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Preface

The multidisciplinary science education has been prompted by the rapid

advancement and utilization of IT/BT/NT, and the quantum mechanics is the

basic science supporting the technologies. It further provides the platform on

which to bridge different disciplines in science and engineering. This introduc-

tory textbook is intended for the undergraduate seniors and beginning graduate

students and is focused on the application and multidisciplinary aspects of the

quantum mechanics.

The applications have been chosen primarily from the semiconductor and

optoelectronic devices to make the discussion practical. The p-n junction diode

is first singled out for the discussion as the simplest solid state switch and also as

photodiode, light-emitting and laser diodes and solar cells. Moreover, the field

effect transistors are treated in some detail. The well-known theory of MOSFET

is first compactly presented to serve as the general background for considering

other kinds of novel FETs such as nanowire and spin field-effect transistors. The

working principles of these devices are treated from a unified standpoint of the

equilibrium and nonequilibrium statistics and device physics in conjunction with

the quantum mechanical concepts. Additionally, these FETs as the nonvolatile

memory cells, biosensor, and solar cells are highlighted. As an extension of the

discussion of the spin FET the quantum computing is briefly touched upon.

The organization of the book is as follows. The classical and statistical

mechanics and the electromagnetic fields are compactly summarized as a

general background. After a short visit to the milestones leading to quantum

mechanics, the Schrödinger equation is applied immediately to problems of

practical interests, involving the quantum wells and subbands, 1D, 2D, and 3D

densities of states. In particular, the tunneling and its applications are highlighted.

Two key bound systems are treated in some detail. Specifically, the harmonic

oscillator is analyzed based on the quantummechanical and operator treatments.

In addition, the hydrogen atom is considered as the simplest atomic system and

as an essential ingredient for analyzing the atomic spectroscopy, multielectron

atoms, paramagnetic electron resonance and molecules.

The chemical bond for themolecular formation is included in the discussion list.

In particular, the molecular spectroscopy is treated as an extension of the atomic



XII Preface

spectroscopy by utilizing the time-independent perturbation theory and focused

on the rotational and vibrationalmotions of diatomicmolecules.The nuclear spin,

hyperfine structure, and nuclear magnetic resonance for molecular imaging are

briefly introduced. Moreover, the interaction of light with matter is highlighted,

based on the time-dependent perturbation theory, and the operation principle

of the laser is elucidated. Finally, the semiconductor statistics and the transport

of the charge carriers are discussed as an essential background for modeling the

semiconductor devices. An effort has been expended to make the presentation

and discussion brief and clear by simplifying the mathematics and by making use

of the analogies existing between different dynamic systems.

The contents of this book have evolved from the courses offered in the

Department of Electrical and Computer engineering, Rice University, Houston,

TX., USA; POSTECH, Pohang, Korea; and the College of Engineering, Seoul

National University, Seoul, Korea.The active and enthusiastic participation of the

attending students made it a joyful experience to teach the courses. My thanks

are due to those students. I would also like to express my sincere thanks to Miss

You-Na Hwang for her tireless cooperation in preparing the figures for the book.

Finally, it is my pleasure and honor to express my heartfelt gratitude to Professor

Willis E. Lamb, whose courses on quantum mechanics and laser physics were

most inspiring.

Seoul, Korea Dae Mann Kim
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1

Review of Classical Theories

A compact review of classical theories is presented, including the classical and

statistical mechanics and electromagnetism. These theories are inherently inter-

twined with quantummechanics and provide the general background fromwhich

to understand the quantum mechanics in a proper perspective.

1.1

Harmonic Oscillator

Theharmonic oscillator (HO) is one of the simplest, yet ubiquitous dynamical sys-

tems appearing in a variety of physical and chemical systems such as electromag-

netic waves and molecules. The HO is a particle attached to a spring, executing

oscillatory motion. When the spring is compressed or stretched, the spring pro-

vides a restoring force for putting the particle back to the equilibrium position

(Figure 1.1). In the process, an oscillatory motion ensues, and the motion repre-

sents a variety of important natural phenomena such as molecular vibrations and

electromagnetic waves.

Newton’s equation of motion of the HO reads as

mẍ = −kx (1.1)

where m is the mass of the oscillator, x the displacement from the equilibrium

position, and k the spring constant. The double dots denote the second-order dif-

ferentiation with respect to time, and −kx is Hook’s restoring force. The equation

can be put into a form

ẍ + 𝜔2x = 0, 𝜔2 ≡ k

m
(1.2)

where 𝜔 is the characteristic frequency. Trigonometric functions, for example,

sin𝜔t, cos𝜔t are well-known solutions of Eq. (1.2). When the oscillator is pulled

by x0 and gently released, for instance, the displacement x(t) and the velocity v(t)

are given by

x (t) = x0 cos𝜔t, v (t) ≡ ẋ (t) = −𝜔x0 sin𝜔t (1.3)

and x(t), v(t) oscillate in time in quadrature (Figure 1.2) with the periodT = 2𝜋∕𝜔.

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 The harmonic oscillator, a particle of mass m attached to a spring with the

spring constant k (a); the potential energy of HO (b); a diatomic molecule as represented by

two atoms coupled via an effective spring constant (c).
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Figure 1.2 The displacement x, velocity v, and kinetic K and potential V energies versus

𝜔t, all scaled with respective maximum values. The total energy K + V is constant in time,

and HO is a conservative system.

The potential energy of the HO is obtained by integrating the work done for

displacing the HO from the equilibrium position to x against the restoring force:

V (x) ≡ −∫
x

0

dx (−kx) = 1

2
kx2 (1.4)

The total energy is often denoted by Hamiltonian H and is expressed in terms of

the linear momentum px and the displacement x as

H ≡ K + V =
p2x
2m

+ 1

2
kx2 (1.5)

Given H , Hamilton’s equations of motion read as

ẋ ≡ ∂H
∂px

=
px
m

ṗx ≡ −∂H
∂x

= −kx (1.6)

The pair of equations in (Eq. (1.6)), when combined, reduces to Newton’s equation

of motion, and the variables x, px are known as canonically conjugate variables.

The essence of classical mechanics is to solve the equation of motion and to pre-

cisely specify the position and momentum of a particle or a system of particles.
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1.2

Boltzmann Distribution Function

The properties of macroscopic quantities are derived from the dynamics of an

ensemble of microscopic objects such as electrons, holes, atoms, and molecules.

Statistical mechanics describes such an ensemble of particles by means of the dis-

tribution function, f (r, v, t).The function represents the probability of finding the

particles in the phase space volume element drdv at r, v, and t. Thus, when multi-

plied by density n of the particle f (r, v, t) drdv represents the number of particles

in the volume element at t.

The change in time of f (r, v, t) is given from the chain rule by

df
(
r, v, t

)
dt

=
∂f
∂t
+
∂f
∂x
∂x
∂t
+ · · · +

∂f
∂vx

∂vx
∂t

+ · · · =
∂f
∂t
+ v ⋅ ∇f + a ⋅ ∇v f (1.7a)

where the operators

∇ ≡ x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

, ∇v ≡ x̂
∂
∂vx

+ ŷ
∂
∂vy

+ ẑ
∂
∂vz

(1.7b)

are the gradient operators with respect to r, v, and a is the acceleration. The dis-

tribution function also changes in time due to collisions by which the particles are

pushed out of or pulled into the volume element. Hence, the transport equation

is given by

∂f
∂t
+ v ⋅ ∇f +

F

m
⋅ ∇v f =

𝛿f

𝛿t

||||coll, a =
F

m
(1.8)

with F denoting the force.

Equilibrium

In the thermodynamic equilibrium, the distribution function f 0 is independent

of time, that is, (∂∕∂t) f0 = 0, and the collision term should also be put to zero.

This is because every process is balanced by its inverse process in equilibrium

(detailed balancing). Consequently, the number of particles pushed out of and

pulled into the phase space volume element due to collision is the same. Thus,

the one-dimensional transport equation in equilibrium is given from Eq. (1.8) by

vx ⋅
∂f0
∂x

− 1

m

∂𝜑
∂x

∂f0
∂vx

= 0, Fx ≡ −∂𝜑
∂x

(1.9)

where the force has been expressed in terms of the potential 𝜑.

Wemay look for the solution in the form

f0
(
x, vx
)
= Ne−E(x)∕kBT , E (x) =

mv2x
2kBT

+ 𝜑 (x) (1.10)

where N is the constant of integration and kB the Boltzmann constant having the

value 1.381 × 10−23 JK−1 or 8.617 × 10−5 eVK−1, and E(x) is the total energy at x,

consisting of kinetic and potential energies. By inserting Eq. (1.10) into Eq. (1.9)
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f(ν)/fmax

νy

(a) (b)

νz
νx

f0(ν)/f0max

Figure 1.3 The distribution function of an ensemble of free particles in equilibrium (a) and

under an electric field in the z-direction (b), all scaled with the maximum values; f0(v) is

symmetric in v, while f (v) is not in the z-direction.

and carrying out the differentiation with respect to x and vx, we find that Eq. (1.10)

is indeed the solution. Also N can be used for normalizing f 0(x, vx). For a system

of free particles in which 𝜑 = 0, the normalized equilibrium distribution function

is given by

f0
(
vx
)
=
(

m

2𝜋kBT

)1∕2

e−mv2x∕2kBT (1.11)

where N has been found from the normalization condition,

N∫
∞

−∞
dvxe

−mv2
x
∕2kBT = N

(
2𝜋kBT

m

)1∕2

= 1

Naturally, f 0(vx) can be generalized to three dimensions as

f0
(
v
)
=
(

m

2𝜋kBT

)3∕2

e−mv2∕2kBT , v2 = v2x + v2y + v2z (1.12)

The function f 0 is the celebrated Boltzmann distribution function for a system of

free particles, and the exponential factor appearing therein is called theBoltzmann

probability factor. Clearly, f 0(v) is symmetric in v and represents the fact that there
is no preferred direction, a well-known property of the equilibrium (Figure 1.3).

Equipartition Theorem

In equilibrium, the probability of a particle moving from left to right is the same

as that of moving from right to left (Eq. (1.11)). Therefore, the average velocity is

zero, but the average value of v2x is not zero and can be found as

⟨
v2x
⟩ ≡( m

2𝜋kBT

)3∕2

∫
∞

−∞
dvxv

2
xe
−mv2

x
∕2kBT∫

∞

−∞
dvye

−mv2y∕2kBT∫
∞

−∞
dvze

−mv2
z
∕2kBT

=
kBT

m
(1.13)
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By inspection, we can write⟨
v2x
⟩
=
⟨
v2y
⟩
=
⟨
v2z
⟩
=

kBT

m
(1.14)

Hence, the total average kinetic equation is given by

1

2
m
⟨
v2
⟩
= 1

2
m
(⟨

v2x
⟩
+
⟨
v2y
⟩
+
⟨
v2z
⟩)

= 3

2
kBT (1.15)

which represents the equipartition theorem, namely, that the average kinetic

energy of a free particle is equally divided into x-, y-, and z-directions, respectively,

in equilibrium.

Nonequilibrium Distribution Function

Let us next consider an ensemble of electrons uniformly distributed in space and

subjected to an electric field in the z-direction, ẑE0. In this case, f is independent

of r and at the steady state ∂f ∕∂t = 0; hence, Eq. (1.8) reads in relaxation approach

as (
−qE0

)
mn

∂f
∂vz

= −
f − f0

𝜏
;

𝛿f

𝛿t

||||coll = −
f − f0

𝜏
(1.16)

where −qE0 is the force acting on an electron with charge −q and mass mn. The

collision term used describes the system relaxing back to the equilibrium in a time

scale determined by 𝜏 called the longitudinal relaxation time, and f 0 and f are

the equilibrium and nonequilibrium distribution functions, respectively. Let us

assume for simplicity that f does not depart very much from f0, that is, f − f0 ≪

f , f0. In this case, we can find f iteratively by putting f = f0 on the left-hand side,

obtaining

f ≈ f0 +
qE0𝜏

mn

∂f0
∂vz

= f0

(
1 −

qE0𝜏vz
kBT

)
(1.17)

where Eq. (1.12) has been used for f 0. Clearly, f is asymmetric in vz due to the

electric field applied, while symmetric in vx, vy as shown in Figure 1.3.

Mobility and Conductivity

Once f is found, the physical quantities of interest can be specified explicitly. For

example, consider the average velocity of electrons. As f is still symmetric with

respect to vx, vy,
⟨
vx
⟩
=
⟨
vy
⟩
= 0 but

⟨
vz
⟩
is not zero and is given by

⟨
vz
⟩ ≡ ∫

∞

−∞
dvx∫

∞

−∞
dvy∫

∞

−∞
dvzvz f0

(
1 − qE0𝜏(v)vz

kBT

)
∫

∞

−∞
dvx∫

∞

−∞
dvy∫

∞

−∞
dvz f0

(
1 − qE0𝜏(v)vz

kBT

) = −
qE0

mn

⟨
𝜏n
⟩

(1.18a)
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where⟨
𝜏n
⟩ ≡ mn

kBT ∫
∞

−∞
dvx∫

∞

−∞
dvy∫

∞

−∞
dvzv

2
z𝜏 (v) f (1.18b)

denotes the effective relaxation time. Note in Eq. (1.18) that the first integral in

the numerator and the second integral in the denominator vanish because the

integrands therein are odd functions of vz. This renders the denominator equal to

unity because f 0 is a normalized distribution function (Eq. (1.12)). The relaxation

time depends in general on the velocity v and has been averaged over.

The average velocity
⟨
vz
⟩
derived in Eq. (1.18) represents the drift velocity with

which all electrons move uniformly on top of their random thermal motion. The

drift velocity is driven by E0 exerting force on the electrons and can be viewed as

the output of E0:

vdn ≡ ⟨vz⟩ = −
qE0
⟨
𝜏n
⟩

mn

≡ −𝜇nE0, 𝜇n ≡ q
⟨
𝜏n
⟩

mn

(1.19)

The response function𝜇n connecting the input field and the output drift velocity is

called themobility. The current density of electrons due to drift is therefore given

from Eq. (1.19) by

JD ≡ −q
n∑
j=1
(v

jth
+ vdn) = −𝜎nE0, 𝜎n ≡ q𝜇nn (1.20)

where n is the electron density, and the random thermal velocities vjth sum up

to zero. The quantity 𝜎n connecting E0 to JD is known as the conductivity. The

mobility 𝜇n and conductivity 𝜎n are the key transport coefficients.

1.3

Maxwell’s Equations and EMWaves

Maxwell’s equations are the foundations of the electromagnetism and are sum-

marized as follows. When the charge and current density 𝜌 and J are spatially

distributed and vary in time, the electric E(r,t) and magnetic B(r,t) fields are gen-
erated and coupled to each other according to Maxwell’s equations:

∇ × E = −
∂B
∂t

(1.21)

∇ ×H = J +
∂D
∂t

(1.22)

∇ ⋅ E = 𝜌

𝜀
(1.23)

∇ ⋅ B = 0 (1.24)

Thedisplacement vectorsD andB are correlated toE and themagnetic field inten-

sity H via the permittivity 𝜀 and the permeability 𝜇 of the medium as

D = 𝜀E, B = 𝜇H (1.25)



1.3 Maxwell’s Equations and EM Waves 7

The addition of the continuity or charge conservation equation renders Maxwell’s

equations self-contained:

∂𝜌
∂t

+ ∇ ⋅ J = 0 (1.26)

As well known, Eq. (1.21) is Faraday’s law of induction, specifying B(r,t) as the
source of generating E, while Eq. (1.22) is Ampere’s circuital law describing J as
the source for generating B. Also Eq. (1.23) represents Coulomb’s law and Eq.

(1.24) is the theoretical statement of the fact that nomagnetic monopole has been

observed. Ampere’s circuital law, Eq. (1.22), was complemented by Maxwell, who

introduced ∂D∕∂t, called the displacement current. The modification was neces-

sitated by the fact that the curl of any vector, ∇ × A, should be solenoidal, that is,

∇ ⋅ ∇ × A ≡ 0, as can be readily verified.WithD thus introduced, the requirement

that H in Eq. (1.22) is solenoidal is satisfied, because the divergence operation on

the right-hand side of Eq. (1.22) reduces the equation to the continuity equation

to become zero.Maxwell’s equations are rooted in the observed laws of nature and

have successfully undergone the test of time and have been the source of unceasing

applications.

Wave Equation

The electric and magnetic fields E and H coupled inherently via the two laws

Eqs. (1.21) and (1.22) can be decoupled and examined separately. Thus, consider

a medium free of charge 𝜌 and J . Then, the curl operations on both sides of Eq.

(1.21) lead to

∇ × ∇ × E ≡ [∇∇ ⋅ −∇2
]
E = −∇2E; ∇ ⋅ E ∝ 𝜌 = 0 (1.27a)

∇ ×
(
−
∂B
∂t

)
= −𝜇

∂
∂t

(
J + 𝜀

∂
∂t
E
)
= −𝜇𝜀

∂2
∂t2

E, J = 0 (1.27b)

where a vector identity and Ampere’s law have been used in Eqs. (1.27a) and

(1.27b), respectively. Hence, by equating Eqs. (1.27a) and (1.27b), there results

the wave equation:

∇2E − 1

v2
∂2
∂t2

E = 0,
1

v2
≡ 𝜇𝜀 = 𝜇0𝜀0𝜇r𝜀r =

1

(c∕n)2
(1.28)

Here, v is the velocity of light in the medium in which 𝜇r = 1 and is specified in

terms of the velocity of light in the vacuum 1∕𝜇0𝜀0 and the index of refraction n

via 𝜀r = n2,with 𝜀r denoting the dielectric constant. Clearly, D is indispensable in

bringing out the wave nature of the electromagnetic field. We can likewise derive

the identical wave equation for H.

PlaneWaves andWave Packets

A typical solution of the wave equation (1.28) is the plane wave

E (z, t) = x̂E0e
−i(𝜔t−kz), 𝜔 = k√

𝜇𝜀
(1.29)



8 1 Review of Classical Theories

H

E × H

min

max

max

E

Figure 1.4 Spatial profiles of electric and magnetic fields traveling in the z-direction. Also

shown is the Poynting vector, accompanying the propagation with the power.

propagating in the z-direction, for example, with the wave vector k = 2𝜋∕𝜆
obeying the dispersion relation as given in Eq. (1.29). The amplitude E0 has to be

taken perpendicular to k, say in the x-direction so that ∇ ⋅ E ∝ ẑ ⋅ x̂ = 0 in accor-

dance with Coulomb’s law. In this case, the H-field is obtained from Eqs. (1.21)

and (1.29) as

H = ŷ
√

𝜀∕𝜇E0e−i(𝜔t−kz), ŷ = ẑ × x̂ (1.30)

Therefore, E,H, and k are mutually perpendicular, and the complex Pointing vec-

tor E ×H∗ represents the power flow in the z-direction, as shown in Figure 1.4.

Wave Packets

The wave equation (1.28) is linear, so that the linear superposition of plane waves

is also the solution:

E (z, t) = Re
∑
n

E
n
e−i(𝜔nt−knz) = Re∫

∞

−∞
dkE (k) e−i(𝜔t−kz) (1.31)

The wave packet can be put into a compact form by Taylor expanding 𝜔 at k0:

𝜔 (k) = 𝜔
(
k0
)
+ vg

(
k − k0

)
+ 𝛼
(
k − k0

)2 + · · · ; vg ≡ ∂𝜔
(
k0
)

∂k
(1.32)

In a linear medium 𝛼 = 0, vg = c∕n, and by using Eq. (1.32), we can express Eq.

(1.31) as

E (z, t) = Ree−i(𝜔0t−k0z)∫
∞

−∞
dkE (k) ei(z−vg t)(k−k0) (1.33)

and represent the wave packet in terms of two components: (i) the mode func-

tion oscillating with the carrier frequency 𝜔0 and propagating with the phase

velocity 𝜔0∕k0 and (ii) the envelope contributed by superposed plane waves
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0 02.0−2.0 −1.0 −1.0−3.0 3.0(a) (b)z/σz

1/e
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|E(z,0)|2/|Emax|
2

(k−k0)/σ

2σ2/σ

1/e

1.01.0

1.01.0

Figure 1.5 Spatial profile of the field intensity in the z-direction (a) and power spectrum

versus the wave vector (b).

and propagating with the group velocity vg. For the Gaussian spectral density

centered at k0,

E (k) =
E
0
e−(k−k0)

2∕2𝜎2√
2𝜋𝜎

(1.34)

the integration of Eq. (1.33) yields

E (z, t) = ReE
0
e−i(𝜔0t−k0z)e[−𝜎2(z−vg t)2∕2] (1.35)

The wave packet in this case consists of a Gaussian envelope propagating with the

group velocity vg, while the mode function rapidly oscillates within the envelope

and propagates with the phase velocity 𝜔0/k0.

Shown in Figure 1.5 are the spatial profile of the wave packet Eq. (1.35) at t = 0

and the power spectrum. The bandwidth of the power spectrum Δk is often

defined by the width between two 1/e points from its peak, that is, Δk = 2𝜎. The

spatial extent of the intensity envelope is likewise specified by Δz = 2∕𝜎 = 4∕Δk.
Given Δk, the frequency band width is given from the dispersion relation by

Δ𝜔 = vgΔk = 2vg𝜎. Finally, the time duration of the wave packet is given by

Δt = Δz∕vg = 4∕Δ𝜔. Therefore, the wave packet is characterized by the basic

relation

Δz ∝ 1

Δk
, Δt ∝ 1

Δ𝜔
(1.36)

where the proportionality constants are of the order of unity and depends on the

dispersion relation occurring in the power spectrum.The relationship (Eq. (1.36))

is of fundamental importance in quantum mechanics and is followed up in due

course.

The Interference

The interference effect is a signature of the wave and was demonstrated by Young

with his classic double-slit experiment as shown in Figure 1.6. In this experiment,

two plane waves emanating from a distant source are passed through two slits.

The two beams are detected on a screen L distance away from the slits. At a point
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S
d

S1

S2

(a) (b)

E1(r1,t)

E2(r2,t)

A

θ

θ

P

L

y

d sinθ ≈ d tanθ

Figure 1.6 (a) Young’s double-slit experimental scheme and (b) the observed fringe

pattern.

P on the screen, the total field registered consists of the two plane waves:

E
(
r, t
)
=

2∑
j=1

ReE
0
e
−i
(
𝜔t−k

j
⋅r
j

)
(1.37)

The detected time-averaged intensity is thus given by

I =
⟨(

E
1
+ E

2

)
⋅
(
E∗
1
+ E∗

2

)⟩
t
= ||E1

||2 + |||E2|||2 + (E1
⋅ E∗

2
+ E

2
⋅ E∗

1

)
(1.38)

and consists of two background and interference terms, respectively. Naturally,

the latter two terms depend on the difference in optical paths the two beams have

traversed before reaching P.The resulting phase difference is given in the far-field

approximation by kd sin 𝜃 (Figure 1.6), and therefore I reads as

I = 2
|||E0

|||2 (1 + cos𝜑) , 𝜑 = kd sin 𝜃 ≃
(
2𝜋

𝜆

)
d
( y
L

)
(1.39)

where d and y are the space between two slits and the height of P on the screen,

respectively. For L ≫ y, sin 𝜃 ≃ tan 𝜃 ≃ y∕L. Obviously, the interference term adds

to or subtracts from the background, depending on the relative phase between the

two beams.Themaximum andminimum intensities are attained for 𝜑 = 2n𝜋 and

𝜑 = 2𝜋 (n + 1∕2), respectively, with n denoting an integer. Therefore, bright and

dark strips appear at yn = (𝜆L∕d) n and yn = (𝜆L∕d) (n + 1∕2), respectively.

Problems

1.1 TheH2 molecule consists of two protons coupled via an effective spring with

the spring constant k.The 1D Hamiltonian is given by (Figure 1.7)

H = 1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 +

1

2
k
(
x1 − x2

)2
k

x1

m1 m2

x2

Figure 1.7 Two particles coupled via a spring with spring

constant k.
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(a) Introduce the center of mass and relative coordinates as

X = x1 + x2, x = x1 − x2

and express theHamiltonian in terms ofX and x and interpret the result.

(b) Write down the equations ofmotion for the center ofmassX and relative

displacement x and interpret the equations of motion.

1.2 Find the thermal velocity of (a) electron, (b) proton, (c) H2 molecule, and (d)

particle of mass 1 g at T = 10, 300, and 1000K.

1.3 .(a) Show that the electric field given in Eq. (1.29) is the solution of the wave

equation, provided 𝜔, k satisfy the dispersion relation, 𝜔2 = v2k2 with k

denoting the wave vector.

(b) Show that the magnetic field intensityH given in Eq. (1.30) and E in Eq.

(1.29) satisfy Faraday’s law of induction and Ampere’s circuital law in a

medium free of charge and current.

(c) Derive the wave equation of H.
1.4 Given the wave packet Eq. (1.35), find variance of ||E (z, t)||2 at t = 0

(Δz)2 =
⟨
(z − ⟨z⟩)2⟩ ; ⟨a⟩ ≡ ∫

∞

−∞
dza|E (z, 0)|2

1.5 By using the relations

x̂ ⋅ x̂ = ŷ ⋅ ŷ = ẑ ⋅ ẑ = 1, x̂ ⋅ ŷ = ŷ ⋅ ẑ = ẑ ⋅ x̂ = 0,

x̂ × ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ

show that all vectors are solenoidal, that is, ∇ ⋅ ∇ × A ≡ 0.

1.6 By combining Eqs. (1.23), (1.25), and (1.26), show that H in Eq. (1.22) is

solenoidal.
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2

Milestones Leading to QuantumMechanics

The milestone discoveries leading to the advent of quantum mechanics are dis-

cussed in conjunction with the concepts of the quantized energy level, photon,

matter wave, and spectroscopy.

2.1

Blackbody Radiation and Quantum of Energy

The puzzling data confronting the classical theory was the spectral energy density

𝜌 observed from a blackbody. A blackbody is a material that absorbs all radiations

incident on its surface. A cavity with a small hole is a good implementation. Once

the light passes through the hole into the cavity, it undergoes multiple reflections

until it is absorbed by atoms on the surface of the wall. The equilibrium is estab-

lished, and the atoms constantly absorb and emit the same amount of radiation.

Figure 2.1 shows the observed 𝜌(𝜈), which rises and falls with increasing frequency

𝜈 at a given temperature T.

Rayleigh and Jeans partially explained the data by multiplying the number of

standing-wave modes in the cavity in the frequency interval from 𝜈 to 𝜈 + d𝜈 and

the average field energy kBT therein:

𝜌(𝜈) = (8𝜋v2∕c3)kBT (2.1)

The theory agrees with the data for small 𝜈, but at high 𝜈, the data exponentially

fall down, while the theoretical curve increases without any upper bound. The

disagreement between the theory and the experiment is known as the ultraviolet

catastrophe.

To resolve the problem, Planck introduced the novel concept of the quantum

of energy. He postulated that a system oscillating with frequency 𝜈 is inherently

associated with the quantum of energy 𝜀 = h𝜈 that cannot be divided. The con-

stant h is called the universal Planck constant and has the value 6.626 × 10−34J s or

4.136 × 10−15 eVs. By using the postulate, we can now find the average energy as

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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I(
ν)

T = 2500K

2000K

1500K

1 2 3 4 ν(×1014)

Figure 2.1 The spectral intensity of the blackbody radiation versus frequency at different

temperatures. Also shown are the Rayleigh–Jeans’s theoretical curves (broken lines).

⟨𝜀⟩ =
∞∑
n=0

𝜀ne
−𝛽𝜀n

∞∑
n=0

e−𝛽𝜀n

= − ∂
∂𝛽

ln

∞∑
n=0

e−𝛽𝜀n , 𝛽 ≡ 1

kBT
(2.2a)

where exp−(𝛽𝜀n) is the Boltzmann probability factor, as discussed. As the energy

𝜀 varies digitally in units of h𝜈, that is, 𝜀n = nh𝜈, we can sum up the probability

factors as
∞∑
n=0

e−𝛽𝜀n = 1

1 − e−𝛽h𝜈
(2.2b)

Thus, by inserting Eq. (2.2b) in Eq. (2.2a) and multiplying the resulting average

energy by the mode density, which will be further detailed later on, we obtain

𝜌(𝜈) = 8𝜋v2

c3
⟨𝜀⟩ = 8𝜋v2

c3
h𝜈(

eh𝜈∕kBT − 1
) (2.3)

Equation (2.3) is the celebrated Planck theory and quantitatively accounts for the

data. For small 𝜈, h𝜈 ≪ kBT and Eq. (2.3) reduces to Eq. (2.1) and for large 𝜈, 𝜌(𝜈)

decreases exponentially with increasing 𝜈 in agreement with the data.The corner-

stone of the theory is the quantum of energy.

2.2

Photoelectric Effect and Photon

The cathode-ray tube has been instrumental in bringing out key discoveries and

concepts in the history of physics, and the photoelectric effect is one of such
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Figure 2.2 A vacuum tube with the cath-

ode and the anode. The cathode modeled

by a sea of electrons confined by potential

barrier at the surface (a). The photocurrent

versus the anode voltage (b). Also shown is

the stopping power eVS versus frequency of

the incident light.

examples. The tube is made of glass, filled with a rarefied gas, and the anode and

cathode inserted therein (Figure 2.2).The photoelectric effect consists of the input

light on the cathode producing the output photocurrent, IP. A striking feature of

IP is that it flows only when the light frequency 𝜈 is greater than a critical value

for given cathode. Also, IP terminates at a negative bias at the anode −VS, and

the stopping power eVS increases linearly with 𝜈. Naturally, IP is contributed by

electrons, emitted from the cathode and pulled toward the anode by the positive

bias. In the classical theory, the energy gained by the electrons from the light is

proportional to the light intensity.This suggests that eVS should increase with the

intensity of light in contrast with the observed data.

Einstein resolved the puzzling features of IP by invoking Planck’s concept of the

quantum of energy. Specifically, the light of frequency 𝜈 was taken to consist of

photons, with each photon carrying the undividable quantum of energy h𝜈 and

traveling with the velocity of light. In this corpuscular picture of the light, the

intensity I is given by the flux of photons I∕h𝜈 crossing unit area per unit time.

As the energy h𝜈 cannot be divided, a photon interacts digitally with an electron

and is either absorbed completely, imparting all of its energy to the electron, or

not absorbed at all. Hence, the energy of the photon absorbed is used in part for

the electron to overcome the surface barrier potential, while the remainder is con-

verted to the kinetic energy of the emitted electron,

h𝜈 = e𝜑 + mv2

2
(2.4)

where the surface barrier of the cathode e𝜑 is called thework function (Figure 2.2).

Equation (2.4) explains the observed behavior of the IP data. The higher light

intensity or the greater photon flux should emit more electrons from the cath-

ode, increasing IP. Also, with increasing bias V at the anode, the electrons are

guided more efficiently, and IP should increase with V. But the current saturates

when the guiding efficiency reaches unity. Also electrons are emitted only when

h𝜈 ≥ e𝜑, which accounts for the critical frequency required for IP. Finally, eVS is

determined by the kinetic energy given by Eq. (2.4) and therefore depends only on

𝜈, in agreement with the data.
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2.3

Compton Scattering

The photon picture of light was also demonstrated by Compton, who performed

the X-ray scattering experiments as sketched in Figure 2.3. An X-ray beam irra-

diating an electron is scattered off at an angle 𝜃, while the target electron recoils

back.Thewavelength of the scattered X-ray is shifted by an amount depending on

𝜃.This is in contradiction with the classical theory, which predicts that the shift is

caused by the intensity and illumination time of the radiation.

Compton interpreted the data by modeling the X-ray to consist of photons,

streaming with the velocity of light c with the quantum of energy h𝜈 and zero

rest mass. Hence, the energy andmomentum of the photon are specified from the

special theory of relativity as

h𝜈 = [m2
ph
c4 + c2p2]1∕2 = cp, mph = 0 (2.5)

During the collision, both the energy and momentum are conserved:

pic +mc2 = pf c + (m2c4 + p2e c
2)1∕2 (2.6)

p
i
= p

f
+ p

e
(2.7)

where pi, pf are the photon momenta before and after the scattering, pe the

momentum of the electron after the scattering due to recoil, and m, mc2 the rest

mass and rest energy of electron. Hence, by finding p2e from Eq. (2.7) as

p2e = p
e
⋅ p

e
= (p

i
− p

f
) ⋅ (p

i
− p

f
) = p2

i
+ p2

f
− 2pipf cos 𝜃

Graphite target

X-ray source

Rotating crystal

Ionization chamber

(b)(a)

I

I

I

I

λi λ λ

λ λ

λi λf

λi λf λi λf

Primary beam 

θ = 90°

θ = 45°

θ = 135°

θ = 0°

Figure 2.3 The experimental setup of the X-ray scattering (a) and the measured shifts of

the wavelengths versus the scattering angle (b).
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and equating it to p2e as it appears in Eq. (2.6), we find after a straightforward

algebra

1

pf
− 1

pi
= 2

mc
sin 2

(
𝜃

2

)
(2.8)

Hence, the shift in wavelength due to scattering can be found by expressing pf,

pi in terms of the corresponding wavelength via the relation p = h𝜈∕c = h∕𝜆 (see

Eq. (2.5)):

Δ𝜆 ≡ 𝜆f − 𝜆i = 4𝜋𝜆e sin
2
(

𝜃

2

)
; 𝜆e =

2ℏ

mc
, ℏ ≡ h

2𝜋
(2.9)

The constant 𝜆e is the Compton wavelength having the value 4 × 10−4 nm, and

Eq. (2.9) is in agreement with the data, confirming thereby the photon picture of

light. As 𝜆e is independent of the wavelength, the relative shift, Δ𝜆∕𝜆i, is more

readily observed in the X-ray wavelength region. The binding energy of the elec-

tron bound to an atom is small compared with the energies involved in the scat-

tering and has been neglected in Eq. (2.6).

2.4

de Broglie Wavelength and Duality of Matter

Thewave nature of light has been firmly built into the classical optics as evidenced,

for example, by Young’s interference experiment, but the corpuscular nature of

light has also been demonstrated experimentally.The two different tracks point to

the duality of light, namely, that the light exhibits both the wave-like and particle-

like natures.

On the material side, the particle nature of electrons, atoms, molecules, and so

on, has been taken for granted. But de Broglie introduced a daring concept of the

matter wave and postulated that a particle also behaves as a wave with wavelength

𝜆 given by

𝜆 = h

p
= h

[2mE]1∕2
; E =

p2

2m
(2.10)

where h, p, and E denote Planck constant, the linear momentum, and kinetic

energy of the particle, respectively. The wavelength 𝜆 thus introduced is called

the de Broglie wavelength. The matter wave was experimentally confirmed by

Davisson and Germer, who obtained the diffraction pattern of electrons just like

that of the X-ray (Figure 2.4).

Thus, the duality of matter was also established, and a particle has to be taken

to exhibit both the particle-like and wave-like natures. Although abstract in con-

cept, the matter wave has become an integral part of everyday life. The electron

microscope, for example, utilizes the wave nature of electrons just as the optical

microscope uses visible light for imaging the object. In the electron microscope,

the wavelength 𝜆 can be tuned by varying p via the kinetic energy. Specifically, the
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Figure 2.4 The graphical representation of de Broglie matter wave (a) and the diffraction

pattern of 50 keV electrons from Cu3Au film (b). (Courtesy of the late Dr. L. H. Germer.)

electron accelerated by the voltage V possesses the de Broglie wavelength given

in nanometers by

𝜆 = 1.226√
E(eV)

nm (2.11)

2.5

Hydrogen Atom and Spectroscopy

Bohr’s theory of the hydrogen atom is a landmark achievement, and it culmi-

nates the old quantum theory. Bohr modeled the H-atom to consist of an electron

revolving in the circular orbit around the proton. The model is derived from the

α particle scattering experiment by Rutherford, which pointed to the existence of

a nucleus at the center of an atom.The atomic model brought out the issue of the

stability of matter. An electron in a circular orbit is subjected to acceleration and

should therefore emit the radiation, according to the electrodynamics. Therefore,

the electron should lose energy constantly while circling around the nucleus and

spiral into the nucleus.

Additionally, the radiation emitted from the H-atom was observed to consist

of several sets of infinite number of discrete lines instead of the continuous spec-

tra, as predicted by the electrodynamics. The observed spectral lines were shown

empirically fitted by the Ritz combination rule:

1

𝜆
= R
(
1

n2
− 1

m2

)
, n < m (2.12)

where 𝜆 is the wavelength, n,m positive integers, and R the Rydberg constant with

the value R = 0.010973732 per nm. Each infinite series of discrete lines can be

fitted by fixing n while varying m: Lyman series, n = 1 and m ≥ 2; Balmer series,

n = 2 and m ≥ 3; Paschen series, n = 3 and m ≥ 4; Brackett series, n = 4 and

m ≥ 5; Pfund series, n = 5 andm ≥ 6.
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Figure 2.5 (a,b) The circular orbit of the electron around the proton formed by the bal-

ance between the centripetal and centrifugal forces. Also shown is the graphical description

of the centrifugal force.

Bohr introduced a few basic postulates in his theory of the H-atom.

1) Quantized orbits: The electron resides in stable, non-radiating circular orbits

whose angular momentum L with respect to proton has a discrete set of

values:

Ln ≡ mvnrn = nℏ, ℏ ≡ h

2𝜋
, n = 1, 2, 3, … (2.13)

2) Quantum transition: The electron can make transitions between two orbits,

emitting or absorbing the radiation to conserve the energy.

The circular orbit is maintained in general by the balance of two forces, that is,

e2
M

r2n
=

mv2n
rn

, e2M ≡ e2

4𝜋𝜀0
(2.14)

where 𝜀0 is the vacuum permittivity. The left-hand side is the centripetal force

resulting from the attractive Coulomb force between the proton and the elec-

tron.The right-hand side is the centrifugal force associated with a circular motion

(Figure 2.5). We can combine Eqs. (2.13) and (2.14) and eliminate vn, obtaining

rn = rBn
2; rB ≡ ℏ2

me2
M

(2.15)

where rB is known as the Bohr radius and has the value rB = 0.053nm.

We can also combine Eqs. (2.14) and (2.15) and find the kinetic energy Kn and

the total energy En of the electron in the nth orbit as

Kn ≡ 1

2
mv2n =

1

2

e2
M

rn
= −1

2
Vn, Vn ≡ −

e2
M

rn
(2.16)

En = Kn + Vn = −E0
1

n2
, E0 =

e4m

2(4𝜋𝜀0)2ℏ2
(2.17)
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Figure 2.6 The quantized energy level and the corresponding electron orbits of the

H-atom (a). The Balmer series of the emission spectral lines (b).

and E0 = 13.6eV is called the ionization energy of the H-atom, and the integer n is

known as the principal quantum number.

As mentioned, the electron can make the transition from higher (ni) to lower

(nf) orbits, emitting a photon of frequency 𝜈 or wavelength 𝜆 to conserve energy:

h𝜈 = hc

𝜆
= E0

(
1

n2
f

− 1

n2
i

)
(2.18)

By comparing Eq. (2.18) with Ritz’s combination rule Eq. (2.12), the Rydberg con-

stant is theoretically specified as

R =
E0

hc
= e4m

4𝜋(4𝜋𝜀0)2ℏ3c
(2.19)

The agreement of the empirical constant with its theoretical expression is an out-

standing highlight of the theoretical physics. The lowest energy level for n = 1 is

called the ground state, and E0 is the energy required to ionize the atom by knock-

ing out the electron from the ground state to the vacuum level, hence the name

ionization energy. The discrete orbits, energy levels, and the quantum transitions

are shown in Figure 2.6.

Atomic Orbits and StandingWaves

The key point of Bohr’s theory is to quantize the angular momentum and intro-

duce the electron orbits.The electron in these orbits has the de Broglie wavelength

given by

𝜆n ≡ h

pn
= h

mvn
, n = 1, 2, … (2.20)
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When vn is replaced by rn by using the quantization condition (Eq. (2.13)),

Eq. (2.20) reduces to

2𝜋rn = n𝜆n (2.21)

and states that the circumference of the quantized orbit is an integermultiple of de

Broglie wavelength of the electron therein.This means that the optical path of the

orbit satisfies the standing-wave condition. If the condition is not met, the wave

interferes with itself destructively, and the electron cannot reside in the orbit.

Problems

2.1 .(a) Calculate the energy of a photon in electron volt units with the

wavelengths 10m (radiowave), 1m (microwave), 10 000 nm (infrared),

600 nm (visible), 200 nm (ultraviolet), 50 nm (EUV), and 1 nm (X-ray).

(b) Find the corresponding wave numbers 1∕𝜆 per centimeter.

2.2 Find the de Broglie wavelengths of

(a) the electron, proton, and H-atom moving at room temperature.

(b) The electron with kinetic energy 200 eV, 100 keV, and 1MeV.

(c) The electron in the ground state of the H-atom.

2.3 .(a) Show that the Planck theory (Eq. (2.3)) reduces to R–J theory (Eq. (2.1))

for h𝜈 ≪ kBT .

(b) Fill in the algebra and derive the theoretical description of theX-ray scat-

tering (Eq. (2.9)) from Eqs. (2.6) and (2.7).

(c) Combine Eqs. (2.13) and (2.14) and derive the Bohr radius (Eq. (2.15)).

2.4 .(a) Lithium, beryllium, andmercury have the work functions of 2.3, 3.9, and

4.5 eV, respectively.Whichmetal will exhibit the photoelectric effect and

find the stopping power therein when the light of wavelength 300 nm is

incident.

(b) The stopping powers of photoelectrons from aluminum are −2.3 and

−0.9V when emitted by light of wave length of 194 and 248 nm, respec-

tively. Find from these data Planck’s constant and the work function of

the aluminum.

2.5 The ionized helium atomHe+ is a hydrogen-like atom consisting of two pro-

tons in the nucleus and one electron revolving around the nucleus. Find the

ionization energy in electron volt unit, the atomic radius of the ground state

with n = 1, and the shortest and longest wavelengths of Balmer series.

2.6 TheX-ray with energy 200keV is scattered off an electron at rest. If the scat-

tered beam is detected at 90∘ with respect to the incident direction, find

(a) the shift in wavelength and energy of the scattered X-ray and

(b) the kinetic energy of the recoiling electron.

2.7 (a) Find the radius, kinetic, potential, and total energies of an electron in the

ground (n = 1) and first excited (n = 2) states of the H-atom.

Find the transition wavelength between the first excited state and the

ground state.
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3

Schrödinger Wave Equation

The Schrödinger wave equation is to the quantum mechanics what Newton’s

equation of motion is to the classical mechanics. Both equations represent the

basic postulates, the validity of which can be proven solely by the agreement

between the theoretical results derived from it and experimental data. The

Schrödinger equation of a particle reads as

iℏ
∂𝜓(r, t)
∂t

= Ĥ𝜓(r, t), ℏ ≡ h

2𝜋
(3.1a)

where theHamiltonian Ĥ is the total energy consisting of the kineticK and poten-

tial V energies and Ψ the wavefunction of the particle.

3.1

Operator Algebra and Basic Postulates

In quantum mechanics, a physical quantity is inherently associated with an oper-

ator. For instance, the momentum and energy are represented by the operators

p → −iℏ∇, E → iℏ
∂
∂t

(3.1b)

so that the Hamiltonian operator reads as

Ĥ =
p2

2m
+ V = − ℏ2

2m
∇2 + V (r); ∇2 = ( ∂

2

∂x2
+ ∂2
∂y2

+ ∂2
∂z2

) (3.1c)

The wave equation is a linear, second-order partial differential equation. The

essence of quantummechanics is to findΨ and extract the dynamical information

from it based on a few postulates as summarized below.

Postulates

(i) A dynamical system is associated with a wavefunction 𝜓(r, t) that contains
all possible information of the system, (ii) 𝜓 evolves in time according to the

Schrödinger equation, and (iii) the quantity 𝜓∗𝜓 dr represents the probability

of finding the system in the volume element dr at r and at time t. Hence, the

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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expectation or average value of a physical quantity as represented by an operator

Â is theoretically described by

⟨Â⟩ = ∫
∞

−∞
dr𝜓∗(r, t)Â𝜓(r, t)

∫
∞

−∞
dr𝜓∗(r, t)𝜓(r, t)

(3.2)

Thus, 𝜓∗𝜓 plays the role of a distribution function except that the operator is

inserted in between the wavefunctions.

Bra and Ket Vectors

The spatial integration involving a product of two functions f* and g is called the

inner product and is compactly expressed as

∫ drf ∗(r)g(r) ≡ ⟨f |g⟩; f ∗ → ⟨f |, g → |g⟩ (3.3)

Here f* (⟨f |) and g (|g⟩) are called the bra and ket vectors, and the expectation value
of Â is also compactly expressed as

⟨Â⟩ = ⟨Ψ|Â|Ψ⟩⟨Ψ|Ψ⟩ (3.4)

3.2

Eigenequation, Eigenfuntion and Eigenvalue

Energy Eigenfunction

The time-dependent Schrödinger equation (3.1) is analyzed in general by looking

for the solution in the form

𝜓(r, t) = T(t)u(r) = e−i(Et∕ℏ)u(r) (3.5)

where E is the total energy of the system. Upon inserting Eq. (3.5) into Eq. (3.1)

and canceling the exponential factor from both sides, there results

Ĥu(r) = Eu(r) (3.6)

The time-independent equation (3.6) is called an eigenequation, in which an

operator, for example, Ĥ , acting on u reproduces the same function, multiplied

by a constant E. In this case, u and E are called the energy eigenfunction and eigen-

value, respectively. The eigenequation generates a set of eigenfunctions {un} and

eigenvalues {En}, and the wavefunction can be generally expanded in terms of the

eigenfunctions as

𝜓(r, t) =
∑
n

ane
−i𝜔ntun(r), 𝜔n ≡ En

ℏ
(3.7)

where an is the expansion coefficient.
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Momentum Eigenfunction

Let us consider a free particle moving in the x-direction. The momentum

eigenequation reads then from Eq. (3.1b) as

−iℏ ∂
∂x

u(x) = pxu(x), p̂x ≡ −iℏ ∂
∂x

(3.8)

By dividing both sides with the eigenfunction u(x), Eq. (3.8) is rearranged as

∂u(x)
u(x)

= ikx∂x, kx ≡ px
ℏ

Thus, by integrating both sides with respect to x u(x) is readily found as

u(x) = Neikxx, px = ℏkx (3.9)

where N is the constant of integration, ℏkx the momentum eigenvalue, and kx the

wave vector, which plays essentially the same role as the optical wave vector.

The wave vector kx is determined by the boundary conditions imposed. For

example, when a periodic boundary condition is imposed in the interval from 0

to L, that is, u(0) = u(L), then kx is found from Eq. (3.9) by kxnL = 2𝜋n with n

denoting an integer.

Also, the constant N can be used for normalizing u(x):

1 = ∫
L

0

dxu∗u = N2L

Therefore, the normalized eigenfunction of the momentum is given by

un (x) =
(
1

L

)1∕2
ein(2𝜋∕L)x, n = ±1,±2, … (3.10)

The 1D momentum eigenequation (Eq. (3.8)) is straightforwardly extended to

3D as

−iℏ∇u(r) = pu(r), ∇ =
[
x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

]
(3.11)

and the eigenfunction can likewise be found in analogy with Eq. (3.10) as

u(r) = 1

(LxLyLz)1∕2
eik⋅r, k = x̂kx + ŷky + ẑkz (3.12)

3.3

Properties of Eigenfunctions

A few basic properties of the eigenfunction are presented as follows:

Hermitian Operator

An operator Â of a physical quantity should satisfy the Hermitian condition

given by
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∫ drf ∗(r)Âg(r) = ∫ dr[Âf (r)]∗g(r); ⟨f |Âg⟩ = ⟨Âf |g⟩ (3.13)

where f and g are arbitrary well-behaving functions, differentiable and vanishing

at infinity.The condition has also been expressed in terms of the bra–ket notation.

TheHemiticity of the1Dmomentum operator, for example, can be shownwith the

use of integration by parts as follows:

∫
∞

−∞
dxf ∗(−iℏ ∂

∂x
)g = −iℏ

[
f ∗g|∞−∞ − ∫

∞

−∞
dxg

∂f ∗

∂x

]
= ∫

∞

−∞
dx(−iℏ ∂

∂x
f )∗g

Orthogonality of Eigenfunctions

The eigenfunctions of a Hermitian operator are orthogonal to each other, and the

eigenvalues are real. To prove the theorem, let us consider the eigenequation

Âun(r) = anun(r); Â|n⟩ = an|n⟩, |un(r)⟩ ≡ |n⟩ (3.14)

wheren is an integer called the quantumnumber. By performing the inner product

on both sides, we obtain

∫
∞

−∞
dru∗mÂun = an∫

∞

−∞
dru∗mun; ⟨um|Âun⟩ = an⟨um|un⟩ (3.15)

Upon interchanging un and um, Eq. (3.15) reads as

∫
∞

−∞
dru∗nÂum = am∫

∞

−∞
dru∗num; ⟨un|Âum⟩ = am⟨un|um⟩ (3.16)

As Â is Hermitian, Eq. (3.16) can also be expressed as

∫
∞

−∞
dr(Âun)∗um = am∫

∞

−∞
dru∗num; ⟨Âun|um⟩ = am⟨un|um⟩ (3.17)

and its complex conjugate is given by

∫
∞

−∞
dru∗m(Âun) = a∗m∫

∞

−∞
dru∗mun; ⟨um|Âun⟩ = a∗m⟨um|un⟩ (3.18)

By subtracting Eq. (3.18) from Eq. (3.15), there results

(an − a∗m)∫
∞

−∞
dru∗mun = 0; (an − a∗m)⟨um|un⟩ = 0 (3.19)

For n = m, u∗nun is positive definite, and the inner product does not vanish,

hence an = a∗n, that is, the eigenvalue is real. For n ≠ m, the eigenvalues are not

the same, that is, an ≠ am, in the nondegenerate system.Hence, the eigenfunctions

should be orthogonal, that is,

∫
∞

−∞
dru∗mun = 0; ⟨um|un⟩ = 0, n ≠ m (3.20)

For the degenerate case in which the eigenvalues can be the same even if n ≠ m,

the present proof does not apply. However, the degenerate eigenfunctions

can be made orthogonal by devising appropriate linear combinations of the

eigenfunctions.
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The Completeness of Eigenfunctions

The wavefunction can be expanded in terms of a set of eigenfunctions that are

orthogonal and normalized or orthonormal for short:

|𝜑(r)⟩ = ∞∑
n=0

cn|un(r)⟩ = ∞∑
n=0

cn|n⟩ (3.21)

where the expansion coefficient cn is specified by means of the inner product as

⟨k|𝜑(r)⟩ = ∞∑
n=0

cn⟨k|n⟩ = ∞∑
n=0

cn𝛿kn = ck (3.22a)

where 𝛿kn is called the Kronecker delta function and is defined as

𝛿kn =

{
1 k = n

0 k ≠ n
(3.22b)

Hence, by inserting Eq. (3.22) into Eq. (3.21), the eigenfunction is represented by

|𝜑(r)⟩ = ∞∑
n=0
⟨n|𝜑(r)⟩|n⟩ = ∞∑

n=0
|n⟩⟨n|𝜑(r)⟩ (3.23)

In Eq. (3.23), the constant cn has been slipped past the ket vector. Hence, it is clear

that
∞∑
n=0
|n⟩⟨n| = I (3.24)

The identity Eq. (3.24) is known as the closure property and represents the com-

pleteness of the eigenfunctions of the Hermitian operators.

It is interesting to note the similarity existing between the expansion scheme of

Eq. (3.21) and the representation of a 3D vector:

A = x̂Ax + ŷAy + ẑAz

In this representation, the unit vectors are orthonormal, that is, x̂ ⋅ x̂ = 1, x̂ ⋅ ŷ =
0, and so on, and the three components are extracted by performing the scalar

product x̂ ⋅ A = Ax, ŷ ⋅ A = Ay, and ẑ ⋅ A = Az. In a similar context, |𝜑(r)⟩ is to be

viewed as a vector in infinite orthogonal Hilbert space and can be expanded in

terms of {un} with the set of expansion coefficient {cn} specified by means of the

inner product.

3.4

Commutation Relation and Conjugate Variables

Themotion of a particle can be described precisely in classical mechanics, as dis-

cussed. The theory presupposes that the act of measurement does not disturb

the dynamical system under investigation. In contrast, the quantum mechanical
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description is based on the premise that measurement process itself disturbs and

modifies the system. The modifications are pronounced in microsystems such as

atoms, molecules, and electrons.

Commutation Relation

A thought experiment for measuring the size of the H-atommakes the point clear.

To resolve its diameter, the probing light should have wavelength 𝜆 < 0.1 nm (see

Eq. (2.15)) or the frequency 𝜈 (= c∕𝜆) greater than 3 × 1018Hz. Thus, the probing

photons should have the energy h𝜈 greater than∼1.23× 104 eV, a value larger than

the binding energy of the H-atom ∼13.6 eV by orders of magnitude. Hence, the

measurement would end up by ionizing the H-atom.

The thought experiment implies that the consecutive measurements of two

physical quantities, or operators, Â, B̂ do not necessarily yield the same results,

when performed in reverse order. That is to say, the respective theoretical values

are not necessarily the same:⟨𝜓|ÂB̂|𝜓⟩ ≠ ⟨𝜓|B̂Â|𝜓⟩ (3.25)

Equivalently, the commutator of two operators is not necessarily zero:

[Â, B̂] ≡ ÂB̂ − B̂Â ≠ 0 (3.26)

Conjugate Variables

The typical examples of the noncommuting operators are the canonically con-

jugate variables appearing in pairs in Hamilton’s equation of motion (Eq. (1.6)).

Specifically, the conjugate pairs obey the relation

[x, px] = [y, py] = [z, pz] = iℏ (3.27)

The relation (Eq. (3.27)) can be proven for x and px, for example, as

[x, px]f (x) ≡ x
(
−iℏ ∂

∂x

)
f (x) −

(
−iℏ ∂

∂x

)
[xf (x)] = iℏf (x) q.e.d.

where f (x) is an arbitrary function.The combinations of the position andmomen-

tum operators other than those in Eq. (3.27) commute, however.

Commuting Operators and Common Eigenfunction

It is important to point out that the commutation relation carries important con-

sequences. For example, if the two operators commute, they can share a common

eigenfunction. To prove it, let us consider the eigenfunction of B̂:

B̂|un⟩ = bn|un⟩ (3.28)

As ÂB̂ = B̂Â in this case, it follows from Eq. (3.28) that

ÂB̂|un⟩ = bnÂ|un⟩ ≡ B̂Â|un⟩ (3.29)
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Therefore, the new function |vn⟩ ≡ Â|un⟩ is also an eigenfunction of B̂. As an

eigenfunction is determined to within a constant, one can put

|vn⟩ ≡ Â|un⟩ ∝ |un⟩ = an|un⟩ (3.30)

proving thereby that |un⟩ is also the eigenfunction of Â. Also, if Â, B̂ share a com-

mon eigenfunction, we can write by definition

⟨un|ÂB̂|un⟩ = anbn⟨un|un⟩ = anbn, ⟨un|B̂Â|un⟩ = anbn (3.31)

Hence, Â and B̂ are shown to commute. An additional implication of Eq. (3.31) is

that it is possible to measure two commuting observables simultaneously.

3.5

Uncertainty Relation

Uncertainty in Position andMomentum

The fact that x and px do not commute carries an important consequence, namely,

that it is not possible to precisely measure x and px simultaneously. Rather the

uncertainty in r and p is specified by

ΔxΔpx ≈ ℏ, ΔyΔpy ≈ ℏ, ΔzΔpz ≈ ℏ (3.32)

The relations (Eq. (3.32)) constitute the crux of Heisenberg’s uncertainty principle,

and the principle is rooted in the wave nature of particles. The uncertainty in x,

px, for instance, can be shown explicitly by considering the wavefunction of a free

particle as represented by a Gaussian wave packet:

𝜓(x, t) ∝ e−(i𝜔0t−k0x)e−(x−vg t)
2∕2𝜎2 ; E

ℏ
= 𝜔0,

p

ℏ
= k0 (3.33)

The spatial profile of the probability density then reads as|𝜓(x, t = 0)|2 ∝ e−(x
2∕𝜎2) (3.34)

and the uncertainty or variance Δx is obtained by evaluating the average values

(Δx)2 ≡ ⟨(x − ⟨x⟩)2⟩ = ⟨x2 − 2x⟨x⟩ + ⟨x⟩2⟩ = ⟨x2⟩ − ⟨x⟩2 (3.35a)

As the probability density is an even function of x, ⟨x⟩ = 0 and ⟨x2⟩ is evaluated as
⟨x2⟩ ≡ ∫

∞

−∞
dxx2e−(x

2∕𝜎2)

∫
∞

−∞
dxe−(x

2∕𝜎2)
= 𝜎2

2
(3.35b)

Hence, the uncertainty in position is given by

Δx = 𝜎√
2

(3.36)
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Figure 3.1 The spatial profile of the intensity of a Gaussian wave packet (a) and the distri-

bution of the momentum expansion coefficients associated (b).

Also, at x = 0, for example, the temporal profile ofΨ is given from Eq. (3.33) by

|𝜓(t, x = 0)|2 ∝ e−(t
2∕𝜎2

t ), 𝜎2
t ≡ 𝜎2

v2g
(3.37)

The variance in time Δt can likewise be calculated as

Δt = 𝜎√
2vg

= Δx
vg

(3.38)

The result indicates that the uncertainty in time of detecting the wave packet is

determined by its transit time Δx∕vg .
Now, the wave packet Eq. (3.34) can be expanded in terms of a complete set of

the momentum eigenfunctions of a free particle derived in Eq. (3.12):

𝜓(x, t = 0) = e[ik0x−(x
2∕2𝜎2)] = ∫

∞

−∞
dp𝜑pe

ikx, k ≡ px
ℏ

(3.39)

with the expansion coefficient given by

𝜑p ≡ ∫
∞

−∞
dxe−ikxek0xe−x

2∕2𝜎2 = ⟨eikx|𝜓(x, t = 0)⟩ ∝ e−𝜎2(k−k0)2∕2 (3.40)

(see Eq. (3.22)). Thus, 𝜑p is centered at p0 and Gaussian distributed as shown in

Figure 3.1. Therefore, the variance in momentum can likewise be calculated as

Δpx ≡ ℏΔkx =
1√
2

ℏ

𝜎
(3.41)

and by combining Eqs. (3.36) and (3.41), we find

ΔxΔpx ≈ ℏ (3.42)

It is thus clear that the smaller Δx, the larger Δpx or vice versa.

Uncertainty in Energy and Time

The uncertainty in energy and time can also be shown as follows. Given a free

particle with kinetic energy E = p2x∕2m, we can differentiate both sides, obtaining

ΔE =
px
m
Δpx = vgΔpx (3.43)



Suggested Readings 31

Therefore, by combining Eqs. (3.38), (3.41), and (3.43), we also find the relation

ΔEΔt ≈ ΔpxΔx ≈ ℏ (3.44)

Clearly, Eq. (3.44) states that it is not possible to precisely measure both E and t

simultaneously. Rather the accuracy of measuring E depends on themeasurement

time Δt. Moreover, in view of ΔE ≈ ℏΔ𝜔, Eq. (3.44) is consistent with the basic

relationship between the time duration and the frequency bandwidth in electro-

magnetic pulses (Eq. (1.36)).

Problems

3.1 Given the 3Dmomentum eigenequation (3.11), derive the normalized eigen-

function as given in Eq. (3.12).

Hint: Look for the eigenfunction in the form

u(r) = fx(x)fy(y)fz(z) (A)

and insert (A) into Eq. (3.11). By dividing both sides with (A), reduce the

equation to three 1D momentum eigenequations with respect to px, py,

and pz.

3.2 The laser pulses have been continually compressed from nano (10−9s), pico

(10−12s), and femto (10−15s) seconds. Find the corresponding frequency band

widths.

3.3 The diameter of the nucleus is ∼1 × 10−5 nm. Use the uncertainty relation

to estimate the minimum kinetic energy for the electron and the proton to

have within the nucleus.The binding energy per nucleon is∼5 × 106 eV. Can

the proton reside in the nucleus? Can the electron reside in the nucleus?

3.4 Estimate the minimum energy in eV unit of an electron and proton, which

are spatially confined in a cube with the edge lengths of 1, 0.5, 0.05 nm, and

compare the results with the thermal energy at room temperature.

3.5 When the electron in the H-atom is promoted from the ground state with

n = 1 to the first excited state with n = 2, the electron stays in the excited

state typically 10 ns before returning to the ground state. Find the center

wavelength and spread of wavelengths resulting from the finite lifetime of

the electronwhen the electronmakes the transition from n = 2 state to n = 1

state.

3.6 Show by using the integration by parts that the Hamiltonian

Ĥ = − ℏ2

2m
∇2 + V (r)

is a Hermitian operator.
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4

Bound States in QuantumWell andWire

A particle in a simple potential well is an interesting dynamic system and pro-

vides valuable insights for the bound states. In particular, the energy quantization

of a particle is naturally brought out from the self-evident fact of the wavefunc-

tion physically well behaving. Moreover, the results obtained are pertinent to the

problems of practical interest and provide useful backgrounds for designing and

analyzing the semiconductor devices. The quantum well and wire are discussed

together with the density of states in one, two, and three dimensions.

4.1

Electrons in Solids

An electron in solids is often modeled as a free particle in a box, which in turn is

taken as the 3D infinite squarewell potential. To analyze themotion of the electron

therein, let us first consider a particle in 1D infinite square well potential of width

L (Figure 4.1). The potential is then given by

V (x) =

{
0 0 ≤ x ≤ L

∞ otherwise
(4.1)

The electron therein is a free particle, and the energy eigenequation is given by

− ℏ2

2m

∂2
∂x2

u(x) = Eu(x);
p2

2m
= − ℏ2

2m

∂2
∂x2

(4.2a)

or equivalently by

u′′ + k2u = 0, k2 ≡ 2mE

ℏ2
=

p2

ℏ2
(4.2b)

Equation (4.2b) is identical to that of the harmonic oscillator, when t is replaced

by x, and we can thus take sinusoidal functions sin kx or cos kx as the solution.

As the probability of finding the particle outside the infinite potential well has to

be zero, u(x) should vanish at the two edges of the well. Moreover, the probability

density should sumup to unity.Hence, the normalized eigenfunctions are given by

un(x) =
(
2

L

)1∕2
sin knx; kn =

n𝜋

L
, n = 1, 2, … (4.3)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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n = 3
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n = 1

Figure 4.1 The infinite square well potential with width L (a) and typical eigenfunctions (b)

and the probability densities (c) and the subbands.

and satisfy the required boundary conditions un(x = 0) = un(x = L) = 0.The con-

dition is identical to the standing-wave condition. The associated eigenenergies

are therefore naturally quantized and given by

En =
p2

2m
=

ℏ2k2n
2m

= ℏ2𝜋2

2mL2
n2, n = 1, 2, 3, … (4.4)

The integer n is known as the quantum number, and the quantized energy levels

are called the sublevels or subbands. Typical probability densities and subbands are

shown in Figure 4.1. It is interesting to note that the ground state energy E1 is not

zero but is finite. Classically, a particle can be completely at rest in the potential

well at a position precisely known so that Δpx = 0 and Δx = 0, in contradiction

with the uncertainty principle. Herein lies a fundamental difference between the

classical and quantum theories.

Particle in 3D Box

Let us consider a particle in 3D box and model the potential as

V (r) =

{
0 0 ≤ x, y, z ≤ L

∞ otherwise
(4.5)

The energy eigenequation of the particle inside the box then reads as

− ℏ2

2m

(
∂2
∂x2

+ ∂2
∂y2

+ ∂2
∂z2

)
u(x, y, z) = Eu(x, y, z) (4.6)

We may use the separation of variable technique and look for the solution in the

form

u(x, y, z) = X(x)Y (y)Z(z) (4.7)
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and insert Eq. (4.7) into Eq. (4.6) and divide both sides with Eq. (4.7), obtaining

− ℏ2

2m

(
X′′

X
+ Y ′′

Y
+ Z′′

Z

)
= E (4.8)

The double primes denote the second-order differentiations with respect to x, y,

and z, respectively.

Each term on the left-hand side depends solely on x, y, and z, so that we can put

each term to a constant, and let the three constants add up to the total energy E. In

this manner, Eq. (4.8) is reduced to three independent 1D equations with each one

identical to Eq. (4.2).Therefore, we can express the eigenfunction and eigenenergy

by extending Eqs. (4.3) and (4.4) as

un(x, y, z) =
(
2

L

)3∕2
sin
(nx𝜋

L
x
)
sin

(
ny𝜋

L
y

)
sin
(nz𝜋

L
z
)

(4.9a)

En =
ℏ2𝜋2

2mL2
(n2x + n2y + n2z ) (4.9b)

Evidently, the ground state corresponds to nx = ny = nz = 1, while the first

excited state is associated with nx = 2, ny = nz = 1, ny = 2, nx = nz = 1,

nz = 2, nx = ny = 1. The three quantum states share a common eigenvalue;

hence, there is the threefold degeneracy in the first exited state. The degree of

degeneracy increases in higher-lying energy levels.

4.2

1D, 2D, and 3D Densities of States

The electron in solids is to be modeled as a free particle in 3D box with its wave-

function satisfying the stationary boundary condition, namely, that the wavefunc-

tion vanishes at the edges of the box. The boundary condition ensures that the

electron is well confined in the solid. In addition, the periodic boundary condi-

tion is also utilized to describe the electron freely propagating in the bulk solid.

Such propagation is represented by the traveling wavefunction given in Eqs. (3.10)

and (3.12) by

Ψ(r, t) = e−i𝜔tu(r) = 1

L3∕2
e−i(𝜔t−k•r), E = ℏ𝜔 = ℏ2k2

2m
(4.10)

where u(r) satisfies the 3D energy eigenequation of a free particle Eq. (4.6). When

u(r) is combined with the exponential time factor, it provides a mode function of

a free particle traveling in the k-direction as a matter wave.

The periodic boundary condition states that a particle exiting at x + L, for

example, reenters at x and is thus specified by

u(x, y, z) = u(x + L, y, z) = u(x, y + L, z) = u(x, y, z + L) (4.11)

(see Figure 4.2). The condition forces the wave vector k in Eq. (4.10) to satisfy

kxL = 2𝜋nx, kyL = 2𝜋ny, kzL = 2𝜋nz (4.12)
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0−L/2 L/2

(a) (b)

λ = 2L

u(x,y) = u(x,y+L)

u(x,y+L)
u(x,y) = u(x+L,y)

u(x+L,y)

λ = L
L

L

λ = 1.5L

u(x,y)

Figure 4.2 Stationary (a) and periodic (b) boundary conditions.

where the quantumnumbers,nx,ny,nz are positive or negative integers, describing

the particle traveling in k- or −k-directions. The eigenenergy is then given by

En =
ℏ2

2m
(k2x + k2y + k2z ) =

ℏ2

2m

(
2𝜋

L

)2
(n2x + n2y + n2z ) (4.13)

It is therefore clear that there is the one-to-one correspondence between k (kx, ky,

kz) and n (nx, ny, nz), and each k represents a single quantum state.

A key quantity of interest is the number of quantum states in the interval from

k to k + dk or equivalently from E to E+ dE in 1D, 2D, and 3D environments.

Such number of states is readily found by considering 1D, 2D, and 3D k-spaces,
which are scaled with the unit length 2𝜋∕L (Figure 4.3). The respective unit cell

containing a single dot, that is, a single quantum state is given by(
2𝜋

L

)j
, j = 3, 2, 1

and the differential volume elements between k and k + dk are given, respectively,

by

4𝜋k2dk, 2𝜋kdk, 2dk

dk

0

dkdkkz

kx
kx

ky

(a) (b) (c)

ky

k

k

−k k
L

L

L

dk

2π
2π

2π

Figure 4.3 3D (a), 2D (b), and 1D (c) volume elements in the k-space with each dot repre-

senting a quantum state.
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3D Density of States

The number of quantum states in 3D space can be found by dividing the differen-

tial volume element with the unit cell. However, for each quantum state for given

k, there are two independent quantum states, corresponding to the spin-up and

spin-down states of the electron.Therefore, the number of the states per unit vol-

ume is given by

g3D(k)dk = 2 × 4𝜋k2dk

(2𝜋∕L)3
× 1

L3
= k2dk

𝜋2
(4.14a)

yielding thereby the 3D density of states in k-space

g3D(k) =
k2

𝜋2
(4.14b)

We can transcribe Eq. (4.14b) in the E-space via the dispersion relation

E = ℏ2k2∕2m as

g3D(k)dk ≡ g3D(E)dE =
√
2m3∕2E1∕2

𝜋2ℏ3
dE (4.15a)

Therefore, the 3D density of states is given in terms of E by

g3D(E) =
√
2m3∕2E1∕2

𝜋2ℏ3
∝ E1∕2 (4.15b)

2D and 1D Densities of States

We can likewise divide the 2D volume element by the 2D unit cell, obtaining

g2D(k)dk = 2
2𝜋kdk

(2𝜋∕L)2
1

L2
= kdk

𝜋
(4.16a)

The resulting k-space density of states g2D(k) = k∕𝜋 is likewise transcribed into E

as

g2D(E) =
m

𝜋ℏ2
∝ E0 (4.16b)

The 1D counterpart of Eqs. (4.14a) and (4.16a) is given by

g1D(k) = 2
2dk

(2𝜋∕L)
1

L
= 2

𝜋
dk (4.17a)

and is transcribed into E as

g1D(E) =
√
2m1∕2

𝜋ℏ

1

E1∕2 ∝ E−1∕2 (4.17b)

The 3Ddensity of states g3D(E) is a key factor for analyzing the bulk semiconductor

devices such as the metal oxide semiconductor field-effect transistor (MOSFET),

while g2D(E) and g1D(E) are essential for modeling nanoelectronic devices, such

as FinFET and nanowire field-effect transistors (FETs). Figure 4.4 shows g1D, g2D,

and g3D versus energy.



38 4 Bound States in Quantum Well and Wire

E E E

g3D g2D g1D

∝ E 1/2

∝ E −1/2
∝ E 0

(a) (b) (c)

Figure 4.4 The E-space density of states: 3D (a), 2D (b), and 1D (c).

4.3

Particle in QuantumWell

Thepotential well with a finite barrier heightV is called the quantumwell and has

become an essential part of semiconductor and optoelectronic device structures,

for example, laser diodes, bipolar junction transistors, FinFETs, and nanowire

FETs. Thus, consider a particle in the quantum well of height V and width W , as

shown in Figure 4.5:

V (x) =

{
0 |x| ≤ W∕2
V |x| ≥ W∕2

(4.18)

Inside the well, V = 0 and the eigenequation of a free particle is given as usual by

u′′ + k2u = 0; k2 ≡ 2mE

ℏ2
, |x| ≤ W

2
(4.19a)

The analysis is confined to the bound state, that is, E ≤ V ; hence, the eigenequa-

tion outside the well reads as

u′′ − 𝜅2u = 0; 𝜅2 ≡ 2m(V − E)
ℏ2

, |x| > W

2
(4.19b)

Obviously, u(x) should assume the sinusoidal (sin kx, cos kx) and exponential

(exp±𝜅x) functions inside and outside the well, respectively. We can therefore

construct the even and odd eigenfunctions to expedite the analysis as

V

x
W W W

(a) (b) (c)

u1 |u1|2

|u2|2

|u3|2

u2

u3

v = 0

∞ ∞

Figure 4.5 The quantum well with a finite

potential depth V and width W (a). Typical

eigenfunctions (b) and corresponding proba-

bility densities (c) and subbands. Also shown

for comparison are the eigenfunctions, prob-

ability densities, and subbands in the infinite

square well potential (thin lines).
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ue(x) = N

⎧⎪⎨⎪⎩
Ae𝜅x x < −W∕2
cos kx |x| ≤ W∕2
Ae−𝜅x x > W∕2

; uo(x) = N

⎧⎪⎨⎪⎩
−Ae𝜅x; x < −W∕2
sin kx |x| ≤ W∕2
Ae−𝜅x x > W∕2

(4.20)

where the exponential functions chosen vanish for x → ±∞ as it should, and the

constants of integration A and N are used for satisfying the boundary and nor-

malization conditions.

Boundary Conditions

The conditions for the eigenfunctions to satisfy are that u(x) and its derivative

∂u(x)∕∂x must be continuous everywhere. These two conditions are required to

render the probability density u∗(x)u(x) and the momentum ∝ ∂u(x)∕∂x contin-

uous everywhere. Clearly, these conditions are automatically satisfied inside and

outside the well as u(x) is described by analytical functions in the two regions.

Therefore, the conditions need to be applied only at the two edges of the well

where two different solutions meet. However, as u(x) is even or odd in x, when

the condition is satisfied at one edge, it is also satisfied at the other edge.

For ue(x), the two boundary conditions atW /2 are specified by

cos 𝜉 = Ae−𝜂 , 𝜉 ≡ kW

2
, 𝜂 ≡ 𝜅W

2
(4.21a)

−k sin 𝜉 = −𝜅Ae−𝜂 (4.21b)

The two equations can be combined into one by multiplying both sides of

Eq. (4.21b) byW /2 and dividing it with Eq. (4.21a):

𝜉 tan 𝜉 = 𝜂 (4.22)

The boundary conditions for uo(x) are likewise compacted as

−𝜉 cot 𝜉 = 𝜂 (4.23)

Also the parameters 𝜉 and 𝜂 introduced in Eq. (4.21a) are constrained by

Eqs. (4.19a) and (4.19b) as

𝜉2 + 𝜂2 ≡
(
kW

2

)2

+
(

𝜅W

2

)2
= mVW 2

2ℏ2
(4.24)

Therefore, the problem is reduced to finding k and 𝜅, such that the pair of

boundary conditions (Eq. (4.22)) for ue(x) and (Eq. (4.23)) for uo(x) are satisfied.

The unknown values k and 𝜅 can be found by numerical or graphical means,

and let us resort to the latter means. For this purpose, 𝜂 in Eqs. (4.22) and (4.23)

is plotted versus 𝜉 in Figure 4.6. Also plotted in the figure is a family of circles

(Eq. (4.24)) corresponding to different potential depths, V , and widths, W. Thus,

finding the values of 𝜉 and 𝜂 or k and 𝜅 consists of reading off the coordinates

of the cross points of the two curves Eqs. (4.22) and (4.24) for ue(x) and Eqs.

(4.23) and (4.24) for uo(x). Once k and 𝜅 are thus determined, we can find the

eigenfunctions and energy eigenvalues from Eq. (4.19).
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Figure 4.6 The graphical scheme for finding k and 𝜿. Plotted are the two sets of curves

Eq. (4.22) (thick lines) and Eq. (4.23) (thin lines) and a family of circles Eq. (4.24). Also shown

are the intersection points for finding ue (filled circles) and for finding uo (open circles).

The typical eigenfunctions thus found and its probability densities are plotted in

Figure 4.5 together with those corresponding to the infinite square well potential,

for comparison. The sublevels in the latter are consistently lower than those in

the former, indicating the tighter binding of the particle. Also the eigenfunctions

in the quantum well are shown to penetrate into the classically forbidden region

outside the well, the significance of which will become clear soon. We can also

observe a few additional features of the bound states from Figure 4.6. When the

radius of the circle becomes large with deeper well depth V for given W , more

bound states exist in the well. Also, the lowest ground state is always associated

with ue(x), and higher-lying states alternate between ue(x) and uo(x), and at

least one bound state exists, regardless of the well depth. Finally, in the limit of

infinite V , there are two sets of infinite number of cross points for ue(x) and uo(x),

respectively, determined by

𝜉n ≡ knW

2
= 𝜋

2
(2n + 1), 𝜉n ≡ knW

2
= n𝜋, n = 0, 1, 2, …

When combined, these two conditions lead to the energy eigenvalues derived in

Eq. (4.4), as it should.

4.4

QuantumWell andWire

QuantumWell

It has become possible to grow atomic layers of varying thicknesses by using the

molecular beam epitaxy or metal organic chemical vapor deposition techniques.
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As a result, superlattice structures containing multiple quantum wells are rou-

tinely fabricated. Figure 4.7 shows a typical example consisting of AlGaAs and

GaAs layers. An electron in the semiconductor moves freely in certain energy

ranges, called the conduction and valence bands. These two bands are separated

by the energy gap called bandgap, and the electrons are forbidden to propagate

in such a bandgap. Hence, the quantum wells are formed by two semiconducting

materials with different bandgaps in equilibrium contact with the larger bandgap

providing the potential barrier.

Let us consider a quantum well in which electrons are confined, say in the z-

direction, while propagating freely in the x-, y-directions, forming thereby the 2D

electron gas. The energy eigenequation then reads as[
− ℏ2

2mx

∂2
∂x2

− ℏ2

2my

∂2
∂y2

− ℏ2

2mz

∂2
∂z2

+ V (z)

]
u(x, y, z) = Eu(x, y, z) (4.25a)

where the potential is given by

V (z) =

{
0 |z| ≤ W∕2
V |z| ≥ W∕2

(4.25b)

and mx, my, and mz denote the effective masses of the electron with which it

moves in x-, y-, and z-directions, respectively. The effective mass of the electron

in solids is different from its rest mass and depends on the crystallographic

directions.

We can as usual use the separation of variable technique and decompose

(Eq. (4.25a)) into three separate equations involving x, y, z variables and obtain

the sublevels as

En =
ℏ2k2x
2mx

+
ℏ2k2y

2my

+ ℏ2𝜋2

2mzW
2
n2, n = 1, 2, … (4.26)

AIAs AIAs

GaAs

V(z)

x,y πħ2

πħ2

πħ2

x,y

N(E)ħ2k2

ħ2k2

2mn

2mp

1mn

E1n

(a) (b)

E2n E3n E

3mn

2mn

z

E1p
E2p

E2n

E1n

Figure 4.7 The quantum well of electrons and holes, the respective subbands, and disper-

sion curves (a). The 2D density of states versus energy (b).
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The total eigenenergy thus consists of the kinetic energies in the x-, y-directions,

and the sublevels resulting from the confinement in the quantumwell of widthW.

For simplicity, the well depth has been taken as infinity in Eq. (4.26). Plotted in

Figure 4.7 are the subbands and the density of states. As the 2D density of states

is constant, independent of energy (Eq. (4.16b)), the number of quantum states

increases stepwise whenever E crosses the discrete subband with the energy Ezn.

Also, each Ezn is associated with the kinetic energy associated with the free prop-

agations in x-, y-directions.

QuantumWire

The quantum wires with nanoscale cross-sections are fast becoming essential

elements of the nanoelectronic devices. Thus, consider the electrons in such

nanowires. A particle therein is confined in, for example, y-, z-directions while

free to move in the x-direction (Figure 4.8). The energy spectrum therefore

consists of two sets of sublevels resulting from the confinement in y-, z-directions

and the kinetic energy with which the particle freely moves in the x-direction:

En,m =
ℏ2k2x
2mx

+ ℏ2𝜋2

2myW
2
y

n2 + ℏ2𝜋2

2mzW
2
z

m2, n,m = 1, 2, … (4.27)

Again, for simplicity, the well depth has been taken infinite in Eq. (4.27). Shown in

Figure 4.8 are the subbands and the density of states. As the 1D density of states

follows the power law, E−1∕2 (Eq. (4.17b)), the density of states exhibits a sawtooth-

like characteristics versus E.

The quantum wells and wires have become essential elements of various

semiconductor devices. For example, in high-efficiency laser diodes, electrons

and holes are injected into the respective quantum wells and are allowed to have

longer radiative recombination time while confined in the well. Additionally, the

operation of MOSFET is based on injecting 2D electrons or holes into the gate

voltage-induced quantum well. Moreover, nanowire FETs enjoy the prospect of

becoming one of the mainstream drivers of nanoelectronics.

E1

(a) (b)

E
1

N(E)

E2

E
2

E3 E

ħ2 k2

ħ2 k2

2mn

2mn

+ E1

+ E2

Figure 4.8 The quantum wire, subbands, and dispersion curves of the electron (a) and 1D

density of states versus energy (b).
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Problems

4.1 .(a) Show that the traveling wave eigenfunction given in Eq. (4.10) satisfies

the energy eigenequation of a free particle with eigenvalue (Eq. (4.13))

under the periodic boundary condition.

(b) Fill in the algebra and obtain the 3D, 2D, and 1D densities of states in

the E-space from those in the k-space (Eqs. (4.14b), (4.16a), and (4.17a))

by using the dispersion relation E versus k.

4.2 .(a) Derive the 3D density of states in the cubic box of widthW by using the

stationary boundary conditions, that is, the energy eigenfunctions van-

ish at the edges of the box and show that the result is same as Eq. (4.14b).

(b) Express the density of states in terms of the frequency 𝜈 and show that

it reduces precisely to the number of standing-wavemodes in the cavity

that was used in Rayleigh–Jeans theory (Eq. (2.1)).

4.3 An electron is contained in two cubic quantum dots of dimension 0.1 and

1.0 nm, respectively.

(a) Find the lowest three energy levels in eV units corresponding to n =
1, 2, 3 and the degeneracy of each level.

(b) Calculate the wavelengths of photons emitted when the electron cas-

cades down the energy levels from 3 to 2 and 2 to 1.

(c) Compare the ground state energies of the two quantum dots with the

thermal energy at room temperature kBT.

4.4 An electron in silicon bounded by two SiO2 layers is to be taken confined in

the quantum well given by

V (z) =

{
3.1eV z ≤ −W∕2, z ≥ W∕2
0eV −W∕2 ≤ z ≤ W∕2

(a) Calculate numerically the bound state energy in electron volt unit by

taking W = 2 nm and the effective mass of electron mn = 0.1m0 with

m0 denoting the rest mass.

(b) Write a short program enabling the analysis of bound states for vary-

ing well width W and plot the energy eigenfunction and eigenvalue

versusW .

4.5 .(a) Starting from the energy eigenequation of a particle in a quantum well,

fill in the algebra and find the energy eigenfunction and eigenvalue in

Eq. (4.26).

(b) Repeat the analysis and find the eigenfunction and eigenvalue

Eq. (4.27) in a quantum wire. Take the barrier height to be infinite for

simplicity.
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5

Scattering and Tunneling of 1D Particle

The scattering of the 1D particle from the potential barrier or well is discussed

in terms of reflection, transmission, and resonant transmission. Additionally, the

tunneling of a particle through the potential barrier, a feature unique in quantum

mechanics, is highlighted, and its applications inmemory, display, nanometrology,

and single-electron transistor (SET) are discussed.

5.1

Scattering at the Step Potential

Consider a particle incident on a step potential with height V (Figure 5.1). Clas-

sically, if the incident particle has a kinetic energy E greater than V , it flies over

the barrier with diminished velocity. If E is less than V , it bounces back from the

barrier. Quantum mechanically, however, both transmission and reflection occur

with probabilities depending on E and V.

Let us first consider the case inwhich𝐸 > V . Since the step potential is given by

V (x) =

{
0 x ≤ 0

V x > 0
(5.1)

the energy eigenequation reads as

u(x)′′ + 𝛼2u(x) = 0 (5.2a)

with the wave vector given by

𝛼2 =

{
k2
0

k2
0
= 2m𝐸

ℏ2
, x ≤ 0

k2 k2 = 2m(𝐸−V )
ℏ2

, x > 0
(5.2b)

The eigenequation (Eq. (5.2)) has been dealt with, and let us use the solution given

by

𝜓(x, t) ∝ e−i𝜔tu(x) ∝ e−i(𝜔t∓𝛼x), 𝜔 = 𝐸

ℏ
(5.3)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 5.1 A particle incident on a step potential with height V , undergoing both reflec-

tion or transmission for E > V (a) and total reflection for E < V (b). Also shown is the pene-

tration of the particle into the potential barrier before total reflection.

(see Eqs. (4.2) and (4.10)). Evidently, Eq. (5.3) describes a particle propagating in

±x-directions, and u(x) is given by

u(x) =

{
i0e

ik0x + re−ik0x, x ≤ 0

teikx, x > 0
(5.4)

In Eq. (5.4), the terms associated with i0, r, and t account for the incident and

reflected beams in the region x ≤ 0 and the transmitted beam in the region x ≥ 0,

respectively. Once the particle is transmitted, there is no barrier to reflect it back;

hence, only the forward component needs to be retained for x > 0.The constants

of integration, i0, r, and t can be used for satisfying the boundary conditions. The

boundary conditions, namely, u(x) and its derivate should be continuous need to

be applied at x = 0, where the two solutions meet. The two conditions read as

i0 + r = t, k0(i0 − r) = kt (5.5)

We can find r and t from two conditions in Eq. (5.5) with i0 taken as the input

parameter:

r

i0
=

k0 − k

k0 + k
,

t

i0
=

2k0
k0 + k

(5.6)

The Probability Current Density

To proceed further, it is necessary to introduce the probability current density.

Thus, consider the change in time of the probability density

∂
∂t
(𝜓∗𝜓) =

( ∂
∂t

𝜓∗
)

𝜓 + 𝜓∗
( ∂
∂t

𝜓
)

(5.7)

Upon using the time-dependent Schrödinger equation

iℏ
∂𝜓(r, t)
∂t

= − ℏ2

2m
∇2𝜓(r, t) + V (r)𝜓(r, t)



5.1 Scattering at the Step Potential 47

and its complex conjugate and the well-known vector identity,

𝜓∗∇2𝜓 − 𝜓∇2𝜓∗ ≡ ∇ ⋅ (𝜓∗∇𝜓 − c.c.)

in Eq. (5.7), we can recast Eq. (5.7) in a straightforward manner as

∂
∂t

𝜓∗𝜓 = −∇ ⋅ S (5.8a)

S ≡ ℏ

2mi
(𝜓∗∇𝜓 − c.c.) = ℏ

2mi

(
u∗ (x) ∂

∂x
u(x) − c.c.

)
(5.8b)

The quantity S is called the probability current density, and c.c. denotes the com-

plex conjugate. Equation (5.8) represents the conservation of matter and is analo-

gous to the charge conservation equation.

Reflection and Transmission

With u(x) in Eq. (5.4) used in Eq. (5.8b), there results

SI(x) =
ℏk0
m
|i0|2 − ℏk0

m
|r|2, x ≤ 0 (5.9a)

SII(x) =
ℏk

m
|t|2, x > 0 (5.9b)

Thefirst term in SI represents the incident flux specified in terms of the probability

density |i0|2 and the velocity of propagation ℏk0∕m. Likewise, the two terms ∝|r|2 and ∝ |t|2 describe the reflected and transmitted fluxes propagating with the

velocities ℏk0∕m and ℏk∕m, respectively. Thus, the reflection R and transmission

T coefficients are given by

R ≡ (ℏk0∕m)|r|2
(ℏk0∕m)|i0|2 = (k0 − k)2

(k0 + k)2
, T ≡ (ℏk∕m)|t|2

(ℏk0∕m)|i0|2 = 4kk0
(k0 + k)2

(5.10)

Therefore, the incoming particle with E > V is either reflected or transmittedwith

the probabilities given by Eq. (5.10). This is in apparent contrast with the classi-

cal description. It also follows from Eq. (5.10) that R and T add up to unity, as it

should,

R + T = 1 (5.11)

Evidently, the quantum treatment is analogous with the reflection and transmis-

sion of a light beam, incident on a dielectric interface.

The Total Reflection

For 𝐸 < V , the analysis can be done in a similar manner. In this case, k2 < 0 for

x ≥ 0 (see Eq. (5.2b)), and k is turned into an imaginary wave vector

k → i𝜅, 𝜅2 ≡ 2m(V − 𝐸)
ℏ2

(5.12)
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Therefore, the reflection coefficient is obtained from Eq. (5.10) by replacing k by

i𝜅 as

R ≡ (ℏk0∕m)|r|2
(ℏk0∕m)|t|2 = k0 − i𝜅

k0 + i𝜅
⋅
k0 + i𝜅

k0 − i𝜅
= 1 (5.13)

Equation (5.13) states that the particle is bound to be reflected back. Also, because

u(x) is real for x > 0, in this case (see Eq. (5.4)), SII(x) is zero, and there is no trans-

mission. The result is in agreement with the classical description, which predicts

100% reflection for𝐸 < V . However, there is an important difference, namely, that

the particle penetrates into the classically forbidden barrier region by an amount,

δ ≈ 1∕(2𝜅) before undergoing the total reflection (Figure 5.1).

5.2

Scattering from a QuantumWell

When a particle is incident on a quantum well (Figure 5.2), the particle undergoes

both reflection and transmission with the nonzero probabilities, again in contra-

diction with the classical description.The energy eigenequation is split in this case

into two regimes, inside and outside the well, and is identical to Eq. (5.2) but with

the wave vectors given by

𝛼2 =

{
k2
0
, k2

0
= 2mE

ℏ2
, |x| ≥ W

2

k2, k2 = 2m(𝐸+V )
ℏ2

, |x| ≤ W

2

(5.14)
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)}
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Figure 5.2 A particle incident on a quantum well with depth V and width W , undergoing

both reflection or transmission (a) and the total resonant transmission (b). The reflection (R)

and transmission (T) coefficients versus the incident energy (c).
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We can thus express u(x) in analogy with Eq. (5.4) as

u(x) =
⎧⎪⎨⎪⎩
i0e

ik0x + re−ik0x x < −W∕2
Aeikx + Be−ikx |x| ≤ W∕2
teik0x x > W∕2

(5.15)

and account for the incident and reflected beams to the left of the well and the

transmitted beam to the right of the well. Inside the well, two counter-running

beams should be used as the solution.

The constants of integration are again determined from the boundary condi-

tions, namely, u(x), and its derivatives be continuous at the two edges of the well,

x = ∓W∕2:

i0e
−ik0W∕2 + reik0W∕2 = Ae−ikW∕2 + BeikW∕2 (5.16a)

AeikW∕2 + Be−ikW∕2 = teik0W∕2 (5.16b)

i0k0e
−ik0W∕2 − rk0e

ik0W∕2 = Ake−ikW∕2 − BkeikW∕2 (5.16c)

AkeikW∕2 − Bke−ikW∕2 = tk0e
ik0W∕2 (5.16d)

There are five constants with which to satisfy four conditions, and we can again

take i0 as an input parameter and determine the rest in a straightforward manner,

obtaining

t

i0
=

e−ik0W2k0k

2k0k cos(kW ) − i(k2
0
+ k2) sin kW

(5.17a)

r

i0
=

ie−ik0W (k2 − k2
0
) sin(kW )

2k0k cos(kW ) − i(k2
0
+ k2) sin kW

(5.17b)

HenceR andT are specifiedwith the use of Eq. (5.17) and in analogywith Eq. (5.10)

as

T = 1

1 + Λ(𝐸,V ,W )
, R = Λ(𝐸,V ,W )

1 + Λ(𝐸,V ,W )
(5.18a)

Λ(𝐸,V ,W ) ≡ V 2

4𝐸(𝐸 + V )
sin 2

[
W

√
2m

ℏ2
(𝐸 + V )

]
(5.18b)

and R and T thus found add up to unity, as they should.



50 5 Scattering and Tunneling of 1D Particle

Resonant Transmission

As clear from Eq. (5.18), R and T are again nonzero, in contrast with the classical

theory. However, for 𝐸 ≫ V , Λ→ 0, and T ≈ 1, in agreement with the classical

theory. Moreover, even for E comparable with V , Eq. (5.18) indicates that 100%

transmission ensues, that is, R = 0 and T = 1, when the incident energy satisfies

Wkn ≡ W

√
2m

ℏ2
(𝐸n + V ) = n𝜋, n = 1, 2, … (5.19)

Equation (5.19) can be interpreted in light of de Broglie wavelength 𝜆. As

kn = 2𝜋∕λn, Eq. (5.19) is equivalent to 2W = nλn, which indicates that the round-

trip distance of the quantum well is an integer multiple of de Broglie wavelength

of the particle. This is precisely the condition for 100% transmission of light in

Fabry–Perot etalon or Bragg diffraction. The total transmission of a particle is

known as the resonant transmission. The R and T are plotted in Figure 5.2 versus

the energy of the incident particle. The resonant condition lends to an alternative

interpretation, when expressed as

𝐸n + V = 𝜋2ℏ2

2mW 2
n2, n = 1, 2, … (5.20)

Equation (5.20) indicates that if the incident energy of the particle as viewed from

the bottom of the quantum well corresponds to one of the possible energy eigen-

values of the infinite square well potential, there ensues the total transmission (see

Eq. (4.4)). This carries an important bearing in the band theory of solids, as will

be discussed.

5.3

Tunneling

A particle incident on a potential barrier with height V greater than its kinetic

energy E has a finite probability of transmitting through the barrier. Such trans-

mission, a feature unique in quantum mechanics, is called the tunneling. Thus,

consider a particle incident on a potential barrier with height V and thickness d

(Figure 5.3). The tunneling can be analyzed in parallel with the transmission of a

particle through a quantum well (see Eqs. (5.14)–(5.18)). The only modification

required is to change k in Eq. (5.14) as

k =
√

2m(𝐸 − V )
ℏ2

, 𝐸 ≥ V ; k = i𝜅, 𝜅 ≡
√

2m(V − 𝐸)
ℏ2

, 𝐸 ≤ V (5.21)

Thus, for E>V , the expressions of R and T in Eq. (5.18) can be used directly,

provided W is replaced by d and the new k is used as defined in Eq. (5.21). For

𝐸 < V , we can again use Eqs. (5.17) and (5.18), with k replaced by i𝜅 as defined in

Eq. (5.21). The algebra is lengthy but simple and straightforward, and we can find

T = 1

1 + Λ(𝐸,V , d)
, R = Λ(𝐸,V , d)

1 + Λ(𝐸,V , d)
(5.22a)
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Figure 5.3 A particle incident on a poten-

tial barrier with height V and thickness d,

undergoing both reflection and transmission

for E > V (A), reflection and tunneling for

E < V (B). The transmission coefficient versus

the incident energy E∕V for E ≥ V and tun-

neling probability versus E∕V for E ≤ V (C).

