
 

Pa
ve

l C
ej

na
r 

A 
Co

nd
en

se
d 

Co
ur

se
 o

f Q
ua

nt
um

 M
ec

ha
ni

csThis book represents a concise summary of non-relativistic quan-
tum mechanics on the level suitable for university students of phys-
ics. It covers, perhaps even slightly exceeds, a one-year course of 
about 50 lectures, requiring basic knowledge of calculus, algebra, 
classical mechanics and a bit of motivation for the quantum adven-
ture. The exposition is succinct, with minimal narration, but with 
a maximum of explicit and hierarchically structured mathematical 
derivations.

The text covers all essential topics of university courses of 
quantum mechanics – from general mathematical formalism to 
specific applications. The formulation of quantum theory is ac-
companied by illustrations of the general concepts of elementary 
quantum systems. Some subtleties of mathematical foundations 
are overviewed, but the formalism is used in an accessible, intui-
tive way. Besides the traditional topics of non-relativistic quantum 
mechanics, such as single-particle dynamics, symmetries, semiclas-
sical and perturbative approximations, density-matrix formalism, 
scattering theory, theory of angular momentum, description of 
many-particle systems – the course also touches upon some mod-
ern issues, including quantum entanglement, decoherence, mea-
surement, nonlocality, and quantum information. Historical context 
and chronology of basic achievements is outlined in brief remarks.

The book is intended for beginners as a supplement to lec-
tures, however, it may also be used by more advanced students as 
a compact and comprehensible overview of elementary quantum 
theory.

I enjoyed reading this book. What I found particularly interesting 
was the style of the presentation, the original and excellent selec-
tion of topics, and the numerous brief historical remarks. The text 
is succinct but not superficial: the deeper one immerses in reading, 
one finds even more inspiring remarks. The reader is allerted to the 
subtleties of the mathematical formulation of quantum mechanics, 
without getting lost in unnecessary formalism.

Prof. Jean-Paul Blaizot (IPhT, Paris)
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Preface

This book was conceived as a collection of notes to my two-semester lecture on
quantum mechanics for third-year students of physics at the Faculty of Mathematics

and Physics of the Charles University in Prague. It was created in 2011-12.

At first, I just wanted to write down the most important facts, formulas and
derivations in a compact form. The information flew in a succinct, “staccato” style,
organized in larger and smaller bits (the � and I items), rarely interrupted by
wordy explanations. I enjoyed the thick, homogeneous mathematical form of the

notes. Calculations, calculations, calculations. . . I thought of a horrified historian or
sociologist who finds no oasis of words. This is how we, tough guys, speak!

However, I discovered that the dense form of the notes was hardly digestible even
for tough guys. I had to add some words. To create a “storyteller” who wraps the

bare formulas into some minimal amount of phrases. His voice, though still rather
laconic, may help to provide the proper motivation and clarify the relevant context.
I also formed a system of specific “environments” to facilitate the navigation. In
particular: Among crowds of calculations there appears a hierarchy of highlighted

formulas:∗
important essential 1 essential 2 crucial

Assumptions or foundational concepts, irreducible to other statements/concepts,
appear in boxes:† Answer to ultimate question of life, universe & everything = 42

Here and there come some historical notes:‡ J 2013: Condensed Course issued

Handmade schemes (drawn on a whiteboard) illustrate some basic notions.

In this way, the notes have turned into a more serious thing. They almost became

a textbook ! The one distinguished from many others by expanded mathematical
derivations (they are mostly given really step by step) and reduced verbal stuffing
(just necessary comments in between calculations). This makes the book particularly

well suited for conservation purposes—acquired knowledge needs to be stored in a
condensed, dense enough form, having a compact, nearly tabular structure.

However, as follows from what has been said, this book cannot be considered a
standard textbook. It may hardly be read with ease and fluency of some more epic
treatises. One rather needs to proceed cautiously as a detective, who has to precisely

fix all objects on the stage (all symbols, relations etc.) before making any small step
forward. This book can be used as a teaching tool, but preferably together with an

∗Such formulas are highly recommended to memorize! Although all students of physics & mathematics seem to
share a deep contempt for any kind of memorization, I have to stress that all results cannot be rederived in reasonable
time limits. There is no escape from saving the key formulas to the memory and using them as quickly reachable
starting points for further calculations.
†However, these assumptions do not constitute a closed system of axioms in the strict mathematical sense.
‡I believe that knowledge of history is an important part of understanding. The concepts do not levitate in vacuum

but grow from the roots formed by concrete circumstances of their creation. If overlooking these roots, one may
misunderstand the concepts.
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oral course or a more talkative textbook on quantum mechanics. Below I list some
of my favorite candidates for additional guiding texts [1–8].

I have to stress that the notes cover only some parts of non-relativistic quan-
tum mechanics. The selection of topics is partly fixed by the settled presentation
of the field, and partly results from my personal orientation. The strategy is to
introduce the complete general formalism along with its exemplary applications to
simple systems (this takes approx. one semester) and then (in the second semester)
to proceed to some more specialized problems. Relativistic quantum mechanics is
totally absent here; it is postponed as a prelude for the quantum field theory course.

Quantum mechanics is a complex subject. It obligates one to have the skills of a
mathematician as well as the thinking of a philosopher. Indeed, the mathematical
basis of quantum physics is rather abstract and it is not obvious how to connect it
with the observed “reality”. No physical theory but quantum mechanics needs such
a sophisticated PR department. We will touch the interpretation issues here, but
only very slightly. Those who want to cultivate their opinion (but not to disappear
from the intelligible world) are forwarded to the classic [9]. The life saving trick in
this terra incognita is to tune mind to the joy of thinking rather than to the demand
of final answers. The concluding part of the theory may still be missing.

Before we start I should not forget to thank all the brave testers—the first men,
mostly students, who have been subject to the influence of this book at its various
stages of preparation. They were clever enough to discover a lot of mistakes. Be
sure that the remaining mistakes are due to their generous decision to leave some
fish for the successors.

In Prague, January 2013

Recommended textbooks:[
1
]

J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1985, 1994)
A modified edition of the same book:[

2
]

J.J. Sakurai, J.J. Napolitano, Modern Quantum Mechanics (Addison-Wesley, 2011)[
3
]

G. Auletta, M. Fortunato, G. Parisi, Quantum Mechanics (Cambridge University Press, 2009)[
4
]

L.E. Ballantine, Quantum Mechanics. A Modern Development (World Scientific, Singapore, 1998)[
5
]

A. Peres, Quantum Theory: Concepts and Methods (Kluwer, 1995)[
6
]

A. Bohm, Quantum Mechanics: Foundations and Applications (Springer, 1979, 1993)[
7
]

W. Greiner Quantum Mechanics: An Introduction (Springer, 1989),
W. Greiner, Quantum Mechanics: Special Chapters (Springer, 1998)
W. Greiner, B Müller, Quantum Mechanics: Symmetries (Springer, 1989)[

8
]

E. Merzbacher, Quantum Mechanics (Wiley, 1998)

Further reading:[
9
]

J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, 1987)
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Rough guide to notation (succinct and incomplete)

symbol meaning

Spaces, state vectors & wavefunctions

H, H, H Gelfand’s hierarchy of spaces (rigged Hilbert space)
`2, L2(R3), Cd specific separable or finite Hilbert spaces
|ψ〉, 〈ψ′|; 〈ψ′|ψ〉 “ket” & “bra” forms of state vectors; scalar product

||ψ|| =
√
〈ψ|ψ〉 vector norm

α|ψ〉+β|ψ′〉 superposition≡ linear combination of state vectors (α, β∈C)

|φi〉,|Φij〉≡|φ1i〉1|φ2j〉2 general basis vector in H; separable basis vector in H1 ⊗H2

|ψ〉1|ψ′〉2 general separable vector in H1 ⊗H2

|a〉, |ai〉, |a(k)
i 〉 eigenvector of Â with eigenvalue a or ai (degeneracy index k)

|Ei〉, |E〉 energy eigenvectors

| ↑〉, | ↓〉 up & down projection states of spin s=1
2

|lml〉
|sms〉 , |jmj〉 states with (orbital

spin ,total) ang. momentum ( ls , j), projection m•
ψ(~x,ms︸︷︷︸) ≡ Ψ(~x) single-particle wavefunction in single/multicomponent forms

Ψ(ξ1 . . . ξN) N -particle wavefunction

Rnl(r) = unl(r)
r

radial wavefunction
Span{|ψ1〉...|ψn〉} linear space spanned by the given vectors

N , dH normalization coefficient & dimension of space H
Observables & operators

Ô, Ô†, Ô−1 operator, its Hermitian conjugate & inverse

Î, Û identity operator & unitary operator

P̂a, Π̂(a1,a2) projectors to discrete & continuous eigenvalue subspaces

||Â|| operator norm

Â1 ⊗ Â2 tensor product of operators acting in H1 ⊗H2

Ĥ, T̂ , V̂ ; Ĥ ′ Hamiltonian, its kinetic & potential terms; perturbation
~∇, ∆ gradient & Laplace operator (or also an interval, gap...)

~̂x, ~̂p, P̂ coordinate, momentum vectors & spatial parity operator

~̂L, ~̂S; ~̂J , Ĵ± orbital, spin & total angular momentum, shift operators for Ĵ3

~̂σ the triplet of Pauli matrices

T̂∆o |o〉→|o+∆o〉 eigenvector shift operator for general operator Ô

Ĝi, ĈG generator & Casimir operator of a group G
b̂, b̂†; â, â†; ĉ, ĉ† annihilation, creation operators for bosons, fermions, or both

N̂ , N̂k total number of particles & number of particles in kthstate

R̂~nφ, R(αβγ) rotation operator inH & rotation matrix in 3D (Euler angles)

Û(t), Û(t1,t0) evolution operator for times t0
t→ t1

T̂ , T time reversal operator & time ordering of operator product

Ĝ(t), G(~xt|~x0t0) Green operator & propagator
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ÔS, ÔH(t), ÔD(t) Schrödinger, Heisenberg, Dirac representations of operator

[Âλ1×B̂λ1]λµ tensor coupling of spherical tensor operators Âλ1
µ1
, B̂λ1

µ2

[Â, B̂],{Â, B̂} commutator & anticommutator of operators
{A,B} Poisson bracket of classical observables A,B

Tr Ô, Tr1Ô trace of operator/matrix, partial trace over H1 in H1 ⊗H2

Det Ô, Def(Ô) determinant of matrix/operator, definition domain of operator

Statistics, probabilities & densities
pψ(a) probability to measure value a of observable A in state |ψ〉
〈A〉ψ, 〈a〉c average of A-distribution in |ψ〉, average of a for a parameter c
〈〈A2〉〉ψ≡∆2

ψA dispersion of A-distribution in |ψ〉 ≡ squared uncertainty

pc(a|b) conditional probability of a given b (depending on parameter c)

ρ(~x, t), ~j(~x, t) probability density & flow at point ~x, time t

ρ̂, Wρ(~x, ~p), Sρ density operator/matrix, Wigner distribution function, entropy
%(E) density of energy eigenstates

Functions

jl, nl, h
±
l (kr) Bessel, Neumann & Hankel functions

Lji (ρ), Hn(ξ)
{

associated
generalized

}
Laguerre polynomials & Hermite polynomials

Plm(cosϑ),Ylm(ϑ,ϕ) associated Legendre polynomial, spherical harmonics (sph.angles)

Dj
m′m(αβγ) Wigner matrix function≡Dj

m′m(R) (Euler angles of rotation R)

δ(x), δε(x); Θ(x) Dirac δ-function, sequence of functions
ε→0−→ δ; step function

Z(β), Z(β, µ) (grand)canonical partition funcs. (inv.temperature,chem.potential){
S[~x(t)]
S(~x,t)

}
, L(~x, ~̇x) classical action (functional & function forms), Lagrangian

V (~x), ~A(~x) scalar & vector potentials
Sji, Pji,Wji(t) j→ i transition amplitude, probability & rate (time)

Fl, Sl, δl(k) partial wave amplitude, S-matrix & phase shift (|wavevector|)
f~k(
~k ′)≡f~k(ϑ,ϕ) scattering amplitude (direction/angles)

dσ
dΩ(ϑ,ϕ) differential cross section (σ ≡ integral cross section)

Miscellaneous

(1, 2, 3)≡(x, y, z) indices of Cartesian components

~n,
{

(~nx,~ny,~nz)
(~nr,~nϑ,~nϕ)

}
unit vector,

{
Cartesian
spherical

}
orthonormal coordinate vectors

δij, εijk Kronecker & Levi-Civita symbols

Cjm
j1m1j2m2

Clebsch-Gordan coefficient ≡ 〈j1j2jm|j1m1j2m2〉
~, c, e Planck constant, speed of light, elementary charge
M,M; q particle mass & two-particle reduced mass; particle charge
~k, ω, λ wavevector, frequency, wavelength (or perturbation parameter)
εk, nk energies & occupation numbers of single-particle states
{Xi}i∈D,{X(c)}c∈C discrete/continuous set of objects
Min,Max,Sup{Xi}i minimum, maximum, supremum of a set of numbers
• ; iff blind index denoting objects from a given set; if and only if
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INTRODUCTION

Before sailing out, we encourage the crew to get ready for adventures. Quantum
mechanics deals with phenomena, which are rather unusual from our common macro-
scopic experience. Description of these phenomena makes us sacrifice some principles

which we used to consider self-evident.

� Quantum level
Quantum theory describes objects on the atomic and subatomic scales, but also
larger objects if they are observed with an extremely high resolution.

I Planck constant
The domain of applicability of quantum mechanics determined with the aid of

a new constant: ~ .
= 1.05 · 10−34 J·s .

= 0.66 eV·fs (units of action)

I Consider 2 classical trajectories q1(t) & q2(t) (in a general multidimensional
configuration space) which (in the given experimental situation) are on the limit

of distinguishability. The difference of actions: ∆S= |S[q1(t)]−S[q2(t)]|

Classical mechanics
Quantum mechanics

}
applies if the relevant actions satisfy

 ∆S � ~
∆S . ~

In particular, if the minimum

of action measured with resolution
∼ ~ is wide with respect to
distinguishable trajectories,

quantum description is unavoidable.

J Historical remark

1900: Max Planck introduced ~ along with the quanta of electromagnetic radiation
to explain the blackbody radiation law
1905: Albert Einstein confirmed elmag. quanta in the explanation of photoeffect

1913: Niels Bohr introduces a quantum model of atoms (“old quantum mechanics”)

� Double slit experiment

According to Richard Feynman & some others, this is the most crucial quantum

experiment that allows one to realize how unusual the quantum world is.

I Arrangement

Emitter E of individual particles, shield with slits A and B, screen S
Both trajectories ~xA(t) and ~xB(t) from ~xE to ~xS minimize the action



6

Suppose |SA − SB| . ~

I Regimes of measurement

(a) Interference setup: particle position measured only at the screen
⇒ interference pattern with individual particle hits

(b) Which-path setup: prior the screen measurement, the particle position
measured immediately after the slits ⇒ no interference pattern

Delayed-choice experiment: The choice of setup (a)/(b) is made after the

particle passed the slits. The same outcome as if the decision was made before.

Paradox: The outcome of the interference setup indicates a wave-like behavior

of particles (passage through both slits simultaneously). The outcome of the
which-path setup shows a corpuscular behavior (passage through one slit only).
The outcome of the delayed-choice experiment invalidates the possibility that

the particle “changes clothes” according to the setup selected.

J Historical remark
1805 (approx.): Thomas Young performed double-slit experiment with light
1927: C. Davisson & L. Germer demonstrate interference of electrons on crystals

1961: first double-slit experiment with massive particles (electrons)
1970’s: double-slit experiments with individual electrons
1990’s-present: progress in realizations of which-path setup & delayed-choice exp.

� Wavefunction & superposition principle

To explain the outcome of the interference setup of the double-slit experiment,
one has to assume that particles possess some wave properties.

I Particle attributed by a wavefunction: ψ(~x, t) ≡
√
ρ(~x, t) eiϕ(~x,t) ∈ C

Squared modulus |ψ(~x, t)|2 = ρ(~x, t) ≥ 0 is the probability density to

detect the particle at position ~x. Normalization:

∫
|ψ(~x, t)|2 d~x = 1 ∀t

Phase ϕ(~x, t) ∈ R has no “classical” interpretation
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ψ(~x, t) ≡ instantaneous density of the probability amplitude for finding the

particle at various places (particle is inherently a delocalized object!)

I Superposition of wavefunctions

The outcome of the interference setup depends on the fact that waves can be
summed up. Consider 2 wavefunctions ψA(~x, t) & ψB(~x, t)∫
|ψA|2d~x <∞,

∫
|ψB|2d~x <∞ ⇒

∫
|αψA+βψB|2d~x <∞ ∀α, β ∈ C

⇒ any linear combination of normalizable wavefunctions is a normalizable wave-

function ⇒ these functions form a linear vector space L2(R3)

I Interference phenomenon

Probability density for a superposition of waves is not the sum of densities for
individual waves

Choose
{
α=|α|eiϕα
β=|β|eiϕβ

}
such that

∫
|αψA+βψB|2 d~x = 1 (with

{
ψA

ψB

}
normalized)

⇒
∣∣αψA +βψB

∣∣2︸ ︷︷ ︸
ραA+βB

= |αψA|2︸ ︷︷ ︸
|α|2ρA

+ |βψB|2︸ ︷︷ ︸
|β|2ρB

+ 2|αβψAψB| cos(ϕA+ϕα−ϕB−ϕβ)︸ ︷︷ ︸
interference terms

I Description of the interference setup in the double slit experiment

1) Initial wavefunction between emission (t=0) and slits (t=tAB): ψ(~x, t)

2) Wf. at t&tAB (right after the slits): ψ(~x, t+AB) ≈ αδA(~x−~xA) + βδB(~x−~xB)
with δ•(~x−~x•) ≡ wf. localized on the respective slit (δ•=0 away from the slit)

and α, β ≡ coefficients depending on the “experimental details”

3) Wf. at tS=tAB+∆t (just before screen): ψ(~x, tS) ≈ αψA(~x,∆t)+βψB(~x,∆t)
with ψ•(~x,∆t) ≡ the wf. developed from δ•(~x−~x•) in time ∆t

⇒ Distribution on screen: ρ(~xS) ≈ |αψA(~xS,∆t) + βψB(~xS,∆t)|2

I Dirac delta function (mathematical intermezzo)

δ(x) ≡ a generalized function (distribution) ≡ limit of a series of ordinary

functions: δ(x) = lim
ε→0

δε(x) with, e.g.: δε(x)≡
{

1
ε for x∈[− ε2 ,+

ε
2 ]

0 otherwise

⇒ Support [δ(x)] ≡ {x=0} &
+∞∫
−∞

δ(x) dx = 1

Other limiting realizations of δ-function:

δε(x) = 1
π

ε
ε2+x2 (Cauchy or Breit-Wigner form)

δε(x) = 1√
2πε2

e−
x2

2ε2 (Gaussian form)
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δε(x) = 1
π

sin(xε−1)
x

= 1
2π

+ε−1∫
−ε−1

eiqxdq (Fourier transformation of unity)

In 3D space: δ~ε(~x−~x′)︷ ︸︸ ︷
δε1(x1−x′1)δε2(x2−x′2)δε3(x3−x′3)

~ε→0−→
δ(~x−~x′)︷ ︸︸ ︷

δ(x1−x′1)δ(x2−x′2)(x3−x′3)

Defining property in terms of distribution theory:

∫
f(~x)δ(~x−~x ′) d~x = f(~x ′)

I Delocalized wavefunctions

Any wavefunction can be expressed as:

|ψ(t)〉︷ ︸︸ ︷
ψ(~x, t) =

∫
ψ(~x ′, t)

|~x ′〉︷ ︸︸ ︷
δ(~x−~x ′) d~x ′

⇒ general state |ψ(t)〉 ≡ superposition of localized states |~x ′〉 ≡ δ(~x− ~x ′)
with coefficients equal to the respective wavefunction values ψ(~x ′, t)

But note that δ(~x−~x ′) /∈ L2(R3) ⇐ no sense of |δ(~x−~x ′)|2

J Historical remark
1800-10: Thomas Young formulates the superposition principle for waves
1924: Louis de Broglie introduces the concept of particle wavefunction

1926: Erwin Schrödinger formulates wave mechanics
1926: Max Born provides the probabilistic interpretation of wavefunction
1926-32: John von Neumann formulates QM through linear vector spaces

1927-30: Paul Dirac includes into the formulation the δ function
1940’s-60’s: L. Schwarz, I.M. Gelfand, N.Y. Vilenkin work out proper mathematical
background for the generalized functions (distribution theory, rigged Hilbert spaces)

� Quantum measurement

To explain the outcome of the which-path setup of the interference experiment,
one has to assume that in quantum mechanics the measurement has a dramatic

effect on the system: “reduction”,“collapse” of its wavefunction

I Change of the wavefunction in measurement

Example: position measurement detecting the particle (in time t0) within the
box (x′1 ± ε1

2
, x′2 ± ε2

2
, x′3 ± ε3

2
) ⇒ the wavefunction changed:

ψ(~x, t0) delocalized
reduction−−−−−→ ψ(~x, t0+dt) ∝ δ~ε(~x−~x′)ψ(~x, t0) localized

In an ideal (ε→0) measurement:

ψ(~x, t)→ δ(~x−~x′) or |ψ(t)〉 → |~x′〉
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I Description of the which-path setup in the double slit experiment

1) Initial wavefunction: ψ(~x, t)

2) After the slits: ψ(~x, t+AB) ≈ αδA(~x− ~xA) + βδB(~x− ~xB)

3) After which-path measurement: ψ(~x, t++
AB) ≈

{
δA(~x−~xA) probability ≈|α|2
δB(~x−~xB) probability ≈|β|2

4) Before screen: ψ(~x, tS) ≈
{
ψA(~x,∆t) probability ≈|α|2
ψB(~x,∆t) probability ≈|β|2

⇒ Distribution on screen: ρ(~xS) ≈ |α|2|ψA(~xS,∆t)|2 + |β|2|ψB(~xS,∆t)|2

The interference pattern destroyed! This is a direct consequence of the wave-
function collapse caused by the which-path measurement.

J Historical remark
1927: the first explicit note of wavefunction collapse by Werner Heisenberg
1932: inclusion of collapse into the math. formulation of QM by John von Neumann
1930’s-present: discussions about physical meaning of the collapse

� Some general consequences

Already at this initial stage, we can foresee some general features of the “quan-
tum world”, which seem counterintuitive in the classical context.

I Contextuality
Particles show either wave or corpuscular properties, in accord with the specific
experimental arrangement. One may say—in more sweeping manner—that the
observed “reality” emerges during the act of observation. The actual result
depends on a wider “context” of the physical process that is investigated.

I Quantum logic
An attempt to assign the strange properties of the quantum world to a non-
classical underlying logic. In the double slit experiment it can be introduced
via the following “propositions”:

A ≡ passage through slit A
B ≡ passage through slit B

}
→ S ≡ detection at given place of screen

Different outcomes of interference & which-path setups indicate the inequality:

(A ∨B) ∧ S︸ ︷︷ ︸
interference setup

6= (A ∧ S) ∨ (B ∧ S)︸ ︷︷ ︸
which−path setup

⇒ violation of a common logic axiom

I Rule for general branching processes with alternative paths A & B:

Probability that the system passed through the branching (real or “logical”)
while its path has not been detected depends on whether the paths can/cannot,
in principle, be distinguished (e.g., by a delayed or more detailed measurement):
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Indistinguishable paths ⇒ sum of amplitudes ψA∨B ∝ ψA + ψB

Distinguishable paths ⇒ sum of probabilities (densities) ρA∨B ∝ ρA + ρB

J Historical remark
1924-35: Bohr (Copenhagen) versus Einstein debate. Niels Bohr defends a “subjec-

tive” approach (with the observer playing a role in the “creation” of reality)
1936: Garrett Birkhoff and John von Neumann formally introduce quantum logic
1920’s-present: Neverending discussions on the interpretation of quantum physics

1. FORMALISM ! 2. SIMPLE SYSTEMS

Quantum mechanics has rather deep mathematical foundations. Such that the in-
terpretation of abstract formalism in terms of “common sense” becomes a nontrivial
issue. This may lead some of us to philosophical meditations about the link of phys-

ical theory to reality. Here we focus mostly on mastering the theory on a technical
level. Elements of the abstract formalism are outlined in Chapter 1, while their
simple concrete applications are sketched in Chapter 2. To keep a link between the

Geist and Substanz, we present these chapters in an alternating, entangled way.

1.1 Space of quantum states

Any theory starts from identification of the relevant attributes of the system under
study which are necessary for its unique characterization. In physical theories, these

attributes represent specific mathematical entities which fill in some spaces.

� Hilbert space

The formalism of quantum theory is based on mathematics matured at the be-

ginning of 20th century. The essential idea turned out to be the following: to
capture quantum uncertainty, distinct states of a system cannot be always per-
fectly distinguishable. The states must show some “overlaps”. This is exactly

the property of vectors in linear spaces.

I State of a physical system

State ≡ a “complete” set of parameters characterizing the physical system.
The set does not have to be exhaustive (determining all aspects of the given

system), but it has to be complete in the sense of autonomous determinism:
the knowledge of state at a single time (t=0) suffices to uniquely determine the
state at any time (t >< 0).
Let |ψ〉 denote a mathematical entity describing an arbitrary physical state ψ of
a given quantum system (shortcut: |ψ〉 ≡ “a state”). LetH be a system-specific
space of all such entities.
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I Requirement 1: H supports the superposition principle

|ψ1〉, |ψ2〉 ∈ H and α, β ∈ C ⇒ |ψ〉 = α|ψ1〉+ β|ψ2〉 ∈ H
⇒ H is a complex vector space

Scaling |ψ′〉 = α|ψ〉 has no physical consequences: states = rays of vectors

I Requirement 2: H supports a scalar product 〈ψ1|ψ2〉 ∈ C
Properties: 〈ψ1|ψ2〉=〈ψ2|ψ1〉∗, 〈ψ1|αψ2+βψ3〉=α〈ψ1|ψ2〉+β〈ψ1|ψ3〉, 〈ψ|ψ〉≥0

Norm: ||ψ||2 ≡ 〈ψ|ψ〉
⇒ Distance: d2(ψ1, ψ2) ≡ ||ψ1 − ψ2||2 = 〈ψ1|ψ1〉+ 〈ψ2|ψ2〉 − 2Re〈ψ1|ψ2〉
⇒ Normalized state vector: 〈ψ|ψ〉 = 1

Schwarz inequality: |〈ψ1|ψ2〉|2 ≤ 〈ψ1|ψ1〉︸ ︷︷ ︸
1

〈ψ2|ψ2〉︸ ︷︷ ︸
1Why we need scalar product:

Outcomes of measurements on a quantum system are in general indeterminis-

tic (described in the probabilistic way, see Sec. 1.2). A single measurement does
not allow one to uniquely determine the state. Quantum amplitude & prob-
ability to identify state |ψ2〉 with |ψ1〉 or vice versa (for ||ψ1||=||ψ2||=1) in an

“optimal” single measurement: Aψ1
(ψ2) ≡ 〈ψ1|ψ2〉︸ ︷︷ ︸

amplitude

Pψ1
(ψ2) ≡ |〈ψ1|ψ2〉|2︸ ︷︷ ︸

probability

Consequence: States |ψ1〉,|ψ2〉 are perfectly
distinguishable iff orthogonal

General QM terminology:
amplitude A ∈ C
probability |A|2 ≡ P ∈ [0, 1]

I Requirement 3: H is complete (for “security” reasons)

∀ converging sequence of vectors the limit ∈ H
I 1)+2)+3)⇒ Postulate: space of physical states H = Hilbert space

I H is separable if ∃ countable (sometimes finite) basis of vectors

Systems with finite particle numbers, subspaces of selected degrees of freedom

{|φi〉}i ≡ an orthonormal basis 〈φi|φj〉 = δij ⇒
Each state |ψ〉 can be expressed as a complex
superposition of an enumerable set of basis states |φi〉

|ψ〉 =
∑
i

〈φi|ψ〉︸ ︷︷ ︸
αi

|φi〉

I H is nonseparable if it has no countable basis

Systems with unbounded particle numbers, quantum fields, continuum
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I Any separable H is isomorphic with `2

Definition of the `2 space: infinite “columns” |ψ〉 ≡
(
α1
α2

...

)
with

∞∑
i=1

|αi|2 <∞

Mapping H → `2: components αi associated with expansion coefficients 〈φi|ψ〉
of |ψ〉 in a given basis

Superpositions a|ψ〉+b|ψ′〉 mapped onto

(
aα1+bα′1
aα2+bα′2

...

)
Scalar product represented by: 〈ψ|ψ′〉 ≡

∑
i

α∗iα
′
i = ( α∗1,α∗2,... )

(
α′1
α′2
...

)
J Historical remark

1900-10: David Hilbert (with E. Schmidt) introduces the ∞-dimensional space of
square-integrable functions and elaborates the theory of such spaces
1927: John von Neumann (working under Hilbert) introduces abstract Hilbert spaces

into QM (1932: book Mathematische Grundlagen der Quantenmechanik)

� Rigged Hilbert space

Although the standard Hilbert space is sufficient for consistent formulation of
QM, we will see soon (Sec. 2.1) that its suitable extension is very helpful.

I Hierarchy of spaces based on H ≡ `2

H ≡ sequences |ψ〉 with
∑
i

|αi|2im <∞ for m = 0, 1, 2, . . . (dense subset of `2)

H (conjugate space to H) ≡ sequences |ψ〉 for which 〈ψ′|ψ〉 <∞ ∀|ψ′〉 ∈ H
⇒
∑
i

α′∗i αi <∞ ⇒
∑
i

|αi|2 1
im <∞ ⇒ |αi|2 may polynomially diverge

These are linear vector spaces but not Hilbert spaces:
H is not complete

H does not have scalar product

The smaller is H, the larger is H
I Gelfand triplet (“sandwich”)

H ⊂ H ⊂ H ≡ “rigged Hilbert space”

It turns out that solutions of some basic quantum problems /∈ H but ∈ H,
while the definition domain of some quantum operators is not H but H

� Dirac notation

Physicists are proud to master a symbolic technique that makes some involved
mathematical reductions much easier to follow. Although the “bra-ket” formal-
ism is not always fully rigorous, it is extremely efficient especially when dealing
with the action of linear operators in Hilbert spaces.
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I Kets & bras

∀ vector |ψ〉, called “ket”, there ∃ a linear functional Fψ ≡ 〈ψ|, called “bra”,

such that the value assigned to a vector |φ〉 is: Fψ(φ) ≡ 〈ψ|φ〉 (“bra-c-ket”)

Superposition principle for bras: α〈ψ1|+β〈ψ2| ≡ 〈α∗ψ1+β∗ψ2|
The space of bras is isomorphic with the space of kets ≡ H

Matrix form: 〈ψ| ≡ ( α∗1,α∗2,... )

(
α1
α2

...

)
≡ |ψ〉

I Linear operators

Linear operators play a very important role in QM. They will be subject to
systematic study from Sec. 1.2. Here we just introduce basic notions.

Linear operator Ô|ψ〉 = |ψ′〉 ≡ mapping H → H such that:
Ô(α|ψ1〉+β|ψ2〉) = α|ψ′1〉+β|ψ′2〉

⇒ Ô defined through its action on any basis: {|φi〉}dHi=1
Ô−→ {|φ′i〉}

dH
i=1

⇒ Ô|ψ〉 =
dH∑
i=1

〈φi|ψ〉︸ ︷︷ ︸
αi

Ô|φi〉︸ ︷︷ ︸
|φ′i〉

=
dH∑
i=1

|φ′i〉〈φi|ψ〉 ⇒
Ô ≡

dH∑
i=1

|φ′i〉〈φi|

Each term |φ′i〉〈φi| represents action of Ô on |φi〉
Expression via |φj〉〈φi| obtained by using the {|φi〉}

Î−→{|φi〉} operator:

dH∑
i=1

|φi〉〈φi| = Î ≡ unity operator ⇒ Ô︸︷︷︸
ÎÔÎ

=

dH∑
i=1

dH∑
j=1

〈φj|Ôφi〉︸ ︷︷ ︸
〈φj |Ô|φi〉≡Oji

|φj〉〈φi|

Matrix form: Ô ≡
(
O11 O12 ...
O21 O22

... ...

)
I Projectors

Linear operators satisfying P̂ 2 = P̂ (repeated projection is redundant)

Let {|φi〉}d0

i=1 ≡ orthonormal basis of a subspace
H0 ⊂ H〈φi|φj〉 = δij

P̂0 =

d0∑
i=1

|φi〉〈φi| is a projector to H0:

P̂0|ψ〉
{

= 0 for |ψ〉⊥H0

∈ H0 otherwise

Projector to the whole H is P̂H =
dH∑
i=1

|φi〉〈φi| = Î

(completeness)

PH0
(ψ) ≡ 〈ψ|P̂0|ψ〉 =

d0∑
i=1

|〈φi|ψ〉|2 ≡ probability to identify the given state |ψ〉
with an arbitrary state ∈ H0 (cf. Sec. 2.1)

Matrix form: In an orthonormal basis such that {|φi〉}dHi=1 ⊃ {|φi〉}
d0

i=1 the pro-
jector expressed as a diagonal matrix:

P̂0 =
∑
i

(
...
•i
...

)
( ... •i ... ) =

( •1 0 ...
0 •2
... .. .

)
with
•i=0 or 1



14

J Historical remark

1930: Paul Dirac writes the book The Principles of Quantum Mechanics, which
provides a more intuitive (compared to von Neumann) path to quantum theory,
using non-normalizable vectors and δ function (bra-kets in 3rd edition 1947)

1950-60’s: I.M. Gelfand & N.Y. Vilenkin introduce rigged Hilbert spaces, putting
Dirac’s approach on more rigorous grounds. Systematic use in QM since 1966 (by
A. Böhm et al.) but up to now rather scarce

� Summing Hilbert spaces

One can combine one or more Hilbert spaces in the manner of summation. The

resulting space then contains the summed spaces as ordinary subspaces.

I Direct sum

Let {|φ1i〉}d1

i=1 be an orthonormal basis of H1 and {|φ2i〉}d2

i=1 one of H2

Direct sum H = H1 ⊕H2 is a space with the basis |Φki〉 =
{
|φ1i〉 for k=1
|φ2i〉 for k=2

Dimension: dH = d1 + d2 Orthonormality: 〈Φki|Φk′i′〉 = δkk′δii′

Any |Ψ〉 =
∑
k,i

αki|Φki〉 ∈ H is a sum |Ψ〉 =

d1∑
i=1

α1i|φ1i〉︸ ︷︷ ︸
|ψ1〉≡P̂1|Ψ〉∈H1

+

d2∑
j=1

α2j|φ2j〉︸ ︷︷ ︸
|ψ2〉≡P̂2|Ψ〉∈H2I Projector to the subspace Hk (k = 1, 2)

P̂k =
∑
i

|Φki〉〈Φki| ⇒
{

orthogonality : P̂1P̂2 = P̂2P̂1 = 0

completeness : P̂1 + P̂2 = ÎH

I Scalar product: 〈Ψ|Ψ′〉H = 〈ψ1|ψ′1〉H1
+ 〈ψ2|ψ′2〉H2

I Finite-dim. representation: |ψ1〉 =

( α11

...
α1d1

)
, |ψ2〉 =

( α21

...
α2d2

)
⇒ |Ψ〉 =


α11

...
α1d1.........
α21

...
α2d2


I Multiple sums: H =

n⊕
i=1
Hi

For instance, Hi = subspaces with different sharp values of a certain observable

� Multiplying Hilbert spaces

Hilbert spaces can also be combined in the manner of multiplication. This
commonly happens in composite quantum systems which consist of distinct
degrees of freedom. The multiplication is a rather interesting operation since

it allows one to create physical states with no analogue in the classical world.

I Direct (tensor) product

Let {|φ1i〉}d1

i=1 be an orthonormal basis of H1 and {|φ2j〉}d2

j=1 one of H2
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Tensor product H = H1 ⊗H2 has “dyadic product” basis |Φij〉 ≡ |φ1i〉|φ2j〉
Note: non-product bases can also be constructed

Dimension: dH = d1 × d2 Orthonormality: 〈Φij|Φi′j′〉 = δii′δjj′

I Factorized states
∀ pair |ψ1〉 =

∑
i

αi|φ1i〉 ∈ H1 and |ψ2〉 =
∑
j

βj|φ2j〉 ∈ H2 there ∃ product state

|Ψ⊗〉 ≡ |ψ1〉 ⊗ |ψ2〉︸ ︷︷ ︸
≡|ψ1〉|ψ2〉

=

d1∑
i=1

d2∑
j=1

αiβj︸︷︷︸
γij

|Φij〉
For factorized states :

〈Ψ⊗|Ψ′⊗〉H = 〈ψ1|ψ′1〉H1
× 〈ψ2|ψ′2〉H2

I Entangled states

Almost all states in H1 ⊗H2 ≡ unfactorizable superpositions

|Ψ〉 =

d1∑
i=1

d2∑
j=1

γij︸︷︷︸
6=αiβj

|Φij〉 6= |ψ1〉|ψ2〉
For entangled states :

〈Ψ|Ψ′〉H 6= 〈ψ1|ψ′1〉H1
× 〈ψ2|ψ′2〉H2

I Multiple products: H =
n⊗
i=1
Hi

I The use in QM

Hilbert space H of a composite system is the ⊗ product of partial spaces Hi

Hi = spaces corresponding to different parts of the system (e.g. particles) or
to different dynamical variables (e.g., spatial and spin degrees of freedom)

Entangled state vectors correspond to non-classical situations in which only the

whole system and not its individual parts are attributed by a pure quantum-
mechanical state (the subsystems can, however, be characterized by a mixed
state, see Sec. 1.7). Entanglement represents a purely quantum correlation.

I More & less precise notations: |ψ〉 ∈ Hi is denoted as |ψ〉i
n⊗
i=1
Hi 3 |ψ1〉1⊗|ψ2〉2. . .⊗|ψn〉n ≡ |ψ1〉1|ψ2〉2 . . . |ψn〉n ≡ |ψ1〉|ψ2〉 . . . |ψn〉

2.1 Examples of quantum Hilbert spaces

In the following, we describe specific state spaces for particles with spin 0 and 1
2, and

the spaces assigned to collections of such particles. We will meet another essentially
quantum phenomenon—indistinguishability of particles.

� Single structureless and spinless particle

Particles with no internal degrees of freedom are described by ordinary scalar
wavefunctions (cf. Introduction).
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I Wavefunctions |ψ〉 ≡ ψ(~x) ∈ H ≡ L2(R3) 〈ψ| ≡ ψ∗(~x)

Scalar product: 〈ψ1|ψ2〉 ≡
∫
ψ∗1(~x)ψ2(~x) d~x︸ ︷︷ ︸

Cartesian

≡
∫
ψ∗1(~y)ψ2(~y)

∣∣∣Det∂(x1...x3)
∂(y1...y3)

∣∣∣ d~y︸ ︷︷ ︸
curvilinear coordinates

Expansion of ψ(~x) in any discrete basis of orthonormal functions φi(~x)
⇒ isomorphism with `2

I Rigged Hilbert space of wavefunctions

Localized states δ(~x−~x ′) /∈ L2(R3) and plane waves ei
~k·~x /∈ L2(R3)

Define a triple H ⊂ H ⊂ H with (in 1D case)

H ≡ dense subset of functions:
+∞∫
−∞
|ψ(x)|2(1 + |x|)mdx <∞ for m = 0, 1, 2, . . .

H ≡ functions satisfying
+∞∫
−∞

ψ′∗ψ dx <∞ ∀ψ′ ∈ H (includes also polynomially

diverging functions, plane waves and δ-functions)

J Historical remark

1926: Erwin Schrödiger formulates QM in terms of wavefunction and Max Born
develops its probabilistic interpretation

� Single structureless particle with spin 1
2

Electrons, e.g., are particles with spin 1
2
. Their state space is formed by spinors,

which represent the simplest generalization of scalar wavefunctions.

I Spin = internal angular momentum of a particle. For elementary (point-

like) particles, it is a genuinely quantum property (general description of angu-
lar momentum in QM will be developed in Secs. 2.2, 2.3, and 4)

I The lowest nonzero spin is denoted as 1
2 and has only 2 possible projections

(spin states) in any spatial direction (conventionally direction z):

spin up sz = +1
2~ ⇒ | ↑〉 ≡ ( 1

0 )
spin down sz = −1

2
~ ⇒ | ↓〉 ≡ ( 0

1 )

}
⇒ general state

|ψ〉 = α| ↑〉+ β| ↓〉 ≡ ( αβ )

Spin Hilbert space H ≡ C2 with 〈ψ1|ψ2〉 ≡ ( α∗1,β∗1 )
( α2

β2

)
= α∗1α2 + β∗1β2

I Combining spin with the spatial degrees of freedom:

direct product of “spatial” and “spin” Hilbert spaces: H ≡ L2(R3)⊗ C2

Expansion of a general state: |ψ〉 =
∑
i

[
αiφi(~x)| ↑〉+ βiφi(~x)| ↓〉

]
=
∑
i

( αi
βi

)
φi(~x) =

(∑
i

αiφi(~x)∑
i

βiφi(~x)

)
=
(
ψ↑(~x)
ψ↓(~x)

)
≡ Ψ(~x) ≡ ψ(~x, ms︸︷︷︸

± 1
2

) spinor
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Spinor ≡ two-component wavefunction ≡ wavefunction with continuous + dis-

crete 2-valued variables (for transformation properties of spinors under rota-
tions see Sec. 2.4)

I Scalar product: 〈ψ|ψ′〉≡
∫

(ψ∗↑(~x),ψ∗↓(~x))
(
ψ′↑(~x)

ψ′↓(~x)

)
d~x=

∑
ms

∫
Ψ∗(~x,ms)Ψ

′(~x,ms)d~x

J Historical remark

1922: O. Stern & W. Gerlach observe the first indication of spin
1924: Wolfgang Pauli introduces “two-valued quantum degree of freedom” and for-
mulates the exclusion principle (see below), in 1927 he introduces spinors
1925: R. Kronig and G. Uhlenbeck & S. Goudsmit provide an interpretation of spin

in terms of intrinsic rotation (refused at that time)

� Two or more distinguishable structureless particles with spin 1
2

We are ready to construct state spaces for collections of particles. At first we
assume that the particles are of different types—distinguishable. We assume

particles with spin 1
2, but the same procedure can be applied regardless of spin.

I H1, H2, . . .HN= Hilbert spaces of individual particles: Hi = L2(R3)⊗ C2

H(N) ≡ H1 ⊗H2 ⊗ · · · ⊗ HN Wavefunction Ψ(~x1,m1︸ ︷︷ ︸
ξ1

, ~x2,m2︸ ︷︷ ︸
ξ2

, . . . ~xN ,mN︸ ︷︷ ︸
ξN

)

Scalar product

〈ψ|ψ′〉 ≡
∑
m1

· · ·
∑
mN

∫
d~x1 . . .

∫
d~xN Ψ∗(~x1,m1, . . . ~xN ,mN)Ψ′(~x1,m1, . . . ~xN ,mN)

I Probability expressions

The wavefunction Ψ(ξ1 . . . ξN) lives in the multidimensional configuration space

containing all generalized coordinates ξi ≡ (~xi,mi) of individual particles. It
contains all mutual correlations between the particles and allows one to extract
two extremal types of probability distributions:

(a) Joint probability density to find particle #1 at ξ1 . . . particle #N at ξN

ρ(ξ1 . . . ξN) ≡ |Ψ(ξ1 . . . ξN)|2 (contains all particle correlations)

Normalization:
∫
...
∫
ρ(ξ1...ξN) dξ1...dξN = 1

(b) Integrated probability density to find any of particles at ξ

ρ(ξ) =
1

N

N∑
i=1

∫
. . .

∫
︸ ︷︷ ︸

N−1

|Ψ(ξ1...ξi−1 ξ︸︷︷︸
i

ξi+1...ξN)|2 dξ1...dξi−1dξi+1...dξN

Normalization
∫
ρ(ξ) dξ = 1
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� Two indistinguishable particles

We are coming to the problem of indistinguishable particles. In quantum me-
chanics, if two particles are the same, there exists really no way to distinguish

them. One cannot, for instance, think on virtual numbers associated with them.
We start the analysis with the case of just two indistinguishable particles.

I Two distinguishable particles: Ψ(ξ1, ξ2) ≡ |Ψ〉 ∈ H(2) ≡ H1 ⊗H2

Introduce particle exchange operator: Ê1�2Ψ(ξ1, ξ2) = Ψ(ξ2, ξ1) with Ê2
1�2=Î ,

i.e., in Dirac notation: |Ψ〉 =
∑
ij

αij|φi〉1|φj〉2 ⇒ Ê1�2|Ψ〉 =
∑
ij

αij|φj〉1|φi〉2

I For indistinguishable particles we require that the exchange only affects the

phase: Ê1�2|Ψ〉 = eiϕ|Ψ〉 and that two subsequent exchanges yield the original

state: e2iϕ = 1

⇒
{

bosons ϕ = 0

fermions ϕ = π

Ψ(ξ1, ξ2) = +Ψ(ξ2, ξ1)

Ψ(ξ1, ξ2) = −Ψ(ξ2, ξ1)

symmetric

antisymmetric

I Any 2-body wavefunction decomposed into symmetric & antisymmetric parts

Ψ(ξ1, ξ2) = 1
2

[
Ψ(ξ1, ξ2) + Ψ(ξ2, ξ1)

]︸ ︷︷ ︸
P̂+Ψ(ξ1,ξ2)

+ 1
2

[
Ψ(ξ1, ξ2)−Ψ(ξ2, ξ1)

]︸ ︷︷ ︸
P̂−Ψ(ξ1,ξ2)

P̂+ and P̂− = projectors to the symmetric and antisymmetric subspaces

P̂+ + P̂− = Î ⇒ H(2) = H(2)
+ ⊕H

(2)
−

Dirac notation: P̂±|Ψ〉 =
∑
ij

αij
1
2

[
|φi〉1|φj〉2 ± |φj〉1|φi〉2

]
I Pauli principle: P̂−|ψ〉1|ψ〉2 = 0

⇒ Two/more fermions cannot occur in the same single-particle state. Each

such a state can be occupied at most by one fermion. This has tremendous
consequences for the structure of matter! “Without Pauli principle, the world
would be a boring place” (probably with no bored creature present).

I Interference effects caused by indistinguishability

Two distinguishable particles in a separable state: Ψ(ξ1, ξ2) = ψ1(ξ1)ψ2(ξ2)

Normalized particle density: ρ(ξ) = |ψ1(ξ)|2︸ ︷︷ ︸
ρ1(ξ)

+ |ψ2(ξ)|2︸ ︷︷ ︸
ρ2(ξ)

⇒ no interference

For indistinguishable particles: P̂±Ψ(ξ1, ξ2) ∝ ψ1(ξ1)ψ2(ξ2)± ψ1(ξ2)ψ2(ξ1)
(no more separable!)
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ρ(ξ) ∝ ρ1(ξ) + ρ2(ξ)± 2Re [〈ψ1|ψ2〉ψ1(ξ)∗ψ2(ξ)] ⇒ interference for 〈ψ1|ψ2〉 6=0

The indistinguishability affects the density ρ(ξ) if the states ψ1(ξ1) and ψ2(ξ2)

of individual particles have a nonzero overlap (⇒ no effect e.g. for very distant
particles or for particles with opposite spins).

� Many indistinguishable particles

It is straightforward (but a bit more laborious) to generalize the above results
to N>2 indistinguishable particles. Particle permutations are decomposed into

pairwise exchanges, the states of identical bosons (fermions) being identified
with symmetric (antisymmetric) subspaces with respect to these exchanges. A
general theory of bosonic & fermionic systems will be elaborated in Chapter 7.

I N distinguishable particles: Ψ(ξ1, . . . ξN) ≡ |Ψ〉 ∈ H(N) ≡ ⊗Nk=1Hk

Basis: |φi1〉1|φi2〉2 . . . |φiN 〉N ≡ |Φi1i2...iN 〉 with ik = 1, 2, 3, . . .

I Particle exchange operators: Êk�l|Φi1...ik...il...iN 〉 = |Φi1...il...ik...iN 〉
Particle permutations: (1, 2, . . . N) 7→ (kπ1 , k

π
2 , . . . k

π
N) with π = 1, . . . N !

Permutation operators: Êπ|Φi1i2...iN 〉 = |Φikπ
1
ikπ

2
...ikπ

N
〉

Êπ = products of Êk�l ⇒ odd/even number of factors⇒ odd/even permutation

Permutation sign σπ =

{
+ for even permutation
− for odd permutation

I Hilbert space decomposition

H(N) = H(N)
+ ⊕ · · · ⊕ H(N)

−

where the fully symmetric (+) and fully antisymmetric (−) subspaces satisfy:

Êπ|Ψ〉 = +|Ψ〉 ∀|Ψ〉 ∈ H(N)
+ and Êπ|Ψ〉 = σπ|Ψ〉 ∀|Ψ〉 ∈ H(N)

−

Postulate: Hilbert space
for N identical particles is

either H(N)
+ (for bosons)

or H(N)
− (for fermions)

P̂+ = 1
N !

N !∑
π=1
Êπ

P̂− = 1
N !

N !∑
π=1

σπÊπ

projector to H(N)
+

projector to H(N)
−

P̂ 2
±= P̂±

P̂+ + P̂− 6= Î : the rest of the space, (Î−P̂+−P̂−)H, contains mixed symmetry
subspaces (corresponding e.g. to mixtures of several types of identical particles)

I Expression of a basis in the fermionic space through Slater determinant:

P̂−

[
|φ1〉1|φ2〉2 . . . |φN〉N

]
︸ ︷︷ ︸

|Φ12...N 〉

=
1

N !
Det

 |φ1〉1 |φ1〉2 ... |φ1〉N
|φ2〉1 |φ2〉2 ... |φ2〉N

... ...
...

|φN 〉1 |φN 〉2 ... |φN 〉N

 An analogous expression
(symmetrized ⇒ not the

determinant) can be given
also for bosons (Sec. 7.1)
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Slater-determinant states originate from separable states in the space of dis-

tinguishable particles, therefore the determinant states carry just a minimal
unavoidable entanglement caused by indistinguishability of particles. Slater-
determinant states form a basis in H(N)

− ⇒ general N -body fermionic state

can be expressed as a superposition of such states.

J Historical remark
1924: S.N. Bose derives Planck blackbody law from indistinguishability of photons

1924: Wolfgang Pauli formulates the exclusion principle to explain periodic table
1926: Werner Heisenberg and Paul Dirac relate Pauli principle to antisymmetric
wavefunctions and Bose-Einstein statistics to symmetric wavefunctions. Dirac and

Enrico Fermi derive statistical law for “fermions”
1927: D. Hartree & Vladimir Fock derive approximation for atomic N -electron wave-
functions, in 1929 J. Slater facilitates the description by using the determinant
1939-50: M. Fierz, W. Pauli, J. Schwinger provide proofs (within the relativistic

quantum theory) of the general theorem relating the “type of statistics” to spin

� Systems with unbounded number of particles

At last, we come to the case in which the particle number is not fixed. Indeed,
if special relativity is taken into account, particles can be repeatedly created

and annihilated, conserving the total energy ⇔ mass of the system. It turns
out that with no upper bound on the particle number we leave the safe harbor
of separable Hilbert spaces and face the limitless ocean of continuum. This is

a transition to the field theory. Work with the Fock space within the nonrela-
tivistic QM will be practiced in Sec. 6.

I Fock space

Sum of spaces for all particle numbers N = 0, 1, 2, 3, . . .

H ≡ H(0)︸︷︷︸
vacuum |0〉

⊕ H(1)︸︷︷︸
1 particle

⊕ H(2)
•︸︷︷︸

2 particles

· · · ⊕ H(N)
•︸ ︷︷︸

N particles

⊕ · · · · · ·

This applies for distinguishable/indistinguishable
particles of the same type:

H(N)
• ≡


H(N)

+ indistinguishable bosons

H(N)
− indistinguishable fermions

H(N) distinguishable particles

I Separability versus non-separability

In non-relativistic QM it is assumed that the
actual number of particles N is unlimited but finite.
The set of basis vectors subject to this constraint is countable.
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It is therefore usually asserted that the Fock space is separable.

However, the “closure” of the Fock space including H(∞)
• is non-separable!

Rasoning: basis states |Φi1i2...〉 ≡ |φi1〉1|φi2〉2..... for N=∞ are specified by an
infinite number of integer indices i1, i2, .... identifying basis states of individual

particles. This set is uncountable for the same reason why real numbers (infinite
sequences of digits) are uncountable (see Cantor’s “diagonal slash” argument).

J Historical remark

1932: V. Fock introduced the space for indefinite particle number
1958: Paul Dirac relates the Fock space to field quantization & continuum problems

1.2 Representation of observables

Our next task is to let observables into the Hilbert space and to predict results of ac-
tual measurements. In classical mechanics, observables were just ordinary functions
on the phase space. In quantum mechanics, the thing is more complicated since—as

we know from experiments—many observables yield discrete values and results of
measurements are generally indeterministic. We need a mathematical tool capable
to cope with these unusual properties.

� Operators associated with observables

Associated with each state vector |ψ〉∈H there must be a probability distribu-
tion pψ(a) characterizing all possible measurement outputs {a} of any physical
quantity A. A suitable path to obtain such distributions proceeds via the as-

sociation of each quantity A with an operator Â, which represents a specific
mapping H 7→ H. We first present a plausible (but not unique) motivation for
launching out in this direction and then briefly outline some subtleties of the

operator theory that will be needed for mastering the QM formalism.

I Moments of statistical distribution

Observable A → values a (potential measurement outcomes)
Measurement of A on system in state |ψ〉 → probability distribution pψ(a)
of outcomes, which is uniquely associated with statistical moments

〈A1〉ψ, 〈A2〉ψ, 〈A3〉ψ, . . . 〈An〉ψ ≡
∫
anpψ(a) da

I Calculation of moments via operators

Postulate: Observable A is associated with an operator Â acting on H

Â|ψ〉≡|Âψ〉 ≡|ψ′〉∈H Powers of operator: Ân|ψ〉≡ÂÂ . . . Â︸ ︷︷ ︸
n times

|ψ〉≡|Ânψ〉∈H

Moments of pψ(a) calculated as 〈An〉ψ = 〈ψ|Ânψ〉
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I Requirements upon Â (should be considered as a part of the postulate)

(a) Linearity Â
(
α|ψ1〉+β|ψ2〉

)
= αÂ|ψ1〉+βÂ|ψ2〉

⇒ representation by matrices: Â =

(
A11 A12 ...
A21 A22

... ...

)
(b) Hermiticity 〈ψ1|Âψ2〉 = 〈Âψ1|ψ2〉 = 〈ψ2|Âψ1〉∗ ⇒ 〈ψ|Ânψ〉 ∈ R

⇒ Aij = A∗ji for i 6=j and Aii ∈ R
Hermiticity is sufficient (not necessary) condition for 〈An〉ψ being real

I Definition domain: Operator Â defined on Def(Â) ⊆ H

For physics purposes it often suffices if Def(Â) ≡ a dense subset H ⊂ H
(cf. rigged Hilbert space)

I Operator norm: ||Â||2 ≡ Sup
{
〈Âψ|Âψ〉
〈ψ|ψ〉

}
|ψ〉∈Def(Â)

||Â|| <∞ for bounded operators, ||Â|| =∞ for unbounded operators

I Hermitian adjoint operator

Â† such that: 〈ψ1|Âψ2〉=〈Â†ψ1|ψ2〉 =〈ψ2|Â†ψ1〉∗
{
∀|ψ2〉∈Def(Â)

∀|ψ1〉∈Def(Â†)⊇Def(Â)

Matrix representation: Â† =

( A∗11 A
∗
21 ...

A∗12 A
∗
22

... ...

)
≡ ÂT∗

I Hermitian vs. selfadjoint operators

Hermitian (symmetric) operator: Â|ψ〉 = Â†|ψ〉 ∀|ψ〉 ∈ Def(Â)

Selfadjoint operator: Â = Â† with Def(Â) = Def(Â†) ⊆ H
I Function of operator
Only functions expressible as Taylor series: f(x) =

∑
k

fk x
k

(more general def. below)
f(Â) ≡

∑
k

fk Â
k fk ∈ R⇒ f(Â) Hermitian

I Tensor products of operators

Let us have: Â1 acting on H1: Â1|φ1i〉≡|φ′1i〉 & Â2 acting on H2: Â2|φ2j〉≡|φ′2j〉

We define Â ≡ Â1 ⊗ Â2 acting on H = H1 ⊗H2:

Â|ψ〉 ≡ Â
[∑
i,j

γij

|Φij〉︷ ︸︸ ︷
|φ1i〉|φ2j〉

]
=
∑
i,j

γij

|Φ′ij〉︷ ︸︸ ︷
|φ′1i〉|φ′2j〉

Possible extension of Â1 to H1⊗H2: Â
(ext)
1 ≡ Â1 ⊗ Î2 (Î2 ≡ unit. op. inH2)

The same for extension Â2 → Â
(ext)
2
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� Eigenvalues and eigenvectors of Hermitian operators

The key characteristic of any operator in the Hilbert space is its spectrum
of eigenvalues and the set of the corresponding eigenvectors. Not only these

eigensolutions constitute a subject of an involved mathematical theory, they
also play the most essential role in the formulation of quantum mechanics.

I “Dispersion-free” states

Consider a state |ψ〉 in which the observable A yields a sharp value:

〈〈A2〉〉ψ ≡ 〈A2〉ψ−〈A〉2ψ
!

= 0
〈ψ|Â2ψ〉−〈ψ|Âψ〉2=0 ⇒ 〈ψ|[Â−〈A〉ψÎ ]2ψ〉=0

⇒ [Â−〈A〉ψÎ ]|ψ〉 = 0 ⇒ Â|ψ〉 = a|ψ〉
⇒ |ψ〉 eigenvector and a = 〈A〉ψ eigenvalue of operator Â

For Â = Â† the eigenvalues a ∈ R

Postulate: {possible measurement outcomes of A } ≡ { eigenvalues of Â }
i.e., each possible value a has its associated dispersion-free state |a〉

We will use a “stammering” notation: Â|a〉 = a|a〉

IOrthogonality of eigenvectors with different eigenvalues (for Hermitian op.)

Â|a〉 = a|a〉
∣∣〈a′|

Â|a′〉 = a′|a′〉
∣∣〈a|

}
⇒ (a′ − a)︸ ︷︷ ︸

6=0

〈a|a′〉 = 0⇒ 〈a|a′〉 = 0

⇒ Eigenstates with different eigenvalues are perfectly distinguishable

I Degeneracy

It can happen that a single eigenvalue a has n ≥ 2 linearly independent eigen-

vectors {|a; k〉}nk=1. Then all linear combinations are eigenvectors with the same
eigenvalue a: Â

( n∑
k=1

αk|a; k〉
)

= a
n∑
k=1

αk|a; k〉

⇒ Ha ≡ Span{|a; 1〉, . . . |a;n〉} ≡ degeneracy subspace

with dHa ≡ da = nmax maximal number of linearly independent eigenvectors

⇒ ∃ an orthonormal basis {|a(k)〉}dak=1 of Ha 〈a(k)|a(l)〉 = δkl

I Eigensolutions for finite dimension

Â|a〉 = a|a〉 ⇒ (Â− aÎ)|a〉 = 0
For dimension dH < ∞ the last relation represents a finite set (number = dH)
of linear equations with null right-hand side. The solution exists iff :

Det(Â− aÎ) = 0
polynomial equation of order dH in the variable a
⇒ ∃ dH solutions a = ai (with i=1,...dH)



24

For Â= Â† there ∃ dH lin. independent vectors solving

(
A11−a A12 ...
A21 A22−a
... .. .

)(
α1
α2

...

)
=0

Degeneracy ≡ equality of n≥2 eigenvalues: ai1=···=ain≡a with lin. independent
eigenvectors {|ai1〉, ...|ain〉} forming the degeneracy subspace Ha with da=n

I Completeness for finite dimension

Eigenvectors {|a(k)
i 〉}i,k of any Hermitian operator Â form an orthonormal

basis of H,
where

{
i enumerates different eigenvalues ai
k = 1 · · · di counts basis vectors ∈ degeneracy subspace Hai

For nondegenerate eigenvalues (di=1) we use the
notation |ai〉 ≡ |a(1)

i 〉
Completeness relation then reads as:

∑
i

P̂ai︷ ︸︸ ︷
di∑
k=1

|a(k)
i 〉〈a

(k)
i | = ÎH

Â ≡
(

a1 0 ...
0 a2

... ...

)
matrix representation of Â in its own discrete eigenbasis

I Eigensolutions for infinite dimension

For dH=∞, the expression Det(Â− aÎ) has no sense. To find solutions of
Â|a〉=a|a〉 and to determine their properties is much more difficult in this case.
In general, an ∞-dimensional operator Â may have both discrete and con-

tinuous spectrum of eigenvalues. Moreover, eigenvalues from the continuous
spectrum have no eigenvectors ∈ H. Note that a rigorous analysis of these
issues goes beyond our present level of advancement. We will just indicate two

alternative mathematical treatments: one by von Neumann, who considered
finite intervals of continuous eigenvalues and used a standard Hilbert space,
and one initiated by Dirac, who stepped out towards the rigged Hilbert space.

Example: 0 1 0 0 0 ...
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
... ...


︸ ︷︷ ︸

Â

( α1
α2
α3
α4

...

)
︸ ︷︷ ︸
|a〉

= a

( α1
α2
α3
α4

...

)
︸ ︷︷ ︸
|a〉

⇒

α2=aα1
α1+α3=aα2
α2+α4=aα3
α3+α5=aα4

...

⇒

( α1
α2
α3
α4

...

)
=

 1
a

a2−1
a3−2a

...


Eigensolution |a〉 exists ∀a, but

∑
i

|αi|2 ≡ ||a||2 =∞ ∀a ⇒ |a〉 /∈ `2

Â2 has eigenvalues a2 ∈ [0,+∞) with two-fold degeneracy (except a=0)

Example of a matrix with combined discrete & continuous spectrum:

Â =

 −Â2
0 0

0
+Â2

.. .

 Â0 ≡ n× n matrix with eigenvalues {a1, . . . an}
Â ≡ matrix from previous example

⇒ spectrum ≡ {−a2
n, · · · − a2

1} ∪ [0,+∞)
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In general: S(Â)︸ ︷︷ ︸
spectrum

= D(Â)︸ ︷︷ ︸
discrete part

∪ C(Â)︸ ︷︷ ︸
continuous part

Eigenvalues ai ∈ D(Â) have eigenvectors |a(k)
i 〉 ∈ H

Orthonormality: 〈a(k)
i |a

(l)
j 〉 = δijδkl

Eigenvalues a ∈ C(Â) have eigenvectors |a(k)〉 ∈ H ⊃ H ⊃ H

with k ∈ Da
{

discrete (k=1,...da)
continuous

}
degeneracy index

“Orthonormality”:
〈a(k)|a′(l)〉 = δ(a−a′)δkl (k,l discrete)

〈a(k)|a′(l)〉 = δ(a−a′)δ(k−l) (k,l continuous)
〈a(k)|a(l)

i 〉 = 0

I Alternative approaches to continuous spectrum

(a) Dirac works in the extended space H which accommodates also the
eigenvectors |a(k)〉 for continuous eigenvalues a

Π̂
(k)
a ≡ |a(k)〉〈a(k)| ≡ projector to |a(k)〉

Π̂a ≡
∑
k∈Da

Π̂
(k)
a ≡ projector to deg.subspace,

∑
k∈Da
≡

{
da∑
k=1

(discrete deg.index)∫
Da

dk (continuous deg.index)

These projectors are defined only in the dense subset H ⊂ H ⊂ H
(b) Von Neumann works in standard Hilbert space H ⇒ @ eigenvectors

for continuous eigenvalues, but ∃ subspaces H(a′,a′′) ⊂ H corresponding to any

interval (a′, a′′): operator Â restricted to H(a′,a′′) yields eigenvalues ∈ (a′, a′′)

Π̂(a′,a′′) ≡ projector to H(a′,a′′) ⇒ in Dirac’s language: Π̂(a′,a′′)∼
a′′∫
a′

Π̂a da

Π̂(a′,a′′′) = Π̂(a′,a′′) + Π̂(a′′,a′′′) for a′ ≤ a′′ ≤ a′′′′

Π̂(−∞,a′) ≡ Π̂(a′) ≡ “cummulative” projector to the subspace with a ≤ a′

Projector to an infinitesimal eigenvalue
interval is related to Π̂a′:

Π̂(a′,a′+da) =Π̂(a′+ da)− Π̂(a′)

≡ d
da

Π̂(a)|a=a′da ∼ Π̂a′da

⇒ Π̂a′ ∼ d
daΠ̂(a)|a=a′

Schematic illustration:
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I Completeness for infinite dimension (Dirac’s approach)

∑
i

ai∈D(Â)

di∑
k=1

|a(k)
i 〉〈a

(k)
i |︸ ︷︷ ︸

P̂ai

+

∫
C(Â)

∑
k∈Da

|a(k)〉〈a(k)|︸ ︷︷ ︸
Π̂a

da = ÎH
P̂aiP̂aj = δijP̂ai

Π̂aΠ̂a′ = δ(a− a′)Π̂a

P̂aiΠ̂a = 0

Consistency: unique expansion of |ψ〉 in the “eigenbasis” of Â:

|ψ〉 =
∑
i,k

〈a(k)
i |ψ〉︸︷︷︸

∗

|a(k)
i 〉 +

∫ ∑
l

〈a(l) |ψ〉︸︷︷︸
∗

|a(l)〉 da, for * substitute the same expr.:

|ψ〉 =
∑

i,k,i′,k′
〈a(k)

i |a
(k′)
i′ 〉︸ ︷︷ ︸

δii′δkk′

〈a(k′)
i′ |ψ〉|a

(k)
i 〉+

∑
i,k,l

∫
〈a(l)|a(k)

i 〉︸ ︷︷ ︸
0

da〈a(k)
i |ψ〉|a

(k)
i 〉+

+
∫ ∑

i,k

〈a(k)
i |a

(l)〉︸ ︷︷ ︸
0

〈a(l)|ψ〉|a(l)〉 da+
∫∫ ∑

ll′
〈a(l)|a′(l′)〉︸ ︷︷ ︸
δ(a−a′)δll′

〈a′(l′)|ψ〉|a(l)〉 da da′ =
{

previous
expression

I Completeness for infinite dimension (von Neumann’s approach)∫
S(Â)

dΠ̂(a) = ÎH
where use is made of Stieltjes method of integration:∫

f(x) dσ̂(x)︸ ︷︷ ︸
operator
measure

≡ lim
n→∞

n∑
k=1

f(xk)[σ̂(xk+1)−σ̂(xk)]

I Spectral decomposition of operator
The above completeness relations lead to the expression of an operator in terms
of its eigenvalues and the projectors to the corresponding eigenspaces.

discrete spectrum: Â =
∑
i

aiP̂ai f(Â) =
∑
i

f(ai)P̂ai

|ψ〉=
∑
i

di∑
k=1

〈a(k)
i |ψ〉|a

(k)
i 〉 ⇒ Ân|ψ〉=

∑
i

ani

di∑
k=1

|a(k)
i 〉〈a

(k)
i |︸ ︷︷ ︸

P̂ai

ψ〉 ⇒ Ân=
∑
i

(ai)
nP̂ai

general (combined) spectrum:

Â =
∑
D(Â)

aiP̂ai+
∫
C(Â)

a Π̂a da ≡
∫
S(Â)

a dΠ̂(a)

f(Â) =
∑
D(Â)

f(ai)P̂ai+
∫
C(Â)

f(a) Π̂a da ≡
∫
S(Â)

f(a) dΠ̂(a)

I Definition of irregular operator functions f(Â) 6=
∑
k

fkÂ
k

f(Â) ≡
∫

S(Â)∩Def[f(a)]

f(a) dΠ̂(a)
with Def[f(Â)] ≡ subspace of H
spanned by eigenvectors with |f(a)| <∞

I Eigenvalue expression of operator norm: ||Â||2 = Sup
{
|a|2
}
a∈S(Â)

Bounded (unbounded) operator Â ⇔ bounded (unbounded) spectrum S(Â)
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� Probability distribution for the outcomes of measurements

The spectral decomposition of an operator associated with observable A and
the postulate on the statistical moments 〈An〉ψ enables us to finally deduce the
desired probability distribution pψ(a). Note that the resulting formula for pψ(a)

can be used as an alternative (equivalent) postulate instead of that for 〈An〉ψ.

I Moments of the probability distribution for observable A in state |ψ〉:

〈An〉ψ ≡


∑
D(Â)

(ai)
npψ(ai) +

∫
C(Â)

anpψ(a) da defining formula∑
D(Â)

(ai)
n〈ψ|P̂aiψ〉+

∫
C(Â)

an〈ψ|Π̂aψ〉 da ≡ 〈ψ|Ânψ〉 expression from
spectral decomp.

I For pψ(a) ≡ probability (density) of finding value a of A in |ψ〉 we then get:

Discrete case : pψ(ai) = 〈ψ|P̂aiψ〉 =
di∑
k=1

|〈a(k)
i |ψ〉|2

Continuous case : pψ(a) da = 〈ψ|Π̂aψ〉 da =
∑
k∈Da
|〈a(k)|ψ〉|2 da = 〈ψ|dΠ̂(a)ψ〉

〈a|ψ〉 ≡ amplitude
|〈a|ψ〉|2 ≡ probability

}
to measure a on |ψ〉 ⇔ to associate |ψ〉 with |a〉

J Historical remark
1900-10: David Hilbert studies spectral properties of integral operators

1924: D. Hilbert and R. Courant publish the book Methoden der mathematischen
Physik containing methods that later became relevant in QM
1925: Werner Heisenberg (and M. Born & P. Jordan) formulate “matrix mechanics”

1926: Erwin Schrödinger in his wave mechanics makes use of operators associated
with observables, he shows the equivalence with matrix mechanics
1926-32: John von Neumann unifies Schrödinger’s and Heisenberg’s approaches us-

ing self-adjoint operators acting on a general Hilbert space, with M. Stone they work
out the theory of such operators
1927-30: Paul Dirac develops “symbolic” formalism transcending ordinary Hilbert

space, this is formalized in the 1950’s in terms of rigged Hilbert spaces

2.2 Examples of quantum operators

The formalism developed in the previous section is now ready to bear fruit. We will

introduce the operators associated with observables characterizing a single particle.

