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PREFACE 

In 1957, in h i s  Princeton doctoral  d i sse r ta t ion ,  Hugh Everet t ,  111, pro- 

posed a new interpretation of quantum mechanics  that  d e n i e s  the exis t-  

e n c e  of a s e p a r a t e  c l a s s i c a l  realm and a s s e r t s  tha t  i t  makes  s e n s e  t o  t a l k  

about  a s t a t e  vector  for the  whole universe.  T h i s  s t a t e  vector  never  col- 

I 
l a p s e s ,  and h e n c e  real i ty  a s  a whole is rigorously deterministic.  T h i s  

reality, which is described jointly by t h e  dynamical var iables  and t h e  

s t a t e  vector ,  is not t h e  real i ty  w e  customari ly think of, but is a real i ty  

composed of many worlds. By virtue of t h e  temporal development of t h e  

dynamical var iab les  t h e  s t a t e  vector  decomposes naturally into orthogonal 

vectors ,  ref lect ing a cont inual  sp l i t t ing  of t h e  universe into a multitude of 

mutually unobservable but equal ly real  worlds, i n  e a c h  of which every 

good measurement h a s  y ie lded  a def in i te  resul t  and in most of which the 

familiar s t a t i s t i c a l  quantum l a w s  hold. 

In addition t o  h i s  short  t h e s i s  Everet t  wrote a much larger exposi t ion 

of h i s  i d e a s ,  which w a s  never  published. T h e  presen t  volume conta ins  

both of t h e s e  works, together with a handful of papers  by others  on t h e  

s a m e  theme. Looked a t  in  o n e  way, Everet t ' s  interpretation c a l l s  for a 

return t o  na ive  realism and t h e  old fashioned idea  that  there c a n  b e  a 

direct  correspondence between formalism and reality. B e c a u s e  p h y s i c i s t s  

have  become more sophis t i ca ted  than th i s ,  and above  a l l  b e c a u s e  t h e  im- 

pl icat ions of h i s  approach appear  t o  them s o  bizarre, few have  taken 

Everet t  ser iously.  Never the less  h i s  b a s i c  premise provides s u c h  a stimu- 

la t ing framework for d i s c u s s i o n s  of t h e  quantum theory of measurement 

that  t h i s  volume should b e  on  every quantum theoretician's shelf .  
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... " a picture. incomplete yet not false.  of the universe a s  Ts 'u i  Pgn con- 

ceived it to  b e  . Differing from Newton and Schopenhauer. ... [he] did not 

think of time a s  absolute and uniform . He believed in an infinite s e r i e s  

of times. in a dizzily growing. ever spreading network of diverging. con- 

verging and parallel times . This  web of time . t hes t r ands  of which 

approach one another. bifurcate. intersect or ignore each other through 

the centuries - embraces every possibility . We do not exist  in most of ... 

them . In some you exis t  and not I, while in others I do, and you do  not. 

and in yet  others both of u s  exis t  . In this  one. in which chance h a s  

favored me. you have come to  my gate  . In another. you. crossing the gar- 

den. have found me dead . In yet another. I s ay  these  very same words. 

but am an error. a phantom." 

Jorge Lu i s  Borges. The Garden of Forking P a t h s  

"Actualities seem t o  float in a wider s e a  of possibilities from out of 

which they were chosen; and somewhere. indeterminism says .  such possi- 

bi l i t ies exist .  and form part of the truth." 

William James 
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THE THEORY O F  THE UNIVERSAL WAVE FUNCTION 

Hugh Everett, I11 

I. INTRODUCTION 

We begin, a s  a way of entering our subject, by characterizing a particu- 

lar interpretation of quantum theory which, although not representative of 

the more careful formulations of some writers, is the most common form 

encountered in textbooks and university lectures on the subject. 

A physical system is described completely by a s t a t e  function $, 

which i s  an element of a Hilbert space,  and which furthermore gives in- 

formation only concerning the probabilities of the results  of various obser- 

vations which can b e  made on the  system. The s t a t e  function $ i s  

thought of a s  objectively characterizing the physical system, i.e., a t  a l l  

times an isolated system i s  thought of a s  possessing a s t a t e  function, in- 

dependently of our s t a t e  of knowledge of it.  On the other hand, $ changes 

in a causa l  manner s o  long a s  the system remains isolated, obeying a dif- 

ferential equation. Thus there are two fundamentally different ways in 

which the s t a t e  function c a n  change:' 

Process 1 :  The discontinuous change brought about by the observa- 

tion of a quantity with eigenstates +2,..., in which the s t a t e  

$ will be changed t o  the s t a t e  4. with probability I($, + j ) 1 2 .  
1 

Process 2:  The continuous, deterministic change of s t a t e  of the 

(isolated) system with time according to  a wave equation &= U$, 
a t  

where U i s  a linear operator. 

-- 

We use here the terminology of von Neumann 1171. 
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The question of the consistency of the scheme arises if one  contem- 

plates regarding the observer and h i s  object-system a s  a single (composite) 

physical system. Indeed, the situation becomes quite paradoxical if we 

allow for the existence of more than one  observer. Let  us consider the 

c a s e  of one observer A, who i s  performing measurements upon a system S, 

the totality (A + S) in turn forming the object-system for another observer, 

B. 

If we are to  deny the possibility of B's  use  of a quantum mechanical 

description (wave function obeying wave equation) for A + S, then we 

must b e  supplied with some alternative description for systems which con- 

tain observers (or measuring apparatus). Furthermore, we would have to  

have a criterion for telling precisely what type of systems would have the  

preferred positions of "measuring apparatus" or "observer" and be  sub- 

ject to the  alternate description. Such a criterion is probably not capable 

of rigorous formulation. 

On the  other hand, if we do allow B to  give a quantum description to  

A + S, by assigning a s t a t e  function $A+S, then, s o  long a s  B does not 

interact with A + S, i t s  s t a t e  changes causally according to  Process  2, i 

even though A may be performing measurements upon S. From B's  point 

of view, nothing resembling Process  1 can occur (there are no discontinui- $ 

ties), and the question of the validity of A's u s e  of Process  1 i s  raised. 1 

That i s ,  apparenfly either A i s  incorrect in assuming Process  1, with i t s  
i( 

f 
probabilistic implications, to  apply to  h is  measurements, or e l s e  B's s t a t e  i 

f 

function, with i t s  purely causal  character, i s  an inadequate description of 

what i s  happening to A + S. 1 
T o  better illustrate the paradoxes which can ar i se  from str ict  adher- 

ence to th is  interpretation we consider the following amusing, but extremely 

hypothetical drama. 

Isolated somewhere out in space  i s  a room containing an observer, 

A, who is about to perform a measurement upon a system S. After 

performing h i s  measurement h e  will record the result in h i s  notebook. 

We assume that he  knows the s t a t e  function of S (perhaps a s  a result 

of previous measurement), and that  i t  i s  not an eigenstate of the mea- 

surement he  i s  about to perform. A, being an orthodox quantum theo- 

rist,  then believes that the outcome of h i s  measurement is undetermined 

and that the process i s  correctly described by P rocess  1. 

In the meantime, however, there i s  another observer, B, outside 

the room, who i s  in possession of the s t a t e  function of the entire room, 

including S, the measuring apparatus, and A, just prior to  the mea- 

surement. B i s  only interested in what will be  found in the  notebook 

one week hence, s o  he  computes the  s t a t e  function of the  room for one 

week in the future according to Process  2. One week passes ,  and we 

find B s t i l l  in possession of the s t a t e  function of the room, which 

this  equally orthodox quantum theorist believes to  be  a complete de- 

scription of the room and i t s  contents. If B's s t a t e  function calcula- 

tion te l l s  beforehand exactly what i s  going to be  in the notebook, then 

A i s  incorrect in h i s  belief about the indeterminacy of the outcome of 

h is  measurement. We therefore assume that  B's s t a t e  function con- 

tains non-zero amplitudes over several  of the notebook entries. 

At this  point, B opens the door to  the  room and looks a t  the note- 

book (performs h i s  observation). Having observed the notebook entry, 

he  turns to  A and informs him in a patronizing manner that s ince  h i s  

(B's) wave function just prior to h i s  entry into the  room, which h e  

knows to  have been a complete description of the  room and i t s  contents, 

had non-zero amplitude over other than the present result of the mea- 

surement, the result must have been decided only when B entered the 

room, s o  that A, his  notebook entry, and h is  memory about what 

occurred one week ago had no independent objective existence until 

the intervention by B. In short, B implies that A owes h i s  present 

objective existence to B's generous nature which compelled him to 

intervene on h is  behalf. However, to B's consternation, A does  not 

react with anything l ike the  respect and gratitude he  should exhibit 

towards B, and a t  the  end of a somewhat heated reply, in which A 

conveys in a colorful manner h i s  opinion of B and h is  beliefs, he  
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rudely punctures B 's  ego by observing that  if B's view is correct, 

then h e  h a s  no reason to feel  complacent, s ince  the whole present 

situation may have no objective existence, but may depend upon the 

future actions of yet  another obsewer. 

It i s  now clear that the interpretation of quantum mechanics with which 

we began is untenable if we are to consider a universe containing more 

than one  observer. We must therefore seek . a  suitable modification of th is  

scheme, or an  entirely different system of interpretation. Several alterna- 

t ives which avoid the paradox are: 

Alternative 1: T o  postulate the existence of only one observer in the  

universe. This  i s  the solipsist  position, in which each of u s  must 

hold the view that he  alone is the only valid observer, with the 

res t  of the universe and its inhabitants obeying a t  a l l  times P rocess  

2 except when under h i s  observation. 

T h i s  view i s  quite consistent, but one must feel  uneasy when, for 

example, writing textbooks on quantum mechanics, describing Process  1, 

for the consumption of other persons to  whom i t  does not apply. 

Alternative 2: T o  limit the applicability of quantum mechanics by 

assert ing that  the quantum mechanical description fai ls  when 

applied to observers, or to measuring apparatus, or more generally 

to  systems approaching macroscopic s ize .  

If we try to  limit the applicability s o  a s  to exclude measuring apparatus, 

or in general systems of macroscopic s ize ,  we are faced with the difficulty 

of sharply defining the  region of validity. For  what n might a group of n 

part icles b e  construed a s  forming a measuring device s o  that the  quantum 

description fai ls? And to draw the line a t  human or animal observers, i.e., 

to assume that a l l  mechanical aparata obey the usual laws, but that they 

are somehow not valid for living observers, does  violence to the so-called 

principle of psycho-physical parallelism,2 and consti tutes a view to be  

avoided, if possible. T o  do justice to this  principle we must ins is t  that 

we be  able to  conceive of mechanical devices (such a s  servomechanisms), 

obeying natural laws, which we would b e  willing to  ca l l  observers. 

Alternative 3: T o  admit the  validity of the s t a t e  function description, 

but to  deny the possibility that B could ever be  in possession of 

the s t a t e  function of A + S. Thus  one might argue that a determi- 

nation of the s t a t e  of A would constitute such a drast ic interven- 

tion that A would c e a s e  to function a s  an observer. 

The first objection to this  view i s  that no matter what the s t a t e  of 

A + S i s ,  there i s  in principle a complete s e t  of commuting operators for 

which i t  is an  eigenstate, s o  that, a t  leas t ,  the  determination of these 

quantities will not affect the  s t a t e  nor in any way disrupt the operation of 

A. There are no fundamental restrictions in the usual  theory about the 

knowability of any s t a t e  functions, and the introduction of any such re- 

strictions to avoid the paradox must therefore require extra postulates. 

The second objection i s  that it i s  not particularly relevant whether or 

not B actually knows the precise s t a t e  function of A + S. If he merely 

believes that the system is described by a s t a t e  function, which h e  does  

not presume t o  know, then the difficulty s t i l l  ex is ts .  He must then believe 

that th is  s t a t e  function changed deterministically, and hence that there 

was nothing probabilistic in A's determination. 

In the words of von Neumann ([17], p. 418): " . . . i t  is a fundamental requirement 
of the scientific viewpoint - the so-called principle of the psycho-physical parallel- 
ism - that it must be possible s o  to describe the extra-physical process of the sub- 
jective perception a s  if i t  were in reality in the physical world - i .e . ,  to assign to 
i ts  parts equivalent physical processes in the objective environment, in ordinary 
space." 
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Alternat ive 4: T o  abandon t h e  posi t ion tha t  t h e  s t a t e  function is a 

complete  descript ion of a system. T h e  s t a t e  function is to b e  re- 

garded not a s  a descript ion of a s ing le  system, bu t  of a n  ensemble  

of sys tems ,  s o  t h a t  t h e  probabi l is t ic  a s s e r t i o n s  a r i s e  naturally 

from t h e  incompleteness  of t h e  description. 

I t  is assumed t h a t  t h e  correct  complete  descript ion,  which would pre- 

sumably involve further (hidden) parameters  beyond t h e  s t a t e  funct ion 

alone,  would lead  t o  a determinist ic  theory, from which t h e  probabi l is t ic  

a s p e c t s  a r i s e  a s  a resu l t  of our ignorance of t h e s e  ex t ra  parameters i n  t h e  

s a m e  manner a s  in c l a s s i c a l  s t a t i s t i c a l  mechanics .  

Alternat ive 5: To assume t h e  universal  val idi ty  of t h e  quantum de- 

scr ipt ion,  by t h e  complete  abandonment of P r o c e s s  1. T h e  general  

validity of pure wave  mechanics ,  without a n y  s t a t i s t i c a l  asse r t ions ,  

is assumed for  a l l  phys ica l  sys tems ,  including observers  and mea- 

sur ing  apparata .  Observat ion p r o c e s s e s  a r e  t o  b e  descr ibed  com- 

pletely by t h e  s t a t e  function of t h e  composi te  s y s t e m  which in- 

c l u d e s  t h e  observer  and h i s  object-system, and which a t  a l l  t imes  

obeys  t h e  wave equat ion (Process  2). 

T h i s  br ief  l i s t  of a l t e rna t ives  is not meant t o  b e  exhaus t ive ,  bu t  h a s  

been  presented i n  t h e  sp i r i t  of a preliminary orientation. We have ,  i n  fac t ,  

omitted o n e  of the  foremost interpretat ions of quantum theory, namely t h e  

posi t ion of Nie l s  Bohr. T h e  d i scuss ion  wil l  b e  resumed i n  t h e  f ina l  chap- 

ter ,  when w e  s h a l l  b e  i n  a posi t ion t o  give a more adequa te  appra i sa l  of 

t h e  various a l t e rna te  interpretat ions.  F o r  t h e  present ,  however, w e  s h a l l  

concern ourse lves  only with the  development of Alternat ive 5. 

It  is evident  that  Alternat ive 5 is a theory of many advantages.  I t  h a s  

t h e  vir tue of logical  s implici ty  and i t  is complete in  t h e  s e n s e  that  i t  is 

applicable  t o  t h e  en t i re  universe.  All  p r o c e s s e s  a r e  considered equal ly 

(there a r e  no "measurement p rocesses"  which play a n y  preferred role), 

and t h e  pr inciple  of psycho-physical  paral le l ism is fully maintained. S ince  

t h e  universal  val idi ty  of  t h e  s t a t e  function descript ion is a s s e r t e d ,  one  

c a n  regard t h e  s t a t e  funct ions themse lves  a s  t h e  fundamental en t i t i es ,  

and o n e  c a n  even  consider  the  s t a t e  function of t h e  whole universe. In 

t h i s  s e n s e  t h i s  theory c a n  b e  ca l led  t h e  theory of t h e  "universal wave 

function," s i n c e  a l l  of phys ics  i s  presumed t o  follow from t h i s  function 

alone.  There  remains, however, t h e  quest ion whether  or not s u c h  a theory 

c a n  b e  put into correspondence with our experience.  

The  present  t h e s i s  is devoted  to showing that  th i s  concept  of a uni- 

v e r s a l  wave  mechanics ,  together with the  n e c e s s a r y  correlation machinery 

for i t s  interpretation, forms a logical ly s e l f  c o n s i s t e n t  descr ipt ion of a 

universe i n  which s e v e r a l  observers  a r e  a t  work. 

We s h a l l  b e  a b l e  to  introduce into t h e  theory s y s t e m s  which represent  

observers .  Such s y s t e m s  c a n  b e  conceived a s  automatically functioning 

machines (servomechanisms) p o s s e s s i n g  recording d e v i c e s  (memory) and 

which a r e  capable  of responding t o  their  environment. T h e  behavior of 

t h e s e  observers  s h a l l  a lways  b e  t reated within t h e  framework of wave 

mechanics .  Furthermore, we  s h a l l  d e d u c e  t h e  probabi l is t ic  a s s e r t i o n s  of 

P r o c e s s  1 a s  sub jec t ive  appearances  t o  s u c h  observers ,  thus  placing t h e  

theory in  correspondence with experience.  W e  a r e  then led t o  the novel 

s i tuat ion in which the  formal theory i s  object ively cont inuous and c a u s a l ,  1 

while  subject ively discont inuous and probabilistic.  While t h i s  point of 

view t h u s  sh'all ultimately justify our u s e  of the  s t a t i s t i c a l  a s s e r t i o n s  of 

t h e  orthodox view, i t  e n a b l e s  u s  t o  d o  s o  in a logical ly  cons i s ten t  manner, 

a l lowing for t h e  e x i s t e n c e  of other  observers .  At t h e  s a m e  time it  g ives  a 

deeper  insight  into the  meaning of quant ized s y s t e m s ,  and t h e  role played 

by quantum mechanical  correlat ions.  

In order to  bring about  th i s  correspondence with exper ience  for t h e  

pure wave  mechanical theory, we  s h a l l  exploit the  correlation between 

subsys tems  of a composi te  sys tem which is descr ibed  by a s t a t e  function. 

A subsys tem of s u c h  a composi te  sys tem d o e s  not, in  general,  p o s s e s s  an 

independent s t a t e  function. T h a t  i s ,  i n  general  a composi te  sys tem can- 

not b e  represented by a s i n g l e  pair of subsys tem s t a t e s ,  but can  b e  repre- 
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s e n t e d  only by a superposi t ion of s u c h  pa i r s  of subsys tem s t a t e s .  F o r  

example,  t h e  Schrodinger wave function for a pair of par t i c les ,  $(xl, x2), 

cannot  a lways  b e  written i n  t h e  form $ = + ( x l ) ~ ( x 2 ) ,  but only in t h e  form 

$ = 2 aijdi(xl)?j(x2). In t h e  la t ter  c a s e ,  there is no s i n g l e  s t a t e  for 

i , j  
P a r t i c l e  1 a lone  or P a r t i c l e  2 alone, but only t h e  superposi t ion of s u c h  

c a s e s .  

In f a c t ,  t o  any arbitrary cho ice  of s t a t e  for one subsys tem there will  

correspond a re la t ive  s t a t e  for t h e  other  subsystem, which wil l  generally 

b e  dependent  upon the  c h o i c e  of s t a t e  for the  f i rs t  subsys tem,  s o  that  t h e  

s t a t e  of one  subsys tem is not independent, but correlated t o  the  s t a t e  of 

t h e  remaining subsystem. Such correlat ions between sys tems  a r i s e  from 

interact ion of t h e  s y s t e m s ,  and from our point of view a l l  measurement and 

observat ion p r o c e s s e s  a r e  to  b e  regarded simply a s  interact ions between 

observer  and object-system which produce s t rong  correlat ions.  

L e t  one  regard a n  observer  a s  a subsys tem of t h e  composi te  system: 

observer  + object-system. It  is then a n  inescapable  consequence  that  

af ter  the  interact ion h a s  taken p lace  there wil l  not,  general ly ,  ex i s t  a 

s ing le  observer  s t a t e .  There  will ,  however, b e  a superposi t ion of the  com- 

pos i te  sys tem s t a t e s ,  e a c h  element  of which conta ins  a defini te  observer  

s t a t e  and a defini te  relat ive object-system s t a t e .  Furthermore, a s  we  s h a l l  

s e e ,  e a c h  of t h e s e  relat ive object-system s t a t e s  wil l  be, approximately, 

t h e  e i g e n s t a t e s  of t h e  observat ion corresponding t o  the  value obtained by 

t h e  observer  which i s  descr ibed  by t h e  s a m e  element  of t h e  superposi t ion.  

T h u s ,  e a c h  element  of t h e  resul t ing superposi t ion descr ibes  a n  observer  

who perceived.a def in i te  and generally different resul t ,  and t o  whom i t  

appears  tha t  t h e  object-system s t a t e  h a s  been  transformed into the  corre- 

sponding e igens ta te .  In t h i s  s e n s e  t h e  usua l  a s s e r t i o n s  of P r o c e s s  1 

appear  t o  hold on a sub jec t ive  leve l  t o  e a c h  observer  described by a n  e l e -  

ment of t h e  superposi t ion.  We s h a l l  a l s o  see tha t  correlat ion p l a y s  a n  

important role  in  preserving cons i s tency  when s e v e r a l  observers  a r e  p resen t  

and allowed t o  in te rac t  with one another (to "consult" one  another) as 

wel l  a s  with other  object-systems.  

In order to  develop a language for interpreting our pure wave mechan- 

i c s  for composi te  s y s t e m s  we  s h a l l  find i t  useful  t o  develop quant i ta t ive 

defini t ions for s u c h  notions a s  t h e  "sharpness"  or "definiteness" of a n  

operator A for  a s t a t e  4 / ' ,  and the  "degree of  correlation" between the  

subsys tems  of a .composi te  sys tem or between a pair of operators  i n  t h e  

subsys tems ,  s o  that  we  c a n  u s e  t h e s e  concepts  in  a n  unambiguous manner. 

T h e  mathematical development of t h e s e  not ions wil l  b e  carried out i n  the  

next  chapter  (11) us ing  s o m e  concepts  borrowed from Information   he or^.^ 
We s h a l l  develop there t h e  general  def ini t ions of information and correla- 

tion, a s  well  a s  some of their  more important properties. Throughout 

Chapter  I1 we  s h a l l  u s e  t h e  language of probability theory t o  fac i l i t a te  the  

exposition, and b e c a u s e  i t  e n a b l e s  u s  t o  introduce i n  a unified manner a 

number of concepts  t h a t  wi l l  b e  of l a te r  use.  We s h a l l  never the less  sub-  

sequent ly apply the mathematical def ini t ions direct ly  t o  s t a t e  funct ions,  

by replacing probabi l i t ies  by s q u a r e  amplitudes, without, however, making 

a n y  re fe rence  to  probability models. 

Having s e t  t h e  s t a g e ,  s o  t o  s p e a k ,  with Chapter  11, we turn to  quantum 

mechanics  i n  Chapter  111. There  we f i r s t  inves t iga te  t h e  quantum forma- 

l ism o f  composi te  s y s t e m s ,  particularly t h e  concept  of relat ive s t a t e  func- 

tions, and t h e  meaning of t h e  representat ion of subsys tems  by non- 

interfering mixtures of s t a t e s  character ized by dens i ty  matrices. T h e  

not ions of information and correlation a r e  then appl ied to  quantum mechan- 

i cs .  T h e  f ina l  sec t ion  of t h i s  chapter  d i s c u s s e s  t h e  measurement p rocess ,  

which is regarded simply a s  a correlation-inducing interact ion between 

s u b s y s t e m s  of a s ing le  i so la ted  system. A s imple  example of such  a 

measurement is given and d i s c u s s e d ,  and some general  consequences  of 

the  superposi t ion pr inciple  a r e  considered.  

T h e  theory originated by C l a u d e  E .  Shannon [19]. 
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T h i s  wil l  b e  followed by an abs t rac t  treatment of the  problem of 

Observation (Chapter IV). In t h i s  chap te r  we make u s e  only of the  super-  

position principle, and general  ru les  by which composi te  sys tem s t a t e s  

a re  formed of subsys tem s t a t e s ,  in  order that  our r e s u l t s  s h a l l  have  t h e  

grea tes t  generality and b e  appl icab le  t o  any form of quantum theory for 

which t h e s e  pr inciples  hold. (Elsewhere,  when giving examples,  we re- 

s t r i c t  ourse lves  t o  t h e  non-relat ivis t ic  Schrodinger Theory for simplicity.) 

T h e  val idi ty  of P r o c e s s  1 a s  a sub jec t ive  phenomenon is deduced,  a s  well  

a s  t h e  cons i s tency  of al lowing s e v e r a l  observers  t o  interact  with one 

another. 

Chapter  V supplements  t h e  abs t rac t  treatment of Chapter  IV by d i scus-  

s i n g  a number of d i v e r s e  top ics  from t h e  point of view of the  theory of 

pure wave mechanics ,  including t h e  e x i s t e n c e  and meaning of macroscopic 

o b j e c t s  in  t h e  light of their  atomic const i tut ion,  amplification p r o c e s s e s  

in  measurement, ques t ions  of reversibility and i rreversibi l i ty ,  and approxi- 

mate measurement. 

T h e  f inal  chap te r  summarizes  t h e  s i tuat ion,  and cont inues  t h e  d i scus-  

s i o n  of a l t e rna te  interpretat ions of quantum mechanics .  

11. PROBABILITY, INFORMATION, AND CORRELATION 

T h e  present  chapter  is devoted t o  t h e  mathematical development of t h e  

concepts  of information and correlation. A s  mentioned in t h e  introduction 

we s h a l l  u s e  t h e  language of probability theory throughout t h i s  chapter  to  

fac i l i t a te  t h e  exposi t ion,  although we s h a l l  apply the  mathematical defini- 

t ions  and formulas in  l a te r  chap te rs  without reference t o  probability models. 

We sha l l  develop our defini t ions and theorems in fu l l  general i ty ,  for proba- 

bility dis t r ibut ions over arbitrary s e t s ,  rather than merely for dis t r ibut ions 

over  rea l  numbers, with which we  a r e  mainly interested a t  present .  We 

t a k e  t h i s  c o u r s e  because  i t  is a s  e a s y  a s  t h e  restr ic ted development, and 

because  i t  g ives  a bet ter  insight  into t h e  sub jec t .  

T h e  f i rs t  three s e c t i o n s  develop defini t ions and propert ies  of informa- 

tion and correlation for probability dis t r ibut ions over finite s e t s  only. In 

sec t ion  four t h e  definition of correlat ion i s  extended to dis t r ibut ions over  

arbitrary s e t s ,  and the  general  invariance of the  correlation i s  proved. 

Sect ion f ive then genera l izes  the  definition of information t o  dis t r ibut ions 

over arbitrary s e t s .  F ina l ly ,  a s  i l lustrat ive examples,  s e c t i o n s  s e v e n  and 

eight  give brief appl icat ions t o  s t o c h a s t i c  p r o c e s s e s  and c l a s s i c a l  mechan- 

i c s ,  respect ively.  

51. Finite joint distributions 

We assume that we have  a col lect ion of f ini te  s e t s ,  x,3, ..., 2, whose 

elements  a r e  denoted by xi r Y, y j  r ?i, ..., zk r z ,  e tc . ,  and tha t  we  have  

a joint probability distribution, P = P(x. ,y . ,  ..., zk), defined on t h e  car te-  
1 1  

s i a n  product of t h e  s e t s ,  which represen ts  t h e  probability of t h e  combined 

event  x . ,y .  ,..., and zk. W e  then denote by X,Y ,..., Z the  random varia- 
J 

b l e s  whose v a l u e s  a r e  t h e  e lements  of the  s e t s  X,%, ..., 5, with probabili- 

t i e s  given by P. 

13 
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F o r  any s u b s e t  Y ,... ,Z ,  of a s e t  of random var iab les  W ,... ,X ,  Y,. . . ,Z, 

with joint probability distribution P(wi,. .. ,xj,yk,.. .,zp), t h e  marginal dis- 

tribution, P(yk,  ..., ze), is defined t o  be:  

which represen ts  t h e  probability of t h e  joint occurrence of yk, .  . . ,ze, with 

no restr ic t ions upon t h e  remaining variables .  

F o r  any s u b s e t  Y,  ..., Z of a s e t  of random var iab les  t h e  condit ional  

distribution, conditioned upon the  v a l u e s  W = wit. .. , X = x .  for any re- wi, ..., x .  1 

maining s u b s e t  W,  ... ,X,  and denoted by P J(yk,.. . ,ze), is defined 

to be :  1 

Wi,.. . ,x .  P ( W ~ , . . . , X ~ > Y ~ , . - . , ~ ~ )  
(1.2) P '(Yk,...,ze> = P(wi,  ..., xj>  9 

which represents  t h e  probability of t h e  joint even t  Y = yk,.  . . , Z  = ze, con- 

ditioned by t h e  f a c t  tha t  W ,  ..., X a r e  known t o  have  taken t h e  v a l u e s  

wi ,..., x.,  respect ively.  
1 

F o r  any numerical valued function F(y k,...,ze), def ined on t h e  e le -  

ments  of the  ca r tes ian  product of '3, ..., Z ,  t h e  expectat ion,  denoted b y  

Exp [F], is defined t o  be: 

(1.3) E x p  [F] = 2 P(y k,...,z[) F(yk,...,z[) 

k, ..., e 
W e  note  that  if P(yk, ..., ze) is a marginal distribution of s o m e  larger d i s -  

tribution P(wi,. . . ,xj,yk,.  .. ,ze) then 

We regard it a s  undefined if P(w i , . . . , x . )  J = 0. In this c a s e  P(wi, u ' r X j J  

yk, ... ,zp) i s  necessarily zero also.  
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s o  t h a t  if w e  wish t o  compute Exp [F] with respec t  t o  some joint dis t r i -  

bution i t  su f f ices  t o  u s e  a n y  marginal dis t r ibut ion of t h e  original distribu- 

tion which conta ins  a t  l e a s t  t h o s e  var iab les  which occur  in  F. 

W e  s h a l l  a l s o  occas iona l ly  b e  interested in  condit ional  expecfat ions,  

which w e  def ine  a s :  

and we  note t h e  following e a s i l y  verified rules  for expectat ions:  

(1.6) Exp [Exp [Fl] = EXP [F] 

(1.7) 
Expui~. . .~V'  [EXP u i  ,... , v . ,  J wk,. . . ui, ..., v. 

JXP IF11 = E x p  [Fl , 

(1.8) Exp [F+G] = Exp [F] + Exp [GI . 

We should l ike  f inal ly  to  comment upon the  notion of independence. 

Two random var iab les  X and Y with joint distribution P(xi,  y .) will  b e  
J 

s a i d  t o  b e  independent if and only if P(xi,  y .) i s  equa l  t o  P(xi) P(y .) 
J 1 

for a l l  i ,  j. Similarly, t h e  groups of random var iab les  (U ... V), (W ... X) ,..., 
(Y.. . Z )  wil l  b e  ca l led  mutually independent  groups if and only if 

P(ui ,..., vj, wk ,.... xe ,..., ym,. . . ,zn) i s  a l w a y s  equa l  t o  P(ui  ,..., vj) 

P ( W ~ , . . . , X ~ ) . . .  P ( Y ~ , . .  .,zn). 

Independence means t h a t  the  random var iab les  t a k e  on va lues  which 

a r e  not influenced by t h e  va lues  of other var iab les  with respec t  t o  which 

they a r e  independent. T h a t  is, t h e  condit ional  distribution of one  of two 

independent variables ,  Y ,  conditioned upon t h e  value xi for  t h e  other, 

is independent  of xi,  s o  that  knowledge about o n e  variable  t e l l s  nothing 

of t h e  other. 

$2. Information for f ini te  dis t r ibut ions 

Suppose that  we have  a s ing le  random variable  X, with distribution 

P(xi). We then define2 a number, IX, ca l led  the  information of X, t o  be: 

This definition corresponds to the negative of the entropy of a probability 
distribution a s  defined by Shannon [19]. 
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which i s  a funct ion of t h e  probabi l i t ies  a lone  and not of any  poss ib le  

numerical va lues  of t h e  x i ' s  themselves.  
3 

T h e  information i s  essen t ia l ly  a measure of t h e  s h a r p n e s s  of a proba- 

bility dis t r ibut ion,  tha t  i s ,  a n  inverse  measure of i t s  "spread." In t h i s  

respec t  information p lays  a role s imilar  t o  that  of variance. However, i t  

h a s  a number of properties which make i t  a superior  measure of t h e  

"sharpness"  than t h e  variance, not the  l e a s t  of which is the  fact  that  it  

c a n  b e  def ined  for dis t r ibut ions over arbitrary s e t s ,  while  variance is de- 

f ined  only for dis t r ibut ions over real  numbers. 

Any change  in t h e  distribution P(xi) which "levels  out" the  proba- 

b i l i t i es  d e c r e a s e s  t h e  information. It  h a s  t h e  va lue  zero  for "perfectly 

sharp" dis t r ibut ions,  in  which the  probability is one  for one of t h e  xi  and 

zero  for a l l  others ,  and ranges  downward t o  - Inn  for dis t r ibut ions over  

n e lements  which a r e  equal  over a l l  of t h e  xi. T h e  fact  that  t h e  informa- 

t ion is nonposi t ive is no l iabi l i ty ,  s i n c e  we  a r e  seldom interested in  the  

abso lu te  information of a distribution, but only in  differences.  

We c a n  genera l ize  (2.1) t o  obtain t h e  formula for the  information of a 

group of random var iab les  X, Y ,... , Z ,  with joint dis t r ibut ion P(xi ,yj , . .  . ,zk), 

which we denote  by IXy...Z: 

A good discuss ion of information i s  to be found in Shannon [19], or Woodward 
[21]. Note, however, that  in the theory of communication one defines the informa- 
tion of a s t a t e  xi, which h a s  a priori probability Pi,  to be  -In Pi. We prefer, 
however, to  regard information a s  a property of the distribution i tself .  

which follows immediately from our previous defini t ion,  s i n c e  t h e  group of 

random var iab les  X, Y, ..., Z may b e  regarded a s  a s i n g l e  random variable 

W which t a k e s  i t s  va lues  in  the  ca r tes ian  product x 9 x .., x Z .  
vm, ...' W 

Fina l ly ,  w e  define a condit ional  information, n 
IXY ... z , to  be: 

Vm'  ... ,wn pvmt.. . ,wn 
= Exp , 

a quantity which measures  our information about  X, Y, ..., Z given that  we  

know that  V.. . W have  taken t h e  part icular  va lues  vm,. . . ,wn. 

F o r  independent random var iab les  X, Y ,. . . ,Z, t h e  following relation- 

s h i p  is e a s i l y  proved: 

(2.4) IXy.. .Z = IX + Iy + ... + IZ (X, Y ,... , Z  independent) , 

s o  tha t  t h e  information of XY ... Z is t h e  sum of t h e  individual quant i t i es  

of information, which i s  in  accord with our intui t ive feel ing that  if we a r e  

given information about unrelated even ts ,  our total  knowledge i s  t h e  sum 

of t h e  s e p a r a t e  amounts of information. We s h a l l  general ize th i s  definition 

la ter ,  in s5. 

$3. Correlation for f ini te  dis t r ibut ions 

Suppose tha t  we  have  a pair of random var iab les ,  X and Y ,  with 

joint dis t r ibut ion P(xi ,  y .). If we  s a y  t h a t  X and Y a r e  correlated, 
J 

what we intuitively mean is t h a t  one  lea rns  something about  one variable  

when h e  is told the  va lue  of the  other. L e t  u s  focus  our at tent ion upon 

t h e  variable  X. If we  a r e  not informed of t h e  va lue  of Y, then our infor- 

mation concerning X, IX,  is ca lcu la ted  from t h e  marginal distribution 

P(xi). However, if we  a r e  now told that  Y h a s  t h e  va lue  y ., then our 
1 

information about  X c h a n g e s  to  t h e  information of t h e  condit ional  dis t r i -  
Y .  Y .  

bution P j(xi), I J .  According to what we  have s a i d ,  we wish the  degree 
X 

correlation to  measure how much we learn about X by being informed of 
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Y. 
Y's value. However, s ince  the change of information, I X 1 - I*, may de- 

pend upon the particular value, yj, of Y which we are told, the natural 

thing to  do to arrive a t  a single number to  measure the strength of correla- 

tion is to  consider the expected change in information about XI given 

that we are to  be  told the value of Y. , T h i s  quantity we ca l l  the  correla- 

tion information, or for brevity, the correlation, of X and Y, and denote 

i t  by (X, Y 1. Thus: 

{X,Y]  = Exp [I? - IX] = Exp [12] - IX . 

Expanding the quantity Exp using (2.3) and the rules for expecta- 

tions (1.6) - (1.8) we find: 

Y -  
e x p  [I?] = ~ x p  [ ~ x ~ ~ j  iln P J(X~)II 

Phi' y .) 
(3.2) = Exp [In ( )  ] = E x  1 x i  1 - Exp [ln P(yj)1 

and combining with (3.1) we have: 

Thus the correlation i s  symmetric between X and Y, and hence a l so  

equal to the expected change of information about Y given that we will 

be  told the value of X. Furthermore, according t o  (3.3) the correlation 

corresponds precisely to the amount of "missing information" if we 

possess  only the marginal distributions, i.e., the loss  of information if we 

choose to  regard the  variables a s  independent. 

THEOREM 1. { X , Y ]  = 0 if and only if X a n d  Y a re  independent, a n d  

i s  otherwise strictly positive. (Proof in Appendix I.) 
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In this  respect the  correlation s o  defined i s  superior to the usual cor- 

relation coefficients of s ta t i s t ics ,  such a s  covariance, etc. ,  which can b e  

zero even when the variables are not independent, and which can assume 

both positive and negative values. An inverse correlation i s ,  after a l l ,  

quite a s  useful a s  a direct correlation. Furthermore, i t  has  the great ad- 

vantage of depending upon the probabilities alone, and not upon any 

numerical values of xi and y s o  that it is defined for distributions 
j' 

over s e t s  whose elements are of an arbitrary nature, and not only for dis- 

tributions over numerical properties. For example, we might have a joint 

probability distribution for the political party and religious affiliation of 

individuals. Correlation and information are defined for such distributions, 

although they posses s  nothing like covariance or variance. 

We can generalize (3.3) to  define a group correlation for the groups of 

random variables (U.. .V), (W. .. X), . . . , (Y.. .Z), denoted by {u.. .v, W.. . X, 

.. ., Y...Zf (where the groups are  separated by commas), to  be: 

again measuring the information deficiency for the group marginals. Theo- 

rem 1 i s  a l so  sat isf ied by the group correlation, s o  that it i s  zero if and 

only if the groups are mutually independent. We can, of course, a l so  de- 

fine conditional correlations in the obvious manner, denoting these  quanti- 

t i e s  by appending the conditional values a s  superscripts, a s  before. 

W e  conclude th is  section by l is t ing some useful formulas and inequali- 

t ies  which are  eas i ly  proved: 
r 7 

P(ui, vjl... ,wk> 
Iu, V, ..., W )  = Exp 

P(ui) P(vj) ...P(wk) 

Xi". 
(3.6) U V , . . ,  W Y j  = 

(conditional correlation) , 
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(3.8) I ..., U,VW ,... I - I ..., UV,W ,... 1 = IU,VI - {V,W) (commutator) , 

(3.9) (XI = 0 (definition of bracket with no commas) , 

(3.10) I ..., XXV ,... 1 = I . . . ,  XV ,... 1 
(removal of repeated variable  within a group) , 

(3.11) I ..., UV,VW ,... 1 = I ..., UV,W ,... 1 - {V,W\ - Iv 

(removal of repeated variable  i n  separa te  groups) , 

(3.12) (X,X]  = - IX (self correlation) , 

(removal of conditioned variables)  , 

Note that in t h e  above  formulas any random variable  W may b e  re- 

placed by any group XY ... Z and the  relation ho lds  true, s i n c e  t h e  s e t  

XY ... Z may be  regarded a s  the s ing le  random variable  W, which t a k e s  

i t s  va lues  i n  t h e  ca r tes ian  product x x ? j  x ... x Z .  

54. General izat ion a n d  further properties of correlation 

Until  now we have  been concerned only with f ini te  probability dis t r i -  

but ions,  for which we  have  defined information and correlation. We s h a l l  

now genera l ize  t h e  definition of correlation s o  a s  t o  b e  app l icab le  to  joint 

probability dis t r ibut ions over arbitrary s e t s  of unrestr ic ted cardinality. 
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i We f i r s t  consider  t h e  e f f e c t s  o f  refinement of a f ini te  distribution. For  

example, we may d i scover  that t h e  even t  xi  is ac tua l ly  t h e  dis junct ion 

i of severa l  exc lus ive  e v e n t s  ?; ,... J ! ,  SO that  xi  occurs  if any o n e  of 

I t h e  Y/ occurs ,  i.e., t h e  s i n g l e  event  xi resu l t s  from fai l ing to  distin- 

i guish between the  Y:. T h e  probability dis t r ibut ion which d i s t inguishes  
I 
I between t h e  Y: will b e  ca l led  a refinement of the dis t r ibut ion which d o e s  
i w v  

not. In general,  we  s h a l l  s a y  tha t  a distribution P ' =  P'(;:, ...,y - ) is a ! 1 
refinement of P = P(xi,  ... , y j )  if 

P(xi , .  ..!y .) = P'(Y; ,..., yy) (al l  i ,..., j ) . J J 

We now s t a t e  a n  important theorem concerning t h e  behavior of correla- 

tion under a refinement of a joint probability dis t r ibut ions:  

THEOREM 2. P' is a refinement of P =+ 1 x ,..., Y 1' 2 ( X  ,..., Y s o  that 

correlat ions never  d e c r e a s e  upon refinement of a distribution. (Proof in  

Appendix I ,  53.) 

A s  a n  example, suppose  that  w e  have a cont inuous probability densi ty 

P(x,  y). By divis ion of t h e  a x e s  into a f ini te  number of intervals ,  Ti, Tj, 
we  arrive a t  a f ini te  joint dis t r ibut ion P.., by integration of P(x,  y) over  

1J 

the  rectangle whose s i d e s  a r e  t h e  intervals  Ti and and which repre- 
j 

s e n t s  the  probability that  X c Ti and Y 6 If w e  now subdivide t h e  
j. 

intervals ,  t h e  new distribution P' wil l  b e  a refinement of P, and by 

Theorem 2 t h e  correlation 1 X,Y 1 computed from P' wil l  never  b e  l e s s  

than that  computed from P. Theorem 2 is s e e n  t o  b e  simply the  mathemati- 

c a l  verification of t h e  intui t ive notion that  c loser  a n a l y s i s  of a s i tuat ion 

in which quant i t i es  X and Y a r e  dependent  can  never  l e s s e n  the knowl- 

edge about Y which c a n  b e  obtained from X. 

T h i s  theorem a l lows  u s  t o  give a general  definition of correlation 

which will apply t o  joint dis t r ibut ions over completely arbitrary s e t s ,  i .e . ,  
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for any probability measure4 on an arbitrary product space,  in the follow- 

ing manner: 

Assume that we have a collection of arbitrary s e t s  x,3 ,..., Z, and a 

probability measure, M&XY x . . .xZ),  on their cartesian product. Let  

Yf' be any finite partition of x into subsets  %:, 3 into subsets  

Y;,. . . , and 2 into subsets  Z;, such that the sets x 3; x . . . x Z [  
of the cartesian product are measurable in the probability measure Mp. 

Another partition YV i s  a refinement of YCL, yV 5 yg,  if YV results  

from 3 p  by further subdivision of the subsets  X:, 3;. ..., Z [ .  Each par- 

tition 3 g  results  in a finite probability distribution, for which the corre- 

lation, X ,  Y, . z i s  always defined through (3.3). Furthermore a 

refinement of a partition leads to  a refinement of the probability distribu- 

tion, s o  that by Theorem 2: 

Now the s e t  of a l l  partitions i s  partially ordered under the refinement 

relation. Moreover, because for any pair of partitions 3 ,  9' there is 

always a third partition 3 " which i s  a refinement of both (common lower 

bound), the se t  of a11 partitions forms a directed set .  For a function, f, 

on a directed se t ,  S, one defines a directed s e t  limit, lim f,: 

DEFINITION. lim f ex i s t s  and i s  equal to  a for every E > 0 there 

exis ts  an a E S such that If(P)-a\ < E for every P c S for which 6 5 a. 

It i s  easi ly seen  from the directed s e t  property of common lower bounds 

that if th is  limit ex i s t s  it i s  necessarily unique. 

A measure i s  a non-negative, countably additive se t  function, defined on some 
subsets of a given set .  It i s  a probability measure if the measure of the entire se t  
i s  unity. See  Halmos [12]. 

See Kelley [IS], p. 65. 
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By (4.8) the correlation iX,Y, ..., ZI' i s  a monotone function on the 

directed s e t  of al l  partitions. Consequently the directed s e t  limit, which 

we shall  take a s  the basic definition of the correlation !X,Y, ..., Z] ,  

always exists .  (It may be  infinite, but it i s  in every c a s e  well defined.) 

Thus: 

3 DEFINITION. {X,Y ,..., Z ]  = lim ( X , Y  ,..., Z ]  , 

and we have succeeded in our endeavor t o  give a completely general defi- 

nition of correlation, applicable to  a l l  types of distributions. 

It is an immediate consequence of (4.8) that th is  directed s e t  limit i s  

the supremum of (X.Y. .. . ,zI', s o  that: 

(4.9) 3 IX,Y ,..., 2) = SUP IX,Y ,..., Z l  , 
3 

which we could equally well have taken a s  the definition. 

Due to  the fact  that the  correlation i s  defined a s  a limit for discrete 

distributions, Theorem 1 and a l l  of the  relations (3.7) to (3.15), which 

contain only correlation brackets, remain true for arbitrary distributions. 

Only (3.11) and (3.12), which contain information terms, cannot be extended. 

We can now prove an  important theorem about correlation which con- 

cerns i t s  invariant nature. L e t  31, %, ... , Z  be arbitrary s e t s  with proba- 

bility measure Mp on their cartesian product. Le t  f be  any one-one 

mapping of x onto a s e t  u, g a one-one map of 9 onto I?,..., and h 

a map of Z onto @. Then a joint probability distribution over 

X X % X  - . -x% leads  a lso  t o  one  over % X  O X  ...xa where the probability 

M l p  induced on the product ~ x I ? x  . . .xQ is simply the measure which 

ass igns  to each subset  of u x  0 x ... x the measure which i s  the measure 

of i t s  image s e t  in x x Y x  . - - x Z  for the  original measure Mp. (We have 

simply transformed to a new s e t  of random variables: U = f(X), V = g(Y), 

..., W = h(Z).) Consider any partition 9 of x,'Y ,..., Z into the subsets  

{Xi), {Yj ] ,  ..., lZkl with probability distribution P- .  k = .xI.-.*Zk). 
1J ... J 

Then there i s  a corresponding partition 3' of %, 0,. . . , @ into the image 
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s e t s  of t h e  s e t s  of 7 ,  , \ ,  where ai = f(Xi), 8. J = g(3j)  ,..., 
mk = h(zk). But  t h e  probability distribution for 7' is t h e  s a m e  a s  t h a t  

M' @ . x ~ . x . . . X @ ~ ) =  M ~ @ ~ x ~ . x . . . X Z ~ )  = for Y, s i n c e  P i j . . . k  = p I 1 

Pij...k, s o  that :  

(4.10) Y X Y , ,  I = j u , v  ,..., wl Y' 

Due to t h e  correspondence between the  9's and 7"s w e  have  that :  

and by virtue of (4.9) we have  proved t h e  following theorem: 

THEOREM 3. (X,Y ,... ,ZI  = {U,V,. . . , W \ ,  where % , 8  ,..., a r e  a n y  one-  

o n e  images of x, 3 , .  . . , %, respectively. In other notation: ( X,Y ,. . . ,Z1 = 

( f ( ~ ) ,  g(Y) ,..., h(Z)I for all one-one funct ions f ,  g ,..., h. 

I 
T h i s  means  t h a t  changing var iab les  t o  functionally related var iab les  

p reserves  t h e  correlation. Again t h i s  is p laus ib le  on  intui t ive grounds, 

s i n c e  a knowledge of f(x) is just  a s  good a s  knowledge of x,  provided 

tha t  f is one-one. 

A s p e c i a l  consequence  of Theorem 3 is that  for any cont inuous proba- 

bility densi ty P(x,  y) over rea l  numbers the  correlation between f(x) 

and g(y) is t h e  s a m e  a s  between x and y ,  where f and g a r e  any  

real  valued one-one functions. A s  a n  example consider  a probability d i s -  

tribution for t h e  posi t ion of two par t i c les ,  s o  tha t  t h e  random var iab les  

a r e  t h e  posi t ion coordinates .  Theorem 3 then a s s u r e s  u s  t h a t  t h e  posi t ion 

correlation is independent of the coordinate  system, e v e n  if different 

coordinate  s y s t e m s  a r e  used  for e a c h  particle! Also for a joint distribu- 

t ion for a pair  of e v e n t s  in  space-t ime t h e  correlation is invariant  t o  arbi- 

trary space-t ime coordinate  transformations, again e v e n  allowing different  

transformations for t h e  coordinates  of e a c h  event.  

T h e s e  examples i l lus t ra te  c lea r ly  the  intr insic  nature of t h e  correla- 

tion of var ious groups for joint probability dis t r ibut ions,  which i s  implied [ , ' 

by i t s  invariance aga ins t  arbitrary (one-one) transformations of t h e  random 

variables. T h e s e  correlation quant i t i es  a r e  thus  fundamental properties 

of probability dis t r ibut ions.  A correlat ion is a n  a b s o l u t e  rather than rela-  / . 
I 

f ive quantity, in  t h e  s e n s e  t h a t  t h e  correlation between (numerical valued) i 

random var iab les  i s  completely independent of t h e  s c a l e  of measurement 

chosen  for t h e  variables .  

$5. lnformation for genera l  dis t r ibut ions 

Although we  now have  a definition of correlation appl icable  to  a l l  

probability dis t r ibut ions,  we have  not yet  extended the definition of infor- 

mation p a s t  f ini te  dis t r ibut ions.  In order t o  make t h i s  extension w e  f i rs t  

general ize t h e  definition tha t  w e  gave for d i s c r e t e  dis t r ibut ions to  a defi- 

nition of relat ive information for a random variable, re lat ive to  a given 

underlying measure, ca l led  t h e  information measure, on t h e  va lues  of the  

random variable. 

If we  a s s i g n  a measure to  t h e  s e t  of va lues  of a random variable, X, 

which is simply t h e  assignment  of a pos i t ive  number a i  to  each value xi 

in the  f ini te  c a s e ,  w e  def ine  t h e  information of a probability distribution 

P(xi) relat ive t o  t h i s  information measure to  be: 

If we  have  a joint dis t r ibut ion of random variables  X , Y ,  ..., Z, with 

information measures  (a i l ,  { b .  !,.. ., jck! on  their va lues ,  then we  def ine  
1 

t h e  total  information relat ive to  t h e s e  measures  to  be: 
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s o  tha t  t h e  information measure on t h e  ca r tes ian  product s e t  is always 

t aken  to b e  t h e  product measure of t h e  individual information measures .  

We s h a l l  now a l te r  our previous posi t ion s l ight ly and consider  informa- 

tion as a lways  be ing  defined relat ive to  some information measure, s o  

tha t  our previous definition of information is t o  b e  regarded a s  t h e  informa- 

tion re la t ive  t o  t h e  measure for which a l l  t h e  a i l s ,  b - ' s ,  1 ... and ckls a r e  

taken t o  b e  unity, which we s h a l l  henceforth c a l l  the  uniform measure. 

L e t  u s  now compute t h e  correlation (X,Y ,. . . ,Zi '  by (3.4) us ing  t h e  

relat ive information: 

s o  tha t  t h e  correlation for d i sc re te  dis t r ibut ions,  a s  def ined by (3.4), is 

independent of t h e  cho ice  of information measure,  and t h e  correlat ion re- 

mains an absolute ,  not relat ive quantity. It  can,  however, b e  computed 

from t h e  information relat ive t o  any information measure through (3.4). 

If we  cons ider  refinements, of our dis t r ibut ions,  a s  before, and rea l ize  

that  s u c h  a refinement is a l s o  a refinement of the  information measure,  

then we  c a n  prove a relation analogous t o  Theorem 2: 

THEOREM 4. The information o f  a distribution relative to a given informa- 

tion measure never decreases under refinement. (Proof i n  Appendix I.) 

Therefore, jus t  a s  for correlation, w e  c a n  define t h e  information of a 

probability measure Mp on  t h e  ca r tes ian  product of arbitrary s e t s  

31, %,.. ., Z, relat ive t o  t h e  information measures  px ,  py ,..., pz, on t h e  

individual s e t s ,  by considering f in i te  par t i t ions 3 into s u b s e t s  (xi\, 
(3.1,  ... , (Zkl ,  for which w e  t a k e  a s  the  defini t ion of t h e  information: 

J 

3 3 
Then  IXy...z is, a s  w a s  IX,Y ,... , Z i  , a monotone funct ion upon t h e  

directed s e t  of par t i t ions (by Theorem 4), and a s  before w e  t a k e  t h e  

directed s e t  limit for our definition: 

which is then t h e  information re la t ive  t o  the  information measures  

Clx. CLy,.... Pz' 

Now, for funct ions f, g on  a d i rec ted  s e t  t h e  e x i s t e n c e  of lim f and 

lim g is a suff icient  condition for t h e  e x i s t e n c e  of lim (f + g), which is 

then lim f + lim g, provided tha t  t h i s  i s  not indeterminate. Therefore: 

3 . [ 3  
... 

Y THEOREM 5. {X ,..., Y /  = lim {X ,..., Y /  = 11m IX - I X -  . . -  I{] = - 
IX.. . - IX - . . . - Iy , where the information i s  taken relative to any in- 

formation measure for which the expression i s  not indeterminate. I t  i s  

suff icient for the validity o f  the above expression that the basic measures 

px, .  . ., py  be such that none o f  the marginal informations IX. ..Iy shall 

be positively infinite. 

T h e  lat ter  s ta tement  ho lds  s i n c e ,  b e c a u s e  of t h e  general  relat ion 

IX.. . >= IX + .. . + Iy, t h e  determinateness  of t h e  expression is guaranteed 

s o  long a s  a l l  of t h e  IX, ... ,Iy a r e  < +m . 
Henceforth, u n l e s s  o therwise  noted, w e  s h a l l  understand that informa- 

tion is t o  b e  computed with respec t  to  t h e  uniform measure for d i s c r e t e  

dis t r ibut ions,  and L e b e s g u e  measure for continuous dis t r ibut ions over real  
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numbers. In c a s e  of a mixed distribution, with a cont inuous densi ty 

P(x ,y ,  ... ,z) p l u s  d i sc re te  "lumps" PF(xi,y j,...,zk), we s h a l l  understand 

t h e  information measure  t o  b e  t h e  uniform measure over t h e  d i sc re te  range,  

and Lebesgue  measure over the  cont inuous range. T h e s e  conventions 

then lead  u s  t o  t h e  expressions:  

\ r P ( X , ~  ,. .. ,z) ln  P(x,Y, . .  . ,z)  dxdy..  .dz 1 (cont.) 

i P'(xi,. . . ,zk)  ln  P(xi.. . . ,zk)  

i . . .k  (mixed) 

'\ J 
(un less  otherwise noted) 

T h e  mixed c a s e  occurs  often in  quantum mechanics ,  for quant i t ies  

which have  both a d i s c r e t e  and continuous spectrum. 

56. Example: Information decay  in s t o c h a s t i c  p r o c e s s e s  

As a n  example i l lustrat ing t h e  usefu lness  of t h e  concept  of relat ive 

information we  s h a l l  consider  briefly s t o c h a s t i c  processes .6 Suppose that  
7 

we have  a s tat ionary Markov process  with a f ini te  number of s t a t e s  Si,  

and t h a t  t h e  p r o c e s s  occurs  a t  d i s c r e t e  (integral) t imes  1 ,2 , . .  ., n, ... , a t  

which t imes t h e  t ransi t ion probability from t h e  s t a t e  Si  t o  t h e  s t a t e  S j 

i s  T . .  T h e  probabi l i t ies  T . .  then form what is ca l led  a s t o c h a s t i c  
'1 ' 11 

- 

See Feller [lo], or Doob [6]. 

A Markov process i s  a stochastic process whose future development depends 
only upon i t s  present state, and not on i t s  past history. 
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matrix, i .e . ,  t h e  e lements  a r e  between 0 and 1 ,  and T . .  = 1 for a l l  C 1J 
i 

k i. If a t  any time k t h e  probability dis t r ibut ion over  t h e  s t a t e s  is {Pi 1 
then a t  the  next  t ime the  probabi l i t ies  wil l  b e  pk+' = 2 P ~ T .  .. 

J 1 11 

In the s p e c i a l  c a s e  where t h e  matrix is doubly-stochast ic ,  which 

means that  T . . ,  a s  wel l  a s  T - . ,  equa ls  unity, and  which amounts X i  11 Cj 11 

to  a pr inciple  of de ta i led  balancing holding, i t  i s  known that  t h e  entropy 

of a probability dis t r ibut ion over  t h e  s t a t e s ,  defined a s  H = - x i p i  ln P i ,  

is a monotone increas ing  funct ion of the  time. T h i s  entropy i s ,  however, 

simply t h e  negat ive o f  t h e  information relat ive to  the  uniform measure. 

One c a n  extend t h i s  resu l t  t o  more genera l  s t o c h a s t i c  p r o c e s s e s  only 

if one  u s e s  t h e  more general  definition of relat ive information. F o r  a n  

arbitrary s tat ionary p r o c e s s  t h e  c h o i c e  of a n  information measure which i s  

s ta t ionary,  i .e . ,  for which 

(6.1) a J = X i a i ~ i j  (a l l  j) 

l e a d s  to  t h e  des i red  result.  In t h i s  c a s e  t h e  re la t ive  information. 

i s  a monotone decreas ing  function of time and cons t i tu tes  a su i tab le  

b a s i s  for t h e  definition of t h e  entropy H = -I. Note that th i s  definition 

leads  to  t h e  previous resu l t  for doubly-stochast ic  p r o c e s s e s ,  s i n c e  the  

uniform measure,  a i  = 1 (a l l  i), i s  obviously s tat ionary in  t h i s  c a s e .  

