence

A

g, H] = [q,% —

b}

which is equivalent to Eq.(2.20). Since [g,p] = ih, it follows that

2
la,(q, H]| = —% : (2.21)

We have then the matrix element

2

(nlla, Hla - ala, H]ln) = = (2.22)
By inserting a complete set of states we see that
(g ) = Sl R k)
= ij(Ek — E,)(nlq|k)(klqln)
= S - ) (k) (2.23)

here )", is to be understood as a sum over discrete (bound) states, and an
integral over continuous (scattering) states. By similar reasoning, we find

(nlalg, Hlln) = (En — Ex) [(klglm)|” . (2.24)
k

On combining Eq.(2.22), Eq.(2.23) and Eq.(2.24), we see that

2
(B ~ Ea) Kklalm)* = 5~ (225)
k
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2.6 Half Oscillator

Calculate the energy levels of a 1-D “half” oscillator, defined by the potential
V(z) = fmw?z? for z > 0, and V(z) = oo for z < 0. Which of the eigenvectors
of the 3-D isotropic oscillator correspond to those of the half-oscillator?

Solution

The energy levels of the complete oscillator are E,, = (n+ 3)hw,n=0,1,2,...
in one dimension. For even values of n, the eigenvectors of the Hamiltonian are
even functions of z, and they do not have a zero at z = 0. for it follows by
substituting z = 0 in the generating function (2.7), that

Hyn(0) = (1) 0.

For odd values of n, on the other hand, the eigenvectors are odd functions of z,
and so they do have a zero at z = 0. Since the wave functions in this problem
must vanish at z = 0, it follows that the odd eigenfunctions of the complete
oscillator are eigenvectors of the half oscillator Hamiltonian. Accordingly, the
energy levels are

Ep = (204 3)hw, n' =0,1,2,...

The S-wave bound state wave functions of the 3-D isotropic oscillator correspond
to the eigenvectors of the half-oscillator, since they satisfy the same differential
equation, and also the boundary condition at » = 0 (corresponding to z = 0 for
the half-oscillator). This is not true for the states P, D, and so on, because of
the centrifugal term in the radial Schrédinger equation.

2.7 Number Operator

Define N = a'a, where af is the Hermitian conjugate of the operator a, and
where aat — ata = 1.

(1) Prove that a and a' have no inverse.
(2) Show that the only analytic functions of a and a! that commute with
N are functions of N.

Solution
(1) If @ were to have an inverse, a~?, then we would have a~'a = 1 as an operator
relation, and this implies that the ground state vector, |0), satisfies

a~la|0) = |0). (2.26)
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However, |0) is by definition the state of lowest energy, with a|0) = 0, where the
right-hand side here signifies the null vector. Then Eq.(2.26) implies |0) = 0,
which in turn implies that the whole ladder of states built on the ground state
is trivial (i.e., equal to the null vector).

Therefore, if the ground state is not trivial, a has no inverse. Also, af has
no inverse; for if it had one, we could write af(a)~! = 1, and the Hermitian
conjugate of this is a~'a = 1, which we have seen to be impossible under the
stated assumption. '

Strictly speaking, we have shown that a cannot have a left inverse, azl, such
that azla = 1. However, the operator does have a right inverse, aﬁl, such that
a,a,;z1 = 1. In particular, we may take a,‘il, applied to a particular oscillator

wavefunction |n}), to give
ag'ln) =4/ ;|n+ 1).
n+1

- 1
aazl|n) = ‘/ ) 1a,|n-|-1) = |n).

This right inverse exists if the oscillator wavefunctions form a complete set, but
of course it is not a full inverse of the operator a.

How do we know whether the ground state is trivial or not? That depends
on the vector space on which the operators a and a' are taken to act. In a
configuration space of differentiable functions, we know the ground state to be
non-trivial, for (z|q + ip|0) x (z|a|0) = 0, so

Then

(a: + a%) o(2) =0, (2.27)

where 1o(z) = (z|0). The differential equation Eq.(2.27) has a nontrivial solu-
tion in a space of differentiable functions, namely exp(—z2/2).
(2) If F(al,a) is analytic, we can write
[o o} oo
F(al,a) = Z Z cmn(ah)™a™. (2.28)
m=0n=0

The commutator of N and F' can thus be written

N, F]= 3 ema{ IV, ()™ + @) [N,a"} . (2.29)
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In Lemma 1 we show that [N,a"™] = —na™, thus [N, (a')™] = m(a!)™, and so
[N, F1=)"Y" cmn(m — n)(ah)™a".
m n

If [N,F] =0, then ¢, = 0 when m # n. This follows from the fact that the
operators (a')™a™ are independent; more precisely, if Yom 3. dmn(at)™a™ =0,
then d,,,, = 0 for all m and n. This is shown in Lemma 2.

Let us write cjn = cpdma, so that Eq.(2.28) becomes

F(al,a) = Z cn(at)a™.

In Lemma 3, we show that (af)"a™ = N(N —1)...(N — n+ 1), so that

F(al,a) =) cuN(N -1)...(N —n+1),

which is indeed a function of the operator N = ata.

In fact the theorem has much more generality than the restriction to analytic
functions would suggest. The proof can be easily extended any function with a
Fourier transform,

F(a',a) = / / dudv f(u,v) ei(ua’+va)

Lemma 1
The proof of

[N,a"] = —na™, (2.30)
proceeds by induction. For suppose Eq.(2.30) to be true for a given n. Then

[N,a™*'] = [a,a]a™ + afa’,a”)

= —-a"-na"=-(n+1)a",

which has the same form as Eq.(2.30), except that n has been replaced by n+1.
Since Eq.(2.30) is certainly true for n = 1, the proof works for n = 2,3, ...

Lemma 2
Y 0> meodmn(al)™a™ = 0, then for any integers, M, N,

M N
>N dipn(M|(at)™a”|N) = 0.

m=0n=0
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With M = 0 = N, we find dgo = 0. With M =0 and N = 1 we then obtain
do; = 0, and with M =0, N = 2,3,4, ... we find successively that do2, do3, do4,
and so on must vanish. Now we set M = 1 and let N be successively 0,1,2,...,
which allows us to show that all the coefficients d1j, 7 = 0,1,2,... must be
zero. Then we set M = 2 and show that dpj, j = 0,1,2,... must be zero.
The procedure is continued ineluctably, with M = 3,4,5,. .., finally reaching an
arbitrary d;;, showing that it, too, must vanish.

Lemma 3
Since N = ala, it follows that

(at)"a™ (a)*"INa"!

(@) [N, e + (at)* eIV
—(n=1)(a")* e + (""" ta"IN
(@) la® Y (N —n+1)
(a')"2a" (N -n+2)(N-n+1)

N(N-1)...(N-n+2)(N —n+1),

by iteration.

2.8 Differential Operator

Let the differential operator a = (z + d/dz)/+/2 act on the space of infinitely
differentiable functions, g(z), of compact support. Use the language of test-
function spaces.

(1) Calculate the Hermitian conjugate, af, of a.
(2) Deduce the commutator of a and af.
(3) Prove [ata,al] = al and [afa,q] = —a.

Solution

(1) We define the standard scalar product on the space of infinitely differentiable
functions of compact support as

5(f9) = / dzf* (z)g(z)
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and so
S(f,ag9) = 2'%/da:f*(:v){zg(a:)+g'(a:)}
= 2} [dagla)as (@) - (@),

where an integration by parts has been performed, the integrated terms being
zero, because of the properties of the test functions. Hence

S(g,a'f) = {S(f,ag)}* =27} / dzg* (z){zf(z) - f'(2)} ..

Consequently, at = (z — d/dz)/v2.
(2) We calculate
aalg(z) = }{2’9(2) +9() - ¢"(2)}
alag(z) = §{z’°9(z) - g(z) - ¢"(2)} ,
and so [a,al] g(z) = g(2), i.e., [a,al] = 1, as an operator relation.
(3) The following equalities between operators hold:
[a'a,al] = a'aat — ata’a = at[a,al] = at .
The Hermitian conjugate of this result is [a, afa] = a, i.e.,

[a'a,a] = —a.

2.9 High-T . Cuprate

An electron of mass m moves in a two dimensional Cu-O plane in a high-T,
superconducting cuprate. The effective potential is an isotropic oscillator.

(1) Express the eigenstates 1,5, of this system in terms of the eigenstates
¥n, (i) of the one-dimensional harmonic oscillator and show that the
energy eigenvalues are given by En, n, = (n1 + na + 1)hw.

(2) Calculate the degeneracy of the nth excited level, i.e., the one with
energy E, = (n + 1)hw.

(3) Express the eigenfunctions belonging to the ground state and the first
excited state in terms of polar coordinates.

Solution
(1) The eigenvectors of the Hamiltonian in configuration space are

Ynyin, (:171, 3:2) = Yn, (wl)"pnz ((Bz) = exp[—%(Xf + X%)] Hpy, (Xl) H,, (X2) )
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where H,(X) is the Hermite polynomial, and where X; = (mw/ R)iz;. The
energy eigenvalues, with n = n; + ny, are

E(n1,n2) = E1(n1) + Bz(n2) = hw(ny +nz + 1) = hw(n +1).

(2) For a given n = ny + n3, ny may have any of the n +1 values 0,1,2,...,n,
and then n, is fixed at the value ny = n — n;. Accordingly, the degeneracy of
the nth level is n + 1.

(3) Clearly the ground state wave function is

Yoo(z1,z2) = exp[~3(X7 + X3)] = exp[-3R?],
where R = (mw/h)2r. The degenerate states at the first excited level are

Yio(z1,22) = 2Xi exp[-—%Rz] = 2Rcos€exp[—%R2]
Yoi1(c1,22) = 2Xjexp|—iR?) =2Rsinfexp[-1R?,

and the linear combinations
. 1np2
P10(Z1, 22) £ o1 (21, 22) = 2ReF P e~ 37

are eigenfunctions of the angular operator, 62/862.

2.10 Anisotropic Harmonic Oscillator

In three dimensions, consider a particle of mass m and potential energy

— mw? 2 2 2
V(F) = T (1= )@ +47) + (14 7)2)
where w > 0and 0<7< 1.

(1) What are the eigenstates of the Hamiltonian and the corresponding en-
ergies?

(2) Calculate and discuss, as functions of 7, the variation of energy and the
degree of degeneracy of the ground state and the first two excited states.

Solution
(1) The eigenvectors of the Hamiltonian in configuration space are

3 n.
a 3
"/}nlnzns(Xl,Xz,Xs) = II [ j— —6_)(_] exp[——%XJ?]
J

j=1

3
= [T expl-3X]1 Ha, (X;), (2.31)
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where H,,(X) is the Hermite polynomial, and where

mw;
X. = J
j= _._mj’

h
with
wo = wi=wy=wVl—7
ws = wViTT.

