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PREFACE

In 1957, in his Princeton doctoral dissertation, Hugh Everett, III, pro-
posed a new interpretation of quantum mechanics that denies the exist-
ence of a separate classical realm and asserts that it makes sense to talk
about a state vector for the whole universe. This state vector never col-
lapses, and hence reality as a whole is rigorously deterministic. This
reality, which is described jointly by the dynamical variables and the
state vector, is not the reality we customarily think of, but is a reality
composed of many worlds. By virtue of the temporal development of the
dynamical variables the state vector decomposes naturally into orthogonal
vectors, reflecting a continual splitting of the universe into a multitude of
mutually unobservable but equally real worlds, in each of which every
good measurement has yielded a definite result and in most of which the
familiar statistical quantum laws hold.

In addition to his short thesis Everett wrote a much larger exposition
of his ideas, which was never published. The present volume contains
both of these works, together with a handful of papers by others on the
same theme. Looked at in one way, Everett’s interpretation calls for a
return to naive realism and the old fashioned idea that there can be a
direct correspondence between formalism and reality. Because physicists
have become more sophisticated than this, and above all because the im-
plications of his approach appear to them so bizarre, few have taken
Everett seriously. Nevertheless his basic premise provides such a stimu-
lating framework for discussions of the quantum theory of measurement

that this volume should be on every quantum theoretician’s shelf.
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incomplete yet not false, of the universe as Ts’ui Pen con

ceived it to be. Differing from Newton and Schopenhauer,... [he] did not

think of time as absolute and uniform. He believed in an infinite series

‘... a picture,

in a dizzily growing, ever spreading network of diverging, con-
the strands of which

of times,
verging and parallel times. This web of time —

approach one another, bifurcate, intersect or ignore each other through

the centuries — embraces every possibility. We do not exist in most of

them. In some you exist and not I, while in others I do, and you do not,

and in yet others both of us exist. In this one, in which chance has

you have come to my gate. In another, you, crossing the gar-

yet another, I say these very same words,

favored me,
den, have found me dead. In

23
but am an error, a phantom.

Jorge Luis Borges, The Garden of Forking Paths

t A ctualities seem to float in a wider sea of possibilities from out of

which they were chosen; and somewhere, indeterminism says, such possi-
bilities exist, and form part of the truth.”’

William James
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THE THEORY OF THE UNIVERSAL WAVE FUNCTION

Hugh Everett, III

I. INTRODUCTION

We begin, as a way of entering our subject, by characterizing a particu-
lar interpretation of quantum theory which, although not representative of
the more careful formulations of some writers, is the most common form
encountered in textbooks and university lectures on the subject.

A physical system is described completely by a state function ¢,
which is an element of a Hilbert space, and which furthermore gives in-
formation only concerning the probabilities of the results of various obser-
vations which can be made on the system. The state function ¢ is
thought of as objectively characterizing the physical system, i.e., at all
times an isolated system is thought of as possessing a state function, in-
dependently of our state of knowledge of it. On the other hand, ¢y changes
in a causal manner so long as the system remains isolated, obeying a dif-
ferential equation. Thus there are two fundamentally different ways in

which the state function can change:1

Process 1: The discontinuous change brought about by the observa-
tion of a quantity with eigenstates ¢,, ¢,,..., in which the state
Y will be changed to the state qu with probability ](x/;,¢j)|2.

Process 2: The continuous, deterministic change of state of the
(isolated) system with time according to a wave equation %%’ = Uy,

where U is a linear operator.

1 We use here the terminology of von Neumann [17].

3



4 HUGH EVERETT, III

The question of the consistency of the scheme arises if one contem-
plates regarding the observer and his object-system as a single (composite)
physical system. Indeed, the situation becomes quite paradoxical if we
allow for the existence of more than one observer. Let us consider the
case of one observer A, who is performing measurements upon a system S,
the totality (A + S) in turn forming the object-system for another observer,
B.

If we are to deny the possibility of B’s use of a quantum mechanical
description (wave function obeying wave equation) for A + S, then we
must be supplied with some alternative description for systems which con-
tain observers (or measuring apparatus). Furthermore, we would have to
have a criterion for telling precisely what type of systems would have the
preferred positions of ‘‘measuring apparatus’’ or ‘‘observer’’ and be sub-
ject to the alternate description. Such a criterion is probably not capable
of rigorous formulation.

On the other hand, if we do allow B to give a quantum description to

A+S, then, so long as B does not

A + S, by assigning a state function
interact with A + S, its state changes causally according to Process 2,
even though A may be performing measurements upon S. From B’s point
of view, nothing resembling Process 1 can occur (there are no discontinui-
ties), and the question of the validity of A’s use of Process 1 is raised.
That is, apparently either A is incorrect in assuming Process 1, with its
probabilistic implications, to apply to his measurements, or else B’s state
function, with its purely causal character, is an inadequate description of
what is happening to A + S.

To better illustrate the paradoxes which can arise from strict adher-
ence to this interpretation we consider the following amusing, but extremely
hypothetical drama.

Isolated somewhere out in space is a room containing an observer,

A, who is about to perform a measurement upon a system S. After

performing his measurement he will record the result in his notebook.

We assume that he knows the state function of S (perhaps as a result

g

RS-

i
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of previous measurement), and that it is not an eigenstate of the mea-
surement he is about to perform. A, being an orthodox quantum theo-
rist, then believes that the outcome of his measurement is undetermined
and that the process is correctly desctibed by Process 1.

In the meantime, however, there is another observer, B, outside
the room, who is in possession of the state function of the entire room,
including S, the measuring apparatus, and A, just prior to the mea-
surement. B is only interested in what will be found in the notebook
one week hence, so he computes the state function of the room for one
week in the future according to Process 2. One week passes, and we
find B still in possession of the state function of the room, which
this equally orthodox quantum theorist believes to be a complete de-
scription of the room and its contents. If B’s state function calcula-
tion tells beforehand exactly what is going to be in the notebook, then
A is incorrect in his belief about the indeterminacy of the outcome of
his measurement. We therefore assume that B’s state function con-
tains non-zero amplitudes over several of the notebook entries.

At this point, B opens the door to the room and looks at the note-
book (performs his observation). Having observed the notebook entry,
he turns to A and informs him in a patronizing manner that since his
(B’s) wave function just prior to his entry into the room, which he
knows to have been a complete description of the room and its contents,
had non-zero amplitude over other than the present result of the mea-
surement, the result must have been decided only when B entered the
room, so that A, his notebook entry, and his memory about what
occurred one week ago had no independent objective existence until
the intervention by B. In short, B implies that A owes his present
objective existence to B’s generous nature which compelled him to
intervene on his behalf. However, to B’s consternation, A does not
teact with anything like the respect and gratitude he should exhibit
towards B, and at the end of a somewhat heated reply, in which A

conveys in a colorful manner his opinion of B and his beliefs, he
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rudely punctures B’s ego by observing that if B’s view is correct,
then he has no reason to feel complacent, since the whole present
situation may have no objective existence, but may depend upon the

future actions of yet another observer.

It is now clear that the interpretation of quantum mechanics with which
we began is untenable if we are to consider a univetse containing more
than one observer. We must therefore seek.a suitable modification of this
scheme, or an entirely different system of interpretation. Several alterna-

tives which avoid the paradox are:

Alternative 1: To postulate the existence of only one observer in the
universe. This is the solipsist position, in which each of us must
hold the view that he alone is the only valid observer, with the
rest of the universe and its inhabitants obeying at all times Process

2 except when under his observation.

This view is quite consistent, but one must feel uneasy when, for
example, writing textbooks on quantum mechanics, describing Process 1,

for the consumption of other persons to whom it does not apply.

Alternative 2: To limit the applicability of quantum mechanics by
asserting that the quantum mechanical description fails when
applied to observers, or to measuring apparatus, or more generally

to systems approaching macroscopic size.

If we try to limit the applicability so as to exclude measuring apparatus,
or in general systems of macroscopic size, we are faced with the difficulty
of sharply defining the region of validity. For what n might a group of n
particles be construed as forming a measuring device so that the quantum
description fails? And to draw the line at human or animal observers, i.e.,
to assume that all mechanical aparata obey the usual laws, but that they

are somehow not valid for living observers, does violence to the so-called
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principle of psycho-physical parallelism,? and constitutes a view to be
avoided, if possible. To do justice to this principle we must insist that
we be able to conceive of mechanical devices (such as servomechanisms),

obeying natural laws, which we would be willing to call observers.

Alternative 3: To admit the validity of the state function description,
but to deny the possibility that B could ever be in possession of
the state function of A + S. Thus one might argue that a determi-
nation of the state of A would constitute such a drastic interven-

tion that A would cease to function as an observer.

The first objection to this view is that no matter what the state of
A + S is, there is in principle a complete set of commuting operators for
which it is an eigenstate, so that, at least, the determination of these
quantities will not affect the state nor in any way disrupt the operation of
A. There are no fundamental restrictions in the usual theory about the
knowability of any state functions, and the introduction of any such re-
strictions to avoid the paradox must therefore require extra postulates.

The second objection is that it is not particularly relevant whether or
not B actually knows the precise state function of A + S. If he merely
believes that the system is described by a state function, which he does
not presume to know, then the difficulty still exists. He must then believe
that this state function changed deterministically, and hence that there

was nothing probabilistic in A’s determination.

2
n the words of von Neumann ([17], p. 418): ‘‘...it is a fundamental requirement

of the scientific viewpoint — the so-called principle of the psycho-physical parallel-
ism — that it must be possible so to describe the extra-physical process of the sub-
!'ective perception as if it were in reality in the physical world — f.e., to assign to
its pars,s equivalent physical processes in the objective environment, in ordinary
space.
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Alternative 4; To abandon the position that the state function is a
complete description of a system. The state function is to be re-
garded not as a description of a single system, but of an ensemble
of systems, so that the probabilistic assertions arise naturally

from the incompleteness of the description.

It is assumed that the correct complete description, which would pre-
sumably involve further (hidden) parameters beyond the state function
alone, would lead to a deterministic theory, from which the probabilistic
aspects arise as a result of our ignorance of these extra parameters in the

same manner as in classical statistical mechanics.

Alternative 5: 'To assume the universal validity of the quantum de-
scription, by the complete abandonment of Process 1. The general
validity of pure wave mechanics, without any statistical assertions,
is assumed for all physical systems, including observers and mea-
suring apparata. Observation processes are to be described com-
pletely by the state function of the composite system which in-
cludes the observer and his object-system, and which at all times

obeys the wave equation (Process 2).

This brief list of alternatives is not meant to be exhaustive, but has
been presented in the spirit of a preliminary orientation. We have, in fact,
omitted one of the foremost interpretations of quantum theory, namely the
position of Niels Bohr. The discussion will be resumed in the final chap-
ter, when we shall be in a position to give a more adequate appraisal of
the various alternate interpretations. For the present, however, we shall
concern ourselves only with the development of Alternative 5.

It is evident that Alternative 5 is a theory of many advantages. It has
the virtue of logical simplicity and it is complete in the sense that it is
applicable to the entire universe. All processes are considered equally
(there are no ‘‘measurement processes’’ which play any preferred role),

and the principle of psycho-physical parallelism is fully maintained. Since
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the universal validity of the state function description is asserted, one
can regard the state functions themselves as the fundamental entities,
and one can even consider the state function of the whole universe. In
this sense this theory can be called the theory of the ‘‘universal wave

function,”’

since all of physics is presumed to follow from this function
alone. There remains, however, the question whether or not such a theoty
can be put into correspondence with our experience.

The present thesis is devoted to showing that this concept of a uni-
versal wave mechanics, together with the necessary correlation machinery
for its interpretation, forms a logically self consistent description of a
universe in which several observers are at work.

We shall be able to introduce into the theory systems which reptesent
observers. Such systems can be conceived as automatically functioning
machines (servomechanisms) possessing recording devices (memory) and
which are capable of responding to their environment. The behavior of
these observers shall always be treated within the framework of wave
mechanics. Furthermore, we shall deduce the probabilistic assertions of
Process 1 as subjective appearances to such observers, thus placing the
theory in correspondence with experience. We are then led to the novel
situation in which the formal theory is objectively continuous and causal, |
while subjectively discontinuous and probabilistic. While this point of
view thus shall ultimately justify our use of the statistical assertions of
the orthodox view, it enables us to do so in a logically consistent manner,
allowing for the existence of other observers. At the same time it gives a
deeper insight into the meaning of quantized systems, and the role played
by quantum mechanical correlations,

In order to bring about this correspondence with experience for the
pure wave mechanical theory, we shall exploit the correlation between
subsystems of a composite system which is described by a state function.
A subsystem of such a composite system does not, in general, possess an
independent state function. That is, in general a composite system can-

not be represented by a single pair of subsystem states, but can be repre-

Ty



10 HUGH EVERETT, III

sented only by a superposition of such pairs of subsystem states. For
example, the Schrodinger wave function for a pair of particles, ¥(x,, x2),
cannot always be written in the form ¢ = ¢(x;)7(x,), but only in the form
U= 2 aijd)i(xl)r,'j(xz). In the latter case, there is no single state for
PartiZ;e 1 alone or Particle 2 alone, but only the superposition of such
cases.

In fact, to any arbitrary choice of state for one subsystem there will
correspond a relative state for the other subsystem, which will generally
be dependent upon the choice of state for the first subsystem, so that the
state of one subsystem is not independent, but correlated to the state of
the remaining subsystem. Such correlations between systems arise from
interaction of the systems, and from our point of view all measurement and
observation processes are to be regarded simply as interactions between
observer and object-system which produce strong correlations.

Let one regard an obsetver as a subsystem of the composite system:
observer + object-system. It is then an inescapable consequence that
after the interaction has taken place there will not, generally, exist a
single observer state. There will, however, be a superposition of the com-
posite system states, each element of which contains a definite observer
state and a definite relative object-system state. Furthermore, as we shall
see, each of these relative object-system states will be, approximately,
the eigenstates of the observation corresponding to the value obtained by
the observer which is described by the same element of the superposition.
Thus, each element of the resulting superposition describes an observer
who perceived.a definite and generally different result, and to whom it
appears that the object-system state has been transformed into the corre-
sponding eigenstate. In this sense the usual assertions of Process 1
appear to hold on a subjective level to each observer described by an ele-
ment of the superposition. We shall also see that correlation plays an
important role in preserving consistency when several observers are present

and allowed to interact with one another (to ‘‘consult’”” one another) as

well as with other object-systems.
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In order to develop a language for interpreting our pure wave mechan-
ics for composite systems we shall find it useful to develop quantitative
definitions for such notions as the “‘sharpness’’ or ‘‘definiteness’’ of an
operator A for a state ¥, and the ‘““degree of correlation’’ between the
subsystems of a.composite system or between a pair of operators in the
subsystems, so that we can use these concepts in an unambiguous manner.
The mathematical development of these notions will be carried out in the
next chapter (II) using some concepts borrowed from Information Theory.3
We shall develop there the general definitions of information and correla-
tion, as well as some of their more important propetties. Throughout
Chapter II we shall use the language of probability theory to facilitate the
exposition, and because it enables us to introduce in a unified manner a
number of concepts that will be of later use. We shall nevertheless sub-
sequently apply the mathematical definitions directly to state functions,
by replacing probabilities by square amplitudes, without, however, making
any reference to probability models.

Having set the stage, so to speak, with Chapter II, we turn to quantum
mechanics in Chapter IIl. There we first investigate the quantum forma-
lism of composite systems, particularly the concept of relative state func-
tions, and the meaning of the representation of subsystems by non-
interfering mixtures of states characterized by density matrices. The
notions of information and correlation are then applied to quantum mechan-
ics. The final section of this chapter discusses the measurement process,

which is regarded simply as a correlation-inducing interaction between
subsystems of a single isolated system. A simple example of such a
measurement is given and discussed, and some general consequences of

the superposition principle are considered,

3
The theory originated by Claude E. Shannon [19].
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This will be followed by an abstract treatment of the problem of
Observation (Chapter IV). In this chapter we make use only of the super-
position principle, and general rules by which composite system states
are formed of subsystem states, in order that our results shall have the
greatest generality and be applicable to any form of quantum theory for
which these principles hold. (Elsewhere, when giving examples, we re-
strict ourselves to the non-relativistic Schrédinger Theory for simplicity.)
The validity of Process 1 as a subjective phenomenon is deduced, as well
as the consistency of allowing several observers to interact with one
another.

Chapter V supplements the abstract treatment of Chapter IV by discus-
sing a number of diverse topics from the point of view of the theory of
pure wave mechanics, including the existence and meaning of macroscopic
objects in the light of their atomic constitution, amplification processes
in measurement, questions of reversibility and irreversibility, and approxi-
mate measurement.

The final chapter summarizes the situation, and continues the discus-

sion of alternate interpretations of quantum mechanics.

[P -

II. PROBABILITY, INFORMATION, AND CORRELATION

The present chapter is devoted to the mathematical development of the
concepts of information and correlation. As mentioned in the introduction
we shall use the language of probability theory throughout this chapter to
facilitate the exposition, although we shall apply the mathematical defini-
tions and formulas in iater chapters without reference to probability models.
We shall develop our definitions and theorems in full generality, for proba-
bility distributions over arbitrary sets, rather than merely for distributions
over real numbers, with which we are mainly interested at present. We
take this course because it is as easy as the restricted development, and
because it gives a better insight into the subject.

The first three sections develop definitions and properties of informa-
tion and correlation for probability distributions over finite sets only. In
section four the definition of correlation is extended to distributions over
arbitrary sets, and the general invariance of the correlation is proved.
Section five then generalizes the definition of information to distributions
over arbitrary sets. Finally, as illustrative examples, sections seven and
eight give brief applications to stochastic processes and classical mechan-

ics, respectively.

§1. Finite joint distributions

We assume that we have a collection of finite sets, f)(,‘y,...,%, whose
elements are denoted by X; € X, vj € Cy,..., zy € 2z, etc., and that we have
a joint probability distribution, P = P(xi,yj,...,zk), defined on the carte-
sian product of the sets, which represents the probability of the combined
event XYmoo and z). We then denote by X,Y,...,Z the random varia-
bles whose values are the elements of the sets fX,‘B,...,%, with probabili-
ties given by P.

13



14 HUGH EVERETT, III

For any subset Y,...,Z, of a set of random variables W,...,X, Y,...,Z,
with joint probability distribution P(wi,...,xj,yk,...,z‘z), the marginal dis-
tribution, P(yk,...,zQ), is defined to be:

1.1 POz = 3 PWpoXj¥ioe 2
ipeee,]

which represents the probability of the joint occurrence of yp,--,2p, with

no restrictions upon the remaining variables.

For any subset Y,...,Z of a set of random variables the conditional
distribution, conditioned upon the values sz‘ wi,;(.'.,X = X; for any re-
maining subset W,...,X, and denoted by p! J(yk,...,z[z), is defined
to be:!

Wi, X
(1.2) P

P(w-,...,x~,yk,...,zz)
](yky"'!zg) = ! !

P(wi,-..,Xj) !

which represents the probability of the joint event Y = Yyo--s 2 = Zp, con-

ditioned by the fact that W,...,X are known to have taken the values

Wi,..
For any numerical valued function F(yk,...,ZQ), defined on the ele-

Xj respectively.

ments of the cartesian product of Y,...,2, the expectation, denoted by

Exp [Fl, is defined to be:

(1.3) Exp [F] = 2 P(yk,...,zg) F(yyo--2p) -
k.0

We note that if P(yk""'ZE) is a marginal distribution of some larger dis-

tribution P(wi,...,xj,yk,...,z[g) then

(1.4) Exp [F]

E 2 P(wi,...,xj,yk,...,z‘z) F(yp..-,2p)
AN

k...,

2 P(wi,..-,Xj,yk,--.,zg)F(yky"'yzﬂ) ’
i kst

We regard it as undefined if P(Wi""’xj) = 0. In this case P(wi,...,xj,

yk,...,zg) is necessarily zero also.
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so that if we wish to compute Exp [F] with respect to some joint distri-
bution it suffices to use any marginal distribution of the original distribu-
tion which contains at least those variables which occur in F.

We shall also occasionally be interested in conditional expectations,

which we define as:

Wiyeor,X: Wiy, X:
(1.5) Exp * JIF] = 2 p! ](yk,---,z[g)F(yk,.--,ZQ) )
k,....[

» >

and we note the following easily verified rules for expectations:

(1.6) Exp [Exp [F]] = Exp [F] ,

‘ yere, Vs U:yenn, Vi, Wy,,ee o, X Us,ens,Vs
1.7 Expul J{Exp ! i Tk B[F]] = Exp 1 Y [F] ,
(1.8) Exp [F+G] = Exp [F] + Exp [G] .

We should like finally to comment upon the notion of independence.
Two random variables X and Y with joint distribution P(xi,yj) will be
said to be independent if and only if P(xi,yj) is equal to P(xi) P(yj)
for all i,j. Similarly, the groups of random variables (U...V), (W...X),...,
(Y...Z) will be called mutually independent groups if and only if
P(ui,...,vj, Wk""'xﬂ""’ym""’zn) is always equal to P(ui,...,vj)
P(wk,...,xz)... P(ym,...,zn).

Independence means that the random variables take on values which
are not influenced by the values of other variables with respect to which
they are independent, That is, the conditional distribution of one of two
independent variables, Y, conditioned upon the value x; for the other,
is indeperident of x

of the other.

j» SO that knowledge about one variable tells nothing

§2. Information for finite distributions
Suppose that we have a single random variable X, with distribution

P(x;). We then define? a number, Iy, called the information of X, to be:

2 . .
This definition corresponds to the negative of the entropy of a probability

distribution as defined by Shannon [19].
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2.1 Iy = E P(xi)lnP(xi) = Exp [In P(xi)] ,

which is a function of the probabilities alone and not of any possible
numerical values of the xi’s themselves.>
The information is essentially a measure of the sharpness of a proba-

4

bility distribution, that is, an inverse measure of its ‘‘spread.”” In this
respect information plays a role similar to that of variance. However, it
has a number of properties which make it a superior measure of the
“‘sharpness’’ than the variance, not the least of which is the fact that it
can be defined for distributions over arbitrary sets, while variance is de-
fined only for distributions over real numbers.

Any change in the distribution P(xi) which ‘“levels out’’ the proba-
bilities decreases the information. It has the value zero for ‘‘perfectly
sharp’’ distributions, in which the probability is one for one of the x; and
zero for all others, and ranges downward to —lnn for distributions over
n elements which are equal over all of the x;. The fact that the informa-
tion is nonpositive is no liability, since we are seldom interested in the
absolute information of a distribution, but only in differences.

We can generalize (2.1) to obtain the formula for the information of a
group of random variables X,Y,...,Z, with joint distribution P(xi,yj,...,zk),

which we denote by Iyy 7

z P(xi, yj,...,zk)ln P(x;, yj,...,zk)
L,k

(2.2) Ixvy..z

il

Exp [ln P(xi,yj,...,zk)] ,

3 A good discussion of information is to be found in Shannon [1 9], or Woodward

[21]. Note, however, that in the theory of communication one defines the informa-
tion of a state X which has a priori probability P., to be —In Pi' We prefer,
however, to regard information as a property of the distribution itself.
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which follows immediately from our previous definition, since the group of
random variables X,Y,...,Z may be regarded as a single random variable

W which takes its values in the cartesian product XxYx --+xZ,

Ivm,...,wrl

Xy.z ° tobe

Finally, we define a conditional information,

Vi Wy Ve W Voo Wp
2.3) IXY...Z = 2 ) P (xi,yj,...,zk)ln P (xi,yj,...,zk)
iydyeens

Ve, W Voo, W
=Exp @ Oflpp ™ n(xi,yj,...,zk)] ,

a quantity which measures our information about X,Y,...,Z given that we
know that V...W have taken the particular values Ve W
For independent random variables X,Y,...,Z, the following relation-

ship is easily proved:

2.4) Ixy. z=Ix+ly+..+ 1z (X,Y,...,Z independent) ,

so that the information of XY...Z is the sum of the individual quantities
of information, which is in accord with our intuitive feeling that if we are
given information about unrelated events, our total knowledge is the sum
of the separate amounts of information. We shall generalize this definition

later, in §5.

§3. Correlation for finite distributions

Suppose that we have a pair of random variables, X and Y, with
joint distribution P(xi,yj). If we say that X and Y are correlated,
what we intuitively mean is that one learns something about one variable
when he is told the value of the other. Let us focus our attention upon
the variable X. If we are not informed of the value of Y, then our infor-
mation concerning X, Iy, is calculated from the marginal distribution
P(xi). However, if we are now told that Y has the value Vi then our
information about X changes to the information of the conditional distri-
bution Pyj(xi), I;j. According to what we have said, we wish the degree

correlation to measure how much we learn about X by being informed of
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Yj_
X
pend upon the particular value, Vi of Y which we are told, the natural

Y’s value. However, since the change of information, I Iy, may de-

thing to do to arrive at a single number to measure the strength of correla-
tion is to consider the expected change in information about X, given
that we are to be told the value of Y. This quantity we call the correla-

tion information, or for brevity, the correlation, of X and Y, and denote

it by {X,Y}. Thus: 5

3.1 {X,Y} = Exp [I;,{] - IX] = Exp [I}),(J] - IX .

Expanding the quantity Exp [I;]:] using (2.3) and the rules for expecta-
tions (1.6)— (1.8) we find:

Exp [I};(J]

I

Exp [Expyj [1n Pyj(xi)]]

3.2)

il

P(x.,y:
Exp ‘:ln ——%J—;IJ—)] = Exp [In P(x;, yj)] — Exp [In P(yj)]

I

Ixy - ly »
and combining with (3.1) we have:

(3.3) (X, Y} = Igy = Iy = Iy

Thus the correlation is symmetric between X and Y, and hence also
equal to the expected change of information about Y given that we will
be told the value of X. Furthermore, according to (3.3) the correlation
corresponds precisely to the amount of ‘‘missing information” if we
possess only the marginal distributions, i.e., the loss of information if we

choose to tegard the variables as independent.

THEOREM 1. {X,Y}=0 ifand only if X and Y are independent, and

is otherwise strictly positive. (Proof in Appendix 1.)
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In this respect the correlation so defined is superior to the usual cor-
relation coefficients of statistics, such as covariance, etc., which can be
zero even when the variables are not independent, and which can assume
both positive and negative values. An inverse correlation is, after all,
quite as useful as a direct correlation. Furthermore, it has the great ad-
vantage of depending upon the probabilities alone, and not upon any
numerical values of x; and yj» SO that it is defined for distributions
over sets whose elements are of an arbitrary nature, and not only for dis-
tributions over numerical properties. For example, we might have a joint
probability distribution for the political party and religious affiliation of
individuals. Cotrelation and information are defined for such distributions,
although they possess nothing like covariance or variance.

We can generalize (3.3) to define a group correlation for the groups of
random variables (U...V), (W...X),..., (Y...Z), denoted by {U...V, W...X,

..., Y...Z} (where the groups are separated by commas), to be:

(3.4) ULV WX, Y Zh = Ty yw X.Y..Z

“lg.ov-lw.x—~N.z

again measuring the information deficiency for the group marginals. Theo-
rem 1 is also satisfied by the group correlation, so that it is zero if and
only if the groups are mutually independent. We can, of course, also de-
fine conditional correlations in the obvious manner, denoting these quanti-
ties by appending the conditional values as superscripts, as before.

We conclude this section by listing some useful formulas and inequali-
ties which are easily proved:
P(y,, Vi W)

(3.5) {U,V,...,W} = Exp|In P(ui)P(vj)...P(wk) ,

(3.6) {u,v,.. whi i

XY
p! ](uk,vl,...,wm)

X....V: X....V: X:o.. Y
P P V) P )

(conditional correlation) ,



20 HUGH EVERETT, IlI

f..,0 v, = oyt e to, vt
3.7

LUV, W, = 1,0V W, + {0,V W (comma removal)
(3.8) (..U VW,.. 1= 1., Uuv,W,...} = {UV} - {V,W} (commutator) ,
3.9) {X} = 0 (definition of bracket with no commas) ,
(3.10) {.L,XXV, 0 = (X,

(removal of repeated variable within a group) ,

(3.11) LUV, VW, = LUV W = VW = Ty

(removal of repeated variable in separate groups) ,

(3.12) {X,X} = — Iy (self correlation) ,

fjuvw,xt 1 = fuvxy b,
(3.13) Wi Wi
fuwxj 7 =f{uxt !

(removal of conditioned variables) ,

(3.14) {XY,Z} 2 {1X,z2}
(3.15) {Xvy,z} 2 {X,Z21 + 1Y,Z} - {X,Y},
(3.16) {X,v,Z2} 2 {X,Y} + 1X,2} .

Note that in the above formulas any random variable W may be re-
placed by any group XY...Z and the relation holds true, since the set
XY...Z may be regarded as the single random variable W, which takes

its values in the cartesian product AxYx...xZ,

§4. Generalization and further properties of correlation

Until now we have been concerned only with finite probability distri-
butions, for which we have defined information and correlation. We shall
now generalize the definition of correlation so as to be applicable to joint

probability distributions over arbitrary sets of unrestricted cardinality.

THEORY OF THE UNIVERSAL WAVE FUNCTION 21

We first consider the effects of refinement of a finite distribution. For

example, we may discover that the event X; is actually the disjunction

1

. ~
of several exclusive events X reee

,?('?, so that x; occurs if any one of
the ?{iﬂ occurs, i.e., the single event X; results from failing to distin-

guish between the 3?1“ The probability distribution which distinguishes

between the ?('ft will be called a refinement of the distribution which does

not. In general, we shall say that a distribution P’= P’(’)‘(’iu,...,?;/) is a

refinement of P = P(Xi""'yj) if
V¥ ~U . .
4.1) P(xi,...,yj) = 2 P (xiﬂ,...,yj) (all i,...,j) .
JTRRY

We now state an important theorem concerning the behavior of correla-

tion under a refinement of a joint probability distributions:

THEOREM 2. P’ is arefinement of P =>1{X,...,Y} 2 {X,...,Y} so that

correlations never decrease upon refinement of a distribution. (Proof in
Appendix I, §3.)

As an example, suppose that we have a continuous probability density

P(x,y). By division of the axes into a finite number of intervals, X;, 37]"

we arrive at a finite joint distribution Pij’ by integration of P(x,y) over

i
sents the probability that X ¢ X; and Y ¢ 37]" If we now subdivide the

the rectangle whose sides are the intervals X. and Sl'j, and which repre-

intervals, the new distribution P’ will be a refinement of P, and by
Theorem 2 the correlation {X,Y} computed from P’ will never be less
than that computed from P. Theorem 2 is seen to be simply the mathemati-
cal verification of the intuitive notion that closer analysis of a situation
in which quantities X and Y are dependent can never lessen the knowl-
edge about Y which can be obtained from X.

This theorem allows us to give a general definition of correlation

which will apply to joint distributions over completely atbitrary sets, i.e.,
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for any probability measure? on an arbitrary product space, in the follow-
ing manner:

Assume that we have a collection of arbitrary sets X, Y,..,2 anda
probability measure, MPCXX‘B X o Xz), on their cartesian product. Let
P# be any finite partition of X into subsets iri”, Y into subsets
yju,..., and Z into subsets z,’(‘, such that the sets fxi“X‘Bj“X---xZ{(‘
of the cartesian product are measurable in the probability measure Mp.
Another partition PV is a refinement of Pr PYCPH if PY results
from P# by further subdivision of the subsets fxl;, ‘B’jt,..., Zﬁ Each par-
tition P* results in a finite probability distribution, for which the corre-
lation, {X,Y,..., Z}‘(Pﬂ, is always defined through (3.3). Furthermore a
refinement of a partition leads to a refinement of the probability distribu-

tion, so that by Theorem 2:
14
4.8) PP s X, Y,z 2 XY,z

Now the set of all partitions is partially ordered under the refinement
relation. Moreover, because for any pair of partitions P, P’ there is
always a third partition ?” which is a refinement of both (common lower
bound), the set of all partitions forms a directed set. 5 Fora function, f,

on a directed set, 5, one defines a directed set limit, lim f,:

DEFINITION. lim f exists and is equal to a <= for every €> 0 there
exists an a ¢ O such that |f(B)—a| < € forevery B ¢d for which B <a.

It is easily seen from the directed set property of common lower bounds

that if this limit exists it is necessarily unique.

4 A measure is a non-negative, countably additive set function, defined on some

subsets of a given set. It is a probability measure if the measure of the entire set
is unity. See Halmos [12].

5  See Kelley [15], p. 65.
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By (4.8) the correlation {X,Y,...,Z}? is a monotone function on the
directed set of all partitions. Consequently the directed set limit, which
we shall take as the basic definition of the correlation {X,Y,...,Z},

always exists. (It may be infinite, but it is in every case well defined.)
Thus:

DEFINITION. {X,Y,...,Z} = lim {X,Y,...,Z}‘(P

s

and we have succeeded in our endeavor to give a completely general defi-
nition of correlation, applicable to all types of distributions.
It is an immediate consequence of (4.8) that this directed set limit is

the supremum of {X,Y,...,Z}g), so that:
P

4.9 {X,Y,...,Z} = sup {X,Y,...,Z}" ,
P
which we could equally well have taken as the definition.

Due to the fact that the correlation is defined as a limit for discrete
distributions, Theorem 1 and all of the relations (3.7) to (3.15), which
contain only correlation brackets, remain true for arbitrary distributions.
Only (3.11) and (3.12), which contain information terms, cannot be extended.

We can now prove an important theorem about correlation which con-
cerns its invariant nature. Let x(y,..., Z be arbitrary sets with proba-
bility measure Mp on their cartesian product. Let f be any one-one
mapping of A onto aset 1, g a one-one map of Y onto O,..., and h
amap of Z onto (. Then a joint probability distribution over
AxYx...xZ leads also to one over UXOX...x[) where the probability
M’p induced on the product UXO*...xW is simply the measure which
assigns to each subset of UXUx...xW) the measure which is the measure
of its image set in XxYx...xZ for the original measure Mp. (We have
simply transformed to a new set of random variables: U = f(X), V = g(¥),

..., W=1(Z).) Consider any partition # of X,Y,...,Z into the subsets
{fxi§, {‘ng,-u, {zk} with probability distribution pij...k = Mp(ﬁiiX‘Bjx,---»x%k).

Then there is a corresponding partition ¥ of U,0,...,10 into the image
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sets of the sets of F, {‘Ui}, {Oj},...,{wk}, where Ui = f(ii), Oj = g(yj),..,,
(@k = h(zk). But the probability distribution for P is the same as that
for 9, since P%; = MpUxVyx-xWy) = Mp(;x Y3 Zy) =
pij...k’ so that:

(4.10) iX,Y,...,Z}‘? = {U,v,...,w}‘(’y .

Due to the correspondence between the P’s and P’s we have that:

P

4.11) sup {X,Y,...,Z}‘(P = sup {u,v,....w
P P

and by virtue of (4.9) we have proved the following theorem:
THEOREM 3. {X,Y,...,Z} = {U,V,...,W}, where 1, O,...,0 are any one-
one images of 1Y,...,2, respectively. In other notation: {X,Y,...,Z2} =
{£(X), g(Y),...,h(Z)} for all one-one functions f,g,...,h.

This means that changing variables to functionally related variables
preserves the correlation. Again this is plausible on intuitive grounds,
since a knowledge of f(x) is just as good as knowledge of x, provided
that f is one-one.

A special consequence of Theorem 3 is that for any continuous ptoba-
bility density P(x,y) over real numbers the correlation between f(x)
and g(y) is the same as between x and y, where f and g areany
real valued one-one functions. As an example consider a probability dis-
tribution for the position of two patticles, so that the random variables
are the position coordinates. Theorem 3 then assures us that the position
correlation is independent of the coordinate system, even if different
coordinate systems are used for each particle! Also for a joint distribu-
tion for a pair of events in space-time the correlation is invariant to arbi-
trary space-time coordinate transformations, again even allowing different

transformations for the coordinates of each event.

(5.2) Ixv..z
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These examples illustrate clearly the infrinsic nature of the correla-
tion of various groups for joint probability distributions, which is implied
by its invariance against arbitrary (one-one) transformations of the random
variables. These correlation quantities are thus fundamental properties
of probability distributions. A correlation is an absolute rather than rela-
tive quantity, in the sense that the correlation between (numerical valued)
random variables is completely independent of the scale of measurement

chosen for the variables.

§5. Information for general distributions

Although we now have a definition of correlation applicable to all
probability distributions, we have not yet extended the definition of infor-
mation past finite distributions. In order to make this extension we first
generalize the definition that we gave for discrete distributions to a defi-
nition of relative information for a random variable, relative to a given
underlying measure, called the information measure, on the values of the
random variable.

If we assign a measure to the set of values of a random variable, X,
which is simply the assignment of a positive number a; to each value x;
in the finite case, we define the information of a probability distribution

P(xi) relative to this information measure to be:

P(xi) = Exp |:1n P(Xi)jl .
a, a,

If we have a joint distribution of random variables X,Y,...,Z, with

5.1 Iy = 2 P(x;)In

information measures {ai}, {bj I {ck§ on their values, then we define

the total information relative to these measures to be:

P(xi,yj,... .zy)
z P(xi,yj,...,zk) In 5
ijook

i ]Ck

P(x.,y:,...,21)

Exp [1,, __IB_J__E_]
ai ]Ck

B

|
I
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o that the information measure on the cartesian product set is always
taken to be the product measure of the individual information measures.

We shall now alter our previous position slightly and consider informa-
tion as always being defined relative to some information measure, so
that our previous definition of information is to be regarded as the informa-
tion relative to the measure for which all the ai’s, bj’s,... and ck’s are
taken to be unity, which we shall henceforth call the uniform measure.

Let us now compute the correlation {X,Y,...,Z} by (3.4) using the
relative information:

’

6.3) 1XY,..2V =Ixy z-Tx - Iy - -1z

T P(X:,Yi,e,2y) P(x.)
L ai j...Ck ai

[ P
Exp | 1n (Sk)]

" P(xi,yj,...,zk)

= Exp Llﬂ P(XI)P(y])P(Zk)] = {X,Y,,Z} ,

so that the correlation for discrete distributions, as defined by (3.4), is
independent of the choice of information measure, and the correlation re-
mains an absolute, not relative quantity. It can, however, be computed
from the information relative to any information measure through (3.4).

If we consider refinements, of our distributions, as before, and realize
that such a refinement is also a refinement of the information measure,

then we can prove a relation analogous to Theorem 2:

THEOREM 4. The information of a distribution relative to a given informa-

tion measure never decreases under refinement. (Proof in Appendix L.)

Therefore, just as for correlation, we can define the information of a

probability measure Mp on the cartesian product of arbitrary sets
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X,%Y,...,2, relative to the information measures BXsByseeey 7, ON the
individual sets, by considering finite partitions P into subsets {X.}
l k]

{‘yj},...,{zki, for which we take as the definition of the information:

(5.4) @sz: S Mp@ Y2 In Py Yy B0 :
ok gDy )...uz(Zy)
?

directed set of partitions (by Theorem 4), and as before we take the

P )
Then IXY...Z is, as was {X,Y,...,Z}Y, a monotone function upon the

directed set limit for our definition:
. P
(.5) Ixy.z =limlyy 7= S‘;;’ I)‘gzy...z

which is then the information relative to the information measures
Hy s yseeesbz-

Now, for functions f, g on a directed set the existence of lim f and
lim g is a sufficient condition for the existence of lim(f+g), which is

then lim f + lim g, provided that this is not indeterminate. Therefore:

THEOREM 5. {X,...,Y} = lim {X,...,Y}‘(P = lim [I‘;P(MY—IZ— ...—I?] =
Iy v Ix—wi- Iy, where the information is taken relative to any in-
formation measure for which the expression is not indeterminate. It is
sufficient for the validity of the above expression that the basic measures
#xs---, by be such that none of the marginal informations Ix...ly shall

be positively infinite.

The latter statement holds since, because of the general relation
Iy y 2 Ix +...+ Iy, the determinateness of the expression is guaranteed
so long as all of the IX,...,IY are < +oo,

Henceforth, unless otherwise noted, we shall understand that informa-
tion is to be computed with respect to the uniform measure for discrete

distributions, and Lebesgue measure for continuous distributions over real
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numbers. In case of a mixed distribution, with a continuous density

’ d
P(x,y,...,z) plus discrete ‘‘lumps’’ P (xi,yj,...,zk), we shall understan
the information measure to be the uniform measure over the discrete range,

and Lebesgue measure over the continuous range. These conventions

then lead us to the expressions:

2 P(xi,yj,...,zk) In P(Xi,yj,...,zk)} (discrete)
ij...k

f P(x,y,...,z)In P(x,y,...,z) dxdy.. .dz} (cont.)

G.6)  Ixy.z-=
2 P'(xi,...,zk) In P(xi,...,zk)
iv.k (mixed)

+f P(x,...,2)In P(x,...,z)dx...dz

X (unless otherwise noted) .

The mixed case occurs often in quantum mechanics, for quantities

which have both a discrete and continuous spectrum.

§6. Example: Information decay in stochastic processes

As an example illustrating the usefulness of the concept of relative
information we shall consider briefly stochastic processes.6 Suppose that
we have a stationary Markov’ process with a finite number of states S,
and that the process occurs at discrete (integral) times 1,2,...,n,..., at
which times the transition probability from the state S, to the state Sj

is T'j' The probabilities Tij then form what is called a stochastic
1

6  sece Feller [10], or Doob [6].

7 A Markov process is a stochastic process whose future development depends

only upon its present state, and not on its past history.
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matrix, i.e., the elements are between 0 and 1, and 2 Tij =1 for all
i
i. If at any time k the probability distribution over the states is {P}{}

then at the next time the probabilities will be P}”l = 2 Pli(Tij‘

In the special case where the matrix is doubly-stochastic, which

means that ZiTij’ as well as EjTij’ equals unity, and which amounts

to a principle of detailed balancing holding, it is known that the entropy

of a probability distribution over the states, defined as H = — Eipi InP,

is a monotone increasing function of the time. This entropy is, however,
simply the negative of the information relative to the uniform measure.
One can extend this result to more general stochastic processes only
if one uses the more general definition of relative information. For an
arbitrary stationaty process the choice of an information measure which is

stationary, i.e., for which

(6.1) a - ziaiTij (all j)
leads to the desired result. In this case the relative information,
P.
i
(6.2) I- Zipiln e

is a monotone decreasing function of time and constitutes a suitable
basis for the definition of the entropy H = —I. Note that this definition
leads to the previous result for doubly-stochastic processes, since the
uniform measure, a; = 1 (all 1), is obviously stationary in this case.

One can furthermore drop the requirement that the stochastic process
be stationary, and even allow that there are completely different sets of
states, {S?}, at each time n, so that the process is now given by a se-
quence of matrices T?j representing the transition probability at time n
from state S? to state S}”l. In this case probability distributions

change according to:
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n+1 n~n
(6.3) Pt - EiPiTij .

If we then choose any time-dependent information measute which satisfies

the relations:
(6.4) aftl - S AT Gl ),

then the information of a probability distribution is again monotone de-
creasing with time. (Proof in Appendix L)
All of these results are easily extended to the continuous case, and

we see that the concept of relative information allows us to define entropy

for quite general stochastic processes.

§7. Example: Conservation of information in classical mechanics
As a second illustrative example we consider briefly the classical

mechanics of a group of particles. The system at any instant is repre-
sented by a point, (x' ,yl,zl,p)l(,p;,,p;,...,xn,yn,z“,pg,p;,pg), in the phase
space of all position and momentum coordinates. The natural motion of
the system then carries each point into another, defining a continuous
transformation of the phase space into itself. According to Liouville’s
theorem the measure of a set of points of the phase space is invariant

under this transformation.8 This invariance of measure implies that if we
begin with a probability distribution over the phase space, rather than a

single point, the total information
1ylopiplplpl Ny NoyNpipipn
7.1 Lotal = Ix vizip.P P, ... X"Y'Z PXPyPZ ,

X'y z

which is the information of the joint distribution for all positions and

momenta, remains constant in time.

8  See Khinchin [16], p. 15.
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In order to see that the total information is conserved, consider any
partition P of the phase space at one time, ty, with its information
relative’ to the phase space measure, I (to). At a later time t, a parti-
tion ¥, into the image sets of ¥ under the mapping of the splace into
itself, is induced, for which the probabilities for the sets of P  are the
same as those of the corresponding sets of P, and furthermore for which
the measures are the same, by Liouville’s theorem. Thus corresponding
to each partition ¥ at time to with inf9rmation IT(tO), there is a parti-

tion P at time t; with information I (tl)' which is the same:
7.2) P = Py

Due to the g
correspondence of the P’s and P’s the supremums of each

over all partitions must be equal, and by (5.5) we have proved that

7.3
.3) Iiotal(ty) = TiorarCto) »

and the total information is conserved.

Now it is known that the individual (marginal) position and momentum
distributions tend to decay, except for rare fluctuations, into the uniform
and Maxwellian distributions respectively, for which the classical entropy
is a maximum. This entropy is, however, except for the factor of Boltz-

) .
man's constant, simply the negative of the marginal information

(7.4) I =1
marginal = Ix +Iy +1z +..+Ipn+Inn+Ipn
1 1 1 X py l:‘z ’
which thus tends towards a minimum. But this decay of marginal informa-
tion is exactly compensated by an increase of the total correlation informa-
tion

(7.5) _
{total} = Lotal — Imarginal ,

since the total information remains constant, Therefore, if one were to
define the total entropy to be the negative of the total information, one

could replace the usual second law of thermodynamics by a law of
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conservation of total entropy, where the increase in the standard (marginal)

entropy is exactly compensated by a (negative) correlation entropy. The

usual second law then results simply from our renunciation of all correla-

tion knowledge (stosszahlansatz), and not from any intrinsic behavior of

classical systems. The situation for classical mechanics is thus in sharp

contrast to that of sto

chastic processes, which are intrinsically irreversible.

III. QUANTUM MECHANICS

Having mathematically formulated the ideas of information and correla-
tion for probability distributions, we turn to the field of quantum mechanics.
In this chapter we assume that the states of physical systems are repre-
sented by points in a Hilbert space, and that the time dependence of the
state of an isolated system is govered by a linear wave equation.

It is well known that state functions lead to distributions over eigen-
values of Hermitian operators (square amplitudes of the expansion coeffi-
cients of the state in terms of the basis consisting of eigenfunctions of
the operator) which have the mathematical properties of probability distri-
butions (non-negative and normalized). The standard interpretation of
quantum mechanics regards these distributions as actually giving the
probabilities that the various eigenvalues of the operator will be observed
when a measurement represented by the operator is performed.

A feature of great importance to our interpretation is the fact that a
state function of a composite system leads to joint distributions over sub-
system quantities, rather than independent subsystem distributions, i.e.,
the quantities in different subsystems may be correlated with one another.
The first section of this chapter is accordingly devoted to the development
of the formalism of composite systems, and the connection of composite
system states and their derived joint distributions with the various possible
subsystem conditional and marginal distributions. We shall see that there
exist relative state functions which correctly give the conditional distti-
butions for all subsystem operators, while marginal distributions can not
generally be represented by state functions, but only by density matrices.

In Section 2 the concepts of information and correlation, developed

in the preceding chapter, are applied to quantum mechanics, by defining

33
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information and correlation for operators on systems with prescribed

states. It is also shown that for composite systems there exists a quantity
which can be thought of as the fundamental correlation between subsys-
tems, and a closely related canonical representation of the composite sys-
tem state. In addition, a stronger form of the uncertainty principle, phrased
in information language, is indicated.

The third section takes up the question of measurement in quantum
mechanics, viewed as a correlation producing interaction between physical
systems. A simple example of such a measurement is given and discussed.
Finally some general consequences of the superposition principle are con-
sidered.

It is convenient at this point to introduce some notational conventions.
We shall be concermed with points i in a Hilbert space H, with scalar
product (¥y,¥,). A stateisa point ¢ for which (,¢) = 1. For any

linear operator A we define a functional, <A>y, called the expectation

of A for Y, to be:
<Asy = W, AD) -

A class of operators of particular interest is the class of projection opera-

tors. The operator [¢], called the projection on ¢, is defined through:

Pl = (.40 -

For a complete orthonormal set {¢p;} and a state ¢ we define a

square-amplitude distribution, P, called the distribution of ¢ over

W)ii through:
P; = | ¥ = <[pi1>¢ .