One c a n  furthermore drop t h e  requirement that  t h e  s t o c h a s t i c  p r o c e s s  

be s tat ionary,  and even al low that  there a r e  completely different s e t s  of 

s t a t e s ,  r sq i ,  a t  e a c h  time n, s o  that  t h e  p rocess  is now given by a s e -  

quence of matr ices  T?. represent ing the t ransi t ion probability a t  t ime n 
1J 

from s t a t e  S: to  s t a t e  snf l .  In t h i s  c a s e  probability dis t r ibut ions 
J 

change according to: 
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If we  then c h o o s e  a n y  time-dependent information measure which s a t i s f i e s  

t h e  relations: 

(6.4) 1 = 2 ~ P T T ~  (a l l  j, n) , 

then t h e  information of a probability dis t r ibut ion is again monotone de- 

c reas ing  with time. (Proof in  Appendix I.) 

All of t h e s e  r e s u l t s  a r e  eas i ly  extended t o  the  cont inuous c a s e ,  and 

we  see t h a t  t h e  concept  of relat ive information a l lows  u s  t o  define entropy 

for qu i te  general  s t o c h a s t i c  p r o c e s s e s .  

$7. Example: Conservat ion of information in classical mechanics  

A s  a second  i l lustrat ive example we  consider  briefly the  c l a s s i c a l  

mechanics  of a group of part ic les .  T h e  sys tem a t  atly ins tan t  is repre- 
1 1 1 1 1 1  n n n n n n  

s e n t e d  by a point ,  (x .Y .z ,pX,py .P=.. . . ,X ,Y ,z ,px.py .pz), in  t h e  p h a s e  

s p a c e  of a l l  posi t ion and momentum coordinates .  T h e  natural motion of 

t h e  sys tem then c a r r i e s  e a c h  point into another, def ining a cont inuous 

transformation of t h e  p h a s e  s p a c e  into i tself .  According t o  L iouvi l l e ' s  

theorem the  measure of a s e t  of points  of the  p h a s e  s p a c e  is invariant 

under t h i s  transformation.* T h i s  invariance of measure implies tha t  if we  

begin with a probability distribution over t h e  p h a s e  s p a c e ,  rather than a 

s i n g l e  point ,  t h e  total  information 

which is the  information of t h e  joint distribution for a l l  pos i t ions  and 

momenta, remains constant  in time. 

See Khinchin [161, p. 15. 
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In order to see tha t  the  total  information is conserved,  cons ider  any 

partition 9 of  the  p h a s e  s p a c e  a t  one  time, to, with i t s  information 

Y I relat ive t o  t h e  p h a s e  s p a c e  measure,  I ( t o )  At a l a te r  time t l  a parti- 

/ t ion 3: into t h e  image sets of  3 under the mapping of t h e  s p a c e  into 

i i t se l f ,  is induced,  for which t h e  probabi l i t ies  for t h e  s e t s  of 3' a r e  t h e  

I s a m e  a s  t h o s e  of t h e  corresponding s e t s  of ?, and furthermore for  which 
1 

j t h e  measures  a r e  t h e  same,  by Liouvil le 's  theorem. T h u s  corresponding 

9 t o  e a c h  partition !? a t  time to with information I (to), the re  is a parti- 

3' t ion 9' a t  time t l  with information I (tl), which is t h e  same:  

Due to t h e  correspondence of t h e  9's and  9"s t h e  supremums of e a c h  

over  a l l  par t i t ions must b e  equa l ,  and by (5.5) we  have  proved that  

(7.3) 'total(t,) = Itotal('0) 

and t h e  total  information is conserved.  

Now i t  is known tha t  t h e  individual (marginal) posi t ion and momentum 

distr ibut ions tend t o  decay,  except  for rare  f luctuat ions,  into t h e  uniform 

and Maxwellian dis t r ibut ions respect ively,  for which t h e  c l a s s i c a l  entropy 

i s  a maximum. T h i s  entropy i s ,  however, excep t  for t h e  factor  of Boltz- 

man's cons tan t ,  simply t h e  nega t ive  of t h e  marginal information 

which thus  t ends  towards a minimum. But  th i s  d e c a y  of marginal informa- 

tion is exact ly compensated by a n  i n c r e a s e  of t h e  total correlation informa- 

tion 

I total l  = I total  - 'marginal 

s i n c e  t h e  to ta l  information remains cons tan t .  Therefore, if one  were to  

define t h e  to ta l  entropy t o  b e  t h e  negat ive of t h e  to ta l  information, o n e  

could rep lace  t h e  u s u a l  s e c o n d  law of thermodynamics by a law of 
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conservat ion of to ta l  entropy, where t h e  i n c r e a s e  in  the s tandard (marginal) 

entropy is exact ly compensated by a (negative) correlat ion entropy. T h e  

u s u a l  second  law then resu l t s  simply from our renunciation of a l l  correla- 

tion knowledge ( s tosszah lansa tz ) ,  and not from any in t r ins ic  behavior of - 

c l a s s i c a l  sys tems .  T h e  s i tuat ion for  c l a s s i c a l  mechanics  i s  thus  in  sharp  

cont ras t  t o  that  of s t o c h a s t i c  p r o c e s s e s ,  which a r e  intr insical ly  irreversible. 

111. QUANTUM MECHANICS 

Having mathematically formulated the i d e a s  of information and correla- 

tion for probability dis t r ibut ions,  we  turn t o  t h e  field of quantum mechanics .  

In t h i s  chapter  w e  a s s u m e  tha t  t h e  s t a t e s  of  phys ica l  s y s t e m s  a r e  repre- 

sen ted  by points  in  a Hilbert s p a c e ,  and tha t  the  time dependence of the 

s t a t e  of a n  i so la ted  sys tem is governed by a l inear  wave  equation. 

It  is well known that  s t a t e  func t ions  lead t o  dis t r ibut ions over  eigen-  

va lues  of Hermitian operators  ( square  ampli tudes of t h e  expansion coeffi- 

c i e n t s  of t h e  s t a t e  i n  terms of t h e  b a s i s  cons i s t ing  of e igenfunct ions of 

t h e  operator) which have  t h e  mathematical  propert ies  of  probability dis t r i -  

butions (non-negative and normalized). T h e  s tandard interpretation of 

quantum mechanics  regards t h e s e  dis t r ibut ions a s  actual ly giving t h e  

probabi l i t ies  t h a t  t h e  various e igenva lues  of t h e  operator  will  b e  observed,  

when a measurement represented by t h e  operator is performed. 

A feature of great  importance t o  our interpretation is t h e  fac t  that  a 

s t a t e  function of a composi te  sys tem l e a d s  t o  joint dis t r ibut ions over  sub-  

sys tem quant i t i es ,  rather than independent  subsys tem dis tr ibut ions,  i .e . ,  

t h e  quant i t ies  i n  different s u b s y s t e m s  may b e  correlated with one  another. 

T h e  f i rs t  sec t ion  of t h i s  chapter  is accordingly devoted to the  development 

of t h e  formalism of composi te  s y s t e m s ,  and t h e  connect ion of composi te  

system s t a t e s  and their  der ived joint dis t r ibut ions with t h e  various poss ib le  

subsystem conditional and marginal dis t r ibut ions.  We s h a l l  s e e  tha t  there 

e x i s t  re la t ive  s t a t e  funct ions which correct ly  g ive  t h e  conditional distri- 

butions for a l l  subsystem operators ,  while  marginal dis t r ibut ions can not 

generally b e  represented by s t a t e  funct ions,  but only by dens i ty  matr ices .  

In Sect ion 2 t h e  concepts  of information and correlat ion,  developed 

in the  preceding chapter,  a r e  appl ied t o  quantum mechanics ,  by defining 
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information and correlation for operators on systems with prescribed 

s ta tes .  It i s  also shown that  for composite systems there ex i s t s  a quantity 

which can b e  thought of a s  the fundamental correlation between subsys- 

tems, and a closely related canonical representation of the composite sys -  

tem s ta te .  In addition, a stronger form of the uncertainty principle, phrased 

in information language, i s  indicated. 

The  third section takes up the question of measurement in quantum 

mechanics, viewed a s  a correlation producing interaction between physical 

systems. A simple example of such a measurement is given and discussed.  

Finally some general consequences of the superposition principle are con- 

sidered. 

It i s  convenient a t  th is  point to introduce some notational conventions. 

We shal l  be  concerned with points $ in a Hilbert space  H, with sca l a r  

product ( S l ,  I,!J~). A s t a t e  i s  a point $ for which ($,$) = 1. For  any 

linear operator A we define a functional, < A > $ ,  called the  expectation 

of A for $, to be: 
< A > $  = ($,A*) - 

A c l a s s  of operators of particular interest i s  the c l a s s  of projection opera- 

tors. The operator [$], called the  projection on 4 ,  i s  defined through: 

For a complete orthonormal s e t  and a s t a t e  $ we define a 

square-amplitude distribution, Pi, called the distribution of $ over 

{ 4 \ through: 

In the probabilistic interpretation this  distribution represents the proba- 

bility distribution over the results of a measurement with eigenstates +i, 

performed upon a system in the s t a t e  $. (Hereafter when referring to the 

probabilistic interpretation we shal l  say  briefly "the probability that the 

system will b e  found in g i " ,  rather than the  more cumbersome phrase 

"the probability that  the measurement of a quantity B, with eigenfunc- 
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tions ($i\,  shall  yield the eigenvalue corresponding to c$~," which i s  

meant.) 

For two Hilbert spaces  and Hz,  we form the  direct product Hil- 

bert space  H3 = H1 @ Hz (tensor product) which i s  taken to  be  the space  

of a l l  possible1 sums of formal products of points of HI and H2, i.e.,  

the elements of H3 are those of the form 2 ai f i  )li where ti r HI and 

i 

qi r The scalar  product in H3 i s  taken to be  ( C a i 6 i ? i ,  C b j 6 j r )  = 

j 

' J  J 

J) 2 a*b.(ti,  5.)(qi, qj). It is then easi ly s e e n  that if { t i ]  and !qi] form 
i j  

complete orthonormal s e t s  in and H2 respectively, then the s e t  of 
a l l  formal products {(. q.1 i s  a complete orthonormal s e t  in H3. For any 

1 1  
pair of operators A, B, in HI and X2 there corresponds an operator 

C = A @ B ,  the direct product of A and B, in H3, which can be defined 

by i t s  effect on the elements [. q .  of X3: 
1 1  

$1. Composite systems 

It i s  well known that if the s t a t e s  of a pair of systems S1 and S2, 

are represented by points in Hilbert spaces  H1 and H2 respectively, 

then the s t a t e s  of the composite system S = S1 + S2 (the two systems 

S1 and S2 regarded a s  a single system S) are represented correctly by 

points of the direct product H I @  Hz. Th i s  fact  has  far reaching conse- 

quences which we wish to  investigate in some detail.  Thus if ( t i ]  i s  a 

complete orthonormal s e t  for H I ,  and iq j \  for Hz, the general s t a t e  of 

S = S1 + S2 has  the form: 

More rigorously one c o n s i d e r s  only f in i te  sums,  then  comple tes  the resu l t ing  
s p a c e  to  a r r ive  at  fil @ Hz. 
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* In t h i s  c a s e  we  s h a l l  c a l l  P . .  = a . . a  t h e  joint square-amplitude d i s t r i -  
11 11 l j  

bution of  $S over (ti\ and I 
In t h e  s tandard probabi l is t ic  interpre- 

tation a*.a.. r epresen ts  t h e  joint probability tha t  S1 wil l  b e  found i n  
1J '1 

t h e  s t a t e  ti a n d  S2  wil l  b e  found in t h e  s t a t e  qi. Fol lowing t h e  proba- 
S 

b i l i s t i c  model w e  now derive some dis tr ibut ions from t h e  s t a t e  . L e t  

A b e  a Hermitian operator i n  S1 with eigenfunct ions +i and eigen-  

va lues  hi,  and B a n  operator i n  S2 with eigenfunct ions 8 1 and eigen-  

va lues  p Then  t h e  joint distribution of $' over  {Oil and P i j ,  
j' 

is: 
S 

(1.2) P . .  1J = P(+i and 8 )  = ( i 8 j , $  ) \  . 

T h e  marginal dis t r ibut ions,  of $S over  and of $JS over {+,I, 

are: n 

j i 
and the  condit ional  dis t r ibut ions Pi and P .  1 are: 

p . .  . 
1J 

(1.4) pi = 
conditioned on  +.) J = - Pj  , 

P .  
i l j  

P. = P(+.  conditioned on +i) = 
1 J 

We now def ine  t h e  condit ional  expectat ion of a n  operator A on  S1, 

conditioned on 0 j in  S2 ,  denoted by E X ~ ' ~ [ A ] ,  t o  be: 

8. 
(1.5) E x p  J [A] = h i p i  = ( l / P j )  PijAi 

i i 
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and we def ine  the marginal expectat ion of A on S1 t o  be: 

W e  s h a l l  now introduce projection operators  to  get  more convenient 

forms of t h e  conditional and marginal expectat ions,  which wil l  a l s o  exhibi t  

more clear ly t h e  degree of dependence of these  quant i t i es  upon the chosen  

b a s i s  0.1. L e t  the  operators  and [ I  b e  t h e  project ions on ' J  
+i in  S1 and +- in  S2 respect ively,  and l e t  1' and b e  t h e  identi- 1 

S ty operators  in S1 and S2.  Then ,  making u s e  of the  identity $ = 

S ( Q  8 . ,  ~JJ  ) $ 0  for any complete  orthonormal s e t  I +  0.1, we  have: 
' 1  1 J  

i j  
1 J 

(1.7) i Id i ]  [djl  > $' = ($', [Ci] loj] $') = 

S s o  that  t h e  joint distribution is given simply by < [ + i ] [ ~ . ] > $  . 
J 

F o r  t h e  marginal dis t r ibut ion we have:  

and we  see that  t h e  marginal distribution over t h e  q5i i s  independent of 

the  s e t  j0. 1 chosen  in S2. T h i s  resul t  h a s  t h e  consequence  i n  the  ordi- 
1 

nary interpretation that  t h e  expected outcome of measurement i n  one sub-  

sys tem of a composi te  sys tem i s  not  influenced by the  cho ice  of quantity 

to  be  measured in t h e  o ther  subsys tem.  T h i s  expectat ion i s ,  in  fact ,  the  

expectat ion for t h e  c a s e  in  which no measurement a t  a l l  (identity operator) 

i s  performed i n  the  other  subsys tem.  T h u s  no measurement i n  S2 c a n  
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affect  t h e  expected outcome of a measurement in  S1, s o  long as the  re-  

s u l t  of a n y  S2 measurement remains unknown. T h e  c a s e  i s  qu i te  different,  

however, if th i s  resul t  is known, and w e  must turn to  t h e  condit ional  d i s -  

t r ibut ions and expec ta t ions  in  s u c h  a c a s e .  

We now introduce t h e  concept  of  a relat ive s tate-funct ion,  which wil l  

play a cen t ra l  role  in our interpretation of pure  wave  mechanics .  Consider  
S 

a composi te  sys tem S = S1 + S2 in t h e  s t a t e  @ . T o  every s t a t e  7 of 

S2 w e  a s s o c i a t e  a s t a t e  of Sl ,  @yel, ca l led  t h e  relat ive s t a t e  in S1 for  

7 in S2, through: 

(1 - 9) DEFINITION.  $yel = N 2 (+i 7, $s)+i 9 

i 

where {4Si] is a n y  complete  orthonormal s e t  in  S1 and N is a normali- 

zat ion constant .  2 

T h e  f i r s t  property of $yet is i t s  uniqueness, '  i .e . ,  i t s  dependence 

upon t h e  cho ice  of t h e  b a s i s  is only apparent.  T o  prove th i s ,  c h o o s e  

another b a s i s  {tkil with +i = x b i k t k .  Then x b *  11 bik = ajk, and: 

T h e  second  property of t h e  relat ive s t a t e ,  which just i f ies  i t s  name, i s  

tha t  $'j correctly g ives  the  condit ional  expec ta t ions  of a l l  operators  in re1 
S1, conditioned by t h e  s t a t e  O j  in  S2. A s  before l e t  A be  a n  operator  

in  S1 with e i g e n s t a t e s  +i and e igenva lues  Xi. Then:  

S In c a s e  $ )+i = 0 (unnormalizable) then choose any function for the 

relative function. Th i s  ambiguity h a s  no consequences of any importance t o  us .  
See  in th is  connection the remarks on p. 40. 

At t h i s  point the  normalizer N2 c a n  b e  convenient ly eva lua ted  by u s i n g  

2 1J 2 
(1.10) to  compute: < 1' >@'j = N~ 1 P -  = N P. = 1, s o  that  re1 

i 
J 

Substitution of (1.11) in (1.10) yields:  

and we  see tha t  t h e  condit ional  expec ta t ions  of operators  a r e  given by the  

relat ive s t a t e s .  ( T h i s  inc ludes ,  of course ,  the  condit ional  dis t r ibut ions 

themselves,  s i n c e  they may b e  obtained a s  expec ta t ions  of projection 

operators.) 

An important representat ion of a composi te  sys tem s t a t e  (rS, in terms 

of an orthonormal s e t  (6.1 i n  one  subsys tem S2 and the  s e t  of relat ive 
1 

s t a t e s  {+'J } in s1 is: 
re1 

1 , where 1/N2 = P. = < I [Oil >$ S 

J 
J J  

Except if z ~ ( + ~ ~ , I / , ~ ) + ~  = 0. There is s t i l l ,  of course, no dependence upon 
the bas is .  
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T h u s ,  for a n y  orthonormal s e t  in  one subsystem, t h e  s t a t e  of the  composi te  

system i s  a s ing le  superposi t ion of e lements  cons i s t ing  of a s t a t e  of t h e  

given s e t  and i t s  relat ive s t a t e  i n  t h e  other  subsystem. ( T h e  relat ive 

s t a t e s ,  however, a r e  not necessar i ly  orthogonal.) We not ice  further that  a 

particular e lement ,  $ ~ ~ 1 8 j ,  is qui te  independent of t h e  c h o i c e  of b a s i s  0 .  
{O,], k f j, for t h e  orthogonal s p a c e  of 8 .  1 ' s i n c e  $ re1 I d e p e n d s  only on 

8 .  and not  on  t h e  other  Bk for k f j. We remark a t  th i s  point that  t h e  
1 

ambiguity i n  t h e  relat ive s t a t e  which a r i s e s  when x ($i8j,  s ~ ) $ ~  = 0 
i 

( s e e  p. 38) i s  unimportant for t h i s  representat ion,  s i n c e  although any  

s t a t e  +!~'j c a n  b e  regarded a s  t h e  re la t ive  s t a t e  in  t h i s  c a s e ,  t h e  term 
re1 

$*j 8 .  wil l  occur  i n  (1.13) with coeff icient  zero. 
re1 J 

Now that  we  h a v e  found subsystem s t a t e s  which correct ly  give condi- 

t ional  expectat ions,  we  might inquire whether there e x i s t  subsystem s t a t e s  

which g ive  marginal expectat ions.  T h e  answer is, unfortunately, no. L e t  

u s  compute t h e  marginal expectat ion of A i n  S1 us ing  t h e  representa- 

t ion (1.13): 
Ok 

J 6 . ,  A 3 & $re18k) 1 . 4  E ~ ~ [ A ~ = < A I ~ > * S = ( F V ~ ~  j 

Now suppose  that  there e x i s t s  a s t a t e  in S l ,  $', which correct ly  g i v e s  

t h e  marginal expectat ion (1.14) for a l l  operators  A ( i .e . ,  s u c h  that  

Exp [A] = < A > ~ '  for a l l  A). O n e  s u c h  operator i s  [$'I, t h e  project ion 

on $', for which <[$'I >$'= 1. But ,  from (1.14) w e  have  that  8. Exp  [+'I = 

P < > which is < 1 u n l e s s ,  for a l l  j, P . = 0 or $!~~i~ = +: a 
rel '  J 

j 
condition which i s  not generally true. Therefore there e x i s t s  i n  genera l  

n o  s t a t e  for  S1 which correctly g i v e s  the  marginal expec ta t ions  for a l l  

operators  in  S1. 
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However, e v e n  though there  is generally no s ing le  s t a t e  describing 

marginal expectat ions,  we see that  there is a lways  a mixture of s t a t e s ,  

namely t h e  s t a t e s  $'j weighted with P which d o e s  yield the  correct  re1 j' 
expectat ions.  T h e  d i s t inc t ion  between a mixture, M,  of s t a t e s  +i, 

weighted by Pi, and a pure s t a t e  $ which i s  a superposi t ion,  + = 

a i g i ,  is that  there  a re  n o  interference phenomena between the  various 

s t a t e s  of a mixture. T h e  expectat ion of a n  operator A for t h e  mixture i s  

E X ~ ~ [ A I  = 2 Pi< A>$i  = x Pi(Qi, A Q i )  while t h e  expectat ion for t h e  
i 

pure s t a t e  $ is < A > $  = aiq5i, A 7 ajq5j) = z a : a j ( ~ i ,  AQj) ,  ($ i j  

which is not  the  s a m e  a s  that  of the  mixture with weights  Pi = aTai, due  

to  t h e  p resence  of the  interference terms ($i, A+. )  for j + i. 
J 

I t  is convenient to represent  such  a mixture by a dens i ty  p.  
If t h e  mixture c o n s i s t s  of  t h e  s t a t e s  $. weighted by P and if we a r e  J j' 
working in a b a s i s  cons i s t ing  of  t h e  complete  orthonormal s e t  ($ij, where 

$ = 2 a then w e  def ine  t h e  e lements  of t h e  dens i ty  matrix for the  

1 

mixture t o  be: 

Then if A is any operator, with matrix representat ion Aip = (q5i, Agp) 
in  the  c h o s e n  bas i s ,  i t s  expectat ion for t h e  mixture i s :  

= T r a c e  (p  A) . 

Also called a statistical operator (uon Nevmann !17]). 
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Therefore any mixture is adequately represented by a dens i ty  matrix. 
5 

* 
Note a l s o  tha t  pkp = pek, SO tha t  p is Hermitian. 

L e t  u s  now find t h e  dens i ty  matr ices  p1 and  p2 for t h e  s u b s y s t e m s  
S 

S, and S2 of a sys tem S = S1 + S 2  in t h e  s t a t e  $ . Furthermore, l e t  

u s  choose  t h e  orthonormal b a s e s  ( t i ]  and i n j ]  in  S1 and S2 respec-  

t ively,  and l e t  A b e  a n  operator in  S l ,  B a n  operator in  S2. Then:  

(1.17) ~ a p  [A] = < ~1~ > I J ~  = ( t i  ' ~ j ,  $')ti 'lj. 'I 2 (tf vm* *S)'f~m) 
em 

= T r a c e  @'A) , 

where we  have  defined p1 in t h e  ( t i ]  b a s i s  t o  be: 

j 

In a s imilar  fashion we  find that  p2 is given, in t h e  l y j l  b a s i s ,  by: 

It  c a n  b e  e a s i l y  shown that  here  again t h e  dependence of p1 upon t h e  

c h o i c e  of b a s i s  i n j ]  in  S2,  and of p2 upon { t i ] ,  is only apparent.  

A better, coordinate free representation of a mixture is in terms of the opera- 
tor which the density matrix represents. For a mixture of states (//, (not neces- 
sarily orthogonal) with weights pn, the density operator is p = 2 pn [$n], where 
[$,I stands for the projection operator on $n. 

n 
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In summary, w e  h a v e  s e e n  i n  t h i s  s e c t i o n  that  a s t a t e  of a composi te  

sys tem l e a d s  t o  joint dis t r ibut ions over  subsys tem quant i t i es  which a r e  

generally not independent. Condit ional  dis t r ibut ions and expec ta t ions  for 

subsys tems  a r e  obtained from re la t ive  s t a t e s ,  and subsys tem marginal 

dis t r ibut ions and expec ta t ions  a r e  given by dens i ty  matrices. 

There  d o e s  not,  i n  general,  e x i s t  anything l i k e  a s i n g l e  s t a t e  for one  

subsys tem of a composi te  system. T h a t  i s ,  s u b s y s t e m s  d o  not p o s s e s s  

s t a t e s  independent of  t h e  s t a t e s  of  t h e  remainder of t h e  system, s o  tha t  

t h e  subsys tem s t a t e s  a re  general ly  correlated. One  c a n  arbitrarily c h o o s e  

a s t a t e  for o n e  subsystem, and b e  led t o  t h e  re la t ive  s t a t e  for t h e  other  

subsystem. T h u s  w e  a r e  faced  with a fundamental relat ivi ty  of s t a t e s ,  

which is implied by the formalism of composi te  sys tems .  It  i s  meaning- 

l e s s  t o  a s k  the  abso lu te  s t a t e  of a subsys tem - o n e  c a n  only a s k  t h e  

s t a t e  relat ive t o  a given s t a t e  of t h e  remainder of t h e  system. 

S2. Information a n d  correlat ion in quantum mechanics  

W e  wish t o  b e  a b l e  t o  d i s c u s s  information and correlation for Hermi- 

t i an  operators  A, B,.. ., with respec t  t o  a s t a t e  funct ion I). T h e s e  

quant i t i es  a r e  t o  b e  computed, through t h e  formulas of t h e  preceding 

chapter ,  from the  square  ampli tudes of t h e  coeff icients  of t h e  expansion 

of $ in  terms of t h e  e i g e n s t a t e s  of t h e  operators .  

We have  already s e e n  (p. 34) t h a t  a s t a t e  @ and a n  orthonormal b a s i s  

l e a d s  to  a square  ampli tude dis t r ibut ion of  $ over  t h e  s e t  : 

s o  t h a t  we c a n  define t h e  information of the  b a s i s  I + i )  for the  s t a t e  $, 

Ii+il($), t o  b e  simply t h e  information of th i s  distribution relat ive t o  the  

uniform measure: 
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We define the information of a n  operator A, for the s t a t e  $, IA($), 

to be the  information in the square amplitude distribution over i t s  eigen- 

values, i.e.,  the information of the probability distribution over the results  

of a determination of A which i s  prescribed in the probabilistic interpre- 

tation. For a non-degenerate operator A this  distribution i s  the  same a s  

the distribution (2.1) over the eigenstates.  But because the  information 

i s  dependent only on the  distribution, and not on numerical values,  the 

information of the distribution over eigenvalues of A i s  precisely the 

information of the eigenbasis  of A, Therefore: 

(2.3) I )  = I ) = < + > $ 1 < I > (A non-degenerate) . 
1 

i 

We s e e  that  for fixed $, the information of a l l  non-degenerate operators 

having the  same set of eigenstates is the same. 

In the c a s e  of degenerate operators it will b e  convenient to take, a s  

the definition of information, the information of the square amplitude dis- 

tribution over the eigenvalues relative to the information measure which 

cons is ts  of the multiplicity of the eigenvalues, rather than the uniform 

measure. This  definition preserves the choice of uniform measure over 

the eigenstates,  in distinction to the eigenvalues. If 4.-  13 (j from 1 to  mi) 

are a complete orthonormal s e t  of eigenstates for A', with distinct eigen- 

values hi (degenerate with respect to j ) ,  then the multiplicity of the i 
th 

eigenvalue i s  mi and the information IA, ($) i s  defined to be: 

The  usefulness of th is  definition l ies  in the fac t  that any operator A" 

which distinguishes further between any of the degenerate s t a t e s  of A' I 

I 

l eads  to a refinement of the relative density, in the sense  of Theorem 4, I 
and consequently has  equal or greater information. A non-degenerate 

I 

operator thus represents the maximal refinement and posses ses  maximal 

information. 
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It i s  convenient to introduce a new notation for the projection opera- 

tors which are relevant for a specified operator. As before le t  A have 

eigenfunctions Q. and distinct eigenvalues hi. Then define the projec- 
l j  

tions Ai, the projections on the eigenspaces of different eigenvalues of 

A, to  be: 

To each such projection there i s  associated a number mi, the multiplicity 

of the degeneracy, which i s  the dimension of the ith eigenspace. In this  

notation the distribution over the eigenvalues of A for the s t a t e  $, Pi ,  

becomes simply: 

and the information, given by (2.4), becomes: 

Similarly, for a pair of operators, A in SI and B in S2,  for the  

S composite system S = S1 + S2 with s t a t e  @ , the joint distribution over 

eigenvalues is:  

(2.3) pij = p(hi ,p . )  = I A . B . > $ ~  , 
J 1 1  

and the marginal distributions are: 

The joint information, IAB, i s  given by: 

P . .  
'1 <AiBj>$  S (2.10) I A B =  Zpij 1n %= C A . B . > $ ~  in m.n 

1 J  
ij i j  1 j 
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where mi and n j a re  the multiplicities of the eigenvalues hi and pj. 

The marginal information quantities are  given by: 

and finally the correlation, { A ,  B]$' i s  given by: 

where we note that the expression does not involve the multiplicities, a s  

do the information expressions, a circumstance which simply reflects the  

independence of correlation on any information measure. These  expres- 

s ions  of course generalize trivially to distributions over more than two 

variables (composite systems of more than two subsystems). 

In addition to the  correlation of pairs of subsystem operators, given 

by (2.12), there always exis ts  a unique quantity ISl, s 2 \ ,  the  canonical 

correlation, which h a s  some special  properties and may b e  regarded a s  

the fundamental correlation between the two subsystems S1 and S2 of 

the composite system S. As we remarked earlier a density matrix is 

Hermitian, s o  that there i s  a representation in which i t  is diagonal.6 In 

The  density matrix of a subsystem always h a s  a pure discrete spectrum, i f  
the composite system is in a s ta te .  T o  s e e  this we note that the choice of any 
orthonormal bas i s  in S2 leads  to a discrete (i.e., denumerable) s e t  of relative 

s t a t e s  in S1. The density matrix in St then represents th i s  discrete mixture, 

$ w e t  P.. Th i s  means that the expectation of the identity. ~ x p [ l l  = 

0 0. I 
C.P.($ j , I $  J ) = C.P. = 1 = Trace (PI) = Trace @). Therefore p h a s  a finite 

J j re1 re1 1 J 
t race and is a completely continuous operator, having necessarily a pure d iscre te  
spectrum. (See von Neumann [17], p. 89, footnote 115.) 

particular, for the decomposition of S (with s t a t e  )') into S1 and S2, 

we can choose a representation in which both pS1 and pS2 are diagonal. 

S1 . . (This choice i s  always possible because p 1s independent of the bas is  
in S2 and vice-versa.) Such a representation will b e  called a canonical 

representation. This  means that i t  i s  always possible to  represent the 

s t a t e  by a single superposition: 

where both the itif and the Iqi) constitute orthonormal s e t s  of s t a t e s  

for S1 and S2 respectively. 

T o  construct such a representation choose the bas i s  for S2 s o  
that pS2 i s  diagonal: 

and let  the ti be the relative s t a t e s  in SI for the qi in S2: 

ti = N j q i , s j  (any bas is  iq3. f )  . 
1 

j 

Then. according to (1.13). is represented in the form (2.13) where the 

lJliJ a re  orthonormal by choice, and the itif are  normal s ince  they a re  

relative s ta tes .  W e  therefore need only show that the s t a t e s  {ti1 are 

orthogonal: 
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s ince  we supposed pS2 to be  diagonal in th is  representation. W e  have 

therefore constructed a canonical representation (2.13). 
S 

The density matrix p i s  a lso  automatically diagonal, by the choice 

of representation consist ing of the bas i s  in S2 which makes pS2 diago- 

nal and the corresponding relative s t a t e s  in S I .  Since {ti\ are ortho- 

normal we have: 

* 
where Pi = a i  ai i s  the marginal distribution over the ( t i ] .  Similar com- 

putation shows that  the elements of pS2 are the same: 

Thus in the canonical representation both density matrices are diagonal 

and have the  same elements, Pk, which give the marginal square ampli- 

tude distribution over both of the sets { t i ]  and forming the bas i s  

of the representation. 
'V - 

Now, any pair of operators, A in S1 and B in S,, which have a s  

non-degenerate eigenfunctions the s e t s  { t i ]  and {vj ]  (i.e., operators 

which define the canonical representation), are "perfectly" correlated in 

the s e n s e  that there i s  a one-one correspondence between their eigen- - 
values. The  joint square amplitude distribution for eigenvalues hi of A 

N 

and p of B is :  
j 

(2.19) 
- ,*a. 8.. = P-  6 . P(hi and pj) = p ( t i  and vj) = Pi j  - 1 I IJ I IJ 
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Therefore, the correlation between these  operators, I X , ~ ]  GS is:  

S p(Ai & pj)  P .6 . .  1 '1 P.6.- ln - (2.20) I X Z I G  = 2 P(hi and p j )  In P(hi)P(pj) = 2 
LJ P,P ,  

ij ij 1 J  

We shall  denote th is  quantity by IS1, s ~ I & ~  and ca l l  i t  the  canonical 

S correlation of the subsystems S1 and S2 for the system s t a t e  I) . It 

i s  the correlation between any pair of non-degenerate subsystem operators 

which define the canonical representation. 

In the canonical representation, where the density matrices are  diago- 

nal ((2.17) and (2.18)), the canonical correlation i s  given by: 

s2 s2 = - T r a c e @  lnp  ) . 

But the trace i s  invariant for unitary transformations, s o  that (2.21) holds 

independently of the representation, and we have therefore established 

the uniqueness of IS1 ,S2 I)'. 

It is a l so  interesting to  note that the quantity - Trace(p In p) i s  

(apart from a factor of Boltzman's constant) just the entropy of a mixture 

of s ta tes  characterized by the density matrix p.7 Therefore the entropy 

S of the mixture characteristic of a subsystem S1 for the s ta te  $ = 

tS2  i s  exactly matched by a correlation information ISl ,S2 1, which 
CI c. represents the correlation between any pair of operators A, B, which 

define the canonical representation. The situation i s  thus quite similar 

to that of c lass ica l  mechanics. 

See von Neumann [17], p. 296. 

Cf. Chapter 11, $7. 
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Another specia l  property of the canonical representation is that any - .y 

operators A, B defining a canonical representation have maximum margi- 

nal  information, in the s e n s e  that for any other discrete spectrum opera- 

tors, A on S1, B on S2, IA 5 1x and IB s Ig .  If the canonical repre- 
IC 

sentation i s  (2.13), with ( t i ] ,  (q i \  non-degenerate eigenfunctions of A, - 
B, respectively, and A, B any pair of non-degenerate operators with 

eigenfunctions iq5ki and IOpi, where ti = cikCk,  qi = x di90p. 

then $rS in $I, 0 representation i s :  k e 

and the joint square amplitude distribution for 'bk, Be is :  

while the  marginals are: 

im 
and similarly 

Then the marginal information IA is:  

where Tik = c:kcik is doubly-stochastic ( 2~~~ = x Tik = 1 follows 
i k 

from unitary nature of the cik). Therefore (by Corollary 2, $4, Appendix I): 
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5 

and we have proved that A h a s  maximal marginal information among the - 
discrete spectrum operators. Identical proof holds for B. 

While th is  result was proved only for non-degenerate operators, i t  i s  

immediately extended to  the degenerate case ,  s ince  a s  a consequence of 

our definition of information for a degenerate operator, (2.4), i t s  informa- 

tion i s  s t i l l  less than that of an  operator which removes the degeneracy. 

We have thus proved: 

- 
THEOREM. IA 5 IT, where A is any non-degenerate operator defining 

the canonical representation, a n d  A is any operator with discrete spec- 

trum. 

W e  conclude the discussion of the  canonical representation by conjec- 

turing that  in addition to the maximum marginal information properties of 
'Y - 
A, B, which define the representation, they are a l so  maximally correlated, 

by which we mean that  for any pair of operators C in S1, D in S2,  
.y 2 

(C,D\ jA,Bj, i.e.,: 

for a l l  C on S1, D on S2. 

As  a final topic for th is  section we point out that  the uncertainty 

principle can probably be  phrased in a stronger form in terms of informa- 

tion. The  usual  form of th is  principle is stated in terms of variances, 

namely: 

- 
The relations (c,% h i x , s )  = is1 ,s2 1 and (A,D) 1s1,s2 1 for a l l  C on Sl, 

D on S2, can be proved easily in a manner analogous to (2.27). These do not, 

however, necessarily. imply the general relation (2.28). 
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(2.29) u i u i  2 f for a l l  $(x) , 

= <x2>$ - [<x>+12 and where ax 

T h e  conjectured information form of t h i s  pr inciple  i s :  

(2.30) 1, + Ik 5 ln (1/n e )  for a l l  $(x). 

Although t h i s  inequal i ty  h a s  not ye t  been proved with complete  rigor, i t  

is made highly probable by t h e  circumstance that  equal i ty  ho lds  for $(x) 

of t h e  form $(x) = (1/2n14 exponent If l t h e  s o  ca l led  "minimum un- 

ce r ta in ty  packe ts"  which give normal dis t r ibut ions for both posi t ion and  

momentum, and tha t  furthermore t h e  f i r s t  var iat ion of (I, + Ik) v a n i s h e s  

for s u c h  $(x). (See Appendix I,  $6.) T h u s ,  although In (l/rr e )  h a s  no t  

been  proved a n  abso lu te  maximum of 1, + Ik, i t  is a t  l e a s t  a s ta t ionary 

value. 

T h e  principle (2.30) is stronger  than (2.29), s i n c e  it  implies  (2.29) 

but i s  not implied by it. T o  see that  it  implies  (2.29) we  u s e  the  wel l  

known f a c t  (easi ly  es tab l i shed  by a variation calculat ion:  that ,  for fixed 
2 var iance  a , t h e  dis t r ibut ion of minimum information i s  a normal dis t r ibu-  

tion, which h a s  information I = l n ( l / a z e ) .  T h i s  g i v e s  u s  t h e  general  

inequality involving information and variance: 

(2.31) I 2 l n  ( l / o c e )  (for a l l  dis t r ibut ions)  . 

Substitution of (2.31) into (2.30) then yields:  

s o  that  our principle implies  t h e  s tandard principle (2.29). 
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T o  show t h a t  (2.29) d o e s  not  imply (2.30) i t  su f f ices  t o  give a counter- 
1 1 1 example. T h e  dis tr ibut ions P(x) = -6(x) + - 6(x-10) and P(k)  = - 6(k) + 
2 2 2 ' 6(k-lo), which c o n s i s t  simply of s p i k e s  a t  O and 10,  c lear ly s a t i s f y  i I 

I (2.29), while  they both have  inf ini te  information and thus  do not  sa t i s fy  

! (2.30). Therefore i t  is poss ib le  t o  have  arbitrarily high information about 
I 

both x and k (or p) and s t i l l  s a t i s f y  (2.13). We have,  then, another 
I 

i l lustrat ion tha t  information concepts  a r e  more powerful and more natural  

than t h e  older  measures  b a s e d  upon variance.  

53. Measurement 

W e  now consider  the  ques t ion  of  measurement in  quantum mechanics ,  

which we d e s i r e  to  t rea t  as a natural  p r o c e s s  within the  theory of pure 

wave mechanics .  From our point of view there  is no fundamental dis t inc-  

tion between "measuring apparata"  and other  physical  sys tems .  F o r  u s ,  

therefore, a measurement is simply a s p e c i a l  c a s e  of interaction between 

physical  s y s t e m s  - an interact ion which h a s  t h e  property of correlating a 

quantity in o n e  subsystem with a quantity i n  another. 

Nearly every interact ion between s y s t e m s  produces some correlation 

however. Suppose that  a t  some ins tan t  a pair of s y s t e m s  a r e  independent, 

s o  that  the composi te  sys tem s t a t e  function is a product of subsys tem 
s1 s2 s t a t e s  jt/,S = $ $ ). Then  t h i s  condition obviously holds only instan-  

taneously if t h e  s y s t e m s  a r e  interacting1'- t h e  independence i s  immediate- 

ly destroyed and t h e  s y s t e m s  become correlated. We could,  then, t a k e  t h e  

position that the  two interact ing s y s t e m s  a r e  cont inual ly "measuring" o n e  

another, if we  wished. At each  ins tan t  t w e  could put  the  composi te  - 
system into canonica l  representat ion,  and c h o o s e  a pair of operators  A(t) 

lo  If US i s  the  unitary operator  genera t ing  the  time dependence  for t h e  s t a t e  

function of t h e  composite  sys tem S = S1 + S2, s o  tha t  $: = u:$:, then w e  
I 
I s h a l l  s a y  tha t  S1 and  S2 h a v e  n o t  in te rac ted  during t h e  time in te rva l  [0,t] i f  ,-. 

and only i f  U: i s  t h e  d i rec t  product of two s u b s y s t e m  unitary operators ,  i.e., if 
S U = uSl N, uS2. 
t t  
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in Sl and s ( t )  in  S2 which define t h i s  representation. We might then  - - 
reasonably a s s e r t  that  t h e  quantity A in  S1 is measured by B i n  S2  

(or vice-versa) ,  s i n c e  there is a one-one correspondence between their  

values.  

Such a viewpoint,  however, d o e s  not correspond c lose ly  with our in- 

tui t ive idea  of  what cons t i tu tes  "measurement," s i n c e  t h e  quant i t i es  

and B which turn out  t o  b e  measured depend not only o n  t h e  time, but  
- 

a l s o  upon t h e  ini t ia l  s t a t e  of t h e  composi te  system. A more reasonable 

posi t ion is t o  a s s o c i a t e  the  term "measurement" with a fixed interact ion 

H between systems,11 and t o  define t h e  "measured quant i t ies"  not as 

t h o s e  quant i t i es  $t), 'ii(t) which a r e  instantaneously canonical ly corre- 

l a ted ,  bu t  a s  the  limit of t h e  ins tan taneous  canonical  operators  a s  t h e  time 
h rCI 

g o e s  t o  infinity, Am, B m  - provided tha t  t h i s  limit e x i s t s  and is inde- 

pendent  of  t h e  ini t ia l  state." In s u c h  a c a s e  we  a r e  a b l e  t o  a s s o c i a t e  t h e  
h 

"measured quant i t ies ,"  A,, g,, with t h e  interaction H independently 

of t h e  a c t u a l  sys tem s t a t e s  and the  time. We c a n  therefore s a y  that  H is 
C1 

a n  interact ion which c a u s e s  the  quantity A, in  S1 t o  b e  measured by  - 
B, i n  S2. F o r  f in i te  t imes of interact ion the  measurement is only ap- 

proximate, approaching e x a c t n e s s  a s  t h e  time of interact ion i n c r e a s e s  in- 

def ini te ly.  

T h e r e  i s  s t i l l  o n e  more requirement tha t  we must impose on a n  inter- 

act ion before w e  s h a l l  c a l l  i t  a measurement. If H is t o  produce a 

measurement of A i n  S1 by B i n  S2, then w e  require that  H s h a l l  

Here H means the total Hamiltonian of S, not just an interaction part. 

& rY 

l 2  Actually, rather than referring to canonical  operators A, B, which are not 
unique, we  should refer to the b a s e s  of the canonical  representation, Iti] in S1 
and {? ] in S2, s i n c e  any operators X = qAJ[L], % = xj jq[qjl, with the com- 

pletely arbitrary e igenvalues  Xi, pj ,  are canonical. The limlt then refers to  the 
limit of the canonical b a s e s ,  if i t  e x i s t s  in some appropriate s e n s e .  However, w e  

shal l ,  for convenience,  continue to  represent the canonical  b a s e s  by operators. 
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I never  d e c r e a s e  t h e  information i n  t h e  marginal distribution of A. If H 

i s  t o  produce a measurement of A by correlating i t  with B ,  we expec t  
I 
i that  a knowledge of B s h a l l  g ive  u s  more information about  A than we  

had before t h e  measurement took p lace ,  s i n c e  otherwise t h e  measurement 

would b e  u s e l e s s .  Now, H might produce a correlation between A and 

B by simply destroying t h e  marginal information of A,  without improving 

t h e  expected conditional information of A given B, s o  tha t  a knowledge 

of B would give u s  no more information about  A than w e  p o s s e s s e d  

originally. Therefore in  order t o  b e  s u r e  that  w e  wil l  gain information 

about A by knowing B ,  when B h a s  become correlated with A ,  i t  is 

necessary  tha t  t h e  marginal information about  A h a s  not decreased .  T h e  

expected information gain i n  t h i s  c a s e  i s  assured  t o  b e  not l e s s  than t h e  

correlation 1 A ,B] .  

T h e  restr ic t ion that  H s h a l l  not d e c r e a s e  t h e  marginal information 

of A h a s  t h e  interest ing consequence  that  t h e  e i g e n s t a t e s  of A will not 

S b e  dis t rubed,  i.e., in i t i a l  s t a t e s  of t h e  form $o = $ qO, where 4 is an 

eigenfunction of A, must b e  transformed a f te r  any time interval  in to  

S s t a t e s  of t h e  form $t = $ vt, s i n c e  otherwise t h e  marginal information of 

A, which w a s  ini t ia l ly  perfect,  would be  decreased .  T h i s  condition, in  

turn, is connected with the repeatability of measurements, a s  we  s h a l l  

subsequently s e e ,  and could al ternately h a v e  been chosen a s  t h e  condition 

for measurement. 

We s h a l l  therefore a c c e p t  t h e  following definition. An interaction H 

is a measurement of A in  S1 by B in S2 i f  H d o e s  not destroy t h e  

marginal information of A (equivalently: if H d o e s  not dis turb t h e  

e i g e n s t a t e s  of A in  the  above  s e n s e )  and if furthermore t h e  correlation 

I A , B ~  i n c r e a s e s  toward i t s  maximuml3 with time. 

1 3  The maximum of { A , B ]  i s  -IA if A h a s  only a discrete spectrum, and m 

if i t  has  a continuous spectrum. 
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W e  now i l lus t ra te  t h e  production of correlation with a n  example of a 

simplified measurement due  t o  von ~ e u m a n n . ' ~  Suppose t h a t  we  have  a 

sys tem of only one  coordinate, q, (such a s  posi t ion of a part ic le) ,  and 

a n  apparatus  of one coordinate  r (for example t h e  posi t ion of a meter 

needle).  Further  s u p p o s e  that  they a r e  ini t ia l ly  independent, s o  tha t  t h e  

combined wave function is $PA = Q(q)q(r), where $(q) i s  t h e  in i t i a l  

sys tem wave function, and q(r) is t h e  in i t i a l  appara tus  function. F ina l ly  

s u p p o s e  that t h e  m a s s e s  a r e  suff icient ly large or t h e  t ime of interact ion 

suff icient ly smal l  t h a t  t h e  kinet ic  portion of t h e  energy may b e  neg lec ted ,  

s o  tha t  during t h e  t ime of measurement t h e  Hamiltonian s h a l l  c o n s i s t  only 

of a n  interaction, which we s h a l l  t a k e  t o  be: 

Then  i t  is eas i ly  verified that  t h e  s t a t e  ~ : + ~ ( ~ , r ) :  

is a solut ion of t h e  Schrijdinger equat ion 

for t h e  spec i f ied  ini t ia l  condit ions a t  t ime t = 0. 

Trans la t ing  (3.2) into square  ampli tudes we get: 

(3.4) Pt(q,r) = Pl(q)P2(r-qt) , 

where P1(q)  = $*(q)$(q) , P 2 ( d  = 71*(')'7(') 7 

and Pt(q,r) = @ + ~ * ( q , r ) @ + ~ ( q , r )  , 

and we  note tha t  for a f ixed time, t ,  the  conditional s q u a r e  amplitude 

distribution for r h a s  been t ranslated by a n  amount depending upon t h e  

value of  q, while t h e  marginal dis t r ibut ion for q h a s  been  unaltered. 

W e  see t h u s  tha t  a correlation h a s  been introduced between q and r by 

t h i s  interaction, which a l lows  u s  t o  interpret i t  a s  a measurement. It i s  

instruct ive t o  see quanti ta t ively how f a s t  t h i s  correlat ion takes  place.  W e  

note  that: 

(3.5) I QR (t) = JS Pt(q.r) In Pt(q,rl  dqdr 

= SJ P1(q)P2(r-qt) In P1(q)P2(r-qt) dqdr 

s o  that  t h e  information of t h e  joint dis t r ibut ion d o e s  not change. Further- 

I 
more, s i n c e  t h e  marginal dis t r ibut ion for q i s  unchanged: 

and the  only quantity which c a n  c h a n g e  is t h e  marginal information, IR, 

of r, whose distribution is: 

Application of a s p e c i a l  inequality (proved in $5, Appendix I) t o  (3.7) 

y ie lds  t h e  relation: 

1 s o  that,  except  for t h e  addi t ive cons tan t  I (O), t h e  marginal information Q 
IR t e n d s  t o  d e c r e a s e  a t  l e a s t  a s  f a s t  a s  In t with time during the inter- 

action. T h i s  implies  t h e  relat ion for the  correlation: 
l 4  von Neumann [IT], p. 442. 
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But a t  t = 0 the distributions for R and Q were independent, s o  that 

1 (0) = IR(0) + I (0). Substitution of this  relation, (3.5), and (3.6) into 
RQ Q 

(3.9) then yields the final result: 

Therefore the correlation is built up a t  leas t  a s  fas t  a s  In t,  except for 

an additive constant representing the difference of the information of the 

initial distributions P2(r) and Pl(q). Since the correlation goes t o  in- 

finity with increasing time, and the marginal system distribution is not 

changed, the interaction (3.1) sa t i s f ies  our definition of a measurement of 

q by r- 

Even though the apparatus does not indicate any definite system value 

(since there are no independent system or apparatus states) ,  one can 

nevertheless look upon the total  wave function (3.2) a s  a superposition of 

pairs of subsystem s ta tes ,  each element of which has  a definite q value 

and a correspondingly displaced apparatus state.' Thus  we can write 

(3.2) as :  

(3.11) $PA = S +(q') Wq-q') ~(r-q't) dq' , 

which i s  a superposition of s t a t e s  $q, = 8(q-q') ~(r-q't). Each of t hese  

elements, $q., of the superposition describes a s t a t e  in which the sys-  

tem has  the definite value q = q', and in which the apparatus has  a s t a t e  

that i s  displaced from i t s  original s t a t e  by the amount q't. These  ele-  

ments $ are then superposed with coefficients +(q') to form the total 

s t a t e  (3.11). 

l 5  S e e  discussion of relative states, p. 38. 
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Conversely, if we transform to  the representation where the apparatus 

i s  definite, we write (3.2) as :  

where p i s )  = N,. +(q) ~ ( r . - ~ t )  

and ( l j N r d 2  = S $*(q) +(q) p*(rp-st) s(r-qt) dq , 

Then the tr (q) are the relative system s t a t e  functions for the apparatus 

s ta tes  8(r-r') of definite value r = r'. 

We notice that t hese  relative system s ta tes ,  t r (q) ,  are nearly eigen- 

s t a t e s  for the  values q = r'/t, if the degree of correlation between q and 

r i s  sufficiently high, i.e., if t is sufficiently large, or ~ ( r )  sufficiently 

sharp (near 6(r) ) then t r (q )  is nearly 8(q-r'/t). 

Th i s  property, that the relative system s t a t e s  become approximate 

eigenstates of the measurement, i s  in fact common to  a l l  measurements. 

If we adopt a s  a measure of the nearness of a s t a t e  $ to  being an eigen- 

function of an operator A the information IA($), which i s  reasonable 

because IA($) measures the sharpness of the distribution of A for $, 

then i t  is a consequence of our definition of a measurement that the rela- 

tive system s t a t e s  tend to become eigenstates a s  the interaction proceeds. 

Since E X ~ [ I ~ ]  = IQ + IQ,Rf, and IQ remains constant while {Q,RI 

tends toward i t s  maximum (or infinity) during the  interaction, we have that 

Exp [I$ tends to a maximum (or infinity). But 1b i s  just the information 

in the relative system s ta tes ,  which we have adopted a s  a measure of the 

nearness to an eigenstate. Therefore, a t  leas t  in expectation, the relative 

system s t a t e s  approach eigenstates.  

W e  have seen  that (3.12) i s  a superposition of s t a t e s  $,*, for each 

of which the apparatus has  recorded a definite value r', and the system 

i s  left in approximately the  eigenstate of the measurement corresponding 

to q = r'/t. The discontinuous "jump" into an  eigenstate is thus only a 
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re la t ive  proposition, dependent upon our decomposition of t h e  to ta l  wave  

funct ion in to  t h e  superposi t ion,  and relat ive t o  a particularly c h o s e n  appa- 

ratus  value.  So f a r  a s  t h e  complete  theory is concerned a l l  e lements  of 

t h e  superposi t ion e x i s t  s imultaneously,  and t h e  en t i re  p r o c e s s  is qui te  

cont inuous.  

We h a v e  h e r e  only a s p e c i a l  c a s e  of t h e  following general  pr inciple  

which wil l  hold for  any  s i tua t ion  which is treated ent i rely wave  mechani- 

ca l ly  : 

PRINCIPLE. F o r  any s i tuat ion i n  which the  e x i s t e n c e  of a property Ri  

for a subsys tem S1 of a composi te  sys tem S will  imply the  la te r  property 

Q, for S, then i t  i s  a l s o  t rue that  a n  in i t i a l  s t a t e  for S1 of t h e  form 

*S1 = 2 ai$fki1 which is a superposi t ion of  s t a t e s  with t h e  propert ies  

Ri, wil l  resul t  i n  a la ter  s t a t e  for S of t h e  form $S = 2 a i $ h i 1 ,  
i 

which is a l s o  a superposi t ion,  of s t a t e s  with t h e  property Qi. T h a t  is, 

for any arrangement of a n  interact ion between two s y s t e m s  S1 and S 2 ,  

which h a s  t h e  property that  e a c h  ini t ia l  s t a t e  $7' $S2 wi l l  resul t  i n  a 

f ina l  s i tua t ion  with to ta l  s t a t e  $y1+S2, a n  ini t ia l  s t a t e  of S1 of t h e  

form ai+y1 wil l  l e a d ,  after interact ion,  t o  t h e  superposi t ion 
i 

S1+S2 for  t h e  whole system. C. a i + i  
i 

T h i s  fol lows immediately from t h e  superposi t ion pr inciple  for so lu t ions  

of a l inear  wave  equation. I t  therefore h o l d s  for any  sys tem of quantum 

mechanics  for which the  superposi t ion pr inciple  ho lds ,  both part ic le  and  

f ie ld theories ,  re la t iv i s t i c  or not ,  and is applicable  t o  a l l  phys ica l  s y s -  

tems,  regard less  of s i z e .  

T h i s  pr inciple  h a s  t h e  far  reaching implication that  for any p o s s i b l e  

measurement, for which the  in i t i a l  sys tem s t a t e  is not a n  e igens ta te ,  t h e  

resul t ing s t a t e  of t h e  composi te  sys tem l e a d s  to  n o  def in i te  sys tem s t a t e  

nor any defini te  apparatus  s t a t e .  T h e  sys tem wil l  not b e  put into one  or 

another of i t s  e i g e n s t a t e s  with t h e  appara tus  indicat ing the  corresponding 

value,  and nothing resembling P r o c e s s  1 c a n  take  place.  
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T o  see tha t  t h i s  is indeed t h e  c a s e ,  s u p p o s e  tha t  we  h a v e  a measur- 

ing arrangement with t h e  following properties. T h e  in i t i a l  apparatus  s t a t e  
A 

is I/Jo. If t h e  sys tem is ini t ia l ly  in  a n  e igens ta te  of t h e  measurement, 
S rPi ,  then af ter  a spec i f ied  time of interact ion t h e  to ta l  s t a t e  $:I+$' will  

be  transformed into a s t a t e  $:+A, i.e., t h e  sys tem e i g e n s t a t e  s h a l l  not 

A b e  dis turbed,  and the  apparatus  s t a t e  i s  changed to $i , which is differ- 
s en t  for e a c h  C i .  ($A may for example b e  a s t a t e  descr ib ing  t h e  appara- 

S t u s  a s  indicating, by t h e  posi t ion o f  a meter needle,  the  eigenvalue of q5i .) 

However, if t h e  ini t ia l  sys tem s t a t e  is not  a n  e igens ta te  but a superposi-  
S tion C a i d i ,  then t h e  f inal  composi te  s y s t e m  s t a t e  is a l s o  a superposi-  

1 

S h  tion, x ai di ILi .  T h i s  fol lows from t h e  superposi t ion pr inciple  s i n c e  

i 
a l l  we  need d o  is superpose our  so lu t ions  for t h e  e igens ta tes ,  $:$: + 

S A di $i , to  arrive a t  t h e  solut ion,  x a i $ :  I/Jt + 2 a i q $ f ,  for t h e  

i i 
general c a s e .  T h u s  in  general  af ter  a measurement h a s  been performed 

there wil l  b e  no defini te  sys tem s t a t e  nor any  def in i te  apparatus  s t a t e ,  

even though there  is a correlation. I t  s e e m s  a s  though nothing c a n  ever  

be  s e t t l e d  by such  a measurement. Furthermore t h i s  resul t  is independent 

of the  s i z e  of t h e  apparatus ,  and remains true for apparatus  of q u i t e  mac- 

roscopic dimensions. 