� Spin-1
2 operators

Spin operators are the clearest examples of quantum observables since they
work in the best of all possible Hilbert spaces—that with dimension 2.
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I Operators of spin components along x, y, z axes in H ≡ C2

Ŝx = ~
2 ( 0 1

1 0 )︸︷︷︸
σ̂x

Ŝy = ~
2

(
0 −i

+i 0

)︸ ︷︷ ︸
σ̂y

Ŝz = ~
2 ( 1 0

0 −1 )︸ ︷︷ ︸
σ̂z

Pauli matrices

I Projection to general direction ~n = (sinϑ cosϕ︸ ︷︷ ︸
nx

, sinϑ sinϕ︸ ︷︷ ︸
ny

, cosϑ︸︷︷︸
nz

)
|~n|2=1

Ŝ~n = ~n · ~̂S = ~
2
(~n · ~̂σ) = ~

2

(
nz nx−iny

nx+iny −nz

)
= ~

2

(
cosϑ e−iϕ sinϑ

e+iϕ sinϑ − cosϑ

)
I Eigenvalues of spin projection Ŝ~n

Det
[
~
2

(
nz−λ nx−iny
nx+iny −(nz+λ)

)]
= 0 ⇒ λ2 = 1 ⇒ s~n =

{
+
~
2

−~
2

I Eigenvectors of spin projection Ŝ~n

Eigenequation
(

nz nx−iny
nx+iny −nz

) ( α±
β±

)
= ±

( α±
β±

)
has ∞ solutions:

nz 6= ±1 (otherwise solutions known) ⇒ α± = −nx−iny
nz∓1 β±

Normalized solutions:
∣∣s~n=+~

2

〉
=
(
e−iϕ cos ϑ2

sin ϑ
2

) ∣∣s~n=−~2
〉

=
(
−e−iϕ sin ϑ

2

cos ϑ2

)
Orthogonality: ( α∗− β∗− )

( α+

β+

)
= 0

Projectors to eigenspaces:

P̂±~n =
( α±
β±

)
( α∗± β∗± ) =


(

cos2 ϑ
2

e−iϕ
2 sinϑ

e+iϕ

2
sinϑ sin2 ϑ

2

)
for s~n = +~

2(
sin2 ϑ

2
− e
−iϕ
2

sinϑ

− e
+iϕ

2 sinϑ cos2 ϑ
2

)
for s~n = −~2

Unnormalized eigenvector: |s~n=+~
2
〉 = −nx−iny

nz−1︸ ︷︷ ︸
z

|↑〉+ |↓〉 with z = e−iϕ cot
ϑ

2

⇒ z ≡ stereographic projection of vector ~n
2 onto C

Any superposition |ψ〉=α|↑〉+β|↓〉 represents a state of spin pointing in a fixed
direction ~n, which is obtained from z = α/β by the stereographic projection.
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� Coordinate & momentum

The most important observables in classical mechanics (such that all the other

observables are made of them) are the coordinates and momenta. Unfortu-
nately, these are precisely the observables whose QM operators make troubles.

I Coordinate & momentum eigenfunctions

Hilbert space H = L2(R3) & rigged Hilbert space H ⊂ H ⊂ H
with H ≡ differentiable functions satisfying |ψ(~x)||~x|→∞ . |~x|−m for any m>0

Postulate: δ function & plane wave ≡ eigenstates of position & momentum

|~x′〉 ≡ δ(~x− ~x′) |~p〉 ≡ ei
~p·~x
~

I Operators of coordinate components

~x = (x, y, z) ≡ (x1, x2, x3)

Action of operator x̂i ≡multiplication by variable xi: x̂iψ(~x)︸ ︷︷ ︸
[x̂iψ](~x)

≡ xiψ(~x)︸ ︷︷ ︸
ψ′(~x)Def(x̂i) := H

Hermiticity:
∫
ψ1(~x)∗[xiψ2(~x)]d~x =

∫
[xiψ1(~x)]∗ψ2(~x)d~x

Eigenstates: xiδ(~x−~x′) = x′iδ(~x−~x′)
⇒ continuous spectrum x′i ∈ (−∞,+∞) with δ(~x−~x′) ∈ H

I Operators of momentum components

~p = (px, py, pz) ≡ (p1, p2, p3)

Action of p̂i ∝derivative by xi: p̂iψ(~x)︸ ︷︷ ︸
[p̂iψ](~x)

≡ −i~ ∂
∂xi
ψ(~x)︸ ︷︷ ︸

ψ′(~x)

⇔ ~̂p = −i~~∇

Def(p̂i) := H
Hermiticity:∫
ψ1(~x)∗[−i~ ∂

∂xi
ψ2(~x)]d~x =

∫
[−i~ ∂

∂xi
ψ1(~x)]∗ψ2(~x)d~x+

0︷ ︸︸ ︷
[ψ1(~x)∗ψ2(~x)]+∞−∞

Eigenstates: −i~ ∂
∂xi
ei~p·~x/~ = pie

i~p·~x/~

⇒ continuous spectrum pi ∈ (−∞,+∞) with ei~p·~x/~ ∈ H
~p = ~~k = 2π~

λ ~n with ~k ≡wave vector pointing along unit vector ~n

We obtain de Broglie relation for the wavelength: λ = 2π~
p ≡

h
p
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J Historical remark

1924: Louis de Broglie associates plane waves with moving particles
1926: Erwin Schrödinger applies operators within the wave mechanics
1927: Wolfgang Pauli introduces spin matrices

1930: Paul Dirac introduces explicit momentum and position operators
1940’s-60’s: Rigorous mathematical treatment in terms of the distribution theory
(L. Schwarz et al.) and rigged Hilbert spaces (I. Gelfand et al.)

� Hamiltonian of a structureless particle

The incorrigible enfants terribles coordinate and momentum give birth to a
respected (although not always well-behaved) operator named Hamiltonian. In

the nonrelativistic QM, the Hamiltonian is of central importance as it represents
energy and generates evolution (as we will see in Sec. 1.5).

I Hamiltonian Ĥ ≡ operator of energy

Eigenequation Ĥ|E〉 = E|E〉 stationary Schrödinger equation

I Free particle of mass M

Ĥ = 1
2M (~̂p · ~̂p) = − ~2

2M

(
~∇ · ~∇

)
︸ ︷︷ ︸

∆

operator of kinetic energy

Eigenequation
(
∆+ 2ME

~2︸︷︷︸
±k2=±(k2

1+k2
2+k2

3)

)
ψ(~x) = 0

Solutions for E ≥ 0 physical: ψ ∝ e±i
~k·~x ∈ H

Solutions for E<0 nonphysical: ψ ∝ e±
~k·~x /∈ H

Continuous spectrum E ∈ [0,+∞) infinitely degenerate (except E=0)

Eigenstates: |E~k〉 = ei
~k·~x ≡ |~p = ~~k〉 with eigenvalues E ≡ E~k = (~k)2

2M

I Particle in scalar potential

V (~x) ≡ potential energy in an external field

Ĥ =
1

2M
(~̂p · ~̂p)︸ ︷︷ ︸
T̂

kinetic

+ V (~̂x)︸ ︷︷ ︸
V̂

potential energy

≡ − ~
2

2M
∆ + V (~x)

Stationary Schrödinger eq.[
− ~2

2M∆+V (~x)−E
]
ψ(~x)=0

I Bound vs. unbound states
Eigenstates of the above Schrödinger equation are of two types:
(a) bound states (correspond to finite motion) ⇒ discrete spectrum, normaliz-
able wavefunction ψ(~x) ∈ H = L2(R3)
(b) unbound states (correspond to infinite motion) ⇒ continuous spectrum,
non-normalizable wavefunction ψ(~x) ∈ H
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Consider two types of potential

(derivations not presented here):

(1) Potential well of a general shape:

Define values:

Vasymp = lim
r→∞

Min{V (

sph.coord.︷ ︸︸ ︷
r, ϑ, ϕ )}ϑ,ϕ

Vmin ≡ Min{V (~x)}~x

Eigenvalues of Ĥ →
{
Ei ∈ (Vmin, Vasymp) discrete spectrum (bound states)

E ∈ (Vasymp,+∞) continuous spect. (unbound states)

(2) Periodic potential of any shape:

Vasymp does not exist; the spectrum is continuous and has a band structure;
eigenfunctions are not normalizable (unbound states)

I Nonanalytic potentials: conditions upon eigenfunctions

From the stationary Schrödinger equation it follows that:

V, ∂V
∂xi
, . . . ∂

nV
∂xni

∣∣∣
~x=~a

continuous ⇔ ψ, ∂ψ
∂xi
, . . . ∂

nψ
∂xni

, ∂
n+1ψ
∂xn+1

i

, ∂
n+2ψ
∂xn+2

i

∣∣∣
~x=~a

continuous

V (~x)|~x=~a discontinuous (finite jump of the potential)
⇒ ψ, ∂ψ

∂xi

∣∣∣
~x=~a

continuous

⇒ βi(~x)|~x=~a ≡
∂ψ
∂xi

(~x)

ψ(~x)

∣∣∣∣∣
~x=~a

= ∂
∂xi

lnψ(~x)︸ ︷︷ ︸
logarithmic
derivative

∣∣∣∣
~x=~a

continuous

Example: 1D potential well of a finite range x ∈ [x1, x2]

V (x)

{
= 0 for x < x1 or x > x2

< 0 for x1 ≤ x ≤ x2

We assume a finite jump
of V at both sides x1 & x2

Eigenfunctions for bound (E < 0) and unbound (E ≥ 0) states:

x < x1 x1 ≤ x ≤ x2 x2 < x

E < 0 A1e
+kx +���

��A2e
−kx B1ψ1(x)E+B2ψ2(x)E

XXXXXC1e
+kx + C2e

−kx

E ≥ 0 A1 cos(kx)+A2 sin(kx) B1ψ1(x)E+B2ψ2(x)E C1 cos(kx)+C2 sin(kx)

{ψ1(x)E, ψ2(x)E} ≡ 2 independent eigensolutions inside the well,

k =
√

2ME
~ , {A1, A2, B1, B2, C1, C2} ≡ adjustable parameters

E < 0: 2 matching conditions atx1 + 2 matching conds.atx2 + 1 norm.condition

⇒ cannot be solved with 4 parameters ⇒ discrete E spectrum
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E ≥ 0: 2 matching conditions atx1 + 2 matching conditions atx2

⇒ can be solved with 6 parameters ⇒ continuous E spectrum

For infinite jump of V (~x)|~x=~a only ψ(~x)|~x=~a must be continuous

� Hamiltonian with a separable potential

We look now at the special case of a separable potential, i.e., potential of the
form V (~x) = V1(x1) + V2(x2) + V3(x3) with Vk(xk) ≡ arbitrary 1D potential.

There are just a few (two?) practical examples of such potentials, but the
analysis will help us to understand a rather important technique: separation of
variables in differential equations.

I Let us solve 3 × 1D equation

Ĥk︷ ︸︸ ︷[
− ~2

2M
∂2

∂x2
k

+ Vk(xk)
]
ψik(xk) = Eikψik(xi)

⇒ solution of the 3D problem can be written as:

[Ĥ1 + Ĥ2 + Ĥ3]︸ ︷︷ ︸
Ĥ

ψi1(x1)ψi2(x2)ψi3(x3)︸ ︷︷ ︸
ψi1i2i3(~x)

= (Ei1 +Ei2 +Ei3)︸ ︷︷ ︸
Ei1i2i3

ψi1(x1)ψi2(x2)ψi3(x3)︸ ︷︷ ︸
ψi1i2i3(~x)

I 1D eigenfunctions

{
ψik(xk) ≡ |ψik〉

}
ik=1,2,...

≡ basis in Hilbert space Hk{
ψi1(x1)ψi2(x2)ψi3(x3) ≡ |ψi1〉|ψi2〉|ψi3〉

}
ik=1,2,...

≡ basis in H = H1 ⊗H2 ⊗H3

I Examples of separable potentials

(a) particle in a box V (~x) =
{

0 for xk∈(ak,bk),k=1,2,3
∞ otherwise

}
= V(a1,b1)(x) + V(a2,b2)(y) + V(a3,b3)(z)

V(ak,bk)(xk) ≡ 1D infinite square well
which has the following solution:(

1
2M p̂

2
k + V(ak,bk)

)︸ ︷︷ ︸
Ĥk

|ψnk〉 =
(

π~√
2MLk

nk

)2︸ ︷︷ ︸
Enk

|ψnk〉

with nk = 1, 2, 3, . . .

|ψnk〉 ≡ ψnk(xk) ∝ sin
[
nkπ
Lk

(x−ak)
]

where Lk = bk−ak

Solution of the 3D problem:

[Ĥ1 + Ĥ2 + Ĥ3]︸ ︷︷ ︸
Ĥ

|ψn1
〉|ψn2

〉|ψn3
〉︸ ︷︷ ︸

|ψn1n2n3
〉

= (π~)2

2M

[
(n1

L1
)2 + (n2

L2
)2 + (n3

L3
)2
]︸ ︷︷ ︸

En1n2n3

|ψn1
〉|ψn2

〉|ψn3
〉︸ ︷︷ ︸

|ψn1n2n3
〉

Equilateral case: Lk = L ⇒ En1n2n3
7→ EN = (π~)2

2ML2 ( n2
1 + n2

2 + n2
3︸ ︷︷ ︸

N=3,6,9,11,12,14,...

)

⇒ degeneracy dN = 1, 3, 6, . . .

Consequence: the ground state energy Egs ∝ 1
V 2/3 grows with volume V ⇒

“Schrödinger pressure” against any increase of the particle containment
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(b) harmonic oscillator V (~x) = M
2 (ω2

1x
2
1+ω2

2x
2
2+ω2

3x
2
3)

1D:
(

1
2M p̂

2
k +

Mω2
k

2 x̂2
k

)
︸ ︷︷ ︸

Ĥk

|ψnk〉 = ~ωk
(
nk+ 1

2

)︸ ︷︷ ︸
Enk

|ψnk〉 with nk = 0, 1, 2, 3, . . .

The solution obtained from the diff. form of Sch.eq.:[
d2

dξ2
k

+ (λ− ξ2
k)
]
ψ(ξk) = 0

where ξk =
√

Mωk
~ xk and λ = 2E

Mω

Eigenstates: |ψnk〉 ≡ ψnk(xk) ∝ e−ξ
2
k/2Hnk(ξk)

Hn(ξ) ≡ dn

dηn e
ξ2−(ξ−η)2︸ ︷︷ ︸
generating
function

|η=0 ≡ Hermite polynomials

3D:
[Ĥ1 + Ĥ2 + Ĥ3]︸ ︷︷ ︸

Ĥ

|ψn1
〉|ψn2

〉|ψn3
〉︸ ︷︷ ︸

|ψn1n2n3
〉

= ~
(
ω1n1+ω2n2+ω3n3+ 3

2

)︸ ︷︷ ︸
En1n2n3

|ψn1
〉|ψn2

〉|ψn3
〉︸ ︷︷ ︸

|ψn1n2n3
〉

Isotropic case: ωk=ω ⇒ En1n2n3
7→ EN=~ω(N+ 3

2)

N=n1+n2+n3 ⇒ degeneracy

{ N=0 d0=1
N=1 d1=3
N=2 d2=6

...

}
dN = (N+1)(N+2)

2

� Orbital angular momentum

Before we continue with Hamiltonians and potentials, it is useful to construct

angular momentum operators associated with orbital motions of a particle.

I In analogy with classical physics we introduce angular momentum of orbital
motion:

components L̂i = εijkx̂j p̂k ⇔ vector ~̂L = ~̂x× ~̂p = −i~
[
~x× ~∇

]
Hermiticity: L̂†i = εijkp̂

†
kx̂
†
j = εijkp̂kx̂j = εijkx̂j p̂k = L̂i (since j 6= k)

I Expression in spherical coordinates

Transformation of wavefunctions: ψ(x, y, z) 7→ ψ(r, ϑ, ϕ)

Unit vectors

(
~nr
~nϑ
~nϕ

)
=

(
sinϑ cosϕ sinϑ sinϕ cosϑ
cosϑ cosϕ cosϑ sinϕ − sinϑ
− sinϕ cosϕ 0

)(
~nx
~ny
~nz

)
(
~nx
~ny
~nz

)
=

(
sinϑ cosϕ cosϑ cosϕ − sinϕ
sinϑ sinϕ cosϑ sinϕ cosϕ

cosϑ − sinϑ 0

)(
~nr
~nϑ
~nϕ

)
Orthogonal matrix ⇒ [inverse=transpose]

~̂L = −i~
[
r~nr︸︷︷︸
~x

×
(
~nr

∂
∂r + ~nϑ

1
r
∂
∂ϑ + ~nϕ

1
r sinϑ

∂
∂ϕ

)
︸ ︷︷ ︸

~∇

]
~nr×~nr=0
~nr×~nϑ=~nϕ
~nr×~nϕ=−~nϑ
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~̂L = −i~
[
~nϕ

∂
∂ϑ − ~nϑ

1
sinϑ

∂
∂ϕ

]
acts only on the angular part of ψ(r, ϑ, ϕ)

⇒ we consider factorized wavefunctions ψ(r, ϑ, ϕ) ≡ R(r) Ω(ϑ, ϕ)

I Angular-momentum component along the z-axis

~nz = cosϑ~nr − sinϑ~nϑ ⇒ ~nz · ~̂L ≡ L̂z = −i~ ∂
∂ϕ

Eigenvalue equation: L̂z Ω(ϑ, ϕ)︸ ︷︷ ︸
f(ϑ)g(ϕ)

= lzΩ(ϑ, ϕ)

−i~ ∂
∂ϕg(ϕ) = lzg(ϕ) with condition g(ϕ+2π) = g(ϕ)

⇒ lz = m~ with m = 0,±1,±2,±3, . . . and gm(ϕ) = eimϕ

Additional condition l2z ≤ L2 ⇒ |m| ≤ mmax (see below and in Sec. 4)

From the symmetry argument, the same must be true for any component.

I Squared orbital momentum

The size of the angular-momentum vector is determined by the square:

L̂2 = ~̂L · ~̂L = −~2
[
~nϕ

∂
∂ϑ − ~nϑ

1
sinϑ

∂
∂ϕ

]
·
[
~nϕ

∂
∂ϑ − ~nϑ

1
sinϑ

∂
∂ϕ

]
=

= −~2

[
~nϕ

∂
∂ϑ · ~nϕ

∂
∂ϑ︸ ︷︷ ︸

∂2

∂ϑ2

−~nϕ ∂
∂ϑ · ~nϑ

1
sinϑ

∂
∂ϕ︸ ︷︷ ︸

0

−~nϑ 1
sinϑ

∂
∂ϕ · ~nϕ

∂
∂ϑ︸ ︷︷ ︸

− cotϑ
∂
∂ϑ

+~nϑ
1

sinϑ
∂
∂ϕ · ~nϑ

1
sinϑ

∂
∂ϕ︸ ︷︷ ︸

1
sin2 ϑ

∂2

∂ϕ2

]

= −~2

[
∂2

∂ϑ2 + cotϑ ∂
∂ϑ︸ ︷︷ ︸

1
sinϑ

∂
∂ϑ sinϑ

∂
∂ϑ

+ 1
sin2 ϑ

∂2

∂ϕ2

]
⇒ L̂2 = −~2

[
1

sinϑ
∂
∂ϑ sinϑ ∂

∂ϑ + 1
sin2 ϑ

∂2

∂ϕ2

]

I Eigenequation L̂2Ωλm(ϑ, ϕ) = λ2Ωλm(ϑ, ϕ)

solved with a factorized function Ωλm(ϑ, ϕ) ≡ fλm(ϑ) eimϕ[
1

sinϑ
∂
∂ϑ sinϑ ∂

∂ϑ−
m2

sin2 ϑ
+ λ2

~2

]
fλm(ϑ)=0

subst.−−−−→
ξ=cosϑ

[
∂
∂ξ (1−ξ

2) ∂
∂ξ−

m2

1−ξ2 + λ2

~2

]
fλm(ξ)=0

The solution known in the form (for derivation see elsewhere):

fλm(ξ) ≡ Plm(ξ) ∝ (1− ξ2)
m
2
dl+m

dξl+m
(ξ2 − 1)l associated Legendre polynomial

Eigenvalues λ2 = l(l + 1)~2 with

{
l = 0, 1, 2 . . .
m = −l, (−l+1) . . . 0 . . . (+l−1),+l

Eigenfunctions

Ωλm(ϑ, ϕ) = Nlm︸︷︷︸
normalization

Plm(cosϑ) eimϕ ≡ Ylm(ϑ, ϕ) spherical harmonics
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Relation between l and m quantum numbers

is represented by the following diagram:

Note: The existence of simultaneous

eigenstates of L̂2 and L̂z is not
accidental. It follows from the fact
that both operators commute (see

Sec. 1.3). The selection rules for m
and l will be derived in Sec. 4.1.

� Hamiltonian with isotropic potential

Equipped with the angular momentum operators, we can return to the Hamilto-

nian of a particle moving in a spherically symmetric potential field V (~x) = V (r)
This is a rather important situation in general since nature likes rotational in-
variance. We will briefly report three well known examples, assuming a certain

degree of the reader’s acquaintance with these elementary results.

I Hamiltonian written in spherical coordinates

Ĥ = − ~2

2M
∆ + V (r) = 1

2M

[
−~2

r2
∂
∂r
r2 ∂

∂r︸ ︷︷ ︸
p̂2
r

+ −~2

r2 sinϑ
∂
∂ϑ

sinϑ ∂
∂ϑ

+ −~2

r2 sin2 ϑ
∂2

∂ϕ2︸ ︷︷ ︸
r−2L̂2

]
+ V (r)

can be decomposed into three parts:

Ĥ = 1
2M

p̂2
r︸ ︷︷ ︸

radial
kin.energy

+ 1
2Mr2 L̂

2︸ ︷︷ ︸
orbital

kin.energy

+ V (r)︸︷︷︸
potential
energy

with p̂r ≡ −i~
(
∂
∂r

+ 1
r

)
radial momentum

I Separation of variables

The isotropic form of the Hamiltonian

enables one to separate radial and angular
variables through the wavefunction ansatz:

ψnlm(r, ϑ, ϕ) ≡ Rnl(r)︸ ︷︷ ︸
unl(r)
r

Ylm(ϑ, ϕ)

L̂2Ylm(ϑ, ϕ) = ~2l(l + 1)Ylm(ϑ, ϕ)

The equation for Rnl reads:

[
− ~2

2M
1
r2

d
dr
r2 d

dr
+ ~2l(l+1)

2Mr2 + V (r)

]
Rnl(r) = EnlRnl(r)

[
− ~2

2M
d2

dr2 + ~2l(l+1)
2Mr2 + V (r)︸ ︷︷ ︸

V
(l)
eff (r)

]
unl(r) = Enlunl(r) radial Schrödinger eq.

I Unbound-state asymptotics (eigenfunctions of radial momentum)

For V (r)
r→∞−−−→ 0 we write down an E > 0 asymptotic radial solution for l = 0:
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Spherical wave (for r � 0): Rpr(r) ∝
ei

prr
~

r
≡plane wave of u(r)

−i~
(
∂
∂r + 1

r

)
eiprr/~

r = pr
eiprr/~

r

I Bound state close to the origin r=0

Approximate equation d2u
dr2 − l(l+1)

r2 u ≈ 0 can be solved with u(r) ∝ rk

k(k−1) = l(l+1) ⇒ k =
{

l+1
−l (nonphysical) ⇒ unl(r)|r∼0 ≈ rl+1 r→0−−→ 0

I Example (a): finite spherical square well V (r) =
{ −V0<0 for r<R

0 for r≥R

Radial equation:

[
d2

dr2 − l(l+1)
r2 + 2M(E−V )

~2

]
unl(r) = 0 with V =

{ −V0
0

Discrete spectrum Ei ∈ (−V0, 0), continuous spectrum E ∈ (0,+∞)

κ =

√
2M(E+V0)

~ k =
√

2ME
~

{
> 0 for E ≥ 0
= iκ for E < 0

r → ρ ≡
{
κr for r < R
kr for r ≥ R

The eigenfunctions in a general case can expressed through Bessel & Neumann
functions, or alternatively through Hankel functions:

Rnl(ρ) = unl(ρ)
ρ

=


Bessel jl(ρ) ∝ρ→0 ρ

l

Neumann nl(ρ) ∝ρ→0 ρ
−(l+1)

Hankel
functions

h+
l (ρ) = jl(ρ) + inl(ρ) ∝r→∞ ei(ρ−lπ/2)

iρ

h−l (ρ) = jl(ρ)− inl(ρ) ∝r→∞ e−i(ρ−lπ/2)

iρ

For bound states (E < 0) the r=0 & r→∞ conditions restrict the solution to:

Rnl(r) =

{
Ajl(κr) for r < R
B<h+

l (iκr) for r ≥ R
(< ≡Re)

Conditions

{
d
dρjl(κR)

jl(κR) =
d
dρ<h

(1)
l (iκR)

<h+
l (iκR)

κ2 + κ2 = 2MV0

~2

}
⇒
{

numerical determination
of energy levels Enl

I Example (b): isotropic harmonic oscillator (revisited) V (r) = Mω2

2
r2

From the solution of the separable problem we know:
EN = ~ω(N + 3

2
) where N = n1+n2+n3

Solution in spherical coordinates (for the derivation see elsewhere):

Rnl(ξ) ∝ ξlL
l+1/2
n (ξ2) with ξ =

√
Mω
~ r and Lai (ρ) ≡ ρ−aeρ d

i

dρi
(ρi+ae−ρ)

≡ generalized Laguerre polynomial
Relation between quantum numbers from both solutions:

N+1︸ ︷︷ ︸
1,2,3...

= 2nr + l + 1
nr = 0, 1, 2, . . .
radial quantum number = number of nodes of Rnl(r)
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I Example (c): attractive Coulomb field (hydrogen atom) V (r) = −α
r

For hydrogen α = e2

4πε0
and Mα2

2~2

.
= 13.6 eV

Bound states energies & wavefunctions (for the derivation see elsewhere):

En = −Mα2

2~2
1
n2

n = 1, 2, 3, · · · ≡ principal quantum number : n = nr + l + 1

nr = 0, 1, 2 · · · ≡ radial q. number = num. of nodes of Rnl(r)

Level n degeneracy

{
l = 0, 1, . . . (n− 1)
m = −l, · · ·+ l

⇒ dn =
n−1∑
l=0

(2l + 1) = n2

Rnl(r) ∝ ρle−ρ/2L2l+1
n−l−1(ρ) with ρ ≡ 2

na
r, where a = ~2

αM
≡ Bohr radius and

Lji (ρ) ≡ dj

dρj
eρ d

i

dρi
(ρie−ρ) ≡ associated Laguerre polynomials

I Graphical expression of oscillator and hydrogen selection rules for quantum
numbers

J Historical remark

1926: Erwin Schrödinger presents a series of 4 papers introducing wavefunction
and explaining the quantization of energy in terms of the eigenvalue problem. The
solutions of hydrogen-like atom and harmonic oscillator are given with the aid of

the orbital angular momentum
1928-30: Application to molecules and solids; L. Pauling explains chemical bond,
P.M. Morse describes vibrations of diatomic molecules (Morse potential), F. Bloch

and L. Brillouin analyze eigenstates in periodic potentials
1929: First numerical algorithm for solving the eigenvalue problem
1932-1949: Formation of the shell model of atomic nuclei (D. Ivanenko, M. Goeppert-

Mayer, J.H.D. Jensen)

� Hamiltonian of a spin-1
2 particle in static electromagnetic field

At last, we look at the Hamiltonian of an electron-like particle moving in static
electric and magnetic fields. This is an important example! We will discuss the
invariance of the Schrödinger equation under the gauge transformation—the
concept that becomes essential in the relativistic quantum theory.
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I In analogy with the classical expression, the quantum Hamiltonian reads as:

Ĥ = 1
2M

[
~̂p− q ~A(~̂x)

]2

+ qV (~̂x)− ~̂µ · ~B(~̂x)

q ≡ particle charge

V (~x) ≡ scalar potential
~A(~x) ≡ vector potential

~B(~x) = ~∇× ~A(~x) ≡ magnetic induction
~E(~x) = −~∇V (~x)− ∂

∂t
~A(~x)︸ ︷︷ ︸
0

≡ electric intensity

}
of stationary field

I Operator of the particle magnetic moment ~̂µ is proportional to its spin:

~̂µ = g µ 1
~
~̂S = g q~

2M
1
2~̂σ

g ≡ gyromagnetic ratio

(
electron g=2
proton g=5.5856
neutron g=−3.8263

)
µ= q~

2M
={ Bohr or

nuclear } magneton, q=e, M={me
mp }

I Evaluation of the kinetic term [mind that ~̂p and ~A(~̂x) do not commute][
~̂p− q ~A(~̂x)

]2

≡ ~̂p 2︸︷︷︸
−~2∆

−q
[
~̂p · ~A(~̂x) + ~A(~̂x) · ~̂p

]
︸ ︷︷ ︸

+i~q[~∇· ~A+ ~A·~∇]=
+i~q[(~∇· ~A)+2 ~A·~∇]

+q2 ~A(~̂x)2 Hermitian

I Spinor Ψ(~x) =
(
ψ↑(~x)
ψ↓(~x)

)
⇒ ĤΨ = EΨ yields Pauli equation:

− ~2

2M∆Ψ + i~q
2M (~∇ · ~A)︸ ︷︷ ︸

0 in Lorentz calibration

Ψ + i~q
M ( ~A · ~∇Ψ) + q2

2M
~A2Ψ + qVΨ− g q~

2M
1
2(~̂σ · ~B)Ψ

= EΨ

I Special case: homogeneous magnetic field

~B(~x) ≡ (0, 0, B) ⇐ ~A(~x) = B
2
(−y,+x, 0) satisfies ~∇ · ~A = 0

The term i~q
M

( ~A · ~∇Ψ) = qB
2M

i~
[
−y ∂

∂x
+ x ∂

∂y

]
︸ ︷︷ ︸

−L̂z

Ψ yields orbital ang. momentum

⇒ the whole
Pauli eq.

[
− ~2

2M∆︸ ︷︷ ︸
kin. en.

+qV︸︷︷︸
electrostat.

energy

− q
2MB

(
L̂z + gŜz

)
︸ ︷︷ ︸
mag.moment interaction
⇒Zeeman splitting

+ q2

2M
B2

4︸ ︷︷ ︸
1
2
Mω2

L

(x2+y2)

︸ ︷︷ ︸
≈0

]
Ψ = EΨ

For electron in hydrogen ωL ≡ qB
2M (Larmor frequency) . ωorbital for B . 105 T

⇒ the last term can be neglected unless the field is extremely large

I Invariance under gauge transformations

The action of classical elmg. field is invariant under gauge transformations

generated by f(~x): ~A 7→ ~A′ = ~A− ~∇f V 7→ V ′ = V + ∂
∂tf︸︷︷︸

=0 in stac. case
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These transformations do not change ~E and ~B, but they change Pauli equation.

However, gauge transformation of ~A in Pauli equation is compensated by a local
phase transformation of the wavefunction:

Ψ(~x) 7→ Ψ′(~x) ≡ Ψ(~x)e−i
q
~f(~x)

Direct verification:
(−i~~∇− q ~A′) · (−i~~∇− q ~A′)Ψ′ = e−i

q
~f(−i~~∇− q ~A)2Ψ

Therefore:

ĤΨ=EΨ ⇒ Ĥ ′Ψ′=EΨ′

|ψ(~x,ms)|2 = |ψ′(~x,ms)|2
}
⇒ energy & probability density unchanged

(but not all mystery is gone, see Sec. 3.3)

J Historical remark

1918: Hermann Weyl introduces the local gauge invariance of the metric tensor
1927: Wolfgang Pauli writes down the spinor equation for particle in mag.field
1928: H. Weyl concludes (also based on earlier works of other authors) that gauge

transformation in QM is related to changing the phase of wavefunction

1.3 Compatible and incompatible observables

Operators, in contrast to ordinary numbers and functions used in classical physics,

have one revolutionary property: they may not be commuting. The product ÂB̂
does not have to be the same operator as B̂Â. This property turns out to be of
essential importance for physics. For instance, we will see that it is responsible for

the key feature of the quantum world: uncertainty.

We introduce the commutator of operators, [Â, B̂] ≡ ÂB̂ − B̂Â , which is

zero if ÂB̂=B̂Â and nonzero if ÂB̂ 6=B̂Â, and rise a classification of observables

among each other:

 compatible observables with
[
Â, B̂

]
= 0

incompatible observables with
[
Â, B̂

]
6= 0

� Compatible observables

We first explore the case ÂB̂=B̂Â. We show that such operators can be diago-
nalized simultaneously. A maximal set of commuting operators selects a unique
basis in the Hilbert space and in this way create a particular representation.

I [Â, B̂] = 0 ⇒ eigenspaces of B̂ invariant under Â and vice versa

B̂|ψ〉 = b|ψ〉 ⇒ B̂ (Â|ψ〉)︸ ︷︷ ︸
|ψ′〉

= b (Â|ψ〉)︸ ︷︷ ︸
|ψ′〉

I Commuting operators have a complete set of common eigenvectors

Intuitively, this is obvious from the invariance of the eigenspaces Ha of Â under
the action of B̂. The subspace Ha can therefore be considered as the Hilbert
space where operator B̂ finds eigenvectors |b〉.
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A more rigorous proof:

{|a(k)
i 〉}i,k and {|b(l)

j 〉}j,l ≡ orthonormal eigenbases of Â and B̂, respectively

Unique expansion: |a(k)
i 〉 =

∑
j

∑
l

α
(kl)
ij |b

(l)
j 〉︸ ︷︷ ︸

|ψ(k)
ij 〉

where: B̂|ψ(k)
ij 〉 = bj|ψ(k)

ij 〉

Eigenstate condition reads as:

(Â−aiÎ)|a(k)
i 〉 = 0 =

∑
j

|ψ̃(k)
ij 〉︷ ︸︸ ︷

(Â−aiÎ)|ψ(k)
ij 〉

{
where: B̂|ψ̃(k)

ij 〉 = bj|ψ̃(k)
ij 〉

(from invariance ofHbj under Â)

|ψ̃(k)
ij 〉 with different j orthogonal ⇒ the condition satisfied iff |ψ̃(k)

ij 〉 = 0 ∀j
⇒ |ψ(k)

ij 〉 is a simultaneous eigenvector of Â and B̂ (eigenvalues ai and bj)

The same procedure repeated ∀ |a(k)
i 〉 ⇒ the resulting set {|ψ(k)

ij 〉}i,j,k of simulta-

neous eigenvectors is complete since it allows one to expand the basis {|a(k)
i 〉}i,k

⇒ ∃ a simultaneous orthonormal eigenbasis {|aibj(k)〉}i,j,k of both Â and B̂,
where (k) enumerates the states with the same combination of eigenvalues ai, bj
⇒ Observables A,B are “compatible”

I [Â, B̂] = 0 ⇔ [P̂ai, P̂bj ] = 0 ∀ i, j

⇐ follows from spectral decompositions: Â =
∑
i

aiP̂ai and B̂ =
∑
j

bjP̂bj

⇒ follows from P̂ai =
∑

j′∈SaiB

∑
k

|aibj′(k)〉〈aibj′(k)|, P̂bj =
∑
i′∈S

bj
A

∑
l

|ai′bj(l)〉〈ai′bj(l)|

where {
SaiB

S
bj
A

} denotes the set of eigenvalues { bj′ai′ }
contained in the eigenspace of { aibj }

P̂aiP̂bj =∑
i′,j′

∑
k,l

|aibj′(k)〉 〈aibj′(k)|ai′bj(l)〉︸ ︷︷ ︸
δii′δjj′δkl

〈ai′bj(l)|

=
∑
k

|aibj(k)〉〈aibj(k)| = P̂bj P̂ai

Schematically:

I Complete set of commuting operators (of compatible observables)

3 mutually commuting operators Â, B̂, Ĉ ⇒ simultaneous orthonormal eigen-
basis {|aibjck(l)〉}i,j,k,l, and so on for more operators

A set of mutually commuting operators Â, B̂, Ĉ . . .︸ ︷︷ ︸
n

is complete if eigenvalues
n︷ ︸︸ ︷

ai, bj, ck . . . uniquely determine the eigenstate |aibjck . . . 〉 (no (l) needed)

Consider X̂ commuting with all operators Â, B̂, Ĉ . . . of a complete set

X̂|aibjck . . . 〉=x|aibjck . . . 〉 ⇒ x=f(a, b, c . . . )⇒ X̂ =
∑

ai,bj ,ck...

f(ai, bj, ck . . . )P̂ai,bj ,ck...
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⇒ X̂ = f(Â, B̂, Ĉ . . . )

The number n of operators in a complete set is usually identified with the
number f of quantum degrees of freedom. However, this definition is not
unique since n is fixed only within a certain algebra of pre-selected operators.

I Combining complete sets in a product spaces

Consider a composite system: H ≡ H1 ⊗H2

{Â1, B̂1, Ĉ1 . . . }︸ ︷︷ ︸
n1

≡ complete set in H1 {Â2, B̂2, Ĉ2 . . . }︸ ︷︷ ︸
n2

≡ complete set in H2

⇒
{{

(Â1 ⊗ Î), (B̂1 ⊗ Î), (Ĉ1 ⊗ Î) . . .
}
,
{

(Î ⊗ Â2), (Î ⊗ B̂2), (Î ⊗ Ĉ2) . . .
}}

︸ ︷︷ ︸
n1+n2 ≡ complete set in H ≡ H1 ⊗H2

(the same eigenvalues as the original sets)[X̂1 ⊗ Î , Î ⊗ Ŷ2]=0 ∀X̂1, Ŷ2

⇒ addition of freedom-degree numbers for composite systems: n = n1 + n2

� Incompatible observables

We turn to the case ÂB̂ 6=B̂Â. Such observables cannot be simultaneously
diagonalized and exhibit a mutual uncertainty: increasing precision of one ob-

servable reduces precision of the other.

I Nonzero commutator expressed as: [Â, B̂] = iĈ

(iĈ)† = (ÂB̂−B̂Â)† = B̂†Â†−Â†B̂† = −[Â, B̂] = −iĈ ⇒ Ĉ = Ĉ† for
{
Â=Â†

B̂=B̂†

}
I Uncertainty relation

[〈A2〉ψ − 〈A〉2ψ]︸ ︷︷ ︸
〈〈A2〉〉ψ

[〈B2〉ψ − 〈B〉2ψ]︸ ︷︷ ︸
〈〈B2〉〉ψ

≥ 1
4〈ψ|Ĉ|ψ〉

2 lower bound of the product of
dispersions depends on |ψ〉

Proof:
[〈A2〉ψ − 〈A〉2ψ] = 〈ψ|[Â− 〈A〉ψÎ]2|ψ〉 = 〈ϕ|ϕ〉 with |ϕ〉 = [Â− 〈A〉ψÎ]|ψ〉
[〈B2〉ψ − 〈B〉2ψ] = 〈ψ|[B̂ − 〈B〉ψÎ]2|ψ〉 = 〈χ|χ〉 with |χ〉 = [B̂ − 〈B〉ψÎ ]|ψ〉

〈〈A2〉〉ψ〈〈B2〉〉ψ = 〈ϕ|ϕ〉〈χ|χ〉 ≥ |〈ϕ|χ〉|2 =
∣∣∣〈ψ|[Â− 〈A〉ψÎ][B̂ − 〈B〉ψÎ ]|ψ〉

∣∣∣2=∣∣∣〈ψ|ÂB̂|ψ〉−〈A〉ψ〈B〉ψ∣∣∣2= ∣∣∣∣〈ψ| ÂB̂+B̂Â
2 |ψ〉+〈ψ| ÂB̂−B̂Â2︸ ︷︷ ︸

i
2
Ĉ

|ψ〉−〈A〉ψ〈B〉ψ
∣∣∣∣2

≥ 1
4
〈ψ|Ĉ|ψ〉2

⇒ Non-commuting operators Â, B̂ cannot be
diagonalized simultaneously:

⇒ Observables A,B are “incompatible”
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� Analogy with Poisson brackets

Although incompatible (“non-commuting”) observables are genuinely quantum
invention, there exists a surprising parallel of this behavior in classical mechan-

ics. It is based on the properties of Poisson brackets.

I Some properties of commutators

(a) [Â,B̂]=−[B̂,Â] [Â,const Î]=0

(b) Sums: [aÂ+a′Â′,B̂]=a[Â,B̂]+a′[Â′,B̂]

[Â,bB̂+b′B̂′]=b[Â,B̂]+b′[Â,B̂′]
Products: [ÂÂ′,B̂]=Â[Â′,B̂]+[Â,B̂]Â′

[Â,B̂B̂′]=B̂[Â,B̂′]+[Â,B̂]B̂′

(c) Jacobi identity: [Â,[B̂,Ĉ]]+[B̂,[Ĉ,Â]]+[Ĉ,[Â,B̂]]=0

(d) Tensor product operators: [Â1 ⊗ Â2, B̂1 ⊗ B̂2] = [Â1, B̂1]⊗ [Â2, B̂2]

I Poisson bracket for 2 classical observables
A ≡ A(p1...pn, q1...qn), B ≡ B(p1...pn, q1...qn)

{A,B} ≡
n∑
i=1

(
∂A
∂pi

∂B
∂qi
− ∂B

∂pi
∂A
∂qi

)
I Properties of Poisson brackets are analogous to those of commutators:{
{A,B}=−{B,A}, {A,const}=0
{aA+a′A′,B}=a{A,B}+a′{A′,B}, {AA′,B}=A{A′,B}+{A,B}A′
{A,{B,C}}+{B,{C,A}}+{C,{A,B}}=0

}
⇔ [Â, B̂]

I Geometrical meaning of Poisson bracket

{A,B} =
(
∂A
∂q1

. . . ∂A∂qn ,−
∂A
∂p1
· · · − ∂A

∂pn

)
︸ ︷︷ ︸

J ~∇2nA

·
(
∂B
∂p1

. . . ∂B∂pn ,
∂B
∂q1

. . . ∂B∂qn

)
︸ ︷︷ ︸

~∇2nB

J ≡
(

0 I
−I 0

)
the symplectic matrix with dim. 2n (I ≡ unit matrix in dim.n)

{A,A}=0 ⇔ (J ~∇2nA)︸ ︷︷ ︸
one of the tangent
vectors toA=const

⊥ (~∇2nA)︸ ︷︷ ︸
gradient of A

{A,B} 6= 0 ⇔ (J ~∇2nA) ∠ (~∇2nB)

⇒ {A,B} = 0 ⇒ hypersurfaces A= const & B= const locally coincide
{A,B} 6= 0 ⇒ hypersurfaces A= const & B= const locally deviate

Consider a non-local statistical distribution ρ(p1 . . . , q1 . . . ) in the phase space
(in the sense of statistical physics). It is clear from the above conclusion that
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in the statistical state described by ρ quantities with {A,B} 6= 0 cannot have

sharp values simultaneously. This represents a classical analogue of uncertainty.
All these analogies justify the following requirement:

I Dirac quantization assumption

Postulate: {A,B} = C (classical) ⇒ [Â, B̂] = −i~Ĉ (quantum)

� Equivalent representations of quantum mechanics

A fascinating feature of physical description is that it can be cast in infinitely
many equivalent ways. In other words, there exists a multitude of mathematical
representations yielding the same observable output. In classical mechanics,

this feature is anchored in the concept of canonical transformations. In quantum
mechanics, the equivalent descriptions follow from the use of various Hilbert-
space bases, which may be generated by alternative complete sets of observables.

I Any complete set of commuting operators {Â, B̂, . . . } with discrete

spectra generates a countable orthonormal basis {|i〉}dHi=1 of H:
dH∑
i=1

|i〉〈i| = ÎH 〈i|j〉 = δij

State vectors: |ψ〉 =
∑
i

|i〉〈i|ψ〉 =
∑
i

〈i|ψ〉︸ ︷︷︸
ψi

|i〉 ⇔ |ψ〉 ≡
(

ψ1

ψ2

...

)
(in)finite

“columns”

Operators: |ψ′〉 = Â|ψ〉 ⇒
∑
i

|i〉 〈i|ψ′〉︸ ︷︷ ︸
ψ′i

=
∑
i

|i〉
∑
j

〈i|Â|j〉︸ ︷︷ ︸
Aij

〈j|ψ〉︸ ︷︷ ︸
ψj

⇒ ψ′i =
∑
j

Aijψj(
ψ′1
ψ′2
...

)
=

(
A11 A12 ...
A21 A22

... ...

)(
ψ1

ψ2

...

)
⇒ lin. operators ≡ (in)finite matrices

I For a complete set {Â, B̂, . . . } with continuous spectra there ∃ a contin-
uous “orthonormal basis” {|x〉}x∈D ∈ H∫
x∈D
|x〉〈x|dx = ÎH 〈x|x′〉 = δ(x− x′)

State vectors: |ψ〉=
∫
|x〉〈x|ψ〉 dx=

∫
〈x|ψ〉︸ ︷︷ ︸
ψ(x)

|x〉 dx ⇔ |ψ〉 ≡ ψ(x) wavefuncs.

Operators: |ψ′〉 = Â|ψ〉 ⇒
∫
|x〉 〈x|ψ′〉︸ ︷︷ ︸

ψ′(x)

dx =
∫
|x〉
∫
〈x|Â|x′〉︸ ︷︷ ︸
A(x,x′)

〈x′|ψ〉︸ ︷︷ ︸
ψ(x′)

dx′ dx

ψ′(x) =

∫
A(x, x′)ψ(x′) dx′ ⇒ lin. operators ≡ integral kernels

I Complete set {Â, B̂, . . . } with mixed discrete & continuous spectra ⇒
combined discrete-continuous “orthonormal basis” {|i, x〉} i∈Di

x∈Dx
∈ H
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i∈Di

∫
Dx
|i, x〉〈i, x| dx = ÎH 〈i, x|i′, x′〉 = δii′δ(x− x′)

State vectors: |ψ〉 =
∑
i∈Di

∫
Dx
|i, x〉 〈i, x|ψ〉︸ ︷︷ ︸

ψi(x)

dx ⇔ |ψ〉 ≡
(

ψ1(x)
ψ2(x)

...

) (in)finite
wavefunc.
“columns”

Operators:

(
ψ′1(x)
ψ′2(x)

...

)
=

∫ ( A11(x,x′) A12(x,x′) ...
A21(x,x′) A22(x,x′)

... ...

)(
ψ1(x′)
ψ2(x′)

...

)
dx′

matrix
integral
kernels

J Historical remark
1925-6: M. Born, W. Heisenberg, P. Jordan write commutation relations between
various observables (matrix mechanics) and introduce the concept of compatibility

1927: P. Jordan, P. Dirac attempt to introduce canonical transformations to QM
1927: John von Neumann formulates the concept of complete sets of observables
and associates “canonical transformations” with different choices of this set

1927: Werner Heisenberg writes down the ∆x∆p uncertainty relation
1928: E.H. Kennard and H. Weyl derive the uncertainty relation from the commu-
tator, generalization ∀ incompatible observables by H.P. Robertson in 1929

1930: P. Dirac relates commutators to Poisson brackets (⇒ canonical quantization)

2.3 Examples of commuting & noncommuting operators

We now apply the results of the previous section to the single-particle operators
introduced in Sec. 2.2. In particular, the algebra of coordinate & momentum opera-
tors and that of angular momentum operators will be investigated. Representations

of the single-particle Hilbert space will be built using these operators.

� Coordinate & momentum

Coordinate & momentum operators jointly form the commonly known commu-
tation relation—twin of the canonical Poisson bracket of classical mechanics. It
leads to the familiar form of the uncertainty principle but also to the problems

of coordinate & momentum in the ordinary Hilbert space (see Sec. 2.1).

I Canonical commutation relations

x̂i ≡ xi · p̂i ≡ −i~ ∂
∂xi

⇒ [x̂i, x̂j] = [p̂i, p̂j] = 0 [x̂i, p̂j] = i~δij Î

Poisson brackets {xi, xj} = {pi, pj} = 0, {xi, pj} = −δij
These relations define general canonically conjugate quantities

Note: The same commutation relations can also be satisfied with:
x̂i ≡ xi · p̂i ≡ −i~ ∂

∂xi
+ f(~x)
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I Heisenberg uncertainty relation

〈〈x2
i 〉〉ψ︸ ︷︷ ︸

(∆xi)2

〈〈p2
j〉〉ψ︸ ︷︷ ︸

(∆pj)2

≥ 1
4
〈ψ| ~δij Î︸ ︷︷ ︸

Ĉ

|ψ〉2 = ~2

4
δij

⇒ ∆xi∆pi ≥ ~
2 valid for any state |ψ〉

I Some general consequences of canonical commutation relations
(a) Operators x̂i & p̂i cannot be represented in H of a finite dimension n.

To show this, we introduce an important general quantity:
Trace of operator:

TrÂ=
∑
i

〈φi|Â|φi〉=
∑
i

ai ≡
{

sum of
eigenvalues

The trace is invariant under the |φi〉→|φ′i〉 transformation⇒ is independent of

the chosen orthonormal basis. It also has the following important property:

Tr(ÂB̂)=
∑
i

〈φi|ÂB̂|φi〉=
∑
i,j

〈φi|Â|φj〉〈φj|B̂|φi〉=
∑
j,i

〈φj|B̂|φi〉〈φi|Â|φj〉=Tr(B̂Â)

For coordinate and momentum operators represented in a finite dimension n,
this relation yields a contradiction: Tr[x̂i, p̂i] = 0 6= Tr(i~În) = i~n
However, there ∃ various n=∞ discrete representations of x̂ & p̂. For in-
stance, the one obtained in the basis of 1D harmonic oscillator:

x̂ =
√

~
2Mω


0
√

1 0 0 0 ...√
1 0

√
2 0 0

0
√

2 0
√

3 0
0 0

√
3 0

√
4

... ... . .. ...

 p̂ =
√

M~ω
2


0 −i

√
1 0 0 0 ...

i
√

1 0 −i
√

2 0 0
0 i

√
2 0 −i

√
3 0

0 0 i
√

3 0 −i
√

4
... . .. ... ...


(b) Eigenstates of x̂i and p̂i are “out of” H (more precisely: @ within H)

Assume coordinate eigenstate |xi〉∈H satisfying 〈xi|xi〉=1 ⇒ 1
i~〈xi|[x̂i, p̂i]|xi〉=1

But 〈xi|[x̂i, p̂i]|xi〉 = xi〈xi|p̂i|xi〉 − xi〈xi|p̂i|xi〉 = 0 ⇒ contradiction

I Canonical & mechanical momentum of particle in elmg. field

H = 1
2M [~p− q ~A(~x)]2 + qV (~x) with ~p ≡ canonical momentum

Mechanical momentum ~π defined through velocity: ~̇x = ∂H
∂~p = 1

M [~p− q ~A(~x)]︸ ︷︷ ︸
~π

Operators ~̂p = −i~~∇ & ~̂π = −i~~∇− q ~A(~x) of canonical & mechanical mom.

Commutator [π̂i, π̂j] = [p̂i, p̂j]︸ ︷︷ ︸
0

−q[p̂i, Âj]−q[Âi, p̂j]+q
2 [Âi, Âj]︸ ︷︷ ︸

0

= i~q
(
∂Aj
∂xi
− ∂Ai

∂xj

)
︸ ︷︷ ︸

εijkBk
[π̂i, π̂j] = i~q εijkBk(~x) ⇒ for ~B 6=0 velocity components incompatible

� Coordinate & momentum representations
Although coordinate and momentum operators are not the nicest ones (the cor-
responding eigenstates dwelling somewhere outside the ordinary Hilbert space),
the most familiar representations of quantum mechanics are based on these op-
erators. For the sake of simplicity, we restrict ourselves to the 1D case.
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I Coordinate representation in 1D
State vector |ψ〉 =

∫
〈x|ψ〉|x〉 dx ⇒ wavefunction ψ(x) ≡ 〈x|ψ〉

Scalar product: 〈ψ|ψ′〉=
∫
〈ψ|x〉〈x|ψ′〉dx=

∫
ψ(x)∗ ψ′(x) dx

Position operator: x̂ψ(x) = xψ(x)

Momentum operator: p̂ψ(x) = −i~ d
dxψ(x)

expressions
used so far

Note: Strictly, all these relations (as well as those below) should be restricted

only to |ψ〉 ∈ H, where completeness
∫
|x〉〈x|dx=Î holds (see Secs. 1.2 & 2.2)

I Momentum representation in 1D

State vector |ψ〉 =
∫
〈p|ψ〉|p〉 dp ⇒ wavefunction ψ̃(p) ≡ 〈p|ψ〉

One gets expressions analogous (complementary) to the x-representation:
Scalar product: 〈ψ|ψ′〉 =

∫
〈ψ|p〉〈p|ψ′〉dp =

∫
ψ̃(p)∗ ψ̃′(p) dp

Momentum operator: p̂ψ̃(p) = 〈p|p̂|ψ〉 = p〈p|ψ〉 ⇒ p̂ ψ̃(p) = p ψ̃(p)

Position operator: x̂ψ̃(p) = 〈p|x̂|ψ〉 =
∫
〈p|x̂|p′〉︸ ︷︷ ︸
X(p,p′)

〈p′|ψ〉︸ ︷︷ ︸
ψ̃(p′)

dp′ =

=
∫∫∫

〈p|x〉︸ ︷︷ ︸
1√
2π~e

−i px~

〈x|x̂|x′〉︸ ︷︷ ︸
xδ(x−x′)

〈x′|p′〉︸ ︷︷ ︸
1√
2π~e

+i
p′x′
~

ψ̃(p′) dx dx′ dp′ = 1
2π~
∫∫

xei
(p′−p)x

~︸ ︷︷ ︸
i~ d
dpe

i
(p′−p)x

~

ψ̃(p′) dx dp′

= i
2π

d
dp

∫ ∫
ei

(p′−p)x
~ dx︸ ︷︷ ︸

2π~δ(p′−p)

ψ̃(p′) dp′ = i~ d
dp
ψ̃(p) ⇒ x̂ψ̃(p) = +i~ d

dp
ψ̃(p)

I Relation between x- & p-representations: Fourier transformations

Relation between eigenstates: coordinate rep. momentum rep.

|x′〉 δ(x− x′) e−ix
′p/~

|p′〉 e+ip′x/~ δ(p− p′)
Relation between general states:

〈p|ψ〉 =
+∞∫
−∞

〈p|x〉︸ ︷︷ ︸
1√
2π~e

−i px~

〈x|ψ〉︸ ︷︷ ︸
ψ(x)

dx = 1√
2π~

+∞∫
−∞

e−i
px
~ ψ(x) dx = ψ̃(p)

〈x|ψ〉 =
+∞∫
−∞

〈x|p〉︸ ︷︷ ︸
1√
2π~e

+i
px
~

〈p|ψ〉︸ ︷︷ ︸
ψ̃(p)

dp = 1√
2π~

+∞∫
−∞

e+ipx~ ψ̃(p) dp = ψ(x)

In transition to 3D, one applies the following substitutions:
1√
2π~ →

1

(2π~)
3
2

dx → d~x
dp → d~p p x→ ~p · ~x

I Gaussian wavepackets
A family of wavefunctions ∈ H suitable for the description of particles partially
localized in both coordinate & momentum spaces. They are defined as states
whose probability density ρ(p) ≡ |ψ̃(p)|2 in momentum space has the Gaussian
form with average p0 and dispersion σ2

p:
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ψ̃(p) = 1

(2πσ2
p)

1
4
e
− (p−p0)2

4σ2
p normalization:

+∞∫
−∞
|ψ̃(p)|2 dp = 1

Coordinate representation:

ψ(x) = 1√
2π~

+∞∫
−∞

e+ipx~ ψ̃(p) dp = 1

(8π3~2σ2
p)

1
4︸ ︷︷ ︸

C

+∞∫
−∞

e
+ipx~ −

p2−pp0+p20
4σ2
p︸ ︷︷ ︸

e
− 1

4σ2
p
p2+(

p0
2σ2
p

+ ix
~ )p−

p2
0

4σ2
p ≡ eap2+bp+c

dp = C
√

π
|a| e

c− b2

4a =

1

(2πσ2
x)

1
4
e
− x2

4σ2
x e+i

p0x
~ = ψ(x)

with σx satisfying σxσp = ~
2

⇒ Heisenberg relation minimized

� Angular momentum operators

Let us analyze commutation relations of angular-momentum operators. In fact,
it is these relations what allows us to recognize that a given set of operators

(like Pauli matrices) represents an angular momentum. In other words: what
commutes like angular momentum is angular momentum.

I Components of spin 1
2

[Ŝx,Ŝy]=
~2

4
[σ̂x,σ̂y]=2i

~2

4
σ̂z=i~Ŝz

[Ŝy,Ŝz]=
~2

4 [σ̂y,σ̂z]=2i
~2

4 σ̂x=i~Ŝx

[Ŝz,Ŝx]=
~2

4
[σ̂z,σ̂x]=2i

~2

4
σ̂y=i~Ŝy

 ⇒ [Ŝi, Ŝj] = i~εijkŜk or [σ̂i, σ̂j] = 2iεijkσ̂k

Uncertainty relation 〈〈S2
x〉〉ψ〈〈S2

y〉〉ψ ≥ ~2

4
〈ψ|Ŝz|ψ〉2

⇒ (∆Sx)ψ(∆Sy)ψ ≥ ~
2 |〈Sz〉ψ|

|ψ〉 = α| ↑〉+ β| ↓〉 with |α|2 + |β|2 = 1

⇒ (∆Sx)ψ(∆Sy)ψ ≥ ~2

2

∣∣1
2 − |β|

2
∣∣

(∆Sx)ψ(∆Sy)ψ ≥ 0 for |β|2 = 1
2

corresponds to spin ∈ xy plane (see Sec. 2.2)
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I Components of orbital angular momentum{
[L̂x,L̂y]=[ŷp̂z−ẑp̂y,ẑp̂x−x̂p̂z]=[ŷp̂z,ẑp̂x]+[ẑp̂y,x̂p̂z]=i~(x̂p̂y−ŷp̂x)=i~L̂z
[L̂y,L̂z]=[ẑp̂x−x̂p̂z,x̂p̂y−ŷp̂x]=[ẑp̂x,x̂p̂y]+[x̂p̂z,ŷp̂x]=i~(ŷp̂z−ẑp̂y)=i~L̂x
[L̂z,L̂x]=[x̂p̂y−ŷp̂x,ŷp̂z−ẑp̂y]=[x̂p̂y,ŷp̂z]+[ŷp̂x,ẑp̂y]=i~(ẑp̂x−x̂p̂z)=i~L̂y

}
⇒ [L̂i, L̂j] = i~εijkL̂k

Poisson brackets {Li, Lj} = −εijkLk
I Components of total angular momentum of a spin-1

2 particle

Ĵi = L̂i + Ŝi [L̂i, Ŝj] = 0 ⇒ [Ĵi, Ĵj] = [L̂i, L̂j]+[Ŝi, Ŝj] = i~εijk

Ĵk︷ ︸︸ ︷
(L̂k + Ŝk)

I General angular momentum

Components {Ĵi}3
i=1 satisfying commutation relations [Ĵi, Ĵj] = i~εijkĴk

Ĵi mutually incompatible⇒ uncertainty relations: (∆Jx)ψ(∆Jy)ψ ≥ ~
2 |〈Jz〉ψ|

The squared angular momentum Ĵ2 =

3∑
j=1

Ĵ2
j ≡ ĴjĴj is compatible with

all components Ĵi:

[Ĵi, ĴjĴj] = Ĵj [Ĵi, Ĵj]︸ ︷︷ ︸
i~εijkĴk

+ [Ĵi, Ĵj]︸ ︷︷ ︸
i~εijkĴk

Ĵj = i~εijk(ĴjĴk + ĴkĴj) = 0 = [Ĵi, Ĵ
2]

⇒ Ĵ2 can be diagonalized simultaneously with any component Ĵi

I Simultaneous eigenfunctions of Ĵz and Ĵ2

Orbital momentum:
L̂z R(r)Ylm(ϑ, ϕ) = m~R(r)Ylm(ϑ, ϕ)

L̂2R(r)Ylm(ϑ, ϕ) = l(l + 1)~2R(r)Ylm(ϑ, ϕ)
∀R(r)

Spin 1
2
: Ŝ2 = ~2

4
[ σ̂2

x︸︷︷︸
Î

+ σ̂2
y︸︷︷︸
Î

+ σ̂2
z︸︷︷︸
Î

] = 3
4
~2Î

⇒ Ŝ2 ( αβ ) = 1
2

(
1
2

+ 1
)
~2 ( αβ ) ∀ ( αβ ) ∈ C2

General spin s = 1
2 , 1,

3
2, 2,

5
2 , . . . represented in Hspin ≡ C2s+1 (see Sec. 4):

Ŝ2

( α+s

...
α−s

)
= s(s+1)~2

( α+s

...
α−s

)
∀
( α+s

...
α−s

)
∈ C2s+1, Ŝz


0
...

αms
...
0

 = ms~


0
...

αms
...
0


So, any vector ∈ C2s+1 represents an eigenvector of Ŝ2 with the squared-spin

quantum number s, the vectors

(
1
0
...
0

)
,

(
0
1
0
...

)
, . . . are simultaneously eigenvec-

tors of Ŝz with projection quantum numbers m = s, (s− 1), . . . , (−s+ 1),−s.
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J Historical remark
1926: M. Born, W. Heisenberg, P. Jordan give commutation relations for position &
momentum and for the components of angular momentum
1927-8: H. Weyl analyzes algebraic properties of position & momentum operators
1930: Paul Dirac elaborates position & momentum representations and presents an
algebraic derivation of angular momentum eigenvalues
1931: M. Stone & J.von Neumann prove unitary equivalence of representations con-
serving the canonical commutation relation (Stone - von Neumann theorem)

� Complete sets of commuting operators for a structureless particle

Below we give several examples of the complete set of observables character-
izing a single spinless particle in 3D. Such a system has 3 classical degrees of
freedom, and also its quantum state is completely determined by eigenvalues of
3 commuting operators. These operators can be chosen in different ways.

I Coordinates ~̂x ≡ (x̂1, x̂2, x̂3)

Eigenbasis Φ~y(~x) = δ(~x−~y) satisfying 〈Φ~y|Φ~y ′〉 = δ(~y−~y ′)
General wavefunction: ψ(~x)=

∫
ψ(~y) Φ~y(~x) d~y

Note: dimension of Φ~y(~x) is [length]−3 ⇒ it represents an amplitude density
in a joint space of ~x& ~y (normal wavefunction is amplitude density only in ~x)

I Momenta ~̂p ≡ (p̂1, p̂2, p̂3)

Eigenbasis Φ~p(~x) = N~p e
i
~p·~x
~ with coeffs. N~p given by “normalization”:

〈Φ~p|Φ~p ′〉=N ∗~pN~p ′

∫
e−i

(~p−~p ′)·~x
~ d~x︸ ︷︷ ︸

(2π~)3δ(~p−~p ′)

⇒ N~p=(2π~)−
3
2

General wavefunction: ψ(~x)=
∫
ψ̃(~p) Φ~p(~x) d~p

Note: dimension of Φ~p(~x) is [length]−
3
2 [momentum]−

3
2 ⇒ it represents an am-

plitude density in a joint space of both ~x& ~p

I Radial momentum p̂r & orbital momentum L̂2, L̂z

Eigenbasis Φprlm(~x) = Npr
1
r e

i
prr
~︸ ︷︷ ︸

Rpr (r)

Ylm(ϑ, ϕ) with Npr = (π~)−
1
2

〈Φprlm|Φp′rl
′m′〉 =

N ∗prNp′r

∞∫
0

1
r2e
−i (pr−p′r)r

~

δll′δmm′︷ ︸︸ ︷[ 2π∫
0

π∫
0

Y ∗lm(ϑ, ϕ)Yl′m′(ϑ, ϕ) sinϑ dϑ dϕ

]
r2dr=δ(pr−p′r)δll′δmm′

I Isotropic Hamiltonian Ĥrot & orbital momentum L̂2, L̂z

Ĥrot = − ~2

2M∆ + V (r) with V (r) ≡ a potential well
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Eigenbasis Φnlm(~x) = Rnl(r)︸ ︷︷ ︸
1
runl(r)

Ylm(ϑ, ϕ) with unl(r) from rad. Schrödinger eq.[
− ~2

2M
d2

dr2 + ~2l(l+1)
2Mr2 +V

]
unl=Enlunl

〈Φnlm|Φn′l′m′〉 = δnn′δll′δmm′

I Infinitely many other choices possible
In all cases, the number of operators = number of degrees of freedom n = 3

I Particle with spin (s = 1
2
) ⇒ the same sets + spin projection Ŝz

Eigenbases Φ~ysz(~x) , Φ~psz(~x) , Φprlmsz(~x) , Φnlmsz(~x)

Another possibility is to use total angular momentum ~̂J = ~̂L+ ~̂S

⇒ eigenvalues of {Ĵ2, Ĵz} ≡ {~2j(j+1), ~mj}
Commutation relations of the Ĵz, Ĵ

2 operators:

[Ĵ2, L̂2] = [Ĵ2, Ŝ2] = 0 = [Ĵz, L̂
2] = [Ĵz, Ŝ

2] but [Ĵ2, L̂i] 6= 0 6= [Ĵ2, Ŝi]

New complete set: Ĥrot & L̂2, Ŝ2 & total ang. momentum Ĵ2, Ĵz

⇒ eigenbasis Φnljmj
(~x) (for exact form see Secs. 4.1 & 5.2)

This remains valid for a particle with any value of spin s: the Hilbert space is
expanded (2s+ 1) times compared to H of a spinless particle

1.4 Representation of physical transformations

Representation of observables is not the only role of operators in quantum mechanics.
A specific type of operators, namely the unitary ones, is used to express various kinds
of transformations that lead to equivalent descriptions of the same physics.

� Unitary operators

At first, we explore basic mathematical properties of unitary operators. In a

separable Hilbert space, these operators can be introduced as transformations
between different orthonormal bases.

I Transformations of orthonormal bases

Basis I: {|i〉}i ≡ {|1〉, |2〉, . . . } 〈i|j〉 = δij
Basis II: {|i′〉}i ≡ {|1′〉, |2′〉, . . . } 〈i′|j′〉 = δij

|i′〉 = Û |i〉 where Û ≡
∑
i

|i′〉〈i| is an unitary operator: Û † =
∑
i

|i〉〈i′| = Û−1

I 3 equivalent definitions of an unitary operator:

(1) Transforms an orthonormal basis
to any other orthonormal basis:

{|i〉}i
Û
−→
←−
Û−1

{|i′〉}i
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(2) Inversion = Hermitian conjugation: Û−1 = Û †

(3) Conserves scalar products: 〈ψ′1|ψ′2〉 = 〈ψ1|ψ2〉 , where |ψ′•〉 = Û |ψ•〉

I Eigenvalues & eigenvectors of unitary operators

Û |u〉 = u|u〉 ⇔ 〈u|Û † = 〈u|u∗

⇒ 〈u| Û †Û︸︷︷︸
Î

|u〉 = uu∗〈u|u〉 ⇒ uu∗=1 ⇒ u = eiφ

⇒ 〈u|
︷︸︸︷
Û †Û |u′〉 = u′u∗〈u|u′〉 ⇒ u′u∗=1︸ ︷︷ ︸

ei(φ′−φ)=1

or 〈u|u′〉 = 0

⇒ for φ′ 6= φ(mod2π): 〈u|u′〉 = 0

I Spectral decomposition Û =
∑
i

eiφi︸︷︷︸
ui

P̂φi︸︷︷︸∑
k

|u(k)
i 〉〈u

(k)
i |

with P̂φiP̂φj = δijP̂φi

I Any unitary operator = exponential of a Hermitian operator

Û = eiÂ with Â = Â† and eX̂ ≡
∞∑
k=0

X̂k

k!
≡ operator exponential defined

through the Taylor series

(a) exponential ⇒ unitary: Û † =
∞∑
k=0

(−iÂ)k

k!
= e−iÂ = Û−1

(b) exponential ⇐ unitary: ∀Û≡
∑
i

eiφiP̂φi define Â≡
∑
i

φiP̂φi =Â† ⇒ Û=eiÂ

I Example: Û = ( 0 1
1 0 )

Eigenvalues u1 = 1 = ei0 and u2 = −1 = eiπ

Eigenvectors |+ 1〉 ≡ 1√
2

( 1
1 ) and | − 1〉 ≡ 1√

2

(
+1
−1

)
(orthonormal)

Â = 0|+1〉〈+1|+π|−1〉〈−1| = π
2

(
+1 −1
−1 +1

)
with

(
+1 −1
−1 +1

)k
=2k−1

(
+1 −1
−1 +1

)
for k≥1

eiÂ = Î +

∞∑
k=1

(iπ)k

k!︸ ︷︷ ︸
eiπ−1=−2

[
1
2

(
+1 −1
−1 +1

)]k︸ ︷︷ ︸
1
2

(
+1 −1
−1 +1

) = ( 1 0
0 1 )−

(
+1 −1
−1 +1

)
= ( 0 1

1 0 ) = Û

I Combining exponentials of non-commuting operators

eX̂eŶ = eŶ eX̂ = eX̂+Ŷ for [X̂, Ŷ ] = 0, eX̂eŶ 6= eŶ eX̂ 6= eX̂+Ŷ for [X̂, Ŷ ] 6= 0

Baker-Campbell-Hausdorff (BCH) formula (one of its forms):

eX̂Ĉe−X̂= Ĉ︸︷︷︸
[X̂,Ĉ
]

0

+ 1
1! [X̂, Ĉ]︸ ︷︷ ︸

[X̂,Ĉ
]

1

+ 1
2! [X̂, [X̂, Ĉ]]︸ ︷︷ ︸

[X̂,Ĉ
]

2

+ 1
3! [X̂, [X̂, [X̂, Ĉ]]]︸ ︷︷ ︸

[X̂,Ĉ
]

3

...+ 1
k! [X̂, Ĉ

]
k
+. . .
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eX̂eŶ e−X̂ = eŶ + 1
1!

[X̂, eŶ ]+ 1
2!

[X̂, [X̂, eŶ ]]+ 1
3!

[X̂, [X̂, [X̂, eŶ ]]]+· · · =
∞∑
k=0

1
k!

[X̂, eŶ
]
k

= eŶ +
∞∑

k,l=1

1
k! l! [X̂, Ŷ l

]
k

Special case: [X̂, [X̂, Ŷ ]] = [Ŷ , [X̂, Ŷ ]] = · · · = 0 ⇒ eX̂+Ŷ = eX̂eŶ e
1
2 [X̂,Ŷ ]

� Unitary transformations as “quantum canonical transformations”

Unitary operators materialize transitions between alternative QM representa-

tions, defined by distinct bases in the system’s Hilbert space (see Sec. 2.3).
They also express transformations between state vectors of the same system as
seen from various reference frames, differing, e.g., by translations, rotations, or
Galilean boosts. Physical descriptions in all these representations or reference

frames must be fully equivalent. In this sense, the unitary transformations are
analogues of classical canonical transformations.

I Diagonalization of an operator:

Transformation {|i〉}i (general basis)
Û−→ {|a(k)

j 〉}j,k (eigenbasis)(
U11 U12 ...
U21 U22

... .. .

)
︸ ︷︷ ︸

Û

(
A11 A12 ...
A21 A22

... ...

)
︸ ︷︷ ︸

Â

( U∗11 U
∗
21 ...

U∗12 U
∗
22

... ...

)
︸ ︷︷ ︸

Û †

=

(
a1 0 ...
0 a2

... ...

)
︸ ︷︷ ︸

Âdiag

⇒ Âdiag = ÛÂ Û †

eigenvectors of Â:

( U∗i1
U∗i2
...