The corresponding energy eigenvalues are
E(ny,n2,n3) = hwo(ny + ng + 1) + hws(ns + 1).

(2) For generic values of T, the degeneracy is the same as that of the two-
dimensional oscillator. Indeed, we may write

E(n,n3) = E(n1,n3,n3) = hwg(n — ng + 1) + Aws(ns + 1),

where n = n; + ny + n3. For a given n and ngj, all the eigenvectors with
n; =0,1,2,...,n — n3, have the same energy, so the degeneracy is n — nz + 1.
The ground state corresponds to n = 0 = ng, so this state is not degenerate.
For n =1 there are two different energy levels,

E(1,0) = 2hwv1—7+ hwvitr
E(1,1) = AwvVl—7T+ 3hwv1i+r.
E(1,0) has degeneracy 2, while E(1,1) is not degenerate. Since
E(1,1) - E(1,0) = hw(v1i+7—-v1-7) >0,
for 7 > 0, it follows that
E(0,0) < E(1,0) < E(1,1).

For special values of 7 the degeneracies can be ‘accidentally’ higher. For
example, if 7 = 0 we have the isotropic three-dimensional oscillator, and the
energy levels depend only on n, and we know that the degeneracy of the nth
level is 3(n+1)(n+2). Then E(1,1) = E(1,0) and this level is triply degenerate.
There are other values of 7 for which the degeneracies are higher than the generic
values. For example, for 7 = ,

Vitr=2/1-71,

and then

E(n,n3) = (n+n3 + 2)hwv/1 — 7.
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In this case

E(0,0) = 2hwvi—7
E(1,0) = 3hwVi—7
E(1,1) = 4hwV/i-7,

so these levels remain separated. However, for n = 2 we have the levels

E(2,0) = 4hwvl-—T

E(2,1) = 5hwvl-—T

E(2,2) = 6hwvl-T,
so the three eigenvectors corresponding to E(2,0) are degenerate with the eigen-
vector corresponding to E(1,1). The energy level is thus quadruply degenerate

for this particular value of 7. Evidently, similar ‘coincidental’ degeneracies will
occur whenever 7 is such that /1+ 7 = N4/1 — 7, with N a positive integer.



Chapter 3

Orbital Angular Momentum

3.1 Two Components of Angular Momentum

Show that any operator that commutes with two Cartesian components of the
angular momentum operator necessarily commutes with the total angular mo-
mentum operator.

Solution
Choose the Cartesian axes such that a given operator, €2, satisfies

[Q,L1] =0=[Q,L,]. (3.1)
It follows that

[Q, Lle] = [Q,Ll]Lz + Ly [Q, Lz] =0
[Q, L2L1] = [Q, Lz]L1 + Lo [Q, L1] =0,

and hence
Zh[ﬂ, L3] = [Q, L1L2 - L2L1] =0.

Thus 2 indeed commutes with the angular momentum operator, L.

3.2 Momentum and Angular Momentum

The position, the momentum and the angular momentum of a particle are rep-
resented respectively by the operators ¢, 7 and L. Show that

(1) L.p=0=
(2) L ;
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Solution

(1) Since px and p; commute with one another,
L -5 =Lip; = eijua;pepi = 0,

because €;xPrDi = €kjiPiPk = —€;ijkDkPi - (€ijkPrP;i is equal to minus itself, so it
must be zero.) Similarly, since also g; and ¢; commute with one another,

L-§=Lig= €ijxqiPrq; =0,

since €;jxg;¢; = 0, for the same reason as before. Note also that P L =0and
g - L = 0. The fact that g; and px do not commute with one another if j = k
does not invalidate the reasoning, for when j = k the factor €;;x vanishes. Thus
in fact

L; = €1q;Pr = €ijkDPrq; -

(2) In classical physics, the vector product of a vector with itself is always zero,
but in quantum mechanics this is no longer necessarily the case. We have

(L AL); = €ijnLiLi,
but we can also write
(LAL);= €ikjLxLj = —€ijx L L; .

Taking the average of these two expressions, and using the algebra of the angular

momentum operators, we find
(E A E), = G.ijk(Lij - Lij)

ihﬁijkejkmLm

I
N N = N

iheijkémjkLm .
We use the lemma
€ijk€mnk = 6im5jn - a'in(sjm )

to deduce that

(LAL) = 3ih(imbis — 6ijim)Lm
34(30im — Oim)Lm
= ‘&hL.,, )

which is the desired result.
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We will now prove the lemma that was needed. It has many other uses, as we
will soon see.

Lemma: Contraction of Levi-Civita symbols

€ijk€mnk = 5im5jn - 5in5jm )
where, as usual, there is summation over the repeated index, k.

Proof

This lemma can be demonstrated by assiduously listing left and right sides for
all 81 values of the quadruple {ijmn}, or more astutely by considering the triple
vector product,

@EAGBAE)L = ax(b A&)s—as(b AE),
= ag(b102 - bzcl) - a3(b3c1 - blc3)

= azbic2 + asbics — azbac; — asbse; -
Now by adding and subtracting a;b;c; we obtain
[@ A (B A1 = ajbic; — ajbjcy,

with summation over j. A similar formula holds for the second and third com-
ponents of the triple vector product, so we have

[&: A (g A E)]i = a,-b,;c_.,- - ajbjc,f = (Jim(s]'n — Oin jm)a,-bmcn . (32)
However, we also have
[El: A (5 A E)], = eijkekmnajbmcn = e,:jkemnkajbmcn . (33)

The 27 triples a;bmcn are at our disposal, and so the required result follows by
comparing Eq.(3.2) and Eq.(3.3) and equating the coefficients of a;bmcy.

END OF LEMMA

3.3 Position and Angular Momentum

Show that
(1) LAG+§NL =2ihg
(2) [L?,§] = —2ik(L A G - ikq)
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Solution

(1) By using the antisymmetry of €;;;, under interchange of j and k, we find
(LAG+TALY = ejue(Lian + a5Lk) = €se(Liar — aLs)

€ijk€jmn (@mPpnar — ‘Ik(Impn)

(8kmBin — Oknim )qm [Pn, k]

=  —ih(6kmbik — Okkdim)qm = 2ihqi, (3.4)

i

since O =1+1+1=3.

(2) With summation over n,

[L?,45] = Ln[Ln,q]+ [Ln,%]Ln

= enji{Lnlgipr, @] + [2jPk 6] Ln}
€njk{Lng;j[Pr, @] + gilpr, i)Ln}
—ihenji(Lngj + g5 Ln)
= —iheinj (anj - anj) .

l

In vector notation, this is

[L2,§) = —h(E AG-GAL). (3.5)
However, from Eq.(3.4) we have
GgANL =-L AT+ 2ihg. (3.6)
Together with Eq.(3.5), this implies
[L%,§] = —2ih(L A G —ihq) . (3.7)

3.4 Commutation of Angular Momentum and Central Potential
Given a Hamiltonian
2
P 2
H=—
2m +V(7),

where V depends only on g2 and is such that it possesses a Fourier transform,
show that [L,H] = 0.
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Solution
The commutator can be divided into a kinetic and a potential contribution:
o g 1 g -
[L ’ H] = Efn—[L 9p2] + [L ) V(qz)] . (38)
Consider first
[Li, p%] = €ijilaipr, p7) .- (3.9)

Now g;prp® — p2q;pr = [g;, P?]pk, since p? and pr commute, and further

[9j,9%] = [a;, Pelpe + pelgj, pe] = 2ibip;
since [g;,pe] = thdje. Hence
[Li, p°] = 2ihe;jupipr = 0. (3.10)

Thus the kinetic contribution to the commutator is zero.
A demonstration analogous to the above serves to show that

[L,q*] =0; (3.11)

it is not necessary to repeat the above steps, for one only needs to interchange
the roles of ¢ and p. It follows immediately that

[L,¢" =0, (3.12)

since one may write g™ as the product of n factors of g2, and it follows from
Eq.(3.11) that I commutes with each of these factors.

Now suppose that the central potential is sufficiently well-behaved that it
possesses a Fourier cosine transform:

V(¢®) = /0 ~ dt v(t) costq® . (3.13)

If V(q?) is piecewise continuous this will be the case, according to Fourier theory
(finite discontinuities are allowed). Since the cosine has a series expansion with
an infinite radius of convergence, we may legally write

Ev@)= [~ auw > SIEem =0, (3.14)

n=0

where we have used the result of our induction. So the potential contribution to
the commutator is also zero, and we conclude that

[L,H] = [E, % + V(qz)] =0. (3.15)
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As an important special case, let us consider the Coulomb potential. By
transforming to polar coordinates, we see that

o) o 2 2 oo 2 27
/ d:c/ dye—(“""y):/ drre”" dd =3 x2r=m.
oo —oo 0 0

Since the left-hand side is the square of ff°°° dz e=%, it follows that the latter

integral is equal to /7, and half of that is [;° dz e~=" = //2. Now rotate the
integration contour in the z-plane by an angle ¢, and set * = ei®/E:

* & _ 200\ _ fa—id
/oﬁexp(e £) =vVre?,

with the restriction |¢| < im. On taking the average of this integral for the two
values, ¢ = im and ¢ = — 37, we obtain

® .cos§ [mw
[ e =5

Finally, make the substitution ¢ = t¢® in this integral to show that, when

v(t) = —ez\/%,

is inserted into Eq.(3.13), the Coulomb potential results, namely

oo 2
V(¢®) = / dtv(t) costg® = —Eq- .
0

Here q is of course shorthand for ¢ = 1/¢? = \/q;; -

3.5 Measurement Results

The wave function of a particle has the form f(r,0)cos¢@. Give the possible
results of a measurement of the z-component of the angular momentum, with
the corresponding probabilities.

Solution
The eigenvectors of L, are e'™?, with the corresponding eigenvalues mh. Since

f(r,0)cos ¢ = 1f(r,0) [e® + e7*] ,

we see that the possible results of a measurement of L, are £ or —A, with equal
probabilities of 1, since the projections onto the two eigenvectors is the same.
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3.6 Mean Values of Angular Momenta

|¢,m) is an eigenket of L? and L3 with eigenvalues £(£ + 1)A* and mh. Show
(¢, m|L}|¢,m) = (£, m|L3|¢, m) = L1R*[£(£ + 1) — m?]