Suppose,  for example, t h a t  we  coupled a s p i n  measuring dev ice  to  a 

cannonball,  s o  tha t  if t h e  sp in  is up t h e  cannonbal l  wil l  b e  shif ted o n e  

foot t o  the  lef t ,  while  if t h e  s p i n  is down i t  wil l  b e  sh i f ted  an equal  dis-  

I tance t o  the  right. If w e  now perform a measurement with t h i s  arrangement 

upon a part ic le  whose sp in  i s  a superposi t ion of up and down, then t h e  
I 

resul t ing total  s t a t e  will  a l s o  b e  a superposi t ion of two s t a t e s ,  one  in  
! 

which t h e  cannonbal l  is to t h e  lef t ,  and o n e  in which i t  is t o  t h e  right. 

There i s  no defini te  posi t ion for our macroscopic cannonball! 

T h i s  behavior s e e m s  to b e  qui te  a t  var iance with our observat ions,  

s i n c e  macroscopic o b j e c t s  a l w a y s  appear  t o  u s  t o  have  defini te  posi t ions.  

Can we reconci le  t h i s  prediction of t h e  purely wave  mechanical  theory 
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with experience, or  must we abandon it a s  untenable? In order to answer 

this  question we must consider the problem of observation itself within 

the framework of the theory 

IV. OBSERVATION 

We shal l  now give an abstract  treatment of the problem of observation. 

In keeping with the spirit of our investigation of the consequences of pure 

wave mechanics we have no alternative but to introduce observers, con- 

sidered a s  purely physical systems,  into the theory. 

We saw in the l a s t  chapter that in general a measurement (coupling of 

system and apparatus) had the  outcome that neither the system nor the  

apparatus had any definite s t a t e  after the interaction - a result seemingly 

a t  variance with our experience. However, we do not do just ice to  the 

theory of pure wave mechanics until we have investigated what the  theory 

itself s a y s  about the appearance of phenomena to observers, rather than 

hastily concluding that  the theory must be  incorrect because the actual  

s t a t e s  of systems a s  given by the  theory seem to  contradict our observa- 

tions. 

W e  sha l l  see that the introduction of observers can b e  accomplished 

in a reasonable manner, and that the theory then predicts that  the appear- 

ance  of phenomena, a s  the subjective experience of these  observers, i s  

precisely in accordance with the predictions of the  usual  probabilistic 

interpretation of quantum mechanics. 

81. Formulation of the problem 

We are faced with the task  of making deductions about the appearance 

of phenomena on a subjective level, to  observers which are considered a s  

1 purely physical sys tems and are treated within the theory. In order to  

accomplish th is  it i s  necessary t o  identify some objective properties of 

such an observer (states)  with subjective knowledge (i.e., perceptions). 

I Thus, in order to say  that an observer 0 has  observed the event a ,  it  



64 HUGH EVERETT, 111 THEORY OF THE UNIVERSAL WAVE FUNCTION 

i s  necessary that the s t a t e  of 0 h a s  become changed from i t s  former 

s t a t e  to a new s t a t e  which i s  dependent upon a. 

I t  will suffice for our purposes to consider our observers to posses s  

memories (i.e., parts of a relatively permanent nature whose s t a t e s  are in 

correspondence with the past  experience of the observer). In order to 

make deductions about the subjective experience of an observer i t  is suf- 

ficient to examine the contents of the memory. 

As models for observers we can,  if we wish, consider automatically 

functioning machines, possessing sensory apparata and coupled to  re- 

cording devices capable of registering past  sensory data and machine 

configurations. We can further suppose that the machine i s  s o  constructed 

that i t s  present actions shall  be determined not only by i t s  present sen- 

sory data,  but by the contents of i t s  memory a s  well. Such a machine will 

then be capable of performing a sequence of observations (measurements), 

and furthermore of deciding upon i t s  future experiments on the bas is  of 

pas t  results. We note that if we consider that current sensory data, a s  

well a s  machine configuration, i s  immediately recorded in the memory, 

then the actions of the  machine a t  a given instant can b e  regarded a s  a 

function of the memory contents only, and al l  relevant experience of the 

machine i s  contained in the memory. 

For such machines we are justified in using such phrases a s  "the 

machine h a s  perceived A" or "the machine i s  aware of A" if the occur- 

rence of A i s  represented in the memory, s ince  the future behavior of 

the machine will be  based upon the occurrence of A. In fact ,  a l l  of the 

customary language of subjective experience i s  quite applicable to such 

machines, and forms the most natural and useful mode of expression when 

dealing with their behavior, a s  i s  well known to individuals who work 

with complex automata. 

When dealing quantum mechanically with a system representing an ob- 
0 

server we shal l  ascribe a s t a t e  function, $ , to it. When the State $ 
0 

describes an observer whose memory contains representations of the 

events A,B, ..., C we shall  denote this  fact by appending the memory se- 

quence in brackets a s  a subscript, writing: 

The symbols A,B, ..., C, which we shall  assume to be  ordered time wise, 

shall  therefore stand for memory configurations which are in correspond- 

ence  with the past  experience of the observer. These  configurations can 

be thought of a s  punches in a paper tape, impressions on a magnetic reel, 

configurations of a relay switching circuit, or even configurations of brain 

cells .  We only require that they be capable of the interpretation "The 

observer h a s  experienced the succession of events A,B, ..., C," (We shall  

sometimes write dots  in a memory sequence, [. . . A,B, .  . . ,c], to indicate 
the possible presence of previous memories which are irreIevant to the 

c a s e  being considered.) 

Our problem is ,  then, to treat the interaction of such observer-systems 

with other physical systems (observations), within the framework of wave 

mechanics, and to deduce the resulting memory configurations, which we 

can then interpret a s  the subjective experiences of the observers. 

W e  begin by defining what shal l  constitute a "good" observation. A 

good observation of a quantity A, with eigenfunctions {q5i] for a system 

S, by an observer whose initial s t a t e  i s  ,C,O shall  consist  of an inter- 
[...]' 

action which, in a specified period of time, transforms each (total) s t a t e  

into a new s t a t e  

where ai  characterizes the s t a t e  (It might stand for a recording of 

the eigenvalue, for example.) That i s ,  our requirement i s  that the system 

state,  if it  is an eigenstate, shall  be  unchanged, and that the observer 
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s t a t e  shal l  change s o  a s  t o  describe an observer that is "aware" of which 

eigenfunction it i s ,  i.e., some property i s  recorded in the memory of the 

observer which characterizes +i, such a s  the eigenvalue. The  require- 

ment that  the eigenstates for the system be  unchanged is necessary if the 

observation i s  to  be  significant (repeatable), and the requirement that the 

observer s t a t e  change in a manner which i s  different for each eigenfunc- 

tion i s  necessary if we are to be  able to  ca l l  the interaction an  observa- 

tion a t  all. 

$2. Deductions 

From these  requirements we shal l  first deduce the result of an obser- 

vation upon a system which i s  not in an eigenstate of the observation. We 

know, by our previous remark upon what constitutes a good observation 
0 

that the interaction transforms s t a t e s  $-$O into s t a t e s  c#~$. 
1 [...I I[ ..., a i l  . 

Consequently we can simply superpose these  solutions of the  wave equa- 

tion to arrive a t  the f inal  s t a t e  for the c a s e  of an arbitrary initial system 

state.  Thus  if the initial system s t a t e  is not an eigenstate,  but a general 

s t a t e  aimi, we get for the final total s tate:  

T h i s  remains true a l so  in the presence of further systems which do 

not interact for the time of measurement. Thus, i f  systems S1,S 2,...,Sn 

are present a s  well a s  0 ,  with original s t a t e s  , $ J ~ ~ , . . . , $ ~ ~ ,  and 

the only interaction during the time of measurement i s  between S1 and 

0, the result of  the measurement will be  the transformation of the initial 

total s ta te :  
S1+S2+ ...+ Sn+O S1 S2 Sn 0 

$ = $ $ *..$ $[...I 

into the final state:  

where a i  = ($S1, and are eigenfunctions of the  observation. 
I 

Thus we arrive a t  the  general rule for the transformation of total s t a t e  

functions which describe systems within which observation processes 

occur: 

Rule 1. The observation of a quantity A, with eigenfunctions $fl, in 

a system S1 by the observer 0, transforms the total s t a t e  according to: 

If we next consider a second observation to  b e  made, where our total 

s t a t e  i s  now a superposition, we can apply Rule 1 separately to  each ele- 

ment of the superposition, s ince  each element separately obeys the wave 

equation and behaves independently of the remaining elements, and then 

superpose the results to  obtain the  final solution. We formulate th is  as :  

Rule 2. Rule 1 may be  applied separately to  each element of a superposi- 

tion of total system s t a t e s ,  the  results  being superposed t o  obtain the 

s2 final total s ta te .  Thus, a determination of B, with eigenfunctions 7.  
J ' 

on S2 by the observer 0 transforms the total s t a t e  

into the s t a t e  

where b. = q 
J ( y2, q:2), which follows from the application of Rule 1 to 

S1 S2 Sn o each element di $ ... $ Si[. ..,ail, and then superposing the results  

with the coefficients ai. 
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These  two rules, which follow directly from the superposition princi- 

ple, give us  a convenient method for determining final total sta.tes for any 

number of observation processes in any combinations. We must now seek  

the interpretation of such final total s ta tes .  

Le t  u s  consider the simple c a s e  of a single observation of a quantity 
S 

A, with eigenfunctions +i, in the system S with initial s t a t e  $ , by 

an observer 0 whose initial s ta te  i s  +O [. . $1. The  final result i s ,  a s  we  

have seen,  the superposition: 

We note that there i s  no longer any independent system s t a t e  or observer 

state,  although the  two have become correlated in a one-one manner. How- 
0 

ever, in each element of the superposition (2.3)) $i$. , the object- 
I[ ..., ai] 

system s t a t e  i s  a particular eigenstate of the observer, and furthermore 

the observer-system state describes the observer a s  definitely perceiving 

that particular system state.' It i s  th is  correlation which allows one  to 

maintain the interpretation that a measurement has  been performed. 

W e  now carry the discussion a s tep  further and allow the  observer- 

system to repeat the observation. Then according to Rule 2 we arrive a t  

the total s t a t e  after the second observation: 

At th is  point we encounter a language difficulty. Whereas before the observa- 

tion we had a s ingle  observer s t a t e  afterwards there were a number of different 
s t a t e s  for the  observer, a l l  occurring in a superposition. Each  of these  separa te  

s t a t e s  is a s t a t e  for an  observer, s o  tha t  we can  speak  of the different observers 
described by the different s t a t e s .  On the other hand, the same physical  system 
is involved, and from th is  viewpoint i t  is the same observer, which i s  in different 
s t a t e s  for different e lements  of the  superpcsit ion (i.e., h a s  had different experi-  
ences  in the  separa te  elements of the  superposition). In th is  s i tua t ion  we sha l l  
u s e  the  singular when we wish to  emphasize that a s ingle  physical  sys tem is in- 
volved, and the  plural when we  wish to emphasize the different experiences for 
the separa te  elements of the  superposition. (e.g., "The observer performs an ob- 
servation of the quantity A, after which each of the observers of the result ing 

superposit ion h a s  perceived an  eigenvalue.") 

0 Again, we s e e  that  each element of (2.4), $i$.. describes a sys-  I[ ..., ai ,aiIJ  
tem eigenstate, but th is  time a lso  describes the observer a s  having ob- 

obtained the same result for each of the two observations. Thus for every 

separate s t a t e  of the observer in the final superposition, the result of the 

observation was repeatable, even though different for different s ta tes .  

This  repeatability i s ,  of course, a consequence of the  fac t  that after an 

observation the relative system s t a t e  for a particular observer s t a t e  i s  

the corresponding eigenstate. 

Le t  u s  suppose now that an observer-system 0 ,  with initial s t a t e  
0 

measures the same quantity A in a number of separate identical 
52 Sn systems which are initially in the same state,  $" = (i, = ... = I/J = 

aiQi  (where the q5i are, a s  usual, eigenfunctions of A). The  initial 
i 

total s t a t e  function i s  then 

We shal l  assume that the measurements are performed on the systems in 

the order S1 ,S2,.. . ,Sn. Then the total s t a t e  after the  first measurement 

will be, by Rule 1, 

(where a f  refers to the first system, Si) . 

After the second measurement i t  will be, by Rule 2, 
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and in general, after r measurements have taken place (r 5 n) Rule 2 

gives the result: 

We can give th is  s ta te ,  $rr, the following interpretation. It cons is ts  

of a superposition of s ta tes :  

each of which describes the observer with a definite memory sequence 

[ a  , a . . . , a ,  and relative to whom the (observed system s t a t e s  are 
s1 S 

the corresponding eigenfunctions di  ,$y2,... ,  d k r ,  the remaining sys-  

tems, Sr+l, .. .Sn, being unaltered. 

In the language of subjective experience, the observer which i s  de- 

scribed by a typical element, $ij...k, of the superposition h a s  perceived 

an apparently random sequence of definite results for the observations. It 

i s  furthermore true, s ince  in each element the system has  been left in an 

eigenstate of the measurement, that if a t  this s tage  a redetermination of 

an earlier system observation (St) takes place, every element of the re- 

sulting final superposition will describe the observer with a memory con- 
1 

figuration of the form [. . . ,ai . . .  , a ,  in which the earlier memory 

coincides with the later - i.e., the memory s t a t e s  are correlated. It will 

thus appear to  the observer which i s  described by a typical element of the 

superposition that each initial observation on a system caused the system 

to "jump" into an  eigenstate in a random fashion and thereafter remain 

there for subsequent measurements on the same system. Therefore, quali- 

tatively, a t  leas t ,  the probabilistic assert ions of Process  1 appear to  b e  

valid t o  the observer described by a typical element of the final super- 

position. 

In order to establish quantitative results, we must put some sort  of 

measure (weighting) on the elements of a final superposition. Th i s  i s  

necessary to  b e  able  to make assert ions which will hold for almost a l l  of 

the observers described by elements of a superposition. In order t o  make 

quantitative statements about the relative frequencies of the different 

possible results  of observation which are recorded in the memory of a 

typical observer we must have a method of selecting a typical observer. 

Le t  u s  therefore consider the search for a general scheme for assign- 

ing a measure to the elements of a superposition of orthogonal s t a t e s  

C a i d i .  We require then a positive function ?i( of the complex coeffi- 

cients of the elements of the  superposition, s o  that x(ai)  shall  be the  

measure assigned to  the element $i. In order that th is  general scheme 

shall  be unambiguous we must first require that the s t a t e s  themselves 

always be  normalized, s o  that  we can distinguish the coefficients from 

the s ta tes .  However, we can s t i l l  only determine the coefficients, in dis- 

tinction to the s ta tes ,  up to  an arbitrary phase  factor, and hence the func- 

tion 8 must be a function of the amplitudes of the coefficients alone, 

(i.e., 8(a i )  = k ( e )  ), in order to avoid ambiguities. 

If we now impose the additivity requirement that if we regard a subset  
" 

of the superposition, s a y  ai Qi, a s  a single element a Q r :  
i = l  

n 

then the measure assigned to 95' shall  be  the sum of the measures 

assigned to the di (i from 1 to n) : 

then we have already restricted the choice of to the square amplitude 

alone. @(ai) = arai) ,  apart from a multiplicative constant.) 

T o  see th is  we note that the normality of +' requires that la\ = 

afa i  . From our remarks upon the dependence of 8 upon the ampli- 
i= l  F 

tude alone, we replace the a i  by their amplitudes pi = lai / .  
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(2.9) then requires  tha t  

Defining a new funct ion g(x): 

(2.11) g(x) = m(&> , 

w e  see t h a t  (2.10) requires  tha t  

s o  that  g is restr ic ted t o  b e  l inear  and necessar i ly  h a s  t h e  form: 

(2.13) g(x) = c x  (c constant)  . 
2 Therefore g(x ) = cn2 = R\/;I = n ( x )  and we h a v e  deduced tha t  )n i s  re- 

s t r i c ted  t o  t h e  form 

and we have  shown tha t  t h e  only cho ice  of measure c o n s i s t e n t  with our 

additivity requirement is t h e  s q u a r e  amplitude measure,  apar t  from a n  arbi- 

trary mult ipl icat ive cons tan t  which may b e  fixed, if des i red ,  by  normaliza- 

tion requirements. (The requirement that  t h e  to ta l  measure b e  unity implies  

that  t h i s  cons tan t  is 1.) 

T h e  s i tua t ion  h e r e  is fully analogous t o  tha t  of c l a s s i c a l  s t a t i s t i c a l  

mechanics ,  where o n e  pu ts  a measure  o n  t rajector ies  of s y s t e m s  in t h e  

p h a s e  s p a c e  by p lac ing  a measure on the  p h a s e  s p a c e  i t se l f ,  and then  

making a s s e r t i o n s  which hold for "almost all" t ra jec tor ies  (such as 

e r g ~ d i c i t y ,  quasi-ergodicity, etc).' T h i s  notion of "almost all" depends  

here  a l s o  upon t h e  cho ice  of measure,  which is in t h i s  c a s e  t aken  t o  b e  

L e b e s g u e  measure o n  t h e  p h a s e  space .  O n e  could, of course ,  contradict  

See Khinchin [161. 

the  s ta tements  of c l a s s i c a l  s t a t i s t i c a l  mechanics  by choos ing  a measure 

for which only t h e  except ional  t ra jector ies  had nonzero measure. Never- 

t h e l e s s  t h e  c h o i c e  of  L e b e s g u e  measure  o n  the  p h a s e  s p a c e  c a n  b e  justi- 

f ied by t h e  f a c t  that  i t  is t h e  only c h o i c e  for which t h e  "conservation of 

probability" holds,  (Liouvil le 's  theorem) and h e n c e  the  only c h o i c e  which 

makes  p o s s i b l e  any  reasonable  s t a t i s t i c a l  deduct ions a t  a l l .  

In our c a s e ,  w e  wish t o  make s ta tements  about  "trajectories" of ob- 

se rvers .  However, for u s  a trajectory is constant ly branching ( t ransfom- 

ing from s t a t e  t o  superposi t ion)  with e a c h  s u c c e s s i v e  measurement. T o  

have  a requirement analogous t o  t h e  "conservation of probability" in  t h e  

c l a s s i c a l  c a s e ,  w e  demand t h a t  t h e  measure ass igned  t o  a trajectory a t  

one  t ime s h a l l  equa l  t h e  sum of t h e  measures  of i t s  s e p a r a t e  branches a t  

a l a t e r  time. T h i s  is prec i se ly  t h e  addi t ivi ty  requirement which w e  im- 

posed  and which l e a d s  uniquely t o  t h e  cho ice  of square-amplitude measure. 

Our procedure is therefore qu i te  a s  just i f ied a s  t h a t  of c l a s s i c a l  s ta t i s t i -  

c a l  mechanics .  

Having deduced t h a t  there  is a unique measure which wi l l  s a t i s f y  our 

requirements, t h e  square-amplitude measure,  we  cont inue our  deduction. 

T h i s  measure then a s s i g n s  t o  t h e  i,j,. .. ,kth element  of the superposi t ion 

t h e  measure  (weight) 

s o  t h a t  t h e  observer  s t a t e  with memory configuration [...,a: ,a2 ,...,ail is 
J 

a s s i g n e d  t h e  measure  a*a.a*a -... a$ak = Mij...k . We see immediately that  
1 ' 1  1 

t h i s  is a product measure,  namely 

(2.17) M. .  11 ... = M.M. 1 ]...Mk 7 

where 

* 
Me = a t  a t  , 
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s o  that the measure assigned to  a particular memory sequence 

[. . . ,at ,a f ,...,at] is simply the product of the measures for the individual 

components of the memory sequence. 

We notice now a direct correspondence of our measure structure to the  

probability theory of random sequences. Namely, if we were to regard the 

Mij...k a s  probabilities for the sequences [...,of ,a2 1 ,,.., a i l ,  then the se- 

quences are equivalent to the  random sequences which are  generated by * 
ascribing to  each term the  independent probabilities Me = ae at. Now the 

probability theory is equivalent to measure theory mathematically, s o  that  

we can make u s e  of it,  while keeping in mind that a l l  resul t s  should b e  

translated back to measure theoretic language. 

Thus, in particular, if we consider the sequences to  become longer 

and longer (more and more observations performed) each memory sequence 

of the final superposition will satisfy any given criterion for a randomly 

generated sequence, generated by the independent probabilities a f  ai, *ex- 

cept  for a s e t  of total measure which tends toward zero a s  the number of 

observations becomes unlimited. Hence a l l  averages of functions over 

any memory sequence, including the special  ca se  of frequencies, can  be  

computed from the probabilities aTai, except for a s e t  of memory sequen- 

c e s  of measure zero. We have therefore shown that the  s ta t i s t ica l  asser-  

t ions of P rocess  1 will appear to  b e  valid to almost all observers de- 

scribed by separate elements of the superposition (2.6), in the limit a s  

the number of observations goes to  infinity. 

While we have s o  far considered only sequences of observations of 

the same quantity upon identical systems,  the result i s  equally true for 

arbitrary sequences of observations. For example, the sequence of obser- 
1 

vations of the quantities A , A', ..., An,, .. with (generally different) 
1 2  

eigenfunction s e t s  (+i 1, (+- J 1, ..., I+$ ,... applied successively to the 

systems S1, S Z,..., Sn ,..., with (arbitrary) initial s t a t e s  $ sl, sS2 ,..., $sn, 

. . . transforms the total  initial s tate:  

by rules 1 and 2, into the final s ta te :  

where the memory sequence element a r  characterizes the tth eigen- e 
function, 4; of the operator A'. Again the square amplitude measure 

for each element of the superposition (2.19) reduces to  the  product mea- 

S 2 sure of the individual memory element measures, 1 ,  $ ) for the 
memory sequence element a r  Therefore, the  memory sequence of a typi- e. 
cal element of (2.19) has  a l l  the characteristics of a random sequence,  

Sr with individual, independent (and now different), probabilities I(+', (I )I 
e 

for the rth memory state.  

Finally, we can generalize to the c a s e  where severa l  observations are 

allowed to  be  performed upon the same system. For example, if we permit 

the observation of a new quantity B, (eigenfunctions qm,  memory char- 

acterization p i )  upon the system Sr for which A' has  already been 

observed, then the s t a t e  (2.19): 

is transformed by Rule 2 into the s ta te :  
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The relative system s t a t e s  for S have been changed from the eigenstates 

of A 1 ,  to the eigenstates of B', {&,\. W e  notice further that, with 

respect to  our measure on the superposition, the memory sequences s t i l l  

have the character of random sequences,  but of random sequences for 

which the individual terms are no longer independent. The  memory s t a t e s  

now depend upon the memory s t a t e s  a; which represent the  result of 

the previous measurement upon the same system, Sr. The  joint (normal- 

ized) measure for this  pair of memory s t a t e s ,  conditioned by fixed values 

for remaining memory s t a t e s  i s :  

1 - 1  1 n 1 r n r 
Mai ... a p  a,, . . .ak M(ai ,..., a t , .  .. ,ak,Om> 

(2.22) (at,Pm) = 2 ~ ( a i  ,..., a; ,..., a[$;) 

t , m  

The  joint measure (2.15) i s ,  first of al l ,  independent of the memory 

s t a t e s  for the remaining systems (S1. ..Sn excluding Sr). Second, the 

dependence of 8; on a; i s  equivalent, measure theoretically, to  that 

given by the s tochas t ic  p o c e s s 3  which converts the s t a t e s  into the 

s t a t e s  rlL with transition probabilities: 

Cf. Chapter  11, $6. 

2 
TYm = Prob. (6; + n',) = l(lkj+;)l 

If we were to  allow yet another quantity C to  be  measured in Sr, the 

new memory s t a t e s  a r  corresponding to  the eigenfunctions of C would 
P 

have a similar dependence upon the previous s t a t e s  , but no direct 

dependence on the s t i l l  earlier s t a t e s  a r  This  dependence upon only the e. 
previous result of observation i s  a consequence of the fact that the rela- 

tive system s t a t e s  are completely determined by the l a s t  observation. 

We can therefore summarize the situation for an arbitrary sequence of 

observations, upon the same or different systems in any order, and for 

which the number of observations of each quantity in each  system i s  very 

large, with the following result: 

Except for a s e t  of memory sequences of measure nearly zero, the 

averages of any functions over a memory sequence can be  calculated 

approximately by the use  of the independent probabilities given by Process  

1 for each initial observation, on a system, and by the use  of the transi- 

tion probabilities (2.23) for succeeding observations upon the same system. 

In the limit, a s  the number of a l l  types of observations goes to infinity the 

calculation i s  exact ,  and the exceptional s e t  has  measure zero. 

This  prescription for the calculation of averages over memory sequen- 

c e s  by probabilities assigned to individual elements is precisely that of 

the orthodox theory (Process 1). Therefore a l l  predictions of the usual  

theory will appear to be  valid to the observer in almost a l l  observer s ta tes ,  

s ince  these  predictions hold for almost a l l  memory sequences. 

In particular, the uncertainty principle i s  never violated, s ince,  a s  

above, the latest  measurement upon a system supplies a l l  possible infor- 

mation about the relative system s ta te ,  s o  that there i s  no direct correla- 

tion between any earlier results  of observation on the system, and the 

succeeding observation. Any observation of a quantity B, between two 

success ive  observations of quantity A (all on the same system) will 

destroy the one-one correspondence between the earlier and later memory 

s ta tes  for the result of A. Thus  for alternating observations of different 

I quantities there are  fundamental limitations upon the correlations between 

memory s t a t e s  for the same observed quantity, these limitations expressing 

I the content of the uncertainty principle. 
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In conclusion, we have described in this  section processes involving 

an  idealized observer, processes which are entirely deterministic and con- 

tinuous from the over-all viewpoint (the total s t a t e  function i s  presumed 

t o  sat isfy a wave equation a t  a l l  times) but whose result i s  a superposi- 

tion, each element of which describes the observer with a different memory 

s ta te .  We have seen  that  in almost a l l  of these  observer s t a t e s  i t  appears 

to  the observer that  the probabilistic aspects  of the  usual form of quantum 

theory are  valid. We have thus seen  how pure wave mechanics, without 

any initial probability assert ions,  c a n  lead to  these  notions on a subjec- 

t ive level, a s  appearances t o  observers. 

$3. Several observers 

We shal l  now consider the consequences of our scheme when several  

observers are allowed to  interact with the same sys tems,  a s  well a s  with 

one another (communication). In the following discussion observers sha l l  

be  denoted by 01,02 ,..., other systems by S1 ,S2 ,..., and observables 

by operators A, B, C, with eigenfunctions b j1 ,  respectively. 

The  symbols a i ,  Bj, yk, occurring in memory sequences sha l l  refer t o  

characteristics of the s t a t e s  +i, qj ,  tk, respectively. ($ 
0 is inter- 
i[ ..., ail 

preted a s  describing an  observer, O., who has  just observed the eigen- J 
value corresponding to +i, i.e., who i s  "aware" that the system is in 

s t a t e  +i.) 

We shal l  a l so  wish to  allow communication among the observers, which 

we view a s  an interaction by means of which the memory sequences of 

different observers become correlated. (For example, the transfer of im- 

pulses from the magnetic tape memory of one mechanical observer to that 

of another consti tutes such a transfer of i n f ~ r m a t i o n . ) ~  We shal l  regard 

these  processes a s  observations made by one observer on another and 

shal l  u s e  the notation that 

represents a s t a t e  function describing an observer 0. who has  obtained 
J 

the information a i  from another observer, Ok. Thus the obtaining of in- 

formation about A from O1 by O2 will transform the s t a t e  

into the s t a t e  

Rules 1 and 2 are, of course, equally applicable to  these interactions. We 

shal l  now illustrate the possibil i t ies for severa l  observers, by considering 

several  ca ses .  

Case  1: W e  allow two observers to  separately observe the same quantity 

in a system, and then compare results .  

We suppose that first observer O1 observes the  quantity A for the 

system S. Then by Rule 1 the original s t a t e  

i s  transformed into the s t a t e  

We now suppose that O2 observes A, and by Rule 2 the s t a t e  be- 

comes: 

We assume that such transfers merely duplicate, but do not destroy, the origi- 
nal  information. 
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8 1 

We now allow O2 t o  "consult" 01, which l e a d s  i n  t h e  s a m e  fashion 

from (3.1) and Rule  2 t o  t h e  f inal  s t a t e  

Thus ,  for every element  of t h e  superposi t ion t h e  information obtained 

from O1 a g r e e s  with that  obtained direct ly  from t h e  system. T h i s  means 

t h a t  observers  who h a v e  separa te ly  observed t h e  s a m e  quant i ty  wi l l  a l w a y s  

agree  with e a c h  other. 

Furthermore, i t  is obvious a t  t h i s  point tha t  t h e  s a m e  resul t ,  (4.4), is 

obtained if O2 f i r s t  consu l t s  0 1 ,  then  performs t h e  d i rec t  observat ion,  

excep t  tha t  t h e  memory s e q u e n c e  for O2 is reversed ,a$ ins tead  

of [...,ai,ayl]). There  is s t i l l  perfect  agreement i n  every element  of t h e  

superposi t ion.  Therefore,  information obtained from another  observer  is 9 

a l w a y s  rel iable ,  s i n c e  subsequent  direct  observat ion wi l l  a l w a y s  verify it. 

We thus  see t h e  cen t ra l  role  played by correlat ions in  wave  funct ions for 

t h e  preservat ion of cons i s tency  in s i tua t ions  where s e v e r a l  observers  a r e  

al lowed to consu l t  o n e  another. It is t h e  t ransi t ivi ty  of correlat ion i n  

t h e s e  c a s e s  (that if S1 is correlated t o  S2 ,  and  S2 t o  S3, then  s o  is 
I 

S1 t o  S2) which is respons ib le  for t h i s  cons i s tency .  

C a s e  2: We al low two observers  t o  measure separa te ly  two different ,  non- 

commuting quant i t i es  in  t h e  s a m e  sys tem.  

Assume tha t  f i r s t  O1 observes  A for t h e  sys tem,  s o  tha t ,  a s  before, 

t h e  in i t i a l  s t a t e  $02 i s  transformed to: 

Next  l e t  O2 determine for t h e  sys tem,  where ( q - I  1 a r e  t h e  eigen-  

funct ions of 6. T h e n  by appl icat ion of R u l e  2 t h e  resu l t  is 

O2 is now perfectly correlated with t h e  s y s t e m ,  s i n c e  a redetermination 

by him wil l  lead t o  agreeing resu l t s .  T h i s  is no longer  the  c a s e  for 0 1 ,  

however, s i n c e  a redetermination of A by him will resu l t  in  (by Rule  2) 

Hence  t h e  second  measurement of O1 d o e s  not in  a l l  c a s e s  agree  

with t h e  f i rs t ,  and h a s  been  u p s e t  by t h e  intervention of 02. 

We c a n  deduce  t h e  statistical relat ion between O1's f i rs t  and second  

resu l t s  (ai and a k )  by our previous method of ass ign ing  a measure t o  

the  e lements  of t h e  superposi t ion (3.7). T h e m e a s u r e  ass igned  t o  t h e  

( i ,  j, k)th element  is then: 

T h i s  measure is equivalent ,  i n  t h i s  c a s e ,  t o  t h e  probabi l i t ies  ass igned  by 

the  orthodox theory ( P r o c e s s  I), where 02's observat ion is regarded a s  

having converted e a c h  s t a t e  '$i into a non-interfering mixture of s t a t e s  

qj ,  weighted with probabi l i t ies  1(q., qii)I2, upon which O1 makes h i s  
J 

second  observat ion.  

Note, however, tha t  t h i s  equ iva lence  with t h e  s t a t i s t i c a l  resu l t s  ob- 

ta ined by considering that  02's observat ion changed t h e  sys tem s t a t e  

into a mixture, holds t rue only s o  long as O1's s e c o n d  observat ion is 

res t r i c ted  to  the system. If h e  were  t o  at tempt t o  s imultaneously deter-  

mine a property of the sys tem a s  well  a s  of 0 2 ,  interference e f fec t s  

might become important. T h e  descript ion of t h e  s t a t e s  relat ive t o  0 1 ,  

af ter  02's observat ion,  a s  non-interfering mixtures is therefore incom- 

plete. 
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Case 3: We suppose that  two systems S1 and S2 are correlated but no 

longer interacting, and that  O1 measures property A in S1, and O2 
property P in S2. 

We wish to  see whether 02's intervention with S2 can in any way 

affect 0,'s results  in S1, s o  that perhaps s ignals  might b e  sen t  by 

these  means. We shal l  assume that the initial s t a t e  for the system pair is 

We now allow 0, to  observe A in S1, s o  that after th is  observa- 

tion the total s t a t e  becomes: 

O1 can  of course continue t o  repeat the determination, obtaining the  

same result each time. 

We now suppose that  O2 determines 6 in S2, which results  in 

However, in this  c a s e ,  a s  dist inct  from Case  2,  we see that  the inter- 

vention of O2 in no way affects Ol ' s  determinations, s ince  0, i s  

s t i l l  perfectly correlated t o  the s t a t e s  $yl of S1, and any further obser- 

vations by 0, will lead t o  the  same results  a s  the  earlier observations. 

Thus each memory sequence for O1 continues without change due to  

02's observation, and such a scheme could not be  used to  send any 

signals.  

Furthermore, we see that  the  result (3.11) is arrived a t  even in the 

c a s e  that  O2 should make h i s  determination before that  of Ol. There- 

fore any expectations for the outcome of 0,'s first  observation are  in no 

way affected by whether or not O2 performs h i s  observation before that  

of O1. Th i s  i s  true because  the expectation of the outcome for O1 can 

be computed from (4.10), which is the same whether or not O2 performs 

his  measurement before or after 0,. 

It i s  therefore seen  that one observer's observation upon one system 

of a correlated, but non-interacting pair of systems, has  no effect on the 

remote system, in the s e n s e  that  the outcome or expected outcome of any 

experiments by another observer on the remote system are not affected. 

Paradoxes l ike that of   in stein-~osen-~odolsky~ which are  concerned 

with such  correlated, non-interacting, systems are thus eas i ly  understood 

in the present scheme. 

Many further combinations of several  observers and systems can  be  

easi ly studied in the present framework, and a l l  questions answered by 

first  writing down the final s t a t e  for the situation with the aid of the 

Rules  1 and 2, and then noticing the relations between the elements of 

the memory sequences.  

Einstein [a]. 



V. SUPPLEMENTARY TOPICS 

We have  now completed t h e  abs t rac t  treatment of measurement and 

observation, with t h e  deduct ion f h a t  t h e  s t a t i s t i c a l  predict ions of t h e  

usua l  form of quantum theory ( P r o c e s s  1) wi l l  appear  t o  b e  val id t o  a l l  

observers .  We have  therefore succeeded  i n  p lac ing  our  theory in corre- 

spondence  with experience,  a t  l e a s t  insofar  a s  t h e  ordinary theory cor- 

rectly represen ts  experience.  

We should l ike t o  emphas ize  tha t  t h i s  deduct ion w a s  carr ied out by 

using only t h e  pr inciple  of superposi t ion,  and t h e  pos tu la te  tha t  a n  obser-  

vation h a s  t h e  property that  if t h e  observed variable  h a s  a defini te  va lue  

in  t h e  object-system then i t  wil l  remain def in i te  and t h e  observer  wil l  per- 

c e i v e  t h i s  va lue .  T h i s  treatment is therefore val id for any  poss ib le  quan- 

tum interpretation of observat ion processes ,  i.e., any  way in which one  

c a n  interpret wave funct ions a s  descr ib ing  observers ,  a s  wel l  a s  for a n y  

form of quantum mechanics  for which t h e  superposi t ion principle for s t a t e s  

is maintained. Our abs t rac t  d i s c u s s i o n  of observat ion is therefore logi- 

ca l ly  complete ,  in  t h e  s e n s e  that  our r e s u l t s  for t h e  sub jec t ive  experience 

of observers  a r e  correct ,  if the re  a r e  any  observers  a t  a l l  descr ibab le  by 

wave mechanics .  1 

In th i s  chapter  we  s h a l l  cons ider  a number of d iverse  t o p i c s  from the  

point of view of our pure wave  mechanics ,  i n  order t o  supplement the  ab- 

s t r a c t  d i s c u s s i o n  and g ive  a fee l ing  for t h e  new viewpoint.  Since we  a r e  

now mainly interested in  e luc ida t ing  t h e  reasonableness  of the  theory, w e  

s h a l l  often restr ic t  ourse lves  t o  plausibi l i ty  arguments ,  rather than de-  

t a i l ed  proofs. 

They are, of course, vacuously correct otherwise. 

85 
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$1. Macroscopic objects  and c lass ica l  mechanics 

In the light of our knowledge about the atomic constitution of matter, 

any "object" of macroscopic s i z e  i s  composed of an  enormous number of 

constituent particles. T h e  wave function for such  a n  object is then in a 

space  of fantastically high dimension (3N, if N i s  the number of parti- 

cles). Our present problem i s  to understand the existence of macroscopic 

objects, and t o  relate their ordinary (classical) behavior in the  three di- 

mensional world to  the underlying wave mechanics in the higher dimension- 

a l  space.  

Le t  u s  begin by considering a relatively simple case .  Suppose that  

we place in a box an  electron and a proton, each in a definite momentum 

s ta te ,  s o  that  the position amplitude density of each i s  uniform over the 

whole box. After a time we would expect a hydrogen atom in the ground 

s t a t e  t o  form, with ensuing radiation. We notice, however, that  the posi- 

tion amplitude density of each particle i s  s t i l l  uniform over the whole box. 
C 

Nevertheless the amplitude distributions are now no longer independent, 

but correlated. In particular, the conditional amplitude density for the  

electron, conditioned by any definite proton (or centroid) position, is not 

uniform, but i s  given by the  familiar ground s t a t e  wave function for the 

hydrogen atom. What we mean by the statement, "a hydrogen atom h a s  

formed in the box," i s  just that  th is  correlation has  taken place - a corre- 

lation which insures that the relative configuration for the electron, for a 

definite proton position, conforms t o  the customary ground s t a t e  configura- 

tion. 

The  wave function for the hydrogen atom can be represented a s  a 

product of a centroid wave function and a wave function over relative 

coordinates, where the centroid wave function obeys the wave equation 

for a particle with mass equal to the total mass of the proton-electron sys-  

tem. Therefore, if we now open our box, the  centroid wave function will 

spread with time in the usual  manner of wave packets,  to  eventually occu- 

py a vas t  region of space.  The  relative configuration (described by the 

relative coordinate s t a t e  function) has ,  however, a permanent nature, s ince  

it represents a bound s ta te ,  and i t  is this  relative configuration which we 

usually think of a s  the object cal led the hydrogen atom. Therefore, no 

matter how indefinite the positions of the individual particles become in 

the total s t a t e  function (due to the spreading of the centroid), th is  s t a t e  

can  be regarded a s  giving (through the centroid wave function) an  ampli- 

tude distribution over a comparatively definite object, the tightly bound 

electron-proton system. The general s ta te ,  then, does  not describe any 

single such  definite object, but a superposition of such  c a s e s  with the 

object located a t  different positions. 

In a similar fashion larger and more complex objects  can be  built up 

through strong correlations which bind together the constituent particles. 

It i s  s t i l l  true that the general s t a t e  function for such a system may lead 

to marginal position densit ies for any single particle (or centroid) which 

extend over large regions of space.  Nevertheless we can  speak of the 

existence of a relatively definite object, s ince  the specification of a 

single position for a particle, or the centroid, leads  to  the c a s e  where the 

relative position densit ies of the remaining part icles are  distributed 

closely about the specified one, in a manner forming the comparatively 

definite object spoken of. 

Suppose, for example, we begin with a cannonball located a t  the  origin, 

described by a s t a t e  function: 

where the subscript indicates that the total s t a t e  function $Y describes a 

system of particles bound together s o  a s  to form an  object of the s i z e  and 

shape  of a cannonball, whose centroid is located (approximately) a t  the 

origin, s ay  in the form of a real gaussian wave packet of small  dimensions, 
2 with variance uo for each dimension. 

If we now allow a long lapse  of time, the  centroid of the  system will 

spread in the usual  manner to  occupy a large region of space .  (The spread 

in each dimension after time t will b e  given by 
= u i  + ( l12t2/4u~m2),  
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where m is t h e  mass . )  Nevertheless ,  for any s p e c i f i e d  centroid posi t ion,  

t h e  par t i c les ,  s i n c e  they remain in  bound s t a t e s ,  h a v e  dis t r ibut ions which 

again correspond t o  t h e  fairly wel l  defined s i z e  and s h a p e  of the  cannon- 

ball.  T h u s  t h e  t o t a l  s t a t e  c a n  b e  regarded a s  a (continuous) superposi t ion 

of s t a t e s  * = J a ~ ~ z  *IC~(X,Y.Z)I d x d y  d z  , 

e a c h  of which ($ ) descr ibes  a cannonbal l  a t  t h e  posi t ion 
IC~(X,Y,Z)I 

(x, y ,  z). T h e  coef f ic ien t s  axyz of the  superposi t ion then correspond t o  

t h e  centroid distribution. 

It  is not  t rue t h a t  e a c h  individual par t ic le  s p r e a d s  independently o f  

t h e  r e s t ,  i n  which c a s e  w e  would have  a f ina l  s t a t e  which is a grand super-  

posi t ion of s t a t e s  i n  which t h e  par t i c les  a r e  located independently every- 

where. T h e  fac t  t h a t  they a r e  i n  bound s t a t e s  res t r i c t s  our f inal  s t a t e  @ 
a superposi t ion of "cannonball" s t a t e s .  T h e  wave function for t h e  cen-  

troid c a n  therefore b e  taken  a s  a representat ive wave  function for t h e  

whole object .  

It is t h u s  in  t h i s  s e n s e  of correlat ions between const i tuent  par t i c les  

t h a t  def ini te  macroscopic ob jec t s  c a n  e x i s t  within t h e  framework of pure 

wave  mechanics .  T h e  building up  of correlat ions i n  a complex s y s t e m  

suppl ies  u s  with a mechanism which a l s o  a l lows  u s  t o  understand how 

condensat ion phenomena (the formation of s p a t i a l  boundaries  which s e p a -  

ra te  p h a s e s  of different physical  or chemical  properties) c a n  b e  control led 

by t h e  wave  equat ion,  answering a point ra i sed  by Schrodinger 

C l a s s i c a l  mechanics ,  a l s o ,  e n t e r s  our s c h e m e  i n  the  form of correla- 

t ion  laws .  L e t  u s  cons ider  a sys tem of o b j e c t s  (in t h e  previous s e n s e ) ,  

s u c h  t h a t  t h e  centroid of e a c h  ob jec t  h a s  ini t ia l ly  a fairly wel l  def ined 

posi t ion and momentum (e.g., l e t  t h e  wave  function for t h e  centroids con- 

s i s t  of a product of gauss ian  wave  packets).  A s  time progresses ,  t h e  

cen te rs  of t h e  square  amplitude dis t r ibut ions for t h e  ob jec t s  wil l  move in 

a manner approximately obeying t h e  laws  of  motion of c l a s s i c a l  mechanics ,  

with t h e  degree  of approximation depending upon the  m a s s e s  and t h e  

length of t ime considered,  a s  is well  known. (Note that  we d o  not mean 

to imply t h a t  t h e  wave  packe ts  of t h e  individual ob jec t s  remain indepen- 

dent  if they a r e  interacting. They  d o  not. T h e  motion that  we  refer t o  is 

that  of t h e  cen te rs  of t h e  marginal dis t r ibut ions for t h e  centroids of t h e  

bodies.) 

T h e  general  s t a t e  of a sys tem of macroscopic ob jec t s  d o e s  not,  how- 

ever ,  a s c r i b e  any  nearly defini te  pos i t ions  and momenta t o  the  individual 

bodies .  Nevertheless ,  any  general  s t a t e  c a n  a t  any ins tan t  b e  analyzed 

into a superposi t ion of s t a t e s  e a c h  of which d o e s  represent  the  bodies  

with fairly well  defined pos i t ions  and momenta.:! E a c h  of t h e s e  s t a t e s  

then propagates  approximately according t o  c l a s s i c a l  l aws ,  s o  that  t h e  

general  s t a t e  c a n  b e  viewed a s  a superposi t ion of quas i -c lass ica l  s t a t e s  

propagating according t o  nearly c l a s s i c a l  t ra jector ies .  In other  words, if 

the  m a s s e s  a r e  large or t h e  time shor t ,  there wil l  b e  s t rong correlat ions 

between t h e  ini t ia l  (approximate) pos i t ions  and momenta and those  a t  a 

l a te r  time, with t h e  dependence be ing  given approximately by c l a s s i c a l  

mechanics. 

Since large s c a l e  ob jec t s  obeying c l a s s i c a l  l a w s  have  a p lace  i n  our 

theory of pure wave mechanics ,  w e  have justified t h e  introduction of 

F o r  any  E one  c a n  cons t ruc t  a complete orthonormal s e t  of (one part icle)  
s t a t e s  +ll ,V, where the  double index /L,U re fe rs  to  the  approximate posi t ion and  

momentum, and  for which t h e  expec ted  posi t ion a n d  momentum v a l u e s  run indepen- 
dently through s e t s  of approximately uniform dens i ty ,  s u c h  that  t h e  posi t ion a n d  

momentum uncer ta in t ies ,  ax and Up, s a t i s f y  ox 2 C E  and  a 5 C It for e a c h  
P -  2 E  

+CL,V, where C is a cons tan t  - 60. T h e  uncertainty product then s a t i s f i e s  

a 0 5 c 2 % ,  about  3,600 t imes t h e  minimum a l lowable ,  but  s t i l l  suff iciently low , x p -  2 
for macroscopic ob jec t s .  T h i s  s e t  c a n  then  be  u s e d  a s  a b a s i s  for our decomposi-  
t ion in to  s t a t e s  where every body h a s  a roughly defined posi t ion and  momentum. 
For  a more comple te  d i s c u s s i o n  of t h i s  s e t  s e e  von Neumann [17], pp. 406-407. 
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models for observers consisting of classically describable, automatically 

functioning machinery, and the treatment of observation of Chapter IV i s  

non-vacuous. 

Le t  u s  now consider the result of an observation (considered along 

the l ines of Chapter IV) performed upon a system of macroscopic bodies 
I I 

in a general s ta te .  The  observer will not become aware of the fact that 

the s t a t e  does  not correspond to definite positions and momenta (i.e., he 

will not see the objects  a s  "smeared out" over large regions of space) 

but will himself simply become correlated with the system - after the ob- 

servation the composite system of objects  + observer will be in a super- 

position of s t a t e s ,  each element of which describes an observer who h a s  

perceived that the objects have nearly definite positions and momenta, 

and for whom the relative system s t a t e  i s  a quasi-classical s t a t e  in the rl 

previous sense ,  and furthermore to  whom the system will appear to behave 

according to  c lass ica l  mechanics if h i s  observation i s  continued. We see, 

therefore, how the c lass ica l  appearance of the macroscopic world t o  u s  

can be  explained in the wave theory. 

92. Amplification processes 

In Chapter I11 and IV we discussed abstract measuring processes,  

which were considered to be  simply a direct coupling between two sys-  

tems, the object-system and the apparatus (or observer). There i s ,  how- 

ever, in actuality a whole chain of intervening systems linking a micro- 

scopic system t o  a macroscopic observer. Each link in the chain of inter- 

vening systems becomes correlated to i t s  predecessor, s o  that the result 

i s  an  amplification of effects  from the microscopic object-system to  a 

macroscopic apparatus, and then to  the observer. 

The  amplification process depends upon the ability of the s t a t e  of one 

micro-system (particle, for example) to become correlated with the s t a t e s  

of an enormous number of other microscopic systems,  the totality of which , 
I 

we shal l  ca l l  a detection system. For example, the totality of gas  atoms 

in a Geiger counter, or the water molecules in a cloud chamber, consti tute 

such a detection system. 
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The amplification is accomplished by arranging the condition of the 

detection system s o  that the s t a t e s  of the individual micro-systems of the 

detector are metastable, in a way that  if one micro-system should fal l  from 

i t s  metastable s t a t e  it would influence the reduction of others. This  type 

of arrangement leaves the entire detection system metastable against  

chain reactions which involve a large number of i t s  constituent systems. 

In a Geiger counter, for example, the presence of a strong electr ic field 

leaves the gas  atoms metastable against ionization. Furthermore, the 

products of the ionization of one  gas  atom in a Geiger counter can cause  

further ionizations, in a cascading process. The  operation of cloud cham- 

bers and photographic films i s  a l so  due to metastability against  such 

chain reactions. 

The  chain reactions cause  large numbers of the micro-systems of the 

detector to behave a s  a unit, a l l  remaining in the metastable s ta te ,  or a l l  

discharging. In th is  manner the s t a t e s  of a sufficiently large number of 

micro-systems are correlated, s o  that one can  speak of the whole ensemble 

being in a s t a t e  of discharge, or not. 

For example, there are essential ly only two macroscopically distin- 

guishable s t a t e s  for a Geiger counter; discharged or undischarged. The  

correlation of large numbers of gas  atoms, due to  the chain reaction effect, 

implies that either very few, or e l s e  very many of the gas  atoms are ionized 

at a given time. Consider the  complete s t a t e  function $G of a Geiger 

counter, which i s  a function of a l l  the coordinates of a l l  of the constituent 

particles. Because of the correlation of the behavior of a large number of 

the constituent gas  atoms, the total  s t a t e  , ~ r ~  can always be  written a s  

a superposition of two s t a t e s  

where signifies a s t a t e  where only a small. number of gas atoms [ul 
are ionized, and $2 a s t a t e  for which a large number are ionized. 

[Dl 
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T o  see that  t h e  decomposition (2.1) is val id,  expand $G i n  terms of 

individual g a s  atom stat ionary s t a t e s :  

where $ir i s  t h e  pth s t a t e  of atom r. E a c h  element  of t h e  superposi-  

tion (2.2) 

(2.3) 

must contain e i ther  a very la rge  number of a toms  i n  ionized s t a t e s ,  or e l s e  

a very smal l  number, b e c a u s e  of t h e  cha in  react ion effect .  By choosing 

some medium-sized number a s  a dividing l ine,  e a c h  element  of (2.2) c a n  

b e  placed i n  o n e  of t h e  two ca tegor ies ,  high number of low number of 

ionized atoms.  If w e  then carry out the  sum (2.2) over only t h o s e  e lements  

of t h e  f i rs t  category,  w e  ge t  a s t a t e  (and coefficient) 

ij.. . k 
T h e  s t a t e  $' i s  then a s t a t e  where a large number of par t i c les  a r e  

[Dl 
ionized. T h e  subscr ip t  [D] ind ica tes  that  it  d e s c r i b e s  a Geiger  counter  

which h a s  discharged.  If we  carry out the sum over  t h e  remaining terms 

of (2.2) we  get  in  a s imilar  fashion:  

where [U] ind ica tes  t h e  undischarged condition. Combining (2.4) and 

(2.5) we  arrive a t  t h e  des i red  relat ion (2.1). So far,  t h i s  method of decom- 

posi t ion c a n  b e  appl ied to  any sys tem,  whether o r 'no t  i t  h a s  t h e  cha in  re- 

ac t ion  property. However, in  our c a s e ,  more is implied, namely that  t h e  

spread  of t h e  number of iofiized atoms in both $ and $ will  b e  
[Dl [Ul 

smal l  compared t o  t h e  separa t ion  of their averages ,  due  t o  t h e  fac t  tha t  

the  e x i s t e n c e  of t h e  cha in  reac t ions  means that  e i ther  many or  e l s e  few 

atoms wil l  b e  ionized,  with t h e  middle ground virtually excluded.  

T h i s  type of decomposition is a l s o  appl icab le  t o  a l l  other detect ion 

d e v i c e s  which a r e  b a s e d  upon t h i s  cha in  react ion principle  (such a s  cloud 

chambers, photo p la tes ,  etc.). 

We consider  now t h e  coupling of s u c h  a detect ion d e v i c e  t o  another 

micro-system (object-system) for t h e  purpose of measurement. If i t  is true 

that  t h e  in i t i a l  object-system s t a t e  wi l l  a t  some t ime t trigger the  

cha in  react ion,  s o  tha t  t h e  s t a t e  of t h e  counter  becomes while  t h e  
[Dl' 

object-system s t a t e  +2 wi l l  not ,  then i t  i s  s t i l l  t rue that  t h e  in i t i a l  

object-system s t a t e  alc$l + a2q52 wi l l  resul t  in  t h e  superposi t ion 

Q.6) $to] + a2% $;ul 

a t  time t .  

F o r  example, l e t  u s  s u p p o s e  tha t  a par t ic le  whose s t a t e  is a wave 

packet  4, of l inear  ex tens ion  greater  than tha t  of our Geiger  counter ,  

approaches t h e  counter.  J u s t  before i t  r eaches  t h e  counter ,  i t  c a n  b e  de- 

composed in to  a superposi t ion q5 = alq51 + a 2 4 2  (4'' +2 orthogonal) 

where h a s  non-zero ampli tude only i n  t h e  region before t h e  counter  

and +2 h a s  non-zero amplitude e l sewhere  ( s o  that  is a packet  which 

wil l  ent i rely p a s s  through t h e  counter  while  +2 wil l  ent i rely m i s s  t h e  

counter).  T h e  ini t ia l  to ta l  s t a t e  for t h e  s y s t e m  par t i c le  + counter  is then: 

where I+!J is t h e  in i t i a l  (assumed t o  b e  undischarged) s t a t e  of t h e  [ul 
counter.  

But a t  a s l ight ly l a te r  time is changed t o  +;, after  t raversing 

t h e  counter  and c a u s i n g  i t  t o  go in to  a discharged s t a t e  while  qb2 ID]' 
p a s s e s  by into a s t a t e  +; l eav ing  t h e  counter  i n  a n  undischarged s t a t e  

$%I1. Superposing t h e s e  resu l t s ,  t h e  total  s t a t e  a t  t h e  l a te r  time is 



94 HUGH EVERETT, I11 THEORY O F  T H E  UNIVERSAL WAVE FUNCTION 

in accordance with (2.6). Furthermore, the  relative particle s t a t e  for i 
, , i s  a wave packet emanating from the counter, while the  rela- 

t ive s t a t e  for $2 is a wave with a "shadow" c a s t  by the  counter. The  [ul 
counter therefore s e rves  a s  an  apparatus which performs a n  approximate 

position measurement on the particle. 

No matter what the  complexity or exact  mechanism of a measuring 

process,  the general superposition principle a s  stated in Chapter 111, $3, 

remains valid, and our abstract  discussion is unaffected. It i s  a vain hope 

that  somewhere embedded in the intricacy of the amplification process i s  

a mechanism which will somehow prevent the macroscopic apparatus s t a t e  1(1 

from reflecting the  same indefiniteness a s  i t s  object-system. 

53. Reversibility and irreversibility 

L e t  u s  return, for the  moment, t o  the probabilistic interpretation of 

quantum mechanics based on P roces s  1 a s  well  a s  P roces s  2. Suppose 

that we have a large number of identical sys tems (ensemble), and that  the  

jth system i s  in the  s t a t e  $j. Then for purposes of calculat ing expecta- 

tion values for operators over the ensemble, the ensemble i s  represented 

by the mixture of s t a t e s  $J weighted with 1/N, where N is the number 

of systems,  for which the density operator3 is :  

where [$I] denotes t he  projection operator on $1. Th i s  density operator, I 

in turn, i s  equivalent t o  a densi ty operator which i s  a sum of projections 

on orthogonal s t a t e s  (the e igens ta tes  of p):4 

Cf. Chapter 111, $1.  

See Chapter 111, $2, particularly footnote 6 ,  p. 46. 

s o  that any ensemble is always equivalent t o  a mixture of orthogonal 

s t a t e s ,  which representation we sha l l  henceforth assume. 

Suppose that  a quantity A,  with (non-degenerate) e igens ta tes  ( + . I  
J 

i s  measured in each  system of t he  ensemble. This  measurement h a s  the  

effect of transforming each  s t a t e  qi into the  s t a t e  $ with probability 
j1 

( j , q i ) 2 ;  i .e..  i t  will transform a large ensemble of sys tems in the  s t a t e  

qi into an  ensemble represented by the  mixture whose density operator i s  

qi)I2 [$ I .  Extending th i s  result t o  the c a s e  where the original 
J 

j 
ensemble i s  a mixture of the qi weighted by Pi ((3.2)), we find that the  

density operator p i s  transformed by the measurement of A into the new 

density operator p': 

This  i s  the general law by which mixtures change through P roces s  1. 

However, even when no measurements a r e  taking place,  the s t a t e s  of 

an ensemble are  changing according to P roces s  2, s o  that  after a time 

interval t each  s t a t e  $ will be  transformed into a s t a t e  *'= Ut$, 

where Ut i s  a unitary operator. T h i s  natural motion h a s  the consequence 

that each  mixture p = 2 is carried into the mixture pf  = 2 Pi[Utqi] 

i i 

after a time t .  But for every s t a t e  (, 
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Therefore 

(3.5) 

which is the general law for the  change of a mixture according to  P roces s  2. 

We are  now interested in whether or not we get  from any mixture t o  

another by means of t he se  two processes,  i .e . ,  if for any pair p ,  p', there 

exis t  quanti t ies  A which can  be measured and unitary (time dependence) 

operators U such that  p can  be transformed into p' by su i tab le  appli- 

cat ions of Processes  1 and 2. We sha l l  see that  th is  i s  not always possi-  

ble, and that  P roces s  1 can  cause  irreversible changes in mixtures. 

For  each  mixture p we define a quantity I ' P' 

(3.6) I P = Trace  (p In p) . 

