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I cannot believe God plays dice with the
Cosmos!

—Albert Einstein

Einstein, stop telling God what to do!

—Niels Bohr



Dedicated to all people who honestly try to
interpret the Reality and who humbly
understand that it is greater than them.



Preface

Someone could believe thatQuantumMechanics has to be presented only in amodern
approach, highlighting from the beginning Principleswritten in the language of Func-
tional Analysis. Hilbert spaces, Hermitian and unitary operators, eigenvalues and
eigenvectors are part of this modern language from which emerges a frame to under-
stand what we call reality. Ladder operators help us to create and destroy matter. We
jump between energy levels in this way. There are quantum numbers which describe
at a glance the properties of a quantum mechanical system. Some other operators,
which are the generalization of unitary operators in four dimensions, describe both
the polarization of photons and the electron spin. In this modern language, even
the impossibility to predict at the same time the position and the momentum of a
particle is, in fact, an operatorial inequality whose skeleton is the basic Cauchy-
Buniakowski-Schwarz inequality. The atom can be described by the Schrödinger
equation,written in spherical coordinates and solved by some advancedmathematical
technique. This modern language allows analogies with Classical Mechanics consid-
ered in its different formulations. For example, starting from the Hamilton-Jacobi
formula in Classical Mechanics, it exists a counterpart in QuantumMechanics. Only
terms containing è make the difference between classic and quantum formulations.

This advanced language started from Dirac, Heisenberg, Pauli, Ehrenfest,
Schrödinger and all the others who contributed to its development. We believe that
is important to be known by students and it is presented in this book.

Howeverwe also believe that it is important, for people coming into the territory of
QuantumMechanics, to knowhow this language has been formulated to approach this
unintuitive part of Physics. In this book, without claiming for completeness, we offer
a road mainly devoted to undergraduate students. The task is very difficult because
theMathematics ofQuantumMechanics is not simple even before the abstract picture
we mentioned before. The creative fathers invented notions and descriptions which,
time by time, have to be confronted with self-consistent concepts and experiments.

Wewant to present the evolution of quantummechanical concepts based on exper-
imental facts and to develop the related Mathematics accordingly. In other words,
we want to improve, step by step, the mathematical contents with the aim to guide
students along the conceptual path of Quantum Mechanics because we realized, as
teachers, that often some concepts are not fully understood, even if technically used.

ix



x Preface

For any statement, we give the complete proof. All material is explained in a
friendlymanner for students in Physics,Mathematics, Chemistry and Engineering. If
someone reads from the beginning to the end, she/he has the possibility to understand
step by step. For example, we develop the harmonic oscillator in Newton mechanics,
and then pass to the Lagrange formalism, and finally in Hamilton formalism to
step in the basic ideas of Quantum Mechanics in view to obtain a first solution and
then quantize the energy levels depending on the Hermite polynomials. The idea
is to look at the Mathematics behind the Hermite polynomials and to begin to see
structures which lead to the Hilbert spaces. After, we develop other lectures to move
toward the axiomatic formalism of Quantum Mechanics. In Dirac notations with
ladder operators, we have a sort of surrealistic view on the harmonic oscillator, if
we compare it to the solution found with respect to Hermite polynomials. In this last
case, the quantized energy levels were necessary to obtain the solution depending
on Hermite polynomials. The “surrealistic view” in modern mathematical language
makes the ladder operators responsible for the quantized energy levels.

The same approach can be realized when we look at hydrogen atom: there is
a huge gap between the Bohr model and the Schrödinger model of atom derived
in spherical coordinates. Here we obtain the spherical harmonics and the quantum
numbers n, l, m; the solution depends on Legendre’s polynomials and we present all
these parts giving the complete solutions. The philosophy is that passing from the
Bohr model to the Schrödinger solution, the accuracy of the latter is achieved thanks
to the more advanced Mathematics.

Somewords onHeisenberg’s uncertainty principle are necessarybecause this topic
can also be seen as an “evolutionary” concept along this book. We meet firstly this
subjectwhenwe study theGausswavepackets.Again, theMathematics behindoblige
us to come step into the world of Fourier transforms. Here we find that Heisenberg’s
principle can be formulated under the standard of Fourier transforms: its equivalent is
the well-known Pinsky’s theorem. When we develop the Mathematics for Quantum
Mechanics, it is possible to identify the Heisenberg uncertainty principle with the
Cauchy-Buniakowsky-Schwarz formula for some special operators. Also in this case,
themathematical evolution points out the Physics of the quantummechanical objects.
Several other examples can be developed in this perspective.

We can use the Dirac words: God used beautiful Mathematics in creating the
World. They reflect exactly what we are humbly trying to present here: the beautiful
Mathematics of QuantumMechanics. This is theMathematical Journey to Quantum
Mechanics we propose.

The main point of this book is that we try to make it readable. Having complete
proofs with detailed calculations, it gives chances to all readers to understand some
difficultmathematical parts necessary to have a comprehensive picture of the amazing
subject of Quantum Mechanics. The philosophy we followed in writing this book is
the same as that used for the companion book A Mathematical Journey to Relativity
[1] where we arrived to General Relativity starting from the concepts of basic geom-
etry. The ultimate aim is to show that all the deep concepts of modern physics can
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be better understood if one considers in detail the mathematical language in which
they are formulated.

Napoli, Italy
Costanta, Romania
July 2021

Salvatore Capozziello
Wladimir-Georges Boskoff
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Chapter 1
Introduction: How to Read This Book

All Science is either Physics
or stamp collecting.

Ernest Rutherford

A mathematical journey towards Quantum Mechanics would like to be an itinerary
moving from Classical Mechanics to Special Relativity, then continuing to Quantum
Mechanics. This book consists of self-contained short lectures, the first thirteen being
a necessary revision of some basic concepts of Classical Mechanics and Special
Relativity.

However, if someone is already familiar with both Lagrangian and Hamiltonian
formulations of Classical Mechanics or with Lorentz transformations in Special
Relativity and their consequences, it is possible to start directly from the chapter
“Why Quantum Mechanics?”.

But, if you read the following lines and they seem vague statements, it is better
to start from the beginning:
“The Hamiltonian written in the form

H = 1

2m
(p2x + p2y + p2z ) + V (t, x, y, z) ,

is transformed into the Hamilton–Jacobi equation

−∂S

∂t
= 1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2
]

+ V t, x, y, z).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. Capozziello and W.-G. Boskoff, A Mathematical Journey to Quantum Mechanics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-030-86098-1_1
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2 1 Introduction: How to Read This Book

Its equivalent, in Quantum Mechanics, is

−∂S

∂t
= 1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2
]

− i�

2m
�2 S + V (x, y, z, t).

The classical Hamilton–Jacobi equation is recovered when � is negligible.”
“The Hamiltonian formalism of Classical Mechanics gives formulas like

[F, H ] :=
n∑

i=1

[
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

]
,

or
dF

dt
= [F, H ]

where F = F(pi , qi ), i ∈ {1, 2, . . . , n} is a real function, H := H(qi , pi ) is the
Hamiltonian function depending on the generalized coordinates and the first formula
is the definition of the Poisson brackets of the functions F and H . The consequences

[qi , q j ] = [pi , p j ] = 0, [qi , p j ] = δij

are similar to the formulas

[ p̂ j , x̂k] = −i�δ jk, j, k = 1, 2, 3

which involve the quantum mechanical operators momenta and positions. At a first
glance

dF

dt
= [F, H ]

has its equivalent in Quantum Mechanics thanks to the Ehrenfest Theorem, that is

d

dt

〈
Â
〉
= 1

i�

〈
[ Â, Ĥ ]

〉
.′′

So, if the mathematical language of the two above statements is unknown for you,
it is better to start from the Lagrangian and Hamiltonian formalisms of Classical
Mechanics and after to step into the language of Quantum Mechanics.

The same, if the following paragraph where it is shows that light, considered as
an electromagnetic wave, is invariant under Lorentz transformations and it is not
invariant under Galilei transformations:

“Denote by

E = E(t, x, y, z) := (Ex (t, x, y, z), Ey(t, x, y, z), Ez(t, x, y, z))
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the electric field vector and by

B = B(t, x, y, z) := (Bx (t, x, y, z), By(t, x, y, z), Bz(t, x, y, z))

the magnetic field vector. In geometric units, i.e. c = 1, the Maxwell equations in
vacuum are ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

� · E = 0

� × E = −∂B

∂t
� · B = 0

� × B = ∂E

∂t

If

� := ∂2

∂t2
− �2

is d’Alembert operator, after some calculations, the previous equations can bewritten
in the form {

�E = 0
�B = 0.

Here, the d’Alembert operator is used to describe the wave equations. The obtained
form is used to show the invariance of Maxwell equations under the Lorentz trans-
formations.

For the system at rest, here denoted R(t, z), each component of the first equation
is

∂2
E

∂t2
− ∂2

E

∂z2
= 0,

that is we prefer to denote by E each of the components Ek, k = x, y, z of the
electric field E . How this simple equation looks like in S(τ, z̄), if S is a moving
system supposed to move at constant speed v along the z axis in R?

To answer, we have to use the Lorentz inverse transformation L−v , that is⎧⎪⎨
⎪⎩

τ = t − z v√
1 − v2

z̄ = −t v + z√
1 − v2

.

Let’s denote by Ē(τ, z̄) = Ē

(
t − z v√
1 − v2

,
−t v + z√
1 − v2

)
:= E(t, z) the corresponding

component of the electric field in S, which, obviously has to be the same as in R. It
remains to prove the equality

∂2
E

∂t2
− ∂2

E

∂z2
= ∂2

Ē

∂τ 2
− ∂2

Ē

∂ z̄2
.
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After simple algebra, the equality is proved. It is important to say that if we try with
Galilean transformation, the equality does not hold, therefore light, considered as an
electromagnetic phenomenon, cannot be framed in Classical Mechanics”.

Again, if the language and the computations seem to be difficult or if the passage
from Maxwell’s equations to d’Alembert’s equations is not familiar, it is better to
start from the below lectures in Special Relativity.

Furthermore, in the evolution of mathematical language for QuantumMechanics,
we are looking also at the first experiments which established the atomic structure. It
isworth noticing that several experiments proved thewave nature of light according to
Young,Maxwell, and others.We are going to present here the mathematical structure
of these experiments.

Besides, starting from the statement that light is made by particles, as said by
Descartes, Newton, Einstein, and others, the description of photoelectric effect,
obtained by Einstein, proved the existence of photons. Specifically Einstein used
Planck’s formula E = hν to explain how electrons are released from a metal when
ultraviolet high frequency light hits the surface of the metal. In fact, Planck’s formula
E = hν expresses quanta of energy which represent photons. Photons hit the metal
and extract electrons. Planck’s formula can be considered the fundamental step in the
formulation of QuantumMechanics. We have dedicated a lecture to Planck’s idea of
energy quantum packets and another lecture to photoelectric effect.

Thereforewe have to accept the idea that light is constituted bywaves and particles
at the same time. This means that Llght has a dual behavior.

Louis de Broglie was the first who considered possible to think that electrons
have a dual behavior, too. This statement helped Bohr’s model of hydrogen atom
(now obsolete) to survive at least at the level of its first axiom. The electron is seen
as a standing wave but also as a deterministic particle involved in a circular orbit
around the nucleus, as Rutherford claimed. And this is the major problem that made
physicist to cancel this model, even if it correctly predicts the Rydberg series. We
have a series of lectures dedicated to these subjects.

How Mathematics adapted to the evolution of atomic conception?
Waves in the one dimensional case can be written in the form

�(t, x) = Aei(kx−wt) = A[cos(kx − wt) + i sin(kx − wt)].

This is a traveling monochromatic wave which verifies the d’Alembert equation

�� = 0.

Schrödinger conceived another equation to describe the subatomic world. We can
only speculate that, in his picture, d’Alembert equation is a deterministic classical
equation while Schrödinger time dependent equation

i�
∂�

∂t
(t, x) = − �

2

2m

∂2�

∂x2
(t, x) + V (t, x)�(t, x).
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seems more related to a theory formulated for subatomic particles. If V = 0, we
obtain the equation of a particle which travels freely in the empty space. The standing
waves can be studied easier using the Schrödinger time independent equation

H� = − �
2

2m

d2�

dx2
+ V (x)�

where H is the total energy of the described system. The examples we study below,
that is the free particle, the particle in a box and the harmonic oscillator give rise to a
new mathematical world to be involved in the description of QuantumMechanics. If
we look only at the harmonic oscillator, results can be summarized in the following
way. The equation is

− �
2

2m

d2�

dx2
(x) + 1

2
mω2x2�(x) = H�(x).

If we denote u =
√
mω

�
x and ε = 2H

�ω
, we obtain the equation in the variable u

d2�

du2
(u) + (ε − u2)�(u) = 0.

The solutions are obtained if ε = 2n + 1, n ∈ N and depends on the Hermite poly-
nomials. The form of the solutions is

�n(u) = AnHn(u)e−u2/2,

where Hn(u) are the Hermite polynomials and An is a constant we find with the
constraint ∫ ∞

−∞
|�n(u)|2du = 1.

Since

ε = εn = 2n + 1 = 2H

�ω

we find that the total energy H is quantized, depending on n, being Hn . There is a
notation risk with respect to the Hermite polynomials denoted by Hn , too. Therefore,
we denote in this example the total energy by the letter E and we obtain the n-level
quantized energy as

En =
(
n + 1

2

)
�ω.

If we return to the variable x , after all computations, we find
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�n(x) = 1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�

and

�n(t, x) = e−i En t/�
1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�.

Now, the last step: since Schrödinger equation is a linear one, the general solution is
described by the sum of all modes of n-oscillations, that is

�(t, x) =
∑
n

cne
−i En t/��n(x).

The meaning of this sum is related to the Mathematics behind the Hermite polyno-
mials, needed to describe the harmonic oscillator. The mathematical language and
even the meaning of the mathematical objects involved in QuantumMechanics have
to evolve in an appropriate way. Therefore the next lectures are devoted both to the
Hermite polynomials and to the theory of Hilbert spaces. Of course, this book cannot
substitute a book of Functional Analysis. We intended to offer just basic aspects nec-
essary to understand QuantumMechanics. Technical aspects of some results have to
be studied by the readers in specialized textbooks. We do not step into the theory of
L p spaces, which are Hilbert spaces if and only if p = 2 because we need only L2

for our purposes. All the ingredients of this theory is already part of the harmonic
oscillator mathematics.

Considering the ladder operators and Dirac vision of harmonic oscillator, we step
into “another quantummechanics description”which gives the possibility to “create”
or “annihilate” particles.

The reader will find in this book carefully proofs of basic facts of Quantum
Mechanics. To prevent confusions, we wish to present in this Introduction some
theoretical facts we will need later.

For example, let us consider a function �(x) constructed in the following way:

for each integer k such that |k| ≥ 3 we consider the interval

[
k − 1

k4
, k + 1

k4

]
. The

function is 0 outside these intervals. We have �(k) = 1 for all k considered in the

description. On each interval

[
k − 1

k4
, k + 1

k4

]
the function has the graph described

by two segments, the first one lying from

(
k − 1

k4
, 0

)
to (k, 1), the second one lying

from (k, 1) to

(
k + 1

k4
, 0

)
.

Three mathematical facts are obvious.
The first one is related to the smoothness of this function. This function does not

belong to C∞(R).
The second one is related to the fact that



1 Introduction: How to Read This Book 7

∫ ∞

−∞
|�(x)|2dx < 2

∑
k∈N, k �=0

1

k4
< ∞,

i.e. � ∈ L2(R). The third one is related to the fact that functions in L2(R) not
necessarily approach to 0 at plus and minus ∞. Let us consider the sets {k}k∈N and{
k + 1

k4

}
k∈N

for k > 3. Since �(k) = 1 and �

(
k + 1

k4

)
= 0, it results that the

function � has not a limit at infinity.
This example shows that it is not true the fact that if a function belongs to L2(R),

it approaches 0 at infinity.
Now,we can construct in the sameway another functionφ with the only difference

that, at each k as above, φ(k) = 2. This function also belongs to L2(R)without being
smooth.

For such functions we cannot write the equality

〈
� | d2

dx2
φ

〉
L2(R)

=
∫ ∞

−∞
�∗(x)d

2φ

dx2
(x)dx =

∫ ∞

−∞
d2�∗

dx2
(x)φ(x)dx =

〈
d2

dx2
� | φ

〉
L2(R)

which leads to the fact that the one dimensional Hamiltonian operator is a Hermitian
one.

We need something else to prove the above equality: L2(R) contains a very impor-
tant dense subset, C∞

0 (R).
C∞
0 (R) is the set of all infinitely differentiable functions real or complex valued

having a compact support. The support of a function is the topological closure of the
set of x ∈ R such that f (x) �= 0. The previous � and φ are approximated by �n and
φn , sets from this important subset. Now, we have in mind that on a compact subset
of R, which include the union of the supports of �n and φn , it makes sense using
twice the integration by parts, that is

〈
�n | d2

dx2
φn

〉
L2(R)

=
∫ ∞

−∞
�∗

n (x)
d2φn

dx2
(x)dx =

∫ ∞

−∞
d2�∗

n

dx2
(x)φn(x)dx =

〈
d2

dx2
�n | φn

〉
L2(R)

and this equality is preserved at the limit. In this way, we avoid the false claim about
functions in L2(R) presented above. That is, we obtain the equality

〈
� | d2

dx2
φ

〉
L2(R)

=
〈
d2

dx2
� | φ

〉
L2(R)

which shows that the Hamilton operator is a Hermitian one on L2(R).
Of course, this particular proof holds for V (x) = 0. If V (x) �= 0, we have to take

into account that it is real valued. Therefore

〈� | V (x)φ〉L2(R) = 〈V (x)� | φ〉L2(R)
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holds. Together, the two results show that the Hamiltonian is a Hermitian operator,
i.e.

〈� | Hφ〉L2(R) =
〈
� |

(
d2

dx2
+ V (x)

)
φ

〉
L2(R)

=
〈(

d2

dx2
+ V (x)

)
� | φ

〉
L2(R)

= 〈H� | φ〉L2(R)

These are the details one needswhenwediscuss about the fact that theHamiltonian
is a Hermitian operator.

If we are working in L2([0, L]), as it happens in Lecture 31, the dense set is
C∞([0, L]) and more, if � ∈ L2(R) and φ ∈ L2(R) have the properties �(0) =
φ(0) = �(L) = φ(L) = 0, we can choose sets �n, φn ∈ C∞([0, L]) such that
�n(0) = φn(0) = �n(L) = φn(L) = 0 for each n ∈ N. The equality which is pre-
served at the limit is

〈
�n | d2

dx2
φn

〉
L2([0,L])

=
∫ L

0
�∗

n (x)
d2φn

dx2
(x)dx =

∫ L

0

d2�∗
n

dx2
(x)φn(x)dx =

〈
d2

dx2
�n | φn

〉
L2([0,L])

.

Of course, these equalities are obtained applying twice the integration by parts. It is
important to underline that in L2(R3) the dense set is C∞

0 (R3). This will be used in
Lecture 39.

Why all these discussions? When we are talking about observables, we are deal-
ing with Hermitian operators. Among the observables of a quantum systems, the
Hamiltonian plays a major role. So, at least in particular cases, the Hamiltonian has
to be a Hermitian operator and we have to be able to prove this property.

We left as a final consideration the definition of complex numbers. We do not
totally like to say that

C := {z| z = a + ib, a, b ∈ R, i2 = −1}.

The operations seen in the previous definition are an addition and a multiplication.
Are these operations those we know from real numbers? The answer is no, of course,
but it is better to say why to prevent undesirable confusions.

Consider
R

2 := {(a, b)| a ∈ R, b ∈ R}

and two operations⊕ and constructed with respect the addition and multiplication
on R:

(a, b) ⊕ (c, d) := (a + c, b + d) and

(a, b)  (c, d) := (ac − bd, ad + bc).

The reader can prove that a field structure is highlighted by (R2,⊕,).
A simple exercise shows that (0, 1)  (0, 1) = (−1, 0).
It is only a notation to write (0, 1)2 = (−1, 0). Therefore we can write
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(a, b) = (a, 0) ⊕ (0, b) = (a, 0) ⊕ (0, 1)  (b, 0).

If we identify a complex number as a pair of the previous field, i.e. z := (a, b)
and each pair (a, 0) by the real number a (this happens because the function f :
{(x, 0)| x ∈ R} → R is a bijective one), the pair (0, 1) remains as a mathematical
object which does not correspond to a real number because its form (0, 1) differs by
(x, 0). If we denote it by i , the previous exercise tells us that i2 = −1 (at the level
of our previous identifications). Finally we can “write” z = a + ib, but we have to
look at this new entity, the complex number z, with respect to our explanations given
before. In this book, we use the notation z∗ = a − ib for the conjugate of the complex
number z = a + ib.

The above considerations clearly point out how it is important the mathematical
language in the formulation of any theory.

A final remark is necessary for the reported Bibliography. This book is meant to
be as self-consistent as possible considering the evolution of mathematical language
of Quantum Mechanics. However, we point out some important key books which
can be used for further information and discussions. Refs. [1–3] can be used for the
thirteen lectures of the first two Chapters, while Refs. [4–9] can be considered in
view of mathematical description of QuantumMechanics, in particular for Chaps. 6,
8, 9 and 10. References from [10] to [25] are related to each Chapter starting from
the third one. In particular, Refs. [13–15, 22] and [23] are for Chaps. 8, 9 and 10
being related to the modern approach to Quantum Mechanics. Some basic concepts
of Relativistic Quantum Mechanics are reported in Chap.11 but a full development
of this subject can be found in [28, 29]. The ideas from which this book has been
developed are suggested in [26, 27].



Chapter 2
Newtonian, Lagrangian and Hamiltonian
Mechanics

Language is only the instrument of Science,
and words are but the signs of ideas.

Samuel Johnson

2.1 Lecture 1: A Summary of the Principles of Newtonian
Mechanics

NewtonianMechanics [2, 3] is the branch of Physics which studies the way in which
bodies are changing their position in space and time. Space where the objects are at
rest or in motion is the Euclidean 3-dimensional space E3. Time is represented by
the real axis R. It is absolute and the same for any observer. All objects, regardless
of size, can be identified as points with a given mass in the previous E3 space. So,
the Euclidean frame of coordinates Oxyz becomes the absolute place where all is
happening. Forces are seen as vectors. For a given point M in space, the vector
→
X= −→

O M is called a position vector. If the point evolves in time, we write this as

→
X (t) = (x(t), y(t), z(t)).

The velocity vector is
→̇
X = (ẋ(t), ẏ(t), ż(t))

and the acceleration vector is

→̈
X = (ẍ(t), ÿ(t), z̈(t)).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. Capozziello and W.-G. Boskoff, A Mathematical Journey to Quantum Mechanics,
UNITEXT for Physics, https://doi.org/10.1007/978-3-030-86098-1_2
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Of course, we make the assumption that the coordinates functions are infinitely
differentiable on their domain of definition which differs from a model to another.
The foundations of NewtonianMechanics are based on three fundamental principles,
the so called Newton’s Laws of motion. They were introduced by Isaac Newton
in “Philosophiae Naturalis Principia Mathematica”, book published in 1687. The
Principle of Inertia, or the first law, asserts: “A physical body preserves its rest
state or will continue moving at its current velocity conserving its direction, until a
force causes a change in its state of moving or rest. The physical body will change
the velocity and the direction according to this force.” A particular case is related
to the rectilinear uniform motion, when the body is moving on a straight line at
constant speed. The frameswhere this principle is available are called inertial frames.
These frames are at rest or they move rectilinear at constant speed. This fundamental
principle was first enunciated by Galileo Galilei. We can say that this principle tells
us where, according to Newton, the two others fundamental principles make sense: in
inertial frames. At the same time, it tells us that it is impossible to make a distinction
between the state “at rest” and the state of “rectilinear motion at constant speed.”
Imagine you are in the bowl of a ship and you have no possibility to observe outside.
You slept and you waked up. You cannot distinguish between the two states without
an observation, a possible comparison. You will play table tennis alike in both states,
the object fall down in same way in both states, etc. The two states are equivalent for
you in the given conditions.

Newton introduces a concept, the quantity of motion of a body as the product
between the mass m and its velocity

→
v . This quantity of motion is known today as

momentum and it is denoted by
→
p , therefore

→
p := m

→
v . The second law asserts:“The

force who acts on a body is the variation in time of the quantity of motion.” Its

differential form is
→
F= d

→
p

dt
. If m does not depend on time, then

→
F= d

→
p

dt
= m

d
→
v

dt
= m

→
a ,

that is the force who acts on a body is proportional to the body acceleration through
its mass.

Newton’s third law states: “When a body acts on a second body by the force
→
F ,

the second body simultaneously reacts on the first body by the force − →
F.”

Example 2.1.1 Let’s consider an example which will be related to Quantum Mechan-
ics: the harmonic oscillator. A mass attached to a spring, a small period pendulum,
an acoustic wave are examples of harmonic oscillators in Classical Mechanics. The
restoring force is proportional to the displacement x,

→
F= −k

→
x ,
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where k is a positive constant. Therefore the differential equation to solve is stated
by Newton’s second law,

mẍ(t) = −kx(t).

The solution is
x(t) = A cos(ωt + φ),

where A is a positive number which expresses the amplitude and ω =
√

k

m
. Here φ is

the phase. The solution is a periodic function, therefore the oscillatory movement has

a period, T = 2π

ω
. This problem allows a view in respect of the conservative force

derived from a potential energy. The potential energy of the harmonic oscillator is

V (x) := 1

2
kx2.

Summary of Lecture 1. The Classical Mechanics was developed in the 17th
century by Isaac Newton. It is a deterministic theory for macroscopic objects
which allows, from a given state of a system, to predict its evolution in the
future but also to understand how it moved in the past. There is an absolute
space and an absolute time given by an “universal clock”. The absolute space
is the Euclidean one in which all objects evolves under some dynamical rules,
the principles stated by Newton.

The first principle is called Principle of Inertia and states how the objects
are moving in absence of forces or if a force acts on the objects.

The second principle, known as Newton’s second law, describes the motion

in the absolute time of an object and it can be simply written as
→
F= d

→
p

dt
. If

m does not depend on time, then

→
F= d

→
p

dt
= m

d
→
v

dt
= m

→
a ,

while the third principle describes the response of a physical system against
the object which exerted the force responsible of the change of the state of the

system. It can be described as
→
F AB= − →

F B A . The example of the harmonic
oscillator is presented starting from the restoring force which is proportional
to the displacement x , i.e.

→
F= −k

→
x ,

where k is a positive constant. It results the equation of the harmonic oscillator
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mẍ(t) = −kx(t).

The solution is
x(t) = A cos(ωt + φ),

where A is a positive number which expresses the amplitude and w =
√

k

m
;

φ is the phase. The solution is a periodic function with period T = 2π

ω
. This

problem represents a straightforward picture for a conservative force derived
from a potential energy. The potential energy of the harmonic oscillator is

V (x) := 1

2
kx2.

The way we see the harmonic oscillator will change with respect to the for-
malism for the quantum harmonic oscillator. In this last case, we shall adopt a
different perspective by which Quantum Mechanics can be formulated.

2.2 Lecture 2: The Mechanical Lagrangian

In a system of coordinates (t, x), let (t, x(t)) be the trajectory of a particle of mass
m moving under the influence of a force derived from a time independent potential
V . Since V depends only on the position, we denote this by V := V (x).

Newton’s equation of motion is

mẍ(t) = F(x),

where the force acting on the particle is F(x) = −dV

dx
.

Given initial conditions, the trajectory (t, x(t)) is comprised between the initial
point (t1, x(t1)) and the final point (t2, x(t2)).

Let us stress that this trajectory is the expression of the force acting on the particle
under some initial conditions. Therefore, there is a single trajectory determined by
the force and the initial conditions.

Now let us consider all the paths connecting (t1, x(t1)) and (t2, x(t2)). They can
be thought as y(t) + η(t), with y(t1) = x(t1), y(t2) = x(t2), η(t1) = η(t2) = 0.

Having all these paths, what we need to discover the original path described by
the Newton equation of motion?

To answer this question, we need some technical details.
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We have used V such that F = −dV

dx
. We defined V as a potential (function of

space coordinates) connected with the force F , by dV = −Fdx .
Consider a body of mass M at the origin O of a line whose spatial coordinate is

denoted by x . Suppose tha,t at point N (x), a body of mass m exists. The gravitational

force in this case has the intensity F = G Mm

x2
where G is the Newton gravitational

constant. The work done by the body of mass M to move the body of mass m from x
to x − dx is−Fdx . There is an energy E transferred to make this work. Its variation
�E is −Fdx . By definition, the gravitational potential energy V (r) is related to the
work made to move the body of mass m from the infinity to the point having the
coordinate r , that is

V (r) =
∫ r

∞
Fdx =

∫ r

∞
G Mm

x2
dx = −G Mm

r
.

The potential energy can be denoted by V . If one looks at the formula obtained and

takes into account the formula of the gravitational potential −G M

r
, we obtain the

relation
V = mΦ.

Therefore, the gravitational potential represents the work (energy transferred) per
unit mass necessary to move a body from infinity to the point having the coordinate
r ; that is

Φ(r) = 1

m

∫ r

∞
Fdx = 1

m

∫ r

∞
G Mm

x2
dx = −G M

r
.

If we consider the constant gravitational field determined by the constant acceleration
g between the origin O and a point H at the coordinate h, the potential energy is
expressed by the formula V = mgh. The explanation is related to the difference of
formal integrals

V := V (h) − V (0) =
∫ h

∞
gmdx −

∫ 0

∞
gmdx =

∫ h

0
gmdx = gmh

which describes the amount of energy necessary to move the body at h to 0.
In the same way, we can define the kinetic energy. Let us start from F = ma =

m
dv

dt
written in its discrete form, F = m

�v

�t
. If we multiply by �r , we obtain

F�r = m
�v

�t
�r = m

�r

�t
�v = mv�v,which can bewritten in the differential way

as
Fdr = mvdv.

Now, the amount of energy necessary to bring a body initially at rest to the speed v

is
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T (v) =
∫ v

0
Fdx =

∫ v

o
mxdx = m

v2

2
.

Since v can be seen as ẋ(t), we may consider the kinetic energy of the mechanical

system defined by the formula T = T (ẋ) := 1

2
m(ẋ(t))2. Another possible notation

is KE . Here, by mechanical system, we intend a system of material elements that
interact by mechanical principles. A material point and a force which acts on it is
a possible example. Two materials points which interact through the gravitational
force offer another example. In this perspective, the next exercise has important
consequences in Newtonian Mechanics.

Exercise 2.2.1 Consider a mechanical system whose kinetic energy is T (ẋ) :=
1

2
m(ẋ(t))2 and its potential energy is V (such that the force which acts is F(x) =

−dV

dx
). Show that the total energy of the system, T + V , is a constant.

Hint. If we derive with respect to t the total energy, we obtain

d

dt
(T + V ) =

(
mẋ(t)ẍ(t) + dV

dx

dx

dt

)
= (mẍ(t) − F) ẋ(t) = 0,

that is T + V is a constant.
This total energy can be called the Hamiltonian of the mechanical system. In the

case when the system is reduced at a single particle of mass m, H = T + V, T =
p2

2m
, V = V (q). Here q := x , a notation that we will adopt below.

We define the mechanical Lagrangian of the system by

L = L(x, ẋ) := T − V = 1

2
m(ẋ(t))2 − V (x).

Let us observe that x and ẋ depends on t , that is the Lagrangian is implicitly a function
of time.

In this formalism, it makes sense to consider a functional called action,

S[y] =
∫ t2

t1

[
1

2
m(ẏ(t))2 − V (y)

]
dt

which exists for any path y(t), not only for the “physical one” where x(t) is.
Now consider the action corresponding to y(t) + η(t),

S[y + η] =
∫ t2

t1

[
1

2
m(ẏ(t) + η̇(t))2 − V (y(t) + η(t))

]
dt .

We have, after expanding V in Taylor series with respect to y(t),
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S[y + η] = S[y] +
∫ t2

t1

[
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

]
dt + O(η2),

where O(η2) are terms depending on η or η̇ for powers greater than 2. We can write

S[y + η] = S[y] + δS + O(η2),

where

δS =
∫ t2

t1

[
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

]
dt

is called the first order variation of the action S. Since η(t1) = η(t2) = 0, we obtain

δS =
∫ t2

t1

[
mẏ(t)η̇(t) − dV

dy
(y(t)η(t))

]
dt =

=
∫ t2

t1

[
m

d(ẏ(t)η(t))

dt
− mÿ(t)η(t) − dV

dy
(y(t)η(t))

]
dt =

= �����mẏ(t2)η(t2) −�����mẏ(t1)η(t1) −
∫ t2

t1

[
mÿ(t) + dV

dy
(y(t))

]
η(t)dt =

= −
∫ t2

t1

[
mÿ(t) + dV

dy
(y(t))

]
η(t)dt.

Therefore, δS ≡ 0 means

∫ t2

t1

[
mÿ(t) + dV

dy
(y(t))

]
η(t)dt = 0

for every η, and it happens if and only if mÿ(t) + dV

dy
(y(t)) = 0, i.e. exactly for the

path y(t) = x(t). We have proved:

Theorem 2.2.2 The first order variation of the action S vanishes, i.e.

δS =
∫ t2

t1

[
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

]
dt ≡ 0

if and only if y(t) satisfies Newton’s equation of motion

mẍ(t) − F(x) = 0.
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So, the answer is: The “physical right path” happens when the first order variation
δS vanishes. Therefore the right path is described by the condition δS ≡ 0. This is
known as the Hamilton’s stationary action principle.

Summary of Lecture 2. The mechanical Lagrangian of a mechanical system,

L = L(x, ẋ) := T − V = 1

2
m(ẋ(t))2 − V (x),

offers another view of Newton’s second law.
Consider a solution under initial conditions of Newton’s law of motion

mẍ(t) = −dV

dx
.Let (t, y(t))be the generic formof all paths connecting the ini-

tial point (t0, x(t0)) to a given point of the solution-path (t, x(t)), say (t1, x(t1)),
and the functional called action

S[y] :=
∫ t2

t1

[
1

2
m(ẏ(t))2 − V (y)

]
dt.

What condition, written in terms of S, describes the initial path (t, x(t))? This
happens through the vanishing of the first order action δS written as

δS =
∫ t2

t1

[
mẏ(t)η̇(t) − dV

dy
(y(t))η(t)

]
dt ≡ 0.

It is proved that the previous condition is satisfied only for y(t)which satisfies
the equation of motion

mẍ(t) − F(x) = 0.

This point of view will be extended to more general Lagragians giving rise to
the Lagrangian Mechanics.

2.3 Lecture 3: The Euler–Lagrange Equations

Let us now consider another problem.
Can we find an equation, described with respect a general function L(x, ẋ) such

that the function x = x(t), which connects the given points (t1, x(t1)); (t2, x(t2))
extremizes the functional

S[x] =
∫ t2

t1

L(x(t), ẋ(t))dt ?
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Let us discuss first what is the mathematical meaning of the sentence “extremizes
the functional S.” Consider the perturbation of x(t),

yλ(t) = x(t) + λη(t), λ ∈ R

which preserves the endpoints (t1, x(t1)); (t2, x(t2)), that is η(t1) = η(t2) = 0 and
let us construct the action

S[yλ] =
∫ t2

t1

L(yλ(t), ẏλ(t))dt =
∫ t2

t1

L(x(t) + λη(t), ẋ(t) + λη̇(t))dt.

Extremizing the functional S[x] means whether S[yλ] ≥ S[x] for all λ ∈ R, or
S[yλ] ≤ S[x] for all λ ∈ R, where the equality works if and only if λ = 0.

Therefore, extremizing the functional S[x] implies the condition
d S

dλ

∣∣∣∣
λ=0

≡ 0.

Since
d L

dλ
= ∂L

∂yλ

∂yλ

∂λ
+ ∂L

∂ ẏλ

∂ ẏλ

∂λ
= ∂L

∂yλ

η(t) + ∂L

∂ ẏλ

η̇(t) ,

it results
d L

dλ

∣∣∣∣
λ=0

= ∂L

∂x
η(t) + ∂L

∂ ẋ
η̇(t),

therefore the condition
d Sλ

dλ

∣∣∣∣
λ=0

≡ 0 is written as

d Sλ

dλ

∣∣∣∣
λ=0

=
∫ t2

t1

[
∂L

∂x
η(t) + ∂L

∂ ẋ
η̇(t)

]
dt ≡ 0.

Definition 2.3.1 The curve x = x(t) which extremizes the functional

S[x] =
∫ t2

t1

L(x(t), ẋ(t))dt

is called a stationary point of the functional S[x]. ‘

Theorem 2.3.2 (Euler–Lagrange equation) The curve x = x(t) which connects the
given points (t1, x(t1)), (t2, x(t2)) satisfies the Euler–Lagrange equation

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0

if and only if it is a stationary point of the functional

S[x] =
∫ t2

t1

L(x(t), ẋ(t))dt.
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Proof Let us first observe that the integration by parts leads to

∫ t2

t1

∂L

∂x
η(t)dt +

∫ t2

t1

∂L

∂ ẋ
η̇(t)dt =

=
∫ t2

t1

∂L

∂x
η(t)dt +

�
�

��

∂L

∂ ẋ
η(t2) −

�
�

��

∂L

∂ ẋ
η(t1) −

∫ t2

t1

d

dt

(
∂L

∂ ẋ

)
η(t)dt =

=
∫ t2

t1

[
∂L

∂x
− d

dt

(
∂L

∂ ẋ

)]
η(t)dt.

The condition
d S

dλ

∣∣∣∣
λ=0

≡ 0 means

∫ t2

t1

[
d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x

]
η(t)dt = 0

for every function η. We obtain

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0.

�
Example 2.3.3 Let us consider again the harmonic oscillator adopting the Euler–
Lagrange equation. In the case of harmonic oscillator, the potential energy is V (x) :=
1

2
kx2, therefore we have the Lagrangian

L(x, ẋ) := m
ẋ2

2
− 1

2
kx2.

If we calculate
d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0

for the considered Lagrangian, we obtain the original equation of motion

mẍ(t) = −kx(t)

as expected. In this case, the Euler–Lagrange equation offers only another view for
Newton’s second law.

The previous proof of Euler–Lagrange equation can be generalized.
For the Lagrangian L = L(x1, . . . , xn, ẋ1, . . . , ẋ n), we proceed as before on each

pair of variables xk, ẋ k, k = 1, . . . , n. When we extremize the functional
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S[x] =
∫ t2

t1

L(x1(t), ẋ1(t), . . . , xn(t), ẋ n(t))dt

we have, as we explained, to construct

S[yλ] =
∫ t2

t1

L(yλ(t), ẏλ(t))dt =

=
∫ t2

t1

L(x1(t) + λη1(t), ẋ1(t) + λη̇1(t), . . . , xn(t) + ληn(t), ẋ n(t) + λη̇n(t))dt

The condition

d S

dλ

∣∣∣∣
λ=0

=
∫ t2

t1

n∑
k=1

[
d

dt

(
∂L

∂ ẋ k

)
− ∂L

∂xk

]
ηk(t)dt ≡ 0

for every function ηk, k = 1, . . . , n leads to the general Euler–Lagrange equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

(
∂L

∂ ẋ1

)
− ∂L

∂x1
= 0

d

dt

(
∂L

∂ ẋ2

)
− ∂L

∂x2
= 0

..................................
d

dt

(
∂L

∂ ẋ n

)
− ∂L

∂xn
= 0.

First at all we can write in a simpler form the previous system, i.e.

d

dt

(
∂L

∂ ẋ k

)
− ∂L

∂xk
= 0, k = 1, 2, . . . , n.

If you look carefully at the way we derived the Euler–Lagrange equations, you may
understand that all remain the same if the Lagrangian is depending only implicitly on
t in the variables xi (t) and ẋ i . Another proof can be done if the Lagrangian depends
explicitly on t , that is if L = L(x1, . . . , xn, ẋ1, . . . , ẋ n, t).

Summary of Lecture 3. In this lecture, we studied the Euler–Lagrange equa-
tion

d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0

whose solution is a curve x = x(t)which connects two given points (t1, x(t1)),
(t2, x(t2)). This one becomes the general law of motion and it is obtained
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looking at a stationary point of the functional

S[x] =
∫ t2

t1

L(x(t), ẋ(t))dt.

The result can be extended to Lagrangians depending on n variables as
described as described above. The example of harmonic oscillator is presented

in this framework with the potential energy is V (x) := 1

2
kx2. Therefore we

have the Lagrangian

L(x, ẋ) := m
ẋ2

2
− 1

2
kx2.

If we compute
d

dt

(
∂L

∂ ẋ

)
− ∂L

∂x
= 0

for the considered Lagrangian, we obtain the original equation of motion

mẍ(t) = −kx(t)

as expected. As final remark, we can say that Lagrangian Mechanics is the
generalization of Newtonian Mechanics.

2.4 Lecture 4: The Mechanical Hamiltonian

In the 1-dimensional case, let us denote with q := x the space coordinate and p :=
mẋ = mq̇ the momentum coordinate. The mechanical Hamiltonian is

H(x, ẋ) = T (ẋ) + V (x)

where

T := 1

2
mẋ2 ; V := V (x).

According to the previous notations, we obtain T = T (p) = p2

2m
and V = V (q). It

results
∂ H

∂p
= ∂(T + V )

∂p
= ∂T

∂p
= p

m
= q̇.

Then, using Newton’s second law we have
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∂ H

∂q
= ∂(T + V )

∂q
= ∂V

∂q
= −mq̈ = − ṗ.

Therefore, in 1-dimensional case, the Hamilton equations are

⎧⎪⎨
⎪⎩

q̇ = ∂ H

∂p

ṗ = −∂ H

∂q
.

Let us stress the following. The Hamiltonian is connected to the Lagrangian
through the formula

H = q̇
∂L

∂q̇
− L .

To prove this simple assertion, we use L = T − V and H = T + V . It results

L + H = 2T = p2

m
.

At the same time, q̇
∂L

∂q̇
= q̇

∂T

∂q̇
= mq̇2 = p2

m
, that is

L + H = p2

m
= q̇

∂L

∂ q̇
.

This equality, called Legendre’s transform, is very important because it allows to
describe a Hamiltonian starting from a given Lagrangian as functions of any number
of variables.

Example 2.4.1 Let us consider again the harmonic oscillator, now using Hamilton’s

equations and the new notations. In this case, the potential energy is V (q) := 1

2
kq2

and the kinetic energy is T (p) = p2

2m
, where p = mẋ = mq̇. The Hamiltonian can

be written in the form

H(q, p) := p2

2m
+ 1

2
kq2.

If we compute ⎧⎪⎨
⎪⎩

q̇ = ∂ H

∂p

ṗ = −∂ H

∂q
.
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for the considered Hamiltonian, we obtain the original equation of motion from the
second equation,

mq̈(t) = −kq(t)

as expected, while the first equation represents the definition of the momentum.
The Hamiltonian equations offer another view for Newton’s second law. As we

will see, Hamiltonians are extremely useful in Quantum Mechanics.

The n-dimensional mechanical Hamiltonian can be defined with respect to both
the generalized coordinates q := (q1, q2, . . . , qn), representing the position in the
n-dimensional Euclidean space, and the generalized momenta p := m q̇, that is
(p1, p2, . . . , pn) := (mq̇1, mq̇2, . . . , mq̇n).

Therefore the kinetic energy formula is

T ( p) = T (p1, p2, . . . , pn) = p2

2m
= p2

1 + p2
2 + · · · + p2

n

2m
.

Exactly as in the one-dimensional case, the potential energy is a functionV depending
only on the position q.

The mechanical Hamiltonian is, in this case,

H(q, p) := T ( p) + V (q) = p2

2m
+ V (q).

Since
∂H(q, p)

∂pk
= ∂T( p)

∂pk
= pk

m
= q̇k

and Newton’s second law leads to

∂H(q, p)
∂qk

= ∂V (q)
∂qk

= −mq̈k = − ṗk .

Adopting convenient notations

∂H
∂q

=
(

∂H
∂q1

, . . . ,
∂H
∂qn

)
;

∂H
∂ p

=
(

∂H
∂p1

, . . . ,
∂H
∂pn

)
,

the Hamilton equations are

⎧⎪⎨
⎪⎩
q̇ = ∂H

∂ p

ṗ = −∂H
∂q

.
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This is a system of 2n equations which makes the same predictions as the Euler–
Lagrange one in the case of mechanical Lagrangian. This represents another way
to express the evolution of a material point or of a system of material points in
Mechanics as in the case of second Newton’s law. It is worth observing that there
are two further formalisms for Newtonian mechanics, the Euler–Lagrange’s one and
the Hamiltonian’s one. The second one has the advantage of working with respect
the total energy of the mechanical system.

Summary of Lecture 4. Another possible formalism for Mechanics is the
Hamiltonian one. In 1-dimensional case, if q := x is the space coordinate and
p := mẋ = mq̇ is the momentum coordinate and

H(x, ẋ) := T (ẋ) + V (x)

is the Hamiltonian, the equation of motion is described by the system

⎧⎪⎨
⎪⎩

q̇ = ∂ H

∂p

ṗ = −∂ H

∂q
.

The connection with the Lagrangian formalism is achieved through the Leg-
endre transformation

H = q̇
∂L

∂q̇
− L .

Again, we insist on the harmonic oscillator seen through the Hamilton equa-

tions: The potential energy is V (q) := 1

2
kq2 and the kinetic energy is T (p) :=

p2

2m
, where p = mẋ = mq̇ . We have the Hamiltonian

H(q, p) := p2

2m
+ 1

2
kq2.

If we compute ⎧⎪⎨
⎪⎩

q̇ = ∂ H

∂p

ṗ = −∂ H

∂q
.

for the considered Hamiltonian, we obtain the original equation of motion
from the second equation,

mq̈(t) = −kq(t)
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as expected, while the first equation represents the definition of themomentum.
The case of multiple variables Hamiltonians is also presented.

2.5 Lecture 5: The Hamilton Equations

Consider the generalized coordinates (q1, q2, . . . , qn), each one depending on t , and
the associated generalized velocities (q̇1, q̇2, . . . , q̇n). A general Lagrangian is seen
as a function depending on position and velocities, that is L = L(q1, q2, . . . , qn, q̇1,

q̇2, . . . , q̇n). Let us introduce the notation L = L(qi , q̇ i ). However, a Lagrangian
can depend explicitly on t , so the most general form is L = L(qi , q̇ i , t).

We define a general Hamiltonian H = H(qi , q̇ i , t) by the Legendre transforma-
tion formula

H(qi , q̇ i , t) :=
n∑

i=1

q̇ i ∂L

∂q̇ i
− L(qi , q̇ i , t),

or in a simpler notation,

H :=
n∑

i=1

q̇ i ∂L

∂q̇ i
− L .

By definition, the generalized momenta are

pi (q
i , q̇ i , t) := ∂L

∂q̇ i
.

The previous formula becomes

H =
n∑

i=1

pi q̇i − L .

The simplest derivation of Hamilton’s equations starts from the total derivative of
the Lagrangian L . We have

d L =
n∑

i=1

[
∂L

∂qi
dqi + ∂L

∂q̇ i
dq̇i

]
+ ∂L

∂t
dt =

n∑
i=1

[
∂L

∂qi
dqi + pi dq̇i

]
+ ∂L

∂t
dt,

that is

d L =
n∑

i=1

[
∂L

∂qi
dqi + d(pi q̇

i ) − q̇ i dpi

]
+ ∂L

∂t
dt.
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This last equality can be written in the form

d

(
n∑

i=1

pi q̇
i − L

)
=

n∑
i=1

[
− ∂L

∂qi
dqi + q̇ i dpi

]
− ∂L

∂t
dt

and taking into account the definition of Hamiltonian, we have

d H =
n∑

i=1

[
− ∂L

∂qi
dqi + q̇ i dpi

]
− ∂L

∂t
dt.

Directly, it is

d H =
n∑

i=1

[
∂ H

∂qi
dqi + ∂ H

∂q̇ i
dq̇i

]
+ ∂ H

∂t
dt .

We obtain, by associating the corresponding terms from the above right side defini-
tions of d H , that

∂ H

∂qi
= − ∂L

∂qi
; ∂ H

∂pi
= q̇ i ; ∂ H

∂t
= −∂L

∂t
.

Now, using the Euler–Lagrange equations

d

dt

(
∂L

∂q̇ i

)
− ∂L

∂qi
= 0

the first equality becomes

ṗi = −∂ H

∂qi
,

so the general Hamilton’s equations are

ṗi = −∂ H

∂qi
; ∂ H

∂pi
= q̇ i ; ∂ H

∂t
= −∂L

∂t
.

If the Lagrangian does not depend on t , the Hamiltonian will not depend on t ,
therefore Hamilton’s equations are only

ṗi = −∂ H

∂qi
; ∂ H

∂pi
= q̇ i .

In the next section, we present Poisson’s brackets and formulas involving Hamiltoni-
ans. The connection and the consequenceswith the formalismofQuantumMechanics
is presented below, in particular in Lectures 42 and 43.
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Summary of Lecture 5. Consider generalized coordinates denoted by qi , i ∈
{1, 2, . . . , n}, each one depending on t , and the associated generalized veloc-
ities denoted by q̇ i . If the general Lagrangian is a function depending on
position and velocities, L = L(qi , q̇ i ), we define the general Hamiltonian

H :=
n∑

i=1

q̇ i ∂L

∂q̇ i
− L

and the generalized momenta

pi (q
i , q̇ i , t) := ∂L

∂q̇ i
.

The corresponding Hamilton equations are

ṗi = −∂ H

∂qi
; ∂ H

∂pi
= q̇ i .

2.6 Lecture 6: Poisson’s Brackets in Hamiltonian
Mechanics

Consider a real function F whose variables are pi , qi , i ∈ {1, 2, . . . , n}. Let us take
into account a time independent Hamiltonian H := H(qi , q̇ i ) which can also be
written as H := H(qi , pi ) , being pi = mq̇i . Here qi and pi depend on t . Therefore
we can write

d F

dt
=

n∑
i=1

[
∂ F

∂qi
q̇i + ∂ F

∂pi
ṗi

]
=

n∑
i=1

[
∂ F

∂qi

∂ H

∂pi
− ∂ F

∂pi

∂ H

∂qi

]
:= [F, H ].

Here [F, H ] denotes Poisson’s brackets of the functions F and H .

If F = H , we obtain
d H

dt
= [H, H ] = 0 which highlights that we are working

with a time independent Hamiltonian.
If F = q j , we obtain

q̇ j = dq j

dt
= [q j , H ] =

n∑
i=1

[
∂q j

∂qi

∂ H

∂pi
− ∂q j

∂pi

∂ H

∂qi

]
= ∂ H

∂p j
.

If F = p j , we obtain
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ṗ j = dp j

dt
= [p j , H ] =

n∑
i=1

[
∂p j

∂qi

∂ H

∂pi
− ∂p j

∂pi

∂ H

∂qi

]
= − ∂ H

∂q j
.

Therefore the relation
d F

dt
= [F, H ] ,

involving Poisson’s brackets, gives Hamilton’s equations for particular F .
Let us now concentrate on variables only. We are interested to compute [qi , q j ],

[pi , p j ], [qi , p j ]. Firstly we prove that [qi , q j ] = 0. It is

[qi , q j ] =
n∑

k=1

[
∂qi

∂qk

∂q j

∂pk
− ∂qi

∂pk

∂q j

∂qk

]
= 0.

In the same way [pi , p j ] = 0. It is

[pi , p j ] =
n∑

k=1

[
∂pi

∂qk

∂p j

∂pk
− ∂pi

∂pk

∂p j

∂qk

]
= 0.

Finally, we prove [qi , p j ] = δi
j . It is

[qi , p j ] =
n∑

k=1

[
∂qi

∂qk

∂p j

∂pk
− ∂qi

∂pk

∂p j

∂qk

]
=

∑
k

δi
kδ

k
j = δi

j ,

which is 0 for i �= j and 1 for i = j .

It is easy to check the same for
d F

∂qi
= [F, pi ]. It is

[F, pi ] =
n∑

k=1

[
∂ F

∂qk

∂pi

∂pk
− ∂ F

∂pk

∂pi

∂qk

]
= ∂ F

∂qi
.

Let us consider a function F depending on the space coordinates F = F(x, y.z). Let
us take into account the x coordinate and then

∂ F

∂x
= [F, px ],

that is we can express

F(x + dx, y, z) = F(x, y, z) + [F, px ]dx,

and similar relations with respect to the other two coordinates:
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F(x, y + dy, z) = F(x, y, z) + [F, py]dy,

F(x, y, z + dz) = F(x, y, z) + [F, pz]dz.

Therefore the canonical moment px is the infinitesimal translation along the x direc-
tion, etc.

Before discussing the Quantum Mechanics, let us say that the description of
physical systems requires variables called observables which can be measured. In
Classical Mechanics, we can measure, by experiments, position, momentum, energy
and other quantities derived from the previous ones. These quantities are completely
deterministic in equations of motion like Newton’s equations, Lagrange’s equations
or Hamilton’s equations. The physical states of a system are values of observables
at a given time. For a particle, we have to consider three space and three velocity
coordinates. Knowing the state of the system at a given moment, we can determine
any other state using the equations of motion. The Classical Mechanics determinism
cannot be transferred to systems when we are working with atoms and molecules.
To see why, we need to step in the territory of Quantum Mechanics and to take into
account Heisenberg’s Uncertainty Principle. We need to understand the meaning of
observables and to look at expectation values of observables. However, in Lecture
42, Ehrenfest’s theorem and its consequences will show us the possibility to restore
the Classical Mechanics formalism from the Quantum Mechanics formalism. Other
connections will be established via Hamilton–Jacobi theorem in Lecture 40 when
we will discuss how the deterministic formalism of Classical Mechanics is replaced
by the probabilistic formalism of Quantum Mechanics.

Summary of Lecture 6. Consider a real function F = F(pi , qi ), i ∈
{1, 2, . . . , n}. If the Hamiltonian is H := H(qi , pi ),we can define the Poisson
brackets of the functions F and H by the formula

[F, H ] :=
n∑

i=1

[
∂ F

∂qi

∂ H

∂pi
− ∂ F

∂pi

∂ H

∂qi

]
.

We have
d F

dt
= [F, H ].

Consequences appear in relation to the generalized coordinates:

[qi , q j ] =
n∑

k=1

[
∂qi

∂qk

∂q j

∂pk
− ∂qi

∂pk

∂q j

∂qk

]
= 0 ,

for generalized momenta [pi , p j ] = 0,
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[pi , p j ] =
n∑

k=1

[
∂pi

∂qk

∂p j

∂pk
− ∂pi

∂pk

∂p j

∂qk

]
= 0.

Finally, it is [qi , p j ] = δi
j because

[qi , p j ] =
n∑

k=1

[
∂qi

∂qk

∂p j

∂pk
− ∂qi

∂pk

∂p j

∂qk

]
= δi

j .

If i �= j , we have 0; if i = j , the result is 1 because, in the above sum for i =
j = k, a nonzero term appears. The partial derivatives can also be written with

respect Poisson’s brackets,
∂ F

∂qi
= [F, pi ]. This discussion will be continued

in the framework of Quantum Mechanics.



Chapter 3
Can Light Be Described by Classical
Mechanics?

Fiat Lux

Genesis

3.1 Lecture 7: The Michelson–Morley Experiment
and the Principles of Special Relativity

When the Michelson–Morley experiment was performed, it was known that light is
an electromagnetic wave which travels at a constant speed (denoted by c) in vacuum.
Can light be treated in terms of Classical Mechanics or we need another theory to
incorporate it? A quick answer is no. The reason for this statement starts from the
Michelson–Morley experiment.

Suppose we have a platform of a train wagon, an open one, on a straight railway
line. During theMichelson–Morley experiment, the platform is at rest or it is moving
at a constant speed v.

On this platform, let us imagine two perpendicular lines which intersect at I , one,
say d1, coincident to the sense of motion, the other one, say d2, perpendicular to the
sense of motion. On d1, the longitudinal direction, there is a source of light, denoted
by SL , an interferometer placed in I and a mirror, denoted by M1, such that the
distance between I and M1 is l.

The interferometer is a device able to split a light-ray in the two perpendicular
directions d1 and d2, but also to receive two light-rays from perpendicular directions
and to send them separately to another given direction (Fig. 3.1).

On the line d2, which corresponds to the transversal direction, there is another
mirror, denoted by M2, such that the distance between I and M2 is the same l and a
receiver-device RL such that the interferometer I is between M2 and RL .

The receiver-device is able to capture the light-rays coming from the interferom-
eter and to decide which one reached first the device.
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M1

M2

RL

SL

l

l

I v

v

l
l

ct, ct,

vt, vt,

Fig. 3.1 Figure 2.1.1b

The experiment is like this: when the platform is at rest or it is moving at constant
speed v in the SL I longitudinal direction, a light-ray is sent by the source SL to the
interferometer I . The interferometer splits the light-ray in two light-rays. The first
one is sent to the mirror M1, it is reflected by the mirror and it is returned to the
interferometer which sends it to RL . The second one is directed to M2, it is reflected
and sent to the interferometer which sends it to RL . Which one reaches first RL?