Solution
Since Ly = Ly £ iL,, we find

L2=YLy+L_)»=3L2+LyL_+L_L,+1L?%).
Hence
(¢, m|L3|¢,m) = X(¢,m|L L_ + L_L,|¢,m),
since the other terms involve overlaps of orthogonal states. Now

L:I:LIF = (Ll + ZLg)(Ll + sz)
L} + L3 Fi[Ly, L]
L?> - I2+hLj,

which is Eq.(3.10) of Volume 1. Therefore
L,L_+L_L,=2(L?-L2),
and so
(6, m|L}|6,m) = 1(¢,m|L* — L3|¢,m) = LhA?[6(£ + 1) — m?].
Since
L3=-3(Ly = L) ={(-L3 + L4L_+ L Ly - L2),

the demonstration proceeds in the same way for (£, m|L3|¢, m).

3.7 Possible Results and Probabilities

A particle in a spherically symmetrical potential is in a state given by the wave
function

¥(7) = [az® + B + 22)|£(r),

where a and 3 are constants.
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(1) Take o = B = 1. What are the possible results of a measurement of L??
Calculate the corresponding probabilities. What are the possible results
and the probabilities associated with measurements of L, L, and L,?

(2) Take @ = 0 but 8 = 1. Answer the same questions for this case.

Solution

(1) With @ = 8 = 1, the wave-function is spherically symmetric, i.e., it is a
function only of . Since the components of the angular momentum, L, L, and
L, are expressed in configuration representation in terms of partial differentials
with respect to 6 and ¢, but not r, it follows that

Latp(r) = Lyd(r) = Laap(r) = 0. (3.16)

This can also be seen by noting that

Le(r)

I
|
-~
=t
<
g
|
N
S|
—
<
—~~
ﬁ
~

. [Y2  2ZY}
= -in[L-ZFym=o,
and similarly for the other components. We see from Eq.(3.16) that 1(r) is an
simultaneous eigenvector of L, L, and L, belonging to the eigenvalue 0. Hence
it is an eigenvector of L2, also belonging to the eigenvalue 0. Thus the result
of measuring any component of the angular momentum, or the total angular
momentum squared, in this spherically symmetrical state, is certainly 0; or in
other words, the probability of measuring 0 is 1.

(2) With @ =0 but 8 =1,
¥(7) = (v* + 2°)f(r),

which has cylindrical symmetry about the z axis only. Thus we expect the z
component of the angular momentum to vanish. More formally,

Lot = =infug—2p | 67+ 10)
= -2iklyz— 2] f(r) — i [ - Z| 2 + A)f () =0,

so the value that is measured for the z component of the angular momentum is
0, with probability 1.

To see what the results of measurements of other components of the angular
momentum may be, we observe that

y? + 2% = 1r?[ —sin® 6(e*? + e7%¢) + 2+ 2cos? 0] . (3.17)
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This is a superposition of £ = 0 and £ = 2 spherical harmonics. The spherical
harmonic, Yzm (6, ), is proportional to P;™(cos 6) ei™? where the associated
Legendre function of the first kind can be defined by

st = CU mg (_ 4\ 2
P;™(cos8) = szp St 0 Tocsf sin“* 6,

so Pg(cos8) =1, P}(cosf) = }(3cos® -v1) and P2(cosf) = 3(1 —cos? 6). Thus

/ 1
Y. = —_—
00 .

— 9 2
Yoo = -1—6;(3cos 0-1)

Yo, 42 = \/glziﬂ sin” § e*2¢

with the standard normalization. In terms of them, Eq.(3.17) is

P+ 22 =ty [Yoow, 8+ 5¥20(0,9) - /3 (¥22(6,9) + Y2, 20, ¢))] -

As can be seen from this decomposition, the possible values obtained if L? is
measured are £(£ + 1)i%, with £ = 0 or 2. The ratio of the probabilities is

and since Pr(£ = 0) + Pr(¢ = 2) = 1, it follows that

If, instead of measuring L2, L, is measured, the possible results are m#h, with the
one of the values m = —2, 0 or 2. The ratio of the corresponding probabilities is

Pr(m =2)/Pr(m =0) = Pr(m = -2)/Pr(m=0)= 2(1+ &) ' =&

14 °

Since Pr(m = —2) + Pr(m = 0) + Pr(m = 2) = 1, it follows that
Pr(m =0) = Pr(m=2) =Pr(m=-2) = &%.

If L, is measured instead of L, the possible values, and the corresponding prob-
abilities, will be just as they were for L,, since the wave function is unchanged
under a rotation of the coordinate axes through I about the z axis. This ro-
tation interchanges the y and z axes, so indeed the answers we obtained for
measurements on L, apply unchanged for measurements on L,.
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3.8 Uncertainty Principle

Suppose that the wave function 4(r) is an eigenfunction of L, and L.

(1) Does this not contradict the uncertainty principle for noncommuting
operators?

(2) What are the possible results of a measurement of L.?

(3) Show that 1 is spherically symmetric.

Solution

Suppose Lo1(r) = Az9(r) and L,9(r) = Ay3p(r). Since [Lg,Ly] = ihL,, it
follows that L,9(r) = 0; but [Ly, L,] = iAL;, so Lyyp(r) o [Ly, L:]¥(r) = 0,
i.e., Ly9(r) = 0, and similarly Ly3(r) = 0.

(1) Heisenberg’s uncertainty principle gives a lower bound on the product of the
standard deviations of the measured values of two noncommuting operators, like
g and p, when the commutator is not an operator. However, the commutator of
L, and L, is an operator, since it is proportional to L,. The mean and standard
deviations of both L, and L, in the state 1(r) are zero, as are those of L., and,
although this does mean that L, and L, have a precise value in the state 3(r),
namely zero, this does not contradict the uncertainty principle.

(2) Since ¥(r) is an eigenfunction of L. corresponding to the eigenvalue 0, it
follows that a measurement of L,, in the state ¥(r), always yields the result 0.

(3) The most general continuous function of r can be written

00 £
P(r) = Z Z bem (r)Yem (0, 6) -

L=0m=-—¢

Since L2Yy, (0, ¢) = £(£ + 1)Yerm (6, #), and we have proved that L2y(r) = 0, it
follows that ¢, (r) = 0 for all £ > 1, since the spherical harmonics constitute a
linearly independent set of functions of § and ¢. So ¥(r) = ¢oo(r)/v4m, which
means that 9(r) is spherically symmetric.

3.9 Matrix Representations

Consider the following matrix representations of of the z- and y-components of
the angular momentum operator.

010 0 - O

Li=—] 1 0 1 Lo=—]| 1 0 —i
\/5010 ﬁO'
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(1) Calculate L3, using the algebra of angular momentum operators.

(2) What is the corresponding value of ¢, the angular momentum quantum
number?

(3) Calculate (L), (L) and AL; = ([L; — (L1)]?)*/2. Here () refers to
matrix elements taken with respect to a normalized eigenvector of L3
belonging to the eigenvalue 1.

(4) Consider the state (¢| = 1(1,1,4/2). If L? is measured in this state and
the result 41 is obtained, what is the state after the measurement? How
probable was this result? If L; is now measured, what are the outcomes
and their probabilities? Does this second measurement change the state?

Solution
(1) By direct matrix mutiplication, we find

1 i 0 —2 1 -1 0 -1
LiLyo==10 0 0 Loy = - 0 0 O ,

2 ] ) 2 J .

1 0 —12 1 0 1

and since [Ly, Ls] = iL3, we have

10 0
Ly=—i[Ly,Laj=| 0 0 0 |.
00 -1

(2) The eigenvalues of L3 are by inspection —1, 0 and 1. Since the eigenvalues
(in units such that i = 1) are —¢, —¢+ 1,...,4, it follows that £ = 1.
(3) The eigenvectors of L3 belonging to the eigenvalues 1, 0 and —1 are

1 0 0
L,1=1{ o ,0)={ 1 IL,-1=1| o |.
0 0 1
The mean of L; in the state |1, 1) is therefore
) o

1 010 1
(L1)=(1,1|L1|1,1)=—\/_-2-(1 0 0)(1 0 1)(0
010 0

).

The square of L; is

h
[ ]

I
N =
O =
o N O
- O -
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and hence the mean of L? in the state |1,1) is

1 1 01 1 .
(L2 = (1,1|L3|1,1) = 5(100)(020 0 |=53
101 0
Finally,
ALy = ([Ly — (L)))? = (L})/? = _\}_5 _

(4) The eigenvalues of L? are 1 and 0. Consider the eigenvectors

1 1 0 1 1
Ix(1a)) = 7 ( 0 ) [x(1b)) = ( 1 ) 1x(0)) = 7 ( 01 ) , (3.18)
1 0 -

the first two belonging to the eigenvalue 1, and the last one to the eigenvalue 0.
The projection operator onto the eigenspace of L? belonging to eigenvalue 1 is

(101
=Ix(la))(x(la)l+Ix(lb))<x(lb)|=5(0 2 0).
101

If L? is measured in the state represented by |¢), with the result 1, the state
vector is thereby projected on to

f1 01 1 ] 14+v2
P1|¢)=Z(020)(1)=Z( 2\/_).
1 01 V2 14++2

The probability of this result (i.e., unity for the measured value of L?) is

5+2f

[(x(1a)|P1|$)|* + |(x(10)|P1|@)* = (¢|P1]¢) =
In properly normalized form, let us define the projection

1+2
=t _ 1 2 . (3.19)
VP Vio+4v2 \ 143

The state (3.19) can be rewritten in terms of the eigenvectors Eq.(3.18) of L3:

1+v2
\/5——2——|( a)) + \/——— |x(16)) -

|9) =
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It is easy to check that

1
T(£1)) = —={|x(1a)) £ |x(1b
[ (£1)) ﬁ{lx( a)) + |x(10))}
are normalized eigenvectors of L; with eigenvalues +-1. Hence we can also write

1+2v2 _
Vi

So if L, is measured in the state @, the result can be 1, and the probability of
obtaining this value is (9 + 4\/_) / (10 + 4\/—) or it can be —1, with probability
1/ (10 + 4\/—) Clearly the state ¢ will be changed by this measurement, being
thrown into the state 7(1) or the state 7(—1). The probability of obtaining the
result O (the remaining eigenvalue of L), is zero.

|#) =

3.10 Four Euclidean Dimensions

The generalization of angular momentum in configuration space from 3 to 4
Euclidean dimensions involves the differential operators

ij = —i(:l:jak - wkaj) N
where j and k take on the values 1,2, 3,4, with A = 1. Introduce
(J1,J2,J5) = (L23, L1, L12) (K1, K2, K3) = (L14; L24, L3s) -

(1) Discover the commutation relations between J and K.
(2) Show that the operators

*=4(J £K)

each obey the standard commutation relations for an angular momen-
tum, and that they commute with one another.