Λ(𝐸,V , d) ≡ V 2

4𝐸(V − 𝐸)
sinh 2

[
d

√
2m

ℏ2
(V − 𝐸)

]
(5.22b)

In deriving Eq. (5.22), the trigonometric identities have been used, that is,

sin ix = i sinh x, cos ix = cosh x, cosh 2x = 1 + sinh 2x

Figure 5.3 shows the typical eigenfunctions of the incident, reflected, and trans-

mitted beams for𝐸 ≥ V and𝐸 ≤ V . For the latter case,T decreases exponentially

with decreasing incident energy for given V . For the former case, there is a clear

trace of resonant transmissions occurring for potential barrier as well.The tunnel-

ing can be understood in light of the finite penetration the particle makes before

undergoing the total reflection off the step potential (Figure 5.1). The total reflec-

tion occurs at the step potential because of the infinite width of the barrier. When

the barrier width is cut to a finite value d, there is a finite probability density for

x ≥ d as clear from the figure. This means that the particle has a finite probability

of penetrating beyond d, that is, tunneling through the barrier.

The penetration depth is analogous to the skin depth of the light at the metallic

surface, and the tunneling has the optical analog aswell.The light propagates in the

waveguide or optical fiber by means of the total internal reflection. But if another

waveguide or optical fiber is placed nearby as in a directional coupler (Figure 5.4),

the light leaks into the other, therebymodulating and switching the light.The cou-

pling of power between thewaveguides is due to the guided electromagneticwaves

tailing out of the waveguide. Likewise, tunneling is due to the finite penetration of

the wavefunction into the classically forbidden region.

The tunneling analysis can be extended to an arbitrary-shaped potential bar-

rier V (x). Given V (x), it can be decomposed into a juxtaposition of square barrier

elements with infinitesimal thickness Δx and height V (nΔx) (Figure 5.5). We can

then take the tunneling through each barrier element as statistically independent
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Figure 5.5 The tunneling of a particle through an arbitrary-shaped potential barrier (a) and

the direct tunneling through the trapezoidal and the F–N tunneling through the triangular

potential barriers (b).

and multiply the differential tunneling probabilities Tj to obtain the net tunneling

probability:

T =
∏
j

Tj ≈ exp−
2
√
2m

ℏ ∫
x2

x1

dx[(V (x) − 𝐸)]1∕2 (5.23)

where for Tj, the dominant exponential factor derived in Eq. (5.22) has been used

and the two limits x1 and x2 are determined by the conditionV (x) = 𝐸 (Figure 5.5).

5.3.1

Direct and Fowler–Nordheim Tunneling

We next apply the tunneling probability Eq. (5.23) to a trapezoidal potential bar-

rier, as shown in Figure 5.5. This kind of potential barrier is encountered by an

electron or a hole incident on a dielectric layer in the presence of an external

electric field E. In this case, V (x) is given by
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V (x) = V − qEx (5.24)

where V is the barrier height at the dielectric interface, q the magnitude of the

electron charge, andE the applied electric field. Upon using Eq. (5.24) in Eq. (5.23),

we find

T = exp−
{

4(2m)1∕2

3qEℏ

[
(V − 𝐸)3∕2 − (V − 𝐸 − qEd)3∕2

]}
(5.25)

where d is the width of the barrier. The tunneling through the trapezoidal barrier

is known as direct tunneling and accounts for one of the limiting processes hin-

dering the downscaling of the metal oxide semiconductor field-effect transistor

(MOSFETs). When the potential barrier is of a triangular shape, the second term

in Eq. (5.25) drops out, and the tunneling probability reduces to

T = exp−4(2m)1∕2
3qEℏ

(V − 𝐸)3∕2 (5.26)

and is known as the Fowler–Nordheim (F–N) tunneling. The F–N tunneling is

utilized extensively for various semiconductor device operations. Figure 5.6 shows

the direct and F–N tunneling probabilities versus the incident electron energy E

for a different electric field E. The two parameters critically affect the tunneling

probabilities as clear from the figure.

5.3.2

Resonant Tunneling

The superlattice structure is composed of a series of quantumwells with each well

formed by two potential barriers and is an important element in optoelectronic

devices. The electrons in such structures undergo resonant tunneling. To exam-

ine it, let us consider an electron incident on two potential barriers with heightV ,

thickness d, and distanceW apart as shown in Figure 5.7. An electron incident on
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Figure 5.6 The F–N (a) and direct (b) tunneling probabilities of an electron versus the

effective barrier height V − 𝐸 for a different electric field E.
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the input plane at zj with𝐸 < V may exit at the output plane at zj+3 after undergo-

ing two successive tunneling through the two barriers. The eigenfunctions in the

regions j and j+ 1 are given in analogy with Eq. (5.4) by

uj(z) = Aje
ikz + Bje

−ikz; k ≡ (2mE

ℏ2

)1∕2
, z ≤ zj (5.27a)

uj+1(z) = Aj+1e
−𝜅z + Bj+1e

𝜅z; 𝜅 ≡
[
2m (V − 𝐸)

ℏ2

]1∕2
, zj ≤ z ≤ zj+1 (5.27b)

Naturally, uj(z) consists of the incident and reflected beams, while uj+1(z) is

composed of two exponential terms, exp±𝜅x, because the width of the barrier

is finite. The boundary conditions at zj

uj(zj) = uj+1(zj), u′
j
(zj) = u′

j+1(zj) (5.28)

yields coupled equations relating Aj, Bj to Aj+1, Bj+1 as in Eq. (5.16), however, with

k0 and k replaced by k and i𝜅, respectively. Thus, by expressing Aj, Bj in terms of

Aj+1, Bj+1, we can write(
Aj

Bj

)
= M(zj, i𝜅, k)

(
Aj+1
Bj+1

)
(5.29a)

where the 2× 2 transfer matrix elements are given by

M(zj; i𝜅, k) = 1

2

⎛⎜⎜⎝
(
1 + i𝜅

k

)
ei(i𝜅−k)zj

(
1 − i𝜅

k

)
e−i(i𝜅+k)zj(

1 − i𝜅

k

)
ei(i𝜅+k)zj

(
1 + i𝜅

k

)
e−i(i𝜅−k)zj

⎞⎟⎟⎠ (5.29b)
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We can likewise express Aj+1, Bj+1 in terms of Aj+2, Bj+2 by imposing the usual

boundary conditions at zj + d as(
Aj+1
Bj+1

)
=M(zj + d, k, i𝜅)

(
Aj+2
Bj+2

)
(5.30)

In fact, the transfer matrix in Eq. (5.30) is obtained from Eq. (5.29b) by simply

interchanging k and 𝜅 and replacing zj by zj + d. In this manner, Aj, Bj are coupled

to Aj+2, Bj+2 as(
Aj

Bj

)
= M(zj, zj + d)

(
Aj+2
Bj+2

)
(5.31a)

where the net transfermatrix is obtained bymultiplying thematrices in Eqs. (5.29)

and (5.30):

M(zj; d) ≡ M(zj, i𝜅, k)M(zj + d, k, i𝜅)

=
(

m11 (d) m12(zj, d)
m∗

12
(zj, d) m∗

11
(d)

)
(5.31b)

with the matrix elements given by

m11(d) = eikd
(
cosh 𝜅d − i

k2 − 𝜅2

2k𝜅
sinh 𝜅d

)
(5.31c)

m12(zj, d) = ie−ik(2zj+d)
k2 + 𝜅2

2k𝜅
sinh 𝜅d (5.31d)

The matrix Eq. (5.31) is the unit transfer matrix by which to describe the multiple

tunneling.

Let us revisit the tunneling through a single barrier by using Eq. (5.31). In this

case, constants, Aj, Bj, and Aj+2 in Eq. (5.30) represent the incident, reflected,

and transmitted beams, respectively. Once the particle is transmitted, there is no

reflection, hence Bj+2 = 0, and the tunneling probability can be found in analogy

with Eqs. (5.17a) and (5.18a) as

T1B ∝
|||||
Aj+2

Aj

|||||
2

=
|||| 1

m11

||||2 (5.32)

When k, 𝜅 are expressed in terms of E by using Eq. (5.27), Eq. (5.32) leads to the

same results as obtained in Eq. (5.22).

We next treat the tunneling through two successive barriers. The extension of

a single-barrier tunneling Eq. (5.32) to tunneling through two barriers in succes-

sion is straightforward and can be done by coupling Aj+2, Bj+2 to Aj+4, Bj+4 via

the transfer matrix Eq. (5.31) with appropriate changes of zj’s. The transfer matrix

connectingAj,Bj toAj+4,Bj+4 is then obtained bymultiplying the two unit transfer

matrices:(
Aj

Bj

)
=M(zj, d)M(zj+2, d)

(
Aj+4
0

)
, zj+2 = zj +W + d, Bj+4 = 0 (5.33)
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Thus, after performing the matrix multiplication, we find

Aj+4

Aj

= 1

m11(d)m11(d) +m12(zj, d)m∗
12
(zj+2, d)

= −e−2ikd4k2𝜅2

[(k2 − 𝜅2) sinh 𝜅d + 2ik𝜅 cosh 𝜅d]2 − e2ikW (k2
1
+ 𝜅2)2 sinh 2𝜅d

(5.34)

The ratio (Eq. (5.34)) can be put into a simple mathematical form by noting that

the first bracket in the denominator gives the tunneling probability for a single

barrier T1B when combined with the numerator (see Eqs. (5.31) and (5.32)).Thus,

we can rewrite Eq. (5.34) as

Aj+4

Aj

=
−e−2ikd−2i𝜃T1B

1 − e2i(kW−𝜃)R1B

, R1B = 1 − T1B (5.35a)

tan 𝜃 = 2k𝜅 cosh 𝜅d

(k2 − 𝜅2) sinh 𝜅d
(5.35b)

Therefore, the probability of tunneling the two successive barriers is obtained as

T2B =
(ℏk0∕m)|Aj+4|2
(ℏk0∕m)|Aj|2 = 1

1 + 4(R1B∕T2
1B
) sin 2(kW − 𝜃)

(5.36)

In deriving Eq. (5.36), use has been made of the identities

|1 − f exp iχ|2 = 1 + f 2 − 2f cos χ, cos x = 1 − 2 sin 2
(
x

2

)
It is thus clear fromEq. (5.36) that the resonant tunneling can occur when kW ≈

n𝜋.The condition can be expressed in terms of E via the relation𝐸 = (ℏk)2∕2m as

𝐸n =
ℏ2𝜋2n2

2mW 2
, n = 1, 2, … (5.37)

and points clearly to the fact that the resonant tunneling occurswhen the energy of

the incident electron coincides with the bound state energies of the quantum well

formed in between the two barriers (see Eq. (4.4)). This fact carries an important

bearing on the band theory of solids, as will be discussed. Plotted in Figure 5.7 is

the tunneling probability through two successive barriers T2B versus the incident

energy for various barrier heights and widths. Indeed, T2B is drastically reduced

with increasing V and d, but the general features of the resonant tunneling are

preserved.

5.4

The Applications of Tunneling

The tunneling is utilized extensively in semiconductor and optoelectronic devices,

and the list of applications is fast increasing. Some of the applications are briefly

discussed.
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5.4.1

Metrology and Display

Figure 5.8 shows the schematics of the scanning tunneling microscope (STM). In

this scheme, the high sensitivity of the F–N tunneling probability on the thick-

ness of the barrier potential is utilized for probing the surface morphology with

atomic-scale resolution. The probing is done by fixing the tunnel current IT flow-

ing between the probe tip and the surface atoms. Keeping IT fixed necessitates the

adjustment of the height of the probe tip so that the distance between the tip and

surface atoms is kept constant. The required adjustment of the height of the tip

versus the x–y scan reveals the surface morphology with about 0.1 nm in accu-

racy. Alternatively, the height of the tip is fixed at a constant level while scanning.

In this case, IT should vary depending on the varying distance between the tip and

atoms, which can be translated into the surface morphology.

Field Emission Display

The schematics for the display are shown in Figure 5.9. The image information

is transmitted by the driver circuitry via the strings of voltages applied to the

array of metallic tips, forming the pixels. The signal voltages then induce the field

Scan

Constant I

x

x

y

Scan

(a) (b)

Varying I

y

y
y

x

x

Figure 5.8 The schematics of the scanning

tunneling microscopy: adjusting the probe

tip distance from the sample surface at a

fixed current level while scanning the surface

(a) and fixing the probe tip height and mon-

itoring the tunnel current while scanning the

surface (b).
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Emitter tips

Screen
Figure 5.9 The schematics of the flat panel display; the

electrons emitted from pixel tips via the field crowding

assisted tunneling and transferring the image information to

the display screen.

crowding at the metallic tip, enhancing the electric field amplitude and enabling

F–N tunneling to occur at the tip.The electrons thus tunneled out from each pixel

transmit the image information to the screen for display.

5.4.2

Single-Electron Transistor

The SET is based on the tunneling of a single electron and utilizes a quantum dot

as the channel island. The dot is made of a metal or semiconductor and insulated

from the two electrodes, called the source and drain (Figure 5.10). With shrinking

size of the dot, the electron potential energy therein varies significantly depending

on the presence or absence of a single electron.This effect is used for the controlled

tunneling of a single electron for the transistor action.

The size effect can be discussed by taking the junction between the electrodes

and quantum dot as the parallel-plate capacitor for simplicity. The capacitance is

then given by the area A and thickness d of the junction as

C = εA
d

(5.38)

E
n
e
rg

y

Distance(a)

(b)

(c)

Source
Quantum

dot
Drain

e / 2C < V

−e / 2C +e / 2C

V < e / 2C

a

a
V

I

EFm

b

b

c

c

Figure 5.10 The single-electron transistor

consisting of a quantum dot as the chan-

nel insulated from the source and drain

electrodes (b). The static I–V behavior and

the Coulomb blockade (c). The energy-level

diagrams operative for a single electron tun-

neling (a); the blocked tunneling for the

drain bias V or eV less than the charging

energy EC (b) and the tunneling with suffi-

cient V to compensate for EC .



5.4 The Applications of Tunneling 59

where 𝜀 is the permittivity of the junction. Now, the charging energy of a single

electron in the quantum dot is given from the well-known electromagnetic theory

by

𝐸c =
e2

2C
(5.39)

and Ec can dictate the tunneling, provided it far exceeds the thermal energy, that

is,

e2

2C
≫ kBT (5.40)

Otherwise, Ec is simply buried in the thermal fluctuations. For SiO2 and for A ≈
10𝑛𝑚 × 10𝑛𝑚 and d ≈ 2𝑛𝑚, Ec is ∼15𝑚𝑒𝑉 and is comparable with the thermal

energy at room temperature 25meV . It is therefore possible to satisfy the condi-

tion of Eq. (5.40) by further downsizing the quantum dot.

Additionally, Ec should exceed the uncertainty ΔE in the energy of the single

electron, which is inherently associated with its finite lifetime in the dot. The life-

time can be estimated by 𝜏 = RTC, where RT is the tunneling resistance inversely

proportional to its probability. Thus, 𝜏 is analogous to the RC time constant of a

capacitor connected to a series resistance, in this case, the tunneling resistance.

The condition that Ec is much greater than ΔE can be expressed by using the

uncertainty relation as

Δ𝐸 ≈ h

𝜏
= h

RTC
≪

e2

2C
(5.41a)

Or equivalently,

RK ≪ RT , RK ≡ h

e2
≃ 25.8kΩ (5.41b)

The resistance RK is called the quantum resistance, and the Eq. (5.41) ensures that

the electron is localized in the dot in a quantum state therein.

Once Eqs. (5.40) and (5.41) are satisfied, Ec plays the critical role for the SET

operation. A single electronwhen tunneling into the quantum dot from the source

electrode raises the electron energy level therein by Ec, which should hinder the

tunneling event.This is because the tunneling is an elastic process, and the energy

level of the dot after the tunneling should not exceed the initial energy level of

the tunneling electron. However, when the drain voltage VD in excess of e∕2C is

applied, the electron potential energy in the dot is lowered by Ec or more via the

capacitive coupling between the drain electrode and the quantum dot. Hence, the

electron can now tunnel from the source into the quantumdot, contributing to the

drain current ID. Note that a positive V applied to the drain lowers the electron

potential energy by −qV . By the same token, if a negative VD is applied below

−e∕2C to the drain, the electron energy level in the dot is lowered bymore than Ec

compared with that of the drain electrode. Therefore, an electron can tunnel into

the channel from the drain and contribute to ID flowing in the opposite direction.
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It is therefore clear that tunneling of a single electron is prohibited in the range

of VD

− e

2C
< VD <

e

2C
(5.42)

This is known as the Coulomb blockade. Outside of this VD range, however,

the drain current flows contributed by the tunneling events of a single electron.

Figure 5.10 shows the resulting current–voltage characteristics. In summary,

the operation of SET is based on the Coulomb blockade caused by the charging

energy in the quantum dot, but the blockade is overcome by means of the

capacitive coupling of VD to the channel island.

Problems

5.1 .(a) A particle of mass m is incident on a two-step potential barrier with E

greater than V 2 and in the direction normal to the barrier. Find (i) the

energy eigenfunctions in the regions x ≤ 0, 0 ≤ x ≤ d1, and x > d1, (ii) R

and T by imposing the boundary conditions at x = 0, d1, and (iii) V1 and

d1 at which 100% transmission occurs.

(b) A particle is incident on a potential barrier V2 from the region V 1 at

an angle 𝜃i with respect to the z-direction. Write down the incident,

reflected, and transmitted wavefunctions and find the angle of reflec-

tion and transmission by using the boundary conditions at the potential

boundary. Interpret the result in light of the reflection and refraction of

light at a dielectric interface (Figure 5.11).

5.2 .(a) Starting from Eq. (5.7), fill in the algebra and derive the expression of the

probability current density S (Eq. (5.8)).

(b) Use the eigenfunction Eq. (5.4) in Eq. (5.8) and derive Eq. (5.9).

5.3 .(a) Starting from four coupled equations (Eq. (5.16)), find the ratios t∕i0,
r∕i0 (Eq. (5.17)), and T , R given (Eq. (5.18)).

(b) Carry out a parallel analysis and derive the tunneling probability T (Eq.

(5.22)) with the use of Eq. (5.21).

V1 V2

θr

θi

θt

V1
V1

V2
V2

0 x

x, y

z
d1

(a) (b) (c)

Figure 5.11 A particle incident on a two-step potential barrier with 𝐸 > V2 (a) and inci-

dent on V2 (b) with V1 < 𝐸 < V2 from the region V1. The incident, reflected, and transmit-

ted angles (c).
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W
(a) (b)

dL dR WdL dR

V V

Figure 5.12 An electron in the ground state of a quantum well formed by two square bar-

rier potential (a) and with one barrier subjected to an electric field (b).

5.4 Consider a quantumwell formed in between two potential barriers of height

V , thicknesses dL and dR, and distanceW apart with dL > dR.

(a) Estimate the ground state energy of an electron in electron volt unit by

assuming infinite barrier height, for widths of 1, 10 nm.

(b) Find the lifetime of the electron in the ground state.

Hint: The lifetime is defined by Tñ = 1, where T is the tunneling proba-

bility while ñ = 2W∕vT is the number for the electron to encounter the

barrier, with vT denoting the thermal velocity of the electron.

5.5 Consider the quantumwell shown in Figure 5.12.When subjected to an elec-

tric field E, the barrier potential is transformed to the trapezoidal shape as

shown in Figure 5.12.

(a) Express the trapezoidal shape in terms of E and find the electron lifetime

versus E.

(b) Find E necessary to shorten the lifetime to 1μs. (Take the infinite barrier
height for estimating the ground state energy for simplicity.)

5.6 Themetal tip of the STM has the work function of 4.5 eV.

(a) Find the electric field at which the electron tunneling probability is 10−4

if the distance between the tip and the sample is 5nm.

(b) If 5𝑉 is applied between the tip and the sample, estimate the distance

between them to attain the same tunneling probability of 10−4.

Hint: Use a triangular barrier with the height given by thework function.

5.7 .(a) Starting from the wavefunction given in Eq. (5.27), fill in the algebra and

derive the results (Eqs. (5.29), (5.31), and (5.32)).

(b) Extend the analysis and derive Eq. (5.36).

Hint: Use the matrix algebra.(
a11 a12
a21 a22

)(
A

B

)
=
(
a11A + a12B

a21A + a22B

)
(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=
(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
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6

Energy Bands in Solids

The energy band is a natural consequence of the wave nature of the particle and

provides the basic foundation for analyzing the condensed matters and the semi-

conductor devices. The energy band is discussed based on the Kronig–Penney

(K–P) potential, Bloch wavefunction, and the resonant tunneling. Additionally,

themotion of electrons in solids is discussedwith the use of the dispersion relation

operative in conduction and valence bands.

6.1

BlochWavefunction in Kronig–Penney Potential

The 1D crystal is often modeled as a linear array of positive ions, located period-

ically (Figure 6.1). An electron in the crystal interacts with ions via the attractive

Coulomb force, and the periodic Coulomb potential can be approximated by a

string of square barrier potentials, separated by identical quantumwells.This sim-

plified version of the 1D potential is known as Kronig–Penney potential, and it

brings out the concept of the energy band in a simple manner.

The unit cell of the K–P potential consists of the quantum well of width a and

the barrier potential of thickness b, so that the length d of the unit cell is the sumof

a and b.A focal point of the discussion is the electronwavefunction in the periodic

potential given by

V (x) = V (x + d), d = a + b (6.1)

For such potential, the Hamiltonian is also periodic

Ĥ(x) = − ℏ2

2m

∂2
∂x2

+ V (x) = Ĥ(x + d) (6.2)

In this case, the Bloch theorem states that the energy eigenfunction is specified by

the modulated plain wave

𝜑k(x) = eikxu(x) (6.3a)

with the modulating envelop satisfying the periodic boundary condition

u(x) = u(x + d) (6.3b)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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d

d

b

a x

V

(a)

(b)

Figure 6.1 The Coulomb potential of an electron in 1D crystal (a) and the Kronig–Penney

potential mimicking it via a string of unit cells composed of a quantum well and barrier

potential (b).

The wavefunction Eq. (6.3) is known as the Bloch wavefunction.

To prove the Bloch theorem, let us introduce the displacement operator

D̂f (x) ≡ f (x + d) (6.4)

where f (x) is an arbitrary function. When D̂ operates on Eq. (6.3), there results

D̂𝜑k(x) = D̂eikxu(x) ≡ eik(x+d)u(x + d) = eikd𝜑k(x) (6.5)

Therefore, 𝜑k(x) is the eigenfunction of D̂with the eigenvalue exp(ikd). Moreover,

because Ĥ is periodic, we can write

D̂Ĥ(x)f (x) = Ĥ(x + d)f (x + d) = Ĥ(x)D̂f (x)

where f (x) is an arbitrary function and therefore D̂ and Ĥ commute. Since the

commuting operators can share a common eigenfunction (see Eq. (3.30)) and since

𝜑k(x) is an eigenfunction of D̂, 𝜑k(x) is also an eigenfunction of Ĥ , thus proving

the Bloch theorem. The probability density of 𝜑k(x) is given by

|𝜑k(x + nd)|2 = |eik(x+nd)u(x + nd)|2 = |eiknd𝜑k(x)|2 = |𝜑(x)|2, n = 1, 2, …
(6.6)

and is consistent with the premise of a periodic system, namely, that the electron

is found in all unit cells with equal probability.

We next specify the Bloch wavefunction in the K–P potential by using the ring

boundary condition (Figure 6.2).The ring consists in this case of a large numberN

of unit cells, and the periodic boundary condition is equivalent to stating that the

electron leaving the last cell in the ring reenters into the first one.The condition is

conveniently used for describing the motion of electrons in the bulk crystal, free

of edge effects. The wave vector k in Eq. (6.3a) should then satisfy the condition

eikdN = 1 ≡ ei2𝜋n, n = 1, 2, … (6.7)
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φ(x)= φ(x+ Nd)
x

d

Figure 6.2 The ring boundary condition

in 1D crystal.

and therefore should be specified by

kn =
2𝜋n

dN
= 2𝜋n

L
, n = 1, 2, … (6.8)

where L is the length of the crystal.Thus, k becomes quasi-continuous in the limit

of large N , and the momentum associated ℏkn is called crystal momentum. In the

limit of infinite well width, the envelope function u(x) in Eq. (6.3) should be put

to unity, in which case 𝜑k(x) reduces to the wavefunction of a free particle, as it

should. For a finite well width, however, 𝜑k(x) is modulated by u(x), which should

be an identical function in each unit cell. With this general fact in mind, we can

represent the energy eigenfunction in a unit cell in the usual manner as

𝜑k(x) =
⎧⎪⎨⎪⎩
Aeik1x + Be−ik1x, k1 =

[
2mE

ℏ2

]1∕2
, 0 ≤ x ≤ a

Ce−𝜅x + De𝜅x, 𝜅 =
[
2m(V−E)

ℏ2

]1∕2
, a ≤ x ≤ d

(6.9)

Here, the analysis is confined to the bound state, in which E < V .

Boundary Conditions

As noted, u(x) should be periodic and therefore should satisfy the conditions

u(0+) = u(d−) and u′(0+) = u′(d−). Or in terms of 𝜑k(x), the conditions read as

𝜑(0+) = e−ikd𝜑(d−) (6.10a)

𝜑′(0+) = e−ikd𝜑′(d−) (6.10b)

In Eq. (6.10b), use has been made of u′(x) = 𝜑′(x)[exp−(ikx)] − iku(x), and the

condition to be satisfied by the second term iku(x) has already taken into account

in Eq. (6.10a). Upon inserting Eq. (6.9) into Eq. (6.10), there result

A + B = e−ikd(Ce−𝜅d + De𝜅d) (6.11a)

ik1(A − B) = −𝜅e−ikd(C−𝜅d − De𝜅d) (6.11b)

Additionally, the usual boundary condition, namely, that 𝜑(x), 𝜑’(x) be continu-

ous everywhere should be applied at x = a where V (x) is discontinuous. These

conditions read as

Aeik1a + Be−ik1a = Ce−𝜅a + De𝜅a (6.12a)
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ik1(Aeik1a − Be−ik1a) = −𝜅(C−𝜅a − De𝜅a) (6.12b)

Thus, finding the Bloch wavefunction has been reduced to determining the con-

stants of integration A, B, C, andD from the four boundary conditions Eqs. (6.11)

and (6.12). For this purpose, let us first find A, B in terms of C, D from Eq. (6.11)

as

A = 1

2
e−ikd(𝛼e−𝜅dC + 𝛼∗e𝜅dD), 𝛼 ≡ 1 + i𝜅

k1
(6.13a)

B = 1

2
e−ikd(𝛼∗e−𝜅dC + 𝛼e𝜅dD) (6.13b)

We can likewise express A, B in terms of C, D from Eq. (6.12) as

A = 1

2
e−ik1a(𝛼e−𝜅aC + 𝛼∗e𝜅aD) (6.14a)

B = 1

2
eik1a(𝛼∗e−𝜅aC + 𝛼e𝜅aD) (6.14b)

Hence, we can eliminate A, B by equating the right-hand sides of Eqs. (6.13a),

(6.14a) and (6.13b), (6.14b), respectively, and write the coupled equation for C, D

as {
a11C + a12D = 0

a21C + a22D = 0
or

(
a11 a12
a21 a22

)(
C

D

)
= 0 (6.15a)

where the matrix elements are given by

a11 = 𝛼(e−ikd−𝜅d − e−ik1a−𝜅a), a12 = 𝛼∗(e−ikd+𝜅d − e−ik1a+𝜅a)
a21 = 𝛼∗(e−ikd−𝜅d − eik1a−𝜅a), a22 = 𝛼(e−ikd+𝜅d − eik1a+𝜅a) (6.15b)

Secular Equation and Dispersion Relation

Since the coupled equation (6.15) is homogeneous, that is, the right-hand side is

zero, C, D will be zero, unless the secular equation is satisfied, that is, the deter-

minant of the coupling matrix is zero|||||a11 a12
a21 a22

||||| = 0, or a11a22 − a12a21 = 0 (6.16)

If Eq. (6.16) is not met, it can be readily shown that C = D = 0, in which case

A = B = 0, as clearly follows from Eq. (6.13) and Eq. (6.14). Therefore, the Bloch

wavefunction becomes trivial. Thus, the secular equation (6.16) is a critical con-

dition to be satisfied for obtaining the nontrivial wavefunction. We can spell out

the determinant Eq. (6.16) explicitly by using Eq. (6.15b) and obtain after a lengthy

but straightforward algebra

cos k1a cosh 𝜅b −
k2
1
− 𝜅2

2k1𝜅
sin k1a sinh 𝜅b = cos kd (6.17)
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As k1 and 𝜅 are given functions of E (see Eq. (6.9)), Eq. (6.17) implicitly relates

E with the wave vector k. Once E is found as an explicit function of k and the

dispersion relation is obtained, the Bloch wavefunction 𝜑k(x) given in Eq. (6.3) is

completely specified.

6.2

E–k Dispersion and Energy Bands

To find the dispersion relation specifying E explicitly in terms of k from the tran-

scendental equation (6.17), we can resort to a graphical means. For this purpose,

the left-hand side of Eq. (6.17) is plotted versus E∕V in Figure 6.3. The resulting

curve is clearly shown to oscillate with diminishing amplitudes with increasing

E∕V . Also shown in the figure are the values of cos kd appearing on the right-

hand side of Eq. (6.17). From these plots, it is possible to find E as a function of k

and to bring out the key features of the energy band.

Allowed Bands and Forbidden Gaps

As |cos kd| ≤ 1, it is clear from Figure 6.3 that only for those ranges of E for which

the left-hand side of Eq. (6.17) falls within the bounds of cos kd, we can find the

relationship between real k and real E. In these energy regimes, the electron can

propagate in the crystal with a real propagation vector k, and these ranges are

called energy bands. On the other hand, for E values in which the magnitude of

the left-hand side of Eq. (6.17) is greater than unity, k therein should be a com-

plex quantity. In this case, the electrons cannot propagate, and such energy ranges

are called forbidden gaps. In summary, the spectrum of the electron energy in 1D

crystal consists of a series of allowed bands, separated by forbidden gaps. Also the

allowed band broadens with increasing E, while it decreases with increasingV and

tighter binding of electrons.

Energy bands
1.0

1 2 3 E/V
1.0

coskd

−1.0

Forbidden bands

Figure 6.3 The graphical analysis of the dispersion relation: the left-hand side of Eq. (6.17)

is plotted versus E∕V , and values of cos kd on the right-hand side are indicated. Also shown

are the allowed energy bands and forbidden gaps.
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BlochWavefunction in Allowed Bands

Wenext specify the Bloch wavefunction in the allowed energy bands. For this pur-

pose, let us choose from the plot a pair of E, k values in the energy band and insert

the pair in the coupled equation (6.15). In this case, the secular equation (6.17) is

automatically satisfied by the pair, and therefore the two equations become redun-

dant. That is, C and D are coupled with each other via either C = −(a12∕a11)D
or C = −(a22∕a21)D. Once C is expressed in terms of D, for instance, A and B

can also be found in terms of D (see Eq. (6.13) or (6.14)). In this way, 𝜑k(x) is
specified in terms of E, k and other crystal parameters with D serving as the nor-

malization constant. In Figure 6.4 are plotted typical wavefunctions thus found,

together with probability densities. The wavefunctions are similar in shape to the

bound state wavefunctions in the quantum well and are periodic over the unit

cells.

Characteristics of E–k Relationship

It is clear from Eq. (6.17) and Figure 6.3 that a given E can be matched by a string

of k values k + 2𝜋n∕d with n denoting an integer. Also, a given k is matched by

multiple E values. However, we can set the one-to-one correspondence between

E and k by allowing k to increase continually in steps of 2𝜋∕d. The resulting E–k

curves are shown in Figure 6.5 in which E is shown as an even function of kd.This

is expected because cos kd is even in kd, so that a given E can be matched by both

|φ|2

|φ|2

|φ|2

3

2

1
φ

φ

φ3

2

1

15 A

18 A

Figure 6.4 Typical Bloch wavefunctions and probability densities for different E, k pairs: E

chosen from within the band (1), at the top of given band (2), and at the bottom of next

higher lying band (3).
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0 π−π −π π2π−2π 3π−3π−4π 0

E

(a) (b)

kd kd

E

δE3

δE2

δE1

Figure 6.5 The dispersion curves: E versus k + 2𝜋n∕d, n = 0, 1, 2, … (a) and in reduced

Brillouin zone (b). Also shown for comparison is the dispersion curve for a free particle E =
(ℏ2∕2m)k2 (broken line).

kd and −kd. For comparison, the equivalent free particle dispersion relation

E =
[ℏ(k + 2𝜋n∕d)]2

2m

is plotted by varying continuously the momentum equivalent to ℏ(k + 2𝜋n∕d).
Clearly, the two curves look alike, but differ considerably near the band edges.

Moreover, because k is determined to within an integer multiple of 2𝜋∕d, it suf-
fices to collect all of the E–k curves in the entire energy bands in a single interval,

−𝜋 ≤ kd ≤ 𝜋, called the first Brillouin zone. This can be done by sliding the E–k

curves in other Brillouin zones by ±2𝜋n∕d, and the resulting dispersion curves

in the reduced zone are shown in Figure 6.4. From the figure, we can note a few

revealing features of the E–k characteristics. Near the band edges, E is flat with

respect to k, that is, ∂E(k)∕∂k = 0. This can be seen on a general ground by dif-

ferentiating both sides of Eq. (6.17) with k and find that ∂E(k)∕∂k ∝ sin kd. At the

band edges, kd = n𝜋, hence sin kd = 0. This clearly suggests that near the band

edges, E ∝ k2 and the kinetic energy E of the electron is well represented by that

of a free particle.Therefore, the electron is shown to behave as a free particle near

the band edges.

Also, at the edges of the forbidden gap, cos kd = ±1, so that kd ≡ (2𝜋∕λ)d = n𝜋

or equivalently 2d = nλ. The relationship indicates that the round-trip distance of

the unit cell is an integer multiple of the de Broglie wavelength of the electron at

band edges. This condition is precisely the 1D Bragg reflection condition, repre-

senting the constructive interference of reflected waves. Hence, the wave cannot

penetrate into the next cell and propagate but becomes evanescent. In this case,

the wavefunction degenerates into a standing wave, consisting of both forward

and backward components with equal amplitudes. Naturally, there are two ways

of forming standing waves, even and odd parity waves or wavefunctions with two

different energy eigenvalues. The resulting splitting of energy levels accounts for
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the top and bottom of the energy gap at the band edge. This can be clearly seen

from Figure 6.4, in which 𝜑k(x) at the top of an energy band and that at the bot-

tomof the next higher-lying energy band are plotted.Themain difference between

the two wavefunctions consists of high- and low-probability amplitudes near the

potential barrier, as clearly shown in Figure 6.4.The resulting difference in average

energy of the electron in the unit cell accounts for the energy gap.

Number of Quantum States per Band

We next consider the total number of quantum states in a band by using the ring

boundary condition Eq. (6.8). Clearly, the number of k values or equivalently the

number of wavefunctions in the range from k to k + dk is given from Eq. (6.8) by

dn = L

2𝜋
dk (6.18)

But we have to multiply Eq. (6.18) by 2 to account for the two electron spin states,

spin-up and -down, for each k and integrate Eq. (6.18) over the Brillouin zone,

obtaining

n = 2
L

2𝜋 ∫
𝜋∕d

−𝜋∕d
dk = 2L

d
= 2N (6.19)

where N is the total number of unit cells in the crystal. Hence, the total number

of the quantum states per band is given by the number of unit cells constituting

the 1D crystal multiplied by factor 2.

6.3

The Motion of Electrons in Energy Bands

Thedispersion relation shown in Figure 6.5 provides the basis bywhich to describe

the motion of electrons in 1D crystal. Thus, let us revisit the E − k dispersion of a

free particle

E = ℏ2k2

2m
, ℏk ≡ p (6.20)

The velocity of the particle is given in this case by

v ≡ 1

ℏ

dE

dk
= ℏk

m
=

p

m
(6.21)

and is identical to the group velocity of the wave packet (Eq. (1.32)):

vg ≡ d𝜔

dk
, 𝜔 = E

ℏ
(6.22)

Since E ∝ k2 near the band edge, the propagation velocity of the electron can also

be represented by the slope of the E–k curve.

When an external electric field E is applied, the energy gained by an electron in

𝛿t from the field is given by

𝛿E = −eEvg𝛿t (6.23)
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where −eE is the force acting on the electron and vg𝛿t the displacement the elec-

tron makes in time 𝛿t.The energy gain can also be expressed from Eqs. (6.20) and

(6.21) as

𝛿E ≡ dE

dk
𝛿k = ℏvg𝛿k (6.24)

Hence, by equating the right-hand sides of Eqs. (6.23) and (6.24), we obtain the

equation of motion of the electron as

ℏ𝛿k

𝛿t
≡ dp

dt
= −eE (6.25)

Also the acceleration of the electron can be expressed from Eq. (6.22) as

a ≡ dvg

dt
= 1

ℏ

d

dt

(
∂E (k)
∂k

)
= 1

ℏ

∂2E(k)
∂k2

∂k
∂t

(6.26)

Hence, by equating ∂k∕∂t in Eqs. (6.25) and (6.26), there results[
1

ℏ2

∂2E (k)
∂k2

]−1
a = −eE (6.27)

Clearly, Eq. (6.27) is the well-known equation of motion, relating the force to the

acceleration and the mass. The effective mass of the electron in the crystal can

therefore be represented by

mn =
(

1

ℏ2

∂2E (k)
∂k2

)−1
(6.28)

In this manner, the dynamic parameters of the electron in the crystal are specified

with the use of the dispersion relation in the energy bands.

6.4

Energy Bands and Resonant Tunneling

The energy band in solids has been discussed thus far in conjunction with the

Bloch wavefunction and the dispersion relation. It can also be understood from

an alternative standpoint of the resonant tunneling of electrons in the periodic

potential.Thus, consider the limiting case in which the barrier heightV is infinite.

In this case, the parameters 𝜅, sinh 𝜅b, and cosh 𝜅b in Eq. (6.17) all diverge (see Eq.

(6.9)), and the second term on the left-hand side of Eq. (6.17) becomes dominant,

and other terms can be put to zero. Hence, the condition for Eq. (6.17) to hold true

is given by

sin k1a = 0, or k1a ≡ [2mE

ℏ2

]1∕2
a = n𝜋 (6.29)

Consequently, the energy levels associated are given by

En =
ℏ2𝜋2

2ma2
n2, n = 1, 2, …
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and are identical to those in an infinite square well potential of width a (see Eq.

(4.4)). This is expected because the electron in this case is strictly confined to one

unit cell independent of other cells.

Another limiting case to consider is the infinite potential barrier width b, and in

this limit, sinh 𝜅b = cosh 𝜅b → ∞. Thus, when both sides of Eq. (6.17) are divided

by cosh 𝜅b and cos k1a, it reduces to

tan 2𝜉 = 2𝜉𝜂

𝜉2 − 𝜂2
, k1a ≡ 2𝜉, 𝜅a ≡ 2𝜂 (6.30)

Or equivalently, with the use of a well-known trigonometric identity,

tan 2𝜉 = 2 tan 𝜉

(1 − tan 2𝜉)

Equation (6.30) is further reduced to a quadratic equation for tan 𝜉

tan 2𝜉 + 𝜉2 − 𝜂2

𝜉𝜂
tan 𝜉 − 1 = 0 (6.31)

Hence, we can solve for tan 𝜉, obtaining

𝜉 tan 𝜉 = 𝜂, 𝜉 cot 𝜉 = −𝜂 (6.32)

as the positive and negative branches of the solution. Clearly, Eq. (6.32) is the

reduced version of the dispersion relation (6.17) and is identical to the quanti-

zation condition of the bound state energy for even and odd parity eigenfunctions

in the quantum well (see Eqs. (4.22) and (4.23)).

In light of these two limiting cases, it is clear that the energy bands originate

from the same energy quantization conditions as those discrete energy levels in

isolated quantum wells. The only difference between the two cases consists of the

discrete energy levels of the quantum well being broadened into bands due to the

coupling between unit cells via the overlap of the wavefunctions in adjacent cells

(see Figure 6.4).Therefore, an electron behaving as a free particle in allowed bands

can be understood in light of the resonant tunneling.That is, an electron in allowed

bands automatically satisfies the condition of the resonant tunneling by residing in

energy eigenstates of the quantumwell.Therefore, the electron can tunnel through

1.0

0.3 nm(a) (b)

0 eV

3 eV

0.9 nm

ElV

Figure 6.6 The discrete bound state energy levels in individual quantum well being broad-

ened into energy bands (b) and the equivalent energy bands resulting from the dispersion

relation (a).
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the string of potential barriers with 100% probability. In this context, the potential

barriers become transparent, and the electron moves as a free particle.

Problems

6.1 .(a) Given the coupled equation

a11x + a12y = c1

a21x + a22y = c2

show that the solution can be expressed by Kramer’s rule:

x =

|||||c1 a12
c2 a22

||||||||||a11 a12
a21 a22

|||||
=

c1a22 − c2a12
a11a22 − a12a21

, y =

|||||a11 c1
a21 c2

||||||||||a11 a12
a21 a22

|||||
=

c2a11 − c1a21
a11a22 − a12a21

(b) Given the characteristic matrix equation(
1 2

2 1

)(
x1
x2

)
= 𝜆

(
x1
x2

)
or

{
(1 − 𝜆) x1 + 2x2 = 0

2x1 + (1 − 𝜆)x2 = 0
(A)

Show that the solution of the coupled equation is trivial unless the sec-

ular equation is satisfied,|||||1 − 𝜆 2

2 1 − 𝜆

||||| = 0 or (1 − 𝜆)2 − 4 = 0

(c) Show that the two characteristic roots 𝜆± when inserted into (A) yields

the infinite number of solutions as long as x1 and x2 are related by x2 =
±x1.
Show that the condition x2 = ±x1 can be found from any one of two

equations in (A).

Show that if the normalization condition is imposed x2
1
+ x2

2
= 1, the

solution is given by

X1 =
(
x1
x2

)
= 1√

2

(
1

1

)
, X2 =

1√
2

(
1

−1

)
6.2 .(a) Starting from boundary conditions Eqs. (6.11) and (6.12), eliminate A, B

and derive Eq. (6.15).

(b) Starting from the secular equation (6.16), derive the dispersion relation

(6.17).

Hint: Use the identity e−2ikd + 1 = 2e−ikd cos kd.

6.3 The superlattice structure consists of a series of quantum wells and barrier

potentials for both electrons and holes, as shown.

(a) Take the barrier height to be infinite and design the well width a such

that the first two subbands of the electrons are separated by 40meV.Use

the effective electron mass of mn ∼ 0.07m0 with m0 denoting the rest

mass.
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a b
EC

EV

1.6 eV1.4 eV

Figure 6.7 A superlattice structure consisting of a string of the quantum wells.

(b) Repeat the analysis numerically or by graphical means using the

potential barrier of 0.1V and estimate the widths of the two subbands

(Figure 6.7).
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7

The Quantum Treatment of Harmonic Oscillator

The harmonic oscillator (HO) is treated quantum mechanically. The HO is a key

component in various kinds of dynamical systems, and it is thus essential to com-

prehend the physics of the HO. For instance, the dynamics of HO provides the

general background for the quantum treatment of electromagnetic (EM) field, the

molecular vibrations, chemical bonds, atomic oscillations in condensed matter,

and so on. Moreover, the quantization of EM field is carried out in analogy with

the operator treatment of HO.

7.1

Energy Eigenfunction and Energy Quantization

Consider a particle ofmassm attached to a spring with spring constant k as shown

in Figure 7.1. The energy eigenequation of the HO is given by[
− ℏ2

2m

∂2
∂x2

+ 1

2
kx2
]
u(x) = Eu(x), k

m
≡ 𝜔2 (7.1)

where the Hamiltonian consists of the kinetic and potential energies and 𝜔 is the

characteristic frequency. In treating the differential equation, it is convenient to

introduce the dimensionless displacement 𝜉 and the energy parameter 𝜆 as

𝜉 = 𝛼x, 𝛼 ≡
(
mk

ℏ2

)1∕4

=
(
m𝜔

ℏ

)1∕2
; 𝜆 ≡ 2E

ℏ𝜔
(7.2)

and recast Eq. (7.1) by multiplying both sides with 2(m∕k)1∕2∕ℏ = 2∕ℏ𝜔 as

d2

d𝜉2
u(𝜉) + (𝜆 − 𝜉2)u(𝜉) = 0 (7.3)

In the asymptotic limit 𝜉 → ∞, 𝜆 can be neglected, and the solution is given by

u(𝜉) ≈ exp−𝜉2∕2, as can be easily verified. Thus, we may try the solution in the

form

u(𝜉) = e−𝜉2∕2H(𝜉) (7.4)

and insert it into Eq. (7.3), obtaining

H ′′ − 2𝜉H′ + (𝜆 − 1)H = 0 (7.5)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.



76 7 The Quantum Treatment of Harmonic Oscillator

k
m

nj+1

ћω(nj + 1/2)

5ћω/2

3ћω/2

ћω/2

ћω

nj–1

nj

x

x

0
2

1

0

0(a) (b)

Figure 7.1 (a,b) A harmonic oscillator and its quantized energy spectrum consisting of the

discrete levels separated by the quantum of energy ℏ𝜔. Also indicated is the continuous

energy spectrum of the classical harmonic oscillator.

where the primes denote the differentiation with respect to 𝜉.

Series Solution

We can use the method of the series solution and expand H(𝜉) as

H(𝜉) = 𝜉s
∞∑
n=0

an𝜉
n, a0 ≠ 0 (7.6)

By inserting Eq. (7.6) into Eq. (7.5) and carrying out the differentiations involved,

we can write

s(s − 1)a0𝜉s−2 + (s + 1)sa1𝜉s−1

+
∞∑
n=0

{[(s + n + 2)(s + n + 1)an+2 − [2(s + n) + 1 − 𝜆]an}𝜉s+n = 0 (7.7)

In Eq. (7.7), the first two terms resulting from H(𝜉)′′ have been taken out of the

summation, while all other terms are combined into two groups by appropriate

adjustments of dummy index n.Thus, solving Eq. (7.5) is reduced to satisfying Eq.

(7.7) for arbitrary powers and values of 𝜉, which can be done by putting,

s(s − 1)a0 = 0, (s + 1)sa1 = 0 (7.8a)

(s + n + 2)(s + n + 1)an+2 = [2(s + n) + 1 − 𝜆]an (7.8b)

The two conditions in Eq. (7.8a) are known as the indicial equations, while Eq.

(7.8b) is the recurrence relation specifying higher-order coefficients recursively

in terms of a0, a1.

As a0 is taken nonzero (see Eq. (7.6)), the indicial equations are satisfied with

the choice of s = 0 regardless of whether or not a1 is zero. Hence,H(𝜉) is obtained

in terms of two infinite order polynomials, with a0, a1 specifying higher-order

coefficients:

H(𝜉) = a0

(
1 +

a2
a0

𝜉2 +
a4
a2

a2
a0

𝜉4 + · · ·
)
+ a1𝜉

(
1 +

a3
a1

𝜉2 + · · ·
)

(7.9)

Thus, the eigenfunction u(x) is found with the insertion of Eq. (7.9) into Eq. (7.4).



7.1 Energy Eigenfunction and Energy Quantization 77

Energy Quantization

Naturally, u(𝜉) should be physically well behaving, in particular for large 𝜉. To

examine the asymptotic behavior, let us consider the Taylor expansion of the expo-

nential function, namely,

exp 𝜉2 =
∞∑
n=0

bn𝜉
2n, bn =

1

n!

In this series, the ratio between two successive expansion coefficients is given by

bn+1∕bn ≈ 1∕n for large n and is identical to the corresponding ratio as appears

in Eq. (7.8b). This indicates that H(𝜉) diverges as H(𝜉) ≈ exp 𝜉2, so that u(𝜉) also

diverges as u(x) ≈ exp(𝜉2∕2) (see Eq. (7.4)). Therefore, the appropriate modifica-

tions of H(𝜉) are in order to make the eigenfunction physically well behaving.

Themodification can bemade by terminating the a0-series in Eq. (7.9) at a finite

order while eliminating the other series by putting a1 = 0. The termination at the

nth order can be made by constraining 𝜆 in Eq. (7.8b) by the condition

0 ≡ an+2 =
2n + 1 − 𝜆

(n + 1)(n + 2)
an, s = 0 (7.10a)

The requirement of Eq. (7.10a), when combinedwith Eq. (7.2), provides the natural

ground for the quantization of energy:

𝜆n ≡ 2En

ℏ𝜔
= 2n + 1, n = 0, 2, 4, … (7.10b)

In this case, the polynomial H(𝜉) consists of the even powers of 𝜉, which renders

u(𝜉) an even function of 𝜉 (see Eq. (7.4)).

For s = 1, we can again satisfy Eq. (7.8a) by putting a1 = 0 and obtain the finite-

order polynomial H(𝜉) with the use of the recurrence relation (7.8b):

0 ≡ an+2 =
2n + 3 − 𝜆

(n + 2)(n + 3)
an, s = 1 (7.11a)

Thus, the energy is naturally quantized from Eq. (7.11a) as

𝜆n ≡ 2En

ℏ𝜔
= 2n + 3, n = 0, 2, 4, … (7.11b)

Moreover, H(𝜉) consists in this case of odd powers of 𝜉 so that u(𝜉) is an odd

function of 𝜉. The two energy quantization equations (7.10b) and (7.11b) can be

combined into one as

En = ℏ𝜔
(
n + 1

2

)
; 𝜆n = 2n + 1, n = 0, 1, 2, 3, … (7.12)

(see Figure 7.1). In this manner, the energy eigenvalues are naturally quantized by

the obvious requirement that the eigenfunctions should be physically well behav-

ing.The quantized energy level of HO is in distinct contrast with that of the classi-

cal HO, for which E varies continuously by any infinitesimal amount, as discussed

in Chapter 1. The discrete energy levels are equally spaced and separated by ℏ𝜔,

and the integer n in Eq. (7.12) is the quantum number specifying the discrete

energy levels.
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Ground State

The ground state energy for n = 0 is given from Eq. (7.12) by

E0 =
ℏ𝜔

2
(7.13)

and is not zero but has a finite value, called zero-point energy. This is again in

contrast with the classical oscillator whose total energy at rest in the equilibrium

position has zero value. The zero-point energy originates from to the wave-like

behavior of the particle and the uncertainty principle just like the finite ground

state energy in the quantum well.

7.2

The Properties of Eigenfunctions

Hermite Polynomials

The nth order polynomial Hn(𝜉) thus found is the well-known Hermite polyno-

mial, obeying the differential equation

H ′′
n − 2𝜉H ′

n + 2nHn = 0 (7.14)

The Hermite differential equation is identical to Eq. (7.5), when 𝜆 is replaced by

𝜆n in Eq. (7.11b). The properties of Hn(𝜉) can be conveniently discussed by using

its generating function

G(𝜉, s) ≡ e𝜉2−(s−𝜉)2 = e−s
2+2s𝜉 ≡

∞∑
n=0

Hn(𝜉)sn

n!
(7.15)

The generating function yields various useful recurrence relations. For instance,

by differentiating both sides of Eq. (7.15) with respect to 𝜉, there results

∂
∂𝜉

e−s
2+2s𝜉 = 2se−s

2+2s𝜉 = 2

∞∑
n=0

Hn(𝜉)sn+1

n!
=

∞∑
n=0

H′
n(𝜉)sn

n!
(7.16)

with the primes denoting the differentiation with respect to 𝜉.We can thus single

out the coefficients of the equal powers of s from both sides of Eq. (7.16), obtaining

H ′
n = 2nHn−1 (7.17)

Also by differentiating Eq. (7.15) with respect to s, we can similarly find

𝜉Hn =
1

2
Hn+1 + nHn−1 (7.18)

In addition, we can obtainHn(𝜉) by differentiating the generating functionG(𝜉,s)

with respect to s n times and putting s = 0. In this case, the terms with powers in s

less than n vanishwhile getting differentiated n times, while the termswith powers
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in s greater than n also vanish in the limit s → 0. In this manner, Hn(x) is singled

out from the summation to be given by

Hn(𝜉) ≡ ∂n
∂sn

e𝜉2−(s−𝜉)2 ||||s=0
= e𝜉2 (−)n

∂n

∂𝜉n
e−(s−𝜉)2 ||||s=0 = (−)ne𝜉2 ∂n

∂𝜉n
e−𝜉2 (7.19)

The operational representation of Hn(𝜉) is known as Rodrigues’s formula and is

useful for generating Hn(𝜉). For example, we can easily obtain by mere differenti-

ations

H0 = 1, H1 = 2𝜉, H2 = 4𝜉2 − 2, …

The Orthogonality of Eigenfunctions

The energy eigenfunction of HO is given from Eq. (7.4) by

un(𝜉) = Nne
−𝜉2∕2Hn(𝜉) (7.20)

where Nn is the normalization constant. To find Nn and also to examine the

orthogonality of un(x), let us integrate the product of two generating functions:

∫
∞

−∞
d𝜉e−s

2+2s𝜉e−t
2+2t𝜉e−𝜉2 ≡

∞∑
n=0

sn

n!

∞∑
m=0

tm

m!∫
∞

−∞
d𝜉Hn(𝜉)Hm(𝜉)e−𝜉2 (7.21)

We can perform the integration on the left-hand side by using the table, obtaining

e−s
2−t2∫

∞

−∞
d𝜉e−𝜉2e2(s+t)𝜉 =

√
𝜋e2ts =

√
𝜋
∑
n

2ntnsn

n!
(7.22)

In Eq. (7.22), the exponential function exp(2ts) has been Taylor expanded.

Hence, the double sum on the right-hand side of Eq. (7.21) has to be reduced

to the single sum.Therefore, the coefficients of the terms proportional to sntm on

the right-hand side of Eq. (7.21) should satisfy the relation

∫
∞

−∞
d𝜉HnHme

−𝜉2 =
√

𝜋2nn!𝛿nm (7.23a)

where 𝛿nm is the Kronecker delta function defined as

𝛿nm =

{
1 for n = m

0 for n ≠ m
(7.23b)

In this manner, the orthogonality of {un(𝜉)} is shown explicitly. At the same time,

the normalization constant Nn can also be found from Eqs. (7.2), (7.20), and

(7.23) as

1 ≡ ∫
∞

−∞
dx[un(x)]2 =

N2
n

𝛼 ∫
∞

−∞
d𝜉e−𝜉2H2

n =
N2

n

𝛼

√
𝜋2nn! (7.24)
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The normalized eigenfunctions of HO are thus given by

un(x) =

(
𝛼√

𝜋2nn!

)1∕2

e−𝜉2∕2Hn(𝜉), 𝜉 ≡ 𝛼x, 𝛼 ≡ [m𝜔

ℏ

]1∕2
(7.25)

Typical eigenfunctions and probability densities are plotted in Figure 7.2. Note

that there is a small but finite probability of finding the HO in the classically for-

bidden region. Also the penetration depth increases with increasing n, that is, with

increasing energy. Moreover, the peak of the probability densities shifts from the

center at x ≈ 0 for small n to the edges at x ≈ x0 for large n. Classically, the proba-

bility P of finding the HO in the interval from x to x + dx is inversely proportional

to its dwell time therein. Therefore, P attains the minimum value near the ori-

gin x ≈ 0, where the velocity of the HO is at its maximum. On the other hand, P

attains the maximum value at x ≈ x0, where the HO is momentarily at rest before

reversing its direction. The classical probability P is also plotted in Figure 7.2,

for comparison. Clearly, the profile of P is in general agreement with the trace

of the sub-peaks of the probability density |un(x)|2 for large n. The agreement of

the probability profile for large n is referred to as the correspondence principle.

1

0

0

0

0

5

5

5

5

5

Pn(x)

Pn(x)

Pn(x) Pn(x)

u0(x) u1(x)

n = 0 n = 1

n = 20n = 2

−5

−x0
x0

−5
(c)

(a)

(d)

(b)

–5

−5

u1(x)
2

u2(x)

u2(x)

2

u20(x)
2

u0(x)
2

Figure 7.2 (a–d) Typical eigenfunctions and probability densities of the HO. Also shown

are the classical turning points (broken lines) and the classical analog of the probability

density (thin lines).
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The Uncertainty Relation

We next examine the uncertainties in x and px in the nth eigenstate. The eval-

uation of Δx, Δpx can be done conveniently by using the recurrence relations

given in Eqs. (7.17) and (7.18). Obviously, the average value of x is zero because

u∗n(x)un(x) is even in x regardless of whether un(x) is even or odd, so that the parity
of u∗n(x)xun(x) is odd. But the average value of x2 is not zero and given by⟨x2⟩ ≡ ⟨un|x2|un⟩

≡ ∫
∞

−∞
dxu∗nx

2un =
N2

n

𝛼3 ∫
∞

−∞
d𝜉e−𝜉2∕2Hn(𝜉)𝜉2e−𝜉2∕2Hn(𝜉), 𝜉 = 𝛼x

(7.26a)

At this point, we can make use of the recurrence relation Eq. (7.18) and the

orthonormality of the eigenfunctions in performing the integration, obtaining

⟨x2⟩ = ℏ

m𝜔

(
n + 1

2

)
(7.26b)

Once ⟨x⟩, ⟨x2⟩ are known, the variance Δx is obtained as

Δx2 ≡ ⟨(x − ⟨x⟩)2⟩ = ⟨x2 − 2x⟨x⟩ + ⟨x⟩2⟩ = ⟨x2⟩ − ⟨x⟩2 = ℏ

m𝜔

(
n + 1

2

)
(7.27)

We can likewise obtain the variance of px by using the recurrence relation

Eq. (7.17) as

Δp2 ≡ ⟨(px − ⟨px⟩)2⟩ = ⟨p2x⟩ − ⟨px⟩2 = m𝜔ℏ
(
n + 1

2

)
, px = −iℏ ∂

∂x
(7.28)

Therefore, the uncertainty relation between x and px in the nth eigenstate is given

by

ΔxΔpx = ℏ
(
n + 1

2

)
(7.29)

and is shown to increasewith increasing energy level. It is also clear fromEq. (7.29)

that the ground state for n = 0 has the minimum uncertainty limit ℏ∕2.

7.3

HO in Linearly Superposed State

Useful Matrix Elements

As mentioned, the HO is a key element in a number of important dynamical

systems, and a few matrix elements involving the eigenfunctions are extensively

utilized.Thesematrix elements can be simply evaluatedwith the use of recurrence

relations Eqs. (7.17) and (7.18). For instance, the matrix element

⟨un|x|um⟩ = NnNm

𝛼2 ∫
∞

−∞
d𝜉e−𝜉2∕2Hn(𝜉)𝜉e−𝜉2∕2Hm(𝜉) (7.30)



82 7 The Quantum Treatment of Harmonic Oscillator

plays an essential role for describing the interaction of light and matter. We can

again use the recurrence relation Eq. (7.18) and the orthonormality of eigenfunc-

tions and obtain

⟨ul|x|ul′⟩ = ⎧⎪⎨⎪⎩
(l + 1)1∕2∕(2m𝜔∕ℏ)1∕2, l′ = l + 1

l1∕2∕(2m𝜔∕ℏ)1∕2, l′ = l − 1

0, otherwise

(7.31)

We can also evaluate the matrix elements involving the momentum by using the

recurrence relation Eq. (7.17) and obtain

⟨px⟩ ∝ ⟨ul| ∂∂x |ul′⟩ = ⎧⎪⎨⎪⎩
(m𝜔∕2ℏ)1∕2(l + 1)1∕2, l′ = l + 1

−(m𝜔∕2ℏ)1∕2l1∕2, l′ = l − 1

0, otherwise

(7.32)

When the HO is in a superposed state, consisting of the ground and first excited

states with equal probability, for example, the wavefunction is given by

𝜓(x, t) = 1√
2

(
e−i𝜔t∕2u0 + e−i3𝜔t∕2u1

)
, 𝜔 = E

ℏ
(7.33)

In Eq. (7.33), the oscillatory time components exp−iEt∕ℏ have been added to each

eigenstate, and the factor 1∕
√
2 is introduced for normalizing the wavefunction.

Then, the probability density

𝜓∗𝜓 = 1

2
(u20 + u21 + 2u0u1 cos𝜔t) (7.34)

consists of the time-independent background terms u2
0
, u2

1,
and an oscillatory

term, as shown in Figure 7.3. The oscillatory behavior of the HO can be seen

0 0 0 x

π/2

π/4

ωt = 0

3π/4

π

|ψ |2|ψ |2 |ψ |2

Figure 7.3 The probability density at different times of the superposed state consisting of

the ground and first excited states with equal probability. Also shown is the oscillation in

time of the probability density profile.
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more clearly by considering the expectation values of x and px:⟨x⟩ = 1

2

⟨
e−i𝜔t∕2u0 + e−i3𝜔t∕2u1

||| x |||e−i𝜔t∕2u0 + e−i3𝜔t∕2u1
⟩

= x12 cos𝜔t, x12 ≡ ⟨u0|x|u1⟩ = 1

(2m𝜔∕ℏ)1∕2
(7.35)

⟨px⟩ = 1

2

⟨
e−i𝜔t∕2u0 + e−i3𝜔t∕2u1

||| − iℏ
∂
∂x
|||e−i𝜔t∕2u0 + e−i3𝜔t∕2u1

⟩
= −p12 sin𝜔t, p12 ≡ ℏ⟨u0| ∂∂x |u1⟩ = (m𝜔ℏ

2

)1∕2
(7.36)

In deriving Eqs. (7.35) and (7.36), the amplitudes of oscillation x12, p12 have been

obtained by using the matrix elements derived in Eqs. (7.31) and (7.32). Indeed,

these average quantities oscillate in time in a manner similar to the classical HO.

7.4

The Operator Treatment of HO

The operator treatment of the HO is important by itself, but it also paves the way

for the quantum treatment of EM fields and molecular vibrations. Moreover, the

concept of phonons is naturally brought out.Thus, consider the operators defined

as (
a

a+

)
= 1√

2

[
𝛼x ± i

1

ℏ𝛼
px

]
= 1√

2

(
𝜉 ± ∂

∂𝜉

)
(7.37)

where 𝜉 is the dimensionless variable specified in Eq. (7.2), and a and a+ are

called the lowering and raising operators, respectively. We can find the com-

mutation relation of a and a+ by using the commutation relations [x, p] = iℏ,

[x, x] = [p, p] = 0, obtaining

[a, a+] = 1

2

(−i
ℏ

)
[x, px] +

1

2

(
i

ℏ

)
[px, x] = 1 (7.38)

Also, we can invert Eq. (7.37) and find x and p in terms of a, a+ as

x = 1√
2𝛼
(a + a+) (7.39a)

px =
iℏ𝛼√
2
(a+ − a) (7.39b)

and express the Hamiltonian of HO in terms of a and a+ as

Ĥ =
p2x
2m

+ 1

2
kx2 = ℏ𝜔

(
a+a + 1

2

)
(7.40)

In obtaining Eq. (7.40), Eq. (7.38) has been used, that is, aa+ = a+a + 1 together

with the identities k∕𝛼2 = (ℏ𝛼)2∕m = ℏ𝜔 (see Eq. (7.2)). The operator a+a is

known as the number operator, and it commutes with Ĥ , as clear from Eq. (7.40).

Since two commuting operators share a common eigenfunction, the energy

eigenfunction un(x) can also be used as the eigenfunction of the number operator.
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Raising, Lowering, and Number Operators

The operators a, a+, and a+a yield interesting results when they operate on un(x).
Thus, consider a operating on un(x):

aun =
1√
2

(
𝜉 + ∂

∂𝜉

)[
NnHne

−𝜉2∕2
]

= 1√
2
NnH

′
ne
−𝜉2∕2 = 1√

2
Nn2nHn−1e

−𝜉2∕2 =
√
nun−1 (7.41)

In obtaining Eq. (7.41), Eq. (7.25) was used for un(x), and the recurrence relation

Eq. (7.17) was used for converting H ′
n to Hn−1. It is therefore clear that the opera-

tor a lowers the eigenstate from n to n− 1 and is called the lowering operator. On

the other hand, a+ raises the eigenstate from n to n+ 1 and is known as the rais-

ing operator. The raising operation can be shown with the use of two recurrence

relations (7.17) and (7.18) as

a+un =
Nn√
2

(
𝜉 − ∂

∂𝜉

)
Hne

−𝜉2∕2 =
Nn√
2
(2𝜉Hn −H′

n)e−𝜉2∕2 =
√
n + 1un+1 (7.42)

Therefore, the two consecutive operations of a and a+ on un(x) yield

a+aun = a+[
√
nun−1] =

√
n
√
(n − 1 + 1)un−1+1 = nun (7.43)

and indeed un(x) is also the eigenfunction of a+a with n as the eigenvalue.

7.4.1

Creation and Annihilation Operators and Phonons

In view of the roles of a, a+, and a+a, the eigenenergy En of the HO can be

interpreted as consisting of the n number of the quantum of energy h𝜈 called

the phonon. In this context, the operator a destroys a phonon and lowers un to

un−1 and is also called the annihilation operator. By the same token, a+ creates a

phonon and raises un to un+1 and is called the creation operator.

It is also possible to generate the set of eigenfunctions {un(x)} by creating a series

of phonons in succession from the ground state in which n = 0.The starting point

of this operational approach for finding un(x) is the fact that when a operates on

the ground state, it pushes the state out of the Hilbert space of the eigenfunction,

that is,

au0 =
√
0u0−1 = 0 (7.44)

The operation (Eq. (7.44)) can be cast into a differential equation by using

Eq. (7.37) as(
𝜉 + ∂

∂𝜉

)
u0 = 0 (7.45)
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The solution of this simple differential equation can be easily obtained as

u0 ∝ e−𝜉2∕2 = N0e
−𝜉2∕2, N0 =

(
𝛼√
𝜋

)1∕2

(7.46)

where the constant of integrationN0 has been used as the normalization constant.

Once u0 is found, the higher-lying eigenstates can be systematically generated by

creating a single phonon in succession, that is, by applying a+ on u0 repeatedly. For

instance, the first excited state is obtained by creating one phonon in the ground

state:

u1 ≡ 1√
1
a+u0 =

1√
1

1√
2

(
𝜉 − ∂

∂𝜉

)
u0(𝜉)

=

(
𝛼√
𝜋2!

)1∕2

e−𝜉2∕2H1(𝜉) (7.47)

Here again, recurrence relations (7.17) and (7.18) have been used together with

Eq. (7.25) for un(x) and Eq. (7.42) for the operation a+un. The eigenfunction un(x)

is obtained in general by performing the operation

un(𝜉) =
1√
n!
(a+)nu0(𝜉), a+ = 1√

2

(
𝜉 − ∂

∂𝜉

)
(7.48)

Problems

7.1 .(a) Starting with the energy eigenequation (Eq. (7.1)), fill in the algebraic

steps, and derive the eigenequation given in Eq. (7.3) in terms of 𝜉.

(b) By looking for the solution of the eigenfunction in the form given in Eq.

(7.4), reduce the eigenequation to (7.5).

7.2 Consider the 3D HO with the Hamiltonian

Ĥ = − ℏ2

2m
∇2 + 1

2
kxx

2 + 1

2
kyy

2 + 1

2
kzz

2

(a) Set up the energy eigenequation and look for the eigenfunction in the

form

u(x, y, z) = ux(x)uy(y)uz(z)

and reduce the 3D eigenequation to three 1D eigenequations.

(b) Find the eigenfunction and the eigenvalue of the 3D oscillator.

For kx = ky = kz = k, discuss the energy spectrum and find the degener-

acy of the first, second, and third excited states.

7.3 .(a) Derive the recurrence relations (7.17) and (7.18) by filling in the algebraic

steps described.

(b) By using the recurrence relations and the normalized eigenfunction

(Eq. (7.25)), evaluate the variances Δx2 and Δp2x and derive the

uncertainty relation between x and px given in Eq. (7.29).
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(c) By using the same recurrence relations, derive the matrix element

(Eq. (7.31)).

7.4 Consider a classical oscillator with massm and spring constant k and oscil-

lating with an amplitude x0.

(a) Find the kinetic and potential energies averaged over one period of oscil-

lation and compare the results with the total energy.

(b) Find the average kinetic and potential energies in the n th eigenstate of

the quantum oscillator and compare the results with the total energy of

the eigenstate.

(c) Discuss the similarities or differences between the classical and quantum

descriptions.

7.5 The vibrational spectra of molecules can be observed by the infrared spec-

troscopy. The carbon monoxide (CO) molecule can be modeled as C and O

atoms coupled via a spring with an effective spring constant k. The energy

spacing between the two energy eigenstates is observed to be given by the

wavenumber 1∕𝜆 = 2170 cm−1.

(a) By taking themasses of C andO to be 12 and 16 atomic units, determine

k, which is a measure of the bond stiffness.

(b) Find the zero-point energy.

7.6 By using the representation of x, p in terms of raising and lowering opera-

tors, a+ and a (see Eq. (7.39)), derive the Hamiltonian given in terms of the

number operator (Eq. (7.40)).
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8

Schrödinger Treatment of Hydrogen Atom

The quantum treatment of the H-atom is presented. The H-atom is the simplest

atomic system, but the theory of H-atom contains the central core of quantum

mechanics. Bohr’s H-atom theory was the culmination of the old quantum theory,

and the Schrödinger treatment of the H-atom demonstrated the versatility of his

wave equation.Moreover, the theory is used as the general background for treating

the multi-electron atoms and molecules. The topics included for discussion are

angular momentum, spatial quantization, atomic orbital, quantized energy level

and atomic spectroscopy, Doppler broadening, and so on.

8.1

Angular MomentumOperators

Theangularmomentum is a key ingredient of quantummechanics. Bohr’s H-atom

theory, for instance, starts with quantizing the angular momentum. Understand-

ably, it also plays a central role in the quantum treatment of theH-atom.Moreover,

the eigenfunction of the angular momentum offers the tool for treating the atomic

orbital, multi-electron atomic system, chemical bonding, molecular structures,

and so on.

Thus, consider a particle with mass m and moving in a circular orbit with the

linear momentum, mv at r distance from a fixed center (Figure 8.1). The angular

momentum operator l̂ is defined as the vector product of r and p, and in Cartesian
coordinate frame, it reads as

l̂ = r × p̂ = r × (−iℏ∇), ∇ = x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

(8.1)

The three components are then given by

l̂x = yp̂z − zp̂y, l̂y = zp̂x − xp̂z, l̂z = xp̂y − yp̂x (8.2)

where the cyclic property of the vector products of unit vectors x̂ × ŷ = ẑ, ŷ × ẑ =
x̂, ẑ × x̂ = ŷ has been used.

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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x

y

z

r

l = r × p

P = mν

Figure 8.1 The angular momentum as the vector

product of r and p.

It is convenient to treat the angular momentum in the spherical coordinate

frame, in which case the angular momentum operator reads as

l̂ = r × (−iℏ∇), ∇ =
(
r̂
∂
∂r
+ �̂�

1

r

∂
∂𝜃

+ �̂�
1

r sin 𝜃

∂
∂𝜑

)
= −iℏf̂ (𝜃, 𝜑), f̂ (𝜃, 𝜑) ≡

(
�̂�
∂
∂𝜃

− �̂�
1

sin 𝜃

∂
∂𝜑

)
(8.3)

where r̂, �̂�, �̂� are the unit vectors in the frame (Figure 8.2), and the cyclic property

of the vector products of the three unit vectors has also been used. We can single

out x, y, and z components of the angular momentum by projecting Eq. (8.3) into

the x, y, z axes:

l̂z ≡ ẑ ⋅ l̂ = (âr cos 𝜃 − â𝜃 sin 𝜃) ⋅ l̂ = −iℏ ∂
∂𝜑

(8.4a)

l̂x ≡ x̂ ⋅ l̂ = iℏ

(
sin𝜑

∂
∂𝜃

+ cot 𝜃 cos𝜑
∂
∂𝜑

)
(8.4b)

l̂y ≡ ŷ ⋅ l̂ = iℏ

(
− cos𝜑

∂
∂𝜃

+ cot 𝜃 sin𝜑
∂
∂𝜑

)
(8.4c)

r s
in

θ c
os

φ

φ
φ

φ

r sinθ sinφ

rdθ 

r sinθ 
r cosθ 

z

z

z

x

(a) (b)

x

xy
y

y

r sinθ dφ

r 

r 

θ 
θ

θ

Figure 8.2 The spherical coordinate frame with variables r, 𝜃, and 𝜑 (a) and two sets of

unit vectors r̂, �̂�, �̂� and x̂, ŷ, ẑ (b).
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where x̂, ŷ, ẑ have been expressed in terms of âr, â𝜃, â𝜑, respectively.

Additionally, the operator expression of l̂2 can be obtained by using the defini-

tion (Eq. (8.3)) and the vector identity.

l̂2 ≡ −ℏ2(r × ∇) ⋅ (r × ∇) = −ℏ2r ⋅ [∇ × (r × ∇)] (8.5)

In Eq. (8.5), we can again use Eq. (8.3) for replacing r × ∇ by f̂ (𝜃, 𝜑), obtaining

l̂2 = −ℏ2r ⋅ ∇ × f̂ (𝜃, 𝜑)

= −ℏ2

[
1

sin 𝜃

∂
∂𝜃

(
sin 𝜃

∂
∂𝜃

)
+ 1

sin 2𝜃

∂2
∂𝜑2

]
(8.6)

where use has been made of

[∇ × f̂ (𝜃, 𝜑)]r =
1

r sin 𝜃

∂
∂𝜃
(sin 𝜃f̂𝜑) +

1

r sin 𝜃

∂f̂𝜃
∂𝜑

Also the commutation relations involving l̂x, l̂y, and l̂z can be derived from those

of r and p given in Eq. (3.27). For example,

[l̂x, l̂y] ≡ [(yp̂z − zp̂y), (zp̂x − xp̂z)] = [yp̂z, zp̂x] + [zp̂y, xp̂z]

= yp̂x[p̂z, z] + p̂yx[z, p̂z] = iℏ(xp̂y − yp̂x) ≡ iℏl̂z (8.7a)

Likewise, we can obtain

[l̂y, l̂z] = iℏl̂x, [l̂z, l̂x] = iℏl̂y (8.7b)

and these cyclic relations are compactly summarized as

l̂ × l̂ = iℏl̂ (8.8)

Finally, let us consider the commutator

[l̂2, l̂z] = [(l̂2x + l̂2y + l̂2z ), l̂z]

The first term can be calculated by using Eq. (8.7b) as

[l̂2x , l̂z] = l̂xl̂xl̂z − l̂z l̂xl̂x

= l̂x(l̂z l̂x − iℏl̂y) − (l̂xl̂z + iℏl̂y)l̂x
= −iℏ(l̂x l̂y + l̂yl̂x) (8.9a)

Likewise, we can obtain

[l̂2y , l̂z] = iℏ(l̂xl̂y + l̂yl̂x) (8.9b)

Hence, it follows from Eq. (8.9) that

[l̂2, l̂z] = [l̂2x , l̂z] + [l̂2y , l̂z] + [l̂2z , l̂z] = 0 (8.10a)

where the last commutator is by definition zero. We can likewise obtain

[l̂2, l̂x] = [l̂2, l̂y] = 0 (8.10b)
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8.2

Spherical Harmonics and Spatial Quantization

We next consider the eigenequation of l̂z that is given from Eq. (8.4) by

−iℏ∂u(𝜑)
∂𝜑

= lzu(𝜑) (8.11)

where u(𝜑) and lz are the eigenfunction and eigenvalue, respectively. By rear-

ranging the equation as ∂u(𝜑)∕u(𝜑) = i(lz∕ℏ)∂𝜑, and integrating both sides, there

results

u(𝜑) ∝ ei(lz∕ℏ)𝜑 = 1√
2𝜋

ei(lz∕ℏ)𝜑 (8.12)

In Eq. (8.12), the constant of integration has been used for normalizing u(𝜑) over

the interval from0 to 2𝜋. Naturally, the eigenfunctionu(𝜑) should be single valued,

that is,

u(𝜑) = u(𝜑 + 2𝜋) (8.13)

Hence lz should satisfy the condition (lz∕ℏ)2𝜋 = 2𝜋m with m as an integer, that

is,

lz = mℏ, m = 0,±1,±2, … (8.14)

Therefore, the normalized eigenfunction of l̂z reads as

um(𝜑) =
1√
2𝜋

eim𝜑, m = 0,±1,±2, … (8.15)

Next the eigenequation of l̂2 is given from Eq. (8.6) by

−ℏ2

[
1

sin 𝜃

∂
∂𝜃

(
sin 𝜃

∂
∂𝜃

)
+ 1

sin 2𝜃

∂2
∂𝜑2

]
Y𝛽(𝜃, 𝜑) = 𝛽ℏ2Y𝛽(𝜃, 𝜑) (8.16)

where Y𝛽(𝜃, 𝜑), 𝛽ℏ2 are the eigenfunction and eigenvalue, respectively. As l̂2 and

l̂z commute, the two operators share a common eigenfunction. We can therefore

put

Y𝛽m(𝜃, 𝜑) ∝ um(𝜑) = um(𝜑)P𝛽m(𝜃) (8.17)

It thus follows from Eqs. (8.15) and (8.17) that ∂2Y𝛽m∕∂𝜑2 = −m2Y𝛽m, so that the

eigenequation (8.16) involves only one variable 𝜃 and reduces to

d

dw
(1 − w2)

dP𝛽m

dw
+
[
𝛽 − m2

1 − w2

]
P𝛽m = 0, w = cos 𝜃 (8.18)

The differential equation (8.18) can again be solved by the series method, but

the series solutions diverge and are physically unacceptable unless 𝛽 and m are

constrained by

𝛽 = l(l + 1), m = −l,−l + 1, … ,−1, 0, 1, 2, … , l − 1, l (8.19)
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When the Eq. (8.19) is put into Eq. (8.18), the equation becomes identical to the

well-known Legendre differential equation.The solutions are known as the Legen-

dre and associated Legendre polynomials, and denoted by P0
l
(≡ Pl) and Pm

l
, respec-

tively. The detailed analysis of Eq. (8.18) is found in the reference books listed at

the end of this chapter. Suffice it to say here that the Legendre polynomials belong

to the list of well-known special functions in mathematical physics and can be

generated by the Rodrigues’s formula:

Pl(w) =
1

2ll!

(
d

dw

)l

(w2 − 1)l, l = 0, 1, 2, … , w = cos 𝜃 (8.20)

Once Pl is found, P
m
l
is obtained by the operation

Pm
l
(w) = (−)m(1 − w2)m∕2 dm

dwm
Pl(w), P−m

l
(w) = (−)mPm

l
(w) (8.21)

Also the Legendre polynomials are orthogonal

∫
1

−1
dwPm

l
(w)Pm

l′
= 2

2l + 1

(l + |m|)!
(l − |m|)!𝛿ll′ (8.22)

so that the normalized eigenfunction of both l̂z and l̂2 is given by

Ym
l
(𝜃, 𝜑) = (−)m

[
2l + 1

4𝜋

(l − |m|)!
(l + |m|)!

]1∕2
Pm
l
(𝜃)eim𝜑 (8.23a)

The eigenfunction (8.23a) is the celebrated spherical harmonics and is related to

its complex conjugate as

Y−m
l
(𝜃, 𝜑) = (−)mYm

l
(𝜃, 𝜑)∗ (8.23b)

The Spatial Quantization

The spherical harmonics are often denoted by Dirac’s ket vector, and the

eigenequations are then compactly expressed as (see Eqs.(8.11), (8.16))

l̂2|lm⟩ = ℏ2l(l + 1)|lm⟩, |lm⟩ ≡ Ym
l

≡ Ylm, l = 0, 1, 2, … (8.24a)

l̂z|lm⟩ = ℏm|lm⟩, m = −l,−l + 1, … , l − 1, l (8.24b)

Here, the integer l is called the angular momentum quantum number and m the

magnetic quantum number. The eigenfunctions (8.24) clearly indicate that the

angular momentum is specified by a discrete set of the quantum numbers, l,m in

units of ℏ, as illustrated in Figure 8.3. Given l, the angular momentum precesses

around the z-axis in discrete orientations such that its projection onto the z-axis

varies in units of ℏ.The resulting spatial quantization of l̂z is a feature again unique

in quantum mechanics.

When the angular momentum is in the state |lm⟩, it follows from Eqs. (8.4b),

(8.4c), and (8.24b) that⟨lm|l̂z|lm⟩ = ℏm (8.25a)
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m = 1

m = 2

m = 0

2(
2+

1)
ћ

m = −1

m = −2

Figure 8.3 The spatial quantization of the z-component of l for l = 2.

⟨lm|l̂x|lm⟩ = ⟨lm|iℏ(sin𝜑
∂
∂𝜃

+ cot 𝜃 cos𝜑
∂
∂𝜑

) |lm⟩ = 0 (8.25b)

⟨lm|l̂y|lm⟩ = ⟨lm|iℏ(− cos𝜑
∂
∂𝜃

+ cot 𝜃 sin𝜑
∂
∂𝜑

) |lm⟩ = 0 (8.25c)

It is clear from Eq. (8.25) that the information of lx, ly is lost, when lz is known

precisely. This is expected because l̂x, l̂y, and l̂z do not commute. Typical polar

plots of the spherical harmonics are shown in Figure 8.4, and Table 8.1 lists Ylm’s

as a function of 𝜑 and 𝜃.
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0
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.
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Table 8.1 Typical spherical harmonics.

l m Ym
l
(𝜃, 𝜑) = Ylm(𝜃, 𝜑)

0 0 Y00 =
1

2𝜋1∕2

1 0 Y10 =
1

2
(3∕𝜋)1∕2 cos 𝜃

±1 Y1±1 = ∓ 1

2
(3∕2𝜋)1∕2 sin 𝜃e±i𝜑

2 0 Y20 =
1

4
(5∕𝜋)1∕2(3 cos 2𝜃 − 1)

±1 Y2±1 = ∓ 1

2
(15∕2𝜋)1∕2 cos 𝜃 sin 𝜃e±i𝜑

±2 Y2±2 =
1

4
(15∕2𝜋)1∕2 sin 2𝜃e±2i𝜑

8.3

The H-Atom and Electron–Proton Interaction

TheH-atom consists of a proton and an electron bound together via the attractive

Coulomb potential, and it is a two-body central force system. The equations of

motion of the electron and proton read as

mer̈e = f (r), mpr̈p = −f (r), r ≡ re − rp (8.26)

where re, rp are the coordinates of the electron and proton, andme,mp the respec-

tive masses. The central force depends only on the distance between the two and

acts on each other in the opposite directions (Figure 8.5).When the two equations

are added together, there results

mer̈e +mpr̈p = 0 (8.27)

We can recast Eq. (8.27) into the equation of motion of the center of mass as

MR̈ = 0; R ≡
mere +mprp

M
, M ≡ me +mp (8.28a)

where R is the center of mass coordinate and M the total mass. When the two

equations in Eq. (8.26) are divided byme,mp, respectively, and the latter equation

x

y

z

m2

m1

r2

r1

r

ƒ(| r |)

R

Figure 8.5 Two particles bound by a central

force: r1, r2, R, and r are the coordinates of

particle 1, 2, the center of mass, and the dis-

placement of particle 1 with respect to 2.



94 8 Schrödinger Treatment of Hydrogen Atom

is subtracted from the former, there results

r̈ = 𝜇f (r), r = r
e
− r

p
,
1

𝜇
= 1

me

+ 1

mp

(8.28b)

where 𝜇 is called the reduced mass. The motions of the two particles are thus par-

titioned into (i) the motion of the center of mass, moving as a free particle and

(ii) the motion of a fictitious particle with the reduced mass 𝜇 with respect to the

fixed force center. Since me ≪ mp, 𝜇 ≈ me, and the relative motion is essentially

the motion of the electron with respect to the proton.

The Hydrogenic Atom

Energy Eigenequation and Eigenfunction

The Hamiltonian of the H-atom reads as

Ĥ = − ℏ2

2M
∇2

R −
ℏ2

2𝜇
∇2 + V (r), V (r) = −

Ze2
M

r
, e2M ≡ e2

4𝜋𝜀0
(8.29)

where the first two terms represent the kinetic energies of the center of mass and

relative motions expressed via the Laplacian operators with respect to R and r.
The termV (r) is the attractive Coulomb potential inMKS units and 𝜀0 the vacuum

permittivity. The atomic number Z denotes the number of protons in the nucleus

and Z = 1 in this case. The Schrödinger equation thus reads as

iℏ
∂
∂t

𝜓(R, r, t) =
[
− ℏ2

2M
∇2

R −
ℏ2

2𝜇
∇2 + V (r)

]
𝜓(R, r, t) (8.30)

We can partition the solution into the center of mass and relative motions as

𝜓(R, r, t) = e−i(ECM∕ℏ)tuCM(R) ⋅ e−i(E∕ℏ)tu(r) (8.31)

Upon inserting Eq. (8.31) into Eq. (8.30) and carrying out the differentiations

involved and dividing both sides with Eq. (8.31), there results

− ℏ2

2M
∇2

R
uCM(R) = ECMu(R) (8.32a)[

− ℏ2

2𝜇
∇2 −

Ze2
M

r

]
u(r) = Eu(r) (8.32b)

where the total energy is the sum of the kinetic energy of the center of mass and

the internal energy associated with the relative motion

ET = ECM + E (8.32c)

The wavefunction of the center of mass moving as a free particle is given from Eq.

(5.3) by

𝜑CM(R, t) ∝ e−i(ECM∕ℏ)teiK ⋅R,
ℏ2K2

2M
= ECM (8.33)

where K is the wave vector. This leaves the bulk of analysis to solving Eq. (8.32b).
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The Bound States

We next treat Eq. (8.32b) in the spherical coordinate frame and express the Lapla-

cian as

∇2 = 1

r2
∂
∂r

r2
∂
∂r
+ 1

r2

[
1

sin 𝜃

∂
∂𝜃

sin 𝜃
∂
∂𝜃

+ 1

sin 2𝜃

∂2
∂𝜑2

]
(8.34)

in which the bracket containing the angular variables is identical to −l̂2∕ℏ2 (see

Eq. (8.6)). Hence, Eq. (8.32b) can be expressed as[
− ℏ2

2𝜇

(
1

r2
∂
∂r

r2
∂
∂r
− 1

r2
1

ℏ2
l̂2
)
−

Ze2
M

r

]
u(r, 𝜃, 𝜑) = Eu(r, 𝜃, 𝜑) (8.35)

It is thus clear from Eq. (8.35) that Ĥ and l̂2 commute, and therefore the two oper-

ators can share the common eigenfunction, in this case the spherical harmonics:

u(r, 𝜃, 𝜑) ∝ Ym
l
(𝜃, 𝜑) = Ym

l
(𝜃, 𝜑)R(r) (8.36)

Upon inserting Eq. (8.36) into Eq. (8.35), using Eq. (8.24a) and dividing both sides

by Eq. (8.36), there results[
− ℏ2

2𝜇

1

r2
∂
∂r

(
r2
∂
∂r

)
+ Veff(r)

]
R(r) = ER(r) (8.37a)

where the effective potential

Veff(r) = −
Ze2

M

r
+ 1

2𝜇r2
ℏ2l(l + 1) (8.37b)

consists of an attractive Coulomb potential and the repulsive centrifugal potential

arising from the rotational motion of the electron. For large r, the attractive term

dominates, while for small r, the repulsive term is prevalent. These two potentials

combine to form a potential well, as shown in Figure 8.6. It is in this potential

well that the bound states of the H-atom are formed. For l = 0, however, only the

attractive Coulomb force binds the electron to the proton.

Radial Wavefunction

For analyzing Eq. (8.37), we can take E to be at the zero level when the electron is

at a large distance from the proton and not bound by it. The bound state energy

should then be taken negative. Let us introduce the dimensionless variable

𝜌 = 𝛼r, 𝛼2 ≡ 8𝜇|E|
ℏ2

(8.38)

and express Eq. (8.37a) as[
1

𝜌2
d

d𝜌
𝜌2

d

d𝜌
+ 𝜆

𝜌
− 1

4
− l (l + 1)

𝜌2

]
R𝜆l(𝜌) = 0; 𝜆 ≡ Ze2

M

ℏ

(
𝜇

2 |E|
)1∕2

(8.39)

In the asymptotic limit, in which 𝜌 →∞, Eq. (8.39) reduces to

R′′
𝜆l
− 1

4
R𝜆l = 0 (8.40)
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0

1

Veff(r)

V

l = 2

− 

2μr2

ħ2l(l+1)

r

r

Ze
2
M

Figure 8.6 The effective potential energy resulting from the attractive Coulomb force and

repulsive centrifugal force.

with primes denoting the differentiation with respect to 𝜌. The solution is then

given by R𝜆l ∝ exp(±𝜌∕2), but the positive branch of the exponent has to be dis-

carded to prevent R𝜆l from diverging at large 𝜌. We thus look for the solution of

Eq. (8.39) in the form

R𝜆l(𝜌) = 𝜌lL(𝜌)e−𝜌∕2 (8.41)

and insert it into Eq. (8.39), obtaining

𝜌L′′ + [2(l + 1) − 𝜌]L′ + (𝜆 − l − 1)L = 0 (8.42)

Equation (8.42) can again be solved by means of the series method, but the

solution diverges as usual unless the parameters 𝜆 and l are constrained by the

condition

𝜆 = n = m + l + 1, m = 0, 1, 2, … (8.43a)

where n is an integer greater than the angular momentum quantum number l:

n ≥ l + 1 (8.43b)

When the conditions (8.43) are inserted into Eq. (8.42), the resulting differential

equation

𝜌L′′
nl
+ [2(l + 1) − 𝜌]L′

nl
+ (n − l − 1)Lnl = 0 (8.44a)

reduces to the well-known Laguerre differential equation

𝜌L
p
q
′′ + [p + 1 − 𝜌]Lpq′ + (q − p)Lpq = 0 (8.44b)

with the identification p = 2l + 1, q = n + l. Therefore, the Laguerre polynomial

can be used as the solution

Rnl(𝜌) = Nnl𝜌
le−𝜌∕2Lnl(𝜌); Lnl(𝜌) ≡ L2l+1

n+l (𝜌) (8.45)

with Nnl denoting the normalization constant.
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Energy Quantization

Let us revisit the condition (8.43) and examine the bound state energy. The con-

straint imposed on 𝜆 reads with the use of Eq. (8.39) as

𝜆n ≡ Ze2
M

ℏ

(
𝜇

2 ||En
||
)1∕2

= n, n = 1, 2, … (8.46a)

Therefore, the bound state energy is naturally quantized as

En ≡ −|En| = −E0

1

n2
; E0 =

𝜇Z2e4
M

2ℏ2
=

Z2e2
M

2a0
, n = 1, 2, … (8.46b)

where E0 (= 13.6 eV) for Z = 1 is called the ionization energy that is required to

ionize the H-atom from its ground state (n = 1) and the parameter

a0 ≡ ℏ2

𝜇e2
M

= ℏ2

e2
M
me

(
1 +

me

mN

)
= aB

(
1 +

me

mN

)
(8.46c)

represents the Bohr radius aB scaling the atomic radius (see Eq. (2.15)). As the

mass of the proton is much greater than me, 𝜇 is practically identical to me, and

the result is in agreement with Bohr’s H-atom theory. However, the information

contained in the wavefunction is much richer.

8.3.1

Atomic Radius and the Energy Eigenfunction

When the energy eigenvalue in Eq. (8.46b) is inserted into Eq. (8.38), the parameter

𝛼 is specified as

𝛼2
n =

8𝜇

ℏ2
|En| = 8𝜇

ℏ2

Z2e2
M

2a0

1

n2
=
(

2Z

a0n

)2

(8.47a)

Hence, the dimensionless radial variable

𝜌 ≡ 𝛼nr =
(

2Z

a0n

)
r (8.47b)

naturally scales the atomic radius in terms of the Bohr radius aB, atomic number

Z, and the energy level n. Moreover, the normalization constant Nnl in Eq. (8.45)

is found from

1 = N2
lm∫

∞

0

r2dr[Rnl(r)]2 = N2
lm

1

𝛼3
n
∫

∞

0

d𝜌𝜌2
[
𝜌le−𝜌∕2L2l+1

n+l (𝜌)
]2

= N2
lm

1

𝛼3
n

2n[(n + l)!]3

(n − l − 1)!
(8.48)

where the well-known integral involving Laguerre polynomials has been used.

Therefore, by finding Nlm from Eq. (8.48), we obtain the normalized radial wave-

function as

Rnl(r) =

[(
2Z

na0

)3 (n − l − 1)!
2n[(n + l)!]3

]1∕2
e−𝜌∕2𝜌lL2l+1

n+l (𝜌), 𝜌 ≡
(

2Z

a0n

)
r (8.49)
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and the energy eigenfunction of the H-atom is given by

unlm(r, 𝜃, 𝜑) = Rnl(r)Ym
l
(𝜃, 𝜑) (8.50)

The typical examples of unlm are listed in Table 8.2.

8.3.2

Eigenfunction and Atomic Orbital

The eigenfunction unlm(r,𝜃,𝜑) carries a wealth of information and is discussed

next.The function unlm is characterized by three sets of quantum numbers: (i) the

principal quantum number, n = 1, 2, … (See Eq. (8.43a)); (ii) the angularmomen-

tum quantum number l ranging from 0 to n− 1 for given n (Eq. (8.43b)); and (iii)

the magnetic quantum number m varying from −l to +l in steps of unity Eq.