Thi s  number, h a s  the character of information. If p = 2 Pi[qil,  a 
IP' 

i 

mixture of orthogonal s t a t e s  qi  weighted with P i ,  then I is simply 
P 

the information of t he  distribution Pi over the eigenstates of p (relative 

to the uniform measure). (Trace (p In p) i s  a unitary invariant and i s  

proportional t o  the  negative of the  entropy of the  mixture, a s  d iscussed  in 

Chapter 111, $2.) 

P roces s  2 therefore h a s  t he  property that i t  l eaves  I unchanged, 
P 

because  

(3.7) Ip, = Trace  (p' In p') = Trace (u t  U;' In Ut p u;') 

= Trace (Utp In = Trace  (p In P) = I 
P '  

P roces s  1, on the  other hand, can decrease I but never increase it. 
P 

According to  (3.3): 

where p: P- T. - and T - .  = +.)12 i s  a doubly-stochastic 
J 1 11 1J J 

i 

matr ix5  But Ip.= 2 PJ In PI and I P = Pi In P i ,  with the Pi ,  P: 
J 

I i 
connected by T. ., implies, by the  theorem of information decrease for 

1J 

stochast ic  processes (11-§6), that: 

Moreover, i t  can  eas i ly  be  shown by a sl ight  strengthening of the  theorems 

of Chapter 11, $6 that s t r ic t  inequality must hold unless  (for each  i such  

that  pi > 0) Tij = 1 for one j and 0 for the  res t  ( T  = aikj). Th i s  
2 

1J 

means that  I(rli,+j)( = aikj ,  which implies that the original mixture was  

already a mixture of e igens ta tes  of the  measurement. 

We have answered our question, and i t  i s  not possible to get from any 

mixture to another by means of Processes  1 and 2. There i s  a n  e s sen t i a l  

irreversibility t o  P roces s  1, s ince  i t  corresponds to a s tochas t ic  process, 

which cannot be compensated by P roces s  2,  which i s  reversible, l ike 

c l a s s i ca l  mechanics. 6 

Our theory of pure wave mechanics, t o  which we now return, must give 

equivalent results  on the  subject ive level, s i nce  i t  l eads  to P roces s  1 

there. Therefore, measuring processes  will appear t o  b e  irreversible t o  

any observers (even though the composite system including the observer 

changes i t s  s t a t e  reversibly). 

s i n c e  ~ ~ . . = ~ l ( q ~ , + ~ ) l ~ = F ( + ~ , [ q . ] + , ) = ( + ~ , f . I q i ] + , ) = ( + , , ~ ~ ) = ~ ,  1 'J I 

and similarly T . .  = 1 because  T . .  i s  symmetric. 
J 'J 11 

For another, more complete, d i scuss ion  of this  topic in the probabilistic in- 
terpretation s e e  von Neurnann [I?], Chapter V, $4. 
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There i s  another way of looking a t  this  apparent irreversibility within 

our theory which recognizes only P roces s  2. When an observer performs 

an  observation the result  i s  a superposition, each  element of which de- 

scr ibes  a n  observer who h a s  perceived a particular value. From this  time 

forward there i s  no interaction between the  separate elements of the super- 

position (which describe the observer a s  having perceived different results), 

s i nce  each  element separately continues to obey the wave equation. Each 

observer described by a particular element of the  superposition behaves 

in the  future completely independently of any events in the remaining ele-  

ments, and he  can  no longer obtain any information whatsoever concerning 

these  other elements (they are  completely unobservable to him). 

T h e  irreversibility of the measuring process i s  therefore, within our 

framework, simply a subject ive manifestation reflecting the fac t  that  in  

observation processes  t h e  s t a t e  of the observer is transformed into a 

superposition of observer s t a t e s ,  each  element of which describes an  ob- 

server who i s  irrevocably cut  off from the  remaining elements. While i t  i s  

conceivable that some outside agency could reverse the total wave func- 

tion, such  a change cannot be  brought about by any observer which i s  

represented by a single element of a superposition, s ince  he  i s  entirely 

powerless to have any influence on any other elements. 

There are, therefore, fundamental restrictions t o  the knowledge that  

an  observer can  obtain about the s t a t e  of the universe. It i s  impossible 

for any observer t o  discover the total  s t a t e  function of any physical sys -  

tem, s ince  the  process of observation itself leaves  no independent s t a t e  

for the  system or the observer, but only a composite system s t a t e  in which 

the  object-system s t a t e s  a re  inextricably bound up with the observer s t a t e s .  

As soon a s  the  observation i s  performed, the composite s t a t e  i s  sp l i t  into 

a superposition for which each  element describes a different object-system 

s t a t e  and an observer with (different) knowledge of it. Only the  totality 

of these  observer s t a t e s ,  with their diverse knowledge, contains complete 

information about the  original object-system s t a t e  - but there is no possi- 

ble communication between the observers described by these  separate 

s ta tes .  Any s ingle  observer can  therefore p o s s e s s  knowledge only of t he  

relative s t a t e  function (relative t o  h i s  s ta te )  of any systems,  which i s  in 

any c a s e  a l l  that is of any importance to  him. 

We conclude th is  sect ion by commenting on another question which 

might b e  raised concerning irreversible processes:  I s  i t  necessary for 

the  exis tence  of measuring apparata, which can  be  correlated to other 

systems,  t o  have frictional processes  which involve sys tems of a large 

number of degrees of freedom? Are such thermodynamically irreversible 

processes possible in the  framework of pure wave mechanics with a re- 
I 

versible wave equation, and if s o ,  does  t h i s  circumstance pose any diffi- 

cu l t ies  for our treatment of measuring processes? 

In the  f irst  place, i t  i s  certainly not necessary for dissipative proces- 

Cs ses involving additional degrees of freedom t o  b e  present before an  inter- 

action which correlates an  apparatus t o  a n  object-system can  take place.  

The  counter-example is supplied by the simplified measuring process of 

111- $3, which involves only a system of one coordinate and an  apparatus 

of one  coordinate and no  further degrees of freedom. 

T o  the question whether such  processes  are possible within reversi- 

ble wave mechanics, we answer yes ,  in the  same s e n s e  that  they a r e  

present in c l a s s i ca l  mechanics, where the microscopic equations of motion 

are a l so  reversible. Th i s  type of irreversibility, which might be  cal led 

macroscopic irreversibility, a r i s e s  from a failure t o  separate "macroscopi- 

cal ly indistinguishable" s t a t e s  in to  "true" microscopic  state^.^ I t  h a s  a 

fundamentally different character from the  irreversibility of P roces s  1, 

which applies t o  micro-states a s  well and is peculiar t o  quantum mechan- 

ics.  Macroscopically irreversible phenomena a r e  common to  both c l a s s i ca l  

and quantum mechanics, s i nce  they ar i se  from our incomplete information 

concerning a system, not from any intrinsic behavior of  the system. 
8 

S e e  any textbook on s tat i s t ica l  mechanics,  such a s  ter Haar [ l l ] ,  Appendix I. 

Cf. the d iscuss ion  of Chapter 11, $7. S e e  a l s o  von Neumann [17], Chapter V, $4. 
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F ina l ly ,  e v e n  when s u c h  fr ic t ional  p r o c e s s e s  a r e  involved, they pre- 

s e n t  n o  new diff icul t ies  for t h e  treatment of measuring and observat ion 

p r o c e s s e s  given here. W e  imposed no restr ic t ions on t h e  complexity or 

number of d e g r e e s  of freedom of measuring appara tus  or observers ,  and if 

any of t h e s e  p r o c e s s e s  a r e  present  (such a s  hea t  reservoirs ,  e t c . )  then  

t h e s e  s y s t e m s  a r e  t o  b e  s imply included a s  part of t h e  appara tus  o r  ob- 

server .  

§4. Approximate measurement 

A phenomenon which is diff icul t  t o  understand within the  framework 

of t h e  ~ r o b a b i l i s t i c  interpretation of quantum mechanics  is the  resul t  of 

a n  approximate measurement. In the  abs t rac t  formulation of t h e  usua l  

theory there  a r e  two fundamental p rocesses ;  t h e  discont inuous,  probabilis- 
4 

t i c  P r o c e s s  1 corresponding t o  p rec i se  measurement, and the  cont inuous,  

determinist ic  P r o c e s s  2 corresponding t o  a b s e n c e  of a n y  measurement. 

What mixture of  probability and  causa l i ty  a r e  we  t o  apply t o  t h e  c a s e  

where only an approximate measurement i s  effected (i .e. ,  where t h e  appa- 

ra tus  or observer  in te rac t s  only weakly and for a f in i te  time with the  

object-system)? 

In t h e  c a s e  of approximate measurement, we need t o  b e  supplied with 

ru les  which wil l  t e l l  u s ,  for  any in i t i a l  object-system s t a t e ,  f i r s t ,  with 

what probability c a n  we  expec t  the  various p o s s i b l e  apparatus  readings,  

and second ,  what new s t a t e  t o  a s c r i b e  t o  t h e  sys tem af te r  t h e  value h a s  

been observed.  We s h a l l  see that  i t  is generally impossible  t o  give t h e s e  

rules  within a framework which cons iders  t h e  appara tus  or observer  a s  

performing a n  (abstract)  observat ion sub jec t  t o  P r o c e s s  1 ,  and that  i t  is 

necessary ,  in  order to  give a ful l  account  of approximate measurements ,  

t o  t rea t  t h e  en t i re  sys tem,  including apparatus  or observer, wave  mechan- 

ical ly .  

T h e  posi t ion tha t  a n  approximate measurement resu l t s  i n  t h e  s i tua t ion  

tha t  t h e  object-system s t a t e  is changed into a n  e i g e n s t a t e  of t h e  exac t  

measurement, but for which particular one the  observer  h a s  only imprecise 

information, i s  manifestly f a l s e .  I t  is a f a c t  that  we  c a n  make s u c c e s s i v e  

approximate position measurements of par t i c les  (in cloud chambers, for 

example) and u s e  t h e  resu l t s  for somewhat rel iable  predict ions of future 

posi t ions.  However, if e i ther  of t h e s e  measurements  lef t  t h e  part ic le  i n  

a n  "eigenstate"  of posi t ion ( 6 function), e v e n  though t h e  particular one  

remained unknown, t h e  momentum would have  s u c h  a variance that  n o  s u c h  

prediction would b e  possible .  (The  possibi l i ty  of s u c h  predict ions l i e s  in  

the  correlat ions between posi t ion and momentum a t  o n e  time with posi t ion 

and momentum a t  a l a te r  time for wave  packetsg - correlat ions which a r e  

total ly  destroyed by prec i se  measurements  of e i ther  quantity.) 

Ins tead  of continuing t h e  d i s c u s s i o n  of t h e  inadequacy of the  proba- 

b i l i s t i c  formulation, l e t  u s  f i rs t  inves t iga te  what  actual ly happens i n  

approximate measurements ,  from t h e  viewpoint of pure wave  mechanics .  

An approximate measurement c o n s i s t s  of a n  interact ion,  for a f in i te  time, 

which only imperfectly cor re la tes  t h e  apparatus  (or observer) with t h e  

object-system. We c a n  deduce  t h e  des i red  r u l e s  i n  any  particular c a s e  by 

the  following method: F o r  fixed interact ion and ini t ia l  apparatus  s t a t e  

and for any ini t ia l  object-system s t a t e  we s o l v e  t h e  wave  equation for t h e  

time of interact ion i n  quest ion.  T h e  resul t  wil l  b e  a superposi t ion of 

apparatus  (observer) s t a t e s  and relat ive object-system s t a t e s .  Then  

(according t o  the  method of Chapter  IV for a s s i g n i n g  a measure t o  a super-  

posi t ion)  we a s s i g n  a probability t o  e a c h  observed resu l t  equa l  t o  t h e  

square-amplitude of t h e  coeff icient  of the  element  which conta ins  t h e  

appara tus  (observer) s t a t e  represent ing t h e  regis ter ing of that  result.  

F ina l ly ,  the  object-system is ass igned  t h e  new s t a t e  which i s  i t s  re la t ive  

s t a t e  in  that  element. 

F o r  example,  l e t  u s  cons ider  the  measuring process  described i n  Chap- 

ter  111- 53, which is a n  exce l len t  model for a n  approximate measurement. 

After the  interact ion,  t h e  to ta l  s t a t e  w a s  found t o  b e  (111-(3.12)): 

See Bohm ill, p. 202. 
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Then, according to  our prescription, we assign the probability density 

P(r') to  the observation of the apparatus coordinate r' 

which is the square amplitude of the coefficient ( )  of the element 

t r i q ) 6 ( r -  r') of the superposition (4.1) in which the apparatus coordinate 

has  the value r = r'. Then,  depending upon the observed apparatus coordi- 

nate r', we assign the object-system the new s t a t e  

(where +(q) is the old state,  and ~ ( r )  i s  the initial apparatus state)  

which i s  the relative object-system s t a t e  in (4.1) for apparatus coordinate r' 

This  example supplies the counter-example to another conceivable 

method of dealing with approximate measurement within the framework of 

Process  1. This  i s  the position that when an approximate measurement 

of a quantity Q is performed, in actuality another quantity Q' is pre- 

c ise ly  measured, where the eigenstates of Q' correspond to  fairly well- 

defined (i.e., sharply peaked distributions for) Q values.1° However, 

any such  scheme based on Process  1 always has  the prescription that 

after the measurement, the (unnormalized) new s t a t e  function results  from 

the old by a projection (on an eigenstate or eigenspace), which depends 

upon the observed value. If th is  i s  true, then in the above example the 

new s t a t e  t r i q )  must result from the old, +(q), by a projection E:  

where N, Nr- are  normalization constants). But E i s  only a projection 

if E~ = E. Applying the operation (4.4) twice, we get: 

(4.5) E(N E+(q)) = N E2+(q) = ~ ' + ( q ) q ~ ( r ' -  qt) => E ~ + ( ~ )  

2 and we see that E cannot be  a projection unless ~ ( q )  = q (q) for a l l  

q (i.e., q(q) = 0 or 1 for a l l  q) and we have arrived a t  a contradiction 

to the assumption that in a l l  c a s e s  the changes of s t a t e s  for approximate 

measurements are governed by projections. (In certain specia l  ca ses ,  

such a s  approximate position measurements with s l i t s  or Geiger counters, 11 

the new functions arise from the old by multiplication by sharp cutoff 

functions which are 1 over the s l i t  or counter and 0 elsewhere, s o  that  

these measurements can be  handled by projections.) 

One cannot, therefore, account for approximate measurements by any 

scheme based on Process  1, and i t  i s  necessary t o  investigate these  pro- 

cesses entirely wave-mechanically. Our viewpoint consti tutes a frame- 

work in which it is possible t o  make precise deductions about such mea- 

surements and observations, s ince  we can follow in detai l  the interaction 

of an observer or apparatus with an object-system. 

$5. Discussion of a spin measurement example 

We shal l  conclude this  chapter with a discussion of an instructive 

example of ~ 0 h m . l ~  Bohm considers the measurement of the z component 

of the angular momentum of an  atom, whose total  angular momentum is h 2' 
which i s  brought about by a Stern-Gerlach experiment. The  measurement 

lo Cf. von Neumann 1171, Chapter IV, $4. 

l1 Cf. $2, this  chapter. 

l2 Bohm [l], p. 593. 
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i s  accomplished by passing an atomic beam through an inhomogeneous 

magnetic field, which h a s  the effect of giving the  particle a momentum 

which is directed up or down depending upon whether the sp in  was  up or 

down. 

The  measurement i s  treated a s  impulsive, s o  that during the time that 

the atom passes  through the field the Hamiltonian is taken to  be  simply 

the interaction: 
+ + eli H I = ( )  p = - -  2mc 

* 
where H i s  the magnetic field and S the spin operator for the atom. The 

particle i s  presumed t o  pas s  through a region of the field where the field 

is in the z direction, s o  that during the time of transit the field i s  

approximately Hz s Ho + z Hb (H0 = (Hz) and Kb = (2) ), and 4 
z=O 7=n - ~- 

hence the interaction i s  approximately: 

where Sz denotes the  operator for the z component of the  spin. 

It is assumed that the  s t a t e  of the atom, just prior to  entry into the 

field, is a wave packet of the form: 

where v+ and v- are  the spin functions for Sz = 1 and -1 respec- 

tively. Solving the Schrodinger equation for the Hamiltonian (5.2) and 

initial condition (5.3) yields the s t a t e  for a later  time t : 

Therefore, if At i s  the time that it takes  the atom t o  traverse the field,13 

each component of the wave packet has  been multiplied by a phase factor 

l 3  T h i s  time i s ,  strictly speaking, not w e l l  defined. The results ,  however, do  

not depend critically upon it .  

+iP(HO+z Kb)A t / ~  
e , i .e.,  has  had i t s  mean momentum in the z direction 

changed by an amount +HbpAt, depending upon the sp in  direction. Thus 

the initial wave packet (with mean momentum zero) i s  spli t  into a super- 

position of two packets, one with mean z-momentum + Hbp At and spin  

up, and the other with spin down and mean z-momentum -H&At. 

The interaction (5.2) has  therefore served t o  correlate the spin with 

the momentum in the z-direction. These  two packets of the resulting 

superposition now move in opposite z-directions, s o  that after a short 

time they become widely separated (provided that the momentum changes 

+J(&At are large compared to the momentum spread of the original 

packet), and the z-coordinate i s  itself then correlated with the spin - 

representing the "apparatus" coordinate in th is  case .  The  Stern-Gerlach 

apparatus therefore sp l i t s  an incoming wave packet into a superposition 

of two diverging packets, corresponding to the two spin  values. 

We take this  opportunity to  caution against a certain viewpoint which 

can  lead to difficulties. This  i s  the idea that, after an apparatus has  

interacted with a system, in "actuality" one or another of the elements 

of the resultant superposition described by the composite state-function 

has  been realized t o  the exclusion of the rest, the exist ing one simply 

being unknown t o  an external observer (i.e.,  that instead of the super- 

position there i s  a genuine mixture). This  position must be  erroneous 

s ince  there i s  always the possibility for the external observer to  make 

use  of interference properties between the elements of the superposition. 

In the present example, for instance, it is in principle possible to de- 

flect the two beams back toward one another with magnetic f ields and re- 

combine them in another inhomogeneous field, which duplicates the first,  

in such a manner that the  original sp in  s t a t e  (before entering the appa- 

ratus) i s  restored.14 This  would not be  possible if the original Stern- 

Gerlach apparatus performed the function of converting the original wave 

l4 A s  pointed out by Bohm [I], p. 604. 
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packet into a non-interfering mixture of packets for the two spin  cases .  

Therefore the position that after the atom has  passed through the inhomo- 

geneous field i t  is "really" in one or the other beam with the correspond- 

ing spin,  although we a re  ignorant of which one, is incorrect. 

After two systems have interacted and become correlated i t  i s  true 

that marginal expectations for subsystem operators can be calculated 

correctly when the composite system i s  represented by a certain non- 

interfering mixture of s ta tes .  Thus if the composite system s t a t e  i s  

I,!IS1'S2 = 2 i a i $ ~ 1 v ~ 2 ,  where the lgi] are orthogonal, then for pur- 

poses  of calculating the expectations of operators on S1 the s t a t e  s1 s2 
I,!ISltS2 i s  equivalent to  the non-interfering mixture of s t a t e s  $i vi 
weighted by Pi = a t a i ,  and one can take the picture that one or another 4 

of the c a s e s  q5y1qy2 has  been realized t o  the exclusion of the rest, with 

probabilities Pi. 15 

However, th is  representation by a mixture must be regarded a s  only a 

mathematical artifice which, although useful in many cases ,  i s  an incom- 

plete description because i t  ignores phase relations between the separa te  

elements which actually exist ,  and which become important in any inter- 

actions which involve more than just a subsystem. 

In the present example, the "composite system" is made of the "sub- 

systems" spin value (object-system) and z-coordinate (apparatus), and 

the superposition of the  two diverging wave packets is the s t a t e  after 

interaction. I t  is only correct to  regard this  s t a t e  a s  a mixture s o  long a s  

any contemplated future interactions or measurements will involve only 

the spin value or only the z-coordinate, but not both simultaneously. AS 

we saw, phase  relations between the two packets are present and become 

important when they are deflected back and recombined in another inhomo- 

geneous field - a process involving the spin values and z-coordinate 

simultaneously. 

l5 S e e  Chapter  111, $1. 

It is therefore improper to attribute any l e s s  validity or "reality" to 

any element of a superposition than any other element, due to  th is  ever 

present possibility of obtaining interference ef fec ts  between the elements. 

All elements of a superposition must be  regarded a s  simultaneously 

existing. 

At th is  time we should l ike t o  add a few remarks concerning the notion 

of transition probabilities in quantum mechanics. Often one considers a 

system, with Hamiltonian H and stationary s t a t e s  to be perturbed 
for a time by a time-dependent addition t o  the Hamiltonian, HI(t). Then 

under the action of the perturbed Hamiltonian H'= H + HI(t) the s t a t e s  

{#i] a re  generally no longer stationary but change after time t into new 

s t a t e s  {$i(t)l : 

which can b e  represented a s  a superposition of the old stationary s t a t e s  

with time-dependent coefficients a..(t). 
11 

If a t  time r a measurement with eigenstates $ i s  performed, such 
j 

a s  an  energy measurement (whose operator is the original H), then 
according to  the probabilistic interpretation the probability for finding the 

2 s t a t e  q5 given that the s t a t e  was originally qbi, i s  P..(r) = la..(r)I . 
j' 11 11 

The quantities 1 aij(r)12 are  often referred to  a s  transition probabilities. 

In this  ca se ,  however, the name is a misnomer, s ince  i t  carries the conno- 

tation that the original s t a t e  $i i s  transformed into a mixture (of the q5 
j 

weighted by P..(r)), and gives the erroneous impression that the quantum 
11 

formalism itself implies the existence of quantum-jumps (stochastic pro- 

ces ses )  independent of ac t s  of observation. This  is incorrect s ince  there 

i s  s t i l l  a pure s t a t e  x a . . ( r ) $ .  with phase relations between the q5 
11 J 

j 
j 

and expectations of operators other than the energy must be calculated 

from the superposition and not the mixture. 

There i s  another case ,  however, the one usually encountered in fact, 

where the  transition probability concept is somewhat more justified. This  
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is t h e  c a s e  in  which t h e  perturbation is due  t o  interact ion of t h e  sys tem 

s1 with another sys tem s2, and not simply a time dependence of slls 

Hamiltonian a s  i n  t h e  c a s e  just  considered.  In t h i s  s i tua t ion  t h e  interac- 

t ion produces a composi te  s y s t e m  s ta te ,  for which there  a r e  i n  general  n o  

independent  subsys tem s t a t e s .  However, a s  we  have  s e e n ,  for purposes 

of ca lcu la t ing  expec ta t ions  of operators  on  sl alone,  we  c a n  regard sl 

a s  being represented by a cer tain mixture. According t o  t h i s  picture t h e  

s t a t e s  of subsys tem sl a r e  gradually converted into mixtures by t h e  

interact ion with s2 and t h e  concept  of t ransi t ion probability makes  some 

s e n s e .  Of course ,  i t  must b e  remembered t h a t  t h i s  picture is only justi- 

f ied s o  long  a s  further measurements  on sl a lone  a r e  contemplated, and 

any at tempt t o  make a s imultaneous determination i n  sl and  s2 involves 

t h e  composi te  s t a t e  where interference properties may b e  important. 

An example  is a hydrogen atom interact ing with t h e  electromagnet ic  

field. After a time of interact ion we  c a n  picture t h e  atom a s  being i n  a 

mixture of i t s  s t a t e s ,  s o  long a s  w e  consider  future measurements  o n  t h e  

atom only. But  i n  ac tua l i ty  t h e  s t a t e  of the  atom i s  dependent  upon 

(correlated with) t h e  s t a t e  of the  field, and some process  involving both 

atom and f ie ld could conceivably depend on  interference e f f e c t s  between 

t h e  s t a t e s  of t h e  a l l eged  mixture. With t h e s e  restr ic t ions,  however, t h e  

concept  of t ransi t ion probability i s  qu i te  usefu l  and just i f ied.  

VI. DISCUSSION 

We have  shown that  our theory b a s e d  on  pure wave mechanics ,  which 

t a k e s  a s  t h e  b a s i c  descript ion of phys ica l  s y s t e m s  t h e  s t a t e  function - 
supposed  t o  b e  a n  ob jec t ive  descript ion (i.e., in  one-one, rather than 

s ta t i s t i ca l ,  correspondence t o  t h e  behavior of  t h e  sys tem)  - c a n  b e  put i n  

sat isfactory correspondence with experience.  We s a w  tha t  t h e  probabilis- 

t i c  a s s e r t i o n s  of t h e  usua l  interpretation of quantum mechanics  c a n  b e  

deduced from t h i s  theory, in a manner analogous t o  t h e  methods of c l a s s i -  

c a l  s t a t i s t i c a l  mechanics ,  a s  sub jec t ive  appearances  t o  observers  - 
observers  which were regarded simply a s  phys ica l  s y s t e m s  s u b j e c t  t o  t h e  

s a m e  type  of descript ion and  l a w s  a s  any other  s y s t e m s ,  and having no 

preferred position. T h e  theory is therefore capable  of supplying u s  with 

a complete  conceptual  model of t h e  universe,  c o n s i s t e n t  with t h e  assump- 

tion that  i t  con ta ins  more than o n e  observer. 

B e c a u s e  t h e  theory g i v e s  u s  a n  object ive descript ion,  i t  cons t i tu tes  a 

framework i n  which a number of puzzl ing s u b j e c t s  (such a s  c l a s s i c a l  l eve l  

phenomena, t h e  measuring p r o c e s s  i t se l f ,  t h e  inter-relationship of s e v e r a l  

observers ,  ques t ions  of reversibi l i ty  and i rreversibi l i ty ,  e tc . )  c a n  b e  in- 

vest igated in  d e t a i l  in  a logical ly  cons i s ten t  manner. It  suppl ies  a new 

way of viewing p r o c e s s e s ,  which c la r i f i es  many apparent  paradoxes of t h e  

usua l  interpretation1 - indeed,  i t  cons t i tu tes  a n  ob jec t ive  framework i n  

which i t  is poss ib le  t o  understand t h e  general  cons i s tency  of t h e  ordinary 

view. 

Such a s  that of Einstein, Rosen,  and Podolsky [8],  a s  well a s  the paradox of 
the introduction. 
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We shal l  now resume our discussion of alternative interpretations. 

There has  been expressed lately a great deal  of dissatisfaction with the 

present form of quantum theory by a number of authors, and a wide variety 

of new interpretations have sprung into existence. W e  shall  now attempt 

t o  classify briefly a number of these interpretations, and comment upon 

them. 

a. The "popular" interpretation. Th i s  i s  the scheme alluded to  in 

the introduction, where I,/J is regarded a s  objectively characteriz- 

ing the single system, obeying a deterministic wave equation when 

the system is isolated but changing probabilistically and discon- 

tinuously under observation. 

In i t s  unrestricted form this  view can lead to  paradoxes l ike that men- 
I 

tioned in the introduction, and i s  therefore untenable. However, th is  view 

is consistent  s o  long a s  it i s  assumed that there i s  only one observer in 

the universe (the solipsist  position - Alternative 1 of the Introduction). 

This  consistency i s  most eas i ly  understood from the viewpoint of our own 

theory, where we were able  to show that a l l  phenomena will seem to  follow 

the predictions of th is  scheme to  any observer. Our theory therefore justi- 

f ies  the personal adoption of this  probabilistic interpretation, for purposes 

of making practical predictions, from a more satisfactory framework. 

b. The Copenhagen interpretation. T h i s  is the interpretation developed 

by Bohr. The  I/J function is not regarded a s  an objective descrip- 

tion of a physical system (i.e., i t  i s  in no s e n s e  a conceptual 

model), but is regarded a s  merely a mathematical artifice which 

enables one to  make s ta t i s t ica l  predictions, albeit the best  predic- 

t ions which i t  i s  possible to  make. This  interpretation in fact  

denies the very possibility of a single conceptual model applicable 

to  the quantum realm, and a s se r t s  that the totality of phenomena 

can  only be understood by the  use  of different, mutually exclusive 

(i.e., "complementary") models in different situations. All s tate-  

ments about microscopic phenomena are regarded a s  meaningless 

unless accompanied by a complete description (classical)  of an 

experimental arrangement. 

While undoubtedly s a f e  from contradiction, due  to  i t s  extreme conserva- 

tism, i t  i s  perhaps overcautious. We do  not believe that the primary pur- 

pose of theoretical physics is to  construct "safe" theories a t  severe cos t  

in the applicability of their concepts, which is a s ter i le  occupation, but 

to make useful models which serve for a time and are  replaced a s  they are 

outworn. 2 

Another objectionable feature of this  position is i t s  strong reliance 

upon the c lass ica l  level  from the outset, which precludes any possibility 

of explaining this  level  on the bas i s  of an underlying quantum theory. (The 

deduction of c lass ica l  phenomena from quantum theory is impossible simply 

because no meaningful statements can be  made without pre-existing classi-  

ca l  apparatus to  serve a s  a reference frame.) Th i s  interpretation suffers 

from the dualism of adhering to a "reality" concept (i.e., the possibility 

of objective description) on the  c lass ica l  level  but renouncing the same 

in the quantum domain. 

c. The "hidden variables" interpretation. This  i s  the position 

(Alternative 4 of the Introduction) that $J i s  not a complete de- 

scription of a single system. It i s  assumed that the correct com- 

plete description, which would involve further (hidden) parameters, 

would lead to  a deterministic theory, from which the probabilistic 

aspects  a r i se  a s  a result of our ignorance of these extra parameters 

in the same manner a s  in c lass ica l  s ta t i s t ica l  mechanics. 

Cf. Appendix 11. 
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The  $-function i s  therefore regarded a s  a description of an  ensemble 

of sys tems rather than a single system. Proponents of th is  interpretation 

include   in stein,^  ohm,^ Wiener and Siegal. 
5 

Einstein hopes that  a theory along the  l ines  of h i s  general relativity, 

where a l l  of physics is reduced to  the geometry of space-time could sa t i s -  

factorily explain quantum effects. In such  a theory a particle is no longer 

a simple object  but pos ses se s  an  enormous amount of structure (i.e., it i s  

thought of a s  a region of space-time of high curvature). It i s  conceivable 

that the interactions of such  "particles" would depend in a sens i t ive  way 

upon the  de ta i l s  of th is  structure, which would then play the  role of the 

"hidden variables. "6 However, these  theories a re  non-linear and i t  i s  

enormously difficult t o  obtain any conclusive results. Nevertheless, the  

possibility cannot be discounted. 

Bohm considers $ to be  a real force field act ing on a particle which 

always h a s  a well-defined position and momentum (which a r e  the hidden 

variables of th is  theory). T h e  $-field sat isfying Schrodinger's equation 

i s  pictured a s  somewhat analogous to the electromagnetic field sat isfying 

Maxwell's equations, although for systems of n part icles the $-field i s  

in a 3n-dimensional space .  With th is  theory Bohm succeeds  in showing 

that  in a l l  actual  c a s e s  of measurement the bes t  predictions that  can  be  

made are those of t he  usual  theory, s o  that no experiments could ever rule 

out h i s  interpretation in favor of the ordinary theory. Our main criticism 

of this  view i s  on t h e  grounds of simplicity - if one des i res  t o  hold the 

view that $ is a real field then the  associated particle is superfluous 

since,  a s  we have endeavored to illustrate, the pure wave theory i s  itself 

satisfactory. 

Einstein [7]. 

Bohm [2]. 

Wiener and Siegal  1201. 

For an example of this  type of theory s e e  Einstein and Rosen [9]. 

Wiener and Siegal have developed a theory which i s  more closely tied 

to the  formalism of quantum mechanics. From the  s e t  N of a l l  non- 

degenerate linear Hermitian operators for a system having a complete s e t  

of eigenstates,  a subse t  I i s  chosen such  that  no two members of I com- 

mute and every element outside I commutes with a t  leas t  one element of 

I. T h e  s e t  I therefore contains precisely one operator for every orienta- 

tion of the principal axes  of the  Hilbert s p a c e  for the system. It i s  postu- 

lated that  each  of the operators of I corresponds to an independent ob- 

servable which can  take any of the real numerical values of the spectrum 

of the  operator. Th i s  theory, in i t s  present form, i s  a theory of infinitely 7 

many "hidden variables," s ince  a system i s  pictured a s  possess ing  (at 

each instant) a value for every one of these  "observables" simultaneously, 

with the changes in these  values obeying precise (deterministic) dynamical 

laws. However, the  change of any one of these  variables with time depends 

upon the entire s e t  of observables, s o  that  i t  i s  impossible ever to discover 

by measurement the complete s e t  of values for a system (since only one 

( c  observable" a t  a time can  b e  observed). Therefore, s ta t i s t ica l  ensembles 

a re  introduced, in which the values of al l  of the observables a re  related to 

points in a "differential space,"  which i s  a Hilbert space  containing a 

measure for which each  (differential space)  coordinate has  an  independent 

normal distribution. It is then shown that the resulting s ta t i s t ica l  dynamics 

i s  in accord with the  usual  form of quantum theory. 

It cannot be disputed that these  theories are often appealing, and might 

conceivably become important should future discoveries indicate serious 

inadequacies in the present scheme (i.e., they might be more easi ly modi- 

fied t o  encompass new experience). But from our viewpoint they are 

usually more cumbersome than the conceptually simpler theory based on 

pure wave mechanics. Nevertheless, these  theories are of great theoretical 

importance because they provide u s  with examples that "hidden variables" 

theories a re  indeed possible.  

A non-denumerabl: infinity, in fact ,  s i n c e  the s e t  I is uncountable! 
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d. The stochastic process interpretation. This  i s  the point of view 

which holds that the fundamental processes of nature a re  stochas- 

t ic  (i.e., probabilistic) processes. According to  th is  picture 

physical systems are supposed to  exist  a t  a l l  times in definite 

s t a t e s ,  but the s t a t e s  are continually undergoing probabilistic 

changes. The  discontinuous probabilistic "quantum-jumps" are 

not associated with ac t s  of observation, but are fundamental to the 

systems themselves. 

A stochastic theory which emphasizes the particle, rather than wave, 

aspects  of quantum theory has  been investigated by ~ o ~ ~ . ~  T h e  particles 

do not obey deterministic laws of motion, but rather probabilistic laws, 

and by developing a general "correlation stat ist ics" Bopp shows that h i s  

quantum scheme i s  a special  c a s e  which gives results  in accord with the 

usual theory. (This accord i s  only approximate and in principle one could 

decide between the theories. The approximation i s  s o  close,  however, 

that i t  i s  hardly conceivable that a decision would be  practically feasible.) 

Bopp's theory seems to  stem from a desire to have a theory founded 

upon particles rather than waves, s ince  it i s  this particle aspect  (highly 

localized phenomena) which i s  most frequently encountered in present day 

high-energy experiments (cloud chamber tracks, etc.). However, i t  seems 

to  us  to be  much eas ier  to  understand particle aspects  from a wave picture 

(concentrated wave packets) than it i s  to understand wave aspects  (diffrac- 

tion, interference, etc.) from a particle picture. 

Nevertheless, there can be  no fundamental objection to  the idea of a 

stochastic theory, except on grounds of a naked prejudice for determinism. 

The question of determinism or indeterminism in nature i s  obviously for- 

ever undecidable in physics, s ince  for any current deterministic [proba- 

bilistic] theory one could always postulate that a refinement of the theory 

would disclose a probabilistic [deterministic] substmcture, and that  the 

current deterministic [probabilistic] theory is to  be explained in terms of 

the refined theory on the bas i s  of the law of large numbers [ignorance of 

hidden variables]. However, it  i s  quite another matter to object to a mix- 

ture of the two where the probabilistic processes occur only with ac t s  of 

observation. 

e. The wave interpretation. This  i s  the position proposed in the 

present thesis ,  in which the wave function i tself  i s  held t o  be the 

fundamental entity, obeying a t  a l l  times a deterministic wave 

equation. 

This  view a l so  corresponds most closely with that  held by ~ c h r ~ d i n ~ e r . ~  

However, th is  picture only makes sense  when observation processes them- 

se lves  are treated within the theory. I t  i s  only in this  manner that the 

apparent existence of definite macroscopic objects, a s  well a s  localized 

phenomena, such a s  tracks in cloud chambers, can be  satisfactorily ex- 

plained in a wave theory where the waves are  continually diffusing. With 

the deduction in th is  theory that phenomena will appear to  observers to  be  

subject  to  Process  1, Heisenberg's criticism1' of Schrbdinger's opinion - 
that continuous wave mechanics could not seem to explain the discontinui- 

t ies  which are everywhere observed - i s  effectively met. The  "quantum- 

jumps" exist  in our theory a s  relative phenomena (i.e., the s t a t e s  of an 

object-system relative to  chosen observer s t a t e s  show th is  effect), while 

the absolute s t a t e s  change quite continuously. 

The  wave theory is definitely tenable and forms, we believe, the 

simplest complete, self-consistent theory. 

Schrodinger [la]. 

lo Heisenberg [l4]. 
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We should l ike  now t o  comment on some v iews  expressed  by Einstein.  

  in stein's" cri t ic ism of quantum theory (which is actual ly directed more 

aga ins t  what we have  ca l led  t h e  "popular" view than Bohr 's  interpreta- 

tion) is mainly concerned with the  d r a s t i c  c h a n g e s  of s t a t e  brought about  

by s imple  a c t s  of observat ion (i .e. ,  t h e  infinitely rapid c o l l a p s e  of wave  

functions), particularly i n  connect ion with correlated s y s t e m s  which a r e  

widely separa ted  s o  a s  t o  b e  mechanically uncoupled a t  t h e  time of obser-  

vation.12 At another  t ime h e  put h i s  fee l ing  colorfully by s t a t i n g  that  h e  

could not be l ieve  t h a t  a mouse could bring about  d ras t ic  c h a n g e s  i n  t h e  

universe simply by looking a t  it. 
1 3  

However, from t h e  s tandpoint  of our theory, it i s  not so  much the sys-  

tem which i s  a f fected by an observation a s  the observer, who becomes 4 
correlated to the system. 

In t h e  c a s e  of observat ion of o n e  sys tem of a pair of spa t ia l ly  s e p a -  

rated, correlated sys tems ,  nothing happens t o  t h e  remote sys tem t o  make 

any of i t s  s t a t e s  more "real" than t h e  rest .  It  had  no independent s t a t e s  

to  begin with, but a number of s t a t e s  occurring i n  a superposi t ion with 

corresponding s t a t e s  for the  other (near) system. Observation of t h e  near  

sys tem simply cor re la tes  the  observer  t o  th i s  system, a purely loca l  pro- 

c e s s  - but a p rocess  which a l s o  e n t a i l s  automatic correlation with t h e  

remote system. E a c h  s t a t e  of the  remote sys tem s t i l l  e x i s t s  with the  s a m e  

amplitude in  a superposi t ion,  but now a superposi t ion for which element  

contains ,  in  addition t o  a remote sys tem s t a t e  and correlated near  sys tem 

s t a t e ,  a n  observer  s t a t e  which descr ibes  a n  observer  who perce ives  t h e  

s t a t e  of t h e  near system.14 From t h e  present  viewpoint a l l  e lements  of 

l1 Einstein [7]. 

l2  For example, the paradox of Einstein,  Rosen,  and Podolsky [s].  

l3 Address delivered at Palmer Phys ica l  Laboratory, Princeton, Spring, 1954. 

l4 S e e  in th is  connection Chapter IV, particularly pp. 82, 83. 

t h i s  superposi t ion a r e  equal ly "real." Only t h e  observer  s t a t e  h a s  

changed,  s o  a s  t o  become correlated with t h e  s t a t e  of t h e  near sys tem and 

h e n c e  naturally with that  of the  remote sys tem also.  T h e  mouse d o e s  not 

affect  t h e  universe - only t h e  mouse i s  affected. 

Our theory i n  a cer tain s e n s e  br idges t h e  pos i t ions  of E ins te in  and 

Bohr, s i n c e  t h e  complete  theory is qui te  object ive and determinist ic  ("God 

d o e s  not play d i c e  with t h e  universe"), and ye t  on the  sub jec t ive  level ,  

of a s s e r t i o n s  relat ive t o  observer  s t a t e s ,  i t  is probabi l is t ic  in t h e  strong 

sense that  there is no way for observers  t o  make a n y  predict ions bet ter  

than the  l imitat ions imposed by t h e  uncertainty principle.15 

In conclusion,  we  have s e e n  that  if we wish t o  adhere t o  ob jec t ive  

descript ions then t h e  pr inciple  of the  psycho-physical  paral le l ism requires  

that  we  should b e  a b l e  t o  consider  some mechanical  d e v i c e s  a s  represent- 

ing observers .  T h e  s i tua t ion  is then that  s u c h  dev ices  must e i ther  c a u s e  

the probabi l is t ic  d i scont inu i t i es  of P r o c e s s  1, or  must b e  transformed in to  

the  superpos i t ions  we  have  d i s c u s s e d .  We a r e  forced t o  abandon t h e  for- 

mer possibi l i ty  s i n c e  i t  l e a d s  t o  the  s i tua t ion  that  some physical  sys tems  

would obey different l a w s  from t h e  rest ,  with no c l e a r  means for dis t in-  

guishing between t h e s e  two t y p e s  of sys tems .  We a r e  thus  led t o  our 

present  theory which r e s u l t s  from t h e  complete  abandonment of P r o c e s s  1 

a s  a b a s i c  p rocess .  Never the less ,  within t h e  context  of t h i s  theory, 

which is object ively determinist ic ,  i t  deve lops  that  t h e  probabi l is t ic  

a s p e c t s  of P r o c e s s  1 reappear a t  the sub jec t ive  level ,  a s  relat ive phenom- 

e n a  t o  observers .  

One i s  thus  f ree  t o  build a conceptual  model of the  universe,  which 

pos tu la tes  only t h e  e x i s t e n c e  of a universal  wave function which o b e y s  a 

linear wave equat ion.  One then inves t iga tes  t h e  internal  correlat ions in  

t h i s  wave function with the  aim of deducing l a w s  of phys ics ,  which a re  

Cf. Chapter V, 92. 
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statements that  take  the  form: Under the conditions C the property A 

of a subsystem of the  universe (subset of the total collection of coordi- 

na tes  for the  wave function) i s  correlated with the property B of another 

subsystem (with the manner of correlation being specified). For  example, 

the c l a s s i ca l  mechanics of a system of massive particles becomes a law 

which expresses  the  correlation between the positions and momenta 

(approximate) of the  part icles a t  one time with those a t  another time. 
16 

All s tatements about subsystems then become relative statements,  i.e., 

s tatements about the  subsystem relative t o  a prescribed s t a t e  for the re- 

mainder (since th is  i s  generally the only way a subsystem even p o s s e s s e s  

a unique state) ,  and a l l  laws are correlation laws. 

The  theory based on pure wave mechanics i s  a conceptually simple 

causa l  theory, which fully maintains the principle of the  psycho-physical 

parallelism. It therefore forms a framework in which i t  is possible t o  dis-  

c u s s  (in addition to  ordinary phenomena) observation processes them- 

se lves ,  including the inter-relationships of several  observers, in a logical, 

unambiguous fashion. In addition, a l l  of the correlation paradoxes, l ike 

that  of Einstein,  Rosen,  and ~ o d o l s k ~ , ' ~  find easy  explanation. 

While our theory justifies the personal u s e  of the probabilistic inter- 

pretation a s  an aid t o  making practical predictions, i t  forms a broader 

frame in which to understand the consistency of that interpretation. It 

t ranscends the  probabilistic theory, however, in i t s  ability t o  dea l  logi- 

cal ly with quest ions of imperfect observation and approximate measurement. 

Since th is  viewpoint will be  applicable to a l l  forms of quantum mechan- 

i c s  which maintain the superposition principle, i t  may prove a fruitful 

framework for the interpretation of new quantum formalisms. Field theories, 

particularly any which might be  relativistic in the s e n s e  of general rela- 
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tivity, might benefit from th is  position, s ince  one i s  free to construct 

formal (non-probabilistic) theories, and supply any possible s ta t i s t ica l  

interpretations later. (This viewpoint avoids the necess i ty  of considering 

anomalous probabilistic jumps scattered about space-time, and one can  
I 

asser t  that  field equations are  sa t i s f ied  everywhere and everywhen, then 

I deduce any s ta t i s t ica l  asser t ions  by the  present method.) 

By focusing attention upon quest ions of correlations, one may be able  

to deduce useful relations (correlation laws analogous to  those of c lass i -  

ca l  mechanics) for theories which a t  present do  not pos ses s  known c lass i -  

ca l  counterparts. Quantized fields do not generally p o s s e s s  pointwise 

independent field values, the values a t  one point of space-time being 

correlated with those a t  neighboring points of space-time in a manner, i t  

i s  t o  be expected, approximating the behavior of their c l a s s i ca l  counter- 

parts. If correlations a r e  important in sys tems with only a finite number 

of degrees of freedom, how much more important they must be  for systems 

of infinitely many coordinates. 

Finally,  a s ide  from any possible practical advantages of the theory, 

i t  remains a matter of intellectual interest  that the s ta t i s t ica l  assert ions 

of the usual interpretation do  not have the s t a tu s  of independent hypoth- 

e s e s ,  but a re  deducible (in the present s ense )  from the pure wave mechan- 

i c s ,  which results  from their omission. 

- 

l6 Cf. Chapter V, $2. 

l7 Einstein,  Rosen,  and Podolsky [a]. 



APPENDIX I 

We shal l  now supply the proofs of a number of assert ions which have 

been made in the text. 

$1. Proof of  Theorem 1 

W e  now show that 1 X,Y,. . .,Z] > 0 unless X,Y,. . . , Z  are independent 

random variables. Abbreviate P(x. ,y .,. . . ,zk) by Pi .  and le t  
1 J  J. . .kJ 

(Note that Pip j...Pk = 0 implies that a lso  P - .  IJ ... = 0.) Then always 

and we have 

'ij ... k 
(1.3) IX,Y , . ,  Zl = EX. [In ] = EXP I 1. Q i j k I  Pip j...Pk 

( Applying the inequality for x 2 0 : 

1 (1.4) x l n x > x - 1  (except for x = 1) 

(which i s  easi ly established by calculating the minimum of x In x - (x-1)) 

to (1.3) we  have: 
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(1.5) Pip j...Pk Q.. IJ ... k In Qijv..k > P-P 1 j ...P k(Qij,. .k- 1) 

(unless Qij.. ,k = 1 )  . 

Therefore we have for the sum: 

unless  all Q. 11 - ... = 1. But x Pip j...Pk Qij.. . = 2 P.. IJ ... = 1,  and 
i j  ... k i j  ... k x Pip j...Pk = 1, s o  that the right s ide  of (1.6) vanishes.  T h e  left 

i j  ... k 

s ide  i s ,  by (1.3) the  correlation {X,Y, ..., ZI, and the  condition that a l l  of 

the Qii...k equal one i s  precisely the independence condition that 

P . .  = Pip j...Pk for a l l  i , j  ,... ,k. We have therefore proved that  
1J ... 0 

unless  X,Y,. . . ,Z are  mutually independent. 

82. Convex function inequalities 

W e  sha l l  now es tabl i sh  some bas ic  inequalities which follow from the 

convexity of the function x In x. 

LEMMA 1. xi 2 0, Pi 2 0, x p i = l  
i 

T h i s  property is usually taken a s  the definition of a convex function, 1 

but follows from the fact  that  the  second derivative of x In x is positive 

for a l l  positive x, which i s  the elementary notion of convexity. There is 

a l so  an  immediate corollary for the continuous ca se :  

THEORY OF THE UNIVERSAL WAVE FUNCTION 

We can now derive a more general and very useful inequality from 

Lemma 1: 

LEMMA 2. xi 2 0, ai  2 0 (all i )  

Proof:  Let  Pi = a i  / s a i l  s o  that Pi 2 0 and 2 Pi = 1. Then by 

Lemma 1: i i 

Substitution for Pi yields: 

which reduces t o  

(2.3) 
i 

and we have proved the lemma. 
See Hardy, Littlewood, and ~ o l y a  [13], p. 70. 
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W e  a l s o  mention t h e  analogous resu l t  for t h e  cont inuous c a s e :  

COROLLARY 2. f ( x ) ? O ,  g ( x ) z O  (al l  x) 

§3. Refinement theorems 

We now supply t h e  proof for Theorems 2 and 4 of Chapter  11, which 

concern t h e  behavior of  correlation and information upon refinement of t h e  

dis t r ibut ions.  We s u p p o s e  that  t h e  original (unrefined) dis t r ibut ion is 
,Pi,Vj,... yqk 

Pij. . .k = P(xi,yj ,..., zk), and that  the  ref ined dis tr ibut ion is P..  
1~ ... k 9 

where t h e  or iginal  va lue  xi for X h a s  been  resolved into a number of 
P i va lues  xi , and s imilar ly for Y ,..., 2. Then:  

Pi,"j'. . ."Ik 
(3.1) Pii. . .k = c '{j ... k , pi = C piPi, e tc .  

Computing t h e  new correlat ion {X,Y,.  ..,Z]' for t h e  refined distribution 
p,~fi,Vj~.. .~Tlk we find: 

However, by Lemma 2, 82: 

Substitution of (3.3) into (3.2), not ing tha t  P : ~ ~ , P : ~ ~ , .  . .,Piqk is 
J .. 

Pi. . .)7k 
equa l  t o  (4 pipi) (5 "j). . (4 pi"), l e a d s  to: 

4 and we  have completed t h e  proof of Theorem 2 (Chapter 11), which a s s e r t s  

that  refinement never  d e c r e a s e s  t h e  correlation. 2 

W e  now cons ider  t h e  e f fec t  of refinement upon t h e  relat ive information. 

We s h a l l  u s e  t h e  previous notation, and further assume that  aj",b: 'j 
J '"" 

c i T k  a r e  the  ififormation measures  for  which we wish t o  compute the  rela- 

t ive information of P.'yi';j' 
1J ... '."'k and of Pij. .k.  T h e  information mea- 

s u r e s  for t h e  unrefined dis tr ibut ion Pij...k then s a t i s f y  the  relat ions:  

pi v.  
1 

T h e  relat ive information of t h e  refined distribution is 

and by exact ly t h e  s a m e  procedure a s  we  have  just  used  for t h e  correla- 

tion we  arr ive a t  t h e  resul t :  

Cf. Shannon [19], Appendix 7, where a qu i te  s imi la r  theorem is proved. 
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'ij ... k 
(3.7) 'h ... z , 'ij ... k l n a . b .  ck = ' x y . . . ~  ' 

i . . .k  1 1"' 

and we have proved that refinement never decreases the relative informa- 

tion (Theorem 4, Chapter 11). 

It i s  interesting t o  note that the relation (3.4) for the behavior of 

correlation under refinement can be  deduced from the behavior of relative 

information, (3.7). Th i s  deduction i s  an immediate consequence of the 

fact that the correlation i s  a relative information - the information of the 

joint distribution relative to  the product measure of the marginal distribu- 

tions. 

$4. Monotone decrease of information for stochastic processes rl 

We consider a sequence of transition-probability matrices T:~ ( CTR 1J = 

j 

1 for a l l  n, i ,  and 0 5 Tn. 5 1 for a l l  n, i ,  j ) ,  and a sequence of 
11 - 

measures a! (a: 2 0) having the property that 

We further suppose that we have a sequence of probability distributions, 

P:, such that 

For  each of these  probability distributions the relative information 

1" (relative to  the a: measure) is defined: 

Under these  circumstances we have the following theorem: 

Proof : Expanding 1"" we get: 

However, by Lemma 2 ($2, Appendix I) we have the inequality 

Substitution of (4.5) into (4.4) yields: 

and the proof i s  completed. 

This  proof can be  successively special ized to the c a s e  where T i s  

stationary (Tri = T i i  for a l l  n )  and then to the  c a s e  where T is 
- - J  

doubly-stochastic ( , T ~ ~  = 1 for a l l  j): 

i 

COROLLARY 1. Tn. is stationary (Tn. = Tij ,  a11 n),  and  the measure 
11 1J 

ai is a stationary measure (a. = a.T.  .), imply that the information, 
I x 1 11 

i 
In = P: In (PT/a:), is monotone decreasing. (As before, P?" = 

i 
1 

Proof : Immediate consequence of preceding theorem. 
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COROLLARY 2. T . .  i s  doubly-stochastic ( T = 1 all j )  implies 
11 11 

i 

that the information relative to the uniform measure (ai = 1 ,  all i ) ,  1" = 

2 P: In P?, i s  monotone decreasing. 

i 

Proof: For a i  = 1 (all i )  we have that  2 aiTij  = C T ~ ~  = 1 = a .  1' 
i i 

Therefore the uniform measure i s  stationary in this  c a s e  and the result 

follows from Corollary 1. 

These  results  hold for the continuous case  also,  and may b e  easi ly 

verified by replacing the above summations by integrations,, and by re- 

placing Lemma 2 by i t s  corollary. 

$5. Proof o f  special inequality for Chapter IV (1.7) 

L E M M A .  Given probability densities P(r), Pl(x), P2(r), with P(r) = 

PI (x) P2(r-xi) dx. Then IR 5 IX - lnr ,  where IX = J Pl(x) In Pl(x) dx J 0 

and IR = P(r) In P(r) dr. J 
Proof: We first  note that: 

(5.1) S P 2 ( r - x ~ ) d x  = S P 2 ( a )  $ = (all r )  

and that furthermore 

(5.2) S P2(r-xr)dr = P 2 ( a ) d o  = 1 S (all x )  . 

ey 

We now define the density pr(x): 

which i s  normalized, by (5.1). Then, according to  $2, Corollary 1 Appen- 

dix I), we have the relation: 

Substitution from (5.3) gives 

The relation P(r) = Pl (x)P2(r-xr)dx, together with (5.5) then implies 

(5.6) 

S 
P ( r ) l n i P ( r )  5 P2(r-xr)Pl(x)lnPl(x)dx , S 

which i s  the same as :  

(5.7) P(r) In P(r) 5 P2(r-xr)Pl (x) In Pl(x) dx - P(r) l n r  . S 
Integrating with respect to  r, and interchanging the order of integration 

on the  right s ide  gives: 

- ( l n  3 J P(r)dr . 

But using (5.2) and the fact that P(r)dr = 1 this  means that 

(5.9) 

S 
I, 5 JP,(x) In Pl(x)dx - In i  = IX - I n i  , 

and the proof of the  lemma i s  completed. 

$6. Stationary point o f  IK + IX 

We shal l  show that the  information sum: 

rn 

6 . 1 )  + 1~ = S +*+I*) ln +*+(*)d* + +*+(x) In +*+(x)dx , 
where m S -W 

+(*I = (l/fi)J e-ikx +(x)dx 

-m 
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i s  stationary for the functions: 

with respect to variations of $, 614, which preserve the normalization: 

(6 - 3) sm 6 ($*$)ax = 0 . 
-m 

The variation 6$ gives rise to a variation 86 of +(k): 

To  avoid duplication of effort we first calculate the variation 6 If for an I 
arbitrary wave function u(f). By definition, 

s o  that 
nm 

We now suppose that u has  the real form: 

and from (6.6) we get 
m 

2 
(1 + ln a2 - 2bf2)aeFbf (6u)df + complex conjugate. 

We now compute 6 IK for +o using (6.8), (6.2), and (6.4): 

where 1 - 
2 4 a = (2uX/77) , b' = 0 2 

X '  

Interchanging the order of integration and performing the definite integra- 

tion over k we get: 

while application of (6.8) to gives 

where 
1 - 

Adding (6.10) and (6.11), and substituting for a', b', a", b", yields: 
W - " ? .  

But the integrand of (6.12) i s  simply $0(x)6$(x), s o  that 

Since t,bo i s  real, $,a$ + C.C. = $,*a$ + C.C. = $,*a$ + $,a$* = a($*$), 

s o  that 
cm 

due to  the normality restriction (6.3), and the proof i s  completed. 

m 

-6k2 1 f j - i k X 6 *  dxdk + C.C. , (6.9) SIK/+, = S (1 + In aT2 - 2b'k2)ae 

-00 
6 



APPENDIX I1 

REMARKS ON T H E  R O L E  O F  THEORETICAL PHYSICS 

There  h a v e  been  la te ly  a number of new interpretat ions of quantum 

mechanics ,  most of which a r e  equivalent  i n  t h e  s e n s e  t h a t  they predict  t h e  

s a m e  r e s u l t s  for a l l  phys ica l  experiments. S ince  there  is therefore n o  hope 

of deciding among them on  t h e  b a s i s  of phys ica l  experiments ,  we must turn 

elsewhere,  and inquire into t h e  fundamental ques t ion  of t h e  nature and pur- 

pose  of physical  theories  in general.  Only a f te r  we  h a v e  invest igated and 

come t o  some sor t  of agreement upon t h e s e  general  ques t ions ,  i .e . ,  of the  

role of theories  themselves,  wil l  w e  b e  a b l e  t o  put t h e s e  al ternat ive inter- 

pretat ions in  their  proper perspect ive.  

Every theory c a n  b e  divided into two s e p a r a t e  parts ,  t h e  formal part, 

and t h e  interpretive part. T h e  formal part c o n s i s t s  of a purely logico- 

mathematical s t ructure,  i .e. ,  a col lect ion of symbols  together with rules  

for their  manipulation, while  t h e  interpret ive part c o n s i s t s  of a s e t  of 
11 assoc ia t ions , "  which a re  ru les  which put s o m e  of t h e  e lements  of t h e  

formal part into correspondence with t h e  perceived world. T h e  e s s e n t i a l  

point of a theory, then,  is tha t  i t  is a mathematical model, together with 
1 an isomorphism between t h e  model and t h e  world of experience ( i .e . ,  t h e  

s e n s e  percept ions of the  individual,  or t h e  "real world" - depending upon 

one 's  cho ice  of epistemology). 