)
I Link between equivalent representations

Postulate: Various representations of quantum state vectors & operators

are equivalent iff they are connected by a unitary transformation

General transformation of bases: {|i〉}i
Û−→ {|i′〉}i

Transformation of vectors: |ψ〉=
∑
i

αi|i〉 7→ |ψ′〉=
∑
i

αi|i′〉

⇒ |ψ′〉 = Û |ψ〉

Transformation of operators: Â=
∑
i

aiP̂ai 7→ Â′=
∑
i

aiÛ P̂aiÛ
†

⇒ Â′ = ÛÂ Û † = ÛÂ Û−1

Interpretation of this relation using the
identity Â′|ψ′〉 = Û

(
Â |ψ〉︸︷︷︸
Û−1|ψ′〉

)
Â′|ψ′〉 defined via the “detour path”; see the

sketch on the right, where the target space of
Û is formally denoted as H′ (≡ H)
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J Historical remark

1897-1906: Independent derivations of the Baker-Campbell-Hausdorff formula
1900-10: David Hilbert elaborates the theory of (unitary) operators in H
1927-32: Unitary operators and representation theory appear in the mathematical

formulation of QM (P. Dirac, J.von Neumann)

� Symmetry in quantum mechanics

It is often repeated that symmetry represents the most powerful concept in

physics. The famous Weyl’s definition:§ “A thing is symmetrical if there is
something you can do to it so that after you have finished doing it it looks the
same as before.” can be always applied. For us, the thing means either a

given physical system (its most essential attributes) or a general form of its
QM description. To do something to it then means to look at the system from
another reference frame or through a different representation.

I Symmetry in a wider sense (sensu lato)

Frameworks S & S’ ≡ alternative “observer frames” or “ways of description”
(representations)

Transf. S→S’ ⇔ Operator ÛS→S′ ≡ Û :

{
states |ψ〉 7→ |ψ′〉 = Û |ψ〉
observables Â 7→ Â′ = ÛÂ Û †

}
The structure and all predictions of quantum mechanics remain the same:

〈ψ′1|ψ′2〉 = 〈Ûψ1|Ûψ2〉 = 〈ψ1| Û †Û︸︷︷︸
Î

|ψ2〉 = 〈ψ1|ψ2〉 ...scalar products

〈i′|Â′|j′〉 = 〈i|
Î︷︸︸︷

Û †Û Â

Î︷︸︸︷
Û †Û |j〉 = 〈i|Â|j〉 ...matrix elements

Â|a〉 = a|a〉 ⇒ ÛÂ Û †︸ ︷︷ ︸
Â′

Û |a〉︸︷︷︸
|a′〉

= a Û |a〉︸︷︷︸
|a′〉

...eigenvalues
iĈ︷ ︸︸ ︷

[Â′, B̂′]=Â′B̂′−B̂′Â′= ÛÂÛ †ÛB̂Û †−ÛB̂Û †Û ÂÛ †=
iĈ′︷ ︸︸ ︷

Û [Â, B̂]Û † ...commutators

Hence: “ QMS′ = QMS ” that is: the structure of QM description is the same
for both S & S’

I Symmetry in a narrower sense (sensu stricto)

A system is invariant under the transformation S→ S’
iff its Hamiltonian does not change: Ĥ ′ = Ĥ

Ĥ ′ = ÛĤ Û † = Ĥ ⇒ ÛĤ = ĤÛ ⇒ [Ĥ, Û ] = 0

Rasoning: Hamiltonian Ĥ represents the most important physical operator
(describing e.g. the system’s dynamics), the symmetry is therefore associated
with the invariance of Ĥ under the unitary transformation S→ S’.

§H. Weyl: Symmetry, Princeton Univ. Press, 1952
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Usual consequences of this meaning of symmetry:

(a) degeneracy of energy levels: Ĥ|ψ〉 = E|ψ〉 ⇒ Ĥ(Û |ψ〉) = E(Û |ψ〉)

⇒ if Û |ψ〉 6= |ψ〉, the level E is degenerate
(b) conservation laws (∃ integrals of motions, see Sec. 1.5)

� “Flight over” the group theory

Group theory represents a superb example of “the unreasonable effectiveness

of mathematics in the natural sciences”, which was pointed out by Wigner.
Initiated as a purely theoretical discipline, it grew into one of the most com-
monly applied branches of mathematics today. Here we just summarize the

basic concepts of the theory that are of immediate importance for QM.

I Unitary transformations do not typically come alone but in groups!

Group G = set of elements {g} closed under a binary operation ◦ (group mul-
tiplication) g1, g2 ∈ G ⇒ (g1 ◦ g2)︸ ︷︷ ︸

g1g2

∈ G satisfying the following properties:

(1) (g1g2)g3 = g1(g2g3) associativity

(2) ∃ e ∈ G : ge = eg = g ∀g ∈ G unit element

(3) ∀ g ∈ G ∃ g−1 : gg−1 = g−1g = e inverse elements

Note: commutativity not required!

If g1g2 = g2g1 ∀ g1, g2 ∈ G, the group is called Abelian

I Unitary representation of group G:

Mapping to unitary operators: g 7→ Ûg , g1 ◦ g2 7→ Û2 Û1

Group properties naturally satisfied: (Û2Û1)
† = Û−1

1 Û−1
2 = (Û2Û1)

−1 closure

(Û3Û2)Û1 = Û3(Û2Û1) associativity

e 7→ Î = Î† = Î−1 unit element

Û = eiÂ ⇒ Û−1 = e−iÂ inverse elements

Hilbert space H where Û act ≡ carrier space of G
QM works with H ⇒ it provides a direct physical “arena” for group theory

Invariant subspace: a subspace HG⊂H is invariant under G if Û |ψ〉∈HG
∀ Û∈ G and ∀ |ψ〉∈HG

Matrix representation: Û ≡



... 0 ...

0 ∈ H(1)
G 0

... 0
... 0

0 ∈ H(2)
G

.. .


block diagonal

structure of all Û

Irreducible representation (irrep) of group G: @ invariant subspace HG ⊂ H



55

I Finite (discrete) groups

Groups with a finite (or at least discrete) number of elements (describe, e.g.,
spatial symmetries of crystals or reflection transformations): G ≡ {gi}i∈N
Example: cyclic group Z2 ≡ {P̂ , Î} with a generalized parity transfor-

mation P̂ = P̂−1 = P̂ † ≡ spatial inversion, 2-particle exchange, particle-
antiparticle or particle-hole transformation. . .

I Continuous (Lie) groups

Groups with elements parametrized by a d-dimensional real vector ~s ⇒ the
group elements (e.g., spatial translations) form a continuum: G ≡ {g(~s )}~s∈Rd

g(~s1)g(~s2)=g(~s3) ⇒ ~s3 = ~f(~s1, ~s2)

g(~s )−1 = g(~s ′) ⇒ ~s ′ = ~h(~s)

}
functions ~f & ~h differentiable

⇒ G ≡ Lie group
Unitary representation = mapping of a given Lie group to a family of unitary

operators acting in a suitable Hilbert space: g(~s ) 7→ Û(~s )

I dim=1 Lie group G ≡ {g(s)}s∈R

Requirements:

Û(0)= Î choice of origin
!

= 1

Û(s+ds)= Û(s)Û(ds) local additivity⇐ f(s, ds)=s+
︷︸︸︷
∂f
∂s2
ds

Û(s) = Î +
(
dÛ
ds

)
0
s+ 1

2

(
d2Û
ds2

)
0
s2 + . . .

Û(s)Û(s)† = Î +

[(
dÛ
ds

)
0

+
(
dÛ
ds

)†
0

]
︸ ︷︷ ︸

0

s+

[
. . .

]
︸ ︷︷ ︸

0

s2 + . . .

⇒
(
dÛ
ds

)
0

= iĜ

with Ĝ = Ĝ†

⇒ condition
(
dÛ
ds

)
s

= lim
ds→0

Û(s+ds)−Û(s)
ds = Û(s)

(
dÛ
ds

)
0

= iÛ(s)Ĝ

Û(s) = eiĜs is the most general solution, where Ĝ ≡ generator of G

⇒ the group is Abelian: Û(s1)Û(s2) = Û(s1+s2) = Û(s2)Û(s1)

I dim>1 Lie group G ≡ {g(~s )}~s∈Rd

Û(~s) = ei
~̂G·~s = e

i
d∑
k=1

Ĝksk
with ~̂G ≡

{
Ĝk =

(
∂U(~s )
∂sk

)
~s=0

}d
k=1
≡ set of generators

6=
d∏

k=1

eiĜksk in the non-Abelian case: [Ĝk, Ĝl] 6= 0

Û(~s1)Û(~s2) 6= Û(~s1+~s2) 6= Û(~s2)Û(~s1)
eiÂ︷ ︸︸ ︷
Û(~s ) ≈ Î+i

Â︷ ︸︸ ︷∑
i

Ĝisi−1
2

Â2︷ ︸︸ ︷∑
j

∑
k

ĜjĜksjsk+· · ·
sum.conv.≡ Î+iĜisi−1

2ĜjĜksjsk+. . .
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I Closure relation for infinitesimal transformations (dim>1)

Û(~δ )−1Û(~ε )−1Û(~δ )Û(~ε )︸ ︷︷ ︸ = Û(~σ )︸ ︷︷ ︸ with σl ≈
∑
mn

Smnlεmδn

≈ ≈ for ~ε, ~δ → 0

(Î − iĜiδi − 1
2
ĜiĜi′δiδi′) Î + iĜlσl

×(Î − iĜjεj − 1
2ĜjĜj′εjεj′)

×(Î + iĜkδk − 1
2ĜkĜk′δkδk′)

×(Î + iĜlεl − 1
2
ĜlĜl′εlεl′)︸ ︷︷ ︸

≈ (up to 2nd order)

Î + (ĜmĜn − ĜnĜm)︸ ︷︷ ︸
[Ĝm,Ĝn]

εmδn = Î + iSmnlĜlεmδn

⇒ [Ĝm, Ĝn] = i
∑
l

SmnlĜl
closure relation for algebra of generators
Smnl ≡ structure constants

I Invariant (Casimir) operator

An operator ĈG ≡ Ĉ( ~̂G ) associated with group G such that [ĈG, Ĝi] = 0 ∀i
Eigenspaces of ĈG within the space H are invariant under the action of all
generators {Ĝi} ⇒ these subspaces often carry irreducible representations of G

J Historical remark

1830 (approx.): dawn of the group theory (the name given by É. Galois)
1873: Sophus Lie introduces continuous groups (later work of W. Killing, E. Cartan)
1928-32: M.H. Stone and J.von Neumann obtain QM-related results on Lie groups

1928: Hermann Weyl: Gruppentheorie und Quantenmechanik—book placing the
group theory to the foundations of QM
1927-37: Eugene Wigner elaborates group techniques in the classification of atomic

and later nuclear spectra; the 1931 book Group Theory and Its Application to the
Quantum Mechanics of Atomic Spectra
1929: Hans Bethe applies point groups in polyatomic molecules

1931: Hendrik Casimir introduces the invariant operator
1940’s-50’s: Giulio Racah refines group methods in the theory of complex spectra

2.4 Fundamental spatio-temporal symmetries

We are going to describe basic spatial and spatio-temporal transformations of non-
relativistic physical systems. We will see that elementary physical operators in
QM can be naturally introduced as generators of the corresponding Lie groups.
Extrapolating this path, one may seek the very origin of the quantum uncertainty
(incompatibility) in the non-Abelian character of some of these groups.



57

� Space translation

Translations in the coordinate space form an Abelian group generated by mo-

mentum operators. This is a nice playground to exercise work with generators.

I Coordinate translation operator
Required action of translations on coordinate operators: T̂~a ~̂x T̂

−1
~a = ~̂x + ~aÎ

⇒ commutation relations [x̂i, T̂~a] = −aiT̂~a
⇒ x̂i|~x〉 = xi|~x〉 ⇒ x̂i (T̂~a|~x〉)︸ ︷︷ ︸

|~x−~a〉

= (xi−ai) (T̂~a|~x〉)︸ ︷︷ ︸
|~x−~a〉

⇒ T̂~a|~x〉 = |~x−~a〉

This is consistent as ψ(~x) ≡ 〈~x|ψ〉 ⇒ 〈~x|T̂~a ψ〉=〈~x+~a|ψ〉= ψ(~x+~a) = T̂~a ψ(~x)

I Remark: general translation operator for an arbitrary operator Ô

Assume operator T̂∆o satisfying [Ô, T̂∆o] = ∆o T̂∆o with ∆o ≡number

⇒ Ô|o〉 = o|o〉 ⇒ Ô(T̂∆o|o〉) = (o+ ∆o)(T̂∆o|o〉)
⇒ T̂∆o|o〉 = |o+∆o〉 (operator T̂∆o shifts eigenstates of Ô by value ∆o)

I Generators of x, y, z translations

Translation ~a = a~nj along j = 1, 2, 3 axes: [x̂i, T̂a~nj ] = −δijaT̂a~nj
Infinitesimal translations: T̂(δa)~nj ≈ Î + iĜj(δa) ⇒ [x̂i, Ĝj] = iδij Î

⇒ we can set Ĝj = 1
~ p̂j (generators ∝ momentum components)

[Ĝi, Ĝj] = 0 ⇒ Abelian group, [Ĝi, p̂j] = 0 ⇒ T̂~a ~̂p T̂
−1
~a = ~̂p

I Finite translations in any direction

jthaxis: T̂a~nj = lim
n→∞

(
Î + i

~ p̂j
a
n

)n
=ei

ap̂j
~ ⇒ general direction: T̂~a = ei

~a·~̂p
~

Transformation of wavefunction

(T̂~aψ)(~x) ≡ 〈~x|T̂~a|ψ〉 = 〈T̂−1
~a ~x|ψ〉 = 〈~x+~a|ψ〉 ≡ ψ(~x+~a)

(direct verification via the Taylor series)

I Translation for N> 1 particle systems

~̂P =
N∑
k=1

~̂pk ⇒ T̂~a = ei
~a· ~̂P
~ =

N⊗
k=1

T̂~a,k

⇒ (T̂~aΨ)(~x1, . . . , ~xN) = Ψ(~x1+~a, . . . , ~xN+~a)

Particles with spin: translation does not affect the spin variables

I Translational invariance [T̂~a, Ĥ] = 0

For 1 particle this means that Ĥ = H(~̂p, ~̂S ) ⇒ Hamiltonian must not depend
on spatial coordinates, just on momentum and spin components
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For N>1 particles: Ĥ = H
(
{~̂pk}, {~̂xk − ~̂xl}, { ~̂Sk}

)
⇒ Hamiltonian must de-

pend only on relative coordinates, e.g.: Ĥ =
∑
k

1
2Mk

~̂pk
2

+
∑
k≥l

V
(
{~̂xk − ~̂xl}

)
I Discrete translations (invariance of a crystal lattice)

Discrete set of translation vectors ~a~n = (nxLx, nyLy, nzLz) = ~n · ~L
with ni = 0, 1, 2, . . . ∀i

[T̂~a~n, Ĥ] = 0 ⇒ Ĥ and T̂~a~n can be diagonalized simultaneously

General T̂~a~n eigenfunctions: ψ(~x) = u~L(~x) ei
~π·~x
~ (Bloch theorem)

with u~L(~x+ ~a~n) = u~L(~x) (any ~L-periodic function)

Proof: ei
~̂p·~a~n
~︸︷︷︸

T̂~a~n

u~L(~x)ei
~π·~x
~ = ei

~π·~a~n
~︸ ︷︷ ︸

eigenvalue

u~L(~x)ei
~π·~x
~ ~π ≡ quasimomentum

� Space rotation

Generators of rotations are angular momentum operators. The group is there-
fore non-Abelian. If working with scalar wavefunctions, one will manage just
with the orbital angular momentum. However, to describe rotations of more

complicated types of wavefunction (like spinors or vectors), we need to intro-
duce an additional angular momentum—spin.

I Coordinate transformation

Rotation about axis ~n by angle φ in ordinary space expressed by: ~x ′ =

3×3 rotation
matrix︷︸︸︷
R~nφ ~x

Radius conserved ⇒ orthogonality: RT
~nφR~nφ = I ⇒

∑
i rijrik = δjk

R~nzφ=
(

cosφ sinφ 0
− sinφ cosφ 0

0 0 1

)
⇒ R~nzδφ ≈ I+

(
0 1 0
−1 0 0
0 0 0

)
︸ ︷︷ ︸

iG3

δφ

R~nyφ=
(

cosφ 0 − sinφ
0 1 0

sinφ 0 cosφ

)
⇒ R~nyδφ ≈ I+

(
0 0 −1
0 0 0
1 0 0

)
︸ ︷︷ ︸

iG2

δφ

R~nxφ=
( 1 0 0

0 cosφ sinφ
0 − sinφ cosφ

)
⇒ R~nxδφ ≈ I+

(
0 0 0
0 0 1
0 −1 0

)
︸ ︷︷ ︸

iG1

δφ


R~nφ = ei(

~G·~n)φ

Any finite rotation is
expressed via generators
of infinitesimal rotations:

Commutators of the 3×3 generator matrices:

[Gi,Gj] = iεijkGk

These are the commutators of angular momentum /~
The same can be assumed for the QM generators Ĝi
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I Quantum rotation operator: R̂~nφ = ei(
~̂G·~n)φ with ~̂G = 1

~ (~̂L+ ~̂S)︸ ︷︷ ︸
~̂JGenerators for 1 particle ∝ orbital + spin ang. momentum

Generators for any system ∝ general operators of total angular momentum

Postulate: Angular momentum operators of an arbitrary quantum system
= ~× generators of rotation (⇒ spin ↔ transformation properties)

I Transformation of coordinates & momenta

(a) rotation around z:

x̂′i ≡ R̂~nzφx̂iR̂
−1
~nzφ

= e+i(L̂3+Ŝ3)φ/~︸ ︷︷ ︸
e+iL̂3φ/~e+iŜ3φ/~

x̂i e
−i(L̂3+Ŝ3)φ/~︸ ︷︷ ︸

e−iŜ3φ/~e−iL̂3φ/~

= e+iL̂3φ/~x̂ie
−iL̂3φ/~

Infinitesimal rotation:

x̂′i ≈
(
Î + i

~L̂3δφ
)
x̂i

(
Î − i

~L̂3δφ
)
≈ x̂i + i

~ [L̂3, x̂i]︸ ︷︷ ︸
−i~(δi2x̂1−δi1x̂2)

δφ =

{
x̂1−x̂2δφ
x̂2+x̂1δφ

x̂3

The same for momentum:

p̂′i ≈
(
Î + i

~L̂3δφ
)
p̂i

(
Î − i

~L̂3δφ
)
≈ p̂i + i

~ [L̂3, p̂i]︸ ︷︷ ︸
+i~(δi2p̂1−δi1p̂2)

δφ =

{
p̂1−p̂2δφ
p̂2+p̂1δφ

p̂3

(b) general rotation:

~̂x′︸︷︷︸ x̂′1
x̂′2
x̂′3


≡ R̂~nφ ~̂x R̂

−1
~nφ = R−1

~nφ ~̂x︸ ︷︷ ︸(
r11 r12 r13
r21 r22 r23
r31 r32 r33

)−1
(
x̂1
x̂2

x̂3

) ~̂p′ ≡ R̂~nφ ~̂p R̂
−1
~nφ = R−1

~nφ ~̂p

I Transformation of angular momentum

(a) z-rotation: Ĵ ′i ≈
(
Î + i

~ Ĵ3δφ
)
Ĵi

(
Î − i

~Ĵ3δφ
)
≈ Ĵi+

i
~ [Ĵ3, Ĵi]︸ ︷︷ ︸
i~ε3ij Ĵj

δφ =

{
Ĵ1−Ĵ2δφ

Ĵ2+Ĵ1δφ

Ĵ3

(b) general rotation: ~̂J ′ ≡ R̂~nφ
~̂JR̂−1

~nφ = R−1
~nφ
~̂J ~̂S ′ = R−1

~nφ
~̂S ~̂L′ = R−1

~nφ
~̂L

I Action on wavefunctions (coordinate & momentum representation)

~̂x (R̂~nφ︸ ︷︷ ︸
R~nφR̂~nφ~̂x

|~x〉) = (R~nφ~x)(R̂~nφ|~x〉) ⇒ R̂~nφ|~x〉 = |R~nφ~x〉

〈~x|R̂~nφψ〉 = 〈R−1
~nφ~x|ψ〉

〈~p|R̂~nφψ〉 = 〈R−1
~nφ~p|ψ〉

}
⇒

R̂~nφψ(~x) = ψ(R−1
~nφ~x)

R̂~nφψ̃(~p) = ψ̃(R−1
~nφ~p)

I Transformation of scalar wavefunction ψ(~x)

Only the argument of ψ(~x) affected by the transformation:

R̂~nφψ(~x) = ψ(R−1
~nφ~x︸ ︷︷ ︸
~x′

) ⇒ ~̂J ≡ ~̂L ⇒ spin 0
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Example: R̂~n3δφ︸ ︷︷ ︸
eiL̂3δφ/~

ψ(~x) ≈
[
Î +

(
x1

∂
∂x2
− x2

∂
∂x1

)
δφ
]
ψ(~x) = ψ

[ R−1
~n3δφ︷ ︸︸ ︷(

1 −δφ 0
+δφ 1 0

0 0 1

)(
x1
x2
x3

)]
I Transformation of vector wavefunction Ψ(~x) ≡

(
ψ1(~x)
ψ2(~x)
ψ3(~x)

)
Besides the argument, also the direction of the vector Ψ(~x) affected by rotation.
Defining transformation property:

R̂~nφΨ(~x) =
(
r11 r12 r13
r21 r22 r23
r31 r32 r33

)
~nφ︸ ︷︷ ︸

R~nφ

(
ψ1

ψ2

ψ3

)
(R−1

~nφ~x) = ei
~̂S·~n
~ φΨ︸ ︷︷ ︸
Ψ′

(R−1
~nφ~x︸ ︷︷ ︸
~x′

)

Ŝ1 = ~
(

0 0 0
0 0 −i
0 +i 0

)
Ŝ2 = ~

(
0 0 +i
0 0 0
−i 0 0

)
Ŝ3 = ~

(
0 −i 0

+i 0 0
0 0 0

)
Example: R̂~n3δφ︸ ︷︷ ︸

ei[Ŝ3+L̂3]δφ/~

(
ψ1(~x)
ψ2(~x)
ψ3(~x)

)
≈
[
Î +

(
0 +1 0
−1 0 0
0 0 0

)
δφ
]

︸ ︷︷ ︸(
1 +δφ 0
−δφ 1 0

0 0 1

)
ei

L̂3δφ
~

(
ψ1(~x)
ψ2(~x)
ψ3(~x)

)
︸ ︷︷ ︸ψ1(R−1

~n3δφ
~x)

ψ2(R−1
~n3δφ

~x)

ψ3(R−1
~n3δφ

~x)


Ŝ2

1 + Ŝ2
2 + Ŝ2

3 = s(s+ 1)︸ ︷︷ ︸
2

~2Î ⇒ s = 1

~Det(Ŝi − λÎ) = 0 ⇒ λ = ±1, 0 ⇒ si = ~
{ −1

0
+1

⇒ spin 1

⇒ 3-component wavefuctions Ψ(~x) with vector transformation properties de-
scribe particles with spin 1. We now look for the link of Cartesian components

ψi(~x) to the probability amplitudes for individual spin projections:

Eigenstates of Ŝ3: ξ+1 = 1√
2

( −1
−i
0

)
ξ0 =

(
0
0
1

)
ξ−1 = 1√

2

(
+1
−i
0

)
(
ψ1(~x)
ψ2(~x)
ψ3(~x)

)
7→

(
ψ+1(~x)
ψ0(~x)
ψ−1(~x)

)
=

(
− 1√

2
[ψ1(~x)+iψ2(~x)]

ψ3(~x)

+ 1√
2
[ψ1(~x)−iψ2(~x)]

)
probability density amplitudes
for s3 = ±~, 0 spin projections

I Transformation of spinor wavefunction Ψ(~x) ≡
(
ψ↑(~x)
ψ↓(~x)

)
spin 1

2

For spinors we will proceed the opposite way. In this case we know spin matri-
ces. Assuming the standard form of the transformation:

R̂~nφΨ(~x)=[S~nφΨ]︸ ︷︷ ︸
Ψ′

(R−1
~nφ~x)=ei

~̂S·~n
~ φΨ

(
R−1
~nφ~x
)

we find the unknown matrix S~nφ

S~nφ = ei
~̂S·~n
~ φ =

∞∑
k=0

1
k!

(
iφ
2

)k
(~̂σ · ~n)k = . . . with (~̂σ · ~n)k =

{
Î for k=even
~̂σ·~n for k=odd
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(~̂σ·~n)2 =
3∑

i,j=1

ninjσ̂iσ̂j = 1
2

3∑
i,j=1

ninj (σ̂iσ̂j+σ̂jσ̂i)︸ ︷︷ ︸
2δij Î

+1
2

3∑
i,j=1

ninj(σ̂iσ̂j−σ̂jσ̂i)︸ ︷︷ ︸
0

=

3∑
i=1

n2
i︸ ︷︷ ︸

1

Î

· · · =
∑

k=0,2,4,...

1
k!

(
iφ
2

)k
︸ ︷︷ ︸

cos φ
2

Î+
∑

k=1,3,5,...

1
k!

(
iφ
2

)k
︸ ︷︷ ︸

i sin φ
2

(~̂σ·~n) =
(

cos φ
2

)
Î + i

(
sin φ

2

)
(~̂σ · ~n) = S~nφ

spinor transformation

Special case: S~nzφ =
(
e+iφ/2 0

0 e−iφ/2

)
I Rotational (+transitional) invariance

Ĥ = H
(
{|~̂pk|}, {|~̂xk − ~̂xl|}, {| ~̂Sk|}

)
Hamiltonian must depend only on vector

sizes

J Historical remark
1913: Élie Cartan discovered complex “tensors” with spinor transform. properties

1927: Wolfgang Pauli introduces spinors to QM

� Space inversion

Spatial inversion (taking mirror images of all 3 spatial axes, therefore replacing
“right” by “left” and vice versa) is just a discrete transformation. Nevertheless,
there exists an observable associated with it—the spatial parity. In contrast to

the above cases, space inversion is not a valid symmetry of this world.

I Coordinate, momentum & angular momentum transformation

P̂ ~̂x P̂−1 = −~̂x P̂ ~̂p P̂−1 = −~̂p ⇒ P̂ ~̂LP̂−1 = P̂ (~̂x× ~̂p )P̂−1 = +~̂L

P̂ ~̂SP̂−1 = + ~̂SCartesian coordinates:

xi → −xi (i=1,2,3)

Spherical coordinates:
r → r
ϑ→ (π − ϑ)
ϕ→ (ϕ+ π)

I Classification of observables with respect to space inversion:

P̂ ~̂V P̂−1 = −~̂V vector P̂ ~̂AP̂−1 = + ~̂A pseudovector (axial-vector)

P̂ ŜP̂−1 = +Ŝ scalar P̂ ÔP̂−1 = −Ô pseudoscalar

I Invariance of a common Hamiltonian under space inversion: Ĥ=P̂ ĤP̂−1=...

=
∑
k

1
2Mk

P̂ ~̂pk
2
P̂−1︸ ︷︷ ︸

(−~̂pk)·(−~̂pk)

+ P̂ V ({~̂xk}, { ~̂Sk})P̂−1︸ ︷︷ ︸
V ({−~̂xk},{ ~̂Sk})

⇒ V ({~̂xk}, { ~̂Sk}) = V ({−~̂xk}, { ~̂Sk})
potential must be even
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I Physical observable associated with space inversion: parity

P̂ 2 = Î P̂ = P̂ † = P̂−1 ⇒ eigenvalues π = ±1

P̂Ψeven(~x) = +Ψeven(~x) P̂Ψodd(~x) = −Ψodd(~x)

P̂ [R(r)Ylm(ϑ, ϕ)] = R(r)Ylm(π − ϑ, ϕ+ π)︸ ︷︷ ︸
Plm(− cosϑ)eimϕeimπ

= (−)l−m(−)m︸ ︷︷ ︸
(−)l

[R(r)Ylm(ϑ, ϕ)]

� Time translation

We come to transformations involving time. The most important specimen of
this type represents a shift of the time-axis origin—time translation. The uni-

tary operator expressing the transition between observers with different time
settings is closely related to the evolution operator, which describes the dy-
namics. Motions of quantum systems generated by this operator will be in our

main focus starting from Sec. 1.5.

I “Young” & “old” observers (different time origins)

|ψyoung(t′)〉 ≡ state of system as seen by “young”
|ψold(t′+τ︸︷︷︸

t

)〉 ≡ state of system as seen by “old”

Uniqueness requirement: |ψyoung(t
′)〉 !

= |ψold(t)〉
“Generational” transformation: |ψyoung(t′)〉 = Û(t, t′)|ψold(t′)〉

⇒ evolution transformation: |ψold(t)〉 = Û(t, t′)|ψold(t′)〉

I Properties of Û(t, t′) in case the system is invariant under time translation:

(a) Û(t, t′) ≡ Û(

τ︷ ︸︸ ︷
t− t′)

(b) Û(τ)−1 = Û(τ)†

(c) Û(0) = Î

(d) Û(τ1 + τ2) = Û(τ2)Û(τ1)

⇒

Û(τ) = eiχ̂τ

Consistent choice : χ̂ = −1
~Ĥ

Û(τ) = e−i
Ĥτ
~ evolution operator

Association of generator χ̂ with the Hamiltonian Ĥ is equivalent to the non-

stationary Schrödinger equation (see Sec. 1.5). Invariance of the system under

time translation means that Ĥ(t) ≡ Ĥ (Hamiltonian independent of time)

I Regardless of the time-translation invariance we may assume:

Postulate: Hamiltonian Ĥ(t) of the system at time t
= ~× generator of infinitesimal time translation ≡ evolution from t to t+dt

� Time reversal

Time reversal means an inversion of the time arrow: going from future to
past. Like the inversion of space, it is just a discrete transformation, but a
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more difficult one. In quantum physics it cannot be represented by a unitary

operator and there is no physical observable (like parity) associated with it.

I We seek for operator T̂ satisfying: Û(t)T̂ |ψ(0)〉 = T̂ Û(−t)|ψ(0)〉 ∀|ψ(0)〉
This means: forward evolution of time-reversed
state = time reversal of backward-evolved state:
For infinitesimal time δt this implies:(

1− iĤδt~
)
T̂ = T̂

(
1 + iĤδt~

)
⇒ We require: (−iĤ)T̂ = T̂ (iĤ)

I For T̂ unitary this would mean:

ĤT̂ + T̂ Ĥ ≡ [Ĥ, T̂ ]+︸ ︷︷ ︸
anticommutator

= 0

⇒ Ĥ|E〉 = E|E〉 ⇒ Ĥ(T̂ |E〉) = −E(T̂ |E〉)
...nonphysical

(@ lower bound of energy)⇒ T̂ is not a unitary operator

I Operator T̂ is antiunitary: T̂ (αÂ) = α∗T̂ Â ⇒ [Ĥ, T̂ ] = 0

T̂ ≡ ÛK̂ where


Û ≡ a unitary operator (depends on convention)

K̂ ≡ comp. conjugation operator : K̂
∑
i

αi|i〉 =
∑
i

α∗i |i〉

with respect to basis {|i〉}i (basis dependent op.)

I Some properties:

〈ψ1|ψ2〉 = 〈T̂ ψ1|T̂ ψ2〉∗ = 〈T̂ ψ2|T̂ ψ1〉
〈ψ1|Ô|ψ2〉 = 〈T̂ ψ2|T̂ Ô†T̂ −1|T̂ ψ1〉 (e.g., transition matrix elements)

I Classification of observables with respect to time reversal:

(1) T̂ Â T̂ −1 = +Â even observables (Ĥ, ~̂x, . . . ) . . . T̂ keeps eigenvalues

(2) T̂ Â T̂ −1 = −Â odd observables (~̂p, ~̂L, ~̂S, . . . ) . . . T̂ inverts eigenvalues

I Invariance of a common Hamiltonian under time inversion: Ĥ=T̂ ĤT̂ −1=...

=
∑
k

1
2Mk
T̂ ~̂pk

2
T̂ −1︸ ︷︷ ︸

(−~̂pk)·(−~̂pk)

+ T̂ V ({~̂xk}, { ~̂Sk})T̂ −1︸ ︷︷ ︸
V ∗({~̂xk},{− ~̂Sk})

⇒ V ({~̂xk}, { ~̂Sk}) = V ∗({~̂xk}, {− ~̂Sk})
potential must be real

J Historical remark
1924: O. Laporte introduces spatial parity of electron wavefunctions in atoms

1931: E. Wigner shows that time reversal is represented by an antiunitary operator

� Galilean transformations

Nonrelativistic quantum mechanics must be invariant under transformations
between inertial frames with relative speed ~v.
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I Galilean transformation of ~x & t: ( ~xt ) 7→
(
~x′

t′

)
≡ G~v ( ~xt ) = ( ~x−~vtt )

∃ the corresponding family of unitary operators Ĝ~v acting in H
I Quantum operator of the Galilean transformation for a general wavefunc-
tion of single particle in the coordinate representation (the derivation is not
presented here): Ĝ~v Ψ ( ~xt )︸ ︷︷ ︸

≡Ψ(~x,t)

= e−i(M~v·~x− 1
2Mv2t)/~Ψ [G~v ( ~xt )]︸ ︷︷ ︸

T̂−~vtΨ(~x,t)

J Historical remark
1925: Erwin Schrödinger attempts to create a Lorenz-invariant wave equation, but
because of problems he remains with the non-relativistic formulation
1926: Oskar Klein and Walter Gordon (simultaneously V. Fock et al.) develop a
relativistic wave equation for spinless particles
1927: Paul Dirac initiates quantum field theory (the right unification of relativity
with QM), in 1928 he creates a relativistic wave equation for spin-1

2 particle

� Symmetry & degeneracy

Degeneracy of energy levels is an important signature of symmetry of Hamilto-

nian Ĥ under transformations Ûg ≡ ei
~̂G·~s ∈G (since Ûg|E〉 remains an eigenstate

with the same energy). However, some symmetries cause no degeneracy, and
some degeneracies are not due to usual geometric symmetries.

I G ≡ Abelian (translations, space inversion)⇒ eigenstates of Ĥ are simulta-

neous eigenstates of all Ĝi ⇒ ei
~̂G·~s|E〉 = eiϕ|E〉 (vector differing just by a phase

factor) ⇒ in general no degeneracy

I G ≡ non-Abelian (rotation) ⇒ ∃ Ĝi which acts nontrivially on the eigen-

states of Ĥ ⇒ ei
~̂G·~s|E〉 = |E ′〉 (eigenvector with the same energy E but in

general not collinear with the initial |E〉) ⇒ degeneracy occurs

Example: for rotationally invariant Ĥ, the states with the same angular-
momentum quantum number j and different projections m degenerated

I Some Ĥ have symmetries induced by groups G ⊃ standard spatio-temporal
groups (e.g., groups employing both coordinates and momenta)⇒ dynamical
symmetry⇒ occurence of “accidental degeneracies” (beyond rotational ones)
Example: harmonic oscillator

Ĥ = 1
2M ~̂p

2 + Mω2

2 ~̂x 2 = ~ω
[ ~̂b†︷ ︸︸ ︷(√

Mω
2~ ~̂x+ i√

2M~ω ~̂p

)
·

~̂b︷ ︸︸ ︷(√
Mω
2~ ~̂x−

i√
2M~ω ~̂p

)
+3

2 Î

]
Ĥ invariant under transformations conserving b̂†b̂ (classically the norm |~b|2 of
a complex vector depending on ~x & ~p)⇒ symmetry group G ≡U(3) (unitary
group in 3D) ⊃ O(3) (orthonormal group in 3D describing rotations)
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J Historical remark

1926: Wolfgang Pauli associates the accidental degeneracy in the hydrogen atom
with the additional symmetry (using Lenz result from 1924)
1935-6: V. Fock and V. Bargmann analyze the “dynamical symmetry” in hydrogen

1.5 Unitary evolution of quantum systems

After all, we come to the dynamics of quantum systems. There are two types of
quantum evolution: the spontaneous one—motions signifying perpetual flow of time,
and an induced one—changes provoked by quantum measurements. Here we will

focus on the spontaneous type of evolution.

� Nonstationary Schrödinger equation for stationary Hamiltonian

For quantum mechanics, the dynamical Schrödinger equation means the same

as what the Newton equation means for a classical mechanics. We have already
introduced the evolution operator from the time translation (Sec. 2.4), so we
need not make a special postulate on the spontaneous dynamics.

I Spontaneous evolution of a quantum system

|ψ(t)〉 = e−i
Ĥt
~ |ψ(0)〉 ⇔ i~ ddt |ψ(t)〉 = Ĥ|ψ(t)〉

evolution operator nonstationary Schrödinger equation

I Spinless particle in a potential: i~ ∂
∂t
ψ(~x, t) =

[
− ~2

2M
∆ + V (~x)

]
ψ(~x, t)

I Stationary states Ĥ|Ei〉=Ei|Ei〉 ⇒ |ψ(0)〉 ≡ |Ei〉
t−→ |ψ(t)〉 = e−i

Eit
~ |ψ(0)〉

Eigenstates of Ĥ evolve just by changing the phase factor ⇒ “stationary”

⇒ evolution of a general state expressed by expansion into eigenstates of Ĥ

|ψ(0)〉 ≡
∑
i

αi︸︷︷︸
αi(0)

|Ei〉
t−→
∑
i

αie
−iEit~︸ ︷︷ ︸

αi(t)

|Ei〉 ≡ |ψ(t)〉

� Continuity equation & probability flow

If the dynamical Schrödinger equation is applied to the scalar wavefunction
of a particle in external fields, the resulting dependence ψ(~x, t) describes how

the probability density ρ(~x, t) = |ψ(~x, t)|2 flows in space. This process can be
described in terms of ordinary fluid dynamics.

I Continuity equation

Particle in scalar potential V (~x, t) & vector potential ~A(~x, t):
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∂
∂t |ψ|

2︸︷︷︸
ρ

= ∂ψ
∂t︸︷︷︸ψ∗ + ψ ∂ψ∗

∂t︸︷︷︸ = 1
i~ψ
∗
[

1
2M (−i~~∇− q ~A)2 + V

]
ψ + C.C. =

from Schrödinger eq.

= 1
M~ Im

[
ψ∗(−~2~∇· ~∇+i~q~∇· ~A+i~q ~A· ~∇+q2 ~A2)ψ

]
︸ ︷︷ ︸

−~2~∇·(ψ∗~∇ψ)+i~q~∇·(ψ∗ ~Aψ)

+~2(~∇ψ∗)·(~∇ψ)−i~q[(~∇ψ∗)· ~Aψ−C.C.]+q2 ~A2|ψ|2

=−~∇·
[
~
M Im(ψ∗~∇ψ)− q

Mψ
∗ ~Aψ

]
︸ ︷︷ ︸

~j

We obtain the familiar continuity equation: ∂
∂t
ρ(~x, t) + ~∇ ·~j(~x, t) = 0

The change of probability in an infinitesimal volume is in balance with the
incoming/outgoing flux of probability. The probability “field” ρ(~x, t) behaves
like a fluid: its substance is locally conserved.

Conservation of total probability: Take a sphere of radius R with volume VR
and surface SR: d

dt

∫
VR

|ψ(~x, t)|2 d~x = −
∫
VR

~∇·~j(~x, t)d~x = −
∫
SR

~j(~x, t)·d~SR −−−→
R→∞

0

(since for normalizable wavefunctions ~j → 0 faster than 1/SR)⇒ norm 〈ψ|ψ〉 =∫
|ψ(~x, t)|2 d~x = 1 conserved in time, as is also clear from unitarity of Û(t)

I Probability flow

~j(~x, t) = ~
M

Im
[
ψ∗~∇ψ

]
︸ ︷︷ ︸
− i

2 (ψ∗~∇ψ−ψ~∇ψ∗)

− q
M
ψ∗ ~Aψ = 1

2M

[
ψ∗(~̂πψ) + ψ(~̂πψ)∗

]
= ~j

~̂π = (−i~~∇− q ~A) ≡ mechanical momentum

Parametrization: ψ(~x, t) = R(~x, t)eiS(~x,t)/~ ⇒ ~j = R2︸︷︷︸
ρ

1
M

[
~∇S − q ~A

]
︸ ︷︷ ︸

~v

This helps to understand the complex character of wavefunctions:
(a) squared absolute value |ψ(~x, t)|2 ≡ probability density
(b) gradient of phase ~∇S(~x, t) ∝ velocity field

(in absence of ~A)

In this way, the wavefunction can be visualized by
a mesh of arrows ∝ ~v= 1

M
~∇S, the local density of

the mesh being proportional to the density ρ=|ψ|2:

I Flow for simple wavefunctions

(a) Planar wave : ψ = N ei ~p·~x~ ~j = |N |2 ~p
M

(b) Spherical wave : ψ = N 1
r e

iprr~ ~j = |N |2 pr
Mr2~nr

(c) Eigenstate of
orbital momentum :

ψ = R(r)︸︷︷︸
|R|eiSr(r)/~

Ylm(ϑ, ϕ)︸ ︷︷ ︸
Plm(cosϑ)eimϕ

~j ∝ dSr
dr ~nr + m~

r sinϑ~nϕ
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We obtain
(a) translational

(b) divergent
(c) rotational
flows

Stationary state: ∂
∂t|ψ|

2 = 0 ⇒ ~∇ ·~j = 0

This follows from the existence of degenerate solutions
{
ψE
ψ∗E

}
with flows

{
~j

−~j

}
I Vorticity of the probability flow: ~v ≡ ~∇× ~v (standard definition)

(a) ~A=0 ⇒ ~v = ~∇ ×
(

1
M
~∇S
)

= 0 except points ψ=0, where phase S is

not determined ⇒ in absence of mg. field, the probability flow may produce
vortices only in ψ=0 points

(b) ~A6=0 ⇒ ~v = − q
M

~B︷ ︸︸ ︷
(~∇× ~A) flow vortical in all points where ~B 6= 0

J Historical remark
1926: Max Born introduces probabilistic interpretation of Sch.eq. & probab. flow

� Conservation laws & symmetries

We are ready now to appreciate the deepest dynamical consequence of symme-
try. According to the famous theorem by Emmy Noether, the symmetry of a
given system under an n-parameter Lie group generates n conserved quantities.

But what the conservation means in the indeterministic environment of QM,
where physical quantities yield just statistical values?

I Conservation laws in QM

Evolution of the probability distribution for measurement outcomes a of quan-
tity A for a system in initial state |ψ(0)〉: pψ(a, t) ≡ 〈ψ(t)|P̂a|ψ(t)〉

Quantity A conserved ⇔ ∂
∂t
pψ(a, t) = 0 ∀|ψ(0)〉 & ∀a

Statistical moments: 〈ψ(t)|Âk|ψ(t)〉︸ ︷︷ ︸
〈ψ(0)|ei

Ĥt
~ Âke−i

Ĥt
~ |ψ(0)〉

= 〈ψ(0)|Âk|ψ(0)〉 ⇒ ei
Ĥt
~ Âe−i

Ĥt
~ = Â

⇒ [Â, Ĥ] = 0

⇒ probability distribution pψ(a, t) does not depend on time for quantities that
commute with Hamiltonian

I Equation for the average value

i~ ddt〈ψ(t)|Â|ψ(t)〉 =

〈ψ(t)|[Â,Ĥ]|ψ(t)〉︷ ︸︸ ︷
−〈ψ(0)|ei

Ĥt
~ ĤÂe−i

Ĥt
~ |ψ(0)〉+ 〈ψ(0)|ei

Ĥt
~ ÂĤe−i

Ĥt
~ |ψ(0)〉
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Time-derivative “operator”: ˆ̇A ≡ 1
i~[Â, Ĥ] d

dt〈A〉ψ ≡ 〈ψ(t)| ˆ̇A|ψ(t)〉

Analogy with Poisson bracket: Ȧ =
∑
i

(
∂A
∂pi

ṗi︸︷︷︸
−∂H
∂qi

+∂A
∂qi

q̇i︸︷︷︸
+ ∂H
∂pi

)
= −{A,H}

⇒ [Â, Ĥ]↔ −i~ {A,H}
Example: particle speed “operator” for Ĥ = 1

2M
(~̂p− q ~A)2 + V

ˆ̇
~x = 1

i~ [~̂x, Ĥ] = 1
2iM~ [~̂x, (~̂p− q ~A)2] = ~̂p−q ~A

M = ~̂π
M

I Conservation laws generated by symmetries

Quantity Â ∝ Ĝ ≡ Hermitian generator of group G ≡ {eiĜs}s∈R
⇒ A conserved ⇔ [eiĜs, Ĥ] = 0 ⇔ G is symmetry group of Ĥ

Generalizing to higher dimensional Lie groups, we obtain the QM version of
the Noether theorem: invariance of Ĥ under a Lie group with n generators
implies conservation of quantities associated with all generators

Standard spatio-temporal symmetries of Ĥ and related conservation laws:

translational invariance ⇔ linear momentum ~̂p

rotational invariance ⇔ angular momentum ~̂J

time translation invariance ⇔ energy Ĥ

space reflection invariance ⇔ parity P̂

Note: Space reflection is not a continuous transformation; parity conservation
follows from an “accidental” Hermiticity of the reflection operator P̂

J Historical remark
1915: Emmy Noether proves theorem relating conservation laws with symmetries

1924: N. Bohr, H. Kramers & J. Slater propose that in QM the conservation laws
(energy, momentum) hold only “statistically” (not in every event); this is disproved
in experiments of W. Bothe & H Geiger and A.H. Compton & A.W. Simon

1927: Eugene Wigner writes about symmetry & conservation laws in QM, he relates
parity conservation in elmag. decays with reflection symmetry of interaction
1956: C.N. Yang & T.D. Lee propose that parity is not conserved in weak interac-

tions; this is verified experimentally in 1957 by C.S. Wu et al.
1951-8: Various proofs of the CPT symmetry & conservation

� Energy × time uncertainty relation

In physics, time is not a standard observable—it is just “a parameter” whose
only role is “to fly” (and we all have to fly with it!). There is no QM operator
associated with time. Nevertheless, it is often stated that time and energy form
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a pair of conjugated quantities similar to coordinate and momentum. This can

be valid only in a limited sense, which we explore in the following.

I Survival amplitude & probability

The amplitude/probability to find the system in its initial state |ψ(0)〉 after

time t: A0(t) ≡ 〈ψ(0)|ψ(t)〉 P0(t) = |A0(t)|2

A0(t)=〈ψ(0)|e−i Ĥt~ ψ(0)〉=〈e+i Ĥt~ ψ(0)|ψ(0)〉 = A∗0(−t) ⇒ P0(t) = P0(−t)

To evaluate A0(t), we use the completeness:


∫
S(Ĥ)

∑
k∈DE

|Ek〉〈Ek| dE = Î

〈E ′k′|Ek〉 = δ(E − E′)δkk′(for continuous E & discrete k; other possibilities analogous)

A0(t)=〈ψ(0)| ↑
Î

e−i
Ĥt
~ ↑
Î

|ψ(0)〉=
∫∫ ∑

k,k′
〈ψ(0)|E ′k′〉︸ ︷︷ ︸

ω∗(E′,k′)

〈E′k′|e−i
Ĥt
~ |Ek〉︸ ︷︷ ︸

e−i
Et
~ δ(E−E′)δkk′

〈Ek|ψ(0)〉︸ ︷︷ ︸
ω(E,k)

dE dE′

=
∫ [∑

k

|ω(E, k)|2
]

︸ ︷︷ ︸
Ω(E) energy distribution

e−i
Et
~ dE =

∫
S(Ĥ)

Ω(E)e−i
Et
~ dE = A0(t)

Fourier

transformation

General property of the Fourier transformation:

wide
narrow } energy distribution ∆E

{
large
small

⇔ small
large

}
∆t time evolution { fast

slow

〈〈E2〉〉 ∼ ∆E2 ⇔ ∆t2 ∼ 1
+∞∫
−∞

P0(t)dt

+∞∫
−∞

t2P0(t)dt

“uncertainty” relation:

∆E ·∆t & ~
but ∆t 6= uncertainty

in usual sense

This can be illustrated on the following examples:

I Gaussian energy distribution: Ω(E) = 1√
2πσ2

e−
(E−E0)2

2σ2

A0(t)=
1√

2πσ2

+∞∫
−∞

e−
(E−E0)2

2σ2 −iEt~︸ ︷︷ ︸
e
− 1

2σ2E
2+(E0

σ2 −
it
~ )E−

E2
0

2σ2

dE=e−
σ2

2~2 t
2

e−i
E0t
~

P0(t) = e−(σ~)
2
t2 = e−( t

∆t)
2

∆t ∼ ~
σ σ ≡ ∆E ⇒ ∆E ·∆t = ~
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IBreit-Wigner (Cauchy) energy distribution: Ω(E)=
1

π

Γ
2

(E−E0)2+
(

Γ
2

)2

Γ = finite halfwidth
〈〈E2〉〉 =∞ infinite energy disperion because of the slow decrease of Ω(E)

P0(t) = e−
t
τ with Γ τ = ~ exponential decay (average lifetime τ=~

Γ
)

Inverse proof (from exponential decay to Breit-Wigner distribution):

Assume A0(t) =

{
e−Γt/(2~)e−iE0t/~

e+Γt/(2~)e−iE0t/~

}
for

{
t ≥ 0

t < 0

Coherent assumption on the
phase factors. The t>0 exponential

decay is extended also to t<0

Ω(E) = 1
2π~

+∞∫
−∞

A0(t)e
+iEt~ dt = 1

2π~

( 0∫
−∞

e[
Γ
2~+i

E−E0
~ ]tdt

︸ ︷︷ ︸
~

(Γ/2)+i(E−E0)

+

+∞∫
0

e[−
Γ
2~+i

E−E0
~ ]tdt

︸ ︷︷ ︸
−~

−(Γ/2)+i(E−E0)

)
=

= 1
π

Γ/2

(E−E0)2+(Γ/2)
2

⇒
∼Γ︷︸︸︷

∆E

∼τ︷︸︸︷
∆t = ~ relation obtained again

⇒ Low-energy cutoff of Ω(E) leads to
small deviations from the exp. law, in

particular, to a smoothening of the t=0 cusp of the extended function P0(t)

I Non-exponential decay

QM always yields d
dtP0(t)

∣∣
t=0

= 0 in contrast to exp. law: d
dtP0(t)

∣∣
t=0

= −1
τ

General derivation for small times:

|A0(δt)|2 = 〈ψ(0)|e−i Ĥδt~ |ψ(0)〉〈ψ(0)|e+i Ĥδt~ |ψ(0)〉 ≈ expand up to 2nd order in δt

≈ 1 + 〈ψ(0)|Ĥ|ψ(0)〉2 (δt)2

~2 − 〈ψ(0)|Ĥ2|ψ(0)〉(δt)
2

~2 = 1− 〈〈E
2〉〉
~2︸ ︷︷ ︸
τ−2

(δt)2 ≈ P0(δt)

⇒ we again get:

√
〈〈E2〉〉︷︸︸︷
∆E

τ︷︸︸︷
∆t = ~

⇒ The QM decay for small times is always quadratic.
However, this is usually very hard to measure!

J Historical remark
1997: the first exp. detection of short-t corrections to the exponential decay law

I Energy × time uncertainty in real measurements

Let T be a quantity suitable for time determination ⇒ “clock” operator T̂
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For the clock to be functioning there must be [T̂ , Ĥ] 6= 0 (otherwise the dis-

tribution of T for any initial state |ψ(0)〉 would be conserved in time)

⇒ standard T × E uncertainty relation in state |ψ(t)〉√
〈〈E2〉〉ψ(t)〈〈T 2〉〉ψ(t) ≥ ~

2

∣∣〈ψ(t)|

ˆ̇T︷ ︸︸ ︷
1
i~ [T̂ , H ] |ψ(t)〉

∣∣
√
〈〈T 2〉〉ψ(t)

〈ψ(t)| ˆ̇T |ψ(t)〉
=

∆ψ(t)T
d
dt〈T 〉ψ(t)

≡ ∆t can be identified

with the uncertainty of time t determination

with clock observable T̂ for initial state |ψ(0)〉

⇒ real uncertainty relation ∆E ·∆t ≥ ~
2

Time operator in QM? For a certain subset of initial states of the given

system, it is possible to find a suitable clock operator T̂ . However, there exists
no universal time operator T̂ satisfying the canonical commutation relation
[T̂ , Ĥ] = −i~Î , applicable for all initial states ∈ H. For instance, this would

imply the absence of a lower bound of energy, which is unphysical.

J Historical remark

1926, 1933: W. Pauli shows the difficulty in building a quantum operator of time
1928: N. Bohr proposes the E× t uncertainty principle, 1930’s debate with Einstein
1945: L. Mandelstam & I. Tamm derive E × t uncertainty for “clock observables”

1960’s–present: Discussions on the ways to formulate QM with a time operator

� Hamiltonians depending on time

Let us have a closer look on quantum dynamics generated by a Hamiltonian

which itself changes in time: Ĥ = Ĥ(t) . This means that, for the system un-
der study, the time-translation invariance is violated, as is actually the case if a
variable external field is applied. However, as explained in the following para-

graph, time-dependent Hamiltonians naturally appear also in time-translation
invariant situations—in the so-called Dirac picture of quantum dynamics.

I The basic form of evolution operator valid only locally: Û(δt, t) = e−i
Ĥ(t)δt

~

⇒ Generalized Schrödinger equation i~ d
dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉

We distinguish 2 cases:

 (a) [Ĥ(t), Ĥ(t′)] = 0 ∀ t, t′
(b) [Ĥ(t), Ĥ(t′)] 6= 0 t 6= t′

easy but rare
normal & difficult

I Equation for generalized evolution operator Û(t, t0)
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i~ ∂∂t Û(t, t0)|ψ(t0)〉︸ ︷︷ ︸
|ψ(t)〉

= Ĥ(t) Û(t, t0)|ψ(t0)〉︸ ︷︷ ︸
|ψ(t)〉

valid ∀ |ψ(t0)〉

⇒ Operator equation i~ ∂
∂t
Û(t, t0) = Ĥ(t) Û(t, t0) with Û(t0, t0) = Î

I Iterative solution: Û(t, t0)︸ ︷︷ ︸
∗

= Î − i
~

t∫
t0

Ĥ(t1) Û(t1, t0)︸ ︷︷ ︸
∗ = ...

dt1 = . . .

⇒ Dyson series

Û(t, t0) = Î +
(
− i
~
)1

t∫
t0

Ĥ(t1) dt1 +
(
− i
~
)2

t∫
t0

t1∫
t0

Ĥ(t1)Ĥ(t2) dt2dt1 + . . .

+
(
− i
~
)n t∫

t0

t1∫
t0

. . .
tn−1∫
t0

Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) dtn . . . dt2dt1 + . . .

In general, the Dyson series can be summed up to a compact form only in

case (a) of the Hamiltonian time dependence. In case (b), which is much more
generic, the evolution operator can only be expressed in the infinite-series form.

I Case (a): [Ĥ(t), Ĥ(t′)] = 0
t∫
t0

t1∫
t0

Ĥ(t1)Ĥ(t2) dt2dt1 = 1
2

t∫
t0

t∫
t0

Ĥ(t1)Ĥ(t2) dt2dt1 = 1
2

[
t∫
t0

Ĥ(t1) dt1

]2

t∫
t0

t1∫
t0

. . .
tn−1∫
t0

Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) dtn . . . dt2dt1 = 1
n!

[
t∫
t0

Ĥ(t1) dt1

]n

Compact expression of the evolution operator: Û(t, t0) = e
− i

~

t∫
t0

Ĥ(t1) dt1

I Case (b): [Ĥ(t), Ĥ(t′)] 6= 0

Note that
t∫
t0

t1∫
t0

. . .
tn−1∫
t0

Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) dtn . . . dt2dt1 =
1
n!

t∫
t0

t∫
t0

. . .
t∫
t0

T
[
Ĥ(t1)Ĥ(t2) . . . Ĥ(tn)

]
︸ ︷︷ ︸ dtn . . . dt2dt1︷ ︸︸ ︷
Ĥ(ti1)Ĥ(ti2) . . . Ĥ(tin) time ordering
(t1, t2 . . . tn) 7→ (ti1 ≥ ti2 ≥ · · · ≥ tin)

In each term of Dyson series do the following:
(1) change the subintegral operator function

to the t-ordered product: [. . . ] 7→ T[. . . ]
(2) extend integ. domain ⇒ all upper limits = t
(3) reduce the integral by factor 1

n!

The resulting series looks like exponent. expansion

and can be abbreviated by the symbolic expression: Û(t, t0) = Te
− i

~

t∫
t0

Ĥ(t1) dt1
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� Alternative descriptions of time evolution

So far we practiced an approach in which the vectors corresponding to physical
states vary in time while the operators associated with observables mostly stay

constant. This is indeed the most common description of time evolution, but
not the only one. All equivalent descriptions can be split into 3 groups.

I 3 equivalent ways to express action of any unitary transformation Û

(1)
|ψ〉 7→ Û |ψ〉
Â 7→ Â

(2)
|ψ〉 7→ |ψ〉
Â 7→ Û−1ÂÛ

(3)
|ψ〉 7→ Û1|ψ〉
Â 7→ Û−1

0 ÂÛ0

for any factorization Û = Û0Û1

In all cases, matrix elements 〈ψ′|Â|ψ〉 are the same ⇒ equivalent descriptions

These possibilities constitute 3 equivalent types of description
of quantum evolution with unitary operator Û(t) = e−i

Ĥt
~

I (1) Schrödinger picture

|ψ(t)〉S = Û(t)|ψ(0)〉S
ÂS ≡ const.

⇒


usual time evolution of state vectors

i~ d
dt
|ψ(t)〉S = ĤS|ψ(t)〉S

time independent operators

I (2) Heisenberg picture

|ψ(t)〉H = |ψ〉H ≡ const.

ÂH(t) = Û †(t) ÂS Û(t)
⇒


time independent state vectors

|ψ〉H = Û †(t)|ψ(t)〉S
time dependent operators

⇒ Hamiltonian ĤH = ĤS ≡ Ĥ

⇒ General observable evolution equation: i~ d
dt
ÂH(t) = [ÂH(t), Ĥ]

I (3) Dirac picture (intermediate between Schrödinger and Heisenberg)

Hamiltonian splitting Ĥ = Ĥ0 + Ĥ ′

In general, [Ĥ0, Ĥ
′] 6= 0⇒ the factorization Û(t) =

=e−i
Ĥ0t
~︷ ︸︸ ︷

Û0(t)

6=e−i
Ĥ′t
~︷ ︸︸ ︷

Û1(t) is not trivial

Operators evolve by Û0(t) ⇒ ÂD(t) = Û †0(t) ÂS Û0(t) ⇒ Ĥ0D=Ĥ0S≡Ĥ0

⇒ they satisfy differential eq.: i~ d
dt
ÂD(t) = [ÂD(t), Ĥ0]

State vectors evolve by Û1(t) ⇒ |ψ(t)〉D = Û †0(t)|ψ(t)〉S

i~ ddt |ψ(t)〉D = −Ĥ0|ψ(t)〉D + Û †0(t)
(
i~ ddt |ψ(t)〉S

)︸ ︷︷ ︸
(Ĥ0+Ĥ ′)Û0(t)|ψ(t)〉D

= Û †0(t)Ĥ ′Û0(t)︸ ︷︷ ︸
Ĥ ′D(t)

|ψ(t)〉D

i~ ddt|ψ(t)〉D = Ĥ ′D(t)|ψ(t)〉D Schwinger-Tomonaga equation
[Schrödinger eq. with Ĥ 7→ Ĥ ′D(t)]
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The evolution according to this equation can be represented by state evolution

operator Û(t, t0)D, which is expressed via the Dyson series with Ĥ(t) ≡
Ĥ ′D(t). In this case, due to the assumed “smallness” of Ĥ ′D, the series can be
used in a perturbative way, i.e., neglecting higher-order terms (see Sec. 5.3).

J Historical remark
1925-6: W. Heisenberg & E. Schrödinger use the two descriptions of QM dynamics
1930: Paul Dirac connects these descriptions in a unified picture

1934: Julian Schwinger (S.-I. Tomonaga in 1940’s) introduce the interaction picture
1949: Freeman Dyson uses the expansion of the evolution operator in QED

� Green operator

We briefly outline an approach to evolution which becomes very useful later,
in the context of relativistic quantum theory. It is based on the old idea of
Green’s function, known from the general theory of differential equations, and
leads to a very enlightening view of quantum dynamics.

I “Retarded” Green operator for nonstationary Schrödinger equation

Defined as evolution oper. for t ≥ t0: Satisfies Green-like operator equation:

Ĝ(t, t0) = Θ(t− t0)︸ ︷︷ ︸
=
{

1 for t≥t0
0 for t<t0

Û(t, t0)
[
i~ ∂∂t − Ĥ(t)

]
Ĝ(t, t0) = i~δ(t−t0)

Note: The meaning of “retarded” should be understood here as evolving the

system from past t0 to future t. Similarly, “advanced” Green operator is defined
by Ĝ−(t, t0) = [1−Θ(t− t0)]Û(t, t0) and satisfies the same Green-like equation.

I Transition from known to unknown Green operator

Splitting of Hamiltonian into “free” & “interaction” parts: Ĥ(t)=Ĥ0(t)+Ĥ
′(t)

Assume we know Green operator Ĝ0 for the “free” part:[
i~ ∂∂t − Ĥ0(t)

]
Ĝ0(t, t0) = i~δ(t−t0)

⇒ The full Green operator satisfies the following integral equation:

Ĝ(t, t0) = Ĝ0(t, t0)− i
~

+∞∫
−∞

Ĝ0(t, t1)Ĥ
′(t1)Ĝ(t1, t0) dt1

Proof: application of [ i~ ∂∂t−Ĥ0 ] to the first term and
inside the integral yields the defining eq. of Ĝ:[

i~ ∂∂t − Ĥ0(t)
]
Ĝ(t, t0) = i~δ(t−t0) +

Ĥ ′(t)Ĝ(t,t0)︷ ︸︸ ︷
+∞∫
−∞

δ(t−t1)Ĥ ′(t1)Ĝ(t1, t0) dt1
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I Iterative solution of the integral equation for Ĝ

Ĝ(t, t0) = Ĝ0(t, t0)− i
~

+∞∫
−∞

Ĝ0(t, t1)Ĥ
′(t1)Ĝ0(t1, t0) dt1+

· · ·+
(
− i
~
)n+∞∫
−∞

. . .

+∞∫
−∞︸ ︷︷ ︸

n×

Ĝ0(t, tn)Ĥ
′(tn)Ĝ0(tn, tn−1) . . . Ĝ0(t2, t1)Ĥ

′(t1)Ĝ0(t1, t0) dtn..dt1

+ . . . . . .

This series is analogous to the Dyson series [except (a) the const. term = Ĝ0 6= Î,
(b) all integrals have the same limits, and (c) alternating operators Ĝ0 & Ĥ ′

inside the integral]. If Ĥ ′ is “small” compared to Ĥ0, the series can again be

used in the perturbative way, i.e., neglecting the terms of higher order. The
meaning of this expansion will become clear in the following.

I Propagator

Coordinate representation of single-particle Green operator

〈~x|ψ(t)〉 = 〈~x|Ĝ(t, t0)|ψ(t0)〉 =
∫
〈~x|Ĝ(t, t0)|~x0〉︸ ︷︷ ︸

G(~xt|~x0t0)

〈~x0|ψ(t0)〉 d~x0

G(~xt|~x0t0) ≡ propagator
≡ wavefunction evolved from ideally localized init. state ψ(~x, t0)=δ(~x−~x0)≡|~x0〉
Wavefunction evolved from a general initial state is the convolution:

ψ(~x, t) =

∫
G(~xt|~x0t0)ψ(~x0, t0) d~x0

Propagator satisfies the following eq.:[
i~ ∂∂t + ~2

2M∆− V (~x, t)
]
G(~xt|~x0t0) = i~δ(t−t0)δ(~x−~x0)

Let V (~x, t)=V0(~x, t)+V
′(~x, t) and G0(~xt|~x0t0) be the solution for V0(~x, t)

The iterative solution reads as:

G(~xt|~x0t0) = G0(~xt|~x0t0) + · · ·+
(
− i
~
)n∫

. . .

∫
︸ ︷︷ ︸

2n×

G0(~xt|~xntn)V ′(~xn, tn) . . .

. . . G0(~x2t2|~x1t1)V
′(~x1, t1)G0(~x1t1|~x0t0) d~xndtn . . . d~x1dt1 + . . .

This series has a visual interpretation:

with each intermediate interaction
bringing the factor 1

i~V
′(~xk, tk)

and the integration over all
space-time points (~xk, tk)

I Green operator for time-independent Hamiltonian Ĥ(t) ≡ Ĥ

Expansion in stationary states: Ĝ(t, t0) = Θ(t−t0)
∑
i,k

e−i
Ei(t−t0)

~ |Eik〉〈Eik| = . . .
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Result from complex analysis (see the sketch
of integration path used in its derivation):

∞∫
−∞

e−iωt

~ω−E+iεdω = 2π
i~Θ(t)e−i

(E−iε)t
~ for ε > 0

. . .= lim
ε→0+

∑
i,k

(
i~
2π

∞∫
−∞

e−iωt

~ω−Ei+iεdω

)
|Eik〉〈Eik|= lim

ε→0+

i~
2π

∞∫
−∞

e−iωt

~ω − Ĥ + iε
dω = Ĝ(t, t0)

J Historical remark
1828: George Green applies math. analysis in electromagnetism ⇒ Green function
1949: Richard Feynman applies Green funcs. in QM+QED (later “propagator”)

2.5 Examples of quantum evolution

Having digested all the general approaches to the description of quantum evolution,
we need to see some concrete applications. A few examples discussed below represent

just a personal selection—a multitude of other cases could serve the purpose as well.

� Two-level system

Two-level systems yield periodic evolution. A lot of examples of such behavior
exists in nature: from oscillation phenomena in particle physics to excitation-

deexcitation cycles in quantum optics. Note that any system with Hilbert
space of a finite dimension n ≥ 2 exhibits in general a quasiperiodic evolution:
it can be expressed via a finite number of periodic motions, like the function

f(t) = g(eiω1t, eiω2t, . . . ) where ω1, ω2, . . . represent partial frequencies.

I General Hamiltonian

Ĥ =
(

e+a3 a1−ia2
a1+ia2 e−a3

)
= eÎ + a1σ̂1 + a2σ̂2 + a3σ̂3 a =

√
a2

1 + a2
2 + a2

3 ≡ ~ω

Evolution operator calculated as the spinor transform.
(see Sec. 2.4)

Û(t) = e−i
Ĥt
~ = e−i

et
~ Î

(cos at~ )Î−i(sin at
~ )(~aa ·~̂σ)︷ ︸︸ ︷

e−i
(~a·~̂σ)t

~

Û(t) = e−i
et
~

[
(cosωt) Î − i(sinωt)

(
~a
a
· ~̂σ
)]

= e−i
et
~

(
cosωt+i

a3
a sinωt −a2+ia1

a sinωt
a2−ia1

a sinωt cosωt−ia3
a sinωt

)
Quasiperiodic evolution with partial frequencies ω1≡ω & ω2≡ e

~ , but ω2 not rel-
evant (just a global phase). The motion is equivalent to a steady rotation
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I Special case: Ĥ = ( e vv e ) ⇒ Û(t) = e−i
et
~

(
cos vt~ −i sin vt

~
−i sin vt

~ cos vt~

)
|ψ(0)〉=( 1

0 )
t−→ |ψ(t)〉=e−i et~

(
cos vt~
−i sin vt

~

)
⇒

{
P0(t) = cos2(ωt)
P1(t) = sin2(ωt)

}
oscillations
period T = 2π~

v

� Free particle

Although particle moving in empty space (no fields) represents the most trivial
example of evolution expressed in terms of an ordinary wavefunction, the par-

ticular calculation is a bit unpleasant. Nevertheless, it is worth of effort because
of two benefits of general importance: discovery of the wavepacket spreading
phenomenon and quantification of the limits of validity of nonrelativistic QM.

I Free-particle propagator

Green operator: Ĝ(t, t0) = Θ(t−t0) e−i
t−t0
2M~ ~̂p

2

t− t0 ≡ ∆t

Propagator: G(~xt|~x0t0) ≡ 〈~x|Ĝ(t, t0)|~x0〉 ~x− ~x0 ≡ ∆~x

= Θ(∆t)
∫∫
〈~x|~p〉︸ ︷︷ ︸

1√
2π~3 e

+i~p·~x/~

〈~p|e−i ∆t
2M~ ~̂p

2|~p0〉︸ ︷︷ ︸
e−i

∆t
2M~ ~p

2
δ(~p−~p0)

〈~p0|~x0〉︸ ︷︷ ︸
1√

2π~3 e
−i~p0·~x0/~

d~p d~p0 = Θ(∆t)
(2π~)3

∫
e
i
~

[
~p·∆~x− ~p2

2M∆t
]
d~p

= Θ(∆t)
(2π~)3

∫
ea(~p−~q)2+bd~p︸ ︷︷ ︸

(−πa)
3/2
eb for Re a<0

with a = −i ∆t
2~M b = iM(∆~x)2

2~∆t
~q = M∆~x

∆t

To get Re a < 0 assume: ∆t −→ ∆t−iε with ε→ 0+

· · · = lim
ε→0+

Θ(∆t)
(2π~)3

(
2π~M
ε+i∆t

) 3
2 ei

M(∆~x)2

2~∆t = Θ(∆t)
(

M
2iπ~∆t

) 3
2 e

i
~
M
2 (∆~x

∆t )
2
∆t= G(∆~x,∆t)

|G(∆~x,∆t)|2 =
(

M
2π~∆t

)3
for ∆t > 0 ⇒ immediate spread of the particle in

the whole space ⇐ nonrelativistic theory

I Evolution of Gaussian wavepackets

If the particle localization is imperfect, the spreading rate of its wavefunction
should become finite.

ψ(~x, t) = 1
(2π~)3/2

∫
ψ̃(~p)︸︷︷︸

e−(~p−~p0)2/4σ2
p

(2πσ2
p)3/4

e
i
~

[
~p·~x− ~p2

2M
t

]
d~p =

= 1
(8π3~2σ2

p)3/4

∫
e

(
− 1

4σ2
p
− it

2~M

)
~p2+

(
~p0

2σ2
p

+
i~x
~

)
·~p−

~p2
0

4σ2
p︸ ︷︷ ︸

ea(~p−~q)2+b Re a<0

=

= 1
(8π3~2σ2

p)3/4

(
−π
a

)3/2
eb a=− 1

4σ2
p

(
1+i

2σ2
pt

~M

)
~q=− 1

2a

(
~p0

2σ2
p

+i
~x
~

)
b=−a~q 2−

~p2
0

4σ2
p

Probability density: |ψ(~x, t)|2 =
(

1
8π~2σ2

p|a|2

) 3
2

e2Re b
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Define σ2
x(t) ≡ 4~2σ2

p|a|2 = ~2

4σ2
p

[
1 +

4σ4
p

~2M2 t
2
]

and evaluate the exponent:

2Re b = − 1
2σx(t)2

[
16~2σ2

p|a|2Re(a~q 2) + 4~2|a|2~p 2
0

]
= −(~x− ~p0M t)

2

2σx(t)2

|ψ(~x, t)|2= 1

[2πσx(t)2]
3/2e

−
[~x−~x0(t)]

2

2σx(t)2

~x0(t)=
~p0

M t shift

σx(t)=σx(0)

√
1+
[

~
2Mσx(0)2

]2

t2 spreading

I Validity limit of nonrelativistic QM

Spreading speed of the wavepacket: s ≡ 1
2
d
dtσx(t) =

σx(0)
2

[
~

2Mσx(0)2

]2
t√

1+
[

~
2Mσx(0)2

]2
t2

large t−→ ~
4Mσx(0)

Nonrelativistic QM becomes invalid for s & c ⇒ σx(0) . ~
4Mc

= 1
8π

h
Mc︸︷︷︸
λC⇒ for the initial particle localization σx(0) . λC

Schrödiger equation applicable iff σx(0)� λC
λC≡Compton wavelength

(for electron λC
.
= 2.4 · 10−12 m)

I Phase & group velocities

(a) Monochromatic planar wave ψ(~x, t) = ei

φ(~k,~x,t)︷ ︸︸ ︷
[~k · ~x− ω(~k)t]

Phase velocity ~vph given by condition of a constant phase:

φ(~k, ~vpht︸︷︷︸
~x

, t) = const ⇒ ~vph = ω(~k)
k2
~k

⇒ in QM: ~k = ~p
~ , ~ω(~k) = (~~k)2

2M ⇒ ~vph = ~p
2M = 1

2~vclas

(b) Superposition of planar waves ψ(~x, t) =
∫
a(~k) ei[

~k·~x−ω(~k)t] d~k

with the amplitude function a(~k) having a sharp maximum at ~k0

Group velocity ~vgr represents motion of the ψ(~x, t) maximum; it is given by
a stationary point of the phase:
~∇~k φ(~k, ~vgrt︸︷︷︸

~x

, t)|~k=~k0
=0 ⇒ ~vgr=~∇~k ω(~k)|~k=~k0

⇒ in QM: ~vgr = ~p0

M = ~v0clas
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� Coherent states in harmonic oscillator

The harmonic oscillator potential has the magic power to prevent Gaussian
wavepackets from spreading. It provides the simplest specimen from the large
family of coherent states. These states generalized to more complex situations

represent an important tool to construct the classical limit of a quantum system
(cf. Chapter 3). For the sake of simplicity we will stay now in 1D space.

