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Preface

Advanced Visual Quantum Mechanics is a systematic effort to investigate
and to teach quantum mechanics with the aid of computer-generated an-
imations. But despite its use of modern visualization techniques, it is a
conventional textbook of (theoretical) quantum mechanics. You can read it
without a computer, and you can learn quantum mechanics from it without
ever using the accompanying CD-ROM. But, the animations will greatly en-
hance your understanding of quantum mechanics. They will help you to get
the intuitive feeling for quantum processes that is so hard to obtain from
the mathematical formulas alone.

A first book with the title Visual Quantum Mechanics (“Book One”) ap-
peared in the year 2000. The CD-ROM for Book One earned the European
Academic Software Award (EASA 2000) for outstanding innovation in its
field. The topics covered by Book One mainly concerned quantum mechan-
ics in one and two space dimensions. Advanced Visual Quantum Mechanics
(“Book Two”) sets out to present three-dimensional systems, the hydrogen
atom, particles with spin, and relativistic particles. It also contains a basic
course of quantum information theory, introducing topics like quantum tele-
portation, the EPR paradox, and quantum computers. Together, the two
volumes constitute a fairly complete course on quantum mechanics that puts
an emphasis on ideas and concepts and satisfies some modest requirements
of mathematical rigor. Nevertheless, Book Two is fairly self-contained. Ref-
erences to Book One are kept to a minimum so that anyone with a basic
training in quantum mechanics should be able to read Book Two indepen-
dently of Book One. Appendix A includes a short synopsis of quantum
mechanics as far as it was presented in Book One.

The CD-ROM included with this book contains a large number of Quick-
Time movies presented in a multimedia-like environment. The movies illus-
trate the text, add color, a time-dimension, and a certain level of interactiv-
ity. The computer-generated animations will help you to explore quantum
mechanics in a systematic way. The point-and-click interface gives you quick
and easy access to all the movies and lots of background information. You
need no special computer skills to use the software. In fact, it is no more
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difficult than surfing the Internet. You are not required to produce simu-
lations by yourself. The general idea is that you should first think about
quantum mechanics and not about computers. The movies provide some
phenomenological background. They will train and enhance your intuition,
and the desire to understand the movies should motivate you to learn the
(sometimes nasty, sometimes elegant) theory.

Computer visualizations are particularly rewarding in quantum mechan-
ics because they allow us to depict objects and events that cannot be seen by
other means. However, one has to be aware of the fact that the animations
depict the mathematical objects describing reality, not reality itself. Usually,
one needs some explanation and interpretation to understand the visualiza-
tions. The visualization method used here makes extensive use of color. It
displays all essential information about the quantum state in an intuitive
way. Watching the numerous animations will thus create an intuitive feeling
for the behavior of quantum systems—something that is hardly achieved just
by solving the Schrodinger equation mathematically. I would even say that
the movies allow us to see the whole subject in a new way. In any case, the
“visual approach” had a great influence on the selection of topics as well as
on the style and the level of the presentation. For example, Visual Quantum
Mechanics puts an emphasis on quantum dynamics, because a movie adds
a natural time-dimension to an illustration. Whereas other textbooks stop
when the eigenfunctions of the Hamiltonian are obtained, this book will go
on to discuss dynamical effects.

It depends on the situation, but also on the personality of the student or
of the teacher, how the movies are used. In some cases, the movies are cer-
tainly useful to stimulate the student’s interest in some phenomenon. The
animation thus serves to motivate the development of the theory. In other
cases, it is, perhaps, more appropriate to show a movie confirming the theory
by an example. Personally, I present the movies by video projection as a
supplement to an introductory course on quantum mechanics. I talk about
the movies in a rather informal way, and soon the students start asking in-
teresting questions that lead to fruitful discussions and deeper explanations.
Often, the movies motivate students to study related topics on their own
initiative.

One could argue that in advanced quantum mechanics, visualizations are
not very useful because the student has to learn abstract notions and that he
or she should think in terms of linear operators, Hilbert spaces, and so on. It
is certainly true that a solid foundation of these subjects is indispensable for
a deeper understanding, and you will have occasion to learn much about the
mathematical theory from this text. But, I claim that despite a good train-
ing in the abstract theory, you can still gain a lot from the visualizations.
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Talking about my own experience, I found that I learned much, even about
simple systems, when I prepared the movies for Visual Quantum Mechanics.
For example, having done research on the mathematical aspects of the Dirac
equation for several years, I can claim to have a good background concern-
ing the quantum mechanical abstractions in this field. But nevertheless, I
was not able to predict how a wave packet performing a “Zitterbewegung”
would appear until I started to do some visualizations of that phenomenon.
Moreover, when one tries to understand the visualizations one often encoun-
ters phenomena, that one is able to explain with the theory, but that one
simply hasn’t thought of before. The main thing that you can gain from the
visualizations is a good feeling for the behavior of solutions of the quantum
mechanical equations.

Though the CD-ROM presents a few simple interactive simulations in
the chapter about qubits, the overwhelming content consists of prefabricated
movies. A true computer simulation, that is, a live computation of some
process, would of course allow a higher degree of interactivity. The reader
would have more flexibility in the choice of parameters and initial conditions.
But in many cases, this approach is forbidden because of the insufficient
speed of present-day computers. Moreover, in order to produce a useful
visualization, one has to analyze the physical system very carefully. For
every situation, one has to determine the scale of space and time and suitable
ranges of the parameters where something interesting is going to happen. In
quantum mechanics, the number of possibilities is very large, and if one
chooses the wrong parameter values, it is very likely that nothing can be
seen that is easily interpreted or that shows some effect in an interesting
way. Therefore, I would not recommend to learn basic quantum mechanics
by doing time-consuming computer simulations.

Producing simulations and designing visualizations can, however, bring
enormous benefit to the advanced student who is already familiar with the
foundations of quantum mechanics. Many of the animations on the CD-
ROM were done with the help of Mathematica. With the exception of the
Mathematica software, all the necessary tools for producing similar results
are provided on the CD-ROM: The source code for all movies, Mathematica
packages both for the numerical solution of the Schrodinger equation and
for the graphical presentation of the results, and OpenGL-based software
for the three-dimensional visualization of wave functions. My recommenda-
tion is to start with some small projects based on the examples provided
by the CD-ROM. It should not be difficult to modify the existing Mathe-
matica notebooks by slightly varying the parameters and initial conditions,
and then watching and interpreting the results. You could then proceed
to look for other examples of quantum systems that might be good for a
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physically or mathematically interesting visualization. When you produce
a visualization, often some natural questions about the system will arise.
This makes it necessary to learn more about the system (or about quan-
tum mechanics), and by knowing the system better, you will produce better
visualizations. When the visualization finally becomes useful, you will un-
derstand the system almost perfectly. This is “learning by doing”, and it
will certainly enhance your understanding of quantum mechanics, as the
making of this book helped me to understand quantum mechanics better.
Be warned, however, that personal computers are still too slow to perform
simulations of realistic quantum mechanical processes within a reasonable
time. Many of the movies provided with this book typically took several
hours to generate.

Concerning the mathematical prerequisites, I tried to keep the two books
on an introductory level. Hence, I tried to explain all the mathematical
methods that go beyond basic courses in calculus and linear algebra. But,
this does not mean that the content of the book is always elementary. It is
clear that any text that sets out to explain quantum phenomena must have
a certain level of mathematical sophistication. Here, this level is occasion-
ally higher than in other introductions, because the text should provide the
theoretical background for the movies. Doing visualizations is more than
just obtaining numerical solutions. A surprising amount of mathematical
know-how is in fact necessary to prepare an animation. Without presenting
too many unnecessary details, I tried to include just what I thought was nec-
essary to produce the movies. My approach to teaching quantum mechanics
thus makes no attempt to trivialize this subject. The animations do not re-
place mathematical formulas. But in order to facilitate the approach for the
beginner, I marked some of the more difficult sections as “special topics” and
placed the symbol in front of paragraphs intended for the mathematically
interested reader. These parts may be skipped at first reading.

Though the book thus addresses students and scientists with some back-
ground in mathematics, the movies (together with the movies of Book One)
can certainly be used in front of a wider audience. The success, of course,
depends on the style of the presentation. I myself have had the occasion
to use the movies in lectures for high-school students and for scientifically
interested people without any training in higher mathematics. Based on this
experience, I hope that the book together with CD-ROM will have broader
applications than each could have if used alone.

According to its subtitle, Book Two can be divided roughly into three
parts: atomic physics (Chapters 1-3), quantum information theory (Chap-
ters 4-6), and relativistic quantum mechanics (Chapters 7, 8). This divi-
sion, however, should not be taken too seriously. For example, Chapter 4 on
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qubits completes the discussion of spin-1/2 particles in Chapter 3 and serves
at the same time as an introduction to quantum information theory. Chap-
ter 5 discusses composite quantum systems by combining topics relevant for
quantum information theory (for example, two-qubit systems) with topics
relevant for atomic physics (for example, addition of angular momenta).

Together, Book One and Book Two cover a wide range of the standard
quantum physics curriculum and supplement it with a series of advanced top-
ics. For the sake of completeness, some important topics have been included
in the form of several appendices: the perturbation theory of eigenvalues, the
variational method, adiabatic time evolution, and formal scattering theory.
Though most of these matters are very well suited for an approach using
lots of visualizations and examples, I simply had neither time nor space (the
CD-ROM is full) to elaborate on these topics as I would have liked to do.
Therefore, these appendices are rather in the style of an ordinary textbook
on advanced theoretical physics. I would be glad if this material could serve
as a background for the reader’s own ventures into the field of visualization.
If there should ever be another volume of Visual Quantum Mechanics, it will
probably center on these topics and on others like the Thomas-Fermi theory,
periodic potentials, quantum chaos, and semiclassical quantum mechanics,
just to name a few from my list of topics that appear to be suitable for a
modernized approach in the style of Visual Quantum Mechanics.

This book has a home page on the internet with URL

http://www.uni-graz.at/imawww/vqm/

An occasional visit to this site will inform you about software upgrades,
printing errors, additional animations, etc.
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Chapter 1

Spherical Symmetry

Chapter summary: In the first book of Visual Quantum Mechanics, we considered
mainly one- and two-dimensional systems. Now we turn to the investigation of
three-dimensional systems. This chapter is devoted to the very important special
case of systems with spherical symmetry.

In the presence of spherical symmetry, the Schrédinger equation has solutions
that can be separated into a product of a radial part and an angular part. In this
chapter, all possible solutions of the equation for the angular part will be determined
once and for all.

We start by discussing symmetry transformations in general. In quantum me-
chanics, all symmetry transformations may be realized by unitary or antiunitary
operators. We define the unitary transformations corresponding to rotations of a
particle in R?. Their self-adjoint generators are the components of the orbital angu-
lar momentum L. We describe the angular-momentum commutation relations and
discuss their geometrical meaning.

A quantum system is called invariant under a given symmetry transformation
if the Hamiltonian commutes with the corresponding unitary operator. A particle
moving under the influence of a potential V' (x) is a spherically symmetric system
(invariant under rotations) if the potential function depends only on the distance
r from the origin. Spherical symmetry implies the conservation of the angular mo-
mentum and determines the structure of the eigenvalue spectrum of the Hamiltonian
(degeneracy). The square L? and any component Ly of the angular momentum can
be diagonalized simultaneously with the Hamiltonian of a spherically symmetric
system. The structure of the common system of eigenvectors can essentially be de-
rived from the angular-momentum commutation relations. In general, the possible
eigenvalues of the angular-momentum operators are characterized by integer and
half-integer quantum numbers. It turns out, however, that only integer quantum
numbers occur in case of the orbital angular momentum.

The eigenvalues and eigenfunctions (spherical harmonics) of the orbital angular
momentum are then determined explicitly. The spherical harmonics are the energy
eigenfunctions of a particle whose configuration space is a sphere (rigid rotator). The
rigid rotator can serve as a simple model for a diatomic molecule in its vibrational
ground state.

The restriction of the eigenvalue problem to an angular-momentum eigenspace
reduces the Schrodinger equation to an ordinary differential equation. We conclude
the chapter with a brief discussion of this so-called radial Schrédinger equation.
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1.1. A Note on Symmetry Transformations

1.1.1. Rotations as symmetry transformations

Consider a physical system S in three-dimensions, for example, a few par-
ticles moving under the influence of mutual and external forces. The state
of S is described with respect to a given coordinate system I in terms of
suitably chosen coordinates x € R?. We remind the reader of the following
basic assumption.

Homogeneity and isotropy of space:

No point and no direction in R? is in any way physically distinguished.
Therefore, the behavior of physical systems should not depend on the
location of the experimenter’s lab or its orientation in space (principle
of relativity).

In order to test the isotropy of space, we can perform an experiment
with the physical system S in the coordinate system I and then repeat the
experiment in a rotated coordinate system I’. This can be done in several
different ways (see Fig. 1.1).

(1) Rotate the system and the observer. This procedure consists in
rotating the whole experimental setup: the system S (the particles, the
external forces, the devices for preparing the initial state) and the observer
(the measurement devices). The isotropy of space means that with respect
to the rotated frame of reference I’, the system behaves exactly as it did in
I. The mathematical description is exactly the same as before. The only
difference is that the coordinates now refer to the new coordinate frame I’.

(2) Rotate the system but not the observer (active transformation).
Now the rotated physical system has to be described by an observer in the
old coordinate frame I. The motion of the system S will look different,
and the observer has to change the mathematical description (in particular,
the numerical values of the coordinates). From the point of view of the
observer, the rotation changes the state of the system. Hence, the rotation
corresponds to a transformation 7" in the state space of S. We say that the
transformation 7' is a representation of the rotation in the state space of the
system.

(3) Rotate the observer but not the system (passive transformation).
This procedure is equivalent to procedure (2), but in the mathematical de-
scription, T has to be replaced by the inverse transformation. This can be
seen as follows: With respect to the new coordinates in I’ (that is, from
the point of view of a rotated observer), the states of the physical system
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FiGURE 1.1. Symmetry transformations of a physical sys-
tem. (1) Both the physical system S and the frame of ref-
erence I are transformed. The behavior of the system and
the mathematical description remain unchanged (principle of
relativity). (2) The system is transformed with respect to a
fixed coordinate frame I. The states of the system undergo
a transformation 7. (3) The frame I is transformed, the sys-
tem is left unchanged. T~ maps the states in I to the states
in I'.

appear to be transformed by a mapping 7’. Now we can perform an active
transformation by T', as described in (2), and we end up with situation (1):
Both the physical system and the observer are rotated to I’, and by the
principle of relativity the behavior in I’ is the same as it was in I. Hence,
the transformation 7" followed by the transformation T gives the identity. A
similar argument applies to T followed by T". We conclude that 7/ = T~

In the following, we prefer the “active” point of view expressed in (2).
We choose a fixed coordinate system and perform rotations with the objects.
Let us assume that an experiment changes the system’s initial state A to a
certain final state B (with respect to the coordinate frame I). The rotated
system has the initial state A’ = T(A) (again with respect to I). Repeating
the experiment with the rotated system changes its state into B’. What is
the relation between the final states B’ and B? The principle of relativity
states that the rotation does not change the physical laws that govern the
system, that is, the mechanism relating the initial and the final state. Hence,
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the same relation that holds for the initial states must also hold for the final
states: B' = T(B).

If the properties of the system depend on its orientation, then some
additional influence would alter the transition to the final state, and B’
would in general be different from 7'(B). The same is true if not everything
that is relevant to the behavior of the system is transformed in the same
way. For example, one rotates the particles but not the external fields. In
this case, the system is subject to a changed external influence, and the final
state B’ of the rotated system will differ from the rotated final state T'(B)
of the original system.

The discussion above applies not only to rotations but also to other
transformations of the system. In general, a symmetry transformation need
not be related to geometry (an example is the exchange of two identical
particles, see Section 5.9). Let us try to give a general (but somewhat vague)
definition of a symmetry transformation.

A symmetry transformation of a physical system is an invertible trans-
formation 7" that can be applied to all possible states of the system such
that all physical relations among the states remain unchanged.

The mathematical description of a symmetry transformation 7' depends
on how the states are described in a physical theory. The next section shows
how symmetry transformations are implemented in quantum mechanics.

1.1.2. Symmetry transformations in quantum mechanics

Quantum states are usually described in terms of vectors in a Hilbert space
9. But the correspondence between vectors and states is not one-to-one.
For a given vector v, all vectors in the one-dimensional subspace (ray)

W] ={ | XeC} (1.1)

represent the same state. Hence, the mathematical objects corresponding to
the physical states are rays rather than vectors.

The set of states:

A quantum state of a physical system is a one-dimensional subspace [t/]
of the Hilbert space $) of the system. The set of all possible quantum
states will be denoted by $,

H={W] v €9} (1.2)
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In linear algebra, the set of one-dimensional subspaces of a linear space
is called a projective space.

EXERCISE 1.1. If v and A\ both represent the same state, and if ¢ and
uo both represent some other state, why do ¥ + ¢ and A\) + pg in general
represent different states?

In quantum mechanics, all experimentally verifiable predictions can be
formulated in terms of transition probabilities. The transition probability
from a state [¢] to a state [¢/] is defined by

P([g]=[¥]) = (¥, 0)* = P([¢]—[¢]), (1.3)

where ¢ and v are arbitrary unit vectors in [¢] and [¢], respectively. Tran-
sition probabilities may be regarded as the basic physically observable rela-
tions among quantum states.

Hence, the basic requirement for a symmetry transformation is that the
transition probability between any two states should be the same as between
the corresponding transformed states.

Definition:

A symmetry transformation in quantum mechanics is a transformation
of rays that preserves transition probabilities. More precisely, a map
T:9—Hisa symmetry transformation if it is one-to-one and onto and
satisfies

P(T|¢]—=T[¢]) = P([¢]—[v]) for all states [¢] and [¢]. (1.4)

1.1.3. Realizations of symmetry transformations

Instead of working with rays, it is more convenient to describe symmetry
transformations in terms of the vectors in the underlying Hilbert space.
Consider, for example, a unitary or antiunitary' operator U in the Hilbert
space $). The operator U induces a ray transformation in a very natural way.
To this purpose, choose a vector 1) representing the state [¢)] and define the
ray transformation U associated with the operator U by

Uly] = [Uy). (1.5)

U transforms the ray [¢] into the one-dimensional subspace spanned by the
vector U.

lAn antiunitary operator A is a one-to-one map from $) onto $) which is antilinear,
that is, A(ay + B¢) = a A(Y) + 58 A(¢), and satisfies (A, Agp) = (¢, 1), whereas a unitary
transformation U is linear and satisfies (Uy,U®) = (¢, ¢).
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EXERCISE 1.2. Show that it follows from the linearity or antilinearity of
U that the definition (1.5) does not depend on the chosen representative 1.

A unitary operator U leaves the scalar product invariant, and hence the
corresponding ray transformation U must be a symmetry transformation.
The same is true for an antiunitary operator, which does not change the
absolute value of the scalar product.

The following famous theorem due to Eugene P. Wigner states that uni-
tary and antiunitary operators are in fact the only ways to realize symmetry
transformations.

Theorem of Wigner:
Every symmetry transformation 7" in § is of the form
T =U, where U is either unitary or antiunitary in $. (1.6)

Two operators U; and U representing the same symmetry transforma-
tion differ at most by a phase factor,

Uy =e%U,,  for some 6 € [0,27). (1.7)

In particular, U; and Us are either both unitary or both antiunitary.

The investigation and classification of the possible symmetry transfor-

mations has played an important role in mathematical physics. For
example, according to the special theory of relativity, a relativistic system
must admit the Lorentz transformations as symmetry transformations. It
must be possible to implement all (proper orthochronous) Lorentz transfor-
mations as unitary operators in the corresponding Hilbert space. This im-
poses some restrictions on the possible choices of Hilbert spaces and scalar
products for relativistic systems. In fact, the theory of group representa-
tions allows one to classify all possible relativistic wave equations and their
associated Hilbert spaces (scalar products).

1.1.4. Invariance of a physical system

A symmetry transformation of the states also induces a similarity transfor-
mation of the linear operators in the Hilbert space of a physical system. Let
U be a unitary or antiunitary operator representing a given symmetry trans-
formation. Assume that two vectors ¢ and 1 are related by the equation
¢ = A, where A is a linear operator. After the symmetry transformation,
the transformed states are related by

Up=UAYp = UAU U (1.8)
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Here, we have inserted the operator U U = 1 (unitarity condition). Hence,
the corresponding relation between the transformed vectors U¢ and Uy
is given by the linear operator UAU~'. We see that after applying the
symmetry transformation, an operator A has to be replaced by the operator
UAU 1.

EXERCISE 1.3. Prove that UAU™! is self-adjoint, whenever A is self-
adjoint and U is unitary or antiunitary.

EXERCISE 1.4. Ezplain in what sense the expectation value of an observ-
able is invariant under symmetry transformations.

Sometimes an observable might be unchanged by a given symmetry
transformation. In such a case the operator is said to be invariant. This
is often very useful information about the system. A physical system for
which the Hamiltonian operator itself is invariant is said to possess a sym-
metry or invariance.

Definition:

A physical system is invariant under a symmetry transformation U (or
symmetric with respect to U) if the Hamiltonian H of the system has
the property

H=UHU. (1.9)

The symmetry transformation U is called an invariance transformation
of the system represented by H. Invariance transformations are usually very
helpful for the solution of the Schrodinger equation. In this chapter, we
want to investigate systems that are invariant under rotations (spherically
symmetric). But first we have to describe the unitary operators correspond-
ing to rotations, and their self-adjoint generators, the angular-momentum
operators.

1.2. Rotations in Quantum Mechanics

1.2.1. Rotation of vectors in R?

Rotations in the three-dimensional space R3 are described by orthogonal 3 x 3
matrices with determinant +1. You are perhaps familiar with the following
matrix that rotates any vector through an angle a about the xs-axis of a
fixed coordinate system

cosae —sina 0
R(a)=[sina cosa 0], a€cR (1.10)
0 0 1
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There are similar matrices for rotations about the other coordinate axes. An
arbitrary rotation can be most intuitively characterized by a rotation vector
a = an, where « specifies the angle of the rotation, and the unit vector n
gives the axis (here the sense of the rotation is determined by the right-hand
rule). We consider only rotation angles o with —7 < « < 7 because the
angles o + 2wk (with &k an integer) may be identified with a. Moreover, a
rotation through a negative angle about the axis n is the same as a rotation
through a positive angle about the axis defined by —n. Hence, it is sufficient
to consider rotation angles « in the interval [0, 7].
The elements of the 3 x 3 rotation matrix R(a) are given by
3
R(a);, = 0 cosa + njng (1 — cosa) — Z €ikm Mo, SIN 1. (1.11)
m=1
Here, we have used the Kronecker delta symbol d;;, and the totally antisym-
metric tensor €k, which are defined by

1 if 1 =k
d= T (1.12)
0, if i # k.
1,  if (i,k,m) is a cyclic permutation of (1,2,3),
€ikm = § —1, for other permutations, (1.13)
0, else.

Any rotation matrix has determinant 1 and is orthogonal, that is, the trans-
posed matrix is equal to the inverse:

R(a)' =R(a)™ L. (1.14)

EXERCISE 1.5. Show that (1.35) can be written as
3
[Lj, L] = 1B ) €jkm Lim. (1.15)
m=1

EXERCISE 1.6. Show that an orthogonal transformation leaves the Eu-
clidean scalar product invariant.

EXERCISE 1.7. What sort of transformation is described by an orthogonal
matrixz with determinant —17

EXERCISE 1.8. Verify that the matrices R(a) given by (1.10) form a
commutative group under matric multiplication. In particular:

R(0)=15, R(a)R(B) =R(a+p5), afeR. (1.16)

EXERCISE 1.9. Prove that rotations around different axis in general do
not commaute.
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EXERCISE 1.10. Verify that (1.11) reduces to (1.10) for n = (0,0,1).

EXERCISE 1.11. Prove the following formulas for the Kronecker delta
and the totally antisymmetric tensor:

Z €klm €ijm = Oki O1j — Okj Olis (1.17)
m
Z €klm €ilm = 20ki, (1.18)
Im

> €xim €kim = 6. (1.19)

k,,m

- The set of all rotation matrices R(a) forms a (non-commutative)

group. In particular, the composition of any two rotations is again
a rotation. Mathematically, the composition of rotations is described by the
product of the corresponding rotation matrices. The elements of the rota-
tion group can be characterized by their coordinates e = (a1, 2, aeg). The
set of all possible coordinates a forms a sphere with radius = in R3. Note
that the matrix elements depend smoothly (analytically) on the parameters
«. Such a group is called a Lie group. It is a group and a differentiable
manifold at the same time. The rotation group is denoted by SO(3), which
means “special orthogonal group in three dimensions” (“special” refers to
the fact that the determinant is 4+1). The sphere with radius 7 in R? is a
useful coordinate space for the rotation group. Every element of the rotation
group is uniquely labeled by a rotation vector inside or on that sphere. The
sphere is an image of the group manifold. It has unusual topological prop-
erties because two points on the surface of the sphere that are connected by
a diameter correspond to the same group element (why?) and have to be
identified.

CD 1.1 explores the rotation group. The group manifold is visually
represented by the coordinate sphere. Any rotation is visualized by
the rotation vector a¢ and by the orientation of a rectangular box to
which the rotation is applied. The movies show how the orientation
of the box changes as the rotation vector moves through the group
manifold on straight lines or on closed circles. As a topological space,
the group manifold is not simply connected: there are closed orbits
that cannot be continuously deformed into a point.
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FIGURE 1.2. A rotation x — R(a)x maps a wave function
¥ to ¢ = U(a)p. The value of the rotated function ¢’ at a
point x is given by the value of ¢ at the point R(a)~!x.

1.2.2. Rotation of wave functions

The wave functions considered here are complex-valued functions of the
space variable x. Such a function can be rotated by applying a linear oper-
ator U(a) defined by:

(U(e) ) (x) = 1 (R(@) ). (1.20)

Here, R(«) is the rotation matrix defined in (1.11). Figure 1.2 explains
why we use the inverse rotation matrix in the argument of the function we
want to rotate. The operator U(a) acts on wave function by a rotation in
the literal sense. That is, the “cloud” of complex values that represents the
wave function simply gets rotated according to the rotation vector a.

The rotations of a box in CD 1.1 can also be interpreted as the
rotation of a wave function. Just take the box as an isosurface of
some square-integrable wave function 1, or as the outline of the
characteristic function of the box-shaped region. The action of U ()
on the wave function 1 just appears as the action of the ordinary
rotation R(a) on the box.

For any rotation a, the operators U(a) are unitary in the Hilbert space
L?(R3). The rotations around a fixed axis form a so-called one-parameter
strongly continuous unitary group. Consider, for example, the rotations
about the zz-axis (see Exercise 1.8). The rotation vector is of the form
a = (0,0,a) with —7 < o < w. We write U(a) = U(«) and extend the
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definition of U to arbitrary real arguments by U(a £ 27) = U(«). Then we
find for all real numbers « and (3,

U)!=U(a) ' =U(-a), UW0)=1, U)UB) =U(a+p). (1.21)

We refer to Appendix A.6 and to Book One for more details about unitary
groups and their self-adjoint generators.

EXERCISE 1.12. Let U(a), a € R, describe the rotations around the x3-
axis in space. Using FExercise 1.8, prove that these operators form a unitary

group.
EXERCISE 1.13. For differentiable functions v, and for operators U(a)
as in the previous exercise, show that
0 0 0 .
S (U@¥) )| = (;cg el 872) W(x) = —iLsp(x). (1.22)

a=0

Exercise 1.13 above shows that the operator
0 0
L3 = ih(l‘g — — I 7) (1.23)
is the generator of rotations around the z3-axis. The operator L3 is the third
component of the angular-momentum operator L defined in Book One (see
also (1.30) below).

If ¢ is a differentiable wave function (in the domain of Lg), then its
dependence on the angle of rotation can be described by the differential
equation

0
iha—ib(x, a) = L3y(x, ). (1.24)
!

This equation is completely analogous to the Schrodinger equation for the
time evolution. We can write

U(a) = exp(—ith ). (1.25)

Similar results hold for the rotations about the x1- and zs-axes and the
components L1 and Lo of the angular momentum.

The components Ly, Lo, and L3 of the angular-momentum operator L
are the infinitesimal generators of the rotations about the x1, x2, and
T3-axis.
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1.3. Angular Momentum

1.3.1. Angular momentum in classical mechanics

An observable that is intimately connected with rotations—both in classical
and in quantum mechanics—is angular momentum. A classical particle that
is at the point x with momentum p has angular momentum

T2P3 — T3P2
L=xxp=|x3p1 —z1p3 | . (1.26)
T1p2 — T2p1

The angular-momentum vector is always perpendicular to the plane spanned
by the position vector x and the momentum vector p. In the classical Hamil-
tonian formalism, the angular momentum generates the canonical transfor-
mations describing the rotations of the system. The angular momentum is
a constant of motion whenever the equation of motion is invariant under
rotations. (This is a special case of Noether’s theorem.)

CD 1.2 shows the classical angular momentum in various situations
with spherical symmetry: circular motion (see also Figure 1.3), mo-
tion along a straight line, and the Coulomb motion. The angular
momentum vector is perpendicular to the plane of motion and is
conserved whenever the coordinate origin coincides with the center
of spherical symmetry.

EXERCISE 1.14. A classical particle moves with constant velocity on a
straight line. Show that its angular momentum is constant in time.

EXERCISE 1.15. A classical particle with mass m performs a circular
motion around the coordinate origin, as in Figure 1.8. Show that its angular
momentum has the value

L=1w, (1.27)
where I = mr? is the moment of inertia, r is the radius of the circle, and w
1s the angular velocity.

EXERCISE 1.16. Show that the kinetic energy of the particle in the pre-
vious exercise can be written as
1 L2 L?
F=——=—. 1.28
2m r2 2] (1.28)

1.3.2. Angular momentum in quantum mechanics

One can define the angular momentum in quantum mechanics as the operator
corresponding to the classical expression (1.26) via the usual substitution
rule. According to this heuristic rule, the transition to quantum mechanics



1.3. ANGULAR MOMENTUM 13

Ficure 1.3. The angular-momentum vector for a particle
moving with constant angular speed on a circle with center
at the origin is a conserved quantity. Its magnitude is the
product of the radius and the linear momentum, its direction
is perpendicular to the plane of motion and determined by the
right-hand rule: You are looking in the direction of L, when
the motion is clockwise. (CD 1.5.4 is an animated version of
this figure.)

is made by substituting linear operators acting on wave functions for the
classical quantities p and x. The classical momentum p is replaced by
the differential operator p = —ihV, and the position x is replaced by the
operator of multiplication with x,

x; — multiplication by x;, p; — —ih B (1.29)
€y
An application of this rule leads to the angular-momentum operator?
L=-ihxxV=xXp, (1.30)

which is perhaps familiar from Book One. This observable is also called
the orbital angular momentum in order to distinguish it from other types
of angular momentum (to be described later). The components of the “vec-
tor operator” L contain products of position and momentum operators, for
example, L1 = xop3 — x3p2. The order of the position and momentum op-
erators does not matter here, because x; and p; commute for i # j, and
therefore the substitution rule is unambiguous (as explained in Book One).

2Usually, we denote the quantum mechanical operators by the same letter as the
corresponding classical quantities.
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As a generalization of the results in Section 1.2.2; we obtain the following
connection between the angular momentum L and the unitary operators
U(a) describing rotations in quantum mechanics:

Rotations about a fixed axis:

With a given unit vector n, define for an arbitrary wave function v the
rotated wave function

b(x,0) = Ulom) $(x) = ¥ (R(om) 'x) (131)
(rotation through the angle a about the axis defined by the unit vector
n). If ¢ is differentiable, then it satisfies the equation

ih% Y(x,a) =n-Li(x,a). (1.32)

The self-adjoint operator n-L is thus the generator of the rotations about
a fixed axis, and the unitary group can be written as

U(an) :exp(—%an-L). (1.33)

1.3.3. Commutation relations of the angular-momentum
operators

The individual components of the angular momentum L do not commute.
Instead, we find, by an explicit calculation, the following result.

Angular-momentum commutation relations:

The three components of the angular-momentum operator

L=-ihxxV (1.34)
satisfy the angular-momentum commutation relations
[L1, Lo) =ihLs, [Lo,Ls] =1ihLy, [Ls,L1] =ihLo. (1.35)

As a consequence of the angular-momentum commutation relations, it is
impossible to prepare a state where the values of all three components can
be predicted with arbitrary accuracy. The product of the uncertainties of
two components is related to the expectation value of the third component,
as you can see from Eq. (A.12) in Appendix A. Hence, you have to be very
cautious when you try to depict the angular momentum as an arrow as in
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classical mechanics. Closely related to the angular momentum in a state
is the vector

L., = (<Ll>¢’ <L2>1/“ <L3>¢)’ (136)

whose components are the expectation values of the three angular-momen-
tum operators. This vector describes a statistical property of an ensemble
of quantum systems. For an individual system, the components of L simply
do not have sharp values simultaneously.

EXERCISE 1.17. Determine the commutation relations between the com-
ponents of the angular-momentum operator and the components of the posi-
tion and momentum operators,

[Ls,x1] = ihxo, etc. (1.37)

EXERCISE 1.18. Compute the angular-momentum commutation relations
from the result of the previous exercise, using the algebraic rules for commu-

tators, in particular, [A, BC| = B[A,C] + [4, B|C.

EXERCISE 1.19. Prove the operator identities

p-L=0, x-L=0, (1.38)
L x L =ihL, (1.39)
[n-L,v]=iAv X n, (1.40)

where n is a unit vector and v is any of the operators x, p, or L.

The angular-momentum commutation relations are deeply connected
with the properties of the rotation group. This is the topic of the next
section.

1.3.4. The meaning of the angular-momentum commutation
relations

The reason that the components of the angular momentum do not commute
lies in the local structure of the group of rotations. It is an elementary
observation, that two rotations about different axes do not commute.

CD 1.3.1 shows that the final orientation of a body depends on the
order of the rotations applied to it.

Let us now consider the noncommutativity of small rotations. We denote
by R;(a), Ry(a), and R, () the matrices describing rotations about the -,
y-, and z-axis, respectively. The noncommutativity of the rotations about
different axis means, for example, that

R, (a)R, () # R,(a)Rq(a). (L41)
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Now, consider the following matrix
M(a) = R, () Ry(a) — R, (0?) Ry(a) Ry (). (1.42)

The matrix M(«) describes the difference between two operations. Each
operation is a composition of rotations. We insert the explicit expressions
for the rotation matrices and compute the matrix product. Thus, we obtain
the explicit form of the matrix M(«) by a little calculation (made easy with
the help of a computer algebra system). Expanding the matrix elements of
M(«) in power series with respect to a (around o = 0), we obtain

3 (00 —1
M(a) =7 (0 0 -1 + 0(a?). (1.43)
“\11 0

What does this result mean? It means that whenever « is small, then M(«)
is very small. For small angles, the operations in (1.42) are thus comparable:

R.(a) Ry(a) = R.(a®) Ry(a) Ro(), (1.44)

up to terms of order o®.

Hence, a small rotation through an angle o about the z-axis corrects the
noncommutativity of the x- and y-rotations up to terms of third order in .

CD 1.3.2 shows the difference between the final orientations of a body
to which rotations about the z- and y-axes are applied in different
order. If the angle « is small enough, then the final orientations
differ only by a rotation about the z-axis through an angle o?.