In the probabilistic interpretation this distribution represents the proba-
bility distribution over the results of a measurement with eigenstates ¢,
performed upon a system in the state ¢. (Hereafter when referring to the
probabilistic interpretation we shall say briefly ‘‘the probability that the
system will be found in ¢, rather than the more cumbersome phrase

“‘the probability that the measurement of a quantity B, with eigenfunc-
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tions {¢;}, shall yield the eigenvalue corresponding to ¢.,”” which is
meant.) 1
For two Hilbert spaces }{1 and Hz, we form the direct product Hil-
bert space }(3 = Hl ® }(2 (tensor product) which is taken to be the space
of all possible1 sums of formal products of points of }(1 and H,, ie
29 2Ly

the elements of }(3 are those of the form z a; fi 7
i
n; € H,. The scalar product in H; is taken to be (Eaif-n- zbf 71>-
, 111 & ®j>75 )=
* . 1 J
2 a; bj(fi,fj) (771"77]')' It is then easily seen that if {fi} and fni} form
ij

complete orthonormal sets in }(1 and H2 respectively, then the set of

where 'fi € }(1 and

all. formal products {£; nj} is a complete orthonormal set in }(3. For any
pair of operators A, B, in }(1 and }(2 there corresponds an operator
C = A®B, the direct product of A and B, in H;, which can be defined
by its effect on th : :

vy on the elements £; n; of X

C'f,'ﬂj = A®Bfi77j = (Afi)(an) .

§1. Composite systems
It is well known that if the states of a pair of systems S; and S,

are represented by points in Hilbert spaces Hl and }(2 respectively
th ]
) en the states of the composite system S = S+ 5, (the two systems

1 and S, regarded as a single system S) are represented correctly by
points of the direct product }(1 ® }(2. This fact has far reaching conse-
quences which we wish to investigate in some detail. Thus if {£.} is a

i

co

mplete orthonormal set for }(1, and {nj} for ]‘(2, the general state of

S = S1 + 82 has the form:

.1 0 = 3wy (Eafjaii - 1) '

ij ij

More rigorously, one considers only finite sums, then completes the resulting

space to arrive at 1 ® -
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In this case we shall call P = alJa1J the joint square-amplitude distri-

bution of l/JS over {£;} and {nj}. In the standard probabilistic interpre-

tation aua1J represents the joint probability that S; will be found in
the state f and S, will be found in the state 7;. Following the proba-
bilistic model we now derive some distributions from the state (// . Let
A be a Hermitian operator in S; with eigenfunctions ¢; and eigen-

values A;, and B an operator in S, with eigenfunctions 9 and eigen—

values pu;. Then the joint distribution of (//S over {¢;} and {QS J,
is:

S 2
§1.2) Pij = P(¢i and Gj) = l((l’ioj,l/’ )

S
The marginal distributions, of l/ls over igﬁi} and of Y° over {d)j},

are.

(1.3) P, = P¢) = 3 Py
i

P, = PO) - Epi

j 1
and the conditional distributions in and Pj are:

=S 0990
i

2 ;0,090

P.. -

j i
(1.4) PJi = P(¢; conditioned on qu) = —P—j- ,
P; = P(d)j conditioned on qSi) =5 -

We now define the conditional expectation of an operator A on S,

6.
conditioned on Oj in S,, denoted by Exp J{A], to be:

a.
(1.5) Exp 1[A] = 3 APL = (/P Py,
S 2
= /P A 18;6;,4)]

2
VD DNCHN N CENE
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and we define the marginal expectation of A on S, to be:
16 Em[al=3 P =3 AP - 3 i
i ij ij

We shall now introduce projection operators to get more convenient

S 2
9],¢I )! (¢‘1: A¢1) .

forms of the conditional and marginal expectations, which will also exhibit
more clearly the degree of dependence of these quantities upon the chosen
basis {(Z)i()j}. Let the operators [¢;] and [qu] be the projections on

¢; in S, and qu in S, respectively, and let I! and 12 be the identi-
ty operators in S; and S,. Then, making use of the identity (//S

2 (gbiﬁj, t//S)QSin for any complete orthonormal set {qSi()j}, we have:
=

W7 <lb 1101505 - @5, lo,] 16145 =

(E (b 0, ) by 0y, 6,116 ]2 (b0 n,wswmen)

E (@4 0p. lps) @9 n’w )0k %0 %im ]n

kfmn

Sy* S

so that the joint distribution is given simply by <[¢.] [<75)-]>(//S.

For the marginal distribution we have:
W8P =S P =3 <lp,]16,]>y5 - <W(E [ai]>>¢15 - <258
i i i

and we see that the marginal distribution over the ®; is independent of
the set {ﬁj} chosen in §,. This result has the consequence in the ordi-
nary interpretation that the expected outcome of measurement in one sub-
system of a composite system is not influenced by the choice of quantity
to be measured in the other subsystem. This expectation is, in fact, the
expectation for the case in which no measurement at all (identity operatot)

is performed in the other subsystem. Thus no measurement in S, can
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affect the expected outcome of a measurement in S;, so long as the re-
sult of any S, measurement remains unknown. The case is quite different,
however, if this result is known, and we must turn to the conditional dis-

tributions and expectations in such a case.

We now introduce the concept of a relative state-function, which will
play a central role in our interpretation of pure wave mechanics. Consider
a composite system S =138, + S, in the state l/fs. To every state 7 of

52 we associate a state of S;, Wr?el’ called the relative state in S, for

n in S,, through:

s
.9 DEFINITION. T = N E CIR T

where {gbi} is any complete orthonormal set in S; and N is a normali-

zation constant.?

The first property of l/l:’el is its uniqueness,3 i.e., its dependence
upon the choice of the basis {qﬁi} is only apparent. To prove this, choose
another basis ‘fk with ¢, = 2 b, ké‘:k Then Eblj by = 3 and:

2<¢ n %) = 2 (2 by, ¥ )<2bik§k)
k
D PRANICUTLER LA 198,
ik i jk

= 2 (fkTI: (/Is)fk .
k

The second property of the relative state, which justifies its name, is

0; . .
that "[lrél correctly gives the conditional expectations of all operators in
Sy, conditioned by the state 63’ in S,. As before let A be an operator

in S, with eigenstates ¢; and eigenvalues A;. Then:

In case Ei(d)i 7, (/IS)(ﬁi = 0 (unnormalizable) then choose any function for the
relative function. This ambiguity has no consequences of any importance to us.
See in this connection the remarks on p. 40.

3 Except if Ei((;si m (ﬂs) ¢i = 0. There is still, of course, no dependence upon

the basis.

S

B

S kg i
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8.
(1.10) <A>¢Irél = <¢,0 ¢re1)

rel’

(v 3 @30, 058,88 3 6,6, 699, )
NS @005 G 0,60, 50

N2 2 APy
i

At this point the normalizeé N? can be conveniently evaluated by using
1.10) t te: <I'>y’d - N2 = N2
( ) to compute: <1 >¢/re1_N ZlPij_N Pj=1, so that

i

il

(1.11) N? - 1/P; .
Substitution of (1.11) in (1.10) yields:

0, 0
1.12 <axg l-amy ¥ - j j
(1.12) Ve = WP D APy =3 NPl < Exp (Al
i i

and we see that the conditional expectations of operators are given by the
relative states. (This includes, of course, the conditional distributions
themselves, since they may be obtained as expectations of projection
operators.)

An important representation of a composite system state ¢:S in terms
of an orthonormal set {9 ! in one subsystem S, and the set of relative

states I/IJ in 5, is:

(1.13) WS =3 30,059,
5

6= (2 <¢i0j,¢5)¢i)01

i
=2 i 2@ 05058, o

1 96,
= E N—jx//rél Hj , where l/Nj2 = PJ =<11[0j]>¢s )
i
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Thus, for any orthonormal set in one subsystem, the state of the composite
system is a single superposition of elements consisting of a state of the
given set and its relative state in the other subsystem. (The relative
states, however, are not necessarily orthogonal.) We notice further that a
particular element, z/r j’ is quite independent ofet.he choice of basis
{0y}, k£j, for the orthogonal space of 0- since v,// J depends only on
Gj and not on the other 0} for k £ j. We remark at thxs point that the
ambiguity in the relative state which arises when 2((;5 0. (//S)(j> =0
(see p. 38) is unimportant for this representation, sirlxce although any
state ¢ jl can be regarded as the relative state in this case, the term
¢103 0 will occur in (1.13) with coefficient zero.

Now that we have found subsystem states which correctly give condi-
tional expectations, we might inquire whether there exist subsystem states
which give marginal expectations. The answer is, unfortunately, no. Let
us compute the marginal expectation of A in S, using the representa-

tion (1.13):
(1.14)  Exp[A]l=-<A 2>¢S - (E N. ’/’ 6 AT 2 Ny (llrel k)

ENNkQ’[IreI’ l/Irel>
-3 L (avd)- 2 sl

i J

Now suppose that there exists a state in Sl,t//’, which correctly gives
the marginal expectation (1.14) for all operators A (i.e., such that

Exp [A] = <A>t’ for all A). One such operator is {1, the projection
on i, for Wthh <[y 1>¢"= 1. But, from (1.14) we have thaet Exp [¢]=
EP <Y’ >lﬁ o1 which is <1 unless, for all j, P =0 or (//rel—tlf' a

i
condition which is not generally true. Therefore there exists in general
no state for S; which correctly gives the marginal expectations for all

operators in ;.
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However, even though there is generally no single state describing
marginal expectatlons we see that there is always a mixture of states,
namely the state J

y tes x// weighted with Pj, which does yield the correct
expectations. The dxstmction between a mixture, M, of states o,
_ i

weighted by P., and a pure state 4 which is a superposition, U=

z aigéi, is that there are no interference phenomena between the various

stat?ws of a mixture. The expectation of an operator A for the mixture is
ExpA] = E P <A>¢, = 2 P.(;, A¢.), while the expectation for the

pure state (/I is <A>Y = (2 a;pb;, A z aquj) = Zaiaj(qsi,AQsj),
j

- . i ij
which is not the same as that of the mixture with weights P. - a’a., due
1
to the i j £ i
.presence of the interference terms (&5 Aqu) for j £ i.
It is convenient to represent such a mixture by a density matrix,* g.
If the mixture consists of the states x/f- weighted by P- and if we are
working in a basis consisting of the complete orthonormal set {¢ §, where

g[/ 2 al qSl, then we define the elements of the density matrix for the
i
mixture to be:

(1.15) j -
(&) = (B0 .

= . al* al
Pl zplaﬂ*ak
J

Then if A is any operator, with matrix representation Ay = (qﬁi, A(ﬁg)

in the chosen basis, its expectation for the mixture is:

ExpM[A] = S P Aup = S P, [2 al* a%(qﬁi,Anﬁg):l
i 7

j i
- % (Epja-ii*ag)((ﬁi,Aqbe) - E pp; A
j il

= Trace (p A) .

(1.16)

Also called a statistical operator (von Neumann ,[17]).
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. .5
Therefore any mixture is adequately represented by a density matrix.

Note also that Pltﬂ = ppg> SO that p is Hermitian.

2
Let us now find the density matrices ,01 and p“ for the subsystems

: S
S, and S, of a system S =8,+S, inthe state °. Furthermore, let

us choose the orthonormal bases {£;} and {nj} in §, and S, respec-

tively, and let A be an operator in Sy, B an operator in SZ‘ Then:

S
(1.17) Expl[A] = <A >y - (2 &y vDE ALY, G ¥ )égnm)
ij fm

=S Gt Cpr v A 1)

ij

*
-3 [2 €159 (fgnj,¢5)] €, AL
if j
= Trace (plA) s
where we have defined pl in the {€;} basis to be:
Sy* S
(1.18) py; = S Emp ™) Epnp )
j
In a similar fashion we find that p2 is given, in the {nj} basis, by:

* S
(1.19) Pon = 2(§inn,¢s) Eng ) -

1
It can be easily shown that here again the dependence of p~ upon the

. 2 . .
choice of basis {17].} in S,, and of p“ upon {£;}, is only apparent

5 A better, coordinate free representation of a mixture is in terms of the opera-
tor which the density matrix represents. For a mixture of states (//n (not neces-
sarily orthogonal) with weights Pur the density operator is p = %pn [(/In], where

[l/fn] stands for the projection operator on (,Zln.
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In summary, we have seen in this section that a state of a composite
system leads to joint distributions over subsystem quantities which are
generally not independent. Conditional distributions and expectations for
subsystems are obtained from relative states, and subsystem marginal
distributions and expectations are given by density matrices.

There does not, in general, exist anything like a single state for one
subsystem of a composite system. That is, subsystems do not possess
states independent of the states of the remainder of the system, so that
the subsystem states are generally correlated. One can arbitrarily choose
a state for one subsystem, and be led to the relative state for the other
subsystem. Thus we are faced with a fundamental relativity of states,
which is implied by the formalism of composite systems. It is meaning-
less to ask the absolute state of a subsystem — one can only ask the

state relative to a given state of the remainder of the system.

§2. Information and correlation in quantum mechanics

We wish to be able to discuss information and correlation for Hermi-
tian operators A, B,..., with respect to a state function . These
quantities are to be computed, through the formulas of the preceding
chapter, from the square amplitudes of the coefficients of the expansion
of ¢ in terms of the eigenstates of the operators.

We have already seen (p. 34) that a state ¢ and an orthonormal basis

{951} leads to a square amplitude distribution of ¢ over the set iqSi}:
@D P; = l¢p? = <l ,

so that we can define the information of the basis qui} for the state Y,

I{¢_¥(¢), to be simply the information of this distribution relative to the
i

uniform measure:

2.2) g J@) = 3 Py InPi= 3 (3,91 In by, )2
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We define the information of an operator A, for the state U, IA(l,/I),
to be the information in the square amplitude distribution over its eigen-
values, i.e., the information of the probability distribution over the results
of a determination of A which is prescribed in the probabilistic interpre-
tation. For a non-degenerate operator A this distribution is the same as
the distribution (2.1) over the eigenstates. But because the information
is dependent only on the distribution, and not on numerical values, the
information of the distribution over eigenvalues of A is precisely the

information of the eigenbasis of A,{¢;l. Therefore:
(2.3) IA@’) = I{qg,}(l/’) = 2 <[¢i]>l/l In <[¢ti]>¢f (A non-degenerate) .
i

We see that for fixed ¢, the information of all non-degenerate operators
having the same set of eigenstates is the same.

In the case of degenerate operators it will be convenient to take, as
the definition of information, the information of the square amplitude dis-
tribution over the eigenvalues relative to the information measure which
consists of the multiplicity of the eigenvalues, rather than the uniform
measure. This definition preserves the choice of uniform measure over

the eigenstates, in distinction to the eigenvalues. If ¢’ij ( from 1 to my)

are a complete orthonormal set of eigenstates for A’, with distinct eigen
th

values A, (degenerate with respect to j), then the multiplicity of the it

eigenvalue is m; and the information 1, () is defined to be:

2<[¢ij]>$

(2.4) Ip @) = 2 (2 <[¢’ij]>‘/’)1“ o
1 3

The usefulness of this definition lies in the fact that any operator A”
which distinguishes further between any of the degenerate states of A’
leads to a refinement of the relative density, in the sense of Theorem 4,
and consequently has equal or greater information. A non-degenerate

operator thus represents the maximal refinement and possesses maximal

information.
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s =
on nient t lrltroduCe a new IlOtatIOIl fol' the ptoleCthl’l Ope a:
It 1S C ve o} T

tols Whlch are Ie}epaﬂt fO! a SpeCIfIEd OpelatOL AS befole let A have

eigenfuncti s isti i
ions ‘751) and distinct eigenvalues A;. Then define the projec

tions A, the projecti )
i’ jections on the e . .
A, to be: 1genspaces of different eigenvalues of
2 T
(2.5) A - E ]
i1

IO eaCh SuCh pIOjECUOIl thele IS GSSOCIQted a llumber m the multlpllCIty

of th
e degeneracy, which is the dimension of the ith eigenspace. In thi
is

notation the distribution over the eigenvalues of A for the state i
) '!

becomes simply:

(2.6) P, - P()\i) = <Ay,

and the information, givén by (2.4), becomes:

2.7) Iy = 2 <A;> In A

l

Similarly, for a pair of operators, A in S, and B in S,, forth
- , for the
composite system S =S, +S, with state l/ls

eigenvalues is:

(2.3
) Pij = POy, u) = <AB>yS

, the joint distribution over

and the marginal distributions are:

(2.9 .
) P, - z Py = <Aj<2 BJ.)>¢S = <A>yS
J

j
- 21: Py = <(2Ai)Bj><//S = <I'Bj>yS
1

The joint information, IAB’ is given by:

s
(2.10) lag= 3 Py In il
5

mlnj ?

<
lBj>glrs In
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where m; and n. are the multiplicities of the eigenvalues A; and Hse

The marginal information gquantities are given by:

2,5
2.,8 <AJ>Y
(2.11) Iy = 3, <AP>97 I —F—
i
<IB.>yS
1 s j
Ig = 2<1 B> lnT )
j

and finally the correlation, 1A, B}l/JS is given by:

S
<AiBj>¢

P..
s ij S
2.12) 1ABlyS = S Py In 5= S <AB;>vS In ,
=1 PiPy < ) <Ai1>¢15<13j>¢;5

where we note that the expression does not involve the multiplicities, as
do the information expressions, a circumstance which simply reflects the
independence of correlation on any information measure. These expres-
sions of course generalize trivially to distributions over more than two
variables (composite systems of more ’ghan two subsystems).

In addition to the correlation of pairs of subsystem operators, given
by (2.12), there always exists a unique quantity {Sl, Szi, the canonical
correlation, which has some special properties and may be regarded as
the fundamental correlation between the two subsystems S, and S, of
the composite system S. As we remarked earlier a density matrix is

Hermitian, so that there is a representation in which it is diagonal.6 In

6 The density matrix of a subsystem always has a pure discrete spectrum, if
the composite system is in a state. To see this we note that the choice of any
orthonormal basis in 52 teads to a discrete (i.e., denumerable) set of relative

states in Sl' The density matrix in S1 then represents this discrete mixture,

l/lrejl weighted by Pj' This means that the expectation of the identity, Exp [I] =
szj((/lregl' I(/Ireejl) = Eij =1 = Trace (pI) = Trace (p). Therefore p has a finite
trace and is a completely continuous operator, having necessarily a pure discrete
spectrum, (See von Neumann [17], p. 89, footnote 115.)

i
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particular, for the decomposition of S (with state (ﬁs) into S, and S
we can choose a representation in which both pSl and psz a:e diagonza,l
(This choice is always possible because pS1 is independent of the basis.
in S, and vice-versa.) Such a representation will be called a canonical
representation. This means that it is always possible to represent the

S .
state ” by a single superposition:

vS < E a;&im;

i

(2.13)

where both the {£;} and the {n;} constitute orthonormal sets of states
for S, and S, respectively.

IO construct Such a p 7"
re leselltatIOIl Choose tlle baSlS { 1} fot SZ SO

S
that p~2 is diagonal:

(2.14) pisg s
J

i%j »

and let the fi be the relative states in S, forthe 7, in S :
1 27

2.15 .=

(2.15) S =N 3 Bny ¢y (any basis {4]) .

i
Then, according to (1.13), g[/s is represented in the form (2.13) where the
{n;} are orthonormal by choice, and the {£;} are normal since they are

relative states. We therefore need only show that the states {£.} are
i

orthogonal:
(2.16)

il

€60 - (N 3 60 4960 3y S, G 09,

*
%N;Nk<¢gnj,¢s> B i) By

*
NNy % Benyp 05 (bpm v

= N¥*N S2 N*
iNkPkj = NjNAydy; = 0, for jAk
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since we supposed pSz to be diagonal in this representation. We have
therefore constructed a canonical representation (2.13).

The density matrix ps1 is also automatically diagonal, by the choice
of representation consisting of the basis in S, which makes p 2 diago-

nal and the corresponding relative states in S,;. Since {€;} are ortho-

normal we have:

@i ot 2(5 et € -

*

%(@3 M %amfmnm) (fjnk, EE agfznz)

*r
- % a8 dim Ok D300k = 2, 21910k Ou
k
k{m

= a1a1813 1:)isij !
where P; = a’fai is the marginal distribution over the {£;}. Similar com-
' S

2 .

putation shows that the elements of p~° are the same:
52 ata 8.y = Py O

(2.18) Pl = 22k Okt = POkl -
Thus in the canonical representation both density matrices are diagonal
and have the same elements, Py, which give the marginal square ampli-
tude distribution over both of the sets {£;} and {n;} forming the basis

of the representation.

Now, any pair of operators, A in Sy and B in Sz, which have as
non-degenerate eigenfunctions the sets {¢;} and {nj} (i.e., operators
which define the canonical representation), are “‘perfectly’’ correlated in
the sense that there is a one-one correspondence between their eigen-

values. The joint square amplitude distribution for eigenvalues A; of A

and s of B is:

(2.19) PQ\; and ) = P(¢; and 7)) = Pyj = aja; 8y = P; 05 -
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Therefore, the correlation between these operators, {X,g}rﬁs is:

e PO &) P.5..
(2.20) fA,B}z//S = 2 P(A; and uj) In BOX. )P:L ) 2 P, 5 PR,
ij

P.D.
=_2pi InP, .
i

ij
We shall denote this quantity by {Sl, Szhlfs and call it the canonical
correlation of the subsystems S, and S, for the system state l/fs.
is the correlation between any pair of non-degenerate subsystem operators
which define the canonical representation.

In the canonical representation, where the density matrices are diago-

nal ({(2.17) and (2.18)), the canonical correlation is given by:

5, S
@.21) 81,5045 =~ S P, In P, = —Trace(p '1np 1)

i
S S
= — Trace (p 2lnp .

But the trace is invariant for unitary transformations, so that (2.21) holds
independently of the representation, and we have therefore established
the uniqueness of {Sl,Sz§l//S.

It is also interesting to note that the quantity — Trace(p ln p) is
(apart from a factor of Boltzman’s constant) just the entropy of a mixture
of states characterized by the density matrix p. 7 Therefore the entropy
of the mixture characteristic of a subsystem S, for the state l//s =
l,/fs1 52 is exactly matched by a correlation information {Sl,S2 {, which
represents the correlation between any pair of operators K, ﬁ, which
define the canonical representation. The situation is thus quite similar

to that of classical mechanics.®

See von Neumann [17], p. 296.

8 ¢t Chapter II, §7.
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Another special property of the canonical representation is that any
apetators K, B defining a canonical representation have maximum margi- (2.27) Iy = z (2 a; a;T; ) In (2 a. a, le)

i
nal information, in the sense that for any other discrete spectrum opera-

tors, A on S;, B on S,, I, $1% and IgSIg. If the canonical repre- < Ea;‘ai In a)ikai - Iy,

sentation is (2.13), with {£;}, {n;] non-degenerate eigenfunctions of A, ? i

§, respectively, and A, B any pair of non-degenerate operators with ‘ and we have proved that A has maximal marginal information among the

eigenfunctions ¢k} and {QE} where f 2 CikPrr M= 2 d. 202, discrete spectrum operators. Identical proof holds for B.

then 1//5 in ¢,0 representation is: : While this result was proved only for non-degenerate operators, it is
immediately extended to the degenerate case, since as a consequence of

(2.22) l//S = 2 aicikdigcf)k@g = zg (2 aicikdiﬂ>¢k bp ‘ our definition of information for a degenerate operator, (2.4), its informa-

ikl K i

tion is still less than that of an operator which removes the degeneracy.
and the joint square amplitude distribution for ¢y, 0y is:

2
E 3 * *
(2.23) Py = KE aicikdiﬂ>‘ = Eai 8 CikCmkditdme - THEOREM.

i im

We have thus proved:

Ip < IX, where A is any non-degenerate operator defining

the canonical representation, and A is any operator with discrete spec-
while the marginals are:

trum.

2.24) P - 2 Py = E AmCikCmk 2 dipdmg
We conclude the discussion of the canonical representation by conjec-
turing that in addition to the maximum marginal information properties of
= z g amc1kcmk61m = 2 a; 8 Clkclk ’ ~ o~ , . . .
. - A, B, which define the representation, they are also maximally correlated,
im 1
and similarly by which we mean that for any pair of operators C in §;, D in S,
{c,D} < {A,BY,
(2.25) Py =Y Py = afadfdy .

(2.28) conyecTure.? {C,D}yS <{ABIywS = s, S, 1y°

Then the marginal information I, is: forall C on S;, D on S,.

(2.26) Ip = 2 Pyl Py = 2 (2 a; axcxkclk> In (2 ! alclkclk) As a final topic for this section we point out that the uncertainty
k ko ' principle can probably be phrased in a stronger form in terms of informa-
= E (2 a; a le) In (2 ai*aiTik) , tion. The usual form of this principle is stated in terms of variances,
k i i namely:

where Tik = c?kcik is doubly-stochastic (ETik = 2 Tik =1 follows
i k

9 The relations {C,g} § {X,ﬁ} = {Sl,Sz} and {K,D} § fSl,SZ} for all C on SI'

D on 52’ can be proved easily in a manner analogous to (2.27). These do not,
however, necessarily. imply the general relation (2.28).

1
from unitary nature of the c;;). Therefore (by Corollary 2, §4, Appendix I):
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(2.29) 2ol 2 ;11- for all (%) ,

where ai = <x2>(// - [<x>x,/f]2 and

oi=<(—i£)2>t//—|:<—i%>tﬁ] _<( ) Sy — [<%>¢]2

The conjectured information form of this principle is:

(2.30) IL+I S In(l/7e) for all /().

Although this inequality has not yet been proved with complete rigor, it

is made highly probable by the circumstance that equality holds for Yr(x)
1

2
of the form (%) = 1/2m)* exponent [-—X—Q] the so called ‘“minimum un-

40X

certainty packets’’ which give normal distributions for both position and
momentum, and that furthermore the first variation of (IX + Ik) vanishes
for such (x). (See Appendix I, §6.) Thus, although In(1/7e) has not
been proved an absolute maximum of I, + I, it is at least a stationary
value.

The principle (2.30) is stronger than (2.29), since it implies (2.29)
but is not implied by it. To see that it implies (2.29) we use the well
known fact (easily established by a variation calculation: that, for fixed
variance o2, the distribution of minimum information is a normal distribu-
tion, which has information I =1n(1/0v27e). This gives us the general

inequality involving information and variance:

(2.31) 12 In(l/0\27e) (for all distributions) .

Substitution of (2.31) into (2.30) then yields:

(2.32) In(1/0,\/27€) + In (1/oy2me) < I + Iy < In(1/me)
2251

= (1/0x0k2ﬂe) < (1/ne) = 90k £ 7

so that our principle implies the standard principle (2.29).
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To show that (2.29) does not imply (2.30) it suffices to give a counter—
example. The distributions P(x) = —5(x) + L 5(x—10) and P(k) = §(k) +
L 8(k—-10) which consist simply of splkes at 0 and 10, clearly satxsfy
(2.29), while they both have infinite information and thus do not satisfy
(2.30). Therefore it is possible to have arbitrarily high information about
both x and k (or p) and still satisfy (2.13). We have, then, another
illustration that information concepts are more powerful and more natural

than the older measures based upon variance.

§€3. Measurement

We now consider the question of measurement in quantum mechanics,
which we desire to treat as a natural process within the theory of pure
wave mechanics. From our point of view there is no fundamental distinc-

tion between ‘¢

measuring apparata’’ and other physical systems. For us,
therefore, a measurement is simply a special case of interaction between
physical systems — an interaction which has the property of correlating a
quantity in one subsystem with a quantity in another.

Nearly every interaction between systems produces some correlation
however. Suppose that at some instant a pair of systems are independent,
so that the composite system state function is a product of subsystem
states (1/15 = l//S1 l/fsz). Then this condition obviously holds only instan-
taneously if the systems are interactinglo— the independence is immediate-
ly destroyed and the systems become correlated. We could, then, take the
position that the two interacting systems are continually ‘‘measuring’’ one

another, if we wished. At each instant t we could put the composite

system into canonical representation, and choose a pair of operators A(t)

0
1 If US is the unitary operator generating the time dependence for the state

function of the composite system S = Sl + SQ, so that l//t = US ¢0, then we
shall say that Sy and 52 have not interacted during the time mterval [0 t] if
and only if U?
S=udle 2

Ut=Ut

is the direct product of two subsystem unitary operators, i.e., if



_:

54 HUGH EVERETT, 1II

in S; and E(t) in S, which define this representation. We might then
reasonably assert that the quantity A in S, is measured by B in S,
(or vice-versa), since there is a one-one correspondence between their
values.

Such a viewpoint, however, does not correspond closely with our in-
tuitive idea of what constitutes “‘measurement,’’ since the quantities A
and B which turn out to be measured depend not only on the time, but
also upon the initial state of the composite system. A more reasonable
position is to associate the term “‘measurement’’ with a fixed interaction
H between 's.ystems,11 and to define the ‘“measured quantities’’ not as
those gquantities A(t), B(t) which are instantaneously canonically corre-
lated, but as the limit of the instantaneous canonical operators as the time
goes to infinity, Xoo, ﬁm — provided that this limit exists and is inde-
pendent of the initial state.!? In such a case we are able to associate the
““measured quantities,”’ KN, gm, with the interaction H independently
of the actual system states and the time. We can therefore say that H is
an interaction which causes the quantity Xoo in S, tobe measured by
ﬁm in S,. For finite times of interaction the measurement is only ap-
proximate, approaching exactness as the time of interaction increases in-
definitely.

There is still one more requirement that we must impose on an inter-
action before we shall call it a measurement. If H is to produce a

measurement of A in S8, by B in Sy, then we require that H shall

11 Here H means the total Hamiltonian of S, not just an interaction part.

o
12 Actually, rather than referring to canonical operators A, E, which are not
unique, we should refer to the bases of the canonical representation, El} in S1

and {nj} in 52’ since any operators A= Eihi[gi]’ B- 2]. uj[nj], with the com-
pletely arbitrary eigenvalues Ai' p.j, are canonical. The limit then refers to the

1imit of the canonical bases, if it exists in some appropriate sense. However, we
shall, for convenience, continue to represent the canonical bases by operators.
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never decrease the information in the marginal distribution of A. If H
is to produce a measurement of A by correlating it with B, we expect
that a knowledge of B shall give us more information about A than we
had before the measurement took place, since otherwise the measurement
would be useless. Now, H might produce a correlation between A and
B by simply destroying the marginal information of A, without improving
the expected conditional information of A given B, so that a knowledge
of B would give us no more information about A than we possessed
originally. Therefore in order to be sure that we will gain information
about A by knowing B, when B has become correlated with A, itis
necessary that the marginal information about A has not decreased. The
expected information gain in this case is assured to be not less than the
correlation {A,B}.
The restriction that H shall not decrease the marginal information
of A has the interesting consequence that the eigenstates of A will not
be distrubed, i.e., initial states of the form l/lcs) = ¢ny where ¢ is an
eigenfunction of A, must be transformed after any time interval into
states of the form l/lts = ¢y, since otherwise the matginal information of
A, which was initially perfect, would be decreased. This condition, in
turn, is connected with the repeatability of measurements, as we shall
subsequently see, and could alternately have been chosen as the condition
for measurement.
We shall therefore accept the following definition. An interaction H
Is a measurement of A in S; by B in S, if H does not destroy the
marginal information of A (equivalently: if H does not disturb the
eigenstates of A in the above sense) and if furthermore the correlation

{A,Bl increases toward its maximum!3 with time.

13
The maximum of {A,B} i i

s ’ is —I, if A has only a di

if it has a continuous spectrum. A v iscrete spectrum, and oo
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We now illustrate the production of correlation with an example of a
simplified measurement due to von Neumann.!* Suppose that we have a
system of only one coordinate, g, (such as position of a particle), and
an apparatus of one coordinate r (for example the position of a meter
needle). Further suppose that they are initially independent, so that the
combined wave function is ¢§+A = (@) n(r), where ¢(q) is the initial
system wave function, and 7(r) is the initial apparatus function. Finally
suppose that the masses are sufficiently large or the time of interaction
sufficiently small that the kinetic portion of the energy may be neglected,
so that during the time of measurement the Hamiltonian shall consist only

of an interaction, which we shall take to be:
- i d
(31) HI = —1ﬁq-—.
Then it is easily verified that the state ¢§+A(q,r):

(3.2) $3A@D = S@nl—at) .

is a solution of the Schrodinger equation

A
ot

(3.3) if - HpyPtA

for the specified initial conditions at time t=0.

Translating (3.2) into square amplitudes we get:

(3.4) Pyq,0) = P{(@P,(r—at) ,

where P,(@ = ¢ @d@ , Py = 700w .
and P@n = 58 @0ydAa

14

von Neumann [17], p. 442,
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and we note that for a fixed time, t, the conditional square amplitude
distribution for r has been translated by an amount depending upon the
value of q, while the marginal distribution for q has been unaltered.

We see thus that a correlation has been introduced between q and r by
this interaction, which allows us to interpret it as a measurement. It is
instructive to see quantitatively how fast this correlation takes place. We

note that:

3.5 IQR(t) = ff Pt(q,r) 1n Pt(q,r) dqdr

= ff P,(@P,(r—qt) In P,(q) P,(r—qt) dqdr

i

f f P, (@P, ) In P, (@P,@) dado

i

so that the information of the joint distribution does not change. Further-

more, since the marginal distribution for q is unchanged:
3.6) IQ(t) = IQ(O) )

and the only quantity which can change is the marginal information, I,

of r, whose distribution is:

3.7 Pt(r) = f Pt(f,q) dq = IPI(Q)PQ(r—qt)dq .

Application of a special inequality (proved in §5, Appendix I) to (3.7)
yields the relation:

3.8) Ip(®) S IO~ Int

so that, except for the additive constant IQ(O), the marginal information
Ip tends to decrease at least as fast as Int with time during the inter-

action. This implies the relation for the correlation:
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But at t = 0 the distributions for R and Q were independent, so that
IRQ(O) = IpO0) + IQ(O). Substitution of this relation, (3.5), and (3.6) into
(3.9) then yields the final result:

(3.10) [QR), 2 Ig©) ~ Ig® + Int .

Therefore the correlation is built up at least as fast as Int, except for
an additive constant representing the difference of the information of the
initial distributions P,(r) and P, (q). Since the correlation goes to in-
finity with increasing time, and the marginal system distribution is not
changed, the interaction (3.1) satisfies our definition of a measurement of
g by r.

Even though the apparatus does not indicate any definite system value
(since there are no independent system or apparatus states), one can
nevertheless look upon the total wave function (3.2) as a superposition of
pairs of subsystem states, each element of which has a definite q value
and a correspondingly displaced apparatus state.! Thus we can write
(3.2) as:

(3.11) yotA - f $(q)8(q-q)n(t—a't)dq” ,

which is a superposition of states l,[qu = 8(g—q") n(r—q’t). Each of these

elements, ¢ of the superposition describes a state in which the sys-

q
tem has the definite value q = q’, and in which the apparatus has a state
that is displaced from its original state by the amount q’t. These ele-

ments l,/qu are then superposed with coefficients ¢(q") to form the total

state (3.11).

15 See discussion of relative states, p. 38.

"
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Conversely, if we transform to the representation where the apparatus

is definite, we write (3.2) as:

(3.12) ythA - f(l/Nrf)§r’(q)5(r—r')dr’ ,
where £@ = N $(@)n(r—qt)
and (1/N)? = f " (@) $(Q) 1 (r=qt) nr—qt) dq .

Then the fr,(q) are the relative system state functions for the apparatus
states 8(r—r") of definite value r=r~,

We notice that these relative system states, fr’(q), are nearly eigen-
states for the values q =r’/t, if the degree of correlation between q and
r is sufficiently high, i.e., if t is sufficiently large, or 7(r) sufficiently
sharp (near 6(r) ) then fr’(q) is nearly 8(q—r’/t).

This property, that the relative system states become approximate
eigenstates of the measurement, is in fact common to all measurements.

If we adopt as a measure of the nearness of a state i/ to being an eigen-
function of an operator A the information IA(¢), which is reasonable
because I,()) measures the sharpness of the distribution of A for i,
then it is a consequence of our definition of a measurement that the rela-
tive system states tend to become eigenstates as the interaction proceeds.
Since Exp [IrQ] = IQ + {Q,R}, and IQ remains constant while {Q,R}
tends toward its maximum (or infinity) during the interaction, we have that
Exp [Ib] tends to a maximum (or infinity). But IrQ is just the information
in the relative system states, which we have adopted as a measure of the
nearness to an eigenstate. Therefore, at least in expectation, the relative
system states approach eigenstates.

We have seen that (3.12) is a superposition of states Y., for each
of which the apparatus has recorded a definite value r’, and the system
is left in approximately the eigenstate of the measurement corresponding

to q=1’/t. The discontinuous ‘“‘jump’’ into an eigenstate is thus only a
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relative proposition, dependent upon our decomposition of the total wave
function into the superposition, and relative to a particularly chosen appa-
ratus value. So far as the complete theory is concerned all elements of
the superposition exist simultaneously, and the entire process is quite
continuous.

We have here only a special case of the following general principle

which will hold for any situation which is treated entirely wave mechani-

cally:

PRINCIPLE. For any situation in which the existence of a property R;

for a subsystem Sy of a composite system S will imply the later property

Q. for S,
S1
W 1 2 a; (//[ ] which is a superposition of states with the properties

then it is also true that an initial state for 5 of the form

R;, will result in a later state for S of the form g[f 2 a; IJI[Q 1

which is also a superposition, of states with the property Q;- That is,

for any arrangement of an interaction between two systems S; and S,,

which has the property that each initial state qS t/r will result in a

S1+S
final sxtuatxon with total state ¢1 2 an initial state of S, of the

form 2 ai¢i

' S1+S
2 aig&il 2 for the whole system.

i

will lead, after interaction, to the superposition

This follows immediately from the superposition principle for solutions
of a linear wave equation. It therefore holds for any system of quantum
mechanics for which the superposition principle holds, both particle and
field theories, relativistic or not, and is applicable to all physical sys-
tems, regardless of size.

This principle has the far reaching implication that for any possible
measurement, for which the initial system state is not an eigenstate, the
resulting state of the composite system leads to no definite system state
nor any definite apparatus state. The system will not be put into one or

another of its eigenstates with the apparatus indicating the corresponding

value, and nothing resembling Process 1 can take place.
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To see that this is indeed the case, suppose that we have a measut-
ing arrangement with the following properties.
is l/lg

S o . .
®;, then after a specified time of interaction the total state qSlS'gllg will

The initial apparatus state
If the system is initially in an eigenstate of the measurement
be transformed into a state ¢51//A i

¥, i.e., the system eigenstate shall not
be disturbed, and the apparatus state is changed to l//‘ib‘, which is differ-

S A
ent for each ¢7. (;" may for example be a state describing the appara-
tus as indicating, by the position of a meter needle, the eigenvalue of gb-s )
L

However, if the initial system state is not an eigenstate but a superposi-

. S

tion Eai¢i,
i

. S A :
tion, 2 aiqﬁi (ﬁi. This follows from the superposition principle since
i
all we need do is superpose our solutions for the eigenstates, (;SS t/fA

S.,A
ot S,/ A
b3 Y%, to arrive at the solution, zai¢i vy - Ea ¢SL/IA for the
) i i
general case. Thus in general after a measurement has been performed

then the final composite system state is also a superposi-

there will be no definite system state nor any definite apparatus state,
even though there is a correlation. It seems as though nothing can ever
be settled by such a measurement. Furthermore this result is independent
of the size of the apparatus, and remains true for apparatus of quite mac-
roscopic dimensions,

Suppose, for example, that we coupled a spin measuring device to a
cannonball, so that if the spin is up the cannonball will be shifted one
foot to the left, while if the spin is down it will be shifted an equal dis-
tance to the right. If we now perform a measurement with this arrangement
upon a particle whose spin is a superposition of up and down, then the
resulting total state will also be a superposition of two states, one in
which the cannonball is to the left, and one in which it is to the right.
There is no definite position for our macroscopic cannonball!

This behavior seems to be quite at variance with our observations,
since macroscopic objects always appear to us to have definite positions.

Can we reconcile this prediction of the purely wave mechanical theory
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i wer
with experience, or must we abandon it as untenable? In order to ans

this question we must consider the problem of observation itself within

the framework of the theory.

IV. OBSERVATION

We shall now give an abstract treatment of the problem of observation.
In keeping with the spirit of our investigation of the consequences of pure
wave mechanics we have no alternative but to introduce observers, con-
sidered as purely physical systems, into the theory.

We saw in the last chapter that in general a measurement (coupling of
system and apparatus) had the outcome that neither the system nor the
apparatus had any definite state after the interaction — a result seemingly
at variance with our experience. However, we do not do justice to the
theory of pure wave mechanics until we have investigated what the theory
itself says about the appearance of phenomena to observers, rather than
hastily concluding that the theory must be incorrect because the actual
states of systems as given by the theory seem to contradict our observa-
tions.

We shall see that the introduction of observers can be accomplished
in a reasonable manner, and that the theory then predicts that the appear-
ance of phenomena, as the subjective experience of these observers, is
precisely in accordance with the predictions of the usual probabilistic

interpretation of quantum mechanics.

§1. Formulation of the problem

We are faced with the task of making deductions about the appearance
of phenomena on a subjective level, to observers which are considered as
purely physical systems and are treated within the theory. In order to
accomplish this it is necessary to identify some objective properties of
such an observer (states) with subjective knowledge (i.e., perceptions).

Thus, in order to say that an observer O has observed the event a, it

63
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is necessary that the state of O has become changed from its former
state to a new state which is dependent upon a.

It will suffice for our purposes to consider our observers to possess
memories (i.e., parts of a relatively permanent nature whose states are in
correspondence with the past experience of the observer). In order to
make deductions about the subjective experience of an observer it is suf-
ficient to examine the contents of the memory.

As models for observers we can, if we wish, consider automatically
functioning machines, possessing sensory apparata and coupled to re-
cording devices capable of registering past sensory data and machine
configurations. We can further suppose that the machine is so constructed
that its present actions shall be determined not only by its present sen-
sory data, but by the contents of its memory as well. Such a machine will
then be capable of performing a sequence of observations (measurements),
and furthermore of deciding upon its future experiments on the basis of
past results. We note that if we consider that current sensory data, as
well as machine configuration, is immediately recorded in the memory,
then the actions of the machine at a given instant can be regarded as a
function of the memory contents only, and all relevant experience of the
machine is contained in the memory.

For such machines we are justified in using such phrases as “‘the
machine has perceived A’’ or ‘‘the machine is aware of A’ if the occur-
rence of A is represented in the memory, since the future behavior of
the machine will be based upon the occurrence of A. In fact, all of the
customary language of subjective experience is quite applicable to such
machines, and forms the most natural and useful mode of expression when
dealing with their behavior, as is well known to individuals who work
with complex automata.

When dealing quantum mechanically with a system reptesenting an ob-
server we shall ascribe a state function, 1/10, to it. When the State I/IO

describes an observer whose memory contains representations of the
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events A,B,...,C we shall denote this fact by appending the memory se-

quence in brackets as a subscript, writing:

(o]
YIAB,...c)

The symbols A,B,...,C, which we shall assume to be ordered time wise,
shall therefore stand for memory configurations which are in correspond-
ence with the past experience of the observer. These configurations can
be thought of as punches in a paper tape, impressions on a magnetic reel,
configurations of a relay switching circuit, or even configurations of brain
cells. We only require that they be capable of the interpretation ‘“The
observer has experienced the succession of events AB,...,C.” (We shall
sometimes write dots in a memory sequence, [...A,B,...,C], to indicate
the possible presence of previous memories which are irrelevant to the
case being considered.)

Our problem is, then, to treat the interaction of such observer-systems
with other physical systems (observations), within the framework of wave
mechanics, and to deduce the resulting memory configurations, which we
can then interpret as the subjective experiences of the observers.

We begin by defining what shall constitute a ““good’’ observation. A
good observation of a quantity A, with eigenfunctions {q5i§ for a system
S, by an observer whose initial state is t,bE) L shall consist of an inter-

action which, in a specified period of time, transforms each (total) state

S5+0 0
VI = b

into a new state

S+07 _ 0]
R L AT
where a; characterizes the state ¢i' (It might stand for a recording of
the eigenvalue, for example.) That is, our requirement is that the system

state, if it is an eigenstate, shall be unchanged, and that the observer
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state shall change so as to describe an observer that is “‘aware’’ of which
eigenfunction it is, i.e., some property is recorded in the memory of the
observer which characterizes ¢, such as the eigenvalue. The require-
ment that the eigenstates for the system be unchanged is necessary if the
observation is to be significant (repeatable), and the requirement that the
obsetver state change in a manner which is different for each eigenfunc-
tion is necessary if we are to be able to call the interaction an observa-

tion at all.

§2. Deductions

From these requirements we shall first deduce the result of an obser-
vation upon a system which is not in an eigenstate of the observation. We
know, by our previous remark upon what constitutes a good observation

that the interaction transforms states qSit,/IE) 1 into states ¢il/'3 e
o cens@y

Consequently we can simply superpose these solutions of the wave equa-
tion to arrive at the final state for the case of an arbitrary initial system
state. Thus if the initial system state is not an eigenstate, but a general

state 2 a;¢;, we get for the final total state:
i

$+0 0
@.1) Yt = gaﬁ"i‘/’i[...,ail'

This remains true also in the presence of further systems which do
not interact for the time of measurement. Thus, if systems SI’SZ'“"Sn
are present as well as O, with original states gbsl,dl 2,...,1/rsn, and
the only interaction during the time of measurement is between S; and
0, the result of the measurement will be the transformation of the initial
total state:

S +S,+...+5,+0 S, .S, S,.0
v B A AR

into the final state:

S, +S,+...45_+0 S, S S
2.2) 1T Eai¢>il¢' 2.y n(pic[)...,a]
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whe S1 SI S1
re a; =\, ", and (;Si are eigenfunctions of the observation.
Thus we arrive at the general rule for the transformation of total state

functions which describe systems within which observation ptocesses

occur:

Rule 1. The observation of a quantity A, with eigenfunctions qSSl in
1 ’

a system S; by the observer O, transforms the total state according to:
S, S S
1,2 n,,0 5,8 S
WP s Dt
S ) - ...,ai
where a; = (qiil,x/f l).

1
If we next consider a second observation to be made, where our total
state is now a superposition, we can apply Rule 1 separately to each ele-
ment of the superposition, since each element separately obeys the wave
equation and behaves independently of the remaining elements, and then

superpose the results to obtain the final solution. We formulate this as:

Rule 2. Rule 1 may be applied separately to each element of a superposi-
tion of total system states, the results being superposed to obtain the

final total state. Thus, a determination of B, with eigenfunctions 7’$2
J

on S, by the observer O transforms the total state

S, S S
1,°2 n,, O
E CH PR/ Y U
n l[...,ai]
into the state

$; S, S, S
PITIITI a "

i,

...,ai, BJ]

S, §
2 2 .
where bj = <7]j Y ), which follows from the application of Rule 1 to

S1,52  Sn,0
each element @] ¢ *...¢ n(/fi[m . 2nd then superposing the results

with the coefficients a;. i
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These two rules, which follow directly from the superposition princi-
ple, give us a convenient method for determining final total states for any
number of observation processes in any combinations. We must now seek
the interpretation of such final total states.

Let us consider the simple case of a single observation of a quantity
A, with eigenfunctions ¢;, in the system S with initial state g//s, by
an observer O whose initial state is l/I? I The final result is, as we

have seen, the superposition:
. S$+0 _ (0]
2.3 w0 = D I ey -
1

We note that there is no longer any independent system state or observer
state, although the two have become correlated in a one-one manner. How-
ever, in each element of the superposition (2.3), ¢; (/ji?...,a-]’ the object-
system state is a particular eigenstate of the observer, and 1furthermore
the observer-system state describes the observer as definitely perceiving
that particular system state.!l Tt is this correlation which allows one to
maintain the interpretation that a measurement has been performed.

We now carry the discussion a step further and allow the observer-

system to repeat the observation. Then according to Rule 2 we arrive at

the total state after the second observation:

1 At this point we encounter a language difficulty. Whereas before the observa-
tion we had a single observer state afterwards there were a number of different
states for the observer, all occurring in a superposition. Each of these separate
states is a state for an observer, so that we can speak of the different observers
described by the different states. On the other hand, the same physical system
is involved, and from this viewpoint it is the same observer, which is in different
states for different elements of the superpesition (i.e., has had different experi-
ences in the separate elements of the superposition). In this situation we shall
use the singular when we wish to emphasize that a single physical system is in-
volved, and the plural when we wish to emphasize the different experiences for ;
the separate elements of the superposition, (e.g., ‘‘The observer performs an ob-
servation of the quantity A, after which each of the observers of the resulting

superposition has perceived an eigenvalue.”’)
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2.4 o0 S s g

T i1

Again, 0
gain, we see that each element of (2.4), ?; ‘Jlii L describes a sys-

RO JA 3
tem eigenstate, but this time also describes the E)bserlve; as having ob-
obtained the same result for each of the two observations. Thus for every
separate state of the observer in the final superposition, the result of the
observation was repeatable, even though different for different states.
This repeatability is, of course, a consequence of the fact that after an
observation the relative system state for a particular observer state is

the corresponding eigenstate.

o Let us suppose now that an observer-system O, with initial state
t//[m], measures the same quantity A in a number of separate identical
systems which are initially in the same state, l/lsl = L/IS?' =..= (/rsn =
EaiqSi (where the %, are, as usual, eigenfunctions of A). The initial

i
total state function is then

2.3) (/,(S)1+S2+...+Sn+0 ) (//Sl dlSde,Snl/I[o .