(8.19).The quantum states with l having the values 0, 1, 2, and 3 are designated

by s, p, d, and f states in spectroscopy.

Degenerate States

The eigenenergy associated with unlm depends at this stage solely on the principal

quantum number n as clear from Eq. (8.46). This suggests that the multiple quan-

tum states with different quantum numbers l, m for given n all share a common

energy En. The number of such states can be found by summing over l from 0 to

n − 1, with each l associated with 2l + 1 differentm values. Furthermore, for given

l, m, there are two possible spin states of the electron, spin-up and spin-down.

Table 8.2 Hydrogenic energy eigenfunctions.

a0 ≡ ℏ2

𝜇e2
M

= ℏ2

e2
M
me

(
1 + me

mN

)
= aB

(
1 + me

mN

)
, 𝜌 ≡ ( 2Z

a0n

)
r

orbital unlm

1s u100 =
(Z∕a0)3∕2

𝜋1∕2 e−Zr∕a0

2s u200 =
(Z∕a0)3∕2

(32𝜋)1∕2

(
2 − Zr

a0

)
e−Zr∕2a0

2p u210 =
(Z∕a0)3∕2

(32𝜋)1∕2
Zr

a0
e−Zr∕2a0 cos 𝜃

2p u21±1 =
(Z∕a0 )3∕2

(64𝜋)1∕2
Zr

a0
e−Zr∕2a0 sin 𝜃e±i𝜑

3s u300 =
(Z∕a0)3∕2

81(3𝜋)1∕2

(
27 − 18

Zr

a0
+ 2

Z2r2

a2
0

)
e−Zr∕3a0

3p u310 =
21∕2(Z∕a0)3∕2

81(𝜋)1∕2

(
6 − Zr

a0

)
Zr

a0
e−Zr∕3a0 cos 𝜃

3p u31±1 =
(Z∕a0 )3∕2

81(𝜋)1∕2

(
6 − Zr

a0

)
Zr

a0
e−Zr∕3a0 sin 𝜃e±i𝜑

3d u320 =
(Z∕a0)3∕2

81(6𝜋)1∕2
Z2r2

a2
0

e−Zr∕3a0 (3 cos 2𝜃 − 1)

3d u32±1 =
(Z∕a0 )3∕2

81(𝜋)1∕2
Z2r2

a2
0

e−Zr∕3a0 sin 𝜃 cos 𝜃e±i𝜑

3d u31±2 =
(Z∕a0 )3∕2

162(𝜋)1∕2
Z2r2

a2
0

e−Zr∕3a0 sin 2𝜃e±2i𝜑
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Thus, the total number of degenerate states for given n is given by

gn = 2

n−1∑
l=0
(2l + 1) = 2

{[
2
n (n − 1)

2

]
+ n

}
= 2n2 (8.51)

The energy spectrum is shown in Figure 8.7 togetherwith spectroscopic notations.

Reduced Probability Density

Theprobability density u∗
nlm

unlm depends on three variables r, 𝜃, and𝜑, and there-

fore represents the joint probability density of finding the electron in the volume

element sin 𝜃r2drd𝜃d𝜑 at r, 𝜃, and 𝜑 (Figure 8.2). One can therefore introduce the

reduced probability density of finding the electron between r and r + dr regardless

of 𝜃, 𝜑 by integrating u∗
nlm

unlm over the angular variables:

P(r)dr ≡ ∫
2𝜋

0

d𝜑∫
𝜋

0

sin 𝜃d𝜃r2dr|Ym
l
|2|R2

nl
| = r2|R2

nl
|dr (8.52)

where the normalization property of the spherical harmonics has been used. In

Figure 8.8 are plotted the reduced radial probability densities P(r) = r2R∗
nl
Rnl ver-

sus r. Clearly, P(r) vanishes at r = 0, as it should, as electrons do not reside in the

nucleus. Moreover, the profiles of P(r) exhibit the gross features of the electron

clouds around the nucleus, with its peak values roughly corresponding to Bohr’s

electron orbits. Also, for given n, the value of r at which P(r) is peaked increases

with increasing quantum number l, that is, with increasing centrifugal force.

Atomic Orbitals

The s-orbitals for l = 0 are spherically symmetric, while others for l ≠ 0 are non-

symmetric and depend sensitively on the orientation. For instance, the p-orbitals

1s

−13.6 eV

l = 0 l = 1 l = 2 l = 3

3s

2s

Continum

4p
3p

2p

4d
3d

4f4s
E = 0
E1/16

E1/9

E1/4

E1

Figure 8.7 The energy spectrum of the H-atom as denoted by the spectroscopic notations.
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Figure 8.8 Typical reduced radial probability densities versus r for different n, l.

with l = 1 for given n are characterized by m = 0,±1. The wavefunctions associ-

ated are denoted by

|npz⟩ ≡ Rn1Y
0
1 =
(

3

4𝜋

)1∕2
Rn1 cos 𝜃 (8.53a)

|np+⟩ ≡ Rn1Y
1
1 = −

(
3

8𝜋

)1∕2
Rn1 sin 𝜃ei𝜑 (8.53b)

|np−⟩ ≡ Rn1Y
−1
1 =

(
3

8𝜋

)1∕2
Rn1 sin 𝜃e−i𝜑 (8.53c)

The two complex eigenfunctions (8.53b) and (8.53c) are often combined into two

real orthonormal eigenfunctions as

|npx⟩ ≡ 1√
2
(|p−⟩ − |p+⟩ = ( 3

4𝜋

)1∕2
Rn1 cos 𝜃 cos𝜑 (8.54a)

|npy⟩ ≡ i√
2
(|p−⟩ + |p+⟩ = ( 3

4𝜋

)1∕2
Rn1 sin 𝜃 sin𝜑 (8.54b)

The three p-orbitals Eqs. (8.53a), (8.54a), and (8.54b) are used for describing

atomic andmolecular structures.The transformation of three p-orbitals Eq. (8.53)

into a new set Eqs. (8.53a), (8.54a), and (8.54b) is equivalent to transforming

one set of basis vectors into another via rotation. The boundary surfaces of the

p-orbitals are shown in Figure 8.9.

8.3.3

Doppler Shift

An atom in an excited state ni emits radiation when the electron makes the tran-

sition to a lower-lying state nf to conserve energy. The frequency of the emitted

radiation undergoes shift due to the motion of the center of mass. Such shift in

frequency is known as Doppler shift, and the schematic is shown in Figure 8.10.
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Figure 8.9 The boundary surfaces and side projections of the p-orbitals for n = 2, 3 and of

px, py, pz states.
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Figure 8.10 The Doppler shift of the radiation emitted from a moving atom. A photon is

emitted when the electron makes the transition from upper to lower states.

TheDoppler shift can be analyzed based on the conservation principles. During

the emission of radiation, the energy and momentum are conserved

ℏ2K2

2M
+ En =

ℏ2K ′2

2M
+ En′ + ℏ𝜔 (8.55)

ℏK = ℏK ′ + ℏk (8.56)

where K , K ′ are the wave vectors of CM representing its kinetic energy, En, En′

the internal eigenenergies before and after the emission, and k, 𝜔 the wave vector

and frequency of the emitted photon. The frequency of the photon 𝜔 is therefore
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found from Eq. (8.55) as

𝜔 = 𝜔0 +
ℏ

2M
(K 2 − K ′2); ℏ𝜔0 ≡ En − En′ (8.57)

and consists of the atomic transition frequency𝜔0 and the difference of the kinetic

energies before and after the emission. As one can write from Eq. (8.56)

(K − k) ⋅ (K − k) = K ′2

the difference between two kinetic energies is given by

K2 − K ′2 = 2Kk cos 𝛼 − k2; K ⋅ k = Kk cos 𝛼 (8.58)

where 𝛼 is the angle between K and k. Hence, by substituting Eq. (8.58) into

Eq. (8.57) and identifying the momentum of the photon ℏk = p = ℏ𝜔∕c, and the

atomic velocity ℏK∕M = v, we find

𝜔 − 𝜔0 = 𝜔
(
v

c
cos 𝛼 − ℏ𝜔

2Mc2

)
(8.59)

Since |𝜔 − 𝜔0|≪ 𝜔, 𝜔0, we may replace 𝜔 on the right-hand side by 𝜔0 to the

first order of approximation and obtain the shift in frequency as

𝜔 − 𝜔0 ≃ 𝜔0

(
v

c
cos 𝛼 −

ℏ𝜔0

2Mc2

)
(8.60)

The first and second terms on the right-hand side are called the Doppler shift of

the first and second kinds, respectively. The first term increases or decreases the

frequency, depending on whether the atom is moving toward +v or away −v from
the detector. The second term accounts for the small shift of frequency caused by

atomic recoil.

The atoms in the thermal equilibrium undergo the random thermal motion.

Hence, the frequency of radiation emanating from an ensemble of atoms and

detected on the y–z plane should exhibit a Gaussian spectral profile due to atoms

moving in the x-direction

E(𝜔) ∝ exp−
(𝜔 − 𝜔0)2

Δ𝜔2
(8.61)

Here the variance Δ𝜔 resulting from the thermal motion in the x-direction is

obtained by using the Boltzmann distribution function (Eq. (1.11)) as

(Δ𝜔)2 ≃
(

M

2𝜋kBT

)1∕2

∫
∞

−∞
dvxe

−𝛽v2
x

(
𝜔0

vx
c

)2
; 𝛽 = M

2kBT

= 𝜔2
0

(
kBT

Mc2

)
(8.62)

where the atomic recoil term is neglected. This kind of broadening of the emitted

radiation is called the inhomogeneous line broadening.
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Problems

8.1 The angular momentum of a particle is defined as the vector product of r
and p :

l̂ = r × p̂ = (x̂x + ŷy + ẑz) × ((x̂px + ŷpy + ẑpz)

(a) By using the cyclic properties of the vector product x̂ × ŷ = ẑ, ŷ × ẑ = x̂,

ẑ × x̂ = ŷ, derive Eq. (8.2).

(b) By using the commutation relations between (x, px), (y, py), and (z, pz),

derive the cyclic commutation relations of the angularmomentumoper-

ators (Eq. (8.7)) and commutation relation (Eq. (8.10b)).

8.2 Consider two particles with the massm1,m2 bound by a central force. Show

that the total kinetic energy of the two particle system can be expressed in

terms of kinetic energies of center of mass and relative motion

p2
1

2m1

+
p2
2

2m2

= P2

2M
+

p2

2𝜇

where P is the momentum of the center of mass and p that of a fictitious

particle with reduced mass 𝜇 (see Eq. (8.26)–(8.28)).

8.3 Find the effective Bohr radius for

(i) the singly ionized helium atom He+ consisting of two protons and two

neutrons at the nucleus and a single electron revolving around it.

(ii) Positronium consisting of a positron and an electron bound together by

attractive Coulomb force (the positron has the same mass as electron

but a positive charge +e).
8.4 Calculate the average values of the radius r and r2 and the variance (Δr)2 in

1, 2, and 3 s states in H-atom and ionized He+-atom.

8.5 Show that the average kinetic and potential energies of the ground state of

the H-atom are related by⟨
p2

2𝜇

⟩
100

= −1

2
⟨V ⟩100; V =

e2
M

r

8.6 .(a) Find the wavelengths resulting from the electron making the transition

from n = 2 to n = 1 states in H-atom, deuterium atom (one proton and

one neutron and one electron ), and ionized He-atom (two protons, two

neutrons, and one electron).

(b) If the H-atom is to be optically excited from n = 1 to n = 3 states, what

frequencies will be required?

8.7 The phosphorus atom, when incorporated into the silicon, can be modeled

as a hydrogen-like atom, consisting of an outermost electron in n = 3 state

and bound by a single proton in the nucleus. The dielectric constant of the

medium is 𝜀r = 11.9, and the effective mass of the electron is mn ≈ 0.2m0

withm0 denoting the rest mass of electron. Calculate the ionization energy,

the effective Bohr radius, and the de Broglie wavelength of the electron in

the ground state.
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9

The Perturbation Theory

Rigorous analytical treatments of dynamical systems are generally difficult, and

various perturbation or iteration schemes have been devised to deal with such

systems. The perturbation theories are capable of shedding an overall insight of

the problem at hand and provide the general background information by which

to access the accuracy of numerical computations as well. Moreover, the time-

dependent perturbation scheme can describe the coupling of dynamical systems

such as light andmatter.The time-independent and time-dependent perturbation

theories are presented and applied for analyzing the Stark effects, atomic polariz-

ability, and Fermi’s golden rule.

9.1

Time-Independent Perturbation Theory

Given a system with the Hamiltonian Ĥ , we have to solve the energy eigenequa-

tion

Ĥ𝜑 =W𝜑 (9.1)

The crux of the perturbation scheme is to divide Ĥ into two parts as

Ĥ = Ĥ0 + 𝜆Ĥ′, |Ĥ0|≫ |Ĥ ′| (9.2)

where Ĥ0 can be treated analytically, while Ĥ′ is the remainder to be treated as

the perturbing term. Obviously, the accuracy of the scheme depends on relative

magnitudes of the two terms. The smallness parameter 𝜆 is introduced to keep

track of the order of iterations.

Nondegenerate Theory

We first introduce a set of orthonormal eigenfunctions satisfying the eigenequa-

tion

Ĥ0un = Enun (9.3)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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and expand 𝜑 andW in Eq. (9.1) in powers of 𝜆:

(Ĥ0 + 𝜆Ĥ ′)(𝜑0 + 𝜆𝜑1 + 𝜆2𝜑2 + · · ·)
= (W0 + 𝜆W1 + 𝜆2W2 + · · ·)(𝜑0 + 𝜆𝜑1 + 𝜆2𝜑2 + · · ·) (9.4)

We can then set up a hierarchy of equations by equating the coefficients of equal

powers of 𝜆 from both sides of Eq. (9.4). Up to the second order, one can write

Ĥ0𝜑0 =W0𝜑0 (9.5a)

Ĥ ′𝜑0 + Ĥ0𝜑1 =W0𝜑1 +W1𝜑0 (9.5b)

Ĥ′𝜑1 + Ĥ0𝜑2 =W0𝜑2 +W1𝜑1 +W2𝜑0 (9.5c)

Thus, given 𝜑0 and W 0, the true eigenfunction and eigenvalue 𝜑 and W in Eq.

(9.1) can be obtained iteratively by incorporating the effect of Ĥ′ to an arbitrary

order of accuracy. Let us choose um, Em as 𝜑0,W 0 and examine the modifications

due to Ĥ′:

𝜑0 = um, W0 = Em (9.6)

First-Order Analysis

We can expand 𝜑1 in terms of {un} as

𝜑1 =
∑
n

a
(1)
n un (9.7)

and insert Eqs. (9.6) and (9.7) into Eq. (9.5b) and rewrite it as

Ĥ′um + Ĥ0

∑
n

a
(1)
n un = Em

∑
n

a
(1)
n un +W1um (9.8)

The problem is then reduced to determining {a(1)n } and W1. To this end, we take

the inner product on both sides of Eq. (9.8) with respect to uk, obtaining

Ĥ′
km
+
∑
n

a
(1)
n ⟨uk|Ĥ0|un⟩ = Em

∑
n

a
(1)
n ⟨uk|un⟩ +W1⟨uk|um⟩ (9.9)

where

Ĥ′
km

≡ ⟨uk|Ĥ′|um⟩ = ∫ dru∗
k
(r)Ĥ′um(r) (9.10)

is the matrix element of the perturbing Hamiltonian. As {un} is an orthonormal

set, Eq. (9.9) reduces to

Ĥ′
km
+ a

(1)
k
Ek = Ema

(1)
k
+W1𝛿km (9.11)

with 𝛿km denoting the Kronecker delta function. It is important to note that k is

the dummy quantum number, while m represents a particular state chosen for

investigation.
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In the nondegenerate system, Ek ≠ Em if k ≠ m, hence the first-order expansion

coefficients are found from Eq. (9.11) as

a
(1)
k
=

Ĥ′
km

Em − Ek

, k ≠ m (9.12)

For k = m, the shift in energy of themth state is also found from Eq. (9.11) as

W1m ≡ Ĥ′
mm = ⟨um|Ĥ ′|um⟩ (9.13)

Hence um, Em are modified up to the first-order correction as

E
(1)
m = Em + Ĥ′

mm; Ĥ′
mm ≡ ⟨um|Ĥ′|um⟩ (9.14a)

𝜑(1)
m = um(1 + a

(1)
m ) +

∑
k≠m

Ĥ ′
km

Em − Ek

uk ; Ĥ′
km

≡ ⟨uk|Ĥ ′|um⟩ (9.14b)

Although a
(1)
m still remains unknown, it can be determined from the normalization

condition imposed up to the first order

1 = ⟨𝜑(1)
m |𝜑(1)

m ⟩ = ⟨um(1 + 𝜆a(1)m )|um(1 + 𝜆a(1)m )⟩
= 1 + [a(1)m ]∗ + [a

(1)
m ] +O(𝜆2)

Since the terms proportional to 𝜆2 are relegated to the second-order analysis, we

can put a
(1)
m = 0.

Second-Order Analysis

We again expand 𝜑2 in terms of {un}as

𝜑2 =
∑
n

a
(2)
n un (9.15)

By inserting Eqs. (9.15) and (9.14b) into Eq. (9.5c), performing the inner product

of both sides with respect to uk and using the orthonormality of {un}, we find∑
n

a
(1)
n Ĥ ′

kn
+ a

(2)
k
Ek = Ema

(2)
k
+W1a

(1)
k
+W2𝛿km (9.16)

Therefore, we can obtainW2 by putting k = m and using a
(1)
m = 0:

W2 =
∑
n

a
(1)
n Ĥ′

mn =
∑
n≠m

|Ĥ ′
nm|2

Em − En

, Ĥ ′
nm = (Ĥ ′

mn)∗ (9.17)

where Eq. (9.12) has been used. We can likewise find in the second-order mod-

ification of um by considering the case k ≠ m. The energy eigenvalue up to the

second order of perturbation analysis is given from Egs. (9.17), (9.14a) by

E(2)m = Em + Ĥ′
mm +

∑
n≠m

|Ĥ ′
nm|2

Em − En

(9.18)
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The Stark Shift in Harmonic Oscillator

Stark shift refers to the shift in energy level when the system is subjected to the

electric field. Thus, consider the harmonic oscillator with charge q and placed in

an electric field E. The oscillator is then subjected to the force qE or the potential

−qEx. The Hamiltonian is therefore given by

Ĥ = Ĥ0 + Ĥ ′, Ĥ0 = − ℏ2

2m

∂2
∂x2

+ 1

2
kx2, Ĥ′ = −qEx (9.19)

Let us choose the lth eigenstate ul(x) of the HO for examination. As the parity of

u∗
l
(x)ul(x) is even regardless of whether ul(x) is even or odd in x while that of Ĥ′

is odd, there is no first-order level shift, and the result applies to all other states as

well:

W1 = −qE⟨ul|x|ul⟩ = −qE∫
∞

−∞
u∗
l
xul = 0 (9.20)

Also, the x-matrix elements of the eigenfunctions of the HO connect two nearest

neighbor states (see Eq. (7.31)). Hence, for given l, it follows from Eqs. (7.31) and

(9.14b) that

𝜑(1)
l
= ul +

Ĥ′
l+1,l

El − El+1
ul+1 +

Ĥ′
l−1,l

El − El−1
ul−1

= ul + Λ
[
(l + 1)

1

2 ul+1 − (l)
1

2 ul−1

]
; Λ =

qE

ℏ𝜔

√
ℏ

2m𝜔
, El − El±1 = ∓ℏ𝜔

(9.21)

Similarly, the second-order level shift is contributed by twonearest neighbor states

(see Eq. (7.31)); hence,W 2 is obtained from Eqs. (7.31) and (9.18) as

W2 =
|Ĥ′

l+1,l|2
El − El+1

+
|Ĥ′

l−1,l|2
El − El−1

=
q2E2

ℏ𝜔

ℏ

2m𝜔
[−(l + 1) + l] = −

q2E2

2m𝜔2
(9.22)

and is shown the same for all eigenstates.

The Polarizability of H-Atom

When an electric field E is applied in the z-direction, for instance, the interaction

Hamiltonian of the H-atom is given by

H′ = −∫
z

0

(−eE)dz = eEz (9.23)

The dipolemoment of theH-atom is then given to the first order of approximation

by

⟨𝜇⟩ ≡ −e⟨z⟩ = −e⟨u100 + Δu100|z|u100 + Δu100⟩ (9.24a)

with the first-order correction in u100 given from Eq. (9.14b) by

Δu100 = eE
∑
k≠100

⟨u100|z|uk⟩
E100 − Ek

uk (9.24b)
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Hence, by inserting Eq. (9.24b) into Eq. (9.24a) and retaining the first-order cor-

rections, we obtain the atomic polarizability 𝛼 as

⟨𝜇⟩ ≡ 𝜀0𝛼E, 𝛼 = 2
e2

ε0

∑
k≠100

|⟨u100|z|uk⟩|2
Ek − E100

(9.25)

where 𝜀0 is the vacuum permittivity.

The summation over the z-matrix elements in Eq. (9.25) can be carried out with

the use of the closure property of {un}as given in Eq. (3.24), that is,∑
k≠100

|⟨u100|z|uk⟩|2 =∑
k

⟨u100|z|uk⟩⟨uk|z|u100⟩ = ⟨u100|z2|u100⟩ (9.26a)

In Eq. (9.26a), the ground state u100 has been included in the summation over k,

as its z-matrix element is zero. The expectation value of z2 can be calculated as

⟨u100|z2|u100⟩ = 1

𝜋a2
0
∫

2𝜋

0

d𝜑∫
𝜋

0

sin 𝜃d𝜃∫
∞

0

r2dre−(2r∕a0)(r2 cos 2𝜃) = a20,

z = r cos 𝜃 (9.26b)

where a0 is the Bohr radius (see Eq. (8.46c)), and Table 8.2 has been used for u100.

Hence, upon inserting Eq. (9.26b) into Eq. (9.25) and putting Ek − E100 ≈ E200 −
E100 for all eigenstates k, we find the upper limit of 𝛼 as

𝛼 ≤ 64𝜋a3
0

3
(9.27)

The polarizability of the atom is an important parameter affecting its optical and

electrical properties.

Degenerate Perturbation Theory

The nondegenerate perturbation theory discussed thus far cannot be applied to

the degenerate system. This is because in the degenerate system, some of the

denominators Ek − Em appearing in Eq. (9.14b) are bound to be zero, which

disrupts the completion of the first-order corrections. A possible way out of this

impasse is to exploit the coupling of degenerate states induced by the perturbing

Hamiltonian and to find a new set of eigenfunctions with different eigenvalues.

Hence, the degenerate perturbation theory is primarily focused on lifting the

degeneracy.

Thus, consider two degenerate states ui, uj sharing a common eigenvalueEm and

look for the new eigenfunction in the form

vκ = ciui + cjuj, Ei = Ej = Em (9.28)

When the state um chosen for examination in Eq. (9.8) is replaced by v𝜅 instead,

there results

(Ĥ′ −W1)(ciui + cjuj) =
∑
n

a
(1)
n (Em − En)un (9.29)
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Hence, by performing the inner products with respect to ui and uj on both sides of

Eq. (9.29) and by using the orthonormality of {un}, we find after a straightforward

algebra(
H ′

ii
−W1 H′

ij

H′
ji

H′
jj
−W1

)(
ci
cj

)
= 0, H′

𝛼𝛽 ≡ ⟨u𝛼|Ĥ ′|u𝛽⟩ (9.30)

The coupled equation (9.30) is homogeneous. Hence ci, cj become trivial, ren-

dering the eigenfunction vk trivial, unless the secular equation is satisfied (see

Eq. (6.16)):|||||H
′
ii
−W1 H ′

ij

H ′
ji

H′
jj
−W1

||||| = 0 (9.31)

We can readily solve the quadratic equation forW 1 and obtain

W±1 =
1

2

(
h+ ± h−Λ

1

2

) 1

2
, h± = H ′

ii
±H′

jj
, Λ = 1 +

4H′
ij
H′

ji

h2−
(9.32)

Clearly, the two branches of W 1 represent the splitting of the degenerate energy

level Em caused by the perturbing Hamiltonian. WhenW±1 are inserted back into

Eq. (9.30), the two equations become redundant, as has been discussed already.

Consequently, we can specify cj in terms of ci and use ci for normalizing v𝜅 :

cj =
W±1 −H′

ii

H′
ij

ci, ci =
⎧⎪⎨⎪⎩1 +

[
W±1 −H′

ii

H′
ij

]2⎫⎪⎬⎪⎭
−1

(9.33)

In this manner, the degeneracy of two states ui, uj has been lifted, and the two

new eigenfunctions v𝜅1, v𝜅2 have been found.The theory can be straightforwardly

extended to the general case of the n-fold degeneracy.

9.1.1

Stark Effect in H-Atom

We next apply the degenerate perturbation theory for analyzing the Stark effect

in H-atom. When an electric field is applied in the z-direction, there ensues the

perturbation Hamiltonian given by

Ĥ′ = eEz = eEr cos 𝜃 (9.34)

Let us examine the effect of Ĥ′ on the first excited state of the H-atom, which

has the fourfold degeneracy, u200, u210, u211, and u211. The corresponding secular

equation reads as|||||||||
−W1 −3eEa0 0 0

−3eEa0 −W1 0 0

0 0 −W1 0

0 0 0 −W1

|||||||||
= 0 (9.35)
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x

x

z z

ν–1 = (u200 − u210)/  2 ν+1 = (u200 + u210)/  2(a) (b)

Figure 9.1 Planar view of the probability densities of v1, v2 states in the H-atom subjected

to the electric field in the z-direction. The probability is commensurate with the number of

contours per unit length.

In this case, all off-diagonal matrix elements vanish except for those connecting

u200 and u210.Thismeans that u200 and u210 states are coupled via the perturbation,

while other states u211, u211 still remain uncoupled. Hence, v3 = u211, v4 = u211

but u200, u210 are combined to yield new eigenstates v1, v2 having different energy

eigenvalues.

We can find such shift in the energy level by expanding the determinant Eq.

(9.35), obtaining

W 2
1

||||| −W1 −3eEa0
−3eEa0 −W1

||||| = 0 (9.36)

Clearly, the reduced secular equation is identical in form to Eq. (9.31). Hence, we

can write in strict analogy with Eqs. (9.28), (9.32), and (9.33)

v∓1 =
1√
2
(u200 ∓ u210), W∓1 = ±3eEa0 (9.37)

The probability densities of v+ and v− are plotted in Figure 9.1. Clearly, the dis-

tributions of the electron cloud exhibit the dipole moments of the atom, aligned

in parallel and antiparallel directions with respect to the electric field. The dipole

moments thus induced in the parallel and antiparallel directions are responsible

for the splitting of the degenerate energy level E2/m.

9.2

Time-Dependent Perturbation Theory

As mentioned, the time-dependent perturbation theory provides the general

framework by which to describe the interactions between two dynamical systems.

Thus, consider a system with the Hamiltonian

Ĥ = Ĥ0 + 𝜆Ĥ′(t) (9.38)
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where Ĥ′(t) is the interaction Hamiltonian and 𝜆 again denotes the smallness

parameter. The Schrödinger equation then reads as

iℏ
∂
∂t

𝜓(r, t) = [Ĥ0 + 𝜆Ĥ′(t)]𝜓(r, t) (9.39)

We can treat Eq. (9.39) by expanding the wavefunction as usual in terms of the

complete set of orthonormal eigenfunctions of the unperturbed Hamiltonian as

𝜓(r, t) =
∑
n

an(t)e−i(En∕ℏ)tun(r); Ĥ0un = Enun (9.40)

Here the expansion coefficient an(t) has been taken time dependent to account for

the electronmaking transitions fromone state to another driven by the interaction

Hamiltonian.

By inserting Eq. (9.40) into Eq. (9.39), there results

iℏ
∑
n

ȧn(t)e−i(En∕ℏ)tun +
∑
n

Enan(t)e−i(En∕ℏ)tun

=
∑
n

an(t)Ene
−i(En∕ℏ)tun + 𝜆Ĥ ′(t)

∑
n

an(t)e−i(En∕ℏ)tun (9.41)

Apparently, the second term on the left-hand side and the first term on the right-

hand side of Eq. (9.41) cancel each other out, leaving only two terms to consider.

Upon performing the inner product on both sides of Eq. (9.41) with respect to uk,

there results

ȧk = − i

ℏ
𝜆
∑
n

Ĥ′
kn
ane

i𝜔knt; 𝜔kn ≡ Ek − En

ℏ
, H′

kn
= ⟨uk|H′(t)|un⟩ (9.42)

where 𝜔kn denotes the transition frequency between un and uk states, and the

orthonormality of {un} has been used.

The problem of solving the Schrödinger equation (9.39) has thus been reduced

to obtaining the expansion coefficients as the function of time. For this purpose,

let us expand as usual ak(t) in powers of 𝜆

ak = a
(0)
k
+ 𝜆a(1)

k
+ 𝜆2a

(2)
k
+ · · · (9.43)

and insert Eq. (9.43) into Eq. (9.42), obtaining

ȧ
(0)
k
+ 𝜆ȧ(1)

k
+ 𝜆2ȧ

(2)
k
+ · · · = 𝜆

(−i)
ℏ

∑
n

Ĥ ′
kn
ei𝜔knt(a(0)n + 𝜆a(1)n + 𝜆2a

(2)
n + · · ·) (9.44)

Hence, by equating the coefficients of equal powers of 𝜆 from both sides of

Eq. (9.44), we can write

ȧ
(j)
k
= − i

ℏ

∑
n

Ĥ′
kn
ei𝜔knta

(j−1)
n ; 𝜔kn ≡ Ek − En

ℏ
, j = 1, 2, 3, … (9.45)

In this manner, ak(t) can be found iteratively to an arbitrary order in 𝜆, given the

initial condition {a(0)n }. To be specific, let us consider the system initially in the

mth eigenstate

a
(0)
m = 1, a

(0)
n = 0, n ≠ m (9.46)
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Then, Eq. (9.45) simply reduces to

ȧ
(1)
k
= − i

ℏ
Ĥ′

km
ei𝜔kmt (9.47)

Harmonic Perturbation

The interaction of the practical interest is the harmonic interaction between two

systems. Thus, consider the perturbation oscillating with frequency 𝜔

Ĥ ′(t) = Ĥ′e−i𝜔t + Ĥ′∗e+i𝜔t (9.48)

When Eq. (9.48) is inserted in Eq. (9.47) and the integration in time is carried out,

there results

a
(1)
k
(t) = −i

ℏ ∫
t

0

dtĤ ′(t)ei𝜔kmt

= −i
ℏ

[
Ĥ ′

km

ei(𝜔km−𝜔)t − 1

i(𝜔km − 𝜔)
+ Ĥ′∗

km

ei(𝜔km+𝜔)t − 1

i(𝜔km + 𝜔)

]
(9.49)

We next consider the resonant interaction in which |𝜔km| ≈ 𝜔. In this case, one of

the two terms is dominant and we may disregard the other term and write

a
(1)
k
(t) =

∓iĤ ′
km

ℏ

e±i(𝜔a−𝜔)t − 1

i(𝜔a − 𝜔)
≡ ∓iĤ′

km
e±i(𝜔a−𝜔)t∕2

ℏ

sin[(𝜔a − 𝜔)t∕2]
(𝜔a − 𝜔)∕2

,

𝜔a =
||||Em − Ek

ℏ

|||| (9.50)

where𝜔a is themagnitude of the atomic transition frequency, and the trigonomet-

ric identity sin x = [exp(ix) − exp−(ix)]∕2i has been used. Hence, the probability

of the atomic system being in the state k at time t is given by

|a(1)
k
(t)|2 = |Ĥ′

km
|2

ℏ2

sin 2[(𝜔a − 𝜔)t∕2]
[(𝜔a − 𝜔)∕2]2

(9.51)

9.2.1

Fermi’s Golden Rule

In the long time limit, the probability can be expressed in terms of the 𝛿-function.

One of the representations of the 𝛿-function is given by

𝛿(𝜔a − 𝜔) ≡ lim t→∞
2

𝜋

sin 2[(𝜔a − 𝜔)t∕2]
t(𝜔a − 𝜔)2

(9.52)

so that in the long time limit, Eq. (9.51) can be expressed as

|a(1)
k
(t)|2 = |Ĥ′

km
|2

ℏ2
2𝜋t𝛿(𝜔a − 𝜔) (9.53)

Therefore, the transition rate from the initial m to the final k state is given from

Eq. (9.53) by

Wmk =
d

dt
|a(1)

k
(t)|2 = 2𝜋|Ĥ ′

km
|2

ℏ2
𝛿(𝜔a − 𝜔) =

2𝜋|Ĥ′
km
|2

ℏ
𝛿(|Ek − Em| − ℏ𝜔) (9.54)
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where use has been made of the identity 𝛿(x) = a𝛿(ax). Equation (9.54) is

the celebrated Fermi’s golden rule and is extensively utilized for describ-

ing the transitions in a variety of physical processes. When the final state

consists of quasi-continuous states as sketched in Figure 9.2, the transition

rate is given by

Wm→k =
∑
k

Wmk =
2𝜋|Ĥ ′

km
|2

ℏ2 ∫
∞

−∞
𝛿(𝜔a − 𝜔)𝜌(𝜔a)d𝜔a

=
2𝜋|Ĥ′

km
|2

ℏ2
𝜌(𝜔) (9.55)

where the density of states 𝜌has been introduced for summing over the final states.

Fermi’s golden rule Eq. (9.54) has been derived in the long time limit in which

2𝜋

t
≪ Δ𝜔a (9.56)

where Δ𝜔a is the atomic line width (see Figure 9.2). Otherwise, the probability

(Eq. (9.51)) cannot be approximated by the 𝛿-function. In addition, the transition

rate has been derived by using the first-order solution of the expansion coeffi-

cients. Therefore, in order for the transition rate to be valid, the condition should

hold, namely, |a(1)
k
|≪ 1, which can be specified from Eq. (9.50) by

|a(1)
k
(t)| ≃ Ĥ′

km

ℏ

sin[(𝜔a − 𝜔)t∕2]
(𝜔a − 𝜔)∕2

≈
Ĥ′

km
t

ℏ
≪ 1 (9.57)

Therefore, the limits of validity of Fermi’s golden rule is given from Eq. (9.56) and

(9.57) by

|Ĥ ′
km
|

ℏ
≪

1

t
≪ Δνa, Δ𝜔a = 2𝜋Δνa (9.58)

1.0

(a) (b)

Em

Eko

2π/t

t2

t1

t2 > t1
{k}

0

sin2[1/2(ωkm–ω)t]

ρ(ωkm)

ωkm–ω

[1/2(ωkm–ω)t]2

Figure 9.2 The transition from the initial m to final quasi-continuous k states (a). The den-

sity of states 𝜌(𝜔) of the final k-states and the frequency profile of the expansion coefficient|a(1)
k
(t)|2 at different times (b).
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Problems

9.1 The Hamiltonian of an anharmonic oscillator is given by

Ĥ = − 1

2m

∂2
∂x2

+ 1

2
k1x

2 + k2x
3 + k3x

4; k1 ≫ k2, k3

Find the first-order corrections in the eigenenergy and eigenfunction.

9.2 Consider an isotropic 2D harmonic oscillator, coupled via a perturbing

Hamiltonian:

Ĥ =
(
− 1

2m

∂2
∂x2

+ 1

2
kx2
)
+
(
− 1

2m

∂2
∂y2

+ 1

2
ky2
)
+ Ĥ′; Ĥ′ = Cxy

(a) Find the energy eigenfunction and eigenvalue without Ĥ ′.

(b) Find the shift in energy level of the ground and first excited states up to

the second-order perturbation analysis.

(c) Introduce new coordinates ξ = x + y, 𝜂 = x − y and express the total

Hamiltonian in terms of 𝜉, 𝜂.

(d) Find energy eigenfunction and eigenvalues in terms of 𝜉, 𝜂 and compare

the result with those obtained in (b).

9.3 .(a) Derive the coupled equation (9.30) from Eq. (9.29) by performing

appropriate inner products.

(b) Derive the coupled equation (9.42) from Eq. (9.41) by performing the

inner product with respect to uk.

9.4 Consider an electron in a nanowire in the z-direction with the cross-

sectional area on the x–y plane given by W ×W . An electric field E is

applied in the x-direction.

(a) Find the interaction Hamiltonian and set up the energy eigenequation

inside the nanowire.

(b) Find the first-order corrections in the eigenfunction and eigenvalue in

the ground state.

9.5 TheH-atom is placed in a linearly polarized and circularly polarized electric

field varying harmonically in time, so that the perturbing Hamiltonians are

given by

Ĥ ′ = −(−eE)•r = ezE0 cos𝜔t; E = ẑE0 cos𝜔t

Ĥ′ = eE•r = exE0 cos𝜔t + exE0 sin𝜔t; E = E0(x̂ cos𝜔t + ŷ sin𝜔t)

where r is the displacement of the electron from the nucleus.

Given an eigenfunction unl0, find the final states un′l′m′ to which the electron

can make the transition. The condition imposed on n′, l′, m′ is called the

selection rule.

Hint: Consider the matrix element in Fermi’s golden rule.

9.6 Consider a charged 1D harmonic oscillator with the charge-to-mass ratio

q∕m. The HO is in the nth eigenstate at t = 0. A harmonic electric field

E(t) = E0 cos𝜔0t

is applied.
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(a) Write down the perturbing Hamiltonian and evaluate the matrix ele-

ment ⟨un|Ĥ ′|un′⟩ and specify the final states to which the transition can
occur.

(b) Find the probability that the oscillator makes the transition to those

connected final states at t = 𝜋∕𝜔0.

Suggested Readings

1. A. Yariv, An Introduction to Theory and

Applications of Quantum Mechanics,

John Wiley & Sons, 1982.

2. D. M. Kim, Introductory Quantum

Mechanics for Semiconductor Nan-

otechnology, Wiley-VCH, 2010.

3. S. Gasiorowics, Quantum Physics, Third

Edition, John Wiley & Sons, 2003.

4. A. I. M. Rae, Quantum Mechanics, Fourth

Edition, Taylor & Francis, 2002.



117

10

System of Identical Particles and Electron Spin

The spin is one of the defining characteristics of the electron and is discussed

in conjunction with the system of identical particles. The helium atom is cho-

sen for discussion as a prototypical example of the two spin 1/2 system. Also, the

multi-electron atoms are briefly considered by using theH-atom theory, exclusion

principle, and the periodic table. Additionally, the fine structure in atomic spec-

tral lines is analyzed in correlationwith the spin–orbit coupling, Zeeman splitting,

and electron paramagnetic resonance.

10.1

Electron Spin

It has been shown experimentally that the electron possesses two spin states, spin-

up and spin-down.The spin critically affects the physical and chemical properties

of the atoms andmolecules and is also responsible for the fine structures observed

in spectral lines. We can treat the spin operators and spin states in analogy with

the angular momentum operators and its eigenfunctions. We thus introduce

ŝz𝜒± =
(
±1

2
ℏ
)

𝜒± (10.1)

ŝ2𝜒± =
1

2

(
1

2
+ 1
)

ℏ2𝜒± =
3

4
ℏ2𝜒± (10.2)

where ŝz, ŝ
2, and 𝜒± correspond to l̂z, l̂

2, and Ym
l
(see Eq. (8.24)).

Figure 10.1 shows the two spin states: spin-up and spin-down.We can also intro-

duce the spin flip operators ŝ+, ŝ−, which flip the spin-down state to spin-up state

and vice versa

ŝ+𝜒− =
ℏ

2
𝜒+, ŝ+ ≡ 1

2
(̂sx + îsy), ŝ+𝜒+ = 0 (10.3a)

ŝ−𝜒+ =
ℏ

2
𝜒−, ŝ− ≡ 1

2
(̂sx − îsy), ŝ−𝜒− = 0 (10.3b)

where the operators ŝx and ŝy correspond to l̂x and l̂y, respectively. The spin func-

tions are orthonormal as the spherical harmonics, that is,⟨𝜒±|𝜒±⟩ = 1, ⟨𝜒+|𝜒−⟩ = ⟨𝜒−|𝜒+⟩ = 0 (10.4)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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z

ħ1

2
+ 

ħ1

2
–

Figure 10.1 The spin-up and spin-down states of the elec-

tron.

and the commutation relations involving ŝx, ŝy, and ŝz are the same as those involv-

ing l̂x, l̂y, and l̂z and can thus be summarized with the use of Eq. (8.8) as

ŝ × ŝ = i
ℏ

2
ŝ (10.5)

10.1.1

Pauli Spin Matrices

The basic properties of the spin are conveniently described by the 2 × 2 Pauli

spin matrices. In this matrix representation, the spin-up and spin-down states are

denoted by the column vectors

𝜒+ =
(
1

0

)
, 𝜒− =

(
0

1

)
(10.6)

and the spin operators are represented by

ŝ ≡ ℏ

2
𝜎; 𝜎x =

(
0 1

1 0

)
, 𝜎y =

(
0 −i
i 0

)
, 𝜎z =

(
1 0

0 −1

)
(10.7)

The spin flip operators then read as

ŝ+ =
ℏ

2

[
1

2

(
𝜎x + i𝜎y

)]
= ℏ

2

(
0 1

0 0

)
; ŝ− =

ℏ

2

[
1

2

(
𝜎x − i𝜎y

)]
= ℏ

2

(
0 0

1 0

)
(10.8)

These spin matrices describe the properties of the spin given in Eqs. (10.1)–(10.5)

by the simple matrix algebra.

10.2

Two-Electron System

Let us consider a system of two electrons bound to a common nucleus. Classi-

cally, it is possible to distinguish identical particles, but in quantummechanics, it
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is not possible to distinguish configurations of identical particles by exchange of

particles.This is evident from the fact that an electron is essentially a charge cloud,

and it is not possible to disentangle the overlapped charge cloud and to identify

each electron.

The Hamiltonian of a system with two noninteracting electrons is given by

Ĥ(1, 2) = Ĥ(1) + Ĥ(2), j ≡ r
j
, j = 1, 2 (10.9)

where each electron is in an eigenstate of the hydrogenic subsystem

Ĥ(j)u𝛾 (j) = E𝛾u𝛾 (j), 𝛾 = 𝛼, 𝛽 (10.10)

with 𝛼, 𝛽 denoting the quantum numbers n, l,m.Then, the product of wavefunc-

tions

𝜑𝛼𝛽 (i, j) = u𝛼(i)u𝛽(j), i, j = 1, 2 (10.11a)

satisfy the eigenequation

Ĥ(1, 2)𝜑𝛼𝛽 (i, j) = (E𝛼 + E𝛽)𝜑𝛼𝛽 (i, j) (10.11b)

Also the symmetric and antisymmetric combinations

𝜑𝛾 =
1√
2
[𝜑𝛼𝛽 (1, 2) ± 𝜑𝛼𝛽(2, 1)], 𝛾 = s, a (10.12)

qualify as the eigenfunctions with the same eigenvalue.

Fermions andBosons: Electrons belong to the group of particles called fermions,

having half odd integer spins ℏ∕2, 3ℏ∕2, 5ℏ∕2, and so on. Protons and neu-

trons are also well-known fermions. The fermions are constrained by the

Pauli exclusion principle, which prohibits two fermions to occupy simul-

taneously a common quantum state. Bosons constitute another group of

particles with integer spins ℏ, 2ℏ, 3ℏ, and so on, and are free of the exclusion

principle. Photons, deuterons, and alpha particles are typical examples.

Slater determinant: The fermions are described by antisymmetric wave-

function, which is conveniently represented by the Slater determinant.

For the two-electron system, the eigenfunction is represented by 2 × 2

determinant as

𝜑a(1, 2) =
1√
2!

|||||u𝛼 (1) u𝛼(2)
u𝛽(1) u𝛽(2)

||||| = 1√
2!
[u𝛼(1)u𝛽(2) − u𝛼(2)u𝛽(1)] (10.13)

Likewise, the wavefunction of N noninteracting fermions is described by

N × N determinant. In this representation, if two quantum numbers are

identical, that is, 𝛼 = 𝛽, the determinant vanishes by definition and is con-

sistent with the exclusion principle.
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10.2.1

Helium Atom

The He-atom consists of two electrons bound to the common nucleus with two

protons Z = 2 (Figure 10.2). The Hamiltonian is thus given by

Ĥ =
2∑
j=1

(
− ℏ2

2𝜇
∇2

j
−

Ze2
M

rj

)
+ Ĥ12; Ĥ12 =

e2
M

r12
, Z = 2 (10.14)

where the terms in the parenthesis account for two electrons bound to the com-

mon nucleus with two protons (Z = 2), and the second term represents the repul-

sive Coulomb interaction between the two electrons.

Singlet and Triplet States

The two electrons as two Fermions should be described by the antisymmetric

wavefunction. To construct such wavefunctions, it is convenient to symmetrize

and antisymmetrize the two spin states (Figure 10.3):

r1

r2

r12

Figure 10.2 The helium atom with two protons

in the nucleus (Z = 2) and two electrons outside

the nucleus. The volume elements of the two-

electron charge cloud are also shown.

+ 

+ 

−1

1

0 0

0ħ

Figure 10.3 The triplet state with m = −1, 0, 1 and the singlet state with m = 0.
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𝜒s =
⎧⎪⎨⎪⎩

𝜒+ (1)𝜒+(2)
1√
2
[𝜒+(1)𝜒−(2) + 𝜒−(1)𝜒+(2)]

𝜒−(1)𝜒−(2)

(10.15a)

𝜒a =
1√
2
[𝜒+(1)𝜒−(2) − 𝜒−(1)𝜒+(2)] (10.15b)

so that

sz𝜒s ≡ (s1z + s1z)𝜒s = mℏ𝜒s, m = 1, 0,−1 (10.16a)

sz𝜒a ≡ (s1z + s1z)𝜒a = mℏ𝜒a, m = 0 (10.16b)

Clearly, 𝜒 s has three projections onto the z-axis, while 𝜒a has a single projection,

and it is for this reason that 𝜒 s, 𝜒a are called the triplet and singlet states, respec-

tively.

Ground State

Theground state of theHe-atom consists of two electrons in the respective ground

state of two hydrogenic subsystems, and the wavefunction is thus given by

𝜑0(1, 2) = u100(r1)u100(r2)𝜒a (10.17)

Since u100(r1)u100(r2) is symmetric, the singlet state 𝜒a has to be combined to

make the total wavefunction antisymmetric.The ground state energy is then given

to the first order of approximation by

E
(1)
0
= ⟨𝜑0(1, 2)| 2∑

j=1
Ĥj + Ĥ12|𝜑0(1, 2)⟩ = E0 + ΔE0 (10.18a)

where the first term

E0 =
2∑
j=1
⟨u100(j)|

(
− ℏ2

2𝜇
∇2

j
−

Ze2
M

rj

)|u100(j)⟩ = 2 ×

(
−
Z2e2

M

2a0

)
(10.18b)

is the total energy of two electrons in their respective ground states, while ΔE0

accounts for the first-order level shift due to Ĥ12 (see Eq. (9.13)).

ΔE0 = ⟨𝜑0(1, 2)| e2Mr12 |𝜑0(1, 2)⟩ (10.18c)

The evaluation of Eq. (10.18c) is facilitated by the fact that 1∕r12 is the generating
function of the Legendre polynomial:

1

r12
≡ 1|r

1
− r

2
| = 1

r>

[
1 + w

r<

r>
+ 1

2

(
3w2 − 1

)( r<

r>

)2

+ · · ·

]
, w = cos 𝜃

(10.19)

where r>, r< denote the greater and lesser of r1, r2 and the expansion coefficient

of (r<∕r>)n is the nth order Legendre polynomial Pn(w) and 𝜃 the angle between
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r1, r2. Let us take r1 parallel to the z-axis when carrying out the r2-integration in

Eq. (10.18c) by using Eq. (10.19). Then, 𝜃 becomes the polar angle, in which case

only the first term in Eq. (10.19) ∝ P0(w) contributes to the 𝜃-integration. This is

because the Legendre polynomials are orthonormal (see Eq. (8.22)), and P0(w) is a

constant. Therefore, the angular integration yields (4𝜋)2, and we can perform the

radial integration, obtaining

ΔE0 =
e2
M

𝜋2

(
Z

a0

)6

(4𝜋)2∫
∞

0

r21dr1e
− 2Zr1

a0

[
1

r1 ∫
r1

o

r22dr2e
− 2Zr2

a0 + ∫
∞

r1

r2dr2e
− 2Zr2

a0

]
=

5Ze2
M

8a0
(10.20)

where the r2-integration was carried out in two regions r2 ≤ r1 and r2 ≥ r1.

Ionization Energy

The ground state energy of the He-atom is obtained by combining Eqs. (10.18b)

and (10.20):

E0 = 2 ×

(
−
Z2e2

M

2a0

)
+

5Ze2
M

8a0
= −

Ze2
M

a0

(
Z − 5

8

)
, Z = 2 (10.21)

Without the repulsive interaction between the two electrons, E0 consists of two

ground state energies of the hydrogenic atom.Then, the first and second ionization

energies IP1, IP2 responsible for He → He+ + e, He+ → He++ + e should be the

same and is given from Eq. (8.46) by

IP1 = IP2 ≡
|||||− e2

M

2a0
Z2
||||| = 13.6 × 22 eV = 54.4eV (10.22)

However, themeasured data of IP1 is 24.6 eVwhile that of IP2 is 54.4 eV. It is there-

fore clear that there is a good agreement between theory and experiment with

regard to IP2. This is expected because with one electron left alone after the first

ionization,He+ becomes identical to theH-atomwithZ = 2, and IP2 can therefore

be precisely quantified by the H-atom theory Eq. (8.46).

The fact that the IP1-data is smaller than 54.4 eV is explained as follows. The

first ionization involves two processes, namely, one electron is removed from the

ground state to the vacuum level, while the other forms a hydrogenic atom with

Z = 2.Therefore, IP1 is by definition the energy required to boost the ground state

energy of the He-atom to that of hydrogenic atom He+, that is,

IP1 ≡ −
Z2e2

M

2a0
−

[
−
Ze2

M

a0

(
Z − 5

8

)]
=

Z2
eff
e2
M

2a0
, Z2

eff
= Z
(
Z − 5

4

)
(10.23)

With Z = 2, IP1 amounts to about 20.46 eV, in better agreement with the data. It

is therefore clear that the smaller IP1 compared with IP2 is due to the screening

of the nuclear charge by one electron to the other, which is being removed for the

first ionization. Consequently, Zeff is less than Z. The screening is brought about

by the repulsive Coulomb interaction between the two electrons.
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The First Excited State

The first excited state of the He-atom consists of one electron in the ground state,

while the other in the first excited state of the hydrogenic atom.Thewavefunctions

are thus given by

𝜑s =
1√
2
[u1s(1)u2s(2) + u1s(2)u2s(1)]𝜒a (10.24a)

𝜑a =
1√
2
[u1s(1)u2s(2) − u1s(2)u2s(1)]𝜒s (10.24b)

The symmetric and antisymmetric energy eigenfunctions have to be combined

with the singlet and triplet states Eq. (10.15) to make the total wavefunction anti-

symmetric.

Overlap and Exchange Integrals

For 𝜑s, the energy of the first excited state is given to the first order of approxima-

tion by

E(1)
0s
= ⟨𝜑s|Ĥ1 + Ĥ2 + Ĥ12|𝜑s⟩ = −

Z2e2
M

2a0
−

Z2e2
M

2a0

1

4
+ ΔEs (10.25)

where the inner product of 𝜒a with itself yields unity, and the first two terms cor-

respond to the ground and first excited states of the hydrogenic subsystem. The

third term ΔEs accounts for the repulsive electron–electron interaction and is

given by

ΔEs =
1

2
⟨u1s(1)u2s(2) + u1s(2)u2s(1)|Ĥ12|u1s(1)u2s(2) + u1s(2)u2s(1)⟩

= J + K (10.26)

with J and K denoting the integrals

J = ∫ ∫ dr
1
dr

2
u21s(1)

e2
M

r12
u22s(2) > 0 (10.27)

K = ∫ ∫ dr
1
dr

2
u1s(1)u2s(2)

e2
M

r12
u1s(2)u2s(1) > 0 (10.28)

The four integrals in Eq. (10.26) are reduced to J- andK-integrals upon interchang-

ing the variables of integration r1, r2.
The J-integral is known as the overlap integral and represents the repulsive

Coulomb interaction between the two electrons in 1s and 2s states, respectively.

The integrand of theK-integral consists of two products of u1s u2s in which the two

electrons are exchanged. The integrand results from symmetrizing or antisym-

metrizing the wavefunctions, and the K-integral is called the exchange integral.

We can carry out a similar analysis for the triplet state. Hence, the energy eigen-

values of the singlet and triplet states are given by

E
(1)
0s
= E0 + J + K ; E

(1)
0t
= E0 + J − K (10.29)
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E0

E0 + J 
2K

(b)(a)

E0 + J + K  

E0 + J − K  

Figure 10.4 The splitting of the energy

level of the first excited state of the He-atom.

The higher and lower levels correspond to

the symmetrized and singlet state and anti-

symmetrized and triplet state, respectively.

Also shown are the electron charge clouds

of symmetrized (a) and antisymmetrized (b)

states. The probability density is commensu-

rate with the degree of brightness.

It is therefore clear that the energy of the first excited state associated with the

triplet state is lower than that of the singlet state by the amount 2K as shown in

Figure 10.4. This is due to the fact that in the singlet state, the symmetric combi-

nation of u1s, u2s renders the probability densities high when the two electrons are

close to each other (Figure 10.4). But the corresponding probability density ismin-

imal for the triplet state, in which u1s, u2s are combined antisymmetrically. Thus,

the repulsive interaction between two electrons is accounted for more effectively

in the singlet state, hence higher energy level. In this way, the spin states critically

affect the energy level, although the spin functions do not enter in the evaluation

of the energy level.

10.2.2

Multi-Electron Atoms and Periodic Table

The Electron Configuration

We next discuss the periodic table based on the H-atom theory and the exclusion

principle.The atomic structures are systematically organized in the periodic table.

The general features of the table are as follows: (i) it consists of rows, called periods,

which are comprised of 2, 8, 8, 18, 32, 32 elements from top to down and (ii) the

elements in the same columnor group exhibit similar properties, including IP1 and

other parameters. The quantum states in the multi-electron atoms are labeled by

the quantum numbers n, l, and s. Also, the number of quantum states in one sub-

shell for given l is specified by the combination of two spin states and magnetic

quantum numbers varying from −l to l in steps of unity.

The energy level of a quantum state is determined primarily by the principal

quantum number n, but for given n, the level further splits into the sublevels,

depending on l. The sub-shell energy is raised with increasing l or equivalently
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centrifugal force.The electrons in the multi-electron atom fill the quantum states,

one by one according to the exclusion principle, starting from the lowest energy

level. For given n electrons fill the sub-shells with l ranging 1, 2, 3 and so on.These

states are denoted by s, p, d and so forth. The process goes on until all electrons

are assigned to the quantum states available.

The electronic and chemical properties of atoms are mainly determined by

valence electrons in the outermost atomic orbital. Also the separation between

the highest occupied energy level and lowest unoccupied level on top of it

is an important parameter. The specification of electrons with the use of the

quantum numbers n, l is called the electron configuration. For instance, the

electron in the ground state of the H-atom is specified by n = 1, l = 0, or 1s1.

Likewise, the two electrons in He-atom are denoted by 1s2, which also indicates

that the s sub-shell is filled up by two electrons with spin-up and -down states,

respectively.

The atoms in the second row of the table starts fromLi and ends withNe and the

ground state electron configurations are [He]2s, [He]2s2, [He]2s22p, [He]2s22p2,
[He]2s22p3, [He]2s22p4, [He]2s22p5, [He]2s22p6 for Li, Be, B, C,N,O, F,Ne, respec-

tively. Understandably, the configuration 1s2 is often denoted by [He]. A similar

electron configuration follows for the third period starting with Na and ending

with Ar with Ne serving as the main core (Table 10.1).

First Ionization Energy IP1 and Electron Affinity

IP1 is an important parameter of the atom. ForH-atom, IP1 is the energy necessary

to release a single electron from the ground state to the vacuum level. For He-

atomwith two electrons, two ionization energies IP1, IP2 are involved as discussed.

Given an atom, IP1 is responsible for the process A → A+ + e.The inverse process

A + e → A− is associated with the energy called electron affinity (EA). The EA is

the energy released by a free electron at rest when it is captured by a neutral atom

into a bound state.

Typical data of IP1 are shown in Table 10.1. The data clearly indicate that IP1
increases across a given period, but it drops sharply, as the next period begins. For

example, IP1 of 5.39 eV for Li ismuch smaller than IP1 of 24.58 eV forHe, although

the Li atom has one more proton in the nucleus than the He atom. The behavior

Table 10.1 The first two periods in periodic table, showing the ground state configurations

and the first ionization potentials.

H
1s1

IP113.595 24.580

Li

5.390

Be

9.320

B

8.296

C

11.264

N

14.54

O

13.614

F

17.42

Ne

21.559

2s1 2s2 2s2 2p1 2s2 2p2 2s2 2p3 2s2 2p4 2s2 2p5 2s2 2p6

He
1s2
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of IP1 can be interpreted, based on the ionization energy of the hydrogenic atom

and the screening of the nuclear charge:

IP1 ≃ Z2
eff

e2
M

2a0

1

n2

For Li atom, the valence electron in the outermost atomic orbital is in 2s state, and

the measured IP1 of 5.39eV indicates efficient screening of the nuclear charge of

three protons by two inner-lying 1s electrons. With increasing Z and increasing

number of protons in the same period, all electrons added reside in the same sub-

shell in the outer orbital. Consequently, the efficiency of screening by these added

electrons is low for one of the valence electrons released for the first ionization.

Hence, IP1 increases steadily until the closed shell atom of Ne is reached.With the

beginning of new period, starting with Na atom, however, the valence electron is

in 3s state alone, while the rest of the electrons fill up the inner lying sub-shells,

screening efficiently the nuclear charge. As a result, IP1 again drops sharply and

becomes comparable with that of Li.

10.3

Interaction of Electron Spin with Magnetic Field

It has been found experimentally that in a magnetic field B, the frequency of radi-
ation emitted by the H-atom is shifted from the frequency emitted without B.
Moreover, the magnetic field causes some of the spectral lines to split. The effect

is known as Zeeman splitting, and these phenomena are discussed semiclassically.

Orbital Magnetic Moments

Thus, consider an electron moving in the circular orbit around the nucleus in the

presence of a time-varying magnetic field. The work done on the electron by an

electric field E entailed in such a motion is given by

Ws ≡ −e∫C

E ⋅ ds = −e∫S

(∇ × E) ⋅ n̂da = e
∂
∂t∫S

B(t) ⋅ n̂da (10.30)

where Ws is the work done per revolution, n̂ the unit vector normal to the orbit

plane, and ds the differential line vector along the contour C. The line integral is

converted to the surface integral via Stokes theorem in the first equality, and the

second one simply reiterates Faraday’s law of induction (Eq. (1.21)).

An electron moving with the linear momentum p completes the revolution in

the circular orbit of radius r in the time period T = 2𝜋r∕(p∕m). Hence, for a spa-

tially homogeneous B(t), the work dW done on the electron in dt is given by Ws

times the number of revolutions made during dt:

dW =Ws ×
dt

T
=

erp

2m
dBn(t), Ws = e𝜋r2

∂Bn(t)
∂t

(10.31)
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where Bn is the normal component of B. Hence, a simple time integration yields

W ≡ Ĥ′
lm
= e

2m
l̂ ⋅ B, l̂ = r × p (10.32)

In this way, the orbital angular momentum l of the electron naturally enters in the

interaction Hamiltonian and singles out Bn bymeans of the scalar product withB.
The Hamiltonian can also be expressed in terms of the orbital magnetic moment

𝝁l as

Ĥ ′
lm
= −𝜇

l
⋅ B; 𝜇

l
≡ −gl

e

2m
l̂ = −gl𝜇B

l̂

ℏ
, 𝜇B ≡ eℏ

2m
, gl = 1 (10.33)

The magnitude of 𝝁l is by definition equal to the product of the orbit area 𝜋r2

and the current −e/T , and 𝝁l and l are directed in opposite directions due to the

negative electron charge. The constant gl connecting l and 𝝁l is called the gyro-

magnetic ratio and is equal to unity for l, and the Bohr magnetron 𝜇B has the

value 9.272 × 10−24 (Jm2)Wb−1, with Wb denoting the Weber.

The coupling of the electron spin withB can likewise be expressed in strict anal-

ogy with Eq. (10.33) as

Ĥ ′
sm = −𝜇

s
⋅ B, 𝜇

s
≡ −gs𝜇B

ŝ

ℏ
, gs = 2 (10.34)

where the gyromagnetic ratio gs is experimentally found twice as large as gl. The

discrepancy between gl and gs is referred to as themagnetic spin anomaly. Let us

take B in the z-direction and express the total interaction Hamiltonian as

Ĥ′
m = Bgl𝜇B

(
l̂z

ℏ
+ 2

ŝz

ℏ

)
(10.35)

10.3.1

Spin–Orbit Coupling and Fine Structure

An electron moving in a circular orbit around the nucleus generates its own mag-

netic field B at its site. The B-field in turn induces the spin–orbit coupling as

follows. Thus, consider an electron moving in circular orbit with a velocity v at r
displacement from the nucleus. The electron motion is equivalent to the nucleus

moving around the electron at −r with charge Ze in the reference frame in which

𝜇sz 𝜇sz

ν

ν

r

(a) (b)

+
+

−
−−r

Figure 10.5 The circular motion of an electron around the proton (a). The equivalent circu-

lar motion of the proton around the electron (b).
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the electron is at rest as shown in Figure 10.5. The magnetic field B generated at

the site of the electron can in turn be transformed back to the center ofmass frame

in which the nucleus is practically at rest:

B
l
= 1

2

{
Ze𝜇0

4𝜋r3

[
v ×
(
−r
)]}

=
Ze𝜇0

8𝜋r3me

l, l ≡ r ×mev (10.36)

Equation (10.36) is the well-known Biot–Savart law and 𝜇0,me, l are the vacuum
permeability, the rest mass, and angular momentum of the electron, respectively.

The factor 1/2 entering in the back transformation is called theThomas factor.

The B-field thus generated interacts in turn with the electron spin magnetic

moment 𝝁s and yields the interaction Hamiltonian given from Eqs. (10.34) and

(10.36) by

Ĥ′
so ≡ −𝜇

s
⋅ B

l
=

gs
ℏ

𝜇Bf (r)(̂s ⋅ l̂), f (r) =
Ze2𝜇0

8𝜋m2
e r

3
(10.37a)

Or with the use of the vector identity involving the total angular momentum j
j2 ≡ (l + s) ⋅ (l + s) = l2 + s2 + 2s ⋅ l

the spin orbit coupling (Eq. (10.37a)) can be expressed in terms of j as

Ĥ′
so ≡ gs

2ℏ
𝜇Bf (r)(̂j2 − l̂2 − ŝ2) (10.37b)

Naturally, the radius r of the circular orbit has to be treated by its expectation

value.The total interaction Hamiltonian of the H-atom underB is given from Eqs.

(10.35) and (10.37) by

Ĥint = Bgl𝜇B

(
l̂z

ℏ
+ 2

ŝz

ℏ

)
+

gs
2ℏ

𝜇Bf (r)(̂j2 − l̂2 − ŝ2) (10.38)

Fine Structure of Spectral Lines

We next consider the effects of the spin–orbit coupling in the absence of B. In
this case, we can introduce the eigenfunction of ĵ in analogy with that of l̂ (see Eq.

(8.24)):

ĵ2|j,mj⟩ = ℏ2j(j + 1)|j,mj⟩, |j,mj⟩ = Y
mj

j
(10.39a)

ĵz|j,mj⟩ = mj|j,mj⟩, mj = −j,−j + 1, … , j − 1, j (10.39b)

The detailed derivation of Eq. (10.39) is given in the reference books listed at the

end of this chapter. The eigenfunction can also be used as the eigenfunction of l̂,

ŝ, as the three angular momentum operators commute.

Therefore, the shift in the energy level due to the spin–orbit coupling can be

found by using Eqs. (10.38) and (10.39) as

𝛿Eso ≡ ⟨j,mj|Ĥ ′
so|j,mj⟩ = gs𝜇B

2
⟨f (r)⟩[j(j + 1) − l(l + 1) − s(s + 1)] (10.40)

where the expectation value of f (r) has to be evaluated to the first order of approxi-

mation by using the radial part of thewavefunction (Eq. (8.49)).The allowed values
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Figure 10.6 The spin–orbit coupling-

induced splitting of the energy level of the

one-electron atom.

of j for given l and s are j = l ± s, and the associatedmj varies from−j to j in steps of
unity. For a single electron, s = 1∕2, hence j = l ± 1∕2.The energy level for given l

then splits into two according to Eq. (10.40), one raised while the other lowered by

amounts proportional to l and l+ 1, respectively. For l = 0, however, j = s = 1∕2,
and there is no splitting. Figure 10.6 shows the energy levels corresponding to

l = 0, 1, 2.

10.3.2

Zeeman Effect

When a strong magnetic field B is applied, the spin–orbit coupling can be

neglected. In this case, the splitting of the energy level due to B is found precisely

by using Eq. (10.38) and the unperturbed eigenfunction as

ΔEm = eB

2me

⟨unlm𝜒± |̂lz + 2̂sz|unlm𝜒±⟩
= eBℏ

2me

(ml ±ms) (10.41)

whereml,ms are the magnetic and spin quantum numbers, respectively (see Eqs.

(8.50), (10.1)). For l = 1, the possible values of ml are ±1 and 0, while those of

ms are ±1∕2. Hence, the state with given l and s splits into (2l+ 1)(2s+ 1) equally

spaced levels. In addition, the spin–orbit coupling can be incorporated as a per-

turbing term via the perturbation theory. Thus, with the use of Eq. (10.37a), the

first-order level shift is given from Eq. (9.13) by

𝛿Eso =
gs
ℏ

𝜇B⟨unlm𝜒±|f (r)(̂l ⋅ ŝ)|unlm𝜒±⟩
=

gs
ℏ

𝜇B⟨f (r)⟩nlmℏ2mlms (10.42)

where use has been made of ⟨̂lx⟩ = ⟨̂ly⟩ = ⟨̂sx⟩ = ⟨̂sy⟩ = 0 (see Eqs. (8.25), (10.7)).

WeakMagnetic Field

The weak-field Zeeman effect refers to the case in which Ĥ′
m ≪ Ĥ ′

so. We can

assume in this case that the eigenfunction |j,mj⟩ remains unchanged in the

presence of a weak magnetic field. The energy level associated with given l
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𝜇
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𝜇
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𝜇
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z

𝜇
ℓ

ℓ

Figure 10.7 The orbital l, spin s, and total j

angular momenta and the magnetic moments

associated. Due to the magnetic spin anomaly,

the sum of 𝝁l and 𝝁s is not parallel to 𝝁j , but its

tip stays on the corn surface around 𝝁j .

and s then splits into 2j+ 1 sublevels due to mj varying from j to −j in steps of

unity. However, finding the split energy levels is somewhat complicated, because

the magnetic moment 𝝁j is not parallel to j due to the magnetic spin anomaly

(Figure 10.7). But the tip of 𝝁j lies on the surface of the cone with its axis parallel

to j, and the value of 𝝁j projected onto the j-axis is given from Eqs. (10.31),

(10.37b) by

𝜇j ≡ 𝜇
j
⋅
(
j ∕ j
)
; 𝜇

j
= e

2me

(l + 2s) = e

2me

(j + s)

= e

2mej
(j2 + j ⋅ s) =

ej

2me

(
1 +

j2 − l2 + s2

2j2

)
; j ⋅ s = l ⋅ s + s2 (10.43)

Therefore, by taking B in the z-direction without any loss of generality, we can

quantify the Zeeman splitting of the energy level in terms ofmj as

𝛿Esm = e

2me

⟨j,mj|𝜇j
⋅ ẑB|j,mj⟩ = gj𝜇BmjB (10.44)

where the gyromagnetic ratio

gj = 1 +
j(j + 1) − l(l + 1) + s(s + 1)

2j(j + 1)
(10.45)

is called the Lande g-factor. Note that for s = 0, j = l, and gj = 1, as it should, since

gl = 1. For l = 0, j = s, and gj = 2 as it should, since gs = 2 (see Eqs. (10.33) and

(10.34)).
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10.4

Electron Paramagnetic Resonance

Theelectron paramagnetic resonance is concernedwith transitions of the electron

between the magnetically split energy levels, and it is used for determining the

magnetic moments, structural and dynamical information of liquids and solids,

and so on. The transitions are induced by the microwave field B1(t) applied in the

direction perpendicular to the static field B0. Let us consider the electron in the

ground state of H-atom subjected to such a magnetic field

B = ẑB0 + x̂B1 (t), B1(t) = B1

1

2
(ei𝜔t + e−i𝜔t) (10.46)

The interaction Hamiltonian then reads from Eq. (10.34) as

Ĥ′ = −𝜇
s
⋅ B =

2𝜇B

ℏ
(B0̂sz + B1(t)̂sx) (10.47)

In the presence of B0, the ground state energy splits and is given by

⟨u100𝜒±|Ĥ0 +
2𝜇B

ℏ
B0̂sz|u100𝜒±⟩ = E100 ± 𝜇BB0 (10.48)

When the driving frequency satisfies the condition ℏ𝜔 ≈ 2𝜇BB0, the resonant

transition ensues between the two split levels, provided the transition matrix is

not zero. The Fermi’s golden rule for such a transition is given from Eq. (9.54) by

W = 2𝜋

ℏ

||||⟨𝜒+|| 𝜇B

ℏ
B1 ŝx|𝜒−⟩||||2𝛿(2𝜇BB0 − ℏ𝜔)

=
𝜋𝜇2

B

2ℏ
B2
1𝛿(2𝜇BB0 − ℏ𝜔) (10.49a)

where the matrix element⟨𝜒+ |̂sx|𝜒−⟩ = ⟨𝜒+|(̂s+ + ŝ−)|𝜒−⟩ = 1

2
ℏ (10.49b)

has been evaluated with the use of Eq. (10.3). Also the harmonic components,

exp±i(𝜔 + 𝜔0)t, oscillating rapidly in time have been neglected.

In Figure 10.8 are plotted split energy levels versus B0. The resonant transition

is induced in practice by tuning B0 at a fixed driving frequency 𝜔. Moreover, B0

is not uniform over the volume of the sample due to imperfections of the mag-

net or the local variations caused by neighboring atoms with different magnetic

E0 |χ+>, |χ_>

|χ_>

|χ+>

E1/2
 = E0 + βB

E
–1/2 = E

0 − βB

E1/2 − E–1/2 = 2βB

B = 0 
B

Figure 10.8 The B-field induced splitting of the electron spin up and spin down states:

𝛽 = eℏ/2me.
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moments. Consequently, atoms in different parts of the sample undergo transi-

tions at different resonant frequencies. The effect is accounted for by introducing

the lineshape factor g, which represents the probability of the atom being in mag-

netic field between B and B+ dB. The power absorption is thus given by

P = (N− − N+)⟨W⟩ℏ𝜔V (10.50a)

whereN+,N− are the number of electrons per unit volume in the upper and lower

spin states, respectively, ℏ𝜔 the transition energy, and V the sample volume, and

the transition rate is given from Fermi’s golden rule by

⟨W⟩ = 𝜋𝜇2
B

2ℏ
B2
1∫

∞

−∞
d𝜀g(𝜀 − 2𝜇BB0)𝛿(𝜀 − ℏ𝜔), 𝜀 = 2𝜇BB

=
𝜋𝜇2

B

2ℏ
B2
1g(2𝜇BB0 − ℏ𝜔) (10.50b)

The Spin Flip

We next discuss the dynamics of the spin flip between the spin-up and spin-down

states. The electron spin state can generally be represented in analogy with Eq.

(9.40) by

𝜒(t) = c+(t)e−i(𝜔0∕2)t𝜒+ + c−(t)ei(𝜔0∕2)t𝜒−;
ℏ𝜔0

2
= 𝜇BB0 (10.51)

where±ℏ𝜔0∕2 are the energy eigenvalues of 𝜒+, 𝜒−, and c+(t), c−(t) the expansion

coefficients. The Schrödinger equation is then given from Eq. (10.47) by

iℏ
∂
∂t

𝜒(t) = ℏ
∑
±

[
±
(𝜔0

2

)
c±(t) + ċ±(t)

]
e∓i(𝜔0t∕2)𝜒±

= Ĥ′𝜒(t) =
∑
±

[
±𝜇BB0 +

2𝜇B

ℏ
B1 (t) ŝx

]
c±(t)e∓(i𝜔0t∕2)𝜒± (10.52)

Obviously, the first terms on both sides are identical and are canceled. Thus,

by performing the inner product with respect to 𝜒± with the remaining terms

on both sides and making use of the orthonormality of 𝜒± Eq. (10.4), we obtain

straightforwardly

iℏċ+ = 𝜇BB1e
−iΔtc−, Δ = 𝜔 − 𝜔0 (10.53a)

iℏċ− = 𝜇BB1e
iΔtc+ (10.53b)

Here ℏ𝜔0 is the difference in energy between the spin-up and spin-down states

and Δ the frequency detuning between the driving and transition frequencies. In

deriving Eq. (10.53), the terms oscillating fast with the frequency𝜔 + 𝜔0 have been

discarded in rotating wave approximation. Also ŝx has been replaced by ŝ±, and the

raising and lowering properties of ŝ± have been used (see Eq. (10.3)). For the reso-

nant interaction,Δ = 0, and we can decouple c1, c2 by differentiating (10.53a) with
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respect to time and using Eq. (10.53b), obtaining thereby the differential equation

of the HO:

c̈+ + Ω2c+ = 0, Ω2 ≡
(

𝜇BB1

ℏ

)2

(10.54)

Hence, given the initial condition c+(0) = 1, c−(0) = 0, for example, we obtain

from Eqs. (10.54) and (10.53)

c+ = cosΩt, c− = −i sinΩt (10.55)

and the spin wavefunction (Eq. (10.51)) is then given by

𝜒(t) = cosΩte−i𝜔0t∕2𝜒+ − i sinΩtei𝜔0t∕2𝜒− (10.56)

The evolution in time of the electron spin prepared initially at the state 𝜒+ and

driven by the harmonic field is specified by using Eqs. (10.1)–(10.3) as

⟨̂sz⟩ = ⟨𝜒(t)|̂sz|𝜒(t)⟩ = ℏ

2
[cos 2(Ωt) − sin 2(Ωt)] = ℏ

2
cos 2Ωt (10.57a)

⟨̂sx⟩ = ⟨𝜒(t)|̂sx|𝜒(t)⟩ = ℏ

2
sin(2Ωt) sin(𝜔0t); ŝx = (̂s+ + ŝ) (10.57b)

⟨̂sy⟩ = ⟨𝜒(t)|̂sy|𝜒(t)⟩ = −ℏ

2
sin(2Ωt) cos(𝜔0t); ŝy =

1

i
(̂s+ − ŝ−) (10.57c)

Indeed, the z-component sz(t) flips from the spin-up to -down states or vice versa

with the frequency 2Ω, as expected. Concomitantly, sx(t) and sy(t) precess around

the z-axis with the frequency 𝜔0 called the Lamar frequency. Concomitantly,

the precessing envelope executes sinusoidal oscillation with the frequency 2Ω
(Figure 10.9). This behavior can be viewed in terms of the spinning charge as

follows. The initial spin state 𝜒+ evolves into a linear superposition of 𝜒+ and 𝜒−
driven by the harmonic field B1(t), and sx(t), sy(t) execute oscillations such that

the tip of the spin precesses around the z-axis with the frequency 𝜔0. Moreover,

the radius of the precession is modulated in time in quadrature with sz(t). An

oscillating charge emits or absorbs radiation just as the oscillating atom dipole,

flipping thereby the spin.The amplitude of the oscillation of sx(t) and sy(t) reaches

the maximum level when the tip of the spin lies on the x–y plane.

z

x

y

Figure 10.9 The flipping of the electron spin

from the spin-up to spin-down states while pre-

cessing around the static magnetic field.
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𝝅/2 and 𝝅 Pulses

The degree of the spin flip of sz(t) depends on the duration of B1(t). If the duration

𝜏p is such that τp = (𝜋∕2)∕2Ω ∝ 1∕B10, sz(t) is flipped by 𝜋∕2 and lies on the x–y

plane. At the same time, the amplitudes of sx(t), sy(t) attain the maximum value.

The microwave pulse inducing such rotation is called 𝜋∕2 pulse. If τp = 𝜋∕2Ω, on
the other hand, sz(t) is flipped by 𝜋, completing thereby the flipping of the spin

from the spin-up to -down states. Such a pulse is called the 𝜋 pulse.

Problems

10.1 . (a) By using the Pauli spin matrices and column vectors given in Eqs.

(10.6) and (10.7), verify the basic properties of the spin operators Eqs.

(10.1)–(10.4).

(b) Verify the commutation relation (10.5) by showing that

[̂sx, ŝy] = i
ℏ

2
ŝz, [̂sy, ŝz] = i

ℏ

2
ŝx, [̂sz, ŝx] = i

ℏ

2
ŝy

10.2 By using the ground state wavefunction of the Helium atom given in Eq.

(10.17), evaluate the expectation values of total spin operators Ŝ2, Ŝz with

Ŝ = ŝ
1
+ ŝ

2
.

10.3 The first excited singlet and triplet states of the He-atom are given in

Eq. (10.24).

(a) Show that the wavefunctions are orthonormal.

(b) Find the expectation values of the total spin operators Ŝ2 and Ŝz for

each state.

10.4 TheLi-atom consists of three protons in the nucleus (Z = 3) and three elec-

trons revolving around it.The ground state electron configuration is 1s22s1,

that is, two electrons in u100 state with spin-up and -down and the third one

inu200 statewith spin-up or spin-down.Write down thewavefunction using

the Slater determinant and find the energy and the total spin in the ground

state.

10.5 The sodium atom has 11 protons in the nucleus (Z = 11) and 11 electrons

revolving around the nucleus.

(a) Assign each electron the quantum numbers, including the spin.

(b) The observed ionization energy and orbital radius of the atom are

5.14𝑒𝑉 and 0.17 nm, respectively. Explain the data in terms of the

screening of the nuclear charge.

10.6 . (a) Find the splitting of the energy levels of the H-atom due to the spin

orbit coupling for n = 1, 2, 3. Also derive Eq. (10.53) from (10.52).

(b) Find the modification of the largest wavelength of the Balmer series

incorporating the fine structure in the energy level.
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11

Molecules and Chemical Bonds

Atoms combine to formmolecules by means of the chemical bond.The successful

elucidation of the chemical bonds is again one of the highlights of the quantum

mechanics. There are two kinds of bonds, heteropolar and homopolar. In the

former, an electron is transferred from one neutral atom to the other, and the

resulting two ions of opposite polarity are bound together via the attractive

Coulomb potential. In the latter, two neutral atoms are bound by means of

various other mechanisms. The principles of bonding are discussed, using

simple examples, together with hybridization, an essential element in the organic

molecules.

11.1

Ionized HydrogenMolecule

Let us consider the chemical bonding in the ionized hydrogen molecule H2
+,

which consists of one electron interacting with two protons (Figure 11.1). In

this structure, the two protons repel each other, while the electron and the

two protons attract each other via repulsive and attractive Coulomb forces,

respectively. The problem is then to clarify why the two protons do not to break

away from each other and form instead a stable molecule.

For simplicity of analysis, let us first take the two protons fixed in space. Then,

the Hamiltonian is given by

Ĥ(a, b) = − ℏ2

2m
∇2 − e2M

(
1

ra
+ 1

rb

)
, e2M = e2

4𝜋𝜀0
(11.1)

and partitions into the Hamiltonian of the hydrogenic subsystem formed by one

of two protons, say proton a and the electron with the perturbing term e2
M
∕rb

or vice versa. The wavefunctions ua, ub of two hydrogenic subsystems represent

two identical degenerate states, and we can treat the problem by means of the

degenerate perturbation theory. Thus, we look for the solution in the form

𝜑(r
a
, r

b
) =

∑
𝛼=a,b

c𝛼u𝛼;

(
− ℏ2

2m
∇2 −

e2
M

r𝛼

)
u𝛼 = E0u𝛼 (11.2)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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ra
ra1 ra2

rb2rb1

r12

a

b
Rab

Rab

rb

1

2

a b

(a) (b)

Figure 11.1 The H2
+ molecule, consisting of two protons and a single electron (a). The

H2 molecule, consisting of two protons and two electrons (b). The electron–proton and

electron–electron interactions are distributed over the electron charge cloud.

where E0 is the ground state energy of the H-atom. In this approach, a single

electron is taken to form the hydrogenic subsystems with the two nuclei simul-

taneously or equivalently to be shared by the two nuclei.

The eigenequation reads as

Ĥ(a, b)
∑

𝛼=a•b
c𝛼u𝛼 = E

∑
𝛼=a•b

c𝛼u𝛼 (11.3)

After rearranging the terms with the use of Eqs. (11.1) and (11.2), we can rewrite

Eq. (11.3) as

ca

(
ΔE −

e2
M

rb

)
ua + cb

(
ΔE −

e2
M

ra

)
ub = 0, ΔE ≡ E0 − E (11.4)

Hence, finding the wavefunction is reduced to determining ca and cb. For this pur-

pose, we can carry out the inner products with respect to ua, ub on both sides of

Eq. (11.4), using the orthonormality of ua, ub and obtain the coupled equation

(ΔE + C)ca + (ΔES + D)cb = 0

(ΔES + D)ca + (ΔE + C)cb = 0 (11.5)

where S, C, and D denote the integrals

S = ∫ dru∗a(ra)ub(rb) ≡ ⟨ua|ub⟩ ≡ ⟨ub|ua⟩ (11.6a)

C = ⟨ua| − e2
M

rb
|ua⟩ = ⟨ub| − e2

M

ra
|ub⟩ < 0 (11.6b)

D = ⟨ua| − e2
M

ra
|ub⟩ = ⟨ub| − e2

M

rb
|ua⟩ < 0 (11.6c)

Overlap, Coulomb, and Exchange Integrals

Three kinds of integrals are involved in the coupled equations (Figure 11.2): S is

called the overlap integral and specifies the degree of overlap between ua and ub at
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φ+

y

x

a
b

(a) (b) (c)

b ba ax x

eM
2

Rab

eM
2

Rab

Figure 11.2 The overlapped electron charge

cloud with each cloud centered at protons

a and b in the S-integral (a). The Coulomb

interaction between the electron cloud

centered at proton a and proton b as a

point charge in the C-integral (b). The inter-

action between the overlapped electron

charge cloud with proton a or b in the D-

integral (c).

a given separation of two protons; C is the Coulomb interaction integral, account-

ing for the interaction between proton b for instance and the electron that forms

the hydrogenic subsystem with proton a or vice versa; D is the exchange integral

describing the interaction between the exchange probability density u∗aub and pro-

ton a or b and represents the interaction between the overlapped electron cloud

and proton a or b.

The coupled equation (11.5) is again homogeneous, and therefore ca, cb, hence

𝜑(ra, rb), become trivial, unless the secular equation is satisfied, as discussed:||||| ΔE + C ΔES + D

ΔES + D ΔE + C

||||| = 0 (11.7)

By solving the quadratic equation for ΔE, we obtain

ΔE± ≡ E0 − E = ±D − C

1 ∓ S
(11.8)

When Eq. (11.8) is put into Eq. (11.5), the two equations become redundant, and

we find

cb = ∓ca (11.9)

Therefore, by expressing cb in terms of ca and using ca to normalize the eigenfunc-

tion (Eq. (11.2)), we obtain

𝜑∓(ra, rb) =
1√
2
(ua ∓ ub) (11.10a)

with the eigenenergies E given from Eq. (11.8) by

E∓ = E0 +
C ∓ D

1 ∓ S
(11.10b)

Thus, the eigenfunction is specified by symmetrical and antisymmetrical combi-

nations of ua and ub, and the degeneracy has been lifted.
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Bonding and Antibonding

We next consider the binding energy of H2
+. For this purpose, it is important to

note that E0 is the energy of the electron bound to one proton, while the other is

at infinity, and therefore the bonding energy is by definition given by

Eb ≡ E∓ − E0 +
e2
M

Rab

= C ∓ D

1 ∓ S
+

e2
M

Rab

(11.11)

Let us note at this point that the repulsive Coulomb interaction between the two

protons Rab distance apart should be brought in. The distance Rab also critically

affects the repulsive Coulomb interaction and the integrals, S, C, andD Eq. (11.6).

Naturally, a stable molecule is formed when Eb < 0, and such condition has to

be examined. As ua, ub are normalized eigenfunctions, the overlap integral S Eq.

(11.6a) is by definition less than unity if Rab does not collapse to zero. Hence, 1 ∓ S

is positive, leaving C and D as the determining factor for the polarity of Eb.

In the limit Rab → 0, the repulsive Coulomb interaction between the two pro-

tons diverges. Concomitantly, ra → rb, and C and D simply represent in this case

the finite average potential energy of the ground state of the H-atom. Hence, for

small Rab, Eb should diverge. On the other hand, in the limit Rab → ∞, S → 0 and

C represents the attractive Coulomb interaction between proton b and the elec-

tron charge cloud attached to proton a or vice versa. Therefore, C is practically

identical to and cancels out e2
M
∕Rab. This leaves D as the sole integral dictating

the polarity of Eb. Now since D < 0 by definition, it is clear from Eqs. (11.10) and

(11.8) that Eb < 0 for the symmetric combination of ua, ub, namely, for 𝜑+(ra,rb).
Figure 11.3 shows Eb versus Rab for both 𝜑+(ra,rb) and 𝜑−(ra,rb). Indeed, Eb

is negative for a range of Rab for 𝜑+(ra,rb), and it is in this range of Rab that the

ionized H2
+ is formed. For 𝜑−(ra,rb), Eb is positive in the entire range of Rab, so

that𝜑−(ra,rb) represents the antibondingmode.The fact that𝜑+(ra,rb) represents
the bonding mode can be attributed to a large probability density of electrons in

between the two protons as shown in Figure 11.4. In this case, the attractive forces

Rab(au)
Rab(au)

2

4

6

8

2

4

6

8

Antibonding

Bonding

E(eV) E(eV)

(a) (b)

Figure 11.3 The bonding and antibonding curves versus the internuclear distance R in the

ionized H2
+ (a) and neutral H2 molecules (b).
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(a)

(b)

Figure 11.4 The symmetrized (a) and the antisymmetrized (b) eigenfunctions and the

probability densities associated. Also shown are the top views and the degree of overlap of

the two electron charge clouds.

between the electron cloud and the two protons more than compensate the repul-

sive force between the two protons.

11.2

H2 Molecule and Heitler-London Theory

The H2 molecule consists of two protons and two electrons (Figure 11.1). The

Hamiltonian is thus given by

Ĥ = Ĥ1 + Ĥ2+V̂ (11.12a)

where

H1 = − ℏ2

2m
∇2

1 −
e2
M

ra1
; Ĥ2 = − ℏ2

2m
∇2

2 −
e2
M

rb2
(11.12b)

are the Hamiltonians of the hydrogenic subsystem formed by proton a with elec-

tron 1 and proton b with electron 2, and the potential

V̂ = −
e2
M

rb1
−

e2
M

r
a2

+
e2
M

Rab

+
e2
M

r12
, e2M = e2

4𝜋𝜀0
(11.12c)

lumps together the rest of the interaction terms.
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Variational Principle

The H2 molecule as a four-body central force problem cannot be dealt with ana-

lytically, and therefore an approximate treatment is in order. In this context, the

variational principle provides a convenient criterion by which to assess the accu-

racy of the approximate analysis and is discussed first. Given a dynamic system,

we have to solve the energy eigenequation

Ĥ𝜑 = E𝜑 (11.13)

and find the average values of the dynamic quantities such as energy

E =
⟨𝜑|Ĥ|𝜑⟩⟨𝜑|𝜑⟩ =

∫
∞

−∞
dr𝜑∗Ĥ𝜑

∫
∞

−∞
dr𝜑∗𝜑

(11.14)

If the eigenfunction 𝜑 is the exact solution of Eq. (11.13), E in Eq. (11.14) rep-

resents the true eigenvalue. However, if 𝜑 is an approximate solution, E does not

represent the true value. In such a case, the variational principle states that the val-

ues ofE obtained fromEq. (11.14) are always greater than the true value.Therefore,

the degree of accuracy of the approximate schemes can be assessed by comparing

the resulting E values.

Heitler–London Theory

With this fact in mind, let us consider the Heitler–London theory of the H2

molecule.The theory introduces the antisymmetrized ground state wavefunctions

of the two electrons in the form

𝜑(1, 2) = 𝜑±(1, 2)𝜒g , 𝜑±(1, 2) = [ua(1)ub(2) ± ub(1)ua(2)], 1, 2 ≡ r
1
, r

2

(11.15)

where ua, ub are the ground state eigenfunctions of the hydrogenic subsystems

with the energy E0 and 𝜒g the triplet (s) and singlet (a) spin states, respectively

(see(10.15)).

The ground state energy of the H2 molecule is then given by

E± =
⟨𝜑±|Ĥ|𝜑±⟩⟨𝜑±|𝜑±⟩ (11.16)

The spin functions do not affect the integrals in Eq. (11.16) and have been deleted.

However,𝜑+,𝜑− have to be associated specifically with𝜒− and𝜒+, respectively. As

ua(i) and ub(j) are normalized eigenfunctions, the denominator is given in terms

of the overlapped integral by⟨𝜑±|𝜑±⟩ = 2(1 ± S2); S ≡ ⟨ua(i)|ub(j)⟩, i ≠ j (11.17)

The numerator

N = ⟨𝜑±|Ĥ1 + Ĥ2 −
e2
M

rb1
−

e2
M

ra2
+

e2
M

Rab

+
e2
M

r12
|𝜑±⟩ (11.18)
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consists of 24 integrals, 6 Hamiltonian terms paired with 4 different combinations

of ua(i)ub(j). However, Ĥ is invariant under the interchange of r1 and r2, so that

the four combinations of ua(i)ub(j) reduce to two. Thus, N is given by

N = 2⟨Ĥ⟩1 ± 2⟨Ĥ⟩2 (11.19)

where the first term

⟨Ĥ⟩1 ≡ ⟨ua(1)ub(2)|Ĥ1 + Ĥ2 −
e2
M

rb1
−

e2
M

ra2
+

e2
M

Rab

+
e2
M

r12
|ua(1)ub(2)⟩

= 2E0 +
e2
M

Rab

+ 2C + ERI (11.20a)

is specified in terms of the Coulomb interaction integral C, and the repulsive

Coulomb interaction between two electrons ERI:

C ≡ ⟨ua(1)|−e2Mrb1
|ua(1)⟩ = ⟨u2(2)|−e2Mra2

|ub(2)⟩ (11.20b)

ERI = ⟨ua(1)ub(2)| e2Mr12 |ua(1)ub(2)⟩ (11.20c)

The second term

⟨Ĥ⟩2 = ⟨ub(1)ua(2)|Ĥ1 + Ĥ2 −
e2
M

rb1
−

e2
M

ra2
+

e2
M

Rab

+
e2
M

r12
|ua(1)ub(2)⟩

= 2E0S
2 +

e2
M

Rab

S2 + 2DS + ECE (11.21a)

is likewise specified in terms of S,D, and the repulsive interaction computed with

the use of exchange densities ECE as

D = ⟨ub(1)|−e2Mrb1
|ua(1)⟩ = ⟨ua(2)|−e2Mra2

|ub(2)⟩ (11.21b)

ECE = ⟨ub(1)ua(2)| e2Mr12 |ua(1)ub(2)⟩ (11.21c)

Bonding Energy

By inserting Eqs. (11.17)–(11.21) into Eq. (11.16), we can write

E± = 2E0 +
2C + ERI

1 ± S2
±

2DS + ECE

1 ± S2
+

e2
M

Rab

(11.22)

and obtain the bonding energy from Eq. (11.22). As 0 < S < 1 and D < 0 (see Eq.

(11.6)), E+ < E−. Also, when the two protons are taken far apart from each other,

with each carrying an electron, the total energy is the sumof the ground state ener-

gies of two noninteracting hydrogen atoms, that is, 2E0. Therefore, the bonding

energy is given by

Eb ≡ E± − 2E0 =
2C + ERI

1 ± S2
±

2DS + ECE

1 ± S2
+

e2
M

Rab

(11.23)
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(a) (b)

Figure 11.5 The top views of the probability densities of the symmetrized (a) and anti-

symmetrized (b) eigenfunctions of the H2 molecule. The degree of overlap of the electron

charge clouds is commensurate with the degree of brightness.

Plotted also in Figure 11.3 is Eb versus Rab curve, which clearly indicates that the

symmetric combination of ua and ub paired with the singlet spin state constitutes

the bonding state. The bonding versus antibonding can again be understood in

terms of the degree of the overlap of the electron charge clouds. For 𝜑+, the over-

lap is large so that the attractive interaction between the electron charge cloud and

the two protons more than compensate the repulsive interaction between the two

protons (Figure 11.5). The bonding energy of 3.14 eV as obtained from the mini-

mumvalue ofEb versusRab curve is smaller than themeasured dissociation energy

of 4.48 eV. This indicates that the Heitler–London theory yields the ground state

energy higher than the true value, which is consistent with the variational prin-

ciple. Nevertheless, the theory provides the basis for describing the homopolar

bonding.