This property of the rotation group now must also be true for the ro-
tations performed on wave functions. Hence, there has to be a relation
analogous to (1.44) between the unitary groups generated by the angular-
momentum operators Ly, Lo, and L3. For small @ we expect, by analogy
with (1.44), something like

—ilia —iloa

s 2 s s
e e —e iLsa e ngae 1L1a+ «

a small correction”. (1.45)

(We choose units with # = 1 in order to simplify the notation.) Formally,
we can approximate the exponential functions by the lowest-order terms of
the power series

) 1
e—1L1a:1_iL1a_§L%a2—|—..., (1'46)

and similarly for Lo and L3. We insert these expansions into (1.45) and
multiply everything out. Assuming that « is small, we keep only the terms



1.4. SPHERICAL SYMMETRY OF A QUANTUM SYSTEM 17

up to the order o®. After cancellation of the terms that are linear in «, the
right and left sides of (1.45) become

—L1Lya® = —(iL3 + Ly L1) @?a® + O(a?). (1.47)

We conclude that (1.45) is accurate for small o up to terms of order o if
and only if the generators L1, Lo, and L3 satisfy the commutation relation

[L1, Lo) = iLs. (1.48)

The angular-momentum commutation relations are an unavoidable conse-
quence of the noncommutativity of rotations.

The power series expansion of the exponential function converges in

the operator norm if the generator is a bounded operator. In the
Hilbert space L?(R3), the angular-momentum operators are unbounded, and
the expansion (1.46) makes sense only on a dense set of so-called analytic
vectors. We omitted these details here for the sake of a short heuristic
argument. But the above derivation of the commutation relations is rigorous
for unitary representations in finite dimensional Hilbert spaces. See, for
example, Section 4.4.2.

1.4. Spherical Symmetry of a Quantum System

1.4.1. Conservation of angular momentum

A physical system with Hamiltonian H is called invariant under rotations
or spherically symmetric whenever H commutes with the unitary rotation
operators U(a) = exp(—ia - L/h) defined in (1.20), that is, whenever

Ula) HU(a)™! = H, for all angles a = am. (1.49)

For the quantum systems considered in this book, H commutes with rota-
tions whenever H commutes with the generators of rotations, the angular-
momentum operators:

[H,Ly] =0, fork=1,2,3,orsimply [H,L]=0. (1.50)

In the same way that H does not change under rotations, the components
of L do not change under the time evolution,

YR, HUD _ 1, (1.51)

that is, the angular momentum is a conserved quantity, a constant of motion.

In classical mechanics, the close connection between symmetries and
conservation laws is known as Noether’s theorem. Classically, as well as
quantum mechanically, the physical quantity that is conserved during the
time evolution of a spherically symmetric system is the angular momentum.
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As usual, it is understood that a commutation relation like (1.50) holds

on a suitable dense domain that is left invariant by the operators H
and Lj. One may take, for example, the set S(R?) of rapidly decreasing
smooth functions introduced in Book One, Section 7.7.1. We also note that
the commutativity of unbounded self-adjoint operators is actually defined by
the commutativity of the unitary groups (see also Book One, Section 6.11).
The relation [H, L] = 0 on a dense domain implies the commutativity only
if additional conditions are met, which are usually satisfied for the systems
considered here.

1.4.2. Spherically symmetric potentials

If the Hamiltonian is of the particular form H = Hy+ V (x), where Hy is the
free-particle Hamiltonian and V' (x) is a potential, then the physical system is
spherically symmetric whenever the potential V' is spherically symmetric. A
potential V' (x) is spherically symmetric if it does not depend on the direction
of x, but only on the distance of the point x from the origin. We write

V(x)=V(r), where r=/2?+2%+23=|x| (1.52)

Thus, a potential is spherically symmetric if its isosurfaces (the surfaces over
which V' is constant) are concentric spheres around the origin. The line of
action of the corresponding force field

F(x) = ~VV(r) = d V)X (1.53)

")

always passes through the coordinate origin (see Fig. 1.4), and the strength
of the force does not depend on the direction of x.

To a mathematician, Eq. (1.52) constitutes a slight abuse of notation,

which is, however, very common in physics. Two different functions are
denoted by the same letter V' (one function depends on the three variables
x = (x1,x9,x3), the other is a function of the single variable r). In physics,
the notation often emphasizes the physical quantity and not the explicit
function describing its dependence on other quantities.

The most important example of a spherically symmetric potential is the
Coulomb potential. It describes the electrostatic energy of an electron in the
field of an atomic nucleus. The Schrédinger equation for this system will be
solved in Chapter 2.

In the presence of spherical symmetry, the Schrodinger equation can be
simplified by the separation of variables technique. This technique seeks a
solution in the form of a product of three functions, one depending on the
radial variable r and the others on angular variables ¥ and ¢. In that way,



1.4. SPHERICAL SYMMETRY OF A QUANTUM SYSTEM 19

\‘\*‘,/’ Vd
< \\l// A
~ \ / »

. ~ v~ -
B\
SO/ AN
. . -~ -
r////ft\\\\\\
v l/*’\\\\

FiGure 1.4. Example of a spherically symmetric force field.
The line of action always passes through the coordinate ori-
gin.

the eigenvalue equation (a partial differential equation) splits into three ordi-
nary differential equations, one for each variable. The spherically symmetric
potential V' (r) enters only the equation for the radial part of the wave func-
tion, whereas the equations involving the angular variables ¥ and ¢ are the
same for all systems with spherical symmetry. In this chapter, we are going
to determine the possible solutions of the angular equations once and for all.

CD 1.4 presents three-dimensional views of an attractive harmonic
oscillator force and a repulsive Coulomb force.

EXERCISE 1.20. Show that the Hamiltonian for a particle in a spherically
symmetric potential commutes with all components of the angular-momen-
tum operator.

1.4.3. Symmetry and degeneracy

A major step in the solution of the Schrédinger equation is to determine
whether the Hamiltonian operator admits eigenstates. An eigenstate or
eigenvector of H is a nonzero square-integrable function ¢ for which there
exists a number E (called an eigenvalue) such that

Hp(x) = E(x). (1.54)
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An eigenvector of the energy operator leads immediately to a stationary
solution of the Schrédinger equation

Y(x,t) = e By (x), (1.55)

for which the time-dependence is only a phase factor (with absolute value =
1), so that predictions of physical properties do not depend on time.

It is important to note that the invariance under a symmetry transforma-
tion may be related to a degeneracy of eigenvalues. An eigenvalue F is called
degenerate if there are several linearly independent eigenvectors belonging
to that eigenvalue. The subspace spanned by all these eigenvectors is called
the eigenspace belonging to that eigenvalue. The dimension of the eigen-
space is called the degree of degeneracy by physicists and the multiplicity
by mathematicians.

Even if a Hamiltonian operator H is invariant under a symmetry trans-
formation U, an eigenvector i need not be invariant. However, if 1 is an
eigenvector of H, belonging to the eigenvalue F, then the transformed vector
U1 is again an eigenvector of H belonging to the same eigenvalue. This can
be seen as follows:

HUY = (UHU YUy = UHY = UEY = EUY. (1.56)

Hence, the eigenspace of F is invariant under the transformation U, that is,
U is in that eigenspace whenever v is.

Next, we consider the eigenvector 1) belonging to a non-degenerate eigen-
value of H. An eigenvalue is non-degenerate if the corresponding eigenspace
is one-dimensional. A symmetry transformation U that leaves the eigen-
spaces of H invariant must turn ¢ into a vector Ut in the same (one-dim-
ensional) eigenspace. Hence, U1 is simply a multiple of 1, and we may
write Ut) = M) with some complex number A\. But |A\| = 1 because U is
unitary. An eigenstate belonging to a non-degenerate eigenvalue is invariant
(up to a phase factor). In the case of spherical symmetry this means that
for non-degenerate energies the corresponding eigenfunctions are spherically
symmetric.

Likewise, the eigenspaces of the angular-momentum operators (the an-
gular-momentum subspaces) are invariant under the time evolution gener-
ated by a spherically symmetric Hamiltonian H. The operator H leaves the
eigenspace of each of the angular-momentum operators invariant. It can be a
major simplification to solve the eigenvalue problem for H in an eigenspace of
the angular-momentum operators. Thus, our next task is the investigation of
the possible angular-momentum eigenvalues and the associated eigenspaces.
This is done in the next section.
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1.5. The Possible Eigenvalues of
Angular-Momentum Operators

In this section, we present a purely algebraic approach to the solution of the
eigenvalue problem for the angular-momentum operators. For simplicity,
we work with units where A has the numerical value 1. We consider a set
of three symmetric operators Ji, Jo, and J3 that satisfy the commutation
relations

[J1, o) =1J3, [Jo, J3] =11, [J3,J1] =iJa. (1.57)
A lot can be learned by studying these relations. Because of these relations,
we cannot hope to find simultaneous eigenvectors belonging to nonzero eigen-
values.

Indeed, assume that v is a simultaneous eigenvector of, say, J; and Js.
Let Jiy = mivy and Joy = motp. Then we find immediately that
iJ3’l/J = [Jl, JQ]l/J = (mlmg - mgml)zp =0.

Hence,
J3(J1 +ide)yp = [J3, S|y +ilJ3, Lo = (iJ2 — J1) = (ima — ma)9),
and
J3(J1 +1J2)Y = J3(m1 +ima)p = (mq + img)J31p = 0.
Hence, imy — m; = 0, and because the eigenvalues of symmetric operators

are always real, this implies that m; = ms = 0. We conclude that there are
no nontrivial simultaneous eigenvectors belonging to nonzero eigenvalues.

The square of the angular-momentum vector J = (J1, Ja, J3), that is, the
operator

Jr=Jt 4+ I+ T3 (1.58)
commutes with all components Jg,
[J2, 0] =0, fork=1,2,3. (1.59)

Hence, we could try to find simultaneous eigenvectors for the operator J?
and any one of the components, say Js. We are going to prove the following
theorem.

THEOREM 1.1. Assume that there is a simultaneous eigenvector of the
commuting operators J* and J3. Then the eigenvalue of J? is j(j+1) where j
s one of the numbers 0, %, 1, %, 2.... Moreover, there are 2j+1 eigenvectors
Vjm of J3, such that

T2 Vim = GG +1) Yjm, J3Vjm = mYjm, (1.60)
form: _jv_]+1’7]_1a]
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PROOF. We first define the operators

Jy =J1 £iJy (1.61)
and note the following commutation properties
[Js, Js] = +£Js,  [J% Je] =0. (1.62)
The operators J+ are not self-adjoint, but formally adjoint to each other,
J=g, J=u. (1.63)

Their products can be expressed in terms of J? and J3,
JoJ_=J*—J2+ Js, J J.=J*—J2— Js (1.64)

Now, let us assume that there exists a simultaneous eigenvector 1, belonging
to eigenvalues \ for J2 and m for Js:

T2 = X Js ) = map). (1.65)

We can always multiply the eigenvector with a suitable complex constant,
and therefore we may assume that 1), is normalized,

[ 12 = (W, ) = 1. (1.66)

Next, consider the state 1, = Jy¢\,. Whenever 1, is not the zero vector,
it is an eigenstate of J3 belonging to the eigenvalue m + 1. This follows from
the commutation property (1.62):

Js e = JaJy i = (s + [T, Je]) U, = (Jo s + J4)
= (Jem+ Jy) by, = (m+1) T4 ),
= (m+1)1y. (1.67)

The vector v, is still an eigenvector of J? belonging to the same eigenvalue
A, because J; commutes with J?2:

Pipy = TP Tty = T I g = Ty Ay = Ay, = Ay (1.68)

An analogous observation holds for the state J_1)?\. Either this vector is
the zero vector, or it is a simultaneous eigenstate with eigenvalues m — 1 for
Js3 and X for J2. In order to determine the norm of the vectors J:Hb?)q‘m we
perform the following calculation

[T |I? = (T, , T bp,)
= (Y s I T ) by (1.63)
= (Y, (J2—J3F J3)up) by (1.64)
=\ —m?Fm. (1.69)
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From ||Jx1||? > 0 it follows immediately that

A>m?Em=m(m=1). (1.70)
Moreover, we find that J4 v, = 0 if and only if A — m? —m = 0, that is,
Jyh =0 if and only if X =m(m+ 1), (1.71)
and similarly,
J_ah =0 if and only if X =m(m — 1). (1.72)

Now it is easy to determine the possible values for A and m. Whenever we
have a simultaneous eigenvector of J2 and J3 with eigenvalues A and m,
we can also find eigenvectors belonging to eigenvalues m + 1, m + 2, and so
forth, of J3. These eigenvectors are obtained by successive application of the
ladder operator Jy. All new eigenvectors belong to the same eigenvalue A of
J?. This process of creating new eigenvectors will stop as soon as we reach
a maximal value of m, say mmax for which J+w7)7‘lmax = 0, or equivalently, for
which
A = Mmax(Mmax + 1). (1.73)

It is crucial to observe that such a maximal value mpy.x must exist: Oth-
erwise, we could raise the eigenvalue of J3 indefinitely until the inequality
(1.70) would be violated, thus giving a contradiction.

Similarly, using the ladder operator J_, we can lower the eigenvalue m
until we reach a minimum value my;, for which we must have

A = Mpin(Mmin — 1). (1.74)
Combining Egs. (1.73) and (1.74) we find
(mmax — Mmin + 1)(mmax + mmin) =0. (175)

Here, because of mmax > Mmin, only the second factor can be zero, that is,
Mmin = —Mmax- Because we can get from mpyiy t0 Mmax in integer steps (by
applying the operator J; to the corresponding eigenvectors), we find that
Mmax — Mmin = 2Mmax Must be a non-negative integer. Writing mpyax = J

we find that the only allowed values of j are 0, %, 1, %, 2, and so forth. From
(1.73) we see that A = j(j + 1).
Finally, write 1;,, instead of V. O

Figure 1.5 visualizes the spectrum of possible simultaneous eigenvalues
of J? and J3 according to Theorem 1.1.

THEOREM 1.2. For a fixed j, all the 25 + 1 eigenvalues of J3 have the
same multiplicity k (which might be infinite). The eigenspace of J* belonging
to the eigenvalue j(j + 1) is therefore k(2j + 1)-dimensional. This space is
invariant under the action of the operators Ji, J2, and Js.
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J
j=3 ° ° ° I [ ° °
i=3 “Lo ° ° ° °
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J4

j=2 ° ° ° °
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. 1
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]:0 T > m

m=—-3 -2 -1 0 1 2 3

FIGURE 1.5. The possible values (j,m) for the operators .J?
and Js (with j < 3). Each point represents a simultaneous
eigenvector of J? and J3. The ladder operators Ji let you
jump from one point to the next in the horizontal direction,
that is, within an eigenspace of .J?.

PROOF. Assume that there are two orthogonal vectors wj(ln)l and %(2731
both of which belong to the eigenvalues j(j + 1) of J2 and m of J3. Assume
m < j. Then J4 1/1‘;1% and J @bﬁ)n are both nonzero vectors, and

1 2 1 2
(T Sy T ) = (s T T )
1 2
= (W (=5 = J)¥)
. 1 2
= (G +1) —m2—m)l) Py =0 (176)
And, similarly, for m > —j we find
1 2
(-, T i) = 0. (L.77)
You can see that the orthogonality is preserved by the ladder operators
J4+ and J_. Hence, if there are precisely k orthogonal states for some
eigenvalue m, then there are precisely k orthogonal states for all m =
—j,—j+1,...,5—1,4. For a given j there are 25 + 1 different values of m.
Because the eigenvectors belonging to different eigenvalues of a symmetric
operator are orthogonal, eigenvectors with different eigenvalues m are or-

thogonal. Therefore, the subspace spanned by all the eigenvectors belonging
to the eigenvalue j(j + 1) of the operator J? is k(24 + 1)-dimensional. This
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eigenspace is clearly left invariant by the operators J2, J3, and Ji (an op-
erator leaves a subspace invariant if the operator maps any vector of this
subspace to a vector in the same subspace). Hence, the eigenspace of J? is
also left invariant by the operators J; and Ja, which can be written as linear
combinations of J; and J_. 0

Our considerations in this section have shown that the possible eigen-
values of the angular momentum are characterized by angular-momentum
quantum numbers j and m that can have integer and half-integer values.
In the next section, we will find that for the orbital angular momentum
L = x x p only integer values can occur. Angular-momentum operators
with half-integer quantum numbers are nevertheless important for describ-
ing the spin of elementary particles (see Chapter 3).

EXERCISE 1.21. Verify the commutation relations
[J2,Jx] =0, fork=1,2,3. (1.78)

EXERCISE 1.22. Define the three 2 X 2-matrices

o= (? (1)> , o9 = (? Bi> , o3 = (é _01> . (1.79)

These matrices are called the Pauli matrices. They are symmetric and hence
define self-adjoint operators in the Hilbert space C2. Verify that the opera-
tors S; = (1/2)0j, j = 1,2,3, satisfy the angular-momentum commutation
relations (1.57). Show that the only eigenvalue of S? = S? + S2 + 5% is
s(s+1) with s =1/2.

EXERCISE 1.23. Show that if the operators Ji, Jo, J3 satisfy the commu-
tation relations [J1, Jo] = ihJ3, and so forth, then the possible eigenvalues of
J? are R%j(j+1) with j =0, %, 1,..., and for each j the possible eigenvalues
of J3 are hm with m = —j,—j+1,...,7.

EXERCISE 1.24. Let ¢; ; be a simultaneous eigenvector of J? and J3, with

the mazimal m = j. Assume that ¢;; is normalized, ||¢; ;|| = 1. Define
d)j,m—l = — 1 J_ ¢j,m; m:j,j—l,...,—j—i-l. (1.80)
V(i +1) =m(m —1)
Show that the vectors ¢jm, m = —j,—j+1,...,j are normalized simultane-

ous eigenvectors of J* and Js.
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X3

FIGURE 1.6. Spherical coordinates on R3. Instead of giving
the Cartesian coordinates (x1, x2, x3), we can also specify the
position of a point in R3 by spherical coordinates (7,1, ©).
See also CD 1.5.

1.6. Spherical Harmonics

1.6.1. Spherical coordinates

In order to determine the eigenvalues and eigenfunctions of the orbital an-
gular-momentum operators L? and Lg, it is convenient to express them as
differential operators in spherical coordinates. On R3\ {0} (three-dimension-
al space without the origin) we can introduce spherical coordinates (7,1, ¢)
as in Figure 1.6.

In a spherical coordinate system, the position of a point is specified by its
distance r from the origin, its polar angle ¥ and its azimuthal angle . The
Cartesian coordinates can be expressed in terms of the spherical coordinates
as follows

z1(r, 9, ) = r sind cos p,
xo(r, ¥, ) = r sind sin g, (1.81)
z3(r, ¥, p) =r cos?.

It is often necessary to invert this formula, that is, to express the spherical
coordinates of a point in terms of its Cartesian coordinates
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r(z1,z2,x3) = |x| € (0,00),
W(x1, 29, x3) = arccos(zs/|x|) € [0, ], (1.82)
o(x1, 9, x3) = arctan(x1,z9) € (—m, 7.
Here, the function arctan of two variables is defined as
arctan(zy, o) = w0(—x1) sgn(xe) + arctan(xa/xz1). (1.83)

(This definition has to be extended by continuity for ;1 — 0 and z3 # 0.)
Here, sgn(x) is the sign of x, and 6 is the step function (6(x) =1 for z > 0
and 0(z) =0 for z <0).

CD 1.5.1 is an animated view of a point in a Cartesian coordinate
system similar to Figure 1.6. CD 1.5.2—4 deal with the uniform
motion of a free particle and the circular motion of the rigid rotator
and discuss the description of these systems in terms of spherical
coordinates.

At each point in R?\ {0}, we can define the unit vectors in the directions
of the spherical coordinate lines (these are the curves on which two of the
three spherical coordinates are held fixed)

. . ) x
e, =(sin v cos p, sin ¥ sin @, cos V) = =

Oe,
ey =(cos ¥} cos p, cos¥sin p, —sin}) = —, .
v =( @ iny, —sind) = = (1.84)
) 1 Oe,
e, =(—singp,cosp,0) = Snd 9y
EXERCISE 1.25. Using (1.84), verify the following formulas:
er-ey =0, e e =1, e, X €y = €y,
ey-e, =0, eg-ey =1, ey X e, = €, (1.85)
e, e, =0, e, e, =1, e, X e, = ey.

At each point, the three unit vectors thus form a right-handed, orthonormal
system.

Now, if ¥ (1,29, x3) is a wave function in Cartesian coordinates, then
the same function in spherical coordinates is obtained just by inserting the
expressions (1.81) into the arguments of

¢(T7 v, 90) = 1#(561(7‘, v, 90)’ L2 (T’ v, 30)7 $3(T7 v, 90)) (186)
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The collection of formulas is completed by giving the expression for the
gradient operator V in spherical coordinates

A o 1 0 1 0
=e — + — — — . 1.87
v=e 8r+r (qu 8ﬂ+e@sin19 &p) (1.87)
This formula has to be understood as follows. The gradient of a function

can either be evaluated in Cartesian coordinates or in spherical coordinates.
At some point (z1,x2,x3) corresponding to (7,9, p) we have

Vi(ar, 22, 23) = Vo(r,0, ), (1.88)
with ¢ and 1 being related as in (1.86).

The spherical coordinate space is a three-dimensional space where
the coordinate axes describe the r-, ¥-, and ¢-coordinates of a point
in R3. CD 1.6 visualizes the familiar examples of linear and circu-
lar motion, which look rather unfamiliar in the spherical coordinate
space.

The transition to spherical coordinates, that is, the mapping U : ¢ — ¢

defined in (1.86) is a unitary transformation from the Hilbert space
L?(R3) to the Hilbert space L2([0,00) x S2,dV). Here, S? denotes the two-
dimensional surface of the unit sphere, and dV = r? sin dr di dy is the
volume element in spherical coordinates. The points in [0,00) x S? have
the coordinates (r, 9, ¢), and integration has to be done with respect to the
volume element in spherical coordinates. It follows from the usual rules of
variable substitution in an integral that

L wnananlat = [ [ joo.0)R2 snoardvdg. (189
R 0

This means that the norm of v in L?(R?) is equal to the norm of ¢ in
L?([0,00) x S?,dV) (this is the unitarity of U). As a consequence, the
operators V and V are unitarily equivalent, that is, V = UVU"!. In the
following, we always put a hat on an operator in spherical coordinates in
order to indicate that it acts on functions ¢(r, v, ¢).

1.6.2. Angular momentum in spherical coordinates

With the results of the previous section, it is easy to derive the expressions
of the angular-momentum operators in spherical coordinates. Using the
formulas from Exercise 1.25, we obtain

. 1 0 6),

L =re, x (—ihV) = ik (eﬂ S5 % 99 (1.90)
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i K9 ) I
2= 2 (sind— | - ————. 1.91
sind 99 <Sm &9) sin? 9 0?2 (191)

Again, the hat () simply indicates that the operator acts on wave functions
in spherical coordinates. We have

L¢($171’27~’1«"3) = f.;d)(?“,ﬁ,cp), (192)

where ¢ is the function v expressed in spherical coordinates as in (1.86). In
particular, the operators L? and L? have the same eigenvalues (as well as L3
and ﬁg). The angular-momentum operators fulfill the angular-momentum
commutation relations. Hence, Theorem 1.1 in Section 1.5 shows that the
possible eigenvalues of L? are among the numbers h2(¢ + 1), where £ is a
non-negative integer or half-integer. For each eigenvalue of ﬁQ, the third
component has the eigenvalues im with m = —¢,—¢+1,..., /L.

The expression for L3 in spherical coordinates is particularly simple.

Just insert the third Cartesian component of ey and e, (see Eq. (1.84)) into
(1.90):
A 0
L3 = —ih —. 1.93
=iy (1.93)
This expression is already familiar from the two-dimensional situation de-
scribed in Book One, Section 8.8.

Now we can see that L3 cannot have half-integer eigenvalues m. The
domain of the differential operator L3 consists of continuous functions. As
a function of the azimuthal angle ¢, any eigenfunction of L3 must therefore
be a periodic function:

o(r, 0, o+ 21) = (1,9, ). (1.94)

Denoting the eigenvalue of Ls by m, the eigenvalue equation reads
ﬁgb——ihiqs—hmgb (1.95)
30 = 90 %= .

so that the ¢-dependence of ¢ must be described by exp(img), which is
periodic with period 27 if and only if m is an integer.

The considerations in Section 1.5 thus also exclude the possibility that L2
has half-integer eigenvalues. Only the numbers h2/(£ + 1) with integer £ can
occur as eigenvalues of L?. Below, we are going to show that simultaneous
eigenfunctions of L? and L3 indeed exist for all non-negative integers /.
Hence, we obtain the following result:
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FIGURE 1.7. The absolute value |L| = v/L2 of the angular
momentum can only take the values hy/¢(¢ + 1), with £ being
a non-negative integer. For a given ¢, the component of the
angular momentum in an arbitrary direction (here taken as
the vertical direction) is also quantized and can only have
the values —hl, —h(f + 1),... + A¢. In a classical picture,
the angular momentum vector (if measured with respect to a
certain direction) thus lies on certain cones.

Eigenvalues of the orbital angular momentum:

The eigenvalues of the operator L? are precisely the numbers A2((¢ + 1),
where / is a non-negative integer. For each ¢, the operator L3 has the
eigenvalues im, where m = —¢,—¢ +1,... /.

A classical vector L for which the values of L? and L3 are restricted to the
eigenvalues above would have to lie on certain cones which are described in
Figure 1.7. In quantum mechanics, this picture should not be taken seriously
because the same result would be obtained for the possible values of L and
Ly (or the component of L in an arbitrary direction).

In spherical coordinates, the operators Lg and L? only act on the angular
variables. Hence, we may try a separation of the variables by writing

Bl 0.¢) = - () X9, 0) (1.9

The factor 1/r has been introduced for “cosmetic reasons.” Later, it will
simplify some formulas involving the radial part of the wave function.

It has to be noted that most wave functions ¢(r, 9, ¢) cannot be written
in the form of a product of an r-dependent part and a part depending only
on the angular variables. But it turns out that the set of wave functions
of the type (1.96) is large enough to contain an orthonormal basis of the
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Hilbert space L?(R3). Therefore, any wave function has an expansion

¢(r,9, ) = Z Felr) xu (0, ), (1.97)

the sum being convergent in the Hilbert space norm.
The wave function (1.96) consists of a radial part f(r)/r and an angular
part x(9,¢). The norm is given by (see also (1.89))

El =/|<;5(7”, 9, p)|? r2dr sind do de

= [k [ @ps (1.98)
0 S2

Here, Q is shorthand for the angular coordinates (¢, ¢). The set of these
coordinates forms the sphere S? (the two-dimensional surface of the unit
sphere in three dimensions), and df2 = sin ¥ d dy denotes the area element
on this sphere.

Hence, the part f(r) of the wave function in spherical coordinates is
square-integrable on [0, 00), and the angular part is a square integrable func-
tion on the sphere S? (it belongs to the Hilbert space L%(S?)).

The application of the operators L2 and Ls only affects the angular part
x. It is thus sufficient to look for angular eigenfunctions

T, 0) = LU+ 1) X0, 0), LaxP0,¢) = hmx7(9,¢). (1.99)

Because we know already that m must be an integer, we only have to look for
solutions with integer £. These can be determined, in principle, as follows.
According to the proof of Theorem 1.1, we first look for a solution of

(L1 +iL2)x (0, ¢) = 0, (1.100)
which can be written as
1cos198—+s1 198X 0 (1.101)
oy oY ’ ’

It is easily checked that for each £ =0,1,2,3,...
X(0,¢) = N e (sinv)’ (1.102)

is a solution for this equation (where Ny is a normalization constant). For
each ¢ we can now obtain 2¢ + 1 eigenfunctions of L2 simply by differenti-
ating, that is, by applying the differential operator Ly —iLs to the solution
above. This procedure (which was described in Theorem 1.1) yields, one af-
ter another, the eigenfunctions of L3 form = /¢,£—1,...,—£. It is convenient
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to normalize these eigenfunctions by requiring

/ IX(9, ) |* d2 = 1. (1.103)
5’2

In that way, one obtains the spherical harmonics Y;" (¥, ), which are de-
scribed in more detail in the next section.

Eigenfunctions of the orbital angular momentum:

In spherical coordinates, the normalized simultaneous eigenfunctions of
the angular-momentum operators L? and L3 are the spherical harmonics
Y0, ),

L2YM(0, ) = B2 0L+ 1) Y™ (0, @), (=0,1,2,3,..., (1.104)
Ly Y™ (9, 0) = hm Y™ (9, ), —{<m<UL (1.105)

As an example, Figure 1.8 visualizes the spherical harmonic Y41.

CD 1.7 visualizes the spherical harmonics Y,;” for £ < 6 by vari-
ous methods. The spherical harmonics are complex-valued functions
depending on two angles, hence the most natural visualization uses
a color density plot on the surface of the sphere (either shown as
a globe in three dimensions, or represented by a two-dimensional
map).

1.6.3. Special topic: Properties of the spherical harmonics

The spherical harmonics are usually® defined by

2 14— [
Y (0, ) = \/ CHLIE=m) ing prcosd)  for 0<m <, (1.106)

dr (L4 m)!
Y (0,0) = (=1)" Y, (0, p) for —¢ <m < 0. (1.107)
Here, the functions P;"(z) are the associated Legendre functions,
m (_1)m m d=tm
P (z) =g (1—z2)m/? — (22 - 1), (1.108)

defined for —1 < z < 1 and integers 0 < m < /. The function Pf(z) = Py(z)
is called the Legendre polynomial of degree /.

3In various books, these definitions can differ by phase factors. We follow the con-
ventions made in Mathematica, Y;" (¥, ) = SphericalHarmonicY[{,m,d, ¢|, and P;"(z) =
LegendreP[{, m, z].
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FiGURE 1.8. The absolute value of the spherical harmonics
Y™ (¥, ) depends only on ¢J. Therefore, we can visualize
them by plotting a curve in the zjx3-plane where at each
angle 9, the distance from the origin is |Y;"(¥,0)|. This is
shown here for £ = 4 and m = 1. More examples and three-
dimensional visualizations can be found on the CD-ROM; see
CD 1.7.

Spherical harmonics with different indices are orthogonal, because they
are eigenfunctions belonging to different eigenvalues of a self-adjoint opera-
tor, and because of their normalization we simply have

Y (9, 0) Y (9, 9) dQ = 8400 Sy (1.109)
S2
The spherical harmonics are either symmetric or antisymmetric under a
reflection through the origin,

Y (r = 9,0+ 1) = (~1) Y (0, 0). (1.110)
Finally, we note the addition theorem:

4
20+ 1

l
> YW, ) YW, @) = Pycos ). (1.111)
m=—~
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Here, « is the angle between the directions (¢, ¢) and (¥, ¢’). Denoting the
corresponding unit vectors by w and w’, we have cosa = w - w'.

In Cartesian coordinates (z, y, z), with r = (z24y%+22)'/2, the spherical
harmonics are (for m > 0)

ng(x’y’z):\/%—i—l(ﬁ—m)!( x +1iy )mP@m<z). (1112)

4 (ﬁ—i—m)' ‘/x2_|_y2 r

For example,

1 3 z 3 x+tiy
Vo=—, Y=/ =2 vil= - . 1.113
0 Varn’ 1 A7 1’ 1 T 8T r ( )

1.7. Particle on a Sphere

1.7.1. Classical particle on a sphere

Here, we consider a quantum mechanical system that is only able to perform
a rotational motion. Imagine a particle with mass* m whose motion is re-
stricted to the surface of a sphere. There are no other forces. This particle
has two degrees of freedom, its position on the sphere is given by two an-
gular coordinates, the longitude and the latitude, described by the angles 1
and ¢. A classical particle subject to these constraints will move along the
geodesics of the sphere (great circles) with constant (angular) velocity. Its
kinetic energy is given by
L9

1 1
E = Smv” = §m(rw)2 = §IWQ’ (1.114)

where we have introduced the angular speed w = v/r and the moment of
inertia
I =mr?, (1.115)
The angular momentum of a particle moving with velocity v on a sphere of
radius 7 is L = mor, or v = L/mr. Insert this into the expression for the
energy to obtain
L? L?

= — = —. 1.11
2mr2 21 ( 6)

CD 1.2.1, CD 1.5.4, and CD 1.6.3 are all visualizations of the classical
motion at a fixed distance from the coordinate origin.

At is general custom to denote the mass of the particle and the eigenvalue of L3 by
the same letter. Usually there is little danger of confusion. To be on the safe side, we
denote the mass by the roman letter m and use the italic letter m for the eigenvalue of Ls.
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1.7.2. The rigid rotator

The particle on a sphere is a mathematical model for the rigid rotator.
Consider two point-like particles of mass m; and ms that are connected by a
weightless, rigid rod of length r. Denote by x = x2 — x; the vector pointing
from mj to ms. The position of the center of mass is given by

miX] + MoXg

X = (1.117)
mj + my
The distances of the particles from the center of mass are therefore
mor myr
r=|x _X — -, ro = |X —X = ——: 1118
1=l | mj + mgo 2= Ix2 | mj + my ( )

If we are only interested in the internal motion of the two-particle system,
we can choose a coordinate system that has its origin at the center of mass.
In this coordinate system, the moment of inertia of the rotator is thus

mipmso 2
I=mr?4+myrs = ——"r 1.119
171 2"2 T ¥ my ( )
This is precisely the moment of inertia of a particle with mass
111 mg
== 1.120
Al (1.120)

at a distance r from the origin. Thus, we can replace the two-particle system
with an effective one-particle system. This particle has the so-called reduced
mass p and the fixed distance r from the origin, that is, it is a particle on a
sphere with radius .

This is a good model for a diatomic molecule. It consists of two atoms
that can oscillate along the line connecting their centers and rotate around
the center of mass. The vibrational motion is much faster than the rota-
tional motion. So, the vibrations belong to much higher energies. Quantum
mechanically, oscillation states have a quantized energy. As long as the
diatomic molecule is in its vibrational ground state, it is a rigid rotator.

1.7.3. Transition to quantum mechanics

In order to define the quantum mechanical Hamiltonian for a particle that is
constrained to the surface of a sphere, we start with the classical expression
(1.116) for the energy. From this, the Hamiltonian operator of the rigid
rotator is obtained by replacing L? with the quantum mechanical angular-
momentum operator. Note that r, the radius of the sphere, is treated as a
fixed parameter. Using the expression (1.91) for the angular momentum in
spherical coordinates, we arrive at

= 2= —17% (1.121)




36 1. SPHERICAL SYMMETRY

The operator L2 has a discrete spectrum of eigenvalues, therefore the same
is true for the energy of the rotator.

Eigenvalues of the rigid rotator:

A particle with mass m on a sphere with radius r can only have the
energies
h2
E, = S e+1), ¢=0,1,2,3,.... (1.122)
Each eigenvalue Ey has the multiplicity 2¢ + 1, that is, there are 2¢ + 1
orthogonal wave functions all belonging to the eigenvalue Ej:

1
Yom (0, ) = ;ng(ﬁ, ©)y, m=—l—0+1,... 0 (1.123)

It follows from (1.109) that
/ Ve (9, 0)|° 72 sind dd dp = 1. (1.124)
S?

The factor 1/r in (1.123) thus guarantees that the eigenfunctions are nor-
malized on the sphere with radius r. We conclude that the eigenfunctions
form an orthonormal basis in the Hilbert space L?(S?) of square integrable
functions on the sphere of radius r.

We want to stress that L2 is part of any single-particle Hamiltonian,
because it appears in the angular part of the kinetic energy in spherical
coordinates (see (1.150) below). For a particle constrained to the surface
of a sphere, the operator L2 plays the same role as the operator —A%A for
a particle in R3: It is proportional to the kinetic energy and it generates
the free time evolution. (In fact, L? /h? is the so-called Laplace-Beltrami
operator of the sphere.) The action of the free time evolution exp(—iL?t/21)
on a sphere will be discussed next.