We shall assume that the measurements are performed on the systems in

the order Sl,Sz,...,Sn. Then the total state after the first measurement
will be, by Rule 1,

Sl+52+...+Sn+O

vy - zaiqsfl g0

... >
i i

(2.4)

1 .
(where a; refers to the first system, Sy .

After the second measurement it will be, by Rule 2,

S
@.5) l/,21+S;_,+...Sn+o

S, S, S. S
=zaiaj¢ilq§j2¢/ 3.y "wg[

1 2
0 ...,ai,aj]
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and in general, after r measurements have taken place (r < n) Rule 2

gives the result:

s, S, .S S
26) Y= D a@i.ad; bl pyl Y w1y “¢f e

] y
Lk aj el "

1

We can give this state, ¢, the following interpretation. It consists
T

of a superposition of states:
S; S S, S S
‘. — Al g2 r,Urel n, O
2.7 U ij...k ?; ¢>J P ./ (/]ij"'k[""a%’ai?:---’af(]

each of which describes the observer with a definite memory sequence
[... axl 25 ,ak] and relative to whom the (obserSved system states are
the correspondmg eigenfunctions q,‘z d) . qSkr, the remaining sys-
tems, Sr+1' ...Sn, being unaltered.

In the language of subjective experience, the observer which is de-
scribed by a typical element, ‘/';j...k’ of the superposition has perceived
an apparently random sequence of definite results for the obsetvations. It
is furthermore true, since in each element the system has been left in an
eigenstate of the measurement, that if at this stage a redetermination of
an earlier system observation (Sp) takes place, every element of the re-
sulting final superposition will describe the observer with a memory con-
figuration of the form [...,a% ,...,¢_z_g,...,af{,¢£jz] in which the earlier memory
coincides with the later — i.e., the memory states are correlated. It will
thus appear to the observer which is described by a typical element of the
superposition that each initial observation on a system caused the system
to “jump’’ into an eigenstate in a random fashion and thereafter remain
there for subsequent measurements on the same system. Therefore, quali-
tatively, at least, the probabilistic assertions of Process 1 appear to be
valid to the observer described by a typical element of the final supet-
position.

In order to establish quantitative results, we must put some sort of

measure (weighting) on the elements of a final superposition. This is
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necessary to be able to make assertions which will hold for almost all of
the observers described by elements of a superposition. In order to make
quantitative statements about the relative frequencies of the different
possible results of observation which are recorded in the memory of a
typical observer we must have a method of selecting a typical observer.

Let us therefore consider the search for a general scheme for assign-
ing a measure to the elements of a superposition of orthogonal states
Zai ®;. We require then a positive function M of the complex coeffi-
cients of the elements of the superposition, so that m(ai) shall be the
measure assigned to the element ¢;. In order that this general scheme
shall be unambiguous we must first require that the states themselves
always be normalized, so that we can distinguish the coefficients from
the states. However, we can still only determine the coefficients, in dis-
tinction to the states, up to an arbitrary phase factor, and hence the func-
tion M must be a function of the amplitudes of the coefficients alone,
G.e., m(ai) = W(Jﬁ) ), in order to avoid ambiguities.

If we now impose the a%ditivity tequirement that if we regard a subset
of the superposition, say E a;$;, as a single element a¢”

i=1
n

2.8) ag = ad;
i=1
then the measure assigned to ¢’ shall be the sum of the measures

assigned to the ¢; (i from 1 to n):
2.9 M@ = M)

then we have already restricted the choice of M to the square amplitude
alone. (fm(ai) = afa;), apart from a multiplicative constant.)

To see this we note that the normality of &’ requires that |a| =

_ =
*
afa; . From our remarks upon the dependence of T upon the ampli-
i:l
tude alone, we replace the a. b i i
p i by their amplitudes #y = Iai].



72 HUGH EVERETT, III

(2.9) then requires that

2.10) M) =M (@@1) , m(@) BN M) .

Defining a new function g(x):
(2.11) g = MWV ,

we see that (2.10) requires that

2 2
2.12) g(z ui> -3 )
so that g is restricted to be linear and necessarily has the form:

(2.13) gx) = cx (c constant) .

Therefore g(xz) =cx? = m\/:? = M(x) and we have deduced that M is re-

stricted to the form
2
(2.14) m(ai) = m(pi) = cpy = cafay ,

and we have shown that the only choice of measure consistent with our
additivity requirement is the square amplitude measure, apart from an érbi-
trary multiplicative constant which may be fixed, if desired, by n(.)rmfahzaf-
tion requirements. (The requirement that the total measure be unity implies
that this constant is 1.)

The situation here is fully analogous to that of classical statistical
mechanics, where one puts a measure on trajectories of systems in the
phase space by placing a measure on the phase space itself, and then
making assertions which hold for “‘almost all’’ trajectories (suc,:,h as
ergodicity, quasi-ergodicity, etc).2 This notion of ‘‘almost all depends
here also upon the choice of measure, which is in this case taken to be

Lebesgue measure on the phase space. One could, of course, contradict

2 gee Khinchin [16].
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the statements of classical statistical mechanics by choosing a measure
for which only the exceptional trajectories had nonzero measure. Never-
theless the choice of Lebesgue measure on the phase space can be justi-
fied by the fact that it is the only choice for which the ‘‘conservation of
probability”” holds, (Liouville’s theorem) and hence the only choice which
makes possible any reasonable statistical deductions at all.

In our case, we wish to make statements about ‘‘trajectories’” of ob-
servers. However, for us a trajectory is constantly branching (transform-
ing from state to superposition) with each successive measurement. To
have a requirement analogous to the ‘‘conservation of probability’’ in the
classical case, we demand that the measure assigned to a trajectory at
one time shall equal the sum of the measures of its separate branches at
a later time. This is precisely the additivity requirement which we im-
posed and which leads uniquely to the choice of square-amplitude measure.
Our procedure is therefore quite as justified as that of classical statisti-
cal mechanics.

Having deduced that there is a unique measure which will satisfy our
requirements, the square-amplitude measure, we continue our deduction.
This measure then assigns to the i,j,...,kth element of the superposition

(2.6),

S, § S S S
1 2
(2.15) ?; ¢j ---¢kr‘/' r+1_‘_¢, nl/llc;k[ ail a? af{] ’
y 7 Jl""

the measure (weight)
(2.16) Mij...k = (aiaj...ak)*(aiaj...ak) ,

so that the observer state with memory configuration [...,ai,a?,...,ai] is
assigned the measure ai"aiaj’-"a-...al"(‘ak = Mij k- We see immediately that
this is a product measure, namely

(2.17) Mij...k = MiMj"‘Mk ,

where

*
Mg = agag y
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so that the measure assigned to a particular memory sequence
[... ai ,a? ..,a}] is simply the product of the measures for the individual
components of the memory sequence.

We notice now a direct correspondence of our measure structure to the
ptobability theory of random sequences. Namely, if we were to regard the
Mij...k as probabilities for the sequences [...,a; ,atJ .. ,af(], then the se-
quences are equivalent to the random sequences which are generated by
ascribing to each term the independent probabilities My = agae. Now the
probability theory is equivalent to measure theory mathematically, so that
we can make use of it, while keeping in mind that all results should be
translated back to measure theoretic language.

Thus, in particular, if we consider the sequences to become longer
and longer (more and more observations performed) each memory sequence
of the final superposition will satisfy any given criterion for a randomly
generated sequence, generated by the independent probabilities a’l"al,’ex-
cept for a set of total measure which tends toward zero as the number of
observations becomes unlimited. Hence all averages of functions over
any memory sequence, including the special case of frequencies, can be
computed from the probabilities a¥a;, except for a set of memory sequen-
ces of measure zero. We have therefore shown that the statistical asser-
tions of Process 1 will appear to be valid to almost all observers de-
scribed by separate elements of the superposition (2.6), in the limit as
the number of observations goes to infinity.

While we have so far considered only sequences of observations of
the same quantity upon identical systems, the result is equally true for
arbitrary sequences of obsetvations. For example, the sequence of obser-
vations of the quantities Al A% . A" .. with (generally different)
applied successively to the

S
w1th (arbltrary) initial states ‘/’ ¢ 7

eigenfunction sets {¢> 1, {¢ S .1 1O
systems §,,8,,...,5,,...,
transforms the total initial state:

.45
(218) ¢Sl+ + l'l+0 _ IJISI lpszlﬁsnl/f{) ]
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by rules 1 and 2, into the final state:

Sl+Sz+...+Sn+O ~

, S
@19 ¢ S @he V6 @R
ijsee,k
2
¢ ¢ ¢k (ﬁ[ :) JZI aﬂ]"']’

where the memory sequence element aE characterizes the fth eigen-
function, ¢E of the operator A'. Again the square amplitude measure
for each element of the supetposition (2.19) reduces to the product mea-
sure of the individual memory element measures, l((ﬁé,;//sr)l for the
memory sequence element aE. Therefore, the memory sequence of a typi-
cal element of (2.19) has all the characteristics of a random sequence,

with individual, independent (and now different), probabilities |(¢£, Sr)|2

for the rth memory state.

Finally, we can generalize to the case where several observations are
allowed to be performed upon the same system. For example, if we permit
the observation of a i i i

new quantity B, (eigenfunctions Ny, memory char-

acterization [3;) upon the system S, for which A’ has already been

observed, then the state (2.19):

(2.20) ez @ o, G .. SR

¢ ¢€ d’k Slf( I ﬂ’ ,aﬂ,...]

is transformed by Rule 2 into the state:

(2.21) ¢’ 2

i,...,g,...,k,m

¢ ¢l‘1

S S S
AR F AR WG 3 RICES

Moy By B O
[...aj,... gy aﬂ,...,[i’nl...]'
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The relative system states for S have been changed from the eigenstates

of Ar,§¢»§}, to the eigenstates of Br,{nlrni. We notice further that, with

iti sequences still
respect to our measure on the superposition, the memory seq

have the character of random sequences, but of random sequences for
which the individual terms are no longer independent. The memory states

! i the result of
B;l now depend upon the memory states a, which represent r

joi mal-
the previous measurement upon the same system, S.. The joint (nor

ized) measure for this pair of memory states, conditioned by fixed values

for remaining memory states 1s:

1 r—1 r+1 n

1 T n pr
2.22) Mai...a# v mak(aE,Bfn): M(ai“--'aﬂr-“’ak’ﬁm)

S G2 )
f,m

S S 2
R N D T

) 1 51 t Sr n Sn r r)lz
S @ Db DB Gl by
lm

r St 2 PN
The joint measure (2.15) is, first of all, independent of the memory

states for the remaining systems (S;...S, excluding S). Second, the
i [ i to that
dependence of Bfn on aE is equivalent, measure theoretically, to

r .
given by the stochastic pz'ocess3 which converts the states (]SE into the

states "in with transition probabilities:

2
(2.23) Ty = Prob. (b~ 1) = (bl

3 Cf. Chapter II, §6.
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If we were to allow yet another quantity C to be measured in S,, the

r
new memory states ap

have a similar dependence upon the previous states Bfn, but no direct

corresponding to the eigenfunctions of C would

dependence on the still earlier states aE. This dependence upon only the
previous result of observation is a consequence of the fact that the rela-
tive system states are completely determined by the last observation.

We can therefore summarize the situation for an arbitrary sequence of
observations, upon the same or different systems in any order, and for
which the number of observations of each quantity in each system is very
large, with the following result:

Except for a set of memory sequences of measure nearly zero, the
averages of any functions over a memory sequence can be calculated
approximately by the use of the independent probabilities given by Process
1 for each initial observation, on a system, and by the use of the transi-
tion probabilities (2.23) for succeeding observations upon the same system.
In the limit, as the number of all types of observations goes to infinity the
calculation is exact, and the exceptional set has measure zero.

This prescription for the calculation of averages over memory sequen-
ces by probabilities assigned to individual elements is precisely that of
the orthodox theory (Process 1). Therefore all predictions of the usual
theory will appear to be valid to the observer in almost all observer states,
since these predictions hold for almost all memory sequences.

In particular, the uncertainty principle is never violated, since, as
above, the latest measurement upon a system supplies all possible infor-
mation about the relative system state, so that there is no direct correla-
tion between any earlier results of observation on the system, and the
succeeding observation. Any observation of a quantity B, between two
successive observations of quantity A (all on the same system) will
destroy the one-one correspondence between the earlier and later memory
states for the result of A. Thus for alternating observations of different
quantities there are fundamental limitations upon the correlations between
memory states for the same observed quantity, these limitations expressing

the content of the uncertainty principle.
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In conclusion, we have described in this section processes involving
an idealized observer, processes which are entirely deterministic and con-
tinuous from the over-all viewpoint (the total state function is presumed
to satisfy a wave equation at all times) but whose result is a superposi-
tion, each element of which describes the observer with a different memory
state. We have seen that in almost all of these observer states it appears
to the observer that the probabilistic aspects of the usual form of quantum
theory are valid. We have thus seen how pure wave mechanics, without
any initial probability assertions, can lead to these notions on a subjec-

tive level, as appearances to observers.

§3. Several observers

We shall now consider the consequences of our scheme when several
observers are allowed to interact with the same systems, as well as with
one another (communication). In the following discussion observers shall #
be denoted by 01,02,..., other systems by S, ’SZ""’ and observables
by operators A, B, C, with eigenfunctions {¢}, {T]J-} {£y} respectively.
The symbols aj, B Yi» occurring in memory sequences shall refer to

characteristics of the states 7., &, respectively. ( is inter-
i Ty otk [ a;l

preted as describing an observer, Oj’ who has just observed tile1 eigen-
value corresponding to ¢,, i.e., who is ‘“‘aware’’ that the system is in
state ¢’i‘)

We shall also wish to allow communication among the observers, which
we view as an interaction by means of which the memory sequences of
different observers become correlated. (For example, the transfer of im-
pulses from the magnetic tape memory of one mechanical observer to that
of another constitutes such a transfer of information.)* We shall regard
these processes as observations made by one observer on another and

shall use the notation that

4
We assume that such transfers merely duplicate, but do not destroy, the origi-

nal information.
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represents a state function describing an observer O who has obtained

the information a; from another obsetrver, Ok' Thus the obtaining of in-

formation about A from 0, by O, will transform the state

0 0
2 WPALL

into the state

3.1) ° 9
il d Uil a ] -

Rules 1 and 2 are, of course, equally applicable to these interactions. We

shall now illustrate the possibilities for several observers, by considering
several cases,

C :
ase 1: We allow two observers to separately observe the same quantity
in a system, and then compare results.

We suppose that first observer O, observes the quantity A for the
system S. Then by Rule 1 the original state

S+01+O S O

v Vi ]‘/'[ ]

is transformed into the state

3.2 =S @S 0SSyl 0

©-2) NG W?%[.l..,ai]‘”[..z‘] :
i

We now suppose that O, observes A, and by Rule 2 the state be-
comes:

(3.3) " = 2@5 ¢S>¢>S il a]s/q[
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We now allow O, to ““consult’”” O;, which leads in the same fashion

from (3.1) and Rule 2 to the final state

(3.4) v = 2<¢1,¢S>¢ o amf 2 1]

@i

Thus, for every element of the superposition the information obtained
from O, agrees with that obtained directly from the system. This means
that observers who have separately observed the same quantity will always
agree with each other.

Furthermore, it iS obvious at this point that the same result, (4.4), is
obtained if O2 first consults 01, then performs the direct observation,
except that the memory sequence for O, is reversed ([...,a-1 1 ,ai] instead
of [...,a;a; 17). There is still perfect agreement in every element of the
superposition. Therefore, information obtained from another observer is
always reliable, since subsequent direct observation will always verify it.
We thus see the central role played by correlations in wave functions for
the preservation of consistency in situations where several observers are
allowed to consult one another. It is the transitivity of correlation in
these cases (that if S1 is correlated to Sz’ and 82 to S3, then so is

S, to S,) whichis responsible for this consistency.

1

Case 2: We allow two observers to measure separately two different, non-

commuting quantities in the same system.

Assume that first O observes A for the system, so that, as before,

the initial state x,b (// t/l is transformed to:
0 (0]
3.5) b= D@D a1l

Next let O, determine S for the system, where {17]-§ are the eigen-

functions of 8. Then by application of Rule 2 the result is
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(3.6) vr=y CHS ), & )(th/fl[ ]w% B.]

i,j J

O, is now perfectly correlated with the system, since a redetermination
by him will lead to agreeing results. This is no longer the case for 0,

however, since a redetermination of A by him will result in (by Rule 2)

3.7 (
SIS ICRERIC n])¢>k«/f][ 8, ]wlk[ aa
L1k i’ k
H
. ence the second measurement of O, does not in all cases agree
with the first, and has been upset by the intervention of 0,.
We can deduce the statistical relation between 0,’s first and second
results (a; and ap) by our previous method of assigning a measure to
the elements of the superposition (3.7). The measure assigned to the

@4,j, k)th element is then:
3.8) Mijie = 163 )y b)) @y m)l?

This measure is equivalent, in this case, to the probabilities assigned by
the orth i
e odox theory (Process 1), where 0, 's observation is regarded as
avin i i i
g converted each state ¢'i into a non-interfering mixture of states
., weighted wi iliti 2 i
m; g with probabilities |(77j’ qSi)l » upon which O; makes his
second observation,
Note, however, that this equivalence with the statistical results ob-
tained ideri i
ed by considering that O2 's observation changed the system state
into a mixt
. ixture, holds true only so long as O,’s second observation is
restricted to the system. If he were to attempt to simultaneously deter-
mine a property of the system as well as of O,, interference effects
might become important. The description of the states relative to 0,

af ; . . . .
ter O,’s observation, as non-interfering mixtures is therefore incom-
plete.
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Case 3: We suppose that two systems S; and S, are correlated but no
longer interacting, and that O; measures property A in §;, and O,
property [ in S,.

We wish to see whether O,’s intervention with S, can in any way
affect O;’s results in S;, so that perhaps signals might be sent by

these means. We shall assume that the initial state for the system pair is

S, S
(3.9) ¢ 1772 _ zai¢il¢12 .

We now allow O1 to observe A in Sl’ so that after this observa-

tion the total state becomes:

,Sl+52+01+02

S, s, O O
(3.10) = 2ai¢i1¢12¢i[.l..,ai]‘/’[..2.] :

O, can of coutse continue to repeat the determination, obtaining the
same result each time.

We now suppose that O, determines B in S,, which results in

O 0O
(.11 0= 3, o S A e 1YL 8

ij
However, in this case, as distinct from Case 2, we see that the inter-

vention of O, in no way affects O,’s determinations, since 0, is

still perfectly correlated to the states ¢>§1 of S,, and any further obser-

vations by O; will lead to the same results as the earlier observations.
Thus each memory sequence for O, continues without change due to
0,’s observation, and such a scheme could not be used to send any
signals.

Furthermore, we see that the result (3.11) is arrived at even in the

case that O2 should make his determination before that of O,. There-

fore any expectations for the outcome of O;’s first observation are in no

way affected by whether or not O, performs his observation before that
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of O;. This is true because the expectation of the outcome for O, can
be computed from (4.10), which is the same whether or not O, performs
his measurement before or after 0,.

It is therefore seen that one observer’s observation upon one system
of a correlated, but non-interacting pair of systems, has no effect on the
remote system, in the sense that the outcome or expected outcome of any
experiments by another observer on the remote system are not affected.
Paradoxes like that of Einsteirx-Rosen-P’odolsl«ry5 which are concerned
with such correlated, non-interacting, systems are thus easily understood
in the present scheme.

Many further combinations of several observers and systems can be
easily studied in the present framework, and all questions answered by
first writing down the final state for the situation with the aid of the

Rules 1 and 2, and then noticing the relations between the elements of

the memory sequences.

Einstein [8]



V. SUPPLEMENTARY TOPICS

We have now completed the abstract treatment of measurement and
observation, with the deduction that the statistical predictions of the
usual form of quantum theory (Process 1) will appear to be valid to all
observers. We have therefore succeeded in placing our theory in corre-
spondence with experience, at least insofar as the ordinary theory cor-
rectly represents experience.

We should like to emphasize that this deduction was carried out by
using only the principle of superposition, and the postulate that an obser-
vation has the property that if the observed variable has a definite value
in the object-system then it will remain definite and the observer will per-
ceive this value. This treatment is therefore valid for any possible quan-
tum interpretation of observation processes, i.e., any way in which one
can interpret wave functions as describing obsetrvers, as well as for any
form of quantum mechanics for which the superposition principle for states
is maintained. Our abstract discussion of observation is therefore logi-
cally complete, in the sense that our results for the subjective experience
of observers are correct, if there are any observers at all describable by
wave mechanics. !

In this chapter we shall consider a number of diverse topics from the
point of view of our puré wave mechanics, in order to supplement the ab-
stract discussion and give a feeling for the new viewpoint. Since we are
now mainly interested in elucidating the reasonableness of the theory, we
shall often restrict ourselves to plausibility arguments, rather than de-

tailed proofs.

1 ;
They are, of course, vacuously correct otherwise.

85
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§1, Macroscopic objects and classical mechanics

In the light of our knowledge about the atomic constitution of matter,
any ‘‘object’’ of macroscopic size is composed of an enormous number of
constituent particles. The wave function for such an object is then in a
space of fantastically high dimension (3N, if N is the number of parti-
cles). Our present problem is to understand the existence of macroscopic
objects, and to relate their ordinary (classical) behavior in the three di-
mensional world to the underlying wave mechanics in the higher dimension-
al space.

Let us begin by considering a relatively simple case. Suppose that
we place in a box an electron and a proton, each in a definite momentum

state, so that the position amplitude density of each is uniform over the
whole box. After a time we would expect a hydrogen atom in the ground
state to form, with ensuing radiation. We notice, however, that the posi-
tion amplitude density of each patticle is still uniform over the whole box.
Nevertheless the amplitude distributions are now no longer independent,
but correlated. In particular, the conditional amplitude density for the
electron, conditioned by any definite proton (ot centroid) position, is not
uniform, but is given by the familiar ground state wave function for the
hydrogen atom. What we mean by the statement, ‘‘a hydrogen atom has
formed in the box,’’ is just that this correlation has taken place — a corre-
lation which insures that the relative configuration for the electron, for a
definite proton position, conforms to the customary ground state configura-
tion.

The wave function for the hydrogen atom can be represented as a
product of a centroid wave function and a wave function over relative
coordinates, where the centroid wave function obeys the wave equation
for a particle with mass equal to the total mass of the proton-electron sys-
tem. Therefore, if we now open our box, the centroid wave function will
spread with time in the usual manner of wave packets, to eventually occu-

y a vast region of space. The relative configuration (described by the

P
relative coordinate state function) has, however, a permanent nature, since
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it represents a bound state, and it is this relative configuration which
usually think of as the object called the hydrogen atom. Therefore "
matter how indefinite the positions of the individual particles beco;n:o'
the total state function (due to the spreading of the centroid), this s’tatln
can be regarded as giving (through the centroid wave functior;) an am 1:—
tude distribution over a comparatively definite object, the tightly bouid
e%ectron-proton system. The general state, then, does not describe an
single such definite object, but a superposition of such cases with th '
object located at different positions. )
In a similar fashion larger and more complex objects can be built u
through strong correlations which bind together the constituent particle};
It is still true that the general state function for such a system may lead.
to marginal position densities for any single particle (ot centroid) which
extend over large regions of space. Nevertheless we can speak of the
existence of a relatively definite object, since the specification of a
singl‘e position for a particle, or the centroid, leads to the case where th
relative position densities of the remaining particles are distributed )
closely about the specified one, in a manner forming the comparatively

definite object spoken of.

s L
1fppose, for example, we begin with a cannonball located at the origin
described by a state function: '

"’[cj(o,o,O)] ,

where the subscript indicates that the total state function i/ desctibes a

system of particles bound together so as to form an object of the size and

sh.ape of a cannonball, whose centroid is located (approximately) at the

or.lgin, say in the form of a real gaussian wave packet of small dimensions

with variance 0(2) for each dimension. ’
If we now allow a long lapse of time, the centroid of the system will

spread i
pread in the usual manner to occupy a large region of space. (The spread

in each dimension after time t wi i 2
2
will be given by of =0y + (12t2/4 agmz),
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where m is the mass.) Nevertheless, for any specified centroid position,
the particles, since they remain in bound states, have distributions which
again correspond to the fairly well defined size and shape of the cannon-

ball. Thus the total state can be regarded as a (continuous) superposition

o= f 8xyz ll'[cj(x,y,z)]dxClydz !

of states

each of which (l/r[c-(x ]) describes a cannonball at the position
J

,Y,2)

(%,vy,2). The coefficients a of the superposition then correspond to

XyZ
the centroid distribution.

It is nof true that each individual particle spreads independently of
the rest, in which case we would have a final state which is a grand super-
position of states in which the particles are located independently every-
where. The fact that they are in bound states restricts our final state “)

a superposition of ‘“cannonball”’ states. The wave function for the cen-
troid can therefore be taken as a representative wave function for the
whole object.

It is thus in this sense of correlations between constituent particles
that definite macroscopic objects can exist within the framework of pure
wave mechanics. The building up of cormelations in a complex system
supplies us with a mechanism which also allows us to understand how
condensation phenomena (the formation of spatial boundaries which sepa-
rate phases of different physical or chemical properties) can be controlled
by the wave equation, answering a point raised by Schrodinger

Classical mechanics, also, enters our scheme in the form of correla-
tion laws. Let us consider a system of objects (in the previous sense),
such that the centroid of each object has initially a fairly well defined
position and momentum (e.g., let the wave function for the centroids con-

sist of a product of gaussian wave packets). As time progresses, the
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centers of the square amplitude distributions for the objects will move in

a manner approximately obeying the laws of motion of classical mechanics,
with the degree of approximation depending upon the masses and the
length of time considered, as is well known. (Note that we do not mean

to imply that the wave packets of the individual objects remain indepen-
dent if they are interacting. They do not. The motion that we refer to is
that of the centers of the marginal distributions for the centroids of the
bodies.)

The general state of a system of macroscopic objects does not, how-
ever, ascribe any nearly definite positions and momenta to the individual
bodies. Nevertheless, any general state can at any instant be analyzed
into a superposition of states each of which does represent the bodies
with fairly well defined positions and momenta.?> Each of these states
then propagates approximately according to classical laws, so that the
general state can be viewed as a superposition of quasi-classical states
propagating according to nearly classical trajectories. In other words, if
the masses are large or the time short, there will be strong correlations
between the initial (approximate) positions and momenta and those at a
later time, with the dependence being given approximately by classical
mechanics.

Since large scale objects obeying classical laws have a place in our

theory of pure wave mechanics, we have justified the introduction of

For any € one can construct a complete orthonormal set of (one particle)
states QI)I’-:V' where the double index 1,V refers to the approximate position and
momentum, and for which the expected position and momentum values run indepen-
dently through sets of approximately uniform density, such that the position and

momentum uncertainties, Oy and O, satisfy Ux § CE and Up § C ;«_E for each

¢ﬂ v where C is a constant ~ 60. The uncertainty product then satisfies
t

Uxap 5 ngl, about 3,600 times the minimum allowable, but still sufficiently low
for macroscopic objects. This set can then be used as a basis for our decomposi-
tion into states where every body has a roughly defined position and momentum.

For a more complete discussion of this set see von Neumann [17], pp. 406-407,
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models for observers consisting of classically describable, automatically
functioning machinery, and the treatment of observation of Chapter IV is
non-vacuous.

Let us now consider the result of an observation (considered along
the lines of Chapter IV) performed upon a system of macroscopic bodies
in a general state. The observer will not become aware of the fact that
the state does not correspond to definite positions and momenta (i.e., he

[4

will not see the objects as ‘“smeared out’’ over large regions of space)
but will himself simply become correlated with the system — after the ob-
servation the composite system of objects + observer will be in a super-
position of states, each element of which describes an observer who has
perceived that the objects have nearly definite positions and momenta,
and for whom the relative system state is a quasi-classical state in the
previous sense, and furthermore to whom the system will appear to behave
according to classical mechanics if his observation is continued. We see,

therefore, how the classical appearance of the macroscopic world to us

can be explained in the wave theory.

§2. Amplification processes

In Chapter IIl and IV we discussed abstract measuring processes,
which were considered to be simply a direct coupling between two sys-
tems, the object-system and the apparatus (or observer). There is, how-
ever, in actuality a whole chain of intervening systems linking a micro-
scopic system to a macroscopic observer. Each link in the chain of inter-
vening systems becomes correlated to its predecessor, so that the result
is an amplification of effects from the microscopic object-system to a
macroscopic apparatus, and then to the observer.

The amplification process depends upon the ability of the state of one
micro-system (particle, for example) to become correlated with the states
of an enormous number of other microscopic systems, the totality of which
we shall call a detection system. For example, the totality of gas atoms
in a Geiger counter, or the water molecules in a cloud chamber, constitute

such a detection system.
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The amplification is accomplished by arranging the condition of the
detection system so that the states of the individual micro-systems of the
detector are metastable, in a way that if one micro-system should fall from
its metastable state it would influence the reduction of others. This type
of arrangement leaves the entire detection system metastable against
chain reactions which involve a large number of its constituent systems.
In a Geiger counter, for example, the presence of a strong electric field
leaves the gas atoms metastable against ionization. Furthermore, the
products of the ionization of one gas atom in a Geiger counter can cause
further ionizations, in a cascading process. The operation of cloud cham-
bers and photographic films is also due to metastability against such
chain reactions.

The chain reactions cause large numbers of the micro-systems of the
detector to behave as a unit, all remaining in the metastable state, or all
discharging. In this mannet the states of a sufficiently large number of
micro-systems are correlated, so that one can speak of the whole ensemble
being in a state of discharge, or not.

For example, there are essentially only two macroscopically distin-
guishable states for a Geiger counter; discharged or undischarged. The
correlation of large numbers of gas atoms, due to the chain reaction effect,
implies that either very few, or else very many of the gas atoms are ionized
at a given time. Consider the complete state function l/IG of a Geiger
counter, which is a function of all the coordinates of all of the constituent
particles. Because of the correlation of the behavior of a large number of
the constituent gas atoms, the total state (/JG can always be written as

a superposition of two states
1 2
2.1 ¢’G = 8 ‘/’[U] + a, ‘/’[D] ’

where t//EU] signifies a state where only a small number of gas atoms

are ionized, and t/ffD] a state for which a large number are ionized.
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To see that the decomposition (2.1) is valid, expand (//G in terms of

individual gas atom stationary states:

S, S S
G 1,°2 n
2.2) Y = E i kVi YT Y
i,j,000,k
S th
where t//gr is the "' state of atom 1. Each element of the superposi-

tion (2.2)

S, S S
(2.3) ittt

must contain either a very large number of atoms in ionized states, or else
a very small number, because of the chain reaction effect. By choosing
some medium-sized number as a dividing line, each element of (2.2) can
be placed in one of the two categories, high number of low number of
ionized atoms. If we then carry out the sum (2.2) over only those elements

of the first category, we get a state (and coefficient)

‘ S, S S
1 1 2 n
2.4 a, ‘ﬁ[D] = 2 aij...kllli ¢J l/lk .
ij..k
The state t/rED] is then a state where a large number of particles are
ionized. The subscript [D] indicates that it describes a Geiger counter
which has discharged. If we carry out the sum over the remaining terms

of (2.2) we get in a similar fashion:

”

@) S N T A

ij...k
where [U] indicates the undischarged condition. Combining (2.4) and
(2.5) we arrive at the desired relation (2.1). So far, this method of decom-
position can be applied to any system, whether or not it has the chain re-
action property. However, in our case, mote is implied, namely that the
spread of the number of ionized atoms in both (//[D] and l/I[U] will be

small compared to the separation of their averages, due to the fact that
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the existence of the chain reactions means that either many or else few
atoms will be ionized, with the middle ground virtually excluded.

This type of decomposition is also applicable to all other detection
devices which are based upon this chain teaction principle (such as cloud
chambers, photo plates, etc.).

We consider now the coupling of such a detection device to another
micro-system (object-system) for the purpose of measurement. If it is true
that the initial object-system state ¢; will at some time t trigger the
chain reaction, so that the state of the counter becomes IJIED], while the
object-system state ¢, will not, then it is still true that the initial

object-system state a ¢, + a,p, will result in the superposition

(2.6) a ¢} l/fED] + ay¢) ¢fu]

at time t.

For example, let us suppose that a particle whose state is a wave
packet ¢, of linear extension greater than that of our Geiger counter,
approaches the counter. Just before it reaches the counter, it can be de-
composed into a superposition ¢ = a;¢b; + 32¢2 (¢,,¢, orthogonal)
where ¢, has non-zero amplitude only in the region before the counter
and ¢, has non-zero amplitude elsewhere (so that ¢; is a packet which
will entirely pass through the counter while ¢, will entirely miss the

counter). The initial total state for the system particle + counter is then:
Q”‘//[U] = (31¢1 + 32¢2)‘/’[U] ,

where SZI[U] is the initial (assumed to be undischarged) state of the
counter.

But at a slightly later time ¢, is changed to ¢, after traversing
the counter and causing it to go into a discharged state l/IED], while ¢,
passes by into a state ¢, leaving the counter in an undischarged state

l/fo]. Superposing these results, the total state at the later time is
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@7 2191 ‘/’ED] + % ll’%u]

in accordance with (2.6). Furthermore, the relative particle state for
lﬂED], $1, is a wave packet emanating from the counter, while the rela-

‘‘shadow’’ cast by the counter. The

tive state for lﬂ%U] is a wave with a
counter therefore serves as an apparatus which performs an approximate
position measurement on the particle.

No matter what the complexity or exact mechanism of a measuring
process, the general superposition principle as stated in Chapter III, §3,
remains valid, and our abstract discussion is unaffected. It is a vain hope
that somewhere embedded in the intricacy of the amplification process is
a mechanism which will somehow prevent the macroscopic apparatus state

from reflecting the same indefiniteness as its object-system.

§3. Reversibility and irreversibility

Let us return, for the moment, to the probabilistic interpretation of
quantum mechanics based on Process 1 as well as Process 2. Suppose
that we have a large number of identical systems (ensemble), and that the
jth system is in the state (/Ij. Then for purposes of calculating expecta-
tion values for operators over the ensemble, the ensemble is represented
by the mixture of states ¢j weighted with 1/N, where N is the number

of systems, for which the density operator'3 is:
21 j
G.1) p=5> W,
i

where [l,/lj] denotes the projection operator on l,bj. This density operator,
in turn, is equivalent to a density operator which is a sum of projections

on orthogonal states (the eigenstates of p):4

3 Cf. Chapter 111, §1.

4 See Chapter III, §2, particularly footnote 6, p. 46.
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(3.2) p =3 Piln], Gun) =28 3 P-1,

so that any ensemble is always equivalent to a mixture of orthogonal
states, which representation we shall henceforth assume.

Suppose that a quantity A, with (non-degenerate) eigenstates {d)j}
is measured in each system of the ensemble. This measurement has the
effect of transforming each state 7; into the state qu, with probability
|(¢jr7li)|2? i.e., it will transform a large ensemble of systems in the state
n; into an ensemble represented by the mixture whose density operator is
2 l(qu, 17i)|2 [¢>j]. Extending this result to the case where the original

j
ensemble is a mixture of the n; weighted by P; ((3.2)), we find that the

density operator p is transformed by the measurement of A into the new

density operator p”

B3 o= 3P Dl epPisil = ( Pi(qu,mi,szsj)ni)) (81
i j i

- 2(¢j, S Pi[ni]qu) CAESWCHITHICA
j i j
This is the general law by which mixtures change through Process 1.
However, even when no measurements are taking place, the states of
an ensemble are changing according to Process 2, so that after a time
interval t each state ¢ will be transformed into a state "= U, ¢,
where U, is a unitary operator. This natural motion has the consequence
that each mixture p = 2 Pi[ni] is carried into the mixture p’ =2 Pi[Utni]

1 1
after a time t. But for every state £,

1

(3.4) Pt = 3 PiUnIE = N PiUn, £) Uy

1]

U 3 Py U 0y = Up 3 Pl 0,78

(Utp Ut_l)g .



96 HUGH EVERETT, III
Therefore
(3.5) p’ = UppU

which is the general law for the change of a mixture according to Process 2.

We are now interested in whether or not we get from any mixture to
another by means of these two processes, i.e., if for any pair p,p’, there
exist quantities A which can be measured and unitary (time dependence)
operators U such that p can be transformed into p° by suitable appli-
cations of Processes 1 and 2. We shall see that this is not always possi-
ble, and that Process 1 can cause irreversible changes in mixtures.

For each mixture p we define a quantity Ip:

(3.6) = Trace (p Inp) .

I

p

This number, I_, has the character of information. If p = E P, [ni], a
i

mixture of orthogonal states 7; weighted with Py, then Ip is simply

p)

the information of the distribution P; over the eigenstates of p (relative
to the uniform measure). (Trace (p In p) is a unitary invariant and is
proportional to the negative of the entropy of the mixture, as discussed in
Chapter III, §2.)

Process 2 therefore has the property that it leaves Ip unchanged,
because

3.7 Ip’ Trace (p”1n p”) = Trace (U;p Ut“1 InU,p Ut_l)

Trace (Uip In pUt_l) = Trace (p ln p) = Ip .

Process 1, on the other hand, can decrease Ip but never increase it.

According to (3.3):

(3.8) D NCI TR ERE PR [CREDIGCAES W AN
j i.j ]
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where p} 2 P, Tij and Tij = ](77i,q5j)|2 is a doubly-stochastic
i
ix.> = : : = , . wi Pl
matrix.” DBut Ip" 2 PJ In PJ and Ip 2 P; In P;, with the PI’PJ
1

i
connected by T implies, by the theorem of information decrease for

ij’
stochastic processes (I1-§6), that:

(3.9) 1,51

Moreover, it can easily be shown by a slight strengthening of the theorems
of Chapter II, §6 that strict inequality must hold unless (for each i such
that p; > 0) Tij =1 forone j and O for the rest (Tij =8ikj)‘ This
means that I(ni,qﬁj)l?‘ = aikj' which implies that the original mixture was
already a mixture of eigenstates of the measurement.

We have answered our question, and it is not possible to get from any
mixture to another by means of Processes 1 and 2. There is an essential
irreversibility to Process 1, since it corresponds to a stochastic process,
which cannot be compensated by Process 2, which is reversible, like
classical mechanics.®

Our theory of pure wave mechanics, to which we now return, must give
equivalent results on the subjective level, since it leads to Process 1
there. Therefore, measuring processes will appear to be irreversible to
any observers (even though the composite system including the observer

changes its state reversibly).

since X Ty, =2 |0, )17 = 2@y, I = b, Tnlpp) =y, 1) = 1,

and similarly 2 Tij =1 because Tij is symmetric.
J

6 For another, more complete, discussion of this topic in the probabilistic in-

terpretation see von Neumann [17], Chapter V, 84,
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There is another way of looking at this apparent irreversibility within
our theory which recognizes only Process 2. When an observer performs
an observation the result is a superposition, each element of which de-
scribes an observer who has perceived a particular value. From this time

forward there is no interaction between the separate elements of the super-

position (which describe the observer as having perceived different results),

since each element separately continues to obey the wave equation. Each
observer described by a particular element of the superposition behaves
in the future completely independently of any events in the remaining ele-
ments, and he can no longer obtain any information whatsoever concerning
these other elements (they are completely unobservable to him).

The irreversibility of the measuring process is therefore, within our
framework, simply a subjective manifestation reflecting the fact that in
observation processes the state of the observer is transformed into a
superposition of observer states, each element of which describes an ob-
server who is irrevocably cut off from the remaining elements. While it is
conceivable that some outside agency could reverse the total wave func-
tion, such a change cannot be brought about by any observer which is
represented by a single element of a superposition, since he is entirely
powerless to have any influence on any other elements.

There are, therefore, fundamental restrictions to the knowledge that
an observer can obtain about the state of the universe. It is impossible
for any observer to discover the total state function of any physical sys-
tem, since the process of observation itself leaves no independent state
for the system or the observer, but only a composite system state in which
the object-system states are inextricably bound up with the observer states.
As soon as the observation is performed, the composite state is split into
a superposition for which each element describes a different object-system
state and an observer with (different) knowledge of it. Only the totality
of these observer states, with their diverse knowledge, contains complete
information about the original object-system state — but there is no possi-

ble communication between the observers described by these separate
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states. Any single observer can therefore possess knowledge only of the
relative state function (relative to his state) of any systems, which is in
any case all that is of any importance to him.

We conclude this section by commenting on another question which
might be raised concerning irteversible processes: Is it necessary for
the existence of measuring apparata, which can be correlated to other
systems, to have frictional processes which involve systems of a large
number of degrees of freedom? Are such thermodynamically irreversible
processes possible in the framework of pure wave mechanics with a re-
versible wave equation, and if so, does this circumstance pose any diffi-
culties for our treatment of measuring processes?

In the first place, it is certainly not necessary for dissipative proces-
ses involving additional degrees of freedom to be present before an inter-
action which correlates an apparatus to an object-system can take place.
The counter-example is supplied by the simplified measuring process of
III- §3, which involves only a system of one coordinate and an apparatus
of one coordinate and no further degrees of freedom.

To the question whether such processes are possible within reversi-
ble wave mechanics, we answer yes, in the same sense that they are
present in classical mechanics, where the microscopic equations of motion
are also reversible. This type of irreversibility, which might be called
macroscopic irreversibility, arises from a failure to separate ‘‘macroscopi-
cally indistinguishable’’ states into ‘‘true’’ microscopic states.” Ithas a
fundamentally different character from the irreversibility of Process 1,
which applies to micro-states as well and is peculiar to quantum mechan-
ics. Macroscopically irreversible phenomena are common to both classical
and quantum mechanics, since they arise from our incomplete information

. . . 8
concerning a system, not from any intrinsic behavior of the system.

7 See any textbook on statistical mechanics, such as ter Haar [11], Appendix I.

Cf. the discussion of Chapter II, §7. See also von Neumann [17], Chapter V, §4.
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Finally, even when such frictional processes are involved, they pre-
sent no new difficulties for the treatment of measuring and observation
processes given here. We imposed no restrictions on the complexity or
number of degrees of freedom of measuring apparatus or observers, and if
any of these processes are present (such as heat reservoirs, etc.) then
these systems are to be simply included as part of the apparatus or ob-

server,

§4. Approximate measurement

A phenomenon which is difficult to understand within the framework
of the probabilistic intetrpretation of quantum mechanics is the result of
an approximate measurement. In the abstract formulation of the usual
theory there are two fundamental processes; the discontinuous, probabilis-
tic Process 1 corresponding to precise measurement, and the continuous,
deterministic Process 2 corresponding to absence of any measurement.
What mixture of probability and causality are we to apply to the case
where only an approximate measurement is effected (i.e., where the appa-
ratus or observer interacts only weakly and for a finite time with the
object-system)?

In the case of approximate measurement, we need to be supplied with
rules which will tell us, for any initial object-system state, first, with
what probability can we expect the various possible apparatus readings,
and second, what new state to ascribe to the system after the value has
been observed. We shall see that it is generally impossible to give these
rules within a framework which considers the apparatus or observer as
performing an (abstract) observation subject to Process 1, and that it is
necessary, in order to give a full account of approximate measurements,
to treat the entire system, including apparatus or observer, wave mechan-
ically.

The position that an approximate measurement results in the situation
that the object-system state is changed into an eigenstate of the exact

measurement, but for which particular one the observer has only imprecise
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information, is manifestly false. It is a fact that we can make successive
approximate position measurements of particles (in cloud chambers, for
example) and use the results for somewhat reliable predictions of future
positions. However, if either of these measurements left the particle in
an ‘‘eigenstate’’ of position (8 function), even though the particular one
remained unknown, the momentum would have such a variance that no such
prediction would be possible. (The possibility of such predictions lies in
the correlations between position and momentum at one time with position
and momentum at a later time for wave packets9 — correlations which are
totally destroyed by precise measutements of either quantity.)

Instead of continuing the discussion of the inadequacy of the proba-
bilistic formulation, let us first investigate what actually happens in
approximate measurements, from the viewpoint of pure wave mechanics.
An approximate measurement consists of an interaction, for a finite time,
which only imperfectly correlates the apparatus (or observer) with the
object-system. We can deduce the desired rules in any particular case by
the following method: For fixed interaction and initial apparatus state
and for any initial object-system state we solve the wave equation for the
time of interaction in question. The result will be a superposition of
apparatus (observer) states and relative object-system states. Then
(according to the method of Chapter IV for assigning a measure to a super-
position) we assign a probability to each observed result equal to the
square-amplitude of the coefficient of the element which contains the
apparatus (observer) state representing the registering of that result.
Finally, the object-system is assigned the new state which is its relative
state in that element.

For example, let us consider the measuring process described in Chap-
ter I11- §3, which is an excellent model for an approximate measurement.

After the interaction, the total state was found to be (III-(3.12)):

See Bohm [1], p. 202.
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(4.1) vt - f L 5@ b .
f

Then, according to our prescription, we assign the probability density

P(r") to the observation of the apparatus coordinate 1’

2 E 3 * ’
4.2) PG7) = = fsb #(q@)n n(’—qt)dq ,

1
N,
( 1)
N -
, r
£T(qQ)5(r—1") of the superposition (4.1) in which the apparatus coordinate

of the element

which is the square amplitude of the coefficient

has the value r=r1". Then, depending upon the observed apparatus coordi-

nate r, we assign the object-system the new state
4.3) £7(q) = Npod(@)n(r'—qt)

(where ¢(q) is the old state, and n(r) is the initial apparatus state)
which is the telative object-system state in (4.1) for apparatus coordinate r".
This example supplies the counter-example to another conceivable
method of dealing with approximate measurement within the framework of
Process 1. This is the position that when an approximate measurement
of a quantity Q is performed, in actuality another quantity Q" is pre-
cisely measured, where the eigenstates of Q" correspond to fairly well-
defined (i.e., sharply peaked distributions for) Q values.!® However,
any such scheme based on Process 1 always has the prescription that
after the measurement, the (unnormalized) new state function results from
the old by a projection (on an eigenstate or eigenspace), which depends
upon the observed value. If this is true, then in the above example the

new state fr,(q) must result from the old, ¢(q), by a projection E:

(4.4) £5(Q) - NE$(@) = N (@7~ at)

10 ¢ von Neumann [17], Chapter IV, §4.
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where N,N,- are normalization constants). But E is only a projection

if E>-E. Applying the operation (4.4) twice, we get:

1

4.5) E(NE&(q) = NE*$(q) = N'p(@n* ('~ at) = E*e(q)

1l

Y g@nir-a

and we see that E cannot be a projection unless 75(q) = nz(q) for all

q (i.e.,, 7(q) =0 or 1 for all q) and we have arrived at a contradiction
to the assumption that in all cases the changes of states for approximate
measurements are governed by projections. (In certain special cases,
such as approximate position measurements with slits or Geiger counters,!!
the new functions arise from the old by multiplication by sharp cutoff
functions which are 1 over the slit or counter and 0 elsewhere, so that
these measurements can be handled by projections.)

One cannot, therefore, account for approximate measurements by any
scheme based on Process 1, and it is necessary to investigate these pro-
cesses entirely wave-mechanically. Our viewpoint constitutes a frame-
work in which it is possible to make precise deductions about such mea-
surements and observations, since we can follow in detail the interaction

of an observer or apparatus with an object-system.

§5. Discussion of a spin measurement example

We shall conclude this chapter with a discussion of an instructive
example of Bohm.!? Bohm considers the measurement of the z component
of the angular momentum of an atom, whose total angular momentum is 1%,

which is brought about by a Stern-Gerlach experiment. The measurement

11 ¢ 82, this chapter.

12 Bowm [1], p. 593.
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is accomplished by passing an atomic beam through an inhomogeneous
magnetic field, which has the effect of giving the particle a momentum
which is directed up or down depending upon whether the spin was up or
down.