11.3

Ionic Bond

When atom A transfers an electron to atom B, the resulting two ions A+ and B−

form amolecule via the ionic bonding. In the sodium chloride, NaCl, for example,

the ionization Na→Na++e requires IP1 of 5.14 eV, while the electron capture

Cl+ e→Cl− releases the energy of 3.65 eV, called the affinity factor. Hence, the

difference in energy ΔE of 1.49 eV constitutes the bonding energy of NaCl.

When the two ions approach toward each other, they interact via the attrac-

tive Coulomb potential. When R is further decreased, the two electron charge

clouds overlap. As the two ions have spherically symmetric closed shell config-

urations, they can be viewed as point charges. Moreover, the exclusion principle

requires an additional electron associated with overlapped charge cloud near each

ion to behave as though they occupy next higher-lying quantum states. Hence, the

energy of the ion pair increases with increasing interpenetration of the electron

cloud, adding thereby the repulsive energy term. Thus, ΔE as a function of R for
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NaCl is to be modeled as

ΔE(R) = Ae−𝛼R −
e2
M

R
+ ΔE(∞), ΔE(∞) = 1.49eV (11.24)

where the first term is the empirical representation of the repulsive potential aris-

ing from the exclusion principle, while the second term is the attractive Coulomb

potential between the two ions.

In Figure 11.6 is plotted ΔE versus R curve. The curve follows the attractive

Coulomb potential at large R but is dominated by the repulsive potential for

small R. At the minimum point Re, the attractive and repulsive forces balance

each other out, yielding thereby the zero slope of the potential curve. The ionic

bond is thus represented by De, which denotes the absolute magnitude of the

difference between ΔE(Re) and ΔE(∞). Furthermore, the Taylor expansion of ΔE
at Re yields the expression

ΔE(R) ≃ ΔE(Re) +
1

2
k(R − Re)2 + · · · , k ≡ ∂2ΔE(Re)

∂R2
(11.25)

where the first expansion term is zero because the Taylor expansion is done at

the minimum point of the curve. Then, the ΔE–R curve near Re is reduced to the

potential energy of the harmonic oscillator and therefore indicates that the two

nuclei vibrate at the frequency 𝜔 (=(k∕𝜇)1∕2) with 𝜇 denoting the reduced mass

1∕𝜇 = 1∕mNa + 1∕mCl.

4.0

4.0

0.0
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Figure 11.6 The ionic bonding energy ΔE versus the internuclear distance R.
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11.4

van der Waals Attraction

The chemical bond underlying the H2 molecule is called the covalent bond and

involves the interaction between two open shell neutral atoms, in this case two H-

atoms, whose ground states are partially filled by a single electron.The interaction

between two closed shell atoms also provides the chemical bond called the van der

Waals attraction. The resulting attractive interaction occurs in nearly all atoms,

and the underlying force is known as the London dispersion force. Such chemical

bond can bemodeled by taking two atoms as two 1D charged harmonic oscillators

bound to positive charge centers (Figure 11.7).

The Hamiltonian of two coupled HO is given by

Ĥ =
2∑
j=1

Ĥ0j + V (R, x1, x2); Ĥ0j = − ℏ2

2m

∂2

∂x2
j

+ 1

2
kx2j (11.26a)

where the potential energy

V = e2M

(
1

R
− 1

R − x1
+ 1

R + x2 − x1
− 1

R + x2

)
, e2M = e2

4𝜋𝜀0
(11.26b)

represents the Coulomb interactions involving two force centers and two charged

oscillators. For R ≫ x1, x2, V can be simplified by expanding the potential terms

in powers of xj∕R. For example, we can expand the second term as

1

R − x1
= 1

R

(
1 −

x1
R

)−1
= 1

R

[
1 +

x1
R
+
(x1
R

)2
+ · · ·

]
After carrying out similar expansions and adding the terms together, we find

V ≃ −
e2
M
x1x2

R3
(11.26c)

Therefore, the Hamiltonian is simplified to read as

Ĥ = − ℏ2

2m

∂2

∂x2
1

+ 1

2
kx21 −

ℏ2

2m

∂2

∂x2
2

+ 1

2
kx22 −

e2
M
x1x2

R3
(11.27)

We can further compact the Hamiltonian by introducing the new variables

𝜉 = x1 + x2, 𝜂 = x2 − x1

x1
x2

e1
−

e2
−A B

R

+ +

Figure 11.7 Two charged harmonic oscillators coupled via the Coulomb interaction.
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and recast Eq. (11.27) into a form

H = − ℏ2

2𝜇

∂2
∂𝜉2

+ 1

2
k−𝜉2 − ℏ2

2𝜇

∂2
∂𝜂2

+ 1

2
k+𝜂2, k∓ ≡

(
k

2
∓

e2
M

R3

)
(11.28)

with 𝜇 denoting the reduced mass 1∕𝜇 = (1∕m) + (1∕m) = 2∕m. In this manner,

the Hamiltonian of two coupled oscillators is transformed into that of two inde-

pendent oscillators, oscillating at two different frequencies. The total energy level

is therefore given from Eq. (7.12) by

En1,n2
= ℏ𝜔+

(
n1 +

1

2

)
+ ℏ𝜔−

(
n2 +

1

2

)
(11.29a)

where n1, n2 are the quantum numbers, and oscillation frequencies 𝜔−, 𝜔+ are

given by

𝜔2
∓ ≡ k∓

𝜇
= 𝜔2

c

(
1 ∓

2e2
M

kR3

)
); 𝜔2

c ≡ k

m
(11.29b)

and are smaller or greater than the characteristic frequency 𝜔c.

The two frequencies 𝜔+, 𝜔− can be shown correlated with the polarizability of

the oscillator as follows. When an electric field E is applied, the oscillator charged

with −e is subjected to the force −eE and pushed away from its equilibrium posi-

tion, while it is simultaneously subjected to the restoring force of the spring −kx.
These two forces balance at xe given by xe = −eE∕k. The resulting dipole moment

induced is given by

𝜇ind ≡ −exe =
e2

k
E ≡ 4𝜋𝜀0𝛼E; 𝛼 = e2

4𝜋𝜀0k
(11.30)

where 𝛼 is the polarizability connecting E and the induced dipole moment. When

the spring constant k is replaced by 𝛼 in Eq. (11.29b), 𝜔∓ are expressed in terms

of 𝛼 as

𝜔2
∓ ≡ k∓

𝜇
= 𝜔2

c

(
1 ∓ 2𝛼

R3

)
; 𝜔2

c ≡ k

m
(11.31)

We can thus expand the dressed frequencies as

𝜔∓ = 𝜔c

[
1 ∓ 1

2

(
2𝛼

R3

)
− 1

8

(
2𝛼

R3

)2
+ · · ·

]
and obtain the ground state energy as

E00 =
ℏ

2
(𝜔− + 𝜔+) = ℏ𝜔c −

(
ℏ𝜔c𝛼

2

2

)
1

R6
(11.32)

Since the first term is the zero-point energy of the two oscillators in the limit R →
∞, the second term ∝ 1∕R6 should represent the bonding energy and is known

as the van der Waals attraction. Obviously, the bonding energy is due to the net

potential V (x) providing a net attractive potential Eq. (11.26c). This simple model

used for illustrating the dispersion force can also be applied to the two coupled

neutral atoms. In this case, the power law dependence of 1∕R6 is preserved, but
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the polarizability and binding parameter k of the harmonic oscillator are replaced

by the atomic polarizability and the first ionization potential IP1, respectively.

11.5

Polyatomic Molecules and Hybridized Orbitals

The chemical bonding in polyatomic molecules involves many electrons dis-

tributed over several nuclei and is complicated. However, the bonding can be

understood based on the bonds operative in diatomic molecules. This is because

most of the chemical bonds are localized in which two nuclei are bonded via two

electrons as in the case of the H2 molecule. These bonds are illustrated with the

use of a few specific examples.

Methane and sp Hybridization

The methane (CH4) consists of a carbon atom (1s22s22px2py) bonded to four H-

atoms by four tetrahedral bonds with H–C–H bond angle of 109∘28′ as shown
in Figure 11.8. In the process, one of the two electrons in 2s state is booted to 2p

state, forming thereby the valence state (1s22s2px2py2pz) (see Eqs.(8.53), (8.54) for

px, py, pz). The bonds are formed by placing the four valence electrons into four

hybridized orbitals, given in terms of the single electron eigenfuctions as

𝜒1 =
1

2
(2s + 2px + 2py + 2pz)

𝜒2 =
1

2
(2s − 2px − 2py + 2pz)

𝜒3 =
1

2
(2s + 2px − 2py − 2pz)

𝜒4 =
1

2
(2s − 2px + 2py − 2pz) (11.33)

These functions are orthonormal, and the probability distribution is maximum

along (1, 1, 1), (1,−1,−1), (−1,−1, 1), and (−1, 1,−1) directions, respectively.Thus,

the molecular orbitals consisting of the four linear combinations of the atomic

orbitals compensate the energy required for an electron to be booted up from 2s to

2p states and stabilize themethanemolecule via the attractive Coulomb potential.

Ethane and Directionality of Molecular Orbitals

The spatial directionality of the hybridized molecular wavefunctions is one of

the main modes of bonding, as exemplified by the ethane (C2H6). As also shown

in Figure 11.8, the two carbon atoms are in the configuration similar to that of

methane aside from the fact that two of the hybridized molecular orbitals are

aligned to the C–C bond. The rest of the orbitals of each carbon atom form the

tetrahedral bonds with 2s state of three H-atoms.
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Figure 11.8 The methane molecule consisting of a carbon atom bonded to four H-atoms

(a). The ethane molecule formed by two hybridized molecular orbitals aligned to the C–C

bond (b).

Problems

11.1 . (a) Starting from the eigenequation (11.3), derive the coupled equation

(11.5) for the expansion coefficients ca, cb in terms of the overlap S-,

Coulomb C-, and exchange D-integrals.

(b) Verify the results obtained for the symmetrized and antisymmetrized

eigenfunctions and corresponding energy eigenvalues.

11.2 The analysis of the chemical bonding requires the evaluation of various

matrix elements, as exemplified by the Heitler–London theory. Starting

with thewavefunction given in Eq. (11.15), fill in the detailed algebraic steps

and verify the results of the bonding energy Eq. (11.23).

11.3 The interionic distance of NaCl is 0.24 nm, and the vibrational fre-

quency is νe = 𝜔e∕2𝜋 = 1.1 × 1013 s−1. Determine the parameters A and

𝛼 in Eq. (11.24) and estimate the bonding energy by using A, 𝛼, and

ΔE(∞) = 1.49eV.

11.4 The H-atom is placed in a uniform electric field E in the z-direction. The

Hamiltonian is given by

H = − ℏ2

2m
∇2 −

e2
M

r
+ Eer cos θ; e2M = e2

4𝜋𝜀0

(a) Look for the eigenfunction in the form 𝜑 = c1|u100⟩ + c2|u210⟩ and
derive the coupled equation for c1 and c2 in analogy with Eq. (11.5).

(b) Find ca, cb, and 𝜑±, E±.
(c) Evaluate the atom dipole

𝜇ind = −e⟨r⟩, ⟨r⟩ = ⟨𝜑±|r|𝜑±⟩⟨𝜑±|𝜑±⟩
and find the atomic polarizability 𝛼 connecting the input field to the

induced atom dipole as 𝜇ind = −𝛼E.

11.5 Starting with the Hamiltonian of two coupled HO Eq. (11.26), fill in the

algebra and derive the decoupled Hamiltonian (Eq. (11.28)) in terms of the

new variables 𝜉, 𝜂.
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12

Molecular Spectra

The spectroscopy is an essential element of quantum mechanics. The observed

atomic spectra provided amajor impetus for developing the quantum theory. Also

the molecular spectra constitute a key component of the quantum and molecular

chemistry. Moreover, the laser device is the product of an innovative application

of atomic and molecular spectroscopy.This chapter is addressed to the molecular

spectra.The spectral lines are complicated because of the complexity of electronic

structures and the rotational and vibrational motions of the nuclei. But the data

carry a wealth of information and are analyzed focused on the diatomicmolecules

and as a short introduction to the vast area of themolecular chemistry and physics.

Included in the discussion are the hyperfine structure, Zeeman splitting, nuclear

magnetic resonance, and molecular imaging.

12.1

Theoretical Background

The electromagnetic spectrum encompasses the wavelengths ranging from

radiowave to X-ray regions. In the radiowave regime, the wavelength 𝜆 spans

from 3 km to about 3m, and the nuclear magnetic resonance (NMR) frequencies

are involved therein. In the microwave and far-infrared regions, 𝜆 ranges from

about 30 cm to 0.03mm and covers the molecular rotation and the electron spin

resonance frequencies. In infrared (IR), visible, and vacuum ultraviolet regions, 𝜆

varies from 0.03mm to 3 nm, and the frequencies of the molecular vibration and

the transitions of outer electrons of the atom are involved. Finally, in the X-ray

region, 𝜆 is shorter than 3 nm and includes the transition frequencies of inner

electrons.

Diatomic Molecule

Let us revisit the H2 molecule as a prototypical example and consider the motion

of the two protons. The general features of the spectra are shown in Figure 12.1

in which the potential energy of the ground and first excited states of the elec-

tron is plotted versus the internuclear distance R. Also included in the figure are

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 12.1 The electron potential energy of the ground and first excited states of the H2

molecule versus the internuclear distance R. Shown also are the sublevels resulting from the

vibrational and rotational motions of the nucleus.

the nuclear sublevels due to rotational and vibrational motions.The spectral lines

are analyzed in two steps. First the electron energy levels are treated by fixing R

and then the nuclear sublevels are incorporated by using the time-independent

perturbation theory. The procedure is known as the Born–Oppenheimer approx-

imation.

The Hamiltonian of the H2 molecule is given in this case by[
− ℏ2

2𝜇
∇2

R −
ℏ2

2m

n∑
i=1

∇2
i
+ V

(
r,R
)]

𝜑(r,R) = E𝜑(r,R) (12.1)

where r represents the set of coordinates {ri} of the two electrons. The motions of

the two protons interacting via the Coulomb potential can be partitioned into the

motion of the center of mass and the internal motion, as discussed in the H-atom

theory (see Eqs. (8.27) and (8.28)).The first term on the left-hand side of Eq. (12.1)

is the kinetic energy of the internal motion, and the rest of the terms constitute

the usual Hamiltonian of a diatomic molecule Eq. (11.12).

The motion of the center of mass as a free particle has been dealt with already,

and only the internal motion is considered. We thus look for the solution of Eq.

(12.1) in the form

𝜑(r,R) = 𝜑e(r,R)𝜒(R) (12.2)
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where 𝜑e is the energy eigenfunction of the electron, satisfying the energy

eigenequation of the H2 molecule with the two protons R distance apart[
− ℏ2

2m

n∑
i=1

∇2
i
+ V

(
r,R
)]

𝜑e(r,R) = E(R)𝜑e(r,R) (12.3)

Note in Eq. (12.3) that the eigenenergy E(R) should now be taken to depend para-

metrically on R, and E(R) is also called the electron potential energy. By inserting

Eqs. (12.2) and (12.3) into Eq. (12.1) and rearranging the terms, there results[
− ℏ2

2m
∇2

R
+ E (R)

]
𝜑e(r,R)𝜒(R) = E𝜑e(r,R)𝜒(R) (12.4)

At this point, we resort to the Born–Oppenheimer approximation and put

∇2
R
[𝜑e(r,R)𝜒(R)] ≈ 𝜑

e
(r,R)∇2

R
𝜒(R) (12.5)

Upon inserting Eq. (12.5) into Eq. (12.4), dividing both sides by 𝜑e(r, R) and
expressing ∇2

R
in spherical coordinate frame, we can write

− ℏ2

2𝜇R2

{ ∂
∂R

(
R2 ∂
∂R

)
− 1

ℏ2
L̂2 + E(R)

}
𝜒(R) = E𝜒(R) (12.6)

Evidently, Eq. (12.6) is identical in form to the energy eigenequation of theH-atom

Eq. (8.35).Therefore, we can carry out a parallel analysis, making use of the results

obtained already. Thus, let us look for the solution in the form

𝜒(R, 𝜃, 𝜑) = 𝜌(R)YM
L (𝜃, 𝜑) (12.7)

where the spherical harmonics YM
L

is the eigenfunction of L̂2 with the eigenvalue

ℏ2L(L + 1) (see Eq. (8.24)). By inserting Eq. (12.7) into Eq. (12.6) and canceling out
YM
L

from both sides, we obtain the radial equation for 𝜌(R) as

− ℏ2

2𝜇R2

∂
∂R

(
R2 𝜌 (R)

∂R

)
+ ℏ2L(L + 1)

2𝜇R2
𝜌(R) + E(R)𝜌(R) = E𝜌(R) (12.8)

Note in Eq. (12.8) that E appearing on the right-hand side of Eq. (12.8) consists of

the eigenenergy of the electron and the rotational as well as vibrational energies

of the two nuclei:

E = Ee + Er + Ev (12.9a)

We next expand E(R) at the equilibrium distance Re between two protons (see

Figure 12.1):

E(R) = E(Re) + 𝜀v(R), 𝜀v(R) =
1

2
E′′(0)𝜉2 + 1

3!
E′′′(0)𝜉3 + · · · , 𝜉 ≡ R − Re

(12.9b)

where the primes denote the differentiation with respect to R. The first expan-

sion term ∝ E′(Re) is zero, as Re is at the minimum point of the E versus R curve.
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Evidently, E(Re) represents Ee, and therefore Ee is canceled from both sides of Eq.

(12.8), and the eigenequation reduces to

− ℏ2

2𝜇R2

∂
∂R

(
R2 ∂𝜌 (R)

∂R

)
+
[

ℏ2L (L + 1)
2𝜇R2

+ 𝜀v(R)
]

𝜌(R) = (Er + Ev)𝜌(R) (12.10)

Equation (12.10) provides the starting point of analyzing the molecular spectra.

12.2

Rotational and Vibrational Spectra of Diatomic Molecule

Rotational Spectra

For examining the rotational motion, let us fix R at Re for simplicity of discussion.

In this case, there is no vibrational motion, that is, Ev = 𝜀v(R) = 0, and the first

term on the left-hand side of Eq. (12.10) also vanishes. As a result, the rotational

energy naturally follows from Eq. (12.10) as

Er =
ℏ2L(L + 1)

2𝜇R2
e

, L = 0, 1, 2, … (12.11a)

with L denoting the angular momentum quantum number. Evidently, Eq. (12.11a)

is the quantized version of the rotational energy of a classical rigid rotator

(Figure 12.2). This can be shown by considering the angular momentum of the

rotator

|L| = 𝜇Rev = 𝜇Re(Re𝜔) = Ie𝜔; Ie ≡ 𝜇R2
e (12.11b)

where v is the velocity of the fictitious particle with reduced mass 𝜇 at Re distance

from the fixed center and Ie the moment of inertia.Then, the energy of the rotator

Er reads as

Er =
1

2
𝜇v2 = 1

2
Ie𝜔

2 = 1

2

(Ie𝜔)2

Ie
=
|L|2
2𝜇R2

e

(12.11c)

and is identical to Eq. (12.11a) except for the quantization of the angular

momentum.

R

(a) (b)

R

ω ω

m1m1 m2 m2

Figure 12.2 The rotational (a) and vibrational (b) motions of the two nuclei in the diatomic

molecule.
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Selection Rule

The transition from the initial Li to final Lf rotational states is allowed if the tran-

sition matrix element is not zero (see Eqs. (9.42) and (9.55)).The integral involved

in thematrix element is not zero, provided themolecule has the permanent dipole

and Li, Lf satisfy the selection rule

ΔL ≡ Lf − Li = ±1 (12.12)

This is because the product of two nearest spherical harmonics YM
L
(𝜃, 𝜑)∗ ×

YM
L±1(𝜃, 𝜑) and the dipole moment ∝W (= cos 𝜃) are the odd functions of w in the

interval from −1 to 1. Hence, the matrix element is contributed by the integrand

with an even parity in w and does not vanish.

The resulting spectral lines are obtained as follows. For the absorption,ΔL = +1
and the frequency involved is given by h𝜈r = Er(Li+1) − Er(Li). The corresponding

frequency and wave number are thus given from Eqs. (12.11a) and (12.12) by

�̃�r ≡ 1

𝜆r

=
𝜈r
c
= 𝛽2(Li + 1), 𝛽 ≡

(
ℏ2

2𝜇R2
e

)(
1

ch

)
(12.13)

For emission, on the other hand, ΔL = −1, and the wave number is likewise

obtained as

�̃�r = 𝛽|(Li − 1)Li − Li(Li + 1)| = 2𝛽Li (12.14)

Therefore, the absorption and emission spectra are shown to consist of uniformly

spaced lines with the spacing 2𝛽. Bymeasuring 𝛽, it is possible to extract the prop-

erties of the diatomic molecule, for example, the size, shape, and mass.

Vibrational Spectra

To consider the vibrational motion (see Figure 12.2), the assumption of the fixed R

should be relaxed, and R should be taken to vary centered at Re. Also, as Er is much

smaller than Ev by at least an order of magnitude, wemay put R ≃ Re in the second

term on the left-hand side of Eq. (12.10), in which case it is identical to Er. Under

this approximation, Er is canceled from both sides, and Eq. (12.10) is reduced to

describing the vibrationalmotion only.We further simplify the equation by retain-

ing only the first term in 𝜀v(R) in Eq. (12.9b), in which case, Eq. (12.10) reads as

− ℏ2

2𝜇R2

∂
∂R

(
R2 ∂𝜌 (R)

∂R

)
+ 1

2
ke(R − Re)2𝜌(R) = Evib𝜌(R), ke ≡

(
∂2E
(
Re

)
∂R2

)
(12.15)

We may look for the solution of Eq. (12.15) in the form

𝜌(R) = 1

R
𝜂(R) (12.16)
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and reduce Eq. (12.15) to the energy eigenequation of the HO (see Eq. (7.1)):

− ℏ2

2𝜇

d2

∂𝜉2
𝜂(𝜉) + 1

2
ke𝜉

2𝜂(𝜉) = Evib𝜂(𝜉), 𝜉 ≡ R − Re (12.17)

Therefore, we can use all the results obtained in treating HO. The vibrational

energy is then given from Eq. (7.12) by

Evib = h𝜈vib(v + 1), v = 0, 1, 2, … ; 𝜈vib =
1

2𝜋

(
ke
𝜇

)1∕2

(12.18)

Selection Rule

The transition from the initial vi to final vf vibrational states is induced by the

oscillating dipole of the molecule. Hence, the transition matrix is proportional to

the dipole moment

⟨𝜇v⟩ = ∫
2𝜋

0

d𝜑∫
𝜋

0

sin 𝜃d𝜃∫
∞

0

R2dR|YM
L |2 𝜂vf (R)

R
[𝜇(R − Re)]

𝜂vi(R)
R

≃ ∫
∞

−∞
𝜂vf (𝜉)𝜇(𝜉)𝜂vi(𝜉)d𝜉; 𝜉 ≡ R − Re, 𝜇(𝜉) ∝ 𝜉 (12.19)

where the integration over 𝜃, 𝜑 yields unity because of the orthonormality of the

spherical harmonics. It then follows from Eq. (12.19) that the dipole moment does

not vanish if vi, vf satisfy the selection rule

Δv ≡ vf − vi = ±1 (12.20)

This is due to the fact that the product 𝜂v(𝜉) × 𝜂v±1(𝜉) is odd in 𝜉 (see Eqs. (7.10)

and (7.11)), and the dipole moment 𝜇 ∝ 𝜉 is also odd in 𝜉.Themoment integral is

thus contributed by the integrand having the even parity in 𝜉 and does not vanish.

The wave number of absorption or emission is then given from Eq. (12.18) by

�̃�vib ≡ 1

𝜆v

=
vvib
c
; 𝜈vib =

(ke∕𝜇)1∕2

2𝜋
(12.21)

and consists of a single line of frequency 𝜈vib.

Rotation–Vibration

Each vibrational line is accompanied by a number of finely spaced rotational spec-

tral lines as shown in Figure 12.3.This is due to the fact that both transitions occur

concurrently. We have analyzed the two transitions, using the rigid rotator and

harmonic oscillator models, respectively. The combined energy levels are given

from Eqs. (12.11) and (12.18) by

Ev,L = Ev + Er = h𝜈vib

(
v + 1

2

)
+ L(L + 1)𝛽, 𝛽 = ℏ2

2𝜇R2
e

(12.22)

with the combined selection rules given from Eqs. (12.12) and (12.20) by
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Figure 12.3 The fine structure of a single

vibrational spectral line superposed by the

P and R branches of the rotational spec-

tral lines (A). The rotational energy-level

diagram and the transitions involved in P

and R branches of a diatomic molecule (B).

(Reproduced from Atoms and Molecules,

M. Karplus and R. N. Porter, W. A. Benjamin,

1970.)

a) Δv = 1, ΔL = ±1
b) Δv = −1, ΔL = ±1

Clearly, (a) and (b) represent the vibrational absorption and emission with each

process accompanied by the rotational absorption and emission.

As noted, the vibrational energy is greater than that of rotation by one or two

orders of magnitudes, so that a single vibrational emission or absorption line is

accompanied by two groups of lines, called branches (Figure 12.3). The P branch

results from the rotational emission corresponding to ΔL = −1. In this case, the

wave number decreases with increasing Li and is given from Eqs. (12.14) and

(12.21) by

1

𝜆p

≡ �̃�P = �̃�vib − 2𝛽Li, Li = 1, 2, 3, … (12.23)

The R branch results from the rotational absorption corresponding to ΔL = +1.
In this case, the wave number increases with Li and is given from Eqs. (12.14) and

(12.22) by

1

𝜆R

≡ �̃�R = �̃�vib + 2𝛽(Li + 1), Li = 1, 2, 3, … (12.24)

Figure 12.3 also shows the intensity profiles of P and R branches, which vary

appreciably with Li. The variation is due to Boltzmann probability factor. The

intensity of the spectral line is proportional to the number of molecules present
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in the initial state, and the number is dictated in equilibrium by the Boltzmann

probability factor:

Ni ∝ gvL exp−
(

EvL

kBT

)
(12.25)

where gv,L is the degeneracy factor of the initial state. The vibrational states are

free of degeneracy. Hence, gv,L is due solely to the rotational states, resulting from

the quantum number Mi varying from −Li to +Li in steps of unity. Thus, Ni is

given from Eqs. (1.10) and (12.22) by

Ni ∝ (2Li + 1)e−𝜀eLi(Li+1)∕kBT , 𝜀e =
ℏ2

2𝜇R2
e

(12.26a)

and varies as a function of Li. We can therefore find the initial state having the

largest number of molecules by differentiating Ni with respect to Li and putting

the result to zero, obtaining

Li max =
1

2

[(
2kBT

𝜀e

)1∕2

− 1

]
(12.26b)

The result given in Eq. (12.26) is in general agreement with the observed intensity

profiles of P and R branches.

12.3

Nuclear Spin and Hyperfine Interaction

A nucleus possesses the intrinsic spin angular momentum I and the magnetic

moment 𝝁N just like the electron. The nuclear spin can therefore be treated in

strict analogy with the electron spin. We can thus introduce the eigenfunction

and the commutation relations as

Î2|I,mI⟩ = I(I + 1)ℏ2|I,mI⟩; |I,mI⟩ = Y
mI

I
(12.27a)

Îz|I,mI⟩ = mIℏ|I,mI⟩, mI = −I,−I + 1, … , I − 1, I (12.27b)

Î × Î = i
ℏ

2
Î (12.28)

(see Eqs. (10.1)–(10.5)). The quantum number I has half integer or integer values

depending on odd or even atomic number, that is, the number of protons in the

nucleus. The proton and neutron have the spin ℏ∕2.
We can also specify 𝜇N in analogy with the electron magnetic moment Eqs.

(10.33) and (10.34) as

𝜇N = gN

(
e

2mN

)
Î = gN𝜇BN

Î

ℏ
, 𝜇BN ≡ eℏ

2mN

(12.29)

wheremN is the mass of the nucleus, and the nuclear magnetron 𝝁BN is parallel to

I in this case because the nuclear charge is positive. For proton, 𝝁BN has the value

5.049 × 10−27 Jm2Wb−1, and the gyromagnetic ratio gN of 2 × 2.79268 has been

determined experimentally.
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Hyperfine Interaction

The hyperfine interaction is caused by the nuclear magnetic moment 𝜇N interact-

ing with themagnetic field, which is induced inherently by the electron circulating

the nucleus.Themechanism responsible for the interaction is therefore similar to

that of the electron spin–orbit coupling. We can therefore introduce the interac-

tion Hamiltonian in analogy with Eq. (10.37) as

Ĥ′
N
≡ −𝜇

N
⋅ B

J
=

gN
ℏ

𝜇BN fN (r)(Î ⋅ ĵ), fN (r)
e2𝜇0

4𝜋r3me

(12.30a)

In this case, BJ is induced by the electron spinning and circulating the nucleus at

the radius r and can thus be specified via the Biot–Savart law as

B
J
=

e𝜇0

4𝜋r3me

j, j = l + s (12.30b)

Also there is no back-transformation and noThomas 1/2 factor, as the nucleus can

be taken fixed in the laboratory frame.The negative sign in Eq.(12.30a) disappears

since j and Bj are anti-parallel. We can introduce the total angular momentum F
and express Eq. (12.30a) in analogy with Eq. (10.37b):

Ĥ ′
N
≡ gN

2ℏ
𝜇BN fN (r)(F̂2 − ĵ2 − Î2), F̂ = ĵ + Î (12.30c)

Interaction with Magnetic Field

When the external magnetic field is applied in the z-direction, the interaction

Hamiltonian is given again in strict analogy with Eq. (10.38) by

Ĥ′
Jm = gj

𝜇B

ℏ
B̂jz − gN

𝜇N

ℏ
BÎz (12.31)

The magnetic moment 𝝁N is parallel to I, hence the negative sign in the second

term, and gj is the Lande g-factor Eq. (10.45). Therefore, the total hyperfine inter-

action Hamiltonian is given by the sum of Eqs. (12.30) and (12.31):

Ĥ ′
IJ = B

(
gj𝜇B

ℏ
ĵz −

gN𝜇N

ℏ
Îz

)
+

gN
2ℏ

𝜇BN fN (r)(F̂2 − ĵ2 − Î2) (12.32)

Hyperfine Splitting of Energy Level

The spectral lines resulting from the hyperfine interaction can be analyzed in par-

allel with those resulting from the spin–orbit coupling. In the absence of B, the
eigenfunction of F can be introduced in analogy with the eigenfunction of l given
by Eq.(8.34).

F̂2|F ,mF⟩ = ℏ2F(F + 1)|F ,mF⟩ (12.33a)

F̂z|F ,mF⟩ = ℏmF |F ,mF⟩, mF = −F ,−F + 1, … , F − 1, F (12.33b)
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Thedetailed derivation of the eigenfunctions is presented in the first two reference

books listed at the end of this chapter. Suffice to say here that the eigenfunction

can be used as the common eigenfunction for j2 and I2 as well, since the three

operators all commute. The shift in the energy level due to the hyperfine interac-

tion can therefore be evaluated precisely in analogy with Eq. (10.40) and by using

Eq.(12.32) without the magnetic field:

𝛿EIj ≡ ⟨F ,mF |Ĥ′
Ij
|F ,mF⟩ = ℏgN𝜇BN

2
⟨fN (r)⟩[F(F + 1) − j(j + 1) − I(I + 1)] (12.34)

and the allowed values of F for given j and I are specified by the sum rule F = j ± I.

Zeeman Splitting

When a strong magnetic field is applied, we may take the hyperfine interaction

term in Eq. (12.32) as a perturbing Hamiltonian, in which case j and I are

decoupled. Therefore, the Zeeman splitting can be specified precisely by using

the unperturbed eigenfunction as

ΔEm = ⟨I,mI , j,mj| gj𝜇B

ℏ
B̂jz −

gN𝜇BN

ℏ
BÎz|I,mI , j,mj⟩

= gj𝜇BBmj − gN𝜇BNBmI (12.35)

Additionally, the effect of the hyperfine interaction can be incorporated by means

of the time-independent perturbation theory.The resulting shift in energy is then

given to the first order of approximation by

ΔEhf =
gN
ℏ

𝜇BN⟨I,mI , j,mj|fN (r)(Î ⋅ ĵ)|I,mI , j,mj⟩
= ΛNmImj, ΛN = gN𝜇BNℏ⟨fN (r)⟩ (12.36)

where use has been made of Eq. (9.13) and ⟨̂jx⟩ = ⟨̂jy⟩ = ⟨Îx⟩ = ⟨Îy⟩ = 0 (see Eq.

(8.25)). Also the function f N(r) was treated in the same manner as f (r) in the

spin–orbit coupling. Hence, the total shift in energy due to the hyperfine interac-

tion in the presence of B is obtained by summing Eqs. (12.35) and (12.36):

ΔE = gj𝜇BBmj − gN𝜇BNBmI + ΛNmImj (12.37)

The hyperfine splitting Eq. (12.37) bears a significant effect on the ground state

u100 of the H-atom in which l = 0, j = s = 1∕2. For B = 0 F ,mF are good quantum

numbers, and the allowed values of F (= j ± I) are 1 and 0. Hence, the ground state

energy E100 splits into two according to Eq. (12.34) as

E(1,mF ) =
Λ
4

, E(0, 0) = −3Λ
4

(12.38)

Also the state with F = 1 has threefold degeneracy withmF ranging from −1 to 1

in steps of unity, while for F = 0, there is no degeneracy.

Figure 12.4 shows the ground state energy E100 versus B. For B = 0, E100 splits

into two in accordance with Eq. (12.38). In the presence of strong B, on the other

hand, mj and mI are good quantum numbers (see Eq. (12.35)), and therefore the
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Figure 12.4 The splitting of the ground

state energy of the H-atom versus the mag-

netic field. The splitting is caused by hyper-

fine interaction and the magnetic field

applied. The zero field splitting amounts to 𝜈

equaling 1.420405GHz. (Reproduced from A.

Yariv, Theory and Applications of Quantum

Mechanics, Wiley & Sons, 1982.)

Zeeman splitting consists of four levels as determined by four combinations of

(mj,mI), that is, (1/2, −1/2), (1/2, 1/2), (−1/2, −1/2), and (−1/2, 1/2) in Eq. 12.31.

These energy levels are raised or lowered by B depending on the polarity of mj

andmI, but the dependence on B is primarily dictated bymj since 𝜇B ≫ 𝜇BN . The

four levels in the strong B-field region are joined smoothly by the four levels in

the weak-field region, as it should. In the latter region, the upper level for B= 0

splits into three due to B and provides four levels when combined with the single

lower level. In the region of weakmagnetic field F ,mF are good quantum numbers

(see Eq. (12.33)), and the E–B curves are therefore dictated bymF as evidenced by

the near-zero slope in E–B curves formF = 0.Thewavelength associated with the

transition between two split levels due to the hyperfine interaction in the absence

of B amounts to

𝜆 =
[

c

(Λ∕h)

]
= 21.12cm

and is the well-known wavelength emitted by the interstellar hydrogen atom.

12.4

Nuclear Magnetic Resonance (NMR)

NMR is concerned with the transitions between magnetically split nuclear

sublevels, driven by the radio-frequency magnetic field. The physical processes

involved are essentially same as those operative in the electron paramagnetic

resonance and can again be treated in parallel. Thus, consider a nucleus with the

magnetic moment 𝜇N and subjected to a constant static field B in the z-direction.
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Figure 12.5 The experimental setup of the

nuclear magnetic resonance. The static mag-

netic field is provided by the magnetic pole

for inducing the splitting of the energy level.

The inductive coil is used to generate the

radio-frequency magnetic field, which trig-

gers the transition. (Reproduced from A.

Yariv, Theory and Applications of Quantum

Mechanics.)

The energy level is then shifted according to Eq. (12.35) as

⟨I,mI | − gN𝜇BN

ℏ
B|I,mI⟩ = −gN𝜇BNBmI (12.39)

and splits into 2I + 1 sublevels separated by the uniform spacing gN𝜇BNB due to

mI ranging from −I to I in steps of unity. Hence, the resonance transition occurs

when the driving frequency satisfies the condition

h𝜈R = gN𝜇BNB (12.40)

For proton, 𝜇BN = 5.049 × 10−27 Jm2Wb−1 and gN = 2 × 2.79268, so that vR has

the value 42.58MHz for B = 1Wbm−2.

The NMR experiment is carried out by placing the sample between two pole

faces of electromagnets, subjecting it to a static B-field, inducing thereby the Zee-
man splitting of the energy level. Concurrently, the radio-frequency field is applied

in the direction perpendicular to B to trigger the transition (Figure 12.5). The

absorption of power can be treated in a way similar to that of the electron para-

magnetic resonance. The NMR has become an important tool in chemistry and

condensed matter physics. The high detection sensitivity of the resonant absorp-

tion lines enables the sensing of minute variations of the magnetic field as seen

by the nucleus. The variations of such fields are caused by the shielding of B by

the electrons in the molecule, and the resulting shift of 𝜈R is called the chemical

shift. The field also varies depending on the nature and symmetry of environs of

the nucleus. This is illustrated in Figure 12.6, in which three resonant lines from

ethyl alcohol are shown. The areas under these lines differ because of the vary-

ing number of protons participating in the transition. The largest, medium, and

smallest lines shown are due to three protons in CH3, two protons in CH2, and a

single proton in CH, respectively.
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Figure 12.6 Nuclear paramagnetic reso-

nance spectral lines resulting from the H-

atoms in ethyl alcohol (CH3CH2OH) inter-

acting with the B-field. The peaks are due

to three, two, and one protons in CH3, CH2,

and OH, respectively. (Reproduced from N.F.

Ramsey, Nuclear Moments, J. Wiley & Sons,

1953.)

12.4.1

Molecular Imaging

In recent years, NMR has become an efficient tool by which to image the spa-

tial distribution of atomic nuclei inside the body. Furthermore, the capability of

measuring the spatial variations of the nuclear spin relaxation times has opened a

novel field of the diagnostic medicine and the in vivo NMR in biological systems.

The imaging scheme is based on the resonant matching between 𝜈R and B as

given by Eq. (12.40). If B is uniform in space, the measured 𝜈R is constant and con-

tains no spatial information. However, when the spatial gradient ofB is introduced

as shown in Figure 12.7, 𝜈R also varies tracing the gradient. In this manner, NMR

signals contain the spatial information in coded form.Thus, by measuring the dis-

tribution of 𝜈R and the NMR signal magnitude, and by transcribing the data, it is

possible to image the distributed configuration of the nuclei.

Figure 12.7 specifically illustrates the scheme for such imaging. Given a spa-

tial distribution of protons in the z-direction, for example, a static magnetic field

with linear gradient is applied, distributing the B-field in space.Then, with the use

of radio-frequency B-field, a series of resonant frequencies 𝜈R is measured. The

measured data of 𝜈R and the signal strength can be transcribed into the spatial con-

figuration of nuclei. In practice, it is expedient to use the pulsed radio-frequency

field. In this case, the resonant frequencies are used concurrently instead of sweep-

ing them, and the flipping of nuclear spin is enhanced as in the case of the 𝜋∕2
pulse experiment. The resulting pulsed NMR signal I(t) can be converted to con-

structing the image via the Fourier transformation

I(𝜔) = ∫
∞

−∞
dtI(t)e−i𝜔t (12.41)

The frequency spectrum I(𝜔) extracted from the I(t) data provides the same image

information.

Problems

12.1 The radial energy eigenequation (12.10) provides the basis for treating the

vibrational and rotational nuclear motions.
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Figure 12.7 The schematics of the molecular imaging via the NMR technique. The spatial

distribution of protons to be probed (a). The local resonant frequencies matched with spa-

tially distributed B-field (b). The measured intensity and resonance frequency (c).

(a) Starting from Eq. (12.4), fill in the algebra and derive Eq. (12.6) by

using the Born approximation Eq. (12.5).

(b) Starting from Eq. (12.6), fill in the algebra and derive Eq. (12.10) by

using Eq. (12.7).

12.2 Consider a diatomic molecule of mass m1, m2 and separated by the bond

length R.

(a) Show that the moment of inertia of the molecule is given by I = 𝜇R2

with 𝜇 denoting the reduced mass 1∕𝜇 = 1∕m1 + 1∕m2.

(b) Calculate the moment of inertia of the diatomic molecules

H2, for which R = 74 pm, and HCl, for which R = 126 pm

(1 pm = 10−3 nm).
(c) Estimate the driving frequencies for inducing the rotational transi-

tions.

12.3 Consider the same diatomic molecules H2 and HCl.

(a) Find the reduced mass of vibration in each molecule.

(b) If the wave numbers of the vibrational spectrum are 4400.39 and

4138.32 cm−1, respectively, find the effective spring constants and the

bonding force.
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12.4 Consider a 2D oscillator oscillating in x-, y-directions with the spring con-

stants kx, ky, respectively.

Find the energy eigenfunction and eigenvalue for the cases kx ≠ ky, kx = ky
and discuss the results.

12.5 The observed wave number corresponding to the transition between

the vibrational ground and the first excited states of diatomic molecules

are 2990.3 cm−1 for D2, 2143.3 cm
−1for CO, 1556.3 cm−1 for O2, and

378.0 cm−1 for NaCl.

(a) Find the reduced mass of each molecule.

(b) Find the effective spring constant in newton per meter (Nm−1) and

binding force.

(c) Find the zero-point energy.

12.6 The diatomic molecule HCl has the following structural data: bond length

of 127.5 pm, force constant of the bond 516.3Nm−1, atomic masses of

1.67 × 10−27 for H, and 58.066 × 10−27 kg for Cl, respectively.

(a) Find the vibrational frequency and zero-point energy and

(b) the frequencies of the innermost three P and R lines.

12.7 Describe the flipping of the nuclear spin in the NMR experiment by carry-

ing out a parallel analysis of the electron paramagnetic resonance, that is,

by setting up the coupled equation of the two spin states and solving the

equation.
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13

Atom–Field Interaction

The interaction between the atom and the electromagnetic (EM) field is one of the

most important phenomena and is discussed in this chapter. Both semiclassical

and quantum mechanical treatments of the interaction are presented in conjunc-

tion with the quantized EM field. Also, the stimulated and spontaneous emissions

of radiation are highlighted together with the dynamics of a two-level atom driven

by the EM field.

13.1

Atom–Field Interaction: Semiclassical Treatment

In the semiclassical description, the field is treated classically, while the atom

is treated quantum mechanically. Thus, consider a single atom in resonant

interaction with the EM field. If the driving frequency matches closely with the

atomic transition frequency between two given levels, the coupling of the field

with other levels can be neglected, and we can model the atom as the two-level

atom (Figure 13.1).

The atom interacting with the EM field with frequency 𝜔, amplitude E0, and the

polarization vector ef is described by the dipole interaction Hamiltonian

Ĥ′ = −eE ⋅ r = −𝜇
E0

2
(ei𝜔t + e−i𝜔t); 𝜇 ≡ e(̂ef ⋅ r) (13.1)

where −eE is the force acting on the electron r displacement from the nucleus.

The wavelength of the field is much larger than the atomic dimension; hence, the

field amplitude E0 can be taken constant.When the interactionHamiltonian in Eq.

(13.1) is inserted into Fermi’s golden rule (Eq. (9.54)), the transition rate between

two atomic states u1, u2 is given by

Wi =
2𝜋

ℏ
|Ĥ′

12|2𝛿(𝐸2 − 𝐸1 − ℏ𝜔), |Ĥ′
12|2 = 𝜇2E2

0

4
, 𝜇 ≡ e⟨u1 |̂ef ⋅ r|u2⟩ (13.2)

where 𝜇 is the atomic dipole moment. In practice, the energy levels E1, E2 are

not sharply defined but broadened due to the finite lifetime 𝜏 of the electron in

each level. The level broadening is generally specified via the uncertainty relation

ΔE ≈ ℏ∕𝜏 , and 𝜏 is generally short because of the collisions the atom encounters.

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 13.1 The classical (a) and quantum (b) descriptions of the two-level atom driven by

classical and quantized fields, respectively. In the quantum treatment, the atom is coupled

in essence to a harmonic oscillator.

We can therefore treat 𝐸2 − 𝐸1 as a random variable and introduce the lineshape

factor g(𝐸2 − 𝐸1) in integrating Eq. (13.2) over the broadened energy level

Wi =
𝜋𝜇2E2

0

2ℏ ∫
∞

−∞
d𝜀g(𝜀)𝛿(𝜀 − ℏ𝜔), 𝜀 = 𝐸2 − 𝐸1

=
𝜋𝜇2E2

0

2ℏ
g(ℏ𝜔) =

𝜇2E2
0

4ℏ2
g(v) (13.3)

where the densities of states in 𝜈- and E-spaces represent the identical number of

quantum states, that is, g(E)dE = g(ℏ𝜔)d(ℏ𝜔) = g(ν)dν.

Stimulated and Spontaneous Transitions

We next consider an ensemble of atoms interacting with the EM field in thermo-

dynamic equilibrium. The number of atoms in each level is then determined by

the Boltzmann probability factor as discussed, so that the ratio is given by

N2

N1

= e−(𝐸2−𝐸1)∕kBT ; Nj ∝ e−𝐸j∕kBT , j = 1, 2 (13.4)

Also every process is balanced by its inverse process in equilibrium, and therefore

the number of atoms making the transition from upper to lower level must be

equal to that of its inverse transition, that is, N2Wi = N1Wi. But, this equality is

in fundamental contradiction with the Boltzmann probability factor, which states

that N1 > N2.

Einstein A Coefficient

The apparent inconsistency was resolved by Einstein, who introduced an addi-

tional mode of transition from upper to lower level

W2→1 = B𝜌(ν) + A; B𝜌(ν) ∝Wi ∝ 𝜇2E20 (13.5)
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where the first term proportional to the field energy density 𝜌(𝜈) (see Eq. (2.3))

represents the stimulated emission. The second term A accounts for additional

transition occurring free of the field intensity. As mentioned, the transition

rate from the lower to upper level is the same as the first term W1→2 = B𝜌(ν) in
Eq. (13.5). Hence, the balanceN2W2→1 = N1Wi between two opposing transitions

is given by

N2

N1

= B𝜌(ν)
[B𝜌(ν) + A]

(13.6)

By inserting Eqs. (13.4) and (2.3) into Eq. (13.6), we can write

1

ehν∕kBT
= 1

1 + (A∕B𝜌(ν))
= 1

1 + (A∕B)(c3∕8𝜋n3hν3)
(
ehν∕kBT − 1

) ; 𝐸2 − 𝐸1 = hν

(13.7)

where 𝜈 is the frequency of emission or absorption hν = 𝐸2 − 𝐸1 and n the index

of refraction accounting for the velocity of light in themedium. It is therefore clear

from Eq. (13.7) that the detailed balancing holds true, provided

A

B
=
(

c3

8𝜋n3hν3

)−1
(13.8)

The constant A is called the Einstein A coefficient and represents the spontaneous

emission of radiation that occurs irrespective of the presence or absence of the

field.

The role of A is best seen by considering an ensemble of atoms prepared in the

upper stateu2(r) in the absence of the field.Then, the decay rated ofN2 is governed

by

∂N2

∂t
= −AN2 (13.9)

so that the electron lifetime and the number of atoms in the upper state at t are

given by

𝜏𝑠𝑝 ≡ ∫
∞

0

dttN2(t)

∫
∞

0

dtN2(t)
= 1

A
; N2(t) = N2(0)e−At (13.10)

Moreover, as A is commensurate with B or the dipole matrix element 𝜇2 (see Eqs.

(13.8) and (13.5)), the spontaneous transition rate is a property inherent in each

atomic species.

13.2

Driven Two-Level Atom and Atom Dipole

Wenext consider the atom–field interaction.There are two regimes of interaction,

namely, the collisionless and the collision-dominated regimes. In the former, the
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field-induced transition time is shorter than the mean collision time, while in the

latter, the collision time is much shorter instead.

The Schrödinger equation of the driven two-level atom is given from Eq. (13.1)

by

iℏ
∂
∂t

𝜓(r, t) = [Ĥ0 + Ĥ′(t)]𝜓(r, t) (13.11)

where Ĥ0 is the unperturbed Hamiltonian and Ĥ ′ the interaction Hamiltonian

equation (13.1). The wavefunction of the two-level atom can be generally repre-

sented in terms of the two eigenfunctions and is given by

𝜓(r, t) =
2∑
j=1

aj(t)e−i(𝐸j∕ℏ)|uj⟩; Ĥ0|uj⟩ = 𝐸j|uj⟩, j = 1, 2 (13.12)

By inserting Eq. (13.12) into Eq. (13.11) and carrying out the usual inner product

with respect to u1, u2 on both sides, we obtain the coupled equation in analogy

with Eq. (10.53) as

ȧ1 = i
𝜇E(t)

ℏ
a2e

−i𝜔0t , 𝜔0 ≡ 𝐸2 − 𝐸1

ℏ
, 𝜇 ≡ e⟨1|̂ef ⋅ r|2⟩ (13.13a)

ȧ2 = i
𝜇E(t)

ℏ
a1e

i𝜔0t (13.13b)

where𝜔0 is the atomic transition frequency and 𝜇 the dipole moment. In deriving

Eq. (13.13), u1(r) and u2(r) have been taken even and odd in r or vice versa, so that
the diagonal matrix element ∝ ⟨j|̂ef ⋅ r|j⟩ is zero, while ⟨u1 |̂ef ⋅ r|u2⟩ ≠ 0.

We next consider the resonant interaction in the collisionless regime in which

the driving frequency 𝜔 is equal to the transition frequency 𝜔0. We can then

employ the rotating wave approximation and neglect the rapidly oscillating terms

∝ exp±(𝜔 + 𝜔0) and obtain straightforwardly from Eq. (13.13)

ȧ1 = iΩa2; Ω ≡ 𝜇E0

2ℏ
; E(t) =

E0

2
(ei𝜔t + e−i𝜔t) (13.14a)

ȧ2 = iΩa1 (13.14b)

where Ω is the transition frequency. The coupled equation (13.14) is identical to

Eq. (10.53), and we can use the results obtained already. For a1(0) = 1, a2(0) = 0,

the solution is given by

a1(t) = cosΩt; a2(t) = i sinΩt (13.15)

and is known as Rabi flopping formula, describing the electron swinging between

two states with the transition frequencyΩ. Also the total probability is conserved,
namely, |a1(t)|2 + |a2(t)|2 = 1, as it should (see Figure 13.2).

In the collision-dominated regime, on the other hand, a1(t), a2(t) decay rapidly

in time, and the oscillation is damped. If the decay time is much shorter than

the flipping period, the change in time of a1(t), a2(t) is small. In this case, the

atom–field interaction simply yields the probability of a photon being absorbed
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Figure 13.2 The Rabi flopping curve versus

time Ωt, describing the evolution in time of

the expansion coefficients of the two-level

atom, driven by a resonant harmonic field.

or emitted. For example, for the initial condition under consideration, the prob-

ability of the photon being absorbed is given by |a2(𝜏)|2 ≈ Ω2𝜏2 with 𝜏 denoting

the mean interaction time.

Atom Dipole

We next consider the evolution in time of the atom dipole by using the Rabi flop-

ping formulae Eq. (13.15). When the atom is prepared in upper or lower state, the

wavefunction is given by

|𝜓⟩ = e−i𝜔j t|uj(r)⟩; j = 1 or 2 (13.16)

and the atom does not possess the dipole moment, that is,

⟨uj|𝜇|uj⟩ = 0; 𝜇 ≡ êef ⋅ r, j = 1 or 2 (13.17)

regardless of whether uj is even or odd in r. However, when the atom is driven

by the field, a1(t), a2(t) change in time according to Eq. (13.15). Consequently, the

wavefunction evolves into a linear superposition of u1 and u2 (see Eq. (13.12)).

Moreover, the atom dipole moment

⟨𝜇⟩ = ⟨𝜓|𝜇|𝜓⟩ = −𝜇[a∗1(t)a2(t)e
−i𝜔0t + a1(t)a∗2(t)e

i𝜔0t] (13.18)

oscillates with the atomic transition frequency 𝜔0 (Figure 13.3). An oscillating

electric dipole is well known to emit or absorb the radiation, and therefore a pho-

ton is emitted or absorbed by the oscillating atom dipole.

13.3

Atom–Field Interaction: Quantum Treatment

13.3.1

Field Quantization

In the quantum treatment of the interaction, both field and atom are treated

quantum mechanically (Figure 13.1). Thus, consider the field quantization,

using the resonator, consisting of two parallel metallic plates, L distance apart,
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u100 u210

u210
φ

φ

|φ|2

|φ|2

u100

Figure 13.3 The linear superposition of the ground (u100) and first excited (u210) states of

the H-atom with equal probability. The resulting atom dipole oscillates in time between two

limits (u100 + u210) and (u100 − u210).

say in the z-direction. The standing-wave EM fields therein can generally be

represented by

E
l
= ŷ

√
2

V𝜀
pl(t) sin klz, klL = l𝜋, l = 1, 2, … (13.19a)

H
l
= x̂

√
2

V𝜇
ql(t)𝜔l cos klz (13.19b)

where V is the volume of the resonator, and the wave vector k should satisfy the

standing-wave boundary condition, so that El vanishes at z = 0, L.

Naturally El, Hl thus represented should satisfy the wave equation or equiv-

alently Maxwell’s equations. Specifically, when Faraday’s law of induction (Eq.

(1.21)) and Ampere’s circuital law (Eq. (1.22)) are applied to Eqs. (13.19a) and

(13.19b) in the medium free of charge and current, there results

∇ × ŷEl ≡ −x̂
√

2

V𝜀
klpl(t) cos klz = −x̂𝜇

√
2

V𝜇
𝜔lq̇l cos klz (13.20a)

∇ × H
⇁
≡ ŷ(−kl)

√
2

V𝜇
𝜔lql(t) sin klz = ŷ𝜀

√
2

V𝜀
ṗl(t) sin klz (13.20b)

As the dispersion relation k = 𝜔
√

𝜇𝜀 of the EM wave has to hold, Eqs. (13.20a)

and (13.20b) are satisfied, provided

pl(t) = q̇l(t), ṗl(t) = −𝜔2
l
ql(t) (13.21)

We can decouple pl, ql by differentiating Eq. (13.21) with respect to t, obtaining

q̈l(t) = ṗl = −𝜔2
l
ql(t) (13.22a)

p̈l(t) = −𝜔2
l
q̇l = −𝜔2

l
pl(t) (13.22b)
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Obviously, Eq. (13.22) is precisely the differential equation of the HO. In addition,

the energy residing in the lth-mode standing wave can be obtained by integrating

field energy density over the cavity volume and is given from Eq. (13.19) by

Ĥl = ∫
L

0

Adz

(
𝜀E

l
⋅ E

l

2
+

𝜇H
l
⋅H

l

2

)
= 1

2
p2
l
(t) + 1

2
𝜔2
l
q2
l
(t) (13.23)

and is identical to the Hamiltonian of the HO with unit mass and frequency 𝜔l.

In performing the integration, use has been made of the condition klL = l𝜋 and

the identities cos 2x = (1 + cos 2x)∕2, sin 2x = (1 − cos 2x)∕2, and A is the cross-

sectional area. Evidently, pl(t), ql(t) are conjugate variables obeying Hamilton’s

equation of motion (1.6).

The field quantization consists in essence of taking ql, pl as operators obeying

the commutation relation of the canonically conjugate variables

[ql,pl′ ] = iℏ𝛿ll′ (13.24)

(see Eq. (3.27)). With the commutation relation thus imposed, the roles of ql, pl
in the lth standing wave have become identical to those of x and px of the HO.

Therefore, the quantum treatment of the EM field can be done in strict analogy

with the operator treatment of the HO. Thus, we can introduce the annihilation

and creation operators in analogy with Eq. (7.37) as(
al
a+
l

)
=
(

1

2ℏ𝜔l

)1∕2

(𝜔lql ± ipl) (13.25)

in which case the commutation relation is given from Eq. (13.24) by

[al, a+l′ ] = 𝛿ll′ (13.26)

Moreover, by using Eqs. (13.25) and (13.26), the Hamiltonian in Eq. (13.23) can

be expressed in strict analogy with Eq. (7.40) as

Ĥl = ℏ𝜔l

(
a+
l
al +

1

2

)
(13.27)

Finally, the eigenfunctions {un} of the HO can be used as the eigenfunctions of the

lth standing wave, and we can write again in strict analogy with Eqs. (7.41)–(7.43)

al|nl⟩ =√n|nl − 1⟩; |nl⟩ ≡ |ul⟩ (13.28a)

a+
l
|nl⟩ =√n + 1|nl + 1⟩ (13.28b)

so that

a+
l
al|nl⟩ =√na+

l
|nl − 1⟩ = n|nl⟩ (13.28c)

and

Ĥ|nl⟩ = ℏ𝜔l

(
al
+al +

1

2

) |nl⟩ = ℏ𝜔l

(
n + 1

2

) |nl⟩ (13.28d)
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The quantum number n in this case represents the number of photons carrying

the quantumof energy ℏ𝜔l. Also the operators a
+
l
, al raise and lower the eigenstate|nl⟩ by creating and annihilating a photon.

The single-mode treatment can be extended straightforwardly, and the total

Hamiltonian in the resonator is given by

Ĥ =
∞∑
l=1

Ĥl, Ĥl = ℏ𝜔l

(
a+
l
al +

1

2

)
(13.29)

with the eigenfunction represented by the product of single-mode eigenfunctions

𝜓f =
∏
l

ul = |n1, n2, … , nl, … ⟩ (13.30a)

and the eigenvalues given by

Ĥ|n1, n2, … , nl, … ⟩ = ∞∑
l=1

ℏ𝜔l

(
nl +

1

2

) |n1, n2, … , nl, … ⟩ (13.30b)

Thus, the field energy in the resonator is represented by the sum of eigenenergies

of a denumerable infinite set of harmonic oscillators.

EM Field as Operators

The operator representation of EM field can be made by considering the time rate

of change of al and a+
l
with the use of Eqs. (13.22) and (13.25):(

ȧl
ȧ+
l

)
=
(

1

2ℏ𝜔l

)1∕2

(𝜔lq̇l ± iṗl)

= ∓i
(

1

2ℏ𝜔l

)1∕2

𝜔l(𝜔lql ± ipl) ≡ ∓i𝜔l

(
al
a+
l

)
(13.31)

Hence, a simple time integration of Eq. (13.31) yields

al(t) = al(0)e−i𝜔l t ; a+
l
(t) = a+

l
(0)ei𝜔l t (13.32)

and upon expressing ql, pl in terms of a+
l
, al by using Eq. (13.25), the lth standing-

wave mode Eq. (13.19) can be represented in terms of al(t) and a+
l
(t) as

E
l
= ŷi

√
ℏ𝜔l

V𝜀
[a+

l
(t) − al(t)] sin klz (13.33a)

H
l
= x̂

√
ℏ𝜔l

V𝜇
[a+

l
(t) + al(t)] cos klz (13.33b)

We can also express Eq. (3.33) in terms of the EM field traveling in the k-direction
by combining Eqs. (13.32) and (13.33). Specifically, the standing-wave modes

sin klz, cos klz can be transformed into the traveling modes exp±i(𝜔t − k ⋅ r), and
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at the same time, E,H, and k can be made mutually perpendicular as required by

Maxwell’s equations:

E
k
= ie

k𝜆

√
ℏ𝜔k

2V𝜀
[a+

k𝜆
(t)e−ik⋅r − a(t)k𝜆eik⋅r] (13.34a)

H
k𝜆
=
(
e
k𝜆
×
k

k

)√
ℏ𝜔k

2V𝜇
[a+

k𝜆
(t)e−ik ⋅ r + ak𝜆(y)eik ⋅ r] (13.34b)

where ek𝜆 is the polarization vector.

Quantum Treatment of Spontaneous Emission

The interaction Hamiltonian Eq. (13.1) can therefore be expressed in terms of the

quantized EM field as

Ĥ ′ = −eE ⋅ r = −ie(̂el𝜆 ⋅ r)
√

ℏ𝜔l

2V𝜀
(a+

l𝜆
(t)e−ik⋅r − al𝜆(t)eik⋅r) (13.35)

and it couples in effect a two-level atom and a harmonic oscillator with frequency

𝜔l as illustrated in Figure 13.1.The transition rate Eq. (13.2) is then given from Eq.

(13.35) by

W =
2𝜋𝜔l

2V𝜀

2∑
𝜆=1
|⟨u1, nl + 1|e(̂el𝜆 ⋅ r)(a+k𝜆(t)e−ik⋅r − ak𝜆(t)eik⋅r)|u2, nl⟩|2𝛿(𝐸2−𝐸1−ℏ𝜔)

=
2𝜋𝜔l

2V𝜀

2∑
𝜆=1

𝜇2
𝜆(nl + 1)𝛿(𝐸2 − 𝐸1 − ℏ𝜔) ≡ Wl

ind
+Wl

𝑠𝑝; 𝜇𝜆 ≡ e⟨u1 |̂el𝜆 ⋅ r|u2⟩
(13.36)

where the orthonormality of the set of eigenfunctions {ul} has been used and the

two polarizations of the wave have been summed over. Thus, W consists of the

matrix element connecting the two states, that is, the atom in the lower level and

the field in the (n + 1) photon state and atom in the upper level with the field in

the n photon state. The total energy before and after the transition is then same,

namely, E2 + nℏ𝜔 ≈ E1 + (n + 1)ℏ𝜔.

In this manner, the transition rate W is shown to consist of two terms in the

quantum treatment of the field.The first termWind is proportional to the number

of photons, nl, or the light intensity and represents the stimulated emission of

radiation. The second term Wsp is independent of nl and should correspond to

the spontaneous emission. As the latter term does not rely on nl, we have to sum

over the entire standing-wave modes to obtain the total spontaneous emission
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rate:

W𝑠𝑝 ≡ ∫
∞

0

dνlW
(l)
𝑠𝑝 𝜌f (νl)V , 𝜌f (νl) =

8𝜋ν2
l
n3

c3

= 2𝜋𝜇2

2V𝜀 ∫
∞

0

dνl𝜔l𝜌f (νl)V𝛿(𝐸2 − 𝐸1 − hνl)

=
16𝜋3𝜇2ν3

0
n3

𝜀hc3
; hν0 = 𝐸2 − 𝐸1, 𝛿(hν) = 𝛿(ν)

h
(13.37)

where 𝜌f(𝜈l) is the density of standing wave modes (Eq. (2.1)).

To identify Wsp to Einstein A coefficient, let us formally equate W𝑠𝑝 to A in

Eq. (13.8) and find B = 𝜇2∕2𝜀ℏ2. In this case, the induced transition rate in Eq.

(13.5) should read as

Wind ≡ B𝜌(ν) = 𝜇2

2𝜀ℏ2
𝜌(ν)

and should by definition be identical to the transition rateWi (Eq. (13.3)) as given

by Fermi’s golden rule. This necessitates the correspondence

𝜀E2
0

2
g(ν) ↔ 𝜌(ν)

and obviously the left-hand side is the field energy density at the driving frequency,

while the right-hand side denotes the energy density of the radiation field at the

same frequency.Obviously, these two quantities are identical.Therefore, the spon-

taneous emission of radiation is shown an inherent property of the quantized EM

field.

Problems

13.1 . (a) Starting from the wave equation (13.11), derive the coupled equations

involving the expansion coefficients a1(t), a2(t) in Eq. (13.13) by using

the wavefunction 13.12 and performing the appropriate inner prod-

ucts.

(b) By using the solution given in Eq. (13.15), find the evolution in time

of the atom dipole moment (Eq. (13.18)) and interpret the result.

13.2 . (a) Given the interaction Hamiltonian of a two-level atom driven by a

harmonic field (Eq. (13.1)), use the wavefunction in the Schrödinger

picture

𝜓(r, t) =
2∑
j=1

ajS(t)|uj⟩; Ĥ0|uj⟩ = Ej|uj⟩, j = 1, 2 (A)

and show that the coupled equation of a1S(t) and a2S(t) is given by

ȧ1s = −i𝜔1a1s + i
𝜇E(t)

ℏ
a2s; 𝜔1 =

𝐸1

ℏ

ȧ2s = −i𝜔2a2s + i
𝜇E(t)

ℏ
a1s; 𝜔2 =

𝐸2

ℏ
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(b) Compare the result with Eq. (13.13) in light of ajS(t) = aj(t)
exp−(i𝐸jt∕ℏ).

(c) Solve the equation by using the initial condition a1S(0) = 1, a2S(0) = 0

and the resonant condition 𝜔 = 𝜔0.

(d) Obtain the expression of the atom dipole moment and compare the

result with Eq. (13.18).

13.3 . (a) Derive the expression of the field energy in the resonator (Eq. (13.23))

by using El,Hl given in Eq. (13.19) and the boundary condition of the

standing waves.

(b) By using the commutation relation (13.24), verify the commutation

relation of the creation and annihilation operators (Eq. (13.26)).

13.4 . (a) By using Eq. (13.25) and the commutation relation (13.26), obtain the

Hamiltonian equation (13.27) given in terms of the creation and anni-

hilation operators.

(b) Starting from the standing wave representation El, Hl given in Eq.

(13.33), obtain the traveling wave representation Eq. (13.34) by com-

bining Eqs. (13.32) and (13.33) and the trigonometric identities exist-

ing between sin x, cos x and exp(±ix).
(c) Using the roles of the creation and annihilation operators given in

Eq. (13.28), reproduce the expression of the transition rate W (Eq.

(13.36)).
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14

The Interaction of EMWaves with an Optical Media

The atom–field interaction is extended to the EM waves interacting with an

ensemble of atoms in the optical medium. In particular, the absorption, gain,

and dispersion of the wave as it propagates in the medium are discussed. Also

the operation principles of laser devices are presented in conjunction with the

population inversion and controlled emission of radiation.

14.1

Attenuation, Amplification, and Dispersion of Waves

Attenuation and Amplification

In the collision-dominated regime, the atom–field interaction time is much

shorter than the transition time period. Hence, the electron simply ends up

making a transition from one level to another with a certain probability rather

than executing a full Rabi flopping. Thus, given an ensemble of two-level atoms

with N1, N2 atoms per unit volume, the number of induced transitions is given

by

N1→2 = N1Wi, N2→1 = N2Wi (14.1a)

where the transition rate is given from Eq. (13.3) in terms of the light intensity Iv
and index of refraction n as

Wi =
𝜇2E2

0
g(ν)

4ℏ2
=

𝜇2ng(ν)
2ℏ2c𝜀

Iν, Iν ≡ 𝜀E2
0

2

c

n
(14.1b)

The light incident on a slab at z with unit cross-sectional area and thickness dz

(Figure 14.1) is absorbed due to the net upward transition:

Iν(z + dz) − Iν(z) = −(N1 − N2)Wihνdz (14.2)

We can recast Eq. (14.2) into a differential form by Taylor expanding Iν(z + dz) at
z as

dIν
dz

= −𝛼Iν, 𝛼 ≡ (N1 − N2)
𝜇2ng(ν)
2ℏ2c𝜀

hν (14.3)
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Optical medium

N2 < N1

N2 > N1

N2 

N1 

Iv(z)
Iv(z + dz)

z + dz
z

|1〉

|1〉

|2〉

(a) (b)

|  〉

Figure 14.1 The input light intensity at z and the output light intensity at z + dz (a). The

light is absorbed or amplified depending on whether N2 < N1 or N2 > N1 (b).

The constant 𝛼 thus introduced with the use of Eq. (14.1b) is called the linear

attenuation coefficient, and its dependence on the atom dipole moment renders it

one of the inherent properties of atomic species.We can easily integrate Eq. (14.3)

and obtain

Iν(z) = Iν(0)e−𝛼z (14.4)

In an absorbing medium, N1 > N2 and the light is attenuated, while in the

population-inverted medium, N1 < N2 and light is amplified with the gain

coefficient 𝛾 given by

Iν(z) = Iν(0)e𝛾z, 𝛾 = −𝛼 (14.5)

Dispersion

EM waves also undergo the dispersion while attenuated or amplified. The disper-

sion comes about because (i) the incident light induces the atom dipole, (ii) an

ensemble of such atom dipoles gives rise to the macroscopic polarization vector

P, and (iii) P in turn acts as the source of the input field:

E → ⟨𝜇j⟩ →∑
j

⟨𝜇j⟩ → P → E

To analyze the feedback process, let us consider P, which is generally represented

by

P = ReP
0
ei𝜔t ≡ Re[𝜀0𝜒aE0

ei𝜔t] (14.6a)

where 𝜒a connecting E to P is called the atomic susceptibility and is a complex

quantity

𝜒a ≡ 𝜒 ′
a − i𝜒 ′′

a (14.6b)
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Hence, with the use of Eq. (14.6b), we can reexpress Eq. (14.6a) as

P = Re𝜀0[(𝜒 ′
a − i𝜒 ′′

a )E0
ei𝜔t] = 𝜀0𝜒

′
aE0

cos𝜔t + 𝜀0𝜒
′′
a E0 sin𝜔t (14.6c)

The polarization vector is an integral component of the displacement vector

D ≡ 𝜀E ≡ 𝜀0E + P (14.7)

so that D can also be expressed as the output of E as

D ≡ 𝜀0E + 𝜀0𝜒aE ≡ 𝜀E (14.8)

The permittivity 𝜀 thus defined consists of the background and resonant compo-

nents, that is, 𝜀 ≡ 𝜀0(1 + 𝜒) = 𝜀0(1 + 𝜒b + 𝜒a), and we can reexpress 𝜀 as

𝜀 ≡ 𝜀b

[
1 +

𝜀0𝜒a (𝜔)
𝜀b

]
, 𝜀b ≡ 𝜀0(1 + 𝜒b) (14.9)

Therefore, the wave vector of the field is characterized by a complex dispersion

relation

k ≡ 𝜔
√

𝜇𝜀 = 𝜔

{
𝜇𝜀b

[
1 +
[
𝜒 ′
a (𝜔) − i𝜒 ′′

a (𝜔)
]

n2

]} 1

2

= kb

[
1 +

𝜒 ′
a (𝜔)
2n2

]
− i

kb𝜒
′′
a (𝜔)
2n2

; kb ≡ 𝜔
√

𝜇𝜀b, n2 ≡ 𝜀b
𝜀0

(14.10)

where an approximation has been made, namely, (1 + 𝜒a)1∕2 ≃ 1 + 𝜒a∕2, as|𝜒a|≪ 1. Thus, the input field is attenuated or amplified and dispersed at the

same time:

E(z, t) = ReE0e
i(𝜔t−kz)

= ReE0e
i
{

𝜔t−kbz
[
1+ 𝜒′a (𝜔)

2n2

]}
e−

kbz𝜒
′′
a (𝜔)

2n2 (14.11)

It follows from Eq. (14.11) that the real part of the susceptibility characterizes the

dispersion, while the imaginary part accounts for the attenuation or amplification.

14.2

Atomic Susceptibility

Density Matrix and Ensemble Averaging

We next analyze microscopically the absorption, amplification, and dispersion of

the EM waves. Thus consider the two-level atom driven by an external electric

field. We can represent the wavefunction of the two-level atom as

|Ψ(r, t)⟩ = a1s(t)|u1(r)⟩ + a2s(t)|u2(r)⟩; ajs(t) = aj(t)e−i(Ej∕ℏ)t (14.12)

(see Eq. (13.12)). Note in Eq. (14.12) that the time dependence of the two states

is entirely relegated to a1s, a2s, and the representation is known as Schrödinger
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picture. Then, the atomic dipole is given by⟨𝜇⟩ ≡ ⟨Ψ|e(̂ef •r)|Ψ⟩ = 𝜇[a2s(t)a∗1s(t) + c.c.], 𝜇 ≡ ⟨u1 |̂ef •r|u2⟩
= 𝜇(𝜌12 + 𝜌21); 𝜌ij ≡ aisa

∗
js
, j = 1, 2 (14.13)

where 𝜌ij thus defined is the off-diagonal element of the density matrix defined as

𝜌 =
(

𝜌11 𝜌12
𝜌21 𝜌22

)
≡
(
a1sa

∗
1s

a1sa
∗
2s

a2sa
∗
1s

a2sa
∗
2s

)
; 𝜌21 = 𝜌∗12 (14.14)

Obviously, the diagonal element 𝜌jj represents the probability of finding the atom

in the jth state, while the off-diagonal elements describe the atom dipole.

The equations of motion of the density matrix elements can be derived by using

the coupled equation of the expansion coefficients Eq. (13.13) but with aj therein

replaced by ajs (see Eq. (14.12)). After a straightforward algebra, we obtain

d

dt
𝜌21 = −i𝜔0𝜌21 + i

𝜇E(t)
ℏ

(𝜌11 − 𝜌22) −
𝜌21
T2

, 𝜔0 =
E2 − E1

ℏ
(14.15a)

d

dt
(𝜌11 − 𝜌22) =

2i𝜇E(t)
ℏ

(𝜌21 − 𝜌∗21) −
(𝜌11 − 𝜌22) − (𝜌

(0)
11
− 𝜌(0)

22
)

𝜏
(14.15b)

where 𝜔0 is the atomic transition frequency. Note in particular that the last term

in each equation has been added to incorporate the relaxation processes involved.

For instance,

𝜌21(t) ≡ 1

N

N∑
j=1

a
(j)
2s

[
a
(j)
1s

]∗
e−i𝜑j ; 𝜑j =

(E2j − E1j)t
ℏ

(14.15c)

represents the ensemble-averaged off-diagonal element. When two atoms collide,

for example, each atom provides a burst of perturbing Hamiltonian to the other,

thereby inducing the shift in energy level or the change in the phase 𝜑j. The col-

lision is a random process so that 𝜑j is a random variable. Moreover, expansion

coefficients are complex quantities and bring in additional differences in 𝜑j. As a

result, the ensemble-averaged atomic dipole decays in a few T2 called the trans-

verse relaxation time. Likewise, the quantity 𝜌11–𝜌22 represents the difference in

the number of atoms distributed between the two states, and it also relaxes back

to its equilibrium value 𝜌(0)
11
− 𝜌(0)

22
in time scale 𝜏 called the longitudinal relaxation

time.

The roles of the relaxation terms are best seen by turning off the electric field in

Eq. (14.15), in which case we can easily find the solutions of Eq. (14.15) as

[𝜌11(t) − 𝜌22(t)] = [𝜌11(0) − 𝜌22(0)]e−t∕𝜏 + [𝜌
(0)
11
− 𝜌(0)

22
]
(
1 − e−t∕𝜏

)
(14.16a)

𝜌21(t) = 𝜌21(0)e−i𝜔0te−t∕T2 (14.16b)

It is therefore clear that that the population difference 𝜌11–𝜌22 relaxes back to its

equilibrium value in a few 𝜏 ’s irrespective of the initial value. Also 𝜌21 relaxes to

its zero equilibrium level in a few T2’s, and T2 is generally much shorter than 𝜏 .
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The fast decay of 𝜌21(t) is due to the rapid dephasing of the atom dipoles caused

by collisions or other nonradiative decay (Figure 14.2).

We next consider a harmonic field driving the ensemble of atoms with the res-

onant frequency

E(t) =
E0
2
(ei𝜔t + e−i𝜔t), 𝜔 ≃ 𝜔0 (14.17)

To facilitate the analysis, we decompose the variation in time of 𝜌21 into the com-

ponent oscillating rapidly with the driving field and the slowly varying matrix

element 𝜎21 as

𝜌21 = 𝜎21 exp−(i𝜔t), 𝜎21 = 𝜎(r)
21
+ i𝜎(i)

21
(14.18)

When Eqs. (14.17) and (14.18) are inserted into Eq. (14.15a), it can be reexpressed

after rearranging the terms as(
d

dt
𝜎21

)
e−i𝜔t = i(𝜔 − 𝜔0)𝜎21e

−i𝜔t + i
𝜇E0
2ℏ

(ei𝜔t + e−i𝜔t)(𝜌11 − 𝜌22) −
𝜎21e

−i𝜔t

T2

(14.19)

Also as the variations in time of 𝜎ij and 𝜌jj are slow compared with the oscillation

frequency of the field, we may retain only the synchronous terms from both sides

in the rotating-wave approximation. We can thus write

d

dt
𝜎21 = i(𝜔 − 𝜔0)𝜎21 + i

𝜇E0
2
(𝜌11 − 𝜌22) −

𝜎21

T2

(14.20a)

We can likewise single out the d.c. components from both sides of Eq. (14.15b),

obtaining

d

dt
(𝜌11 − 𝜌22) =

i𝜇E0
ℏ

(𝜎21 − 𝜎∗21) −
(𝜌11 − 𝜌22) − (𝜌

(0)
11
− 𝜌(0)

22
)

𝜏
(14.20b)

[ρ11(t/τ)−ρ22(t/τ)]

[ρ11(0) − ρ22(0)](1−e−t/τ)

[ρ11(0) − ρ22(0)]e−t/τ ρ21(0)e−(iω0t + t/T
2
)

e−t/T
2

t / τ

t / T2 

(a) (b)

Figure 14.2 The evolution in time of the population difference 𝜌11 − 𝜌22 (a) and the off-

diagonal density matrix element 𝜌21 (b). The two quantities relax back to the equilibrium

level in the time scale 𝜏 , T2.
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Steady-State Analysis

At steady state, the time derivatives in Eq. (14.20) vanish, and therefore by

equating the real and imaginary parts from both sides of Eq. (14.20), we obtain

three equations involving three unknowns 𝜎(r)
21
, 𝜎(i)

21
, and (𝜌11 − 𝜌22). These three

unknowns can be readily found in a straightforward manner and are given by

𝜌11 − 𝜌22 = (𝜌(0)
11
− 𝜌(0)

22
)

1 + (𝜔 − 𝜔0)2T2
2

1 + (𝜔 − 𝜔0)2T2
2
+ 4Ω2T2𝜏

; Ω ≡ 𝜇E0

2ℏ
(14.21a)

𝜎(r)
21
= (𝜌(0)

11
− 𝜌(0)

22
)

−(𝜔 − 𝜔0)T2
2
Ω

1 + (𝜔 − 𝜔0)2T2
2
+ 4Ω2T2𝜏

(14.21b)

𝜎(i)
21
= (𝜌(0)

11
− 𝜌(0)

22
)

T2Ω
1 + (𝜔 − 𝜔0)2T2

2
+ 4Ω2T2𝜏

(14.21c)

Atomic Susceptibility

We can now specify the ensemble-averaged atomic dipole by combining

Eqs. (14.13), (14.18), and (14.21) as⟨𝜇⟩ = 𝜇(𝜌21 + 𝜌12) = 2Re𝜇(𝜎(r)
21
+ i𝜎(i)

21
)e−i𝜔t

= 2𝜇[𝜎(r)
21

cos𝜔t + 𝜎(i)
21
sin𝜔t] (14.22)

Therefore, the susceptibility is specified by combining Eqs. (14.6c), (14.21), and

(14.22) as

P(t) ≡ ReN⟨𝜇(t)⟩ = 𝜀0𝜒
′
aE0

cos𝜔t + 𝜀0𝜒
′′
a E0

sin𝜔t

with the identifications

𝜒 ′
a(𝜔) =

𝜇2T2(N
(0)
1
− N

(0)
2
)

ℏ𝜀0

−(𝜔 − 𝜔0)T2

1 + (𝜔0 − 𝜔)2T2
2
+ 4Ω2T2𝜏

(14.23a)

𝜒 ′′
a (𝜔) =

𝜇2T2(N
(0)
1
− N

(0)
2
)

ℏ𝜀0

1

1 + (𝜔0 − 𝜔)2T2
2
+ 4Ω2T2𝜏

(14.23b)

Here N (0)
j
= N𝜌(0)

jj
is the density of atoms in each level in equilibrium. Also the

phase velocity vp = 𝜔∕k and the attenuation coefficient of the light intensity

𝛼(𝜔) ∝ 2𝜒 ′′
a can be specified from Eq. (14.11) and (14.23) as

vp(𝜔) =
𝜔

kb(1 + 𝜒 ′
a(𝜔)∕2n2)

=
c∕n

(1 + 𝜒 ′
a(𝜔)∕2n2)

(14.24)

𝛼(𝜔) ≡ kb
𝜒 ′′
a (𝜔)
n2

=
𝜋𝜇2(N (0)

1
− N

(0)
2
)

𝜆n2ℏ𝜀0
g(ν) (14.25a)

where the lineshape function g(v) is given in this case by a Lorentzian function

g(ν) =
2T2

1 + (𝜔 − 𝜔0)2T2
2
+ 4Ω2T2𝜏

≈
2T2

1 + (𝜔 − 𝜔0)2T2
2

(14.25b)
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In equilibrium, N1 > N2 so that 𝛼 > 0 and the light is attenuated, but with the

population inversion, that is, N1 < N2 𝛼 < 0 and the light is amplified.

14.3

Laser Device

The laser device is based on the Bose Einstein statistics and the feedback mecha-

nism, whereby the input wave is regenerated in cascade via the stimulated emis-

sion of radiation. The cw operation of the device produces the monochromatic

light sources for use in spectroscopic studies. The pulsed-mode operation yields

ultra-short light pulses by which to explore fast chemical and physical processes

down to attosecond time regimes or shorter. Moreover, the laser diodes are uti-

lized in the optoelectronic applications as well as the fiber communication, and

its operation principles are briefly discussed.

Thus, consider a cavity consisting of two parallel mirrors L distance apart

(Figure 14.3). The wavelengths of standing-wave modes satisfy therein the

boundary condition (𝜆l∕2)l = L, l = 1, 2, … , so that the axial frequencies

ν(0)
l
=

c∕n
𝜆l

= l
1

2L∕(c∕n)
(14.26a)

are separated uniformly byΔv, which corresponds to the inverse cavity round-trip
time:

Δν = ν(0)
l+1 − ν

(0)
l
= 1

2L∕(c∕n)
(14.26b)

When the population inversion is achieved above the threshold value, the cavity

acts as a self-sustaining oscillator. An incident wave is amplified as it traverses the

cavity, but it also suffers the loss due to imperfect reflectivity and transmittance

of the mirrors and the scattering. The output wave then consists of a string of

transmitted beams, with each succeeding beamhaving undergone onemore cavity

round-trip and is given by

Et = t1t2Eie
−ikL[1 + s + s2 + · · ·] =

t1t2e
−ikL

1 − s
Ei, s ≡ r1r2e

−2ikL (14.27)

Gain profile
t1Ei

Ei[2L/(c/n]
−1 Et

t1r2Eie
−2ikl

t1r1r2Eie
−2ikl

t1r1r2

2
Eie

−4ikl t1r1r 2

2
Eie

−3ikl

t1r1r2Eie
−3ikl t1t2r1r2Eie

−3ikl

t1t2Eie
−ikl

t1r2Eie
−ikl

t1Eie
−ikl

Loss level
Vl–1 Vl Vl+1

(a) (b)

+

+

Figure 14.3 The longitudinal standing-wave modes in a Fabry–Perot-type laser cavity (a).

The laser oscillator with the input beam yielding a string of output beams with each suc-

ceeding one having undergone one more cavity round-trip (b).
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where tj, rj are the transmission and reflection coefficients of the mirror, and s is

the net gain in one cavity round-trip.The infinite geometric series can be summed

up if s < 1. Also, the amplification and dispersion of the wave are specified by the

wave vector as

k = kb + Δk + i
1

2
𝛾; Δk = kb

𝜒 ′
a(𝜔)
2n2

, 𝛾 = −kb
𝜒 ′′
a (𝜔)
n2

(14.28)

where kb is the background term,Δk, 𝛾 represent the dispersion and gain, respec-

tively as discussed (see Eqs. (14.10) and (14.23)).

14.3.1

Population Inversion

As mentioned, the gain prevails over the loss when N2 is greater thanN1, and the

population inversion is attained by pumping the atoms. Figure 14.4 shows a two-

level atom, pumped, driven, and damped at the same time. The rate equation is

given by

�̇�22 = 𝜆2 −

(
1

𝜏2
+ 1

𝜏sp

)
𝜌22 −Wi(𝜌22 − 𝜌11) (14.29a)

�̇�11 = 𝜆1 −
1

𝜏1
𝜌11 +

1

𝜏sp
𝜌22 +Wi(𝜌22 − 𝜌11) (14.29b)

where 𝜆j is the pumping rate, 1∕𝜏j the decay rate due to the finite electron lifetime

𝜏j in each level, and 𝜏sp the spontaneous emission lifetime. As 𝜏1, 𝜏2 ≪ 𝜏sp, the

spontaneous emission rate can be neglected. At steady state, the time derivatives

vanish, and therefore the population inversion is simply given by

N2 − N1 ≡ N(𝜌22 − 𝜌11) =
N(𝜆2𝜏2 − 𝜆1𝜏1)
1 + Iνg(ν)∕Is

, I−1s =
𝜇2(𝜏1 + 𝜏2)
2ℏ2cn𝜀0

(14.30)

where N is the density of atoms, and Eq. (14.1b) has been used for Wi. Clearly,

the population inversion necessitates a strong pumping rate to the upper level and

long lifetime therein in order tomeet the condition 𝜆2𝜏2 > 𝜆1𝜏1. Note in particular

that the population inversion is saturated with light intensity Iv, and Is is called the

saturation intensity.

wi(ρ22 − ρ11)

1

2

ρ22/τsp

1/τ2

1/τ1λ1

λ2

Figure 14.4 A pumped, driven, and damped

two-level atom accompanied by stimulated

and spontaneous emission of radiation.
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Oscillation Condition

The gain coefficient is therefore given by combining Eqs. (14.25) and (14.30) as

𝛾 ≡ −𝛼 =
𝛾0

1 + Iνg(ν)∕Is
; 𝛾0 ≡ 𝜋𝜇2(N2 − N1)0

𝜆n2ℏ𝜀0
g(ν) (14.31)

where 𝛾0 is the gain factor resulting purely from the pumping rate in the absence of

the laser intensity. When 𝛾 balances the loss, the factor s appearing in the transfer

function Eq. (14.27) becomes unity. Consequently, the denominator of Eq. (14.27)

vanishes, and the transmitted field amplitudeEt diverges.Thedivergence indicates

that an infinitesimal input Ei yields finite Et, that is, the onset of oscillation. The

oscillation condition is thus specified explicitly from Eqs. (14.27) and (14.31) as

s ≡ r1r2e
−2i(kb+Δk)Le(𝛾−𝛼s)L = 1 ≡ e−2𝜋il, l = 1, 2, … (14.32)

where the loss consists of both the scattering loss 𝛼s and the imperfect mirror

reflectivity. Clearly, Eq. (14.32) is satisfied, provided

r1r2e
(𝛾−𝛼s)L = 1 (14.33a)

2(kb + Δk)L = 2𝜋l (14.33b)

Threshold Pumping

The amplitude equation (14.33a) determines the threshold pumping level for the

onset of oscillation before the laser intensity starts to build up. The level is there-

fore obtained from Eqs. (14.31) and (14.33a) by putting Iν = 0 as

𝜋�̃�2(N2 − N1)TH
𝜆n2ℏ𝜀0

g(ν) = 𝛼T ; 𝛼T = 𝛼s −
1

L
ln(r1r2) (14.34)

Once the pumping level exceeds the threshold value, so that N2 − N1 >

(N2 − N1)TH , the oscillation sets in. However, the net gain should still be balanced

exactly by the total loss 𝛼T so that the steady-state oscillation condition is

preserved. Otherwise, the string of transmitted field amplitudes grows without

any upper bound.

Laser Intensity

It is at this point that the physical significance of the saturated population inver-

sion Eq. (14.30) becomes apparent. At the onset of oscillation, the laser intensity

is at the zero level. However, when the population inversion exceeds the thresh-

old value, the light intensity builds up, so that the gain coefficient 𝛾 saturates to

balance the total loss, that is,

𝜋�̃�2(N2 − N1)
𝜆n2ℏ𝜀0(1 + Iνg(ν)∕Is)

g(ν) = 𝛼T (14.35)

Clearly, Eq. (14.35) describes the steady-state oscillation condition at a finite laser

intensity.
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The intensity can therefore be found from Eqs. (14.34), (14.35) as

Iν =
[

Is
g (ν)

][
N2 − N1(

N2 − N1

)
TH

− 1

]
(14.36)

and it increases with increasing pumping level, as it should. Moreover, the inten-

sity depends on the inherent properties of the activemedium as entailed in the sat-

urated intensity Is such as the atomic dipole moment 𝜇 and the electron lifetimes.

Frequency of Operation

When Eqs. (14.28) and (14.23) are inserted into Eq. (14.33b) for 𝛥k and 𝜒 ′
a(𝜔),

respectively together with the identity kb = 2𝜋νl∕(c∕n), the phase part of the oscil-
lation condition reads as

2𝜋νlL
c∕n

[
1 +

𝜒 ′
a (𝜔)
2n2

]
= l𝜋, l = 1, 2, … (14.37)

Therefore, the frequency of operation is specified from Eq. (14.37) as

νl = ν(0)
l

1

1 + 𝜒 ′
a(𝜔)∕2n2

, ν(0)
l

≡ l

2L∕(c∕n)
(14.38)

where ν(0)
l

is the bare longitudinal cavity mode given in Eq. (14.26). It is there-

fore clear that the dispersion occurring with the amplification shifts the lasing

frequency from its bare standing wave frequency ν(0)
l
.

Modes of Operation

The frequency of the laser ranges from the microwave to X-ray regimes, and the

lasing medium consists of various kinds of materials such as helium neon, argon,

carbon dioxide, dye, ruby, andGaAs.The single-mode cw operation generates near

ideal monochromatic optical beams. When the longitudinal modes within the

broad gain profile are excited simultaneously, powerful free-running light sources

are generated.Moreover, when the phases of these waves are locked together, light

pulses ensue with the time duration shortened down to attosecond time regime.

Problems

14.1 . (a) Show that the coupled equation of the expansion coefficients a1s, a2s
introduced in Eq. (14.12) is given in strict analogy with Eq. (13.13) by

�̇�1s = −i𝜔1a1s + i
𝜇E(t)

ℏ
a2s, �̇�2s = −i𝜔2a2s + i

𝜇E(t)
ℏ

a1s (14.39)

(b) Use 14.39 and verify the equation of motion of the density matrix

Eq. (14.15) without the two relaxation terms.
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14.2 . (a) Show that in the absence of the E-field, the differential equation

(14.15) can be recast as

d

dt

[
𝜌21e

i𝜔0t+t∕T2
]
= 0,

d

dt

[(
𝜌11 − 𝜌22

)
et∕𝜏
]
=
(𝜌(0)

11
− 𝜌(0)

22
)

𝜏
et∕𝜏

(14.40)

(b) Obtain the solution given in Eq. (14.16) by performing the simple inte-

gration of (14.40).

14.3 . (a) Single out the real and imaginary parts from both sides of Eq. (14.20a)

and combine the resulting two equations with Eq. (14.20b) and obtain

the solutions given in Eq. (14.21) at steady state.

(b) Using the solution Eq. (14.21) thus obtained, find the real and imagi-

nary parts of the atomic susceptibility Eq. (14.23).

14.4 Find the saturated population inversion Eq. (14.30) from the rate

equation (14.29) at steady state.

14.5 Consider a passive Fabry–Perot-type cavity in which 𝛾 = 𝛼 = 0.

(a) Find the standing-wave modes in frequency and wavelength units for

the cavity lengths 1 m, 1 cm, and 100 μm, respectively.

(b) To generate a picosecond optical pulse with the carrier frequency

ν = c∕500nm, how many standing-wave modes should be locked

together?
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15

Semiconductor Statistics

The transistors constitute a central element of the digital information technology

and are firmly rooted in the concepts inherent in quantummechanics. The main-

stream transistors have thus far been based on the charge control. A factor crucial

for the control is the carrier density. The concentrations of electrons and holes

are specified in terms of doping level, temperature, and other parameters of the

semiconductor material.

15.1

Quantum Statistics

Conductors, Insulators, and Semiconductors

A condensed matter is classified into three groups, namely, conductor, insulator,

and semiconductor. The classification results from differing configurations of the

valence and conduction bands. In conductors, the valence electrons constitute

sea of free electrons, and the valence and conduction bands overlap. Hence, the

valence electrons can move up to the conduction band upon acquiring kinetic

energy and contribute to the current under bias (Figure 15.1).

In an insulator such as silicon dioxide, the widths of conduction and valence

bands are narrow, and the two bands are separated by a large bandgap, typically

10 eV or more. This is because the valence electrons form strong bonds with

neighboring atoms, and these bonds are difficult to break. As a consequence,

practically no electrons reside in the conduction band to contribute to the

current.

The configuration of the conduction and valence bands in semiconductors

lies in between those of metals and insulators. The two bands are separated by

the bandgap, ranging from about 0.5 to a few electronvolts. The bonds between

neighboring atoms are moderately strong and are relatively easy to be broken at

room temperature. As a result, an appreciable number of electrons are promoted

into the conduction band via the band-to-band thermal excitation to conduct the

current. The holes left behind the valence band are also capable of conducting

current.

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 15.1 The conduction and valence bands and the energy gap in the conductors,

insulators, and semiconductors.

15.1.1

Bosons and Fermions

The microscopic world of electrons, atoms, and molecules is manifested in the

macroscopic world via the cumulative effects of a large number of such particles.

The statistics of the ensemble of such particles are generally different, depend-

ing on the kinds of particles. As mentioned, there are three kinds of particles: (i)

identical but distinguishable, for example, atoms and molecules; (ii) bosons with

integer spins such as photons, phonons, andα particles; and (iii) fermionswith half

odd integer spins, such as electrons, holes, protons, and neutrons. The fermions

are constrained by the Pauli exclusion principle and are prohibited to share a

common quantum state between two or more. The distinguishable particles are

described by the Boltzmann distribution function in equilibrium, as discussed in

Chapter 1.