By isomorphism we mean a mapping of some elements of the model into ele- 
ments of the perceived world which h a s  the property that the model i s  faithful, 
that i s ,  i f  in the model a symbol A implies a symbol B, and A corresponds 
to the happening of an event in the perceived world, then the event corresponding 
to B must a l so  obtain. The word homomorphism would be  technically more 
correct, s ince  there may not be a one-one correspondence between the model and 
the external world. 
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T h e  model nature is quite apparent in the newest theories, a s  in nuclear 

physics,  and particularly in those f ields outside of physics proper, such  

a s  the Theory of Games, various economic models, etc., where the  degree 

of applicability of the  models i s  s t i l l  a matter of considerable doubt. How- 

ever, when a theory i s  highly successfu l  and becomes firmly established,  

the model tends t o  become identified with "reality" itself, and the  model 

nature of the theory becomes obscured. The  r i se  of c l a s s i ca l  physics 

offers a n  excellent example of th is  process. The  constructs  of c l a s s i ca l  

physics are just a s  much fictions of our own minds a s  those  of any other 

theory we simply have a great dea l  more confidence in them. It must be  

deemed a mistake, therefore, to attribute any more "reality" here than 

elsewhere. 
I 

Once we have granted that any physical theory is essential ly only a 

model for the  world of experience, we must renounce a l l  hope of finding 

anything l ike "the correct theory." There is nothing which prevents any 

number of quite dist inct  models from being in correspondence with experi- 

ence  (i.e., a l l  "correct"), and furthermore no way of ever verifying tha t  

any model i s  completely correct, simply because the totality of a l l  experi- 

ence  i s  never access ib le  t o  us. 

Two types of prediction can  be  distinguished; the  prediction of pheno- 

mena already understood, in which the theory plays simply the  role of a 

device for compactly summarizing known results  (the aspect  of most 

interest  t o  the  engineer), and the  prediction of new phenomena and effects ,  

unsuspected before the  formulation of the theory. Our experience has  

shown that  a theory often transcends the restricted field in which i t  was  

formulated. It i s  th is  phenomenon (which might be ca l led  the  "inertia" 

of theories) which i s  of most interest t o  the theoretical physicist ,  and 

supplies a greater motive t o  theory construction than that  of aiding the  

engineer. 

From the  viewpoint of the  f irst  type of prediction we would say  that  

the  "best" theory i s  the  one from which the  most accurate predictions 

can  be  most easi ly deduced - two not necessari ly compatible ideals. 

Class ica l  physics,  for example, permits deductions with far greater e a s e  

than the more accurate theories of relativity and quantum mechanics, and 

in such  a c a s e  we must retain them all .  It would b e  the worst sort  of 

folly to advocate that  the study of c l a s s i ca l  physics be  completely dropped 

in favor of the  newer theories. It c an  even happen that  several  quite dis- 

tinct models can  exis t  which a r e  completely equivalent in their predictions, 

such  that  different ones  are  most applicable in different c a s e s ,  a situation 

which seems to be  realized in quantum mechanics today. It would seem 

foolish to attempt t o  reject  a l l  but one in such  a situation, where i t  might 

be  profitable t o  retain them all.  

Nevertheless, we have a strong des i re  to construct a s ingle all- 

embracing theory which would be  applicable t o  the  entire universe. From 

what s tems th is  desire? T h e  answer l i e s  in the  second type of prediction 

- the  discovery of new phenomena - and involves the  consideration of 

inductive inference and the  factors which influence our confidence in a 

given theory (to be applicable outside of t he  field of i t s  formulation). Th i s  

i s  a difficult subject, and one which i s  only beginning to be studied seri- 

ously. Certain main points are clear ,  however, for example, that  our con- 

f idence increases  with the number of s u c c e s s e s  of a theory. If a new 

theory replaces several  older theories which deal  with separate phenomena, 

i.e., a comprehensive theory of t he  previously diverse f ields,  then our 

confidence in the  new theory is very much greater than the  confidence in 

ei ther  of the older theories, s i nce  the  range of s u c c e s s  of the  new theory 

is much greater than any of the  older ones. It is therefore t h i s  factor  of 

confidence which seems to be  a t  the root of the des i re  for comprehensive 

theories. 

A closely related criterion is simplicity - by which we refer t o  con- 

ceptual simplicity rather than e a s e  in use,  which is of paramount interest  

to the  engineer. A good example of t he  distinction is the theory of general 

relativity which i s  conceptually quite simple, while enormously cumber- 

some in  actual  calculations. Conceptual simplicity, l ike comprehensive- 

nes s ,  h a s  the property of increasing confidence in a theory. A theory 
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containing many ad hoc constants  and restrictions, or many independent 

hypotheses, in no way impresses u s  a s  much a s  one which i s  largely f ree  

of arbitrariness. 

It is necessary to  s ay  a few words about a view which is sometimes 

expressed, the  idea that  a physical theory should contain no elements 

which do not correspond directly to observables. Th i s  position seems  to 

be founded on the notion that  the only purpose of a theory is to  serve  a s  

a summary of known data,  and overlooks the  second major purpose, t he  

discovery of totally new phenomena. T h e  major motivation of th is  view- 

point appears to b e  the  des i re  to construct perfectly "safe" theories 

which will never be  open to contradiction. Strict adherence to such  a 

philosophy would probably seriously s t i f le  the  progress of physics.  

The  cri t ical  examination of just what quantities a re  observable in a 

theory does,  however, play a useful role, s i nce  i t  gives an  insight into 

ways of modification of a theory when i t  becomes necessary. A good ex- 

ample of th is  process is the  development of Special Relativity. Such 

succes ses  of the posi t ivist  viewpoint, when used merely a s  a tool for de- 

ciding which modifications of a theory are  possible,  in no way justify i t s  

universal adoption a s  a general principle which a l l  theories must sat isfy.  

In summary, a physical theory i s  a logical construct (model), consist-  

ing of symbols and rules for their manipulation, some of whose elements 

are associated with elements of the  perceived world. The  fundamental 

requirements of a theory are logical consistency and correctness. There 

i s  no reason why there cannot be any number of different theories sat isfy-  

ing these  requirements, and further criteria such  a s  usefulness,  simplicity, 

comprehensiveness, pictorability, etc. ,  must be  resorted to in such  c a s e s  

to further restrict the  number. Even so ,  i t  may be  impossible t o  give a 

total ordering of the theories according to "goodness," s ince  different 

ones  may rate highest according to  the  different criteria, and i t  may b e  

most advantageous to  retain more than one. 

As a f inal  note, we might comment upon the  concept of causality. It 

should be  clearly recognized that  causali ty is a property of a model, and 

not a property of the world of experience. The  concept of causali ty only 

makes s e n s e  with reference to  a theory, in which there are logical depend- 

ences  among the elements. A theory contains relations of the  form "A 

implies B," which can  be  read a s  "A causes  B," while our experi- 

ence,  uninterpreted by any theory, gives nothing of the  sort,  but only a 

correlation between the  event corresponding to  B and that  corresponding 

to A. 
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"Relative State" Formulation of Quantum 
Mechanics * 
HUGH EVERETT, IIIt 

Palmer Physical Laboratory, Princeton C'niversity, Princeton, New Jersey 

1. INTRODUCTION 

T HE task of quantizing general relativity raises 
serious questions about the meaning of the 

present formulation and interpretation of quantum 
mechanics when applied to so fundamental a structure 
as the space-time geometry itself. This paper seeks to 
clarify the foundations of quantum mechanics. I t  
presents a reformulation of quantum theory in a form 
believed suitable for application to general relativity. 

The aim is not to deny or contradict the conventional 
formulation of quantum theory, which has demon- 
strated its usefulness in an overwhelming variety of 
problems, but rather to supply a new, more general and 
complete formulation, from which the conventional 
interpretation can be deduced. 

The relationship of this new formulation to the older 
formulation is therefore that of a metatheory to a 
theory, that is, it  is an underlying theory in which the 
nature and consistency, as well as the realm of applica- 
bility, of the older theory can be investigated and clari- 
fied. 

The new theory is not based on any radical departure 
from the conventional one. The special postulates in the 
old theory which deal with observation are omitted in 
the new theory. The altered theory thereby acquires a 
new character. I t  has to be analyzed in and for itself 
before any identification becomes possible between the 
quantities of the theory and the properties of the world 
of experience. The identification, when made, leads 
back to the omitted postulates of the conventional 
theory that deal with-observation, but in a manner 
which clarifies their role and logical position. 

We begin with a brief discussion of the conventional 
formulation, and some of the reasons which motivate 
one to seek a modification. 

the following1: A physical system is completely de- 
scribed by a state function +, which is an element of a 
Hilbert space, and which furthermore gives information 
only to the extent of specifying the probabilities of the 
results of various observations which can be made on 
the system by external observers. There are two funda- 
mentally different ways in which the state function 
can change : 

Process 1 :  The discontinuous change brought about 
by the observation of a quantity with eigenstates 
41, 42,'' ., in which the state + will be changed to 
the state 4 j  with probability / (+,+j) 1 2. 

Process 2 :  The continuous, deterministic change of 
state of an isolated system with time according to 
a wave equation d+/dt= A+, where A is a linear 
operator. 

This formulation describes a wealth of experience. No 
experimental evidence is known which contradicts it. 

Not all conceivable situations fit the framework of 
this mathematical formulation. Consider for example an 
isolated system consisting of an observer or measuring 
apparatus, plus an object system. Can the change with 
time of the state of the total system be described by 
Process 2? If so, then it would appear that no dis- 
continuous probabilistic process like Process 1 can take 
place. If not, we are forced to admit that systems which 
contain observers are not subject to the same kind of 
quantum-mechanical description as we admit for all 
other physical systems. The question cannot be ruled 
out as lying in the domain of psychology. Much of the 
discussion of "observers" in quantum mechanics has 
to do with photoelectric cells, photographic plates, and 
similar devices where a mechanistic attitude can hardly 
be contested. For the following one can limit himself to 
this class of problems, if he is unwilling to consider ob- 
servers in the more familiar sense on the same mechanis- 

2. REALM OF APPLICABILITY OF THE CONVENTIONAL tic level of analysis. 
OR "EXTERNAL OBSERVATION" What mixture of Processes 1 and 2 of the conventional OF QUANTUM MECHANICS 

formulation is to be applied to the case where only an 
We take the conventional or "external observation" 

formulation of quantum mechanics to be essentially 

*Thesis submitted to Princeton University March 1, 1957 in 
partial fulfillment of the requirements for the Ph.D. degree. An 
earlier draft dated January, 1956 was circulated to several physi- 
cists whose comments were helpful. Professor Niels Bohr, Dr. H. J. 
Groenewald, Dr. Aage Peterson, Dr. A. Stern, and Professor L. 
Rosenfeld are free of any responsibility, but they are warmly 
thanked for the useful objections that they raised. Most particular 
thanks are due to Professor John A. Wheeler for his continued 

approximate measurement is effected; that is, where an 
apparatus or observer interacts only weakly and for a 
limited time with an object system? In this case of an 

guidance and encouragement. Appreciation is also expressed to the 
National Science Foundation for fellowship support. 

t Present address: Weapons Systems Evaluation Group, The 
Pentagon Washington D.  C. 

We uke the termiAology and notation of J. von Neumann, 
Methemetical Foundations of Quantum Mechanics, translated by 
R. T. Beyer (Princeton University Press, Princeton, 1955). 
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approximate measurement a proper theory must specify 
(1) the new state of the object system that corresponds 
to any particular reading of the apparatus and (2) the 
probability with which this reading will occur. von 
Neumann showed how to treat a special class of ap- 
proximate measurements by the method of projection 
 operator^.^ However, a general treatment of all ap- 
proximate measurements by the method of projection 
operators can be shown (Sec. 4) to be impossible. 

How is one to apply the conventional formulation of 
quantum mechanics to the space-time geometry itself? 
The issue becomes especially acute in the case of a closed 
~niverse.~ There 'is no place to stand outside the system 
to observe it. There is nothing outside it to produce 
transitions from one state to another. Even the familiar 
concept of a proper state of the energy is completely 
inapplicable. In the derivation of the law of conserva- 
tion of energy, one defines the total energy by way of an 
integral extended over a surface large enough to include 
all parts of the system and their interactions4 But in a 
closed space, when a surface is made to include more 
and more of the volume, it ultimately disappears into 
nothingness. Attempts to define a total energy for a 
closed space collapse to the vacuous statement, zero 
equals zero. 

How are a quantum description of a closed universe, 
of approximate measurements, and of a system that 
contains an observer to be made? These three questions 
have one feature in common, that they all inquire about 
the quantum mechanics that is internal to an isolated 
system. 

No way is evident to apply the conventional formula- 
tion of quantum mechanics to a system that is not sub- 
ject to external observation. The whole interpretive 
scheme of that formalism rests upon the notion of 
external observation. The probabilities of the various 
possible outcomes of the observation are prescribed 
exclusively by Process 1. Without that part of the 
formalism there is no means whatever to ascribe a 
physical interpretation to the conventional machinery. 
But Process 1 is out of the question for systems not 
subject to external observati~n.~ 

3. QUANTUM MECHANICS INTERNAL TO AN 
ISOLATED SYSTEM 

This paper proposes to regard pure wave mechanics 
(Process 2 only) as a complete theory. I t  postulates that 
a wave function that obeys a linear wave equation 

everywhere and a t  all times supplies a complete mathe 
matical model for every isolated physical system with- 
out exception. I t  further postulates that every system 
that is subject to external observation can be regarded 
as part of a larger isolated system. 

The wave function is taken as the basic physical 
entity with no a priori interpretation. Interpretation 
only comes after an investigation of the logical structure 
of the theory. Here as always the theory itself sets the 
framework for its interpretati~n.~ 

For any interpretation it is necessary to put the 
mathematical model of the theory into correspondence . 
with experience. For this purpose it is necessary to 
formulate abstract models for observers that can be 
treated within the theory itself as physical systems, to 
consider isolated systems containing such model ob- 
servers in interaction with other subsystems, to deduce 
the changes that occur in an observer as a consequence 
of interaction with the surrounding subsystems, and 
to interpret the changes in the familiar language of 
experience. 

Section 4 investigates representations of the state of 
a composite system in terms of states of constituent 
subsystems. The mathematics leads one to recognize . . 
the concept of the relativity of states, in the following 
sense: a constituent subsystem cannot be said to be in 
any single well-defined state, independently of the re- 

I 
rnainder of the composite system. To any arbitrarily 
chosen state for one subsystem there will correspond a 
unique relative state for the remainder of the composite 
system. This relative state will usually depend upon the 1 
choice of state for the first subsystem. Thus the state 
of one subsystem does not have an independent exist- 
ence, but is fixed only by the state of the remaining sub- 
system. In other words, the states occupied by the sub- 
systems are not independent, but correlated. Such corre- 
lations between systems arise whenever systems in- 
teract. In the present formulation all measurements and 

I 
observation processes are to be regarded simply as inter- 
actions between the physical systems involved-inter- 
actions which produce strong correlations. A simple 
model for a measurement, due to von Neumann, is 
analyzed from this viewpoint. 

Section 5 gives an abstract treatment of the problem 
of observation. This uses only the superposition prin- 
ciple, and general rules by which composite system 
states are formed of subsystem states, in order that the 
results shall have the greatest generality and be appli- 
cable to any form of quantum theory for which these * 

principles hold. Deductions are drawn about the state 
of the observer relative to the state of the object system. 

a Reference 1 Chap. 4 Sec. 4. 
a See A. Ein;tein, T ~ ;  of Rdati,,ily (Princeton Univ- I t  is found that experiences of the observer (magnetic 

ersity Press Princeton 1950) third edition, p. 107. tape memory, counter system, etc.) are in full accord 
t r ~ & L ~ $ ~ M ~ $ a , " . ~ ~ f ~ A $ ~ ~ ~ $ ~  ~ ~ C ~ ~ ~ n ~  with predictions of the conventional "external observer1' 
1951), p. 343. formulation of auantum mechanics. based on Process 1. 

'See in particular the discussion of this point by N. Bohr and 
L. Rosenfeld, Kgl. Videnskab. Selskab, Mat.-fys, Med,j. Section the state" . 
12, No. 8 (1933). tion of quantum mechanics. 
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4. CONCEPT OF RELATIVE STATE system states are generally correlated with one another. 

We now investigate some consequences of the wave 
mechanical formalism of composite systems. If a com- 
posite system S,  is composed of two subsystems S1 and 
S2, with associated Hilbert spaces HI and H2, then, 
according to the usual formalism of composite systems, 
the Hilbert space for S is taken to be the tensor product of 
H1 and Hz (written H=Hl@HZ). This has the con- 
sequence that if the sets {fiSl) and {VS*) are complete 
orthonormal sets of states for S1 and Sz, respectively, 
then the general state of S can be written as a super- 
position : 

, A ,  *'=xi, j~ij&~%j". (1) and an apparatus of one coordinate r (for example the 

one can arbitraril;) choosk a state for one subsystem, and 
be led to the relative state for the remainder. Thus we are 

. - 

From (3.1) although S is in a definite state $', the 
subsystems SI and Sz do not possess anything like 
definite states independently of one another (except 
in the special case where all but one of the aij are zero). 

We can, however, for any choice of a state in one sub- 
system, uniquely assign a correspcnding relative state 
in the other subsystem. For example, if we choose fk as 
the state for SI. while the com~osite svstem S is in the 

faced with a jundamental relativity of states, which is 
implied by the formalism of composite systems. I t  is 
meaningless to ask the absolute state of a subsystem-one 
can only ask the state relative to a given state of the re- 

state $8 given by (3.1), then the corresponding relative 
state in S2, $(S2; relEk,Sl), will be: 

( 

where Nk is a normalization constant. This relative 
state for fk  is independent of the choice of basis (5,) 
(i#k) for the orthogonal complement of fk, and is 
hence determined uniquely by fk alone. To find the 
relative state in S2 for an arbitrary state of SI therefore, 
one simply carries out the above procedure using any 
pair of bases for S1 and S 2  which contains the desired 
state as one element of the basis for S1. To find states 
in S1 relative to states in S2, interchange S1 and S 2  in the 
procedure. 

In the conventional or "external observation" 
formulation, the relative state in 82, $(S2; rel$,SI), fpr 
a state in S1, gives the conditional probability dls- 
tributions for the results of all measurements in Sz, 
given that S1 has been measured and found to be in state 
$8-i.e., that dS1 is the eigenfunction of the measure- 
ment in S1 corresponding to the observed eigenvalue. 

For any choice of basis in SI, {ti), it is always possible 
to represent the state of S, (I), as a single superposition 
of pairs of states, each consisting of a state from the 
basis (&) in S1 and its relative state in S 2 .  Thus, from 
(2), (1) can be written in the form : 

mainder of the subsystem. 
At this point we consider a simple example, due to von 

Neumann, which serves as a model of a measurement 
process. Discussion of this example prepares the ground 
for the analysis of "observation." We start with a system 
of only one coordinate. q (such as position of a particle), 

This is an important representation used frequently. 
Summarizing: There does not, in general, exist anything 

like a single state for one subsystem of a composite system. 
Subsystems do not possess states that are independenf of 
the states o j  the remainder of the system, so th f  the sub- 

position oi a meter needle). Further suppose that they 
are initially independent, so that the combined wave 
function is $oS+A=$(q)rl(r) where $(q) is the initial 
system wave function, and rl(r) is the initial apparatus 
function. The Hamiltonian is such that the two systems 
do not interact except during the interval t=O to t= T, 
during which time the total Hamiltonian consists only 
of a simple interaction, 

HI = - ihq (a/&). (4) 
Then the state 

is a solution of the Schrijdinger equation, 

for the specified initial conditions at time t=O. 
From (5) at time t = T  (at which time interaction 

stops) there is no longer any definite independent 
apparatus state, nor any independent system state. 
The apparatus therefore does not indicate any definite 
object-system value, and nothing like process 1 has 
occurred. 

Nevertheless, we can look upon the total wave func- 
tion (5) as a superposition of pairs of subsystem states, 
each element of which has a definite q value and a 
correspondingly displaced apparatus state. Thus after 
the interaction the state (5) has the form: 

which is a superposition of states $,I  = 6(q- ql)?(r- qT). 
Each of these elements, $,,, of the superposltlon de- 
scribes a state in which the system has the definite 
value q=ql, and in which the apparatus has a state 
that is displaced from its original state by the amount 
qlT. These elements + , I  are then superposed with 
coefficients $(ql) to form the total state (7). 

Conversely, if we transform to the representation 
where the apparatw coordinate is definite, we write (5) 
as 

J . ~ ' + * = J ( ~ / N , ~ ) ~ ~  (q)6(~-r1)d~1, 
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where 
E" (4) = Nrt4(q)9(r1- qT) 

and 
(8) 

Then the tr'(q) are the relative system state functions6 
for the apparatus states 6(r-r') of definite value r=r'. 

If T is sufficiently large, or 9(r) sufficiently sharp 
(near 6(r)), then iT'(q) is nearly 6(q-r'/T) and the 
relative system states Fr'(q) are nearly eigenstates for 
the values q= rl/T. 

We have seen that (8) is a superposition of states 
+,J, for each of which the apparatus has recorded a 
definite value r', and the system is left in approximately 
the eigenstate of the measurement corresponding to 
q=rl/T. The discontinuous "jump" into an eigenstate 
is thus only a relative proposition, dependent upon the 
mode of decom~osition of the total wave function into 
the superposition, and relative to a particularly chosen 
apparatus-coordinate value. So far as the complete 
theory is concerned all elements of the superposition 
exist simultaneously, and the entire process is quite 
continuous. 

von Neumann's example is only a special case of a 
more general situation. Consider a n y  measuring ap- 
paratus interacting with any object system. As a result 
of the interaction the state of the measuring apparatus 
is no longer capable of independent definition. I t  can 
be defined only relative to the state of the object system. 
I n  other words, there exists only a correlation between 
the states of the two systems. 1 t  seems as if nothing can 
ever be settled bv such a measurement. 

This indefinite behavior seems to be auite a t  variance 
with our observations, since physical objects always 
appear to us to have definite positions. Can we reconcile 
this feature wave mechanical theory built purely on 
Process 2 with experience, or must the theory be 
abandoned as untenable? In  order to answer this 
question we consider the problem of observation itself 
within the framework of the theory. 

5. OBSERVATION 

We have the task of making deductions about the 
appearance of phenomena to observers which are con- 
sidered as purely physical systems and are treated 
within the theory. To accomplish this it is necessary 
to identify some present properties of such an observer 
with features of the past experience of the observer. 

Thus, in order to say that an observer 0 has observed 
the event a ,  it is necessary that the state of 0 has become 
changed from its former state to a new state which is 
dependent upon a .  

I t  will suffice for our purposes to consider the ob- 
servers to possess memories (i.e., parts of a relatively 
permanent nature whose states are in correspondence 
with past experience of the observers). I n  order to 
make deductions about the past experience of an ob- 
server it is sufficient to deduce the present contents of 
the memory as it appears within the mathematical 
model. 

As models for observers we can, if we wish, consider 
automatically functioning machines, possessing sensory 
apparatus and coupled to recording devices capable of 
registering past sensory data and machine configura- 
tions. We can further suppose that the machine is so 
constructed that its present actions shall be determined 
not only by its present sensory data, but by the con- 
tents of its memory as well. Such a machine will then 
be capable of performing a sequence of observations 
(measurements), and furthermore of deciding upon its 
future experiments on the basis of past results. If we 
consider that current sensory data, as well as machine 
configuration, is immediately recorded in the memory, 
then the actions of the machine a t  a given instant can 
be regarded as a function of the memory contents only, 
and all relavant experience of the machine is contained 
in the memory. 

For such machines we are justified in using such 
phrases as "the machine has perceived A" or "the 
machine is aware of A" if the occurrence of A is repre- 
sented in the memory, since the future behavior of 
the machiue will be based upon the occurrence of A. In 
fact, all of the customary language of subjective experi- 
ence is quite applicable to such machines, and forms the 
most natural and useful mode of expression when 
dealing with their behavior, as is well known to in- 
dividuals who work with complex automata. 

When dealing with a system representing an ob- 
server quantum mechanically we ascribe a state func- 
tion, Go, to it. When the state J.O describes an observer 
whose memory contains representations of the events 
A, B, . ., C we denote this fact by appending the 
memory sequence in brackets as a subscript, writing : 

#'[A, 8. . . . . CI. , (9) 

The symbols A, B, . . . , C, which we assume to be ordered 
time-wise, therefore stand for memory configurations 
which are in corres~ondence with the ~ a s t  ex~erience 

This example provides a n~odel of an approximate n~easure- of the observer. These configurations c a i  be regarded as 
ment. However, the relative system states after the interaction 
tr'(q) cannot ordinarily be generated from the original system punches in a paper tape, On a magnetic 
state + by the application of any rojection operator, E. Proof: configurations of a relay switching circuit, or even con- 
s ~ ~ ~ ~ *  on the Contrary that ~ & ) = ~ ~ m ( d = ~ ' + ( q ) 7 ( r ' - p l ) ,  figurations of brain cells. We require only that they be 
where N ,  N' are normalization constants. Then 

capable of the interpretation "The observer has ex- 
E(N&(q)) = N E + ( q )  = N"+(q)tle(r' - qt) perienced the succession of events A, B, . -  a ,  C." (We 

and E+(q)=(N"/N)+(q)q2(r'-qt). But the condition E = E  
whch is necessary for E to be a projection implies that N'/N"    me times write dots in a memory sequence, ' ' ' A ,  
7 (q) =+(q) which is generally false. B, - . - , C, to indicate the possible presence of previous 
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memories which are irrelevant to the case being con- state will have the form: 
sidered.) 

The mathematical model seeks to treat the interaction 
of such observer systems with other physical systems 
(observations), within the framework of Process 2 wave 
mechanics, and to deduce the resulting memory con- 
figurations, which are then to be interpreted as records 
of the past experiences of the observers. 

We begin by defining what constitutes a "good" 
observation. A good observation of a quantity A, with 
eigenfunctions +,, for a system S,  by an observer whose 
initial state is $O, consists of an interaction which, in a 
specified period of time, transforms each (total) state 

This superposition principle continues to apply in the 
presence of further systems which do not interact during 
the measurement. Thus, if systems S1, Sz, . . . , S, are 
present as well as 0, with original states #Sl, #S2, 
. ., +Sn, and the only interaction during the time of 
measurement takes place between S1 and 0, the measure- 
ment will transform the initial total state: 

into the final state : 

into a new state 
$S+O'=+iJ.O[...a;~ (11) 

where a, characterizes7 the state 4,. (The symbol, a,, 
might stand for a recording of the eigenvalue, for ex- 
ample.) That is, we require that the system state, if it 
is an eigenstate, shall be unchanged, and (2) that the 
observer state shall change so as to describe an ob- 
server that is "aware" of which eigenfunction it is; that 
is, some property is recorded in the memory of the ob- 

I server which characterizes +,, such as the eigenvalue. 
I The requirement that the eigenstates for the system 

be unchanged is necessary if the observation is to be 
I 

I significant (repeatable), and the requirement that the 
observer state change in a manner which is different 

I for each eigenfunction is necessary if we are to be able 
to call the interaction an observation a t  all. How closely 
a general interaction satisfies the definition of a good 
observation depends upon (1) the way in which the in- 
teraction depends upon the dynamical variables of the 
observer system-including memory variables-and 
upon the dynamical variables of the object system and 
(2) the initial state of the observer system. Given (1) 
and (2), one can for example solve the wave equation, 
deduce the state of the composite system after the end 
of the interaction, and check whether an object system 
that was originally in an eigenstate is left in an eigen- 
state, as demanded by the repeatability postulate. This 
postulate is satisfied, for example, by the model of von 
Neumann that has already been discussed. 

From the definition of a good observation we first 
deduce the result of an observation upon a system which 
is not in an eigenstate of the observation. We know from 
our definition that the interaction transforms states 
~,+OC. . . I  into states +,$O[. . .at]. Consequently these 
solutions of the wave equation can be superposed to 
give the final state for the case of an arbitrary initial 
system state. Thus if the initial system state is not an 

where ai= (4,Sl,#S1) and 4iSl are eigenfunctions of the 
'observation. 

Thus. we arrive a t  the general rule for the trans- 
formation of total state functions which describe sys- 
tems within which observation processes occur: 

Rule 1 : The observation of a quantity A ,  with eigen- 
functions +iS1, in a system S1 by the observer 0, 
transforms the total state according to : 

If we next consider a second observation to be made, 
where our total state is now a superposition, we can 
apply Rule 1 separately to each element of the super- 
position, since each element separately obeys the wave 
equation and behaves independently of the remaining 
elements, and then superpose the results to obtain the 
final solution. We formulate this as : 

Rule 2: Rule 1 may be applied separately to each 
element of a superposition of total system states, 
the results being superposed to obtain the final 
total state. Thus, a determination of B, with eigen- 
functions vjs2, on Sz by the observer 0 transforms 
the total state 

into the state 

Xi. ja;b,+islqis~s3. .fiS+O[. . .a;.sjl (17) 

where bj= (qjS2,#Sz), which follows from the 
application of Rule 1 to each element 4isl+S2. - 
#S$O[. . .ail, and then superposing the results with 
the coefficients a;. 

&enstate, but a general state Cia&, the final total These two rules, which follow directly from the super- 
position principle, give a convenient method for diter- 

I t  should be understood that $4.. .a,] is a different state for mining final total states for anv number of observation 
each i. A more precise notation would write $ 0 , ~ .  . .at], but no 

u 

confusion can arise if we simply let the $,Qe indexed only by the processes in any combinations. We seek the 
index of the memory configuration symbol. znterpretation of such final total states. 
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Let us consider the simple case of a single observa- 
tion of a quantity A, with eigenfunctions +;, in the 
system S with initial state $S, by an observer 0 whose 
initial state is P C . .  .I. The final result is, as we have 
seen, the superposition 

$'S+O=C;aa$,+"c. - .a;]. (18) 

There is no longer any independent system state or 
observer state, although the two have become corre- 
lated in a one-one manner. However, in each element 
of the superposition, I$,+"[. . .a;], the object-system state 
is a particular eigenstate of the observation, and 
furthermore the observer-system state describes the ob- 
server ar definitely perceiving that particular system state. 
This correlation is what allows one to maintain the 
interpretation that a measurement has been performed. 

We now consider a situation where the observer 
system comes into interaction with the object system for 
a second time. According to Rule 2 we arrive at the 
total state after the second observation : 

Again, each element &$Or. . .a;.ail describes a system 
eigenstate, but this time also describes the observer as 
having obtained the same result for each of the two ob- 
servations. Thus for every separate state of the ob- 
server in the final superposition the result of the ob- 
servation was repeatable, even though different for 
different states. This repeatability is a consequence of 
the fact that after an observation the relative system 
state for a particular observer state is the corresponding 
eigenstate. 

Consider now a different situation. An observer- 
system 0, with initial state $Oc. . -1, measures the same 
quantity A in a number of separate, identical, systems 
which are initially in the same state, $Sl=$S*=. 

=$Sn=Ciaa$, (where the 4; are, as usual, eigen- 
functions of A). The initial total state function is then 

$, sl+s*...+sn+O=$svS2 . . .$s~vJ[.. .I. (20) 

We assume that the measurements are performed on the 
systems in the order S1, Sz, . -Sn. Then the total state 
after the first measurement is by Rule 1, 

(where ai' refers to the first system, S1). 

After the second measurement it is, by Rule 2, 

and in general, after r measurements have taken place 
(r 5 n) , Rule 2 gives the result : 

We can give this state, $,, the following interpreta- 
tion. I t  consists of a superposition of states : 

The "trajectory" of the memory configuration of an 
observer performing a sequence of measurements is 
thus not a linear sequence of memory configurations, 
but a branching tree, with all possible outcomes exist- 
ing simultaneously in a final superposition with various 
coefficients in the mathematical model. In  any familiar 
memory device the branching does not continue 
indefinitely, but must stop at a point limited by the 
capacity of the memory. 

In order to establish quantitative results, we must 
put some sort of measure (weighting) on the elements of 
a final superposition. This is necessary to be able to 
make assertions which hold for almost all of the ob- 
server states described by elements of a superposition. 
We wish to make quantitative statements about the 
relative frequencies of the different possible results of 
observation-which are recorded in the memory-for 
a typical observer state; but to accomplish this we 

each of which describes the observer with a definite 
memory sequence [a,l,a,2,. . 'akr]. Relative to him the 
(observed) system states are the corresponding eigen- 
functions rpaS1, 4jSs,. a ,  $kSr, the remaining systems, 
St.cl, . . . , S,, being unaltered. 

A typical element $I; j...k of the final superposition 
describes a state of affairs wherein the observer has 
perceived an apparently random sequence of definite 
results for the observations. Furthermore the object 
systems have been left in the corresponding eigenstates 
of the observation. At this stage suppose that a re- 
determination of an earlier system observation (S1) 
takes place. Then it follows that every element of the 
resulting final superposition will describe the observer 
with a memory configuration of the form [a?,. . . 
ail,. + .(lkr,ffjl] in which the earlier memory coincides 
with the later-i.e., the memory states are correlated. 
I t  will thus appear to the observer, as described by a 
typical element of the superposition, that each initial 
observation on a system caused the system to "jump" \-1 

into an eigenstate in a random fashion and thereafter 
remain there for subsequent measurements on the same 
system. Therefore-disregarding for the moment quanti- 
tative questions of relative frequencies-the proba- 

I : 
bilistic assertions of Process 1 appear to be valid to I 

the observer described by a typical element of the final 
superposition. 

We thus arrive a t  the following picture: Throughout 
all of a sequence of observation processes there is only 
one physical system representing the observer, yet 
there is no single unique state of the observer (which 
follows from the representations of interacting systems). 
Nevertheless, there is a representation in terms of a 
superposition, each element of which contains a definite 
observer state and a corresponding system state. Thus 

ton): 
n 

m(a)= C m(a;). 
bl 

(26) 

with each succeeding observation (or interaction), the 
observer state "branches" into a number of different 
states. Each branch represents a different outcome of 
the measurement and the corresponding eigenstate for 
the object-system state. All branches exist simultane- 
ously in the superposition after any given sequence of 
observations. $ 

Then we have already restricted the choice of m to the 
square amplitude alone; in other words, we have 
m(aJ =a;*a;, apart from a multiplicative constant. 

To see this, note that the normality of rp' requires 
that I a 1 = (Ca;*ai)+. From our remarks about the 
dependence of m upon the amplitude alone, we replace 
the a; by their amplitudes ui= ( a; 1 . Equation (26) then 
imposes the requirement, 

, . 1. 

, 

m (a) = m(Ca;*ai)*= m (Cut)* 
= Cm(u;) = Cm(ut)*. (27) 

$ Nok added in proof.-In reply to a preprint of this article some 
correspondents have raised the question of the "transition from 
possible to actual," arguing that in "reality" there is-as our 
experience testifies-no such splitting of observer states so that 
only one branch can ever actually exist. Since this point Ay occur 
to other readers the following is offered in explanation. 

The whole issue of the transition from "possible" to "actual" 
is taken care of in the theory in a very simple way-there is no 
such transition, nor is such a transition necessary for the theory 
to be in accord with our experience. From the viewpoint of the 
theory all elements of a superposition (all "branches") are "ac- 
tual," none any more "real" than the rest. I t  is unnecessary to 
suppose that all but one are somehow destroyed, since all the 

Defining a new function g(x) 

must have a method for selecting a typical element 
from a superposition of orthogonal' states. 

we see that (27) requires that 

We therefore seek a scheme to assign a meas- g(Cut )  =Cg(u?). 
ure to the elements of a superposition of orthogonal 

(29) 

states xjargi. we require a positive function of the Thus g is restricted to be linear and necessarily has the 

complex coefficients of the elements of the super- form: 

position, so that m(ai) shall be the measure assigned g (x) = cx (c constant). 
to the element 4;. In order that this general scheme be 

(30) 

unambiguous we must first require that the states them- Therefore g(f l=c$=m(%")=m( and we have de- 
selves always be normalized, so that we can distinguish duced that is restricted to the form 

the coefficients from the states. However, we can still m(ai) =m(ui) = cut= cai*ai. (31) . , 

only determine the coefiients, in distinction to the We have thus shown that the only choice of measure 
states, up to an arbitrary phase factor' In order to consistent with our additivity requirement is the square 
avoid ambiguities the function m must therefore be a amplitude measure, apart from an arbitrary multi- 
function of the amplitudes of the coefficients alone, plicative constant which may be bed, if desired, by 
m(ai)=m(lail). 

We now impose an additivity requirement. We can 
n 

regard a subset of the superposition, say C a,+;, as a 
i=l 

single element a$' : 

We then demand that the measure assigned to 4' shall 
be the sum of the measures assigned to the 4; (i from 1 

normalization requirements. (The requirement that 
the total measure be unity implies that this constant is 
1 .> 

The situation here is fully analogous to that of 
classical statistical mechanics, where one puts a measure 
on trajectories of systems in the phase space by placing 
a measure on the phase space itself, and then making 
assertions (such as ergodicity, quasi-ergodicity, etc.) 
which hold for "almost all" trajectories. This notion 
of "almost all" depends here also upon the choice of 
measure, which is in this case taken to be the Lebesgue 
measure on the phase space. One could contradict the 
statements of classical statistical mechanics by choosing 

separate elements of a superposition individually obey the wave a measure for which onlv the exce~tional &iectoriei 
equation with complete hdi'fference to the presence or absence 
("actuality" or not) of any other elements. This total lack of had measure' the choice of 
effect of one branch on another also implies that no observer will Lebesgue measure on the phase space can be justified 
ever be aware of any "splitting" process. by the fact that it is the only choice for which the "con- 

Arguments that the world picture presented by this theory is 
contradicted by experience, because we are unaware of any sewation of probability" holds, (~iouville's theorem) 
branching process, are like the criticism of the Copernican theory and hence the only choice which makes possible any 
that the -mobility of the earth as a real ~ h ~ s i c a l  fact is incom- reasonable statistical deductions at all. 

- 
patible with the common sense interpretation of nature because 
we feel no such motion. In both cases the argument fails when it is In  our case, we wish to make , statements about 
shown that the theory itself predicts that our experience will be "traiectories" of observers. However. for us a traiectorv 
what it in fact is. (In the ~ d ~ e r n i c a n  case the addition of New- 

' .I 

tonian physics was required to be able to show that the earth's is branching (transfoming from state to 
inhabitants would be unaware of any motion of the earth.) superposition) with each successive measurement. To 



148 HUGH EVERETT, 111 "RELATIVE STA? 73" FORMULATION 149 

have a requirement analogous to the "conservation of 
probability" in the classical case, we demand that the 
measure assigned to a trajectory a t  one time shall equal 
the sum of the measures of its separate branches a t  a 
later time. This is precisely the additivity requirement 
which we imposed and which leads uniquely to the 
choice of square-amplitude measure. Our procedure is 
therefore quite as justified as that of classical statistical 
mechanics. 

Having deduced that there is a unique measure which 
will satisfy our requirements, the square-amplitude 
measure, we continue our deduction. This measure 
then assigns to the i,  j, - . kth element of the super- 
position (24), 

the measure (weight) 

so that the observer state with memory configuration 
[ail ,a?, - - . ,akr] is assigned the measure ai*a;aj*aj. . . 
ak*ak=M; j...k. We see immediately that this is a 
product measure, namely, 

Mi j...k= M a j .  . 'Mk (34) 
where 

M1=al*al 

observations of the same quantity upon identical sys- 
tems, the result is equally true for arbitrary sequences 
of observations, as may be verified by writing more 
general sequences of measurements, and applying 
Rules 1 and 2 in the same manner as presented here. 

We can therefore summarize the situation when the 
sequence of observations is arbitrary, when these ob- 
servations are made upon the same or different systems 
in any order, and when the number of observations of 
each quantity in each system is very large, with the 
following result : 

Except for a set of memory sequences of measure 
nearly zero, the averages of any functions over a 
memory sequence can be calculated approximately 
by the use of the independent probabilities given by 
Process 1 for each initial observation, on a system, 
and by the use of the usual transition probabilities 
for succeeding observations upon the same system. 
In the limit, as the number of all types of observa- 
tions goes to infinity the calculation is exact, and the 
exceptional set has measure zero. 

This prescription for the calculation of averages over 
memory sequences by probabilities assigned to in- 
dividual elements is precisely that of the conventional 
"external observation" theory (Process 1). Moreover, 
these predictions hold for almost all memorv seauences. 
~hereiore all predictions of the usual theor; wiliappear 

so that the measure assigned a particular to be valid to the observer in amost all observer states. 
sequence [a?, a?, ' ' ' 1 a*'] is the product the In particular, the uncertainty principle is never 
measures for the individual components of the memory violated since the latest measurement uDon a svstem 
sequence. 

There is a direct correspondence of our measure 
structure to the probability theory of random sequences. 
If we regard the Mi j...k as probabilities for the sequences 
then the sequences are equivalent to the random 
sequences which are generated by ascribing to each term 
the independent probabilities M1=al*al. Now proba- 
bility theory is equivalent to measure theory mathe- 
matically, so that we can make use of it, while keeping 
in mind that all results should be translated back to 
measure theoretic language. 

Thus, in particular, if we consider the sequences to 
become longer and longer (more and more observations 

. .. - - -  - .  
performed) each memory sequence of the final super- 
position will satisfy any given criterion for a randomly 
generated sequence, generated by the independent 
probabilities al*ar, except for a set of total measure 
which tends toward zero as the number of observations 
becomes unlimited. Hence all averages of functions over 
any memory sequence, including the special case of 
frequencies, can be computed from the probabilities 
a;*ai, except for a set of memory sequences of measure 
zero. We have therefore shown that the statistical asser- 
tions of Process 1 will appear to be valid to the observer, 
in almost all elements of the superposition (24), in the 
limit as the number of observations goes to infinity. 

While we have so far considered only sequences of 

, ------ 
supplies all possible information about the relative 
system state, so that there is no direct correlation be- 
tween any earlier results of observation on the sys- 
tem, and the succeeding observation. Any observation 
of a quantity B, between two successive observations of 
quantity A (all on the same system) will destroy the 
one-one correspondence between the earlier and later 
memory states for the result of A. Thus for alternating 
observations of different quantities there are funda- 
mental limitations upon the correlations between 
memory states for the same observed quantity, these - 
limitations expressing the content of the uncertainty 
~ r i n c i ~ l e .  

L 

As a final step one may investigate the consequences 
of allowing several observer systems to interact with 
(observe) the same object system, as well as to interact 
with one another (communicate). The latter interaction 
can be treated simply as an interaction which correlates 
parts of the memory configuration of one observer with 
another. When these observer systems are investigated, 
in the same manner as we have already presented in this 
section using Rules 1 and 2, one finds that in all elements 
of the final superposition : 

1. When several observers have separately observed 
the same quantity in the object system and then com- 
municated the results to one another they find that they 

are in agreement. This agreement persists even when 
an observer performs his observation after the result 
has been communicated to him by another observer 
who has performed the observation. 

2. Let one observer perform an observation of a 
quantity A in the object system, then let a second per- 
form an observation of a quantity B in this object sys- 
tem which does not commute with A, and finally let the 
first observer repeat his observation of A .  Then the 
memory system of the first observer will not in general 
show the same result for both observations. The inter- 
vening observation by the other observer of the non- 
commuting quantity B prevents the possibility of any 
one to one correlation between the two observations of 
A .  

3. Consider the case where the states of two object 
systems are correlated, but where the two systems do 
not interact. Let one observer perform a specified ob- 
servation on the first system, then let another observer 
perform an observation on the second system, and 
finally let the first observer repeat his observation. 
Then it is found that the first observer always gets the 
same result both times, and the observation by the 
second observer has no effect whatsoever on the outcome 
of the first's observations. Fictitious paradoxes like 
that of Einstein, Podolsky, and Rosens which are con- 
cerned with such correlated, noninteracting systems 
are easily investigated and clarified in the present 
scheme. 

Many further combinations of several observers and 
systems can be studied within the present framework. 
The results of the present "relative state" formalism 
agree with those of the conventional "external observa- 
tion" formalism in all those cases where that familiar 
machinery is applicable. 

In conclusion, the continuous evolution of the state 
function of a composite system with time gives a com- 
plete mathematical model for processes that involve an 

' 

idealized observer. When interaction occurs, the result 
of the evolution in time is a superposition of states, 
each element of which assigns a different state to the 
memory of the observer. Judged by the state of the 
memory in almost all of the observer states, the proba- 
bilistic conclusion of the usual "external observation" 

Einstein Podolsky and Rosen, Phys. Rev. 47, 777 (1935). 
For a thorokgh discuskon of the physics of observation, see the 
chapter by N. Bohr in Albert Einstein, Philosopher-Scientist (The 
Library of Living Philosophers, Inc., Evanston, 1949). 

formulation of quantum theory are valid. In other 
words, pure Process 2 wave mechanics, without any 
initial probability assertions, leads to all the proba- 
bility concepts of the familiar formalism. 

6. DISCUSSION 

The theory based on pure wave mechanics is a con- 
ceptually simple, causal theory, which gives predictions 
in accord with experience. I t  constitutes a framework 
in which one can investigate in detail, mathematically, 
and in a logically consistent manner a number of some- 
times puzzling subjects, such as the measuring process 
itself and the interrelationship of several observers. Ob- 
jections have been raised in the past to the conventional 
or "external observation" formulation of quantum 
theory on the grounds that its probabilistic features 
are postulated in advance instead of being derived from 
the theory itelf. We believe that the present "relative- 
state" formulation meets this objection, while retaining 
all of the content of the standard formulation. 

While our theory ultimately justifies the use of the 
probabilistic interpretation as an aid to making practical 
predictions, it forms a broader frame in which to under- 
stand the consistency of that interpretation. In this 
respect it  can be said to form a metatheory for the stand- 
ard theory. I t  transcends the usual "external observa- 
tion" formulation, however, in its ability to deal logically 
with questions of imperfect observation and approxi- 
mate measurement. 

The "relative state7' formulation will apply to all 
forms of quantum mechanics which maintain the super- 
position principle. I t  may therefore prove a fruitful 
framework for the quantization of general relativity. 
The formalism invites one to construct the formal theory 
first, and to supply the statistical interpretation later. 
This method should be particularly useful for inter- 
preting quantized unified field theories where there is no 
question of ever isolating observers and object systems. 
They all are represented in a single structure, the field. 
Any interpretative rules can probably only be deduced 
in and through the theory itself. 

Aside from any possible practical advantages of the 
theory, it remains a matter of intellectual interest that 
the statistical assertions of the usual interpretation 
do not have the status of independent hypotheses, but 
are deducible (in the present sense) from the pure wave 
mechanics that starts completely free of statistical 
postulates. 
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Assessment of Everett's " Relative State" 
Formulation of Quantum Theory 

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey 

T HE preceding paper puts the principles of quan- 
tum mechanics in a new form? Observations are 

treated as a special case of normal interactions that 
occur within a system, not as a new and different kind 
of process that takes place from without. The conven- 
tional mathematical formulation with its well-known 
postulates about probabilities of observations is derived 
as a consequence of the new or "meta" quantum me- 
chanics. Both formulations apply as well to complex 
systems as to simple ones, and as well to particles as to 
fields. Both supply mathematical models for the 
physical world. In the new or "relative state" formalism 
this model associates with an isolated system a state 
function that obeys a linear wave equation. The theory 
deals with the totality of all the possible ways in which 
this state function can be decomposed into the sum of 
products of state functions for subsystems of the over- 
all system-and nothing more. For example, in a sys- 
tem endowed with four degrees of freedom x~,xz ,x~ ,x~ ,  
and a time coordinate, t, the general state can be written 
#(x1,xz,xa,x4,t). However, there is no way in which # 
defines any unique state for any subsystem (subset of 
XI,X~,X~,X~).  The subsystem consisting of XI and x3, say, 
cannot be assigned a state ~(xl,xa,t) independent of the 
state assigned to the subsystem xz and x4. In other 
words, there is ordinarily no choice of j or u which will 
allow # to be written in the form # = u ( x ~ , x ~ , ~ ) ~ ( x z , x ~ , ~ ) .  
The most that can be done is to associate a relative 
state to the subsystem, urel(x1,x3,t), relative to some 
specijed state f(~z,xr,t) for the remainder of the system. 
The method of assigning relative states urel(x1,x3,t) in 
one subsystem to specific states f(xz,xr,t) for the re- 
mainder, permits one to decompose # into a super- 
position of products, each consisting of one member of an 
orthonormal set for one subsystem and its correspond- 
ing relative state in the other subsystem: 

where { f) is an orthonormal set. According as the func- 
tions f, constitute one or another family of orthonormal 
functions, the relative state functions u,.lf., have one 
or another dependence upon the variables of the re- 
maining subsystem. 

Another way of phrasing this unique association of 
relative state in one subsystem to states in the re- 
mainder is to say that the states are correlated. The 

possible decompositions into states and relative states 
is all that can be read out of the mathematical model. 

The model has a place for observations only insofar 
as they take place within the isolated system. The 
theory of observation becomes a special case of the 
theory of correlations between subsystems. 

How does this mathematical model for nature relate 
to the present conceptual scheme of physics? Our con- 
clusions can be stated very briefly: (1) The conceptual 
scheme of "relative state" quantum mechanics is com- 
pletely different from the conceptual scheme of the 
conventional "external observation" form of quantum 
mechanics and (2) The conclusions from the new treat- 
ment correspond completely in familiar cases to the 
conclusions from the usual analysis. The rest of this 
note seeks to stress this correspondence in conclusions 
but also this complete diference in concept. 

The "external observation" formulation of quantum 
mechanics has the great merit that it is dualistic. I t  
associates a state function with the system under study 
-as for example a part iclebut  not with the ultimate 
observing equipment. The system under study can be 
enlarged to include the original object as a subsystem 
and also a piece of observing equipment-such as a 
Geiger counter-as another subsystem. At the same 
time the number of variables in the state function has 
to be enlarged accordingly. However, the ultimate 
observing equipment still lies outside the system that is 
treated by a wave equation. As Bohr2 so clearly em- 
phasizes, we always interpret the wave amplitude by 
way of observations of a classical character made from 
outside the quantum system. The conventional form- 
alism admits no other way of interpreting the wave 
amplitude; it is logically self-consistent; and it rightly 
rules out any classical description of the internal 
dynamics of the system. With the help of the principle 
of complementarity the "external observation" formu- 
lation nevertheless k e e ~ s  all it consistentlv can of 
classical concepts. Without this possibility of classical 
measuring equipment the mathematical machinery of 
quantum mechanics would seem a t  first sight to admit 
no correlation with the physical world. 

Instead of founding quantum mechanics upon 
classical physics, the "relative state" formulation uses 
a completely different kind of model for physics. This 
new model has a character all of its own ; is conceptually 

totality of these correlations which can arise from all chapter by N~~~~ Bohr in A J ~ ~ ~  Einsh, ph~osopha- 
Scientist, edited by P. A. Schilpp (The Library of Living Phil- ' Hugh Everett, 111, Revs. Modem Phys. 29,454 (1957). osophers, Inc., Evanston, Illinois, 1P49). 
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self-contained; defines its own possibilities for inter- 
pretation; and does not require for its formulation any 
reference to classical concepts. I t  is difficult to make 
clear how decisively the "relative state" formulation 
drops classical concepts. One's initial unhappiness at  
this step can be matched but few times in history: 
when Newton described gravity by anything so pre- 
posterous as action at  a distance; when Maxwell 
described anything as natural as action at  a distance in 
terms as unnatural as field theory ; when Einstein denied 
a privileged character to any coordinate system, and 
the whole foundations of physical measurement at  
first sibht seemed to collapse. How can one consider 
seriously a model for nature that follows neither the 
Newtonian scheme, in which coordinates are functions 
of time, nor the "external observation" description, 
where probabilities are ascribed to the possible out- 
comes of a measurement? hlerely to analyze the alterna- 
tive decompositions of a state function, as in ( I ) ,  with- 
out saying what the decomposition means or how to 
interpret it, is apparently to define a theoretical struc- 
ture almost as poorly as possible ! Nothing quite com- 
parable can be cited from the rest of physics except 
the principle in general relativity that all regular co- 
ordinate systems are equally justified. As in general 
relativity, so in the relative-state formulation of quan- 
tum mechanics the analysis of observation is the key 
to the physical interpretation. 

Observations are not made from outside the system 
by some super-observer. There is no observer on hand 
to use the conventional "external observation" theory. 
Instead, the whole of the observer apparatus is treated 
in the mathematical model as part of an isolated system. 
All that the model will say or ever can say about ob- 
servers is contained in the interrelations of eigen- 
functions for the object part of this isolated system and 
relative state functions of the remaining part of the 
system. Every attempt to ascribe probabilities to ob- 
servable~ is as out of place in the relative state formalism 
as it would be in any kind of quantum physics to ascribe 
coordinate and momentum to a particle at the same 
time. The word "probability" implies the notion of 
observation from outside with equipment that will be 
described typically in classical terms. Neither these 
classical terms, nor observation from outside, nor a 
priori probability considerations come into the founda- 
tions of the relative state form of quantum theory. 

So much for the conceptual differences between the 
new and old formulations. Now for their correspondence. 
The preceding paper shows that this correspondence 
is detailed and close. The tracing out of the correspond- 
ence demands that the system include something that 
can be called an observing subsystem. This subsystem 
can be as simple as a particle which is to collide with a 
particle that is under study. In this case the correspond- 

ence occurs at  a primitive level between the relative 
state formalism where the system consists of two 
particles, and the external observation theory where 
the system consists of only one particle. The correla- 
tions between the eigenfunctions of the object particle 
and the relative state functions of the observer particle 
in the one scheme are closely related in the ~ t h e r  scheme 
to the familiar statements about the relative proba- 
bilities for various possible outcomes of a measurement 
on the object particle. 

A more detailed correspondence can be traced be- 
tween the two forms of quantum theory when the ob- 
serving system is sufficiently complex to have what can 
be described as memory states. In this case one can see 
the complementary aspects of the usual external ob- 
servation theory coming into evidence in another way 
in the relative state theory. They are expressed in terms 
of limitations on the degree of correlation between the 
memory states for successive observations on a system 
of the same quantity, when there has been an inter- 
vening observation of a noncommuting quantity. In 
this sense one has in the relative state formalism for the 
first time the possibility of a closed mathematical model 
for complementarity. 

In physics it is not enough for a single observer or 
apparatus to make measurements. Different pieces of 
equipment that make the same type of measurement on 
the same object system must show a pattern of con- 
sistency if the concept of measurement is to make sense. 
Does not such consistency demand the external ob- 
servation formulation of quantum theory? There the 
results of the measurements can be spelled out in 
classical language. Is not such "language" a pre- 
requisite for comparing the measurements made by 
different observing systems? 

The analysis of multiple observers in the preceding 
paper by the theory of relative states indicates that 
the necessary consistency between measurements is 
already obtained without going to the external ob- 
server formulation. To describe this situation one can 
use if he will the words "communication in clear terms 
always demands classical concepts." However, the 
kind of physics that goes on does not adjust itself to the 
available terminology; the terminology has to adjust 
itself in accordance with the kind of physics that goes 
on. In brief, the problem of multiple observers solves 
itself within the theory of relative states, not by adding 
the conventional theory of measurement to that theory. 

I t  would be too much to hope that this brief survey 
should put the relative state formulation of quantum 
theory into completely clear focus. One can a t  any rate 
end by saying what it does not do. I t  does not seek to 
supplant the conventional external observer formalism, 
but to give a new and independent foundation for that 
formalism. I t  does not introduce the idea of a suDer- 
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functional form of the Hamiltonian of any given system. totally new view of the foundational character of 
Neither does it supply any prediction as to the func- physics. No escape seems possible from this relative 

$ tional dependence of the over-all state function of the state formulation if one wants to have a complete 
isolated system upon the variables of the system. But mathematical model for the quantum mechanics that 
neither does the classical universe of Laplace supply is internal to an isolated system. Apart from Everett's 
any prescription for the original positions and veloc- concept of relative states, no self-consistent system of 
ities of all the particles whose future behavior Laplace ideas is a t  hand to explain what one shall mean by 
stood ready to predict. In other words, the relative quantizing4 a closed system like the universe of general 

I state theory does not pretend to answer all the questions relativity- 

of physics. The concept of relative state does demand a C. w. Misner, Revs. Modern Phys. 29,497 (1957). 

See for Philpp Frank,s Makn ScMcca Ib observer ; it rejects that concept from the start. I t  does 
philosdphy (George iraziller, New York, 1955), Chap. 12. not supply a prescription to say what is the correct 
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Quantum mechanics 
and reality 
Could the solution to the dilemma of 
indeterminism be a universe in which all possible outcomes 
of an experiment actually occur? 

Bryce S. DeWitt 

Despite its enormous practical success, 
ciuantum theory is so contrary to intui- 
tion that, even after 45 years, the ex- 
perts themselves still do not all agree 
~vha t  to make of it. The area of dis- 
agreement centers primarily around the 
problem of describing observations. 
Formally, the result of a measurement 
is a superposition of vectors, each repre- 
senting the quantity being observed as 
having one of its possible values. The 
question that has to be answered is how 
this superposition can be reconciled 
with the fact that in practice we only 
observe one value. How is the measur- 
ing instrument prodded into making up 
its mind which value it has observed? 