I Algebraic solution of harmonic oscillator

1D oscillator Hamiltonian Ĥ = 1
2M p̂

2 + Mω2

2 x̂2 can be expressed through
ladder operators

b̂† =
√

Mω
2~
(
x̂− i 1

Mω p̂
)

b̂ =
√

Mω
2~
(
x̂+ i 1

Mω p̂
) ⇔ x̂ =

√
~

2Mω

(
b̂† + b̂

)
p̂ = i

√
M~ω

2

(
b̂† − b̂

) ⇔ Ĥ = ~ω
(
b̂†b̂+ 1

2

)

[b̂, b̂†] = Î boson commutation relation (see Sec. 7.1)

Commutation relations of b̂†, b̂ with Ĥ are those of a translation operator
(Sec. 2.4) ⇒ ladder operators make jumps between individual eigenstates[
Ĥ, b̂†

]
= +~ωb̂†[

Ĥ, b̂
]

= −~ωb̂
⇒ b̂†|En〉 =

√
n+1|En+1〉

b̂|En〉 =
√
n|En−1〉

⇒ b̂† ≡ raising operator

b̂ ≡ lowering operator

Normalization factors are okay:

{
〈En−1|En−1〉 = 1

n

n︷ ︸︸ ︷
〈En|b̂†b̂|En〉 = 1

〈En+1|En+1〉 = 1
n+1
〈En| b̂b̂†︸︷︷︸

1+b̂†b̂

|En〉 = 1

Operators b̂† / b̂ are thought to create/annihilate quanta of vibrations—effective
particles of bosonic nature, so called phonons

I Coherent states in the energy eigenbasis

|ψz〉 = e−
|z|2

2

∞∑
n=0

zn√
n!
|En〉

z ∈ C

Poisson energy distribution:

pz(En) = e−λ λn

n! with λ≡|z|2=〈n〉z=〈〈n2〉〉z
〈E〉z = ~ω

(
|z|2 + 1

2

)
〈〈E2〉〉z = (~ω)2|z|2

I Normalization & scalar products

〈ψz|ψz′〉︸ ︷︷ ︸
z=|z|eiφ

z′=|z′|eiφ′

= e−
|z|2+|z′|2

2

∑
n

∑
n′

(z∗)n(z′)n
′

√
n!n′!

〈En|En′〉︸ ︷︷ ︸
δnn′

= e−
|z|2+|z′|2

2

∑
n

(z∗z′)n

n! =
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· · · = e−
|z|2+|z′|2

2 +|z||z′|[cos(φ′−φ)+i sin(φ′−φ)] = e−
|z′−z|2

2 +i|z||z′| sin(φ′−φ) = 〈ψz|ψz′〉

Coherent states {|ψz〉}z∈C form an overcomplete set in H:
{
〈ψz|ψz〉=1
〈ψz|ψz′〉6=0 for z 6=z′

I Coherent states as eigenstates of lowering operator b̂|ψz〉 = z|ψz〉

Proof: b̂|ψz〉 = e−
|z|2

2

∞∑
n=0

zn√
n!

b̂|En〉︸ ︷︷ ︸√
n|En−1〉

= z e−
|z|2

2

∞∑
n=1

zn−1√
(n−1)!

|En−1〉︸ ︷︷ ︸
|ψz〉

Note: There exists no eigenstate of b̂† (think!)

I Coordinate & momentum averages

〈ψz|x̂|ψz〉 =
√

~
2Mω

z∗+z︷ ︸︸ ︷
〈ψz|(b̂† + b̂)|ψz〉 =

〈ψz|p̂|ψz〉 = i
√

M~ω
2
〈ψz|(b̂† − b̂)|ψz〉︸ ︷︷ ︸

z∗−z

=

√
2~
Mω Re z = 〈x〉z√
2M~ω Im z = 〈p〉z

I Coordinate representation ψz(x) = 〈x|ψz〉
· · · = e−

|z|2
2

∞∑
n=0

zn√
n!
〈x|En〉︸ ︷︷ ︸

(Mω
π~ )

1/4 1√
2nn!

e−
Mω
2~ x2

Hn

(√
Mω
~ x

)=
(
Mω
π~
)1

4 e−
|z|2

2 −
Mω
2~ x

2

∞∑
n=0

(
z√
2

)n
n!

Hn

(√
Mω
~ x
)

︸ ︷︷ ︸
e
Mω
~ x2−

(√
Mω
~ x− z√

2

)2

Hn(ξ) ≡ dn

dηne
ξ2−(ξ−η)2|η=0 ⇒ eξ

2−(ξ−η)2

=
∑
n
Hn(ξ)

ηn

n!

· · · =
(
Mω
π~
) 1

4 e−
|z|2

2 +Mω
2~ x

2

e
−
(√

Mω
~ x− z√

2

)2

=
(
Mω
π~
) 1

4 e−
Mω
2~ x

2+2z
√

Mω
2~ x−zRe z

|ψz(x)|2 =
(
Mω
π~
)1

2 e−
Mω
~
(
x−〈x〉z

)2

Gaussian distribution with σ2
x = ~

2Mω

I Time evolution

e−i
Ĥt
~ |ψz〉 = e−

|z|2
2

∞∑
n=0

zn√
n!
e−i(n+1

2)ωt|En〉 = e−i
ωt
2 e−

|z|2
2

∞∑
n=1

(z′)n︷ ︸︸ ︷
(ze−iωt)n√

n!
|En〉︸ ︷︷ ︸

|ψz′〉Û(t)|ψz(0)〉 = e−i
ωt
2 |ψz(t)〉

z(t) = z(0)e−iωt

I Evolution of coordinate & momentum averages

〈x〉t =
√

2~
Mω

[
Rez(0)︸ ︷︷ ︸
〈x〉0

cos(ωt) + Imz(0) sin(ωt)

]

〈p〉t = −
√

2M~ω
[
Imz(0)︸ ︷︷ ︸

〈p〉0

cos(ωt)− Rez(0) sin(ωt)

]
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The averages satisfy the following equation of an ellipse:

1
2M
〈p〉2t + Mω2

2
〈x〉2t = ~ω|z(0)|2︸ ︷︷ ︸

〈E〉z(0)−~ω
2

Coherent state imitates approximately
the classical trajectory in phase space:

1
2M
p2 + Mω2

2
x2 = E

Since 〈E〉z � ~ω
2 for |z|2 � 1,

the approximation gets improved
with increasing |z| ↔ 〈E〉z

Stationary widths: σx =
√

~
2Mω

σp = ~
2σx

J Historical remark
1925: Erwin Schrödinger discovers oscillator coherent states (he wrongly anticipates
that such states will make the notion of pointlike particles irrelevant)

1950-60’s: J. Schwinger and J.Klauder use coherent states in the field-theory context
1963: Roy Glauber shows the key importance of coherent states in quantum optics

� Spin in rotating magnetic field

The following example of quantum evolution is based on a time dependent
external field. Although the time dependence of the Hamiltonian is of the
nontrivial type [case (b) of Sec. 1.5], the solution can be found analytically—

not in the form of Dyson series. This is rather exceptional! Moreover, the
example captures the physics of so-called nuclear magnetic resonance, which
respresents a rather important tool to “engineer” the evolution of a quantum

system (nuclear spin) with a number of brilliant applications.

I Nuclear magnetic resonance (NMR) situation: a particle with magnetic
moment (operator µ̂) is placed in a combined stationary (homogeneous) +

variable (rotating) magnetic field. Hamiltonian reads as:

Ĥ(t) =

stationary
field︷ ︸︸ ︷
−µ̂zB0

varying
field︷ ︸︸ ︷

−~̂µ · ~B1(t)︸ ︷︷ ︸
B1~n(t)

Magnetic dipole operator: ~̂µ = gµN
1
~
~̂S

Ĥ(t) = − gµNB0︸ ︷︷ ︸
~ω0

1
~Ŝ3 − gµNB1︸ ︷︷ ︸

~ω1

(
~n(t) · 1

~
~̂S
)

~n(t) =
(

sinϑ cosωt
− sinϑ sinωt

cosϑ

)
rotating field
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In the NMR case, the frequency ω of rotating field B1 (� B0) is tuned to the

Larmor frequency ω0 of the spin precession in the stationary filed B0, and is
applied in the form of pulses of certain duration. These pulses are used to
prepare the spin in a desired state. Most commonly ~B1(t)⊥ ~B0

I Hamiltonians at various time instants do not commute:

[Ĥ(t), Ĥ(t′)] = ω2
1

[(
~n(t)· ~̂S

)
,
(
~n(t′)· ~̂S

)]
+ω0ω1

[
Ŝ3,
(
~n(t′)· ~̂S

)]
+ω1ω0

[(
~n(t)· ~̂S

)
,Ŝ3

]
=

= i~ω1

(
ω1[~n(t)× ~n(t′)] · ~̂S + ω0[~n(t′)× ~̂S ]3 − ω0[~n(t)× ~̂S ]3

)
6= 0

I Separation of the time dependence

Ĥ(t) = −(ω0 + ω1 cosϑ)Ŝ3 − ω1 sinϑ
[
(cosωt)Ŝ1 − (sinωt)Ŝ2

]
︸ ︷︷ ︸

e+ i
~ωtŜ3 Ŝ1e

− i~ωtŜ3BCH formula: e+ÂB̂e−Â =
∑
k

1
k!

[Â, [Â, . . . [Â, B̂] . . . ]k

e
iϕ
~ Ŝ3Ŝ1e

− iϕ~ Ŝ3 = Ŝ1+
1
1!

(
iϕ
~
)1

[Ŝ3, Ŝ1]︸ ︷︷ ︸
i~Ŝ2

+ 1
2!

(
iϕ
~
)2

[Ŝ3, i~Ŝ2]︸ ︷︷ ︸
~2Ŝ1

+ 1
3!

(
iϕ
~
)3

[Ŝ3, ~2Ŝ1]︸ ︷︷ ︸
i~3Ŝ2

+ · · · =

=
(

1− φ2

2! + . . .
)

︸ ︷︷ ︸
cosϕ

Ŝ1 −
(
φ
1! −

φ3

3! + . . .
)

︸ ︷︷ ︸
sinϕ

Ŝ2

Ĥ(t) = e+ i
~ωtŜ3

[
−(ω0 + ω1 cosϑ)Ŝ3 − (ω1 sinϑ)Ŝ1

]
︸ ︷︷ ︸

Ĥ(0)

e−
i
~ωtŜ3

“rotating”
Hamiltonian

The Hamiltonian time dependence was separated to the overall rotation. This
enables one to solve the dynamics explicitly, using the rotating frame:

I Transformation to rotating frame: |ψ(t)〉 7→ |ψ′(t)〉 ≡ e−
i
~ωtŜ3|ψ(t)〉

i~ ddt |ψ
′(t)〉 = ωŜ3 e

− i
~ωtŜ3|ψ(t)〉︸ ︷︷ ︸
|ψ′(t)〉

+ e−
i
~ωtŜ3Ĥ(t)e+ i

~ωtŜ3︸ ︷︷ ︸
Ĥ(0)

e−
i
~ωtŜ3|ψ(t)〉︸ ︷︷ ︸
|ψ′(t)〉

Schrödinger equation in rotating frame: i~ d
dt
|ψ′(t)〉 =

[
Ĥ(0) + ωŜ3

]
︸ ︷︷ ︸

Ĥeff

|ψ′(t)〉

Ĥeff = (ω−ω0−ω1 cosϑ)Ŝ3 − (ω1 sinϑ)Ŝ1

I The evolution induced by the effective Hamiltonian in the rotating frame

can be written analytically (just sas an appropriate rotation). Finally, to get
solution in the lab. frame, one concludes with inverse of the above transform:

Solution: |ψ(t)〉 = e+ i
~ωtŜ3e−

i
~Ĥefft|ψ(0)〉 (assuming |ψ(0)〉 ≡ |ψ′(0)〉)

Û(t) = e+ i
~ωtŜ3e−

i
~Ωt(~nΩ· ~̂S)

Ω=
√

(ω−ω0)2−2(ω−ω0)ω1 cosϑ+ω2
1

~nΩ = 1
Ω

( −ω1 sinϑ
0

ω−ω0−ω1 cosϑ

)
Expression in terms of rotations:

Resonant & [ ~B1(t)⊥ ~B0] case:

ω = ω0

ϑ = π
2

}
⇒

{
Ω = ω1

~nΩ =
(

1
0
0

)
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J Historical remark

1938: I. Rabi proposes NMR as a method to measure nuclear magnetic moments
1946: F. Bloch & E.M. Purcell extends NMR to solids & liquids, F. Bloch provides
theoretical description of NMR and, in general, of evolution of 2-state systems

1.6 Quantum measurement
Besides spontaneous evolution, described by the nonstationary Schrödinger equa-
tion, quantum mechanics assumes also another type of dynamics—a sudden change
of the state vector induced by a measurement performed on the system. In contrast

to classical physics, where measurements just specify states of the system without
essentially disturbing them (in an ideal case, the influence of measurement can be
reduced to zero), quantum physics needs a special treatment of measurements. Their

impact on the system is irreducible and rather dramatic! This “sector” of QM has
quite unusual consequences and is a permanent subject of a vivid debate.

� State vector reduction
The spontaneous quantum evolution is smooth and deterministic (in the sense
of uniqueness of the evolved state vector in H). We may call this motion

“process U” (from its unitary character). In contrast, the evolution induced
by quantum measurement—at least in the form assumed by the present-day
QM—is abrupt and indeterministic. We will call it “process R” (“reduction

of state vector”).¶ The real nature of this process is still unknown.

IWhy we need process R ?

Correlation of repeated measurements on the same system: conditional

probability to measure eigenvalue aj of Â at time t = t0+∆t given the result

of the same measurement at t0 was ai: p(ajt|ait0) = 〈ψ̄|Û †(∆t)P̂ajÛ(∆t)|ψ̄〉

where |ψ̄〉 ≡
{

state vector immediately
after the first measurement

For ∆t→0 the 2nd measurement must yield

the same outcome as the 1st one: lim
∆t→0

p(ajt|ait0) = δij ⇔ |ψ̄〉 = |ai〉

Example: Sketch of the “U” & “R” evolutions:

¶This terminology is due to R. Penrose, whose way of thinking on quantum measurement is partly exploited here.
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I Measurement postulate

The instantenous evolution induced by a measurement of observable A:

|ψ〉 measurement of A−−−−−−−−−−→ |ψ̄〉 ≡ R̂A|ψ〉 =


|a1〉 iff a1 measured, prob. = 〈ψ|P̂a1

|ψ〉
|a2〉 iff a2 measured, prob. = 〈ψ|P̂a2

|ψ〉
...

R̂A|ψ〉
ai= 1√

〈ψ|P̂ai |ψ〉
P̂ai|ψ〉 where

ai= means “conditional equality”: it holds

iff the outcome of measurement is ai

Terminology: (a) gentle: “state vector reduction”
(b) dramatic: “collapse of wavefunction”

Note: The “collapse” does not mean the “end of wavefunction” :-) After
the measurement, the wavefunction (instantenously localized in the respective
space) continues its evolution according to ordinary Schrödinger equation.

I Example: photon polarization measurement

Polarization = manifestation of photon spin (s = 1)

Linear polarization basis: {|x〉, |y〉} . . . both ~nx⊥~ny directions ⊥ ~nc = ~c
c

Rotated linear polar. basis:
(
|x′〉
|y′〉

)
=
(

cosϕ sinϕ
− sinϕ cosϕ

) ( |x〉
|y〉

)
Circular polarization basis:

(
|L〉
|R〉

)
= 1√

2

(
1 −i
1 +i

) ( |x〉
|y〉

)
Spin-1 projection states in the flight direction:(

|L〉
|R〉

)
≡
(
|s=1,ms=+1〉
|s=1,ms=−1〉

)
~nc

Note: state |s=1,ms=0〉~nc does not exist for massless (v=c) particles

General polarization state: |ψ〉 =

{
α|x〉+β|y〉
α′|x′〉+β′|y′〉
λ|L〉+ρ|R〉

with

{
α,β
α′,β′

λ,ρ

}
∈ C

|α|2+|β|2=1

|α′|2+|β′|2=1
|λ|2+|ρ|2=1

Consider measurement of linear polarization realized by passage of photon

through a birefringent crystal (transmission/reflection):

Observable Θ̂ = 0|x〉〈x|+ π
2 |y〉〈y|

≡ deviation angle on the crystal

⇒ R̂Θ|ψ〉 =

{
|x〉 for θ=0, prob. =|α|2
|y〉 for θ= π

2 , prob. =|β|2

⇒ after the measurement the photon gets loca-
lized along the respective path from the crystal
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I Properties of “operator” R̂A

non-deterministic: one knows only probabilities of possible outputs

non-linear: R̂A|a1〉=|a1〉
R̂A|a2〉=|a2〉

}
but R̂A

(
α|a1〉+ β|a2〉

)
=
{
|a1〉
|a2〉

}
6=αR̂A|a1〉+βR̂A|a2〉

non-unitary: |ψ〉=α|a1〉+β|a2〉
|ψ′〉=α′|a1〉+β′|a2〉

}
R̂A−→

{
〈 |a1〉
|a2〉

〈 |a1〉
|a2〉

⇒ 〈ψ|ψ′〉︸ ︷︷ ︸
arbitrary

R̂A−→ 〈ψ̄|ψ̄′〉︸ ︷︷ ︸
0 or 1

“non-local”,“acausal”: ψ(~x, t) collapses simultaneously in the whole space ?
(at least in the present unspecified form of the measurement postulate)

J Historical remark
1927: Werner Heisenberg first explicitly considers the wavefunction collapse
1932: John von Neumann includes the reduction postulate into the mathematical

formulation of QM and discusses its properties

� Consequences for measurement sequences

The reduction postulate has an immediate dynamical consequence for incom-
patible observables: A joint statistical distribution of measurement outcomes

of quantities A and B for a given initial state |ψ〉 depends on whether the
quantities are measured in succession (A,B) or (B,A).

I Measurement sequences (A,B) and (B,A) performed at times t0 and t0+∆

with ∆t→ 0 on an initial state |ψ(t0)〉 ≡ |ψ〉
Joint probabilities of results A=a and B=b:

joint︷ ︸︸ ︷
pψ(a, b) =

conditional︷ ︸︸ ︷
pψ(b|a) pψ(a)

(i) p
(AB)
ψ (a, b) = 〈ψ̄|P̂b|ψ̄〉〈ψ|P̂a|ψ〉 = 〈ψ|P̂aP̂bP̂a|ψ〉

〈ψ|P̂a|ψ〉
〈ψ|P̂a|ψ〉 = 〈ψ|P̂aP̂bP̂a|ψ〉

(ii) p
(BA)
ψ (b, a) = 〈ψ|P̂bP̂aP̂b|ψ〉

I Compatible vs. incompatible observables

[Â, B̂]=0=[P̂a, P̂b] ⇒ p
(AB)
ψ (a, b) = p

(BA)
ψ (b, a) independent of succession

[Â, B̂]6=06=[P̂a, P̂b] ⇒ p
(AB)
ψ (a, b) 6= p

(BA)
ψ (b, a) dependent on succession

I Statistical dependence of results
The reduction postulate ⇒ results of subsequent A and B measurements are
in general statistically dependent, correlated

(for both compatible & incompatible cases)
pψ(a|b) 6= pψ(a)
pψ(b|a) 6= pψ(b)

pψ(a, b) 6= pψ(a)pψ(b)

� Measurements on entangled states: EPR situation

A real puzzle arises when we start thinking about the effects of quantum mea-
surements on coupled systems. If such a system is in an entangled state, any
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local measurement on one of the subsystems can alter the potential outcomes

of local measurements on the second subsystem. This is independent of how
large is the spatial separation of both subsystems. The acronym “EPR” stands
for Einstein, Podolsky, and Rosen, who first noticed the phenomenon in 1935.

I Local measurements on a coupled system

Hilbert space: H = H1 ⊗H2

“Local” observables defined on both subsystems:

{
Â ≡ Â1 ⊗ Î2

B̂ ≡ Î1 ⊗ B̂2

[Â, B̂] = 0 ⇒ compatible observables

In a coupled system, the statistical dependence (see above) of the results of
subsequent local measurements appears only for entangled states. It generates

a possibility to influence subsystem 2 by a local action on 1 and vice versa:

I Effect of

{
A

B

}
measurements in H: R̂k ∝

{
(R̂A)1 ⊗ Î2 k=1

Î1 ⊗ (R̂B)2 k=2

(a) Separable state: |ψ〉 = |ψ1〉1|ψ2〉2 ⇒ R̂k|ψ〉=
{
|a〉1|ψ2〉2 k=1

|ψ1〉1|b〉2 k=2

⇒ measurement on subsystem 1 has no consequence on 2 and vice versa
(statistical independence of results)

(b) Entangled state: |ψ〉 =
∑
i,j

γij|φi〉1|φj〉2 ⇒ R̂k|ψ〉=


N1

∑
ij

γij |a〉1|φj〉2
k=1

N2

∑
ij

γij |φi〉1|b〉2
k=2

N1 = (
∑
ii′j

γ∗ijγi′j)
−1/2, N2 = (

∑
ijj′
γ∗ijγij′)

−1/2

⇒ measurement changes the state from entangled to separable
⇒ measurement on subsystem 1 generally alters the probabilities of mea-

surement outcomes for 2 and vice versa:

Before: p|ψ〉(b) = 〈ψ|Î ⊗ P̂b|ψ〉 =
∑
jj′

∑
ii′
γ∗ijγi′j′

δii′︷ ︸︸ ︷
〈φi|φi′〉1〈φj|P̂b|φj′〉2

After: p|R̂1ψ〉(b) = 〈R̂1ψ|Î ⊗ P̂b|R̂1ψ〉 =
∑
jj′

∑
ii′
γ∗ijγi′j′

1︷ ︸︸ ︷
〈a|a〉1∑

kk′l
γ∗klγk′l

〈φj|P̂b|φj′〉2 6= p|ψ〉(b)

⇒ local measurement on an entangled state has a non-local effect!

I EPR example

To be specific, we consider an entangled spin state of two spin-1
2 particles.

Essentially the same results can be obtained for analogous entangled states,
like polarization states of two photons...

|ψEPR〉 = 1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)
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Remark: |ψEPR〉 invariant under rotations R̂~nφ = Û⊗Û with Û=
(
α −β∗
β α∗

)
≡S~nφ

|α|2+|β|2=1R̂~nφ|ψEPR〉 =
1√
2

[(
α|↑〉1+β|↓〉1

)(
−β∗|↑〉2+α∗|↓〉2

)
−
(
−β∗|↑〉1+α∗|↓〉1

)(
α|↑〉2+β|↓〉2

)]
=
︷ ︸︸ ︷
(|α|2+|β|2) |ψEPR〉

|ψEPR〉 may originate from decay of spin-0 object to two spin-1
2 particles with

orbital ang. momentum = 0.
Note: in Sec.4.1 we derive that

1√
2
(|↑〉1|↓〉2−|↓〉1|↑〉2) results from

addition of two s= 1
2 spins to

total s=0 (spin-singlet state).

Outcomes & probabilities of local spin measurements
Due to the invariance of |ψEPR〉 under rotations we have:
p(↑1)=p(↑2)=p(↓1)=p(↓2)=p(↗1)=p(↙1)=p(↗2)=p(↙2)= · · · · · ·= 1

2

(A) Alice makes measurement on spin 1 in the basis {| ↑〉1, | ↓〉1}:

|ψEPR〉
Alice−−−→ R̂1|ψEPR〉 =

{
| ↑〉1| ↓〉2 iff ↑1 measured . . . case (a)
| ↓〉1| ↑〉2 iff ↓1 measured . . . case (b)

(B) Bob makes measurement (after Alice) on spin 2 in the basis {| ↑〉2, | ↓〉2}:[
p(↑2)
p(↓2)

]
=

[
0
1

]
in case (a),

[
1
0

]
in case (b)

6= 1
2 = probability before Alice’s measurement

J Historical remark
1935: Albert Einstein, Boris Podolsky, Nathan Rosen publish the EPR paper, ques-
tioning “completeness” of the quantum description

1951: David Bohm reformulates the “EPR paradox” to the spin language

� Interpretation problems

The results of the previous paragraph invoke some questions concerning locality,
which is believed to be an untouchable ingredient of an ultimate physical theory.
Although quantum mechanics—even with entangled states and the reduction

postulate—remains local on the operational level, there is a shadow of doubt:
Do we really understand the nature of the measurement process? Probably not.

I Problem of superluminal communication

Question: Bob’s measurement may be far off
the light cone of Alice’s measurement. Does

QM break the general assumption of finite-
speed propagation of all physical impulses?

Note: this question seems inappropriate for
non-relativistic QM, but the EPR problem is not
modified by the crossover to relativistic theory.
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Answer: The EPR correlation does not enable real superluminal communica-
tion. Assume the following scheme for such communication: The state |ψEPR〉 is
repeatedly produced, particles 1 and 2 being always sent to Alice and Bob, re-
spectively. Alice may encode a binary message for Bob into an altering sequence

of directions of particle-1 spin measurements (direction
{
~nz≡0
~n′z≡1

}
bit value). The

measurement direction actually used is imprinted in the resulting state of par-
ticle 2. However, the spin state vector of particle 2 cannot be determined by
Bob having only one specimen of this state.
No-cloning theorem: it is not possible to copy the state vector to more car-
riers since the ideal “cloning” transformation |ψ〉1|•〉2 7→ |ψ〉1|ψ〉2 ∀|ψ〉 violates
linearity:
|ψa〉1|φ〉2 7→ |ψa〉1|ψa〉2
|ψb〉1|φ〉2 7→ |ψb〉1|ψb〉2

}
⇒ (α|ψa〉1+β|ψb〉1)︸ ︷︷ ︸

|ψ〉1

|φ〉2 7→ α|ψa〉1|ψa〉2+β|ψb〉1|ψb〉2︸ ︷︷ ︸
6=|ψ〉1|ψ〉2

I Causality problem

Question: Time order of two events which are off the relative light cone can
be reversed by a Lorentz transformation ⇒ in the new frame, Bob makes the
measurement (and the state reduction) first. Which picture is true?
Answer: Both pictures yield the same probabilities of measurable outcomes.
This follows from mutual compatibility of local measurements on subsystems 1
& 2, which implies independence of the joint probabilities on the succession of
measurements (see above).

I What is the nature of process R?

The final answer is still unknown, but so far the following possibilities proposed:

(a) Classical answer : R is an unavoidable and irreducible consequence of inter-
action between a quantum system and a “classical apparatus”. This early-day
answer is not considered satisfactory today: Everything is made of quantum
constituents, so where ends the quantum domain and starts the classical one?

(b) Metaphysical answers : R “happens” on the interface between the quantum
world and (human?) consciousness. The hard form of this idea (consciousness
having an impact on physical reality) seems inadmissible, but a softer form looks
okay: the state vector is not the “reality” itself but just a maximal (ultimate?)
“information on reality”. R captures a sudden change of this information and
thus does not have to conform with “materialistic” forms of causality. Another
answer of this type (not generally accepted) was given by the many-worlds
interpretation (in which consciousness is a part of quantum description).

(c) Logical answer : R is to be eliminated in the proper formulation of QM.
Example: formulation in terms of the path integral or quantum histories (the
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notion of a state vector, hence also its reduction, is completely avoided from the

formalism; theory considered as a “machinery” to compute observable results)

(d) Physical answers (to be elaborated): R results from a so far unknown,
but completely natural process, which happens spontaneously as soon as the

“amount of matter” involved in unitary quantum evolution becomes “macro-
scopic”. Examples: spontaneous-localization hypothesis, extended decoherence
theory, hypothesis of gravitationally-induced collapse

J Historical remark
1926-9: N. Bohr & W. Heisenberg put cornerstones of “Copenhagen interpretation”

1930’s: J. von Neumann & E. Wigner consider consciousness-induced collapse
1957: H. Everett proposes the “many-worlds” interpretation
1980’s-90’s: attempts to introduce R as a new process (G.C. Ghirardi-A. Rimini-

T. Weber, R. Penrose) and to explain R from the decoherence theory (W. Zurek)
1990’s: attempts to formulate collapse-free QM (R.B. Griffiths, M. Gell-Mann)

2.6 Implications & applications of quantum measurement

We may hope that the reduction postulate in the present minimal form will be—in

an unspecified future—replaced by a more sophisticated and physically transparent
formulation. Nevertheless, already at the present stage of knowledge we can discuss
several implications. Some of them are rather interesting for the theory itself, some

others have an appreciable potential for practical applications.

� Paradoxes of quantum measurement

What is a paradox? In the following, we adopt the view of paradox as a coun-

terintuitive, surprising, unexpected kind of behavior. Quantum measurement
is responsible for several paradoxes.

I Three polarizers paradox J 1930: noticed by Dirac
2 polarization filters with ϕ=0◦ & 90◦

stop every individual photon. The

insertion of a 3rd filter with ϕ=45◦

between the two enables some
photons to pass.

I EPR paradox J 1935: formulated by Einstein, Podolsky, Rosen

Process R on entangled states ⇒ “spooky action at distance” (see Sec. 1.6)

I Schrödinger cat J 1935, 67: discussed by Schrödinger and Wigner

Quantum superpositions can be extended to macroscopic objects.
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For example, consider poor cat whose

life and death depends on a quantum
process such that it happens to be in
a superposition state

|ψcat〉 = α|ψdead〉+ β|ψalive〉 .

On which level the process R takes

place? Or: who kills the cat?

I Quantum logic J 1936: introduced by Birkhoff & von Neumann
Which-path & interference setups of the two-slit experiment indicate that

(A ∨B) ∧ S 6= (A ∧ S) ∨ (B ∧ S) (see Introduction)

I Quantum Zeno paradox J 1977: discovered by Sudarshan & Misra

Repeated measurements slow down or even stop (in the limiting case of infinite
frequency ) the decay process.

Survival probability of a decaying system for evolution without measurement:

P0(t) = |〈ψ(0)|ψ(t)〉|2 ≈ 1−
(
t
τ

)2
(see Sec. 1.5)

Periodic measurement of Â ≡ |ψ(0)〉〈ψ(0)| with interval ∆t = t
n → 0:

P ′0(t) =
[
P0

(
t
n

)]n ≈ [1− ( t
nτ

)2
]n

=
(
1− t

nτ

)n︸ ︷︷ ︸
→e−t/τ

(
1 + t

nτ

)n︸ ︷︷ ︸
→e+t/τ

n→∞−−−−−−→ 1

Note: for exponential decay no effect: P ′0(t) = [e−λ
t
n ]n = e−λt = P0(t)

I “Bomb-testing” paradox J 1993: discovered by Elitzur & Vaidman

General name “interaction-free measurement”: Measurement at one of the

paths in a double-slit-type experiment destroys the interference behavior. De-
tection of the particle in a forbidden direction indicates that the measurement
was done—it verifies functionality of the measuring device without necessarily

locating the particle on the path where the device is placed.
Example: photon in Mach-Zehnder interferometer
with arms I, II. Symbolic expression of the photon

state evolution before the 2ndbeam splitter (b.s.):

|1〉 1stb.s.−−−→ 1√
2
(|I〉+i|II〉) mirrors−−−−→ 1√

2
(i|I〉−|II〉)≡|ψ〉

Since
|I〉

2ndb.s.−−−→ 1√
2
(|2〉+i|1〉)

|II〉
2ndb.s.−−−→ 1√

2
(|1〉+i|2〉)

}
with |1〉

|2〉

}
≡ two exit

directions ,

interference is observed: |ψ〉 2ndb.s.−−−→ −|1〉 ≡ |1〉.

A bomb with single-photon sensitive trigger, placed e.g. in arm II, acts as a

which-path measurement device: 1√
2
(|I〉+i|II〉) R−→

{
|I〉 50 %
|II〉 50 % . In both cases, the
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photon can exit in states
{
|1〉
|2〉 . Sequence |1〉→ ..

R−→|I〉 2ndb.s.−−−→|2〉 (with proba-

bility 25 %) indicates functionality of the bomb without causing its explosion!
More sophisticated setups have been described which enable one to increase the
efficiency of the “bomb detection” arbitrarily close to 100 %

� Applications of quantum measurement

Present-day people are no more impressed by mere paradoxes. They seek for
practical applications ! So here are some.

I Quantum cryptography
The measurement-induced collapse of wavefuction can, in principle, disclose
any hidden measurement performed on the system. This can be used to de-
tect eavesdropping in secret communications: Alice sends a binary sequence

by individual photons in linear polarization states |x〉
|x′〉

}
≡ 0 and |y〉

|y′〉

}
≡ 1,

selecting between 2 rotated polarization frames S & S′. Bob measures photon
polarizations using independent selection of the same frames S or S′. The pho-
tons for which Alice’s & Bob’s frames coincide must yield the same initial &
final polarizations. Any violation of this rule (detected on a released sample
of photons) indicates that the photon state was distorted during transmission
(Eve’s measurement). If no eavesdropping detected, the states of the remaining
photons (for which Alice’s & Bob’s frames equal) may be used as a private key.

I Quantum teleportation
Teleportation means transfer of a physical state of a given object to another
carrier. The simplest quantum realization is for a 2-state object, e.g., spin 1

2 .

Setup:
|ψ〉−−−−−−→

spin 1
Alice

{
         
←−−−−

spin 2

EPR
source −−−−→

spin 3

}
Bob

|ψ〉−−−−−−→
spin 3

Unknown state |ψ〉 = α| ↑〉+β| ↓〉 of spin 1 is reconstructed on spin 3, which is a
part of the entangled pair in state |ψEPR〉23, using results of Alice’s measurement
on spins 1+2 communicated to Bob by a classical channel    .

Alice measures in entang. basis:

{
|φA〉12= 1√

2
(|↑〉1|↓〉2−|↓〉1|↑〉2), |φB〉12= 1√

2
(|↑〉1|↓〉2+|↓〉1|↑〉2),

|φC〉12= 1√
2
(|↑〉1|↑〉2−|↓〉1|↓〉2), |φD〉12= 1√

2
(|↑〉1|↑〉2+|↓〉1|↓〉2).

}
(α| ↑〉1 + β| ↓〉1)︸ ︷︷ ︸

|ψ〉1

1√
2

(| ↑〉2| ↓〉3 − | ↓〉2| ↑〉3)︸ ︷︷ ︸
|ψEPR〉23

=

1√
4

[
|φA〉12

|ψA〉3︷ ︸︸ ︷
(−α|↑〉3−β|↓〉3) +|φB〉12

|ψB〉3︷ ︸︸ ︷
(−α|↑〉3+β|↓〉3) +|φC〉12

|ψC〉3︷ ︸︸ ︷
(α|↓〉3+β|↑〉3) +|φD〉12

|ψD〉3︷ ︸︸ ︷
(α|↓〉3−β|↑〉3)

]
Correlated with

{
|φA〉12, |φB〉12, |φC〉12, |φD〉12

}
(results of Alice’s measurement),

Bob receives states
{
|ψA〉3, |ψB〉3, |ψC〉3, |ψD〉3

}
, each of them allowing specific

unitary transformation Û •|ψ•〉3 = |ψ〉3 (•=A,B,C, or D) to the desired state |ψ〉.
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I Quantum computation

Quantum generalization of classical bit b = { 0
1 }: qubit |ψ〉 = α|0〉+ β|1〉

Replacing classical bits by qubits can essentially speed up some computations!
Instantaneous state of an n-bit classical computer ≡ (b0, b1, . . . , bn−1) encodes

a single number x =
n−1∑
i=0

bi 2
i. A state of n-qubit quantum computer corre-

sponds to a general superposition of numbers: |Ψ〉 =
2n−1∑
x=0

αx|x〉
αx ∈ C∑
x
|αx|2 = 1{

|x〉
}2n−1

x=0
≡
{
|b0b1 . . . bn−1〉

}
bi=0,1
≡ separable basis in H=H0⊗H1⊗...⊗Hn−1

Quantum computation: controlled sequence of elementary unitary operations
on a system of qubits (only 1- and 2-qubit operations allowed) concluded by a
specific quantum measurement. The same sequence repeated N times to yield

a sufficiently large statistical sample of outputs.

Possible computation task: probing function f(x)⇒
{
n qubits ≡ x

m qubits ≡ f(x)
Examples: period determination, distinction of constant/nonconst. functions...
General computation scheme:

|0〉n|0〉m
Û1⊗Î−−−→ 1√

2n

∑
x
|x〉n|0〉m

Û2−→ 1√
2n

∑
x
|x〉n|f(x)〉m

Û3⊗Î−−−→ 1√
2n

∑
x,y
αxy|y〉n|f(x)〉m

Measurement of y ⇒ output probabilities p(y) contain information on f(x)

In general, quantum computation uses both

{
superpositions ⇒ parallelism

entanglement ⇒ link x↔ f(x)

J Historical remark
1982: R. Feynman comments on potential use of quantum systems for computation
1984: C.H. Bennet & G. Brassard propose a scheme for quantum cryptography

1993: C.H. Bennett et al. discover quantum teleportation
1994: P. Shor formulates an efficient quantum algorithm for factorization problem
till now: multiple experimental attempts in all these areas

� Bell inequalities

Let us return to the EPR situation. Above, we presented the perfect correlation
(anticorrelation) of Alice’s & Bob’s spin measurements as a paradox. But is

it really a paradox? Given that both spins have a common origin and both
observers use the same (pre-agreed!) orientations of measuring devices, who
can be surprised by the correlation of results?‖ But what would happen if Alice
& Bob select orientations of their respective spin measurements independently?

‖The correlation is surprising if one insists on the reality of wavefunction. If the wavefunction represents an element
of the world “out there” (and not just our information on it), Alice’s measurement indeed acts out of its light cone!
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Would the correlation of results remain stronger than might be expected from

classical considerations? The positive answer to this question, as elaborated
below, is the real puzzle of quantum theory. Moreover, it has changed the
debate on possible crossover to a “more complete” (hidden-variable) description

from endless discussions to experimental efforts. Today it is an experimental
fact that quantum theory cannot be replaced by a classical-like theory.

I Generalization of the EPR situation
Both observers perform spin measurements in different coordinate frames ⇒
rotation angles ΦA & ΦB of Alice’s & Bob’s instruments selected independently

I Description in terms of a hidden-variable theory
Consider a classical-like, but probabilistic description of the EPR situation:

Probabilities of Alice’s & Bob’s outputs a, b ∈ {
spin up︷︸︸︷
+1 ,

down︷︸︸︷
−1 } controlled by:

(1) instrument angles ΦA,ΦB, (2) so far unknown physical parameters of the
entire system, so-called hidden variables. We sort these variables to 3 groups:

{α1 . . . }, {β1 . . . } related to individual particles 1 & 2, respectively, and the
corresponding measurements, {γ1 . . . } related to the emitted pair as a whole.
Scheme:

+1
−1

}
= a

angle ΦA︷ ︸︸ ︷
Alice ←−−−−−−

particle 1︸ ︷︷ ︸
hidden variables α

EPR source︸ ︷︷ ︸
hidden

variables γ

−−−−−−→
particle 2

angle ΦB︷ ︸︸ ︷
Bob︸ ︷︷ ︸

hidden variables β

b =
{

+1
−1

I Strict locality required!

Probabilities of outputs & h.variables:
PΦA(a|αγ) PΦB(b|βγ)
PΦA(α|γ) PΦB(β|γ)

}
conditional

P (γ) apriori

Locality condition: joint probability PΦAΦB(ab|αβγ) = PΦA(a|αγ)PΦB(b|βγ)

⇒ for fixed γ,ΦA,ΦB the average 〈ab〉 factorizes: 〈ab〉ΦAΦBγ = 〈a〉ΦAγ〈b〉ΦBγ
Since variable γ is out of control, we calculate 〈ab〉ΦAΦB =

∫
〈ab〉ΦAΦBγP (γ)dγ

I Define the following 4-angle quantity: B(ΦA,Φ
′
A,ΦB,Φ

′
B)︷ ︸︸ ︷

〈ab〉ΦAΦB + 〈ab〉ΦAΦ′B
+ 〈ab〉Φ′AΦB − 〈ab〉Φ′AΦ′B

=∫ [
〈ab〉ΦAΦBγ + 〈ab〉ΦAΦ′Bγ

+ 〈ab〉Φ′AΦBγ − 〈ab〉Φ′AΦ′Bγ

]
P (γ)dγ =∫ [

〈a〉ΦAγ〈b〉ΦBγ + 〈a〉ΦAγ〈b〉Φ′Bγ + 〈a〉Φ′Aγ〈b〉ΦBγ − 〈a〉Φ′Aγ〈b〉Φ′Bγ
]︸ ︷︷ ︸

∈[−2,+2] ⇐ 〈a〉,〈b〉∈[−1,+1]

P (γ)dγ

∈ [−2,+2]

Locality conditions restrict the domain of B(ΦA,Φ
′
A,ΦB,Φ

′
B) to interval [−2,+2]

I Bell inequalities
Conditions necessarily satisfied by any classical-like theory (deterministic/non-
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deterministic) describing the EPR situation: −2 ≤ B(ΦA,Φ
′
A,ΦB,Φ

′
B) ≤ +2

I Quantum calculation of 〈ab〉ΦAΦB

Transformation between rotated measuring frames:
(
|↑〉
|↓〉

)
Φ=0

=
(
α −β∗
β α∗

)(
|↑〉
|↓〉

)
Φ 6=0

1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)︸ ︷︷ ︸
|ψEPR〉

= αAβB−βAαB√
2︸ ︷︷ ︸

A(↑↑)

| ↑〉ΦA| ↑〉ΦB︸ ︷︷ ︸
ab=+1

+
αAα

∗
B+βAβ

∗
B√

2︸ ︷︷ ︸
A(↑↓)

| ↑〉ΦA| ↓〉ΦB︸ ︷︷ ︸
ab=−1

+

+ −β∗AβB−α∗AαB√
2︸ ︷︷ ︸

A(↓↑)

| ↓〉ΦA| ↑〉ΦB︸ ︷︷ ︸
ab=−1

+ −β∗Aα∗B+α∗Aβ
∗
B√

2︸ ︷︷ ︸
A(↓↓)

| ↓〉ΦA| ↓〉ΦB︸ ︷︷ ︸
ab=+1〈ab〉ΦAΦB =

|A(↑↑)|2 − |A(↑↓)|2 − |A(↓↑)|2 + |A(↓↓)|2 = · · · = − cos [2(ϑA−ϑB)]↑
simplifying assumption: α• = cosϑ•, β• = sinϑ• (real)

I Quantum inequalities

B = cos [2(ϑ′A−ϑ′B)]− cos [2(ϑA−ϑB)]− cos [2(ϑA−ϑ′B)]− cos [2(ϑ′A−ϑB)]

⇒ Bell inequalities violated! −2
√

2 ≤ B(ΦA,Φ
′
A,ΦB,Φ

′
B) ≤ +2

√
2

⇒ Predictions of QM differ from those of a general local hidden-variable theory

Conclusion: “Quantum nonlocality” does not exist in the sense of an ex-

ploitable superluminal communication. Nevertheless, a trace of nonlocality lies
in correlations between Alice’s & Bob’s results in the generalized EPR situa-
tion. These correlations are stronger than possible classical ones if locality is

required in the classical description. ⇒ The following soft form of nonlocality is
valid: Quantum mechanics cannot be replaced by any classical-like local theory.

J Historical remark
1964, 70: John Bell derives various versions of his inequalities

1981: A. Aspect et al. provide the first reliable experimental confirmation of the
violation of Bell inequalities, additional tests in 1999

1.7 Quantum statistical physics

Physics would have much less power if there is no statistical physics. This important

branch of physics deals with situations, rather generic for all complex systems, when
the initial state cannot be precisely determined. Instead, one has some knowledge
on the probability distribution characterizing a multitude of possible states in which

the system may occur. In classical statistical physics, a single realization of the given
system at a point (~p0, ~q0) of a multidimensional phase space is replaced by a statistical
ensemble of replicas of the system at different points. This means that δ(~p−~p0, ~q−~q0)
changes into a delocalized distribution ρ(~p, ~q) (satisfying

∫∫
ρ(~p, ~q) d~p d~q = 1). We

are ready now to apply this kind of statistical description to quantum physics.
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� Pure and mixed states: density operator

Statistical description implies statistical uncertainty. However, quantum
physics already contains quantum uncertainty. It is useful to unify both
these types of uncertainty in a generalized notion of quantum state. It is ex-

pressed by a positive-definite Hermitian operator in H, called density operator.

I Quantum statistical ensemble

In analogy to classical statistical ensemble, we want to introduce a quantum

ensemble. Assume that the state vector describing the system is a random selec-

tion from the set:


|ψ1〉 . . . probability p1

|ψ2〉 . . . probability p2
...

 with


〈ψk|ψk〉 = 1

∑
k

pk = 1

〈ψk|ψl〉 6= 0 (in general)
for k 6=l

Density operator/matrix: ρ̂ ≡
∑
k

pk|ψk〉〈ψk| 〈i|ρ̂|j〉 =
∑
k

pk〈i|ψk〉〈ψk|j〉

Density operator generates probabability distribution in the entire Hilbert

space H: probability to find |ψ〉 in ρ̂ is:
∑
k

pk |〈ψ|ψk〉|2︸ ︷︷ ︸
pψ(ψk)

= 〈ψ|ρ̂|ψ〉 = pψ(ρ)

I Generalization of states in QM:

pure state ρ̂ = |ψ〉〈ψ| ⇔ |ψ〉 ∃ state vector
mixed state ρ̂ =

∑
k

pk|ψk〉〈ψk| ⇔ × @ state vector

I Properties of density operator

(a) Hermiticity ρ̂ = ρ̂†

(b) Tr
[∑
k

pk|ψk〉〈ψk|
]
=
∑
i

∑
k

pk〈i|ψk〉〈ψk|i〉=
∑
k

pk

〈ψk|ψk〉=1︷ ︸︸ ︷∑
i

〈ψk|i〉〈i|ψk〉 = 1 = Trρ̂

(c) 〈ψ|ρ̂|ψ〉 ≡ pψ(ρ) ∈ [0, 1] ∀ |ψ〉 ⇒ eigenvalues ρi ∈ [0, 1]

(d) Diagonalized density matrix:

ρ̂=
∑
i

ρi|φi〉〈φi| ≡

( ρ1 0 0 ...
0 ρ2 0
0 0 ρ3

... ...

) ∑
i

ρi = 1 ρi . . . probability to find |φi〉∑
i

ρ2
i ≤ 1

Criterion to distinguish pure & mixed states: Trρ̂2

{
=1 pure state (ρi=δij)

<1 mixed state
I Ambiguity in the expansion of ρ̂

The same diagonalized form ρ̂=
∑
i

ρi|φi〉〈φi| (with {|φi〉} orthonormal) can be pro-

duced by different expressions ρ̂=
∑
k

pk|ψk〉〈ψk|
(

with {|ψk〉} normalized
but otherwise arbitrary

)
.

I Statistical properties of observables
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〈A〉ρ ≡ average of quantity Â in state ρ̂ ≡
∑
k

pk|ψk〉〈ψk|

〈A〉ρ =
∫
a

pρ(a)︷ ︸︸ ︷∑
k

pk〈ψk|P̂a|ψk〉 da =
∑
k

pk〈ψk|Â|ψk〉 =
∑
ij

∑
k

pk〈ψk|i〉〈i|Â|j〉〈j|ψk〉 =

=
∑
ij

∑
k

pk〈j|ψk〉〈ψk|i〉︸ ︷︷ ︸
〈j|ρ̂|i〉

〈i|Â|j〉 = Tr(ρ̂Â) = Tr(Âρ̂) = 〈A〉ρ

For a pure state: 〈A〉ψ =
∑
i

〈i|ψ〉〈ψ|Â|i〉 = 〈ψ|Â|ψ〉

Dispersion: 〈〈A2〉〉ρ = 〈A2〉ρ − 〈A〉2ρ = Tr(Â2ρ̂)− Tr2(Âρ̂) = 〈〈A2〉〉ρ

Probability distribution pρ(a) =
∑
k

pk〈ψk|P̂a|ψk〉 = Tr(P̂a ρ̂)

J Historical remark
1927: J. von Neumann introduces density operator to describe a general quantum

state (simultaneous work by L. Landau and F. Bloch)

� Entropy and canonical ensemble

The concept of entropy plays an important role in thermodynamics as well as

in mathematical information theory. Statistical physics is a bridge between
both these seemingly distant coasts. States with null entropy are the pure
states of ordinary QM. In contrast, states whose entropy is maximal—within

given constraints upon some physical averages—represent equilibrated systems
in contact with a thermal bath.

I Shannon information entropy
General probability distribution for a finite set of events:

event i ∈ {1, 2, . . . n} ↔ probability {pi} ≡ {p1, p2, . . . , pn}
Information entropy is a functional on the space of

probability distributions: S[{pi}] = −
n∑
i=1

pi ln pi

I Properties

Maximum

Minimum

S = lnn for pi = const = 1
n

S = 0 for pi = δij

maximal uncertainty

minimal uncertainty

Additivity: 2 sets of independent events
{

i ↔ pi
j ↔ pj

}
⇒ entropy

{
S1
S2

}
Joint distribution (i ∧ j) ↔ pij=pipj ⇒ entropy S12 = S1 + S2

However, for correlated events: S12 = S1 + S2 + ∆S with ∆S ≷ 0

I Von Neumann entropy

Sρ = −k
∑
i

ρi ln ρi = −kTr

[
ρ̂ ln ρ̂

]
≡ thermodynamic entropy
k=8.6 · 10−5eV/K Boltzmann const.
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Sρ = 0 for pure state

Sρ > 0 for mixed state (Sρ = Smax = lnn for “maximally mixed” state)

I Equilibrium state of a quantum system which exchanges energy with the

surrounding environment (thermal bath):

ρ̂ diagonal in energy eigenbasis: ρ̂ =
∑
i

ρi|Ei〉〈Ei|
⇒ stationary state: ρ̂(t) =

∑
i

ρie
−Eit~ |Ei〉〈Ei|e+

Eit

~ = ρ̂(0)

Probabilities ρi determined from the maximal entropy prinicple:
Sρ=max. for a fixed energy average 〈E〉ρ ⇒ method of Lagrange multipliers

f = −
∑
i

ρi ln ρi + (α + 1)
∑
i

ρi − β
∑
i

ρiEi

∂f
∂ρi

= − ln ρi − ρi 1
ρi

+ (α + 1)− βEi = 0 ⇒ ρi = eα−βEi =

N︷︸︸︷
eα e−βEi

Constants α, β determined from normalization Tr ρ̂=1 & fixed average 〈E〉ρ
I Canonical density operator (ensemble)

ρ̂β = 1
Z(β)

e−βĤ with β = 1
kT

inverse temperature
(the only parameter of the canon. state)

Z(β) =
∑
i

e−βEi = Tr e−βĤ partition function

normalization N=eα≡ 1
Z(β)

I Function Z(β) contains complete information on thermal energy distribution:

d
dβZ(β) = d

dβTr e−βĤ = −Tr
[
Ĥ e−βĤ︸ ︷︷ ︸

Z(β)ρ̂β

]
= −Z(β) Tr[Ĥρ̂β]︸ ︷︷ ︸

〈E〉β

〈E〉β = − 1
Z(β)

d
dβ
Z(β) = − d

dβ
lnZ(β) energy average

− d
dβ
〈E〉β = kT 2 d

dT
〈E〉T︸ ︷︷ ︸
cV (T )

specific heat at temperature T

− d
dβ 〈E〉β = d2

dβ2 lnZ(β)=

1
Z(β)

Tr[Ĥ2e−βĤ]︷ ︸︸ ︷
1

Z(β)
d2Z(β)
dβ2 −

〈E〉2β︷ ︸︸ ︷
1

Z(β)2

[
dZ(β)
dβ

]2

=〈E2〉β − 〈E〉2β=〈〈E2〉〉β

〈〈E2〉〉β = k
β2cV (β) = d2

dβ2 lnZ(β) energy dispersion & specific heat

I Function Z(β) also contains complete information on the whole energy spec-

trum {Ei} and, equivalently, on the level density %(E) =
∑
i

δ(E − Ei)

which can be obtained from inverse Laplace transform of Z(β) =
∫
%(E)e−βEdE



98

Thermal distribution of energy

(probability density for finding
a certain value E for a system
at temperature T ) is expressed

via the level density:

wβ(E) = 1
Z(β)

%(E)e−βE

Usually an increasing×decreasing

function product yields a peak at
some value Emax 6= 〈E〉β

I Useful observation: evolution operator Û(t) = e−i
Ĥt
~ for imaginary time

t = −i~β ⇒ canonical density operator e−βĤ = Z(β) ρ̂β = Û(−i~β)

This is used in some advanced calculations of thermal & dynamical properties.

I Similar procedure (using maximal entropy principle) is applicable also for

systems with variable numbers Ni of particles (types i = 1, 2, . . . n) but fixed
averages 〈Ni〉 (particles exchanged with the bath)⇒ grand-canonical ensemble
characterized by inverse temperature β and chemical potentials µi (see Sec. 7.2).

J Historical remark
1878: J.W. Gibbs presents the concept of canonical ensemble & entropy formula

1927: J. von Neumann introduces the density operator & entropy in QM
1948: C. Shannon applies entropy in the information theory

� Wigner distribution function

As the density-operator formalism merges statistical and quantal fluctuations

into a unified picture, it may raise hopes of formulating quantum mechanics in
a purely statistical language—via some appropriate statistical distributions in
the classical phase space. Although it turns out that such a formulation is not

possible, the product of this effort is useful by itself.

I
Coordinate
Momentum

}
representation of density operator:

〈~x ′|ρ̂ |~x 〉 ≡ ρ(~x ′, ~x )
〈~p ′|ρ̂ |~p 〉 ≡ ρ(~p ′, ~p )

Could we get ρ(~x, ~p ) ≡ an analog of the classical phase-space distribution?

I Any probability distribution ρ is equivalently expressed through its charac-
teristic function ≡ Fourier transform of ρ. For the classical distribution in
phase space it reads as:

χρ(~ξ, ~η )=
∫
ρ(~x, ~p )e

i
s (~η·~x−~ξ·~p)d~x d~p ↔ ρ(~x, ~p )= 1

(2πs)2n

∫
χρ(~ξ, ~η )e−

i
s (~η·~x−~ξ·~p)d~ξ d~η
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~ξ
~η

}
n-dim variables in the same units as

{
~x
~p

}
, s ≡ constant in units of xp

⇒ characteristic function expressed as the average: χρ(~ξ, ~η )=
〈
e
i
s (~η·~x−~ξ·~p)

〉
ρ

I The last expression makes it possible to find
a quantum analog of characteristic function:

Cρ(~ξ, ~η )≡Tr
[
e
i
~ (~η·~̂x−~ξ·~̂p)ρ̂

]
Fourier inverse of Cρ(~ξ, ~η ) should be the quantum distribution in phase space:

Wρ(~x, ~p ) ≡ 1
(2π~)2n

∫
Cρ(~ξ, ~η ) e−

i
~ (~η·~x−~ξ·~p) d~ξ d~η Wigner distribution

I Characteristic function and Wigner distribution in dimension n=1

Cρ(ξ, η) =
∫
〈x|ρ̂ e i~ (ηx̂−ξp̂)|x〉 dx BCH

= ei
ηξ
2~
∫
〈x|ρ̂ e i~ηx̂e− i

~ξp̂|x〉 dx = . . .

Special BCH formula for [Â, B̂]= Ĉ, [Â, Ĉ]=[B̂, Ĉ]=0: eÂ+B̂ = eÂeB̂e
1
2 Ĉ

· · · = ei
ηξ
2~
∫∫
〈x|ρ̂e i~ηx̂|x′〉︸ ︷︷ ︸
e
i
~ ηx
′〈x|ρ̂|x′〉

〈x′|e− i
~ξp̂|x〉︸ ︷︷ ︸

〈x′|x−ξ〉

dx dx′ = e−i
ηξ
2~
∫
〈x|ρ̂|x−ξ〉︸ ︷︷ ︸
ρ(x,x−ξ)

e
i
~ηx dx

⇒ Cρ(ξ, η) =

∫
ρ(x′+ ξ

2, x
′− ξ

2) e
i
~ηx

′
dx′

Wρ(x, p) = 1
(2π~)2

∫∫ [∫
ρ(x′+ ξ

2 , x
′− ξ

2) e
i
~ηx

′
dx′
]
e−

i
~ (ηx−ξp) dη dξ =

= 1
(2π~)2

∫∫
ρ(x′+ ξ

2
, x′− ξ

2
)

[∫
e−

i
~η(x−x′) dη

]
︸ ︷︷ ︸

2π~δ(x−x′)

e+ i
~ξp dx′ dξ

Wρ(x, p) = 1
2π~

+∞∫
−∞

ρ
(
x+ ξ

2 , x−
ξ
2

)
e+ i

~ξp dξ
where

ρ(x′+ ξ
2
, x′− ξ

2
) = 〈x′+ ξ

2
|ρ̂|x′− ξ

2
〉

This is the desired quantum analog of phase-space distribution. Indeed, this

function is
real : Wρ(x, p) = Wρ(x, p)

∗

normalized :
∫
Wρ(x, p) dx dp = 1

However, it is not semi-

positive, which indicates that Wρ(x, p) does not have the meaning of ordinary
probability density. Moral: quantum oddity is unremovable!

J Historical remark
1927: H. Weyl derives a mapping of Hermitian operators to phase-space functions
1932: E. Wigner introduces quasiprobability distribution related to density operators

1940’s-present: developments in the phase-space formulation of QM

� Density operator for open systems
The way we introduced the density operator might invoke a picture of somebody
drawing balls (quantum states) from a wheel of fortune. The states are prepared
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there, one just does not know what he will get. We may think of an accelerator

delivering individual particles in different polarization states. However, there
is another—and probably more important—use of the density-matrix formal-
ism. It deals with coupled (open) systems: the systems that interact with other

systems, environment, or internal degrees of freedom. Such composite objects
generically occur in entangled quantum states and the density operator is the
only entity that allows one to extract states of individual subsystems.

I Two coupled systems: H = H1 ⊗H2

{
1 ≡ open quantum system

2 ≡ environment
{

another system or
internal degs. of freedom

General pure state of 1+2: |Ψ〉 =
∑
ij

αij|φ1i〉|φ2j〉
{
|φkl〉

}
l

≡basis∈ Hk

I Reduced density operator
Information on the state of subsystem 1 available only in the form of reduced

density operator obtained by the technique of partial trace:

|Ψ〉 7−→ |Ψ〉〈Ψ| ≡ ρ̂12 7−→ ρ̂1 ≡ Tr2 ρ̂12 ≡
∑
l

〈φ2l|ρ̂12|φ2l〉

For the above state |Ψ〉: ρ̂1 =
∑
l

∑
ij

∑
i′j′
αijα

∗
i′j′ 〈φ2l|φ2j〉︸ ︷︷ ︸

δjl

|φ1i〉〈φ1i′| 〈φ2j′|φ2l〉︸ ︷︷ ︸
δj′l

⇒ ρ̂1 =
∑
ii′

(∑
j

αijα
∗
i′j

)
︸ ︷︷ ︸

ρ1ii′=ρ
∗
1i′i

|φ1i〉〈φ1i′| This is an operator on H1 which has
(as shown below) the properties of a

density operator

I Properties of ρ̂1:
(a) ρ̂†1 =

∑
ii′
ρ∗1ii′|φ1i′〉〈φ1i| = ρ̂1 (b) Tr1ρ̂1 =

∑
ij

|αij|2 = 1

(c) 〈ψ1|ρ̂1|ψ1〉 ≥ 0 ∀ |ψ1〉 ≡
∑
l

βl|φ1l〉 ⇒ eigenvalues≥ 0

Proof: 〈ψ1|ρ̂1|ψ1〉=
∑
ll′
β∗l′βl

∑
ii′

(∑
j

αijα
∗
i′j

)
〈φ1l′|φ1i〉︸ ︷︷ ︸

δl′i

〈φ1i′|φ1l〉︸ ︷︷ ︸
δi′l

=
∑
j

∣∣∑
i

β∗i αij
∣∣2≥0

(d) Tr1ρ̂
2
1 ≤ 1 ⇐(b),(c)

(e) Average of a local observable Â ≡ Â1 ⊗ Î2

〈Ψ|Â|Ψ〉 =
∑
ij

∑
i′j′
αijα

∗
i′j′〈φ1i′|Â1|φ1i〉 〈φ2j′|φ2j〉︸ ︷︷ ︸

δjj′

=

Tr(Â1ρ̂1)︷ ︸︸ ︷∑
ii′

∑
j

αijα
∗
i′j︸ ︷︷ ︸

ρ1ii′

〈φ1i′|Â1|φ1i〉

⇒ 〈A〉Ψ = Tr(Â1ρ̂1)

ρ̂1 ≡density operator

of subsystem 1
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I Pure states of the subsystem

The subsystem is in a pure state iff the whole system is in a separable state:
ρ̂1=Tr2 ρ̂12 is a pure state |ψ1〉≡

∑
l

βl|φ1l〉 ⇔ |Ψ〉 ≡ |ψ1〉|ψ2〉 separable

ρ̂1 = |ψ1〉〈ψ1| ⇒ ρ1ii′ = 〈φ1i|ρ̂1|φ1i′〉 = βiβ
∗
i′

|Ψ〉 = |ψ1〉|ψ2〉 ⇒ ρ1ii′ =
∑
j

αij︸︷︷︸
βiγj

α∗i′j︸︷︷︸
β∗
i′γ
∗
j

= βiβ
∗
i′

1︷ ︸︸ ︷∑
j

|γj|2

 same expressions

I Schmidt decomposition

Any entangled state of a given coupled system can be expressed in a “canonical
form”, with the aid of eigenvectors of the respective reduced density matrices:

Consider general state |Ψ〉 =
∑
ij

αij|φ1i〉|φ2j〉
Subsystem 1: Subsystem 2:

ρ̂1 = Tr2 ρ̂12 =
∑
ii′

(∑
j

αijα
∗
i′j

)
|φ1i〉〈φ1i′| ρ̂2 = Tr1 ρ̂12 =

∑
jj′

(∑
i

αijα
∗
ij′

)
|φ2j〉〈φ2j′|

Suppose αij =
√
ρi δij ⇒

{
ρ1ii′=

∑
j
αijα

∗
i′j=

∑
j

√
ρi δij

√
ρi′ δi′j=ρiδii′

ρ2jj′=
∑
i

αijα
∗
ij′=

∑
i

√
ρi δij

√
ρi δij′=ρjδjj′

}
diagonal

⇒ both
{
ρ̂1

ρ̂2

}
diagonalized with the same eigenvalues

{
ρi
}

In the eigenbases of ρ̂1 & ρ̂2 the state reads as: |Ψ〉 =
∑
i

√
ρi |χ1i〉|χ2i〉

number of terms = Min{dimH1, dimH2}
Example: H1 basis ≡ {| ↑〉, | ↓〉} H2 basis ≡ {|1〉, |2〉, |3〉}

|ψ〉= 1√
6

[
| ↑〉1|1〉2+| ↑〉1|2〉2+| ↑〉1|3〉2+

√
2| ↓〉1|1〉2− 1√

2
| ↓〉1|2〉2− 1√

2
| ↓〉1|3〉2

]
=
√

1
2
| ↑〉1︸︷︷︸
|χ11〉

1√
3

[
|1〉2+|2〉2+|3〉2

]︸ ︷︷ ︸
|χ21〉

+
√

1
2
| ↓〉1︸︷︷︸
|χ12〉

1√
3

[√
2|1〉2− 1√

2
|2〉2− 1√

2
|3〉2
]︸ ︷︷ ︸

|χ22〉

〈χ1i|χ1i′〉 = δii′

〈χ2j|χ2j′〉 = δjj′

}
⇒
{
ρ̂1 = 1

2
|χ11〉〈χ11|+ 1

2
|χ12〉〈χ12|

ρ̂2 = 1
2
|χ21〉〈χ21|+ 1

2
|χ22〉〈χ22|+ 0|χ⊥〉〈χ⊥|

J Historical remark
1907: E. Schmidt formulates the decomposition theorem (in theory of integral eqs.)

� Evolution of density operator

The density operator in general depends on time. The form of this dynamics
can be easily deduced from the evolution of individual states in H. However,
we come to an essential point here: There is a fundamental difference between
the evolutions of density operators for closed and open systems! The density
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operator of a closed system undergoes just a continuous unitary transforma-

tion by ordinary evolution operator. This implies a fully reversible picture of
dynamics. In contrast, the evolution of a reduced density operator associated
with an open system is more complicated. Since the environment in general

interacts with the system, one cannot write its dynamical equation in an au-
tonomous way (i.e., just in terms of the system’s degrees of freedom). This is
the place where irreversibility enters the physical description!

I Evolution of a closed system

Consider density operator in the form given by an initial set of state vectors.
Evolution of the density operator determined by evolution of individual vectors:

initial state evolved state

ρ̂(0) =
∑
k

pk|ψk〉〈ψk|
t−→ ρ̂(t) =

∑
k

pkÛ(t)|ψk〉〈ψk|Û(t)−1

General evolution:

ρ̂(t) = Û(t)ρ̂(0)Û(t)−1 ← operator differential→
forms

i~ d
dt
ρ̂(t) = [Ĥ, ρ̂(t)]

I Analogy with the classical Liouville equation for distribution ρ(p, q, t) in

phase space: d
dt
ρ(~p, ~q, t) =

∑
i

∂ρ
∂pi

dpi
dt︸︷︷︸
−∂H
∂qi

+ ∂ρ
∂qi

dqi
dt︸︷︷︸

+
∂H
∂pi

+∂ρ
∂t

= 0 ⇒ ∂ρ
∂t

= −{H, ρ}

I Evolution of a closed system does not change traces and entropy

Unitary transformation ρ̂(t)= Û(t)ρ̂(0)Û(t)−1 =
∑
k

ρi Û(t)|φi〉︸ ︷︷ ︸
|φi(t)〉

〈φi|Û(t)−1︸ ︷︷ ︸
〈φi(t)|

Tr ρ̂(t) = Tr ρ̂(0) ⇒ normalization conserved

Tr ρ̂(t)2 = Tr ρ̂(0)2 ⇒ pure

mixed

}
remains

{
pure

mixed

Eigenvalues ρi conserved ⇒ entropy Sρ(t)=−k
∑

ρi ln ρi=Sρ(0) =const

I Evolution of open systems: non-interacting case

Consider first the case when the system under study and its environment do
not interact with each other. Below we verify that this effectively coincides

with the isolated case, as may be immediately anticipated.

Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 ⇒ separable evolution

Û1(t) = e−i
Ĥ1t
~

Û2(t) = e−i
Ĥ2t
~

Û(t) = Û1(t)⊗ Û2(t)

⇒

ρ̂1(t) = Û1(t)ρ̂1(0)Û1(t)

−1 i~ ddt ρ̂1(t) = [Ĥ1, ρ̂1(t)]

ρ̂2(t) = Û2(t)ρ̂2(0)Û2(t)
−1 i~ ddt ρ̂2(t) = [Ĥ2, ρ̂2(t)]

|Ψ(t)〉 =
∑
i

√
ρi Û1(t)|χ1i〉︸ ︷︷ ︸

|χ1i(t)〉

Û2(t)|χ2i〉︸ ︷︷ ︸
|χ2i(t)〉
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Both entropies equal & conserved: S1(t)=S2(t)=−k
∑
i

ρi ln ρi = const

Separable states remain separable

I Evolution of open systems: interacting case

If the system-environment interaction is turned on, the system’s evolution be-

comes qualitatively different.

Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 + V̂12
where V̂12 acts irreducibly on H≡H1⊗H2

⇒ non-separable evolution of the whole system

Û(t) 6= Û1(t)⊗ Û2(t) ⇒ |Ψ(t)〉 =
∑
ij

αij(t)|φ1i〉|φ2j〉 =
∑
i

√
ρi(t) |χ1i(t)〉|χ2i(t)〉

Eigenvalues ρi(t) vary ⇒ entropy S1(t)=S2(t)=−k
∑
i

ρi(t) ln ρi(t) 6= const

⇒ non-unitary evolution

of partial density operators ρ̂1(t) & ρ̂2(t) corresponding to both subsystems

I Decoherence

Let the [system⊗ environment] evolve from a separable [pure⊗ general] initial

state at t=0: |ψ〉〈ψ|1︸ ︷︷ ︸
ρ̂1(0)

⊗ ρ̂2(0)︸ ︷︷ ︸
may be a pure state |ψ̃〉〈ψ̃|2

= ρ̂12(0)
t−→ ρ̂12(t) 6= ρ̂1(t)⊗ ρ̂2(t)︸ ︷︷ ︸

unfactorizable

For the non-separable evolution, ρ̂1(t) ≡ Tr2 ρ̂12(t) for t > 0 is most probably a
mixed state ⇒ loss of the system’s initial coherence (purity):

pure state ρ̂1(0)
t−→ ρ̂1(t) mixed state

Entropy relations:
=0︷ ︸︸ ︷

S1(0) +

≥0︷ ︸︸ ︷
S2(0) +

=0︷ ︸︸ ︷
∆S(0)︸ ︷︷ ︸

S12(0)

=

>0︷ ︸︸ ︷
S1(t) +

>0︷ ︸︸ ︷
S2(t) +

6=0︷ ︸︸ ︷
∆S(t)︸ ︷︷ ︸

S12(t)

where the correlation-induced
term ∆S(t) compensates

the change of S1(t)+S2(t)

The decoherence process results from the system’s entanglement with environ-
ment, which takes place due to their mutual interaction. An increase of the
system’s entropy can be interpreted as spreading of information (quantum cor-

relations) from the system alone to the composite system + environment. Since
mixed states often carry semiclassical properties, decoherence usually induces
loss of quantum features and emergence of classical behavior (cf. Chap. 3).