1.7.4. Dynamics of the rigid rotator

The time evolution of an eigenfunction of the rigid rotator Hamiltonian is
rather trivial. If 1y, (1, ¢) is an eigenfunction belonging to the eigenvalue
Ey, then the function

¢Z,m(t7 297 90) = eXp(—iEg t) ¢f,m(07 90) (1125)

is a solution of the time-dependent Schrodinger equation. The ground state
of the rigid rotator has energy Eg = 0, and hence the corresponding wave
function does not depend on time at all.
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The fact that the Schrédinger equation is linear means that we can con-
sider linear combinations of eigenfunctions. For example, for the initial
function 1o (9, ¢) = >, cem Yem (U, ¢), the time evolution is

G(t,0,0) = com exp(—iErt) Yum (D, 0) (1.126)

4m

and this clearly gives us the solution for any initial function that is square
integrable on the sphere, because the set of functions v ,,, forms an orthonor-
mal basis in L?(S2).

Given any initial function 1)y, the expansion coefficient ¢y ,,, can be found
by an integration,

e = [ Do 09) (0, 0)1% 09 (1127)

(with dQ = sin¥dddy). It is remarkable that all nonzero energies Ey =
0(¢ + 1)/2I are integer multiples of Ey = 1/I, hence all time-dependent
factors exp(—iFy t) have the same basic time period. Hence, any state of the
rigid rotator is periodic in time.

For the unit sphere (r = 1), we summarize our results in the following
box.

Time evolution of the rigid rotator:
For a particle with mass m = 1 on the unit sphere S? the time evolution
of any square-integrable initial function ¢y (¥, ) is given by the formula
Wt 0,0) = com exp(—iEgt) Y7"(0, o) (1.128)
{m
with
e = [T 0. (1.129)
The time evolution of the wave function is periodic in time,
Yt +T,9,¢) =1(t,0,p) with period T =27. (1.130)

CD 1.9-CD 1.12 is a collection of several movies showing vari-
ous time-dependent states of the rigid rotator. CD 1.13 visualizes
the time evolution of initially well-localized (Gaussian) states. In
CD 1.14, the initial state has roughly the shape of the letter ¥. This
illustrates that we can indeed compute the time evolution of any
square-integrable initial function on the sphere.
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FiGUrE 1.9. Possible trajectories of classical particles on a
sphere. For all trajectories, the angular-momentum vector

has |L| = \/¢({+ 1), with £ = 6 and L3 = 6.

1.8. Quantization on a Sphere

1.8.1. Comparison of classical and quantum probability densities

Figure 1.9 shows a set of classical trajectories of particles for which the
angular momenta have a fixed absolute value |L| = L and a fixed value of
the third component L3. The admissible positions of classical particles with
these angular momenta form the classically allowed region on the sphere.
This region is determined by the polar angle of the classical angular-momen-
tum vector. We denote the polar angle of L by 6 in order to distinguish it
from the polar angle ¥ of the particle’s position vector, see Figure 1.10.
Assuming L3z = m, we find that the polar angle of L is

0= arccos(%) (1.131)

and hence the classically allowed region for the position of the particle is
between the polar angles

Umin = 7/2 — 0, Umax = /2 + 0. (1.132)

All the classical trajectories are grand circles of the sphere. The particles
move on these circles with a constant angular velocity. When a particle
circles around the sphere, the polar angle 9 performs a periodic motion
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FIGURE 1.10. The polar angle § = arccos(m/L) of the angu-
lar momentum and the time-dependent polar angle 9 of the
position vector for a classical particle on a sphere.

max

B
~

min

F1GURE 1.11. Polar angle 9 as a function of time according
to (1.133) for L? = 42 and m = 2.

between Umin and Ymax. It is given by

I(t) = arccos(—% vV L? — m? sin(L t)) (1.133)

An example is shown in Figure 1.11.

The angular-momentum vector is normal to the plane of the circle, hence
the angle 6 defined in (1.131) describes the inclination of that plane. If m
is small compared to L, the inclination is large. For m = 0, the classical
motion is on a circle through the poles of the sphere. For m = L (which is
impossible quantum mechanically), the circle of the classical motion is the
equator of the sphere.
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We want to determine the classical probability density as a function of
the coordinate . This can be done in complete analogy to the calculation for
the harmonic oscillator in Book One, Section 7.2.3. The probability density
that a particle will be found in an interval d¢ around an angle ¥ is equal to
the fraction of a period that is spent in the interval. We first calculate the
time dt(¢}) spent in an infinitesimal interval d at the point ¥. During one
period, the trajectory goes twice through 9, hence we multiply the time by
2 to obtain the total time spent in d during one period. The time needed
to complete a period is T' = 27/L. Hence, the probability of finding the
particle in di is

L L dt(v)

Hence, one needs to invert the function 9¥(¢) and differentiate with respect
to ¥. It is sufficient to invert the function ¥(¢) on a part of the time interval
during which the trajectory goes through the point ¥ under consideration.
Thus, we write

t(¥) = —% arcsin(LZL_m2 cos 19). (1.135)

The function (1) is inverse to ¥(¢) on the interval (1'/4,37/4). Inserting

(1.135) into (1.134), we finally obtain for the classical position probability
density

)= I

7 /L2 (sin )2 — m2

This function is shown as a black line in Figure 1.12 for m = 8 and L =

(04 1) with £ = 24.
We want to compare the classical position probability density p(¢) with
the corresponding quantum mechanical density. With the eigenfunction 1y ,,
defined in (1.123), we obtain

/B 52’¢e,m(ﬁ, 90)}27“2 sin 1 dv dy (1.137)
C ™

(1.136)

as the probability that a particle is found in a region B on S? (the surface
of the sphere with radius r). Let us do the integration over the angle ¢
because we are interested in the J-position irrespective of the @-position.
This gives only a factor 2w because the absolute value of 1y ,, = (1/r)Y;"
does not depend on ¢. Hence, 27 [y m (¥, p)|? r? sind d is the probability
that a particle on the sphere is in an infinitesimal circular strip of width
dY around the polar angle . Inserting the definition (1.123) gives for the
position probability density as a function of ¥ the expression

Pam(¥) = 27 sin 9 | Y™ (9,0) . (1.138)
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FiGurE 1.12. Classical versus quantum position probability
densities as functions of the polar angle 1 for the rigid rotator.
The quantum probability (filled curve) oscillates around the
classical probability (black line). The quantum wave function
decreases rapidly outside the classically allowed region whose
borders are indicated by the vertical gray lines.

Figure 1.12 compares the quantum and classical probability densities as func-
tions of 4.

Similar to Figures 1.9, 1.11, and 1.12, but for various values of Ls,
the images in CD 1.8 depict the relations between the classically
allowed region of the rigid rotator, the classical ¥-oscillation, and
the quantum probability density as a function of .

1.8.2. Special topic: Curvilinear coordinates

It is worthwhile to consider the transition from classical to quantum me-
chanics for the rigid rotator in more detail. The classical kinetic energy of a
particle with mass m = 1 is given by

3
T(t) = %Z@-(t)?. (1.139)
=1

Assuming that the motion of the particle takes place on the surface of the
unit sphere, we insert (1.81), that is, 21 (t) = sin(9(t)) cos(¢(t)) and so forth,
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and obtain an expression for the kinetic energy in spherical coordinates,
namely

T(t) = % (907 + (sina(0)) 6(1)?). (1.140)

If there are no external forces, the kinetic energy is a constant of motion.
Another conserved quantity is the angular momentum. In fact, one finds
that the above expression for the kinetic energy is just 7= L?/2. In spher-
ical coordinates, we obtain a particularly simple expression for the third
component of the angular momentum,

La(t) = a1 () 2 (t) — &1 (8) 2a(t) = (sin9(£))* G (t). (1.141)

Denoting the constant value of Ls by m, we may eliminate the angular
velocity ¢ and express the kinetic energy solely in terms of 9

1/. m?
T= (9 + —5- ). 1.142

2 ®) sin? 9(t) ( )
This looks like the total energy of a particle with mass 1 in one dimension
(coordinate ), with ¥2/2 being the kinetic energy and V(9) = im?/sin® 9
being the potential. This potential confines the motion to the interval (0, 7).
Indeed, the equation of motion for the ¥ coordinate is obtained as

2

D =
sin? ¢

cot v (1.143)

and the solutions of this equation are given by (1.133) for arbitrary values
of L and m.

It is tempting to try a transition to quantum mechanics by applying
the standard substitution rule py = 9 — —id/d0 to the classical expression
(1.142). This would lead, however, to the wrong equation. The correct
equation for the v¥-coordinate was obtained earlier, when we derived the
expression for the Laplacian operator in spherical coordinates. It reads

o0 =5 "angae Y 59 o
Obviously, the standard substitution rule does not work in spherical coor-
dinates. The reason is that unlike the situation in Cartesian coordinates,
the components ¥ and ¢ of the velocity in curvilinear coordinates do not
independently contribute to the total kinetic energy.

Let us just state how to obtain the operator for kinetic energy in gen-
eral curvilinear coordinates. We denote the coordinates of a system with
n degrees of freedom by ¢!, ¢?,...,q" The classical kinetic energy in these

0 1( L 9 0, m >w(z9,t). (1.144)
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coordinates is an expression of the form

1 < ) G
T 'Zlgij(q v d")d (1.145)
©J=

with a positive definite symmetric matrix g;; that is defined at every point
(q*,...,q") of the configuration space. The matrix g = (g;;) (the met-
ric tensor) defines a Riemannian metric on the configuration space, which
thus becomes a Riemannian manifold. Let us denote the components of
the inverse matrix ¢g—! by ¢*/. Then, the operator for kinetic energy in the
coordinates ¢/ is given by

1 1 1 0 ” 0
= —— = —— v —_—
Hy = 5 A > Vdets ;j o (g \/detgaqj>. (1.146)

This operator is called the Laplace-Beltrami operator on the Riemannian
manifold with metric g.

The volume element in curvilinear coordinates is \/det g dg' d¢® - - - dg™,
hence the Hilbert space consists of functions that are square-integrable in
the sense that

J/ (', .. q")|*/detg dg' ---dg" < oo (1.147)

As an example, we consider the unit sphere with ¢' = 9, and ¢* = .
From (1.140) we find

g:<é(m%y)' (1.148)

For the inverse matrix we have g'! = 1, ¢*2 = 1/(sin9)?, ¢'? = ¢*! = 0.
Because of the relation v/det g = sind, (1.146) reduces to the well-known
expression (see (1.91))

1/ 1 0/, ,0 1 02
Ho = 2 (Sinﬂ %(smﬂ%) + sin219(9<,02> (1.149)

in the Hilbert space of square-integrable function with respect to the volume
element sin ¥ dv de.

A transition to a non-Cartesian coordinate system is also necessary to
describe the influence of a gravitational field according to the general theory
of relativity.
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1.9. Free Schrodinger Equation in Spherical
Coordinates

1.9.1. Solutions of the radial equation

For the free-particle Hamiltonian Hy, it is easy to obtain an expression in
spherical coordinates by using A = V2 and the expression (1.87) for the
gradient:

A2 rdr
The first part, which involves only derivatives with respect to r, describes
the kinetic energy of the radial motion. The second part, which contains the
operator L2 given by (1.91), is the kinetic energy of the angular motion. L2
is a partial differential operator that involves only derivatives with respect
to 9 and ¢. Hence, L2 commutes with the radial kinetic energy and hence
with Hy. The kinetic energy operator Hy also commutes with L3, because
ﬁg = —id/dyp commutes with L? and with expressions depending on r. This
proves that the operator of kinetic energy is invariant under rotations:

A R? . h?  2d 1 1.
Hy=——A=—— — — 12 1.1
07 Tom 2m( >+2m 72 (1.150)

[Ho, L] = 0. (1.151)

The same commutation relation holds for the operators in Cartesian coor-
dinates, which are related to the operators in spherical coordinates by a
unitary transformation. Hence, [Hy, L?] = 0. Any eigenspace of L? is left
invariant by Hy. If 1), is an eigenvector of L?, then Hyvy is an eigenvector
of L? belonging to the same eigenvalue. We can thus restrict the operator
Hj to an arbitrary eigenspace of L2. Using spherical coordinates, we see
immediately that this restriction reduces the partial differential operator ﬁo
to the ordinary differential operator

h2( d? 2d+€(€+1)>
- dr?  r dr r2 ’

(1.152)

which is called the free radial Schrédinger operator. Here, the angular kinetic
energy appears in the form of a potential energy ¢(¢ + 1)/r?. This term is
called the centrifugal potential energy or centrifugal barrier, because it has
the effect of a repulsive force in the radial direction.

In order to solve the Schrédinger equation in spherical coordinates we
could use the trial function

[e's) 4

0 9=35 3 Lo s

=0 m=—/4
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and find immediately that rogZ) = F¢ holds if fs, is a solution of the radial
Schrodinger equation

2 2
L W; D) 5y = B 1. (1.154)

Note that the factor 1/r in (1.153) makes the first-order term (2/r)d/dr
disappear. The condition for square-integrability of the wave function
(see (1.98)) would mean that each fy;,, has to be square integrable in the
radial Hilbert space L?([0, 00), that is,

/°° | fom(r)|? dr < oo. (1.155)
0

But we know that the free-particle Schrédinger equation has no square-
integrable solutions with sharp energy. Instead, the solutions of the station-
ary Schrodinger equation are plane waves with arbitrary momentum k. We
expect a similar behavior for the solutions of the radial Schrodinger equa-
tion. Hence, we expect that there exist bounded solutions for £ > 0. The
differential equation (1.154) is a Bessel equation. As a differential equation
of second order it has two linearly independent solutions. These solutions
are called Riccati-Bessel functions. With k = \/2mE/h? (positive square
root, E > 0), the solutions are

Jelkr) = \[S ke Jegaa(kr), iglkr) = (5 ke Newaja(kr)  (1156)

where J, and N, are the Bessel function and Neumann functions of order v.
The function j, is regular for r — 0 whereas ny is singular for £ > 0.

An interactive plot of the Riccati-Bessel function jy(r) in CD 1.15
allows investigation of the dependence on /.

1.9.2. Special Topic: Properties of the Riccati-Bessel functions
The real-valued functions jy(z) and ny(z) are for z > 0 solutions of the
equation

2 z
ey ORI (1.157)

We have
Jo(z) =sinz, np(z) = cosz, (1.158)
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and the Riccati-Bessel functions of higher order can be computed from

i) =~ (2 ) (=), (1.159)

z dz
1d
. YA |
elz) = —(=2)+ (2 dz) (Z o(2)). (1.160)
Their limiting behavior for small z is given by
20 o
7 = — 1+0 0 1.161
]@(Z> (2£+1) ( + ( ))7 as z — U, ( )
. (26) _
ne(z) = S ¢ (14+0(2%), asz—0. (1.162)

In scattering theory, one often defines the Riccati-Hankel functions
hE(z) = u(2) £ ijo(z) = P2 (14 0(1/2)), asz—oo.  (1.163)

Further details about the Riccati-Bessel functions can be found in the book
[1], where the notation j(z) = zj(2), and n(z) = zy(z) is used.

1.9.3. Special Topic: Expanding the plane wave

The plane waves exp(ik-x) are important solutions of the free-particle Schro-
dinger equation, despite the fact that they are not square-integrable. Here,
we show that plane waves have an expansion like (1.153). The radial part
of a plane wave in the subspace with angular-momentum quantum number
¢ is just the Riccati-Bessel function js(kr). This result is important for
the applications to stationary scattering theory with spherically symmetric
potentials.

Representation of plane waves:

The stationary plane wave exp(ik - x) has the following expansion in
terms of spherical harmonics:

Z Z et (k) Jolkr) Y9, ), (1.164)

=0 m=—¢
where (1,19, ) are the spherical coordinates of x € R3. The coefficients
in this expansion are given by
amit
cmngww> (1.165)
Here, (k,?',¢') are the spherical coordinates of k € R3.

The proof of the expansion formula uses properties of the Legendre poly-
nomials Py(x) and the addition theorem for spherical harmonics (1.111). The
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Legendre polynomials form an orthogonal set in the Hilbert space of square-
integrable functions on the interval —1 < x < 1. According to Abramowitz-
Stegun [1], the Legendre polynomials satisfy

1
2
/_1 Pg(l’) Pgl(l‘) dr = 2%+ 1 (5@/. (1.166)

From this, we conclude that the functions

fela) = | 22 Pu) (1.167)

form an orthonormal basis in the Hilbert space L?([—1,1]).
For any wave number k, the plane wave can be rewritten as

eik~x _ eik'rcosa _ eikrw7 with £ = cosa € [_1, 1] (1168)

a is the angle between the vectors k and x. As a function of = (for fixed
k and ), the function exp(ikrz) belongs to the Hilbert space L%([—1,1]).
Hence, it can be expanded in the Legendre polynomials in the usual way,

1
= "colkr) folx),  colkr) = /_1 fe(x) e** da. (1.169)

14

The integral involving a Legendre polynomial and an exponential function
can be evaluated analytically. It is best to consult a good book (see, for
example, [1], Section 10.1.14), where we find

1 ) 2ié
/ Py(z) e dx = ?jg(q), ¢=0,1,2,.... (1.170)
-1

With the help of this formula, we find

0

colkr) = /2(20 + 1) %jg(kr) (1.171)

and hence
o0

> 20+ 1)1 Jo(kr) Py(x) or (1.172)
=0
ellex ! i(% + 1)1 (k) Py(cos a). (1.173)

~ kr
£=0

ikre __ 1
e —_
kr

The expansion formula (1.173) is visualized in CD 1.16. The missing
square integrability of a plane wave manifests itself in the fact that
the series (1.173) does not converge in the usual sense. With increas-
ing ¢, the individual summands do not get smaller (with respect to
the norm in L2(IR?)), but they contribute only in regions increasingly
far away from the origin.
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We may insert the summation rule (1.111) for spherical harmonics into
(1.173). We choose the angles (¢, ¢’) in the direction of k, which has an
angle o with the direction of (9, ¢) (= the direction of x). This leads to the
result

) J4
ex _ 4T N M M
= TS S k) Y S Y0, ), (1174)

=0 m=—¢
which is identical with (1.164).

1.9.4. Special topic: Spherical harmonics and the Fourier
transformation

Consider a function ¥ (x) that can be separated into a radial part and an
angular part,

V) = 1) Y0, 0), (1.175)

where (7,1, @) are the spherical coordinates of the point x € R3. Obviously,
1 is an eigenfunction of the angular-momentum operators L? and Lz. We
want to find the Fourier transform ¢ (k). To that end, we insert (1.175) into
the formula for the Fourier transform

Blk) = (*)3/2 [ e vt (1.176)

3/2
/ / “ex Loy ymeg oy e2arae (1177)
2’/T S2

For the plane wave e we substitute the expansion in terms of spherical

harmonics (the complex conjugate of (1.174)),

—1kxz Z Z C (k) Y (9,0 Y (9, ). (1.178)

=0m'=—t'

Using the orthonormality of the spherical harmonics, Eq. (1.109), we can
perform the integration over the angles ¢ and ¢. This removes the sum
over ¢ and m/, because only the term with ¢ = ¢ and m’ = m gives a
contribution. The short calculation gives

00 = (32)" [ 0 e Y ) L )t (179)
1( 1)5 <i)1/2/0 f(’r‘)jg(k’l”)drnm(ﬁlaﬁpl) (1180)

h(k) Y™ (', ¢), (1.181)

e ?v\
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where (k,9’, ¢') are the spherical coordinates of k € R3. We have found that
the Fourier transform @(k) is again an eigenfunction of L? and L3 with the
same quantum numbers ¢ and m. The Fourier transform maps an angular
momentum eigenspace into itself.

The function h is connected to f via an integral transformation that is
known as the Hankel transformation,

h(k) = (—i)! (%)1/2 /OOO £(r) jolker) dr. (1.182)

The Hankel transformation is the “radial Fourier transformation” in the
angular-momentum subspace belonging to the quantum number ¢. The in-
verse Hankel transformation can be derived from the formula for the inverse
Fourier transformation. It is given by

NI
f(r) =i (;) / h(k) je(kr) dk. (1.183)
0
Like the Fourier transformation on L?(R3), the Hankel transformation ex-
tends to a unitary transformation on L?([0, 00)),

/Oo 1f(r) > dr = /OO \h(k)|* dE. (1.184)
0 0

The quantum mechanical interpretation of f and h is straightforward. The
function f is the radial position probability amplitude and h gives the radial
momentum distribution:

b
/ |£(r)|?dr is the probability of finding the particle in a
a distance between a and b from the origin.

b
/ |h(k)|? dk is the probability that the absolute value
a of the momentum is between a and b.

One should keep in mind that the relation between the radial momentum
distribution and the radial position distribution depends on the angular-
momentum quantum number ¢. Let us finally put the main result into a
box.

Radial-angular separation and the Fourier transform:

The Fourier transform of L f(r)Y;™(¥, ¢) is given by £ h(k) Y;"(¢, ¢'),
where h is the Hankel transform of f. The Fourier transform thus leaves
each angular-momentum subspace invariant.
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An arbitrary function in L?(R?) has an expansion of the form
1
V) == fom() Y (0, 0), (1.185)
lm

and the result above can be applied, because the Fourier transformation is
linear.

1.10. Spherically Symmetric Potentials

1.10.1. The structure of the eigenvalue spectrum

A spherically symmetric potential V(x) = V(r) is the operator of multipli-
cation with a function that depends only on the distance r = |x| from the
origin. Because the angular-momentum operators involve derivatives only
with respect to the angular coordinates ¥ and ¢, and because V does not
depend on the angles, we have the commutation relation

[V(r),L] = 0. (1.186)

The angular momentum also commutes with the kinetic energy, and hence
the quantum mechanical system described by the Hamiltonian H = Hy+ V'
is rotationally invariant:

[H,L] = 0. (1.187)

The stationary Schrodinger equation in the angular-momentum subspace
with quantum numbers ¢, m is
R?,od? (041)

(~ 33+ =) SO + V) f(r) = B f(r). (1.188)
This is the radial Schrodinger equation with a potential. Clearly, this equa-
tion does not depend on the eigenvalue m of L3, because a spherically sym-
metric Hamiltonian H does not contain Ls.

The eigenvalues of the three-dimensional Schrodinger equation

2m

2
Hip = (—;—mA+V(|x|)>¢:E1/z (1.189)

are those numbers Ej,, for which (1.188) has a nonzero square-integrable
solution in the Hilbert space L%(]0,00)). Like the radial equation, the eigen-
values Ej.,, are independent of the quantum number m. The number n, is
called the radial quantum number. It just serves as a label for the differ-
ent eigenvalues of the radial equation. We denote the radial eigenfunction
belonging to the eigenvalue Ey.p,. by fon, (7).
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Using the radial eigenfunctions, we define eigenfunctions of H belonging
to the eigenvalues FEy., by

Yemns () = fin, (1) V"0, ), (1.190)

where (7,9, ¢) are the spherical coordinates of x, and m is any of the eigen-
values of L3. The functions 1y p,.,, are simultaneous eigenstates of H, L?,
and L3, belonging to the eigenvalues Ejy., , {({ 4+ 1), and m, respectively.
For every possible energy Fj.,, and every possible £ we have 2¢ + 1 linearly
independent eigenfunctions ¢ .., with m = —¢, —¢ +1,...,+¢. Hence,
the degree of degeneracy of the eigenvalue Ej.,, is at least 2/ + 1. Exper-
imentally, the states belonging to different eigenvalues of L3 can only be
distinguished in the presence of magnetic fields. Hence, m is often called the
magnetic quantum number.

Eigenvalue problem with spherical symmetry:
The simultaneous eigenfunctions of L2, L3, and the spherically symmet-
ric Schrodinger operator H = p?/2m + V(r) are given by
1
Vemin, (X) = — fon, (r) Y™ (9, ¢), (1.191)
where fy.,,, is the n,-th eigenfunction of the radial Schrédinger operator

2 2
_ 2% (_% W; 1)) + V(). (1.192)

The corresponding eigenvalues Ej.,, do not depend on the quantum num-
ber m. Hence, the multiplicity of each eigenvalue of H is at least 2¢ + 1.

h,

The radial Schrodinger operator hy is a self-adjoint differential operator
in L2(]0,00)). We can order its eigenvalues according to their size,

Epn, < Eppv1, n=0,1,2,.... (1.193)

The quantum number n, counts the number of zeros of the radial eigen-
function fy.,, (r) in the interval (0,00). The ground state with angular mo-
mentum ¢ has no zero at all (except at r = 0), the first excited state has
precisely one zero, and so forth. To every eigenvalue K., belongs a unique
eigenfunction fy.,.. Hence, the eigenvalues of h, are non-degenerate (but
not the eigenvalues of H).
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Any linear combination of the eigenvectors vy ,.,, belonging to some
eigenvalue F of H is again an eigenvector belonging to the same eigen-
value F,

Y, (X) = Z Cm Yemin,. (X),  where ¢, € C. (1.194)

In particular, the eigenfunctions

Vi, (%) = \}5 (e min, () + (=1 o, —min, (%)), (1.195)

i

V2

are real-valued. (Note that the radial part fg.,, can be chosen to be real
because it is a solution of a real differential equation vanishing for » — 0
and 7 — 00). These eigenfunctions are called real orbitals. A real orbital is
an eigenfunction of the energy and of L?, but not of Ls.

The states with angular momenta £ = 0,1, 2, and 3 are sometimes also
denoted by the letters s, p, d, and f. This is the spectroscopic notation.
The letters have the following historical meaning: s = simple, p = principal,
d = diffuse, f = fundamental. Higher quantum numbers are then denoted
alphabetically by g, h, and so forth.

Vi, X) = 7= (Yemin, (%) = (=1)" e, —nin, (%)) (1.196)

- As a differential equation of second order, (1.188) has two linearly

independent solutions for every energy E, say w(E,r) and v(E,r).
Typically, these solutions behave as u(E,r) ~ r*1 and v(E,r) ~ r=* for
small r, see also (1.161) and (1.162). A physically correct solution is one for
which the corresponding function (1.190) is in the domain of the self-adjoint
operator H. The mathematical theory tells us that these functions have to
be bounded and continuous on R3, at least for physically meaningful (that
is, not too singular) potential functions V. Therefore, (1/r) fo.n, () has to
remain bounded, as 7 — 0. Only the solution u has this property.® This
solution is called the regular solution of (1.188). It is distinguished by the
boundary condition u(r) — 0, as r — 0. The solution w(F, r) turns out to be
square-integrable only for exceptional values of the parameter F, that is, for
the eigenvalues E = Ejy.,, . In these cases, the solution fg.,, (1) = u(Epp,.,7)
also vanishes at infinity.

S5For ¢ = 0, the second solution v is also bounded and hence square-integrable in a
neighborhood of 7 = 0. Hence, the condition of square-integrability alone is not sufficient
to select the physically correct solution.
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1.10.2. The vibrating rotator: A model of a diatomic molecule

In Section 1.7.2, we stated that the rigid rotator is an approximate model
for a diatomic molecule in a vibrational ground state. Here, we are going
to refine the model and take into account the vibrational degree of free-
dom. We assume that the two atoms are bound together as a result of some
complicated interaction between the two nuclei and all their electrons. The
configuration with the minimal potential energy will have the two nuclei at
some distance rg from each other. The effective force between the nuclei
would be repulsive at closer distances r < ry and attractive at larger dis-
tances r > rg. It is evident that the details of the effective interaction can
be very complicated because many particles are involved. We are going to
discuss a very simple model that nevertheless shows many essential features
of diatomic molecules. This potential is called Kratzer’s molecular potential
(see Fig. 1.13). It is given by

2
V(r) =V (:g - 7;?) Vo >0, 70>0, (1.197)

where r is the internuclear distance. This function is spherically symmetric,
and it has a minimum for r = rg, with V' (rg) = Vj. It is clear that this model
is very unphysical both at very small distances and at very large distances.
At small distances, the model potential describes a very strong repulsive
potential with a 1/r%-singularity (too strong for the Coulomb repulsion of
the positively charged nuclei which is proportional to 1/r). For large r,
the dominating term in V(r) is an attractive Coulomb potential —2Vyrq /7.
But at large distances, the two atoms are separated completely. As they
are neutral, the effective force between them will be much weaker than the
attractive Coulomb force described by the model. But nevertheless, the
model is not bad within a certain range of energies. It describes a two-particle
system that is able to perform rotations and simultaneous oscillations around
an equilibrium distance. Moreover, Kratzer’s model is convenient because
the Schrodinger equation with this potential can be solved exactly.

We use the center-of-mass coordinates described in Section 1.7.2 and
insert for m the reduced mass p of the two atoms. The radial Schrodinger
equation (1.188) with the potential (1.197) reads

2y d2 e+ 1)+a 2V ro
et - =——f(r=E 1.1
3 gz ) I = A = B, (1198)
where we used the abbreviation
2 2
— 2ROy (1.199)

hQ
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Effective potential

i/ r2 T
V(r)="V, (0220)
= r r
g 0
8 k/-’-
2,
_‘/E)_
0 ™
distance r

F1GURE 1.13. A simple model for the effective potential be-
tween the two nuclei in a diatomic molecule.

By the variable substitution
f) = g(@), @=-—r. (1.200)

To
the radial Schrodinger equation is transformed into

1/ d&® ((l+1)+a 1 1
§<_@ T) o(x) — L o@) = 5 Ba(a). (1.201)
Writing
E 1 12 \/2
_ _ = - 1.202
€ Sl and A 2+<(€+2) —l—a) (1.202)

such that A(A+ 1) = £(¢ + 1) 4 a, we arrive at

1y &  MA+1 1

L A gy Ly e L2m)
This equation is formally identical to the radial Schrodinger equation for
the Coulomb problem (except that the parameter A need not be an integer).
We are going to solve this equation in the next chapter (see Section 2.5.2,

Eq. (2.99)). Here, we just quote the result (2.62) that (1.203) has the eigen-
values .

2(n, + XA+ 1)2’
Inserting the definitions of A and €, we obtain the energy-eigenvalues for this
problem as

2ird 1 1\2 2urd . \V/2\ 72
B, = — “r0%2<nr+2+((£+2) + ’ig‘]vo) ) . (1.205)

Exmy = — n=0,1,2,3,.... (1.204)
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FIGURE 1.14. Energy eigenvalues arising from Kratzer’s
molecular potential with V; = 5 and r¢ = 5. The graph
shows the eigenvalues with quantum numbers n = n, < 8
and ¢ < 3.

Energy-spectrum of diatomic molecule

\
N
angular momentum £ —»

Energy

FiGureE 1.15. Two-dimensional diagram of the eigenvalue
spectrum according to Kratzer’s model of a diatomic mol-
ecule (Vy = 5 and rg = 5), showing the quantum numbers
n=n, <8 and ¢ <8.

The quantum number n, enumerates the eigenvalues of the radial Schrédin-
ger operator. It thus describes the vibration around the classical equilibrium
at rg. The quantum number ¢ describes the rotational state as usual. We
expect that the formula (1.205) is a good approximation for a diatomic
molecule if the radial oscillations are not too large. This is the case for small
values of the quantum number n,., where the corresponding eigenstates are
localized sufficiently close to the classical equilibrium at r = 7. Similar
restrictions will apply to the quantum number £.

Figures 1.14 and Figure 1.15 show the energies ., for small values of n,
and ¢, assuming that a > 1 (as it is the case for most molecules). Obviously,
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Figure 1.14 would become too cluttered if more than a few eigenvalues are
shown. In Figure 1.15, we use a two-dimensional plot where the vertical
position of an eigenvalue indicates the quantum number ¢. For our choice
of parameter values, the energy-difference between two vibrational levels
E¢pn.+1 — Epm, = O(1/a) is much larger than the spacing Epy1.n, — Epp,
of the rotational levels, which is of order 1/a?. Hence, it needs much more
energy to bring the system from n, = 0 to n, = 1 than to change the
angular-momentum quantum number. If the energies involved are not too
high, the quantum number n, remains unchanged, and the system behaves
like a rigid rotator.



Chapter 2

Coulomb Problem

Chapter summary: Perhaps the most important success of quantum mechanics
is the explanation of the internal electronic structure of atoms on the basis of gen-
eral physical laws. The Schrodinger equation with a Coulomb potential, although
a crude model of a “real” hydrogen atom, can describe its properties with high
accuracy and explains the spectroscopic observations that have puzzled physicists
at the beginning of the 20th century.

Already the classical Coulomb problem has interesting aspects. We discuss, in
particular, the conservation of the Runge-Lenz vector, which implies that the form
and the orientation of the classical orbits (Kepler ellipses) is constant in time and
depends only on the initial conditions. In quantum mechanics, the Runge-Lenz
vector can be used for an elegant algebraic computation of the energy levels given
in Section 2.3.

The following sections are devoted to various approaches to the solution of the
Coulomb problem. As the Coulomb potential is spherically symmetric, we may
apply the results of the previous chapter in order to reduce the problem to the
solution of ordinary differential equations in the angular-momentum subspaces. In
Section 2.4, we use a factorization method to solve the radial Coulomb problem
in an essentially algebraic way. This approach leads to a solution of the Coulomb
problem via a system of simultaneous eigenfunctions of H, L?, and Lz and exhibits
clearly the structure of the energy spectrum, in particular the high degeneracy of
the eigenvalues. In this approach, the ¢-degeneracy appears as a consequence of
a supersymmetry of the radial Schrodinger operators, which is similar to the one
observed for the harmonic oscillator in Book One.

We continue by outlining the traditional approach the Coulomb problem, which
consists in solving the radial Schrédinger equation in terms of special functions. In
Section 2.5.1, we present a solution of the Coulomb problem in two dimensions
which, naturally, plays an important role for the visualizations accompanying this
book. Finally, we present a method for solving the Schriédinger equation in par-
abolic coordinates. The separation in parabolic coordinates is important for the
investigation of the Stark effect (hydrogen atom in a constant electric field).

In the major part of this chapter, we use dimensionless units in all calcula-
tions. This simplifies mathematical derivations, yields beautiful formulas, and is
by no means a restriction of generality. A simple scaling transformation gives all
information about the eigenfunctions and eigenvalues in ST units (or in any other
system of units). Section 2.7 is devoted to the actual physical dimensions of the

57
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hydrogen atom. Moreover, we describe general scaling transformations (dilations)
as unitary transformations in the Hilbert space, because they are an important
tool in mathematical physics. In this connection, we present the virial theorem in
Section 2.7.4.

Concerning the dynamics of states in the subspace of bound states, we inves-
tigate the behavior of simple superpositions in Section 2.4.5 and the dynamics of
circular Rydberg states in Section 2.8. Circular Rydberg states are highly excited
states that move in the close neighborhood of classical circular orbits. The long
lifetime of these states and their quasiclassical behavior make them an interesting
research topic in atomic physics.

2.1. Introduction

2.1.1. Classical models of atoms

An atom is often described as a small planetary system where the gravita-
tional force is replaced by the electrostatic attraction. Most of the mass of
the atom is concentrated in a nucleus with positive charge Ze, where Z is the
atomic number (the number of protons in the nucleus). In a neutral atom,
Z negatively charged electrons move around the positively charged nucleus
like planets around the sun. The simplest atom is the hydrogen atom, which
consists of a single proton as the nucleus and a single electron.

This classical model of the atom as a system of moving charges dates
back to Rutherford (1911), who could explain in this way the scattering
of a-particles (doubly ionized He™ nuclei) by the atoms of a thin gold
foil. In the framework of classical physics, the planetary system model has
some problems, and many of the facts observed in experiments cannot be
explained in that way. For example, a classical planetary system consisting
of the sun and a single planet is planar. But hydrogen atoms (in their ground
state) appear as spherical objects with a radius of about 1071Y m. The main
difficulty is perhaps the following: The classical elliptic orbit of a charged
particle in the electrostatic field of the nucleus should not be stable, because
the acceleration of a charge would cause an electromagnetic radiation leading
to a continuous loss of energy. The atomic radius should therefore decrease
continuously, and the emitted radiation would have a continuous range of
frequencies. Indeed, energetically excited atoms do emit radiation. But
contrary to the classical expectation, the atom only emits radiation with a
few discrete frequencies. Atoms in their ground state do not emit radiation
at all.