In other words, we are interested in identifying the influence of the speed v on the
splitted light-rays. Is there, or is there not, a difference between what is happening
when the platform is at rest comparing with the case when the platform is moving at
constant speed v?

Let us observe something obvious: if the platform is at rest, both light-rays reach
at the same time RL .

Now, let us try to use Classical Mechanics to describe what is happening when the
platform is moving at constant speed v. First at all, let us observe that it is enough to
establish only the time necessary to cover the routes I M1 I and I M2 I and to compare
them.
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Denote by c the speed of light. The time to cover the longitudinal route I M1 I is

t1 = l

c − v
+ l

c + v
= 2lc

c2 − v2
,

because c − v and c + v are, in Newtonian Mechanics, the speeds for the directions
I M1, M1 I respectively. To be sure that the reader understands why the speeds are
like this, let us focus on the first direction case. Moving at constant speed v in the
sense I M1, the light-ray is slowed down by the air, that is by the medium in which
it is traveling, with the speed −v. Therefore, according to the mechanics rules, the
speed of the light-ray traveling in I M1 direction is c − v.

For the transversal direction, let us denote by t ′ the time necessary for the light-ray
to reach the mirror M2. During this time, the platform, therefore the mirror, travels
in the longitudinal direction a t ′v space. The Pythagoras Theorem, in the formed
rectangle triangle, is (t ′c)2 = l2 + (t ′v)2, that is

t ′ = l√
c2 − v2

.

It is obvious that the time necessary to the transversal ray to reach again the interfer-
ometer I is t2 := 2t ′, so we have

t2 = 2l√
c2 − v2

.

Therefore

t2
t1

=
√
1 − v2

c2
,

which implies
t2 < t1,

i.e. the transversal light-ray reaches earlier RL compared to the longitudinal light-ray.
The mathematical model made with respect to the rules of Classical Mechanics

has a prediction, let us repeat it: the first light-ray, arriving at RL , is the transversal
one.

If we make the experiment, the result is: the transversal and the longitudinal light-
rays reach RL at the same time. If we repeat it, the same results holds. There is no
difference between what happens when the platform is at rest compared with the
case when the platform is moving at constant speed v.

The error consisted in the model description: it is related to the fact that v could
affect the speed of light. It seems that c − v and c + v are not correctly thought,
therefore we cannot consider Classical Mechanics rules when we try to describe this
experiment. Another rule has to be applied when we “add” velocities.
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This experiment can be also seen making a parallel between the platform moving
in Earth atmosphere at constant speed v and the Earth moving through the ether
at constant speed v. After we establish a new theory to explain the experimental
result, the main consequence is the fact that there is no ether. As a comment from
a different perspective, in modern physics it has been realized that “ether” is the
“physical vacuum” that is a maximally symmetric configuration of spacetime where
no physical field is present. This means that matter-energy density is extremely low.
In this “vacuum”, electromagnetic waves propagate at the speed of light.

Essentially, Einstein formulated the Special Relativity starting from two main
postulates:

The consequences of Einstein’s postulates give the chance to understand how the
light propagates in the context of a new physical theory, the Special Relativity, which
changes the rules of Classical Mechanics when we are dealing with bodies moving
at very large speeds.

Part of these results were also obtained by Henry Poincaré in his effort to explain
the Michelson–Morley experiment.

The postulates are:

1. The laws of Physics are the same in all inertial reference frames.
2. The speed of light in vacuum, denoted by c ≈ 2, 99 · 108 m/s, is the same

for all the observers and it is the maximal speed reached by a moving object.

Einstein used the word observer with the meaning of reference frame from which
a set of objects or events are measured. Since the measurements are generally made
with respect to the center O of the frame, this special point is often called the “O
observer” or we may refer to a frame with “the observer placed at O”. We know that
the laws of Mechanics are the same in all inertial frames. The first postulate asks for
the same form of electromagnetic laws in any inertial reference frames, like in the
case of mechanics laws. And in general, all laws of Physics must have the same form
in all reference frames (this result will be fully achieved in General Relativity).

The second postulate plays a key role in Special Relativity being involved in the
way in which we derive the Lorentz transformations.

The framework of Newton’s laws of Mechanics is the 3-dimensional Euclidean
space. Each object is described by a point or by a collection of points of it. Time is
given by a universal clock and allows us to see the evolution of objects.

In Special Relativity, we have to work in a 4-dimensional space. Three of the
dimensions are the standard dimensions used in Mechanics. We can denote them by
x, y, z. The fourth dimension is related to time.

Definition 3.1.1 A frame of coordinates (t, x, y, z) is called a spacetime.

The geometry of a spacetime is determined by some physical postulates. They are

Definition 3.1.2 Each point of spacetime is called “event”.

Definition 3.1.3 A curve of the spacetime is called “world line” and represents a
successions of events.
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Example 3.1.4 Let us suppose to work in a two dimensional slice of the previous
spacetime, with the coordinates (t, z). Consider a world line starting from the origin
O(0, 0) and suppose also that the next point is A(1, z0). Then the object remains t0
seconds at rest with respect to O. This means that the world line has to be continued
with the segment AB, where B has the coordinates B(1 + t0, z0). Next, let us suppose
the object advances in the direction −v1. The line followed has the equation z − z0 =
−v1(t − (1 + t0)), etc.

Example 3.1.5 From the origin O(0, 0), an object is moving for t1 seconds in the
direction −v. It reaches the point M(t1,−vt1). Negative speed means only the direc-
tion of evolution in time.

Example 3.1.6 A photon is released from the origin O. There are two possible
directions, c and −c. If it is released in the direction c, its trajectory will be the
line z = ct. Or, it can be released in the direction −c. Its trajectory in this case is
z = −ct. In this case, after t0 > 0 seconds, the photon reaches the point L(t0,−ct0).

In order to advance into the theory, we have to consider two local frames of coor-
dinates, one moving at constant speed v, denoted by S, and another one considered
at rest, denoted by R. The letters are chosen from the words “speed” and “rest.” Two
observers are placed at the origins of each system denoted by Ō and O respectively.
The first local frame S is described by the coordinates (τ , x̄, ȳ, z̄), while the frame
R is described by the coordinates (t, x, y, z).

Now, the reference frames of the two observers have to adapt to the second pos-
tulate of the Special Relativity. To be easier in our reasonings, let us suppose the
bi-dimensional case when the frame S consists of the coordinates (τ , z̄) and it is
moving, at constant speed v along the t-axis of R in the same plane as the one
determined by R, here denoted as (t, z).

First of all, how can we express the fact that S is moving at constant speed v with
respect to R? The simple mathematical answer is: the axis Ōτ in R has the equation
z = vt .

Even if later in this book, we will find out that light can also be seen as an
electromagnetic wave (and the conservation ofMaxwell’s equations is guaranteed by
the Lorentz transformations), in order to develop Special Relativity, we can consider
here light-rays as trajectories of photons.1

What can we say about the world line of a photon in these inertial reference
frames?With respect to the observers in each frame, two world lines are highlighted:
a photon is moving at constant speed c with a trajectory z = ct in R and z̄ = cτ
in S, while, for a photon moving at speed −c, we have the lines z = −ct in R and
z̄ = −cτ in S.

The two world lines of photons at O form the light cone of the frame R. A similar
definition holds in S.

Therefore, if we use the same diagram for both frames, that is O = Ō , the second
postulate has the following mathematical expression:

1 The quantum concept of “photon” is rigorously defined in Lecture 18.
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1. The lines z = ct in R and z̄ = cτ in S have the same image;
2. The lines z = −ct in R and z̄ = −cτ in S have the same image.

In other words, the two light cones are coincident.

Summary of Lecture 7. The set up of Michelson–Morley experiment is con-
ceived in Classical Mechanics. This is not appropriate. If we compare the two
time values t1 and t2 according to the mathematical description we have

t1 = l

c − v
+ l

c + v
= 2lc

c2 − v2
,

t2 = 2l√
c2 − v2

,

therefore

t2
t1

=
√
1 − v2

c2
,

implies
t2 < t1.

From the experimental result, we obtain t2 = t1. Therefore the mathematical
model is not correct and the description is not appropriate.

The correct approach is related to another theory of space and time in which
we have to consider that all the observers, at rest or at constant speed aremoving
in agreementwith the fact that speedof light is the same in any reference system.
In this picture, the additions c + v and c − v become senseless.

3.2 Lecture 8: Motion Among Inertial Frames. The
Lorentz Transformations

Since we deal with inertial frames, as a rule, objects moving at constant speed in
S move at constant speed in R, and vice versa. So, a straight line representing a
world line of an object moving at constant speed in S, it is seen as a straight line
representing the world line of the same object moving at (another) constant speed in
R and vice versa. Transforming lines into lines, the change of coordinates between
the two frames is described by a linear map; we denote it by Lv and we call it a
Lorentz transformation corresponding to the speed v (Fig. 3.2).

Theorem 3.2.1 In the context described before, the matrix of the Lorentz transfor-
mation corresponding to the speed v has the form
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x̄3

x̄3 = cτ
x̄3 = −cτ

Ō t

x3

x3 = ctx3 = −ct

v

O

τ

t

x3 x̄3

x3 = ct
x̄3 = cτx3 = −ct

x̄3 = −cτ

Ō = O

Oτ : x3 = vt

τ

Fig. 3.2 Inertial frames and Lorentz transformation

Lv = 1√
1 − v2/c2

(
1 v/c2

v 1

)
.

Proof A linear map Lv : S → R has the form

Lv =
(

a b
d e

)
.

Since Ōτ axis in R has the equation x3 = vt we have(
a b
d e

) (
1
0

)
=

(
t
vt

)
,

that is d = va. In mathematical language, the second postulate is:

The eigenvectors of Lv are

(
1
c

)
and

(
1

−c

)
, that is
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Lv ·
(
1
c

)
= λ1

(
1
c

)

and

Lv ·
(

1
−c

)
= λ2

(
1

−c

)
.

To preserve the sense of motion of photons, it is necessary to impose two inequalities
for the eigenvalues, that is requiring λ1 > 0, λ2 > 0.

Replacing Lv , we derive the equations⎧⎨
⎩

a c + b c2 = a v + e c

−a c + b c2 = a v − e c

i.e.

Lv = a

(
1 v/c2

v 1

)
.

To determine a, we need to derive the inverse of the Lorentz transformation.
L−1
v has to act from R to S, such that Lv L−1

v = L−1
v Lv = I2. Furthermore, it

has to be L−1
v := L−v, that is to see S at rest and R moving at constant speed −v.

This reciprocity requirement ensures the invariance of Lorentz transformations with
respect to any inertial frame. This leads to

I2 = a2

(
1 − v2/c2 0

0 1 − v2/c2

)
,

i.e. a2 = 1

1 − v2/c2
.

To determine the right sign of a, we use the Cayley Theorem. It is a simple matrix
exercise: For a 2 × 2 real matrix B, the following equality holds

B2 − 2 T r B · B + det B · I2 = O2.

In our case, T r Lv = 2a = λ1 + λ2 > 0.
The final form of the Lorentz transformation matrix is

Lv = 1√
1 − v2/c2

(
1 v/c2

v 1

)
.

�
For v very small with respect c, that is if v << c, the Lorentz matrix becomes the

Galilei matrix

Sv =
(
1 0
v 1

)
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which represents how coordinates are transformed in Classical Mechanics.
Finally, we can write how the Lorentz transformation looks like in four dimen-

sions. It is ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t = τ + z̄ v/c2√
1 − v2/c2

x = x̄
y = ȳ

z = τ v + z̄√
1 − v2/c2

.

Summary of Lecture 8. Consider two inertial frames of coordinates: S moves
at constant speed v with respect to R, at rest. We can switch, from the coor-
dinates (τ , z̄) of the frame S to the coordinates (t, z) of the frame R, using
the matrix of the Lorentz transformation corresponding to the speed v. This
transformation is obtained using the idea that speed of light is the same in both
reference frames. It is

Lv = 1√
1 − v2/c2

(
1 v/c2

v 1

)
.

This happens in two corresponding slices of four dimensional spaces. If we
consider the coordinates in each spacetime, S : (τ , x̄, ȳ, z̄) and R : (t, x, y, z),
the transformation Lv provides the relations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t = τ + z̄ v/c2√
1 − v2/c2

x = x̄
y = ȳ

z = τ v + z̄√
1 − v2/c2

.

3.3 Lecture 9: Addition of Velocities. The Relativistic
Formula

Consider three inertial referential frames, S′, S and R, such that S′ is moving at
constant speed w with respect to S and S is moving at constant speed v with respect
to R.
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The two corresponding Lorentz transformations are Lw = 1√
1 − w2/c2(

1 w/c2

w 1

)
and Lv = 1√

1 − v2/c2

(
1 v/c2

v 1

)
.

The natural question is: which is the speed of S′ with respect to R?
The answer is: we have to describe the linear map between S′ and R via S, that is

Lv · Lw.

Theorem 3.3.1 Lv · Lw = Lv⊕w, where v ⊕ w = v + w

1 + vw/c2
.

Proof After multiplying, we have

Lv · Lw = 1√
1 − v2/c2

1√
1 − w2/c2

(
1 v/c2

v 1

)
·
(
1 w/c2

w 1

)
=

= 1 + vw/c2√
(1 − v2/c2)(1 − w2/c2)

⎛
⎜⎝ 1

v + w

1 + vw/c2
· 1

c2
v + w

1 + vw/c2
1

⎞
⎟⎠ =

= 1√
1 −

(
v + w

1 + vw/c2

)2

· 1

c2

⎛
⎜⎝ 1

v + w

1 + vw/c2
· 1

c2
v + w

1 + vw/c2
1

⎞
⎟⎠ = Lv⊕w,

where
v ⊕ w = v + w

1 + vw/c2
.

�

Definition 3.3.2 The last formula is called the relativistic velocities addition.

Suppose w → c. The limit, in the left part of the previous equality, will be v ⊕ c,

while, in the right part, is
v + c

1 + vc/c2
. This last ratio is c. From the relativistic point of

view, we can say v ⊕ c = c at the limit. Therefore the classical mechanical point of
view disappeared. The consequence is: light needs another treatment than the Clas-
sical Mechanics. This is the reason of the failure of Michelson–Morley experiment.

A further comment is necessary at this point. In Physics, systems of coordinates
are thought with axes whose coordinates are related to physical units of time, length
and so on (second, meter, etc.). The systems of coordinates corresponding to phys-
ical units are systems of physical coordinates. In the previous sections, we worked
adopting physical coordinates. The units of measure in Physics were thought before
to understand how deeply Geometry is involved in the description of the physical
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phenomena. If we choose an appropriate “length” (e.g. the meter) and an appropriate
“time duration” (e.g. the second), the speed of light can be c = 1. We call these new
units, geometric units. All formulas become simpler and the geometric images are
more intuitive. The coordinates corresponding to geometric units are called geomet-
ric coordinates and are often used in Physics.

As an example, the Lorentz transformation matrix, in geometric coordinates, is

Lv = 1√
1 − v2

(
1 v

v 1

)
.

and the addition of velocities becomes

v ⊕ w = v + w

1 + vw
.

Summary of Lecture 9. In this lecture, we obtain the relativistic formula for
the addition of velocities

v ⊕ w = v + w

1 + vw/c2
.

In the limit where w approaches the speed of light c, we have, from one hand,
v ⊕ c, and, from the other hand, c. Therefore, from the relativistic point of view,
in the limit, we have v ⊕ c = c. This is the reason why the Michelson–Morley
experiment failed in measuring the ether velocity.

3.4 Lecture 10: The Einstein Rest Energy Formula
E = mc2

Let us start from an physical object at rest with a rest mass, denoted by m0 �= 0, and

relativistic momentum at rest P0 =
(

m0

0

)
.

We denote by P =
(

m
mv

)
the relativistic momentum of a classical body moving

at constant speed v. The previous considerations can be easily derived defining the

generalized momentum P := m
dx
dt

, where x :=

⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠. In our case x :=

(
t
z

)
.

Theorem 3.4.1 If m0 �= 0 is the rest mass of a body moving at constant speed v,
then
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m = m(v) = m0√
1 − v2/c2

.

Proof Using the Lorentz transformation Lv , we have P = Lv · P0, i.e.(
m

mv

)
= 1√

1 − v2/c2

(
1 v/c2

v 1

)
·
(

m0

0

)
,

which leads to the so called relativistic mass formula in physical coordinates,

m = m(v) = m0√
1 − v2/c2

.

�

Denote by f ′, f ′′ the first and the second derivative of a real function f . It is
easy to prove that

f (x) = f (0) + x

1! f ′(0) + x2

2! f ′′(0) + O[x3],

where O[x3] contains only terms in x with powers greater than 3.
If we neglect the O[x3] terms, when we consider the real function

f (x) = 1√
1 − x2

we can write
1√

1 − x2
= 1 + 1

2
x2.

Replacing x by v/c and multiplying by m0 we have

m0√
1 − v2/c2

= m0 + 1

2
m0v

2/c2.

Let us define the relativistic kinetic energy or, simply, the relativistic energy by

E(v) := m(v)c2 = m0c2√
1 − v2/c2

.

The previous formula becomes

E(v) = m0c2 + 1

2
m0v

2.
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The rest energy is given by the formula

E0 := m0c2 .

It is worth stressing again that it makes sense when m0 �= 0.
Denoting the rest mass by m, we have obtained the famous Einstein formula

E = mc2.

This formula tell us that mass means energy and energy means mass. In fact small
masses canproduce enormous energies.And energiesmeanmasses, i.e. ifwemeasure
or we highlight energy there is amass associated to it, it means we highlightedmatter.

Summary of Lecture 10. The most known formula is derived starting from
the Lorentz transformation and the relativistic mass concept. In the case of
objects having nonzero rest mass, we have a rest energy E expressed by

E = mc2.

This formula will be often used in this book.

3.5 Lecture 11: The Relativistic Energy Formula
E2 = p2c2 + m2c4

Theorem 3.5.1 The relativistic energy formula is

E2 = p2c2 + m2c4

Proof We start from

E(v) := m0c2√
1 − v2/c2

and we denote E(v) by E keeping in mind the above meaning. Squaring it, we obtain

E2 − E2 v
2

c2
= m2

0c4.

Now we observe that

E2 v
2

c2
= m2

0

(1 − v2/c2)
v2c2 = m2(v)v2c2 = p2(v)c2.
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We denote by p the previous p(v), that is the momentum corresponding to the
relativistic mass. It results

E2 = p2c2 + m2
0c4

and, denoting again the rest mass by m, we obtain the formula of the above
statement. �

Summary of Lecture 11. We obtained the relativistic energy formula

E2 = p2c2 + m2
0c4,

where E = E(v) = m0c2√
1 − v2/c2

is the relativistic energy, m(v) =
m0√

1 − v2/c2
is the relativistic mass, p = p(v) = m(v)v is the momen-

tum in the case of the relativistic mass m(v) and m0 �= 0 is the rest mass.
We use this formula later when we study the Compton effect and the Dirac

equation.

3.6 Lecture 12: Electromagnetic Waves by the Maxwell
Equations

The nature of light, at the middle of the 19th century, was not known even if some
progresses were made when Young understood its wave behavior. The meaning of
light wave oscillations remained a mystery since James Clerk Maxwell succeeded in
unifyingMagnetism, Electricity andOptics. In his formulation of Electromagnetism,
Maxwell presented light as a propagating electromagnetic wave. The way he used to
describe the electromagnetic field is extremely important and we present it bellow.
Indeed, the Maxwell equations are the “core” of Special Relativity. Essentially, this
theory has been developed in view of explaining their invariance under the Lorentz
transformations. We need some preliminary results and notations.

Theorem 3.6.1 Let us consider some vector fields. If

M = (Mx , My, Mz), N = (Nx , Ny, Nz), P = (Px , Py, Pz),

N × P :=

∣∣∣∣∣∣∣
→
i

→
j

→
k

Nx Ny Nz

Px Py Pz

∣∣∣∣∣∣∣ ,
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M · N := Mx Nx + My Ny + Mz Nz, M · P := Mx Px + My Py + Mz Pz,

then
M × (N × P) = (M · P)N − (M · N )P.

Proof We have
(M · P)N − (M · N )P =

= (Mx Px + My Py + Mz Pz)(Nx , Ny, Nz) − (Mx Nx + My Ny + Mz Nz)(Px , Py, Pz) =

=

∣∣∣∣∣∣∣
→
i

→
j

→
k

Mx My Mz

Ny Pz − Nz Py −Nx Pz + Nz Px Nx Py − Ny Px

∣∣∣∣∣∣∣ = M × (N × P).

�

Now, let us consider both the gradient operator and the Laplace operator in spatial
coordinates denoted by (x, y, z), that is

� :=
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
,

�2 := ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

The last formula can be also seen written in the formal way

�2 := � · �

We formally define

� · M := ∂Mx

∂x
+ ∂My

∂y
+ ∂Mz

∂z

and

� × M :=

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x

∂

∂y

∂

∂z
Mx My Mz

∣∣∣∣∣∣∣∣
=

(
∂Mz

∂y
− ∂My

∂z
,
∂Mx

∂z
− ∂Mz

∂x
,
∂My

∂x
− ∂Mx

∂y

)
.

Using these operators, a consequence of the above theorem is



48 3 Can Light Be Described by Classical Mechanics?

Corollary 3.6.2

� × (� × M) = (� · M)� − (� · �)M.

Another comment. We know the meaning of �2φ, where φ is a scalar function.
The meaning of �2M is related to the fact that �2 acts on each component of M , i.e.

�2M := (�2Mx ,�2My,�2Mz).

Therefore we can write

� × (� × M) = (� · M)� − �2M.

If � · M = 0, the previous formula becomes

Corollary 3.6.3
� × (� × M) = − �2 M.

We will use this result later.
Let us denote by

E = E(t, x, y, z) := (Ex (t, x, y, z), Ey(t, x, y, z), Ez(t, x, y, z))

the electric force vector and by

B = B(t, x, y, z) := (Bx (t, x, y, z), By(t, x, y, z), Bz(t, x, y, z))

the magnetic force vector;
In geometric units and empty space, the Maxwell equations are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� · E = 0

� × E = −∂B

∂t
� · B = 0

� × B = ∂E

∂t

The first equation reveals the existence of an electric field in the absence of electric
charge. If we are not in vacuum, the first equation is� · E = ρ, where ρ is the electric
charge, therefore the first equation describes how an electric charge acts as source
for the electric force, here seen as an electric field.

The second equation � × E = −∂B

∂t
shows how a time-varying magnetic field

gives rise to an electric field.
The third equation � · B = 0 shows that there are no magnetic charges.

The fourth equation � × B = ∂E

∂t
shows how the time variation of electric field

creates the magnetic field.
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Let us consider the derivative with respect t of the second equation.

−∂2B

∂t2
= ∂

∂t
(� × E) = ∂

∂t

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x

∂

∂y

∂

∂z
Ex Ey Ez

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x

∂

∂y

∂

∂z
∂Ex

∂t

∂Ey

∂t

∂Ez

∂t

∣∣∣∣∣∣∣∣∣∣
= � × ∂E

∂t
.

Using the last Maxwell equation and the above results, we find

−∂2B

∂t2
= � × ∂E

∂t
= � × (� × B) = −�2B,

that is
∂2B

∂t2
= �2B.

If we denote by

� := ∂2

∂t2
− �2

the d’Alembert operator, the previous equation is

�B = 0.

This is the wave equation corresponding to the magnetic field. Therefore, for each
component Bi , i ∈ {x, y, z} we have

∂2Bi

∂t2
= �2Bi = ∂2Bi

∂x2
+ ∂2Bi

∂y2
+ ∂2Bi

∂z2
.

Now, let us consider the derivative with respect t of the last equation.

∂2E

∂t2
= ∂

∂t
(� × B) = ∂

∂t

∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x

∂

∂y

∂

∂z
Bx By Bz

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

→
i

→
j

→
k

∂

∂x

∂

∂y

∂

∂z
∂Bx

∂t

∂By

∂t

∂Bz

∂t

∣∣∣∣∣∣∣∣∣∣
= � × ∂B

∂t
.

Using the second Maxwell equation and its consequences, we find that

∂2E

∂t2
= � × ∂B

∂t
= −� × (� × E) = �2E,

i.e.
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Fig. 3.3 Two sections image
of an electromagnetic wave

x

y

z

�E

�B

�E = 0.

This one is the wave equation corresponding to the electric field. We have now a
picture of the electromagnetic field described by the Maxwell equations: The two
waves equations of electric andmagnetic field are interconnected by the fourMaxwell
equations. It is clear that a field cannot exist without the other in the electromagnetic
description of Maxwell equations. Each one generates the other. And they travel
together at the speed of light. We will discuss this fact in Lecture 15 when we will
define �v (Fig. 3.3).

Summary of Lecture 12. Let us denote by

E = E(t, x, y, z) := (Ex (t, x, y, z), Ey(t, x, y, z), Ez(t, x, y, z))

the electric force vector and by

B = B(t, x, y, z) := (Bx(t, x, y, z), By(t, x, y, z), Bz(t, x, y, z))

themagnetic force vector. In geometric units, i.e. c = 1, theMaxwell equations
in vacuum are ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

� · E = 0

� × E = −∂B

∂t
� · B = 0

� × B = ∂E

∂t

If we denote by

� := ∂2

∂t2
− �2

the d’Alembert operator, after some algebra, the previous equations can be
written in the form {

�E = 0
�B = 0.
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The d’Alembert operator is used, in general, for the description of wave equa-
tions. Later, in Lecture 15, we will introduce the definition of �v . It will result
that the electromagnetic waves travel at the speed of light c = 1. The form
obtained here can be used to show the invariance of Maxwell equations with
respect to the Lorentz transformations.

3.7 Lecture 13: The Invariance of Maxwell Equations
Under the Lorentz Transformations

Are these wave equations invariant under Lorentz transformations? The answer is
yes, but we need to perform more steps in order to achieve these results.

In the same way as before, for each component Ei , i ∈ {x, y, z}, we have the
equalities

∂2Ei

∂t2
= �2Ei = ∂2Ei

∂x2
+ ∂2Ei

∂y2
+ ∂2Ei

∂z2
.

To simplify, let us suppose that the electric field E depends only on the variables t
and z. The previous equations can be synthesized in only one equation

∂2Ei

∂t2
− ∂2Ei

∂z2
= 0.

To continue, let us choose a component only, say x . Since for the other two com-
ponents, the following computations are the same, we use Ex to denote this chosen
component by the letter E. The previous equation becomes

∂2
E

∂t2
− ∂2

E

∂z2
= 0.

How this simple equation looks like, in the S frame considered with coordinates τ , z̄,
if S is supposed to move at constant speed v along the z axis in R? We have to use
the Lorentz inverse transformation L−v , that is⎧⎪⎨

⎪⎩
τ = t − z v√

1 − v2

z̄ = −t v + z√
1 − v2

.
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Denote by Ē(τ , z̄) = Ē

(
t − z v√
1 − v2

,
−t v + z√
1 − v2

)
:= E(t, z) the corresponding com-

ponent of the electric field in S, which, obviously has to be the same as in R. We
have to prove the following

Theorem 3.7.1 The Lorentz transformations preserve the Maxwell equations form.

Proof Let us show that

∂2
E

∂t2
− ∂2

E

∂z2
= ∂2

Ē

∂τ 2
− ∂2

Ē

∂ z̄2
.

We have
∂E

∂t
= ∂Ē

∂τ

∂τ

∂t
+ ∂Ē

∂ z̄

∂ z̄

∂t
= ∂Ē

∂τ

1√
1 − v2

+ ∂Ē

∂ z̄

−v√
1 − v2

and

∂2
E

∂t2
= 1√

1 − v2

(
∂2
Ē

∂τ 2

∂τ

∂t
+ ∂2

Ē

∂τ∂ z̄

∂ z̄

∂t

)
− v√

1 − v2

(
∂2
Ē

∂ z̄∂τ

∂τ

∂t
+ ∂2

Ē

∂ z̄2
∂ z̄

∂t

)
,

that is

∂2
E

∂t2
= 1

1 − v2

∂2
Ē

∂τ 2
− 2v

1 − v2

∂2
Ē

∂ z̄∂τ
+ v2

1 − v2

∂2
Ē

∂ z̄2
.

In the same way

∂2
E

∂z2
= v2

1 − v2

∂2
Ē

∂τ 2
− 2v

1 − v2

∂2
Ē

∂ z̄∂τ
+ 1

1 − v2

∂2
Ē

∂ z̄2
,

therefore the desired relation is obtained by subtracting the two expressions. Now,
from

∂2
E

∂t2
− ∂2

E

∂z2
= 0

in R, we obtain
∂2
Ē

∂τ 2
− ∂2

Ē

∂ z̄2
= 0

in S, that is the corresponding equation is the same as it has to be. Therefore, in a
moving inertial frame, the Maxwell equations have the same form as in a frame at
rest. �

Theorem 3.7.2 The Galilei transformations do not preserve the Maxwell equations
form.
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Proof The proof is similar to the one seen before. We ask if the equality

∂2
E

∂t2
− ∂2

E

∂z2
= ∂2

Ē

∂τ 2
− ∂2

Ē

∂ z̄2

holds for the inverse ofGalilean transformations Ē(τ , z̄) = Ē (t,−vt + z) := E(t, z).
The answer is no. This can be easily shown performing the following computations

∂E

∂t
= ∂Ē

∂τ

∂τ

∂t
+ ∂Ē

∂ x̄3

∂ x̄3

∂t
= ∂Ē

∂τ
− v

∂Ē

∂ x̄3

and

∂2
E

∂t2
=

(
∂2
Ē

∂τ 2

∂τ

∂t
+ ∂2

Ē

∂τ∂ x̄3

∂ x̄3

∂t

)
− v

(
∂2
Ē

∂ x̄3∂τ

∂τ

∂t
+ ∂2

Ē

(∂ x̄3)2

∂ x̄3

∂t

)
=

= ∂2
Ē

∂τ 2
− 2v

∂2
Ē

∂ x̄3∂τ
+ v2

∂2
Ē

(∂ x̄3)2
.

Then,
∂E

∂x3
= ∂Ē

∂ x̄3

and
∂2
E

(∂x3)2
= ∂2

Ē

(∂ x̄3)2
,

that is

∂2
E

∂t2
− ∂2

E

(∂x3)2
= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
− 2v

∂2
Ē

∂ x̄3∂τ
+ v2

∂2
Ē

(∂ x̄3)2
�= ∂2

Ē

∂τ 2
− ∂2

Ē

(∂ x̄3)2
.

�
The final conclusion is: Classical Mechanics, through the Galilei transformations,

does not preserve the Maxwell equations form while the Special Relativity, through
the Lorentz transformations, does it.

Summary of Lecture 13. The simplest way to express the invariance of
Maxwell equations with respect to the Lorentz transformations is:

1. First, we write the Maxwell equations in a simplified form and we look
only at a component of the electric field, say

∂2
E

∂t2
− ∂2

E

∂z2
= 0.
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2. This equation depends on the coordinates (t, z) in the frame R at rest. How
this equation looks like in S frame considered with coordinates (τ , z̄), if S is
supposed to move at constant speed v along the z axis in R?

To answer, we have to use the Lorentz inverse transformation L−v , that is⎧⎪⎨
⎪⎩

τ = t − z v√
1 − v2

z̄ = −t v + z√
1 − v2

.

Let us denote by Ē(τ , z̄) = Ē

(
t − z v√
1 − v2

,
−t v + z√
1 − v2

)
:= E(t, z) the corre-

sponding component of the electric field in S, which, obviously, has to be
the same as in R. It remains to prove

∂2
E

∂t2
− ∂2

E

∂z2
= ∂2

Ē

∂τ 2
− ∂2

Ē

∂ z̄2
.

After simple computations the equality is proved. It is important to say that if
we try to achieve the same result by the Galilei transformations, the equality
does not hold, therefore light, seen as an electromagnetic phenomenon, cannot
be represented in Classical Mechanics.



Chapter 4
Why Quantum Mechanics?

Anyone who is not shocked by Quantum Theory
has not understood it.

Niels Bohr

4.1 Lecture 14: The Problem of the Nature of Matter

When we are talking about matter we can think at the following thought experiment:
consider a rectangular parallelepiped block of iron and suppose we can perfectly cut
it in two equal pieces without loosing material. One of its dimensions, say the height
L becomes L/2. One of the two smaller equal rectangular parallelepipeds is also cut
in two equal pieces. Its height becomes now L/22. We continue this process and,
at each step, the power of 2 from denominator increases, so at the n step the height
length is L/2n .

Can we continue indefinitely this process, or the matter is such that at a certain
moment we must stop?

Aristotle’s opinion was: yes, we can continue indefinitely because at each step we
have something material to cut.

Contrary, Democritus thought there is no possible to indefinitely do it because
matter has to be composed by small pieces putted together and this small pieces
cannot more be divided. They are the constitutive blocks of matter, and he gave
them the name of “atoms”. Democritus cannot explain how these blocks look like or
how they can stay sticked together and in ancient epochs the problem remained one
without an acceptable answer.

As you can see later in this book, between these two schools of thinking, the one
which supposed the basic blocks of matter gave a more accurate picture of what we
might call reality.

Of course, the Greek philosophers Aristotle and Democritus did not think about
a rectangular parallelepiped of iron, may be it was one of stone or a wooden bar,
but we choose an element as iron because the next step was made in the Middle
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Ages when the progress of chemistry made known a lot of elements like gold, silver,
iron, etc. People started to think these elements as atoms. For most part of scientists
and natural philosophers, when they said one iron element, they precisely thought at
one atom of iron. It was the moment when chemists described matter as compounds
of different atoms and it was understood that some different types of atoms could
combine producing substances. This is how the ordinary salt is made; salt is sodium
chloride. Its chemical formula is NaCl. Here the basic elements are Sodium whose
chemical symbol is Na and the chloride whose chemical symbol is Cl. At the same
time, chemists understood that from iron you cannot obtain gold or vice versa, so
the golden dream of alchemists to obtain gold from some other elements failed.

John Dalton’s model of an atom. Only in 1804 someone succeeded to synthesize
the previous ideas in a set of rules, say axioms, that can be considered at the chemistry
foundations. Influenced by some ideas of BryanHiggins, the scientist (meteorologist,
physicist and chemist) John Dalton thought of atoms as pure philosophical concepts
needed to describe the combinations of different gases from atmosphere. He devel-
oped a refined theory to explain what happen with these gases, whose axioms are:

1. Elements are made of small particles called atoms.
2. Atoms of a given element are identical in all their properties concerning size,

mass, etc. Atoms of different elements differ in size, mass, and other properties.
3. Atoms cannot be subdivided, created and destroyed.
4. Atoms of different elements combine to form chemical compounds.
5. In chemical reactions, atoms are combined, separated or rearranged.

Even if the first axiom seems to be a little beat confusing and saying that now
we have the correct description, the third axiom is not true, these statements are an
important step in understanding the basic chemical concepts and how they rule the
description of matter. In the following, it is possible to demonstrate why the third
axiom is not true.

JosephJ.Thomson’smodel of the atom.The next stepwasmade after the electricity
was used by scientists in experiments with “glass bottles” having different gases
inside and electric circuits attached to the bottle. In fact when we are saying “glass
bottles”,we are talking about cathode ray tubes inwhichmost of the airwas evacuated
and a ray originates by a high voltage electric circuit at the cathode flows to the
anode. The ray can be detected after the anode. To simplify, let us consider a gas,
say hydrogen in the tube after the anode. The hydrogen glows when the ray passes
through it. Two opposite charged plates are installed near the tube.

When someone is looking at what is happening, she/he can see a shadow flow
attracted by the positive charged plate, when this one is charged and the other plate
is not. Another shadow flow bends into the direction of the negative plate when
this plate is charged and the other one is not. There is a difference between the two
shadow flows. The second shadow flow is not so bended as the first one. It is only
slightly bended. So, let us draw some conclusions. The hydrogen is neutral from
electric point of view. If not, all the atoms were attracted to the same electrically
charged plate. It seems that, in the atoms of hydrogen, there is “something” having



4.1 Lecture 14: The Problem of the Nature of Matter 57

Fig. 4.1 Thomson’s model of atom

a negative charge which is attracted by the positive plate. And there is “something”
having positive charge slightly attracted by the negative plate. Let us call electron
the “something” having negative charge. The positively charged part will be called
proton. The proton is massive with respect to the electron. Its mass is much more
heavier than the electronmass andwe concluded this by looking at howmuch the two
shadow flows are bended. Something remarkable happens. The atom of hydrogen
has constituents. Such an experiment was made in 1897 when the physicist J. J.
Thomson was credited with the discovery of the electron as a part of the hydrogen
atom. Let us add that the chemical symbol of the hydrogen is H. And let us underline
two important things.

1. Dalton’s atomic theory was disproved, at least at the level of the third axiom.
2. A model of atom has to be developed.

So, Thomson thought at a model starting from the facts that all atoms of elements
are electrically neutral. He proposed the plum pudding model in which the negative
charged particles are floating in a soup of positive charge such that the atom remains
electrically neutral (Fig. 4.1).

Ernest Rutherford’s model of the atom. The Thomson model of the atom is not
the only one which has been formulated. The next step was done by the physicist
Ernest Rutherford in 1911 after the analysis of Geiger–Marsden experiment made in
1909 (Fig. 4.2).

At that time, radioactive materials were known and also the fact that they emit
rays was known. There are three kinds of rays denoted after the first letters of the
Greek alphabet. These rays have different electrical charges.

– α rays are positively charged because they are attracted by negative charged plates.
– β rays are negatively charged because they are attracted by positive charged plates.
– γ rays are not charged at all because they are not attracted neither by negative
charged plates nor by positive charged plates.

Geiger–Marsden experiment is simple. Suppose a device capable of emitting α rays,
a sort of tube containing a substance called radiumbromidewhich is known emittings
α rays. Another device detects α rays. Between the two there is a golden foil.

The α rays go through the golden foil to the detector. Moving the detector in the
proximity of the source, we can find some deflected α rays even there. According to
Thomson model of gold atom, this cannot happen. The α rays have to pass through
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Fig. 4.2 Geiger–Marsden experiment

Fig. 4.3 Rutherford’s view on experimental results

the gold atoms. The fact that there are some reflected rays might be related to the
existence of something they meet in the interior of atoms (Fig. 4.3).

Therefore, Rutherford proposed a model having a nucleus where all positive
charges are concentrated and electrons orbiting around it. In the case of the hydrogen,
the nucleus contains one proton and the atom has only one electron.

This model has two inconsistencies.
According to the first one, let us think about the hydrogen atommodel having one

proton, that is a positive charge, and one electron, that is a negative charge, moving
around it. The opposite charges attract. Why the electron do not spiral on the nucleus
and so, the atom can no longer exist?What is the nature of the electron? Is it a particle
or something else? As we will see, we need first to know the fundamental nature of
light.

The second question is related to atoms having more than one proton in the
nucleus. The same sign charges have to repel. Why does not the nucleus of the atom
fall apart and so the atom no longer exists? How are they kept together?
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Before to continue let us say how small is a nucleus with respect to the dimension
of the atom. If we increase the atom at the size of a football field, the nucleus is
exactly a grain of sand in the middle of it. The atomic mass is almost done by the
nucleus. In nucleus there are protons and neutrons, too. The neutrons are electrically
neutral and their mass is almost like the protonmass. Nowwe know that electrons are
building block of matter, but protons and neutrons are not. They are made by quarks
and about this topic, we refer the reader to more advanced texts on the subjects.

In a given atom, the number of protons coincides with the number of electrons,
this fact makes the atoms electrically neutral.

The stability of the atom depends on the nature of light. At the end of this chapter,
we will see that light has a dual nature. It is wave and particle, at the same time.

Summary of Lecture 14. This lecture is a quick summary on ideas and exper-
imental facts which led to Quantum Mechanics. Starting from the different
visions by Aristotle and Democritus about the existence or not of indivisible
parts of matter, the atoms, the lecture continues with the perspective of Middle
Ages scientists who discovered chemical elements and compounds. In 1804,
John Dalton considered atoms, chemical elements, and compounds in a sort
of axiomatic way according to some experimental facts. Among these axioms,
there is one related to the elements which are made by atoms and atoms can-
not be subdivided, created or destroyed. This theory was influenced by his
meteorological studies about the gases from the Earth atmosphere.

After, Joseph J. Thomson studied gases as hydrogen and succeeded to show
that the hydrogen atoms contain an electric negative charge, called electron,
and a positive charge with a grater mass. Thomson imagined an atom as a plum
pudding, where the positive charge part (the pudding) contains in its interior
the small particles (plums) with negative charge.

His student, Ernst Rutherford changed the perspective about the atom con-
sidering the positive part in the middle, that is all positive charges staying
together in an nucleus and the electrons orbiting around it.

Thinking only at the model of the hydrogen atom where only a proton
(a positive charge) and an electron (a negative charge) exist, two questions
appeared:

1. The opposite charges attract. Why the electrons do not spiral on the
nucleus and so, the atom can no longer exist?What is the nature of the electron?
Is it a particle or something else?

2. The second question is related to the atoms having more than one proton
in the nucleus. Objects with the same sign charges have to repel. Why does not
the nucleus of the atom fall apart and so the atom no longer exist? How these
positive charges are kept together? Starting from these fundamental questions
on matter has been possible to develop Quantum Mechanics.
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4.2 Lecture 15: Monochromatic Plane Waves—The One
Dimensional Case

To have an intuitive view on the wave behavior of light and matter, we can start
describing a wave as a function

ψ(t, x) = A cos(kx − ωt)

depending on t and x which are real valued. The meaning of k and ω will be clear
by the mathematical description of monochromatic plane waves.

All propagating dynamic perturbations and disturbances are in fact waves. Awave
has crests and troughs and can be mathematically described by the wave equation.
Crests of a wave can move in one direction. Such waves are called traveling waves.
They travel at a given speed and they carry energy. An example of such waves are
the electromagnetic waves. Their equation, in the case of magnetic field, is

∂2B

∂t2
− �2B = 0,

where �2 is the Laplace operator,

�2 := ∂2

(∂x1)2
+ ∂2

(∂x2)2
+ ∂2

(∂x3)2
.

If we denote by

� := ∂2

∂t2
− �2

the d’Alembert operator, the previous equation is

�B = 0.

The same equation holds in the case of electric field, that is

�E = 0,

where E is the electric field. Here we write the equations of magnetic and electric
fields for t ∈ R, x ∈ R

3. In order to reduce them to the planar case, we consider only

one space variable and the Laplace operator reduced to one term only, say
∂2

∂(x1)2

in the case of the electric field.
For general waves, terms involved in the d’Alembert operator can have coeffi-

cients.
Let us consider now the Euler formula
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eiα = cosα + i sinα,

where i is the immaginary unit having the property i2 = −1. If t is the time and x is
the position, a monochromatic plane wave can be imagined as

�(t, x) = Aei(kx−ωt) = A[cos(kx − ωt) + i sin(kx − ωt)].

The positive number A is called an amplitude. To have a picture of the situation, one
has to think that sin and cos functions oscillate between −1 and 1, while A sin or
A cos functions oscillate between −A and A.

The same holds for the function cos(kx − ωt). The crest is reached for kx − ωt =
0 and at any 2π translations. From kx − ωt = 0, it results

x

t
= ω

k
.

From adimensional point of view, this ratio is space over time, that is a velocity. So,
we have obtained the formula

v := ω

k
.

If we write
kx − ωt = k

[
x − ω

k
t
]

= k[x − vt]

at a given t0 > 0, we have k[x − vt0], that is k(x − x0). Such a formula shows that
the origin O(0, 0) switches to (x0, 0) moving on the right.

Let us denote by T the smallest positive number such

ei(kx−ωT ) = eikx , that is eiωT = 1.

It results that T = 2π

ω
. Since the period T is related to the frequency ν by the formula

T = 1

ν
, it results ω = 2π

T
= 2πν. Therefore ω is the angular velocity of the wave.

The wavelength is the distance between two consecutive crests. It is denoted by
the Greek letter λ. Since λ = vT , it results

λ = ω

k
T = �ω

k

2π

�ω
= 2π

k
.

We have obtained

k := 2π

λ
.

If we have the function sinα and the distance between two consecutive crests is
λ = 2π, we have k = 1. If we have sin 2α and the distance between two consecutive
crests is λ = π, therefore we have k = 2 and so on. According to this definition, we
call k the wavenumber of �.
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It results now the meaning of all letters which appears in the describing of the
planar right-traveling wave �:

– t is the time parameter,
– x is the space parameter,
– ω is the angular velocity derived from the frequency ν,
– k is the wavenumber derived from the period T .

It remains to prove that �(t, x) is indeed a wave. It is easy to compute
∂2�

∂t2
and

∂2�

∂x2
. Calculations lead to

∂2�

∂t2
= −ω2�; ∂2�

∂x2
= −k2�,

therefore
∂2�

∂t2
− k2

ω2

∂2�

∂x2
= 0.

The last equation can be written with respect to the speed v of the traveling wave, so

∂2�

∂t2
− 1

v2

∂2�

∂x2
= 0.

The two dimensional d’Alembert operator can be written as

�v := ∂2

∂t2
− 1

v2

∂2

∂x2
.

At this point, a short discussion about waves is necessary. They can be reflected,
refracted, diffracted and they can interfere. When they interfere, we can see an inter-
ference pattern. This interference pattern can be imagined using the following obser-
vations. Let us take into account twowaves with the same amplitude. There are crests
and troughs. When two crests come together they determine a double crest. We say
that this is a constructive interference. The same for two troughs which determine a
double trough. When a trough come together a crest they cancel, so we are talking
about a destructive interference. The wave interference appears when two waves
traveling in the same medium meet.

The interference of waves can produce a special type of waves, called standing
waves. They have null points and the wave oscillates keeping these points fixed. An
example of such waves are string vibrations. Let us look at standing waves in the
1-dimensional case. Consider an infinite length string along the x-axis which can
oscillate only in a plane determined by the previous x-axis and also consider an
y-axis orthogonal to it. The wave described by the formula

R(t, x) = A sin(kx − ωt)
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is, accordingly to the above facts on planar waves, a traveling wave to the right along
the string, while

L(t, x) = A sin(kx + ωt)

is a traveling wave moving to the left along the string. Let us remember the well
known trigonometry formula

sinα + sin β = 2 sin
α + β

2
sin

α − β

2
.

Let us apply it for the interference of the two previous waves in the form

y(t, x) := A sin(kx − ωt) + A sin(kx + ωt) = 2A sin kx cosωt.

What we have obtained is not a traveling wave, but a standing wave having nodes

at each x = nπ

k
, n ∈ N. The wave oscillates up and down preserving the nodes as

fixed points.
The length of the string has not to be infinite. It can be finite with two ends, one

fixed point at (0, 0), the other one at (L , 0), where L is the length of the string. The
standing wave has the same form

y(t, x) := 2A sin kx cosωt

but we have to impose boundary conditions to fix the endpoints of the string. We
observe that the chosen form has the property y(0, t) = 0, therefore the boundary
condition at the left is satisfied accordingly to the way we defined y(t, x). At the
right, we have to impose the condition

sin kL = 0,

i.e. the wavenumber k has to satisfy kL = nπ, n ∈ N. Since k = 2π

λ
, we obtain the

wavelength condition imposed by the two fixed ends of the string: λ = 2L

n
. The

associated frequencies of this standing wave are

ν = 1

T
= v

λ
= nv

2L
.

By definition, n = 1 gives the fundamental frequency of the string, while higher
integers than 1 correspond to the so called, harmonics or overtones.

An important observation is necessary at this point: let us consider that a standing
wave can bemodeled around a given circle of length L . In such a case, the mandatory
condition to obtain a standing wave is kL = 2nπ, that is the wave oscillates with an
integer multiple of the period of the function sin. Since the circle has length L , its
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radius is r = L

2π
. The formula we obtain is rk = n. It will be used later when we

study the electron seen as a standing wave around the nucleus. An exercise for the
reader is to obtain the same results using the wave description �(t, x) = A(t)eikx .

Summary of Lecture 15. If t is the time and x is the position, a planar wave
traveling to the right can be imagined as

�(t, x) = Aei(kx−ωt) = A[cos(kx − ωt) + i sin(kx − ωt)].

The positive number A is called amplitude. The wavelength λ is the distance
between two consecutive crests.

k is the wavenumber and it is connected to the wavelength λ through the
formula

k := 2π

λ
.

ω is the angular velocity related to the period T through the formula

T := 2π

ω
.

The frequency of the wave, denoted ν is defined by

ν := 1

T
.

The speed of traveling wave is given by the formula

v := x

t
= ω

k
.

The traveling wave � satisfies the equation

∂2�

∂t2
− 1

v2

∂2�

∂x2
= 0

or, written with respect to the d’Alembert operator

�v := ∂2

∂t2
− 1

v2

∂2

∂x2

it has the form
�v� = 0.
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In the one dimensional case, a standing wave can be seen as the interference
between two traveling waves along the x-axis, that is

y(t, x) := A sin(kx − ωt) + A sin(kx + ωt) = 2A sin kx cosωt.

The nodes are at each x = nπ

k
, n ∈ N. The wave oscillates up and down

preserving the nodes as fixed points.
In this case the length of the string is infinite. But we can model standing

waves whose initial string has a finite length. If the two ends are at (0, 0) and
at (L , 0), where L is the length of the string, the standing wave has the same
form

y(t, x) := 2A sin kx cosωt,

but we have to impose boundary conditions to fix the endpoints of the string.
We observe that the chosen form has the property y(0, t) = 0, therefore the
boundary condition to the left is satisfied accordingly to the way we defined
y(t, x). To the right, we have to impose the condition

sin kL = 0,

i.e. thewavenumber k has to satisfy kL = nπ, n ∈ N. Since k = 2π

λ
, we obtain

the wavelength condition imposed by the two fixed ends of the string, λ = 2L

n
.

The associated frequencies of this standing wave are

ν = 1

T
= v

λ
= nv

2L
.

Now, a very important remark: let us observe that a standing wave can be
modeled around a given circle of length L . In such a case, the mandatory
condition to obtain a standing wave is

kL = 2nπ,

that is the wave oscillates an integer multiple of the period of the function sin.

Since the circle has length L , its radius is r = L

2π
. The formula we obtain, that

is rk = n, will be used later when we will study the electron considered as a
standing wave around the nucleus.
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4.3 Lecture 16: The Young Double Split Experiment. Light
Seen as a Wave

It seems René Descartes was the first who states that light is made by particles
traveling at a finite speed in straight line. This description can be used to understand
reflection of light. Light acts as “small bullets” bouncing when they meet a surface
at a given angle (Fig. 4.4).

This point of viewwas kept also by IsaacNewton in his treatise concerningOptics.
The light is explained by two rules:

1. Every source of light emits a large number of tiny particles called corpuscles
in the medium which surround the source.

2. These corpuscles are perfectly elastic, rigid and weightless.
These allowed Newton to see corpuscles as a sort of material points which can

follow the basic rules ofMechanics. The trajectories, being lines, lead to a law for the
reflection: the incidence angle equals the reflected angle. But not all of the known
properties of light can be explained in a satisfactory way following this point of
view. A century later, scientists still believed Newton, even if Christian Huygens
represented light as a wave because Newton’s theory cannot explain phenomena like
polarization or interference. However, in 1801, Thomas Young made an experiment
which showed, without any doubt, that light can be seen as a wave.

If we have a one-slit plate parallel to the plate of a table and we leave sand to go
through, on the plate of the table we obtain a pile of sands. If we have a double-slit
plate parallel to the plate of a table and we do the same “experiment”, two piles of
sand will form. The small grains of sand will create a pattern corresponding to all
other grains of something which pass through the double-slit.

Let us consider now the same experiment, this time using, say, blue light. The
double-slit experiment can be described as follows. Consider a plate �S with two

Fig. 4.4 Young’s double-slit experiment (1)
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Fig. 4.5 Young’s double-slit
experiment (2)

parallel slits, a source of monochromatic blue light S, that is only one optical fre-
quency ν exists corresponding to the blue light, and a screen W placed such that the
order of objects is S, �S and W .

If we cover one slit, we see a blue light strip on the screen.
Let us consider now light passing through both slits. The light illuminates the

screen. In fact, on the screen, we can see many vertical blue light and dark bands.
Physicist call all these bands, fringes.

Of course, if the light is made up of particles like the little bullets we discussed
earlier, only two blue light fringes would appear on the screen. So, in this experiment,
light cannot be thought as “made of particles”.

Here we see an interference pattern as happen when two small stones fall in the
water at the same time. The constructive interference produces the blue light fringes,
while the destructive interference produces the dark fringes.

Themain conclusionof this experiment is that light acts as awave.Thewavenature
of light is the only possible explanation of the interference pattern we observe. The
waves passing through the two slits interfere producing blue light and dark fringes.

In this experiment, it is important the magnitude of slits, the distance between the
two slits and the distance between the double-slit plate to the screen. The magnitude
of slits and the distance between them have to be almost as the wavelength of the
monochromatic light produced by the source. If the slits are too large, the chance
to produce the interference pattern decreases. The same happens if the screen is too
close to the double-slit plate. If the two slits are too narrow, the same, we cannot see
the interference pattern. The experiment has to be well “prepared”.

Now, we have to understand why the blue light and dark fringes appear (Fig. 4.5).
Consider a perpendicular section, that is a plane perpendicular to the plate con-

taining the two slits. Let us denote with AB the first slit and with C D the second
slit, and A, B, C, D are collinear points. Therefore BC is the distance between the
two slits of length d. The sizes of the two slits are equal and they are very tight as
we explained above.
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From the middle of the segment BC , denoted by X , we draw, in the perpendicular
plane, a line which meets the screen at M0. Of course, M0 is at the middle of the
main light band.

Denote by M1 the middle of the next light band. Now we consider the angle
θ := ∠M1X M0. If X1 is the middle of AB and X2 is the middle ofC D, then the lines
X1M1 and X2M1 have to be axes along which the two waves travel in a constructive
interference.

To have this constructive interference, first we draw a perpendicular line from X1

to X2M1 intersecting at X3. Then, we denote by �x the segment X2X3.
The angle ∠X2X1X3 can be approximated by θ and the length X1X2 by d, so, for

these small quantities, we have

sin θ = �x

d
.

The constructive interference condition is �x = nλ. That is a correspondence crest
to crest and trough to trough appears for waves having axes X1M1 and X3M1, respec-
tively. Therefore the condition of constructive interference in the double-slit experi-
ment is

nλ = d sin θ,

for those integers n such that
nλ

d
∈ [−1, 1].

In the same way we find the condition for destructive interference. The corre-
sponding figure is easy to construct and the condition is:

2n + 1

2
λ = d sin θ,

for those integers n such that
2n + 1

2

λ

d
∈ [−1, 1].

If we denote by y the length of M0M1 and by D the length of X M0, for small
angles θ we have

�x

d
= sin θ ≈ tan θ = y

D
,

therefore y can be computed with the formula y = Dnλ

d
. Of course we can compute

the distance between the middle of two consecutive light or dark fringes, that is we
can mathematically model in a satisfactory way the double-slit experiment results
(Fig. 4.6).
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Fig. 4.6 Young’s double-slit
experiment (3)

Summary of Lecture 16. The double-slit experiment can be described as
follows. Consider a plate�S with two parallel slits, a source ofmonochromatic
blue light S, that is a defined optical frequency ν exists corresponding to the
blue light, and a screen W placed such that the order of the components is S,
�S and W .

If we cover one slit, we see a blue light strip on the screen.
Let us consider now light passing through both slits. The light illuminates

the screen. In fact, on the screen we can see many vertical blue light and dark
bands. Physicists call these bands, fringes.

Of course, if the light made up of particles like the Newton little bullets we
discussed before, only two fringes would appeared on the screen. So, in this
experiment, light cannot be thought as “made of particles”.

Here we see an interference pattern like that happens when two small stones
fall in the water at the same time. The constructive interference produces the
blue light fringes, while the destructive interference produces the dark fringes.

The main conclusion of this experiment is that light acts as a wave. The
result of the experiment is described by the equation

�x

d
= sin θ ≈ tan θ = y

D
,

which is derived above.
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4.4 Lecture 17: The Planck–Einstein Formula E = hν

In order to fix the basic ideas of Quantum Mechanics, let us write some useful
formulas whose physical meaning will be given below. It is

R(λ, T ) = c

4
ρ(λ, T )

ρ(λ, T ) = 8π

λ4
ε̄

β = 1

k T

and finally

ε̄ =
∫ ∞
0 ε e−βεdε∫ ∞
0 e−βεdε

.

The last fraction with integrals can be easily computed. Many readers will prefer to
separately compute the integrals from nominator and denominator. It is:

∫ ∞

0
ε e−βεdε = − 1

β
ε e−βε

∣∣∞
0 + 1

β

∫ ∞

0
e−βεdε = 1

β2
,

∫ ∞

0
e−βεdε = − 1

β
e−β |∞0 = 1

β
,

therefore the final result is

ε̄ = 1

β
= kT .