Note: The canonical (micro-canonical, grand-canonical) density operators rep-
resent equilibrium states resulting from a “generic” and “long-enough” interac-
tion of the system with a “large-enough” environment. The reason why nature

prefers these states is their maximal (under given constraints) entropy.

J Historical remark
1970: H.Dieter Zeh introduces the concept of environmentally-induced decoherence
1980’s-present: intense research of various aspects of decoherence (W. Zurek et al.)
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2.7 Examples of statistical description

We will briefly present a few applications of the above-described ideas. It is worth

emphasizing here that the density operator is not just a superfluous appendix of the
quantum formalism, suitable only in some more or less exotic situations. Strictly
speaking, no system of ordinary quantum theory is perfectly isolated. Therefore,

the density operator represents the most fundamental language of QM.

� Harmonic oscillator at nonzero temperature

Let us start with the most familiar system, harmonic oscillator. It will be

immersed now into a heat bath with temperature T > 0. This example has
a great historical importance as it indicates the correct quantum solution of a
so-called specific-heat paradox—the fact (classically inexplicable) that the

specific heat of solids gradually vanishes with the temperature going down to
absolute zero. The same calculation, just in slightly different clothes, applies
also to the well-known problem of thermal blackbody radiation.

I Partition function of a 3D oscillator

Energies: En1n2n3
=

3∑
i=1

~ωi
(
ni + 1

2

)
ni = 0, 1, 2, . . .

Z(β) =
∞∑{

n1
n2
n3

}
=0

e−βEn1n2n3 =
3∏
i=1

[
e−β

~ωi
2

∞∑
ni=0

e−β~ωini︸ ︷︷ ︸
1

1−e−β~ωi

]
=

3∏
i=1

e−β
~ωi
2

1−e−β~ωi =

=
3∏
i=1

(
e+β

~ωi
2 − e−β

~ωi
2

)−1︸ ︷︷ ︸
(2 sinh

β~ωi
2 )

−1

lnZ(β) = −
3∑
i=1

ln
(
e+β

~ωi
2 − e−β

~ωi
2

)
I Specific heat

Energy average: 〈E〉β = − d
dβ

lnZ(β) =
3∑
i=1

~ωi
2

coth
β~ωi

2︷ ︸︸ ︷
e+β

~ωi
2 + e−β

~ωi
2

e+β
~ωi
2 − e−β

~ωi
2

Molar specific heat: cmol
V (β) = NAkβ

2 d2

dβ2 lnZ(β) = NAk
3∑
i=1

(
β~ωi

e+β
~ωi
2 − e−β

~ωi
2

)2

High-T ⇒ β � (~ωi)−1

cmol
V (T ) ≈ 3NAk = const

classical behavior

Low-T ⇒ β � (~ωi)−1

cmol
V (T ) ≈ NAk

3∑
i=1

(~ωi
kT

)2
e−

~ωi
kT −−→

T→0
0

quantum behavior
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J Historical remark

1907: A. Einstein derives the specific heat formula for a quantized oscillator

� Coherent superposition vs. statistical mixture

The following example attempts to clarify the difference between a coherent
superposition, which is a pure state composed of some components with the re-
spective amplitudes, and a statistical mixture, which is a mixed state containing

the same components but just with the corresponding probabilities.

I Density operator of a pure state given by wavefunction ψ(~x) ≡ 〈~x|ψ〉

ρ̂ = |ψ〉〈ψ| ⇒ coordinate representation 〈~x|ρ̂|~x ′〉 = ρ(~x, ~x ′) = ψ(~x)ψ∗(~x ′)

I Coherent superposition of two wavefunctions

|ψ〉 ∝ |ψI〉+ |ψII〉 ≡ ψI(~x) + ψII(~x)

ρ(~x, ~x ′) ∝ [ψI(~x) + ψII(~x)] [ψ∗I (~x ′) + ψ∗II(~x
′)]

Probability distribution: ρ(~x, ~x) ∝ |ψI(~x)|2 + |ψII(~x)|2 + 2Re [ψI(~x)ψ∗II(~x)]︸ ︷︷ ︸
interferenceI Statistical mixture of the same wavefunctions

ρ̂ = 1
2
|ψI〉〈ψI|+ 1

2
|ψII〉〈ψII| ρ(~x, ~x ′) = 1

2
ψI(~x)ψ∗I (~x ′) + 1

2
ψII(~x)ψ∗II(~x

′)

Probability distribution: ρ(~x, ~x) = 1
2 |ψI(~x)|2 + 1

2 |ψII(~x)|2 ⇒ no interference

I 1D example

(a) Superposition: ψ(x) ∝ δε(x+a) + δε(x−a) with δε(x) = 1

(2πε2)
1
4
e−

x2

4ε2 (ε→0)

ρ(x, x′) ∝ δε(x+a)δε(x
′+a)+δε(x−a)δε(x

′−a)+δε(x+a)δε(x
′−a)+δε(x−a)δε(x

′+a)

ρ(x, x) ∝ δ2
ε (x+a) + δ2

ε (x−a) + δε(x+a)δε(x−a) + δε(x−a)δε(x+a)︸ ︷︷ ︸
→0 for ε→0

Wρ(x, p) ∝
+∞∫
−∞

ρ(x+ ξ
2
, x− ξ

2
)e

i
~ξpdξ

ε→0≈ δ(x+a) + 2 cos
(

2ap
~
)
δ(x) + δ(x−a)

6= probability density (W R 0)

(b) Mixture with the same spatial

distribution:

ρ(x, x′) = 1
2 δε(x+a)δε(x

′+a)
+1

2
δε(x−a)δε(x

′−a)

Wρ(x, p) ∝
[
δ2
ε (x+a) + δ2

ε (x−a)
]
e
− p2

2(~/2ε)2

≡ classical-like probability density

(W ≥ 0)
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� Density operator and decoherence for a two-state system

The rest of this section is devoted to the familiar spin-1
2 system—a qubit. The

density operator and its evolution can be clearly visualized in this system,

yielding an understandable picture of the spin coherence & decoherence.

I Parametrization of 2D density matrix

ρ̂ = 1
2

[
Î +~b · ~̂σ

]
= 1

2

(
1+b3 b1−ib2
b1+ib2 1−b3

) ~b ≡ (b1, b2, b3) is a vector of parameters
⇒ Normalization Tr ρ̂ = 1 satisfied

Tr ρ̂2 = 1
4 Tr

[
Î+2(~b · ~̂σ)+(~b · ~̂σ)2︸ ︷︷ ︸

|~b|2Î

]
= 1+|~b|2

2

{
= 1

< 1
for

|~b|=1 pure state

|~b|<1 mixed state

(~b·~̂σ)2= 1
2

∑
ij

bibj (σ̂iσ̂j + σ̂jσ̂i)︸ ︷︷ ︸
δij Î

=|~b|2Î
I Spin polarization

The average values of the 3 spin components:

~̂S ≡ ~
2~̂σ ⇒ 〈Si〉ρ = Tr (Ŝiρ̂) = ~

4 Tr
[
σ̂i + (~b · ~̂σ)σ̂i

]
= ~

4

∑
j

bj

2δij︷ ︸︸ ︷
Tr(σ̂jσ̂i) = ~

2 bi

〈~S 〉ρ = ~
2
~b

Geometric interpretation with the aid
of the Bloch sphere of the vector
~b ∝ 〈~S〉 (cf. the visualization of polarization vector
spin pure states in Sec. 2.2)

I Thermal ensemble

Hamiltonian parametrization: Ĥ = eÎ + ~a · ~̂σ with |~a| ≡ a

e−βĤ = e−βe
∞∑
k=0

(−βa)k

k!

(
~a
a · ~̂σ

)k
= e−βe

[ ∑
k=0,2,4...

(−βa)k

k!︸ ︷︷ ︸
e+βa+e−βa

2

Î +
∑

k=1,3,5...

(−βa)k

k!︸ ︷︷ ︸
− e+βa−e−βa2

(
~a
a · ~̂σ

)]

= e−βe
[
(coshβa)Î − (sinhβa)

(
~a
a · ~̂σ

)]
Tr e−βĤ = 2e−βe cosh(βa) = Z(β) ⇒ ρ̂β = 1

Z(β)
e−βĤ = 1

2

[
Î − tanh(βa)

a
~a · ~̂σ

]
~bβ =− tanh(βa) ~aa ⇒ 〈~S 〉β =−~2 tanh(βa) ~aa

The average spin polarization is oriented in
the direction ~a

a
and increases with T → 0

I Qubit coupled to environment

Bases in the spin & environment Hilbert spaces:

H1︷ ︸︸ ︷{
| ↑〉, | ↓〉

}
⊗

H2︷ ︸︸ ︷{
|ei〉
}
i

Assume
| ↑〉|ei〉

t−→ | ↑〉|ei↑(t)〉
| ↓〉|ei〉

t−→ | ↓〉|ei↓(t)〉

where |ei↑(t)〉, |ei↓(t)〉 ≡ some states ∈ H2

This defines a special evolution which
does not affect the z component of spin.
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Separable initial
state: ρ̂12(0)= |ψ〉〈ψ|︸ ︷︷ ︸

ρ̂1(0)

⊗
(∑

i

wi|ei〉〈ei|
)

︸ ︷︷ ︸
ρ̂2(0)

|ψ〉 = α| ↑〉+ β| ↓〉

ρ̂1(0) =
(
|α|2 αβ∗

α∗β |β|2

)
Evolution:

ρ̂12(t) =
∑
i

wi
[
|α|2|ei↑(t)〉| ↑〉〈↑ |〈ei↑(t)|+ αβ∗|ei↑(t)〉| ↑〉〈↓ |〈ei↓(t)|+
α∗β|ei↓(t)〉| ↓〉〈↑ |〈ei↑(t)|+ |β|2|ei↓(t)〉| ↓〉〈↓ |〈ei↓(t)|

]
ρ̂1(t) = Tr2ρ̂12(t) =

|α|2| ↑〉〈↑ |
[∑

ij

wi〈ej|ei↑(t)〉〈ei↑(t)|ej〉
]

︸ ︷︷ ︸
1

+αβ∗| ↑〉〈↓ |
[∑

ij

wi〈ej|ei↑(t)〉〈ei↓(t)|ej〉
]

︸ ︷︷ ︸∑
i

wi〈ei↓(t)|ei↑(t)〉≡ D(t)

+α∗β| ↓〉〈↑ |
[∑

ij

wi〈ej|ei↓(t)〉〈ei↑(t)|ej〉
]

︸ ︷︷ ︸∑
i

wi〈ei↑(t)|ei↓(t)〉≡ D(t)∗

+|β|2| ↓〉〈↓ |
[∑

ij

wi〈ej|ei↓(t)〉〈ei↓(t)|ej〉
]

︸ ︷︷ ︸
1

ρ̂1(t) =

(
|α|2 αβ∗D(t)

α∗βD(t)∗ |β|2
)

where |D(t)| ≤
∑
i

wi

≤1︷ ︸︸ ︷
|〈ei↓(t)|ei↑(t)〉| ≤ 1

I Spin decoherence

Tr ρ̂1(t)
2 = Tr

(
|α|4+|α|2|β|2|D(t)|2 (|α|2+|β|2)αβ∗D(t)

(|α|2+|β|2)α∗βD(t)∗ |α|2|β|2|D(t)|2+|β|4

)
= |α|4 + 2|α|2|β|2|D(t)|2 + |β|4

= (|α|2 + |β|2)2︸ ︷︷ ︸
1

−
[
1− |D(t)|2

]︸ ︷︷ ︸
∈[0,1]

2|α|2|β|2︸ ︷︷ ︸
∈[0,1]

{
= 1 for |D(t)|=1 or αβ=0

< 1 for |D(t)|<1 and αβ 6=0

For a large environment, |D(t)| is usually a very quickly decreasing function ⇒

pure state
|ψ〉=α| ↑〉+β| ↓〉

}
t−→
{

mixed state, for t→∞ :
ρ̂1 = |α|2| ↑〉〈↑ |+|β|2| ↓〉〈↓ | qubit’s decoherence

Parametrization: D(t) = |D(t)|eiχ(t)

Spin initially along direction ~n: |ψ〉 ≡ |s~n=+~
2
〉 ≡

α︷ ︸︸ ︷
e−iϕ cos ϑ

2
| ↑〉+

β︷︸︸︷
sin ϑ

2
| ↓〉

Evolution of polarization vector:

~b(t) =

 |D(t)| sinϑ cos[ϕ−χ(t)]

|D(t)| sinϑ sin[ϕ−χ(t)]
cosϑ


⇒ ~b(0) = (n1, n2, n3)

t→∞−→ (0, 0, n3) = ~b(∞)

⇒ dephasing of the xy-projection of polarization
(e.g., due to multiple Larmor freqs. in mag. field ~B∝~ez)
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3. QUANTUM-CLASSICAL CORRESPONDENCE

We may say that rough construction of the QM formalism (Sec. 1) and demonstration
of its basic applications (Sec. 2) have been completed now. Before proceeding to more
complex applications, we wish to explore the land on the border between quantum

and classical physics. Quite surprisingly, one often finds here a rather inaccessible
and hardly passable terrain. This is also the reason why the quantum-classical
correspondence belongs to the most interesting topics in physics.

3.1 Classical limit of quantum mechanics

Once a new theory is formulated, an immediate task is to specify the circumstances

under which the old theory is reproduced.

� The singular limit ~→ 0

Physical theories—like various objects in the mathematical world—may be sub-

ject to a limiting procedure: variation of an essential constant of the theory to
the limit in which another theory takes the reins. A well-known example is
the limit c → ∞ (or v

c
→ 0), in which special relativity changes to classical

mechanics, or N →∞, when statistical physics becomes thermodynamics. We
are now interested in the limit ~ → 0 (or ∆S

~ → ∞). In this limit, quantum
mechanics should peacefully crossover to classical mechanics. However, this

process turns out to be rather tricky. The reason for difficulties is that quan-
tum mechanics is apparently richer than classical mechanics, so a number of
emergent phenomena appears on the quantum side of the border line.∗∗

I Example I: harmonic-oscillator eigenstates

Classical motion x(t) = xmax(E)︸ ︷︷ ︸√
2E
Mω2

sinωt with period T = 2π
ω

Probability to find the oscillator at position x in
random time: 2

T

∣∣ dt
dx

∣∣︸︷︷︸
1/|ẋ|

dx = 1
π

1
xmax(E)| cosωt|

= 1
π

1√
xmax(E)2−x2

≡ ρclas(x)E

What is the link to |ψn(x)|2 ≡ ρquant(x)En ?

For ~→ 0 & En = const we get n→∞
⇒ infinitely dense oscillations of ψn(x)

∗∗This paragraph is formulated in the spirit of some of the writings by Michael Berry.
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It turns out that
the smoothened distribution ρ̄quant(x)En ≡ 1

dx

x+dx
2∫

x−dx
2

|ψn(x′)|2dx′
n→∞−−−→ ρclas(x)E

Therefore, the limit ~→ 0 reproduces the classical case only if the smoothening
of |ψn(x)|2 is performed along with the limiting procedure.

I Example II: coefficient of transmission through a potential barrier

Square barrier of width a and height V0: parameter γ ≡ a
√

2MV0/~
Transmission coefficient for particle with energy E = εV0

Tquant(ε) =

{ 1
1+ 1

4ε(1−ε) sinh2(γ
√

1−ε) ε < 1

1
1+ 1

4ε(ε−1) sin2(γ
√

1−ε) ε ≥ 1

What is the link to Tclas(ε)=

{
0 ε < 1
1 ε ≥ 1

For ~→0 (⇒ γ→∞)
we get infinitely-dense oscillations of Tquant(ε)ε≥1 ∈ [ 1

1+1/4ε(ε−1)
, 1]

Only a smoothened coefficient T̄quant(ε) ≡ 1
dε

ε+dε
2∫

ε−dε2

Tquant(ε
′)dε′

~→0−−→ Tclas(ε)

J Historical remark
1913: N. Bohr discusses the quantum-classical correspondence within the “old QM”

1920’s-present: research of various aspects of quasiclassical quantum mechanics
1980’s-90’s: M. Berry points out the singularity of the ~→ 0 limit

� Ehrenfest theorem

The question of quantum-classical correspondence was in the main focus of
quantum theorists already in the early days of QM. An important result by
Ehrenfest is often presented as the final answer to this question, although in

reality it represents just a beginning of a still-unknown answer.

I Derivation

Consider a single spinless particle with Hamiltonian: Ĥ = 1
2M
~̂p 2 + V (~̂x)

Time evolution of operators in Heisenberg representation:

d
dt
p̂i = 1

i~ [p̂i, Ĥ] = 1
i~ [p̂i, V (~̂x)] = − ∂V

∂xi
(~̂x)

d
dt x̂i = 1

i~[x̂i, Ĥ] = 1
i~ [x̂i,

1
2M p̂

2
i ] = 1

M p̂i

}
⇒

{
d
dt ~̂p = −~∇V (~̂x)
d
dt~̂x = 1

M ~̂p

d2

dt2 x̂i=
d
dt

(
1
M p̂i

)
=− 1

M
∂V
∂xi

(~̂x) ⇒ M d2

dt2 ~̂x = −~∇V (~̂x) “quantum Newton law”
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I Consequences

Consider an arbitrary state |ψH〉 = |ψS(t=0)〉, e.g., a narrow wavepacket.
Coordinate averages 〈xi(t)〉ψ = 〈ψS(t)|x̂iS|ψS(t)〉 = 〈ψH|x̂i(t)H|ψH〉 evolve in ac-

cord with an averaged Newton law. In particular: M d2

dt2 〈~x(t)〉ψ = −〈~∇V (~̂x)〉ψ
⇒ semiclassical behavior can be obtained for convenient initial states

(cf. coherent states in harmonic oscillator)
J Historical remark
1927: P. Ehrenfest formulates the relation between quantum and classical dynamics

I Limits of applicability

Spreading of wavepacket (in almost all potentials) ⇒ The semiclassical

behavior terminated at a sufficiently long time t & τQ when the variation of the

force across the wavepacket spread ≈ the force average:
√
〈〈F 2

i 〉〉ψ ≈ 〈Fi〉ψ

⇒
√
〈〈F 2

i 〉〉ψ
〈Fi〉ψ ≈

Maxj

〈∣∣∣ ∂2V
∂xjxi

∣∣∣〉
ψ

∆xj〈∣∣∣ ∂V∂xi ∣∣∣〉ψ where ∆xj ≡ σxj(t) is spreading width along xj

“Quantum time” τQ can be estimated from: Maxj

〈∣∣∣ ∂2V
∂xjxi

∣∣∣〉σxj(τQ) ≈
〈∣∣∣ ∂V∂xi ∣∣∣〉

Phase-space criterion for τQ: Consider t=0 state represented by Wigner func-
tion W (~x, ~p, 0) in the form of a classical distribution ρ(~x, ~p, 0) with the support
Sρ(0) being a simple compact phase-space domain of volume |Sρ(0)|. Semi-

classical approximation holds if W (~x, ~p, t) evolved by the quantum dynamical
equation coincides with ρ(~x, ~p, t) evolved by the classical Liouville equation.

The classical volume |Sρ(t)|=|Sρ(0)| is conserved but the shape of Sρ(t) usually
becomes more and more complicated [its maximal linear size grows typically
as Lρ(t) ≈ Lρ(0)et/τchaos, where τchaos characterizes sensitivity of the system’s
evolution to initial conditions]. Semiclassical behavior is terminated when the

fine structures of Sρ(t) become of the size of “elementary cells” ∼ ~d
(d=dimension) deduced from the uncertainty principle. At about this time
scale, W (~x, ~p, t) becomes partly negative ⇒ non-classical.

Schematic illustration:
The classical phase-space

domain Sρ(t) becomes
complicated and starts to
interfere with cells ∼ ~d

� Role of decoherence

The process in which a quantum system loses its coherence due to an interac-
tion with some “environment” is a hot candidate for the ultimate answer to
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the question of quantum-classical correspondence. Indeed, even if the system

of interest is well isolated from the surrounding objects, its interaction with
omnipresent matter (relict radiation, solar photons, dark matter etc.) or with
some internal degrees of freedom is most likely out of control. Such interactions

often make the system behave in accord with classical physics.

I Classical behavior emerging due to interaction with environment

The reduced density operator of the system interacting with “environment”
evolves in a non-unitary way. In generic case, for t & tdecoh, a pure state ρ̂(0)
becomes a mixed state ρ̂(t). This usually has the following consequences for

the Wigner phase-space distribution function:

(a) non-classical W (~x, ~p, 0) Q 0
t&tdecoh−−−−→W (~x, ~p, t) & 0 classical-like

(b) classical-like W (~x, ~p, 0) ≥ 0
t∈[0,∞)−−−−→W (~x, ~p, t) & 0 classical-like

For classical-like initial states the permanent decoherence is likely to preserve

the classical-quantum correspondence for t→∞ (⇒ no problem with τQ).

I Quantum measurement as decoherence? (tentative interpretation)

The decoherence process may be essential for a physical explanation of quantum
measurement. Consider the following scheme based on the coupling:

system
spin 1

2

←→ “interface” ←→ apparatus

quantum mesoscopic macroscopic

(a) A “pre-measurement” ≡ system-interface interaction

Interface, initially in state |I0〉, responds to the spin states as follows:
|↑〉|I0〉7→|↑〉|I↑〉
|↓〉|I0〉7→|↓〉|I↓〉

where |I↑〉 and |I↓〉 are interface states that are almost orthogonal (because of
the interface’s high sensitivity to the system’s spin states and a large dimension

of the interface’s Hilbert space): 〈I↑|I↓〉 = ε ≈ 0

Unitary evolution of a general [system ⊗ interface] state:

|Ψ0〉 ≡
(
α| ↑〉+β| ↓〉

)
⊗ |I0〉

(a)−→
(
α| ↑〉 ⊗ |I↑〉+ β| ↓〉 ⊗ |I↓〉

)
≡ |Ψ1〉

Suppose that the evolution of the apparatus depends only on the interface, not

on the spin itself, hence evaluate ρ̂inti = Trsys|Ψi〉〈Ψi|:

ρ̂int0 = |I0〉〈I0|
(a)−→ |α|2|I↑〉〈I↑|+ |β|2|I↓〉〈I↓| = ρ̂int1

ρ̂int1 is the interface’s mixed state, which effectively describes its collapsed wave-
function before reading out the result |I↑〉 or |I↓〉 (with a precision determined
by a residual overlap ε of the two interface states).
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(b) The actual measurement ≡ interface-apparatus interaction
The apparatus, initially in a mixed state ρ̂app0, responds to the relevant inter-

face states as follows:
|I↑〉〈I↑|⊗ρ̂app0 7→|I↑〉〈I↑|⊗ρ̂app↑
|I↓〉〈I↓|⊗ρ̂app0 7→|I↓〉〈I↓|⊗ρ̂app↓

where ρ̂app↑ and ρ̂app↓ are macro-

scopic “pointer states” which are classical-like (W&0) and almost perfectly
distinguishable: Tr ρ̂app↓ρ̂app↑ ≈ 0 (to the extent in which 〈I↑|I↓〉 ≈ 0).

Unitary evolution of the [interface ⊗ apparatus] state from step (a):(
|α|2|I↑〉〈I↑|+ |β|2|I↓〉〈I↓|

)
⊗ ρ̂app0

(b)−→ |α|2|I↑〉〈I↑| ⊗ ρ̂app↑ + |β|2|I↓〉〈I↓| ⊗ ρ̂app↓

The final reduced density operator of the apparatus ρ̂app1 ≈ |α|2ρ̂app↑ + |β|2ρ̂app↓

This mixed state (mixture of two mixed states) describes two alternative dis-
tinguishable classical-like pointer states & their respective probabilities.

(c) The role of observer is to select the single alternative which “actually hap-
pens”. This final reduction might be beyond the reach of physical description.

J Historical remark
1970-80’s: H.D. Zeh and W. Zurek consider environmentally-induced decoherence as
an effective mechanism for the wavefunction collapse
1990’s-present: Examples of decoherence-based quantum-to-classical transitions

3.2 WKB approximation

Not only that the quantum-classical correspondence represents a problem of funda-
mental importance, its investigation also yields an effective approximation method.
The acronym WKB associated with this method stands for Wentzel, Kramers, and
Brillouin, who were among its first independent inventors.

� Classical Hamilton-Jacobi theory

Classical mechanics can also be formulated in a wave form. The appearance of
classical trajectories in this formulation is quite analogous to the way in which
rays of light arise from wave optics. Before we derive the WKB approximation
of QM, we have to outline this classical theory.

I Action as a function of coordinates and time

Action for a structureless particle ≡ functional on the space of trajectories ~x(t):

S[~x(t)]t1t0 =

t1∫
t0

L[~x(t), ~̇x(t)]dt L(~x, ~̇x) = M
2 ~̇x

2 − V (~x) ≡ Lagrangian

For a fixed initial point ~x(t0) = ~x0 and a fixed final point ~x(t1) = ~x1 the clas-
sical equations of motion select the trajectory ~xc(t) satisfying the variational
principle δS[~xc(t)]

t1
t0 = 0
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Consider a bunch of classical trajectories
{
~xc(t)

}
(satisfying δS = 0) leading

from a fixed initial point (~x0, t0) to variable final point (~x1, t1).

Action along these trajectories:

S(~x1, t1) =

t1∫
t0

L[~xc(t), ~̇xc(t)]dt

I Equations for the action

(a) Space variation (~x1, t1)→ (~x1+δ~x1, t1) ⇒ S → (S+δS)

δS =
t1∫
t0

(
∂L
∂xi
δxi + ∂L

∂ẋi
δẋi︸ ︷︷ ︸

d
dt (

∂L
∂ẋi

δxi)−( ddt
∂L
∂ẋi

)δxi

)
dt =

[
∂L
∂ẋi
δxi

]t1
t0︸ ︷︷ ︸

∂L
∂ẋi

δx1i

+
t1∫
t0

[
∂L
∂xi
δxi − ( ddt

∂L
∂ẋi

)δxi
]︸ ︷︷ ︸

0

dt

⇒ ∂S(~x1, t1)

∂x1i
=
∂L(~x, ~̇x)

∂ẋi︸ ︷︷ ︸
pi

∣∣∣∣ ~x=~xc(t1)

~̇x=~̇xc(t1)

⇒ ~∇~x1
S(~x1, t1) = ~p1

(b) Time variation (~x1, t1)→ (~x1, t1+δt1)

dS
dt1︸︷︷︸

L[~xc(t1),~̇xc(t1)]

= ∂S
∂t1

+ ∂S
∂x1i︸︷︷︸
p1i

ẋ1i︸︷︷︸
ẋci(t1)

⇒ ∂S
∂t1

=
[
L − ~p · ~̇x

]
t=t1︸ ︷︷ ︸

−H(~x1,~p1,t1)

⇒ ∂S(~x1, t1)

∂t1
= −H(~x1, ~p1, t1)

(c) Both equations together ⇒ Hamilton-Jacobi equation

∂
∂t1
S(~x1, t1) +H[~x1, ~∇~x1

S(~x1, t1), t1] = 0 or shortly: ∂
∂t
S +H(~x, ~∇S, t) = 0

This is a partial differential equation for S(~x, t)

Example: particle in scalar potential: ∂
∂t
S + 1

2M
(~∇S)2 + V (~x) = 0

I Time-independent Hamiltonian ⇒ energy conserved: H = E = const

∂
∂tS =−E ⇒ S(~x, t) = W (~x)− Et ⇒ H(~x, ~∇W ) = E

The generating function W (~x) can be determined as follows:

~∇W =~p ⇒ W (~x) =

~x∫
~x0

~p · d~x′
contour integral along a classical trajectory
from arbitrary initial point ~x0

I Interpretation

S(~x, t) ≡ solution Hamilton-Jacobi equation⇒ (~p = ~∇S)⊥ surfaces S(~x, t)=const
⇒ classical trajectories are like the rays associated with a “wave” S(~x, t)
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J Historical remark

1827-37: W.R. Hamilton, C.G. Jacobi introduce ray formulation of class. mechanics

� WKB equations, classical limit, pilot wave

We now jump into the derivation of the WKB equations. Soon, a link to

the Hamilton-Jacobi theory will become apparent. We will then come to a
branching point: one of the paths leads to an alternative formulation of QM
in terms of some non-classical trajectories, the other (postponed to the next

paragraph) to the quasiclassical approximation of standard QM.

I Derivation of WKB equations for single particle in a potential

Rewrite the Shrödinger equation
[
− ~2

2M
(~∇)2 + V (~x)

]
ψ(~x, t) = i~ ∂

∂t
ψ(~x, t)

with substitution ψ(~x, t) =
√
ρ(~x, t)e

i
~S(~x,t)

− ~2

2M

[
∆
√
ρ+ 2i

~ (~∇√ρ) · (~∇S) + i
~
√
ρ∆S − 1

~2

√
ρ(~∇S)2

]
e
i
~S + V

√
ρe

i
~S

= i~
[
∂
√
ρ

∂t
+ i
~
√
ρ∂S
∂t

]
e
i
~S

Separate

{
Re part : − ~2

2M∆
√
ρ+ 1

2M

√
ρ(~∇S)2 + V

√
ρ = −√ρ∂S∂t

Im part : − ~
M (~∇√ρ) · (~∇S)− ~

2M

√
ρ∆S = ~∂

√
ρ

∂t

2
√
ρ × Im part ⇒ ∂ρ

∂t
+ 1

M

[
ρ∆S + (~∇ρ) · (~∇S)

]
︸ ︷︷ ︸

~∇·(ρ ~∇S)

=0

⇒ ∂ρ

∂t
+ ~∇ ·

(
ρ
~∇S
M

)
︸ ︷︷ ︸

~j=ρ~v

= 0

continuity equation

Re part ⇒

− ~
2

2M

1
√
ρ

∆
√
ρ︸ ︷︷ ︸

∗

+
1

2M
(~∇S)2 + V +

∂S

∂t
= 0

Hamilton-Jacobi equation
+ quantum correction ∗ ∝ ~2

I Classical limit

Limit ~ → 0 ⇒ the quantum correction term ∗ → 0 ⇒ we obtain a coupled
pair of classical equations:
(a) Hamilton-Jacobi equation for S(~x, t) ⇒ velocity field ~v(~x, t) ≡ 1

M
~∇S(~x, t)

(b) continuity equation for ρ(~x, t), given ~v(~x, t) determined in step (a)

These equations describe an ensemble of classical particles with initial space
density ρ(~x, 0) evolving in agreement with classical equations of motion.

I “Pilot-wave” picture of QM
In a general case (~ 6=0) the quantum correction term ∗ � 0 may be considered
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as an addition to potential V (~x) ⇒ WKB equations interpreted in terms of

classical-like motions of an ensemble of particles in total potential

Vtot(~x, t) = V (~x)− ~2

2M
1√
ρ
∆
√
ρ︸ ︷︷ ︸

VQ(~x,t)

“Quantum potential” VQ(~x, t) depends on |ψ(~x, t)|2
⇒ force acting at places with no classical field

⇒ ψ(~x, t) plays the role of a “pilot wave” which
“navigates” individual particle trajectories

⇒ interference patterns appear without abandoning the concept of trajectories

However, VQ is a strange field (not an interaction with other particles of the
ensemble ⇐ acts even for 1 particle) which turns out to have explicitly non-
local character (⇒ non-local hidden-variable theory equivalent to QM).

Example: Gaussian wavepacket of free particle: ρ(x, t) = 1√
2πσx(t)2

e
− [x−x0(t)]2

2σx(t)2

⇒ VQ(x, t) = ~2

4Mσx(t)2

{
1− [x−x0(t)]2

2σx(t)2

}
Force increasing with the wavepacket localization
⇒ consistent with the spreading process

J Historical remark
1837, 1915, 1923: General foundations of the method (theory of dif. equations) elab-
orated by J. Liouville, G. Green, lord Rayleigh, H. Jeffreys et al.

1926: G. Wentzel, H.A. Kramers, L. Brillouin develop WKB for Schrödinger eq.
1927: Louis de Broglie formulates the basis of the pilot wave theory
1952: David Bohm uses the idea to formulate a hidden-variable alternative to QM

� Quasiclassical approximation

Now we follow the path leading to quasiclassical QM. This will give us practical
approximate expressions of quantum energies and wavefunctions, as well as
some more insight into the quantum-classical correspondence.

I Conditions for use

The quasiclassical approximation follows from the neglect of the quantum

term in the WKB equation:

∗ = − ~2

2M
1√
ρ∆
√
ρ = ~2

2M

[
(~∇ ln

√
ρ)2− ~∇2 ln

√
ρ
]
∼O(~2)

?
� terms ∼

{
O(~0)

O(~1)

To derive the conditions, under which this step is justified, we proceed by
analogy, comparing: (a) ~0(~∇S)2

(b) ~1∆S

}
terms from

{
Re
Im

}
parts of 1D WKB eqns.
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S(x, t) = ±
x∫

x0

√
2M [E − V (x′)]dx′ − Et

⇒
~
∣∣∣∣∂2S
∂x2

∣∣∣∣(
∂S
∂x

)2 =
M
dV
dx

~√
2M [E−V (x)]

2M [E−V (x)] =
dV
dx

λB

4π[E−V (x)] = 1
4π

∆V |∆x≈λB

T

?
� 1

This condition is usually satisfied for sufficiently high energy E except:

(a) “wild” potentials V (x) (with
∣∣dV
dx

∣∣ very large)
(b) regions near return points (where dV

dx
6=0 and T→0)

(c) regions near generic stationary points (where dV
dx , T→0, dV/dx

T →∞)

I Stationary states in 1D
∂ρ
∂t︸︷︷︸
0

+ ∂
∂x

(
ρ∂S∂x
)

= 0 ⇒ ρ(x)∂S(x)
∂x = const

⇒ ρ(x) ∝ 1√
2M [E−V (x)]

= 1
|vclas(x)| in the classical domain V (x) < E

Quasiclassical wavefunction on both sides of class. turning point x0 with V (x0)=E:

ψI(x, t) = ±N(
2M [E−V (x)]

)1/4e
± i

~

x∫
x0

√
2M [E−V (x′)]dx′− i

~Et

for V (x) < E (region I)

ψII(x, t) = ±N(
2M [V (x)−E]

)1/4e
± 1

~

x0∫
x

√
2M [V (x′)−E]dx′− i

~Et
for V (x) > E (region II)

How to connect these solutions at x0 where ψ → ∞? Bypassing x0 from II to
I in the complex plane x ∈ C along a half-circle with radius ε

starting in region II... ...arriving to region I
following ∆x︸︷︷︸

x−x0

=−εeiφ from φ=0... ...to φ=π: ∆x︸︷︷︸
x−x0

=−εeiπ=+ε∣∣dV
dx

∣∣
x0
ε︸ ︷︷ ︸

≈V (−ε)−E

eiφ → → eiπ ε
∣∣dV
dx

∣∣
x0︸ ︷︷ ︸

≈E−V (+ε)

⇒ the wavefunction prefactor, exponent and whole ψ change as follows:

N(
2M [V (x)−E)]

)1/4

∣∣∣∣
x0−ε
≈ N(

2M|dVdx |x0
εei0

)1/4

x0∫
x0−ε

√
2M [V (x′)− E]dx′ ≈ 0

ψII(x, t)
∣∣
x0−ε


II y I

=



N(
2M|dVdx |x0

εeiπ
)1/4≈ e−iπ/4 N(

2M [E−V (x)]
)1/4

∣∣∣∣
x0+ε

0 ≈
x0+ε∫
x0

√
2M [E − V (x′)]dx′

e−iπ/4 ψI(x, t)
∣∣
x0+ε
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⇒ ψI(x, t) given above receives an additional phase factor e−iπ/4

I Bound states in a 1D potential well

2 classical return points inside the well:
II

−−−−−−−−
forbidden

x01•
↑

I
−−−−−−−−

allowed

x02•
↑

II′
−−−−−−−−

forbidden

Wavefunction in the allowed region can be connected to the left or right for-
bidden region II or II’:

ψI(x) =

 ±N (2M [E−V (x)])
−1/4

e
i

[
+ 1

~
x∫

x01

√
2M [E−V (x′)]dx′−π4

]
using left return point x01

±N (2M [E−V (x)])
−1/4

e
i

[
− 1

~
x02∫
x

√
2M [E−V (x′)]dx′+π

4

]
using right return point x02

Consistency condition:[
+1
~

x∫
x01

√
2M [E − V (x′)]dx′ − π

4

]
−
[
−1
~

x02∫
x

√
2M [E − V (x′)]dx′ + π

4

]
= ±nπ
n=0,1,2,3,...

2

x02∫
x01

√
2M [E − V (x′)]dx′

︸ ︷︷ ︸∮
p dx

=
(
n+ 1

2

)
2π~︸︷︷︸
h

Bohr−Sommerfeld
energy quantization

(derived in old QM
without the 1

2 term)

I Examples (in which the WKB energies reproduce the exact QM results)

(a) 1D harmonic oscillator
1

2M p
2 + Mω2

2 x2 = E ⇒ ellipse
(
x
a

)2
+
(
p
b

)2
=1 with area S = πa b ≡

∮
p dx

= π
√

2E
Mω2

√
2ME =

(
n+ 1

2

)
h

⇒ E =
(
n+ 1

2

)
~ω

(b) 1D infinite well
No access to region II

⇒ consistency condition reads as: +1
~

x∫
x01

√
2MEdx′ + 1

~

x02∫
x

√
2MEdx′ = kπ

with k = 1, 2, 3, . . . ⇒
∮
p dx = 2

√
2ME L = kh ⇒ E = (π~)2

2ML2k
2

I Transmission through a 1D barrier

2 return points on both barrier sides:
I

−−−−−−−−
allowed

x01•
↑

II
−−−−−−−−

forbidden

x02•
↑

I′
−−−−−−−−

allowed

Procedure: Assume single exponential in region I’ propagating to the right (flow
jI′→). Calculate solutions in regions II and I, determine the incoming flow jI→.
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WKB approximation
of the transmission coefficient: TWKB =

|jI′→|
|jI→|

≈ e
− 2

~

x02∫
x01

√
2M [V (x)−E]dx

J Historical remark
1913: Niels Bohr proposed a model of hydrogen based on semiclassical quantization
1919: Arnold Sommerfeld elaborates the semiclassical quantization ⇒ old QM

1924: George Gamow uses the WKB transmission coeff. to explain nuclear α-decay

3.3 Feynman integral

The method of path integration, called after its inventor Richard Feynman, repre-

sents an original reformulation of quantum theory which is tightly connected with
the classical theory. The method elucidates the link between quantum and classical,
but it also serves as a powerful computational tool for some more advanced problems

of quantum theory. Here we just take a taste of this brilliant approach.

� Formulation of quantum mechanics in terms of trajectories

When the classical trajectories of particles were replaced by quantum wave-

functions, we might believe that trajectories became irretrievably outmoded.
Now they return with all their glory.

I Infinitesimal single-particle propagator

Free-particle propagator: G0[(~x+∆~x)(t+∆t)|~xt] =
(

M
2iπ~∆t

) 3
2 e

i
~

L0(~x,∆~x∆t )∆t︷ ︸︸ ︷
M
2

(∆~x)2

∆t

Infinitesimal ∆t→ 0 propagator of particle in potential V (~x):

L
(
~x, ∆~x

∆t

)
= M

2

(
∆~x
∆t

)2−V (~x)

G[(~x+∆~x)(t+∆t)|~xt] =
(

M
2iπ~∆t

) 3
2 e

i
~

dS︷ ︸︸ ︷
L
(
~x, ∆~x

∆t

)
∆t

= G0[(~x+∆~x)(t+∆t)|~xt] e−
i
~V (~x)∆t ≈

(
M

2iπ~∆t

) 3
2 e

i
~
M
2

(∆~x)2

∆t
[
1− i

~V (~x)∆t
]

It must be so since the ∆t→ 0 limit of evolution operator factorizes:

Û(∆t) = e
− i~

[
− ~

2

2M
~∇2+V (~x)

]
∆t
≈ e

− i~

[
− ~

2

2M
~∇2

]
∆t︸ ︷︷ ︸

Û0(∆t)

e−
i
~V (~x)∆t (from [T̂∆t,V̂∆t]→0 )

I Finite single-particle propagator

Heisenberg representation: G[~xt|~x0t0] ≡ 〈~xt|~x0t0〉 |~xt〉 ≡ eigenvector of ~̂XH(t)

G[~xt|~x0t0] =
∫ G[~xt|~x1t1]︷ ︸︸ ︷
〈~xt|~x1t1〉

G[~x1t1|~x0t0]︷ ︸︸ ︷
〈~x1t1|~x0t0〉 d~x1 =∫

. . .
∫

G[~xt|~xntn]︸ ︷︷ ︸
( M

2iπ~∆tn )
3
2e

i
~L(~xn,∆~xn∆tn )∆tn

. . . G[~xk+1tk+1|~xktk]︸ ︷︷ ︸(
M

2iπ~∆tk

) 3
2
e
i
~L(~xk,

∆~xk
∆tk

)∆tk

. . . G[~x1t1|~x0t0]︸ ︷︷ ︸(
M

2iπ~∆t0

) 3
2
e
i
~L(~x0,

∆~x0
∆t0

)∆t0

d~xn . . . d~xk . . . d~x1
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Assume ∆tk ≡ ∆t = t−t0
n+1

⇒ G[~xt|~x0t0] =

n→∞−→
∫
D[~x(t)]︷ ︸︸ ︷∫

. . .

∫
d~xn. . .d~x1

[
M

2iπ~(∆t)

] 3
2 (n+1)

e

i
~

n→∞−→
∫
L
(
~x, ~̇x
)
dt ≡ S[~x(t)]︷ ︸︸ ︷

n∑
k=0

L
(
~xk,

~xk+1−~xk
∆t

)
∆t

(~x ′,t′)≡(~xn+1,tn+1)

Path integral:

G[~xt|~x0t0] =

∫
D[~x(t)] e

i
~S[~x(t)]

≡ functional integral over the space

of all possible trajectories ~x(t)
satisfying ~x(t0)=~x0 −→ ~x=~x(t)

I Classical correspondence

The contribution to the functional integral is most significant for trajectories
in a vicinity of the classical trajectory ~xc(t), for which δS = 0 (these tra-
jectories contribute “in phase” while the others tend to cancel each other)

Example: free particle

G0[~xt|~x0t0] =
[

M
2πi~(t−t0)

] 3
2

e
i
~

S0[~xc(t)]︷ ︸︸ ︷
M
2

(~x−~x0)2

t−t0 ⇒ non-classical trajectories canceled out!

For ~→ 0, this is true for any potential: G[~xt|~x0t0] ∝ e
i
~S[~xc(t)]

J Historical remark
1948: Richard Feynman derives the path-integral formulation of QM

� Application I: Double-slit interference

To illustrate the method of path integration, we return to the double-slit exper-

iment (see Introduction). A bonus of the present treatment will be an elegant
explanation of the so-called Aharonov-Bohm effect—the fact that magnetic field
confined in a compact domain between the slits causes a shift of the interference

pattern irrespective of the particle absence in the field domain. Let us stress
that the calculations in this paragraph are rather schematic.

I Path-integral formulation of the double-slit interference

Emitter ~x0 ≡ ( −s︸︷︷︸
→−∞

, 0) −→ Slits

{
~xA ≡ (0,+d

2
)

~xB ≡ (0,−d
2)

}
−→ Screen ~x ≡ (l, y)

Assume the initial state (t→−∞) a Gaussian wavepacket with average momen-
tum ~p = (Mv, 0) and width

√
σp ≡ ∆p � p ⇒ on the slit plane we get a

∼planar wave with ∼ sharp wavelength λB = h
Mv
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Trajectories divided to disjunct subsets {~xA(t)} & {~xB(t)} passing slits A & B

G[~xt|~x0t0] =
∫
D[~xA(t)] e

i
~S[~xA(t)] +

∫
D[~xB(t)] e

i
~S[~xB(t)]

Only the classical trajectories contribute to the (almost) free propagation:

G[~xt|~x0t0] ∝
[
e
i
~
Mv2

2
tA + e

i
~
Mv2

2
tB

]
= e

i
~
Mv2

2
tA+tB

2

[
e+

i
~
Mv2

2
tA−tB

2 + e−
i
~
Mv2

2
tA−tB

2

]
v(tB−tA)

d ≈ y
l ⇒ ρscreen(y) ∝ cos2

(
2π Mv

2π~︸︷︷︸
1/λB

d
4ly
)
⇒ ∆y = 2l

d λB interval between
two minima/maxima

Classical limit ⇒ ∆y → 0
(local averaging needed)

I Aharonov-Bohm effect

Consider an ideal electric coil placed in between both slits A & B. The coil is
oriented perpendicularly to the plane defined by emitter & both slits, with the
section area S. Magnetic flux Φ = B⊥S is confined inside the coil. The area S

can be made arbitrarily small and the coil can be shielded against the passage
of particles—in this case the particles have no chance to experience the field
B⊥. In spite of this, the field has an influence on the interference pattern:

In general, vector potential ~A(~x) 6=0 even where the field induction ~B(~x)=0.

For a cylindrical coil of radius R: ~A(~x) =
{

1
2Br~eϕ r<R (region of B 6=0)
1
2BR

2 1
r~eϕ r≥R (region of B=0)

Lagrangian of a charged particle: L(~x, ~̇x) −→ L(~x, ~̇x) + q~̇x · ~A(~x)

G[~xt|~x0t0] ∝
[
e
i
~

(
Mv2

2 tA+q
∫
A

~vA· ~AAdt

)
+e

i
~

(
Mv2

2 tB+q
∫
B

~vB· ~ABdt

)]
=∫

A

~vA · ~AA dt−
∫
B

~vB · ~AB dt =
∮

AB

~A · d~x = Φ

∝
[
e

+ i
~

(
Mv2

2

tA−tB
2 + qΦ

2

)
+e
− i

~

(
Mv2

2

tA−tB
2 + qΦ

2

)]
⇒ ρscreen(y) ∝ cos2

(
2π
λB

d
4l y + qΦ

2~

)
Interference pattern shifted although the
particle may never enter the region B 6= 0

J Historical remark

1959: Yakir Aharonov & David Bohm discover the effect of elmg. potentials in QM

� Application II: Quasiclassical approximation of quantum state density

This application concerns the evaluation of the density of discrete energy eigen-
states for bound quantum systems. While the quantization of energy represents
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a genuinely quantum attribute of such systems, a density of levels in the quan-

tized spectra turns out to be determined solely by classical properties.

I Density of energy eigenstates

Ek ≡ discrete energy eigenvalues of a system

Density of states %(E) =
∑
k

δ(E − Ek)

It is indeed a density in the energy variable since
E2∫
E1

%(E) dE ≡ N[E1,E2]

≡ number of energy levels in the interval [E1, E2]
Exact state density contains complete information on the spectrum

⇒ also on the evolution operator of the system

I Relation of state density to propagator

Expression δ(x) = lim
ε→0+

1
π

ε
ε2+x2 ⇒ %(E) = lim

ε→0+

1
π

∑
k

ε
ε2+(E−Ek)2 = . . .

= lim
ε→0+

1
π

[
−Im

∑
k

1
E−Ek+iε︸ ︷︷ ︸

Tr
1

E−Ĥ+iε

]
= − 1

π lim
ε→0+

Im
∫
〈~x| 1

E−Ĥ+iε
|~x〉︸ ︷︷ ︸

− i~
+∞∫
0

〈~x|Ĝ(t)ε|~x〉e+iEt/~dt

d~x

Green operator Ĝ(t)= lim
ε→0+

i
2π

∫ 1
E−Ĥ+iε

e−iEt/~ dE= lim
ε→0+

Ĝ(t)ε

%(E) = 1
π~ Re

∫ +∞∫
0

G(~x t | ~x 0) e+ i
~Et dt d~x

 Propagator

〈~x|Ĝ(t)|~x0〉 ≡ G(~xt|~x00)

⇒ Feynman integral

I Expression through classical orbits

Level densities are usually determined in more or less smoothened forms. Such

dependences contain components of different energy scales. In general, the
exact level density can be decomposed into two basic parts which are evaluated
separately:

%(E) = %0(E) + %′(E) where

{
%0(E) ≡ smooth part
%′(E) ≡ oscillatory part

The smooth part (with a slow energy dependence) will be computed below.
The oscillatory part (a fast energy dependence) is given in the form of so-called
Gutzwiller formula (not derived here), which is a sum over periodic orbits:

%′(E) = 1
π~

∑
o

∞∑
r=1

τo
|Mo| cos

[
1
~ rSo(E) + φo

]
where


o≡ identifier of periodic orbit
r≡ number of repetitions of o
τo≡ basic time period of o
|Mo|≡ a stability measure of o
So(E)≡ action along o
φo≡ a phase connected with o
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For a cavity:

1
~So(E)= 1

~
∮
~p·d~x= 1

~

√
2ME lo= 2

~ τo(E)︸ ︷︷ ︸
2π/∆o(E)

E


lo≡ geometric length of orbit o
τo(E)≡ its time period at energy E
∆o(E)≡ variable wavelength of the energy

oscillation: ∆o(E)= π~
τo(E)

Long (lo�L)
Short (lo≈L)

}
periodic orbits (L≡ cavity lin. size) cause

{
short
long

}
oscillations

of %(E). Very long orbits, yielding ∆o . (Ei+1−Ei), can be cut off. The
summed %′(E) results from an interference of terms corresponding to several
relevant (stable) orbits (⇒ beating patterns).

I Smooth part of the state density %0(E)

Derived from the contribution Gl=0 of zero-length orbits to the path-integral
expression of G(~x t | ~x 0), i.e. “orbits” corresponding to the particle at rest
(for nonzero potential these are not classical orbits)

We will compute Gl=0(~x t | ~x 0) = lim
∆~x→0

(
M

2iπ~ t
) 3

2 e
i
~

[
M
2

∆~x2

t −V (~x) t

]

%0(E) = 1
π~ Re

{∫ +∞∫
0

Gl=0(~x t | ~x 0) e+ i
~Et dt d~x

}
=

= 1
π~ lim

∆~x→0
Re

{(
M

2iπ~
) 3

2
∫ +∞∫

0

t−
3
2 e

i
~

[
M
2

∆~x2

t

]
︸ ︷︷ ︸

∗
e
i
~ [E−V (~x)]t dt d~x

}
= . . .

Trick: ∗ =
(

i
2π~M

) 3
2
∫
e
i
~

[
~p·∆~x− ~p2

2M
t

]
d~p (Gaussian integral)

· · · = 1
π~

1
(2π~)3 lim

∆~x→0
Re

{∫∫ +∞∫
0

e
i
~

[
~p·∆~x− ~p2

2M t

]
e
i
~ [E−V (~x)]t dt d~x d~p

}

= 1
h3

∫∫
lim

∆~x→0

1
π~Re

 +∞∫
0

e
i
~

[
E− ~p2

2M
−V (~x)

]
t
dt


︸ ︷︷ ︸

δ

(
E− ~p2

2M
−V (~x)

)
e
i
~ ~p·∆~x d~x d~p

%0(E)= 1
h3

∫∫
δ
[
E− ~p2

2M
−V (~x)

]
d~x d~p︸ ︷︷ ︸

d
dE

Ω(E)

Ω(E) ≡
∫∫

Θ
[
E− ~p2

2M−V (~x)
]
d~x d~p

≡ phase-space volume available
for particle with energy ≤ E

I Analogous result for general systems (with 2n-dimensional phase space),
e.g. for N -particle systems (with 6N -dimensional phase space)

Number of states
in interval [E,E+dE] %0(E)dE =

1

hn
dΩ(E)

dE
dE Phase−space volume for interval [E,E+dE]

in units of elementary quantum cell

I “Cavities” of general dimension n =
{

1 ... infinite square well
2 ... billiard
3 ... cavity
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d
dEΩ(E)=

∫∫
δ
[
E− ~p2

2M

]
d~x d~p = Vn︸︷︷︸

space
volume

∫ ∫
δ
[
E− p2

2M

]
︸ ︷︷ ︸
M
p0
δ(p−p0)

pn−1dpf(θ)dθ︸ ︷︷ ︸
polar/spher.

angle(s)

=Vn
M
p0
Snp

n−1
0︸ ︷︷ ︸

sphere
surface

p0 =
√

2ME

%0(E) ∝ E
n−2

2 =


E−1/2 n = 1

E0 n = 2

E+1/2 n = 3

J Historical remark

1912: Hermann Weyl derives a formula for the density of resonances in a cavity
1927-30’s: Development of semiclassical methods in the level-density evaluation
1970: Martin Gutzwiller derives the “periodic-orbit” formula

4. ANGULAR MOMENTUM

In Chapters 1 & 2, orbital and spin angular momenta of a single particle were
discussed many times. We saw that angular momentum operators play an important

general role in quantum theory, being generators of the 3D rotation group. However,
the development of a complete formalism for angular momentum, including the
theory of its coupling, has been postponed till now. In this chapter we are going to

discover the importance as well as elegance of the “rotational segment” of QM.

4.1 General features of angular momentum

Employing just basic algebraic features of general angular-momentum operators (i.e.,
the well-known commutation relations between the components), one can derive a
great majority of the relevant physical properties.

� Eigenvalues of angular momentum projection & square

The debt of Chaps. 1 & 2 is now ready to be paid back: The familiar, frequently

exploited properties of angular momentum eigensolutions will be finally derived!

I Angular-momentum ladder operators

General angular momentum operators ~̂J ≡ (Ĵ1, Ĵ2, Ĵ3) satisfying:

[Ĵi, Ĵj] = i~εijkĴk ⇒ [Ĵi,
3∑
j=1

Ĵ2
j ] = 0 where

3∑
j=1

Ĵ2
j ≡ Ĵ2

Simultaneous eigenvectors parametrized as
Ĵ2|jm〉 = ~2j(j+1)|jm〉
Ĵ3|jm〉 = ~m|jm〉
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Introduce operators Ĵ± = Ĵ1 ± iĴ2

[Ĵ2, Ĵ±] = 0 ⇒ Ĵ± do not affect j
[Ĵ3, Ĵ±] = [Ĵ3, Ĵ1]︸ ︷︷ ︸

i~ε312Ĵ2

±i [Ĵ3, Ĵ2]︸ ︷︷ ︸
i~ε321Ĵ1

= i~(Ĵ2 ∓ iĴ1) = ±~ (Ĵ1 ± iĴ2)︸ ︷︷ ︸
Ĵ±

[Ĵ3, Ĵ±] = ±~Ĵ± ≡ general relation [Ô, T̂∆o]=∆o T̂∆o for ladder operators

Ĵ3Ĵ±|jm〉 = Ĵ± Ĵ3|jm〉︸ ︷︷ ︸
~m|jm〉

±~Ĵ±|jm〉 = ~(m±1)Ĵ±|jm〉 shift by ∆m=±1

I Possible values of quantum numbers

Ĵ2
1 + Ĵ2

2 = Ĵ2 − Ĵ2
3 ≡positively definite operator

(Ĵ2
1 + Ĵ2

2 )|jm〉 = ~2[j(j+1)−m2︸ ︷︷ ︸
≥0

]|jm〉 ⇒ −
√
j(j+1) ≤ m ≤ +

√
j(j+1)

⇒ ∃ values mmin and mmax such that Ĵ−|jmmin〉 = 0 = Ĵ+|jmmax〉
To determine mmin and mmax, we proceed as follows:

Ĵ+Ĵ−|jmmin〉 = 0 = Ĵ−Ĵ+|jmmax〉
(Ĵ2

1 + Ĵ2
2︸ ︷︷ ︸

Ĵ2−Ĵ2
3

+i [Ĵ2Ĵ1−Ĵ1Ĵ2]︸ ︷︷ ︸
i~ε213Ĵ3

)|jmmin〉 = 0 = (Ĵ2
1 + Ĵ2

2︸ ︷︷ ︸
Ĵ2−Ĵ2

3

+i [Ĵ1Ĵ2−Ĵ2Ĵ1]︸ ︷︷ ︸
i~ε123Ĵ3

)|jmmax〉

j(j+1)

+mmin(−mmin+1)︷ ︸︸ ︷
−m2

min +mmin = 0 = j(j+1)

−mmax(mmax+1)︷ ︸︸ ︷
−m2

max −mmax

mmin = −j mmax = +j

the other solutions /∈ [−
√
j(j+1),

√
j(j+1)]

Therefore, the action of Ĵ± on |jm〉 proceeds according to the scheme:

0
×
↽
Ĵ−
|j mmin︸︷︷︸

−j

〉
Ĵ+


Ĵ−
|j (mmin+1)︸ ︷︷ ︸

−j+1

〉
Ĵ+


Ĵ−
. . . . . .

Ĵ+


Ĵ−
|j (mmax−1)︸ ︷︷ ︸

+j−1

〉
Ĵ+


Ĵ−
|j mmax︸ ︷︷ ︸

+j

〉 Ĵ+
⇀
×

0

This chain is closed iff j = 0, 1
2 , 1,

3
2 , 2,

5
2 , . . .

I Eigenstate normalization condition

We determine the normalization coefficients N±jm for the vectors obtained by
the action of the ladder operators:

Ĵ±|jm〉 = N±jm|j(m±1)〉
1 = 〈j(m±1)|j(m±1)〉 = 1

|N±jm|2
〈jm|

Ĵ2−Ĵ2
3∓~Ĵ3︷ ︸︸ ︷

Ĵ∓Ĵ± |jm〉 = ~2[j(j+1)−m(m±1)]

|N±jm|2

Ĵ±|jm〉 = ~
√
j(j+1)−m(m±1) |j(m±1)〉 ensures Ĵ±|j(±j)〉 = 0
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� Addition of two angular momenta

Consider an angular momentum vector which is a sum of two partial angular
momenta (like the total angular momentum obtained from spin and orbital

momenta of a particle). The system can be characterized by eigenvectors of
the total angular momentum as well as by eigenvectors of both partial angular
momenta. The relation between both bases is just a unitary transformation.

I Separable angular-momentum basis

H = H(1) ⊗H(2) with
H(1)

H(2)

}
≡ Hilbert space of

{
~J (1)

~J (2)

[Ĵ
(m)
i , Ĵ

(n)
j ] = i~εijkδmnĴ (m)

k with m,n = 1, 2{
Ĵ (1)2, Ĵ

(1)
3 , Ĵ (2)2, Ĵ

(2)
3

}
≡ complete set I ⇒

{
|j1m1〉|j2m2〉

}
≡ basis I

I Coupled angular-momentum basis

Total angular-momentum operators ~̂J = ~̂J (1)+ ~̂J (2)

Ĵi = Ĵ
(1)
i ⊗ Î(2)+ Î(1)⊗ Ĵ (2)

i

[Ĵi, Ĵj] =

i~εijkĴ (1)
k︷ ︸︸ ︷

[Ĵ
(1)
i , Ĵ

(1)
j ] +

i~εijkĴ(2)
k︷ ︸︸ ︷

[Ĵ
(2)
i , Ĵ

(2)
j ] = i~εijk

Ĵk︷ ︸︸ ︷
(Ĵ

(1)
k +Ĵ

(2)
k ) standard commut. rel.

⇒ [Ĵ2, Ĵ3] = 0 =

{
[Ĵ2,Ĵ (1)2]=[Ĵ3,Ĵ

(1)2]
[Ĵ2,Ĵ (2)2]=[Ĵ3,Ĵ

(2)2]
but

[Ĵ2,Ĵ
(1)
3 ]

[Ĵ2,Ĵ
(2)
3 ]

}
6= 0{

Ĵ (1)2, Ĵ (2)2, Ĵ2, Ĵ3

}
≡ complete set II ⇒

{
|j1j2jm〉

}
≡ basis II

I Possible values of total angular momentum

Allowed values of j obtained partly from
dimension considerations

Basis I has dimension d = (2j1+1)(2j2+1)

⇒ the same dimension required for basis II

This helps to determine the bounds of square
q. nums. of total ang. momentum j ∈ [jmin, jmax]:

(a) Ĵ3 = Ĵ
(1)
3 +Ĵ

(2)
3 ⇒ mmax = mmax1 +mmax2 = j1 +j2 ⇒ jmax = j1 + j2

(b) The determination of minimal j from the dimension criterion:

Number of states for j =
{

0,1,......
1
2 ,

3
2 ,......

jmax is d> = 2jmax(jmax+1)
2 +jmax+1 = (jmax+1)2

The surplus: d> − d = (j1+j2+1)2−(2j1+1)(2j2+1) = (j1−j2)
2

Number of states for j = jmin...jmax is d = (jmax +1)2−j2
min ⇒ jmin = |j1 − j2|
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I Unitary transformation between bases I and II

|j1j2jm〉 =

+j1∑
m1=−j1

+j2∑
m2=−j2

Cjm
j1m1j2m2

|j1m1〉|j2m2〉
Clebsch−Gordan

coefficients
Cjmj1m1j2m2

≡(j1m1j2m2|jm)

≡〈j1m1j2m2|j1j2jm〉

m 6= m1+m2 or
j /∈ [|j1−j2|, j1+j2]

}
⇒ Cjm

j1m1j2m2
= 0

I Some properties of Clebsch-Gordan coefficients

(a) Cjm
j1m1j2m2

∈ R (by convention)

(b) From reality we get: 〈j1m1j2m2|j1j2jm〉 = 〈j1j2jm|j1m1j2m2〉

⇒ |j1m1〉|j2m2〉 =

j1+j2∑
j=|j1−j2|

+j∑
m=−j

Cjm
j1m1j2m2

|j1j2jm〉 inverse relation

(c) Multiply |j1j2jm〉=
∑

m1,m2

Cjm
j1m1j2m2

|j1m1〉|j2m2〉
〈j1j2j

′m′|=
∑

m′1,m
′
2

Cj′m′

j1m′1j2m
′
2
〈j1m

′
1|〈j2m

′
2|

⇒
∑
m1,m2

Cjm
j1m1j2m2

Cj′m′

j1m1j2m2
= δjj′δmm′ orthogonality relation I

(d) Multiply |j1m1〉|j2m2〉=
∑
j,m

Cjm
j1m1j2m2

|j1j2jm〉
〈j1m

′
1|〈j2m

′
2|=

∑
j′,m′

Cj′m′

j1m
′
1j2m

′
2
〈j1j2j

′m′|

⇒
∑
j,m

Cjm
j1m1j2m2

Cjm
j1m′1j2m

′
2

= δm1m′1
δm2m′2

orthogonality relation II

The following relations we give here without the proofs:

(e) Cjm
j1m1j2m2

= (−)j−j1−j2︸ ︷︷ ︸
±

Cjm
j2m2j1m1

exchange of indices I

Special case: Cjm
j1m1j1m1

= 0 for (j−2j1)=odd

(f) Cjm
j1m1j2m2

= (−)j1−m1︸ ︷︷ ︸
±

√
2j+1
2j2+1

C
j2(−m2)
j1m1j(−m) exchange of indices II

(g) Cjm
j1m1j2m2

= (−)j−j1−j2︸ ︷︷ ︸
±

C
j(−m)
j1(−m1)j2(−m2) sign inversion

Special case: Cj0
j10j20= 0 for (j−j1−j2)=odd

I 3j symbols

Definition:
(
j1 j2 j3
m1m2 m3

)
≡ (−)j1−j2−m3√

2j3+1
C
j3(−m3)
j1m1j2m2

These coefficients represent just a more symmetric form of CG coefficients:
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j1 j2 j3
m1m2m3

)
= ε

(
jk jl jn
mkmlmn

)
with ε =

{
+1 for even permutation
(−)j1+j2+j3 for odd permutation(

j1 j2 j3
m1m2m3

)
= (−)j1+j2+j3

(
j1 j2 j3
−m1−m2−m3

)
I Construction of Clebsch-Gordan coefficients

The way how the CG coefficients can be calculated:

Ĵ±|j1j2jm〉 = [Ĵ
(1)
± ⊗ Î(2) + Î(1) ⊗ Ĵ (2)

± ]
∑

m1,m2

Cjm
j1m1j2m2

|j1m1〉|j2m2〉
~
√
j(j+1)−m(m±1)|j1j2j(m±1)〉 =

~
∑

m1,m2

√
j1(j1+1)−m1(m1±1)Cjm

j1m1j2m2
|j1(m1±1)〉|j2m2〉

+ ~
∑

m1,m2

√
j2(j2+1)−m2(m2±1)Cjm

j1m1j2m2
|j1m1〉|j2(m2±1)〉

Multiply by 〈j1m
′
1|〈j2m

′
2| ⇒√

j(j+1)−m(m±1)C
j(m±1)
j1m′1j2m

′
2
=
∑

m1,m2

√
j1(j1+1)−m1(m1±1)Cjm

j1m1j2m2
δm′1(m1±1)δm′2m2

+
∑

m1,m2

√
j2(j2+1)−m2(m2±1)Cjm

j1m1j2m2
δm′1m1

δm′2(m2±1)

After m′1
m′2

}
7→{m1

m2 we get the following recursive relation

C
j(m±1)
j1m1j2m2

=
√

j1(j1+1)−m1(m1∓1)
j(j+1)−m(m±1)

Cjm
j1(m1∓1)j2m2

+
√

j2(j2+1)−m2(m2∓1)
j(j+1)−m(m±1)

Cjm
j1m1j2(m2∓1)

Cjm
j1m1j2m2

=
√

j1(j1+1)−m1(m1∓1)
j(j+1)−m(m∓1) C

j(m∓1)
j1(m1∓1)j2m2

+
√

j2(j2+1)−m2(m2∓1)
j(j+1)−m(m∓1) C

j(m∓1)
j1m1j2(m2∓1)

This relation enables one to construct the CG coefficients using the fact that

|j1j2jmax (±jmax)︸ ︷︷ ︸
m

〉 = |j1 (±j1)︸ ︷︷ ︸
m1

〉|j2 (±j2)︸ ︷︷ ︸
m2

〉 ⇒ C
jmax(±jmax)
j1(±j1)j2(±j2) = 1

I Example: coupling two spins 1
2

j1=j2=
1
2
⇒ jmax=1, jmin=0

|12
1
211〉=|12

1
2〉1|

1
2

1
2〉2 ⇒

√
2| 1

2
1
2
10〉︷ ︸︸ ︷

Ĵ−|12
1
211〉 =

|1
2
(−1

2
)〉1︷ ︸︸ ︷

(Ĵ
(1)
− |12

1
2〉1) |

1
2

1
2〉2 + |12

1
2〉1

|1
2
(−1

2
)〉2︷ ︸︸ ︷

(Ĵ
(2)
− |12

1
2〉2)

The state |1
2

1
2
1(−1)〉 known and |1

2
1
2
00〉 obtained from orthogonality to |1

2
1
2
10〉.

In summary:

|12
1
211〉 = |12(+1

2)〉1|12(+1
2)〉2︸ ︷︷ ︸

|↑〉1|↑〉2
|12

1
210〉 = 1√

2
|12(−1

2)〉1|12(+1
2)〉2︸ ︷︷ ︸

|↓〉1|↑〉2

+ 1√
2
|12(+1

2)〉1|12(−1
2)〉2︸ ︷︷ ︸

|↑〉1|↓〉2
|12

1
21(−1)〉 = |12(−1

2)〉1|12(−1
2)〉2︸ ︷︷ ︸

|↓〉1|↓〉2


triplet

|12
1
200〉 = 1√

2
|12(−1

2)〉1|12(+1
2)〉2︸ ︷︷ ︸

|↓〉1|↑〉2

− 1√
2
|12(+1

2)〉1|12(−1
2)〉2︸ ︷︷ ︸

|↑〉1|↓〉2

singlet
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� Addition of three angular momenta

Coupling of k>2 angular momenta is trickier than the k=2 coupling. In general,
the summed momentum operators Ĵ2 and Ĵ3 must be supplemented by (2k−2)
additional commuting operators to form a complete set. For k=2, as seen above,
the two additional operators are just the Ĵ (1)2 and Ĵ (2)2 squares. However, for
k>2 one has to find more than k additional operators; hence the squares of
partial momenta do not suffice. The choice of the extra operators is not unique.

I Total and paired angular momenta

H = H(1) ⊗H(2) ⊗H(3) H(1)

H(2)

H(3)

}
↔
{

~J (1)

~J (2)

~J (3)

⇒ [Ĵ
(n)
i , Ĵ

(l)
i ] = i~εijkδnlĴ (n)

k

Total angular momentum: ~̂J = ~̂J (1)+ ~̂J (2)+ ~̂J (3)

Paired angular momenta: ~̂J (nl) = ~̂J (n)+ ~̂J (l) ⇒ ~̂J (12), ~̂J (13), ~̂J (23)

Commutation relations: [Ĵi, Ĵj] = i~εijkĴk
{

[Ĵ
(nl)
i ,Ĵ

(nl)
j ]=i~εijkĴ (nl)

k

[Ĵ
(nl)
i ,Ĵ

(n′l′)
j ]6=0 for nl 6=n′l′

Compatibility:

[Ĵ2, Ĵ3]=0=

{
[Ĵ2,Ĵ (1)2]=[Ĵ3,Ĵ

(1)2]=[Ĵ2,Ĵ (23)2]=[Ĵ3,Ĵ
(23)2]

[Ĵ2,Ĵ (2)2]=[Ĵ3,Ĵ
(2)2]=[Ĵ2,Ĵ (13)2]=[Ĵ3,Ĵ

(13)2]
[Ĵ2,Ĵ (3)2]=[Ĵ3,Ĵ

(3)2]=[Ĵ2,Ĵ (12)2]=[Ĵ3,Ĵ
(12)2]

[Ĵ2,Ĵ
(1)
3 ]

[Ĵ2,Ĵ
(2)
3 ]

[Ĵ2,Ĵ
(3)
3 ]

 6= 0 6=

 [Ĵ2,Ĵ
(23)
3 ]

[Ĵ2,Ĵ
(13)
3 ]

[Ĵ2,Ĵ
(12)
3 ]

I Different coupling schemes
Several complete sets of commuting operators & associated bases:

Ĵ (1)2, Ĵ
(1)
3 , Ĵ (2)2, Ĵ

(2)
3 , Ĵ (3)2, Ĵ

(3)
3 ⇒ |j1m1〉|j2m2〉|j3m3〉 . . . basis I

Ĵ (1)2, Ĵ (2)2, Ĵ (3)2, Ĵ (23)2, Ĵ2, Ĵ3 ⇒ |j1j2j3j23jm〉 . . . basis II

Ĵ (1)2, Ĵ (2)2, Ĵ (3)2, Ĵ (13)2, Ĵ2, Ĵ3 ⇒ |j1j2j3j13jm〉 . . . basis III

Ĵ (1)2, Ĵ (2)2, Ĵ (3)2, Ĵ (12)2, Ĵ2, Ĵ3 ⇒ |j1j2j3j12jm〉 . . . basis IV

Generation of the coupled bases (II,III,IV) from the uncoupled one (I):

|j1j2j3j23jm〉 =
∑

m1,m23

Cjm
j1m1j23m23

|j1m1〉
∑

m2,m3

Cj23m23

j2m2j3m3
|j2m2〉|j3m3〉

=
∑

m1,m2,m3
m23

Cjm
j1m1j23m23

Cj23m23

j2m2j3m3
|j1m1〉|j2m2〉|j3m3〉 . . . II

. . . similarly III & IV
Relation between coupled bases:

|j1j2j3j23jm〉 = (−)j1+j2+j3+j
∑
j12

√
(2j23+1)(2j12+1)

{
j1 j2 j12

j3 j j23

}︸ ︷︷ ︸
6j symbol

|j1j2j3j12jm〉

J Historical remark
1866: A. Clebsch & P. Gordan introduce CG coefficients for spherical harmonics
1930: P. Dirac presents the algebraic treatment of angular-momentum operators
1940, 1942: E. Wigner & G. Racah analyze coupling of >2 angular momenta
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4.2 Irreducible tensor operators

Transformations of the quantum Hilbert space induced by spatial rotations motivates

the introduction of operators with a privileged form of transformation. These are
spherical tensor operators of various ranks. The knowledge of the tensor calculus
enables one to build up operators with required transformation properties (e.g.,

scalars) and substantially simplifies some calculations.

