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Preface 

THE Nobel Prize in Physics for 1 9 6 2 was awarded to L. D . Landau 
for his work on the theory of condensed media, and especially for 
his work on the theory of liquid hehum. Recently, the Collected 
Papers of L. D. Landau have been published, and it is clear from 
those that the Nobel Prize might equally well have been awarded 
for Landau's work in plasma physics, in high energy physics, in 
quantum mechanics, or in the theory of magnetism. Unfortun
ately, it is unlikely that the Collected Papers will be widely avail
able to undergraduates except in libraries, and it was therefore 
felt desirable to issue some of the most important papers in the 
form of two paperbacks and provide them with an introduction 
intended to make the undergraduates familiar with at least some 
of Landau's work, apart from his textbooks. 

The first volume of the paperbacks contained eight papers: two 
on the theory of helium II; two on the theory of Fermi Hquids; 
two on superconductivity; one on electron diamagnetism; and 
one on ferromagnetism. The second volume contains ten papers: 
one on the theory of phase transitions; two on plasma physics; one 
on the statistical model of nuclei; one on stellar energy; one on the 
multiple production of particles in cosmic rays; one on the un
certainty principle in relativistic quantum mechanics; one on the 
quantum theory of collisions; and two on field theory. 

I should like to express my thanks to Professor E. M. Lifshitz 
for his assistance in obtaining a complete list of Landau's papers 
and his help in selecting from this embarras de richesses those con
tained in the two paperbacks, and to Dr. W. E. Parry and Pro
fessor R. E. Peierls for critical comments on the introduction. My 
gratitude is also due to Springer Verlag, the American Institute of 
Physics, the North Holland Publishing Company, and Wiley— 
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Interscience, for permission to reprint papers which first appeared 
in the Zeitschrift für Physik, Soviet Physics-JETP, Nuclear Physics, 
and the Pauli Memorial Volume, 

Oxford D . TER HAAR 



In t roduct ion 

IN THE first volume of the set of two paperbacks (ter Haar, 1965) 
dealing with Landau's greatest contributions to physics, we dis
cussed his contributions to low temperature physics and solid 
state physics. In the present volume we shall discuss some of 
Landau's contributions to thermodynamics, plasma physics, and 
quantum theory. The introductory part of this volume is divided 
into five chapters. In Chapter I we discuss Landau's theory of 
second-order phase transitions, a theory which has found many 
applications and is of great general value. Chapter II is devoted to 
plasma physics. We discuss his papers on the transport equation 
for ionized systems and on plasma oscillations. In Chapter III 
Landau's contributions to nuclear physics, cosmic ray physics, and 
astrophysics are discussed; Chapter IV deals with his work in pure 
quantum mechanics, while in Chapter V we briefly consider his 
contributions to field theory. Even though the two volumes will 
have covered many branches of physics, there are still large areas 
which we do not have the space to explore. For his contributions 
to hydrodynamics or theoretical chemistry, for instance, we must 
refer the reader to his Collected Papers,^ 

t Just before the reprint section, on p. 54 of the present volume, we have 
given a complete list of Landau's scientific papers as they appear in the 
Collected Papers volume published by Gordon & Breach, New York, and 
Pergamon Press. When referring to papers by Landau we shall always quote 
the appropriate number from the list (for instance, Landau 10 refers to a paper 
on poiarons). 

ix 
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Second-order Phase Trans i t ions 

LANDAU'S main original contribution to thermodynamics has been 
his theory of second-order phase transitions. Of the other papers 
in this field we mention first of all a general discussion with 
Bronstein on the irreversibihty of thermodynamic phenomena 
(Landau 11) in which they come out against Boltzmann's idea that 
the universe as a whole is in statistical equilibrium and argue that 
there are regions in the universe which are not covered by the 
classical and quantum mechanical theories which lead to thermo
dynamics (compare his discussion of stellar energy, considered in 
Chapter III). He also considered the theory of the accommodation 
coefiicient (Landau 20) and the limitations imposed by thermo
dynamics upon the yield of photoluminescence and on the distri
bution of the radiation intensity in such processes (Landau 
62). 

In 1935 Landau (17) started a discussion on second-order phase 
transitions, paying special attention to the specific heat anomaly 
at the transition point (or λ-point), and 2 years later he developed 
this into a more general theory (Landau 29: this paper appeared 
in two parts, the first part is reprinted as paper 1 at the end of this 
volume: see also Landau and Lifshitz, 1958, chap. XIV). This 
theory has been the starting point of many investigations, and in 
the present chapter we shall attempt to sketch an outline of it. We 
should mention here that an essential feature of Landau's theory 
is his assumption that all thermodynamic functions would allow 
regular series expansions near the transition point. Theoretical 
work on soluble models—such as the two-dimensional Ising model 
—as well as experimental data, have shown this assumption to be 
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4 MEN OF PHYSICS - LANDAU VOL. 2 

erroneous, but Landau's papers focused attention on this problem, 
and most of his arguments about symmetries, and so on, remain 
valid. 

Landau himself applied his theory to the problem of X-ray 
scattering by crystals in the neighbourhood of the Curie point 
(Landau 32) and with Khalatnikov to the problem of sound 
absorption near the ^-point of liquid helium (Landau 82). 

There are various kinds of phase transitions. On the one hand, 
there are such transitions as those between a liquid and a gas. We 
know that this is a first-order phase transition below the critical 
point, involving a latent heat, but that above the critical point the 
transition can take place without involving a discontinuity in some 
of the thermodynamic functions. On the other hand, the transition 
between a crystal and a liquid o"r between different crystal modifi
cations can never take place without a discontinuity in some of the 
thermodynamic functions. The two phases have different sym
metries, and in any given state the system has either the one sym
metry or the other. On the other hand, while in a first-order 
transition the energy and often quantities such as the volume 
change discontinuously, in a second-order phase transition, the 
symmetry changes discontinuously, but the energy and the volume 
change continuously. This change in symmetry we shall call a 
change in order, and we shall, with Landau, introduce a para
meter η which characterizes the order which disappears at the 
transition point Tc so that for temperatures above Tc, η =0, Asa, 
typical example—and one to which we shall refer several times— 
we mention the Ising model of a ferromagnet in which there is a 
spin on each lattice site which can be in one of only two possible 
orientations (see, for instance, ter Haar, 1954, chap. XII, for a 
discussion of this model and its relation to other order-disorder 
problems). The two-dimensional Ising model was solved exactly 
by Onsager (1944) for the square lattice, and he found that 
the specific heat at the transition temperature diverged as 
In \T—Tc \ . There are at the moment strong indications (Fisher, 
1963) that such a logarithmic divergence is the general behaviour 
of the specific heat at the transition temperature for all second-
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order phase transitions, and later in this chapter we shall see how 
this can be understood. 

In Landau's theory one assumes that the thermodynamic poten
tial Φ can be expanded in the neighbourhood of the transition 
point (and below it, as above Tci η = 0) in a power series in η . 
From symmetry considerations, the term linear in η does not 
occur, and from the usual thermodynamic formulae (see Landau 
and Lifshitz, 1958, for details) one can calculate the specific heat 
except at the so-called critical points. We saw a moment ago that 
we cannot have a continuous transition between two states of 
different symmetry such as can take place between a gas and a 
liquid; the second-order phase transition curve in a FT diagram 
cannot simply stop at a point. It may, however, change at some 
point into a first-order transition: such a point is called a critical 
point, and if we use a power series expansion in η for Φ, we find a 
{Tc — T) divergence. 

Levanyuk (1963) has slightly extended Landau's theory, but 
possibly the most interesting progress has been made by Vaks and 
Larkin (1966)—two theorists from the Landau school—who show 
that under quite general conditions second-order transitions are 
mathematically equivalent to the Ising model; in the following we 
shall sketch their arguments. Consider the case where the change 
in symmetry is caused by the displacement of one of the atoms in 
the unit cell from a symmetry point to a position of lower sym
metry. Assume that the potential energy of this atom can be 
expressed as the sum of the average periodic potential U{r^ due to 
the other atoms and the interaction potential ν(τ^ — r^), of the 
atom considered with similar atoms in other cells. To simplify 
the considerations we shall assume that υ{ν^) has equal minima 
at two points placed symmetrically with respect to the centre of 
the cell, at distances ± Ä from it. If the temperature is sufficiently 
high, so that ßV 4, 1 {β = l/keT, ke: Boltzmann constant), we 
can neglect V and the probability to be at or — Ä in any one 
cell is the same, and the crystal will be symmetric about the cell 
centre. On the other hand, at low temperatures when ßV Ρ 1, the 
interaction Κ will cause an ordering, practically all atoms being at 
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Z = Π nd'r,exp[-ß 

+ E F ( r . - i - . . ) (1.1) 

We shall assume that ß c U "ρ \ (that is, we assume that U is much 
larger than V) and that V has a sufficiently short range so that we 
need only consider in the last sum in (1.1) interactions between 
atoms in adjacent cells. 

We now write for r.: 

rs = fos + ξ5 = Σ s^a^ ± Ä + ξ5, (1.2) 

where the determine the location of the centre of the cell, where 
the are the basic lattice vectors, and where the ξ, measure the 
displacements of the atoms from their equilibrium position. 

Under our assumptions that U is much larger than V and than 
β - \ it is sufficient to expand U up to second-order terms in the 
and to neglect the dependence of V on the ξ,. We then have 

EC/(r . ) + Σ V{r, - r,) = 

+ EK(r„ - (1.3) 
s,s' 

where 

\8Χμ dxjrs = ros 
(1.4) 

Introduce now an operator such that = + 1 corresponds to 
ros = ^^a^a + b and = — 1 to ros = Σ ^ ^ — Ä, or 

ros = Σ5·«Α« + bGr (1.5) 

+ b (or at —b). This is a state of lower symmetry, and the change 
in symmetry will occur at a temperature for which jS^F will be of 
the order of magnitude of unity. 

Consider now the partition function Ζ of the system: 
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The last term on the right-hand side of (1.3) can then be written as 

C + 4 Σ / , σ^σ.+α« , (1.6) 
ra 

where C is a constant and 

Λ = i [2V(aJ - na, + 2b) - V(a, - 2Ä)]. (1.7) 

Substituting (1.6) into (1.3) and then into (1.1) and integrating 
over all p s and ξί, we get 

Ζ = Ζο(Γ) Σ exp [ - i i8 Σ Λ σ,σ,+α ]. (1.8) 

Let us now consider the partition function of a three-dimen
sional Ising model. If is the exchange interaction between a spin 
on a site r and a site r + a,, and if /x^ is + 1 if the spin at the site r 
is up and —1 if the same spin is down, the energy of the spin 
system will be 

4 Σ K,rμrμr, + «α 
α,α 

and the Ising partition function Z i s ing will be 

Zising = Σ exp [ - i i3 Σ ^ , / χ . / χ , + „ ] . (1.9) 

all ßr = ±1 Γ,α * 

We see thus that in our present approximation the specific heat 
near Tc for the case of a second-order phase transition in crystals 
behaves like the specific heat near the Curie point of an Ising 
ferromagnet—which is probably a In \ T — Tc \ -kind be
haviour. 

Vaks and Larkin make it plausible that the influence of atomic 
vibrations and of quantum effects will not alter the above con
clusions. 

In conclusion we should once again mention that although 
Landau's analytical considerations of the behaviour of the thermo
dynamic quantities near the transition point are incorrect, his 
general discussion about the relation between the symmetry 
changes and the kind of phase transitions to be expected remain 
valid and have been applied successfully by many authors. 



I I 

P l a s m a Phys ics 

A STUDY of the behaviour of ionized gases is important in many 
branches of physics and engineering, and since the Second World 
War such a study has been made in many cases in connection with 
thermonuclear research. Among the properties of an ionized gas 
one studies are the transport coefficients such as the electrical and 
thermal conductivity and the damping of waves (for a general 
account of these problems see Spitzer, 1962). The model we shall 
be mainly concerned with in the present chapter is one of (nega
tively charged) electrons moving in a compensating, uniform 
positively charged background. Strictly speaking, one should take 
the motion of the positive ions into account, but to a first approxi
mation the inñuence of the ions can be taken into account by 
assuming the positive charge to be uniformly distributed over 
space. Such a system is called a plasma, a term first introduced by 
Langmuir (1928). We shall also assume that the system as a whole 
is electrically neutral so that the positive charge density is equal 
to the product of the electron density multiphed by the elementary 
charge. 

To evaluate transport coefficients of a gas, one often uses a 
transport or kinetic equation (see, for instance. Chapman and 
Cowling, 1953), and we shall return to this approach presently, 
but we shall first discuss why the case of a system of particles inter
acting through Coulomb forces (or gravitational forces) needs 
special treatment. To see this, we shall consider collisions between 
charged particles. The dynamics of a collision are determined not 
only by the momenta p^ and p^ of the colliding particles, but also 
by the impact parameter ρ that is, the closest distance at which 
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FIG. 2.1. Collision of particles 1 and 2 in frame of reference in 
which ei is at rest. 

end of this volume). Landau's treatment is valid when the deflec
tion of the particles is small. Let Vrei be the relative velocity of 
particle 2 with respect to particle 1 (see Fig. 2.1, where the collision 
is described in the frame of reference in which particle 1 is at rest), 
and let us take the x-axis along Vrei at / = — oo. If the deflection is 
small, we may assume that does not change during the colli
sion, and the only change in p2 is in a direction at right angles to 
the A:-axis, say the j-direction. The change Ap^y is given by the 
equation 

Ap2y = - Fydt, (2.1) 

where the force in the ^'-direction F„ is given by the equation 

477€οΓ= 
y- (2.2) 

particle 1 would pass particle 2, if there were no interactions 
(Fig. 2.1). This is the problem of Rutherford scattering and one 
can evaluate the scattering cross-section exactly (see, for instance, 
ter Haar 1967, Ch. III). Here, however, we shall follow the treat
ment given by Landau in his paper on the kinetic equation for a 
system of charged particles (Landau 24; reprinted as paper 2 at the 
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Δ/723, = 
+ 00 e-^e^pdt 6162 
_ 00 4π£ο (ρ' + F r e i ί ψ ' 27Γ60 pVr., 

(2.3) 

This change in pz produces in the same approximation a change 
in energy AE2 given by (we have put ei = 62 = e) 

The average energyt transferred per unit time, <AE>, by 
collisions will be obtained from (2.4) by averaging over all possible 
impact parameters. If η is the number of particles per unit volume, 
there will be nvrtulirpap collisions per unit time with values of ρ 
between p and ρ + dp. For < Δ£'> we thus get 

<^E> = ^ 
ΛΡ2 

Vt^x 4πηΐ€ο^ J 

dp ne^ , P2 
Ρ Απε^^τηντ^χ Pi 

Pi 

In^, (2.5) 

where p^ and p2 have to be determined. 
We note here the problem pecuUar to the inverse square force 

law: the range of the forces is so long that it is impossible to speak 
of the "duration" of a collision as can be done for the case of short-
range forces. As a result any particle will be concerned with colli
sions with many other particles. This makes it difficult to write 
down a kinetic equation for the distribution function. Luckily, the 
dependence on pi and pa is only logarithmic so that we should get a 
reasonable estimate for <Δ£'> from qualitative arguments. The 
lower limit pi can be taken to be the impact parameter for which 
the angle of deflection Θ which is given by the equation [see Fig. 
2.1. and eqn. (2.3)] 

ö _ t a n Ö - ^ ^ = — ( 2 . 6 ) 
P2X 2w€opmVrcl 

t Note that < Δ£'> and AE2 do not have the same dimensions. 

In the approximation of small deflections we can replace the 
motion by a rectilinear one and replace by + vLt^ and y 
by p, and we then get from (2.1) and (2.2) 
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becomes of the order of magnitude unity, or 

P i ^ , , ' (2.7) 

To estimate pa we bear in mind that our system consisted of 
electrons moving in a positive background. This means that the 
influence of a particular negative charge will be screened. This was 
used by Debye and Hückel (1923) in their theory of electrolytes. 
We can ñnd an expression for the so-called Debye radius ro as 
follows. Consider a test charge q put into the system at the origin. 
The charge density p(r) will then change from po(r) = ne to 
Po + δρ. The electrostatic potential φ(r) will satisfy the Poisson 
equation 

= (2.8) 

On the other hand, at a temperature T, we expect δ ρ to be given by 
the equation 

Sp = p - po = Ροβ^' - Po ̂  ββφρο = ßne^, (2.9) 

where, again, 

í = ¿ . (2.10) 

Combining (2.8) and (2.9) we ñnd 

(ν^+^_ίίϋ)ψ = ί , (2.11) 

with the solution 

Φ = / - ^ , (2.12) 

showing a screened Coulomb field with a screening radius—the 
Debye radius—given by the equation 
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Κ I n ^ (2.16) 

where we have used the fact that mvrci^ is of the order of kaT for a 
classical system, where we have omitted all numerical constants, 
and where Cv is the specific heat per particle. 

To see the importance of the factor In (pa/pi) we note that we 
can use (2.7) and (2.13) to write for it 

W ks' τη 
In^ In (2.17) 

which for Τ 10* °K and η ^ 10»cm-^ is of the order of magni
tude of 20 (Spitzer, 1962, gives a table of values of In (pa/pi) for 
temperatures between 10^ and 10^ °K and η between 1 and 10̂ * 
cm-2). 

If there is no electrical neutrality, it is more difficult to fix pa, 
and in the case of gravitational forces where the same problem 
arises—for instance in discussing the statistical mechanics of 
star clusters (Chandrasekhar, 1942)—there is no easy solution. 

Having found an expression for <Δ£'> we can now estimate 
the mean free path λ of a particle which we shall define as the path 
length over which X<AE>IVrti becomes of the order of magni
tude of mυ^cu We have already indicated why in the present case 
we cannot define the mean free path as the distance between suc
cessive collisions. From our definition and equation we get 

λ-ι = 7 Γ Λ / ) ; ΐ η - · (2.14) 
Pi 

We note that λ is smaller than one might have expected on a simple 
single-colHsion model by a factor In (pa/pi). 

Once one knows λ one can use simple kinetic theory to obtain 
estimates for relation transport coefficients. The thermal con
ductivity for instance, is given by the relation 

κ = nvXcv (2.15) 

or 
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Let us conclude the first half of this chapter with a very brief 
discussion of the derivation of the kinetic equation. For details of 
the derivation for the case of a Coulomb gas we refer to Landau's 
paper (24) mentioned earUer. Let / ( r , p, t)d^rd^p be the number of 
particles with positions within a volume element d^r in co
ordinate space around r and momenta within a volume element 
d^p in momentum space around ρ at time i. At time t -\- dt there 
will be / ( r , p, t + dt) d^r d^p particles within the same volume ele
ments and the difference {ßfjdt) d^r d^p dt is due to two causes: (i) 
there may not be a balance between the particles entering d^r d^p 
during the time interval t, t + dt because of collisions and those 
particles which leave d^r d^p because of collisions, and (ii) the num
ber of particles acquiring positions and momenta within d^r d^p 
during the interval t, t + dt because of changes in their positions 
due to velocities and in their momenta due to accelerations, may 
not equal the number of particles which left d^r d^p during the 
same interval because of drift. We can express this by writing 

+ m . (2.18) 
dt collisions drift 

By considering the flow in the six-dimensional (coordinate-
momentum) phase space, one finds in a straightforward way that 
{df/dt)drift equals — (v^^^ V^^V)? where I;̂ ^̂  is the six-dimensional 
velocity vector and V *̂̂  the six-dimensional gradient vector, or 
(compare ter Haar, 1966a, § 2.5) 

- ( l ) . . , . . - ( £ - v ) / - ( ^ ^ ) / . 

where we have used Newton's second law of motion to equate the 
rate of change of ρ to the force F acting upon the particle. 

To find (¿//¿Ocoiiisions WC must study coUisions between the 
charged particles. The difficulty is that—as we have emphasized 
eariier—any particle is simultaneously colHding with many other 
particles. This means that the expression for (df/dt)coiusion3 will 
contain products of many / ' s . Landau assumes that to a first 
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( V . ^ ) = - , ( V . / ^ ) = 0, 
Ό 

dH dE 
[V Λ Ε] = -μο — , [V Λ ^ ] ==7 + ^ 0 ^ 

(2.20) 

where we have assumed that Β = μοΗΰίπά D = e^E, and where the 
symbols have their usual meaning. We shall assume that we may 

approximation one can still treat the coUisions as binary en
counters, and he evaluates (¿//^OCOIUSIOM under that assumption, 
using (2.3) for the change in the momentum of one of the particles, 
and assuming that the most important collisions are those for 
which (2.3) holds and in which the change in momentum is so 
small that we can expand the transition probabilities in a power 
series in Ap and retain only the first non-trivial term. We refer to 
Landau's paper for details. 

The second topic to be discussed in the present chapter is the 
so-called Landau damping (Landau 61; reprinted as paper 3 at the 
end of this volume). This is the damping of longitudinal plasma 
waves in a coUisionless plasma where at first sight, therefore, no 
dissipation mechanism is present. We shall discuss this pheno
menon following closely a recent paper by Hopman (1965). 

We consider first of all the case of a zero-temperature plasma 
in which all coUisions are neglected. In that case, the electrons 
would at equilibrium be stationary in classical statistics which we 
assume to be applicable and there would be no influencing of one 
part of the plasma by another part. Consider now what would 
happen if some of the electrons were displaced. To simplify our 
discussion we shaU assume that our plasma is one-dimensional, 
that is we assume that all quantities depend on χ only. At equili
brium, the charge density is a constant, and there is no electric 
field. A displacement of the electrons will result in an electric field 
Ε which tends to counteract the displacement, and we may expect 
that the electrons wiU osciUate around their equilibrium positions. 
We can use the MaxweU equations: 
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. (2.25) 

These plasma oscillations were first considered by Tonks and 
Langmuir (1929; for a derivation using so-called collective co
ordinates see, for instance, ter Haar, 1958). 

We note that so far we have found oscillations with a frequency 
which is independent of the wavelength, which means that the 
group velocity Tgr , given by the equation 

dm 
v„ = - (2.26) 

(k = wave number) vanishes. This is not surprising as we have 
already noted that there is in our model no way for one part of the 
plasma to influence another part. 

However, if we look at a plasma at a finite temperature, elec
trons can move from one part to another, and we would expect 

neglect the term [ V A ^ ] in the last of eqns. (2.20) which then 
becomes 

8E 
7 + ^ 0 ^ = 0. (2.21) 

If Ό is the electron velocity, we have, on the one hand {e = charge 
of an electron), 

'v=^^E, (2.22) 
m 

and, on the other hand, 

j = n,ev, (2.23) 

where «o is the equilibrium electron density. Equation (2.21) now 
reduces to 

Ε + ω,^Ε = 0, (2.24) 

where ωρ is the so-called plasma frequency, 
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that the group velocity will no longer vanish; that is we expect dis
persion—dependence of ω on A:—to appear. To find the dispersion 
we follow Böhm and Gross (1949a, b) and divide the plasma in a 
number of mono-energetic beams. Let F(vt)Avt be the number 
of electrons per unit volume with velocities between Vi and 
Vi + Avt. If a plasma wave propagates through the plasma the 
density in the beam will change from FAv to (F + SF)Av and its 
velocity from Vi to Vi + hvi. While F{v¡) will be the equilibrium 
distribution and thus independent of χ and i, as will be Vi, 3Fand 
hvt will depend both on χ and on t. We shall assume that the devia
tions from equilibrium are sufficiently small that we may neglect 
all second-order terms. Due to the deviation from a uniform 
equilibrium distribution an electric field will be set up and this 
will also be a small quantity. The unknown quantities are thus 
8F, hvi, and the electric field E, and, taking into account that for a 
moving mass element djclt = d/di + (t?-V), we have for them the 
following equation of motion: 

^i-^ +-J7 = Y^^^ (2.27) dx dt Μ 

as well as the Maxwell equation, in the form (2.21), or 

dE 
€ 0 - - =e Σ(Ε8νι + ViSF)Av, (2.28) 

at i 

and the equation of continuity 

, 2 . 2 9 ) 
dt dx dx 

We note that if Vi = 0, we get back to eqns. (2.21) to (2.24). We 
now look for a plane wave solution 

E(x, t) = Eo e'^-^-'^\ (2.30) 

and find from (2.27) and (2.29) 

Sv, = — f - ( 2 . 3 1 ) 



δί· = 
- JeEJiF 

ffí (ω — kViY 
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Substituting expressions (2.30) to (2.32) into (2.28) we get the 
following dispersion relation: 

(cu - kv;r ~ . 
Fdv 

(ω - kvf 
(2.33) 

We shall assume that in the sum only terms occur for which 
kvt <ξ ω, so that we can expand (ω — kvi) in powers of kvi/m. 
Using (2.25) and the relations 

«0 J 
we get from (2.33) 

« 0 = 

Fv^dv, 

ωl + 3k^ 

Fdv, 

V > = — 
Πο 

< t;2 > , 

(2.34) 

Fvdv, (2.35) 

(2.36) 

where we have used the fact that if we use for F{v) the Maxwell 
distribution, <v> vanishes (and <v^> = ksT/m), 

We must now discuss the assumptions used in our derivation. 
The basic one was that we do not need to worry about the fact 
that the integral in (2.33) diverges even though the Maxwell dis
tribution is non-vanishing for all values of v. We must thus study 
in somewhat more detail what happens to those electrons which 
have velocities in the neighbourhood of ω/k. These are electrons 
which occupy the shaded area in Fig. 2.2 and are called the trapped 
electrons for reasons to be explained in a moment. In Fig. 2.2 we 
have also indicated the root mean square velocity. We may 
expect that equation (2.36) is not too bad an approximation as 
long as ω/k > \/<v^>, or, as long as 

(2.37) 

where we have used (2.36), the relation <v^> = keT/m and 
equations (2.13) and (2.25). 

(2.32) 
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FIG. 2.2. Electron Maxwell distributions. The electrons in the shaded 
area are the so-called trapped electrons. 

Consider now a wave with frequency ω and wave number k 
propagating through the plasma. The phase velocity is mjk. Let 
us consider the wave in a frame of reference moving with a velocity 
cü/fc—in which the wave is at rest (Fig. 2.3). The electron beams are 
moving through this periodic field. 

From the requirement of continuity we know that ji in each beam 
must be constant. If the beam moves through the periodic field, 
the electrons will be accelerated and decelerated, and as ji = 
UieVi, we see that the electron beam will get a periodic structure. 
From Fig. 2.3 we see that electrons with Vi < ω/k which move 
from right to left are accelerated between O and Β and from 
D to G and decelerated between Β and D and from G to L This 
means that at Β and G the electrons have their maximum velocity 
and thus their minimum density (see Fig. 2.3). The electrons in the 
plasma themselves, by their space charge distribution, thus stabi
lize the wave. It is left to the reader to verify that the situation is 
the same for the electrons with Vi > ω/k. 

What happens to electrons with Vi ^ ω/kl Their velocity in the 
moving frame of reference is so small that they cannot get over 

F(v) 
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FIG. 2.3. The electrical field, E'= —Eq sin kx, of a sine wave, 
Ε = Eq sin {ωt—kx), in a frame of reference moving with a velocity 
wjk. The lower curve is the density distribution η in the electron 

beams and is proportional to the electrical potential φ. 

the potential barriers produced by the electrical potential φ, which 
is related to Ε by the relation Ε = αφ/αχ. This means that the 
electrons will be captured in the potential wells at ^, G. . . . We 
can see that all electrons with velocities between ω/k — Vc and 
ω/k + Vc will be trapped, where Vc is determined by the condition 
that ^mvc^ = βφο is the amplitude of the potential. From this con
dition we get 

(2.38) 

where Eq is the amphtude of the electrical field. 
Consider now an unperturbed plasma upon which suddenly a 

periodic electrical field is imposed. The electrons with velocities 
in the shaded area in Fig. 2.2 will get trapped and will be forced to 
move all with a velocity ω/k. Electrons which originally were 
moving faster are slowed down, and those which originally were 
slower are speeded up. As in the case of a Maxwell distribution 
df/dv < 0 ioT ν = ω/k, more electrons are speeded up than 
slowed down and the wave loses energy to the electrons: damping 
is present. 

The theory used here is a linearized one and uses plane waves. 
Recently, Wong, Motley, and d'Angelo (1964; See also Alexeff, 
Jones, and Montgomery, 1967) have measured the phase velocity 
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TABLE 2.1 

δ/λ ω|k in 10^ cm sec~^ 

Theoretical Experimental Theoretical Experimental 

Plasma waves 0-51 0-55 1-2 1-3 
moving in the 
direction of 
the Cs+ beam 

Plasma waves 0-27 0-25 0-8 0-9 
moving in the 
opposite 
direction 

These experimental results demonstrate the essential correct
ness of the concepts involved in Landau damping, and especially 
the idea that collisions may be neglected in describing this 
phenomenon. 

Vpb and damping decrement δ for waves in a plasma consisting of a 
moving Cs+ beam. Their results are given in Table 2.1 and it is 
seen that the experimental data are in good agreement with the 
theoretical predictions. It was also found that the results were 
independent of EQ—as should be the case for a linear theory. 



I I I 

Nuclear Phys ics , 
Ast rophys ics , and C o s m i c R a y Phys ics 

As ONE would naturally expect, Landau has considered many 
aspects of nuclear physics. We have chosen a paper on the statisti
cal theory of nuclei (Landau 31; reprinted at the end of this 
volume as paper 4) to represent his work in this field, and we shall 
discuss this paper presently. Before doing this, however, we shall 
discuss a few of his other contributions to nuclear physics. In a 
short note (Landau, 1935) he points out that some nuclear re
actions such as α-decay of certain compound nuclei will not take 
place because of the forbiddenness of transitions between states of 
different parity. We just mention his papers on meson theory and 
the theory of nuclear forces (Landau 40, 42, and 45). 

We finally mention three papers on scattering theory. With 
Smorodinskii, Landau (55) discussed proton-proton scattering, 
using the fact that for relative energies small compared to the 
interaction energy, and for de Broglie wavelengths long compared 
to the range of the forces, the shape of the interaction potential is 
immaterial. This paper essentially introduces the effective-range 
method for the scattering of charged particles, in particular for 
proton-proton scattering. Landau and Lifshitz (68) extended 
earlier work by Landau (7; see Chapter IV for a discussion of this 
paper) to discuss deuteron fission in a Coulomb field. It is interest
ing to note that they carefully give this paper the same title as the 
earlier ones, because at the time of publication nuclear physics 
papers seldom obtained permission to be published. The title is 
very uninformative, but a title such as *Όη the theory of the 
{d, pri) reaction" might have meant that the paper could not have 

21 
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been published. The final paper on scattering is one with Pomer-
anchuk (Landau 77) in which the scattering of fast pions by 
nucleons is discussed. In this case one can assume the nucleón (or 
nucleus) to be a "black" sphere so that only the wave function of 
the pion outside the nucleón need be considered. Landau and 
Pomeranchuk evaluated the y-ray spectrum emitted in such 
scattering processes. 

In his paper on the statistical theory of nuclei, Landau shows 
how one can use quite general considerations to find expressions 
for nuclear energy level densities. Bethe (1936) had derived such 
expressions treating the nucleus essentially as a system of inde
pendent particles, but Landau showed that one can derive similar 
expressions under much less stringent restrictions. He also used 
his results to discuss nuclear reactions on a statistical basis. We 
shall indicate here how one can use statistical methods to find the 
nuclear energy level density as a function of energy (see ter Haar, 
1954, chap. XIII, for a more extensive discussion and for literature 
references). 

In statistical mechanics one shows that if the number of energy 
levels between Ε and Ε + dE is given by p(E)dE, we can calculate 
for a given temperature T(=l/kBß:kB Boltzmann constant) the 
average energy as function of Τ (or β) and of the numbers 
of protons Ζ and of neutrons iVf. We know from statistical mech
anics that the Helmholtz free energy of a system is given by the 
equation . 

e-f^^ = jp(E)dEe-^^ (3.1) 
As the nucleus consists of a relatively large number of particles, 
p(E) will be a steeply increasing function of Ε and the integrand 
in (3.1) will have a relatively steep maximum atE = <E> so that 
we can write ί 

e-P^ = Cp(<E>)e-f'<'>, (3.2) 
t We assume here that the numbers of protons and of neutrons are fixed. If 

this is not the case, one uses the method of the so-called grand ensembles (see, 
for example, ter Haar, 1954, 1966a). 

t Equation (3.2) is obtained by writing ρ{Ε) = e^^^^ and expanding the index 
φ{Ε) — βΕ around its maximum <E> ; retaining only the first non-trivial 
terms, one is left with a Gaussian integral which gives us C. 
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where the constant C is only weakly dependent on < £ • > . On the 
other hand, we have for the entropy S the two relations 

F = < E> - TS;^ (3.3) 

and 

8S/kn „ S 
= j8, or 8<E> '^' kn 

The idea is now that if a nucleus is excited to a certain energy, 
this will correspond to a certain nuclear temperature, such that the 
average energy at that temperature is just the excitation energy. 
Equations (3.2), (3.3), and (3.4) are not sufficient by themselves to 
determine for a given E: T, S, F, and p{E). However, one can 
introduce models for the nucleus, which will provide us with an 
additional relation between the various quantities. For instance, 
if we assume the nucleons to move as free particles inside the 
nucleus, we are dealing with two systems of fermions, each of 
which is a degenerate perfect gas. In that case, we have, using the 
fact that for a perfect fermion gas near total degeneracy the energy 
is a quadratic function of Τ (see, for example, ter Haar, 1966a, 
p. 133), 

<E> =E-Eo = CT\ (3.5) 

where C is a constant and EQ is the ground state energy, and where 
we have reckoned <E> from the ground state energy as zero. In 
fact, (3.5) holds for any system of independent fermions. We now 
easily find from (3.2) to (3.5) that p(E) is given by the expression 

ρ(Ε) = φι(Ε)6'-^\ (3.6) 

where φι(Ε) is a smooth function of Ε and where Δ is an energy of 
the order of the single-particle level distances. 

In the case of a liquid drop, the JE'-dependence of the index is 
sHghtly different (see Bethe, 1937) and we find 

p{E) = φ,{Ε) exp [{E/A'r^] (3.7) 
M . O . P . V I — Β 
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It is interesting to note the order of magnitude of the quantities 
involved. The excitation energies will be of the order of MeV, as 
will be the single particle level splitting, 

Λ ^ 1 MeV , (3.8) 

if we put the size of the nucleus d 10"̂ ^ j^is means that 
S/kß will be of the order of magnitude of unity [cf. (3.2) and (3.6)] 
and combining (3.5) and (3.4) we find for the order of magnitude 
of the nuclear temperature 

Τ - 1 MeV. (3.9) 

We refer to the Hterature for a discussion of the statistical theory 
of nuclear reactions (see especially Weisskopf, 1937; Weisskopf 
and Ewing, 1940). 