Another way is to observe this is

ε̄ =
∫ ∞
0 ε e−βεdε∫ ∞
0 e−βεdε

= − d

dβ

(
ln

[∫ ∞

0
e−βεdε

])
= 1

β
= kT,

and the same result is obtained. Replacing in the formula of R(λ, T ), we have

R(λ, T ) = c

4
ρ(λ, T ) = 2πc

λ4
kT .

Now let us observe that
lim

λ→0+
R(λ, T ) = +∞.
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This is a mathematical model formulated in a given context which gives rise to
some predictions. The approach is like in the case of Michelson–Morley experiment
when, in a given Classical Mechanics context, we obtained some predictions. In
theMichelson–Morley context, the experimental results contradict the mathematical
prediction obtained from Classical Mechanics. In that case, a new theory, the Special
relativity, must be formulated to fit the observations.

Here the situation is similar. Something in the set of formulas presented above
leads to results which do not fit experiments. We have to change something, the
infinite obtained in the above formula cannot exist in reality.

The only placewherewe can act seems to bewhen the two integrals are considered.

What happens if we change the continuous variable ε, belonging to the real
interval [0,+∞), with nε0, where n belongs to the natural number set N?

We get a modified formula for ε̄, i.e.

ε̄ =
∑∞

n=0 nε0 e−βnε0
∑∞

n=0 e−βnε0
= − d

dβ

[
ln

( ∞∑
n=0

e−βnε0

)]
= − d

dβ

[
ln

1

1 − e−βε0

]
= ε0

eβε0 − 1
.

It results

R(λ, T ) = 2πc

λ4

(
ε0

eβε0 − 1

)
= 2πc

λ4

⎛
⎜⎝ ε0

e

ε0

kT − 1

⎞
⎟⎠ .

According to the physical meaning, it is

ε0 = hν = h
c

λ
,

where h is a constant, the Planck constant, ν is a frequency, c is the speed of light,
and λ is a wavelength. The above formula is now

R(λ, T ) = 2πhc2

λ5

⎛
⎜⎜⎝

1

e

hc

kT

1

λ − 1

⎞
⎟⎟⎠

and

lim
λ→0+

2πhc2

λ5

⎛
⎜⎜⎝

1

e

hc

kT

1

λ − 1

⎞
⎟⎟⎠ = 0

which fits the experiment which we are going to describe below.
The main change, made in order to fit the experiment, is related to the fact that ε

cannot have a continuous set of values, but only natural multiples of a given energy
ε0. This energy depends on a constant, called Planck constant, and on the frequency
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ν. This means that the energy cannot have a continuous set os values but only discrete
values which depends on a finite quantity of energy, called “quanta”. Therefore, the
corresponding formula is

E := hν.

This approach was postulated by Max Planck in order to explain the black-body
radiation. It is an electromagnetic radiation emitted by a black body. A black body
is an idealized physical body that absorbs all incident electromagnetic radiation,
regardless of frequency or angle of incidence. The name “black body” is given
because it absorbs all colors of light. A black body also emits black-body radiation.

According to the above notations, let us say that λ is the wavelength of the black-
body radiation. T is the absolute temperature of black body. The Planck constant h
can be experimentally evaluated being about 6.626 × 10−34 joule· second. For the
experiments leading to this result, we refer the reader to the Bibliography.

The function R(λ, T ) is the spectral radiance produced by the surface of the black
body having the absolute temperature T and wavelength λ. Here k is the Boltzmann
constant. . The formula

R(λ, T ) = 2πc

λ4

(
ε0

eβε0 − 1

)
= 2πc

λ4

⎛
⎜⎝ ε0

e

ε0

kT − 1

⎞
⎟⎠ = 2πhc2

λ5

⎛
⎜⎜⎝

1

e

hc

kT

1

λ − 1

⎞
⎟⎟⎠ .

is now called the Planck spectral radiance formula. To obtain this, Max Planck
hypothesized that ε̄, the average energy produced by all the possible frequencies, is

produced by energies of type nε0 where the quantum energy is ε0 = hν = h
c

λ
. In

this way, the spectral radiance does not diverge and is coherent with experimental
results. This means that a black body cannot accumulate infinite energy.

Specifically, the Planck spectral radiance formula allows to calculate

R(T ) :=
∫ ∞

0
R(λ, T )dλ

which is a finite number depending on T . Indeed, if we compute the integral

∫ ∞

0

1

λ5

e
α
1

λ − 1

dλ

and substitute y := 1

λ
, that is dy := − 1

λ2
dλ, the previous integral becomes

∫ ∞

0

y3

eαy − 1
dy.
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Another obvious change of variable is x := αy, dx = αdy, and then we can recast
the integral as

K (α)

∫ ∞

0

x3

ex − 1
dx,

where K (α) is a constant depending on T 4, being α = hc

kT
. It is

∫ ∞

0

x3

ex − 1
dx =

∫ ∞

0

x3e−x

1 − e−x
dx =

∫ ∞

0
x3

∞∑
n=1

e−nx dx =
∞∑

n=1

∫ ∞

0
x3e−nx dx .

Using u := nx and du = ndx , it results that

∫ ∞

0

x3

ex − 1
dx = 6

∞∑
n=1

1

n4

which is a finite number as we are going to demonstrate.
For this purpose, let us use the Fourier series which we will reconsider in details

in Lecture 37. In particular, let us consider the Plancharel-Parseval theorem. We
start from f (x) = x2 for x ∈ [−π,π], which is a continuous function on the given
interval. The same is its square, f 2. So, both f and f 2 are integrable. We compute
the Fourier coefficients:

an := 1

π

∫ π

−π

x2einx dx = 2 cos(nπ)

n2
, n ∈ Z, n �= 0,

a0 := 1

2π

∫ π

−π

x2dx = π2

3
.

It results |an|2 = 4

n4
, |a0|2 = π4

9
, that is, according to the Plancharel-Parseval the-

orem, we have
1

2π

∫ π

−π

f 2(x)dx =
∑
n∈Z

a2
n = a2

0 + 2
∞∑

n=1

a2
n .

The last line can be written in the form

π4

5
= π4

9
+ 8

∞∑
n=1

1

n4
.

Therefore ∞∑
n=1

6

n4
= π4

15
.
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We have the entire landscape view on Planck’s work after we observe that R(T ), the
total spectral radiance, is a constant multiplied by T 4, exactly as it appears in the
Stefan–Boltzmann law. In otherwords, the Planck idea to consider a quantized energy
is the key for a correct physical description of the spectral radiance. Specifically, the
formula

R(λ, T ) = 2πhc2

λ5

⎛
⎜⎜⎝

1

e

hc

kT

1

λ − 1

⎞
⎟⎟⎠ ,

is in agreement with experiments and allows, after computations, to highlight the
correct proportionality between the total spectral radiance R(T ) and T 4 as it appears
in Stefan–Boltzmann formula.

Summary of Lecture 17. The following formula

ε̄ =
∫ ∞
0 ε e−βεdε∫ ∞
0 e−βεdε

= 1

β
,

is the key ingredient which leads to the concept of quantized energy introduced
by Planck. If

R(λ, T ) = 2πc

λ4
ε̄

and β = 1

kT
, it results

R(λ, T ) = 2πc

λ4
kT

and
lim

λ→0+
R(λ, T ) = +∞.

These formulas have to be related to a experiments whose result cannot be
+∞. What is wrong in this description? Let us change the continuous variable
ε, which belongs to the real interval [0,+∞), with nε0, where n belongs to the
natural number set N. Therefore we have a modified formula for ε̄, which is

ε̄ =
∑∞

0 nε0 e−βnε0
∑∞

0 e−βnε0
= − d

dβ

[
ln

( ∞∑
0

e−βε0

)]
= − d

dβ

[
ln

1

1 − e−βε0

]
= ε0

eβε0 − 1
.

It results

R(λ, T ) = 2πc

λ4

(
ε0

eβε0 − 1

)
= 2πc

λ4

⎛
⎜⎝ ε0

e

ε0

kT − 1

⎞
⎟⎠ .
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According to the physical meaning of the experiment, we have

ε0 = hν = h
c

λ
,

where h is a constant, ν is the frequency, c is the speed of light and λ the
wavelength. Therefore

R(λ, T ) = 2πhc2

λ5

⎛
⎜⎜⎝

1

e

hc

kT

1

λ − 1

⎞
⎟⎟⎠ ,

and

lim
λ→0+

2πhc2

λ5

⎛
⎜⎜⎝

1

e

hc

kT

1

λ − 1

⎞
⎟⎟⎠ = 0

which fits the experiment. The main change made, in order to fit the exper-
iments, is related to the fact that ε cannot have a continuous set of values,
but only natural multiples of a given energy ε0. This energy depends on a
constant, called the Planck constant, and on the frequency ν. According to
this result, the energy cannot have a continuous set of values but only discrete
values which depends on finite quantities of energy, called quanta. Therefore,
the corresponding Planck–Einstein formula E := hν must be considered as
an axiom which allows the correct mathematical description and the physical
interpretation of the experiment.

4.5 Lecture 18: Light as Particles. The Einstein
Photoelectric Effect

In an experiment performed in 1887, Heinrich Hertz detected the photoelectric effect
by observing that ultraviolet light hiting a metal produces sparks. The sparks are
actually electrons released from the metal used. The ultraviolet light can be replaced
by any light beam.

A theoretical explanation of this effect was given by Einstein using Planck’s idea
related to energy conceived as packets. Einstein proposed to consider light formed by
photons which are tiny packets of energy, each packet carrying the energy E = hν.
Einstein proved that the extraction of electrons happens if the energy of photons,
which hit themetal, is grater than the energy necessary to electrons to escape from the
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metal. The photon energy is proportional to the frequency of the light, so increasing
the frequencywe increase the energy andwe can see the “photoemission” happening.

So, when a photon from the light beam hits the surface, it uses all its energy
E = hν to extract an electron. How we can model this? In 1905, Einstein’s idea was
to observe that if electrons are released at a speed, denoted v, and if m is the mass
of the electron, the following equality holds

1

2
mv2 = hν − W.

In this formula the minimum amount of energy necessary to extract the electron is
denoted by W . The meaning of the previous formula is the following. If v = 0, this
extraction does not happen. In this case, E = hν = W . But, if E − W > 0, that is
hν − W > 0, the electron is released at speed v according to the above formula.

Einstein’s idea to see light made of particles (the photons) carrying energy oblige
us to develop another point of view when we are dealing with it: The light can be
described as a wave and a particle at the same time. In some experiments, light has
to be considered as a wave, while in other experiments it must be seen as a particle.
Therefore, light has a dual nature. This point of view is incompatible with Classical
Mechanics. In this perspective, we need another approach tomicroscopic phenomena
leading to Quantum Mechanics.

Summary of Lecture 18. In the long story related to the question “What is the
nature of light?” two possible answers are possible. The wave nature of light is
highlighted by the two slit experiment.Adescription of light as electromagnetic
waves was given by Maxwell. Above we presented the Mathematics behind
this wave nature.

Heinrich Hertz detected the photoelectric effect, when, in an experiment,
he observed that ultraviolet light, hiting a metal, produces sparks. The sparks
are actually electrons released from the metal used in this experiment. Einstein
gave the explanation of the phenomenon considering light as at a collection of
particles called photons and having quantized energies, E = hν. The equality

1

2
mv2 = hν − W

makes sense if the energy of light is grater than the energy of extraction, W .
If so, electrons are expelled from the metal according to the above formula.
According to this explanation for the photoelectric effect, he concluded about
the dual nature of the light: light can be wave and particle at the same time.



4.6 Lecture 19: Atomic Spectra and Bohr’s Model of Hydrogen Atom 77

4.6 Lecture 19: Atomic Spectra and Bohr’s Model of
Hydrogen Atom

In this lecture, we are going to present an atomic model based on the above facts
and results. In 1913, when this model was presented the physicists still did not know
about the possibility to detect electrons as waves. Let us start from the experiments
discussed above on hydrogen in a glass bottle. Excited atoms of hydrogen emit light.
If this light passes through a prism, we can observe a series of four colored lines
with dark spaces in between. We obtain the same experimental result by considering
other elements. Each time, we observe more or less colored lines with dark spaces in
between. These series of colored lines are called atomic spectra. Each element has
its own atomic spectrum, therefore elements can be identified by their line spectrum.
Johann Jakob Balmer was the first who, in 1885, observed a regularity in spectral
lines of atoms. In fact he obtained a formula related to the nine known lines of
hydrogen in terms of their wavelengths:

λ = C
n2

n2 − 4
, n = 3, 4, 5, . . . , 11,

where C = 3646Å is a constant.
In 1889, Johannes Rydberg described the wavelengths of photons emitted by

changes in energy level of an electron in a hydrogen atom. The considered formula
is in fact the Balmer one written in a different way, that is:

1

λ
= RH

(
1

22
− 1

n2

)
, n = 3, 4, 5, . . .

where RH is the Rydberg constant, RH = 109677, 58 cm−1. Rydberg’s formula can
be generalized for spectral series of hydrogen seen in ultraviolet or infrared light as

1

λ
= RH

(
1

n2
1

− 1

n2
2

)
, n1 < n2, n1 = 1, 2, 3, 4, 5, . . . , , n2 = 2, 3, 4, 5, . . . ,

where n1 is called the principal quantum number of the upper energy level and n2 is
called the principal quantum number of the lower energy level for the atomic electron
transition. The existence of spectral series cannot be explained by Classical Physics.
Another model of an atom should be created to explain these observations.

It was the Danish physicist Niels Bohr, based on some quantum postulates, who
attempted to describe the hydrogen atom. He created a mixed classical-quantum
description based on Rutherford’s planetary model with a positive charged massive
nucleus at center and a negative charged electron around it.HeusedEinstein–Planck’s
relation i.e. photons as carriers of energy, as we have seen in Einstein’s photoelectric
effect. The postulates are:
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1. The electron moves around the nucleus on a circular orbit imposed by the
electrostatic force who acts between the two electric charges.

The second Bohr’s postulate is related to the fact that not all circular orbits are
possible:

2. Among all orbits, only those corresponding to given energy levels are possible.
3. The electron preserves its energy while moving on circular trajectories related

to these given levels.
Let us first explain the idea before enunciating the fourth postulate. Energy can

be lost or gained only if the electron switches between two allowed energy levels.
A photon having the energy E = hν interacts with the electron found on an orbit
corresponding to an energy Ek if there exists a possible orbit corresponding to the
energy Ek + hν. In this case the electron will jump to this orbit and the atom gains
energy. An electron of an orbit corresponding to an energy Em can release a photon
with an energy E = hν only if this energy of the photon allows the electron to jump
to another allowed level, E p.

4. Therefore, a photon can make the electron jump between two allowed energy
levels El and E j , E j < El if and only if its energy hν satisfies the relation

El − E j = hν.

5. There is a first fundamental level E1 corresponding to a possible minimum energy
such that the electron cannot spiral to the nucleus.

The mathematical description of the model starts with the definitions:

– ε0 which is now the vacuum permittivity,
– |e|, the absolute value of the charge for electron and proton,
– Z , the number of protons in nucleus, in the case of hydrogen atom Z = 1,
– the Coulomb force,

F = 1

4πε0

Z |q1||q2|
r2

,

in this case

F = 1

4πε0

e2

r2
,

– Bohr first postulate is
mvr = n�, n = 1, 2, 3, . . .

where � := h

2π
is the reduced Planck constant. It means the stationary orbits are

at distances r such that the angular momentum is quantized (m is the mass of the
electron). The lowest value n = 1 corresponds to the smallest possible orbit, the
one stated in the fifth postulate.

– the centripetal force corresponding to the orbit(s) is
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F = mv2

r
,

– the electron potential energy is

V = − e2

4πε0

1

r
,

– the electron kinetic energy is

T = 1

2
mv2.

Bohr started from the Classical Mechanics energy condition

mv2

r
= 1

4πε0

e2

r2
,

i.e.

v = e2

4πε0

1

mvr
= e2

4πε0n�
.

It results

r = n�

mv
= 4πε0�

2

me2
n2, n = 1, 2, 3, . . .

Replacing in the potential and kinetic energy formulas, we obtain

V = − m

�2

(
e2

4πε0

)2 1

n2
, T = m

2�2

(
e2

4πε0

)2 1

n2
.

The hydrogen atom total energy formula is

En = − m

2�2

(
e2

4πε0

)2 1

n2
, n = 1, 2, 3, . . . .

If we compute the energy difference corresponding to two different orbits, we find a
Rydberg type formula

E = El − E j = RE

(
1

nl
− 1

n j

)
,

where RE is a constant with the obvious physical dimensions of energy.
This model, which mixes Quantum and Classical Mechanics, is today obsolete.

The main objection is related to the statement of first postulate; de Broglie gave a
consistent explanation for it, as we will discuss in the next lecture. Another major
objection is related to the concept of circular orbits. It means that the electron exhibits
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a deterministic behavior, that is, we know at anymoment, its position and its velocity.
When we will study the Heisenberg Uncertainty Principle, we will see that it is
impossible to determine, at the same time, the electron trajectory and momentum.
However, it is worth studying the Bohr model of atom because it is both an important
step towards a self-consistent formulation of Quantum Mechanics and because it
gives good predictions for the Rydberg series.

Summary of Lecture 19. The spectral series of hydrogen atom, the Balmer’s
one

1

λvac
= RH

(
1

22
− 1

n2

)
, n = 3, 4, 5, . . .

and the Rydberg’s one,

1

λvac
= RH

(
1

n2
1

− 1

n2
2

)
, n1 < n2, n1 = 1, 2, 3, 4, 5, . . . , , n2 = 2, 3, 4, 5, . . . ,

cannot be explained by Classical Physics. In 1913, Niels Bohr proposed an
atomicmodelwhichmixedRutherford’smodel, Planck’s quanta andEinstein’s
photoelectric effect. Among the postulates used byBohr, one is very important:
the electron moves on a circular orbit around the nucleus. This one is written
in terms of quantized angular momentum,

mvr = n�.

The mathematical description of the model starts with the Coulomb force
written in the case of hydrogen atom as

F = 1

4πε0

e2

r2

which equals the centripetal force

F = mv2

r
.

Therefore
mv2

r
= 1

4πε0

e2

r2
,

i.e.

r = n�

mv
= 4πε0�

2

me2
n2, n = 1, 2, 3, . . .
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Replacing in the potential and kinetic energy formulas, we obtain the hydro-
gen atom total energy formula

En = − m

2�2

(
e2

4πε0

)2 1

n2
, n = 1, 2, 3, . . . .

If we compute the energy difference between two orbits, we find a Rydberg
type formula

E = El − E j = RE

(
1

nl
− 1

n j

)
.

The model was firstly corrected by de Broglie which obtained the Bohr’s first
postulate from another hypothesis. However, another major objection remains.
The circular orbits contradicts the Heisenberg Uncertainty Principle we will
study later.

4.7 Lecture 20: De Broglie’s Hypothesis. Material Objects
as Waves

To translate the title, de Broglie thought that all what we consider matter acts as
wave, too; that is any material object has an associated wavelength. This means that
the wave-corpuscle duality principle can be extended to particles like electrons and,
in general, to any form of matter. How did de Broglie come to this hypothesis?

Let us start from the formula E = mc2. It does not work for photons, because we
know that their rest mass is assumed to be 0. Let us write the formula with respect
the momentum p.

Then E = pc. And let us consider the other formula we obtained for energy,
E = hν. Therefore we obtain

p = h

c
ν = h

c

1

T
= h

λ
.

According to this formula, we can assume that an electron (and any particle) has a
proper wavelength. Clearly the wavenumber can be given in all its possible expres-
sions like

k = 2π

λ
= 2π

cT
= 2π

c
ν.

Multiplying both members by h, and considering again �, it results
h

2π
k = E

c
= p,

that is
p = �k.
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The last formula can be seen as a quantization of the momentum. Any time h or �

appear in a formula, we are dealing with a quantized quantity.
These considerations can be summarized in the de Broglie formula

λ = h

p
= h

mv

according to which an electron (or any particle) can be considered as a wave.
In order to test this hypothesis, we can take into account the Davisson-Germer

double slit experiment where the particle beam is made of electrons. The same
phenomenology holds also for other elementary particles, atoms and evenmolecules.
It is possible to confirm the wave behavior, justifying de Broglie hypothesis, in any
case. We refer the interested reader to the Bibliography for detailed descriptions of
these experiments.

According to this picture, we can guess why electrons do not spiral into the atomic
nucleus.

The electron in an atom is a standing wave. In other words, to correct the hydrogen
atommodel byBohr, deBroglie proposed to look at the electron as at a standingwave.
Therefore the electron is a wave and an integer number of wavelengths represent the
circumference of the orbit, i.e.

nλ = 2πr.

From this relation, it is clear that, for a given wavelength λ, only some radius are
possible. According to the de Broglie formula, it results

nh

mv
= 2πr

which is equivalent to the Bohr postulate mvr = n�.

Thenext step to understand correctly the atommodelwill be realized after studying
the Heisenberg Uncertainty Principle.

To conclude, matter has in general a wave behavior. But why we cannot see this
wave behavior for a macroscopic object having, for example, a mass of 1 Kg which
moves at speed 1 m s−1? The answer is very simple. If we compute λ, we find out it
is h, that is of the order of magnitude 10−34Kg m2s−1. Therefore we cannot observe
such a wave having this extremely small wavelength. Summing up: All these facts
cannot be framed in the standard scheme of Classical Mechanics. This means that a
new paradigm is necessary. It is the Quantum Mechanics.

Summary of Lecture 20. The de Broglie hypothesis can be summarized in
following way. We start from the rest energy formula written in the form
E = pc. Consider now the other formula for energy, E = hν. Therefore we
obtain
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p = E

c
= h

c
ν = h

c

1

T
= h

λ
.

It can be arranged in the form

λ = h

p
= h

mv
.

This formula can describe the wavelength of an electron. Starting from the
formula of the wavenumber

k = 2π

c
ν ,

we can derive
p = �k.

The last formula can be seen as a quantization of the momentum, which is the
next step after the quantization of energy. The Davisson-Germer double slit
experiment, made with electrons, confirmed the de Broglie hypothesis. The
standing wave behavior of the electron in the hydrogen atom is a consequence
of this reasoning. The Bohr postulate about circular orbits, mvr = n�, can
be deduced by de Broglie hypothesis starting from the electron wavelength
formula, which is

λ = h

mv
.

4.8 Lecture 21: Strengthening the Einstein Idea of Photons.
The Compton Effect

This very important experiment proves definitely that light cannot be seen only as an
electromagnetic wave but also as a particle. We already know, from the photoelectric
effect, that light is described as made of particles, called photons, carrying tiny
packets of energy. The remarkable Einstein explanation has been demonstrated to
be experimentally valid, but: Is there an experiment where light starts as a wave
but it shows particle characteristics? This will strengthen Einstein’s point of view
about light seen as made of particles. Measuring something predicted gives the proof
of the statement. Such an experiment was performed by Arthur Compton in 1922.
He highlighted what we call now the Compton effect described by a formula which
predicts a change of wavelength which can be measured. From a classical point
of view, there is no possibility to explain why the initial wavelength can change
after interactions with charged particles as electrons. The fact that light wave, after
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interaction, has a differentwavelength obliges us to consider light as a flux of particles
whose energy changes after interaction.

Suppose a source which emits X-rays. The X-rays hit a substance and act on the
electrons in a way described by Compton using the following model. An incident
photon, whose initially momentum is p0, hits an electron e supposed at rest. After the
collision, we denote by p1, the momentum of the photon, and by p2 the momentum
of the electron. The photon and the electron are spread in two different directions by
angles θ and φ with respect to the axis determined by the direction of the incoming
photon. After the collision with the photon, the speed of the electron is high enough,
in comparison with the speed of light, therefore we can use the Special Relativity.

Let us denote by m the mass of the electron. The kinetic energy of the electron is
defined as

T := E − mc2,

where E is the total relativistic energy and mc2 is the rest energy of the electron. In
the case of photon, its energy is

E = hν = h
c

λ

and its momentum is

p = E

c
= h

λ
.

The total relativistic energy is described by the formula

E2 = m2c4 + p2c2,

where the impulse of the electron is

p = mv√
1 − v2/c2

.

Let us apply these formulas to the case of the experiment described above. The

photon has the initial energy E0 = h
c

λ0
and the initial momentum p0 = E0

c
= h

λ0
.

After the impact with the electron e, the previous quantities switched into E1 =
h

c

λ1
and p1 = E1

c
= h

λ1
. As we previously asserted, θ is the angle made by the

incidence direction with the new direction taken by the photon.
We denote by p2 the momentum of electron after the collision and by φ the

angle between the incidence direction and the direction taken by the electron e. The
momentum conservation leads to the following equalities:

{
p1 cos θ + p2 cosφ = p0

p1 sin θ − p2 sin φ = 0
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that is {
p0 − p1 cos θ = p2 cosφ

p1 sin θ = p2 sin φ.

We square each line and we add the two equations. Finally, we obtain

p2
2 = p2

0 + p2
1 − 2p0 p1 cos θ.

Now let us focus on the conservation of energy. We have an energy before the
collision, and the energy after the collision. Before the collision the energy is E0 +
mc2. After the collision the energy is E1 +

√
m2c4 + p2

2c2. The energy is conserved,
therefore

E0 + mc2 = E1 +
√

m2c4 + p2
2c2.

We arrange in the form

E0 − E1 =
√

m2c4 + p2
2c2 − mc2,

where the left hand side represents the difference between the energies of the photon
before and after the collision while the right hand is the difference between the
energies of electron after and before the collision. It results

√
m2c4 + p2

2c2 − mc2 = E0 − E1 = c(p0 − p1).

Canceling c we obtain

√
m2c2 + p2

2 = (p0 − p1) + mc,

that is
(p0 − p1)

2 + 2mc(p0 − p1) = p2
2 .

Since we have also
p2
0 + p2

1 − 2p0 p1 cos θ = p2
2

it results

mc(p0 − p1) = 2p0 p1 sin
2 θ

2
.

It can be written as

mc

(
h

λ0
− h

λ1

)
= 2

h

λ0

h

λ1
sin2

θ

2
.

The final relation obtained is the Compton effect formula
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Fig. 4.7 Compton’s effect. The basic picture of the collision

λ1 − λ0 = 2
h

mc
sin2

θ

2

which shows that light has not only an electromagnetic wave behavior but also a
corpuscular behavior (Fig. 4.7).

Summary of Lecture 21. Suppose a source which emits X-rays. The X-rays
hit a substance and act on the electrons in a way described by Compton using
the followingmodel: an incident photon, whose initial momentum is p0, hits an
electron e supposed at rest. After the collision, we denote by p1 themomentum
of the photon and by p2 the momentum of the electron. The photon and the
electron are spread in two different directions forming angles θ and φ respec-
tively with respect to the axis determined by the initial direction of the photon.
If m is the mass of the electron, E is the total relativistic energy then

T := E − mc2,

is the kinetic energy of the electron. The photon has the initial energy E0 =
h

c

λ0
and the initial momentum p0 = E0

c
= h

λ0
. After the impact with the

electron e, the previous quantities switch into E1 = h
c

λ1
and p1 = E1

c
= h

λ1
.

The total relativistic energy is described by the formula

E2 = m2c4 + p2c2,

where the impulse of the electron is

p = mv√
1 − v2/c2

.

Imposing the conservation of energy, we have



4.8 Lecture 21: Strengthening the Einstein Idea of Photons. The Compton Effect 87

E0 + mc2 = E1 +
√

m2c4 + p2
2c2.

The conservation of momentum leads to
{

p0 − p1 cos θ = p2 cosφ
p1 sin θ = p2 sin φ

Manipulating the formulas, we finally obtain the Compton effect formula

λ1 − λ0 = 2
h

mc
sin2

θ

2
.

What we have obtained can be measured and shows that light, considered
only as an electromagnetic wave, cannot have such behavior. Its wavelength
cannot change without having a corpuscular behavior which manifests during
the experiment.



Chapter 5
The Schrödinger Equations and Their
Consequences

Art and science have their meeting-point in method.

Edward George Buwler-Lytton

5.1 Lecture 22: The Schrödinger Equations. The One
Dimensional Case

As the title suggests we have to discuss about more than one equation. These
Schrödinger equations can be considered as axioms and principles of Quantum
Mechanics due to the practical and conceptual consequences of their formulation.
The starting point for our considerations is asking how Erwin Schrödinger conceived
these equations. According to the results of previous chapter, he took into account
the fact that objects of QuantumMechanics are both particles and waves at the same
time. This means that we have to describe these objects according to the wave defi-
nition we choose. Therefore an appropriate wave equation has to be constructed. In
the one-dimensional case, the solution should be a monochromatic wave described
as

�(t, x) := �(x) = Aei(kx−ωt), t ∈ R, x ∈ R.

We observe
d�

dx
= ik�,

and
d2�

dx2
= −k2�.

Let us take into account that p = �k, i.e. k = p

�
. It results
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−�
2 d

2�

dx2
= p2�,

that is

− �
2

2m

d2�

dx2
= p2

2m
�.

We know the formula
p2

2m
= H − V (x),

where H is the total energy, i.e. the Hamiltonian H . Multiplying it by �, we obtain

− �
2

2m

d2�

dx2
= p2

2m
� = H� − V�.

It results the Schrödinger time-independent equation in the form

H� = − �
2

2m

d2�

dx2
+ V (x)�.

The time-dependent Schrödinger’s equation uses the derivative of the wave function
with respect to time and the multiplication by �:

�
∂�

∂t
= −iω�� = −i H�.

Therefore

i�
∂�

∂t
= H�.

We have used the energy formula, here in the form H = �ω, because we are dealing
with the total energy which may contain a potential energy term.

Replacing H� with i�
∂�

∂t
in the time-independent Schrödinger equation, we get

the time dependent Schrödinger equation

i�
∂�

∂t
(t, x) = − �

2

2m

∂2�

∂x2
(t, x) + V (x)�(t, x).

If the potential is dependent on t and x , we have V (t, x).
These quick considerations point out the fact that there is not a deduction of

Schrödinger’s equations, because they were postulated. Let us now specifically take
into account the one dimensional case.

The time-independent Schrödinger equation refers to a wave function � depen-
dent on the position x only. The postulated equation is
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H�(x) =
(

− �
2

2m

d2

dx2
+ V (x)

)
�(x).

For the time-dependent Schrödinger equation both � and the potential V depends
on (t, x), therefore the postulated equation is

i�
d

dt
�(t, x) =

(
− �

2

2m

d2

dx2
+ V (t, x)

)
�(t, x).

This form is related to the operator form we develop later. In the case of an electric
field, a particle is subject of a time-dependent potential, so it makes sense the last
form.

The time-dependent Schrödinger equation is used in the theory of the harmonic
oscillator we will present later.

Despite of these considerations, in Lecture 32we find out that something iswrong:
particles as electron cannot be described by the monochromatic planar wave

�(t, x) = Aei(kx−wt), t ∈ R, x ∈ R ,

so some further ingredient is necessary in our discussion. However the Schrödinger
equation can have solutions expressed with respect to the wave function formwritten
above and in the same Lecture 32 we understand the meaning of such a solution.
Furthermore, let us observe the linearity of the Schrödinger equation with implica-
tions in the existence of solutions written as linear combination of solutions as we
will see in the next lectures.

Summary of Lecture 22. In the one-dimensional case, let us consider a wave
described as

�(t, x) = Aei(kx−ωt), t ∈ R, x ∈ R.

Using the Hamiltonian H

H(t, x) = p2

2m
+ V (x)

we can “derive” both Schrödinger’s time-independent equation

H� = − �
2

2m

d2�

dx2
+ V (x)�

and Schrödinger’s time-dependent equation

i�
∂�

∂t
(t, x) = − �

2

2m

∂2�

∂x2
(t, x) + V (t, x)�(t, x).
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Even if these equations were postulated in Quantum Mechanics, a problem
remains. Is

�(t, x) = Aei(kx−wt), t ∈ R, x ∈ R

an appropriate description for waves related to particles as, for example, the
electron? The answer is no. As a consequence, we have to replace the wave of
the above form with wave packets.

5.2 Lecture 23: Solving the Schrödinger Equation for the
Free Particle

Let us start from the time independent Schrödinger equation

H� = − �
2

2m

d2�

dx2
+ V (x)�.

For a free particle, it is V (x) = 0. Suppose that the particle moves along a line
segment of length L; the corresponding Schrödinger equation becomes

d2�

dx2
= −2m

�2
H�,

which can be written as
d2�

dx2
= −k2�.

This formula comes from H = T = p2

2m
and p = �k. It results

k2 = 2m

�2
H.

The general solution is
�(x) = A1e

ikx + A2e
−ikx

as you can immediately verify. From λ = h

mv
and nλ = L , the momentum is

described by the formula

p = nh

L
,

therefore, if we replace in the energy formula, we obtain
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H = Hn = h2

2mL2
n2, n = 1, 2, 3, . . .

It means that the energy of the free particle is quantized. If the particlemoves between
two energy levels, the role of photons is highlighted because

�Hnk = Hn − Hk = hν,

where ν = h

2mL2
(n2 − k2) as it is easy to show.

Summary of Lecture 23. We start from the time independent Schrödinger
equation for a free particle (i.e. V (x) = 0) which moves along a line segment
of length L . The equation can be written with respect to the wavenumber k:

d2�

dx2
= −k2�.

The general solution is

�(x) = A1e
ikx + A2e

−ikx .

The related momentum is described by the formula

p = nh

L

therefore, if we replace in the energy formula, we obtain

H = Hn = h2

2mL2
n2, n = 1, 2, 3, . . . .

The energy of the free particle is quantized and, if the particle moves between
two energy levels, photons are highlighted because

�Hnk = Hn − Hk = hν,

where ν = h

2mL2
(n2 − k2).
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5.3 Lecture 24: Solving the Schrödinger Equation for a
Particle in a Box

In a plane of coordinates (x, V ), let us imagine a box determined by the points
U1(0, V0), O(0, 0), P(L , 0),U2(L , V0) and the segmentsU1O , OP , PU2. The box
interior is determined by the interior of the rectangle U1OPU2. We start from the
same time independent Schrödinger equation,

H� = − �
2

2m

d2�

dx2
+ V (x)�,

which we can write in the form

d2�

dx2
= 2m

�2
(V − H)�.

V − H is positive quantity because we supposed the particle in the box. The previous
equation can be written as

d2�

dx2
= K 2�,

where

K 2 = 2m

�2
(V − H)

and the solution now is
�(x) = A1e

Kx + A2e
−Kx .

The solution has to describe a particle in the box, that is A1 = 0. If not, as x → +∞
and the solution � approaches +∞. Therefore, inside the box, the solution remains
only

�(x) = A2e
−Kx .

We can imagine the particle being in a given moment at the point U2 and falling
outside the boxwith the same type of exponential function. The particle is somewhere
at a height less than the heightV0 of the box.Unless the box is not an infinite rectangle,
this situation is possible. The lateralwall PU2 acts as barrier and the particle inside the
box, which cannot have enough energy to jump the barrier, can however be outside
the box. There is a small probability to happen, but it can happen. In Quantum
Mechanics this is called the quantum tunneling effect.

Let us now suppose that V (x) = 0 for the particle inside the box. The correspond-
ing Schrödinger equation is again

d2�

dx2
= −k2�,
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because

k2 = 2m

�2
H.

The solution is similar to the case of free particle but some conditions has to exist to
preserve the particle inside the box. This can happen when the box is infinitely deep.
We write

�(x) = A1e
ikx + A2e

−ikx = C1 cos kx + C2 sin kx .

If the box is infinitely deep, the particle will fall at the corners of the box. Therefore
�(0) = C1 = 0. When x = L , we have�(L) = C2 sin kL = 0 and this happens for
kL = nπ , i.e.

�(x) = C2 sin
nπ

L
x .

Now looking at the natural values of n and at the energy

H = T = p2

2m
= h2π2

2mL2
n2,

we observe that energy is quantized. Let us try to introduce from now a possible
interpretation for �. We can consider |�(x)|2dx related to the probability to have
the particle in the box. Since the particle has always to be in the box, the constant C2

is determined from the condition

∫ L

0
|�(x)|2dx = 1.

It results ∫ L

0
C2
2 sin

2 nπ

L
xdx = 1.

Using

sin2 α = 1 − cos 2α

2

we obtain

C2 =
√

2

L
.

The form of the � function, in the case of an infinitely deep box, is

�(x) =
√

2

L
sin

nπ

L
x .
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Summary of Lecture 24. In a plane of coordinates (x, V ) consider a box, as
described in the present lecture, and the time independent Schrödinger equation

d2�

dx2
= 2m

�2
(V − H)�,

where V − H is a positive quantity assuming the particle inside the box. The
previous equation can be written as

d2�

dx2
= K 2�,

where

K 2 = 2m

�2
(V − H)

and the solution is now

�(x) = A1e
Kx + A2e

−Kx .

The solution describes a particle in the box if A1 = 0. If not, as x → +∞, the
solution � approaches to +∞. Therefore inside the box the solution remains
only

�(x) = A2e
−Kx .

Let us now suppose that V (x) = 0 for the particle inside the box. We have
again

d2�

dx2
= −k2�, k2 = 2m

�2
H.

The solution is similar to the case of free particle, but some conditions has to
exist to preserve the particle inside the box.

This can happen when the box is infinitely deep. We write

�(x) = A1e
ikx + A2e

−ikx = C1 cos kx + C2 sin kx .

The constants are identified imposing some physical conditions and we find

�(x) = C2 sin
nπ

L
x .

The energy of the particle,
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H = T = p2

2m
= h2π2

2mL2
n2,

is quantized. Since the particle has always to be inside the box, the constant
C2 is determined from the condition

∫ L

0
|�(x)|2dx = 1.

It results

�(x) =
√

2

L
sin

nπ

L
x .

5.4 Lecture 25: Solving the Schrödinger Equation of
Harmonic Oscillator. The Quantized Energies

The first lectures of this book were related to Classical Mechanics and we presented
there the classical harmonic oscillator: it can be represented as a massive point at
the end of a spring which oscillates around the equilibrium position. The classical
image was presented using three possible pictures: Newton’s one, Lagrange’s one
and Hamilton’s one, all three being related to a wave equation which describes the
phenomenon.Hamilton’s language is related to the total energy of the harmonic oscil-

lator, H(q, p) = p2

2m
+ 1

2
kq2, and it is closer to the Quantum Mechanics language

where the wave equation is the Schrödinger one. In the quantum world, we found
out that an electron can be seen as a standing wave which vibrates, a restoring force

−kx being implied. This restoring force depends on a potential such that F = −dV

dx
.

We intend to use the time-dependent Schrödinger equation to describe the possible
values of the harmonic oscillator energy, thinking at the electron described as a wave
function in the form

�(t, x) = e−i Ht/��(x),

that is with the spatial part separated by the time evolution. In this way, the amplitude
of the wave is described by its spatial part. This form of solution can represent a
particle as the reader will understand in Lecture 32. We can replace this form into
the Schrödinger time-dependent equation

i�
∂�

∂t
(t, x) = − �

2

2m

∂2�

∂x2
(t, x) + V (t, x)�(t, x)
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corresponding to the potential which generates the restoring force of the classical
harmonic oscillator, that is

V (t, x) = V (x) = 1

2
mω2x2.

Developing the computations, we have

i�
−i H

�
e−i Ht/��(x) = − �

2

2m
e−i Ht/�

d2�

dx2
(x) + V (x)e−i Ht/��(x).

It results

− �
2

2m

d2�

dx2
(x) + 1

2
mω2x2�(x) = H�(x).

If we denote u =
√
mω

�
x and ε = 2H

�ω
we obtain the equation in the variable u, that

is
d2�

du2
(u) + (ε − u2)�(u) = 0.

Let us anticipate the result. We will obtain solutions if ε = 2n + 1, n ∈ N. They are

�n(u) = AnHn(u)e−u2/2,

where Hn(u) are the Hermite polynomials and An is a constant we find according to
the rule ∫ ∞

−∞
|�n(u)|2du = 1

considered also in the previous examples. Why do we need Hermite polynomials
to describe the stationary solutions? The next lecture will tell us more about the
mathematics behind the harmonic oscillator. Is this mathematics also involved in
finding An? Yes, we will prove that it is. Since

ε = εn = 2n + 1 = 2H

�ω

we find that the total energy H is quantized and depends on n, being in fact Hn . We
have to point out that there is a notation risk with respect to Hermite polynomials.
Therefore, we denote, in this example, the total energy by the letter E , and we obtain
the n-level quantized energy as

En =
(
n + 1

2

)
�ω.
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If we return to variable x , after all computations, we find

�n(x) = 1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�

and

�n(t, x) = e−i En t/�
1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�.

Now, the last step. Since the Schrödinger equation is linear, the general solution is
described by the sum of all modes of n-oscillations, that is

�(t, x) =
∑
n

cne
−i En t/��n(x).

The meaning of this sum is related to the mathematics of Hermite polynomials, used
to describe the harmonic oscillator. We develop in details these considerations in the
next chapter.

Let us now define the Hermite polynomials in view of their forthcoming appli-
cations. The first two polynomials are H0(u) = 1; H1(u) = 2u and the recurrence
relation is

Hn+1(u) = 2uHn(u) − 2nHn−1(u).

Therefore H2(u) = 4u2 − 2, H3(u) = 8u3 − 12u, etc. Let us first observe that

�0(u) = A0H0(u)e−u2/2 = A0e
−u2/2

verifies the equation
d2�

du2
(u) + (1 − u2)�(u) = 0.

The constant does not play a role in the equation. However the constant A0 is deter-
mined from the ∫ ∞

−∞
|�0(u)|2du = A2

0

∫ ∞

−∞
e−u2du = 1

as we did it in the previous example. As wewill see below, this result has a prominent
role in many concepts of Quantum Mechanics. In a forthcoming lecture, when we
study the Gauss wave packets, we will find out the value of this integral as

√
π ,

therefore A0 = 1
4
√

π
. Then, let us show that

�1(u) = A1H1(u)e−u2/2 = 2A1ue
−u2/2

verifies the equation
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d2�

du2
(u) + (3 − u2)�(u) = 0.

In this case, we give the details of calculations. As before, we can cancel the constant
A1 and check the solution:

d2

du2

(
2ue−u2/2

)
+ (3 − u2)2ue−u2/2 = d

du

(
2e−u2/2 − 2u2e−u2/2

)
+ (3 − u2)2ue−u2/2 =

= (−2u − 4u − 2u3 + 2u(3 − u2)
)
e−u2/2 = 0.

The constant A1 is computed by the same condition

∫ ∞

−∞
|�1(u)|2du = 1,

where

4A2
1

∫ ∞

−∞
u2e−u2du = 1.

We do not intend to continue the determination of any An here. In the next lectures,
we will offer a general solution for the form of these coefficients.

We show that �n , corresponding to the n-Hermite polynomial, i.e.

�n(u) = AnHn(u)e−u2/2,

verifies the equation

d2�n

du2
(u) + (2n + 1 − u2)�n(u) = 0.

To check this, we act bymathematical induction in the followingway: Let us suppose
that �n−1(u) = An−1Hn−1(u)e−u2/2 and �n−2(u) = An−2Hn−2(u)e−u2/2 verify the
equations

d2�n−1

du2
(u) + (2n − 1 − u2)�n−1(u) = 0,

d2�n−2

du2
(u) + (2n − 3 − u2)�n−2(u) = 0.

Now we perform the computations. Let us denote H ′(u) = dH

du
(u) and H

′′
(u) =

d2H

du2
(u).
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The last two relations, after canceling the constant andwritingwithout the variable
u, are

H
′′
n−1 − 2uH ′

n−1 + 2(n − 1)Hn−1 = 0,

H
′′
n−2 − 2uH ′

n−2 + 2(n − 2)Hn−2 = 0.

Supposing true this two relations, it remains to prove

H
′′
n − 2uH ′

n + 2nHn = 0

which correspond to the equation

d2�n

du2
(u) + (2n + 1 − u2)�n(u) = 0

for
�n(u) = AnHn(u)e−u2/2.

Let us start by deriving two times the basic recurrence of Hermite polynomials

Hn = 2uHn−1 − 2(n − 1)Hn−2.

It results
H ′

n = 2Hn−1 + 2uH ′
n−1 − 2(n − 1)H ′

n−2

and
H

′′
n = 4H

′
n−1 + 2u2H

′′
n−1 − 2(n − 1)2H

′′
n−2.

Replacing all these three equalities in the equation

H
′′
n − 2uH ′

n + 2nHn = 0

which we have to verify, it results that we have to check

(
4H

′
n−1 + 2uH

′′
n−1 − 2(n − 1)H

′′
n−2

)
− 2u

(
2Hn−1 + 2uH ′

n−1 − 2(n − 1)H ′
n−2

)+

+2n (2uHn−1 − 2(n − 1)Hn−2) = 0.

Separating the terms containing Hn−1 and Hn−2, the last relation can be written in
the form

2u
[
H

′′
n−1 − 2uH ′

n−1 + 2(n − 1)Hn−1

]
+ 4H ′

n−1−

−2(n − 1)
[
H

′′
n−2 − 2uH ′

n−2 + 2(n − 2)Hn−2

]
− 8(n − 1)Hn−2 = 0.
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The terms in squared brackets are null according to our induction hypothesis, there-
fore we have to prove the equality

H ′
n−1 − 2(n − 1)Hn−2 = 0.

At the same time, let us observe that the following two equalities are consequences
of our induction hypothesis, that is

H ′
n−2 − 2(n − 2)Hn−3 = 0

and
H ′

n−3 − 2(n − 3)Hn−4 = 0.

Replacing them into the relation resulted from the recurrence

H ′
n−1 = 2Hn−2 + 2uH ′

n−2 − 2(n − 2)H ′
n−3,

we obtain

H ′
n−1 = 2Hn−2 + 4(n − 2)uHn−3 − 2(n − 2)(n − 3)Hn−4 = 2(n − 1)Hn−2,

which had to be proved. The replacements are easy to do. It remains to trace the
Mathematics behind the Hermite polynomials and to point out their deep physical
meaning.

Summary of Lecture 25. In the quantum world, we found out that an electron
can be seen as a standingwavewhich vibrates.We intend to use theSchrödinger
time-dependent equation to describe the values of its quantized energy. To do
this, the electron must be described by a wave function in the form

�(t, x) = e−i Et/��(x).

We used the letter E instead of H to describe the total energy because the
solution �n corresponding to the energy level En is related to the Hermite
polynomials which are denoted by Hn in their recurrence relation,

Hn+1(u) = 2uHn(u) − 2nHn−1(u)

with H0(u) = 1; H1(u) = 2u. Replacing in the Schrödinger time-dependent
equation

i�
d�

dt
(t, x) = − �

2

2m

d2�

dx2
(t, x) + V (t, x)�(t, x)
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corresponding to the case when V (t, x) = V (x) = 1

2
mω2x2, that is when the

vibration is modeled by a harmonic oscillator, we obtain

− �
2

2m

d2�

dx2
(x) + 1

2
mω2x2�(x) = E�(x).

If we denote u =
√
mω

�
x and ε = 2E

�ω
, we obtain the equation in the variable

u, that is
d2�

du2
(u) + (ε − u2)�(u) = 0.

This equation can be solved if ε = εn = 2n + 1. Therefore we obtain the n-
level quantized energy as

En =
(
n + 1

2

)
�ω

for

�n(x) = 1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�

and

�n(t, x) = e−i En t/�
1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�.

Now, the last step: since the Schrödinger equation is linear, the general solution
is described by a sum of all n-oscillation modes,

�(t, x) =
∑
n

cne
−i En t/��n(x).



Chapter 6
The Mathematics Behind the Harmonic
Oscillator

If the facts don‘t fit the theory,
change the facts!

Albert Einstein

6.1 Lecture 26: The Hermite Polynomials

Originally, the so-called Hermite polynomials were introduced by Pierre-Simon de
Laplace in 1810 and studied with respect to different applications both by Pafnuty
Chebyshev and Charles Hermite. They were named after Hermite because his works,
in 1865, were more visible than those of the others. We start from Hermite’s differ-
ential equation

d2y

dx2
− 2x

dy

dx
+ 2ny = 0

which is a second-order differential equation in y = y(x). Let us try to find a solution
in the polynomial form

y(x) =
∑

m=0

Bm xk−m .

We have
dy

dx
=
∑

m=0

(k − m)Bm xk−m−1

and
d2y

dx2
=
∑

m=0

(k − m)(k − m − 1)Bm xk−m−2.

If we replace in Hermite’s equation, we obtain
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∑

m=0

(k − m)(k − m − 1)Bm xk−m−2 − 2
∑

m=0

(k − m)Bm xk−m + 2n
∑

m=0

Bm xk−m = 0

which can be written in the simplified form

2
∑

m=0

(k − m − n)Bm xk−m −
∑

m=0

(k − m)(k − m − 1)Bm xk−m−2 = 0.

Let us look at the coefficient of xk , that is if m = 0. It results

2(k − n)B0 = 0,

that is B0 �= 0 if k = n. We keep in mind the possibility to have a nonzero coefficient
B0, that is k = n. In the same way, the coefficient of xk−1, which is obtained for
m = 1, leads to

2(k − 1 − n)B1 = 0,

that is B1 = 0, under the assumption k = n. If we look at the coefficient of xk−m , we
obtain the relation

2(k − m − n)Bm − (k − m + 2)(k − m + 1)Bm−2 = 0,

that is

Bm = (k − m + 2)(k − m + 1)

2(k − m − n)
Bm−2.

Therefore B1 = B3 = B5 = ... are all 0 if k = n and, in this k = n case, for even
numbers we have nonzero B2n . Indeed, from

Bm = − (n − m + 2)(n − m + 1)

2m
Bm−2

we obtain

B2 = −n(n − 1)

2 · 2 B0,

B4 = n(n − 1)(n − 2)(n − 3)

22 · 2 · 4 B0,

etc.,

y(x) = B0xn + B2xn−2 + B4xn−4 + .. = B0

[
xn − n(n − 1)

2 · 2 xn−2 + n(n − 1)(n − 2)(n − 3)

22 · 2 · 4 xn−4 − ..

]

If we choose the constant B0 = 2n the solution becomes the Hermite polynomial of
degree n
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Hn(x) = 2n

[
xn − n(n − 1)

2 · 2 xn−2 + n(n − 1)(n − 2)(n − 3)

22 · 2 · 4 xn−4 − ..

]
.

Let us observe that, if n is even, the Hermite polynomial has a constant term, if not,
the last term has degree 1. Therefore if n − 2r ≥ 0 in the two previous cases, we can
write

Hn(x) =

[n

2

]

∑

r=0

(−1)r

r !
n!

(n − 2r)! (2x)n−2r .

Exercise 6.1.1 Prove that Hn(−x) = (−1)n Hn(x).

To advance in the theory let us prove the Rodrigues formula.

Exercise 6.1.2 Prove

e2t x−t2 =
∞∑

n=0

tn

n! Hn(x).

Hint. We can use

ex =
∞∑

n=0

xn

n! .

e2t x−t2 = e2t x e−t2 =
∞∑

r=0

(−t2)r

r !
∞∑

s=0

(2t x)s

s! =
∞∑

r=0

∞∑

s=0

(−1)r t s+2r

r !s! (2x)s .

Now, for n := s + 2r , we can write

e2t x−t2 =
∞∑

s=0

⎛

⎜⎜⎜⎜⎝

[n

2

]

∑

r=0

(−1)r

r !(n − 2r)! (2x)n−2r

⎞

⎟⎟⎟⎟⎠
tn

n! =
∞∑

n=0

tn

n! Hn(x).

The next exercise is part of the mathematical language of Quantum Mechanics. The
road we are establishing, step by step, in this book started from Classical Mechanics
seen in its different formulations. Lagrangian Mechanics is used when Newton’s
formulation, especially in dynamics, is not convenient. Hamiltonian Mechanics is
more implied in establishing a language for Quantum Mechanics. As we have seen,
the Schrödinger equation is based on it. The electromagnetic waves, as light, derived
through Maxwell’s equations led us to Special Relativity where these equations are
invariant via the Lorentz transformations, while the Galilei transformations of Clas-
sical Mechanics do not preserve their form. The various experiments, that led to
the paradigm shift on what we called elementary particles, also led to the develop-
ment and adaption of the mathematical apparatus necessary for their description.
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Planar waves needed complex numbers in their representation, d’Alembert operator
in describing wave equations being now replaced by the Schrödinger equation to
describe planar waves evolution. The last examples show us that the wave function
� could have another interpretation. This will be clear later, after we study the Gauss
wave packets and we see that the momentum and the position of an electron cannot
be known simultaneously. We will identify operators, eigenfunctions, eigenvectors
and structures as Hilbert spaces where another viewpoint on Quantum Mechanics is
offered. All these concepts and results can be related to the Hermite polynomials.
Therefore, the next exercise will offer to the reader two perspectives. One is related
to the number we wrote in the front of the wave function �n . The other one is related
to the orthogonal basis in the Hilbert space as we will highlight in our next lectures.

Exercise 6.1.3 Prove that

∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx =
{
0, m �= n
2n√π n!, m = n.

Hint. We have

e2t x−t2 =
∞∑

n=0

tn

n! Hn(x); e2sx−s2 =
∞∑

m=0

sm

m! Hm(x).

It results

e2t x−t2+2sx−s2 =
∞∑

n=0

+∞∑

m=0

tnsm

n!m! Hn(x)Hm(x)

and

∫ ∞

−∞
e−x2+2t x−t2+2sx−s2dx =

∞∑

n=0

∞∑

m=0

tnsm

n!m!
∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx .

We continue with the left side denoted as LS,

L S =
∫ ∞

−∞
e−[x2+t2+s2−2t x−2sx+2ts]e2tsdx = e2ts

∫ ∞

−∞
e−[x−(t+s)2]dx .

Denoting u := x − (t + s), we obtain

L S = e2ts
∫ ∞

−∞
e−u2

du = e2ts√π,

where the last integral will be solved in Gauss wave packets lecture. We identify the
corresponding coefficients of the following equality as
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e2ts√π = √
π

(
1 + (2ts)

1! + (2ts)2

2! + (2ts)3

3! + ....

)
=

∞∑

n=0

∞∑

m=0

tnsm

n!m!
∫ ∞

−∞
Hn(x)Hm(x)e−x2dx

and we obtain the desired result.

In conclusion, we have obtained more results about the polynomials which appeared
as solutions of the Hermite differential equation but we still do not know they are the
polynomials we used to solve the quantum harmonic oscillator problem. Therefore
we have to check that the solutions of differential equation satisfy the recurrence met
there. There is one more step to do.

Exercise 6.1.4 Prove the Rodrigues formula:

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

Hint. We consider the n-derivative with respect to t at t = 0 in the following formula

e2t x−t2 =
∞∑

n=0

tn

n! Hn(x) = H0(x) + t

1! H1(x) + t2

2! H2(x) + ... + tn

n! Hn(x) + tn+1

(n + 1)! Hn+1(x) + ...

and we observe that all terms containing powers of t greater than n + 1 are 0,
therefore we obtain

Hn(x) = ∂n

∂tn

[
e2t x−t2

]

t=0
= ex2 ∂n

∂tn

[
e−x2+2t x−t2

]

t=0
= ex2 ∂n

∂tn

[
e−(x−t)2

]

t=0
.

Now using y := x − t , we have both y|t=0 = x and
∂

∂t
= ∂

∂y

∂y

∂t
= − ∂

∂y
, therefore

Hn(x) = ex2
(−1)n ∂n

∂yn

[
e−y2

]

t=0
= (−1)nex2 dn

dxn

(
e−x2

)
.

Let us observe that now, using the Rodrigues formula, we can compute H0(x) =
1, H1(x) = 2x, H2(x) = 4x2 − 2, etc. The next step is

Exercise 6.1.5 Prove H ′
n = 2nHn−1.

Hint. The derivative with respect to x of the equality

e2t x−t2 =
+∞∑

n=0

tn

n! Hn(x)

leads to

2te2t x−t2 =
+∞∑

n=0

tn

n! H ′
n(x),

therefore
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2t
+∞∑

n=0

tn

n! Hn(x) =
+∞∑

n=0

tn

n! H ′
n(x).

Comparing the coefficients of tn in both members, we obtain

2Hn−1(x)

(n − 1)! = H ′
n(x)

n! ,

that is the desired result.

Exercise 6.1.6 Prove that the solutions of the Hermite differential equation satisfy
the recurrence relation Hn+1(x) = 2x Hn(x) − 2nHn−1(x) starting from the deriva-
tive with respect t of the relation

e2t x−t2 =
+∞∑

n=0

tn

n! Hn(x).

Hint. We have

2(x − t)e2t x−t2 =
+∞∑

n=0

tn−1

(n − 1)! Hn(x),

i.e.

2(x − t)
+∞∑

n=0

tn

n! Hn(x) =
+∞∑

n=0

tn−1

(n − 1)! Hn(x).

If we look at the coefficients of tn in both members we obtain

1

n!2x Hn(x) − 2Hn−1(x)

(n − 1)! = 1

n! Hn+1(x),

that is the desired relation.