Solution
(1) Ljx is construed as an operator on a space of differentiable functions, ¢:
[Lijs Lelp = —[2i0; — 0, T8¢ — T40k]¢
= —Djjke — Djier + Dijer + Djike s (3.20)

Dijke = [2:0j,7k0¢)¢p = £:0jT10pp — x10ppT:0;¢
T;(0;100p + 210;0p0) — 1 (8:00;¢ + T:0,0;¢)
(85%%i0¢ — 0ipx0;) b . (3.21)
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Hence Eq.(3.20) becomes
[Lijs Lrelp = Oin(xj0p — 00;)¢ + Gje(wiOk — z10i)
—6:e(x;0k — x10;) — ik (xi0r — T20i)9 - (3.22)
Evidently we have the operator relation
[Lij, Lre] = $0ikLije + 00 L, — 1630 Ljx, — 10k Lie - (3.23)

Consider in succession the substitution of ijkf by 2331, 1424, 2324 and 1431.
This yields the following four commutators:

[J1,J2] = [Las,L31] =il12 =1iJ3
[K1,K2] = [Li4yLa4] =iL12 =1iJ3
[J1,K2] = [Las,La4] =iLl3s =1K3
[K2,J1] = [L14,L31] = —iL43 =iL3q = iK3,

where the definitions of J; and K; have been used.
(2) Evidently the linear combinations, Jii, satisfy

[JihiJ2i] = %[JI’J2] + %[KI,K2] + %[JI’K2] + Ili[Kl’J2]
= i(Js+ K3)=iJy,

whereas

U5, J5] = 30, o] — 4Ky, Ko & §[Jh, Ko] F §[K1, Je]
= $(Js—J3tK3F K3)=0.

By cyclic and anticyclic permutation of the indices 123, it is clear that
V5T = dendi
JE,JFl = o.

This concludes the proof that J £ are independent angular momentum operators.



Chapter 4
Central Potential

4.1 Spherical Bessel and Neumann Functions

The spherical Bessel and Neumann functions are respectively

li)e sin p

je(p) = (—=p)* ( 35 5

ne(p) = —(—p)* (%%)l cO;p .

(1) Prove the recurrence relation
. . I
Je+1(p) = —3g(p) + ;Je(P) .

(2) Prove the recurrence relation

¢
ne1(p) = —ng(p) + ;ne(p)-
(3) Work out jg(p) and n,(p) for £ =0,1,2,3, and sketch them graphically.
Solution

The most efficient way to prove the recurrence relations is to use the Hankel
function of the first kind,

D (p) = je(p) + ine(p)
for which we find

1 d)‘ etr
P)

h{Y (o) = —i(—p)* (;a;

49
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It follows that
: d .. ' 4
heh() = i)' [ B ()] = 1Y () + 2hDG). (4D)

(1) From the real part of Eq.(4.1), we immediately deduce the recurrence relation
for the spherical Bessel functions.

(2) From the imaginary part of Eq.(4.1), we obtain the recurrence relation for
the spherical Neumann functions.

(3) We can evaluate the spherical Bessel and Neumann functions sequentially
from from Eq.(4.1), obtaining

) sin p cos p
Jo\p) = no\p) = —
(p) p (p) >
) sinp cosp cosp sinp
alp) = — - ni(p) = ——b — —£
p? P (p) p? p
) sin p cosp sinp
ja(p) = 3 -3 -
P’ p? P
cos p sinp cosp
na2 p) = -3 -3 +
( p? p? P
) sin p cos p sinp cosp
js(p) = 15—— —-15 -6 +
pt p? p? p
cos i i
ns(p) = -15—F _157L 2L TP
p P P P
1
Jo
0.8
0.6
0.4 J1
0.2¢ j2 J3
é W° g
-0.2¢F

Fig. 4.1 Spherical Bessel Functions

These functions are displayed in Figures 4.1 and 4.2.
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Fig. 4.2 Spherical Neumann Functions

4.2 Function of Bound State Energy

Let (7)) = uo(r)/r be an S-wave solution of the Schrodinger equation for a
potential that has bound states, and which is strictly zero for r > a. Define the
following function of the total energy:

(B) = uo(a)

up(a)

Let Ep be a bound-state energy. Evaluate f(Eg).

Solution

Since there is no potential energy for r > a, the wave function must be a solution
of the free Schrodinger equation in this region. For a negative energy, F, the
general solution is

uo(r) = Ae™™ + Be*",

where k = v/—2mE/h. At a bound-state energy, E = Ep, the coefficient B is
zero. In this case, ug(r)/uo(r) = —«, and so

u(a) _ _ _ _V-2MEp

f(Ep) = ug(a) =T R
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4.3 Infinite Square Well

Solve the bound state problem for a particle of mass m in the following potential:

Vir) = 0 0<r<a

= 00 r>a,

where a = h/v/2m.

(1) List all the energy levels for which n < 3 and £ < 3.
(2) Show that energy levels of the same n are ordered by their £ values.
(3) Show that energy levels of the same £ are ordered by their n values.

Solution
The regular solution of the free radial Schrodinger equation for 0 < r» < a is

ug(r) = Arje(kr),

where ¥k = vV2mE/h, E being the energy. This wave function must vanish at
r = a, so E must satisfy j;(vE) = 0. For a given ¢, there is an infinite number
of solutions of this equation, which we will label E(n,£), withn =1,2,3,... The
first few zeros of the spherical Bessel functions can be read off from Figure 4.1.
The following Mathematica program was used to obtain accurate values:

sphb[k_,z_] :=Sqrt[Pi/(2*z)]*BesselJ[k+1/2,z];
root[k_,z0_,zn_,zx_] :=FindRoot [sphb [k, z]==0,{z,20,zn,zx}];
energy[k_,2z0_,zn_,zx_] :=(root[k,z0,zn,zx] [[1,2]])"2;

(1) This yields the following values for E(n,):

14 0 1 2 3
n=1| 9.870 | 20.191 | 33.218 | 48.831
n=2|39.478 | 59.680 | 82.719 | 187.636
n =3 | 88.826 | 118.900 | 151.855 | 286.409

Bound-state Energies of Infinite Square Well

(2) By observation from the table, we see that E(n,£+1) > E(n, £) for the values
of n and £ that are listed. To prove the inequality for any n or £, we employ the
recurrence relation that was obtained in the solution to Problem 4.1:

jesn(p) = —ie'(p) + %J’e(P)- (4.2)
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Multiply this equation by p and rewrite it

[pie(P)]' = pis(p) + de(p) = (£ + 1)je(p) — Pie+1(p) -
On differentiating this again,
[pie(p)]" = (£ +1)52(p) — Pizs1(p) — de+1(p),

and using the Schrodinger equation,

2
[_ ;;2 + Z(Zp-: D_ 1] [pje(p)] = 0,

we obtain
. . £+2
3e(p) = Jes1(0) + ——jes1(p). (4.3)
The recurrence relations (4.2)-(4.3) can be rewritten
d . _,. _ e
2 [p~%5e(p)] = —p"*Gera(p)
d . ,
g, i) = =) (4.4)

Consider two successive zeros of jz(p), hence of p~%js(p) (apart from p = 0,
which is not interesting). There must be at least one point between these zeros
where the derivative of p~¢j,(p) is zero, since it is continuous, and so it must
have at least one turning point between the two successive zeros. The first of
the equations (4.4) shows that p~%j,,1(p), and therefore jei1(p) itself, must
have at least one zero between the above two zeros. From the second of the
two equations (4.4), we can use similar reasoning to show that, between any
two consecutive zeros of jgi1(p), there must be at least one zero of je(p). On
combining these results together, we see that there is precisely one zero of j¢(p)
between any two consecutive zeros of jy+1(p), and vice versa.

We see from Figure 4.1, and from the table, that the first zero of jo(p) is at
a lower energy than the first positive zero of j;(p). Then, from the theorem that
we have just proved, the first zero of j2(p) lies between the first and second zeros
of j1(p), and so on, showing thus that the first zero (n = 0) of each wave lies at
a higher energy than that of the wave just before it. The same ordering applies
to the second zero, and to the third, and so on, and this observation completes
the proof.

(3) From the table, we see that E(n+1,£) > E(n,£) for n = 1,2. In fact there is
nothing to prove here, since the zeros of j;(p), for a given ¢, are simply labeled
n=1,2,3,..., in order of increasing energy.
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4.4 P Wave Bound State

Given a central potential, V(r) = —V; for r < a and V(r) = 0 otherwise, find
the minimum value of a2V; such that there is a P wave bound state.

Solution
The regular solution of the P-wave radial equation, aside from a normalization

constant, is
ui(r) = rju(kr), (4.5)

for r < a, where k = 1/2m(Vy + E)/h. A bound state occurs if this solution
goes over into

u(r) = rhgl) (irr), (4.6)
for r > a, where K = v/—2mE /h. The continuity condition can be written

ui(a—¢) _ui(a+e)
ma—e  w@te)’

in the limit € — 0, which is equivalent to

d - d
o log[ak2u1 (a—¢€)] = I loglax®u; (a + €)],

2
where the extra factors, ak  and ax?, which do not contribute to the derivatives,
have been included for convenience. Insert the expressions (4.5) and (4.6):

_ =ika [;; log[p*h{" (p) I] ,

p=ka p=ika

— d .
ka [% 108[P2.71(P)1|]
Now we see from the solution to Problem 4.1 that

log p?j1(p) = log(1 — pcotp)+logsinp
log pzhgl) (p) = im+log(i+p)+ip.
The continuity condition can now be cast in the form
% a? K2a?

1 — kacotka T T 1+4rka

(4.7)
Now k and k are related by
E2 + K.2 = 'gi—‘/o , (4.8)

and this equation has to be solved, together with Eq.(4.7).
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To effect a numerical solution of this nonlinear problem, we first invert both
sides of Eq.(4.7) and define

a= 1 1 (4.9)

k2a2 ka'’

the inverse of the right-hand side of Eq.(4.7). Evidently, we require

1 —
a = o e =1- cot ka,, (410)
ka2 ka

the inverse of the left-hand side of Eq.(4.7). We shall first solve the quadratic
equation for ka that arises by rationalizing Eq.(4.9), namely

ak?a® + ka+1=0,

with the physically relevant solution

Ka = ——————“1";40‘“ . (4.11)
(8

Eoll

Fig. 4.3 P-Wave Bound State

In Figure 4.3, we plot x against k (for @ = 1). The curves show &, as a function
of k, defined by Egs.(4.10)-(4.11), while the quarter circle is given by Eq.(4.8).
The circle corresponds to the smallest radius for which it intersects the curve.
This occurs for

Vv2mVj

E a?.

k=0 and ka=n=
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For this value of ka, we find a = oo, which indeed corresponds to £ = 0, as can
be seen from Eq.(4.11). The minimum potential for a P-wave bound state is

w2h2

om ’

a®Vy =

which is four times that required for an S-wave bound state.
The graph was produced by the following Mathematica program:

kappala_]l := (-Sqrt[1 - 4*a] - 1)/(2*a);

alphalk_] := (1 - k/Tan[k])/k"2;

circ[k_] := Sqrt[Pi~2 - k~2];

Plot [{kappalalphal[k]l], circ[k]}, {k, 0, 7}, PlotRange -> {0, 5}]

4.5 Two Step Square Well Potential

Suppose that the spherically symmetric potential, V(r), is equal to the positive
constant Vp for r < a, is zero for a < r < b, and is infinite for » > b. Calcu-
late the energies of the ground state and the first excited state, and obtain an
approximate expression for the energy splitting of these levels if Vj is very large
compared to these energy levels.