The measurement is treated as impulsive, so that during the time that
the atom passes through the field the Hamiltonian is taken to be simply

the interaction:

G.1) H = @G H), w--22

where H is the magnetic field and § the spin operator for the atom. The
particle is presumed to pass through a region of the field where the field
is in the z direction, so that during the time of transit thg}gield is

, LY d
, }(0+z}(0 <}(0 = (}(z)z=0 and K = ( = )z=0)’ an

hence the interaction is approximately:

approximately K

(5.2) Hy 2= u(()+2zHD)S, |

where S, denotes the operator for the z component of the spin.
It is assumed that the state of the atom, just prior to entry into the

field, is a wave packet of the form:
(5.3) Uy = fo(z) (c+ v, +C_ v_)

where v, and v_ are the spin functions for S, =1 and -1 tespec-

+
tively. Solving the Schrédinger equation for the Hamiltonian (5.2) and

initial condition (5.3) yields the state for a later time t:

—iu(}(0+z}(6)t/hv

in(H_+zH) ) t/n
(4) Y = fo(z)(c+e ot c_eH#( 0+2"%o) v_) )

. 13
Therefore, if At is the time that it takes the atom to traverse the field,

each component of the wave packet has been multiplied by a phase factor

13 This time is, strictly speaking, not well defined. The results, however, do
not depend critically upon it.
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iiu(}(0+z }(;))At/‘h
e s’

i.e., has had its mean momentum in the z direction
changed by an amount i}(;);z At, depending upon the spin direction. Thus
the initial wave packet (with mean momentum zero) is split into a super-
position of two packets, one with mean z-momentum +}(£)u At and spin
up, and the other with spin down and mean z-momentum —}(éu At.

The interaction (5.2) has therefore setved to correlate the spin with
the momentum in the z-direction. These two packets of the resulting
superposition now move in opposite z-directions, so that after a short
time they become widely separated (provided that the momentum changes
i}(ay At are large compared to the momentum spread of the original
packet), and the z-coordinate is itself then correlated with the spin —
representing the ‘‘apparatus’’ coordinate in this case. The Stern-Gerlach
apparatus therefore splits an incoming wave packet into a superposition
of two diverging packets, corresponding to the two spin values.

We take this opportunity to caution against a certain viewpoint which
can lead to difficulties. This is the idea that, after an apparatus has
interacted with a system, in ‘‘actuality’’ one or another of the elements
of the resultant superposition described by the composite state-function
has been realized to the exclusion of the rest, the existing one simply
being unknown to an external observer (i.e., that instead of the super-
position there is a genuine mixture). This position must be erroneous
since there is always the possibility for the external observer to make
use of interference properties between the elements of the superposition.

In the present example, for instance, it is in principle possible to de-
flect the two beams back toward one another with magnetic fields and re-
combine them in another inhomogeneous field, which duplicates the first,
in such a manner that the original spin state (before entering the appa-
ratus) is restored.’® This would not be possible if the original Stern-

Gerlach apparatus performed the function of converting the original wave

14 As pointed out by Bohm [1], p. 604.
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packet into a non-interfering mixture of packets for the two spin cases.
Therefore the position that after the atom has passed through the inhomo-
geneous field it is ‘‘really’’ in one or the other beam with the correspond-
ing spin, although we are ignorant of which one, is incorrect.

After two systems have interacted and become correlated it is true
that marginal expectations for subsystem operators can be calculated
correctly when the composite system is represented by a certain non-
interfering mixture of states. Thus if the composite system state is
¢Sl+52 = 2 iai¢$1nisz, where the {n;} are orthogonal, then for pur-
poses of calculating the expectations of operators on S, the state
¢r51+82

weighted by P; = a¥a,, and one can take the picture that one or another

1.5
is equivalent to the non-interfering mixture of states qSl nl

of the cases ¢islni32 has been realized to the exclusion of the rest, with
probabilities Pi.15

However, this representation by a mixture must be regarded as only a
mathematical artifice which, although useful in many cases, is an incom-
plete description because it ignores phase relations between the separate
elements which actually exist, and which become important in any inter-
actions which involve more than just a subsystem.

In the present example, the ‘‘composite system’’ is made of the ‘“‘sub-
systems’’ spin value (object-system) and z-coordinate (apparatus), and
the superposition of the two diverging wave packets is the state after
interaction. It is only correct to regard this state as a mixture so long as
any contemplated future interactions or measurements will involve only
the spin value or only the z-coordinate, but not both simultaneously. As
we saw, phase relations between the two packets are present and become
important when they are deflected back and recombined in another inhomo-

geneous field — a process involving the spin values and z-coordinate

simultaneously.

15 gee Chapter III, §1.
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It is therefore improper to attribute any less validity ot ‘“‘reality’’ to
any element of a superposition than any other element, due to this ever
present possibility of obtaining interference effects between the elements.
All elements of a superposition must be regarded as simultaneously
existing.

At this time we should like to add a few remarks concerning the notion
of transition probabilities in quantum mechanics. Often one considers a
system, with Hamiltonian H and stationaty states f¢i}, to be perturbed
for a time by a time-dependent addition to the Hamiltonian, Hy(t). Then
under the action of the perturbed Hamiltonian H’= H + Hi(t) the states
{¢>i} are generally no longer stationary but change after time t into new

states {i/;(H)}:
(5.5) i o U0 = X @b = 3 a0
j J

which can be represented as a superposition of the old stationary states
with time-dependent coefficients aij(t)‘

If at time r a measurement with eigenstates qu is performed, such
as an energy measurement (whose opetrator is the original H), then
according to the probabilistic interpretation the probability for finding the
state qS given that the state was originally b, is Pij(r) = ]aij(r)[z.
The quant1t1es |a (7‘)] are often referred to as transition probabilities.
In this case, however, the name is a misnomer, since it carries the conno-
tation that the original state ¢i is transformed into a mixture (of the ¢,
weighted by Pij(r) ), and gives the erroneous impression that the quantujm
formalism itself implies the existence of quantum-jumps (stochastic pro-
cesses) independent of acts of observation. This is incorrect since there

is still a pure state z aij(r) ¢>j with phase relations between the qSJ-,
j
and expectations of operators other than the energy must be calculated
from the superposition and not the mixture.
There is another case, however, the one usually encountered in fact,

where the transition probability concept is somewhat more justified. This
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is the case in which the perturbation is due to interaction of the system
s; with another system s,, and not simply a time dependence of s,’s
Hamiltonian as in the case just considered. In this situation the interac-
tion produces a composite system state, for which there are in general no
independent subsystem states. However, as we have seen, for purposes
of calculating expectations of operators on s; alone, we can regard s,
as being represented by a certain mixture. According to this picture the
states of subsystem s; are gradually converted into mixtures by the
interaction with s, and the concept of transition probability makes some
sense. Of course, it must be remembered that this picture is only justi-
fied so long as further measurements on s; alone are contemplated, and
any attempt to make a simultaneous determination in s, and s, involves
the composite state where interference properties may be important.

An example is a hydrogen atom interacting with the electromagnetic
field. After a time of interaction we can picture the atom as being in a
mixture of its states, so long as we consider future measurements on the
atom only. But in actuality the state of the atom is dependent upon
(correlated with) the state of the field, and some process involving both
atom and field could conceivably depend on interference effects between
the states of the alleged mixture. With these restrictions, however, the

concept of transition probability is quite useful and justified.

V1. DISCUSSION

We have shown that our theory based on pure wave mechanics, which
takes as the basic description of physical systems the state function —
supposed to be an objective description (i.e., in one-one, rather than
statistical, correspondence to the behavior of the system) — can be put in
satisfactory correspondence with experience. We saw that the probabilis-
tic assertions of the usual interpretation of quantum mechanics can be
deduced from this theory, in a manner analogous to the methods of classi-
cal statistical mechanics, as subjective appearances to observers —
observers which were regarded simply as physical systems subject to the
same type of description and laws as any other systems, and having no
preferred position. The theory is therefore capable of supplying us with
a complete conceptual model of the universe, consistent with the assump-
tion that it contains more than one observer.

Because the theory gives us an objective description, it constitutes a
framework in which a number of puzzling subjects (such as classical level
phenomena, the measuring process itself, the inter-relationship of several
observers, questions of reversibility and irreversibility, etc.) can be in-
vestigated in detail in a logically consistent manner. It supplies a new
way of viewing processes, which clarifies many apparent paradoxes of the
usual interpretation1 — indeed, it constitutes an objective framework in
which it is possible to understand the general consistency of the ordinary

view.

Such as that of Einstein, Rosen, and Podolsky [8], as well as the paradox of
the introduction.

109



110 HUGH EVERETT, III

We shall now resume our discussion of alternative interpretations.
There has been expressed lately a great deal of dissatisfaction with the
present form of quantum theory by a number of authors, and a wide variety
of new interpretations have sprung into existence. We shall now attempt

to classify briefly a number of these interpretations, and comment upon

them.

a. The “‘popular’’ interpretation. This is the scheme alluded to in
the introduction, where i is regarded as objectively characteriz-
ing the single system, obeying a deterministic wave equation when
the system is isolated but changing probabilistically and discon-

tinuously under observation.

In its unrestricted form this view can lead to paradoxes like that men-
tioned in the introduction, and is therefore untenable. However, this view
is consistent so long as it is assumed that there is only one observer in
the universe (the solipsist position — Alterative 1 of the Introduction).
This consistency is most easily understood from the viewpoint of our own
theoty, where we were able to show that all phenomena will seem to follow
the predictions of this scheme to any observer. Our theory therefore justi-
fies the personal adoption of this probabilistic interpretation, for purposes

of making practical predictions, from a more satisfactory framework.

b. The Copenhagen interpretation. This is the interpretation developed
by Bohr. The ¢ function is not regarded as an objective descrip-
tion of a physical system (i.e., it is in no sense a conceptual
model), but is regarded as merely a mathematical artifice which
enables one to make statistical predictions, albeit the best predic-
tions which it is possible to make. This interpretation in fact
denies the very possibility of a single conceptual model applicable
to the quantum realm, and asserts that the totality of phenomena
can only be understood by the use of different, mutually exclusive

(i.e., ““complementary’’) models in different situations. All state-
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ments about microscopic phenomena are regarded as meaningless
unless accompanied by a complete description (classical) of an

experimental arrangement.

While undoubtedly safe from contradiction, due to its extreme conserva-
tism, it is perhaps overcautious. We do not believe that the primary pur-
pose of theoretical physics is to construct ‘‘safe’’ theories at severe cost
in the applicability of their concepts, which is a sterile occupation, but
to make useful models which serve for a time and are replaced as they are
outworn.?

Another objectionable feature of this position is its strong reliance
upon the classical level from the outset, which precludes any possibility
of explaining this level on the basis of an underlying quantum theory. (The
deduction of classical phenomena from quantum theory is impossible simply
because no meaningful statements can be made without pre-existing classi-
cal apparatus to serve as a reference frame.) This interpretation suffers
from the dualism of adhering to a “‘reality’’ concept (i.e., the possibility
of objective description) on the classical level but renouncing the same

in the quantum domain.

c. The ‘“‘hidden variables’’ interpretation. This is the position
(Alternative 4 of the Introduction) that ¢ is not a complete de-
scription of a single system. It is assumed that the correct com-
plete description, which would involve further (hidden) parameters,
would lead to a deterministic theory, from which the probabilistic
aspects arise as a result of our ignorance of these extra parameters

in the same manner as in classical statistical mechanics.

2 Cf. Appendix II,
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The t/-function is therefore regarded as a description of an ensemble
of systems rather than a single system. Proponents of this interpretation
include Einstein,3 Bohm,4 Wiener and Siegal.5

Einstein hopes that a theory along the lines of his general relativity,
where all of physics is reduced to the geometry of space-time could satis-
factorily explain quantum effects. In such a theory a particle is no longer
a simple object but possesses an enormous amount of structure (i.e., it is
thought of as a region of space-time of high curvature). It is conceivable
that the interactions of such ‘‘particles’’ would depend in a sensitive way
upon the details of this structure, which would then play the role of the
““hidden variables.”6 However, these theories are non-linear and it is
enormously difficult to obtain any conclusive results. Nevertheless, the
possibility cannot be discounted.

Bohm considers ¢ to be a real force field acting on a particle which
always has a well-defined position and momentum (which are the hidden
variables of this theory). The i-field satisfying Schrédinger’s equation
is pictured as somewhat analogous to the electromagnetic field satisfying
Maxwell’s equations, although for systems of n particles the i-field is
in a 3n-dimensional space. With this theory Bohm succeeds in showing
that in all actual cases of measurement the best predictions that can be
made are those of the usual theory, so that no experiments could ever rule
out his interpretation in favor of the ordinary theory. Our main criticism
of this view is on the grounds of simplicity — if one desires to hold the
view that i is a real field then the associated particle is superfluous

since, as we have endeavored to illustrate, the pure wave theory is itself

satisfactory.

3 Einstein [7]

4 Bohm [2]

5 Wiener and Siegal [20].
6

For an example of this type of theory see Einstein and Rosen [9]
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Wiener and Siegal have developed a theory which is more closely tied
to the formalism of quantum mechanics. From the set N of all non-
degenerate linear Hermitian operators for a system having a complete set
of eigenstates, a subset I is chosen such that no two members of I com-
mute and every element outside I commutes with at least one element of
I. The set I therefore contains precisely one operator for every orienta-
tion of the principal axes of the Hilbert space for the system. It is postu-
lated that each of the operators of I corresponds to an independent ob-
servable which can take any of the real numerical values of the spectrum
of the operator. This theory, in its present form, is a theory of infinitely7
many ‘‘hidden variables,’’ since a system is pictured as possessing (at
each instant) a value for every one of these ‘‘observables’’ simultaneously,
with the changes in these values obeying precise (deterministic) dynamical
laws. However, the change of any one of these variables with time depends
upon the entire set of obsetvables, so that it is impossible ever to discover
by measurement the complete set of values for a system (since only one
“‘observable’’ at a time can be observed). Therefore, statistical ensembles
are introduced, in which the values of all of the observables are related to
points in a ‘‘differential space,”’ which is a Hilbert space containing a
measure for which each (differential space) coordinate has an independent
normal distribution. It is then shown that the resulting statistical dynamics
is in accord with the usual form of quantum theory.

It cannot be disputed that these theories are often appealing, and might
conceivably become important should future discoveries indicate serious
inadequacies in the present scheme (i.e., they might be more easily modi-
fied to encompass new experience). But from our viewpoint they are
usually more cumbersome than the conceptually simpler theory based on
pure wave mechanics. Nevertheless, these theories are of great theoretical
importance because they provide us with examples that ‘‘hidden variables’’

theories are indeed possible.

7

A non-denumerable infinity, in fact, since the set I is uncountable!
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d. The stochastic process interpretation. This is the point of view
which holds that the fundamental processes of nature are stochas-
tic (i.e., probabilistic) processes. According to this picture
physical systems are supposed to exist at all times in definite
states, but the states are continually undergoing probabilistic
changes. The discontinuous probabilistic ‘‘quantum-jumps’’ are
not associated with acts of observation, but are fundamental to the

systems themselves.

A stochastic theory which emphasizes the particle, rather than wave,
aspects of quantum theory has been investigated by Bopp.8 The particles
do not obey deterministic laws of motion, but rather probabilistic laws,
and by developing a general ‘‘correlation statistics’’ Bopp shows that his
quantum scheme is a special case which gives results in accord with the
usual theory. (This accord is only approximate and in principle one could
decide between the theories. The approximation is so close, however,
that it is hardly conceivable that a decision would be practically feasible.)

Bopp’s theory seems to stem from a desire to have a theory founded
upon particles rather than waves, since it is this particle aspect (highly
localized phenomena) which is most frequently encountered in present day
high-energy experiments (cloud chamber tracks, etc.). However, it seems
to us to be much easier to understand particle aspects from a wave picture
(concentrated wave packets) than it is to understand wave aspects (diffrac-
tion, interference, etc.) from a particle picture.

Nevertheless, there can be no fundamental objection to the idea of a
stochastic theory, except on grounds of a naked prejudice for determinism.
The question of determinism or indeterminism in naturé is obviously for-
ever undecidable in physics, since for any current deterministic [proba-

bilistic] theory one could always postulate that a refinement of the theory

Bopp [s].
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would disclose a probabilistic [deterministic] substructure, and that the
current deterministic [probabilistic] theory is to be explained in terms of
the refined theory on the basis of the law of large numbers [ignorance of
hidden variables]. However, it is quite another matter to object to a mix-
ture of the two where the probabilistic processes occur only with acts of

observation.

e. The wave interpretation. This is the position proposed in the
present thesis, in which the wave function itself is held to be the
fundamental entity, obeying at all times a deterministic wave

equation.

This view also corresponds most closely with that held by Schr<‘:$dinger.g
However, this picture only makes sense when observation processes them-
selves are treated within the theory. It is only in this manner that the
apparent existence of definite macroscopic objects, as well as localized
phenomena, such as tracks in cloud chambers, can be satisfactorily ex-
plained in a wave theory where the waves are continually diffusing. With
the deduction in this theory that phenomena will appear to obsetvers to be
subject to Process 1, Heisenberg’s criticism!© of Schrodinget’s opinion —
that continuous wave mechanics could not seem to explain the discontinui-
ties which are everywhere observed — is effectively met. The ‘‘quantum-
jumps’’ exist in our theory as relative phenomena (i.e., the states of an
object-system relative to chosen observer states show this effect), while
the absolute states change quite continuously.

The wave theory is definitely tenable and forms, we believe, the

simplest complete, self-consistent theory.

9 Schrodinger [1 8].

10 Heisenberg (14].
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We should like now to comment on some views expressed by Einstein.
Einstein’s!! criticism of quantum theory (which is actually directed more
against what we have called the ‘‘popular’’ view than Bohr’s interpreta-
tion) is mainly concerned with the drastic changes of state brought about
by simple acts of observation (i.e., the infinitely rapid collapse of wave
functions), particularly in connection with correlated systems which are
widely separated so as to be mechanically uncoupled at the time of obset-
vation.!2 At another time he put his feeling colorfully by stating that he
could not believe that a mouse could bring about drastic changes in the
universe simply by looking at it.13

However, from the standpoint of our theory, it is not so much the sys-
tem which is affected by an observation as the observer, who becomes
correlated to the system.

In the case of observation of one system of a pair of spatially sepa-
rated, correlated systems, nothing happens to the remote system to make
any of its states more ‘‘real’”’ than the rest. It had no independent states
to begin with, but a number of states occurring in a superposition with
corresponding states for the other (near) system. Observation of the near
system simply correlates the observer to this system, a purely local pro-
cess — but a process which also entails automatic correlation with the
remote system. Each state of the remote system still exists with the same
amplitude in a superposition, but now a superposition for which element
contains, in addition to a remote system state and correlated near system
state, an observer state which describes an observer who perceives the

state of the near system.14 From the present viewpoint all elements of

1 Einstein [7]

12 For example, the paradox of Einstein, Rosen, and Podolsky [8]

13 Address delivered at Palmer Physical Laboratory, Princeton, Spring, 1954.

14 See in this connection Chapter IV, particularly pp. 82, 83.
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this superposition are equally ‘‘real.”’ Only the observer state has
changed, so as to become correlated with the state of the near system and
hence naturally with that of the remote system also. The mouse does not
affect the universe — only the mouse is affected.

Our theory in a certain sense bridges the positions of Einstein and
Bohr, since the complete theory is quite objective and deterministic (‘‘God
does not play dice with the universe’’), and yet on the subjective level,
of assertions relative to observer states, it is probabilistic in the strong
sense that there is no way for observers to make any predictions better
than the limitations imposed by the uncertainty principle.15

In conclusion, we have seen that if we wish to adhere to objective
descriptions then the principle of the psycho-physical parallelism requites
that we should be able to consider some mechanical devices as represent-
ing observers. The situation is then that such devices must either cause
the probabilistic discontinuities of Process 1, or must be transformed into
the superpositions we have discussed. We are forced to abandon the for-
mer possibility since it leads to the situation that some physical systems
would obey different laws from the rest, with no clear means for distin-
guishing between these two types of systems. We are thus led to our
present theory which results from the complete abandonment of Process 1
as a basic process, Nevertheless, within the context of this theory,
which is objectively deterministic, it develops that the probabilistic
aspects of Process 1 reappear at the subjective level, as relative phenom-
ena to observers. '

One is thus free to build a conceptual model of the universe, which
postulates only the existence of a universal wave function which obeys a
linear wave equation. One then investigates the internal correlations in

this wave function with the aim of deducing laws of physics, which are

15 Cf. Chapter V, §2.



118 HUGH EVERETT, III

statements that take the form: Under the conditions C the property A
of a subsystem of the universe (subset of the total collection of coordi-
nates for the wave function) is correlated with the property B of another
subsystem (with the manner of correlation being specified). For example,
the classical mechanics of a system of massive particles becomes a law
which expresses the correlation between the positions and momenta
(approximate) of the particles at one time with those at another time.16
All statements about subsystems then become relative statements, i.e.,
statements about the subsystem relative to a prescribed state for the re-
mainder (since this is generally the only way a subsystem even possesses
a unique state), and all laws are correlation laws.

The theory based on pure wave mechanics is a conceptually simple
causal theory, which fully maintains the principle of the psycho-physical
parallelism. It therefore forms a framework in which it is possible to dis-
cuss (in addition to ordinary phenomena) observation processes them-
selves, including the inter-relationships of several observers, in a logical,
unambiguous fashion. In addition, all of the correlation paradoxes, like
that of Einstein, Rosen, and Podolsky,17 find easy explanation.

While our theory justifies the personal use of the probabilistic inter-
pretation as an aid to making practical predictions, it forms a broader
frame in which to understand the consistency of that interpretation. It
transcends the probabilistic theory, however, in its ability to deal logi-
cally with questions of imperfect observation and approximate measurement.

Since this viewpoint will be applicable to all forms of quantum mechan-

ics which maintain the superposition principle, it may prove a fruitful

framework for the interpretation of new quantum formalisms. Field theories,

particularly any which might be relativistic in the sense of general rela-

16 Cf. Chapter V, §2.
17 Einstein, Rosen, and Podolsky [8]
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tivity, might benefit from this position, since one is free to construct
formal (non-probabilistic) theories, and supply any possible statistical
interpretations later. (This viewpoint avoids the necessity of considering
anomalous probabilistic jumps scattered about space-time, and one can
assert that field equations are satisfied everywhere and everywhen, then
deduce any statistical assertions by the present method.)

By focusing attention upon questions of correlations, one may be able
to deduce useful relations (correlation laws analogous to those of classi-
cal mechanics) for theories which at present do not possess known classi-
cal counterparts. Quantized fields do not generally possess pointwise
independent field values, the values at one point of space-time being
correlated with those at neighboring points of space-time in a manner, it
is to be expected, apptoximating the behavior of their classical counter-
parts. If correlations are important in systems with only a finite number
of degrees of freedom, how much more important they must be for systems
of infinitely many coordinates.

Finally, aside from any possible practical advantages of the theory,
it remains a matter of intellectual interest that the statistical assertions
of the usual interpretation do not have the status of independent hypoth-
eses, but are deducible (in the present sense) from the pure wave mechan-

ics, which results from their omission.



APPENDIX I

We shall now supply the proofs of a number of assertions which have

been made in the text.

§1. Proof of Theorem 1
We now show that {X,Y,...,Z}> 0 unless X,Y,...,Z are independent
random variables. Abbreviate P(xi,yj,...,zk) by Pij...k’ and let

Pii .k

" if P.P...P, >0
PP, . Py itk

a.n Qij..k =

1 if Pin...Pk =0
(Note that Pin...Pk = 0 implies that also Pij...k = 0.) Then always

1.2) Pii k= Q.. kPiPj-Py
and we have

1.3 {X,Y,...,Z}

EXP 1n -p—ls-_.—._PT{ = EXp [ In Ql].k]

it

PP Pr Qg In Qy5. i -
ij...k

ij.

Applying the inequality for x 2 0:
1.4 xlnx>x-1 (except for x = 1)

(which is easily established by calculating the minimum of x In x—(x—1))
to (1.3) we have:
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1.5) PiPs..Py Qy. i In Q.. .k > PiPy-Pr@Qy, xk— 1
(unless Qij...k =1).

Therefore we have for the sum:

1.6) 3 PP.PLQy 1 InQy k> 3 PP PeQy o 3 PP Py,
i ij...k ij...k

ij...k ij

unless all Qi | =1. But S P{Pi...PL Qi = 2 Py k=1, and
ij...k ijo.k
2 Pin...Pk =1, so that the right side of (1.6) vanishes. The left

ij... k
side is, by (1.3) the correlation {X,Y,...,Z}, and the condition that all of
the Qij...k equal one is precisely the independence condition that

Pij...k = Pin...Pk for all 1i,j,...,k. We have therefore proved that
(1.7) iIX,Y,...,Z} > 0
unless X,Y,...,Z are mutually independent.

§2. Convex function inequalities
We shall now establish some basic inequalities which follow from the

convexity of the function x In x.

LEMMA 1. x.20, P.z20, EPi:I

i
= (2 Pixi> In (2 Pixi> < 2 P.x; Inx; .
i i i

This property is usually taken as the definition of a convex func:tion,1

but follows from the fact that the second derivative of x In x is positive
for all positive x, which is the elementary notion of convexity. There is

also an immediate corollary for the continuous case:

1 See Hardy, Littlewood, and Polya [13], p. 70.
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COROLLARY 1. gx)20, P20, fP(x) dx=1
¢

= [fP(x) g(x)dx:l In [f P(x) g(x)dx:l < fp(x) g(x) In g(x)dx .

We can now derive a more general and very useful inequality from

Lemma 1:

LEMMA 2. x.20, a, 20 (all i)

Proof: Let P; =a; /zai, so that P, 20 and 2 P, =1. Then by

Lemma 1: i i

e [2r@]e[2n@)]2nE@nE)

1 1

Substitution for P, yields:

e g@—lal)(a_i) i 2(2131) (5'?) : 2(;15\1) (f)ln(%

i
which reduces to

(2.3)

and we have proved the lemma.
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We also mention the analogous result for the continuous case:

COROLLARY 2. f(x)20, gx)20 (all x)

[ f(x)dx £(x)
= [ f f(x)dxj| In [———{g(x)dx} < f £(x) In (g(x)>dx

§3. Refinement theorems

We now supply the proof for Theorems 2 and 4 of Chapter II, which
concern the behavior of correlation and information upon refinement of the
distributions. We suppose that the original (unrefined) distribution is

iV 0k
Pij. k= p(xi:Yj:-‘-,Zk) and that the refined distribution is P, .kJ ,

where the original value x; for X has been resolved into a number of

values xlili, and similarly for Y,...,Z. Then:

'#i’vj’”.’nk 3 1
G.1) P k= DIt , Pi=3P
L

Iliijv---rnk

Computing the new correlation {X,Y,...,ZV for the refined distribution

P.'.ui’;j"”’nk we find:

17...

J g M P{j“i’;j’m’nk

(3.2) X,Y,...,Z 2 2 Py ! i 0 In g )
ijo..k /,Li,Vj,...,T]k Pl 'p] ,...,Pk

However, by Lemma 2, §2:

/“i'.'nk I‘Li".nk
(3.3) D B YT Ta—
ool S p P, B
[ie e Ty
1#1 nk
Hi-e Ty

< P! 1 L

= 2 i...k n p,’“lP’J Tk
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Substitution of (3.3) into (3.2), noting that 2 P'u1 P' Plznk is
equal to (2 Pi’l“) <2 Pj’VJ> (2 ’T’k>, leads to:
u v,

3.4 SRR

px’j...k
{X,Y,...,.2V 2 pgf‘i"'"k)
(& 20 sy o
"

Pij. .k
2 P k]nm{ iX,Y,...,Z} ,

and we have completed the proof of Theorem 2 (Chapter II), which asserts
that refinement never decreases the correlation.”

We now consider the effect of refinement upon the relative information
We shall use the previous notation, and further assume that a’u1 b'

ci:’k are the information measures for which we wish to compute the rela-

*y

tive information of P’ul’?’ =1k and of P _k The information mea-

sures for the unrefined distribution P Lk then satisfy the relations:

3.5) a; =Ea’;i, b= S b,
V.

The relative information of the refined distribution is

77 p.,f‘i'i{'"k

k 1]...

(3.6) IXY Z E 2 ln ’#1 ’V' ,nk ’
i u nk ai ,bj ’],...,Ck

and by exactly the same procedure as we have just used for the correla-

tion we arrive at the result:

2 Cf. Shannon [19], Appendix 7, where a quite similar theorem is proved.
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j k

and we have proved that refinement never decreases the relative informa-
tion (Theorem 4, Chapter II).

It is interesting to note that the relation (3.4) for the behavior of
correlation under refinement can be deduced from the behavior of relative
information, (3.7). This deduction is an immediate consequence of the
fact that the correlation is a relative information — the information of the
joint distribution relative to the product measure of the marginal distribu-

tions.

§4. Monotone decrease of information for stochastic processes

We consider a sequence of transition-probability matrices Tti‘j (ET?j=

j
1 forall n, i, and 0§T‘ilj§1 for all n, i, j), and a sequence of

measures a‘i1 (a;1 2 0) having the property that
n+1 nmn
4.1) altt - S &l
i
We further suppose that we have a sequence of probability distributions,
P?, such that
n+1 e
(4.2) PIvl - 3 PITY
1

For each of these probability distributions the relative information

n

I" (relative to the aj measure) is defined:

n
4.3) 2 Pl In (—5) .
1

Under these citcumstances we have the following theorem:

THEOREM. mlo<n
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Proof: Expanding ™ e get:

pitl (ZP
4 ™=y PIY n ﬁ -3 (2 P“T’:J) In ~i_ 7/
(3475)

j j j i
i

-
=3
a8
SN’

However, by Lemma 2 (§2, Appendix I) we have the inequality

Ep"'r“)
SRR S e

1

i

Substitution of (4.5) into (4.4) yields:

@6 1™l 2 2 PITE In 1_3_1; z pn( T! )

1

"‘:3"‘5

po
= Pllnf L)~ 1P
st (3)-r.

and the proof is completed.

This proof can be successively specialized to the case where T is
stationary (Tn = T for all n) and then to the case where T is
doubly- stochastlc ( ETij =1 forall j):

1
COROLLARY 1. T?j is stationary (Tp- = Tij’ all n), and the measure
ay IS a stationary measure (aj = 2 alTIJ) imply that the information,

i
= 2 P{ In (P]/a]), is monotone decreasing. (As before, P}Hl =
i
non
> PATR)

i

Proof: Immediate consequence of preceding theorem.
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COROLLARY 2. Ty; is doubly-stochastic (ETijzl, all j) implies

1
that the information relative to the uniform measure (ai =1, all i), I*"=

E P? In P?, is monotone decreasing.
i

Proof: For a; = 1 (all i) we have that EaiTij = ETij =1= a;-
i i

Therefore the uniform measure is stationary in this case and the result
follows from Corollary 1.

These results hold for the continuous case also, and may be easily
verified by replacing the above summations by integrations, and by re-

placing Lemma 2 by its corollary.

§5. Proof of special inequality for Chapter IV (1.7)

LEMMA. Given probability densities P(r), Pl(x), Pz(r), with P(r) =

fPl(x)Pz(r—-xr)dx. Then Ig <1y — Inr, where Iy = f P, (x) In Py (x)dx

and Ip =f P(r) In P(r)dr.

Proof : We first note that:

G.1) sz(r—xr)dx - fpz(w)dT‘” -1 @

and that furthermore

(5.2) sz(r—xr)dr = f P2(w)dco =1 (all x) .

We now define the density gr(x):

(5.3) Bi(x) = 7P, (t—x7) ,

which is normalized, by (5.1). Then, according to §2, Corollary 1 Appen-

dix I), we have the relation:
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(5.4) ( f ﬁf(x)pl(x)dx) In ( f 13f(x)P1(x)dx> S f PP, (x)dx .

Substitution from (5.3) gives

(5.5) <rfP2(r—xr)P1(x)dx> In (rfpz(r—xr)Pl(x)dx>

< rfPZ(r—xr)Pl(x) In P, (x)dx .
The relation P(r) = f P, (x)Pz(r—x r)dx, together with (5.5) then implies
(5.6) P(r) In 7 P(r) £ f P,(t—x7)P;(®) In P, (x)dx ,
which is the same as:
5.7 P(r) In P(r) < fPZ(r—xr)Pl(x) In Py (x)dx — P(x) In7 .

Integrating with respect to r, and interchanging the order of integration

on the right side gives:

(5.8) Ig =fP(r) In P(r)dr £ f[:f Pz(r—xr)dr} P,(®) In P, (x)dx

—(In 7)fP(r)dr .
But using (5.2) and the fact that f P(r)dr = 1 this means that
(5.9) Ig £ fPl(x) In P,(x)dx — ln7 = Iy — In7 ,

and the proof of the lemma is completed.

§6. Stationary point of Iy + Iy

We shall show that the information sum:

®1 Ig+Iy= f ¢ (k) In ¢ pk) dk + f YR In PP dx

where 00
ék) = (1/V2m) f e kX y(x)dx

—o0
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is stationary for the functions:

1 1
6.2) Yo =(1/2702)* X140 $ok) = (202/m)* Koy

’

with respect to variations of ¥, 8y, which preserve the normalization:

o

(6.3) f SWyY)dx = 0 .

—00

The variation 8¢ gives rise to a variation 8¢ of &(k):
(6.4) 5¢ = (1/\2m) f e~ ikx5y dx |

To avoid duplication of effort we first calculate the variation & I‘f for an

arbitrary wave function u(£). By definition,

(6.5) I¢ =f uw¥(€)Hu) In w*€Hu)df

so that -

(6.6) ) I.f =f [u*u 8(n u*u) + S(u*u) 1n u*ul d¢
=f (1 + 1n u*uw) (W*Su ubu*)d¢ .

We now suppose that u has the real form:

©6.7) ) = ae P _uxe)

and from (6.6) we get
2
6.8) & If = f (1 + In a2 —2b§2)ae_b‘f (Bu) d€ + complex conjugate.

We now compute &Iy for ¢, using (6.8), (6.2), and (6.4):
K 0

g

, o2y —bk? 1 —ikx
(6.9) 81 ‘ =f (1 + 1n a’% - 2bk%)de —f e Oyrdxdk + c.c. ,
Koo J _ Var

—0Q
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where 1

a = (20)2(/77)4 , b= oi .

Interchanging the order of integration and performing the definite integra-

tion over k we get:

OO

rd , 2 —_ 2 b/
(6.10) BIK‘Q{JO =f \/—aT? (ln a2 4 %) o—(x7/4 )8(/1(x)dx +c.c. ,

while application of (6.8) to ¥, gives

= o) ” 2
6.11) lell// :f 1+ ln a”? —2b”x2)a"e_b X 5y(x)dx + c.c.
0 —00

where
1

. 2.4 . 2
a’ = (1/2770X) , b= (1/40x) .
Adding (6.10) and (6.11), and substituting for a’, b, a”, V', yields:
1

> T (w2 /a2
(6.12) B(IK+IX)’¢, = (1-1nn) f (1/2no§)4e &%) sy + c.c. .
0 —00

But the integrand of (6.12) is simply (/IO(X)Bl//(X), so that

6.13) 5(1K+IX)|¢, = (l—lnn)f Yo dx + cc. .
0 o0

Since ¢, isreal, Y 0f + c.c. = x/fz&ﬁ +cc = l/l;&/l + x/ro&/r* = 8@y,
so that

6.19) 8(1K+IX)|¢, = (l—lnn)f S*)dx =0 ,
0 —00

due to the normality restriction (6.3), and the proof is completed.



APPENDIX II

REMARKS ON THE ROLE OF THEORETICAL PHYSICS

There have been lately a number of new interpretations of quantum
mechanics, most of which are equivalent in the sense that they predict the
same results for all physical experiments. Since there is therefore no hope
of deciding among them on the basis of physical experiments, we must turn
elsewhere, and inquire into the fundamental question of the nature and pur-
pose of physical theories in general. Only after we have investigated and
come to some sort of agreement upon these general questions, i.e., of the
role of theories themselves, will we be able to put these alternative inter-
pretations in their proper perspective.

Every theory can be divided into two separate parts, the formal part,
and the interpretive part. The formal part consists of a purely logico-
mathematical structure, i.e., a collection of symbols together with rules
for their manipulation, while the interpretive part consists of a set of
““‘agsociations,’’ which are rules which put some of the elements of the
formal part into correspondence with the perceived world. The essential
point of a theory, then, is that it is a mathematical model, together with
an isomorphism1 between the model and the world of experience (i.e., the
sense perceptions of the individual, or the ‘‘real world’’ — depending upon

one’s choice of epistemology).

1 . . . ;
By isomorphism we mean a mapping of some elements of the model into ele-

ments of the perceived world which has the property that the model is faithful,
that is, if in the model a symbol A implies a symbol B, and A corresponds

to the happening of an event in the perceived world, then the event corresponding
to B must also obtain. The word homomorphism would be technically more
correct, since there may not be a one-one correspondence between the model and
the external world.
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The model nature is quite apparent in the newest theories, as in nuclear
physics, and particularly in those fields outside of physics proper, such
as the Theory of Games, various economic models, etc., where the degree
of applicability of the models is still a matter of considerable doubt. How-
ever, when a theory is highly successful and becomes firmly established,
the model tends to become identified with ‘‘reality’’ itself, and the model
nature of the theory becomes obscured. The rise of classical physics
offers an excellent example of this process. The constructs of classical
physics are just as much fictions of our own minds as those of any other
theory we simply have a great deal more confidence in them. It must be
deemed a mistake, therefore, to attribute any more ‘‘teality’’ here than
elsewhere.

Once we have granted that any physical theory is essentially only a
model for the world of experience, we must renounce all hope of finding

’

anything like ‘‘the correct theory.”” There is nothing which prevents any
number of quite distinct models from being in cortespondence with experi-
ence (i.e., all ““correct’’), and furthermote no way of ever verifying that
any model is completely correct, simply because the totality of all experi-
ence is never accessible to us.

Two types of prediction can be distinguished; the prediction of pheno-
mena already understood, in which the theory plays simply the role of a
device for compactly summarizing known results (the aspect of most
interest to the engineer), and the prediction of new phenomena and effects,
unsuspected before the formulation of the theory. Our experience has
shown that a theory often transcends the restricted field in which it was
formulated. It is this phenomenon (which might be called the ‘‘inertia”
of theories) which is of most interest to the theoretical physicist, and
supplies a greater motive to theory construction than that of aiding the
engineer.

From the viewpoint of the first type of prediction we would say that
the ‘‘best’’ theory is the one from which the most accurate predictions

can be most easily deduced — two not necessarily compatible ideals.
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Classical physics, for example, permits deductions with far greater ease
than the more accurate theories of relativity and quantum mechanics, and
in such a case we must retain them all. It would be the worst sort of

folly to advocate that the study of classical physics be completely dropped
in favor of the newer theories. It can even happen that several quite dis-
tinct models can exist which are completely equivalent in their predictions,
such that different ones are most applicable in different cases, a situation
which seems to be realized in quantum mechanics today. It would seem
foolish to attempt to reject all but one in such a situation, where it might
be profitable to retain them all.

Nevertheless, we have a strong desire to construct a single all-
embracing theory which would be applicable to the entire universe. From
what stems this desire? The answer lies in the second type of prediction
— the discovery of new phenomena — and involves the consideration of
inductive inference and the factors which influence our confidence in a
given theory (to be applicable outside of the field of its formulation). This
is a difficult subject, and one which is only beginning to be studied seri-
ously. Certain main points are clear, however, for example, that our con-
fidence increases with the number of successes of a theory. If a new
theory replaces several older theories which deal with separate phenomena,
i.e., a comprehensive theory of the previously diverse fields, then our
confidence in the new theory is very much greater than the confidence in
either of the older theories, since the range of success of the new theory
is much greater than any of the older ones. It is therefore this factor of
confidence which seems to be at the root of the desire for comprehensive
theories.

A closely related criterion is simplicity — by which we refer to con-
ceptual simplicity rather than ease in use, which is of paramount interest
to the engineer, A good example of the distinction is the theory of general
relativity which is conceptually quite simple, while enormously cumber-
some in actual calculations. Conceptual simplicity, like comprehensive-

ness, has the property of increasing confidence in a theory. A theory
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containing many ad hoc constants and restrictions, or many independent
hypotheses, in no way impresses us as much as one which is largely free
of arbitrariness.

It is necessary to say a few words about a view which is sometimes
expressed, the idea that a physical theory should contain no elements
which do not correspond directly to observables. This position seems to
be founded on the notion that the only purpose of a theory is to serve as
a summary of known data, and overlooks the second major purpose, the
discovery of totally new phenomena. The major motivation of this view-
point appears to be the desire to construct perfectly ‘‘safe’’ theories
which will never be open to contradiction. Strict adherence to such a
philosophy would probably seriously stifle the progress of physics.

The critical examination of just what quantities are observable in a
theory does, however, play a useful role, since it gives an insight into
ways of modification of a theory when it becomes necessary. A good ex-
ample of this process is the development of Special Relativity. Such
successes of the positivist viewpoint, when used merely as a tool for de-
ciding which modifications of a theory are possible, in no way justify its
universal adoption as a general principle which all theories must satisfy.

In summary, a physical theory is a logical construct (model), consist-
ing of symbols and rules for their manipulation, some of whose elements
are associated with elements of the perceived world. The fundamental
requirements of a theory are logical consistency and correctness. There
is no reason why there cannot be any number of different theories satisfy-
ing these requirements, and further criteria such as usefulness, simplicity,
comprehensiveness, pictorability, etc., must be resorted to in such cases
to further restrict the number. Even so, it may be impossible to give a
total ordering of the theories according to ‘‘goodness,’’ since different
ones may rate highest according to the different criteria, and it may be
most advantageous to retain more than one,

As a final note, we might comment upon the concept of causality. It

should be clearly recognized that causality is a property of a model, and
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not a property of the world of experience. The concept of causality only
makes sense with reference to a theory, in which there are logical depend-
ences among the elements. A theory contains relations of the form ‘A
implies B,”” which can be read as ‘A causes B,”” while our experi-
ence, uninterpreted by any theory, gives nothing of the sort, but only a
correlation between the event corresponding to B and that corresponding

to A.
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“Relative State” Formulation of Quantum
Mechanics”

Hvucu Evererr, 1111

Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

1. INTRODUCTION

HE task of quantizing general relativity raises
serious questions about the meaning of the
present formulation and interpretation of quantum
mechanics when applied to so fundamental a structure
as the space-time geometry itself. This paper seeks to
clarify the foundations of quantum mechanics. It
presents a reformulation of quantum theory in a form
believed suitable for application to general relativity.
The aim is not to deny or contradict the conventional
formulation of quantum theory, which has demon-
strated its usefulness in an overwhelming variety of
problems, but rather to supply a new, more general and
complete formulation, from which the conventional
interpretation can be deduced.

The relationship of this new formulation to the older
formulation is therefore that of a metatheory to a
theory, that is, it is an underlying theory in which the
nature and consistency, as well as the realm of applica-
bility, of the older theory can be investigated and clari-
fied.

The new theory is not based on any radical departure
from the conventional one. The special postulates in the
old theory which deal with observation are omitted in
the new theory. The altered theory thereby acquires a
new character. It has to be analyzed in and for itself
before any identification becomes possible between the
quantities of the theory and the properties of the world
of experience. The identification, when made, leads
back to the omitted postulates of the conventional
theory that deal with observation, but in a manner
which clarifies their role and logical position.

We begin with a brief discussion of the conventional
formulation, and some of the reasons which motivate
one to seek a modification.

2, REALM OF APPLICABILITY OF THE CONVENTIONAL
OR “EXTERNAL OBSERVATION” FORMULATION
OF QUANTUM MECHANICS

We take the conventional or “external observation”
formulation of quantum mechanics to be essentially

* Thesis submitted to Princeton University March 1, 1957 in
partial fulfillment of the requirements for the Ph.D. degree. An
earlier draft dated January, 1956 was circulated to several physi-
cists whose comments were helpful. Professor Niels Bohr, Dr. H. J.
Groenewald, Dr, Aage Peterson, Dr. A. Stern, and Professor L.
Rosenfeld are free of any responsibility, but they are warmly
thanked for the useful objections that they raised. Most particular
thanks are due to Professor John A. Wheeler for his continued

the following!': A physical system is completely de-
scribed by a state function ¥, which is an element of a
Hilbert space, and which furthermore gives information
only to the extent of specifying the probabilities of the
results of various observations which can be made on
the system by external observers. There are two funda-
mentally different ways in which the state function
can change:

Process 1: The discontinuous change brought about
by the observation of a quantity with eigenstates
¢1, 2, + -, in which the state y will be changed to
the state ¢; with probability | (¥,¢;)|2.

Process 2: The continuous, deterministic change of
state of an isolated system with time according to
a wave equation 0y/d¢= Ay, where A is a linear
operator.

This formulation describes a wealth of experience. No
experimental evidence is known which contradicts it.

Not all conceivable situations fit the framework of
this mathematical formulation. Consider for example an
isolated system consisting of an observer or measuring
apparatus, plus an object system. Can the change with
time of the state of the total system be described by
Process 2? If so, then it would appear that no dis-
continuous probabilistic process like Process 1 can take
place. If not, we are forced to admit that systems which
contain observers are not subject to the same kind of
quantum-mechanical description as we admit for all
other physical systems. The question cannot be ruled
out as lying in the domain of psychology. Much of the
discussion of “observers” in quantum mechanics has
to do with photoelectric cells, photographic plates, and
similar devices where a mechanistic attitude can hardly
be contested. For the following one can limit himself to
this class of problems, if he is unwilling to consider ob-
servers in the more familiar sense on the same mechanis-
tic level of analysis.

What mixture of Processes 1 and 2 of the conventional
formulation is to be applied to the case where only an
approximate measurement is effected; that is, where an
apparatus or observer interacts only weakly and for a
limited time with an object system? In this case of an

guidance and encouragement. Appreciation is also expressed to the
National Science Foundation for fellowship support.

t Present address: Weapons Systems Evaluation Group, The
Pentagon, Washington, D. C.

! We use the terminology and notation of J. von Neumann,
Mathematical Foundations of tum Mechanics, translated by
R. T. Beyer (Princeton University Press, Princeton, 1955).
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approximate measurement a proper theory must specify
(1) the new state of the object system that corresponds
to any particular reading of the apparatus and (2) the
probability with which this reading will occur. von
Neumann showed how to treat a special class of ap-
proximate measurements by the method of projection
operators.? However, a general treatment of all ap-
proximate measurements by the method of projection
operators can be shown (Sec. 4) to be impossible.

How is one to apply the conventional formulation of
quantum mechanics to the space-time geometry itself?
The issue becomes especially acute in the case of a closed
universe.3 There is no place to stand outside the system
to observe it. There is nothing outside it to produce
transitions from one state to another. Even the familiar
concept of a proper state of the energy is completely
inapplicable. In the derivation of the law of conserva-
tion of energy, one defines the total energy by way of an
integral extended over a surface large enough to include
all parts of the system and their interactions.* But in a
closed space, when a surface is made to include more
and more of the volume, it ultimately disappears into
nothingness. Attempts to define a total energy for a
closed space collapse to the vacuous statement, zero
equals zero.

How are a quantum description of a closed universe,
of approximate measurements, and of a system that
contains an observer to be made? These three questions
have one feature in common, that they all inquire about
the quantum mechanics that is internal to an isolated
system.

No way is evident to apply the conventional formula-
tion of quantum mechanics to a system that is not sub-
ject to external observation. The whole interpretive
scheme of that formalism rests upon the notion of
external observation. The probabilities of the various
possible outcomes of the observation are prescribed
exclusively by Process 1. Without that part of the
formalism there is no means whatever to ascribe a
physical interpretation to the conventional machinery.
But Process 1 is out of the question for systems not
subject to external observation.®

3. QUANTUM MECHANICS INTERNAL TO AN
ISOLATED SYSTEM

This paper proposes to regard pure wave mechanics
(Process 2 only) as a complete theory. It postulates that
a wave function that obeys a linear wave equation

2 Reference 1, Chap. 4, Sec. 4.

t See A. Einstein, The Meaning of Relativity (Princeton Univ-
ersity Press, Princeton, 1950), third edition, p. 107.

‘L. Landau and E. Lifshitz, The Classical Theory of Fields,
?;51}5,).“6‘;4%}, M. Hamermesh (Addison-Wesley Press, Cambridge,

, p: 343.

8 See in particular the discussion of this point by N. Bohr and
L. Rosenfeld, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
12, No. 8 (1933).

everywhere and at all times supplies a complete mathe-
matical model for every isolated physical system with-
out exception. It further postulates that every system
that is subject to external observation can be regarded
as part of a larger isolated system.