Landau's contributions to astrophysics were all concerned with 
stellar structure and energy and, as could be expected in a fast-
moving field, are now rather out of date. In his first paper in this 
field (Landau 8) he discussed stellar equilibrium in general terms. 
His first point is that theoretical physics should be able to discuss 
the physical nature of stellar equilibrium. We can first neglect 
energy radiation and look for the minimum of the Helmholtz free 
energy. This free energy consists of two parts: the gravitational 
free energy, which depends on the average density, p, as /ô /* and is 
negative, and the free energy connected with the equation of state. 
If the gas, which makes up the star, is a classical one, this second 
contribution is positive and varies as In p, and there is thus no 
equilibrium: the minimum occurs for ρ = oo: the star collapses to a 
point. If the gas is a non-relativistic fermion gas, the second contri
bution varies as p̂ /̂  and there would be a stable equilibrium. How
ever, if the gas is a relativistic fermion gas, the second contribution 
varies as p̂ /̂ , and it now depends on the actual coefficients whether 
there exists a stable configuration. Landau shows that it depends 
on the stellar mass whether or not there is a stable configuration, 
that is whether or not the star will collapse to a point. The critical 
mass is of the order of one and a half solar masses. As larger stars 
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do exist, Landau suggests that each star has a core "in which the 
laws of quantum mechanics (and therefore the quantum statistics) 
are violated", and that this is what makes a star a star. As he 
explicitly discards the idea that "some mysterious process of 
mutual annihilation of protons and electrons" would supply the 
stellar radiation. Landau then suggests that in that pathological 
core the energy conservation law is violated—at that time some 
people believed that there was other evidence for such a violation 
(compare the remarks at the end of Landau 6, to be discussed in 
Chapter IV)—and that this would occur when the density becomes 
of the order of the nuclear density. We should emphasize that in 
the early 1930's there was a great deal of discussion of the limita
tions of quantum mechanics and of laws such as the energy con
servation law. It is now known that these conclusions have to be 
modified when radiation is present, but a more detailed analysis 
(Chandrasekhar, 1935, 1939) shows that the relativistic zero-
temperature theory of a completely degenerate configuration pre
dicts that its radius tends to zero as its mass tends to a finite 
limiting value and this limiting mass is of the order of a few solar 
masses. 

In a short note Gamow and Landau (13) look into some of the 
consequences of Atkinson and Houterman's (1929) suggestion 
that processes of thermal transformation of light elements occur in 
stars. They considered the reaction 'Li + Ή -> 2*He, and they 
showed that either practically no lithium is present at the stellar 
surface or there is a limit to the temperature in the interior of the 
star. 

In his last paper on astrophysics Landau (27; reprinted as paper 
5 at the end of this volume) suggests that stellar energy might 
derive from the combination of electrons and nuclei into neutronic 
matter. Under atmospheric pressure such a combination is 
energetically unfavourable, but for sufficiently massive stars the 
pressure in the interior of the star will be so large that the gravita
tional energy gained in going over to the neutronic state will over-
compensate the loss in binding energy. To see when this will 
happen, we find for the gravitational energy of the neutronic 
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(3.10) 

matter, assuming a density of 10̂ * g cm"^ 3 χ 10~^ M /̂̂  erg. 
However, we must also take into account the fact that the zero-
point pressure of a fermion gas depends on the mass of the 
particles and going over from the electronic to the neutronic state 
we gain 7 χ lO"̂ ^ 7^/7/3 ĵ-g ĵ̂ g average energy lost by going 
over to the neutronic state is about 8 MeV per neutron or 7 X lÔ ^ 
erg g we lose 7 X Μ erg in going over to the neutronic 
state. Comparing the losses and gains, we find that as soon as Μ 
is larger than about one-thousandth of a solar mass, energy is 
gained by going over to the neutronic state. For a star such as the 
sun, the energy radiated during several times 10* years requires 
only a fraction of the sun to have gone into the neutronic state. 

We must, however, emphasize that nowadays, following the 
work of Bethe (1939) and von Weizsäcker (1937), it is generally 
accepted that the following nuclear reactions are the main sources 
for the radiative energy of the stars: 

12c + Ή ->"N ->i«C + e + , i 3 C + Ή - > i * N , 

+ Ή -> -> + e +, "Ν + Ή -> + ^He,] 
and 
Ή + Ή -> Ή + e +, Ή + Ή -> 
3He + «He^*He + 2 O . (3.11) 

To conclude this chapter we shall discuss Landau's contribu
tions to cosmic ray physics. In the late 1930's and early 1940's 
Landau, often in collaboration with Rumer, considered the pro
duction of electronic showers by energetic particles (Landau 34, 
36), a field to which many people contributed. In their theory they 
consider the penetration of a fast j8-particle through matter. It 
produces photons through Bremsstrahlung, and these photons 
may be of sufliciently high energy to produce pairs which in turn 
can produce photons, and so on, until there is no longer enough 
energy available. Landau (43) returned to this problem later on, 
refining some of the results and at the same time finding an ex
pression for the width of a shower, and he also (Landau 44) 
extended the theory to a consideration of showers produced by 
mesons rather than by j8-particles. 
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The energy distribution function of fast particles which are 
losing energy through ionization coUisions was considered by 
Landau (56) as was the general theory of Bremsstrahlung and pair 
production for high-energy electrons (Landau 75). In this last 
paper, written in collaboration with Pomeranchuk, he found that 
the Bethe-Heitler formula ceases to be vaHd for energies above 
about 2000 GeV if the electron is moving through heavy matter. 
The processes to take the place of the ordinary Bremsstrahlung 
and pair production which involve higher-order processes were 
discussed by the same authors in a subsequent paper (Landau 
76), and it was shown that at sufficiently high energies the soft 
component of cosmic rays (electrons and positrons) has similar 
properties as the hard component (nucleons), which is hardly 
surprising as at those energies the rest mass energy is negligible 
compared to the kinetic energy of the particles. 

Perhaps Landau's most interesting contribution to cosmic ray 
physics was his development of Fermi's ideas (1950, 1951) of a 
statistical or hydrodynamic theory of the multiple production of 
particles during collisions of fast particles—that is, the production 
of many-pronged stars (Landau 74, 88; the first of these papers is 
reprinted as paper 6 at the end of this volume). We should men
tion that with the advent of large accelerators these processes no 
longer only are produced by cosmic rays, but also by man-made 
projectiles. Fermi's basic point was that perturbation theory is in
applicable to this problem as there are too many elementary pro
cesses involved, but that one can make a virtue out of this necessity 
and use statistical methods. 

We shall sketch Landau's theory, but for a discussion of details 
we must refer the reader to the two papers quoted a moment ago. 
Let us consider the collision of two nucleons, due to the impact of 
a nucleón with an energy of 1000 GeV or more on a stationary 
nucleón. In Fermi's theory the following assumptions were made: 

(a) It is assumed that in the collision, energy is released in a 
very small volume V in the centre of mass system. As the 
interactions are strong and the volume—which will be 
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E' 

(c) Fermi assumes that the particles are formed at the instant 
of collision in the volume V, and do not interact further 
with one another, but leave the volume in a "frozen" state. 

This last assumption is unjustified because at the instant of 
collision the energy density, and thus the particle density is so 
large and the interactions between them so strong that one cannot 
legitimately speak about a fixed number of particles and certainly 
cannot assume that the interaction between the particles stops as 
soon as they leave the volume V, In actual fact the system expands 
and the number of particles does not become definite until the 
interaction between the particles becomes small and they can move 
away from one another as free particles. 

Thermodynamics can be applied to the system when the mean 
free path λ is much smaller than the dimensions L of the system, 
but in that case one can also apply hydrodynamics, and Landau 
therefore suggested that one should apply both thermodynamics 
and hydrodynamics to the system until it is expanded sufliciently 
for the particles to be treated as being independent. Because of the 
very high energies involved one must apply relativistic thermo
dynamics and hydrodynamics. 

Lorentz-contracted—small, we can use for the energy-
distribution statistical laws and can thus treat this collision 
of high-energy nucleons without recourse to any specific 
theories of nuclear interaction, 

(b) The volume V will be determined by the dimensions of the 
pion cloud surrounding the nucleons, whose radius is 
hlm^c, m„ being the pion mass, and by the Lorentz contrac
tion in the direction of motion. The Lorentz contraction is 
given by (see, for instance, Leighton, 1959) IMc^/E', where 
Μ is the nucleón mass and E' the nucleón energy in the 
centre of mass systems. We have thus 
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The colUsion process can now be described as follows. 
(1) The first stage is much as envisaged by Fermi. At the instant 

of collision a large number of particles are formed, their mean free 
path is small compared to the dimensions of the system, and 
statistical equilibrium is set up. 

(2) The second stage is the expansion of the system. Now one 
can use a hydrodynamics approach, and one can regard the ex
pansion as the motion of an ideal fluid with zero viscosity and 
zero thermal conductivity. This is justified because the Reynolds 
number, 

pVL VL . . . . . RG = '-— — , (3.13) 
η νλ 

is much larger than unity. In (3.13) F i s the "macroscopic" and ν 
the "molecular" velocity which both are of the order of the velo
city of light. 

(3) Finally, the interaction will become weaker and now one 
can characterize the state of the system by giving the number of 
particles. "Break-up" will occur when λ becomes of the order of 
L, and this will happen at a temperature Γ3 which is given by 

ksT, ^ m,c'. (3.14) 
This can be seen from the fact that the equilibrium number of 
particles will depend on Tas exp [—m^cV^sr] so that for tempera
tures just below Ts the number of particles will become small and 
the mean free path long. 

The equation of state for the matter in the relativistic region will 
probably not be very different from the black-body equation of 
state (see, for instance, ter Haar 1966a, chap. VII) 

Ρ = Κ (3.15) 
where Ρ is the pressure and e the energy density. This is, of course, 
just the equation of state for photons and for ultra-relativistic free 
particles—independent of their statistics. 

As the number of particles in the system is not fixed, the chemi
cal potential (or Gibbs free energy) vanishes, or 

e-Ts + P = 0, (3.16) 
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where s is the entropy density. It thus follows that 

Ts = |e, (3.17) 

and as long as the expansion is adiabatic we find (see, for instance, 
ter Haar, 1966b, or ter Haar and Wergeland, 1966) the same rela
tions as for black-body radiation, that is 

e = c^T\ s = c^€^^\ (3.18) 

where Ci and Cz are constants. 
During the break-up different parts of the system will start free 

expansion at different moments. In each of these regions it follows 
from relativistic thermodynamics (or thermostatistics) that al
though the entropy and number of particles vary strongly with 
temperature, their ratio is not very sensitive to a change in 
temperature around TG. This means that for each of the regions 
we have (f numbers the regions) 

rii = c,Si, (3.19) 

and thus 

Ν = c,S, (3.20) 

where S is the total entropy and Ν the total number of particles 
produced. 

In the case of a head-on collision of two nucleons, one at rest 
and the other incident with energy E, they each have in the centre 
of mass system an energy E' given by the equation 

2E'' = Mc'E, (3.21) 

The entropy S is proportional to e /̂̂ F, or as e = 2E'/V, 

NocSoc e^i^V oc (3.22) 

The volume is given by (3.12) so that we get from (3.22), (3.12), 
and (3.21) 

Ν oc E^i\ (3.23) 
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/ Ε 

where C4 should be of order of magnitude unity and experimentally 
turns out to be about 2. 

Consider now a head-on collision of two identical nuclei of 
atomic weight A, We have already indicated that perturbation 
theory is not applicable. This entails that we cannot consider such 
a collision as a series of collisions between separate nucleons. If 
vjc is about the same as in the case of the nucleon-nucleon colli
sion, the energy density and the initial Lorentz contraction will be 
the same, but the volume will be A times larger so that the number 
of particles produced will be A times larger for EjA the same as a 
moment ago. We thus get 

/ £ \ l / 4 3/4 / £ \ l / 4 

N=c,A\-=^\ =c,A — I (3.25) 

and we see that two nuclei of atomic weight A with energy Ε pro
duce as many particles as two nucleons with energy EA^. 

and as m„ Μ and using dimensional arguments, we find 
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Q u a n t u m Mechanics 

APART from solving—so to speak en-passant—any problem 
which was drawn to his attention and which was a sufficient 
challenge, Landau throughout his life has always been working on 
those branches of physics which constituted at any particular time 
the frontier of physics. In the 1950's this was quantum electro
dynamics and elementary particle physics, and in the next chapter 
we shall discuss some of his contributions to that part of physics, 
while in the later 1920's and the 1930's it was the new quantum 
mechanics developed by Schrödinger, Heisenberg, and the Copen
hagen school around Bohr—of which Landau considered himself 
to be a member. In fact, his earliest papers published when he 
was still in his teens dealt with various problems in wave 
mechanics. 

Some of Landau's early papers deal with spectra. In the first 
paper he wrote alone (Landau 1|) a discussion is given of the 
rotational spectrum of diatomic molecules and the frequencies 
corresponding to the and i?-branches of the Fortrat dia
gram are derived. The splitting of the rotational energy levels due 
to magnetic or electric fields (Zeeman and Stark effects) is also 
considered. The role of sum-rules is pointed out in a brief note 
(Landau 5) while, with Placzek, Landau (14) considered the struc
ture of the so-called undisplaced Une occurring when light is 
scattered by liquids or not-too-dilute gases. This line can be 

t Although this is the first paper in the list of papers on p. 54 and also the 
first paper in the Collected Papers volume, it is not Landau's first paper. In 
Appendix Β of the Collected Papers volume a list is given of some fifteen 
papers which were not included in full because they either were out of date or 
contained errors. 

32 
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shown to be a triplet, the scattering being due to density fluctua
tions in the scattering system. With the advent of lasers, strong 
light beams are now available and the Landau-Placzek triplet has 
been studied experimentally. Among other papers on scattering is 
one which deals with the slowing down of electrons through 
Bremsstrahlung emission (Landau 15) where a simple—to a large 
extent dimensional—analysis leads to the same result as one 
derived more rigorously by Heitler (1933) while at the same time 
pointing out the Hmits of appUcability of the Heitler formula. 
With Akhiezer and Pomeranchuk, Landau (26) evaluated the 
cross-section for the scattering of Hght by hght for the case of high 
frequencies, while in a short note (Landau 39) he points out that 
the fact that electrons do not show polarization on scattering, as 
predicted by theory, can be explained by the fact that most elec
trons will be multiply scattered. 

The electron-positron system was considered by Landau from 
various angles. The problem of pair-production was studied with 
Lifshitz (Landau 16) for the case of high-energy coUisions of 
charged particles. In the opposite process, that of the mutual 
annihilation of electrons and positrons, usually two photons are 
emitted. Landau (65) showed that this two-photon annihilation of 
positronium is strictly forbidden in all states with odd orbital and 
total angular momenta and also in all states with total angular 
momentum equal to unity—an example of which is the case of a 
stationary electron and a stationary positron with their spins 
parallel. With Berestetskii, Landau (71) discussed the wave equa
tion for the electron-positron system up to terms of order v^jc^, 
and he also (Landau 19) gave a simple derivation of the v^jc^ 
correction term to the Schrödinger equation [the so-called Breit 
term (Breit, 1929)]. 

It is weU known that quantum mechanics is intimately connected 
with probabUity statements: the wave function can be used for a 
statistical treatment and for evaluating the statistical distribution 
of possible values of various observables. If we now consider 
quantum statistics, we must add the statistical treatment of 
statistical mechanics to that of quantum mechanics, and the 
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where 

<Ω> = (φ*Ωφατ = ΣΚαΑη.. (4.5) 
J nm 

Ω,^=\φ*Μτ. (4.6) 

average value of any physical quantity is obtained by first averag
ing over the state of each system in a statistical ensemble and then 
averaging over the ensemble. A similar situation arises when the 
system considered is coupled to another system. Again we have a 
twofold average, this time firstly over the state of the system and 
secondly over all possible states. To see how this works, let us 
consider the second case. Let at ί = 0, 0 be the wave function of 
the system considered and φ' that of the system to which it is 
coupled at / = 0, and let φη and φΐ, be complete orthonormal sets 
in terms of which φ and φ' can be expanded: 

Φ = ^aj„ (4.1) 

and 

Φ' = ^ΚφΙ. (4.2) 

The wavefunction of the combined system φ can be written in the 
form 

φ = φφ' = ΣαΜηΦί = ^n,kCnkΦnΦL (4.3) 
and the Cnk completely describe the state of the combined system. 
At t = 0 the c„k are given by the equation 

Cnk = anbk, (4.4) 

but there is no reason to assume that at a later time φ can still be 
written simply as a product of two wavefunctions pertaining to the 
two parts of the combined system. Although (4.4) will no longer 
hold, the c„k still determine φ. 

Let us now consider an operator Ω operating upon the coordin
ates of the original system. If this system is in a state φ, the 
average value < ß > is given by the equation 
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However, if we only know that the combined system is given by 
φ we have 

<Ω> = ίφ*Ωφατατ' 

= ^η.Κΐ€η:θητΐίατ'φ[*φ:5ατφ:Ωφ^ 

= ^nm^nm^kCnlCmk, (4.7) 

and we see that instead of the a*„am in (4.5) we now have an average 
^kCnkCmk' If we introduce now a density matrix or statistical opera
tor β by its matrix elements in the ^-representation 

Pmn = ^kClkCmk, (4-8) 

we can write (4.7) in the form 

<Ω> =Σ,„,p„Am = TτßΩ, (4.9) 

and we see that once β is known we can evaluate all averages. We 
note that if the c„k are given by (4.4), (4.7) reduces to (4.5). 

The density matrix in the form discussed a moment ago was 
introduced by Landau (2) in a paper discussing damping of radia
tion. The system described by the density matrix is in this case an 
atom and the coupling is with the radiation field. A more general 
discussion of the density matrix was given almost at the same time 
by von Neumann (1927; for a general discussion of the density 
matrix see, for instance, ter Haar, 1961, 1966a). 

We now come to the two papers reprinted in this volume. In the 
first paper (Landau 6; reprinted as paper 7 at the end of this 
volume) Landau and Peierls discussed how relativity theory im
pinged on the theory of measurement in quantum mechanics. 
We do not have the space here to discuss the difiicult question of 
the meaning of a measurement on a quantum system. This is dis
cussed in section 2 of the paper by Landau and Peierls (see also 
London and Bauer, 1939; ter Haar, 1961). The remainder of the 
paper is concerned with a discussion of the Heisenberg relations 
in relativistic quantum theory. It is of interest to note that the 
authors repeat Bohr's suggestion that conservation of energy 
breaks down for the electrons in the nucleus which are emitted in 
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Δ^2 = 
6π€ο 

a^dt, (4 .13) 

where a is the acceleration of the particle. Minimizing ΔΕ2 by 
putting \a\ = \v — υ'\ ¡b^t, and using (4.12) , we have 

and combining (4.11) and (4.14) we find 

j8-decay. We shall only briefly discuss one aspect of the paper, 
namely the consideration of the measurement of electromagnetic 
fields. 

If an electric field S is to be measured, one uses a charged 
particle and determines the change in its momentum /?. If the 
charge of the particle is e and the measurement takes a time Δί, 
we have 

el^S^t>t^p, (4 .10) 

where Δ/? is the uncertainty in the momentum after the measure
ment. The value of A/? arises from two sources: first of all, from 
the uncertainty in energy AJS" connected with a finite duration Δί 
of the measuring process one finds 

where | ι; — i;' | is the change in the velocity of the particle, and 

where we have used the relation 

l^E = v^p\ (4 .12) 

secondly, a charged particle will emit energy when accelerated 
and we have, therefore, a second source of energy uncertainty 
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From (4.10) and (4.15) we then get 

Similarly, we find for the magnetic field by considering the action 
on a magnetic dipole 

> ( 4 . > 7 , 

If we wish to measure é' and simultaneously, we must take 
into account the magnetic field produced by the particle, and if 
Ar is the distance between it and the magnetic dipole, we find an 
additional uncertainty in of the order of 

e(v — νΊ 

Combining (4.18), (4.10), and (4.11), we find 

where the right-hand side is similar to the product of the right-
hand sides of (4.16) and (4.17), but with {cAtJ^ replaced by 
cAtAr, We note that for static fields the simultaneous measure
ment can be made as small as we want by choosing At sufliiciently 
large. 

Let us now consider a radiation field. If Ε is the energy of the 
radiation considered, we need to measure the field strength in a 
time At such that the field strength can be considered to be 
essentially constant, because in that case our earlier considerations 
hold, and this means clearly that we must satisfy the inequality 

Δ/ < (4.20) 

In that case inequality (4.16) will hold so that a measurable field 
strength S must satisfy the relation 
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On the other hand, the wavelength of the radiation must be at 
least hcjE and the field strength will be essentially constant over a 
volume of at least the size {hc/Ey, The total energy must therefore 
satisfy 

or 

> ^ (4.23) 

in contradiction to (4.20). It looks thus as if the radiation field can 
not be properly defined in relativistic quantum theory. However, 
Bohr and Rosenfeld (1933) in their thorough analysis of the 
measurability of electromagnetic fields pointed out that Landau 
and Peierls' analysis mixed up the problems of field theory and of 
atoms. It is well known that even three decades later there is no 
really satisfactory theory incorporating both radiation and atoms. 
However, if we are interested only in electromagnetic quantities, 
there is no elementary length, as only h and c occur in the theory 
and they are insufficient to determine a quantity of the dimensions 
of a length for which the electron mass, for instance, is necessary. 
Bohr and Rosenfeld point out that the difficulties encountered by 
Landau and Peierls are a consequence of their introduction of 
point particles—which are used as test particles—and that they 
will disappear if one uses test particles, the dimensions of which 
are large compared to atomic dimensions. 

The other paper on quantum theory reprinted here is one deal
ing with collision theory (Landau 7, 9; together reprinted as paper 
8 at the end of this volume). In this paper Landau considers sys
tems which can partly be described by semi-classical wave-
functions.! We shall discuss here the appHcation of this theory to 
the predissociation of a diatomic molecule (see Landau and 
Lifshitz, 1965, § 90). 

t For a description of the semi-classical (or W-K-B) approach to quantum 
mechanics, we refer to text books (for instance, Landau and Lifshitz 1965 or 
Davydov 1965). 
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FIG. 4.1. Two possible molecular energy curves. 

potential energies for the nuclear motion and the rotational and 
vibrational motion of the nuclei can be determined from them. In 
Fig. 4.1 we have sketched two such energy curves, Ui(R) and 
U2(R), that is, two curves corresponding to the energy of a dia
tomic molecule as function of R corresponding to different elec
tron configurations. Let be the energy of some vibrational state 
corresponding to the electronic state Ui(R), If the molecule could 
make a transition to the state UziR), it would get into a state 
corresponding to the continuous spectrum of that electron state, 
and the molecule would fall apart: this is called pre-dissociation. 

In the usual treatment of diatomic molecules, one uses the fact 
that the nuclei are so much heavier than the electrons to separate 
the electronic motion from that of the nuclei (for a discussion see, 
for instance, Davydov, 1965, chap. 12). This means that we c a n 
to a first approximation—treat the nuclei as being stationary when 
discussing the electronic energies and in turn this means that we 
can plot the electronic energies U(R) as a function of the distance 
apart R of the nuclei. These energies in turn can be used as 
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R VPI ñ 

>R 
PidR + a, (4.25) 

where a is some value of R in the classical region, the are con
stant phases, and the pt are given by the equation {m is here the 
reduced mass) 

piR) = ^/[2m{E ^ UiR)}], (4.26) 

t If a transfer of angular momentum from the electron system to the 
nuclear motion can take place, one is concerned with two electronic energy 
curves corresponding to different angular momenta, which can in fact cross. 

Another possibihty is a so-called colUsion of the second kind, 
where the molecule originally has an energy E[ corresponding to 
a state in the continuum of Ui{R) and makes a transition to a state 
in the continuum of UziR), This corresponds to a collision between 
two atoms with a decrease in their kinetic energy corresponding 
to the difference in the excitation energies. If transitions between 
Ui{R) and UziR) can take place, the energy curves will, of course, 
not be the full drawn ones, but where otherwise they would inter
sect, they must be replaced by the dotted curvesf (repulsion of 
levels; see the discussion in Davydov, 1965, § 49). 

The probabiHty that a transition 1 -> 2 will take place will be 
proportional to the matrix element of the perturbing energy 
(which in this case is that part of the energy which so far has been 
neglected), and after integrating over the electron coordinates we 
find that we must evaluate an integral of the form 

/= (φΙΫφ^'Ε, (4.24) 
J 

where φι and Φ2 are nuclear wavefunctions and Κ is a matrix ele
ment as far as the electronic coordinates are concerned and an 
operator as far as the nuclear coordinates are concerned. The 
nuclear motion can be considered to be quasi-classical so that V 
will simply be a function of R, 

We can take the φι in integral (4.24) in their semi-classical form, 
and as long as we are in the classical region we have 
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J η 

R 
i Wl2ni{E - U,{R')}] 

- V[2m{E - U,iR')}]}dR' ( 4 . 2 7 ) 

and we see that the main contribution to the integral will come 
from the region where 

Ε ~ UiiR) = E - U^iR) (4.28) 

or 

Ui{R) = U,{RX (4.29) 

that is the region where the two potential curves intersect (R = RQ, 
see Fig. 4.1). From this argument, we can say loosely that the 
transition takes place when 

Ri = R2 and A = (4.30) 

or during the transition the distance apart of the nuclei and their 
relative momentum remain unchanged (Franck-Condon prin
ciple). We can understand this as during an electron transition the 
nuclei cannot appreciably change their momentum or position. 

The further evaluation of the matrix element / is straightforward 
but not without interest. We refer the reader to Landau's paper or 
to Landau and Lifshitz's textbook (1965, § 90) for details and for a 
discussion of the role of selection rules. 

We have made use here of the fact that the problem has spherical 
symmetry so that it can be reduced to a one-dimensional problem, 
depending on R only. 

We can now write for / 
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Field T h e o r y t 

LANDAU'S contributions to quantum electrodynamics and in 
general to quantum field theory have been many and important. 
In the early days, soon after the development of quantum electror 
dynamics by Heisenberg and Pauli (1929, 1930), Landau (3) with 
Peierls constructed a Schrödinger equation to describe in con
figuration space the electromagnetic field and its interaction with 
matter and showed the equivalence of their approach with that of 
Heisenberg and PauH. In an interesting paper which uses to a large 
extent dimensional arguments. Landau (41) discusses the limiting 
length, below which electrodynamics must be modified. 

In the late forties and early fifties quantum electrodynamics 
became one of the focal points of theoretical research. This was 
started off by the Lamb-Retherford experiment (1947) which— 
using microwave techniques developed during the war for radar 
—showed conclusively that there was, indeed, a difference in 
energy of the hydrogen 2.ŷ  and 2p^ levels. This difference, the so-
called Lamb shift, had been suspected to exist, but it was too small 
to be determinable without reasonable doubt by ordinary spectro
scopic methods. It was in contradiction to Dirac's relativistic 
theory of the hydrogen spectrum, but it was immediately pointed 
out by Kramers that the Lamb shift could be explained on the 
basis of an interaction of the electron with the electromagnetic 
field produced by itself. Subsequent more refined calculations 
have shown the correctness of Kramers' point of view. The inter-

t We have had to limit the selection of papers for the reprint section to those 
which were not too technical. As a result we did not include paper 84 as we had 
originally intended and we included paper 100 rather than paper 98. 

42 



HELD THEORY 43 

4π6οΓ ' 

where r is the distance from the origin. The total energy Ε of the 
electric field is given by 

E = 

(5.2) 
8 πβοΛ 

and we see that ^ -> oo as α -> 0. If we put 

Ε = mc\ (5.3) 

action between the electron and its own field can be expressed in 
terms of a self-energy of the electron, and if one ascribes a mass to 
this self-energy, one is led to a renormalization of the electron 
mass: part of it corresponds to the so-called bare mass—the mass 
the electron would have, if it had no interaction with the electro
magnetic field—and part to the self-energy. The total mass is the 
mass observed experimentally and there is no way to determine 
experimentally the bare mass. Apart from a renormalization of 
the electron mass, one is also led to a renormalization of its 
charge and its magnetic moment. 

Tomonaga, Schwinger, Feynman, Dyson, and a host of other 
theorists developed a relativistically invariant perturbation theory 
and were able to find theoretical expressions for such quantities as 
the Lamb shift which were in excellent agreement with experi
ment. Moreover, many of the infinities originally occurring in the 
theory were removed in a consistent way. In fact, the Lamb shift 
is the difference between the infinite self-energies in the 2s^ and the 
2p^ states. In classical theory, a spherical electron of radius a with 
its charge e uniformly distributed over its surface will produce, 
when it is at rest with its centre at the origin, an electric field which 
is radially directed and the magnitude of which S is equal to 

r > a; <f = 0, r < a, (5.1) 



44 MEN OF PHYSICS - LANDAU VOL. 2 

that is, ascribe the whole of the electron's mass to the electro
magnetic self-energy, we find that we must assign a radius a to the 
electron given by 

which is one-half of the so-called classical electron radius. In 
quantum electrodynamics, most expressions diverge not as I/O, 
but as In a. However, a consistent application of renormalization 
theory shows that all quantities of physical interest are inde
pendent of the value of a. 

In a series of papers with Abrikosov, Khalatnikov, Pomer-
anchuk, Galanin, Gorkov, and Ter Martirosyan, Landau (78, 79, 
80, 81, 84, 86, 87, 89,96) discusses the various problems connected 
with the infinities arising in quantum electrodynamics and in the 
quantum theory of strongly interacting particles. In this approach 
to electrodynamics they replace the point-interactions occurring 
in the theory by "smeared-out" interactions with a finite range a. 
Later on one must take the limit as α -> 0. This approach has the 
advantage over the usual perturbation theory that it may be 
applicable even in those cases where perturbation theory is not. A 
well-known example of the inapplicability of ordinary perturba
tion theory is the BCS theory of superconductivity (Bardeen, 
Cooper, and Schrieifer 1957) where the important quantities 
behave as exp (—c/λ) which while vanishing as λ -> 0 cannot 
be expanded in a power series in λ. In taking the limit as α -> 0, 
Landau and his coworkers came up against the problem that in 
this limit both the renormalized charge and thus also the inter
actions between particles vanish. 

We should mention here first of all, that other people shared 
Landau's view that perturbation theory had only limited appUc-
abiUty. Specific of the work of Landau and coworkers was their 
conclusion that present field theory is nonsense in so far as it will 
necessarily lead to the vanishing of the renormalized, that is, the 
physical quantities, such as the charge of the electron. This con
clusion they claim to be true independently of whether or not 
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perturbation theory is involved. Although other theorists have 
questioned the mathematical rigour of the arguments, the Landau 
school maintains that these are pedantic quibbles and that their 
argument can be seen to hold, provided one uses a certain amount 
of physical intuition. 

We should mention secondly that Landau in his last years of 
activity felt strongly that Feynman graphs—although usually 
derived from conventional field theory—have an independent basic 
importance, and hence that it is important to study the analytic 
singularities corresponding to various graphs (see below). 

At the end of the fifties and the beginning of the sixties a new 
approach to quantum field theory was developed. It was to a large 
extent built upon the remark by Heisenberg that one should as far 
as possible introduce only observable quantities into the theory. 
As the wavefunctions themselves cannot be observed and as the 
Hamiltonian formaHsm is intimately connected with the wave-
functions, this formalism must be abandoned and the fundamental 
quantities to be studied are the scattering amplitudes which directly 
determine the cross-section for various physical processes, in
volving those in which particles are created or annihilated. This 
means that we must study processes where one set of particles with 
given energies, momenta, angular momenta, go in and another set 
come out. In a paper contributed to the Pauli Memorial Volume, 
Landau (100; reprinted as paper 9 at the end of this volume) dis
cusses this situation and points out the necessity to find the 
analytical properties of the various quantities which occur in this 
new theory. Some of these properties are described by the so-
called dispersion relations, and other properties concern the so-
called vertex parts. Landau (98; see also 99; his results were found 
independently by J . C. Taylor (I960)) discussed in a general way 
the singularities which can occur in the vertex parts. 

Finally, we must mention Landau's contribution to the dis
cussion of parity non-conservation (Landau 92; reprinted as paper 
10 at the end of this volume). We shall first mention the crucial 
experiments which led to the postulate that sometimes parity— 
that is, left- or right-handedness—may not be conserved. We 
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shall then discuss some aspects of conservation laws and conclude 
the chapter with a discussion of a few of the consequences of 
parity non-conservation. In the 1950's it was found that there were 
two mesons (nowadays called kaons) which were then called the 
Θ- and r-meson. Their modes of decay were 

θ-^π + π, (5.5) 

τ -> π + π + 7Γ, (5.6) 

and it was found that their masses and lifetimes were identical. A 
pion is a so-called pseudoscalar particle (cf. Davydov 1965, § 54); 
it has zero spin and its wavefunction changes sign under inversion, 
i.e. under the transformation x, y, ζ —x, —y, —z. A pseudo-
scalar particle is said to have odd parity and a particle described 
by a scalar wavefunction (which does not change under inversion) 
to have even parity. From (5.5) it follows—if we may neglect the 
relative motions of the pions—that the ^-meson should have even 
parity, and similarly from (5.6) that the τ-meson should have odd 
parity. Careful analysis of the decay data confirmed this conclusion 
and hence that the r - and ^-mesons could not be the same particle, 
although other evidence, such as that about masses and lifetimes 
pointed clearly to the identity of the two particles. In 1956 Yang 
(1957) stated: "However, it will not do to jump to hasty conclu
sions. This is because experimentally the X-mesons seem all to 
have the same masses and the same lifetimes. Since particles which 
have different spin and parity values, and which have strong inter
actions with the nucleons and pions are not expected to have 
identical masses, and lifetimes, one is forced to keep the question 
open whether the inference mentioned above that the τ and θ are 
not the same particle is conclusive. Parenthetically, I might add 
that the inference would certainly have been regarded as conclu
sive, and in fact better founded than many inferences in physics, 
had it not been for the anomaly of mass and lifetime degeneracies." 
Lee and Yang (1956) then studied carefully the evidence for parity 
conservation in nuclear reactions. They came to the conclusion 
that although for reactions which involve nuclear or electro
magnetic forces (strong and electromagnetic interactions) there 
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were many experiments establishing parity conservation to a high 
degree of accuracy, data on reactions involving weak (or decay) 
interactions, were not available to establish parity conservation in 
such reactions. If parity is not conserved in the reactions (5.5) and 
(5.6) we cannot reach any conclusion about the parity of the r -
and ^-mesons and there is no reason why they should not be the 
same particle. Once the idea of non-conservation of parity in 
decay processes is accepted, other consequences follow and many 
of those were predicted by Lee and Yang and observed experi
mentally practically immediately. We shall return to those at the 
end of our discussion. The 1957 Nobel Prize of Physics was 
awarded to Lee and Yang for their suggestion of a possible viola
tion of the parity conservation law. For an extensive discussion of 
the whole problem of parity conservation we refer to the Nobel 
lectures of Lee (1958) and Yang (1958) or to expositions by 
Wilkinson (1959; we refer also to this reference for a general dis
cussion of conservation laws) or—at a much more advanced level 
—by Okun' (1965). 