Solution

Let us first consider the S wave. With E < Vj, the regular solution of the
radial Schrodinger equation in the region r < a is ug(r) = Asinhkr, where
Vo — E = h?*k2/(2m). Thus

uo(r)
Uo (7‘)

= kcothkr r<a.

In the region a < r < b, the solution ug(r) = Bsink(r — b) vanishes at r = b,
where E = h%k?/(2m), so here

ug(r)
Ug (1‘)

= kcot k(r — b) a<r<b.

The condition of continuity at » = a is
kacothka = kacot k(a — b) = —kacot k(b —a). (4.12)

The left-hand side is a positive number between 1 and co. The right-hand side
is negative for k(b — a) < 7/2 and tends to +o0o as k(b — a) — 7 from below. If
E is negligible compared with Vp, k ~ +/2mVp/h, and if ka >> 1, the left-hand
side is large, in fact approximately ka. Under these conditions, the first solution
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is given approximately by k(b—a) = =, the second by k(b—a) = 27. The ground
state energy is then approximately

242
Eo = _Th"
2m(b — a)?
To verify this behavior, we iterate the equation (4.12):
ko = —kcotk(b—1) (4.13)
Knt1 = —kcotk(b— 1)tanhk,, (4.14)

where we have set a = 1, and we will choose b = 5.

S—ﬁr.\
K T~

~
| ™\

‘N
P ——t
Sl T
N Re=
>
~t

Fig. 44 P-Wave Bound State

The dotted curve in Figure 4.4 shows the zeroth approximation (4.13), while
the solid curve is the result of four iterations of the system (4.14). The quarter
circle is given by Eq.(4.8), the same relation as in the previous problem. The
graph was produced by the following Mathematica program:

b =5;

kappal0, k_] := -k*Cot[k*(b - 1)];

kappaln_, k_] := -k*Cot[k*(b - 1)]*Tanh([kappa[n - 1, k]];

kappac[n_, k_] := If[0 < kappaln, k] < 10, kappaln, k], I];

Plot [{Sqrt[25 - k~2], kappac[0, k], kappac[4, k]}, {k, 0, 7},
PlotRange -> {0, 5}, PlotStyle -> {{}, {Dashing[{0.01}1}, {}}]

The second S-wave state occurs at about four times the energy of the first one
(i.e. twice the k-value), as can be checked from the graph; but we do not expect
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this to be the first excited state of the system. That is expected to be the lowest
bound state of the P wave, to which we now turn.

For r < a, the regular solution of the P wave equation is Arj;(ixr), and for
a < r < b the solution that vanishes at r = b is

ji(kr)  ny(kr)
Br {jl(kb) - nl(kb)} '

The equation of continuity at r = a is
. j1(ira) j1(ka)ny (kb) — n’ (ka)j1(kb)
—— = =ka= - . 4.15
Y GiGra) 7 j1(ka)ny (kb) — ny(ka)j1 (kb) (4.15)
Now the left side of this is

-, . 2 2
. iKa Kk“a“ tanh ka
ika Ja(ixa) =

j1(ika) — ka — tanhka ’

which behaves like ka for large x. The right side of Eq.(4.15) becomes large
close to a zero of the denominator, and this denominator is 1/(a?b%k*) times

[1+ k%ab]sink(b— a) — k(b — a) cosk(b— a).

This is zero when

_ kb-a)
~ 1+ k%ab
if k%ab << 1. The lowest nontrivial solution of the equation tanz = z is
r = 4.4934 ~ 1.4307, and so the value of k2 for the lowest P wave state is

approximately 2.04672/(b — a)®. The splitting between the P and S levels,
under the conditions stipulated, is roughly

1.046 w2h>
2m(b—a)?’

tank(b — a) ~ k(b—a),

E,—Ep =

4.6 No More Than One Bound State

Show that there cannot be more than one linearly independent bound state wave
function for a given E and /, i.e., with the same energy and angular momentum.

Solution

Suppose that there are two solutions of the radial Schrédinger equation, ug(r)
and vg(r), with the same energy, E, and the same angular momentum quan-
tum number, £. Then by mutiplying the equation for ug(r) by ve(r), and the
equation for ve(r) by uy(r), and subtracting one equation from the other, we
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find v, (r)uj (r) — ue(r)vy (r) = 0. The left-hand side of this equation is however
[ve(r)uy(r) — ‘u.g(T)'UZ(’I‘)]’, and thus vg(r)uy(r) — ue(r)vy(r) = C, where C is an
integration constant. Divide this by u2(r) and observe that

4 [A)] _ _ ve(r)uglr) — ua(r)uy(r)

dr [ ue(r) u3(r)
On integrating this, we find
T ds
ve(r) = —Clug(r —, 4.16
( ) e( ) b ug( S) ( )

where D is the second integration constant. This is the general solution of the
second-order differential equation; but we must now consider the question of
physical boundary conditions. We are interested in the case that the energy is
negative (a bound state), so as usual we set k% = —z’hl‘,’l:, and the bound-state
wave function has the asymptotic behavior, us(r) ~ ¢ *" as r — oco. From

Eq.(4.16) this means that

,
ve(r) ~ e™"" / dse? ® ~ e,
D

i.e., the most general second solution is not square integrable, so indeed there
is at most one square-integrable solution (up to normalization); in other words,
for a given E and / there can be at most one bound state.

Actually one can say more. Since the physical solution of the radial Schrédinger
equation has the threshold behavior 7¢*! as r — 0, it follows that, at threshold,

™
ve(r) ~ r""l/ dss™ 22 ~ pt,
D

i.e., the the most general second solution has the irregular threshold behavior,
and is thus not eligible on physical grounds. The conclusion is that for any E,
positive or negative, there is at most one physical solution for a given £.

4.7 Vibrational and Rotational States

Given the radial potential energy for a diatomic molecule,

2
V(r) = V(ro) + tmuw?(r —ro)? +

2mr2? {e+1),

find the radius, r¢, at which this potential energy is minimum. Evaluate A and
B in the expansion

V(re) =V(ro) + A€+ 1)+ BL2(£+1)* +....
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Solution
The first derivative of the potential is

h2
V'(r) = mw?(r — o) — me(e +1),

and this vanishes if r = ry, where r, satisfies equation,

R20(L+ 1)

3

Te=To+
m2wir,

This quartic equation can be solved numerically, but instead of doing that, we
make a power series expansion in the quantity

52
7= mg )
obtaining
re =ro[1+ 4L+ 1)+ O(¥?).

Evaluated at this turning point, the potential is

2
V(re)

I

V(re) + %mwz(rg - r0)2 +

g (D)

= V(ro) + %mwzrg’yf(l +1)[1 —v£(£+1)] +O(¥3).
Thus, with V(rg) = V(ro) + AL(£ + 1) + B£2(£+1)% +... , we have

2 2 h?
2 07 2mr’
4
h
B = -lmuw*r2y=——— .
2 07 2m3w?r§

4.8 Cylindrical Potential

A particle is in a cylindrical potential in three dimensions, defined by V(p) = 0
if p = /2% + 23 < a, and V(p) = oo elsewhere.

(1) Determine the three lowest eigenvalues for states that have p; = 0 and
L3 =0.
(2) Determine the three lowest eigenvalues for states that have pz = 0.
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Solution
We separate the z3-dependence of the wave function by introducing the Ansatz

Y(F) = w(z1, 2)¢(z3) -
The Schrédinger equation for 1, divided by %, may be be written

_ h2 Vzw _ h2 Cll(ms)
2m w 2m ((z3)

+V(z1,22) = E, (4.17)

where V2 is the Laplacian in two dimensions. Since
_ 1 ¢"(zs)
2m ((z3)

is the only term in Eq.(4.17) that could depend on z3, it must in fact be a
constant:

2 2
_.zli;n_g"(ms) = E3((z3) = % ((zs3).

Eq.(4.17) becomes
K’ 2 3
—%V w+ V(z1,z2)w = [ —é—ﬁ]w’

which is the Schrédinger equation in two dimensions. The two-dimensional
Laplacian can be written

v L {a ha 8], 8 [m 8
- hlhz 3’!1,1 h1 6u1 B'U,Z h2 a’u,z ’

where (dp)? + (pd¢)? = (hidui)? + (hadus)?, ie., uy = p, h1 = 1, up = ¢ and
ha = p. Note that p and ¢ take the place of the more usual 7 and 6 in discussions
of two-dimensional polar coordinates. Hence

A2 10 6w 1 8% 3
"I 5oy o] V@R = B les )

Since the potential depends only on the radial variable, p, we can separate again:

w(z1,22) = R(p)2(¢).-

On multiplying Eq.(4.18) by p?/w, we see that g%% ® must be a constant, with

the solution ®(¢) = e"?, where n must be an integer, in order that & be
one-valued. The angular momentum operator is

. 0 0 . O
L3 = —ih [xlb}—z - 2725;;] = —-'Lh% ’
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and &(¢) is an eigenfunction, belonging to eigenvalue nh. Eq.(4.18) becomes

R2[1d d n? p? ]
LI B AP I - = |E- B R(p). 4.19
Lo - | R0 +VoRE = [B- B RG). 419
Since V(p) = 0 for p < a, in this region we may write

p*’R" + pR' + (p?k* —n*)R =0,

where k2 = (2mE — p3)/h®. This is called the Bessel equation (for the function
kp, with the index n); and the regular solution is called the Bessel function,

R(p) = Jn(kp) -

Since the potential is infinite for p > 0, we need to choose k in such a way that
Jn(ka) = 0. If zg is a zero of the Bessel function, then we have k = zo/a. With
ps = 0 this entails

Kl

" 2ma?’

In Figure 4.5 we display the first three Bessel functions, from which the zeros of
the Bessel functions can be estimated.

1
0.8} Jo

0.6}
- Jl

0.2t / J2

2 ' 6 8 10
-0.2¢} T
_0_4.