The investigation of the radiation emitted or absorbed by atoms or
molecules is called spectroscopy. The spectrum is the intensity of the emitted
radiation as a function of the frequency. It is the main source of experimen-
tal information about atoms. A gas of atomic hydrogen emits light with
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frequencies vy, described by Balmer’s formula

1 1
Unm = Ry ¢ (ﬁ - W) (2.1)
Here, ¢ is the speed of light, n and m are positive integers with m > n,
and the factor R, ~ 1.09678 x 10" m~! is called the Rydberg constant for
hydrogen.

In 1913, these frequencies have been explained by Niels Bohr by assum-
ing that the electrons in the field of the nucleus can only have the energies
—R, hc/n?, where n is a positive integer, and h is Planck’s constant.! A
photon is emitted whenever an electron makes a transition from a level with
energy —R, hc/m? to a level with lower energy —R,, hc/n?. The energy of
the photon is the difference in energy between the two levels. According to
an observation of Einstein, the energy of a photon is related to its frequency
by E = hv. From this the formula (2.1) follows immediately. Independent
experimental evidence that the internal energy of atoms can only have dis-
crete values came in particular through experiments with mercury atoms
conducted by Franck and Hertz in 1914.

In retrospect, given deBroglie’s hypothesis relating the energy of a parti-
cle to the frequency of a wave, it appears very natural to describe the discrete
energies of electrons bound to an atomic nucleus by the possible frequencies
of a wave function. In the 1920s it was already well-known that under cer-
tain circumstances, the frequencies of waves can only assume discrete values
(for example, the solutions of the classical wave equation in the presence of
boundary conditions). In 1926, Erwin Schrédinger found the wave equation
that gave the right frequencies and hence energies for the hydrogen atom.
Solving the Schrédinger equation for hydrogen is the topic of this section.

CD 2.2.2 is a short introduction to the spectroscopy of hydrogen
atoms. The radiation emitted by the atoms consists of photons that
carry away the energy set free when an electron makes a transition
from an excited state to a state with lower energy. This is a process
whose complete description requires quantum electrodynamics.

2.1.2. Transitions between eigenstates

From elementary quantum mechanics you certainly know physical systems,
for which the Schrédinger equation has discrete energy levels. See, for ex-
ample, the harmonic oscillator presented in Book One. Soon we are going
to find the energy levels of the hydrogen atom by solving the Schrodinger

1Actually, in Bohr’s model, the Rydberg constant for hydrogen Ry is replaced by the
Rydberg constant Reo ~ 1.097 x 10" m~!. Bohr obtained this value under the assump-
tion of an infinite nuclear mass. At Bohr’s time, R, was in perfect agreement with the
experimental results.
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equation with an electrostatic Coulomb potential. As you certainly know,
the discrete energy levels correspond to stationary states. According to the
theory, stationary states are absolutely stable. Once an electron is in a sta-
tionary state, it remains there forever. In reality, however, electrons make
transitions due to unavoidable perturbations. Even in the complete absence
of external fields, a spontaneous decay of excited states will be stimulated by
the zero-point fluctuations of the vacuum field (a quantum-electrodynamical
effect).

As explained in the previous section, the spectroscopic information about
the energies of an atom is obtained from the transitions between energy
levels. These transitions are associated with the emission or absorption
of photons, and these photons can be observed. Obviously, the Schrodin-
ger equation with a time-independent potential (from which we obtain the
energy levels) cannot describe the physical effect that tells us about these
energy levels. The description of the emission or absorption of photons
requires quantum electrodynamics. This theory combines the (relativistic)
quantum theory of electrons with the quantum theory of electromagnetic
fields. Unfortunately, quantum electrodynamics is beyond the scope of this
book. For now, the stationary solutions of the Schrédinger equation will
have to suffice.

It should be mentioned, however, that in the framework of “ordinary”
quantum mechanics, transitions between stationary states can be modeled
with time-dependent perturbation theory. One starts with an unperturbed
system for which the Hamiltonian has eigenvalues E, with corresponding
eigenvectors . If the initial state 1)(0) of the electron is one of the eigen-
states 1, then its time evolution is just given by 1(t) = exp(—iEpt) ¥y,
Hence, the transition probability from (¢) to another eigenstate 1, will be
zero for all times,

(s W() 7 = |(Ym, n)[* = 0 for m # n, (2.2)

because two eigenstates belonging to different energies are orthogonal. This
is why we call the eigenstates of the Hamiltonian “stationary states.”

In practice, it is impossible to keep a physical system isolated. There
will always be some (weak) external influence. In a simple mathematical
model, we may describe the external influence by an additional, generally
time-dependent potential that is added to the Hamiltonian of the unper-
turbed system. The whole system is then represented by a time-dependent
Hamiltonian. The energy eigenstates of the unperturbed Hamiltonian are
not stationary with respect to the time evolution of the perturbed system.
If the initial state is 1(0) = 1), then the state v (¢) will depend on time in
a nontrivial way, and the transition probability between 1 (t) and v, (with
m # n) will, in general, be nonzero for ¢ # 0.
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From the remarks above, it should be clear that the Schrodinger equation
with an electrostatic Coulomb potential is just a simplified mathematical
model of the real hydrogen atom. A more realistic model would have to
take into account in particular the following phenomena, ordered according
to their importance:

(1) The spin of the electron (see Chapter 3).

(2) The interaction between the spin magnetic moment and the mag-
netic moment due to the orbital motion (spin-orbit interaction).

(3) Relativistic kinematics.

(4) Nuclear contributions like the interaction with the magnetic mo-
ment of the nucleus and the finite size of the nucleus.

(5) Vacuum fluctuations of the electromagnetic fields.
(6) Vacuum polarization.

These effects lead to corrections of the energy levels obtained from the Schro-
dinger equation and to a splitting of otherwise degenerate levels. The effects
1 to 3 describe the so-called fine structure of the hydrogen spectrum. They
are successfully dealt with by the Dirac equation. The magnetic moment
of the nucleus is the origin of the hyperfine structure. The finite size of
the nucleus is important, in particular, for hydrogenic atoms with large
atomic number Z. These effects are usually incorporated via perturbation
theory. The effects 5 and 6 can be described with the help of quantum
electrodynamics. The corresponding correction of the eigenvalues is called
the Lamb shift.

Let us now turn to the problem of understanding the hydrogen atom as
it is described by the Schrodinger equation with a Coulomb potential. By
exploiting the symmetries of the system, it is possible to find all stationary
states with analytic (that is, non-numerical) methods. These symmetries
are already present at the level of classical physics. Most obvious is the
fact that the Coulomb potential is spherically symmetric, that is, invariant
under rotations. But there is an additional symmetry that results in the
conservation of the so-called Runge-Lenz vector.

2.2. The Classical Coulomb Problem

2.2.1. The Coulomb force

Using the international system of units (SI), the Coulomb law for the mag-
nitude of the force between two charges ¢; and ¢o separated by a distance r
is written as
_ 1 ae
Cdmey 12

(2.3)
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Here, g¢ is the permittivity of the vacuum. The unit of the charge in the SI
is the coulomb (C), defined as amperexsecond. The charge of an electron is
denoted by —e, where e is the elementary charge

e =1.6021773 x 1071 C. (2.4)

In atomic physics, it is most common to describe the Coulomb force in
the Gaussian system (cgs-system), where the Coulomb law reads

192
F=12 (2.5)
The Gaussian system uses length, mass, and time as basic dimensions with
the units centimeter (cm), gram (g), and second (s), respectively. The unit
of charge in the Gaussian system is defined to be that charge which exerts
a force of 1gecms™ = 1dyn on a charge of the same size at a distance of 1
cm. The elementary charge is e = 4.8032 x 10710 g!/2 cm?/2 571,

A hydrogenic atom is a one-electron atom or ion, for example, H, He™,
Li**, and so forth. It consists of an atomic nucleus and an electron that
interacts with the nucleus by the electrostatic Coulomb attraction. The nu-
cleus contains Z protons and has a total charge +Ze. Hence, the magnitude
of the force on an electron at a distance r from the nucleus is given by

2
A (2.6)

F=_2__7
dmegr? 12

The constant v = Ze?/4meg is the Coulomb coupling constant. This abbre-
viation makes us fairly independent of the chosen system of units. If you
plan to use the Gaussian system instead of the SI, you just have to use the
definition v = Ze? in the following (with e in Gaussian units).

In our model of the hydrogenic atom, the nucleus is a point mass. We
assume that the dimensions of the nucleus can be neglected compared to
the dimensions of the atom. If the nuclear charge Z is not too large, this
assumption is indeed satisfied with high accuracy.

The hydrogenic atom is a two-particle system, but we are going to de-
scribe it in the framework of the single-particle formalism. The motion of
the atom as a whole is ignored, and the nucleus is just a fixed center-of-force
at the coordinate origin. Nevertheless, as in Section 1.7.2, we can take into
account the finite mass of the nucleus simply by describing the configuration
of the atom in terms of the relative coordinate vector X = Xejectron — Xnucleus
and by replacing the electron mass with the reduced mass

Mpycleus Me
Mpycleus T Me

p= (2.7)

Here, m, is the mass of the electron,

m, = 9.10938 x 103 kg. (2.8)
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Mpucleus 1S the mass of the nucleus. The nucleus of a hydrogen atom consists
of just one proton having about 1836 times the mass of the electron,

m, = 1.67262 x 10?7 kg. (2.9)
In this case the reduced mass is
1836
= """ m, = 9.10443 x 103! kg. 2.10
1% 1837 me X g ( )

The nucleus of a hydrogenic atom is much heavier than the electron. Hence,
the reduced mass p is roughly equal to the mass of the electron. In Bohr’s
model of the hydrogen atom, it is even assumed that the nucleus has an
infinite mass, hence p = m,.

The Coulomb force on the electron is the negative gradient of a potential
energy V(x),

F(x) = -VV(x), V(x)= —ﬁ. (2.11)
X

The energy of a classical particle in a Coulomb field is given by the kinetic
energy p?/2m plus the potential energy due to the Coulomb attraction:

2
_F 7 (2.12)

2m |x|
Here and in the following, we simply write m for the mass. If you want to
take into account the finite mass of the nucleus, simply set m = p. If you
want to work within Bohr’s model, use m = m, instead.

2.2.2. Classical motion

The energy H = H(p,x) of a particle moving in a Coulomb field is given in
(2.12) as a function of the position x and the momentum p of the particle.
H(p,x) is the classical Hamiltonian function. It is a conserved quantity,
that is, for the motion (p(t),x(t)) of the classical particle we have

H(p(t),x(t)) = E (independent of t). (2.13)

The angular momentum L = x X p is another constant of motion, because
the potential is spherically symmetric. It follows that the motion takes place
in the plane orthogonal to L, because the position vector x of the particle
satisfies L - x = 0.

The movie CD 1.2.4 shows the classical Coulomb motion with the
conserved angular momentum vector. CD 2.1.1 gives another ex-
ample. Note that the classical motion takes place in a plane. In
contrast, the quantum mechanical solutions make use of all three
space dimensions (the ground state is even spherically symmetric).
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I

(a) (b)

FIGURE 2.1. (a) Classical trajectory and the conserved quan-
tities L (angular momentum) and K (Runge-Lenz vector).
(b) Stroboscopic image of the motion of the particle. The
spots show the position of the particle after equal time steps.

It has been known since the times of Lagrange that the Coulomb system
has additional conserved quantities. As a consequence, all bounded orbits
in the Coulomb field are closed. After some time, the particle returns to its
initial position, that is, all bounded motions are periodic in time. Among
all spherically symmetric potentials, only the Coulomb potential and the
harmonic oscillator have this property.

As you certainly know, a bounded orbit in a Coulomb field has the shape
of an ellipse. This is Kepler’s first law for the motion of planets around the
sun. The form and the orientation of this ellipse is constant in time and
depends only on the initial conditions. Hence, the vector that points in the
direction along the major axis and whose length is the eccentricity of the
ellipse is a conserved quantity. This vector is known as the Runge-Lenz
vector (see Fig. 2.1). It is defined by

K:pr—i-m’y%. (2.14)
The three components of the Runge-Lenz vector are all constants of motion.
Together with the energy and the three components of the angular-momen-
tum operator, this makes seven constants of motion that cannot possibly be
all independent of each other (the phase space of the Coulomb problem is
only six-dimensional).

EXERCISE 2.1. Prove that the vector K is always orthogonal to L, that
is, K-L = 0. Moreover, show that the length of K is determined by the
energy H and the angular momentum L as

K% =2m H L* + m*y2. (2.15)



2.2. THE CLASSICAL COULOMB PROBLEM 65

The shape of the Coulomb orbit is easily determined from the Runge-
Lenz vector. We just compute the scalar product between K and x:

K x = |K||x| cos¢ = —L* + m~ |x|, (2.16)
where ¢ is the angle between K and x. Hence, we find
L2
my — |K| cos ¢

x| =r = (2.17)
The distance 7 as a function of the angle ¢ is always finite if K2 < m?~?2, be-
cause in this case the denominator is always nonzero. In view of Eq. (2.15),
this can only happen for orbits with negative energies £ < 0. Negative en-
ergies can only occur if v > 0, that is, if the Coulomb potential is attractive.
Equation (2.17) can be written as
d

r(9) = 1—€coso’

with d = L?/my and € = |K|/my. This is the focal equation of a conic
section. For ¢ < 1, the focal equation describes an ellipse. The constant e is
called the eccentricity, and d is the parameter of the ellipse. The distance
r from the origin and the angle ¢ between position vector and Runge-Lenz
vector can be interpreted as polar coordinates in the two-dimensional plane
of motion. Figure 2.2 shows the ellipse and the geometric meaning of the
various constants. The Runge-Lenz vector always points from the origin
(focus) to the center of the ellipse. In the special case of a circular orbit, we
have |K| = 0 (the focus coincides with the center).

Orbits with positive energies are unbounded. The distance r of the
particle can become infinite if for certain values of ¢ the denominator of
Eq. (2.18) vanishes. For this we must have e cos¢ = 1, which can only be
the case for € > 1 or K2 > m?y2. In view of (2.15), this can only happen
for H(p,x) = E > 0. For E = 0 (that is, K? = m?? or € = 1) the orbit is
a parabola, and for H > 0 the orbit is a hyperbola.

(2.18)

CD 2.1.1 shows the motion in a Coulomb field and the vectors K and
L, which determine the shape of the elliptic orbit. CD 2.1.2 explores
the dependence of the Coulomb orbit on the initial condition for the
momentum. The influence of the coupling constant + is shown in
CD 2.1.3. Finally, CD 2.1.4 shows a collection of orbits with the
same energy.

EXERCISE 2.2. Consider a bounded circular orbit. Show that the time
needed for one revolution is given by

o L3
m~y2’

T = (2.19)
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FIGURE 2.2. Any bounded and hence periodic orbit of a par-
ticle in a Coulomb potential is an ellipse.

2.3. Algebraic Solution Using the Runge-Lenz
Vector

2.3.1. The Coulomb problem in quantum mechanics

The quantum mechanical wave equation is the Schrédinger equation
. d
lhaw(xa t) = H(x,1), (2.20)

where H is the Hamiltonian operator describing the energy of the system.
The Hamiltonian H is obtained from the classical Hamiltonian function
(2.12) by replacing the variables x; and p; with linear operators in the Hilbert
space of the system. With Eq. (1.29) we obtain from Eq. (2.12) the Hamil-
tonian operator of the hydrogen atom

K2 0%

H=-"aA-"1,
2m x|

(2.21)

In order to simplify the following formulas and calculations, we assume that
m =1, =1, and v = 1 (attractive Coulomb potential). It will be shown
below (Section 2.7) that this can always be achieved by a suitable scaling
transformation of the space and time coordinates. Hence, it entails no loss
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of generality to solve the Schrodinger equation in the simplified form
d 1 1
i L p(x,t) = (-5 A ﬁ) b(x,1). (2.22)
x

This is the Schrodinger equation in dimensionless units. It is easy to get the
solution in SI units (or in any other system of units) from the solution in
dimensionless units (see Section 2.7).

As usual, the general solution of (2.22) in the subspace of bound states
is found by first solving the eigenvalue problem

(0 = (5 A= ) 0(x) = Evix). (2.23)

We will do so by exploiting the conservation laws already found for the
classical problem.

2.3.2. The Runge-Lenz vector in quantum mechanics

The classical expression (2.14) for the Runge-Lenz vector has to be sym-
metrized in order to find its quantum mechanical analog, because the oper-
ators L and p do not commute.

EXERCISE 2.3. Prove the following formula for the vector product of the
operators L and p:

(Lxp)l=—-pxL=Lxp — 2ip. (2.24)

In view of (2.24), we define the quantum mechanical Runge-Lenz vector as
1 X
K=o (Lxp-—pxL)+ . (2.25)

|

Each component Ki, Ko, and K3 of K is formally symmetric and can thus
give rise to a self-adjoint operator.

EXERCISE 2.4. Prove the identity
i[L,p] =L xp—p x L. (2.26)

Using the formula obtained in the previous exercise, we see that the Runge-
Lenz vector can likewise be defined as

i X

K=—[L%p]+—.
This form is often more useful when one tries to compute commutation
relations.

(2.27)
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The three components of the Runge-Lenz vector are conserved during the
time evolution. Indeed, one can verify that K commutes with the Coulomb
Hamiltonian H defined in (2.23),

[H,K] = 0. (2.28)

The relations between K, L, and H essentially carry over from classical
physics. Indeed, from L -x = L - p = 0 one finds the relations

K-L=L-K=0. (2.29)
Moreover, a little calculation proves
K=K -K=2H(L*+1)+1, (2.30)

which is the analog of Eq. (2.15). It is also useful to note the following
commutation relations:

[Lj,Kk] = iéjkam, [KJ,Kk] = —2i6jkaLm. (231)

In the next section, I am going to show that these algebraic relations between
H, K, and L are sufficient to determine the eigenvalues of H.

2.3.3. The eigenvalues of H

In the following, we restrict ourselves to that part of the state space which
is spanned by the eigenfunctions of H. This is the subspace of bound states,
a Hilbert-subspace of L?(R3). On this subspace, we define the two vector-
operators JT and J~ by

L1 1

I = (L o K) (2.32)
This definition requires a few comments. It follows from general considera-
tions using the virial theorem (see Section 2.7.4 below) that the stationary
states all belong to negative eigenvalues F, of H. Hence, the operator
1/v/—2H is well defined on the subspace of bound states because of the mi-
nus under the square-root. Any state in this subspace is a linear combination
of stationary states. Because H (and likewise any function of H) commutes
with K, the action of J* on such a linear combination is given by

+ _ 1 L
J (Zn: Cnthn) = zn: eng (L% NETN K) . (2.33)

It is crucial to observe the commutation relations of the operators J*. The
calculation gives

[, Ti] = i€jm J

m?

(I I ) = i€km Iy [T, T ] =0. (2.34)
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We see that J* and J~ fulfill the commutation relations of two commuting
angular-momentum operators. This gives us occasion to apply our knowl-
edge concerning the possible eigenvalues of angular-momentum operators
(see Section 1.5). Because of

=@ r=—3(1+55) (235)

the two operators (J*)? and (J7)2 have the same eigenvalues. Moreover,
these eigenvalues are related to the eigenvalues of H. On the subspace of

bound states we have . .
H=——-—>. 2.36
2 1+44(J+)2 (2.36)
We know already from Theorem 1.1 that because of the commutation re-
lations (2.34), the operator (J7)? can only have the eigenvalues j(j + 1)
with j = 0,1/2,1,3/2,.... Thus, because of (2.36), H can only have the

eigenvalues

1 1 1 1 1
En==37 +45(G+1) 2(2j+1)2  2n%’ (237)
where n =2j+4+1=1,2,3,... is called the principal quantum number of the
Coulomb problem.

The orbital angular momentum L can only have the eigenvalues ¢(¢ + 1)
with ¢ being a non-negative integer. But in an eigenspace of H belonging
to a fixed n, the quantum number ¢ can only have the values 0,1,...,n— 1.
One can see this by using (2.30) to express the eigenvalues of K? in terms
of n and £. If v, ¢ is a simultaneous eigenvector of both H and L?, then

K20 = (1= 55 (E0+ D) +1) ) dne, (2.38)

where / is a non-negative integer (see Section 1.6.2). Because the eigenvalue
of K? must be non-negative, we find that £ <n — 1.

For a given j, there are n? = (25 + 1)? different pairs (m;r,
values of J; and J; . Therefore, the eigenvalue —1/2n? of H is n?-fold
degenerate and the corresponding orthogonal eigenvectors may be distin-

guished by the eigenvalues of J;r and J3 .

m;) of eigen-

CD 2.2.1 shows the eigenvalues of H, indicating the degree of degen-
eracy of each E, by the possible eigenvalues of the angular-momen-
tum operators L? and Ls.

So far we have only shown that the eigenvalues of the Coulomb Hamil-
tonian are among the numbers —1/2n?, with n a positive integer. It remains
to prove by an explicit construction of the eigenvectors that all these num-
bers indeed do occur. (This will also prove that (J*)? has both integer and
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half-integer eigenvalues j.) The joint eigenfunctions of H, (J*)2, J5, and
J5 are obtained if one solves the Coulomb problem in parabolic coordinates
(see Section 2.6 below). Because of its importance, we are going to present
several methods for solving the Coulomb problem. In the next section, we
give a solution by exploiting the spherical symmetry.

The Coulomb Hamiltonian is invariant with respect to rotations in

three dimensions. The three-dimensional rotation group SO(3) (spe-
cial orthogonal transformations in three dimensions) is a three-dimensional
Lie group that has the angular-momentum operators as generators. For the
Coulomb system, we have in fact found two independent angular-momentum
algebras. These six angular-momentum operators generate a six-dimensional
symmetry group that can be described as a product of two rotation groups.
The symmetry group of the Coulomb problem is therefore isomorphic to
the group SO(4) = SO(3) x SO(3), which can be interpreted as a group
of rotations in a four-dimensional space. We note that because of slightly
changed commutation relations in the case of positive energies, the sym-
metry group of the Coulomb Hamiltonian in the positive-energy subspace
(scattering states) is SO(3,1) (the Lorentz group). This has nothing to do
with relativity (in relativistic quantum mechanics, the generators of SO(3, 1)
have a different physical meaning).

2.4. Algebraic Solution of the Radial Schrodinger
Equation

2.4.1. Factorization of the radial Coulomb problem

The Hamiltonian operator for an attractive Coulomb potential

1 1
H=—-A— —
2 x|

(2.39)

is spherically symmetric. In an eigenspace of the angular-momentum oper-
ators, the eigenvalue equation Hvy = E1 becomes the ordinary differential
equation

hy f(r)=Ef(r),  where hezi(—;i W;l)) —%. (2.40)

From this we conclude immediately (see also Section 1.10.1):

The Coulomb Hamiltonian H has the eigenvalue £’ whenever one of the
radial Hamiltonians hy, has E as an eigenvalue.
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Given a solution f(r) of the radial Coulomb problem (2.40), we obtain
a solution of Hiy = E1 by setting

Y) = 1) V0, ). (2.41)

Here, as usual, (r,9,¢) are the spherical coordinates of x. The function
f(r) may be interpreted as a radial position probability amplitude (see Sec-
tion 1.9.4).

H CD 2.3 presents a collection of images of the radial eigenfunctions
H g(r) = f(r)/r, comparing them with the corresponding solutions of
H the two-dimensional Coulomb problem (see below).

We present a method of solving (2.40) which will be very similar to
our method of solving the harmonic oscillator problem in Book One. This
method works because of the higher symmetry of the Coulomb problem.
The crucial step toward the solution of the eigenvalue problem is to note
that the radial Hamiltonian hy in Eq. (2.40) can be factorized, that is, we
can write it as the product of two first-order differential operators. Define
the operator

_ 1 /d (+1 1
A :—<— 7—7) 2.42
c= A\ T T T (2.42)
and the (formally) adjoint operator
1 d {41 1
Af = — (_7 A 7) 2.43
N A T (243)
for all values £ = 0,1,2,3,... of the angular-momentum quantum number.
A little calculation shows that
_ 1/, d l+1) 1 1
A A = (—— -t . 2.44
Lo 2( err r2 ) ro 2(0+1)2 (244)
Up to a constant term, this expression is just the radial Hamiltonian operator
1
A A =hy+ ———. 2.4
e A=t oy (245)

The product of the operators A, and A; in reverse order is easily calculated.
It gives

_ 1
Af A =hgq + 5 (2.46)

(C+1)%
The importance of this observation lies in the following simple fact about
the product of operators:
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Whenever the product of two operators AB has a nonzero eigenvalue
FE with an associated eigenvector f, then the product BA has the same
eigenvalue, and the corresponding eigenvector is Bf.

We called this fact the spectral supersymmetry of AB and BA. The
proof is the same as the one given in Book One, Section 7.7.1, for B = Af.

EXERCISE 2.5. Let ABf = Ef for two operators A and B and some
etgenvalue B #£ 0. Show that g = Bf is a nonzero eigenvector of the operator
BA belonging to the eigenvalue E.

The two equations (2.45) and (2.46) will allow us to relate eigenvalues
and eigenvectors of hy for different values of the angular-momentum quantum
number /.

2.4.2. The ground state of the radial Schrodinger operator

First of all, we note that it is quite easy to obtain an eigenfunction of h, for
arbitrary ¢ > 0 just by requiring

. df(r {+1 1
Az_ f = O, that 18, — d'(]“ ) + , f(T) = m (7’) (247)

This differential equation of first order has the solution
frolr) = 1 e/, (2.48)

which is square-integrable on 0 < r < oo (but not yet normalized). Because
AZAZ fe.o =0, we find from Eq. (2.54) that

hy fro = —2(“_11)2 feo. (2.49)

We note that A, f = 0 has no square integrable solution for any ¢, be-
cause any solution of this equation is proportional to p= (D) /(D) | Hence,
we cannot obtain eigenfunctions of hyy; by solving A, f = 0, as one might

think after inspecting Eq. (2.46).

The radial Coulomb Hamiltonian hy has for each ¢ an eigenvalue
1
Epg=——-.
BT T+ 1)?

Moreover, Ej.g is the lowest possible eigenvalue of hy.

(2.50)
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PROOF. It remains to prove that Epq is the lowest possible eigenvalue
for a given ¢. Let

(o) = | Tl grydr (251)
0
be the scalar product in L?([0,0),dr). Then we have
(F, A7 ALE) = (AL AL = AT FIP > 0 (2.52)

for all functions f that are differentiable, square-integrable, and satisfy the
boundary conditions f(r) — 0, as r goes to 0 or to co. We conclude
that A, AZ cannot have any negative eigenvalues, because otherwise the
scalar product above would be negative for the corresponding eigenfunction.
Hence, fy0 already belongs to the lowest possible eigenvalue 0 of A, AZ.
Because of (2.54), fs.o belongs to the lowest possible eigenvalue of hy. [

The eigenvalue Ey.g of hy is, of course, also an eigenvalue of the three-dim-
ensional Coulomb Hamiltonian (2.39). For the three-dimensional problem,
the degree of degeneracy of this eigenvalue is at least 2¢ 4 1, because all the
functions

1
d’Z,m;O(Tv v, ‘10) = r fe;o(’l“) i/ﬁm(ﬁ7 30)’ m=—L,—L+1,...,( (2'53)

are eigenfunctions of the energy operator H in spherical coordinates (and,
simultaneously, eigenfunctions of L? and ﬁg) This is the normal degree of
degeneracy that we expect in spherically symmetric situations, because the
angular-momentum quantum number m does not occur in the radial Schro-
dinger equation. In fact, it will turn out that the degree of degeneracy of
the Coulomb eigenvalues is much higher than that.

2.4.3. Excited states of the radial Schrédinger operator

We may rewrite (2.45) and (2.46) as
hy = A; Al + Egp (2.54)
hy=A] A, | +E;1 (for£>1). (2.55)

For ¢ > 1 we conclude from the second identity that the ground state f;.o of
hy is also an eigenvector of the operator AZ_l A,y

AZl AE_A fE;O(T) = (Ez;o - E£f1;0) fz;o(T)- (2.56)

The corresponding eigenvalue is obviously nonzero, and therefore we can
introduce the function

fffl;l(r) = Az_fl fE;O(T) (2.57)
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which in view of the spectral supersymmetry (Exercise 2.5) is a solution of

Ay AL freaa(r) = (Bro — Eoe-1) fe-1(r). (2.58)
Using (2.54) with ¢ replaced by ¢ — 1, this can be rewritten as
hy g fe11(r) = Eeo fe-1(7)- (2.59)

Thus, the function fy_;.;(r) is a solution of the radial Schrédinger equation
with angular momentum ¢ — 1. It belongs to the eigenvalue Ey_1.1 = Ey of
the operator hy_1.

According to the result of the previous section, h,_; has Fy_1,0 = —%6_2
as the lowest possible eigenvalue. The energy Ey_;.; = —%(ﬁ—i- D™2> Ei 19
therefore belongs to the first excited eigenstate of hy_1.

EXERCISE 2.6. Show that hy_1 can have no eigenvalue between Ey_1.9
and Fy_1.1, because then FEypo = Ey_1.1 would not be the lowest possible eigen-
value of hy.

The next step is to note the following result:

Assume ¢ > 1. Whenever hy has an eigenvector f belonging to an
eigenvalue £ > Fjy, then hy_; has the same eigenvalue E/ and the
corresponding eigenvector of h,_; is given by A, , f.

ProoOF. Eq. (2.55) implies that E — E,_1,9 is an eigenvalue of Azr_lAZ_l.
It follows from spectral supersymmetry that AZ—1AZ—1 has the same eigen-
value and that the corresponding eigenvector is A, , f. Substituting £ — 1
for ¢ in (2.54) shows Ae__lAZ'_1 =hy_1 — Ey_1,0, and this operator has the
eigenvalue ' — Ey_1,9. Hence, the operator h,_; has the eigenvalue £. [

Aslong as £ —1 > 1, we can thus iterate the process that led to the first
excited level of hy_;. It follows that the second eigenvalue of hy_5 is

1
Ep-n2 = Enj = Ego = —5(0+ 1)7% for £>2. (2.60)
The corresponding eigenvector is obtained as

fra= Ay 5 fea= A5 A fro (2.61)

from the ground state fy.o of hy.

Now it is also clear that we can obtain all eigenvectors and eigenvalues
of the radial Hamiltonian with fixed index ¢ from the ground states of the
radial Hamiltonian with some higher index. For example, the function fy.o,
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classically forbidden regions.
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which belongs to the eigenvalue Egy = —3(¢ + 3)72, is obtained from the

ground state of hyo:

043 _—r/(0+3
f12+2;0=7"+ € r/(+),

by applying first the differential operator A, ; and then A,. As an example,
Figure 2.3 shows the first four eigenvectors for ¢ = 1. It is very remarkable
that in order to obtain these functions, it is not necessary to solve a differ-
ential equation, except a very simple first-order equation for fy.o. We would

also like to emphasize the following facts:

(1) The eigenvalues of hy except Eyg also occur as the ground

state

energy of another radial Schrédinger operator with higher angular

momentum.

(2) All eigenvalues of all the radial Schrodinger operators with £ > 0 are
already contained in the eigenvalue spectrum of the radial Schro-

dinger operator with £ = 0.

(3) The lowest possible energy of the Coulomb system is Ep,g = —1/2.

The corresponding eigenstate has £ = 0.

We collect our results in the following box:
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Eigenvalues of the radial Coulomb Hamiltonian:

For each /¢, the radial Coulomb Hamiltonian hy has infinitely many eigen-
values

1
2(ny + 0+ 1)2
For any n, > 1 the corresponding eigenvectors fy.,, of hy can be obtained
by a successive application of the operators A, defined in (2.42) from
the ground state fy4,,.o of the radial Hamiltonian hy,, :

fémr (r) = AZ_ AZ_—H T A£_+m«—1 fe+nr—1;0(7")- (2.63)

Epp, = — ne,=0,1,2,.... (2.62)

In order to obtain the explicit r-dependence of the radial eigenfunctions,
one has to compute all the differentiations in (2.63). But still, the eigenfunc-
tions are not normalized. Hence, one has to find a suitable constant cy.p,
from the condition

| et G 0P =1 (2.64)
0 ) '

We omit the somewhat tedious calculation of ¢y, , because in (2.103) and
(2.104) below we are going to derive an explicit formula for the normalized
eigenfunctions with another method. In Figures 2.3 and 2.4, we show a few
plots of the radial position probability densities | fz.,, (r)|? obtained from the
normalized radial eigenfunctions.

EXERCISE 2.7. Find an explicit expression for fpo according to (2.63).

EXERCISE 2.8. The function ¢g 0,0 defined by (2.53) is the eigenfunction
with the lowest possible energy Eoo = —1/2 (the ground-state energy). Find
a constant ¢ such that [°|cfoo(r)|*dr = 1. As a consequence, show that
¢ $0,0,0 has norm 1 in L2(R?).

2.4.4. Quantum numbers of the Coulomb problem
The normalized eigenfunctions of the three-dimensional Coulomb Hamilton-
ian in spherical coordinates have the form

1

—Ctn, fine (r) V{9, 9). (265)

But while the eigenfunctions of the radial Schrodinger equations depend on
n, and on ¢, we found that the eigenvalues depend only on the sum n, + £.
Therefore, it is natural to introduce the principal quantum number

n=n,+0+1, (2.66)
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which labels the possible bound-state energies in accordance with Eq. (2.37),

Enz—#, n=n,+0+1=123,.... (2.67)
The quantum number n, is called the radial quantum number. Figure 2.5
shows the Coulomb spectrum in a similar way as Figure 1.15 shows the
spectrum of the vibrating rotator.
The principal quantum number should also be used to label the Coulomb
eigenfunctions. Thus, we define the normalized radial eigenfunctions

Ine(r) = com, fom, (r) withn, =n—£0—1, (2.68)

and write the Coulomb eigenfunction in Cartesian coordinates as

wn,é,m(x) = % fn,@(r) }/Em(ﬁ7 90)7 (269)

As always, (1,1, ¢) are the spherical coordinates of x.

The 1, ¢ are the simultaneous eigenstates of the Coulomb Hamiltonian
H and of the angular-momentum operators L? and Lz. The corresponding
eigenvalues are F,, {(¢{ + 1), and m.

The radial quantum number n, = n — ¢ — 1 counts the number of nodes
(zeros) of the radial part f,¢(r) of the wave function. It is a quite general
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Energy-spectrum of the Coulomb problem
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Fi1GURE 2.5. The structure of the eigenvalue spectrum of the
Coulomb problem (in dimensionless units). Eigenstates be-
longing to different angular quantum numbers have the same
energy.

phenomenon that the n-th eigenstate of a radial Schrodinger operator has
just n zeros (nodes).
The Coulomb eigenvalues are highly degenerate:

e We have the m-degeneracy according to spherical symmetry (as de-
scribed in Section 1.10.1): This means that in each angular-mom-
entum subspace with quantum number ¢, we can find 2£4 1 orthog-
onal eigenstates with the same energy. These eigenstates belong to
different eigenvalues of Ls.

e Moreover, we have a certain /-degeneracy according to the “higher
symmetry” of the Coulomb problem: For a given n, we find eigen-
states with the same energy in every angular-momentum subspace

with ¢ < n — 1. These eigenstates belong to different eigenvalues of
L2

The ¢-degeneracy is caused by the spectral supersymmetry described in Sec-
tion 2.4.1. It implies that the n radial eigenfunctions fr.,, with quantum
numbers

(4ny)=(0,n—1),(1;n—2),...,(n—1;0) (2.70)

all have the same energy (although they are solutions of different radial
Schrodinger equations). The total degree of degeneracy of the eigenvalue E,,
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FIGURE 2.6. A part of the energy spectrum of the hydrogen
atom showing the high degeneracy. The little squares repre-
sent the states with principal quantum numbers n between 3
and 7. For each n there are n? states with the same energy.
They can be distinguished by the quantum numbers ¢ and m.

is therefore given by

n—1

> @0+1)=n (2.71)

=0

This structure of the energy spectrum is depicted in Figure 2.6.