Both in classical mechanics (see, for instance, ter Haar, 1964) 
and in quantum mechanics (see, for instance, Davydov 1965, 
§ 19) the fact that physical systems possess certain symmetries 
leads to conservation laws. For instance, in a system possessing 
translational symmetry, linear momentum is conserved, and if 
there is rotational symmetry, angular momentum is conserved. In 
nuclear physics and elementary particle physics one meets other 
conservation laws—not all of which are simply related to sym
metry problems. For instance, as far as we can ascertain the total 
electrical charge of a system is conserved (charge conservation) 
and so are the total number of baryons, that is of all elementary 
particles which are at least as heavy as the proton (baryon con
servation). We must remark here that just as in charge conserva
tion the total charge is the algebraic sum of positive and negative 
charges, so in baryon conservation we must take the algebraic 
sum of the number of baryons (reckoned positive) and the number 
of antibaryons (reckoned negative). Apart from the baryons there 
is another group of elementary particles to which a conservation 
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Strong Electromagnetic Weak 

Translational symmetry (conserva Yes Yes Yes 
tion of linear momentum) 

Rotational symmetry (conserva Yes Yes Yes 
tion of angular momentum) 

Charge conservation Yes Yes Yes 
Baryon conservation Yes Yes .Yes 
Lepton conservation Not Yes Yes Lepton conservation 

applicable 
Mirror symmetry (conservation Yes Yes No 

of parity) 
Particle-antiparticle symmetry Yes Yes No 
Conservation of combined parity Yes Yes Yes 

law applies. These are the leptons, that is, the electrons, neutrinos, 
and mesons, and their antiparticles. As far as experimental 
evidence goes lepton conservation is always true, provided, of 
course, that we again count the number of antiparticles as nega
tive. On the other hand, the number of photons, pions, or kaons is 
not conserved [see, for instance, reactions (5.5) and (5.6)]. It is of 
interest to note that the particles for which particle conservation 
laws hold are all fermions, while the other particles are all bosons. 

We come now to the problem of mirror symmetry. In classical 
physics if a given situation is possible, so also is the situation 
obtained from the first one by reflection in a mirror. This would 
mean that the laws of physics do not depend on whether we de
scribe them in a left-handed or right-handed system of co
ordinates. The mirror symmetry entails a conservation law— 
conservation of parity. As we have just seen that in decay processes 
such as (5.5) or (5.6) parity is not conserved, we have found a 
class of phenomena which do not possess mirror symmetry. This 
preference of nature for a particular handedness shocked many 
people and it is interesting to see Pauli's reaction in a letter to 
Weisskopf (reproduced in his Collected Papers (Pauli, 1964)) 
where he writes: "What shocks me is not the fact that 'God is just 

TABLE 5.1 
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left-handed' but the fact that in spite of this He exhibits Himself 
as left/right symmetric when He expresses Himself strongly." A 
symmetry related to the mirror symmetry, as we shall see presently, 
is the particle-antiparticle symmetry. If this symmetry exists, a 
given situation is transformed into another physically possible 
situation by changing every particle into its own antiparticle in the 
same state of motion. This symmetry appears to hold for processes 
involving strong (nuclear) and electromagnetic interactions, but 
not for those involving weak (decay) interactions. We summarize 
the results of our considerations in Table 5.1, where we list in the 
first column the various symmetry or conservation properties, in 
the second (third, fourth) column whether they are valid or not for 
processes involving strong (electromagnetic, weak) interactions. 

In the last row we have inserted the conservation of combined 
parity, or combined inversion, a concept introduced inde
pendently by Landau (92; reprinted as paper 10 at the end of this 
volume), Lee and Yang (1957), and Salam (1957). It involves 
taking the mirror image at the same time as changing all particles 
into their antiparticles. 

Before concluding this part of our discussion we must empha
size that like all laws of physics conservation laws can only be said 
to hold as long as there is no experimental evidence to the con
trary. We may remind ourselves here of earlier discussions query
ing the firmly established energy conservation law. We mentioned 
that Landau at various times questioned its validity, both in 
connection with the problem of stellar energy and in connection 
with relativistic quantum mechanics, while until the introduction 
of a neutrino j8-decay seemed to violate energy conservation. We 
must also mention the famous paper by Bohr, Kramers, and Slater 
(1924) in which the energy conservation law is assumed not to be 
universally valid. Since the discovery of the non-conservation of 
parity in weak interactions, a systematic search has been—and is 
being—conducted to find possible violations of other conservation 
laws. We refer to Okun' (1965) and Wilkinson (1959) for a dis
cussion of various conservation laws, including several which we 
have not mentioned here. 



50 MEN OF PHYSICS - LANDAU VOL. 2 

We shall now discuss a few consequences of parity non-
conservation. One of the earliest experiments to show non-
conservation was the one where one measures the angular correla
tion between the momenta of the electron (e) and muon (μ) 
involved in a π -> /x -> ^ decay process (υ: neutrino) 

7 Γ ± - ^ / χ ± + υ, (5.7) 

μ± + υ + υ'. (5.8) 

From the angular correlation measured by Garwin, Lederman 
and Weinrich (1957; for details see also Lee, 1958) it followed 
conclusively that parity was not conserved. The first experiment 
to show the effect in /S-decay was the one by Wu, Ambler, Hay-
ward, Hoppes, and Hudson (1957). In this experiment ^̂ Co nuclei 
are polarized by an applied magnetic field and if parity were con
served, the electrons from the decay process 

«oco -> ««Ni + e + v (5.9) 

would be emitted preferentially in the direction of the magnetic 
field, and there would be as many in the parallel as in the anti-
parallel direction. However, it was found that there is a strong 
forward-backward asymmetry, showing also in this case that 
parity is not conserved in j3-decay. (For details we refer to standard 
textbooks of nuclear physics such as those by Burcham, 1963, or 
Smith, 1965.) 

To conclude the discussion we want to consider the properties 
of the neutrino. In quantum mechanics one is led to consider a 
multicomponent wavefunction to describe the relativistic be
haviour of an electron. The wave equation satisfied by this func
tion is the Dirac equation and for an electron one needs at least 
four components. However, if one considers a zero-mass particle 
one finds for its free motion the wave equation 

c ( 6 . / ) ¥ ^ = / / i ^ , (5.10) 

where the components of the operator \ are the Pauli matrices, 

σ, = ( η ) , σ, = ( Γ ό ) , σ. = ( ; _ ; ) , (5.11) 
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and where φ isa, two-component wavefunction. One proves in the 
usual way (cf. Davydov, 1965, § 64) that (5.10) describes a spin-| 
particle. Moreover, as the energy of a state with a well-defined 
momentum ρ is either cp (positive energy state or particle state) or 
—cp (negative energy or anti-particle state), it follows from (5.10) 
that the helicity of a particle described by (5.10), which is defined 
as the expectation value of the operator (d.^o)? where po is the unit 
vector in the direction of />, is + 1 or — 1 according to whether we 
are dealing with a positive or a negative energy state. If we describe 
the neutrino by (5.10), we are dealing with what Landau calls a 
longitudinal neutrino: its spin is either parallel or anti-parallel to its 
momentum. Many experiments (see Smith, 1965, § 14.8, for a 
discussion) have shown that the neutrino produced in β --decay 
has a helicity —1. This means that it can probably—as was sug
gested by Landau, Salam, and Lee, and Yang—^be described by a 
two-component theory. 

A two-component theory was discussed as early as 1929 by 
Weyl (1929), but as one can show that the helicity of any system 
possessing well-defined parity must vanish, this theory was 
rejected, for instance by Pauli (1933). One can put this slightly 
differently. One obtains (5.10) from the four-component Dirac 
equation by letting the rest-mass of the particle go to zero. In that 
case the four equations split into two independent pairs of equa
tions. As, however, the one pair transforms into the other under 
inversion, as long as one sticks to the principle of conservation of 
parity, one cannot consider only one pair of equations [such as 
(5.10)], and one is led to a four-component theory of the neutrino. 
If one accepts non-conservation of parity, the two-component 
theory can be resurrected. It is interesting to note that the theory 
conserves combined parity. We cannot enter here into a discussion 
of the complications introduced by the apparent existence of two 
kinds of neutrino: the electron neutrino which appears in jS-decay 
and the muon neutrino which is the decay product of the muon 
[compare the decay reactions (5.8) and (5.9): as μ takes the place 
of e«Co, so υ takes the place of «^Ni]. 
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O n the T h e o r y of Phase T r a n s i t i o n s ! 

The question of continuous phase transitions (without latent heat) 
have been investigated from the general thermodynamical point of 
view. In doing this it becomes clear that such transitions can take 
place when the symmetty of the lattice changes. There are two 
possible types of transition, namely: (1) Curie points with a dis
continuity in the specific heat, which lie on a curve in the p-T 
diagram, (2) isolated points in the /7 -Γ diagram which lie in a certain 
way on intersections of curves of normal phase transitions. 

Up to the present time, among all phase transitions. Curie 
points, and so on, only the transition between a liquid and a gas 
has been fully investigated. It is known that the liquid-gas 
equilibrium curve in the / 7 - Γ diagram has an end point, and that a 
continuous transition between liquid and gas can be realised by 
going round it. As for transitions between a liquid and a crystal, 
or between different crystal modifications, the question about 
them has not been fully clarified. In a number of cases people talk 
about transitions connected with rotations of molecules; however 
it is not at all clear how rotations can lead to phase transitions, and 
in particular to discontinuities in the specific heat. 

One even finds strange statements that there is no essential 
difference at all between liquids and crystals, and that continuous 
transitions between them are possible. However, Hquids differ 
essentially from crystals in that they are isotropic in contrast to 
anisotropic crystals. Every transition from a crystal to a liquid or 
to a crystal of a different symmetry is associated with the dis
appearance or appearance of some elements of symmetry. But ele
ments of symmetry are either present or absent; no intermediate 

t Phys. Z. Soviet Un., 1 1 , 26, 1937. 
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case is possible. And so continuous transitions (in the sense that 
transitions between liquid and gas are continuous) connected with 
changes of the symmetry of the body are absolutely impossible. 

Until recently the exact formulation of the very idea of the 
crystal lattice was lacking. Only quite recently Bethe and Peierls^ 
have stressed the role of correlations at infinity in the crystal lattice. 

Note that normal phase transitions between liquid and crystal 
or between diflferent modifications where the state of the body, 
particularly the energy, changes discontinuously are not the main 
interest of the present investigation. Our main interest is in such 
transitions where the state of the body (particularly the energy) 
changes continuously even although the symmetry changes dis
continuously. (See below for details.) We shall call these transitions 
the continuous ones. Let us emphasise once again that they are not 
continuous in the sense that transitions between liquid and gas 
are. At every moment we can tell that we have a body of this or 
that symmetry. 

Usually the approach to this question is made difficult by the 
use of an idealised model of the lattice in which all atoms are 
placed in their positions and thermal motion is ignored. 

These difficulties can be avoided if a distribution probability 
ρ(χγζ) is used, where ρ(χ, y, ζ) dx dy dz determines the probability 
for finding an atom in the given volume element of the body. If 
the body consists of different kinds of atoms then it would be 
possible to introduce several functions ρι, ρ2, . . ·, which would 
determine the probabilities for each kind of atom. Even in that 



ON THE THEORY OF PHASE TRANSITONS 6 3 

case it would instead be possible to use only one distribution 
function. For instance we can determine that function as one 
which gives the mean charge density at every point of the body 
(multiplied by dx dy dz it would give the charge in that volume). 
In the following, we shall talk simply about the "density" φί, y, 
ζ), meaning by that some function which determines the distribu
tion of atoms in the body under consideration. Note that such a 
method based on the function ρ also has the advantage that it is 
possible in quantum mechanics as well. 

The important feature of the function ρ is its symmetry, i.e. that 
group of co-ordinate transformations with respect to which ρ is 
invariant. The same group also determines the symmetry of the 
body. It is known that there are in all 230 possible different groups 
of transformations, i.e. types of symmetry. In isotropic bodies 
(hquids) obviously ρ = const. 

As already mentioned we shall consider here those transitions 
where, regardless of a discontinuity in the symmetry, the state of 
the body changes continuously. In other words the density ρ 
changes continuously. It is easy to see that such transitions are 
possible because even a very small change in the distribution of 
the atoms in the lattice is enough to change its symmetry. If for 
instance ρ is represented by the curve Fig. la (schematically drawn 
in one dimension) and some of the maxima decrease (Figs, lb and 
Ic), then the symmetry changes as soon as the decreasing starts 
(the translational period of the lattice increases). 

Let us consider a crystal with some density ρο which has a certain 
symmetry (we shall talk about the totality of symmetry trans
formations of ρο as the group ρο). At the transition point the 
density starts to change and becomes ρ = ρο + δρ, where δ ρ is 
small compared with ρο. δ ρ also has some symmetry (group δ ρ) 
which is lower than that of ρο (i.e. not all elements, that is sym
metry transformations of ρο, are elements of symmetry of δρ; the 
group δ ρ is a subgroup of the group ρο). Then ρ = ρο + δρ has 
the same symmetry, because the sum of two functions has the 
same symmetry as the less symmetric term. We can therefore 
neglect the case where δ ρ has a higher symmetry than ρο, since 



64 MEN OF PHYSICS - LANDAU VOL. 2 

then ρο + δρ would have the same symmetry as ρο, so that no 
change in the symmetry of the body would take place. 

Symmetry transformations from the group ρο which do not 
belong to the group δ ρ change δ ρ into some other function. It is 
known from group theory that the function δ ρ can be broken into 
a sum of functions the number of which is equal to the number of 
elements of the group ρο, in such a way that under every trans
formation of that group all these functions transform among 
themselves, i.e. become linear combinations of themselves. 

Matrices of these linear transformations form the so-called 
"representation" of the group ρο. Further, all these functions into 
which δρ is broken, can be separated into groups or "races",! 
where all functions composing them again transform among 
themselves. So we can write: 

η I 

where η is the number of the race and / is the number of the func
tion in the race. 

Each of these races of functions can be used as a basis for the 
representation of the group. That representation is reaUsed by the 
transformation matrices of the functions of that race. It is known 
that there exists an expansion of δ ρ, into φγ where every race 
consists of the smallest possible number of functions (i.e. an 
irreducible partition, thus realising the "irreducible representa
tion"). 

In (1) we shall suppose just such a partition. We could after all 
simply write it as δρ = Σ^Σιφ^^, because the functions are 
not determined beforehand; in the following it will be convenient 
to consider the functions somehow normalised. 

Among all there is always one function (which forms a 
"race" by itself) which is invariant with respect to all trans
formations of the group ρο. In the sum ρο + δρ we shall consider 
this function to belong to ρο so that δ ρ has no such function. 

t The term "race" is used here both for an irreducible representation and 
for the basis of the irreducible representation. The theory presented here is 
given in modern terms by Landau and Lifshitz (1958, § 136) (note by Editor). 
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The thermodynamic potential Φ, of the body, is determined by 
the density ρ, i.e. depends on the form of the function ρ. In other 
words Φ is a functional of ρ: Φ = Φ{ ρ} . Φ depends also on the 
temperature Τ and the pressure ρ of the body as parameters. 
When ρ and Τ are given the form of the function ρ is determined 
from the condition that Φ should have a minimum. 

Let us expand the thermodynamic potential Φ{ ρο + δρ} in the 
state with density ρ = ρο + δρ in powers of δ ρ (of course this 
expansion is not a normal power series; individual terms in the 
expansion are integral operators of δ ρ). Saying this in another 
way, we have an expansion in powers of and c^^K 

It can be seen that first order terms in the expansion are zero. 
The potential Φ as the quantity which characterises the physical 
properties of the body obviously should not change under any 
movements of the body, i.e. should be invariant under all possible 
co-ordinate transformations. If such a transformation changes ρο 
into ρ̂ ' and δ ρ into δρ', then 

Φ { ρ ο + δ ρ } = Φ{ρ; + δρ'} . 

From this it can be seen that if Φ is considered as a function 
only of δ ρ, then Φ is invariant only with respect to those trans
formations which do not change ρο, i.e. the transformation group 
ρο. Since the functions under transformations of this group 
transform among themselves we can consider only the coefficients 
c^l^ to change under these transformations, because the expression 
for Φ should be invariant with respect to transformations of these 
coefficients. In particular the coefficients of the powers of the 
ĉ ^ in the expression of Φ will be invariants of the relevant degree. 
It is known that it is impossible to construct Hnear invariants from 
quantities transforming as an irreducible representation. 

As to the terms of second order, they are known to separate 
into a sum of groups of terms consisting only of the quantities ĉ f̂  
(consequently of the functions Φ̂ ;̂  belonging to one race. 

The transition point is thus characterised by the fact that for a 
small change in Γ and /?, an extra term δ ρ appears in the density 
ρο. On one side of the transition point (which we shall call the 
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"upper" side) terms of second order in the expansion are obviously 
essentially positive for all Τ and /?. Thus the minimum is at 
δρ = 0 i.e. the state of the body corresponds to ρ = ρο, that is, the 
body has a higher symmetry. On the other ("lower") side of the 
transition point terms of the second order are not essentially 
positive and thus to the minimum of Φ corresponds some δ ρ 
different from zero, which really determines the symmetry of the 
body. Consequently at the transition point itself the sum of all 
terms of the second order should be zero for any fixed δρ. 

For that it is obviously sufficient that any group of terms of 
second order belonging to one race becomes zero at the transition 
point. On the other hand the δ ρ which make the sum zero are just 
those δ ρ which can appear at the transition point. 

After the functions belonging to one of the races have been 
chosen such that the corresponding second order terms are equal 
to zero, then the rest of the can be taken to be equal to zero. 
Then δρ = (summation only over functions of one race) 

is just that change of the density which makes the term of the 
second order vanish at the transition point, and is consequently 
physically realised. Therefore in future we shall only be concerned 
with that one race and shall drop the superscript (n), specifying 
the race. 

Because the functions ψ ι are determined by the condition that 
they should make the terms of the second order vanish at the 
transition point, Φ can now be considered as a function only of the 
C i , and the expansion in δ ρ as an expansion in Ci where there are 
no terms of first order. As has been already said, the terms of the 
second order should form an invariant (with respect to all transi
tions of the group ρο). In accordance with group theory such an 
invariant (in an irreducible representation) is a positive definite 
quadratic form, which, by suitable choice of the normalisation of 
the C i , can always be written as the sum of squares. In this way 
terms of the second order (of the given race) have the form: 

A^c\. ( 2 ) 
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At the transition point this expression need not be zero i.e. at 
that point 4̂ = 0 is of course a function of ρ and Γ ) . 

In an analogous way terms of the third, fourth, . . ., order are 
formed correspondingly from invariants of the third, fourth, . . ., 
order. Terms of the third order can in some cases be absent. If, for 
instance, in a given race only one function φ enters, then by acting 
with transformations of the group ρο the coefficient c can change 
sign. Therefore, in that case, all invariants and consequently all 
terms of odd orders are equal to zero. 

If at a certain point (i.e. at specified ρ and T) A(p, T) should 
vanish, then, in order that this point really be a point of a con
tinuous transition, it is necessary that the terms of third order are 
zero. Otherwise Φ cannot have a minimum (as a function of C / ) at 
that point, because that point would not correspond to a stable 
state of the body. 

Two cases are possible: 
1. Terms of the third order are identically zero (there are no 

invariants of third order). Transition points are determined from 
one condition: 

A{p,T)^Q\ (3) 

besides this terms of the fourth order should be positive definite. 
In that case transition points lie thus on a certain curve, which is 
determined by (3). This is the case of Curie points. 

A physical state is realised and is determined by the coefficients 
C i which correspond to the minimum of Φ (at given ρ and Γ ) . 
Define 

^θ\ = η- (4) 

and 
Ci 

— = y i . 

Then the expansion of Φ is written in the form 

Φ=Φ, + Αη^ + Β(γι)η' + . . ., 

where all coefficients are also functions of ρ and Γ. 
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Because the term of the second order does not depend on γι the 
values of γι can be obtained by finding the minimum of Β{γι), 
Having found these values and substituting them into Biyi) we get 

φ=φ, + Αη' + Βη' + . . ., (5) 

where Β = B(p, T) is the minimum value of Β{γ^, 
According to the above 

B{p, T) > 0. (6) 

Above the Curie point 4̂ > 0; to the minimum of Φ corresponds 
77 = 0, i.e. the body has the symmetry ρο. At the Curie point 
^ = 0, and below it ^ < 0. From the minimisation of Φ, i.e., 
from 3ΦΙ8η = 0, we find ^ + ΙΒη" = 0 or 

^ = -4- ( 7 ) 

Then 

The specific heat of the body is 

Terms which vanish at the Curie point are omitted. Co is the 
specific heat of the body with the symmetry ρο, i.e. above the Curie 
point. Because of (8) we see that at the Curie point C > Co. In this 
way at the Curie point the heat capacity has a discontinuity and it 
increases in going from a more to a less symmetric body (note, 
that one body is less symmetric than the other if its symmetry 
transformation group is a sub-group of the symmetry group of the 
other). 

As was pointed out at the beginning of this case the coefficients 
γι are determined from Β(γι), i.e. they depend on the form of the 
terms of fourth order. 

But all these terms depend also on ρ and T; because of that the 
Yi depend on ρ and Τ too. But the quantities y, determine the 
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cannot become zero; consequently between phases II and III 
there should not be a Curie line, but a phase transition line. At the 
point Β all three phases are identical; along the fine A B the phases 
I and II are identical (SQU = 0 ) ; along B C : δρ,π = 0. 

It can further be shown, that the intersection of one Curie line 
with another can happen only at a point of the type shown in 
Fig. 3. If I is the most symmetric phase then the phases II and III 
have lower symmetries; their symmetry groups are sub-groups of 
the symmetry group of the phase I. Phase IV has even lower sym
metry than II or III. Its symmetry group is simultaneously a sub
group of the symmetry groups of the phases II and III. 

Finally, let us consider those cases where terms of fourth order 
in the expansion of Φ also become zero at the transition point. 

symmetry of δ ρ, i.e. the symmetry of the crystal. Because of that 
it may happen that at different parts of the Curie point curve a 
transition takes place from a more symmetric crystal (where 
δρ = 0) to less symmetric crystals of different symmetries (i.e. 
where δ ρ has a different symmetry). 

In that case in the phase diagram there is a point of intersection 
of the Curie curve (curve 1) with the phase transition curve (curve 
2, Fig. 2); I is the most symmetric phase (δρ = 0); along curves 
A B and B C at Curie points it goes over into less symmetric phases 
II and III, where δρ„ Φ O, δρ„, Φ 0. 

Symmetry groups δρ„ and δρΐϋ are sub-groups of the symmetry 
group of the first phase. However, they are not generally sub
groups of each other. Because of this the difference δρ„ — δρ»! 
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For this it is necessary that the terms of the fourth order have only 
one coefficient which depends on ρ and T, together with which 
they would become zero. Otherwise the vanishing of fourth-order 
terms together with the condition A(p, T) = 0 would give more 
than two equations with two unknowns (p and T), which would 
generally have no solutions. For this it is required that only one 
invariant of the fourth order (formed from the c¡) exists, i.e. the 
terms of the fourth order are identically equal to B(p, Τ)η^ for 
arbitrary C i . 

If terms of the fourth order are equal to zero, then for the stabi
lity of the state (i.e. for Φ to be a minimum) it is necessary for the 
term of the ñfth order to be identically zero and the term of the 
sixth order to be positive. Two conditions, A = Β = 0 then 
determine an isolated point. That point is a λ-point whose prop
erties have already been investigated by the author. | There it has 
been pointed out that λ-points are the points where the Curie curve 
goes over into the phase transition curve. Here I shall only consider 
an additional intersection of the Curie curve with the phase 
transition curve in bodies which are mixtures of two substances. 
In that case it appears that the specific heat does not become in
finite but, as in pure substances, experiences only a finite jump. 

The fact that the body is a mixture does not introduce anything 
essentially new into our considerations. The symmetry of the 
crystal is, as before, determined by the density ρ, and the ex
pansion of Φ in the vicinity of a point of a continuous transition is 

Φ=Φ, + Αη' + Βη' + ...; 

but now Φο, A, Β depend not only on ρ and Γ but on the concentra
tion X of the mixture. 

Let us prove that at the transition point of the Curie line into 
the phase transition line for mixtures (we shall in this case also 
call such a point a λ-point) the coefficient Β in the expansion of Φ 
should be zero. And indeed from this it will follow that the 
specific heat does not become infinite at that point (see equa
tion (8)). 

t In this earlier paper^ the quantity f corresponds to η\ 



ON THE THEORY OF PHASE TRANSmONS 7 1 

and 
ΘΦ δΦ 

' dx^ ' dx 

Substituting Φ = Φ^-\- Ayf + Btf, we find from the first condition 

d% ^d%^dA_ ^ 
dxo dx dx 

(dA/dx is not generally zero at the transition point and because of 
that it is possible to limit ourselves to the term in η^) or, expanding 
dΦo¡dx in a series: 

Let us investigate the neighbourhood of the λ-point. First we 
shall write conditions for the equilibrium of two phases on the 
transition curve (either a phase or a continuous transition). It is 
known that the thermodynamic potential Φ is an additive quantity 
and because of that in mixtures it should be a homogeneous func
tion of the first order of the number of particles of each kind. In 
particular for the mixture of two materials Φ = Nf(n/N), where η 
and Ν are the numbers of both kinds of particles. The chemical 
potentials of each kind of particles are 

2 Φ _ ^ δΦ _ df 
8N "^^T 8x 

(where χ = n/N), The equilibrium conditions are equality of the 
chemical potentials of both phases. In our case on one side of the 
transition point (where ^ = 0, i.e. in the more symmetric phase) 
Φ = Φ ;̂ on the other side Φ = Φο + Αη^ + Βη*. If XQ and χ are 
the concentrations of both phases then the equilibrium conditions 
are 

8Φ^ _ ΘΦ 
dx^ dx 
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and get 

Sx dx^ 

Φ = Φ ο ί ^ „ ) + ^ ( ^ - ^ ο ) · 

Substituting here the expression for we find 

+ Βη^ = Φ„(̂ „) - ΦΙ,Χ) + (χ - ^ 

and expanding Φ^χ^ — Φ^χ) in a series: 

Further substituting x — from equation (9), then 

or 

Also remember that one of the conditions for the stability of the 
state of the body, i.e. the condition that Φ is a minimum, is 
δΦΙΒη = 0 (in that phase where η φ 0). From this we get from (7): 

A 

"^'^' 2B' 

Substituting this into (10), we find 
ΘΑ 

In the second condition to the same accuracy we put 
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(.δ^Φ„Ι3χΙ)Α 
dA/dx 

dAA_ 

JxYB 
or 

Β = 
{dAldxf 

2{Β^Φ,Ι8χΙ) (11) 

From this it is obvious that at a λ-point Β never becomes zero 
and that always Β > 0. The last statement follows from (11) 
because δ^ΦοβχΙ > 0 according to the known thermodynamical 
inequalities for solutions. Further the equation 

Aix) + (x,-x)^^=-0 

can be written in the form A(xo) = 0 to the accepted approxima
tion, i.e. the phase transition points for the more symmetric 
phase satisfy the same equation as the Curie curve. 

In this way the neighbourhood of a λ-point has thus for mix
tures the form shown in Fig. 4 (plotted along the co-ordinate axes 
are concentration and temperature). The dotted line is the con
tinuous transition curve, i.e. the Curie curve. I is the more, and II 
the less symmetric phase. The Hne 10 goes continuously into the 
Hne 03; the line 02 branches away from it. The line 302 is the 
phase transition line; the shaded region 302 is the region of 
separation into two phases I and II, the concentrations of which 
are determined by the lines 03 and 02. 

F I G . 4. 

Substituting from here χ - = A/{dA/dx) and f = — A/2B 
in equation (9), we find 
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2. Let the term of third order in the expansion of Φ now not be 
identically zero. The continuous transition in this case is only 
possible where terms of the second and third order are equal to 
zero. The first of these conditions gives again A(p, T) = 0. For the 
second condition to hold it is necessary for only one invariant of 
the third order to exist, i.e. the terms of third order should only 
possess one coefficient depending on ρ and Γ. Otherwise we would 
have too many equations which would not be possible to satisfy 
simultaneously. 

Let us again introduce the quantities γι = Ci/η, 
The term of third order should have the form 

(it is assumed that there is only one invariant of the third order) 
and the expansion is 

Φ = Φο + A(p, Τ)η' + B{p, Τ) birdv' + C(p, Γ , γ)η* + . . . (12) 

At a continuous transition point 

A=B = 0. 

Consequently the continuous transition points are in this case 
isolated, i.e. there is no Curie line. Therefore, such points should 
in some way lie on the phase transition fines. Accordingly it is 
necessary to investigate the character of the phase transition line 
in the vicinity of such points. 

In the neighbourhood of a continuous transition point of the 
type under consideration A and Β are close to zero (but C > 0 ) . 
On the equilibrium curves of the more and less symmetric phase 
their thermodynamic potentials are equal, i.e. Φ = Φο, or 

Αη^ + ΒΟη^ + €η* = 0. (13) 

Besides that δΦ/δη should be zero, as it should be for all possible 
equilibrium states, i.e. 

η(2Α + 3ΒΒη + 4€η^) = 0. (14) 

These two equations should have a common solution different 
from zero (different from zero because the solution η = 0 would 
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It could be thought that the continuous transition points con
sidered simply lie on a phase transition curve like the point O in 
Fig. 5. However that is not so, but instead we shall now show that 
the point O should He on the intersection of several phase transi
tion curves. 

Let us investigate points in the neighbourhood of O but not 
lying on phase transition curves. For them (as in every stable 
state) δΦ/δη = 0. This equation has solutions η = 0 and also 
solutions of the quadratic equation (14). 

The solution η = 0 corresponds to points which represent the 
state of the more symmetric phase (δρ = 0). In the second phase 
η is determined by equation (14). But quadratic equations have in 
general two solutions. At the point O: A(p, T) = B(p, Γ ) = 0; in 
the neighbourhood of the point O the equation B(p, T) = 0 
determines a line. On that line (14) has two solutions with opposite 
signs 

mean that at the transition points δρ = 0, i.e. a Curie Hne would 
exist and that as has already been mentioned is impossible). 

It is easy to see that for this it is necessary that 

B'b^ = 4AC (15) 
and 

Bb 

"'-re-
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That means that in the neighbourhood of the point O near to the 
Hne 5 = 0 (14) has solutions with different signs, almost equal to 
each other in absolute value (because close to the line 5 = 0, 5 is 
small). On one side of the line 5 = 0, 5 is positive; there the 
negative solution of (14) corresponds to the stable state, other
wise by changing the sign of η it would be possible to decrease Φ, 
i.e. Φ would not have a minimum. By the same reason on the 
other side of the Hne 5 = 0 (where Β < G) the other solution of 
(14) becomes valid. Consequently the line B{p, Γ ) = O is also a 
phase transition line, where η changes sign discontinuously. 

In this way the neighbourhood of the point O has the appearance 
shown in Fig. 6, i.e. at the point O the other phase transition Hne 

F I G . 6. 

ends. The phase I is the more symmetric phase (in it = 0, 
A > 0). On the phase transition line AB, A =0. The less sym
metric phases II and III (where ^ < 0) have the same symmetry 
(in them -η differs only in sign, but this does not influence the 
symmetry of ρ). On the phase Hne CO, B(p, T) = 0. At the point 
O all three phases become identical. 

Let us determine the latent heat on the curves CO and AB. For 
the entropy we have 

Ι ' ^λ \dTlp,n \ θη Jp.T dT ' 
But in all stable states 3ΦΙ3η = 0. Therefore 
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S=S^-'E^V' (18) 

.SO = —ΘΦο/ΘΤ is the entropy of the phase I. Terms of higher 
orders can be neglected because unlike A, dA/BT docs not become 
zero. 

Let us find the latent heat on the curve AB. On it 77 = —Bb/2c 
(see equation (16)) and the latent heat of transition from the less 
symmetric to the more symmetric phase is 

Near the point O the quantity J5 is a linear function of the distance 
along the curve from the point O (because at the point 0,B = 0). 
In this way on the curve AB, near the point O, the latent heat is 
proportional to the square of the distance from O. 

In order to find Q on the curve OC close to O, write down the 
next term in the entropy S: 

/8Φ\ ΘΑ ^ dB 
(20) 

Since on the curve CO the quantity η is equal in absolute value 
in both phases, then the difference in entropy between phases II 
and III is 2οη^θΒ/ΘΤ, where η is determined from (17). The latent 
heat is 

dB 
ρ = 2 Γ — O F . (21) 

From (21) and (17) it can be seen that Q is proportional to 
( — ^ ) 3 / 2 , i.e. proportional to the distance from O to the power 3/2. 

Finally, it can be shown that when terms of fourth order have 
a complex structure new phase transition fines can appear. The 
neighbourhood of the point O then does not look as shown in 
Fig. 6, but as in Fig. 7. 

Substituting (12), we find in the neighbourhood of the point O 
(i.e. for small r¡): 

dA 
df 
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isolated points of the type shown in Figs. 6 and 7. In particular 
Curie lines are impossible. 

In the whole of the preceding part of the paper we have assumed 
that the symmetry properties of crystals are determined by the 
symmetry of the mean density function ρ. But the moving charges 
(electrons) in the body can create in the crystal a mean current 
density j as well. Then the properties of the crystal will depend 
not only on the symmetry of the density ρ but also on the sym
metry of j . Note that ¡jdV over the whole volume of the crystal 
should be equal to zero. Otherwise that current would create a 
magnetic field and the crystal would possess some magnetic 
energy. That energy would very rapidly increase with an increase 
in the dimensions of the crystal and this would be energetically 
disadvantageous. 