Fig. 4.5 Bessel Functions

To get better accuracy the following Mathematica command line was used:
FindRoot [BesselJ[n,x]==0,{\{}x,z\} ]

Here n must be set equal to 0, 1 or 2, and z to an approximate zero position, as
read off from the graph.
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(1) We find the first three zeros of Jy(z) to lie at 2.4048, 5.5201, 8.6537. These
zeros correspond to the three lowest energy eigenvalues for which p; = 0 and
L3 = 0. The energies are then A2 /(2ma?) times 5.7831, 30.4715, 74.8865.

(2) The first zero of Ji(z) is at 3.8317, and the first zero of J>(z) is at 5.1356,
and we see that these values lie below the second zero of Jy(z), which, as we
saw, is at 5.5201. Thus the three lowest energy eigenvalues, for which ps = 0 but
the value of L3 is unrestricted, are ii2/(2ma?) times 5.7831, 14.6819, 26.3744.

4.9 Relative Probabilities

A particle in a spherically symmetric potential is described by a wave packet
Y = (122 + T273 + T321) e~%"" What is the probability that a measurement of
the square of the angular momentum yields zero? What is the probability that
it yields 6A2? If the angular momentum is 2, what are the relative probabilities
for m = -2,-1,0,1,2?

Solution
The configuration representation of the Cartesian components of the angular
momentum operator is

Li = —ihe,-,-ka:,-ak y
and so

L3r? = —iR[z10y — 201][z} + 23 + 23]

= —2ih[:l:1:t2 - :222:221] =0.

Thus the differential operator, L3, working on any function of 2, gives zero.
. . 2
When L3 works on 1, we can thus ignore the function e~ %", and we find

a,"‘2

L3y = —ih[xlaz — 9.7261](171372 + z223 + .’83221) e

. a2
ih(z3 — 23 + zox3 — T3z ) e ",

and
L§¢ = 52[93132 - :13231](1:% - m% + zox3 — :1:3:1:1) e"‘"’2

01‘2

= K2 (23:231 + T3 + 4:1:1:1:2) e
By symmetry,

L*% = (L3 + L3 + L)y = 6h2($1$2 + zoz3 + T3Z4) e~or’ = 6h2e .
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Hence v is an eigenvector of L? belonging to the eigenvalue £(£+ 1)h2, with £ = 2.
Thus the probability that a measurement of the square of the angular momentum
yields 6h2 is 1, i.e., it is certain. The probability that such a measurement yields
zero is 0, i.e., it never happens.

The angular momentum is certainly 2, and so the only allowed values for the
azimuthal quantum number are m = —2,—1,0,1,2. To calculate the various
probabilities, we express ¥ in spherical polar coordinates:

P = rz{ sin? @ sin ¢ cos ¢ + sin 6 cos 0 sin ¢ + sin 0 cos 8 cos ¢} e~or’

= —1ir?{sin®( %% — e7%%) 4 25inf cosO[(1 + i) e’ — (1 — i) e 4]} e~
The eigenvector of Lz belonging to eigenvalue mh is e'™?, and we see that
there is no constant term, i.e., the value m = 0 is missing. Moreover, since the

probabilities associated with the remaining values are proportional to the square
moduli of the coefficients of the corresponding eigenvectors, it follows that

Pr(m = 2) = Pr(m = -2) Pr(m =1) = Pr(m = —-1),
and also that

Prim=1) 8f_11 dz22(1 - 2%)
Prim=2)  [! dz(1-22)?

- k]

Since the sum of all four probabilities must be 1,
Prim=2)+Pr(m=1) = 3,
and so

Prim=2) =Pr(m=-2) =3} Prim=1)=Pr(m=-1) = .

4.10 Hidden Symmetry of Isotropic Harmonic Oscillator

With A =m = w = 1, consider the isotropic harmonic oscillator Hamiltonian in
three dimensions,

H=1(p"+4%,
and the operator

U = (q1 +ig2)* + (p1 + ipa)?.
Suppose that H|ném) = E,¢m|ném).
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(1) Show that [H,U] =0

(2) Show that (Z|U|nfl)  (&|n,£ + 2,£ + 2). Under what restrictions on n
and £ is this true?

(3) Deduce from (1) and (2) that E,p = Ey, ¢42,+2, and hence that E,¢m,
is independent of £ and m.

(4) The isotropic oscillator Hamiltonian is symmetric under orthogonal ro-
tations of the coordinate axes. By expressing H and U in terms of
creation and annihilation operators, discover the larger symmetry of the
Hamiltonian that is responsible for the /-degeneracy.

Solution
(1) Since g2 and p2 commute trivially with U, we may write
[H,U] = 3%laf+d5+pi+p3,0% — ¢& + 2igiqz + p? — p3 + 2ip1pa]
= ipylg?, p1] + ip1[a3, p2] + iga[p?, q1] + i1 [P3, 2]
—2(q1p2 + @201 — @2p1 — q1p2) =0

(2) From the lemma below, we may write the eigenfunction of the isotropic
oscillator corresponding to quantum numbers n, £ and m, as

Ynem(Z) = (Z|nfm)
— —-'-'23 2“‘-}1' 2\,.Lpm ime¢
= e zL,2,.,(r*)r"P*(cosf)e'™?, (4.20)
2

2841
where L ,3,,, (p) is a Laguerre polynomial. Note that 1,¢r, (&) is not normalized.
2
Now consider m = ¢, which is the maximum value allowed for the azimuthal
quantum number. From Eq.(3.67) of Volume 1, we easily obtain

(2!)' (.’L’l + 1,.'132)

¢ Pf(cos 0) e*¢ = ot (rsin 6 cos ¢ + ir sin fsin ¢)

2ty 2L
Hence we may write ¥ne(Z) = fre(r?)(zy + iz2), where
20) _a zens
fre(r?) = (2£ 13)' 2 L,.J,,i (r?). (4.21)

Next consider the matrix element
(Z|Untm) = [(z1 + iz2)? — (81 + i82)] fre(r?)(z1 + iz2)° .
Now (8; + i02)(z1 + iz2) = (1 — 1) = 0, and so
(61 +1i82)%(z1 +iz2)* = 0

(01 +182) fre(r®) = 2f.,(r?)(z1 + ixs)
(61 + iaz)zfnz('l'z) = 4f,'l'¢(1"2)(:121 + iz2)2 ,
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where the primes mean differentiation with respect to r?. Hence
(EF|UIneL) = [fe(r®) — 4fip(r*))(1 + iz2) 2
In the lemma we show that
Fre(r?) = 4fnp(r?) & fn,e42(r?),
and this means that
(Z|U|n€l) o Y p2,042(F) = (En, L+ 2,£+2),
on condition that £ =n—2,n —4,...

(3) Let Enem be the eigenvalue of the Hamiltonian corresponding to the quantum
numbers n,£ and m. Then on the one hand we see that

UH|ntl) = Epe U|ntt),
but on the other hand, from the results (1) and (2), we have
UH|ntt) = HU|nbl) = Ep, p12,042 Ulntl) ,

and so E, ¢4+2.0+2 = Enge, for £ = n —2,n — 4,---. However, since we already
know from the spherical symmetry of the Hamiltonian that Epnem = Epngm+1,
form=—¢, —£+1,---£— 1, it follows that E,s,, is independent of £ and m.

(4) The Hamiltonian can be written H = @' -@ + 2, where @ = (¢ + i5)/ V2.
Clearly this Hamiltonian is not only invariant under the group O(3) (orthogonal
transformations in 3 real dimensions, i.e., rotations in ordinary space), but it
is also invariant under the group U(3) (complex, unitary transformations in 3
dimensions). That is, the Hamiltonian is invariant under the transformation

3

/

a; =) Uiaj,
s

for any 3-dimensional, unitary matrix, U. This is the extra symmetry that lies
at the heart of the ¢-independence of the energy levels of the isotropic harmonic
oscillator.

Lemma
With A = m = w = 1, we see from Section 4.3 of Volume 1 that

Vrem(Z) = exp [~ 17%] vne(r?)rt P (cos 6) eimé (4.22)
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(not normalized). Here vn¢(p) satisfies the equation,

Pne(p) + (£ + 3 — P)vne(p) + 3(n — Lune(p) = 0. (4.23)
Setting vne(p) = Li(r?), with t = I(n+ £+ 1) and s = £ + }, we obtain the
differential equation for the associated Laguerre function,

PL"(p) + (1+ 5~ p)L{'(p) + (¢ — 8)L{(p) = 0. (4.24)

We write a series expansion

Li(p) = Z amp™,

m=0
and obtain, from the differential equation Eq.(4.24), the recurrence relation

(t— 8)m

_m+s—t-—1 a
m (m+8)m O

m = m(m + s)

AQm-—-1 = (—l)m

with the definition (a)m = a(a — 1)(a — 2)...(a — m + 1). We have

L) =a0 Y L= ()7 (4.25)

1
= (m+8)m m!

and the series terminates only if t — s = N is an integer, in which case

N m
Li(p)=ao ) (n(l]i);';m (—TZ ? : (4.26)

m=0

is a polynomial of order N. On differentiating this polynomial we find, after a
shift of summation variable from m to m — 1,

N
S1(o) — (N —=m)(N)m_ (=p)™
L (p) = a0 m§=0ﬁ CETES A (4.27)

where we have used the identities (m + s + 1)(m + 8)m = (M + 8 + 1) (m41) and
(N)m+1 = (N — m)(N),,. Hence

N m
Li(p) - Li'(p) =ao(N +5+1) Y o gi);‘j( . (“3 .
m=0 m+1 .

On differentiating this and shifting m again, we find

s st ' _ gy (N)(m 1) (=)™
{Li(p) - LY'(p)} = —ao(N + s+ l)mZ=o (m+s+ 5(m+2) ml

(4.28)
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Consider now

s+2(p) = ap Z ( (N l)m (_p)m

i+l m+s+2), m

—~ (m+ 8 +2)(mt2y ™

With the definition Eq.(4.21), we have

Fre(p) — 4fn(p) =4 (223, e ?2{Li(p) — L' (0)}

so that Eqs.(4.28)-(4.29) yield

fnt(p) (P) Tne f’n. £+4-2 (P)
where
__,(n+243)(n+£+5) (20)! aio
Tnt = 2¢+3)(20+5) 2% alf?,

_ ao(s+1)(s+2)NZ':‘ (NMmen (O™

(4.29)

(4.30)

Here the possibility has been left open that the constant term in the polynomial,
ag, can be chosen to depend on 7 and ¢, or equivalently s and ¢t. Just how the
normalization is chosen will however be of no concern to us; it is enough to have
shown that fn.(p) — 4f/,(p) and fn ¢42(p) are the same function of p, up to a

p-independent factor that is not zero.