Bosons

The bosons obey the Bose–Einstein statistics, and the equilibrium distribution

function of photons, for example, is given by

f (𝜀s) =
1

ehνs∕kBT − 1
, 𝜀s = hνs (15.1)

where 𝜀s is the energy of the photon with frequency 𝜈s. When f (𝜀s) is multiplied

by the number of modes 8𝜋n3ν2s∕c3 (see Eq. (2.1)), it merges with the celebrated

Planck’s energy density (Eq. (2.3)), as it should.The distribution function is plotted

versus energy in Figure 15.2 at different temperatures, together with the Boltz-

mann distribution function, for comparison. The photon distribution function

clearly exhibits the Bose condensation at low temperature T. As clear from the

figure, the Boltzmann distribution function itself decreases exponentially follow-

ing the power law, 1∕T but it is practically constant in the temperature range from

0 to 0.001 ∘K. On the other hand, the photon distribution function decreases in

the same temperature range by two orders of magnitude or more.
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Figure 15.2 The Boltzmann (a), Bose–Einstein (b), and Fermi (c) distribution functions ver-

sus energy at different temperatures. Also shown in the inset is the comparison between

the Boltzmann and Bose–Einstein distribution functions at the extremely low temperature.

Fermions

The fermions such as electrons and holes are described in equilibrium by the cel-

ebrated Fermi function given by

f (E) = 1

1 + e(E−EF )∕kBT
(15.2)

where EF is the Fermi energy or level. The function is often called the Fermi occu-

pation factor and is derived from the fundamental postulate of the exclusion prin-

ciple. Figure 15.2 also shows the Fermi function versus T. At T = 0, f(E) is a step

function and is equal to unity for E < EF , representing 100% probability of occu-

pation, while it is zero for E > EF , indicating zero probability. For T ≠ 0, the shape

of f (E) is generally preserved except that the curve is rounded off near EF. Specif-

ically, f (E) is less than unity a few kBT below EF and tails out exponentially a few

kBT above EF, thereby transferring the occupation probability from below EF to

above EF.Theoccupation probability beyond EF is called the Boltzmann tail.With

increasing T , the Boltzmann tail is progressively pronounced.

The Fermi distribution function carries far-reaching consequences. For

instance, let us consider the 3D concentration of electrons given by

n = ∫
∞

0

dE
g(E)

1 + e(E−EF )∕kBT
; g(E) =

√
2m3∕2E1∕2

𝜋2ℏ3
(15.3)

where g(E) is the 3D density of states (Eq. (4.15)).The electrons fill up the quantum

states one by one in each state from the lowest energy level. For T → 0, the upper

limit of the integration is given by EF(0). We can thus integrate g(E) in the interval

0 ≤ E ≤ EF (0) by using the step Fermi function (Figure 15.2) and specify EF(0) in

terms of the electron density as

EF (0) =
h2

8m

(
3

𝜋
n
)2∕3

(15.4)

It is therefore clear that the Fermi level increases with increasing density. For n

equaling Avogadro’s number, n = 1029m−3, for example, EF (0) ≈ 7.9 eV, and the

Fermi velocity of the electrons on top of EF(0)
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mv2
F

2
= EF (0)

is as large as ≃ 1.7 × 106 m s−1 at T = 0. This is in drastic contrast with distin-

guishable particles, which should be completely at rest for T = 0.

15.2

Carrier Concentration in Intrinsic Semiconductor

When the electrons in the filled valence band are excited into the conduction

band in the intrinsic semiconductor, they leave behind the holes with charge+e as
illustrated in Figure 15.1. The holes can be treated as the positive charge carriers

with the effective mass mp just as electrons are the negative charge carriers with

the effective mass mn. In intrinsic semiconductors in which no dopant atoms are

present, the concentrations of electrons and holes are the same by definition, that

is, n = p ≡ ni.

Thermal Equilibrium

At the outset, we examine the equilibrium from a few different standpoints. The

thermodynamic equilibrium is characterized by a few basic facts: (i) the physical

quantities are time invariant, as every process is balanced by its inverse process

(detailed balancing); (ii) n and p are quantified by a single Fermi level EF; (iii) EF

is spatially flat and also lines up in composite semiconductors; and (iv) the law of

mass action holds, namely np = n2
i
, with ni denoting the intrinsic concentration.

Electron Concentration

The equilibrium concentration of electrons in the conduction band is specified in

terms of the Fermi occupation factor fn(E) given in Eq. (15.2) and 3D density of

states gn(E) as

n = ∫
EC+ΔEc

EC

dEgn(E)fn(E); gn(E) =
1

2𝜋2

(
2mn

ℏ2

)3∕2

(E − EC)1∕2 (15.5)

Here, ΔEC is the conduction band width and gn(E) the 3D density of states of the

electrons in the conduction band (Eq. (4.15)).The bottom of the conduction band

EC serves as the reference level fromwhich to define the kinetic energy of electrons

moving with the effective massmn. As discussed gn(E)dE, represents the number

of quantum states per unit volume, and whenmultiplied by fn(E), it represents the

density of state occupied by electrons in the range from E to E + dE.

The integration representing n can be reexpressed by introducing a dimension-

less variable 𝜂 ≡ (E − EC)∕kBT and making the approximation ΔEC∕kBT ≈ ∞ as

n = 2√
𝜋
NcF1∕2(𝜂Fn); 𝜂Fn ≡ EF − Ec

kBT
, NC ≡ 2

(
2𝜋mnkBT

h2

)3∕2

(15.6a)
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where NC is called the effective density of states at the conduction band and

F1∕2(𝜂F ) = ∫
∞

0

𝜂1∕2d𝜂

1 + e𝜂−𝜂F
(15.6b)

is called the Fermi 1/2-integral. The approximation ΔEC∕kBT ≈ ∞ is well taken,

since ΔEC is typically few electronvolts, whereas kBT ≃ 25 meV at room tem-

perature. Moreover, the Fermi occupation factor cuts off the contribution from

those states a few kBT above EC, as illustrated in Figure 15.3. In the nondegenerate

regime, EF ranges in the energy gap below EC by a few kBT , so that exp−𝜂F ≫ 1.

In this case, the Fermi integral yields

F1∕2(𝜂Fn) ≃ e𝜂Fn∫
∞

0

d𝜂e−𝜂𝜂1∕2 = e𝜂Fn

√
𝜋

2
(15.7)

Hence, by combining Eqs. (15.7) and (15.6a), n can be expressed analytically as

n = NCe
−(EC−EF )∕kBT (15.8)

and Eq. (15.8) indicates explicitly that n increases exponentially with temperature

and is equal to NC when EF coincides with EC.
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E

1 − f(E ),f(E ) n(E ), p(E )

Figure 15.3 The graphical representations of n and p in terms of the 3D density of states,

respective occupation factor, and the location of EF in n-type (a), intrinsic (b), and p-type (c)

semiconductors.
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Hole Concentration

The hole concentration p is likewise specified by

p = ∫
EV

EV−ΔEV
dEgp(E)fp(E); gp(E) =

1

2𝜋2

(
2mp

ℏ2

)3∕2

(EV − E)1∕2 (15.9a)

where ΔEV is the valence band width and gp(E) the hole density of states in the

valence band.The top of the valence bandEV serves as the reference level for defin-

ing the kinetic energy of holes, movingwith the effectivemassmp.With increasing

kinetic energy, electronsmove up the conduction band from EC, while holes move

down the valence band from EV, as will become clear in due course. The occupa-

tion factor for holes in the quantum state is by definition the probability that the

state is not occupied by the electron, that is,

fp(E) ≡ 1 − 1

1 + e(E−EF )∕kBT
= 1

1 + e(EF−E)∕kBT
(15.9b)

and fp(E)gp(E)dE represents the total number of states occupied by holes per unit

volume between E and E− dE.

Again by inserting Eq. (15.9b) into Eq. (15.9a), and introducing the variable of

integration 𝜂 ≡ (EV − E)∕kBT and putting, ΔEV∕kBT ≈ ∞ we can write

p = 2√
𝜋
NVF1∕2(𝜂Fp); 𝜂Fp ≡ EV − EF

kBT
, NV ≡ 2

(
2𝜋mpkBT

h2

)3∕2

(15.10)

where NV is the effective density of states at the valence band. For the nonde-

generate case in which EF stays a few kBT above EV in the bandgap, the Fermi

1/2-integral can likewise be evaluated in analogy with Eq. (15.7), and p can be

expressed analytically as

p = NVe
−(EF−EV )∕kBT (15.11)

and the hole concentration also increases exponentially with temperature.

Intrinsic Concentration

In intrinsic semiconductors in which there are no impurity atoms present, the

electrons excited fromvalence to conduction bands leave behind the samenumber

of holes in the valence band. Hence, n and p are identical, that is, n = p = ni.The

intrinsic concentration is therefore given from Eqs. (15.8) and (15.11) by

ni ≡√np =
√
NCNVe

−EG∕2kBT ; EG ≡ EC − EV (15.12)

where EG is the bandgap. Figure 15.4 shows ni in silicon, germanium, and gallium

arsenide versus the inverse temperature 1∕T . Evidently, ni varies exponentially
with 1∕T , and the variation is accentuated with increasing EG. Moreover, ni
exponentially increases with decreasing EG at given T , as more electron–hole

pairs are thermally excited across the narrower bandgap. For instance, in Si

with EG of, 1.12 eV ni = 1.45 × 1010 cm−3 at the room temperature, while
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Figure 15.4 The intrinsic carrier concentration

versus 1000∕T in germanium, silicon, and gal-

lium arsenide.

ni = 1.79 × 106 cm−3 in GaAs with EG of 1.424 eV at the same temperature.Thus,

the variation of ni caused by the difference in EG by 0.3 eV amounts to nearly four

orders of magnitude.

Intrinsic Fermi Level

The location of EF is determined from the charge neutrality condition. In intrinsic

semiconductors n = p, so that one can write from Eqs. (15.8) and (15.11)

NCe
−(EC−EFi)∕kBT = NVe

−(EFi−EV )∕kBT (15.13)

and find EFi as

EFi =
1

2
(EC + EV ) +

3kBT

4
ln

mh

me

; ln
NV

NC

= 3

2
ln

mp

mn

(15.14)

Clearly, EFi is located near the midgap, and the departure from it is due to the

difference between mn and mp and amounts to a fraction of the thermal energy

kBT.

15.3

Carrier Densities in Extrinsic Semiconductors

The control of the carrier concentration is a key factor for charge control, and n

and p are controlled primarily by means of the impurity doping. Let us thus con-

sider n and p in extrinsic semiconductors, which are dopedwith donor or acceptor

atoms. To discuss the physics of the impurity doping in silicon, for example, let us

revisit the electron configuration of Si [Ne]3s23p2.There are four valence electrons

outside the closed neon core.The Si atoms are thus covalently bondedwith its four

neighbors by sharing one valence electron with each other, so that the sub-shell is

filled up, as sketched in Figure 15.5. Doping consists of incorporating donors or

acceptors at substitutional sites.
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Figure 15.5 The tetrahedrally bonded silicon (a). A donor atom replacing a Si-atom forms

a loosely bound hydrogenic atom with a valence electron (b). An acceptor atom in place of

Si-atom forms a loosely bound hydrogenic atom with a hole (c).

Thedonor atoms are fromColumnV in periodic table, for example, phosphorus

([Ne]3s23p3) or arsenic ([Ar]4s24p3), which have five valence electrons. Four of

them are used up in the tetrahedral bonding, and the remaining fifth electron

forms a hydrogenic atom with P+ or As+ ion core (Figure 15.5). On the other

hand, the acceptor atoms are from Column III, for instance, boron ([He]2s22p)
with three valence electrons, so that it cannot complete the tetrahedral bonding.

But it can accept an electron from other Si–Si bonds, to complete bonding. In the

process, a hole is generated in the valence band.Thus, the boron as a negative ion

and hole again form a hydrogenic atom. The effective radius of hydrogenic donor

atom a0 and the ionization energy ED of its valence electron can be estimated

by using the H-atom theory. In this case, ED is the energy required to release a

valence electron to the conduction band. Specifically, we can specify a0 and ED

from Eq. (8.46) as

a0 ≡ ℏ24𝜋𝜀S
mne

2
=
(

ℏ24𝜋𝜀0
m0e

2

)(
m0

mn

)(
𝜀S
𝜀0

)
= 0.05

(
m0

mn

)(
𝜀S
𝜀0

)
nm (15.15a)

ED =
e4mn

2ℏ2(4𝜋𝜀S)2
=

e4m0

2ℏ2(4𝜋𝜀0)2

(
mn

m0

)(
𝜀0
𝜀S

)2

= 13.64

(
mn

m0

)(
𝜀0
𝜀S

)2

eV

(15.15b)

In the estimation, the electron rest mass m0 and vacuum permittivity 𝜀0 have

been replaced by the effective massmn and the permittivity 𝜀S of Si, respectively.

In this manner, a0 and ED can be evaluated simply in terms of the Bohr radius

0.05 nm and the ionization energy 13.64 eV of the H-atom.

With the ratio mn∕m0 ≈ 0.98, 0.2, depending on the crystallographic direc-

tions and 𝜀S∕𝜀0 ≃ 12, a0 ranges from about 0.5 to 2.9 nm, while ED is in the range

20–100meV, a few kBT ’s at room temperature. Thus, the fifth valence electron

in the donor atom is loosely bound to the donor ion and therefore is readily pro-

moted to the conduction band to become a free charge carrier, hence the name

the donor (Figure 15.6).The similar estimations can be made for acceptor atoms,

and the ionization energy of the hole can also be shown to be about the same as
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Figure 15.6 The donor and acceptor energy levels. The

solid lines represent the extended nature of the conduc-

tion and valence bands, while the broken lines denote the

localized energy levels of donor and acceptor states.

that of electrons in donor atoms. The ionization energy in this case is the energy

required for the acceptor atom to accept an electron from the valence band, excit-

ing a hole therein. As EA lies above EV by a few electron volts, the acceptor atoms

can readily accept electrons from the valence band, hence the name the acceptor.

15.3.1

Fermi Level in Extrinsic Semiconductors

In the presence of donor and acceptor atoms, EF is again found from the charge

neutrality condition, namely, the electron and ionized acceptor concentrations are

equal to the hole and ionized donor concentrations:

2√
𝜋
NcF1∕2(𝜂Fn) +

NA

1 + gAe
(EA−EF )

kBT

= 2√
𝜋
NVF1∕2(𝜂Fp) +

ND

1 + gDe
(EF−ED)∕kBT

(15.16)

Here Eqs. (15.6) and (15.10) have been used for n and p, and N+
D
and N−

A
have

been specified in terms of EF, ED, EA, and doping levels ND, NA and degeneracy

factors gD, gA of the ground states. For Si, gD = 2 and gA = 4, respectively. Shown

in Figure 15.7 is EF found numerically from Eq. (15.16) as a function of T in n- and

p-type silicon for different doping levels. In n-type silicon, in which NA = 0, EF is

monotonously raised above the midgap with increasing ND, as it should. Also for

givenND, EF is lowered with increasingT to approach the intrinsic Fermi level EFi

at the midgap. This is because at high T , n is primarily dictated by the thermally

excited electrons regardless of the doping level. In p-type silicon in whichND = 0,

the behavior of EF versusNA and T essentially mirrors that of EF in n-type silicon.
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Figure 15.7 The Fermi level versus T in silicon for different ND , NA (a), and electron con-

centration versus 1000∕T for different doping levels (b).
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Also shown in Figure 15.7 are the electron concentrations in the n-type Si ver-

sus 1000∕T for different doping levels. In the region of high T called the intrinsic

regime, n is mainly determined by T , as more electrons are thermally generated

via the band-to-band excitation. With decreasing T , the intrinsic region merges

with the saturation regime, in which n is contributed mainly by the donor atoms.

In this region, donor atoms are practically all ionized as ED is still well above EF. It

is in this regime that the charge is controlled via dopingND.With further decrease

in temperature, the freeze-out regime follows in which n is decreased exponen-

tially with decreasing T . This is due to the fact that there is practically no thermal

excitation of electrons, and even those electrons donated by the dopant atoms are

captured back by the ionized donor atoms as EF is raised above ED. The behav-

ior of the hole Fermi level and the hole concentration p versus T and NA can be

interpreted in a similar context.

Fermi Potentials

In the nondegenerate and saturation regime, n is practically equal to ND and can

be specified in terms of the intrinsic carrier concentration ni via Eq. (15.8) as

ND = n = NCe
−(EC−EFi+EFi−EF )∕kBT = nie

(EF−EFi)∕kBT (15.17)

The Fermi potential 𝜑n of the electron is defined as

q𝜑Fn ≡ EF − EFi ≃ EF − Ei (15.18)

and is therefore specified in terms of ND from Eq. (15.17) as

𝜑Fn =
(
kBT

q

)
ln

(
ND

ni

)
(15.19)

In the p-type semiconductor, the Fermi potential 𝜑p of the hole is defined as

q𝜑Fp ≡ Ei − EF and is likewise given in terms of NA via Eq. (15.11) by

𝜑Fp =
(
kBT

q

)
ln

(
NA

ni

)
(15.20)

It is therefore clear that the Fermi level EF in n-type semiconductor is raised above

EF in p type by the sum of these two Fermi potentials, as can be clearly seen from

Figure 15.8.
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Figure 15.8 The Fermi potentials in the n- and p-type semiconductors.



Suggested Readings 201

Problems

15.1 . (a) Use the representation of n given in Eqs. (15.6) and (15.8) and plot n

versus EF in the range−0.15eV ≤ EC − EF ≤ 0.15eV by evaluating the

Fermi 1/2-integral numerically.

(b) Use the nondegenerate expression of n given in Eq. (15.8) and plot n

versus EF in the same range as in (a) and compare and discuss the two

results.

(c) Starting from the representation of p given in Eq. (15.9), derive the

expression of p given in Eqs. (5.10) and (5.11).

15.2 Consider the hole concentrations of 102, 105, and 108 cm−3 in Si.

(a) Find the corresponding electron concentrations as the majority car-

rier at temperatures of 100, 300, and 500K.

(b) Calculate the corresponding doping level ND.

(c) Discuss whether or not the analytical expression of n can be taken

valid for all concentration ranges considered.

15.3 In the limit T → 0K, EF is raised above ED and approaches EC regardless

of the value of ND in n-type silicon. Likewise, EF is lowered below EA and

approaches EV in p-type silicon regardless of NA (Figure 15.7). Interpret

the behavior.

15.4 The fabrication of the laser diode requires heavily doped n- and p-

type GaAs.

(a) The EF in n-type GaAs is located above EC by 0.1 eV. Find n and the

doping level required.

(b) Repeat the analysis as in (a) in the p-type GaAs in which EF is below

EV by 0.15 eV.Thebandgap inGaAs is 1.424 eV at room temperature

andmn∕m0 = 0.068 andmp∕m0 = 0.54, respectively.

15.5 . (a) Consider a quantum wire consisting of intrinsic silicon of cross-

sectional area W 2 for W = 10 nm. The quantum wire is surrounded

by silicon dioxide. Find the subband spectra and specify the 1D

electron concentration n1D by using 1D density of states and Fermi

occupation factor. For simplicity, approximate the quantum well by

an infinite square well potential and takemn∕m0 = 0.9.

(b) Consider a quantum well of widthW having the same values as in (a).

Find the subband spectra and 2D electron concentration in analogy

with (a).
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16

Carrier Transport in Semiconductors

The transport of charge carriers is another key element for operating the charge-

based semiconductor devices and is discussed in conjunction with the drift

and diffusion currents and the mobility and diffusion coefficient. The former

current is driven by the electric field, while the latter by the concentration

gradient. Equally important are the generation and recombination currents,

and these currents are discussed based on the generation and recombination

of electron–hole pairs, band-to-band as well as trap-assisted. Additionally, the

thermodynamic equilibrium and nonequilibrium are highlighted in correlation

with the Fermi and quasi-Fermi levels.

16.1

Quantum Description of Transport Coefficients

The drift velocity of charge carriers is driven by the electric field and character-

ized by the mobility, as discussed. The quantum description of the mobility can

be done by using the transport equation in strict analogy with the classical theory.

Thus, consider an ensemble of free electrons uniformly distributed in space in the

presence of the electric field E in the z-direction. In this case, we can again adopt

the relaxation approach and specify f in strict analogy with Eq. (1.17) as

f = f0 +
qE

mn

𝜏n
∂f0
∂vz

; f0 =
1

1 + e(E−EF )∕kBT
, E = 1

2
mnv

2 (16.1)

where 𝜏n is the longitudinal relaxation time. The only difference between Eqs.

(1.17) and (16.1) is that f 0 in Eq. (1.17) is the Boltzmann distribution function,

while f 0 in Eq. (16.1) is the Fermi distribution function.

The differentiation of f 0 in Eq. (16.1) with respect to vz yields

∂f0
∂vz

=
∂f0
∂E

∂E
∂vz

= − e(E−EF )∕kBT

(1 + e(E−EF )∕kBT )2
mnvz

kBT
≡ −

mnvz

kBT
f0(1 − f0)

and the distribution function f is obtained to the first order of approximation as

f = f0 −
qEvz𝜏n
kBT

f0(1 − f0) ≈ f0 − qEvz𝜏n𝛿(E − EF ) (16.2a)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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where the product f0 × (1 − f0) is peaked sharply at the Fermi level EF as shown in

Figure 16.1 and has been approximated by a delta function

f0(1 − f0) ≈ kBT𝛿(E − EF ) (16.2b)

16.1.1

Mobility

Wecanfind the average velocity of electrons driven by the E-field in the z-direction

by using the distribution function f thus found as

⟨vz⟩ = ∫ dvvz f

∫ dv f

=
−qE∫

2𝜋

0

d𝜑∫
1

−1
d𝜇∫

∞

0

𝜏n(v)v2dvv2z𝛿(E − EF )

∫
2𝜋

0

d𝜑∫
1

−1
d𝜇∫

∞

0

v2dvf0

, 𝜇 = cos 𝜃

(16.3)

where the first integral in the numerator and the second integral in the denomi-

nator vanish due to the odd parity of the integrands involved just as in the case of

Eq. (1.18). The remaining v-integrals have been expressed in terms of the spheri-

cal coordinates, and 𝜏n has been taken depending on the magnitude of v. In this

case, the angular integrations in the numerator and the denominator cancel out.

Furthermore, the integration in the denominator can be done to a good approxi-

mation by taking the Fermi function f 0 as a step function, that is, f0 = 1 for E ≤ EF ,

while f0 = 0 for E > EF (Figure 15.2). Hence, Eq. (16.3) can be expressed in terms

of energy as

EF

T2

T1

T1 < T2

1 − f0(E)

f0(1 − f0)

f0(E)

E

Figure 16.1 The Fermi distribution function f0(E) and the product f0(E) × (1 − f0(E)) versus
energy for different temperatures.
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⟨vz⟩ = −
2qE

3mn

[
∫

∞

0

dEE3∕2𝜏n (E) 𝛿(E − EF )
]

∫
EF

0

dEE1∕2
; E =

mnv
2

2

= −
2qE

3mn

E
2∕3
F

𝜏n(EF )

(2∕3)E2∕3
F

= −
q𝜏n(EF )

𝜇n

E (16.4)

The resulting mobility

𝜇n =
q𝜏n(vF )
mn

;
mnv

2
F

2
= EF (16.5)

is identical to Eq. (1.19), but the mean collision or relaxation time as a function of

v is specified explicitly by the Fermi velocity vF in the quantum description.

16.1.2

Diffusion Coefficient

We next consider the spatially nonuniform electron concentration and introduce

the mean free path of electrons ln on both sides of x as shown in Figure 16.2. The

electrons can then be treated free of scattering in the volume elements from x − ln
to x and from x to x + ln.The net number of electrons crossing x per unit area from

left to right is then given by

N = 1

2
n(x − ln)ln −

1

2
n(x + ln)ln

=
ln
2

{[
n (x) − ∂n(x)

∂x
ln

]
−
[
n (x) + ∂n(x)

∂x
ln

]}
≃ −l2n

∂n(x)
∂x

(16.6)

where 1/2 factor accounts for the fact that due to the random thermal motion

in equilibrium, only one half of the electrons are moving from left to right or

vice versa. Also, as ln is generally much less than the spatial range over which n

changes appreciably, n(x ± ln) has been Taylor expanded and truncated after the

first expansion.

The flux of electrons from left to right is thus given by dividing N by the mean

collision time 𝜏n:

Fn ≡ N

𝜏n
= −Dn

∂n(x)
∂x

; Dn ≡ l2n
𝜏n

(16.7a)

x − ln

2 ln

x x + ln

Figure 16.2 The spatially nonuniform con-

centration profile of electrons and a differen-

tial volume element at x, consisting of two

parallel planes at x ± ln with ln denoting the

electron diffusion length.
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The constant Dn is known as the diffusion coefficient, and it connects the input

concentration gradient to the output electron flux. Now the mean free path ln is

by definition the average distance the electron traverses during the mean collision

time 𝜏n:

ln = vT𝜏n;
mnv

2
T

2
=

kBT

2
(16.7b)

where vT is the thermal speed in the x-direction specified via the equipartition

theorem (Eq. (1.14)). It is therefore clear from Eqs. (16.5), (16.7a), and (16.7b) that

ratio of two transport coefficients is given by

Dn

𝜇n

=
l2n∕𝜏n

q𝜏n∕mn

=
kBT

q
(16.8a)

We can carry out a similar analysis for the holes and obtain

Dp

𝜇p

=
l2p∕𝜏p

q𝜏p∕mp

=
kBT

q
(16.8b)

Equations (16.8a) and (16.8b) are known as the Einstein relation for electrons and

holes, respectively.

The total current densities of electrons and holes consist of the drift and diffusion

components and are given by

Jn = qn𝜇nE + qDn
dn

dx
; Jp = qp𝜇pE − qDn

dp

dx
(16.9)

16.2

Equilibrium and Nonequilibrium

Single-Semiconductor System

A basic property of the equilibrium is that the carrier densities n, p are quantified

by a single Fermi level EF, as discussed. Also Jn, Jp are inextricably related to EF,

which is shown as follows.Thus, consider the 1D current density of electrons given

by Eq. (16.9).The electric field E driving the drift is specified in terms of the electric

potential as, E = −∂𝜑∕∂x and 𝜑 in turn represents the electron potential energy

when multiplied by −q. Hence, we can treat −q𝜑 just like EC, EV or the midgap Ei

and express E in terms of Ei as

E = −∂𝜑
∂x

≡ (−q∂𝜑)
q∂x

= 1

q

∂Ei

∂x
(16.10)

where EC, EV, and Ei vary in x in parallel with −q𝜑(x).
Additionally, in the nondegenerate regime, n, p are analytically specified in

terms of Ei, EF in equilibrium (see Eqs. (15.8) and (15.11)). Hence, with the use of

the Einstein relation (16.8) and the expressions of n and p given in Eqs. (15.8) and
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(15.11), Jn can be is expressed as

Jn = 𝜇nn

[
dEi

dx
+ q

(
kBT

q

)
d

dx

(
EF − Ei

kBT

)]
= 𝜇nn

dEF

dx
(16.11a)

We can likewise express the hole current density as

Jp = 𝜇pp

[
dEi

dx
− q

(
kBT

q

)
d

dx

(
Ei − EF
kBT

)]
= 𝜇pp

dEF

dx
(16.11b)

In equilibrium, no current flows, and therefore

dEF

dx
= 0 (16.12)

and EF in a single-semiconductor system should be flat in equilibrium.

Composite Semiconductor System

We next consider a composite system of two semiconductors in equilibrium con-

tact as shown in Figure 16.3. In equilibrium, the flux of electrons from left to right

FLR is balanced by the reverse flux from right to left FRL.These fluxes are dictated

by two factors, namely, the density of states gL, gR and Fermi occupation factors

fL, fR on both sides at the energy level E. Specifically, FLR is given by

FLR = M[gL(E)dEfL(E)] ⋅ [gR(E)dE(1 − fR(E))] (16.13a)

where M is the transfer matrix element. The first bracket is the number of occu-

pied quantum states at E, that is, the electron density on the left-hand side, while

the second bracket represents the vacant state density on the right-hand side for

electrons to hop in. The flux from right to left is likewise given by

FRL = M[gR(E)dEfR(E)] ⋅ [gL(E)dE(1 − fL(E))] (16.13b)

AsFLR = FRL in equilibrium, it follows fromequating (16.13a) and (16.13b)) that,

fL(E) = fR(E) that is,
1

1 + e(E−EFL)∕kBT
= 1

1 + e(E−EFR)∕kBT
(16.14a)

Therefore, the two Fermi levels on both sides should be the same

EFL = EFR (16.14b)

Equivalently, the Fermi level should line up. This fact together with Eq. (16.12)

leads to the general conclusion, namely, that EF in equilibrium should line up and

be flat.The conclusion holds true for any number of semiconductor layers in equi-

librium contact.

S/CL S/CR

FRL(E)FLR(E)

Figure 16.3 A composite semiconductor system,

consisting of two semiconductors in equilibrium con-

tact. The electron flux from left to right is balanced

by its reverse flux from right to left in equilibrium.
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16.2.1

Nonequilibrium and Quasi-Fermi Level

A system, when subjected to irradiation or bias, is driven away from the equilib-

rium to nonequilibrium conditions. In nonequilibrium, n and p cannot be quan-

tified by a single Fermi level. Rather, two quasi-Fermi levels, one for electrons and

the other for holes, are required. This can be seen by considering a slab of the

intrinsic semiconductor under irradiation (Figure 16.4). Under illumination, the

electron hole pairs are generated via band-to-band excitation and also subjected

to recombination. Hence, the rate equations of n and p read as

∂n
∂t

= 𝛼I

h𝜈
− n

𝜏n
,

∂p
∂t

= 𝛼I

h𝜈
−

p

𝜏p
(16.15)

where 𝜏n and 𝜏p are the recombination times of electrons and holes, respectively,

and the generation rate is given in terms of the absorption coefficient 𝛼 and the

flux of photons I∕h𝜈.

At steady state, the derivatives of n and p with respect to time vanish, and the

photo-generated n, p are proportional to I𝜏n∕h𝜈, I𝜏p∕h𝜈 respectively. Therefore,

the total electron and hole concentrations consist of intrinsic and photo-generated

components:

n = ni + nph = ni +
(

𝛼I𝜏n
h𝜈

)
(16.16a)

p = ni + pph = ni +
(

𝛼I𝜏p

h𝜈

)
(16.16b)

When the light intensity is high, nph and pph can be much greater than ni,

that is, nph ≫ ni, pph ≫ pi. The former inequality in Eq. (16.16a) requires that EF

should be higher than the intrinsic Fermi level EFi ≃ Ei just as in the n-type semi-

conductor (Figure 15.8). Likewise, the latter inequality in Eq. (16.16b) requires

that EF should be lower than Ei as in the p-type semiconductor. Obviously, these

two requirements cannot be met with a single EF simultaneously. The only way

to come out of this inconsistency is to introduce two quasi-Fermi levels, one

for electrons EFn and the other for holes EFp, and quantify n and p separately

EV

hν EC

(b)(a)

Figure 16.4 A semiconductor sample under uniform irradiation (a) and the photo-

generation of the electron–hole pair via band-to-bend excitation (b).
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EC

EFn

Ei

EFP

EV

kBT ln

kBT ln

1 +

1 +
gτp

gτn

ni

ni

Figure 16.5 Quasi-Fermi level of electron

and of hole in the irradiated sample. The

splitting of two imrefs increases with increas-

ing illumination intensity.

in strict analogy with EF in equilibrium. Thus, Eq. (16.16) can be expressed

as

n = nie
(EFn−Ei)∕kBT , p = nie

(Ei−EFp)∕kBT (16.17)

The quasi-Fermi levels are also called imrefs.

Moreover, two imrefs split under irradiation by the amount that is given by

inserting Eq. (16.17) into Eq. (16.16) and inverting EFn, EFp:

EFn − EFp = kBT ln

[(
1 +

g𝜏n
ni

)(
1 +

g𝜏p

ni

)]
, g = 𝛼𝐼

h𝜈
(16.18)

Clearly, the splitting increases with increasing light intensity and/or the genera-

tion rate, as shown in Figure 16.5.Without illumination, g = 0, and the two imrefs

collapse into a common Fermi level, that is, EFn = EFp = EF as the system relaxes

back to equilibrium.Moreover, just asEFn andEFp quantifyn andp in exact analogy

with EF in equilibrium, the current densities contributed by drift and diffusion are

described in nonequilibrium by the slope of EFn, EFp again in strict analogy with

Eq. (16.11)

Jn = 𝜇nn
d

dx
EFn, Jp = 𝜇pp

d

dx
EFp (16.19)

Unlike the flat EF in equilibrium representing the zero current, EFn, EFp generally

vary as functions of position and account for the current.

16.3

Generation and Recombination Currents

Thedrift and diffusion currents are due to themotion of electrons and holes in the

conduction and valence bands, respectively. There also exist the generation and

recombination currents resulting from the law of mass action np = n2
i
in equilib-

rium being broken. If np > n2
i
, the recombination current IR ensues driven by the

reactive force pushing the system back to the equilibrium. By the same token, if

np < n2
i
, the generation current IG ensues again to drive the system back to equi-

librium.

Band-to-Band Excitation or Recombination

As noted, some of the electrons in the valence band are promoted to the con-

duction band via the band-to-band thermal excitation, leaving behind the same
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GL GTH

EV

EC

hν hν

Q Q

U

(A) (B)

(a) (b) (c) (d)

EC HEEE HC

Figure 16.6 The generation of the e–h

pairs via thermal and optical band-to-band

excitations and the reverse process of radia-

tive and non-radiative recombination of the

e–h pairs (A). The single-level trap-assisted

emission and capture of electrons and holes

(B): (a) electron capture, (b) electron emis-

sion, (c) hole capture, and (d) hole emission.

number of holes in the valence band (Figure 16.6). The e–h pairs are also gen-

erated by incident photons with energy greater than the bandgap. The inverse

process of the recombination of electrons in the conduction band and holes in

the valence band also occurs. In carrying out the recombination, the electron has

to lose energy amounting to the bandgap. The energy is converted into radiation

or consumed via the heat dissipated.

In the n-type semiconductor, for example, the recombination of electrons and

holes is proportional to n and p in nonequilibrium and nn0 and pn0 in equilibrium

R = 𝛼nnpn, Re = 𝛼nn0pn0 (16.20)

where 𝛼 is the proportionality constant, nn0 and nn the equilibrium and nonequi-

librium electron concentrations as the majority carrier, and pn0 and pn the

respective hole concentrations as the minority carrier. In equilibrium in which

the detailed balancing holds true between recombination and generation of e–h

pairs, the thermal excitation Gth should be equal to Re.Therefore, in the presence

of excess carriers, there ensues a net recombination with the rate given by

U ≡ R − Gth

= 𝛼(nnpn − nn0pn0) ≃
1

𝜏p
(pn − pn0);

1

𝜏p
≡ 𝛼nn0 (16.21)

where we have taken nn ≃ nn0 for the low-level injection of charge carriers, and 𝜏p

is the hole recombination lifetime as the minority carrier.

16.3.1

Trap-Assisted Recombination and Generation

The recombination (r) and generation (g) rates are drastically enhanced when trap

sites are present in the bandgap, and let us thus consider the trap-assisted r, g pro-

cesses using the theories of Shockley and Read and also of Hall. For simplicity, a

single trap level is considered as sketched in Figure 16.6. There are four possible

processes: (i) the capture of an electron from the conduction band by an empty
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trap site, (ii) the inverse process of electron emission from the trap to the conduc-

tion band, or (iii) the trapped electron capturing a hole in the valence band, and

(iv) the inverse process of an electron in valence band captured in the trap site,

inducing a hole emission.

Evidently, in view of the exclusion principle, the electron capture rate is pro-

portional to n in the conduction band and the empty trap sites, while the electron

emission rate is proportional to the filled trap sites. Hence, we can write

rec = (vTn𝜎n) ⋅ n ⋅ [Nt(1 − f )]; ree = en ⋅ (Ntf ) (16.22)

where the proportionality constant of the recombination is given by the thermal

velocity vT and the electron capture cross-section, 𝜎n of the trap, ≈ 10−15 cm2,

and the proportionality constant en for emission is called the electron emission

probability. It is important to note that the distribution function f introduced to

account for the filled and empty trap sites away from the equilibrium is not the

same as the Fermi distribution function f 0 in equilibrium.

The capture and emission rates of holes can be described in a similar manner.

The capture is done by the trapped electron recombiningwith a hole in the valence

band, and the rate is proportional to p and the number of trapped electrons. The

hole emission is proportional to the number of empty traps into which electrons

in the valence band are captured, hence is proportional to the empty trap density.

Thus, we can write

rhc = vTh𝜎ppNtf ; rhe = epNt(1 − f ) (16.23)

where the proportionality constant of capture is given by the product of vTh and

the hole capture cross-section, while that of emission is called the hole emission

probability.

Steady State and Equilibrium

The difference between the equilibrium and steady state is best illustrated by con-

sidering a semiconductor under uniform irradiation. The rate equations of n and

p are given by the photo-generation rate and the net recombination rates of elec-

trons and holes, that is, rec − ree and rhc − rhe:

∂n
∂t

= 𝛼I

h𝜈
− (rec − ree),

∂p
∂t

= 𝛼I

h𝜈
− (rhc − rhe) (16.24)

At steady state in which n, p are independent of time, it follows from Eq. (16.24)

that the net recombination of electrons is the same as that of holes. In equilibrium,

on the other hand, the respective rates of capture and emission should be balanced.

Therefore, we can write

rec − ree = rhc − rhe, rec = ree, rhc = rhe (16.25)

and show that the equilibrium condition is more stringent in that it satisfies auto-

matically the steady-state condition as well.
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Steady-State Distribution Function

The equilibrium condition for electrons in Eq. (16.25) is explicitly specified with

the use of Eq. (16.22) as

vT𝜎nnNt[1 − f0(Et)] = enNtf0(Et); f0(Et) =
1

1 + e(Et−EF )∕kBT
(16.26)

where f in Eq. (16.22) should be replaced by the Fermi function in equilibrium.

Therefore, the electron emission probability en is specified explicitly from Eq.

(16.26) as

en = vT𝜎nnie
(Et−Ei)∕kBT (16.27a)

Likewise, the hole emission probability is given by

ep = vT𝜎pnie
(Ei−Et)∕kBT (16.27b)

Upon inserting en, ep into Eqs. (16.22) and (16.23), the steady-state condition in

Eq. (16.25) reads as

vT𝜎nnNt(1 − f ) − vT𝜎nnie
(Et−Ei)∕kBTNtf

= vT𝜎ppNtf − vT𝜎pnie
(Ei−Et)∕kBTNt(1 − f ) (16.28)

The distribution function f in nonequilibrium is therefore obtained by regroup-

ing the terms in Eq. (16.28). For simplicity, let us take in 𝜎n = 𝜎p = 𝜎 in which case

f is given by

f =
n + nie

(Ei−Et)∕kBT

n + p + 2ni cosh(Et − Ei)∕kBT
(16.29)

In Figure 16.7, f is plotted as a function of (Et − Ei)∕kBT for the different doping

level ND. Also shown in the figure are the corresponding Fermi functions f 0 for

comparison. Although different in mathematical expressions, the two curves of f

and f 0 do not depart very much from each other. But the minute departure of f

from f 0 accounts for the different recombination and generation rates under bias

or irradiation.

Recombination Rate

Now that f has been found, the recombination rate of electron rec − ree can be

specified by combining Eqs. (16.22), (16.27a), and (16.29) and rearranging the

terms as

U = 1

𝜏

(pn − n2
i
)

n + p + 2ni cosh(Et − Ei)∕kBT
; 1

𝜏
≡ 𝜎vTNt (16.30)

where 𝜏 represents the recombination lifetime. We can likewise obtain the same

result starting from the net recombination rate of holes.The recombination rateU

accounts for the generation rate as well. At equilibrium in which, np = n2
i
, U = 0

and there is no net recombination, as it should. However for np > n2
i
, U > 0, and

the recombination of e–h pairs ensues. Likewise for, np < n2
i
,U < 0 and e–h pairs
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are in this case generated.The r, g processes are mediated by the traps playing the

role of stepping sites.

It is clear from Eq. (16.30) that the recombination rate U depends sensitively

on Et − Ei. Specifically, U attains the maximum value for Ei = Et , which suggests

that the r, g processes are maximally enhanced when EC − Et , Et − EV are approx-

imately the same. Shown in Figure 16.8 are r, g rates for different doping levels.

In an n-type semiconductor, where nn ≫ pn, ni U is mainly dictated by nn and

1014
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Figure 16.7 The equilibrium Fermi function and the nonequilibrium distribution functions

versus (Et − Ei)∕kBT for different ND.
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Figure 16.8 The recombination and generation rates versus (Et − Ei)∕kBT for different ND.
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is pinned at its maximum level over a range in which nn ≫ ni cosh(Et − Ei)∕kBT .
On the other hand, for np ≪ n2

i
, the generation rate falls off exponentially as

a function of Et − Ei from its maximum value for Et = Ei. Also in the presence

of shallow traps located near EC, the electrons are easily captured from the

conduction band into the trap sites or vice versa. However, the large difference

between Et and EV slows down the hole emission or capture processes. Conse-

quently, the overall efficiency of the trap-assisted generation or recombination

of electron hole pairs is low. Rather, the electron capture is more likely to be

accompanied by the inverse process of electron emission. Similarly, for traps near

the valence band edge, the hole capture and emission constitute the dominant

processes.

Minority Carrier Lifetime

We next consider an n-type semiconductor in which nn ≫ pn, ni. In this case, we

may put nn ≈ nn0 and simplify the numerator of U as

pn − n2
i
≈ nn0(pn0 + pn − pn0) − n2

i
= nn0(pn − pn0); nn0pno = n2

i
(16.31)

Thus, by inserting Eq. (16.31) into Eq. (16.30) and using the fact that nn ≫ pn, ni,

we can write

U =
pn − pn0

𝜏p
,

1

𝜏p
= 𝜎pvTNt (16.32a)

where 𝜏p is called the lifetime of hole as the minority carrier. The recombination

rate of electrons in the p-type semiconductor and the lifetime 𝜏n are likewise given

by

U =
np − np0

𝜏n
,

1

𝜏n
≡ 𝜎nvTNt (16.32b)

Problems

16.1 . (a) Fill in the algebra and reproduce the Einstein relation for electrons

and holes by using the transport coefficients given in Eqs. (16.5) and

(16.7).

(b) Starting from the expressions of n, p given in Eq. (16.16), derive

Eq. (16.18) specifying the split between EFn and EFp under irradiation.

16.2 The conductivity 𝜎 and resistivity 𝜌 of the electron are specified in terms of

q, n and 𝜇n as 𝜎 ≡ qn𝜇n = 1∕𝜌. An n-type Si with resistivity 10 Ωcm is uni-

formly illuminated, and 1021 e–h pairs are generated per cubic centimeter

second.

(a) Calculate the dark and photoconductivity.

(b) Calculate the contribution made by electrons and holes to the total

conductivity. Use 𝜇n = 800 cm2V−1 s−1, 𝜇p = 400 cm2V−1 s−1, and

take the lifetime of the electron and hole to be 1 μs.



Suggested Readings 215
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Figure 16.9 The trap levels uniformly and

Gaussian distributed.

16.3 An n-type semiconductor is illuminated uniformly with light intensity

10 Wcm−2. The wavelength and absorption coefficient are given by

𝜆 = 500 nm and 𝛼 = 10 cm−1.

(a) Find the photon flux (the number of photons crossing per unit area

and per second).

(b) Calculate the number of e–h pairs generated per second.

16.4 The rate equation for pn as the minority carrier is given by

∂pn
∂t

= gL −
pn − pn0

𝜏p
; gL =

𝛼I

hv

Find pn(t) during the illumination and also after the light is turned off.

16.5 Consider the tap centers uniformly and Gaussian distributed across the

energy gap, as sketched in Figure 16.9.

(a) Derive the recombination rates by generalizing the single-level trap

model and assuming that 𝜎n = 𝜎2 = 𝜎, for simplicity.

(b) Derive the expression for minority carrier lifetime.

(c) Repeat the analysis of (a) and (b) for the case of traps Gaussian

distributed Nt exp−(Et − Etc)2∕2𝜎2 centered at Etc half-way between

midgap and EC .
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17

P–N Junction Diode: I–V Behavior and Device Physics

The p–n junction diode is one of the simplest solid-state switches but is a key

hardware element of nanotechnology. The technological platform of the diode

is multidisciplinary in nature and covers the central core of the device physics.

Hence, the understanding of the diode is essential for comprehending other active

devices. Moreover, the diode provides convenient platforms on which to devise

the photodiode, light-emitting and laser diodes, solar cells, and so on. Also the

p–n junction itself is an essential element of MOSFET. The diode I–V behavior

is modeled with an emphasis on the physical principles involved.

17.1

The p–n Junction in Equilibrium

The p–n junction consists of n- and p-type semiconductors in equilibrium con-

tact, as shown in Figure 17.1.When a positive voltageVF called the forward voltage

is applied to the p side, a large forward current IF flows from p to n regions. When

a negative voltage VR called the reverse voltage is applied, the minimal level of the

reverse current IR flows from n to p regions. Hence, the diode works as an electri-

cal switch. When the magnitude of VR is increased beyond a certain value called

the breakdown voltage, IR increases exponentially. The explosive growth of IR is

known as the junction breakdown.

Junction Band Bending

There are two kinds of junctions: homo and hetero. In the former, the bandgaps

in p and n regions are the same, while in the latter, bandgaps are different. We

discuss the former junction, but most of the results derived are also applicable in

the latter junction. Before contact, the Fermi level EF in the n bulk region is higher

than EF in the p region by an amount equal to the sum of the Fermi potentials

q𝜑Fn + q𝜙Fp (Figure 17.1). However, when the n and p regions are brought into

the equilibrium contact, EF should line up and be flat, as detailed. Clearly, the

condition necessitates the band bending by the amount q𝜑Fn + q𝜙Fp as clear from

Figure 17.1. Also, EC − EF and EF − EV in n and p bulk regions should remain the

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 17.1 The cross-sectional view of the p–n junction diode and the I–V curve, con-

sisting of the forward, reverse, and breakdown currents (a). The band diagram of the p–n

junction before and after the equilibrium contact (b).

same to preserve the equilibrium carrier concentrations therein before and after

the contact.

Space Charge, Field, and Potential

A question then naturally arises as to what physical processes are responsible

for such a band bending. The answer to this question lies in the simple electro-

statics entailed in the equilibrium contact. Specifically, the electrons diffuse from

the higher-concentration n region to the lower-concentration p region. Likewise,

holes diffuse fromp to n regions.Thediffusion of electrons andholes leaves behind

the uncompensated donor and acceptor ions near the interface, which induces the

dipolar space charge 𝜌 as shown in Figure 17.2. The space charge 𝜌 in turn gives

rise to the space charge field E and the potential 𝜑 and ultimately the potential

energy of the electron −q𝜑. The potential energy bridges the misaligned EC, EV

on both sides. In short, the diffusion of electrons and holes triggers the junction

band bending.

The space charge 𝜌 induces E according to Coulomb’s law:

∂
∂x

E = 𝜌

𝜀S
; 𝜌 =

{
qND; 0 ≤ x ≤ xn

−qNA; −xp ≤ x ≤ 0
(17.1)

Here, 𝜀S is the permittivity of the semiconductor, and 𝜌(x) is taken as a step func-

tion, with heights given by the doping levels qND and −qNA in the completely

depleted approximation, a nonessential approximation. Also xn, −xp demarcate

the junction depletion region W from the n and p bulk regions. We can readily
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Figure 17.2 The space charge (𝜌), field (E), potential (𝜑), and electron potential energy in

equilibrium (b) under forward (a) and reverse (c) biases, in comparison with the equilibrium

values.

carry out the integration, obtaining

E(x) =

{(
qND∕𝜀S

)
(x − xn); 0 ≤ x ≤ xn

−(qNA∕𝜀S)(x + xp); −xp ≤ x ≤ 0
(17.2)

The boundary conditions used are E(xn) = E(−xp) = 0, since E(x) does not pene-

trate into the neutral bulk regions. Also E(x) is continuous everywhere; hence, the

condition applied at x = 0 yields the maximum E and the relationship between xn
and xp as well

|Emax| = qNDxn
𝜀S

=
qNAxp

𝜀S
; qNDxn = qNAxp (17.3)

Evidently, Eq. (17.3) shows that the number of electrons spilled over from n to p

regions and the number of holes spilled from p to n regions are the same. Once

the space charge field, E is set up, electrons and holes are driven by E, electrons

to the n region and holes to the p region, compensating thereby the electron and

hole diffusion in opposite directions, as it should in equilibrium.



220 17 P–N Junction Diode: I–V Behavior and Device Physics

Depletion Depth and Built-In Potential

The depletion depth denotes the total width of the junction region and is given

from Eq. (17.3) by

W ≡ xn + xp

= xn(1 + ND∕NA) = xp(1 + NA∕ND) (17.4)

Also, the built-in potential 𝜑bi is the difference in 𝜑(x) between −xp and xn and is

obtained simply by finding the triangular area under E(x) curve

𝜑bi ≡ 1

2
EmaxW = 1

2

q

𝜀S

NAND

NA + ND

W 2 (17.5a)

where Emax in Eq. (17.3) was expressed in terms ofW by using Eq. (17.4). Also 𝜑bi

as given by the sum of Fermi potentials is specified in terms of the doping level by

using Eqs. (15.19) and (15.20) as

𝜑bi ≡ 𝜑Fn + 𝜑Fp =
kBT

q
ln

(
NAND

n2
i

)
(17.5b)

In this manner, the parameters W, |Emax|, and 𝜑bi are all specified in terms of ND

and NA.

Equilibrium Carrier Profiles in W

The ratio between nn0 and np0 as the majority andminority carrier concentrations

in n and p regions, respectively, is given by

np0

nn0
=

nie
−q𝜑Fp∕kBT

nie
q𝜑Fn∕kBT

= e−q𝜑bi∕kBT ; 𝜑bi = 𝜑Fn + 𝜑Fp (17.6a)

By the same token, the ratio between pp0 and pn0 in p and n regions, respectively,

reads as
pn0
pp0

= e−q𝜑bi∕kBT (17.6b)

Also, in the depletion depthW, n and p should depend on x and are given by

n(x) = NCe
−(EC (x)−EF )∕kBT , p(x) = NVe

−(EF−EV (x))∕kBT (17.7a)

However, as EC(x) − EV (x) = EG for all x, the law of mass action also holds true in

W in equilibrium.

n(x)p(x) = NCNVe
−EG∕kBT = n2

i
(17.7b)

17.2

The p–n Junction under Bias

Under a bias, the junction is pushed away from the equilibrium to nonequilibrium,

and n(x) and p(x) depart from the equilibrium values. When the forward (+V )
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or reverse (−V ) voltage is applied to the p side, the band therein is lowered or

raised by −qV with respect to the n bulk region. Therefore, the junction band

bending decreases or increases from the equilibriumvalue according to q(𝜑bi − V )
(Figure 17.2). However, EC − EF and EF − EV should remain the same in n and p

regions. This is because the equilibrium carrier densities are preserved in n and p

bulk regions.

Obviously, the two requirements cannot be met with a single EF . Instead two

quasi-Fermi levels, one for electrons EFn and the other for holes EFp are required

as clearly shown in Figure 17.2. Furthermore, EFn, EFp should split in W by an

amount

EFn − EFp = qV (17.8)

In the quasi-equilibrium approximation, EFn and EFp are taken flat in W at the

level given in Eq. (17.8), but EFn and EFp should merge into a single EF in n and p

regions, where the equilibrium bulk properties are preserved.Themerging occurs

in the quasi-neutral regions. Naturally, the decrease or increase in the band bend-

ing under the bias should be accompanied by the concomitant decrease or increase

in W and Emax as dictated by Eq. (17.5a) with 𝜑bi replaced by 𝜑bi − V . Thus, we

can write from Eqs. (17.5a), (17.3), and (17.4)

W (V ) =

[
2𝜀S
(
NA + ND

)
qNAND

(𝜑bi − V )

]1∕2
(17.9)

|Emax(V )| = qNDNA

𝜀S(NA + ND)
W (V ) (17.10)

Charge Injection and Extraction

The voltage-controlled n and p are the key to the diode operation. Under the bias

and in nonequilibrium, n and p are specified in the usual manner by replacing EF

by EFn and EFp, respectively:

n(x) = NCe
−[EC (x)−EFn]∕kBT , p(x) = NVe

−[EFp−EV (x)]∕kBT (17.11)

Therefore, the law of mass action is broken in W , and the charge is injected into

or extracted out ofW under the forward or reverse bias, that is,

n(x)p(x) = NCNVe
−[EC(x)−EFn(x)]∕kBT e−[EFp(x)−EV (x)]∕kBT = n2

i
eqV∕kBT (17.12)

where Eqs. (17.8) and (15.12) have been used. Also at x = −xp, EFn lies above or

below EF by qV depending on the polarity of V (see Figure 17.3 ).

Therefore, as shown in Figure 17.3, n at−xp is greater or less than its equilibrium
value np0 by the amount

np(−xp) ≡ NCe
−(EC−EF−qV )∕kBT ≡ np0e

qV∕kBT (17.13a)

Similarly, pn at xn is increased or decreased according to

pn(xn) = NVe
−(EF−EV−qV )∕kBT = pn0e

qV∕kBT (17.13b)
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Figure 17.3 The junction band bending under forward (a) and reverse (b) biases and in

equilibrium (c). Two quasi-Fermi levels EFn and EFp split in the depletion depth and merge

in the quasi-neutral regions on both sides of the junction.

The resulting spatial profiles of n and p are shown in Figure 17.4.

The bias-controlled injection or extraction of the minority carriers constitutes

the driving force of the diode operation. Once the junction is pushed away from

the equilibrium, and the charge is injected or extracted, there ensues the reactive

process for bringing the junction back into equilibrium. These reactive processes

are responsible for inducing the diode current.
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Figure 17.4 The profiles of n and p under the forward and reverse biases and in

equilibrium.
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17.3

Ideal Diode I–V Behavior

In equilibrium, the diffusion flux of electrons from n to p regions is balanced

by the drift flux from p to n regions. For diffusion, the electrons have to overcome

the potential barrier q𝜑bi (Figure 17.1). For drift, the electrons simply roll down

the potential hill in the opposite direction propelled by the built-in space charge

field. Under the forward biasVF, however, the potential barrier is lowered, and the

electric field in the junction is decreased. Hence, the diffusion is enhanced, while

the drift is reduced. Similarly, the diffusion of the holes becomes greater than the

drift. Consequently, the detailed balancing between the drift and the diffusion is

broken.

We next describe the diode current by using the theory of Shockley. In his

model, Shockley introduced a few nonessential simplifications: (i) the completely

depleted approximation for describing the space charge; (ii) the low-level injec-

tion of minority carriers, that is, np(−xp) ≪ nn0 and pn(xn) ≪ pp0; and finally

(iii) the nondegenerate majority carrier concentrations pp0 and nn0. In the I–V

analysis, the junction diode is divided into three regions, as shown in Figure 17.3:

(i) the depletion W , (ii) the quasi-neutral near xn and −xp, and (iii) the n and p

bulk regions.

The Forward Current

As noted, under a forward bias, the diffusion fluxes of electrons and holes become

dominant, and excess electrons and holes spill in from n and p regions into the

depletion and quasi-neutral regions (Figure 17.4).The change in time of the excess

hole concentration pn injected into the quasi-neutral region on the n side is then

governed by

dpn
dt

= − d

dx
Jp(x) −

pn − pn0
τp

; Jp(x) =
(
pn𝜇pE − Dp

dpn
dx

)
(17.14)

where the recombination term has been added to the usual well-known continuity

equation.

In the steady state, pn is time invariant, that is, ∂pn∕∂t = 0, and the electric field,

E in the quasi-neutral region is negligible. Hence, the rate equation reduces to the

diffusion equation:

d2pn
dx2

−
pn − pn0

L2p
= 0, Lp ≡ (Dpτp)1∕2 (17.15)

where Lp thus defined is the hole diffusion length. Obviously, the solution is given

by exp±x∕Lp, but in the region under consideration in which x > xn, the positive

branch diverges for large x and should be discarded. Also, the boundary conditions

are

pn(xn) = pn0e
qV∕kBT , pn(x → ∞) = pn0
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Thefirst condition accounts for the injection of holes at xn under bias Eq. (17.13b),

while the second condition represents the equilibrium hole concentration in the

bulk n region.When the boundary conditions are incorporated, the solution reads

as

pn(x) = pn0(eqV∕kBT − 1)e−(x−xn)∕Lp + pn0 (17.16a)

Likewise, the excess electron concentration in the quasi-neutral region on the p

side is given by

np(x) = np0(eeV∕kBT − 1)e(x+xp)∕Ln + np0, Ln ≡ (Dnτn)1∕2 (17.16b)

with Ln denoting the electron diffusion length.

The diffusion current is therefore obtained by differentiating pn(x) and np(x)

with respect to x:

Jp(x) ≡ qDp

(
−
dpn
dx

)
=

qDppn0

Lp
[eqV∕kBT − 1]e−(x−xn)∕Lp , x ≥ xn (17.17a)

Jn(x) ≡ −qDn

(
−
dnp

dx

)
=

qDnnp0

Ln
[eqV∕kBT − 1]e(x+xp)∕Lp , x ≤ −xp (17.17b)

The total diffusion current, called the forward current, is contributed by the sum

of Jn and Jp evaluated at xn and −xp, respectively:

I ≡ In(−xp) + Ip(xn) = IS(eqV∕kBT − 1) (17.18a)

where the saturation current

IS =

(
qDnnp0

Ln
+

qDppn0

Lp

)
AJ = qn2

i

(
Dn

LnNA

+
Dp

LpND

)
AJ (17.18b)

is given in terms of the doping level, diffusion length, and the diode cross-section

AJ, and use has beenmade of the identities np0 = n2
i
∕NA andpn0 = n2

i
∕ND. Clearly,

the forward current increases exponentially with V. Also, electrons and holes dif-

fuse in opposite directions, but because of the opposite polarity of the charge, the

electron and hole currents add up and flow from p to n regions.

A few comments are due at this point.The two diffusion currents Jn(x) and Jp(x)

depend sensitively on x. However, the drift currents contributed by the major-

ity carriers also vary in such a manner that the total current is constant every-

where at a level given by Eq. (17.18), as illustrated in Figure 17.5. If the current is

not constant throughout the entire current path, it is not possible to maintain a

steady-state current. Also, due to large majority carrier concentrations, the volt-

age required to induce the respective drift currents takes up a minute fraction of

the total junction voltage applied.

The Reverse Current IR

Under a reverse bias,VR pn andnp are depleted in respective quasi-neutral regions,

as shown in Figure 17.4. In this case, electrons diffuse from p to n regions, while
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holes diffuse from n to p regions. Once diffused into the depletion region W, the

electrons and holes are swept acrossW driven by the strong electric field inherent

in the junction and further reinforced by VR.The resulting reverse current is nat-

urally built into the I–V expression (17.18). For V > 0, IF exponentially increases

with V,while V < 0 IR flows in the reverse direction and saturates at the level IS at

small VR, typically a few thermal voltages kBT/q.

Diffusion Length

The average distance an excess hole, for example, diffuses in the quasi-neutral

region on the n side can be found by

< x − xn >=
∫

∞

xn

dxpn(x)(x − xn)

∫
∞

xn

dxpn(x)
= Lp, pn(x) ∝ e−(x−xn)∕Lp (17.19)

Therefore, it is clear from Eq. (17.19) that the diffusion length Lp represents the

average distance an excess minority carrier diffuses before recombination. Hence,

electrons and holes within Ln and Lp, respectively, can be taken to diffuse intoW

and contribute to the reverse current.
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17.4

Nonideal I–V Behavior

Generation and Recombination Currents

The nonideal I–V model takes into account the recombination (r) and the gen-

eration (g) processes occurring in the depletion region W. The r and g rates are

primarily attributed to the trap-assisted r and g processes, and therefore the gen-

eration and recombination currents IG and IR can be specified by using the recom-

bination rate U derived in Eq. (16.30):

U = 1

τ
n2
i
(eqV∕kBT − 1)

n + p + 2ni cosh(Et − Ei)∕kBT
, np = n2i e

qV∕kBT (17.20)

For V > 0, U attains the maximum level when (i) the trap level lies at the midgap,

Et = Ei so that the third term in the denominator is minimized and (ii) n = p, in

which case n = p = ni exp(qV∕2kBT) and n + p attains the minimum value under

the constraint given in (17.11).

Hence, the maximum recombination rate UR reads as

UR ≈
1

τ
ni(eqV∕kBT − 1)
2(eqV∕2kBT + 1)

≈ 1

2τ
nie

qV∕2kBT (17.21)

and IR can be estimated by multiplying UR with the recombination volume

IR ≈ qURWAJ ≈
q

2τ
nie

qV∕2kBTWAJ (17.22)

where AJ is the cross-sectional area of the diode. Likewise, for V < 0, n, p ≪ ni,

exp(qV∕kBT) ≈ 0, so that the maximum generation rate is given from Eq. (17.20)

by ni∕2τ, and IG is therefore given by

IG ≈ qUGWAJ ; UG =
ni
2τ

(17.23)

Thus, the total nonideal current is obtained by adding IR and IG to the ideal diode

current:

I =

{
Iideal + IR; V > 0

Iideal + IG; V < 0
(17.24)

(a) (b)

I I Figure 17.6 The cyclic trap-assisted recom-

bination (a) and generation (b) of the

electron–hole pairs in the depletion depth,

closing the recombination and generation

current loops.
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The physical mechanism responsible for IR is illustrated in Figure 17.6. Under VF,

the excess electrons and holes are constantly injected intoW and are recombined

in two steps, the electron capture followed by the hole capture, completing thereby

the IR loop.When the process is repeated in cyclic manner, IR flows in the forward

direction. Likewise, under VR, the electron–hole pairs are generated by alternat-

ing emissions of holes and electrons in succession. The electrons and holes thus

generated are swept out of W by the space charge field therein and contribute to

IG flowing in the reverse direction.The nonideal I–V expression in Eq. (17.24) can

be compacted as

I = IS

[
exp

(
qV

mkBT

)
− 1

]
, IS ≈ AJqn

2
i

(
Dn

LnNA

+
Dp

LpND

)
+ AJ

qni
2τ

W (17.25)

In this expression, IG naturally adds to IS raising thereby the effective saturation

current level. On the other hand, IR is embedded into the forward current via

the ideality factor m, which ranges from 1 to 2. The ideality factor is used as

the fitting parameter, and IF is contributed by both diffusion and recombination

currents.

Junction Breakdown

Finally, the reverse current grows explosively beyond VBR, called the breakdown

voltage.The breakdown is caused by the avalanche multiplication of electrons and

holes in W, as illustrated in Figure 17.7. The e–h pairs when generated via the

band-to-band or trap-assisted excitations are subjected to the strong electric field

in the reverse-biased junction region. In this case, the electrons and holes therein

can gain in between collisions kinetic energies sufficient to trigger the impact ion-

ization of the host atoms. The ionization process occurring in cascade gives rise

to explosive growth of electron–hole pairs, which are swept out ofW , triggering

the avalanche breakdown current.

The tunneling is also responsible for the breakdown. For the electrons in the

valence band, the energy gap provides the potential barrier, which under a reverse

bias typically assumes a triangular shape with height EG, and the width narrowed

by strong electric field as shown in Figure 17.7. In this case, the electrons in

EFn EFn

EFP
EFP

EV
EV

EC

p

(a) (b)

pn n

q

EC

Figure 17.7 The diode breakdown: the avalanche multiplication of the e–h pairs resulting

from the ionization occurring in cascade (a) and the Zener breakdown resulting from the

F–N tunneling of the electrons from the valence band to the conduction band (b).
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the valence band in the p region can tunnel into the conduction band in the n

region and contribute to IR via the FN tunneling, whose probability is given from

Eq. (5.26) by

T ∝ exp−

[
4
(
2mn

)1∕2
3qEℏ

E
3∕2
G

]
(17.26)

where V − E in Eq. (5.26) has been replaced by EG. It is therefore clear that

T increases exponentially with the electric field E or the reverse bias VR, and

induces the explosive growth of IR. The resulting junction breakdown is known

as the Zener breakdown.

Problems

17.1 Consider the p+–n step junctions in silicon in which NA = 2 × 1018 cm−3

and ND varies from 1 × 1015 to 2 × 1017 cm−3.

(a) Find the junction parameters xn, xp, Emax,W, and 𝜑bi as a function of

ND.

(b) At which reverse biases will these p–n junctions undergo breakdown

if the maximum field for breakdown is 3 × 105 Vcm−1?

17.2 . (a) Is it possible to achieve the junction band bending by the amount

greater than the junction bandgap?

(b) Estimate ND and NA at which q𝜑bi ≃ EG in silicon with the bandgap

1.12 eV and germanium with the bandgap 0.66 eV.

17.3 The space charge 𝜌 was modeled by Eq. (17.1) in completely depleted

approximation. Check the validity of this approximation by estimating

the width Δx in which n and p are not vanishingly small near xn and −xp,
respectively, and by comparing Δx with typical xn and −xp values.

17.4 . (a) Obtain pn(x) Eq. (17.16a) by solving the diffusion equation (17.15)

with the use of the boundary condition under forward bias given in

the text.

(b) The maximum recombination rate U in Eq. (17.20) was obtained

by minimizing n + p in the denominator. Show that it attains

the minimum value if n = p under the forward bias in which

np = n2
i
exp[qV∕kBT].

17.5 The quasi-Fermi levels EFn and EFp inW under forward and reverse biases

are taken flat in quasi-equilibrium approximation. Check the accuracy of

this approximation by (i) taking ND = 1016 cm−3, NA = 5 × 1017 cm−3 and

estimating the electron and hole fluxes under forward and reverse biases

and (ii) equating these fluxes to the gradient of EFn and EFp (Eq. (16.19)).

17.6 In which semiconductor is the Zener breakdown more likely to occur

among silicon, germanium. Estimate the reverse biases at which the

breakdown occurs in these semiconductors. The bandgap of Si, and Ge, is

1.12, 0.66 eV, respectively.
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18

P–N Junction Diode: Applications

The p–n junction diode has been utilized extensively as the platform on which to

devise novel semiconductor devices such as photodiode, solar cell, light-emitting

diode (LED), and laser diode (LD). This chapter is focused on discussing these

devices. The diode applications are mostly based on its interaction with light,

and therefore the light absorption and emission in semiconductors are considered

first.

18.1

Optical Absorption

Figure 18.1 shows the conduction and valence bands in a direct bandgap semicon-

ductor. Also shown in the figure are the dispersion curves of electrons and holes

in the conduction and valence bands, respectively. In the direct bandgap material,

the minimum and maximum points in the two dispersion curves coincide in the

k-space. Also, the electrons and holes behave as free particles near the band edges

as discussed, and the dispersion relations are thus given by

E = ℏ2k2

2mj

, ℏk = p, j = n, p (18.1)

wheremj is the effective mass of the electron or hole.

Absorption Coefficient

Let us consider the band-to-band excitation of an electron by absorbing a pho-

ton, as shown in Figure 18.1. The interaction Hamiltonian involving the extended

Bloch wavefunction of the electron and the propagating EM wave is given from

Eq. (13.1) by

Ĥ ′ = −𝜇
E0

2
[ei(𝜔t−kopt⋅r) + e

−i(𝜔t−k
opt

⋅r)]; 𝜇 ≡ q(̂ef ⋅ r) (18.2)

where êf is the polarization vector, kopt the optical wave vector, and E0 the ampli-

tude of the light oscillating with angular frequency 𝜔 . Also r is the displacement

of the electron from the nucleus and 𝜇 the atom dipole moment. The transition

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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hνħω
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(ħk)2

(ħk)2

2mn

2mp

Figure 18.1 The electron and hole dis-

persion curves in conduction and valence

bands, respectively, in a direct bandgap

semiconductor. Also shown is the band-

to-band excitation of an e–h pair via the

absorption of a photon. The electron moving

from c to a to capture a hole and gain the

kinetic energy is equivalent to a hole moving

from a to c, gaining the same kinetic energy.

rate of an electron from the valence to conduction bands is given by Fermi’s golden

rule (Eq. (9.54)) as

Wvc =
2𝜋

ℏ
|H ′|2𝛿(Eb − Ea − ℏ𝜔); |H′|2 = 𝜇2E2

0

4
(18.3a)

where the atom dipole is now specified via the Bloch wavefunction as

𝜇 = q∫ dru∗c (r)uv(r)(̂ef ⋅ r)e
−i(k

c
−k

v
±k

opt
)⋅r

(18.3b)

In Eq. (18.3b), uc(r) and uv(r) are the modulation functions in conduction and

valence bands, respectively, and kc and kv the corresponding crystal wave vectors

(see Eq. (6.3)).

As the Bloch wavefunction is extended over the entire crystal volume, the inte-

gration (Eq. (18.3b)) should be performed over the same extended volume. In

this case, the variation of the phase factor in the integrand renders the transition

matrix vanishingly small unless the phase-matching condition prevails, that is,

k
c
− k

v
± k

opt
≈ k

c
− k

v
= 0 (18.3c)

In the optical wavelength regime, k ≈ 2𝜋∕𝜆 ≈ 105 cm−1 at 𝜆 = 500 nm, for

example, while kc ≈ kv ≈ 2𝜋∕d ≈ 108 cm−1 for the lattice spacing d ≈ 0.5 nm.

Hence, kopt can be neglected, and we may put k
c
= k

v
= k. It thus follows from

Eq. (18.3c) that the optical transitions should occur vertically in the k space

(Figure 18.1). In this case, the integral of the transition matrix (Eq. (18.3b))

reduces to the expression of dipole moment with respect to uc(r), uv(r). Also, the
difference in energy between the initial and final states consists of the energy gap

EG and the kinetic energies of electrons and holes in the conduction and valence

bands, ℏ2k2∕2mn and ℏ2k2∕2mp, respectively. We can therefore write

Ef − Ei =
ℏ2k2

2𝜇eff

+ EG,
1

𝜇eff

≡ 1

mn

+ 1

mp

(18.3d)
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With the transition rateWvc explicitly specified, the number of transitionsN per

volume V is obtained by multiplyingWvc by the density of states g(k) (Eq. (4.14b))
and carrying out the integration over k:

N = 2𝜋

ℏ

𝜇2E2
0
V

4 ∫ 𝛿

(
ℏ2k2

2𝜇eff

+ EG − ℏ𝜔

)
g(k)dk, g(k) = k2

𝜋2
(18.4)

An assumption implicitly present in Eq. (18.4) is that the quantum states of

electrons in the valence band are all occupied, while empty in conduction band.

The condition holds true for T = 0 and is also a good approximation unless T is

extremely high. We can carry out the integration by introducing a new variable 𝜉:

N

V
∝ G∫ 𝛿(ξ)(ξ + ℏ𝜔 − 𝐸G)1∕2dξ; ξ = ℏ2k2

2𝜇eff

+ EG − ℏ𝜔

= G(ℏ𝜔 − EG)1∕2, G ≡ 𝜇2E2
0
𝜇
3∕2
eff√

2𝜋ℏ4
(18.5)

Therefore, the attenuation coefficient 𝛼(𝜔) of the light intensity is obtained by

dividing the optical power absorbed per unit volume ℏ𝜔 × (N∕V ) by the incident
power crossing the unit area, that is, the Pointing vector c𝜀E2

0
:

𝛼(𝜔) = A∗(ℏ𝜔 − EG)1∕2, A∗ =
𝜔𝜇2𝜇

3∕2
eff√

2𝜋ℏ3c𝜀
(18.6)

where c and 𝜀 are the velocity of light and permittivity of the medium, respec-

tively. It is thus clear from Eq. (18.6) that for the absorption to occur, the photon

energy should be larger than the bandgap. Moreover, 𝛼(𝜔) increases with increas-

ing photon energy as more electron states ∝ k2 are available in the absorption

process.

18.2

Photodiode

Thephotodiode is the p–n junction diode used for detecting the optical signal and

operates in the reverse bias mode. Thus, consider a p–n junction, reverse biased

and irradiated by light, as sketched in Figure 18.2.The e–h pair when generated in

W is separated immediately from each other, electrons rolling down the potential

hill in the conduction band to the n region, while holes rolling up the hill in the

valence band to the p region. An electron in the valence band moving down to

capture the hole while gaining the kinetic energy is equivalent to the hole moving

up the same trajectory, gaining the same kinetic energy as shown in Figure 18.2.

Photocurrent

Thephotocurrent is due to the generation and subsequent separation of e–h pairs

via the drift in opposite directions. The generation rate of the e–h pairs at the
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Figure 18.2 The cross-sectional view of the photodiode (a), the photocurrent versus VR
(b), and reverse-biased energy band diagram (c). Electron rolling down the potential hill is

equivalent to hole rolling up the same trajectory, gaining the identical kinetic energy.

depth y from the surface is given by

g(y) = g0e
−𝛼y; g0 = 𝛼

[
I0 (1 − R)

hν

]
(18.7)

where 𝛼 is the absorption coefficient (see Eq. (18.6)), R the reflection coefficient,

and I0/h𝜈 the photon flux given in terms of the light intensity I0. The photocur-

rent Ip is then obtained by integrating g(y) over the illuminated volume within the

depletion depthW

Ip,dr = −qWw∫
Tj

0

dyg(y)

= −qAWg̃0, g̃0 = g0

[(
1 − e−𝛼Tj

)
𝛼Tj

]
, AJ = wTj (18.8)

where Tj, w, and AJ are the thickness, width, and the cross-sectional area of the

diode.

The light is also absorbed in the two quasi-neutral regions, and the e–h pairs

generated therein also contribute to Ip. Thus, for example, consider the e–h pair

generated in the quasi-neutral region on the n side. The electrons drift to the n

region driven by the junction field, while the holes diffuse intoW.This is because

the holes are depleted inW under the reverse bias (see Figure 17.5). Upon reaching

the junction edge xn, holes roll up the junction potential and are swept out of W

to the p region, propelled by the electric field in the junction. The resulting Ip is

obtained by solving the diffusion equation in the quasi-neutral region, given by

p′′n −
pn − pn0

L2p
+

g̃0
Dp

= 0 (18.9)

In Eq. (18.9), the photo-generation term has been added to the usual diffusion

equation (17.15). The boundary conditions involved are (i) pn(x = xn) = 0 under

the reverse bias and (ii) pn(x → ∞) = pn0 + g̃0𝜏p with g̃0𝜏p denoting the photo-

generated hole concentration in the n bulk. Thus, the solution reads as

pn(x) = (pn0 + g̃0𝜏p)[1 − e−(x−xn)∕Lp ] (18.10)
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The resulting photocurrent is therefore given by

Ip,diff ≡ −qADp

∂pn(x = xn)
∂x

= −qADp

pn0 + g̃0𝜏p

Lp
≈ −qAg̃0Lp, Dp𝜏p ≡ L2p (18.11a)

The first term on the right hand is the reverse current of the diode (Eq. (17.17)),

representing in this case the background noise and has been discarded, as it is

much less than the photocurrent. Likewise, the photocurrent due to the electron

diffusion in the quasi-neutral region on the p side is obtained as

In,diff = −qA
(
np0Dn

Ln
+ g̃0Ln

)
≈ −qAg̃0Ln, Dn𝜏n ≡ L2n (18.11b)

Note in Eq. (18.11) that those electrons and holes generated within the respec-

tive diffusion lengths from the junction edges reach on the average the depletion

region and are swept across W to contribute to the photocurrent. This is consis-

tent with the definition of the diffusion length, as discussed.The total Ip therefore

consists of the three components (Eqs. (18.8), (18.11a), and (18.11b)):

IT = −Il, Il ≡ qAg̃0(W + Lp + Ln) (18.12)

and flows in the reverse direction from n to p regions. The IT − VR curves are

shown in Figure 18.2. Naturally, the reverse current of the diode constitutes the

background noise, and the output photocurrent increases linearly with the input

light intensity, as it should. Also the photocurrent is flat and insensitive to the

reverse voltage VR.This is because the electrons and holes are swept acrossW by

the built-in electric field regardless of VR.

18.3

Solar Cell

Photovoltaic Effect

The solar cell is based on the photovoltaic effect. The effect refers to the physi-

cal processes whereby an incident light generates a voltage across a certain por-

tion of the illuminated region of the medium. The p–n junction is a prototypical

example exhibiting such effect and carries a most important application, namely,

the solar cell.

The solar cell operation is essentially the same as that of the photo-detector, but

the bias regime used is different.The photovoltaic effect is again triggered by inci-

dent photons, generating e–h pairs inW.The electrons and holes thus generated

are separated by the space charge field in the junction.That is, electrons roll down

the junction potential hill to the n region, while the holes roll up the hill to the

p region. Consequently, the photocurrent flows from n to p regions just as in the

photo-detector (Figure 18.3). Simultaneously, the excess electrons and holes pile
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Figure 18.3 The cross-sectional view of the junction solar cell and equivalent circuit (a).

The energy band diagram under illumination (b). The photo-generated e–h pairs are sepa-

rated and contribute to Il while setting up the forward voltage to induce IF.

up in the n and p regions, respectively, setting up the forward voltage V and driv-

ing the forward current IF from p to n regions.The total current is therefore given

by

I = IF − Il, IF = IS(eqV∕kBT − 1) (18.13)

where IF is taken ideal for simplicity of discussion, and Il is given by Eq. (18.8) as

the physical mechanisms for producing Il inW are the same in both devices. The

open circuit photo-voltage Voc and short circuit current Isc are found by putting

I = 0 and V = 0, respectively, and are given by

Voc =
kBT

q
ln

(
Il
IS
+ 1

)
≈

kBT

q
ln

Il
IS

, Isc = −Il (18.14)

where Il is in general much greater than IF, and Isc and Voc are also indicated in

Figure 18.4.

When a load resistor is connected to the junction as shown in Figure 18.3, the

load voltage VL is set up by the space charge resulting from excess electrons and
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Figure 18.4 The solar cell I–V in the fourth quadrant (a) and Il versus V with the direction

of Il taken positive (b). Also shown are the short circuit current Il and open circuit voltage

Voc.
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holes drifting to n and p regions, respectively. Additionally, the photocurrent Il
flowing against the forward voltage V in the direction from n to p drives the load

current IL across the load resistor. Therefore, IV < 0, and the power is extracted.

In this manner, the solar cell plays the role of a battery supplying the load current

with the voltage charged by the solar radiation. As a consequence, the solar energy

is converted into the electrical power.

Clearly, two key processes are involved in the operation of the solar cell: (i) the

light absorption and generation of e–h pairs and (ii) the subsequent separation of

electrons and holes via the junction band bending. Specifically, electrons roll down

the conduction band in W to the n region, while holes roll up the valence band

to the p region. The electrons and holes thus separated are recombined through

the external circuit to complete the current loop. As shown in Figure 18.4, the

I–V curve is located in the fourth quadrant and represents the power extraction

I × V < 0.The curve is often plotted by taking Il positive inwhich case it intersects

with the voltage and current axes at Voc and Il, respectively. The shaded region

represents the maximum power rectangle.

We next consider the equivalent circuit as also shown in Figure 18.3. In the

figure, RS and RL are the series and load resistances, respectively. In the presence

of RS, VL is smaller than the junction voltage V as provided by Voc, but RS is small

so that we can put

VL = V − ILRS ≃ V (18.15)

Also IL is specified from Eqs. (18.13) and (18.15) as

IL = Il − IS(eqVL∕kBT − 1) (18.16)

where the direction of Il is taken positive. Hence, the power extracted reads as

P ≡ VLIL = VL[Il − IS(eqVL∕kBT − 1)] (18.17)

We can then find the load voltage VLm at which the extracted power attains the

maximum value by imposing the condition, ∂P∕∂VL = 0, obtaining

eqVLm∕kBT =
(1 + Il∕IS)

(1 + qVLm∕kBT)
(18.18)

We can also express VLm in terms of Voc by using Eq. (18.14) in Eq. (18.18) as

VLm = Voc −
kBT

q
ln

[
1 +

VLm(
kBT∕q

)] (18.19)

Once VLm is found, ILm is obtained by combining Eqs. (18.16) and (18.18) as

ILm = Il − IS(eqVLm∕kBT − 1) ≈ Il

(
1 −

kBT∕q
VLm

)
(18.20)

where use has beenmade of Il∕IS >> VLm∕(kBT∕q) >> 1. Clearly, ILm is commen-

surate with Il, which suggests that the cell efficiency depends primarily on the

efficient absorption of the solar radiation, as expected.
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It is therefore clear that the primary factor for the high-efficiency solar cell is

its capability to efficiently absorb the radiation. Ideally, the cell should absorb the

entire spectrum of the solar radiation. However, this requires a small bandgap, so

that a larger fraction of the solar spectrum is absorbed, as clear from the absorp-

tion coefficient (Eq. (18.6)). On the other hand, a larger bandgap induces larger

Voc and VL via reduced IS as clearly follows from Eqs. (18.18) and (17.18b). There-

fore, devising a high-efficiency solar cell requires an innovative engineering by

which to attain simultaneously (i) efficient absorption of the solar radiation. (ii)

efficient separation of the photo-generated electrons and holes for generating the

high photocurrent and (iii) a large Voc.

18.4

LED and LD

The optical fiber communication is endowed with several advantages; (i) the low

signal loss, (ii) the wide bandwidth, and (iii) the small diameter of silica fibers.

The light source suitable for the fiber communication is the LED and LD. These

diode-based light sources are driven by the forward current of the diode and can be

incorporated readily into optoelectronic circuits. Moreover, LEDs are fast becom-

ing the mainstream light source with a long lifetime and low power consumption.

The p–n junction again provides the platform for LEDs and LDs, and these pho-

tonic devices are discussed.

Thus, consider a heavily doped p+–n+ junction in a direct bandgap semiconduc-

tor such asGaAs. In this case, the carrier concentrations in n andpbulk regions are

degenerate, andEF at equilibriumpenetrates deep into the conduction and valence

bands as shown in Figure 18.5. Under a forward bias, the junction band bending

is reduced, and n and p are specified separately by EFn and EFp. Also the splitting

of EFn and EFp, that is, EFn − EFp represents the measure of excess electrons and

holes injected into the junction region.

To consider the optical gain or loss at an arbitrary T, the transition rate of an

electron between (a) and (b) in Figure 18.1 should include the probability fac-

tors associated. This is because the final state should be empty for an electron to

enter into it from the initial state, according to the exclusion principle. Thus, the

p region n region

(a) (b)

EG

EF

qVF

EFn

EFp

Active region

ħω

Figure 18.5 The band diagram of the p+–n+ junction in equilibrium (a) and under the for-

ward bias (b). The injected electrons and holes recombine and emit the radiation.
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transition rate (Eq. (18.4)) should be modified to account for the net absorption

from a to b as

Nab − Nba =
2𝜋

ℏ

𝜇2E2
0
V

4 ∫ 𝛿

(
ℏ2k2

2𝜇eff

+ EG − ℏ𝜔

)
P(Ea,Eb)

k2dk

𝜋2
(18.21a)

Here,Nab andNba represent the number of the upward and downward transitions

between two states with the energy Ea and Eb, respectively.The probability factor

P(Ea,Eb) = fv(Ea)(1 − fc(Eb)) − fc(Eb)(1 − fv(Ea))
= fv(Ea) − fc(Eb) (18.21b)

when expressed in terms of the Fermi function

fj(E𝛾 ) =
1

1 + e(E𝛾−EFj)∕kBT
; 𝛾 = a, b j = c, v (18.21c)

accounts for the probabilities of upward and downward transitions. Specifically,

the first term represents the probability that an electron occupies the state at Ea

in the valence band and makes the transition to the empty state at Eb in the con-

duction band. Similarly, the second term represents the probability for the inverse

transition. Under a bias, the distribution function departs from fj(E𝛾 ), but it is still

a good approximation to use the Fermi distribution function.

Attenuation and Gain

As the probability factor P(Ea, Eb) does not depend on k, it can be taken out of the

integral in Eq. (18.21a), in which case the integral is identical to Eq. (18.4). Hence,

we can use the result obtained in Eq. (18.6) and write

𝛼(𝜔) = 𝛼(𝜔)[fv(Ea) − fc(Eb)] (18.22)

where 𝛼(𝜔) is the absorption coefficient valid for T = 0. It is therefore clear that

the absorption or emission occurs if

fv(Ea) > fc(Eb), or fv(Ea) < fc(Eb) (18.23)

When the Fermi function is used in Eq. (18.23) with the identification Eb − Ea =
ℏ𝜔, the condition for absorption or emission can also be expressed as

ℏ𝜔 > EFc − EFv or ℏ𝜔 < EFc − EFv (18.24)

and the gain coefficient is likewise given by

𝛾(𝜔) ≡ −𝛼(𝜔) = 𝛼(𝜔)[fc(Eb) − fv(Ea)] (18.25)

The first of two inequalities in Eq. (18.23) or (18.24) states that the probability

of electrons being at a in the valence band is greater than that of being at b in the

conduction band. In this case, there should be more upward transitions, causing

the light to be attenuated. By the same token, the light is amplified when more

electrons are in the state at b in the conduction band compared with the number

of electrons at the state a in the valence band. The gain condition in Eq. (18.24)
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can be attained by applying a large forward voltage VF to such an extent that the

splitting of two quasi-Fermi levels EFc − EFv(= qVF ) exceeds the photon energy

ℏ𝜔 (see Figure 18.5). More specifically, with VF large enough, the sufficient num-

ber of electrons and holes are injected into W for realizing the optical gain. The

condition for gain is attained with a modest value of VF in the p+ − n+ junction,

where there is a considerable overlap between the conduction and valence bands

to begin with.

Additionally, a high luminescence efficiency is required for the efficient conver-

sion of the input current to the output light.There are two kinds of recombination

processes, namely, radiative and dissipative. The luminescence efficiency is spec-

ified by the fraction of the radiative recombination

𝜂 =
1∕𝜏r

1∕𝜏r + 1∕𝜏nr
(18.26)

where 1∕𝜏r and 1∕𝜏nr are the radiative and non-radiative recombination rates with

𝜏r and 𝜏nr denoting the respective lifetimes. The high efficiency is attained in the

direct bandgapmaterial inwhich the optical transitions are the first-order process.

In indirect bandgapmaterial, the optical transitions are the second-order process;

hence, the efficiency is low.

Light-Emitting Diode (LED)

LED is a prototype device utilizing the optical conversion of the diode forward

current. LEDs have been fabricated by using various kinds of semiconductors. As

a result, the emitted radiation spans a wide range of wavelengths from the infrared

to visible. Moreover, LEDs are utilized extensively in fiber communications, dis-

plays, energy saving lamps, and so on. The junction structure for LED is sketched

in Figure 18.6.

Active region(a) (b)

Active region

Cleaved facet

n

AIxGa1−xAs GaAs AIxGa1−xAs

n3

n2

n1

Ohmic contact

p

p p−
n

n+
W

+

−

Figure 18.6 The cross-sectional view of

LED showing electrons and holes injected

into the junction region for the radiative

recombination (a). The cross-sectional view

of LD showing the lasing layer and optical

index profile for confining the laser beam

within the active medium in Fabry–Perot-

type cavity (b).
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Laser Diode (LD)

With further increase in VF, the gain reaches the critical level to turn the diode

into the laser oscillator. Also shown in Figure 18.6 is the cross-sectional view

of the LD. The cavity used is the Fabry–Perot type, which consists of a pair

of parallel, cleaved planes perpendicular to the lasing layer in the junction

region.

Once the gain exceeds the threshold value, the LD operates in strict analogy

with laser devices discussed already. A critical factor in this case is the level of the

pumping current IF0 at which the onset of threshold condition is realized, that is,

the gain offsets the loss in the cavity 𝛼T. With IF increased beyond IF0, the laser

intensity starts to grow in the cavity, and the gain is saturated. The steady-state

operation requires that the saturated gain be equal to the cavity loss. We can thus

write from Eq. (14.35)

𝛾(𝜔)
1 + I∕IS

= 𝛼T , 𝛾(𝜔) ∝ IF (18.27)

where 𝛼T is the total loss in the cavity due to the scattering loss, the imperfect

mirror reflectivity, and so on. The condition (18.27) in the absence of the laser

intensity represents the threshold condition for the onset of the optical gain at

the pumping current IF0.With IF increased beyond IF0, the laser intensity starts to

grow, but the condition (18.27) should still prevail via the saturated gain for the

steady-state operation. Hence, I is obtained from the condition as

I = IS

(
IF
IF0

− 1

)
; IF0 =

𝐼𝐹

1 + I∕IS
, IF > IF0 (18.28)

Therefore, the operating laser intensity I is determined by the pumping current IF
and the saturated intensity IS of the lasing medium.

It is thus clear that the lasing process in LD is triggered by the electrical pump-

ing, that is, by injecting electrons and holes into the junction region. Hence, the

pumpingmechanism is relatively simple and consists of applying the forward volt-

age to the LD.This in turn points to the fact that the laser intensity can be modu-

lated at high frequencies. A factor essential for lowering 𝛼T and IF0 is an optimal

wave guiding by which to confine efficiently the laser intensity within the active

lasing medium. Otherwise, a substantial fraction of the intensity would tail out

of the lasing medium to be dissipated, increasing thereby 𝛼T. For this purpose, a

single or double heterostructures are used for implementing the optimal profile

of the refractive index (Figure 18.6).

In addition, LDs are often fabricated in the superlattice heterostructures with

built-in quantum wells, as shown in Figure 18.7. In this case, electrons and holes

are injected into the respective quantum wells in the junction region and reside

in the subbands therein. An advantage of this kind of the LDs is the reduced

threshold current density. A primary reason for this is that the electron–hole pairs

now recombine while residing in respective subbands, well confined in narrow

spatial region for relatively long time duration. This is in contrast with conven-

tional LDs in which the injected electrons and holes are swept fast out of the
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Figure 18.7 The cross-sectional view of a quantum well LD (a). The band diagram of the

heterostructure consisting of the multiple quantum wells of electrons and holes (b).

junction region, shortening thereby the time for recombination. Clearly, the super-

lattice heterostructures are the typical example of the innovative application of the

bandgap engineering.

Problems

18.1 The steady-state diffusion of minority carriers under illumination is a key

process for the operation of photodiodes and solar cells.

(a) Verify that pn(x) given in Eq. (18.10) is the solution of the diffusion

equation (18.9).

(b) Repeat similar analysis for the diffusion of electrons and find n(x).

18.2 In analyzing the power extraction from the solar cell, the series resistance

RS has been neglected. Examine the effect of RS in the power extraction

either qualitatively or quantitatively.

18.3 . (a) What are the key characteristics of the p–n junction that enables the

junction to be used as the solar cell?

(b) Describe two key processes involved in the operation of the solar cell.

(c) The efficiency of the solar cell depends on various parameters. Dis-

cuss the roles of these parameters and suggest the viable means of

enhancing the efficiency of the junction solar cell.

18.4 For fabricating laser diode p and n regions are degenerately doped.

(a) Estimate the donor and acceptor doping levels, for which the conduc-

tion and valence bands are overlapped by an amount 0.2 eV in Si and

GaAS with the bandgaps 1.12 and 1.424 eV, respectively.

(b) Estimate electron and hole fluxes under forward bias in the two junc-

tions considered in (a).

18.5 The criteria for the attenuation or amplification of light in the LD are given

in Eq. (18.23).
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(a) Show that the conditions can be recast into the simpler form given in

Eq. (18.24).

(b) Discuss the condition (18.25) in specific comparison with the popu-

lation inversion of laser devices.
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19

Field-Effect Transistors

The idea of field-effect transistors (FETs) was conceived as early as 1930s and suc-

cessfully implemented in 1960s. The advantages of FET as exemplified by MOS-

FET consist of the simplicity of structure, low-cost processing, and scalability for

use in multifunctional integrated circuits. The well-known theory of MOSFET

is first discussed as the general background for modeling the I–V behavior in

other kinds of FETs, for example, silicon nanowire (NW), ballistic, and tunneling

FETs. An emphasis is placed on highlighting the underlying quantummechanical

concepts.

19.1

The Modeling of MOSFET I–V

MOSFET is a three-terminal, normally off, and unipolar device, and its central

role consists of electrical switching for the digital logic functions. The device is

also extensively utilized as the platform for memory, sensor, and green energy

applications and has been downscaled deep into the nanoregime.

I–V Characteristics

Thus, consider NMOS consisting of the n+ source and drain on p-type substrate

and the n+ polysilicon gate electrode, which is insulated from the substrate via

SiO2 (Figure 19.1). The source and drain electrodes form with the p substrate

n+–p and p–n+ junctions back to back. Hence, with the gate voltage off (VG = 0)

and the drain voltage on (VD > 0), the p–n+ junction at the drain end is reverse

biased, cutting off the current (off state). But with VG on greater than the thresh-

old voltage VT, the junction barrier at the source end is lowered, and electrons are

injected from the source into the channel and contribute to the drain current ID.

Also shown in the figure are the transistor ID − VD and transfer ID–VG curves.

Each transistor curve consists of triode and saturation regions. In the former, ID
increases linearly or sublinearly with VD and saturates at a nearly constant level in

the latter. The ON to OFF current ratio typically of 106 is a parameter gauging the

device as an electrical switch.

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 19.1 The cross-sectional view of NMOS, consisting of the p substrate, n+ source,

drain and gate electrodes (a). The transistor I–V curves (b), and the transfer characteristics

(c).

TheMOSFET I–V behavior is well summarized by the SPICE model (level 1):

ID =
W

L
COX𝜇n

(
VG − VT −

1

2
VD

)
VD; VD ≤ VDSAT = VG − VT (19.1)

Here 𝜇n is the electron mobility, VT the threshold voltage, and the ratio between

thewidth and length of the channelW/L is called the aspect ratio.The oxide capac-

itance per unit area is given by the permittivity 𝜀OX and thickness tOX of the oxide

as COX = 𝜀OX/tOX. The ID increases with VD until VDSAT is reached, and beyond

VDSAT, it remains pinned at the level attained at VDSAT. The ID–VD model (Eq.