Phase I has the highest symmetry. Phases II and III have the 
same symmetry; the same applies to phases IV and V. At the 
point O all phases become identical, that is indeed the point of 
continuous transition. At the point O two of the phase transition 
curves have a common tangent and the third ends. Here we have 
assumed that two curves of phase transitions touch at the point O. 
In the general case there may be several of them. 

In a subsequent paper it will be shown that in the case of transi
tions between liquids (i.e. isotropic bodies) and crystals terms of 
the third order are not identically zero. Therefore continuous 
transitions between hquids and crystals are only possible at 
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In the majority of bodies j = 0. In particular 7 Φ 0 in ferro
magnetic bodies. In the latter, in addition to this, the magnetic 
moment is not equal to zero in every part, i.e. J[r Λ j]dV φ 0 over 
an elementary cell. However not every body with 7 φ 0 is ferro
magnetic, because although j Φ 0, J[r A*j]dV can be zero. 

If j = 0, then the symmetry properties of the crystal are deter
mined by the density ρ. It is known that there exists a limit to the 
number (230) of possible types of symmetry, i.e. space groups. If 
besides that 7 φ 0 then the classification of the types of sym
metry follows from the properties of ρ and7'; then it is possible for 
there to be more than 230 space groups. 

The presence of^ Φ 0 (crystals with 7 φ 0 we can call magnetic) 
does not introduce anything essentially new into the preceding 
discussion about transition points. At transition points the change 
in symmetry is then determined by δ ρ and δ/. As before only the 
transition points discussed above are possible. 

Let us concentrate for a while on transitions connected with the 
appearance (or disappearance) of 7', i.e. on transitions between 
magnetic and non-magnetic crystals. Since on one side of these 
points 7* = 0, then 8j = 7*. As before we shall consider only the 
continuous transition points of this type, i.e. points where 
δ/ =7 = 0, in the neighbourhood of which (on one side) j is smafi. 
Instead of expanding the thermodynamic potential Φ in powers of 
δ ρ we shall now have an analogous expansion in powers of 7'. In 
view of the symmetry of aU the properties of the body in relation 
to the exchange of the future with the past the potential Φ, in 
particular, cannot change when the sign of time is reversed. When 
such a change is made the density ρ does not change, but the 
current 7* has its sign reversed. From this it follows that in the 
expansion of Φ in powers of 7 all terms with odd powers of j should 
be identically zero. It means that transitions connected with the 
appearance of 7 always belong to the case 1, i.e. Curie points are 
possible which form Curie lines, and under suitable conditions 
λ-points also. Such are the Curie points in ferromagnetic bodies. 
The discontinuities in the specific heats in chlorides of Fe, Cr, Ni 
at low temperatures are apparently of the same nature, there is 
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The continuous transitions with a change in the symmetry are 
always connected with a change in the ordering of the crystals, 
which follows when the number of places in the lattice where 
atoms of a given kind can reside is larger than the number of such 
atoms. There exists one particular distribution of the atoms in the 
lattice which is energetically most favourable. This is realised at 
sufficiently low temperatures. At higher temperatures the distribu
tion of atoms deviates from this. As an example, let us consider a 
crystal formed from two kinds of atoms (binary mixture). The 
ideal configuration is that in which the atoms of different kinds 
are placed at lattice points in a definite order one relative to 
another (this is schematically shown in Fig. 8). 

Such a crystal is said to be completely ordered. But every atom 
can in principle be found at any lattice point, i.e. there are more 

also a λ-point in MnO. All these materials have j Φ 0 below the 
transition point, and at the transition point j becomes zero (above 
that point j remains equal to zero). 

Until now we have been talking about transitions with a change 
in the symmetry of the* crystal, but we have not discussed the 
physical nature of such changes which take place. Atoms in a 
crystal usually perform small oscillations about their equilibrium 
positions, i.e. the lattice points. In view of their smallness these 
oscillations cannot cause changes in the lattice symmetry. This 
does not apply, of course, to the jump-like transitions when the 
atoms start oscillating around new equilibrium positions. 
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possible places for atoms of a given kind than there are atoms of 
that kind. Therefore, the crystal can also be incompletely ordered 
if some atoms are in "foreign" places, i.e. places at which, in the 
completely ordered crystal, there should be atoms of the other 
kind. The probability, i.e. the density function ρ of finding atoms 
of one kind at lattice points in the completely ordered crystal can 
be represented schematically (in one dimension) by the curve in 
Fig. 9a, where the probability has a sharp maxima at every second 
lattice point. In the incompletely ordered crystal there appears 
some probability of finding atoms of a given kind at other 
(foreign) lattice points (Fig. 9b). 

Finally the number of atoms of a given kind in the lattice residing 
at "foreign" points can be equal to the number of these atoms 
residing at their "own" places. This means that the probability of 
finding atoms of a given kind becomes equal at all lattice points 
(Fig. 9c). The crystal is then called disordered. It is easy to see that 
at the moment when this disorder appears the symmetry of the 
crystal changes (namely: the symmetry increases). That can be 
seen, for instance, in Fig. 9c; the curve c has, in comparison with 
curves a and b, an extra translational period equal to the distance 
between two neighbouring lattice points (the curves a and b have 
only a period equal to twice the distance between lattice points). 

A second example is the crystal of NH4CI. This crystal has a 
lattice of the type NaCl, where at the lattice points are CI and 
NH4. The NH4 groups have the form of tetrahedra and in the 
NH4CI crystal they can be orientated in two directions. If aU NH4 
groups are pointing in the same direction the crystal is completely 
ordered; if some of the groups NH4 are pointing in the opposite 
direction the crystal is incompletely ordered. Finally if the num
bers of NH4 groups pointing in each direction are equal the crystal 
is disordered. Its symmetry has then changed, namely: the ordered 
crystal has the symmetry of a tetrahedron and the disordered the 
symmetry of a cube. 

We can introduce the quantity "degree of order", which would 
characterise the deviation of the crystal from its ordered state; it 
is equal to 1 in the completely ordered crystal, decreases as a 
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In the case of a binary mixture discussed above, the degree of 
order can be chosen in the following way. Let Ni be the number of 
atoms of a given kind residing at their places, and N2 at foreign 
places. In a disordered crystal iVi = ÍV2. The probability of finding 
an atom in its place is proportional to NJiNi + N2), and in a 
foreign place Ni/iNi + N^), In a disordered crystal each of those 
fractions is equal to 1/2. Therefore the deviations of the probabili
ties from their values in the disordered crystal are proportional to 

\ N^-N^ N2 1 N2-N^ 
N, + N, 2 2{N,+N,)' N^ + N, 2 2{N^ + N^) 

function of the deviation from the ordered state, and becomes 
zero in the disordered crystal. In our preceding discussions the 
transition from the function ρ to ρ + δρ corresponded to the 
continuous transition from the more to the less symmetric body, 
i.e. from the disordered crystal to the appearance of the beginning 
of orderliness. In this way δ ρ just determines how close the crystal 
is to complete disorder; δ ρ = O in the disordered crystal. But we 
have seen that δ ρ is determined by the quantities Ct which are 
moreover proportional to η . Obviously η can be chosen as the 
degree of order. In the above mentioned paper^ we used as the 
degree of order always the positive quantity ξ = η^. 

At a continuous transition (for instance at a Curie point) ^ as a 
function of Τ has the form as shown in Fig. 10a. At the phase 
transition it becomes zero abruptly (Fig. 10b). 
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In this way δ ρ is proportional to the quotient (Νχ — Nz)/ 
{Ni + N2), which can indeed be chosen to be η. 

In the case of transitions between magnetic and non-magnetic 
crystals atoms with differently orientated magnetic moments play 
the role of atoms of diff'erent kinds. To a disordered crystal corre
sponds the case where the probabilities for an atom to have 
differently orientated moments are equal for every atom. In the 
case of the ferromagnetic state these probabilities cease to be equal, 
since the crystal as a whole has a magnetic moment. Finally in the 
case of magnetic, but not ferromagnetic, bodies the probabihties 
for different orientations of the moment for a single atom are also 
not equal, but in different atoms of the lattice the opposite 
orientation of the moments are more probable. In that way in this 
case the mean magnetic moments of different atoms have the 
opposite directions and the crystal as a whole does not have a 
magnetic moment. 

Conclusions 

1. The transitions between bodies of different symmetry (in 
particular between a liquid and a crystal) cannot happen con
tinuously, in the same sense as the transition between a liquid and 
a gas above the critical point; at every moment the body has this 
or that symmetry. 

2. Besides phase transitions the only other possible transitions 
are those which are continuous in the sense that at the transition 
point no abrupt change in the state of the body occurs (in particu
lar there is no latent heat), but the symmetry changes suddenly. 
Such transitions are inevitably followed by a jump in the specific 
heat. These transitions are connected with a crystal becoming 
disordered. 

3. The following types of continuous transitions with a change 
of symmetry are possible: (a) Curie points lying on a curve in the 
(p, T) diagram. These curves can intersect each other or the phase 
transition line in points of the kind shown in Figs. 2 and 3. The 
Curie line can go continuously into a phase transition fine. The 
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point where this happens is a λ-point. At the λ-point of a pure 
substance the specific heat becomes infinite; if the body is a mixture 
the specific heat only experiences a finite jump, (b) Isolated con
tinuous transition points. These points He on the intersections of 
several phase transition lines (Figs. 6 and 7). 

4. Continuous transitions are possible which are connected 
with the appearance or disappearance of the mean magnetic 
moments of every atom in the crystal (in particular such is the 
Curie point of ferromagnetic bodies). For such transitions case (a) 
is appropriate. 

References 
1. R . P E I E R L S , Helv. Phys. Acta, 7, Suppl. Π , 81, 1936. 
2. L . L A N D A U , Phys, Z, Soviet Un., 8, 113, 1936, Collected Papers, No. 17, 

p. 96. 



T h e Transpor t Equat ion in the 

C a s e of C o u l o m b In te rac t ions ! 

A transport equation is derived for a system consisting of charged 
particles taking their interactions into account. The order of magni
tude of the mean free path of the particles in such a system is deter
mined. The rate at which the temperatures of the ions and electrons 
in the plasma become equal is evaluated. 

In the case of Coulomb interactions there appear, in the 
formulae for the kinetic theory of gases, integrals which are 
divergent when the distances between the particles are large. This 
means that an important role is played by those collisions in 
which the distances between the colliding particles are large. But 
at large distances the particles are only scattered through small 
angles with small changes in velocity. Thus collisions in which the 
velocity vector is only slightly changed are important. 

Let η (pi) be the distribution function in momentum space. It is 
a function of the three components of the momentum of the 
particle (f = x, z). The change in the momentum during a 
collision we shall denote by where <̂  pt in all the coUisions. 
Further, let dW be the probabihty (per unit time) of a colHsion 
between particles with momentum pt and a particle with momen
tum p[, such that p^ is changed to pi + At and p\ to p] + A[. 
Because of momentum conservation Δ̂  = —Δ]. We shall not, 
however, use this fact for the moment, in order that we may obtain 
formulae which are valid in the general case. The number of such 
collisions will then be dWn{p)n'{p') (for simplicity we shall omit 
the indices on pi and Δ< in n{p¡) and so on). 

^Phys, Z. Soviet Un., 10, 154, 1936. 
85 
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The number of coUisions changing particle momenta /?, + Δ| 
and p\ + Δ] back to p^ and p\ will equal dWn{p + i^)n{p' + Δ'), 
since according to the Liouville theorem the probabilities of for
ward and reverse transitions are equal. 

Let us express the probability dW diS a function of the half-sum 
and half-difference of the momenta in the initial and final states. 
Then the probability of a forward transition wiU be 

dW{p + \^,p' Δ, Δ'), 

and for the reverse transition dW{p + | Δ , / 7 ' + ^Δ', —Δ, — Δ'). 
Since these probabilities are equal, dW{p, p\ Δ, Δ') is an even 
function of Δ, and Δ]. 

Hence the number of particles with momentum ρ ι is changed, 
due to colfisions, in unit time by 

\dW{p + ΐΔ,p' + ΐΔ', Δ, b!){n{p)n\p') - + Δ ) « + Δ')}. 

The probabifity dW we write in the form dW = w (;? + ^Δ, 
/?' + ^Δ', Δ, Δ')^τ' Jr^ , where dr = dp^ dp^ dp^ and dr^ is the 
product of the differentials of the parameters which define the 
colHsion. 

Thus the change in the number of particles with momentum p\ 
is: 

¡dr' drMP + | Δ , / 7 ' + ^Δ', Δ, Α'){η(ρ)η'(ρ') 
-η(ρ + Α) « ' ( /? '+ Δ')}. 

(1) 

Let us expand the expression under the integral in a series in 
powers of Δ̂  and Δ'̂  (w should of course, be expanded only with 
respect to Δ̂ , appearing in /?, + Δ,/2 and p[ + Δ]/2). The zero 
order terms cancel each other and the terms of the first order are 

dr dr^, y^^' ^'+^^-^ ^ ' ) ' 

where w = w(p, p\ Δ, Δ') (summation is everywhere implied over 
indices which are repeated twice). But w is an even function of Δ, 
and Δ'̂ . Therefore the integral written above is equal to zero. 
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The second order terms are the following 

drdT^w \ -— n' -—— + Δ, Δ;, —-, — + - — η —j—, \ 
L 2 δριδρ^ δρ^ δρι 2 δριδρ,,] 

- Ρ . . . „ | ( λ , - , λ ; - ) ( λ . „ . | + „ λ ; | ) . α, 

Let us integrate two of these terms by parts over άτ', namely: 

dn' dn 1 

2 J 

2 j 

7 / Τ A' A , δ\ν δη 1 
dr'dr^A.Akn — = 

δριδρ^ 2 , 

Τ , R . ' δ\ν δη' 1 ο^'ί/τ^Δ^Δ^Μ; 

δρ[δρ^ 

δ'η' 

^ρ[δρ 
η η. 

Since the integration is performed over the whole of p' space, the 
surface integral is equal to zero, because = 0 at infinity. 

As a result the second-order terms give 

• , , Γ Δ , Δ , , δ^η 
drdr^.\-^n — + 

Δ , δ : δη δη' 

2 δρ^ δρ[] 

. . . ^ Αι Ak δ\ν δη , Αι Α[ δ\ν δη' 
dr dT^w\ — — η' + η 

2 δρι δρκ 

This can be re-written in the form 

δ 

δρι δρ[] 

δρι 
άτ' dT¿,w 

ΆιΑ, , δη Δ , δ ; δη'] 
L 2 δρ^ 2 δρ,,] 

Thus the integral (1), defining the change due to collisions in 
the number of particles with given momentum is expressed, as it 
should be, as the divergence δ]ι/δρι in momentum space, of the 
flow vector ji in momentum space. The components of this flow 
equal 

Ji= - dr dr^W 
Ai A, , δη Αι δ : δη' 

η — 1 :r- ^ 
δρπ Spk 

M . O . P . V I — D 
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Ji = In — -
Λ Δ, 

Wdr. 

If the system consists of different types of particles, then the flow 
ji for a given type of particle is equal to 

Δ, Δ, 
Wdr^ (3) 

where the summation is performed over all the kinds of particles 
in the system, unprimed variables being related to the given type 
of particle and primed variables to each type of particle in turn 
(in this number, of course, is included the given type). 

Let us apply the formulae thus obtained to the case of a system 
of particles with Coulomb interactions, which we are considering. 
For this system let us determine the change in the momenta of 
two particles with charges, e and e' and momenta pi and p\ moving 
at some distance from one another. Let ρ be the impact parameter, 
i.e. the distance at which the two particles would pass each other 
if there were no interaction between them, and Ut their relative 
velocity. Let us consider this colhsion in the co-ordinate system 
in which the particle e' is at rest, with the A:-axis along the direc
tion of motion of the particle e, which has velocity w. We consider 
the scattering angle to be small. Because of this the momentum 
along the x-^xis does not change to this approximation, and only 
the momentum in a direction perpendicular to the ^:-axis (along 
the y-axis) changes. This change equals 

Δ , = - idUldy)dt, 

where U =e e'/r is the energy of interaction between the particles. 
Since the scattering is considered to be small it is possible to 

As was already noted at the beginning, = — Δ',. Therefore 
in our case the flow is 
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+ 0 0 

ee' Qdt _2e e' 

Going back to an arbitrary coordinate system, and noticing that 
the vector of the change in momentum is directed along the 
direction of QÍ v̂ e find 

A, = ^ 4 . ( 4 , 

Let us now calculate the integrals 

« i* = — — W dr^ = W dr^. 

appearing in (3). n'dW =wn' dr dr^ is the number of collisions 
per unit time with particles e\ undergone by the particle e with 
momentum pt, in which its momentum changes by the given 
value Δί. In other words this is the number of collisions in which 
particles e and e' pass a definite distance QI apart, the particles e' 
having definite momentum p[ (Δ, is completely determined for 
given p[ and ρ,). Denote by Vi and v[ the velocities of the particles e 
and e\ Their relative velocity Ui = Vt — v\ has absolute value u. 
The number of collisions of the particle e which take place at a 
given distance ρ̂  with the given relative velocity Ui is obviously 
uρdρdφu'dτ, whcre ψ is the angle determining the direction of ρ̂  
(at the given velocity Ut all the possible ρ, fie in one plane which is 
perpendicular to Ui; φ is the angle in that plane). 

Hence we can change wdr^ to uρdρdφ in the integrals a,* 

2e^e'^ 
—— ί/ρ dφ. 

In order to perform the integration, introduce, temporarily, co
ordinate axes with the x-axis directed along Ui, Then ρ, = 0 since 

consider, in the integral, that the motion is unperturbed, i.e. 
directed along the x-Sixis, Then 
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^2 

ayy = = (5) 
Q 

Qi 

The integral appearing here diverges logarithmically. The 
divergence at small ρ is due to the fact that for small ρ the scatter
ing angle of the particles in the collision is large, and hence all the 
previous formulae are no longer valid. If the exact formulae are 
used then there would, of course, be no divergence (at small ρ). 

Since a logarithm is insensitive to small changes in its argument, 
we can take in (5), as the lower Hmit ρχ, that value ρ at which the 
scattering angle becomes of the order of unity, i.e. the interaction 
energy ee'/ ρ becomes of the order of the mean kinetic energy i of 
the particles: 

ee' 
e= — · 

€ 

As far as the upper limit ρ2 in (5) is concerned, two cases must be 
distinguished. If the total charge on the particles in the system is 
not equal to zero, then as the upper limit one must take the linear 
dimension R of the region in which these particles lie. In the most 
interesting case, when the total charge of the system is zero, the 
charges are screened and as ρ2 one should take the Debye-Hückel 
screening radius. This radius is l//c where κ is the coefficient in the 
screened Coulomb law e -^'/r and is determined by the well-known 
equation 

Nie] 
kT 

Here the summation is taken over all types of particles in the 
system and Nt is the number of particles of the ith kind in 1 cm^. 

Qi A.Ut. Because of this A , , = A , ^ = A ^ , = 0. Also Α , , = 0 since 
the integral of QyQz = sin φ cos φ over all angles φ vanishes. 

Thus for ayy and A „ , which are not equal to zero, we find 
(substituting Qz = ρ sin φ, Qy = ρ C O S φ and integrating with 
respect to d^) 
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To an order of magnitude κ ^ Λ / Ν e^/kT where Ñ is the number 

of particles in 1 cm^ But kT e so that κ = e^/i. Thus we 
can take for the upper limit in (5), 

Substituting ρι and ρ2 in (5) we find 

ayy = = L, 
U 

where 
L = ln[(i/em^ (6) 

Returning now to an arbitrary coordinate system we can write, 
in tensor form, 

_ J. ( M ' - Ui u,) 
ai„ = IT L - - > 

where 
δ,, = \,i = k\ 8i, = 0,i+k. 

Substituting this expression into (3) we find the flow of particles 
e in momentum space in the form 

8η' , dn 
"1^11^^ är'. (7) 

The transport equation in the presence of a temperature 
gradient and an external electric field Ei has the form 

8n dn dT ^ dn dj) 

The Maxwellian distribution makes ji zero, as it should do. 
It would, in principle, be possible to determine from this equa

tion the electrical and thermal conductivity of the gas consisting 
of the charged particles. This, however, meets considerable mathe
matical difliculties. We restrict ourselves to a qualitative deter
mination of the conductivities, namely, we determine, to within 
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an order of magnitude, the mean free path / of the particles, from 
which it is possible to find the electrical and thermal conductivities 
by the use of well-known formulae. 

Let Ñ be (to an order of magnitude) the number of particles in 
1 cm^, e the charge of the particles and Τ the temperature of the 
gas. As is seen from (7), when it is substituted into (8), Ñ and e 
appear in the formulae only in the combination iV L e*. Therefore, 
the mean free path of the particles should be determined only in 
terms of the quantities LÑ, kT and the mass of the particles. 
From these one can construct only one combination having the 
dimensions of a length, namely (kTy/(e^ LÑ). To within an order 
of magnitude the mean free path will be equal to just this ratio 

l . J ^ . (9) 
- e'LN 

This result disagrees with Gabor's formulaeS which points to 
the incorrectness of his assumptions. 

Let us consider a gas consisting of electrons and ions. Because 
of the large difference in masses between the electrons and ions, 
the exchange of energy by the electrons amongst themselves and 
the ions amongst themselves will take place much more rapidly 
than the exchange of energy between the electrons and ions (in a 
collision between a very heavy particle and a very light one, the 
energy of each of them is almost unchanged). Because of this the 
equilibrium in the energies of the electrons amongst themselves 
and the ions amongst themselves will be estabUshed much sooner 
than the equihbrium between the unlike groups. Let us consider 
that such an equilibrium is already estabhshed, i.e. the electrons 
and the ions both have a Maxwellian distribution, but the temp
eratures of these distributions, Τ and Γ, are different. Let us find 
the rate at which the equilibrium between the electrons and ions is 
established, i.e. the rate of equaUsation of the temperatures T' 
and T. 

Let us work out the energy transmitted by the electrons to the 
ions in unit time (in 1 cm^) by collisions between them. Let e, m 
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and e\ m' be the charges and masses of the ions and electrons and 
η and n' their distributions: 

η = N{2nmkT) -^i^en' = NXlnm'kT) -'i^e (10) 

Ν and N' are the numbers of ions and electrons in 1 cm^ and € and 
€ are their energies. The flow of ions in momentum space is, 
according to (7): 

(all primed variables correspond to the electrons, unprimed 
variables to the ions). In the sum in (7) only one term remains, 
since the term which corresponds to the collisions of ions one with 
another vanishes, because the distribution of the ions is Max
wellian. 

The change per unit time in the number of ions with given 
momenta due to collisions with electrons is —djt/dpi. Thus the 
change in their energy is 

or, integrating by parts 

dpt 

dp 

C_. Be 
Ji 

Sp, 
J'l V, dr 

(de/dp, = vi). Since the integration is taken over all momentum 
space, the surface integral disappears. 

Substitute the distributions (10) into (11). We have 

δη η de nvt δη' 
dpt 

Then we find 

kT dp. kT dp', 

1 I 
η V, 
Ίτ' 

\kT kT'} w» 
V'\Tf-kT')+W'\ ^ 
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Uk = 0 

and therefore 

The change in energy, which we are seeking, is then equal to 

η n' — — . ^ ^ άτ dr. 

Since the mass of the electrons is much less than the mass of the 
nuclei, their velocity v\ is much larger than the velocity of the ions 
r*. Because of this one may consider that Ui ^ v\. Then 

J , . . . r f . = . . ^ . ^ L ( - - - j J J « . - - d r d r . 

Averaging over the angles between υ i and v\ we find 

j\vidT = — 7Te^e'^L 

Substituting (10) we have: 

nv^dT = N 

\kT kT'}] 

3kT 

m 

v' \2nkT'J , 

= 2ΛΓ' Vim'll-rrkT'). 

As a result we find: 

But 

^ik — Ui Uk 
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Σ /ν 
— - (12) ¿ l / 2 j ' 3 / 2 ^ m 

(Σ is over all types of ions). 
The energy of the electrons in 1 cm^ is equal to 3N' kTß, 

Dividing the energy (12) , lost by the electrons in unit time, by 
W k/2, we obtain the rate of change of the electron temperature 
T: 

dr ^ 4 6%2π mji- (Γ -T) sc Ne^ 
dt 3 {kTJi^ m ' ^ ^ 

Reference 
1. D. G A B O R , Phys. Z . , 34, 3 8 , 1933 . 

If there are ions of different types in the gas, the total energy 
transmitted by the electrons to the ions per unit time is 



O n the V i b r a t i o n s 
of the Electronic P l a s m a j 

The vibrations of the electronic plasma are considered, which arise 
as a result of an arbitrary initial non-equilibrium distribution in it. 
It is shown that the vibrations of the field in the plasma are always 
damped, and the dependence of the frequency and of the damping 
decrement on the wave vector is determined for small and for large 
values of the latter. 

The penetration of a periodical external electric field into the 
plasma is considered. The case of the frequency of the external field 
being almost at resonance with the proper frequency of plasma is 
considered separately. 

The high frequency vibrations of the electronic plasma are 
described by comparatively simple equations. If the frequency is 
high enough, the collisions of the electrons with the ions and with 
each other are inessential, and in the kinetic equation the collision 
integral can be neglected. The distribution function of ions can be 
considered as invariable, and only the distribution of electrons 
vibrates. Let F(v, r, t) be the electronic distribution function; if 
fo(v) is the equilibrium function (the Maxwell distribution), then 

F=fo(v)+Äv,r,t) (1) 

/being a quantity small as compared with/o. The kinetic equation 
(without the collision integral) is 

8/ 
dt 

tJ. Phys. USSR, 10, 25, 1946. 

+ ( . - v ) / - i ( v . - f ) - 0 (2) 

96 
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(φ—the electric field potential). The Poisson equation is 

= -4π6jfdr (dr = dv^, dvy dv,) (3) 

(the equilibrium electronic charge ejfodr is of course compensated 
by the positive charge of the ions). Equations (2) and (3) form a 
complete set of equations. 

These equations were used by A. A. Vlasov^' ̂  for an investiga
tion of the vibrations of plasma. However, most of his results turn 
out to be incorrect. Vlasov looked for solutions of the form 
const e -'»í+í(k.r) determined the dependence of the frequency ω 
on the wave vector k. The equation, which he obtained for this 
dependence contains a divergent integral; this already indicates 
the mathematical incorrectness of his method. Vlasov^ (and also 
Adirovich^) tries to escape from this difficulty by taking the 
principal value of the integral involved, however, without any 
foundation. Actually there exists no definite dependence of ω on 
k at all, and for a given value of k arbitrary values of ω are 
possible. The fact that solutions of the form of are 
insufficient can be seen already by observing that they give only a 
003 multiple of solutions (according to three independent para
meters kx, ky, kz), whereas there must actually exist a oo« multitude 
of solutions (the equations contain six independent variables 
X, y, z, r , , Vy, V,). 

1. The Vibrations with a Given Initial Distribution 
In order to obtain a correct solution of equations (2) and (3), it 

is necessary to consider the problem concretely stated; we shall 
discuss here two of such problems. 

Let us assume, that a definite (non-equilibrium) electronic dis
tribution in a plasma is given in the initial moment. The problem 
is to determine the resulting vibrations. As equations (2) and (3) 
are finear and do not contain the coordinates expficitly, the func
tion f(r, r, 0 can be expanded into a Fourier integral with respect 
to coordinates, and the equation can be written for every Fourier 
component separately. This means, that it is sufficient to consider 
solutions of the form /k(t?, t)e^^^"^. 
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dt m 8vx (4) 

) T V ( 0 = 4π6 fdr. (5) 

where 9 5 ( 0 is the Fourier component of the potential ψ(τ, t ) . These 
equations can be solved by using the operational method. Follow
ing this method, we introduce the function / , ( i>) defined by means 
of 

fpiv)= f(v,t)e-"dt; 
J 
0 

(6) 

then 

f(v, t) = 
2πΐ 

me"dp. (7) 

the integration being performed here in the plane of the complex 
variable ρ along a straight line parallel to the imaginary axis and 
passing to the right of it (σ > 0). 

We multiply both sides of equation (4) by e and integrate 
over dt. Noting that 

fe-"dt=^pf,-g 

Further we shall, for the sake of convenience, omit the index k 
in fk so that f{v, t) will denote the Fourier component of the dis
tribution function in question. By g{v) we denote the Fourier 
component of the initial distribution / (r , v, 0) ; we shall write 
simply g{v) for gk{v). Finally, we choose the x-axis along the 
direction of the considered value of the vector Λ. 

Taking the Fourier components of equations (2) and (3), we 
obtain 
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(we insert / (v, 0) = g{v)) we obtain 

e df 
m oVx 

In the same way (5) gives 

k'^9p = fp dr. 

The first of these equations yields 

1 

m dvx p + ikvp 

and inserting this into the second one, we obtain for ψρ 

Αττβ 
ψρ = 

ρ + / kvx 
dr 

1 -
ATTÍ 

km 
dr 

^ 
dVx (p + i kvx) 

(8) 

(9) 

These formulae solve, in principle, the problem considered. 
They determine the electronic distribution and the electric field 
for an arbitrarily given initial distribution. 

Before proceeding to the investigation of the formulae obtained, 
we note that in (9) the integration over dvy dv^ can be performed 
directly. Introducing for the following the notation Vx = u and 

^(w) = jg(v)dvydv. 

we write 

4πβ 
9P= = 

g(u) 
ρ + iku du 

1 -
4π/ 

km 
dm du 

(10) 

du (ρ + iku) 
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/ o ( " ) = « Y ^ E - " ' " ' ' " ^ (11) 

(k—the Boltzmann constant, η—the equilibrium number of elec
trons per unit volume of the plasma). 

An expression of the type of 

considered as a function of the complex variable ρ has a sense only 
in the right half-plane, i.e. for Re(/?) > 0. The same refers corres
pondingly to the expression (10). However, we can define φ on the 
left half-plane as the analytical continuation of expression (10). 

Β 
- I M U =0 

F I G . 1. 

It is easy to see, that if g(u) (considered as a function of the com
plex variable u) is an entire function of Μ (i.e. it has no singularities 
at finite w), then the integral 

+ 0 0 

g(u) du 
J ρ + iku 

continued analytically into the left half-plane of ρ also defines an 
entire function of p. Actually, to perform the analytical continua
tion of the function, defined by this integral, from the right 
half-plane to the left one, we displace the integration path in the 
complex plane of u far enough into the lower half-plane, so that the 
point u = —p/ik would lie above it. In this way we shall obtain an 

the equilibrium function being 
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+ <oo+(T 

9 ( 0 = 2πί ψρβ^'αρ (12) 

the integration is performed along a vertical line in the right half-
plane. However, if ψρ is defined in the manner indicated above as a 
function which is analytical in the whole plane of p, we can dis
place the integration path into the left half-plane going around all 
the poles of ψρ it meets. Let Pk be that of the poles of φρ, i.e. that 
of the roots of the equation 

Απ i 
km 

du ^ 
du (p+iku) ^'^^ 

(integration along the path shown in Fig. 1), which has the least 
absolute value of its real part (i.e. which is the nearest to the 
imaginary axis). Let us perform the integration in (12) along the 
path, which is displaced far enough to the left and goes around the 
point ρ =pk in the manner shown in Fig. 2. Then in the integral 
(12) (with large values of 0 only the residue relative to the pole pk 
will be of importance. All other parts of the integral (among them 

analytical function, defined by the integral which for ReO) > 0, 
is taken along the real axis, and for Re(/?) < 0 along the path, 
which is drawn in Fig. 1 by a full-drawn line. This function has no 
singularities at finite values of /?, i.e. it is an entire function. 

The same refers also to the integral in the denominator of ex
pression (10), for dfo(u)/du is an entire function. Thus, in the whole 
plane an analytical function ψρ is (if g(u) is entire) a ratio of two 
entire functions. Hence the only singularities (poles) of the func
tion ψρ are the zeros of the denominator in (10); all of these poles 
lie in the left half-plane. 

These considerations allow us to determine the asymptotical 
form of the potential φ{ή for large values of the time /. In the 
inversion formula 
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F I G . 2. 

Equation (13) determines pk, i.e. the frequency and the damping 
decrement of the vibrations. It coincides formally with Vlasov's 
equations, the difference being that here the integration is per
formed along the path C, whilst Vlasov integrates simply along the 
real axis. This difference leads, as we shall see, to qualitatively new 
results, namely to the presence of damping. 

Consider the limiting case of long waves. A: -> 0. The point 
u = —p/ik (Fig. 1) is displaced to very large | u \ and as the 
function /o(w) decreases rapidly with increasing | w | , we can 
integrate in (13), in the first approximation, only along the real 
axis. We expand the integrand in powers of k. The first term of the 
expansion disappears because 

J du du=f,\t^=0. 

the integral along the vertical line) will be exponentially small in 
comparison with the residue due to the presence of the factor e^* 
in the integrated expression, which decreases rapidly with in
creasing I ReO) I . 

Thus, for large values of / the potential of the field φ(ή is pro
portional to ê *'. With complex pk this factor splits into a periodi
cal part and a decreasing (Re(/?) < 0) one. We arrive, conse
quently, at an essential result, that the field is damped with time, 
the damping decrement being equal to — ReQ?*). 



VIBRATIONS OF THE ELECTRONIC PLASMA 103 

du 
^du=l 

Taking into account that 

4f^ 
du 

du = uL fßu = - « 1 (14) 

we find 

A = — Í ω, ' ~ V m " (15) 

(we have chosen here the sign of ω which corresponds to a wave, 
propagating in the positive direction of the x-axis). This expression 
corresponds to the ordinary proper frequency of plasma; we 
denote it by ω^. In the next approximation the calculation leads to 
the following dependence of the frequency on the wave vector: 

(16) 

a = Λ/κΤΙ4πη6^ being the electronic Debye-Hückel radius. We 
omit here the detailed calculation because it coincides with that 
of Vlasov done in his first papera This part of his calculations 
turns out to be correct due to the fact, that in calculating the fre
quency for small values of k, we can approximately integrate in 
(13) only along the real axis. 

However, the vibrations are actually damped, although the 
damping coefficient is small for small k. To calculate this decre
ment we start from an assumption (which is verified by the result), 
that for A: -> 0 the real part of /?* tends to zero, the imaginary part 
remaining finite. Hence for small k the point u = —pk/ik (Fig. 1) 

The second term gives 
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mp^ mk^ du 

Putting here ρ = —ιω — γ and solving the equation by means 
of successive approximations, we get finally the foHowing ex
pression for the damping decrement: 

Thus, the damping decrement decreases exponentially with de
creasing k. 

Formulae (15-17) are vafid for y <^ ω. This condition leads to 
the inequality 

ka > 1. 