� Irreducible representations of the rotation group

Any rotation, expressed by a 3D matrix R, can be equivalently characterized
either by axis ~n and angle φ, or by 3 Euler angles α, β, γ. Associated with R is

a transformation operator R̂R≡R̂~nφ≡R̂(αβγ) in H. The action of this operator
in angular-momentum eigenspaces spanned by vectors |jm〉 is described by
a hierarchy of Wigner matrices, which for each fixed j form an irreducible

representation of the rotation group. QM therefore provides a fundamental
platform for the realization of this group.

I Factorization of rotation operators

Rotation around ~n by φ: operator R̂R ≡ R̂~nφ = e
i
~

(
~̂J ·~n
)
φ 6= R̂zR̂yR̂x

Expression of a general rotation via Euler angles: 3 successive rotations
(1) around ~nz by α
(2) around ~n′y ≡ R~nzα~ny by β

(3) around ~n′z ≡ R~n′yβ~nz by γ

 ⇒ R̂~nφ︸︷︷︸
R̂(αβγ)

= R̂~n′zγ︸︷︷︸
R̂z′(γ)

R̂~n′yβ︸︷︷︸
R̂y′(β)

R̂~nzα︸︷︷︸
R̂z(α)

Using identities{
R̂z′(γ)=R̂y′(β)R̂z(γ)R̂−1

y′ (β)

R̂y′(β)=R̂z(α)R̂y(β)R̂−1
z (α)

}
i.e., e.g., R̂y′(β)R̂z(α)=R̂z(α)R̂y(β),

as shown on the right:

we obtain a factorized formula

in fixed coordinate system xyz:

R̂(αβγ) = R̂z(α)R̂y(β)R̂z(γ)

IWigner functions
Action of rotation operators in the space spanned by angular-momentum eigen-

vectors |jm〉 ⇒ for each fixed j we get a representation of the rotation group

R̂(αβγ)|jm〉 =
∑
j′m′

〈j′m′|R̂(αβγ)|jm〉︸ ︷︷ ︸
δjj′D

j

m′m(αβγ)

|j′m′〉 =
∑
m′

Dj
m′m(αβγ)︸ ︷︷ ︸

Wigner functions

|j′m′〉
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Dj
m′m(αβγ)︸ ︷︷ ︸
Dj

m′m(~nφ)

≡matrix of dimension 2j + 1

≡ Dj
m′m(R)=〈jm′|R̂z(α)R̂y(β)R̂z(γ)|jm〉=ei(m′α+mγ)

dj
m′m(β)︷ ︸︸ ︷

〈jm′|R̂y(β)|jm〉

Matrices of Wigner functions form irreps
of the rotational group for individual values

j = 0, 1
2 , 1,

3
2, 2,

5
2, 3, . . .

(a) identity φ=0, (b) inverse φ=−φ,
(d) group multiplication≡matrix multipl.:
Dj
m′m(R2R1)=

∑
m′′
Dj
m′m′′(R2)D

j
m′′m(R1)

I Clebsch-Gordan series for Wigner functions

Action of rotation operators in the Hilbert space of coupled angular momenta:

H = H1︸︷︷︸
irrep j1

⊗ H2︸︷︷︸
irrep j2

⇒ R̂(αβγ) = R̂2(αβγ)⊗ R̂1(αβγ)

Separable basis |j1m1〉|j2m2〉 ≡ |j1m1j2m2〉 and coupled basis |j1j2jm〉
〈j1m1j2m2|R̂|j1m

′
1j2m

′
2〉 =

=



〈j1m1|R̂1|j1m
′
1〉︸ ︷︷ ︸

D
j1
m1m

′
1

〈j2m2|R̂2|j2m
′
2〉︸ ︷︷ ︸

D
j2
m2m

′
2∑

jm

∑
j′m′
〈j1m1j2m2|j1j2jm〉︸ ︷︷ ︸

Cjmj1m1j2m2

〈j1j2jm|R̂|j1j2j
′m′〉︸ ︷︷ ︸

δjj′D
j

mm′

〈j1j2j
′m′|j1m

′
1j2m

′
2〉︸ ︷︷ ︸

Cj
′m′
j1m
′
1
j2m
′
2

⇒ Dj1
m1m′1

(R) Dj2
m2m′2

(R) =

j1+j2∑
j=|j1−j2|

+j∑
m
m′=−j

Cjm
j1m1j2m2

Cjm′

j1m′1j2m
′
2
Dj
mm′(R)

This relation between Wigner functions determines the decomposition of the
product rotation-group representation (coupling of irreps corresponding to j1

& j2) into a direct sum of irreps: Dj1 ⊗Dj2 = D|j1−j2| ⊕ · · · · · · ⊕D(j1+j2)

� Spherical tensors

We are ready now to understand and appreciate the introduction of spherical

tensors, i.e., objects (in our case operators) which transform according to a
single irreducible representation of the rotation group. Spherical tensors have
some favorable properties that make them mathematically more convenient
than the familiar Cartesian tensors.

I Cartesian tensors ⇔ Cartesian transformations under rotations
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nth rank tensor: Tijk...︸ ︷︷ ︸
n indices

i,j,k···=1,2,3

7→ T ′ijk... =
∑
i′j′k′...

Rii′Rjj′Rkk′ . . .︸ ︷︷ ︸
Cartesian rot.matrices

Ti′j′k′...

Representation of the rotation group on Cartesian tensors is reducible
Example: 2nd rank tensor:

Tij = 1
3TrT δij︸ ︷︷ ︸

scalar

+ 1
2 [Tij − Tji]︸ ︷︷ ︸

antisymmetric tensor

+ 1
2 [Tij + Tji]− 1

3TrT δij︸ ︷︷ ︸
traceless symmetric tensor

⇒
{

each part
constitutes irrep

I Irreducible (spherical) tensors ⇔ transformations by Wigner functions
λth rank spherical tensor λth rank spherical tensor operator

(T ′)λµ =
∑
µ′

Dλ
µ′µ(R) T λµ′ R̂R T̂

λ
µ R̂

−1
R =

∑
µ′

Dλ
µ′µ(R) T̂ λµ′

Infinitesimal rotation:
δR̂︷ ︸︸ ︷

[Î + i
~(
~̂J · ~n)δφ] T̂ λµ

δR̂−1︷ ︸︸ ︷
[Î − i

~(
~̂J · ~n)δφ] =

∑
µ′

Dλ
µ′µ(δR)︷ ︸︸ ︷

〈λµ′|[Î + i
~(
~̂J · ~n)δφ]|λµ〉 T̂ λµ′

⇒
[
( ~̂J · ~n), T̂ λµ

]
=
∑
µ′
〈λµ′|( ~̂J · ~n)|λµ〉T̂ λµ′

⇒ An alternative (more useful) definition of the spherical tensor:[
Ĵ3, T̂

λ
µ

]
= ~µT̂ λµ

[
Ĵ±, T̂

λ
µ

]
= ~
√
λ(λ+1)−µ(µ±1)T̂ λµ±1

I Example: Cartesian & spherical vector

Cartesian vector operator ~̂V ≡ (V̂1, V̂2, V̂3) ⇒ R̂RV̂iR̂
−1
R =

3∑
j=1

RijV̂j

Infinitesimal rotation around kth axis leads to the identity:

V̂i +
i
~δφ[Ĵk, V̂i] = V̂i− δφ

∑
j

εkijV̂j ⇒ [Ĵk, V̂i] = i~εkijV̂j alternative definition
of Cartesian vector

Spherical components of the vector operator:

V̂ 1
+1 = − 1√

2
(V̂1 + iV̂2)

V̂ 1
0 = V̂3

V̂ 1
−1 = + 1√

2
(V̂1 − iV̂2)

satisfy spherical tensor commut. relations[
Ĵ3, V̂

1
0

]
=
[
Ĵ±, V̂

1
±1

]
= 0[

Ĵ±, V̂
1
∓1

]
=
√

2~V̂ 1
0 ,

[
Ĵ±, V̂

1
0

]
=
√

2~V̂ 1
±1

The same relations hold between Cartesian components of a vector wavefunc-
tion (spin-1 particle) and amplitudes of the ms=0,±1 projections (see Sec. 2.4).

I Coupling of spherical tensors

Let Âλ1
µ1

and B̂λ2
µ2

be spherical tensors of ranks λ1 and λ2

⇒ T̂ λµ =
∑
µ1,µ2

Cλµ
λ1µ1λ2µ2

Âλ1
µ1
B̂λ2
µ2
≡ [Âλ1×B̂λ2]λµ ≡ spherical tensor of rank λ
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R̂ T̂ λµ R̂
−1=

∑
µ1,µ2

Cλµ
λ1µ1λ2µ2

R̂ Âλ1
µ1
R̂−1︸ ︷︷ ︸∑

µ′
1

D
λ1
µ′

1
µ1
Â
λ1
µ′

1

R̂ B̂λ2
µ2
R̂−1︸ ︷︷ ︸∑

µ′
2

D
λ2
µ′

2
µ2
B̂
λ2
µ′

2

=
∑
µ1,µ2

∑
µ′1,µ

′
2

Cλµ
λ1µ1λ2µ2

Dλ1

µ′1µ1
Dλ2

µ′2µ2︸ ︷︷ ︸∑
λ′

∑
µ′,µ′′

Cλ
′µ′

λ1µ
′
1λ2µ

′
2
Cλ
′µ′′

λ1µ1λ2µ2
Dλ′
µ′µ′′

Âλ1

µ′1
B̂λ2

µ′2

=
∑
λ′

∑
µ′,µ′′

∑
µ′1,µ

′
2

∑
µ1,µ2

Cλµ
λ1µ1λ2µ2

Cλ′µ′′

λ1µ1λ2µ2︸ ︷︷ ︸
δλλ′δµµ′′

Cλ′µ′

λ1µ′1λ2µ′2
Dλ′

µ′µ′′Â
λ1

µ′1
B̂λ2

µ′2

=
∑
µ′
Dλ
µ′µ

T̂λ
µ′︷ ︸︸ ︷∑

µ′1,µ
′
2

Cλµ′

λ1µ′1λ2µ′2
Âλ1

µ′1
B̂λ2

µ′2
=
∑
µ′
Dλ
µ′µT̂

λ
µ′

Conclusion: coupling of spherical tensors leads to other spherical tensors with
ranks determined from the usual angular-momentum coupling relations.

Special case: scalar coupling

[Âλ×B̂λ]00 =
∑
µ
C00
λµλ(−µ)︸ ︷︷ ︸
(−)λ−µ√

2λ+1

Âλ
µB̂

λ
−µ=

(−)−λ√
2λ+1

∑
µ

(−)µÂλ
+µB̂

λ
−µ︸ ︷︷ ︸

(Âλ·B̂λ)

scalar product

of tensor operators

� Wigner-Eckart theorem

If spherical tensor operators are written in the angular-momentum eigenbasis,
the corresponding matrix elements exhibit interesting properties: a large part of

elements vanishes, the remaining ones satisfy certain relations. The rules behind
this behavior come from the coupling of angular momenta. This is rather useful
for instance if the amplitudes for a given multipolarity transition (represented

by a tensorial transition operator of the respective rank) are computed.

I Properties of matrix elements of spherical tensors

{|ajm〉} ≡ angular-momentum basis with a denoting remaining q. numbers

〈a′j′m′|T̂ λµ |ajm〉 ≡ matrix elements of a general spherical tensor

Application of the definition properties of spherical tensors:

(a) 〈a′j ′m′| [Ĵ3, T̂
λ
µ ]−~µT̂ λµ︸ ︷︷ ︸

=0

|ajm〉 = ~ [(m′−m)−µ)]︸ ︷︷ ︸
=0

〈a′j′m′|T̂ λµ |ajm〉︸ ︷︷ ︸
6=0 ⇒ m+µ=m′

(b) 〈a′j′m′| [Ĵ±, T̂ λµ ]−~
√
λ(λ+1)−µ(µ±1) T̂ λµ±1︸ ︷︷ ︸

=0

|ajm〉 = 0 ⇒

√
j′(j′+1)−m′(m′∓1)〈a′j′(m′∓1)|T̂ λµ |ajm〉

−
√
j(j+1)−m(m±1)〈a′j ′m′|T̂ λµ |aj(m±1)〉

=
√
λ(λ+1)−µ(µ±1)〈a′j ′m′|T̂ λµ±1|ajm〉〈a′j′(m′∓1)|T̂ λµ |ajm〉 =√

j(j+1)−m(m±1)
j′(j′+1)−m′(m′∓1)〈a

′j ′m′|T̂ λµ |aj(m±1)〉+
√

λ(λ+1)−µ(µ±1)
j′(j′+1)−m′(m′∓1)〈a

′j ′m′|T̂ λµ±1|ajm〉
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I The last relation can be compared with the recursive relation for the

Clebsch-Gordan coeffs. (Sec. 4.1) with substitutions j1,m1

j2,m2

j,m

}
7→

{
j,m
λ,µ
j′,m′

± 7→ ∓C
j′(m′∓1)
jmλµ =

√
j(j+1)−m(m±1)
j′(j′+1)−m′(m′∓1)

Cj′m′

j(m±1)λµ+
√

λ(λ+1)−µ(µ±1)
j′(j′+1)−m′(m′∓1)

Cj′m′

jmλ(µ±1)

With replacement 〈a′j′m′|T̂ λµ |ajm〉 ↔ Cj′m′

jmλµ both relations are the same

⇒ matrix elements 〈a′j′m′|T̂ λµ |ajm〉 for fixed j, λ, j′ can be constructed from

the same recursive relations as the corresponding Clebsch-Gordan coeffs. Cj′m′

jmλµ

⇒ 〈a′j ′m′|T̂ λµ |ajm〉 ∝ Cj′m′

jmλµ

IWigner-Eckart theorem 〈a′j ′m′|T̂ λµ |ajm〉 = 1√
2j+1
〈a′j′||T̂ λ||aj〉︸ ︷︷ ︸

reduced
matrix element

Cj′m′

jmλµ

This means the following:
(a) The dependence on projection q. numbers is just that of the CG coefficient

(b) The dependence on j, j′, λ is involved in the so-called reduced matrix ele-
ments ≡ 〈a′j′||T̂ λ||aj〉. Their values (independent of m,µ,m′) cannot be deter-
mined just from the algebraic properties of angular-momentum operators but

need to be evaluated for each particular case.

Selection rules for 〈a′j′m′|T̂ λµ |ajm〉 6= 0 are:
|j − λ| ≤ j′ ≤ (j + λ)

m+ µ = m′

J Historical remark
1927: E. Wigner introduces D-matrices and applies the rotation group in QM
1930: C. Eckart publishes and applies his formulation of the W.-E. theorem

1942: G. Racah further extends the use of spherical tensors in spectroscopy

5. APPROXIMATION TECHNIQUES

As in any other branch of physics, realistic calculations can be seldom performed

exactly. Various approximation techniques are of primary importance.

5.1 Variational method

In classical physics, variational principles represent an autonomous formulation of
the fundamental laws of nature. The role of these principles in nonrelativistic quan-

tum mechanics is not as important. Nevertheless, they constitute a very useful
approximation method.

� Dynamical variational principle

Let us start with a variational formulation of the dynamical Schrödinger equa-
tion. Trying to keep the formalism parallel—as much as possible—to that of
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classical mechanics, we employ the notion of independent bra and ket varia-

tions, which may seem a bit counterintuitive.

I We search a quantum analog of classical variational principle

δ
t2∫
t1

L[~x(t), ~̇x(t)] dt = 0 with boundary conditions

{
δ~x(t1) = 0 = δ~x(t2)

δ~̇x(t1) 6= 0 6= δ~̇x(t2)

δ

t2∫
t1

〈
ψ(t)

∣∣∣i~ ddt − Ĥ∣∣∣ψ(t)
〉
dt

︸ ︷︷ ︸
t2∫
t1

[
〈δψ′(t)|i~ d

dt
−Ĥ|ψ(t)〉+〈ψ(t)|i~ d

dt
−Ĥ|δψ(t)〉

]
dt

= 0 with



ket variation |δψ(t)〉
|δψ(t1)〉 = 0 = |δψ(t2)〉

bra variation 〈δψ′(t)|
〈δψ′(t1)| 6= 0 6= 〈δψ′(t2)|

We consider the variations of kets and bras
independently, distinguishing 4 different entities:

〈δψ(t)| ↔ |δψ(t)〉 & 〈δψ′(t)| ↔ |δψ′(t)〉
The only correlation between |δψ(t)〉 and 〈δψ′(t)|
is through the conserved normalization 〈ψ|ψ〉 = 1

⇒ δ〈ψ|ψ〉 = 〈δψ′(t)|ψ(t)〉+ 〈ψ(t)|δψ(t)〉 = 0

I Proof of the variational principle (we show that it implies Schrödinger eq.):
t2∫
t1

[
〈δψ′(t)|i~ ddt − Ĥ|ψ(t)〉+ 〈ψ(t)|i~ ddt − Ĥ|δψ(t)〉︸ ︷︷ ︸

〈δψ(t)|i~ ddt−Ĥ|ψ(t)〉∗+i~ ddt 〈ψ|δψ〉

]
dt

=
t2∫
t1

[
〈δψ′(t)|i~ ddt − Ĥ|ψ(t)〉+ 〈δψ(t)|i~ ddt − Ĥ|ψ(t)〉∗

]
dt+ i~

0︷ ︸︸ ︷
[〈ψ|δψ〉]t2t1

!
= 0 ∀ 〈δψ′(t)|& 〈δψ(t)| (with the above constraints) ⇒

(
i~ d

dt
− Ĥ

)
|ψ(t)〉 = 0

I Note: If 〈δψ′(t)|=〈δψ(t)| (kets & bras varied in the same way), we would
only get Re〈δψ(t)|i~ d

dt
− Ĥ|ψ(t)〉 = 0, which would not imply Schrödinger eq.

An alternative treatment of the variational principle (without independent bra

& ket variations) is possible if the variation is performed only in kets (or bras):
δ〈ψ|i~ d

dt
− Ĥ|ψ〉 ≡ 〈ψ|i~ d

dt
− Ĥ|δψ〉

� Stationary variational procedure

The dynamical variational principle for nonrelativistic QM, derived in the pre-
vious paragraph, is not very impressive. Indeed, the Schrödinger equation can
be recognized in it already before its formal derivation. On the other hand, the
variational techniques are rather useful for stationary problems—in approxi-
mating the lowest eigenstates of complicated Hamiltonians.
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I Transition to stationary problems

Assume |ψ(t)〉 = e−
i
~Et|ψ〉 ⇒

{
|δψ(t)〉=e−

i
~Et|δψ〉

〈δψ′(t)|=e+ i
~Et〈δψ′|

t2∫
t1

[
〈δψ′(t)|i~ ddt−Ĥ|ψ(t)〉+ 〈ψ(t)|i~ ddt−Ĥ|δψ(t)〉

]
dt

=
t2∫
t1

[
〈δψ′|E−Ĥ|ψ〉+ 〈ψ|E−Ĥ|δψ〉︸ ︷︷ ︸

δ〈ψ|E−Ĥ|ψ〉

]
dt = (t2−t1)︸ ︷︷ ︸

6=0

δ〈ψ|E−Ĥ|ψ〉︸ ︷︷ ︸
!
=0

= 0

I Variational principle for stationary problems

δ〈ψ|Ĥ−E|ψ〉 = 0 ⇔ δ〈ψ|Ĥ|ψ〉 = 0 & 〈ψ|ψ〉=1

with a Lagrange multiplier with explicit normalization constraint

δ
[
〈ψ|Ĥ|ψ〉 − E〈ψ|ψ〉

]
= 0

If the above variational conditions are applied in the whole space H, they yield
the ground state. To obtain the first excited state, the conditions must be
applied only within the orthogonal complement inH of the ground-state energy

subspace. Increasing restrictions are needed to get higher excited states.

I More practical formulation

Define F(ψ) =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

≡ functional on H

⇒ ground-state energy E0 = Min {F(ψ)}|ψ〉∈H

Proof: |ψ〉=
∑
i

αi|Ei〉 ⇒ F(ψ)=
∑
i

|αi|2Ei ≥ E0

Define H(1) ≡ orthogonal complement of H0 (≡ ground-state energy subspace)

⇒ 1st excited-state energy E1 = Min {F(ψ)}|ψ〉∈H(1)

Proof: |ψ〉=
∑
i≥1

αi|Ei〉 ⇒ F(ψ)=
∑
i≥1

|αi|2Ei ≥ E1

Et cetera for higher states...

I Ritz variational method

Choose a suitable (for the given Ĥ) subset of test vectors |ψ(a)〉 controlled by
continuous real parameters a ≡ {a1, a2, . . . an} forming a domain Da ⊂ Rn.

Functional F(ψ) 7−→ Function F(a) =
〈ψ(a)|Ĥ|ψ(a)〉
〈ψ(a)|ψ(a)〉

on Da
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The search for an approximate ground state, and eventually also for approxi-

mate excited states, is performed within this set of vectors:

Ground state

Min{F(a)}a∈Da
≡ Ẽ0 & E0 . . . estimate of the g.s. energy, and the corresp.

|ψ(a0)〉 ≡ |ψ̃ 0〉 ≈ |ψ0〉 . . . estimate of the g.s. eigenvector
Excited states
If the set of test vectors is sufficiently rich, select a subdomain D(1)

a ⊂ Da
such that 〈ψ(a)|ψ(a0)〉=0 ∀a ∈ D(1)

a

Min{F(a)}
a∈D(1)

a
≡ Ẽ1 & E1 . . . estimate of the 1st exc. energy, and the corresp.

|ψ(a1)〉 ≡ |ψ̃ 1〉 ≈ |ψ1〉 . . . estimate of the respective eigenvector
Et cetera for higher states...

J Historical remark
1909: W. Ritz publishes a method for solving variational problems

1926: E. Schrödinger uses variational arguments in derivation of stationary Sch. eq.
1930’s: P. Dirac, J. Frenkel et al. formulate dynamical variational principle of QM

5.2 Stationary perturbation method

The stationary perturbation method is very useful if the actual Hamiltonian Ĥ is
just a small modification of a simpler Hamiltonian Ĥ0, whose eigensolutions are

known. The difference between both Hamiltonians represents a perturbation which
is quantified by a dimensionless parameter λ. If expressing the eigensolutions of Ĥ
as power series in λ, one may believe that high-power terms will naturally die out.

� General setup & equations

The perturbation method is entirely based on a few general equations that can
be easily derived.

I Formulation of the problem

We search for eigensolutions of Hamiltonian Ĥ =

unperturbed
part︷︸︸︷
Ĥ0 +

perturbation︷︸︸︷
λ Ĥ ′

Dimensionless parameter λ� 1 ⇒ we deal with a “small perturbation”

We assume that the scaling of Ĥ ′ by parameter λ was performed in such a way
that its matrix elements in the unperturbed eigenbasis are of the same average

size as matrix elements of Ĥ0:

〈
〈ψ0i|Ĥ ′|ψ0j〉

〉
i,j

∼
〈
E0i

〉
i

In general: [Ĥ0, Ĥ
′] 6= 0 ⇒ incompatible terms ⇒ nontrivial effect of Ĥ ′

For each level i we know the unperturbed energy E0i and eigenvector |ψ0i〉
Task: to express the effect of perturbation in the form of power-law series
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Ei(λ) = λ0E0i + λ1E1i + λ2E2i + λ3E3i + · · ·︸ ︷︷ ︸
E′i(λ)

|ψi(λ)〉 = λ0|ψ0i〉+ λ1|ψ1i〉+ λ2|ψ2i〉+ λ3|ψ3i〉+ · · ·︸ ︷︷ ︸
|ψ′i(λ)〉

unnormalized
vector

I Orthogonality condition for the eigenvector correction 〈ψ0i|ψ′i(λ)〉 = 0

This is a natural requirement since the changes
in the unperturbed vector component |ψ0i〉
can be taken into account by normalization

I Term ∝ λn ≡ nthorder correction
The sum of terms up to nthorder

E
(n)
i (λ) = E0i +

E
(n)′
i (λ)︷ ︸︸ ︷

n∑
n′=1

λn
′
En′i |ψ(n)

i (λ)〉 = |ψ0i〉+

|ψ(n)′
i (λ)〉︷ ︸︸ ︷

n∑
n′=1

λn
′|ψn′i〉

Since λ� 1, we may hope in sufficiently
fast convergence to exact solution :

{
Ei(λ) ≈ E

(nup)
i (λ)

|ψi(λ)〉 ≈ |ψ(nup)
i (λ)〉

I Normalization in nthorder: |ψ(n)
i (λ)〉=

N (n)(λ)︷ ︸︸ ︷
1√

1+〈ψ(n)′
i (λ)|ψ(n)′

i (λ)〉

[
|ψ0i〉+ |ψ(n)′

i (λ)〉
]

I The nthorder correction to eigenvectors expressed via expansion in the un-

perturbed eigenbasis: |ψni〉 =
∑
k 6=i

anik|ψ0k〉 anii = 0 following from the
orthogonality condition

I Equations for corrections of increasing order

Schrödinger equation:
[
Ĥ0 + λ Ĥ ′

] (
|ψ0i〉+λ|ψ1i〉+λ2|ψ2i〉+λ3|ψ3i〉+· · ·

)
=
[
E0i + λE1i + λ2E2i + λ3E3i + · · ·

] (
|ψ0i〉+λ|ψ1i〉+λ2|ψ2i〉+λ3|ψ3i〉+· · ·

)
Comparison of different orders ∝ λn:

Ĥ0|ψ0i〉 = E0i|ψ0i〉 n = 0

Ĥ0|ψ1i〉+ Ĥ ′|ψ0i〉 = E0i|ψ1i〉+ E1i|ψ0i〉 n = 1

Ĥ0|ψ2i〉+ Ĥ ′|ψ1i〉 = E0i|ψ2i〉+ E1i|ψ1i〉+ E2i|ψ0i〉 n = 2
· · · · · ·

Ĥ0|ψni〉+ Ĥ ′|ψ(n−1)i〉 =
n∑

n′=0

En′i|ψ(n−n′)i〉 general n
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I Two possibilities:

the unperturbed level E0i ≡


(a) non− degenerate
|ψ0i〉 unique

(b) degenerate

|ψ0i〉 ≡ {|ψ0i;1〉, |ψ0i;2〉, . . . |ψ0i;di〉}� Nondegenerate case

The nondegenerate case is easier to start with.

I Zeroth-order solution

The n=0 eq. ⇒ the 0thorder solutions ≡ unperturbed energy & eigenvector
This yields unique solution only in the nondegenerate case!

I First-order correction to energy

Multiply the n=1 eq. by 〈ψ0i|

⇒ 〈ψ0i|Ĥ0|ψ1i〉︸ ︷︷ ︸
E0i〈ψ0i|ψ1i〉

+〈ψ0i|Ĥ ′|ψ0i〉 = E0i〈ψ0i|ψ1i〉+ E1i

1︷ ︸︸ ︷
〈ψ0i|ψ0i〉

⇒ E1i = 〈ψ0i|Ĥ ′|ψ0i〉
I First-order correction to eigenvector

The n=1 eq. ⇒
[
Ĥ0 − E0i

](∑
k 6=i

a1ik|ψ0k〉
)

︸ ︷︷ ︸
|ψ1i〉

=
[
〈ψ0i|Ĥ ′|ψ0i〉 − Ĥ ′

]
|ψ0i〉

Multiply by 〈ψ0j| for j 6= i

⇒
∑
k 6=i

(E0j − E0i) a1ik

δjk︷ ︸︸ ︷
〈ψ0j|ψ0k〉 = 〈ψ0i|Ĥ ′|ψ0i〉

0︷ ︸︸ ︷
〈ψ0j|ψ0i〉−〈ψ0j|Ĥ ′|ψ0i〉

⇒ a1ij = − 〈ψ0j |Ĥ ′|ψ0i〉
E0j−E0i

⇒ |ψ1i〉 =
∑
j 6=i

〈ψ0j|Ĥ ′|ψ0i〉
E0i − E0j

|ψ0j〉

Multiplication by 〈ψ0i| yields just identity 0=0

⇒ a1ii undetermined and we can assume a1ii = 0 (up to normalization)

I Second-order correction to energy

Multiply the n=2 eq. by 〈ψ0i|
⇒ E0i〈ψ0i|ψ2i〉+ 〈ψ0i|Ĥ ′|ψ1i〉 = E0i〈ψ0i|ψ2i〉+ E1i

0︷ ︸︸ ︷
〈ψ0i|ψ1i〉+E2i

1︷ ︸︸ ︷
〈ψ0i|ψ0i〉

⇒ E2i = 〈ψ0i|Ĥ ′|ψ1i〉 ⇒ E2i =
∑
j 6=i

|〈ψ0j|Ĥ ′|ψ0i〉|2

E0i − E0j

I General-order correction to energy

Multiply the general-n eq. by 〈ψ0i|

E0i 〈ψ0i|ψni〉︸ ︷︷ ︸
0

+〈ψ0i|Ĥ ′|ψ(n−1)i〉 =
n∑

n′=0

En′i 〈ψ0i|ψ(n−n′)i〉︸ ︷︷ ︸
δnn′ ⇒ Eni = 〈ψ0i|Ĥ ′|ψ(n−1)i〉
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The nthorder correction to energy determined from (n−1)thorder correction to
the eigenvector

I General-order correction to eigenvector

The general-n eq. ⇒
[
Ĥ0 − E0i

](∑
k 6=i

anik|ψ0k〉
)

︸ ︷︷ ︸
|ψni〉

+Ĥ ′
(∑
k 6=i

a(n−1)ik|ψ0k〉
)

︸ ︷︷ ︸
|ψ(n−1)i〉

=
n∑

n′=1

En′i

(∑
k 6=i

a(n−n′)ik|ψ0k〉
)

︸ ︷︷ ︸
|ψ(n−n′)i〉

Multiply by 〈ψ0j| for j 6= i

⇒ [E0j − E0i] anij +
∑
k 6=i
〈ψ0j|Ĥ ′|ψ0k〉a(n−1)ik =

n∑
n′=1

En′ia(n−n′)ij

⇒ anij =
1

E0j − E0i

[ n−1∑
n′=1

En′ia(n−n′)ij −
∑
k 6=i

〈ψ0j|Ĥ ′|ψ0k〉a(n−1)ik

]
The nthorder correction to the eigenvector determined from the corrections to
energy & eigenvector of all lower orders 1, 2, . . . , (n−1)

If an′ii = 0 ∀n′ ≤ (n−1), the multiplication by 〈ψni| yields just identity 0=0
⇒ anii undetermined and assumed = 0 (up to normalization)

� Degenerate case

In the above-derived corrections for a nondegenerate level we noticed the de-
nominators containing the differences of unperturbed energies. These imply
that if levels of the unperturbed system come close together, the size of cor-
rections quickly increases. In other words, a generic perturbation gets more
efficient in denser parts of the spectrum. But what about if a particular level
becomes exactly degenerate? In that case, the derivation presented above fails
and must be redone from the scratch.

I E0i has degeneracy subspace {|ψ0i;1〉, |ψ0i;2〉, . . . |ψ0i;di〉} with 〈ψ0i;l|ψ0i;k〉=δkl
dimension di ⇒ The n=0 eq. does not determine which of the eigenvectors
|ψ0i;k〉 represents the zeroth-order solution. Assume

|ψ0i〉 =

di∑
k=1

αk|ψ0i;k〉
αk ≡unknown coeffs.

I First-order solution

The n=1 eq.: Ĥ0|ψ1i〉+
di∑
k=1

αkĤ
′|ψ0i;k〉 = E0i|ψ1i〉+ E1i

di∑
k=1

αk|ψ0i;k〉
Multiply by 〈ψ0i;l|:

E0i〈ψ0i;l|ψ1i〉+
di∑
k=1

αk〈ψ0i;l|Ĥ ′|ψ0i;k〉 = E0i〈ψ0i;l|ψ1i〉+E1i

di∑
k=1

αk

δkl︷ ︸︸ ︷
〈ψ0i;l|ψ0i;k〉 ⇒
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di∑
k=1

〈ψ0i;l|Ĥ ′|ψ0i;k〉αk = E1iαl ⇒ matrix form of this equation:(
〈ψ0i;1|Ĥ ′|ψ0i;1〉 〈ψ0i;1|Ĥ ′|ψ0i;2〉 ...

〈ψ0i;2|Ĥ ′|ψ0i;1〉 〈ψ0i;2|Ĥ ′|ψ0i;2〉 ...
... ...

)( α1

α2

...

)
= E1i

( α1

α2

...

)
≡diagonalization of the perturbation matrix in the degeneracy subspace

Note: the degeneracy subspace is not in general invariant under Ĥ ′ (since
[Ĥ0, Ĥ

′] 6= 0), but the above formula implicitly projects the action of Ĥ ′ to
the degeneracy subspace prior the diagonalization.

I Zeroth-order eigenstates & first-order energies

In general, di energy solutions of polynomial eq. Det

(
H ′11−E1i H ′12 ...
H ′21 H ′22−E1i ...
... . ..

)
=0

⇒ E1i 7→ E1i;k k = 1, 2, . . . di degeneracy lifting in 1storder correction(
H ′11 H

′
12 ...

H ′21 H
′
22 ...

... ...

)( α1;k
α2;k

...

)
= E1i;k

( α1;k
α2;k

...

) this eq. selects the eigenvector

associated with the correction E1i;k

|ψ0i〉 7→ |ψ̃0i;k〉

Eigenfunction in 0thorder: Energy up to 1storder:

|ψ̃0i;k〉 =

di∑
l=1

αl;k|ψ0i;l〉 ⇔ E
(1)
i;k (λ) = E0i + λE1i;k k = 1, 2, . . . d

I Special case d=2(
H ′11 H

′
12

H ′21 H
′
22

)(
α1

α2

)
= E1i

(
α1

α2

)
⇒ Det

(
H ′11−E1i H ′12

H ′21 H ′22−E1i

)
= 0

⇒ 2 solutions: E1i± = H ′11+H ′22

2 ±

D︷ ︸︸ ︷√(
H ′11−H ′22

2

)2

+H ′12H
′
21(

H ′11 H
′
12

H ′21 H
′
22

)(
α1±

α2±

)
= E1i±

(
α1±

α2±

)
Lowest-order eigenfunctions & energies:

{
|ψ̃0i±〉 = α1±|ψ0i;1〉+ α2±|ψ0i;2〉
E

(1)
i± (λ) = E0i + λE1i±

I Higher-order corrections

Diagonalize the perturbation Ĥ ′ in the degeneracy subspace of every level

⇒ orthonormal basis

{{
|ψ̃0i;k〉

}di
k=1

}
i

⇒ 〈ψ̃0i;l|Ĥ ′|ψ̃0i;k〉=0 for l 6=k
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⇒ the procedure used in non-degenerate case can be reiterated without prob-

lems with zero energy denominators

Ei;k(λ) = E0i + λ〈ψ̃0i;k|Ĥ ′|ψ̃0i;k〉+ λ2
∑
j(6=i)

dj∑
l=1

|〈ψ̃0j;l|Ĥ ′|ψ̃0i;k〉|2
E0i−E0j

+O(λ3)

|ψi;k(λ)〉 = |ψ̃0i;k〉+ λ
∑
j( 6=i)

dj∑
l=1

〈ψ̃0j;l|Ĥ ′|ψ̃0i;k〉
E0i−E0j

|ψ̃0j;l〉+O(λ2)

J Historical remark
1860’s: Ch.-E. Delaunay introduces a perturb. analysis of Earth-Moon-Sun problem

1894: Lord Rayleigh studies harmonic vibrations in presence of small inhomogenities
1926: E. Schrödinger introduces the perturbation theory to QM

� Application in atomic physics

The primary domain of application of the perturbation theory in the old-day
quantum theory was atomic physics. Indeed, the plain hydrogen Hamiltonian
needs to be corrected for some subtle internal effects as well as in presence of

external electric or magnetic fields. The Hamiltonian of multielectron atoms
(starting from helium) must contain (besides the electron-nucleus interactions)
also all the electron-electron interactions. All these corrections are naturally

treated in terms of the perturbation theory.

I Alternative eigensolutions of the hydrogen atom

Plain hydrogen Hamiltonian: Ĥ0 = − ~2

2M
∆− e2

4πε0
1
r

aB = 4πε0~2

Me2

.
= 0.53 · 10−10 m Bohr radius En = −

∼Mc2

1372︷ ︸︸ ︷
e2

4πε0
1
aB

1
2n2 (n=1,2,3... )

[L̂i, Ĥ0] = 0 = [Ŝi, Ĥ0] ⇒ [L̂i + Ŝi︸ ︷︷ ︸
Ĵi

, Ĥ0] = 0

for i=1,2,3

Uncoupled eigenstates: |ψnlmlms
〉 ≡

ψnlml(~r)︷ ︸︸ ︷
Rnl(r)Ylml

(ϑ, ϕ)

|↑〉 or |↓〉︷ ︸︸ ︷
|12ms〉

Level sequence: nlms
≡ 1s↑↓︸︷︷︸

E1

, 2s↑↓, 2p↑↓︸ ︷︷ ︸
E2

, 3s↑↓, 3p↑↓, 3d↑↓︸ ︷︷ ︸
E3

, 4s↑↓, 4p↑↓, 4d↑↓, 4f↑↓︸ ︷︷ ︸
E4

. . .

Coupled eigenstates (total angular momentum):

|Ψnljmj
〉 = C

jmj

l(mj− 1
2
) 1

2
(+1

2
)︸ ︷︷ ︸

±
√

l±mj+ 1
2

2l+1

ψnl(mj− 1
2
)(~r)︸ ︷︷ ︸

RnlYl(mj−1
2 )

| ↑〉︸︷︷︸
( 1

0)

+C
jmj

l(mj+
1
2
) 1

2
(− 1

2
)︸ ︷︷ ︸√

l∓mj+ 1
2

2l+1

ψnl(mj+
1
2
)(~r)︸ ︷︷ ︸

RnlYl(mj+ 1
2 )

| ↓〉︸︷︷︸
( 0

1)

j = l ± 1
2

= Rnl(r)
1√

2l+1

(
±
√
l±mj+

1
2 Y

l(mj−
1
2 )

(ϑ,ϕ)
√
l∓mj+

1
2 Y

l(mj+ 1
2 )

(ϑ,ϕ)

)
︸ ︷︷ ︸

Yljmj (ϑ,ϕ)

spinor spherical functions
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Nomenclature: nlj ≡ 1s1
2︸︷︷︸

E1

, 2s 1
2
, 2p 1

2
, 2p3

2︸ ︷︷ ︸
E2

, 3s1
2
, 3p1

2
, 3p 3

2
, 3d 3

2
, 3d 5

2︸ ︷︷ ︸
E3

, . . .

I Stark effect

Hydrogen atom in an external electric field of intensity ~Eλ ≡ λE1~nz (we in-

troduce a dimensionless factor λ to scale the intensity):

Ĥ = Ĥ0 + λĤ ′ Ĥ ′ = eE1z ≡ T̂ 1
0 component of spherical vector

Unperturbed hydrogen solutions expressed in the uncoupled basis |ψnlmlms
〉

Selection rules for matrix elements:

(a) 〈ψnlmlms
|Ĥ ′|ψnlmlms

〉 = 0 ⇐ parity conservation (
∫ even︷ ︸︸ ︷
|ψnlml

(~r)|2 z d~r = 0)

(b) 〈ψn′l′m′lm′s|Ĥ
′|ψnlmlms

〉 = 0 for m′l 6= ml or m′s 6= ms or |l − l′| > 1
⇐ Wigner-Eckart theorem

We disregard spin quantum number ms as the interaction does not affect it

Ground-state: the 1storder term vanishes

Correction up to 2ndorder: E
(2)
1 = E1 + (eEλ)2

∞∑
n=2

n−1∑
l=0

+l∑
ml=−l

|〈ψnlml |z|ψ100〉|2
E1−En < E1

Reasoning: any state with a good parity has null electric dipole moment⇒ no
linear effect of an electric field

Excited-states: the 1storder term contributes

Reasoning: “accidental” degeneracy
in the H atom involves states with

different parity ⇒ a superposition
of such states (as obtained in the
degenerate-case perturb. expression)

can yield electric dipole moment 6= 0

Example: n = 2 shell:

According to the selection rules, the only nonzero matrix element is the follow-
ing one (its calculation is not presented here):

〈ψ210|Ĥ ′|ψ200〉 = 〈ψ200|Ĥ ′|ψ210〉 = −3aBeE1

−3aBeE1

(
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

)( α200
α21(−1)
α210
α21(+1)

)
= ∆E

( α200
α21(−1)
α210
α21(+1)

)
⇒

|ψ0;k〉 E
(1)
2

−−−−−−−−− −−−−−−−−−
1√
2
(|ψ200〉+|ψ210〉) ⇒ E2−3aBeEλ

1√
2
(|ψ200〉−|ψ210〉) ⇒ E2+3aBeEλ
|ψ21(−1)〉 ⇒ E2

|ψ21(+1)〉 ⇒ E2

J Historical remark
1913: J. Stark & A. Lo Surdo discover the effect of electric field on atomic levels
1916: P. Epstein & K. Schwarzschild calculate the effect using the old QM
1926: E. Schrödinger provides a QM calculation based on the perturbation method
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I Zeeman effect

Hydrogen atom in magnetic field of intensity ~Hλ ≡ λH1~nz, where we again
introduce a dimensionless field scaling factor λ:

Ĥ = Ĥ0 + λĤ ′ with Ĥ ′ = − e
2MB1(L̂z + 2Ŝz) = − e

2MB1(Ĵz + Ŝz)

The above formula takes into account both orbital and spin gyromagnetic ratios.
Perturbation diagonalized in uncoupled basis:

〈ψnlmlms
|Ĥ ′|ψnlmlms

〉 = − e~
2M︸︷︷︸
µB

B1(ml + 2ms) exact solution

The 1storder effect in the coupled basis (just an exercise):

〈Ψnljmj
|Ĥ ′|Ψnljmj

〉 = −µBB1

[
mj + 1

2(C
jmj

l(mj−1
2 )1

2 (+1
2 )

)2 − 1
2(C

jmj

l(mj+
1
2) 1

2 (− 1
2 )

)2
]

=

{
−µBB1

2l+2
2l+1

mj for j = l + 1
2

−µBB1
2l

2l+1mj for j = l − 1
2

J Historical remark
1897: P. Zeeman discovers the splitting of atomic lines in magnetic field

1925: So-called anomalous Zeeman effect contributes to the discovery of spin

I Spin-orbital coupling

Correction caused by an interaction of the spin magnetic moment of electron
with the magnetic field generated by its orbital motion. In the electron’s rest
frame, this can be seen as an interaction of its magnetic moment with the mag-

netic field produced by a “moving” nucleus (then a relativistic effect, so-called
Thomas precession, must be taken into account). The resulting perturbation
of the hydrogen Hamiltonian reads as follows:

Ĥ ′ = e2

4πε0
1

2Mc2
1
r3 (~̂L · ~̂S ) = e2

4πε0
1

4Mc2
1
r3

(
~̂J 2 − ~̂L 2 − ~̂S 2

)
1storder effect in the coupled basis:

〈Ψnljmj
|Ĥ ′|Ψnljmj

〉 = e2

4πε0
~2

4Mc2

[
j(j+1)− l(l+1)− 3

4

]
∞∫
0

|Rnl(r)|2 1
r3
r2dr≡〈r−3〉nl︷ ︸︸ ︷

〈Ψnljmj
| 1
r3 |Ψnljmj

〉

=

{
+ e2

4πε0
~2

4Mc2
〈r−3〉nl l for j = l + 1

2

− e2

4πε0
~2

4Mc2
〈r−3〉nl (l + 1) for j = l − 1

2I Relativistic correction

Rel. kinetic energy: T =
√

(Mc2)2 + (pc)2︸ ︷︷ ︸
Mc2
√

1+( p
Mc )

2

−Mc2 ≈ p2

2M −
1

2Mc2

(
p2

2M

)2

+ . . .

The effect of this correction can be treated within the non-relativistic QM,

adding to Ĥ0 a perturbation term: Ĥ ′ = − 1
2Mc2

(
p̂2

2M

)2

= − 1
2Mc2 (Ĥ0 − V̂ )2
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1storder effect in the coupled basis:

〈Ψnljmj
|Ĥ ′|Ψnljmj

〉 = − 1
2Mc2

[
E2
n − 2En

e2

4πε0
〈r−1〉nl︷ ︸︸ ︷

〈Ψnljmj
|V̂ |Ψnljmj

〉+

(
e2

4πε0

)2

〈r−2〉nl︷ ︸︸ ︷
〈Ψnljmj

|V̂ 2|Ψnljmj
〉
]

I Comparison of atomic corrections

After evaluation of the radial integrals 〈r−k〉nl ∝ a−kB it turns out that the
following effects are of the same order of magnitude: (a) the spin-orbit coupling,
(b) relativistic correction, (c) Zeeman splitting for B ∈ (1, 10) T

(a) + (b) = fine structure of atomic levels: ∆EFS ≈ −Mc2

1374
1

4n4

(
2n
j+1

2

− 3
2

)
J Historical remark

1916: A. Sommerfeld introduces the fine-structure constant; he calculates the rela-
tivistic splitting of hydrogen levels within the old QM
1925-6: Electron spin & mag. moment taken into account; L. Thomas computes

atomic LS-interaction including the relativistic effect of inter-frame transformation

I Helium atom

Besides the kinetic terms & Coulomb interaction of both electrons with the
nucleus one has to consider also Coulomb interaction between the 2 electrons:

Ĥ =

Ĥ0︷ ︸︸ ︷
− ~2

2M
(∆1 + ∆2)− 2e2

4πε0

(
1
|~x1| +

1
|~x2|

)
+

Ĥ ′︷ ︸︸ ︷
e2

4πε0
1

|~x1−~x2| 2-electron Hamiltonian

The calculation can be performed in the coupled spin basis of both electrons:

|S,MS〉 =
{

|0,0〉 singlet (antisymmetric under exchange)
|1,MS〉 triplet (symmetric under exchange)

As the total 2-electron wavefunction must be antisymmetriuc under the ex-
change (fermions), the orbital part associated with spin singlet/triplet is
symmetric/antisymmetric:

Ψ0±(~x1, ~x2) = 1√
2

[ ψ1(~x1)︷ ︸︸ ︷
ψn1l1m1

(~x1)

ψ2(~x2)︷ ︸︸ ︷
ψn2l2m2

(~x2)±
ψ2(~x1)︷ ︸︸ ︷

ψn2l2m2
(~x1)

ψ1(~x2)︷ ︸︸ ︷
ψn1l1m1

(~x2)
]

Define EA
12 =

{
e2

4πε0

∫
ψ∗1(~x1)ψ∗2(~x2)

1
|~x1−~x2|ψ1(~x1)ψ2(~x2) d~x1d~x2

e2

4πε0

∫
ψ∗2(~x1)ψ∗1(~x2)

1
|~x1−~x2|ψ2(~x1)ψ1(~x2) d~x1d~x2

and EB
12 =

{
e2

4πε0

∫
ψ∗1(~x1)ψ∗2(~x2)

1
|~x1−~x2|ψ2(~x1)ψ1(~x2) d~x1d~x2

e2

4πε0

∫
ψ∗2(~x1)ψ∗1(~x2)

1
|~x1−~x2|ψ1(~x1)ψ2(~x2) d~x1d~x2

1storder energy correction:

Singlet & triplet spin states are degenerate, but Ĥ ′ is
diagonal in these states ⇒ the non-degenerate expression
applicable:

〈Ψ0±|Ĥ ′|Ψ0±〉 = 1
2(EA

12 + EA
12 ± EB

12 ± EB
12) = EA

12 ± EB
12
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For spin

{
singlet

triplet

}
states the correction E

(1)
i

′
=

{
EA

12 + EB
12

EA
12 − EB

12

The splitting of singlet & triplet (“parahelium” & “orthohelium”) states is

a direct consequence of indistinguishability!

J Historical remark

1892: F. Paschen & C. Runge discover the splitting of He spectrum
1926: W. Heisenberg provides interpretation through (anti)symmetric wavefunctions

� Application to level dynamics

So far it was assumed that the parameter λ, weighting the perturbation term in

the Hamiltonian, has a fixed (small) value. However, one may think of Hamilto-
nians Ĥ(λ) for which λ is a variable control parameter. There is a huge class of
such Hamiltonians, we just require their linear dependence on the parameter.

The energy spectrum Ei(λ) changes (nonlinearly) with running λ and one may
use the perturbation theory to write down a set of differential equations govern-
ing these changes. In this way, the spectral variations are treated as if λ were

time and level energies Ei(λ) positions of moving 1D particles. This provides
an interesting interpretation of the parameter-induced “level dynamics”.

I Hamiltonian with a linear parametric dependence

Ĥ(λ) = Ĥ0 + λ Ĥ ′ λ ∈ (−∞,+∞)

Perturbative treatment at any λ: Ĥ(λ+δλ) =

Ĥ(λ)︷ ︸︸ ︷
Ĥ0 + λ Ĥ ′+(δλ) Ĥ ′

Level dynamics:

evolving energy levels Ei(λ) ←→ xi(t) “particle trajectories” in 1D

I Local equations obtained from the perturbation theory

d
dλ
Ei(λ) = 〈ψi(λ)|Ĥ ′|ψi(λ)〉 ⇒ Ėi = H ′ii velocity

d2

dλ2Ei(λ) = 2
∑
j(6=i)

|〈ψj(λ)|Ĥ ′|ψi(λ)〉|2
Ei(λ)−Ej(λ) ⇒ Ëi = 2

∑
j( 6=i)

|H ′ji|2
Ei−Ej

acceleration ∝ repulsive

Coulomb (2D)−like
force between levels

d
dλ
〈ψj(λ)|Ĥ ′|ψi(λ)〉 = 〈 d

dλ
ψj(λ)|Ĥ ′|ψi(λ)〉+ 〈ψj(λ)|Ĥ ′| d

dλ
ψi(λ)〉 =∑

k(6=j)

〈ψj(λ)|Ĥ ′|ψk(λ)〉
Ej(λ)−Ek(λ) 〈ψk(λ)|Ĥ ′|ψi(λ)〉+

∑
k( 6=i)
〈ψj(λ)|Ĥ ′|ψk(λ)〉 〈ψk(λ)|Ĥ ′|ψi(λ)〉

Ei(λ)−Ek(λ)

⇒ Ḣ ′ji =
∑
k(6=j)

H ′jkH
′
ki

Ej−Ek +
∑
k( 6=i)

H ′jkH
′
ki

Ei−Ek
⇒ evolution of product charge |H ′ji|2
but no individual charges : |H ′ji|2 6= QjQi

Known H ′ij(0) & Ei(0) (∀ i, j) ⇒ we can calculate H ′ij(λ) & Ei(λ) for any λ
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I “Integrals of motion” (in the sense λ≡time) For instance:

P = TrĤ ′ =
∑
i

H ′ii =
∑
i

Ėi =const

W = 1
2Tr(Ĥ ′)2 = 1

2

∑
i,j

H ′ijH
′
ji = 1

2

∑
i

Ė2
i + 1

2

∑
i6=j
|H ′ij|2 =const

There exist many more, in fact, as many that the above system of differential
equations is integrable!

I Global properties of spectrum
for finite dimension n

“Center of mass”:
Ē(λ) ≡ 1

n

∑
i

Ei(λ) = 1
n
TrĤ(λ)

=
[

1
nTrĤ0

]
+ λ

[
1
nĤ

′
]

“Spread”:

D(λ) ≡
√

1
n

∑
i

[Ei(λ)− Ē(λ)]2

=
√

1
n

∑
i

Ei(λ)2 − Ē2(λ) =√[
1
n
TrĤ2

0− 1
n2 Tr2Ĥ0

]
+λ
[

2
n
Tr(Ĥ0Ĥ ′)− 2

n2 TrĤ0TrĤ ′
]
+λ2

[
1
n
Tr(Ĥ ′)2− 1

n2 Tr2Ĥ ′
]

D(λ) minimal at certain λ0 (maximal compression of the spectrum)
For λ→ ±∞ the spectrum freely expands: D(λ) ∝ λ

I No-crossing rule

The equation for Ëi corresponds to a repulsive “force” between levels, which

is analogous to the Coulomb force in 2D (F2D ∝ r−1). This force prevents
crossings of levels. For an actual crossing of two levels at a certain λ× one
needs to simultaneously satisfy 2 equations: Ei(λ×)=Ej(λ×) (levels coalesce)

& H ′ji(λ×)=0 (force vanishes). This is not achievable with just a single control

parameter λ to vary (except of some accidental, extremely rare cases).

Instead of real crossings there exist numerous

so-called avoided crossings of energy levels.
At such places, the corresponding eigenfunctions
change very rapidly, as can be seen from the

“survival probability” given by overlap formula:

Pi(λ, δλ) ≡ |〈ψi(λ+δλ)|ψi(λ)〉|2

≈ 1− (δλ)2
∑
j( 6=i)

|〈ψj(λ)|Ĥ ′|ψi(λ)〉|2
[Ei(λ)−Ej(λ)]2
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Proof of the overlap formula:

|〈ψi(λ+δλ)|ψi(λ)〉|2=〈ψi(λ+δλ)

Î−
∑
j(6=i)
|ψj(λ)〉〈ψj(λ)|︷ ︸︸ ︷

|ψi(λ)〉〈ψi(λ)|ψi(λ+δλ)〉
= 1−

∑
j( 6=i)

(δλ)2 |〈ψj(λ)|Ĥ′|ψi(λ)〉|2

[Ei(λ)−Ej(λ)]2︷ ︸︸ ︷
|〈ψj(λ)|ψi(λ+δλ)〉|2

On the other hand, real crossings are abundant if the perturbation matrix
element H ′ji vanishes identically (e.g., for some symmetry reasons, like in case

of levels with different total angular momenta in rotationally invariant field).

J Historical remark
1929: J. von Neumann & E. Wigner formulate the no-crossing rule

1932: L. Landau & C. Zener calculate transition rate for a 2-level avoided crossing
1980’s: P. Pechukas & T. Yukawa elaborate the Coulomb analogy for level dynamics

� Driven systems and adiabatic approximation

We will now briefly deal with problems combining parameter-dependent and
time-dependent descriptions. The aim will be to analyze the dynamics of sys-

tems whose Hamiltonian parameters are driven (i.e., varied with a given, exter-
nally controlled time dependence). This can be done with the aid of methods
which are closely related to the stationary perturbation theory.

I Time-dependent Hamiltonian
Consider Hamiltonian Ĥ(~G) depending on a set of parameters ~G ≡ (G1, G2, . . . ).
Choose a curve ~G(g) in the parameter space described by a single parameter

g ∈ R, whose value varies with time according to g(t) = ġt (with ġ ≡ constant).
This turns the original parameter-dependent
Hamiltonian into a nonstationary Hamiltonian:

Ĥ(~G) −→ Ĥ(g) = Ĥ(ġt)

Task: to describe evolution induced by Ĥ(ġt)

I Equations for instantaneous eigenvectors

Stationary Schr. eq.: Ĥ(g)|ψi(g)〉=Ei(g)|ψi(g)〉

⇒ dĤ(g)
dg
|ψi(g)〉+Ĥ(g)|dψi

dg
(g)〉= dEi(g)

dg
|ψi(g)〉+Ei(g)|dψi

dg
(g)〉

Multiply by 〈ψj(g)| for j 6=i:
〈ψj|dĤdg |ψi〉+ Ej〈ψj|dψidg 〉 = dEi

dg

0︷ ︸︸ ︷
〈ψj|ψi〉+Ei〈ψj|dψidg 〉

⇒ 〈ψj(g)|dψi
dg

(g)〉 =
〈ψj(g)|dĤdg (g)|ψi(g)〉

Ei(g)−Ej(g)
for j 6=i

For j=i we use: d
dg〈ψi|ψi〉 = 〈dψidg |ψi〉+ 〈ψi|dψidg 〉 = 2 Re〈ψi|dψidg 〉 = 0

⇒ 〈ψi(g)|dψidg (g)〉 = iφ(g) with φ(g) ∈ R
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With substitutions g → ġt & d
dg
→ 1

ġ
d
dt

the above formulas become t-dependent

I Time evolution by the driven Hamiltonian

Expansion in the instantaneous eigenbasis: |Ψ(t)〉 =
∑
j

αj(t)|ψj(ġt)〉

Nonstationary Schr. eq.: i~ d
dt
|Ψ(t)〉 = Ĥ(ġt)|Ψ(t)〉

⇒ i~
∑
j

(
α̇j(t)|ψj(ġt)〉+αj(t) ddt |ψj(ġt)〉

)
=
∑
j

αj(t)Ej(ġt)|ψj(ġt)〉

Multiply by 〈ψi(ġt)|: i~α̇i(t) + i~
∑
j

αj(t) 〈ψi(ġt)| ddtψj(ġt)〉︸ ︷︷ ︸
ġ
〈ψj(g)|dĤ

dg
(g)|ψi(g)〉

Ei(g)−Ej(g) iġφ(g)

for i 6=j for i=j

= αi(t)Ei(ġt)

⇒ a system of coupled linear
differential equations:

α̇i(t) =
[
− i
~Ei(ġt) + iġφ(g)

]
αi(t) + ġ

∑
j(6=i)

〈ψj(g)|dĤdg (g)|ψi(g)〉
Ei(g)−Ej(g)

αj(t)

I Adiabatic approximation

Take the initial state |Ψ(t=0)〉≡|ψi(g=0)〉 (instantaneous eigenstate at g=0),

so αj(0)=δij, and assume ġ very small → 0 (adiabatic limit). It can be shown

that the off-diagonal (j 6=i) terms ∝ ġ
in the above equation can be neglected
(but not the diagonal ones!). The

solution is obtained (using ġdt = dg)
in the form given on the right:

αi(t) = e
− i

~

t∫
0

Ei(ġt
′)dt′︸ ︷︷ ︸

dynamical
phase

e
i
g∫
0

φ(g′)dg′︸ ︷︷ ︸
geometrical

factor

I Conclusions
(1) In the limit ġ→0 the system remains in the instantaneous eigenstate |ψi(g)〉

This is known as the adiabatic theorem

Remark: For ġ small but 6=0 this remains a good approx. iff the levels
do not come too close to each other (see neglected term in the above eq.)

(2) The adiabatic evolution leads to the occurrence of two phase factors:

(a) dynamical phase derived from the standard evolution of energy eigen-
states (taking into account variations of energy with the parameter),

(b) the geometrical phase (also called Berry phase) depends only on the
geometrical path in the space of parameters ~G. It can yield a nonzero
value even if the path returns back to the initial point.

J Historical remark
1928: M. Born & V. Fock formulate the adiabatic theorem
1956, 1984: S. Pancharatnam & M. Berry discover the geometrical phase factor
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5.3 Nonstationary perturbation method

Having digested a bit of nonstationary QM from the end of the previous section,

we now devote ourselves fully to deriving a suitable perturbative approximation of
quantum dynamical problems. Our task will be to calculate the rates of transitions
between various eigenstates of the principal Hamiltonian Ĥ0 induced by a small sup-

plement Ĥ ′(t) (nonstationary, in general). Note that the nonstationary perturbation
technique, which we are going to outline in the following, represents the prevailing
treatment of nonstationary problems in quantum theory.

� General formalism

The nonstationary perturbation method can describe a vast variety of quantum
processes, which are running with a characteristic time scale placed somewhere

in between two limiting time scales: The long time scale, T>, is derived from
the total energy width of the initial eigenstate of the unperturbed Hamiltonian
Ĥ0. The short time scale, T<, is more difficult to specify. For problems with a

discrete spectrum of initial states (and we implicitly deal with this type of prob-
lems in the following), T< corresponds to the average energy spacing between
the eigenstates of Ĥ0 around the initial state.

Here we focus mainly on the general formulation of the method, postponing
the treatment of concrete applications to more specialized courses of QM. In-
deed, realistic calculations are often hindered by a difficult structure of the

corresponding Hilbert spaces. This is so particularly in decay and scattering
processes, in which one typically deals with composite objects and intricate
mixtures of discrete & continuous energy spectra.

I Setup

Total Hamiltonian assumed in the form Ĥ(t) = Ĥ0 + λĤ ′(t) where:

Ĥ0 ≡ free stationary Hamiltonian

Ĥ ′(t) ≡ generally time dependent perturbation
λ ≡ dimensionless parameter


matrix elements of Ĥ0

and Ĥ ′(t) are of about
the same size, λ� 1

Task: to evaluate probabilities of transitions between eigenstates of Ĥ0 as a
function of time in the form of a power-law series in λ

I Typology of applications

Example I (stimulated transition): A↔ A∗ . Hamiltonian Ĥ0 describes
a bound system with discrete spectrum {E00, E01, . . . } and λĤ ′(t) is a non-
stationary external field inducing transitions between unperturbed eigenstates.

Example II (spontaneous decay): A∗ → A+ γ . Hamiltonian Ĥ0=Ĥa+Ĥγ

describes a bound system (atom, nucleus) with discrete spectrum {E00, E01, . . . }
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and free elmag. field (photons) with continuous spectrum Eγ ∈ [0,+∞). The

perturbation λĤ ′ represents the atom-photon interaction. Initial state |ψ0i〉 ≡
|E0i〉a ⊗ |0〉γ. Final state |ψ0j〉 ≡ |E0j〉a ⊗ |~kν〉γ with j < i and |~kν〉γ ≡ single-
photon plane wave with given polarization.

Example III (scattering): Process a+ A→ B + b . Free Hamiltonian Ĥ0

describes a system of non-interacting particles a,A,B, b with indefinite particle
numbers and continuous spectrum (bases created from |~pi, ψi〉• ≡ plane waves
times relevant internal freedom degrees of individual particles). The term λĤ ′

stands for interactions of all particles involved. Initial state |ψ0i〉 ≡ |~pi, σi〉a ⊗
|− ~pi, αi〉A⊗ |0〉B ⊗ |0〉b. Final state |ψ0j〉 ≡ |0〉a⊗ |0〉A⊗ |~pj, βj〉B ⊗ |− ~pj, σj〉b.
I Dyson series in the interaction (Dirac) picture
It is favorable now to move to the Dirac picture of time evolution, identifying

the free Hamiltonian with Ĥ0. This immediately yields the desired power-law
series in the perturbation.

Operators: ÂD(t) = Û †0(t) ÂS

e−i
Ĥ0t
~︷ ︸︸ ︷

Û0(t) ⇒
{
Ĥ0D = Ĥ0S ≡ Ĥ0

Ĥ ′D(t) = Û †0(t)Ĥ ′(t)Û0(t)

Vectors: |ψ(t)〉D = Û †0(t)|ψ(t)〉S ⇒ i~ ddt |ψ(t)〉D = Ĥ ′D(t)|ψ(t)〉D
Dyson series for evolution operator:

ÛD(t, t0) = Î +
(
− i
~λ
)1

t∫
t0

Ĥ ′D(t1) dt1 +
(
− i
~λ
)2

t∫
t0

t2∫
t0

Ĥ ′D(t2)Ĥ
′
D(t1) dt1dt2 + . . .

+
(
− i
~λ
)n t∫

t0

tn∫
t0

· · ·
t2∫
t0

Ĥ ′D(tn)Ĥ
′
D(tn−1) · · · Ĥ ′D(t1) dt1 . . . dtn−1dtn + . . .

I Estimate of the upper time scale
Fast convergence of the above series is expected if the time difference (t−t0) is

much smaller than a characteristic time scale of the exact state evolution:

(t−t0)� T>
The scale T> given by total energy width of the initial state

in the eigenbasis of the full Hamiltonian: T> ∼ ~
〈〈
E2
〉〉−1/2

ψ(0)

Example: for a decay process, T> ∼ Tlife ≡ aver. lifetime of the decaying state

Note: For nonstationary perturbation, one should evaluate T> from a maximal

energy width acquired during the evolution: T> ∼ Min
{
~
〈〈
E2
〉〉−1/2

ψ(t′)

}
t′∈[t0,t]

I Dyson series for transition amplitudes

We rewrite the above Dyson series for
the evolution operator to evaluate
transition amplitudes (initial time t0
→ final time t) between individual
eigenstates of the unperturbed Hamiltonian Ĥ0:

wavefunction |ψ0i〉−→|ψ0j〉
unperturbed energy E0i −→ E0j

transition frequency ωji =
E0j−E0i

~
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Sji(t, t0) ≡ 〈ψ0j|ÛD(t, t0)|ψ0i〉 = δij +
(
− i
~λ
)1

t∫
t0

〈ψ0j|Ĥ ′D(t1)|ψ0i〉︸ ︷︷ ︸
H ′ji(t1)eiωjit1

dt1+

+
(
− i
~λ
)2

t∫
t0

t2∫
t0

∑
k

H ′ji(t1)eiωjkt2︷ ︸︸ ︷
〈ψ0j|Ĥ ′D(t2)|ψ0k〉

H ′ji(t1)eiωkit1︷ ︸︸ ︷
〈ψ0k|Ĥ ′D(t1)|ψ0i〉 dt1dt2 + . . .

+
(
− i
~λ
)n t∫

t0

tn∫
t0

· · ·
t2∫
t0

∑
kn−1

∑
kn−2

· · ·
∑
k1

H ′jkn−1
(tn)e

iωjkn−1
tn︷ ︸︸ ︷

〈ψ0j|Ĥ ′D(tn)|ψ0kn−1
〉

H ′kn−1kn−2
(tn−1)e

iωkn−1kn−2
tn−1︷ ︸︸ ︷

〈ψ0kn−1
|Ĥ ′D(tn−1)|ψ0kn−2

〉 · · ·
· · · 〈ψ0k1

|Ĥ ′D(t1)|ψ0i〉︸ ︷︷ ︸
H ′k1i

(t1)e
iωk1i

t1

dt1 · · · dtn−1dtn + . . . . . .

I Perturbation series

Sji(t, t0) = δij [n=0]

[n=1] +
(
− i
~λ
)1

t∫
t0

H ′ji(t1)e
iωjit1dt1

[n=2] +
(
− i
~λ
)2

t∫
t0

t2∫
t0

∑
k

H ′jk(t2)e
iωjkt2H ′ki(t1)e

iωkit1dt1dt2

+ . . .

[generaln] +
(
− i
~λ
)n t∫

t0

tn∫
t0

· · ·
t2∫
t0

∑
kn−1

∑
kn−2

· · ·
∑
k1

H ′jkn−1
(tn)e

iωjkn−1
tn

· · ·H ′kn−1kn−2
(tn−1)e

iωkn−1kn−2
tn−1 · · ·H ′k1i

(t1)e
iωk1i

t1dt1 · ·dtn−1dtn
+ . . . . . .

I Estimate of the lower time scale

The transition amplitudes Sji(t, t0) depend in general on both initial & final
times t0 & t. To make the perturbative expressions simpler and more universal,
one usually assumes that the time difference (t− t0) is much larger than a

characteristic time scale of the system’s internal or single-particle dynamics:

(t−t0)� T<
For systems with discrete spectra, the short time scale is

determined by the average density of unperturbed energy

eigenstates, ρ0≡〈|E0(i+1)−E0i|−1〉i, around the initial state: T< ∼ ~ %0(E0i)

Examples: For decay processes of composite objects, T< represents a charac-
teristic period of motions of internal particles. For scattering of particles with

a short-range interaction, T< associated with the time spent
by the colliding particles within the interaction distance.

Consequence: In case of discrete spectrum, time window
(T<, T>) for application of t-dependent perturb. technique
exists iff the total energy width of the initial state is (much)

less than the spacing of unperturbed levels: Γ� ∆E
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I S-matrix

The dependence of Sji(t, t0) on times t0 & t can be removed by considering an
asymptotic time limit with respect to the short time scale T<. The resulting
so-called scattering matrix (S-matrix) includes asymptotic-time amplitudes of

the i→ j transitions:

Sji(t, t0) 7→ Sji ≡
{

lim
t→∞

Sji(+t, 0) (with t0 = 0) (a)

lim
t→∞

Sji(+t,−t) (with t0 = −∞) (b)

Case (a) applied if the interaction is “homogeneous” in time (decay processes)

Case (b) applied if interaction Ĥ ′D(t) can be “centered” at t = 0 (scattering)

� Step perturbation

Consider first the case in which the perturbation is switched on abruptly, in a

step-like fashion, at time t = 0. This is, in fact, the same as if we describe the
t > 0 effects of a stationary perturbation Ĥ ′ on a system, which was prepared
at t = 0 in the initial eigenstate |ψ0i〉 of Ĥ0.

I Perturbation Hamiltonian

Ĥ ′(t) =

{
0 for t < 0

Ĥ ′ for t ≥ 0

Initial state |ψ0i〉 prepared at any t0 ≤ 0.

All cases between t0=0 and t0→−∞ are equivalent.
The case t0=0 describes the effect of a constant perturbation Ĥ ′(t)=Ĥ ′.
We consider transitions |ψ0i〉 → |ψ0j〉 for j 6= i

I Transition amplitude & probability up to 1storder contribution

S
(1)
ji (t) = − i

~λH
′
ji

t∫
0

eiωjit1dt1 = λH ′ji
1
~

1−eiωjit
ωji

P
(1)
ji (t) = |S(1)

ji (t)|2 = 1
~2 |λH ′ji|2

(1−cosωjit)
2+sin2 ωjit

ω2
ji︸ ︷︷ ︸

4 sin2(
ωji
2 t)

ω2
ji

= 1
~2 |λH ′ji|2

sin2
(ωji

2 t
)(ωji

2 t
)2 t2

I The right way of treating this expression:

(a) Consider long time t� ~
∆E (see above)⇒ t→∞ ⇒ sin2(

ωji
2 t)

(
ωji
2 t)

2 t ≈ 2π δ(ωji)

using: lim
α→∞

sin2(αx)
αx2 = πδ(x) ⇐ sin2(αx)

αx2 =
{
α for x=0
0 for x=π

α ,···
+∞∫
−∞

sin2(αx)
αx2 dx = π
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⇒ P
(1)
ji (t) ≈ 2π

~ |λH
′
ji|2 δ(E0j−E0i) t

(b) Instead of transition probability calculate the transition rate

Wji(t) ≡ d
dtPji(t) ⇒ W

(1)
ji = 2π

~ |λH
′
ji|2δ(E0j−E0i)

(c) Sum over all final states at energy Ef=E0i making use of averaging with
respect to an ε-smoothened density of final states ρf(Ef)ε ≡

∑
j

δε(Ef−E0j)︸ ︷︷ ︸
e.g.
= 1

π
ε

ε2+(Ef−E0j)2
Remark: The density of final states at energy E0i differs
in general from the density of initial states at the same
energy. This is so because initial and final states can often be treated as vectors

in different Hilbert spaces. Consider, e.g., elmg. decay A∗ → A+γ of an excited
system A∗ (see Example II above): General states are described within the
product space H ≡ Ha⊗Hγ of the decying system times the elmg. field. While,

the initial state |ψ0i〉 ≡ |E0i〉a ⊗ |0〉γ can be directly reduced only to the space

Ha, the final state |ψ0j〉 ≡ |E0j〉a⊗|~kν〉γ belongs to Ha⊗H(1)
γ , where H(1)

γ stands
for a single-photon subspace of Hγ. Therefore, the density of final states at
energy Ef ≡ E0j + Eγ = E0i must be calculated in the larger space.