CD 2.3.1 is similar to Figure 2.6 and allows one to adjust the coupling
constant v, that is, the strength of the attractive Coulomb poten-
tial. CD 2.3.3 presents an analogous image for the two-dimensional
Coulomb problem.
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The Coulomb eigenfunctions are complex wave functions defined on
the three-dimensional space. In CD 2.12-2.14, we present some ex-
amples of eigenstates 1, ¢, and discuss possible visualization meth-
ods using colored isosurfaces or slice planes. We explain in detail
how to recognize the quantum numbers n,., £, and m in the images.

According to the traditional terminology, which has its origin in the
language of spectroscopists, one denotes the energy levels and angular-mo-
mentum quantum numbers by letters. The states with orbital angular mo-
mentum ¢ = 0 are called s-waves (s = sharp), £ = 1 are p-waves (p =
principal), ¢ = 2 are d-waves (d = diffuse), and then alphabetically f, g, h,
and so forth, for £ = 3,4,5,.... The spectroscopic notation, which is still
found in many books, denotes the states with quantum numbers n and ¢
by nx with © = s,p, d, ... according to the angular momentum. Hence, the
ground state is 1s and the first excited states are 2s and 2p. There are three
states 2p with m = —1,0,1, and all of them have the same energy as 2s.
Very often, one attaches the quantum number m as a subscript and writes,
for example, 2p; for a 2p electron with m = 1.

The states with the same principal quantum number n are said to be-
long to the same energy shell. Hence, the n-th energy shell is just the
n?-dimensional eigenspace of the Coulomb Hamiltonian belonging to the
eigenvalue F,. The energy shells are denoted by the letters K, L, M, ... for
n=1,2,3,....

Figure 2.7 shows the position probability densities |1y, ¢ (x)|* of a few
Coulomb eigenfunctions. Each plot shows a square region in the xz-plane
with the origin at the center. The bounding box of each image has a side
length of 50 in dimensionless units. The position probability densities of all
eigenfunctions are symmetric with respect to rotations about the z-axis.

The three-dimensional shape of some Coulomb eigenfunctions is shown in
Figure 2.8. All these images belong to the quantum numbers n = 3 and ¢ =
2. The first row shows isosurfaces of the position probability density [y, ¢m|*
with (a) m = 0, (b) m = £1, and (¢) m = £2. The remaining images in
Figure 2.8 show real orbitals similar to (1.195) and (1.196). The real orbitals
are linear combinations of vy, ¢, and v, ¢ _,, and are proportional to the real
and imaginary parts of 1, ¢ ,,. They are eigenfunctions of H and L?, but
not of Lz. Here (d) and (e) belong to |m| = 1 whereas (f) and (g) belong to
|m| = 2.

| 2

CD 2.15 is a gallery of the first 20 eigenfunctions and the associated
real orbitals. The visualizations show density plots as well as phase-
colored isosurfaces. We also mention that the first 49 eigenfunctions
of the two-dimensional Coulomb problem are presented in CD 2.5.
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FIGURE 2.7. Position probability densities of Coulomb eigen-
functions with the quantum numbers ném as indicated.

In a real hydrogen atom, the ¢-degeneracy is partially removed by rel-
ativistic corrections. An energy level also splits into different levels when
perturbations like electric or magnetic fields are applied. For example, a
magnetic field removes the m-degeneracy (the independence of the energy

81
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FiGURE 2.8. Isosurfaces of the position probability density
show the geometry of some eigenfunctions of the Coulomb
problem with n =3, £ =2 and (a) m =0, (b) m = £1, and
(¢) m = +2. The remaining images are isosurfaces of real
orbitals.

on the eigenvalue m of Lz). Therefore, the quantum number m is often
called the magnetic quantum number.

2.4.5. Time evolution of simple superpositions

The time evolution of an eigenstate of H is described by the phase
factor exp(—iFt), where F is the energy of the eigenstate. We show a
few examples in CD 2.6, CD 2.7, and CD 2.16 (in three dimensions).
In the following, we deal with more complicated forms of the time
evolution, as shown for example in CD 2.8.1 and CD 2.9.
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Any superposition of two or more states with different energies shows
a nontrivial time-dependence. In this section, we consider the superposi-
tion of just two eigenfunctions. In Section 2.8 below, we investigate special
superpositions of many eigenstates showing a quasiclassical behavior.

A superposition of two eigenfunctions with energies £ and Fo depends
on time according to

w(n v, ®, t) = wnl:‘el,ml (n v, 90) eXp(_iEmt)
+ co wng,fg,mz (7’7 197 90) exp(_lETLQt) (272)
If all states are normalized, then |c1|? is the probability that in a measure-
ment of the energy of an electron in the state v, the value E; would be
obtained, and |cp|? is the probability for Es. Using the formula (2.69) for

Y e.m together with expression (1.106) for Y;”, we find that for m; # mo,
the superposition (2.72) has the form

U(r, 0, 0,) = gi(r,9) €71 e 4 go (1, ) €20 1R

o (g 4 gl 2
with B E
Mo, t)=mip—EBit, w=-——"= (2.74)
mo — MM
Let us denote the position probability density of the initial state by

p(r,9,0) = | g1(r,9) + ga(r, 9) €272 2 (2.75)

According to (2.73), the time evolution of this quantity is given by
(7,9, 0,1)* = p(r, 9,0 — wt). (2.76)

We find that the time evolution of the position distribution is just a rotation
about the z-axis with a constant angular speed w.

In a superposition of two eigenfunctions, a radial oscillation can only
occur for my = my. CD 2.8 shows an example in two dimensions.
In three dimensions, CD 2.17.2 and CD 2.17.4 show pure radial os-
cillations within a single angular-momentum subspace ({1 = {3).
CD 2.17.1 and CD 2.17.3 show additional oscillations in the direc-
tion of the polar angle ¥, because {1 # (5.

CD 2.18 and CD 2.19 present superpositions of two states with differ-
ent magnetic quantum numbers m; # ms. In that case, there are no
radial oscillations nor J-oscillations. The isosurface of the position
probability rotates like a rigid body about the z-axis. The phases
and hence the colors depend on time with exp(iA(g, t)) according to
Eq. (2.73), but the shape remains constant. CD 2.9 shows rotating
states in two dimensions.
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2.5. Direct Solution of the Radial Schrodinger
Equation

2.5.1. Solution of the Coulomb problem in two dimensions

In this section, we shall outline the conventional approach to the Coulomb
problem by solving the radial Schrodinger equation directly. We do this
here for two space dimensions, because many of the visualizations on the
CD show two-dimensional systems. The radial equation arising from the
three-dimensional problem will be treated along similar lines in the next
section.

In classical physics, the Coulomb problem in two dimensions is equivalent
to the Coulomb problem in three dimensions, because the motion takes place
in a plane anyway. In quantum mechanics, however, the energy levels of the
two-dimensional Coulomb problem are are always below the corresponding
energies in three dimensions. A Coulomb potential binds stronger in two-
dimensions. Moreover, two-dimensional systems have a lower degree of m-
degeneracy.

We look for a solution of the eigenvalue equation Hi = E1) by separating
the angular variable ¢ from the radial variable r,

g(r). (2.77)

_ 1 imep
¢(r, ) o
Here, m = £¢ with £ = 0,1,2,3,.... The quantum number m is the eigen-
value of the angular-momentum operator L. In two dimensions, L is a scalar
quantity. It may be interpreted as the third component of an angular-mom-
entum vector L = (0,0, L) for a particle whose motion is confined to the
zy-plane. In polar coordinates and with 7 = 1, we have

L =—i ﬂ (2.78)
dp
This is the same expression as for the operator L3 in three dimensions, and
hence we obtain the same result for the eigenvalues. The function e? /y/27
in (2.77) is the normalized eigenfunction of L belonging to the eigenvalue m.
The quantum number ¢ = |m| is the eigenvalue of the operator |L|.
Hence, in two dimensions, the square L? of the angular momentum has the
eigenvalues 2 (unlike £(¢ + 1) in three dimensions).
The separation of variables leads to the radial Schrédinger equation for
a two-dimensional system. This equation has been derived already in Book
One (Eq. (8.145) in Section 8.8). For the Coulomb potential V(r) = —1/r
we obtain

2

1(_612_161 £
dr?2  rdr r?

1
)g—;g:Eg. (2.79)



2.5. DIRECT SOLUTION OF THE RADIAL SCHRODINGER EQUATION 85

We have ¢ = m?, and therefore the radial equation does not depend on
the sign of m. The radial equation has two linearly independent solutions
on (0,00) that can easily be found using a computer algebra system like
Mathematica. Only one of these solutions remains finite for r — 0 (it is
called the regular solution). The other solution is unbounded for » — 0. In
the context of quantum mechanics, we are only interested in the solution
that is regular at 0.

It has been pointed out in Section 1.10.1 that the reason for choosing

the regular solution has little to do with the requirement of square-
integrability. Indeed, for ¢ = 0, the singularity of the irregular solution is so
mild that it is also square-integrable. In this case, the square-integrability
alone gives no sufficient criterion to select one of the two linearly independent
solutions. The choice of the regular solution comes from the observation that
any eigenfunction of the Coulomb Hamiltonian H must be in the domain
of H. It can be shown that the domain of this second-order differential
operator contains only continuous functions. Any singularity of the radial
function g(r) at r = 0 leads to a discontinuity of 1 and hence ¢ would not
be in the domain of H.

For all E, the radial equation has the regular solution
gr) = Ne V2Bt B (04 ) — \/—127E ,20+1,2V-2E7). (2.80)
Here, £} is the confluent hypergeometric function, and N is an arbitrary
constant. We are going to choose N to normalize the radial wave function
(see (2.93) below).
The properties of this well-known special function are described in great
detail, for example, in [1]. Here, we just quote the definition:

> (@) ™™

Fi(a,b,r) = — 2.81
1F1(a, b, ) nZ::O(b)n ok (2.81)

where the expressions
(ao=1, (a)n=ala+1)---(a+n—1) (2.82)

are sometimes called the Pochhammer symbols.?

EXERCISE 2.9. Evaluate 1F1(0,b,7) and 1Fi(a,a,r). Examine the defini-
tion of 1F1(a,b,r) in the case that b is a negative integer.

20ur definition of the confluent hypergeometric function agrees with the definition
of the Mathematica function HypergeometriciF1i[a,b,r]. The Pochhammer symbols are
implemented by Pochhammer|a, n]
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EXERCISE 2.10. With the help of the definition (2.81), show that the
function 1F1(a,b,r) is a polynomial in v of degree n, whenever a = —n is a
negative integer or zero (and provided that b is not a negative integer).

In a sense, the hypergeometric function can be seen as a generalization
of the exponential function €” = 1Fj(a, a,r). Whenever a and b are not equal
to negative integers, the power series above is convergent (even for complex
r). However, in these cases the function diverges, as r — oo. So the only
hope that f(r) is square-integrable at infinity is that the first argument
in the hypergeometric function is a negative integer or zero. In this case,
the hypergeometric function becomes a polynomial in 7 and the exponential
factor exp(—+v—2FE'r) lets the function f(r) go to zero very fast, as r goes
to infinity. This is, however, only true if £ < 0, otherwise the exponential
factor would just oscillate. Hence, we have to find numbers E.,, < 0 such

that

1 1
(- =—p,, withn,=0,1,2,.... (2.83)

2 /2Eu,

It is easy to solve this equation for Ey., ,

2
Epp = — , A =0,1,2,.... 2.84
b = Ton, 204120 T (2:84)
The eigenvalues Fy.,, only depend on the sum n, +¢. Hence, it makes sense
to introduce the principal quantum number n = n, + £ 4+ 1 also in the two-
dimensional Coulomb problem. n can take the values 1,2,3,.... Then one
can write

1
2(n—1/2)%
Inserting these numbers into the expression (2.80) for ¢(r), we find for each

n, = n—{—1 a square-integrable solution of the radial Schrédinger equation
with angular-momentum quantum number ¢. With the abbreviation

Epp, = E, = — (2.85)

1
=+ -2F, = ——— 2.
Rn n n— 1/2 ( 86)
we write these solutions as
9n(r) = Nyg e 2k 1) 1B (041 — 1,20+ 1,2k, 7). (2.87)

The factor (2 /{n)g has been extracted from the normalization constant N, g
for cosmetic reasons.
The set of eigenfunctions of the two-dimensional Coulomb Hamiltonian
H (in polar coordinates) is thus given by
1 imep

¢n,Z7m(Ta 90) = m € gn,Z(r)a (2'88)
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with ¢ = |m|, m = 0,£1,£2,..., and n = 1,2,.... Because of the simple
connection between m and ¢, it is sufficient to label the eigenfunction with
two indices, that is, we define

¢n,m(7"7 50) = ¢n,|m|,m(ra 90) (289)
For a given principal quantum number n, the eigenfunctions ¢, ,, with
m==x(n-1),£(n—2),...£1,0

all have the same energy. Therefore, the degree of degeneracy of the eigen-
value E, of H is only 2n — 1, instead of n? in three dimensions. In two
dimensions, the m-degeneracy is lower, because L can only have two differ-
ent values for a given ¢ (instead of 2¢ + 1 in three dimensions).

CD 2.2.3 is an interactive image presenting the energy spectrum of
the two-dimensional Coulomb problem and its dependence on the
strength of the Coulomb force. The radial eigenfunctions are shown
in CD 2.3, and the first 49 eigenfunctions ¢, ,, (r, ) defined in (2.89)
are visualized in CD 2.5. CD 2.4 compares radial oscillations in two
and three dimensions.

We still have to determine the constants IV, , in (2.87). We require that
the eigenfunctions all have norm 1. This is needed, in particular, for the
eigenfunction expansion. For the norm of ¢y, (7, ¢) we find

9 1 00 2T g2
| Snm (] lonetry@medg)rar (2.90)

2
,
= / 7 |gne(r)|*dr (with £ = |m]). (2.91)
0
Hence, we may determine the constant IV, , from the condition that
T
/ T |gn’g(1”)|2 dr = 1. (2.92)
0

A long and tedious calculation gives

(n—i—@—l)!)l/?' (2.93)

Ny = (2 3
mET et \" i — - 1)
Quite frequently, the solution is expressed in terms of generalized La-
guerre polynomials. The generalized Laguerre polynomials can be defined
3
as
(n+m)!

[’gm)(x) = ot 1F1(—n,m +1,z). (2.94)

3The generalized Laguerre polynomials are implemented by Mathematica as
LaguerreL[n, m,z]. They have to be distinguished from the associated Laguerre poly-
nomials L' (z) = (—1)™ £§:z)m(m), which are also used frequently.
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Hence, the solution of the radial Coulomb problem can also be written as

Inp(r) = Kpge ™" (26, 7) LY, (2600 7), (2.95)
where we used the abbreviation
— 0 —1)I\1/2
K. ,= (2«3 7(72 2.
ne=( mwn+€_1ﬂ) (2.96)

We want to emphasize that the set of eigenfunctions of H does not form
a complete orthonormal basis in L?(R?). The eigenfunctions only span the
subspace of bound states. Hence, for a given square-integrable function v,
the expression

wbound = Z<wn,ma ¢> wn,m (297)

n,m
does not represent ¥ (as it would be the case, for example, for the harmonic
oscillator). Instead, the sum above gives the part of ) which is in the sub-
space of bound states. The mapping ¥ — ¥pound is an orthogonal projection
operator.

CD 2.11 shows the effect of projecting Gaussian wave packets onto
the subspace of bound states. The time evolution leaves the sub-
space of bound states invariant. In the absence of perturbations, a
bound state remains a bound state forever. This follows from the
conservation of energy (see also Eq. (2.199) below).

EXERCISE 2.11. Can you find a transformation g(r) — f(r) such that
f(r) satisfies the radial equation
1, d&*f 02 1
3 Cartl) 7

f=Ef? (2.98)

2.5.2. Solution of the Coulomb problem in three dimensions

It is worthwhile to list the formulas corresponding to the results in the previ-
ous section also for the three-dimensional case. For a particle in a Coulomb
field in three dimensions, the radial Schrodinger equation becomes

1, d’f L(+1) 1

(2L L\ = Ff 2.99
2( dr? + r2 f) r ! / (2.99)
We remind the reader that £(¢ + 1) is the eigenvalue of the operator L.
The angular-momentum quantum number ¢ is a non-negative integer, £ =
0,1,2,.... The radial equation does not depend on the eigenvalue m of Ls,
which for a given ¢ can have all integer values between —¢ and +/.
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The radial Schrédinger equation (2.99) has the regular solution
f(r) = Ne V2P R (0= A 2042, 2V=2E ). (2.100)

For negative F, this solution becomes square-integrable if the first argument
of the confluent hypergeometric function is a non-positive integer, denoted
by —n,., where n, is the radial quantum number. The first argument of £}
equals —n, whenever E is equal to
1

2(ny + £+ 1)%’
In terms of the principal quantum number n = n, + ¢ + 1, we obtain the
familiar formula (2.67) for E,,. Inserting these values into (2.100) and writing

2B, = 1 (2.102)

n

B, = — n,=0,1,2,.... (2.101)

gives the following family of solutions:

Fod(r) = Ny e ™/™ 2r/n) R (E+1—n,20+2,27/n), (2.103)

with £ = 0,1,2,..., and n = 1,2,3,.... Choosing the normalization con-
stants ) ( o) 12
n—+£)!
Npo = ( ) 2.104
T 0+ DIn \(n—0—1)! (2.104)
guarantees that
T
/ | fe(r)|? dr = 1. (2.105)
0
Hence, the three-dimensional solution
1
Yrm(9) = Fuelr) Y9, 0) (2.106)
is also normalized, ||ty ¢m| = 1. Here, (r,9, ) are the spherical coordinates

of x.
The following box describes the normalized radial eigenfunction in terms
of the generalized Laguerre polynomials.

Normalized solutions of the radial Schrodinger equation:

For each n = 1,2,3,... and ¢ = 0,1,...n — 1, the radial Schrodinger
equation (2.99) has the normalized eigenfunction

1 nl \1/2 27\ 41 2r
_ r —r/n (7) (26+1) (7)
fn,f(r) n ((TL +£)'> € n [’nr n /) (2107)
with n, = n — ¢ — 1. Tt belongs to the eigenvalue E, = —1/(2n?). Here,

i (x) is the generalized Laguerre polynomial defined in (2.94). The
function f, ; has precisely n, zeros in 0 < r < oo.
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CD 2.3 shows a gallery of some radial eigenfunctions according to
the two- and three-dimensional Coulomb problems. CD 2.4 shows
radial oscillations (the time evolution of superpositions of two radial
eigenfunctions in the same angular-momentum subspace).

EXERCISE 2.12. In order to solve the radial Schrédinger equation (2.99),
write the radial wave function as

flr)y=rHte ™ u(r), with k = V—2E. (2.108)
and show that the function u has to be a solution of the differential equation
d (+1 d 1 (41
< 2(—— )7 2<7— ) = 0. 2.1
dr2u+ " K dru+ . K " u=20 (2.109)

EXERCISE 2.13. Perform a variable substitution in (2.109). Set p = 2kr
and define v(p) = u(r). Show that v has to be a solution of the equation

d? 20+2 d 1y 1
< 7_1>7 —(E 1—7)7 ~0. 2.11
dpzv—i-( p dpv + - pv 0 (2.110)
Compare this with Kummer’s differential equation
d? b d a

EXERCISE 2.14. Find a solution to Kummer’s equation (2.111) by setting

v(p) = cxph. (2.112)
k=0

Insert the power series into the equation and write everything as a single
power series in p. Note that the coefficient of each p* has to vanish. Use
this observation to show that the following recursion relation holds for the
coefficients in (2.112):

ckr1(b+k)k+1)=crla+ k), k=0,1,2,.... (2.113)

EXERCISE 2.15. Starting with a given co, iterate (2.113) in order to
obtain all ci. Show that (for b > 0)

C_Cga—i-l a—Hc—ll
PO b1 btk —1 R

Set co =1 and compare the result with (2.81) and (2.82).

(2.114)
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FiGURE 2.9. The coordinate curves £ = const., n = const.
of the parabolic coordinate system in the half-plane where
@ = 0 are parabolas.

2.6. Special Topic: Parabolic Coordinates

The Schrodinger equation for the hydrogen atom also separates in parabolic
coordinates. This observation is important because it remains true in the
presence of an additional constant electric field in the z-direction (Stark
effect).

The parabolic coordinates of a point (z,y, z) in R? are given by (&, 7, ¢),
where

E=r+z=r(l+cos?), x = /&N cos p,
n=r—z=r(l—cos?), y = /&n sing, (2.115)
¢ =, z=(§—n)/2

Here, (r,9, ) are the spherical coordinates of the point (z,y, z). The coor-
dinates & and 7 are non-negative, and ¢ is the familiar azimuthal angle. The
parabolic coordinate system is an orthogonal, right-handed system. Hence,
the coordinate curves meet at right angles. Figure 2.9 shows a few coordinate
curves in the half-plane where ¢ = 0 (the zz-plane). The coordinate surfaces
with constant £ or n are obtained by rotating the corresponding parabolas
of Figure 2.9 about the z-axis. In Figure 2.10, we see the coordinate surfaces
for 6 =1and n=1.



92 2. COULOMB PROBLEM

FIGURE 2.10. The surfaces with £ = 1 (upper paraboloid)
and 7 = 1 (lower paraboloid) are obtained by rotating the
corresponding parabolas of Figure 2.9 about the z-axis.

The unit vectors along the coordinate lines are given by

7 (coscp) ¢ ( cos ¢ ) (singo)
ec=/—— | sing |, e, =4/ —— sing |, e,=| cosp |.
S\ Ve S\ VagE 0

The gradient in parabolic coordinates reads

YN S [0 e L O
V = 2e;¢ §+n0§+2en §+n3ﬂ+e¢\/ﬁa<ﬁ. (2.116)

From this it is not difficult to obtain the expression for the Coulomb Hamil-
tonian (2.39) in parabolic coordinates

2 0. 0 0/ 0 1 02 2
H=——" (2 (=) + (=) ) - — = — 2. (2117
£+ (5£<£8§)+3n<nan>) 26n 09* £+ ( )
The stationary Schrodinger equation (H — E)i = 0 can be separated by
writing

(&, m, @) = N £(£) g(n) ™, (2.118)
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where m is the magnetic quantum number. For this wavefunction, the Schro-
dinger equation in parabolic coordinates can be rearranged to give the equa-
tion

(<2 (20)) + 22 st - 510 - B £16)) 9t

2€
m2
(-2 (1) 4 gt = 9(a) ~ Bngl) FO =0. (2119
This is an expression of the form
v(&) g(n) +u(n) £(£) =0, (2.120)

which is supposed to hold for all £ > 0 and n > 0. This can only be the case
if
v(§) = cf(&), uln)=—cgmn). (2.121)

Here, c is called the separation constant. We end up with two almost iden-
tical ordinary differential equations:

B d*g( d{z(f)) 2% (€ — (14 ¢+ ) £(€) =0, (2.122)
m2
2 cZy ("%) o g(n) — (1 —c+ En)g(n) =0. (2.123)

The following solutions are bounded near the coordinate origin:

f(ﬁ):e_mgmf‘mwlﬂ(lﬂm‘— Lie ,1+|m|,\/—2E£>, (2.124)

2 2J/2E
o) = o~V IEN/2 Iz (1+2|m| 2\}%,1+\m|,\/2E17). (2.125)

The hypergeometric functions are polynomials if the first argument is an
integer < 0. In this case, we can expect that the solutions are square-
integrable (because of the exponential damping factor). Hence, we obtain
the equations (quantization conditions)

1+|m| 1+4c

— 2.126

2 0/—2F ! (2.126)
14 |m| l1-c

B o, 2.127

2 o0—E (2.127)

with nq,n9 > 0. Subtracting these equations leads to
c
—2F

=nN1 — N2 (2.128)
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and adding leads to

—— =n1 +n2+ m|+ 1. 2.129
9ok 1+ + m| ( )
From this, we get immediately that the allowed energies are
1
E:—Q—HQ, n=ny+ny+|ml+1, (2.130)

and the separation constant becomes
ny — N2

= . (2.131)

n

For given integers n > 1 and m with |m| < n — 1, we see that the quantum
numbers n; and ny take all values between 0 and nyax = n—|m| — 1. There
are n — |m/| choices of ny and ny. For given n, the quantum number m can
have the 2n — 1 values between —n + 1 and n — 1. Hence, there are

n—1

> n—|m|=n? (2.132)

m=—n+1

different solutions belonging to the energy E = —1/(2n?). This is the result
for the degeneracy of the eigenspace obtained earlier. Hence, the solutions
found in this way span the whole corresponding eigenspace.

The solutions in parabolic coordinates are

Yy mom (&1 9) = Nnynom frym(E/1) frgm(n/n) exp(imep) (2.133)

with n = ny +ng+|m|+ 1 denoting the principal quantum number and with

Fem(€) = /22y (<&, 1 + m), €). (2.134)
The function f}, , is a regular solution of the equation
0 0 B m? ¢

28? (Ca—g) f(¢Q) = ff(C)— (2k‘+1+|m|—§) £(0). (2.135)

We choose the constant

Nn17n27m

(—1)m \/(n1 + [m)! (na + |m])! (2.136)

T2 |m|!? mny!ng!

so that the functions defined in Eq. (2.133) are normalized:

(e’ (') 21
1 2 _
/0 de /0 dn /0 oL (64 1) [dmmam(Em O =1 (2.137)

The factor 1 (¢ +n) (the Jacobi determinant of the coordinate transforma-
tion) describes the volume element in parabolic coordinates

d* = 1(£+n) dédndp. (2.138)
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We note that the functions vy, n, m are not only eigenfunctions of the Hamil-
tonian, but simultaneously eigenfunctions of Ls. The operator L3 has in
parabolic coordinates the familiar form

0
Ly=—-i— 2.139
3 r ( )
and therefore
L3ty mam = M Uny iy m- (2.140)

The third component of the Runge-Lenz vector in parabolic coordinates is
given by

_E-n 2y 8(58) 26 8( 8)+£—n82

Ke=2>_"1_ 20 Z (24 =5 Z(p 2y > 12
ST v ernoe\ag) T exnon\Ton 26n  0p?

Using (2.135), it is not difficult to compute K3t n,m. A little calculation
shows that 1y, n,m is an eigenfunction of the operator K3s:

(2.141)

ny —mng
K3 wnl,nz,m = T T;Z)nl,nz,m- (2142)

The parabolic eigenfunctions are therefore eigenfunctions of the operators

1 1

which we defined in (2.32). We have

1
‘]Zg: wnhnz,m = 5 (m + (nl - n2)) wnl»n%m = m;t 1/)”1777/27m’ (2'144)

Because of (2.35), it is clear that the eigenfunctions of H are also eigen-
functions of the operators (J¥)2. We conclude that the parabolic eigenfunc-
tions are joint eigenfunctions of the complete set of commuting observables
H, (Ji)Q,J;E. One can obtain these eigenfunctions also by the algebraic
method using the Runge-Lenz vector and the algebra of pseudo-angular-
momentum operators (Sections 2.3 and 1.5).

EXERCISE 2.16. What is the shape of the nodal surfaces (= set of zeros)
of the functions ¥n, nym?

CD 2.25 shows a gallery of the eigenfunctions arising from the sepa-
ration of the Coulomb problem in parabolic coordinates.
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2.7. Physical Units and Dilations

2.7.1. The Coulomb problem in physical units

Because of its great importance, we want to solve the Schrodinger equation
for the hydrogen atom with all physical constants in a given physical system
of units for mass, length, time, and charge. We denote the space and time
coordinates measured in the physical units by & and . The Schrédinger
equation for the Coulomb problem in physical units has the form

0 h?

Aok, %) — L o(%, 7). (2.145)

%]
Here, A is the Laplace operator where the derivatives are taken with respect
to the coordinates ;. The coupling constant ~ is, for example, v = Ze? (in
the Gaussian system) or v = Ze?/4meg (in the international system, with
e measured in coulomb = amperexsecond). As usual, e is the elementary
charge, m is the mass of the particle, and # is Planck’s constant. All these
constants have to be expressed in the given system of units. Some values
and dimensions in the SI are given in Table 2.1.
So far, we have obtained solutions only for the simpler equation

.0 1 1
léw()gt) = _5 Aw(XJ) - g w(xvt)' (2146)

What does this tell about the solutions of Schrédinger equation in physical
units? You will see that the relation between the equations (2.146) and

TABLE 2.1. Important physical constants in terms of SI base units.

Physical constant Value in SI units

elementary charge e = 1.602176 x 10~ As
electron mass m, = 9.10938 x 1073 kg

proton mass m, = 1.672622 x 102" kg

speed of light ¢ = 2.99792458 x 108 ms~!
Planck’s constant hi = 1.054572 x 1034 kgm? s !
permittivity of vacuum €0 = 8.8541878 x 107 12A%2 kg 'm—3 s*
coupling constant for hydrogen g = 2.30708 x 10~ 28 kgm?s—2
Bohr radius ap = 5.2917721 x 10~ m
atomic time unit to = 0.242 x 107165

atomic energy unit (hartree) Ep = 4.35974 x 10718 kgm? s~
Rydberg constant R = 1.0973731534 x 10" m™!

fine structure constant a = 7.297352 x 1073 = 1/137.036
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(2.145) is simply given by a change of units. It is always possible to choose
a system of units where A, m, and the Coulomb coupling constant v all
have the numerical value 1. These units will be called dimensionless units.
Equation (2.146) is the Schrédinger equation in dimensionless units.

After a change of units, the new value for a physical quantity is obtained
from the value in the old units by multiplication with a conversion factor.
If the equations (2.146) and (2.145) are indeed related by a change of units,
we can express X (which is measured, say, in meters) in terms of x (in
dimensionless units) by

X =ax, witha >0, (2.147)

where the conversion factor a will be chosen appropriately. Because |x| =1
corresponds to |x| = a, we find that a gives the numerical value of the
dimensionless length unit in meters.
In a similar way, we change the unit of time by multiplication with a
conversion factor b,
t=bt, withb>0, (2.148)

where t gives the time in seconds and b gives the dimensionless time unit in
seconds.

The coordinate transformation x — X, ¢ — ¢ induces a transformation
of wave functions according to

P(x,t) = ¢(%,1), with X = ax, { = bt. (2.149)

Next, we have to figure out how to convert the Schrédinger equation. We
can use the chain rule to obtain

0 0 ~\ dit 0 .

9 b(x.t :(—A A,t)f:b—A %, 7). 2.150

5 00 t) = (5 06k,D)) G = b oD (2150)
A similar calculation can be done for the derivatives with respect to the
components of x:

o .
o 55, 0% ). (2.151)

If we assume that 1(x,t) satisfies Schrodinger’s equation (2.146) in dimen-
sionless units, we find immediately that ¢(x,t) satisfies the equation

o . . ol o o1
ib—=o(x,t) = —a” = Ap(x,t) — a —
£ 0l.D) = —a? 5 Bo ) o
By a suitable choice of a, we can achieve that the coefficients in front of A
and of 1/|x| have the same ratio as the physical constants in the Schrodinger
equation (2.145). Thus, we require
h2 2 h2
/m:a—:a, or a=r7ryg=—. (2.153)
Y a m-y

P(%,1). (2.152)
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The quantity ro is called the first Bohr radius of the hydrogenic system.?
With a = rg, the Schrédinger equation (2.152) becomes

0 . K2 hZ . 0% .
ib 2 o(x,1) = (——A 2,8 — 2 t) 2.154
ih ol f) = 105 (~ g Aed) - o) (2154)
Now we can choose the time-conversion factor
h3
b=1sy= 2 (2.155)

and multiply the resulting equation by m~2/h%. This converts Eq. (2.154)
into the Schrodinger equation in physical units, Eq. (2.145).
You can compute the physical dimensions of the quantities

X my . t  my?.
— = —X, t=—=

To ﬁ2 S0 h3
by inserting the dimensions of /i (= energy X time), m (= mass), and v (=
mass length? / time?). You will find that all dimensions cancel out. We say
that x and t are dimensionless quantities.

Our result states that you can always replace the Schrodinger equation
in physical units by the equation in dimensionless units, thereby getting rid
of physical constants. You just have to measure lengths in units of ry and
times in units of sg.

The Bohr radius rq sets the length scale of atomic phenomena. Note that
the radial oscillations of the wave function will take place in a neighborhood
of the minimum of the effective radial potential

X =

(2.156)

B2 L0+ 1)
=— T2 T 2.1
‘/eff(r) m r2 r ( 57)
A little calculation shows that the minimum of the effective potential is at

r =0+ 1)r.

Let us now consider the hydrogen atom in Bohr’s model, for which we
have m = m, and Z = 1. In this case, we denote the Coulomb coupling
constant by g, the Bohr radius by ag, and the time unit sg by tg, that is

e? h? I

= s a’O = 5 to = —>5. 2158
dme me 70 e '73 ( )

o

The values of these quantities in SI units are given in Table 2.1.

The dimensionless units for the hydrogen atom in the Bohr model are
usually called atomic units. In atomic units, the mass of the electron is
m, = 1, also, Planck’s constant and the Coulomb coupling constant ~y have

4Here, we have v proportional to Z > 1. In case of a hydrogen atom (Z = 1), the
Bohr radius is denoted by ag.
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the value 1. Hence, Bohr’s radius for the hydrogen atom is the atomic length
unit and ¢y is the atomic time unit.

The dimension of the Coulomb coupling constant is (mass) x (length)? /
(time)?, as you can see from Table 2.1. We can combine vy with the physical
constants /i and ¢ (the speed of light) into a dimensionless quantity,

a= % = 1/137.036 (2.159)
c

which is called Sommerfeld’s fine structure constant. Because this quantity

is dimensionless, it has the same numerical value with respect to all systems

of units. From this value, we can therefore compute the value of ¢ in atomic

units, where h = e = 1. We obtain immediately that

c=137.036 is the velocity of light in atomic units. (2.160)

The energies and eigenfunctions in SI units will be discussed in Sec-
tion 2.7.3 below.

EXERCISE 2.17. Convert the speed of light from the SI to atomic units
using a scaling transformation with a = ag and b = ty as given in (2.158),
and verify the value of ¢ by a direct computation.

EXERCISE 2.18. Verify in a similar way that h has the numerical value
1 in atomic units.

EXERCISE 2.19. Assume that you live in a universe where h has the value
1.0546 x 1072" kgm? s~ instead of the value given in Table 2.1. How large
is a hydrogen atom in this universe (assuming that mass and charge have
their usual values)?

EXERCISE 2.20. Assume that ¢ (x) is an eigenfunction of the Coulomb
Hamiltonian in dimensionless units belonging to the eigenvalue E. Perform
a scaling transformation X = x/ag and show that the eigenvalue parameter
of the stationary Schrédinger equation in SI units is my2E /h2.