Consider now the opposite limiting case of large k. We put 
again ρ = —ίω — γ. It will be verified by the result, that both ω 
and y increase indefinitely with k oo but in such a way, that for 
large k, ω <^ γ and the ratios w/k, γ/k tend to zero and infinity 

is situated at a finite distance from the imaginary axis and very 
near to the real one (under the latter). Let 

Pk = —ioj — y, 

γ is the damping coefficient in question (0 < y <^ ω). We choose a 
point A on the real axis (Fig. 1), situated not far from the point 
u = —pk/ik, but so, that its distance from this point is still large 
as compared with | Im(w) | . Then we draw a semicircle AB 
through this point (shown by a dotted line in Fig. 1) and use it 
instead of the corresponding part of the integration path C. 

The integral along the straight parts of the integration path is 
real in the limiting case of Rq(p) = 0; in the approximation con
sidered we can put it equal to —4nne^/mp^, As to the integral 
along the semicircle, it equals the residue relative to the pole, 
multipfied by πι (a half of the total circle!). In this way we obtain 
equation (13) in the form 

4πη6^ . 4π^6^ df,{ - p/i k) . 
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( ίγω \ 

As on the right of the equation stands a real positive quantity, 
this factor must be equal to + 1. Hence we find: 

γω 
ωla^k^ 

(it can be shown, that by equating it to 3π, 5π, we would get a root 
of the equation (13), which is not the nearest one to the imaginary 
axis). Together with the definition of the quantity ξ this gives 

respectively. Then the pole u = —p/ik is situated relatively near 
to the imaginary, but far from the real axis (Re(w) is small, 
Im(w) is large). As the function/o increases exponentially for large 
imaginary values of w, we can integrate in (13) only along the 
circle around the pole, neglecting the integral along the real axis. 
In this way we obtain from (13) 

, df^(-p/ik) 
77 ^ J ^ A-

mk^ du 
or, using expression (11), for fo(u) 

V 2 ^ ~ - ^ e -̂o (̂->^ = 1. (18) 

By taking the moduli of the expression on the both sides of the 
equation, and using the suggested inequality y > ω, we get 

ξβ^'ι^= -^(aky (19) 
ν 2 π 

with 

The phase factor of the expression in the left side of equation 
(18) is equal, in the same approximation, to 
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Λ ( " ) = , g(«) + — y . ρ Λ-iku ' m '^' du 

f{u,t) 
2πΐ 

-1*00 +σ 

Mu)e^'dt. 

The behaviour of the function /(w, t) for large t is determined by 
the purely imaginary singular point ρ = —iku of the function 
fp{u). Thus, the distribution function turns out to be proportional 

These formulae determine the frequency and the damping decre
ment of the vibrations, the function i(k) being defined implicitly 
by equation (19). ^(k) is a slowly increasing function of k (it goes 
approximately as \/lnkä). The ratio γ/ω increases with k as ξ^, i.e. 
approximately as Inka, 

In the preceding calculations we supposed that the given func
tion g(u) is an entire function. If this function has singularities, 
then ψρ will also possess singularities apart from the poles, which 
are zeros of the denominator in (10). The point pk in Fig. 2, which 
determines the behaviour of the potential ψ{ή for large must be 
chosen as the nearest to the imaginary axis of all the roots of 
equation (13) and of the singularities, which arise from the 
singular points of g{u). 

In particular, if g(w) is (on the real axis) a continuous function 
with a discontinuous derivative, then ψ ρ will have purely imaginary 
singular points ρ = —ikus\ Us being the discontinuity points of 
g(u). Thus, the behaviour of ψ(ή for large t will be determined by 
purely imaginary values of i.e. there will be no damping of the 
field. Hence it follows, that it is by no means possible to use a 
curve with angles (e.g. composed of straight pieces) for g{u) 
instead of a smooth one in order to get an approximate solution 
of a given problem. Such a substitution will lead to a qualitatively 
incorrect picture with an undamped field vibration. 

Finally, it is necessary to discuss the electronic distribution 
function itself. For the distribution function, integrated over 
dVy dvz we have, according to (8): 
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2. The Vibrations of a Plasma in a External Electric 
Field 

Suppose the plasma is placed into an external periodical electric 
field. The problem is to find the law of the penetration of the 
field inside the plasma. The external field can be expanded into a 
Fourier integral with respect to time; therefore, we can confine 
ourselves to the consideration of a monochromatic field of a 
frequency ω. We suppose that the plasma is bounded by a plane 
wall; the distribution is a function of only one coordinate, say x, 
along the axis, perpendicular to the wall. 

The electric field can be split into a longitudinal part, directed 
along the x-axis, and a transversal part ρ which is parallel to the 
plane of the wall. There is no need to consider the transversal 
field, because the behaviour of a plasma in a transverse electro
magnetic wave is described by well-known formulae. Therefore, 
we confine ourselves to the case of a longitudinal field. 

As in section 1, we use the distribution function, integrated over 
the essential variables Vy, Vz. We can look for this function 
/(w, X, t) in the form of /(w, x)e (w denotes, as above Vx). 

The kinetic equation (2) becomes now 

dx m du 

(we write the electric field in the form E{x)e -'̂ ')· As a second equa
tion it is convenient to use here, instead of the Poisson equation 
(3), the equation, which expresses the absence of sources for the 
total current (the real current j and the displacement current): 

(for large i) to a periodical factor e i.e. it performs undamped 
vibrations with a frequency ku which depends on the velocity u. 
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J = e uf(u,x)du. (23) 

At large distances from the wall the field Ε in the plasma is 
determined directly by the condition of the constancy of the 
longitudinal component of the induction D = eE, the electric 
constant e of the plasma being equal to the well-known expression 

, = l _ i ! ^ . (24) 
m ω2 

Outside the plasma D = Eol hence the boundary condition at 
infinity is 

£ = — for A: = + 0 0 (25) 

(the positive direction of the x-axis is into the plasma). 
As to the properties at the wall, we shall suppose (as is usually 

done in analogous cases), that it has an ideal reflection power. 
This means that an electron, colliding with the wall, is reflected 
at an angle, equal to that of its incidence, and with an unchanged 
absolute value of its velocity (so that i?y, Vz remain unchanged, and 
Vx =u changes its sign). Then the distribution function must 
satisfy on the wafi (x = 0) the boundary condition 

/ ( « , 0) = / ( - » , 0). (26) 

We formally integrate equation (21) and find: 

f(u, x) = - e""i-
mu du 

e-'°"''dx. 

Hence we find that ATTJ — ιωΕ is a constant. Outside the plasma 
y = 0; therefore, this constant equals —iwEo where EQC-^^* is the 
external field. Thus, we have an equation 

--ΐωΕ{χ) + 4njXx) = -ΐωΕο. (22) 

The current density j{x) can be expressed through the distribution 
function by means of 
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In order to determine the integration constant, we proceed in the 
following way. Consider ω as a complex parameter with a small 
positive imaginary part (which tends in the following to zero). 
Then the external field Εοβ'*^* increases with time, but as it is 
finite for every finite value of i, the distribution function must also 
be everywhere (for all Λ: = o o ) finite. 

If w < 0 then the factor e^^''^" increases indefinitely with x, and 
in order that f{u, o o ) remains finite we must write for u < 0: 

f(u, x) = e'̂ 'Z" 
βΕ(ξ) dm 

du m u 
(27) 

As to the function/(w, x) for w > 0 it must be written so as to fulfil 
the condition (26). This gives for w > 0: 

eE(0 dfoiu) 

mu du 
eE{S) df, 

mu du 
LO 

(28) 

(it is to be remembered, that /o(w) is an even function of w, hence 
dfjdu is an odd function). 

Using the obtained expressions, we calculate the current density 
(23): 

ιω 
4 ^ 

Ε{ξ)Κ{χ-ξ)αξ + Ε{ξ)Κ{ξ-χ)άξ 

Ε(ξ)Κ(χ + ξ)αξ 

where the function Κ (ξ) is defined by means of 

(29) 

Κ{ξ) = 
4π i 

τηω du 
(30) 

((29) contains Κ{ξ) only for positive values of the argument). 
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In the following it is convenient to split E(x) into two terms, 
separating the value of the field for χ -> + oo: 

(31) 

According to (25) , Ei(x) satisfies the boundary condition £ Ί ( ο ο ) = 
0. Inserting (31) into (29), we obtain easily: 

i ω 
j = jiix) + τ — ^ 0 Κ(ξ)αξ, (32) 

with j\(x) defined by (29) with £ Ί ( χ ) standing instead of E(x). 
Inserting (31) , (32) into (22) and performing some elementary 

transformations, we obtain the following integral equation for the 
function Ei(x) 

E.{x) -

+ 

K{x - 0 E,(0 άξ -^Κ{ξ - χ) EM) άξ 
χ 

00 ΟΟ 

2^0 Κ{ξ +χ)Ε,{ξ)άξ^ - Κ(ξ)αξ. (33) 

In calculations we used here expression (24) for e and the ex-
00 

pression for the integral \Κ(ξ)αξ which can be obtained in the 
0 

following way. Consider again ω as a complex parameter with 
Im ω > 0. Then e^^^^" is zero for ξ = oo, and integrating over αξ 
under the integral sign in (30) , we get 

dfo . 
U —r- du. 

du 

The integrand udfojdu is an even function of u hence this integral 
is one half of the integral (14) . Finally, 

K{ξ)dξ = 
m ω" 

(34) 
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The integral equation (33) can be solved in the following way. 
The function Ei(x) has a physical meaning only inside the plasma, 
i.e. for x > 0. We continue this function, and also the function 
Κ(ξ) into the region of negative values of the argument by means 
of the definitions: 

(35) 

(the function Ei(x), thus defined, has a discontinuity at χ = 0). 
Then equation (33) after a simple transformation is reduced to a 
simpler form: 

2E„ 

2Eo 

Κ{ξ)άξ for x > 0 , 

(36) 

Κ{ξ)άξ for χ<0. 

In this form it can be solved by using the Fourier method. Multi
plying both sides of the equation by e and integrating over dx 
within the limits between — o o and + o o , we obtain: 

£i*(l - K,) = 
2iEo Ko-K, 

Ein, Kk being Fourier components: 

+ 00 

£ i . = Ei(x)e-""dx, Κ{ξ)€-'·'^άξ 

(Kt is the value of Kk for k = 0). By means of the inverse trans
formation 

Ei(x) = 
2π J 

- 0 3 

E^k e'*' dk 
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we get the function Ei{x) in question in the form of an integral: 

+ 0 0 

Z7/ Λ ^'^0 

776 
- 0 0 

^ ^-^^ e-'dk. (37) 

The function K, can be presented in the following form: 

+ 0 0 

m ω 
— 0 0 

^^i^du (38) 
ku — ω 

(we used the definitions (30), (35) and the integration over άξ is 
performed under the sign of the integral over du with ω considered 
again as complex with Im ω > 0). If this integral is taken simply 
along the real axis, it diverges at the point u = ω/k. However, it 
is easy to see which must be actually the path of integration. In 
deducing (38) we assmed that Im ω > 0 and the integral was taken 
along the real axis, i.e. along a path, passing below (if k > 0), or 
above (if k < 0) the singular point u = ω/k. Therefore, after 
putting Im ω equal to zero, the integral (38) must be taken (if 
A: > 0) along the path Ci (Fig. 3), which proceeds along the real 
axis and goes around the singular point below it, or (if A: < 0) 
along the path Cg which goes around the singular point above it. 

We introduce the notations: 

Kk = Ki(k) for k > 0;Kk= K,(k) for A: < 0. (39) 

The functions Ki{k) and K^ik), defined formally by (38) with the 
integral taken along the path Ci or Cg, are analytical functions in 
the whole plane of the complex variable k. 

- -

-r?\ . 

F I G . 3. 
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1 7 / Λ ^'^0 

77-e 
— 0 0 

k[\ -urn 
(40) 

+ 0 0 

Uk) - Uk) 

— 0 0 k[i - m)][i - Uk)] 
^dk. 

In this transformation we used the fact that according to (24), 
(38) and (14) we have 

K, = \ - e , (41) 

The difference Kiik) — Ki(k) is evidently expressed by the same 
formula (38), the integration being performed simply along a 
closed contour enclosing the pole (in the negative direction). 
According to the theorem of the residues, we have, consequently, 

m) - Uk) = - 2ni(^u (42) 
mwk^ '\'^ duju^mik 

or 

U k ) - U k ) = ^-2ωο2α2.2 ' 

woa^ k\ 

It is easy to see, that the functions Ki, K2 are connected with 
each other by means of the following relations: 

[Uk)r = Uk*X K[(-k*) = Uk), K(-k*) = Uk). (43) 

At infinity both functions Κχ, K^, vanish. An investigation which 
we omit here, shows, that the functions Uk), Uk) have in the 
whole plane of the complex variable k only one singular point— 

ω2 

Expression (37) is inconvenient for calculations. Introducing 
the functions Ä i , K2 we can represent it, after a simple transforma
tion, in the form of 
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namely, an essential singularity at = 0. The quantity is the 
limit to which Κχ, Kz tend when k tends to zero along the real axis. 
It can also be shown, that Ki(k) tends to the same limit KQ when k 
tends to zero along an arbitrary path, passing outside a right-
angled sector in the upper half-plane, bounded by two straight 
lines, which intersect at the coordinate origin and make an angle of 
45° with the imaginary axis. The same holds for K^ik) outside an 
analogous sector in the lower half-plane. 

In the integrals (40) those points are of importance, at which 
Ku K2 are equal to unity. It can be shown, that the equation 
Ki(k) = 1 has an infinite number of roots in the upper half-plane, 
which converge to a condensation point at A: = 0. In the lower 
half-plane there are no roots at afi if e > 0 (i.e. if Ko < 1), or there 
is one root on the imaginary axis if e < 0 (i.e. if Ko > 1). Analog
ous results for the function K^ik) follow directly from the rela
tions (43 ) : the equation Kiik) = 1 has an infinite number of roots 
in the lower half-plane, and has no roots at all (if e > 0 ) , or has 
one root on the imaginary axis (if € < 0) in the upper one. 

Consequently, if e > 0 the integrand of the first integral in (40) 
has no poles in the upper half-plane and by pushing the path of 
integration to infinity in this half-plane, we find, that the integral 
vanishes. If, on the other hand, e < 0, there is a pole in the upper 
half-plane and the integral is reduced to the residue relative to this 
pole. Its dependence on χ is, consequently, given by an expo
nentially decreasing factor e α ^ 0. 

A complete evaluation of the integrals in (40) can be performed 
only numerically. It is, however, possible to obtain an asympto
tical expression, which determines Ei(x) for large values of 
x(x > a). We shall see, that in this region the second integral in 
(40) is larger as compared with the first one and we must calculate 
only it. We shall do it with the aid of the well-known "method of 
steepest descent". Inserting (42) into (40) we obtain in the inte
grand an exponential factor 
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is the extremum point of the exponent, and then integrate along 
the path of "the steepest descent". In the non-exponential factor 
we can put k = ko and take it out of the integration sign. In the 
denominator we can put 1 — K2(ko) = 1 — Ki(ko) I — KQ = e 
(ko is small for large x). After a simple calculation we obtain the 
following final result 

«')=̂ (ίΓ(7Γ-[-Ι(ΞΓ] 
exp 

3V3 iwxV/^ , 2π 
(44) 

Thus, the field Ei(x) decreases according to an exponential law 
with ^2/3 in the exponent (as to the first term in (40), we have seen 
that it decreases according to a stronger law e and is, conse
quently, insignificant for large x). Expression (44) contains also a 
periodical factor. 

The case of the frequency ω, being nearly at resonance with 
the proper frequency of the plasma, needs a separate consider
ation. The dielectric constant is here small, | e | <̂  1 (and is con
nected with the frequency by means of a simple relation e = 
2[(ω—ωο)/ωο]. The calculations proceed differently for e < 0 
and for € > 0. 

Suppose first that e is small and negative. We have seen, that for 
€ < 0 the first term in (40) decreases as e -"̂ ,̂ i.e., faster than the 
second one. But with | e | <̂  1 the coefficient α turns out to be 
small, and therefore, the second term becomes predominant only 
for very large x; for smaller values of χ the first term prevails. 

We shall see, that the integrand of the first term has (for small 
I € I ) a pole, lying on the imaginary axis near to the coordinate 

Following the method of steepest descent we expand the exponent 
in powers oí hk = k — where 
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origin (we are speaking of the only root of the equation Kzik) = 1 
in the upper half-plane). To calculate this root we can, therefore, 
expand K^ik) in powers of k. As to the path of integration Cg in the 
integral (38), which defines K^ik), it is reduced simply to the whole 
real axis—this path passes above the singular point u = ω|k 
(which lies now on the negative half of the imaginary axis). A 
simple calculation gives in the second approximation 

Klk) = 1 - 6 + 2{ka)\ 

Hence we find for the root of the equation K^ik) = 1: 

^ " aJ~ 

Evaluating the first integral (40) as the residue relative to this pole, 
we find, finally, the following expression for the total field E{x) 

* ' = t ( ' - - [ - t V ^ ] ) (45) 

Thus, if € is smaU and negative, the field increases mono-
tonically, according to a simple exponential law, tending to the 
limit EQI^, For χ = Q (45) gives E{x) = 0 instead of the correct 
value £Ό, this is connected with the fact that in the adopted 
approximation the quantities of the order of e are neglected. 

Consider, finally, the case of small positive values of e. For 
e > 0 the first term in (40) vanishes. However, the second integral 
contains, except the expression (44), also a term, which decreases 
according to a law e For very small e this term becomes pre
dominant for all values of x, except the largest. This term is due 
to the residue relative to the integrand, which lies in the upper half-
plane near the real axis. It turns out, that among the infinite 
number of the roots of the equation Kx{k) = 1 in the upper half-
plane there exists one, which lies (for small e) very near to the real 
axis. Expanding the Ki(k) in powers of k, it is easy to obtain the 
following expression for the root in question: 

= l [ / i + , -L/z 
fl LV 3 ^ 2eW 2 
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(46) 

Thus, in this case we find that the amplitude of the field increases, 
first, from zero (actually from EQ) up to lEo/e, and then it performs 
damped oscillations (with a very small damping decrement) 
around the value Eo/e to which it tends at large distances. 
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Calculating the residue relative to this pole, we obtain, finally, the 
following expression for the field: 
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O n the Stat is t ica l T h e o r y of N u c l e l j 

It is shown that the formulae for the distribution of nuclear energy 
levels which Bethe has obtained by considering the nucleus as an 
ideal gas, can also result from quite general considerations. A 
formula is derived for determining the width of the nuclear energy 
levels which are associated with scattering. Both inelastic scattering 
of neutrons, and emission of y-rays are considered. 

1. Distribution of Nuclear Levels 

Niels Bohr has shown in his fundamental work that the nuclei 
of elements of sufficiently large atomic weight can be treated by 
statistical methods. 

Developing these ideas, Bethe^ has investigated the distribution 
of nuclear energy levels as function of the energy. In this treatment 
he has made assumptions which are equivalent to considering the 
nucleus as an ideal gas. In reality the interaction of the particles 
within the nucleus is definitely very strong, so that the nucleus 
should not be treated as a gas. It turns out, however, that Bethe's 
results do not depend on his assumptions. 

If we allow for the interaction of the particles in the nucleus, 
there is naturally very little reason to consider the nucleus as a 
"solid body". That is to say we should imagine it as a "liquid 
drop" of protons and neutrons, and not as a "crystal". In contrast 
to normal liquids quantum effects are extremely important in this 
liquid. The uncertainty of the coordinates of the particles is 
distinctly larger than their mutual separation. Notwithstanding 
that we have no methods available for the theoretical treatment of 

fPhys. Z. Soviet Un., 1 1 , 556, 1937. 
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Ν = e''^' = e^^^^ (4) 

The number of levels per unit energy interval is: 

dN dS \ 1 

t The term "electron gas" is purely conventional, the interactions between 
electrons being very large. 

M . O . P . V I — Ε 

"quantum liquids", we can still derive a few properties of the 
nuclei. 

We set the energy of the nucleus in the ground state equal to 
zero. In this state the "temperature" of the nucleus is zero (Γ will 
be measured in units of energy). Since the excitation energy of the 
nucleus in the cases which are of interest to us is small by com
parison with the total nuclear binding energy, we can also assume 
the temperature of the excited nucleus to be small. Thus the free 
energy of the excited nucleus can be expressed in powers of T. 
Taking only the first term, we have: 

F = -ϊαΤ\ (1) 

where α is a constant. The linear term is equal to zero in accord
ance with the Nernst theorem. That the expansion for liquids 
begins with the quadratic term can be seen either from the 
analogous conditions for gases, or directly from the measure
ments of Keesom, which show that the specific heat of an "electron 
fiquid"! in metals is proportional to Γ. 

From (1) we find for the energy Ε of the nucleus, and the 
entropy S: 

8 F αΤ^ 
= αΓ, E = F+TS=—' (2) 

Expressing 5 as a function of E, we have 

S = V 2 ¡ r ^ (3) 

It is well known that we can write the number, of states, i.e. 
of energy levels, with an energy less than Ε as: 
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2J JV + 1), 

where / is the moment of inertia of the nucleus. The corresponding 
number of states for this energy we know from the theory of the 
spherical top to be (2j + If,[A (2J + l)-fold degeneracy is due to 
the (2/ + 1) different orientations of the vector j in space, and a 
further (2j + 1) due to the different possible orientations of the 
same vector with respect to the top.] 

We can now write down the number of states for given j : 

dNj 

dE 
= A (2j + ly exp 

2JT 

where ^ is a quantity which does not depend on j \ and which is 
defined by the relation: 

dE 
exp 

2JT 
dN 

'dE 

The exponential expression decreases rapidly from 7 = 7 to 8 on
wards. Thus we may consider J as large compared with unity, and 
replace the summation by integration: 

dN 

71 = A 

Comparison with (5) gives the value of A , from which: 

dNj 1 

dE VTT 

/ fj2\ 3/2 I 
'21) i ^ ( 2 y + l)^exp 

^ 2 

- 2 7 7 ^ 7 ( 7 + 1 ) e^ ( 6 ) 

Equation (5) gives the distribution of the energy levels, where all 
states, i.e. all possible angular momenta are included. 

We now consider states with a specific total angular momentum 
j . Since the nucleus may be considered as a spherical drop, the 
energy of the nucleus, "rotating" with angular momentum 7, is 
given by 
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1 dNj 1 (h^Vi' 1 
(2y + l)exp 

2 y + i dE V 7 V 2 y / T^i^ 
( 7 ) 

When a nucleus with angular momentumyO, comes into collision 
with a neutron, the resonance levels correspond to the states of the 
compound nucleus, i.e. the system, nucleus + neutron, with an 
angular momentum yO ± \ . If we add the two expressions ( 7 ) for 
j = jo db h we find for the number, (2/o + 1) X dNo/dE: 

1 dNo _ 1 ίη^γ/' 1 
2jo + 1 dE ~ V2^\ J I T^'' 

{2jo + \)e^ (8) 

(Since the value of jo is smaU, we can neglect the second term in the 
exponential.) As this expression is in any case not very accurate, 
we may put7*0 = 0 in what follows. The reciprocal of dN/dE is the 
spacing D between the levels. From (8) we obtain for the spacing 
of the resonance levels: 

/ 7 \ 3 / 2 

^ = ^ ^ ^ \ ^ ) (9) 

From (2) and (3) we have Τ = 2E/S. Putting this in (9) gives: 

5 5 / 2 _ ν2π(£_Υ' ( 2 £ ) 5 / 2 . (10) 

Using the experimentally known values of Ε and D, we can calcu
late S from this formula. For heavy nuclei, JE" 8 MeV. For the 
spacing of the energy levels, we put D ^ 5 eV. The moment of 
inertia, / , of a sphere of mass, m, and radius r, is / == 2mr^/5. For 
a nuclear radius r = 7 χ 10 cm and an atomic weight of 100, 
we find J = 3 χ 10-*^ g cm .̂ Finally we obtain from (10): 

S= 18, 

and thus for the temperature, T(= 2E/S): 

Τ - 1 MeV. 

or, for the number of energy levels with angular momentum j : 
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Let us now determine the order of magnitude of the energies of 
the lowest nuclear energy levels. We are thus specifying that the 
number, Ν (equation 4), of states belonging to the corresponding 
energy is of the order one. From (4) follows for Ν ^ 1 that S is 
also ^ 1. Since from (3) the energy is proportional to the square 
of the entropy, we can write: 

We put S ^ 20 and obtain for Emm a value of the order 2 x 1 0 * eV. 
We should note that whereas the formula (5) is valid for an 

energy of a few ten thousand eV onwards, formula (9) is only 
applicable for a range with a lower Hmit of about 2 MeV. For 
smaller energies the condition Ε ^ D is not satisfied. 

Since Ε is roughly equal for the various elements, we can deduce 
from the relation S = \/2aE that S is proportional to \^a. Since 
the free energies are additive, we can say further that α increases 
with the number of nuclear particles, that is it is proportional to 
Λ/A (A is the atomic weight). Since the number of particles in the 
nucleus is usually not very large, we do not expect this formula to 
be particularly useful. 

2. The Width of Resonance Peaks for Neutrons 

The neutron can be captured on collision by the nucleus, form
ing the so-called compound nucleus of neutron + atomic nucleus. 
The neutron may subsequently be expelled from the nucleus, with 
or without loss of energy (inelastic or elastic scattering, respec
tively). Alternatively, it may be absorbed finally by the nucleus, 
and the compound nucleus will change to its ground state with the 
emission of light quanta (capture of neutrons). 

Let us consider the elastic scattering. Let 2re/h be the prob
ability per unit time that the neutron, having been captured into a 
level, E„, of the compound nucleus, is then re-emitted. Fe is the 
width of the energy peak for this process (for brevity the index η 
of Fe is omitted). 
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In order to determine the approximate magnitude of Fe we treat 
the problem as follows: we consider the nucleus in thermo
dynamic equilibrium with the neutron gas. The probability that 
the nucleus will be in the compound state with energy En, is 
exp [{μ — E^jT] (μ is the chemical potential). The nucleus can 
only capture neutrons with angular momentum 1 = 0 (neutrons 
with / = 1, 2 . . . pass by at greater distances). The number of 
such neutrons whose momentum lies in the range dp and whose 
distance from the nucleus lies in the range dr, is:t 

where Ε is the energy of the neutron. Instead of dp we can put 
dE/v where ν is the speed of the neutron. Then the number of 
neutrons which strike the nucleus per sec is 

dE 
2πη 

Now let us consider a small energy interval which is nonetheless 
large enough to contain many energy levels of the compound 
nucleus. We use w for the mean probability that a compound 
nucleus is formed on the collision of the neutron with the nucleus. 
Then per sec there are: 

compound nuclei formed in some state or other in the energy 
interval Δ̂ ". This number must be equal to the number of neutrons 
which leave the compound nucleus on its decay. Since the number 
of compound nuclei with energy Ε is exp [{μ — E)/T], the mean 
probabiHty of decay, 2Γ^//ί, and the number of levels in the energy 
interval is ^E/D, where D is the mean spacing between levels, 
then the number of nuclei which decay per second is: 

...... 
t B o t h the spin o f the n e u t r o n a n d t h e a n g u l a r m o m e n t u m o f t h e nuc leus 

h a v e been ignored , s ince t h e results a r e a n y w a y on ly a p p r o x i m a t e . 
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-JI 
Comparing (14) and (15) gives: 

Γ. I IT 
D 4πΝ 

(15) 

(16) 

Putting, for example, Ε ^ \ eV, Eq ^ % MeV, D 5 eV we find: 

Fe^lX 10-*eV 

which is apparently in agreement with experimental data. 
Formula (14) remains obviously valid when a proton or an a-

particle is emitted on decay of the nucleus instead of a neutron. In 
place of (15) we now have: 

H> = e 

where γ is the Gamow penetrability of the potential barrier for a 
proton or an α-particle. We then have for the decay constant of a 
radioactive nucleus: 

η 2πη 

From (12) and (13) we have: 

Λ = ^ . 

Since the normalised wave function of the neutron in the region 
of the nucleus is proportional to the square root of the speed, then 
Fe and w are proportional to the speed itself, i.e. to the square root 
of the energy, and in particular: 

w = a\/E. 

When we consider the nucleus as a liquid drop, on the other 
hand, we can afford to disregard the spacing of the energy levels, 
just as for a real liquid. We can now argue that if the energy of 
the neutron were of the same order as the binding energy Eq of the 
nucleus, then the probability of neutron capture would be of the 
order one. We can thus write: 
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3 . Inelastic Scattering 

In the case of inelastic scattering the neutron leaves the com
pound nucleus with a reduced energy, and the nucleus remains in 
an excited state. We denote the probability of such a decay of the 
compound nucleus by IFijh: Ft is the corresponding part of the 
level width. Since there is no fundamental difference between the 
ground state and the excited states, it is apparent that a formula 
for Ft is valid, analogous to formula (16) for elastic scattering: 

' 4 π V £ • / ( 1 8 ) 

Here e is the energy of the emitted neutron. Since e is smaller than 
the energy Ε of the incoming neutron, we can see by comparing 
(16) and (18) that < 

At the same time the number of energy levels increases very 
sharply with increasing energy, and the nucleus can remain in any 
one of the lower excited states for inelastic scattering. For this 
reason the width of the highly excited nuclear levels is defined 
principally by the inelastic scattering. It should not be concluded 
from this that the scattering wifi be principally inelastic since, as 
Bethe and Placzek^t have shown, the cross section for elastic 
scattering has an extra term, 4nr^ (r is the nuclear radius), which 
corresponds to elastic scattering without the formation of a com
pound nucleus. In fact the resonance at highly excited levels will 
be almost entirely due to inelastic scattering. 

t The author would like to express his thanks to G. Placzek for communicat
ing the results of this work prior to publication. 

For D we must here substitute the difference between the first 
excited nuclear states. According to the above calculations, D 
is 2 X 10* eV. In place of this Bethe^ has taken 1 eV.e-^ for 
Fe. Thus he has obtained the value of 13 X 10 cm for the radii 
of the heavy nuclei, which is too large. By means of (17) we obtain 
the value of 10 · 5 X 10 cm for the radius of the ThA nucleus. 
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4. Nuclear Radiation 

Taking a statistical standpoint, we can consider the emission 
from the highly excited nucleus as thermal radiation. In particular, 
we can apply Kirchhoff's law. Unfortunately, the calculation of 
the absorption coefficient is very difficult. It can be assumed, 
however, that whatever form the absorption coefficient may take, 
its dependence on frequency will be basically defined from Planck's 
formula; i.e. principally quanta of energy ηω ^ Twill be emitted, 
where Τ is the temperature of the nucleus. We should thus expect 
that the nucleus will radiate its energy not in one, but in several 
stages. In the particular case of neutron capture, y-quanta with 
energy 1-3 MeV will be emitted, rather than quanta of 8 MeV. 

Finally, I should like to thank G. Placzek for the very interesting 
discussions of this problem. 

Owing to the rapid broadening of the levels for inelastic scatter
ing, the tendency for resonance must decrease sharply at suffi
ciently high energy. We should expect that at an energy of the 
order of 1 MeV it should vanish. 

When the energy of the incident neutron is sufficiently large to 
enable us to speak of the temperature of the nucleus left in an 
excited state, then the mean energy of the emitted neutron will 
clearly be of the order: 

^ - (19) 

where Τ is the temperature of the excited nucleus. A more exact 
calculation shows that the mean value of e is about IT, From (19) 
and (2) it can be seen that the energy of the neutron on leaving the 
nucleus varies with the square root of its incident energy. Thus 
when the incident energy is large, the neutron leaves with appreci
ably less energy. We can estimate, for example, that when a 
neutron of energy 10 MeV is captured by the nucleus, the latter 
retains about 8 MeV in its excited state. 
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5 

O n the Or ig in of Ste l lar E n e r g y ! 

IT IS well known that matter consists of nuclei and electrons. 
Nevertheless it can be shown that in bodies of very large mass this 
usual "electronic" state of matter can become unstable. The 
reason for this lies in the fact that the "electronic" state of matter 
does not lead to extremely great densities, because at such densi
ties electrons form a Fermi gas having an immense pressure. On 
the other hand, it is easy to see that matter can go into another 
state which is much more compressible—the state where all the 
nuclei and electrons have combined to form neutrons.^ Even if we 
assume that neutrons repel each other, this repulsion can become 
appreciable only at densities of the order of magnitude of nuclear 
densities, i.e. 10̂ * g/cm^ and the pressure of a Fermi gas consisting 
of neutrons is much less than an electronic gas of the same density, 
because of the greater mass of the neutrons. 

Therefore in spite of the fact that the "neutronic" state of 
matter is, in usual conditions, energetically less favourable, since 
the reaction of neutron formation is strongly endothermic, this 
state must nevertheless become stable when the mass of the body 
is large enough. In this case the gravitational energy gained in 
going over to the neutronic state with its greater density, com
pensates the losses of internal energy. 

It is easy to compute the critical mass of the body for which the 
"neutronic" state begins to be more stable than the "electronic" 
state. First of all we must calculate the energy necessary to form 
one neutron. For instance in the reaction Ifi + S e- = I6ln 

t C. R. Acad. Sei. URSS, 17, 305, 1937. 
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and, hence. 

4 X 10-22M'/3erg 

Μ > 1-5 X Wg = 10-30 

which critical value is even less than on the first assumption. 
When the mass of the body is greater than the critical mass, then 

in the formation of the "neutronic" phase an enormous amount of 
energy is liberated, and we see that the conception of a "neutronic" 
state of matter gives an immediate answer to the question of the 
sources of stellar energy. The sun during its probable time of 
radiation (about 2 χ 10^ years according to general relativity 
theory) must have emitted something of the order of magnitude of 
3 x 1 0 ^ ^ erg. The liberation of this amount of energy requires the 
transition of only about 2 per cent of the mass of the sun (with the 
assumption of constant density) or even only 3 χ 10-^O (with 
the Fermi gas model) into the "neutronic" phase. Even for such a 

we find from the mass defects that to form one neutron the energy 
required is 0-008 mass units or 1-2 X 1 0 e r g (7-5 MeV). To 
transform one gram of matter into neutrons we thus need 
7 X 10̂ 8 erg/g. 

Now we must calculate the gain in gravitational energy. The 
gravitational energy of the much less dense "electronic" state can, 
of course, be neglected. Let us assume first of all that the neutronic 
state has a constant density 10̂ * g/cm^ The gravitational energy of 
a homogeneous sphere of mass Μ is then 

3 X 10-3MV3erg. 

For the stability of the neutronic phase we must then have 

3 X 10-3 > 7 X 101« Μ 

or 
Μ > 1032 g _ ο · 0 5 0 

On the other hand, if we assume that the neutrons behave like a 
Fermi gas we find for the energy 
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bright star as )9-Orionis we find for the mass of the neutronic core 
only about 0· 1 0 (with the Fermi gas model). 