Of the three main proposals for solv- 
ing this dilemma, I shall focus on one 
that pictures the universe as continually 
splitting into a multiplicity of mutually 
unobservable but equally real worlds, 
in each one of which a measurement 
does give a definite result. Although 
this proposal leads to a bizarre world 
view, it may be the most satisfying 
answer yet advanced. 

Quantum theory of measurement 
In its simplest form t h e  quantum 

theory of measurement considers a world 
composed of just two dynamical en- 
tities, a .system and an apparatus. Both 
are subject to quantum-mechanical 
Bryce DeWitt is pr~fessor of physics a t  
the University of North Carolina. 

laws, and hence one may form a com- 
bined state vector that can be expanded 
in terms of an orthonormal set of basis 
vectors 

ivhere s is an eigenvalue of some system 
observable and A is an eigenvalue of 
some apparatus observable. (Additional 
labels have been suppressed for sim- 
plicity.) The Cartesian product struc- 
ture of equation 1 reflects an implicit 
assumption that, under appropriate con- 
ditions, such as the absence of coupling, 
the system and apparatus can act as if 
they are isolated, independent and dis- 
tinguishable. It is also convenient to 
assume that the eigenvalue s ranges 
over a discrete set while the eigenvalue 
A ranges over a continuum. 

Suppose that the state of the world at 
some initial instant is represented by a 
normalized vector ~f the form 

where I + )  refers to the system and I@) 
to the apparatus. In such a state the 
system and apparatus are said to be 
"uncorrelated." For the apparatus to 
learn something about the system the 
two must be coupled together for a cer- 
tain period, so that their combined state 
will not retain the form of equation 2 
as time passes. The final result of the 
coupling will be described by the action 
of a certain unitaiy operator U 
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Schrodinger's cat. The animal trapped in a room together with a Geiger counter and a hammer, 
which, upon discharge of the counter, smashes a flask af prussic acid. The counter contains a trace 
of  radioactive material-just enough that in one hour there is a 50% chance one of the nuclei will 
decay and therefore an equal chance the cat will be poisoned. At the end of the hour the total wave 
function for the system will have a form in which the living cat and the dead cat are mixed in equal 
portions. Schrodinger felt  that  the wave mechanics that led to  this paradox presented 'an unaccept- 
able description of reality. However, Everett, Wheeler and Graham's interpretation of quantum me- 
chanics pictures the cats as inhabiting two simultaneous, noninteracting, but equally real worlds. 

I+,) = Ul\ko) ( 3 )  
Because the apparatus observes the 

system and not vice versa, we rnust 
choose a coupling operator U that re- 
flects this separation of function. Let 
U have the following action on the basis 
vectors defined in equation 1 (or on 
some similar l~asis)  : 

ETere, g is a coupling constant, which 
may be assumed to be adjustable. If 
the initial state of the system were 1s) 
and that of the apparatus were IA) then 
this coupling would be said to result in 
an "ohservation," by the apparatus, that 
the system observal~le has the value s. 
This observation or "measurement," 
~vould be regarded as "stored" in the 
apparatus "memory" by virtue of the 
permanent shift from IA) to 1A + gs) 
in the apparatus state vector. 

Is this definition adequate? 
This particular choice for U, essen- 

tially formulated by John von Neu- 
munn,l is frequently criticized because it 
is not sufficiently general and because it 
artificially delimits the concept of 
measurement. Some writers2 have also 
irlsisted that the process described by 
equation 4 merely prepares the system 
and that the measurement is not com- 
plete until a more complicated piece of 
apparatus observes the outcome of the 
preparation. 

It  is pelfectly true that laboratoiy 
measurenlellts are much more compli- 
cated tllall that described by equation 
4 and often i~i\?ol\.e interactions that do  
not establish precise correlations be- 
t\\.een pairs of obseivables such as s and 
A. Honre\.el-, apart from such noncor- 
re1ntii.e interactions, e\.ery laboratory 
measure~nent consists of one or more 
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sequences of interactions, each essen- Infinite regression 
tially of the von Neumann type. 
Altl~ough it is only the results of the 
filial interactions with the recording de- 
\.ices that \\.e usually regard as being 
s t o ~ . ~ d ,  each voll Neumann-type "ap- 
paratus" in every sequence leading to n 
filial i~lteraction may itself be said to 
possess s i  nlenlory, at least momentarily. 
Tliis mcmory differs in 110 fundamental 
\yay from tliat of the sophisticated auto- 
maton (apparatus-plus-memoiy se- 
quence) at the end of the line. It  is tlle 
c.lc~nc~i tary component that must be un- 
(lc~.stood if \ye are to understand qunn- 
turn inechanics itself. 

In his original analysis of the measure- 
ment process,l van Ncumann assumed 
tliat the coupling bet\\-een s ~ ~ s t e n l  and 
apparatus leaves the s ~ ~ s t e m  observable 
s uildistur1)cd. Rlost of his conclusions 
\\.auld have remaiiied unaffected had he 
remo\~ed tllis restriction, and \Ire are not 
~nakilig such an assumption here. Al- 
tl~ougll measurcmc~its of the nondistur1,- 
ing t ~ y c  do c ~ i s t ,  more frequently the 
ol)ser\~nl)lc suffers ;I cliailge. It  can 
ne\-ertheless be sllo\\.n:< that if suitable 
d e ~ ~ i c e s  are used, such as the compensa- 
tion devices introduced b\7 Niels Rohr 
and Leon Rosenfeld in their anal!-sis of 
electroma~netic-field  measurement^,^ 

Consider no\v \\-hat happens to the 
initial state \,ector in equation 2 as n 
result of the meas~irement process of 
equation 4. Vsi~lg the orthonoln~ality 
and assumed completeness of the l~asis 
\-ectors, we e;~sil!l find that 

pf,) = ~ f \ ! J ) l + [ ~ ] )  (5) 
J 

+(*'I) = (.41+) (8) 

The final state \.ector in equation 5 does 
 lot represent tlle s!.stem obser\.nble as 
lia\.ing an!- ~u i ique  \due-unless, of 
course, '+) 11appens to be one of the 
1~1sis \.ectors Is\. Rather it is a linear 
superposition of 1-ectors Is!] @ [s]\,  each 
of \\.llicll represents the system obse1-v- 
able as ha\,ing assumed one of its pos- 
sible \,s~lues and the apparatus as having 
obser\-ed that 1-nlue. For each possi- 
l~ilit!, the obsel~.ation \\.ill 11e a good 
one, that is, capable of distiuguishing 
adjacent \ -dues of s, provided 

the apparitus can record n-hat the \ d u e  \\.here 1 s  is the spacing betn-een ad- 
of tile s!-stelll ollser\-nble n.ould lln\-e jircent \-alnes and ,LA is the j7ariance in 
13fell \l.itllollt tile coupling. For this A c l l ~ o ~ t  its mean \,slue ~~~~~~~~~e to the 
re;Ison. n-e \\Vork in a lllodified \,ersioll distriblition function @ ( A )  ". Under 
of the so-called "iiiternction picture," in 
\\.hich only that part of the stnte vector 
that refers to the :ippnratus changes dur- 
ing the coupling inter\-nl. 

If the coupling is kno\\ll, the hypo- 
thetical undisturbed s!.stem o l ~ s e r ~ a b l e  
ma!. 1)e esprcssecl ill terms of the actual 
d!~~lamical 1-arial~les of s!.stem pltls ap- 
paratus. Hence, the operator of \\.llich 
this observal~le is an eigell\-alue is not 
itself ll!.potlietical, and no ineonsiste~lc), 
will arise if we take it to be the observable 
to which the label s refers o n  the right side 
of equation 4. 

thcse conditions I\-e ha\.e 

(+ [s]I+ [ s f ] )  = J,<,f (10) 

In other \\,ords, tile \\-a\,e function of 
the apparatus takes the form of a packet 
tliat is initially single but subsequelltly 
splits, as a result of the coupling to the 
s!.stem, into a multitude of nlutually 
orthogonal packets, one for each value 
of s. 

Here the contro1-ersies over the inter- 
pretation of qu'lntum mechanics start. 
For most people, a stnte like that of 
ccluation 5 does not represent the actual 
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occurrence of an observation. They con- 
ceive the apparatus to have entered a 
kind of schizophrenic state in which it 
is unable to decide what value it has 
found for the system observable. At 
tlie same time they can not deny that the 
coupling chosen between system and 
apparatus would, in the classical theory, 
have led to a definite outcome. They 
therefore face a crisis. How can they 
prod the apparatus into making up  its 
mind? 

The usual suggestion is to introduce a 
second apparatus to get at the facts 
simply by looking at  the first apparatus 
to see what it has recorded. But an 
analysis carried out along the above lines 
quickly shows that the second apparatus 
performs no better than the first. It too 
goes into a state of schizophrenia. The 
same thing happens with a third ap- 
paratus, and a fourth, and so on. This 
chain, ' known as "von Neumann's 
catastrophe of infinite regression," only 
makes the crisis worse. 

Change the rules 
There are essentially three distinct 

ways of getting out of the crisis. The 
first is to change the rules of the game 
by changing the theory, the object be- 
ing to break von Neumann's infinite 
chain. Eugene Wigner is the most dis- 
tinguished proponent of this method. 
Taking a remarkably anthropocentric 
stand, he proposes that the entry of the 
measurement signal into the conscious- 

ness of an observer is what triggers the 
decision and breaks the chain."er- 
tainly the chain had better be broken 
at this point, as the human brain is 
usually where laboratory-measurement 
sequences terminate. One is reminded 
of the sign that used to stand on Presi- 
dent Truman's desk: "The buck stops 
here." 

Wigner does not indulge in mere 
handwaving; he actually sketches a pos- 
sible mathematical description of the 
conversion from a pure to a mixed state, 
which might come about as a result of 
the grossly nonlinear departures from 
the normal Schrodinger equation that he 
believes must occur when conscious 
beings enter the picture. He also pro- 
poses that a search be made for unusual 
effects of conscioustiess acting on mat- 
t e ~ . ~  

Another proponent of the change-the- 
rules method is David Bohm.Gt7 Unlike 
Wigner, who does not wish to change 
the theory below tlie level of conscious- 
ness, Bohm and his school want to 
change the foundations so that even the 
first apparatus is cured of its schizo- 
phrenia. This they do by introducing 
so-called "hidden variables." Whatever 
else may be said of hidden-variable 
theories, it must be admitted that they 
do what they are supposed to. The 
first such theoryVin fact worked too 
well; there was no way of dist;nguish- 
ing it experimentally from conventional 
quantum mechanics. More recent hid- 

"The buck stops here." Wigner's solution to the dilemma of the schizophrenic apparatus is t o  claim 
that the entry of the measurement signal into the consciousness of a human observer triggers the 
decision as to which of the possible outcomes is observed-that is, whether the cat is alive or dead. 

den-variable theories are susceptible to conditions on its solution by those of 
possible experimental verification (0; the collapsed state vector. Bohm and 
disproof) .7 'CT7igner try to constiuct explicit mech- 

anisms for bringing about the collapse, 
The Copenhagen collapse but the conventionalists claiili that it 

The second method of escaping the 
von Neumann catastrophe is to accept 
the so-called "conventional," or "Copen- 
hagen," interpretation of quantum 
mechanics. (Reference 8 contains a 
selected list of papers on this topic.) 
In speaking of the adherents of this in- 
terpretation it is important to distinguish 
the active adherents from the rest, and 
to realize that even most textbook au- 
thors are not included among the 
former. If a poll were conducted 
among physicists, the majority would 
profess membership in the conventional- 
ist camp, just as most Americans would . 
claim to believe in the Bill of Rights, 
whether they had ever read it or not. 
The great difficulty in dealing with the 
activists in this camp is that they too 
change the rules of the game but, unlike 
IVigner and Bohm, pretend that they 
don't. 

According to the Copenhagen inter- 
pretation of quantum mechanics, when- 
ever a state vector attains a form like 
that in equation 5 it immediately col- 
lapses. The wave function, instead of 
consisting of a multitude of packets, re- 
duces to a single packet, and the vector 
I*,) reduces to a corresponding element 
I s ) j ~ [ s ]  of the superposition. To which 
element of the superposition it reduces 
onc can not say. One instead assigns a 
probability distribution to the possible 
outcomes, with weights given by 

The collapse of the state vector and 
the assignment of statistical \veights do 
not  follow^ from the Schriidinger equa- 
tion, which generates the operator U 
(equation 4 ) .  They are consequences 
of an external a priori inetaphysics, 
which is allowed to intervene at  this 
point and suspend the Schriidinger 
equation, or rather replace the l>oul~dary 

does not matter how the state vector is 
collapsed. To then1 the state vector 
does not represent reality but only an 
algorithm for making statistical predic- 
tions. In fact, if the measurement in- 
volves a von Neumann chain they are 
even willing to leave the state vector 
ur~collapsed over an arbitrary number of 
links, just so long as it is treated as 
collapsed somewhere along the line. 

The Copenhagen view promotes the 
impression that the collapse of the state 
vector, and even the state vector itself, 
is all in the mind. If this impression is 
correct, then what becomes of reality? 
How can one treat so cavalierly the 
objective world that obviously exists all 
around us? Einstein, who opposed to 
his death the metaphysical solution of 
the Copenhagen school, must surely 
have expressed himself thus in his mo- 
ments of private indignatioil over the 
quantum theory. I am convinced that 
these sentiments also underlie much of 
the current dissatisfaction with the con- 
ventional interpretation of quantum 
mechanics. 

Historical interpretations 
This problem of the physical inter- 

pretation of the quantum theory haunted 
its earliest designers. In 1925 and 
1926 Werner Heisenberg had just suc- 
ceeded in breaking the quantum theory 
from its moorings to the old quantum 
rules. Through the work of Max Born, 
Pascual Jordan, Erwin Schrodinger, P. 
A. M. Dirac and Heisenberg himself, 
this theory soon acquired a fully de- 
veloped mathematical formalism. The 
challenge then arose of elucidating the 
physical interpretation of this formalism 
independently of anything that had 
gone on before. 

Heisenberg attempted to meet this 
challenge by inventing numerous 
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thought experiments, each of which 
was subjected to the question: "Can 
it be described by the formalism?" He 
conjectured that the set of experiments 
for which the answer is "yes" is identi- 
cal to the set permitted by nature." 
To put the question in its most ex- 
treme form in each case meant describ- 
ing the complete experiment, including 
the measuring apparatus itself, in 
quan turn-mechanical terms. 

At this point Bohr entered the picture 
and deflected Heisenberg somewhat 
from his original program. Bohr con- 
vinced Heisenberg and most other 
physicists that quantum mechanics has 
no meaning in the absence of a classical 
realm capable of unambiguously record- 
ing the results of observations. The 
mixture of metaphysics with physics, 
which this notion entailed, led to the 
almost universal belief that the chief 
issues of interpretation are epistemo- 
logical rather than ontological: The 
cluantum realm must be viewed as a 
kind of ghostly world whose symbols, 
such as the wave function, represent 
potentiality rather than reality. 

The EWG 
What 

metatheorem 
if we forgot all metaphysical 

ideas and started over again at the 
point where Heisenberg found himself 
in 1925? Of course we can not forget 
everything; we will inevitably use 45 
years of hindsight in attempting to re- 
structure our interpretation of quantum 
mechanics. Let us nevertheless try 
) to take the mathematical formalism 
of quantum mechanics as it stands with- 
out adding anything to it 
b to deny the existence of a separate 
classical realrn 
b to assert that the state vector never 
collapses. 

ment of John Wheelerll and has been 
subsequently elaborated by R. Neil1 
Graham.12 It constitutes the third way 
of getting out of the crisis posed by 
the catastrophe of infinite regression. 

Everett, Wheeler and Graham 
(EWG) postulate that the real world, 
or any isolated part of it one may wish 
for the moment to regard as the world, 
is faithfully represented solely by the 
following mathematical objects: a vec- 
tor in a Hilbert space; a set of dy- 
namical equations (derived from a 
variational principle) for a set of opera- 
tors that act on the Hilbert space, and a 
set of commutation relations for the 
operators (derived from the Poisson 
brackets of the classical theory by the 
quantization rule, where classical ana- 
logs exist). Only one additional postu- 
late is then needed to give physical 
meaning to the mathematics. This is 
the postulate of complexity: The world 
must be sufficiently complicated that 
it be decomposable into systems and 
apparatuses. 

Without drawing on any external 
metaphysics or mathematics other than 
the ;ta*dard rules of logic, EWG are 
able, from these postulates, to prove 
the following metatheorem: The 
nzathenzatical formalism of the quantum 
theory is capable of yielding its own in- 
terpretation. To prove this meta- 
theorem, EWG must answer two ques- 
tions: 
b How can the conventional probability 
interpretation of quantum mechanics 
emerge from the formalism itself? 
b How can any correspondence with 
reality be achieved if the state vector 
never collapses? 

Absolute chance 
1n;ther words, what if we assert that Before giving the answers to these 

the formalism is all, that nothing else questions, let us note that the conven- 
is needed? Can we get away with it? tional interpretation of quantum me- 
The answer is that we can. The proof chanics confuses two concepts that really 
of this assertion was first given in 1957 ought to be kept distinct-probability as 
by Hugh Everettlo with the encourage- it relates to quantum mechanics and 

probability as it is understood in sta- friend, described by Wigner,"ho is 
tistical mechanics. Quantum mechan- hanging in suspended animation be- 
ics is a theory that attempts to de- tween only two possible outcomes of a 
scribe in mathematical language a world 
in which chance is not a measure of our 
ignorance but is absolute. It must 
inevitably lead to states, like that of 
equation 5, that undergo multiple fis- 
sion, corresponding to the many pos- 
sible outcomes of a given measurement. 
Such behavior is built into the formal- 
ism. However, precisely because quan- 
tum-mechanical chance is not a mea- 
sure of our ignorance, we ought 11ot to 
tamper with the state vector merely be- 
cause we acquire new information as a 
result of a measurement. 

The obstacle to taking such a lofty 
view of things, of course, is that it 
forces us to believe in the reality of 
all the simultaneous worlds represented 
in the superposition described by equa- 
tion 5, in each of which the measure- 
ment has yielded a different outcome. 
Nevertheless, this is precisely what 
EWG would have us believe. Accord- 
ing to them the real universe is faithfully 
represented by a state vector similar to 
that in equation 5 but of vastly greater 
complexity. This universe is constantly 
splitting into a stupendous number of 
branches, all resulting from the measure- 
mentlike interactions between its myr- 
iads of components. Moreover, every 
quantum transition taking place on 
every star, in every galaxy, in every re- 
mote coiner of the universe is splitting 
our local world on earth into myriads of 
copies of itself. 

A splitting universe 
C I still recall vividly the shock I ex- 

~er ienced on first encountering this 

quantum measurement. Here we must 
surely protest. None of us feels like 
Wigner's friend. We do not split in 
two, let alone into To this 
EWG reply: To the extent that we 
can be regarded simply as automata 
and hence on a par with ordinary 
measuring apparatuses, the laws of 
quantum mechanics do not allow us to 
feel the splits. 

A good way to prove this assertion is 
to begin by asking what would happen, 
in the case of the measurement de- 
scribed earlier by equations 4 and 5, 
if one introduced a second apparatus 
that not only looks at the memory 
bank of the first apparatus but also 
carries out an independent direct check 
on the value of the system observable. 
If the splitting of the universe is to be 
unobservable the results had better 
agree. 

The couplings necessaiy to ac- 
complish the desired measurements are 
readily set up. The final result is as 
follows (see reference 13) : The state 
vector at the end of the coupling in- 
terval again takes the form of a linear 
superposition of vectors, each of which 
represents the system observable as 
having assumed one of its possible 
values. Although the value varies 
from one element of the superposition 
to another, not only do both apparatuses 
within a given element observe the 
value appropriate to that element, but 
also, by straightforward communication, 
they agree that the results of their ob- 
servations are identical. The splitting 
into branches is thus unobserved. 

multiworld concept. The idea of 10lm+ 
slizhtlv im~erfect  c o ~ i e s  of oneself all Probability interpretation 

u ,  

constantly splitting into further copies, We  must still discuss the questions 
which ultirnatelv become unrecogniz- of the coefficients c, in equations 5 and 
able, is not easyJto reconcile with :om- 6. EWG give no a priori-interpretation 
mon sense. ere is schizophrenia with to these coefficients. 111 order to find 
a vengeance. S How pale in comparison ;ul interpretation they introduce an ap- 
is the mental state of the imaginary paratus that makes repeated measure- 
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The Copenhagen collapse. This interpretation pictures the total wave function as collapsing to one 
state of the superposition and assigns a probability that the wave function will collapse to a given 
state. Only for repetition on an ensemble of cats would live and dead cats be equally real. 

ments on an ensemble of identical sys- 
tems in identical states. The initial 
state then has the form 

1%) = l\~/l)I*?). . . I @ )  (12) 

where 

( s )  = c ,  for all i (13) 

and the successive measurements are 
described in terms of basis vectors 

lsl)lsd. . . I A ~ . A ? .  . ) (1 4) 

If the apparatus o1)serves each system 
exactly once, in sequence, then the nth 

tlie apparatus does not generally record 
a sequence of identical values for tlie 
system observable, even within a single 
elemell t of the superposition of equation 
16. Each memory sequence s,,s,, . . . 
. r . . ~  yields a certain distribution of pos- 
sible values for the system observable, 
and each distribution may be subjected 
to a statistical analysis. The first and 
simplest part of such an analysis is the 
calculation of the relative frequency 
function of the distribution: 

1 
/ ; . . J . v )  = qCS,,,, (19) 

1. 

inea:;urement is represented by a unitary n = l  

transition of the form Let us introduce the function 

IsI)Is.L). . . IAI,A?, . . . , A n  + ~ s n , .  . . )  (15) where the ru's are ally positive num1)ers 
After N measurements tlie state vec- that add up to unity. This is the first 

tor in equation 12 is changed to of a hierarchy of functio~is that measure 
the degree to which the sequence s, . . . 

,qn ) = C cs,csi. - . IJI)~SL'). - . 
sl,r?. . . s.v deviates from a randoin sequence 

~vitll weights IU,. Let us choose for the.* 
" [ s l ) s 2  1 )  (I6) lo's the numbers defined in equatioid 

where 1 I ,  and let us introduce a11 ar1)itrarily 

/+[sl ,s ,  . . I )  = - s~ii:lll positive number r .  . \Ve shall call 
the sequence s, . . . ss "first random" if 

f dA, f dA2. . . / A l  + ~ s , , , 4 ~  + ,y.r?, . . . )  6(.1', . . . sS) < 6 and "non-first-ran- 
( A  . . . (1 7) tlom" otherwise. 

Suppose now wve remove from the 
+(AI ,A? .  . . ) = ( A , , A ~ .  . . I@) (1 8) sl~pc.i.p:)sitioii of equation 16 all those 

Although every system is initially in eleinents for which the apparatus mem- 
exactly the same state as every other, o ~ y  sequence is non-first-random. De- 

note the result by I\I'~') . This vector The problem that this objection raises 
has the remarkable that it dif- is like -many that have hisen in the 
fers negligibly from in the limit long history of probability theory. Actu- 
N + a. More precisely, ally, EWG do not in the end exclude 

Lim (1'k.V) - ( * . ye ) )  = 0 
.V--+ a, 

for all E > 0 (21) 

A proof will be found-in reference 13. 
A similar result is obtained if I*<) 

is redefined by excluding, in addition, 
elements of the superposition whose 
memory sequences fail to meet any 
finite combination of the infinity of 
other requirements for a random se- 
quence. The conventional probability 
interpretation of quantum mechanics 
thus emerges from the formalism it- 
self. . Nonrandom memory sequences in 
equation 16 are of measure zero in the 
Hilbert space, in the limit as N goes to 
infinity. Each automaton in the super- 
position sees the world obeying the 
familiar statistical quantum laws. How- 
ever, there exists no outside agency that 
can designate ivhich branch of the 
superposition is to be regarded as the 
real world. All are equally real, and 
yet each is unaware of the others. 
These conclusions obviously admit of 
immediate extension to the world of 
cosmology. Its state vector is like a 
tree with an enormous number of 
1)ranches. Each branch corresponds to, 
it possible universe-as-we-actually-see-it. 

an; element of the superposition. All 
the worlds are there, even those in 
which everything goes wrong and all 
the statistical laws break down. The 
situation is no different from that which 
we face in ordinary statistical mechanics. 
If the initial conditions were right, the 
universe-as-we-see-it could be a place in 
which heat sometimes flows from cold 
bodies to hot. We can perhaps argue 
that in those branches in which the uni- 
verse makes a habit of misbehaving in 
this way, life fails to evolve; so no intel- 
ligent automata are around to be 
amazed by it. 

It is also possible that maverick 
worlds are simply absent from the grand 
superposition. This could bc the case if 
ordinary three-space is compact and 
the universe is finite. The wave func- 
tion of a finite universe must itself con- 
tain only a finite number of branches. 
It simply may not have enough fine 
structure to accommodate maverick 
worlds. The extreme smallness of the 
portion of Hilbert space that such 
worlds would have to occupy becomes 
obvious when one compares the length 
of a Poincark cycle, for even a small 
portion of the universe, to a typical 
cosmological time scale. 

Maverick worlds Questions of practicality 
The alert reader may now object that The concept of a universal wave 

the above argument is circular, that in function leads to important questions 
order to derive the physical probability regarding the practical application of 
interpretation of quantum mechanics, the auantum-mechanical formalism. If 
based on sequencei of observations, we 
have introduced a nonphysical prob- 
ability concept, nanlely that of the 
measure of a subspace in Hilbeit space. 
This concept is alien to experimental 
physics because it involves many ele- 
ments of the superposition at once, and 
hence many simultaneous worlds, that 
are supposed to be unaware of one an- 
other. 

I am'part of the universe, how does it 
happen that I am able, without running 
into inconsistencies, to include as much 
or as little as I like of the real world of 
cosmology in my state vector? Why 
should I be so fortunate as to be able, in 
practice, to avoid dealing with the state 
vector of the universe? 

The answer to these questions is to be 
found in the statistical implications of 
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sequences of measuremeilts of the kind 
that led us to the state vector of equa- 
tion 16. Consider one of the memory 
sequences in this state vector. This 
memory sequence defines an average 
value for the system observable, given 
by 

If the sequence is random, as it is in- 
creasingly likely to be when N becomes 
large, this average will differ only by 
an amount of order from the average 

But the latter average may also be ex- 
pressed in the form 

where /$) is the initial state vector of 
any one of the identical systems and 
s is the operator of which the s's are the 
eigenvalues. In this form the basis 
vectors Is) do not appear. Had we 
chosen to introduce a different appara- 
tus, designed to measure some observ- 
able r not equal to s, a sequence of re- 
peated measurements would have 
yielded in this case an average approxi- 
mately equal to 

In terms of the basis vectors Is) this 
2 1 

average is given by 

Now suppose that we first measure s 
and then perform a statistical analysis 
on r. We introduce a second apparatus 
that performs a sequence of observations 
on a set of identical two-component 
systems all in identical states given by 
the vector I*,) of equation 5. Each of 
the latter systems is composed of one 
of the original systems together with an 
apparatus that has just measured the 
observable s. In view of the packet 
orthogonality relations, given by equa- 

tion 10, we shall find for the average 
of r in this case 

The averages in equations 26 and 27 
are generally not equal. In equation 
27, the measurement of s, which the 
first apparatus has performed, has de- 
stroyed the quantum interference effects 
that are still present in equation 26. 
Thus the elements of the superposition 
in equation 5 may be treated as if 
they were members of a statistical en- 
semble. 

This result is what allows us, in prac- 
tice, to collapse the state vector after 
a measurement has occurred, and to 
use the techniques of ordinary statistical 
mechanics, in which we change the 
boundary conditions upon receipt of 
new information. It is also what permits 
us to introduce systems having well 
defined initial states, without at  the 
same time introducing the apparatuses 
that prepared the systems in those states. 
In brief, it is what allows us to start 
at any point in any branch of the uni- 
versal state vector without worrying 
about previous or simultaneous 
branches. 

We may, in principle, restore the in- 
terference effects of equation 26 by 
bringing the apparatus packets back 
together again. But then the correla- 
tions between system and apparatus are 
destroyed, the apparatus memory is 
wiped out and no measurement results. 
If one attempts to maintain the correla- 
tions by sneaking in a second apparatus 
to "have a look" before the packets are 
brought back together, then the state 
vector of the second apparatus must be 
introduced, and the separation of its 
packets will destroy the interference 
effects. 

Final assessment 
Clearly the EWG view of quantum 

mechanics leads to experimental pre- 

dictions identical with those of the 
Copenhagen view. This, of course, is 
its major weakness. Like the original 
Bohm theory6 it can never receive op- 
erational support in the laboratory. No 
experiment can reveal the existence of 
the "other worlds" in a superposition 
like that in equations 5 and 16. How- 
ever, the EWG theory does have the 
pedagogical merit of bringing most of 
the fundamental issues of measurement 
theory clearly into the foreground, and 
hence of providing a useful framework 
for discussion. 
C Moreover a decision between the two 

interpretations may ultimately be made 
on grounds other than direct laboratory 
experimentation. For example, in the 
very early moments of the universe, 
during the cosmological "Big Bang," 
the universal wave function may have 
possessed an overall coherence as yet 
unimpaired by condensation into non- 
interfering branches. Such initial co- 
herence may have testable implications 
for cosmology. 3 

Finally, the EWG interpretation of 
quantum mechanics has an important 
contribution to make to the philosophy 
of science. By showing that formalism 
alone is sufficient to generate interpre- 
tation, it has breathed new life into the 
old idea of a direct correspondence be- 
tween formalism and reality. The 
reality implied here is admittedly biz- 
arre. To anyone who is awestruck by 
the vastness of the presently known 
universe, the view from where Everett, 
Wheeler and Graham sit is truly im- 
pressive. Yet it is a completely causal 
view, which even Einstein might have 
accepted. At any rate, it has a better 
claim than most to be the natural end 
product of the interpretation program 
begun by Heisenberg in 1925. 
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Introduction. 

Although fort,y five years have passed since Heisenberg first unlocked the 
door to the riches of modern quantum theory, agreement has never been reached 
on the conceptual foundations of this theory. The disagreement is well il- 
lustrated by the variety of opinions expressed in the other lectures we have 
heard in the past few days, and I shall make no attempt to summarize it. 
Let me turn immediately to my main purpose, which is to describe one of the 
most bizarre and a t  the same time one of the most straightforward interpre- 
tations of quantum mechanics that has ever been put forward, and that has 
been unjustifiably neglected since its appearance thirteen yea'rs ago. 

This interpretation, which is due to EVERETT [I], asserts the following: 

1) The mathematical formalism of quantum mechanics is sufficient as i t  
stands. No metaphysics needs to be added to i t .  

2 )  I t  is unnecessary to introduce external observers or to postulate the 
existence of a realm where the laws of classical physics hold sway. 

3) I t  makes sense to talk about a state vector for the whole universe. 

4) This state vector never collapses, and hence the universe as a whole 
is rigorously deterministic. 

5) The ergodic properties of laboratory measuring instruments, although 
strong guarant~rs  of the internal consistency of the statistical interpretation 
of quantum mechanics, are inessential to its foundations. 

6) The statistical interpretation itself need not be imposed a priori. 

(*) The research behind these lectures was supported by a grant from the National 
Science Foundation. 
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In  order to arrive at  such assertions Everett must make certain assumptions. 
I t  is possible to be fairly precise about these without getting too technical, 
as they are quite simple. Basically Everett introduces two postulates, one 
concerning the mathematical content of the quantum formalism and one con- 
concerning the complexity of the real world: 

a )  Postulate of mathematical content. The real world, or any isolated part 
of i t  one may whish for the moment to regard as the world, is faithfully rep- 
resented solely by the following collection of mathematical objects: 

I)  a vector in a Hilbert space; 

2)  a set of dynamical equations (derivable from a variational principle) 
for a set of opkrators which act on the Hilbert spa'ce; 

3) a set of commutation relations for the operators (derived from the 
Poisson brackets of the classical theory by the quantization rule, in the case 
of those operators that possess classical analogs). 

b )  Postulate of complexity. The world is decomposable into systems and 
apparata. 

The first postulate is a statement of the conventional mathematical appa- 
ratus of quantum physics and is hardly controversial. Or rather, i t  would be 
hardly controversial were i t  not for the appearance of the word t( faithfully )). 
The use of this word implies a return to naive realism and the old-fashioned 
idea that there can be a direct correspondence between formalism and reality. 
No longer, says EVERETT, are we to be bamboozled into believing that the 
chief issues of interpretation are epistemol~gica~l rather than ontological and 
that the quantum realm must be viewed as a kind of ghostly world whose 
mathematical symbols represent potentiality rather than reality. The symbols 
of quantum mechanics represent reality just as much as do those of classical 
mechanics. 

The second postulate is incomplete as I have stated i t  here, because the 
words (( systems )) and <( apparata )) have not been defined. This deficiency will 
be remedied by the display of actual examples in the Sections to follow. 

Without drawing on any external metaphysics or mathematics other than 
the standard rules of logic, i t  is possible, from these two postulates alone, to 
prove the following remarkable metatheorem: The mathematical formalism of 
the quantum theory is capable of yielding its own interpretation. 

In  one sense this metatheorem has already been proved. Historically, the 
mathematical formalism of the quantum theory was invented before its inter- 
pretation was understood. The symbols could be manipulated and certain 
quantities calculated, derived or guessed by a sort of magical intuition before 
i t  was known precisely what the symbols meant. I t  took about two years from 
the time of Heisenberg's first discovery for the symbols to clarify themselves. 

The early history of quantum mechanics is not an isolated instance of such 
a situation in physics. Other examples, in which formalism came before inter- 
pretation, are to be found in the history of the Dirac wave equation, the history 
of quantum electrodynamics, and, more recently, the history of quantum 
geometrodynamics . 

I n  all these cases, however, a certain metzaphysics was present to begin 
with. I n  the early history of quantum mechanics, particularly, Bohr's meta- 
physical ideas played a fundamental role. Here we are trying to start from 
scratch and to show that much less than was previously thought is needed in 
the way of postulational input in order to prove the metatheorem. 

Proofs in metamathematics, or metaphysics, require first the introduction of 
a carefully constructed syntax. If I were attempting to be rigorous I should 
replace words like (( system )), t( apparatus, )) (( state, )) (( observable, )) and even 
the statement of the metatheorem itself. by symbols subject, together with 
the usual mathematical symbols of the quantum formalism, to certain formal 
rules of manipulation but empty of any a priori meaning. These words would 
then acquire semantic content only a posteriori, after the consequences of 
Everett's postulates have been investigated. 

This remains a program for the future, to be carried out by some enter- 
prising analytical phi losopher. Here I intend to proceed quite informally, 
using conventional words pretty much in conventional ways. However, I 
shall leave them with a certain semantic vagueness a t  the outset. Thus I 
shall assume that a state is associated with a certain nonvanishing vector in 
Hilbert space, that an observable is associated with a certain Hermitian oper- 
ator which acts on the Hilbert space, and that a dynamical entity is ass~ciated 
with a set of operators generating a certain algebra and satisfying certain dyna- 
mica1 equations, but I shall not be very precise (until later) about the nature 
of these associations. Precision, and hence meaning, will be acquired only by 
examining the quantum symbolism in a clear and specific context, namely, 
that of a measurement process. 

PART I. 

The Quantum Theory of Measurement, 

1. - System, apparatus and coupling. 

In  its simplest form the quantum theory of measurement considers a world 
composed of just two dynamical entities, a system and an apparatus. It is the 
role of the apparatus to measure the value (a so far undefined phrase) of some 
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system observable s. For this purpose the two must be coupled together (an- 
other so far undefined phrase) for a certain interval of time which we shall sup- 
pose finite. First, however, let us suppose the system and apparatus to be 
uncoupled so that we may examine them separately. I t  will be the deviation 
in their behavior, when coupled, from their uncoupled behavior which 
constitutes the measurement. 

I n  the uncoupled condition the system is associated with a certain operator 
algebra, to which s belongs, and the apparatus is associated with another 
independent operator algebra. The meaning of the word ((independent, )) and 
hence of the word (( uncoupled, 1) is that the two algebras commute. The Hilbert 
space then decomposes into a Cartesian product. A choice of basis vectors 
reflecting this decomposition may be introduced. For example, 

(1.1) Is, A> = IS) /A> , 

where s is an eigenvalue of s and A is an eigenvalue of some apparatus ob- 
servable A, other labels that may be needed to complete the specification of 
the basis being here suppressed for simplicity. For later convenience we shall 
assume that the eigenvalue s ranges over a discrete set while the eigenvalue A 
ranges over a continuum. Conventional orthonormality and completeness con- 
ditions will then be assumed: 

The combined state of system and apparatus will be represented (in a yet 
to be determined sense) by a certain nonvanishing Hilbert-space vector IV). 
I t  may happen that this vector itself decomposes into a Cartesian product 

where Iy) lies in the Hilbert space generated by the operator algebra of the 
system and 10) lies in the Hilbert space generated by the operator algebra 
of the apparatus. I n  this event the uncoupled system and apparatus are said 
to be uncorrelated. Each may be regarded as being in its own independent stmate, 
that of the system being represented by ly) and that of the apparatus by I@). 
I shall not ask until much later (Sect. 5) how we can contrive to be sure that 
a real system and a real apparatus will be in an uncorrelated state. I shall 
simply assume that such a state can be produced upon demand. I n  fact, I 
shall demand i t  right now. 

Given, then, a system and an apparatus which, when uncoupled, find them- 
selves in an uncorrelated state, what can we say about this state when the 
coupling is switched on? I n  discussing this question I am going to take the 
unusual step of working in the Heisenberg picture. It is unusual because in 
this picture i t  is not possible to follow the changes of state resulting from the 
coupling by referring to the vector IY), this vector being time-independent 
and hence given once and for all. I must instead follow the time behavior of 
the dynamical variables themselves, a procedure that is less familiar. The 
Heisenberg picture will have the merit in later Sections, however, of permitting 
a simple and direct comparison between the quantum and classical theories 
of measurement, a comparison that, while not essential in  itself, will heighten 
the semantic content of the formalism. 

When using the Heisenberg picture one should avoid careless use of conven- 
tional terminology. For example, i t  is not correct to refer to position or momen- 
tum as observables. Rather one must speak of the position at a given time or the 
momentum at a given time. More generally, observables such as s or A must be 
understood as involving particular instants or intervals of time in their intrinsic 
definition. Only if s and A commute with the energy operator do these instants 
become arbitrary. If s and A do not commute with the energy operator then 
neither the state associated with Is) nor the state associated with lA> can be 
referred to as stationary despite the fact that the vectors themselves are time- 
independent. Moreover, once a measurement of s has been carried out i t  will 
generally be difficult to repeat the measurement a t  a later time. 

I n  comparing the coupled and uncoupled states of the system and appa- 
ratus I shall use retarded boundary conditions If the operator corresponding 
to a certain observable (of either the system or the apparatus) is constructed 
out of dynamical variables taken from an interval of time preceding the coup- 
ling interval, then this operator (and hence the observable itself) will remain 
unaffected by the coupling. Otherwise, i t  will generally suffer a change. I n  
particular, the observable s will generally be disturbed. 

Suppose the apparatus operator A is built out of dynamical variables taken 
from an interval of time lying to the future of the coupling interval. Then i t  will 
generally be transformed into a new operator 2 when the coupling is switched on. 
Since the coupling is not active, however, during the timeinterval associated with 
2, the system and apparatus will once again during this time be dynamically 
independent, each running undisturbed by the other. This means that the 
dynamical variables out of which 2 is built satisfy exactly the same dynamical 
equations as do those out of which A is built, and hence, by a well-known rule 
of quantum mechanics, the two sets of variables must be equivalent, i.e. related 
by a unitary transformation. I n  particular A and 2 must be so related: 

2 = exp [- ig%]A exp [ i g s ] ,  
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where % is a certain Hermitian operator built out of the dynamical variables 
of both the system and the apparatus, and g is a coupling constant. 

The undisturbed system observable s, on the other hand, will not generally 
be related by a unitary transformation to its disturbed form 3. This is because 
the dynamical variables out of which s is built belong to a time interval that 
generally coincides with the coupling interval, because the coupling is designed 
precisely to measure s. 

The design of the coupling is governed (on paper, a t  any rate) by the choice 
of X. We shall assume that  X and A have been chosen so as to satisfy the 
commutation relations 

[X,  A] = is ,  

(1.7) [X,  s] = 0 . 
We then find 

Under these conditions the coupling g% is said to secure a measurement of s, 
and the result of the measurement is said to be stored in the apparatus ob- 
servable A, in virtue of its transformation, as a result of the coupling, into the 
operator A +  g s .  The observable A thus constitutes a memory unit in the 
apparatus. 

In Sect. 8 we shall regard the switching on of the coupling from a classical 
viewpoint, namely, as a modification of the combined action functional of 
the system and apparatus rather than as a unitary transforma'tion. We shall 
see precisely how this modification must be related to the operator X, andthe 
question of the practical achievability of a given coupling will therefore be 
carried up to the point where i t  becomes a question of the experimenter's art  
rather than that of the theorist. It will be sufficient for the present simply to 
note that an easy way to achieve the relations (1.6) and (1.7) is to choose .% 
in the form: 

This, is, of course, the very best kind of measurement and shows that there 
is in principle no limitation to  the accuracy with which a single observable 
of a system may be determined. (Only when attempts are made to measure 
two observables a t  once are there limitations on accuracy (see Sect. 10)). This 
result is achieved very simply within the quantum formalism. Prom the clas- 
sical viewpoint, however, i t  is not so easy to discover the modifications in the 
total action functional which are needed in order to compensate for the distur- 
bance which the coupling itself produces in the system. The story of the fa- 
mous Bohr-Rosenfeld paper on electromagnetic field measurements [ 2 ]  is a case 
in point. I n  Sect. 8 we shall display these modifications (which are simply 
generalizations of Bohr's ingenious compensation devices) in detail. 

In  view of the fact that the apparatus records s and not Z, we shall have 
little occasion to work with the latter. I t  is important, however, that one 
n o t  become confused about this point. Given a knowledge of the explicit form 
of the coupling i t  is always possible to express the idealized undisturbed system 
observable s in terms of the actual coupled dynamical vairables of system 
plus apparatus. Hence, there is nothing a t  all hypothetical about the operator s. 
One must only remember that its expression in terms of the coupled dynamical 
variables may be very complicated, so that i t  would, as a practical matter, 
generally be very difficult to find a coupling which would, in effect, reconstruct 
if for us and allow us to measure it a second time. 

The alert student is probably becoming a little impatient a t  this point a t  
my speaking of the apparatus as measuring an operator. No real apparatus 
can store an operator in its memory bank! What actually gets recorded is a 
number, or an analog equivalent of a number. To arrive a t  numbers we have 
to look a t  the state vector (1.4). With respect to the basis vectors (1.1) defined 
by the uncoupled system and apparatus this vector is represented by the 
function : 

where 

where X is the apparatus operator canonically conjugate to A (*):  

(1.10) [X, A] = i . 
Let me now call attention to the fact that the disturbed apparatus operator 

a depends on the undisturbed system operator s. This means that the apparatus 
records what the system observable would have been had there been no coupling. 

(*) We choose units in which f i  = 1. 

The factorization of this function into a function c, referring to the system 
alone and a function @(A) referring to the apparatus alone reflects the inde- 
pendence of, or lack of correlation between, the uncoupled system and ap- 
paratus. The coupled system and apparatus do not display this same inde- 
pendence. Relative to a basis defined by the disturbed observable 2, the state 
vector IY) is no longer represented by a product of two functions, one of which . 

refers only to the system and the other only to the apparatus. 
The new basis is obtained by carrying out the unitary transformation (1.5). 
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Because 

(1.13) s = exp [-ig X] s exp [ig XI , 

(see eq. (1.7)), i t  follows that we may write 

(1.14) Is, A) = exp [- igX] Is, A) . 

Moreover, in view of the fact that 

an alternative Cartesian product decomposition may be introduced: 

(1.16) Is, A> = 1s) 12) , 

the symbol 12) denoting an eigenvector of 2 corresponding to the eigenvalue 2. 
Numerically the eigenvalue 2 is equal to the eigenvalue A of A, and this is 
sometimes a source of confusion. One should take care to differentiate be- 
tween [A) and 12). They are not equal even though the numbers inside the 
brackets are identical. Different eigenvalues will sometimes be distinguished 
by adding primes, and we shall follow the rule: 

- 
(1.17) A '=  A ' ,  A"= A",  etc. 

The vectors Is, z) constitute a kind of mixed basis in that they are eigen- 
vectors of a disturbed apparatus observable and an undisturbed system ob- 
servable. This basis is nevertheless the appropriate one to use for the analysis 
of the measurement process, because the coupling is deliberately designed 
to set up a correlation between the apparatus and the value that the system 
observable would have assumed had there been no coupling. This correlation 
may be displayed by projecting the basis vectors Is, 2) onto the state vector lY). 
From the relations 

it follows that, apart from an arbitrary phase factor that may be set equal 
to unity, we have 

(1.19) Is, A) = I ~ , z + g s ) =  I ~ > ~ z f g s ) ,  

or alternatively 

where \A + gs) denotes an eigenvector of corresponding to the eigenvalue 
2 + gs and \A - gs) denotes an eigenvector of A corresponding to the eigen- 
value A - gs. We therefore obtain 

Although the function again factorizes, one of the factors, @(A - gs), 
now depends on the eigenvalues of both system and apparatus observables. 
The result is a correlation between 
system and apparatus that is easily - 

displayed in a Figure such as Fig. 1. 
This Figure compares the appear- 
ance that the functions (s, A(Y)  and 
(s, Alp) have, in a typical case, in 

/ I / (  
the (s, A) and ($,A) planes respec- AS Line o f  

s lope  g 
tively. What is plotted in each ,436~ 
plane is the effective support of the 
function in question, i.e. the region Fig. 1. 

where the function differs signifi- 
cantly from zero. Since the spectrum of s has been taken to be discrete, these 
regions appear as sets of distinct vertical line segments. 

The measurement is said to be good if these line segments, in the case of 
the function (s, J jY) ,  retain their distinctness when projected onto the 2 axis. 
I n  a good measurement each value of s is correlated with a distinct range of 
values for 2. The quality of a measurement evidently depends not only on 
the choice of an appropriate apparatus and coupling but also on the state of 
the apparatus. The condition for a good measurement is expressed mathema- 
tically by 

where As is the minimal spacing between those eigenvalues of s that are 
contained in the effective support of the function c,, and AA is the root mean 
square deviation in A from its mean value relative to the function l@(A) 1 2 :  

I t  will be noted that the same vector IY) is used to represent the combined 
state of system and apparatus in both the coupled and uncoupled cases. This 
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is because we are working in the Heisenberg picture and using retarded boun- 
dary conditions. Before the coupling interval the dynamical situations in the 
two cases are identical. The difference between these situations that occurs 
during and after the coupling interval is expressed by differences in the oper- 
ator observables, not by differences in the state vector. 

2. - Relative states, infinite regression, absolute chance and schizophrenia. 

An alternative way of describing the correlation between system and ap- 
paratus is to expand the vector IY) in terms of the basis vectors Is, 3):  

(2.1) IF) = zJI~,  2) <s, B I W ~ A  = z cs 15) I P ~ ~ I )  , 
8 8 

where 

( 2 . 2 ~ )  l@[s]) = 113) @(z - g s ) d ~  , 

(2.2b) ==/\A + gs)@(B)dz .  

EVERETT [I] and WHEELER [3] have coined the expression relative states to 
describe the states of the apparatus represented by the vectors I@[s]). Rela- 
tive to each system state Is) the apparatus goes into a corresponding state 
I@[s]>, the bracket (( [s] )) denoting the fact that the value s for s has been 
recorded in the apparatus memory. We note that when the measurement is 
good the relative states are orthogonal to one another: 

The decomposition (2.1) does not represent the observable s as having any 
unique value, unless, of course, Iy) happens to be parallel to one of the basis 
vectors Is). It is here that the controversies over the interpretation of quan- 
tum mechanics start. For many people, the decomposition (2.1) does not rep- 
resent an observation as having actually occurred. They conceive the ap- 
paratus to have entered a kind of schizophrenic state in which i t  is unable to 
decide what value i t  has found for s .  At the same time they cannot deny that 
the coupling between system and apparatus would, in the classical theory, 
have led to a definite outcome (see Sect. 8). They therefore try to invent sche- 
mes, both physical and metaphysical, for prodding the apparatus into making 
up its mind. 

Many of these schemes you will hear about in the other lectures. Let me merely 
mention one that will not work, namely, the introduction of a second apparatus 

to get a t  the facts by looking a t  the first apparatus to see what i t  has recorded. 
An analysis carried out along the above lines (see also Sect. 3) quickly shows 
that the second performs no better than the first. I t  too goes into a state of 
schizophrenia. The same thing happens with a third apparatus, and a fourth, 
and so on. The schizophrenia only gets amplified by bringing in more and more 
of the rest of the universe; i t  does not disappear. This is known as the cata- 
strophe of infinite regression. 

Some have sought a resolution of the catastrophe in the fact that the unitary 
transformation (1.14), which is essentially due to VON NEUMANX [4], is far too 
simple and specialized to describe real measurements in real laboratories. 
Many physicists stress the fact that real apparata (including human beings) 
are highly ergodic systems whose initial states are imperfectly known, and 
that real observations may involve metastable states and nonlinear feedback 
loops. I shall not review these arguments here. I shall try to show that the 
questions raised by von Neumann's idealization of a measurement are answer- 
able in simpler terms. One does not solve problems by making them more 
difficult. 

The traditional way to solve the regression problem is by fiat. One asserts 
that after the measurement is completed (i.e. after the coupling interval) the 
state vector collapses to one of the elements Is) I@[s]) in the decomposition (2.1). 
To which element in the decomposition i t  collapses and how the collapse comes 
about one cannot say. One can only assign a probability distribution to the 
possible outcomes, with weights given by 

The collapse of the state vector and the assignment of statistical weights 
do not follow from the dynamical equations that the dynamical variables of 
the system and apparatus satisfy. They are consequences of an a priori meta- 
physics that is imposed on the theory and that may be somewhat adjusted 
to suit convenience. For example, if  one insists on adding a second apparatus, 
or even an indefinite string of apparata observing each other, one may leave 
the combined state vector uncollapsed over an arbitrary number of links in 
the chain, just so long as i t  is treated as collapsed after some observation some- 
where along the line. I n  this way the regression problem is converted into 
a pseudoproblem. 

The trouble with this solution is that physics is no longer physics; i t  has 
become metaphysics. BOHR says this in so many words: (( I t  is wrong to think 
that the task of physics is to find out how nature is. Physics concerns what 
we can say about nature [5]. e I n  a similar vein HEISEKBERG remarks that the 
mathematics of physics ((no longer describes the behavior of elementary par- 
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ticles, but only our knowledge of their behavior. )) [6] According to this view 
the symbols IF), s, A, etc., do not describe the behavior of the system and 
apparatus, but only a certain amount of knowledge of their behavior. As soon 
as a measurement is performed, knowledge is increased and the state vector 
collapses accordingly. The assignment of statistical weights to the elements 
of the decomposition (2.1) implies that these elements are to be regarded as 
representing the system and apparatus in exactly the same way as a statistical 
ensemble represents a dynamics1 system in classical kinetic theory. The analogy 
fails, however, in one crucial respect: There is always one member of the sta- 
tistical ensemble that is a priori distinct from the others even if we do not 
know how to recognize it, namely, the one that is identical to the real 
classical system. No such element exists in the decomposition (2.1); reality, 
for quantum systems, dissolves into a metaphysical mirage. 

The traditional interpretation of quantum mechanics evidently confuses 
two concepts that ought really to be kept distinct, namely, probability as 
i t  relates to quantum mechanics and probability as i t  is understood in stati- 
stical mechanics. Quantum mechanics is a theory that attempts to describe 
in mathematical language a world in which chance is not a measure of our igno- 
rance but is absolute. It is inevitable that i t  lead to descriptions of the world 
by vectors like (2.1) which contain, in a single superposition, all the possible 
outcomes of a given measurement. However, precisely because quantum- 
mechanical chance is not a measure of our ignorance, we ought not to tamper 
with the state vector merely because we acquire new information as a result 
of a measurement. 

The obstacle to taking suchan honest view of things, of course, is that i t  
forces us to believe in the reality of all the simultaneous worlds represented 
in the superposition (2.1), in each of which the measurement has yielded a 
different outcome. If we are to follow EVERETT in letting the formalism tell 
its own story, without benefit of a priori metaphysics, then we must be wil- 
ling to admit that even the entire universe may be faithfully represented by 
(one might even say isomorphic to) a superposition like (2.1) but of vastly greater 
complexity. Our universe must be viewed as constantly splitting into a stu- 
pendous number of branches, all resulting from the measurementlike interact- 
ions between its myriads of components. Because there exists neither a mech- 
anism within the framework of the formalism nor, by definition, an entity 
outside of the universe that can designate which branch of the grand super- 
position is the cc real )) world, all branches must be regarded a,s equally real. 

To see what this multi-world concept implies one need merely note that 
because every cause, however microscopic, may ultimately propagate its effects 
throughout the universe, i t  follows that every quantum transition taking place 
on every star, in every galaxy, in every remote corner of the universe is split- 
ting our local world on earth into myriads of copies of itself. Here is schizo- 

phrenia with a vengeance! The idea of 10lo0+ slightly different copies of oneself 
all constantly splitting into further copies, which ultimately become unreco- 
gnizable, is hard to reconcile with the testimony of our senses, namely, that 
we simply do not split. EVERETT [I] compares this testimony with that of 
the anti-Copernicans in the time of GALILEO, who did not feel the earth move. 
We know now that Newtonian gravitational theory, within the framework 
of classical physics, accounts completely for this lack of sensation. The present 
difficulty has a similar solution. We shall show, in the next Section, that to 
the extent to which we can be regarded simply as automata, and hence on a 
par with ordinary measuring apparata, the laws of quantum mechanics do not 
allow us to feel ourselves split. 

3. - Unobservability of the splits. 

Let us begin by asking what would happen, in the case of the measurement 
described by the superposition (2.1), if we introduced a second apparatus that 
not only looks at the memory bank of the first apparatus but also carries out 
an independent direct check on the value of the system observable. If the 
splitting of the universe is to be unobservable the results had better agree. 

For the system we again introduce the basis vector Is), and for the appa- 
rata in the uncoupled state we introduce basis vectors /A,) and \A2, B,) re- 
spectively. The total measurement will be carried out in two steps. In  the 
first, both apparata observe the system observable s, by means of couplings 
gX, and gX2 that satisfy 

The unitary transformation generated by this coupling is 

In  the second step apparatus 2 reads the memory contents of apparatus 1 by 
means of a coupling g% that satisfies 

[ g ,  B2I = iA1, [%, A11 = 0 , 
[ g ,  sl  = o ,  [%, A,] = 0 . 
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I n  the absence of step 1 the unitary transformation generated by this coup- 
ling would be 

(3.7) exp [- @W]( Is) ]Al) /A2, B2)) = 1s) \A2 , B2) = 1s) lA1> B, -gAl) 

When both couplings are introduced consecutively the undisturbed observables 
A,, A,, B, get transformed into disturbed observables (*) 2,, z2, B,, and the 
basis vectors defined by the latter are obtained via the overall unitary 
transformation : 

(3.8) exp [- @@I exp [- ig( zl %2)1 ( 1s) !A,> (At, B,)) = 

= exp [-- ig(Tl  + %,)I ~ X P  1- ig'Wl( Is> 14) IA,, B2)) = 

= 1s) (A, - gs> la2 - gs, B2 - M l )  , 

where is the operator into which CY is transformed by the coupling of 
step 1. 

If the system and apparata are initially uncorrelated, so that the combined 
state vector has the form 

(3.9) IF> = I ~ ) l @ l > l @ 2 >  , 

then the projection of this vector onto the undisturbed basis has the form 

(3.10) (8, -41, -4, BZ IF) = cs @,(A,) 7 Bz) 

where 

(3.11) c, = (sly) , @l(A1) = ( A  1 )  , @,(A2 , B2) = ( - 4 2  B2Id52) . 

I ts  projection onto the disturbed basis, however, has the form 

(3.12) (s, B,, B2, B, IF) = c,@,(B, - gs) @,(Z2 - gs, B2 - gB1) , 

which yields the decomposition 

@,(A, - gs) @,(A, - gs, B, - gZ,) 

= 2 [ d ~ ,  [u, [ d~ , c .  ] s ) l ~ ,  + gs) 12, + gs, B2 + g(Z1 4- gs)) @,(XI) @ 2 ( 2 2 ,  Bz). 

(*) The observation of 2, by the second apparatus (via the coupling m) may 
further disturb this observable, but this is unimportant in the present argument. 
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In  order to keep the interpretation of this decomposition as simple as pos- 
sible i t  is convenient to assume that the effective support of the function 
@,(Al) is very narrow, so that the measurement of 2, by apparatus 2 resembles 
the measurement of an observable having a discrete spectrum. Explicitly 
we require 

where AA, and AB, are defined in an obvious manner. When (3.14) holds 
we may approximate (3.13) by a simple decomposition into relative states: 

(3.15) 

with 

The couplings will have yielded good measurements if, in addition to (3.14), 
we have 

(3.18) AA1K gAs, AA, << g a s ,  AB, << QgAs , 

so that the relative states become orthogonal: 

(3.20) (@,[s, (A,) + gs] / @,[sr, (A,) + gsrl> = s ~ ~ ~ ~ A ~ ~ B z  I(D,(A2, B2) 1' 

The combined state vector IF) is again revealed (eq. (3.15)) as a linear 
superposiOion of vectors, each of which represents the system observable s as 
having asssumed one of its possible values. Although the value varies from 
one element of the superposition to another, not only do both apparata within 
a given element observe the value appropriate to that element, but also, by 
straightforward communication, they agree that the results of their observa- 
tions are identical. Apparatus 2 may be assumed to have (( known in advance )) 
that the ((mean value ,) of A, was (A,). When, after the coupling @, ap- 
paratus 2 ((sees )) that this mean value has shifted to (A,) + gs, it then 
(( knows )) that apparatus 1 has obtained the same value for s, namely s, as i t  did. 