Chapter 5

Hydrogen Atom

5.1 Laguerre Polynomials

The associated Laguerre polynomial is defined by

0= (£) o (2) e

(1) Prove the recurrence relation

Ly 1(p) = Lyt (p) + (s +t+ 1 - p)Li(p) — sLi*(p).
(2) Work out Li(p) for t = 0,1,2,3 and all integral values of s and sketch

them graphically.
Solution
(1) Eq.(5.15) of Volume 1, namely
Ley1(p) = pLi(p) + (t + 1 - p)Le(p) (5.1)
can be differentiated s times to yield
d* dstt d® ds-1
i Liya(p) = P s Le(p) + s ,Lt(p)+(t+1—p)d ,Lt(p)—sd —1L:(p) -

On gathering the second and third terms together, and using the definition of
the associated Laguerre function, we obtain the required recurrence relation.
(2) From the the recurrence relation, we find

Lyp) = 1 Li(p) = -1 L3(p) = 2 Li(p) = -
L) = 1-p Ly(p)=—4+2p L3(p)=18—6p

L) = 2—4p+p° L3(p) = —18 + 18p — 3p”

L3(p) = 6—18p+9p" —p®

69



70 Hydrogen Atom

These are all the nonzero associated Laguerre polynomials, L{(p), for t < 3. We
suppress the constants L, L, L2, L3 in the following graph:

Fig. 5.1 Laguerre Polynomials

5.2 Orbitals

Is the electron in a hydrogen atom on the average further away from the proton
when it is in the 2P orbital than when it is in the 2S orbital?

Solution
The mean distance of the electron from the proton is

(nfm|r|nfm) = 1[3n® — £(£ + 1)], (5.2)

in units of the Bohr radius, see the solution to Problem 5.6, Eq.(5.2). The mean
distance for the 2S and 2P orbitals are thus
(200|r|200) = 6 (21m|r|21m) =5,

so the electron is on average closer to the nucleus in the P than in the S orbital.
In fact, one can see more generally that, for a given n, the mean distance is a
decreasing function of ¢, attaining its minimum value of n(n + %) for £ =n — 1.

5.3 Deuterium

Calculate the wavelength of the 2P — 1S transitions in deuterium. Use these
masses for the deuteron and the electron:
mac® = 1875.6 MeV, m.c? = 0.51100 MeV, a = €2 /(fic) = 1/137.036.
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Solution
The energy difference between energy levels n =2 and n =1 is

E; — E; = }imc?e?(1-1),

and so the wavelength in question is

2nhc 16mhe
A= = ) .
Ey, — E; 3mc2a? (5.3)

The reduced rest energy of the electron is

2 me 02

mc® = ——————— = 0.51086 MeV,
1+ me/my

and, with hic = 197.33 x 10715 MeV-m, we find from formula (5.3) the value
1.21537 x 10”7 m, i.e., about 121.5 nm or 1215 A, which is in the ultraviolet
part of the spectrum.

5.4 Complete Set?

Do the bound-state eigenfunctions corresponding to the following potentials form
a complete set? Motivate your answers.

(1) Attractive Coulomb: V(r) = —e?/r
(2) Attractive Coulomb plus harmonic oscillator: V(r) = Ar? — e2/r

Solution

(1) The bound state eigenfunctions, corresponding to the discrete eigenvectors
|ném), do not form a complete set. To span the whole Hilbert space for the
attractive Coulomb problem, one must add to them the scattering, continuous
states, [rfm). The orthogonormality conditions read

(nm|n'm') = Snnbebmm:

(rém|r'f'm')y = 8(r — 1')0ser6mm:
(rémnt'm’) = 0,

and the condition of completeness is

oo n-—1 n-1 £

ZZ Z [nfm)(nfm|+/ dr Z Z [rém){rém| =1.

n=1 =0 m=—¢ =0 m=—4¢
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Here 6(r — r') is the Dirac delta distribution, and 1 means the unit operator on
the Hilbert space.

(2) In this case there are no continuum states, since the potential tends to infinity
as r — 00, so the bound-state eigenfunctions form a complete set.

5.5 Nonvanishing Matrix Elements

Calculate all the nonvanishing matrix elements
(100|z|2¢m) ,

where [nfm) is the normalized hydrogen atom stationary state corresponding to
principal quantum number 7, angular momentum quantum number £, and mag-
netic quantum number m, while £ = rsinfcos ¢ is the z-coordinate, reckoned
from the center-of-mass of the proton and the electron.

Solution
We shall express all distances in terms of the Bohr radius a = A?/(me?). Since
|100), |200) and |210) are independent of ¢, and

27 27
/ d¢z=rsin0/ dpcos¢p =0,
0 0
it follows that
(100|z|200) = (100|z|210) = 0.

The normalized eigenfunctions for the |2,1,+1) states are

1 :
———=re "/%sing et
8/m ’
and so the overlap with the normalized ground state eigenfunction,
e"""

T

(7]|100) =
is, written out fully,
1 oo T 27 .
(100|z|2,1,£1) = ——/ drrt e’3’/2/ dé sin30/ d¢ cos peti®
8w Jo 0 0

The imaginary part of this integral vanishes, and so we obtain

1 2 5 (o <] 4 1 27 27 128
| = -p — 2 -2 __==
Ton (3> /0 dpp®e /ldz(l z%) A dé(1 + cos 2¢) 35 543"
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5.6 Kramers’ Relation

Let (r®) stand for the mean value of 7* in the (nfm) state of the H atom.

(1) With ap = 1, derive the recurrence relation

s+1
n2

(r®) — (25 + 1)(r* 1) + L1s[(2£ + 1)? - s%)(r*"2) = 0.

(2) Calculate the mean distance of the electron from the proton, and its
standard deviation, 1/(r2) — (r)2. For a given n, for which values of £
do the mean and the standard deviation have extremal values?

Solution
(1) The radial equation for the hydrogen atom can be written

2
_B
om ¢

R? L(L+1) e? me*
+ — U(——"-‘-Ue=—WUe,

2m  r?

where the energy eigenvalue has been inserted. For convenience, we set the Bohr
radius, /i%2/(me?), equal to unity. The equation now reads

u;'+[3—m——+ll—i]ue=o. (5.4)

T r2 n2

Multiply this equation by r*u,(r) and integrate from zero to infinity:

[ arrueteniy = [T arre | 54 22D TP 69

2 7
Two partial integrations suffice to show that the left-hand side here is equal to
(o ] [ <]
1s(s— 1)/ dr r° 2 [uy(r))? - / dr r*[uy(r)]?,
0 0

and after rearrangement we find

[ arr )P = fsts - 1) - fe+ D)) - ) 277 (56)

A second evaluation of this integral can be made by multiplying the Schrédinger
equation (5.4) by r**1u)(r) and integrating from zero to infinity:

[e e}
/0 drr’+'1u2(r)u2'(r)=/o

oo

drret! [;:5 + E(ﬁr-lz- b _ -72:] up(r)ue(r). (5.7)
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Perfom an integration by parts on both sides of this equation, using the facts
that u}(r)ue(r) = 1 £u3(r) and uj(r)u)(r) = } £u(r). This gives

/Oo dr r®[uy(r)]? = 2 +21 (r*) + (s — 1)e(L + 1)(r*~%) — 2s(r*71). (5.8)

0

" On equating the right-hand sides of Eq.(5.6) and Eq.(5.8), and gathering like
terms together, we obtain the required relation.

Note that the above partial integrations are valid, so long as s +2£+1 > 0,
since this condition ensures that the contributions of the iterated terms vanish
as r — 0. In the limit » — oo their vanishing is guaranteed by the fact that
bound-state wave functions decrease exponentially. We conclude that, for all
£=0,1,2,..., we may freely take s =0,1,2,....

(2) If we set s = 0 in Kramers’ relation, we obtain
1 -
(%) = () =0

and since (r®) = 1 for a normalized state, we find that (r—!) = ;. Next, with
s =1, we find

S =8+ 1[0+ 17 - ) =0
and the mean distance of the electron from the proton is therefore
(r) = 3[3n% - £(¢+1)). (5.9)
Finally, set s = 2 to obtain the mean square of the distance,
%(ﬁ) ~5(r)+ [(2¢+1)* - 4] =
which yields
(r?) = In?[5n® — 30(£+ 1) + 1]. (5.10)

The standard deviation of the distance of the electron from the proton is

o= 1y/n%+2n2 — [(£+1)]2.

The mean distance and its standard deviation both take on their largest values
for £ = 0, and their smallest values for £ =n — 1.
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5.7 Tritium

An electron is in the ground state of tritium (H®). A nuclear reaction changes
the nucleus to that of He®.

(1) Calculate the probability that the electron remains in the ground state
of He3.
(2) What is the probability that the electron becomes free?

Solution

(1) The ground state of a hydrogen-like atom or ion is ¥ = Z $r—%e 27 where
we have set the Bohr radius equal to unity, and where Z is 1 for the initial and
2 for the final state. The probability amplitude in question is

(100; H3|100; He?) = 2ﬂ£ /d3'r e 3 = 8\/5/ drr2e=3r — 162\7/5 .
' 0

The probability that the electron remains in the ground state is
P, =  H31100: HeS % = 2 o
1 = [(100; H?|100; He®)|” = 35 ~ 0.70233.

(2) The probability that the final state is not the ground state of the He? ion is
1 —0.70233 = 0.29767. This final state could be that of totally stripped He?, in
which the electron is in the positive energy continuum, or it could be one of the
excited S states of the He® ion. Angular momentum conservation ensures that
only £ = 0 states are possible; and indeed the overlap integrals for the initial
state and an £ # 0 final state is automatically zero. The probability that the
electron is in the continuum is accordingly

[o o]
P.=1-) P, (5.11)

n=1
where P, = |(100; H3|r00; He3)|2. The wave function can be written, in terms
of the associated Laguerre function, in the non-normalized form
27
baoolr) = e~Z7/m L} (__") .

n

The required Laguerre function (compare Eq.(4.26)) is

L£($)=1F1(1—n:2;m)=n§—:1(l—n)(z—n).”(p—n)wp)

= pl(p+1)!

where ; F is the confluent hypergeometric function, which is used in the following
Mathematica program for P,:
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psiln_,z_,r_]:=r*Exp[-z*r/n]*HypergeometriciF1[1-n,2,2z*r/n];
mu[n_] :=N[(Integrate[psil[1l,1,r]*psi[n,2,r],{r,0,Infinity}]) "2/
(Integrate[(psi[1,1,r])"2,{r,0,Infinity}]*
Integrate[(psi[n,2,r])"2,{r,0,Infinity}])];
psubc[n_] :=1-Sum[mu[p],{p,1,n}];

This produces the answer P, = 0.0263 with n = 40 or more.

5.8 Coulomb and Oscillator Potentials

Consider the transformation

T=Vr VTve(T) = ug(r)

where u,(r) satifies the radial equation for the hydrogen atom. Show that v,(7)
satisfies the radial equation for the isotropic harmonic oscillator. Discuss the
relation between the solutions of the Schrédinger equation for the Coulomb and
for the oscillator potentials.