2.7.2. Scaling transformations

In the Hilbert space of wave functions, a change of units induces a linear
transformation, called a scaling transformation or dilation.
Given a wave function ¢, we define a scaled wave function ¢ by

P(x) = Ny op(Ax), (2.161)

with a suitable normalization constant Ny. Conversely, we can express ¢ in
terms of 1 by

P(x) = ;ﬂ(’;) (2.162)
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We choose the constant Ny such that 1) is normalized whenever ¢ is normal-
ized. The norm of 1 is

12 =/|¢<x>|2d3 :N§/|¢(Ax)|2d3x. (2.163)
Substituting * = A\x and d*¢ = \3 d°x, we find
o d% N2
ol = N3 [l 55 = 3 ol (2.164)

We see that the linear transformation ¢ — 1 is norm-preserving (that is,
unitary) if we define

Ny = \3/2, (2.165)
Dilations:
The linear operators Uy : ¢ — 1, defined on L?(R?) by
Y(x) = (Ux¢)(x) = A2 p(Ax) for A >0, (2.166)

are called scaling transformations or dilations. They are unitary in the
Hilbert space L?(R3). The inverse transformation is

Uyl =Ul =Up) (2.167)

The unitary transformation Uy induces a transformation of linear oper-
ators in the usual way, A — U j\ AU),. Let us now compute the effect of a
scaling transformation on the Hamiltonian. First, we compute the action of
—iV (the momentum operator) on a scaled wave function

(=iV)(Uro)(x) = N¥/2(=iV) (%) with & = Ax
= M/2X\(—iV¢)(X) by the chain rule
= A (Ux(=iV@))(x) by the definition of Uy.  (2.168)
This is the three-dimensional analog of (2.151). Multiplying everything by
the inverse U, ' = Ui from the left gives (on the domain of V)
Ul (—iV) Uy = A (=iV). (2.169)

Now it is easy to derive the corresponding transformation of the Laplacian
operator —A = (—iV)? (and hence for the kinetic energy). We obtain im-
mediately

Ul (—A) Uy = A2 (—A). (2.170)
We may also write this in the form

A (Urg)(x) = X2 A2 Ag(x), (2.171)
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where A denotes the Laplacian with respect to X = Ax.
The potential energy 1/|x| behaves as follows:

1 1 1
—Uro(x) = A32 — p(Ax) = M3/2 X — p(x). (2.172)
x| ]| x|
Hence, we find
1 1
—Uno(x) = AUy — o(x), (2.173)
x| x|
or, after applying U, to both sides of the equation,
1 1
Ul —Uy=X—. (2.174)
x| x|

2.7.3. Energies and eigenfunctions in physical units

The transitions between physical and dimensionless units discussed in Sec-
tion 2.7.1 are examples for the application of the scaling transformation Ul.
Consider, for example, the stationary Schrédinger equation in dimensionless

units,
1 1

-3 Atp(x) — ] P(x) = E(x). (2.175)
Writing ¥ (x) = Uy ¢(x), we find (after dividing the whole equation by \3/2)
A A .

-5 Ap(x) — =] d(x) = E ¢(%). (2.176)

Here, we have used (2.171) and (2.173). With A = rg as in (2.153), we obtain
the stationary Schrodinger equation in physical units

R . 0

g A0(8) — - 0(%) = E (%) (2.177)
where X = rpx and
2
N Y
EFE=—F=—-F. 2.1
h2 To ( 78)

Hence, from our knowledge of the Coulomb Hamiltonian in dimensionless
units, we can immediately obtain eigenvalues and eigenfunctions of the
Coulomb Hamiltonian in physical units. In the same way, we obtain via
a scaling transformation the eigenvalues and eigenfunctions in any given
system of units, provided we know the conversion factor corresponding to
0.

The stationary Schrodinger equation in physical units (2.177) has the
eigenvalues

I3 _m'yzE - my?

"Rz " 2h2p?

1
= Z’Ryhe—, n=1,23,. ... (2.179)
n
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Here, we have introduced the Rydberg constant for hydrogen (see also (2.1))

_

" 4rhde’

Inserting for m the reduced mass mem,;/(m. + m,) of the electron-proton
system, one obtains the value R,; ~ 1.09678 x 10~ "m, which agrees with the

spectroscopically determined value. In the Bohr model of the hydrogen, one
sets m = m, and defines the Rydberg constant

(2.180)

2
mMe7Yg
= . 2.181
* dmh3c ( )
The value of this constant is given in Table 2.1.
The atomic energy unit is the hartree
2
Me?y
B, = 7;20 (2.182)

All eigenvalues obtained in dimensionless units have to be multiplied by this

factor if we want to know the energies of the hydrogen atom according to

Bohr’s model (with infinite proton mass). In physical units, the energies of

the hydrogen atom according to the Bohr model are

1 me'yg v 1 Roohe

on2 h 2h2n2 ag 2n? n? ( )
Another often used energy unit in atomic physics is the electron volt,

l1eV = 1.60218 x 10~ J, approximately. With Table 2.1, we compute the

ground state energy of the hydrogen as

Ey = —E},/2 = Roohe = 2.17987 x 10718 J = 13.60569 ¢V (2.184)

E, =

Via the scaling transformation U,, (with 79 being the Bohr radius), we
can immediately find the normalized eigenfunctions of a hydrogenic atom,
given the normalized eigenfunctions (2.69) in dimensionless units. Whenever

1 is a solution in dimensionless units, then ¢ = U:O 1 is a solution of (2.177):

bnan® = ()" s (2). (2185)

7o

Note that the angular part Y¥,” of the eigenfunction is not affected by the
scaling transformation.

EXERCISE 2.21. Show that in n space dimensions, the definition of the
unitary scaling transformation has to be replaced by (Uy ¢)(x) = N2 ¢(Ax).
Show that the equations (2.169), (2.170), and (2.174) are independent of the
space dimension.
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EXERCISE 2.22. Consider a hydrogenic atom, where the electron has been
replaced by a muon. The muon has the mass 206.8 m, charge e, and a life-
time of about 2.2 x 1075 s. Determine the Bohr radius and the energy levels
and compare the muonic atom with an electronic atom.

2.7.4. The generator of dilations and the virial theorem

A composition of two scaling transformations Uy and U, gives again a dila-
tion:

Ux, Ux, (%) = (MA2)*? (M Aa X) = Up,, 9(x). (2.186)
The scaling parameter should always be positive (otherwise the dilation

would include a reflection about the origin). Hence, we write A = ¢ and
denote the dilation operators by

U(0) = Usp(e), U(0)d(x) = */?1p(e”x) with 6 € R. (2.187)

Then the composition law (2.186) and the properties of the exponential
function imply

U(61)U(02) = U (01 + 62). (2.188)

The operators U (), 6 € R, form a (strongly continuous) unitary group. The
infinitesimal generator can be determined by computing

d

—U(0 =D 2.189

0| _ =Dy (2.189)
for differentiable wave functions ). We obtain the following result (see Ex-

ercise 2.23 below).

The dilation generator:

The generator of the dilation group U(6), 6 € R, is the operator

1
Dzﬁ(x-p—l—p-x). (2.190)
It is self-adjoint (on a suitable domain) and
U(H) = Uexp(e) = exp(—iD?). (2.191)

EXERCISE 2.23. Verify that the operator D is the generator of the dilation
group.
With the help of the dilation generator, we can derive a useful result,

the virial theorem. Whenever ¢ is a stationary state, then there exists a
number E with Hy = Evy. Evaluating the commutator of the Hamiltonian
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H = p?/2 + 1/|x| with the generator of dilations D = (x-p + p - X)/2, we

find
1

1 JR—

x| x|
Here. Hj is the operator of kinetic energy. But the expectation value of the
commutator in an eigenstate is zero,

(¥, [H, D]vp) = (Hy, D) — (D, H)
= E((¢, Dy) — (¢, Dy)) = 0. (2.193)
The calculation above is valid for ¢ in the intersection of the domains of H

and D. (This is always the case for eigenfunctions with negative energy as
one can infer from their explicit form given above). Thus

2, Ho ) = (0, ;‘w, (2.194)

which means that for bound states in a Coulomb field, the expectation value
of the potential energy is minus twice the expectation value of the kinetic
energy. Therefore, the total energy satisfies

i[H, D] = p* 2H, — (2.192)

E = (p, Ho) = (i, Ho ) — (4, ,j{,w
1

= ~(, Ho) =~ (0, 10 (2195)
x|

- A technical refinement of this argument generalizes it to arbitrary

bound states, not just states in the common domain of H and D.
In this generalized form, the consideration above can be used to prove that
bound state energies of the Coulomb Hamiltonian are always negative. That
is, there are no stationary states with positive energy in the Coulomb field.
This statement is based on our choice of the zero of energy (which is charac-
terized by V(x) — 0, as |x| — 00). We could always shift the energy scale by
adding or subtracting a constant potential, thereby producing bound states
with positive energy. Physically, it is therefore more appropriate to say

that the Coulomb system has no bound states above the so-called ionization
threshold.

The result (2.195) for the Coulomb potential can be generalized to arbi-
trary (differentiable) potentials:

The virial theorem:

Let H = Hp + V with Hy = p?/2 and V a differentiable function of
x € R3. Suppose that Hi = Ev. Then

2(¢, Hop) = (¢, x - VV ¥). (2.196)
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Equation (2.194) agrees with (2.196), because for V(x) = —1/|x| we have
x - VV(x) =1/|x| (for x # 0).

EXERCISE 2.24. Prove the virial theorem by mimicking the corresponding
proof for the Coulomb potential.

EXERCISE 2.25. Show that the total energy E of a classical particle mov-
ing with angular speed w on a circular orbit in a Coulomb field is

mr2w2 Yy

- . 2.1
2 T ( 97)

Eliminate w from this expression using the fact that the Coulomb force is
equal in magnitude to the centrifugal force, and prove the formula

9B =1, (2.198)

r

E =

2.8. Special Topic: Dynamics of Rydberg States

The time evolution in quantum mechanics is unitary and hence quite
the opposite of a chaotic motion. Nevertheless, the motion of a su-
perposition of several bound states can appear arbitrarily compli-
cated. CD 2.20 shows a superposition of just four eigenstates. A few
examples in two dimensions are presented in the movies CD 2.10.
The examples in CD 2.11 give a detailed analysis of Gaussian wave
packets projected onto the subspace of bound states.

The time evolution of a wave packet belonging to the subspace of bound
states,

co n—1

7" v 907 ZZ Z Can¢n€m(r 19 90) GXp(—IE t) (2199)

n=1 (=0 m=—/

is, in general, very complicated. But in this section, we are going to consider
very special states of the form

o
U(r,d,p,t) = Z coogr,00(r, 0, @) exp(—iEpyr t). (2.200)
£=0
These wave functions have the following property: The radial quantum num-
ber n, =n — £ — 1 is always zero. This implies that in each summand, the
radial part has no zeros and precisely one maximum near r = £(¢ 4+ 1). The
magnetic quantum number is maximal. In each summand, the angular mo-
mentum is as vertical as possible. That is, the particle is most likely to be
found near the polar angle ¥ = 7/2.
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We make one further restriction. We assume that the coefficients ¢, are
nonzero only in an f-interval o — A < ¢ < ¢y 4+ A around some large ¢y, and
o > A. Hence, ¥ is of the form

f0+A

\IJ(T‘, 197 ®, t) = Z Cy ¢€+1,€,€(T7 193 30) exp(—i Ef-‘rl t) (2201)
I=0y—A

Coulomb states of this type are often called circular Rydberg states.
These states can serve as a simple model for a Rydberg atom. An atom
with Z electrons can become a Rydberg atom when its outermost electron
is excited to a very high energy level. This electron is then in an orbit far
outside the core formed by the nucleus and the remaining electrons. To the
excited electron, the core appears as a “nucleus” with charge e. As long as
the electron does not get too close to the core, it behaves like the electron
of a hydrogen atom.

The states 1¢41,¢, have the following structure:

eié
e 9.9) = (<1 helr) ue9) = (2:20)
with
B 2€+1 B r '
he(r) = ) exp< E—i—l)r , (2.203)
Clal) (2.204)

ye(V) = W sin” ().

CD 2.21.1 shows the angular functions y, for 50 < ¢ < 300. All
these functions are similar to Gaussians centered at ¥ = 7/2 (see
also Figure 2.11). CD 2.21.2 shows the radial parts hy for 60 < ¢ <
140. These functions also resemble Gaussian functions (centered at
r =£(£+1)). CD 2.21.3 illustrates that for ¢ close to £y, the function
he becomes similar to hy,, as £y becomes large (see also Figure 2.12).

For ¢ large, the distance between functions y, and y¢4+1 becomes small.
Figure 2.11 illustrates this fact. Hence, within the range o — A < ¢ <
¢y + A, all functions y, are more or less similar to yy,. Also, as indicated
by numerical computations, the distance between the functions A, and hg4q
tends to become small with increasing ¢ (see Fig. 2.12). Thus, for large ¢y,
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Angular functions for large ¢

2
=20 =90
to 2
¢ =40 ¢ =110
1
1
0 0
s s 2m s s 2n
3 2 3 3 2 3
FIGURE 2.11. The angular functions y,(9) for ¢ in an inter-
val of length 20 around ¢y = 30 (left image) and ¢p = 100
(right image). For large ¢y, the functions become similar to
a Gaussian centered at ¥ = 7/2.
we make only a small error by rewriting (2.201) as follows:
lo+A ity
U(r, ¥, p,t) = co (=) hy(r) yo (V) © exp(—iFEpi1t)
( y Uy @ ) e_ezA ﬁ( ) 4 \/% +
—lo—
~ M) ye(®) S e (—1) S exp(—i B t)
(=to—A 2
= hey (1) Yoo (9) (0, 1) (2.205)

The radial function hy, has its single maximum at rmax = o(¢o+1), and the
angular function yy, has its maximum at ¥ = 7/2. For large ¢y, the functions
hg, and yg, both resemble Gaussian functions, which is also apparent from
Figures 2.11 and 2.12. More precisely,

(r—Lo(lo + 1))2>
200(lp +1)?

The approximation is with respect to the distance in L?([0, 00)). The form
of the exponent is obtained by comparing the second derivatives of hy, ()
and Ny, exp(—k(r — rmax)) at r = rpax. For the angular function we write

lo T\ 2
S (0-2)%). 2.207
2 ( 2) ( )

Hence, our wave packet can be described as follows: It is a product of
(approximately) Gaussian wave functions in 7 and ¢ and a time-dependent
function of ¢. We are now going to investigate the function g in (2.205).

hey (1) = Ny, exp (— (2.206)

Yo, (V) = My, exp(—
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Radial functions for large £

wo times 10 -6
&~ times 10-10

0

6 8 10 12 times 103 3.6 3.8 4.0 4.2 times 106

FIGURE 2.12. The radial functions hy(r) for £ in an interval
of length 20 around ¢y = 100 (left image) and ¢y = 2000
(right image). For large £y, the functions become similar to
a Gaussian centered at r = £o(fy + 1).

Writing ¢ = ¢y + k and using k instead of ¢ as the summation index, we
obtain

i & clke .
glp,t) = ™% kZ_:A dp, Wor exp(—i Egyk11t). (2.208)
Here, the coefficients dy determine the shape of the initial function
_ R S ik
go(p) = g(p,0) =e NGr: k;A di e™?. (2.209)

This is a simple Fourier sum describing a function that is 2w-periodic in ¢
(Fourier series are treated in Book One, Chapter 2). Choosing, for example,

dj, ~ exp<—2]i), (2.210)

we find that gg approximates a Gaussian function centered at ¢ = 0.

The movie CD 2.21.4. shows the time evolution of the angular part
9(p,t) with a Gaussian distribution of coefficients around ¢y = 90,
and with A = 10. You can see the motion of ¥(r, v, ¢, t) in the
zy-plane in CD 2.22.1. Neglecting the radial motion for ¢, = 90 is
a rather crude approximation. This approximation is much better

for higher angular momenta. This is shown for the wave packet with
lo =300 in CD 2.22.2.
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Any finite superposition of eigenstates is periodic in time, because the
ratio between any two Coulomb-energies is a rational number. A finite su-
perposition contains the time factors

1 .
exp(imt), nj=ne+ 4+l j=1,..k (2.211)
J

(n; are the principal quantum numbers of the states in the superposition).
The interval of periodicity is determined by the first time ¢ = T}, for which
all time factors are 1. That is, all exponents must be integer multiples of
27. Hence, the period Ty of the wave function is the smallest number ¢ such
that t/(2n?) = 2mm; with integers m;, and

To =47 LCM(TLl, no, ... ,nk), (2212)

where LCM denotes the least common multiple. If there are more than a
few states in the superposition, this period is too large to be of any practical
importance. For a superposition of the 21 states with n,, = 0 and 1990 <
£ < 2010, the time-period is

T ~ 2.4 x 10114, (2.213)

There are, however, much smaller times at which the system returns to the
initial state in an approximate sense. Let us rewrite the energy as

1 1 1
E = s = .
O T 9l + k+ 12 T 2060+ k)2 263 (1 + k/fo)?
For k € [-A,A] and ¢y > A, we find that k/¢y is small. Hence, we can
expand the energy as

(2.214)

L _k 3K (1) (2.215)

Ewtrri= 55— 35+57+0(5

0 200 Ly 2 4 ES
Assuming that ¢ is not too large (such that ¢ /ES < 1), we may approximate
the time factor in (2.208),

exp(—iBpit) ~ exp(—i;%t) exp(ié%t) exp(—i % l;;t) (2.216)

The first exponential is just an overall phase factor. We can ignore it in the
evolution of the state. The second factor is periodic with a period

Ty = 2wl (2.217)

This is precisely the relation between angular momentum and time period
for a circular orbit in the classical Coulomb problem. As long as the third
exponential factor in (2.216) may still be neglected, the time evolution of the
function g in (2.209) is essentially a multiplication of the coefficients d, with
the exponential factor exp(ikt/£3). This simply amounts to a translation
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with respect to ¢, that is, g(p,t) ~ g(¢ — t/£3) (up to a phase factor of
modulus 1). We see that (in a first approximation for small times) the
initial wave packet just rotates around the origin with angular speed 1/£3,
thereby retaining its shape.

CD 2.22.1 and 2.22.2 show that an initial function of the type de-
scribed in this section moves on a circular orbit, revolving around the
center of force several times. After a few cycles, the wave packet has
spread along its orbit because the influence of the last exponential in
(2.216) cannot be neglected any longer. The wave packet behaves in
a more quasiclassical way if the average angular momentum is higher
(see CD 2.23.1).

The last exponential factor in (2.216) usually cannot be neglected any
longer after a few periods Tj. Its presence will distort the shape of the initial
function, causing it to spread along its orbit. This exponential becomes equal
to 1 again after the time

T = ?egw _h To. (2.218)
3 3
For 4y large enough, the condition ¢/ Eg < 1 is satisfied even for ¢t ~ 77, and
we may still neglect higher-order terms in (2.216). As a consequence, the
time evolution becomes simple again, and the shape of the initial state is
restored at time 77. This is called a revival of the initial state.

CD 2.22.3 shows the wave packet with /o = 300 at times that are
integer multiples of Ty. You can observe the approximate revival
of the initial state at 77 =~ 1007y. In CD 2.23, you can see the
angular motion g(y,t) with average angular momentum ¢, =~ 2000
showing a much “cleaner” revival of the initial state (because the
condition ¢/£5 < 1 is well satisfied). In all these examples, the wave
packet stays close to a circular orbit in the xy-plane (with a sharp
Y-distribution around ¢ = 7 /2. Hence, these states behave as if they
were solutions of the two-dimensional Coulomb problem. Examples
of the two-dimensional motion are shown in CD 2.24.

For £y = 300, we find that
T ~ 1.7 x 101°, (2.219)

This might seem a long time, but in SI units this is still only 4 x 107 "s,
which is a realistic lifetime for a Rydberg state. Actually, Rydberg states
have a very low probability for spontaneous decay. Hence, they can have a
surprisingly long lifetime up to 10~*s. (This is extremely long compared to
the typical lifetimes of low-lying energy levels, which is about 107%s). We
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finally note that the radius of the circular orbit with fo = 300 would be
9 x 10° in atomic units, hence about 4.8 x 1076 m.

EXERCISE 2.26. Show that the arguments in this section also apply to
the two-dimensional Coulomb problem.



Chapter 3

Particles with Spin

Chapter summary: This chapter introduces the spin as an important intrinsic
property of electrons. We discuss, in particular, some results that are relevant for
atomic physics. More results will be presented from a slightly more abstract point
of view in Chapter 4.

We start by describing the connection between angular momentum and mag-
netic moment according to classical electrodynamics. Then we proceed to discuss
the Stern-Gerlach experiment, which can only be explained by assuming that the
state of an electron is characterized by the eigenvalues of a spin operator S. This
spin operator has the properties of an angular momentum, but half-integer eigen-
values.

In Section 3.5, we describe the mathematical consequences of this assumption.
We construct a Hilbert space for particles with spin 1/2 and define the operators
describing the components of the spin.

In Section 3.6, we define the Pauli operator, that is, the Hamiltonian for a
spin-1/2 particle in an external field. We discuss the solutions in a constant, homo-
geneous magnetic field, thereby generalizing results from Book One in Section 3.7.
An important difference from the results without spin is the occurence of bound
states with zero energy. This phenomenon also occurs for nonhomogeneous mag-
netic fields and for certain situations in three dimensions (Section 3.8).

The spin is most important for understanding finer details of the spectrum of
hydrogenic atoms. In Section 3.9, we introduce the spin-orbit coupling and describe
the spinor eigenfunctions of the hydrogen atom and the structure of the energy
spectrum.

3.1. Introduction

The description of an elementary particle by a wave function that is a func-
tion of the position (or momentum) alone is often insufficient. In a more
realistic model, one has to use wave functions with a more complicated
structure. A first experimental evidence that electrons have to be character-
ized by additional quantum numbers came from spectroscopic observations.
The doublet fine structure splitting in the spectra of one-electron atoms led
Goudsmit and Uhlenbeck in 1925 to the suggestion that electrons should
have an intrinsic angular momentum which was called the spin. The spin is
a very important property of electrons and other elementary particles, and

113
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it is crucial for the explanation of many phenomena. For example, together
with the Pauli principle, the spin accounts for the structure of the periodic
system of elements.

The spin is associated with the magnetic moment of the electrons. Hence,
it influences the motion of electrons in an inhomogeneous magnetic field. In
1922, Stern and Gerlach used this effect to measure the magnetic moment
(see Section 3.3).

The spin is an observable with the dimension of an angular momentum.
The total angular momentum, which is the vector sum of the spin and the
orbital angular momentum, is a conserved quantity in rotationally symmet-
ric situations. But despite the fact that the spin is an angular momentum, it
cannot be attributed to a rotational motion of the electron. A rotating par-
ticle must have some extended structure—a spinning point is meaningless.
But if we assume that the electron is a rigid rotator (the quantum mechan-
ical model for a rotating extended structure), then the electron’s angular
momentum would have properties that are very different from the observed
properties of the electron spin. Such a mechanistic model of the spin and the
magnetic moment of the electron would fail. According to our present-day
knowledge, there is no hint that electrons are something else than point-like'
particles with mass and charge.

The most striking difference between the spin angular momentum and
the orbital angular momentum is the following. Whereas for the orbital
angular momentum L the possible eigenvalues are given by non-negative
integer values of the angular-momentum quantum number ¢, one finds that
the quantum number describing the spin of an electron must be 1/2. This
is a nice example of Theorem 1.1, which already stated the possibility of
half-integer quantum numbers.

While this section concentrates on the description of the electron, we
would like to emphasize that most elementary particles have a nonvanish-
ing spin. For example, the most familiar particles like neutrons, protons,
quarks, positrons, muons, and neutrinos all have spin 1/2 like the electron,
whereas some mesons and the photon have spin 1. The spin is indeed an
omnipresent phenomenon in elementary particle physics. We also note that
particles with half-integral spin are called fermions, and particles with inte-
ger spin (including zero) are called bosons. This classification refers to the
different behavior of systems composed of several identical particles and will
be discussed further in Section 5.9.

IThe wave function is an extended structure, but it describes the position probability
density of a point-like particle.
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3.2. Classical Theory of the Magnetic Moment

3.2.1. Magnetic moment of an extended particle

Consider a rigid rotating body in classical mechanics. We denote (for the
moment) by Lj,; the angular momentum measured with respect to a non-
rotating frame of reference that is attached to the center of mass of the body.
Let us assume that the dimensions of the body are negligible in comparison
to the other dimensions in the experimental setup. In this case, the body is
called a particle, and Ljy is called the internal angular momentum or spin
of the particle. The internal angular momentum Lj, is to be distinguished
from the orbital angular momentum L due to the center-of-mass motion.
The orbital angular momentum of the body is L = x X p, where x is the
position of the center of mass, and p is the total momentum of the body.
The total angular momentum of the body is given by J = L + Liut.

If electric charges are distributed over a spinning body, then the rev-
olution around the center of mass causes circulating currents. According
to classical electrodynamics, a circular current is the origin of a magnetic
moment p. A magnetic moment may interact with external electromagnetic
fields (as described below) even if the body as a whole is neutral. Hence,
the internal angular momentum of a particle may have a notable influence
on its center-of-mass motion.

As an example, consider the classical model of the hydrogen atom, where
an electron with charge ¢ = —e and with mass m, moves on a circular orbit
with orbital angular momentum L, around a heavy? nucleus (a proton). As
a whole, the atom is a neutral particle, because the nucleus has the charge
+e. The nucleus is assumed to be at rest in the center-of-mass frame of
the atom. Hence, the internal angular momentum Lj,; of the atom comes
entirely from the motion of the electron, that is, Liy = Le.

According to classical electrodynamics (see, for example, Jackson’s book
[3]), a charge ¢ with mass m and angular momentum L has the magnetic
dipole moment

hL
p- L

= om =50 5 (3.1)

The factor appearing in front of L/h is called magneton.® For an electron,

2By “heavy” we mean that it is a good approximation to neglect the influence of the
electronic motion on the motion of the nucleus.

3This expression depends on the chosen system of units. In the SI used here, the unit
of a magneton is A m? (current x area). In the Gaussian system, a magneton is given by
gh/2mc and its unit is g/?em®/? 57t
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we set ¢ = —e and m = m, and obtain
L eh
= — —_— 'th = . 3.2
Me=—pp 5, with pup =g - (3-2)
Here, up is called the Bohr magneton. Its value (in SI units) is
ps = 9.274009 x 10724 A m?. (3.3)
In general, it will be necessary to write
gh L
=g-— — 34
H=95— (3.4)

with a dimensionless factor g, called the Landé g-factor. It is undetermined
and can be used to fit pu to its experimentally measured value. In classical
physics, the g-factor could be needed to describe the magnetic moment of
an extended spinning body in a phenomenological way, because the relation
between angular momentum and circular current depends on the details of
the distributions of charge and mass.

The Landé g-factor determines the gyromagnetic ratio -y, which is defined
as the ratio of the magnetic moment to the angular momentum,

_ lp

L
For the orbital motion of a classical electron we have g = 1, and the gyro-
magnetic ratio is e/(2m,).

gl (3.5)

3.2.2. The influence of an external magnetic field on a magnetic
moment

Perhaps the most common realization of a magnetic moment is the needle
of a compass. A magnetic field tries to turn the needle in the direction of
the field lines. In a more quantitative way, this action of the magnetic field*
B on a magnetic moment p is described by a torque

T=pxB. (3.6)

A particle with magnetic moment also possesses an internal angular mo-
mentum Liy, and hence the particle acts as a gyroscope. The reaction of a
gyroscope to a torque is described in the classical mechanics of rigid bod-
ies. It is found that a torque T changes the angular momentum Li,; of a
gyroscope according to

dLint _

= (3.7)

“What is called here “magnetic field” and denoted by B is often called magnetic
induction or magnetic flux density. In the SI, B is measured in units of Tesla, 1T =
1kgs 2 A™!. The expression “magnetic field” often refers to the quantity H. In vacuum,
however, the fields B and H are strictly proportional.
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Combining Egs. (3.6) and (3.7) with (3.4), we obtain the following equation
for the motion of the magnetic moment

— =g—puxB. (3.8)
m

This equation describes a precession about the direction of B. The magnetic
moment g remains at a fixed angle with respect to B, and the length of the
vector p remains constant, because the change du/dt is always orthogonal
to both p and B.

Whereas a torque changes the direction of p, it does not influence the
center-of-mass motion of the particle. But an inhomogeneous magnetic field
actually excerts a force on a particle with a magnetic moment. This effect
can be used to measure p, as you will learn in the next section. If the particle
as a whole is neutral, the force is just given by®

F(x) = V(1 B(x)). (3.9)
This can be interpreted as the negative gradient of a potential energy,
Vingn = —p - B(x). (3.10)

For convenience, we collect our results in the following box.

Magnetic moment in a magnetic field:

Consider a classical neutral particle with mass m and a magnetic moment
1 that is related to an internal angular momentum according to
q
=g—L. 3.11
H=95- (3.11)
Then the motion of the particle in a magnetic field B(x) is determined
by

SR =V(u) BO(),  x(=—p),  (312)
& ult) = 9 5L u(r) < B(x(1). (3.13)

EXERCISE 3.1. According to classical electrodynamics, the magnitude of
the magnetic moment p in a closed plane circuit is

W = current X area, (3.14)

5A derivation of this formula can be found in textbooks about electrodynamics, see,
e.g., [3], Chapter 5.
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and the direction of p is perpendicular to the plane of the current loop.
Assuming that the current is generated by a single charge q (with mass m)
moving on a circle, show that (3.14) is equivalent to p = (q/2m) L.

EXERCISE 3.2. Can you suggest how the equations of motion (3.12)
should be modified if the particle is not neutral?

EXERCISE 3.3. Using Eq. (3.13), show that |u| is a constant of motion.

EXERCISE 3.4. Consider a neutral particle with magnetic moment p.
At time t = 0, the particle is at the origin with velocity in the positive x-
direction. Assume that the magnetic field B has only a z-component near
the xz-plane, that is, B(x) = (0,0, B(x)) for x = (x,0,2). For the sake of a
simple model, assume that only the third component of B has a nonvanishing
gradient, and let VB(x) = (0,0, f) for x = (2,0, z) in the xz-plane. Find
the classical motion of the particle. In particular, show that the trajectory of
the particle stays in the xz-plane for all times and that the z-component of
1 remains constant.

The influence of an inhomogeneous magnetic field on a classical neu-
tral particle with a magnetic moment is shown in CD 3.1. The first
movie CD 3.1.1 shows the acceleration in the direction of the field
gradient in a simple model case. The situation of Exercise 3.4 is
described in CD 3.1.2. The following movie CD 3.1.3 shows a rather
chaotic motion in the field B(x) = (0, —y, z). For a larger z compo-
nent, the motion becomes simple again, as shown in CD 3.1.4.

3.3. The Stern-Gerlach Experiment

From the discussion in the previous section, it should be clear that an inves-
tigation of the magnetic moment could give some hints about the internal
structure of atoms. Already in the year 1921, Otto Stern and Walther Ger-
lach designed an apparatus for measuring the magnetic moment of atoms
and molecules. The experimental arrangement is schematically depicted in
Figure 3.1. A beam of neutral particles (atoms or molecules) is sent through
the strongly inhomogeneous magnetic field provided by a magnet with a
pointed pole tip. If the particles carry a magnetic moment, then we expect
an influence of the magnetic field on the motion of the particles.

Now, let us look at this experiment more closely. The design of the pole
pieces should guarantee that near the symmetry plane of the magnet (which
we take as the zz-plane), the magnetic field points in the vertical direction
(the z-direction) and increases strongly with increasing z (see Fig. 3.2(a)).
We assume B(x) = (0,0, B(z)) (on the zz-plane inside the apparatus), with
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Stern-Gerlach
Beam of particles apparatus

Screen

FIGURE 3.1. Schematic setup of a Stern-Gerlach experiment
for measuring the spin. Particles in a strongly inhomogeneous
magnetic field are deflected according to the component of the
magnetic moment in the direction of the gradient of B.

a large positive z-component B(z) that increases with z (that is, VB(z)
points in the same direction as B). The force on a neutral particle near the
symmetry plane is then approximately given by

F(x) = V(s B(x) = V(u: B(2)) = p=VB().  (3.15)

According to the Maxwell equations, a magnetic field with the proper-

ties required above does not exist. For a magnetic field with a vanishing
x-component, Maxwell’s equation V - B = 0 requires 0B3/0z = —0B3/0y.
You can see this in Figure 3.2(a). The horizontal y-component of the mag-
netic field is positive on the left side and negative on the right side of the
center. This gradient gives a contribution to the force on the particle when-
ever ft, # 0. Depending on the direction of p, this force is of the same
size than the force in the z-direction. But note that the z-component of B
has a large value whereas the y-component is close to 0. Hence, a magnetic
moment will perform a rapid precession around the z-axis, which causes
to oscillate around 0. The time average of the force in the y-direction will
therefore be very small. The precession of p around the y-axis can be ne-
glected, because the y-component of B vanishes near the symmetry plane of
the apparatus.

As an example, we consider a beam of atoms entering the apparatus
along the z-direction. We assume that all atoms in the beam have the
same velocity and the same size || of the magnetic moment (notice that
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N

(a) (b) ()

FIGURE 3.2. (a) Qualitative behavior of the magnetic field in
a Stern-Gerlach apparatus. The arrow indicates the direction
of the magnetic field and of its gradient near the symmetry
axis. Particles with a magnetic moment entering the device
here will only feel a force in the vertical direction. (b) Clas-
sically expected result for the distribution of particles on a
screen behind the Stern-Gerlach apparatus. (c) Actually ob-
served result.

|pe| remains constant during the experiment; see Exercise 3.3). In case of
hydrogen atoms,® the magnetic moment should be determined completely
by the angular momentum of the electron as in Eq. (3.1). We know already
that the ground state of the hydrogen is characterized by a vanishing orbital
angular momentum, and on the basis of (3.1) we would expect no magnetic
moment at all. (In fact, the proton forming the nucleus of the hydrogen atom
does have a magnetic moment—but it is very small and may be neglected
here.)

For atoms with a nonzero magnetic moment p, the deflecting force (3.15)
is proportional to the z-component p, and points in the vertical direction

6Actually, the experiment was performed first with silver atoms. The electronic con-
figuration of a silver atom in the ground state consists of a closed shell structure and a
single valence electron in a state with orbital angular momentum 0. Later, the same result
was obtained by T.E. Phillips and J.B. Taylor with a beam of hydrogen atoms. We note
that a Stern-Gerlach experiment has never been attempted with charged particles, because
the Lorentz force on a moving charge is, in general, much stronger than the weak force
(3.15) due to the field gradient. In a method developed by H.G. Dehmelt and others in
1976, one confines charged particles in an electromagnetic trap where they perform oscil-
lations around an equilibrium position. By measuring the frequency of this oscillation, it
is possible to determine the magnetic moment with a very high precision.
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(the direction of VB(z)). When the atoms enter the magnetic field, the
torque 7 = p x B causes a precession of the vector g around the direction
of B (the z-direction). This precession does not change the component i,
of the magnetic moment (see Exercise 3.4). The amount of the vertical
deflection from the straight path is thus proportional to the constant value
of u.

The atoms that enter the Stern-Gerlach apparatus usually emerge from
a heated gas. If we think in terms of classical physics, we would expect
that the magnetic moments in the incident beam have randomly distributed
directions. All the possible values —|u| < p, < |p| would occur, and the
force on the particles would vary over all values between —|u| V(|B(x)|) and
+|p| V(|B(x)|). Hence, classical physics predicts a continuous broadening
of the beam in the vertical direction. On the screen behind the apparatus,
the particles would leave a trace in the form of a continuous vertical line as
in Figure 3.2(b). Instead, one finds a splitting in discrete partial beams, as
indicated in Figure 3.2(c).

CD 3.4 schematically shows the Stern-Gerlach experiment for clas-
sical neutral particles. All particles have magnetic moments of the
same size, but with randomly chosen directions. In the inhomoge-
nous magnetic field of a Stern-Gerlach apparatus, the particles get
deflected up or down according to the (random) value of the compo-
nent p,. In CD 3.4.3 we explain that the Stern-Gerlach apparatus
could be replaced by an arrangement of two or four parallel wires.