Let us make another observation. The Hermite differential equation

d2y

dx2
− 2x

dy

dx
+ 2ny = 0

can be written as
d

dx

(
e−x2 dy

dx

)
+ 2ne−x2

y = 0

being, in this way, related with another important equation,

d

dx

(
e−x2/2 dy

dx

)
+ ne−x2/2y = 0,
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called the probabilistic Hermite equation. It is easy to see that its solutions are Her-
mite polynomials with changed coefficients, i.e. H 0(x) = 1, then H 1(x) = x instead
of H1(x) = 2x , H 2(x) = x2 − 1 instead H2(x) = 4x2 − 2, etc., because their dif-
ferential equation

d2y

dx2
− x

dy

dx
+ ny = 0

is similar to the Hermite one and its general solution expressed in terms of Rodrigues
formula is

H n(x) = (−1)ne−x2/2 dn

dxn

(
e−x2/2

)
.

More discussion about the mathematics behind Hermite polynomials will be given
in the next lecture.

Summary of Lecture 26. Starting from Hermite’s differential equation

d2y

dx2
− 2x

dy

dx
+ 2ny = 0

we find the solutions y(x) as depending on n and having a polynomial form

Hn(x) =

[n

2

]

∑

r=0

(−1)r

r !
n!

(n − 2r)! (2x)n−2r .

Step by step, we discover the properties of these solutions

1. Hn(−x) = (−1)n Hn(x)

2. e2t x−t2 =
+∞∑

n=0

tn

n! Hn(x)

3.
∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx =
{
0, m �= n
2n√π n!, m = n

4. H ′
n = 2nHn−1

until we find the property used in the quantum description of harmonic oscil-
lator, that is

5. Hn+1(x) = 2x Hn(x) − 2nHn−1(x).
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In the same description, we have the wave functions

�n(x) = An Hn(x)e−x2/2.

Looking at the third property, it is possible to derive the orthogonality for such
wave functions, i.e.

∫ ∞

−∞
�n(x)�m(x)e−x2dx = An Am

∫ ∞

−∞
Hn(x)Hm(x)e−x2dx =

{
0, m �= n
2n√

π n!A2
n, m = n.

According to previous results, we can impose 2n√π n!A2
n = 1, that is

An = 1
4
√

π
√
2n n! .

Now, since
�n(t, x) = e−i Et/��n(x),

the previous formula can be written as

∫ ∞

−∞
�n(t, x)�∗

m(t, x)dx =
{
0, m �= n
1, m = n,

where �∗
m(t, x) is the complex conjugate of �m(t, x), therefore the orthogo-

nality is extended to another type of wave functions.

6.2 Lecture 27: Real and Complex Vector Structures

Let us start from the final result of the previous summary:

∫ ∞

−∞
�n(t, x)�∗

m(t, x)dx =
{
0, m �= n
1, m = n .

It comes from
∫ ∞

−∞
�n(x)�m(x)e−x2

dx = An Am

∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx =
{
0, m �= n
1, m = n.

if
�n(t, x) = e−i Et/��n(x),
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where

�n(x) = 1
4
√

π
√
2n n! Hn(x)e−x2/2.

What sets and structures can we highlight here?

6.2.1 Finite Dimensional Real and Complex Vector Spaces,
Inner Product, Norm, Distance, Completeness

Let us recall what an inner product for a vector space V over the field R is:
by definition, the function 〈, 〉 : V × V → R is an inner product, if 〈, 〉 is a bilinear
real function, i.e.

〈α1u1 + α2u2, v〉 = α1〈u1, v〉 + α2〈u2, v〉, ∀ u1, u2, v ∈ V, α1, α2 ∈ R

〈u, β1v1 + β2v2〉 = β1〈u, v1〉 + β2〈u, v2〉, ∀ v1, v2, u ∈ V, β1, β2 ∈ R,

fulfilling the two properties:

〈u, v〉 = 〈v, u〉, ∀ u, v ∈ V,

〈u, u〉 ≥ 0 ∀ u ∈ V; 〈u, u〉 = 0 ⇐⇒ u = 0.

The first property is called symmetry, the second one, positivity.
If wework in a finite dimensional real vector spaceV, endowedwith an inner product
〈, 〉 and we have a basis e1, e2, e3, ...., en such that

〈em, en〉 =
{
0, m �= n
1, m = n

we call this basis an orthonormal one. Each vector u ∈ V can be written as a finite
combination with real coefficients ak ,

u =
n∑

k=1

akek .

Considering

u =
n∑

k=1

akek, v =
n∑

k=1

bkek,
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it is a simple exercise to see that the inner product with respect the orthonormal basis
has the form

〈u, v〉 =
n∑

k=1

akbk .

Now, if we work in a finite dimensional complex vector space V endowed with an
inner product 〈, 〉 and we have a basis e1, e2, e3, ...., en such that

〈em, en〉 =
{
0, m �= n
1, m = n

we call as previously this basis an orthogonal one. Each vector u ∈ V can be written
as a finite combination of complex coefficients ak ,

u =
n∑

k=1

akek .

For the complex number z = x + iy we denote by z∗ its complex conjugate, i.e.
z∗ = x − iy. By definition, in this complex vector space case, the inner product
〈·, ·〉 : V × V → C is a bilinear complex function, i.e.

〈α1u1 + α2u2, v〉 = α∗
1〈u1, v〉 + α∗

2〈u2, v〉, ∀ u1, u2, v ∈ V, α1, α2 ∈ C

〈u, β1v1 + β2v2〉 = β1〈u, v1〉 + β2〈u, v2〉, ∀ v1, v2, u ∈ V, β1, β2 ∈ C,

fulfilling two properties:

〈v, u〉 = 〈u, v〉∗, ∀ u, v ∈ V,

〈u, u〉 ≥ 0 ∀ u ∈ V; 〈u, u〉 = 0 ⇐⇒ u = 0.

Considering

u =
n∑

k=1

akek, v =
n∑

k=1

bkek,

it is a simple exercise to see that the inner product with respect the the orthonormal
basis has the form

〈u, v〉 =
n∑

k=1

a∗
k bk .

Let us think at the first example of vector spaces endowed with an inner product.
It is V = R

n over the field R endowed with the inner product



6.2 Lecture 27: Real and Complex Vector Structures 115

〈u, v〉 =
n∑

k=1

akbk,

where the vectors u and v have the components ak , respectively bk . The Euclidean
norm || || and the Euclidean distance d(, ) are defined by the formulas

||u|| = √〈u, u〉,

d(u, v) = ||u − v|| = √〈u − v, u − v〉.

Both the Cauchy-Buniakowski-Schwarz inequality

〈u, v〉2 ≤ ||u||2||v||2

and the triangle inequality

d(u, v) ≤ d(u, w) + d(w, v)

hold. The angle θ between the vectors u and v is defined by the formula

cos θ = 〈u, v〉
||u|| · ||v||

which is equivalent to the generalized Pythagoras theorem.
We leave to the reader the demonstration of the following exercises:

Exercise 6.2.1 Pythagoras theorem: If 〈u, v〉 = 0 then ||u + v||2 = ||u||2 + ||v||2.
Hint: Use ||u + v||2 = 〈u + v, u + v〉, the properties of inner product and the
orthogonality.

Exercise 6.2.2 Parallelogram law: If 〈u, v〉 = 0 then ||u + v||2 + ||u − v||2 =
2||u||2 + 2||v||2.
Hint: Use ||u + v||2 = 〈u + v, u + v〉, ||u − v||2 = 〈u − v, u − v〉 and the inner
product properties.

Each component of the Euclidean n-dimensional space is a real number and we
know how to define the limit of a set of real numbers. If we think at the set of vectors
{xk} ⊂ R

n , we say that the set converges to x ∈ R
n if

||xk − x || → 0.

Thismeans that each component of xk converges to its correspondent component of x .

Let us now consider each component of a set of vectors xk in R
n as a Cauchy set

of real numbers.
Denote the set corresponding to one component, say the second one, of the set xk by
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xk,2. That is, from the vector x1, we select the component x1,2, from the vector x2, we
select the component x2,2, etc. The set (xk,2)k∈N is a set of real numbers and suppose
(xk,2)k∈N is a Cauchy set: given ε > 0, there exists n0 ∈ N such that |xm,2 − xn,2| < ε

for all m, n ≥ n0. Each Cauchy set of real numbers is a convergent set in R. This
property means that R is complete. The vector formed by all these component limits,
denoted by x , is the limit of the vectors sequence xk , that is

||xk − x || → 0.

This implies R
n is a complete space.

Summary of Lecture 27. In this lecture, we reviewed the basic facts related
to finite dimensional real and complex vector spaces. All these vector spaces
are examples of Hilbert spaces. Several aspects of our geometric intuition of
the Hilbert structure is Euclidean. Some of these geometric aspects will be
transferred from finite to infinite dimensional vector spaces.
The Pythagoras theorem:
“if 〈u, v〉 = 0 then ||u + v||2 = ||u||2 + ||v||2”
and the Parallelogram law:
“if 〈u, v〉 = 0 then ||u + v||2 + ||u − v||2 = 2||u||2 + 2||v||2” are part of the
Euclidean intuition.
We also look at the basic calculus factswrittenwith respect to the norm induced
by the inner product andweobserve that these spaces are complete: anyCauchy
sequence becomes a convergent sequence with respect the norm.

We are now prepared to introduce the concept of Hilbert space.

6.3 Lecture 28: Pre-Hilbert and Hilbert Spaces

In the development of Quantum Mechanics, the previous mathematical notations
were replaced by the Dirac notation which allows a better description of operators
and their actions. A straightforward description, in a finite dimensional complex
vector space of Dirac notation, is offered in Lecture 44 before presenting its utility
when we study the light polarization.

For a vector space V over the field of complex numbers C, the elements are
denoted by |u〉 instead of u and they are named ket vectors. For any two ket vectors,
the addition is made by the rule

|u〉 + |v〉 = |r〉

and the result is a ket vector, here denoted by |r〉 ∈ V. The summation of ket vectors
must determine a commutative group structure (V,+), that is the following properties
hold:
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(|u〉 + |v〉) + |w〉 = |u〉 + (|v〉 + |w〉) (associativity)

|u〉 + |0〉 = |0〉 + |u〉 = |u〉 (existence of zero vector for any |u〉 ∈ V)

∀|u〉 ∈ V ∃| − u〉 ∈ V such that |u〉 + | − u〉 = | − u〉 + |u〉 = |0〉 (the additive inverse)

|u〉 + |v〉 = |v〉 + |u〉 (commutativity)

The multiplication by C scalars follows the same type of definition:

∀|u〉 ∈ V, ∀a ∈ C ∃ a|u〉 ∈ V.

Multiplication by scalar has the properties

a(b|u〉) = (ab)|u〉

1 · |u〉 = |u〉

a(|u〉 + |v〉) = a|u〉 + a|v〉

(a + b)|u〉 = a|u〉 + b|u〉

Some consequences of the vector space structure exist and we left as exercises for
readers the following statements

0 · |u〉 = |0〉

(−1) · |u〉 = | − u〉

|u〉 − |v〉 = |u〉 + | − v〉 .

Consider u and v as column vectors, that is vectors in the same space V. When we
write the inner product as a sum of components, we have

〈u, v〉 = (u∗
1, u∗

2, .., u∗
n)

⎛

⎜⎜⎜⎜⎝

v1
v2
.

.

vn

⎞

⎟⎟⎟⎟⎠
=

n∑

k=1

u∗
kvk .

We need some definitions for these objects. A ket vector |u〉 is a column vector. Its
transpose is denoted by 〈u| and it is called a bra vector, and the components will be
the complex conjugate components of |u〉.The inner product become amultiplication
between a bra vector 〈u| and a ket vector |v〉, that is a “bracket” 〈u|v〉. The result of
a such an inner product can be a real or a complex number.
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We use the convenient notations |u〉 + |v〉 = |u + v〉; a|u〉 = |au〉 and z∗ for the
complex conjugate of z.

The intuitive explanation of the above formulas allow us to define the formal
inner product for two abstract ket vectors |u〉 and |v〉 in a vector space with an
infinite number of dimensions through the formula 〈u|v〉, that is 〈·|·〉 : V × V → C

fulfilling the conditions

〈α1u1 + α2u2|v〉 = α∗
1〈u1|v〉 + α∗

2〈u2|v〉, ∀ |u1〉, |u2〉, |v〉 ∈ V, α1, α2 ∈ C

〈u|β1v1 + β2v2〉 = β1〈u|v1〉 + β2〈u|v2〉, ∀ |v1〉, |v2〉, |u〉 ∈ V, β1, β2 ∈ C,

〈v|u〉 = 〈u|v〉∗, ∀ |u〉, |v〉 ∈ V,

〈u|u〉 ≥ 0 ∀ |u〉 ∈ V; 〈u, u〉 = 0 ⇐⇒ |u〉 = |0〉.

The inner product allows to define a norm || || and a distance d(, ):

||u|| = √〈u|u〉,

d(u, v) = ||u − v|| = √〈u − v|u − v〉.

Bydefinition, a norm is a function from a vector spaceV onR satisfying the following
conditions

||u|| = 0 implies u = 0,

||αu|| = |α|||u|| for u ∈ V, α ∈ C,

||u + v|| ≤ ||u|| + ||v|| for every u, v ∈ V.

The formal definition of the distance is: A function from V × V to R+ such that the
following three axioms are fulfilled

d(u, v) = 0 ≡ u = v,

d(u, v) = d(v, u) for all u, v ∈ V,

d(u, v) ≤ d(u, w) + d(w, v) for all u, v, w ∈ V.

( |xn〉)n∈N is a Cauchy sequence inV if, given any ε > 0, there exists a natural number
n0 such that

|| |xm − xn〉 || < ε

for all m, n ∈ N, m, n ≥ n0.
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A set ( |xn〉)n∈N is called “convergent” in the norm of V to x ∈ V, if, given any
ε > 0, it exists nε ∈ N such that || |xn − x〉 || < ε for all n ≥ nε.

The vector space V is called “complete” if any Cauchy sequence, in the norm
of V, is convergent in the norm of V. Therefore we can formally define the Hilbert
space as we did before when we discussed the Hilbert structure of the n-dimensional
Euclidean space.
A pre-Hilbert space is a formal vector space V over the field of complex numbers C

endowedwith an abstract inner product 〈·|·〉. AHilbert space is a complete pre-Hilbert
space.

Again, the Cauchy-Buniakowski-Schwarz inequality

〈u, v〉2 ≤ ||u||2||v||2

and the triangle inequality

d(u, v) ≤ d(u, w) + d(w, v)

hold.

Summary of Lecture 28. We introduced the definition of the Hilbert space.
First we considered the definition of a vector space in Dirac notation: a set
endowed with two operations, an internal one denoted by + and an external
operation called multiplication by scalars, here in C such that the following
axioms hold

(|u〉 + |v〉) + |w〉 = |u〉 + (|v〉 + |w〉) (associativity)

|u〉 + |0〉 = |0〉 + |u〉 = |u〉 (existence of zero vector for any |u〉 ∈ V)

∀|u〉 ∈ V ∃| − u〉 ∈ Vsuch that|u〉 + | − u〉 = | − u〉 + |u〉 = |0〉 (the additive inverse)

|u〉 + |v〉 = |v〉 + |u〉 (commutativity)

a(b|u〉) = (ab)|u〉

1 · |u〉 = |u〉

(a(|u〉 + |v〉) = a|u〉 + a|v〉

(a + b)|u〉 = a|u〉 + b|u〉
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The inner product is a complex valued function having the following properties

〈u|β1v1 + β2v2〉 = β1〈u|v1〉 + β2〈u|v2〉, ∀ |v1〉, |v2〉, |u〉 ∈ V, β1, β2 ∈ C,

〈v|u〉 = 〈u|v〉∗, ∀ |u〉, |v〉 ∈ V,

〈u|u〉 ≥ 0 ∀ |u〉 ∈ V; 〈u, u〉 = 0 ⇐⇒ |u〉 = |0〉.

The inner product allows to define a norm || || and a distance d(, ):

||u|| = √〈u|u〉,

d(u, v) = ||u − v|| = √〈u − v|u − v〉.

( |xn〉)n∈N is a Cauchy sequence in V if, given any ε > 0, there exists a natural
number n0 such that

|| |xm − xn〉 || < ε

for all m, n ∈ N, m, n ≥ n0.

A set ( |xn〉)n∈N is called convergent in the norm of V to x ∈ V if, given
any ε > 0, it exists nε ∈ N such that || |xn − x〉 || < ε for all n ≥ nε.

The vector space V is called complete if any Cauchy sequence is conver-
gent in the norm of V. Therefore we can formally define the Hilbert space as
we did before when we discussed the Hilbert structure of the n-dimensional
Euclidean space.
A pre-Hilbert space is a formal vector space V over the field of complex
numbers C endowed with an abstract inner product 〈·|·〉. A Hilbert space is a
complete pre-Hilbert space.

6.4 Lecture 29: Examples of Hilbert Spaces

The next four exercises are needed in our mathematical construction to allow the
presentation of two important infinite dimensional examples of Hilbert spaces. The
vectors are written in bra notation. It is important to mention that, if a given vector in
ket notation |x〉 has the components xk ∈ C and it is represented as a column vector,
the corresponding bra vector, 〈x |, is written as a row vector with complex conjugate
elements

〈x | = (x∗
1 , x∗

2 , .....).
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Exercise 6.4.1 Consider the set denoted by l2 of all sequences 〈a| = (a1, a2, ...,

an, ...), ak ∈ C, k ∈ N − {0} such that

∑

n

|ak |2 < ∞,

where |ak |2 = aka∗
k . Consider two operations which generalize the operations for

finite dimensional vectors,

〈a| + 〈b| := (a1 + b1, a2 + b2, ...., an + bn, ....),

and
α〈a| := (αa1, αa2, ..., αan, ...),

which define 〈a + b| and 〈αa| respectively. Show that l2 endowed by the two opera-
tions is a vector space over the field C.
Hint. Verify all properties of operations presented before in the case of ket vectors
notation.
However, we have to explain why, for two bra vectors 〈a| and 〈b| in l2, we have
〈a| + 〈b| as a bra vector of l2. The explanation is the Minkowski inequality

√∑

n

|an + bn|2 ≤
√∑

n

|an|2 +
√∑

n

|bn|2

which can be easily proved.

Exercise 6.4.2 For two bra vectors 〈a| and 〈b|, let us define

〈a|b〉 :=
∑

n

a∗
n bn.

Show that the previous formula is an inner product in the sense of the above definition.
First, we have to understand why the previous formula which defined the inner product
makes sense. We have the Cauchy-Buniakowski-Schwarz inequality involved

(
∑

n

|a∗
n bn|

)2

≤
∑

n

|a∗
n |2

∑

n

|bn|2.

It remains to the reader checking the other properties of the inner product for the
proposed formula. Until now we have proved that l2 is a pre-Hilbert space.

Exercise 6.4.3 Prove that the set of vectors

〈e1| = (1, 0, 0, ..., 0, ...)
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〈e2| = (0, 1, 0, ..., 0, ...)

〈e3| = (0, 0, 1, ..., 0, ...)

...................................

〈en| = (0, 0, 0, ..., 1, ...)

...................................

satisfies
〈ek |em〉 := δkn,

i.e. is an orthonormal basis for l2. Hint. Use the definition of the inner product seen
above.

Exercise 6.4.4 The completeness of l2. The inner product in l2 allows us to define a
norm under the usual formula

||a|| = √〈a|a〉.

We can define a set of bra vectors in l2 using the notation (〈an|)n∈N considering the
following notation

〈an| = (an,1, an,2, ..., an,n, ...).

If ( 〈an| )n∈N is a Cauchy sequence, that is, given any ε > 0, there exists a natural
number n0 such that

|| 〈am − an| || < ε

for all m, n ∈ N, m, n ≥ n0, we intend to show that the set ( 〈an| )n∈N is convergent.
From

|am,p − an,p|2 ≤
∑

k

|am,k − an,k |2 < ε2,

each component is a Cauchy set in R, that is a convergent set. Denoting each com-
ponent limit by

ap = lim
n→∞ an,p, p = 1, 2, ...

we can generate 〈a| = (a1, a2, ...). First, we have to prove that 〈a| is an element of
l2. If n, m ≥ n0, we can write

∑

k

|ak − an,k |2 = lim
m→∞

∑

k

|am,k − an,k |2 < ε2

The finite number of missing terms leads to a finite sum of squares of components of
〈a|, that is
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√∑

k=1

|ak |2 =
√∑

k=1

(|ak | − |an0,k | + |an0,k |)2 ≤
√∑

k=1

(|ak | − |an0,k |)2 +
√∑

k=1

|an0,k |2 < ∞.

At the same time

lim
n→∞ || 〈a − an||| = lim

n→∞
∑

k

|ak − an,k |2 = 0,

i.e. ( 〈an)| is convergent to ( 〈a)| in l2. Being complete, the pre-Hilbert space l2

becomes an infinite dimensional Hilbert space.

The next examples are more complicated. The completeness is difficult to be proved.
In fact, a lot of mathematical techniques are involved together with other mathemat-
ical structures.

Consider the set of complex valued functions f : R → C such that | f | is inte-
grable on R, denoted by L1(R). Among these functions, we denote by L2(R) the set
of complex valued functions such that | f |2 is integrable on R. We define their norm
by

|| f ||2 :=
(∫ ∞

−∞
| f (x)|2dx

)1

2
.

According to the first structure of functions, it exists another possible norm,

|| f ||1 :=
∫ ∞

−∞
| f (x)|dx .

By definition, the null functions are those which fulfill the property

∫ ∞

−∞
| f (x)|dx = 0.

Let us observe that a null function is not necessarily f = 0. If we consider f (x) = 0,
for x ∈ R except x0 where the function is, for example, 1, we have

∫ ∞

−∞
| f (x)|dx = 0

without having f = 0 everywhere.
If it is easy to show that || · ||1 is a norm, it is not easy to check that || · ||2 is a

norm.
The third condition needs some technicalities which we explain below.
The following inequality

|| f g||1 ≤ || f ||2||g||2,
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that is

(∫ ∞

−∞
| f (x)g(x)|dx

)2

≤
(∫ ∞

−∞
| f (x)|2dx

)(∫ +∞

−∞
|g(x)|2dx

)
,

is known as the integral form of Cauchy-Buniakowski-Schwarz inequality.

Exercise 6.4.5 Prove the previous inequality.
Hint. If u, v ≥ 0, we have

uv ≤ u2 + v2

2
.

Replacing

u := | f (x)|
|| f ||2 and v := |g(x)|

||g||2
in the previous formula, we obtain

| f (x)|
|| f ||2

|g(x)|
||g||2 ≤ | f (x)|2

2|| f ||22
+ |g(x)|2

2||g||22
.

Then we integrate both members and it remains

∫ +∞

−∞
| f (x)|
|| f ||2

|g(x)|
||g||2 dx ≤ 1

2
+ 1

2
= 1

which proves the statement.

Exercise 6.4.6 The following exercise is known as Minkowski’s inequality: For any
f, g ∈ L2(R), we have

|| f + g||2 ≤ || f ||2 + ||g||2.

Hint. We start from u, v ≥ 0 and

(u + v)2 ≤ 2(u2 + v2).

Therefore
| f + g|2 ≤ | f || f + g| + |g|| f + g|,

that is

|| f + g||22 =
∫ ∞
−∞

| f (x) + g(x)|2dx ≤
∫ ∞
−∞

| f (x)|| f (x) + g(x)|dx +
∫ ∞
−∞

|g(x)|| f (x) + g(x)|dx ≤

≤ || f ||2|| f + g||2 + ||g||2|| f + g||2

which ends the proof of the statement.
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Exercise 6.4.7 Check the axioms of vector spaces for L2(R) endowed with the addi-
tion and multiplication by scalars.
Even if checking the axioms of this vector space seems to be obvious, it is useful to
better understand the properties of L2(R) functions.

Exercise 6.4.8 Show that the space L2(R) is complete.

It is not simple to offer a detailed proof of this statement, if one is not familiar with
the concepts of Lebesgue measure, measurable sets, “almost everywhere” equality,
convergence almost everywhere, Lebesgue integrable functions (which in fact are
subject of L1(R) and L2(R) sets), Fatou’s lemma, the fact that L1(R) is complete
with respect to the norm || · ||1, etc.

Let us only give an overview of the proof. We start from a Cauchy sequence ( fn)n∈N

in the norm of L2(R), that is

|| fn − fm ||2 → 0 as m, n → +∞

and we have to construct f ∈ L2(R) such that

|| fn − f ||2 → 0.

Consider a > 0 a fixed number. The Cauchy-Buniakovsky-Schwarz inequality leads
to

(∫ a

−a
| fn(x) − fm(x)|dx

)2

≤
∫ a

−a
| fm(x) − fn(x)|2dx

∫ a

−a
1 · dx = 2a|| fn − fm ||22 → 0

that is the set ( fn)n∈N is a Cauchy set with respect to || · ||1 in L1([−a, a]). Since
L1([−a, a]) is complete, there exists f ∈ L1([−a, a]) such that

|| fn − f ||1 =
∫ a

−a
| fn(x) − f (x)|dx → 0 as n → +∞.

Now, with all techniques developed by studying the subjects mentioned above and
assuming a = 1, a = 2, a = 3, ..., a = n, ..., it can be proved that this f belongs to
L2(R) and

|| fn − f ||2 → 0.

Let us observe that the completeness of L2(R) is based on the completeness of
L2([−a, a]) which is a Hilbert space whose pre-Hilbert structure is given by the
inner product

〈 f |g〉 =
∫ a

−a
f ∗(x)g(x)dx
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where f ∗(x) is the complex conjugate of f (x), i.e. the norm is

|| f ||2 :=
(∫ a

−a
| f (x)|2dx

)1

2
.

Therefore, if we look at L2(R), we have the norm

|| f ||2 :=
(∫ ∞

−∞
| f (x)|2dx

)1

2

coming from the inner product

〈 f |g〉 =
∫ ∞

−∞
f ∗(x)g(x)dx

where f ∗(x) is the complex conjugate of f (x). L2(R) becomes another example of
Hilbert space.

An important remark is necessary at this point. Using the Cauchy-Buniakowski-
Schwarz inequality, if we consider the functions f ∈ L2([−a, a]) and g = 1, it
results that any f ∈ L2([−a, a]) belongs to L1([−a, a]), that is L2([−a, a]) ⊂
L1([−a, a]). This is not the case for L2(R) and L1(R) and, in this case, one has
to look at the function

f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1

x
, x ∈ (−∞,−1)

1, x ∈ [−1, 1]
1

x
, x ∈ (1,+∞).

which belongs to L2(R) but not to L1(R).

Summary of Lecture 29.The first example: Let us consider the set denoted by
l2 of all sequences 〈a| = (a1, a2, ..., an, ...), ak ∈ C, k ∈ N − {0} such that

∑

n

|ak |2 < ∞,

where |ak |2 = aka∗
k . Consider two operations which generalize the operations

for finite dimensional vectors,

〈a| + 〈b| := (a1 + b1, a2 + b2, ...., an + bn, ....),



6.4 Lecture 29: Examples of Hilbert Spaces 127

and
α〈a| := (αa1, αa2, ..., αan, ...),

which define 〈a + b| and 〈αa| respectively. We endow this vector space with
the inner product

〈a|b〉 :=
∑

n

a∗
n bn

and consequently with the norm

||a|| = √〈a|a〉.

A Hilbert space structure is highlighted on l2.
The second example gives another Hilbert space. Let us consider the set of
complex valued functions f : R → C such that | f | is integrable on R and
denoted by L1(R). Among these functions, we denote by L2(R) the set of
complex valued functions such that | f |2 is integrable on R. We define their
norm by

|| f ||2 :=
(∫ ∞

−∞
| f (x)|2dx

)1

2
.

According to the first structure of these functions, another possible norm exists.
It is

|| f ||1 :=
∫ ∞

−∞
| f (x)|dx .

By definition, the null functions are those which fulfill the property

∫ ∞

−∞
| f (x)|dx = 0.

The inner product is

〈 f |g〉 =
∫ ∞

−∞
f ∗(x)g(x)dx

where f ∗(x) is the complex conjugate of f (x). L2(R) becomes another exam-
ple of Hilbert space. According to the completeness of L2(R), it is possible to
highlight anotherHilbert space, L2([−a, a]), where a is a positive real number.
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6.5 Lecture 30: Orthogonal and Orthonormal Systems
in Hilbert Spaces

By definition a set (finite or infinite) of elements of a Hilbert space is called an
orthogonal system if any two distinct elements x and y of the system have the
property x ⊥ y. This means that, with respect to the inner product involved in the
pre-Hilbert structure, it is 〈x |y〉 = 0.

Example 6.5.1 Consider the set

{ fn ∈ L2([−π, π ])| n ∈ Z} where fn(x) = 1√
2π

einx .

We have

〈 fn| fn〉 = 1

2π

∫ π

−π

f ∗
n (x) fn(x)dx = 1

2π

∫ π

−π

e−inx einx dx = 1,

and for n �= m,

〈 fn | fm〉 = 1

2π

∫ π

−π
f ∗
n (x) fm(x)dx = 1

2π

∫ π

−π
e−inx eimx dx = 1

2π

∫ π

−π
ei(m−n)x dx =

= 1

2π

ei(m−n)x

i(m − n)

∣∣π−π = 1

2π

ei(m−n)π − e−i(m−n)π

i(m − n)
= 0.

We conclude that the set

{ fn ∈ L2([−π, π ])| n ∈ Z}

is an orthonormal set of the Hilbert space L2([−π, π ]).
Example 6.5.2 We studied the Hermite polynomials Hn(x),

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)

and we proved

∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx =
{
0, m �= n
2n√π n!, m = n

If we consider the functions ϕn(x) = e−x2/2Hn(x), n ∈ N, it is possible to observe
that they are part of an orthogonal system in L2(R) because the inner product

〈ϕn|ϕm〉 =
∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx
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has the result expressed above. It becomes clear that, if we choose

�n(x) = 1√
2nn!√π

e−x2/2Hn(x), n ∈ N ,

we highlighted an orthonormal system of L2(R).

Summary of Lecture 30. In this lecture, we identify the full mathematical
meaning of the formulas we are developing. The Hermite polynomials are
involved in the functions ϕn(x) = e−x2/2Hn(x), n ∈ N which are part of an
orthogonal system in L2(R) with respect to the usual inner product because

∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx =
{
0, m �= n
2n√π n!, m = n

If we choose

�n(x) = 1√
2nn!√π

e−x2/2Hn(x), n ∈ N ,

we highlighted an orthonormal system of L2(R) which is involved in the
solution of quantum harmonic oscillator.

6.6 Lecture 31: Linear Operators, Eigenvalues,
Eigenvectors for the Schrödinger Equation

Let us consider again the free particle problem for the time independent Schrödinger
equation

H� = − �
2

2m

d2�

dx2
+ V (x)�

for a free particle with V (x) = 0. It becomes

d2�

dx2
= −2m

�2
H�,

which can be written with respect to the wavenumber k as

d2�

dx2
= −k2�.
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Here we used H = T = p2

2m
. Suppose that the particle moves along a line segment

of length L . A general solution is

�(x) = A1eikx + A2e−ikx

and it appears as a linear combination of two wave-like solutions. If we call them
pure states, the general solution is a superposition of the two pure states involved.
We will understand later what they represent. The momentum is

p = nh

L

therefore, if we replace in the energy formula, we obtain

H = Hn = h2

2mL2
n2, n = 1, 2, 3, ....

The energy of the free particle is quantized and if the particle moves between two
energy levels photons are highlighted because

�Hnm = Hn − Hm = hν,

where ν = h

2mL2
(n2 − m2). What kind of mathematical structure do we have here?

If we write the equation
d2�

dx2
= −k2�

in the form
d2

dx2
� = −k2� ,

we have, in left-hand side, the operator H := d2

dx2
, which is linear. It acts on an

element of the Hilbert space, here denoted by �. In the right side, a real number is
multiplied by the element �. The real value has the behavior of an eigenvalue and
� becomes an eigenvector. Now let us write the basic facts of the theory we need.

A linear operator on a Hilbert space V to V is a transformation that satisfies the
requirement

L|α1u + α2v〉 = L|α1u〉 + L|α2v〉, for all α1, α2 ∈ C, |u〉, |v〉 ∈ V.

Since L : V → V, we can denote L|u〉 ∈ V by |Lu〉 ∈ V.
A vector |u〉 is called an eigenvector of the operator L if L|u〉 = λ|u〉 for some

λ ∈ C.
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Such a λ is called an eigenvalue corresponding to the eigenvector |u〉.
The operator L† is called the adjoint to L if, for all |u〉, |v〉 ∈ V, it is

〈v|L|u〉 = 〈u|L†|v〉∗.

We have to observe that this is only a notation, what we really have is the inner
product acting for some elements, that is

〈v|Lu〉 = 〈u|L†v〉∗,

where ∗ means the complex conjugate. Therefore the last expression can be written
as

〈v|Lu〉 = 〈L†v|u〉.

By definition, an operator L is called Hermitian or self-adjoint operator if L = L†,
that is

〈v|Lu〉 = 〈Lv|u〉.

Exercise 6.6.1 All eigenvalues of a Hermitian operator are real.
Hint. Let us start from the relation involving the Hermitian operator, the eigenvector
and the eigenvalue, L|u〉 = λ|u〉. Then

〈Lu|Lu〉 = 〈Lu|λu〉 = λ〈Lu|u〉 = λ〈u|Lu〉 = λ2〈u|u〉,

that is

λ2 = 〈Lu|Lu〉
〈u|u〉 ∈ R+,

therefore λ belongs to R.

Another result is very interesting when we are talking about eigenvectors and eigen-
values.

Exercise 6.6.2 Consider a Hermitian operator L and two distinct real eigenvalues
λu, λv corresponding to two eigenvectors |u〉 and |v〉. Show that the corresponding
eigenvectors are orthogonal, that is 〈u|v〉 = 0.
Hint. From L|u〉 = λu |u〉 and L|v〉 = λv|v〉, we get

〈v|Lu〉 = λu〈v|u〉 and 〈u|Lv〉 = λv〈u|v〉.

Since λv ∈ R, after complex-conjugating the last equality, we have

〈u|Lv〉∗ = λ∗
v〈u|v〉∗ = λv〈u|v〉∗ = λv〈v|u〉.
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Now, using the fact that L is Hermitian, we have 〈u|Lv〉∗ = 〈v|L†u〉 = 〈v|Lu〉 that
is

〈v|Lu〉 = λv〈v|u〉.

It results
0 = (λu − λv)〈v|u〉 which means 〈v|u〉 = 0.

Therefore the Schrödinger equation, in this case, is an operator equation. It highlights
orthogonal eigenvectors corresponding to distinct real eigenvalues. In the particu-
lar case when A2 = 0, the eigenvectors, that is the pure states we discussed ear-

lier, are �n(x) = A1einx which can be written as �n(x) = A1e
in
2π

L
x
. In this way,

an orthonormal eigenvectors system, corresponding to the eigenvalues −n2 4π
2

L2
,

appears.

An important remark is necessary. Studying differential equations in the Hilbert
space L2 is not very easy. The equations makes sense in a subspace H 2([0, L]) of
the Hilbert space L2([0, L]) where the functions can be derived twice and the inner
product is

〈u|v〉H 2 = 〈u|v〉L2 + 〈Du|Dv〉L2 + 〈D2u|D2v〉L2 .

The derivatives appear in the weak sense, that is Dmu is the function v which makes
true the equality

∫ b

a
u(x)Dmϕ(x)dx = (−1)m

∫ b

a
v(x)ϕ(x)dx, m = 1, 2.

In the casewhen the functions are continuous differentiable twice theweak derivative

D1u is
du

dx
and D2u is

d2u

dx2
. H 2([0, L]) is a Sobolev space and it can be proved that it

is a Hilbert space. Sobolev spaces appeared when mathematicians observed that the
functions of class C1 or C2 are not the right spaces to study differential equations. The
weak solutions appear when there are no strong solutions for differential equations.
In our case, the solution is a strong one, that is we deal with standard derivatives. Let
us observe that if u, v ∈ C2 are wave functions as �n is, it makes sense according to
“the convenient border condition” to obtain

〈
v | d2

dx2
u

〉

L2([0,L])
=
∫ L

0
v∗(x)

d2u

dx2
(x)dx =

∫ L

0

d2v∗

dx2
(x)u(x)dx =

〈
d2

dx2
v | u

〉

L2([0,L])
,

the equality between the two integrals being a consequence of integration by parts
applied twice and to the fact that v(0) = u(0) = v(L) = u(L) = 0. Therefore the

operator H := d2

dx2
is Hermitian for such functions.
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The technical part, which allows to extend it to a Hermitian operator in L2, is
because the previous computations make sense in C2([0, L]). The main idea can be
explained as follows. It can be proved that, for any u, v ∈ L2([0, L]), there exist
the sets un, vn ∈ C∞([0, L]) such that un → u and vn → v and vk(0) = uk(0) =
vk(L) = uk(L) = 0, k ∈ N .

According to the previous part, for all n ∈ N and for all un, vn ∈ C∞([0, L]) such
that vn(0) = un(0) = vn(L) = un(L) = 0, n ∈ N, it is

〈
vn | d2

dx2
un

〉

L2([0,L])
=
∫ L

0
v∗

n (x)
d2un

dx2
(x)dx =

∫ L

0

d2v∗
n

dx2
(x)un(x)dx =

〈
d2

dx2
vn | un

〉

L2([0,L])
.

Since the inner product is continuous in both variables, we have

〈
vn | d2

dx2
un

〉

L2([0,L])
→

〈
v | d2

dx2
u

〉

L2([0,L])

and 〈
d2

dx2
vn | un

〉

L2([0,L])
→

〈
d2

dx2
v | u

〉

L2([0,L])
.

It results 〈
v | d2

dx2
u

〉

L2([0,L])
=
〈

d2

dx2
v | u

〉

L2([0,L])
,

that is the Hamilton operator is a Hermitian operator in L2([0, L]).
Nowwe have a complete view over the study of free particle in QuantumMechan-

ics. For the others problems we studied, we can identify linear operators which are
Hermitian in the sense explained above. The exploration of the related mathematical
models can be achieved following the ideas of this lecture.

Exercise 6.6.3 1. Check if the matrix

L =
(
1 1
0 1

)

is Hermitian with respect the Hilbert structure of the two dimensional Euclidean
space.
2. Check if the eigenvalues of L are real.
Conclude that if the eigenvalues are real, the operator is not necessary a Hermitian
one.
Hint. 1. Compute 〈Lu|v〉 and 〈u|Lv〉 if

L =
(
1 1
0 1

)
.
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You have to compare (u1 + u2)v1 + u2v2 with (v1 + v2)u1 + v2u2.
2. You have to solve the equation det(L − λI2) = 0, that is (λ − 1)2 − 1 = 0.

Summary of Lecture 31We considered the Schrödinger equation in the case
of the free particle problem for V (x) = 0. It can be considered as an operator
equation

d2

dx2
� = −k2�

written with respect to the wavenumber k. The operator is H := d2

dx2
, the

real eigenvalues are −k2, that is −n2 4π
2

L2
, and the pure states are the wave-

like eigenvectors �n(x) = A1e
in
2π

L
x
. We can look at the above Schrödinger

equation as at the operator equation

H� = −k2�.

The Hilbert space structure involved is L2([0, L]) and the solutions belong to
C∞([0, L]).
During the lecture, we discussed about Hermitian operators in Hilbert spaces,
andweproved that their eigenvalues are real. For twodifferent real eigenvalues,
the eigenvectors are orthogonal with respect to the inner product.
An operator L is called Hermitian or self-adjoint operator if L = L†, that is

〈v|Lu〉 = 〈Lv|u〉.

The eigenvalues of a Hermitian operator are real because

λ2 = 〈Lu|Lu〉
〈u|u〉 ∈ R+.

In the case of the free particle in Quantum Mechanics, let us observe that
if u, v ∈ C2[0, L] respecting convenient (null) boundary conditions, it makes
sense

〈
v | d2

dx2
u

〉

L2([0,L])
=
∫ L

0
v∗(x)

d2u

dx2
(x)dx =

∫ L

0

d2v∗
dx2

(x)u(x)dx =
〈

d2

dx2
v | u

〉

L2([0,L])

the equality between the two integrals being a consequence of integration

by parts applied twice. Therefore, the operator H := d2

dx2
is Hermitian for
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such functions. There is a very technical part which allows to extend it at a
Hermitian operator in L2[0, L] because the previous computations make sense
inC2([0, L]). It can be proved that for any u, v ∈ L2([0, L]) there exist the sets
un, vn ∈ C∞([0, L]) verifying vn(0) = un(0) = vn(L) = un(L) = 0, n ∈ N

such that un → u, vn → v and

〈
v | d2

dx2
u

〉

L2([0,L])
=
〈

d2

dx2
v | u

〉

L2([0,L])
.

These results constitute a complete view over the study of free particle in
Quantum Mechanics. For the others problems studied, we can identify linear
operators which are Hermitian in the sense explained above. Real eigenvalues
and eigenvectors can be derived for the previous examples.



Chapter 7
From Monochromatic Plane Waves
to Wave Packets

God runs electromagnetics by wave theory on Monday,
Wednesday, and Friday,
and the Devil runs them by quantum theory on Tuesday,
Thursday, and Saturday.

William Bragg

7.1 Lecture 32: Again on the de Broglie Hypothesis.
Wave-Particle Duality and Wave Packets

The above formal considerations canbe applied to better understand thewave-particle
duality and then the concept of matter wave. Let us start with the de Broglie hypoth-
esis.

The photoelectric effect proved that the electromagnetic radiation is made of
particles called photons having an energy E described by the formula

E = hν,

where ν is the frequency of the wave and the momentum p is described by

p = �k,

where k is the wave number. In both formulas, we have the Planck constant h or

� = h

2π
.

To summarize the previous results, we have the following formulas

ν = 1

T
; k = 2π

λ
; ω = 2πν,

where T is the period of the wave, λ is the wavelength and ω is the angular velocity.
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Therefore we have also

E = hν = h

2π
2πν = �ω.

Interference appeared in the two-split experiment proved the wave character of elec-
tromagnetic radiation. Therefore the electromagnetic radiation has a dual nature,
the so called wave-particle duality. This property was transferred by de Broglie to
all particles. They have to act in fact under the wave-particle duality and we saw
this looking at electrons. All elementary particles, that is all matter, must obey wave-
particle duality andwe underlined this in the previous sections. In the case of electron,
de Broglie stated the relation

λ = h

p
= h

mv
.

A very important issue appears. A particle, say an electron, cannot be simply
described by a wave having the form

�(t, x) = Aei(kx−wt).

Why? Let us look at the speed of the wave,

v = x

t
= ω

k
= �ω

�k
= E

p
.

In the case of photons, it works because c = E

p
is valid involving both the photon

energy and the photon momentum as we previously discussed. In the case of other
particles as electron, it is,

v = E

p
= mc2

mv
= c2

v
> c.

This cannot be true, therefore we have to think at another way to express the “carrier”
of the electron.

Before presenting “other possible carriers”, let us look at de Broglie attempts to
offer a road through Special Relativity to explain this situation. Consider

E = mc2 = m0c2√
1 − v2/c2

and
p = m0v√

1 − v2/c2
,
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whose one dimensional version is

p = m0v√
1 − v2/c2

.

It results

E

p
= mc2

mv
=

m0c2√
1 − v2/c2
m0v√

1 − v2/c2

= c2

v
= vp,

the last equality being a definition of an abstract entity called vp suggested from
the above definition of v. According to de Broglie, it is possible to define a “group
velocity” as

vg = ∂ω

∂k
= ∂(�ω)

∂(�k)
= ∂E

∂ p
.

Then he attributed a relativistic feature to vg by computing

vg = ∂E

∂ p
= ∂

∂ p

√
p2c2 + m2

0c
4 = pc2

√
p2c2 + m2

0c
4

= pc2

E
.

Therefore he concluded

vg = ∂E

∂ p
= pc2

E
= c2

E

p

= c2

vp
= v,

that is this “relativistic” group velocity is the one which equals v. vp remained only
a mathematical step to offer a physical meaning to vg . He completed his theory with
the relativistic versions of the formulas presented at the beginning of this lecture:
The relation

λ = h

p

now becomes

λ = h

p
= h

m0v

√

1 − v2

c2

and the relation
E = hν

is now seen as

ν = E

h
= m0c2

h

1
√

1 − v2

c2

.
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However, a problem still remained. What does the group velocity refer to?
Let us define instead of a wave having the wavenumber k0, an infinity of waves

each one having the wavenumber in an interval

(
k0 − �k

2
, k0 + �k

2

)
. The carrier

will be

�(t, x) = A
∫ k0+�k/2

k0−�k/2
ei(kx−wt)dk = A

∫ k0+�k/2

k0−�k/2
ei(px−Et)/�dk,

called a wave-packet corresponding to the wavenumber interval

(
k0 − �k

2
, k0+

�k

2

)
. In the case of the wave studied before, k was a constant, that is p was

a constant and the speed was obtained by what happened at a crest of the wave,
therefore from the condition kx − ωt = 0 appeared. In this case, the speed of the
wave-packet can be expressed from the speed formula

x = vgt

in its differential form at the center of the packet (for k = k0 or equivalently, for
p = p0) from the condition

d(px − Et)

dp

∣∣∣∣
p=p0

= 0.

Therefore

vg = x

t
= dE

dp
= dω

dk
.

It results

vg = dE

dp
=

1

2
d(mv2)

d(mv)
= v,

that is the speed of the packet equals the speed of the particle. The mathematical
description of the wave packet can be improved as we will see later. The wave packet
will be related to the Fourier transforms and the Heisenberg uncertainty principle.

Summary of Lecture 32. A photon can be described by a wave in the form

�(t, x) = Aei(kx−ωt)

because its speed is
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v = x

t
= ω

k
= �ω

�k
= E

p
= c.

However, an electron cannot be described by a standardmonochromatic planar
wave because the speed of such a wave should be

v = x

t
= ω

k
= �ω

�k
= E

p
= mc2

mv
= c2

v
> c.

Therefore we consider the wave replaced by something new,

�(t, x) := A
∫ k0+�k/2

k0−�k/2
ei(kx−ωt)dk = A

∫ k0+�k/2

k0−�k/2
ei(px−Et)/�dk,

called a wave packet corresponding to the wavenumber interval(
k0 − �k

2
, k0 + �k

2

)
.

The speed of the packet is derived from the condition

d(px − Et)

dp

∣∣∣∣
p=p0

= 0.

Therefore

vg = x

t
= dE

dp
= dω

dk

that is

vg = dE

dp
=

1

2
d(mv2)

d(mv)
= v.

The speed of the packet now equals the speed of the particle. Themathematical
description of the wave packet can be improved as we will see later replacing
A from outside of the integral by A(k) inside the integral.
During the lecture, we presented the deBroglie attempts to offer an explanation
to the fact that a wave in the form

�(t, x) = Aei(kx−ωt)

can however be a mathematical representation for a particle. He used a rela-
tivistic explanation about how this could be possible.
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7.2 Lecture 33: More About Electron in an Atom

Let us think again at the electron as a particle confined to its circular trajectory.
Denote by L the length of the circle. � has the property

�(x) = �(x + L), for all x ∈ [0, L].

Let us suppose thatV (x) = 0, that isH = E and the corresponding time-independent
Schrödinger equation is

− �
2

2m

d2�

dx2
(x) = H�(x),

We expect to have H ≥ 0. Indeed

− �
2

2m

∫ L

0
�∗(x)

d2�

dx2
(x)dx = H

∫ L

0
�∗(x)�(x)dx = H.

and

H = − �
2

2m

∫ L

0
�∗(x)d

2�

dx2
(x)dx = − �

2

2m

∫ L

0

(
d

dx

(
�∗(x)d�

dx
(x)

)
− d�∗

dx
(x)

d�

dx
(x)

)
dx =

= �∗(L)
d�

dx
(L) − �∗(0)d�

dx
(0) + �

2

2m

∫ L

0

∣∣∣∣
d�

dx

∣∣∣∣

2

dx = �
2

2m

∫ L

0

∣∣∣∣
d�

dx

∣∣∣∣

2

dx ≥ 0.

The Schrödinger equation becomes

d2�

dx2
(x) = −2mH

�2
�(x),

where
2mH

�2
is a positive constant denoted byα2. The solution depends on a constant

amplitude A,
�(x) = Aeiαx

and has to fulfill
eiα(x+L) = eiαx that is αL = 2πn, n ∈ Z.

Therefore α is a quantized wavenumber.
For each

αn = 2πn

L
the solution is �n(x) = Aeiαn x .

Since ∫ L

0
�∗

n (x)�n(x)dx = A2
∫ L

0
dx = 1 ,
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it results

A = 1√
L

.

Therefore the eigenvectors are

�n(x) = 1√
L
e2nπi x/L ,

and the associated energies, the eigenvalues, are

Hn = 2�
2π2n2

mL2
.

There are a lot of similitudes between this situation of a particle moving on a circle
and the results we obtained in the case of the free particle which moves on a line
segment in Lecture 23. Here, there are infinite energy levels and we can still make
comments on the solution. We observe that

∫ L

0
�∗

n (x)�l(x)dx = 1

L

∫ L

0
e2(m−n)πi x/Ldx = δmn.

Therefore, the eigenvectors are orthogonal and the general wave function, which is
periodic, is the superposition

ψ(x) =
∑

n∈Z

an�n(x)

with the coefficients

an =
∫ L

0
�∗

n (x)ψ(x)dx

which will be related to the Fourier series. It is worth noticing that any linear com-
bination of functions, in mathematical terms, is a superposition in Physics language.
The term “superposition” will be defined and discussed in detail in Lecture 41.

Summary of Lecture 33. Consider a particle with a circular trajectory of
length L in absence of a potential V (x). The corresponding time-independent
Schrödinger equation is

d2�

dx2
(x) = −2mH

�2
�(x),
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where
2mH

�2
is a positive constant denoted by α2. The solution depends on a

constant amplitude A,
�(x) = Aeiαx

and has to fulfill the condition

eiα(x+L) = eiαx that is αL = 2πn, n ∈ Z.

Therefore the eigenvectors are

�n(x) = 1√
L
e2nπi x/L

and the associated energies, the eigenvalues, are

Hn = 2�
2π2n2

mL2
.

We observe that

∫ L

0
�∗

n (x)�l(x)dx = 1

L

∫ L

0
e2(m−n)πi x/Ldx = δmn,

that is the eigenvectors are orthogonal and the general wave function, which
is periodic, is the superposition

ψ(x) =
∑

n∈Z

an�n(x)

having the coefficients

an =
∫ L

0
�∗

n (x)ψ(x)dx .



Chapter 8
The Heisenberg Uncertainty Principle
and the Mathematics Behind

It is the theory that decides what we can observe.

Albert Einstein

8.1 Lecture 34: Wave Packets and the Schrödinger
Equation

Starting from the present considerations, we intend to arrive to Lecture 36 when the
concept of Gaussian wave packet will allow us to establish the Heisenberg Uncer-
tainty Principle for position and momentum

�x�p = �,

i.e. the position and the momentum of a particle cannot be determined with the same
degree of precision. There exists a limit in the accuracy of the prediction for both
variables involved in the previous equality and it is easy to understand why. It means
that if more precisely the position of the particle is determined, then less precisely the
momentum is, and vice versa. According to the previous considerations, we know
that a wave packet of the form

�(t, x) = A
∫ k0+�k/2

k0−�k/2
ei(kx−ωt)dk

describes better a wave because the group velocity represents the velocity of the
particle. We can even think at a model of wave packet where A is not a constant, but
depends on the wave number k, that is A = A(k). Therefore the corresponding A(k)
wave packet is

�(t, x) =
∫ k0+�k/2

k0−�k/2
A(k)ei(kx−ωt)dk
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or we can also consider models where the particle is described on the entire real line
R. We can also take into account the form

�(t, x) =
∫ ∞

−∞
φ(p)ei(px−Ht)/�dp ,

depending on the momentum. In such a case there are two issues. The integral must
exist, that is φ(p) has to be well chosen. In the previous examples �(0, x) must
verify the Schrödinger time independent equation offering us information about the
energy of the free particle. This is also related to

�(0, x)�∗(0, x) = 1 ,

a condition we interpret as the fact that “the particle has to be somewhere on the real
line”.

In order to go forward, let us suppose that φ(p) := e−(p−p0)/2(�p)2 . Here p0 is a
given momentum and �p is a momentum chosen in a small interval centered at p0.
A constant can appear in the calculations. Let us discard it for the moment because
we can put it in front of the integral after we complete the computations having in
mind the condition which must be satisfied, that is

�(0, x)�∗(0, x) = 1.

In Lecture 36, we will show that

∫ ∞

−∞
e−au2+budu =

√
π

a
eb

2/4a .

Therefore

�(0, x) =
∫ ∞

−∞
e−(p−p0)/2(�p)2ei(px)/�dp

can be computed for u := p − p0, a := 1

2(�p)2
, b := i x

�
and the result is

�(0, x) = √
2π �p ei(p0x)/�e−(�p)2x2/2�

2
.

Furthermore, it is

�(0, x)�∗(0, x) = 2π(�p)2e−(�p)2x2/�
2
,

that is the constant K0 has to fulfill the condition

K0K
∗
0 2π(�p)2e−(�p)2x2/�

2 = 1.
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We will clarify in details this result. It remains to discuss the Schrödinger equation
verified by �(0, x). Some basic computations lead to

d�

dx
(0, x) =

(
i p0
�

− (�p)2

�2
x

)
�(0, x)

and
d2�

dx2
= − (�p)2

�2
�(0, x) +

(
i p0
�

− (�p)2

�2
x

)2

�(0, x)

that is

− �
2

2m

d2�

dx2
+ 1

2m

(
i p0 − (�p)2

�
x

)2

�(0, x) = (�p)2

2m
�(0, x).

Choosing a complex potential energy of the form

V := 1

2m

(
i p0 − (�p)2

�
x

)2

the Schrödinger equation is fulfilled. As we will discuss later, such a situation is
possible if the operator equation

(
− �

2

2m

d2

dx2
+ V

)
� = (�p)2

2m
�

has real eigenvalues.

Summary of Lecture 34.Wave packets have to be adopted because they give
the correct speed of a particle. In fact, the speed of a particle equals the speed
of the related wave packet. Considering a wave packet in the form

�(t, x) =
∫ ∞

−∞
φ(p)ei(px−Ht)/�dp

for φ(p) := e−(p−p0)/2(�p)2 , we can show that

�(0, x) = √
2π �p ei(p0x)/�e−(�p)2x2/2�

2
.

A constant K0 must be introduced and determined by the condition

K0�(0, x)K ∗
0�

∗(0, x) = K0K
∗
0 2π(�p)2e−(�p)2x2/�

2 = 1.
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We can show that �(0, x) verifies the Schrödinger equation

− �
2

2m

d2�

dx2
(0, x) + 1

2m

(
i p0 − (�p)2

�
x

)2

�(0, x) = (�p)2

2m
�(0, x).

for a complex potential energy of the form

V := 1

2m

(
i p0 − (�p)2

�
x

)2

.

As we will discuss below, such a situation is possible if the operator equation

(
− �

2

2m

d2

dx2
+ V

)
� = (�p)2

2m
�

has real eigenvalues. By these preliminaries, we can make some steps towards
understanding the Heisenberg Uncertainty Principle.

8.2 Lecture 35: The Wave Function � Solution of the
Schrödinger Equation

The above discussion on the plane wave function of x allows us to generalize the
result to waves depending on t and all space coordinates x, y, z.

Let us denote by p = (px , py, pz) the given momentum vector. Its magnitude is

p := |p| =
√
p2x + p2y + p2z . Now k := (kx , ky, kz) is the wave propagation vector or

simply, the wave vector; k := |k| =
√
k2
x + k2

y + k2
z is its length; its connection to

the momentum vector is given by

p := �k.

If the space coordinates are related to a position vector r := (x, y, z), by definition,
the wave function is

�(t, r) = Aei(k·r−ωt).

Of course, this definition generalizes the one dimensional case seen previously to
vector components. Therefore

k = |k| = | p|
�

= 2π

λ
,
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where λ is the wavelength.

We know that the energy corresponding to the wave is the total energy H . Exactly

as in the plane waves description, it is ω = H

�
. Let us observe that the wave function

can also be described by
�(t, r) = Aei(p·r−Ht)/�.

Now we can use a similar argument to “derive” the Schrödinger equation in the case
of the wave function

�(t, r) = Aei(k·r−ωt)

or in the case of the three-dimensional wave packet. The wave packet, in this case, is

�(t, r) = 1√
(2π�)3

∫∫∫
R3

ei(p·r−Ht)/�φ(p)dp,

where dp = dpxdpydpz . The function φ has to be chosen such that the triple integral
exists. Furthermore, in order to express a quantum particle, the function � has to
verify the Schrödinger equation.