The summation over final states leads to the following general expression:

Wji(t) 7→Wfi(t) = 2π
~

∑
j

|λH ′ji|2 δ(E0j−E0i)︸ ︷︷ ︸
7→ δε(E0j−E0i)︸ ︷︷ ︸

≈〈|λH ′ji|2〉f
∑
j

δε(E0j−E0i)

= 2π
~ 〈|λH

′
ji|2〉f︸ ︷︷ ︸

average with
respect to ρf (Ef )ε

ρf(Ef =E0i)ε︸ ︷︷ ︸
to be replaced

by ρf (Ef )

I Fermi golden rule
The above derivation is summarized in a very useful and famous formula, whose

validity turns out to be much wider than in the presently studied case:

W
(1)
fi =

2π

~

〈
|λH ′ji|2

〉
f

ρf(E0i) where


〈|λH ′ji|2〉f ≡ squared matrix element

averaged over available final states

ρf(E0i) ≡ density of final states
at final energy Ef = E0i

I 2ndorder correction

S2ji(t)=
(
− i
~λ
)2∑

k

H ′jkH
′
ki

t∫
0

t2∫
0

eiωjkt2eiωkit1dt1dt2︸ ︷︷ ︸
−
[
e
iωjit−1
ωkiωji

− e
iωjkt−1
ωjkωki

]
=λ2

∑
k

H ′jkH
′
ki

[
e
i
~ (E0j−E0i)t−1

(E0k−E0i)(E0j−E0i)

− e
i
~ (E0j−E0k)t−1

(E0j−E0k)(E0k−E0i)

]
ωki+ωjk=ωji ⇒

Assuming E0j 6= E0k 6= E0i (so H ′jkH
′
ki ≈ 0 for equal energies) we may neglect

the 2nd time-dependent term (otherwise special treatment needed). The 1st

term yields the same dependence on (E0j−E0i) as the 1st-order correction ⇒

W
(2)
fi =

2π

~

〈∣∣∣∣λH ′ji + λ2
∑
k

H ′jkH
′
ki

E0i−E0k

∣∣∣∣2〉
f

ρf(E0i) “direct”+“virtual” transitions
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J Historical remark

1927-30: Paul Dirac derives the 1st and 2ndorder perturbative expressions. He applies
the theory to calculation of electromagnetic transition rates in atoms and nuclei
1950: Enrico Fermi coins the name “golden rule” for the general 1storder expression

� Exponential perturbation

Another perturbation type, for which the Dyson series can be calculated explic-
itly, is the one with an exponential dependence on time. In this case, we move
the initial time to −∞ and look at the effect of a slowly rising term Ĥ ′(t).

I Perturbation Hamiltonian

Ĥ ′(t) = eηtĤ ′ η ≥ 0

Initial state |ψ0i〉 prepared at t0 → −∞
Final state |ψ0j〉 with j 6= i measured at any t

I Transition rate up to 1storder contribution

Transition amplitude: S
(1)
ji (t)=− i

~λH
′
ji

t∫
−∞

e(η+iωji)t1dt1 = − i
~ λH

′
ji
e(η+iωji)t

η+iωji

Transition probability: P
(1)
ji (t) = |S(1)

ji (t)|2 = 1
~2 |λH ′ji|2 e2ηt

η2+ω2
ji

Transition rate:
d
dtP

(1)
ji (t) = W

(1)
ji (t) = 2π

~2 |λH ′ji|2 1
π

η
η2+ω2

ji︸ ︷︷ ︸
~ΩBW

Γ (E0j−E0i)

e2ηt ΩBW
Γ ≡ Breit−Wigner

energy distribution (Sec. 1.5)

with the width Γ = 2~η

I Adiabatic limit (η,Γ→ 0)

lim
Γ→0

ΩBW
Γ (E0j−E0i) = δ(E0j−E0i) ⇒ lim

η→0
W

(1)
ji = 2π

~ |λH
′
ji|2δ(E0j−E0i)

This is consistent with the previous result on constant Ĥ ′ ⇒ golden rule

� Periodic perturbation

Expressions similar to those derived above come out also for T=2π
ω

periodic
perturbations. In this case, however, the perturbation induces transitions up

and down to final energies Ei+~ω or Ei−~ω.
I Perturbation Hamiltonian

Ĥ ′(t) = V̂ e+iωt + V̂ †e−iωt =

{
(V̂ +V̂ †) cos(ωt)

+i(V̂ −V̂ †) sin(ωt)

Initial state |ψ0i〉 at t0 = 0

I Up/down transition rates to 1storder

Transition amplitude
to |ψ0j〉(j 6= i) :

S
(1)
ji (t) = − iλ

~

[
Vji

t∫
0

ei(ωji+ω)t1dt1+V ∗ij

t∫
0

ei(ωji−ω)t1dt1

]
= λ

~

[
Vji

1−ei(ωji+ω)t

ωji+ω
+V ∗ij

1−ei(ωji−ω)t

ωji−ω

]
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Transition probability:

P
(1)
ji (t)=λ2

~2

[
|Vji|2

sin2
(
ωji+ω

2 t
)

(
ωji+ω

2 t
)2 t2 + |Vij|2

sin2
(
ωji−ω

2 t
)

(
ωji−ω

2 t
)2 t2

+2Re
(
VjiV

∗
ij

−2eiωt
cosωt−cosωji

(ω+ωji)(ω−ωji)︷ ︸︸ ︷
1−ei(ωji+ω)t

ωji+ω
1−ei(ωji−ω)t

ωji−ω
)]

The first 2 terms yield: 2πt δ(ωji+ω) & 2πt δ(ωji−ω)

Behavior of the last term of P
(1)
ji (t) for ωji = ±ω +ε︸︷︷︸

→0

:

cosωt−cosωji
(ω+ωji)(ω−ωji) = cosωt−cos(±ω+ε)t

ω2−(±ω+ε)2

ε→0−−→ t sinωt
2ω
∼ 0

relative to the previous terms

I Transition rates

W
(1)
fi =

{
2π
~
〈
|λVji|2

〉
f
ρf(E0i−~ω) stimulated emission

2π
~
〈
|λVij|2

〉
f
ρf(E0i+~ω) absorption

J Historical remark
1916: A. Einstein theoretically discovers stimulated emission and discusses the de-

tailed balance between absorption and emission processes
1950’s: Application of these ideas in the construction of laser

� Application to stimulated electromagnetic transitions

Results of the periodic-field perturbation theory can be directly applied to

atoms or nuclei interacting with external electromagnetic waves of appropriate
wavelengths. We outline these issues, leaving the description of the spontaneous
elmg. emissions to Chapter 6 (after the quantization of elmg. field).

I Hamiltonian of particles in external field

Ensemble of N charged particles in an external classical elmg. field

Ĥ =
N∑
k=1

1
2Mk

[
~̂pk−qk ~A(~̂xk, t)

]2

+
N∑
k=1

V (~̂xk, t)

Neglecting q2
k
~A(~̂xk, t)

2 and assuming Coulomb gauge condition ~∇· ~A(~̂x, t)=0 ⇒

Ĥ ≈
N∑
k=1

1
2Mk

~̂pk
2 + V (~̂xk, t)︸ ︷︷ ︸
Ĥ0

−
N∑
k=1

qk
Mk

[
~A(~̂xk, t) · ~̂pk

]
︸ ︷︷ ︸
−
∫
~A(~x,t)·~j(~x) d~x ≡ Ĥ ′(t)

I Planar elmg. wave

~A(~x, t) = A0 ~ε cos
( ~k︷︸︸︷
ω
c~n · ~x− ωt

)
with ~ε · ~n = 0

⇒
(
~E(~x,t)
~B(~x,t)

)
= −A0

(
ω ~ε sin(~k·~x−ωt)

ω
c [~n×~ε] sin(~k·~x−ωt)

)
el. & mg. field intensities
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Averaged energy density: 〈w〉 = 1
2
[ε0〈 ~E2(~x, t)〉+ µ−1

0 〈 ~B2(~x, t)〉] = 1
2
ε0A

2
0ω

2

Averaged energy flow: 〈P 〉 = 〈w〉c = 1
2
ε0A

2
0ω

2c

I Periodic perturbation Hamiltonian

Ĥ ′(t) = −A0

2

N∑
k=1

qk
Mk

[
e−i

ω
c ~n·~̂xk(~ε · ~̂pk)︸ ︷︷ ︸

∝V̂ ↔ stimul. emission

e+iωt+ e+iωc ~n·~̂xk(~ε · ~̂pk)︸ ︷︷ ︸
∝V̂ † ↔ absorption

e−iωt
]

Emission: ~ω = E0i − E0j Absorption: ~ω = E0j − E0i

I Absorption cross section

In the following, we focus on the absorption processes (the procedure for stimu-
lated emission is analogous). We define the absorption cross section, which can

be seen as an area on the plane perpendicular to the incident wave propagation
direction. The elmg. energy passing through this area is being continuously
transferred to the system:

σabs
ji =

energy absorbed in unit time

incoming energy flow
=
~ω Wji

1
2ε0A

2
0ω

2c

Perturbation theory prediction (1storder):

σabs
ji ≈ π

ε0ωc

∣∣∣∣〈ψ0j

∣∣∣∣ N∑
k=1

qk
Mk
e+iωc ~n·~̂xk(~ε · ~̂pk)

∣∣∣∣ψ0i

〉∣∣∣∣2δ(E0i+~ω−E0j)

I Dipole approximation

Assume that the atom/nucleus size R� λ radiation wavelength

⇒ e+iωc ~n·~̂xk =1+
∞∑
n=1

1
n!

(
i ωc ~n·~̂xk

)n
≈ 1〈

ψ0j

∣∣∣∣ N∑
k=1

qk
Mk

e+iω
c
~n·~̂xk(~ε · ~̂pk)

∣∣∣∣ψ0i

〉
≈
〈
ψ0j

∣∣∣∣~ε · N∑
k=1

qk
Mk
~̂pk

∣∣∣∣ψ0i

〉
= . . .

Trick: ~̂pk = − i
~Mk[~̂xk, Ĥ0] ⇒ · · · = i

~ (E0j − E0i)︸ ︷︷ ︸
~ω

〈
ψ0j

∣∣∣∣~ε · N∑
k=1

qk~̂xk︸ ︷︷ ︸
~̂D

∣∣∣∣ψ0i

〉
where we introduced the operator of electric dipole moment:

⇒ σabs
ji ≈ πω

ε0c

∣∣∣〈ψ0j|~ε · ~̂D|ψ0i〉
∣∣∣2 δ(E0i+~ω−E0j)

For ~ε = ~nx: σabs
ji dω ≈ πω

ε0~c

∣∣∣〈ψ0j|D̂x|ψ0i〉
∣∣∣2 6= 0 iff |ji−1| ≤ jj ≤ (ji+1)

I Multipole expansion

To go beyond the dipole approximation, it is appropriate to expand the incom-
ing planar wave into spherical waves with increasing multipolarities. This is
not quite trivial as one needs to correctly treat the wave polarization, which on
the quantum level results from the photon spin (s=1).
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One has: ei
~k·~x = 4π

∞∑
l=0

+l∑
m=−l

il jl(kr) Y
∗
lm

(
~k
k

)
Ylm
(
~x
x

)
(cf. Sec. 6.3)

To include the polarization, we introduce circular & linear polarization

bases in a general coordinate system:
{
~e±=∓ 1√

2
(~nx±i~ny)

~e0=~nz

Arbitrary lin. polarization vector ~ε ≡ (εx~nx+εy~ny+εz~nz) =
√

4π
3

∑
ν=0,±1

Y ∗1ν(~ε) ~eν

Note: the circular polarization vector ~e0 is present because the evaluation is
done in a general system unrelated to ~k.

Introduce a “vector spherical function” with total angular momentum (multi-
polarity) λ: ~Ylλµ

(
~x
x

)
=
∑
ν,m

Cλµ
1νlm~eνYlm

(
~x
x

)
⇔ ~eνYlm

(
~x
x

)
=
∑
λ,µ

Cλµ
1νlm

~Ylλµ
(
~x
x

)
~ε ei

~k·~x = (4π)
3
2

3

∑
λ,µ

∑
l,m

∑
ν

il Cλµ
1νlm Y ∗1ν(~ε) Y

∗
lm

(
~k
k

)
jl(kr) ~Ylλµ

(
~x
x

)︸ ︷︷ ︸
spatial dependence

For each multipolarity λ it is possible to separate terms with both parities:
electric (E) & magnetic (M) components. From the resulting expansion one
can construct transition probabilities for Eλ & Mλ transitions. The above
dipole approximation is identified as E1.

J Historical remark
1900’s-10’s: Multipole expansion of elmg. field elaborated within the classical theory
1940’s-50’s: Multipole expansion applied in QM (M.E. Rose et al.)

6. SCATTERING THEORY

Description of the processes induced by scattering of particles belongs to the most
important application domains of quantum theory. Knowing the interaction Hamil-
tonian between the particles and the initial state, can one predict all outcomes &
probabilities? And inversely: knowing the initial & final states, can one determine
the interaction? This may resemble a task to analyze an internal structure of a
watch by detecting tiny parts shot out when the thing is smashed on an anvil. In
the quantum world, this is often the only research method available.

The scattering theory is a rather wide area, of which we are going to taste only
a little bit. Here is a general typology of scattering processes:

(1) a+ A→ A+ a elastic scattering (total kinetic energy conserved)

(2) a+ A→ A∗ + a∗ inelastic scattering (intrinsic excitations of particles

involved, total kinetic energy not conserved)

(3) a+ A→ B + b+ b′ + . . . more complex reaction (reconfiguration of the

interacting particles, appearance of new objects)
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6.1 Elementary description of elastic scattering

In a large part of this chapter we will deal with elastic scattering—the simplest scat-

tering process which does not change the nature or internal structure of the scattered
objects. First we focus on some basic concepts. The description of elastic scattering
requires to solve the stationary Schrödinger equation with the specific interaction

potential and an appropriate asymptotic behavior imposed on the wavefunction.

� Scattering by fixed potential

Consider a spinless projectile particle moving in a fixed finite-range field. This

corresponds to elastic scattering of the projectile on an infinite-mass target
particle, the target-projectile interaction being assumed to have a limited reach.

I Formulation
Infinite-mass scattering center with finite-range potential, i.e., V (~x) ≈ 0 for
|~x| > R. Particle with scalar wavefunction scattered by the potential.

Initial state ≡ momentum eigenstate of the scattered particle (assume ~p ∝ ~nz)

≡ plane wave eikz with k = 1
~ |~p|, energy E = (~k)2

2M

For the solution of the scattering problem, we solve the stationary Schrödinger
equation with the same energy E, which is in the continuous spectrum of

the full Hamiltonian:
[
− ~2

2M∆ + V (~x)
]
ψ(~x) = (~k)2

2M ψ(~x)

I Required asymptotic form of the wavefunction for |~x| � R

ψk(~x) ∝ eikz + fk(ϑ, ϕ)
eikr

r

≡
(

incoming
plane wave

)
+
(

outgoing
spherical wave

)
The function f(ϑ, ϕ) ≡ scattering amplitude

contains all relevant information on the scattering
of the incoming plane wave to various angles

I Cross section
Incoming flux: ~jin = ~

M k~nz Outgoing flux: ~jout(r, ϑ, ϕ) = |fk(ϑ,ϕ)|2
r2

~
M k~nr

So-called differential cross section is the flux to a an infinitesimal space angle

dΩ around direction (ϑ, ϕ) normalized by the incoming flux:

dσ(ϑ, ϕ) = outgoing flux to space angle dΩ
incoming flux = |~jout(r,ϑ,ϕ)|

dS︷︸︸ ︷
r2dΩ

|~jin|

Differential cross section:
(
dσ
dΩ

)
k

(ϑ, ϕ) = |fk(ϑ, ϕ)|2 (units of area)



159

� Two-body problem & center-of-mass system

Elastic scattering of a projectile particle on a finite-mass target particle repre-

sents a genuine two-body problem. The familiar way of solving this problem
proceeds via separating the relative target-projectile degree of freedom from
that related the system’s center of mass.

I Canonical transformation to relative & center-of-mass coordinates

2 particles with masses
(
M1
M2

)
. Position & momentum operators

(
~̂x1

~̂x2

)
&
(
~̂p1

~̂p2

)
New pair of canonically conjugate coordinates & momenta:

~̂xC = M1

M1+M2
~̂x1 + M2

M1+M2
~̂x2

~̂xR = ~̂x1 − ~̂x2

⇔
~̂pC = ~̂p1 + ~̂p2

~̂pR = M2

M1+M2
~̂p1 − M1

M1+M2
~̂p2

center of mass
relative

Commutators: [x̂Ci, p̂Cj] = [x̂Ri, p̂Rj] = i~δij, [x̂Ci, p̂Rj] = [x̂Ri, p̂Cj] = 0

⇒ corresponding Poisson brackets ⇒ the transformation is canonical

I Transformation of Hamiltonian

Kinetic energy of both particles: T̂ = ~̂p1

2

2M1
+ ~̂p2

2

2M2
= ~̂pC

2

2(M1+M2) + ~̂pR

2

2
M1M2

M1+M2

Define reduced mass: M =
M1M2

M1+M2

Potential depending on ~x1−~x2︸ ︷︷ ︸
~xR

⇒ Hamiltonian Ĥ =

ĤC︷ ︸︸ ︷
~̂pC

2

2Mtot
+

ĤR︷ ︸︸ ︷
~̂pR

2

2M
+ V (~̂xR)

This represents the separation of center-of-mass and relative motions. Solution
of the Schrödinger eq. with ĤC is a plane wave in center-of-mass coordinates.
We need to solve the equation with ĤR in relative coordinates. This represents

just the M 7→ M change with respect to the fixed-potential problem.

I Transformation of scattering angles & cross section

Once the two-body problem is solved in the the center-of-mass (CM) system (as
described above), one has to return back to the laboratory (LAB) system, in
which the scattering angles and cross sections are measured.

Notation: particle 1≡projectile, particle 2≡ target

~v1, ~v2, ~p1, ~p2, ϑ, ϕ ≡ velocities & momenta & scattering angles in LAB

~vC1, ~vC2, ~pC1, ~pC2, ϑC, ϕC ≡ velocities & momenta & scattering angles in CM

Center-of-mass speed in LAB:

~u = M1

M1+M2
~v1 + M2

M1+M2
~v2

= constant (along z)
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~pC1 =M1(~v1−~u)=M(~v1−~v2)=+~pC ~pC2 =M2(~v2−~u)=M(~v2−~v1)=−~pC

ϕ = ϕC assume ϕ = 0 ⇒ p1 sinϑ = pC sinϑC p1 cosϑ−M1u = pC cosϑC

⇒ tanϑ = pC sinϑC

pC cosϑC+M1u
tanϑC = p1 sinϑ

p1 cosϑ−M1u

Outgoing fluxes in both LAB & CM systems must be the same!(
dσ
dΩ

)
L
dΩL

!
=
(
dσ
dΩ

)
C
dΩC ⇒

(
dσ
dΩ

)
L

=
(
dσ
dΩ

)
C
dΩC

dΩL

dΩL = sinϑ dϑ dϕ

dΩC = sinϑC dϑC dϕC(
dσ
dΩ

)
L
(ϑ, ϕ) =

(
dσ
dΩ

)
C
(ϑC, ϕC) sinϑC

sinϑ
dϑC

dϑ

This is the desired relation between LAB and CM differential cross sections (the
derivative dϑC

dϑ can be evaluated from the above relation ϑC ↔ ϑ).
From now on we will work in CM, skipping the indices “C” and “R”.

� Effect of particle indistinguishability in cross section

As the last pre-requisite of the scattering theory, let us discuss a rather impor-
tant effect connected with quantum indistinguishability of identical particles.
Depending on whether the scattered particles are identical bosons or fermions,

the elastic cross section must be substantially modified with respect to the one
for distinguishable particles.

I Asymptotic wavefunction in CM: ψ(~x) ∝ eikz + fk(ϑ, ϕ)e
ikr

r

Exchange of particles in CM:

~x 7→ −~x ⇒
{ r 7→r
ϑ 7→π−ϑ
ϕ7→π+ϕ

I Symmetrized wavefunction (for example 4
2He+4

2He scattering):

ψ(~x) ∝
[
eikz + e−ikz

]
+

[
fk(ϑ, ϕ) + fk(π−ϑ, π+ϕ)

]
eikr

r
Cross section:(

dσ
dΩ

)+

k
= 1

2

{
|fk(ϑ, ϕ)|2+|fk(π−ϑ, π+ϕ)|2+2Re[fk(ϑ, ϕ)f ∗k (π−ϑ, π+ϕ)]

}
where 1

2 comes from the normalization of incoming flux

The same expression applies for 2 fermions in antisymmetric spin state
(for example e+ e in spin singlet)

I Antisymmetrized wavefunction (for example e+ e in spin triplet):

ψ(~x) ∝
[
eikz − e−ikz

]
+

[
fk(ϑ, ϕ)− fk(π−ϑ, π+ϕ)

]
eikr

r

Cross section:(
dσ
dΩ

)−
k

= 1
2

{
|fk(ϑ, ϕ)|2+|fk(π−ϑ, π+ϕ)|2−2Re[fk(ϑ, ϕ)f ∗k (π−ϑ, π+ϕ)]

}
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I Example: unpolarized e+e scattering

Probabilities for finding spin singlet & triplet states are 1
4 & 3

4 ⇒(
dσ
dΩ

)
k

= 1
4

(
dσ
dΩ

)+

k
+ 3

4

(
dσ
dΩ

)−
k

=

= 1
2

{
|fk(ϑ, ϕ)|2 + |fk(π−ϑR, π+ϕR)|2 − Re[fk(ϑ, ϕ)f ∗k (π−ϑ, π+ϕ)]

}
J Historical remark
1926: M. Born applies QM to scattering processes (probabilistic interpretation)
1930: N. Mott describes the effects of indistinguishability in Coulomb scattering

6.2 Perturbative approach to the scattering problem

There is a strong link of scattering theory to the nonstationary perturbation theory.
Indeed, if the interaction between scattered particles is much smaller than the cor-
responding free Hamiltonian (energy), the scattering problem can be reformulated
in terms of an equation which allows for iterative solutions.

� Lippmann-Schwinger equation

The L.-S. equation is a clone of stationary Schrödinger equation tailored for
general scattering problems. It results from the nonstationary formulation and
leads to a suitable perturbative expansion.

I Green operator defining equation:
(
i~ ∂∂t − Ĥ

)
Ĝ(t−t0) = i~δ(t−t0)

Green operator of free particle: Ĝ0(t−t0). Green op. for Ĥ(t) = Ĥ0(t) + Ĥ ′(t)

satisfies the equation: Ĝ(t−t0) = Ĝ0(t−t0)− i
~

+∞∫
−∞

Ĝ0(t−t1)Ĥ ′(t1)Ĝ(t1−t0) dt1

Equivalent expression: |ψ(t)〉 = |φ(t)〉 − i
~

+∞∫
t0

Ĝ0(t−t1)Ĥ ′(t1)|ψ(t1)〉 dt1

where |ψ(t)〉
|φ(t)〉

}
≡ states evolved from the same t=t0 initial state by

{
Ĥ(t)

Ĥ0(t)

I Free and interaction Hamiltonians

Ĥ0 ≡ ~̂pR

2

2M + Ĥint ≡ free Hamiltonian, with Ĥint ≡ intrinsic Hamiltonian
of both scattering objects

Ĥ ′ ≡ interaction Hamiltonian, including potential term V (~̂x1− ~̂x2) as well as
other terms affecting internal degrees of freedom of the objects

I Transition from time-dependent to time-independent description

Trick: Instead of Ĥ = Ĥ0 + Ĥ ′ we use Ĥ(t) = Ĥ0 + eηtĤ ′︸ ︷︷ ︸
Ĥ ′(t)

with η & 0

Later we will apply the limit η → 0+
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The initial state is prepared at t0 → −∞ as an eigenstate |φ~k〉 of Ĥ0 with

~pR=~~k. Since Ĥ(t=−∞) = Ĥ0, the initial state is an eigenstate of the full
Hamiltonian at that time. Due to the adiabatic onset of perturbation we may

assume that the system at any time is in the eigenstate of Ĥ(t) with the same
energy E (cf. the adiabatic theorem for discrete spectrum). This allows us to
integrate over the time variable and obtain a time-independent equation.

Denote
|φ~k(t)〉
|ψ~k(t)〉

}
≡ state evolved to a finite time t from |φ~k〉 by

{
Ĥ0

Ĥ(t)

|ψ~k(t)〉︸ ︷︷ ︸
e−

i
~Et|ψ~k〉

= |φ~k(t)〉︸ ︷︷ ︸
e−

i
~Et|φ~k〉

− i
~

+∞∫
−∞

Ĝ0(t−t1)︸ ︷︷ ︸
θ(t−t1)e−

i
~ Ĥ0(t−t1)

Ĥ ′(t1)︸ ︷︷ ︸
eηt1Ĥ ′

|ψ~k(t1)〉︸ ︷︷ ︸
e−

i
~Et1 |ψ~k〉

dt1 subst. τ = t1 − t

e−
i
~Et|ψ~k〉 = e−

i
~Et|φ~k〉 −

i
~ e

ηt− i
~Et

1

− i~ (E−Ĥ0+i~η)
Ĥ ′|ψ~k〉︷ ︸︸ ︷

0∫
−∞

e−
i
~ (E−Ĥ0+i~η)τĤ ′|ψ~k〉 dτ

|ψ~k〉 = |φ~k〉+ eηt

E−Ĥ0+i~η
Ĥ ′|ψ~k〉

I Lippmann-Schwinger equation the η → 0 limit of the above eq.

(the limit in the denominator cannot
be performed by plain substitution) |ψ~k〉 = |φ~k〉+

1

E − Ĥ0 + i~η
Ĥ ′|ψ~k〉

Comments:
(a) The L.-S. eq. in the above form is general, valid for all types of processes

(b) The state |ψ~k〉 represents the eigenstate of Ĥ = Ĥ0 + Ĥ ′ which is the result

of infinite-time evolution (by Ĥ) from |φ~k〉 ≡ eigenstate of Ĥ0 ⇒

lim
t→∞
〈φ~k ′|Û(+t,−t)|φ~k〉 = 〈φ~k ′|ψ~k〉 ≡ the |φ~k〉→|φ~k ′〉 element of S-matrix

(c) The L.-S. equation |ψ〉 = |φ〉+ 1
E−Ĥ0±iε

Ĥ ′|ψ〉 trivially holds for any states

|φ〉, |ψ〉 satisfying a pair of ordinary Schrödinger equations
{

Ĥ0|φ〉=E|φ〉
(Ĥ0+Ĥ ′)|ψ〉=E|ψ〉

}
.

The above derivation shows, in addition, that the L.-S. eq. (with +iε sign and
|φ〉, |ψ〉 related in the above-described way) represents the correct transforma-
tion of a time-dependent problem to the corresponding stationary problem.

(d) Expression 1
E−Ĥ0±iε

= [(E ± iε)Î − Ĥ0]
−1 stands for the operator inverse

defined on the whole Hilbert spaceH (because of the±iε term). This expression
represents the Fourier transform of the Green operator of the stationary

Hamiltonian Ĥ0:

Ĝ0(t) = i
2π lim

ε→0

+∞∫
−∞

e−
i
~Et

E−Ĥ0+iε
dE ⇔ Ĝ0(E) ≡ − i

~

∞∫
−∞

Ĝ0(t)e
+ i

~Etdt = lim
ε→0

1
E−Ĥ0+iε
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I Evaluation of Lippmann-Schwinger equation for elastic scattering

by a general local potential V (~x)

L.-S. eq. in x-representation: ψ~k(~x)=φ~k(~x)+
∫ 〈
~x
∣∣ 1
E−Ĥ0+i~η

∣∣~x ′〉〈~x ′|Ĥ ′|ψ~k〉 d~x ′
(a) 〈~x ′|Ĥ ′|ψ~k〉 = V (~x ′)ψ~k(~x

′)

(b)
〈
~x
∣∣ 1
E−Ĥ0+i~η

∣∣~x ′〉 =
∫∫
〈~x|~p ′〉︸ ︷︷ ︸
1

(2π~)
3
2
e+ i

~ ~p
′·~x

〈
~p ′
∣∣ 1
E−Ĥ0+i~η

∣∣~p ′′〉︸ ︷︷ ︸
1

E− 1
2M~p ′2+i~η δ(~p

′−~p ′′)

〈~p ′′|~x ′〉︸ ︷︷ ︸
1

(2π~)
3
2
e−

i
~ ~p
′′·~x ′

d~p ′d~p ′′ = . . .

E ≡ (~k)2

2M
2Mη
~ ≡ ε ~p ′ ≡ ~~q polar coordinates of ~q with ~nz ∝ (~x−~x ′)

= 1
(2π~)3

∫
e
i
~ ~p
′·(~x−~x ′)

E− 1
2M~p ′2+i~η d~p

′= 2M
~2(2π)3

∫
ei~q·(~x−~x

′)

k2−q2+iε d~q= 2M
~2(2π)3

∞∫
0

2π∫
0

π∫
0

eiq|~x−~x
′| cosϑ

k2−q2+iε q
2sinϑdϕdϑdq

= 2M
(2π~)2

∞∫
0

[
−eiq|~x−~x

′| cosϑ

iq|~x−~x ′|

]ϑ=π

ϑ=0

1
k2−q2+iε

q2dq = − 2M
(2π~)2

1
i|~x−~x ′|

∞∫
0

e+iq|~x−~x ′|−e−iq|~x−~x ′|
q2−k2−iε q dq

Poles at q = ±
√
k2 + iε ≈ ±

(
k + i ε

2k

)
⇒ use the residuum theorem

= − 2M
(2π~)2

1
i|~x−~x ′|

1
2

[ +∞∫
−∞

e+iq|~x−~x ′|

q2−k2−iε q dq︸ ︷︷ ︸
→2πi eik|~x−~x ′|

2k k

−
+∞∫
−∞

e−iq|~x−~x
′|

q2−k2−iε q dq︸ ︷︷ ︸
→−2πi eik|~x−~x ′|

2k k

]
ε→0−→ −2M

~2
1

4π

eik|~x−~x
′|

|~x− ~x ′|︸ ︷︷ ︸
Gk(~x,~x ′)

The solution ≡ Green function satisfying:

(∆ + k2)Gk(~x, ~x
′) = δ(~x− ~x ′)

⇒ L.-S. eq. with local potential in x-representation:

ψ~k(~x) = φ~k(~x)− 2M
~2

1
4π

∫
eik|~x−~x

′|

|~x− ~x ′|
V (~x ′)ψ~k(~x

′) d~x ′

I Asymptotic wavefunction for a finite-range potential

Now we show that the L.-S. equation in x-representation yields automatically
the wavefunction of the asymptotic form required in the elastic scattering
ansatz. Assume V (~x) ≈ 0 for |~x|>R and consider ψ~k(~x) for |~x| � R & |~x ′|

|~x− ~x ′| =
√
r2 + r′2 − 2rr′ cosα ≈ r − r′ cosα ⇒ eik|~x−~x

′|

|~x−~x ′| ≈ e−ikr
′ cosα eikr

r

~k ′ = k
~x

|~x|

scattering
direction

⇒ ψ~k(~x) =

(2π)−
3
2 ei

~k·~x︷ ︸︸ ︷
φ~k(~x)+

[
−2M

~2
1

4π

(2π)
3
2 〈φ~k′ |V̂ |ψ~k〉︷ ︸︸ ︷∫

e−i
~k ′·~x ′V (~x ′)ψ~k(~x

′) d~x ′
]

︸ ︷︷ ︸
(2π)−

3
2 f~k(~k ′)

eikr

r

L.-S. equation

⇒ explicit expression of the scattering amplitude from the exact solution ψ~k(~x):
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f~k(ϑ, ϕ) ≡ f~k(
~k ′) = −4π2M

~2 〈φ~k′|V̂ |ψ~k〉

J Historical remark
1937-40’s: J.A. Wheeler & W. Heisenberg introduce & investigate the scattering

matrix (elaborate the asymptotic-time formulation of scattering)
1950: B.A. Lippmann & J. Schwinger derive the equation known by their names

� Iterative expression of the scattering amplitude

The form of the Lippmann-Schwinger equation incites us to try an iterative
solution. This leads to the Born series for the cross section. Individual terms
of this series are closely related to expressions for transition amplitudes with

increasing order, as obtained in the nonstationary perturbation theory.

I Iterations in L.-S. equation

|ψ~k〉 = |φ~k〉+ 1
E−Ĥ0+i~η

Ĥ ′|ψ~k〉
= |φ~k〉+ 1

E−Ĥ0+i~η
Ĥ ′|φ~k〉+ 1

E−Ĥ0+i~η
Ĥ ′ 1

E−Ĥ0+i~η
Ĥ ′|ψ~k〉

= |φ~k〉+ 1
E−Ĥ0+i~η

Ĥ ′|φ~k〉+ 1
E−Ĥ0+i~η

Ĥ ′ 1
E−Ĥ0+i~η

Ĥ ′|φ~k〉+ · · ·

=
(
Î + 1

E−Ĥ0+i~η
Ĥ ′ + 1

E−Ĥ0+i~η
Ĥ ′ 1

E−Ĥ0+i~η
Ĥ ′ + · · ·

)
|φ~k〉I T-operator

The above iterative expression can be rewritten in terms of operator

T̂ (“transition matrix”) defined via the equation: T̂ |φ~k〉 = Ĥ ′|ψ~k〉

Ĥ ′ × Lippmann-Schwinger eq.: Ĥ ′|ψ~k〉︸ ︷︷ ︸
T̂ |φ~k〉

= Ĥ ′|φ~k〉+ Ĥ ′ 1
E−Ĥ0+i~η

Ĥ ′|ψ~k〉︸ ︷︷ ︸
T̂ |φ~k〉⇒ T̂ = Ĥ ′ + Ĥ ′ 1

E−Ĥ0+i~η
T̂

T̂ = Ĥ ′ + Ĥ ′ 1
E−Ĥ0+i~η

Ĥ ′ + Ĥ ′ 1
E−Ĥ0+i~η

Ĥ ′ 1
E−Ĥ0+i~η

Ĥ ′ + · · ·
I Born series
The above iterative expressions yield an expansion of the scattering amplitude:

f~k(
~k ′) = −4π2M

~2 〈φ~k′|V̂ |ψ~k〉︸ ︷︷ ︸
〈φ~k′ |T̂ |φ~k〉

= f
(1)
~k

(~k ′) + f
(2)
~k

(~k ′) + f
(3)
~k

(~k ′) + · · ·

Interpretation through
sequences of free evolutions

& point interactions

f
(1)
~k

(~k ′) = −4π2M
~2 〈φ~k′|V̂ |φ~k〉 1st Born approx.

f
(2)
~k

(~k ′) = −4π2M
~2 〈φ~k′|V̂

1
E−Ĥ0+i~η

V̂ |φ~k〉 2nd Born approx.

f
(3)
~k

(~k ′) = −4π2M
~2 〈φ~k′|V̂

1
E−Ĥ0+i~η

V̂ 1
E−Ĥ0+i~η

V̂ |φ~k〉 3rd Born approx.

. . . . . . . . .
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I Relation to non-stationary perturbation theory

Comparison of the 1st Born approximation with the Fermi golden rule

Transition rate W~k→~k′ = 2π
~ |〈φ̃~k′|V̂ |φ̃~k〉|

2 ρf(E) = |~jin|
(
dσ
dΩ

)
~k

(~k ′) dΩ

|φ̃~k〉 ≡
1

L
3
2
ei
~k·~x is a plane wave in a box of linear size L

⇒ ~k = 2π
L ~n with ~n =

(
nx
ny
nz

)
and nx, ny, nz = 0, 1, 2, . . .

(a) |〈φ̃~k′|V̂ |φ̃~k〉|
2 = 1

L6

∣∣∣∫ ei(~k−~k ′)·~x ′V (~x ′) d~x ′
∣∣∣2

(b) ρf(E) = dN
dE

=
( L

2π)
3
k2 dk dΩ

~2k
M dk

=
(
L
2π

)3 Mk
~2 dΩ with E = (~k)2

2M

(c) |~jin| = ~k
L3M

⇒
(
dσ
dΩ

)
~k

(~k ′) =
(

4π2M
~2

)2 ∣∣∣ 1
(2π)3

∫
ei(

~k−~k ′)·~x ′V (~x ′) d~x ′
∣∣∣2 ≡ |f (1)

~k
(~k ′)|2

The 1st order of nonstationary perturbation theory yields the 1st Born approx.

I Convergence criteria

The Born series for scattering amplitude converges for finite-range potentials.
For infinite-range potentials, the series may converge if the potential decreases
“fast enough”. For a given potential V (~x) there ∃ a function of energy λmax(E)

(convergence radius) such that the Born series of potential Vλ(~x) ≡ λV (~x)
converges for λ ≤ λmax(E).

I 1st Born approximation for spherically symmetric potentials

For potentials depending just on r=|~x| the integration in each term of the Born

series is reduced. For the first term, in particular, we proceed as follows:

f
(1)
~k

(~k ′) = −4π2M
~2

1
(2π)3

∫
ei(

~k−~k ′)·~x ′V (|~x ′|) d~x ′ Fourier transform of V

Transferred momentum ~~q = ~(~k ′−~k)

q = |~k ′−~k| =
√
k′2 + k2 − 2k′k cosϑ

=
√

2k2(1− cosϑ) = 2k sin ϑ
2

Introduce local coord. system (x′, y′, z′) with z′ along ~q and then spherical co-
ordinates (r′, θ′, φ′):

f
(1)
~k

(~k ′) = − M
2π~2

∞∫
0

π∫
0

2π∫
0

e−iqr
′ cos θ′V (r′) r′2 sin θ′ dφ′ dθ′ dr′ =

−M~2

∞∫
0

[
e−iqr

′ cos θ′

−iqr′

]π
0︸ ︷︷ ︸

− 2 sin qr′
qr′

V (r′) r′2dr′⇒ f
(1)
~k

(~k ′)=
M

~2k sin ϑ
2

∞∫
0

r′V (r′) sin
(
2kr′sin ϑ

2

)
dr′

Scattering amplitude depends only on angle ϑ (not on ϕ). This is valid for all
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terms of the Born series. This can be seen directly from the axial symmetry of

the problem with an isotropic potential around the incoming-particle direction.

I Yukawa scattering

Scattering by Yukawa potential V (r) = K
e−αr

r
with α > 0

f
(1)
~k

(~k ′)= KM
~2k sin ϑ

2︸ ︷︷ ︸
q/2

∞∫
0

e−αr
′
sin
(
2kr′ sin ϑ

2

)︸ ︷︷ ︸
1
2i [e

+iqr′−e−iqr′ ]

dr′

= 2KM
~2

1
2iq

+2iq

α2+q2︷ ︸︸ ︷[ ∞∫
0

e(−α+iq)r′dr′−
∞∫

0

e(−α−iq)r′dr

]
= 2KM

~2
1

α2+4k2 sin2 ϑ
2

⇒
(
dσ
dΩ

)
k
(ϑ) =

(
2KM
~2

)2 1[
α2 + 4k2 sin2 ϑ

2

]2
The α→ 0 limit ⇒ Rutherford formula:

(
dσ
dΩ

)
p

(ϑ) =
(
M
2

QQ′

4πε0

)2
1

p4 sin4 ϑ
2

This formula can be obtained classically (it does not contain ~). However,
Coulomb scattering cannot be described by the spherical-wave asymptotics
used here, as this asymptotics is applicable only for finite-range or quickly

decreasing potentials (cf. Sec. 6.3).

J Historical remark
1911: E. Rutherford derives classically the cross-section formula for Coulomb scat-
tering to describe the 1909 experiment by H. Geiger & E. Marsden

1926: M. Born describes the scattering processes within QM; he derives explicitly
the 1stapproximation of a general scattering amplitude
1935: H. Yukawa introduces the potential for meson-mediated interaction of nucle-

ons; this potential is now used to describe screened Coulomb interactions

6.3 Method of partial waves

We turn now to another method of analyzing scattering processes. It strictly relies
on the assumption of spherical symmetry. The cross section is again expressed as
an infinite series, but of a different type than in the perturbative approach.

� Expression of elastic scattering in terms of spherical waves

The basic idea of the method is to express the scattered particle wavefunction

in terms of states with good orbital angular momenta. This is always possible
for spherically symmetric potentials.

I Asymptotic wavefunction ψ~k(~x) ≈ 1

(2π)
3
2

[
eikz + fk(ϑ)e

ikr

r

]
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for a general isotropic potential is expanded in orbital-momentum basis:

|klm〉 ∝ Rkl(r)Ylm(ϑ, ϕ) with l,m ≡ conserved quantum numbers.

Since z is associated with the direction of the incoming-particle linear momen-

tum, the angular-momentum projection to z is 0⇒ only m = 0 components

Yl0(ϑ, ϕ) ∝ Pl(cosϑ) contribute to the expansion:

I Asymptotic expansion of the incoming plane wave into spherical waves:

eikz =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cosϑ) ≈
∞∑
l=0

(2l + 1)e
+ikr−e−i(kr−lπ)

2ikr
Pl(cosϑ)

where we used asymptotics of Bessel functions for r � 1
k

= ~
p

= λ
2π

:

jl(kr) ∼
sin(kr−l π2 )

kr
= e+i(kr−l π2 )−e−i(kr−l

π
2 )

2ikr

I Expansion of scattering amplitude: fk(ϑ) =
∞∑
l=0

(2l + 1)Fl(k)Pl(cosϑ)
where Fl(k) ≡partial-wave amplitude

(general expression of any function of ϑ)I Entire wavefunction

ψ~k(~x) ≈ 1

(2π)
3
2

∞∑
l=0

(2l + 1) 1
2ik

{
[1 + 2ikFl(k)]︸ ︷︷ ︸

Sl(k)

e+ikr

r
− e−i(kr−lπ)

r

}
Pl(cosϑ)

Sl(k) ≡ 〈+kl0|Ŝ|+kl0〉 is the diagonal S-matrix element in basis |+klm〉
of outgoing (sign +) spherical waves with given l & k. This can be seen from

the evolution: eikz ≡
∞∑
l=0

(2l+1)e
+ikr−e−i(kr−lπ)

2ikr
Pl(cosϑ)

t→∞−→ ψ~k(~x) ≡
∞∑
l=0

(2l+1)Sl(k)e+ikr−e−i(kr−lπ)

2ikr
Pl(cosϑ)

I Continuity equation ⇒ incoming flux = outgoing flux

⇒ coefficients for each l at e+ikr

r and e−ikr

r differ just by a phase ⇒ |Sl(k)|=1

1 + 2ikFl(k) = Sl(k) = e2iδl(k) ⇔ Fl(k) =
Sl(k)− 1

2ik
= eiδl(k) sin δl(k)

k

δl(k) ≡ relative phase shift of outgoing partial wave l

The above relation defines alternative
parametrizations (but just parametrizations!)
of the scattering amplitude & elastic cross section
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I Expression of scattering amplitude through S-matrix & phase shifts

fk(ϑ)=
1

2ik

∞∑
l=0

(2l+1)[Sl(k)−1]Pl(cosϑ)=
1

k

∞∑
l=0

(2l+1) eiδl(k) sin δl(k)Pl(cosϑ)

This allows one to express the differential cross section
(
dσ
dΩ

)
k
(ϑ) = |fk(ϑ)|2

I Integral cross section of elastic scattering

Integrating the differential cross section over the full space angle we obtain the
integral cross section:

σel(k) =
2π∫
0

π∫
0

|fk(ϑ)|2 sinϑ dϕ dϑ

= 2π
∑
l,l′

(2l+1)(2l′+1)Fl(k)F ∗l (k)

2
2l+1δll′︷ ︸︸ ︷

π∫
0

Pl(cosϑ)Pl′(cosϑ) sinϑ dϑ︸ ︷︷ ︸
d(cosϑ)

σel(k)=4π
∞∑
l=0

(2l+1)|Fl(k)|2 =
π

k2

∞∑
l=0

(2l+1)|Sl(k)−1|2 =
4π

k2

∞∑
l=0

(2l+1) sin2δl(k)

=
∞∑
l=0

σel
l (k) σel

l (k)=0 for [ Fl(k)=0 ⇔ sin δl(k)=0 ⇔ Sl(k)=1 ]

I Classical calculation using impact factor

The above expressions for integral cross sections can be easily interpreted in a
classical language, making use of the so-called impact factor b, which is defined

as the transverse projectile–target distance for z → −∞
Orbital momentum L︸︷︷︸√

~2l(l+1)

= b p︸︷︷︸
~k

⇒ for given l we have: bl(k) ≈
√
l(l+1)

k

Estimated cross section of lth part. wave:
σel
l (k) = π(b2

l+ 1
2

−b2
l−1

2

) = π
k2 (2l+1)

In the quantum calculation we obtained:

σel
l (k) = π

k2 (2l+1)

∈[0,4]︷ ︸︸ ︷
4 sin2 δl(k)

⇒ possibility of constructive/destructive interference for each term

I Estimate of maximal angular momentum

The classical impact-factor considerations make it possible to estimate the up-
per value of l where the cross-section series can be cut off. This is obtained
from the maximal angular momentum for which the particle still hits the finite
spatial region of nonzero potential:

We expect σel
l (k)≈0 for l>lmax where lmax ≈ kR with R ≡ range of V
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In this way, all infinite sums become effectively finite sums:
∞∑
l=0

−→
lmax∑
l=0

For instance: fk(ϑ) ≈ 1
k

lmax∑
l=0

(2l + 1) eiδl(k) sin δl(k)Pl(cosϑ)

I Comparison with the asymptotics of a real solution

If we happen to know the actual unbound solution of the Schrödinger equation
for the given potential (with the given energy in the continuous spectrum),
we can directly calculate the required phase shifts & amplitudes of individual

partial waves:

Radial Schrödinger equation d2ukl(r)
dr2 −

[
2µ
~2 V (r) + l(l+1)

r2

]
ukl(r) + k2ukl(r) = 0

Solution Rkl(r) = ukl(r)
r outside the range of the potential (for r≥R):

= al jl(kr) + bl nl(kr) = c+
l h

+
l (kr) + c−l h

−
l (kr)

jl(kr), nl(kr) ≡ Bessel, Neumann h±l (kr) = jl(kr)± inl(kr) ≡ Hankel
functions with asymptotics: functions with asymptotics:

jl(kr) ≈ 1
kr sin

(
kr−lπ2

)
= 1

kr cos
[
kr−(l+1)π2

]
nl(kr) ≈ − 1

kr
cos
(
kr−lπ

2

)
= 1

kr sin
[
kr−(l+1)π2

] h+
l (kr) ≈ 1

kre
+i[kr−(l+1)π2 ]

h−l (kr) ≈ 1
kre
−i[kr−(l+1)π

2 ]

The general form of r≥R wavefunction yielding ψkl(~x)= 1
(2π)3/2e

ikz for V (r)=0:

ψkl(~x) = 1

(2π)
3
2

∞∑
l=0

(2l+1)il

Rkl(r)︷ ︸︸ ︷[
c+
l h

+
l (kr) + c−l h

−
l (kr)

]
Pl(cosϑ)

≈ 1

(2π)
3
2

∞∑
l=0

(2l+1) 1
ikr

[
c+
l e

+ikr − c−l e−i(kr−lπ)
]
Pl(cosϑ)

This is compared with the required asymptotics:

ψ~k(~x) = 1

(2π)
3
2

∞∑
l=0

(2l+1) 1
2ikr

[
e2iδl(k)e+ikr − e−i(kr−lπ)

]
Pl(cosϑ)

⇒ r ≥ R solution of radial Schrödinger eq. expressed in terms of δl(k):

c+
l = e2iδl(k)

2
, c−l = 1

2
⇒ Rkl(r) = e2iδl(k)

2
[jl(kr)+inl(kr)]+

1
2
[jl(kr)−inl(kr)]

Rkl(r) = eiδl(k)
[
cos δl(k) jl(kr)− sin δl(k) nl(kr)

]
Note: Bessel functions jl(kr) are present in the incoming wave, while the Neu-

mann functions nl(kr) are only in the outgoing wave (they disappear for δl → 0).

Conclusion: If one writes the actual asymptotic solution of the radial Schrödinger
eq. in the above form, the phase shifts δl(k) for all partial waves are read out
from that expression.

I Determination of phase shifts for a sharp potential
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The above general method yields explicit results for potentials that vanish iden-

tically outside the range R: V (r)

{
6= 0 for r ≤ R (inside)

= 0 for r > R (outside)

We require continuous connection of “inside-outside” logarithmic derivative

βkl(R) ≡ R d
dr

logRkl(r)
∣∣
r=R

= R
R′kl(r)
Rkl(r)

∣∣∣
r=R

∀ l = 0, 1, 2 . . .

βkl(R)=kR
cos δl(k)

djl
dr (kR)−sin δl(k)

dnl
dr (kR)

cos δl(k) jl(kR)−sin δl(k)nl(kR) ⇔ tan δl(k)=
kR djl

dr
(kR)−βkl(R) jl(kR)

kR dnl
dr (kR)−βkl(R)nl(kR)

Values of βkl(R) calculated from the inside solution ⇒ we determine δl(k)

I Hard-sphere scattering

V (r) =

{
∞ for r ≤ R

0 for r > R

Rkl(R) = eiδl(k)
[
cos δl(k) jl(kR)− sin δl(k) nl(kR)

]
= 0 ⇒ tan δl(k)=

jl(kR)

nl(kR)

l=0: j0(kR)= sin kR
kR

, n0(kR)=−cos kR
kR

⇒ δ0(k) = −kR

(a) High-energy case (kR� 1)

l� kR ⇒ jl(kR) ≈ 1
kR sin(kR− lπ2 ), nl(kR) ≈ − 1

kR cos(kR− lπ2 )

⇒ tan δl(k) = − tan
(
kR− lπ

2

)
⇒ the lth and (l+1)th phase shifts differ by π

2

⇒ their contrib. to σel is 4π
k2

[
(2l+1) sin2 δl(k)+(2l+3) cos2 δl(k)

]
≈ 4π

k2 (2l+2)

⇒ each l-term of the series contributes by ≈ 4π
k2

2l+2
2

l� kR ⇒ jl(kR) ≈ (kR)l

(2l+1)!! , nl(kR) ≈ − (2l−1)!!
(kR)l+1

⇒ tan δl(k) ≈ − (kR)2l+1

(2l+1)!!(2l−1)!!
⇒ tan δl+1(k) ≈

(
kR
2l

)2︸ ︷︷ ︸
≪1

tan δl(k) ⇒ decrease with l

Assume lmax ≈ kR

σel(k) ≈ 4π
k2

lmax∑
l=0

(2l+1) sin2 δl(k) ≈ 4π
k2

≈ (kR)2

2︷ ︸︸ ︷
kR∑
l=0

2l+2
2 ≈ 2πR2 ≈ σel . . . 2× πR2

(b) Low-energy case (kR� 1)

Only the l=0 term works: δ0(k) = −kR ≈ sin δ0(k)

σel(k) ≈ 4π
k2 sin2 δ0(k) ≈ 4πR2 ≈ σel . . . 4× πR2

In no case the classical geometrical cross section σclas = πR2 was obtained.
The reason for low energy is a quantum interference phenomenon, but why is
it so for high energy, when one would expect the classical behavior?
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I Shadow scattering

Answer to the above question concerning the geometric cross section in high-E

case: For σel=0 the wavefunction would be ψ(~x)∝eikz, which is 6=0 everywhere,
including the region behind the sphere. Just to generate ψ(~x) vanishing in the
region behind the sphere, the cross section must be σel ≈ πR2. The reflected

part of ψ(~x) produces another contribution σel ≈ πR2. Together: σel ≈ 2πR2

“Reflected” & “shadow” parts identified in:

f(ϑ) =
∞∑
l=0

(2l + 1) e
2iδl(k)−1

2ik︸ ︷︷ ︸
Fl(k)

Pl(cosϑ) =

=

frefl(ϑ)︷ ︸︸ ︷
1

2ik

∞∑
l=0

(2l+1)e2iδl(k)Pl(cosϑ)

fshad(ϑ)︷ ︸︸ ︷
− 1

2ik

∞∑
l=0

(2l+1)Pl(cosϑ)

σrefl =
∫∫
|frefl(ϑ)|2 sinϑdϕdϑ =

= 1
4k2

∑
l,l′

(2l+1)(2l′+1)ei[δl(k)−δl′(k)] 4π
2l+1δll′ = π

k2

lmax∑
l=0

(2l+1) ≈ πR2

σshad =
∫∫
|fshad(ϑ)|2 sinϑdϕdϑ= · · · · · · · · · · · · ≈ πR2

σinterf =
∫∫

2Re[frefl(ϑ)f ∗shad(ϑ)] sinϑdϕdϑ = · · · = 2π
k2

lmax∑
l=0

(2l+1) cos[2δl(k)] ≈ 0

I Coulomb scattering

Coulomb potential is a long-range one ⇒ special treatment needed. Here

we just outline the method of solution without performing all calculations.
Consider the repulsive case:[
− ~2

2µ∆ + QQ′

4πε0
1
r −

(~k)2

2µ

]
ψk(~x) = 0 ⇔

[
∆ + k2 − 2γk

r

]
ψk(~x) = 0

γ = QQ′µ
4πε0~2k = e2

4πε0(~c)︸ ︷︷ ︸
α
.
= 1

137

cµ
~k︸︷︷︸

(vc)
−1

ZZ ′
[
d2

dr2 + k2 − 2γk
r −

l(l+1)
r2

]
ukl(r) = 0

Schrödinger eq. is solved analytically in terms of hypergeometric functions. This

yields the following asymptotic solution:

ψk(~x)
r→∞∝ ei[kz−γ ln k(r−z)] + fk(ϑ)e

i(kr−γ ln 2kr)

r

∝ 1
2ik

∞∑
l=0

(2l + 1)Pl(cosϑ)
[
e2iδl(k) ei(kr−γ ln 2kr)

r − e−i(kr−γ ln 2kr−lπ)

r

]
with known amplitude fk(ϑ) = −γ e

−i[γ ln(sin2 ϑ
2)−2δ0(k)]

2k sin2 ϑ
2

and phase shifts δl(k)

~jin ∝ −~γµ
x

r(r−z)~nx −
~γ
µ

y
r(r−z)~ny +

(
~k
µ −

~γ
µ

1
r

)
~nz

r→∞−→ ~k
µ ~nz

~jout ∝ |fk(ϑ)|2
r2

(
~k
µ −

~γ
µ

1
r

)
~nr

r→∞−→ |fk(ϑ)|2 ~k
µr2 ~nr
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Cross section:(
dσ
dΩ

)
k

(ϑ) = |fk(ϑ)|2 =

∣∣∣∣ 1
k

∞∑
l=0

(2l + 1)eiδl(k) sin δl(k)Pl(cosϑ)

∣∣∣∣2 = α2ZZ′

16

(~c
E

)2 1
sin4 ϑ

2

Superposition Coulomb potential plus a finite-range potential ⇒ the same
asymptotics is used, in which δl(k) must be determined numerically

� Inclusion of inelastic scattering

The method of partial waves makes it easy to include into the description the

presence of inelastic scattering. More precisely, the inelastic scattering is in-
cluded only through its influence on elastic scattering, the method providing
nothing more but just a convenient phenomenological parametrization. A mi-

croscopic description requires to keep under control all the segments of the full
Hilbert space where products of various inelastic channels appear, which is a
hard problem. Nevertheless, even with these limitations, the parametrization

provided by the partial-wave method has rather important consequences.

I Elastic scattering in presence of inelastic channels

The S-matrix is no more a complex unity but satisfies: |Sl(k)| ∈ [0, 1]:

Sl(k) = ηl(k)︸︷︷︸
∈[0,1]

e2iδl(k) ⇒
Fl(k) = Sl(k)−1

2ik

= 1
2k

{
ηl(k) sin 2δl(k) + i [1−ηl(k) cos 2δl(k)]

}

fk(ϑ) =
∞∑
l=0

(2l+1)Fl(k)Pl(cosϑ) ⇒ the same expressions for σel(k) as before:

σel(k)=
π

k2

∞∑
l=0

(2l+1) |Sl(k)−1|2 =
π

k2

∞∑
l=0

(2l+1)

[
1+η2

l (k)−2ηl(k) cos 2δl(k)

]
I Integral cross section of inelastic processes

The integral (but not differential!) inelastic cross section can be calculated

through the balance of the overall incoming & outgoing flows derived from

asymp. wavefunction: ψ~k(~x) ≈ 1

(2π)
3
2

∞∑
l=0

(2l+1) 1
2ik

{
Sl(k) e+ikr

r
− e−i(kr−lπ)

r

}
Pl(cosϑ)

Radial flow: ~jr(~x) = 1
µ

Re

(
ψ∗~k(~x)

[
−i~ ∂

∂r
− i~

r

]︸ ︷︷ ︸
p̂r rad.momentum

ψ~k(~x)

)
~nr =

= 1
µ

1
(2π)3 ~nr

∑
l,l′

(2l+1)(2l′+1)Pl(cosϑ)Pl′(cosϑ)×

×Re 1
−2ik

{
S∗l (k) e

−ikr

r −
e+i(kr−lπ)

r

}
~k
2ik

{
Sl(k) e+ikr

r + e−i(kr−lπ)

r

}
= 1

µ
1

(2π)3 ~nr
∑
l,l′

(2l+1)(2l′+1)Pl(cosϑ)Pl′(cosϑ) ~
4kr2

[
|Sl(k)|2 − 1

]
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J el(k) =
∫∫

jr(r, ϑ, ϕ)r2 sinϑdϕdϑ = − 1
(2π)3

π~
µk

∞∑
l=0

(2l+1)
[
1−|Sl(k)|2

]
≤ 0

This is the total incoming flow which is not compensated by the outgoing flow

because of inelastic processes. The integral cross section of inelastic process:

σinel(k) = J inel(k)
jin(k) = −Jel(k)

1
(2π)3

~k
µ

⇒ σinel(k) =
π

k2

∞∑
l=0

(2l+1)
[
1−|Sl(k)|2

]
I Total cross section

σtot(k) = σel(k) + σinel(k) = π
k2

∞∑
l=0

(2l+1)
{
|Sl(k)−1|2 +

[
1− |Sl(k)|2

]}
σtot(k) =

2π

k2

∞∑
l=0

(2l+1)
[
1− ReSl(k)︸ ︷︷ ︸

ηl(k) cos 2δl(k)

]
I Relation between elastic and inelastic cross sections

Define

 xl(k) ≡ σinel
l (k)

π
k2 (2l+1) = 1−η2

l (k) ∈ [0, 1]

yl(k) ≡ σel
l (k)

π
k2 (2l+1)

= 1+η2
l (k)−2ηl(k) cos 2δl(k) ∈ [0, 4]

⇒ yl(k) = 2− xl(k)− 2
√

1− xl(k) cos 2δl(k)

Considering −1 ≤ cos 2δl(k) ≤ +1 we obtain:

2−xl(k)−2
√

1−xl(k)

≤ yl(k) ≤
2−xl(k)+2

√
1−xl(k)

This represents an important constraint upon
the possible values of elastic & inelastic integral

cross sections for a given partial wave.

I Optical theorem

Statement: Imaginary part of the elastic forward scattering amplitude

∝ total cross section including all processes: Im f el
k (ϑ=0) = k

4π
σtot(k)

Proof for isotropic potentials:

Imf el
k (ϑ=0) =

∞∑
l=0

(2l+1) ImFl(k)︸ ︷︷ ︸
1
2k [1−ηl(k) cos 2δl(k)]

1︷ ︸︸ ︷
Pl(1) = 1

2k

∞∑
l=0

(2l+1) [1−ηl(k) cos 2δl(k)]

= k
4πσ

tot(k)

This relation is valid in the most general case, i.e., also for anisotropic po-
tentials (beyond the method of partial waves).
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For the elastic scattering, it can be proven from the L.-S. equation that:

−4π2µ
~2 Im〈φ~k|T̂ |φ~k〉︸ ︷︷ ︸

Imf~k(~k)

= k
4π

(
4π2µ
~2

)2
∫
|〈φ~k ′|T̂ |φ~k〉|

2 δ
(
k′−

√
2µE
~2

)
k′

2
dk′dΩ′︸ ︷︷ ︸

σel(k)

A close analogue of the optical theorem can be formulated within the (non)sta-
tionary perturbation theory: The amplitude of the initial unperturbed state
in the final state, obtained through the perturbation, is determined just from

the normalization condition. This depends on the total admixture of all other
unperturbed states in the final state.

� Low-energy & resonance scattering

We conclude this section by sketching two additional topics: The low-energy

scattering, which is a tool to determine basic properties of interaction, and
resonance scattering, which indicates the existence of metastable states. Both
these topic became much expanded in more advanced courses of QM.

I Low-energy limit of scattering amplitude

For k→0, only the l=0 partial wave active ⇒ if no inelastic scattering present,
there is just 1 real parameter determining this limit:

scattering length a ≡ lim
k→0

[
−sin δ0(k)

k

]
lim
k→0

σel(k) = lim
k→0

4π
k2 sin2 δ0(k) = 4πa2 = σel(E≈0)

The visual meaning of scattering length is derived from the wavefunction form
at r>R:

Rk,l=0(r)=eiδ0(k)
[
cos δ0(k)

sin kr
kr︷ ︸︸ ︷

j0(kr)−sin δ0(k)

− cos kr
kr︷ ︸︸ ︷

n0(kr)
]
= eiδ0(k)

kr sin [kr+δ0(k)]

h eiδ0(k)

kr
sin[k(r − a)] ≡ uk(r)

r

⇒ uk(r)
∣∣
k→0
∝ (r − a) for r≥R

⇒ the tangent at r=R crosses zero
at r=a

The value of a indicates some basic properties of the potential, although the

information it gives is usually not unique:

0 < a < R
a . R

−∞ < a < +∞
a < 0
R� a

⇔


repulsive potential (convex→ concave wf.)
strong repulsive potential(a = R for hard sphere)

attractive potential
shallow attractive potential
attractive potential with weakly bound state E . 0
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I Isolated resonance

Assume that the S-matrix extended to complex plane k ∈ C has

a simple pole at k = kR with (~kR)2

2µ = E0 − i Γ
2 ≡ E

⇒ SR
l (k) =

k − k∗R
k − kR

|SR
l (k)|=1 for k ∈ RkR =

√
2µE0

~2

√
1− i Γ

2E0
≈

k0︷ ︸︸ ︷√
2µE0

~2 −i

κ︷ ︸︸ ︷√
µΓ2

8~2E0
for Γ�E0

For energyE ∈ C the evolution is not unitary⇒ |〈ψR(t)|ψR(t)〉|2≡
∣∣e− i

~

(
E0−i Γ

2

)
t
∣∣2

=e−
Γ
~ t≡P0(t)≡ survival probability⇒ quasistationary state, lifetime τ = ~

Γ

Only the outgoing wave is present at k=kR since SR
l (kR)=∞

⇒ scattering wavefunction: R(r) ∝ e+ikRr

r
≈ e+ik0r

r
e+κ r

Approximation of the cross section for E−E0 � E0:

σR
l (k) = π

k2 (2l+1)
∣∣SR

l (k)−1
∣∣2 = π

k2 (2l+1)
∣∣∣kR−k∗R
k−kR

∣∣∣2 ≈ π
k2 (2l+1)

4κ2

(k−k0)2+κ2︷ ︸︸ ︷∣∣∣ −2iκ
(k−k0)+iκ

∣∣∣2 =

4π
k2 (2l+1)

µ

2~2 (Γ
2 )

2

2µ

~2E0(
√
E−
√
E0)

2
+ µ

2~2 (Γ
2 )

2≈ 4π
k2 (2l+1)

(Γ
2 )

2

(E−E0)2+(Γ
2 )

2

with (
√
E−
√
E0 )2 ≈ (E−E0)2

4E0

Breit-Wigner resonance

σR
l (k) ≈ 4π~2

2µE
(2l+1)

(
Γ
2

)2

(E − E0)2 +
(

Γ
2

)2

J Historical remark
1870-90’s: Lord Rayleigh develops the scattering theory for elmg. and sound waves

(he derives the “optical theorem” and elaborates the partial-wave expansion)
1927: H. Faxen & J. Holtsmark apply the partial-wave expansion in QM
1929: G. Breit & E. Wigner describe resonant states via the B.-W. distribution

1939: N. Bohr, R. Peierls, G. Placzek apply the Rayleigh optical relation in QM

7. MANY-BODY SYSTEMS

It this Chapter, we will deal with systems consisting of a number (fixed or variable)

of mutually interacting particles. In the main focus will be the systems of indistin-
guishable particles, either bosons or fermions. The concept of indistinguishability
and its various consequences were already discussed at several places of this course,
starting from Chapter 1. Now we intend to formulate a general language describing
all non-relativistic many-particle systems like atoms, nuclei, molecules, condensates
etc. As a by product, we will learn how to quantize the electromagnetic field.
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7.1 Formalism of particle creation/annihilation operators

We introduce the principal mathematical gear of many-body physics: the opera-
tors that can create or annihilate particles in a given state. These operators make it
possible to generate a basis of the whole Fock space and to express any physical oper-

ator in this space. Moreover, basic algebraic properties of the creation/annihilation
operators capture elegantly the difference between bosons and fermions.

� Hilbert space of bosons & fermions

Let us first recall the relevant properties of bosonic and fermionic subspaces of
a general many-particle Hilbert space. We introduce a so-called representation

of occupation numbers in these subspaces, which is a natural starting point for
creation/annihilation operators.

I Indistinguishable particles

N identical distinguishable particles: Hilbert space H(N) = H1⊗H2⊗· · ·⊗HN ,
where all single-particle spaces Hk are the same

Projection to bosonic/fermionic spaces H(N)
± expressed via sums over

particle permutations (1, 2, . . . , N) 7→ (π1, π2, . . . , πN) ≡ {π}

bosons: P̂+ = 1
N !

N !∑
{π}=1

Ê{π} fermions: P̂− = 1
N !

N !∑
{π}=1

σ{π}︸︷︷︸
±1

permutation sign

Ê{π}

(factor 1
N !
⇒ projector property P̂ 2

± = P̂±)

I Bases in the bosonic & fermionic spaces

Separable (non-entangled) basis in H(N): |Φi1i2...iN 〉 ≡ |φi1〉1|φi2〉2 . . . |φiN 〉N
where |φi〉k ≡ ith basis state in the kth single-particle space

Simplified notation: |Φi1i2...iN 〉→ |Φ12...N〉 ≡ |φ1〉1|φ2〉2 . . . |φN〉N
{

with
|φk〉k≡|φik〉k

⇒ |φk〉k is any (not the kth) basis state of the kthparticle

Action of permutation operators: Ê{π}|Φ12...N〉 ≡ |φπ1
〉1|φπ2

〉2 . . . |φπN 〉N
Projections of the separable basis to H(N)

± ⇒

(a) basis in boson space: N+P̂+|Φ12...N〉= N+

N !

N !∑
{π}=1

|φπ1
〉1|φπ2

〉2 . . . |φπN 〉N

(b) basis in fermion space: N−P̂−|Φ12...N〉= N−
N !

N !∑
{π}=1

σ{π}|φπ1
〉1|φπ2

〉2 . . . |φπN 〉N︸ ︷︷ ︸
Det


|φ1〉1 |φ1〉2 ... |φ1〉N
|φ2〉1 |φ2〉2 ... |φ2〉N

...
...

|φN 〉1 |φN 〉2 ... |φN 〉N

 Slater
determinant

due to antisymmetry of the determinant
under an exchange of columns (rows)
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Normalization coefficients N+ =
√

N !
n1!n2!n3! ...

N− =
√
N !

nk ≡number of repetitions of the state |φk〉 in the ensemble, i.e., number of

particles in the state |φk〉 (bosons: nk=0,1,2,3. . . , fermions: nk=0,1)

⇒ n1 + n2 + n3 + · · · = NReasoning:
N+P̂+|Φ12...N〉 ≡ N+

1
N ! ×

[
sum of N ! states, partly identical

]
= N+

n1!n2!n3! ...
N !︸ ︷︷ ︸√

n1!n2!n3! ...
N !

⇒ N+=
√

N !
n1!n2!n3! ...

×
[

sum of N !
n1!n2!n3! ...

orthogonal terms
]

I Representation of occupation numbers

N±P̂±|Φ12...N〉 ≡ |n1, n2, n3, · · · , nk, · · · 〉±

with nk ≡
{

occupation number of the

basis state |φk〉 (with k=1,2,3, ...∞)

}
=

{
0, 1, 2, 3 . . . for bosons

0, 1 for fermions

These vectors form a basis in the space of indistinguishable particles (bosons
or fermions) ≡ representation of occupation numbers

� Bosonic & fermionic creation/annihilation operators

Creation and annihilation operators, respectively, increase and decrease the
number of particles in a given single-particle state by one, forming a system

of “ladder” operators in the Fock space. Their repeated application enables
one to generate any basis state in the occupation-number representation from
a unique state called vacuum. Mutual permutations of these operators obey

simple commutation or anticommutation rules, depending on the bosonic or
fermionic nature of the particles involved.

I Fock space (Hilbert space with indefinite number of particles N)

H± = H(0)
± ⊕H

(1)
± ⊕H

(2)
± ⊕ · · ·H

(N−1)
± ⊕H(N)

± ⊕H(N+1)
± · · ·

Particle creation operators: H(N)
± 7→ H(N+1)

±
Particle annihilation operators: H(N)

± 7→ H(N−1)
± (for N=0: H(N)

± 7→ 0 )

I Creation operators

Bosons : b̂†k|n1, ..nk, ...〉+ =
√
nk+1 |n1, ..(nk+1), ...〉+

Fermions : â†k|n1, ..nk, ...〉− =

{ 1︷ ︸︸ ︷√
nk+1 |n1, ..(nk+1), ...〉− for nk = 0

0 for nk = 1

Square-root coefficients included into these definitions ensure simple algebraic
properties; see below (cf. the harmonic-oscillator ladder operators, Sec. 2.5).
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I Annihilation operators

Definition:
Bosons : b̂k|n1, ..nk, ..〉+ =

√
nk |n1, ..(nk−1), ...〉+

Fermions : âk|n1, ..nk, ..〉− =
√
nk |n1, ..(nk−1), ...〉−

Defined in this way, the annihilation operators are Hermitian conjugates of
creation operators:

+〈n′1, ..n′k, ..|b̂k|n1, ..nk, ..〉+︸ ︷︷ ︸√
nk δn′

1
n1
··· δn′

k
(nk−1)···

= +〈n1, ..nk, ..|b̂†k|n
′
1, ..n

′
k, ..〉∗+︸ ︷︷ ︸√

n′k+1 δn1n
′
1
··· δnk(n′

k
+1)···︷ ︸︸ ︷

−〈n′1, ..n′k, ..|âk|n1, ..nk, ..〉− =
︷ ︸︸ ︷
−〈n1, ..nk, ..|â†k|n

′
1, ..n

′
k, ..〉∗−

I Commutation relations for boson operators

[b̂†k, b̂
†
l ] = 0 = [b̂k, b̂l] (order of creation/annihilation of 2 bosons is irrelevant)

Proof for k=l trivial, for k 6=l below:

b̂†kb̂
†
l |..nk..nl...〉+ = b̂†l b̂

†
k|..nk..nl...〉+ =

√
(nk+1)(nl+1) |..(nk+1)..(nl+1)...〉+

(the relation for annihilation operators obtained by the Hermitian conjugation)

[b̂k, b̂
†
l ] = δkl (do not commute for k=l)

Proof for k=l:
(
b̂kb̂
†
k − b̂

†
kb̂k

)
|..nk...〉+ =

1︷ ︸︸ ︷(√
(nk+1)2 −

√
n2
k

)
|..nk...〉+

For k 6=l: b̂kb̂
†
l |..nk..nl...〉+ = b̂†l b̂k|..nk..nl...〉+

=
√
nk(nl+1) |..(nk−1)..(nl+1)...〉+

I Anticommutation relations for fermion operators

All relations for fermions are expressed through the anticommutator:{
Â, B̂

}
≡ ÂB̂ + B̂Â

Pauli principle ⇒ â†kâ
†
k|..nk...〉− = 0 = âkâk|..nk...〉−

⇒ â†kâ
†
k = 0 = âkâk ⇒ {â†k, â

†
k} = 0 = {âk, âk}

âkâ
†
k|..nk...〉− =

{
0 for nk=1

|..nk...〉− for nk=0 â†kâk|..nk...〉− =
{
|..nk...〉− for nk=1

0 for nk=0

⇒ (âkâ
†
k + â†kâk)︸ ︷︷ ︸
{âk,â†k}

|..nk...〉− = |..nk...〉− ⇒ {âk, â†k} = Î

We require more general relations: {â†k, â
†
l} = 0 = {âk, âl} {âk, â†l} = δkl

Their validity for k=l was just proven. For k 6=l these relations represent some
satisfiable requirements
upon the phases , namely: â†kâ

†
l |..