15 - Rendiconti S.I.F. - IL. 
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It is not difficult to devise increasingly complicated situations, in which, 
for example, the apparata can make decisions by switching on various coup- 
lings depending on the outcome of other observations. No inconsistencies will 
ever arise, however, that will permit a given apparatus to be aware of more 
than one world a t  a time. Not only is its own memory content always self- 
consistent (think of the two apparata above as a single apparatus which can 
communicate with itself) but consistency is always maintained as well in 
rational discourse with other automata. Extending these conclusions to the 
universe as a whole we see that from the point of view of any automaton, 
within any branch of the universal state vector, schizophrenia cannot be bla'med 
on quantum mechanics. We also see that the catastrophe of infinite regres- 
sion is not a catastrophe a t  all. 

This is a good place to take stock of what the formalism has taught us 
so far about the meaning of the symbols appearing in i t :  

1) An apparatus that measures an observable never records anything 
but an eigenvalue of the corresponding operator, a t  least if the measurement 
is good. 

2) The operator corresponding to a given observable represents not the 
value of the observable, but rather all the values that the observable can 
assume under various conditions, the values themselves being the eigenvalues. 

3) The dynamical variables of a system, being operators, do not rep- 
resent the system other than generically. That is, they represent not the 
system as i t  really is, but rather all the situations in which the system might 
conceivably find itself. 

4) Which situation a system is actually in is specified by the state vector. 
Reality is therefore described jointly by the dynamical variables and the state 
vector. This reality is not the reality we customarily think of, but is a reality 
composed of many worlds. 

This list is unfortunately not yet sufficient to tell us how to apply the for- 
malism to  practical problems. The symbols that describe a given system, 
namely, the state vector and the dynamical variables, describe not only the 
system as it is observed in one of the many worlds comprising reality, but 
also the system as i t  is seen in all the other worlds. We, who inhabit only one 
of these worlds, have no symbols to describe our world alone. Because we 
have no access to the other worlds i t  follows that we are unable to make 
rigorous predictions about reality as we observe it. Although reality as 
a whole is completely deterministic, our own little corner of i t  suffers from 
indeterminism. The interpretation of the quantum mechanical formalism 
(and hence the proof of Everett's metatheorem) is complete only when we 
show that this indeterminism is nevertheless limited by rigorous statistical laws. 

4. - The statistical interpretation of quantum mechanics. 

When the apparatus of Sect. 1 measures the system observable s we can- 
not predict what value i t  will record, except that this value will be an eigen- 
value lying in the support of the function c,. Suppose, however, that the ap- 
paratus makes repeated measurements on an ensemble of uncorrelated iden- 
tical systems that are initially in identical states. The total state vector then 
has the form 

where 

(4.2) (-9, jy,) = csn for all n , 

and the successive measurements are described by the action of unitary 
operators on a set of basis vectors 

appropriate to the no-coupling situation. If the apparatus observes each system 
exactly once, in sequence, then the n-th measurement is described by a unitary 
transformation of the form 

(4.4) exp [-igX,](/s,) 182) .. . 1-41, A27 ..., An, --a)) = 

= Is1) 1.9,) ... ]A,, A2, -.. 7 An-g~n, . - a )  

where the coupling g%, satisfies 

After N measurements have taken place, the first N of the undisturbed 
apparatus observables A,, A,, ..., find themselves transformed into disturbed 
variables 2, . . . zfl given by 

(4.6) An = exp [- ig X,] A, exp [ig X,] , 

and the basis vectors defined by the disturbed variables are 

I f  we now decompose IF) in terms of the basis vectors (4.7) we find 
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where Then, making use of (4.13), we find 

It will be observed that although every system is initially in exactly the same 
state as every other, the apparatus: as represented by the relative state vectors 
I@[sl ... s,]), does not generally record a sequence of identical values for the 

I 

system observable, even within a single element of the superposition (4.8). 
Each memory sequence sl ... s, yields a distribution of possible values for the 1 
system observable. 1 

Each of these distributions may be subjected to a statistical analysis. The i 
first and simplest part of such an analysis is the calculation of the relative 

frequency function of the distribution: 

We shall need the following easily verified properties of this function (see 
Appendix A): 

where the w's are any numbers that, taken all together, add up to unity. 
Let us choose for the w's the numbers defined in eq. (2.4), and let us intro- 

duce the function 

This is the first of a hierachy of functions that measure the degree to which 
the sequence s1 ... s, deviates from a random sequence with weights w,. Let 
E be a n  arbitrarily small positive number. We shall call the sequence s1 ... s, 
first-random if 6(s1 . . . s,) < E and nonfirst-random otherwise. 

Suppose now we remove from the superposition (4.8) all those elements for 
which the apparatus memory sequence is nonfirst-random. Denote the result 
by /!Pi) and define 

From this i t  follows that no matter how small we choose E we can always find 
an Nbig enough so that the norm of l X i )  becomes smaller than any positive 
number. This means that 

lim I!?':) = IY> . 
N -+ c.0 

I t  will be noted that,  because of the orthogonality of the basis vectors Is,) Is2) ... , 
this result holds regardless of the quality of the measurements, i .e .  independ- 
ently of whether or not the condition 

for good measurements is satisfied. 
A similar result is obtained if IYi) is redefined by excluding, in addition, 

elements of the superposition (4.2) whose memory sequences fail to meet any 
finite combination of the infinity of other requirements for a random sequence. 
Moreover, no other choice for the w's but (2.4) will work. The conventional sta- 

tistical interpretation of quantum mechanics thus emerges from the formalism itsplf. 
Nonrandom memory sequences in the superposition (4.8) are of measure zero 

in the Hilbert space, in the limit N - t  oo ('). Each automaton (that is, ap- 
paratus cum memory sequence) in the superposition sees the world obey the 
familiar statistical quantum laws. This conclusion obviously admits of im- 
mediate extension to the world of cosmology. I t s  state vector is like a tree 
with an enormous number of branches. Each branch corresponds to a pos- 
sible universe-as-we-actually-see-it. 

The alert student may now object that the above argument contains an 
element of circularity. I n  order to derive the physical probability interpreta- 

( * )  Everett's original derivation of this result [I] invokes the formal equivalence 
of measure theory and probability theory, and is rather too brief to be entirely satisfying. 
The present derivation is essentially due to GRAHAM [7] (see also ref. [S]). A more 
rigorous treatment of the statistical interpretation question, which deals carefully 
with the problem of defining the Hilbert space in the limit N - t  w, has been given 
by HARTLE [9]. 
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tion of the numbers w,, based on sequences of observations, we have introduced 
a nonphysical probability concept, namely that of the measure of a subspace 
in Hilbert space. The latter concept is alien to experimental physics because 
i t  involves many elements of the superposition a t  once, and hence many simul- 
taneous worlds, which are supposed to be unaware of one another. 

The problem that this objection raises is like many that have arisen in 
the long history of probability theory. I t  should be stressed that no element 
of the superposition is, in the end, excluded. All the worlds are there, even 
those in which everything goes wrong and all the statistical laws break down. 
The situation is similar to that which we face in ordinary statistical mechanics. 
If the initial conditions were right the universe-as-we-see-it could be a place 
in which heat sometimes flows from cold bodies to hot. We can perhaps argue 
that in those branches in which the universe makes a habit of misbehaving 
in this way, life fails to evolve, so no intelligent automata are around to be 
amazed by i t  (*). 

5. - Remaining questions. 

The arguments of the preceding Section complete the (informal) proof of 
Everett's metatheorem and, incidentally, provide the information that phy- 
sical states are to be identified with rays in Hilbert space rather than with the 
vectors themselves. This follows from the fact that no observable consequences 
of any of the couplings we have introduced are changed if we multiply the 
vectors ly), ly,), I@), etc. by arbitrary nonvanishing complex numbers. The 
statistical weights w,, in particular, are unaffected thereby. 

There remain, however, a number of questions that need to be cleared up. 
The first is a practical one. How does i t  happen that we are able, without run- 
ning into inconsistencies, to include as much or as little as we like of the real 
world of cosmology in the state vectors and operators we use? Why should 
we be so fortunate as to be able, in practice, to avoid dealing with the state 
vector and operator algebra of the whole universe? 

The answer to this question is to be found in the statistical implications 
of sequences of measurements of the kind considered in Sect. 4. Consider one 
of the memory sequences in the superposition (4.8). This memory sequence 
defines an average value for the numbers s, ... s,, given by 

( * )  I t  may also happen that the arrow of time is reversed for some of the branches. 
This would be the case if the state vector of the universe were invariant under time 
reversal. 
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If the sequence is random, as i t  is increasingly likely to be as N becomes large, 
this average will differ only by an amount of order E from the prototypical 
average : 

This latter average may be regarded as an expectation value for the observable 
s of a single system in the state Iy). 

This expectation value may be expressed in the alternafive forms 

In  the second of these forms the basis vectors Is) do not appear. I t  is evident 
therefore that had we chosen to introduce a different apparatus, designed to 
measure some observable r not equal to s, a sequence of repeated measure- 
ments would have yielded in this case an average approximately equal to 

(Y lrly? (r) = - 
(YIY) ' 

in which again no basis vectors appear. We can, of course, if we like, reintro- 
duce the basis vectors Is), obtaining 

Now suppose that instead of performing a sequence of identical measure- 
ments to  obtain an experimental value for (r), we first measure s in each case 
and then perform a statistical analysis on r. This could be accomplished by 
introducing a second apparatus which performs a sequence of observations 
on a set of identical two-component systems all in identical states given by 
the vector IF) of eq. (2.1). Each of the latter systems is composed of one of 
the original systems together with an apparatus that has just measured the 
observable s .  The job of the second apparatus is to  make observations of 
the r's (r,, r,, etc.) of these two-component systems. Because a measurement 
of the corresponding s has already been carried out in each case, however, 
these r's are not the undisturbed r's but the r's resulting from the couplings g x .  
That is, what we are really measuring in every case is the observable 

(5 .6)  
- 
r = exp [- ig XI r exp [ig XI . 
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Within each element of the grand superpostion the second apparatus will 
obtain a sequence 7, ... ;i;, of values for 3 .  I f  the element is typical the average 
of this sequence will, by analogy with our previous analysis, be approximately 
equal to  

=(ull!P)-l~ /U/U'(YIS, 2) (s, exp [-ig%] r exp [igx] Is', x') (s', xfIP) = 
8,8' 

= ( ~ j u r > - ~  2 l ~ / ~ y ~ i s ,  J ) ( s ,  Alrls', A') (s', 2 ' l~)  = 
8.8' 

= (y~y)-~<@l@)-~ S,8 ~ ~ ~ < s l r l s ' ) o . @ * ( ~ - ~ s ) @ ( ~ - ~ s ~ ) U  . 

If the measurements of s are good in every case, so that the relative states 
(2.2) satisfy the orthogonality property (2.3), then this average reduces to 

where p, is the density operator: 

The averages (5.5) and (5.8) are generally not equal. I n  (5.8) the measure- 
ment of s, which the first apparatus has performed, has destroyed the quan- 
tum interference effects that are still present in (5.5). This means that the 
elements of the superposition (2.1) may, insofar as the subsequent quantum 
behavior of the system is concerned, be treated as if they were members of 
a statistical ensemble. This is what allows us, in practice, to follow the tradi- 
tional prescription of collapsing the state vector after a measurement has 
occurred, and to use the techniques of ordinary statistical mechanics, in which 
we change the description of the state upon receipt of new information. I t  is 
also what permits us to introduce, and study the quantum behavior of, systems 
having well-defined initial states, without a t  the same time introducing into 
the mathematical formalism the apparata which prepared the systems in those 
states. I n  brief, i t  is what allows us to start a t  any point in any branch of the 
universal state vector without worrying about previous or simultaneous bran- 
ches, and to  focus our attention on the dynamical systems of immediate 
relevance without worrying about the rest of the universe. 

It is, of course, possible in principle (although virtually impossible in prac- 
tice) to restore the interference effects of eq. (5.5) by reversing the coupling 
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(i.e. % -+- %) so that the relative state vectors I@[s]> are no longer ortho- 
gonal. But then the correlations between system and apparatus are destroyed, 
the apparatus memory is wiped out, and no measurement results. I f  one at- 
tempts to maintain the correlations by sneaking in a second apparatus to 
<( have a look )) before the interference effects are restored, then the mathema- 
tical description of the situation must be amplified to include the second ap- 
paratus, and the orthogonality of its relative state vectors will destroy the 
interference effects. 

The overwhelming impracticability of restoring interference effects by 
reversing a measurement has been stressed by DANERI, LOINGER and PRO- 
SPERI [lo] in a well-known study of the critical features, such as metastability, 
which characterize typical measuring apparata. One should be careful not to 
conclude from their study, however, that the state vector really collapses as 
the traditionalists claim. Although it is true that the ergodic propertil;~ of 
apparat'a having many degrees of freedom, which DANERI et al. describe, greatly 
expedite the orthogonalization of the relative state vectors, the interference 
effects are in principle still retrievable. LOINGER states this explicitly in a 
later paper [Il l .  I n  referring to his work with DAKERI and PROSPERI, he says 
that the interference effects are only cc practically absent, )) and adds the fol- 
lowing comment: ((We did not assert that superpositions of vectors corre- 
sponding to different macroscopic states are impossible. Indeed, this possi- 
bility is firmly rooted in the formal structure of quantum theory and cannot 
be eliminated. n LOINGER is here, wittingly or unwittingly, casting his vote 
for Everett's multi-world concept, despite the fact that his papers with DANERI 
and PROSPERI claim to support traditionalist doctline. 

Although the ergodic properties of measuring instruments cannot be used 
to prove that the state vector collapses, they may very likely be of help in 
answering two questions of a somewhat different nature: 1) How can we be 
sure that uncorrelated system-apparatus states can be produced upon demand, 
as was assumed in Sect. I? 2) Why is i t  so easy i11 practice to make good 
measurements? 

The first question may be answered formally as follows: We simply pre- 
pare both system and apparatus in the state required, taking care that they 
remain uncoupled to one another during this process. Because, as we have al- 
ready remarked, the devices that  effect the preparations need not themselves 
be included in the state vector, the states of system and apparatus will ipso 
facto be independent, and their combined state will be uncorrelated. A pre- 
paration, however, is just a special case of a good measurement. I n  order to 
answer question 1) properly, therefore we have first to answer question 2). 

Question 2) may be rephrased thus: Why is i t  so easy to find apparata in 
states which satisfy the condition (1.22) for good measurements? I n  the case 
of macroscopic apparata i t  is well known that a small value for the mean 
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square deviation of a macroscopic observable is a fairly stable property of the 
apparatus. But how does the mean square deviation become so small in the 
first place? Why is a large value for the mean square deviation of a macro- 
scopic observable virtually never, in fact, encountered in practice? 

It is likely that the ergodic properties of a macroscopic apparatus bring 
about an automatic condensation of almost every initial state of the appa- 
ratus into a superposition of orthogonal states each of which a )  corresponds I 
to a distinct world-branch that will (almost) never in the future interfere 
with any other branch, and b) satisfies a narrowness condition like (1.22) rela- 
tive to every macroscopic observable A. However, a proof of this does not yet 
exist. It remains a program for the future. 

The Classical Description of the Measurement Process. I 
6. - Action functional, dynamical equations and small disturbances. 

The history of quantum mechanics would undoubtedly be far different 
from what i t  is were it not for the fact that many quantum systems have clas- 
sical analogs. The planets of Newtonian celestial mechanics are analogs of 
the elementary particles, and the classical eiectromagnetic field of Maxwell is 
the prototypical analog of the abstract quantum fields that one often intro- 
duces to  describe bosons. Even the anticommuting fields used to describe 
fermions are only one formal step removed from the fields of classical physics. 
It is hard to decide whether the development of quantum physics would have 
been easier or harder had there not existed the wealth of systems that can 
be treated very accurately purely by classical physics and that have served 
for centuries to condition our minds in ways that cause all of us some pain 
in making the readjustment to quantum ways of thinking. 

I n  any event, the practical existence of a classical realm has compensated 
to a large extent for the prejudices that it has ingrained in  us. The single 
most powerful tool that made the development of quantum mechanics pos- 
sible was the correspondence principle invented by BOER. It is difficult to 
imagine how the modern theory could have been discovered without this tool. 
When we use the same symbols to describe the position and energy of an ele- 
mentary particle as we do to describe the position and energy of a planet, 
we are demonstrating both the usefulness and the validity of the correspondence 
principle in its most general (modern) form. The mental images we attach to 
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the symbols are basically classical whether the symbols are p-numbers or c-num- 
bers. Since such symbols have to  be introduced when we want to get away 
from the abstract generalities of the quantum formalism and study the struc- 
tural detail of actual dynamical systems, it follows that  structral details are 
almost always envisaged classically. Even such abstract structures as the 
V-A coupling of P-decay theory are colloquially described in terms of the 
annihilation and creation of particles having definite helicities, i.e., in clas- 
sical language. 

It is always good to t ry  to construct explicit models to illustrate abstract 
concepts. This second part of my lectures is aimed a t  revealing some of the 
details about the couplings between systems and apparata that were omit- 
ted in Part. I .  Since I want my remarks to apply to very general classes of 
systems, if not all, the discussion will remain somewhat formal and schematic. 
However, since structural details of a general type now become important the 
language used will be mainly classical. 

I n  quantum mechanics it is often more convenient to study the Schrodinger 
equation satisfied by the unitary operator that effects displacements in time 
than i t  is to study the dynamical equations satisfied by the operator observables 
themselves. I n  classical mechanics, however, the dynamical equations move 
to center stage. The most important property of the dynamical equations is 
that they may always be derived from a variational principle, based on an 
action functional which may be regarded as summarizing, in one compact ex- 
pression, all the dynamical properties of the system under consideration. 
In  fact, one will not go far astray in simply identifying a system with its action 
functional. 

I shall denote the action functional of a system by the letter t( S )). S is 
a function of the values assumed, over a finite open but otherwise arbitrary 
time interval, by a set of functions p i ( t )  that describe the dynamical trajectory 
of the system. The qi are known as the dynamical variables, and the dynarnical 
equations are the functional differential equations 

(The time interval involved in the definition of S will be assumed to embrace 
all instants a t  which i t  may be desired to perform functional differentiations.) 
If S is expressible as the time integral of a Lagrangian function then the dyna- 
mica1 equations are ordinary differential equations. 

In  field theories the index i becomes a continuous index, representing 
points in space as well as field components. It will be a convenient abbreviation 
to absorb the time label t ,  as well, into the index i. The summation convention 
over repeated indices, which I shall adopt, will then be understood to include 
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integrations over space and/or time. The symbols in eq. (6.la) will be re- 
placed by 

where the comma followed by an index denotes functional differentiation. 
Repeated functional differentiation will be indicated by the addition of 
further indices. It should be noted that functional differentiation, like ordinary 
differentiation, is commutative (*). I n  particular, we have 

I n  the quantum theory of the system S the same dynamical equations 
continue to hold as in the classical theory, with the symbols being understood 
as operators (a transition I shall generally make explicit through the repla- 
cement of lightface symbols by boldface ones), provided appropriate care is 
taken in ordering the operators and provided, in the field theory case, certain 
renormalization constant's are introduced. The equations also hold, approxi- 
mately, in the quasi-classical limit, in the case of systems having a finite 
number of degrees of freedom, if the symbol qi is understood as standing for 
the expectation value (qi) of the corresponding quant'um-dynamical variable. 

Suppose now we choose some solution qi of the dynamical eqs. (6.1), 
and suppose we ask how this solution would be modified if the action were 
given an infinitesimal increment proportional to some observable r :  

The answer will, of course, depend on the boundary conditions we adopt. Let 
us choose retarded boundary conditions. Then the solution is unchanged 
prior to the time interval involved in the definition of r but acquires an infini- 
tesimal increment 6qi thereafter. The new solution pi + S6qi satisfies the 
equation : 

correct to first infinit~esimal order. This is an inhomogeneous linear equation 
in 6qi known as the equation of small disturbances. The solution that incor- 
porates the stated boundary conditions is 

(*) A similar formalism can be set up for anticommuting variables, in which func- 
tional differentiation is anticommutative. 
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where G- is the retarded Green's function of S,,: 

when ti < t j ,  

t i  being the instant of time labeled by the index i. 
I n  Lagrangian theories SSij is essentially a differential operator, and in 

specific cases approximate, if not exact, expressions can often be obtained 
for its Green's functions. The commutativity condition (6.2) is a statement 
of the self-adjointness of this operator, and has as one of its important con- 
sequences the following relation : 

where G+ is the advanced Green's function of SSij. Another equation satisfied 
by C+ and G-, which we shall need, is: 

Equations (6.8) and (6.9) are derived in Appendix. B. 

7. - The Poisson bracket. 

The addition of the term Er to the action 8 produces retarded disturbances 
not only in the dynamical variables pi but also in any observable built out 
of these variables. Thus, the retarded change in an observable s is given by 

It is convenient to introduce the following notation due to PEIERLS [lo]: 

(7.2) 
1 

D, s = lim - 8s = 8,' G-air,, . 
8--to & 

The Poisson bracket of the two observables r and s may then be defined very 
succinctly as 

(7.3) (I, S) = D.s-D.r = ~ , ~ G - ~ i r , ~ - r , ~ G - ~ f s , ~ =  I , ~ @ ~ S , ~ ,  

where 

(7.4) Qij = G+ij - G-ij = - Qji . 
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We have, in particular, 

The familiar antisymmetry of the Poisson bra,cket is built into the defi- 
nition (7.3). That this definition also satisfies the well-known law 

follows immediately from the fact that functional differentiation satisfies the 
same chain rule as does ordinary differentiation. Only the Poisson-Jacobi 
identity requires some effort to demonstrate. The steps are given in Appendix C. 

Once the Poisson bracket has been defined, the modern statement of the 
correspondence principle may be regarded as the adjunction to the operator 
dynamical equations of the quantization rule 

r and s being the operators whose classical analogs are r and s, and (r, s) being 
an operator (assumed determinable by some uniqueness criterion) whose clas- 
sical analog is the Poisson bracket (r, s). 

As an elementary illustration of the above formalism consider the harmonic 
oscillator in one dimension. There is one dynamical variable x(t), denoting 
displacement from equilibrium. The action functional has the form: 

where x = dxldt, and the dynamical equation is 

The operator SBij takes the form 

and possesses the retarded Green's function 

(7.11) 
1 

G-(t, t ') = - 8(t - t') sin ~ ( t  - tr ) , 
mw 
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where 8 is the (( switch-on v step function. From this, Poisson brackets may 
be computed immediately. For example, 

1 
(x(t), x(tl)) = C(t, t') = - mcr, -- sin w(t - t') , 

which yileds, in particular, the equal-time Poisson bracket 

The above expressions also yield, in the limit w -+ 0, the corresponding forms 
for the free particle: 

t-t' 
G-(t, 2') = O ( t  - t') - 

m ' 

In its quantum form eq. (7.15) may be interpreted as a statement of the wave- 
packet-spreading phenomenon. 

8. - Measurement of a single observable. Uncertainties and compensation devices. 

In order to make a measurement on the system S we must introduce an 
apparatus and an appropriate coupling. In  the absence of the coupling the 
combined action functional for the system and apparatus will have the form 
S[q] + Z[Q], where Z is the action functional of the apparatus alone and the 
symbols denote its dynamical variables. We shall assume we know the 
approximate initial state of the apparatus and hence, to some degree of ac- 
curacy, what the whole trajectory of the apparatus would be if i t  remained 
uncoupled to the system. This trajectory will be given by functions e ( t )  
satisfying the dynamical equations 

The (at least partially) unknown trajectory of the system is given similarly 
by (unknown) functions qi(t) satisfying eq. (6.1). 

The introduction of a coupling term into the total action functional pro- 
duces disturbances in both the system and the apparatus, i.e., deviations 
from the trajectories qi(t), q ( t ) .  The disturbance in the apparatus is what 
makes the measurement possible. The disturbance in the system, on the other 
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hand, tends to change the physical quantity under observation and hence to 
complicate the measurement one is trying to make. For this reason one ima- 
gines, in classical physics, that the coupling can be made as wea'k as desired. 
However, the weaker the coupling, the harder is it to detect the disturbance 
in the apparatus. Therefore a detailed study of the measurement process 
must be carried out before an accurate judgment can be rendered concerning 
limits of error. It turns out that although these limits are only of a practical 
nature in the classical theory, in the quantum theory they are fundamental. 

Suppose we want to measure the system observable s. What coupling term 
shall we choose for this purpose? I n  more technical language, what shall we 
add to the total action Sf L' in order to produce disturbances in the ap- 
paratus that, in the quantum theory, are described by the unitary trans- 
formation (1.5)? As a first guess let us try simply gX itself, so that the change 
in the action becomes: 

I n  the weak-coupling limit the resulting changes in the dynamical trajectories 
may be obtained by applying the theory of small disturbances introduced in 
Sect. 6. More generally, we may introduce a functional Taylor expansion. Thus, 
letting the actual (disturbed) trajectories be denoted by pi + 6qi, @ + a@, we have 

where the coefficients in the expansions are evaluated a t  the undisturbed 
trajectories. 

Equations (8.3) and (8.4) may be solved by iteration. Assuming that  6qi 
and 6@ satisfy retarded boundary conditions, we obtain from eq. (8.3), to 
lowest order in g, 

where G-ij is the retarded Green's function introduced in Sect. 6. When g 
is small eq. (8.5) gives the dominant contribution to the disturbance in the 
system produced by the coupling. I n  calculating the disturbance in the ap- 
paratus we must allow for this disturbance in the system. Hence, consistency 
requires us to solve eq. (8.4) correct to second order in g. However, we can 
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eliminate some of the second-order terms by assuming the apparatus to be 
much more massive than the system. Equations (7.11) and (7.14) show that 
Green's functions typically depend inversely on the mass. Hence, under this 
assumption (which, incidentally, is the only feature of macroscopicality I 
shall assign to the apparatus) we may neglect iteration terms involving the 
retarded Green's function @N of zBII in comparison with analogous terms 
involving Wj. This yields 

Now let A be an arbitrary apparatus observable. The change which the 
coupling gX produces in A may be expressed compactly with the aid of the 
Peierls notation introduced in  the preceding Section: 

where 

(8.8) Dx Ds A = (D, A),iP'j%,j = A,,G-"X,,, P'5%,, , 

the term (D,A),,G-IJ %,, that would normally be included in the definition 
of DxDgA being omitted because of the massiveness of the apparatus. Note 
that all quantities in the above expressions are to be evaluated using the 
undisturbed trajectories of system and apparatus. 

Suppose A is the apparatus observable introduced in Sect. I. It is then 
built out of Q's taken from an interval of time lying to the future of the time 
interval associated with the dynamical variables out of which X is constructed. 
This implies 

and hence 

where the classical analog of eq. (1.6) has been used in  the final steps. Equa- 
tions (8.7) and (8.10) together now yield for the disturbed apparatus observable 

2 is seen to differ from the classical analog of expression (1.8) only by a 
term in g2. I n  the weak-coupling limit one might suppose that  this term may 
be neglected and that our comparison of the quantum and classical descriptions 
of measurement may stop a t  this point. If this were so we should have learned 
very little, because our work up to now has amounted to hardly more than an 

16 - Rendiconti S.I.F. - IL. 
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elementary exercise. In  fact, however, the term in g2 cannot be neglected. It 
has an important influence on the accuracy with which s can be determined, 
as will now be shown. 

If we solve eq. (8.11) to obtain the ((experimental value a of s, we find 

As has been remarked in Sect. 1,  the change 6A in A constitutes a storage, 
in the apparatus, of information concerning the value of s. Since the time in- 
terval associated with A lies to the future of the coupling interval, this informa- 
tion could in principle be read out of the apparatus (by another apparatus!) 
a t  any later time without further affecting the system. That is to say, A + 6A I 

could be determined with arbitrary accuracy, and the accuracy with which 
s would be thereby determined would depend only upon the accuracy with 
which the undisturbed trajectories would have been known, i . e .  if the coupling 
had not been present. 

Let us assume for the present that Dss depends only on apparatus vari- 
ables. Then the accuracy with which eq. (8.12) determines s depends only 
upon the accuracy with which the undisturbed apparatus trajectory is known. 
Penote by AA and ADss the uncertainties in our knowledge of the undis- 
turbed A and Dss respectively. The mean square error in the experimental 
value of s that these uncertainties generate is then given by 

We see a t  once from this equation how the error As behaves as the coupling 
constant g is varied. When g is very large As is large due to the uncertainty in 
the disturbance gDss produced in the system. (Note that it is the uncertainty 
in the disturbance which is important here and not the disturbance itself, 
which could in principle be allowed for.) When g is very small, on the other 
hand, As again becomes large because of the difficulty of obtaining a meaningful 
value for 6 8 .  (It gets swamped by the uncertainty AA.) The minimum value 
of As occurs for 

a t  which coupling strength we have 
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I n  the classical theory AA and AD%s can in principle be made as small 
as desired. I n  the quantum theory, however, they are limited by the Heisen- 
berg-Robertson-Schrodinger (HRS) uncertainty relation which, in its quasi-clas- 
sical form, may be written 

(8.16) 

But 

and therefore we conclude tshat 

Because all reference to the apparatus has now disappeared, this inequality 
appears to suggest that there is, in the quantum theory, a fundamental limit 
to the accuracy with which the value of any single observable may be known. 
This, however, is in direct conflict with the well established principle that the 
value of any single observable is determinable with arbitrary accuracy even 
in quantum mechanics. 

The way to overcome this apparent contradiction was discovered by BOHR 
and ROSEKFELD [2]. They simply modified the coupling between system and 
apparatus by inserting an additional term -&g'D,.T into the total action 
so that (8.2) gets replaced by 

The addition of this term, which is known as a compensation term, has the ef- 
fect of replacing eq. (8.7) by 

In the approximation of neglecting terms containing the Green's functiorl G-IJ 
in comparison with analogous terms containing G-ij, the last two terms of 
this equation may be rewritten in the form 

(8.21) D I D , A  - illDxA A (D* ,G- ' ]X - A,IG-'J(DIX, ,J  = 

= A,IG- 'J (x ,J1G-"x , , - *5 ,J zG-"~  

= - 4 A, ,  G-IJ X, J l  Ow s = - * ( D y S , X )  = 4 (R", .s )  , 

in which use has been made of eqs. (6.8), (7.3), (7.4) and (8.1 0). We now invoke 
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the classical analog of eq. (1.7),  namely, 

which tells us that the last two terms of eq. (8.20) actually cance.1 one another, 
leaving 

(8.23) 6A= gD,A= gs, 

and hence 

With the introduction of a compensation term the uncertainty As can evidently 
be made arbitraryly small, either by making g large enough (but not so big 
that higher order terms in the Taylor expansions (8.3) and (8.4) must be 
retained) or by taking AA small enough. I n  the quantum theory the latter 
condition is expedited by keeping the mass of the apparatus big. If the spectrum 
of s is discrete, as we assumed in Part  I, then of course a completely precise 
experimental value for s can be obtained merely by requiring AA to satisfy 
the condition (1.22). 

Some comments are now in order regarding the idealizations that have 
been made thus far. First of all, i t  should be recognized that no real apparatus 
is designed to make a successful measurement regardless of the trajectory i t  
finds itself in and regardless of the state of the system. The success of a meas- 
urement usually depends not only on the accuracy with which the undisturbed 
apparatus trajectory is known but also on a careful choice of this trajectory. 
For example, the time interval associated with the coupling 9% is often not 
selected by making % depend explicitly on the time but by making a special 
choice of trajectory. (See, for example, the Stern-Gerlach experiment described 
in the next Section.) Furthermore, relations such as (8.10) and (8.22) will 
generally not hold as identities for all trajectories but only for certain clas- 
ses of trajectories. I n  the quantum theory this means that their analogs, 
eqs. (1.6) and (1.7), will only hold within a certain subspace of the full Hilbert 
space (in which IY), of course, lies), and the validity of (1.6) and (1.7) may 
even depend on some of the suppressed labels having certain values. Finally, 
in the error analysis presented above i t  is not really necessary to require that 
Dxs depend only on apparatus variables. It suffices merely to require that 
it vary slowly as the system trajectory changes and that the uncertainty in 
its value stemming from our lack of precise knowledge of the system trajectory 
be negligible compared to that arising from the imprecision in our knowledge of 
the apparatus trajectory. 
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9. - Two prototypical measurements. 

A) Stern-Gerlach experiment. - It is convenient to idealize this experi- 
ment by ignoring spin precession. Then the (( system )) becomes dynamically 
inert (S = constant), and the value of the z component of the spin, which is 
the observable s in this case, remains constant and unaffected by the coupling 
(D, s = 0). The possible values of this constant are discrete and finite in num- 
ber. The (( apparatus )) is the atom itself (mass m) together with an inhomo- 
geneous magnetic field oriented in the x-direction, the apparatus which pro- 
duces the field, and an associated co-ordinate system. The dynamical varia- 
bles of the ((apparatus o are the Cartesian co-ordinates x, y, x of the atom, while 
the dynarnical variable of the (( system a is the inert spin value. Because S is 
merely a constant the total undisturbed action functional is effectively that 
of the apparatus alone : 

I n  the absence of coupling (i.e. when the magnetic field is switched off) 
the trajectory that the apparatus (i.e. the atom) would follow will be assumed. 
to be given approximately by: 

That is, the atom moves along the y axis with velocity v, passing the origin 
at  time t = 0. We need not inquire how the atom was prepared in this state. 
We only remark that if the atom is sufficiently massive it will not deviate 
greatly from the trajectory (9.2), either as a result of quantum-mechanical 
spreading or as a result of coupling with the magnetic field, until i t  has passed 
well beyond the region of nonvanishing field. The magnet itself will be as- 
sumed to surround the segment 0 ,< y < L of the y-axis. Under these conditions 
the magnetic field will, in the region traversed by the atom, be expressible 
to good approximation in the form 

The coupling term therefore becomes effectively 

where p is the magnetic moment of the atom. I f  we make the identification 
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then we may express % in the special form (1.9) with 

I n  the present case the apparatus observable A is conveniently taken to 
be the x-component of momentum of the atom after i t  has passed through 
the magnetic field: 

Using the Poisson-bracket relation (7.15), applied to the z-component of po- 
sition of the atom, one easily finds 

in which the trajectory eqs. (9.2) are used in the final steps. Equation (9.8) 
is just the classical analog of eq. (1.10), and hence we see that the Stern-Gerlach 
experiment constitutes a measurement of precisely the von Neumann type. 
Because A = 0 for the undisturbed trajectory (9.2) we may write the experi- 
mental value )) of the spin in the form 

where 3 refers to the disturbed trajectory. We note finally that, from the point 
of view of the simplified notation employed in Sect. 1, the x and y co-ordinates 
of the atom are suppressed labels, and that this is a case in which the validity 
of eq. (1.6) depends very much on these labels having the values specified by 
the trajectory (9.2) 

B )  Electric-field measurement [2]. I n  this case the system is the whole 
electromagnetic field, and its action functional is 

(9.10) 

where 

metric (rlYv) = (vP,,) = diag (- 1,1, 1, 1) .  The apparatus will be chosen to con- 
sist of two interpenetrable rigid bodies, initially and finally occupying the same 
volume V, one of which is permanently fixed (relative to the co-ordinates $1, 

x2, x3) and carries a uniform charge density Q while the other is movable during 
the time interval 2' (only) and carries a uniform charge density Q .  I f  the mass 
M of the movable body is big enough so that  its dynamics may be described 
nonrelativistically, then the apparatus action may be taken in the form 

z = + ~ J f i 2 d t  + rotational action , 
T 

where R is the center of mass of the body. We do not write out the rotational 
part of the action explicitly since the rotational variables will be suppressed 
labels in this case. 

I t  will be noted that switching devices (to hold and release the movable 
body) are needed here, whereas they were not needed in the Stern-Gerlach 
case. The action therefore has an explicit time dependence (through the pre- 
sence of T). Time independence could in principle be restored by including 
the switching devices in the total action. The choice of time interval would 
then be governed by initial conditions on the apparatus motion, just as in 
the Stern-Gerlach case. 

The coupling between the electromagnetic field and the apparatus is 

where jp  is the charge-current density 4-vector of the apparatus. The undis- 
turbed trajectory of the apparatus will be assumed to be given approximately by 

If the movable body is sufficiently massive it will not deviate greatly from 
this trajectory either as a result of quantum-mechanical spreading or as a 
result of the presence of an electromagnetic field. Under these conditions the 
4-vector (jp) = (jo, j) may be approximated by 

where x is the ((characteristic function )) of set theory: 

and where Greek indices are raised and lowered by means of the Minkowski 
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The second term on the right of eq. (9.17) arises from the possibility of sudden 
motions of the body caused by the switching devices that act a t  the begin- 
ning and end of the time interval IT. 

Equations (9.16) and (9.17) can be rewritten in the form 

where 

(9.19) 

More generally, in an arbitrary co-ordinate frame, we may write 

where PPv is an antisymmetric polarization tensor. I n  the co-ordinate system 
( t ,  r) this tensor takes the form 

It will be noted that  (9.20) guarantees charge conservation: 

I f  we insert (9.20) into (9.14) and integrate by parts, we get 

where E is the electric field vector: 

(9.24) E = -  V P 7 - d .  

Inserting (9.19) into (9.233) and making the identification 

(9.25) 

we then find 
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where E, is the average of the electric vector over the volume V :  

For the apparatus observable A we choose in this case 

where z is the time a t  the end of the inverval IT, just before the switching 
device brings the movable body to rest again. The quantity that the appa- 
ratus then measures is a space-time average of the electric field: 

for i t  is easy to verify that 

(9.30) ( % A ) = E p *  

To get an accurate measurement of the indisturbed Err, however, it is 
necessary in the present case to supplement the apparatus with a compensation 
device. This is because any uncertainty that may exist about the apparatus 
trajectory's being given precisely by eq. (9.15) is propagated to the electro- 
magnetic field through the fact that we cannot be sure that P, and hence the 
field produced by the apparatus itself, is exactly zero. To determine the 
st,ructure of the compensation device required we must first study the dyna- 
mics of the electromagnetic field. 

The undisturbed field FPv satisfies the differential equation 

while the disturbed field pPv satisfies the equation 

The difference between these two equations yields 

which, when combined with the equation 
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(which expresses the fact that the field tensor is a curl), yields 

The retarted solution of this equation is 

where G- is the retarded Green's function of the d'Alembertian operator 0: 

On the other hand, we have 

(9.38) 

the second form following from eq. (9.23a) and the superposability of electro- 
magnetic-field disturbances. Comparison of eqs. (9.36) and (9.38) therefore yields 

and, in particular, 

(9.40) 

where 1 is the unit dyadic. 
I t  is now a straightforward matter to compute the compensation term that 

needs to be added to the total action functional. Ignoring the Green's func- 
tion of the apparatus compared to that of the system, we have 

I f  the movable body is sufficiently massive R will not change appreciably 
during the time interval Z', and (9.41) will be adequately approximated by 

where 

Expression (9.42) is just the contribution to the action functional that would 
be made by the potential energy term of the Lagrangian of a 3-dimensional 
harmonic oscillator having spring constant x.  This is the origin of the famous 
mechanical springs that Born and ROSENFELD [2] found i t  necessary to 
attach to the movable body. 

10. - Measurement of two observables. 

The relationship between the classical and quantum descriptions of the 
measurement process stands fully revealed only when we examine the compli- 
cations that arise when the apparatus tries to measure two system observables, 
r and s. In  view of what we have learned in earlier Sections we naturally at- 
tempt to accomplish such a measurement via a coupling of the form 

in which a Bohr-Rosenfeld compensation term has been included. Here S 
and g are required to satisfy 

where A and B are the apparatus observables that store the observations of 
r and s respectively, and the Poisson brackets are to be evaluated a t  the un- 
disturbed trajectories. I t  will be noted that the inclusion of an overall com- 
pensation term for 3 + g is equivalent to the inclusion of individual compen- 
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sation terms for 3 and Y separately, plus another term, - ig2(Dx g + Dg%), 
which may be called a correlation term. 

I n  addition to eqs. (10.2), (10.3) and (10.4), A and B themselves will be 
required to satisfy 

correct to second order in g. Solving these equations for the cc experimental 
values )) of r and s, we find : 

Equations (10.4) and (10.5) together express the fact that A and B are to be 
dynamically independent quantities and that the two measurements are to 
be operations which are as independent of one another as possible, so that any 
interference that occurs between the measurements of r and s arises not 
from the memory storage process (i.e. from the apparatus) but from the 
dynamical properties of the system alone. It should be noted that we cannot 
require the Poisson brackets (3, s)  and (9, r )  to vanish unless (r, s) = 0, for 
this would contradict the relations 

which lead to the uncertainty relations 

If we multiply these two equations together we find that the minimum value 
of the product of the uncertainties Ar and As occurs for a value of the coupling 
constant given by 

We can, however, require 

as may be seen by making the special choices (cf. eqs. (1.9) and (1.10)) At this value we have: 

(10.19) ArAs = +[AAA(%, s) + ABA(g, r)] . 

where X and Y are apparatus observables satisfying 
Under the best imaginable circumstances the Poisson brackets (5, s)  and 

(g, r )  will depend a t  most weakly on the system trajectory, so that the un- 
certainties A(%, s) and A(g,  r)  will arise primarily from the imprecision in 
our knowledge of the apparatus trajectory. Applying the quasi-classical form 
of the HRS uncertainty relation to these uncertainties and making use of 
eqs. (10.6) and (10.7), we find 

(10.10) (X, A) = I ,  (Y, B) = l ,  

By a series of steps completely analogous to those followed in obtaining 
eq. (8.21), i t  is easy to verify that the coupling (10.1) produces the following 
disturbances in A and B:  (10.20) 

and hence 

(10.13) SB = g(% + g, B)  + ig2(% 4- 9, (Z + 9, B)) = gs + ig2(%, s)  , 
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That is, we get the HRS uncertainty relation back again a t  a new level (*)! 
This result constitutes a proof of the fundamental consistency of the quan- 

tum-mechanical formalism with the theory of measurement. If the laws of 
quantum mechanics, as embodied in the uncertainty relat~ion, hold for the 
apparatus, then they are immediately propagated to every system with which 
the apparatus interacts. The precision with which we can make mutually inter- 
fering measurements a t  any level, is as good as, but no better than, that al- 
lowed by the quantum-mechanical uncertainty relations. 

11. - Imperfect measurements. 

Many interactions are constantly taking place in the universe that lead 
to decompositions of the state vector of the form (2.1) but for which the ortho- 
gonality relations (2.3) do not hold (**). Failure of the orthogonality relations, 
in fact, always occurs to some extent whenever the spectrum of s is continuous. 
Such interactions do not split the universe cleanly into noninterfering branches. 
This means that the branching-universe picture given in Sect. 2, 3 and 4 is 
an idealization. I n  order to arive a t  a full undertanding of the implications of 
the many-universes interpretation of quantum mechanics one must also con- 
sider imperfect measurements. 

After an imperfect measurement i t  is not possible to regard the system as 
having been prepared in a definite state which may be studied independently 
of the rest of the universe. The apparatus has not succeeded in bringing about 
a state in which the vector IY) may, for practical purposes, be regarded as 
collapsed. In  other words, a true split has not occurred. 

The split can, however, be forced, by bringing in a second apparatus to 
measure very accurately the disturbed apparatus observable A. By this device 

(*) BOHR and ROSENFELD [ 2 ]  showed, in their analysis of the simultaneous 
measurement of two electromagnetic field averages, that if the correlation term 
- & g 2 ( D F 9 1  + D g  3) is omitted from the coupling, then the inequality (10.21) is 
changed to the weaker inequality AT As > 4 ( ID, sl + ID, r 1 ) .  Equation (10.21) represents 
the best that  one can do. The actual correlation devices that BOHR and ROSENFELD 
were compelled to  introduce to obtain (10.21) consisted of mechanical springs linking 
the two movable bodies comprising the apparatus. 

(**)  The student should perhaps be reminded again a t  this point that  reality is not 
described by the state vector alone, but by the state vector plus a set of dynamical 
operator variables satisfying definite dynamical equations. Decompositions of the 
form (2.1)  are not to be regarded as meaningful if they are merely abstract mathematical 
exercises in Hilbert-space. Indeed such mathematical decompositions can be performed 
in an infinity of ways. Only those decompositions are meaningful which reflect the 
behavior of a concrete dynamical system. 

i t  is possible to give a meaning and an answer to the question: I n  what sort 
of state does an imperfect measurement leave the system? 

Let us consider the case in which the spectrum of s is continuous. Expres- 
sion (2.1), which reflects the situation after the measurement, is then modified 
to read 

in which the summation over s is replaced by an integral. If now a second 
apparatus is introduced, which makes a very accurate observation of 2, a 
true splitting will occur. I n  the branch that corresponds to the eigenvalue 2 
the vector IF) will have been effectively collapsed to /ls)l2)(s, 2 l ~ ) d s .  

The factor 1 ls)(s, A 1Y)ds appearing in this collapsed vector may be re- 
garded as the vector corresponding to the state (appropriate to the branch 
in question) in which the first measurement has left the system. Denoting 
this vector by Iy),-, we find, with the aid of eq. (2.2), 

Unless @ is an infinitely narrow function (in which case the first measurement 
would have been perfect) this is not an eigenvector of s. I t  consists, instead, 
of a superposition of eigenvectors, corresponding to a range of eigenvalues 
having a spread AAlg and roughly centered around the value ( 2  - (A))/y (*). 
We see therefore that the uncertainty 

found in Sect. 8 (see (8.24)), with which the first apparatus measures the ob- 
servable s, is reflected in the state in which the system finds itself after the 
measurement. I n  the present case the uncertainty in the measured value of 
the system observable arises from the uncertainty, in the state I @ ) ,  of the 
value of the undisturbed apparatus observable A, anci can be made as small 
as desired simply by choosing AA sufficiently small. There is an important 
case, however, in which uncertainties remain no matter how precisely the 
relevant apparatus observables are known namely, the case considered in Sect. 10 
in which the apparatus tries to measure two noncommuting observables. I n  
this case the two measurements unavoidably interfere with one another. 

( * )  If c, is itself a narrow function, with As << AAlg (e.g. ,  if ly) is an eigenveotor 
of s), then Iy),- is just a multiple of Iy), and the first measurement leaves the system 
state vector unaffected. 
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For simplicity let us consider the special case in which the commutator 
[r, s] (or, equivalently, the Poisson bracket (r, s)) is a multiple of the identity 
operator, and S a n d  %' have the forms (10.9), with (10.10) and (10.11) holding. 
The coupling (10.1) then transforms the undisturbed apparatus observables 
A and B into the disturbed observables: 

(11.4) A= exp [-ig( % +W)]Aexp rig(% + W)] = A+ gr - &g2(r, s )Y,  

I t  will be convenient to introduce also the following operators: 

(11.6) P = exp [-ig(% + g ) ] r  exp [ig(% + W)] = r -g(r, s) Y , 

(11.7) 3 = exp [-ig(% +W)]sexp [ig(% +W)] = s+g( r ,  s) X . 

(These are not equal to the disturbed operators F and 3 respectively.) 
Now note that one can obtain eight distinct commuting triplets of operators 

by choosing one from each of the pairs {r, s), ( A , X } ,  (B, Y). Any one of the 
eight possible Hilbert-space bases determined by these triplets can be used 
in the description of the undisturbed state of the system-plus-apparatus. 
Because 

I exp [-- ig(% + W)IXexp Lig(s + W)1= X , 
(11.8) 

[ exp [-ig.(% + g ) ~ y e x p  [ig(% +%)I = Y ,  

i t  follows that eight distinct commuting triplets of operators can also be ob- 
tained by choosing one from each of the pairs {F, i3), {z, 9, {B, Y ) .  Any one 
of the eight possible Hilbert-space bases determined by these triplets can be 
used in the description of the disturbed state of the sistem plus apparatus. 
Because the pairs (A, 9, {B, Y'), {z, X),  {B, Y) are conjugate pairs, the trans- 
formation coefficients between the various bases may be taken in the forms 

(11.9) (XIA) = (XIS) = (2n)-* exp [iXA] = ( 2~ ) -*  exp [ i x 3 ]  , 

(11.10) (Y(B) = (YIB) = (2n)-+ exp [i YB] = (2n)-) exp [~YB] . 

Let us assume an  uncorrelated initial state for the system and apparatus, 
so that  the total state vector takes the form 

the Cartesian product decomposition being into the Hilbert subspaces defined 
by the undisturbed pairs (r, s}, {A,  X } ,  {B,  q. Let us further assume, for 
simplicity, that the two memory cells of the apparatus are uncorrelated, so 
that (A, Bj@) factors into a product of the form 

(11.12) (A, Bl@) = @,(A) @2(B) . 
Then we have also 

(11.13) (A, Y I@) = @,(A) 6,( Y) , ( X ,  B I @ )  = $ , ( X I  @,(B) , etc. 

where the tilde denotes the Fourier transform: 

6,( Y) = (an)-$ J exp [i YB] @,(B) dB . 

Consider now the basis vectors [r, A, Y). From eqs. (11.4) and (11.6) we find 

the eigenvalue equalities r = 3, A = A being used in passing to the final forms. 
From this i t  follows that, apart form an arbitrary phase factor which will 

be taken equal to unity, we have 

or, equivalently, 

In  a similar manner we can infer 

with s = 8, B = B. 

17 - Rendiconti S.I.F. - IL. 
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Using eqs. (11.11), (11.13) and (11.19), it is a straightforward matter to 
decompose the total state vector in terms of the basis vectors I?, 2, Y ) :  

where 

The decomposition of IF) in terms of the basis vectors 19, X, B) has a similar 
structure : 

where 

(11.25) 

If we now introduce a second apparatus which makes accurate measure- 
ments of 2 and B, thereby forcing the universe to split, we obtain for the ef- 
fective state vector of the system, in the branch in which the second apparatus 
has recorded the values .SdA and B respectively, 

(11.26a) 1 y ) , - ,  =/I?) (?, 2, BY)d?  

= (2x)-*Jd?p Y I?) exp [- iB  Y]c;+,,,,,, 

@,(X - g? - +g2(r, S) Y) 62( Y )  , 

(11.26b) = (2n)-*/dBkX IS) exp [- i z x ]  ~ - g , r , , , ,  . 
6 1 ( ~ ) @ 2 ( B  -93 + &g2(r, S ) X )  . 

This vector does not represent either the observable f or the observable 3 as 
having a definite value. The mean square deviations of these observables from 
their mean values may easily be estimated in  the case in which c, and d, are 
slowly varying functions. Denoting by AA, AB, A X ,  AY the root mean square 
deviations defined by the functions @, , @, , 6, ,6, respectively, we obtain 

the first terms on the right of these equations coming from the factors @, and 
@, in the integrands of eqs. (11.26~) and (11.26b) respectively, and the second 
terms coming from the factors 6, and 6,. 

Now the deviations A X  and A Y  are limited by the constraints 

Therefore we have 

The minimum value of the product of the right-hand sides of these inequalities 
occurs for a value of the coupling constant given by 

and from this one may readily infer 

In  other words, no matter how accurately the values of A and B are known for 
the first apparatus, the second apparatus cannot succeed in forcing the system 
into a state in which the values of r^ and ŝ  are known to accuracies better than 
that allowed by the HRS uncertainty relation. I n  one sense this is, of course, 
a trivial result, since the uncertainty relation is an abstract property of opera- 
tors and vectors in Hilbert space, which must always hold. However, i t  
shows once again the consistency of the quantum-mechanical formalism with 
the general theory of measurement. 

The writing of these notes was made possible through the time and facilities 
extended to me by the Pacult6 des Sciences of the University of Paris and the 
Societa Italiana di Fisica in Varenna. The arrangements were made by Drs. Y. 
CHOQUET-BRUHAT and B. D'ESPAGNAT, to whom I wish to express my war- 
mest thanks. 
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Properties of the relative frequency function. 

The first property is elementary : 

The proof of the second property requires a simple induction: 

Identities satisfied by the Green's functions. 

To avoid misunderstandings in the derivation of eqs. (6.8) and (6.9) i t  is 
helpful to take note of the fact that an expression like fiS,,,g', where f and 
g are arbitrary functions, may be ambiguous. Unless the intersection of the sup- 
ports of f and g occupies only a finite domain of space-time the associative law 

of multiplication niay fail, and (fzS,,,)gJ may not be equal to fz(S, , ,g~) .  This 
is because an integration by parts is generally necessary to pass from one form 
to the other. In the following equations, involving Green's functions, the stu- 
dent may easily verify that, owing to the kinematical structure of the Green's 
functions, the associative law does in fact hold. 

Equation (6.8) follows immediakely from (6.2) by writing: 

Equation (6.9) may be derived by first asking what the change in the 
retarded Green's function G- rrould be if the action suffered an infinitesimal 
change 68. Denoting this change by 6G- me obtain immediately from eq. (6.6) 
the following variational equation : 

6s .  ik G-ki + IS, ik 6G-kj = 0 , 

6G-" = - 6fl,ik Gk-j . 

6G- is seen to  satisfy an inhomogeneous linear differential equation similar 
to the equation of small disturbances. Tho solution of this equation that 
incorporates the boundary conditions necessary to maintain the integrity of 
the kinematical structure of G- is 

This may be combined with the symmetry law (B.l) to yield 

Equation (6.9) is essentia'lly just a special case of this. 

The Poisson-Jacobi identity. 

Let r,, r , ,  r, be any three observables and let cap, be the antisymmetric per- 
m~ ta~ t i on  symbol in three dimensions. Then 
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in which use has been made of eqs. (6.9) and (7.4). The factor multiplying 
&.fly in the first term is symmetric in a and y while that multiplying capy in the 
second term is symmetric in a and B. These two terms therefore vanish. I n  
the third term the factor ~,p, ,r~,~rp,~r, , ,  is invariant under cyclic permuta- 
tion of i, j ,  k. Therefore, if the factors involving the Green's functions are 
multiplied out, the resulting four terms may be subjected to independent 
cyclic permutations of i, j ,  k without affecting the value of the expression. 
Because of the symmetry of S,,, the indices 1, m, n may be subjected to cor- 
responding permutations. The following replacement is therefore permitted: 

The resulting term by term cancellation shows that the thirdterm in (C. l )  
likewise vanishes, and hence that the Poisson-Jacoby identity is satisfied. 
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On the Interpretation of Measurement within the Quantum Theory* 

LEON N. COOPER AND DEBORAH VAN VECHTEN 
Brown University, Providence, Rhode Zstand 02912 
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An interpretation of the process of measurement is proposed which can be placed wholly 
within the quantum theory. The entire system including the apparatus and even the mind 
of the observer can be considered to develop according to the Schriidinger equation. No 
separation, in principle, of the observer and the observed is necessary; nor is it necessary to 
introduce either the type I process of von Neumann or wave function reduction. 

INTRODUCTION 

Although the structure of the quantum theory 
in the opinion of almost all physicists is free from 
contradiction, questions about the consistency 
of its interpretation have been and continue to be 
posed. The view expressed in most texts and 
taught in many classes derives from the work of 
von Neumannl in the early thirties; l't implies 
what is close to a Cartesian dualism dividing mind 
and body which, though consistent (and perhaps 
even respectable in the 17th century2n3), seems 
somewhat of an anachronism a t  p r e ~ e n t . ~ , ~  

* Supported in part by the Advanced Research Pro- 
jects Agency, the National Science Foundation and the 
U. S. Atomic Energy Commission. 

J. von Neumann, Mathematical Foundations of Quan- 
tum Mechanics, transl. by Robert T. Beyer (Princeton 
University Press, Princeton, N. J., 1965). 

I t  was not accepted universally even then. Spinoza, 

Von Neumann proposed that the interpretation 
of measurement-or the means by which we come 
to know that something has happened-requires 
a process which does not develop according to the 
Schrodinger equation. He says? "We therefore 
have two fundamentally different types of 
interventions which can occur in a system S or in 
an ensemble (81, ., S N ) .  First, the arbitrary 
changes by measurements which are given by the 
formula 

Second, the automatic changes which occur with 
passage of time. These are given by the formula 

U-+U,=exp{- (%i/h)tH] U exp( (2ai/h)tH]. 

(11) 
for example, objected saying: "he [Descartes] accom- 
plishes nothing beyond a display of the acuteness of his Further:'. . .we must always divide the world 

own great intellect." into two parts, the one being the observed system, 
3 B. Spinoza, The Ethics, D. D. Runes, Ed. (Wisdom the other the ~bserver.  In  the former, we can 

Library, division of The Philosophical Library, New York, follow up all physical Dro2esses (in ~ r i r l c i ~ l e  a t  - - "  \ .  . 
1957)' p. 24. least) arbitrarily precisely. I n  the latter, this is 

The number of papers on this subject is large and the meaningless.jj individual contributions not always easv to  understand. - - " " 

We have not made an exhaustive study of the literature Wigner has written:8 . . One must 
and make no claim that every concept presented is conclude that the only known theory of measure- 
written down for the first time; however we have never ment which has a solid foundation is the orthodox 
seen the entire matter discussed in this light. Our own 
primary references were Wigner's 1963 article, von 
Neumann's book, and what a somewhat reversible memory 
told us we had read and been taught over the years. 
We were directed to  Prof. K. Gottfried's excellent dis- 
cussion in his book on Quantum Mechanics (Ref. 5) 
somewhat later. There he has stated the relation between 
measurement and irreversibility in a very clear and 
elegant fashion. We would like to express our gratitude to 
Prof. H. P. Stapp for a very interesting correspondence 
and for bringing our attention to  an article of Hugh 
Everett 111, Rev. Mod. Phys. 29, 454 (1957). Everett, 
whose views do not seem to be generally known, recognizes 
the necessity of retaining all branches of the wave-func- 
tion; in this respect his ideas are quite similar to our own. 