In fact, the difference between this section and the previous one is related to the

fact that we can compute
∂�2

∂x2
; ∂�2

∂y2
,

∂�2

∂z2
, therefore the Laplace operator �2

appears. For the time-dependent equation, we see that both � and the potential V
depends on (t, r), therefore the postulated Schrödinger equation is

i�
∂

∂t
�(t, r) =

(
− �

2

2m
�2 +V (t, r)

)
�(t, r).

The time-independent Schrödinger equation has now the form

H�(r) =
(

− �
2

2m
�2 +V (r)

)
�(r).

We can consider the physical meaning of �. To step into this direction, we need to
define the Gauss wave packets and, according these, wewill observe the probabilistic
meaning of �.

Summary of Lecture 35. Let us consider a three-dimensional space with
coordinates (x, y, z). The position x in the one dimensional case is replaced
by the position vector r = (x, y, z). The momentum p and the wavenumber
k are replaced by the vectors p and k connected by the relation p = �k. The
Laplace operator �2 replaces, in the three-dimensional case, the derivative
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d2

dx2
. In this case, the time-independent Schrödinger equation is

H�(r) =
(

− �
2

2m
�2 +V (r)

)
�(r).

A solution is the wave function

�(t, r) = Aei(k·r−ωt).

In the case of three-dimensionalwave packet, the situation ismore complicated.
The wave packet is

�(t, r) = 1√
(2π�)3

∫∫∫
R3

ei(p·r−Ht)/�φ(p)dp,

where dp = dpxdpydpz and the function φ is chosen in such a way that the
triple integral exist. H is the energy. The function � has to be the solution of
the Schrödinger equation and we will see below its probabilistic meaning.

8.3 Lecture 36: The Gauss Wave Packet and the
Heisenberg Uncertainty Principle

Let us take into account a specific wave packet describing a particle belonging to

a region of x−axis where no potential acts on it, that is H = E = E(p) = p2

2m
.

Consequently, E = �ω and p = �k. The formula to be considered is

�(t, x) = 1√
2π�

∫ ∞

−∞
ei(px−E(p)t)/�φ(p)dp.

It is very similar to the wave-packet, solution of the Schrödinger equation, when we
used

�(t, x) =
∫ k0+�k/2

k0−�k/2
A(k)ei(kx−ωt)dk

for a convenient A(k) = A
( p

�

)
and dk = 1

�
dp. The difference is the interval where

the integral acts.
Now, let us suppose a positive functionφ(p) having one crest only and two asymp-

totic branches in the p−axis. Furthermore, let us suppose that the maximum of the
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crest is at p0, therefore the maximum value is φ(p0) and there exists a symmetry
of φ(p) with respect to the line p = p0. Now, let us consider a very small inter-
val (p0 − �p, p0 + �p) where the values of φ(p) are “almost φ(p0)′′. We have
described “a sort of Gauss function” having its crest at (p0,φ(p0)).

First of all,we have to observe that |�(t, x)|has itsmaximumwhen px x − E(px )t
is almost constant in the interval (p0 − �p, p0 + �p). This happens because, in gen-
eral, | ∫ f | ≤ ∫ | f |, with equality when f is a constant. The immediate consequence
is that the condition

d(px − E(p)t)

dp

∣∣∣∣
p=p0

= 0

determines the speed of the wave packet at its center. It is

0 = d(px − E(p)t)

dp

∣∣∣∣
p=p0

=
(
x − dE(p)

dp
t

)∣∣∣∣
p=p0

=

⎛
⎜⎜⎜⎝x −

d

(
p2

2m

)

dp
t

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
p=p0

= x − p0
m

t.

Therefore the speed of the wave packet is vg = p0
m

. It is worth noticing that E(p0) =
p20
2m

. Taking into account the polynomial form of the energy with respect to p, we

can write

E(p) = E(p0) + 1

1!
dE(p)

dp

∣∣∣∣
p=p0

(p − p0) + 1

2!
d2E(p)

dp2

∣∣∣∣
p=p0

(p − p0)
2,

that is

E(p) = p20
2m

+ 1

1!vg(p − p0) + 1

2!
1

m
(p − p0)

2.

We may consider p close to p0 such that (p − p0)2 can be neglected. In this case

E(p) = p20
2m

+ vg(p − p0)

and
ei(px−E(p)t)/� = ei(px−[E(p0)+vg(p−p0)]t)/�.

If we look at the exponent only, we can observe that

px − [E(p0) + vg(p − p0)]t =px − E(p0)t − vgtp + vgtp0
= (p − p0)(x − vgt) + p0x − E(p0)t
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therefore the new form of the wave packet is

�(t, x) = 1√
2π�

∫ ∞

−∞
ei(px−E(p)t)/�φ(p)dp

= 1√
2π�

ei(p0x−E(p0)t)/�

∫ ∞

−∞
ei(p−p0)(x−vg t)/�φ(p)dp

and this happens because we work with respect to a small interval centered at p0,
exactly as we considered the form of the wave packet with respect to k in a small
neighborhood of k0.

Exercise 8.3.1 Show that ∫ ∞

−∞
e−u2du = √

π.

Let us first observe that

(∫ ∞

−∞
e−u2du

)2

=
(∫ ∞

−∞
e−x2dx

) (∫ ∞

−∞
e−y2dy

)
=

∫∫
R2

e−(x2+y2)dxdy.

To compute the last integral, we write, for (x, y) ∈ (−∞,+∞) × (−∞,+∞), that

(∫ ∞

−∞
e−u2du

)2

=
∫∫

R2
e−(x2+y2)dxdy =

∫ ∞

0

∫ 2π

0
e−r2rdrdθ = 2π

∫ ∞

0
e−r2rdr = π,

where the last double integral is obtained after we use the change of coordinates
x = r cos θ, y = r sin θ, dxdy = rdrdθ, r ∈ (0,+∞), θ ∈ (0, 2π).

Another useful exercise is

Exercise 8.3.2 Show that

∫ ∞

−∞
e−au2+budu =

√
π

a
eb

2/4a .

It is easy to see that if Re a 	= 0

∫ ∞

−∞
e−au2+budu = eb

2/4a
∫ ∞

−∞
e−a(u−b/2a)2d(u − b/2a) =

√
1

a
eb

2/4a
∫ ∞

−∞
e−v2dv,

the last integral being calculated in the previous exercise.

Now, we continue our study in the case when φ is a Gauss function of the form

φ(p) := Ce−(p−p0)2/2(�p)2 ,
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where�p is a p of the interval centered at p0 andC is determined from the condition

∫ ∞

−∞
|φ(p)|2dp = 1.

Let us first write the form of �,

�(t, x) = 1√
2π�

ei(p0x−E(p0)t)/�C
∫ ∞

−∞
ei(p−p0)(x−vg t)/� · e−(p−p0)2/2(�p)2dp.

Since
|φ(p)|2 = C2e−(p−p0)2/(�p)2 ,

after we denote by u := p − p0
�p

, du = 1

�p
dp, it remains to compute

1 =
∫ ∞

−∞
|φ(p)|2dp = C2�p

∫ ∞

−∞
e−u2du = C2�p

√
π.

The positive value of C is

C = 1√
�p 4

√
π

.

So, finally we have

�(t, x) = 1√
�p 4

√
π

1√
2π�

ei(p0x−E(p0)t)/�

∫ ∞

−∞
e−(p−p0)2/2(�p)2 · ei(p−p0)(x−vg t)/�dp.

Let us consider the time t = 0 to look at the � properties:

�(0, x) = 1√
�p 4

√
π

1√
2π�

· eip0x/�

∫ ∞

−∞
e−(p−p0)2/2(�p)2 · ei(p−p0)x/�d(p − p0).

We have

�(0, x) = 1√
�p 4

√
π

1√
2π�

eip0x/�

∫ ∞

−∞
e−u2/2(�p)2eiux/�du ,

that is

�(0, x) = 1√
�p 4

√
π

1√
2π�

eip0x/�

∫ ∞

−∞
e−au2+budu.

We can use the second above exercise to compute the integral considering

a = 1

2(�p)2
, b = i x

�
.
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Denoting by K0 the constant in front of the integral, we obtain

�(0, x) = K0e
ip0x/�e−x2(�p)2/2�

2
.

If �∗(0, x) is the complex conjugate of the complex number �(0, x), we have

|�(0, x)|2 = �(0, x) · �∗(0, x) = K 2
0 e

−x2(�p)2/�
2
.

Let us denote by �x the value of x such that the exponential function, from the right
member, reaches the value 1/e. Therefore, in the case of the Gauss wave packet, we
obtain the equality

�x�p = �.

This equality looks like a condition imposedboth to the position and to themomentum
of the particle described by the Gauss wave packet. Let us remember again how we
obtained this equality: Manipulating the Gauss wave packet, we first choose a �p
in the neighborhood of p0 and then, for this given �p, we find a corresponding �x
looking at the time when the exponential function e−x2(�p)2/�

2
reaches exactly the

value 1/e, that is after the exponential function decreases from its maximum value
to the value 1/e.

The condition obtained is�x�p = �. So, let us see how important is this equality.
Suppose we choose �p1 > �p. The corresponding �x1 has to satisfy �x1 < �x
because

�p1�x1 = �p�x = �.

That is, if we decrease �p, that is if we are interested to determine more accurately
the momentum of a particle, the position of the particle belongs to a greater interval,
therefore we loose the possibility to know accurately the position of the particle and
vice versa, if we determine more precisely the position of the particle, we loose the
possibility to determine with the same accuracy its momentum.

This is the Heisenberg Uncertainty Principle: it is a limit in our possibility to
determine, at the same time, the position and the momentum of a particle. A general
discussion about the Heisenberg Uncertainty Principle will be presented later when
we discuss the Dirac formalism.

In other words, we lose the classical determinism in the world of particles. The
wave�(t, x), describing a particle, is called the particle wave function and plays the
role of a probability amplitude, while

|�(t, x)|2 = �(t, x) · �∗(t, x)

is the probability to find the particle at a given point. Accepting this interpretation,
we step into the Quantum World where the determinism of the Classical Mechanics
is replaced by the probability to locate a particle related to its corresponding wave.
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Summary of Lecture 36. In this lecture, we studied the Gauss wave packet

�(t, x) = 1√
2π�

∫ ∞

−∞
ei(px−E(p)t)/�φ(p)dp,

in the case where the function φ is a Gauss function of the form

φ(p) = Ce−(p−p0)2/2(�p)2 ,

where �p is a p of an interval centered at p0 and C is determined by the
condition ∫ ∞

−∞
|φ(p)|2dp = 1.

After some physical considerations, we found, at t = 0, that

|�(0, x)|2 = �(0, x) · �∗(0, x) = K 2
0 e

−x2(�p)2/�
2
.

Denoting by �x the value of x such that the exponential function from the
right member reaches the value 1/e, in the case of the Gauss wave packet, we
obtain the equality

�x�p = �.

This is the Heisenberg Uncertainty Principle obtained by using the Gauss wave
packet: it is a limit in our possibility to determine, at the same time, the position
and the momentum of a particle.
The wave function is related by the probability amplitude which provides the
connection between the state of a system and the results of observations. The
squared modulus

|�(t, x)|2 = �(t, x) · �∗(t, x)

is the probability density. It is postulated to be the probability to find the particle
in a given “volume” dr = dx centered at x .

8.4 Lecture 37: The Mathematics Behind the Wave Packets.
The Fourier Series and the Fourier Transforms

The motivations for introducing the Fourier transforms are related to the Fourier
series which allow to describe complicated periodic functions with respect to waves
represented by superpositions of sin kx and cos kx . In order to have a representation
of the concept, let us draw first a linear segment [0, 2π] and then the function sin x
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corresponding to this interval. After, let us draw again the same interval and the
function sin 2x . Continue the stack with the same interval and the function sin 3x
and so on. Now, at each step, we consider instead of sin x, sin 2x, sin 3x, .., relative
weights for each sinusoid, that is b1 sin x, b2 sin 2x, b3 sin 3x, etc. For each point
x0 ∈ [0, 2π] consider the sum

b1 sin x + b2 sin 2x + b3 sin 3x + ....

It makes sense if ∞∑
k=1

|bk | < ∞.

Let us do the same in the case of cos x function, this time with coefficients an , that
is the new sum will be

a0 + a1 cos x + a2 cos 2x + a3 cos 3x + ...

which makes sense under the similar condition

∞∑
k=0

|ak | < ∞.

At the end, we have constructed the function

g(x) :=
∞∑
k=0

ak cos kx +
∞∑
k=1

bk sin kx .

g(x) can be thought as a periodic function corresponding toR if we stick the image on
[0, 2π] along the x axis. Now, we may ask if a given periodic function f : [0, 2π] →
R can be approximated or even represented by

∞∑
k=0

ak cos kx +
∞∑
k=1

bk sin kx .

Let us describe the problem in a more general frame because the functions f , we are
using in physics, can have different periods with respect to 2π.

A periodic function f : R → R, with the fundamental period T , satisfies for all
x ∈ R the equality f (x + T ) = f (x).

A Fourier series with period T is the function

g(x) :=
∑
n∈N

an cos

(
2πnx

T

)
+

∑
n∈N, n 	=0

bn sin

(
2πnx

T

)
.
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It is better to write it in the form

g(x) :=
∞∑
n=0

an cos

(
2πnx

T

)
+

∞∑
n=1

bn sin

(
2πnx

T

)

and to have in mind that the coefficients are chosen to satisfy the relations

∞∑
k=0

|bk | < ∞;
∞∑
k=1

|ak | < ∞.

The numbers an and bn are called Fourier coefficients. If a given periodic function
f is given, can it be approximate by a Fourier series? The answer is affirmative if
f ∈ C∞(R), that is if f is smooth. The coefficients determined by the function f are

a0 = 1

T

∫ T

0
f (x)dx;

an = 2

T

∫ T

0
f (x) cos

(
2πnx

T

)
dx;

bn = 2

T

∫ T

0
f (x) sin

(
2πnx

T

)
dx,

consequently, in the first case presented here, they are

a0 = 1

2π

∫ 2π

0
f (x)dx;

an = 1

π

∫ 2π

0
f (x) cos nxdx;

bn = 1

π

∫ 2π

0
f (x) sin nxdx .

The explanation of this result is the following: If

f (x) =
∞∑
k=0

ak cos kx +
∞∑
k=1

bk sin kx ,

it is

∫ 2π

0
f (x) cos nxdx =

∞∑
k=0

ak

∫ 2π

0
cos kx cos nxdx +

∞∑
k=1

bk

∫ 2π

0
sin kx cos nxdx =
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= an

∫ 2π

0
cos2 nxdx = an

∫ 2π

0

1 + cos 2nx

2
dx = πan .

We have used the two trigonometric formulas 2 cos kx cos nx = cos(k − n)x +
cos(k + n)x and 2 sin kx cos nx = sin(k − n)x + sin(k + n)x . If we integrate f (x)
written as a Fourier series, it results

∫ 2π

0
f (x)dx =

∫ 2π

0
a0dx +

∞∑
k=1

ak

∫ 2π

0
cos kxdx +

∞∑
k=1

bk

∫ 2π

0
sin kxdx = 2πa0,

therefore

a0 = 1

2π

∫ 2π

0
f (x)dx .

There is a Dirichlet theorem which asserts that, if f is smooth and periodic, then f
can be identified with its Fourier series, that is

f (x) =
∞∑
k=0

ak cos kx +
∞∑
k=1

bk sin kx

with the coefficients described by previous formulas. The result remains valid even
if the function f is smooth on each interval [0, x1), [x1, x2), ..., [xk, 2π] where k is
finite and there exist finite values for the left limits in xm, m = 1, 2, ..., k denoted
by f (xm − 0).

The road to the Fourier transforms passes through the complex form of the Fourier
series. A remark is necessary at this point. Sometimes in Physics, it is better to
work with complex numbers because many concepts have a more elegant form if
expressed in such way. Furthermore, the Mathematics of complex numbers includes
several applications to algebra, geometry and calculus which can be directly applied
to Physics.

With these considerations in mind, let us take into account the same smooth and
periodic function f : R → R. Consider the set of integers Z and the function

∑
n∈Z

fne
i
2πnx

T .

Let us now suppose that the complex Fourier series converges to f , that is we have

f (x) :=
∑
n∈Z

fne
i
2πnx

T .
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To determine the coefficients fn , we follow the idea previously considered in the case

of real Fourier series. This time we use the multiplication by e
−i
2πmx

T and integrate
after:

∫ T

0
f (x)e

−i
2πmx

T dx =
∫ T

0

⎛
⎝∑

n∈Z

fne
i
2πnx

T e
−i
2πmx

T

⎞
⎠ dx

=
∑
n∈Z

∫ T

0
fne

i
2π(n − m)x

T dx =

=
∑
n∈Z

fn

∫ T

0
e
i
2π(n − m)x

T dx .

It is ∫ T

0
e
i
2π(n − m)x

T dx =
{
0, m 	= n
T, m = n

which implies

fm = 1

T

∫ T

0
f (x)e

−i
2πmx

T dx .

In some problems, the interval [0, T ] is replaced by an interval [a, b] such that
b − a = T . In this case, if f is the complex Fourier series

f (x) = 1

b − a

∑
n∈Z

fne
2πinx/(b−a),

then

fm =
∫ b

a
f (x)e−2πimx/(b−a)dx .

An important comment is now in order. The coefficients fn are complex numbers
and f−m is the complex conjugate of fm because

f−m = 1

T

∫ T

0
f (x)e

i
2πmx

T dx = f ∗
m .

Therefore

Am = f−me
−i
2πmx

T + fme
i
2πmx

T = f ∗
me

−i
2πmx

T + fme
i
2πmx

T , m ∈ N, m ≥ 1
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has the property A∗
m = Am , that is a real number. If we take into account the formulas

cos y = eiy + e−iy

2

and

sin y = eiy − e−iy

2i
,

we can arrange Am as

bm cos
2πmx

T
+ am sin

2πmx

T
,

therefore, we can switch from the Fourier series with complex coefficients to the
Fourier series with real coefficients.

Let us connect this subject to the Hilbert spaces. Consider an orthogonal system
of elements in the Hilbert space H, that is

(en)n∈N ⊂ H, 〈en, em〉 = 0, if m 	= n.

If the values of the inner product are real, for x ∈ H, we can define the real numbers

cn = 1

||en||2 〈x, en〉

which are the Fourier coefficients for the Fourier series

∑
n∈N

cnen

corresponding to x with respect to the orthogonal system (en)n∈N.
Suppose that the given orthogonal system has the following property:

If 〈y, en〉 = 0 for all n ∈ N, then y = 0. If the orthogonal system (en)n∈N has the
previous property, it can be proven that any x ∈ H can be written as its associated
Fourier series, that is

x =
∑
n∈N

〈x, en〉
||en||2 en.

More specifically, under the same conditions, thePlancharel-Parseval equality holds.
That is

||x ||2 =
∑
n∈N

c2n||en||2 .

Considering now the set

{Fn ∈ L2([−π,π])| n ∈ Z} where Fn(x) = einx ,
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it is easy to see that it is an orthogonal system. For m = n, we have

〈Fn|Fn〉 =
∫ π

−π

F∗
n (x)Fn(x)dx =

∫ π

−π

e−inx einxdx = 2π,

and for m 	= n,

〈Fn|Fm〉 = 1

2π

∫ π

−π

F∗
n (x)Fm(x)dx = 1

2π

∫ π

−π

e−inx eimxdx = 1

2π

∫ π

−π

ei(m−n)xdx =

= 1

2π

ei(m−n)π − e−i(m−n)π

i(m − n)
= 0.

Therefore, the formulas for the Fourier coefficients, attached to a function f : R →
R, are

cn = 1

2π

∫ π

−π

f (x)einxdx, n ∈ Z

and the Plancharel-Parseval equality becomes

∑
n∈Z

c2n = 1

2π

∫ π

−π

f 2(x)dx .

We are now ready to define the Fourier transforms. The idea comes from the Fourier
series. A Fourier series decomposes a periodic function into a sum of sinusoidal
functions. A Fourier transform decomposes any function in a sum of sinusoidal
functions, therefore it is the extension of the Fourier series to non-periodic functions.
If you look at the formulas

f (x) :=
∑
n∈Z

fne
i
2πnx

T

and

fm = 1

T

∫ T

0
f (x)e

−i
2πmx

T dx,

the following definitions are the consequences.
The Fourier transform of a function f of variable x is the function f̂ of variable

k defined by

F( f (x)) = f̂ (k) :=
∫ ∞

−∞
f (x)e−ikxdx .

Let us observe that we offered two notations for the Fourier transform of f (x).
Both are important because the first one is related to the meaning and the second
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one can be used in complicate formulas, or even in the formula known as Fourier
inverse theorem, where the function f (x) is reconstructed starting the original Fourier
transform f̂ (k):

F−1( f̂ (k)) = f (x) = 1

2π

∫ ∞

−∞
f̂ (k)eikxdk.

It is important to say that the Fourier transforms act on functions f : R → C from
L1(R).

It appears as the Fourier pair

f ←→ f̂ ,

or, adopting the other notation, as

F−1( f̂ (k)) ←→ F( f (x)).

The sufficient conditions for the existence of the Fourier transform of f are
1. f has a finite number of discontinuities;
2. f ∈ L1(R).

With the above considerations in mind, let us define the Dirac delta function as
a generalized function which is 0 everywhere in R except for a single point, say 0,
where its “value” is +∞, having the supplementary property

∫ ∞

−∞
δ(x)dx = 1.

Obviously, it is not a “function” in the proper term, but this object can be thought as
the possibility to “charge” a single point from R. An equivalent definition is

δa(x) = lim
a→0

1

|a|√π
e−x2/a2 .

It is worth noticing that Fourier introduced it as the expression

δ(x − x ′) = 1

2π

∫ ∞

−∞
cos(kx − kx ′)dk,

while Cauchy expressed it in the exponential form

f (x) = 1

2π

∫ ∞

−∞
eikx

(∫ ∞

−∞
f (x ′)e−ikx ′

dx ′
)
dk

that is

δ(x − x ′) =
∫ ∞

−∞
eik(x−x ′)dk.
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This object is a distribution and there is amathematical domain developed by Laurent
Schwartz where the properties of such generalized functions are studied. Let us look
at the details of Cauchy exponential form for Dirac’s function. From the definitions
of direct and inverse Fourier transforms, it results

f (x) = 1

2π

∫ ∞

−∞
f̂ (k)eikxdk = 1

2π

∫ ∞

−∞

(
eikx

∫ ∞

−∞
f (x ′)e−ikx ′

dx ′
)
dk =

= 1

2π

∫ ∞

−∞

(
f (x ′)

∫ ∞

−∞
eik(x−x ′)dk

)
dx ′ = 1

2π

∫ ∞

−∞
f (x ′)δ(x − x ′)dx ′.

We have ∫ ∞

−∞
| f (x)|2dx =

∫ ∞

−∞
f ∗(x) f (x)dx =

=
∫ ∞

−∞

(
1

2π

∫ ∞

−∞
f̂ ∗(k)e−ikxdk

) (
1

2π

∫ ∞

−∞
f̂ (k ′)eik

′xdk ′
)
dx =

= 1

4π2

∫ ∞

−∞

((∫ ∞

−∞
f̂ ∗(k) f̂ (k ′)

∫ ∞

−∞
ei(k

′−k)xdx

)
dk ′

)
dk =

= 1

2π

∫ ∞

−∞
f̂ ∗(k)

(
1

2π

∫ ∞

−∞
f̂ (k ′)δ(k ′ − k)dk ′

)
dk =

= 1

2π

∫ ∞

−∞
f̂ ∗(k) f̂ (k)dk = 1

2π

∫ ∞

−∞
| f̂ (k)|2dk,

This is the central theorem of this theory and it is called Plancherel-Parseval’s for-
mula. The Plancherel-Parseval formula

∫ ∞

−∞
| f (x)|2dx = 1

2π

∫ ∞

−∞
| f̂ (k)|2dk

is used to prove Pinsky’s theorem which is presented below.
Let us consider first the Gauss wave packet

�(t, x) = 1√
2π�

∫ ∞

−∞
ei(px−E(p)t)/�φ(p)dp.

We start with t = 0 and

�(0, x) = 1√
2π�

∫ ∞

−∞
eipx/�φ(p)dp.
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�(0, x) is the inverse Fourier transform of φ(p)modulo a constant. In the case when
the function φ is a Gauss function of the form

φ(p) = Ce−(p−p0)2/2(�p)2 ,

where�p is a p in the interval centered at p0 andC is determined from the condition

∫ ∞

−∞
|φ(p)|2dp = 1,

the function

�(0, x) = C√
2π�

∫ ∞

−∞
eipx/�e−(p−p0)2/2(�p)2dp = Cep0x/h√

2π�

∫ ∞

−∞
ei(p−p0)x/�e−(p−p0)2/2(�p)2dp

is the inverse Fourier transform of the Gauss function

φ(p) = Ce−(p−p0)2/2(�p)2 ,

again modulo a constant. The inverse Fourier transform can be computed, after
convenient substitutions, taking into account the integral

∫ ∞

−∞
e−au2+budu =

√
π

a
e−b2/2a2 .

According to these results and deginitions, If

∫ ∞

−∞
|φ(p)|2dp = 1,

then from the Plancherel-Parseval theorem, it follows that

∫ ∞

−∞
|�(0, x)|2dx = 2π.

The spread around p = 0 is measured by the dispersion about zero, that is

D0(φ) =
∫ ∞

−∞
p2|φ(p)|2dp.

The functions pφ(p) and φ′(p) are square integrable and the equality

D0(φ)D0(�(0, x)) = k0π

2
,
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can be proven, where k0 is a constant. This is the Heisenberg Uncertainty Principle
expressed with respect to the Fourier transforms.

This result is a particular case of the Pinsky Theorem which asserts that if the
Fourier pair f and f̂ are normalized functions and f fulfills the above properties for
φ, then

D0( f )D0( f̂ ) ≥ π

2
,

the equality is attained in the case when f is a normalized Gauss function.
Let us sketch a proof in the special case when we suppose, for f : R → C, that

∫ ∞

−∞
f 2(x)dx = 1

and the supplementary condition lim|x |→+∞ x f 2(x) = 0.
We want, under these conditions, to prove that

∫ ∞

−∞
x2 f 2(x)dx

∫ ∞

−∞
k2| f̂ (k)|2dk ≥ π

2
.

Let us denote by f ′ the derivative of f . Consider the integral I (α) which has the
property

I (α) :=
∫ ∞

−∞
(αx f (x) + f ′(x))2dx ≥ 0 for all α ∈ R,

that is

(∫ ∞

−∞
x f (x) f ′(x)dx

)2

−
∫ ∞

−∞
x2 f 2(x)dx

∫ ∞

−∞
( f ′(x))2dx ≤ 0.

From
∫ ∞

−∞
x f (x) f ′(x)dx = x f 2(x)|+∞

−∞ −
∫ ∞

−∞
(x f (x) f ′(x) + f 2(x))dx

= −1 −
∫ ∞

−∞
x f (x) f ′(x)dx ,

it results ∫ ∞

−∞
x f (x) f ′(x)dx = −1

2
,

i.e.

1

4
≤

∫ ∞

−∞
x2 f 2(x)dx

∫ ∞

−∞
( f ′(x))2dx =

(∫ ∞

−∞
x2 f 2(x)dx

) (
1

2π

∫ ∞

−∞
| − ik f̂ (k)|2dk

)
,
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the last integral being the consequence of Plancherel-Parseval’s formula applied to
the derivative and the trivial Fourier pair f ′(x) ←→ −ik f̂ (k). It is

π

2
≤

(∫ ∞

−∞
x2 f 2(x)dx

) (∫ ∞

−∞
k2| f̂ (k)|2dk

)
.

Therefore, at least at the level of basic knowledge, it is clear that the Heisenberg
Uncertainty Principle has its roots in theMathematics of Fourier transforms. Another
proof of Uncertainty Principle will be presented in Lecture 43.

Summary of Lecture 37. The Fourier series allow to describe complicated
periodic functions with respect to simple waves represented by sin kx and
cos kx while the Fourier transforms decompose any function, not only the
periodic ones, with respect to sinusoidal functions.

Consider a given periodic function f : [0, 2π] → R which can be repre-
sented as the real Fourier series

∞∑
k=0

ak cos kx +
∞∑
k=1

bk sin kx .

It can be proven that the Fourier coefficients of such a representation are

a0 = 1

2π

∫ 2π

0
f (x)dx;

an = 1

π

∫ 2π

0
f (x) cos nxdx;

bn = 1

π

∫ 2π

0
f (x) sin nxdx .

The theory can be presented in a more general form. A periodic function
f : R → R, with the fundamental period T , satisfies, for all x ∈ R, the equality
f (x + T ) = f (x).
A Fourier series with the period T is the function

g(x) :=
∞∑
n=0

an cos

(
2πnx

T

)
+

∞∑
n=1

bn sin

(
2πnx

T

)

and the coefficients are chosen to satisfy the relations

∞∑
k=0

|bk | < ∞;
∞∑
k=1

|ak | < ∞.
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If f ∈ C∞(R), that is f is smooth, f can be represented as a real Fourier series
with the coefficients

a0 = 1

T

∫ T

0
f (x)dx;

an = 2

T

∫ T

0
f (x) cos

(
2πnx

T

)
dx;

bn = 2

T

∫ T

0
f (x) sin

(
2πnx

T

)
dx .

The road to Fourier transforms passes through the complex form of the Fourier
series. Let us consider the same smooth and periodic function f : R → R.

Consider the set of integers Z and the function

∑
n∈Z

fne
i
2πnx

T .

Suppose that the complex Fourier series converges to f , that is

f (x) :=
∑
n∈Z

fne
i
2πnx

T .

The coefficients are proven to be

fm = 1

T

∫ T

0
f (x)e

−i
2πmx

T dx .

The coefficients fn are complex numbers and f−m is the complex conjugate of
fm because

f−m = 1

T

∫ T

0
f (x)e

i
2πmx

T dx = f ∗
m .

Therefore

Am = f−me
−i

2πmx

T + fme
i
2πmx

T = f ∗
me

−i
2πmx

T + fme
i
2πmx

T , m ∈ N, m ≥ 1
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has the property A∗
m = Am , that is a real number. If we take into account the

formulas

cos y = eiy + e−iy

2

and

sin y = eiy − e−iy

2i
,

we can arrange Am as

bm cos
2πmx

T
+ am sin

2πmx

T
,

therefore we can switch from the Fourier series with complex coefficients to
the Fourier series with real coefficients.

The theory canbe formulated in theHilbert spaces. For anorthogonal system
(en)n∈N for x ∈ H, the associated Fourier series can be written, that is

∑
n∈N

〈x, en〉
||en||2 en.

If the Hilbert space has the property 〈y, en〉 = 0 it implies y = 0, then, for any
x , it is

x =
∑
n∈N

〈x, en〉
||en||2 en

and the Plancharel-Parseval equality

||x ||2 =
∑
n∈N

c2n||en||2

holds. In the Hilbert space L2([−π,π]), we can consider the set

{Fn ∈ L2([−π,π])| n ∈ Z} where Fn(x) = einx .

It is easy to see that it is an orthogonal system. Therefore, the Fourier coeffi-
cients attached to a function f : R → R are

cn = 1

2π

∫ π

−π

f (x)einxdx, n ∈ Z

and the Plancharel-Parseval equality becomes
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∑
n∈Z

c2n = 1

2π

∫ π

−π

f 2(x)dx .

The Fourier transform of a function f of variable x is the function f̂ of variable
k defined by

F( f (x)) = f̂ (k) :=
∫ ∞

−∞
f (x)e−ikxdx .

The function f (x) is reconstructed starting from the original Fourier transform
f̂ (k):

F−1( f̂ (k)) = f (x) = 1

2π

∫ ∞

−∞
f̂ (k)eikxdk.

It is important to say that the Fourier transforms act on functions f : R → C

from L1(R). The result is a Fourier pair

f ←→ f̂ ,

or, using the other notation,

F−1( f̂ (k)) ←→ F( f (x)).

The sufficient conditions for the existence of Fourier transform of f are
1. f has a finite number of discontinuities;
2. f ∈ L1(R).

The central theorem of this theory is the Plancherel-Parseval formula

∫ ∞

−∞
| f (x)|2dx = 1

2π

∫ ∞

−∞
| f̂ (k)|2dk.

Consider the Gauss wave packet

�(t, x) = 1√
2π�

∫ ∞

−∞
ei(px−E(p)t)/�φ(p)dp.

in the case t = 0, i.e.

�(0, x) = 1√
2π�

∫ ∞

−∞
eipx/�φ(p)dp.

�(0, x) is the inverse Fourier transform of φ(p) modulo the constant con-
sidered in the above formula.
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In the case the function φ is a Gauss function of the form

φ(p) = Ce−(p−p0)2/2(�p)2 ,

where �p is a p on an interval centered at p0 and C is determined from the
condition ∫ ∞

−∞
|φ(p)|2dp = 1,

the function

�(0, x) = C√
2π�

∫ ∞

−∞
eipx/� · e−(p−p0)2/2(�p)2dp =

= Cep0x/h√
2π�

∫ ∞

−∞
ei(p−p0)x/� · e−(p−p0)2/2(�p)2dp

is the inverse Fourier transform of the Gauss function

φ(p) = Ce−(p−p0)2/2(�p)2 ,

again modulo a constant. The inverse Fourier transform can be computed after
convenient substitutions taking into account the integral

∫ ∞

−∞
e−au2+budu =

√
π

a
e−b2/2a2 .

Since ∫ ∞

−∞
|φ(p)|2dp = 1,

from the Plancherel-Parseval theorem, it follows that

∫ ∞

−∞
|�(0, x)|2dx = 2π.

The spread around p = 0 is measured by the dispersion about zero, that is

D0(φ) =
∫ ∞

−∞
p2|φ(p)|2dp.

It can be proven that the functions pφ(p) and φ′(p) are square integrable and
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D0(φ)D0(�(0, x)) = k0π

2
,

where k0 is a constant. In fact this is the Heisenberg Uncertainty Principle
expressed with respect to the Fourier transforms.
To represent this concept, the first integral can be imagined as a number a corre-
sponding to a length and the second integral is a number b corresponding to the
width of a rectangle. The numbers are linked by the direct and inverse Fourier
transforms. These Fourier transforms act in such a way that if a becomes a′,
then, it is mandatory that b becomes b′ with ab = a′b′, that is the area of the
rectangle is preserved.
This result is a particular case of the Pinsky theorem which asserts that if
the Fourier pair f and f̂ are normalized functions and f fulfills the above
properties of φ, then

D0( f )D0( f̂ ) ≥ π

2
,

the equality is attained in the case when f is a normalized Gauss function.
In conclusion, we can state that the Heisenberg Uncertainty Principle can be
based on the properties of Fourier transforms.



Chapter 9
The Principles of Quantum Mechanics

When the solution is simple, God is answering.

Albert Einstein

9.1 Lecture 38: Operators in Quantum Mechanics

In Lecture 31, we discussed how the Schrödinger equation can be transformed in a
problem of eigenvalues and eigenvectors andwe highlighted a linear operator derived
from the equation. Let us reload the idea because we want to formalize the role of
operators related to Quantum Mechanics. To advance in this subject, we start from
the wave function

�(t, x) = ei(kx−ωt)

where ω and k are determined by the formulas p = �k and H = E = �ω = p2

2m
.

Since
∂

∂x
�(t, x) = ik�(t, x) ,

it results
�

i

∂

∂x
�(t, x) = p�(t, x).

We can define a momentum operator, denoted p̂, which extracts the information p
from the wave function �, that is

p̂� = p�.
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This operator is defined as

p̂ := �

i

∂

∂x
.

We can also write the previous formula as

p̂ := −i�
d

dx

for a one-dimensional problem. Therefore thewave function� becomes an eigenvec-
tor and p the corresponding eigenvalue for the momentum operator p̂. Considering
the interpretation of � as a “state function” (see Lecture 41 below), we can call
�, appearing in the relation p̂� = p�, an eigenstate of p̂ corresponding to the
eigenvalue p. In the same way, we can extract the information “energy” from �. It
is

∂

∂t
�(t, x) = −iω�(t, x),

i.e.

i�
∂

∂t
�(t, x) = E�(t, x).

Since the particle energy is related to its momentum, we can write

E�(t, x) = p2

2m
�(t, x) = p

2m
(p�(t, x)) = p

2m

(
�

i

∂

∂x
�(t, x)

)
= 1

2m

�

i

∂

∂x

(
�

i

∂

∂x
�(t, x)

)
=

= 1

2m

(
�

i

∂

∂x

(
�

i

∂

∂x

))
�(t, x) = 1

2m

(
p̂ · p̂)�(t, x) = p̂2

2m
�(t, x),

which implies the definition of the operator energy Ê as

Ê := p̂2

2m
= − �

2

2m

∂2

∂x2
or Ê := − �

2

2m

d2

dx2
,

the last equality holds for one-dimensional problems. The result is a relation implying
the energy operator Ê , whose eigenstate � corresponds to the “energy eigenvalue”
E ,

Ê�(t, x) = E�(t, x)

together with its corresponding form in derivatives

i�
∂

∂t
�(t, x) = − �

2

2m

∂2

∂x2
�(t, x).
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Therefore the Schrödinger equation for a particle is described by the energy operator
Ê in the form

i�
∂

∂t
�(t, x) = Ê�(t, x).

These results can be stated as follow: the operators p̂ and Ê represent the spatial and
time translations, respectively, for the wave function �(t, x).

Let us reload the discussion from Lecture 31 now in the new language we devel-
oped. The Schrödinger equation is linear and allows more general solutions than the
only de Broglie wave function ei(kx−ωt). Any superposition

�(t, x) = ei(k1x−ω1t) + ei(k2x−ω2t)

of de Broglie waves is a solution, but even if each term corresponds to a given
momentum, the sumdoes not correspond to a definitemomentumor a definite energy,
too.

To see this fact, let us consider

p̂�(t, x) = �

i

∂

∂x
�(t, x) = �k1e

i(k1x−ω1t) + �k2e
i(k2x−ω2t) �= �k(ei(k1x−ω1t) + ei(k2x−ω2t)).

The wave packet

�(t, x) =
∫ ∞

−∞
ei(kx−ω(k)t)φ(k)dk

is the general solution of the Schrödinger equation for any function φ(k). In fact, if
we know an initial wave function �(0, x), we can construct its Fourier transform

φ(k) =
∫ ∞

−∞
e−ikx�(0, x)dx .

Now, with this given φ(k), we can construct the evolution in time of �(0, x), that is
�(t, x).

We continue considering the case when the particle is moving under the action of
an external potential V (t, x). In the previous case, the total energy H was only the

kinetic energy E = p2

2m
. In this case, it is H = E + V = p2

2m
+ V (t, x).

The postulated Schrödinger time independent equation, that we presented in Lec-
ture 23, is

H� = − �
2

2m

d2�

dx2
+ V (x)� .

By definition, the energy operator is the Hamiltonian operator, denoted by Ĥ , that is

Ĥ := − �
2

2m

∂2

∂x2
+ V̂ (x).
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Let us continue with the position operator x̂ which acts on f (x) by the rule

x̂ f (x) := x f (x).

It is easy to observe that

x̂2 f (x) = x̂(x f (x)) := x2 f (x),

so, in general,
x̂ k f (x) := xk f (x).

For two linear operators X̄ and Ȳ , we can define the commutator operator

[X̄ , Ȳ ] := X̄ Ȳ − Ȳ X̄ .

It is easy to observe that the commutator of two linear operators is again a lin-
ear operator and [X̄ , Ȳ ] = −[Ȳ , X̄ ]. Of course, if the two operators commute, then
[X̄ , Ȳ ] = 0̂.

Exercise 9.1.1 If p̂ is the momentum operator and x̂ is the position operator, we
have

[ p̂, x̂] = −i�.

Solution: Let us consider the one-dimensional case, so it is up to us if we use the
formula with ∂ or the one using d.

[ p̂, x̂] f (x) = ( p̂x̂ − x̂ p̂) f (x) = p̂x̂ f (x) − x̂ p̂ f (x) = p̂(x̂ f (x)) − x̂( p̂ f (x)) =
(

�

i

∂

∂x

)
x̂ f (x) − x̂

(
�

i

∂

∂x

)
f (x) = �

i
f (x) + �

i
x

(
∂ f

∂x

)
− �

i
x

(
∂ f

∂x

)
= −i� f (x).

Looking at the next exercise we understand why the operators position and
momentum, used in Quantum Mechanics cannot be represented as matrices with
elements in C. Matrices are linear operators and we can define eigenvalues and
eigenvectors for matrices. It makes sense to define the commutator of two matrices
and, if the matrices commute, the result is the 0 matrix. However an identity, as the
one obtained in the previous exercise, is impossible to be obtained. Let us underline
this idea: there is no matrix representation for the two previous operators, that is for
the momentum and position operators.

Exercise 9.1.2 Show that it is not possible to find two matrices X,Y ∈ Mn(C) such
that

XY − Y X = In.

Hint: It is easy to see that the trace of a matrix has the property

Tr(XY − Y X) = 0.
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Therefore, if the equality
XY − Y X = In

is satisfied for a pair of matrices X and Y then the statement

0 = Tr In = n,

is false.

Let us continue with the wave function seen in Lecture 34, i.e.

�(t, r) = Aei(k·r−ωt),

for A = 1, that is
�(t, r) = ei(kx x+ky y+kz z−ωt).

This is the wave function associated to the momentum p = �k and H = E = �ω =
p2

2m
= 1

2m
p · p. It is easy to observe

�

i
� � = �

i
(ikx , iky, ikz)� = p�.

Therefore the information “p” is extracted from the wave function� by the operator
p̂ defined as

p̂ := �

i
� .

In the following, we need to change the classical notations for the coordinates and
momentum by (x1, x2, x3) := (x, y, z) and (p1, p2, p3) := (px , py, pz) to define

p̂k = �

i

∂

∂xk
, k = 1, 2, 3.

The position operator x̂ acts on f (x) under the rule

x̂ f (x) := (x̂1, x̂2, x̂3) f (x) = (x1, x2, x3) f (x),

that is
x̂k f (x) = xk f (x), k = 1, 2, 3.

It is important to observe that both the position operator x̂ or the momentum operator
p̂ do not depend on time. The above relation

[ p̂, x̂] = −i�,
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leads to
[ p̂ j , x̂k] = −i�δ jk, j, k = 1, 2, 3,

where δ jk is theKroneker delta. To extract, also in this case, the information “energy”,
we have

∂

∂t
� = −iω�,

i.e.

i�
∂

∂t
� = E� = p2

2m
�,

therefore

E� = 1

2m
p · p� = 1

2m
p · �

i
� � = 1

2m

�

i
� ·p� =

= 1

2m

�

i
� ·�

i
� � = 1

2m
p̂ · p̂� = p̂2

2m
�,

which implies the definition of the operator energy Ê in terms of Laplacian �2

Ê := p̂2

2m
= 1

2m

�

i
� ·�

i
� = − �

2

2m
�2 .

Summary of Lecture 38. Starting from the wave function

�(t, x) = ei(kx−ωt)

where ω and k are determined by the formulas p = �k and H = E = �ω =
p2

2m
, we can define a momentum operator, denoted p̂, which extracts the

information p from the wave function �,

p̂� = p�.

This operator is defined as

p̂ := �

i

∂

∂x
= −i�

d

dx
,

where the last equality is written for a one-dimensional problem. The same
notation can be considered for the energy operator in one-dimensional case.
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Therefore, the definition of the energy operator Ê as

Ê := p̂2

2m
= − �

2

2m

∂2

∂x2
= − �

2

2m

d2

dx2

leads to its eigenstate � corresponding to the “energy eigenvalue” E , that is

Ê�(t, x) = E�(t, x).

It can be defined the position operator x̂ which acts on f (x) under the rule

x̄ f (x) := x f (x).

The most important relation implying p̂ and x̂ is

[ p̂, x̂] = −i�, that is [x̂, p̂] = i�

which allows to eliminate a description of QuantumMechanics by matrices of
Mn(C). If the wave function is defined in three-dimensional space, it is,

�(t, r) = ei(kx x+ky y+kz z−ωt),

where p = �k and H = E = �ω = p2

2m
= 1

2m
p · p. It is easy to observe that

�

i
� � = �

i
(ikx , iky, ikz)� = p�.

Therefore the information “p” is extracted from the wave function � by the
operator p̂ defined as

p̂ := �

i
� .

Each component satisfies the relation

p̂k = �

i

∂

∂xk
, k = 1, 2, 3.

The position operator x̂ acts on f (x) under the rule

x̂ f (x) := (x̂1, x̂2, x̂3) f (x) = (x1, x2, x3) f (x),

that is x̂k f (x) = xk f (x), k = 1, 2, 3. In this case, the following relations hold
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[ p̂ j , x̂k] = −i�δ jk, j, k = 1, 2, 3,

where δ jk is the Kroneker delta symbol.
The definition of the operator energy Ê in terms of the Laplace operator

�2 is

Ê := p̂2

2m
= 1

2m

�

i
� ·�

i
� = − �

2

2m
�2

being related to Schrödinger equation when the potential is V = 0,

i�
∂

∂t
� = Ê� = − �

2

2m
�2 �.

9.2 Lecture 39: The Relation
φ∗ �2 � − � �2 φ∗ = div(φ∗ � � − � � φ∗) and Its
Consequences

Let us start from the time independent Schrödinger equation for a particle in presence
of a potential V (r), as in Lecture 35:

H�(r) =
(

− �
2

2m
�2 +V (r)

)
�(r).

Here, it is r = (x, y, z). The momentum vector p and wavenumber vector k are
connected by the relation p = �k and a solution is the the wave function

�(t, r) = Aei(k·r−ωt).

As we did it in the previous lecture, we can consider the Hamilton operator Ĥ , here

Ĥ := − �
2

2m
�2 +V (r)

and the time independent Schrödinger equation appears as an operator problem
related to eigenvectors and eigenvalues, that is

Ĥ� = H�.

Obviously, Ĥ is a linear operator.
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Exercise 9.2.1 For two wave functions � and φ the following equality holds

φ∗ �2 � − � �2 φ∗ = div(φ∗ � � − � � φ∗).

To show this, we start from a function f : R
3 → C , whose gradient is the vector

� f ∈ C
3 established by the formula

� f =
(

∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

)
.

Then, for a vector A(x, y, z) = (Ax (x, y, z), Ay(x, y, z), Az(x, y, z)) ∈ C
3 its diver-

gence is expressed by the formula

div A = ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z
.

First, it is easy to see that the divergence applied to the gradient operator leads to the
Laplace operator,

div� f = div

(
∂ f

∂x
,
∂ f

∂y
,
∂ f

∂z

)
= ∂

∂x

(
∂ f

∂x

)
+ ∂

∂x

(
∂ f

∂y

)
+ ∂

∂x

(
∂ f

∂z

)

= ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2
= �2 f.

Then, if we take into account that

div(φ∗ � �) = div

(
φ∗ ∂�

∂x
,φ∗ ∂�

∂y
,φ∗ ∂�

∂z

)
= ∂

∂x

(
φ∗ ∂�

∂x

)
+ ∂

∂y

(
φ∗ ∂�

∂y

)

+ ∂

∂z

(
φ∗ ∂�

∂z

)
= ∂φ∗

∂x

∂�

∂x
+ ∂φ∗

∂y

∂�

∂y
+ ∂φ∗

∂z

∂�

∂z
+ φ∗ �2 �

and

div(� � φ∗) = ∂�

∂x

∂φ∗

∂x
+ ∂�

∂y

∂φ∗

∂y
+ ∂�

∂z

∂φ∗

∂z
+ � �2 φ∗,

it results
div(φ∗ � � − � � φ∗) = φ∗ �2 � − � �2 φ∗. �

In Lecture 31 we showed that the Hamilton operator, in the case of a free particle,

denoted there by H := d2

dx2
, is Hermitian on L2([0, L]). We started from a compu-

tation as

〈
vn | d2

dx2
un

〉
L2([0,L])

=
∫ L

0
v∗
n (x)

d2un
dx2

(x)dx =
∫ L

0

d2v∗
n

dx2
(x)un(x)dx =

〈
d2

dx2
vn | un

〉
L2([0,L])
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made for two sets un, vn ∈ C∞([0, L]) which converge to two functions u and v

of L2([0, L]). It is important to say that, in Lecture 31, all functions we used had
“proper boundary conditions” that is they vanish in x = 0 and x = L . Finally we
succeeded to show that

〈
v | d2

dx2
u

〉
L2([0,L])

=
〈
d2

dx2
v | u

〉
L2([0,L])

,

that is the Hamiltonian H := d2

dx2
is a Hermitian operator in L2([0, L]). We intend

to show that Ĥ has the same property, now in L2(R3).

Proposition 9.2.2 The Hamilton linear operator Ĥ = − �
2

2m
�2 +V (t, r) is a Her-

mitian operator in L2(R3).

Proof Since V (r) ∈ R, it results, for all φ, � ∈ L2(R3) that

〈φ, V�〉 =
∫∫∫

R3
φ∗(r)(V�)(r)dr =

∫∫∫
R3

(Vφ)∗(r)�(r)dr = 〈Vφ, �〉.

To conclude, it is enough to prove that the Laplace operator is a Hermitian operator,
that is, for all φ, � ∈ L2(R3), we have

〈φ,�2�〉 =
∫∫∫

R3
φ∗(r) �2 �(r)dr =

∫∫∫
R3

�2φ∗(r)�(r)dr = 〈�2φ, �〉.

The idea is the same as in Lecture 31.We have to use an important result adapted now
for L2(R3). It is a density property for the compact support C∞ functions, denoted
by C∞

0 (R3) in L2(R3). By definition, the support of a function f : R
3 → C is the

topological closure of the set of all x ∈ R
3 such that f (x) �= 0. It is enough to prove

the property for two sets of functions φn and �n from C∞
0 (R3) which converges to

the two functions φ and � of L2(R3). Therefore we have to prove

〈φn,�2�n〉 =
∫∫∫

R3
φ∗
n(r) �2 �n(r)dr =

∫∫∫
R3

�2φ∗
n(r)�n(r)dr = 〈�2φn, �n〉.

The integrals are in fact calculated on a compact subset Dn in R
3 because both

functions have compact supports. We can even consider Dn as a sphere such that
both functions are 0 on its surface, denoted by Sn , and outside it. We have

∫∫∫
Dn

[
φ∗
n �2 �n − �n �2 φ∗

n

]
dr =

∫∫∫
Dn

div(φ∗
n � �n − �n � φ∗

n)dr.
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The Gauss divergence theorem states

∫∫∫
Dn

div(φ∗
n � �n − �n � φ∗

n)dr =
∫∫

Sn

(φ∗
n � �n − �n � φ∗

n) · 
ndS.

We want to show that the last integral is 0. Using the Mean Value Theorem for
multiple integrals applied twice, it results that u0 and l0 exist in Sn such that

∫∫∫
Dn

[
φ∗
n �2 �n − �n �2 φ∗

n

]
dr = φ∗

n(u0)
∫∫

Sn
��n · 
ndS − �n(l0)

∫∫
Sn

�φ∗
n · 
ndS.

The right member becomes 0. Since the difference between the two integrals is 0
and converges at

〈φ,�2�〉 − 〈�2φ, �〉

we obtain the desired result

〈φ,�2�〉 = 〈�2φ, �〉.

�

Consider now the time-dependent Schrödinger equation

i�
∂

∂t
�(t, r) =

(
− �

2

2m
�2 +V (t, r)

)
�(t, r),

as considered in Lecture 38, together with its complex conjugate

−i�
∂

∂t
�∗(t, r) =

(
− �

2

2m
�2 +V (t, r)

)
�∗(t, r).

Multiply the first relation by �∗ and the second one by �. It results

(
�∗ ∂

∂t
� + �

∂

∂t
�∗

)
= − �

2im

(
�∗ �2 � − � �2 �∗)

= − �

2im
div(�∗ � � − � � �∗),

that is
∂

∂t
|�|2 = − �

2im
div(�∗ � � − � � �∗).

If we denote by


J := �

2im
(�∗ � � − � � �∗),

the last equation becomes
∂

∂t
|�|2 + div 
J = 0,
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which is a conservation law. We proceed as in Proposition9.2.2 assuming the con-
servation law, written with respect to the set of functions �n from C∞

0 (R3) which
converges to the function � in L2(R3), i.e. we write it as

∂

∂t
|�n|2 = − �

2im
div(�∗

n � �n − �n � �∗
n ) = − div Jn.

Using the set Dn ⊂ R
3 described in Proposition9.2.2, it follows

∫∫∫
Dn

∂

∂t
|�n|2dr +

∫∫∫
Dn

div 
Jndr = 0

and then
∂

∂t

∫∫∫
Dn

|�n|2dr +
∫∫

Sn


Jn · 
ndS = 0.

The same argument used in Proposition9.2.2 makes the last integral to be 0. When
n → ∞, it results

∂

∂t

∫∫∫
R3

|�|2dr = 0.

Therefore ∫∫∫
R3

|�|2dr = constant = A.

It is clear the possibility to act on � such that the constant becomes 1, i.e. this result
expresses the idea that the particle must be somewhere in the entire space. Choosing

�1 := 1

A
�,

we obtain ∫∫∫
R3

|�1|2dr = 1.

In this context, it is possible to offer another interpretation for the functions �. We
will refer to it as a state function which will be discussed in Lecture 41. To anticipate,
|�|2 will be related to the probability to find the particle in a given volume and 
J
is the probability current density. If we look back, we understand how important
is the relation φ∗ �2 � − � �2 φ∗ = div(φ∗ � � − � � φ∗) to prove that Ĥ is a

Hermitian operator and the conservation law
∂

∂t

∫∫∫
R3 |�|2dr = 0. For both results,

the key concept is the density of C∞
0 (R3) in L2(R3).
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Summary of the Lecture 39. After we prove that, for two wave functions �

and φ, the following equality holds

φ∗ �2 � − � �2 φ∗ = div(φ∗ � � − � � φ∗),

we demonstrated that Ĥ = − �
2

2m
�2 +V (t, r) is a Hermitian operator in

L2(R3).
Since V (r) ∈ R, it results

〈φ, V�〉 =
∫∫∫

R3
φ∗(r)(V�)(r)dr =

∫∫∫
R3

(Vφ)∗(r)�(r)dr = 〈Vφ, �〉 .

It remains to prove that the Laplace operator isHermitian satisfying the relation

〈φ,�2�〉 =
∫∫∫

R3
φ∗(r) �2 �(r)dr =

∫∫∫
R3

�2φ∗(r)�(r)dr = 〈�2φ, �〉.

The last equality is a consequence of the result presented at the beginning of
this summary. Using the time-dependent Schrödinger equation, we can derive

∂

∂t
|�|2 = − �

2im
div(�∗ � � − � � �∗) ,

which leads to the conservation law

∂

∂t

∫∫∫
R3

|�|2dr = 0 ,

which implies to interpret � as a state function as we will see in Lecture 41.

9.3 Lecture 40. Similarities with Hamiltonian Formalism
of Classical Mechanics

At the beginning of this book, in the first six lectures, we discussed the Lagrangian
and the Hamiltonian formalisms of Classical Mechanics. Let us now connect them to
Quantum Mechanics. The connection can be realized through the Hamilton–Jacobi
equation. We have to consider the Hamilton principal function S(qk, t) and its total
differential

dS =
∑
k

∂S

∂qk
dqk + ∂S

∂t
dt.
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The time derivative of Hamilton principal function is

dS

dt
=

∑
k

∂S

∂qk
q̇k + ∂S

∂t
.

Considering now pk = ∂S

∂qk
and

∂S

∂t
= −H , where H is the classical Hamiltonian,

we have
dS

dt
=

∑
k

∂S

∂qk
q̇k + ∂S

∂t
=

∑
k

pkq̇k − H.

Alternatively, the right member, according to the Legendre transform, is the
Lagrangian L . We obtain

dS

dt
=

∑
k

pkq̇k − H = L

and

S =
∫

Ldt,

that is the Hamilton principal function S of a given action. From

pk = ∂S

∂qk
, k = 1, 2, 3

after replacing x := q1, y = q2, z = q3, px := p1, py := p2, pz := p3, we have
the Hamiltonian written in the form

H = 1

2m
(p2x + p2y + p2z ) + V (t, x, y, z) = −∂S

∂t

transformed into the Hamilton–Jacobi equation of Classical Mechanics,

−∂S

∂t
= 1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2
]

+ V t, x, y, z).

For the Schrödinger equation, we can proceed in the following way. If

�(t, r) := ei S(t,r)/�

where S is a complex function depending on t and r = (x, y, z), we have

∂�

∂t
= i

�

∂S

∂t
�; ∂�

∂x
= i

�

∂S

∂x
�; ∂2�

∂x2
= i

�

∂2S

∂x2
� − 1

�2

(
∂S

∂x

)2

�
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and the same holds for the variables y and z. Replacing in the time-dependent
Schrödinger equation

i�
∂

∂t
�(t, r) =

(
− �

2

2m
�2 +V (t, r)

)
�(t, r)

the following equality appears:

−∂S

∂t
= 1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2
]

− i�

2m
�2 S + V (t, x, y, z).