(19.1)) can also be expressed as

ID = QLvD (19.2a)

QL ≡ WCOX

(
VGS − VT −

1

2
VD

)
, vD = 𝜇n

(
VD

L

)
(19.2b)

where QL is the line charge induced via the capacitive coupling between the gate

electrode and substrate, and vD the drift velocity driven by the longitudinal chan-

nel field VD∕L. Thus, ID is contributed by QL, which is constantly injected from

the source into the channel and drifts with vD to the drain to be drained out. The

VT demarcates the channel inversion and the ON state.

19.1.1

Channel Inversion in NMOS

Consider next the n+ polysilicon gate electrode, SiO2, and p-type silicon substrate

as shown in Figure 19.2. The affinity factors q𝜒 denote the energy required to
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Figure 19.2 The energy bands of the n+ poly-Si, SiO2, and p-type Si. The Fermi levels EF
and the affinity factors q𝜒 associated are also shown.

excite an electron from EC to the vacuum level. When the three elements are

brought together into the equilibrium contact, EF should line up and be flat, as dis-

cussed. Obviously, the requirement necessitates the band bending, which occurs

via the exchange of electrons between the gate electrode and substrate. As EF in

the n+ gate electrode EFn is higher than EFp in the P substrate, electrons are trans-

ferred from the gate electrode to the substrate, leaving behind the positive charge

sheet at the surface. The charge sheet in turn pushes holes in the substrate away

from the interface, exposing thereby acceptor ions uncompensated. Consequently,

the space charge is induced, and the band bends downward (Figure 19.3).The total

band bending is determined by the difference between Fermi levels EFn − EFp and

occurs in both the gate oxide and the substrate.

VG = 0

(a) (b) (c)
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Figure 19.3 The space charge–induced

equilibrium band bending of the composite

system of the n+ poly-Si, SiO2, and p-type Si

in equilibrium contact (a) and the flattening

of the band via the application of the flat

band voltage (b). The detailed version of the

substrate band bending is with 𝜑(x), 𝜑S, and

𝜑FP denoting the space charge, surface, and

Fermi potentials, respectively (c).
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Surface Charge and Flat Band Voltage

The band bending is flattened out with the application of VG given by qVFB =
EFp − EFn, and VFB is called the flat band voltage. Since EFn >EFp, VFB < 0, and the

positive charge sheet in the gate electrode is canceled, and the space charge dis-

appears and the band bending flattens out (Figure 19.3). Hence, the charging gate

voltage

V ′
G
≡ VG − VFB = VOX + 𝜑S (19.3)

induces the band bending in the oxide VOX and in the substrate 𝜑S from the zero

base. For positiveV ′
G
, the band bends down, and the potential supporting the band

bending in the substrate develops in the depletion regionW according to the Pois-

son equation:

d2𝜑(x)
dx2

= −𝜌(x)
𝜀S

, 𝜌(x) = q[(pp(x) − N−
A
− np(x)] (19.4a)

where the space charge 𝜌 consists of the hole, ionized acceptor, and elec-

tron charges. In the bulk p substrate, the charge neutrality prevails, so that

pp0 = N−
A
+ np0. In W , however, n increases while p decreases exponentially as

can be clearly seen from Figure 19.3:

pp(x) = pp0e
−𝛽𝜑(x), np(x) = np0e

𝛽𝜑(x), 𝛽 ≡ q

kBT
(19.4b)

Hence, when Eq. (19.4b) is inserted into Eq. (19.4a) with N−
A
replaced by pp0 and

np0, there results

d2𝜑(x)
dx2

= −𝜌(x)
𝜀S

, 𝜌(x) = q[pp0(e−𝛽𝜑 − 1) − np0(e𝛽𝜑 − 1)] (19.4c)

Equation (19.4c) is strongly nonlinear and is difficult to solve. However, it is

possible to carry out the first integration by multiplying both sides by d𝜑:

∫
𝜑

0

d𝜑
d2𝜑

dx2
≡ ∫

d𝜑∕dx

0

d𝜑

dx
d

(
d𝜑

dx

)
= ∫

−E

0

(E)d(E) = − 1

𝜀S ∫
𝜑

0

𝜌(𝜑)d𝜑, E = −∂𝜑
∂x

(19.5)

Because the space field does not penetrate into the bulk substrate E = 𝜑 = 0, at

x =W . By performing the integrations inW, we obtain straightforwardly

ES =
√
2
kBT

q

1

LD
F

(
𝛽𝜑S,

npo

pp0

)
; LD =

(
kBT𝜀S
q2ppo

)1∕2

, pp0 ≃ NA (19.6a)

where ES and 𝜑S are surface field and potential at x = 0, and LD is known as the

Debye length. Also the F-function is obtained by integrating 𝜌 given in Eq. (19.4c):

F(𝛽𝜑S) ≡ [(e−𝛽𝜑S + 𝛽𝜑S − 1) + e−2𝛽𝜑Fp (e𝛽𝜑S − 𝛽𝜑S − 1)]1∕2, e−2𝛽𝜑Fp =
np0

pp0

(19.6b)
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where𝜑Fp is the hole Fermi potential in the p substrate (see Eq. (15.20)).Therefore,

we can find the surface charge from the well-known boundary condition as

QS ≡ −𝜀SES(𝜑s) = −𝜀S

√
2
kBT

q

1

LD
F(𝛽𝜑s) (19.7)

Figure 19.4 shows QS as a function of 𝜑S together with the profiles of the fixed

ionic and mobile electron charges in each 𝜑s region. At flat band voltage, there

is no band bending; hence, QS = 0. For 𝜑S < 0, the band bends up, and the hole

concentration pp is exponentially accumulated near the surface above pp0. The

range of 𝜑S from a to b covers the depletion and weak inversion regimes, and QS

therein consists mainly of the uncompensated acceptor charge. However, with 𝜑S

attaining the value 2𝜑Fp, the surface concentration of the electron

nS = np0 exp(q𝜑S); 𝜑S = 2𝜑Fp (19.8)

reaches the level of the majority carrier concentration pp0 in the substrate (see Eq.

(19.6b)).Therefore, any further increase in 𝜑S beyond 2𝜑FP increases ns exponen-

tially above pp0, and the increase inQS is then primarily contributed by ns, that is,

the channel is inverted.Also, the electrons thus inducednear the oxide reside prac-

tically at the surface according to the Boltzmann probability factor, and therefore

the band bending is nearly pinned after the channel inversion.
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Figure 19.4 The surface charge versus the surface potential in the accumulation, deple-

tion, and inversion regions. Also shown are the fixed ionic and mobile electron charge pro-

files in each regime.
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19.1.2

Threshold Voltage and ON Current

The surface charge QS terminating the gate field lines emanating from the gate

electrode for VG > 0 consists of the mobile electron (Qn) and fixed acceptor ionic

charges (QDEP):

QS ≡ −COXVOX = Qn + QDEP (19.9)

where VOX is the fraction of VG dropped in the gate oxide. The key to modeling

ID is therefore to untangle the mobile chargeQn from the fixed chargeQDEP.Now

the depletion charge can be approximated by

QDEP ≡ −qNAW = −(2𝜀SqNA𝜑S)1∕2; 𝜑S =
1

2𝜀S
qNAW

2 (19.10)

where W has been specified in terms of 𝜑S in analogy with Eq. (17.5a) for the

step junction in whichND ≫NA. Hence, upon inserting Eq. (19.3) for VOX and Eq.

(19.10) for QDEP in Eq. (19.9), we obtain

Qn = −COX(VG − VFB − 𝜑S − 𝛾𝜑S
1∕2); 𝛾n ≡ (2𝜀SqNA)1∕2

COX

(19.11)

The constant 𝛾n is called the body effect coefficient. Thus, Qn beyond the onset

of the strong inversion is obtained from Eq. (19.11) by setting 𝜑S = 2𝜑Fp (see Eq.

(19.8)):

Qn = −COX(VG − VT ); VT ≡ VFB + 2𝜑Fp + 𝛾n(2𝜑Fp)1∕2 (19.12)

In this manner, the channel is inverted, and Qn is induced by the gate overdrive

VG–VT.

Next, when the drain voltage VD is turned on, it is distributed in the channel

from the source to the drain.The primary effect of the distributed channel voltage

V is to reduce the effective gate voltage by V at the channel position y and to

decrease Qn as

Qn(y) = −COX(VG − V − VT ) (19.13)

The ON current can then be obtained in terms of VD and VG by considering the

differential voltage drop dV in the channel element from y to y+ dy, that is,

dV ≡ IDdR; dR ≡ 𝜌
dy

Wtch
=

dy

𝜎Wtch
=

dy

W 𝜇n|Qn | , |Qn | ≡ qntch (19.14)

where the resistivity 𝜌 has been expressed in terms of the conductivity 𝜎 = q𝜇nn

(see Eq. (1.20)), and the channel cross-sectional area is given by the product ofW

and the channel thickness tch.

Naturally, we can recast Eq. (19.14) into two integrals, involving y and V as

∫
L

0

IDdy = ∫
VD

0

dV 𝜇nW |Qn| (19.15)



19.1 The Modeling of MOSFET I–V 251

and integrate both sides by using Eq. (19.13) forQn and the fact that ID is constant

throughout the channel, obtaining

ID =
W

L
𝜇nCOX

(
VGS − VT −

1

2
VD

)
VD (19.16a)

Equation (19.16a) is in agreement with Eq. (19.1). Moreover, VDSAT in Eq. (19.1) is

shown to originate from the channel pinch-off at the drain end, that is, VDSAT =
VG − VT as clear from Eq. (19.13). The ID increases with VD until VG − VT , at

which point the channel pinches off at the drain. Any further increase in VD has

therefore to be dropped near the drain to keep ID constant. Consequently, ID is

pinned approximately at the level given by

IDSAT =
W

2L
𝜇nCOX(VGS − VT )2, VDSAT ≡ VG − VT (19.16b)

19.1.3

Subthreshold Current ISUB

The ION and IOFF are bridged by ISUB in the range 0 < VG < VT or 0 < 𝜑S < 2𝜑Fp.

In this region, the second term 𝛽𝜑S of the F-function Eq. (19.6b) is dominant.

Thus, when F is expanded around 𝛽𝜑S, QS is given from Eq. (19.7) by

QS ≡ QDEP + Qn ≈ −(2qNA𝜀S𝜑S)1∕2
(
1 + 1

2

e𝛽(𝜑S−2𝜑Fp)
𝛽𝜑S

)
, 𝛽 =

q

kBT
(19.17)

Evidently, the two terms on the right-hand side represent QDEP and Qn, respec-

tively, and Qn is indeed shown to increase exponentially with 𝜑S. When VD is

turned on, 𝜑S near the drain decreases due to the reduced gate bias, that is, VG −
VD (see Eq. (19.3)). Consequently, Qn therein becomes much smaller than the Qn

at the source end. Hence, ISUB is driven by the diffusion, that is,

|ISUB| ≈WDn

Qn(0) − Qn(L)
L

≈W

L
DnqNALD

(
1

2𝛽𝜑S

)1∕2

e𝛽(𝜑S−2𝜑Fp), LD ≡
(
kBT𝜀S
q2ppo

)1∕2

(19.18)

and increases exponentially with VG, as 𝜑S increases with VG (see Eq. (19.3)).

To sum it up, the MOSFET operation is based on inverting the channel via the

capacitive coupling of the gate electrode with the substrate. Above VT electrons

are injected from the source into the channel to sustain Qn and transported to

the drain via drift and diffusion, contributing to ID. With VG off, IOFF is limited

by the reverse-biased p–n+ junction at the drain. The ION and IOFF are bridged by

ISUB, which increases exponentially with VG. The PMOS operation can likewise

be modeled in strict analogy with NMOS with the roles of electrons replaced by

those of holes.
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19.2

Silicon Nanowire Field-Effect Transistor

The advantage of MOSFET is its scalability. With the scaling, its performance is

improved and, with it, the functionality of ICs. However, the scaling is limited

by various physical processes such as the VT roll-down and roll-up, the punch-

through effect, and the leakage current. Most of these adverse effects originate

from the extended bulk substrate. Consequently, a variety of novel FET structures

has been devised to circumvent the bulk substrate, for example, silicon on oxide,

double gate, FinFET, and the gate all around NW FET. The last structure is dis-

cussed in this section, focused on the intrinsic silicon NW (see Figure 19.5).

The n-Channel SNWFET

The band diagrams of the n-type NWFET and NMOS before the contact are

essentially same. The only difference between the two is the p substrate in

NMOS replaced by intrinsic silicon (Figure 19.2). Nevertheless, EFn is higher

than EFi, so that electrons are also transferred from the gate electrode to the NW.

Once transferred into the NW, the electrons reside in the subbands and are not

necessarily concentrated near the oxide interface as in NMOS. This is because

the electron wavefunction is extended over the entire NW cross-section (Figure

4.5).

Subband Spectra

Theelectrons inNWmove freely in the direction of thewire, say in the x-direction,

while confined in the y, z plane as discussed (Figure 4.8). For simplicity of dis-

cussion, let us consider the NW with the rectangular cross-section and infinite

potential depth. The sublevels are then given from Eq. (4.27) by

En =
∑
j=y, z

Ejn
2
j
, Ej =

ℏ2𝜋2

2mnW
2
j

, nj = 1, 2, … (19.19)

where Wj is the width of the rectangle in the y-, z-directions. Figure 19.6 shows

the typical subband spectra of the intrinsic silicon NW, obtained numerically

by using the finite oxide barrier height of 3.1 eV. We can observe a few general

Oxide

Oxide

n+poly-Si n+poly-Si

n+poly-Si

n+poly-Si

Intrinsic NW

Figure 19.5 The cross-sectional view of the n-type silicon nanowire FET consisting of the

intrinsic NW and the n+ source, drain, and gate electrodes.
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Figure 19.6 The subbands in intrinsic silicon NW surrounded by SiO2 for different shapes

and sizes of the cross-sections. (Figure reproduced from Nanowire Field Effect Transistors;

Principles and Applications, Springer 2013.)

features of the spectra. Given the same area, an appreciable difference exists

between the rectangular and square cross-sections, but the square and circular

cross-sections share the similar spectrum. More important, a noticeable differ-

ence exits between the small- and large-area cross-sections. The subbands in the

latter are more densely distributed at the levels lower than those in the former.

These features are entirely consistent with Eq. (19.19).

Surface Charge

To obtain the surface charge of electron Qn, it is necessary to find first the 1D

density of electrons n1D, which is given by

n1D(𝜑) =
N∑
n=1 ∫

EC+ΔEC

EC+En
d𝜀 g1D(𝜀)Fn(𝜀), g1D(𝜀) =

(
√
2mn∕𝜋ℏ)
𝜀1∕2

(19.20a)

Here, g1D is the 1D density of states Eq. (4.17), N the total number of subbands

in the wire, and ΔEC the conduction band width. The Fermi occupation factor of

electrons in the nth sublevel with eigenenergy En reads as

Fn(E) =
1

1 + exp[(E − EFi − q𝜑)∕kBT]
, E = 𝜀 + EC + En (19.20b)

where 𝜀 ranges from EC + En to EC + ΔEC , and the difference E − EFi is reduced

by the bulk band bending q𝜑.
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Once n1D(𝜑) is found, the surface charge is obtained in analogy with Eq. (19.7)

by

Qn(𝜑) ≡ −𝜀SE(𝜑); E(𝜑) =
√
2

(
q

𝜀S

)1∕2

[N(𝜑)]1∕2 (19.21a)

where N(𝜑) is given by

N(𝜑) = ∫
𝜑

0

[n3D(𝜑) − n3D(0)]d𝜑, n3D(𝜑) =
n1D(𝜑)

A
(19.21b)

with A denoting the cross-sectional area of NW. In NMOS, the surface field ES

was obtained by integrating the space charge density that is induced by the band

bending Eq. (19.4). Likewise, in NWFET, ES can be found by integrating the 3D

space charge density qn3D(𝜑) induced by q𝜑.Thus, by combining Eqs. (19.20) and

(19.21), Qn(𝜑) can be specified as a function of q𝜑 and the properties of NW, for

example, the shape and size of the cross-section.

Channel Inversion

The channel inversion can be analyzed as in NMOS by using Qn.Thus, introduce

the charging gate voltage in analogy with Eqs. (19.3) and (19.9) as

V ′
G
≡ VG − VFB = VOX + 𝜑, VOX ≡ |Qn(𝜑)|

COX

(19.22)

where the flat band voltageVFB is given by qVFB = EFi − EFn. In the intrinsic NW,

there is no ionic charge; hence,QS consists solely ofQn, so thatQn is simply spec-

ified by VG by combining Eqs. (19.21) and (19.22).

Figure 19.7 shows Qn versus VG curves for various NW cross-sections. Also

shown is a typicalQn–VG curve of anNMOS, for comparison. Clearly, theQn–VG

curves in the intrinsic NW do not exhibit the distinct transition region as appears

in NMOS demarcating the channel inversion. Rather, Qn in NW exponentially

increases for small VG. In this region, n3D is still low, so that it requires large q𝜑

for inducing enough electrons to terminate the gate field lines as in the case of the

subthreshold region of NMOS. However, when VG exceeds a certain value, n3D
has attained such a level that the gate field lines resulting from the increasing VG

can be terminated by electrons that are induced by small changes in q𝜑. In this

VG regime, q𝜑 is approximately pinned while supplying sufficient excess electrons

to terminate the gate field lines.Therefore,Qn increases in rough proportion with

VG just as in the case of NMOS above VT. We can thus define VT as the value of

VG at which a specified level of ID flows for given VD, a procedure often used in

the I–V characterization. We can thus notice that higher Qn with smaller VT is

induced in NW with larger cross-sectional area, as expected.
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Figure 19.7 The surface charge density of

electrons versus VG in silicon NW with rect-

angular (3nm × 12 nm) and square (3nm ×
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Also plotted for comparison is the electron

surface charge in NMOS with the substrate

doping of NA = 1017 cm−3. (Figure repro-

duced from Nanowire Field Effect Transistors;

Principles and Applications, Springer 2013.)

Long Channel I–V Behavior

The surface chargeQn can therefore be expressed in strict analogy with Eq. (19.13)

as

Qn(y) = −CNW [VG − VTn − V ] (19.23a)

where V is the channel voltage at the channel position y, and CNW the effective

capacitance per unit area. Since Eq. (19.23) is identical to Eq. (19.13), we can use

directly the I–V expression derived in Eq. (19.16) for the long channel NWFET.

However, there are a few differences existing between the two ID expressions. For

instance,Qn andVT in NWFET depend on the shape and size of the cross-section,

while in NMOS, the two parameters are determined by the doping level and the

substrate bandgap. Moreover, for a cylindrical NW, the gate field lines are uni-

formly distributed on the oxide surface, and the capacitance per unit area is well

known from the basic electromagnetic theory and is given by

CNW =
𝜀OX

r ln(1 + tOX∕r)
= COX𝛾; 𝛾 ≡ tOX∕r

ln(1 + tOX∕r)
, COX =

𝜀OX
tOX

(19.23b)

where 𝜀OX and tOX are the permittivity and thickness of the gate oxide, respectively,

and r the radius of NW. As 𝛾 > 1 for all values of tOX/r, CNW is greater than COX

in NMOS, which indicates the tighter capacitive coupling between the NW and

the gate electrode. Moreover, VT in NWFET is generally less than that of NMOS,

further supporting the efficient coupling (Figure 19.7).
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19.2.1

Short-Channel I–V Behavior in NWFET

The downscaling of FETs has pushed the channel length L into the mesoscopic

regime. In such a short channel, the mean free path of charge carriers cannot be

takenmuch shorter than L, and the ballistic transport has to be taken into account.

Figure 19.8 shows the typical band profile of the channel under VD.Naturally, the

maximum point of the profile occurs near the source end, the height of which is

determined by the band bending in the n+–i source junction and is controlled by

VG and VD.

Byway of introducing a convenient background for discussing the I–V behavior

in short-channel NWFETs, we first consider IDSAT as derived from the one-flux

scattering theory by Lundstrom:

IDSAT = QnLSveff; QnLS = CNWWNW (VG − VTn) (19.24a)

Here, QnLS is the line charge induced at the source end at which V = 0, and the

expression is similar to that ofMOSFET ID Eq. (19.2). However, the effective veloc-

ity veff with which electrons are transported down the channel is given by

veff = vinj 𝜂; 𝜂 ≡
(
1 − rc
1 + rc

)
, vinj ≃ vT (19.24b)

where the injection velocity vinj is approximated by the thermal velocity vT of

the electron, and 𝜂 denotes the modulation factor. The modulation is specified

in terms of the backscattering coefficient rc, which is in turn given by

rc =
l

l + 𝜆
(19.25)

where 𝜆 is the mean free path and l the critical length over which the electron

gains the kinetic energy equal to the thermal energy kBT.Naturally, 𝜆 and l can be

specified as

qEsl ≡ kBT , 𝜆 = vT𝜏n = vT

(
mn𝜇n

q

)
(19.26)

where Es is the longitudinal electric field induced by VD at the source end and

𝜏n the mean collision time. When subjected to the force −qEs, the electron gains

Potential energy

EFD

O XXmax Xmin

EFS

Figure 19.8 A typical band bending in the n-type FETs under the biases of VG and VD.
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kBT while traversing the critical length l by definition. Also 𝜆 is the distance the

electron traverses in the mean collision time 𝜏n moving with the thermal velocity

vT, and finally 𝜏n is related to the small signal mobility by 𝜇n = q𝜏n∕mn (see Eq.

(1.19)).

By combining Eqs. (19.24), (19.25), and (19.26), we can recast the expression of

IDSAT as

IDSAT = QnLS

1

(1∕vT ) + (1∕vD)
; vD = 𝜇nES (19.27)

In this representation of IDSAT, the drift–diffusion and ballistic transport naturally

fuse in and contribute to ID with the weighing factors dictated by the channel

length L. For instance, in the short channel vT ≪ 𝜇nES since Es ∝ 1∕L, so that

the ballistic transport is prevalent with vT taken as the saturation velocity. On the

other hand, in the long channel,𝜇nES ≪ vT , so that the electrons are driven instead

by the usual drift velocity in general agreement with Eq. (19.1).

19.2.2

Ballistic NWFET

We next discuss the ballistic NWFET by using the Landauer formulation. In this

theory, ID is specified via the net flux of electrons from the source to the drain

given by

ID =
2q

h

∑
i
∫

Eu

Ec+Ei
dE[F(E, EFS) − F(E, EFD)]Ti(E); Eu = EC + ΔEC (19.28a)

Here the two F-functions are the Fermi occupation factors at the source and drain

ends, Ti the transport coefficient of electrons in the ith subband with the energy

Ei, and Eu the upper limit of the integration. When a subband is multiplied by

F , it represents electrons residing therein. Hence, the two terms in the bracket

account for net flux of electrons from the source to the drain in each subband.

Also because the band bending in the channel is generally gradual, wemay neglect

the backscattering and put Ti(E) ≈ 1.

Now the Fermi functions near the source and drain are given in terms of EFS,

EFD as

F(E, EFj) =
1

1 + exp[E − EFj∕kBT]
, j = S, D (19.28b)

Under VD, the two quasi-Fermi levels split as EFD − EFS = −qVD, as discussed.

Hence, for smallVD,we canTaylor expand F(E,EFD) and retain only the first expan-

sion term, obtaining

F(E, EFS) − F (E, EFS − qVD) ≈
∂F(E, EFS)

∂E
qVD ≈ 𝛿(E − EFS)qVD (19.29)

where the derivative of the F-function near EF is well approximated by the delta

function. Thus, by inserting Eq. (19.29) into Eq. (19.28a), we obtain

ID = G
∑
i

giVDS, G ≡ 2q2

h
(19.30)
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and specify ID in terms of the fundamental quantum conductance G and the sum

of the contributions from all subbands, including the degeneracy gi therein.

We can also treat the general case of arbitrary VD by introducing the variable of

integration 𝜂 = E∕kBT and compact the expression of ID in Eq. (19.28a) as

ID = G

(
kBT

q

)
M̃ (19.31a)

where the form factor M̃ reads as

M̃ =
∑
i
∫

𝜂u

𝜂C+𝜂i

d𝜂

[
1

1 + e(𝜂−𝜂FS)
− 1

1 + e(𝜂−𝜂FS+qVDS∕kBT)

]
, 𝜂FS =

EFS

kBT
(19.31b)

where EFS is the Fermi level at the source end and 𝜂i = Ei∕kBT , 𝜂u =
(EC + ΔEC)∕kBT . To evaluate M̃, EC–EFS has to be specified as a function

of VG. Figure 19.9 shows the band diagram of the n+ gate, SiO2, and intrinsic NW

both in equilibrium and under the gate bias. In equilibrium, the band bending

occurs primarily in SiO2 by the amount EFn–EFi to render EF flat. But under VG,

the band in the n+–gate electrode is lowered by −qVG and induces the band

bending in both SiO2 and NW. As a result, EC–EFi in NW is reduced by the bulk

band bending and is given by

EC − EFS = EC − EFi − q𝜑 (19.32)

and q𝜑 is in turn specified in terms of VG via Eq. (19.22). Therefore, modeling

ID in Landauer formulation consists essentially of solving the coupled equations

(19.22), (19.31), and (19.32).

n+poly−Si n+poly−Si n+poly−Si n+poly−Si

Intrinsic SNW Intrinsic SNW

EFn − EFi

EC − EFi − q𝜑

EF

qVG

EFnEFi

EFiEC

Ev
Ev

SiO2(a) (b) SiO2 SiO2SiO2

EG
1
2

Figure 19.9 The energy band diagram of

the n+ poly-gate, SiO2, and intrinsic silicon

NW in equilibrium (a) and under a positive

VG applied at the gate electrode (b). The q𝜑

denotes the bulk band bending, and a few

subbands of electrons above EC and of holes

below EV are indicated.
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In this manner, ID is specified as an implicit function ofVG andVD, but the char-

acteristics of ID can be seen on a general ground with the aid of Eq. (19.22) and

Figure 19.7. For small VG or 𝜑, most of VG has to drop in NW and be taken up

by 𝜑, so that enough Qn is induced in the NW to terminate the gate field lines. As

a consequence, EC − EFS shrinks rapidly, and ID increases exponentially with VG.

Obviously, this range of VG corresponds to the subthreshold regime of NMOS.

Once 𝜑 surpasses a certain value, the excess gate field lines originating from fur-

ther increase in VG can be terminated with a small increase in 𝜑. At the same

time, the Fermi function at the drain end decreases with increasing VD (see Eq.

(19.28b)), decreasing thereby the reverse flux from the drain to the source. In this

case, the I–V behavior should be similar to that of NMOS in the triode region.

With further increase in VD for given VG, the flux of electrons from the drain to

source becomes negligible, and ID becomes free of VD, and the saturation region

sets in.

19.3

Tunneling NWFET as Low-Power Device

The power consumed in the FET operations is a major issue, and the tunneling

can offer a viable means of reducing the power. Two kinds of power consumptions

are involved, namely, charging and discharging during the switching and the IOFF-

induced leakage loss and are specified by

Pswitching = fCV 2
DD

, Pleakage = VDDIOFF (19.33)

Here C is the parasitic capacitance of the output node at the drain,VDD the power

supply voltage, and f the clock frequency. During the switching from high to low

and vice versa, the charging and discharging consume the same amount of power.

Also with IOFF not fully eliminated, the power loss due to the leakage is always

present during the switching as well as the standby times.

To reduce P, it is therefore desirable to decrease VDD, but it requires the con-

comitant reduction of VT, in which case the leakage current increases. This is

because the subthreshold VG regime is narrowed with the VT reduction, and IOFF
at VG = 0 tends to be boosted up. Therefore, it is difficult to reduce the two kinds

power consumptions at the same time. A possible way out of this impasse is to

decrease the subthreshold swing SS. The SS is defined as the inverse of the slope

of log(ID)–VG curve and quantifies 𝛥VG over which ID is increased by one decade.

The typical value of the SS in MOSFET at room temperature ranges from 70 to

90mVper decade.

SS and Thermionic Emission

In conventional FETs, the lowest value of the SS achievable at room temperature

is limited to about 60mV. The limitation originates from the fact that in con-

ventional FETs, the electrons are thermally injected into the channel from the
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source electrode by overcoming the potential barrier in the gated source junction

(Figure 19.8). The barrier therein is lowered with the application of VG in which

case the electrons are injected into the channel and contribute to ID:

ID ≈ Ke−q(Vbi−VG)∕kBT (19.34)

where Vbi is the junction built-in potential for VG = 0. The exponential factor in

Eq. (19.34) accounts for the thermionic emission in accordance with the Boltz-

mann probability factor.Thus, by taking the logarithms on both sides of Eq. (19.34)

and performing the differentiation, we obtain

SS =
dVG

d(log ID)
=

kBT

q log e
(19.35)

The SS given in Eq. (19.35) represents the lowest limit of 60mV per decade, since

VG has been taken to drop entirely in the gate oxide.

Tunneling NWFET

The tunneling provides a viable means to improve SS as limited by the thermionic

emission. Figure 19.10 shows the band profile of the FET made up of the p+-n-i-

n+ NW. In equilibrium, EF is flat, and the band bends in each junction dictated

by respective built-in voltages. Thus, the bending in the source junction is more

pronounced because 𝜑bi therein is greater than those of other junctions. Never-

theless, the bending is not yet sufficient enough to line up the valence band in

the source electrode and the conduction band in the n-type NW.This means that

there are no final states the electrons can tunnel into, and therefore the tunneling

is prohibited. Likewise, the tunneling in the drain junction is also prohibited.

When the positiveVG is turned on, however, the p+−n junction is reverse-biased,

and the conduction band in the channel in the n-region is further lowered. Con-

sequently, the electrons in the valence band of the source electrode can tunnel

into the conduction band in the channel. The resulting ID is dictated by the F–N

tunneling probability and is given from Eq. (5.26) by

ID = K exp

⎡⎢⎢⎣−
4
(
2mn

)1∕2
E
3∕2
G

3qEℏ

⎤⎥⎥⎦ ; E ≈

√
2qND(𝜑bi + VG)

𝜀S
(19.36)

p+

p+ p+

n+

n+
n+n

n

n i

i

i

qVD

Figure 19.10 The band profile of the p+-n-i-n+ tunneling NWFET in equilibrium and under

the bias.
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where mn is the effective mass of the electron and 𝜀S the permittivity of the NW.

Thebarrier potential in this case is the bandgapEG of theNW, and the space charge

field E in the p+–n step junction has been specified in terms of VG by combining

Eqs. (17.9) and (17.10) for NA ≫ND. Therefore, it is evident from Eq. (19.36) that

the SS can be improved below 60mV via the gate bias-induced tunneling.

Although the SS can be improved by utilizing the tunneling, ID in the TNWFET

is lower than the typical ID in MOSFET by more than an order of magnitude.

Therefore, it behooves to devise the viable means of improving ID. The clues

for such schemes are clearly contained in Eq. (19.36). Naturally, it is desirable

to increase E in the junction, which can be done by increasing the ND doping

level, so that 𝜑bi also becomes greater. Then, the valence band of the source

electrode can be readily raised above the conduction band in the channel, making

it possible to operate the TFET with the relatively small VG and to increase

ID efficiently. More important, the use of NW with a small bandgap offers an

attractive approach. In this case, the barrier height 𝛥EG is reduced, increasing

exponentially ID. However, the narrow bandgap could cause the unwanted F–N

tunneling in the drain, giving rise to the high leakage current. Thus, if EG can be

tailored such that EG is narrow in the source end and gradually widen toward

the drain end, it could be an ideal means of enhancing ID and overcoming the

high power consumption. The ultimate aim of this brief discussion is to illustrate

the intricate coupling of the process issues and design guidelines offered by the

quantum mechanical insights.

Problems

19.1 . (a) Sketch the band diagrams of the p+ polysilicon, SiO2, and the n sub-

strate in the equilibrium contact.

(b) Find the flat band voltage of the p+–n junction when the doping level

of ND is 1016, 1017 cm−3.

19.2 Carry out the modeling of I–V behavior in PMOS in strict analogy with

the NMOS I–V modeling:

(a) Set up the Poisson equation in the n-type substrate and derive the

surface chargeQS of the hole versus the surface potential𝜑S for a given

ND doping.

(b) Discuss the accumulation, depletion, weak, and strong inversion

regions of the PMOS.

(c) Derive and discuss the I–V behavior, in comparison with that of

NMOS.

19.3 Thedrain current in NMOS is given in linear region by Eq. (19.1).The drain

current can be formally expressed in terms of the channel voltage V at y

from the source with the replacement VD → V (y) and L → y

ID =
W

y
COX𝜇n

(
VG − VT −

1

2
V
(
y
))

V (y) (A)
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(a) Find the profile of the channel voltage by finding V (y) from (A) by

taking ID constant and specified as usual in terms of VD and VG Eq.

(19.1).

(b) Find the channel field E(y) = −∂V (y)∕∂y.
(c) Using the result of (b), find the transit time of the electron from the

source to drain.

𝜏tr = ∫
L

0

dy

vd
= ∫

L

0

dy

𝜇nE(y)
19.4 Combine Eqs. (19.24)–(19.26) and obtain IDSAT for the short-channel

NWFET given in Eq. (19.27).

19.5 Consider the p+-n-i-n+ tunneling NWFET shown in Figure 19.10.

(a) Find the built-in voltages in the three junctions when the donor dop-

ing level in the n region ranges from 1016 to 1017 cm−3.

(b) EstimateVD at which the electrons can be injected from the p+ source

electrode into the channel via the tunneling for the ND doping con-

sidered and the voltage drop across the p+-n, n-i, and i-n+ junctions

under the same VD.
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The Application and Novel Kinds of FETs

Since the concept of the field-effect transistor (FET) was successfully imple-

mented, the FETs have emerged and remained as the mainstream device for

performing the digital logic functions. Additionally, FETs have been extensively

utilized as the platform for a variety of innovative applications. Some of the

prototypical examples are discussed, including the memory and solar cells, and

biosensors. Additionally, an introductory exposition of spintronics is presented

in the general context of the novel kinds of FETs, and the quantum computing is

briefly discussed.

20.1

Nonvolatile Flash EEPROM Cell

The electrically erasable and programmable read-only memory cell, also called

flash EEPROM cell, utilizes the MOS structure itself with the floating gate incor-

porated as the storage site (Figure 20.1).The floating gate electrode lies in between

two dielectric layers, thus forming a quantum well. The programming and erase

are done by charging and discharging the floating gate. There are two kinds of

flash memory cells, namely, NAND and NOR, and the discussion is focused on

the former. The dielectric layer deposited on top of the floating gate consists of

the oxide/nitride/oxide layers, thick enough to electrically isolate the control and

floating gates. Thus, the charging or discharging is carried out through the tunnel

oxide layer in between the floating gate and the channel.

Memory Operation

For the programming or erase, electrons are transported across the tunnel oxide

from the channel to the floating gate or vice versa via the F–N tunneling.The F–N

tunneling is induced in this case by the gate voltageVCG applied at the control gate.

The equivalent capacitance of the floating gate is also shown in Figure 20.1. When

VCG is applied to the control gate while grounding all other terminals, a part of it is

transferred to the floating gate voltage VFG according to the well-known relation

in the electrostatics

CONO(VCG − VFG) = (CGS + CGB + CGD)VFG (20.1)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Control gate

Tunnel oxide

p - substrate

FGFG

CGS CGB CGD

CONO
ONO

S(n+) D(n+)

Figure 20.1 The cross-sectional view of the flash EEPROM cell consisting of the MOSFET

structure with a floating gate inserted in between the control gate and the tunnel oxide.

Also shown is the equivalent capacitance circuit.

Thus, VCG is transferred in part to VFG according to

VFG = 𝛼CGVCG; 𝛼CG =
CONO

CGS + CGB + CGD + CONO

≡ CONO

CT

(20.2)

where 𝛼CG is the coupling coefficient andCT the total capacitance consisting of all

the capacitances connected in parallel. We can likewise introduce other coupling

coefficients by applying the bias at each terminal, while grounding the rest. Thus,

VFG is generally represented by

VFG = 𝛼CGVCG + 𝛼SVS + 𝛼BVB + 𝛼DVD +
QFG

CT

, 𝛼j ≡
Cj

CT

(20.3)

where j denotes the source, bulk, and the drain terminals, and the last term is the

charging voltage of the excess electrons stored in the floating gate.

The programming is done by opening the channel with a positive VCG and by

injecting electrons from the channel into the floating gate via F–N tunneling (see

Figure 20.2).The triangular potential barrier is formed viaVG during the program-

ming as shown in Figure 20.2 and enhances exponentially the tunneling probability

(see Eq. (5.26)). Once injected into the floating gate, electrons reside in the quan-

tum well electrically well isolated. Hence, there is no need to refresh, and the

Control gate

Tunnel oxide

p - substrate
15D(n+)

FG

ONO

VD > 0

VG > 0

VS

FG

SiO2

N+
poly

ONO

(a) (b)

CG

EV

EF

EC

S(n+)

Figure 20.2 The flash EEPROM cell under a positive bias at the control gate for program-

ming (a). The band diagram formed during the programming (b). Electrons are injected into

the floating gate from the channel via the F–N tunneling.
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device works as the nonvolatile memory cell. The erase is done by applying the

negative VCG. In this case, the triangular barrier potential is again formed, and

the stored electrons tunnel out of the floating gate into the channel via the F–N

tunneling, and the channel remains closed (Figure 20.3).

The reading is carried out by utilizing the different threshold voltages existing

between the programmed and erased cells (Figure 20.4). The threshold voltage

VTCG at the control gate is taken operationally as the value of VCG at which the

given specification of ID is attained, for instance, 1 μA atVD of 0.1V. In the erased

cell, there is no excess electron charge, that is, QFG = 0 and the threshold volt-

age VTCGE therein is the voltage by which to induce VFG according to Eq. (20.2)

and invert the channel and satisfy the specified ID. In the presence of the excess

electron chargeQFG in the floating gate of the programmed cell, an additional con-

trol gate voltage is required to compensate for QFG, namely, ΔV = |QFG |∕CONO

(Figure 20.4). Therefore, the threshold voltage in the programmed cell is greater

than that of the erased cell by the amount.

VTCGP = VTCGE +
|QFG|
CONO

(20.4)

Therefore, the reading can be done by probing the cell with the use of VCG in

betweenVTCGE andVTCGP andmonitoring ID. In this case, ID is equal to or greater

than 1 μA in the erased cell while ID ≈ 0 in programmed cell. The distributions of

the threshold voltages VTCGE and VTCGP should therefore be tight and well sep-

arated for the unambiguous reading. To sum it up, the key element of the flash

memory cell is the quantumwell introduced for the storage site.The electrons are

stored therein well isolated electrically, so that the memory cell is nonvolatile.The

electrons are injected into or extracted out of the quantum well by means of the

F–N tunneling, the transport process unique in quantum mechanics.

Control gate

Tunnel oxide

p - substrate(a) (b)

FN tunneling

SiO2

ONO

CG
FG

EC

VD

VB > 0

VG < 0

EF
EV

ONO

S(n+) D(n+)

Figure 20.3 The flash EEPROM cell under a negative bias at the control gate for erase (a).

The band diagram formed during the erase. The stored electrons are extracted out of the

floating gate via the F–N tunneling (b).
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p - substrate

Erase Program

p - substrate

VTE

(a) (b)

(c)

ΔVT

VTP

S(n+) S(n+)D(n+) D(n+)

VCG = VT VCG = VT  + ΔVT

VD = 1VVD = 1V
−QFG /CONO = ΔVT

ID = 1𝜇A
ID = 1𝜇A

+ + + + + + + + + + + + + + + + + +

+
− − − − − −

+ + + + + +
− − −− − −− − −− − −

+ + + + +

Figure 20.4 The threshold charge configurations in the erased (a) and programmed (b)

cells. Also shown are the distributions of VT in erased and programmed cells (c).

20.2

Semiconductor Solar Cells

The conversion of the solar radiation into the electrical power is a major issue of

the nanotechnology.The efficiency of the solar cell is, as discussed, dictated by two

factors, namely, the generation and separation of the e–h pairs. A few schemes

devised for improving the efficiency are discussed.

Planar Solar Cell

In order to increase the generation of e–h pairs, it is desirable to increase the cell

thickness, so that more photons are absorbed therein. However, a thicker absorb-

ing layer is accompanied by the degraded collection efficiency of the e–h pairs

generated. Such a tradeoff is illustrated in the n+-p-p+ planar solar cell shown

in Figure 20.5. Naturally, the e–h pairs generated within the junction depletion

InGaP  (1.8 eV)

GaAs  (1.4 eV)

GE  (0.67 eV)

p+

p+

n+

n+

p

p

(a) (b) (c)

Figure 20.5 The cross-sectional view of the

planar solar cell and the band diagram in

equilibrium (a). The photo-generated e–h

pairs are separated, electrons to the n region

and holes to the p region (b). The multi-

junction solar cell consisting of the stacked

heterojunction semiconductor layers (c).
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region are instantly separated and swept out of the region, electrons rolling down

the potential hill to the n region, while holes rolling up to the p region just as in

the p–n junction solar cell. But those e–h pairs generated outside the depletion

region are less likely to reach the destined bulk regions. In this case, the e–h pairs

have to traverse the longer distance driven by weaker space charge field as clear

from the band profile shown. Moreover, the electrons generated in the p region

as the minority carrier are liable to be captured by the holes therein. Also the

trap-assisted recombination of e–h pairs further reduces the collection efficiency.

Hence, it is generally difficult to attain the efficient generation and collection of

e–h pairs at the same time.

Multi-Junction Solar Cell

The multi-junction solar cell also offers a viable means to enhance the cell effi-

ciency as exemplified by the three layers of InGaP, GaAs, and Ge stacked together

(Figure 20.5). In this structure, each layer has its own bandgap and the p–n junc-

tion built in.Thus, the two-junction solar cells are connected in series, so that the

total open circuit voltage Voc consists of the sum of the two Voc’s connected in

series. More important, the optical absorption occurs over a wider range of solar

spectrum, for example, photons with energy greater than 1.8, 1.4, and 0.67 eV can

be absorbed in InGaP, GaAs, and Ge layers, respectively. This is clearly seen from

the optical absorption coefficient in the semiconductor (Eq. (18.6)).The collection

efficiency is again high for e–h pairs generated within each depletion region, but

in between the depletion regions, the efficiency is low for the same reasons as dis-

cussed in the planar cell. From the process point of view, the stacked layers should

have nearly the same lattice constant in order to reduce the trap density, but the

combination of such materials is limited.

Nanowire Solar Cell

The NW (nanowire) solar cell has distinct advantages over traditional wafer-

based planar solar cells with regard to the optical absorption and the carrier

collection. When a flux of photons is incident on the vertical array of NWs, the

photons generally undergo multiple reflections and tend to be trapped therein

(Figure 20.6). Consequently, the number of encounters between the photons

and NWs is increased prompting more optical absorption. To further increase

the absorption, the scattering centers can be inserted in between the NWs to

randomize the direction of the photon for more reflections and absorption,

irrespective of the incident angle. Moreover, the optical paths of those photons

incident along the direction of NWdo not lend to themultiple reflections. But the

photons can be confined in the NW instead and undergo the resonant interaction

with NW, which provides an excellent condition for absorption (Figure 20.6).

The confinement of the photons in NW via the resonant interaction is akin to

the confinement of light in an optical fiber (see Figure 5.4) and is due to the

constructive interference of the waves reflected from the inner surface of the NW.
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(a) (b)

Figure 20.6 The solar radiation incident on

the vertically grown NWs: (a) incident in the

direction of the NW and undergoing the res-

onant interaction or incident at an angle and

undergoing multiple reflections or transmis-

sions (a). Enhanced multiple reflections aided

by the scattering centers (b).

Collection Efficiency of e–h Pairs

In addition to the enhanced light absorption, the efficient collection of e–h pairs

can also be attained in NW, as exemplified by the vertical core–shell NW struc-

tures (Figure 20.7). In this p-n-p structure, the absorption volume increases with

increasing length of NW without the need for the increased footprint. Concomi-

tantly, the entire e–h pairs generated are readily swept out of the narrow junction

region in the radial direction regardless of the absorption depth. Therefore, the

e–h pairs can be generated and collected simultaneously in an optimal manner. It

should be mentioned however that there are various hidden variables hindering

the real-life applications of the attractive features and novel ideas, but it behooves

to point out such features and concepts.

20.3

Biosensor

The biosensors have become a center piece of nanotechnology by which to

carry out the real-time and label-free detection of biochemical species in the

sample. The scope of sensing applications is extensive, encompassing the clinical

p pn

Figure 20.7 The e–h pairs photo-generated in the junction

depletion region of the vertically grown core–shell NW and

separated efficiently, holes to the p region and electrons to

the n region.
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diagnostics, molecular medicine, health care, environmental monitoring, and so

on. Moreover, the biosensor is the essential element of the lab-on-a-chip, which

has been devised for fast and efficient detection and analyses of the biological

samples on a chip level. The operation principles of FET-based biosensors are

briefly discussed.

The Bio-FET is known as the ion-sensitive field-effect transistor called ISFET for

short, and the device capitalizes on the affinity-based binding of target molecules

by probe molecules. For such sensing, the NWFETs are well suited because of

the high surface-to-volume ratio and 1D structure of the channel with nanoscale

cross-sections. A typical Bio-FET is made up of the usual NWFET as shown is

Figure 20.8, but the conventional gate electrode is replaced by the electrolyte and

reference gate electrode. In this composite gate structure, the gate dielectric is

immersed in the electrolyte and surrounds the channel, providing the sensing

surface. The probe or receptor molecules are chosen a priori and attached to the

dielectric surface for capturing the target molecules. It is therefore essential that

the capture molecules bind the analyte with high affinity and remain stable under

varying conditions.

The role of the binding events is to induce the charge exchange between the

probe molecules on the sensing surface and the electrolyte containing the sample.

The sensing relies on detecting the resulting changes of the channel conductivity.

For given VGR at the reference electrode, the gate field lines emanating from it

are screened or reinforced by the ionic charge in the electrolyte, depending on

its polarity. Moreover, the receptor molecules are protonated or deprotonated on

the dielectric surface while capturing the target molecules and form the surface

charge sheet. Consequently, the channel conductivity is modified, and the sensing

is done by monitoring the changes of the drain current ΔID. In this context, there

is a parallelism existing between reading in the flash memory cell and sensing in

Other molecule

RG

CEL

CNW

Target molecule

Probe molecule

Source

Gate

Channel

Drain

Figure 20.8 The cross-sectional view of

the bio-FET consisting of multiple NW chan-

nels with the reference gate electrode in

the electrolyte. Also shown are the receptor

molecules deposited on the gate dielectric

for capturing the target molecules and the

effective gate capacitance.
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the Bio-FET. In both cases, the threshold voltage shiftΔVT is induced and utilized

for reading or sensing.

Thus, consider the total capacitance CT of the composite gate electrode, which

consists of the gate oxideCNW and electrolyteCEL capacitances connected in series

(Figure 20.8). The change in ID caused by the charge exchange ΔQ on the oxide

surface is then given from Eq. (19.1) by

ΔID =
WNW

L
CNW𝜇nΔVGVD; ΔVG = VG − ΔVT , 0 < VD < VDSAT (20.5a)

whereWNW is the effective channel width of the NW.The change in the gate over-

driveΔVG is due to the shift in the threshold voltageΔVT, which in turn is caused

by ΔQ:

ΔVT =
ΔQ
CT

; 1

CT

= 1

CNW

+ 1

CEL

(20.5b)

Evidently, the relative importance of CNW and CEL depends on the geometry of

ISFET. Also the expression of ID in long-channel NWFET has been used for the

simplicity of discussion, andΔVT was takenmuch smaller than VT, a nonessential

approximation. In this manner, the presence of the analyte can be quantitatively

sensed via ΔID.
When the sensing is done in the triode or saturation region of ISFET, the

detected signal is proportional to VD and VG. But because of the low ID available

in NWFETs and the linear dependence of 𝛥ID on 𝛥VG, the sensitivity of detection

may not be sufficient to sense a minute amount of the sample. To enhance the

sensitivity, the detection can be shifted to the subthreshold regime. In this VG

region, the subthreshold current ISUB depends exponentially on VG (see Eq.

(19.18)). Therefore, the effect of the threshold voltage shift ΔVT caused by 𝛥Q is

exponentially amplified via ΔISUB. The resulting improvement of the sensitivity

can be estimated with the use of the subthreshold slope (see Eq. (19.35)). Accord-

ing to Eq. (19.35), the minimum shift of VG for inducing the change of ID by one

decade is

ΔVG =
kBT

q log e
≈ 60𝑚𝑉

Therefore, the level of the analyte as minute as causing ΔVG in the range of

60mV or more can induce the change of ID by one decade, and the sensitivity is

greatly enhanced. Additionally, the drain current level of ISFET can be increased

by connecting the multiple NW channels in parallel. In this case, ID can be

increased, but the nonuniformity of each NW channel characteristics gives rise

to appreciable variances of ID and the subthreshold slope, degrading thereby the

effective sensitivity.
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20.4

Spin Field-Effect Transistor

The “charge” and “spin” are the defining characteristics of the electron together

with the “mass.” The FETs we have considered thus far are based on the charge

control. The binary bits 1 and 0 in such FETs are incorporated via the ON and

OFF states, that is, the ON and OFF currents. In the generation of the ON current

in the conventional FETs, the electron spins point at random directions and do

not play any role. However, the spin-based devices, called the spintronic devices,

rely exclusively on the electron spin, in particular the difference in transport of the

spin-up and spin-down states. The operation principle of the spin FETs is briefly

discussed.

A variety of possible schemes for implementing the spintronic devices is under

intensive exploration such as themagnetic bipolar diodes and transistors andmag-

netic tunneling transistors. The device chosen for discussion in this chapter is the

Datta–Das spin field-effect transistor (SFET), shown in Figure 20.9. As clear from

the figure, the SFET is a three-terminal device, consisting of the source and drain

and the gate on top of the channel. Thus, the structure of SFET closely resembles

that of the conventional charge-based FETs. Additionally, the role of the gate ter-

minal is also the same in both FETs in that it controls the channel conductivity by

means of the gate voltage applied.

However, there also exist the differences between the two FETs. In SFET, the

source and drain are made of the ferromagnetic material and possess the parallel

magnetic moments. Also the channel consists of a quantum well that is formed

by the heterojunction semiconductors in parallel with the gate plate. More impor-

tant, the operation of SFET is based on an entirely new kind of physical processes,

namely, the spin injection and detection by the ferromagnetic source and drain,

respectively. In this scheme, only those electrons possessing the spin parallel to

the magnetic moment of the source are filtered and injected into the channel. By

the same token, only those electrons preserving the input spin while traversing

G

DS

n
kΩ

Figure 20.9 The cross-sectional view of

Datta–Das spin FET consisting of the source

and drain electrodes and the gate on top of

the channel. The electron injected into the

channel with its spin parallel to the magnetic

moment of the source electrode can either

exit through the drain terminal by preserving

its initial spin free of VG or is blocked at the

drain terminal with its spin flipped via the

VG-driven precession (bottom).
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the channel are filtered and transmitted through the drain terminal, contributing

to ID.

Thus, the transistor action in SFET consists of (i) turning on VG to flip the spin

from the spin-up to -down state, blocking the transmission of electrons at the

drain terminal and cutting off ID or (ii) turning off VG to preserve the input spin

and enable the injected electrons to contribute to ID by passing through the drain

terminal. In the conventional FETs, ION and IOFF are likewise controlled by turning

on VG and opening the channel or turning off VG to close the channel. In this

context, the schemes for the transistor action in both FETs are similar, although

the underlying physical processes are different.

Let us next consider an electron that is injected into the channel by passing

through the source terminal with its spin parallel to the magnetic moment of the

source electrode. With VG turned on, the spin of the injected electron is driven to

precess around the precession vector Ω. The orientation of Ω is specified by the

vector product of n and k, where k is the propagation vector of the wavefunction

of the electron traversing the channel and n is the unit vector normal to the gate

plate (Figure 20.9). Naturally, the Datta–Das SFET has an important advantage

in that the transistor action is carried out electrically with the use VG instead of

resorting to the external magnetic field. The binary bits 1 and 0 are represented

in SFET by the spin-up state passing through the drain and the spin-down state

being blocked by the drain.

Wenext consider the dynamics of the electron spin precession driven byVG.The

spin of the injected electron can be decomposed into two components, parallel

sp and normal sn with respect to the wave vector k. These two components are

coupled and evolve in time according to

dsn
dt

= 2𝛼BRksp,
dsp

dt
= −2𝛼BRksn (20.6a)

where 𝛼BR is the Bychkov–Rashbar structure inversion asymmetry coefficient and

is controlled byVG.Wecan decouple the Eq. (20.6a) by differentiatingwith respect

to time one of the paired equations in Eq. (20.6a) and using the other, obtaining

d2sj

dt2
= −𝜔2sj; 𝜔2 ≡ (2𝛼BRk)2, j = n, p (20.6b)

It is therefore clear that the two spin components sp and sn process around with

the frequency 𝜔, which depends on k and 𝛼BR, hence VG. Let us consider the

simple case in which the electrons are injected in the direction parallel with the

channel.Then, withVG turned on the electron executes the precession around the

precession axis, and by the time it reaches the drain terminal, the initial parallel

component sp0 has rotated by an angle 𝜃 with respect to k amounting to

𝜃 = 𝜔𝜏tr =
2𝛼BRmL

ℏ
; 𝜏tr =

L

v
= Lm

ℏk
(20.7)

Here, 𝜏 tr is the transit time of the electron across the channel andm the electron

mass. Naturally, the output current ID is commensurate with the number of elec-

trons passing through the spin filter at the drain terminal.The number is specified
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by the ensemble-averaged component of sp projected onto the magnetic moment

of the drain, and we can write

ID = Iin

[
1 − sin2

(
𝜃

2

)]
(20.8)

It is therefore clear from Eqs. (20.7) and (20.8) that with VG turned off, there

is no precession, that is, 𝜃 = 0, so that the injected electrons all pass through the

drain, and the ON state ensues. On the other hand, with VG turned on and the

spin precession triggered, the average angle of precession 𝜃 can be matched to 𝜋

by adjusting 𝜏 tr and 𝛼BR or VG. In this case, all of the spin-up state can be flipped

to the spin-down state. Consequently, the injected electrons are all blocked by the

drain electrode, and the OFF state ensues with ID ≈ 0.

In summary, there is a strong similarity in the operation of the conventional and

spin FETs. In both devices, the ON and OFF states or equivalently the binary bit

1 to 0 are controlled by VG. In the former FET, the two states are implemented

by opening or closing the channel. In SFET, the two states are attained simply

by flipping or preserving the input spin in the course of the electron transiting

across the channel. In this context, SFET has important advantages in that the flip-

ping of the electron spin requires much less power and can be done much faster.

This is in distinct contrast with the conventional charge-based FETs in which

the power consumption and the speed of charging or discharging are the major

issues.

It is pointed out however that the Datta–Das SFET has yet to be implemented

for real-life applications. Some of the major technical difficulties involved are (i)

efficient injection of the spin-polarized electrons from the ferromagnetic source

into the channel, (ii) tight control of 𝛼BR viaVG and uniformity of 𝛼BR for the relia-

bility of device performance, and (iii) the ballistic spin-polarized transport rather

than the drift–diffusion transport. These technological obstacles are investigated

intensively, and for overcoming the technological barriers, the quantummechan-

ical insights will no doubt be a crucial factor.

20.5

Spin Qubits and Quantum Computing

The spintronics is endowed with an additional advantage in that the two-level

nature of the electron spin could possibly be utilized for implementing the quan-

tum computer. Several other approaches have also been proposed for the pur-

pose based on, for example, the ions in magnetic trap, frozen light, the ultracold

quantum gases known as Bose–Einstein condensates, and the nuclear magnetic

resonance of molecules in liquids. However, as an extension of the discussion on

spintronics, the two spin states are singled out for highlighting the essential fea-

tures of the quantum computing.

The basic unit in the quantum computing is the quantum bit called qubit, which

is the quantum analog of the binary bits 1 or 0 in the conventional digital com-

puters. The qubit is in essence a controllable two-level system such as the spin
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1/2 system, two-level atom in a resonant interaction with the EM field. Given

an ensemble of n electrons, its Hilbert space dimension of 2n is the same as the

number of configurations of the corresponding classical system. But the advan-

tage of the quantum computer lies in that the computing can be carried out in the

superposed state of all basis states. That is, many classical computations can be

done simultaneously in parallel via the unitary evolution of the qubits. The uni-

tary evolution is one of the basic premises of the quantummechanics, namely, that

a quantum system evolves in time according to the time-dependent Schrödinger

equation.

The Entanglement

The entanglement is closely tied with the quantum computing and is briefly dis-

cussed at the outset. It refers to a quantum state involving two or more particles.

Given a system of two particles, for example, the essential feature of the entan-

glement is the fact that the probability of the outcome of the measurement of one

particle depends on the state of the other particle although there is no interaction

between the two.

Let us consider a specific example of two-spin one-half system. Then, the spin

wavefunction of the two Fermions is given from Eq. (10.15) by

𝜑(1, 2) = 2−1∕2[𝛼z(1)𝛽z(2) − 𝛽z(1)𝛼z(2)], 𝛼 ≡ 𝜒+, 𝛽 ≡ 𝜒− (20.9)

where the spin-up and -down states have been denoted by 𝛼 and 𝛽 (see Eq. (10.1)).

The information carried by the entangled state Eq. (20.9) is that the spins of the

two particles are oriented in the opposite direction, but it does not tell the abso-

lute direction of the spin. In fact, the form of the singlet 𝜑 Eq. (20.9) is preserved

regardless of the direction of quantization.

To prove it, let us consider, for example, the entangled state in the x-direction.

The eigenfunction of the spin-up and spin-down states in that direction can be

expressed in terms of the linear combinations of the usual spin-up and -down

states along the z-direction as

𝛼x =
1√
2
(𝛼z + 𝛽z) =

1√
2

[(
1

0

)
+
(
0

1

)]
= 1√

2

(
1

1

)
(20.10a)

𝛽x =
1√
2
(𝛼z − 𝛽z) =

1√
2

[(
1

0

)
−
(
0

1

)]
= 1√

2

(
1

−1

)
(20.10b)

where the spin states are represented by the Pauli spin matrices (see Eqs. (10.1)

and (10.7). The states 𝛼x and 𝛽x thus combined can indeed be shown to represent

the spin-up and -down states by applying the spin operator Ŝx:

Ŝx𝛼x =
ℏ

2

(
0 1

1 0

)
1√
2

(
1

1

)
= ℏ

2
𝛼x, Ŝx𝛽x =

ℏ

2

(
0 1

1 0

)
1√
2

(
1

−1

)
= −ℏ

2
𝛽x

(20.10c)
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Moreover, when the states 𝛼z and 𝛽z are expressed in terms of 𝛼x and 𝛽x from Eqs.

(20.10a) and (20.10b) and inserted into Eq. (20.9), the singlet state is transformed

into

𝜑(1, 2) = −2−1∕2[𝛼x(1)𝛽x(2) − 𝛽x(1)𝛼x(2)] (20.11)

Clearly, Eq. (20.11) is identical in content and form to Eq. (20.9) aside from the

irrelevant negative sign.

Let us next consider the effect of performing ameasurement of the z-component

of the particle 1, for example, when the system is in the entangled state Eq. (20.9)

or (20.11). As clear from Eq. (20.9), the measurement should yield the spin-up or -

down state at randomwith equal probability. But suppose the spin 1wasmeasured

to be in the spin-up state. As a result of this first measurement, the system must

disentangle and collapse into the spin eigenstate given by

𝜑(1, 2) = 𝛼z(1)𝛽z(2) (20.12)

This is in accordance with the postulate of the quantummechanics, namely, that

the wavefunction of the system is identical to the eigenfunction associated with

the eigenvalue obtained as a result of themeasurement. As a consequence, the two

particles are in specific eigenstates, and the measurement of the z-component of

spin 2 is assured to yield the spin-down state. Thus, the essential feature of the

entanglement is that the probabilities of obtaining particular values of the spin of

one of the two particles is dependent on what measurement has been carried out

on the other.

Quantum Computing

As the first step to understanding the operation of the quantum computing, let us

consider the simplest logic gate, NOT. The NOT gate yields an output that is the

logic opposite or complement to the input. If the input is a logic 0, the output of

the NOT gate is logic 1 or vice versa.

We can devise a unitary operation that will carry out the NOT gate operation.

Specifically, we pass the spin through an oscillatingmagnetic field applied in the z-

direction.The wavefunction of the spin 1/2 system is to be represented in general

in matrix notation by

𝜓 = c1(t)𝛼z + c2(t)𝛽z =
(
c1 (t)
c2(t)

)
(20.13a)

while the interaction Hamiltonian is given from Eq. (10.33) by

Ĥ = e

me

BŜz =
eℏB

2me

[
1 0

0 −1

]
(20.13b)

where the states 𝛼 and 𝛽 and the spin operators have been represented by Pauli

spin matrices (see Eqs. (10.6) and (10.7)) and c1 and c2 are the expansion coeffi-

cients of the spin-up and -down states. The Schrödinger equation then reads in
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matrix notation as

iℏ
∂
∂t

(
c1 (t)
c2(t)

)
= eℏB

2me

[
1 0

0 −1

](
c1 (t)
c2(t)

)
(20.14)

By performing the matrix multiplication, we can recast Eq. (20.14) as

∂
∂t
c1 = −iΩc1; Ω = eB

2me

∂
∂t
c2 = iΩc2 (20.15)

and obtain the solution as

c1(t) = c1(0) exp(−iΩt), c2(t) = c2(0) exp(iΩt) (20.16)

Thus, if the spin is initially in the 𝛼z state, c1(0) = 1, c2(0) = 0, so that c2
always remains zero, while the phase factor of c1 oscillates in time as

c1(t) = c1(0) exp(−iΩt). By the same token, if the spin is initially in the 𝛽z

state, c1 always remains zero, while the phase factor of c2 oscillates similarly in

time. Thus, the spin state will remain in the same state as initially given.

On the other hand, if the initial state is either in𝛼x or 𝛽x state, c1(0) = 1, c2(0) = 1

or c1(0) = 1, c2(0) = −1 (see (Eq. 20.10)). Then, the spin states will undergo the

change in time as

1√
2

(
exp (−iΩt)
exp(iΩt)

)
, or

1√
2

(
exp (−iΩt)
− exp(iΩt)

)
(20.17)

Therefore, the spin-up state is flipped to spin-down state or vice versa at Ωt =
(2n + 1)(𝜋∕2). For n = 0, for example, the flipping is done according to

𝛼x → −i𝛽x or 𝛽x → −i𝛼x; e±(iΩt) = cos(Ωt) ± isin(Ωt) (20.18)

For other times, each state in Eq. (2.17) always remains as the spin-up or -down

state following the direction of the spin matrix given by

Ŝ𝜙 = Ŝx cos𝜙 + Ŝy sin𝜙 = ℏ

2

(
0 exp (−i𝜙)

exp(i𝜙) 0

)
, 𝜙 = Ωt (20.19)

An important consequence of Eq. (2.17) is that the linearly superposed state can

undergo the logic NOT operation as

A𝛼 + B𝛽 → −i(A𝛽 + B𝛼) (20.20)

where A and B are arbitrary constants. Clearly, Eq. (20.20) points to the fact that if

we run the program once using the left-hand side wavefunction as the input, the

output wavefunction is the linear combination of the outcomes of the logic NOT

gate. This carries an enormous advantage and possibility of the parallel quantum

computing especially in view of the fact that the number of qubits involved can be

readily increased.

It should be pointed out however that in order to have the access to the infor-

mation, we have tomake ameasurement, which involves the collapse. In this case,

we can determine only one component of the spin, so that there are no practical
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advantages in quantum computing. However, there exist certain computations

that can exploit the advantage via the appropriate interplay of the unitary evo-

lution and collapse. The prime example of such calculation is to determine the

period x of a periodic function f (x), which carries a critical bearing in solving the

factorization of large numbers into its prime number components. An additional

comment is due at this point. As has become clear by now, the quantumcomputers

are inherently associated with the entanglement of a large number of qubits. Such

entangled states are extremely sensitive to decoherence and noise, the overcoming

of which evidently requires a new technology.

Problems

20.1 . (a) The floating gate in the flash memory cell is a quantum well that is

formed by the n+ polysilicon and two dielectric layers. The typical

structure of the well is shown in Figure 20.1.

(b) Find the kinetic energy of the electron in the ground state as a func-

tion of gate thicknessW ranging from 10 to 100 nm. (Use the infinite

barrier height for simplicity.)

(c) Find W at which the ground state energy is equal to the thermal

energy of the electron.

(d) Find the tunneling probability of the electron across the two barriers.

20.2 Consider the same floating gate as shown in Figure 20.1 with the tunnel

oxide thickness of 50 nm.

(a) Estimate the lifetime 𝜏 of an electron therein forW = 10 nmmoving

in the well with the thermal velocity at room temperature.

Hint: 𝜏 can be defined byTN = 1whereT is the tunneling probability

and N the total number the electron encounters the barrier during

the lifetime.

(b) Calculate the voltage applied at the floating gate at which the life-

time of the electron therein is reduced to 1 μs via inducing the F–N
tunneling.

20.3 Consider the ONO dielectric layer with the equivalent thickness of 15 nm

of SiO2. The VTP in the programmed cell is greater than VTE in the erased

cell by 3V. Find the number of electrons stored in the programmed cell.

(The dielectric constant of SiO2 is 11.9.)

20.4 Consider the stacked multi-junction solar cell shown in Figure 20.5.

(a) Draw the equilibrium energy band diagramof the n+ InGaP− pGaAs

− p+ Ge without the p–n junction in each cell.

W

3.1 eV

15 nm 8 nm
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Figure 20.10 Typical quantum well representing the

floating gate.
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(b) Draw the band diagram under the solar cell operation condition and

qualitatively discuss the cell operation.

20.5 . (a) Draw the energy band diagram of the vertical core–shell NW across

the cross-section of the NW.

(b) Describe the solar cell operation.

Suggested Readings

1. D. M. Kim and Y. H. Jeong, editors,

Nanowire Field Effect Transistors: Princi-

ples and Applications, Springer, 2014.

2. A. I. M. Rae, Quantum Mechanics, Fourth

Edition, Taylor & Francis, 2002.

3. D. M. Kim, Introductory Quantum

Mechanics for Semiconductor Nan-

otechnology, Wiley-VCH, 2010.
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Solutions

1.1. (a) The center of mass X and relative x coordinates are defined as

(m1 +m2)X = m1x1 +m2x2, x = x2 − x1 (1.1)

By finding x1, x2 in terms of X, x one can write

x1 = X +
m2

m1 +m2

x, x2 = X −
m1

m1 +m2

x (1.2)

The Hamiltonian then reads in terms of X, x as

H ≡ 1

2
m1ẋ

2
1 + 1

2
m2ẋ

2
2 + 1

2
k(x1 − x2)2 =

1

2
MẊ2 + 1

2
𝜇ẋ2 + 1

2
kx2 (1.3a)

where the center of mass and reduced mass are given by

M ≡ m1 +m2, 𝜇 ≡ m1m2

m1 +m2

(1.3b)

Equivalently H can also be expressed in terms of the momentum as

H = P2

2M
+

p2

2𝜇
+ 1

2
kx2; P ≡ MẊ, p ≡ 𝜇ẋ (1.4)

(b) The Hamilton’s equation of motion is then given from Eq. (1.6) by

Ẋ = ∂H
∂P

= P

M
Ṗ = −∂H

∂X
= 0 (1.5a)

so that

MẌ = Ṗ = 0 (1.5b)

Similarly one can write

ẋ = ∂H
∂p

=
p

𝜇
ṗ = −∂H

∂x
= −kx (1.6a)

and

𝜇ẍ = ṗ = −kx (1.6b)

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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(c) The equation of motion (1.5b) indicates that the center of mass of the H2

molecule moves as a free particle, while the relative motion between the two

H-atoms is represented by the motion of the harmonic oscillator.

1.2. The thermal velocity of an electron at 300K is found from (1.15) as

vT0 =
(
3kBT

me

)1∕2

=
[
3 × 1.381 × 10−23 JK−1 × 300 K

9.09 × 10−31 kg

]1∕2
= 1.17 × 105 ms−1

= 1.17 × 107 cms−1

The vT of the particle with massm at T is given in terms of vT0 as

vT = vT0

(me

m

)1∕2
, vT = vT0

(
T

300

)1∕2
300 10 1000 (cms−1)

electron 1.17 × 107 2.14 × 106 2.24 × 107

proton 2.73 × 105 4.98 × 104 5.10 × 105

H2 1.93 × 105 3.52 × 104 3.52 × 105

1g 3.53 × 10−7 6.44 × 10−8 6.44 × 10−7

1.3. (a) Upon inserting the planewave E(z, t) = x̂E0e
−i(𝜔t−kz) into thewave equation

there results

0 =
(
∇2 − 1

v2
∂2
∂t2

)
E0e

−i(𝜔t−kz) =
(
−k2 + 1

v2
𝜔2
)
E0e

−i(𝜔t−kz)

Therefore the plane wave can bemade a solution by constraining k and𝜔 to satisfy

the dispersion relation, that is,

−k2 + 1

v2
𝜔2 = 0 or 𝜔2 = k2v2

(b) The E and H fields,

E(z, t) = x̂E0e
−i(𝜔t−kz), H = ŷ

√
𝜀

𝜇
E0e

−i(𝜔t−kz)

satisfy the Faraday’s law of induction which is shown as follows. One can insert E

on the left hand side of Faraday’s law (Eq. (1.21)), obtaining

∇ × E =
(
x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

)
× x̂E0e

−i(𝜔t−kz)

=
(
−ẑ ∂
∂y

+ ŷ
∂
∂z

)
E0e

−i(𝜔t−kz) = ŷikE0e
−i(𝜔t−kz)

x̂ × x̂ = ŷ × ŷ = ẑ × ẑ = 0;
x̂ × ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ
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Likewise one can also obtain from the right hand side of the Faraday’s law

−
∂B
∂t

= −𝜇
∂H
∂t

= −ŷ𝜇 ∂
∂t

(√
𝜀

𝜇
E0e

−i(𝜔t−kz)
)
= ŷi𝜔

√
𝜀𝜇E0e

−i(𝜔t−kz)

Hence both sides are equal to each other, provided

k = 𝜔
√

𝜀𝜇 or 𝜔 = k

(𝜀𝜇)
1

2

= vk, v = 1

(𝜀𝜇)1∕2

The condition is identical to the dispersion relation and therefore the given fields

E, H satisfy the Faraday’s law of induction.

One may insert H into the left hand side of the Ampere’s law, obtaining

∇ ×H =
(
x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

)
× ŷ

√
𝜀

𝜇
E0e

−i(𝜔t−kz)

=
(
ẑ
∂
∂x

− x̂
∂
∂z

)√
𝜀

𝜇
E0e

−i(𝜔t−kz) = −x̂
√

𝜀

𝜇
E0ike

−i(𝜔t−kz)

In a medium free of charge J = 0 and upon inserting E into the right hand side of

the Ampere’s law there results

∂D
∂t

= ∂
∂t

𝜀[x̂E0e−i(𝜔t−kz)] = −x̂i𝜀𝜔E0e
−i(𝜔t−kz)

Again the both hand sides are identical because of the dispersion relation, and

fields E, H satisfy the Ampere’s circuital law.

(c) For the medium free of the charge the curl operation performed on both sides

of Eq. (1.22) yields

∇ × ∇ ×H ≡ [∇∇ ⋅ −∇2]H = −∇2H; ∇ ⋅ B ∝ ∇ ⋅H = 0 (1.7)

∇ ×
∂D
∂t

= 𝜀∇ ×
∂E
∂t

= −𝜀𝜇
∂2
∂t2

H (1.8)

In Eq. (1.7) a vector identity was used as in the text and also Eq. (1.24) was used in

Eq. (1.8). Therefore by equating Eqs. (1.7) and (1.8) one derives the wave equation

∇2H − 1

v2
∂2
∂t2

H = 0,
1

v2
≡ 𝜇𝜀 = 𝜇0𝜀0𝜇r𝜀r =

1

(c∕n)2

1.4. To find the variance, the spatial profile of the wave packet given in Eq. (1.35)

has to be normalized and one can thus represent the profile as

f (z) ∝ |E(z, 0)|2 = 𝜎√
𝜋
exp−(𝜎z)2 (1.9)

and find the associated variance as

(Δz)2 = ⟨(z − ⟨z⟩)2⟩ = ⟨z2 − 2z⟨z⟩ + ⟨z⟩2⟩; ⟨a⟩ ≡ ∫
∞

−∞
dzaf(z)

= ⟨z2⟩ − ⟨z⟩2 = ⟨z2⟩
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where ⟨z⟩ = 0, since f (z) is even in z. Hence the variance can be evaluated as

(Δz)2 = ∫
∞

−∞
dzz2f (z) = 3

2𝜎2

and is approximately same as 𝛥z as defined by the width of z between 1/e points.

1.5. Given a vector A one may perform the operation

∇ × (x̂Ax + ŷAy + ẑAz) =
(
x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

)
× (x̂Ax + ŷAy + ẑAz)

= x̂

(∂Az

∂y
−
∂Ay

∂z

)
+ ŷ

(∂Ax

∂z
−
∂Az

∂x

)
+ ẑ

(∂Ay

∂x
−
∂Ax

∂y

)
so that

∇ ⋅ ∇ × A =
(
x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

)
⋅
[
x̂

(∂Az

∂y
−
∂Ay

∂z

)
+ ŷ

(∂Ax

∂z
−
∂Az

∂x

)
+ ẑ

(∂Ay

∂x
−
∂Ax

∂y

)]
= ∂
∂x

(∂Az

∂y
−
∂Ay

∂z

)
+ ∂
∂y

(∂Ax

∂z
−
∂Az

∂x

)
+ ∂
∂z

(∂Ay

∂x
−
∂Ax

∂y

)
= 0

Therefore any vector A is shown solenoidal.

1.6. If the scalar product is performed on both sides of Eq. (1.22) there results with

the use of Eqs. (1.23) and (1.25)

∇ ⋅ ∇ ×H = ∇ ⋅
(
J +

∂D
∂t

)
= ∇ ⋅

(
J + ε

∂E
∂t

)
= ∇ ⋅ J + ∂𝜌

∂t
= 0

where the well known continuity equation 1.25 has been used.

Chapter 2

2.1. The photon energy is given by

h𝜈 = h
c

𝜆
= 4.136 × 10−15 (eVs)3 × 108ms−1

1m
= 1.24 × 10−6 eV

for the wavelength of 1m and the wave number is defined as

𝜈 ≡ 1

𝜆
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Thus the energy and wave number of the photons considered are:

𝜆 (nm) energy (eV) wave number (cm−1)
1010 1.24 × 10−7 10−3

109 1.24 × 10−6 10−1

104 1.24 × 10−1 104

600 2.1 1.67 × 105

200 6.2 5 × 105

50 25 2 × 106

1 1.25 × 103 1.0 × 108

2.2. (a) The de Broglie wavelength of the electron at room temperature is given in

terms of the thermal speed vTe by

𝜆e =
h

pe
= h

mevTe
;

mev
2
Te

2
=

3kBT

2

= 6.626 × 10−34 (J s)
9.109 × 10−31(kg)1.17 × 105(ms−1)

= 6.2 × 10−8m = 62nm

For proton we can find 𝜆 in terms of 𝜆e and the mass ratio

𝜆p =
h

pp
= h

mpvTp
= h

mevTe

(
mevTe
mpvTp

)
Since in equilibrium the thermal kinetic energy same, that is,

mev
2
Te

2
=

mpv
2
Tp

2

𝜆p can be evaluated as

𝜆p =
h

mevTe

(
me

mp

)1∕2

= 62 ×

(
me

mp

)1∕2

nm = 1.45 nm

(b) The de Broglie wavelength of the electron having the energy 1 eV is given by

𝜆 = h

p
= h

(2mE)1∕2
=
[

h

(2m)1∕2

]
1

[E(J)]1∕2

= 6.624 × 10−34 J s

[2 × 9.109 × 10−31kg]1∕2[E(eV)∕6.2 × 1018]1∕2
= 0.123nm√

E(eV)

Hence the de Broglie wavelengths of the electron are evaluated as

energy (eV) 1 200 100K 1M

𝜆(nm) 1.23 × 10−1 8.7 × 10−3 3.9 × 10−4 1.23 × 10−4
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(c) The kinetic energy of the electron in the ground state of the H-atom is given

from Eqs. 2.16 and 2.17 by

K1 = −1

2
V1, E = K1 + V1 = −E0

so thatK1 = E0 = 13.6 eV.Therefore the de Broglie wavelength can be found from

(b) as

𝜆 = 0.123
nm√
E(eV)

= 0.123
nm√
13.6

= 3.3 × 10−2 nm

2.3. (a) Consider the Planck’s expression of the blackbody radiation,

𝜌(𝜈) = 8𝜋v2

c3
⟨𝜀⟩ = 8𝜋v2

c3
h𝜈

(eh𝜈∕kBT − 1)
(2.1)

In the limit of the low frequency h𝜈 ≪ kBT and one can expand the exponential

function as

eh𝜈∕kBT − 1 = 1 + h𝜈

kBT
+ 1

2

(
h𝜈

kBT

)
+ … − 1 ≈ h𝜈

kBT

When this approximation is inserted into Eq. (2.1) the equation is reduced to

𝜌(𝜈) = 8𝜋v2

c3
kBT

in agreement with Rayleigh–Jean’s theory.

(b) We can find the electron momentum from Eqs. 2.6 and 2.7 as

p2e = (pi − pf +mc)2 −m2c2 = (pi − pf )2 + 2mc(pi − pf )

p2e = p
e

• p
e
= (p

i
− p

f
) • (p

i
− p

f
) = p2

i
+ p2

f
− 2pipf cos 𝜃

Hence by equating the right hand sides of the two equations we find

2(pi − pf )mc = 2pipf (1 − cos 𝜃) ≡ 4pipf sin
2
(

𝜃

2

)
where 𝜃 is the angle between pi and pf, that is, the scattering angle and the well

known trigonometric identity has been used.Hence bymultiplying both sideswith

h, while dividing by pi pf there results.

h

pf
− h

pi
≡ 𝜆f − 𝜆i =

2h

mc
sin2
(

𝜃

2

) ≡ 4𝜋𝜆esin
2
(

𝜃

2

)
; 𝜆e =

ℏ

mc
, ℏ ≡ h

2𝜋

(c) From Eq. (2.13) one can express vn in terms of rn as

vn =
nℏ

(mrn)
and when inserted into Eq. (2.14), replacing vn by rn one obtains Eq. (2.15).

2.4. (a) We can use the results obtained in Eq. (2.1) and write

h𝜈 = h
c

𝜆
= 1.24 × 10−6 eVm−1 = 1.24 × 103 eV∕nm
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so that the light of wavelength 300 nm has the energy 4.13 eV. Since the photon

energy should be larger than the work function the photoelectric effect can occur

only in lithium and beryllium and the stopping powers are given by

−(4.13 − 2.3) = −1.83V, −(4.13 − 3.9) = −0.23V

(b) The energy conservation equation (2.4) reads in unit of electron volt as

hc

194 × 10−9
= e𝜑 + 2.3 (2.2)

hc

248 × 10−9
= e𝜑 + 0.9 (2.3)

By subtracting Eq. (2.3) from Eq. (2.2) one can write

h

(
c

194 × 10−9
− c

248 × 10−9

)
= 1.4

and by inserting c = 3 × 108ms−1 h is found as

h = 4.17 × 10−15 eVs

Also by using the value of h thus found in either Eq. (2.2) or (2.3) one finds the

work function of the aluminum as

e𝜑 = 4.15eV

2.5. With two protons the atomic number of the He+ atom is 2, and the energy

spectrum can be found from that of the H-atom, with the modification, e → Ze.

We can thus find the ionization energy in terms of the ionization energy of the

H-atom as

E =
Z2e4

M
m

2ℏ2
= 13.6 × Z2 eV = 54.4eV, e4M ∝ (Ze)2e2

One can likewise find the radius of the ground state from Eq. (2.15) with the same

modifications as given by

r1 =
ℏ2

meM
2Z

= rB •
1

Z
≅ 0.05

2
nm = 0.025nm, n = 1

The shortest and longest wavelengths 𝜆 in Balmer series are given by

hc

𝜆s

= 54.4
(
1

22
− 1

∞

)
eV = 54.4

4
eV,

hc

𝜆l

= 54.4
(
1

22
− 1

32

)
eV = 54.4

(
1

22
− 1

32

)
eV

Hence

𝜆s =
hc

(54.4∕4)
= 4.136 × 10−15 eVs × 3 × 108ms−1

(54.4∕4)eV
= 0.91 × 10−7m = 91nm,

𝜆l = 91 × 1

[1 − (4∕9)]
nm = 163.8nm
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2.6. One can use Eq. (2.9) and find the shift in 𝜆 as

Δ𝜆 = 4𝜋𝜆esin
2
(

𝜃

2

)
= 2.5 × 10−3 nm, 𝜆e = 4 × 10−4 nm, 𝜃 = 𝜋

2

The wavelength of X-ray with 200KeV is given by

h𝜈 = 2 × 105 eV = h
c

𝜆i

so that 𝜆i = 6.2 × 10−3 nm.Hence the wavelength and energy of the scattered radi-

ation are given from Eq. (2.9) by

𝜆f = 𝜆i + Δ𝜆 = 8.7 × 10−3 nm

Ef = h
c

𝜆f

= 1.43 × 104 eV

Also the electron recoil energy is found from the energy conservation by

Erecoil = Ei − Ef = (20 − 1.43) × 104 eV = 1.86 × 105 eV

2.7. (a)The radius of the ground state is given fromEq. (2.15) by r1 = 0.053nm and

that of the first excited state is found as r2 = r1 × 4 = 0.106nm. The associated

energies of the two states are given from Eq. (2.17) by E1 = −13.6eV and E2 =
−(13.6∕4)eV = −3.4eV.

(b) The transition wavelength between the two levels are then given by

hc

𝜆
= E2 − E1 = 10.2eV

so that

𝜆 = hc

10.2eV
= 1.22 × 10−7m = 122nm

Chapter 3

3.1. The 3D eigenequation of the momentum is given from Eq. (3.11) by

−iℏ
[
x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

]
u(r) = (x̂px + ŷpy + ẑpz)u(r)

One may look for the solution in the form

u(r) ∝ f (x)g(y)h(z)

and insert it into the eigenequation and divide both sides with u(r), obtaining

x̂
∂f (x)∕∂x
f (x)

+ ŷ
∂g(y)∕∂y
g(y)

+ ẑ
∂h(z)∕h(z)

h(z)
= i

ℏ
(x̂px + ŷpy + ẑpz)
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Hence by singling out the x, y, z components from both sides one obtains three

1D eigenequations,

−iℏ ∂
∂𝜉

u(𝜉) = p𝜉 ; 𝜉 = x, y, z, u = f , g, h

as given in Eq. (3.8).Therefore we can use the 1D eigenfunction given in Eq. (3.10)

and multiply the three to obtain Eq. (3.12).

3.2. Given a wave packet the time duration and frequency bandwidth are con-

strained by

Δt × Δ𝜈 ≈ 1

Onemay thus takeΔt as the pulse duration and estimate the frequency bandwidth

as

Δ𝜈 ≈ 1

Δt
= 109, 1012, 1015Hz

for nano, pico, and femto second pulses.

3.3. Given the diameter of a nucleus D theminimum kinetic energy of the electron

therein is to be estimated with the use of the uncertainty principle as

ΔEe =
Δp2

2me

= ℏ2

2me

1

D2
; ΔpD ≃ ℏ

≈ 6.1 × 10−11 J = 3.8 × 108 eV, D = 10−14m

We can likewise estimate the minimum energy of a proton as

ΔE ≃ ℏ2

2mp

1

D2
= ℏ2

2me

1

D2

(
me

mp

)
= 3.8 × 108 eV •

me

mp

= 2.06 × 105 eV

SinceΔEe is greater than the binding energy Eb of a nucleon, whileΔEp is less than

Eb only the proton can reside in the nucleus.

3.4. By using the uncertainty relation,

ΔxΔpx ≃ ℏ, ΔyΔpy ≃ ℏ, ΔzΔpz ≃ ℏ

the minimum kinetic energy of the electron and proton in a cubic box of length L

can be estimated as

ΔEe ≃
1

2me

(Δp2x + Δp2y + Δp2z ) =
ℏ2

2me

(
1

Δx2
+ 1

Δy2
+ 1

Δz2

)
= 3ℏ2

2me

1

L2

ΔEp ≃
3ℏ2

2mp

1

L2
=
(
3ℏ2

2me

1

L2

)(
me

mp

)
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Thus ΔEe, ΔEp can be evaluated versus given L as:

L (nm) ΔEe (eV) ΔEp(eV)
1 1.1 × 10−1 6.0 × 10−5

0.1 1.1 × 101 6.0 × 10−3

0.01 1.1 × 103 6.0 × 10−1

3.5. The transition frequency from E2 to E1 is given by

h𝜈 = E2 − E1 = 13.6
(
1 − 1

4

)
eV

Hence 𝜈 and 𝜆 are evaluated as

𝜈 = 10.2eV

h
= 10.2eV

4.136 × 10−15 eVs
≃ 2.47 × 1015 s−1,

𝜆 = c

𝜈
= 1.21 × 10−7m = 121nm

The spread in 𝜈 and 𝜆 due to the finite lifetime 𝜏 can be estimated by using the

uncertainty relation as

Δ𝜈 ≈ h

𝜏 • h
≃ 1

10−8
= 108Hz; ΔE𝜏 = (hΔ𝜈)𝜏 ≈ h

Δ𝜆 = c

𝜈 − (Δ𝜈∕2)
− c

𝜈 + (Δ𝜈∕2)
≈ 𝜆
(Δ𝜈

𝜈

)

3.6. The Hamiltonian reads as

Ĥ = − ℏ2

2m
∇2 + V (r), V (r) = V ∗(r), ∇2 = ∂2

∂x2
+ ∂2
∂y2

+ ∂2
∂z2

where the potential is real. Hence given the two well behaving functions, f , g one

can show that V is Hermitian, that is,

∫ drf ∗Vg ≡ ∫ dr(Vf )∗g

The x-component of the Laplacian can also be shown Hermitian by repeated use

of the integration by parts:

∫ drf ∗
∂2g
∂x2

= f ∗
∂g
∂x
||||∞−∞ − ∫ dr

(
∂g
∂x

)(
∂f ∗

∂x

)
= −g

∂f ∗

∂x
||||
∞

−∞
+ ∫ drg

∂2f ∗

∂x2
= ∫ dr

(
∂2f ∗

∂x2

)
g

where use has been made of f (±∞) = g(±∞) = 0 and the y and z components can

likewise be proven hermitian. Therefore the Hamiltonian is Hermitian.
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Chapter 4

4.1 (a) The traveling wave representation of the wavefunction,

Ψ(r, t) = e−i𝜔tu(r) = 1

L3∕2
e−i(𝜔t−ik • r), 𝜔 = E

ℏ

satisfies the Schrödinger equation of a free particle, since

iℏ
∂
∂t
Ψ(r, t) = ℏ𝜔e−i(𝜔t−k • r), E = ℏ𝜔

− ℏ2

2m
∇2e−i(𝜔t−k

• r) = ℏ2k2

2m
e−i(𝜔t−k

• r), Ĥ = − ℏ2

2m
∇2

and the total energy of a free particle consists solely of the kinetic energy given by

E =
p2

2m
= (ℏk)2

2m

(b) The number of particles between k and k + dk for the cases of 3D, 2D, and 1D

is given by

g3D(k)dk =
k2dk

𝜋2
, g2D(k)dk =

kdk

𝜋
, g1D(k)dk =

2

𝜋
dk

The dispersion relation between E and k of a 3D free particle is given by

E = (ℏk)2

2m
, or k = 1

ℏ
(2mE)1∕2

so that

k2dk

𝜋2
= 1

π2
(
2mE

ℏ2

)[
1

ℏ

(
m

2E

)1∕2
dE

]
≡ g3DdE; g3D(E) =

√
2m3∕2E1∕2

𝜋2ℏ3

Similarly one finds

g2D(k)dk =
kdk

𝜋
= 1

𝜋

(2mE)1∕2
ℏ

[
1

ℏ

(
m

2E

)1∕2
dE

]
≡ g2DdE, g2D(E) =

m

𝜋ℏ2

g1D(k)dk =
2dk

𝜋
= 2

𝜋

[
1

ℏ

(
m

2E

)1∕2
dE

]
≡ g1DdE, g1D(E) =

√
2m1∕2

𝜋ℏ

1

E1∕2

4.2. (a) The energy eigenfunction is given from Eq. (4.9) by

un(x, y, z) =
(
2

L

)3∕2
sin
(nx𝜋

L
x
)
sin

(
ny𝜋

L
y

)
sin
(nz𝜋

L
z
)
;

n𝛼𝜋

L
= k𝛼, 𝛼 = x, y, z
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The total number of states between k and k + dk is given by

[(4𝜋k2dk)∕8]
(𝜋∕L)3

where kx, ky, kz values should be confined to positive values to avoid the eigenfunc-

tion to be redundant, so that the spherical shell in the k-space should be divided

by 8. Hence one can write

g3D(k)dk ≡ 2
4𝜋k2dk

8(𝜋∕L)3
1

L3
= k2dk

𝜋2

in agreement with the expression of g3D obtained with the use of the traveling

wave representation of the eigenfunction.

(b) The wave vector k is related to the frequency by

k = 2𝜋

𝜆
= 2𝜋

c
𝜈

so that the density of states in 𝜈 space is given by

k2dk

𝜋2
=
(2𝜋𝜈∕c)2(2𝜋∕c)d𝜈

𝜋2
=
(
8𝜋𝜈2

c3

)
d𝜈

in precise agreement with the density of states used in Eq. (2.1).

4.3. (a) The energy eigenvalue of the electron in a cubic box of length L is given

from Eq. (4.9b) by

En =
ℏ2𝜋2

2mL2
(n2x + n2y + n2z ), nx, ny, nz = 1, 2, 3 …

Now for L = 1 m

ℏ2𝜋2

2mL2
= (1.055 × 10−34)2π2

2 × 9.106 × 10−31l2
= 6.0 × 10−38(J∕m2) = 0.4(eV∕nm2)

Hence the lowest three energy levels with lengths 1, 0.1 nm are:

nx ny nz E(L = 1 nm)(eV) E(L = 0.1 nm)(eV)
E1 1 1 1 1.2 120

E2 2 1 1 2.4 720

1 2 1 2.4 720

1 1 2 2.4 720

E3 2 2 1 3.6 1080

2 1 2 3.6 1080

1 2 2 3.6 1080

with the degeneracy of 1, 3, 3 respectively.
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(b) The respective ground state energies are larger than the room temperature

thermal energy of 25meV by the factors of 48, 4800.

4.4. (a) The problem can be solved by repeating the analysis discussed in 4.3 and

inserting the height and width of the quantum well given

(b) The algorithm can be written based on the graphical method presented in the

text.

4.5. (a) The energy eigenequation of a particle in a quantum well is given from

Eq. (4.25) by[
− ℏ2

2mx

∂2
∂x2

− ℏ2

2my

∂2
∂y2

− ℏ2

2mz

∂2
∂z2

+ V (z)

]
u(x, y, z) = Eu(x, y.z)

One can look for the solution in the form

u(x, y, z) = X(x)Y (y)Z(z)

and insert it into the eigen equation and divide both side by u(x, y, z), obtaining[
− ℏ2

2mx

X′′

X

]
+

[
− ℏ2

2my

Y ′′

Y

]
+
[
− ℏ2

2mz

Z′′

Z
+ V (z)

]
= E

where the double primes denote the second order differentiations with respect to

x, y, z.

Since each bracket on the left hand side depends solely on x, y, z respectively, the

only way to satisfy the equation is to put each bracket to a constant. In this case

there ensues three independent ID equations,(
−ℏ2

2mx

)
X′′

X
= Ex or X′′ + k2xX = 0, k2x ≡ 2mxEx

ℏ2
=

p2x

ℏ2
(4.1)

(
−ℏ2

2my

)
Y ′′

Y
= Ey or Y ′′ + k2yY = 0, k2y ≡ 2myEy

ℏ2
=

p2y

ℏ2
(4.2)

[
− ℏ2

2mz

Z′′

Z
+ V (z)

]
= Ez or − ℏ2

2mz

Z′′ + V (z)Z = EzZ (4.3)

with the total energy given by the sum of the three kinetic energies,

Ex + Ey + Ez = E

Evidently Eqs. (4.1) and (4.2) are the eigenequations of a free particle (see Eq. (4.2)),

while Eq. (4.3) is that of a particle in a quantum well (see Eq. (4.19)). Therefore Z

can be represented by Eq. (4.20) with x replaced by z while X, Y are specified in

terms of the trigonometric functions, for example,

X(x) ∝ exp(±ikxx), Y (y) ∝ exp(±ikyy)
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The total energy E then consists of the kinetic energies Ex, Ey and the sublevel Ez

in the quantum well of widthW :

En =
ℏ2k2x
2mx

+
ℏ2k2y

2my

+ ℏ2𝜋2

2mzW
2
n2, n = 1, 2, …

For simplicity the well depth has been taken infinite and Eq. (4.4) has been used.