0︷︸︸︷
nk ..

0︷︸︸︷
nl ...〉−=−â†l â

†
k |..

0︷︸︸︷
nk ..

0︷︸︸︷
nl ...〉−

âkâ
†
l |.. nk︸︷︷︸

1

.. nl︸︷︷︸
0

...〉−=−â†l âk |.. nk︸︷︷︸
1

.. nl︸︷︷︸
0

...〉−
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In this way, the fermionic creation/annihilation operators are fully analogous to

the bosonic ones except that the commutators are replaced by anticommutators

I Particle number operators

Number of particles in the single-particle state |φk〉:

bosons N̂k = b̂†kb̂k fermions N̂k = â†kâk

b̂†kb̂k |..nk...〉+ =
√
n2
k︸︷︷︸

nk

|..nk...〉+ â†kâk |..nk...〉− =
√
n2
k︸︷︷︸

nk=0,1

|..nk...〉−

⇒ total number of particles:

bosons N̂ =
∑
k

b̂†kb̂k fermions N̂ =
∑
k

â†kâk

We identify standard commutation
relations of ladder operators (Sec. 2.4):



[
N̂k, b̂

†
l

]
= δklb̂

†
l

[
N̂k, b̂l

]
= −δklb̂l[

N̂ , b̂†l

]
= +b̂†l

[
N̂ , b̂l

]
= −b̂l[

N̂k, â
†
l

]
= δklâ

†
l

[
N̂k, âl

]
= −δklâl[

N̂ , â†l

]
= +â†l

[
N̂ , âl

]
= −âl

I Creation of basis states from the vacuum

Consecutive creation of individual particles into the occupied single-particle
states:

|n1, n2, n3...〉± =

{
1√

n1!n2!n3!···(b̂
†
1)
n1(b̂†2)

n2(b̂†3)
n3 · · · |0〉 for bosons

(â†1)
n1(â†2)

n2(â†3)
n3 · · · |0〉 for fermions

|0〉 ≡vacuum state (∈ H(0)
± , no particle present) satisfying: b̂k|0〉 = 0 = âk|0〉

I Relation between spin and statistics

Theorem: elementary particles belong to the families of bosons and fermions
according to their spins:

Particles with s = half-integer are fermions: electron, muon, tauon, all neu-
trinos, all quarks (leptons & hadrons ≡ matter particles)

Particles with s = integer are bosons: photon, W, Z, gluon, graviton?, Higgs

(interaction mediators & an “auxiliary” particle)

I Bifermions vs. bosons

Bifermion ≡ a pair of fermions. Example: meson (quark-antiquark). Any

bifermion must have an integer spin. Question: is it a real boson?

Exchange of 2 bifermions ⇒ 2× change of sign ⇒ boson-like behavior

However, consider the creation/annihilation operators of a general bifermion:
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Â† =
∑
k,l

αklâ
†
kâ
†
l

creation

⇔
 Â =

∑
k,l

α∗klâlâk

annihilation

Antisymmetry : αkl = −αlk
Normalization :

∑
k,l

|αkl|2 = 1
2

Normalization: 1 = 〈0|ÂÂ†|0〉 =
∑
k,l

∑
k′,l′

α∗k′l′αkl〈0|âl′âk′â
†
kâ
†
l |0〉 = 2

∑
k,l

|αkl|2
Commutator:

[Â, Â†] =
∑
k,l

∑
k′,l′

α∗k′l′αkl[âl′âk′, â
†
kâ
†
l ] =

∑
k,l

∑
k′,l′

α∗k′l′αkl

(
−δkk′â†l âl′ + δkl′â

†
l âk′

+δlk′â
†
kâl′ − δll′â

†
kâk′ + δkk′δll′ − δkl′δlk′

)
= Î − 4

∑
l,l′

(∑
k

α∗l′kαkl

)
â†l âl′︸ ︷︷ ︸

∆̂∆̂ ≡ correction to the boson-type of commutator:
Its impact depends on a concrete state |Ψ〉 of the many-body system. In gen-

eral, 〈Ψ|∆̂|Ψ〉 ≈ 0 for many-body states |Ψ〉 in which the single-fermion states
present in the bifermion operator Â† are “far enough” from the states occupied
by the rest of the system. Example: a pair of mesons far from each other.

〈Ψ|∆̂|Ψ〉 6= 0 for states |Ψ〉 in which the states contained in Â† are partly
occupied by the rest of the system. Example: a pair of nucleons in the nucleus.

I Transformations of creation/annihilation operators

Consider 2 single-particle bases:
{
|φj〉

}
j

Û↔
{
|φ̃i〉
}
i
⇔ |φ̃i〉 =

∑
i′
〈φi′|φ̃i〉︸ ︷︷ ︸

Uii′

|φi′〉

Û represents a unitary operator relating the two bases, which also constitutes
the transformation between boson & fermion creation/annihilation operators:

ˆ̃
b†i≡

∑
i′

〈φi′|φ̃i〉b̂†i′
ˆ̃
bj≡

∑
j′

〈φ̃j|φj′〉b̂j′ ˆ̃a†i≡
∑
i′

〈φi′|φ̃i〉â†i′ ˆ̃aj≡
∑
j′

〈φ̃j|φj′〉âj′

[
ˆ̃
bj,

ˆ̃
b†i

]
=
∑
j′,i′
〈φ̃j|φj′〉〈φi′|φ̃i〉

δi′j′︷ ︸︸ ︷[
b̂j′, b̂

†
i′

]
=δij

{
ˆ̃aj, ˆ̃a

†
i

}
=
∑
j′,i′
〈φ̃j|φj′〉〈φi′|φ̃i〉

δi′j′︷ ︸︸ ︷{
âj′, â

†
i′

}
=δij

⇒ commutation/anticommutation relations remain the same

I “Second quantization”

A transformation of creation/annihilation operators for general particles to the

coordinate & spin eigenbasis
{
|φ̃~x,ms

〉
}

ˆ̃
b†~x,ms

≡ ψ̂†+(~x,ms) =
∑
i

φ∗i (~x,ms)︷ ︸︸ ︷
〈φi|φ̃~x,ms

〉 b̂†i ˆ̃a†~x,ms
≡ ψ̂†−(~x,ms) =

∑
i

φ∗i (~x,ms)︷ ︸︸ ︷
〈φi|φ̃~x,ms

〉 â†i
ˆ̃b~x,ms

≡ ψ̂+(~x,ms) =
∑
j

〈φ̃~x,ms
|φj〉︸ ︷︷ ︸

φj(~x,ms)

b̂j ˆ̃a~x,ms
≡ ψ̂−(~x,ms) =

∑
j

〈φ̃~x,ms
|φj〉︸ ︷︷ ︸

φj(~x,ms)

âj

The new single-particle basis is not discrete (countable) ⇒ commutation/ an-
ticommutation relations will contain the δ-function instead of Kronecker δ:



181

Commutation relations (bosons) Anticommutation relations (fermions)[
ψ̂†+(~x,ms), ψ̂

†
+(~x ′,m′s)

]
= 0 =

{
ψ̂†−(~x,ms), ψ̂

†
−(~x ′,m′s)

}[
ψ̂+(~x,ms), ψ̂+(~x ′,m′s)

]
= 0 =

{
ψ̂−(~x,ms), ψ̂−(~x ′,m′s)

}[
ψ̂+(~x,ms), ψ̂

†
+(~x ′,m′s)

]
= δ(~x−~x′)δmsm′s =

{
ψ̂−(~x,ms), ψ̂

†
−(~x ′,m′s)

}
Proof of the last line:[
ψ̂+(~x,ms), ψ̂

†
+(~x ′,m′s)

]
=
∑
i,j

〈φ̃~x,ms
|φj〉〈φi|φ̃~x ′,m′s〉

δij︷ ︸︸ ︷
[̂bj, b̂

†
i ] =

δ(~x−~x′)δmsm′s︷ ︸︸ ︷
〈φ̃~x,ms

|φ̃~x ′,m′s〉{
ψ̂−(~x,ms), ψ̂

†
−(~x ′,m′s)

}
=
∑
i,j

〈φ̃~x,ms
|φj〉〈φi|φ̃~x ′,m′s〉 {âj, â

†
i}︸ ︷︷ ︸

δij

= 〈φ̃~x,ms
|φ̃~x ′,m′s〉︸ ︷︷ ︸

δ(~x−~x′)δmsm′s

Particle number operator: N̂± =
∑
ms

∫
ψ̂†±(~x,ms)ψ̂±(~x,ms)︸ ︷︷ ︸
n̂±(~x,ms) particle density

d~x

The above procedure is often referred to as the “second quantization” (in anal-
ogy to the “first quantization”, in which physical quantities became operators)

since it induces the transition: wavefunction ψ∗(~x,ms)
ψ(~x,ms)

}
7→
{
ψ̂†±(~x,ms)

ψ̂±(~x,ms)
operator

� Operators in bosonic & fermionic N -particle spaces

Creation/annihilation operators enable one to express any operator acting in

the whole Fock space! In particular, the operators that conserve the total num-
ber of particles (those keeping the subspaces H(N)

± invariant) can be written
through products containing the same number of creation and annihilation op-
erators. This results in an important classification of such operators according

to the number of particles (n = 1, 2, 3 . . . ) they influence in a single “action”.
We talk about n-body operators.

I General operator expressed via creation/annihilation operators

Creation/annihilation operators of bosons or fermions
unified notation:

{
ĉ†k ≡ b̂†k or â†k
ĉk ≡ b̂k or âk

Consider operator Ô conserving the particle number ⇒ [Ô, N̂ ] = 0

Ô acts within any N -particle subspace H(N), where it can be expressed as:

Ô =
∑
i1,..iN

∑
i′1,..i

′
N

〈φi1..φiN |Ô|φi′1..φi′N 〉|φi1..φiN 〉〈φi′1..φi′N |

Assume that the operator (observable) Ô is physical for indistinguishable par-

ticles ⇒ it acts inside H(N)
± ⇒ [Ô, P̂±] = 0
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ÔP̂± = P̂±ÔP̂± =
∑
i1,..iN

∑
i′1,..i

′
N

〈φi1..φiN |Ô|φi′1..φi′N 〉 P̂±|φi1..φiN 〉︸ ︷︷ ︸√
n1!n2!..
N ! |n1,n2,..〉

〈φi′1..φi′N |P̂±︸ ︷︷ ︸
〈n′1,n′2,..|

√
n′

1
!n′

2
!..

N !

= 1
N !

∑
i1,..iN

∑
i′1,..i

′
N

〈φi1..φiN |Ô|φi′1..φi′N 〉 ĉ
†
i1
ĉ†i2..ĉ

†
iN
|0〉〈0|︸ ︷︷ ︸
P̂ (0)

ĉi′N ..ĉi′2 ĉi′1

within the space H(N). . . . . . can be removed

P̂±ÔP̂± = 1
N !

∑
i1,...iN

∑
i′1,...i

′
N

〈φi1..φiN |Ô|φi′1..φi′N 〉 ĉ
†
i1
ĉ†i2..ĉ

†
iN
ĉi′N ..ĉi′2 ĉi′1

This is the most general expression in the N -particle subspace of an operator re-

specting particle indistinguishability and conserving particle number. However,
as shown below, for some classes of operators this can be further simplified.

I One-body operators

Operator defined in the N=1 subspace through: T̂ |ψ〉k =
∑
ik

〈φik|T̂ |ψ〉|φik〉k
The action of T̂ is extended to all N>1
subspaces via summation over all particles:

Ô(1) =
N∑
k=1

(T̂ )k ≡
N∑
k=1

(
Î1 ⊗ · · · Îk−1 ⊗ T̂︸︷︷︸

kthplace

⊗Îk+1 · · · ⊗ ÎN
)

⇒ defining property of 1-body operator:

Ô(1) P̂±|φ1 · · ·φk · · ·φN〉︸ ︷︷ ︸
1√
N !
ĉ†1···ĉ

†
k···ĉ

†
N |0〉

=
N∑
k=1

∑
ik

〈φik|T̂ |φk〉 P̂±|φ1 · · ·φik · · ·φN〉︸ ︷︷ ︸
1√
N !
ĉ†1···ĉ

†
ik
···ĉ†N |0〉

We consider an operator defined as Ô(1) ≡
∑
i,i′
〈φi|T̂ |φi′〉 ĉ†i ĉi′ and show that it

satisfies the above property:

Note that: [Ô(1), ĉ†k] =
∑
i,i′
〈φi|T̂ |φi′〉

δi′k ĉ
†
i︷ ︸︸ ︷

[ĉ†i ĉi′, ĉ
†
k] =

∑
i

〈φi|T̂ |φk〉ĉ†i

Ô(1)ĉ†1..ĉ
†
k..ĉ
†
N |0〉=

{(
[Ô(1), ĉ†1]︸ ︷︷ ︸∑

i1

〈φi1 |T̂ |φ1〉ĉ†i1

ĉ†2..ĉ
†
N

)
+ · · ·+

(
ĉ†1..ĉ

†
k−1 [Ô(1), ĉ†k]︸ ︷︷ ︸∑

ik

〈φik |T̂ |φk〉ĉ
†
ik

..ĉ†N
)

+ · · ·+
(
ĉ†1..ĉ

†
N−1

∑
iN

〈φiN |T̂ |φN 〉ĉ
†
iN︷ ︸︸ ︷

[Ô(1), ĉ†N ]
)}
|0〉 =

N∑
k=1

∑
ik

〈φik|T̂ |φk〉ĉ
†
1..ĉ
†
ik
..ĉ†N |0〉

The above def. property is verified, so any 1-body operator can be expressed as:

Ô(1) ≡
∑
i,i′

〈φi|T̂ |φi′〉 ĉ†i ĉi′

Graphical representation of this expression:
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I Two-body operators

Operator defined in the N=2
subspace through:

(V̂ )kl|ψ〉kl =
∑
ik,il

〈φikφil|V̂ |ψ〉kl|φikφil〉kl

With respect to the exchange symmetry: 〈φiφj|V̂ |φi′φj′〉 = 〈φjφi|V̂ |φj′φi′〉
The action of V̂ is extended to all N>2 subspaces via summation over all
particle pairs:

Ô(2) =
N∑
k=1

N∑
l=k+1

(V̂ )kl =
N∑

k
l>k

}
=1

Î1⊗ · · Îk−1⊗ Îk+1⊗ · · Îl−1⊗ Îl+1⊗ · · ÎN ⊗ (V̂ )kl

⇒ defining property of a general 2-body operator:

Ô(2)ĉ†1..ĉ
†
k..ĉ
†
l ..ĉ
†
N |0〉 =

N∑
k
l>k

}
=1

∑
ik,jl

〈φikφjl|V̂ |φkφl〉 ĉ
†
1..ĉ
†
ik
..ĉ†jl..ĉ

†
N |0〉

We consider an operator defined as Ô(2) ≡ 1
2

∑
i,i′

∑
j,j′
〈φiφj|V̂ |φi′φj′〉 ĉ†i ĉ

†
j ĉj′ ĉi′ and

show that it satisfies the above property:

First note that: [Ô(2), ĉ†k] = 1
2

∑
i,i′

∑
j,j′
〈φiφj|V̂ |φi′φj′〉

δi′k ĉ
†
i ĉ
†
j ĉj′±δj′k ĉ

†
i ĉ
†
j ĉi′︷ ︸︸ ︷

[ĉ†i ĉ
†
j ĉj′ ĉi′, ĉ

†
k] =

= 1
2

∑
i,j,j′
〈φiφj|V̂ |φkφj′〉ĉ†i ĉ

†
j ĉj′+

1
2

∑
i,i′,j

〈φjφi|V̂ |φkφi′〉ĉ†j ĉ
†
i ĉi′ =

∑
i,j,l

〈φiφj|V̂ |φkφl〉ĉ†i ĉ
†
j ĉl

Ô(2)ĉ†1..ĉ
†
k..ĉ
†
l ..ĉ
†
N |0〉 =

{(
[Ô(2), ĉ†1]︸ ︷︷ ︸∑

i1,j1,l1

〈φi1φj1 |V̂ |φ1φl1〉ĉ
†
i1
ĉ†j1 ĉl1

ĉ†2..ĉ
†
N

)
+ · · ·+

(
ĉ†1..ĉ

†
k−1 [Ô(2), ĉ†k]︸ ︷︷ ︸∑

ik,jk,lk

〈φikφjk |V̂ |φkφlk 〉ĉ
†
ik
ĉ†jk

ĉlk

..ĉ†N
)

+ · · ·+
(
ĉ†1..ĉ

†
N−1 [Ô(2), ĉ†N ]︸ ︷︷ ︸∑

iN ,jN ,lN

〈φiN φjN |V̂ |φkφlN 〉ĉ
†
iN
ĉ†jN

ĉlN

)}
|0〉 =

N∑
k
l>k

}
=1

∑
ik,jl

〈φikφjl|V̂ |φkφl〉 ĉ
†
1..ĉ
†
ik
..ĉ†jl..ĉ

†
N |0〉

The last equality results from the fact that ĉlk in the commutator expressions

can only annihilate a state already created (otherwise the result=0) ⇒
lk=(k+1) or (k+2) or . . . N . The pair ĉ†jk ĉlk commutes to the right to the posi-

tion of the ĉ†lk and the whole combination ĉ†jk ĉlk ĉ
†
lk

is replaced by ĉ†jk. The last
expression verifies the above property of 2-body operators ⇒
General 2-body operator reads as:

Ô(2) ≡ 1
2

∑
i,i′

∑
j,j′

〈φiφj|V̂ |φi′φj′〉 ĉ†i ĉ
†
j ĉj′ ĉi′

Graphical representation of this expression:
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I Higher-order operators

An analogous procedure can be applied (though with increasing intricacy) to
any n-body operator.

Example, three-body:
Ô(3) =

N∑
k=1

N∑
l=k+1

N∑
m=l+1

(Ŵ )klm

= 1
3!

∑
i,i′

∑
j,j′

∑
k,k′
〈φiφjφk|Ŵ |φi′φj′φk′〉 ĉ†i ĉ

†
j ĉ
†
kĉk′ ĉj′ ĉi′

Graphical representation
of 3- & n-body operators:

I Normal ordering of the products of creation/annihilation operators

Matrix elements of an n-body operator in the N -body space are expressed in

terms of the following vacuum expectation values:
〈0| ĉj1 · · · ĉjN︸ ︷︷ ︸

N×

ĉ†k1
· · · ĉ†kn︸ ︷︷ ︸
n×

ĉl1 · · · ĉln︸ ︷︷ ︸
n×

ĉ†iN · · · ĉ
†
i1︸ ︷︷ ︸

N×

|0〉

The product inside is standardly rewritten in the normal-ordered form:

: ĉ†i1 · · · ĉj1 · · · ĉ
†
ik
· · · ĉjl · · · ĉjm · · · ĉ

†
in︸ ︷︷ ︸

unsorted product of n × ĉ†• and m × ĉ◦

: = σ︸︷︷︸
±

ĉ†i1 · · · ĉ
†
ik
· · · ĉ†in︸ ︷︷ ︸

n × ĉ†•

ĉj1 · · · ĉjl · · · ĉjm︸ ︷︷ ︸
m × ĉ◦

σ=

{
+1 for bosons
σ{π} = ±1 for fermions : {π} ≡ (i1..j1..ik..jl..jm..in) 7→ (i1..ik..injl..jl..jm)

Examples:


: b̂ib̂

†
j : = b̂†j b̂i : âiâ

†
j : = −â†jâi

: b̂†i b̂j b̂
†
k : = b̂†i b̂

†
kb̂j : â†i âjâ

†
k : = −â†i â

†
kâj

= b̂†kb̂
†
i b̂j = +â†kâ

†
i âj

IWick theorem

There exists a systematic way how a product of creation/annihilation operators
can be transformed into the normal-ordered form. It makes use of so-called

contraction, which for an operator product ÂB̂ is defined as the vacuum

expectation value 〈ÂB̂〉0 = 〈0|ÂB̂|0〉

Examples:


〈b̂ib̂†j〉0 =δij =〈âiâ†j〉0
〈b̂†j b̂i〉0 =0=〈â†jâi〉0
〈b̂†j b̂

†
i〉0 =〈b̂j b̂i〉0 =0=〈âjâi〉0 =〈â†jâ

†
i〉0Statement:

Product of creation & annihilation operators =∑
k=0,1,2,...

σ︸︷︷︸
±

(normal ordered product with k pairs removed) ≡: •k :
× (product of k contractions of the removed pairs) ≡ ck
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The proof not given here, instead we give some examples

Examples : bosons| |fermions

b̂ib̂
†
j = : b̂ib̂

†
j :︸ ︷︷ ︸

b̂†j b̂i

+ 〈b̂ib̂†j〉0︸ ︷︷ ︸
δij

âiâ
†
j = : âiâ

†
j :︸ ︷︷ ︸

−â†j âi

+ 〈âiâ†j〉0︸ ︷︷ ︸
δij

b̂†i b̂j b̂kb̂
†
l = b̂†i b̂

†
l b̂j b̂k+δklb̂

†
i b̂j+δjlb̂

†
i b̂k â†i âjâkâ

†
l = â†i â

†
l âjâk+δklâ

†
i âj−δjlâ

†
i âk

General product :

ÂB̂ĈD̂= : ÂB̂ĈD̂ : + 〈ÂB̂〉0 : ĈD̂ : ÂB̂ĈD̂= : ÂB̂ĈD̂ : + 〈ÂB̂〉0 : ĈD̂ :

+〈ÂĈ〉0 : B̂D̂ : + 〈ÂD̂〉0 : B̂Ĉ : −〈ÂĈ〉0 : B̂D̂ : + 〈ÂD̂〉0 : B̂Ĉ :

+〈B̂Ĉ〉0 : ÂD̂ : + 〈B̂D̂〉0 : ÂĈ : +〈B̂Ĉ〉0 : ÂD̂ :− 〈B̂D̂〉0 : ÂĈ :

+〈ĈD̂〉0 : ÂB̂ : + 〈ÂB̂〉0〈ĈD̂〉0 +〈ĈD̂〉0 : ÂB̂ : + 〈ÂB̂〉0〈ĈD̂〉0
+〈ÂĈ〉0〈B̂D̂〉0 + 〈ÂD̂〉0〈B̂Ĉ〉0 −〈ÂĈ〉0〈B̂D̂〉0 + 〈ÂD̂〉0〈B̂Ĉ〉0

If the vacuum expectation value of an operator product is to be evaluated,
one makes use of the obvious fact that 〈0| : •k : |0〉 = 0 Only the terms
composed solely of contractions (if 6=0) may contribute to the result.

I Two-state correlations

The N -body state |Ψ〉 contains complete information on the system, including
information on statistical properties of all occupation numbers ni associated
with individual single-particle states |φi〉. For any particular |Ψ〉, these prop-
erties can be described by means of the following general quantities:

(a) Average: 〈ni〉Ψ = 〈Ψ|ĉ†i ĉi|Ψ〉
(b) Dispersion: 〈〈n2

i 〉〉Ψ = 〈n2
i 〉Ψ − 〈ni〉2Ψ = 〈Ψ|ĉ†i ĉiĉ

†
i ĉi|Ψ〉︸ ︷︷ ︸︷ ︸︸ ︷

〈Ψ|b̂†i b̂
†
i b̂ib̂i|Ψ〉+〈Ψ|b̂

†
i b̂i|Ψ〉 (bosons)

〈Ψ|â†i âi|Ψ〉 (fermions)

−〈Ψ|ĉ†i ĉi|Ψ〉2

(c) Correlation between occupation
numbers of states |φi〉, |φj〉 (for i 6= j):

〈〈ninj〉〉Ψ = 〈ninj〉Ψ − 〈ni〉Ψ〈nj〉Ψ︸ ︷︷ ︸〈
(ni−〈ni〉Ψ)(nj−〈nj〉Ψ)

〉
Ψ

= 〈Ψ|ĉ†i ĉiĉ
†
j ĉj|Ψ〉︸ ︷︷ ︸

〈Ψ|ĉ†i ĉ
†
j ĉj ĉi|Ψ〉

−〈Ψ|ĉ†i ĉi|Ψ〉〈Ψ|ĉ
†
j ĉj|Ψ〉

Normalized correlation coefficient: Cij(Ψ) ≡ 〈〈ninj〉〉Ψ√
〈〈n2

i 〉〉Ψ〈〈n2
j〉〉Ψ

∈ [−1,+1]

Cij(Ψ) =


+1 for perfect correlation

0 for null correlation
−1 for perfect anticorrelation

 of (ni−〈ni〉Ψ) and (nj−〈nj〉Ψ)

I Many-body Hamiltonian

General expression of a Hamiltonian with 1-body terms (kinetic energies of
individual particles + potential energies in an external potential field) and
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2-particle interactions:
Ĥ =

∑
i,i′

εii′ ĉ
†
i ĉi′ +

1
2

∑
i,i′

j,j′

νiji′j′ ĉ
†
i ĉ
†
j ĉj′ ĉi′

where εii′ = 〈φi|T̂ |φj〉 and νiji′j′ = 〈φiφj|V̂ |φi′φj′〉 are matrix elements in the

space of distinguishable particles. The 3-particle and higher interactions can
also be included by the respective n-body expressions.

I Coordinate form of Hamiltonian

If the many-body Hamiltonian is expressed in terms of coordinates ~̂xk and
spin projections ŝzk of individual particles (k=1,...N), it is useful to utilize the

coordinate form of creation & annihilation operators.

Ĥ =
N∑
k=1

(T̂ )k︷ ︸︸ ︷(
− ~2

2M
∆k

)
︸ ︷︷ ︸
kinetic term Ô

(1)
kin

+
N∑
k=1

(Û)k︷ ︸︸ ︷
U(~̂xk, ŝzk)︸ ︷︷ ︸

external potential Ô
(1)
pot

+
N∑

k
l>k

}
=1

(V̂ )kl︷ ︸︸ ︷
V (~̂xk, ŝzk; ~̂xl, ŝzl)

︸ ︷︷ ︸
interaction Ô

(2)
int

Ô
(1)
kin + Ô

(1)
pot =

∑
i,i′
〈φi|(T̂+Û)|φi′〉ĉ†i ĉi′

=
∑
i,i′

{∑
ms

∫
φ∗i (~x,ms)

[
− ~2

2M
∆ + U(~x,ms)

]
φi′(~x,ms)d~x

}
ĉ†i ĉi′

=
∑
ms

∫ [∑
i

φ∗i (~x,ms)ĉ
†
i

]
︸ ︷︷ ︸

ψ̂†±(~x,ms)

[
− ~2

2M
∆ + U(~x,ms)

] [∑
i′

φi′(~x,ms)ĉi′

]
︸ ︷︷ ︸

ψ̂±(~x,ms)

d~x

Ô
(2)
int = 1

2

∑
i,i′,j,j′

〈φiφj|V̂ |φi′φj′〉ĉ†i ĉ
†
j ĉj′ ĉi′ = 1

2×∑
i,i′

j,j′

{∑
ms

m′s

∫∫
φ∗i (~x,ms)φ

∗
j(~x
′,m′s)V (~x,ms; ~x,

′m′s)φi′(~x,ms)φj′(~x
′,m′s)d~xd~x

′
}
ĉ†i ĉ
†
j ĉj′ ĉi′

= 1
2

∑
ms

m′s

∫∫
ψ̂†±(~x,ms)ψ̂

†
±(~x′,m′s)V (~x,ms;~x,

′m′s)ψ̂±(~x′,m′s)ψ̂±(~x,ms)d~xd~x
′

The final expression is of the field-theory type:

Ĥ=
∑
ms

∫
ψ̂†±(~x,ms)

[
− ~2

2M∆ + U(~x,ms)
]
ψ̂±(~x,ms) d~x

+ 1
2

∑
ms

m′s

∫∫
ψ̂†±(~x,ms)ψ̂

†
±(~x′,m′s)V (~x,ms;~x,

′m′s)ψ̂±(~x′,m′s)ψ̂±(~x,ms) d~x d~x
′

� Quantization of electromagnetic field

The formalism built up in the above paragraphs will now be applied in a con-
crete task to quantize the electromagnetic field. We know that elmg. quanta,
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the photons, have spin s=1, so they are bosons. The quantized field enables one

to describe all processes connected with elmg. interaction of matter, including,
e.g., spontaneous elmg. decays of many-body systems (photon emissions).

I Photon creation/annihilation operators

The general solution of the wave equation ~∇2 ~A− 1
c2
∂2 ~A
∂t2

= 0 for the elmg. vector

potential ~A(~x, t) in vacuum (c= 1√
ε0µ0

) is a superposition of planar waves:

~A(~x, t) =
∑
ν=±

∫
NV k

{
α~kν︸︷︷︸
7→ b̂~kν

~e~kνe
+i(~k·~x−ωkt) + α∗~kν︸︷︷︸

7→ b̂†~kν

~e ∗~kνe
−i(~k·~x−ωkt)

}
d~k

with ωk = c|~k| and:

(a) NV k ≡ a scaling factor for each mode which will be determined later

(b) ~e~k± = ∓ 1√
2

[
~e~kx ± i~e~ky

]
≡ circular polarization vectors composed of

unit vectors of linear polarization satisfying the
Coulomb gauge condition ~e~kx ·~k=0=~e~ky ·~k(c) α~kν ≡ arbitrary coefficients

Field quantization:

function ~A(~x, t) ∈ R 7→ operator ~̂A(~x, t)= ~̂A†(~x, t) ⇔

{
α~kν 7→ b̂~kν
α∗~kν 7→ b̂†~kν

Operators b̂†~kν and b̂~kν, respectively, create and annihilate

photons with momentum ~pγ=~~k and spin projection

s~k=ν~=±~ to the flight direction ~k/k:

b̂†~kν|0〉γ = |~kν〉γ
b̂~kν|~kν〉γ = |0〉γ

I Energy of elmg. field

Classical expression for energy: E = 1
2

∫
V

[
ε0|

−∂ ~A∂t︷ ︸︸ ︷
~E(~x, t) |2 + µ−1

0 |

~∇× ~A︷ ︸︸ ︷
~B(~x, t) |2

]
d~x

− ∂
∂t
~A=

∑
ν=±

∫
NV k

{
iα~kνωk~e~kνe

+i(~k·~x−ωkt) − iα∗~kνωk~e
∗
~kν
e−i(

~k·~x−ωkt)
}
d~k

c[~∇× ~A]=
∑
ν=±

∫
NV k

{
iα~kν

iνωk~e~kν︷ ︸︸ ︷
[c~k×~e~kν ] e

+i(~k·~x−ωkt) − iα∗~kν

−iνωk~e ∗~kν︷ ︸︸ ︷
[c~k×~e ∗~kν ] e

−i(~k·~x−ωkt)
}
d~k

For V→∞ the spatial integration yields:
∫
V

ei(
~k±~k ′)·~xd~x ≈ V δ~k,∓~k ′

The resulting expression for energy: E = V ε0
∑
ν

∫
(NV kωk)

2
(
α∗~kνα~kν+α~kνα

∗
~kν

)
d~k

This after the quantization, with the choice of NV k =
√

~
2V ε0ωk

, leads to:

E =
∑
ν=±

∫
~ωk

(
b̂†~kν b̂~kν + 1

2

)
d~k Interpretation: This expression is equiva-

lent to an ensemble of harmonic oscillators,

each one associated with a single field mode
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Note: The term associated with zero-point motion yields diverging contribu-

tion and must be artificially removed in the field theory

I Photon emission & absorption

In Sec. 5.3, we outlined the theory of transitions stimulated by classical elmg.
waves in systems of charged particles. Now this theory can be extended to
describe interactions of matter with general, also non-classical field states.

Example: Any field state |Ψγ〉 with a definite photon number Nγ is non-

classical as it yields vanishing averages of field intensities: 〈Ψγ| ~̂E(~x, t)|Ψγ〉=0=

〈Ψγ| ~̂B(~x, t)|Ψγ〉 (the terms of ~̂E & ~̂B contain either b̂†~kν or b̂~kν ⇒ change Nγ;

however, the dispersions of field intensities are nonzero).
In particular, such general theory applies to the processes of single-photon
absorption and spontaneous single-photon emission.

Consider a system composed of N particles with charges qk and masses Mk.
The matter-field interaction Hamiltonian (cf. Sec. 5.3):

Ĥ ′(t) =
N∑
k=1

qk
Mk

[
~̂A(~̂xk, t) · ~̂pk

] where ~̂A(~̂xk, t) is taken from the above general

expression with the

{
α~kν 7→ b̂~kν
α∗~kν 7→ b̂†~kν

}
substitutions

Transition probabilities for single-photon absorptions & emissions are calcu-
lated with the aid of the Fermi golden rule:

Process Initial state |ψ0i〉 Final state |ψ0j〉 Active term in Ĥ ′(t)

emission |E0i〉a|0〉γ −→ |E0j〉a|~kν〉γ one with b̂†~kν
absorption |E0i〉a|~kν〉γ −→ |E0j〉a|0〉γ one with b̂~kν

From this point on, the calculation of transition amplitudes is rather analogous
to that presented in Sec. 5.3 (using either the dipole approximation or the com-
plete multipole expansion). For spontaneous emissions one needs to include

into the density of final states also the emitted-photon state density ργ(Eγ)
(calculated as the number of modes per unit energy in a finite box of volume
V ; for details see elsewhere).

J Historical remark
1927: Paul Dirac shows the equivalence of an ensemble of non-interacting bosons

with indefinite particle number (elmg. field) with a system of harmonic oscillators
(the use of occupation number representation & creation/annihilation operators)
1928: Pascual Jordan & Eugene Wigner generalize Dirac’s results to fermions (the

use of anticommutators) & ensembles of interacting particles
1932: Vladimir Fock introduces the Hilbert space for q. fields/ many-body systems
1939,40: Markus Fierz and Wolfgang Pauli formulate the spin-statistics theorem
1950: G.-C. Wick provides a method for evaluating products of creat./annih. opers.
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7.2 Many-body techniques

We are ready now to apply the above-derived general formalism in some sophis-

ticated approximation methods, which are extremely useful for the description of
various quantum many-body systems—atoms, molecules, nuclei, clusters etc.

� Fermionic mean field & Hartree-Fock method

Atoms & nuclei represent genuine many-body systems since all their constituent
particles (fermions) interact with each other. Nevertheless, it turns out—at

least as far as the ground-state properties are considered—that one can trans-
form this difficult problem into a much simpler problem of individual particles
moving in a single-particle mean field. This field can be seen as a kind of

averaged influence of all other particles on any selected particle.

I Hartree-Fock ansatz for the ground-state wavefunction

Fermionic Hamiltonian with
one + two body terms written

in arbitrary basis:

Ĥ =
∑
k,k′

εkk′â
†
kâk′ +

1
2

∑
k,k′

l,l′

νklk′l′â
†
kâ
†
l âl′âk′

The ground state of an N -particle system
is searched as a Slater-determinant

wavefunction |ΨHF〉 = â†N · · · â
†
2â
†
1|0〉

where â†N , . . . , â
†
2, â
†
1 create some ortho-

normal single-particle states interpreted
as the lowest eigenstates of an unknown
one-body Hamiltonian = mean field

⇒ the ground state ≡ “Fermi sea”
(N lowest levels of the mean-field Hamiltonian occupied, higher levels empty)

I Variation of the HF state
The unknown mean-field states |φi〉 = â†i |0〉 entering into |ΨHF〉 will be deter-

mined by the stationary variational method:
Infinitesimal unitary variation |φi〉 7→ |φi〉+ |δφi〉

|φi〉 7→
∑
j

uij|φj〉︸ ︷︷ ︸
eiε̂|φi〉

≈ |φi〉+ i
∑
j

εij|φj〉︸ ︷︷ ︸
|δφi〉

⇒ â†i 7→ â†i + i
∑
j

εijâ
†
j︸ ︷︷ ︸

δâ†i

εij = ε∗ji

|ΨHF〉 = â†N · · · â
†
2â
†
1|0〉 7→

(
â†N+δâ†N

)
· · ·
(
â†2+δâ†2

)(
â†1+δâ†1

)
|0〉

≈ |ΨHF〉+ ( δâ†N︸︷︷︸
i
∑
j

εNj â
†
j

· · · â†2â
†
1)|0〉+ · · · · · ·+ (â†N · · · δâ

†
2︸︷︷︸

i
∑
j

ε2j â
†
j

â†1)|0〉+ (â†N · · · â
†
2 δâ†1︸︷︷︸
i
∑
j

ε1j â
†
j

)|0〉
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Ket variation: Bra variation (independ. coeffs. ε′ij=ε
′∗
ji):

|ΨHF〉 7→ |ΨHF〉+i
N∑
i=1

∞∑
j=N+1

εijâ
†
jâi|ΨHF〉︸ ︷︷ ︸

|δΨHF〉

〈Ψ′HF| 7→ 〈ΨHF|−i
N∑
i=1

∞∑
j=N+1

ε′ji〈ΨHF|â†i âj︸ ︷︷ ︸
〈δΨ′HF|

I Variational condition

The condition for |ΨHF〉 reads as follows:

〈δΨ′HF|Ĥ|ΨHF〉+〈ΨHF|Ĥ|δΨHF〉=i
∑
i≤N

∑
j>N

〈ΨHF|εijĤâ†jâi−ε′jiâ
†
i âjĤ|ΨHF〉

!
=0 ∀

{
εij
ε′ji

⇒ 〈ΨHF|Ĥâ†jâi|ΨHF〉
!

= 0 ∀
{
i≤N
j>N

Assuming that Ĥ is written in terms of the single-particle states involved in
the HF state we get:〈

ΨHF

∣∣∣∣(∑
k,k′

εkk′â
†
kâk′ +

1
2

∑
k,k′

l,l′

νklk′l′â
†
kâ
†
l âl′âk′

)
â†jâi

∣∣∣∣ΨHF

〉
= 0 ∀

{
i ≤ N
j > N

Evaluation of both terms: anticommutation of â†j or âi to the leftmost position
(the resulting matrix element =0 since j>N and i≤N)

(a) One-body term:
∑
k,k′

εkk′〈ΨHF|â†kâk′â
†
jâi|ΨHF〉 =

=
∑
k,k′

εkk′

(
〈ΨHF|â†jâ

†
kâk′âi|ΨHF〉︸ ︷︷ ︸
0

+δjk′ 〈ΨHF|â†kâi|ΨHF〉︸ ︷︷ ︸
〈ΨHF|âiâ†k|ΨHF〉+δik〈ΨHF|ΨHF〉

)
=
∑
k,k′

εkk′δjk′δik = εij

(b) Two-body term: 1
2

∑
k,k′

l,l′

νklk′l′〈ΨHF|â†kâ
†
l âl′âk′â

†
jâi|ΨHF〉 =

= 1
2

∑
k,k′

l,l′

νklk′l′

[
δjk′δik 〈ΨHF|â†l âl′|ΨHF〉︸ ︷︷ ︸

δll′ for l≤N
0 for l,l′>N

+δjl′δil 〈ΨHF|â†kâk′|ΨHF〉︸ ︷︷ ︸
δkk′ for k≤N
0 for k,k′>N

−δjk′δil

δkl′ for k≤N
0 for k,k′>N︷ ︸︸ ︷

〈ΨHF|â†kâl′|ΨHF〉−δjl′δik

δlk′ for l≤N
0 for l,l′>N︷ ︸︸ ︷

〈ΨHF|â†l âk′|ΨHF〉
]

=

= 1
2

[ ∑
k≤N

(νikjk+νkikj)︸ ︷︷ ︸
2νkikj

−
∑
k≤N

(νikkj−νkijk)︸ ︷︷ ︸
2νikkj

]
=
∑
k≤N

(νkikj − νikkj)

Together: εij +
∑
k≤N

(νkikj − νikkj) = 0 ∀
{
i ≤ N
j > N

This represents a coupled set of conditions for the Hamiltonian matrix elements
in the HF basis which must be satisfied to minimize the energy functional
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I Mean-field equation

We know that εij ≡ 〈φi|T̂ |φj〉. The above set of equations can be formally

solved by introducing another one-body operator V̂HF, which is defined through

its matrix elements in the HF basis as follows: 〈φi|V̂HF|φj〉≡
∑
k≤N

(νkikj−νikkj)
It represents the Hartree-Fock mean field

⇒ the above variational condition reads 〈φi|(T̂ + V̂HF)|φj〉 = 0 for
{
i≤N
j>N

This is satisfied if (T̂ + V̂HF) is diagonal in the basis {|φn〉}, i.e., if(
T̂ + V̂HF

)
|φn〉 = εn|φn〉 one-body eigenvalue equation

⇒ Many-body ground state approximated with the aid of eigensolutions of a
one-body problem. However, the HF mean field is expressed via the eigensolu-
tions that we want to determine:

V̂HF|φn〉=
∑
m
〈φm|V̂HF|φn〉|φm〉=

∑
m

[ ∑
k≤N

(
〈φkφm|V̂ |φkφn〉−〈φmφk|V̂ |φkφn〉

)]
|φm〉

⇒ selfconsistent problem
Solution searched in an iterative procedure: basis {|φ(0)

n 〉} ⇒ mean field V̂
(0)

HF

⇒ basis {|φ(1)
n 〉} ⇒ mean field V̂

(1)
HF ⇒ basis {|φ(2)

n 〉} ⇒ mean field V̂
(2)

HF ⇒ . . . . . .
We may hope in a fast convergence.

I Coordinate representation of the mean field

Meaning of the above-defined mean field operator becomes more intuitive in the

coordinate representation. The action of V̂HF on the HF single-particle basis
read as: V̂HF φn(~x, µ) =∑
m

[ ∑
k≤N

∑
µ1µ2

∫∫
φ∗k(~x1, µ1)φ

∗
m(~x2, µ2)V (~x1, ~x2)φk(~x1, µ1)φn(~x2, µ2)d~x1d~x2

]
φm(~x, µ)

−
∑
m

[ ∑
k≤N

∑
µ1µ2

∫∫
φ∗m(~x1, µ1)φ

∗
k(~x2, µ2)V (~x1, ~x2)φk(~x1, µ1)φn(~x2, µ2)d~x1d~x2

]
φm(~x, µ)

Using
∑
m
φ∗m(~x•, µ•)φm(~x, µ) = δ(~x•−~x)δµ•µ (with •=1,2) we obtain:

V̂HF φn(~x, µ)=

[∫ ∑
k≤N

∑
µ1

|φk(~x1, µ1)|2V (~x1, ~x)d~x1

]
︸ ︷︷ ︸

VHF(~x) local potential

φn(~x, µ)+

+

nonlocal potential
∫ ∑
µ2

WHF(~x,µ,~x2,µ2)φn(~x2,µ2)d~x2︷ ︸︸ ︷∫ ∑
µ2

[∑
k≤N

φ∗k(~x2, µ2)V (~x, ~x2)φk(~x, µ)

]
︸ ︷︷ ︸

WHF(~x,µ,~x2,µ2) transformation kernel

φn(~x2, µ2)d~x2

The local potential contains averaging of the value V (~x1, ~x) from all the
remaining particles in occupied states weighted by the respective probability
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densities |φk(~x1, µ1)|2. The nonlocal potential (also called exchange term)

results from the antisymmetrization of 2-body wavefunctions.

I Ground-state energy

Estimate of the g.s. energy from the HF wavefunction:

E0 ≈ 〈ΨHF|Ĥ|ΨHF〉 = · · · · · · =
∑
k≤N

εkk + 1
2

∑
k≤N

∑
l≤N

(νklkl − νlkkl)

Sum of single-particle energies of the occupied mean-field states:∑
k≤N

εk =
∑
k≤N
〈φk|(T̂ + V̂HF)|φk〉 =

∑
k≤N

εkk +
∑
k≤N

∑
l≤N

(νklkl − νlkkl)

Comparison of the above expressions: E0 ≈
∑
k≤N

[
εk − 1

2

∑
l≤N

(νklkl − νlkkl)︸ ︷︷ ︸
〈φk|V̂HF|φk〉

]

The correction ∆εk = 1
2〈φk|V̂HF|φk〉 of energy εk, present in the last formula,

compensates the double counting of particle interaction energies (e.g., the sum
ε1 + ε2 contains all interaction between particles 1↔ k and 2↔ k, so that the
1↔ 2 interaction is counted twice)

J Historical remark
1927: D.R. Hartree introduces a self-consistent method to solve many-body Sch. eq.

1930: V. Fock and J.C. Slater modify the Hartree method to respect antisymmetry
1935: D.R. Hartree reformulates the method in a way suitable for computations

� Bosonic condensates & Hartree-Bose method

The Hartree-Fock method has its bosonic counterpart, called after Hartree and

Bose. It relies on the same principle, but is much simpler technically since
bosons do not obey the Pauli exclusion law.

I Bosonic condensate

Bosonic Hamiltonian with
one + two body terms:

Ĥ =
∑
k,k′

εkk′ b̂
†
kb̂k′ +

1
2

∑
k,k′

l,l′

νklk′l′ b̂
†
kb̂
†
l b̂l′ b̂k′

Ground state of the N -particle system searched in the form of the condensate

type of wavefunction: |ΨHB〉 = 1√
N !

(B̂†)N |0〉

with B̂† ≡
∑
k

βkb̂
†
k creating the boson into

a general single-particle state |ψB〉 =
∑
k

βk|φk〉

with unknown coefficients subject to normalization:
∑
k

|βk|2 = 1
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I Energy functional

To perform the variational procedure, we need to express the energy functional
〈ΨHB|Ĥ|ΨHB〉 as a function of coefficients {βk}. First we evaluate commutators:

[b̂k, B̂
†]︸ ︷︷ ︸

Ĉ1

= βk

[b̂k, (B̂
†)N ]︸ ︷︷ ︸

ĈN

=[b̂k, B̂
†]︸ ︷︷ ︸

βk

(B̂†)N−1+B̂† [̂bk, (B̂
†)N−1]︸ ︷︷ ︸

ĈN−1

⇒
{[
b̂k, (B̂

†)N
]
=Nβk(B̂

†)N−1[
(B̂)N , b̂†k

]
=Nβ∗k(B̂)N−1

From these relations we calculate the following averages:

〈ΨHB|b̂†kb̂k′|ΨHB〉= 1
N !〈0|(B̂)N b̂†kb̂k′(B̂

†)N |0〉=β∗kβk′
N2

N ! 〈0|(B̂)N−1(B̂†)N−1|0〉
= Nβ∗kβk′〈ΨHB|b̂†kb̂

†
l b̂l′ b̂k′|ΨHB〉= 1

N !〈0|(B̂)N b̂†kb̂
†
l b̂l′ b̂k′(B̂

†)N |0〉
= β∗kβk′

N2

N ! 〈0|(B̂)N−1b̂†l b̂l′(B̂
†)N−1|0〉 = N(N−1)β∗kβ

∗
l βk′βl′

The energy average (energy functional) in the space of condensate states:

〈ΨHB|Ĥ|ΨHB〉 = N
∑
k,k′

εkk′β
∗
kβk′ +

N(N−1)
2

∑
k,k′

l,l′

νklk′l′β
∗
kβ
∗
l βk′βl′ ≡ E({βk})

To find parameters {βk} of the condensate state, the function E({βk}) must be

minimized, respecting the normalization condition
∑
k

|βk|2 = 1.

Alternatively, one can skip the normalization
constraint and minimize the expression: Ẽ({β}) =

〈ΨHB|Ĥ|ΨHB〉
〈ΨHB|ΨHB〉

J Historical remark
1924-5: A. Einsten & S.N. Bose predict that systems of bosons at T→ 0 form a
condensate state with unusual properties (the first laboratory preparation in 1995)

1938: F. London relates boson condensation to superfluidity & superconductivity

� Pairing & BCS method

The Hartree-Fock method does not work well for the fermionic systems whose
valence shell (or valence band) of single-particle states is filled up approximately

to the middle. Indeed, the existence of a number of partly occupied valence
orbits with nearly degenerate spectrum makes the HF method unstable (it has
many almost equivalent solutions). In this situation, an attractive short-range

type of interaction produces a new effect beyond the mean field—pairing of
particles in conjugate states related by the time reversal. It turns out that
at low temperatures, the systems with pairing exhibit superconductivity,
a phenomenon partly analogous to the superfluidity of some Bose systems.
The basic many-body theory which takes the fermionic pairing into account is
abbreviated after its inventors Bardeen, Cooper, and Schrieffer.
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I Pairing interaction
Consider an approx. contact interaction given by: V (~x1−~x2)≈−V0 δ(~x1−~x2)

Matrix element 〈φiφj|V̂ |φi′φj′〉 ≈
−V0

∑
µ1,µ2

∫∫
φ∗i (~x1, µ1)φ

∗
j(~x2, µ2)δ(~x1−~x2)φi′(~x1, µ1)φj′(~x2, µ2) d~x1d~x2

= −V0

∫ [∑
µ1

φ∗i (~x, µ1)φi′(~x, µ1)
][∑

µ2

φ∗j(~x, µ2)φj′(~x, µ2)
]
d~x

For

{
φi(~x, µ)=φ∗j(~x,−µ)≡T̂ φj(~x, µ)

φi′(~x, µ)=φ∗j′(~x,−µ)≡T̂ φj′(~x, µ)

}
we get

〈φiφj|V̂ |φi′φj′〉 ≈−V0

∫ ∣∣∑
µ
φ∗i (~x, µ)φi′(~x, µ)

∣∣2d~x
(a particularly strong interaction element)

We may approximate this situation by assuming that V̂ acts only between

couples of states |φk〉︸︷︷︸
â†k|0〉

↔ |φk̄〉︸︷︷︸
â†
k̄
|0〉

≡T̂ |φk〉 related by the time reversal
transformation T̂

For instance:

{
|+~p, ↑〉 ↔ |−~p, ↓〉 electron states in metals

|n, l, j,+mj〉 ↔ |n, l, j,−mj〉 nucleon states in nuclei

I Simplified Hamiltonian

The above approximation is represented by
so-called monopole pairing interaction: V̂pair ≈ −G

∑
k,l

′ â†
k̄
â†kâlâl̄

G ≡ pairing interaction strength∑
k,l

′ ≡ sum over the states close to the Fermi energy εF: |εk−εF|<S
(with εF taken now as the energy of the highest occupied orbital in |ΨHB〉)

This interaction can be expressed with the
aid of the following bifermion operators:

V̂pair ≈ −Gn P̂ †P̂

P̂ † ≡ 1√
n

∑
k

′ â†
k̄
â†k P̂ ≡ 1√

n

∑
l

′ âlâl̄
where n ≡ number of levels εk in the
|εk−εF|<S interval around εF

If the k, k̄ states correspond to |n, l, j,±mj〉, the P̂ † operator creates a pair with
zero total angular momentum (hence the term “monopole”)

Boson-like commutator:
[
P̂ , P̂ †

]
= 1− 1

n

∑
k

′ (â†kâk + â†
k̄
âk̄
)︸ ︷︷ ︸

n̂k∈[0,2]

∈ [−1,+1]

The full Hamiltonian:

Ĥ =
∑
k

εk(â
†
kâk + â†

k̄
âk̄)︸ ︷︷ ︸

T̂+V̂HF

−G
∑
k,l

′ â†
k̄
â†kâlâl̄︸ ︷︷ ︸

V̂pair

=
∑
k

εkn̂k −Gn P̂ †P̂

I The BCS approach

Splitting of the full Hamiltonian into

{
Ĥ0 = T̂+V̂HF+V̂ ′pair (the main part)

V̂ ′′pair (the rest)
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Ĥ =

Ĥ0︷ ︸︸ ︷
E0 +

∑
k

εk(â
†
kâk + â†

k̄
âk̄)︸ ︷︷ ︸

T̂+V̂HF

−∆
∑
k

′ (â†
k̄
â†k + âkâk̄)︸ ︷︷ ︸

V̂ ′pair

[Ĥ,N̂]=0

[Ĥ0,N̂]6=0 6=[V̂ ′′pair,N̂]

V̂ ′′pair︷ ︸︸ ︷
+∆

∑
k

′ (â†
k̄
â†k + âkâk̄)−G

∑
k,l

′ â†
k̄
â†kâlâl̄ − E0

Here, ∆ is a so far undetermined parameter called pairing gap (see below). It
is believed that V̂ ′pair included in Ĥ0 represents “a larger part” of the full pairing

interaction V̂pair, while the rest V̂ ′′pair is “small”.

The subsequent procedure consists of 2 steps:
(1) The ground state of Ĥ0 found analytically ⇒ wavefunction |ΨBCS(∆)〉
(2) |ΨBCS(∆)〉 is used as the ansatz wavefunction for the variational procedure
using the full Hamiltonian ⇒ minimization of E(∆) = 〈ΨBCS(∆)|Ĥ|ΨBCS(∆)〉
determines the value of parameter ∆.

The idea behind:

P̂ †P̂ =

small contribution → 0︷ ︸︸ ︷[
P̂ †−〈P̂ †〉Ψ

][
P̂−〈P̂ 〉Ψ

]
+

the main part → V̂ ′pair︷ ︸︸ ︷
〈P̂ 〉ΨP̂ † + 〈P̂ †〉ΨP̂ −

const. → E0︷ ︸︸ ︷
〈P̂ †〉Ψ〈P̂ 〉Ψ

The gap can be identified with: G
√
n〈P̂ †〉Ψ = G

√
n〈P̂ 〉Ψ ≈ ∆

I Bogoljubov transformation (a toy form)

Spin states

{
| ↑〉 ≡ â†↑|0〉
| ↓〉 ≡ â†↓|0〉

quadraticHamiltonian

ĥ0 = ε0 + ε
(
â†↑â↑ + â†↓â↓

)
+ δâ↓â↑ + δâ†↑â

†
↓

Eigenproblem of ĥ0 in the 3D Hilbert space (spanned by states |Na〉 with par-

ticle numbers Na=0,1,2) can be solved analytically via Bogoljubov transform.:

â↑, â
†
↑

â↓, â
†
↓

}
7→

{
α̂↑ = uâ↑ + vâ†↓ α̂†↑ = uâ†↑ + vâ↓
α̂↓ = uâ↓ − vâ†↑ α̂†↓ = uâ†↓ − vâ↑

u, v ∈ R
u2+v2 =1

particles quasiparticles

Quasiparticles are fermions (the transformation is “canonical”):

{α̂↑, α̂↑}={α̂†↑, α̂
†
↑}={α̂↓, α̂↓}={α̂†↓, α̂

†
↓}={α̂↑, α̂↓}={α̂†↑, α̂

†
↓}=0

{α̂↑, α̂†↓}={α̂↓, α̂†↑}=0 {α̂↑, α̂†↑}={α̂↓, α̂†↓}=u2+v2 =1

Coeffsicients u, v are determined by the required form of Hamiltonian after the

transformation, which is: ĥ0 7→ ĥ′0 = e0 + e (α̂†↑α̂↑ + α̂†↓α̂↓)︸ ︷︷ ︸
N̂α
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This Hamiltonian is solvable: eigensolutions identified with the states having

fixed numbers of quasiparticles: |Nα〉 ≡ |0α〉, |1α〉, |2α〉
The ground state is the quasiparticle vacuum: |ψ0〉 ≡ |0α〉
Amplitudes u, v & constants e, e0 (together 4 real variables) obtained from the

condition ĥ′0 = ĥ0, yielding together with the normalization constraint 4 real
equations:

ĥ′0 =

=ε0︷ ︸︸ ︷
e0 + 2ev2 +

=ε︷ ︸︸ ︷
e
(
u2−v2

)
(â†↑â↑ + â†↓â↓) +

=δ︷︸︸︷
euv â↓â↑ +

=δ︷︸︸︷
euv â†↑â

†
↓ = ĥ0

I Solving the main part of the pairing Hamiltonian

The part Ĥ0 of the total pairing Hamiltonian is quadratic ⇒ solvable

Bogoljubov transformation (the full form):

α̂k=ukâk+vkâ
†
k̄

α̂†k=ukâ
†
k+vkâk̄

α̂k̄=ukâk̄−vkâ
†
k α̂†

k̄
=ukâ

†
k̄
− vkâk

âk=ukα̂k−vkα̂†k̄ â†k=ukα̂
†
k−vkα̂k̄

âk̄=ukα̂k̄+vkα̂
†
k â†

k̄
=ukα̂

†
k̄
+vkα̂k

uk, vk ∈ R
u2
k+v2

k=1

{α̂k,α̂l}=0={α̂†k,α̂
†
l } {α̂k,α̂†l }=δkl

{α̂k̄,α̂l̄}=0={α̂†
k̄
,α̂†
l̄
} {α̂k̄,α̂

†
l̄
}=δkl

{α̂k,α̂l̄}=0={α̂†k,α̂
†
l̄
} {α̂k,α̂†l̄ }=0={α̂k̄,α̂

†
l }

Remarks:
(a) We assume (uk, vk) = (1, 0) for levels “far from” the Fermi level: |εk−εF|>S
(b) Instead of Ĥ0 we consider Ĥ0 = Ĥ0−µN̂ , where µ will become a Lagrange
multiplier for fixing the average particle number (⇒ chemical potential)
The transformed Ĥ0 reads as:

Ĥ′0 = 2
∑
k

[
(εk−µ)v2

k−∆ukvk
]

︸ ︷︷ ︸
E0

+

(∑
k

[
2(εk−µ)ukvk −∆(u2

k−v2
k)
]︸ ︷︷ ︸

0

α̂†
k̄
α̂k

+H.c.

)
+
∑
k

ek︷ ︸︸ ︷[
(εk−µ)(u2

k−v2
k) + 2∆ukvk

] n̂k︷ ︸︸ ︷(
α̂†kα̂k + α̂†

k̄
α̂k̄
)

Solution of the diagonalization condition:

2(εk−µ)ukvk −∆(u2
k−v2

k) = 0 ⇒ 2(εk−µ)uk
√

1− u2
k = ∆(2u2

k−1) ⇒
4
[
∆2+(εk−µ)2

]
u4
k−4

[
∆2+(εk−µ)2

]
u2
k+∆2 =0

⇒
u2
k= 1

2

[
1 + εk−µ√

∆2+(εk−µ)2

]
v2
k= 1

2

[
1− εk−µ√

∆2+(εk−µ)2

]
⇒ ek =

√
∆2 + (εk − µ)2

I Ground-state wavefunction

The ground state of Ĥ′0 ≡ vacuum of quasiparticles (⇒ n̂k = 0). Written
in terms of creation/annihilation operators of the original particles and their
vacuum, this state has the following form:

|ΨBCS〉 =
∏
k

(
uk + vkâ

†
k̄
â†k

)
|0〉
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Proof:

α̂l|ΨBCS〉 =

α̂l︷ ︸︸ ︷(
ulâl+vkâ

†
l̄

)∏
k

β̂k︷ ︸︸ ︷(
uk + vkâ

†
k̄
â†k

)
|0〉 =

{[
α̂l,
∏
k

β̂k
]

+
(∏
k

β̂k
)
α̂l

}
|0〉 ={

ulvl
[
âl, â

†
l̄
â†l
]︸ ︷︷ ︸

−â†
l̄

∏
k 6=l

(
uk+vkâ

†
k̄
â†k

)
+
∏
k 6=l

(
uk+vkâ

†
k̄
â†k

)(
ul+vlâ

†
l̄
â†l

)(
ulâl+vlâ

†
l̄

)}
|0〉︸ ︷︷ ︸

+ulvlâ
†
l̄
|0〉

⇒ α̂l|ΨBCS〉 = 0 similarly: α̂l̄|ΨBCS〉 = 0

The solution |ΨBCS〉 approximates the superconducting state at T = 0

I Interpretation

(a) |ΨBCS〉 is a state with undetermined particle number

(b) The average 〈N〉BCS =
∑
k

〈ΨBCS|
(
â†kâk + â†

k̄
âk̄
)︸ ︷︷ ︸

n̂k

|ΨBCS〉
!

= N fixed by µ

(c) The dispersion 〈〈N 2〉〉BCS = 〈N 2〉BCS − 〈N〉2BCS is beyond the control (for
small systems like nuclei this is a drawback)

(d) uk and vk represent probability

amplitudes for the pair of states
|φk〉, |φk̄〉 being empty and occupied:

pempty
k = |uk|2 and poccup

k = |vk|2

(e) The occupation probability |vk|2
as a function of εk is smeared
around the value µ. The smearing
width ∼ ∆. For ∆=0 we get:

|vk|2=1−|uk|2 =
{

1 for εk≤µ
0 for εk>µ

⇒ µ ≡ εF

(f) Excited states (with n̂k ≥ 1)

have energies Eexc ≥ Min{ek} ≥ ∆

⇒ energy gap above the ground state in the
spectrum is a typical signature of pairing and

and one of the origins of the superconducting
behavior (the friction is suppressed due to the
difficulty to excite the system)

I Determination of the gap

(a) Variational approach: E ′(∆) = 〈ΨBCS(∆)|(Ĥ−µN̂)|ΨBCS(∆)〉 =
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〈ΨBCS|Ĥ′0|ΨBCS〉+∆
∑
k

′〈ΨBCS|(â†k̄â
†
k+âkâk̄)|ΨBCS〉︸ ︷︷ ︸

2
∑
k

′ (εk−µ)vk(∆)2

−G 〈ΨBCS|
∑
k,l

′ â†
k̄
â†kâlâl̄|ΨBCS〉︸ ︷︷ ︸[∑

k

′uk(∆)vk(∆)

]2

Minimization of E ′(∆): ∂
∂∆

{
2
∑
k

′ (εk − µ)vk(∆)2 −G
[∑
k

′uk(∆)vk(∆)
]2}

= 0

(b) Derivation from expectation values of pair operators P̂ or P̂ †:

∆ = G
√
n〈ΨBCS(∆)|P̂ |ΨBCS(∆)〉 =

= G〈0|
∏
k′

(uk′ + vk′âk′âk̄′)
(∑

l

′
âlâl̄
)∏

k

(uk + vkâ
†
k̄
â†k)︸ ︷︷ ︸∑

l

′
vl (1−n̂l)︸ ︷︷ ︸

1

∏
k 6=l

(uk+vkâ
†
k̄
â†k)

|0〉 = G
∑
l

′
ul(∆)vl(∆)︸ ︷︷ ︸

G
2

∑
l

′
√

1− (εl−µ)2

∆2+(εl−µ)2

Both derivations equivalent ⇒ gap equation: ∆

(
1− G

2

∑
k

′ 1√
∆2+(εk−µ)2

)
= 0

⇒ ∃ a critical value Gc of pairing strength: 2
Gc

=
∑
k

′ 1
|εk−µ|

⇒ Solutions:

(1) G ≤ Gc : ∆ = 0 (normal solution)
(2) G > Gc : 2

G
=
∑
k

′ 1√
∆2+(εk−µ)2

⇒ ∆ 6= 0 (superconducting solution)

J Historical remark

1947: N. Bogolyubov introduces the transformation to quasiparticles
1957: J. Bardeen, L.N. Cooper & J.R. Schrieffer formulate the BCS method

� Quantum gases

At last we turn to systems of non-interacting indistinguishable particles at

a nonzero temperature. Generalizing the concept of a canonical ensemble (see
Sec. 1.7), we will point out some crucial differences in thermodynamic properties
of bosons and fermions. The respective grand-canonical partition functions

will be evaluated and shown to carry universal (not only thermodynamical)
information on many-body systems.

I Grand-canonical ensemble

Consider a gas of indistinguishable particles at temperature T=(kβ)−1 (with
k≡Boltzmann const., β≡ inverse temperature) in a finite volume V . Assuming
an exchange of both energy & particles between the system and a bath, we
fix neither the total energy E, nor the actual number of particles N in the sys-
tem, but only the averages 〈E〉 and 〈N〉. The most likely choice of the system’s
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density operator follows from the maximum entropy principle. The re-

sulting grand-canonical ensemble generalizes the canonical ensemble (Sec. 1.7)
by taking into account also the effects of particle exchange.
Hamiltonian Ĥ commutes with the particle-number operator N̂ . For each par-

ticle number N , the system has a discrete energy spectrum {ENi}. The equi-
librium density operator ρ̂ is diagonal in the common eigenbasis of Ĥ, N̂ ⇒
diagonal matrix elements (probabilities) ρ(N,ENi) ≡ ρNi

Constraints induced by the normalization and fixed averages:
∞∑
N=0

∞∑
i=1

ρNi = 1
∞∑
N=0

∞∑
i=1

ρNiN = 〈N〉
∞∑
N=0

∞∑
i=1

ρNiENi = 〈E〉

Entropy S = −k
∑
N,i

ρNi ln ρNi to be maximized with the above constraints:

f = −
∑
N,i

ρNi ln ρNi + (α+1)
∑
N,i

ρNi − β
∑
N,i

ρNiEi(N) + γ
∑
N,i

ρNiN

∂f
∂ρNi

=− ln ρNi−1+(α+1)−βEi(N)+γN = 0 ⇒ ln ρNi=α−βEi(N)+γN

This leads to the grand-canonical form of the density operator, which de-
scribes an equilibrium state of a many-particle system exchanging energy &
particles with the environment:

ρNi=
1

Z(β, µ)
e−β
(
ENi−µN

)
where


µ = γ

β ≡ chemical potential

Z(β, µ)=
∑
N,i

e−β(ENi−µN)

partition function

I Quantities derived from the partition function

(a) Energy & particle number averages:

〈E〉β,µ =
∑
N,i

ρN,iENi=
1

Z(β,µ)

∑
N,i

ENi e
−β(ENi−µN)=− 1

Z(β,µ)
∂Z(β,µ)
∂β =− ∂

∂β lnZ(β, µ)

〈N〉β,µ =
∑
N,i

ρN,iN= 1
Z(β,µ)

∑
N,i

N e−β(ENi−µN)= 1
βZ(β,µ)

∂Z(β,µ)
∂µ

= + 1
β
∂
∂µ

lnZ(β, µ)

(b) Energy & particle number dispersions (cf. Sec. 1.7):

〈〈E2〉〉β,µ =+ ∂2

∂β2 lnZ(β, µ) 〈〈N2〉〉β,µ =+ 1
β2

∂2

∂µ2 lnZ(β, µ)

(c) Density of states for a fixed particle number: %(N,E) =
∑
i

δ(E−ENi)

Density with a continuous variable N≡N̄
is defined by:

%(N̄ , E) =
∑
N

∑
i

δ(N̄−N)δ(E−ENi)

⇒
N+ε∫
N−ε

%(N̄ , E)dN̄ = %(N,E)
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Z(β, µ) =
∑
N

∑
i

e−β(ENi−µN) =
∫∫

%(N̄ , E) e−β(E−µN̄)dN̄ dE

partition function 2D Laplace transform. of state density

⇒

%(N̄ , E) =
(

1
2πi

)2
+i∞∫∫
−i∞

Z(β, µ) e+β(E−µN̄)β dµ dβ

=
(

1
2πi

)2
+i∞∫∫
−i∞

elnZ(β,µ)+β(E−µN̄)β dµ dβ

state density inverse 2D Laplace transform. of partition function

Evaluating the grand-canonical partition function of the many-particle system,
one can determine the density of energy eigenstates for each particle number

I Partition function of the Bose gas

Bose gas ≡ ensemble of non-interacting bosons

⇒ total energy = sum of single-particle energies: Ei(N) =
∞∑
k=1

nikεk

total number of particles: N =
∞∑
k=1

nik
nik=0, 1, 2, 3, . . . occup. numbers

⇒ partition function:

Z(β, µ) =
∑
N

∑
i

e−β(ENi−µN)
∗
↓
=
∑
{nik}

e
−β
(∑
k

nikεk−µ
∑
k

nik

)
=
∏
k

∞∑
nik=0

e−β
(
nikεk−µnik

)
︸ ︷︷ ︸

1

1−e−β(εk−µ)
* the sum

∑
{nik}

goes over all sets of occup. numbers

lnZ(β, µ) = −
∑
k

ln
[
1− e−β(εk−µ)

]
For Bose gas in volume V we can change the sum
into an integral over the single-particle phase space,

using substitutions:

 εk 7→ p2

2M∑
k

7→ 4πV
(2π~)3

∞∫
0

p2dp

I Partition function of the Fermi gas

Fermi gas ≡ ensemble of non-interacting fermions

⇒ Ei(N) =
∞∑
k=1

nikεk N =
∞∑
k=1

nik with occup. numbers nik=0, 1

⇒ partition function:

Z(β, µ) =
∑
N

∑
i

e−β(ENi−µN) =
∑
{nik}

e
−β
(∑
k

nikεk−µ
∑
k

nik

)
=
∏
k

∑
nik=0,1

e−β
(
nikεk−µnik

)
︸ ︷︷ ︸

1+e−β(εk−µ)

lnZ(β, µ) = +
∑
k

ln
[
1 + e−β(εk−µ)

]
the sum can be replaced by the same

phase-space integral as for bosons
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I Distributions of occupation numbers

Average total particle number:

〈N〉β,µ=
∑
k

〈nk〉β,µ= 1
β
∂
∂µ

lnZ(β, µ)=


∑
k

e−β(εk−µ)

1−e−β(εk−µ) =
∑
k

1
e+β(εk−µ)−1

Bose gas∑
k

e−β(εk−µ)

1+e−β(εk−µ) =
∑
k

1
e+β(εk−µ)+1

Fermi gas

Average occupation numbers:

〈nk〉β,µ =

{
1

e+β(εk−µ)−1
Bose−Einstein statistics

1
e+β(εk−µ)+1

Fermi−Dirac statistics

Chemical potential µ is
determined from a fixed
average 〈N〉β,µ of the

total number of paricles.

For bosons we require:

µ ≤ ε1 (the lowest

single-particle energy)

For fermions we identify:
µ ≡ εF (Fermi energy)

J Historical remark

1878: J.W. Gibbs introduces the notion of statistical ensembles
1924-5: S. Bose & A. Einstein derive the statistical distribution for bosons
1926: E. Fermi and P. Dirac derive the statistical distribution for fermions
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