In quantum mechanics, we can try to explain the outcome of the Stern-
Gerlach experiment by the quantization of the angular momentum. We
assume that the magnetic moment p of an atom is related to the angular
momentum of the electron as in Eq. (3.1). Because of (3.15), the splitting of
the beam into n partial beams then just means that the component of the
angular momentum in the vertical direction has precisely n distinct values.

Indeed, this is precisely what we expect from our analysis of the angular
momentum in Chapter 1. The vertical component of the orbital angular
momentum can only have 2+ 1 =1,3,5, ... different values, corresponding
to the angular-momentum quantum numbers £ = 0,1,2,.... In any case,
we expect a splitting of the beam into an odd number of components. In
particular, for hydrogen atoms in their ground state, we would expect no
splitting at all, because the orbital angular momentum is zero in that case.
But, surprisingly, the Stern-Gerlach experiment with hydrogen atoms in
their ground state shows a splitting of the beam in two components, as
shown in Figure 3.2(c).

Therefore, hydrogen atoms must have a magnetic moment, even if the
electron is in the ground state with orbital angular momentum zero. What
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is the origin of that magnetic moment if it is not the orbital angular mo-
mentum? As stated above, the nucleus does have a magnetic moment, but
it is way too small to acount for the observed splitting.

One concludes that the origin of the atomic magnetic moment must
lie in the electron. Ome assumes that the electron itself has a magnetic
moment, whose vertical component can only have two distinct values. With
a Stern-Gerlach experiment, one can determine these values quantitatively.
One finds that the z-component of the electronic magnetic moment has the
values

eh

==+
He 2m,

= +ug. (3.16)

The splitting into an even number of partial beams in a Stern-Gerlach ex-
periment cannot be explained with the quantization of an orbital angular
momentum (which would give a splitting into an odd number of partial
beams). Hence, the magnetic moment of the electron is not related to its
orbital motion or to the angular momentum of an extended charge distribu-
tion inside the electron. The electron has no “inner structure” in that sense.
The electron’s magnetic moment has to be considered simply as an intrinsic
property (like the charge or mass).

CD 3.5 shows quantum wave packets in a Stern-Gerlach apparatus.
The visualization shows the position probability density only. When
passing the inhomogeneous magnetic field, any wave packet would
split into precisely two spatially separated parts. Hence, a general
wave packet may be interpreted as a superposition of two types of
wave packets, both having the same initial position and momentum
distribution, but showing an opposite behavior in an inhomogeneous
magnetic field: When sent through a Stern-Gerlach apparatus, type
1 gets pushed upwards, and type 2 moves downwards. CD 3.6 shows
phase-colored plots of the two types of wave packets.

A variant of the Stern-Gerlach experiment can be used to prepare
wave packets of particular type. This is shown in CD 3.7. By putting
an obstacle in the lower part of a Stern-Gerlach apparatus, we can
make sure that any wave packet leaving the apparatus is of type 1.
Such a wave packet would again be deflected upwards in a second
Stern-Gerlach apparatus.

The result of the Stern-Gerlach experiment does not depend on the ori-
entation of the inhomogenous magnetic field. One can, for example, rotate
the Stern-Gerlach apparatus about the z-axis (direction of the beam) by
an arbitrary angle. Then, one observes the same splitting of the beam into
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two components. One is led to the (paradoxical) conclusion that the com-
ponent of the magnetic moment along any direction in space can have just
two values +up.

3.4. The Spin Operators

3.4.1. Magnetic moment and spin

Every component of the electron’s magnetic moment is an observable (it can
be measured by a Stern-Gerlach apparatus). In the quantum mechanical
formalism, these observables should be represented by self-adjoint operators
in the Hilbert space of the particle. Here, we are going to postulate the
existence of operators p = (1, p2, 13) with suitable properties. In analogy
to (3.4) we write

S
B=—gus o, (3.17)

with an unknown operator S = (51, S2,53). If ¢ is a number, then S must
correspond to a physical quantity with the dimension of angular momentum.
This quantity will be called the spin angular momentum or simply the spin of
the electron. We assume that the components of S satisfy the angular-mom-
entum commutation relations and call S the spin operator of the particle.
We will make no attempt to express S in terms of position and momentum
operators, because we know that the spin cannot be interpreted as an orbital
angular momentum.

The splitting of a beam of hydrogen atoms into two components can
now be explained by assuming that the electron (which has orbital angular
momentum zero) has spin 1/2. More precisely, we mean by this that the
square S? of the spin operator has the eigenvalue h? s(s + 1) with s = 1/2.
Theorem 1.1 tells us that s = 1/2 is indeed among the possible angular-
momentum quantum numbers. Moreover, for s = 1/2 there are precisely
2s + 1 = 2 eigenvalues of the vertical component S3, namely +/4/2 and
—h/2. Likewise, because of (3.17), the vertical component ps of g can only
have two different values.

We are going to discuss the formal consequences of assuming the exis-
tence of spin operators in Section 3.5 below. But first, we want to compare
our results with the outcome of a Stern-Gerlach experiment.

3.4.2. The g-factor

Taking into account that the possible values of S5 are +h/2, we obtain from
Eq. (3.17) for the z-component p, = pg of p the values

S
uszqﬁgusf =¢guB- (3.18)



124 3. PARTICLES WITH SPIN

Comparing this result with the actually measured values (3.16), we find that
electrons obviously have the g-factor ¢ = 2. We note that the value g = 2
is predicted by the relativistic Dirac equation, which is considered one of its
big successes.

Because of the negative charge of the electron, the magnetic moment is
opposite to its spin. The negative sign in (3.18) corresponds to a positive
eigenvalue of S3. The eigenstates of S5 belonging to the positive eigenvalue
+h/2 are called spin-up eigenstates. When passing a Stern-Gerlach appa-
ratus with a field gradient in the positive z-direction, a spin-up electron
is deflected downwards. The eigenstates of S3 belonging to the eigenvalue
—h/2 (the spin-down eigenstates) describe the opposite behavior. The two
eigenvalues of S3 just correspond to the two types of behavior of electrons
in a Stern-Gerlach experiment.

The magnetic moment of an electron:

Electrons are spin 1/2 particles with g-factor ¢ = 2. Any component of
its magnetic moment can have only two values. In particular,

U3 = FUB. (3.19)

All components of an angular-momentum operator S have the same
eigenvalues. However, different components of S do not have simultane-
ous eigenvectors. We can choose only one component (usually Ss3, but this
choice is arbitrary) and find simultaneous eigenvectors of that component
and of S? (see Section 1.5). The arbitrariness of selecting the third compo-
nent S3 corresponds to the experimental observation that the choice of the
vertical axis as the direction of the field in the Stern-Gerlach experiment is
completely irrelevant. The experiment gives the same result with respect to
any direction in space.

The g-factor can be measured very precisely, and it turns out that the
actual value is slightly different from two. The presently known value’. is

g = 2.0023193043738 £+ 0.0000000000082. (3.20)

The small deviation from the value 2 is called the anomalous magnetic mo-
ment. The origin of the anomalous magnetic moment can be explained with
quantum electrodynamics.

It turns out that the magnetic moment due to the orbital angular mo-
mentum has the g-factor 1, as predicted by classical electrodynamics. (In

7Groom, D.E., et al. (Particle Data Group), Eur. Phys. J. C15, 1 (2000) and 2001
partial update for edition 2002 (URL: http://pdg/Ibl.gov)
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principle, this can be measured by considering the splitting of a beam of ex-
cited hydrogen atoms sent through a Stern-Gerlach apparatus.) An electron
with orbital angular momentum L thus has the magnetic moment

L +2S J+S
B = —HB = B (3.21)

where J = L + S is called the total angular momentum of the electron. If it
is necessary to distinguish between the various types of magnetic moments,
one denotes by pg, the magnetic moment related to the orbital angular mo-
mentum and by pg the magnetic moment due to the spin.
NL::_MB%y l%::_QMB%- (3.22)
Other particles also have spin 1/2, and the results of this chapter can be
easily adapted for these other particles. For example, the proton is a spin
1/2 particle. It has the magnetic moment

S eh

— 2 - 2
H=gppN T, AN 2 (3.23)

where py is called nuclear magneton. It is smaller by a factor m./m,, than
the Bohr magneton, ux =~ 5.05 x 10727 Am? . The g-factor of the proton is
rather large, g, ~ 5.59. The neutron is also a spin 1/2 particle. Note that
the neutron has no charge at all. But it does have a magnetic moment due
to its spin, which is given in terms of the nuclear magneton by

S eh
— —gn N 2, =, with g, ~ 3.83. 24
H=—gobiN g, IN=g -, withg 3.83 (3.24)

3.4.3. Electron in a constant magnetic field

A charged particle in a magnetic field is subject to the Lorentz force. The
Lorentz force is always orthogonal to the magnetic field B and to the velocity
v of the particle. Hence, the Lorentz force changes only the direction but
not the magnitude of the velocity vector. For a classical electron with charge
—e and mass m,, the Lorentz force causes the acceleration

%v(t) - —mie v(t) x B. (3.25)
Here, it is assumed that the magnetic field is homogeneous (B is independent
of x) because in an inhomogeneous magnetic field, the magnetic moment p
would cause an additional acceleration, see Eq. (3.12).
Let us compare this with the classical equation of motion for the magnetic
moment (3.13) with g-factor 2:

%M(t) = _Hlie p(t) x B. (3.26)
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This equation is mathematically identical with the Lorentz-force equation.
As a consequence, the velocity v(¢) and the magnetic moment p(¢) in a
constant field are strictly “in phase.” From (3.25) and (3.26) we obtain the
following result.

Classical motion of electrons with magnetic moment:

For a classical particle with charge e and and g-factor 2 in a homogeneous
magnetic field, the velocity v(¢) and the magnetic moment p(¢) both
remain constant in magnitude and precess about the direction of B with
a constant angular speed

e UB
=—|B|=2—/7/|B|=2uwr. 3.27
w= —[B|=272B| =2 (3.27)

The quantity wr, is called Larmor frequency.

The anomalous magnetic moment of real electrons, however, causes a
slight asynchronism of the orbital motion and the motion of the magnetic
moment.

For suitable initial conditions, the classical motion of a charged par-
ticle in a homogeneous field takes place on a circle. In CD 3.2, we
show the behavior of particles with various g-factors. If the initial
velocity has a component in the direction of the field, the orbit is a
helix, as shown in CD 3.3.

3.4.4. Properties of the spin operator

In order to describe the two different types of behavior of electrons in an in-
homogenous magnetic field, we have to postulate that the magnetic moment
of the particles is related to a spin operator S with the quantum number
s = 1/2. The components of S are to be defined as self-adjoint operators
in an appropriate Hilbert space. They should satisfy commutation relations
characteristic of angular-momentum operators, so that the results of Sec-
tion 1.5 can be applied. In the absence of magnetic fields, this operator
should not disturb the “normal behavior” of electrons, in order to be com-
patible with our previously obtained results. In particular, we assume that
the spin operator commutes with all components of position and momentum.
Let us collect our assumptions on the spin operator in the following box.
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The spin postulate:

The spin is represented by three self-adjoint operators S = (S, 52, S3)
satisfying the angular-momentum commutation relations
3
[Si, Sj] = Z ih €k Sk, (3.28)
k=1

and commuting with position and momentum operators. The possible
states of electrons have to be described by eigenstates of the operator 52
belonging to the quantum number s = 1/2. In the Hilbert space of an
electron, the operator S? must be a multiple of the identity operator,

SZ:Sf+S§+S§:h23(s+1)1:h2%1. (3.29)

It follows that every component Sy has precisely two eigenvalues +7/2.

Because of (3.29), all components of the spin are bounded operators
that are defined everywhere in the Hilbert space.

We can choose one component, which is usually S3, and decompose the
Hilbert space into the corresponding eigenspaces,

H=9H DHy (orthogonal direct sum). (3.30)

Here, $; is the eigenspace of S3 belonging to the eigenvalue +#/2. We say
that the states in this subspace have spin-up. Similarly, the eigenspace $9
belonging to the eigenvalue —#/2 contains the states with spin-down.

In the next section we are going to construct a suitable Hilbert space
that allows us to define spin operators with the desired properties.

3.5. Spinor-Wave Functions

3.5.1. A Hilbert space for a spin 1/2 particle

In the sole presence of an electrostatic field or a homogeneous magnetic field,
the state of the spin has no influence on the spatial motion of an electron.®
In these situations, the electron’s space-time behavior is still described by a
solution of the ordinary Schrodinger equation, no matter whether the elec-
tron has spin-up or spin-down. Hence, we can describe the spin state simply
by attaching an index to the wave function. We write 1 (x,t) for a wave
function of a particle with spin-up and 9 (x,t) if we want to indicate that

8This is true, at least, within a reasonable approximation. See the discussion in
Section 3.9.3 later in this chapter.
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the particle has spin-down. The two types of electron wave functions should
behave in the same way unless there is an inhomogeneous magnetic field.

Thus, we construct a Hilbert space of a particle with spin 1/2 in such
a way that L?(R3), the Hilbert space of “ordinary” wave functions, can be
identified with both eigenspaces of S3. Because of (3.30), we have to form
the direct sum of two copies of L?(IR?).

The state space for particles with spin 1/2:

The Hilbert space for a particle with spin 1/2 is isomorphic to the direct
sum of two copies of L?(R3),

9= LA(R3)? = L2(R?) @ L*(R?). (3.31)

The elements of L?(R3?) @& L?(R?) can be obtained by combining two
square-integrable wave functions 11 and 9 into a column vector with two
components. Hence, the wave function of a particle with spin is assumed to
be of the form

V1 (X)) ; 2 (M3 :
X) = ,  with ¢; € L*(R?), for i = 1, 2. 3.32
w60 = (1109 s € 12 (3.32
Wave functions of this type are called spinor-wave functions or spinors.

When we consider dynamical processes, 1 will also depend on time. We
write

Y1(x,t)
,t) = ) 3.33
vt = (10 (3.33)
and this means that for each time ¢, the two components of i are square-

integrable functions of x.

A spinor-wave function (3.32) can also be interpreted as a function
of x with values in C2, the two-dimensional complex linear space whose
vectors are pairs of complex numbers,

YR — C2 (3.34)

By this we emphasize that at each point of space, the electron has two
internal degrees of freedom. The Hilbert space of C?-valued functions is
denoted by L?(R3,C?), and it is isomorphic to L?(R3)2. Another way of
writing the Hilbert space of spinor-wave functions is the tensor product

L*(R3) @ C2. (3.35)

We are going to define the tensor product of Hilbert spaces in Chapter 5
(see, in particular, Section 5.2.5).
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We have pointed out already that the discrimination of S3 was an ar-
bitrary decision. We could have started with any other component of the
spin and ended up with a different (but equivalent) description. This will be
discussed further in Section 3.5.3 below. The description obtained here will
be called the standard representation. It is characterized by the choice of a
particular Cartesian coordinate system in space (that is, a fixed z-axis) and
by the choice of the operator S5 and its eigenspaces in the construction of a
Hilbert space.

3.5.2. Spin operators in the standard representation

In the standard representation, spinor-wave functions of the type

b0 = (M0) b= (). B39

correspond to particles with spin-up or spin-down, respectively. These are
eigenvectors of the operator S3 corresponding to the two possible eigenvalues
+h/2. Hence, in the Hilbert space L*(R3)?, the operator S3 must have the

form
hf1 0
S3 = 5 (0 _1) . (3.37)

This is a self-adjoint operator, defined everywhere in L?(R?)2. Its action on
a spinor-wave function consists in changing the sign of the lower component
and multiplying everything with %/2. The observable corresponding to this
operator is interpreted as the component of the spin into the z-direction of
a fixed Cartesian coordinate system.

It is now rather straightforward to guess the operators that describe the
other components S; and Sy of the spin. In Exercise 1.22, we introduced the
three Pauli matrices

o= (? é) , o9 = (? Bi> , o3 = (é _01> . (3.38)

These matrices are often formally combined into a vector o = (01,02, 03).
It is easy to verify (Exercise 1.22) that the three components of

h
S=—-0o (3.39)

2
satisfy the angular-momentum commutation relations (3.28). Hence, the
spin observable can be represented by the three matrices S; = 0;/2, j =

1,2,3. You can also verify that

1
52:S%+5’22+S§:h2212:h23(s—|—1)12 with 5= (3.40)
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Hence, all wave functions in the spinor Hilbert space §) are indeed eigenvec-
tors of S? with spin quantum number 1/2.

The spin operators (standard representation):

In the standard representation, the spin S = (57,52, 53) is defined in
terms of the Pauli o-matrices by S = ga. All spinors in the Hilbert
space L?(R3)? are eigenvectors of

SQZS-S:EQle. (3.41)

The kinetic energy operator, the momentum and position operators are
assumed to act component-wise on the spinors in L?(R?)2. For example,

52 h2 A¢1 (X)
——A =—— . 42
2m ¥(x) 2m <A1/12 (X)> (342)
It follows immediately that all these operators commute with all components
of the spin operator.

EXERCISE 3.5. Describe the spinor-wave functions in $) that are eigen-
vectors of the spin component S1i.

EXERCISE 3.6. Verify that in the Hilbert space L?(R®)?, the operators
of kinetic energy, position, momentum, and orbital angular momentum all
commute with Sy, Ss, and S3.

3.5.3. Changing representations

The notion of “spin-up” and “spin-down” refers to the arbitrarily chosen
direction of the z-axis in R3. For example, one can choose the direction
defined by the inhomogeneous magnetic field in the Stern-Gerlach apparatus
as the z-direction in space. Equivalently, we can assume a magnetic field
in the y-direction (just rotate the Stern-Gerlach apparatus in Figure 3.1
by 90 degrees about the z-axis) and start our construction of the spinor-
Hilbert space with the eigenspaces of S3. The operator Ss also has the
two eigenvalues +//2, and the construction described in Section 3.5.1 again
leads to the Hilbert space L?(R3)2. But now the interpretation of the spinors
(3.36) is different, because “spin-up” and “spin-down” now refer to the y-
direction (looking in the direction of the beam in Figure 3.1, we could call
this “spin-left” and “spin-right”). Moreover, in this Hilbert space, it is the
operator Sy that is represented by the diagonal matrix (3.37).

How is this representation related to the standard representation where
Ss is diagonal? It is clear that physical predictions should not depend on
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which axis in space is chosen to define spin-up and spin-down or—put in
a mathematical language—which component Sy of the spin is chosen to be
diagonal. Hence, this relation must be a symmetry transformation. In the
Hilbert space of the system, it must be possible to implement this symmetry
transformation by a unitary or antiunitary operator.

In the standard representation, the eigenvectors of So are given by

) e e

The unitary matrix U that maps the eigenvectors of S3 onto the eigenvectors

of Sy is given by
1 /1 1

This matrix defines a unitary operator in L?(R3)2. We can apply it to an
arbitrary spinor-wave function,

Pi(x)) _
U <w; (X)> = ¢1 (X) 1/11 + ¢2(X) 1/}7“ (3‘45)

The result is spinor whose components in the C2-basis {1, 1, } are just ¢y
and 9. With respect to this basis, Sy is diagonal. Hence, the operator
U just maps the standard representation to the representation where So is
diagonal.

The operator U actually implements a rotation through an angle —7/2
about the x-axis. Arbitrary rotations and unitary transformations in
the Hilbert space of spinors will be discussed in Chapter 4 (see Section 4.4.2).

3.5.4. Interpretation of spinor-wave functions

The scalar product in § = L?(R3)? is

0.6) = [ (523 61060 + Tl (o) ' (3.46)
and the associated norm || - || is given by
91 = [ (16O + paGol) . (3.47)

Let us introduce the following abbreviation for the scalar product of vectors
tp and ¢ in C?, - -
(¥, )y = V1 41 + P2 P2, (3.48)

and denote the norm in C? by

[6]5 = [ + [l = (0, 8),. (3.49)
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Then the scalar product (3.46) and the norm (3.47) can be simply written
as

W) = [ @eot), e ol = [ Jeofia (350)

For B C R? we interpret the expression

= /B (x)|5 d% (3.51)

as the probability of finding the particle in the region B. Correspondingly,
we define the partial probabilities

B) = /B |4 (x)|? d*. (3.52)

The interpretation is as follows: p; is the probability of finding the particle
in the region B with spin-up, and ps is the probability of finding the particle
in B with spin-down. We have p(B) = p1(B) + p2(B).

3.5.5. Visualization of spinor-wave functions

Visualization by vectors. A spinor-wave function associates two complex
numbers with each point x € R3. Hence, it consists of four independent
real-valued functions, the real and imaginary parts of the components
and 1. As described already in Book One, Chapter 1, we can introduce the
following vector field:

(V(x), 019(x)),
o(x) = [ (V(x),020(x)), | , where (x) = (i;g;) € C% (3.53)
< ), o39(x >2

Here, we used the C? scalar product introduced in Eq. (3.48). The length of
the vector v is given by the position probability density
Vor(x)2 + 0a(x)2 + 03(x)2 = [9(x)]5. (3.54)

The vector field v(x) can be visualized by arrows attached to a grid of
x-values. Our visualizations, however, often show the vector field v(x) =
v(x)/|¥(x)]2 in order to reduce the contrast between the smallest and the
largest values. Note that

/ 0s(x) d% = / (), 01 (), d% = (b, 010) = (oi)y  (3.55)
R3 R3

is just the expectation value of the i®® component of o. The vector field v
describes the density of the expectation value of o,

[ oG = (o) = 7 (Sh (3.56)
R3
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FiGURE 3.3. A spinor-wave function of the hydrogen atom.
The gray isosurface indicate three levels of the modulus of the
wave function. The lines are the flux lines of the vector field
generated by the spin. The figure is symmetric with respect
to rotations about the z-axis. The quantum numbers for this
state are n = 3, k = 3, and m; = 3/2 (see Section 3.9.4).

A <

\

The direction of v(x) at a point x gives the local spin-up direction of the
spinor-wave function. An example is given in Figure 3.3.

The mapping between spinors ¥ (x) and vectors v(x) will be discussed
further in Section 4.4.1. Here, we just note that this correspondence is not
one-to-one. Multiplication of the spinor ¢ (x) with a phase factor leaves the
functions v;(x) unchanged.



134 3. PARTICLES WITH SPIN

By plotting arrows on a regular grid of space points, CD 3.8.1 visual-
izes the spin-vector field ¥(x) associated with a spinor-wave function
in two dimensions. A spinor-wave packet splits into parts with spin-
up and spin-down due to the influence of an inhomogeneous magnetic
field. In CD 3.8.2 and CD 3.9.1, we use small “magnetic needles”
whose two poles are colored according to the complex values of the
two components of the spinor. Whereas this method is useful for a
single spinor in C? (see CD 4.8), it is not capable of showing finer
details of a spinor field. In CD 3.8.3 and CD 3.9.2, we use enlarged
pixels, each containing the two colors derived from the two spinor
components via the standard color map. This method shows the in-
formation about the phases of the two components in great detail (in
particular, in regions where the parts with spin-up and spin-down are
well separated), but is not useful to depict the local spin-direction.

Vizualization by colors. In order to display finer spatial details of a spinor
field, arrays of vectors are not very useful. In these cases we use a color
map. We can use the coloring of the unit sphere in the HLS color system
(as described in Book One) to describe a direction in R3. According to
this method, the spin-up vector v = (0,0, 1) is represented by white, and
spin-down is black.

In addition, the absolute value can be symbolized by the saturation of
the color. If the wave function is very small or zero, this will be represented
by a saturation close to zero, that is, by the color gray. As the (three-dim-
ensional) color information is derived from the vector v(x), this method of
visualization again discards the phase information in the spinor ¢ (x).

CD 3.10 describes the color map for vectors in three dimensions.
We use this color map to describe the local expectation value of the
spinor field, that is, the vector field defined in (3.53). Examples for
the use of this color map can be found in CD 3.11 and CD 3.12.

3.6. The Pauli Equation

3.6.1. The Pauli operator

In the following sections, we are going to describe the quantum dynamics of
an electron in a magnetic field. We start with a pure magnetic field, that is,
we assume that there are no other external forces. The Hamiltonian of an
electron in a pure magnetic field is obtained by adding the potential energy
(3.10) of the magnetic moment interaction to the usual expression for the
kinetic energy in the magnetic field. This gives (writing m, for the mass and
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—e for the charge)

Hpoui = (p + eA(x))2 — - B(x), (3.57)

2m,

with p = —iAV, acting component-wise on spinor-wave functions. The

operator Hp,,; will be called the Pauli operator for an electron in a pure

magnetic field. Here, A is the vector potential, and B = V x A is the
magnetic field.

It is useful to write the expression (3.57) in the standard representation,

where S3 is diagonal. We assume, for simplicity, that the g-factor is 2. Then

eh
2m,
For the negatively charged electrons, the magnetic moment vector p is an-

tiparallel to the spin. The matrix for the potential energy in the magnetic
field becomes

w=- o=—upo. (3.58)

(L B BGO B
5B = (50 St ) 0

The Pauli operator in the standard representation acts on two-component
wave functions and is, in fact, a matrix-differential operator

o o (~ihV + e A)? — ip By —up(B) — iBy)
—up(By +iBy) oo (<ihV +eA)? + pp Bs )
(3.60)
If necessary, we may add to this operator an electrostatic potential energy
V(x)12. This is a diagonal matrix multiplication operator. That is, the
function V' (x) has to be added in the main diagonal of the matrix Hp,;.
The evolution equation with the Pauli operator

lh%lb(t) = HPa111i¢(t) (361)
is called the Pauli equation. It describes the time evolution of a particle with
spin 1/2 in an external magnetic field.

The matrix-form of the Pauli operator in the standard representation
shows that in the absence of a magnetic field, the Pauli equation decouples
into two completely unrelated Schrodinger equation equations. Only the
presence of a magnetic field with nonzero By or Bs introduces a coupling
between the upper and the lower component of the spinor-wave function.”

Having introduced the Pauli operator with all physical constants in the
international system of units, we now switch to atomic units, where m, =

9This is only true in an approximate sense, because relativistic effects are neglected
here. See the discussion in Section 3.9.3.
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e=h=1, and ug = 1/2. A simple scaling transformation will bring you
back, as described in Section 2.7.

3.6.2. Magnetic fields with constant direction

A special case is given by the magnetic fields B(x) with constant direction.
We choose this direction as the wsz-direction and conclude from V-B = 0
that B does not depend on x3 at all (see Book One, Section 8.3). Hence, a
magnetic field with constant direction is of the form B(x) = (0,0, B(x1, z2)).
We remind the reader that the third component B of the magnetic field is
just given by the third component of V x A,

0 0
B(zy,x9) = . As(z1,22) — 92s Ai(z1, z2). (3.62)
Moreover, we can assume that Ag(x1,x2) = 0.
In atomic units, the Pauli operator in the standard representation is the
diagonal matrix
3
1 .0 2 1
Hpaui = 5 Z(_laxi + Ai(@1, 902)) 12+ 5 B(z1,22) 3. (3.63)

1=

(12 is the two-dimensional unit matrix). We note that the sign in front of
the vector potential and the magnetic field reflects the negative charge of an
electron (—1 in atomic units).

The Pauli equation can now be separated into a part that describes the
free motion in the z3-direction and a part that describes the planar motion
in a magnetic field. The Pauli equation for the motion in the xjxo-plane
consists of two independent equations, because Hp,,; is a diagonal matrix.
With x = (21, 22), V = (01,02), and A = (A1, Ay), we write

L = LA+ AGO) e+ B v,
(3.64)

%% - %(_iv + A(x))* b — *B( ) 2.

Hence, a particle that starts with spin-up (that is, ¥ = 0) will remain
spin-up all the time. The third component of the spin is a constant of
motion. Indeed, we see immediately from (3.63) that Hp,,; commutes with
S3 = 03/2.

EXERCISE 3.7. A neutron is a neutral particle with an anomalous mag-
netic moment p. Set up the Pauli equation for a neutron in a magnetic field
in two dimensions. As an example, consider the magnetic field B(x,y) = y.
Use the Avron-Herbst formula (Book One) to give a solution of the corre-
sponding initial-value problem.
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3.6.3. Supersymmetric structure

It is an important observation that the Pauli operator with a purely magnetic
field is the square of another operator. Consider the operator
3

. .0
D=0c(-iV+Ax) = ; o; (—lafi + Az(x)>. (3.65)
A little calculation using the formula
(0-A)(o-B)=A -B+io- (A xB) (3.66)
gives (with p = —o /2 in atomic units)
1, 1 2
30 =3 (7 o+ aw))
1 1
=5+ A(x) + 5o (—iV x A(x)) (3.67)
1
=5 (0 A()" — 4 B = s

As the square of another operator, the Pauli operator is always nonnegative.
There are no states with a negative total energy in a pure magnetic field.

The two-dimensional Pauli equation (3.64) can also be factored. Define
the operator

0 0
D=—-1—+A — +1A . 3.68
i+ A1) + 5+ Ax(x) (3.68)
This operator is not self-adjoint. Its adjoint is given by
0 0
Dt = i + Ay(x) — — —i4s(x). 3.69
5=+ A1) — 5~ Ax(x) (3.69)

Nevertheless, the operator D is useful because we have

D'D = (-iV + A(x))? + B(x),

) (3.70)
DD' = (-iV + A(x))” — B(x),
with B(x) as in (3.62), and hence
1 /(DID 0
Hpaui = 5 ( 0 DDT> : (3.71)

We remind the reader that the nonzero eigenvalues of the self-adjoint op-
erators DI D and DD are closely related. Whenever DD has an eigenvector
1 belonging to a nonzero eigenvalue \, then DDT has the same eigenvalue
with corresponding eigenvector Dip. Whenever DDT has an eigenvalue with
eigenvector ¢, then DY D has the same eigenvalue with eigenvector D¢ (you
can check this by a short calculation; see also Exercise 2.5 and Book One,
Section 7.6). This symmetric relation between the spectra of DD and DD'



138 3. PARTICLES WITH SPIN

is a very simple example of a so-called supersymmetry. We also note that the
operators DD and DD' are nonnegative, that is, all nonzero eigenvalues
are positive.

3.7. Solution in a Homogeneous Magnetic Field

3.7.1. The g-factor of orbital motion

For a constant, homogeneous magnetic field, we may choose the coordinate
system such that B(x) = (0,0, B) (for all x). We write the vector potential
in the Poincaré gauge (see Book One, Section 8.4),
B

A(x) = 5 (—y,z,0), forall x=(z,v,2). (3.72)
In atomic units and with the g-factor 2 the spin magnetic moment p = pg
becomes

The Pauli operator now reads

Hpaui = l(p + A(X))2 — pg - B(x)

2
1
=5 (P +p AKX +AX) P+AX)?) +BS;
1
=5 (p2 + B (zp2 — yp1) + A(X)Z) + B S;3
2 B B2

The second term is obviously the magnetic interaction energy —p;, - B of the
magnetic moment gy, that is caused by the orbital angular momentum,

1

Comparison with (3.73) shows that the g-factor belonging to the magnetic
moment pg is twice as large as the g-factor belonging to p;,. The magnetic
moment caused by the orbital motion of a charged particle has the g-factor
1.

3.7.2. Solutions with zero energy

The constant magnetic field is a two-dimensional situation with B(x) =
B. Now each of the equations (3.64) becomes equivalent to a Schrodinger
equation in a constant magnetic field. The considerations of Book One also
apply to this case (see Book One, Chapter 8). Here, we present a method
of finding the ground-state solutions which will be useful also in the next
section.
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We assume that the constant magnetic field is B > 0. A vector potential
for this field is

B
Ax) = 5 (=y,2). (3.76)
We also define the auxiliary function
B B
600 = 7 (a2 +47) = 7 P, (3.77)

with the property A¢(x) = B. Next, we consider the operator D' defined
in (3.69). Assume we can find a solution )y of the equation D¢ = 0. This
function would also satisfy the equation DDfyq = 0. Hence, in view of

(3.71), the spinor
@;gi) - (1/10(()X)> (3.78)

would be an eigenvector of the Pauli operator (3.74) for a constant field in
two dimensions, belonging to the eigenvalue £ = 0.

In order to find a solution g, let us first describe the properties that
any solution of D1 = 0 must have. First of all, we require g to be square-
integrable. Next, we write

Yo(x) = e ) w(x) (3.79)
and find that
Dy = —ie—¢<ﬂ i i)w. (3.80)
ox 0x9
Hence, the equation Dty = 0 is obviously equivalent to the equation
Ow Ow
— —i—=0. 3.81
8901 ! axg ( )

If you write w(z,z) = u(x,y) + iv(z,y), you will see that (3.81) is in turn
equivalent to the famous Cauchy-Riemann equations characterizing the real
and imaginary parts of an analytic function. More precisely, it turns out that
the function w has to be an entire analytic function of x — iy! Taking into
account that v¥g = e %w should be square-integrable, we have to exclude
those analytic functions w that increase too fast in some direction of the
complex plane. But this still leaves, for example, all polynomials in x — iy.
Choosing w(x) = (z — iy)*, where / is a non-negative integer, we find that

Yo(x) = e PP/ (g — i) (3.82)

satifsfies D1y = 0. As explained above, we conclude

Hpou < %(gx)) _ <8> . (3.83)
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We note that all square-integrable functions of the form
vo(x) = e PP (@ —iy) (3.84)

where w is analytic, lead to a zero-energy eigenvector of the two-dimensional
Hp,; operator for the homogeneous field. We have singled out the solutions
of the type (3.82), because they are simultaneous eigenfunctions of the an-
gular-momentum operator Ls = xps — yp1. This can be seen as follows: We
write the complex number x — iy in polar coordinates as re™¥. Then, we
obtain (x —iy)* = r’e % . In spherical coordinates, L3 = —id/dy and hence
L3 @ZJ(()E) =/ w(()g) follows immediately.

Eigenvectors belonging to different eigenvalues of a self-adjoint opera-
tor are orthogonal, therefore {1/1(()8) | £ =0,1,2,...} is an orthogonal set of
simultaneous eigenstates of Hp,,; and L. This set is even a basis in the
zero-energy eigenspace, because every zero-energy solution can be written
as a superposition of the 1/1(()@. This can be seen as follows: Any zero-energy
solution must be of the form

b(x) = e BIXIP/4 (w?2)> (with z = z — iy), (3.85)

where w(z) is an entire analytic function of z. Writing w as a power series
in z,

w(z) = Zaz 24 (for all 2), (3.86)
=0

we can combine (3.85) and (3.88) to see that i has the expansion

Yx) =3 ary (x). (3.87)
(=0

Ground states in a homogeneous magnetic field:

The Pauli equation for an electron in a constant magnetic field B > 0
in two dimensions has infinitely many zero-energy solutions with spin-
down. The solutions

[ _Blx|? 0
{0 (x) = e~ BIXI*/4 <($_iy)g>, (=0,1,2,3,... (3.88)

are also eigenfunctions of the orbital angular-momentum operator L =
P2 — Yp1,

1
HPauli ¢(()£) = 07 L3 ¢(()£) =/ 1/}[()2)7 S3 ¢(()£) = _5 QJZ)((]Z) (389)

The set {1/}(()5) | ¢ =0,1,2,...} is a basis in the zero-energy eigenspace.
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Zero-energy eigenfunctions of the Pauli operator are time-independent
solutions of the time-dependent Pauli equation (3.64).

The operator (3.74) without the spin term BS3 is equivalent to a Schro-
dinger operator in a constant magnetic field. We know that the Schrodinger
operator has no zero-energy eigenvalues. Instead, the ground-state energy
is |B|/2 (Book One, Section 8.5). Obviously, the spin term in (3.74) just
compensates the “spinless” ground-state energy.