Just as Everett we retain all branches of the wave function. 
However, it is not the wave function itself which is put into 

one and that  this implies the dualistic theory 
concerning the changes of the state vector. It 
implies, in particular, the so-called reduction of 
the state vector." 
correspondence with experience. Rather this correspondence 
is made via the amplitude 35. Thus there are amplitudes 
which give the probability for any particular sequence of 
events that might constitute an evolving world. These is 
nothing, however, which necessitates that more than one of 
these come to pass. (Last paragraph of footnote added No- 
vember 1972.) 

K. Gottfried, Quantum Mechanics, (W. A. Benjamin, 
Inc., New York, 1966), vol. I, pp. 165-189. 

See Ref. 1, p. 351. 
'See Ref. 1, p. 420. 

E. P. Wigner, Amer. J. Phys. 31, 6 (1963)) p. 12. 
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I n  the words of Spinoza9 "They appear to 
conceive man to be situated in nature as a 

I 
kingdom within a kingdom: for they believe he 
disturbs rather than follows nature's order. . . ." 

1 1  1 ) )  
tH)- 

In  what folio\\-s we propose a reinterpretation JI, 
of the quantum theory in which those processes 
called "measurement" or cognition are brought 

l q u  4 
11 1 

within the ordinary time development of the 
+o 

I I 
'2  

Schrodinger equation. Thus we have no need for 
the discontinuous process [Eq. (I)] of von FIG. 1. Traditional arrangement resulting in an inter- 
Neumann. In  this way perception or cognition ference pattern- 

are made a part of nature so that, again in the 
words of Spin0za,l0 "mind and body are one and In the double Stern-Gerlach experiment, dis- 
the same thing. . . ." cussed by both Bohm" and Wigner,12 an electron 

I. ANALYSIS OF AN 
INTERFERENCE PATTERN 

Consider a traditional arrangement (Fig. 1) 
~vhich results in the interference pattern due to the 
passage of an electron through a barrier with two 
slits. The wave function of a single electron 
localized in the region R, at  the time to, moving 
to the right in the horizontal direction may be 
written 

This develops according to the Schrodinger 
equation so that a t  time tl the packet is passing 
through the slits and we might write 

where +u (#L) is the part of the packet that passes 
through the upper (lower) slit and is normalized. 
At time t2 when the packets have reached the 
screen, the wave function can be written 

* (tz) = a*u (tz) +P*L (tz) - (3) 

The probability amplitude that the electron arrive 
a t  the point xo on the screen is given by 

prepared in a state which is an eigenfunction of a, 
is acted upon by an inhomogeneous magnetic 
field in the x direction so that 

+u is correlated with spin 

and 
+L is correlated with spin 1 . 

We thus have a t  tl 

*(ti) =aut X+u+Bur X$L. ( 5 )  

Is  this to be regarded as a measurement of the 
spin state of the electron? 

In  the usual sense the answer must be no since 
at  the screen a t  time tz the amplitude that the 
electron arrive a t  xo is 

Its wave function is thus (as expected) a super- 
position of the two spin states ut and u+. This is 
made more graphic if we recombine the spatial 
wave packets (by the introduction of a current 
which reverses the effect of the inhomogeneous 
magnetic field) in such a way that 

(*(t2, X) 1 20) = a(+u(tz, X) I 20) where rLo is the original wave packet. The wave 
function would then be 

+P(+L(t2, x) I 20). (4) 

We cannot say whether the electron has "gone" 
*(tz, x) =*o(x) ( ~ t  +u+), (8) 

through the upper or lower slit since the amplitude and the electron is again in an eigenstate of a,. 
is a coherent sum of 1C.u and +L. 

See RRf. 3, p. 23. 
10 Sw Ref. 3, p. 27. 

"D. Bohm, Quantum Theory (Prentice-Hall, Inc., 
Englewood Clif'fs, N. J., 1951), Chap. 22. 

l2 See Ref. 8, p. 10. 

11. MEASUREMENT This wave function develops further so that at  t2 
nre have 

What then constitutes a measurement? To 
discover whether the electron has passed by the * (tz) = a#u (tz) XAu(tz) + P#L (tz) X AL ( t 2 )  . (16) 
upper or lower path, we might place a detector at  
each slit. Call a detector A- (auXaL). The wave 
function of the entire system (electron+detector) 
is then written 

!P=$XA. (9) 

At t1 the electron can interact with the detector 
and this interaction puts the detector system into 
the states 

Au - ( a ~ +  X a ~ )  (10) 
and 

AL = (au X a ~ + ) .  

The meaning of the latter two equations is that 
the electron interacts with the upper detector and 
not with the lower, or with the lower detector and 
not with the upper.13 

We assume in what follows that the state 
represented by AU is orthogonal to that repre- 
sented by AL SO that for all time 

The wave function 

Since (Au I AL) =O it follo~vs that the probability 
amplitude that the electron arrive at  xo and that 
the detector read AU (the electron has go~lc 
through the upper slit) is 

( ~ ( ~ ~ ) I X O A U ) = ~ ( $ U ( ~ Z ) I X O )  (17) 

while the amplitude that the electron arrive at xo 
and that the detector read A t  (the electron has 
gone through the lower slit) is 

(*(tz) I XOAL)=P($L(~~)  I XO) (1s) 

and of course there is no interference. 
Therefore unless AU and AL can develop into 

states which are not orthogonal to each other, or 
if one requests a matrix element which is a super- 
position of Au+-4L (that is a superposition of t~vo  
orthogonal macroscopic states which is not 
normally done) there can be no further inter- 
ference between $u and $L and the Ivave function 
[Eg. (16)l  is not distinguishable from a mixture. 

Whether Au and AL will develop into states 
which are not orthogonal to each other depends 
upon whether the states AU and AL are reversible. 
In  a microscopic sense, of course, all states are 
reversible. But for large systems in the thermo- 

can now develop in time to give at  tl dynamic sense certain states are not. 

9 ( t ~ )  =a#vXA +P$L X A. (13) I t  is this that distinguishes the double Ster~l- 
Gerlach experiment from what we usually under- 

If we assume that the detectors are so designed stand as a measurement. For the former there 
that there must be an interaction in order for the exists an easily realizable interactiorl (that 
wave function to pass through the slits, we obtain produced by a current loop for example) which 
at t1+6 the correlations will reverse the effect of the original inhomogene- 

*uXA+*uXAu, 

+LXA+$LXAL. (14) 

Thus all together we have 

*(t1+6) =a+uX Au+P#LXAL. (15) 

'3 This of course is an hypothesis in addition to the 
Schrodinger equation. The electron is indivisible. In 
quantum field theory we would write: 

C (+v*+v) (+L*+L), +* (2) I= 

ous magnetic field and thus bririg $v nrld $L back 
to $0. The interaction in what is usually under- 
stood as a detector (e.g., an interaction in a 
photographic plate) cannot usually be made to 
reverse itself. Therefore, the states A U  arid AL do 
not, in the normal course of events, develop into 
states which are not orthogonal to each other. 
We take the point of view that the existence of 
interactions ~vhich are macroscopically or thermo- 
dynamically irreversible is what removes the 
possibility of future interference and makes a 
coherent wave function indistinguishable from a 

(+u*+u)+L*s (3-xL) + + o * ( + L * + L )  6(s -xu). mixture. Therefore, a measurement or the prepara- 
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ti011 of a state is in fact the interaction of a system interacts with the system in an irreversible 
to be observed or prepared with another system manner in the sense just discussed, then once this 
which can be put into a state that is irreversible interaction occurs, the two branches of the wave 
for reasons of entropy, thus eliminating the function can no longer interfere and we can assert 
possibility of future interference. This second just as classically that the system is either in 
system (often called the apparatus or even the state U or L. 
observer) is usually thought of as being classical. We have 110 difficulty describing a system of 
But this from our point of view is not necessary. instruments, other minds (or even our own mind 
Any quantum system (a  riucleus which can if we are speaking of the future) and stating that  
undergo fission for example) which can suffer a the system (instruments, other minds) is, will be, 
large increase in entropy due to the interaction or was, either in state U or L, each with the 
will do as 11-ell. probability amplitude given by the proper inner 

111. COGNITION 

We 1101~ propose that the mind is a system 
\\-hich, though large and capable of essentially 
irreversible changes, can be described lvithin the 
Schrodinger equation. Thus a mind coupled (via 
the usual sensory organs) to the apparatus 
A= (auXaL) of Ey. (10) is to be denoted by a 
wave functiori of the form 

As the I\-ave function develops in time we have 
eventually 

I t  is important to recall that just as 

Au= ( a u + X a ~ )  

product. 
I t  is the process of discovery or cognition that  is 

difficult to describe. We can say of our own mirid 
that it \\-ill be the state U or L with probability 
j a l 2  or I /3 t 2  a t  the future time tl. But to say that  
our o\ni mind was in either of the states 71 or L in 
the past means that  we have forgotten; to say 
that right now our mind is either in the state U or 
L means that we do not know the state of our own 
mind. When one speaks of cognition i t  is tauto- 
logically implied that  one knows the state of one's 
own mind-that one has discovered which of the 
various possibilities in actual fact has come to pass. 

In  classical physics an  ensemble is sometimes 
said to be reduced to a pure state 

and when a system coupled to the observer, A P  for 
AL ( a ~  X a ~ + ) ,  (10) example, registers Meu. The observer then knows - 

so also Mu cognition of a registration in the lvas in principle kl'Owable' The 
transition implied by Eq. (22) is riot describable 

upper detector and no registration in the lower by a Hamiltonian since in effect it represents a 
while ML means the reverse. 

Thus finally the wave function is a linear super- 
(retrospective) change in initial condition. The 
state determined for all time by the Hamiltonian 

position of the two states and by the initial condition was never fully 

$Ju X AU XAfu 
and 

$JLXALXICJL. (21) 

Every instrument coupled to U or L in the future 
registers invariably U or L guaranteeing a com- 
plete correlation between the state of the inter- 
acting instrument and the branch of the wave 
function with which i t  is associated. 

If we now agree that one of the instruments 
coupled to the wave function (say A or M above) 

determined, since the initial conditions were 
never completely known. When an observation is 
made, the state of the system (past, present and 
future) is determined. 

If the entire process including the mind were 
put into the equations of motion, then we might 
write to begin 

PuXAXM(~U+PL)XA, (23) 

which means that the system is in the state U but 
the mind is aware only of the ensemble U+L. As 

. . . . . .  
total reversal to occur, the upper and lower - correlated branches would again interfere, and by . . . . . .  reducing the wave function we would be throwing 
away a branch needed to produce the resulting 

L u interference pattern. Thus the practice of reducing 

FIG. 2. A reversible simple mind. the wave function upon coming to "know" the 

time passes this becomes 

- 
state of the system is either a manner of speaking 
or incorrect. 

PUXAU XAfpuXAu. We can perhaps make this more graphic by 
(24) 

considering what might be called a reversible 
Thus in fact we have not.gone from mind. For simplicity, we assume that the mind 

PU+ PL-+PU, (25) may register only two states, U and L. (As a 
concrete example, consider a 2-level atom and a 

but rather from 
photon of the right energy, Fig. 2.) Transitions 

M(P"+PL)xA+MPuxA ~ r '  (26) between the two states are possible so that if 

This represents a change in the state of excitation 
of the mind which, with its sensory coupling, can 
be assumed to  be describable by a Hamiltonian 
within the compass of classical physics. 

In  quantum physics the situation is in some 
respects similar, but in a fundamental sense it is 
very different. If the wave function of a quantum 
system coupled to instruments, minds, etc. a t  
4 :, co 13 

* ( t o )  =a$JuXAXMX-- -Me  

+/?+LXAXMX . A l e ,  (27) 

and develops a t  some later time into 

*=a+uXAuXMuX-.*Mev 

+P+LXALX MLX ' . A f e ~ ,  (28) 

and if we then regard this system ourselves, we 
"discover" for example that  it is in the state U .  
This according to tradition "reduces" the wave 
function in close analogy with the classical 
reduction of an ensemble (the discontinuous 
process of von Neumann not describable by a 
unitary transformation) so that upon cognition, 

* = 4  uXAuX...Mcu+/?+~XA~X*.*AIe~ (29) 

suddenly becomes 

*=+uXAuXMvX .-Meu, (30) 

and is renormalized. This reduction, however, is 
not incorrect only in the case in which a t  least one 
of the devices (mind included) within the cor- 
related system cannot reverse itself. Were such 

there are no irreversible devices coupled to the 
system, it oscillates between U and L. Thus 
the state MU ( t l )  does not preclude the possibility 
that this could develop into AfL(tl+B). I n  this 
process, of course, the mind would retain no 
memory of its previous state. I11 this kind of 
"mind reversal" the two branches U and L 
would be expected to interfere just as in the 
Stern-Gerlach experiment with the introduction 
of the current loop. Thus a "reduction" of the 
wave function which discards one of the branches 
would be incorrect. 

From this point of view the concept of "knowing 
something" has been introduced to order a world 
in which "mind reversals" do not normally occur. 
If "mind reversal" was a relatively frequent event, 
"knowledge" or "memory" would not exist in the 
usual sense and the concept of "knowing some- 
thing" would not be likely to have been introduced 
in the same way. 

IV. HOW IS SOMETHING KNOWN? 

How then is something known? A wave function 
which is a superposition of various amplitudes 
does not contain any information which indicates 
in which amplitude the system ((really" is. 
[The type I process of von Neumann (wave 
function reduction) is designed precisely to put 
this information into the wave function.] We 
therefore must find some entity in the theory 
which corresponds to the seemingly evident 
fact that knowledge is possible. 

When we are aware a t  the time tl that we 
(AP) are in the state W U ,  we no longer can require 
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that the wave function have the form 

*(~I)=+UXAUXBVX...JPU(~~), (31) 

although if it has the above form we will find our- 
selves in the state Mew. Rather what we require 
when we say that we "know" a svstem is in the 
state U is that there xvill be agreement between 
ourselves, other observers and detectors (all 
systems coupled to us) that the system is in C.  
At any one time this agreement is contained in the 
matrix element 

( P  (ti) 1 J/vXAuXBuX . .Meu (ti) ) =a, (32) 

we assume that the various detectors (which now 
may include minds) are sufficiently decoupled so 
that the wave function can be written as a 
product, and that the Hamiltonian (other 
perhaps than for interactions over a very brief 
period) can be written as a direct sum. Excluding 
the times t,, th, tc, - ,  tz the Hamiltonian for the 
entire system is written 

At ta there is a possible interaction HOA; at  f a  
there is a possible interaction  HA^ etc. The 
interaction HABY for example, acts a t  the time ta 

,vhich is the probability amplitude for a simul- in such a Tiray that 
taneous observation of +u, Au. .Jdeu a t  tl. The 
probability amplitude for disagreement among 

Au(t)B (2) -+Au (ta)Bu(ta) 

systems or observers-the probability amplitude Ar.( t)B(t)+A~(tb)B~(tb)-  (37) 
for a simultaneous observation of say +u, ACT, At tc a similar interaction H~~ takes 
fir.. . -WU at tl is BU(L)C-+BU(L)C~(L), and so on. A time t,' is defined 

(P(t1) I+UXAVXBLX.*-M~U(~~))=O. (33) 

The correlation among systems or observers on 
the various branches of the wave function makes a 
matrix element such as Eq. (33) zero. Because 
of this, our knowledge that our own mind is in 
some state need not be reflected in the wave 
function. Rather, it is expressed in the way we 
pose the question. That a system is in the state U 
is equivalent to the statement that all coupled 
"good" systems and sane minds will agree that the 
system is in the state U and this agreement is 
contained in Eq. (32). The probability amplitude 
for disagreement [Eq. (33)] is zero. 

If we have a system of coupled detectors and 

to be any time other than the instants a t  which 
the detectors are changing their state (a process 
thought of as being short compared with the 
times over which the entire system develops). 
Thus if for example 

ti<tir<ti+l 

at  the time tir all of the systems AB.. .I have 
registered U or L while the systems J . * * Z  have 
not yet registered. 

The conditional amplitude [Eq. (35)] we now 
define as 

a (Ai (tat) - .Z, (tZt) ) = (P (tzr) I 
X exp ( - i[ (HA +HoA) (trt - tar) 
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As an example consider the conditional ampli- action. For after ta (when A has registered) we 
tude can say 

@[Au (tat)Bj(tb')C, (tC1) l given AU (tar) +Bu (tbr) +CU (tcr) etc., 

= (* (tCt) I exp (  HA +BOA) (LCr - tar) if tbr > tb and tcr > t, 
+ (HH+HAn) (tcr-tbr) I I AU (tat)B3 ('ar) Ck (Cr) ). (if the detectors have registered). Or 

Let us assume that ta < tar < ta and tcr > tc so that the 
detectors A and C have registered. 

(1) If t b r  > fa, the inner product becomes 

( 9  (tcr) I exp -  HA (tct -tar) ]Au (tar) 

An essential point in the argument is just that the 
state recognizable as AU at  tar develops into a 
state still recognizable as AU at  tCr. (The blackened 
grain on a photographic plate remains recog- 
nizable as a blackened grain.) 

The wave function a t  tcr is 

given AL (tat) +BL (tbr) -CL (tcr) etc. 

Before the irreversible interaction we could not 
say this because $u(tl) might develop into 
$L (tl) . I t  is only with an irreversible interaction 
that we can be sure that the entirp sequence of 
correlations will follow. We can therefore say that 
something happens when no interaction (in the 
usual sense) can reverse the situation: when 
given Au(tar) implies that n-e will not find 
A I. (&,I). 

Our mind in this respect is like any other 
irreversible system. We can say that given AU (tat) 
our mind will register M"u(tml) as the conditional 
amplitude 

+B+L A L X  BLXCL) XD XE . . Therefore we can say that if U occurred I will see 
i t  as U or if I see it as U it was U .  There is 

Therefore the conditional amplitude is zero unless nothing special about cognition. I t  is one act in a 
j and k are both U .  Thus given that A has rerris- correlated chain.14 - --- 

tered AU at  tar, we can conclude that B will register To measure or observe the same quantity more 
Bu a t  tbt and C will register CU at  tcr. than once, we envisage several detectors coupIed 

(2) If tbt <tb the detector B has not yet regis- to  the original system; say 
tered (Bj =B) and the inner product becomes 

S X A X B X C X  .*.Z, 
( P  (tct ) 1 exp (  HA (tcr - tat) (46) 

minds which develop in time, the wave function + (HB+HAB) (tzr-far) + ' ' in such a way that 
splits and branches continuously. We must there- + (HB+HAB) (tct -tbt)] lA~(ta ' )B (tb')Ck (tcr) ); 

fore construct some entity that corresponds to + ( H Y + H x Y )  (tzt-tyr)lIAc(tat) 

our experience that things happen at  particular 
(43) 

times and that we can know and agree n-ith one 
B3(tb') ' ' Ym(ty') XZn(tz t )  )' (3S) 

at  tb, AuB-+AuBu due to the interaction HAH; a t  
If the times tar, t b r -  a11 occur after the detectors 

' 
the later time tCf the scalar product becomes 

(47) 
another that they happened a t  those times. A,  B . . have registered (i.e., La'> t,, tat> t'. . *ttt  > 1 

This entity, we propose, is the scalar product 
defined below Tvhich gives the conditional prob- t,) , the conditional amplitude t a lm the relatively 1 (#(tcr> 1 AU (tC1)Bu (tC1) C k  (tct) ), (44) \ Cu 

simple form 1 which equals zero unless k = U .  l4 That we perceive one possibility or another (say 
ability amplitude for U or L )  even though the wave function is a superposition a (A, (tar) Bj (tbr) 'Zn (tzr) ) 

Z, (tzl) given Y,  (tUt) given - . Thus for ttu'ta, trb<tbJ  t r ~ > t ~  (and as before of both u and L is due presumably to the nature of that 
= (P(tzt) 1 exp[-- HA (tzr-tar)]A,(t0') tat < tbr < tct) we find a nonzero amplitude for Au, physiological system called mind. We have only to assume 

given Ck (tcr) given BJ (tbt) given A, (k'), (34) B unregistered and Cv. The interaction HAB con- that the mind shares the property of the detector [ ~ q .  
xexp[-iHg (tzr - far) 1 

lvhere t,r> tyl > . . tcr > tbr > tar. This conditional I verts B unregistered a t  tbt into Bo for times later (10) 1 of registering U and not L or L and not U. The 

x B3 (tar) . .e~p[-iH,(t~'-t~')]Y~(ty')Z~ ( t i )  ). amplitude we denote by 

a (A,(tor) -Zn(tz') ); (35) (39) 

than tb. wave function may contain a superposition of u and L 
but there is no manifestation of this to anyone-including 

We can say that something occurred (e.g.l the mind described by the wave function-unless inter- 
a measurement) after the first irreversible inter- ference can occur. 
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which implies a coupling of the form 

The conditional amplitude that A be Ai at tat, 
B be B j  at  tb !, 9 . 2  be 2, a t  tZt given that S is SU 
a t  t,, (i.e., that S is observed to be in the states 
i j k -  a n  a t  the times tat* t,') is 

and this by the discussion above is zero, if SU 
cannot reverse itself, unless A B - - 0 2  are either 
unregistered or in the state U depending upon 
whether t,' is smaller or larger than t,. 

The persistence of our memory can be inter- 
preted also as a result of the irreversibility of 
mental processes. When we observe a detector to 
have registered U at some time ti we both re- 
member this at  later times and can verify by 
looking again that the detector has in fact regis- 
tered CT. How for example, do ure ask for the am- 
plitude that the memory be in the state U, given 
that i t  was in U a t  some previous time? We 
imagine that the mind can be thought of as 
many detectors A,  B, C* all coupled to external 
objects (via the sensory organs) and to an internal 
memory. By coupling A, B, C with the memory 
(considered an irreversible system) or to some 
external apparatus (either denoted by S) we can 
precisely as in the manner of Eqs. (46)- (49) show 
that given Su at to implies Au(tal)Bu(tt,') etc. 
Thus we have agreement internally as to what we 
remember and what we see.15 

If the mind were not thought to be irreversible, 
2Cfeu(to) could develop into MeL (t) , or to some 
other state not orthogonal to My. The essence of 
the assumption of irreversibility is that Meu(h) 
develops into a state always recognizable as MU 
and always orthogonal to M C ~ .  Thus the amplitude 

l6 When we see that a lamp is red our memory, S, 
with some irreversible change registers it as red, SR. 
Later checking our memory continues to confirm that 
the lamp was registered as red. Each check is interpreted 
by the coupling of a detector A,  B, C . with the memory 
and SR+A~,  BR, CR,  etc., since SR is irreversible. Check- 
ing the lamp itself (if it is the kind of lamp that does not 
change color) reveals it to be red if it registered previously 
as red. 

FIG. 3. A second double slit following the first. 

that the mind be in the state U, given that we 
found ourselves in U a t  some previous time, is 
always the same and always comes from the 
same branch of the wave function. The amplitude 
that we find L, given that we found U previously, 
is zero since Mr, cannot develop from MU. 

How then do we interpret the non-zero ampli- 
tude 

(# I J/LXALX a-*Mar, )=@, (50) 

when we "know" that the system is in the state U? 
This amplitude we assert is in fact non-zero and 
corresponds to the amplitude that the system and 
all of the minds (including our own) are in the 
state L. (We don't usually ask for the amplitude 
that our mind be in the state L if we know it to be 
in U).  That this amplitude is nonzero has no 
effect on the other amplitude (U) if the two can 
never interfere. If, as in Fig. 3, we arrange 
another double slit so that the upper branch is 
split into two parts, one is concerned only with 
the conditional probability (given M" for the 
first set of slits) for the various possible outcomes 
of the second process. As long as there is no 
possibility of interference, and our questions are 
prefaced by "given M"," we can discard the 
amplitude #L X  . and renormalize #U X  . 
Thus the so-called reduction is really a renormal- 
ization. If, however, the systems A, M etc. can be 
reversed (brought back to a state in which the 
two amplitudes can interfere) then it is essential 
that the amplitude #LX be retained so that 
the possibility of interference be preserved. We 
know something, therefore, because of the possi- 
bility of an infallible correlation between the 
state of our mind and other minds and systems, 
and not because the wave function of the world 
has no amplitudes for other possibilities. The 
other amplitudes reveal themselves only in mind 

reversals and reversals of macroscopic systems 
that do not ordinarily occur. 

CONCLUSION 

In conclusion we claim that the process of 
measurement according to the interpretation 
given above can be placed wholly within the 
quantum theory. The entire system including the 
apparatus and even the mind of the observer 
can be considered to develop according to the 
Schrodinger equation. No discontinuous processes 
need be assumed, nor is it necessary to introduce 
the idea of wave function reduction. The essential 
idea is that of the interaction of the system with a 
device which is irreversible in the thermodynamic 
sense and which eliminates as a practical matter 

the possibility of interference between the various 
branches into which the wave function is sep- 
arated. This separation permits one to say that 
one is either on one branch or the other. The 
process of cognition (of being aware that some- 
thing happened) is interpreted as corresponding 
to the certain correlation among the various 
branches of the wave function which allows the 
possibility of agreement among all observers and 
systems, and agreement in our own memory as 
to what happened. This certain correlation then 
allows one, as a matter of convenience, to discard 
the other branches and renormalize the first. 
This, however, is only a manner of speaking since 
if the interaction is reversible, the possibility of 
interference requires the retention of all of the 
branches of the wave function. 



THEMEASUREMENTOFRELATIVEFREQUENCY 

Neil1 Graham 

1. lntroduct ion 

In th i s  paper we  wish t o  explore the  probability interpretation within 

the  framework of t he  Everet t  interpretation of quantum mechanics [1,2]. 

After a brief review of t he  Everet t  interpretation, including a critique of 

Everet t ' s  version of the  probability interpretation, we  propose a "two 

step" solut ion t o  the  problem. In the  f i rs t  s t e p  a n  apparatus measures 

the  relat ive frequency with which a given event  occurs  in  a col lect ion of 

independent, ident ical ly prepared sys tems .  (Relat ive frequency is treated 

a s  an observable and is represented by a Hermitean operator. T h i s  

approach t o  relat ive frequency w a s  d i s cus sed  by th i s  author in h i s  Ph.D. 

t he s i s  [3]; a s imilar  formulation was  arrived a t  independently by J. B. 

Hartle [4].) 

T h e  second s t e p  of t he  proposed measurement process  takes  p lace  

after the  apparatus h a s  interacted with t he  sys tems  in quest ion and re- 

turned t o  thermal equilibrium. I t  is then "read" by a second apparatus 

(cal led the  observer  to  prevent confusion). T h e  important point i s  th i s :  

Since in the second  s t e p  the  sys tem under observation i s  macroscopic, 

we  can  apply the  powerful s t a t i s t i c a l  techniques of Prosper i  and Scott i  

[5], and of Daneri,  Loinger, and Prosper i  [6 ,7 ]  to  a d i scuss ion  of th i s  ob- 

servation. In particular, we  can  show tha t  in the  second measurement 

(but not t he  first) a relat ive frequency that  agrees  with the Born interpre- 

tation will b e  found in t he  overwhelming majority of the  Everet t  worlds of 

the  observer. 

L e t  u s  begin our d i scuss ion  by considering the  measurement of a n  ob- 

se rvable  M with e igens ta tes  lC'm and eigenvalues m. Experience t e l l s  
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u s  that  a measurement of M on a system in the  s t a t e  $ will yield one  

of the  eigenvalues m of M a s  a result.  If the measurements do not dis- 

turb t he  system, and if M does  not change spontaneously in time, then 

repeated measurements of M on the same system will yield t he  same 

eigenvalue. On the  other hand, if a large number of independent measure- 

ments are made on identical systems a l l  in the same s t a t e  $, then the 

value m will be  obtained with a relative frequency (number of occurrences 
2 

divided by number of t r ials)  c lose  to $ > I  . 
(Some people have  wondered whether repeated, nondisturbing measure- 

ments can  actually b e  made on a single quantum system. The  answer is 

clearly yes.  Consider, for example, a scat tering experiment where the 

scat tered particle is detected in a cloud chamber. T h e  wave function of 

th is  scat tered particle is a spherical  wave radiating out from the  scat ter-  

ing center in a l l  directions. If part of th is  wave is intercepted by the 

cloud chamber, straight l ine tracks will b e  observed in the chamber. Along 

a given track each  atom performs an  independent measurement of t he  direc- 

tion of t he  outgoing particle (this being the  direction of a l ine through the 

scat tering center and the atom). After the ionization of t he  f irst  atom on 

a track, each  additional ionized atom, by virtue of lying on a l ine joining 

the  first atom to the  scat tering center, confirms the direction of motion 

determined by the  f irst  atom. Thus  the  cloud chamber makes repeated 

measurements of the direction of motion of the  same particle.) 

Everet t 's  great achievement was  t o  give an  explanation consistent  

with t he  Schrodinger equation of t h i s  apparent "reduction of the  s t a t e  

vector." L e t  u s  look briefly a t  h i s  approach. Consider a measuring appa- 

ratus in t he  initial s t a t e  4. Then, when the system is in t he  eigenstate 

, the ini t ial  s t a t e  of the system and the apparatus i s  given by 

L e t  U b e  the  linear, unitary transformation that changes the ini t ial  

s t a t e  of the  system and apparatus before t he  measurement into the final 

s t a t e  afterwards. Then 

If the measurement does  not disturb the  original s ta te ,  , of t he  system, 
f then $ must have the form 

where Q[m] is the s t a t e  of the  apparatus when i t  h a s  recorded the  value 

m for M. (The different +[m]'s describe apparata with different 
( c  pointer readings. ") 

But what if the  initial s ta te ,  $, of t he  system is not an e igens ta te  

of M? The  result in th is  c a s e  i s  determined by the linearity of U. Sup- 

pose  that  $ h a s  the  expansion 

Then $ in turn is given by 

f and, because of the linearity of U, we have for $ , 

f Thus  $ is a superposition of s t a t e s  of t he  system and apparatus corre- 

sponding to  different pointer readings of the  apparatus. 

According to Everett,  th is  superposition describes a s e t  of simultane- 

ously exist ing worlds, one for each  element of the  superposition. In each  

world the  apparatus h a s  a unique pointer reading, the one  described by 

the corresponding element, $m#[m], of the  superposition. Everett further 
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shows that ,  in each world, future nondisturbing measurements on the same 

system will give results  consistent  with the first measurement. Thus  an  

apparent reduction of the  s t a t e  vector takes place in each world, yet  the 

universal s t a t e  vector describing a l l  the worlds changes in accordance 

with the Schrodinger equation, linearly and deterministically. 

Provided one  is ready to  accept  the existence of multiple, simultane- 

ously exist ing worlds, Everet t 's  interpretation satisfactorily explains the  

apparent reduction of t he  s t a t e  vector characterist ic  of quantum measure- 

ments. Such measurements, however, feature a second, equally important 

characteristic, the probability interpretation. In th is  c a s e  the  explanation 

given by Everett i s  l e s s  convincing. 

T o  see the  problem, consider a collection of identical, independent 

systems,  a l l  in the same s t a t e  $. These  are the systems that  might par- 

t icipate in some actual  measurement of relative frequency, such  a s  the  

part icles that s tr ike a photographic plate or pas s  through a part icle de- 

tector. T h e  s t a t e  of t h i s  collection (viewed a s  a single system) i s  

N $ = $ . . . $ ( N  terms)  . 

According to  t he  Everett interpretation th is  f inal  s t a t e  describes a s e t  

of worlds, one for each  possible observed sequence,  ml ,. . . , mN, of the  

outcomes of t he  measurements in question. Furthermore, every possible 

sequence of outcomes occurs in some world. If l! is some particular value 

of m, and R the  number of times l! occurs in a given sequence ml ,. . . , m ~  

(the number of "successes" in that  sequence), then every possible value 

of R from 0 to N will b e  realized in some Everett world. There seems 

to be  no connection between the actual  relative frequency in a given 
N 

world and the expected relative frequency I < $e, $ > / 2. 

T o  see th is  more clearly, assume that m can  take on K possible 

values. Consider those  sequences  for which I! occurs a t  R given posi- 

tions. The  number of such  sequences  is ( ~ - 1 ) ~ - ~ ,  s ince  there are K-1 

possibi l i t ies  for each  position in which ! does  not occur. If we multiply 

th is  by the  number of ways of choosing the R positions for k? t o  occur 

in, we get 

Now consider an apparatus that will interact with each of these  sys -  

tems in turn. The  initial s t a t e  of the systems and the apparatus is 

If U is the  linear operator describing the interaction, then we have 

where +[ml,. . . , mN] is the  s t a t e  of an apparatus that h a s  recorded the 

values ml ,. .. , mN. By the  linearity of U the  final s t a t e  of the sys tems 

and apparatus is 

for the  number of sequences  with R successes .  

Table 1.1 gives th is  expression a s  a function of R for the  c a s e  K =  3, 

N = 45, and P = $ > 1 2  = 0.8. T h e  values of R consistent  with the 

probability intdrpretation are those  near NP  = 36. Now although there a re  

4.5 x 10" worlds for which R = 36 (and somewhat more for which R is 

near that value), there are a l so  3.7 x loZo worlds in which R = 1 5  and 

- 1 Thi s  i s  over 800 million times a s  many a s  those  for which the 
N - 3 '  
probability interpretat ion i s  sat isf ied.  

In general, i t  can  be  shown that Expression (1.11) will have a sharp 
N peak a t  R = - (s ince  i t  is proportional to a Bernoulli distribution with 

1 1 1 p = if and q = 1 - -). Thus,  except  in the spec ia l  c a s e  where P = - 
K K '  
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MEASURE O F  WORLDS 
WITH R SUCCESSES 

T a b l e  1.1. Number and measure of Everet t  worlds with R s u c c e s s e s .  
Assumed a r e  K =  3 ,  N =  45, and P = 0.8. 

R will differ from N P  in  t he  majority of Everet t  worlds. Only in  a t iny 

minority of t hose  worlds will t h e  probability interpretation be  even approxi- 

mately true. 

Everet t  a t tempts t o  e s c a p e  from th is  dilemma by introducing a numeri- 

c a l  weight for e ach  world, which h e  def ines  t o  b e  

for t he  sequence  ml ,. . . , m ~ .  T o  every s e t ,  S, of such  sequences  Everet t  

a s s i gns  the  measure 

Consider t he  s e t  of a l l  s equences  with R s u c c e s s e s .  Suppose that  

t he se  s u c c e s s e s  occur a t  fixed posi t ions in the  sequences .  Then  the  

measure of a l l  s uch  s equences  is the  product of N terms, one  for e ach  

poss ib le  position in  the  sequence.  Fo r  e ach  posi t ion a t  which .k! occurs ,  

the  corresponding term is P = (< $p, i,b >I 2. For  e a c h  position a t  which a 

va lue  other than .k! occurs ,  the  corresponding term is Q = 

1 - P. Thus  the  measure of a l l  those  s equences  in which l? occurs  R 

t imes a t  fixed posi t ions is P ~ Q ~ - ~ .  T h i s  must b e  multiplied by the 

number of ways of choosing R fixed posi t ions out  of a totality of N. 

Doing th i s ,  the  measure of those  s equences  having R s u c c e s s e s  i s  

which i s ,  of course,  just the  well known Bernoulli  distribution. Th i s  dis-  

tribution does  indeed favor va lues  of R near NP;  in  fact ,  for large N i t  

approximates a Gauss ian  distribution with mean N P  and standard devia- 

t ion \/WQ. Since \/NPQ < < N P  for large N, t h i s  distribution will 

have  a sharp  peak around N P .  Indeed, the  measure of a l l  sequences  ly- 

ing between N P  - 3 \/WQ and N P  + 3 d W ~  will b e  greater than 0.99 

(for large N). 
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If we aga in  refer to Tab l e  1.1, we  see that  the  measure of those  worlds 

with R s u c c e s s e s  does  indeed have  a peak a t  R = N P  = 36. But  t h i s  is 

of l i t t l e  comfort when we observe t he  degree to  which t h e s e  worlds a r e  in 

a numerical minority. 

In short ,  we c r i t i c ize  Everet t ' s  interpretation on t he  grounds of insuffi- 

c ien t  motivation. Everet t  g ives  no  connection between h i s  measure and 

the  ac tua l  operat ions involved in  determining a relat ive frequency, no  way 

in  which the  va lue  of h i s  measure c a n  actual ly influence the  reading of, 

s ay ,  a part icle  counter. Furthermore, i t  i s  extremely difficult t o  see what  

s ign i f icance  such  a measure c a n  have  when i t s  implications a r e  complete- 

ly contradicted by a s imple count of the  worlds involved, worlds that 

Evere t t ' s  own work a s s u r e s  u s  must a l l  b e  on the  s ame  footing. 

(To b e  su r e  Everet t  argues that  t h e  measure defined by (1.13) is 

unique. But  remember tha t  Gleason [8] h a s  shown tha t  the  probabil i t ies  

defined by t h e  Born interpretation, considered a s  a measure on a Hilbert 

space ,  a r e  themselves  unique. Nevertheless ,  t h i s  (hopefully) does  not  

deter  anyone from inquiring into t he  connection between t hose  probabili- 

t i e s  and experiments that  measure relat ive frequency.) 

It  thus  appears  tha t ,  in  the  "one step" measurement we  have  described,  

any attempt to  show tha t  t h e  probability interpretation holds in  the  majority 

of the  resul t ing Everet t  worlds is doomed t o  failure. As  mentioned earlier,  

we  sha l l  attempt t o  improve matters by considering ins tead  a "two step" 

measurement, in  which a macroscopic apparatus mediates  between a mi- 

croscopic sys tem and a macroscopic observer. T o  bet ter  motivate the  

technical  work that  fol lows,  we  now give a brief out l ine of t h i s  approach. 

T o  begin, define t h e  relat ive frequency of I! in the  sequence  

Since relat ive frequency is an  observable, on the s ame  footing with 

any other observable i n  quantum mechanics, we may a s s o c i a t e  with i t  a 

Hermitean operator. W e  define t h i s  operator, Fe,  in  t h e  obvious way: 

i t s  e igens ta tes  sha l l  b e  t h e  s t a t e s  for which relat ive frequency is well  de- 

fined, and i t s  eigenvalues sha l l  b e  t h e  corresponding values of that  rela- 

t ive  frequency. T h u s  

Thus  Fe i s  defined on a Hilbert s p a c e  spanned by 

In order to  s t a t e  compactly t h e  properties of Fe that  a r e  of interest ,  

i t  is useful  t o  have  t he  following defini t ions 

T h e s e  are, of course,  introduced a s  mathematical abbreviations only. W e  

cannot  assume < X >+ and A X t o  b e  t h e  average and standard devia- 
$ 

tion of a s e t  of measurements until  the probability interpretation h a s  in  

fac t  been es tab l i shed .  

With t h e  above defini t ions w e  c a n  prove t he  following: 

$N 
for N > > 1 .  

If we could assume t h e  u sua l  interpretation for < F e >  and A$N Fe, 
$N 

t he  above r e su l t s  would be  suff icient  t o  "establish" t h e  probability inter- 

pretation. W e  could then s a y  tha t  for a sys tem of N identical  par t ic les  

i n  the  s t a t e  $, t h e  average  va lue  of t he  relat ive frequency operator Fe 

is I< $!, $ >I  '. Furthermore, s i n c e  A F < < < F  > for large N, the  
$N $N 

ac tua l  observed values of Fp would b e  clustered c lose ly  around ~<$e,  $>12. 
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Of course we cannot assume the usual  interpretation for < Fe> 
$N 

and Fe if our aim is to establish just that  interpretation. If we are  

to make further progress based  on the above results ,  we must find some 

way to  interpret the quanti t ies  involved independently of the interpretation 

we are  trying to  prove. 

Now there is one  well known situation in physics where the  mean and 

standard deviation of a quantum observable are calculated without using 

the probability interpretation. This  situation occurs in s ta t i s t ica l  me- 

chanics. Consider a macroscopic system in thermal equilibrium with i t s  

surroundings and l e t  Xi for i = 1 to n be the  eigenvalues of X acces-  

s ib le  to t he  system. (In pract ice n will b e  a very large but f ini te  number.) 

Then the  average and standard deviation of X are  calculated by 

n 

That  i s ,  a t  l e a s t  for t he  overwhelming majority of possible s t a t e s  $ of 

the  macroscopic system, < X>+ and A X a re  equal  (at  l e a s t  approxi- $ 
mately) t o  % and SX. 

It i s  of interest  t o  consider th is  result in light of the Everett interpre- 

tation. If a measurement is made of X, then the s t a t e  of the  system and 

apparatus will sp l i t  into Everett worlds, one  for each  of the  eigenvalues 

Xi of X. Then and 6x2 are averages over a l l  the Everet t  worlds 

present after  the  observation. If 6X < < x, then Xi will b e  near x in 

the  overwhelming majority of t he se  worlds. On the  other hand, if 6X .-\XI, 
then the Xi will take  on  diverse values in the different worlds. 

Based on these  results ,  then, our plan is a s  follows: 

1. U s e  a macroscopic apparatus to measure the relative frequency 

operator on a collection of identically prepared systems.  Show 

that  after t he  measurement X = g I<$[, $ >I2, and 6X < < 1x1, 

where X is a suitably defined apparatus variable and g is a s c a l e  

factor. 

2. L e t  an  observer read the  apparatus (that is, measure X). Th i s  

interaction will c a u s e  the  s t a t e  of the observer and the  apparatus 

to spli t  into Everett worlds. Since and 6x2 a re  just averages 

of the  Xi over t hese  worlds, and s ince  6X < < the  observed 

pointer readings, Xi, will b e  near 2 = g / <  $e, $ >\ 2 ,  except  in 

a small minority of t he  worlds in question. 

W e  begin the implementation of t he se  ideas  with a study of some pro- 

pert ies of t he  relative frequency operator. 

2 .  The relative frequency operator 

Using the definitions of Fe and r,hN, the quantities < F e >  N and 

A F can be  written 
$ 

$N 

and (2.1) 

Note that the  averages are with respect  t o  the measure of (1.13). Th i s  is 

just Everett 's measure; i t  is through (and only through) < F e >  and 
$N 

A F that  th is  measure enters  the present theory. Using (1.14) we can 
$N 

write 

and K 
(2.2) 

that  i s ,  < Fe>$N and Fe are 1 times the  mean and standard devi- 
N 

ation of a Bernoulli distribution. Thus  < Fe>$N = P and Fe = j? 
Rather than simply invoking th is  s ta t i s t ica l  result,  i t  i s  worthwhile to 

derive i t  directly, and in t he  notation of quantum mechanics. Th i s  is most 

eas i ly  done with the  moment generating function 
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where we have used 

Using th is  function, we have 

in the l a s t  s tep.  

By substituting the result of (2.6) into (2.4) and (2.5), we get 
and 

W e  can  then calculate A F from 
$N 1 

- 

Thus  < F e >  N = I < $ e , $ > ( 2  and A N F e < < < F >  for la rge  N. 
9 $ 9N 

If A F << < F > implies that a measurement of Fe will yield a 
$N L/,N 

value near (< $!, $ > I  2, then we have established the probability inter- 

pretation. This  result hinges,  however, on establishing the  premise of the 

l a s t  statement. T o  th is  end we turn to the analysis  of t he  macroscopic 

apparata that  can be used t o  measure relative frequency. 

The  advantage of eFeU is that t he  evaluation of < e is 
$N 

N 
straightforward for the s t a t e  of interest. Remembering that 9 = 

$. .. $ (N terms) = I: $ >. ..< $,,, $ > . $mN, we have 

ml.  . .mN 

3. Measurements with a macroscopic apparatus 

The  properties of < F e >  and A Fe proved in the previous sec- 
9N 9 

tion are of no immediate u se  t o  u s  s ince  Fe i s  a microscopic variable, 

whereas what we need i s  a macroscopic variable with the same properties. 

An apparatus serves  to transmit the important properties of Fe to a 

macroscopic apparatus variable, X. 

Le t  u s  consider a measurement of a system variable, (with eigen- 

values m and e igens ta tes  ) T h e  initial s t a t e  of the apparatus i s  

constrained to l i e  in  a certain space  KO. Th i s  s p a c e  i s  of very large 

dimension, but represents the greatest  practical restriction that can  be  

placed on the ini t ial  apparatus state.  (To speak of a s ingle possible 
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initial apparatus s t a t e  is pure fantasy; we can  no more prepare a macro- 

scopic  system in some specif ic  quantum s t a t e  than we could f ix the posi- 

tion and momentum of every particle in  a macroscopic c l a s s i ca l  system.) 

After the  measurement h a s  taken place, the s t a t e  of the  system and 

the  apparatus l i e s  in t he  s p a c e  

with H~~ defined by 

Hmf = uWm a Xo) 

where U is the unitary operator describing the measurement interaction. 

The  spaces  Hmf are dist inct ,  and even orthogonal, but t h i s  is because  

of their dependence on the  initial system s t a t e  $,. Whether or not the 

measurement h a s  produced any change in the large s c a l e  properties of t he  

apparatus is another matter altogether. 

For a moment l e t  u s  assume the  ideal  case :  there ex i s t s  a macroscopic 
f 

variable X which perfectly dist inguishes the  spaces  Hm . Then x $ ~ ~  = 
f 

xm$mf for $mf a member of Hm , and x, 
1 Xm2 

for ml f m2. . Thus  

xm i s  a one to one function of m. For  simplicity, we can  take  th is  func- 

tion a s  a direct proportionality, x, = gm, where g is a s c a l e  factor. 

Under t hese  assumptions we compute < X > and A fX to b e  'f ' 

and 

These  are the  desired results ,  but we must b e  prepared to justify them 

under far more adverse conditions than those assumed above. For one 

thing, the assumption that the  eigenvalues of X faithfully map those of 

M is unrealistic; every real apparatus h a s  a finite range and a limited 

accuracy. A more reasonable assumption is the following: 

where xa and xb specify t he  range of the  measuring instrument and 6 

speci f ies  i t s  accuracy. 

Another difficulty is that  t he  exact  relation between the eigenvalues 

of X and M will depend on the particular initial s t a t e  of the  apparatus; 

different members of f(O will give different results .  Indeed, for some 

ini t ial  s t a t e s  the  apparatus will go completely awry and there will b e  no 

correlation whatever. W e  will assume, however, that  for the  overwhelming 

majority of initial s t a t e s  the  apparatus will perform a s  desired, and a map- 

ping similar to that of (3.4) will b e  obtained. (Otherwise we must conclude 

that  t he  restrictions defining Ho were i l l  chosen.) 

Now l e t  u s  return to (3.3), which i s  important for later  work. W e  a re  

primarily interested in the  c a s e  where A M i s  small  compared to the ' 
range of the instrument; the  probability interpretation, once  proved, will 

take care  of the  other c a s e s .  Thus  we assume that  g M < < (xb - xal, 
$ 

and that g <  M >+ l i e s  well within th is  range. Then by Chebyshev's 

theorem (discussed in the next section), , $ 1  will be small for 

va lues  of m such that  gm l i e s  outside t he  range of t he  instrument. Thus  

those  parts of the  sums in (3.3) for which gm l i e s  outside the  range xa 

t o  xb can  b e  neglected. Inside th is  range, however, xm i s  approximately 

equal  to gm, s o  we have 
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and 

where the approximation i s  reasonably good for a properly functioning 

apparatus. 

We will not observe X immediately after the interaction, but only 

after the  apparatus has  reached thermal equilibrium (as i s  required for t he  

developments of the next section). Thus  the  s t a t e  of the apparatus 

immediately after t he  measurement interaction will undergo time develop- 

ment before being observed. We must require, then, that  < X > and +f 
A fX be  preserved by th is  time development. Indeed, if < X > changes 

@ +f 
then X h a s  simply been badly chosen;  i t  cannot retain i t s  "reading" 

until an observation can  b e  made of it. In the same way we must assume 

that  h fX retains a t  l e a s t  i t s  original order of magnitude. Otherwise 
$ 

the apparatus i s  subject  to spontaneous splitting (due to coupling to some 

internal quantum process) and again i s  unsuitable for measurement purposes. 

Finally,  let  u s  s t a t e  our results  in terms of the  operator of actual  

interest ,  Fe. Assume the  apparatus measures Fe and d isp lays  i t s  re- 

su l t s  with the apparatus variable X, which is defined a s  in the previous 

discussion.  After t he  measurement interaction h a s  taken place and the  

apparatus h a s  come to equilibrium, we have 

and 

for the majority of possible initial s t a t e s  of the apparatus. For  N suffi- 

ciently large, we have 

In Section 5 we will s e e  how (3.7) can  b e  interpreted in terms of the  

Everett worlds produced by an  observation of the  apparatus. 

4. Some properties of macroscopic sys tems 

At th is  point in our argument we need to u s e  some of the  bas ic  s ta t i s t i -  

c a l  properties of macroscopic systems.  Because  of their fundamental im- 

portance in the analysis  of the probability interpretation, we include here 

a brief account of the known results  in th is  area. Further discussion and 

additional references can  b e  found in Reference [5]. 

Consider a macroscopic system whose s t a t e  vector, $, is constrained 

to  l i e  in a certain space  H. If we assume a system confined to a f ini te  

region of space ,  and able t o  extract  a t  most a finite amount of energy from 

i t s  surroundings, then N will be  a t  most f ini te  dimensional. I t s  dimen- 

sion,  n, will of course be  a very large number. 

Now suppose  that a t  some instant  we take  a "snapshot" of the system 

in question. The  s t a t e  of the system s e e n  in th is  snapshot  will be some 

$ in 3(. It is totally beyond our powers t o  predict th is  s t a t e  in detail.  

W e  can  study i t  s tat is t ical ly,  however, with the aid of the  well known 

ergodic principle: "All the  s t a t e s  acces s ib l e  to a system in thermal equi- 

librium (all the  s t a t e s  in X) a r e  equally likely." Th i s  statement of the  

principle is (to the  bes t  of t he  author's knowledge) somewhat more general 

than what h a s  been str ict ly proved. Nevertheless, the  principle a s  s ta ted  

is widely used in s ta t i s t ica l  mechanics, and with complete succes s .  

T h e  problem of taking a snapshot  of t he  system a t  a certain time, then, 

is stat is t ical ly equivalent t o  t he  one of drawing a s t a t e  from the s p a c e  H 
a t  random, with equal  chances  for each  s ta te .  T o  study th is  random pro- 

cess, we need a measure on the  (normalized) s t a t e s  of H such that a l l  

such  s t a t e s  a r e  equally likely. Th i s  problem, however, h a s  a straight- 

forward geometrical solution. 

T o  begin, choose a bas i s  , . . $ in H and l e t  the s t a t e  $ have 

the  expansion 
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where 
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In particular, 

If we put 

Thus  if V[f] << ~ ~ ~ [ f l ~  then f($) = M[f] except  on a s e t  of $'s of 

small  measure. 
then 

(Note that  Chebyshev's inequality is quite general and h a s  applica- 

t ions outside the present sect ion.  In the  l a s t  sec t ion  we applied i t  t o  the 

measure I<$,, $>12 and in the  next sec t ion  we sha l l  apply i t  t o  the con- 
1 s tant  measure ii.) Tha t  i s ,  there i s  a one  to  one correspondence between points on a unit 

2n sphere and the  normalized s t a t e s  in X. 
L e t  u s  define the  measure of any s e t  of s t a t e s  S by 

L e t  u s  apply these  results  t o  < X >$. We have 

sur face  area  of S on 2n sphere 
'(S) = surface  area  of 2n sphere ' 

Clearly a l l  t he  $'s a re  equally likely under th is  measure. 

If f is any function of $, we define the mean, variance, and standard 

deviation of f with respect  to p a s  follows: 

where X-.  = <$i,X$j>.  
1J i(Oi - Oj) 

If i f j, then <$,$i> <$-,$> contains the  factor e 
J whose 

average over a l l  Bi, 0 .  is zero. Thus  
J 

Hence 

Finally,  we sha l l  need Cheby shev ' s  inequality. Since 

and 

If the $i are  e igens ta tes  of X, then th is  becomes 

n we have 
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Thus  the  average over a l l  s t a t e s  9 of the  macroscopic sys tem of < X > 9 
equa l s  the  average of a l l  the eigenvalues of X. 

W e  now want  t o  know how l ikely we  a r e  t o  find < X>$ near  M[< x>+] 

for a $ drawn a t  random from H. T o  t h i s  end ,  we compute M[< X >2 $ 1 by 

M[<x>$I = xij xke M [ < $ , $ i > < $ , ( l ' k ' < $ j , $ > < $ e , $ > ]  . (4.15) 

ijkf 

Now M[<$, $i><$,  $k><$j ,  $ ><$!, $ >I wil l  b e  zero  un l e s s  ik i s  

a permutation of jl?, s i n c e  otherwise there will be  an  uncanceled phase  

factor whose average over a l l  equal ly l ikely phase  angles  is zero.  Since 

the  average is symmetrical under t h e  interchange of i and k or  j and 

l?, we  must have  

Using  ~ < $ ~ , $ > j ~  I < $ ~ , $ > I ~  = 1 gives  1 = Kn(n+l) thus 
v 

Then 

T h e  variance of < X >~ i s  thus  given by 

W e  a r e  now in a posi t ion t o  apply Chebyshev's  inequality and ge t  
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Now t h e  t race  of a matrix is the  sum of n terms and hence  of order n. 

Thus  
tr(X) - tr(X2) - n , 

and 

Since n i s  indeed a large number, t he  s e t  of a l l  k's for which 

< X >+ differs  appreciably from M[< X > 1 h a s  a very smal l  measure for 
$ 

suff icient ly large n. 

A similar  argument can  b e  given for A X. T o  s t a r t  with, l e t  u s  define is 

where xo i s  a n  arbitrary constant .  Then  

and, by our previous resul t  

- 
for a l l  + except  a s e t  of very small  measure. If we  take  xo = X = 
I 

tr(X) then 

except  on a s e t  of small  measure. However, we a l s o  have  X < X>$ 

except  on a s e t  of smal l  measure. 

L e t  A be the  s e t  of $'s for which X 75. < X>+ and B the  s e t  for 

which < (X - %12 >+ 75. ( 6 ~ ) ~ .  Then A U B is the  s e t  on which one or 

both of the equa l i t i es  fai l .  Since 
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and s ince  p(A) and ,u(B) c a n  be made a s  small  a s  desired, we can  make 

p(A U B) a s  small  a s  desired also.  Thus,  except  on A U B, 

and 

hence 

which is the  desired result. Then, except on a s e t  of small measure, 

<X>$ a $ C Xi = X , (4.31) 

and i 

/' 
1 

\ - 1 - 

5. Summary and Conclusions 

Now l e t  u s  describe a complete measurement of t he  relative frequency 

of the occurrence of the value f for an  observable M. W e  define the 

relative frequency operator, Fe, on a collection of N sys tems a l l  in the  

same s t a t e  9. The  s t a t e  of the  collection is $N = $.,. $ (N terms). T h e  

operator Fe sa t i s f ies  

and A9NFe < < < F > for large N. 
9N 

We measure Fe with an  apparatus having an  apparatus variable X. 

After the  measurement interaction is complete, and the apparatus h a s  re- 

turned to thermal equilibrium, 
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and 

where $o is the  final s t a t e  of the system and apparatus and g is a 

s ca l e  factor. 

Now le t  an  observer measure X. The  final s t a t e  of the apparatus and 

the  observer i s  

where is an  eigenstate of X with eigenvalue Xi, and +[Xi] is the 

s t a t e  of the  observer when i t  h a s  observed Xi. (To b e  str ict ly correct, we 

should consider spaces  of observer s t a t e s ,  rather than s ingle  s t a t e s ,  but 

these  s p a c e s  play no role in t he  discussion a t  th is  point.) 

Thus the  final s t a t e  of the  apparatus and observer describes a s e t  of 

Everett worlds, with one eigenvalue Xi being observed in  each world. 

According to  our previous work, however, 

and 6X << 1x1 for the  overwhelming majority of the initial apparatus 

s t a t e s .  Thus  (by Chebyshev's inequality) the overwhelming majority of 

the Xi are near x, and values near th is  are observed in the  majority of 

the corresponding Everett worlds. More specif ical ly,  if n { ~ ]  is the num- 

ber of Everett worlds in which the  condition P holds, and n the total  

number of such worlds, then 
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Since < < x then n > E << n for reasonably sma l l  va lues  iIX.,"l 
of E .  

W e  t hus  conclude that  va lues  of relat ive frequency near $ > 1 2  
will b e  found i n  the  majority of Everet t  worlds of t h e  apparatus and ob- 

server .  If w e  assume our own world t o  be  a "typical" one, then we may 

expect  a human or  mechanic a1 observer t o  perceive relative frequencies  

in accordance with the  Born interpretation. Why we  should b e  ab l e  t o  

assume our own world t o  be  typical  i s ,  of course,  i tself  a n  interest ing 

question, but one  tha t  is beyond the  s c o p e  of the  present  paper. 
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