(b) For the case of the quantum wire one can likewise write

X(x) ∝ exp(±ikxx)

and express Y ,Z by transcribing Eq. (4.20).The resulting total energy is then given

by

En,m =
ℏ2k2x

2mx

+ ℏ2𝜋2

2myW
2
y

n2 + ℏ2𝜋2

2mzW
2
z

m2, n,m = 1, 2, …

Chapter 5

5.1. (a) The energy eigenequation reads as[
− ℏ2

2m

∂2
∂x2

+ V (x)
]
u(x) = Eu(x)

with V (x) given by 0, V 1, V 2 in the interval x < 0, 0 ≤ x < d1, d1 < x respectively.

Since E > V2 > V1 the energy eigenequations correspond to those of the free par-

ticle. Thus one can write

u′′ + 𝛼2u = 0;

with

𝛼 =
⎧⎪⎨⎪⎩
k0,

k1,

k2,

ℏ2k2
0
∕2m = E

ℏ2k2
1
∕2m = E − V1

ℏ2k2
2
∕2m = E − V2

The corresponding eigenfunctions are given in analogy with Eq. (5.4) by

u =
⎧⎪⎨⎪⎩
i0e

ik0x + re−ik0x

Aeik1x + Be−ik1x

teik2x

where i0, r, t represent the incident, reflected and transmitted beams. These con-

stants are used to satisfy the usual boundary conditions applied at 0, d1:

i0 + r = A + B (5.1a)

ik0(i0 − r) = ik1(A − B) (5.1b)
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Aeik1d1 + Be−ik1d1 = teik2d1 (5.1c)

ik1(Aeik1d1 − Be−ik1d1) = ik2te
ik2d1 (5.1d)

The unknown constants r, A, B, t can be found in terms of i0. For this purpose one

can perform the operation, (5.1a) ± (5.1b)∕ik1 and obtain

A = 1

2
e−ik1d1+ik2d1

(
1 +

k2
k1

)
t (5.2a)

B = 1

2

[
i0

(
1 −

k0
k1

)
+ r

(
1 +

k0
k1

)]
(5.2b)

The constants A, B can also be found in a similar manner from Eqs. (5.1c) and

(5.1d):

A = 1

2
e−ik1d1+ik2d1

(
1 +

k2
k1

)
t (5.3a)

B = 1

2
eik1d1+ik2d1

(
1 −

k2
k1

)
t (5.3b)

Therefore by equating A, B as obtained in Eqs. (5.2) and (5.3) one can write

e−ik1d1+ik2d1
(
1 +

k2
k1

)
t −
(
1 −

k0
k1

)
r =
(
1 +

k0
k1

)
i0 (5.4a)

eik1d1+ik2d1
(
1 −

k2
k1

)
t −
(
1 +

k0
k1

)
r =
(
1 −

k0
k1

)
i0 (5.4b)

and find r, t in terms of i0 as

t

i0
= e−ik2d1

2k0∕k1
D

(5.5a)

r

i0
=

k0−k2
k1

cos k1d1 + i
(
1 − k0k2

k1
2

)
sin k1d1

D
(5.5b)

D =
k0 + k2
k1

cos k1d1 − i

(
1 +

k0k2

k1
2

)
sin k1d1 (5.5c)

Hence the transmission and reflection coefficients are given from Eq. (5.10) in the

text by

R ≡ ℏk0∕m
ℏk0∕m

•

||||| ri0
|||||
2

= 1|D|2
[(

k0 − k2
k1

)2

+

(
1 −

k2
0
+ k2

2

k1
2

+
k2
0
k2
2

k1
4

)
sin2(k1d1)

]
(5.6a)

T ≡ ℏk2∕m
ℏk0∕m

||||| ti0
|||||
2

=
4k0k2∕k21|D|2 (5.6b)
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and R + T = 1, as it should. In this case no adjustment of k0, k1, k2 can be made

for the 100% transmission.

(b)The traveling wave representation of the particle incident on the potential bar-

rier V 2 on the x–z plane is given by

Ψ(r, t) ∼ e−(i𝜔t−k
• r) = e−i𝜔tu(r)

The wave vectors associated with the incident, reflected and transmitted beams

are characterized by

ui(x, z) ∼ exp i (k1 sin 𝜃ix + k1 cos 𝜃iz), k1 =
√
2m(E − V1)

ℏ
(5.7a)

ur(x, z) ∼ exp i (k1 sin 𝜃rx − k1 cos 𝜃rz), k1 =
√
2m(E − V1)

ℏ
(5.7b)

ut(x, z) ∼ exp i (k2 sin 𝜃tx + k2 cos 𝜃tz), k2 =
√
2m(E − V2)

ℏ
(5.7c)

where 𝜃i, 𝜃r, 𝜃t are the incident, reflected and transmitted angles, respectively.

Since the boundary condition requires that ui(x, 0) = ut(x, 0) = ur(x, 0) it follows
from Eq. (5.7) that

𝜃i = 𝜃r (5.8a)

k1 sin 𝜃i = k2 sin 𝜃2 (5.8b)

Evidently Eqs. (5.8a) and (5.8b) represent the law of reflection and reflection of

light with the wave vector k1, k2 associated with different index of reflection n1,

n2 appearing in the Snell’s law.

5.2. (a)The change in time of the probability density can be accounted for by using

the Schrödinger equation as

∂
∂t

𝜓∗𝜓 = 𝜓∗
( ∂
∂t

𝜓
)
+
( ∂
∂t

𝜓∗
)

𝜓

= 𝜓∗ 1

iℏ

[
−ℏ2

2m
∇2𝜓

(
r, t
)
+ V (r)𝜓(r, t)

]
+ Ψ

(
1

−iℏ

)[−ℏ2

2m
∇2𝜓∗ (r, t) + V (r)𝜓∗(r, t)

]
= −

[
𝜓∗ ℏ

2mi
∇2𝜓

(
r, t
)
− Ψ∇2𝜓∗(r, t)

]
(5.9)

One can then use the vector identity,

𝜓∗∇2𝜓 − 𝜓∇2𝜓∗ ≡ ∇ • (𝜓∗∇𝜓 − 𝜓∇𝜓∗)
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and recast Eq. (5.9) into a form

∂
∂t

𝜓∗𝜓 = −∇ • S; S ≡ ℏ

2mi
(𝜓∗∇𝜓 − 𝜓∇𝜓∗)

in which case S represents the probability current density.

(b) With the use of the eigenfunction in Eq. (5.4) one can specify the probability

current densities as

S
I
≡ ℏ

2mi

[(
i0e

−ik0x + reik0x
) ∂
∂x
(i0eik0x − r−ik0x) − c.c

]
= ℏ

2mi
[(i0e−ik0x + reik0x)ik0(i0eik0x − r−ik0x) − c.c] =

ℏk0
m
|i0|2 − ℏk0

m
|r|2

S
II
≡ ℏ

2mi

(
teikx

∂
∂x

teikx − c.c
)
= ℏk

m
|t|2

5.3. (a) One can find A, B from Eqs. (5.16a) and (5.16b) and also from Eqs. (5.16c)

and (5.16d):

A = −
e−i𝛼(i0e−i𝛼0 + rei𝛼0) − tei(𝛼0+𝛼)

2i sin 2𝛼
; A =

k0
k

[−e−i𝛼(i0e−i𝛼0 − rei𝛼0 )] + tei(𝛼0+𝛼)

2i sin 2𝛼

B = −
tei(𝛼0−𝛼) − ei𝛼(i0e−i𝛼0 + rei𝛼0)

2i sin 2𝛼
; B =

k0
k

tei(𝛼0−𝛼) − ei𝛼(i0e−i𝛼0 + rei𝛼0 )
2i sin 2𝛼

By equating the two expressions of A and B there result two coupled equations

involving r, t and these parameters can be found in terms of i0 in agreement with

Eq. (5.17). Since the velocity of the particle ∝ k0 is the same in the regions outside

the quantum well, R, T as given by

R =
||||| ri0
|||||
2

, T =
||||| ti0
|||||
2

lead to Eq. (5.18) in the text.

(b) When a particle is incident on a potential barrier of height V and thickness

d, the reflection and the transmission coefficients can be found in strict analogy

with the corresponding R and T operative for the quantum well. Specifically the

eigenfunction is given in this case by

u(x) =
⎧⎪⎨⎪⎩
i0 exp

(
ik0x
)
+ r exp−(ik0x) x < −d∕2

A exp(−𝜅x) + B exp(𝜅x) |x| ≤ 2∕d
t exp ik0x x ≥ d∕2

where the only modification required is to replace k by 𝜅 defined as

𝜅 =
√

2m(V − E)
ℏ2

for E < V
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One can then transcribe Eq. (5.17) in the text by replacing k by 𝜅 and obtain

t

i0
= exp(−ik0d)

2k0𝜅

2k0𝜅 cosh(𝜅d) − i(k2
0
− 𝜅2) sinh kd

r

i0
= −i exp(−ik0d)

(𝜅2 + k2
0
) sinh(2𝜅a)

2k0𝜅 cosh(𝜅d) − i(k2
0
− 𝜅2) sinh 𝜅d

with the use of the trigonometric identities

sin i𝜅 = i sinh 𝜅, cos i𝜅 = cosh 𝜅, cosh2x = 1 + sinh2x

Since the velocity of the particle outside the potential barrier is the same the tun-

neling probability T and the reflection coefficient as given by

T =
||||| ti0
|||||
2

, R =
||||| ri0
|||||
2

lead to Eq. (5.22) in the text.

5.4. (a) For infinite barrier height the ground state energy is given from Eq. (4.9)

by

E1 =
ℏ2𝜋2

2mW 2
= (1.055 × 10−34)2(J s)2π2

2 × 9.109 × 10−31kg (m2)
= 6 × 10−37J∕(m2)

= 3.7 × 10−20eV∕(m2) = 3.7 × 10−2 eV∕(nm2)

Hence for W = 1, 10 nm the ground state energies are 0.037 and 3.7 × 10−4 eV,

respectively.

(b) The lifetime 𝜏 can be estimated by

𝜏 = 𝜏rt × ñ; Tñ = 1

where 𝜏rt is the round trip time of the electron in the quantum well, T the tun-

neling probability and ñ the number of the electron encountering the barrier.

Obviously the lifetime is dictated by the thinner barrier, since T is greater. The

tunneling probability is given in this case by

T = 1

1 + Λ
; Λ = V 2

4E(V − E)
sinh2d

√
2m

ℏ2
(V − E)

(see Eq. (5.18)). Also 𝜏 tr is specified by the roundtrip distance 2W and the thermal

velocity of the electron, provided the thermal energy is greater than the ground

state energy E1 of the quantum well.

𝜏rt =
2W

vT
,

m

2
v2
T
= kBT
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If E1 is greater than kBT 𝜏rt is determined by

𝜏rt =
2W

v
,

m

2
v2 = E1

In this manner one can estimate the lifetime by using the parameters given.

5.5. When the electric field is applied, the square potential barrier depends on x

as

V (x) = V − q|E|x
where q|E| is the force acting on the electron. Hence the barrier is transformed

into either trapezoidal or triangular shape, depending on the kinetic energy of the

electron incident on the barrier and thickness of the barrier. The triangular shape

ensues if the barrier height at the outer edge is less than the ground state energy

E1, that is,

V − q|E|d ≤ E1, E1 =
ℏ2𝜋2

2mW 2

where d is the thickness of the barrier. The electric field required to transform

the square barrier into the triangular shape can be estimated for V = 3.1 eV and

d = 10 nm by

|E| ≈ V

q • d
≈ 3.1 eV • 1.6 × 10−19 J eV−1

1.6 × 10−19C • 10 × 10−9 m
= 3.1 × 107 Vm−1 = 31 mVnm−1

where E1 has been taken zero. If E is greater than the value thus estimated the F-N

tunneling ensues with the probability given from Eq. (5.26) by

T ≃
4
√
2m

2q|E|ℏ (V − E)3∕2, E ≈ 0 (5.10)

In this expression E denotes either E1 or kBT depending on the relative magnitude

but both quantities are small and have been discarded. One can find the lifetime

based on the F-N tunneling by assuming that E applied is greater than the esti-

mated value. For the well width of 50 nm the ground state energy is less than

the thermal energy as can be readily estimated. Hence one can find the lifetime

based on

𝜏 = 2W

vT
•
1

T
(5.11)
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withT given by Eq. (5.10). (b)One can calculate the strength of Ewhich is required

to shorten the lifetime to 1 μs combining Eqs. (5.10) and (5.11):

10−3 = 2W

vT
•
1

T
= 2 • 50 × 10−9(m)

1.16 × 105(ms−1)
exp

4
√
2m

3q|E|ℏV 3∕2

and obtain |E| ≃ 1.78 × 109 Vm−1 = 1.78Vnm−1.

5.6. (a)The electric field by which to induce the given tunneling probability can be

found by putting

10−4 = exp−
4
√
2m

3q|E|ℏV 3∕2

where V in this case represents the work function, that is, V = 4.5 V. Hence upon

inserting V one finds|E| ≃ 7.05 × 109 Vm−1 = 7.05Vnm−1

When the field amplitude is multiplied by the distance between the tip and the

sample surface one finds|E| × 1nm = 7.5 V

and is greater than the work function forming the barrier.Therefore the use of the

F-N tunneling for estimating E is proven correct.

(b) Hence the distance d is given by 50V/d (nm)= 7.5V/nm, that is , d= 6.7 nm.

To use FN tunneling the voltage between the sample and probe tip should be

equal to the work function.

50V

d
= 7.5V∕nm, d = 6.7 nm

5.7. The boundary condition

uj(zj) = uj+1(zj)
∂
∂z

uj(zj) =
∂
∂z

uj+1(zj)

when applied to the eigenfunction given in Eq. (5.27) yields

Aje
ikzj + Bje

−ikzj = Aj+1e
−𝜅zj + Bj+1e

𝜅zj

Aje
ikzj − Bje

−ikzj = i𝜅

k
[Aj+1e

−𝜅zj − Bj+1e
𝜅zj ] (5.12)

One can thus find Aj, Bj in terms of Aj+1, Bj+1 as

Aj =
e−ikzj

2

[
Aj+1e

−𝜅zj

(
1 + i𝜅

k

)
+ Bj+1e

𝜅zj

(
1 − i𝜅

k

)]
Bj =

eikzj

2

[
Aj+1e

−𝜅zj

(
1 − i𝜅

k

)
+ Bj+1e

𝜅zj

(
1 + i𝜅

k

)]
(5.13)
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Equation (5.13) can be put into a matrix notation as(
Aj

Bj

)
=
(

𝛼 𝛽

𝛼∗ 𝛽∗

)(
Aj+1
Bj+1

)
(5.14a)

𝛼 = 1

2

(
1 + i𝜅

k

)
ei(i𝜅−k)zj

𝛽 = 1

2

(
1 − i𝜅

k

)
ei(i𝜅+k)zj (5.14b)

The constants Aj+1, Bj+1 can be connected to Aj+2, Bj+2 by applying the boundary

condition at zj + d to the eigenfunctions uj+1, uj+2:(
Aj+1
Bj+1

)
=
(

𝛾 𝛾∗

𝛿 𝛿∗

)(
Aj+2
Bj+2

)
(5.15a)

𝛾 =
(
1 + k

i𝜅

)
ei(k−i𝜅)(zj+d)

𝛿 =
(
1 + k

(−i𝜅)

)
ei(k+i𝜅)(zj+d) (5.15b)

Therefore by combining Eqs. (5.14) and (5.15) one obtains(
Aj

Bj

)
=
(

𝛼 𝛽

𝛼∗ 𝛽∗

)(
𝛾 𝛾∗

𝛿 𝛿∗

)(
Aj+2
Bj+2

)
=
(

m11 (d) m12(zj, d)
m21(zj, d) m22(d)

)(
Aj+2
Bj+2

)
(5.16a)

with

m11(d) = m∗
22 = 𝛼𝛾 + 𝛽𝛿

= eikd
(
cosh 𝜅d − i

k2 − 𝜅2

2k𝜅
sinh 𝜅d

)
(5.16b)

m12(zj, d) = m∗
21 = 𝛼𝛾∗ + 𝛽𝛿∗

= ie−ik(2zj+d)
k2 + 𝜅2

2k𝜅
sinh 𝜅d (5.16c)

In this manner Aj, Bj are connected to Aj+2, Bj+2. One can then find T , R for the

single barrier by putting Bj+2 to zero, since there is no reflected component once

the particle is transmitted across the single barrier:(
Aj

Bj

)
=
(

m11 (d) m12(zj, d)
m21(zj, d) m22(d)

)(
Aj+2
0

)
One can therefore specify the tunneling probability as

T =
|||||
Aj+2

Aj

|||||
2

= 1|m11(d)|2
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where

|m11(d)|2 = cosh2𝜅d +
(
k2 − 𝜅2

2k𝜅

)2

sinh2𝜅d

= 1 + sinh2𝜅d +
(
k2 − 𝜅2

2k𝜅

)2

sinh2𝜅d

= 1 + (k2 + 𝜅2)2

4k2𝜅2
sinh2𝜅d = 1 + V 2

4(V − E)E
sinh2d

√
2m

ℏ2
(V − E)

in agreement with the result Eq. (5.22).

(b) To analyze the tunneling through the two barriersW distance apart in succes-

sion one can likewise connect Aj, Bj to Aj+4, Bj+4 and put Bj+4 to zero:(
Aj

Bj

)
=
(

m11 (d) m12(zj, d)
m∗

12
(zj, d) m∗

11
(d)

)(
m11 (d) m12(zj+2, d)

m∗
12
(zj+2, d) m∗

11
(d)

)(
Aj+4
0

)
where the distance between the input and output plane is given by

zj+2 = zj +W + d

Then one can find the ratio specifying the tunneling through two barriers T2B as

Aj+4

Aj

= −e−2ikd • 4k2𝜅2

[D1 − e2ikW (k2 + 𝜅2) sinh 𝜅d]2

D1 = [(k2 − 𝜅2) sinh 𝜅d + 2ik𝜅 cosh 𝜅d]2

= [(k2 − 𝜅2)2sinh2𝜅d + 4k2𝜅2cosh2𝜅d]e2i𝜃

= [4k2𝜅2 + (k2 + 𝜅2)2sinh2𝜅d]e2i𝜃

where

tan 𝜃 = 2k𝜅 cosh 𝜅d

(k2 − 𝜅2) sinh 𝜅d

and D1 has been expressed in the phasor notation,

x + iy = (x2 + y2)1∕2ei𝜃, tan 𝜃 =
y

x

and a trigonometric relation has been used

cosh2x = 1 + sinh2x

Since the input and output velocities are the same T2B can be expressed as

T2B =
|||||
Aj+4

Aj

|||||
2

= (4k2𝜅2)2|D1|2|||1 − e2i(kW−𝜃) •
(k2+𝜅2)2sinh2𝜅d|D1| |||2

=
T2
1B|1 − e2i(kW−𝜃) • R1B|2 (5.17)
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where T1B, R1B represent the corresponding quantities for the single barrier

T1B ≡ 4k2𝜅2|D1| , R1B ≡ (k2 + 𝜅2)2sinh2𝜅d|D1| (5.18)

One can further compact T2B as follows.|1 − ei𝜒R1B|2 = [(1 − cos𝜒R1B)2 + sin2𝜒R1B
2]e2i𝜑

= [1 + R1B
2 − 2 cos𝜒R1B]e2i𝜑 =

[(
1 − R1B

)2 + 4R1Bsin
2 𝜒

2

]
e2i𝜑

with

tan𝜑 =
sin𝜒R1B

1 − cos𝜒R1B

, 𝜒 ≡ 2(kW − 𝜃)

In this expression use has been made of

cos𝜒 = 1 − 2sin2
𝜒

2

Hence by combining Eqs. (5.17) and (5.18) one finds

T2B =
1

1 + 4
R1B

T2
1B

sin2(kW − 𝜃)
, T1B = 1 − R1B

Chapter 6

6.1. (a) One can solve the coupled equation,

a11x + a12y = c1 (6.1a)

a21x + a22y = c2 (6.1b)

by performing the operation, [(6.1a)∕a12] − [(6.1b)∕a22], [(6.1a)∕a11] − [(6.1b)∕
a21], obtaining x,y as

[(a11∕a12) − (a21∕a22)]x = (c1∕a12) − (c2∕a22)

[(a12∕a11) − (a22∕a21)]y = (c1∕a11) − (c2∕a21)

The x, y can also be found in terms of the determinants as

x =

|||||c1 a12
c2 a22

||||||||||a11 a12
a21 a22

|||||
=

c1a22 − c2a12
a11a22 − a12a21

(6.2a)

y =

|||||a11 c1
a21 c2

||||||||||a11 a12
a21 a22

|||||
=

c2a11 − c1a21
a11a22 − a12a21

(6.2b)
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Themethod using the determinants is known as the Kramer’s rule.

(b) Given the characteristic equation,

(1 − 𝜆)x1 + 2x2 = 0

2x1 + (1 − 𝜆)x2 = 0 (6.3)

one can find x1, x2 by using the Kramer’s rule as

x1 =

|||||0 a12
0 a22

||||||||||1 − 𝜆 2

2 1 − 𝜆

|||||
=

0 × a22 − 0 × a12
(1 − 𝜆)2 − 4

= 0 (6.4)

Likewise x2 = 0, hence the solutions of the homogeneous coupled equation 6.3

are trivial. The only way to get the non-trivial solution is to put the denominator

of Eq. (6.4) to zero, that is|||||1 − 𝜆 2

2 1 − 𝜆

||||| = 0 or (1 − 𝜆)2 − 4 = 0 (6.5)

(c) The resulting two roots of this secular equation are given by 𝜆 = −1, 3 and

when inserted in either of the two coupled equation (6.3), one finds

x2 = x1; 𝜆 = 3, x2 = −x1; 𝜆 = −1 (6.6)

Therefore an infinite number of non-trivial solutions have been found for any

value of x1 as long as x2 is related to x1 as given by Eq. (6.6).

(d) With the solution thus found the normalization condition reads as

x21 + x22 = x21(1 + 1) = 2x21 = 1

Hence x1 = x2 =
√
2, x1 = −x2 =

√
2 and

X1 =
1√
2

(
1

1

)
, X2 =

1√
2

(
1

−1

)

6.2. (a) One can perform the operations,

(6.11a) ± (6.11b)∕ik1, (6.12a) ± (6.12b)∕ik1
and obtain

A = 1

2
e−ikd(𝛼e−𝜅dC + 𝛼∗e𝜅dD), B = 1

2
e−ikd(𝛼∗e−𝜅dC + 𝛼e𝜅dD) (6.7)

A = 1

2
e−ik1a(𝛼e−𝜅aC + 𝛼∗e𝜅aD), B = 1

2
eik1a(𝛼∗e−𝜅aC + 𝛼e𝜅aD) (6.8)

with

𝛼 ≡ 1 + i𝜅

k1
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By equation A and B appearing in Eqs. (6.7) and (6.8) one readily finds with the

use of, say the Kramer’s rule the results in Eq. (6.15).

(b) Specifying the resulting secular equation (6.16) into the dispersion relation

consists simply of rearranging the terms and is therefore a straightforward alge-

bra. But the algebra is rather lengthy and it is a challenge to derive the dispersion

relation.

6.3. (a)The sub-band energy of the infinite potential barrier is given from Eq. (4.4)

by

En =
ℏ2𝜋2

2mna
2
n2

so that one can write

ΔE = E2 − E1 =
ℏ2𝜋2

2mna
2
× 3 = 40 meV

and therefore a is found as

a = ℏπ
(

3

2mn40 (meV)

)1∕2

= 1.055 × 10−34(J s)

× 3.14

{
3

2 × 9.109 × 10−310.07
(
kg
)
× [(40 × 10−3) × 1.60 × 10−19(J)]

}1∕2

= 2 × 10−9m = 2nm

(b) The numerical analysis will yield approximately the same ΔE.

Chapter 7

7.1 (a) The eigenequation,[
− ℏ2

2m

∂2
∂x2

+ 1

2
kx2
]
u(x) = Eu(x)

can be compacted by introducing the dimensionless variable,

𝜉 = 𝛼x, 𝛼 ≡ (m𝜔

ℏ

)1∕2
, (𝛼) =

(
M∕T
ML2∕T

)1∕2

=
(

1

length

)
Then

∂
∂x

= ∂
∂𝜉
∂𝜉
∂x

= 𝛼
∂
∂𝜉

,
∂2
∂x2

= 𝛼2 ∂2
∂𝜉2
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so that

− ℏ2

2m

∂2
∂x2

= − ℏ2

2m

(
m𝜔

ℏ

) ∂2
∂𝜉2

= −1

2
ℏ𝜔

∂2
∂𝜉2

,

1

2
kx2 = 1

2
m𝜔2 𝜉2

𝛼2
= 1

2
m𝜔2 ℏ

m𝜔
𝜉2 = 1

2
ℏ𝜔𝜉2

Therefore the eigenequation reads as

u′′ + (𝜆 − 𝜉2)u = 0, 𝜆 ≡ 2E

ℏ𝜔
, u′′ ≡ ∂2

∂𝜉2
(7.1)

(b) When the eigenfunction u(x) is sought in the form,

u(𝜉) = H(𝜉) exp−
(
1

2
𝜉2
)

the derivatives of u read as

u′ = (H ′ − 𝜉H)e−𝜉2∕2

u′′ = [H ′′ −H − 𝜉H′ − 𝜉(H′ − 𝜉H)]e−𝜉2∕2 = [H′′ − 2𝜉H ′ + (𝜉2 − 1)H]e−𝜉2∕2

When these derivatives are inserted into Eq. (7.1) it is reduced to Eq. (7.5) in

the text.

7.2 (a) Given the 3D eigenequation[
− ℏ2

2m
∇2 + 1

2
kxx

2 + 1

2
kyy

2 + 1

2
kzz

2

]
u(x, y, z) = E(x, y, z) (7.2)

one can look for the solution in the form, u(x, y, z) = ux(x)uy(y)uz(z), insert it into
Eq. (7.2) and divide both side with u(x, y, z), obtaining⎡⎢⎢⎢⎣
(
− ℏ2

2m

)
∂2u(x)
∂x2

u(x)
+ 1

2
kx2

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
(
− ℏ2

2m

)
∂2u(y)
∂y2

u(y)
+ 1

2
ky2

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
(
− ℏ2

2m

)
∂2u(z)
∂z2

u(z)
+ 1

2
kz2

⎤⎥⎥⎥⎦ = E

Since each bracket depends solely on x, y, and z, the onlyway to satisfy the equation

is to put each tem to a constant. In this case three independent 1D harmonic oscil-

lator eigenequations ensue

− ℏ2

2m
u′′(x) + 1

2
kxx

2u(x) = Exu(x)

− ℏ2

2m
u′′(x) + 1

2
kxx

2u(x) = Exu(x)

− ℏ2

2m
u′′(y) + 1

2
kyx

2u(y) = Eyu(y)

where the primes denote differentiation with respect to x, y, z and

Ex + Ey + Ez = E
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(b) One can therefore use the eigenfunctions and eigenvalues given in Eqs. (7.12)

and (7.25) and write

u(x, y, z) =
∏
j=x,y,z

(
𝛼j√

𝜋2njnj!

)1∕2

e−
𝜉2
j

2 Hnj(𝜉j), 𝜉j = 𝛼jj, 𝛼j =
(
m𝜔j

ℏ

)1∕2

Enx ,ny,nz
=
∑
j=x,y,z

ℏ𝜔j

(
nj +

1

2

)
, nj = 0, 1, 2, …

(c) For kx = ky = kz = k the total energy is given by

Enx ,ny,nz
= ℏ𝜔

(
nx + ny + nz +

3

2

)
, 𝜔 =

(
k

m

)1∕2

The energy level and degeneracy of the three lowest eigenstates are given as fol-

lows:

nx ny nz E∕ℏ𝜔 degeneracy

0 0 0 3∕2 none

1 0 0 5∕2
0 1 0 5∕2 3

0 0 1 5∕2
1 1 0 7∕2
1 0 1 7∕2
0 1 1 7∕2 6

2 0 0 7∕2
0 2 0 7∕2
0 0 2 7∕2

7.3. (a) Differentiating the generating function given in Eq. (7.15) with respect to

𝜉 one obtains

∂
∂𝜉

G(𝜉, s) = 2se−s
2+2s𝜉 = 2

∞∑
n=0

Hn(𝜉)sn+1

n!
≡

∞∑
n=0

H′
n(𝜉)sn

n!

One can thus single out the coefficients of equal power of n from both sides and

obtain

2Hn−1

(n − 1)!
=

H ′
n

n!
, or H′

n = 2nHn−1 (7.3)

Also the differentiation of G with respect to s leads to

∂
∂s
G(𝜉, s) = (−2s + 2𝜉)e−s2+2s𝜉 = (−2s + 2𝜉)

∞∑
n=0

Hns
n

n!

≡
∞∑
n=1

Hns
n−1

(n − 1)!
=

∞∑
n=0

Hn+1s
n

n!
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Hence by singling out the coefficients of equal power of n one finds

𝜉Hn =
1

2
Hn+1 + nHn−1 (7.4)

(b) The variance Δx is defined as

(Δx)2 = ⟨un|(x− < x >)2|un(x)⟩ = ⟨un|x2 − 2x < x > + < x>2|un(x)⟩
= ⟨un|x2− < x>2|un(x)⟩ = ⟨un|x2|un(x)⟩

Since un(x) × un(x) is even in x regardless of n, the average value of x is zero.There-

fore one can write

(Δx)2 = ∫
∞

−∞
dxun(x)x2un(x) =

(
𝛼√

𝜋2nn!

)
1

𝛼3 ∫
∞

−∞
d𝜉e−𝜉2 • Hn𝜉

2Hn

where Eq. (7.25) was used for un(x). Now by using the recurrence relation 7.4 one

can write

(𝜉Hn)2 =
1

4
H2

n+1 + n2H2
n−1 +Hn+1Hn−1

so that the variance can be evaluated by using the orthonormality of un given in

Eq. (7.23):

(Δx)2 = 1

𝛼3

(
𝛼√

𝜋2nn!

)[√
𝜋2n+1 (n + 1)!

4
+
√

𝜋2n−1n2

]
= 1

𝛼2

(
n + 1

2
+ n

2

)
= ℏ

m𝜔

(
n + 1

2

)
, 𝛼 =

(
m𝜔

ℏ

)1∕2
(7.5)

One can likewise evaluate the variance of px by following similar steps. One can

write

(Δpx)2 = ⟨un|(px − ⟨px⟩)2|un⟩ = ⟨un|px2 − 2px⟨px⟩ + ⟨px⟩2|un⟩
= ⟨un|p2x|un⟩

where the average value of px ∝ ∂∕∂x is zero, since the integrand involved is odd

in x. To find the variance one has to carry out the integral

⟨un|p2x|un⟩ = −ℏ2

(
𝛼√

𝜋2nn!

)
𝛼∫

∞

−∞
d𝜉e−𝜉2∕2 • Hn

∂2
∂𝜉2

(Hne
−𝜉2∕2)

= −ℏ2 𝛼2√
𝜋2nn!

{
e−𝜉2∕2Hn

∂
∂𝜉

(
Hne

−𝜉2∕2
)||||∞−∞ − ∫

∞

−∞
d𝜉

×
[
∂
∂𝜉

(
e−𝜉2∕2Hn

)]2}

= ℏ2 𝛼2√
𝜋2nn!∫

∞

−∞
d𝜉

[
∂
∂𝜉

(
e−𝜉2∕2Hn

)]2
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where the integration in parts has been carried out. Now by using the recurrence

relations (7.3) and (7.4) one can write

∂
∂𝜉
(e−𝜉2∕2Hn) = (−𝜉Hn +H ′

n)e−𝜉2∕2 =
(
−1

2
Hn+1 − nHn−1 + 2nHn−1

)
e−𝜉2∕2

=
(
−1

2
Hn+1 + nHn−1

)
e−𝜉2∕2

Hence the integrations can be carried out simply with the use of the orthonormal-

ity of the eigenfunctions and the variance is to be evaluated as

(Δpx)2 = ℏ2 𝛼2√
𝜋2nn!∫

∞

−∞
d𝜉e−𝜉2∕2 •

(
−1

2
Hn+1 + nHn−1

)2
= ℏ2 𝛼2√

𝜋2nn!

[
1

4

√
𝜋2n+1 (n + 1)! + n2

√
𝜋2n−1(n − 1)!

]
= ℏ2𝛼2

(
n + 1

2

)
= ℏ𝜔m

(
n + 1

2

)
, 𝛼2 = m𝜔

ℏ
(7.6)

It therefore follows from Eqs. (7.5) and (7.6) that

ΔxΔpx =
[

ℏ

m𝜔

(
n + 1

2

)
• ℏm𝜔

(
n + 1

2

)]1∕2
= ℏ
(
n + 1

2

)
(c) The matrix element of x can also be evaluated as

⟨ul|x|ul′⟩ = NlNl′

𝛼2 ∫
∞

−∞
d𝜉e−𝜉2∕2 • Hl𝜉Hl′e

−𝜉2∕2, 𝜉 = 𝛼x

=
NlNl′

𝛼2 ∫
∞

−∞
d𝜉e−𝜉2 • Hl

(
1

2
Hl′+1 + l′Hl′−1

)

=

(
𝛼√
𝜋2ll!

)1∕2(
𝛼√

𝜋2l′ l′!

)
1

𝛼2

⎧⎪⎨⎪⎩
1

2

√
𝜋2l

′
l′, l′ = l − 1

l′
√

𝜋2l
′
l′, l′ = l + 1

0 otherwise

where the recurrence relation (7.3) has been used.

7.4. (a) The HO oscillating with the amplitude x0 is described by

x(t) = x0 cos𝜔t, 𝜔 =
√

k

m

The kinetic energy averaged over a period of oscillation is then given by

< K > = 1

T ∫
T

0

dx
m

2
v(t)2 =

mx2
0
𝜔2

2T ∫
T

0

dx sin2(𝜔t); T = 2𝜋

𝜔

=
mx2

0
𝜔2

4T ∫
T

0

dx(1 − cos(2𝜔t)) =
mx2

0
𝜔2

4
(7.7)
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Also the average potential energy can be evaluated as

< V > = 1

T ∫
T

0

dx
k

2
x(t)2 =

kx2
0

2T ∫
T

0

dxcos2(𝜔t); T = 2𝜋

𝜔

=
kx2

0

4T ∫
T

0

dx(1 + cos(2𝜔t)) =
mx2

0
𝜔2

4
; k = m𝜔2 (7.8)

The total energy can be specified by the potential energy at x = x0 at which point

there is no kinetic energy, that is,

E =
kx2

0

2
=

m𝜔2x2
0

2

It follows from Eqs. (7.7) and (7.8) that the total energy is equally partitioned into

V , K over a period of oscillation:

E =< K > + < V >

(b) The average kinetic and potential energies in the nth eigenstate are given by

< K >= ⟨un| p2x2m
|un⟩ = 1

2m
ℏ𝜔m

(
n + 1

2

)
= 1

2
En

< V >= ⟨un|k2x2|un⟩ = k

2

ℏ

m𝜔

(
n + 1

2

)
= ℏ𝜔

2

(
n + 1

2

)
= 1

2
En, k = m𝜔2

Here the integrals involved have been carried out in the previous problem.There-

fore

En =< K > + < V >

in agreement with the classical results.

(c)The total energy is equally partitioned into<K> and<V> in both descriptions.

7.5. (a) The Hamiltonian of the internal motion of the diatomic molecules is gen-

erally modeled by that of the harmonic oscillator

Ĥ = − ℏ2

2𝜇
∇2 + 1

2
kx2,

1

𝜇
= 1

mC

+ 1

mO

wheremC,mO represent in this case themass of the carbon and oxygenmolecules.

The energy spacing between two nearest vibrational states is therefore given by

ℏ𝜔 = h𝜈 = hc𝜈, 𝜈 ≡ 1

𝜆

where the inverse wavelength denotes the wave number. Hence 𝜈 can be found

from the measured wave number as

𝜈 = c
1

𝜆
= 3 × 108 (ms−1) • 2170cm−1

= 3 × 108(ms−1) • 217000m−1 = 6.51 × 1013 s−1
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The equivalent spring constant

k = 𝜇𝜔2 = 𝜇(2𝜋𝜈)2

specified in terms of the reduced mass

𝜇 =
mCm0

mC +m0

= 12 • 16(1.673 × 10−27)2

(12 + 16)(1.673 × 10−27)
= 1.15 × 10−26 kg

is thus found as

k = 1.15 × 10−26 (kg)(2𝜋 × 6.51 × 1013)2(s)−2 = 1.92 × 103 (Nm−1)
= 19.2 (Ncm−1)

(b) The zero point energy is then given by

E0 =
1

2
h𝜈 = 1

2
4.136 × 10−15 eVs 6.51 × 1013 s−1 = 1.35 × 10−1 eV

7.6 By using Eq. (7.39) the Hamiltonian can be expressed in terms of a and a+ as

Ĥ =
p̂2

2m
+ 1

2
kx2

= −ℏ2𝛼2

2

1

2m
(a+ − a)(a+ − a) + k

2

1

2𝛼2
(a+ + a)(a+ + a), 𝛼 =

(
m𝜔

ℏ

)1∕2
Now

ℏ2𝛼2

4m
= ℏ2m𝜔

4mℏ
= 1

4
ℏ𝜔,

k

4𝛼2
= m𝜔2

4

ℏ

m𝜔
= 1

4
ℏ𝜔

so that Ĥ reads as

Ĥ = ℏ𝜔

4
[−(a+ − a)(a+ − a) + (a+ + a)(a+ + a)]

= ℏ𝜔

4
• 2(a+a + aa+) = ℏ𝜔

2
(a+a + 1), aa+ ≡ a+a + 1

Chapter 8

8.1. (a) Given the representation of the angular momentum

l̂ = (x̂x + ŷy + ẑz) × (x̂p̂x + ŷp̂y + ẑp̂z)

one can use the cyclic properties of x̂, ŷ, ẑ,

x̂ × ŷ = ẑ, ŷ × ẑ = x̂, ẑ × x̂ = ŷ

and single out the x, y, and z components as

l̂x = (yp̂z − zp̂y), l̂y = (zp̂x − xp̂z), l̂z = (xp̂y − yp̂x)
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(b) The commutation relation between the x, y components can be derived as

[̂lx, l̂y] = [(yp̂z − zp̂y), (zp̂x − xp̂z)] = [yp̂z, zp̂x] + [zp̂y, xp̂z]

= yp̂x[p̂z, z] + p̂yx[z, p̂z] = iℏ(xp̂y − yp̂x) = l̂z

One can likewise derive

[̂ly, l̂z] = iℏ̂lx, [̂lz, l̂x] = iℏ̂ly

(c) The commutation relation between l̂2 and l̂z has been proven in Eq. (8.10).

Thus, condiser

[̂l2, l̂x] = [(̂l2x + l̂2y + l̂2z ), l̂x] = [(̂l2y + l̂2z ), l̂x]

Now

[l̂2y , l̂x] = l̂yl̂y l̂x − l̂xl̂yl̂y = l̂y (̂lxl̂y − iℏ̂lz) − (̂lyl̂x + iℏ̂lz )̂ly = −iℏ(̂lyl̂z + l̂z l̂y)

[̂l2z , l̂x] = l̂z l̂zl̂x − l̂xl̂z l̂z = l̂z (̂lxl̂z + iℏ̂ly) − (̂lxl̂z − iℏ̂ly )̂lz = iℏ(̂lyl̂z + l̂zl̂y)

where use has been made of commutation relations between lx, ly, lz. Therefore

[̂l2, l̂x] = 0. One can likewise prove [̂l2, l̂y] = 0.

8.2. The center of mass and relative coordinates are specified in terms of r1, r2 as

R = 1

M
(m1r1 +m2r2), r = r1 − r2

Upon inverting the relation r1, r2 can be expressed as

r1 = R +
m2

M
r, r2 = R −

m1

M
r

so that the total kinetic energy is given by

p2
1

2m1

+
p2
2

2m2

= 1

2
m1ṙ1

2 + 1

2
m2ṙ2

2

= 1

2
m1

[
Ṙ
2 +
(m2

M

)2
ṙ2 +

2m2

M
Ṙ • ṙ

]
+ 1

2
m2

[
Ṙ
2 +
(m1

M

)2
ṙ2 −

2m1

M
Ṙ • ṙ

]
= 1

2
MṘ

2 + 1

2M2
(m1m

2
2 +m2

1m2)ṙ2 =
P2

2M
+

p2

2𝜇

where

P ≡ MR, M = m1 +m2

p = 𝜇r, 𝜇 =
m1

• m2

m1 +m2

or
1

𝜇
= 1

m1

+ 1

m2



Solutions 311

8.3. (a) One can use Eq. (8.46) by incorporating the number of protons in the

nucleus, Z:

e2M ≡ e2

4𝜋𝜀0
→ Ze2M ≡ Ze2

4𝜋𝜀0

Thus,

a0He =
ℏ2

𝜇Ze2
M

= 1

Z

ℏ2

e2
M

(
1

me

+ 1

mN

)
= 1

Z
aB

(
1 +

me

mN

)
≃ 0.049

2
nm = 0.025nm, Z = 2

a0po =
ℏ2

𝜇e2
M

= ℏ2

e2
M

(
1

me

+ 1

mp

)

= aB

(
1 +

me

mpo

)
≃ 0.049 × 2nm = 0.1nm, me = mp

8.4. The wavefunction of 1s state is given from Table 8.2 as

u100 =
(Z∕a0)3∕2

𝜋1∕2 e−Zr∕a0

Thus one can find the average values of r and r2 and the variance as follows:

< r >= ⟨u100|r|u100⟩ = N2∫
2𝜋

0

d𝜑∫
𝜋

0

sin 𝜃d𝜃∫
∞

0

r2drre−2Zr∕a0 , N =
(Z∕a0)3∕2√

𝜋

= N2 × 4𝜋 ×

[
6(

2Z∕a0
)4
]
=

1.5a0
Z

< r2 > = ⟨u100|r2|u100⟩
= N2∫

2𝜋

0

d𝜑∫
𝜋

0

sin 𝜃d𝜃∫
∞

0

r2drr2e−2Zr∕a0 , N =
(Z∕a0)3∕2√

𝜋

= N2 × 4𝜋 × 4!
(2Z∕a0)5

=
3a2

0

Z2

< (r− < r >)2 > =< r2 − 2r < r > + < r>2 >

=< r2 > − < r>2 = 0.75

(
a2
0

Z2

)
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with a0 denoting the Bohr radius. For H-atom Z= 1, while for He+ Z= 2. One can

likewise find the corresponding quantities u200, u300.

8.5. The average kinetic energy is found as

< K >= −
(

ℏ2

2𝜇

)⟨u100|∇2|u100⟩, 𝜇 ≃ me

Now with the use of Eq. (8.35) in the text one can write

∇2u100 =
(
1

r2
∂
∂r

r2
∂
∂r
− 1

r2
1

ℏ2
l̂2
)
u100 = N100

•

[
1

r2
∂
∂r

r2
∂
∂r

exp

(
− r

a0

)]
= N100

•

(
1

a2
0

e−r∕a0 − 2

a0r
e−r∕a0

)
where N100 is the normalization constant and use has been made of the fact that

u100 does not carry the angular momentum. Hence one can evaluate the average

value of K as

⟨K⟩ = 1

a3
0
𝜋

(
−ℏ2

2𝜇

)
∫

2𝜋

0

d𝜑∫
𝜋

0

sin 𝜃 d𝜃∫
∞

0

r2dr

(
1

a2
0

− 1

a0r

)
e−2r∕a0

= ℏ2

2𝜇a2
0

= ℏ2

𝜇e2
M

e2
M

2a2
0

=
e2
M

2a0
,

ℏ2

𝜇e2
M

= a0, e2M ≡ e2

4𝜋𝜀0

We can therefore state that the average kinetic energy is equal to the magnitude

of the ground state energy (see (8.46)),

< K >= |E1|
One can likewise evaluate the average potential energy as

⟨V ⟩100 = 1

a3
0
𝜋 ∫

2𝜋

0

d𝜑∫
𝜋

0

sin 𝜃 d𝜃∫
∞

0

r2dr

(
−
e2
M

r

)
e−2r∕a0

= − 4𝜋

a3
0
𝜋

• e2M∫
∞

0

dr re−2r∕a0 = −
e2
M

a0

Therefore⟨K⟩100 = −1

2
⟨V ⟩100

One can show in general that

⟨K⟩nlm = −1

2
⟨V ⟩nlm

8.6. The energy levels are generally given from Eq. (8.46) by

En ≡ −E0
1

n2
; E0 =

𝜇Z2e4
M

2ℏ2
=

Z2e2
M

2aB(1 +me∕mN )
, n = 1, 2, … ;

a0 ≡ aB(1 +me∕mN )
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For the H-atom the nuclear mass is given by the mass of the proton and we can

write

E0 =
Z2e2

M

2aB(1 +me∕mp)
Λ = 13.6eV × Λ, Λ ≡ 1 +me∕mp

1 +me∕mN

The wavelength corresponding to the transition between n = 2 and n = 1 state

h𝜈 = hc

𝜆
= E2 − E1

can therefore be found in H-atom as

𝜆 = hc

E2 − E1
= 4.136 × 10−15 (eVs) × 3 × 108m

13.6(1 − 1∕4)eV
= 12.2 × 10−8m = 122nm, Λ = 1

One can likewise find 𝜆 for the case of deuterium and ionized He atom by evalu-

ating Λ and using the Z values, respectively.

(b)The frequency corresponding to the transition between n = 1 and n = 3 states

is given by

𝜈 =
E3 − E1

h
=

13.6eV × (1 − 1∕9)
4.136 × 10−15(eVs)

= 2.92 × 1015 s−1

8.7. The ionization energy and atomic radius of the phosphorus atom in Si can

be specified in terms of the corresponding values of the H-atom with appropriate

scaling of the parameters involved.We can find the parameters with the use of Eq.

(8.46):

Eion = 13.6eV

(
𝜀0

𝜀0𝜀r

)2(m0

mn

)
= 13.6 ×

(
1

11.9

)2
× 2 eV ≃ 0.1 eV

a0 =
ℏ2

mne
2
M

=
ℏ24𝜋𝜀0𝜀r
mne

2
≃ 0.05𝜀r

(
m0

mn

)
nm ≃ 1.19nm

To find the de Broglie wavelength one can start from the relation, 𝜆 = h∕p and

find the linear momentum of the electron in the ground state of P-atom in Si. As

discussed in the problem of 8.5 one can put⟨
p2

2mn

⟩
= |E1| = 0.2eV

and evaluate p as

p = (2mn0.2eV)1∕2

= [2 × 9.1 × 10−31(kg) • 0.2 × 1.6 × 10−19 J]1∕2

= 2.4 × 10−25 kg • ms−1
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Therefore 𝜆 is given by

𝜆 = h

p
= 6.626 × 10−34 J • s

2.4 × 10−25 kg • ms−1

= 2.8 × 10−9m = 2.8nm

Chapter 9

9.1. To find the first order corrections in eigenenergy and eigenfuction due to the

first term of the perturbating Hamiltonian one has to evaluate the matrix element

(see Eq. (9.14)).

W1m = ⟨um|k2x3|um⟩
𝜑(1) = um +

∑
k≠m
⟨uk|Ĥ′|um⟩
Em − Ek

For performing the integration the recurrence relation (7.18) is handy to be

applied repeatedly:

𝜉Hm = 1

2
Hm+1 +mHm−1

𝜉2Hm = 1

2

[
1

2
Hm+2 + (m + 1)Hm

]
+m

[
1

2
Hm + (m − 1)Hm−2

]
= 1

4
Hm+2 +

(
m + 1

2

)
Hm +m(m − 1)Hm−2 (9.1a)

𝜉3Hm = 1

4

[
1

2
Hm+3 + (m + 2)Hm+1

]
+
(
m + 1

2

) [
1

2
Hm+1 +mHm−1

]
+m(m − 1)

[
1

2
Hm−1 + (m − 2)Hm−3

]
= 1

8
Hm+3 +

3m + 3

4
Hm+1 +

3m2

2
Hm−1 +m(m − 1)(m − 2)Hm−3

(9.1b)

It is clear from Eq. (9.1) that there is no first order level shift caused by k2 term

because the eigfenfunctions are orthogonal and the output of Eq. (9.1b) does not

contain the term ∝ um.

W1m = ∫
∞

−∞
dxu∗mk2x

3um =
N2

mk2
𝛼4 ∫

∞

−∞
d𝜉e−𝜉2Hm𝜉3Hm 𝛼 ≡ (m𝜔

ℏ

)1∕2
= 0

To find the first order correction in eigenfunction one has to examine the matrix

element⟨uk|k2x3|um⟩
It is clear fromEq. (9.1b) that there are two non-zeromatrix elements correspond-

ing to



Solutions 315

k = m ± 1,m ± 2

The evaluation of the matrix element for such k can be carried out with the use of

Eq. (7.31).

One can treat the k4 term in a similar manner.

9.2. (a) Without the perturbation term one can look for the solution in the form

𝜑(x, y) = ux(x)uy(y)

and put it into the energy eigenequation and divide both sides with𝜑(x, y), obtain-

ing [
− ℏ2

2m

∂2

∂x2
+ 1

2
kxx

2
]
ux(x)

ux(x)
+

[
ℏ2

2m

∂2

∂y2
+ 1

2
kyy

2
]
uy(y)

uy(y)
= E

Since each term appearing on the left hand side depends solely on x and y respec-

tively, the only way to satisfy the equation is to put each term to a constant. As

a result two 1D eigenequations of HO ensue and one can write from Eqs. (7.12),

(7.25) as

unx(𝜉x) = Nnxe
−1∕2𝜉x2Hnx(𝜉x), 𝜉x = 𝛼xx,

uny(𝜉y) = Nnye
−1∕2𝜉y2Hny(𝜉y), 𝜉y = 𝛼yy

𝛼j =
(
m𝜔j

ℏ

)1∕2

, 𝜔2
j
=

kj

m
, j = x, y

Enx,ny
= ℏ𝜔x

(
nx +

1

2

)
+ ℏ𝜔y

(
ny +

1

2

)
, nx, ny = 0, 1, 2, … (9.2a)

(b) The first order level shift

W1 = ⟨unx(𝜉x)uny(𝜉y)|Ĥ′|unx(𝜉x)uny(𝜉y)⟩, Ĥ ′ = Cxy

is zero, that is, W1 = 0, since the integrand of the matrix element is odd. How-

ever there is the second order level shift contributed by two non-vanishing matrix

elements as clear from Eq. (7.31):

⟨unx|x|unx′⟩ = √
nx + 1

(2m𝜔x∕ℏ)1∕2
, n′x = nx + 1;

√
nx

(2m𝜔x∕ℏ)1∕2
, n′x = nx − 1

⟨uny|y|uny′⟩ = √
ny + 1

(2m𝜔y∕ℏ)1∕2
, n′y = ny + 1;

√
ny

(2m𝜔y∕ℏ)1∕2
, n′y = ny − 1

Thus one can write the second order level shift of the ground state as

ΔE(2) =
∑

nx′≠nx
ny′≠ny

|⟨unx′uny′ |Cxy|unx,ny⟩|2
[Enx,ny − Enx′,ny′ ]2

; n′x = nx ± 1, n′y = ny ± 1, nx = ny = 0

= C2ℏ

8m2𝜔3
, 𝜔x = 𝜔y = 𝜔 (9.2b)
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where use has been made of Eq. (9.18) and the recurrence relation,

𝜉xHnx =
1

2
Hnx+1 + nxHnx−1

(c) Given two new variables

𝜉 = (x + y), 𝜂 = (x − y)

one can invert it and obtain

x = 1

2
(𝜉 + 𝜂), y = 1

2
(𝜉 − 𝜂)

Hence one can express the potential energy as

1

2
kx

2 + 1

2
kyy

2 + Cxy = 1

2
kx [(𝜉 + 𝜂)∕2]2 + ky [(𝜉 − 𝜂)∕2]2 + C

1

4
(𝜉2 − 𝜂2)

≃ 1

8
(𝜉2 + 𝜂2)(kx + ky) +

1

4
C(𝜉2 − 𝜂2)

where an assumption was made, namely kx ≈ ky so that 2𝜉𝜂(kx − ky) ≈ 0.

The Hamiltonian then reads in terms of 𝜂, 𝜉 as

Ĥ = − ℏ2

2m

∂2
∂x2

+ 1

2
kxx

2 − ℏ2

2m

∂2
∂y2

+ 1

2
kyy

2 + Cxy

= − ℏ2

2𝜇

∂2
∂𝜉2

+ 1

2
k+𝜉2 − ℏ2

2𝜇

∂2
∂𝜂2

+ 1

2
k−𝜂2,

1

𝜇
= 1

m
+ 1

m

with

k± =
1

2

[
1

2

(
kx + ky

)
± C
]

(d) The coupled Hamiltonian has thus been decoupled with the use of new vari-

ables and the energy eigenvalues are given from Eq. (7.12) by

En𝜉,n𝜂 = ℏ𝜔+

(
n𝜉 +

1

2

)
+ ℏ𝜔−

(
n𝜂 +

1

2

)
where

𝜔± =
(
k±

𝜇

)1∕2

=
{
1

2

[(
kx + ky

)
∕2 ± C

]
∕𝜇
}1∕2

=

[(
kx + ky

)
∕2

m
± C

m

]1∕2
=
[
1

2

(
𝜔2
x + 𝜔2

y

)
± C

m

]1∕2
, 𝜇 = m

2

To compare the result one may expand 𝜔± as

𝜔± = 𝜔
[
1 ± C

m𝜔2

]1∕2
, 𝜔2 ≡ 𝜔2

x + 𝜔2
y

2

= 𝜔

[
1 ± 1

2

C

m𝜔2
− 1

4

C2

m2𝜔4
+ …

]
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Therefore the ground state for instance is given by

E00 = ℏ𝜔 −
ℏC2

4m2

1

𝜔3
(9.3)

9.3. (a) Given the eigenequation,

(Ĥ′ −W1)(ciui + cjuj) =
∑
n

a
(1)
n (Em − En)un

one can perform the inner product with respect to ui by multiplying both sides

with u∗
i
and carrying out the integrations, obtaining

ci(Ĥii −W1) + cjĤij = 0, Ĥ′
𝛼𝛽 ≡ ∫

∞

−∞
dru∗𝛼Ĥ

′u𝛽 (9.4)

where the orthonormality of the eigenfunctions have been used and Ei = Ej = Em

in this case.

One can likewise perform the inner product with respect to uj, obtaining

ciĤji + cj(Ĥjj −W1) = 0 (9.5)

Equations 9.4 and 9.5 when put into the matrix notation, are in agreement with

Eq. (9.30).

(b) Given the Schrödinger equation

iℏ
∑
n

ȧn(t)e−i(En∕ℏ)tun +
∑
n

Enan(t)e−i(En∕ℏ)tun

=
∑
n

an(t)Ene
−i(En∕ℏ)tun + 𝜆Ĥ′(t)

∑
n

an(t)e−i(En∕ℏ)tun

one can carry out the inner product on both sides with respect to uk , obtaining

iℏȧke
−i𝜔k t + Ekake

−i𝜔k t = Ekake
−i𝜔k t + 𝜆

∑
n

Ĥ′
kn
ane

−i𝜔nt ,
E

ℏ
= 𝜔

Obviously the second term on the left hand side and the first term on the right

hand side cancel each other out so that one can write

ȧke
−i𝜔k t = −

(
i𝜆

ℏ

)∑
n

Ĥ′
kn
ane

−i𝜔knt , 𝜔kn = 𝜔k − 𝜔n

9.4. (a) The interaction Hamiltonian is given by

Ĥ ′ = −(−eE)x = eEx

where −eE represents the force acting on the electron.



318 9 Solutions

(b) The unperturbed eigenfunction of the nanowire is given from Eq. (4.9) by

u(x, y, z) ∝ eikz
[(

2

W

)1∕2
sin
(nx𝜋
W

x
)] [(

2

W

)1∕2
sin

(
ny𝜋

W
y

)]
and represents the particle traveling along the z-direction as a free particle, while

confined in the x, y directions. The ground and first excited states therefore read

as

u(x, y, z) ∝ eikz
[(

2

W

)1∕2
sin
(

𝜋

W
x
)] [(

2

W

)1∕2
sin
(

𝜋

W
y
)]

, nx = ny = 1

u(x, y, z) ∝ eikz
[(

2

W

)1∕2
sin
(
2𝜋

W
x
)] [(

2

W

)1∕2
sin
(

𝜋

W
y
)]

,

nx = 1, ny = 2 or nx = 2, ny = 1

Hence the first order level shift of the ground state is given by

⟨u(x, y, z)|eEx|u(x, y, z)⟩ = eE
2

W ∫
W

0

dxx sin2
(

𝜋x

W

)
= eEW

2

Since the eigenfunction is normalized the y, z integrations automatically yield

unity.

9.5. Given the eigenfunction unlm the transition to other state occurs, provided the

matrix element is not zero, that is,⟨unlm|Ĥ′|un′l′m′⟩ ≠ 0, Ĥ′ = ezE0 cos𝜔t, z = r cos 𝜃

The evaluation of this matrix element requires both the angular and radial inte-

grations but the angular integration dictates whether or not it becomes zero.Thus

one has to consider

∫
2𝜋

0

d𝜑∫
𝜋

0

sin 𝜃d𝜃Y ∗
lm
cos 𝜃Yl′m′ = ∫

2𝜋

0

d𝜑∫
1

−1
dwY ∗

lm
wYl′m′ , w = cos 𝜃

Since Ylm ∝ exp±im𝜑,m,m′ should be constrained bym = m′ for the 𝜑-integral

not to yield zero Also since w is proportional to the first order Legendre polyno-

mial P1 the product PlPl′ should be odd, so that the total product PlPl′P1 is even

in w to make the w-integral not to vanish. This requires l − l′ = ±1 and therefore

the conditions imposed on l′m′ called the selection rule are given by

Δm = m −m′ = 0

Δl = l − l′ = ±1

For the perturbing Hamiltonian

Ĥ′ = exE0 cos𝜔t

= er sin 𝜃 cos𝜑E0 cos𝜔t

the transition matrix reads as

⟨unlm|Ĥ′|un′l′m′⟩ ∝ ∫
2𝜋

0

d𝜑∫
1

−1
dwY ∗

lm
sin 𝜃 cos𝜑Yl′m′
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Now the integrand of the 𝜑-integral is given by

ei(m
′−m)𝜑

• (ei𝜑 + e−i𝜑)∕2 ∝ ei(m
′−m+1)𝜑 + ei(m

′−m−1)𝜑

so that in order of the 𝜑-integration not to vanishm,m′ should be constrained by

Δm = m′ −m = ±1

Also since sin 𝜃 =
√
1 − cos2𝜃 =

√
1 − w2 thew-integral does not vanishwhen the

product Pm
l
Pm′
l

is even in w, so that the constraints on l are given by

Δl = l − l′ = 0, 2, …

The selection rule for the Hamiltonian

Ĥ ′ = eyE0 cos𝜔t

= er sin 𝜃 sin𝜑E0 cos𝜔t

can likewise be analyzed and the selection rule is the same as considered.

9.6. (a) Given the harmonic field

E = E0 cos𝜔t

the interaction Hamiltonian reads as

Ĥ ′ = −∫
x

0

dx(qE) = −qEx = −
qE0x

2
(ei𝜔t + e−i𝜔t)

The HO initially prepared in the state un can make the transitions to other state

n
′
via Ĥ′, the rate of which is from Eq. (9.42) by

ȧn′ = − i

ℏ
Ĥ′

n′ne
i𝜔n′nt ; 𝜔n′n =

1

ℏ
(En′ − En), Ĥ ′

n′n = ⟨un′|Ĥ ′|un⟩ (9.6)

Now the transition matrix element can be evaluated with the use of Eq. (7.31) as

⟨un′|Ĥ ′|un⟩ = −
qE0

2
(ei𝜔t + e−i𝜔t)∫

∞

−∞
dxunxun′

= −
qE0

2
(ei𝜔t + e−i𝜔t)

⎧⎪⎨⎪⎩
(n + 1)1∕2∕(2m𝜔c∕ℏ)1∕2, n′ = n + 1

n1∕2∕(2m𝜔c∕ℏ)1∕2, n′ = n − 1

0, otherwise

(9.7)

Thus by inserting Eq. (9.7) into Eq. (9.6) one can write

an′ (t) = −
q𝐸0

2ℏ

(
n′

2m𝜔c∕ℏ

)1∕2
• ∫

t

0

dt′[ei(𝜔+𝜔n′n)t + e−i(𝜔−𝜔n′n)t], n′ = n ± 1

where

𝜔n′n ≡ 1

ℏ
(En′ − En) =

1

ℏ

[
ℏ𝜔c

(
n′ + 1

2

)
) − ℏ𝜔c

(
n + 1

2

)]
= 𝜔c(n′ − n)

= ±𝜔c, 𝜔2
c ≡ k

m
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depending on n′ = n ± 1. Hence the transition occurs between two nearest eigen-

states.

(b) Consider the resonant interaction in which 𝜔 ≈ 𝜔c and n= 0. The integrand

consists of a fast oscillating term exp±[i(𝜔 + 𝜔c)] and the resonant term,

exp±[i(𝜔 − 𝜔c)]. Because the fast oscillating term averages out to be zero one

may disregard it and evaluate the time-integration, obtaining

an′ (t) = −
qE0
2

(
n′

2m𝜔c∕ℏ

)1∕2
•

1

i(𝜔 − 𝜔c)
[ei(𝜔−𝜔c)t − 1]

= −
qE0

2

(
n′

2m𝜔c∕ℏ

)1∕2

2e
±[i(𝜔−𝜔c )∕2]t sin(𝜔 − 𝜔c)t

(𝜔 − 𝜔c)
; n′ = 1

The probability of the HOmaking the resonant transition to n′ state at t = 𝜋∕𝜔 is

therefore given by

|an′ (t)|2 = q2E2
0
(𝜋∕𝜔)2

2m𝜔∕ℏ
, n′ = 1, t = 𝜋

𝜔

where use has been made of

sin[(𝜔 − 𝜔c)](𝜋∕𝜔)
(𝜔 − 𝜔c)

=

{
sin
[(

𝜔 − 𝜔c

)]
(𝜋∕𝜔)

(𝜔 − 𝜔c)(𝜋∕𝜔)

}
× (𝜋∕𝜔), 𝜔 → 𝜔c,

sin x

x
= 1 for x → 0

Chapter 10

10.1. (a) With the matrix representation of the spin operators and spin states

ŝ ≡ ℏ

2
𝜎; 𝜎x =

(
0 1

1 0

)
, 𝜎y =

(
0 −i
i 0

)
, 𝜎z =

(
1 0

0 −1

)
;

𝜒+ =
(
1

0

)
, 𝜒− =

(
0

1

)
one can write

ŝz𝜒+ =
ℏ

2

(
1 0

0 −1

)(
1

0

)
= ℏ

2

(
1

0

)
,

ŝz𝜒− =
ℏ

2

(
1 0

0 −1

)(
0

1

)
= −ℏ

2

(
0

1

)
ŝ2𝜒+ =

ℏ2

4

[(
0 1

1 0

)(
0 1

1 0

)
+
(
0 −i
i 0

)(
0 −i
i 0

)
+
(
1 0

0 −1

)(
1 0

0 −1

)]
×
(
1

0

)
= ℏ2

4

[(
1 0

0 1

)
+
(
1 0

0 1

)
+
(
1 0

0 1

)](
1

0

)
= 3ℏ2

4

(
1

0

)
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Similarly

ŝ2𝜒− =
3ℏ2

4

(
0

1

)
Also the raising and lowering operators flip the spin states as

ŝ+𝜒− =
1

2
(̂sx + îsy)

(
0

1

)
= 1

2

ℏ

2

[(
0 1

1 0

)
+ i

(
0 −i
i 0

)](
0

1

)
= 1

2

ℏ

2

[
2

(
0 1

0 0

)](
0

1

)
= ℏ

2

(
1

0

)
ŝ−𝜒+ =

1

2
(̂sx − îsy)

(
1

0

)
= 1

2

ℏ

2

[(
0 1

1 0

)
− i

(
0 −i
i 0

)](
1

0

)
= 1

2

ℏ

2

[
2

(
0 0

1 0

)](
1

0

)
= ℏ

2

(
0

1

)
The orthonormality of spin states can also be shown as

⟨𝜒+|𝜒+⟩ = (1 0
)(1

0

)
= 1, ⟨𝜒−|𝜒−⟩ = (0 1

)(0
1

)
= 1

⟨𝜒−|𝜒+⟩ = (0 1
)(1

0

)
= 0, ⟨𝜒+|𝜒−⟩ = (1 0

)(0
1

)
= 0

Thus the spin matrices are capable of describing the properties of the spin opera-

tors.

(b) One can prove the commutation relation between the x and y components as

follows.

[̂sx, ŝy] =
ℏ2

4

((
0 1

1 0

)(
0 −i
i 0

)
−
(
0 −i
i 0

)(
0 1

1 0

))
= ℏ2

4

((
i 0

0 −i

)
−
(
−i 0

0 i

))
= ℏ2

4

(
2i 0

0 −2i

)
= iℏ

2

ℏ

2

(
2 0

0 −2

)
= iℏ

2

(
1 0

0 −1

)
= iℏ

2
ŝz

The remaining cyclic commutation relations can be similarly proven.

10.2. The ground state eigenfunction is given from Eqs. (10.15) and (10.17) by

𝜑0(1, 2) = u100(r1)u100(r2)𝜒a = u100(r1)u100(r2)
1√
2
[𝜒+(1)𝜒−(2) − 𝜒−(1)𝜒+(2)]

In evaluating the expectation values of spin operators one needs to use𝜒a, 𝜒 s only,

since the inner product of u100 automatically yields unity. Thus one can write

Ŝz|𝜒a⟩ = 1√
2
(ŝ1z + ŝ2)|𝜒+(1)𝜒−(2) − 𝜒−(1)𝜒+(2)⟩

= 1√
2

[(
ℏ

2
− ℏ

2

) |𝜒+(1)𝜒−(2)⟩ − (−ℏ

2
+ ℏ

2

) |𝜒−(1)𝜒+(2)⟩] = 0|𝜒a⟩
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Ŝ2|𝜒a⟩ = 1√
2
(̂s1 + ŝ2) • (̂s1 + ŝ2)|𝜒+(1)𝜒−(2) − 𝜒−(1)𝜒+(2)⟩

= 1√
2
(̂s21 + ŝ2

2
+ 2 • ŝ1̂s2|𝜒+(1)𝜒−(2) − 𝜒−(1)𝜒+(2)⟩

= 1√
2

[
ℏ2
(
1

2

3

2
− 1

2

3

2

)
− 2ℏ2

(
1

4
− 1

4

)] |𝜒+(1)𝜒−(2) − 𝜒−(1)𝜒+(2)⟩
= ℏ20|𝜒a⟩

and therefore

⟨𝜒a|Ŝz|𝜒a⟩ = 0, ⟨𝜒a|Ŝ2|𝜒a⟩ = 0

10.3. (a) Since both unlm and 𝜒± constitute the orthonormal set of eigenfunctions,

one can write⟨𝜒+(1)𝜒+(2)|𝜒+(1)𝜒+(2)⟩ = 1, ⟨𝜒−(1)𝜒−(2)|𝜒−(1)𝜒−(2)⟩ = 1,⟨𝜒+(1)𝜒−(2)|𝜒−(1)𝜒+(2)⟩ = 0

so that

⟨𝜒s|𝜒s⟩ = ⟨𝜒a|𝜒a⟩ = 1, ⟨𝜒s|𝜒a⟩ = 0

Also,

1

2
⟨u100(1)u200(2) ± u100(2)u200(1)|u100(1)u200(2) ± u100(2)u200(1)⟩ = 1

1

2
⟨u100(1)u200(2) + u100(2)u200(1)|u100(1)u200(2) − u100(2)u200(1)⟩ = 0

Therefore

⟨𝜑s|𝜑s⟩ = ⟨𝜑a|𝜑a⟩ = 1, ⟨𝜑s|𝜑a⟩ = 0

(b)The expectation values of Ŝ2, Ŝz of the singlet state have already been evaluated

in the previous problem.Thus one needs to evaluate the expectation values of the

triplet states. The triplet state consists of the three symmetrized states:

Ŝz|𝜒s⟩ = (̂s1z + ŝ2z)|𝜒+(1)𝜒+(2)⟩ = ℏ

2
(1 + 1)|𝜒+(1)𝜒+(2)⟩ = ℏ|𝜒+(1)𝜒+(2)⟩

Ŝz|𝜒s⟩ = (̂s1z + ŝ2z)
1√
2
|𝜒+(1)𝜒−(2) + 𝜒−(1)𝜒+(2)⟩

= ℏ

2
[(1 − 1) + (−1 + 1)] 1√

2
|𝜒+(1)𝜒−(2) + 𝜒−(1)𝜒+(2)⟩

= ℏ

2
0|𝜒+(1)𝜒−(2) + 𝜒−(1)𝜒+(2)⟩

Ŝz|𝜒s⟩ = (̂s1z + ŝ2z)|𝜒−(1)𝜒−(2)⟩ = 2
(
−ℏ

2

) |𝜒−(1)𝜒−(2)⟩ = −ℏ|𝜒−(1)𝜒−(2)⟩
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Also ⟨χs|Ŝ2|χs⟩ = ⟨χs|(̂s1 + ŝ2) ⋅ (̂s1 + ŝ2)|χs⟩ = ⟨χs|(̂s21 + ŝ22) + 2̂s1 ⋅ ŝ2|χs⟩
= ⟨χs|(̂s21 + ŝ22) + 2(̂s+1 ⋅ ŝ−2 + ŝ−1 ⋅ ŝ+2|χs⟩
= ⟨𝜒s| [(3ℏ2

4
+ 3ℏ2

4

)
+ 2

(
ℏ2

4
+ ℏ2

4

)] |𝜒s⟩ = 2ℏ2

where use has been made of

ŝx = ŝ+ + ŝ−, ŝy = −i(̂s+ − ŝ−)

and the orthonormality of the spin states (see Eq. (10.8)).

10.4. The quantum numbers associated with the ground and first excited states

denoted by

u𝛼1 = u100𝜒+, u𝛼2 = u100𝜒−, u𝛼3 = u200𝜒+ or u200𝜒−

so that the three electron wave function is described by

𝜑(1, 2, 3) = 1√
3!

|||||||
u𝛼1 (1) u𝛼1(2) u𝛼1(3)
u𝛼2(1) u𝛼2(2) u𝛼2(3)
u𝛼3(1) u𝛼3(2) u𝛼3(3)

|||||||
The Hamiltonian of the Li-atom reads as

Ĥ =
3∑
j=1

Ĥ0j + Ĥ′;

Ĥ0j = −
ℏ2

2m
∇2

j
+

e2
M

rj
, Ĥ′ = e2M

(
1

r12
+ 1

r13
+ 1

r23

)
, e2M = e2

4𝜋𝜀0

where Ĥ0j is the unperturbed hydrogenic component and Ĥ′ accounts for the

repulsive interactions among the three electrons. Since Ĥ acting on the eigen-

function yields(
3∑
j=1

Ĥ0j + Ĥ′

)
u100(1) u100(2) u200(3)

= (2 E100 + E200) u100(1) u100(2) u200(3) + Ĥ ′ u100(1) u100(2) u200(3)

the total energy is given by

Etotal = ⟨u100(1) u100(2) u200(3)|
(

3∑
j=1

Ĥ0j + Ĥ′

)|u100(1) u100(2) u200(3)⟩
= (2E100 + E200) + E1,

E1 = ⟨u100(1) u100(2) u200(3)|Ĥ |u100(1) u100(2) u200(3)⟩
with E1 denoting the first order correction due to the perturbing Hamiltonian.

Also the z-component of the spin for example can be evaluated by using the spin
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functions as

(̂s1z + ŝ2z + ŝ3z) 𝜒+(1)𝜒−(2)𝜒±(3)⟩ = 1

2
ℏ (1 − 1 ± 1)𝜒+(1)𝜒−(2)𝜒+(3)⟩

= ±1

2
ℏ 𝜒+(1)𝜒−(2)𝜒+(3)⟩

⟨𝜒+(1)𝜒−(2)𝜒±(3)|(̂s1z + ŝ2z + ŝ3z)|𝜒+(1)𝜒−(2)𝜒±(3)⟩ = ±1

2
ℏ

The expectation value is determined by the spin states in u200.

10.5. (a) The 11 electrons in Na-atom are assigned the following quantum num-

bers:

100𝛼, 100𝛽; 200𝛼, 200𝛽

211𝛼, 211𝛽, 210𝛼, 210𝛽

21 − 1𝛼, 21 − 1𝛽, 300𝛼 or 𝛽

with 𝛼, 𝛽 denoting the spin up and spin.

(b)The charge associated with 11 protons in the nucleus is screened in part, hence

one has to introduce the effective atomic number Zeff. Then the ionization energy

required to knock out the valence electron in the outer orbit u300 is specified in

terms of the ionization energy of the H-atom by

IP1 =
𝜇Z2

eff
e4
M

2ℏ2

1

32
= 13.6eV

Z2
eff

9
= 5.14eV

Therefore Zeff ≃ 1.84 and the atomic orbital can likewise be found in terms of the

Bohr radius and Zeff as

⟨r⟩ ∼ a0n

Zeff

∼ 3

1.84
× 0.05nm ≃ 0.08nm

10.6. (a) The shift in the energy level due to the spin orbit coupling is given from

Eq. (10.40) by

𝛿Eso ≡ ⟨j,mj|Ĥ′
so|j,mj⟩ = ℏgs𝜇B

2
⟨f (r)⟩[j(j + 1) − l(l + 1) − s(s + 1)],

f (r) =
Ze2𝜇0

8𝜋mer
3

The average value of f (r) can be found with the use of the radial wavefunction

but < r > can also be approximated by the Bohr radius associated with each

state.
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Since the sum rule is given by j = l ± s there is no shift for s = 0 while for l ≠ 0 the

shift follows the rule

[(l + 1∕2)(l + 1∕2 + 1)] − l(l + 1) − (1∕2)(3∕2) = l

[(l − 1∕2)(l − 1∕2 + 1)] − l(l + 1) − (1∕2)(3∕2) = −(l + 1)

Therefore the initial single level is split into two, one raised and the other

lowered:

𝛿Eso = (Λ∕r3n)l; −(Λ∕r3n)(l + 1), Λ =
ℏgs𝜇B

2
×

Ze2𝜇0

8𝜋mer
3
n

, rn = na0

(b) The longest wavelength of the Balmer series corresponds to the transition

between n= 3 to n= 2. Hence the modification of the wavelength is given by

h
c

𝜆
= 𝛿Eso = [E3 − (Λ∕r3n=3)(l + 1)] − [E2 + (Λ∕r3n=2)l]

Chapter 11

11.1. (a) The energy eigenequation[
− ℏ2

2m
∇2 − e2M

(
1

ra
+ 1

rb

)]
(caua + caua) = E(caua + cbub);(

− ℏ2

2m
∇2 −

e2
M

r𝛼

)
u𝛼 = E0u𝛼, 𝛼 = a, b

can be rearranged as

ca

(
E0 −

e2
M

rb

)
ua + cb

(
E0 −

e2
M

ra

)
ub = E(caua + cbub)

or

ca

(
ΔE −

e2
M

rb

)
ua + cb

(
ΔE −

e2
M

ra

)
ub = 0, ΔE ≡ E0 − E

Hence by carrying out the inner product on both sides with respect to ua, ub one

obtains the coupled equation (11.5):

(ΔE + C)ca + (ΔES + D)cb = 0

(ΔES + D)ca + (ΔE + C)cb = 0
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(b) Since the equation is homogeneous, the solution of the expansion coefficients

ca, cb will be trivial unless the secular equation is satisfied,||||| ΔE + C ΔES + D

ΔES + D ΔE + C

||||| = 0, (ΔE + C)2 − (ΔES + D)2 = 0

andΔE can be found from the resulting quadratic equation and the eigenenergies

(Eq. (11.10b)) are specified as

E∓ = E0 +
C ∓ D

1 ∓ S

When these two roots are inserted into either one of the coupled equations ca,

cb get related with each other and one can therefore obtain the corresponding

wavefunctions as

𝜑∓(ra, rb) =
1√
2
(ua ∓ ub); cb = ∓ca

with the eigenvalues E∓.

11.2. Given the eigenfunction|𝜑±⟩ ≡ |ua(r1)ub(r2) ± ub(r1)ua(r2)⟩
one has to evaluate the integral

⟨𝜑±|Ĥ|𝜑±⟩; Ĥ = Ĥ1 + Ĥ2 +
e2
M

Rab

+
(−e2

M
)

rb1
+
(−e2

M
)

ra2
+

e2
M

r12

Since Ĥ is invariant under the exchange of r1 and r2 the four combinations of ua,

ub

ua(1)ub(2)ua(1)ub(2), j = r
j

(A)

±ua(1)ub(2)ub(1)ua(2) (B)

±ub(1)ua(2)ua(1)ub(2) (C)

ub(1)ua(2)ub(1)ua(2) (D)

reduce to two, since A = D, B = C under the exchange of r1, r2 and therefore one

needs to perform the integrations involving only A and B:

⟨ua(1)ub(2)|Ĥ|ua(1)ub(2)⟩ = 2E0 +
e2
M

Rab

+ 2C + ERI (11.1)

where

C ≡ ⟨ua(1)|−e2Mrb1
|ua(1)⟩ = ⟨ub(2)|−e2Mra2

|ub(2)⟩
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ERI ≡ ⟨ua(1)ub(2)| e2Mr12 |ua(1)ub(2)⟩
Also,

±⟨ua(1)ub(2)|Ĥ|ub(1)ua(2)⟩ = ±

[
2E0S

2 +
e2
M

Rab

S2 + 2DS + ECE

]
(11.2)

where

S ≡ ⟨ua(1)|ub(1)⟩ = ⟨ua(2)|ub(2)⟩
D ≡ ⟨ub(1)|−e2Mrb1

|ua(1)⟩ = ⟨ua(2)|−e2Mra2
|ub(2)⟩

ECE = ⟨ub(1)ua(2)| e2Mr12 |ua(1)ub(2)⟩
Hence by adding Eqs. (11.1) and 11.2 therefore results

E± =
⟨𝜑±|Ĥ|𝜑±⟩⟨𝜑±|𝜑±⟩ =

2
[
2E0

(
1 ± S2

)
+ e2

M

Rab

(1 ± S2) + 2C + ERI ± 2DS ± ECE

]
2(1 ± S2)

= 2E0 +
e2
M

Rab

+
2C + ERI

1 ± S2
±

2DS + ECE

1 ± S2

and one thus obtains

Eb ≡ E± − 2E0 =
e2
M

Rab

+
2C + ERI

1 ± S2
±

2DS + ECE
1 ± S2

11.3. Given Re = 0.24 nm, 𝜈e = 1.1 × 1013 s−1 and also the value of the reduced

mass

1

𝜇
= 1

mNa

+ 1

mCl

, 𝜇 = 23.3 × 10−27kg

the parametersA, 𝛼 and the bonding energy can be found as follows. One can start

with Eq. (11.24)

ΔE(R) = Ae−𝛼R −
e2
M

R
+ ΔE(∞), ΔE(∞) = 1.49eV, eM = e

4𝜋𝜀0

Since Re represents the intermolecular distance at whichΔE(R) is at its minimum

value one can write

∂ΔE (R)
∂R

||||Re

= 0 = −A𝛼e−𝛼Re +
e2
M

R2
e

(11.3)

Also the effective spring constant is specified by definition as

k ≡ 𝜇𝜔2
e = 𝜇(2𝜋𝜈e)2

≡ ∂2ΔE (R)
∂R2

||||Re

= A𝛼2e−𝛼Re − 2
e2
M

R3
e

(11.4)
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Hence by combining Eqs. (11.3) and (11.4) one can write

𝛼
e2
M

R2
e

− 2
e2
M

R3
e

= 𝜇𝜔2
e (11.5)

and find 𝛼 by using given values of Re = 0.24nm, 𝜈e = 𝜔e∕2𝜋 = 1.1 × 1013 as

𝛼 = 2

Re

+
𝜇𝜔2

eR
2
e

e2
M

≃ 3.6 × 1010m−1

With 𝛼 thus found A can in turn be determined from Eq. (11.3) as

A = 1

𝛼

e2
M

R2
e

e𝛼Re ≃ 6.28 × 10−16 J = 3.92 × 103 eV

With A, 𝛼 thus determined one can obtain the bonding energy by evaluating ΔE
at Re:

ΔE(Re) = Ae−𝛼Re −
e2
M

Re

+ 1.49eV ≃ −3.82eV

11.4. (a) Given the Hamiltonian

Ĥ = Ĥ0 + Eer cos 𝜃, Ĥ0 = − ℏ2

2m
∇2 −

e2
M

r

and the wavefunction consisting of the eigenfunctions of Ĥ0

𝜑 = c1|u100⟩ + c2|u210⟩
the energy eigenequation reads as

Ĥ𝜑 = E1c1|u100⟩ + Eer cos 𝜃c1|u100⟩ + E2c2|u210⟩ + Eer cos 𝜃c2|u210⟩
= E(c1|u100⟩ + c2|u210⟩)

or

(E1 − E + Eer cos 𝜃)c1|u100⟩ + (E2 − E + Eer cos 𝜃)c2|u210⟩ = 0

One can take the inner product on both sides with respect to u100, u210 by mak-

ing use of the orthonomality of the two eigenfunctions, and obtain the coupled

equations

(E1 − E)c1 +m12c2 = 0, m12 = ⟨u100|Eer cos 𝜃|u210⟩
m12

∗c1 + (E2 − E)c2 = 0, m12
∗ = ⟨u210|Eer cos 𝜃|u100⟩
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(b)The coupled equations are homogeneous, that is, the right hand sides are zero.

Thus to avoid the trivial solution the secular equation has to be satisfied:|||||E1 − E m12

m12
∗ E2 − E

||||| = 0, E2 − (E1 + E2)E + E1E2 − |m12|2 = 0

The roots of the quadratic equation constitutes the eigenenergy, which can be

found as

E± =
1

2
{(E1 + E2) ± [(E1 + E2)2 − 4(E1E2 − |m12|2)]1∕2}

= 1

2
{(E1 + E2) ± [(E2 − E1)2 + 4|m12|2]1∕2}

= 1

2
{(E1 + E2) ± [ΔE2 + 4|m12|2]1∕2}, ΔE = E2 − E1

With E+, E− inserted in either one of the coupled equations c1, c2 are interrelated

as

𝛼+ ≡ c2
c1
= −

m∗
12

E2 − E+
= −

2m∗
12

[ΔE − (ΔE2 + 4|m12|2)1∕2]
𝛼− ≡ c2

c1
= −

2m∗
12

[ΔE + (ΔE2 + 4|m12|2)1∕2]
Hence one can write the wavefunction as

𝜑± = c1(|u100⟩ + 𝛼|u210⟩), 𝛼 = 𝛼+ = 𝛼−

where c1 can be used for normalizing the eigenfunction.

(c) With c1 determined from the normalization, that is,

1 = ⟨𝜑|𝜑⟩ = |c1|2⟨u100 + 𝛼u210|u100 + 𝛼u200⟩ = |c1|2(1 + |𝛼|2)
one can specify the atom dipole as

⟨r⟩ = ⟨𝜑|r|𝜑⟩ = |c1|2⟨u100 + 𝛼u210|r|u100 + 𝛼u210⟩
= [𝛼⟨u100|r|u210⟩ + c.c.]∕(1 + |𝛼|2), ⟨u100|r|u100⟩ = ⟨u210|r|u210⟩ = 0

∝ E

Clearly the atomic dipole is driven by and is proportional to the electric field and

the proportionality constant is the atomic susceptibility.

11.5. Given the Hamiltonian

Ĥ = − ℏ2

2m

∂2
∂x12

+ 1

2
kx1

2 − ℏ2

2m

∂2
∂x22

+ 1

2
kx2

2 −
2e2

M
x1x2

R3

one may introduce new variables

𝜉 = x1 + x2, 𝜂 = x2 − x1
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By inverting one can write

x1 =
1

2
(𝜉 − 𝜂), x2 =

1

2
(𝜉 + 𝜂)

Thus the Hamiltonian can be expressed in terms of new variables as follows.

∂
∂x1

= ∂
∂𝜉

∂𝜉
∂x1

+ ∂
∂𝜂

∂𝜂
∂x1

= ∂
∂𝜉

− ∂
∂𝜂

∂2
∂x12

= ∂
∂𝜉

(
∂
∂𝜉

− ∂
∂𝜂

) ∂x1
∂𝜉

+ ∂
∂𝜂

(
∂
∂𝜉

− ∂
∂𝜂

)
∂𝜂
∂x1

= ∂2
∂𝜉2

− 2
∂2
∂𝜉∂𝜂

+ ∂2
∂𝜂2

Similarly

∂2
∂x22

= ∂2
∂𝜉2

+ 2
∂2
∂𝜉∂𝜂

+ ∂2
∂𝜂2

Hence one can write

− ℏ2

2m

(
∂2
∂x12

+ ∂2
∂x22

)
= − ℏ2

2m
• 2

(
∂2
∂𝜉2

+ ∂2
∂𝜂2

)
The potential energy is also expressed as

1

2
k(x12 + x2

2) = 1

2
k
[
1

4
(𝜉 − 𝜂)2 + 1

4
(𝜉 + 𝜇)2

]
= 1

4
k(𝜉2 + 𝜂2)

−
2e2

M

R3
x1x2 = −

2e2
M

R3

1

4
(𝜉 − 𝜂)(𝜉 + 𝜂) = −

e2
M

2R3
(𝜉2 − 𝜂2)

Therefore by summing the kinetic and potential energy terms one obtains

Ĥ = − ℏ2

2𝜇

∂2
∂𝜉2

− ℏ2

2𝜇

∂2
∂𝜂2

+ 1

2
k−𝜉2 + 1

2
k+𝜂2

where

1

𝜇
= 1

m
+ 1

m
, 𝜇 = m

2
, k∓ =

1

2
k ∓

e2
M

R3

Chapter 12

12.1. Given the energy eigenequation (12.4) one can use the Born approximation

(Eq. (12.5)) and divide both sides by 𝜑e, obtaining[
− ℏ2

2m
∇2

R
+ E (R)

]
𝜒(R) = E𝜒(R)

where E(R) is the eigenenergy of electrons in the molecule and should now be

treated as a function of R since the nuclei are not fixed but undergo the motion.

Also, one can look for the solution in the form

𝜒(R, 𝜃, 𝜑) = 𝜌(R)YM
L (𝜃, 𝜑)
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and insert into the equation and divide both sides with the spherical harmonics,

obtaining

− ℏ2

2𝜇R2

∂
∂R

(
R2 𝜌 (R)

∂R

)
+ ℏ2L(L + 1)

2𝜇R2
𝜌(R) + E(R)𝜌(R) = E𝜌(R)

Here use has been made of the fact that (i) the angular momentum operator

naturally enters into the Laplacian when it is expressed in spherical coordinates

(see (Eqs. (8.16) and (8.34)), (ii) the spherical harmonics are the eigenfunctions

of the angular momentum operator and is cancelled from both sides, and (iii) the

reduced mass of the two nuclei enters naturally in describing the internal motion

of the two nuclei (see Eqs. (8.28) and (8.29)).

The total energy consists of the energy eigenvalue of the electrons attached to

the nuclei and the vibrational and rotational energies of the two nuclei (see Eq.

(12.9a)). Now the minimum value E(Re) represents the eigenenergy of the elec-

trons with Re denoting the equilibrium distance between the two nuclei. Conse-

quently the radial equation (12.10) ensues.

12.2. (a) The moment of inertia of the two particle system with mass m1, m2 and

displacement x1 and x2 from the fixed center is given by

I = m1x
2
1 +m2x

2
2

By introducing the center of mass and relative coordinates as

MX = m1x1 +m2x2, x = x1 − x2, M = m1 +m2

and inverting the relation one finds

x1 = X +
m2x

M
, x2 = X −

m1x

M

Hence the moment of inertia can be specified in terms of X and x as

m1x
2
1 +m2x

2
2 = m1

(
X +

m2x

M

)2
+m2

(
X −

m1x

M

)2
= MX2 +

m1m2

m1 +m2

x2

= MX2 + 𝜇x2; 1

𝜇
= 1

m1

+ 1

m2

with 𝜇 denoting the reducedmass.The first term accounts for the two nuclei mov-

ing together as a free particle while the second term represents the moment of

inertia.

(b) To find the moments of inertia of H2, HCl the respective reduced mass has to

be found first:

1

𝜇H2

= 1

mp

+ 1

mp

= 2

mp

, 𝜇H2
= 8.4 × 10−28 kg

1

𝜇HCl

= 1

mp

+ 1

35.5mp

= 1

mp

× 1.03, 𝜇HCl = 1.62 × 10−27 kg
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Here the mass of the atom was taken as the proton massmp times the mass num-

ber. Hence, I(H2)= 4.6× 10−48 kgm2, I(HCL)= 2.6× 10−47 kgm2

(c) The rotational energy is given from Eq. (12.11a) by

Er =
ℏ2L(L + 1)

2I
; I = 𝜇R2

e , L = 0, 1, 2, …

with I denoting the moment of inertia. The difference in energy involved in the

transition from L= 2 to L= 1 is given by

Er =
ℏ2

2I
[2(2 + 1) − 1(1 + 1)] = 2ℏ2

I

The transition frequency is therefore found via the relation h𝜈 = 2 × ℏ2∕2𝜇R2
e ,

that is,

𝜈 = 2ℏ2

Ih
= 2

(2𝜋)2

(
h

I

)
Hence upon inserting the moment of inertia found in (b) one finds

𝜈(H2) =
6.626 × 10−34 (J s)

2 × 𝜋2 × 4.6 × 10−48 (kgm2)
= 7.3 × 1012Hz

Likewise one finds

𝜈(HCl) = 1.31 × 1012Hz

12.3. (a)The reduced mass of each molecule has been found in the previous prob-

lem.

(b)The effective spring constants k can therefore be found as follows. By definition

one can write from Eq. (7.1)

k

𝜇
= 𝜔2 = (2𝜋𝜈)2 = 4𝜋2 ×

(
c

𝜆

)2
= 4𝜋2c2 × 𝜈2; 𝜈 ≡ 1

𝜆

Thus k can be specified in terms of the reduced mass 𝜇, the velocity of light c and

the wave number 𝜈. By inserting all the values given and converting them into the

MKS unit one finds

keff(H2) = 580Nm−1, keff(HCl) = 990Nm−1

12.4. The energy eigenequation of the 2D HO reads read as

Ĥ𝜑(x, y) = E𝜑(x, y)

with the Hamiltonian given by

Ĥ = Ĥx + Ĥy =
[
− ℏ2

2m

∂2
∂x2

+ 1

2
kxx

2

]
+
[
− ℏ2

2m

∂2
∂y2

+ 1

2
kyy

2

]
As usual one can look for the solution in the form

𝜑(x, y) = u(x)u(y)
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and insert into the eigenequation and divide both sides by 𝜑(x, y), obtaining

Ĥxu(x)
u(x)

+
Ĥyu(y)
u(y)

= E

Since each term on the left hand side depends solely on x, y the only way to sat-

isfy the equation is to put each term to a constant. In this case one obtains two

independent ID harmonic oscillator eigenequations:

Ĥxu(x) = Exu(x), Ĥyu(y) = Eyu(y), Ex + Ey = E

Hence one can transcribe all of the results obtained for analyzing the 1D HO in

Chapter 7. Specifically the eigenenergy is given by

E(nx, ny) = ℏ𝜔x

(
nx +

1

2

)
+ ℏ𝜔y

(
ny +

1

2

)
; 𝜔𝛼 =

(
k𝛼

m

)1∕2

, 𝛼 = x, y

and the corresponding eigenfunctions are given in Eq. (7.25). If kx = ky = k the

total energy reads as

E(nx, ny) = ℏ𝜔(nx + ny + 1); 𝜔 =
(

k

m

)1∕2

and is degenerate aside from the ground state, in which nx = ny = 0. For the first

excited state there is two-fold degeneracy corresponding to nx = 1 and ny = 0 and

vice versa. The degree of degeneracy increases in higher lying states.