Thus we can regard a star as a body which has a neutronic core 
whose steady growth liberates the energy which maintains the star 
at its high temperature; the condition at the boundary between the 
two phases is as usual the equality of chemical potentials. The 
detailed investigation of such a model should make possible the 
construction of a consistent theory of stars. 

As regards the question of how the initial core is formed, the 
author has shown in a previous article^ that the formation of a 
core must certainly take place in a body with a mass greater than 
1 · 5 0 . In stars with smaller mass the conditions which could 
make possible the formation of the initial core have yet to be 
made clear. 



O n the Mul t ip le Product ion of Part ic les 

during Col l is ions of Fast Par t ic les f 

1. General Relations 

Collisions of ultra-fast nuclear particles can be accompanied by 
the appearance of a large number of new particles (many-pronged 
stars in cosmic radiation). Fermi^ propounded the ingenious idea 
of the possibility of applying statistical methods for studying this 
process. However, the quantitative calculation given by him 
appears unconvincing to us and incorrect at several points (in 
particular, in regard to distribution in energy and angle). 

Qualitatively the whole process of colhsion has the following 
appearance. At the moment of collision there appear a large 
number of particles^ concentrated in a volume -whose linear 
dimensions are determined by the range of the nuclear forces and 
by the energies of the colliding particles (concerning this, see 
below); it must be emphasised that we can speak of the number of 
particles at this moment only in a limited sense, since for a system 
with such a high density of strongly interacting particles (mesons 
and nucleons) the concept of the number of particles has in 
general no precise meaning. The "mean free path" of particles in 
such a system is clearly very small compared to its dimensions. In 
the course of time, the system expands, but the aforementioned 
property of the mean free path must be valid also for a significant 

t Izv. Akad. Nauk SSSR, ser.fiz., 17, 51, 1953. 
i In fact, the appearance of a large number of particles is the condition for 

the applicability of the method for treating the problem which is presented 
below, and of the associated formulae. 
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part of the process of expansion. This part of the expansion pro
cess must have a hydrodynamic character, since the smallness of 
the mean free path permits us to consider the motion of the 
matter in the system in a macroscopic hydrodynamical fashion as 
the motion of an ideal (non-viscous and non-heat-conducting) 
liquid. Since the velocities in the system are comparable to the 
velocity of light, we are dealing, not with ordinary, but rather with 
relativistic hydrodynamics. 

The total "number of particles" in the system is not at all con
stant during the course of the hydrodynamic stage of the ex
pansion. Therefore, the number of particles in the resulting star is 
determined, not by the number of particles which appear at the 
very moment of collision (as Fermi mistakenly assumes) but 
rather by the number of particles in the system at the moment of 
transition to the second stage of the expansion—the stage of free 
separation of the particles. This essential point was first made by 
I. Ya. Pomeranchuk.2 

The transition from the first stage to the second occurs when the 
mean free path of particles in the system becomes equal to its 
linear dimensions. A very essential point is that at that moment the 
order of magnitude of the temperature of the system is 

Tc - (1) 

{μ is the meson mass; the temperature is always given in energy 
units), practically independent of the properties of the system, i.e. 
of the energy of the colliding particles. In fact, for values of the 
temperature substantially lower than /xc^, the density of the 
equilibrium number of particles falls exponentially with cooling 
(as e -^'''^1'^) so that the mean free path rapidly becomes equal to the 
dimensions of the expanding system, even when the latter are 
relatively large. Formula (1) for Tc (with the π-meson mass sub
stituted for μ) is also vahd when, in addition to mesons, other 
heavier particles are formed, since in order for the free path of all 
particles to be small, it is already sufficient that there be a high 
density of 7r-mesons in the system. 
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For the hydrodynamic considerations, it is necessary to have an 
equation of state for the matter in the system. As equation of 
state of highly compressed matter for temperatures Γ > /x we 
use 

Ρ = Φ , (2) 

where ρ is the pressure and e is the energy density. Although we 
have not at present any rigorous proof that this must be the 
equation of state for arbitrary matter in the ultrarelativistic case, 
nevertheless in our opinion this assumption is highly plausible. 

Since the number of particles in the system is not fixed, but is 
rather determined from the conditions of statistical equilibrium, 
its chemical potential (just as for black-body radiation) is ζ 
€ — Ts + ρ = 0 (s is thQ entropy per unit volume). Then Ts = 
e ρ = 4c/3, so that if we take into account also that for fixed 
volume (equal to unity) de = Tds we find the relations: 

s - 6^/*; (3) 

which, as expected, coincide with the relations for black-body 
radiation. 

The computation of the total number of particles appearing 
during the break-up is greatly simplified if we consider the motion 
of the ideal fluid to be adiabatic. The only thing that could destroy 
the adiabaticity would be shock waves, and it is hard to imagine 
how they could be formed during the expansion process. There
fore, the entropy of each of the individual regions of the system 
remains unchanged during the expansion. 

Let us break up the system into a set of regions which are 
macroscopically small, i.e. practically uniform, but which stiU 
contain a sufliciently large number of particles; let s^ be the 
entropies of these regions. Also let be the number of particles 
in the a-th region which have been produced at the time of the 
start of its free separation. This time may not be the same for the 
various regions, since the system as a whole is highly non-uniform. 
The quantities s^ and individually depend strongly on the 
temperature (for Τ <ξ μα^, they vary as e -'̂ ^ ζ̂̂ ), but the ratio 
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2· Total Number of Particles 

Let us first consider "head-on" collisions in which the particles 
pass each other at distances comparable to the range of inter
action, as distinguished from peripheral collisions where the 
impact parameter is large compared to the range of force. 

We start with head-on collisions of two protons, and determine 
the energy dependence of the total number of particles formed. Let 
E' be the energy of each of the protons in the centre of mass 
system (c.m.s.) The total entropy of the system, S, is proportional 
to ê /* V where V is the volume over which the energy is distri
buted. In the c.m.s. the matter is at rest at the moment im
mediately following the collision. Therefore, e = E'jV, and so the 
entropy, and consequently the number of particles, is proportional 
to J5"3/* K^*. 

t More precisely, after the passage of shock waves, which can arise at the 
moment of collision; the passage of a shock wave is accompanied by a com
pression of the matter, after which the expansion stage begins and proceeds 
adiabatically from then on. 

sjn^ depends only slightly on temperature, so that, since Tc in 
turn depends httle on the properties of the system, we may con
sider that = const-.y«) where the constant ratio is a universal 
constant [if we measure entropy in dimensionless units, dimen
sional arguments show that the constant is of order {μο/ηγ]. 
Summing this equality over all domains, we find that 

Â  = const-.S', (4) 

where Ν is the total number of particles in the star, and S is the 
total entropy of the system. Since the entropy stays constant 
during the whole course of the hydrodynamic stage of the ex
pansion, we may consider S to be the entropy of the system at the 
initial time—the time of the collision.! Formula (4) enables us to 
determine the total number of particles appearing during the 
collision, without a detailed examination of the motion of the 
system. 



MULTIPLE PRODUCTION IN COLLISIONS OF FAST PARTICLES 135 

Ν 
\2AMc'J \2Mc^) 

The transverse dimension of the system, a, is of order of magni
tude of the range of nuclear force, i.e. a ^ Η/μα, The longitudinal 
dimension (in the c.m.s.) is shortened by the Lorentz contraction 
in the ratio ^Mc^/E' (M is the proton mass). Thus the system is 
in the form of a highly flattened disk, and its volume is F 
a^Mc^/E\ Therefore the number of particles is Ν ^ E'^i^ V^^ 
VE', or, going over to the energy Ε in the laboratory system in 
which one of the protons is at rest, using the formula EMc^ =2E'^, 
we finally get: Ν E^i^, This formula coincides with the one 
obtained by Fermi, but his reasoning appears to us to be com
pletely unconvincing. From dimensional arguments (and taking 
account of the fact that the ratio of masses of proton and 7r-meson 
is fairly close to the unity) we may write: 

where is a constant of the order of unity. 
Now let us consider the collision of two identical nuclei of 

atomic weight A, It would be completely erroneous to treat such a 
collision as a series of collisions of nuclear protons and neutrons. 
In fact, since the distance between nucleons in the nuclei is precisely 
of the order of their range of interaction, we must look upon the 
result of the collision as a process of meson formation involving 
as a unit the whole space occupied by the nuclei. 

Suppose that the speed of the incident nucleus is equal to that of 
the proton in the preceding problem. Then its energy will be A 
times as large. Since the mass density in a nucleus is approxi
mately the same as that of the proton, referred to its sphere of 
interaction, the energy density immediately after collision is the 
same as in the previous case. Since the Lorentz contraction is un
changed, the number of particles formed is simply proportional 
to the volume of the nucleus, i.e. to A. Thus we finally obtain: 
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For a given energy, the number of particles is proportional to 
^ 4 3 / * . We note that according to this formula, heavy nuclei are 
much more effective in particle formation than protons: two 
nuclei with energy Ε give as many particles as two protons with 
energy EA^. 

When the two nuclei have different weights the problem be
comes more complicated, but elementary considerations related 
to the fact that in a collision the lighter nucleus pulls out only a part 
of the heavier one, show that the number of particles is deter
mined essentially by the mass of the Hghter nucleus, and depends 
only slightly on the mass of the heavier one. 

If we are deahng with coUisions of a meson with a nucleón or 
nucleus, it follows that we should expect relatively little difference 
from the case of a nucleón. 

Determination of the constant Κ from existing experimental 
data gives the value Κ ^ 2. 

As for peripheral collisions of the nucleons, at ñrst glance one 
might conclude that the average number of particles produced 
should decrease rapidly with increasing impact parameter. A basis 
for this conclusion might be the fact that the rest energy of the 
matter concentrated in each individual region of the meson held 
of the colliding nucleons decreases rapidly (exponentially) with 
increasing distance from their "centre". However, the incorrect
ness of this derivation is clear from the fact that it leads to a 
contradiction with the quantum uncertainty relations; the rest 
energy of a portion of the system would turn out to be small com
pared to the uncertainty Δ ;̂ ^ he/A, where Δ is the thickness of 
the region, compressed by the Lorentz contraction just as for 
central colhsions. In fact, this relation means only that the quan
tity which is small is not the actual energy of the system (in those 
cases where such a system occurs at all) but rather its mathematical 
expectation. In other words, it is not the number of particles 
appearing that decreases, but only the probability that such a 
collision shall occur. 

Thus for colhsions of two nucleons it is in general meaningless 
to distinguish between central and peripheral collisions; the 
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3 . Distribution of Particles Produced in Energy and 
Direction 

A study of the angular distribution of the particles formed, and 
their distribution in energy, requires a detailed consideration of 
the hydrodynamical motion of the matter in the system. 

The relativistic hydrodynamic equations are contained in the 
relations 

where Γ'* is the energy-momentum tensor of the matter: 

= pg''+ + P)u'u' (8) 

(w' is the four-velocity; g^^ = ^ 2 2 ^ ^ 3 3 ^ 1̂  ôo ^ _ 1. fj-^j^ 
on we set c = 1). 

As we have already indicated, at the moment of collision the 
system has the form of a highly flattened disk. This shape is 
maintained throughout a significant part of the hydrodynamical 
stage of the expansion. During this stage, the motion of the 
matter can be considered to be one-dimensional, along the short 
axis of the disk (x-axis). Then the equations of motion are: 

+ — = 0 ' — + - ^ = 0 , (9) di ' dx ' 8t ' dx 

t This result was clarified in discussions with E. L. Feinberg. 

effective cross-section for collision with production of a many-
pronged star is determined by the "radius" of the nucleón, 
Ä//xct. The picture is somewhat changed in the case of a colhsion 
of two nuclei. It is clear that as we vary the impact parameter from 
zero to the sum of the radii of the nuclei, the number of particles 
formed must decrease from the maximum value given by formula 
(6) to the value given by (5) and corresponding to the collision of 
two nucleons. 
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where 

ΓΟΟ = ^(^0)2 _μ (̂2^1)2^ joi = (e + p)u'u\ = €(wi)' + P(U% 

(10) 

and w° and are related by the equation 

(u'y-(u'y = l. (11) 
In the c.m.s. the "disk" expands symmetrically to both sides. 

We choose our co-ordinate origin in the median plane and shall 
consider the motion in the half-space expanding along the positive 
^:-axis (so that Λ: > 0, > 0). 

Let us call the initial thickness of the "disk" Δ. We consider 
some instant of time / > Δ, when the expansion has already pro
gressed significantly. Neglecting the initial thickness of the disk 
we can assert that all the matter will be in the region 0 < χ < t, 
since the velocity cannot exceed that of light. Most of this space 
will contain matter which, though moving with a speed com
parable to the light velocity, is not ultra-relativistic; only in a thin 
layer t — χ <^ t will there be matter moving with a velocity close 
to that of hght. As we shall see later, in this last region there is 
concentrated only a small part of the entropy, but a large part of 
the energy of the system. Therefore, the examination of this small-
sized ultra-relativistic region is very essential. To do this we 
replace the variable χ hy ξ = t — x. Then the first of equations 
(9) takes the form: 

and, subtracting (12) from the second equation of (9) we find: 

( J O O _ J l l ) + ( j o o _ 2 Γ 0 1 J l l ) _ 0. (13) 
dt οξ 

In the ultra-relativistic case both components υ} of the four-
velocity are large compared to unity and almost equal (we recall 
that w° = l / V l — = — where ν is the ordinary 



MULTIPLE PRODUCTION IN COLLISIONS OF FAST PARTICLES 139 

i/> ^ 1̂ 1 = W > 1, T̂ o _ ^ 
1 

2u 

Using these equalities and the equation of state (2), we obtain 
from (10): 

joo _ 2 P i + = ( £ + /? ) (W° - WO' ^ - 3 ^ , 

after which equations (12)-(I3) take the form: 

a , 1 

(14) 

¿ 5 _ _ ^ /_€ \ 

5/ 8ζ w) J 

(15) 

We shall look for solutions of these equations in the domain of 
values / > f > Δ. 

A solution satisfying all the necessary requirements can be 
obtained as follows. Let us make the assumption, which we later 
show to be valid, that the function η{ξ, t) is such that 

(16) 

where / is a slowly (logarithmically) varying function of ξ and t. 
Neglecting the derivatives of / , we then obtain from (15) 

fl ( . 0 = - - ^ - , / ^ - = - - ( e i ) 

velocity (in units c = 1). Later we shall denote by u (in first 
approximation) either of the quantities W° and W \ 

According to (10): 
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Next we introduce the new variables 

T = : l n i , 77 = I n i , (17) 
Δ Δ 

and in place of e, a new unknown function ψ according to the 
relation 

e = (18) 

From the two equations thus obtained, 

/(l+M=_!.^and/i''=-(l+M, (19) 
•' \ dr) A δη δτ \ ^ δη) ^ 

we eliminate/and get: 
OT Οη 4 CT ΰη 

Following the general procedure for obtaining the general 
integral of a partial differential equation of first order, we first 
form the complete integral: 

Ψ ^ Α η - ^ - ^ ^ r + B, (21) 

containing two constants A and B, The general integral (contain
ing one arbitrary function) is obtained from the complete integral 
if we consider ^ to be a function of A, determined by eq. (21) and 
the equation 

r j - — ± - r + ^ = 0 (22) 
(4 + 3 ^ ) 2 dA 

obtained by setting the derivative δφΙΒΑ equal to zero. 
Since we are looking for a solution of the equation of motion 

in the region of values ί > Δ, > Δ, the "initial moment" of the 
motion corresponds to values τ ^ I, η 1. At this "moment", 
the system in the domain under consideration can be regarded as 
still uniform, so that the function φ is practically constant and 
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(we choose the positive root, since in the other case the function / 
in (16) would turn out to be negative, which is clearly impossible), 
after which (21) gives: 

ψ = Ψο — - (η + r — V7^> 

€ = €0 exp 

(24) 

When ξ becomes of the order of t, formula (16) as expected gives 
w 1. From formula (24) it follows that in this region (η ^ t): 

Even though the domain ξ t is outside the region of ultra
relativistic motion, this result should be correct as to order of 
magnitude. 

The function / is found from φ using either of the equations 
(19): / = WIRH)' In accordance with our assumptions, it is a 
slowly varying function of t and ξ, of order unity. 

Using the formulae we have obtained, let us see how the energy 
and entropy are distributed throughout the thickness of the "disk". 

equal to some value ψο (the logarithm of the initial energy density 
€ο). Thus the initial condition for our problem, to within the 
logarithmic accuracy we are using, is: 

φ — ψο ^ I for η ^ 1, τ 1 (23) 

A solution satisfying this condition is obtained from ( 2 1 ) - ( 2 2 ) , 
if the arbitrary function ^(^4) is chosen so that 

Β - ψο ^ I, B' ^ I 

Then we can omit B' altogether in (22) , (since 77 > 1, τ > 1), and 
can set Β ^ ψοΊη (21) . We then have from (22) 

4 + 3.4 
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dE ^ exp -lWr-2V'r,y άη. (25) 

From this it is clear that the energy distribution has a maximum at 
η =r/4; this means that the energy is concentrated mainly in the 
region ξ ^ ^tA^, For / > Δ we get ^ <̂  so that this region is 
at the limit of applicability of the one-dimensional solution we are 
considering. 

The entropy density is given by the fourth component of the 
four-vector of entropy current density = suK Since s ^ c ^ / * 
(according to (4)), Λ° ^ w c ^ / * , and we find for the entropy associated 
with a slab of thickness d^: dS ^ sua^di ^ a^suξdη, or, using 
formula (24): 

dS ^ exp άη. (26) 

This distribution has a maximum for 77 = ί; i.e. the entropy unlike 
the energy is concentrated mainly in the region ξ ^ t. 

The solution of the equation of motion which we have obtained 
is applicable so long as the angle of flight θ (the angle which the 
trajectory of a given element of the matter makes with the x-axis) 
is sufficiently small. This is necessary in order that the distance 
tS, which the element travels during the time t in the transverse 
direction, be small compared to the transverse dimensions of the 
system, a\ 

ίθ ^ a. (27) 

To evaluate the small angle Θ, we use the transverse components 
of equation (7), which we have as yet not considered. Thus we get: 
dT^/dt dr^'/dy, or, to order of magnitude, T̂ V̂  ^ T^^ja; so 

The energy density is given by the component ^ eu^ of the 
energy-momentum tensor (we recall that for each element of the 
matter e is the energy density in the "proper" frame of reference, 
in which that element is at rest). So for the energy dE located in a 
slab of thickness di we have: dE ^ ed^u^di = €a^u^ξdη, where a 
is the radius of the disk. Setting ί/ξ, in accord with (16) and 
using equation (24) we obtain: 
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that substituting ^ ^^2$ and ^ ^ (the transverse component 
of the four-velocity is ^ uO), we get: u^9 tja. Finally, noting 
that ίΐξ, we find: 

θ r^t (28) 
a 

Combining this formula (27) we see that the condition for 
applicability of the one-dimensional solution is: 

ίξ<α\ (29) 
We note that the limiting time for the one-dimensional solution is 
the greater, the smaller the value of ξ. For the central region, 
ξ t, and the limiting time is t ^ a. 

Starting at the moment 

h = (30) 

a significant sideways motion appears in the hydrodynamical 
motion; we shall call the resulting motion of the matter conical 
hydrodynamic flight. As we shall see later, in this stage of the 
motion the velocity approaches that of light so quickly, that for 
each element of matter the quantity ξ remains practically constant 
in time. In addition, one can show that all derivatives of hydro-
dynamic quantities, both with respect to the direction of ξ as well 
as with respect to the transverse direction, can be neglected in the 
equations. Thus, in particular, it follows that, because of the 
smallness of the sidewise forces, the direction of motion will 
remain unchanged, i.e. the flight will proceed radially (conically). 

Furthermore, in view of the smallness of the forces during 
conical flight, the energy flux travelling within any cone, θ = const, 
must remain constant; the same is true for the entropy flow. The 
cross sectional area of such a cone is proportional to so the 
conditions of constancy of flow of energy and entropy are: 

^ηΨ = const, sut^ ^ e^i^ut^ = const. (31) 
From these two relations we find: 

w - /, € - i , (32) 



144 MEN OF PHYSICS - LANDAU VOL. 2 

which give the law of variation with time of u and e during conical 
flight. From (32) we see that in this case the velocity actually 
approaches that of hght faster than during the preceding stage. 
The change in the coordinate ξ of the moving element of matter 
is given by the formula: 

from which it is clear that during this stage of the flight, the 
quantity ξ approaches a constant value more rapidly. 

For t ^ ti, the solution (32) must agree to order of magnitude 
with the one-dimensional solution considered earlier. For the 
"joining" of the two solutions, it is convenient to introduce the 
symbols λ and L, according to the equations: 

i = e-\ - = e-\ (33) 
a a 

Then 

^ ^ In I = L - λ, (34) 
Δ 

while the value of the variable r corresponding to the moment ίχ is 

= In i.̂  = In = L + λ. (35) 
Δ ίΔ ^ ' 

Substituting this value in (26), we ñnd that the entropy distribu
tion is given by dS ^ e^^^ - dX, Since each element of the 
matter now moves with ξ = const while its entropy, by virtue of 
the adiabaticity of the motion, remains constant, the same for
mula gives the entropy at the moment of break-up of the matter 
into individual freely moving particles. The number of particles 
produced will be distributed according to this same law: 

dN = Ce^'^^ X'dX, (36) 
where C is a normalising factor. The angle of flight 

θ = e-^ (37) 
a 
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dN ^ exp ' tan ? 
2J sin^^ 

(40) 

This formula agrees well with the experimental data^. For prac
tical purposes, formula (36) can be written to sufficient accuracy 
in the form: 

dN ^ ^ - ^ ^ 2 1 . dx. (41) 

Thus the angular distribution can be written as a Gaussian 
distribution, if we choose as variable the quantity λ = 
— In tan (Θ/2). In view of the logarithmic dependence of λ on Θ, 

remains constant along with ξ for each element of the matter, and 
consequently for each particle. Consequently, formulae (36) and 
(37) determine in parametric form (parameter λ) the angular 
distribution of the produced particles (in the c.m.s.). The constant 
L which appears in the formula is related simply to the energy of 
the colliding particles. In fact, the ratio A/a is the Lorentz con
traction of the system and is equal, in the notation of section 2 to 

MAc^E' = V(2MAc^E) 

(where MA is the mass of the particles). Therefore 

L = 1 In — ^ . (38) 
2 2MAc^ ^ 

The distribution (36) shows that, although the angle of depar
ture in the c.m.s. is of the order of unity for most of the particles, 
there also occur much smaller angles. It is easy to see that the 
angular distribution does not at all show spherical symmetry, as 
Fermi assumed, but that dN/dO, referred to unit solid angle, in
creases rapidly with decreasing Θ, 

Formula (36) is easily written in explicit form. In order to take 
into account angles of the order of unity, we define λ as 

λ = - I n tan {Θ/2), (39) 

With this definition, the smallest value λ = 0, corresponds to the 
largest possible value Θ = π/2. Formula (36) then becomes 

de 
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or, substituting (36), to logarithmic accuracy, C exp \/L^ — λ̂ ^̂  ̂  1. 
According to formulae (5) and (36) the total number of particles is 
Ν ^ therefore 

dN ^ ce^ ^ e^^^. 
A = o 

Thus C ê /*, and we obtain for λ „ , χ , 

= iV3 L. (42) 

For determining the energy distribution of the particles, we 
consider the quantity w, which is proportional to the energy of the 
particles (the energy of a particle is the time component of the 
four-vector / a m ' : μη^ ^ μη). During the stage of one-dimensional 
motion u ^ V^/ij the moment / = ii it reaches the value 
u ^ ν^ι/ί· Therefore, "tacking on" the one-dimensional motion 
to the solution (32), we find that during the stage of conical motion: 

hi t t u ^ - . - ^ (43) 

In similar fashion we match the laws (24) and (32) of variation 
of the "proper" energy density e. For t ~ ίχ the quantity e reaches 
the value: 

4 
€ = e. exp 1^- 3 (2L - V l » - λ Ο 

the actual distribution curve of the particles with respect to the 
angle Θ itself must have relatively very straight tails on both sides 
of the maximum. 

We note that the largest value of λ which it is still meaningful to 
consider must correspond to the condition: 

dN ^ 1, 
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= · · ( ϊ ) · exp - - (2L - V l ^ - λΟ (44) 

The start of the free separation of the particles corresponds to 
the moment /o, when e, decreasing, reaches the value Cc correspond
ing to the criterion (1). From (44) we find: 

tc - h exp 
1 

- ~ (2L - _ 

Setting t ^ tcin (43) and substituting for U from (35), we find the 
following expression for the energy μη' of the particles at the 
moment of their free separation: 

μη' ^ μ - — const exp 
a 

1 
λ + - - A2 

We note that the energy of the outgoing particles is measured by 
the ratio of the time (or the distance from the origin) at the 
moment of decay into particles to the characteristic time a/c of the 
system. The constant coefficient in the expression for μη' is deter
mined from the obvious relation: 

μη'άΝ = Ε' ^ ^/EMA - MAe\ 

and we get finaUy: 

μη' ^ Μ exp (45) 

Formulae (36) and (45) give in parametric form the energy distri
bution (in the c.m.s.) of the particles produced. From (45) we see 
that most of the particles (λ <^ 0) have energies μη' Me /̂* ^ 
M{E'/AM^^^) only slightly exceeding M. 

We must StiU go over from the c.m.s. to the original laboratory 
frame of reference in which one of the nucleons was at rest before 
the colhsion. The angle χ of the outgoing particle in the laboratory 

Determining from this the coefficient of proportionality in (32), 
we find: 
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2^ ' 2u'^ 
The last term on the right can be neglected for all cases except 
when e is too close to π. However, it is easy to see that the angles 
we have found satisfy the inequality e, π — ^ > \¡u'; this is 
equivalent to the inequahty: 

exp 
1 

< 1 

(according to (39) and (45)), which is actually satisfied for all 
λ < Ainax. Thus we can set v' cose + Κ ^ 1 + coso, and the 
formula for transforming angles to the laboratory system takes the 
form: 

1 
2 

χ = ^\ -V^ tan - e. (46) 

In this connection we note the following curious fact. Inde
pendently of any detailed computations, the distribution of out
going particles, for a collision of two identical particles, is sym
metric in the c.m.s., i.e. angles e occur just as often as ττ — 
Since tan (π — ö)/2 = l/tan(ö/2), it follows automatically that, 
upon averaging over all particles. 

Ιηχ = InVl -V^= -L, (47) 

system is related to the angle θ in the c.m.s. by the transformation 
formula: 

v' V\ - sin θ 
tanx ^x = — - 7 — 

v' cose + V 
where v' is the velocity of the particle in the c.m.s., and V is the 
velocity of the cm. relative to the laboratory system. We may 
immediately write v' = I in the numerator, and in the denomina
tor write: 

v' cose +v^v'(\+ cose) + 1 (F^ -

or, since V is closer to unity than v': 

v' cose + F ^ 1 + cose + - (1 - ν'η = i + cose + ^ 
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Vl -
Substituting (45), this gives: 

μη ^ Μ exp 1 V l ^ - λ̂ Ι'. 
This formula too has the property that it describes particles 
moving to both the right and the left in the c.m.s., if we write 

μη ^ Μ exp 

and give λ both signs. 

6 

In other words, the geometrical mean of all the angles of separa
tion gives just the value of the velocity of the c m . and, conse
quently, the velocities of the incident particles (for a collision of 
two identical particles). 

Substituting the value tan {θβ) = e-^ and tan (π — θ)β = e 
in (46) for particles moving in opposite directions in the c.m.s., 
we obtain: χ = e -^"p^ . This formula has the special property that 
when we change from particles going to the right in the c.m.s. to 
particles travelling to the left, there is merely a change in sign of 
the quantity λ. We can therefore write 

X = e - - ^ (48) 

and consider formulae (36) and (48) as giving the angular distribu
tion of all particles in the laboratory system, where λ can take 
both positive and negative values. 

For the transformation of the energy of particles moving to the 
right, we have 

u ^ — = = = u , 
Vl -

and for particles moving to the left we get (noting that θ > 1/w): 
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FIG. 1. Differential energy spectra of secondary particles during 
nuclear interactions at high energy (for varying energies EQ of the 
initial particles). The areas under the curves are proportional to the 
total number of secondary particles (mesons and nucleons). 

¡dN = Ν, ΙμηάΝ = Ε, In the integrations we can, to the accuracy 
we are considering, expand the exponent in a series in the neigh
bourhood of the maximum. We then get 

Ν 
dN = - 7 = - exp [VL' - A2] dX, 

Vl-nL 

Formulae (36) and (49) give the energy distribution of the 
particles in the laboratory system. The coefficients in these formu
lae can be made more precise if we use the obvious relations: 
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or, taking account of (6) and (38), 

KA 
dN = - 7 = exp [- iL + - λ'] dX. (50) 

It is understood that the coefficient in this formula is actually a 
slowly varying (non-exponential) function of the ratio λ/L. For the 
energy we get: 

Here the same remarks apply to the coefficient as were made in the 
last case. From formula (51) it is clear that most of the particles 
have an energy of order Mc%E/2MAc^y^^^ in the laboratory 
system. 

We note that both the angular and energy distributions of the 
particles are close to Gaussian if we use the logarithm of these 
quantities as variables; consequently, they have quite straight 
tails on both sides of the maximum. The results of a computation 
based on (51) are shown in Fig. 1. 

In conclusion, I should like to thank E. M. Lifshitz, I. Ya. 
Pomeranchuk, and E. L. Feinberg for discussion of the questions 
touched upon here, and also L. I. Saruchev for permission to use 
the drawing of the spectra which he calculated from formula (51). 
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Extension of the Uncer ta in ty 
Pr inc ip le to Relat iv ist ic Q u a n t u m T h e o r y ! 

It is shown by considering possible methods of measurement that 
all the physical quantities occurring in wave mechanics can in 
general no longer be defined in the relativistic range. This is related 
to the well-known failure of the methods of wave mechanics in that 
range. 

1. Introduction 

It is known that the application of the methods of wave 
mechanics to problems in which the speed of light cannot be 
regarded as infinite leads to absurd results. In the first place, states 
with negative mass appear in Dirac's relativistic equation^ This 
difficulty arises because the relation between momentum and 
energy in relativity theory is quadratic, so that two energy states 
are possible for a given momentum. In contrast to classical 
(h = 0) relativity theory, where the continuous change of all 
quantities means that transitions between the two kinds of state 
are impossible, such transitions cannot reasonably be forbidden 
in quantum theory. 

In the second place, the interaction of a charged particle with 
the field produced by itself is inevitably divergent^ 

The infinite zero-point energy of the radiation field which 
occurs on quantisation of the field^ can be avoided by the use of 
suitable variables*, but it still has the effect that the energy-density 
matrix elements become infinite. This is very closely related to the 
self-energy difficulty mentioned above (see also a paper by 
RosenfeldO. 

t Z. Phys., 69, 56, 1931; with R. Peierls. 
152 
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2. The Concept of Measurement in Wave Mechanics:|: 

The significance of any physical theory is to derive from the 
result of an experiment conclusions regarding the results of sub
sequent experiments. Thus the relations between measurements 
and the physical states of a system are of two kinds. Firstly, the 
measurement determines the state of the system after the measure
ment is made, and secondly it examines the state of the system 
which existed before the measurement. In classical {h = 0) 
mechanics this distinction is of no importance, since the states of 
the system before and after the measurement can be regarded as 
identical. 

In wave mechanics, however, the situation is quite different, 
since the measurement always causes a change in the state of the 
system, and this change is in principle impossible to determine. If 
the measurement had no other property, the wave-mechanical 
description would be neither possible nor meaningful. It is neces
sary to make use of another physical property of measurements, 
which is usually described as repeatability. This signifies that, when 
the same measurement is immediately repeated, the same result is 
certainly obtained. In this form, however, the hypothesis is 
physically incorrect in most cases, as will be shown in more detail 
below; and in this strict form it is not necessary for wave mech
anics. The important point is that for any system there should 
exist predictable measurements. This means measurements such 
that for every result there is a state of the system in which this 
measurement certainly gives that result. For, if this requirement 

t The uncertainty relations on which our conclusions are based are derived 
mainly from discussions in Copenhagen. Professor Bohr's attitude to these 
relations will be described in an article to appear shortly in Nature, 

t This section is essentially a development of ideas put forward by N. Bohr 
in his lecture at Como'. 

This complete failure of the theory suggests that in the range 
considered the physical requirements for the apphcability of the 
methods of wave mechanics are no longer satisfied. The present 
paper investigates this problem.f 
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y^^n = ^^^^ ^« 

This expression must therefore always equal unity if ίφφ*ατ = 1, 
i.e. we must have 

ün Vn = φ. 

(The v„ form a complete orthogonal system.) From this, however, 
it follows that the measurement is predictable if we take φ to have 
the particular value of one of the v„; then only one of the a„ is not 
zero. The repeatability of the measurement would signify that the 
v„ and the u„ are identical, and this is not in general true.t 

t In a measurement which occupies a short time it can easily be shown that 
the u„ are identical with the v„ only when the corresponding operator com
mutes with the energy of interaction between the system and the apparatus. 
In wave mechanics (neglecting relativity) this interaction energy is always a 

were not fulfilled, the state of the system after a measurement 
could not be described by a 0 function. This may be seen as 
follows. We can describe the state of the system and the measuring 
apparatus together by a wave function which, before the measure
ment, consists of a product φψο. Here φ is the initially arbitrary 
wave function of the system, and φο the known wave function of 
the measuring apparatus. After the interaction, the wave function 
will in general no longer be a product. If we expand it in terms of 
the eigenfunctions of the measuring apparatus, in the form 
Σφ„φ„, then φη describes the state in which the system remains 
after the measurement. In general, the form of φ„ depends on that 
of 0. If the wave function of the system is to be deduced from an 
observation of the measuring apparatus, φ„ must be independent 
of φ apart from a constant factor, i.e. φη = anU„, with u„ normal
ised to unity. From the linearity of the wave equation it follows 
that a„ depends hnearly on φ, i.e. can be written in the form 
ίφν^άτ, with v„ any function dependent on the process of measure
ment. Then I a„ |̂  is the probability that the measurement gives 
the nth result. The sum of all these probabihties must be equal to 
unity, i.e. Σ | a„ 1̂  = 1 independent of φ (provided that φ is 
normalised): 
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function of the coordinate. The only quantity for which a repeatable measure
ment is possible is therefore the coordinate. Measurements of the coordinate 
always actually have this property. It is also seen that the i/„ need not in general 
be orthogonal, i.e. the measurement does not in general diagonalise an 
operator. This physical circumstance also is usually overlooked in the pre
sentation of transformation theory. 