This is the Hamilton–Jacobi equation for Quantum Mechanics. On the other hand,
the classical Hamilton–Jacobi equation is recovered as soon as the term in � is
negligible. According to this result, we realize that the Hamilton–Jacobi formalism
works in Quantum Mechanics and it is directly connected to the same formalism in
Classical Mechanics.

SummaryofLecture 40.TheHamilton–Jacobi equation ofClassicalMechan-
ics

−∂S

∂t
= 1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2
]

+ V (t, x, y, z)

depends on theHamilton principal function S. This is an action and depends on
coordinates and time. It can be obtained starting from the classical Hamiltonian
and replacements suggested by Legendre’s transform.

The equivalent of Hamilton–Jacobi equation in Quantum Mechanics is

−∂S

∂t
= 1

2m

[(
∂S

∂x

)2

+
(

∂S

∂y

)2

+
(

∂S

∂z

)2
]

− i�

2m
�2 S + V (t, x, y, z).

It is obtained by replacing, in the time-dependent Schrödinger equation,

i�
∂

∂t
�(t, r) =

(
− �

2

2m
�2 +V (t, r)

)
�(t, r)

the wave function
�(t, r) := ei S(t,r)/�

where S is a complex function depending on t and r = (x, y, z).The difference
between classical and quantum formulation is due to the term containing �

which is neglected in Classical Mechanics.
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9.4 Lecture 41: From the Wave Function to the Quantum
State. The Postulates of Quantum Mechanics

The Uncertainty Principle, formulated by Heisenberg in 1927, and the conservation
law for� (seeLecture 39) offer the possibility to set up a paradigmonhow to interpret
the concepts of Quantum Mechanics. The so-called Copenhagen Interpretation of
QuantumMechanics [26], proposed byMax Born, allows to understand the meaning
of state function or quantum state. Essentially, the main statements are:

1. Each wave function � is a pure state function and, from a mathematical point of
view, it represents an element of a Hilbert finite/infinite/real/complex space.

2. Each superposition of pure state functions is also a state function of the system.
They are elements of a Hilbert space and the coefficients of pure states, involved
in the superposition, are real/complex arbitrary numbers.

3. Mixed states are state functions. They correspond to a probabilistic mixture of
pure states. In fact, mixed states represent the probabilistic degree of knowledge
of a statistical ensemble of independent systems. From a mathematical point of
view, the mixed states � can be expressed with respect to pure states �n whose
coefficients an are real numbers called probability amplitudes. The square of
such probability amplitude, pn := |an|2 = ana∗

n , means the probability to find the
system � in the pure state �n .

These statements have to be understood with respect to experimental results.
Suppose we study a large number of independent identical systems, each system
consisting of one particle moving under the same force acting for all systems. We
call this situation as identically prepared systems. It is clear that a wave function
� describes all this set of systems, that is � can describe the state of the set of
identically prepared systems. This justifies why � is often called the quantum state
of the system or a quantum vector state.

We can consider particles in a one-dimensional space or in a three-dimensional
space. The wave function � depends then on (t, x) or on (t, x, y, z).

Born’s approach to the problem is: The state function� points out the probability
of finding the particle, at a given time, in a given space region. Let us suppose that
the Hilbert space we use for modeling the experiment is L2(R). Taking into account
this approach, it is mandatory to have

∫ ∞

−∞
|�(t, x)|2dx =

∫ ∞

−∞
�∗(t, x)�(t, x)dx = 1,

that is the particle is somewhere on the real line. If measurements are made for all
systems, the probability to find at the time t the particle, represented by �, inside
the interval centered at x0 and having the dimension 2a denoted by U is

P(t,U ) =
∫ x0+a

x0−a
|�(t, x)|2dx =

∫ x0+a

x0−a
�∗(t, x)�(t, x)dx .
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Therefore, the state function of the system is the state function of a set of identically
prepared systems and theprobability tofind theparticle in an interval canbe computed
by the above formula.

Let us now look what happens when we consider the Hilbert space L2(R3). Since
the probability to find the particle in the entire space is 1, we have, according to both
the conservation law derived in Lecture 39 and the inner product, that

∫∫∫
R3

|�(t, r)|2dr =
∫∫∫

R3
�∗(t, r)�(t, r)dr = 1,

where dr = dxdydz. Exactly as in the one-dimensional case, these functions are
square-integrable functions, that is

∫∫∫
R3

| f (r)|2dr < +∞

can be replaced by � = A f , where A ∈ C, such that

AA∗
∫∫∫

R3
| f (r)|2dr = 1.

We say that f is normed at unity by the complex number A and so the integral
condition related to the probability meaning makes sense.

Furthermore, we can observe that, if � is a square-integrable function, then eiβ�

is a square-integrable function and it can be normed at unity by the same complex
number A.

It becomes clear that Quantum Mechanics is related to the L2(R3) space which
can be organized as a Hilbert space in the same way as we did for L2(R). Here
the probability to have the particle at time t in a region centered at (x0, y0, z0) with
dimensions 2a, 2b, 2c denoted by V , is

P(t, V ) =
∫∫∫

V
|�(t, r)|2dr =

∫∫∫
V

�∗(t, r)�(t, r)dr.

Therefore we can observe that the Born postulate regarding the probability is math-
ematically justified and strengthened by the conservation law discussed in Lecture
39.

Let us see if the previous description of the state function works in the case of
double-split experiment describing the interference. Here we consider the Hilbert
space C. If �1(t, x) is a possible state of the system and another state is �2(t, x),
then any other linear combination

�(t, x) = c1�1(t, x) + c2�2(t, x)
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where c1 and c2 are complex numbers, can describe any other possible state of the
system.

By definition, this state of the system is called a superposition of the two given
states �1(t, x) and �2(t, x). The quantity |�|2 is the probability to find the particle
in a volume associated to a point as we previously discussed. Here it is given by the
complex number �,

|�|2 = [c∗
1�

∗
1 + c∗

2�
∗
2 ][c1�1 + c2�2]

= |c1�1|2 + |c2�2|2 + 2Re[c1c∗
2�1�

∗
2 ] �= |c1�1|2 + |c2�2|2

as we expected.
The interference can be derived if we consider the state functions in the forms,

�1 = |�1(t, x)|eiα1 and �2 = |�2(t, x)|eiα2 ,

that is
�(t, x) = c1|�1(t, x)|eiα1 + c2|�2(t, x)|eiα2 .

In this case

|�|2 = |c1�1|2 + |c2�2|2 + 2Re[ c1c∗
2 |�1||�2|ei(α1−α2) ]

where
2Re[ c1c∗

2 |�1||�2|ei(α1−α2) ]

is the interference term obtained by the superposition of the given wave states, and
it is easier to understand it if one consider the case c1, c2 ∈ R.

Now if we look at the Schrödinger equation, we observe that if �1 is a solution
and �2 is another solution, any linear combination

�(t, r) = c1�1(t, r) + c2�2(t, r)

where c1 and c2 are complex numbers is a solution of the Schrödinger equation

i�
∂

∂t
�(t, r) =

(
− �

2

2m
�2 +V (t, r)

)
�(t, r).

But only in few situations the combination c1�1(t, r) + c2�2(t, r) can be written as
Aei(k·r−ωt).All other solutions, imagined in the above form, do not describe classical
waves. This means that Quantum Mechanics begins when these mixed solutions
describe realistic systems, and this means that � has to be seen as a state of the
system. In summary we can only predict the probability to find a particle in a given
volume.

In the Copenhagen Interpretation of Quantum Mechanics, as formulated by Max
Born, “the quantum state is a mathematical entity which provides the probability
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distribution for each possible measurement on the system together with the evolution
of the system by the Schrödinger equation”.

Let us recall some examples to underline other state functions we discussed along
our lectures. In Lecture 24, Lecture 25, Lecture 3, and Lecture 33, we gave infor-
mation on pure states or superpositions of pure states which are solutions of the
Schrödinger equation. We identified even the related Hilbert spaces. The eigenval-
ues are associated to possible values of the energy levels of particles.

In Lecture 24, where we studied a particle in a box, we have a time independent
Schrödinger equation

d2�

dx2
= 2m

�2
(V − H)�.

V − H was a positive quantity because we supposed the particle in the box. The
previous equation was written as

d2�

dx2
= K 2�,

where

K 2 = 2m

�2
(V − H)

and the solution was
�(x) = A1e

Kx + A2e
−Kx .

Describing a particle in the box it resulted A1 = 0. If not, as x → +∞, the solution
� approaches to +∞. Therefore, inside the box, the solution was

�(x) = A2e
−Kx ,

that is a pure state.
In the case V (x) = 0, for the particle inside the box, we have

d2�

dx2
= −k2�, k2 = 2m

�2
H.

The solution is similar to the case of the free particle in Lecture 23, but some condi-
tions have to be imposed to preserve the particle inside the box. This happens when
the box is infinitely deep. We write

�(x) = A1e
ikx + A2e

−ikx = C1 cos kx + C2 sin kx, C1,C2 ∈ C.

The constants are identified imposing some physical conditions and we found

�(x) = C2 sin
nπ

L
x .
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The energy of the particle,

H = T = p2

2m
= h2π2

2mL2
n2,

is quantized. Introducing P(x) as the probability to have the particle in the interval
x − dx/2, x + dx/2 since the particle has always to be inside the box, the constant
C2 was determined from the condition

∫ L

0
|�(x)|2dx = 1,

the final result being

�(x) =
√

2

L
sin

nπ

L
x .

The description of this case was related to the Hilbert space L2([0, L]) and the
solution, initially a superposition, was transformed by the initial conditions into
a pure state. Therefore Lecture 24 is a preliminary case of the axiomatic frame
described in this Lecture.

The same situation works for the quantum harmonic oscillator described in Lec-
tures 25 and 31. We started from

�(t, x) = e−i Et/��(x)

as the pure state function describing an electron in the harmonic oscillator. Since the
solution�n , corresponding to the n-energy level, is related to the Hermite polynomi-
als which are usually denoted by Hn , in Lecture 25 we have used the letter E instead
of H to describe the total energy. Replacing the pure state into the Schrödinger time
independent equation

i�
d�

dt
(t, x) = − �

2

2m

d2�

dx2
(t, x) + V (x)�(t, x)

corresponding to this case when V (t, x) = V (x) = 1

2
mω2x2, we obtained, after

denoting by

u :=
√
mω

�
x; ε := 2E

�ω
,

the equation to solve
d2�

du2
(u) + (ε − u2)�(u) = 0.

This equation can be solved if ε = εn = 2n + 1. Therefore the n-level quantized
energy was
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En =
(
n + 1

2

)
�ω

for

�n(x) = 1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�

and

�n(t, x) = e−i En t/�
1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�.

Since the Schrödinger equation is linear, the general solution was described by a
superposition of pure states, that is a sum of all modes of n-oscillations, that is

�(t, x) =
∑
n

cne
−i En t/��n(x).

The Hermite polynomials are involved in the functions

ϕn(u) = e−u2/2Hn(u), n ∈ N

which are part of an orthogonal system in L2(R) with respect to the usual inner
product because we have proved that

∫ ∞

−∞
Hn(u)Hl(u)e−u2du =

{
0, n �= l
2n

√
π n!, l = n

After a convenient coordinate change in the previous formulas

x :=
√

�

mw
u ,

we found

�n(x) = 1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�

highlighting an orthonormal system of L2(R). As a consequence, the description
of the quantum harmonic oscillator solutions is related to the probability condition
required by Born’s postulate. With these examples in mind, we can write the

Postulates of the Copenhagen Interpretation of Quantum Mechanics:

1. The state of a quantum system is completely described by the state function
� which represents an element of a Hilbert space. The state function � is
normed at unity, that is|, |�|2 = 〈�|�〉 = 1.
The above examples confirm this first postulate.



194 9 The Principles of Quantum Mechanics

2. The state function � points out the probability of finding the particle, at a
given time, in a given space region.
It depends on the Hilbert space inner product how the probability formula looks
like. As we saw, in the particular case of the Hilbert space L2(R3), the probability
is

P(t, V ) =
∫∫∫

V
|�(t, r)|2dr =

∫∫∫
V

�∗(t, r)�(t, r)dr.

If wework in theHilbert space L2(R), the probability to find the particle described
by the state function �, now in the interval V , is

P(t, V ) =
∫
V

|�(t, x)|2dx =
∫
V

�∗(t, x)�(t, x)dx .

Since the probability to find the particle somewhere on the line is 1, the state
function which describes the particle has to fulfill the property

P(t, R) =
∫ ∞

−∞
|�(t, x)|2dx =

∫ ∞

−∞
�∗(t, x)�(t, x)dx = 1.

The samemust happenwhenwe study a quantum particle in the three dimensional
space. Since the probability tofind theparticle in the entire space is 1, ifwe suppose
that the entire space is R

3 and the states are elements in the Hilbert space L2(R3),
it must be

∫∫∫
R3

|�(t, r)|2dr =
∫∫∫

R3
�∗(t, r)�(t, r)dr = 1.

According to the first axiom, the state function � has to fulfill this property in
order to express correctly the above probability. Such a state function is called
normalized state function.
Finally, let us suppose to work in a two-dimensional real Hilbert space and the
state function� is described by a column vector having two complex components
a and b. Therefore, according to the previous description, it is mandatory to
have aa∗ + bb∗ = 1. If the components are real numbers the previous condition
becomes a2 + b2 = 1.

3. The state function � evolves in time according to the time-dependent
Schrödinger equation

i�
∂

∂t
�(t, r) =

(
− �

2

2m
�2 +V (t, r)

)
�(t, r).

The state function has to be related to the evolution of the quantumsystemand such
an evolution has to be in agreement with experiments.Wemeasure possible values
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of a dynamical variables as position, momentum, energy and so on. Therefore,
the result of an experiment is something we measure by a device, for example on
a screen where the measure appears as a real number or as some other information
which can be converted in real numbers. If we measure the momentum, from

�

i
� � = �

i
(ikx , iky, ikz)� = p�

the information “p” is extracted from the wave function � on which acts the
operator p̂ defined by

p̂ := �

i
� .

Each component satisfies the equation

p̂k = �

i

∂

∂xk
, k = 1, 2, 3.

Working with standard coordinates means to replace x1 by x , etc., that is there
exists a momentum operator p̂x corresponding to the real value “momentum” px
in the direction x . In the case of a single particle, we have proved that this is

−i�
∂

∂x
. Therefore each component leads to a linear operator, called observable,

as p̂x is, and an extracted real eigenvalue px , i.e. p̂x� = px�.

4. The average value 〈 Â〉 corresponding to the operator Â and to the normal-
ized state function � is

〈 Â〉 := 〈�| Â|�〉.

〈 Â〉 is also called the expectation value, or simply, the mean value of the
operator Â. This expectation value results after a measurement.

It is important to stress that this notion is related to the normalized state functions,
therefore each time we have expectation values, they are related to normalized
state functions. The concept represents the “average” of all possible outcomes
values of measurements related to a given experiment. If we make measurements
of the position of an electron, the expectation value is related to the average
position of it. It will be denoted as

〈
x̂
〉
and, according to the previous formula, for

the state �, its value is 〈
x̂
〉 := 〈

�|x̂ |�〉
.

If we remember that the position operator x̂ acts on �(x) according to the rule

x̂�(x) := x�(x),

in L2(R), it can be computed using the formula
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〈
x̂
〉 := 〈

�|x̂ |�〉 =
∫ ∞
−∞

�∗(x)x�(x)dx =
∫ ∞
−∞

x�∗(x)�(x)dx =
∫ ∞
−∞

x P(x)dx

which represents the average position of the electron after a large number of mea-
surements made on identically prepared systems.

If we consider the momentum operator corresponding to the same case, since the
momentum operator is defined by

p̂ := �

i

∂

∂x
,

its expectation value, corresponding to the normalized state function �, is

〈 p̂〉 = −i�
∫ ∞

−∞
�∗(x)

∂�(x)

∂x
dx .

The expectation value strengthens the probabilistic interpretation of “objects”
in Quantum Mechanics. At the same time, together with the Ehrenfest theorem
presented in the next lecture, it is the way to see the basic formulas of Classical
Mechanics

m
dx

dt
= p and

dp

dt
= −dV

dx
= F

expressed in quantum mechanical form

m
d

dt

〈
x̂
〉 = 〈

p̂
〉
and

d

dt

〈
p̂
〉 =

〈
−∂V̂

∂x
(x̂)

〉
=

〈
F̂

〉
.

Therefore the rate of change in time of the position operator expectation value is
the ratio between themomentum operator expectation value and the particlemass.
Analogously, the rate of change in time of the momentum operator expectation
value is the expectation value of the force which acts on the particle.
It is worth stressing that not all operators has a real expectation value but only
Hermitian operators. Indeed,

〈 Â〉∗ = 〈�| Â|�〉∗ = 〈�| Â�〉∗ = 〈 Â�|�〉 = 〈�| Â�〉 = 〈�| Â|�〉 = 〈 Â〉.

An operator which has a real expectation value is called an “observable” and it is
described in the next postulates.
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5. Every observable is given by a Hermitian operator acting on a Hilbert space
whose elements are the states �.

Let us remember that we have proved that the Hamiltonian operator is a Hermitian
one if the Hilbert space of states is L2(R3). We know that its eigenvalues are real
numbers. So, the next postulate results natural:

6. In any measurement of the observable Â, the only observed values are real
eigenvalues a such that

Â� = a�.

7. If the states �n describe a quantum system, then the eigenvalues an satisfy
the relation

Â�n = an�n

and an arbitrary state of the system is

� =
∑
n

cn�n,

where cn are related to an in the followingway: the probability of observing
the eigenvalue an is c∗

ncn .Therefore, Hermitian operators are themathemat-
ical way to describe measurements in Quantum Mechanics.

8. In Quantum Mechanics two observables which cannot be simultaneously
measured are expressed by the operators Â, B̂ such that

[ Â, B̂] = Â B̂ − B̂ Â �= 0̂.

The commutator is related to the order of measurements in Quantum Mechan-
ics. If the order does not matter, the commutator is 0̂. Let us explain this statement.

Consider the observables Â and B̂ and suppose we would like to make a mea-
surement with respect to a state of the system, here denoted by �. This means
that each one of them offers an information in this state, that is Â� = a� and
B̂� = b�. Now consider an experimentwhich consists in finding simultaneously
information on the state �. The same operators extract information in the order:
first B̂ then Â. Therefore

( Â B̂)� = Â(B̂�) = Â(b�) = bÂ� = ba�.

Now, consider the order: first Â then B̂.

(B̂ Â)� = B̂( Â�) = B̂(a�) = a B̂� = ab�.
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If we extract the second relation from the first relation we obtain

( Â B̂ − B̂ Â)� = (ba − ab)� = 0 · � = 0,

relation which implies
[ Â, B̂] = 0̂.

In fact we see that the order does not matter if there is the same state which gives
information about both observables.

We know that there are observables whose commutator is not 0̂. An example
of such observables are the position operator x̂ and the momentum operator p̂
because we have proved

[x̂, p̂] = i�.

The order matter so we cannot extract simultaneously information about position
and momentum.

Let us provide, in the one-dimensional case, an example with two observables
which commute. In Lecture 38, we have considered the energy operator in the
absence of a potential field V (x) as

Ê := − �
2

2m

d2

dx2
.

Let us prove that
[ p̂, Ê] = 0̂.

Indeed,

[ p̂, Ê]� = ( p̂ Ê − Ê p̂)� = −i�
d

dx

(
− �

2

2m

d2

dx2
�

)
+ �

2

2m

d2

dx2

(
−i�

d

dx
�

)
=

= i�3

2m

[
d

dx

(
d2

dx2
�

)
− d2

dx2

(
d

dx
�

)]
= 0

that is, the momentum operator and the energy operator commute. Thus, we can
find the same eigenfunctions states with definite real values eigenvalues for the
two observables, while in the previous case, with the position and momentum
operators, it was not possible.
A further comment is necessary. If the particle moves in a potential V (x), the
total energy is now the Hamiltonian H . The attached observable is

Ĥ = Ê + V̂ ,
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i.e.

[ p̂, Ĥ ]� = [ p̂, Ê + V̂ ]� = [ p̂, Ê]� + [ p̂, V̂ ] = [ p̂, V̂ ] = −i��
dV̂

dx
�= 0.

This means that the total energy andmomentum of a particle ca not be determined
precisely and simultaneously if the particle moves in a potential V (x).

Summary of Lecture 41. Quantum Mechanics can be formulated, in a prob-
abilistic interpretation, according to the following statements:
1. The state of a quantum system is completely described by the state function

� which represents an element of a Hilbert space. The state function � is
normed at unity, that is |�|2 = 〈�|�〉 = 1.

2. The state function � points out the probability of finding the particle, at a
given time, in a given space region.

3. The state function � evolves in time according to the time-dependent
Schrödinger equation

i�
∂

∂t
�(t, r) =

(
− �

2

2m
�2 +V (t, r)

)
�(t, r).

4. The expectation value 〈 Â〉, corresponding to the operator Â and to the
normalized state �, is

〈 Â〉 := 〈�| Â|�〉.

5. Every observable is aHermitian operator on aHilbert spacewhose elements
are the states �.

6. In any measurement of the observable Â, the only values observed are the
real eigenvalues a such that

Â� = a�.

7. If the states �n describe the system, then the eigenvalues an satisfy

Â�n = an�n

and an arbitrary state of the system is

� =
∑
n

cn�n,
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where cn are related to an in the following way: the probability to observe
the eigenvalue an is c∗

ncn .
8. In Quantum Mechanics, two observables which cannot be simultaneously

measured are expressed by the operators Â and B̂ such that

[ Â, B̂] = Â B̂ − B̂ Â �= 0̂.



Chapter 10
Consequences of Quantum Mechanics
Principles

Anything one man can imagine,
other men can make real.

Jules Verne

10.1 Lecture 42: The Ehrenfest Theorem

In Lecture 41, we discussed about the expectation value of a given physical quantity
and how this important concept relates the formalism of Classical Mechanics to
Quantum Mechanics. To give an image, the evolution of a particle is understood
through the evolution of its expectation value. If you read the George Gamow book
“The wonderful world of Mr. Tompkins”, you can image the character trying to kill the
quantum fly using a quantum splash and hitting the dense part of the shadow cloud
which represents the quantum fly description. The foundation of this description is
based on the following

Theorem 10.1.1 (Ehrenfest’s theorem)Consider an observable Â in a quantum sys-
tem whose Hamilton operator is Ĥ . Then, the time-dependent Schrödinger equation
leads to

d

dt

〈
Â
〉
= 1

i�

〈
[ Â, Ĥ ]

〉
+

〈
∂ Â

∂t

〉
.

Proof

d

dt

〈
Â
〉
= d

dt

〈
�

∣∣∣ Â
∣∣∣�

〉
=

〈
∂

∂t
�

∣∣∣ Â
∣∣∣�

〉
+

〈
�

∣∣∣∣
∂

∂t
Â

∣∣∣∣�
〉
+

〈
�

∣∣∣ Â
∣∣∣ ∂

∂t
�

〉
=

=
〈

∂

∂t
�

∣∣∣ Â
∣∣∣�

〉
+

〈
∂ Â

∂t

〉
+

〈
�

∣∣∣ Â
∣∣∣ ∂

∂t
�

〉
.
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Let us remember that the Hamiltonian operator is Hermitian. From time-dependent
Schrödinger equation written in the form

∂�

∂t
= 1

i�
Ĥ�

it results

d

dt

〈
Â
〉
=

〈
1

i�
Ĥ�

∣∣∣ Â
∣∣∣�

〉
+

〈
∂ Â

∂t

〉
+

〈
�

∣∣∣ Â
∣∣∣ 1

i�
Ĥ�

〉
=

=
〈
�

∣∣∣∣−
1

i�
Ĥ Â

∣∣∣∣�
〉
+

〈
∂ Â

∂t

〉
+

〈
�

∣∣∣∣
1

i�
ÂĤ

∣∣∣∣�
〉

= 1

i�

〈
[ Â, Ĥ ]

〉
+

〈
∂ Â

∂t

〉
.

�

Corollary 10.1.2 If the operator Â does not depend on t, the statement of the Ehren-
fest theorem becomes

d

dt

〈
Â
〉
= 1

i�

〈
[ Â, Ĥ ]

〉
.

The last equation states that the rate of change in time of the expectation value of
the operator Â can be described with respect to the expectation value of a bracket
involving the initial operator and the Hamiltonian operator of the system. It recalls
us a relation like

d F

dt
= [F, H ],

discussed in Lecture 6. In the one-dimensional case studied in Lecture 38, since both
x̂ and p̂ do not depend on t , we already obtained two important formulas,

d

dt

〈
x̂
〉 = 1

i�

〈
[x̂, Ĥ ]

〉
and

d

dt

〈
p̂
〉 = 1

i�

〈
[ p̂, Ĥ ]

〉
.

Furthermore, let us consider the case of a single particle whose Hamiltonian operator
is

Ĥ = p̂2

2m
+ V̂ (x̂).

Theorem 10.1.3

m
d

dt

〈
x̂
〉 = 〈

p̂
〉
.
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Proof First of all, let us observe that [x̂, V̂ (x̂)] = 0. Therefore

d

dt

〈
x̂
〉 = 1

i�

〈[
x̂, Ĥ

]〉
= 1

i�

〈[
x̂,

p̂2

2m
+ V̂ (x̂)

]〉
= 1

i�

〈[
x̂,

p̂2

2m

]
+

[
x̂, V̂ (x̂)

]〉
= 1

2mi�

〈[
x̂, p̂2

]〉
.

Then
[
x̂, p̂2

]
= x̂ p̂ p̂ − p̂ p̂x̂ = x̂ p̂ p̂ − p̂x̂ p̂ + p̂x̂ p̂ − p̂ p̂x̂ = [

x̂, p̂
]

p̂ + p̂
[
x̂, p̂

] = 2i� p̂,

that is
d

dt

〈
x̂
〉 = 1

m

〈
p̂
〉

which ends the proof. �

According to the statement of this theorem, the rate of change in time of the expec-
tation value of the position of a particle, times its mass, equals the expectation value
of the momentum operator, that is

m
d

dt

〈
x̂
〉 = 〈

p̂
〉
.

This is a quantum view of the momentum definition from Classical Mechanics, i.e,

m
dx

dt
= p.

In fact it is the same formula, but in Quantum Mechanics, the “objects” are expec-
tations values of quantum operators. Let us obtain now the Quantum Mechanics
equivalent of Newton’s second principle

dp

dt
= F.

Theorem 10.1.4
d

dt

〈
p̂
〉 =

〈
−∂V̂

∂x
(x̂)

〉
=

〈
F̂
〉
.

Proof From
d

dt

〈
p̂
〉 = 1

i�

〈[
p̂, Ĥ

]〉

it results
d

dt

〈
p̂
〉 = 1

i�

〈[
p̂,

p̂2

2m
+ V̂ (x̂)

]〉
= 1

i�

〈[
p̂, V̂ (x̂)

]〉
.
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It remains to compute
〈[

p̂, V̂ (x̂)
]〉

. Let us take into account that p̂ operator, in the

one dimensional case, is −i�
∂

∂x
, therefore

〈[
p̂, V̂ (x̂)

]〉
=

〈[
−i�

∂

∂x
, V̂ (x̂)

]〉
=

〈
�

∣∣∣∣
[
−i�

∂

∂x
, V̂ (x̂)

]∣∣∣∣�
〉

= −i�

〈
�

∣∣∣∣
[

∂

∂x
, V̂ (x̂)

]∣∣∣∣�
〉

=

= i�

〈
�

∣∣∣∣
[

V̂ (x̂),
∂

∂x

]∣∣∣∣�
〉

= i�

〈
�

∣∣∣V̂ (x̂)

∣∣∣ ∂

∂x
�

〉
− i�

〈
� | ∂

∂x

(
V̂ (x̂)�

)〉
=

=
��������
i�

〈
�

∣∣∣V̂ (x̂)

∣∣∣ ∂

∂x
�

〉
− i�

〈
�

∣∣∣∣∣
∂V̂

∂x
(x̂)

∣∣∣∣∣�
〉

−
��������
i�

〈
�

∣∣∣V̂ (x̂)

∣∣∣ ∂

∂x
�

〉
= i�

〈
−∂V̂

∂x
(x̂)

〉
.

It results
d

dt

〈
p̂
〉 =

〈
−∂V̂

∂x
(x̂)

〉
.

If we denote by F̂ the “quantum force operator” induced by −∂V̂

∂x
(x̂), we obtain the

result of the statement. �

In other words, we are considering an evolution, a changing rate in time of the
expectation value of the momentum operator. This rate of change is determined by
the rate of change in time of the expectation value of a force exercised on the quantum
particle. The rate of change in time of the mean gives the trajectory for the dense
part of the “cloud” where the particle is the most probably to be. value

Summary of Lecture 42. After proving the Ehrenfest theorem

d

dt

〈
Â
〉
= 1

i�

〈
[ Â, Ĥ ]

〉
+

〈
∂ Â

∂t

〉

we can highlight some particular cases which give rise to the connection
between the well known formulas of Classical Mechanics and their coun-
terparts in Quantum Mechanics written in terms of quantum operators with
respect to the expectation values. We have:

m
dx

dt
= mv = p → m

d

dt

〈
x̂
〉 = 〈

p̂
〉

dp

dt
= −dV

dx
= F → d

dt

〈
p̂
〉 =

〈
−∂V̂

∂x
(x̂)

〉
=

〈
F̂
〉
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d A

dt
= [A, H ] → d

dt

〈
Â
〉
= 1

i�

〈
[ Â, Ĥ ]

〉
.

The deterministic formalism of Classical Mechanics is replaced by the prob-
abilistic formalism of Quantum Mechanics.

10.2 Lecture 43: The Heisenberg General Uncertainty
Principle

Starting from this lecture, we prefer to use the Dirac notation which is very useful in
the applications. According to this notation, we adopt the ket vector |�〉 instead of
�.

In the same way, it is easy to look at the Schrödinger equation in the form

∂

∂t
|�〉 = 1

i�
Ĥ |�〉

instead of the previous notation

∂�

∂t
= 1

i�
Ĥ�.

Let us first prove the Cauchy–Buniakowski–Schwarz inequality corresponding to the
context of the Hilbert spaces.

Theorem 10.2.1 Let us consider two vector X and Y in the Hilbert space. Then

|〈X, Y 〉| ≤ ||X || · ||Y || .

Proof Consider the axiom
〈A, A〉 ≥ 0

applied to the ket vector

|A〉 := |X〉 − 〈Y, X〉
||Y ||2 · |Y 〉 =

∣∣∣∣X − 〈Y, X〉
||Y ||2 · Y

〉
.

Using the properties of the inner product, it results

〈A, A〉 =
〈

X − 〈Y, X〉
||Y ||2 · Y |X − 〈Y, X〉

||Y ||2 · Y

〉
=
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= 〈X |X〉 − 〈Y, X〉 · 〈X, Y 〉
||Y ||2 − 〈Y, X〉∗ · 〈Y, X〉

||Y ||2 + 〈Y, X〉∗ · 〈Y, X〉 · 〈Y, Y 〉
||Y ||4 ≥ 0

that is

||X ||2 − 〈Y, X〉 · 〈X, Y 〉
||Y ||2 −

�������〈Y, X〉∗ · 〈Y, X〉
||Y ||2 +

�������〈Y, X〉∗ · 〈Y, X〉
||Y ||2 ≥ 0.

Using 〈Y, X〉 = 〈X, Y 〉∗, the statement follows. �

Let us consider now the expectation value 〈 Â〉 corresponding to the operator Â
and to the state� and consider� normalized. It is worth noticing that the expectation
value can be defined for unnormalized states too, considering

〈 Â〉 := 〈�| Â|�〉
〈�|�〉

but we established to work with normalized states, therefore

〈 Â〉 := 〈�| Â|�〉.

Let us take into account twoHermitian operators Â and B̂ such that their commutator
is iÛ , i.e.

[ Â, B̂] = iÛ .

Exercise 10.2.2 Show that Û = −i[ Â, B̂] is a Hermitian operator.

Hint: We start from 〈φ|Û�〉.

〈φ| − i[ Â, B̂]�〉 = −i〈φ|[ Â, B̂]�〉 = −i〈φ|( Â B̂ − B̂ Â)�〉 = −i〈φ| Â B̂�〉 + i〈φ|B̂ Â�〉 =
= −i〈 Âφ|B̂�〉 + i〈B̂φ| Â�〉 = −i〈B̂ Âφ|�〉 + i〈 Â B̂φ|�〉 = 〈i B̂ Âφ|�〉 + 〈−i Â B̂φ|�〉 =

= 〈i(B̂ Â − Â B̂)φ|�〉 = 〈−i[ Â, B̂]φ|�〉 = 〈Ûφ|�〉. �

It is important to observe that, since Û is Hermitian, its expectation value 〈Û 〉 is
real. Therefore the expectation value of the commutator only is a pure imaginary
number, i.e.

〈[ Â, B̂]〉 = 〈iÛ 〉 = i〈Û 〉.

Consider also the operators

ˆ̂A := Â − 〈 Â〉 and ˆ̂B := B̂ − 〈B̂〉.

It is easy to check that
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Exercise 10.2.3
[ ˆ̂A,

ˆ̂B] = iÛ .

Hint: Simple computations leads to

[ ˆ̂A,
ˆ̂B] = [ Â − 〈 Â〉, B̂ − 〈 Â〉] = ( Â − 〈 Â〉)(B̂ − 〈 Â〉) − (B̂ − 〈 Â〉)( Â − 〈 Â〉) =

= Â B̂ − B̂ Â = iÛ . �

Exercise 10.2.4 Double hat operators are Hermitian if hat operators are Hermitian.

Hint: If Â is Hermitian and 〈 Â〉 is a real number, we have:

〈φ| ˆ̂A�〉 = 〈φ|( Â − 〈 Â〉)�〉 = 〈φ| Â�〉 − 〈φ|〈 Â〉�〉 = 〈 Âφ|�〉 − 〈〈 Â〉φ|�〉 = 〈( Â − 〈 Â〉)φ|�〉 = 〈 ˆ̂Aφ|�〉.
�

For a Hermitian operator Â, it is possible to define the uncertainty of the expec-
tation value 〈 Â〉 with respect the state � as

(� Â) := [〈�|( Â − 〈 Â〉)2|�〉]1/2.

This definition makes sense because the square root is extracted from a positive

quantity. And this happens because ˆ̂A = Â − 〈 Â〉 is a Hermitian operator and

〈�|( Â − 〈 Â〉)2|�〉 = 〈�| ˆ̂A2|�〉 = 〈�| ˆ̂A2�〉 = 〈 ˆ̂A�| ˆ̂A�〉 ≥ 0.

Theorem 10.2.5 (The Heisenberg general uncertainty principle) Consider two Her-
mitian operators Â, B̂ such that [ Â, B̂] = iÛ and their double hat correspondents

are ˆ̂A := Â − 〈 Â〉 and ˆ̂B := B̂ − 〈B̂〉. Denote by

[ ˆ̂A,
ˆ̂B]+ := ˆ̂A ˆ̂B + ˆ̂B ˆ̂A

their anticommutator. Then, the uncertainties of the expectation values of Â, and B̂
verify the inequality

(� Â)2 · (�B̂)2 ≥ 1

4

〈
[ ˆ̂A,

ˆ̂B]+
〉2

+ 1

4

〈
Û

〉2

Proof First, it is easy to check that the anticommutator of any two Hermitian oper-
ators is a Hermitian operator, that is

〈φ|[ Â, B̂]+�〉 = 〈[ Â, B̂]+φ|�〉.
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This is an important property and we will use later, in the proof, a consequence of it,

i.e. the expectation value of the anticommutator 〈|[ ˆ̂A,
ˆ̂B]+〉, is a real number. Since

(� Â)2 = 〈�|( Â − 〈 Â〉)2|�〉 = 〈�| ˆ̂A2|�〉,

we have

(� Â)2 · (�B̂)2 = 〈�| ˆ̂A2|�〉 · 〈�| ˆ̂B2|�〉 = 〈�| ˆ̂A| ˆ̂A�〉 · 〈�| ˆ̂B| ˆ̂B�〉.

Since the double hat operators are Hermitian, it results

(� Â)2 · (�B̂)2 = 〈 ˆ̂A�| ˆ̂A�〉 · 〈 ˆ̂B�| ˆ̂B�〉 ≥ |〈 ˆ̂A�| ˆ̂B�〉|2,

the last inequality is a consequence of the Cauchy–Buniakovski–Schwarz inequality.
We use again the fact that we work with Hermitian operators, i.e.

(� Â)2 · (�B̂)2 ≥ |〈�| ˆ̂A ˆ̂B|�〉|2 =
∣∣∣∣
〈
�

∣∣∣∣
1

2
(

ˆ̂A ˆ̂B + ˆ̂B ˆ̂A) + 1

2
(

ˆ̂A ˆ̂B − ˆ̂B ˆ̂A)

∣∣∣∣�
〉∣∣∣∣

2

.

From both the commutator and anticommutator definitions, the previous inequality
becomes

(� Â)2 · (�B̂)2 ≥ |〈�| ˆ̂A ˆ̂B|�〉|2 = 1

4

∣∣∣
〈
�

∣∣∣[ ˆ̂A,
ˆ̂B]+ + [ ˆ̂A,

ˆ̂B]
∣∣∣�

〉∣∣∣
2 = 1

4

∣∣∣
〈
�

∣∣∣[ ˆ̂A,
ˆ̂B]+ + iÛ

∣∣∣�
〉∣∣∣
2 =

= 1

4

∣∣∣
〈
�

∣∣∣[ ˆ̂A,
ˆ̂B]+

∣∣∣�
〉
+ i

〈
�

∣∣∣Û
∣∣∣�

〉∣∣∣
2 = 1

4

∣∣∣
〈
[ ˆ̂A,

ˆ̂B]+
〉
+ i

〈
Û

〉∣∣∣
2
.

We have already discussed that, since iÛ is Hermitian, its expectation value is real
that is the expectation value of the commutator is purely imaginary. The same, the
expectation value of the anticommutator of two Hermitian operators is real. Taking
into account that, for a complex number z = a + ib is |z|2 = z · z∗ = (a + ib)(a −
ib) = a2 + b2, we can write

(� Â)2 · (�B̂)2 ≥ 1

4

∣∣∣
〈
[ ˆ̂A,

ˆ̂B]+
〉
+ i

〈
Û

〉∣∣∣
2

= 1

4

〈
[ ˆ̂A,

ˆ̂B]+
〉2

+ 1

4

〈
Û

〉2

�

Let us remember the position operator x̂ : L2(R) → Cwhich associates to each state
function� ∈ L2(R), at each position x on the real line, the number x�(x) ∈ C. The
position operator is Hermitian because

〈x̂�|�〉 =
∫ ∞

−∞
x�∗(x)�(x)dx =

∫ ∞

−∞
�∗(x)x�(x)dx = 〈�|x̂�〉.
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The same for the momentum operator p̂ : L2(R) → Cwhich associates to each state

function� ∈ L2(R), at each position x on the real line, the number−i�
∂�(x)

∂x
∈ C.

The momentum operator is a Hermitian operator too, because

〈 p̂�|�〉 =
〈
−i�

∂

∂x
�|�

〉
= i�

〈
∂

∂x
�|�

〉
= i�

∫ ∞

−∞
∂�∗(x)

∂x
�(x)dx =

= i��∗�|∞−∞ − i�
∫ ∞

−∞
�∗(x)

∂�(x)

∂x
dx .

We have already used the argument that square integrable functions are limits of sets
of C∞

0 . Here we obtain

〈 p̂�|�〉 = −i�
∫ ∞

−∞
�∗(x)

∂�(x)

∂x
dx =

∫ ∞

−∞
�∗(x)

(
−i�

∂

∂x
�(x)

)
dx = 〈�| p̂�〉,

that is we succeeded to prove

〈 p̂�|�〉 = 〈�| p̂�〉.

Now, having in mind the one-dimensional case, where between the Hermitian
position operator x̂ and the Hermitian momentum operator p̂ there is the relation
[x̂, p̂] = i�, we can consider the following statement:

Corollary 10.2.6 (Heisenberg’s uncertainty principle) Consider two Hermitian
operators Â, B̂ such that [ Â, B̂] = i�. Then

(� Â) · (�B̂) ≥ �

2
.

Proof In the statement of the theorem we replace Û by �. It follows

〈Û 〉 = 〈�|�|�〉 = 〈�|��〉 = �〈�|�〉 = � and

(� Â)2 · (�B̂)2 ≥ 1

4

〈
[ ˆ̂A,

ˆ̂B]+
〉2

+ 1

4
�
2 ≥ 1

4
�
2

which ends the proof. �

Summary of Lecture 43. We presented some consequences of Quantum
Mechanics postulates working in Dirac notation introduced in Lecture 28.
We start by establishing the Cauchy–Buniakowski–Schwarz inequality corre-
sponding to a Hilbert space:
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|〈X, Y 〉| ≤ ||X || · ||Y ||.

Then,weprepare the statement and the proof ofHeisenberg general uncertainty
principle. The objects are two observables Â and B̂ such that their commutator
is iÛ , i.e.

[ Â, B̂] = iÛ .

Under the previous conditions, Û is aHermitian operator. Someother operators
can be defined,

ˆ̂A := Â − 〈 Â〉 and ˆ̂B := B̂ − 〈B̂〉,

where 〈 Â〉 is the expectation value corresponding to the observable Â and the
normalized state �:

〈 Â〉 := 〈�| Â|�〉.

Under these circumstances, the expectation value is real and the double hat
operators are Hermitian.

For a Hermitian operator Â we define the uncertainty of the expectation
value 〈 Â〉 with respect to the state � as

(� Â) := [〈�|( Â − 〈 Â〉)2|�〉]1/2.

Then we prove
Theorem (Heisenberg’s general uncertainty principle) Consider two Her-

mitian operators Â, B̂ such that [ Â, B̂] = iÛ and their double hat correspon-

dents ˆ̂A := Â − 〈 Â〉 and ˆ̂B := B̂ − 〈B̂〉. Denote by

[ ˆ̂A,
ˆ̂B]+ := ˆ̂A ˆ̂B + ˆ̂B ˆ̂A

their anticommutator. Then, the uncertainties of the expectation values of Â, B̂
verify the inequality

(� Â)2 · (�B̂)2 ≥ 1

4

〈
[ ˆ̂A,

ˆ̂B]+
〉2

+ 1

4

〈
Û

〉2

Both position operator x̂ and momentum operator p̂ are Hermitian and fulfill
the relation [x̂, p̂] = i�. As a consequence, the following statement holds:
Corollary (Heisenberg’s uncertainty principle) Given two Hermitian opera-
tors Â, B̂ such that [ Â, B̂] = i� , then

(� Â) · (�B̂) ≥ �

2
.
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10.3 Lecture 44: The Dirac Notation and the Meaning
of a Quantum Mechanics Experiment

Let us start with a short review of Dirac notation in the case of finite dimensional
complex vector spaces. Consider a ket vector |u〉. Suppose we work in a two dimen-
sional complex vector space. Therefore we imagine it as

|u〉 =
(

u1

u2

)

If we have another vector

|v〉 =
(

v1
v2

)

the addition of the two ket vectors is given by the rule

|r〉 = |u〉 + |v〉 =
(

u1

u2

)
+

(
v1
v2

)
=

(
u1 + v1
u2 + v2

)
.

and the result is again a ket vector, here denoted by |r〉 ∈ V. The summation of ket
vectors must determine a commutative group structure (V,+), that is the following
properties hold:

(|u〉 + |v〉) + |w〉 = |u〉 + (|v〉 + |w〉) (associativity)

|u〉 + |0〉 = |0〉 + |u〉 = |u〉 (existence of zero vector for any |u〉 ∈ V)

∀|u〉 ∈ V ∃| − u〉 ∈ V such that |u〉 + | − u〉 = | − u〉 + |u〉 = |0〉 (the additive inverse)

|u〉 + |v〉 = |v〉 + |u〉 (commutativity)

The multiplication by scalars from C follows the same type of definition:

∀|u〉 ∈ V, ∀a ∈ C ∃ a|u〉 ∈ V,

that is, in our case,

α|u〉 :=
(

αu1

αu2

)

The multiplication by a scalar has the properties

a(b|u〉) = (ab)|u〉

1 · |u〉 = |u〉
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a(|u〉 + |v〉) = a|u〉 + a|v〉

(a + b)|u〉 = a|u〉 + b|u〉

Some consequences of the complex vector space structure exist and can be easily
verified:

0 · |u〉 = |0〉

(−1) · |u〉 = | − u〉

|u〉 − |v〉 = |u〉 + | − v〉.

A basis is determined by a maximal set of linear independent elements. An important
basis in V is determined by the vectors

|e1〉 =
(
1
0

)
and |e2〉 =

(
0
1

)
.

Now, the bra vector corresponding to the ket vector |u〉 is, by definition,

〈u| := (u∗
1, u∗

2)

where u∗
k is the complex conjugate of uk . We remember that the complex conjugate

of a complex number z = a + ib is z∗ = a − ib. The modulus of a complex number
z is denoted by |z|. Its definition is |z|2 := a2 + b2 = z · z∗ = z∗ · z and we observe
that it is a real positive number. The reason for Dirac to consider this bra and ket
vectors is related to the inner product here denoted by the bracket 〈u|v〉. If we look
at our arrangements, we have

〈u|v〉 = (u∗
1, u∗

2) ·
(

v1
v2

)
= u∗

1v1 + u∗
2v2 =

2∑
k=1

u∗
kvk .

Of course, one can increase the number of components of the vector space and one has
the full picture presented in Lecture 28. Therefore, it is easy to check the properties
of the inner product in this particular case:

〈u|β1v1 + β2v2〉 = β1〈u|v1〉 + β2〈u|v2〉, ∀ |v1〉, |v2〉, |u〉 ∈ V, β1,β2 ∈ C,

〈v|u〉 = 〈u|v〉∗, ∀ |u〉, |v〉 ∈ V,

〈u|u〉 ≥ 0 ∀ |u〉 ∈ V; 〈u, u〉 = 0 ⇐⇒ |u〉 = |0〉.

The last property is the consequence of
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〈u|u〉 = |u1|2 + |u2|2 = 0.

With a bra vector corresponding to the ket vector |u〉,

〈u| := (u∗
1, u∗

2)

and a ket vector |v〉, another important operation is the outer product |v〉〈u|. The
result is a linear operator on V. Indeed,

|v〉〈u| :=
(

v1
v2

)
(u∗

1, u∗
2) =

(
v1u∗

1 v1u∗
2

v2u∗
1 v2u∗

2

)

So, in this particular case, the linear operators are 2 × 2 matrices with elements in
C. For a given linear operator

L =
(

a11 a12

a21 a22

)

its transpose is

LT =
(

a11 a21

a12 a22

)
.

The conjugate transpose (or the Hermitian transpose) of the matrix L is denoted by
L†. Therefore, we have

L† =
(

a∗
11 a∗

21
a∗
12 a∗

22

)
.

By definition, a linear operator is Hermitian if L† = L . If we look what happens
when L† = L , we observe, from

(
a∗
11 a∗

21
a∗
12 a∗

22

)
=

(
a11 a12

a21 a22

)

that the diagonal of a Hermitian operator (here the matrix L) is given by real numbers
and the second diagonal contains complex conjugate terms. You can check, it is a
simple exercise, that

〈Lu, v〉 = 〈u, Lv〉,

therefore our previous definition of a Hermitian operator fits with the one in Lecture
31.

Consider now the matrix

A =
(

1 2 + 3i
2 − 3i −3

)
.

It is easy to check that this matrix is Hermitian and has two real eigenvalues.
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Can aHermitianmatrix in this case have to equal eigenvalues? First you can check
that any 2 × 2 B matrix verifies the Cayley relation

B2 − T r B · B + det B · I2 = O2,

where T r B is the sum of the elements of its main diagonal and the determinant of
B is det B = b11b22 − b12b21, I2 is the unit 2 × 2 matrix and O2 is the 0 matrix.
In fact, this is the matrix form of the characteristic equation used to determine the
eigenvalues of B,

det(B − λI2) = 0.

If B is a Hermitian matrix, the discriminant of

λ2 − T r B · λ + det B = 0,

is the positive number (T r B)2 − 4 det B = (b11 − b22)2 + 4|b12|2. So, the eigenval-
ues are real. Are they different or they can be equal? Equal eigenvalues happens
when (b11 − b22)2 + 4|b12|2 = 0, that is when b11 = −b22 and |b12| = 0. The last
equality means that the complex number b12 has to be 0. The first equality means that
the real numbers of the main diagonal are b11 and b11. Therefore the only Hermitian
2 × 2 matrix which admits two equal eigenvalues is b11 I2. So, the answer is yes but
we observe that this matrix is a sort of “whatever happens nothing happens from the
Physics point of view” because, for each possible vector |u〉, we have the same “out-
put” b11. We are interested in Hermitian operators having two different eigenvalues
corresponding to some two different orthogonal eigenvectors.

Another class of important operators in Quantum Mechanics are the unitary
operators. In this particular case, a unitary operator is a 2 × 2 matrix A such that
A∗ · A = A · A∗ = I2. It is easy to check

Exercise 10.3.1 Show that unitary operator U preserves the inner product, that is
〈U x |U y〉 = 〈x |y〉 for any |x〉, |y〉 ∈ V .

According to this formalism, the Picture of a QuantumMechanics Experiment
is the following.

For themathematical description of the experiment, we need:

• a Hermitian operator Â;
• distinct eigenvalues λn ∈ R corresponding to the Hermitian operator Â;
• orthogonal eigenvectors |�n〉 corresponding to the previous eigenvalues λn ∈ R

related by the well known equation

Â|�n〉 = λn|�n〉.

On the other hand, the physical description of the experiment is given by:

• the Hermitian operator Â is the measurable observable of the system;
• the eigenvectors |�n〉 are the possible states of the system;
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• the distinct real eigenvalues λn are the results of the experiment.

In conclusion, we can measure only eigenvalues. Eigenvalues give information on
the associated eigenvectors, that is on the state of the system.

Summary of Lecture 44. After presenting the Dirac notation, we highlight
the description of a Quantum Mechanics Experiment.

For the mathematical description, we need:
– a Hermitian operator Â,
– distinct eigenvalues λn ∈ R corresponding to the Hermitian operator Â;
– orthogonal eigenvectors |�n〉, corresponding to the previous eigenvalues

λn ∈ R, related by the equation

Â|�n〉 = λn|�n〉.

Thephysical description is related to the interpretation of the same equation

Â|�n〉 = λn|�n〉 .

It consists in the following statements:
– the Hermitian operator Â is the measurable observable of the system;
– the eigenvectors |�n〉 are the possible states of the system;
– distinct real eigenvalues λn are the results of the experiment and they cor-
respond to the measurements.

10.4 Lecture 45: The Photon Polarization by Dirac’s
Notation

Let us consider a simple experiment. An unpolarized light beam is produced by a
source S and it is sent to a horizontal polarizer device H 1

d . When the light comes
out from the horizontal polarizer, it continues its trajectory as horizontally polarized
light. If it meets another horizontal polarizer H 2

d , 100% of horizontally polarized
light, which enters in the second horizontal polarizer, comes out from it, of course,
horizontally polarized. This is an experiment which can be easily managed. By
contrast, if the second is a vertical polarizer V 2

d , 0% of horizontally polarized light
entering in V 2

d comes out.
The experiment can be easily understood if one looks through two consecutive

polaroid glasses lenses. Each surface of a glasses lens can be imagined as a rectangle
having in its plane a length l on the x-axis and a height h on the y-axis. Two con-
secutive glasses lenses are arranged in the same way along the two parallel planes of
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their surfaces, if both the rectangles stay with l on the x-axis and h on the y-axis. In
this case, one sees with only one lens exactly as one sees with the two consecutive
lenses arranged in the same way. If the second lens is rotated by 90◦, one cannot see
through. There is no light coming out from the second lens.

We can continue the experiment considering a first horizontal polarizer H 1
d and

replacing the second polarizer with one which polarize at 45◦. Only 50% of the ver-
tical polarized light comes out from the second polarizer. The experiment is telling
us the following result: If the second polarizer is polarizing light at α degrees with
respect to the horizontal direction, only cos2 α%photons, passing through this polar-
izer, can be measured. In this context, this is a general result and it fits the angles of
0◦, 90◦ and 45◦ as seen before.

If we now turn again to the experiment, we can understand what happens with
the color of light. The light beam consists of photons having the energy given by
the formula E = hν. The color depends on frequency ν. When they reach the first
polarizer, some of them go through, some not. All the photons going through become
vertically polarized and again, according to the experiment, all or only a fraction of
them pass through the second polarizer. There is no energy loss of photons which
succeed in passing through both polarizers. So, they have the same frequency from
the beginning to the end of their trajectory. It means that the color of light remains
the same as it is.

Let us interpret the phenomenon according to Quantum Mechanics concepts
presented in the previous lecture. We start considering the horizontal polarization
described by the ket vector

|H〉 =
(
1
0

)

and the vertical polarization described by the ket vector

|V 〉 =
(
0
1

)
.

The choice is correct because, as we know from Lecture 41, the states has to be
normalized. Let us look at the inner product between the ket vectors |H〉 and |V 〉,
that is 〈H |V 〉. The physical meaning of this inner product is: If we prepare the light in
the vertical polarized state, what are the chances to go through a horizontal polarizer?
We know the answer: there are 0 chance to pass through.

Therefore if we prepare photons to be horizontally polarized and we send them to
a vertical polarizer, the inner product 〈V |H〉 shows us the probability amplitude of
this happening. To get the probability, we have to square the inner product. In fact,
if we work in the complex space, we have to consider

|〈V |H〉|2 = 〈V |H〉∗ · 〈V |H〉.

The probability amplitude is a fundamental notion of Quantum Mechanics. Let us
mathematically check the result. If we consider the ket vector
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|V 〉 =
(
0
1

)
,

the corresponding bra vector is
〈V | = (0 1),

that is

〈V |H〉 = (0 1) ·
(
1
0

)
= 0.

In this case the probability amplitude is 0 and the probability is 0, which fits with
the experiment. No photons horizontally polarized can passes through a vertical
polarizer.

From these considerations, we have to frame the result in the conceptual scheme
of Lecture 41: The state function |H〉 describes the set of all identically prepared
systems, that is photons horizontally polarized by a horizontal polarizer. In all sys-
tems, identically prepared, the photon, horizontally polarized, do not pass through
a vertical polarizer. The probability amplitude in this case is the number 0 and it is
represented by 〈V |H〉.

The interpretation by Max Born is part of the principles of Quantum Mechanics:
The probability amplitude provides the number corresponding to the relation between
the state of the observed system into another possible state. The squared modulus of
the probability amplitude is the probability to observe the initial state passed into the
other possible state. In this case the probability is |〈V |H〉|2 = 0.

Let us now take into account another case, previously presented, under the same
mathematical language.

Consider a photon polarized at 45◦. Assuming a system of axes and supposing
we measure the angle anticlockwise, i.e. from the x-axis to y-axis, the photon state
vector can be represented by a superposition of the vertical polarized state and the
horizontal polarized state,

|/〉 = 1√
2
|V 〉 + 1√

2
|H〉.

First, let us ask if this state vector is mathematically well expressed. This means
that the mathematical form has to express the following physical fact: 100% of the
photons, which are first 45◦ polarized, comes out from a second 45◦ polarizer. In
order to check if Mathematics gives us the right result, we have first to compute the
probability amplitude

〈/|/〉 = 1√
2

· 1√
2
〈V + H |V + H〉 = 1

2
〈V |V 〉 + 1

2
〈H |H〉 = 1

2
+ 1

2
= 1.
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The probability is the square of this probability amplitude, that is 1. The result fits
the experiment that is the mathematical form of |/〉 is well chosen.

A comment is necessary at this point: If one does not want to use the properties
of the inner product, she can directly write

|/〉 = 1√
2
|V 〉 + 1√

2
|H〉 =

⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ ,

therefore

〈/|/〉 =
(

1√
2

1√
2

)
·
⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ = 1

2
+ 1

2
= 1.

If we look at what happens if we prepare polarized photons at 45◦ and we allow them
to pass through a vertical polarizer, we know, from the experiment that only 50% of

photons will pass, that is the probability of this arrangement is
1

2
. Mathematics gives

us the same result. We have first to compute the probability amplitude

〈V |/〉 = (0 1) ·
⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ = 1√

2
.

The probability is, in this case, 〈V |/〉2, that is 1

2
.

If we consider the polarized photon at α degrees (assuming the angle measured
with respect the x-axis) the corresponding state vector is

|α〉 = cosα · |H〉 + sinα · |V 〉 =
(
cosα
sinα

)

If we look at what happens if we polarize photons at α degrees and we allow them to
pass through a horizontal polarizer, we know, from the experiment, that only cos2 α%
of photons will pass, that is the probability of this arrangement is cos2 α. Of course,
Mathematics has to tell us the same thing.We first compute the probability amplitude
described by

〈H |α〉 = (1 0) ·
(
cosα
sinα

)
= cosα,

therefore the probability is 〈H |α〉2 = cos2 α.