The wave function is taken as the basic physical
entity with no @ priori interpretation. Interpretation
only comes after an investigation of the logical structure
of the theory. Here as always the theory itself sets the
framework for its interpretation.®

For any interpretation it is necessary to put the
mathematical model of the theory into correspondence
with experience. For this purpose it is necessary to
formulate abstract models for observers that can be
treated within the theory itself as physical systems, to
consider isolated systems containing such model ob-
servers in interaction with other subsystems, to deduce
the changes that occur in an observer as a consequence
of interaction with the surrounding subsystems, and
to interpret the changes in the familiar language of
experience.

Section 4 investigates representations of the state of
a composite system in terms of states of constituent
subsystems. The mathematics leads one to recognize
the concept of the relativity of states, in the following
sense: a constituent subsystem cannot be said to be in
any single well-defined state, independently of the re-
mainder of the composite system. To any arbitrarily
chosen state for one subsystem there will correspond a
unique relative state for the remainder of the composite
system. This relative state will usually depend upon the
choice of state for the first subsystem. Thus the state
of one subsystem does not have an independent exist-
ence, but is fixed only by the state of the remaining sub-
system. In other words, the states occupied by the sub-
systems are not independent, but correlated. Such corre-
lations between systems arise whenever systems in-
teract. In the present formulation all measurements and
observation processes are to be regarded simply as inter-
actions between the physical systems involved—inter-
actions which produce strong correlations. A simple
model for a measurement, due to von Neumann, is
analyzed from this viewpoint.

Section 5 gives an abstract treatment of the problem
of observation. This uses only the superposition prin-
ciple, and general rules by which composite system
states are formed of subsystem states, in order that the
results shall have the greatest generality and be appli-
cable to any form of quantum theory for which these
principles hold. Deductions are drawn about the state
of the observer relative to the state of the object system.
It is found that experiences of the observer (magnetic
tape memory, counter system, etc.) are in full accord
with predictions of the conventional “external observer”
formulation of quantum mechanics, based on Process 1.

Section 6 recapitulates the ‘“relative state” formula-
tion of quantum mechanics.

“RELATIVE STATE’”’ FORMULATION 143

4. CONCEPT OF RELATIVE STATE

We now investigate some consequences of the wave
mechanical formalism of composite systems. If a com-
posite system S, is composed of two subsystems S; and
S, with associated Hilbert spaces H; and Hs, then,
according to the usual formalism of composite systems,
the Hilbert space for .S is taken to be the tensor product of
H, and H; (written H=H,®H,). This has the con-
sequence that if the sets {£;51} and {»;5?} are complete
orthonormal sets of states for S1 and Ss, respectively,
then the general state of S can be written as a super-
position:

YS=2s jaiskSn5 (€]

From (3.1) although S is in a definite state ¢S, the
subsystems S; and S; do not possess anything like
definite states independently of one another (except
in the special case where all but one of the a;; are zero).

We can, however, for any choice of a state in one sub-
system, wunigquely assign a corresponding relalive state
in the other subsystem. For example, if we choose £, as
the state for S, while the composite system S is in the
state S given by (3.1), then the corresponding relative
statein Sz, ¢(S2; rel&,S1), will be:

¥ (Su; relgn,S1)=Nioum;* )]

where N, is a normalization constant. This relative
state for £ is independent of the choice of basis {£:}
(i=k) for the orthogonal complement of &, and is
hence determined uniquely by £ alone. To find the
relative state in S, for an arbitrary state of S) therefore,
one simply carries out the above procedure using any
pair of bases for S and S, which contains the desired
state as one element of the basis for S1. To find states
in S} relative to states in S, interchange Sy and S: in the
procedure.

In the conventional or ‘‘external observation”
formulation, the relative state in S5, ¥(S2; relg,S1), for
a state ¢51 in S, gives the conditional probability dis-
tributions for the results of all measurements in Ss,
given that Sy has been measured and found to be in state
¢Si—ie., that ¢51 is the eigenfunction of the measure-
ment in S corresponding to the observed eigenvalue.

For any choice of basis in Sy, {£:}, it is always possible
to represent the state of S, (1), as a single superposition
of pairs of states, each consisting of a state from the
basis {£;} in Sy and its relative state in Sz. Thus, from
(2), (1) can be written in the form:

1
yS= -;‘Ei"‘il’(s 2; rel§,Sh). (©)]

This is an important representation used frequently.
Summarizing: There does not, in general, exist anything
like a single state for one subsystem of a composite system.
Subsystems do not possess states that are independent of
the states of the remainder of the system, so that the sub-

system states are generally correlated wiith one another.
One can arbitrarily choose a state for one subsystem, and
be led to the relative state for the remainder. Thus we are
faced with a fundamenial relativity of states, which is
implied by the formalism of composite systems. It is
meaningless to ask the absolute state of a subsystem—one
can only ask the stale relative to a given state of the re-
mainder of the subsystem.

At this point we consider a simple example, due to von
Neumann, which serves as a model of a measurement
process. Discussion of this example prepares the ground
for the analysis of “observation.” We start with a system
of only one coordinate, ¢ (such as position of a particle),
and an apparatus of one coordinate r (for example the
position of a meter needle). Further suppose that they
are initially independent, so that the combined wave
function is YoSt4=¢(q)n(r) where ¢(g) is the initial
system wave function, and 5(r) is the initial apparatus
function. The Hamiltonian is such that the two systems
do not interact except during the interval (=0 to (=T,
during which time the total Hamiltonian consists only
of a simple interaction,

H;=—ihq(d/dr). . @

Then the state
VA =d(Qnlr—qi) (&)
is a solution of the Schrodinger equation,
(O S+4/0t) =Hrh:5+4, (6)

for the specified initial conditions at time ¢t=0.

From (5) at time =7 (at which time interaction
stops) there is no longer any definite independent
apparatus state, nor any independent system state.
The apparatus therefore does not indicate any definite
object-system value, and nothing like process 1 has
occurred.

Nevertheless, we can look upon the total wave func-
tion (5) as a superposition of pairs of subsystem states,
each element of which has a definite ¢ value and a
correspondingly displaced apparatus state. Thus after
the interaction the state (5) has the form:

vsra= ot nr—aDyig, @

which is a superposition of states ¢, =5(¢—¢ ) (r—¢T).
Each of these elements, ¥, of the superposition de-
scribes a state in which the system has the definite
value g=¢’, and in which the apparatus has a state
that is displaced from its original state by the amount
¢'T. These elements ¥, are then superposed with
coefficients ¢(g’) to form the total state (7). )

Conversely, if we transform to the representation
where the apparatus coordinate is definite, we write (5)
as

Yrsta= f (A/N)E (@dlr—r)dr',
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where
£ (Q)=Noo(Q)n(r'—qT) ®)
and

(1/%5= [ ¢ @@ —gTn—aDda.

Then the £7'(g) are the relative system state functions®
for the apparatus states §(r—7’) of definite value r=7'.

If T is sufficiently large, or 5(r) sufficiently sharp
(near 6(r)), then :7'(¢) is nearly 8(¢g—r'/T) and the
relative system states £7'(g) are nearly eigenstates for
the values g=7»'/T.

We have seen that (8) is a superposition of states
Y, for each of which the apparatus has recorded a
definite value 7/, and the system is left in approximately
the eigenstate of the measurement corresponding to
g=r'/T. The discontinuous “jump”’ into an eigenstate
is thus only a relative proposition, dependent upon the
mode of decomposition of the total wave function into
the superposition, and relative to a particularly chosen
apparatus-coordinate value. So far as the complete
theory is concerned all elements of the superposition
exist simultaneously, and the entire process is quite
continuous.

von Neumann’s example is only a special case of a
more general situation. Consider any measuring ap-
paratus interacting with any object system. As a result
of the interaction the state of the measuring apparatus
is no longer capable of independent definition. It can
be defined only relative to the state of the object system.
In other words, there exists only a correlation between
the states of the two systems. It seems as if nothing can
ever be settled by such a measurement.

This indefinite behavior seems to be quite at variance
with our observations, since physical objects always
appear to us to have definite positions. Can we reconcile
this feature wave mechanical theory built purely on
Process 2 with experience, or must the theory be
abandoned as untenable? In order to answer this
question we consider the problem of observation itself
within the framework of the theory.

5. OBSERVATION

We have the task of making deductions about the
appearance of phenomena to observers which are con-
sidered as purely physical systems and are treated
within the theory. To accomplish this it is necessary
to identify some present properties of such an observer
with features of the past experience of the observer.

¢ This example provides a model of an approximate measure-
ment. However, the relative system states after the interaction
£'(g) cannot ordinarily be generated from the original system
state ¢ by the application of any projection operator, E. Proof:
Suppose on the contrary that £(q)=NEp(g) = N'd(g)n(r' —gf),
where N, N’ are normalization constants. Then

E(NE$(q))=NE'$(q)=N"$(qin*(r'—gt)

and E(q)=(N"/N)$(9)n*(r'—qt). But the condition E*=E
which is necessary for E to be a projection implies that N’/N"
n(g) =#*(g) which is generally false.

Thus, in order to say that an observer O has observed
the event e, it is necessary that the state of 0 has become
changed from its former state to a new state which is
dependent upon a.

It will suffice for our purposes to consider the ob-
servers to possess memories (i.e., parts of a relatively
permanent nature whose states are in correspondence
with past experience of the observers). In order to
make deductions about the past experience of an ob-
server it is sufficient to deduce the present contents of
the memory as it appears within the mathematical
model.

As models for observers we can, if we wish, consider
automatically functioning machines, possessing sensory
apparatus and coupled to recording devices capable of
registering past sensory data and machine configura-
tions. We can further suppose that the machine is so
constructed that its present actions shall be determined
not only by its present sensory data, but by the con-
tents of its memory as well. Such a machine will then
be capable of performing a sequence of observations
(measurements), and furthermore of deciding upon its
future experiments on the basis of past results. If we
consider that current sensory data, as well as machine
configuration, is immediately recorded in the memory,
then the actions of the machine at a given instant can
be regarded as a function of the memory contents only,
and all relavant experience of the machine is contained
in the memory.

For such machines we are justified in using such
phrases as ‘“‘the machine has perceived 4” or “the
machine is aware of A" if the occurrence of 4 is repre-
sented in the memory, since the future behavior of
the machine will be based upon the occurrence of 4. In
fact, all of the customary language of subjective experi-
ence is quite applicable to such machines, and forms the
most natural and useful mode of expression when
dealing with their behavior, as is well known to in-
dividuals who work with complex automata.

When dealing with a system representing an ob-
server quantum mechanically we ascribe a state func-
tion, y*, to it. When the state y°® describes an observer
whose memory contains representations of the events
A4, B, ---, C we denote this fact by appending the
memory sequence in brackets as a subscript, writing:

Vs -0l M

The symbols A4, B, - - -, C, which we assume to be ordered
time-wise, therefore stand for memory configurations
which are in correspondence with the past experience
of the observer. These configurations can be regarded as
punches in a paper tape, impressions on a magnetic reel,
configurations of a relay switching circuit, or even con-
figurations of brain cells. We require only that they be
capable of the interpretation “The observer has ex-
perienced the succession of events 4, B, ---, C.” (We
sometimes write dots in a memory sequence, ---4,
B, -+, C, to indicate the possible presence of previous
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memories which are irrelevant to the case being con-
sidered.)

The mathematical model seeks to treat the interaction
of such observer systems with other physical systems
(observations), within the framework of Process 2 wave
mechanics, and to deduce the resulting memory con-
figurations, which are then to be interpreted as records
of the past experiences of the observers.

We begin by defining what constitutes a “good”
observation. A good observation of a quantity 4, with
eigenfunctions ¢;, for a system S, by an observer whose
initial state is y°, consists of an interaction which, in a
specified period of time, transforms each (total) state

P H=¢4 .1 (10)
into a new state
YIS =¢ Y i (€8))

where a; characterizes’ the state ¢;. (The symbol, a;,
might stand for a recording of the eigenvalue, for ex-
ample.) That is, we require that the system state, if if
is an eigensiale, shall be unchanged, and (2) that the
observer state shall change so as to describe an ob-
server that is “aware” of which eigenfunction it is; that
is, some property is recorded in the memory of the ob-
server which characterizes ¢, such as the eigenvalue.
The requirement that the eigenstates for the system
be unchanged is necessary if the observation is to be
significant (repeatable), and the requirement that the
observer state change in a manner which is different
for each eigenfunction is necessary if we are to be able
to call the interaction an observation at all. How closely
a general interaction satisfies the definition of a good
observation depends upon (1) the way in which the in-
teraction depends upon the dynamical variables of the
observer system—including memory variables—and
upon the dynamical variables of the object system and
(2) the initial state of the observer system. Given (1)
and (2), one can for example solve the wave equation,
deduce the state of the composite system after the end
of the interaction, and check whether an object system
that was originally in an eigenstate is left in an eigen-
state, as demanded by the repeatability postulate. This
postulate is satisfied, for example, by the model of von
Neumann that has already been discussed.

From the definition of a good observation we first
deduce the result of an observation upon a system which
is not in an eigenstate of the observation. We know from
our definition that the interaction transforms states
¢ r---1 into states ¢A[---a;). Consequently these
solutions of the wave equation can be superposed to
give the final state for the case of an arbitrary initial
system state. Thus if the initial system state is not an
eigenstate, but a general state 3 ;a1¢;, the final total

7 1t should be understood that Y[ ...« is a different state for
each 7. A more precise notation would write y%( . . .aJ, but no
confusion can arise if we simply let the y.° be indexed only by the
index of the memory configuration symbol.

state will have the form:
Y5 =3 a1 - -aid. (12)

. This superposition principle continues to apply in the
presence of further systems which do not interact during
the measurement. Thus, if systems Sy, S, - -+, S, are
present as well as 0, with original states ¥5 ¢Sz,
-+, ¥5» and the only interaction during the time of
measurement takes place between S; and 0, the measure-
ment will transform the initial total state:

PSIESTE ok Sat0— g SipSa. L L Smor. . 13)
into the final state:
\[/SH'SH""+S"H=Zfd1¢;slllls" . .‘(,Sn'po[. c el (14)

where a;= (¢:51,%51) and ¢:51 are eigenfunctions of the

‘observation.

Thus. we arrive at the general rule for the trans-
formation of total state functions which describe sys-
tems within which observation processes occur:

Rule 1: The observation of a quantity 4, with eigen-
functions ¢;5, in a system S; by the observer 0,
transforms the total state according to:

PSSz, .¢Sn¢0[. .3
=2 iap S5t - SO 0] (15)
‘where
ai=(¢:595).

If we next consider a second observation to be made,
where our total state is now a superposition, we can
apply Rule 1 separately to each element of the super-
position, since each element separately obeys the wave
equation and behaves independently of the remaining
elements, and then superpose the results to obtain the
final solution. We formulate this as:

Rule 2: Rule 1 may be applied separately to each
element of a superposition of total system states,
the results being superposed to obtain the final
total state. Thus, a determination of B, with eigen-
functions 7;5, on S2 by the observer 0 transforms
the total state

LSS PSP ag] (16)

into the state
i iadpSinSupSee  YSlr. . app1 (17)

where b;= (n;5%¢%%), which follows from the
application of Rule 1 to each element ¢.,SyS2. .-
¥S=Or .. .4, and then superposing the results with
the coefficients a..

These two rules, which follow directly from the super-
position principle, give a convenient method for deter-
mining final total states for any number of observation
processes in any combinations. We now seek the
inlerpretation of such final total states.
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Let us consider the simple case of a single observa-
tion of a quantity A, with eigenfunctions ¢;, in the
system S with initial state ¢5, by an observer 0 whose
initial state is ¢°r-.-1. The final result is, as we have
seen, the superposition

YS=3 - - -aid. (18)

There is no longer any independent system state or
observer state, although the two have become corre-
lated in a one-one manner. However, in each element
of the superposition, 4°[ - - -ai1, the object-system state
is a particular eigenstate of the observation, and
furthermore the observer-system stale describes the ob-
server as definitely perceiving that particular system stale.
This correlation is what allows one to maintain the
interpretation that a measurement has been performed.

We now consider a situation where the observer
system comes into interaction with the object system for
a second time. According to Rule 2 we arrive at the
total state after the second observation :

YIS=3 0 - aiail. (19)

Again, each element ¢4°r- - -ei.ail describes a system
eigenstate, but this time also describes the observer as
having obtained the same result for each of the two ob-
servations. Thus for every separate state of the ob-
server in the final superposition the result of the ob-
servation was repeatable, even though different for
different states. This repeatability is a consequence of
the fact that after an observation the relative system
state for a particular observer state is the corresponding
eigenstate.

Consider now a different situation. An observer-
system 0, with initial state y°- .1, measures the same
quantity 4 in a number of separate, identical, systems
which are initially in the same state, yS1=ySt="...
=yS+=3 .a.p; (where the ¢; are, as usual, eigen-
functions of A). The initial total state function is then

PYoSrtSet S0y SupSa. Ly Smglr. g, (20)

We assume that the measurements are performed on the
systems in the order S, Sy, « - -Sn. Then the total state
after the first measurement is by Rule 1,

PSS S = S g b S S L SmIOL e (21)
(where ! refers to the first system, Sy).
After the second measurement it is, by Rule 2,
Yo StHSate -+ Snt0
=3, i0:09:519;5 58 - YSPL- - apnap] (22)

and in general, after r measurements have taken place
(r <n), Rule 2 gives the result:

V=2 5k 005 - Qup 519551 - i
PSSO aiiage, ekl (23)

We can give this state, ¢,, the following interpreta-
tion. It consists of a superposition of states:

Vijek =059 5% - 4450
X'I,Srﬂ. . "/‘s"'p[«i'.aj’. eart] (24)

each of which describes the observer with a definite
memory sequence [ad,¢?,- - -ax"]). Relative to him the
(observed) system states are the corresponding eigen-
functions 5, ¢;5%,- - -, ¢+57, the remaining systems,
S, - * ¢, Sn, being unaltered.

A typical element ¥';;...x of the final superposition
describes a state of affairs wherein the observer has
perceived an apparently random sequence of definite
results for the observations. Furthermore the object
systems have been left in the corresponding eigenstates
of the observation. At this stage suppose that a re-
determination of an earlier system observation (S;)
takes place. Then it follows that every element of the
resulting final superposition will describe the observer
with a memory configuration of the form [a,---
a;',+-ai"a;"] in which the earlier memory coincides
with the later—i.e., the memory states are correlated.
It will thus appear to the observer, as described by a
typical element of the superposition, that each initial
observation on a system caused the system to “jump”
into an eigenstate in a random fashion and thereafter
remain there for subsequent measurements on the same
system. Therefore—disregarding for the moment quanti-
tative questions of relative frequencies—the proba-
bilistic assertions of Process 1 appear to be valid to
the observer described by a typical element of the final
superposition.

We thus arrive at the following picture: Throughout
all of a sequence of observation processes there is only
one physical system representing the observer, yet
there is no single unique stafe of the observer (which
follows from the representations of interacting systems).
Nevertheless, there is a representation in terms of a
superposition, each element of which contains a definite
observer state and a corresponding system state. Thus
with each succeeding observation (or interaction), the
observer state ‘“branches” into a number of different
states. Each branch represents a different outcome of
the measurement and the corresponding eigenstate for
the object-system state. All branches exist simultane-
ously in the superposition after any given sequence of
observations.}

I Note added in proof —In reply to a preprint of this article some
correspondents have raised the question of the “transition from
possible to actual,” arguing that in “reality” there is—as our
experience testifies—no such splitting of observer states, so that
only one branch can ever actually exist. Since this point may occur
to other readers the following is offered in explanation.

. The whole issue of the transition from “possible” to “actual”
is taken care of in the theory in a very simple way—there is no
such transition, nor is such a transition necessary for the theory
to be in accord with our experience. From the viewpoint of the
theory all elements of a superposition (all “branches”) are “ac-
tual,” none any more “real” than the rest. It is unnecessary to
suppose that all but one are somehow destroyed, since all” the

Y
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The “trajectory” of the memory configuration of an
observer performing a sequence of measurements is
thus not a linear sequence of memory configurations,
but a branching tree, with all possible outcomes exist-
ing simultaneously in a final superposition with various
coefficients in the mathematical model. In any familiar
memory device the branching does not continue
indefinitely, but must stop at a point limited by the
capacity of the memory.

In order to establish quantitative results, we must
put some sort of measure (weighting) on the elements of
a final superposition. This is necessary to be able to
make assertions which hold for almost all of the ob-
server states described by elements of a superposition.
We wish to make quantitative statements about the
relative frequencies of the different possible results of
observation—which are recorded in the memory—for
a typical observer state; but to accomplish this we
must have a method for selecting a typical element
from a superposition of orthogonal states.

We therefore seek a general scheme to assign a meas-
ure to the elements of a superposition of orthogonal
states D .a.pi. We require a positive function m of the
complex coefficients of the elements of the super-
position, so that m(a;) shall be the measure assigned
to the element ¢;. In order that this general scheme be
unambiguous we must first require that the states them-
selves always be normalized, so that we can distinguish
the coefficients from the states. However, we can still
only determine the coefficients, in distinction to the
states, up to an arbitrary phase factor. In order to
avoid ambiguities the function m must therefore be a
function of the amplitudes of the coefficients alone,
m(a)=m(|al).

We now impose an additivity requirement. We can
regard a subset of the superposition, say 3. a:, as a

i=1

single element a¢':
ag'= 3 axp:. (25)
=1

We then demand that the measure assigned to ¢’ shall
be the sum of the measures assigned to the ¢; (i from 1

separate elements of a superposition individually obey the wave
equation with complete indifference to the presence or absence
(“actuality” or not) of any other elements. This total lack of
effect of one branch on another also implies that no observer will
ever be aware of any ‘“splitting”’ process.

Arguments that the world picture presented by this theory is
contradicted by experience, because we are unaware of any
branching process, are like the criticism of the Copernican theory
that the mobility of the earth as a real physical fact is incom-
patible with the common sense interpretation of nature because
we feel no such motion. In both cases the argument fails when it is
shown that the theory itself predicts that our experience will be
what it in fact is. (In the Copernican case the addition of New-
tonian physics was required to be able to show that the earth’s
inhabitants would be unaware of any motion of the earth.)
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ton):

m(a)= f:l m(a). (26)

Then we have already restricted the choice of m to the
square amplitude alone; in other words, we have
m(a;)=a*a;, apart from a multiplicative constant.

To see this, note that the normality of ¢’ requires
that |a|=(Xa*ae)}. From our remarks about the
dependence of m upon the amplitude alone, we replace
the a; by their amplitudes ;= |a;|. Equation (26) then
imposes the requirement,

m(a)=m(aXa: P =m(>_u2)}
=Y m(u)=YmuH (27)

Defining a new function g(x)

g(x)=m(y/x) (28)
we see that (27) requires that
g ud)=2gud). (29)

Thus g is restricted to be linear and necessarily has the
form:

g(x)=cx (c constant). (30)

Therefore g(+2) =cx*=m(+/2%)=m(x) and we have de-
duced that m is restricted to the form

m(as) =m(u) =cud=ca*a;. 31)

We have thus shown that the only choice of measure
consistent with our additivity requirement is the square
amplitude measure, apart from an arbitrary multi-
plicative constant which may be fixed, if desired, by
normalization requirements. (The requirement that
the total measure be unity implies that this constant is
1.)

The situation here is fully analogous to that of
classical statistical mechanics, where one puts a measure
on trajectories of systems in the phase space by placing
a measure on the phase space itself, and then making
assertions (such as ergodicity, quasi-ergodicity, etc.)
which hold for “almost all” trajectories. This notion
of “almost all” depends here also upon the choice of
measure, which is in this case taken to be the Lebesgue
measure on the phase space. One could contradict the
statements of classical statistical mechanics by choosing
a measure for which only the exceptional trajectories
had nonzero measure. Nevertheless the choice of
Lebesgue measure on the phase space can be justified
by the fact that it is the only choice for which the “con-
servation of probability” holds, (Liouville’s theorem)
and hence the only choice which makes possible any
reasonable statistical deductions at all.

In our case, we wish to make statements about
“trajectories’ of observers. However, for us a trajectory
is constantly branching (transforming from state to
superposition) with each successive measurement. To
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have a requirement analogous to the “conservation of
probability” in the classical case, we demand that the
measure assigned to a trajectory at one time shall equal
the sum of the measures of its separate branches at a
later time. This is precisely the additivity requirement
which we imposed and which leads uniquely to the
choice of square-amplitude measure. Our procedure is
therefore quite as justified as that of classical statistical
mechanics.

Having deduced that there is a unique measure which
will satisfy our requirements, the square-amplitude
measure, we continue our deduction. This measure
then assigns to the 4,7, - - -kth element of the super-
position (24),

651953+ SYSTHL L St 0, apr] (32)

the measure (weight)

M,','...k= (a;aj- . 'dk)*((l.'llj' . 'dk) (33)
so that the observer state with memory configuration
[ed @2, - -+ ,ax"] is assigned the measure a*a.a;%a;- - -

ar*ar=M;;...,. We see immediately that this is a
product measure, namely,
Mia=MM; M, (34)
where
M= dz*at

so that the measure assigned to a particular memory

sequence [a, af?, - - -, ax"] is simply the product of the
measures for the individual components of the memory
sequence.

There is a direct correspondence of our measure
structure to the probability theory of random sequences.
If we regard the M ;... as probabilities for the sequences
then the sequences are equivalent to the random
sequences which are generated by ascribing to each term
the independent probabilities M,=a*a;. Now proba-
bility theory is equivalent to measure theory mathe-
matically, so that we can make use of it, while keeping
in mind that all results should be translated back to
measure theoretic language.

Thus, in particular, if we consider the sequences to
become longer and longer (more and more observations
performed) each memory sequence of the final super-
position will satisfy any given criterion for a randomly
generated sequence, generated by the independent
probabilities a;*a;, except for a set of total measure
which tends toward zero as the number of observations
becomes unlimited. Hence all averages of functions over
any memory sequence, including the special case of
frequencies, can be computed from the probabilities
a*a;, except for a set of memory sequences of measure
zero. We have therefore shown that the statistical asser-
tions of Process 1 will appear to be valid to the observer,
in almost all elements of the superposition (24), in the
limit as the number of observations goes to infinity.

While we have so far considered only sequences of

observations of the same quantity upon identical sys-
tems, the result is equally true for arbitrary sequences
of observations, as may be verified by writing more
general sequences of measurements, and applying
Rules 1 and 2 in the same manner as presented here.

We can therefore summarize the situation when the
sequence of observations is arbitrary, when these ob-
servations are made upon the same or different systems
in any order, and when the number of observations of
each quantity in each system is very large, with the
following result :

Except for a set of memory sequences of measure
nearly zero, the averages of any functions over a
memory sequence can be calculated approximately
by the use of the independent probabilities given by
Process 1 for each initial observation, on a system,
and by the use of the usual transition probabilities
for succeeding observations upon the same system.
In the limit, as the number of all types of observa-
tions goes to infinity the calculation is exact, and the
exceptional set has measure zero.

This prescription for the calculation of averages over
memory sequences by probabilities assigned to in-
dividual elements is precisely that of the conventional
“external observation” theory (Process 1). Moreover,
these predictions hold for almost all memory sequences.
Therefore all predictions of the usual theory will appear
to be valid to the observer in amost all observer states.

In particular, the uncertainty principle is never
violated since the latest measurement upon a system
supplies all possible information about the relative
system state, so that there is no direct correlation be-
tween any earlier results of observation on the sys-
tem, and the succeeding observation. Any observation
of a quantity B, between two successive observations of
quantity 4 (all on the same system) will destroy the
one-one correspondence between the earlier and later
memory states for the result of 4. Thus for alternating
observations of different quantities there are funda-
mental limitations upon the correlations between
memory states for the same observed quantity, these
limitations expressing the content of the uncertainty
principle.

As a final step one may investigate the consequences
of allowing several observer systems to interact with
(observe) the same object system, as well as to interact
with one another (communicate). The latter interaction
can be treated simply as an interaction which correlates
parts of the memory configuration of one observer with
another. When these observer systems are investigated,
in the same manner as we have already presented in this
section using Rules 1 and 2, one finds that in all elements
of the final superposition :

1. When several observers have separately observed
the same quantity in the object system and then com-
municated the results to one another they find that they
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are in agreement. This agreement persists even when
an observer performs his observation affer the result
has been communicated to him by another observer
who has performed the observation.

2. Let one observer perform an observation of a
quantity 4 in the object system, then let a second per-
form an observation of a quantity B in this object sys-
tem which does not commute with 4, and finally let the
first observer repeat his observation of A. Then the
memory system of the first observer will #nof in general
show the same result for both observations. The inter-
vening observation by the other observer of the non-
commuting quantity B prevents the possibility of any
one to one correlation between the two observations of
A.

3. Consider the case where the states of two object
systems are correlated, but where the two systems do
not interact. Let one observer perform a specified ob-
servation on the first system, then let another observer
perform an observation on the second system, and
finally let the first observer repeat his observation.
Then it is found that the first observer always gets the
same result both times, and the observation by the
second observer has no effect whatsoever on the outcome
of the first’s observations. Fictitious paradoxes like
that of Einstein, Podolsky, and Rosen® which are con-
cerned with such correlated, noninteracting systems
are easily investigated and clarified in the present
scheme.

Many further combinations of several observers and
systems can be studied within the present framework.
The results of the present “relative state” formalism
agree with those of the conventional ‘“‘external observa-
tion” formalism in all those cases where that familiar
machinery is applicable.

In conclusion, the continuous evolution of the state
function of a composite system with time gives a com-
plete mathematical model for processes that involve an
idealized observer. When interaction occurs, the result
of the evolution in time is a superposition of states,
each element of which assigns a different state to the
memory of the observer. Judged by the state of the
memory in almost all of the observer states, the proba-
bilistic conclusion of the usual “external observation”

8 Einstein, Podolsky, and Rosen, Phys. Rev. 47, 777 (1935).
For a thorough discussion of the physics of observation, see the
chapter by N. Bohr in Albert Einstein, Philosopher-Scientist (The
Library of Living Philosophers, Inc., Evanston, 1949).

formulation of quantum theory are valid. In other
words, pure Process 2 wave mechanics, without any
initial probability assertions, leads to all the proba-
bility concepts of the familiar formalism.

6. DISCUSSION

The theory based on pure wave mechanics is a con-
ceptually simple, causal theory, which gives predictions
in accord with experience. It constitutes a framework
in which one can investigate in detail, mathematically,
and in a logically consistent manner a number of some-
times puzzling subjects, such as the measuring process
itself and the interrelationship of several observers. Ob-
jections have been raised in the past to the conventional
or “external observation” formulation of quantum
theory on the grounds that its probabilistic features
are postulated in advance instead of being derived from
the theory itelf. We believe that the present “relative-
state” formulation meets this objection, while retaining
all of the content of the standard formulation.

While our theory ultimately justifies the use of the
probabilistic interpretation as an aid to making practical
predictions, it forms a broader frame in which to under-
stand the consistency of that interpretation. In this
respect it can be said to form a metatheory for the stand-
ard theory. It transcends the usual “external observa-
tion” formulation, however, in its ability to deal logically
with questions of imperfect observation and approxi-
mate measurement.

The “relative state” formulation will apply to all
forms of quantum mechanics which maintain the super-
position principle. It may therefore prove a fruitful
framework for the quantization of general relativity.
The formalism invites one to construct the formal theory
first, and to supply the statistical interpretation later.
This method should be particularly useful for inter-
preting quantized unified field theories where there is no
question of ever isolating observers and object systems.
They all are represented in a single structure, the field.
Any interpretative rules can probably only be deduced
in and through the theory itself.

Aside from any possible practical advantages of the
theory, it remains a matter of intellectual interest that
the statistical assertions of the usual interpretation
do not have the status of independent hypotheses, but
are deducible (in the present sense) from the pure wave
mechanics that starts completely free of statistical
postulates.
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Assessment of Everett’s ‘“Relative State”
Formulation of Quantum Theory

Jorn A. WHEELER
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

HE preceding paper puts the principles of quan-
tum mechanics in a new form.! Observations are
treated as a special case of normal interactions that
occur within a system, not as a new and different kind
of process that takes place from without. The conven-
tional mathematical formulation with its well-known
postulates about probabilities of observations is derived
as a consequence of the new or ‘“meta” quantum me-
chanics. Both formulations apply as well to complex
systems as to simple ones, and as well to particles as to
fields. Both supply mathematical models for the
physical world. In the new or “relative state” formalism
this model associates with an isolated system a state
function that obeys a linear wave equation. The theory
deals with the totality of all the possible ways in which
this state function can be decomposed into the sum of
products of state functions for subsystems of the over-
all system—and nothing more. For example, in a sys-
tem endowed with four degrees of freedom =y,%2,%5,%4,
and a time coordinate, ¢, the general state can be written
(w1, %2,%3,%4,t). However, there is no way in which ¢
defines any unique state for any subsystem (subset of
21,%3,%3,%4). The subsystem consisting of x; and 3, say,
cannot be assigned a state u(x1,x5,f) independent of the
state assigned to the subsystem x; and x4 In other
words, there is ordinarily no choice of f or u which will
allow ¢ to be written in the form ¥ =%(x1,%3,2) f(x2,%4,8).
The most that can be done is to associate a relative
state to the subsystem, #,e1(%1,%3,t), relative to some
specified state f(xa,x4,t) for the remainder of the system.
The method of assigning relative states %.q1(x1,%s,f) in
one subsystem to specific states f(x3,%4,) for the re-
mainder, permits one to decompose ¥ into a super-
position of products, each consisting of one member of an
orthonormal set for one subsystem and its correspond-
ing relative state in the other subsystem:

V=2 fi(®e @0, a1 fi(X1,%3,8), (1

where {f} is an orthonormal set. According as the func-
tions f, constitute one or another family of orthonormal
functions, the relative state functions #ye f. have one
or another dependence upon the variables of the re-
maining subsystem.

Another way of phrasing this unique association of
relative state in one subsystem to states in the re-
mainder is to say that the states are correlated. The
totality of these correlations which can arise from all

t Hugh Everett, III, Revs. Modern Phys. 29, 454 (1957).

possible decompositions into states and relative states
is all that can be read out of the mathematical model.

The model has a place for observations only insofar
as they take place within the isolated system. The
theory of observation becomes a special case of the
theory of correlations between subsystems.

How does this mathematical model for nature relate
to the present conceptual scheme of physics? Our con-
clusions can be stated very briefly: (1) The conceptual
scheme of “relative state” quantum mechanics is com-
pletely different from the conceptual scheme of the
conventional “‘external observation” form of quantum
mechanics and (2) The conclusions from the new treat-
ment correspond completely in familiar cases to the
conclusions from the usual analysis. The rest of this
note seeks to stress this correspondence in conclusions
but also this complete difference in concept.

The “external observation’” formulation of quantum
mechanics has the great merit that it is dualistic. It
associates a state function with the system under study
—as for example a particle—but not with the wltimate
observing equipment. The system under study can be
enlarged to include the original object as a subsystem
and also a piece of observing equipment—such as a
Geiger counter—as another subsystem. At the same
time the number of variables in the state function has
to be enlarged accordingly. However, the wultimate
observing equipment still lies outside the system that is
treated by a wave equation. As Bohr? so clearly em-
phasizes, we always interpret the wave amplitude by
way of observations of a classical character made from
outside the quantum system. The conventional form-
alism admits no other way of interpreting the wave
amplitude; it is logically self-consistent; and it rightly
rules out any classical description of the internal
dynamics of the system. With the help of the principle
of complementarity the ‘“‘external observation” formu-
lation nevertheless keeps all it consistently can of
classical concepts. Without this possibility of classical
measuring equipment the mathematical machinery of
quantum mechanics would seem at first sight to admit
no correlation with the physical world.

Instead of founding quantum mechanics upon
classical physics, the “relative state” formulation uses
a completely different kind of model for physics. This
new model has a character all of its own ; is conceptually

2 Chapter by Niels Bohr in Albert Einstein, Philosopher-
Scientist, edited by P. A, Schilpp (The Library of Living Phil-
osophers, Inc., Evanston, Illinois, 1949).
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self-contained ; defines its own possibilities for inter-
pretation; and does not require for its formulation any
reference to classical concepts. It is difficult to make
clear how decisively the “relative state” formulation
drops classical concepts. One’s initial unhappiness at
this step can be matched but few times in history®:
when Newton described gravity by anything so pre-
posterous as action at a distance; when Maxwell
described anything as natural as action at a distance in
terms as unnatural as field theory ; when Einstein denied
a privileged character to any coordinate system, and
the whole foundations of physical measurement at
first sight seemed to collapse. How can one consider
seriously a model for nature that follows neither the
Newtonian scheme, in which coordinates are functions
of time, nor the “external observation” description,
where probabilities are ascribed to the possible out-
comes of a measurement? Merely to analyze the alterna-
tive decompositions of a state function, as in (1), with-
out saying what the decomposition means or how to
interpret it, is apparently to define a theoretical struc-
ture almost as poorly as possible ! Nothing quite com-
parable can be cited from the rest of physics except
the principle in general relativity that all regular co-
ordinate systems are equally justified. As in general
relativity, so in the relative-state formulation of quan-
tum mechanics the analysis of observation is the key
to the physical interpretation.

Observations are not made from outside the system
by some super-observer. There is no observer on hand
to use the conventional ‘‘external observation” theory.
Instead, the whole of the observer apparatus is treated
in the mathematical model as part of an isolated system.
All that the model will say or ever can say about ob-
servers is contained in the interrelations of eigen-
functions for the object part of this isolated system and
relative state functions of the remaining part of the
system. Every attempt to ascribe probabilities to ob-
servables is as out of place in the relative state formalism
as it would be in any kind of quantum physics to ascribe
coordinate and momentum to a particle at the same
time. The word “probability” implies the notion of
observation from outside with equipment that will be
described typically in classical terms. Neither these
classical terms, nor observation from outside, nor a
priori probability considerations come into the founda-
tions of the relative state form of quantum theory.

So much for the conceptual differences between the
new and old formulations. Now for their correspondence.
The preceding paper shows that this correspondence
is detailed and close. The tracing out of the correspond-
ence demands that the system include something that
can be called an observing subsystem. This subsystem
can be as simple as a particle which is to collide with a
particle that is under study. In this case the correspond-

3See, for example, Philipp Frank’s Modern Science and Iis
Philosophy (George Braziller, New York, 1955), Chap. 12.

ence occurs at a primitive level between the relative
state formalism where the system consists of two
particles, and the external observation theory where
the system consists of only one particle. The correla-
tions between the eigenfunctions of the object particle
and the relative state functions of the observer particle
in the one scheme are closely related in the pther scheme
to the familiar statements about the relative proba-
bilities for various possible outcomes of a measurement
on the object particle.

A more detailed correspondence can be traced be-
tween the two forms of quantum theory when the ob-
serving system is sufficiently complex to have what can
be described as memory states. In this case one can see
the complementary aspects of the usual external ob-
servation theory coming into evidence in another way
in the relative state theory. They are expressed in terms
of limitations on the degree of correlation between the
memory states for successive observations on a system
of the same quantity, when there has been an inter-
vening observation of a noncommuting quantity. In
this sense one has in the relative state formalism for the
first time the possibility of a closed mathematical model
for complementarity.

In physics it is not enough for a single observer or
apparatus to make measurements. Different pieces of
equipment that make the same type of measurement on
the same object system must show a pattern of con-
sistency if the concept of measurement is to make sense.
Does not such consistency demand the external ob-
servation formulation of quantum theory? There the
results of the measurements can be spelled out in
classical language. Is not such “language” a pre-
requisite for comparing the measurements made by

different observing systems?

The analysis of multiple observers in the preceding
paper by the theory of relative states indicates that
the necessary consistency between measurements is
already obtained without going to the external ob-
server formulation. To describe this situation one can
use if he will the words ‘‘communication in clear terms
always demands classical concepts.” However, the
kind of physics that goes on does not adjust itself to the
available terminology; the terminology has to adjust
itself in accordance with the kind of physics that goes
on. In brief, the problem of multiple observers solves
itself within the theory of relative states, not by adding
the conventional theory of measurement to that theory.

It would be too much to hope that this brief survey
should put the relative state formulation of quantum
theory into completely clear focus. One can at any rate
end by saying what it does not do. It does not seek to
supplant the conventional external observer formalism,
but to give a new and independent foundation for that
formalism. It does not introduce the idea of a super-
observer; it rejects that concept from the start. It does
not supply a prescription to say what is the correct
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functional form of the Hamiltonian of any given system.
Neither does it supply any prediction as to the func-
tional dependence of the over-all state function of the
isolated system upon the variables of the system. But
neither does the classical universe of Laplace supply
any prescription for the original positions and veloc-
ities of all the particles whose future behavior Laplace
stood ready to predict. In other words, the relative
state theory does not pretend to answer all the questions
of physics. The concept of relative state does demand a

totally new view of the foundational character of
physics. No escape seems possible from this relative
state formulation if one wants to have a complete
mathematical model for the quantum mechanics that
is internal to an isolated system. Apart from Everett’s
concept of relative states, no self-consistent system of
ideas is at hand to explain what one shall mean by
quantizing? a closed system like the universe of general
relativity.
4 C. W. Misner, Revs. Modern Phys. 29, 497 (1957).
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Quantum mechanics

and reality

Could the solution to the dilemma of

indeterminism be a universe in which all possible outcomes

of an experiment actually occur?

Bryce S. DeWitt

Despite its enormous practical success,
quantum theory is so contrary to intui-
tion that, even after 45 years, the ex-
perts themselves still do not all agree
what to make of it. The area of dis-
agreement centers primarily around the
problem of describing observations.
Formally, the result of a measurement
is a superposition of vectors, each repre-
senting the quantity being observed as
having one of its possible values. The
question that has to be answered is how
this superposition can be reconciled
with the fact that in practice we only
observe one value. How is the measur-
ing instrument prodded into making up
its mind which value it has observed?

Of the three main proposals for solv-
ing this dilemma, [ shall focus on one
that pictures the universe as continually
splitting into a multiplicity of mutually
unobservable but equally real worlds,
in each one of which a measurement
does give a definite result. Although
this proposal leads to a bizarre world
view, it may be the most satisfying
answer yet advanced.

Quantum theory of measurement

In its simplest form the quantum
theory of measurement considers a world
composed of just two dynamical en-
tities, a system and an apparatus. Both
are subject to quantum-mechanical

Bryce DeWitt is professor of physics at
the University of North Carolina.

laws, and hence one may form a com-
bined state vector that can be expanded
in terms of an orthonormal set of basis
vectors

ls,4) = [5)|4) (1

where s is an eigenvalue of some system
observable and A is an eigenvalue of
some apparatus observable. (Additional
labels have been suppressed for sim-
plicity.) The Cartesian product struc-
ture of equation 1 reflects an implicit
assumption that, under appropriate con-
ditions, such as the absence of coupling,
the system and apparatus can act as if
they are isolated, independent and dis-
tinguishable. It is also convenient to
assume that the eigenvalue s ranges
over a discrete set while the eigenvalue
A ranges over a continuum,

Suppose that the state of the world at
some initial instant is represented by a
normalized vector of the form

[¥o) = [y)|®) (@)

where |y) refers to the system and |®)
to the apparatus. In such a state the
system and apparatus are said to be
“uncorrelated.” For the apparatus to
learn something about the system the
two must be coupled together for a cer-
tain period, so that their combined state
will not retain the form of equation 2
as time passes. The final result of the
coupling will be described by the action
of a certain unitary operator U
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Schrddinger’s cat. The animal trapped in a room together with a Geiger counter and a hammer,
which, upon discharge of the counter, smashes a flask af prussic acid. The counter contains a trace
of radioactive material—just enough that in one hour there is a 509% chance one of the nuclei will
decay and therefore an equal chance the cat will be poisoned. At the end of the hour the total wave
function for the system will have a form in which the living cat and the dead cat are mixed in equal
portions. Schrédinger felt that the wave mechanics that led to this paradox presented ‘an unaccept-
able description of reality. However, Everett, Wheeler and Graham'’s interpretation of quantum me-
chanics pictures the cats as inhabiting two simultaneous, noninteracting, but equally real worlds.

) = Ul (3) Is this definition adequate?

Because the apparatus observes the This particular choice for U, essen-
system and not vice versa, we must tially formulated by John von Neu-
choose a coupling operator U that re- mann,! is frequently criticized because it
flects this separation of function. Let is not sufficiently general and because it
U have the following action on the basis  artificially delimits the concept of
vectors defined in equation 1 (or on measurement. Some writers? have also
some similar basis) : insisted that the process described by

. B s equation 4 mercly prepares the system
Ulsd) = ls.d+g5) = Is)ld +g5) (4) and that the meai;urement is notycom-
Here, g is a coupling constant, which plete until a more complicated piece of
may be assumed to be adjustable. If apparatus observes the outcome of the

the initial state of the system were |s)
and that of the apparatus were |A) then
this coupling would be said to result in
an “observation,” by the apparatus, that
the system observable has the value s.
This observation or “measurement,”
would be regarded as “stored” in the
apparatus “memory” by virtue of the
permanent shift from [A) to |A + gs)
in the apparatus state vector.

preparation.

It is perfectly true that laboratory
measurements are much more compli-
cated than that described by equation
4 and often involve interactions that do
not establish precise correlations be-
tween pairs of observables such as s and
A. However, apart from such noncor-
relative interactions, every laboratory
measurement consists of one or more
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sequences of interactions, each essen-
tially of the von Neumann type.
Although it is only the results of the
final interactions with the recording de-
vices that we usually regard as being
stored, each von Neumann-type “ap-
paratus” in every sequence leading to a
final interaction may itself be said to
possess a meniory, at least momentarily.
This memory differs in no fundamental
way from that of the sophisticated auto-
maton (apparatus-plus-memory  se-
quence) at the end of the line. It is the
clementary component that must be un-
derstood if we are to understand quan-
tum mechanics itself.

In his original analysis of the measure-
ment process,! von Neumann assumed
that the coupling between system and
apparatus leaves the system observable
s undisturbed.  Most of his conclusions
would have remained unaffected had he
removed this restriction, and we are not
making such an assumption here. Al-
though measurements of the nondisturb-
ing tvpe do cxist, more frequently the
observable suffers a change. It can
nevertheless be shown? that if suitable
devices are used. such as the compensa-
tion devices introduced by Niels Bohr
and Leon Rosenfeld in their analysis of
electromagnetic-field measurements,*
the apparatus can record what the value
of the syvstem observable would have
been without the coupling. For this
reason, we work in a modified version
of the so-called “interaction picture,” in
which only that part of the state vector
that refers to the apparatus changes dur-
ing the coupling interval.

If the coupling is known, the hypo-
thetical undisturbed svstem observable
may be expressed in terms of the actual
dynamical variables of svstem plus ap-
paratus.  Hence, the operator of which
this observable is an eigenvalue is not
itself hypothetical, and no inconsistency
will arise if we take it to be the observable
to which the label s refers on the right side
of equation 4.,

Infinite regression

Consider now what happens to the
initial state vector in equation 2 as a
result of the measurement process of
equation 4. Using the orthonormality
and assumed completeness of the basis
vectors, we easily find that

W) = Yl @[s]) (5)

where
= (s} (6)
lo[s] = P(Dd4 (7)

P(4) = (4]d) (8)

The final state vector in equation 5 does
not represent the system observable as
having anv unique value—unless, of
course, 'y) happens to be one of the
basis vectors |s). Rather it is a linear
superposition of vectors ')} ®[s]). each
of which represents the system observ-
able as having assumed one of its pos-
sible values and the apparatus as having
observed that value. For each possi-
bility the observation will be a good
one, that is, capable of distinguishing
adjacent values of s, provided

Ad K gAs (9)

where As is the spacing between ad-
jacent values and AA is the variance in
A about its mean value relative to the
distribution function '®(A)!2.  Under
these conditions we have

(@[s)|@[s']) = (10)

In other words, the wave function of
the apparatus takes the form of a packet
that is initially single but subsequently
splits, as a result of the coupling to the
system, into a multitude of mutually
orthogonal packets, one for each value
of s.

Here the controversies over the inter-
pretation of quantum mechanics start.
For most people, a state like that of
cquation 5 does not represent the actual
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occurrence of an observation. They con-
ceive the apparatus to have entered a
kind of schizophrenic state in which it
is unable to decide what value it has
found for the system observable. At
the same time they can not deny that the
coupling chosen between system and
apparatus would, in the classical theory,
have led to a definite outcome. They
therefore face a crisis. How can they
prod the apparatus into making up its
mind?