If, however, the wave function of the system cannot be deter
mined by any measurement, it can have no physical meaning. The 
use of wave functions would then be as pointless as, for example, 
the use of the concept of paths in quantum mechanics. Thus the 
existence of predictable measurements is an absolutely necessary 
condition for the validity of wave mechanics. 

The condition of repeatability cannot in general be satisfied. 
This is particularly seen if the time necessary for the measurement 
is taken into account. This time is restricted by the relation 
AEAt > h, which has very often been stated, but which has been 
correctly interpreted only by Bohr«. Clearly it does not signify that 
the energy can not be known exactly at a given time (for in that 
case the concept of energy would have no meaning), nor does it 
mean that the energy can not be measured with arbitrary accuracy 
within a short time. We must take into account the change caused 
by the process of measurement even in the case of a predictable 
measurement, i.e. of the difference between the result of the 
measurement (v„) and the state after the measurement (w„). The 
relation then signifies that this diff'erence causes an energy un
certainty of the order of h/At, so that in a time Δ/ no measurement 
can be performed for which the energy uncertainty in both states 
is less than h/At. 

This follows from a consideration of the time evolution of the 
interaction process. The method of the variation of constants 
shows that transitions within short times occur not only between 
states which satisfy the condition £ + € = £' + €' (E and E' 
being the energy of the system before and after the transition, 
e and e' that of the apparatus). These states are given preference by 
resonance only after a long time, the corresponding transition 
probabilities increasing greatly with time. In practice, after a time 
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only transitions for which \ E+ € — E' — €\ < H/At are of 
importance. This fact does not, of course, contradict the strict 
vahdity of the law of conservation of energy in wave mechanics, 
but the energy of interaction between the system and the apparatus 
is also indeterminate by the same amount. In the most favourable 
case, where € and e' are precisely known, the uncertainty must be 
A(E - E') > hi At 

This relation has important consequences as regards the 
measurement of momentum. Any measurement of momentum is 
made by allowing the body to collide with another. In measuring a 
component of momentum (most simply done by colhsion with a 
plane mirror) the law of conservation of momentum is to be 
applied rigorously, but that of conservation of energy applies only 
to within hi At, because of the unknown interaction energy. Thus 
to determine the particle momentum Ρ we have the equations 

\ e + E-e'-E' I >hlAt; 

P, P\ i.e. the motion of the measuring apparatus before and 
after the colhsion, may be regarded as known. Then AP = AP' 
and, since = ι;ΔΡ, 

{ν - v')AP > hl Au (1) 

Thus any measurement of momentum necessarily involves a 
definite change of momentum (in addition to the unknown change 
which restricts the accuracy of the measurement).! This fact was 
first recognised by Bohr«. The non-repeatability of the momentum 
measurement in a short time is thus shown with particular clarity. 
Momentum measurements which last a long time, on the other 
hand, are meaningful only for free particles. 

t Here an important point is that not every Hamiltonian can actually occur 
in nature; as already mentioned, the interaction function is always a function 
of the coordinates and so does not commute with the momentum. If the form 
of the Hamiltonian could be chosen arbitrarily, the momentum could be 
measured in an arbitrarily short time without change of velocity; this is a 
trivial deduction from the fact that coordinates and momenta are then 
equivalent. 
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3 . Momentum Measurement in the Relativistic Case 

We now wish to make use of relativity, i.e. of the finite speed of 
propagation. There exists as yet no satisfactory relativistic quan
tum theory, but it is clear that here also we certainly cannot go 
beyond the limits imposed on the accuracy of measurement by the 
general principles of wave mechanics. 

The scope of the relation just derived for a momentum measure
ment is considerably extended by relativity. In the non-relativistic 
theory, the definite change of velocity could be made arbitrarily 
large, and so the momentum could be measured with arbitrary 
accuracy even in a short time. If, however, we take into account 
the fact that the velocity cannot exceed c, then ν — v' can be at 
most of the order of c, so that equation (1) gives 

APAt > n/c. (2) 

The inequality (2) is particularly easy to derive for the state 
after the measurements. If we assume that the particle had a 
definite position before the measurement, then after a time At, on 
account of the finite velocity limit, the position is still known with 
accuracy cAt, If the momentum after this time were determined 
more accurately than as given by (2), this would contradict the 
result APAq > h. 

On account of (2) the concept of momentum has a precise 
significance only over long times. Thus, in cases where the 
momentum changes appreciably within such times, the use of the 
concept of momentum is purposeless. 

In the measurement of momentum of a charged body, in addi
tion to the above-mentioned inaccuracy, a further perturbation 
of the measurement arises because the body will emit radiation in 
the necessary change of velocity. We shall consider only the case 
where the velocity of the body before the measurement is certainly 
small compared with c. In this case it is favourable to conduct the 
measurement so that after the measurement the velocity is again 
considerably less than c. For, if the velocity approaches c, the 
relation (1) gives very httle benefit, while the accuracy is greatly 
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^2 

v^dt 

where e is the charge on the body. This energy evidently has its 
least value for uniform acceleration, i.e. for ν = {υ' — ν)/At, so 
that the energy emitted is 

At 

This unknown change of energy has to be taken into account in 
the energy balance, and there thus arises in the momentum a 
further inaccuracy: 

(v — v) AP > - - , 
^ ^ At 

or 

AP At >- (v' - v), (3) 

For electrons this inequality gives no new information, since even 
in the most unfavourable case where ν — v' c it gives only 
APAt > e^/c^, and this is weaker than (2), since < tic. For 
macroscopic bodies, however, the relation (3) is significant. 
Multiplication by (1) gives 

APAt>^- If, (4) 
c Ν nc 

and in this form we shall make use of it later. The inequality (4) is, 
of course, valid independently of the method of measurement 
used, and in particular when the measurement is made by means 
of the charge on the body, as in the case of the Compton effect, 
where, in addition to the Compton scattered radiation used in the 

reduced by the emission of radiation. Thus the non-relativistic 
formula for radiation damping can be used. The energy emitted is 
then 
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4. Field Measurement 

The simplest method of measuring an electric field is to observe 
the acceleration of a charged test body. In order to avoid inter
ference by magnetic fields, we use a body of very large mass and 
very small velocity. Let the momentum of the body before the 
measurement be known, and let the momentum afterwards be 
measured, again with accuracy AP. From this we can deduce the 
electric field strength with an accuracy such that 

eAé' At > ΔΡ. (5) 

In addition, however, the condition (4) must be satisfied in the 
momentum measurement. Multiplication of equations (4) and (5) 
gives 

. ^ Vhc 
Δ# > . (6) 

(c Aty 
For the magnetic field strength we easily obtain the same result by 
considering the motion of a magnetic needle: 

Δ ^ > ^ ^ . (6a) 

If it is desired to measure the electric and magnetic field strengths 
simultaneously, then, in addition to the effects already discussed, 
we have to take into account the effect on the needle of the mag
netic field due to the charged body and vice versa. This magnetic 
field is, in order of magnitude, 

Aje > — - , (7) 

measurement, there is a further radiation corresponding to that 
discussed above, obtained when higher approximations are taken 
into account in the perturbation theory calculation for the inter
action between the radiation and the particle.' (In the ordinary 
Compton effect with electrons this effect is of no importance, on 
account of the smallness of e^lhc) 



160 MEN OF PHYSICS - LANDAU VOL. 2 

5. Measurements on Light Quanta 

We shall now show that in a radiation field no measurements 
can be carried out with certainty within a short time, i.e. measure
ments for which every possible result gives information about the 
state of the system. (Thus we do not consider such measurements 
as, for example, a measurement of position by means of a colli
sion which does not occur with probability unity within the period 
of observation, so that, although a deflection of the test body shows 

t Our thanks are due to Professor Bohr for pointing out this situation and 
the significance of the time in general. 

t The inaccuracy for the field measurement with an electron found by 
Jordan and Fock^ is greater than (6) and therefore proves only that the electron 
is not a suitable means of measuring the field. 

where Δ/ is the distance between the test body and the needle. If 
we multiply this inequality by equations (5) and (1), then (with 
(v = 0) we have 

> — L _ . (6b) 
(c Atf (Δ/)2 ' 

This condition differs from the product of (6) and (6a) in that cAt 
in the denominator is partly replaced by Δ/. 

If follows from (6), (6a) and (6b) that for At = oo the measure
ment can be made arbitrarily accurate for both ^ and J^. Thus 
static fields can be completely defined in the classical sense.f 

In wave fields (that is, fields which are further than c/v = λ from 
the bodies which produce them), it is suflScient to use (6) and (6a), 
because as a result of the couphng of the space and time variation 
nothing is discovered about the field if the region of measurement 
has an extent less than cAt for a given At, Thus here also the 
measurements of <f and do not interfere, and to the extent that 
the field strengths can be measured in accordance with (6) and 
(6a) they can be measured simultaneously. Thus the field strengths 
are in accordance with the classical theory in so far as they can be 
defined at all. In the quantum range, on the other hand, the field 
strengths are not measurable quantities. J 
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that the body under measurement was at the point considered, the 
absence of such a deflection shows nothing.) The time necessary 
for the measurement depends on the state of the system. If the 
energy of the radiation field is approximately determined as E, we 
shall show that this time is greater than hjE. Since the field consists 
of light quanta, the greatest frequency occurring in the Fourier 
resolution of the field can be at most Elh\ if we carry out the 
measurements in times small compared with hjE, we remain 
within the period of oscillation, and so the field strength may be 
regarded as constant during the measurements. All measurements 
in such short times are therefore field measurements and are sub
ject to the inaccuracy (6). Thus, in order that an effect should be 
detectable, the field strength must considerably exceed \/{fic)/(cAty 
The smafiest wavelength occurring, on the other hand, is hc/E, and 
so the field strength, if non-zero at any point, must be non-zero in 
a region of at least this extent. Consequently, the total field energy 
must be at least of the order Ε > {hc/Ey > {hcy/E\cAty, i.e. 

At > h/E, (8) 

in contradiction with our hypothesis. Thus measurements which 
do not satisfy equation (8) are impossible. 

This result applies in particular, of course, when the radiation 
field consists of a single quantum of light. Within the time given 
by (8), a quantum of fight is therefore undetectable, and in 
particular its position cannot be determined with any accuracy. 
In a measurement of position, the time to which that position 
refers is therefore indeterminate by more than h/E, If the measure
ment of position is to be used to investigate a state, as discussed in 
section 2, we are interested in the position at a time up to which 
the state under investigation (i.e. the state whose energy was of the 
order of E) existed. The measurement of position determines it 
with an inaccuracy; at best we have Aq > hc/E. 

It might be thought that the accuracy could be improved by 
measuring momentum at the same time as position (within the 
limits given by ΔΡΔ^ > h, of course), and seeking to deduce how 
far and in which direction the fight quantum has meanwhile 
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6 . Measurements on Material Particles 

Let us now investigate the corresponding relations for material 
particles. (We shall always speak of electrons, but the arguments 
of course apply for any kind of material particle.) Such particles 
can best be detected by means of colhsion processes, for example 
using the Compton effect. Thus the presence of an electron is 
demonstrated by making two momentum measurements on the 
light quantum and deducing from the change in momentum that a 
collision has occurred in between. Here, however, the course of 
the process depends considerably on the length of the time interval 
between the two measurements. For a long time interval the 
Compton effect is obtained, i.e. the momentum of the light 
quantum changes either not at all or by an amount determined by 
the initial momenta, which can be made arbitrarily large by using 
very hard radiation. For very short intervals however, any changes 
of momentum may occur, provided that the law of conservation 
of momentum remains valid; the sum of the energies of the 
electron and the light quantum need be conserved only to within 
Λ/Δί, as shown in section 2. For the same reasons as in measure
ments on light quanta, the small momentum changes have much 
the greatest probability. An elementary calculation shows that the 
second behaviour begins when the time interval is no longer large 
compared with hjE, where Ε is the approximate energy of the 
electron before the measurement. 

Thus, if the duration of the process of measurement is made 

travelled. A closer examination, however, shows that the resulting 
accuracy can be no better than hcjE, Thus in every state it is 
meaningful to give the probability of presence of the light quan
tum only for regions large compared with the wavelength, and the 
position of the light quantum is a meaningful concept only in 
geometrical optics. 

If the number of light quanta varies appreciably within the 
period of oscillation, the concept of light quanta itself is meaning
less. 
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shorter than hIE, the momentum of the light quantum (and there
fore also that of the electron) changes by an arbitrary amount. 
Hence, from the fact that no measurable change of momentum 
has occurred, we cannot conclude that no collision has taken 
place. Physically this means that the measurement of the momen
tum of the light quantum destroys the initial state of the electron. 
We cannot ensure that the electron is found with probability 
unity at the first measurement: if it was in a volume before the 
measurement, a time is necessary before we can be sure that 
the light has reached the electron. Since hqjc > h/cSP > hjcP > 
h/E, we should therefore have to make several measurements 
before being able to detect the electron, and thus completely des
troy its state before we find it. Measurements in times less than 
h/E are therefore useless. 

We now again ask how accurately this measurement can be 
used to derive the position of the electron at a time up to which it 
was in its former state. To do this, of course, only the knowledge 
about the velocity which is compatible with the position measure
ment can be used, and not, for example, the velocity in the state 
before the measurement. If an exact measurement of position is 
made, no information is obtained as regards the velocity, which 
thus remains indeterminate within c. The coordinate can therefore 
be derived only with an error Aq > hc/E, Elementary considera
tions show that no higher accuracy can be achieved by measuring 
the momentum and coordinate simultaneously with any accuracies 
compatible with APAq > h. Thus 

Aq > hc/E (9) 

represents the limit of the accuracy with which the position of the 
electron can reasonably be defined. In particular, if the velocity of 
the electron is not very close to c, this becomes 

Aq > h/mc, (10) 

The derivation of (10) shows that it is valid only for electrons 
which are not moving too rapidly. The statement frequently found 
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7. Mathematical Failure of the Methods of Wave 
Mechanics 

The above-stated unmeasurability of all wave-mechanical 
quantities also appears, of course, in the formalism which results 
when we attempt to apply the methods of wave mechanics to the 
relativistic case. 

The most fundamental quantity in the theory, both for electrons 
and for light quanta, is the momentum; this is of course due to the 
fact that if it remains constant in time it can be defined with 
arbitrary accuracy, although very long times are needed for its 
measurement. This latter fact does not, of course, appear in the 
wave-mechanical formalism, and in consequence the statements of 
the theory regarding short times have no meaning. 

The unmeasurability of the position, on the other hand, is 
directly expressed in the formalism. For electrons this is because 
the Dirac equation also allows the physically meaningless solu-

in the literature that himc is a general limit for the accuracy of 
measurements of position is based on incorrect arguments. 

A superficial consideration might suggest that the uncertainty 
relations derived above are not relativistically invariant. In reality, 
of course, there can be no contradiction with relativity, which has 
been taken into account throughout the derivations. The explana
tion is that the inequalities themselves need not transform in a 
relativistically invariant manner, since the most favourable possible 
measurements of a quantity need not be so when they are viewed 
from a moving system of coordinates. Thus we have only to 
require that the limit of accuracy should not be exceeded when 
such a measurement is viewed from a moving system of co
ordinates. This requirement is, of course, always satisfied. 

Particular care is needed in this respect with position measure
ments, for here the statement of the problem is itself not rela
tivistically invariant, but distinguishes a time axis, since we ask for 
the coordinate at the moment up to which the unperturbed state 
existed. 
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tions with negative energy. The result of a measurement can, of 
course, in reality only be a wave function composed only of states 
with positive energy. Such states cannot, however, form an 
arbitrary wave packet. It is easily seen that the dimensions of a 
wave packet in general cannot be less than himc. There are, it is 
true, special wave packets of smaller size (namely those whose 
centre moves at almost the speed of lightf), but the corresponding 
wave functions do not form a complete system, and the state 
before the measurement cannot in general be expanded in terms 
of them. This corresponds to the result shown earlier that in short 
times a determination of position may sometimes happen to be 
possible, but a measurement cannot be carried out with certainty. 

The conditions for hght quanta are still more extreme in that no 
mathematical expression can be given for the probability density. 
This is seen from the fact that, on account of polarisation prop
erties, the wave function for a light quantum must be a tensor of 
rank two*. The probability density and current must form a four-
vector, which is impossible, because they depend quadratically on 
the wave function. In geometrical optics it is, of course, possible to 
construct wave packets in which all effects vanish outside a certain 
region. But here also these wave functions do not form a complete 
system. 

The unmeasurability of the field strength is shown by the fact 
that in empty space (no light quanta) the field strength operator^* * 
is not zero, but even the expectation of the square of the field 
strength is infinite. This is related to the fact that for Ar = 0 we 
have from (6) an infinite indeterminacy of the field strength. 

8. Conclusions 

We have seen that no predictable measurements can exist for 
the fundamental quantities of wave mechanics (except when these 
quantities are constant in time, and then an infinitely long time is 
needed for an exactly predictable measurement). It cannot, of 
course, be formally demonstrated that in nature there are not some 

t Our thanks are due to Professor O. Klein for pointing this out. 
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particularly complicated quantities for which predictable measure
ments are possible, but such a speculation need not be discussed. 
The assumptions of wave mechanics which have been shown to be 
necessary in section 2 are therefore not fulfilled in the relativistic 
range, and the application of wave mechanics methods to this 
range goes beyond their scope. It is therefore not surprising that 
the formahsm leads to various infinities; it would be surprising if 
the formalism bore any resemblance to reality. 

The applicability of wave mechanics is restricted to processes 
where the state of the system varies sufficiently slowly. In cases 
where the ordinary Schrödinger equation is applicable this is of 
course not always true. For radiation alone wave mechanics is 
never meaningful, since the limit c = co has no meaning. 

In the correct relativistic quantum theory (which does not yet 
exist), there will therefore be no physical quantities and no 
measurements in the sense of wave mechanics. One can, of course, 
cause the system to interact with some apparatus and ask what 
happens to the latter. The theory will give a probability for the 
result of this experiment, but this cannot be interpreted as the 
probability of a parameter of the system under investigation, since 
it can in no way be ensured that the probability of a given result is 
unity and that of all other results is zero. In addition, it is in 
principle impossible to make the duration of such an experiment 
arbitrarily short. 

This view is confirmed by the known fact that the j8-spectra of 
radioactive nuclei are continuous, although the uniform lifetime 
indicates that the nuclei are not in different states. For, if all the 
^-particles had the same energy, the process could be regarded as 
a predictable measurement. 

This fact presents an insuperable difficulty in wave mechanics 
because, as Bohr has emphasised, it means that the law of con
servation of energy is probably invalid for nuclear electrons. This 
law is indissolubly connected with the foundations of wave 
mechanics. In relativistic quantum theory, however, the preceding 
discussion shows that the concept of energy need not be mechanic
ally definable. It is of course definable in a certain sense in terms 
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of the total mass of the nucleus, because the nucleus in its motion 
as a whole satisfies wave mechanics, but this does not imply a 
predictable measurement of quantities related to the internal state 
of the nucleus. 

If the law of conservation of energy is not valid, then in radio
active processes the mass of the whole system will of course 
change, but this change cannot be followed in the course of time, 
since the mass cannot be measured in an arbitrarily short time. If 
we consider the process of measurement of the mass as in section 
3, the time needed for the measurement is such that AmA/ > hjc^. 

The preceding discussion is not contradicted by the fact that the 
spectra of protons and α-particles are discrete. On account of their 
large mass (low velocity) these particles obey wave mechanics even 
in the nucleus, rather as the nuclei in a molecule can be essentially 
described in classical terms despite their strong interaction with 
the electrons, for which classical mechanics fails completely. 

One of us (Landau) thanks the Rockefeller Foundation for 
making it possible for him to work in Copenhagen and in Zurich. 
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A T h e o r y of Energy Transfer in Col l is ions 

A theory of "adiabatic", inelastic collisions is developed. The 
application of this theory to atomic collisions of the second kind 
leads to the result that the azimuthal quantum number of the entire 
system always changes by ± 1 on collision, forbidding a transition 
from two S'-states to two other .S-states. The corresponding reaction 
cross-section is proportional to (E — Uf^jE where U is the energy 
at the intersection of the two terms, at which the transition always 
occurs. The case of polyatomic molecules is discussed generally. 
The process of nuclear excitation and splitting without alpha capture 
is considered. The results are applied to: 1. Predissociation; 2. Excita
tion of oscillations during an optical transition; 3. The case of 
closely approaching potential curves. The question of the cross-
section is discussed. 

Part I t 

1. Electron collisions for the theoretically most important case 
of fast incident electrons were treated by Bethe. The problem of 
collisions of the second kind has, however, till now given rise 
merely to false results. Kallmann and London^ for instance, treat 
the excitation of electrons on collision when the motion of the 
nucleus is fixed. This is, however, contradicted by known wave-
mechanical treatment, and leads to a strange vanishing of the 
energy. In a paper by Morse and Stückelberg this error is avoided, 
but only by taking the opposite case and treating the interactions 
between the atom as a perturbation, which has still less bearing on 
reality. Only recently has attention been drawn to the fundamental 
role of the intersection of the energy curves^. However, no quantita
tive theory has been developed. The basis of the difficulties seems 

t Phys. Z. Sowjet., 1 , 88, 1932. 
168 
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to be that we have here a kind of "quasi-classical" process; the 
strong periodicity of the wave function makes a direct estimate of 
the perturbation integral impossible. G. Beck^ has attempted to 
solve this for the case of a Coulomb field, but he has not really 
answered the problem as he has substituted for the continuous 
field an infinite potential barrier. This allows no evaluation of the 
correct order of magnitude of the effect. The aim of this article is to 
estimate this value. 

2. Let us consider a system which is comprised of a "quantised" 
part as well as a "quasi-classical" part. This is to say a part for 
which the wavelength is small compared to the dimensions of the 
system. Then to a first approximation the eigenfunction of the 
system is made up of the product of the eigenfunction of the 
quantised part in the fixed quasi-classical part and the eigenfunc
tion of the classical part in the external field produced by the state 
of the quantised part. In this first approximation there is no energy 
exchange between the two parts of the system, and the quasi-
classical part behaves "adiabatically". If we wish to estimate the 
probability of energy transfer we must go to the next order of 
magnitude and evaluate the perturbation integral. This we know is 
given by the expression ίφ'*ϋφατ where D is the Schrödinger 
operator for the entire system. (For an exact solution Βφ = 0 . ) 
The integration for the quantised variables is carried out in the 
normal manner, but for the quasi-classical variables this is not 
possible. The corresponding parts of φ are strongly periodic 
functions, which does not allow an evaluation in the normal 
manner. However, in order to solve the integral we can make use 
of just these classical properties by applying a canonical trans
formation. We introduce as a variable the action variable of the 
motion of the quasi-classical part in one of the two states. It is 
well known that we can perform this canonical transformation by 
subtracting from the differential of the action another total dif
ferential of the action as function of the coordinates and of the 
action variables: 

dS = ^Lpdq - dS,(I„ q), (1) 
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e x p | / [ 5 , ( / „ q)-Si(h, q)] (3) 

As we should expect, we have an equation which is symmetrical in 
the two systems. The coordinates q can be obtained as functions of 
Λ and / a by elimination of the momentum in the expressions 
Λ(^) P) and liiq, p) or, equivalently, from the equations: 

Ρ = / ι (Λ , q) =Á(h, q). (4) 
The physical meaning of this is that the important points for the 
transition are those at which both q and p remain unaltered. This 
implies more here than merely the derivation of the so-called 
Franck-Condon rule, as it is vahd not only for the real, but also 
for the imaginary part. 

If the condition (4) is not applicable to the real part then the 
expression (3) defines the probability when we take the imaginary 
solution for which the expression / ( . S g — S-^jh corresponds to the 
smallest absolute value of the real part which must naturally 
always be taken to be negative. If only the energies of the two 
states are specified, then the condition 

Ex-Ui{_q)=E,-U,{q) (5) 

must be fulfilled. As we are dealing with radiationless transitions, 
we set El = E^, giving: 

Uxia) = uéa) ( 6 ) 

If we calculate the change of this action function with regard to 
the action variable of the first state for the motion of the second 
state, that is for given Λ, we have by integration: 

S = S,(h, q) - S,{h, q). (2) 

Here Λ is considered as an independent variable and / a as a known 
quantity and the q as functions of Λ and / g . The corresponding φ 
function for Λ has the form φ2{Ιι) = a exp (iSjh). The integral 
ίΦζηφιατ (η is the perturbation energy) is equal to φ2(Ιι)η(Ιι) since 
φι is a δ-function of Λ. Here Λ is not a variable, but denotes the 
value of this variable in the first state. The essential part of this 
expression is of the form 
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The intersections of the potential energy curves or (more generally, 
of the multi-dimensional surfaces) are important. 

As far as the order of magnitude of the perturbation integral is 
concerned we can thus say that it is relatively large if the curves 
Ui = U2 cut one another in the real region and thus in the region 
of real kinetic energy. On the other hand it becomes exponentially 
small if this condition is not fulfilled. It is also easy to see what a 
"near miss" for the intersecting curves means: nothing more than 
that the curves just cut in the imaginary region. In certain circum
stances it can happen that the intersection lies so close to the real 
axis that the real part of S becomes very small, and that we no 
longer have an exponentially vanishing expression. 

3. Now let us consider more exactly the collision of two atoms. 
We write the Hamiltonian for the whole system in the weU-known 
form: 

H = H . + ^ , (7) 
2m 

where He is the Hamiltonian of the electrons, m the reduced mass 
(l/m = l/mi + 1 / ^ 2 ) of the nuclei, and ρ is the nuclear momentum. 
We can split the kinetic energy of the nuclei into its radial and 
transverse components. We can now write Η in the form: 

H=He,r + - ^ , (8) 
2m 

where He. r now contains the radial kinetic energy as well as He 
and m is the nuclear angular momentum. Finally, we introduce 
the total angular momentum, M, of the system, and the electronic 
angular momentum θ instead of the nuclear angular momentum: 

H=He.r + - ^ ^ ( M - 0 r . (9) 
2mr^ 

The operator He. r contains only radial operators, and it thus 
clearly has only matrix elements which give rise to terms with the 
same electronic angular momentum. But by a well-known rule* 
such terms may only cross terms with diff'erent total spin. But 
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(12) 

owing to the small transition probability these terms are un
important for us, and the corresponding perturbation elements 
can be neglected. The operator Mis, of course, a diagonal matrix. 
There exist transitions for Θ where the electronic angular momen
tum quantum number changes by 0, dz 1. Thus is also diagonal 
with respect to k. The remaining perturbation energy is thus 
merely 

η = - —ΛΘ'ΜΙ (10) 
m 

and we can thus formulate the law that for atomic colhsions the 
transitions with ISk = ±\ (thus from Σ to 77, 77 to Σ and Δ, and 
so on) are by far the most probable. Since, for example, from an 
S and a Ρ term both a Σ and a 77 term can arise, this selection rule, 
in fact, says httle. However, a transition from two S states to two 
S states is expressly forbidden since two S states always give rise 
only to a Σ term. It must be emphasised here that this condition is 
indeed necessary, but by no means sufficient, since it only states 
which terms can cross, but not which must cross. Thus not all 
ΔΑ: = ± 1 correspond to a transition on colhsion. 

We next evaluate the matrix element for η with respect to all co
ordinates except r. We can then consider the angular momentum 
M a s a normal vector in our quasi-classical treatment. This gives: 

^ ( 0 = - — , m (11) 
m 

where Μ is the absolute value of the angular momentum of the 
system, and D the matrix element of the electronic angular 
momentum corresponding to the transition ΔΑ: = ± 1 . This is, of 
course, also a function of the coordinates r. 

The general formula of perturbation theory gives for the 
probability of a colhsion transition: 
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where | | is the matrix element of η in which the φ functions are 
normalised for a flux of 4π atoms per unit time. In the quasi-
classical approximation we have: 

Vnv(r) r 

Here ν is the speed expressed as function of the coordinates. Sub
stitution of this expression gives: 

λ/ω = ^ φιφ\4πήαΓ = — 
h 

f MD{r) cos[5i(r)/^] cos[5'2(r)/;2]47r dr 

τηΓ^Πνπ Vi(r) Vπ V2(r) 

4MD(r) cos[S,(r)/fi] cos[^2(r)//z] ^ ^ 4 ^ 

fimr^ Vvi{r)v2(r) 

In this integral, as we have already said, we are considering the 
term involving the difference of the action functions, or: 

2MD(r)cos{[S,(r)-S2(r)]/H}^^ ^^^^ 

hm VVi{r) V2(r) 

We must take only that part of this integral coming from the 
neighbourhood of the intersection of the two curves. Here we take 
all quantities except the rapidly changing cosine to be constant. 
We also expand the action function in powers of the distance from 
the intersection. We take into account that dS/dr = ρ and we 
determine d^S/dr^ = dp/dr from (p^lM) + V = E(V,oi course, 
also contains the centrifugal energy). From this, we have 4 = F, (16) 

dr 

where F = —dv/dr is the force (including the centrifugal force) at 
the point r. Since at the intersection pi = P2 and Vi = V2, we have 

S,-S2 = A+ (r - r / , (17) 
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where A denotes the values of Si — Sz at the intersection. The 
integral is now of the form: 

λ/ω = — 
IMP 

hm V 
cos 2hv 

clL (18) 

where ξ = r — ro'is the new integration variable. All variables are 
evaluated relative to the point of intersection. We have chosen 
± 0 0 as integration limits since the region important for the inte
gration lies anyway near the intersection. We have 

+ 0 0 _ 

'cos {α + βξ^)άξ= y ^ C O S ( ' ^ + ^ ) . 

(19) 

and thus 

λ/ω 
2MD ΙίπΗυ (A , 7Γ\ 

= — / cos - + - , (20) 

or 

hm'vr' (Fl - F2) 
C O S ' (21) 

The phase A/h changes very quickly with different M, correspond
ing to the quasi-classical character of the system. Thus we can 
replace the expression, cos^[(A/h) + (π/4)] by its mean value i 
even over a small interval. This gives finally: 

4π M'D^ 
η v(Fi - F2) 

We now insert the value of the speed v. We have 

2 
or , when we write out the centrifugal energy explicitly, 

~ mv^ + U + = E. 
2 2m 

(22) 

(23) 
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For the force we have 

dr dr\ 2mrV 

or, since the two states are only distinguishable by the form of 
U, F,-F, = d{U, - UO/dr. We thus have for ω: 

A.D^M^ (24) 
Ä m r* (Fl - F2) V2m{E - U) - (Μψ') 

To obtain the total cross-section we need only to take into 
account that Μ = mvoQ where fo is the speed at infinity, and ρ is 
related to the largest possible cross-section by dX = InQdQ. We 
then have: 

InMdM πMdM 
dX = = (25) 

m^v% mE 

The total cross-section is then clearly: 

477^ i)2 dM dX = 
hm'Er^ (Fl - F )̂ Vim (E - U) - (Μψη 

(26) 

The integration is to be taken from Μ = 0 to that Μ for which 
the speed at the intersection is still real, i.e. up to M^r^ = 
2m (E — U). If we choose M/r\/2m{E — U) as variable, we get: 

_ 47Γ D^[2m (E - U)f^ [ x^ dx _2ΑπΏ^ [2m (E - U)f^ 
a = 

fim^E (Fl -F,) JVl-x^ 3 ñ m'E(F^ - F^) 
0 

_ y / y (E - ur^ 
3 hVm (d/dr) {U, - U,) Ε ' 

This final formula describes the cross-section as a function of 
the collision velocity. We can estimate its order of magnitude from 
the fact that the denominator contains \/m. We should thus 
expect that when Ε is equal to a few volts, the cross-section is 
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about 100 times smaller than the so-called kinetic cross-section of 
the atom, in other words that an effective collision only occurs 
about once every few hundred times. If U is negative effective 
collisions can also result at smaller speed with relatively great 
probability. For small E, σ is inversely proportional to Ε and σ can 
then become appreciable for small E, The cross-section reaches a 
minimum at Ε = —2U and then increases as Λ/Ε for large E, i.e. 
proportional to the speed. For positive U, a noticeable effect 
begins at Ε = U and increases steadily with increasing E, 

To calculate the angular distribution we must know not only the 
value of U at the intersection, but also the precise form of the 
function. If we know this, we can obtain the deflection, Θ, as a 
function of Μ from the classical equations of motion. Here we 
would assume that the transition always takes place from the sur
face of the "sphere of intersection" so that the coordinates and 
momentum remain unaltered. 

4. The relations are much more complicated for polyatomic 
molecules. In any case, there is in general no crossing of the terms 
for complicated molecules except when the transition corresponds 
to different spin values. This case can thus be significant, although 
the probability for it is relatively small (reduced by the order of the 
relativistic correction). In the case of complicated molecules an 
approximate intersecting may occur. The available experimental 
material is too limited to enable a thorough investigation of the 
various cases which occur. For collisions between atoms and 
diatomic molecules there are generally terms having different 
mirror symmetry with respect to the nuclear plane which can cross. 
Then we should have conditions analogous to those for atomic 
collisions. On the other hand, for two diatomic molecules there 
are no crossing points in the general case, and an intersection is 
only possible for certain symmetrical conditions. For this reason 
two diatomic molecules do not in general pass through an inter
section during their motion. There are, however, certain directions 
of motion (in multi-dimensional coordinate space) which do 
possess this property. Thus, the probability of a transition here 
depends on the product of the expression considered above with 
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2/.^ = - 2 2 m l 2 Z ^ _ \ ^ ^ ^ _ . ^ 

(28) 
so that we have for the difference 

2i^S.-Si) = - ' ^ { l . - l \ (29) 

which is independent of VQ. We obtain an expression for the cross-
section which is entirely independent of the nature of the potential 
energy near the nucleus 

ψ { - - ' ) ] • 
h \V2 vj^ 

σ = A exp (30) 

where A is a factor which only varies slowly with the speed. We 
obtain an entirely analogous expression for the case of the emis
sion of a proton from the nucleus. The only difference is that in the 
case where there is no resonance, the proton has another potential 
barrier to pass through, which leads to an expression: 

2π(Ζ - 1) 
hvp 

(31) 

the probability that the collision occurs in a particular direction, 
and is thus distinctly smaller. 