Nowwe are able to mathematically answer at the most general question:Which is
the probability of photons, polarized at α degrees with respect the horizontal axis, to
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pass through a β polarizer? The state corresponding to α polarized photons is given
by

|α〉 =
(
cosα
sinα

)

and the one corresponding to β polarized photons is described by

|β〉 =
(
cosβ
sin β

)
.

The probability amplitude 〈β|α〉 represents the number corresponding to the relation
between the two states. In this case

〈β|α〉 = (cosβ sin β) ·
(
cosα
sinα

)
= cosβ cosα + sin β sinα = cos(β − α).

The probability for α degrees polarized photons to become β-degrees polarized
photons is cos2(β − α).

We have to consider how this result is realized in an experiment implying vertical
and horizontal polarized light. From the mathematical point of view, we have:

• a Hermitian operator Â;
• distinct eigenvalues λn ∈ R corresponding to the Hermitian operator Â;
• orthogonal eigenvectors |�n〉 corresponding to the previous eigenvalues λn ∈ R

related by the equation
Â|�n〉 = λn|�n〉.

Let us assume only two possible states for the polarized light described by the orthog-
onal ket vectors

|H〉 =
(
1
0

)
and |V 〉 =

(
0
1

)
.

The Hermitian operator, such that |V 〉 and |V 〉 are the eigenvectors (eigenstates), is

ÂH V =
(
1 0
0 −1

)

because

ÂH V |H〉 =
(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
= 1 · |H〉,

and

ÂH V |V 〉 =
(
1 0
0 −1

)(
0
1

)
=

(
0

−1

)
= −1 · |V 〉.

The distinct eigenvalues are +1 and −1. Now the physical meaning. The observable
is given by a device which interacts only with horizontal and vertical polarized light
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and, from the mathematical point of view, it is the Hermitian operator ÂH V . Suppose
the device is set on two light frequencies, a blue light and a red light. If the blue
light is switched on and the red light is switched off, the horizontal polarized light
passes through the device. This means that the blue light corresponds to the +1
eigenvalue. In this case, the blue light is giving us the image of the polarized light.
It is horizontally polarized, therefore the corresponding state is |H〉. If the red light
is switched on and the blue light is switched off, the corresponding eigenvalue is −1
and the corresponding eigenstate is |V 〉.

Therefore in this Quantum Mechanics experiment, the device with two colored
lights is mathematically described by the Hermitian operator ÂH V . The two possible
states |H〉 and |V 〉 of the system represent horizontal and vertical polarized photons
which are recognized by the color of the light switched on. Each light switched on
indicates the corresponding eigenvalue and this indicates the corresponding eigen-
vector. This is the only measurement we can make on the system.

Now we can ask about the Hermitian operator associated to the following ket
vectors:

|/〉 =
⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ and |\〉 =

⎛
⎜⎝

− 1√
2

1√
2

⎞
⎟⎠ .

Let us remind the meaning of the forward slash ket vector: it is the state vector of 45◦
polarized photon. The backslash ket vector is the state vector of the 135◦ polarized
photon. It was shown that 〈/|/〉 = 1.

We left as an exercise to check the following relations:

〈\|\〉 = 1 and 〈\|/〉 = 0.

Which is the Hermitian matrix having these two eigenvectors? The following
computations

Â/\|/〉 =
(
0 1
1 0

)
⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ =

⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ = 1 · |/〉,

Â/\|\〉 =
(
0 1
1 0

)
⎛
⎜⎝

− 1√
2

1√
2

⎞
⎟⎠ = −

⎛
⎜⎝

− 1√
2

1√
2

⎞
⎟⎠ = −1 · |\〉.

show that the Hermitian matrix is

Â/\ =
(
0 1
1 0

)
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and the eigenvalues are +1 and −1. In this case, the physical meaning is similar
to the one presented in the above case. The observable is a device which interacts
only with 45◦ and 135◦ polarized light. From the mathematical point of view, the
device is represented by the Hermitian operator Â/\. Suppose the device has light
with two frequencies, green and yellow. If the green light is switched on and the
yellow light is switched off, it means that the 45◦ polarized light passes through the
device. The green light corresponds to the +1 eigenvalue. In this case, the green
light indicates that the eigenstate has to be |/〉. If the yellow light is switched on and
the green light is switched off, the corresponding eigenvalue is −1. Therefore the
yellow light indicates that the corresponding eigenstate is |\〉. The lights correspond
to eigenvalues and the eigenvalues tell us the eigenstate.

The general case of polarization has two orthogonal eigenvectors corresponding
to the states

|α〉 =
(
cosα
sinα

)
and |α⊥〉 =

(− sinα
cosα

)
.

The corresponding Hermitian matrix is

Âαα⊥ =
(
cos 2α sin 2α
sin 2α − cos 2α

)

and the eigenvalues are +1 and −1.
We left as an exercise to show that

Âαα⊥|α〉 = 1 · |α〉 and Âαα⊥|α⊥〉 = −1 · |α⊥〉

Wecanobserve thatα = 0 corresponds to thefirst case studiedwhen theHermitian
matrix is

ÂH V =
(
1 0
0 −1

)

and the eigenstates are

|H〉 =
(
1
0

)
and |V 〉 =

(
0
1

)

while α = π

4
corresponds to the second case studied when the Hermitian matrix is

Â/\ =
(
0 1
1 0

)

and the eigenstate vectors are
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|/〉 =
⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ and |\〉 =

⎛
⎜⎝

− 1√
2

1√
2

⎞
⎟⎠ .

A planar wave is “circularly polarized” when it can be written as

|�〉 =
⎛
⎜⎝

1√
2

· eiαx

1√
2

· eiαy

⎞
⎟⎠ ·

with |αx − αy| = π

2
. If we denote by

| �〉 =
⎛
⎜⎝

1√
2

i√
2

⎞
⎟⎠ and | �〉 =

⎛
⎜⎝

1√
2−i√
2

⎞
⎟⎠

the right and left circularly polarized states, the wave can be described in the form

|�〉 = �R| �〉 + �L | �〉

where
�R = 〈� |�〉 and �L = 〈� |�〉.

Let us observe that

〈� | �〉 = 0; 〈� | =
(

1√
2

−i√
2

)
and 〈� | =

(
1√
2

i√
2

)
,

consequently
〈� | �〉 = 1; 〈� | �〉 = 1.

If we compute

�L = 〈� |�〉 = 1

2

(
eiαx − i · eiαy

)

and

�R = 〈� |�〉 = 1

2

(
eiαx + i · eiαy

)
.

It results
|�L |2 + |�R|2 = 1.
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The last relation shows themain constraint of the state function of� which represents
a polarized plane wave function. If we have in mind this representation, related to
the electric field in the electromagnetic case, we may focus only at the right and left
circularly polarized states

| �〉 =
⎛
⎜⎝

1√
2

i√
2

⎞
⎟⎠ and | �〉 =

⎛
⎜⎝

1√
2−i√
2

⎞
⎟⎠ .

The Hermitian matrix whose eigenvectors are the previous ones is

Â�� =
(
0 −i
i 0

)
.

Exercise 10.4.1 Prove the following equalities:

1. Â��| �〉 = | �〉.
2. Â��| �〉 = −| �〉.
3. 〈α| �〉 = 1

2
.

Summary of Lecture 45. The present lecture is dedicated to the photon polar-
ization as a straightforward application of the Dirac formalism. One of the
most important concepts of QuantumMechanics, the probability amplitude, is
presented in detail. Specifically, we discuss how horizontal and vertical polar-
izations can be described from both physical and the mathematical points of
view. Let us consider two possible states for the polarized light described by
the orthogonal ket vectors

|H〉 =
(
1
0

)
and |V 〉 =

(
0
1

)
.

The Hermitian operator, such that |V 〉 and |V 〉 are the eigenvectors (eigen-
states), is

ÂH V =
(
1 0
0 −1

)

because

ÂH V |H〉 =
(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
= 1 · |H〉
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and

ÂH V |V 〉 =
(
1 0
0 −1

)(
0
1

)
=

(
0

−1

)
= −1 · |V 〉.

The distinct eigenvalues are +1 and −1. Now the physical meaning. The
observable is a device which interacts only with horizontal and vertical polar-
ized light and, from themathematical point of view, it is the Hermitian operator
ÂH V . Suppose the device works at two light frequencies, blue light and red
light. If the blue light is switched on and the red light is switched off, the hori-
zontal polarized light passes through the device. The blue light corresponds to
the+1 eigenvalue. In this case, the blue light shows us themathematical image
of the polarized light. It is horizontally polarized, therefore the corresponding
state is |H〉. If the red light is switched on and the blue light is switched off,
the corresponding eigenvalue is −1 and the corresponding eigenstate is |V 〉.
We find similar descriptions both for 45◦; 135◦ polarized photons and circu-
larly polarized photons. The corresponding Hermitian matrices are

(
1 0
0 −1

)
;
(
0 1
1 0

)
;
(
0 −i
i 0

)
;

they are the Pauli matrices. They represent an important theoretical support
in the description not only of the photon polarization but also of the spin of
electron description.



Chapter 11
Quantum Mechanics at the Next Level

Physicists have come to realize that Mathematics, when
used with sufficient care, is a proven pathway to Truth.

Brian Greene

11.1 Lecture 46: The Electron Spin

Elementary particles, as electron, have an intrinsic characteristic named “spin”. The
analog of this property is a rotation. All rotations are made with respect one ore more
than one axes of rotation. A rotation around an axis only is represented by a segment
line (a vector) with an arrow at one end. The arrow gives information on the sense
of rotation.

Before developing the Mathematics necessary to describe the electron spin, let
us discuss how the spin of electron emerges from experiments and can be measured
(see, for example [25]). Physicists established that measurements can be made by an
electronic device with respect to a given direction, say z-direction. According to the
electron spin structure which we will discuss below, there are only two possibilities:
The device can indicate the possible “spin up” or “spin down” directions of the
electron spin using two colored lights. If the blue light is switched on and the red
light is switched off, the device indicates a “spin up” electron passing through it. If
the red light is switched on and the blue light is switched off, the device indicates a
“spin down” electron passing through it.

Using magnets, physicists can arrange electrons “spin up” with respect to z-
axis. The measurements will indicate that 100% of this “spin up” electrons, passing
through the device, are indicated as “spin up” and 0% are indicated as “spin down”. A
similar result will happen when the physicists will arrange the “spin down” electrons
and the electrons pass through the device. The measurements will indicate that 100%
of this “spin down” electrons passing through the device are indicated as “spin down”
and 0% are indicated as “spin up”.
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A first interesting “wired” result is the following. If we preserve the device in
the position where it is and we send in it electrons prepared with the spin in the
x-direction, the device will indicate 50% with “spin up” and 50% with “spin down”.
The intuition tells as that there are no “spin up” or “spin down” electrons in this
situation, however half of them are “spin up” and half of them are “spin down”.
The same, if we prepare electrons with spin at a given angle with respect to the
z-axis, we can have 32% with “spin up” and 68% with spin down. These results
are “wired” because all the electrons are arranged with spin at “a given direction”
and some of them will appear as “spin up” and all the others will appear as “spin
down” electrons. Therefore the direction in which the electrons are “spin arranged”
can be dealt under the standard of probability. According to this statement, there is
an analog mathematics involved in the description of spin as the one adopted for the
photon polarization.

In theDirac notation, if we denote by | ↗〉 the state of identical electronswith spin
prepared into a generic ↗ direction, we can decompose them as “spin up” electrons
with | ↑〉 and “spin down” electron with | ↓〉. Then, it is

| ↗〉 = a| ↑〉 + b| ↓〉

where a, b ∈ C are probability amplitudes and

aa∗ + bb∗ = 1.

Let us insist on the language: a, that is 〈↑ | ↗〉, is the probability amplitude for
electrons arranged with spin in a direction ↗ to be “spin up”. The probability for
electrons arranged with spin at direction ↗ to be spin up is aa∗. On the other hand,
b, that is 〈↓ | ↗〉, is the probability amplitude for electrons with spin arranged in
a direction ↗ to be “spin down”. The probability for electrons with spin arranged
in direction ↗ to be “spin down” is bb∗. Since there are only two possibilities, the
relation aa∗ + bb∗ = 1 reflects the whole probability of the event to occur, the event
being “to be spin up or spin down”.

Let us consider now only a given electron among the identical prepared electrons
at spin ↗. We understand that, after the electron interacts with the measurement
device, it will be either “spin up” or “spin down‘’. Suppose the electron becomes a
“spin up” one. Therefore, for this particular electron, the relation

| ↗〉 = a| ↑〉 + b| ↓〉

becomes
| ↗〉 = 1| ↑〉 + 0| ↓〉 = | ↑〉.

An important point has to be remarked: Interfering with the equipment, the state
| ↗〉, which is a superposition of “spin up” and “spin down”, that is

| ↗〉 = a| ↑〉 + b| ↓〉,
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collapses in one the two possible states, in our case the electron collapses in the “spin
up” state | ↑〉.

Therefore the blue light of our device switches on when we send the electron,
prepared at the state | ↗〉, into the equipment. This result means the collapse of
the superposition state. It is worth noticing that, even if we observe the result for
1000, or for 1000000 electrons with spin arranged at | ↗〉, we can only ascertain the
result with respect to the probability amplitudes. In other words, Nature imposes the
probability amplitudes and we can only ascertain the realization of this probability.
Neither the device nor the observer establish the probability amplitudes. The Nature
Itself decides and it is important to underline this fundamental point.

Let us take into account again the relation

| ↗〉 = a| ↑〉 + b| ↓〉

where a, b ∈ C are probability amplitudes and aa∗ + bb∗ = 1.
In this relation, the ket vectors related to “spin up” and “spin down” are part

of an orthonormal vector basis because no “spin up” electron is “spin down” and
vice-versa. “Spin up” arranged electrons and all measured as “spin up”. Therefore
the relations

〈↑ | ↑〉 = 1; 〈↓ | ↓〉 = 1; 〈↓ | ↑〉 = 0;

hold. When identical electrons are arranged to spin in the direction of x-axis, the
“spin right” direction is expressed as

| →〉 = 1√
2
| ↑〉 + 1√

2
| ↓〉.

We have a similar relation for the electrons arranged in “spin left” direction, that is

| ←〉 = 1√
2
| ↑〉 − 1√

2
| ↓〉.

From this two relations, we can immediately deduce

| ↑〉 = 1√
2
| →〉 + 1√

2
| ←〉

and

| ↓〉 = 1√
2
| →〉 − 1√

2
| ←〉.

Therefore, we have the following situation:

• With respect to the z-axis, we have the “spin up” and “spin down” orthonormal
basis | ↑〉, | ↓〉;
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• With respect to the x-axis, we have the “spin right” and “spin left” orthonormal
basis | →〉, | ←〉;

• With respect to the y-axis we have the “spin in” and “spin out” orthonormal basis
|×〉, |◦〉. The names for this two last possibilities to spin are related to the fact
that the y-axis is perpendicular to the Oxz-plane.

If we make the same experiment with “spin in” direction arranged electrons and if
we measure with respect to a “spin up-spin down” device, we obtain the same 50%
“spin up” and 50% “spin down” electrons passing through the device. Therefore we
have

|×〉 = 1√
2
| ↑〉 + i√

2
| ↓〉.

In the same way, it is

|◦〉 = 1√
2
| ↑〉 − i√

2
| ↓〉.

It is important to say that, in all situations presented above, we choose the + sign to
express the sense on the studied axis. Therefore here the + is chosen to express the
fact that “spin in” is oriented in the sense of y-axis orientation. As a consequence

| ↑〉 = 1√
2
|×〉 + 1√

2
|◦〉

and

| ↓〉 = − i√
2
|×〉 + i√

2
|◦〉.

Example 11.1.1 Let us check if we obtain
1

2
probability when we measure “spin

in” arranged electrons to be “spin left”. First we write “spin in” arranged electrons
in the form

|×〉 = 1√
2
| ↑〉 + i√

2
| ↓〉.

Then we consider the bra vector corresponding to the ket vector

| ←〉 = 1√
2
| ↑〉 − 1√

2
| ↓〉,

that is

〈← | = 1√
2
〈↑ | − 1√

2
〈↓ |.

Weneed to express the probability amplitude 〈← |×〉 and then to consider |〈← |×〉|2,
that is 〈← |×〉 · 〈← |×〉∗. Using the orthonormality of the basis “spin up”, “spin
down” we have



11.1 Lecture 46: The Electron Spin 229

〈← |×〉 =
(

1√
2
〈↑ | − 1√

2
〈↓ |

)(
1√
2
| ↑〉 + i√

2
| ↓〉

)
= 1

2
− i

2
.

Therefore the probability is

|〈← |×〉|2 = 〈← |×〉 · 〈← |×〉∗ =
(
1

2
− i

2

)(
1

2
+ i

2

)
= 1

2

which fits the experiment.

Exercise 11.1.2 Find the probability for “spin right” arranged electrons to be “spin
out”.

Hint. Take care at the bra vector attached to “spin out” ket vector. It is

〈◦| = 1√
2
〈↑ | + i√

2
〈↓ |.

Then follow the line of the previous example and compute the probability amplitude
〈◦| →〉.

The “spin up” and “spin down” ket vectors can be seen as

| ↑〉 =
(
1
0

)
and | ↓〉 =

(
0
1

)
.

According to this formalism, the “spin right”, “spin left”, “spin in” and “spin out”
ket vectors are

| →〉 =
⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ ; | ←〉 =

⎛
⎜⎝

1√
2−1√
2

⎞
⎟⎠ ; |×〉 =

⎛
⎜⎝

1√
2
i√
2

⎞
⎟⎠ ; |◦〉 =

⎛
⎜⎝

1√
2−i√
2

⎞
⎟⎠ .

Proposition 11.1.3 The operator which allows the eigenvectors | ↑〉 and | ↓〉 cor-
responding to the eigenvalues +1 and −1, respectively, is

σz =
(
1 0
0 −1

)
.

Proof We can check directly or we can identify the elements of the matrix from the
two conditions:

σz| ↑〉 = | ↑〉 that is

(
a b
d e

)(
1
0

)
=
(
1
0

)
;

σz| ↓〉 = −| ↓〉 that is

(
a b
d e

)(
0
1

)
=
(

0
−1

)
.
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These four equations have the solution a = 1; b = 0; c = 0; d = −1. �

Theobservable is our devicewhich establishes if an electronwith the spin prepared
in the j-direction “spins up” or “spins down”. In this case, from the mathematical
point of view, the observable is the Hermitian operator σz . The device has two lights,
blue and red. If the blue light is switched on and the red light is switched off, a
“spin up” electron passed through the device. The blue light corresponds to the
+1 eigenvalue. In this case, the blue light is telling us that a “spin up” electron,
corresponding to | ↑〉 state, passed. If the red light is switched on and the blue light is
switched off, the corresponding eigenvalue is −1 and the corresponding eigenstate
is | ↓〉.

At the end of all measurements, we find the probability Pu to bemeasured as “spin
up” and the probability Pd to be measured as “spin down”. If | j〉 = p| ↑〉 + q| ↓〉,
then Pu = pp∗ and Pd = qq∗.

Following the proof of the above proposition, the reader can easily solve the
following:

Exercise 11.1.4 Show that the operator which allows the eigenvectors | →〉 and
| ←〉 corresponding to the eigenvalues +1 and −1, respectively, is

σx =
(
0 1
1 0

)
.

Exercise 11.1.5 Show that the operator which allows the eigenvectors |×〉 and |◦〉
corresponding to the eigenvalues +1 and −1, respectively, is

σy =
(
0 −i
i 0

)
.

Therefore the same unitary Hermitian operators, the Pauli matrices, discussed in
the case of photon polarization, can be adopted to study the electron spin.

Let us see the big picture of what we discovered until now. The eigenstates cor-
responding to Pauli matrices σz, σx , σy for the same +1 and −1 eigenvalues are

For the operator σz, the eigenvalue +1 corresponds to | ↑〉 =
(
1
0

)
and -1 to | ↓〉 =

(
0
1

)
;

For the operator σx , the eigenvalue +1 corresponds to | →〉 =
⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ and -1 to | ←〉 =

⎛
⎜⎝

1√
2−1√
2

⎞
⎟⎠ ;

For the operator σy , the eigenvalue +1 corresponds to |×〉 =
⎛
⎜⎝

1√
2
i√
2

⎞
⎟⎠ and -1 to|◦〉 =

⎛
⎜⎝

1√
2−i√
2

⎞
⎟⎠ .

If we look again at the formulas
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| →〉 = 1√
2
| ↑〉 + 1√

2
| ↓〉

or

|×〉 = 1√
2
| ↑〉 + i√

2
| ↓〉,

we find out that, for the orthogonal directions z and x , the probability to find an
electron arranged to spin in the positive x direction to be measured as spinning in the

positive z direction is
1

2
, that is cos2

π

4
. The same if we measure the probability to

find an electron arranged to spin in the positive y direction to bemeasured as spinning

in the positive z direction is
1

2
, that is cos2

π

4
. In fact if we denote by α the angle

between the directions, the measured probability is cos2
α

2
and it is measured with

respect to eigenstates corresponding to the same eigenvalue,+1 of the corresponding
operators. In the first case, the probability is |〈↑ | →〉|2.

This result can be generalized. Consider two vectors u := (ux , uy, uz) and v :=
(vx , vy, vz) such that

u2x + u2y + u2z = v2
x + v2

y + v2
z = 1.

They represent directions in the three-dimensional Euclidean space. Denote by α the
angle between the two unit vectors, that is

cosα = uxvx + uyvy + uzvz .

We can ask which is the probability amplitude, corresponding to electrons arranged
with spin in the u direction, to be measured with spin in the v direction. Then, it is

easy to find the probability, that is cos2
α

2
.

Let us describe how to proceed to find out the probability amplitude and then the
probability.

1. We construct the operators related to the given directions.
2. We find out the eigenvector corresponding to +1 eigenvalue for each of the two

operators.
3. We compute the probability amplitude determined by the two eigenvectors.

Let us proceed according to the above steps. The operators related to the unit vectors
u and v are

σu := uxσx + uyσy + uzσz;

σv := vxσx + vyσy + vzσz .
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They are also called Pauli vectors. If we consider the first Pauli vector, we can
observe that a particular choice as u = (0, 0, 1) determines the σz Pauli matrix and
we know the eigenvector corresponding to the eigenvalue +1. The same happens for
the choices (1, 0, 0) and (0, 1, 0) which produce the other two Pauli matrices σx and
σy . Therefore, except these three choices, we are interested to find the eigenvectors
denoted by |�+

u 〉 and |�+
v 〉 corresponding to the eigenvalue+1 for each Pauli vector.

Theorem 11.1.6 The eigenvector |�+
u 〉, corresponding to the eigenvalue +1 of the

Pauli vector σu, is

|�+
u 〉 =

√
1 + uz

2

⎛
⎝ 1

1 − uz

ux − iuy

⎞
⎠ .

Proof Let us start from the definition of σu :

σu = ux

(
0 1
1 0

)
+ uy

(
0 −i
i 0

)
+ uz

(
1 0
0 −1

)
=
(

uz ux − iuy

ux + iuy −uz

)
.

We show that σu allows the eigenvector to have the form

|�+
u 〉 = a

(
1
β

)
, a ∈ R, β ∈ C.

The relation
σu · |�+

u 〉 = |�+
u 〉,

that is (
uz ux − iuy

ux + iuy −uz

)(
1
β

)
=
(
1
β

)

leads to the system {
uz + β(ux − iuy) = 1
(ux + iuy) − βuz = β.

The two possible values of β

β = 1 − uz

ux − iuy

and

β = ux + iuy

1 + uz

are the same because u is a unit vector. Therefore we can choose one of them, say
the first one. It results
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|�+
u 〉 = a

⎛
⎝ 1

1 − uz

ux − iuy

⎞
⎠ .

The corresponding bra vector is

〈�+
u | = a

(
1

1 − uz

ux + iuy

)
.

therefore we establish the constant a from 〈�+
u |�+

u 〉 = 1. It results

1 = 〈�+
u |�+

u 〉 = a2
(
1

1 − uz
ux + iuy

)⎛
⎝ 1

1 − uz
ux − iuy

⎞
⎠ = a2

(
1 + (1 − uz)2

u2x + u2y

)
= 2a2

1 + uz
.

The sign is chosen to preserve the direction of the eigenvector, therefore

a =
√
1 + uz

2
.

�

Corollary 11.1.7 The eigenvector |�−
u 〉 corresponding to the eigenvalue −1 of the

Pauli vector σu is

|�−
u 〉 =

√
1 − uz

2

⎛
⎝ 1

− 1 + uz

ux − iuy

⎞
⎠ .

Let us continue to compute the probability amplitude 〈�+
v |�+

u 〉 which expresses the
number of electrons arranged with spin in the u direction to be measured with spin
in the v direction.

Theorem 11.1.8 If, for the unit vectors u and v, we have cosα = uxvx + uyvy +
uzvz , then

|〈�+
u |�+

v 〉|2 = cos2
α

2
.

Proof If we compute 〈�+
v |�+

u 〉 using

〈�+
v | =

√
1 + vz

2

(
1

1 − vz

vx + ivy

)

and

|�+
u 〉 =

√
1 + uz

2

⎛
⎝ 1

1 − uz

ux − iuy

⎞
⎠
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and we want to express the result as depending on cos2
α

2
= 1 + cosα

2
=

1 + uxvx + uyvy + uzvz

2
the calculation is complicated.We can choose another way.

Let us perform a change of coordinates. In the plane determined by the two vectors
u and v, we choose one of the vectors as (1, 0) and the other as (cosα, sin α). The
third new coordinate is with respect to an axis perpendicular in the origin to the
plane determined by u and v. Without losing generality, we can say that, in the
new coordinate frame, the components of the two vectors u and v are (1, 0, 0) and
(cosα, sin α, 0). In the new system of coordinates, it is

σu = 1 ·
(
0 1
1 0

)
+ 0 ·

(
0 −i
i 0

)
+ 0 ·

(
1 0
0 −1

)
=
(
0 1
1 0

)

and

σv = cosα

(
0 1
1 0

)
+ sin α ·

(
0 −i
i 0

)
+ 0 ·

(
1 0
0 −1

)
=
(

0 cosα − i sin α

cosα + i sin α 0

)
.

We know how computing the eigenvectors corresponding to the eigenvalue+1. They
are

|�+
u 〉 =

⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ and |�+

v 〉 =
⎛
⎜⎝

1√
2

1√
2
(cosα + i sin α)

⎞
⎟⎠ .

Therefore

〈�+
v |�+

u 〉 =
(

1√
2

1√
2
(cosα − i sin α)

)⎛⎜⎝
1√
2
1√
2

⎞
⎟⎠ = cos

α

2

(
cos

α

2
− i sin

α

2

)

and 〈�+
u |�+

v 〉 = cos
α

2

(
cos

α

2
+ i sin

α

2

)
. The probability becomes

|〈�+
u |�+

v 〉|2 = cos2
α

2

(
cos

α

2
+ i sin

α

2

) (
cos

α

2
− i sin

α

2

)
= cos2

α

2
.

�

Let us, for the moment, consider only the mathematical point of view. We define
the following objects:

σz =
(
1 0
0 −1

)
; σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
;
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without knowing, from the beginning, that they are used to describe both photon
polarization and electron spin. We can find the eigenvectors and the eigenvalues of
these Pauli matrices without knowing their physical meaning. Using these matrices
in blocks of some other 3 × 3 or 4 × 4 matrices, we can create objects as

σx =
⎛
⎝ 0 1 0
1 0 1
0 1 0

⎞
⎠ ; σy =

⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠ ; σz =

⎛
⎝ 1 0 0
0 0 0
0 0 −1

⎞
⎠ ;

which admit, for the eigenvalues 1; 0, −1, the orthogonal eigenvectors

|x〉1 = 1

2

⎛
⎝ 1√

2
1

⎞
⎠ |x〉0 = 1√

2

⎛
⎝−1

0
1

⎞
⎠ |x〉−1 = 1

2

⎛
⎝ 1

−√
2

1

⎞
⎠

|y〉1 = 1

2

⎛
⎝ −1

−i
√
2

1

⎞
⎠ |y〉0 = 1√

2

⎛
⎝ 1
0
1

⎞
⎠ |y〉−1 = 1

2

⎛
⎝ −1
i
√
2

1

⎞
⎠

|z〉1 =
⎛
⎝ 0
0
1

⎞
⎠ |z〉0 =

⎛
⎝0
1
0

⎞
⎠ |z〉−1 =

⎛
⎝ 1
0
0

⎞
⎠ ;

or the 4 × 4 matrices

σx =

⎛
⎜⎜⎝

0
√
3 0 0√

3 −0 2 0
0 2 0

√
3

0 0
√
3 0

⎞
⎟⎟⎠ ; σy =

⎛
⎜⎜⎝

0 −i
√
3 0 0

i
√
3 0 −2i 0

0 2i 0 −i
√
3

0 0 i
√
3 0

⎞
⎟⎟⎠ ; σz =

⎛
⎜⎜⎝
3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎟⎠ ;

which allow, for the eigenvalues
3

2
,
1

2
, −1

2
, −3

2
, the orthogonal eigenvectors

|x〉3/2 = 1

2
√
2

⎛
⎜⎜⎝

1√
3√
3
1

⎞
⎟⎟⎠ ; |x〉1/2 = 1

2
√
2

⎛
⎜⎜⎝

−√
3

−1
1√
3

⎞
⎟⎟⎠ ;

|x〉−1/2 = 1

2
√
2

⎛
⎜⎜⎝

√
3

−1
−1√
3

⎞
⎟⎟⎠ ; |x〉−3/2 = 1

2
√
2

⎛
⎜⎜⎝

−1√
3

−√
3

1

⎞
⎟⎟⎠ ;
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|y〉3/2 = 1

2
√
2

⎛
⎜⎜⎝

i
−√

3
−i

√
3

1

⎞
⎟⎟⎠ ; |y〉1/2 = 1

2
√
2

⎛
⎜⎜⎝

−i
√
3

1
−i√
3

⎞
⎟⎟⎠ ;

|y〉−1/2 = 1

2
√
2

⎛
⎜⎜⎝
i
√
3

1
i√
3

⎞
⎟⎟⎠ ; |y〉−3/2 = 1

2
√
2

⎛
⎜⎜⎝

−i
−√

3
i
√
3

1

⎞
⎟⎟⎠ ;

|z〉3/2 =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ ; |z〉1/2 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ ;

|z〉−1/2 =

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ ; |z〉−3/2 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ .

It is possible to establish that the first group of 3 × 3 matrices are observables corre-
sponding to particles with spin 1, while the second group of matrices are observables
corresponding to particles with spin 3/2. There are also matrices corresponding to
particles with spin 5/2. The electron is an example of particle having the spin 1/2
with the two states 1/2 and −1/2. These spin numbers will be understood under the
standard of angular momentum in Quantum Mechanics.

Summary ofLecture 46.Spin is an intrinsic property of particles like electron.
Something spinning is something which rotates with respect to one or more
axes. The spin of electron cannot be imagined, it is wired with respect to
our intuition. However, it can be mathematically described by Dirac notation
using the Pauli matrices. In Dirac notation, if we denote by | ↗〉 the state of
identical electrons with spin prepared into ↗ direction, we can write them
with respect to “spin up”, denoted by | ↑〉, and to “spin down”, denoted by
| ↓〉, as | ↗〉 = a| ↑〉 + b| ↓〉 where a, b ∈ C are the probability amplitudes
with the constraint aa∗ + bb∗ = 1. Step by step, it is possible to advance in
the construction of the spin big picture. We observe that “spin up” and “spin
down” arrangements are in fact vectors along the z-axis and, using this idea,
we can construct “spin right” and “spin left” along the x-axis and “spin in” and
“spin out” along the y-axis. The last two pairs can be expressed with respect
to “spin up” and “spin down” vectors. The eigenstates corresponding to the
Pauli matrices
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σz =
(
1 0
0 −1

)
; σx =

(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
;

for the same +1 and −1 eigenvalues, are respectively the vectors described
earlier, that is

| ↑〉 =
(
1
0

)
and | ↓〉 =

(
0
1

)
;

| →〉 =
⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ and | ←〉 =

⎛
⎜⎝

1√
2−1√
2

⎞
⎟⎠ ;

|×〉 =
⎛
⎜⎝

1√
2
i√
2

⎞
⎟⎠ and |◦〉 =

⎛
⎜⎝

1√
2−i√
2

⎞
⎟⎠ .

From a given unit vector u = (ux , uy, uz), we can construct the Pauli vector

σu = ux

(
0 1
1 0

)
+ uy

(
0 −i
i 0

)
+ uz

(
1 0
0 −1

)
=
(

uz ux − iuy

ux + iuy −uz

)
.

It can be proved that its eigenvector, corresponding to the eigenvalue +1, is

|�+
u 〉 =

√
1 + uz

2

⎛
⎝ 1

1 − uz

ux − iuy

⎞
⎠

and, for two given unit vectors, the probability corresponding to electrons,
arrangedwith spin in the u direction to bemeasuredwith spin in the v direction,
depends on the angle α between the two vectors, that is

|〈�+
u |�+

v 〉|2 = cos2
α

2
.

11.2 Lecture 47: Revisiting the Harmonic Oscillator. The
Ladder Operators

In Lecture 25, we discussed how to solve the Schrödinger equation for the harmonic
oscillator and, in the following ones, we described the whole mathematical structure
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related to the quantum harmonic oscillator. In particular, we discussed, besides the
solutions, how to predict the possible energy levels.

We want to study how the mathematical apparatus of harmonic oscillator can
be used to describe, in general, Quantum Mechanics. The result is a deep impact
on elementary particles physics because this picture is related to ladder operators
which allow us not only to have a comprehensive view on energy levels but also on
creation and annihilation of matter. Specifically, in linear algebra, a ladder operator
can increase or decrease the eigenvalues of a given operator. They are the creation
and annihilation operators.

Let us start by understanding how states vary over time and then, using the Her-
mitian operator associated to harmonic oscillator, we construct two operators. One

of them , successively applied, gives rise, starting from a first energy eigenvalue
�ω

2
,

to all other possible energy levels

(
n + 1

2

)
�ω described in Lecture 25.

Consider a Hermitian operator Â acting on the state of a system, denoted by
|�〉, giving a real eigenvalue a and representing the measurement with respect to
the observable at the given state. We established already the mathematical and the
physical meaning of an equation as

Â|�〉 = a|�〉.

If we are interested to extract information on energy E of the system, the observable
is the Hamiltonian Ĥ . We want to see what happens if the state evolves over time.

Let us develop the 1-dimensional case. If there is no time dependence, the Hamil-
tonian operator is:

Ĥ(x) = − �
2

2m

d2

dx2
+ V̂ (x).

The extracted information is the eigenvalue E coming from

[
− �

2

2m

d2

dx2
+ V̂ (x)

]
|�〉 = E |�〉.

Let us consider the state |�〉 varying over time. This next step involves unitary
operators which we have to take into account.

Denote by Î the unit operator. The time-dependence of a state |�1〉 is the action
of another operator Ût on |�1〉 transforming it into Ût |�1〉.

If another state |�2〉 evolves in time simultaneously with |�1〉, we obtain, at the
same time t , the state Ût |�2〉. The bra vector, corresponding to Ût |�2〉, is 〈�2Û

†
t |,

where Û †
t is the transposed complex conjugate of Û .

Consider the probability amplitude of the two states, 〈�2|�1〉. It does not matter
if we measure it at time t = 0 or at another chosen time. The probability amplitude
does not evolve in time. Therefore
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〈�2|�1〉 = 〈�2Û
†
t |Ût�1〉 = 〈�2|Û †

t Ût |�1〉,

that is at each considered t , it is
Û †

t Ût = Î .

A similar relation
Ût Û

†
t = Î

appears when we compute
〈�1|�2〉.

The evolution in time of a state happens only if Ût is a unitary operator. At time
t = 0, it happens Û0 = Î .

We can develop the new notion of ε-operator. The meaning of an ε-operator is
related to a fact often used in physics: If we consider a sum of operators, each one
having in front natural powers of ε, for small ε, all terms containing powers of ε

strictly grater than one can be neglected under some circumstances.
For example, B̂ = Î + kε L̂ is an ε-operator because there are no termswith power

strictly grater than one.We can say that the ε operator, attached to B̂ is B̂ε = B̂. If we
have an operator as Ĉ = Î + f εM̂ + jε2 N̂ , it becomes an ε-operator, if we cancel
the term containing ε2, that is if we consider only Ĉε = Î + f εM̂ .

Consider now the ε-operator M̂ = Î + ikεT̂ and its corresponding dagger oper-
ator M̂† = Î − ikεT̂ †. The ε-operator, attached to the product M̂†M̂ , is

(M̂†M̂)ε = Î + ikε(T̂ − T̂ †).

Let us observe that the ε-operator, attached to the product M̂†M̂ , is a unitary
operator if and only if T̂ = T̂ †, that is when the operator T̂ is Hermitian. Indeed

(M̂†M̂)ε = Î + ikε(T̂ − T̂ †) = Î iff T̂ − T̂ † = 0̂.

Now we replace unitary operators with ε-unitary operators to express the evolution
in time of states, that is assume that evolution in time of states, for small values of ε,
can be described by ε-unitary operators.

This assumption allows todescribe in anotherway the time-dependentSchrödinger
equation. Let Ĥ be the operator attached to the Hamiltonian of a physical system.
We know that Ĥ is a Hermitian operator. According to the previous picture, we can
construct the unitary ε-operator

Ûε = Î − iε

�
Ĥ

and, for every small ε, it can be used to express an evolution in time of states.
Consider the state |�t 〉 and its evolution in time |�t+ε〉 := Ûε|�t 〉. It results
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|�t+ε〉 :=
(
Î − iε

�
Ĥ

)
|�t 〉 = |�t 〉 − iε

�
Ĥ |�t 〉.

We can write it in the form

|�t+ε〉 − |�t 〉
ε

= − i

�
Ĥ |�t 〉.

In the limit ε → 0 and for a convenient multiplication by i�, it leads to

i�
d

dt
|�t 〉 = Ĥ |�t 〉,

that is the time-dependent Schrödinger equation written in operator form. Here i�
d

dt
is the quantum operator related to the Hamiltonian Ĥ , relation granted by the time
evolution of quantum states.

When the quantum harmonic oscillator was studied in Lecture 25, the main step
consisted in considering the wave function of the form

�(t, x) = e−i Et/��(x),

that is with the spatial part separated by the time evolution. This form was replaced
into the time-dependent Schrödinger equation

i�
∂�

∂t
(t, x) = − �

2

2m

∂2�

∂x2
(t, x) + V (t, x)�(t, x)

corresponding to the potential which generates the restoring force of the classical
harmonic oscillator,

V (t, x) = V (x) = 1

2
mω2x2.

It resulted the equation we solved,

[
− �

2

2m

d2

dx2
+ 1

2
mω2x2

]
�(x) = E�(x),

with all possible energy levels E = En =
(
1 + n

2

)
�ω extracted as eigenvalues.

The separation of time and space components suggests to consider a normalized
state

|�t 〉 = e−i Et/�|�x 〉.

Here t is a given parameter and the state variable is x . In this case, the complex number
e−i Et/� plays the role of unitary operatorUt , that is it expresses the evolution in time
of a given state, here |�x 〉. Then, we have
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Ĥ e−i Et/�|�x 〉 = Ĥ |�t 〉 = i�
d

dt
|�t 〉 = E · e−i Et/�|�x 〉.

It remains to solve Ĥ |�x 〉 = E |�x 〉, i.e.
[
p̂2

2m
+ 1

2
mω2 x̂2

]
|�x 〉 = E |�x 〉.

Taking into account the position and momentum operators, the previous operator
equation becomes

[
− �

2

2m

d2

dx2
+ 1

2
mω2x2

]
|�x 〉 = E |�x 〉.

Let us choose the normalized state

|�x 〉 := 4

√
mω

�π
e−mωx2/2�.

This choice comes from results of Lecture 25, that is

�n(x) = 1√
2nn!

(mω

π�

)1/4
Hn

(√
mω

�
x

)
e−mωx2/2�

for n = 0. We have

[
− �

2

2m

d2

dx2
+ 1

2
mω2x2

]
|�x 〉 =

[
− �

2

2m

d2

dx2
+ 1

2
mω2x2

]
4

√
mω

�π
e−mωx2/2� =

= 4

√
mω

�π

[
− �

2

2m

d2

dx2

(
e−mwx2/2�

)
+ 1

2
mw2x2e−mwx2/2�

]
=

=
[
−

����1

2
mω2x2 + �ω

2
+

����1

2
mω2x2

]
4

√
mω

�π
e−mωx2/2� = �ω

2
4

√
mω

�π
e−mωx2/2�

which means

Ĥ |�x 〉 = �ω

2
|�x 〉.

In this way, we obtained the energy ground state for the harmonic oscillator, E0 =
�ω

2
, that is the minimum positive energy of the given Hamiltonian. Why this is the

minimum energy? The ladder operators will help us to show this.
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To continue, let us consider physical units such that m = 1 and � = 1. It will be
easier to understand the ladder operators, because on the contrary, we should carry a
lot of constants in formulas. Let us write, in the new notations, some results obtained
before. We have:

• The Hamiltonian of harmonic oscillator is Ĥ = 1

2
( p̂2 + ω2 x̂2);

• The normalized state is |�x 〉 = 4

√
ω

π
e−wx2/2;

• The ground state energy for the Harmonic oscillator is E0 = ω

2
;

• The commutator of the position and momentum operators gives [x̂, p̂] = i.

Let us start the computation considering

( p̂ + iωx̂)( p̂ − iωx̂) = p̂2 + ω2 x̂2 + iω(x̂ p̂ − p̂x̂) = p̂2 + ω2 x̂2 − ω

which leads to

Ĥ = 1

2
( p̂ + iωx̂)( p̂ − iωx̂) + ω

2
.

We define

â+ := 1√
2ω

( p̂ + iωx̂) and â− := 1√
2ω

( p̂ − iωx̂).

Here â+ is the raising or the creation operator, while â− is the lowering operator or
the annihilation operator. Another simple computation related to these operators is

[( p̂ + iωx̂), ( p̂ − iωx̂)] = iω(x̂ p̂ − p̂x̂) − iω( p̂x̂ − x̂ p̂) = −2ω,

that is
[â+, â−] = −1.

The Hamiltonian of the harmonic oscillator, written in terms of ladder operators, is

Ĥ = ω(â+â−) + ω

2
.

If we compute the action of the lowering operator on our chosen state |�x 〉, we have

â−|�x 〉 =
∣∣∣∣ 1√

2ω

(
−i

d

dx
− iωx

)
4

√
ω

π
e−ωx2/2

〉
= |0〉,

i.e. this operator “destroys” the state function. Therefore

Ĥ |�x 〉 = ω(â+â−)|�x 〉 + ω

2
|�x 〉 = ω

2
|�x 〉 = E0|�x 〉.
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Another possible computation is related to Ĥ â+|�x 〉. It is

Ĥ â+|�x 〉 =
(
ω(â+â−) + ω

2

)
â+|�x 〉 = ω(â+â−)â+|�x 〉 + ω

2
â+|�x 〉 =

= ωâ+(â−â+)|�x 〉 + ω

2
â+|�x 〉 = ωâ+(â+â− + 1)|�x 〉 + ω

2
â+|�x 〉 =

= ωâ+|�x 〉 + ω

2
â+|�x 〉 = E1â

+|�x 〉,

therefore E1 = 3ω

2
. Acting on |�x 〉 with â+ we increase the energy, therefore

we switched from level E0 to level E1. A simple exercise shows that the state

â+â+|�x 〉 leads to E2 = 5ω

2
, etc. Applying again and again â+ we build up the

set of eigenvalues corresponding to the possible energy levels of the harmonic oscil-

lator, En =
(
n + 1

2

)
ω. Restoring the standard units, we have En =

(
n + 1

2

)
�ω.

In terms of states corresponding to energy levels, we can denote by |0〉 the basic
state and by |1〉 the state corresponding to the energy E0 when â−|1〉 = |0〉. The
operator â+ increases the energy and changes the state in the next superior state, and
â− decreases the energy to reach the previous inferior one. We have

â+|n〉 = |n + 1〉 and â−|n + 1〉 = |n〉 .

However, this statement does not work because

[â+, â−] |n〉 = â+â−|n〉 − â−â+|n〉 = â+|n − 1〉 − â−|n + 1〉 = |n〉 − |n〉 = |0〉

is in disagreement with [â+, â−] = −1. But if we choose

â+|n〉 = √
n + 1 |n + 1〉

â−|n〉 = √
n |n − 1〉

it is simple to show that [â+, â−] = −1. Indeed,

[â+, â−] |n〉 = â+â−|n〉 − â−â+|n〉 = √
n â+|n − 1〉 − √

n + 1 â−|n + 1〉 =

n|n〉 − (n + 1)|n〉 = −|n〉.

Now it becomes obvious why we can call them the creation and the annihilation
operators, respectively: The first one adds a quantum to a given energy level, while
the second one extracts a quantum. In elementary particles physics, the first one



244 11 Quantum Mechanics at the Next Level

creates and the second one destroys particles which corresponds exactly to the energy
quanta �ω.

If we look at the formulas

En =
(
n + 1

2

)
�ω

and

Ĥ = �ω(â+â−) + �ω

2

restoring �, we can define a “number operator” N̂ considering

N̂ := â+â−.

The Hamiltonian of the harmonic oscillator becomes

Ĥ = �ω

(
N̂ + 1

2

)
.

Since
〈n|N̂ |n〉 = 〈n|â+â−|n〉 = (

â−|n〉)† â−|n〉 ≥ 0,

it means that the smallest eigen-number is 0 and

â−|0〉 = 0.

There are no other energy levels because the annihilation operator cannot extract
other states “under” the basic |0〉 state which can be called the vacuum state.

This results constitute the modern view of harmonic oscillator. Dirac was credited
with both the ladder operators and with this picture of harmonic oscillator. If we
look back, the adventure started with the Hermite polynomials and the Mathematics
behind them. Hilbert created the frame in which all quantum concepts defined before
make sense and where the other physicists succeeded in creating models confirmed
by experiments offering a self-consistent picture of Quantum World.

Summary of Lecture 47. Hermitian, unitary and ε-unitary operators are
needed for a deeper viewpoint related to quantum harmonic oscillator. These
formalism allows us to consider a new big picture of Quantum Mechanics.
States representing the solutions of time-dependent Schrödinger equation are
generated starting from a basic state using a special operator. The correspond-
ing eigenvalues, related to the Hamilton operator, have a rule to be determined
considering a state moving to another by the operator mentioned above. Con-
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sider physical units such that m = 1 and � = 1 and let us define, in the new
notations, expressions and results achieved before. We have:

• The Hamitonian of the harmonic oscillator is Ĥ = 1

2
( p̂2 + ω2 x̂2);

• The normalized state is |�x 〉 = 4

√
ω

π
e−ωx2/2;

• The ground state energy for the Harmonic oscillator is E0 = ω

2
;

• The commutator of the position and momentum operators gives [x̂, p̂] = i.
We start with a computation like:

( p̂ + iωx̂)( p̂ − iωx̂) = p̂2 + ω2 x̂2 + iω(x̂ p̂ − p̂x̂) = p̂2 + ω2 x̂2 − ω

which leads to

Ĥ = 1

2
( p̂ + iωx̂)( p̂ − iωx̂) + ω

2
.

We can denote

â+ := 1√
2ω

( p̂ + iωx̂) and â− := 1√
2ω

( p̂ − iωx̂).

Here â+ is called the raising or the creation operator, while â−, is called the
lowering operator or the annihilation operator. Another simple computation,
related to these operators, is

[( p̂ + iωx̂), ( p̂ − iωx̂)] = iω(x̂ p̂ − p̂x̂) − iω( p̂x̂ − x̂ p̂) = −2ω,

that is
[â+, â−] = −1.

The Hamiltonian of the harmonic oscillator, written in terms of ladder opera-
tors, is

Ĥ = ω(â+â−) + ω

2
.

If we compute the action of the lowering operator on our chosen state |�x 〉,
we obtain

â−|�x 〉 =
∣∣∣∣ 1√

2ω

(
−i

d

dx
− iωx

)
4

√
ω

π
e−ωx2/2

〉
= |0〉,

i.e. this operator destroys the state function.
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Therefore
â−|�x 〉 = |0〉.

Another computation leads to

Ĥ â+|�x 〉 = ωâ+|�x 〉 + ω

2
â+|�x 〉 = E1â

+|�x 〉,

with E1 = 3ω

2
. Acting on |�x 〉 with â+, we increase the energy, therefore we

switch from E0 level to E1 level.

A simple exercise shows that the state â+â+|�x 〉 leads to E2 = 5ω

2
, etc.

Applying again and again â+ we discover the set of eigenvalues corresponding

to the possible energy levels of the harmonic oscillator, En =
(
n + 1

2

)
ω. If

we study the states corresponding to the energy levels we find the formulas

â+|n〉 = √
n + 1 |n + 1〉

â+|n〉 = √
n |n − 1〉

which confirm the result [â+, â−] = −1.
If we look at the formulas

En =
(
n + 1

2

)
�ω

and

Ĥ = �ω(â+â−) + �ω

2

where we have restored �, we can define the “number operator” N̂ considering

N̂ := â+â−.

The Hamiltonian of the harmonic oscillator becomes

Ĥ = �ω

(
N̂ + 1

2

)
.

Since
〈n|N̂ |n〉 = 〈n|â+â−|n〉 = (

â−|n〉)† â−|n〉 ≥ 0,

it means that the smallest eigen-number is 0 and
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â−|0〉 = 0.

There are no other energy levels because the annihilation operator cannot
extract other states “under” the basic |0〉 state which is called the vacuum
state.

11.3 Lecture 48: The Angular Momentum in Quantum
Mechanics

In Classical Mechanics, the angular momentum L is defined with respect to the posi-
tion and the momentum vectors, r = (x, y, z) and p = (px , py, pz) respectively, by
the formula L := r × p. Taking into account the formal development of the deter-
minant ∣∣∣∣∣∣∣

→
i

→
j

→
k

x y z
px py pz

∣∣∣∣∣∣∣
the components of the angular momentum are

Lx = ypz − zpy; Ly = zpx − xpz; Lz = xpy − ypx .

Therefore the operators corresponding to the quantum angular momentum are

L̂ x = �

i

(
y

∂

∂z
− z

∂

∂y

)
; L̂ y = �

i

(
z

∂

∂x
− x

∂

∂z

)
; L̂ z = �

i

(
x

∂

∂y
− y

∂

∂x

)
.

Let us recall that we proved, in Lecture 38, that in the 1-dimensional case it is

[x̂, p̂] = i�.

This result can be easily extended to 3-dimension by the relations

[x̂k, p̂ j ] = i�δk j , j, k = 1, 2, 3,

where δ jk is the Kroneker delta symbol and (x1, x2, x3) = (x, y, z). The other pos-
sible relations are

[x̂k, x̂ j ] = [ p̂k, p̂ j ] = 0.

It is a simple exercise to show how these relations among the position x̂ j andmomen-
tum p̂k operators lead to the commutation relations for the quantum angular momen-
tum
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[L̂ x , L̂ y] = i�L̂ z; [L̂ y, L̂ z] = i�L̂ x ; [L̂ z, L̂ x ] = i�L̂ y .

We present only the computations necessary to prove the first equality, [L̂ x , L̂ y] =
i�L̂ z .

Exercise 11.3.1 Prove that [L̂ x , L̂ y] = i�L̂ z .
Hint: If we replace the operators, we obtain:

L̂ x L̂ y − L̂ y L̂ x = −�
2
[(

y
∂

∂z
− z

∂

∂y

)(
z

∂

∂x
− x

∂

∂z

)
−
(
z

∂

∂x
− x

∂

∂z

)(
y

∂

∂z
− z

∂

∂y

)]
=

−�
2
[
y

∂

∂z

(
z

∂

∂x

)
− y

∂

∂z

(
x

∂

∂z

)
− z

∂

∂y

(
z

∂

∂x

)
+ z

∂

∂y

(
x

∂

∂z

)]
+

+�
2

[
z

∂

∂x

(
y

∂

∂z

)
− z

∂

∂x

(
z

∂

∂y

)
− x

∂

∂z

(
y

∂

∂z

)
+ x

∂

∂z

(
z

∂

∂y

)]
=

−�
2

[
y

∂

∂x
+ yz

∂2

∂z∂x
− yx

∂2

∂z2
− z2

∂2

∂y∂x
+ zx

∂2

∂y∂z

]
+

+�
2

[
zy

∂2

∂x∂z
− z2

∂2

∂x∂y
− xy

∂2

∂z2
+ x

∂

∂y
+ xz

∂2

∂z∂y

]
=

= −�
2

(
−x

∂

∂y
+ y

∂

∂x

)
= i�

�

i

(
x

∂

∂y
− y

∂

∂x

)
= i�L̂ z . �

Exercise 11.3.2 Compute the operators L̂ x , L̂ y, L̂ z in spherical polar coordinates.
Solution. Consider ⎧⎨

⎩
x = r sin θ cosφ

y = r sin θ sin φ

z = r cos θ

Let us consider the Cartesian derivative operators
∂

∂r
,

∂

∂θ
,

∂

∂φ
and develop them

by the following chain rules:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂x
= ∂r

∂x

∂

∂r
+ ∂θ

∂x

∂

∂θ
+ ∂φ

∂x

∂

∂φ
∂

∂y
= ∂r

∂y

∂

∂r
+ ∂θ

∂y

∂

∂θ
+ ∂φ

∂y

∂

∂φ
∂

∂z
= ∂r

∂z

∂

∂r
+ ∂θ

∂z

∂

∂θ
+ ∂φ

∂z

∂

∂φ
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Being r = √
x2 + y2 + z2, it results

∂r

∂x
= x

r
= sin θ cosφ. In the same way we

obtain
∂r

∂y
= sin θ sin φ and

∂r

∂z
= x

r
= cos θ. Using

θ = arcsin

√
x2 + y2√

x2 + y2 + z2

it results both
∂θ

∂x
= 1

r
cos θ cosφ and

∂θ

∂y
= 1

r
cos θ sin φ.

From
θ = arccos

z√
x2 + y2 + z2

we have
∂θ

∂z
= −1

r
sin θ.

The last formulaswe need are deduced from tan φ = y

x
, that is fromφ = arctan

y

x
.

We obtain
∂φ

∂x
= −1

r

sin φ

sin θ
; ∂φ

∂y
= 1

r

cosφ

sin θ
; ∂φ

∂z
= 0.

Therefore we get

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂x
= sin θ cosφ

∂

∂r
+ 1

r
cos θ cosφ

∂

∂θ
− 1

r

sin φ

sin θ

∂

∂φ
∂

∂y
= sin θ sin φ

∂

∂r
+ 1

r
cos θ sin φ

∂

∂θ
+ 1

r

cosφ

sin θ

∂

∂φ
∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

Using the previous formulas and and the spherical representation of x, y and z, we
can compute the angular momentum operators

L̂ x = �

i

(
y

∂

∂z
− z

∂

∂y

)
, L̂ y = �

i

(
z

∂

∂x
− x

∂

∂z

)
, L̂ z = �

i

(
x

∂

∂y
− y

∂

∂x

)
,

in spherical coordinates:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L̂ x = i�

(
sin φ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)

L̂ y = i�

(
− cosφ

∂

∂θ
+ cot θ sin φ

∂

∂φ

)

L̂ z = −i�
∂

∂φ

�

We leave to the reader the computations, in spherical coordinates, of the operator:
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L̂2 := L̂2
x + L̂2

y + L̂2
z ,

where L̂2
x = L̂ν(L̂ν), ν ∈ {x, y, z}. We obtain

L̂2 = −�
2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

)
.

A direct consequence is
[L̂2, L̂ z] = 0.

Of course we can make the computations in Cartesian coordinates, but we did it
in spherical coordinates because readers interested to continue the study of quantum
mechanics can prove that the eigenvalues of L̂ z and L̂ are determined with respect
to the Laplace spherical harmonics Ym

l which represent the solutions of Laplace
equation in spherical domains. The spherical harmonics are written with respect to
the Legendre polynomials.

Ym
l (θ, φ) =

[
(2l + 1)

4π

(l − m)!
(l + m)!

]1/2
(−1)meimφPm

l (cos θ), l ≥ |m| ≥ 0,

where, for x = cos θ , it is

Pm
l (x) = sin|m| θ

d |m|

dx |m| Pl(x)

with

Pl(x) = (
2l l!)−1 dl

dxl
(x2 − 1)l .

The last formula is known as Rodrigues formula for the Legendre polynomial Pl of
degree l. Some particular spherical harmonics are

Y 0
0 (θ, φ) = 1

2
√

π
; Y 1

1 (θ, φ) = −
√
3

2
√
2π

sin θeiφ; Y 1
2 (θ, φ) = −1

2

√
15

2π
sin θ cos θeiφ;

Y−1
1 (θ, φ) =

√
3

2
√
2π

sin θe−iφ; Y−1
2 (θ, φ) = −

√
15

2
√
2π

sin θ cos θe−iφ; . . . . . .