12.5. (a) One can find the effective masses required by following the steps pre-

sented in 12.2. The reduced masses thus found are listed below:

𝜇D2 = 1.67 × 10−27 kg, 𝜇CO = 1.15 × 10−26 kg

𝜇O2
= 1.33 × 10−26 kg, 𝜇NaCl = 2.3 × 10−26 kg

(b) With the use of the reduced mass and the wave number the effective spring

constant given by

k

𝜇
= 𝜔2 = (2𝜋𝜈)2 = 4𝜋2 ×

(
c

𝜆

)2
= 4𝜋2c2 × 𝜈2; 𝜈 ≡ 1

𝜆

can be evaluated as

keffD2 = 5.96 × 101Nm−1, keffCO = 2.08 × 102Nm−1

keffO2
= 1.27 × 102Nm−1, kNaCl = 1.29 × 101Nm−1

(c) Now that 𝜇 and keff have been found the respective zero point energy

E0 =
1

2
h𝜈 = 1

2
h

[(
1

2𝜋

)(keff
𝜇

)1∕2
]
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can also be evaluated as

E0D2 = 9.9 × 10−21 J = 6.14 × 10−2 eV, E0CO = 7.08 × 10−21 J = 4.4 × 10−2 eV

EO2
= 5.15 × 10−21 J = 3.19 × 10−2 eV, E0NaCl = 1.77 × 10−21 J = 1.1 × 10−2 eV

12.6 (a) One has to find the reduced mass first, which is given in this case by

1

𝜇
= 1

1.67 × 10−27 kg
+ 1

58.066 × 10−27 kg

Thus one finds 𝜇 = 1.62 × 10−27 kg. The vibrational frequency can then be evalu-

ated as

𝜈vib =
1

2𝜋
𝜔 = 1

2𝜋

(
k

𝜇

)1∕2

= 1

2𝜋

(
516.3Nm−1

1.62 × 10−27

)1∕2

= 8.9 × 1013Hz

(b) The P and R branches are given from Eqs. (12.23) and (12.24) by

𝜈P = 𝜈vib − 2𝛽Li ∶ 𝜈R = 𝜈vib + 2𝛽(Li + 1), Li = 1, 2, 3, …

with

𝛽 =
(

ℏ2

2𝜇R2
e

)(
1

ch

)
= 1

16𝜋2

6.626 × 10−34 J s

1.62 × 10−27kg × (1.27 × 10−10)m2 × 3 × 108ms−1

= 5.4 × 102m−1

Therefore the associated frequencies are given by

𝜈p ≡ c × 𝜈p = 𝜈vib − 2c𝛽Li = (8.9 × 1013 − 3.2 × 1011Li)Hz

𝜈R ≡ c × 𝜈R = 𝜈vib + 2c𝛽(Li + 1) = (8.9 × 1013 + 3.2 × 1011(Li + 1))Hz

The frequencies of the three innermost P and R lines can be found by putting Li =
1, 2, 3. Indeed the rotational frequencies are lower than the vibrational frequencies

by about 2 orders of magnitudes. The zero point energy can be obtained in the

usual manner.

12.7. One can treat the flipping of the proton spin in a manner identical to the

paramagnetic electron spin resonance.Thus the spin function can be represented

in analogy with Eq. (10.51) in terms of the nuclear spin up and spin down states:

𝜒N (t) = c+(t)e−i(𝜔0∕2)t𝜒+ + c−(t)ei(𝜔0∕2)t𝜒−;
ℏ𝜔0

2
= 𝜇BNB0 (12.1)

where B0 is the static magnetic field applied and the nuclear magnetic moment 𝜇N

is smaller than that of electron by three orders of magnitudes. The Hamiltonian

of the proton interacting with the magnetic field is given by (see Eq. (10.47))

Ĥ = Ĥ0 + Ĥ ′ =
gN𝜇B

ℏ
(B0 ŝzN + B1(t)̂sxN ), B1(t) =

B1

2
(ei𝜔t + e−i𝜔t)
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Thus the Schrödinger equation reads as

iℏ
∂
∂t

𝜒N (t) = ℏ
∑
±
[±(𝜔0∕2)c±(t) + iċ±(t)]e∓(i𝜔0t∕2)𝜒±

= (Ĥ0 + Ĥ ′)𝜒(t) =
∑
±

[
±gN𝜇BB0 +

gN𝜇B

ℏ
B1(t)̂sxN

]
c±(t)e∓i(𝜔0t∕2)𝜒±

(12.2)

where gN is the gyromagnetic ratio of the proton and the eigenequation of 𝜒± is

given by

Ĥ0𝜒± = ±gN𝜇BB𝜒±, gN𝜇BB =
1

2
ℏω

Evidently the first terms of the both sides of Eq. (12.2) cancel out, so that Eq. (12.2)

reduces to

iℏ
∑
±

ċ±(t)e∓(i𝜔0t∕2)𝜒±ċ±(t) =
gN𝜇B

ℏ

∑
±

B1(t)̂sxNc±(t)e∓(i𝜔0t∕2)𝜒± (12.3)

Hence by taking inner products on both sides of Eq. (12.3) with respect to 𝜒+ and

𝜒− and making use of the orthonormality of the spin functions one obtains the

coupled equations

iℏċ+ =
gN𝜇BN

2
B1e

−iΔtc−, Δ = 𝜔 − 𝜔0

iℏċ− =
gN𝜇BN

2
B1e

iΔtc+

where ℏ𝜔0 is the difference in energy between the spin up and down states, Delta

the frequency detuning between the driving frequency𝜔 and𝜔0. Also the coupling

is caused by the spin flip operators

⟨𝜒+ |̂sxN |𝜒−⟩ = ⟨𝜒+|12 (̂s+N + ŝ−N )|𝜒−⟩ = 1

2
ℏ

(see Eqs. (10.1)–(10.3)).The coupled equation can be treated in amanner identical

to the treatment of the electron paramagnetic resonance. Therefore the results

obtained in Eqs. (10.55)–(10.57) can be directly used.

Chapter 13

13.1. (a)When the wavefunction (13.12) is inserted into the wave equation (13.11)

there results

iℏ

2∑
j=1
[−i𝜔jaj(t) + ȧj(t)]e−i(Ej∕ℏ)t|uj⟩

=
2∑
j=1

Ejaj(t)e−i(Ej∕ℏ)t|uj⟩ + Ĥ′(t)
2∑
j=1

aj(t)e−i(Ej∕ℏ)t|uj⟩, 𝜔j = Ej∕ℏ
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Obviously the first terms on both sides are identical and cancel each other out and

equation reduces to

iℏ

2∑
j=1

ȧj(t)e−i(Ej∕ℏ)t|uj⟩ = Ĥ ′(t)
2∑
j=1

aj(t)e−i(Ej∕ℏ)t|uj⟩, Ĥ ′(t) = −eE(t)(̂ef ⋅ r)

One can perform the inner product on both sides with respect to u1, u2, obtaining

iℏȧ1(t)e−i𝜔1t = −𝜇E(t)a2(t)e−i𝜔2t , 𝜇 ≡ e⟨1|̂ef ⋅ r|2⟩, ℏ𝜔j = Ej

iℏȧ2(t)e−i𝜔2t = −𝜇E(t)a1(t)e−i𝜔1t

where the orthonormality of u1, u2 has been used and also the fact that⟨uj|Ĥ′|uj⟩ = 0. The coupled equations can be rearranged as

ȧ1 = i
𝜇E(t)

ℏ
a2e

−i𝜔0t , 𝜔0 ≡ E2 − E1

ℏ

ȧ2 = i
𝜇E(t)

ℏ
a1e

−i𝜔0t (13.1)

(b) The solutions of Eq. (13.1) has been obtained in the text and one can use

Eq. (13.15) and write

a1(t) = cosΩt; a2(t) = i sinΩt

and describe the evolution in time of the atom dipole moment as

⟨𝜇⟩ = ⟨𝜓|𝜇|Ψ⟩; Ψ(r, t) = cos(Ωt)e−i𝜔1tu1(r) + i sin(Ωt)e−i𝜔2tu2(r)
= 𝜇i{sin(Ωt) cos(Ωt)[e−i𝜔0t − ei𝜔0t], 𝜇 ≡ e⟨1|̂ef ⋅ r|2⟩
= 𝜇 sin(2Ωt) sin𝜔0t

where the dipole moment is specified by the integration

⟨𝜓|𝜇|𝜓⟩ ≡ ∫
∞

−∞
dr(𝜓∗𝜇𝜓)

Thus the atom dipole moment oscillates with the atomic transition frequency

𝜔0 while the magnitude of the moment evolves in time with the transition

frequency Ω.

13.2. (a) With the wavefunction

𝜓(r, t) =
2∑
j=1

ajs(t)|uj⟩; Ĥ0|uj⟩ = Ej|uj⟩, j = 1, 2 (13.1)

used in the wave equation (13.11), it reads as

iℏ

2∑
j=1

ȧjs(t)|uj⟩ = 2∑
j=1

Ejajs(t)|uj⟩ + Ĥ′(t)
2∑
j=1

ajs(t)|uj⟩
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By performing the inner product on both sides with respect to u1, u2, one obtains

iℏȧ1s(t) = E1a1s − 𝜇E(t)a2s(t), 𝜇 ≡ e⟨1|̂ef ⋅ r|2⟩
iℏȧ2s(t) = E2a2s − 𝜇E(t)a1s(t) (13.2)

Here the orthonormality of the two eigenfunctions has been used together with

the fact that the diagonal matrix elements of Ĥ ′ vanish due to the odd parity of

the integrand involved.

(b) Since ajs(t) = aj(t) exp−(i𝜔jt), one can write

ȧjs =
d

dt
aje

−i𝜔j t = ȧje
−i𝜔j t + (−i𝜔j)aje−i𝜔j t , j = 1, 2

so that when ajs(t) is replaced by aj(t) the coupled equations (13.2) are reduced to

Eq. (13.13) in the text.

(c) Now that the two sets of the coupled equations are shown identical, one can

use the solution obtained for aj(t) under the same initial condition and write

a1s(t) = a1(t)e−i𝜔1t = cosΩte−i𝜔1t

a2s(t) = a2(t)e−i𝜔2t = i sinΩte−i𝜔2t (13.3)

When Eq. (13.3) is used in the representation of the wavefunction (13.1), it

becomes identical to the wavefunction expressed in terms of aj(t) and therefore

the description of the atom dipole moment should be the same (see Eq. (13.8)).

13.3 (a) With the electric and magnetic field given in Eq. (13.19)

E
l
= ŷ

√
2

V𝜀
pl(t) sin klz, H

l
= x̂

√
2

V𝜇
ql(t)𝜔l cos klz

one can express the field energy residing in the lth mode as

Ĥl = ∫
L

0

Adz

[
𝜀|E|2
2

+ 𝜇|H|2
2

]
= ∫

L

0

Adz
[
1

AL
sin2
(
klz
)
p2
l
(t) + 1

AL
𝜔2
l
cos2(klz)q2l (t)

]
= 1

L∫
L

0

dz

[
1 − cos

(
2klz
)

2
p2
l
(t) + 𝜔2

l

1 + cos(2klz)
2

q2
l
(t)

]
= 1

2
p2
l
(t) + 1

2
𝜔2
l
q2
l
(t)
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where A, L denote the cross-sectional area and length of the cavity. In performing

the integral a well known trigonometric identity has been used together with the

boundary condition of the standing wave.

(b) The commutation relation of the creation and annihilation operators reads

from Eq. (13.25) as

[al, a+l ] =
1

2ℏ𝜔l

[(𝜔lql + ipl), (𝜔lql − ipl)]

= 1

2ℏ𝜔l

{[𝜔lql, 𝜔lql] − i𝜔l[ql, pl] + i𝜔l[pl, ql] + [pl, pl]}

= 1

2ℏ𝜔l

{−i𝜔l[ql, pl] + i𝜔l[pl, ql]}

= 1

2ℏ𝜔l

{−i𝜔l × iℏ + i𝜔l × (−iℏ)} = 1

where use has been made of the commutation relation

[ql,pl] = iℏ, [ql,ql] = 0, [ql,pl] = 0

13.4. (a) One can invert the relation given in Eq. (13.25) and express ql, pl in terms

of the creation and annihilation operators:

ql =
(

ℏ

2𝜔l

)1∕2

(al + a+
l
), pl = −i

(
ℏ𝜔l

2

)1∕2

(al − a+
l
)

Now ql, pl corresponds to x, px of the harmonic oscillator, so that one can write

the Hamiltonian as

H = 1

2
kq2

l
+ 1

2
p2
l
, m = 1

= 1

2
k ×
(

ℏ

2𝜔l

)
(al + a+

l
)(al + a+

l
) − 1

2
×

ℏ𝜔l

2
(al − a+

l
)(al − a+

l
)

=
ℏ𝜔l

4
[(al + a+

l
)(al + a+

l
) − (al − a+

l
)(al − a+

l
)], k = 𝜔2

l

=
ℏ𝜔l

4
[2ala+l + 2a+

l
al] =

ℏ𝜔l

4
2[ala+l + a+

l
al]

= ℏ𝜔l

[
a+
l
al +

1

2

]
, ala

+
l
= a+

l
al + 1

(b) The standing wave mode representation of the electric field given in Eq.

(13.33a) can be recast into the traveling wave mode as follows:

E
l
= ŷi

√
ℏ𝜔l

V𝜀
[a+

l
(t) − al(t)] sin klz

= ŷi

√
ℏ𝜔l

V𝜀
[a+

l
(0)ei𝜔l t − al(0)e−i𝜔l t] (e

iklz − e−iklz)
2i

Since any combination of the product exp(±i𝜔t) × exp(±ikz) is the solution of the

wave equation of E one can choose those combination describing the propagation
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in a desired direction.Thus one can utilize the representation given in Eq. (13.33a):

E
k
= ie

k𝜆

√
ℏ𝜔k

2V𝜀
[a+

k𝜆
(t)e−ik⋅r − a(t)k𝜆eik⋅r]

where ŷ can be replaced by the polarization vector. One can likewise construct the

traveling H field.

(c)The transition rate in Eq. (13.36) involves the transitionmatrix element given by

W ∝ |⟨u1, nl + 1|e(̂el𝜆 ⋅ r)(a+k𝜆(t)e−ik⋅r − ak𝜆(t)eik⋅r)|u2, nl⟩|2
Now the interaction Hamiltonian operating on the state |u2, nl⟩ yields
(a+

k𝜆
(t)e−ik⋅r − ak𝜆(t)eik⋅r)|u2, nl⟩= e−ik⋅r(nl + 1)1∕2|u1, nl + 1⟩ − n1∕2eik⋅r|u2, nl − 1⟩

Obviously the first term can be connected to the state |u1, nl + 1⟩ accounting for
the electron making the transition from the upper to lower state, while emitting a

photon. Hence the resulting transition rate

W ∝ nl + 1

naturally incorporates both the induced and spontaneous emission of radiation.

Chapter 14

14.1. (a) The coupled equations

ȧ1s(t) = −i𝜔1a1s + i
𝜇E(t)

ℏ
a2s, ȧ2s(t) = −i𝜔2a2s + i

𝜇E(t)
ℏ

a1s (14.1)

have been derived already in Eq. (13.2).

(b) By using Eq. (14.1) one can obtain

d

dt
(a∗1sa1s) = ȧ∗1sa1s + a∗1sȧ1s

=
(
i𝜔1a

∗
1s − i

𝜇E (t)
ℏ

a∗2s

)
a1s + a∗1s

(
−i𝜔1a1s + i

𝜇E (t)
ℏ

a2s

)
= −i𝜇E(t)

ℏ
a∗2sa1s + i

𝜇E(t)
ℏ

a2sa
∗
1s

d

dt
(a∗2sa2s) = ȧ∗2sa2s + a∗2sȧ2s

=
(
i𝜔2a

∗
2s − i

𝜇E (t)
ℏ

a∗1s

)
a2s + a∗2s

(
−i𝜔2a2s + i

𝜇E (t)
ℏ

a1s

)
= −i𝜇E(t)

ℏ
a∗1sa2s + i

𝜇E(t)
ℏ

a∗2sa1s
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Therefore by subtracting the latter equation from the former one obtains

d

dt
(𝜌11 − 𝜌22) =

2i𝜇E(t)
ℏ

(𝜌21 − 𝜌∗21)

(see Eq. (14.14)). One can likewise derive Eq. (14.15a), that is,

d

dt
𝜌21 =

d

dt
a2sa

∗
1s = −i𝜔0𝜌21 + i

𝜇E(t)
ℏ

(𝜌11 − 𝜌22), 𝜔0 =
E2 − E1

ℏ

14.2. (a) In the absence of the electric field Eq. (14.15b) in the text is reduced to

d

dt
(𝜌11 − 𝜌22) = −

(𝜌11 − 𝜌22) − (𝜌
(0)
11
− 𝜌(0)

22
)

𝜏

or equivalently

d(𝜌11 − 𝜌22)
dt

+
(𝜌11 − 𝜌22)

𝜏
=
(𝜌(0)

11
− 𝜌(0)

22
)

𝜏
(14.2)

Now one may introduce a function

𝜒 = (𝜌11 − 𝜌22) exp(t∕𝜏)

in which case the left hand side of Eq. (14.2) can be expressed as

d(𝜌11 − 𝜌22)
dt

+
(𝜌11 − 𝜌22)

𝜏
= e−t∕𝜏

d

dt
𝜒 (14.3)

Therefore by equating Eqs. (14.2) and (14.3) one can write

e−t∕𝜏
d

dt
𝜒 =

(𝜌(0)
11
− 𝜌(0)

22
)

𝜏

that is,

d

dt
𝜒 = d

dt
[(𝜌11 − 𝜌22)et∕𝜏] =

(𝜌(0)
11
− 𝜌(0)

22
)

𝜏
et∕𝜏 (14.4)

One can likewise introduce the function

𝜒 = e(i𝜔0t+t∕T2)𝜌21

and obtain

d

dt
𝜒 = d

dt
(ei𝜔0t+t∕T2𝜌21) = 0 (14.5)

A straightforward integration of Eqs. (14.4) and (14.5) leads to Eq. (14.16) in

the text.
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14.3. (a) The complex equations (14.20a) and (14.20b) read in the steady state as

0 = i(𝜔 − 𝜔0)(𝜎
(r)
21
+ i𝜎(i)

21
) + i

𝜇E0

2ℏ
(𝜌11 − 𝜌22) −

(𝜎(r)
21
+ i𝜎(i)

21
)

T2

0 =
i𝜇E0

ℏ
(2i𝜎(i)

21
) −

(𝜌11 − 𝜌22) − (𝜌
(0)
11
− 𝜌(0)

22
)

𝜏

Thus by singling out the real and imaginary parts from both sides of these two

equations one can write

(𝜔 − 𝜔0)𝜎
(i)
21
+

𝜎(r)
21

T2

= 0

−
𝜎(i)
21

T2

+ (𝜔 − 𝜔0)𝜎
(r)
21
+

𝜇E0

2ℏ
(𝜌11 − 𝜌22) = 0

−
2𝜇E0

ℏ
𝜎
(i)
21
−
(𝜌11 − 𝜌22)

𝜏
= −

(𝜌(0)
11
− 𝜌(0)

22
)

𝜏

and find the three unknowns from the three equations and obtain Eq. (14.21).

(b) With 𝜎(r)
21
, 𝜎(i)

21
, and (𝜌11 − 𝜌22) thus found one can specify the atomic suscepti-

bility by relating the polarization vector P to the atom dipole as

P(t) ≡ ReN⟨𝜇(t)⟩ ≡ 𝜀0𝜒
′
aE0 cos𝜔t + 𝜀0𝜒

′′
a E0 sin𝜔t

= N𝜇(𝜌21 + 𝜌12) = 2Re[𝜇(𝜎(r)
21
+ i𝜎(i)

21
)e−i𝜔t] = 2𝜇[𝜎(r)

21
cos𝜔t + 𝜎(i)

21
sin𝜔t]

and the results agree with Eq. (14.23).

14.4. At the steady state in which 𝜌11, 𝜌22 are independent of time the rate equation

(14.29) reduces to

0 = 𝜆2 −
1

𝜏2
𝜌22 −Wi(𝜌22 − 𝜌11)

0 = 𝜆1 −
1

𝜏1
𝜌11 +Wi(𝜌22 − 𝜌11)

where the spontaneous emission lifetime 𝜏sp is in general much longer than 𝜏1, 𝜏2
and discarded. One can rewrite the equations as

m11𝜌11 +m12𝜌22 = 𝜆1, m11 =Wi + 1∕𝜏1, m12 = −Wi

m21𝜌11 +m22𝜌22 = 𝜆2, m21 = −Wi, m22 =Wi + 1∕𝜏2
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and find 𝜌11, 𝜌22 via the Kramer’s rule as

𝜌11 =

|||||𝜆1 m12

𝜆2 m22

||||||||||m11 m12

m21 m22

|||||
, 𝜌22 =

|||||m11 𝜆1

m21 𝜆2

||||||||||m11 m12

m21 m22

|||||
Theexplicit expansion of the determinants leads to the results given in Eq. (14.30).

14.5. (a) The wavelength, frequency and the frequency spacing of the standing

wave modes in a cavity with length L are given from Eq. (14.26) as

𝜆ll

2
= L, 𝜆l =

2L

l
; 𝜈l =

c

𝜆l

= l
c

2L
; Δ𝜈c =

c

2L
l = 1, 2, 3 …

where the optical index of refraction has been taken unity. Thus the fundamental

wavelength and frequency versus L are:

L(m) 𝜆(m) 𝜈(Hz)
1 2 1.5 × 108

10−2 2 × 10−2 1.5 × 1010

10−4 2 × 10−4 1.5 × 1012

(b)The frequency at 500 nmwavelength is 0.6 × 1015Hz.The frequency spacing of

the standing wavemodes for L = 0.5 m is 3 × 108Hz.The bandwidth of a picosec-

ond pulse is roughly given by Δ𝜈 ≈ 1∕Δt = 1012 Hz and the carrier frequency

of the pulse centered at 500 nm wavelength is 6 × 1014 Hz. Thus the number of

standing waves mode-locked is about 2 × 106 centered around the carrier fre-

quency.

Chapter 15

15.1. (a) The degenerate and the non-degenerate representation of n

n = 2√
𝜋
NcF1∕2(𝜂Fn), n = NCe

−(EC−EF )∕kBT

can be explicitly compared by considering

F1∕2(𝜂Fn), e𝜂Fn

√
𝜋

2

(see Eq. (15.6–15.8)). As clear from the plot shown, the two quantities are

essentially identical when the Fermi level EF is a few kBT below the conduction

band.This indicates the range of the validity of the non-degenerate and analytical

expression of n. But when EF approaches the conduction band edge EC or is raised
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above EC, the analytical expression progressively over-estimates the actual value,

hence should not be used.

−1 0 1 2−2−3

100

101

10−1

F
1
/2

 (
𝜂
)

3

102

−4
10−2

2

π

0

𝜂

F1/2(𝜂)≃e𝜂

F1/2(𝜂) =
∞ x1/2dx

1+ex−𝜂

(b) The hole concentration is generally represented by

p = ∫
EV

EV−ΔEV
dEgp(E)fp(E), gp(E) =

1

2𝜋2

(
2mp

ℏ2

)3∕2

(EV − E)1∕2 (15.1)

where the density of states gp is strictly analogouswith gn except that the hole effec-

tive massmp replacesmn and (E − EC) is replaced by (EV − E)which is equivalent

to (E − EC). The electrons move up the conduction band with increasing energy,

while holes move down the valence band with increasing energy.

The hole occupation factor is by definition the probability that the state is not

occupied by the electron:

fp(E) ≡ 1 − 1

1 + e(E−EF )∕kBT
= 1

1 + e(EF−E)∕kBT
(15.2)

By inserting Eq. (15.2) into Eq. (15.1) and precisely following the steps used for n

one finds

p = 2√
𝜋
NVF1∕2(𝜂Fp); 𝜂Fp ≡ (EV − EF )

kBT
, NV ≡ 2

(
2𝜋mpkBT

h2

)3∕2

For EF lying above EV a few thermal energy kBT or more the same approximation

can be made as in the case of n and one can obtain

F1∕2(𝜂Fp) ≃ e𝜂Fp∫
∞

0

d𝜂e−𝜂𝜂1∕2 = e𝜂Fp

√
𝜋

2

and the analytical expression for p in the non-degenerate regime

p = NVe
−(EF−EV )∕kBT
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15.2. (a) In the thermal equilibrium the law of mass action holds and in Si the

intrinsic concentration is given at the room temperature by

np = n2
i
, ni = 1.45 × 1010cm−3

Thus one can find n for given p as

pcm−3 10 102 105 108

ncm−3 2.1 × 1019 2.1 × 1018 2.1 × 1015 2.1 × 1012

One can also find n as a function of T from ni given in Eq. (15.12) as a function T .

(b) To findND one has to find the location of EF in the band gap. Confining to the

case of non-degenerate n, p one can find EF by using

n = ni exp
EF − Ei
kBT

with Ei denoting the midgap corresponding to EF of ni.

ncm−3 2.1 × 1019 2.1 × 1018 2.1 × 1015 2.1 × 1012

EF − Ei(eV) 0.53 0.47 0.30 0.12

(c) Since EC − Ei = 0.56 eV, and the non-degenerate statistics holds true for EC −
EF > 2kBT and kBT = 0.025 eV, the non-degenerate statistics can be used for all

cases considered except for the case of 0.53 eV.

15.3. With T → 0 the freeze out effect is operative and all electrons in the donor

levelED aswell as in the valence band cannot be thermally excited into the conduc-

tion band in the n-type semiconductor. Thus the donor state should be occupied

by the electron, which is ensured by EF raised above ED. By the same token EF
should be lowered below EA level in the p-type semiconductor, so that no electron

can be in the acceptor state. Then the holes cannot be generated in the valence

band by electrons being promoted to the acceptor level EA from the valence band.

15.4. (a) With EF − EC = 0.1 eV n is in a strongly non-degenerate regime, so that

one has to use Eq. (15.6) and write

n = NC

2√
𝜋
F1∕2

(
0.1

0.025

)
, kBT = 0.025eV at T = 300K

Since

NC = 2.8 × 1019 cm−3, F1∕2(4) = 6.5115 at T = 300K

one finds n = 1.82 × 1020 cm−3. The ND level should be higher than n, since EF in

this case is near or above ED and not all of the electrons in the donor state are

promoted to the conduction band.
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(b) Similarly one has to use Eq. (15.10) for p and write

p = NV

2√
𝜋
F1∕2

(
0.15

0.025

)
, kBT = 0.025eV at T = 300K

Since

NV = 1.04 × 1019 cm−3, F1∕2(6) = 11.447

one finds p = 1.2 × 1020∕cm3. Again NA should be larger than p since EF in this

case is near or below EA, so that not all of the acceptor atoms can accept the elec-

tron and generate hole in the valence band. The quantitative analysis requires the

donor and acceptor statistics.

15.5. (a) The electrons in the quantum wire are confined in say y, z directions

while moving freely along the x-direction. One can therefore utilize the quantized

energy level from Eq. (4.27) as

En,m =
ℏ2k2x
2mx

+ E0(n2 +m2); E0 =
ℏ2𝜋2

2mW 2
; n,m = 1, 2, …

Hence the ground and first excited state levels are

E11 = 2E0 ≃ 15 meV, E12 = E21 = 5E0 ≃ 37.5meVat W = 10nm, mn = 0.9m0

The 1D electron density is given by

n1D =
∑
n,m

Δnnm

where Δnnm can be evaluated in several steps as

Δnnm = ∫
∞

Enm

dE g1Dfn(E), g1D(E) =
[(
√
2m1∕2)∕𝜋ℏ]
E1∕2 , E ≥ Enm

=
√
2m

1∕2
n

𝜋ℏ ∫
∞

Enm

dE
1

𝜀1∕2
1

1 + e(𝜀+Enm−EF )∕kBT
; 𝜀 = E − Enm,

≃
√
2m

1∕2
n

𝜋ℏ
e−(Enm−EF )∕kBT∫

∞

Enm

dE e−(E−Enm)∕kBT

(E − Enm)1∕2
; e(𝜀+Enm−EF )∕kBT >> 1

To perform the integration one can introduce a new variable

𝜉 =
(
E − Enm
kBT

)1∕2

and put the integral in the form and evaluate it as

∫
∞

Enm

dE e−(E−Enm)∕kBT

(E − Enm)1∕2
= 2
√
kBT∫

∞

0

d𝜉 e−𝜉2 =
√
kBT𝜋
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Therefore n1D is given by

n1D =
(
2mnkBT

𝜋

)1∕2
1

ℏ
e−(EC−EF )∕kBT

∑
nm

gnm e−E0(n
2+m2)∕kBT

where gnm denotes the degeneracy of the n,m state.

(b) One can quote the result obtained in Eq. (4.26) and write the subband energy

as

En =
ℏ2𝜋2

2mnW
2
n2, n = 1, 2, 3, …

and specify the 2D electron density as

n2D =
∞∑
s=1

Δns

where

Δns = ∫
∞

Es

dE g2Dfn(E), g2D = mn∕𝜋ℏ2

=
mn

𝜋ℏ2 ∫
∞

En

d(E − En)
1

1 + e(E−EF )∕kBT
, E ≥ En

=
mn

𝜋ℏ2 ∫
∞

0

d𝜀
1

1 + e(𝜀+En−EF )∕kBT
, 𝜀 = E − En

≃
mn

𝜋ℏ2
e−(En−EF )∕kBT∫

∞

En

d𝜀e−𝜀∕kBT , e(𝜀+En−EF)∕kBT >> 1

=
mn

𝜋ℏ2
e−(En−EF )∕kBTkBT

and n2D is represented by

n2D =
∑
n

Δnn =
mn

𝜋ℏ2
kBT
∑
n

e−(En−EF )∕kBT

Chapter 16

16.1. (a) The mobility and diffusion coefficient of electrons for example are given

from Eqs. (16.5)) and (16.7) by

𝜇n =
q𝜏n
mn

, Dn ≡ l2n
𝜏n

where 𝜏n, ln are the mean collision time and the mean diffusion length, respec-

tively. Now ln is specified by the distance covered by the electron moving with the

thermal speed vT in the mean collision time, that is,

ln = vT𝜏n =
(
kBT

mn

)1∕2

𝜏n;
mnv

2
T

2
=

kBT

2
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Here vT has been found from the thermal energy via the equipartition theorem

(see Eq. (1.15)). Hence one can derive the Einstein relation by

Dn

𝜇n

=
l2n∕𝜏n

q𝜏n∕mn

=

(
kBT

mn

)
𝜏2n∕𝜏n

q𝜏n∕mn

=
kBT

q

(b) Under the illumination n, p are given from Eq. (16.16) by

n = ni + nph = ni + (𝛼I𝜏n∕h𝜈)
p = ni + pph = ni + (𝛼I𝜏p∕h𝜈) (16.1)

where the second term in each expression denotes the photo-generated electron

and hole concentrations. Under the illumination n, p are specified by the quasi-

Fermi levels and are given by

n = nie
(EFn−Ei)∕kBT , p = nie

(Ei−EFp)∕kBT (16.2)

Hence by combining Eqs. (16.1) and (16.2) one can write

e(EFn−Ei)∕kBT = [1 + (𝛼I𝜏n∕nih𝜈)]
e(Ei−EFp)∕kBT = [1 + (𝛼I𝜏p∕nih𝜈)]

and by taking the logarithms on both sides one obtains

EFn − Ei
kBT

= ln[1 + (𝛼I𝜏n∕nih𝜈)]

Ei − EFp

kBT
= ln[1 + (𝛼I𝜏p∕nih𝜈)]

Therefore by adding the two equations one finds the splitting of EFn and EFp as

EFn − EFp = ln[1 + (𝛼I𝜏n∕nih𝜈)] + ln[1 + (𝛼I𝜏p∕nih𝜈)]
= ln{[1 + (𝛼I𝜏n∕nih𝜈)] × [1 + (𝛼I𝜏p∕nih𝜈)]}

16.2. (a) The resistivity is the inverse conductivity and is given by

𝜌n ≡ 1

𝜎n

= 1

q𝜇nn
= 1

1.6 × 10−19C • 800(cm2 (Vs)−1) • n (cm−3)

= 1

1.6 × 10−19C • 800 • (cm2 (Vs)−1)n(cm−3)
= 10Ωcm

One can thus find n as

nn =
1

1.6 × 10−19 • 800 • 10
= 7.8 × 1014 cm−3
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Once nn is known pn is to be found from the law of mass action at the room tem-

perature as

pn =
n2
i

nn
= (1.45 × 1010)2

7.8 × 1014
= 2.79 × 105 cm−3

Also the photogenerated density of e–h pairs is given by

nph = pph = g𝜏 = 1021 • 10−6 = 1015 cm−3

The total conductivity 𝜎T = 𝜎D + 𝜎ph is contributed by the dark and photo con-

ductivities. The former component is given by

𝜎D = q𝜇nn + q𝜇pp ≃ q𝜇nn

= 1.6 × 10−19 C • 800cm2 (Vs)−1 • 7.8 × 1014 cm−3 = 1.0 × 10−1℧cm−1

Likewise the photoconductivity is specified as

𝜎ph = q(𝜇nnph + 𝜇ppph)
= 1.6 × 10−19 • 1015 cm−3 • (800 + 400)cm2 (Vs)−1

= 1.92 × 10−1℧cm−1

(b) Since the total conductivity ismainly contributed by the photoconductivity the

ratio is given by

𝜎n

𝜎p

=
𝜇n

𝜇p

= 1

2

16.3 (a) The light intensity is specified by the density nph, energy and the velocity

of photon as

I = nph • h
c

𝜆
• c = h

c

𝜆
• Fph, Fph = nph • c

where Fph is the flux of photons. For I = 10 W, one finds the flux as

Fph =
10 (J∕scm2) • 500 × 10−9m

6.626 × 10−34 J s • 3 × 108m
= 2.52 × 1019cm−2 s−1

(b) The generation rate is specified in terms of I and the attenuation coefficient 𝛼

as

g = 𝛼(I∕hv) = 2.52 × 1020 cm−3 s−1
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16.4. The rate equation

∂pn
∂t

= gL −
pn − pn0

𝜏p

can be rearranged as

∂pn
∂t

+
pn
𝜏p

= gL +
pn0
𝜏p

or
∂
∂t
(et∕𝜏ppn) =

(
gL +

pn0
𝜏p

)
et∕𝜏p

Upon integrating both sides there results

et∕𝜏ppn(t) − pn(0) = (gL𝜏p + pn0)(et∕𝜏p − 1)

Or more specifically at t

pn(t) = pn(0)e−t∕𝜏p + (gL𝜏p + pn0)(1 − e−t∕𝜏p )

Thus for t ≫ 𝜏p the initial value decays away and the steady state value is attained

given by

pn = (gL𝜏p + pn0)

The first term of pn is the photo-generated hole density while the second term is

the equilibrium concentration. When the light is turned off at t = T then the rate

equation reads for t ≥ T as

∂
∂t
(et∕𝜏ppn) =

pn0
𝜏p

et∕𝜏p

and by integrating both sides one finds

pn(t) = pn(T)e−t∕𝜏p + pn0(1 − e−t∕𝜏p )

Thus pn(T) decays away while pn(t) attains the equilibrium value in the long time

limit.

16.5. (a) For 𝜎n = 𝜎p = 𝜎 the recombination rate due to a single trap is given from

Eq. (16.30) by

U =
𝜎vTNt(pn − n2

i
)

n + p + 2ni cosh
(Et−Ei)
kBT
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For multilevel traps one can generalize U as

U =
∑
j

Uj =
∑
j

𝜎vTNt(Ej)(np − n2
i
)

n + p + 2ni cosh
(

Ej−Ei

kBT

)
with j denoting jth trap level. One can further introduce the trap profile

Nt(Ej) = ft(E)

and recast U in terms of the distributed traps:

U = 𝜎vT (np − n2
i
)∫

EG∕2

−EG∕2

ft(E)

n + p + 2ni cosh
(

E−Ei

kBT

)
where E is taken centered at the midgap. For a flat distribution

ft(E) = Dss

U is obtained as

U = 1

𝜏
(np − n2

i
)∫

EG∕2

−EG∕2

dE

n + p + 2ni cosh
(

E−Ei

kBT

) ,
1

𝜏
= 𝜎vTDss

One can carry out the integration incorporating the various cases in the denomi-

nator.

(b) For the Gaussian distributed trap profile

f (E) = Nt exp−
(E − Etc)2

2𝜎2

U reads as

U = 1

𝜏
(np − n2

i
)∫

EG∕2

−EG∕2

e−(E−Etc)
2∕2𝜎2

dE

n + p + 2ni cosh
(

E−Ei

kBT

) ,
1

𝜏
= 𝜎vTNt

In the n-type semiconductor for instance n is dominant so thatU can be expressed

in terms of the error function as

U ≈
(np − n2

i
)

𝜏n

√
2𝜎∫

Λ

0

e−𝜉2d𝜉, 𝜉 =
E − Etc√

2𝜎
, Λ =

EG∕2 − Etc√
2𝜎

=

[(
np − n2

i

)
𝜏n

√
2𝜎

] √
𝜋

2
erfΛ

Here the traps in the lower half of the bandgap has been discarded and the well

known error function has been used,

erf Λ = 2√
𝜋 ∫

Λ

0

e−𝜉2d𝜉
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Chapter 17

17.1. (a) The junction parameters, for example, the built-in potential, depletion

depth, themaximum electric field, and so on at given doping level can be specified

explicitly by combining Eqs. (17.3)–17.5):

𝜑bi =
kBT

q
ln

(
NAND

n2
i

)
=

q

2𝜀s
•

NAND

NA + ND

• W 2 = 1

2
EmaxW

W = xn + xp, xn =
W

(1 + ND∕NA)
, xp =

W

(1 + NA∕ND)

Hence one can evaluate those parameterswith the use of the formulae given above.

(b) Under the reverse biasW , Emax all increase and one can write from Eqs. (17.9))

and (17.10)) to

W (VR) =

[
2𝜀s
(
NA + ND

)
q • NAND

(𝜑bi + |VR|)
]1∕2

, 𝜑bi → 𝜑bi + |VR|
Emax =

2(𝜑bi + |VR|)[
2𝜀s(NA+ND)
q • NAND

(𝜑bi + |VR|)]1∕2 =
2(𝜑bi + |VR|)1∕2[

2𝜀s(NA+ND)
q • NAND

]1∕2
and find the breakdown voltage V BR for given breakdown field and dop-

ing level. For example for EBR = 3 × 105 Vcm−1, NA = 2 × 1018 cm−3 and

ND = 1015 cm−3, 𝜑bi ≃ 0.78 V and VBR ≃ 17 V. For the same NA but for different

ND of 2 × 1017 cm−3 𝜑bi ≃ 0.9 V, and VBR ≃ 1.2 V, and is reduced by a factor of

about 10. This points to V BR depending sensitively on the doping level.

17.2. The junction band bending is specified by the built-in barrier potential via

𝜑bi = 𝜑Fn + 𝜑Fp

where the electron and hole Fermi potentials depend on doping level ND and NA,

respectively.Thus, for sufficiently high doping level it is possible for EF to be raised

above EC in the n bulk and EF to be lowered below EV in the p bulk regions, thereby

making it possible to induce the band bending larger than the bandgap.

(b) To analyze the junction band bending larger than EG the statistics of the donor

and acceptor atoms are essential. For the degenerate doping level EF can be raised

above ED in the n-bulk. By the same token EF can be lowered below EA in the p-

bulk regions. Therefore all of the electrons in the donor atoms are not necessarily

donated to the conduction band. Likewise all of the acceptor atoms can accept the

electrons to create the holes in the valence band. Consequently the ionized donor

and acceptor atoms constitute a fraction of ND, NA.
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To estimate such ND, NA one may choose for instance ND, NA such that EF coin-

cides with EC, EV in n and p bulk regions, respectively and write

n = 2√
𝜋
NCF1∕2(0) = N+

D
=

ND

1 + gDe
(EF−ED)∕kBT

, EC = EF (17.1a)

p = N−
A
=

NA

1 + gAe
(EA−EF )∕kBT

= 2√
𝜋
NVF1∕2(0), EV = EF (17.1b)

Here, N+
D
, N−

A
represent the ionized donor and acceptor atoms by donating elec-

trons to the conduction band and holes to the valence band, respectively and

constitute a fraction of ND, NA. Also gD and gA are the degeneracy factors for

ED and EA states. By using the values of NC, NV in silicon and germanium into

Eqs. (17.1) and (17.2) one can estimate the required levels of ND, NA.

17.3. In the completely depleted approximation the space charge 𝜌 is taken con-

stant at the levelND,NA in n and p regions, respectively. Consequently the E-field

is linear in x. In this case the built in potential 𝜑bi is obtained by finding the tri-

angular area under the E–x curve, as discussed. The area is in turn decomposed

into two triangular areas and one can write

𝜑bi ≡ 1

2
EmaxW =

qNA

2𝜀s
x2p +

qND

2𝜀s
x2n, W = xn + xp

(see Eq. 17.5a) and Figure 17.2). At Δx distance inside W from the edge xn, that

is,

Δx = xn − x

the space charge potential is less than 𝜑bi by an amount given by

𝜑(x) = 𝜑bi − Δ𝜑(x), Δ𝜑(x) =
qND

𝜀s
Δx × 1

2
Δx =

qND

2𝜀s
Δx2

Here Δ𝜑(x) was approximated by the triangular area of height and base all speci-

fied in terms of Δx. Therefore n at Δx decreases and is given by

n(x) = nn0 exp−
(
q2NDΔx2

2𝜀skBT

)
= nn0e

−𝜉2 , 𝜉 ≡
(

q2ND

2𝜀skBT

)1∕2
•Δx

since EC(x) − EF increases at Δx because of the band bending (see Figure 17.3)).

Consequently one can estimateΔx at which n reduces to a negligible level, say 2%

of ND at xn, that is, 𝜉 = 2. Therefore one can assess Δx from 𝜉 as

2 = 𝜉 =
(

q2ND

2𝜀skBT

)1∕2

Δx̃n
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For NA = 1017 cm−3 and ND = 1016 cm−3 for example one finds

(
q2ND

2𝜀skBT

) 1

2

=

[(
1.6 × 10−19

)2
C−2 •1016+6(m−3) × 4𝜋 × 8.988 × 109(Nm2C−2)

2 × 11.9 × 1.381 × 10−23 JK−1 •300K

]1

2

≃ 1.71 × 107m−1 ≃ 1.71 × 10μm−1

where the Coulomb constant has been used:

𝜀S = 𝜀r
1

4𝜋𝜀0
= 11.9 × 8.988 × 109 m2C−2

Therefore

Δx̃n =
2(

q2ND

2𝜀skBT

)1∕2 ≃ 0.12 μm

and one can likewise find

Δx̃p =
2(

q2NA

2𝜀skBT

)1∕2 ≃ 0.04 μm

For the same given doping level one can find the depletion depthW as

W =

(
2𝜀s
(
NA + ND

)
qNAND

𝜑bi

)1∕2

≃ 11 μm

Therefore the sum of Δx̃n and Δx̃n is a mere fraction of W and the completely

depleted approximation is shown a good approximation to make.

17.4. (a) Given the diffusion equation

d2pn
dx2

−
pn − pn0

L2p
= 0, x ≥ xn (17.2)

one should first treat the homogeneous part, namely

d2pn
dx2

−
pn

L2p
= 0

The solutions of the homogeneous equation are given by pn ∝ exp±[(x − xn)∕Lp].
Obviously the solution with the positive exponent should be discarded since it

diverges at large x and one can write the solution of Eq. (17.2) as

pn(x) = Ae−(x−xn)∕Lp + pn0
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Now the constant of integration A should be used to satisfy the boundary condi-

tions, namely

pn(xn) = pn0e
qV∕kBTat x = xn, pn(x → ∞) = pn0

Obviously these conditions are satisfied with the choice of A such that

pn(x) = pn0(eqV∕kBT − 1)e−(x−xn)∕Lp + pn0

(b) Given the recombination rate given from Eq. (17.20) by

U = 1

𝜏

n2
i
(eqV∕kBT − 1)

n + p + 2ni cosh(Et − Ei)∕kBT
, np = n2

i
eqV∕kBT

the maximumU ensues with the minimum value of n + p, which can be found by

putting the first derivative equal to zero, that is,

d(n + p) = 0

subject to the condition

pn = n2
i
eqV∕kBT

One can thus write

dn = −dp = −d

(
n2
i
eqV∕kBT

n

)
=

(
n2
i
eqV∕kBT

n2

)
dn =

(pn
n2

)
dn =

p

n
dn

and therefore

n = p = nie
qV∕2kBT

17.5.The current flowing under a bias is generally specified in terms of the gradient

of the quasi-Fermi level

Jn = 𝜇n n
d

dx
EFn, Jp = 𝜇p p

d

dx
EFp (17.3)

(see Eq. (16.19)). Also the forward current is given from Eq. (17.17) by

Jn ≃
qDnnp0

Ln
eqV∕kBT at x = −xp, Jp ≃

qDppn0

Lp
eqV∕kBT at x = xn (17.4)
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Thus by combining Eqs. (17.3) and (17.4) one can write

dEFn

dx
=
(qDnnp0∕Ln)eqV∕kBT

𝜇n nn0
,

dEFp

dx
=
(qDppn0∕Lp)eqV∕kBT

𝜇p pp0

Once injected into the depletion region, Jn, Jp aremaintained at the injection level.

For NA = 1017 cm−3 and ND = 1016 cm−3 for example the slope at the injection

plane can be re-expressed by using the Einstein relation as

dEFn

dx
=

kBT 𝜇n np0 e
qV∕kBT

Ln𝜇n nn0
=

kBT

Ln

n2
i

pp0nn0
eqV∕kBT ,

Dn

𝜇n

=
kBT

q

Also with the use of 𝜇n ≈ 800 cm2 (Vs)−1 and 𝜏n ≈ 0.1 μs the diffusion length is

estimated as

Ln = (Dn𝜏n)1∕2 =
(
kBT𝜇n𝜏n

q

)1∕2

=
(
1.381 × 10−23 J • 300K • 8 × 10 − 4m2 • 10−7 s

1.6 × 10−19 C

)1∕2

≃ 1.46 × 10−5m = 14.6 μm

Hence by using of Ln thus found one can estimate the slope of EFn for the given

doping level

dEFn

dx
= 1.381 × 10−23 JK−1 • 300K

1.46 × 10−5m

(1.45 × 1010)2 cm−6

1017 × 1016 cm−6
• eqV∕kBT

≃ 6 × 10−29 eqV∕kBT Jm−1

= 3.7 × 10−16 eqV∕kBT eVμm−1

Thus for the forward voltage of 0.6V for example one finds

dEFn

dx
≃ 4.8 × 10−6 eVμm−1

Therefore for W ≃ 11μm and for given doping level the total change of EFn is

∼ 5 × 10−5 eV and can therefore be neglected and EFn can be taken flat inW . One

can likewise show that EFp can be taken flat.

For the case of the reverse bias

Jn ≃
qDnnp0

Ln
=

kBT𝜇nnp0

Ln

and therefore EFn, EFp can also be shown to be nearly flat. However for a large

forward voltage the approximation ceases to be valid.
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17.6. The Zener breakdown is caused by the Fowler-Nordheim tunneling given

from Eq. (5.26) by

T ∼ exp

[
−
4
(
2mn

)1∕2
3qEℏ

E
3∕2
G

]
where V − E = EG. Under a reverse bias VR the junction electric field E is given

from Eq. 17.10) by

Emax ∼
2(𝜑bi + |VR|)1∕2[

2𝜀s(NA+ND)
q • NAND

]1∕2
The critical field for the onset of the Zener breakdown is determined by the con-

dition

qEmax
• W ≈ EG − q𝜑bi

The condition states that the band bending induced by VR plus the intrinsic band

bending exceeds EG so that the valence band on the p side lines up with the con-

duction band on the n side. In this case the electrons in the valence band can tunnel

through the triangular barrier into the conduction band on the n side, giving rise

to the breakdown current.

Clearly this points to the fact that the small EG enhances the F–N tunneling prob-

ability and also requires a smallerVR for lining up the valence band to the conduc-

tion, causing the breakdown. SinceW is determined by the doping level regardless

of EG the breakdown ismore likely to occur in a smaller bandgapmaterial for given

doping level. The VR responsible for the breakdown can be easily estimated with

the use of the equations given above.

Chapter 18

18.1. The steady state diffusion equation

p′′n −
pn − pn0

L2p
+

g̃D
Dp

= 0, or p ′′
n −

pn

L2p
= −

(
pn0

L2p
+

g̃D
Dp

)
with the boundary conditions

pn(xn) = 0, pn(x → ∞) = pno + g̃D𝜏p

can be solved by first considering the homogeneous equation

p′′n −
pn

L2p
= 0
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The solution of the homogeneous equation is given by pn ∼ exp±(x − xn)∕Lp and
the positive branch should be discarded since it diverges at x → ∞. Also the par-

ticular solution is obtained by inspection as

pn = pno + g̃0𝜏p, L2p∕Dp ≡ 𝜏p

Therefore the solution of the diffusion equation is given by

pn(x) = Ae−(x−xn)∕Lp + pno + g̃D𝜏p

where A can be used for satisfying the boundary condition, namely pn(xn) = 0.

Thus the solution reads as

pn(x) = (pno + g̃D𝜏p)(1 − e−(x−xn)∕Lp)

(b) The diffusion equation of the electron in the p sides is given by

n ′′
p −

np − np0

Ln
2

+
g̃D
Dn

= 0, or n ′′
p −

np

L2p
= −

(
np0

L2n
+

g̃D
Dn

)
The solution of the homogeneous equation is given by np ∼ exp±(x + xp)∕Ln. In
this case the negative branch has to be discarded, since np diverges at x → −∞.

Therefore by accounting for the boundary condition, np(−xp) = 0 one finds

np(x) = (npo + g̃D𝜏p)(1 − e(x+xp)∕Ln)

18.2.The effect ofRs is to reduce the load voltage provided by the junction forward

voltage. Therefore the power extracted is reduced as

PL = VLIL = (V − ILRs)[Il − Is(eq(VL+ILRs)∕kBT − 1)]

with V denoting the open circuit voltage (see Eq. (18.17)). Thus the series resis-

tance degrades the power extraction.

18.3. (a) The basic role of the solar cell is the power production

P = VL × IL

and the junction solar cell is based on the band bending as occurs in the junction

depletion depthW . The solar radiation is absorbed inW , generating the electron

hole pairs therein. The e–h pairs thus generated should be separated and con-

tribute to the load current IL. The separation is naturally assisted by the junction

band bending. Specifically the electrons roll down the junction potential hill while

holes roll up the hill. Simultaneously the built in potential of the junction provides

the load voltage VL. Thus, the junction band bending is the main driving force for

the operation of the solar cell.



358 18 Solutions

(b) There are a few key factors involved in the efficiency of the solar cell. To opti-

mize the power extraction Il should me made as large as possible. In addition VOC

should be large, which is given from Eq. (18.14) by

VOC =
kBT

q
ln

(
Il
IS

)
where IS denotes the saturated current of the junction (see Eq. (17.18)). Thus the

large Il also increases VOC. Now Il is commensurate with the linear attenuation

coefficient given by

Il ∝ g ∝ 𝛼, 𝛼 = A∗(ℏ𝜔 − EG)1∕2

Therefore to increase 𝛼 the bandgap of the material should be small so that the

absorption could occur over a broader range of the solar spectrum.However small

EG increases IS via the increased intrinsic carrier concentration

IS ∝ n2
i
∝ exp−EG∕kBT

and decreases VOC. It is therefore clear that to attain large VOC wider bandgap is

desirable.

In view of the merits and demerits of the wider and narrower bandgap an optimal

compromise is in order. More important the optimal combination of materials to

achieve large Il and VOC is an important issue.

18.4. (a)The overlap of EC, EV by 0.2 eV can be achieved by raising EF above EC by

say 0.1V in the n bulk, while lowering EF below EV by 0.1 eV in the p bulk. In this

strongly degenerate regime the degenerate statistics has to be used:

n = 2√
𝜋
NcF1∕2

(
EF − Ec

kBT

)
= N+

D
=

ND

1 + gDe
(EF−ED)∕kBT

, EF − EC = 0.1eV

p = = 2√
𝜋
NVF1∕2

(
EV − EF

kBT

)
= N−

A
=

NA

1 + gAe
(EA−EF )∕kBT

, EV − EF = 0.1eV

By inserting the values of NC, NV of Si and GaAa and evaluating the Fermi 1/2

integral at given argument one can find the required ND, NA.
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(b) The flux of electrons under a forward bias is given from Eq. (17.17) by

Fn =
Jn
q
=

Dnnp0

Ln
eqV∕kBT =

(
kBT • 𝜇n

q

)
1

Ln
•

(
ni

2

pp0

)
eqV∕kBT

with

pp0 =
2√
𝜋
NVF1∕2

[
0.1

kBT (eV)

]
Likewise one can specify Fp as

Fp =
Jp

q
=

Dppn0

Lp
eqV∕kBT =

(
kBT • 𝜇p

q

)
1

Lp
•

(
ni

2

nn0

)
eqV∕kBT

By using the respective values of NC, NV, and the mobilities involved one can

evaluate the electron and hole fluxes.

18.5. (a) The condition

fv(Ea) > fc(Eb)

is specified explicitly as

1

1 + e(Ea−EFv)∕kBT
>

1

1 + e(Eb−EFC )∕kBT

and is equivalent to

e(Ea−EFv)∕kBT < e(Eb−EFC )∕kBT or Ea − EFv < Eb − EFC

That is

EFC − EFv < Eb − Ea = ℏ𝜔

Similarly the condition

fv(Ea) < fc(Eb)

leads to

EFC − EFv > Eb − Ea = ℏ𝜔

(b) The gain coefficient as given by

𝛾(𝜔) = 𝛼(𝜔)[fc(Eb) − fv(Ea)]

represents the probability of electron being in the conduction band at Eb level

greater than that of being in the valence band at Ea level. In view of the fact that

electrons are excited from the valence band to conduction band, the condition is
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analogous to the population inversion in laser devices by exciting the electrons

from the ground state to the upper lasing level.

Chapter 19

19.1. (a) Before the contactEF in the p
+ poly gate is lower thanEF in the n substrate.

To keep EF flat in equilibrium contact the band bending ensues. Since EF in the

n-substrate is higher than EF in the electrode the electrons are injected into the p+

gate electrode from the substrate. Consequently a negative charge sheet is formed

at the surface of the gate electrode. The electric field emanating from the surface

charge pushes the electrons from near the interface into the bulk, leaving donor

atoms uncompensated. As a result the space charge is formed out of uncompen-

sated donor ions and band bends up as the surface is approached from the bulk

and the channel is inverted with further increase of band bending by applying the

negative gate voltage. These discussions are compactly summarized in the figure

shown below.

VG = 0

QS

Qx
QG

EC

qND

x

qVFB

EF

Vacuum level

Vacuum
level

SiO2

EFn
EFp

E

𝜑

−
−
−
−
−

q𝜒 = 3.1 eV 3.1 eV

q𝜒 = 0.95 eV

q𝜒 = 4.05 eVq𝜒 = 4.05 eV

n - Si

n - Si

p+ poly-Si

p+- poly

EV

EFp

EFn 1.12 eVEG ≈ 9 eV

EC

EF

SiO2



Solutions 361

(b) The flat band voltage is defined as the difference of EF between the substrate

bulk and the gate electrode and is given in this case by

EFn − EFp = Ei + q𝜑n − (Ei − q𝜑p) = q𝜑n + q𝜑p

≈ 0.56eV +
kBT

q
ln

(
ND

ni

)
,

EG

2
= 0.56eV

where q𝜑n, q𝜑p denote respectively the Fermi potential of the electron and hole,

respectively (see Eqs. (15.19) and (15.20)). SinceEFp in the p
+ polysilicon gate prac-

tically coincides with EV, q𝜑p was taken as EG∕2. For ND = 1016 cm−3

𝜑Fn =
kBT

q
× ln

(
ND

ni

)
= 0.025 (eV) × ln

(
1016

1.45 × 1010

)
= 0.336eV

Similarly one finds 𝜑Fn = 0.39 eV for ND = 1017 cm−3. Hence the value VFB is 0.9

and 0.95V respectively.

19.2. One can carry out the modeling of PMOS I–V in strict analogy with the

NMOS I–V modeling by interchanging the roles of electrons and holes.When the

p+ poly-gate, SiO2 and n substrate are in the equilibrium contact there is again the

band bending to keep EF flat. Since EF in the n-substrate is higher than EF of the

gate electrode as clear from the band diagram shown the electrons are injected

into the p+ poly gate, forming thereby the negative charge sheet on the surface.

Consequently the band bends up and the hole concentration is enhanced near the

oxide interface. One can quantify the band bending by starting from the Poisson

equation, which in this case is given in strict analogy with Eq. (19.4) by

d2𝜑(x)
dx2

= −𝜌(x)
𝜀S

, 𝜌(x) = q[N+
D
− nn(x) + pn(x)] (19.1a)

Also the charge neutrality in the n bulk region prevails, that is

N+
D
+ pn0 = nn0 (19.1b)

Because the band bends up in this case, that is, 𝜑 ≤ 0 as clear from the band

diagram shown in the previous problem pn increases near the surface, while nn
decreases according to

pn(x) = pn0e
−𝛽𝜑(x), nn(x) = nn0e

𝛽𝜑(x), 𝛽 = q∕kBT (19.1c)
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Thus by inserting Eqs. (19.1b) and (19.1c) in Eq. (19.1a) one can write

d2

dx2
𝜑(x) =

q

𝜀S
[nn0(e𝛽𝜑 − 1) − pn0(e−𝛽𝜑 − 1)]

=
qnn0
𝜀S

[(
e𝛽𝜑 − 1

)
−

pn0
nn0

(e−𝛽𝜑 − 1)
]

, nn0 ≃ ND (19.2)

Since Eq. (19.2) is identical in form to Eq. (19.4) in the text one can repeat the same

algebraic step and obtain the surface field Es and surface potential Qs as

QS = −𝜀SES = ±
√
2
kBT

qLD
F

(
𝛽𝜑s,

pn0
nn0

)
, LD =

(
kBT

q2
𝜀S
nn0

)1∕2

(19.3a)

where

F

(
𝛽𝜑s,

pn0
nn0

)
=
[(
e𝛽𝜑 − 𝛽𝜑 − 1

)
+

pn0
nn0

(e−𝛽𝜑 + 𝛽𝜑 − 1)
]1∕2

(19.3b)

Equation (19.3) is the PMOS counterpart of Eq. (19.7) in the text. The difference

between the two consists of

𝜑s ↔ −𝜑s, pp0 ↔ nn0, np0 ↔ pn0

With the use of Eq. (19.3) one can quantify the electron accumulation for 𝜑s >

0, the hole depletion for 0 > 𝜑s > −2𝜑n and the strong inversion for 𝜑s ≤ −2𝜑n.

These different regimes are the mirror images of the n-type MOSFET on the axis

of the surface potential 𝜑s. By using the expression thus obtained one can again

repeat the algebraic steps used in NMOS and obtain

ID =
W

L
𝜇pCOX

(||VG
|| − |VT | − 1

2
|VD|) |VD|

Here all of the biases are negative, so that the ID expression is the mirror image of

the NMOS ID expression, as expected.

19.3. (a) The drain current is given in terms of the drain voltage VD and channel

length L as

ID =
W

L
COX𝜇n

(
VG − VT −

1

2
VD

)
VD, VDSAT = VG − VT (19.4)

By taking y as the channel length instead of L and the voltage therein V (y) as the

terminal voltage instead of VD the same ID can be expressed as

ID =
W

y
COX𝜇n

[
VG − VT −

1

2
V
(
y
)]

V (y) (19.5)



Solutions 363

By equating Eqs. 19.4 and 19.5 one can write

1

L

(
V ′
G
− 1

2
VD

)
VD =

1

y

[
V ′
G
− 1

2
V
(
y
)]

V (y), V ′
G
≡ VG − VT

and find V (y) from the resulting quadratic equation in terms of VG, VD as

V (y) = V ′
G
±
[
V ′2
G
−

2y

L

(
V ′
G
− 1

2
VD

)
VD

]1∕2
Since by definition the source voltage is zero, that is, V (y = 0) = 0 the positive

branch of the solution should be discarded.

(b) With the channel voltage V (y) thus found one can specify the channel field by

E(y) ≡ −
∂V (y)
∂y

= −

(
V ′
G
− 1

2
VD

)
VD

L
[
V ′2
G
− 2y

L

(
V ′
G
− 1

2
VD

)
VD

]1∕2 = −
VD

L
•

1(
𝛾 − 𝛼

y

L

)1∕2
(19.6)

where

𝛼 ≡ 2
VD

V ′
G
− 1

2
VD

, 𝛾 =
V ′2
G(

V ′
G
− 1

2
VD

)2
At the device saturationVDSAT = VG − VT and therefore 𝛼 = 𝛾 = 4. Consequently

the channel field at the drain terminal y = L is diverges, as expected.

(c) The transit time of the electron across the channel is given with the use of

Eq. (19.6) by

𝜏tr = ∫
L

0

dy

vd
= ∫

L

0

dy

𝜇n|E(y)| = L

𝜇nVD
∫

L

0

dy
(
𝛾 − 𝛼

y

L

)1∕2
= L

𝜇nVD

•

(−2L
3𝛼

) (
𝛾 − 𝛼

y

L

)1∕2||||
L

0

= 2L2

3𝜇nVD𝛼
[𝛾3∕2 − (𝛾 − 𝛼)3∕2]

By inserting the values of 𝛼, 𝛾 in device saturation one obtains

𝜏tr =
4

3

L2

𝜇nVDSAT

in general agreement with the representation of 𝜏r, that is,

𝜏tr =
L⟨vd⟩ ≈ L

𝜇n(VD∕L)
= L2

𝜇nVD
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19.4. The backscattering coefficient is given from Eqs. (19.25) and (19.26) by

rc =
l

l + 𝜆
= 1

1 + 𝜆∕l
= 1

1 + vTmn𝜇nEs∕kBT
=

kBT

kBT + vTmnvD
, vD ≡ 𝜇nEs

where vD is the drift velocity. Then one can write

𝜂 =
1 − rc
1 + rc

=
vTmnvD

2kBT + vTmnvD
=

vTmnvD
mn[(2kBT∕mn + vTvD]

=
vTvD

[(2kBT∕vTmn) + vD]
=

vTvD
[vT + vD]

= 1

(1∕vD) + (1∕vT )
, kBT ≡ mnv

2
T

2

The insertion of 𝜂 into Eq. (19.24a) leads to Eq. (19.27) in the text.

19.5. (a) The built-in voltage of the three junctions can be found with the use of

the Fermi potentials as follows:The Fermi potentials in the n-bulk is given by

𝜑Fn =
EFn − Ei

q
=

kBT

q
ln

(
ND

ni

)
= 0.025V × ln

(
ND

1.45 × 1010 cm−3

)
at 300K

so that

𝜑Fn = 0.24V at ND = 1016 cm−3, 𝜑Fn = 0.39V at ND = 1017 cm−3

The built-in voltages for the three junctions are summarized as follows:

Vbi atND = 1016 cm−3 Vbi atND = 1017 cm−3

p+ − n 0.56 + 0.24eV 0.56 + 0.39eV

n − i 0.24eV 0.39eV

i − n+ 0.56eV 0.56eV

(b) The tunneling ensues and the tunnel current starts to flow when the conduc-

tion band in the n-region in p+-n junction is lowered and lines up with the valence

band in the p+ region. Thus the minimum VD required to induce the tunneling is

found by the difference between the band gap of 1.12 eV for Si for instance and

theVbi therein,One therefore findsVD = 0.32 V,VD = 0.17 V forND = 1016 cm−3,

ND = 1017 cm−3, respectively. It is pointed out that when VD is applied, it should

be dropped in the three junctions. The exact partitioning of VD among the three

junctions is difficult to analyze. However since the p+-n junction should take up a

large fraction of it because it has the largest Vbi.
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Chapter 20

20.1. (a) If the barrier height of the quantum well is taken infinite for simplicity

and also without sacrificing too much accuracy one can write from Eq. (4.4)

En =
ℏ2𝜋2

2mW 2
n2, n = 1, 2, …

Thus for electrons with rest massm0 the ground state energy can be evaluated as

E1 =
(1.055 × 10−34)2(J s)2(3.14)2

2 • 9.1 × 10−31 kg • (10−9)2 w2(nm)2
n2[J], 1m = 19 nm

= (0.603∕w2) × 10−19[J] = (0.603∕w2) × 10−19 × 6.23 × 1018[eV]
= (0.376∕w2)[eV]

whereW has been scaled in nm unit by putting

W = 10−9 • w

(b) TheW at which E1 is equal to the thermal energy is thus determined by

0.376

w2
eV = kBT ≅ 25 meV

That is,

w =
√

0.376

0.025
= 3.88 nm

(c) W can be found by putting

E1 = kBT

(d) See Eq. (5.22) in the text.

20.2. (a) The electron lifetime in the well is determined by the condition

NT ≃ 1 (20.1)

where T is the tunneling probability and N the average number the electron

encounters the barrier before tunneling out. Since the barrier on the left of the

well is thicker than the barrier on the right the lifetime is dictated by the latter

barrier. The tunneling probability is given in this case from Eq. (5.22) by

T = 1

1 + Λ
, Λ = V 2

4E(V − E)
sinh2d

√
2m

ℏ2
(V − E) (20.2)

where the parameters involved are V = 3.1 eV, d = 8 nm. The kinetic energy E

of the electron is dictated by the ground state energy E1 or the thermal energy
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depending on whether E1 is greater or less than kBT . SinceW given is larger than

3.88 nm as was found in the previous problem one has to use the thermal energy

of 0.025 eV at 300K. In this case E = kBT << V . Therefore one can evaluate Λ in

Eq. (20.2) as

Λ ≃ V

2kBT

1

4
exp

[
2d
(
2m

ℏ2
V
)1∕2]

= 3.1eV

2 × 0.025eV

×1
4
exp

⎧⎪⎨⎪⎩2 ⋅ 8 × 10−9m

[
2 × 9.1 × 10−31 kg × 3.1 × 1.6 × 10−19 J(

1.055 × 10−34
)2(J s)2

]1∕2⎫⎪⎬⎪⎭
= 5.2 × 1062

Consequently the number of encountering the barrier N is given by

N ≃ 1

T
∼ 5.2 × 1062, T = Λ−1

Since the thermal velocity at room temperature is given by

vT =
(
kBT

m

)1∕2

≈ 6.8 × 104ms−1, mv2
T
∕2 = kBT∕2

the lifetime can be estimated by the round trip time of the electron in the quantum

well times N ,

𝜏 = 2 × 10 × 10−9(m)
6.8 × 104(ms)−1

• 5.2 × 1062 ≈ 2.94 × 1049 s

and is shown nearly infinite.

(b) Controlling the lifetime of the electron via the gate bias is the working prin-

ciple of the flash EEPROM cell. Reducing 𝜏 to 1 μs requires the application of the

electric field, so that the barrier potential is transformed into the triangular shape,

thereby enabling the utilization of the F–N tunneling. Since the F–N tunneling

probability is given from Eq. (5.26) by

T ≃ exp−
4
√
2m

3q|E|ℏ (V − E)3∕2 ≃ exp−
4
√
2m

3q|E|ℏV 3∕2, E ≪ V = 3.1eV

𝜏 is specified by

𝜏 = 2W

vT

1

T
=
(
2W

vT

)
exp

[
4
√
2mV 3∕2

3q |E|ℏ
]

,

(
2W

vT

)
= 2 × 10 × 10−9 (m)

6.8 × 104 (ms−1)
= 2.9 × 10−13 s



Solutions 367

Therefore for 𝜏 = 1 μs the required E field is given by

|E| = 4
√
2mV 3∕2

3qℏ
× ln

(
2W

vT

)
,V = 3.1 × 1.6 × 10−19 J

= 4 • (2 • 9.1 × 10−31)1∕2(3.1 × 1.6 × 10−19)3∕2

3 × 1.6 × 10−19 × 1.055 × 10−34 × ln(vT𝜏∕2W )
= 7 × 108 Vm−1

= 0.7Vnm−1

20.3. The shift in VT due to programming reads from Eq. (20.4) as

ΔVT = VTCGP − VTCGE =
|QFG|
CONO

Since the capacitance per unit area of the ONO dielectric layer is approximately

given by

CONO =
𝜀OX
tOX

=
𝜀r × 𝜀0
tOX

= 3.9

15 × 10−9(m)
× 1

4𝜋 • 8.988 × 109 C−1

= 2.3 × 10−3 CV−1m−2

one can find the number N of excess electrons for ΔVT of 5V as

5 × CONO = |QFG| = q × N

That is,

N = 5 × 2.3 × 10−3 (CV−1m−2)
1.5 × 10−19 (C)

= 7.6 × 1016m−2 = 7.6 × 1012 cm−2

For the floating gate with the cross-sectional area 100 × 100nm

N ≈ 760

20.4.

EF

EC

EV

EC

EV

n+
p+

p

InGap GaAs Ge InGap GaAs Ge

(a) Shown are the band diagrams of the stackedmulti-junction solar cell in equilib-

rium (left) and under the illumination (right). In the former case the two junctions

bend as usual to keep EF flat. Naturally EC in the p-region is highest, followed by
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EC in the p+ and n+ regions.This is because the difference EC − EF should be pre-

served in respective bulk regions. Under the illumination the e–h pairs generated

in the n+–p junction are efficiently separated to contribute to the current. Also

both junctions are forward biased due to the resulting space charge. The holes in

the n+–p junction naturally climb up the potential hill but have to diffuse into p+

region by overcoming the junction barrier which is lowered by the forward bias

developed. Likewise electrons generated in the p–p+ junction region diffuse into

the p-region by overcoming the barrier therein and roll down the potential hill in

the n+–p junction together with the electrons generated therein to contribute to

the current.

20.5.

p n p p n p

EC

EF

EV

EC

EFp
EFn

EV

(b) Shown are the band diagrams of the vertical core–shell nanowire solar cell in

equilibrium (left) and under illumination (right). In equilibrium the band bend-

ing reflects the two p–n junctions connected centered around the n-bulk. When

the light is incident on the junction depletion depth, the e–h pairs are generated

therein. Because of the junction band bending the generated e–h pairs are effi-

ciently separated. Specifically holes roll up the potential hill into the p-region after

traversing a short distance, while the electrons roll down the potential barrier into

the region near the core of the wire. The resulting space charge, positive charge

in the p- region and negative charge in the n-region induce the forward bias, thus

providing the driving voltage of the cell. At the same time the junction band bend-

ing is reduced. Concurrently the separated electrons and holes drive the output

current of the cell.
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Index

a
absorption, optical

– attenuation coefficient, linear 180

affinity factor, electron 144

acceptor, ionized 199, 248

angular momentum operator

– eigenfunction

– – atomic orbital 98–100

– – spherical harmonics 90–91

– – spatial quantization 90–93

atom-field interaction 167

– atom-dipole moment 176, 336

– driven two level atom

– – atom dipole 171

– – Rabi flopping formula 170

– – resonant interaction 170

– – Schrodinger equation 170

– Einstein A coefficient 169

– quantum treatment

– – annihilation/creation operator 171

– – EM field quantization 174

– – number operator 175

– – spontaneous emission 175

– semi-classical treatment 167

– stimulated and spontaneous transitions

168

b
band, energy

– band bending

– – equilibrium and under bias 220–221

– band gap 41

– band-to-band excitation 209–210

– conduction/valence bands 231, 232

– subbands 34

BioFET 269

Biot-Savard law 128

Bohr’s theory, hydrogen atom 18

– electron orbits and standing waves 20

– quantized orbits 19

– quantum transition 19

– Ritz combination rule 18

Boltzmann distribution function 3

– Boltzmann probability factor 4

– equipartition theorem 4

– mobility and conductivity 5

– non-equilibrium distribution function 5

– thermodynamic equilibrium 3

bonding, chemical

– ionic 144–145

– covalent 146

– Van der Waal’s attaction 146–148

Born-Oppenheimer approximation 152

bound states

– 2D and 1D densities of states 37

– 3D density of states 37

– electrons in solids 33

– – energy eigenequation 33

– – particle in 3D box 34

– quantum well and wire 38, 40

– – boundary conditions 39

– – eigenfunctions 40

– subbands

Brillouin zone 69

c
carrier transport 203

– band to band excitation 209

– drift and diffusion currents

– – mobility 204–205

– – diffusion coefficient 205–206

– – Einstein relation 206

– equilibrium and non-equilibrium

– – composite semiconductor system 207

– – quasi-Fermi level 208

– – single semiconductor system 206
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carrier transport (contd.)

– generation and recombination currents

209

– minority carrier lifetime 214

– photon flux and e-h pairs 215, 348

– quantum description 203

– – diffusion coefficient 205

– – mobility 204

– recombination rate 212

– steady state and equilibrium 211

– steady state distribution function 212,

214, 347

– trap assisted recombination and

generation 210

– trap profile 215, 350

chemical bonding 137

– expansion coefficients 149, 325

– Heitler-London theory 149, 326

– H2 molecule

– – bonding energy 143

– – Hamiltonian 141

– – Heitler-London theory 142

– – variational principle 142

– ionic bond 144

– ionized hydrogen molecule 137

– – bonding and antibonding 140

– – Coulomb interaction integral 139

– – exchange integral 139

– – Hamiltonian of 137

– – overlap integral 138

– polyatomic molecules and hybridized

orbitals 148

– – methane and sp hybridization 148

– – spatial directionality 148

– Van der Waals attraction 146

– Van der Waals attractive energy 149, 330

classical theories 1

– Boltzmann transport equation 3

– Maxwell’s equation

– – Ampere’s circuital law 6, 7

– – Coulomb’s law 6, 7

– – displacement current 7

– – Faraday’s law of induction 6, 7

– – plane waves and wave packets 7–9

– – wave equation 7

– solenoidal 11, 282

– thermal velocity 11, 280

– variance 11, 281

Compton scattering 16

Coulomb blockade 60

d
dark conductivity 214, 347–348

de Broglie wave length 18

Debye length 248

degeneracy, quantum states 35

degenerate perturbation theory 109

density

– carrier 191, 197–200, 206, 221, 225

– energy 13, 169, 173, 176, 192

– probability 29, 33, 34, 38–40, 46, 47, 51,

64, 68, 80, 82, 99–111, 124, 139–141,

144

– of states, 1,2 and 3D 35–38, 41–43,

193–195, 253

dielectric interface and constant 47, 53

diodes

laser 38, 42, 185, 217, 231, 241–242

light emitting 231, 240

p-n junction 217–228, 231–242

photo 242

solar cell 235–238, 242

directional coupling of light 51, 52

direct tunneling 53

dispersion relation

– E-k and EM wave 7–9, 172, 179–188,

231

Doppler shift 100

drift diffusion currents

– diffusion coefficient 203, 205–206

– diffusion length 205, 223, 224, 225, 235

– mobility 5–6, 203–205, 246, 257

e
electron - proton interaction

– H-atom theory (see hydrogen atom)

– – Bohr’s H-atom theory 87, 97

– – Schrödinger treatment 87–102

electron spin

– electron paramagnetic resonance 117,

131–134, 161, 162

– – spin flip 117, 118, 132, 134, 271

– – π/2 and π pulses 134

– spin -orbit coupling and fine structure

127–129

– singlet and triplet states 120–121, 123

– Pauli spin matrices 118, 274, 275

– electron Zeeman effect 129–130

– – weak and strong magnetic field 129,

160

– two spin 1/2 system 117

– – singlet and triplet states 120–121, 123

– – He atom 120–125

– – Slater determinant 119

emission of electron and hole 208, 214, 219,

224, 232

EM waves 179

– atomic susceptibility 184, 189, 341
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– – density matrix 181

– – ensemble averaging 182

– – steady state analysis 184

– attenuation and amplification 179

– coupled equations 188, 339

– dispersion 180

– Fabry Perot type cavity 189, 342

– laser device 185

– – frequency of operation 188

– – laser intensity 187

– – laser oscillator 185

– – modes of operation 188

– – oscillation condition 187

– – population inversion 186

– – threshold pumping 187

– saturated population inversion 189, 341

energy

– binding and bound state 33–42, 56, 65,

68, 72, 95, 97, 125

– bonding 140, 143–145, 147

– Fermi 193

– Ionization 20, 97, 122, 125, 126, 198, 199

– quantization 77

– zero point energy 78, 147

energy band 63

– dispersion relation 73, 303

– E–k dispersion 67

– – Bloch wavefunction 68

– – characteristics 68

– – forbidden gaps 67

– – quantum states 70

– K–P potential

– – Bloch wavefunction 63, 64

– – boundary conditions 65

– – dispersion relation 67

– – secular equation 66

– Kramer’s rule 73, 301

– motion of electrons 70

– resonant tunneling 71

– superlattice structure 73, 303

equations

– Boltzmann transport 3–6, 14, 102, 157,

158, 167, 168, 192, 193, 203, 249, 260

– Newton’s and Hamilton’s 1, 2, 23, 28,

173

– Maxwell’s 6–10, 172, 175

– Continuity 7, 223

– Poisson 248, 261

– Schrödinger 23, 24, 46, 94, 112, 132, 170,

274, 275

– wave 7, 8, 23–31, 87, 172

equilibrium

– distribution function

– – Boltzmann 3–6, 102, 192, 203

– – Fermi-Dirac 193, 203, 204, 211, 239

– – Bose-Einstein 193

– contact 41, 207, 217, 218, 247

– equipartition theorem 4–5, 206

exchange integral 123–124, 138, 139

excitation

– band to band 200, 208–210, 231

– trap assisted 210, 227

– excited states 82, 123, 151, 152

extrinsic semiconductor 197–200

– donors and acceptors 197

– Fermi level 199–200

f
Fabry-Perot laser cavity 50, 185, 240, 241

Faraday law of induction 7, 126, 172

fermion 119, 120, 192, 193–194, 274

Fermi’s golden rule 113, 114

field effect transistors (FETs) 245, 263

– bio-sensors 268

– cross-shell NW 278, 368

– drain current 261, 362

– Fermi potentials 262, 364

– flash EEPROM cell 263

– – memory operation 263

– – NAND and NOR type 263

– flat band voltage 261, 361

– floating gate 277, 365

– ground state energy 277, 365

– MOSFET 245

– NWFET 364 (see also silicon nanowire

field effect transistor (NWFET))

– ONO dielectric layer 277, 367

– PMOS and NMOS 261, 362

– quantum computing 273

– – advantages 274, 276

– – entanglement 274

– – NOT gate 275

– – Schrödinger equation 276

– solar cells 266

– – e-h pairs, efficient collection 268

– – multi-junction 267

– – nanowires 267

– – planar solar cells 266

– spin-FETs 271

– stacked multi-junction solar cell 277,

367

field emission display 57

Fowler-Nordheim (F-N) tunneling

– applications

– – EEPROM cell 263–266

– – scanning tunneling microscopy 57,

151–164

– – tunnel FET 245–261
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forces

– Coulomb and central force 93, 142

– centrifugal force 19, 96, 99, 125

– London dispersion force 146

g
gate

– floating gate 263–265

– gate electrode of FETs 252, 269

generation current

– generation of e-h pairs

– – band-to-band 209–210

– – trap assisted 210–214

ground state 20, 34, 35, 40, 78, 81, 84, 85,

97, 109, 121–123, 125, 131, 138, 140, 142,

144, 146, 147, 160, 161, 199

group velocity 9, 70

h
harmonic oscillator (HO) 1, 75

– classical and quantum oscillator 86, 307

– 3D eigenequation 85, 304

– eigenfunctions 75

– – energy quantization 77

– – ground state energy 78

– – Hermite polynomials 78

– – orthogonality 79

– – uncertainty relation 81

– energy eigenequation 85, 303

– linearly superposed state 81

– operator treatment 83

– – annihilation operator 84

– – creation operator 84

– – lowering operator 84

– – number operator 84

– – phonons 84

– – raising operator 84

– recurrence relations 85, 306

– zero point energy 86, 308

Heitler-London theory 142

Hermit polynomial 78

hydrogen atom

– Bohr’s H-atom theory

– – angular momentum quantization 91,

96, 98

– – Bohr radius 19, 97, 109, 198

– – electron orbit and de Broglie wavelength

17–18, 21, 50, 69

– – quantum transition and spectral lines

19, 20

– – Ritz combination rule 18

– Schrödinger treatment

– – eigenequation and eigenvalue 90, 91,

94

– – eigenfunctions, angular and radial 91,

98, 100

– – atomic orbital and spectroscopy 87,

98100, 125, 126, 148

– – hierarchy of quantum numbers n, l,m

91, 98, 119, 124, 125, 129, 134, 147,

160

i
identical particles

– distinguishable/indistinguishable particles

192, 194

imrefs 209

integrals

– Coulomb 138–139

– Fermi 1∕2 195, 196

– overlap and exchange 123–124, 138–139

interaction

– atom–field 167–176

– dipole 167

– EM field - optical media 179–188

– resonant 113, 132, 167, 170, 267, 268, 274

interface

– composite semiconductor 194, 207

– dielectric 47, 53, 60

– junction 218

intrinsic semiconductor 194–197

– intrinsic Fermi level 197

inversion

– channel inversion 246–247, 249,

254–255

– population inversion 179, 185–187

ionic bond 144–145

ionization energy/potential 20, 97, 122,

125, 126, 198, 199

ISFET 269, 270

j
junction interface

– in equilibrium 217, 238

– under bias 220–222, 224

k
Kramer’s rule 73

Kronig-Penny (K-P) potential 63

l
Laguerre/Legendre polynomials 91, 97, 122

London dispersion force 146

laser device

– laser diode (LD) 38, 42, 185, 217, 231,

241–242

– light emitting diode (LED) 240
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– population inversion, threshold pumpingw

179, 185–185

– operation intensity 185, 188

– operation frequency 188

– operation modes 188

light

– absorption/amplification 231, 237, 268

– attenuation/gain coefficients 179–179,

184, 233, 239

– coupling with matter 17

leakage current 252, 259, 261

lowering operators 86

Lyman series 18

Laplacian operator 94

– Cartesian and spherical coordinate frame

88, 95, 153

m
magnetic moment 126–128, 130, 131, 158,

159, 161, 271–273

majority carrier concentration 223, 224,

249

matrices

– density 181–183, 188

– Pauli spin 118, 274, 275

– transfer 54, 55, 207

Maxwell’s equations 6–10, 172, 175

memory cells, EEPROM 263–265

molecular spectra 151

– binding force 333

– Born approximation 163, 330

– diatomic molecule 151

– – Born-Oppenheimer approximation

152

– – rotational spectra 154

– – vibrational spectra 155

– effective spring constant 165, 333

– flip operators 334

– hyperfine interaction 159

– – of energy level 159

– – with magnetic field 159

– – Zeeman splitting 160

– mass of vibration 164, 332

– moment of inertia 164, 331

– motion of oscillator 165, 332

– NMR 162

– nuclear spin 158

– vibrational frequency 165, 334

– zero point energy 165, 333, 334

molecules

– binding energy 17, 28, 31, 140

– diatomic 2, 148, 151–158, 164

– polyatomic 148

MOSFET 245

– I-V behavior 245

– NMOS, channel inversion 246

– scalability 252

– subthreshold current 251

– surface charge 248

– threshold voltage and ON current 250

n
nanometrology 57

NMR and molecular imaging 163–165

nondegenerate system 26, 107

– carrier concentration 195–197, 200, 223

– quantum states 35–37, 42, 70, 98, 124,

125, 168, 193, 207, 233

nonvolatile memory cell 265

normalized wavefunction 97

n-type MOSFET/NMOS 252

nuclear magnetic resonance (NMR) 161

nuclear spin and magnetic moment

126–128, 130, 131, 158–161, 163,

271–273

number operators 84

o
occupation factor, electron/hole

– laser diode 38, 42, 185, 217, 231,

241–242

– carrier density 191

off state, IOFF 251, 259, 272

on state, ION 251, 272

operators

– angular momentum 87–89, 117, 128, 154

– momentum 2, 16, 28, 102

– annihilation/creation 84–85, 173

– Hermitian 25–27, 31

– Laplacian 94

– lowering/raising 83, 84

– number 83, 84

– spin flip 117, 118

optical excitation

optical gain/loss 238, 240, 241

orbitals, atomic and molecular 99–100,

148–149

overlap integral 123, 138, 140

p
Pauli exclusion principle 119, 192

Pauli spin matrices 118, 274, 275

perturbation theory 105

– anharmonic oscillator 115, 314

– coupled equation 115, 317

– harmonic electric field 115, 319

– interaction Hamiltonian 115, 317

– perturbing Hamiltonians 115, 318
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perturbation theory (contd.)

– time-dependent 111

– time-independent 105

phase velocity 8, 9, 184

phonons and photons 83, 84, 192

photoelectric effect 15

pinch-off voltage 251

Planck constant 13, 17

P-N junction diode 217, 231

– charge injection and extraction 221

– depleted approximation 228, 352

– donor and acceptor doping levels 242,

358

– in equilibrium 217

– – band bending 217

– – built-in potential 220

– – carrier profiles 220

– – depletion depth 220

– – potential energy 218

– – space charge field 218

– forward and reverse biases 228, 355

– ideal diode I-V behavior 223

– – diffusion length 225

– – forward current 223

– – reverse current 224

– – Shockley theory 223

– junction band bending 228, 351

– junction parameters 228, 351

– light attenuation/amplification 242,

359

– non-ideal I-V behavior

– – generation and recombination currents

226

– – junction breakdown 227

– optical absorption 231

– – attenuation coefficient 233

– – Bloch wavefunction 231, 232

– – conduction and valence bands 231

– – Fermi’s golden rule 232

– optical fiber communication

– – advantages 238

– – attenuation and gain 239

– – laser diodes 241

– – LED 240

– photocurrent 234

– photodiode 233

– photovoltaic effect 235

– RS effect 242, 357

– solar cell 242, 357

– steady state diffusion 242, 356

– Zener breakdown 228, 356

Poisson equation 248

Polysilicon 245, 246

positronium 103

Poynting vector 8

probability

– Boltzmann factor 4, 14, 157, 158, 168,

249, 260

– Density 29, 33, 39, 46, 47, 51, 64, 80, 82,

99, 124, 139, 140

– current density 6, 46–48, 60

– tunneling 51–57, 59–61, 260, 264

q
quantization

– angular momentum/momentum 91, 96,

98

– atomic orbits 20–21

– energy 33, 72, 75–78, 97

– field 171–175

– spatial 87, 90–93

quantum computing 273–277

– quantum entanglement 274, 275, 277

quantum mechanics milestones 13

– Balmer series 285

– blackbody radiation 13

– Compton scattering 16

– de Broglie wavelength 17, 21, 283

– duality of matter 17

– ground and excited state 21, 286

– hydrogen atom, Bohr’s theory 18

– – electron orbits and standing waves 20

– – quantized orbits 19

– – Ritz combination rule 18

– photoelectric effect 15, 21, 285

– photon energy calculation 21, 282

– Planck’s theory 21, 284

– quantum of energy 13

– scattered radiation 21, 286

– Schrödinger wave equation 23

quantum numbers, n, l,m 91, 98, 119, 124,

125

quantum well and wire

– bound states (see also bound states)

– – energy eigenfunction 43, 290, 291

– – ground state energy 43, 291

– scattering of the 1D particle 48

quasi equilibrium approximation 221

quasi-Fermi level, electron and hole 209,

221

quasi neutral region 221–225, 234, 235

r
Rabi flopping formula 170

recombination, e-h pairs

– band to band 191, 200, 203, 208–210,

227, 231

– radiative/nonradiative 210
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– recombination current 203, 209–214,

226–227

– recombination lifetime 210, 212

– trap-assisted 203, 210–211, 214, 226,

227, 267

reduced probability density 99

reduced mass 94, 145, 147, 154, 164

relaxation time, longitudinal 5, 6, 163, 182,

203, 205

resonant transmission 50

resonant tunneling 53, 71

s
scattering of the 1D particle 45

– F-N tunneling 61, 298

– probability current density 46

– quantum well 48

– reflection and transmission 47

– resonant transmission 50

– Schrödinger equation 60,

294

– square potential barrier 61, 297

– step potential 45

– total reflection 48

– transmission and reflection coefficients

60, 293

– traveling wave representation 60,

294

– tunneling 50

– – direct 53

– – field emission display 57

– – F-N tunneling 53

– – nanometrology 57

– – resonant 53

– – SET 58

– tunneling probability 61, 299

Schrödinger treatment, H-atom 87

– angular momentum operator 87

– electron-proton interaction 93

– spatial quantization 91

– spherical hormonics 90

Schrödinger wave equation 23

– eigenfunction and eigenvalues

– – time-dependent equation 24

– – time-independent equation 24

– Hamiltonian operator 23

– – bra and ket vectors 24

– – postulates 23

– Hermitian operator 31, 288

semiconductor statistics 191

– 1D electron density 201, 345

– 2D electron density 201, 346

– extrinsic semiconductors 197

– – Fermi level 199

– – Fermi potentials 200

– hole occupation factor 201, 343

– intrinsic semiconductors 194

– – electron concentration 194

– – Fermi level 197

– – hole concentration 196

– – intrinsic concentration 196

– – thermal equilibrium 194

– non-degenerate statistics 201, 344

– n-type and p-type GaAs 201, 344

– quantum statistics

– – bosons 192

– – fermions 193

– – insulators 191

– – metals/conductors 191

– – semiconductors 191

silicon nanowire field effect transistor

(NWFET) 252

– ballistic NWFET 257

– channel inversion 254

– long channel I-V behavior 255

– n-channel 252

– short channel I-V behavior 256

– SS and thermionic emission 260

– subband spectra 252

– surface charge 253

– tunneling NWFET 260

single electron transistor (SET) 58

solar cell

– p-n junction 217–228, 231–242, 245,

251, 267

– planar/multi-junction/nanowire

266–268

spin FETs (SFET) 271

– Datta-Das SFET 272

– ON and OFF states 273

– operation principle 271

– technical difficulties 273

– transistor action 272

spin - orbit coupling 117, 127–129, 159,

160

– fine structure of spectral lines

128–129

steady state

– steady state and equilibrium 211

– steady state distribution function 212

subbands and sublevels

– quantum well 38, 40–42

– quantum wire 42

symmetrized wavefunctions

– anti-symmetrized wavefunctions 120,

123, 124, 141, 142, 144, 149

– singlet and triplet spin states 120–124
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t
thermodynamic equilibrium 3, 168, 194,

203

– blackbody radiation 13–14

time-dependent perturbation theory

– Fermi’s golden rule 113

– harmonic interaction 113

– interaction Hamiltonian 111

time-independent perturbation theory 105

– degenerate theory 109

– non-degenerate theory 105

– – first order analysis 106

– – H-atom polarizability 108

– – second order analysis 107

– – Stark shift 108

transfer characteristics

– MOSFET I-V behavior 246

transistors

– ballistic and short channel 256–257

– field effect transistor

– – MOSFET 245–251

– – NWFET 252–259

– – tunnel FET 260–261

– NMOS and PMOS 245, 246, 251, 252,

254, 255

– single electron 45, 58–60

– spin FET 271–273

transition

– induced and spontaneous 168–169

– radiative and non-radiative 210, 240

– transition rate

– – Fermi’s golden rule 105, 113–114, 131,

132, 167, 176, 232

transmission

– transmission coefficient 51

– resonant transmission 45, 48, 50, 51

transport equation

– Boltzmann 3–6, 14, 102, 157, 158, 168,

192, 193, 203, 249, 260

– Quantum 19–20

tunneling

– applications 56–61, 268

– – field emission display 57–58

– – nanometrology 45

– – single electron transistor 45, 58–60

– – non-volatile EEPROM cell 263–266

– Fowler-Norheim tunneling 52–53

– direct tunneling 52, 53

– tunneling probability 51–57, 60, 61, 260,

264

two-electron system 118

– fermions and bosons 119

– He-atom 120

– – first excited state 123

– – ground states 121

– – ionization energy 122

– – overlap and exchange integrals 123

– – singlet and triplet states 120

– multi-electron atoms and periodic table

– – electron affinity 125

– – electron configuration 124

– – ionization energy 125

– Slater determinant 119

u
ultraviolet catastrophe 13

uncertainty relation

– canonically conjugate variable 2, 28,

173

– in position and momentum 29–30

– in energy and time 30–31

v
Van der Waals attraction 146

variational principle 142

velocity

– drift velocity 6, 203, 246, 257

– group velocity 9, 70

– phase velocity 8, 9, 184

vibrational motion, molecules 151, 152

– energy level and frequency 156

w
wave equation

– EM waves

– – plane and wave packet 7–10

work function 15, 21, 61

y
Young’s double slit experiment 10

z
Zener breakdown 227, 228

zero point energy 78, 86, 147, 165
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Important Physical Numbers and Quantities

1 cm= 104 μm= 108 Å= 107 nm

Electron volt: 1 eV= 1.602× 10−19 J

Electron charge: q= 1.602× 10−19 C

Coulomb constant: 1/(4π𝜀0)= 8.988× 109 N⋅m2 C−2

Planck’s constant: h = 6.626 × 10−34 J s = 4.136 × 10−15 eVs

ℏ = h∕2π = 1.055 × 10−34 J s = 6.582 × 10−16eVs

Boltzmann constant: kB = 1.381× 10−23 J K−1 = 8.617× 10−5 eVK−1

Bohr radius: a= 0.529Å= 0.0529 nm

Avogadro’s number: N = 6.022× 1023 particles per mol

Electron mass in free space:m0 = 9.109× 10−31 kg

Proton mass in free space:mp = 1.673× 10−27 kg

Permeability of free space: 𝜇0 = 1.256× 10−8 H cm−1

Permittivity of free space: 𝜀0 = 8.854× 10−14 F cm−1

Speed of light in free space: c= 2.998× 108 m s−1

Thermal voltage at room temperature (300K): kBT/q= 0.0259V

Wavelength of 1 eV photons: 1.24 μm

Important Electronic Properties of Semiconductors at Room Temperature

Ge Si GaAs

Atoms (cm3) 4.42× 1022 5.0× 1022 4.42× 1022
Breakdown field (V cm−1) ∼105 ∼3× 105 ∼4× 105
Dielectric constant 16.0 11.9 13.1
Effective density of states (cm−3)
Conduction band Nc 1.04× 1019 2.8× 1019 4.7× 1017
Valance band Nv 6.0× 1018 1.04× 1019 7.0× 1018
Electron affinity, 𝜒 (V) 4.0 4.05 4.07
Energy gap (eV) 0.66 1.12 1.424
Intrinsic carrier concentration (cm−3) 2.4× 1013 1.45× 1010 1.79× 106
Intrinsic Debye length (μm) 0.68 24 2250
Lattice constant (Å) 5.646 5.430 5.653
Lattice (intrinsic) mobility (cm2 V−1⋅s−1)
Electrons 3900 1500 8500
Holes 1900 450 400

Introductory QuantumMechanics for Applied Nanotechnology, First Edition. Dae Mann Kim.
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