The usual suggestion is to introduce a
second apparatus to get at the facts
simply by looking at the first apparatus
to see what it has recorded. But an
analysis carried out along the above lines
quickly shows that the second apparatus
performs no better than the first. It too
goes into a state of schizophrenia. The
same thing happens with a third ap-
paratus, and a fourth, and so on. This
chain, "known as “von Neumann’s
catastrophe of infinite regression,” only
makes the crisis worse.

Change the rules

There are essentially three distinct
ways of getting out of the crisis. The
first is to change the rules of the game
by changing the theory, the object be-
ing to break von Neumann’s infinite
chain. Eugene Wigner is the most dis-
tinguished proponent of this method.
Taking a remarkably anthropocentric
stand, he proposes that the entry of the
measurement signal into the conscious-

‘“The buck stops here.”

>

DEWITT

ness of an observer is what triggers the
decision and breaks the chain.® Cer-
tainly the chain had better be broken
at this point, as the human brain is
usually where laboratory-measurement
sequences terminate. One is reminded
of the sign that used to stand on Presi-
dent Truman’s desk: “The buck stops
here.”

Wigner does not indulge in mere
handwaving; he actually sketches a pos-
sible mathematical description of the
conversion from a pure to a mixed state,
which might come about as a result of
the grossly nonlinear departures from
the normal Schrédinger equation that he
believes must occur when conscious
beings enter the picture. He also pro-
poses that a search be made for unusual
effects of consciousness acting on mat-
ter.5

Another proponent of the change-the-
rules method is David Bohm.6:7 Unlike
Wigner, who does not wish to change
the theory below the level of conscious-
ness, Bohm and his school want to
change the foundations so that even the
first apparatus is cured of its schizo-
phrenia. This they do by introducing
so-called “hidden variables.” Whatever
else may be said of hidden-variable
theories, it must be admitted that they
do what they are supposed to. The
first such theory® in fact worked too
well; there was no way of distinguish-
ing it experimentally from conventional
quantum mechanics. More recent hid-
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Wigner’s solution to the dilemma of the schizophrenic apparatus is to claim
that the entry of the measurement signal into the consciousness of a human observer triggers the
decision as to which of the possible outcomes is observed—that is, whether the cat is alive or dead.
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den-variable theories are susceptible to
possible experimental verification (o:
disproof) .7

The Copenhagen collapse

The second method of escaping the
von Neumann catastrophe is to accept
the so-called “conventional,” or “Copen-
hagen,” interpretation of quantum
mechanics.  (Reference 8 contains a
selected list of papers on this topic.)
In speaking of the adherents of this in-
terpretation it is important to distinguish
the active adherents from the rest, and
to realize that even most textbook au-
thors are not included among the
former. If a poll were conducted
among physicists, the majority would
profess membership in the conventional-
ist camp, just as most Americans would
claim to believe in the Bill of Rights,
whether they had ever read it or not.
The great difficulty in dealing with the
activists in this camp is that they too
change the rules of the game but, unlike
Wigner and Bohm, pretend that they
don’t.

According to the Copenhagen inter-
pretation of quantum mechanics, when-
ever a state vector attains a form like
that in equation 5 it immediately col-
lapses. The wave function, instead of
consisting of a multitude of packets, re-
duces to a single packet, and the vector
[¥,) reduces to a corresponding element
Is)®[s] of the superposition. To which
element of the superposition it reduces
one can not say. One instead assigns a
probability distribution to the possible
outcomes, with weights given by

w, = le,f? (11)

The collapse of the state vector and
the assignment of statistical weights do
not follow from the Schrodinger equa-
tion, which generates the operator U
(equation 4). They are consequences
of an extemal a priori metaphysics,
which is allowed to intervene at this
point and suspend the Schrodinger
equation, or rather replace the boundary

conditions on its solution by those of
the collapsed state vector. Bohm and
Wigner try to construct explicit mech-
anisms for bringing about the collapse,
but the conventionalists claim that it
does not matter how the state vector is
collapsed. To them the state vector
does not represent reality but only an
algorithm for making statistical predic-
tions. In fact, if the measurement in-
volves a von Neumann chain they are
even willing to leave the state vector
uncollapsed over an arbitrary number of
links, just so long as it is treated as
collapsed somewhere along the line.
The Copenhagen view promotes the
impression that the collapse of the state
vector, and even the state vector itself,
is all in the mind. If this impression is

- correct, then what becomes of reality?

How can one treat so cavalierly the
objective world that obviously exists all
around us? Einstein, who opposed to
his death the metaphysical solution of
the Copenhagen school, must surely
have expressed himself thus in his mo-
ments of private indignation over the
quantum theory. I am convinced that
these sentiments also underlie much of
the current dissatisfaction with the con-
ventional interpretation of quantum
mechanics.

Historical interpretations

This problem of the physical inter-
pretation of the quantum theory haunted
its earliest designers. In 1925 and
1926 Werner Heisenberg had just suc-
ceeded in breaking the quantum theory
from its moorings to the old quantum
rules. Through the work of Max Born,
Pascual Jordan, Erwin Schrodinger, P.
A. M. Dirac and Heisenberg himself,
this theory soon acquired a fully de-
veloped mathematical formalism. The
challenge then arose of elucidating the
physical interpretation of this formalism
independently of anything that had
gone on before.

Heisenberg attempted to meet this
challenge by inventing numerous
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thought experiments, each of which
was subjected to the question: “Can
it be described by the formalism?” He
conjectured that the set of experiments
for which the answer is “yes” is identi-
cal to the set permitted by nature.’
To put the question in its most ex-
treme form in each case meant describ-
ing the complete experiment, including
the measuring apparatus itself, in
quantum-mechanical terms.

At this point Bohr entered the picture
and deflected Heisenberg somewhat
from his original program. Bohr con-
vinced Heisenberg and most other
physicists that quantum mechanics has
no meaning in the absence of a classical
realm capable of unambiguously record-
ing the results of observations. The
mixture of metaphysics with physics,
which this notion entailed, led to the
almost universal belief that the chief
issues of interpretation are epistemo-
logical rather than ontological: The
quantum realm must be viewed as a
kind of ghostly world whose symbols,
such as the wave function, represent
potentiality rather than reality.

The EWG metatheorem

What if we forgot all metaphysical
ideas and started over again at the
point where Heisenberg found himself
in 19257 Of course we can not forget
everything; we will inevitably use 45
years of hindsight in attempting to re-
structure our interpretation of quantum
mechanics. Let us nevertheless try
» to take the mathematical formalism
of quantum mechanics as it stands with-
out adding anything to it
P to deny the existence of a separate
classical realm
» to assert that the state vector never
collapses.

In other words, what if we assert that
the formalism is all, that nothing else
is needed? Can we get away with it?
The answer is that we can. The proof
of this assertion was first given in 1957
by Hugh Everettl® with the encourage-

ment of John Wheeler!! and has been
subsequently elaborated by R. Neill
Graham.12 It constitutes the third way
of getting out of the crisis posed by
the catastrophe of infinite regression.

Everett, Wheeler and Graham
(EWG) postulate that the real world,
or any isolated part of it one may wish
for the moment to regard as the world,
is faithfully represented solely by the
following mathematical objects: a vec-
tor in a Hilbert space; a set of dy-
namical equations (derived from a
variational principle) for a set of opera-
tors that act on the Hilbert space, and a
set of commutation relations for the
operators {derived from the Poisson
brackets of the classical theory by the
quantization rule, where classical ana-
logs exist). Only one additional postu-
late is then needed to give physical
meaning to the mathematics. This is
the postulate of complexity: The world
must be sufficiently complicated that
it be decomposable into systems and
apparatuses.

Without drawing on any external
metaphysics or mathematics other than
the standard rules of logic, EWG are
able, from these postulates, to prove
the following metatheorem: The
mathematical formalism of the quantum
theory is capable of yielding its own in-
terpretation. To prove this meta-
theorem, EWG must answer two ques-
tions:

» How can the conventional probability
interpretation of quantum mechanics
emerge from the formalism itself?

» How can any correspondence with
reality be achieved if the state vector
never collapses?

Absolute chance

Before giving the answers to these
questions, let us note that the conven-
tional interpretation of quantum me-
chanics confuses two concepts that really
ought to be kept distinct—probability as
it relates to quantum mechanics and

QUANTUM MECHANICS AND REALITY 161

probability as it is understood in sta-
tistical mechanics. Quantum mechan-
ics is a theory that attempts to de-
scribe in mathematical language a werld
in which chance is not a measure of our
ignorance but is absolute. It  must
inevitably lead to states, like that of
equation 5, that undergo multiple fis-
sion, corresponding to the many pos-
sible outcomes of a given measurement.
Such behavior is built into the formal-
ism. However, precisely because quan-
tum-mechanical chance is not a mea-
sure of our ignorance, we ought not to
tamper with the state vector merely be-
cause we acquire new information as a
result of a measurement.

The obstacle to taking such a lofty
view of things, of course, is that it
forces us to believe in the reality of
all the simultaneous worlds represented
in the superposition described by equa-
tion 5, in each of which the measure-
ment has yielded a different outcome.
Nevertheless, this is precisely what
EWG would have us believe. Accord-
ing to them the real universe is faithfully
represented by a state vector similar to
that in equation 5 but of vastly greater
complexity. This universe is constantly
splitting into a stupendous number of
branches, all resulting from the measure-
mentlike interactions between its myr-
iads of components. Moreover, every
quantum transition taking place on
every star, in every galaxy, in every re-
mote comner of the universe is splitting
our local world on earth into myriads of
copies of itself.

A splitting universe

I still recall vividly the shock I ex-
perienced on first encountering this
multiworld concept. The idea of 10100+
slightly imperfect copies of oneself all
constantly splitting into further copies,
which ultimately become unrecogniz-
able, is not easy to reconcile with com-
mon sense. Here is schizophrenia with
a vengeance.) How pale in comparison
is the mental state of the imaginary

friend, described by Wigner,> who is
hanging in suspended animation be-
tween only two possible outcomes of a
quantum measurement. Here we must
surely protest. None of us feels like
Wigner’s friend. We do not split in
two, let alone into 101%0+! To this
EWG reply: To the extent that we
can be regarded simply as automata
and hence on a par with ordinary
measuring apparatuses, the laws of
quantum mechanics do not allow us to
feel the splits.

A good way to prove this assertion is
to begin by asking what would happen,
in the case of the measurement de-
scribed earlier by equations 4 and 5,
if one introduced a second apparatus
that not only looks at the memory
bank of the first apparatus but also
carries out an independent direct check
on the value of the system observable.
If the splitting of the universe is to be
unobservable the results had better
agree. :

The couplings necessary to ac-
complish the desired measurements are
readily set up. The final result is as
follows (see reference 13): The state
vector at the end of the coupling in-
terval again takes the form of a linear
superposition of vectors, each of which
represents the system observable as
having assumed one of its possible
values.  Although the value varies
from one element of the superposition
to another, not only do both apparatuses
within a given element observe the
value appropriate to that element, but
also, by straightforward communication,
they agree that the results of their ob-
servations are identical. The splitting
into branches is thus unobserved.

Probability interpretation

We must still discuss the questions
of the coefficients ¢, in equations § and
6. EWG give no a priori interpretation
to these coefficients. In order to find
an interpretation they introduce an ap-
paratus that makes repeated measure-
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The Copenhagen collapse. This interpretation pictures the total wave function as collapsing to one
state of the superposition and assigns a probability that the wave function will collapse to a given

state. Only for repetition on an ensemble of cats would live and dead cats be equally real.

ments on an ensemble of identical sys-
tems in identical states. The initial
state then has the form

o) = [U)l¥o). .. [®) (12)
where
Gl = o for all ¢ (13)

and the successive measurements are
described in terms of basis vectors

[s)lsa). . Ay A ) (14)

If the apparatus observes each system
exactly once, in sequence, then the nth
measurement is represented by a unitary
transition of the form

Un(|51>152>- . .lAl,A'_v.A . .,A,L,. . > =
lsdlsa). . |A Aoy . Ay + gsa, .. ) (15)

After N measurements the state vec-
tor in equation 12 is changed to

f\I/,.> = Z Colsa- - .Lv])[.rg) ..

| [s1,50. . .5a])  (16)
where
[ 51,52, . ]> =
SdA, fdAs. (A, + g5, ds + gee,. )
®(4,,4...) (17)
D(AAs. ) = (A, 4s. . |D) (18)

Although every system is initially in
exactly the same state as every other,

the apparatus does not generally record
a sequence of identical values for the
system observable, even within a single
element of the superposition of equation
16. Each memory sequence $1,8,, . . .
sy yields a certain distribution of pos-
sible values for the system observable,
and each distribution may be subjected
to a statistical analysis. The first and
simplest part of such an analysis is the
calculation of the relative frequency
function of the distribution:

1N
f(»f}fl. LSy) = { Z 85 (19)

n=1
Let us introduce the function

8(s1. . .oy) = Z[f(ﬁv“l- Cosy) — e B (20)

$

where the 1's are any positive numbers
that add up to unity. This is the first
of a hierarchy of functions that measure
the degree to which the sequence s, . . .
sy deviates from a random sequence
with weights w,. Let us choose for the,
w’s the numbers defined in equationd
11, and let us introduce an arbitrarily
small positive number . - We shall call
the sequence s, . . . sy “first random” if
8(sy . . . sy) < e and “non-first-ran-
dom” otherwise.

Suppose now we remove from the
superposition of equation 16 all those
elements for which the apparatus mem-
ory sequence is non-first-random. De-
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note the result by |¥y¢y . This vector
has the remarkable property that it dif-
fers negligibly from |¥y) in the limit
N — «. More precisely,
I_:im (JWy) — [¥y9) =0

N=—> o
foralle > 0 (21)

A proof will be found.in reference 13.
A similar result is obtained if |¥y¢)
is redefined by excluding, in addition,
elements of the superposition whose
memory sequences fail to meet any
finite combination of the infinity of
other requirements for a random se-
quence. The conventional probability
interpretation of quantum mechanics
thus emerges from the formalism it-
self. .Nonrandom memory sequences in
equation 16 are of measure zero in the
Hilbert space, in the limit as N goes to
infinity. Each automaton in the super-
position sees the world obeying the
familiar statistical quantum laws. How-
ever, there exists no outside agency that
can designate which branch of the
superposition is to be regarded as the
real world. All are equally real, and
yet each is unaware of the others.
These conclusions obviously admit of
immediate extension to the world of
cosmology. Its state vector is like a
tree with an enormous number of

branches. Each branch corresponds to-

a possible universe-as-we-actually-see-it.

Maverick worlds

The alert reader may now object that
the above argument is circular, that in
order to derive the physical probability
interpretation of quantum mechanics,
based on sequences of observations, we
have introduced a nonphysical prob-
ability concept, namely that of the
measure of a subspace in Hilbert space.
This concept is alien to experimental
physics because it involves many ele-
ments of the superposition at once, and
hence many simultaneous worlds, that
are supposed to be unaware of one an-
other.

The problem that this objection raises
is like many that have arisen in the
long history of probability theory. Actu-
ally, EWG do not in the end exclude
any element of the superposition. All
the worlds are there, even those in
which everything goes wrong and all
the statistical laws break down. The
situation is no different from that which
we face in ordinary statistical mechanics.
If the initial conditions were right, the
universe-as-we-see-it could be a place in
which heat sometimes flows from cold
bodies to hot. We can perhaps argue
that in those branches in which the uni-
verse makes a habit of misbehaving in
this way, life fails to evolve; so no intel-
ligent automata are around to be
amazed by it.

It is also possible that maverick
worlds are simply absent from the grand
superposition. This could be the case if
ordinary three-space is compact and
the universe is finite. The wave func-
tion of a finite universe must itself con-
tain only a finite number of branches.
It simply may not have enough fine
structure to accommodate maverick
worlds, The extreme smallness of the
portion of Hilbert space that such
worlds would have to occupy becomes
obvious when one compares the length
of a Poincaré cycle, for even a small
portion of the universe, to a typical
cosmological time scale.

Questions of practicality

The concept of a universal wave
function leads to important questions
regarding the practical application of
the quantum-mechanical formalism. If
I am part of the universe, how does it
happen that I am able, without running
into inconsistencies, to include as much
or as little as I like of the real world of
cosmology in my state vector? Why
should T be so fortunate as to be able, in
practice, to avoid dealing with the state
vector of the universe?

The answer to these questions is to be
found in the statistical implications of
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sequences of measurements of the kind
that led us to the state vector of equa-
tion 16. Consider one of the memory
sequences in this state vector. This
memory sequence defines an average

value for the system observable, given
by

(&)_glmN = Z sf(s3s1. - .5n)  (22)
If the sequence is random, as it is in-
creasingly likely to be when N becomes
large, this average will differ only by
an amount of order ¢ from the average

() = > sw, (23)

But the latter average may also be ex-
pressed in the form

() = Wlsl¥) (24)

where |¢) is the initial state vector of
any one of the identical systems and
s is the operator of which the s’s are the
eigenvalues. In this form the basis
vectors |s) do not appear. Had we
chosen to introduce a different appara-
tus, designed to measure some observ-
able r not equal to s, a sequence of re-
peated measurements would have
yielded in this case an average approxi-
mately equal to

(r) = Wlrly) (25)

In terms of the basis vectors |s) this
average is given by

{r) = Z ¢ *{s|r|s o (26)
5,57

Now suppose that we first measure s
and then perform a statistical analysis
on r. We introduce a second apparatus
that performs a sequence of observations
on a set of identical two-component
systems all in identical states given by
the vector |¥,) of equation 5. Each of
the latter systems is composed of one
of the original systems together with an
apparatus that has just measured the
observable s. In view of the packet
orthogonality relations, given by equa-

tion 10, we shall find for the average
of r in this case

0 = (Wl w) = 3 wlslel) (27)

s

The averages in equations 26 and 27
are generally not equal. In equation
27, the measurement of s, which the
first apparatus has performed, has de-
stroyed the quantum interference effects
that are still present in equation 26.
Thus the elements of the superposition
in equation 5 may be treated as if
they were members of a statistical en-
semble.

This result is what allows us, in prac-
tice, to collapse the state vector after
a measurement has occurred, and to
use the techniques of ordinary statistical
mechanics, in which we change the
boundary conditions upon receipt of
new information. It is also what permits
us to introduce systems having well
defined initial states, without at the
same time introducing the apparatuses
that prepared the systems in those states.
In brief, it is what allows us to start
at any point in any branch of the uni-
versal state vector without worrying
about  previous or simultaneous
branches.

We may, in principle, restore the in-
terference effects of equation 26 by
bringing the apparatus packets back
together again. But then the correla-
tions between system and apparatus are
destroyed, the apparatus memory is
wiped out and no measurement results.
If one attempts to maintain the correla-
tions by sneaking in a second apparatus
to “have a look” before the packets are
brought back together, then the state
vector of the second apparatus must be
introduced, and the separation of its
packets will destroy the interference
effects.

Final assessment

Clearly the EWG view of quantum
mechanics leads to experimental pre-
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dictions identical with those of the
Copenhagen view. This, of course, is
its major weakness. Like the original
Bohm theory® it can never receive op-
erational support in the laboratory. No
experiment can reveal the existence of
the “other worlds” in a superposition
like that in equations 5 and16. How-
ever, the EWG theory does have the
pedagogical merit of bringing most of
the fundamental issues of measurement
theory clearly into the foreground, and
hence of providing a useful framework
for discussion.

Moreover a decision between the two
interpretations may ultimately be made
on grounds other than direct laboratory
experimentation. For example, in the
very early moments of the universe,
during the cosmological “Big Bang,”
the universal wave function may have
possessed an overall coherence as yet
unimpaired by condensation into non-
interfering branches. Such initial co-
herence may have testable implications
for cosmology. QA

Finally, the EWG interpretation of
quantum mechanics has an important
contribution to make to the philosophy
of science. By showing that formalism
alone is sufficient to generate interpre-
tation, it has breathed new life into the
old idea of a direct correspondence be-
tween formalism and reality. The
reality implied here is admittedly biz-
arre. To anyone who is awestruck by
the vastness of the presently known
universe, the view from where Everett,
Wheeler and Graham sit is truly im-
pressive. Yet it is a completely causal
view, which even Einstein might have
accepted. At any rate, it has a better
claim than most to be the natural end
product of the interpretation program
begun by Heisenberg in 1925.
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Introduction.

Although forty five years have passed since Heisenberg first unlocked the
door to the riches of modern quantum theory, agreement has never been reached
on the conceptual foundations of this theory. The disagreement is well il-
lustrated by the variety of opinions expressed in the other lectures we have
heard in the past few days, and I shall make no attempt to summarize it.
Let me turn immediately to my main purpose, which is to describe one of the
most bizarre and at the same time one of the most straightforward interpre-
tations of quantum mechanics that has ever been put forward, and that has
been unjustifiably neglected since its appearance thirteen years ago.

This interpretation, which is due to EVERETT [1], asserts the following:

1) The mathematical formalism of quantum mechanics is sufficient as it
stands. No metaphysics needs to be added to it.

2) It is unnecessary to introduce external observers or to postulate the
existence of a realm where the laws of classical physies hold sway.

3) It makes sense to talk about a state vector for the whole universe.

4) This state vector never collapses, and hence the universe as a whole
is rigorously deterministie.

5) The ergodic properties of laboratory measuring instruments, although
strong guarantgrs of the internal consistency of the statistical interpretation
of quantum mechanics, are inessential to its foundations.

6) The statistical interpretation itself need not be imposed a priori.

(*) The research behind these lectures was supported by a grant from the National

Science Foundation.
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In order to arrive at such assertions Everett must make certain assumptions.
It is possible to be fairly precise about these without getting too technical,
a8 they are quite simple. Basically Everett introduces two postulates, one
concerning the mathematical content of the quantum formalism and one con-
concerning the complexity of the real world:

a) Postulate of mathematical content. The real world, or any isolated part
of it one may whish for the moment to regard as the world, is faithfully rep-
resented solely by the following collection of mathematical objects:

1) a vector in a Hilbert space;

2) a get of dynamical equations (derivable from a variational principle)
for a set of opcrators which act on the Hilbert space;

3) a set of commutation relations for the operators (derived from the
Poisson brackets of the classical theory by the quantization rule, in the case
of those operators that possess classical analogs).

b) Postulate of complexity. The world is decomposable into systems and
apparata.

The first postulate is a statement of the conventional mathematical appa-
ratus of quantum physics and is hardly controversial. Or rather, it would be
hardly controversial were it not for the appearance of the word «faithfully ».
The use of this word implies a return to naive realism and the old-fashioned
idea that there can be a direct correspondence between formalism and reality.
No longer, says EVERETT, are we to be bamboozled into believing that the
chief issues of interpretation are epistemological rather than ontological and
that the quantum realm must be viewed as a kind of ghostly world whose
mathematical symbols represent potentiality rather than reality. The symbols
of quantum mechanics represent reality just as much as do those of classical
mechanies.

The second postulate is incomplete as I have stated it here, because the
words « systems » and « apparata » have not been defined. This deficiency will
be remedied by the display of actual examples in the Sections to follow.

Without drawing on any external metaphysics or mathematics other than
the standard rules of logic, it is possible, from these two postulates alone, to
prove the following remarkable metatheorem: The mathematical formalism of
the quantum theory is capable of yielding its own interpretation.

In one sense this metatheorem has already been proved. Historically, the
mathematical formalism of the quantum theory was invented before its inter-
pretation was understoed. The symbols could be manipulated and ecertain
quantities calculated, derived or guessed by a sort of magical intuition before
it was known precisely what the symbols meant. It took about two years from
the time of Heisenberg’s first discovery for the symbols to clarify themselves.
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The early history of quantum mechanies is not an isolated instance of such
a situation in physics. Other examples, in which formalism came before inter-
pretation, are to be found in the history of the Dirac wave equation, the history
of quantum electrodynamics, and, more recently, the history of quantum
geometrodynamics.

In all these cases, however, a certain met_aphysics was present to begin
with. In the early history of quantum mechanics, particularly, Bohr’s meta-
physical ideas played a fundamental role. Here we are trying to start from
scratch and to show that much less than was previously thought is needed in
the way of postulational input in order to prove the metatheorem.

Proofs in metamathematics, or metaphysies, require first the intreduction of
a carefully constructed syntax. If I were attempting to be rigorous I should
replace words like «system », « apparatus, » «state, » « observable, » and even
the statement of the metatheorem itself, by symbols subject, together with
the usual mathematical symbols of the quantum formalism, to certain formal
rules of manipulation but empty of any a priori meaning. These words would
then acquire semantic content only a posteriori, after the consequences of
Everett’s postulates have been investigated.

This remains a program for the future, to be carried out by some enter-
prising analytical philosopher. Here I intend to proceed quite informally,
using conventional words pretty much in conventional ways. However, I
shall leave them with a certain semantic vagueness at the outset. Thus I
shall assume that a state is associated with a certain nonvanishing veector in
Hilbert space, that an observable is associated with a certain Hermitian oper-
ator which acts on the Hilbert space, and that a dynamical entity is associated
with a set of operators generating a certain algebra and satisfying certain dyna-
mical equations, but I shall not be very precise (until Iater) about the nature
of these associations. Precision, and hence meaning, will be acquired only by
examining the quantum symbolism in a clear and specific context, namely,
that of a measurement process.

PArT I.

The Quantum Theory of Measurement.

1. — System, apparatus and coupling.

In its simplest form the quantum theory of measurement considers a world
composed of just two dynamical entities, a system and an apparatus. It is the
role of the apparatus to measure the value (a so far undefined phrase) of some
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system observable s. For this purpose the two must be coupled together (an-
other so far undefined phrase) for a certain interval of time which we shall sup-
pose finite. First, however, let us suppose the system and apparatus to be
uncoupled so that we may examine them separately. It will be the deviation
in their behavior, when coupled, from their uncoupled behavior which
constitutes the measurement.

1In the uncoupled condition the system is associated with a certain operator
algebra, to which s belongs, and the apparatus is associated with another
independent operator algebra. The meaning of the word «independent, » and
hence of the word « uncoupled, » is that the two algebras commute. The Hilbert
space then decomposes into a Cartesian product. A choice of basis veetors
reflecting this decomposition may be introduced. For example,

(1.1) 'S’ 45 = |8>|A> y

where s is an eigenvalue of s and 4 is an eigenvalue of some apparatus ob-
servable A, other labels that may be needed to complete the specification of
the basis being here suppressed for simplicity. For later convenience we shall
assume that the eigenvalue s ranges over a discrete set while the eigenvalue 4
ranges over a continuum. Conventional orthonormality and completeness con-
ditions will then be assumed:

(1.2) <s lsl> - 633’ ’ <A ’11’> = 6(A -A’) ’

(1.3) zf\s, A> (s, Aldd=1.

The combined state of system and apparatus will be represented (in a yet
to be determined sense) by a certain nonvanishing Hilbert-space vector [¥).
It may happen that this vector itself decomposes into a Cartesian product

(1.4) ¥ = v> 1P,

where |y) lies in the Hilbert space generated by the operator algebra of the
system and |@) lies in the Hilbert space generated by the operator algebra
of the apparatus. In this event the uncoupled system and apparatus are said
to be uncorrelated. Each may be regarded as being in its own independent state,
that of the system being represented by |p> and that of the apparatus by |@).
I shall not ask until much later (Sect. 5) how we can contrive to be sure that
a real system and a real apparatus will be in an uncorrelated state. I shall
simply assume that such a state can be produced upon demand. In fact, I
shall demand it right now.
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Given, then, a system and an apparatus which, when uncoupled, find them-
selves in an uncorrelated state, what can we say about this state when the
coupling is switched on? In discussing this question I am going to take the
unusual step of working in the Heisenberg picture. It is unusual because in
this picture it is not possible to follow the changes of state resulting from the
coupling by referring to the vector |¥), this vector being time-independent
and hence given once and for all. I must instead follow the time behavior of
the dynamical variables themselves, a procedure that is less familiar. The
Heisenberg picture will have the merit in later Sections, however, of permitting
a simple and direct comparison between the quantum and classical theories
of measurement, a comparison that, while not essential in itself, will heighten
the semantic content of the formalism.

When using the Heisenberg picture one should avoid careless use of conven-
tional terminology. For example, it is not correct torefer to position or momen-
tum as observables. Rather one must speak of the position at a given time or the
momentum at & given time. More generally, observables such as s or 4 must be
understood as involving particular instants or intervals of time in their intrinsic
definition. Only if s and 4 commute with the energy operator do these instants
become arbitrary. If s and 4 do not commute with the energy operator then
neither the state associated with |s) nor the state associated with [4) can be
referred to as stationary despite the fact that the vectors themselves are time-
independent. Moreover, once a measurement of s has been carried out it will
generally be difficult to repeat the measurement at a later time.

In comparing the coupled and uncoupled states of the system and appa-
ratus I shall use retarded boundary conditions. If the operator corresponding
to a certain observable (of either the system or the apparatus)is constructed
out of dynamical variables taken from an interval of time preceding the coup-
ling interval, then this operator (and hence the observable itself) will remain
unaffected by the coupling. Otherwise, it will generally suffer a change. In
particular, the observable s will generally be disturbed.

Suppose the apparatus operator A4 is built out of dynamical variables taken
from an interval of time lying to the future of the coupling interval. Then it will
generally be transformed into a new operator A when the coupling is switched on.
Since the coupling is not active, however, during the timeinterval associated with
71, the system and apparatus will once again during this time be dynamically
independent, each running undisturbed by the other. This means that the
dynamical variables out of which A is built satisfy exactly the same dynamical
equations as do those out of which A is built, and hence, by a well-known rule
of quantum mechanics, the two sets of variables must be equivalent, 7.e. related
by a unitary transformation. In particular 4 and 4 must be so related:

(1.5) A = exp[—igX]Aexp [igZ],
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where & is a certain Hermitian operator built out of the dynamical variables
of both the system and the apparatus, and g is a coupling constani.

The undisturbed system observable s, on the other hand, will not generally
be related by a unitary transformation to its disturbed form 5. This is because
the dynamical variables out of which s is built belong to a time interval that
generally coincides with the coupling interval, because the coupling is designed
precisely to measure s.

The design of the coupling is governed (on paper, at any rate) by the choice
of . We shall assume that Z and 4 have been chosen so as to satisfy the
commutation relations

(1.6) (X, A] = is,
(1.7) [Z,s] =0.
We then find

(1.8) A=A+gs.

Under these conditions the coupling ¢g& is said to secure a measurement of s,
and the result of the measurement is said to be stored in the apparatus ob-
servable A, in virtue of its transformation, as a result of the coupling, into the
operator 44 gs. The observable 4 thus constitutes a memory unit in the
apparatus.

In Sect. 8 we shall regard the switching on of the coupling from a classical
viewpoint, namely, as a meodification of the combined action functional of
the system and apparatus rather than as a unitary transformation. We shall
see precisely how this modification must be related to the operator &, andthe
question of the practical achievability of a given coupling will therefore be
carried up to the point where it becomes a question of the experimenter’s art
rather than that of the theorist. It will be sufficient for the present simply to
note that an easy way to achieve the relations (1.6) and (1.7) is to choose &
in the form:

(1.9) Z =sX,
where X is the apparatus operator canonically conjugate to 4 (%):
(1.10) X, A]=i.

Let me now call attention to the fact that the disturbed apparatus operator
A depends on the undisturbed system operator s. This means that the apparatus
records what the system observable would have been had there been no coupling.

(*) We choose units in which % = 1.
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This, is, of course, the very best kind of measurement and shows that there
is in principle no limitation to the accuracy with which a single observable
of a system may be determined. (Only when attempts are made to measure
two observables at once are there limitations on accuracy (see Sect. 10)). This
result is achieved very simply within the quantum formalism. From the clas-
sical viewpoint, however, it is not so easy to discover the modifications in the
total action functional which are needed in order to compensate for the distur-
bance which the coupling itself produces in the system. The story of the fa-
mous Bohr-Rosenfeld paper on electromagnetic field measurements [2] is a case
in point. In Sect. 8 we shall display these modifications (which are simply
generalizations of Bohr’s ingenious compensation devices) in detail.

In view of the fact that the apparatus records s and not 8, we shall have
little occasion to work with the latter. It is important, however, that one
notl become confused about this point. Given a knowledge of the explicit form
of the coupling it is always possible to express the idealized undisturbed system
observable s in terms of the actual coupled dynamical vairables of system
plus apparatus. Hence, there is nothing at allhypothetical about the operator s.
One must only remember that its expression in terms of the coupled dynamical
variables may be very complicated, so that it would, as a practical matter,
generally be very difficult to find a coupling which would, in effect, reconstruct
if for us and allow us to measure it a second time.

The alert student is probably becoming a little impatient at this point at
my speaking of the apparatus as measuring an operator. No real apparatus
can store an operator in its memory bank! What actually gets recorded is a
number, or an analog equivalent of a number. To arrive at numbers we have
to look at the state vector (1.4). With respect to the basis vectors (1.1) defined
by the uncoupled system and apparatus this vector is represented by the
function:

{(1.11) <8, A[Ep> = cs¢(A) ’
where
(1.12) o=<slyy,  DA)=<4|D).

The factorization of this function into a function ¢, referring to the system
alone and a function @(A4) referring to the apparatus alone reflects the inde-
pendence of, or lack of correlation between, the uncoupled system and ap-
paratus. The coupled system and apparatus do not display this same inde-
pendence. Relative to a basis defined by the disturbed observable A, the state
vector |¥) is no longer represented by a product of two functions, one of which
refers only to the system and the other only to the apparatus.

The new basis is obtained by carrying out the unitary transformation (1.5).
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Because

(1.13) s =exp [—igZ]sexp [igZ],

(see eq. (1.7)), it follows that we may write

(1.14) s, A> = exp [—igZ]Js, 4D .

Moreover, in view of the fact that

(1.15) [s, A]=0,

an alternative Cartesian product decomposition may be introduced:
(1.16) s, Ay = |s)|d>

the symbol |4) denoting an eigenvector of A corresponding to the eigenvalue 4.
Numerically the eigenvalue 4 is equal to the eigenvalue 4 of 4, and this is
sometimes a source of confusion. One should take care to differentiate be-
tween |4) and |4). They are not equal even though the numbers inside the
brackets are identical. Different eigenvalues will sometimes be distinguished
by adding primes, and we shall follow the rule:

(1.17) A'=4', A" =2", etc.

The vectors |s, 4> constitute a kind of mixed basis in that they are eigen-
vectors of a disturbed apparatus observable and an wndisturbed system ob-
servable. This basis is nevertheless the appropriate one to use for the analysis
of the measurement process, because the coupling is deliberately designed
to set up a correlation between the apparatus and the value that the system
observable would have assumed had there been no coupling. This correlation
may be displayed by projecting the basis vectors |s, 4> onto the state vector |¥>.
From the relations

(1.18)  Als, A> = (A + gs)|s, A) = (A + gs)]s, A> = (A + gs)|s, 4>,

it follows that, apart from an arbitrary phase factor that may be set equal
to unity, we have

(1.19) Is, A> = Is, A+ gs) = IsD|A + g5,
or alternatively

(1.20) sy A> = Is, A—gs)> = [s>|d —gs),
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where |4 -+ gs) denotes an eigenvector of A corresponding to the eigenvalue
A+ gs and |4 —gs) denotes an eigenvector of A4 corresponding to the eigen-
value A — gs. We therefore obtain

(1.21) (s, A|P) = ¢, D(A —gs) .

Although the function again factorizes, one of the factors, DA — gs),
now depends on the eigenvalues of both system and apparatus observables.
The result is a correlation between
system and apparatus that is easily
displayed in a Figure such as Fig. 1.
This Figure compares the appear- ’
ance that the functions (s, 4|%) and Y
(s, A|¥> have, in a typical case, in  +—+—
the (s, 4) and (s, A) planes respec- ,
tively. What is plotted in each A4
plane is the effective support of the
function in question, i.e. the region
where the function differs signifi-
cantly from zero. Since the spectrum of s has been taken to be discrete, these
regions appear as sets of distinet vertical line segments.

The measurement is said to be good if these line segments, in the case of
the function (s, 4%, retain their distinctness when projected onto the A axis.
In a good measurement each value of s is correlated with a distinct range of
values for 4. The quality of a measurement evidently depends not only on
the choice of an appropriate apparatus and coupling but also on the state of
the apparatus. The condition for a good measurement is expressed mathema-
tically by

>
>

<4

4
Ve line of

L
il

Fig. 1.

(1.22) A4 < gAs,
where As is the minimal spacing between those eigenvalues of s that are

contained in the effective support of the function ¢,, and A4 is the root mean
square deviation in A from its mean value relative to the function |D(4)[*:

[(4 —CA))|D(A)[2dA _

(1.23) AA? = flo(4)pad = (A4 —<A4)?,
P AP (DA D)  [AD(4)]2d4
(1.24) A = FF QP  [|o(4)]dd

It will be noted that the same vector | is used to represent the combined
state of system and apparatus in both the coupled and uncoupled cases. This
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is because we are working in the Heisenberg picture and using retarded boun-
dary conditions. Before the coupling interval the dynamical situations in the
two cases are identical. The difference between these situations that occurs
during and after the coupling interval is expressed by differences in the oper-
ator observables, not by differences in the state vector.

2. — Relative states, infinite regression, absolute chance and schizophrenia.

An alternative way of describing the correlation between system and ap-
paratus is to expand the vector [#) in terms of the basis vectors |s, 4):

2.1) 2> = 3[ls, D> <s, AWHAA = S e,fs> (03],
where ‘ ’

(2.2) 25 = [14>B(A —gs)ad ,

(2.2b) =j|z g ®(A)ad .

EvERETT [1] and WHEELER [3] have coined the expression relative states to
describe the states of the apparatus represented by the vectors |@[s]>. Rela-
tive to each system state |s) the apparatus goes into a corresponding state
|@[s]), the bracket « [s]» denoting the fact that the value s for s has been
recorded in the apparatus memory. We note that when the measurement is
good the relative states are orthogonal to one another:

(2.3) (DLs]| L)y = b,., [ 19(4) 204 .

The decomposition (2.1) does not represent the observable s as having any
unique value, unless, of course, |y> happens to be parallel to one of the basis
vectors |s). It is here that the controversies over the interpretation of quan-
tum mechanics start. For many people, the decomposition (2.1) does not rep-
resent an observation as having actually occurred. They conceive the ap-
paratus to have entered a kind of schizophrenic state in which it is unable to
decide what value it has found for s. At the same time they cannot deny that
the coupling between system and apparatus would, in the classical theory,
have led to a definite outcome (see Sect. 8). They therefore try to invent sche-
mes, both physical and metaphysical, for prodding the apparatus into making
up its mind.

Many of these schemes you willhear aboutin the other lectures. Let me merely
mention one that will not work, namely, the introduction of a second apparatus
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to get at the facts by looking at the first apparatus to see what it has recorded.
An analysis carried out along the above lines (see also Sect. 3) quickly shows
that the second performs no better than the first. It too goes into a state of
schizophrenia. The same thing happens with a third apparatus, and a fourth,
and so on. The schizophrenia only gets amplified by bringing in more and more
of the rest of the universe; it does not disappear. This is known as the cata-
strophe of infinite regression.

Some have sought a resolution of the ecatastrophe in the fact that the unitary
transformation (1.14), which is essentially due to voN NEUMANN [4], is far too
simple and specialized to describe real measurements in real laboratories.
Many physicists stress the fact that real apparata (including human beings)
are highly ergodic systems whose initial states are imperfectly known, and
that real observations may involve metastable states and nonlinear feedback
loops. I shall not review these arguments here. I shall try to show that the
questions raised by von Neumann’s idealization of a measurement are answer-
able in simpler terms. One does not solve problems by making them more
difficult.

The traditional way to solve the regression problem is by fiat. One asserts
that after the measurement is completed (¢.e. after the coupling interval) the
state vector collapses to one of the elements |s)|D[s]> in the decomposition (2.1).
To which element in the decomposition it eollapses and how the collapse comes
about one cannot say. One can only assign a probability distribution to the
possible outcomes, with weights given by

_ yls>Sslyy el
(2.4) W <1P]1/)> Z ]03,12 *

The collapse of the state vector and the assignment of statistical weights
do not follow from the dynamical equations that the dynamical variables of
the system and apparatus satisfy. They are consequences of an a priori meta-
physics that is imposed on the theory and that may be somewhat adjusted
to suit convenience. For example, if one insists on adding a second apparatus,
or even an indefinite string of apparata observing each other, one may leave
the combined state vector uncollapsed over an arbitrary number of links in
the chain, just so long as it is treated as collapsed after some observation some-
where along the line. In this way the regression problem is converted into
a pseudoproblem.

The trouble with this solution is that physics is no longer physics; it has
become metaphysics. BOHR says this in so many words: «It is wrong to think
that the task of physics is to find out how nature ¢s. Physics concerns what
we can say about nature [5]. » In a similar vein HEISENBERG remarks that the
mathematics of physics «no longer deseribes the behavior of elementary par-



178 BRYCE S. DEWITT

ticles, but only our knowledge of their behavior.» [6] According to this view
the symbols |?), s, 4, etc., do not describe the behavior of the system and
apparatus, but only a certain amount of knowledge of their behavior. As soon
as a measurement is performed, knowledge is increased and the state vector
collapses accordingly. The assignment of statistical weights to the elements
of the decomposition (2.1) implies that these elements are to be regarded as
representing the system and apparatus in exactly the same way as a statistical
ensemble represents a dynamical system in classical kinetic theory. The analogy
fails, however, in one crucial respect: There is always one member of the sta-
tistical ensemble that is a priori distinct from the others even if we do not
know how to recognize it, namely, the one that is identical to the real
classical system. No such element exists in the decomposition (2.1); reality,
for quantum systems, dissolves into a metaphysical mirage.

The traditional interpretation of quantum mechanics evidently confuses
two concepts that ought really to be kept distinet, namely, probability as
it relates to quantum mechanics and probability as it is understood in stati-
stical mechanics. Quantum mechanics is a theory that attempts to describe
in mathematical language a world in which chance is not a measure of our igno-
rance but is absolute. It is inevitable that it lead to descriptions of the world
by vectors like (2.1) which contain, in a single superposition, all the possible
outcomes of a given measurement. However, precisely because quantum-
mechanical chance is not a measure of our ignorance, we ought not to tamper
with the state vector merely because we acquire new information as a result
of a measurement.

The obstacle to taking suchan honest view of things, of course, is that it
forces us to believe in the reality of all the simultaneous worlds represented
in the superposition (2.1), in each of which the measurement has yielded a
different outcome. If we are to follow EVERETT in letting the formalism tell
its own story, without benefit of a priori metaphysics, then we must be wil-
ling to admit that even the entire universe may be faithfully represented by
(one might even say isomorphic to) a superposition like (2.1) but of vastly greater
complexity. Our universe must be viewed as constantly splitting into a stu-
pendous number of branches, all resulting from the measurementlike interact-
ions between its myriads of components. Because there exists neither a mech-
anism within the framework of the formalism nor, by definition, an entity
outside of the universe that can designate which branch of the grand super-
position is the «real» world, all branches must be regarded as equally real.

To see what this multi-world concept implies one need merely note that
because every cause, however microscopic, may ultimately propagate its effects
throughout the universe, it follows that every quantum transition taking place
on every star, in every galaxy, in every remote corner of the universe is split-
ting our local world on earth into myriads of copies of itself. Here is schizo-
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phrenia with a vengeance! The idea of 10+ glightly different copies of oneself
all constantly splitting into further copies, which ultimately become unreco-
gnizable, is hard to reconcile with the testimony of our senses, namely, that
we simply do not split. EVERETIT [1] compares this testimony with that of
the anti-Copernicans in the time of GALILEO, who did not feel the earth move.
We know now that Newtonian gravitational theory, within the framework
of classical physics, accounts completely for this lack of sensation. The present
difficulty has a similar solution. We shall show, in the next Section, that to
the extent to which we can be regarded simply as automata, and hence on a
par with ordinary measuring apparata, the laws of quantum mechanics do not
allow us to feel ourselves split. :

3. — Unobservability of the splits.

Let us begin by asking what would happen, in the case of the measurement
described by the superposition (2.1), if we introduced a second apparatus that
not only looks at the memory bank of the first apparatus but also carries out
an independent direct check on the value of the system observable. If the
splitting of the universe is to be unobservable the results had better agree.

For the system we again introduce the basis vector |sd, and for the appa-
rata in the uncoupled state we introduce basis vectors |4,> and |4,, B,) re-
spectively. The total measurement will be carried out in two steps. In the
first, both apparata observe the system observable s, by means of couplings
g%, and gZ, that satisfy

(3.1) (X, A,]=[Z., A,) = is,
(32) [‘%‘17 s] :[%’293]:07
(3.3) [‘%'UAJ:['%‘17'82]:[‘%‘25Al]:[%‘27B2]=0'

The unitary transformation generated by this coupling is
(34)  exp[—ig(Z,+ Z)]([s) |44, By)) =

=l ’Z1>|Zza B,> = |s) \Al—gs>!A2—gs, B;) .

In the second step apparatus 2 reads the memory contents of apparatus 1 by
means of a coupling §% that satisfies

(3.5) [@I’ B,] =14, ’
(3.6) [@’ s] =0,

[4_7/, A,]1=0,
¥, 4,1 =0.
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In the absence of step 1 the unitary transformation generated by this coup-
ling would be

(8.7) exp[— @g@/]( [s)|4.> 14z, Bo)) = [s>]41) 4., Ez> = [s>]|4,>|4s, B,—F4,) .

When both couplings are introduced consecutively the undisturbed observables
A,, A,, B, get transformed into disturbed observables (') 4,, 4,, B,, and the
basis vectors defined by the latter are obtained wvia the overall unitary
transformation:

(3.8)  exp[—ig¥]exp [—ig(X.+ X)I(|sX|4) 4., By)) =
= exp [—ig(F1+ X.)]exp[—ig¥1([s)|4,> |4z, Bo)) =
= Is)|4,—gsd |4, —gs, B.—F4,>,

where & is the operator into which %/ is transformed by the coupling of
step 1.

If the system and apparata are initially uncorrelated, so that the combined
state vector has the form

(3.9) 15 = [P |P2>,
then the projection of this vector onto the undisturbed basis has the form

(3.10) (s, Ay, Ay, By|V> = ¢, D,(4,) Do(4,, B,),
where

(B11)  e,=Glpd,  Dud) =<LA[PD, D4y, By) =<4y, By| Do) .
Tts projection onto the disturbed basis, however, has the form
(3.12) s, Ay, Ay B,|¥) = ¢, D,(A, — g5) P,(A4, — gs, B,—§4,),
which yields the decomposition
(313) |y =3[dd,[a4,[dB,e, )| A\, B>-

&, (A, — gs) Dy(A, — gs, B, —GA,)

= Zszlfdzz dB,¢, |3>]Z1 + gs> |Zz + gs, B, + §(Z1 + gs)> ¢1(Zl)¢2(2‘27 B,).

(*) The observation of 4, by the second apparatus (via the coupling §%) may
further disturb this observable, but this is unimportant in the present argument.
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In order to keep the interpretation of this decomposition as simple as pos-
sible it is convenient to assume that the effective support of the function
®@,(4,) is very narrow, so that the measurement of 4, by apparatus 2 resembles
the measurement of an observable having a discrete spectrum. Explicitly
we require

(3.14) AA, < AB,[7,

where A4, and AB, are defined in an obvious manner. When (3.14) holds
we may approximate (3.13) by a simple decomposition into relative states:

(3.15) [P = 2 ¢lsd [D[s])|Puls, <A4,> + gs]>

with
(3.16) @) =[|d,+gs>dy(d)ad,

(3.17) (@5, 4D =[aA,[AB, |4, + g5, By + A D, By) .

The couplings will have yielded good measurements if, in addition to (3.14),
we have
(3.18) A4, < gAs,

AA2<<9A37 AB2<<ggAS,

so that the relative states become orthogonal:

(3.19)  (By[s]|B[s']> = 63,,f|¢1(A1)]2dA1 ,

(3.20) {Dy[s, <A + g81|Du[s’, <A + g5'])> = 6ss'fdAzde2I®2(A2; Bz)l2 .

The combined state vector |¥) is again revealed (eq. (3.15)) as a linear
superposition of vectors, each of which represents the system observable s as
having asssumed one of its possible values. Although the value varies from
one element of the superposition to another, not only do both apparata within
a given element observe the value appropriate to that element, but also, by
straightforward communication, they agree that the results of their observa-
tions are identical. Apparatus 2 may be assumed to have « known in advance »
that the «mean value» of A, was (4,>. When, after the coupling ¥, ap-
paratus 2 «sees» that this mean value has shifted to {d4,) + gs, it then
« knows » that apparatus 1 has obtained the same value for s, namely s, as it did.