More about the Legendre polynomials and spherical harmonics will be discussed in
Lecture 49.

Exercise 11.3.3 Show that

L̂ zY
m
l (θ, φ) = �mYm

l (θ, φ) and L̂2Ym
l (θ, φ) = �

2l(l + 1)Ym
l (θ, φ).
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Hint. Use L̂ zY m
l (θ, φ) formula given above and the operators representation in spher-

ical coordinates. In this way, we get the spectrum of angular momentum operators.

Now we can return to the Pauli matrices observing first that, in the case n = 2 ,
the matrix related to an operator is given by the formula

Â =
( 〈1| Â1〉 〈1| Â2〉

〈2| Â1〉 〈2| Â2〉
)

,

where |1〉 and |2〉 are the eigenvectors of Â. If the operator Â is the Pauli matrix σ̂z ,
the previous formula is verified for

σ̂z =
( 〈↑ |σ̂z| ↑〉 〈↑ |σ̂z| ↓〉

〈↓ |σ̂z| ↑〉 〈↓ |σ̂z| ↓〉
)

.

The same for the other two Pauli matrices. With these considerations in mind, let us
construct the Pauli operators:

M̂x = �

2
σ̂x ; M̂y = �

2
σ̂y; M̂z = �

2
σ̂z .

We can compute how they “commute”, that is

[M̂x , M̂y] = i�M̂z; [M̂y, M̂z] = i�M̂x ; [M̂z, M̂x ] = i�M̂y .

exactly as the angular momentum operators, that is

[L̂ x , L̂ y] = i�L̂ z; [L̂ y, L̂ z] = i�L̂ x ; [L̂ z, L̂ x ] = i�L̂ y .

If
M̂2 := M̂2

x + M̂2
y + M̂2

z

a simple computation leads to

M̂2 = 3�
2

4
Î ,

that is
[M̂, M̂z] = 0

exactly as the formula proved before, i.e.

[L̂, L̂ z] = 0.

At the same time both the eigenvalues of M̂2 are
3

4
�
2 and they corresponds to the

eigenvectors | ↑〉; | ↑〉. The most important connection is related to the eigenvalues
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of M̂z . They are+1

2
� and−1

2
� corresponding to the realted eigenvectors. If we look

at the eigenvalues of L̂ z , we observe that they are an integer multiple of �.
It is worth noticing that similitudes between the angular momentum operators

and the momentum operators defined by the Pauli matrices cannot be taken into
account when we are dealing with eigenvalues. In a case they are integers, in the
other they are fractions. If one asks why we did not keep the original Pauli matrices
and multiplied each one with a constant, the answer is because we want exactly
the same commutation formulas as angular momentum operators. Therefore, this
property of Pauli matrices operators is intrinsically related to the spin they represent.
In other words, it is related to the intrinsic angular momentum of electron itself. We

conclude that the electron spin corresponds to angular
1

2
and −1

2
momenta.

Summary of Lecture 48.The operators corresponding to the quantum angular
momentum are

L̂ x = �

i

(
y

∂

∂z
− z

∂

∂y

)
; L̂ y = �

i

(
z

∂

∂x
− x

∂

∂z

)
; L̂ z = �

i

(
x

∂

∂y
− y

∂

∂x

)
.

It can be proved that

[L̂ x , L̂ y] = i�L̂ z; [L̂ y, L̂ z] = i�L̂ x ; [L̂ z, L̂ x ] = i�L̂ y .

If we switch to spherical coordinates, they are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L̂ x = i�

(
sin φ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)

L̂ y = i�

(
− cosφ

∂

∂θ
+ cot θ sin φ

∂

∂φ

)

L̂ z = −i�
∂

∂φ

allowing the computation of the operator L̂ ,

L̂2 := L̂2
x + L̂2

y + L̂2
z

in spheric coordinates as

L̂2 = −�
2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

)

with the direct consequence
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[L̂2, L̂ z] = 0.

We can also prove that

L̂ zY
m
l (θ, φ) = �m Ym

l (θ, φ),

L̂2Ym
l (θ, φ) = �

2l(l + 1) Ym
l (θ, φ),

where the spherical harmonics Ym
l (θ, φ) are

Ym
l (θ, φ) =

[
(2l + 1)

4π

(l − m)!
(l + m)!

]1/2
(−1)meimφPm

l (cos θ), l ≥ |m| ≥ 0

and for x = cos θ , it is

Pm
l (x) = sin|m| θ

d |m|

dx |m| Pl(x) ,

written with respect to the Legendre polynomials

Pl(x) = (
2l l!)−1 dl

dxl
(x2 − 1)l .

Let us construct the new operators

M̂x = �

2
σ̂x ; M̂y = �

2
σ̂y; M̂z = �

2
σ̂z .

We can compute how they “commute”, that is

[M̂x , M̂y] = i�M̂z; [M̂y, M̂z] = i�M̂x ; [M̂z, M̂x ] = i�M̂y,

exactly as the angular momentum operators considered before. If

M̂2 := M̂2
x + M̂2

y + M̂2
z

a simple computation leads to

M̂2 = 3�
2

4
Î ,

that is
[M̂, M̂z] = 0
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exactly as the formula proved before

[L̂, L̂ z] = 0.

The most important connection is related to the eigenvalues of M̂z . They are

+1

2
� and −1

2
�. If we look at the eigenvalues of L̂ z we observe that they are

integer multiples of �. Therefore the similitudes between the angular momen-
tum operators and the momentum operators defined by the Pauli matrices
stop when we are dealing with eigenvalues. In a case they are integers, in the
other they are fractions. Therefore, this property of Pauli matrices operators is
intrinsically related to the spin they represent: It must be the intrinsic angular
momentum of electron itself. We conclude that the electron spin corresponds

to angular
1

2
and −1

2
momenta.

11.4 Lecture 49: From Differential Operators in Spherical
Coordinates to the Hydrogen Atom

In Lecture 48 we presented the spherical harmonics Ym
l (θ.φ). Let us present now the

way they appear. As we will see, they are fundamental for the correct formulation
of the hydrogen atom problem. We first need to compute how the gradient operator
looks like in spherical coordinates. Let us define the spherical coordinates in the form

⎧⎨
⎩
x = r sin θ cosφ

y = r sin θ sin φ

z = r cos θ

The position vector r is denoted, in Classical Mechanics, by
→
r and

→
r = r sin θ cosφ

→
i +r sin θ sin φ

→
j +r cos θ

→
k , θ ∈ [0, π), φ ∈ [0, 2π).

The entire surface of the sphere of radius r , centered at O(0, 0, 0), is described. In

QuantumMechanics,
→
i ,

→
j ,

→
k are replacedby the operator notations x̂, ŷ, ẑ, therefore

the previous form is replaced by

r = r sin θ cosφ x̂ + r sin θ sin φ ŷ + r cos θ ẑ, θ ∈ [0, π), φ ∈ [0, 2π),
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and the orthonormal Cartesian basis is {x̂, ŷ, ẑ}. Denoting by {r̂ , θ̂ , φ̂} the spherical
counterparts of r̂ , θ̂ , φ̂, the first problem is how the Cartesian basis is related to its
spherical counterparts.

Exercise 11.4.1 Show that

⎧⎨
⎩
x̂ = r̂ sin θ cosφ + θ̂ cos θ cosφ − φ̂ sin φ

ŷ = r̂ sin θ sin φ + θ̂ cos θ sin φ + φ̂ cosφ

ẑ = r̂ cos θ − θ̂ sin θ

Solution. The most geometric way to prove the previous equalities is considering the
sphere of radius r, centered at O , as a surface

f (θ, φ) = (r sin θ cosφ, r sin θ sin φ, r cos θ)

and considering the vectors
∂ f

∂θ
,
∂ f

∂φ
,
∂ f

∂θ
× ∂ f

∂φ
. Using the Cartesian basis, we have

θ̂ =
∂ f

∂θ∣∣∣∣∂ f∂θ

∣∣∣∣
= cos θ cosφ x̂ + cos θ sin φ ŷ − sin θ ẑ.

In the same way

φ̂ =
∂ f

∂φ∣∣∣∣ ∂ f∂φ

∣∣∣∣
= − sin φ x̂ + cosφ ŷ

and

r̂ =
∂ f

∂θ
× ∂ f

∂φ∣∣∣∣∂ f∂θ
× ∂ f

∂φ

∣∣∣∣
= sin θ cosφ x̂ + sin θ sin φ ŷ + cos θ ẑ.

In this way, we expressed, with respect to the Cartesian coordinates, the normalized
Gauss frame, related to the sphere at each point determined by a given pair θ, φ. It
remains only to solve the system using the Cramer rule:

� =
∣∣∣∣∣∣
sin θ cosφ sin θ sin φ cos θ

cos θ cosφ cos θ sin φ − sin θ

− sin φ cosφ 0

∣∣∣∣∣∣ = 1; �x =
∣∣∣∣∣∣
r̂ sin θ sin φ cos θ

θ̂ cos θ sin φ − sin θ

φ̂ cosφ 0

∣∣∣∣∣∣ ; x̂ = �x

�
, . . .

We obtain
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⎧⎨
⎩
x̂ = r̂ sin θ cosφ + θ̂ cos θ cosφ − φ̂ sin φ

ŷ = r̂ sin θ sin φ + θ̂ cos θ sin φ + φ̂ cosφ

ẑ = r̂ cos θ − θ̂ sin θ,

that is the desired result. Before finishing the exercise, let us remember that r̂ plays

the role of Gauss map. On the other hand,
→
N , θ̂ and φ̂ are orthonormal vectors in the

Euclidean 3-dimensional space. �

It is worth noticing that, in the previous lecture, we obtained the following for-
mulas in spherical coordinates

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂x
= sin θ cosφ

∂

∂r
+ 1

r
cos θ cosφ

∂

∂θ
− 1

r

sin φ

sin θ

∂

∂φ
∂

∂y
= sin θ sin φ

∂

∂r
+ 1

r
cos θ sin φ

∂

∂θ
+ 1

r

cosφ

sin θ

∂

∂φ
∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
,

while, the formula we used to describe the gradient, in Cartesian coordinates, is:

� = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
.

Exercise 11.4.2 Show that the gradient in spherical coordinates has the form

� = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
.

Solution. We replace x̂, ŷ, ẑ,
∂

∂x
,

∂

∂y
,

∂

∂z
in the Cartesian formula of the gradient.

� = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
=

=
(
r̂ sin θ cosφ + θ̂ cos θ cosφ − φ̂ sin φ

)(
sin θ cosφ

∂

∂r
+ 1

r
cos θ cosφ

∂

∂θ
− 1

r

sin φ

sin θ

∂

∂φ

)
+

+
(
r̂ sin θ sin φ + θ̂ cos θ sin φ + φ̂ cosφ

)(
sin θ sin φ

∂

∂r
+ 1

r
cos θ sin φ

∂

∂θ
+ 1

r

cosφ

sin θ

∂

∂φ

)
+

+
(
r̂ cos θ − θ̂ sin θ

)(
cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

)
.

The coefficient of r̂ is
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sin2 θ cos2 θ
∂

∂r
+

��������1

r
sin θ cos θ cos2 φ

∂

∂θ
−������

1

r
sin φ cosφ

∂

∂φ
+ sin2 φ cos2 φ

∂

∂r
+������1

r
sin θ cos θ

∂

∂θ
+

+������
1

r
sin φ cosφ

∂

∂φ
+ cos2 θ

∂

∂r
−������1

r
sin θ cos θ

∂

∂θ
,

which gives
∂

∂r
. The coefficient of θ̂ is

��������
sin θ cos θ cos2 φ

∂

∂r
+ 1

r
cos2 θ cos2 φ

∂

∂θ
−

��������
1

r

cos θ cosφ sin φ

sin θ

∂

∂φ
+

�������
sin θ cos θ sin2 φ

∂

∂r
+

+1

r
cos2 θ sin2 φ

∂

∂θ
+

��������
1

r

cos θ cosφ sin φ

sin θ

∂

∂φ
−�����

sin θ cos θ
∂

∂r
+ 1

r
sin2 θ

∂

∂θ
,

which gives
1

r

∂

∂θ
. In the same way the coefficient of φ̂ is

−�������
sin φ sin θ cosφ

∂

∂r
−

��������
1

r
sin φ cos θ cosφ

∂

∂θ
+ 1

r

sin2 φ

sin θ

∂

∂φ
+�������

sin φ sin θ cosφ
∂

∂r
+

+
��������
1

r
sin φ cos θ cosφ

∂

∂θ
+ 1

r

cos2 φ

sin θ

∂

∂φ
,

which gives
1

r

1

sin θ

∂

∂φ
. It results

� = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
.

Let us observe that, from

⎧⎨
⎩
r̂ = x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ

θ̂ = x̂ cos θ cosφ + ŷ cos θ sin φ − ẑ sin θ

φ̂ = −x̂ sin φ + ŷ cosφ ,

we can obtain ⎧⎨
⎩
x̂ = r̂ sin θ cosφ + θ̂ cos θ cosφ − φ̂ sin φ

ŷ = r̂ sin θ sin φ + θ̂ cos θ sin φ + φ̂ cosφ

ẑ = r̂ cos θ − θ̂ sin θ,

but also

∂r̂

∂r
= 0,

∂r̂

∂θ
= x̂ cos θ cosφ + ŷ cos θ sin φ − ẑ sin θ = θ̂ ,

∂r̂

∂φ
= −x̂ sin θ sin φ + ŷ sin θ cosφ = sin θφ̂

∂θ̂

∂r
= 0, − ∂θ̂

∂θ
= x̂ sin θ cosφ + ŷ sin θ sin φ + ẑ cos θ = r̂ ,

∂θ̂

∂φ
= cos θ(−x̂ sin φ + ŷ cosφ) = cos θφ̂
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∂φ̂

∂r
= 0, −∂φ̂

∂θ
= 0,

∂φ̂

∂φ
= −r̂ sin θ − θ̂ cos θ.

The last formula is obtained after replacing x̂ and ŷ in the equality
∂φ̂

∂φ
= −x̂ cosφ −

ŷ sin φ.
In order to obtain the Laplace operator �2, we have to take into account that

�2 = � · �, that is

�2 =
(
r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)
·
(
r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)
.

Theorem 11.4.3 The Laplace operator in spherical coordinates is

�2 = 1

r2

[
∂

∂r

(
r2

∂

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
.

Proof The formula

(
r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)
·
(
r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)

gives

r̂
∂

∂r

(
r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)
+ θ̂

1

r

∂

∂θ

(
r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)
+

+φ̂
1

r sin φ

∂

∂φ

(
r̂

∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)

To continue, the partial derivatives are applied to each term, but we have to consider

r̂ · r̂ = θ̂ · θ̂ = φ̂ · φ̂ = 1; r̂ · θ̂ = θ̂ · r̂ = θ̂ · φ̂ = φ̂ · θ̂ = φ̂ · r̂ = r̂ · φ̂ = 0

and
∂ r̂

∂r
= 0,

∂ r̂

∂θ
= θ̂ ,

∂ r̂

∂φ
= φ̂ sin θ

∂θ̂

∂r
= 0,

∂θ̂

∂θ
= −r̂ ,

∂θ̂

∂φ
= φ̂ cos θ

∂φ̂

∂r
= 0, −∂φ̂

∂θ
= 0,

∂φ̂

∂φ
= −r̂ sin θ − θ̂ cos θ.
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Leaving between brackets only non-zero terms, we have, for the Laplace operator
�2, the form

[
r̂
∂ r̂

∂r

∂

∂r
+ ∂2

∂r2
+ r̂

1

r

∂θ̂

∂r

∂

∂θ
+ r̂

1

r sin θ

∂φ̂

∂r

∂

∂φ

]
+
[
θ̂
1

r

∂ r̂

∂θ

∂

∂r
+ θ̂

1

r2
∂θ̂

∂θ

∂

∂θ
+ 1

r2
∂2

∂θ2
+ θ̂

1

r sin θ

∂φ̂

∂θ

∂

∂φ

]

+
[

φ̂

r sin θ

∂ r̂

∂φ

∂

∂r
+ φ̂

r2 sin θ

∂θ̂

∂φ

∂

∂θ
+ φ̂

r2 sin2 θ

∂φ̂

∂φ

∂

∂φ
+ 1

r2 sin2 θ

∂2

∂φ2

]
.

Let us now cancel all the terms which are 0 from the partial derivatives of r̂ , θ̂ , φ̂
and from dot products:

⎡
⎣
�

��
r̂
∂ r̂

∂r

∂

∂r
+ ∂2

∂r2
+����
r̂
1

r

∂θ̂

∂r

∂

∂θ
+
�����
r̂

1

r sin θ

∂φ̂

∂r

∂

∂φ

⎤
⎦+

⎡
⎣θ̂

1

r
θ̂

∂

∂r
−���θ̂

1

r2
r̂

∂

∂θ
+ 1

r2
∂2

∂θ2
+
�����
θ̂

1

r sin θ

∂φ̂

∂θ

∂

∂φ

⎤
⎦

+
⎡
⎣ φ̂

r sin θ
φ̂ sin θ

∂

∂r
+ φ̂

r2 sin θ
φ̂ cos θ

∂

∂θ
−
����������

φ̂

r2 sin2 θ
(r̂ sin θ + θ̂ cos θ)

∂

∂φ
+ 1

r2 sin2 θ

∂2

∂φ2

⎤
⎦ =

= ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2
cos θ

sin θ

∂

∂θ
+ 1

r2
∂2

∂θ2
+ 1

r2 sin2 θ

∂2

∂φ2
=

= 1

r2

[(
r2

∂2

∂r2
+ 2r

∂

∂r

)
+
(
cos θ

sin θ

∂

∂θ
+ ∂2

∂θ2

)
+ 1

sin2 θ

∂2

∂φ2

]
=

= 1

r2

[
∂

∂r

(
r2

∂

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
.

�

Considering now the spherical harmonics

Ym
l (θ, φ) =

[
(2l + 1)

4π

(l − m)!
(l + m)!

]1/2
(−1)meimφPm

l (cos θ), l ≥ |m| ≥ 0

with x = cos θ , we have

Pm
l (x) = sin|m| θ

d |m|

dx |m| Pl(x)

which are written with respect to the Legendre polynomials

Pl(x) = (
2l l!)−1 dl

dxl
(x2 − 1)l .
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Let us discuss how they appear. The constant depending on m and l appears from
a normalization condition exactly as in the case of Hermite polynomials. The fact
that for |m| ≤ l the formula still has sense is the consequence of the mathematical
consistency of polynomials. This constraint has physical implication too. Let us
concentrate on the mathematical consistency showing that these polynomials are
solutions of an equation related to the Schrödinger equation.

Let us start from the time-independent Schrödinger equation

(
− �

2

2m
�2 +V (r)

)
�(r) = E�(r)

which can be written in the form

− �
2

2m
�2 �(r) + V (r)�(r) = E�(r).

We denote �(r) by � and keep in mind that it depends on (x, y, z). Explicitly, the
equation to solve is

− �
2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
� + V (x, y, z)� = E�,

written with respect to Cartesian coordinates. The solution of this equation depends
on V . If we separate the variables assuming

�(x, y, z) = X (x)Y (y)Z(z),

which can be simply written as � = XY Z , we can transform the Schrödinger equa-
tion in

− �
2

2m

(
Y Z

∂2X

∂x2
+ X Z

∂2Y

∂y2
+ Y Z

∂2Z

∂z2

)
+ V (x, y, z)XY Z = EXY Z .

After dividing by XY Z , it results

− �
2

2m

(
1

X

∂2X

∂x2
+ 1

Y

∂2Y

∂y2
+ 1

Z

∂2Z

∂z2

)
+ V (x, y, z) = E .

In Lecture 23 and Lecture 24, we solved the problem in 1-dimensional case for
V = 0 and V = constant. Even here it is simple to solve for these cases because we
have a sum of functions depending only on x , y and z, respectively, and this sum is
a constant. This result is possible only when each function is a constant, therefore
there exist the constants c1, c2, c3 such that we have to solve
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− �
2

2m

1

X

∂2X

∂x2
= c1; − �

2

2m

1

Y

∂2Y

∂y2
= c2; − �

2

2m

1

Z

∂2Z

∂z2
= c3.

Each equation has the form
f " + k f = 0

and the solution depends on the constant k, that is we have one kind of solution when
k < 0 and another kind when k > 0. This situation realized also in the mentioned
23 and 24 lectures. We can solve also for V (x, y, z) = Vx (x) + Vy(y) + Vz(z). In
this case, the form of the equation is f " + k f = g where k is a constant and g is a
function.

Now, let us return to our main question: How do the spherical harmonics appear?
The idea is related to the Schrödinger equation written in spherical coordinates.
Therefore it is related to the Laplace operator written also in spherical coordinates.

We start from

− �
2

2m

1

r2

[
∂

∂r

(
r2

∂�

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

sin2 θ

∂2�

∂φ2

]
+ V (r)� = E�.

Assuming �(r, θ, φ) = R(r)Y (θ, φ), we can write the previous equation as

− �
2

2m

1

r2

[
Y

∂

∂r

(
r2

∂R

∂r

)
+ R

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ R

sin2 θ

∂2Y

∂φ2

]
+ V (r)RY = ERY.

After dividing by − �
2

mr2
RY , we obtain

[
1

R

∂

∂r

(
r2

∂R

∂r

)
+ 1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

Y sin2 θ

∂2Y

∂φ2

]
− 2mr2

�2
(V (r) − E) = 0.

If we separate the equation in the part depending on r and the part depending on
θ, φ, we have

[
1

R

∂

∂r

(
r2

∂R

∂r

)
− 2mr2

�2
(V (r) − E)

]
+ 1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

sin2 θ

∂2Y

∂φ2

]
= 0

and consequently, the part depending on r has to be a constant K and the part
depending on θ, φ has to be −K . We can choose the constant to be l(l + 1). The
reason is related to the second equation

1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

sin2 θ

∂2Y

∂φ2

]
= −l(l + 1)

which allows a solution depending on the Legendre polynomials. The other equation
to solve remains
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1

R

∂

∂r

(
r2

∂R

∂r

)
− 2mr2

�2
(V (r) − E) = l(l + 1).

Let us consider the equation in Y after multiplying by Y sin2 θ :

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+ ∂2Y

∂φ2
= −l(l + 1)Y sin2 θ.

To solve it, we make another split of variables,

Y (θ, φ) = �(θ)�(φ)

and then we divide by ��:

1

�
sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

�

∂2�

∂φ2
= −l(l + 1) sin2 θ.

If we split in a part depending on θ and a part depending on φ, we have

[
1

�
sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ l(l + 1) sin2 θ

]
+ 1

�

∂2�

∂φ2
= 0.

Based on the same reasoning, we can consider two opposite constants such that

1

�
sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ l(l + 1) sin2 θ = m2

and
1

�

∂2�

∂φ2
= −m2.

The last equation has the solution �(φ) = eimφ . Since �(0) = �(2π), it results
ei2mπ = 1, that is m ∈ Z.

The other equation can be written in the form

sin θ
∂

∂θ

(
sin θ

∂�

∂θ

)
+ [l(l + 1) sin2 θ − m2]� = 0.

After we consider �(θ) = Pm
l (cos θ) and x = cos θ , this equation is equivalent to

d

dx

[
(1 − x2)

d

dx

]
Pm
l (x) +

[
l(l + 1) − m2

1 − x2

]
Pm
l (x) = 0.

This happens because
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sin θ
d

dθ
Pm
l (cos θ) = − sin2 θ

d

dx
Pm
l (x) = −(1 − x2)

d

dx
Pm
l (x)

and

sin θ
d

dθ
= sin θ

dx

dθ

d

dx
= −(1 − x2)

d

dx
.

Dividing by 1 − x2, we get the above equation above. Form = 0 this is the Legendre
equation in the original form, that is

d

dx

[
(1 − x2)

d

dx

]
Pl(x) + l(l + 1)Pl(x) = 0 ,

with the solution given by the Rodrigues formula

Pl(x) = (
2l l!)−1 dl

dxl
(x2 − 1)l .

Before checking it, let us understand how theLegendre polynomialswere discovered.
We can start from the Legendre idea to see a gravitational potential as a series

depending (via polynomials) on the angle determined by the two position vectors
r, r1 associated to the bodies between which the gravitational force acts.

If
1

|r − r1| = 1√
r2 + r21 − 2rr1 cos θ

= 1

r
√
1 + h2 − 2h cos θ

where h := r1
r

, Legendre defined

the polynomials Pn which satisfy the relation

1√
1 + h2 − 2h cos θ

=
∑
n∈N

hn Pn(cos θ).

Denote x := cos θ , the previous relation becomes

(1 − 2xh + h2)−1/2 =
∑
n∈N

hn Pn(x).

Theorem 11.4.4 Legendre’s polynomials satisfy the following recurrence relation

x Pn(x) = n + 1

2n + 1
Pn+1(x) + n

2n + 1
Pn−1(x), n ≥ 1.

Proof We consider the derivative with respect to h of the formula

(1 − 2xh + h2)−1/2 =
∑
n∈N

hn Pn(x).
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It results
(x − h)(1 − 2xh + h2)−3/2 =

∑
n∈N

nhn−1Pn(x).

Multiplying by (1 − 2xh + h2) both sides, we have

(x − h)(1 − 2xh + h2)−1/2 = (1 − 2xh + h2)
∑
n∈N

nhn−1Pn(x), i.e

(x − h)
∑
n∈N

hn Pn(x) = (1 − 2xh + h2)
∑
n∈N

nhn−1Pn(x).

From the relation

x
∑
n∈N

hn Pn(x) −
∑
n∈N

hn+1Pn(x) =
∑
n∈N

nhn−1Pn(x) − 2x
∑
n∈N

nhn Pn(x) +
∑
n∈N

nhn+1Pn(x)

we identify the coefficients of hn from both members and we obtain

x Pn(x) − Pn−1(x) = (n + 1)Pn+1(x) − 2xnPn(x) + (n − 1)Pn−1(x),

that is
(n + 1)Pn+1(x) = (2n + 1)x Pn(x) − nPn−1(x)

which represents the recurrence from the above statement. �

Theorem 11.4.5 Legendre’s polynomials satisfy the following recurrence relation

nPn(x) = x P ′
n(x) − P ′

n−1(x), n ≥ 1

where P ′
n(x) := d

dx
Pn(x).

Proof The derivative with respect to h of the formula

(1 − 2xh + h2)−1/2 =
∑
n∈N

hn Pn(x)

lead us to
(x − h)(1 − 2xh + h2)−3/2 =

∑
n∈N

nhn−1Pn(x).

The derivative with respect to x of the same formula is

h(1 − 2xh + h2)−3/2 =
∑
n∈N

hn P ′
n(x),
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therefore
h

x − h

∑
n∈N

nhn−1Pn(x) =
∑
n∈N

hn P ′
n(x).

The coefficients of hn of both members of the equality

∑
n∈N

nhn Pn(x) = x
∑
n∈N

hn P ′
n(x) −

∑
n∈N

hn+1P ′
n(x)

satisfy the relation
nPn(x) = x P ′

n(x) − P ′
n−1(x)

of our statement. �

Using the two statements before we can cancel out x in a new relation for the
Legendre polynomials.

Corollary 11.4.6 The Legendre polynomials satisfy the equality

P ′
n+1(x) = (2n + 1)Pn(x) + P ′

n−1(x).

Proof The derivative with respect to x of the relation

x Pn(x) = n + 1

2n + 1
Pn+1(x) + n

2n + 1
Pn−1(x)

is

Pn(x) + x P ′
n(x) = n + 1

2n + 1
P ′
n+1(x) + n

2n + 1
P ′
n−1(x), n ≥ 1.

By replacing
x P ′

n(x) = nPn(x) + P ′
n−1(x)

in the previous relation, we obtain

P ′
n+1(x) = (2n + 1)Pn(x) + P ′

n−1(x)

�

This relation with no x in front of terms is verified by the polynomials

Pl(x) = (
2l l!)−1 dl

dxl
(x2 − 1)l .

This is a simple computation and we left to the reader as exercise.
Let us return to the equation these polynomials verify by proving the following

theorem.This step is necessarywhenwe check that the functions (implied in spherical
harmonics)
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Pm
l (x) = (1 − x2)m/2 dm

dxm
Pl(x)

are solutions of the equation

d

dx

[
(1 − x2)

d

dx

]
Pm
l (x) +

[
l(l + 1) − m2

1 − x2

]
Pm
l (x) = 0.

Theorem 11.4.7 The Legendre equation

(1 − x2)
d2Y

dx2
− 2x

dY

dx
+ l(l + 1)Y = 0

has the solution

Pl(x) = (
2l l!)−1 dl

dxl
[(x2 − 1)l ].

Proof Let us denote
y := (x2 − 1)l .

It results
dy

dx
= 2lx(x2 − 1)l−1, that is (x2 − 1)

dy

dx
= 2lxy.

The Leibniz formula for the nth-order derivative of a product of two functions states
that

D(n)(uv) = uD(n)v + nD(u)D(n−1)(v) + n(n + 1)

2
D(2)(u)D(n−2)(v) + · · · ,

the binomial coefficients being in front of each term. Applying it in the equality

D(l+1)

[
(x2 − 1)

dy

dx

]
= 2lD(l+1)[xy],

it results

(x2 − 1)
dl+2y

dxl+2
+ 2x(l + 1)

dl+1y

dxl+1
+ l(l + 1)

dl y

dxl
= 2l

[
x
dl+1y

dxl+1
+ (l + 1)

dl y

dxl

]
,

that is

(1 − x2)
dl+2y

dxl+2
− 2x

dl+1y

dxl+1
+ l(l + 1)

dl y

dxl
= 0.

If we denote

Y := dl y

dxl
,
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the previous equation becomes

(1 − x2)
d2Y

dx2
− 2x

dY

dx
+ l(l + 1)Y = 0,

i.e. the equation coming from the statement of the theorem. Therefore the general
solution is

Y = K
dl

dxl
[(x2 − 1)l],

where K is a constant. If we impose the condition Pl(1) = 1, the constant K can be
identified by applying the Leibniz formula for (x + 1)l(x − 1)l . Therefore

K = dl

dxl
[
(x + 1)l(x − 1)l

] |x=1 = l!(x + 1)l |x=1 = l!2l .

For this constant only the previous recurrence relations are verified. �

Let us highlight that the Legendre equation

(1 − x2)
d2Y

dx2
− 2x

dY

dx
+ l(l + 1)Y = 0

allows the particular solution

Yl(x) = dl

dxl
[(x2 − 1)l],

that is we can cancel the multiplicative constant. Now, denote by

Yl,m := dmYl
dxm

,

we have

Theorem 11.4.8 The functions Yl,m satisfy the relation

(1 − x2)
d2Yl,m
dx2

= 2m(m + 1)
dYl,m
dx

+ [m(m + 1) − l(l + 1)]Yl,m .

Proof Consider the m derivative of both members of Legendre’s equation

(1 − x2)
d2Y

dx2
− 2x

dY

dx
+ l(l + 1)Y = 0

whose solution is now Yl . It results
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dm

dxm

[
(1 − x2)

d2Yl
dx2

− 2x
dYl
dx

+ l(l + 1)Yl

]
= 0.

The Leibniz formula leads to

dm

dxm

[
(1 − x2)

d2Yl
dx2

]
= (1 − x2)

dm+2Yl
dxm+2

− 2mx
dm+1Yl
dxm+1

− m(m + 1)
dmYl
dxm

and
dm

dxm

[
x
dYl
dx

]
= x

dm+1Yl
dxm+1

+ m
dmYl
dxm

.

Replacing in the initial formula, we obtain the result from the statement of the
theorem. �
Theorem 11.4.9 The functions

Pm
l (x) = (1 − x2)m/2 dm

dxm
Pl(x)

verify the equality

d

dx

[
(1 − x2)

d

dx

]
Pm
l (x) +

[
l(l + 1) − m2

1 − x2

]
Pm
l (x) = 0.

Proof Let us first observe that multiplicative constant can be canceled out and the
theorem statement can be reduced to:

Qm
l (x) := (1 − x2)m/2 d

mYl
dxm

(x).

It verifies the equality

d

dx

[
(1 − x2)

d

dx

]
Qm

l (x) +
[
l(l + 1) − m2

1 − x2

]
Qm

l (x) = 0.

We prefer to write Qm
l as

Qm
l (x) := (1 − x2)m/2Yl,m .

We have first

dQm
l

dx
= d

dx

[
(1 − x2)m/2Yl,m

] = −mx(1 − x2)m/2−1Yl,m + (1 − x2)m/2 dYl,m
dx

,

i.e.

(1 − x2)
dQm

l

dx
= −mx(1 − x2)m/2Yl,m + (1 − x2)m/2+1 dYl,m

dx
.
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Then

d

dx

[
(1 − x2)

dQm
l

dx

]
= −m(1 − x2)m/2Yl,m + m2x2

1 − x2
(1 − x2)m/2Yl,m − mx(1 − x2)m/2 dYl,m

dx
+

+
(m
2

+ 1
)

(1 − x2)m/2(−2x)
dYl,m
dx

+ (1 − x2)m/2

[
(1 − x2)

d2Yl,m
dx2

]
.

Ifwe replace

[
(1 − x2)

d2Yl,m
dx2

]
with2m(m + 1)

dYl,m
dx

+ [m(m + 1) − l(l + 1)]Yl,m
and we cancel the two contrary sign terms 2(m + 1)x(1 − x2)

dYl,m
dx

, we obtain the

equality

d

dx

[
(1 − x2)

dQm
l

dx

]
= −���mQm

l + m2x2

1 − x2
(1 − x2)m/2Yl,m + m2Qm

l +���mQm
l − l(l + 1)Qm

l

which ends the proof. �

These considerations have important physical applications as we are going to
discuss. In Lecture 19, we presented the Bohr model of hydrogen atom. The first
part of this lecture offers us the possibility to revisit this subject using the time-
independent Schrödinger equation solution in spherical coordinates. As we know,
the hydrogen atom consists in a nucleus with a single proton inside and an electron
“orbiting” the nucleus. If we denote bym the mass of the electron and by M the mass

of nucleus, we have to consider the reduced mass μ := Mm
M + m

which is equivalent

to the mass located at the centre of gravity of the system electron-nucleus. The
Schrödinger equation can be written considering a potential V (r) described by the
Coulomb term

V (r) := − e2

4πε0r
,

where e is the charge of the electron, ε0 is the permittivity of vacuum, r is the distance
between the nucleus and electron. The Schrödinger equation is

− �
2

2μ

1

r2

[
∂

∂r

(
r2

∂�

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

sin2 θ

∂2�

∂φ2

]
− e2

4πε0r
� = E�.

After the separation of variables, we have the following equations:

1

R

∂

∂r

(
r2

∂R

∂r

)
+ 2μr2

�2

(
e2

4πε0r
+ E

)
= l(l + 1),

called the radial equation with solution R(r);
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sin θ
∂

∂θ

(
sin θ

∂�

∂θ

)
+ [l(l + 1) sin2 θ − m2]� = 0,

called the polar equation, with solution �(θ);

1

�

∂2�

∂φ2
= −m2,

called the azimuthal equation, with solution�(φ). The total solution is�(r, θ, φ) =
R(r)�(θ)�(φ).

We have solved both the polar and the azimuthal equations and we have obtained
the solutions: �(θ) = Pm

l (cos θ) and �(φ) = eimφ. The numbers m and l, |m| ≤ l,
which are used to separate the variables in a convenient form are called quantum
numbers related to the Schrödinger equation solutions.

The radial equation can be written in the form

∂

∂r

(
r2

∂R

∂r

)
+ 2μr2

�2

(
e2

4πε0r
+ E

)
R = l(l + 1)R,

or equivalently

d2R

dr2
+ 2

r

dR

dr
+
[
2μ

�2

(
e2

4πε0r
+ E

)
− l(l + 1)

r2

]
R = 0.

To solve it, let us consider what happens for large r . The equation to solve remains

d2R∞
dr2

+
[
2μE

�2

]
R∞ = 0.

For an electron far from the nucleus, the energy E approaches to 0. The atom is
stable when the positive charge is close (equal) to the negative charge, therefore we
have to look for a solution where the energy E is strictly negative. It is easy to check
that a solution is

R∞ = ce−r
√

−2μE/�2
.

If we choose
Rn(r) = R∞(r)erμe

2/2nπε0�
2

in the case when the energy levels are En = − μe4

8n2ε20h
2
, we have the radial solution

depending on another quantum number n. According to this model, the structure of
the hydrogen atom is given by the quantum numbers n, l, m. This is a more detailed
and self-consistent picture of the hydrogen atom. For a detailed discussion from an
experimental point of view, the reader can consult the books in Refs. [12, 13, 16,
25].
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Summary of Lecture 49. We first obtain the formula of the gradient written
in spherical coordinates

� = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
.

For this purpose, we need the following formulas

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂x
= sin θ cosφ

∂

∂r
+ 1

r
cos θ cosφ

∂

∂θ
− 1

r

sin φ

sin θ

∂

∂φ
∂

∂y
= sin θ sin φ

∂

∂r
+ 1

r
cos θ sin φ

∂

∂θ
+ 1

r

cosφ

sin θ

∂

∂φ
∂

∂z
= cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ

and ⎧⎨
⎩
x̂ = r̂ sin θ cosφ + θ̂ cos θ cosφ − φ̂ sin φ

ŷ = r̂ sin θ sin φ + θ̂ cos θ sin φ + φ̂ cosφ

ẑ = r̂ cos θ − θ̂ sin θ.

From the relations

r̂ · r̂ = θ̂ · θ̂ = φ̂ · φ̂ = 1; r̂ · θ̂ = θ̂ · r̂ = θ̂ · φ̂ = φ̂ · θ̂ = φ̂ · r̂ = r̂ · φ̂ = 0

∂ r̂

∂r
= 0,

∂ r̂

∂θ
= θ̂ ,

∂ r̂

∂φ
= φ̂ sin θ

∂θ̂

∂r
= 0,

∂θ̂

∂θ
= −r̂ ,

∂θ̂

∂φ
= φ̂ cos θ

∂φ̂

∂r
= 0, −∂φ̂

∂θ
= 0,

∂φ̂

∂φ
= −r̂ sin θ − θ̂ cos θ

the Laplace operator �2 becomes

�2 = 1

r2

[
∂

∂r

(
r2

∂

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
.
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Laplace operator is involved in the time-independent Schrödinger equation

(
− �

2

2m
�2 +V (r)

)
�(r) = E�(r).

We discuss how to solve it, first in Cartesian coordinates and then in spherical
coordinates. In spherical coordinates, we have

− �
2

2m

1

r2

[
∂

∂r

(
r2

∂�

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

sin2 θ

∂2�

∂φ2

]
+ V (r)� = E�.

Separating the variables, we have�(r, θ, φ) = R(r)Y (θ, φ). We can write the
previous equation as

− �
2

2m

1

r2

[
Y

∂

∂r

(
r2

∂R

∂r

)
+ R

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ R

sin2 θ

∂2Y

∂φ2

]
+ V (r)RY = ERY.

After dividing by − �
2

mr2
RY , we obtain

[
1

R

∂

∂r

(
r2

∂R

∂r

)
+ 1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

Y sin2 θ

∂2Y

∂φ2

]
− 2mr2

�2
(V (r) − E) = 0.

If we separate the equation in the part depending on r and the part depending
on θ, φ, we have

[
1

R

∂

∂r

(
r2

∂R

∂r

)
− 2mr2

�2
(V (r) − E)

]
+ 1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

sin2 θ

∂2Y

∂φ2

]
= 0

and consequently, the part depending on r has to be a constant K and the part
depending on θ, φ has to be −K . We can choose the constant to be l(l + 1).
The reason is related to the second equation

1

Y

[
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

sin2 θ

∂2Y

∂φ2

]
= −l(l + 1)

which allows a solution depending on the Legendre polynomials. The other
equation to be solved is

1

R

∂

∂r

(
r2

∂R

∂r

)
− 2mr2

�2
(V (r) − E) = l(l + 1),

whose solution depends on V (r). Let us consider the equation in Y after we
multiply by Y sin2 θ . It is
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sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+ ∂2Y

∂φ2
= −l(l + 1)Y sin2 θ.

To solve it, we perform another split of variables,

Y (θ, φ) = �(θ)�(φ)

and then we divide both terms by ��. It is

1

�
sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

�

∂2�

∂φ2
= −l(l + 1) sin2 θ.

If we split in a part depending on θ and a part depending on φ, i.e.

[
1

�
sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ l(l + 1) sin2 θ

]
+ 1

�

∂2�

∂φ2
= 0,

based on the same reasoning, we can consider two opposite constants such that

1

�
sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ l(l + 1) sin2 θ = m2

and
1

�

∂2�

∂φ2
= −m2.

The last equation has the solution �(φ) = eimφ . Since �(0) = �(2π), it
results ei2mπ = 1, that is m ∈ Z.

The other equation can be written in the form

sin θ
∂

∂θ

(
sin θ

∂�

∂θ

)
+ [l(l + 1) sin2 θ − m2]� = 0.

After considering �(θ) = Pm
l (cos θ) and x = cos θ , this equation is equiva-

lent to

d

dx

[
(1 − x2)

d

dx

]
Pm
l (x) +

[
l(l + 1) − m2

1 − x2

]
Pm
l (x) = 0.

To define Pm
l (x), we have first to solve the equation

d

dx

[
(1 − x2)

d

dx

]
Y + [l(l + 1)] Y = 0



274 11 Quantum Mechanics at the Next Level

which is known as the Legendre equation. We can prove that the solutions are
the Legendre polynomials

Pl(x) = (
2l l!)−1 dl

dxl
[(x2 − 1)l ].

Then we show that the functions

Pm
l (x) = (1 − x2)m/2 dm

dxm
Pl(x)

verify the equality

d

dx

[
(1 − x2)

d

dx

]
Pm
l (x) +

[
l(l + 1) − m2

1 − x2

]
Pm
l (x) = 0.

In the case of the hydrogen atom, we denote bym the mass of the electron and

by M the mass of nucleus we have to consider the reduced massμ := Mm
M + m

which is equivalent to the mass located at the centre of gravity of the system
electron-nucleus.

The Schrödinger equation can be written considering a potential V (r)
described by the Coulomb term

V (r) := − e2

4πε0r
,

where e is the charge of the electron, ε0 is the permittivity of vacuum, r is the
distance between the nucleus and electron. The Schrödinger equation is

− �
2

2μ

1

r2

[
∂

∂r

(
r2

∂�

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂�

∂θ

)
+ 1

sin2 θ

∂2�

∂φ2

]
− e2

4πε0r
� = E�.

Therefore, after the separation of variables we have the following equations:

1

R

∂

∂r

(
r2

∂R

∂r

)
+ 2μr2

�2

(
e2

4πε0r
+ E

)
= l(l + 1),

called the radial equation having as solution R(r);

sin θ
∂

∂θ

(
sin θ

∂�

∂θ

)
+ [l(l + 1) sin2 θ − m2]� = 0,

called the polar equation, having as solution �(θ);
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1

�

∂2�

∂φ2
= −m2,

called the azimuthal equation, having as solution �(φ).
The total solution is

�(r, θ, φ) = R(r)�(θ)�(φ).

R(r) is in fact
Rn(r) = R∞(r)erμe

2/2nπε0�
2

which depends on the energy levels En = − μe4

8n2ε20h
2
and the quantum number

n,
�(θ) = Pm

l (cos θ)

and
�(φ) = eimφ.

The numbers m and l, with |m| ≤ l, are used to separate the variables in a
convenient form. They are also quantum numbers related to the Schrödinger
equation solutions.

11.5 Lecture 50: The Pauli Matrices and the Dirac
Equation. Towards the Relativistic Quantum
Mechanics

In Lecture 41, it is stated the third postulate of Quantum Mechanics:
3. The state function � evolves in time according to the time-dependent
Schrödinger equation

i�
∂

∂t
�(t, r) =

(
− �

2

2m
�2 +V (t, r)

)
�(t, r).

It is the basic rule under which the quantum world works. All the examples we gave
in Lecture 41 showed how important is the Schrödinger equation and why it has to
be part of the “axiomatic frame” of Quantum Mechanics.

However the Schrödinger equation can replaced by evolution equations having
the same structure but a different Hamiltonian. In general, the above equation can be
written in the symbolic form
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i�
∂

∂t
� = Ĥ�

where

Ĥ = − �
2

2m
�2 +V̂ = p̂2

2m
+ V̂ .

Dirac considered the same form of the Schrödinger equation but changed the Hamil-
ton operator assuming the total energy derived from Special Relativity (see Lecture
11), that is

E2 = m2c4 + p2c2.

Therefore he considered
H 2 = m2c4 + p2c2

and proposed a Hamiltonian operator of the form

Ĥ = c a · p̂ + bmc2

where a := (a1, a2, a3) is a constant vector and b is a scalar constant. This Dirac
Hamiltonian must fulfill the condition

m2c4 + p2c2 = (
c a · p̂ + bmc2

) (
c a · p̂ + bmc2

)
.

Identifying the terms from both sides with equal sign, it results

a21 = a22 = a23 = b2 = 1

a1a2 = a1a3 = a2a3 = ba1 = ba2 = ba3 = 0.

Dirac considered the first line a21 = a22 = a23 = b2 = 1 and wrote the second lines
having in mind that the solutions could be matrices:

a1a2 + a2a1 = a1a3 + a3a1 = a3a2 + a2a3 = a1a2 + a2a1 = a1a2 + a2a1 = a1a2 + a2a1 = 0.

Dirac realized that the conventional choice of solutions is related to the Paulimatrices.
Written in terms of Pauli matrices, we have

a1 =
(

0 σx

σx 0

)
; a2 =

(
0 σy

σy 0

)
; a3 =

(
0 σz

σz 0

)
; b =

(
I 0
0 −I

)

and they are called the Dirac matrices. Written as 4 × 4 matrices, we have
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a1 =

⎛
⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ ; a2 =

⎛
⎜⎜⎝
0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ ; a3 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ;

and b =

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ; the Dirac wave state is a 4 × 1vector � =

⎛
⎜⎜⎝

�1

�2

�3

�4

⎞
⎟⎟⎠ .

Therefore the Dirac equation is a system of four partial differential equations depen-
dending on the total energy of Special Relativity. It can be written in the form:

i

c

∂

∂t
� =

(
a1

1

i

∂

∂x
+ a2

1

i

∂

∂y
+ a3

1

i

∂

∂z
+ b

mc

�

)
�,

and rearranged as

i

c

∂

∂t
� =

(
−ia1

∂

∂x
− ia2

∂

∂y
− ia3

∂

∂z
+ b

mc

�

)
�,

or, equivalently,

i�
∂

∂t
� = (−i�c a · � + bmc2

)
� ,

where a is a vector with components the Dirac matrices ak , b is the matrix written
above and � is the standard gradient. If we multiply by the matrix b, it results

i�b
∂

∂t
� = (−i�c ba · � + b2mc2

)
�.

Let us denote γ 0 := b and γ j := ba j . The Dirac equation becomes

i�γ 0 ∂

∂t
� = (−i�c γ j · � + mc2

)
�.

Another elegant form in which we can arrange it is

1

c
γ 0 ∂

∂t
� + (γ j · �)� + imc

�
� = 0.

Finally, the Dirac γ matrices are

γ 1 =
(

0 σx

−σx 0

)
; γ 2 =

(
0 σy

−σy 0

)
; γ 3 =

(
0 σz

−σz 0

)
; γ 0 =

(
I 0
0 −I

)
.
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Simple computations show that (γ 0)2 = I while (γ j )2 = −I for j ∈ {1, 2, 3};
(γ j )† = γ j for j ∈ {0, 1, 2, 3}. And more, γ jγ l − γ lγ j = 0 for j �= l, j, l ∈
{0, 1, 2, 3}. The solution

� =

⎛
⎜⎜⎝

�1

�2

�3

�4

⎞
⎟⎟⎠

of the Dirac equation consists of four components. Each component is a plane wave

� j (t, r) = A je
−i�(p·r−Et), j ∈ {1, 2, 3, 4},

with A j the amplitudes expressed by positive constants. This solution is called the
spinor wave function, or simply, the spinor.

As a final consideration, let us consider a squared Dirac operator. We have

(
1

c
γ 0 ∂

∂t
+ (γ j · �) + imc

�

)2

� =

=
(
1

c
(γ 0)†

∂

∂t
+ ((γ j )† · �) − imc

�

)(
1

c
γ 0 ∂

∂t
+ (γ j · �) + imc

�

)
� =

=
(
1

c2
∂2

∂t2
− �2 + m2c2

�2

)
�

which gives the Klein-Gordon equation

(
1

c2
∂2

∂t2
− �2

)
� = −m2c2

�2
�.

Wecanobserve that allwave solutions of theDirac equation are solutions of theKlein-
Gordon equation. However the Klein-Gordon one is a relativistic wave equation for
scalar particles with spin zero. They can be composite particles, like � = �∗�,
derived from spinors. Example of such particles can be the pion or the Higgs boson.
Relativistic QuantumMechanics is the argument of more advanced courses over the
basic approach of this book. We refer the reader to more advanced text like Refs.
[28, 29].

Summary of Lecture 50. Starting from the formal form of Schrödinger equa-
tion

i�
∂

∂t
� = Ĥ�,
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Dirac thought to change the classical Hamilton operator using the formula of
total energy derived inSpecialRelativity, that is H 2 = m2c4 + p2c2.Therefore
he considered a Hamiltonian operator in the form of “square root” of the
previous expression, i.e.

Ĥ = c a · p̂ + bmc2.

Computations lead to the final form of Dirac equation

i�
∂

∂t
� = (−i�c a · � + bmc2

)
�

written with the 4 × 4 matrices

a1 =
(

0 σx

σx 0

)
; a2 =

(
0 σy

σy 0

)
; a3 =

(
0 σz

σz 0

)
; b =

(
I 0
0 −I

)
,

which involves the Pauli matrices as blocks inside them. If we multiply by the
matrix b, it results

i�b
∂

∂t
� = (−i�c ba · � + b2mc2

)
�.

A more appealing form is obtained after we denote γ 0 := b and γ j := ba j ,

1

c
γ 0 ∂

∂t
� + (γ j · �)� + imc

�
� = 0.

The solution of this equation is a 4-dimensional spinor. It is possible to derive
also the Klein-Gordon equation from the squared Dirac operator. We have

(
1

c2
∂2

∂t2
− �2

)
� = −m2c2

�2
�

whose solutions are relativistic scalar particles.



Chapter 12
Conclusions

....I have not failed. I’ve just found 10,000 ways that won’t work.

Thomas Alva Edison

In simple words, someone can say that Quantum Mechanics can be divided in two
parts: Before Principles and After Principles.

Before Principles means that several experimental facts point out the inadequacy
of Classical Mechanics to describe, for example, light and particles at a fundamental
level. This statement needs also a new conceptualization that, eventually, brings to
formulate an adequate Mathematics to describe them.

As said, light cannot be described in the context of ClassicalMechanics. Its funda-
mental nature is represented by electromagnetic waves which need the formulation
of Special Relativity. Besides, light can be made of particles so we have to accept
the fact that light is wave and particles at same time. The appearance of this duality
means that only Maxwell’s equations are not enough to catch its second nature. The
“particles of light”, called photons, have energy. The energy formula related to these
“particles’ depends on the Planck constant which revealed one of the most important
(probably the most fundamental) constant of Physics.

This line of thinking immediately brings to the question if any material element,
also particles with mass, have a wave nature: de Broglie answered this question
showing that any particle have a wave counterpart. This means that the wave-particle
behavior is an intrinsic feature of Nature. Any massive body has a related wave-
length.

The conceptual development of this idea led to the Schrödinger equation which
has not only a wave interpretation. Its solutions have the meaning of probability to
find a particle in a region of space at a given time. For example, a wave itself cannot
represent an electron if its speed is greater than the speed of light. So, we need to
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replace waves by wave packets when we study electrons and other particles different
from photons.

From a conceptual point of view, this approach shift the standard determinis-
tic interpretation of Classical Mechanics to a probabilistic one. Concepts like non-
locality and indeterminism find a place in Physics and need a new mathematical
formulation. Step by step, a new theory can be formulated using the Mathemat-
ics necessary to correctly understand the results of experiments. For example, the
Heisenberg uncertainty principle appears in its elementary formulation because we
use the Gauss wave packets. In fact, using them, through the Fourier transform and
the Pinsky theorem, the Heisenberg principle naturally emerges.

This fundamental step depends on the Plancharel–Parceval formula established
for functions belonging to the intersection between L1(R) and L2(R). Here L2(R)
is a Hilbert space involved in the theory of one-dimensional quantum harmonic
oscillator. In almost all models, Hilbert spaces can be used. If we look at the time-
dependent Schrödinger equation, we see an eigenvector-eigenvalue problem inwhich
a Hermitian operator is involved. It is possible to prove that the Hamiltonian itself is
a Hermitian operator.

At least locally, unitary operators can be associated to the time-dependent
Schrödinger equation. In a Hilbert space, we can find a particular case of Cauchy–
Buniakowski–Schwarz inequality leading to the Heisenberg uncertainty principle.
More, operators associated to the Schrödinger equation allowus to derive their expec-
tation values. The commutator of two operators indicates if they can be simultane-
ously measured and their evolution oblige us to rearrange the way in which quantum
objects have to be considered. With these considerations in mind and with these new
mathematical tools, Principles of Quantum Mechanics appear.

After their formulation, the big picture of Quantum Mechanics can be achieved
and this allows to have another perspective for any subject already considered. Ladder
operators offer another view for the harmonic oscillator problem. Quantized energy
levels, obtained from the classical Hermite polynomials, are now obtained using
the creation and the annihilation operators. The obsolete Bohr hydrogen model is
replaced by considering the gradient and Laplace operators in spherical coordinates.
The solution depends on spherical harmonics and so quantum numbers appear. Pauli
matrices are involved in photon polarization description. Angular operators and Pauli
operators are related to the electron spin. And again, the Pauli matrices are involved
in obtaining the Dirac equation starting from the Scrödinger equation. We step to
Klein–Gordon equation necessary for the relativistic description of other particles
besides the electron. With this trend, we can go beyond the non-relativistic Quantum
Mechanics up to the full formulation of the Quantum Field Theory.

In summary, we presented the basic conceptual tools of the so called “Copenhagen
Interpretation of QuantumMechanics” [26] stressing, in particular, the mathematical
aspects of the construction. It is worth noticing that, in literature, such mathematical
aspects are sometimes overlooked with respect to the experimental and axiomatic
aspects. On the contrary, we believe that a full understanding of Mathematics behind
the theory constitutes a straightforward way to realize the big picture of Quantum
Mechanics.
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Clearly, the material presented in this book is not exhaustive at all. We intended
to present only the basic aspects of Quantum Mechanics without claiming for com-
pleteness. We have to stress also that we did not take into account other important
topics like entanglement or alternative interpretation of Quantum Mechanics.

Quantum entanglement occurs when quantum objects like particles are generated,
interact, or share spatial proximity in a way such that the quantum state of each
component of the system cannot be described independently of the state of the others.
This happens also if particles are separated by large distances. In other words, an
entangled state cannot be described by the standard superposition principle of states.
Entangled states are solutions of the Schrödinger equation but, unlike pure states,
has no classical counterpart. Entanglement is a genuine quantum phenomenon at the
core of Quantum Mechanics [30].

Furthermore, other interpretations of Quantum Mechanics are possible. They
originate in the attempt to explain how Quantum Mechanics and its mathemati-
cal apparatus corresponds to the “Reality” despite of the fact that the theory has been
experimentally tested by a large number of extremely accurate experiments. In other
words, no final consensus has been reached on how measurements, quantum states,
wave functions and operators can represent consistently the physical world.

For example, the so called Many Worlds Interpretation considers a universal
wave function (the so-called Wave Function of the Universe) where no wave func-
tion collapse is associated with measurements. Measurements are explained by the
decoherence, which occurs when interacting states produce entanglement and “split”
the universe into mutually unobservable histories. The final effect is that distinct uni-
verses (distinct realities and causally distinct histories) emerge within the framework
of a comprehensive Multiverse [31]. In this interpretation, the main role in evolu-
tion of systems is played by the Schrödinger equation (or other related evolutionary
equations like the Wheeler–de Witt equation adopted in Quantum Cosmology )to
describe these distinct universes (realities) on the ground of quantum systems [32].
The main result is the probability to realize a given universe without the necessity of
measurements implying the collapse of the wave function.

Several approach are possible: we have the de Broglie–Bohm theory, the von
Neumann–Wigner interpretation, theQuantum Information Theory andmany others.
See [26] for a detailed discussion. As concluding remark, we can say that Quantum
Mechanics, together with General Relativity, is one of the most active research areas
not only for Physics but for the whole Knowledge.

Finally, we humbly hope to have stimulated the curiosity of theReader offering the
first necessary steps towards further insights into the fascinating world of Quantum
Theory.
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