Solution
The radial Schrodinger equation for the hydrogen atom is

zhnzz [ az g 1)] e(r) = —ue(r) Euy(r). (5.12)
We have r = 72, so
4_14d
dr  2rdr’
and ug(r) = +/Tve(7), which leads to
dz;:z(r) = 1r73)(r) = Zr7du(r),

the two first-order derivative terms having cancelled. Eq.(5.12) becomes

dr? T2

h? [ 2 4L+1)+32
-—+
2m

] ve(T) — 4ET20,(1) = 4€®v(7) . (5.13)

This equation has indeed the form of the radial Schrodinger equation for the
isotropic harmonic oscillator in three dimensions. To make this explicit, set

f=20+1 A=—4E>0  E=4&®  wg(r) = ve(r) = r dug(r).
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In terms of these variables, Eq.(5.13) can be written
B[ &2 2(f+1)
dr? 72

The energy levels of the hydrogen atom,

2m ] Tg(1) + Ar?0g(1) = Evg(T) . (5.14)

_ e'm 1
2?2 n2’
where n =k + £+ 1, with £k =0,1,2,..., transform into
E=hw(@+3),

where A = lmw? and #i = 2k + £. These are indeed the energy levels of the
isotropic harmonic oscillator.

The bound state wave functions respect the mapping also. The radial wave
function for the hydrogen atom is

2 2
41 mer\ opry [ 2me’r
ue(r) = r*7  exp (— —3 )Ln+e ( —3 ) .

Under the substitutions £ — 1(20—1), n = k+£+1 — 1(2k+2+3) = L (A+2),
e? = 1E = 1A+ )hw, r — 72 and ue(r) — /70g(7), we find

2 2
_ i+l mrw 2241 mréw
() =171 +tlexp (-— o, ) L.z, )
2

which is indeed the radial wave function for the isotropic harmonic ascillator in
three dimensions.

5.9 Alkali Atoms

The alkali atoms have an electronic structure which resembles that of hydrogen.
In particular, the spectral lines and chemical properties are largely determined
by one electron. A model for the potential in which this electron moves is

e? b
Calculate the energy levels.

Solution
The radial Schrodinger equation for the alkali atom is

2 2 9 62
2hm [" ;,.2 Z(e; 1)] ug(r) — ir-uz(r) - —ﬁbw(r) = Buy(r), (5.15)
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which can be rewritten

h2
2m [ dr?

+ €(£+ 1)] o(r) — _ul(,,.) Eug(r), (5.16)

where
0f+1)=£(L+1)—be?;

or

T=-1+4/0e+1) - be2+1.

The quadratically integrable solution of Eq.(5.16) is proportional to

£+1 _ T 128+1 2r_ )
rooexp ( ao(k+ 2+ 1)) k+2241 (ao(k +i+1))°

where ag = h? /(me?), the Bohr radius, and where k = 0,1, 2, ... (see the Lemma
of Solution 4.10 for a definition of the Laguerre polynomial when £ is not an
integer). The hydrogen atom energy levels are

etm 1

Bn = om

where n = k + £ + 1. We only have to change £ into £ to obtain the alkali atom
energy levels:

e‘m 1
ohZ (k+£+1)2°

E=-

We now define n = k + £ + 1, as before (not n = k + £ + 1, which would not be
integral), and we write the alkali energy levels as

etm 1

L N R N

En£=_

Note that the energy levels depend on the angular momentum quantum number,
£, as well as the principal quantum number, n. We need to restrict the parameter
b by the requirement be? < 3, to ensure that all these energy levels are real. The
‘accidental’ degeneracy of the hydrogen atom Hamiltonian (see next exercise)
has been lifted.
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5.10 Runge-Lenz vector

Let ¢ and p be the position and momentum operators of the electron in a
hydrogen atom. The Runge-Lenz vector is defined by

2

- - e

- 1
N = —(% - = _ Z =
2m(p/\L L Ap) qq,

N

where L = § A F is the angular momentum operator, where q = [d-q]?, and

where H is the Hamiltonian.

(1) Show that [L,H]=0= [N, H], so that both I and N are conserved.

(2) Show that the Hamiltonian has a larger symmetry than that of rotations
in three dimensions. Identify this larger symmetry.

(3) Show that the energy eigenvalues depend on only one quantum number.

Solution
The hydrogen atom Hamiltonian is

p2 e2

2m q
We shall adopt units in which & = 1.

(1) A proof that the angular momentum commutes with the hydrogen atom
Hamiltonian, [E , H] = 0, may be found in the solution of Problem 3.4, so here we
only consider the commutator of the Runge-Lenz vector with the Hamiltonian.
Much as in the solution of Problem 3.3(1), we find

LAP+FAL); = eje(Lipe +piLe) = esjn(Lipr — prL;)
= €jk€jmn(ImPnDPk — PkqmPn)
(ka‘sin - 5kn5im)[Qm’pk]pn

= (0kkdin — Okndir)Pn = 2ip; . (5.17)
Thus we may write
N=2 _¢g, (5.18)
m
where
i=i@ AL -LAP)=pAL —ip, (5.19)

and 4 is the unit vector

i=qql. (5.20)
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Accordingly,
- 1 — - . - _ -
[N,H]:-r;{[p AL, H] +ie?[F,q 1]—§e2[u,p2]}, (5.21)

so we must calculate three commutators. The second commutator is given by
[p;,q~ '] = ig~3g;, see Lemma 1 below. The first commutator can be written

[(ﬁ A E),,H] = eijk[Pj’ H] Lk ’
where we have used the fact that L; commutes with H. Thus
[(ﬁ A L )i) H] = _iezfijkekmnq—a%'Qmpn
= —iez (aim‘sjn - 5in5jm)q—3Qijpn
= i’ (q7'pi — ¢ %qg;p;) (5.22)
from Lemma 1 again. The third commutator is
[us, p°] = 2(ig " 'pi — ig *qiqip; — " %a), (5.23)

see Lemma 2(b) below. On using these results, we find
e _ - _ . . _
[N;, H] = E{t(q 'pi— a7 qigip;) — a7 %q; — (ig 7 'pi —ig > qigipi — g 3Qi)} =0.

Thus [1\7 ,H] = 0, and so N =0, i.e., the Runge-Lenz vector, as well as the
angular momentum vector, are conserved in time. It is this extra symmetry
that lies at the root of the /-degeneracy.

(2) The following commutation relations are proved in Lemmata 3, 4 and 5:

[Li, Lj] = ie,-,-kLk
[Li, Nj| = deijiNi

2i
[Ni, NJ] = - EfijkLkH

Suppose that [1)) is an eigenvector of the Hamiltonian corresponding to a bound-
state energy, i.e.,

Hly) = Ely),
where F < 0. Define then

m

M=,/-—N. (5.24)

Do
3
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We now have

[Li, L] |9) = deijuLie|)
[Li, Mj] |9p) = deije My |v))

[M;, Mj] |v) = deijiLi|t) -
In terms of the combinations
J* =L+ M),
the commutation relations decouple, in the sense that

£, JE ) = 3{[Li, L;] + [Mi, M;) + [L;, Mj] & [M;, L] } )
= Yiegp{Li + Li £ My, £ My }¥) = ieiju JE|Y)

[Jz:k’JJ:F]W) = i{[L‘i’LJ'] - [Mi’Mj] + [Li’Mj] + [Mi’Lj]}l"wb)
= Lieje{Li — Lr £ My F My }|9p) = 0.

Thus the symmetry of the Hamiltonian, limited to a subspace corresponding
to a given energy eigenvalue, is SO(3) x SO(3), that is, the product of two
independent rotations in 3-dimensional Euclidean space.

(3) It is proved in Lemma 6 that
N? = 3(L2 +1)H +€%.
m
Allow both sides to operate on |¢) and use Eq.(5.24):
2E 2E
21 — 22 a2y — J 22 (12 2
o) = - 2aey) = {Z @ 1)+ o),

or equivalently

(2 + M2 4 1) ) = -2 ). (5.25)

From Lemma 7 we have
L-M=0=M-1L,
so that

(JE2=YIL*+L -M £+ M - L + M?) = }(L* + M?). (5.26)
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So (J*+)2 and (J~)? are equal to one another. Choosing (J*)? for definiteness,
we see from Eq.(5.25) and Eq.(5.26) that

(a9 41} = -2

Since L? and M2, and therefore also (J*)2, commute with the Hamiltonian, we
can choose |1) to be a simultaneous eigenvector of (J1)? and of the Hamiltonian:

(T2 |9) = 5(G + 1)|¥),

where we know from the work of Volume 1, Chapter 3, that the allowed values
of j are 0,1,1,3,.... Hence

4G+ 1) + 1) = i +171) = - T 1),

and so finally
__me 1
K2 n2’
where
n=2j+1.

Consequently, n has the allowed values 1,2, 3,. ... The energy eigenvalues indeed
depend on just one quantum number. Two comments are in order:

(a) The four operators, (J*)2, (J7)2%, J; and J; commute with the Hamil-
tonian, and so at first sight all of their eigenvalues might be expected to
label the eigenvectors of the Hamiltonian. However, since J* commutes
with the Hamiltonian, we know that the energy must be independent of
m7 and my, and since (J*)2 = (J7)2, that leaves only one eigenvalue
of relevance, namely j(j + 1). Moreover, the fact that the principal
quantum number, n, is equal to 2j + 1, requires that we employ the
half-odd integral values of j, as well as the integral ones. The degen-
eracy of eigenvalues for a given j is (25 + 1) = n?, and the complete,
simultaneous eigenstates of (J*)2, (J7)2,J;", J; , and H may be labeled
by j,m3,m3.

(b) This method of finding the eigenvalues of the Hamiltonian of the hydro-
gen atom was first employed by Pauli (Pauli, W., (1926) Zeitschrift fiir
Physik, Vol. 36, page 336), independently of the method of Schrédinger,
in which use was made of the wave equation that had just been invented
(Schrodinger, E., (1926) Annalen der Physik, Vol. 79, page 361).
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LEMMATA
Lemma 1: [pj,a7 1] =ig 3q;.
Proof
In configuration space, g; is represented by z;, and p; by —id; = —i 32’ SO
. 194 afmo—Iyg b OT T
—i[8;,r 7 ¢ = —i(9;r ™ )9 = 25,0 3;§¢,

which corresponds to the abstract operator relation that was to be proved. Al-
though this proof refers specifically to the configuration representation, the result
is valid generally. For let g(Z) be a suitable test function. Then

1 1\ 0

[#29@)@Epna e = i [ #29@) (5 - —) 50 1)

= i [ - {(5- 1)o@}
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