15 — Rendiconti S.I.F. - 1L,
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It is not difficult to devise increasingly complicated situations, in which,
for example, the apparata can make decisions by switching on various coup-
lings depending on the outcome of other observations. No inconsistencies will
ever arise, however, that will permit a given apparatus to be aware of more
than one world at a time. Not only is its own memory content always self-
consistent (think of the two apparata above as a single apparatus which can
communicate with itself) but consistency is always maintained as well in
rational discourse with other automata. Extending these conclusions to the
universe as a whole we see that from the point of view of any automaton,
within any branch of the universal state vector, schizophrenia cannot be blamed
on quantum mechanics. We also see that the catastrophe of infinite regres-
sion is not a catastrophe at all.

This is a good place to take stock of what the-formalism has taught us
go far about the meaning of the symbols appearing in it:

1) An apparatus that measures an observable never records anything
but an eigenvalue of the corresponding operator, at least if the measurement
is good.

2) The operator corresponding to a given observable represents not the
value of the observable, but rather all the values that the observable can
assume under various conditions, the values themselves being the eigenvalues.

3) The dynamical variables of a system, being operators, do not rep-
resent the system other than generically. That is, they represent not the
system as it really is, but rather all the situations in which the system might
conceivably find itself.

4) Which situation a system is actually in is specified by the state vector.
Reality is therefore described jointly by the dynamical variables and the state
vector. This reality is not the reality we customarily think of, but is a reality
composed 0f many worlds.

This list is unfortunately not yet sufficient to tell us how to apply the for-
malism to practical problems. The symbols that describe a given system,
namely, the state vector and the dynamical variables, describe not only the
system as it is observed in one of the many worlds comprising reality, but
also the system as it is seen in all the other worlds. We, who inhabit only one
of these worlds, have no symbols to describe our world alone. Because we
have no access to the other worlds it follows that we are unable to make
rigorous predictions about reality as we observe it. Although reality as
a whole is completely deterministic, our own little corner of it suffers from
indeterminism. The interpretation of the quantum mechanical formalism
(and hence the proof of Everett’s metatheorem) is complete only when we
show that this indeterminism is nevertheless limited by rigorous statistical laws.
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4. — The statistical interpretation of quantum mechanics.

When the apparatus of Sect. 1 measures the system observable s we can-
not predict what value it will record, except that this value will be an eigen-
value lying in the support of the function ¢,. Suppose, however, that the ap-
paratus makes repeated measurements on an ensemble of uncorrelated iden-
tical systems that are initially in identical states. The total state vector then
has the form

(4.1) ‘gj> = W1>|"/'2> ‘¢> :
where
(4.2) (Salyny =c¢,, for all m,

and the successive measurements are described by the action of unitary
operators on a set of basis vectors

(4.3) $.0080> oon [Ay, Ap .,

appropriate to the no-coupling situation. If the apparatusobserves each system
exactly once, in sequence, then the n-th measurement is described by a unitary
transformation of the form

(4.4) exp [—igZal([s1) 180 ... 1Ay, Agy oy Ayy D) =

= |80 [80) .on [y, Aoy iy Ap—g8,, ..

where the coupling ¢&, satisfies
(4.5) [Z., An) = 10,080, [Z )y $n]=0.

After N measurements have taken place, the first N of the undisturbed
apparatus Bbserzables A, A,, ..., find themselves transformed into disturbed
variables A4, ... 4, given by

(4.8) A, =exp[—igZ,]A, exp [igZ.],
and the basis vectors defined by the disturbed variables are

47) [sDse> on Ay . Ay Agry . >=18)

8)> o [A;— 81y ooy Ay — g8y, Ayiq ...
If we now decompose [¥) in terms of the basis vectors (4.7) we find

(4.8) P> = 3 e, ... [sDOls> ... [Dls ... 5,1,

8,83
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where
(4.9) |D[sy ... sy >

:fdgl ‘:[‘dAW+1"1‘Zl + G815 oy ZN + gSn, AN+1 >¢(Zl zﬂy -AN+1 ) ’
(4.10) DAy, Ay..) = Ay, Ay ... |D) .

It will be observed that although every system is initially in exactly the same
state as every other, the apparatus, as represented by the relative state vectors
|D[s, ... 551>, does not generally record a sequence of identical values for the
system observable, even within a single element of the superposition (4.8).
Each memory sequence s, ... s, yields a distribution of possible values for the
system observable.

Each of these distributions may be subjected to a statistical analysis. The
first and simplest part of such an analysis is the calculation of the relative
frequency function of the distribution:

l N
(4.11) 1(s; 81 ... 8y) = F;éssn .

We shall need the following easily verified properties of this function (see
Appendix A):

(4.12) > (85 81 e 8p)W, o W =W,
a8 )
(4.13) 3 [F(85 8y nn Sw) — W PW,, oon Wy = ﬁws(l —w,),
S3.- 8N

where the w’s are any numbers that, taken all together, add up to unity.
Let us choose for the w’s the numbers defined in eq. (2.4), and let us intro-
duce the funection

(4.14) 08y -er Sy) = D [f(8; 81 vev 85) —W,IP .

This is the first of a hierachy of functions that measure the degree to which
the sequence s, ... s, deviates from a random sequence with weights w,. Let
¢ be an arbitrarily small positive number. We shall call the sequence s, ... s,
first-random if 8(s, ... sy) << & and nonfirst-random otherwise.

Suppose now we remove from the superposition (4.8) all those elements for
which the apparatus memory sequence is nonfirst-random. Denote the result
by |¥,> and define

415) =T — P = T 6,0, 8Dl [Bs sy

81,8240
B(s,...on)>8
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Then, making use of (4.13), we find

(4.16) il = <P 3 wawe, ... =<P|P> 3w, ... 0w,

d(a:’:;y)?l ‘5(3:-’-.-‘!.:;)128
1 1 1
<3 <¥/]¥I>n§~6(81 ver Sy)Wsy o Wy = o P> ’E wy(1 — w,) T PP,

From this it follows that no matter how small we choose ¢ we can always find
an N big enough so that the norm of [y;> becomes smaller than any positive
number. This means that

(4.17) lim | #5) = |

It will be noted that, because of the orthogonality of the basis vectors |s;>[s,) ...,
this result holds regardless of the quality of the measurements, ¢.e. independ-
ently of whether or not the condition

(4.18) (D8, - $5)|Ds, ... 551> = <D|D> ] 6.

for good measurements is satisfied.

A gimilar result is obtained if |¥;) is redefined by excluding, in addition,
elements of the superposition (4.2) whose memory sequences fail to meet any
finite combination of the infinity of other requirements for a random sequence.
Moreover, no other choice for the w’s but (2.4) will work. The conventional sta-
tistical interpretation of quantum mechanics thus emerges from the formalism itself.
Nonrandom memory sequences in the superposition (4.8) are of measure zero
in the Hilbert space, in the limit N — oo (*). Each automaton (that is, ap-
paratus cum memory sequence) in the superposition sees the world obey the
familiar statistical quantum laws. This conclusion obviously admits of im-
mediate extension to the world of cosmology. Its state vector is like a tree
with an enormous number of branches. Each branch corresponds to a pos-
sible universe-as-we-actually-see-it.

The alert student may now object that the above argument contains an
element of circularity. In order to derive the physical probability interpreta-

(*) Everett’s original derivation of this result [1] invokes the formal equivalence
of measure theory and probability theory, and is rather too brief to be entirely satisfying.
The present derivation is essentially due to GRamaM [7] (see also ref.[8]). A more
rigorous treatment of the statistical interpretation question, which deals ecarefully
with the problem of defining the Hilbert space in the limit N —» co, has been given
by HarTLE [9].



186 BRYCE S. DEWITT

tion of the numbers w,, based on sequences of observations, we have introduced
a nonphysical probability concept, namely that of the measure of a subspace
in Hilbert space. The latter concept is alien to experimental physics because
it involves many elements of the superposition at once, and hence many simul-
taneous worlds, which are supposed to be unaware of one another.

The problem that this objection raises is like many that have arisen in
the long history of probability theory. It should be stressed that no element
of the superposition is, in the end, excluded. All the worlds are there, even
those in which everything goes wrong and all the statistical laws break down.
The situation is similar to that which we face in ordinary statistical mechanics.
If the initial conditions were right the universe-as-we-see-it could be a place
in which heat sometimes flows from cold bodies to hot. We can perhaps argue
that in those branches in which the universe makes a habit of misbehaving
in this way, life fails to evolve, so no intelligent automata are around to be
amazed by it (7).

5. — Remaining questions.

The arguments of the preceding Section complete the (informal) proof of
Everett’s metatheorem and, incidentally, provide the information that phy-
sical states are to be identified with rays in Hilbert space rather than with the
vectors themselves. This follows from the fact that no observable consequences
of any of the couplings we have introduced are changed if we multiply the
vectors [¢>, lw.), |D), ete. by arbitrary nonvanishing complex numbers. The
statistical weights w,, in particular, are unaffected thereby.

There remain, however, a number of questions that need to be cleared up.
The first is a practical one. How does it happen that we are able, without run-
ning into inconsistencies, to include as much or as little as we like of the real
world of cosmology in the state vectors and operators we use? Why should
we be so fortunate as to be able, in practice, to avoid dealing with the state
vector and operator algebra of the whole universe?

The answer to this question is to be found in the statistical implications
of sequences of measurements of the kind considered in Sect. 4. Consider one
of the memory sequences in the superposition (4.8). This memory sequence
defines an average value for the numbers s, ... s,, given by

(5.1) (8D = 2 51(85 81000 85)

8

(*) It may also happen that the arrow of time is reversed for some of the branches.
This would be the case if the state vector of the universe were invariant under time
reversal.
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If the sequence is random, as it is increasingly likely to be as N becomes large,
this average will differ only by an amount of order & from the prototypical
average:

(5.2) (s> =2 sw,,

This latter average may be regarded as an expectation value for the observable
s of a single system in the state |p).
This expectation value may be expressed in the alternative forms

_ 5 Cwlsdslyy _ (yislyy
52 =20 {plyy

In the second of these forms the basis vectors |s) do not appear. It is evident
therefore that had we chosen to introduce a different apparatus, designed to
measure some observable r not equal to s, a sequence of repeated measure-
ments would have yielded in this case an average approximately equal to

_ Lylriy>
(6-4) = {plyy 7

in which again no basis vectors appear. We can, of course, if we like, reintro-
duce the basis vectors |s), obtaining

(5.5) (ry = plyyt 2’0:<81r!8’>05r .

Now suppose that instead of performing a sequence of identical measure-
ments to obtain an experimental value for {r), we first measure s in each case
and then perform a statistical analysis on r. This could be accomplished by
introducing a second apparatus which performs a sequence of observations
on a set of identical two-component systems all in identical states given by
the vector [#) of eq. (2.1). Each of the latter systems is composed of one of
the original systems together with an apparatus that has just measured the
observable s. The job of the second apparatus is to make observations of
the r’s (ry, r;, ete.) of these two-component systems. Because a measurement
of the corresponding s has already been carried out in each case, however,
these r’s are not the undisturbed r’s but the r’s resulting from the couplings g%
That is, what we are really measuring in every case is the observable

(5.6) F=exp[—igZ]rexp[igZ].
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Within each element of the grand superpostion the second apparatus will
obtain a sequence 7, ... 7, of values for 7. If the element is typical the average
of this sequence will, by analogy with our previous analysis, be approximately
equal to

: P _
(5.7 (Fe= W =

=P 2dede’<¥’[3, A>¢s,A| exp [—igZIr exp [igZ|s', A'D(s', AP D=

= PPy Zjdzfdz'afls, Ay¢s, Alrls', A<, Ay =
= Cplpy DBy 3, [ (slrls o, 0" (A —gs) DA —gs) 4 .

If the measurements of s are good in every case, so that the relative states
(2.2) satisfy the orthogonality property (2.3), then this average reduces to

(5.8) (g =2 wi(slrls) = Tr(p,r),
L}
where p, is the density operator:

(5.9) e, =2 ls>w.s].

The averages (3.5) and (5.8) are generally not equal. In (5.8) the measure-
ment of s, which the first apparatus has performed, has destroyed the quan-
tum interference effects that are still present in (5.5). This means that the
elements of the superposition (2.1) may, insofar as the subsequent quantum
behavior of the system is concerned, be treated as ¢f they were members of
a statistical ensemble. This is what allows us, ¢n practice, to follow the tradi-
tional prescription of collapsing the state vector after a measurement has
occurred, and to use the techniques of ordinary statistical mechanics, in which
we change the description of the state upon receipt of new information. It is
also what permits us to introduce, and study the quantum behavior of, systems
having well-defined initial states, without at the same time introducing into
the mathematical formalism the apparata which prepared the systems in those
states. In brief, it is what allows us to start at any point in any branch of the
universal state vector without worrying about previous or simultaneous bran-
ches, and to focus our attention on the dynamical systems of immediate
relevance without worrying about the rest of the universe.

It is, of course, possible in principle (although virtually impossible in prac-
tice) to restore the interference effects of eq. (5.5) by reversing the coupling
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(i.e. ' —>— %) so that the relative state vectors |@[s]> are no longer ortho-
gonal. But then the correlations between system and apparatus are destroyed,
the apparatus memory is wiped out, and no measurement results. If one at-
tempts to maintain the correlations by sneaking in a second apparatus to
«have a look » before the interference effects are restored, then the mathema-
tical description of the situation must be amplified to include the second ap-
paratus, and the orthogonality of s relative state vectors will destroy the
interference effects.

The overwhelming impracticability of restoring interference effects by
reversing a measurement has been stressed by DANERI, LOINGER and PRo-
SPERI [10] in a well-known study of the critical features, such as metastability,
which characterize typical measuring apparata. One should be eareful not to
conclude from their study, however, that the state vector really collapses as
the traditionalists claim. Although it is true that the ergodic propertics of
apparata having many degrees of freedom, which DANERI e? al. describe, greatly
expedite the orthogonalization of the relative state vectors, the interference
effects are in principle still retrievable. LOINGER states this explicitly in a
later paper [11]. In referring to his work with DANERI and PROSPERI, he says
that the interference effects are only « practically absent, » and adds the fol-
lowing comment: « We did not assert that superpositions of vectors corre-
sponding to different macroscopic states are impossible. Indeed, this possi-
bility is firmly rooted in the formal structure of quantum theory and cannot
be eliminated.» LOINGER is here, wittingly or unwittingly, casting his vote
for Everett’s multi-world concept, despite the fact that his papers with DANERI
and PROSPERI claim to support traditionalist doctrine.

Although the ergodic properties of measuring instruments cannot be used
to prove that the state vector collapses, they may very likely be of help in
answering two questions of a somewhat different nature: 1) How can we be
sure that uncorrelated system-apparatus states can be produced upon demand,
as was assumed in Sect. 1?2 2) Why is it so easy in practice to make good
measurements?

The first question may be answered formally as follows: We simply pre-
pare both system and apparatus in the state required, taking care that they
remain uncoupled to one another during this process. Because, as we have al-
ready remarked, the devices that effect the preparations need not themselves
be included in the state vector, the states of system and apparatus will ipso
facto be independent, and their combined state will be uncorrelated. A pre-
paration, however, is just a special case of a good measurement. In order to
answer question 1) properly, therefore we have first to answer question 2).

Question 2) may be rephrased thus: Why is it so easy to find apparata in
states which satisfy the condition (1.22) for good measurements? In the case
of macroscopic apparata it is well known that a small value for the mean
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square deviation of a macroscopic observable is a fairly stable property of the
apparatus. But how does the mean square deviation become so small in the
first place? Why is a large value for the mean square deviation of a macro-
scopic observable virtually never, in fact, encountered in practice?

It is likely that the ergodic properties of a macroscopic apparatus bring
about an automatic condensation of almost every initial state of the appa-
ratus into a superposition of orthogonal states each of which a) corresponds
to a distinet world-branch that will (almost) never in the future interfere
with any other branch, and b) satisfies a narrowness condition like (1.22) rela-
tive to every macroscopic observable 4. However, a proof of this does not yet
exist. It remains a program for the future.

Part 1I.

The Classical Desecription of the Measurement Process.

6. — Action functional, dynamical equations and small disturbances.

The history of quantum mechanics would undoubtedly be far different
from what it is were it not for the fact that many quantum systems have clas-
sical analogs. The planets of Newtonian celestial mechanics are analogs of
the elementary particles, and the classical electromagnetic field of Maxwell is
the prototypical analog of the abstract quantum fields that one often intro-
duces to describe bosons. Even the anticommuting fields used to describe
fermions are only one formal step removed from the fields of classical physics.
It is hard to decide whether the development of quantum physics would have
been easier or harder had there not existed the wealth of systems that can
be treated very accurately purely by classical physics and that have served
for centuries to condition our minds in ways that cause all of us some pain
in making the readjustment to quantum ways of thinking.

In any event, the practical existence of a classical realm has compensated
to a large extent for the prejudices that it has ingrained in us. The single
most powerful tool that made the development of quantum mechanics pos-
sible was the correspondence principle invented by Bomr. It is difficult to
imagine how the modern theory could have been discovered without this tool.
When we use the same symbols to describe the position and energy of an ele-
mentary particle as we do to describe the position and energy of a planet,
we are demonstrating both the usefulness and the validity of the correspondence
principle in its most general (modern) form. The mental images we attach to
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the symbols are basically classical whether the symbols are ¢-numbers or ¢-num-
bers. Since such symbols have to be introduced when we want to get away
from the abstract generalities of the quantum formalism and study the struc-
tural detail of actual dynamical systems, it follows that structral details are
almost always envisaged classically. Even such abstract structures as the
V—A coupling of B-decay theory are colloquially described in terms of the
annihilation and creation of particles having definite helicities, i.e., in clas-
sical language.

It is always good to try to construct explicit models to illustrate abstract
concepts. This second part of my lectures is aimed at revealing some of the
details about the couplings between systems and apparata that were omit-
ted in Part. I. Since I want my remarks to apply to very general classes of
systems, if not all, the discussion will remain somewhat formal and schematic.
However, since structural details of a general type now become important the
language used will be mainly classical.

In quantum mechanics it is often more convenient to study the Schrédinger
equation satisfied by the unitary operator that effects displacements in time
than it is to study the dynamical equations satisfied by the operator observables
themselves. In eclassical mechanics, however, the dynamical equations move
to center stage. The most important property of the dynamical equations is
that they may always be derived from a variational principle, based on an
action functional which may be regarded as summarizing, in one compact ex-
pression, all the dynamical properties of the system under consideration.
In fact, one will not go far astray in simply identifying a system with its action
functional.

I shall denote the action functional of a system by the letter «S». §is
a function of the values assumed, over a finite open but otherwise arbitrary
time interval, by a set of functions ¢'(t) that describe the dynamical trajectory
of the system. The ¢¢ are known as the dynamical variables, and the dynamical
equations are the functional differential equations

58
3¢i(t)

(6.1a)

(The time interval involved in the definition of § will be assumed to embrace
all instants at which it may be desired to perform funectional differentiations.)
If Sis expressible as the time integral of a Lagrangian function then the dyna-
mical equations are ordinary differential equations.

In field theories the index ¢ becomes a continuous index, representing
points in space as well as field components. It will be a convenient abbreviation
to absorb the time label ¢, as well, into the index 4. The summation convention
over repeated indices, which I shall adopt, will then be understood to include
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integrations over space and/or time. The symbols in eq. (6.1a) will be re-
placed by

(6.1b) 8,=0,

where the comma followed by an index denotes functional differentiation.
Repeated functional differentiation will be indicated by the addition of
further indices. It should be noted that functional differentiation, like ordinary
differentiation, is commutative (*). In particular, we have

(6.2) S,u‘: 8i-

In the quantum theory of the system § the same dynamical equations
continue to hold as in the classical theory, with the symbols being understood
as operators (a transition I shall generally make explicit through the repla-
cement of lightface symbols by boldface ones), provided appropriate care is
taken in ordering the operators and provided, in the field theory case, certain
renormalization constants are introduced. The equations also hold, approxi-
mately, in the quasi-classical limit, in the case of systems having a finite
number of degrees of freedom, if the symbol ¢¢ is understood as standing for
the expectation value {(g*> of the corresponding quantum-dynamical variable.

Suppose now we choose some solution ¢° of the dynamical eqs. (6.1),
and suppose we ask how this solution would be modified if the action were
given an infinitesimal increment proportional to some observable r:

(6.3) S—>8+er.

The answer will, of course, depend on the boundary conditions we adopt. Let
us choose retarded boundary conditions. Then the solution is unchanged
prior to the time interval involved in the definition of » but acquires an infini-
tesimal increment 3¢ thereafter. The new solution ¢' - 3¢° satisfies the
equation:

(6.4) 0=28,[q+ 3¢+ er:[q + 8q] = 8,:,3¢ + ers,

correct to first infinitesimal order. This is an inhomogeneous linear equation
in 3¢* known as the equation of small disturbances. The solution that incor-
porates the stated boundary conditions is

(6.5) 3¢t = eGvir

(*) A similar formalism can be set up for anticommuting variables, in which func-
tional differentiation is anticommutative.
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where G~ is the retarded Green’s function of § ,;:

(6.6) 8 G = — 8,7,

(6.7) G-ii= 0 when ¢, < {;,
t; being the instant of time labeled by the index .

In Lagrangian theories S ; is essentially a differential operator, and in
specific cases approximate, if not exact, expressions can often be obtained
for its Green’s functions. The commutativity condition (6.2) is a statement

of the self-adjointness of this operator, and has as one of its important con-
gsequences the following relation:

(6.8) G = G+it

where G+ is the advanced Green’s function of 8 ;. Another equation satisfied
by G+ and G—, which we shall need, is:

(6.9) G = GHEGTRE,,,

Equations (6.8) and (6.9) are derived in Appendix. B.

7. — The Poisson bracket.

The addition of the term er to the action § produces retarded disturbances
not only in the dynamical variables ¢* but also in any observable built out
of these variables. Thus, the retarded change in an observable s is given by

(7.1) 3s =s,8¢" =8 ,GHr,.

It is convenient to introduce the following notation due to PEIERLS [10]:
1 i

(7.2) D,s =lm=3s =s,G7ir,.
8—0 & ’

The Poisson bracket of the two observables r and s may then be defined very
suceinetly as

(7.3) (r,8) = D,s —D,r =s,G 4, —r ,Gis,=r ,Gils ;,
where
(7.4) Git = G+i1 — G—45 = — G |
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We have, in particular,

(7.5) (¢ ¢) =GY.

The familiar antisymmetry of the Poisson bracket is built into the defi-
nition (7.3). That this definition also satisfies the well-known law

(76) (7’, f(sa)) = (Ty So‘) éas_f ’

follows immediately from the fact that functional differentiation satisfies the
same chain rule as does ordinary differentiation. Only the Poisson-Jacobi
identity requires some effort to demonstrate. The steps are given in Appendix C.

Once the Poisson bracket has been defined, the modern statement of the
correspondence principle may be regarded as the adjunction to the operator
dynamical equations of the quantization rule

(7.7) [r, s]=1i(r, s), =1,

r and s being the operators whose classical analogs are r and s, and (r, s) being
an operator (assumed determinable by some uniqueness eriterion) whose clas-
sical analog is the Poisson bracket (r, s).

As an elementary illustration of the above formalism consider the harmonic
oscillator in one dimension. There is one dynamical variable z(¢), denoting
displacement from equilibrium. The action functional has the form:

(7.8) § =[tm(r —wra)at,

where # = dz/d?, and the dynamical equation is

ds

(7.9) 0=+ =

—m(Z% + wx) .

The operator § ;; takes the form

38 oz . ,
dx(t) dz(t') =" (ﬁ to ) 3 —1)

and possesses the retarded Green’s function

(7.10)

(7.11) G-(t, 1) = miwe(t—t') sino(t—1),
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where 0 is the «switch-on » step function. From this, Poisson brackets may
be computed immediately. For example,

(7.12) (2(t), 2(t")) = G(t, t') = — nf—w sinw(t —t),

which yileds, in particular, the equal-time Poisson bracket
(7.13) (@), p(1)) =1, P =mi.

The above expressions also yield, in the limit w -0, the corresponding forms
for the free particle:
t—t'

(7.14) G_(t, t,) = O(t——t') 7 9

(7.15) (a(t), () = _%t/ .

In its quantum form eq. (7.15) may be interpreted as a statement of the wave-
packet-spreading phenomenon.

8. — Measurement of a single observable. Uncertainties and compensation devices.

In order to make a measurement on the system § we must introduce an
apparatus and an appropriate coupling. In the absence of the coupling the
combined action functional for the system and apparatus will have the form
S[q] + 21Q], where X is the action functional of the apparatus alone and the
symbols @ denote its dynamical variables. We shall assume we know the
approximate initial state of the apparatus and hence, to some degree of ac-
curacy, what the whole trajectory of the apparatus would be if it remained
uncoupled to the system. This trajectory will be given by functions @(z)
satisfying the dynamical equations

(8.1) 2, [@1=0.

The (at least partially) unknown trajectory of the system is given similarly
by (unknown) functions ¢‘() satisfying eq. (6.1).

The introduction of a coupling term into the total action functional pro-
duces disturbances in both the system and the apparatus, ¢.e., deviations
from the trajectories g¢‘(¢), @'(t). The disturbance in the apparatus is what
makes the measurement possible. The disturbance in the system, on the other
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hand, tends to change the physical quantity under observation and hence to
complicate the measurement one is trying to make. For this reason one ima-
gines, in classical physics, that the coupling can be made as weak as desired.
However, the weaker the coupling, the harder is it to detect the disturbance
in the apparatus. Therefore a detailed study of the measurement process
must be carried out before an accurate judgment can be rendered concerning
limits of error. It turns out that although these limits are only of a practical
nature in the classical theory, in the quantum theory they are fundamental.

Suppose we want to measure the system observable s. What coupling term
shall we choose for this purpose? In more technical language, what shall we
add to the total action §+ X in order to produce disturbances in the ap-
paratus that, in the quantum theory, are described by the unitary trans-
formation (1.5)% As a first guess let us try simply g% itself, so that the change
in the action becomes:

(8.2) S+X>8+Z+gx.

In the weak-coupling limit the resulting changes in the dynamical trajectories
may be obtained by applying the theory of small disturbances introduced in
Sect. 6. More generally, we may introduce a functional Taylor expansion. Thus,
letting the actual (disturbed) trajectories be denoted by ¢* + 3¢¢, @' + 3@, we have

(83) 0=8:[¢q+3)+9g%.[qg+3¢Q+3Q]=
=880+ 18:nd¢8¢* + ... + 9%+ 9% ;8¢ + q%”.i,SQ’—i— vy

(8.4) 0=2,[Q+3Q]+9Z,[q+ 3¢, @+ 3Q]=
=2,0Q" +32,,,90°3Q  +... + 9%, 9%, 3¢+ 9%, + ...,

where the coefficients in the expansions are evaluated at the undisturbed
trajectories.

Equations (8.3) and (8.4) may be solved by iteration. Assuming that 3¢
and 3@’ satisfy retarded boundary conditions, we obtain from eq. (8.3), to
lowest order in g,

(8.5) 8¢ =gG X 4,

where G—# is the retarded Green’s function introduced in Sect. 6. When g¢
is small eq. (8.5) gives the dominant contribution to the disturbance in the
system produced by the coupling. In calculating the disturbance in the ap-
paratus we must allow for this disturbance in the system. Hence, consistency
requires us to solve eq. (8.4) correct to second order in g. However, we can
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eliminate some of the second-order terms by assuming the apparatus to be
much more massive than the system. Equations (7.11) and (7.14) show that
Green’s functions typically depend inversely on the mass. Hence, under this
assumption (which, incidentally, is the only feature of macroscopicality I
shall agsign to the apparatus) we may neglect iteration terms involving the
retarded Green’s function G~ of X,, in comparison with analogous terms
involving G—*%. This yields

(8.6) SQ’ = gG—”(‘%:J + g::; Sqi) = gG—N(%‘,J =+ g'%:h‘ G4 '%ﬂ.i) .
Now let A be an arbitrary apparatus observable. The change which the

coupling g & produces in A may be expressed compactly with the aid of the
Peierls notation introduced in the preceding Section:

(8.7) 8A=A4,3Q¢ =g(1+ gDy )Dy A,
where
(8.8) DyDy A= (Ds A),GYE ;= A.,G'”.%'.,i(}*”.%',, )

the term (Dy4),6™7 Z , that would normally be included in the definition
of D, D, A being omitted because of the massiveness of the apparatus. Note
that all quantities in the above expressions are to be evaluated using the
undisturbed trajectories of system and apparatus.

Suppose A is the apparatus observable introduced in Sect. 1. It is then
built out of @’s taken from an interval of time lying to the future of the time
interval associated with the dynamical variables out of which % is constructed.
This implies

(8.9) D,ZE=0
and hence
(8.10) Dy A= (¥, A)=s,

where the classical analog of eq. (1.6) has been used in the final steps. Equa-
tions (8.7) and (8.10) together now yield for the disturbed apparatus observable

(8.11) A=A+ 34A=A+gs+¢g*Dys.

4 is seen to differ from the classical analog of expression (1.8) only by a
term in g®. In the weak-coupling limit one might suppose that this term may
be neglected and that our comparison of the quantum and classical descriptions
of measurement may stop at this point. If this were so we should have learned
very little, because our work up to now has amounted to hardly more than an

16 — Rendiconti S.I.F. - IL.
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elementary exercise. In fact, however, the term in g* cannot be neglected. It
has an important influence on the accuracy with which s can be determined,
as will now be shown.

If we solve eq. (8.11) to obtain the «experimental value » of s, we find

(8.12) 8=8§—9Dg8.

As has been remarked in Sect. 1, the change 34 in 4 constitutes a storage,
in the apparatus, of information concerning the value of s. Since the time in-
terval associated with A lies to the future of the coupling interval, this informa-
tion could in principle be read out of the apparatus (by another apparatus!)
at any later time without further affecting the system. That is to say, 4 + 54
could be determined with arbitrary accuracy, and the accuracy with which
s would be thereby determined would depend only upon the accuracy with
which the undisturbed trajectories would have been known, 4.e. if the coupling
had not been present.

Let us assume for the present that D, s depends only on apparatus vari-
ables. Then the accuracy with which eq. (8.12) determines s depends only
upon the accuracy with which the undisturbed apparatus trajectory is known.
Denote by AA and AD,s the uncertainties in our knowledge of the undis-
turbed 4 and D, s respectively. The mean square error in the experimental
value of s that these uncertainties generate is then given by

., 1(A4 2 1 [AA 2
(8.13) (As) —5(7-gADgs) +§(7+gADys) =

A)2
= (A_) + ¢*(ADys)? .

2

We see at once from this equation how the error As behaves as the coupling
constant g is varied. When g is very large As is large due to the uncertainty in
the disturbance gD, s produced in the system. (Note that it is the uncertainty
in the disturbance which is important here and not the disturbance itself,
which could in principle be allowed for.) When g is very small, on the other
hand, As again becomes large because of the difficulty of obtaining a meaningful
value for 84. (It gets swamped by the uncertainty A4.) The minimum value
of As occurs for
AA
(8.14) g2 = ADys’

at which coupling strength we have

(8.15) As = (2A4AD, s)t.
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In the classical theory A4 and ADgs can in principle be made as small
as desired. In the quantum theory, however, they are limited by the Heisen-
berg-Robertson-Schrodinger (HRS) uncertainty relation which, in its quasi-clas-
sical form, may be written

(8.16) AAAD, s> 4 (Dys, 4)], f=1.
But
(8.17) (Dgs A) = DDgsA = AJG‘”S_!GH'J'EZ’” =Dp,.4s = D,s

and therefore we conclude that
(8.18) As> D,slt .

Because all reference to the apparatus has now disappeared, this inequality
appears to suggest that there is, in the quantum theory, a fundamental limit
to the accuracy with which the value of any single observable may be known.
This, however, is in direct confliet with the well established principle that the
value of any single observable is determinable with arbitrary accuracy even
in quantum mechanies.

The way to overcome this apparent contradiction was discovered by BoHr
and ROSENFELD [2]. They simply modified the coupling between system and
apparatus by inserting an additional term —4¢*D, Z into the total action
so that (8.2) gets replaced by

(8.19) S+X>8+2 498 —4gD, T .

The addition of this term, which is known as a compensation term, has the ef-
fect of replacing eq. (8.7) by

(8.20) 34 =gD, A+ ¢ Dy Dy A—%g*Dp, s 4.

In the approximation of neglecting terms containing the Green’s function ¢
in comparison with analogous terms containing G—#%, the last two terms of
this equation may be rewritten in the form
(8.21)  D,D,A—3Dp, ;A= (D, 4),GI&,—LA GD,Z),~
=A,GNZ, X =YX, GV X6, =
=— 1A, GV, GV = — 1 (Dy A, 2) = §(Z, 5,

in which use has been made of egs. (6.8), (7.3), (7.4) and (8.10). We now invoke
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the classical analog of eq. (1.7), namely,
(8.22) (Z,s)=0,

which tells us that the last two terms of eq. (8.20) actually cancel one another,
leaving

(8.23) 3A=¢gDyA=gs,

and hence

(8.24) s=§é, As=24.
g g

With the introduction of a compensation term the uncertainty As can evidently
be made arbitraryly small, either by making g large enough (but not so big
that higher order terms in the Taylor expansions (8.3) and (8.4) must be
retained) or by taking A4 small enough. In the quantum theory the latter
condition is expedited by keeping the mass of the apparatus big. If the spectrum
of s is discrete, as we assumed in Part I, then of course a completely precise
experimental value for s can be obtained merely by requiring A4 to satisfy
the condition (1.22).

Some comments are now in order regarding the idealizations that have
been made thus far. First of all, it should be recognized that no real apparatus
is designed to make a successful measurement regardless of the trajectory it
finds itself in and regardless of the state of the system. The success of a meas-
urement usually depends not only on the accuracy with which the undisturbed
apparatus trajectory is known but also on a careful choice of this trajectory.
For example, the time interval associated with the coupling gZ is often not
selected by making & depend explicitly on the time but by making a special
choice of trajectory. (See, for example, the Stern-Gerlach experiment described
in the next Section.) Furthermore, relations such as (8.10) and (8.22) will
generally not hold as identities for all trajectories but only for certain clas-
ses of trajectories. In the quantum theory this means that their analogs,
eqs. (1.6) and (1.7), will only hold within a certain subspace of the full Hilbert
space (in which |#), of course, lies), and the validity of (1.6) and (1.7) may
even depend on some of the suppressed labels having certain values. Finally,
in the error analysis presented above it is not really necessary to require that
Dgs depend only on apparatus variables. It suffices merely to require that
it vary slowly as the system trajectory changes and that the uncertainty in
its value stemming from our lack of precise knowledge of the system trajectory
be negligible compared to that arising from the imprecision in our knowledge of
the apparatus trajectory.
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9. — Two prototypical measurements.

A) Stern-Gerlach experiment. — It is convenient to idealize this experi-
ment by ignoring spin precession. Then the «system » becomes dynamically
inert (8 = constant), and the value of the 2 component of the spin, which is
the observable s in this case, remains constant and unaffected by the coupling
(D,s=10). The possible values of this constant are discrete and finite in num-
ber. The «apparatus» is the atom itself (mass m) together with an inhomo-
geneous magnetic field oriented in the z-direction, the apparatus which pro-
duces the field, and an associated co-ordinate system. The dynamical varia-
bles of the «apparatus » are the Cartesian co-ordinates x, 4, 2 of the atom, while
the dynamical variable of the «system » is the inert spin value. Because § is
merely a constant the total undisturbed action functional is effectively that
of the apparatus alone:

(9.1) 2=f%m(:é2+y2+z'2)dt.

In the absence of coupling (i.e. when the magnetic field is switched off)
the trajectory that the apparatus (i.e. the atom) would follow will be assumed
to be given approximately by:

(9.2) v=0,

That is, the atom moves along the y axis with velocity v, passing the origin
at time #=0. We need not inquire how the atom was prepared in this state.
We only remark that if the atom is sufficiently massive it will not deviate
greatly from the trajectory (9.2), either as a result of quantum-mechanical
spreading or as a result of coupling with the magnetic field, until it has passed
well beyond the region of nonvanishing field. The magnet itself will be as-
sumed to surround the segment 0 <y <.L of the y-axis. Under these conditions
the magnetic field will, in the region traversed by the atom, be expressible
to good approximation in the form

(9-3) H,=0, H,=0, H,=0(y)0(L —y)(« + p2) .
The coupling term therefore becomes effectively

(9.4) 9% = [usH .0t = s (61O —y)(a + o),

where u is the magnetic moment of the atom. If we make the identification

(9.5) 9= upLfo,
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then we may express Z in the special form (1.9) with
. o
(9.6) X = Ef@(y)G(L —) (E + z) dt.

In the present case the apparatus observable 4 is conveniently taken to
be the z-component of momentum of the atom after it has passed through
the magnetic field:

(9.7) A =[mé],_y, =[m:,, -

Using the Poisson-bracket relation (7.15), applied to the z-component of po-
sition of the atom, one easily finds

L

0.8) (x, 4) =3 [owoz—par= [ay=1.

0

in which the trajectory eqs. (9.2) are used in the final steps. Equation (9.8)
is just the classical analog of eq. (1.10), and hence we see that the Stern-Gerlach
experiment constitutes a measurement of precisely the von Neumann type.
Because 4 =0 for the undisturbed trajectory (9.2) we may write the «experi-
mental value » of the spin in the form

’ g uwBL >

where z refers to the disturbed trajectory. We note finally that, from the point
of view of the simplified notation employed in Sect. 1, the # and ¥ co-ordinates
of the atom are suppressed labels, and that this is a case in which the validity
of eq. (1.6) depends very much on these labels having the values specified by
the trajectory (9.2)

B) Electric-field measurement [2]. In this case the system is the whole
electromagnetic field, and its action functional is

(9.10) §=—4[F, Fra,
where
0el, o,
(9.11) Fuow= i =3 (Hy) = (— ¢, A)

(9.12) d'r = do,dortdatda® = dtd®r, t=uw,, r=(z,2° %),

and where Greek indices are raised and lowered by means of the Minkowski
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metric (") = (n,,) = diag (—1, 1,1, 1). The apparatus will be chosen to con-
sist of two interpenetrable rigid bodies, initially and finally occupying the same
volume V, one of which is permanently fixed (relative to the co-ordinates xl,
#* x°) and carries a uniform charge density ¢ while the other is movable during
the time interval T (only) and carries a uniform charge density p. If the mass
M of the movable body is big enough so that its dynamics may be described
nonrelativistically, then the apparatus action may be taken in the form

(9.13) Z= %Mfdet + rotational action,

T

where R is the center of mass of the body. We do not write out the rotational
part of the action explicitly since the rotational variables will be suppressed
labels in this case.

It will be noted that switching devices (to hold and release the movable
body) are needed here, whereas they were not needed in the Stern-Gerlach
case. The action therefore has an explicit time dependence (through the pre-
sence of T'). Time independence could in principle be restored by including
the switching devices in the total action. The choice of time interval would
then be governed by initial conditions on the apparatus motion, just as in
the Stern-Gerlach case.

The coupling between the electromagnetic field and the apparatus is

(9.14) ox :fj“.ﬂﬂd‘*w,

where j* is the charge-current density 4-vector of the apparatus. The undis-
turbed trajectory of the apparatus will be assumed to te given approximately by

(9.15) R=0.

If the movable body is sufficiently massive it will not deviate greatly from
this trajectory either as a result of quantum-mechanical spreading or as a
result of the presence of an electromagnetic field. Under these conditions the
4-vector (j*) = (j°,j) may be approximated by

(9.16) 1°(t, 1) = oLy (r — R) — 1,(r)] 72(t) = — oR - Vity(r) 2,(1) ,
(9.17) Jit,r) = eRyy(r) 1,(t) + oRyy (1) 14(1)
where y is the « characteristic function » of set theory:

1, reV 1, teT

(9.18) xr(r) = 2o(t) =
0, ré¢v, 0, te¢T.
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The second term on the right of eq.(9.17) arises from the possibility of sudden
motions of the body caused by the switching devices that act at the begin-
ning and end of the time interval T.

Equations (9.16) and (9.17) can be rewritten in the form

=—V-P, j=P7
where

(9.19) P =Ry, (r) 1,(?) .
More generally, in an arbitrary co-ordinate frame, we may write
(9.20) * = 3P*|[da" ,

where P* is an antisymmetric polarization tensor. In the co-ordinate system
(¢, r) this tensor takes the form

, o —P
9.21 Py = .
(9.21) (P*) (P 0)

It will be noted that (9.20) guarantees charge conservation:
(9.22) oj#/oxt = 0.

If we insert (9.20) into (9.14) and integrate by parts, we get
(9.23a) g% =1}|P"F,d*,
(9.23b) = J' P-Ed'z,
where E is the electric field vector:
(9.24) =—Vp—d .

Inserting (9.19) into (9.23b) and making the identification

(9.25) g=oVT,

we then find

(9.26) .%”=%,fR~E,dt,
T
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where E, is the average of the electric vector over the volume V:
9.27) E,=L [Ear
. =% .
14

For the apparatus observable 4 we choose in this case
(9.28) A=[MR),_,,
where 7 is the time at the end of the inverval T, just before the switching

device brings the movable body to rest again. The quantity that the appa-
ratus then measures is a space-time average of the electric field:

1 1
(9.29) E,, = T nydt =77 fdtfder ,
T r v
for it is easy to verify that
(9.30) (%, A)=E,,.

To get an accurate measurement of the indisturbed E,,, however, it is
necessary in the present case to supplement the apparatus with a compensation
device. This is because any uncertainty that may exist about the apparatus
trajectory’s being given precisely by eq. (9.15) is propagated to the electro-
magnetic field through the fact that we cannot be sure that P, and hence the
field produced by the apparatus itself, is exactly zero. To determine the
structure of the compensation device required we must first study the dyna-
mics of the electromagnetic field.

The undisturbed field F,, satisfies the differential equation

(9.31) OF™ [3a* =0,

while the disturbed field Fﬂ, satisfies the equation
(9.32) OF* Q" = §* .

The difference between these two equations yields
(9.33) 03F™ [0” = j*
which, when combined with the equation

(9.34) 33F,,/00° + 33F, [ + O3F,, [’ = 0
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(which expresses the fact that the fleld tensor is a curl), yields

(9.35a) O5F,, — 8j,/ea” — dj,/ea*,
(9.35b) = 0*P,’[da"0a" — 0* P’ [Ca” O .

The retarted solution of this equation is
(9.36) 3F,, = —fG‘(x —&')(02P,°[02'0x"” — 02 P,°[0x" Q") d e’ =

1 10T 82 az 82 82 \ — —m! 4!
= ‘Ef (’7’“’ dwer i M arrer T Mapreer) & TN

where G- is the retarded Green’s function of the d’Alembertian operator (1:
9.37) G~ (z) =i0(x°)a(m ) =L5(t—r) r=r.
®- 27 “ dnr ’

On the other hand, we have

(9.38) SF,,= D,y F,, =3[P Dy, F,d%",

the second form following from eq. (9.23a) and the superposability of electro-
magnetic-field disturbances. Comparison of egs. (9.36) and (9.38) therefore yields

(9.39) D, F,, =

o2 o2 o2 02 _ ,
= (ﬁua@@*ﬁnrw—ﬂw 32" ox" + Noe o2k xa) G (x—2a'),

and, in particular,

o2
(9.40) DpE = (VV —1 a_tﬂ) G (x—2'),
where 1 is the unit dyadic.
It is now a straightforward matter to compute the compensation term that
needs to be added to the total action functional. Ignoring the Green’s func-
tion of the apparatus compared to that of the system, we have

—39°D, & = —}[ds0[asa' P-DgE" P,

9.41
(9-41) — —jofatofasw R-DE R .

14 rr
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If the movable body is sufficiently massive R will not change appreciably
during the time interval T, and (9.41) will be adequately approximated by

(9.42) —1¢°D, F[:—%fR%-Rdt,
T
where
(9.43) ® = ¢ fd“ocfd"x/ (VV —1 g) G (r—2a').
) T ot?
vr vr

Expression (9.42) is just the contribution to the action functional that would
be made by the potential energy term of the Lagrangian of a 3-dimensional
harmonic oscillator having spring constant x. This is the origin of the famous
mechanical springs that BoER and ROSENFELD [2] found it necessary to
attach to the movable body.

10. — Measurement of two observables.

The relationship between the classical and quantum descriptions of the
measurement process stands fully revealed only when we examine the compli-
cations that arise when the apparatus tries to measure two system observables,
r and s. In view of what we have learned in earlier Sections we naturally at-
tempt to accomplish such a measurement via a coupling of the form

(10.1) 92 +¥)—19' Dg ) + ¥) =
=g + %) — 30Dy T+ Dy U+ Dy % + Dy ¥)

in which a Bohr-Rosenfeld compensation term has been included. Here &
and % are required to satisfy

(10.2) DyAd=(Z,A)=r, (Z,r) =0,
(10.3) DyB= (¥, B)=s, (#,8) =0,
(10.4) Dy B=(Z,B)=0, DgA= (¥ 4)=0,

where A and B are the apparatus observables that store the observations of
r and s respectively, and the Poisson brackets are to be evaluated at the un-
disturbed trajectories. It will be noted that the inclusion of an overall com-
pensation term for Z -+ % is equivalent to the inclusion of individual compen-
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sation terms for & and % separately, plus another term, —1¢*(Dg % + Dy %),
which may be called a correlation term.

In addition to egs. (10.2), (10.3) and (10.4), A and B themselves will be
required to satisfy

(10.5) D,B=D,A=0.

Equations (10.4) and (10.5) together express the fact that A and B are to be
dynamically independent quantities and that the two measurements are to
be operations which are as independent of one another as possible, so that any
interference that occurs between the measurements of r and s arises not
from the memory storage process (s.e. from the apparatus) but from the
dynamical properties of the system alone. It should be noted that we cannot

require the Poisson brackets (%, s) and (%,r) to vanish unless (r, s) =0, for
this would contradict the relations

(10.6) (4, (%, 8) =—(Z, (s, 4)) — (5, (4, ) = (s, 1),

(10.7) (B, (%, ) =— (¥, (r, B)) —(r, (B, %)) = (,s).

We can, however, require

(10.8) (Z,s), (%, 1) =0,

as may be seen by making the special choices (cf. egs. (1.9) and (1.10))
(10.9) ¥ =rX, ¥ =sY,

where X and Y are apparatus observables satisfying

(10.10) (X, 4)=1, (¥Y,B)=1,

(10.11) D, Y=D,X=0.

By a series of steps completely analogous to those followed in obtaining
eq. (8.21), it is eagy to verify that the coupling (10.1) produces the following
disturbances in 4 and B:

(1012) SA=g(& + ¥, A)+ 3T + ¥, (& + ¥, 4)) = gr + 3%, 1),

(1013) B=¢g ¥ + ¥, B+ 33 (¥ + ¥, (¥ +%, B)) =gs + 1%Z, s),
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correct to second order in g. Solving these equations for the « experimental
values» of r and s, we find:

34 1

(10.14) r= 7~§g(@, 7y,
3B 1

(10.15) s=—g———2-g(5¢”, 8),

which lead to the uncertainty relations

(10.16) =2 1 Lpa@, i,
(AB)? 1
(10.17) (As)2= P + 79 A, 8)]

If we multiply these two equations together we find that the minimum value
of the product of the uncertainties Ar and As occurs for a value of the coupling
constant given by

4AAAB
(10-18) 9= A@, NAZ, )"
At this value we have:
(10.19) ArAs = F[AANZ, s) + ABA(%, r)].

Under the best imaginable circumstances the Poisson brackets (Z, s) and
(#, r) will depend at most weakly on the system trajectory, so that the un-
certainties A(Z, s) and A(#, r) will arise primarily from the imprecision in
our knowledge of the apparatus trajectory. Applying the quasi-classical form
of the HRS uncertainty relation to these uncertainties and making use of
eqs. (10.6) and (10.7), we find

AANZE, s)
(10.20) ' >3|(r, s)|
ABA, r)

and hence

(10.21) ArAs>1|(r, 8)|.
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That is, we get the HRS uncertainty relation back again at a new level (*)!

This result constitutes a proof of the fundamental consistency of the quan-
tum-mechanical formalism with the theory of measurement. If the laws of
quantum mechanics, as embodied in the uncertainty relation, hold for the
apparatus, then they are immediately propagated to every system with which
the apparatus interacts. The precision with which we can make mutually inter-
fering measurements at any level, is as good as, but no better than, that al-
lowed by the quantum-mechanical uncertainty relations.

11. — Imperfect measurements.