5. A quite different application of the theory developed above 
arises in the case of nuclear excitations or reactions due to a 
passing α-particle. In this case we always have a Coulomb field at 
large distances from the nucleus, both for the incoming and for the 
outgoing α-particle. In other words, at large distances — ϋχ is 
constant and equal to the energy given up by the α-particle. An 
intersection of the energy curves is not possible at large distances. 
This must always happen somewhere in the region of the nuclear 
radius (whether the intersection is real or imaginary is here of no 
interest to us). The important part of the probabihty is thus deter
mined by the value of the exponential function exp [liiS^ — S)h] 
in the region of the nucleus. But for small ΓΟ: 
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(Vp is the speed of the proton). In the case of a resonance reaction 
(with regard to the proton) the previous expression is valid. 
Resonance as far as the α-particle is concerned should be con
sidered as a normal α-particle capture. The formula (30) was 
apphed by G. Gamow at my suggestion to the experimental results 
of reactions. It was, however, established that in all cases known 
so far we are dealing with the capture of an α-particle. The same 
seems to be the case for the observed artificial gamma radiation. 

Part nt 

THE results obtained in Part I can be applied to a number of 
effects. It must be added, however, that during the colhsion of 
similar atoms it is necessary to add to the selection rules developed 
in Part I, the postulate of the change in parity which is evident 
from the fact that the electron-spin components which are normal 
to the line connecting the nuclei change their sign when mirrored. 

1. The most direct generalisation is predissociation. For the 
dissociation probability during an oscillation we can use here 
expression (21) directly. This can also be written in the following 
form: 

. = _Jl^^ JI. ( 1 ) 

( F l - F2) m^r^ V 

The proportionality to f / v can be found in a paper by Kronig^ 
where, however, ν designated the velocity at infinity instead of the 
actual radial velocity at the intersection, the reason lying in the 
estimates used by Kronig. 

The treatment given in Part I can also be applied to the case of 
an intersection made possible by the difference of the total spin. 
Elementary considerations lead to the following selection rules: 
variation of the total spin by ± 1 , in addition to the optical selec
tion rules for the azimuthal quantum number and possibly the 
parity. Now, since the matrix element no longer depends on the 

t Physik. Ζ. Sowjet., 2 , 46, 1932. 
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m ω ξ άξ m ω 

(ω =2π ' frequency of normal oscillation). It is seen that the 
intensity distribution is Gaussian. The width of the intensity dis
tribution is given by 

F. (5) 

It thus usually includes many vibrational levels. 

nuclear velocity one obtains instead of (1) a result simply pro
portional to l/v as might be deduced from the time spent at the 
intersection. 

2. A very special case of the application of the theory is the 
excitation of oscillations during an optical transition when the 
temperature corresponds to a non-oscillating molecule. In this 
case, the energy of the most highly excited state is determined by 
the Franck-Condon rule and the co-ordinates of the points of 
lowest energy of the normal state. When calculating the drop in 
intensity when moving away from this most highly excited state 
we have, according to the theory developed here, to determine the 
intersections of the following curves: 

E,-U^=E,- U,. (2) 

When denoting the distance of the intersection from the normal 
state by ξ and considering that the parabola of the lower state can 
for this purpose be replaced by a constant value of U and the 
upper curve by a straight hne, one obtains approximately: 

c = F f , or, i = i , ( 3 ) 
r 

where F is the force acting on the upper curve, and e the energy 
difference from the most highly excited state. Now, we only have 
to determine the action integrals up to the point ξ. The integral 
along the parabola is obviously the decisive one. One hence 
obtains for the exponent: 
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exp 
2i 
hv 

([/. - U,) dx (7) 

According to a well-known formula we have, however: 

Ui-U2 = viUio - u^of + 4α^ 

where Uio and U20 are the eigenvalues in zeroth approximation and 
a the "exchange energy" of the two terms. The width of the 
smallest distance is obviously equal to 2a, 

In the vicinity of the intersection we can write, except for an 
unimportant constant, 

Uio = Fxx, U20 = F2X. (8) 

In the next approximation, the position of the intersection is 
given by (Fi — F^^x^ + 4̂ ^ = 0 whence follows 

3. It is interesting to determine the probability when the energy 
curves approach closely to one another. This is invariably the case 
when two ions have at infinity an energy which is not very dif
ferent from the energy of two atoms. Then the attractive Coulomb 
force gives an intersection in a region where all the other inter
actions, which might destroy the intersection, are still very small. 

When the curves intersect in the near complex plane, we must 
extend our action integral into a region where the two potential 
energies approach one another very closely. We can write 
accordingly 

P^-P. = ^XUi - I/o = - f(Ui - £ / . ) = - (6) 
dU dE V 

where ν is the velocity in the given region. The value of the 
probability is consequently represented by the quantity 
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21 

hv 
V ( F i - F^f jc^ + Atí" dx 

2 o / ( F , - F „ ) 

h v 
VAO' - (Fl - F^f f άξ. (10) 

The probability is therefore proportional to 

- 2πα2 
exp . (11) 

Vhv (Fl - F,)\ 
To estimate the exponent in the above-mentioned Coulomb case, 
we put 

λ 2 Λ 2 

(12) 

where Δ is the energy difference at infinity. In the case of an ion 
collision V is simply determined by Δ. If Δ = 1 eV, the condition: 

4π a" 1 = 1 
hv - F2 

leads to la = 0-006 eV. 
4. When the exponent in (11) is smafi, we can neglect to a first 

approximation the splitting of the curves. 
The probability of the electron transition is therefore given by 

the probability of the transition in the case of two intersecting 
curves. This case can be treated by the method used in Part I with 
the sole difference that the place of the matrix elements of 
d'Mjmr^ is taken by a which hence gives for the probability. 

(13) 
hv{F,-F,) 

In the intermediate case the probability will be of the order of 
magnitude 1. To express this probability in terms of the cross 

The exponent of (7) is hence equal to 



182 MEN OF PHYSICS - LANDAU VOL. 2 

section, we introduce the following relations. The cross section in 
the case ω = 1 is 27r ^άρ, where ρ is the minimum distance without 
interaction. Because of the conservation of angular momentum 

= rvQ (r being the coordinate of the intersection, and VQ the 
angular velocity at the intersection) we have: 

do = — 5 - Vo dve, (14) 

or, since + v% = has a fixed value for a given energy, 

da = VrdVr^ (15) 

vl 

Now, when multiplying by ω and integrating {υ in (13) means of 
course Vr) over all values of Vr from zero to v\ we obtain 

or 
^ ^ 4π^ a" V2m {E - U) ^^^^ 

h EE 

5. The statements made in Part I require, on the other hand, 
considerable modification when the two energy states are situated 
close together at infinity (resonance case). This may be brought 
about either by transitions of fine structure levels into one another 
or by an accidental approach of the levels of the two atoms. To 
determine the range of validity of the earher discussion, we calcu
late the action difference for the two curves which do not intersect 
in the real region. When denoting the order of magnitude of the 
complex value of r at the intersection by R we can write 

Ä - 5 . = — , ( 1 8 ) 
V 

where Δ is the energy difference of the two terms at infinity {R 
is of the order of magnitude of r at which the interaction energy is 
of the order of the energy diflference). 
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For the exponent we have 

RA 
Hv 

(19) 

Here, too, we can therefore differentiate between two cases 
depending on whether the exponent is smaU or large compared 
with 1. In the first case the energy difference between the two states 
can be neglected. In this case we may apply for the calculation the 
method of Kallmann and London.^ When estimating the exponent 
it wifi be convenient to put = 10"^ cm, since the interaction 
decreases rapidly for larger distances. When assuming for ν the 
thermal velocity of about 3 χ 10* cm/sec, one obtains Δ of the 
order of 0-1 meV. On the other hand, if the exponent is large, 
the intersection of the curves again plays an important part and 
we must use (1.27). 

I should like to thank L. Rosenkevich for valuable discussions. 
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Fundamenta l P r o b l e m s t 

IT IS with the deepest sorrow that I send this article written in the 
honour of the sixtieth birthday of Wolfgang Pauh to a volume 
dedicated to his memory, which will always be cherished by those 
who had the good luck of knowing him personally. 

It will be impossible now to know his opinion about the ideas 
expressed in this article but I am still encouraged by the thought 
that his views on the subject would not be very different. 

It is well known that theoretical physics is at present almost 
helpless in dealing with the problem of strong interactions. For 
this reason, any remarks on the subject must necessarily be of the 
nature of forecasts, and their authors are peculiarly apt to find 
themselves barking up the wrong tree. 

It was long thought that the main difficulty of the theory lies in 
the occurrence of infinities which can be avoided only by the use of 
perturbation theory. The habit of using the device of re-normalisa
tion, which had achieved brilliant success in perturbation theory, 
was carried so far that the concept of re-normalisation acquired a 
certain mystical aura. The situation, however, becomes clear if, as 
is usual in theoretical physics, point interaction is regarded as the 
limit of some "distributed" interaction. This treatment, although 
it assumes weak interaction, goes considerably beyond the scope 
of perturbation theory, and makes possible the derivation of 
asymptotic expressions for the energy dependence of the basic 
physical quantities^ These expressions show that the effective 

t From Theoretical Physics in the Twentieth Century, a Memorial Volume to 
Wolfgang Pauli, ed. by Μ. Fierz and V. F. Weisskopf (Interscience, New York 
1960), p. 245. 
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interaction always diminishes with increasing energy, so that the 
physical interaction at finite energies is always less than the inter
action at energies of the order of the cut-ofiFlimit which is given by 
the bare coupling constant appearing in the Hamfitonian. 

Since the magnitude of the re-normalisation increases inde
finitely with the cut-off" limit, it follows that even an extremely weak 
interaction implies a large bare coupling constant when the cut-off* 
radius is sufficiently small. Thus it was supposed that the main 
problem is to devise a theory of very strong interactions. 

Further investigation showed, however, that the matter was by 
no means so easily dealt with. It was demonstrated by Pomer
anchuk in a series of papers^ that, as the cut-off'limit is increased, 
the physical interaction tends to zero, no matter how large the 
bare coupling constant is. At about the same time Pauli and 
Källen^ obtained the same result for the so-called Lee model. 

The correctness of "nullifying" the theory has often been called 
in question. The Lee model is a very special one, considerably 
differing in several respects from physical interactions; and the 
validity of Pomeranchuk's proofs has been doubted. In my opinion 
such doubts are unfounded. For example, Källen has several 
times put forward the view that unusual properties of the series to 
be summed are involved, but he has never given reasons to support 
this view. By now, the "nullification" of the theory is tacitly 
accepted even by theoretical physicists who profess to dispute it. 
This is evident from the almost complete disappearance of papers 
on meson theory, and particularly from Dyson's assertion* that 
the correct theory will not be found in the next hundred years—a 
piece of pessimism which would be impossible to understand if one 
supposed that the present meson theory leads to finite results 
which we are yet unable to derive from it. It therefore seems to me 
inopportune to attempt an improvement in the rigour of Pomer
anchuk's proofs, especially as the brevity of life does not afiow us 
the luxury of spending time on problems which will lead to no new 
results. 

The vanishing of the point interaction in the present-day theory 
leads to the idea that it is necessary to consider "distributed", non-
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local, interactions. Unfortunately, the non-local nature of the 
interaction renders completely useless the technique of the present 
existing theory. Of course the undesirability of this occurrence is a 
poor argument against the non-local nature of the interaction; but 
there are stronger arguments against it. All the conclusions derived 
by means of the quantum theory of fields without the use of 
particular Hamiltonians seem to get confirmed experimentally. 
They include, in the first place, dispersion relations. Moreover, the 
number of mesons formed in high-energy collisions is in agree
ment with Fermi's formula,^ which involves the use of the ideas of 
statistical thermodynamics for dimensions very much less than any 
possible radius of interaction. 

The idea of the possibility of a marked modification of the 
existing theory without abandoning local interaction, was first 
suggested by Heisenberg^ Besides this general idea, Heisenberg 
has also suggested a number of further assumptions, which to me 
appear dubious. I shall therefore attempt to describe the general 
situation in what seems to me the most convincing form. 

Almost 30 years ago Peierls and I had noticed that in the region 
of relativistic quantum theory no quantities concerning interacting 
particles can be measured and the only observable quantities are 
the momenta and polarisations of freely moving particles. There
fore if we do not want to introduce unobservables we may intro
duce in the theory as fundamental quantities only the scattering 
amplitudes. 

The φ operators which contain unobservable information must 
disappear from the theory and, since a Hamiltonian can be built 
only from φ operators, we are driven to the conclusion that the 
Hamiltonian method for strong interaction is dead and must be 
buried, although of course with deserved honour. 

The foundation of the new theory must consist of a new dia
grammatic technique which must deal only with diagrams with 
"free" ends i.e. with scattering amphtudes and their analytic 
continuation. The physical basis of this technique is the unitarity 
conditions and the principle of locahty of interaction which 
expresses itself in the analytic properties of the fundamental 
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quantities of the theory, such as the different kinds of dispersion 
relations. 

As such a new diagrammatic theory is not as yet constructed, 
we are obliged to derive the analytical properties of the vertex 
parts from a Hamiltonian formalism, but it requires much naivety 
to try to make such derivations "rigorous", forgetting that we 
derive existing equations from Hamiltonians which do not really 
exist. 

One of the conclusions of such an approach to the theory is that 
the old problem of the elementarity of particles finally loses its 
meaning, as it cannot be formulated without considering inter
actions between particles. 

I think that the development of a theory on such lines has pro
gressed very much in recent times and the time is not far away 
when the equations of the new theory will be finally written down. 

But one must remember that in this case, contrary to what has 
happened in all the previous stages of theoretical physics, the 
wiriting down of the equations wifi mark not the end but only the 
beginning of the construction of the theory. The equations of the 
theory wifi be an infinite system of integral equations, each of 
which has the form of an infinite series, and it will be a hard task 
to learn how to work with such equations. 

It is, of course, impossible to predict now how many constants 
in the theory may be chosen arbitrarily. We cannot even exclude 
the possibility that the equations wifi have no solutions at afi, i.e. 
that the theory will also be nullified. This might be regarded as the 
rigorous proof of the non-locality of nature, but it might also mean 
that a theory of strong interactions alone cannot exist by itself and 
that weak interactions, and especially electrodynamics, must also 
be included in the picture. The infrared "catastrophe" would then 
make the situation infinitely more complicated. 

But even in the best case we have still a great struggle before us, 
a struggle which has now become much more difficult without the 
brilhant unerring light of the mind of Wolfgang Pauli. 
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O n the Conservat ion 
Laws for W e a k In teract ionst 

A variant of the theory is proposed in which non-conservation of 
parity can be introduced without assuming asymmetry of space with 
respect to inversion. 

Various possible consequences of non-conservation of parity are 
considered which pertain to the properties of the neutrino and in this 
connection some processes involving neutrinos are examined on the 
assumption that the neutrino mass is exactly zero. 

1. Combined Parity 

As is well known, the unusual properties of A^mesons have 
created a perplexing situation in modern physics. The correlation 
between 7r-mesons in τ-decay (Ä^+-> 2 7 Γ + + τ τ - ) leads to the 
necessity of assigning a 0 " state to i(:+-mesons. This kind of 
system, however, cannot decay into twoTr-mesons (K+ -^π + + π^) 
We are thus faced with the dilemma of either assuming that two 
different Ä-mesons exist or that the conservation laws are violated 
in X-meson decay. In the first case one must then explain the 
identity of masses (which are equal to within two electron masses) 
and the near coincidence in lifetime of the Θ and r-decays. One 
may attempt to explain the equality of ^-meson masses by postu
lating, as Lee and Yang^ have done, the existence of some hitherto 
unknown symmetry property of nuclear forces which transforms 
the T-meson into a ö-meson. If, however, decay involving a 
neutrino (í:+ + ν,Κ+ ->μ+ + ν+ π\ Κ+ -> e+ + + ν) 
is considered to be essentiafiy the same for particles of various 
parity a difference in lifetime related to the different rate of τ and 

t Nuclear Physics, 3 , 127, 1957. 
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ö-decay (̂ ^ 8 per cent and ^ 25 per cent) should be anticipated. 
This discrepancy should be not less than 30-40 per cent, a result 
which seems to be inconsistent with experiments 

Thus we come to the conclusion that the hypothesis of the 
existence of two different A^+-mesons is contrary to the experi
mental facts and the only alternative is to assume that the generally 
accepted conservation laws are violated in Ä-decay. Since there is 
no reason to think that the law of conservation of angular 
momentum is untenable, we are apparently dealing here with a 
direct violation of the law of conservation of parity. 

It might seem at first glance that non-conservation of parity 
implies asymmetry of space with respect to inversion. If however, 
complete isotropy of space (conservation of angular momentum) 
is taken into account this type of asymmetry would seem to be 
extremely strange and in my opinion a simple rejection of parity 
conservation would create a difficult situation in theoretical 
physics. I would like to point out a solution of this problem which 
consists in the following. As is well known, both the law of con
servation of parity and charge conjugation invariance undoubtedly 
hold in strong interactions. Let us now assume that each of these 
conservation laws does not hold separately in weak interactions. 
However, invariance with respect to the set of both operations 
(which we shall call combined inversion) will be assumed to exist. 
In combined inversion, space inversion and transformation of a 
particle into an antiparticle occur simultaneously. 

It is easy to see that invariance of the interactions with respect to 
combined inversion leaves space completely symmetrical, and 
only the electrical charges will be asymmetrical. The effect of this 
asymmetry on the symmetry of space is no greater than that due to 
chemical stereo-isomerism. 

On the other hand the law of conservation of parity of charged 
particles will not hold as the operator of combined inversion does 
not transform charged particles into themselves. 

Furthermore, it is easy to see that the constants characterising 
the particles and anti-particles (masses, lifetimes) should be iden
tical since, as a result of invariance with respect to combined in-
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version, all processes involving particles and antiparticles should 
differ from each other only in regard to space inversion. Graphic
ally speaking, a Ä'--meson is a mirror reflected X+-meson. 

Truly neutral particles, that is, particles which are identical to 
their anti-particles, transform into themselves in combined in
version. Consequently, with respect to these particles combined 
inversion leads to a law of conservation of combined parity. It 
should be emphasised that conservable parity is the product of 
ordinary parity and charge parity of the particles. Evidently, in 
this sense the Tr -̂meson is an odd particle: the (öo)-meson which 
decays into 27r-mesons is an even particle and the Ä^J-meson 
predicted by Gell-Mann and Pais^ and recently discovered experi
mentally* is an odd particle. Combined inversion changes the sign 
of the magnetic field of a photon but does not change that of the 
electric field. The ordinary parities of electric and magnetic multi-
poles are reversed for combined inversion. 

It is easy to show from the foregoing that despite the absence of 
ordinary parity the particles cannot possess dipole moments. 
Indeed, the only vector which can be constructed from i/r-operators 
for a particle at rest is its spin vector which is even with respect to 
inversion and odd with respect to charge. It is consequently odd 
with respect to combined inversion and, in accord with the fore
going regarding the electromagnetic field, it defines only a mag
netic but not an electric moment. 

Lee and Yang^t have shown that non-conservation of parity 
leads to correlations in a number of hyperon production and decay 
processes. It can be shown that a consequence of invariance with 
respect to combined inversion is that the weak interaction opera
tors in the Lagrangian contain real coefficients. This circumstance, 
however, does not appreciably modify the qualitative picture 
which is obtained in the general case of non-conservation of parity. 
Therefore asymmetry of hyperon decay with respect to the plane 
of their creation, which has been predicted by Lee and Yang^, will 
also hold in this case. 

11 would like to thank sincerely the authors for sending me a preprint of 
their paper. 
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2. Properties of the Neutrino 
Rejection of the law of conservation of parity entails the 

possibility of the existence of new properties of the neutrino. The 
Dirac equation for the case of zero mass splits into two inde
pendent pairs of equations. It will be recalled that in the usual 
theory one cannot confine oneself to a single pair of equations 
since both pairs transform into each other as a result of space 
inversion. If, however, we restrict our attention to combined in
version we arrive at the possibility of describing the neutrino by a 
single pair of equations. In the sense of the usual scheme this 
would signify that the neutrino is always polarised in the direction 
of its motion (or in the opposite direction). The polarisation of the 
antineutrino is correspondingly reversed. According to this model 
the neutrino is not a truly neutral particle and this agrees with the 
fact that double j8-decay has not been observed experimentally and 
especially with the results of experiments on induced ^-decay. We 
shall call this kind of neutrino a longitudinally polarised neutrino 
or briefly a longitudinal neutrino. 

In the usual theory the neutrino mass is zero, so to say, accident
ally. Thus, account of neutrino interactions automatically leads to 
the appearance of a definite, albeit vanishingly small, rest mass. 
The mass of the longitudinal neutrino, on the other hand, vanishes 
automatically and this situation cannot be altered by the existence 
of any type of interaction. 

The longitudinal neutrino concept appreciably reduces the 
possible number of types of weak interaction operators. Consider, 
for example, the decay of a jLc-meson into an electron and two 
neutrinos. In the usual manner we represent the interaction 
operator as the product of operators consisting of /x-meson and 
electron i/r-operators on the one hand and ^-operators of the two 
neutrinos on the other. For the longitudinal neutrino only one 

I would like to express my deep appreciation to L. Okun', B. 
loffe and A. Rudik for discussions from which the idea of this part 
of the present paper emerged. 
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combination can be made from the two neutrino operators (a 
scalar with respect to rotation; the operation of ordinary inversion 
is not applicable), as it is well known that the tensor combination 
of two identical operators obeying Fermi statistics is equal to 
zero. In this case two combinations, scalar and pseudo-scalar (in 
the usual sense of the word), can be constructed for a/x-meson and 
electron. 

If a neutrino and anti-neutrino are emitted in/x-meson decay the 
situation changes. Only a four-dimensional vector can then be 
constructed from the longitudinal neutrino and antineutrino 
operators. In this case two combinations—vector and pseudo-
vector—can be made from the /x-meson and electron operators. 
Thus, despite the absence of invariance with respect to inversion 
in each of the two cases only two interaction operators are 
possible. 

It is easy to calculate the energy spectrum of the /x-meson decay 
electrons. It is found to be exactly the same as that calculated by 
Michel^ The two-neutrino case thus yields for Michel's constant, 
ρ, the value ρ = 0 and for a neutrino and antineutrino ρ = 0 - 7 5 . 
The former case is apparently inconsistent with the experiments 
whereas the latter agrees with the results obtained in refs. 7 and 8 
which yield ρ = 0 - 6 4 ± 0 - 1 0 and ρ = 0 - 5 7 ± 0 - 1 4 . Thus μ 
meson disintegration experiments do not contradict the longi
tudinal neutrino concept and in this case lead to a unique result, 
namely, that a neutrino and antineutrino are involved in /x-meson 
decay. 

Consider now the reaction ττ -> /x + v. Since the 7r-meson is 
spinless we are obliged to set up a scalar expression for the 
/x-meson and neutrino j/r-operators in the π μ + ν decay 
operator. This automatically yields that if the neutrino is longi
tudinal the /x-mesons produced in ττ -> /x + ν decays will be com
pletely polarised in the direction of their motion (or in the opposite 
direction). 

As Lee and Yang^ have noted, a possible consequence of non-
conservation of parity is the correlation between the directions of 
the /x-meson and electron involved in the ττ -> /x -> e decay. Simple 
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calculations based on our scheme give the following energy and 
angular distribution for the emitted electrons: 

dN 
— = 2€%(3 - 2e) + λ cos ^(26 ~ 1)] Λ. (1) 
Ν 

Here € is the ratio of electron energy to the largest possible energy, 
ΰ' is the angle between the directions of motion of the /-t-meson and 
electron and λ is a constant which depends on the relation between 
the vector and pseudo-vector parts in the combination of the 
/i-meson and electron i/r-operators, 

λ = (2) 

where a and b are coefficients of the respective terms and, accord
ing to the foregoing, are real. Evidently, λ varies between —1 and 
+ 1. It is possible that λ is in fact equal to zero. The integral elec
tron distribution is obviously proportional to (1 + cos t^) and 
this means that the largest possible value of the forward-backward 
asymmetry is 2. It should be noted that even if λ appreciably differs 
from zero it may be difficult to observe μ - ^ Q correlation because 
of depolarisation of the slowed down mesons and in particular for 
μ +-mesons because of formation of mesonium (μ + + Q - system). 

Consider now the effect of longitudinal i ty of the neutrino on 
jS'decay. According to experiment the decay operator should be 
represented as the sum of the scalar and tensor variants. It can be 
shown that in either case the same electron polarisation in the 
direction of motion will arise, which is equal to v/c (or —v/c), the 
ratio of the electron velocity to that of light. Thus high energy 
electrons will be totally polarised in the direction of their motion. 



CONSERVATION LAWS FOR WEAK INTERACTIONS 195 

5. T . LEE and C. YANG, Phys. Rev. 104, 2 5 4 , 1956 . 
6. L . MICHEL, Proc. Phys. Soc. A 6 3 , 5 1 4 , 1 3 7 1 , 1950 . 
7. C . P. SARGENT, M . RINEHART, L . M . LEDERMAN and K . C . ROGERS, Phys, 

Rev. 99 , 8 8 5 , 1955 . 
8. A BONETTI, R . LEVI SETTI, M . PANETTI, G . ROSSI and G . TOMASINI, NUOVO 

Cimento, 3, 33 , 1956 . 



References 

A L E X E F F , L , J O N E S , W . D . and M O N T G O M E R Y , D . (1967) Phys. Rev. Letters, 19, 
422. 

A T K I N S O N , R . D ' E . and H O U T E R M A N S , F . G . (1929) Z . Phys., 54, 656. 
B E T H E , H . A. (1936) Phys, Rev., 50 , 332. 
B E T H E , H . A. (1937) Rev. Mod. Phys., 9 , 69. 
B E T H E , H . A. (1939) Phys. Rev., 55, 434. 
BoHM, D. and G R O S S , E . P. (1949a, b) Phys. Rev., 75 , 1851, 1864. 
B O H R , N. , K R A M E R S , H . A. and S L A T E R , J . C . (1924) Phil. Mag., 47 , 785. 
BoHR, N. and R O S E N F E L D , L . (1933) Proc. Roy. Dan. Acad. Sc., 12, No. 8. 
B R E I T , G . (1929) Phys. Rev., 34 , 553. 
B U R G H A M , W . E . (1963) Nuclear Physics, Longmans, London. 
C H A N D R A S E K H A R , S. (1935) Monthly Notices RAS, 95, 207. 
C H A N D R A S E K H A R , S. (1939) Introduction to the Study of Stellar Structure, 

Chicago University Press. 
C H A N D R A S E K H A R , S. (1942) Principles of Stellar Dynamics, University of 

Chicago Press. 
C H A P M A N , S. and C O W L I N G , T . G . (1953) Mathematical Theory of Non-uniform 

Gases, Cambridge University Press. 
D A V Y D O V , A. S. (1965) Quantum Mechanics, Pergamon Press, Oxford. 
D E B Y E , P. and H Ü C K E L , E . (1923) Physik. Ζ., 24 , 185. 
F E R M I , E . (1950) Progr. Theoret. Phys., 5, 570. 
F E R M I , E . (1951) Phys. Rev., 8 1 , 683. 
F I S H E R , M . E . (1963) J. Math. Phys., 4 , 278. 
G A R W I N , R . L . , L E D E R M A N , L . M . and W E I N R I C H , M . (1957) Phys. Rev., 105, 

1415. 
T E R H A A R , D . (1954) Elements of Statistical Mechanics, Rinehart, New York. 
T E R H A A R , D . (1958) Introduction to the Physics of Many-Body Systems, 

Interscience, New York. 
T E R H A A R , D . (1961) Repts. Progr. Phys., 24 , 304. 
T E R H A A R , D . (1964) Elements of Hamiltonian Mechanics, North Holland 

Publishing Company, Amsterdam. 
T E R H A A R , D . (1965) Men of Physics: L. D. Landau, vol. 1, Pergamon Press, 

Oxford. 
T E R H A A R , D . (1966a) Elements of Thermostatistics, Holt, Rinehart, & 

Winston, New York. 
T E R H A A R , D . (1966b) Contemp. Phys., 7, 447. 
T E R H A A R , D . (1967) The Old Quantum Theory, Pergamon Press, Oxford. 
T E R H A A R , D . and W E R G E L A N D , H . (1966) Elements of Thermodynamics, 

Addison-Wesley, Reading, Mass. 
52 



REFERENCES 53 

H E I S E N B E R G , W . and P A U L I , W . (1929) Ζ Phys., 56 , 1. 
H E I S E N B E R G , W . and P A U L I , W . (1930) Z . Phys., 59 , 168. 
H E I T L E R , W . (1933) Z . Phys., 84, 145. 
HoPMAN, H. J . (1965) Nederl. Tijds, Natuurk., 3 1 , 266. 
L A M B , W . E . , J R . and R E T H E R F O R D , R . C . (1947) Phys, Rev., 72 , 241. 
L A N D A U , L . D . : see separate list of papers following the references. 
L A N D A U , L . D . and L I F S H I T Z , E . M . (1958) Statistical Physics, Pergamon 

Press, Oxford. 
L A N D A U , L . D . and L I F S H I T Z , E . M . (1965) Quantum Mechanics, Pergamon 

Press, Oxford. 
L A N G M U I R , I . (1928) Proc. Nat. Acad. Sc, USA, 14, 627. 
L E E , T . D . (1958) Science, 127, 569. 
L E E , T . D . and Y A N G , C . N . (1956) Phys. Rev., 104, 254. 
L E E , T . D . and Y A N G , C . N . (1957) Phys. Rev., 105, 1671. 
L E I G H T O N , R . B . {1959) Principles of Modern Physics, McGraw-Hill, New York. 
L E V A N Y U K , A. P. (1963) Soviet Phys.Solid State, 5, 1294. 
L O N D O N , F . and B A U E R , E . (1939) La Theorie de VObservation en Mécanique 

Quantique, Hermann, Paris. 
V O N N E U M A N N , J . (1927) Göttinger Nachr., pp. 1, 24, 273. 
O K U N ' , L . B . (1965) Weak Interactions of Elementary Particles, Pergamon 

Press, Oxford. 
O N S A G E R , L . (1944) Phys. Rev., 65, 117. 
P A U L I , W . (1933) Handb. Phys., 24^, 226. 
P A U L I , W . (1964) Collected Scientific Papers ( R . Kronig and V. F . Weisskopf, 

editors), Wiley, New York. 
S A L A M , A. (1957) Nuovo Cim., 5, 299. 
S M I T H , C . M . H . (1965) Textbook of Nuclear Physics, Pergamon Press, Oxford. 
S P I T Z E R , L . , J R . (1962) Physics of Fully Ionized Gases, Wiley, New York. 
T A Y L O R , J . C . (1960) Phys. Rev., 117, 261. 
T O N K S , L . and L A N G M U I R , L (1929) Phys. Rev., 33 , 195. 
Y A K S , V. G. and L A R K I N , A. L (1966) Soviet Phys.-JETP, 22 , 678. 
W E I S S K O P F , V. (1937) Phys. Rev., 52 , 295. 
W E I S S K O P F , V. F . and E W I N G , D . H . (1940) Phys. Rev., 57 , 472. 
V O N W E I Z S Ä C K E R , C . F . (1937) Physik. Ζ., 38 , 176. 
W E Y L , H . (1929) Z . Phys., 56 , 330. 
W I L K I N S O N , D . H . (1959) Turning Points in Physics ( D . ter Haar, editor). 

North Holland Publishing Company, Amsterdam, p. 155. 
W O N G , A. Y . , M O T L E Y , R . W . and D ' A N G E L O , N . (1964) Phys. Rev., 133, A436. 
Wu, C . S., A M B L E R , E . , H A Y W A R D , R . W . , H O P P E S , D . D . and H U D S O N , R . P. 

(1957) PÄ;;̂ . Rev., 105, 1413. 
Y A N G , C . N . (1957) Rev. Mod. Phys., 29 , 231. 
Y A N G , C. N . (1958) Science, 127, 565. 



I ndex 

Bare mass 43 
Beta decay 36, 49, 194 
Binary mixture 80, 82 

Fermi's theory of multiple particle 
production 27, 131 if, 186 

Ferromagnetics 79 
Franck-Condon rule 170, 179 

Collision 
adiabatic 168 
of second kind 40 
theory 38, 168 if 

Compton effect 158, 162 
Conservation 

of charge 48 
of combined parity 48 
of energy 49, 166 
of momentum 48 
of parity 48 

Conservation laws 47 if 
Cosmic ray physics 26, 131 
Cosmic ray showers 26 
Coulomb interactions 88 
Critical point 4 
Critical stellar mass 24, 128 
Curie point 61, 67, 68, 79, 82, 83 

Debye-Hückel theory 11, 90 
Debye radius 11, 90, 103 
Density matrix 35 
Diagram techniques 45, 186 
Dirac equation 152, 164 
Dispersion relations 17, 45 

Heisenberg relations 35, 152 if 
Helicity 51 

Infrared catastrophe 187 
Interactions 

strong 46 
weak 47, 189 if 

Inversion, combined 49, 190 
Ising model 3, 4, 5, 7 

Kinetic equation 8, 13 

Lamb shift 42 
Lamb-Rutherford experiment 42 
Lambda point 3, 70, 79, 84 
Landau damping 14, 20, 103 ff 
Liquid drop model of nucleus 23, 

118 

Measurement 
on light quanta 160 ff 
repeatability of 155 
theory of 35, 153 

Molecular spectra 3 
Multiple particle production 131 ff 

Electromagnetic fields, measurement Neutrino 
of 36, 159ff four-component 51 

Electron radius, classical 44 longitudinal 51, 192 
Energy transfer 168 if two-component 51, 192 

197 



198 INDEX 

Neutron 
capture 122 
inelastic scattering of 125 
resonances 122 

Neutronic state of stars 26, 128 

Order 
degree of 81 
parameter 4 

Parity 
combined 48, 49, 189 ff 
non-conservation 45, 189fif 

Phase transitions 61 ff 
first-order 4 
second-order 3, 61 ff 

Plasma 8, 96 
frequency 15 
oscillations 15, 96 ff 

Predissociation 38, 39, 178 

Quantum electrodynamics 42, 187 

Renormalization 43, 184 
Rutherford scattering 9 

Scattering amplitudes 186 
Self-energy 43, 152 
Semi-classical theory 38, 172 ff 
Specific heat 68 

discontinuities in 79 
Statistical operator 35 
Statistical theory of nuclei 22,118 ff 
Stellar 

energy 25, 128 
equilibrium 24 
structure 24 

Transport equation 8, 85 ff 

Vertex parts 45 
Vlasov equation 97 