Many interactions are constantly taking place in the universe that lead
to decompositions of the state vector of the form (2.1) but for which the ortho-
gonality relations (2.3) do not hold (™). Failure of the orthogonality relations,
in fact, always occurs to some extent whenever the spectrum of s is continuous.
Such interactions do not split the universe cleanly into noninterfering branches.
This means that the branching-universe picture given in Sect. 2, 3 and 4 is
an idealization. In order to arive at a full undertanding of the implications of
the many-universes interpretation of quantum mechanics one must also con-
sider imperfect measurements.

After an imperfect measurement it is not possible to regard the system as
having been prepared in a definite state which may be studied independently
of the rest of the universe. The apparatus has not succeeded in bringing about
a state in which the vector |¥) may, for practical purposes, be regarded as
collapsed. In other words, a true split has not occurred.

The split can, however, be forced, by bringing in a second apparatus to
measure very accurately the disturbed apparatus observable 4. By this device

(*) Borr and RoOSENFELD [2] showed, in their analysis of the simultaneous
measurement of two electromagnetic field averages, that if the correlation term
—3¢* Dy % + Dy &) is omitted from the coupling, then the inequality (10.21) is
changed to the weaker inequality ArAs>1(|D,s| + |D,7|). Equation (10.21) represents
the best that one can do. The actual correlation devices that BoHr and ROSENFELD
were compelled to introduce to obtain (10.21) consisted of mechanical springs linking
the two movable bodies comprising the apparatus.

(**) The student should perhaps be reminded again at this point that reality is not
described by the state vector alone, but by the state vector plus a set of dynamical
operator variables satisfying definite dynamical equations. Decompositions of the
form (2.1) are not to be regarded as meaningful if they are merely abstract mathematical
exercises in Hilbert-space. Indeed such mathematical decompositions can be performed
in an infinity of ways. Only those decompositions are meaningful which reflect the
behavior of a concrete dynamical system.
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it is possible to give a meaning and an answer to the question: In what sort
of state does an imperfect measurement leave the system?

Let us consider the casein which the spectrum of s is continuous. Expres-
sion (2.1), which reflects the situation after the measurement, is then modified
to read

(11.1) ) = [e]s)|ls] as,

in which the summation over s is replaced by an integral. If now a second
apparatus is introduced, which makes a very accurate observation of A, a
true splitting will oceur. In the branch that corresponds to the eigenvalue A
the vector |[¥) will have been effectively collapsed to f [sy|A> s, AP ds.

The factor fls}(s, A[?P>ds appearing in this collapsed vector may be re-
garded as the vector corresponding to the state (appropriate to the branch
in question) in which the first measurement has left the system. Denoting
this vector by |p>;, we find, with the aid of eq. (2.2),

(11.2) ) :J-cs(D(Z—gsHs)ds.

Unless @ is an infinitely narrow function (in which case the first measurement
would have been perfect) this is not an eigenvector of s. It consists, instead,
of a superposition of eigenvectors, corresponding to a range of eigenvalues
having a spread AA/g and roughly centered around the value (A —<A)]g ).
We see therefore that the uncertainty

A4
(11.3) As = 5

found in Sect. 8 (see (8.24)), with which the first apparatus measures the ob-
servable s, is reflected in the state in which the system finds itself after the
measurement. In the present case the uncertainty in the measured value of
the system observable arises from the uncertainty, in the state |@>, of the
value of the undisturbed apparatus observable 4, and can be made as small
as desired simply by choosing A4 sufficiently small. There is an important
case, however, in which uncertainties remain no matter how precisely the
relevant apparatus observables are known namely, the case considered in Sect. 10
in which the apparatus tries to measure two noncommuting observables. In
this case the two measurements unavoidably interfere with one another.

(*) If ¢, is itself a narrow function, with As < Ad/g (e.g., if |p) is an eigenvector
of 8), then |y> is just a multiple of |y}, and the first measurement leaves the system
state vector unaffected.
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For simplicity let us consider the special case in which the commutator
[r, s] (or, equivalently, the Poisson bracket (r, s)) is a multiple of the identity
operator, and % and % have the forms (10.9), with (10.10) and (10.11) holding.
The coupling (10.1) then transforms the undisturbed apparatus observables
A and B into the disturbed observables:

(11.4)  A=exp[—ig(¥ +¥)lAexp [ig(X +¥ )] = A+ gr—1g%(r, s)Y ,
(11.5) B =exp[—ig(¥ +%))Bexp [ig(X + ¥)] =B+ gs + }g*(r, )X .
It will be convenient to introduce also the following operators:

(11.6) FP=exp[—ig(Z +¥)Ilrexp[ig(®X +¥)]=r—g(r,s)Y,

(11.7) S$=exp[—ig(¥ +¥)sexp[ig(¥ +¥)]=s+g(r, s)X .

(These are not equal to the disturbed operators ¥ and s respectively.)

Now note that one can obtain eight distinet commuting triplets of operators
by choosing one from each of the pairs {r, s}, {4,X}, {B, Y}. Any one of the
eight possible Hilbert-space bases determined by these triplets can be used
in the description of the undisturbed state of the system-plus-apparatus.
Because

lexp [—ig( ¥ +¥)Xexp [ig(F¥ +¥)]=X,
(11.8)
| exp —ig(Z +@))Yexp lig(# +@)] — ¥,

it follows that eight distinct commuting triplets of operators can also be ob-
tained by choosing one from each of the pairs {, 8}, {4, X}, {B, Y}. Any one
of the eight possible Hilbert-space bases determined by these triplets can be
used in the description of the disturbed state of the sistem plus apparatus.

Because the pairs {4, X}, {B, Y}, {4, X}, {B, Y} are conjugate pairs, the trans-
formation coefficients between the various bases may be taken in the forms

(11.9) (X|AYy =<X|A> = (2n)texp [iXA]= (2n) ¥ exp [iXA],
(11.10) (Y|B)=<(Y|B) = (2n)texp [iYB] = (2n)  exp [iYB].

Let us assume an uncorrelated initial state for the system and apparatus,
so that the total state vector takes the form

(11.11) D = ly>|®),
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the Cartesian product decomposition being into the Hilbert subspaces defined
by the undisturbed pairs {r, s}, {4,X}, {B,Y}. Let us further assume, for
simplicity, that the two memory cells of the apparatus are uncorrelated, so
that (4, B|®) factors into a product of the form
(11.12) (A, B|®) = D,(A4)D,(B) .

Then we have also

(11.13) <A, Y|@) = O,(A)By(Y), (X, B[®) =D (X)D:(B), et
where the tilde denotes the Fourier transform:

(11.14) @(X) = (27)}exp (XA D,(A)dA4 ,

(11.15) $,(Y) = (27)"F |exp [( YB] Dy(B)dB .

Consider now the basis vectors |r, 4, ¥>. From eqs. (11.4) and (11.6) we find

Z[?‘, -Aa Y> = [A—{-gr— 292("? s) Y][rv -A9 Y> =
(11.16) _
= [A + g?—%gz(ra s) Y] IT, Ay Y> y
?[77 A4, Y) =[r—g(r, s)Y]lr, 4, ¥ =
(11.17)
= ['?_g(ra S) Y]|r7 Ay y> ’

the eigenvalue equalities r =7, 4= A being used in passing to the final forms.
From this it follows that, apart form an arbitrary phase factor which will

be taken equal to unity, we have

(11.18) I, 4, ¥> = P —g(r, 5)¥, A+ gF —3g%(r, ) ¥, ¥,

or, equivalently,

(11.19) 7,4, Xy =|r+g(r,s)¥, A—gr—3}gir, s) ¥, ¥).

In a similar manner we can infer

(11.20) s, X, B) = [§ +g(r, s)X, X, B+ g8+ $¢*(r, 5) X,
(11.21) 8, X, By = [s—g(r, s)X, X, B—gs + }¢*(r, )X,

with s =%, B=B.

17 — Rendiconti S.I.F. - IL.
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Using eqgs. (11.11), (11.13) and (11.19), it is a straightforward matter to

decompose the total state vector in terms of the basis vectors |7, 4, 7>

(11.22)  |¥> = f a7 f aa f AY R, A, T, 00 DA — g7 — 1g2(r, ) T)Dy(X),
where
(11.23) ¢, = {rly) .

The decomposition of [¥) in terms of the basis vectors |8, X, B) has a similar
structure:

(11.24) (¥ =[a8[dX [aBls, X, B> &y e B(X) OB — g8 + o¥(r, )X) ,

where
(11.25) d, = <slyy

If we now introduce a second apparatus which makes accurate measure-
ments of 4 and B, thereby forcing the universe to split, we obtain for the ef-

fective state vector of the system, in the branch in which the second apparatus
has recorded the values 4 and B respectively,

(11.26a)  |p>;;= f #><#, 4, B> d7
— (2m)} f a7 f ATy exp[—iBY]es, 00
DA — g7 —Lg¥(r, 9)Y) Dy(Y),

(11.26b) — (2m)F f s f AX |5 exp[—iAX]d; -
@1(50)@2(3 _g§ + %gz(,.’ S)X) .

This vector does not represent either the observable 7 or the observable 8 as
having a definite value. The mean square deviations of these observables from
their mean values may easily be estimated in the case in which ¢, and d, are
slowly varying functions. Denoting by A4, AB,AX, AY the root mean square
deviations defined by the functions @,, ®,, D,, D, respectively, we obtain

A4y 1

(11.27) (A7) = o +79%(r 8 (AY)?,
(11.28) (A8)2 = (A‘;:V + igz (ry s)2(AX)?,
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the first terms on the right of these equations coming from the factors @, and
@, in the integrands of eqs. (11.26a) and (11.26b) respectively, and the second

terms coming from the factors @, and &,.
Now the deviations AX and AY arelimited by the constraints

(11.29) AXAA>}, AYAB>}.

Therefore we have

(11.30) (AF)2>

~_ (ABP 1 (r, s

The minimum value of the product of the right-hand sides of these inequalities
occurs for a value of the coupling constant given by

AAAB
11.32 t=4
(H-52) =t e
and from this one may readily infer
(11.33) APAS>}|(ry 8)| =1 [(F, 8)].

In other words, no matter how accurately the values of 4 and B are known for
the first apparatus, the second apparatus cannot succeed in forcing the system
into a state in which the values of ¥ and 8 are known to accuracies better than
that allowed by the HRS uncertainty relation. In one sense this is, of course,
a trivial result, since the uncertainty relation is an abstract property of opera-
tors and vectors in Hilbert space, which must always hold. However, it
shows once again the consistency of the quantum-mechanical formalism with
the general theory of measurement.

The writing of these notes was made possible through the time and facilities
extended to me by the Faculté des Sciences of the University of Paris and the
Society Italiana di Fisica in Varenna. The arrangements were made by Drs. Y.
CHOQUET-BRUHAT and B. D’ESPAGNAT, to whom I wish to express my war-
mest thanks.
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APPENDIX A

Properties of the relative frequeney function.
The first property is elementary:

(A.1) S (8} 81 vee SH) Wiy -+ Wiy

Spe-SN
1

1 ———
== 3 (bt + Oag) Wy oo r Way = IV_(w'—l_ e W) = Wy .

N 840 SN

The proof of the second property requires a simple induction:

(A.2) S [f(85 81 ee- Sx) — W PWg ee Wsy

e o8N 2 2
. [iz Brgrh o+ gt By D0 w]w e 0y
1 . o
= — Bos, A eve - Do) Way v Wiy 2
= 8‘§N (Oss, +
2 . 2
= L z [(a" + cee + assy-;)z + 2(6.1:, + ver + 63.9"_,) 6”N+ 5,,,,]?0,‘ cen ’WSN ’I,O’
N S

=i[ z (6ss,+'--+5ssu.,)2+2(N—1)WE+w,]—'w3

2a+2+.. + N—1)w?+ Nw,]—w,

2
_ 1
= 1

1 Lot == S(1—w,) .
=1—V—2N(N—1)wf+ﬁw, w, Nw( )

APPENDIX B

Identities satisfied by the Green’s functions.

i i i ivati f egqs. (6.8) and (6.9) it is
i isunderstandings in the derivation of ¢ (
hellgl;leat;m&]g note of the fact that an expression like f 8 .49, where f and

g are arbitrary functions, may be ambiguous. Unless the intersection of the sup-

ports of f and ¢ occupies only a finite domain of space-time the associative law
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of multiplication may fail, and ('8 :;;)9’ may not be equal to 748 :;9°). This
is because an integration by parts is generally necessary to pass from one form
to the other. In the following equations, involving Green’s functions, the stu-
dent may easily verify that, owing to the kinematical structure of the Green’s
functions, the associative law does in fact hold.

Equation (6.8) follows immediately from (6.2) by writing:

B.1) 0=—G" (8 —8 ;)G =— GH(S 1 G1) - (8 GHE0) G- = Gt G—id |

Equation (6.9) may be derived by first asking what the change in the
retarded Green’s function G~ would be if the action suffered an infinitesimal
change 3S. Denoting this change by SG~ we obtain immediately from eq. (6.6)
the following variational equation:

(B.2a) 88 G 4+ 8 483G~ =0,
or
(B.2b) 808G = — 88, G+ .

3G~ is seen to satisfy an inhomogeneous linear differential equation similar
to the equation of small disturbances. The solution of this equation that
incorporates the boundary conditions necessary to maintain the integrity of
the kinematical structure of G~ is

(B.3) 3G™Y = G—*#38 ,GV |
This may be combined with the symmetry law (B.1) to yield
(B.4) 8GHY = GEHRGTFISS |

Equation (6.9) is essentially just a special case of this.

ArPENDIX C

The Poisson-Jacobi identity.

Let 7y, 7,, 73 be any three observables and let e,3, be the antisymmetric per-
mutation symbol in three dimensions. Then
(01) Eaﬂy(ra(rﬁyry)) = ezxﬁ‘yra,iéil(rﬁ.igﬂr‘y.k),l =
= euﬁvrw,irv.kéﬂgkwﬂ,ﬂ + Saﬂyroc.z""ﬂ,i@”@jkrv.m +

T apyTaiT8, Ty i (G — G (QHmGEn — G-im G 8 1ns
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in which use has been made of eqs. (6.9) and (7.4). The f_acbo;' multiplying
£xpy in the first term is symmetric in « and y while that multiplying e.s, in the
second term is symmetric in « and f. These two terms thereforg vanish. In
the third term the factor eusy 7s:7s;7y, i invariant under cyclic p.ermuta;-
tion of i, §, k. Therefore, if the factors involving the .Green’s functions are
multiplied out, the resulting four terms may be subjected to 1ndepend.ent
cyclic permutations of i, j, ¥ without affecting the value of thfa expression.
Because of the symmetry of §,,, the indices I, m, n may be subjected t(_) cor-
responding permutations. The following replacement is therefore permitted:

G+ilG+ij7kn . G+iLG~ij+lm _ G—ilG+JmG—kn + G—ﬂ'lG—jm G+kn R

} ) l }

Grim @ e G il — @Fn G0 GHIm — GTER GG G—imGTEn @il

The resulting term by term cancellation shows that the t}xirci. term in (C.1)
likewise vanishes, and hence that the Poisson-Jacoby identity is satisfied.
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On the Interpretation of Measurement within the Quantum Theory*

Leon N. CoopER AND DEBORAH VAN VECHTEN
Brown University, Providence, Rhode Island 02912
(Received 26 May 1969)

An interpretation of the process of measurement is proposed which can be placed wholly
within the quantum theory. The entire system including the apparatus and even the mind
of the observer can be considered to develop according to the Schradinger equation. No
separation, in principle, of the observer and the observed is necessary; nor is it necessary to
introduce either the type I process of von Neumann or wave function reduction.

INTRODUCTION

Although the structure of the quantum theory
in the opinion of almost all physicists is free from
contradiction, questions about the consistency
of its interpretation have been and continue to be
posed. The view expressed in most texts and
taught in many classes derives from the work of
von Neumann! in the early thirties; it implies
what is close to a Cartesian dualism dividing mind
and body which, though consistent (and perhaps
even respectable in the 17th century??), seems
somewhat of an anachronism at present.**

* Supported in part by the Advanced Research Pro-
jects Agency, the National Science Foundation and the
U. 8. Atomic Energy Commission.

1J. von Neumann, Mathematical Foundations of Quan-
tum Mechanics, transl. by Robert T. Beyer (Princeton
University Press, Princeton, N. J., 1965).

2 It was not accepted universally even then. Spinoza,
for example, objected saying: “he [Descartes] accom-
plishes nothing beyond a display of the acuteness of his
own great intellect.”

3 B. Spinoza, The Ethics, D. D. Runes, Ed. (Wisdom
Library, division of The Philosophical Library, New York,
1957), p. 24.

* The number of papers on this subject is large and the
individual contributions not always easy to understand.
We have not made an exhaustive study of the literature
and make no claim that every concept presented is
written down for the first time; however we have never
seen the entire matter discussed in this light. Our own
primary references were Wigner’s 1963 article, von
Neumann'’s book, and what a somewhat reversible memory
told us we had read and been taught over the years.
We were directed to Prof. K. Gottfried’s excellent dis-
cussion in his book on Quantum Mechanics (Ref. 5)
somewhat later. There he has stated the relation between
measurement and irreversibility in a very clear and
elegant fashion. We would like to express our gratitude to
Prof. H. P. Stapp for a very interesting correspondence
and for bringing our attention to an article of Hugh
Everett III, Rev. Mod. Phys. 29, 454 (1957). Everett,
whose views do not seem to be generally known, recognizes
the necessity of retaining all branches of the wave-func-
tion; in this respect his ideas are quite similar to our own.

Just as Everett we retain all branches of the wave function.
However, it is not the wave function itself which is put into

Von Neumann proposed that the interpretation
of measurement—or the means by which we come
to know that something has happened—requires
a process which does not develop according to the
Schrodinger equation. He says:® “We therefore
have two fundamentally different types of
interventions which can occur in a system S or in
an ensemble (S, ---, Sy). First, the arbitrary
changes by measurements which are given by the
formula

U—-U'= X (Udn, ¢4) Pig1- ey)

n=1
Second, the automatic changes which occur with
passage of time. These are given by the formula

U—U,=exp{— (2mi/h)tH}U exp{ (2ri/h)tH}.
(n

Further?...we must always divide the world
into two parts, the one being the observed system,
the other the observer. In the former, we can
follow up all physical processes (in principle at
least) arbitrarily precisely. In the latter, this is
meaningless.”

Wigner recently has written3 ““...one must
conclude that the only known theory of measure-
ment which has a solid foundation is the orthodox
one and that this implies the dualistic theory
concerning the changes of the state vector. It
implies, in particular, the so-called reduction of
the state vector.”
me with experience. Rather this correspondence
is made via the amplitude 35. Thus there are amplitudes
which give the probability for any particular sequence of
events that might constitute an evolving world. These is
nothing, however, which necessitates that more than one of
these come to pass. (Last paragraph of footnote added No-
vember 1972.)

¢ K. Gottfried, Quantum Mechanics, (W. A. Benjamin,
Inc., New York, 1966), vol. I, pp. 165-189.

¢ See Ref. 1, p. 351.

7 See Ref. 1, p. 420.

¢ E. P. Wigner, Amer. J. Phys. 81, 6 (1963), p. 12.
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In the words of Spinoza® “They appear to
conceive man to be situated in nature as a
kingdom within a kingdom: for they believe he
disturbs rather than follows nature’s order. ...”

In what follows we propose a reinterpretation
of the quantum theory in which those processes
called “measurement’ or cognition are brought
within the ordinary time development of the
Schrédinger equation. Thus we have no need for
the discontinuous process [Eq. (I)] of von
Neumann. In this way perception or cognition
are made a part of nature so that, again in the
words of Spinoza,® “mind and body are one and
the same thing....”

I. ANALYSIS OF AN
INTERFERENCE PATTERN

Consider a traditional arrangement (Fig. 1)
which results in the interference pattern due to the
passage of an electron through a barrier with two
slits. The wave function of a single electron
localized in the region R, at the time &, moving
to the right in the horizontal direction may be
written

Yo(to). (1)

This develops according to the Schrédinger
equation so that at time f; the packet is passing
through the slits and we might write

V() =ay-+Byr, (2)

where Yy (¥1) is the part of the packet that passes
through the upper (lower) slit and is normalized.
At time ¢; when the packets have reached the
screen, the wave function can be written

W (ts) =y () +B¢z (). 3)

The probability amplitude that the electron arrive
at the point z, on the screen is given by

(T (b, ) | To)y=a{fu (b2, ) | 20)
+BWL(ty ) | 70). (4)

We cannot say whether the electron has “gone”
through the upper or lower slit since the amplitude
is a coherent sum of Yy and yz.

9 See Ref. 3, p. 23.
1 Seg Ref. 3, p. 27.

¥

1 IJ))%

N 1 2

n;n)

&
E ]

|

Fic. 1. Traditional arrangement resulting in an inter-
ference pattern.

In the double Stern-Gerlach experiment, dis-
cussed by both Bohm! and Wigner,"? an electron
prepared in a state which is an eigenfunction of ¢,
is acted upon by an inhomogeneous magnetic
field in the z direction so that

Yu is correlated with spin |
and
Y1, is correlated with spin | .

We thus have at #;
¥ () = auy Xyu+Buy Xyr. (%)

Is this to be regarded as a measurement of the
spin state of the electron?

In the usual sense the answer must be no since
at the screen at time {, the amplitude that the
electron arrive at 2o is

oy (W | o) +Buy r | 2o)- (6)

Its wave function is thus (as expected) a super-
position of the two spin states uy and w,;. This is
made more graphic if we recombine the spatial
wave packets (by the introduction of a current
which reverses the effect of the inhomogeneous
magnetic field) in such a way that

o () +BYs (t) = (t2), @)

where ¢y is the original wave packet. The wave
funetion would then be

Y (b, ) =vo(z) (ws+ui), (8)
and the electron is again in an eigenstate of o..
1D, Bohm, Quantum Theory (Prentice-Hall, Inc.,

Englewood Cliffs, N. J., 1951), Chap. 22.
12 See Ref. 8, p. 10.
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II. MEASUREMENT

What then constitutes a measurement? To
discover whether the electron has passed by the
upper or lower path, we might place a detector at
each slit. Call a detector A= (ayXaz). The wave
function of the entire system (electron+-detector)
is then written

Y=yXA. 9)

At 1, the electron can interact with the detector
and this interaction puts the detector system into
the states

Ay= (ay*Xayz) (10)
and

Ar=(ayXar¥).

The meaning of the latter two equations is that
the electron interacts with the upper detector and
not with the lower, or with the lower detector and
not with the upper.t

We assume in what follows that the state
represented by Ay is orthogonal to that repre-
sented by A so that for all time

{4yt AL)=0. (11)
The wave function
¥ (to) =y (to) XA (t) (12)
can now develop in time to give at 4
¥ (h) =apu X A+BPr X A. (13)

If we assume that the detectors are so designed
that there must be an interaction in order for the
wave function to pass through the slits, we obtain
at t;+6 the correlations

Yu XAy X Ay,
YIXA—yL X AL, (14)
Thus all together we have
U (h+8) =apu X Av+ByrX AL, (15)

13 This of course is an hypothesis in addition to the
Schrédinger equation. The electron is indivisible. In
quantum field theory we would write:

[Wo*o) (Wr*vr), ¥*(z) ]=
Woro)dL*d(z—x ) Hou* (Yr*¥L) s(z—zv).

This wave function develops further so that at £
we have

¥ (t2) =y (t2) X Au(ta) +B¥r(6) X AL().  (16)

Since (Ay | Az)=0 it follows that the probability
amplitude that the electron arrive at x4 and that
the detector read Ay (the electron has gonc
through the upper slit) is

(¥ (&) | modv)=alpu(t) | o) (17)

while the amplitude that the electron arrive at x,
and that the detector read Ay (the electron has
gone through the lower slit) is

(U (t) | 20AL) =BG (t2) | 20) (18)

and of course there is no interference.

Therefore unless Ay and A, can develop into
states which are not orthogonal to each other, or
if one requests a matrix element which is a super-
position of Ay+ A4, (that is a superposition of two
orthogonal macroscopic states which is not
normally done) there can be no further inter-
ference between ¢y and ¢, and the wave function
[Eq. (16)] is not distinguishable from a mixture.

Whether Ay and A, will develop into states
which are not orthogonal to each other depends
upon whether the states Ay and Ay are reversible.
In a microscopic sense, of course, all states are
reversible. But for large systems in the thermo-
dynamie sense certain states are not.

It is this that distinguishes the double Stern—
Gerlach experiment from what we usually under-
stand as a measurement. For the former there
exists an easily realizable interaction (that
produced by a current loop for example) which
will reverse the effect of the original inhomogene-
ous magnetic field and thus bring ¥y and ¢, back
to Y. The interaction in what is usually under-
stood as a detector (e.g., an interaction in a
photographic plate) cannot usually be made to
reverse itself. Therefore, the states Ay and A, do
not, in the normal course of events, develop into
states which are not orthogonal to each other.
We take the point of view that the existence of
interactions which are macroscopically or thermo-
dynamically irreversible is what removes the
possibility of future interference and makes a
coherent wave function indistinguishable from a
mixture. Therefore, a measurement or the prepara-
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tion of a state is in fact the interaction of a system
to be observed or prepared with another system
which ean be put into a state that is irreversible
for reasons of entropy, thus eliminating the
possibility of future interference. This second
system (often called the apparatus or even the
observer) is usually thought of as being classical.
But this from our point of view is not necessary.
Any quantum system (a nucleus which can
undergo fission for example) which can suffer a
large increase in entropy due to the interaction
will do as well.

III. COGNITION

We now propose that the mind is a system
which, though large and capable of essentially
irreversible changes, can be described within the
Schrodinger equation. Thus a mind coupled (via
the usual sensory organs) to the apparatus
A= (ayXar) of Eq. (10) is to be denoted by a
wave function of the form

W=y XAXM. (19)

As the wave function develops in time we have
eventually

Y=y X Ay X My+LYr X ALX M. (20)
It is important to recall that just as

Ay= (av*Xar)
and
Ar=(ayXar*), (10)

50 also My means cognition of a registration in the
upper detector and no registration in the lower
while M means the reverse.

Thus finally the wave function is a linear super-
position of the two states

Yu XAy XMy
and
YL XALX M. (21)

Every instrument coupled to U or L in the future
registers invariably U or L guaranteeing a com-
plete correlation between the state of the inter-
acting instrument and the branch of the wave
function with which it is associated.

If we now agree that one of the instruments
coupled to the wave function (say A or M above)

interacts with the system in an irreversible
manner in the sense just discussed, then once this
interaction occurs, the two branches of the wave
function can no longer interfere and we can assert
just as classically that the system is either in
state U or L.

We have no difficulty describing a system of
instruments, other minds (or even our own mind
if we are speaking of the future) and stating that
the system (instruments, other minds) is, will be,
or was, either in state U or L, each with the
probability amplitude given by the proper inner
product.

It is the process of discovery or cognition that is
difficult to describe. We can say of our own mind
that it will be the state U or L with probability
| a i or| B 1% at the future time 4. But to say that
our own mind was in either of the states U or L in
the past means that we have forgotten; to say
that right now our mind is either in the state U or
L means that we do not know the state of our own
mind. When one speaks of cognition it is tauto-
logically implied that one knows the state of one’s
own mind—that one has discovered which of the
various possibilities in actual fact has come to pass.

In classical physics an ensemble is sometimes
said to be reduced to a pure state

puX Av+pL X Ar—pu X Av, (22)

when a system coupled to the observer, ¢ for
example, registers M¢. The observer then knows
what was in principle always knowable. The
transition implied by Eq. (22) is not describable
by a Hamiltonian since in effect it represents a
(retrospective) change in initial condition. The
state determined for all time by the Hamiltonian
and by the initial condition was never fully
determined, since the initial conditions were
never completely known. When an observation is
made, the state of the system (past, present and
future) is determined.

If the entire process including the mind were

put into the equations of motion, then we might
write to begin

PUXA XM(MH»ﬂL)XA: (23)

which means that the system is in the state U but
the mind is aware only of the ensemble U+ L. As
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Fic. 2. A reversible simple mind.

time passes this becomes
pu XAy XM yxay. (24)
Thus in fact we have not.gone from
puFpr—pu, (25)
but rather from
M pronrsca—Mpyxay- (26)

This represents a change in the state of excitation
of the mind which, with its sensory coupling, can
be assumed to be describable by a Hamiltonian
within the compass of classical physics.

In quantum physics the situation is in some-

respects similar, but in a fundamental sense it is
very different. If the wave function of a quantum
system coupled to instruments, minds, ete. at
to 1s
Y (l) =ayuXAXMX ++-Me
FBYLXAXM X -+ -Me, (27)

and develops at some later time into
Y=ayy XAuXMyX++-Mey

FOYLXALX ML X« -Mey, (28)

and if we then regard this system ourselves, we
“discover” for example that it is in the state U.
This according to tradition “reduces” the wave
function in close analogy with the classical
reduction of an ensemble (the discontinuous
process of von Neumann not describable by a
unitary transformation) so that upon cognition,

Y=oy XAy X+ Myt XAL XMy (29)
suddenly becomes
Y=yyXAyXMyX---Mey, (30)

and is renormalized. This reduction, however, is
not incorrect only in the case in which at least one
of the devices (mind included) within the cor-
related system cannot reverse itself. Were such

total reversal to occur, the upper and lower
correlated branches would again interfere, and by
reducing the wave function we would be throwing
away a branch needed to produce the resulting
interference pattern. Thus the practice of reducing
the wave function upon coming to “know’ the
state of the system is either a manner of speaking
or incorrect.

We can perhaps make this more graphic by
considering what might be called a reversible
mind. For simplicity, we assume that the mind
may register only two states, U and L. (As a
concrete example, consider a 2-level atom and a
photon of the right energy, Fig. 2.) Transitions
between the two states are possible so that if
there are no irreversible devices coupled to the
system, it oscillates between U and I. Thus
the state My (&) does not preclude the possibility
that this could develop into M. (t;+8). In this
process, of course, the mind would retain no
memory of its previous state. In this kind of
“mind reversal” the two branches U and L
would be expected to interfere just as in the
Stern—Gerlach experiment with the introduction
of the current loop. Thus a “reduction’” of the
wave function which discards one of the branches
would be incorrect.

From this point of view the concept of “‘knowing
something’ has been introduced to order a world
in which “mind reversals” do not normally occur.
If “mind reversal” was a relatively frequent event,
“knowledge’” or “memory’’ would not exist in the
usual sense and the concept of ‘“knowing some-
thing”” would not be likely to have been introduced
in the same way.

Iv. HOW IS SOMETHING KNOWN?

How then is something known? A wave function
which is a superposition of various amplitudes
does not contain any information which indicates
in which amplitude the system “really” is.
[The type I process of von Neumann (wave
function reduction) is designed precisely to put
this information into the wave function.] We
therefore must find some entity in the theory
which corresponds to the seemingly evident
fact that knowledge is possible.

When we are aware at the time 4 that we
(81°) arein the state M*y, we no longer can require
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that the wave function have the form
V() =g X AuXByX -+« My(h),

although if it has the above form we will find our-
selves in the state M¢y. Rather what we require
when we say that we “know” a system is in the
state U is that there will be agreement between
ourselves, other observers and detectors (all
systems coupled to us) that the system isin U.
At any one time this agreement is contained in the
matrix element

(T () | Yo X AuXBuX++ Mg (h))=a,

which is the probability amplitude for a simul-
taneous observation of Yy, Ay-+-Me at ti. The
probability amplitude for disagreement among
systems or observers—the probability amplitude
for a simultaneous observation of say v, Ac,
Bre--Mey at & is

(T () | Yo XAy XBrX -+ Mey(h))=0. (33)

The correlation among systems or observers on
the various branches of the wave function makes a
matrix element such as Eq. (33) zero. Because
of this, our knowledge that our own mind is in
some state need not be reflected in the wave
function. Rather, it is expressed in the way we
pose the question. That a system is in the state U
is equivalent to the statement that all coupled
“good” systems and sane minds will agree that the
system is in the state U and this agreement is
contained in Eq. (32). The probability amplitude
for disagreement [Eq. (33)] is zero.

If we have a system of coupled detectors and
minds which develop in time, the wave function
splits and branches continuously. We must there-
fore construct some entity that corresponds to
our experience that things happen at particular
times and that we can know and agree with one
another that they happened at those times.

This entity, we propose, is the scalar product
defined below which gives the conditional prob-
ability amplitude for

Z.(t.") given Y, (t,) given -+

given C;(4.") given Bj{ty) given A:(4'), (34)
where t,/>t/>+«+t’>t'>t’. This conditional
amplitude we denote by

Q(Ai(ta’) M 'Zn(tz’) )’

(31)

(32)

(35)
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we assume that the various detectors (which now
may include minds) are sufficiently decoupled so
that the wave function can be written as a
product, and that the Hamiltonian (other
perhaps than for interactions over a very brief
period) can be written as a direct sum. Excluding
the times la, &, &, **+, t. the Hamiltonian for the
entire system is written

H=H; +Hgp+++-H3.

At £, there is a possible interaction Hoa; at #
there is a possible interaction Has etc. The
interaction H .z, for example, acts at the time #
in such a way that ‘
Ay (1) B (1) —Ay () Bu (t)
AL ()B()—AL{)BL(l).
At #, a similar possible interaction Hpc takes
Buw,C—BuwCuw, and so on. A time ¢’ is defined
to be any time other than the instants at which
the detectors are changing their state (a process
thought of as being short compared with the
times over which the entire system develops).
Thus if for example
t<t! <t
at the time ¢/ all of the systems AB---I have
registered U or L while the systems J-+-Z have
not yet registered.
The conditional amplitude [Eq. (35)7] we now
define as
Q(A:(t) - Za(t) )= (T (1) |
Xexp{—i (Ha+Hoa) (t.'—t")
-+ (HB+HAB) (tz"‘[b') +eee
+ (Hy+Hxy) (& —8) N A: (L")
XBi(ty) X+ Vit ) X Zu(t") ). (38)
If the times ./, &'+« + all occur after the detectors
A, B+ -« have registered (i.e., t/> s, &' > b« 1.'>
{.), the conditional amplitude takes the relatively
simple form

QR(A:(t")B;(t') ++ - Z, (1))
= (¥ (t.) | exp[—iHa(t/— 1) JA: (")
Xexp[ —iH g (t' —t")]
X B;(ty')  + rexp[ —iH, (t'— ") 1V m (t,) Za () ).
(39)

(36)

(37
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As an example consider the conditional ampli-
tude

alAu(t.) B; () Ci(t") ]
= (¥ (') lexp{ —i{[(Ha+Hoa) (t.'—ta")
+ (Hp+Hyp) (&' — ") 1} Av (") B (6")Cr (£7) ).
(40)
Let us assume that t, <t.' <t and {,’ >, so that the

detectors A and C have registered.
(1) If &'>t5, the inner product becomes

(¥ (t') | exp—i[Ha(t' —t') JAu (")
Xexp—i[Hp(t'—4") IB; (") Ci (t.) )
=@ () | Av(t)B;(t)Cr(t’)).  (41)

An essential point in the argument is just that the
state recognizable as Ay at i’ develops into a
state still recognizable as Ay at ¢,”. (The blackened
grain on a photographic plate remains recog-
nizable as a blackened grain.)

The wave function at ¢’ is

\I’(tc/) = (a\(/U XAy X By XCy
FBYLXALXBLXCL)YXDXE .

Therefore the conditional amplitude is zero unless
J and k are both U. Thus given that 4 has regis-
tered Ay at t.’, we can conclude that B will register
By at ' and C will register Cy at £,”.

(2) If ' <t the detector B has not yet regis-
tered (B;=B) and the inner product becomes

¥ (") | expf —i[Ha(t —t")
+(Hp+Hagp) (t' =t )} Av{t.)B(t')Cr(t") );
(43)

at &, AuB—AyBy due to the interaction Hup; at
the later time ¢,/ the scalar product becomes

<\b(tcl) | AU(tc')BU(tcl)Ck(tc') >;

which equals zero unless k=U.

Thus for #/.>t., 1<ty t.>t, (and as before
t./<t'<t') we find a nonzero amplitude for Ay,
B unregistered and Cy. The interaction H4p con-
verts B unregistered at &’ into By for times later
than #,.

We can now say that something occurred (e.g.,
a measurement) after the first irreversible inter-

(44)
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action. For after ¢, (when A has registered) we
can say

given Ay (t.")—By (') —Cy (t.’) ete.,
if %'>t and &>,
(if the detectors have registered). Or
given AL(t./)—By (") —C1(t') ete.

Before the irreversible interaction we could not
say this because yYu(4) might develop into
Yr(te). It is only with an irreversible interaction
that we can be sure that the entire sequence of
correlations will follow. We can therefore say that
something happens when no interaction (in the
usual sense) can reverse the situation: when
given Agp(t,) implies that we will not find
Ar(t)).

‘ Our mind in this respect is like any other
irreversible system. We can say that given Ay (2,')
our mind will register M¢;(t,.’) as the conditional
amplitude

GLAy (L) -+ Mo (") ]=0. (45)

Therefore we can say that if U occurred I will see
it as U or if I see it as U it was U. There is
nothing special about cognition. It is one act in a
correlated chain.t

To measure or observe the same quantity more
than once, we envisage several detectors coupled
to the original system; say

SXAXBXCX«++Z, (46)
in such a way that
Ay
Sy— 1 By, 47)
\ Co

4 That we perceive one possibility or another (say
U or L) even though the wave function is a superposition
of both U and L is due presumably to the nature of that
physiological system called mind. We have only to assume
that the mind shares the property of the detector [Eq.
(10) ] of registering U and not L or L and not U. The
wave function may contain a superposition of U and L
but there is no manifestation of this to anyone—including
the mind described by the wave function—unless inter-
ference can occur.
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which implies a coupling of the form
Hsa, Hsp, Hsc - (48)

The conditional amplitude that A be A; at t/,
BbeBjatty!, «»+Z be Z, at t, given that S is Sy
at to (i.e., that S is observed to be in the states
ijk«++n at the times t,'« ++£,’) is

(¥ (t,") | exp{ —i[Hs(t' — o)+ (Ha+Hsa)(t,'— 1)
+(Hp+Hsp)(ts'—4")+ - «(Hy+Hsy) (t'—1,/) ]}
XSy (to) As(ta'}++ Y (t/) Za(t)), (49)

and this by the diseussion above is zero, if Sy
cannot reverse itself, unless AB-:+Z are either
unregistered or in the state U depending upon
whether ¢, is smaller or larger than ¢,.

The persistence of our memory can be inter-
preted also as a result of the irreversibility of
mental processes. When we observe a detector to
have registered U at some time ¢; we both re-
member this at later times and can verify by
looking again that the detector has in fact regis-
tered U. How for example, do we ask for the am-
plitude that the memory be in the state U, given
that it was in U at some previous time? We
imagine that the mind can be thought of as
many detectors A, B, C+ -+ all coupled to external
objects (via the sensory organs) and to an internal
memory. By coupling 4, B, C+ - + with the memory
(considered an irreversible system) or to some
external apparatus (either denoted by S) we can
precisely as in the manner of Eqs. (46)~(49) show
that given Sy at f implies Ay (t.)Bu(%') ete.
Thus we have agreement internally as to what we
remember and what we see.’®

If the mind were not thought to be irreversible,
Mey(ty) could develop into Me.(t), or to some
other state not orthogonal to M¢.. The essence of
the assumption of irreversibility is that Mey (%)
develops into a state always recognizable as My
and always orthogonal to M;. Thus the amplitude

15 When we see that a lamp is red our memory, S,
with some irreversible change registers it as red, Sg.
Later checking our memory continues to confirm that
the lamp was registered as red. Each check is interpreted
by the coupling of a detector 4, B, C - -+ with the memory
and Sg—A g, Br, Cr, etc., since Sp is irreversible. Check-
ing the lamp itself (if it is the kind of lamp that does not
change color) reveals it to be red if it registered previously
as red.

laly"‘me' ' a‘l"ul""’nzl"7¢u2

l I d‘}lull‘..M3118¢L2

Fi1c. 3. A second double slit following the first.

that the mind be in the state U, given that we
found ourselves in U at some previous time, is
always the same and always comes from the
same branch of the wave function. The amplitude
that we find L, given that we found U previously,
is zero since M1, cannot develop from My.

How then do we interpret the non-zero ampli-
tude

WYL XALX -« -Me)=8, (50)

when we “know’’ that the system is in the state U?
This amplitude we assert is in fact non-zero and
corresponds to the amplitude that the system and
all of the minds (including our own) are in the
state L. (We don’t usually ask for the amplitude
that our mind be in the state L if we know it to be
in U). That this amplitude is nonzero has no
effect on the other amplitude (U) if the two can
never interfere. If, as in Fig. 3, we arrange
another double slit so that the upper branch is
split into two parts, one is concerned only with
the conditional probability (given My for the
first set of slits) for the various possible outcomes
of the second process. As long as there is no
possibility of interference, and our questions are
prefaced by “given Me,” we can discard the
amplitude yYrX+-+ and renormalize YyX---.
Thus the so-called reduction is really a renormal-
ization. If, however, the systems 4, M etc. can be
reversed (brought back to a state in which the
two amplitudes can interfere) then it is essential
that the amplitude ¢z X -+ be retained so that
the possibility of interference be preserved. We
know something, therefore, because of the possi-
bility of an infallible correlation between the
state of our mind and other minds and systems,
and not because the wave function of the world
has no amplitudes for other possibilities. The
other amplitudes reveal themselves only in mind
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reversals and reversals of macroscopic systems
that do not ordinarily occur.

CONCLUSION

In conclusion we claim that the process of
measurement according to the interpretation
given above can be placed wholly within the
quantum theory. The entire system including the
apparatus and even the mind of the observer
can be considered to develop according to the
Schrodinger equation. No discontinuous processes
need be assumed, nor is it necessary to introduce
the idea of wave function reduction. The essential
idea is that of the interaction of the system with a
device which is irreversible in the thermodynamic
sense and which eliminates as a practical matter

the possibility of interference between the various
branches into which the wave function is sep-
arated. This separation permits one to say that
one is either on one branch or the other. The
process of cognition (of being aware that some-
thing happened) is interpreted as corresponding
to the certain correlation among the various
branches of the wave function which allows the
possibility of agreement among all observers and
systems, and agreement in our own memory as
to what happened. This certain correlation then
allows one, as a matter of convenience, to discard
the other branches and renormalize the first.
This, however, is only a manner of speaking since
if the interaction is reversible, the possibility of
interference requires the retention of all of the
branches of the wave function.



THE MEASUREMENT OF RELATIVE FREQUENCY

Neill Graham

1. Introduction

In this paper we wish to explore the probability interpretation within
the framework of the Everett interpretation of quantum mechanics [1, 2].
After a brief review of the Everett interpretation, including a critique of
Everett’s version of the probability interpretation, we propose a ‘‘two
step’’ solution to the problem. In the first step an apparatus measures
the relative frequency with which a given event occurs in a collection of
independent, identically prepared systems. (Relative frequency is treated
as an observable and is represented by a Hermitean operator. This
approach to relative frequency was discussed by this author in his Ph.D.
thesis [3]; a similar formulation was arrived at independently by J. B.
Hartle [4].)

The second step of the proposed measurement process takes place
after the apparatus has interacted with the systems in question and re-
turned to thermal equilibrium. It is then ‘‘read’’ by a second apparatus
(called the observer to prevent confusion). The important point is this:
Since in the second step the system under observation is macroscopic,
we can apply the powerful statistical techniques of Prosperi and Scotti
{51, and of Daneri, Loinger, and Prosperi [6, 7] to a discussion of this ob-
servation. In particular, we can show that in the second measurement
(but not the first) a relative frequency that agrees with the Born interpre-
tation will be found in the overwhelming majority of the Everett worlds of
the observer.

Let us begin our discussion by considering the measurement of an ob-

servable M with eigenstates l/rm and eigenvalues m. Experience tells
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us that a measurement of M on a system in the state ¢y will yield one

of the eigenvalues m of M as a result. If the measurements do not dis-
turb the system, and if M does not change spontaneously in time, then
repeated measurements of M on the same system will yield the same
eigenvalue. On the other hand, if a large number of independent measure-
ments are made on identical systems all in the same state i, then the
value m will be obtained with a relative frequency (number of occurrences
divided by number of trials) close to |< (//m,z//>|2.

(Some people have wondered whether repeated, nondisturbing measure-
ments can actually be made on a single quantum system. The answer is
clearly yes. Consider, for example, a scattering experiment where the
scattered particle is detected in a cloud chamber. The wave function of
this scattered particle is a spherical wave radiating out from the scatter-
ing center in all directions. If part of this wave is intercepted by the
cloud chamber, straight line tracks will be observed in the chamber. Along
a given track each atom performs an independent measurement of the direc-
tion of the outgoing particle (this being the direction of a line through the
scattering center and the atom). After the ionization of the first atom on
a track, each additional ionized atom, by virtue of lying on a line joining
the first atom to the scattering center, confirms the direction of motion
determined by the first atom. Thus the cloud chamber makes repeated
measurements of the direction of motion of the same particle.)

Everett’s great achievement was to give an explanation consistent
with the Schrodinger equation of this apparent ‘‘reduction of the state
vector.”’ Let us look briefly at his approach. Consider a measuring appa-
ratus in the initial state ¢. Then, when the system is in the eigenstate

Y the initial state of the system and the apparatus is given by
Y= ypd . 1.1

Let U be the linear, unitary transformation that changes the initial
state of the system and apparatus before the measurement into the final

state afterwards. Then
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of = vyl . (1.2)

If the measurement does not disturb the original state, Yme of the system

then (ﬁf must have the form
f
¢ = ypplm] (1.3)

where ¢[m] is tbe state of the apparatus when it has recorded the value

m for M. (The different ¢[m]’s describe apparata with different
‘“‘pointer readings.’’)

But what if the initial state, i, of the system is not an eigenstate
of M? The result in this case is determined by the linearity of U. Sup-

pose that ¢y has the expansion
U= <>y (1.4)
m
Then gbi in turn is given by
W=D <A s (1.5)
m
and, because of the linearity of U, we have for l/lf,

1l

UCS < ¥ $) (1.6)

S <> UG )
= <Yy > glml

Thus v,[/f is a superposition of states of the system and apparatus corre-
sponding to different pointer readings of the apparatus.

According to Everett, this superposition describes a set of simultane-
ously existing worlds, one for each element of the superposition. In each
world the apparatus has a unique pointer reading, the one described by

the corresponding element, i #[m], of the superposition. Everett further
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shows that, in each world, future nondisturbing measurements on the same
system will give results consistent with the first measurement. Thus an
apparent reduction of the state vector takes place in each world, yet the
universal state vector describing all the worlds changes in accordance
with the Schrédinger equation, linearly and deterministically.

Provided one is ready to accept the existence of multiple, simultane-
ously existing worlds, Everett’s interpretation satisfactorily explains the
apparent reduction of the state vector characteristic of quantum measure-
ments. Such measurements, however, feature a second, equally important
characteristic, the probability interpretation. In this case the explanation
given by Everett is less convincing.

To see the problem, consider a collection of identical, independent
systems, all in the same state . These are the systems that might par-
ticipate in some actual measurement of relative frequency, such as the
particles that strike a photographic plate or pass through a particle de-

tector. The state of this collection (viewed as a single system) is

yN — ¢y (N terms) . 1.7)

Now consider an apparatus that will interact with each of these sys-

tems in turn. The initial state of the systems and the apparatus is

i 1.8)
ut = yNe
= >...< ,U> .
=S A A Y Yy
my,...,My

If U is the linear operator describing the interaction, then we have

U¢m1...¢mN¢ = t/fml...l,l/mN¢>[m1,..., mN] , (1.9)
where qS[ml,..., mN] is the state of an apparatus that has recorded the
values mg,..., my- By the linearity of U the final state of the systems

and apparatus is
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ot = oyt (1.10)

Il

2 <x//m1,¢>...<¢

my,...,my

my’ z/r>(//ml ...(,/lquS[ml seesmpyl

According to the Everett interpretation this final state describes a set
of worlds, one for each possible observed sequeace, my,..., my, of the
outcomes of the measurements in question. Furthermore, every possible
sequence of outcomes occurs in some world. If ¢ is some particular value
of m, and R the number of times { occurs in a given sequence Mmy,...,my
(the number of “‘successes’’ in that sequence), then every possible value
of R from 0 to N will be realized in some Everett world. There seems
to be no connection between the actual relative frequency % in a given
world and the expected relative frequency |< ¢B,¢>‘2.

To see this more clearly, assume that m can take on K possible
values. Consider those sequences for which £ occurs at R given posi-
tions. The number of such sequences is (K—l)N_R, since there are K-1
possibilities for ea