For the Schrodinger operator as well as for the Pauli operator in a ho-
mogeneous magnetic field, the ground-state energy has an infinite degree
of degeneracy. This degeneracy is caused by the translational symmetry
discussed in Book One, Section 8.6.

3.7.3. The spectrum of eigenvalues

In this section, we are going to use the operators D and DT as ladder opera-
tors to generate all eigenvalues and eigenfunctions of the Pauli operator, just
as we did with the harmonic oscillator (see Book One, Section 7.7). In the
last section, we obtained an infinite number of solutions for Dy = 0, where
D is the operator defined in (3.68) in case of a constant magnetic field,

0 B 0

B
D=—i——— — i . 3.90
18:131 2 x2+6$2 ti 2 e ( )

This operator has the property
D'D = DD' +2B. (3.91)
Given a function 1y with D¢ = 0, we immediately find
DD )y = 2B . (3.92)

Moreover, equation (3.91) tells us that 2B is the smallest eigenvalue of DD
because the operator DD is non-negative (and B is assumed to be positive).
We can use 9 to form an eigenvector with spin-up of the Pauli operator

(3.71):
Hpoui (%") =% <D;D D%) <%0> =B (‘go). (3.93)

Hence, we found that Hp,,; has the eigenvalue B. There is also a spin-
down eigenvector belonging to the same eigenvalue. This is so because,
whenever DD has an eigenvalue with eigenvector v, then DD' has the
same eigenvalue with eigenvector Diyy. Hence,

HPauli <£1> =B (121) Wlth @/)1 == DT/}O (394)
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We can continue in this way. Because of (3.91), the function v, is also an
eigenfunction of DTD:
D'D 4y = DDy + 2By = 4B . (3.95)

Also, 1, = D1y is an eigenfunction of DD' belonging to the eigenvalue 4B.
This leads to the eigenvalue 2B of the Pauli operator,

Y1) _ (0
Hpoui <01> =2B <01> , (3.96)

Hpaui <£2> — 2B (JD with 1y = Diby. (3.97)

If we proceed in this way, we obtain a whole sequence of eigenfunctions and
eigenvalues of the Pauli operator. We conclude

Energy eigenstates in a homogeneous magnetic field:
The two-dimensional Pauli operator in a constant magnetic field B > 0
has the eigenvalues

E, =nB (n=0,1,2,3,...). (3.98)
Let 1y be a nonzero function with Df¢y = 0, and define
= Dwn—l = D" Yo. (399)

Eigenvectors of the Pauli operator belonging to the energies F,, are

(1/?71) and (%1) (n=1,23...) (3.100)

with spin-down and spin-up, respectively. There are no spin-up eigen-
vectors for zero energy.

It has to be emphasized that such a sequence of eigenvectors is obtained
for each of the zero-energy eigenstates 1[)(()6) defined in (3.88).

3.8. Special Topic: Magnetic Ground States

Because of the negative charge of an electron, spin-up corresponds to mag-
netic moment down and hence the potential energy in a field that points in
the positive z-direction is negative. Obviously, this energy precisely com-
pensates the ground state energy of a charged particle in a homogeneous
magnetic field (see Book One, Chapter 8).

A generalization of the argument that leads to the ground state in a ho-
mogeneous field in Section 3.7.2 can be used to show that the Pauli operator
in two dimensions has zero-energy bound states even if the magnetic field has
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a finite flux. The number of zero-energy bound states of Hp,,; provides a
lower bound for the number of negative-energy bound states of the operator
H = Hp,,;; +V (x), with the same magnetic field and a negative electrostatic
potential. If ¢ is any eigenstate of Hp,,; belonging to the eigenvalue 0, then
we find for the expectation value of the total energy

(, HY) = (¥, Hpauri¥)) + (¥, V(X)) = (¢, V(x)h) <0. (3.101)
For this result it is only necessary that V' (x) < 0 for all x and V(x) < 0 in
some open region, because it turns out that the eigenstates of Hp,y; cannot
vanish on open regions. Whenever (v;, Hy;) < 0 for linearly independent
states 1,...,%,, one can prove that the dimension of the subspace with
negative energy is at least n.

It is interesting that the same problem turns out to be much more difficult
in three dimensions. But at least we can show that there are magnetic fields
giving rise to zero-energy bound states also in three dimensions. This result
depends on the spin in a crucial way.

3.8.1. Two dimensions

The following theorem by Aharonov and Casher!? describes the zero-energy
states of the Pauli equation with a magnetic field in two dimensions:

THEOREM 3.1. Let B(x) be a magnetic field that vanishes outside a
bounded region in two dimensions and let the flux

Ja B(x)d*x (3.102)
2T R2

be finite. For |F| > 1, the Pauli operator has an eigenvalue with zero energy.
Assume F = n 4+ r, where n is a positive integer, and 0 < r < 1. Then,
the Pauli operator for an electron has precisely n spin-down eigenstates with
energy zero. If ' = —n — r, then there are precisely n spin-up eigenstates
belonging to the eigenvalue zero. Forr = 0, the multiplicity of the eigenvalue
is n — 1 in both cases.

PRrROOF. The proof uses the idea that a function ¢ with A¢(x) = B(x)
can also be defined for inhomogeneous fields. The Green function of A in

two dimensions is % In |x — y|. Therefore, the function
1
000 = 5 [ nlx—y|Bly) (3.103)

:27r

satisfies A¢(x) = B(x). Moreover, it can be shown that

$(x) — F In|x| = o(;'), as [x| — 0o, (3.104)

10 Aharonov, Y., and Casher, A., Phys. Rev. A19, 2461-2462 (1979).
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We choose the vector potential

AG) = (-5 9x). 5 0(x)) (3.105)
and look for a solution of
o-(p+AyY =0, o = (01,02). (3.106)
Writing
w(x) = e~ y(x) (3.107)

we find that (3.106) is equivalent to

(6% +1i 8%)wl(x) =0,
o) : 0

(% —i a—y)wg(x) =0.
These equations are equivalent to the Cauchy-Riemann equations. Hence,
w1 has to be an entire analytic function in the variable z = x + iy whereas
wo must be analytic in Z = z — iy. It follows from (3.104) and (3.107) that
for large |z| = |x|, these functions behave as

wi(x) &~ e Py (x) = |x| Py (x), (3.109)

wa(x) & eIy, (x) = [x]| TF o (x). (3.110)
For positive F' we find that w is square integrable at infinity and hence zero,
because an analytic function cannot vanish in all directions, as |z| — oo.
This shows that ¢; = 0, and therefore any solution of (3.106) must have
spin-down. But for this we have to fulfill the condition

Yo = e %wy € L*(R?), (3.111)

which requires that wy should not increase faster than |x|¥~179, for some
(arbitrarily small) § > 0. Here, it is assumed that F' = n + r with n a
positive integer and 0 < r < 1. Because wy is an entire function of z that
should not increase faster than |z~ "~ it must be a polynomial in z —iy
of degree < n —1if r > 0, or of degree < n — 2 if r = 0. Hence, for r > 0 we
may choose the n linearly independent polynomials

wo(x) = (z —iy)* with £=0,1,2,...n—1, (3.112)

oc-pw=0 or (3.108)

and for » = 0 we have the condition ¢ < n —2. Correspondingly, the n (resp.
n — 1) solutions of (3.106) are given by

(730(%) ((w _Uiy) E) _ <e_ s ((; ) iy)g) (3.113)

and these are the zero-energy solutions of the Pauli operator

Hpaui = % (o(p +A))°. (3.114)
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An analogous reasoning applies to the case F' < 0. O

The eigenfunctions obtained here are, in general, not eigenfunctions of
L3, because B(x) (and hence ¢(x)) need not be cylindrically symmetric.
The theorem relates the number of zero-energy eigenstates of the Pauli op-
erator with a global property (flux) of the magnetic field. The theorem may
be regarded as an elementary example of the famous Atiyah-Singer index
theorem in global analysis.

3.8.2. Three dimensions

There is no analog of the previous theorem in three dimensions. We do not
know general conditions on magnetic fields that lead to zero-energy bound
states, but we do know some examples. Here is a particularly simple one
due to Loss and Yau.!'!

We want to find a three-dimensional vector potential A(x) and a spinor
¥(x) with

o-(p+Ax))y(x)=0. (3.115)

By Eq. (3.67), this would give a magnetic field such that the stationary Pauli
equation Hp,.;7) = E1 has a zero-energy solution.

Assume we are given a spinor with ¥ (x) # 0 for all x. Then, we can
form the vector field

(¥(x), 0 9(x)),

v(x) = 5 (3.116)
(),
According to (3.54), v(x) is a unit vector in R3. It may be verified that
o -v(x)Y(x) =P(x). (3.117)
(See also Section 4.4.1 below). Define
A(x) = —-A(x)v(x) (3.118)

with some real-valued function A and you can see that
o A(x)Y(x) = =A%) P(x). (3.119)

It remains to find a real-valued A and an everywhere nonzero spinor 1 such
that the equation

o - pY(x) = A(x) P (x) (3.120)
holds. For example, let
lh+io-x
P(x) = m b0, (3.121)

HLoss, M., and Yau, H.T., Commun. Math. Phys. 104, 283-290 (1986).
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where ¢q is any unit vector in C2. We obtain
3
o py(x)= 112 Y (x). (3.122)

Now combine Egs. (3.119) and (3.120) with A(x) = 3/(1 + 2?) to obtain an
example for (3.115). The solution 1 produces the vector field
1
v(x) = 22
which is everywhere nonzero. Here, w = (¢o, & ¢)2 is a unit vector in R3,

The magnetic field belonging to the vector potential A(x) = A(x)v(x) is
given by

(1 — 2?)w + 2(W - X)X + 2w X x), (3.123)

B(x) = V x A(x) = (1_512)2V(x). (3.124)

3.9. The Coulomb Problem with Spin

3.9.1. Coulomb-Hamiltonian for a particle with spin

Due to the interaction term —p - B in the Pauli Hamiltonian, the motion
of the particle in space in general depends on the behavior of its magnetic
moment, and vice versa. But this is not the case for a purely electrostatic
field when B = 0. For electrons in a purely electrostatic field, the Hamilton-
ian has the familiar form H = p?/(2m,.) + V(x) acting component-wise on
spinor-wave functions. Hence, the time evolution of one spinor-component
is completely independent from the behavior of the other. The spin is a con-
stant of motion, and the initial spin-state has no influence on the behavior
of the spinor-wave functions in space.

As an example, we consider a hydrogenic atom. In the standard repre-
sentation, the Hamiltonian is (cf. Eq. (2.21))

h2 Y H.oul 0
H=|- A—-— )1y = P : 12
< 2me ’X|> 2 < 0 Hcoul (3 5)

Here, Hqy is the familiar Coulomb Hamiltonian as defined in (2.21). Here,
it acts component-wise on spinor wave functions.

The Hamiltonian H in (3.125) is the direct sum of two Coulomb Hamil-
tonians,
H = Hcoul ) Hcoul' (3126)
This operator is defined in the direct sum L?(R3) @& L?(R3) of “spinless”
Hilbert spaces. Equivalently, we may write the Hilbert space as L?(R3) ® C?
and define H as
H = Hepy © 15, (3.127)
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where 15 is the identity operator in C2. In that way, we can see that H acts
like the ordinary Coulomb Hamiltonian on the “space part” of a spinor and
like the identity on the “spin part.”

The Coulomb Hamiltonian (3.125) commutes with the operator Ss,
[H,S3] =0 (on the domain of H). (3.128)

A system of simultaneous eigenfunctions is, for example, given by

Un,tm,+ (%) = (w"’g’(’)”(x)), Un g —(x) = ( %’E?n(x)), (3.129)

with the Coulomb eigenfunctions described in Section 2.5.2, see Eq. (2.106).
Every eigenfunction of the Coulomb problem appears once with spin-up and
once with spin-down. These spinors are simultaneous eigenvectors of the
set of commuting operators H, L?, L, and Ss. The spin does not change
the eigenvalues E, of the Coulomb Hamiltonian. But, accounting for the
spin, the degree of degeneracy of each eigenvalue E,, is twice the degree of
degeneracy of that eigenvalue in the problem without spin.

3.9.2. Complete set of observables

For the Coulomb problem without spin, it was necessary to specify the eigen-
values of the operators H, L?, and L3 in order to specify a unique eigen-
state. For the Coulomb problem with spin, there is an additional degree
of freedom. Given eigenvalues of H, L?, and L3, we are still left with two
orthogonal eigenstates. We need the eigenvalue of the spin-operator Ss to
specify a unique state.

A useful set of quantum numbers for the Coulomb problem with spin
therefore consists of

n=12,... the principal quantum number labeling the
eigenvalues of H

£=0,1,...,n—1 the angular-momentum quantum number
defining the eigenvalues of L?

my=—4,—¢+1,...,£ the magnetic quantum number belonging to
the orbital angular momentum L3,

ms=—1/2, +1/2 the magnetic quantum number due to the
spin S3.

Each quadrupel of values (n, ¢, my, ms) specifies a simultaneous eigenvector
of (H,L? L3, S3). This set of quantum numbers is complete in the sense
that the corresponding eigenvector is unique up to a scalar factor (that is,
the corresponding quantum state is unique). A set of commuting observ-
ables whose eigenvalues specify a unique simultaneous eigenstate is called a
complete set of commuting observables.
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More generally, let us consider n self-adjoint operators A;,i =1,...,n,

all having a “pure point spectrum.” That is, we assume that the
spectrum contains only eigenvalues and no continuous part. (It is technically
much more demanding to define the completeness when observables with a
continuous spectrum are involved.) The assumption of a pure point spectrum
is fulfilled for the operators L?, L3, S3, and for H in the subspace of bound
states (which is also a Hilbert space).

DEFINITION 3.1. A set of self-adjoint operators {4, Ag, ..., A,} with
pure point spectrum in a Hilbert space §) is called a complete set of observ-
ables if the following two conditions are satisfied:

(1) For all (A1,...,\,), where J\; is an eigenvalue of A;, there is a nor-
malized simultaneous eigenvector Wy, . of all A; that is unique
up to multiplication with a phase factor.

(2) The set of all Uy, . is an orthonormal basis of the Hilbert space.

n

n

By definition, the common eigenvectors ¥y,  y, belong to the common
domain ® of the operators, that is, to the intersection

D =D(A)ND(A) N+ ND(Ay). (3.130)

It follows from the definition that ® is a dense subspace of ), because it
contains all vectors of an orthonormal basis. Moreover, the operators A;
commute with each other

[Ai, Aﬂ =0 on2. (3131)

It also follows that the operators A; commute in the sense that the corre-
sponding unitary groups commute (see Book One, Section 6.11).

3.9.3. The spin-orbit interaction

Due to the following relativistic effect, the spin S of electrons is not com-
pletely independent from its orbital motion, even if there is only an electro-
static field. Consider a classical electron that moves at a certain time ¢ with
velocity v in an electrostatic field E. We go into a coordinate system that
moves with velocity v. This coordinate system is at time ¢ the rest frame
of the electron. But while the electron is at rest, the charges generating the
electric field move with velocity —v. Moving charges constitute a current,
and currents are the origin of a magnetic field. In its rest frame, the elec-
tron still has a magnetic moment pg due to its spin. Hence, we expect a
contribution to the energy of the electron from the interaction of the spin
magnetic moment with the magnetic field B’ in the moving frame.
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The strength of the magnetic field B in the electron’s rest frame is given
by
B — —CiQ v xE. (3.132)
This formula can be obtained from the relativistic transformation law for
electromagnetic fields. It is an approximation that is valid if v is much
smaller than ¢, the speed of light. Within that approximation, we expect
that the Hamiltonian contains an additional interaction term of the form
(3.10), that is,

1
—pg-B' = gu-vxE. (3.133)

Next, we consider the classical model of a hydrogenic atom. The atomic
nucleus (with Z protons) causes the electric field

Ze x v X

(3.134)

" dre x[3 e [x3

In the rest frame of an electron at time ¢, the proton moves with velocity
—v and causes an additional magnetic field

;Y VXX

- . 3.135
ec? |x|? ( )

This is just the Biot-Savart law for the magnetic field of a moving charge.
Introducing the angular momentum L = mx X v, we can write this as

r_ 7 i
emec? |x|?

(3.136)
Using the expression (3.17) for the magnetic moment of the electron due to
its spin, the interaction term becomes

r_ 9yks 1 gy 1
hem.c? |x|3 2m2¢? |x[3 ( )

—pus - B

This expression involves the spin and the orbital angular momentum of the
electron and is therefore called the spin-orbit interaction. A more careful
consideration of relativistic effects, in particular, of the Thomas precession,
shows that the actual size of the spin-orbit energy is only half as large. The
interested reader will find the details of this calculation, for example, in [3].
The final result for the spin-orbit interaction is therefore

gy 1
—— —S- L. 3.138
4m2e? |x[3 ( )
In quantum mechanics, this gives a contribution to the Hamiltonian of the
hydrogen atom. Usually, this contribution is treated by perturbation theory.
This term and other contributions from relativistic corrections of the kinetic
energy are automatically accounted for by the Dirac equation.

Espin—orbit =
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Let us now consider the Hamiltonian of a hydrogenic atom if the spin-
orbit energy is taken into account. By adding the operator corresponding
to (3.138) to the Coulomb-Hamiltonian (3.125) for a particle with spin, we
obtain ,

h gl gy 1
H=(-3-A- )1+ 55 —S-L 3.139
2m x|/ * 4m2¢? x| ( )
For the hydrogen atom (Z = 1) in atomic units, we may set v =1, m, = 1,
¢~ 137, g ~ 2, and the Hamiltonian simplifies to

1 1 1 1
H:(—fA——>1 . S.L 3.140

2 x|/ ? T o |x|3 ( )
and we see that the constant in front of the spin-orbit term has a very small
numerical value (= 2.7 x 107°). Hence, we expect that the spin-orbit term

has only a small influence on the Coulomb eigenfunctions.

The spin-orbit term is usually treated by first-order perturbation the-

ory, because the radial problem corresponding to (3.139) cannot be
solved exactly. This is a very delicate problem in mathematical perturbation
theory. The spin-orbit term dominates the Coulomb potential at small dis-
tances from the origin. Hence, there are wave functions in the Hilbert space
for which the spin-orbit term contributes much more to the energy than
the Coulomb potential. Fortunately, this is not the case for the Coulomb
eigenfunctions, which are indeed only slightly perturbed by the presence of
the spin-orbit interaction. We note that the spin-orbit term is implicitly
contained in the relativistic Dirac equation for the hydrogen atom. In that
framework it is not necessary to employ any perturbation theory, because
the solution is known explicitly. In the following, we investigate the angular
part of the wave function according to the Pauli equation with a spin-orbit
term.

3.9.4. Eigenfunctions of the spin-orbit operator

In a more realistic model of the hydrogen atom that takes into account the
spin-orbit term f(|x|)S - L, the spin S and the orbital angular momentum
L are no longer constants of motion. Neither L3 nor S5 commutes with the
spin-orbit term. Therefore, these operators also do not commute with the
Hamiltonian (3.139). But the system is still spherically symmetric, because
the scalar product S - L is invariant under rotations. Hence, the generator
of rotations, the total angular-momentum operator

J=L+S, (3.141)
must be a constant of motion. Indeed, one finds

H,J,)]=HJ,—J,H=0, k=1,2,3. (3.142)
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We may choose the operators J?, J3, S - L as a set of observables that
commute with each other and with the Hamiltonian (3.140). The operator
S% = (3/4)1 (sticking with atomic units, & = 1) is just a multiple of the
identity operator, hence it trivially commutes with all other operators.

It is useful to introduce the spin-orbit operator

K=2S-L+1. (3.143)

We can express the operators J2 and L? in terms of K:

1
J?=K? - 7 L’ =K?-K. (3.144)

It is clear that K commutes with the Hamiltonian (3.140), because K com-
mutes with the spin-orbit term and both S and L commute with the scalar
Coulomb Hamiltonian. Hence, K is a conserved quantity and so are the
observables J? and L?, which can be expressed in terms of K.

EXERCISE 3.8. With the help of

[ Ly L —iLy
¢7-L_<L1+1L2 L ) (3.145)

write K as a two-by-two matriz operator and verify (3.144), using the an-
gular-momentum commutation relations.

Equation (3.144) implies that any eigenvector of K is also eigenvector
for the operators J? and L2. The eigenvalue of J2, which is usually written
j(j + 1) with a non-negative j, is determined by the eigenvalue k of K. By
solving k2 = j(j + 1) + 1/4 for j > 0, we find immediately

1
j=1Isl =35 (3.146)

We know that the eigenvalue of L? is (¢ + 1), where the orbital angular-
momentum quantum number / is a non-negative integer. Because of (3.144),
the eigenvalues of K must fulfill the relation

0+1) = K* — K. (3.147)

Solving for k, we obtain the two solutions kK = ¢ + 1 and k = —¢. Note that
the value K = —¢ = 0 has to be excluded, because the relation K2 = J?+1/4
implies k2 > 0. Hence, the only possible values for s are

k=41, £2, £3, .... (3.148)

This in turn shows that the possible values of the quantum number j are

135

=, o, oy 14
..7 27 2727 (3 9)
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The eigenvalue of J3 will be denoted by m;. As we know from Theorem 1.1,
the only possible values for m; are

mj=—j, =j+1, ..., 4] (3.150)

The simultaneous eigenvectors of the operators K and J3 are the spinor
harmonics. They can be defined in terms of the spherical harmonics Y™ as
follows

1 m;—1/2
1 \K—5+m; Y -
Vigm, =~ 2 o K> 1 (3.151)

- — i+1/2 | ’
V2T Jr—d —my v

1 ymi—1/2
1 —\/3 —Km—my Y,

- L k< 1. 3.152
\/1_25 \/%*KﬁLm]’ ij+1/2 ( )

—K

CD 3.13 presents a gallery of visualization of the spinor harmonics
YVi,m,; with angular momentum j < 7/2. You may select the function
by specifying the quantum numbers j, m;, and the sign of S - L
(which is related to the sign of s, see (3.159) below). Because these
functions depend only on the angles ¥ and ¢, they may be regarded
as functions on the surface of the unit sphere. CD 3.13.2 shows the
upper and lower components as separate plots, CD 3.13.3 visualizes
the spin directions via colors, as described in Section 3.5.5. The
associated spin-vector field is symmetric with respect to rotations
around the z-axis (see CD 3.13.4 and CD 3.13.5).

The spinor harmonics are also eigenfunctions of L? and S?, but not of
L3, or S3. We have the following result.

Spin-orbit and angular-momentum eigenvalues:

Kyli,m]' :"iyn,mj k==1,£2£3,..., (3153)
1 135
2 . .
J y}i,m]' :](]+1)ym,mj J= ’K’—§:§,§,§,..., (3154)
I3 Vim; = mj Vem; mj=—j,—j+1,...,]. (3.155)

It is not difficult to verify the eigenvalue equation for J3 = L3+ .53 using

L3 Y[ (9, ) = mY;™ (9, ¢). (3.156)



3.9. THE COULOMB PROBLEM WITH SPIN 153

In order to compute the eigenvalue of the matrix operator

1 Ls Ly —iLs
S-L= 5 <L1 il Ly , (3.157)
we need that L +1i Lo are ladder operators with respect to m. We have
(L1 +iLa) Y™ =/ (E £ m+1) (0 Fm) Y, (3.158)
A little calculation now shows
1
S- Ly/i,mj = 5("1 - 1) yn,mj (3159)

for both signs of k. This proves (3.153). The spinor harmonics are also
eigenfunctions of L?.

k—1 for k>0,

3.160
—K for k < 0. ( )

L2 Vim; =L+ 1) Vim,; with £ = {
The eigenvalues of J2 = L? 4+ 2S - L 4 S? follow by a straightforward com-
putation.

The sign of the eigenvalue of K also determines the sign of S - L, that
is, whether the spin and the orbital angular momentum are more parallel or
rather antiparallel. (Neither L nor S have a well-defined direction, because
these operators have non-commuting components.) If the eigenvalue of K is
positive, then we find j =k —1/2 and £ = k — 1 and hence j = £+ 1/2. The
total angular momentum j is obtained by adding the spin 1/2 to the orbital
angular momentum £. In a state belonging to a negative eigenvalue of K,
the operator S - L is strictly negative (S and L have opposite directions). In
this case, we have j = —k — 1/2, £ = —k, and the total angular momentum
j = £ —1/2 is obtained by subtracting the spin from the orbital angular
momentum.

Without proof, we note the formula

|yﬁ,mj (19780)|2 = D)fn,mj(ﬂa@”z' (3161)
Here, the modulus is defined as the C2-norm of the spinor, that is,
‘yﬁymj (79’ SD)|2 = <y/i,mj ) yn,mj >2- (3162)

This quantity is symmetric with respect to rotations about the z-axis, hence
it actually does not depend on m;.

It is interesting to compare the spinor harmonics with the spherical har-
monics. In Figure 3.4, we show “polar plots” of |Y}'| and |Vy5 30| (similar
to Figure 1.8). These are curves in the zz-plane where at each angle ¥, the
distance from the origin is the absolute value of the function. The spherical
harmonics and the corresponding spinor harmonics have maxima in roughly
the same directions. But the absolute value of the spinor harmonic has no
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|y5,3/2(1970)|
z
0.4
0.2
Y
T
0 >
0.2
0.4
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FiGURE 3.4. Polar plots of the absolute values of the spher-
ical harmonic Y;! and of the corresponding spinor harmonics

Yis53/2-

zeros for 0 < ¢ < m, because the two components of the spinor do not vanish
simultaneously for 1 inside this interval.

Some visualizations of the simultaneous eigenfunctions of the Coulomb
Hamiltonian, J2, and K are depicted in Figure 3.5.

CD 3.14 is a gallery of eigenfunctions of the hydrogen atom with
spin (see also Fig. 3.5). Two navigation palettes either show the
quantum numbers n, x, and m;, or the quantum numbers j, ¢, n,,
and m;. The visualizations show flux lines of the spin-vector field.
In addition, the flux lines are colored according the direction of that
vector field. (This helps to distinguish the sign of m;.) In these
visualizations, the influence of the spin-orbit term is neglected. Note,
however, that the spin-orbit term would change only the radial part
of the eigenfunction. Moreover, this distortion would affect the radial
wave function only in a small neighborhood of r = 0, which could
not be seen in these images.
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FIGURE 3.5. Some hydrogen eigenfunctions with n =4, x =
4, and (a) m; = 7/2, (b) mj; = 5/2, (c) m; = 3/2, and (d)
m; = 1/2. The images show isosurfaces of the absolute value
of |¢n,ﬁ,mj| and some flux lines representing the spin-vector
field (which has a rotational symmetry about the z-axis).

3.9.5. The radial equation

In spherical coordinates, the Coulomb Hamiltonian with the spin-orbit cou-
pling (3.140) becomes (using atomic units)

19> 10 1172 1 L1 S-L
202 ror 2r2 r  2¢2 73
Here, the part containing the radial derivatives commutes with the part con-

taining angular derivatives, and hence we can find a solution of the eigen-
value equation in the form of a product of a radial part and an angular part

H= (3.163)
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(separation of variables)

U0, 0) = o) Vi, (0,). (3164)

The angular part is a simultaneous eigenfunction of L? and of S-L. Inserting
1 into Hy = Ev therefore leads to the radial equation for fy,

< 1 82 1 /f(/i — 1) Y L L_1> fH<T’) — Ef;-;(r) (3165)

20r2 2 r2 r  4c2 3



Chapter 4

Qubits

Chapter summary: A qubit (quantum bit) is a quantum-mechanical two-state
system. Any quantum system that can have two different states can also assume an
arbitrary superposition of these states. Compared to a classical bit, a qubit has a
significantly higher complexity (a continuum of possible states versus two distinct
states 0 and 1). But nevertheless, because the state space is just two-dimensional,
the measurement of any observable can produce at most two different results.

A canonical example of a qubit is provided by the spin of a spin-1/2 particle.
Many ideas in this chapter are formulated with this system in mind. But there are
other realizations of qubits, for example, the polarization states of photons, which
we are going to discuss in Section 4.5.

Because of the relative simplicity of a qubit system, it is worthwhile to review
some peculiarities of quantum mechanics. In Section 4.2, we use a typical Stern-
Gerlach experiment to illustrate the projection postulate, the state preparation by
single-particle measurements, and the state verification by ensemble measurements
(Section 4.3). We ask whether it is meaningful to talk about the state of a single
qubit, and we describe how one can determine (or rather estimate) an unknown
quantum state. Moreover, we discuss the impossibility of “classical” teleportation
in quantum mechanics.

In Section 4.4, we associate a unique “spin-up direction” with every qubit state.
We describe the implementation of rotations as unitary transformations in the
qubit’s Hilbert space and compute the transition probabilities between different
qubit states.

The strange topic of single-particle interference is presented in Section 4.6. We
introduce interferometers and discuss the problems of acquiring the “which-way”
information. We describe a variant of the double-slit experiment and discuss what it
means to rotate a qubit through an angle of 27r. Interaction-free measurement (the
detection of a bomb without actually looking at it) is presented in Section 4.6.4 as
an example illustrating the meaning of the interference of probability amplitudes.

Section 4.7 deals with quantum cryptography. We present an example of a
secure key distribution protocol that allows one to establish a secure communication
via the classical one-time pad. The security of the method depends on the fact that
quantum mechanics indeed gives a complete description of the state of a qubit. In
a hidden variable theory, one assumes that the state of a qubit can be described
by some additional parameters whose knowledge would enable us to make more
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accurate predictions. Section 4.8 presents an example of a hidden variable theory
and discusses its implications.

We conclude this chapter with a section about the spin in a time-dependent
magnetic field (Section 4.9). In particular, we discuss the time evolution in a pe-
riodically time-dependent magnetic field and the phenomenon of spin resonance,
or magnetic resonance. The results are relevant for technological applications like
nuclear spin tomography.

4.1. States and Observables

4.1.1. The Hilbert space of a qubit

Many investigations of quantum systems do not require a “complete” de-
scription of the state. For example, one often neglects the position and
momentum of a particle when one is only interested in the “inner degrees
of freedom” related to the spin. This simplifies the description considerably,
because the Hilbert space describing the spin of a particle with spin 1/2 is
just the two-dimensional complex vector space C2.

Definition:

A quantum system with a two-dimensional Hilbert space is called a two-
state system or a qubit (quantum bit). The vectors in the Hilbert space
of a qubit are often called spinors.

The qubit is the simplest nontrivial quantum system, but it has many typical
properties of larger quantum systems. Moreover, the qubit is at the basis of
quantum information theory.

The classical analog of a qubit is a bit—the unit of information that can
only have one of two possible values (usually denoted by “0” and “17). In a
classical computer, bits are usually represented by the voltage in a capacitor.
If miniaturization is brought to an extreme, one might think of representing
a bit by two different states of an elementary particle. But then quantum
mechanics takes over, and the properties of a qubit are very different from
the properties of a classical bit.

The crucial difference between a bit and a qubit is that the two states of
a qubit can form quantum-mechanical superpositions and hence an infinite
number of further states. It is still appropriate to speak of a two-state sys-
tem, because all possible states of a qubit can be described as superpositions
of just two basis states. Moreover, any measurement of a qubit can produce
at most two different results, which may be called “0” and “1”. But the
physical meaning of “0” and “1” depends on the observable one chooses to
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measure. For example, the two eigenstates of the spin observable S; are
physically distinct from the eigenstates of Ss.

It should be stressed that particles with spin 1/2 are not the only ex-
amples of qubits. Other physically important qubit systems are realized,
for example, by the polarization states of photons (Section 4.5.1), or by two
oscillating states of trapped ions. As a mathematical example, the qubit
obtained by restricting the harmonic oscillator to the subspace spanned by
the first two eigenstates will be discussed in Section 4.5.3.

4.1.2. States of a qubit

Let us first choose an orthonormal basis in the two-dimensional Hilbert space
of a qubit, that is, we choose two vectors ¢, and ¥_ with

W) =0, gl = vl = 1. (4.1)

The physical interpretation of the basis vectors depends on the physical
system under consideration. Thinking of particles with spin 1/2, we may
assume that the vectors ¢ and 1_ describe the states with spin-up and
spin-down in the z-direction of a chosen Cartesian coordinate system in
R3. Thinking of photons, we may take v, to describe the state of vertical
polarization, and ¥_ to describe the state of horizontal polarization (see
Section 4.5.1).

With respect to this basis, vectors are represented by column vectors
in C2, and linear operators are represented by two-by-two matrices. For
example, the basis vectors become

by = (3) L= (2) . (4.2)

This representation (again called the standard representation) will be used
throughout this chapter, and the identification between states and column
vectors, observables and two-by-two matrices is generally made without fur-
ther notice.

A general state of a qubit is an arbitrary superposition of the two basis
states,

YV=crVYr+c_Y_ = <z+> ,  with ¢ € C. (43)
The norm of ¢ and the scalar product with ¢ = dy ¥ +d__ are given by
191 = lex* +le—?, (¢, ¢) = dy +o=d-. (4.4)

We omit the index 2 used in Section 3.5 to denote the C2-scalar product,
as long as no confusion with the norm and scalar product of spinor-wave
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functions can arise. Usually, it is assumed that the states are normalized,
that is, ||¢|| = 1.
Very often, the two base vectors are denoted by

Yy = ‘T>7 Yo = H,>7 (45)

with the arrows indicating the physical interpretation as spin-up and spin-
down. The ket-symbol |-) is used in Dirac’s notation, which is predominant
in the literature about qubit systems. Here, it comes in handy to convert a
graphical symbol into a Hilbert-space vector. In Appendix A.8, we give a
short introduction to Dirac’s notation. Other commonly used ket-symbols
for the C%-basis vectors are |0) and |1), or |[+) and |—).

We can visualize a qubit state ¢ = cy ¢4 + c_ 1_ by a bar diagram
showing the complex values of coefficients ¢ and ¢_. A few examples
are given in CD 4.1. Other methods of visualizing qubit states will
be discussed later.

4.1.3. Qubit observables

Any observable has to be represented by a self-adjoint operator. With re-
spect to a chosen orthonormal basis in the Hilbert space of a qubit, observ-
ables are thus represented by Hermitian' two-by-two matrices. The three
Pauli matrices o = (01,02, 03) defined in (3.38) are examples of particular
importance. The basis vector 14 is an eigenvector of o3 belonging to the
eigenvalue +1, and ¥_ belongs to the eigenvalue —1 of o3. The physical
meaning of the Pauli matrices thus depends on the interpretation of . If
the qubit is realized as a particle with spin 1/2; then the Pauli matrices may
be interpreted as the standard representation of the spin observables 57, So,
and Sz according to Eq. (3.39).

It is usually assumed that, in turn, every self-adjoint operator corre-
sponds to an observable. Hence, for any Hermitian matrix @, it is, at least
in principle, possible to build a measurement device that produces the eigen-
values of (Q as possible results. The measurement of a qubit-observable can
produce at most two different results, because a two-by-two matrix ) can
have at most two different eigenvalues.

The three Pauli matrices together with the two-dimensional unit matrix
1, form a basis in the four-dimensional real vector space of all Hermitian two-
by-two matrices (see Exercise 4.2 below). Hence, we can make the following
observation:

o . . L .. . —T
1By definition, a square-matrix A is Hermitian if A equals the adjoint matrix AT = A4 .
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Pauli matrices and qubit observables:

With respect to an orthonormal basis in C2?, any qubit observable Q is
represented by a linear combination of Pauli matrices,

3
1 1 —i
Q= 3 (aolz + ;}1 akak) =3 <a0 oo 1a2> ; (4.6)

a1 +ias ap— a3

with real coefficients ao, ..., as.

Finally, we note the following useful formulas for Pauli matrices,

0j 0y +0R0oj =20 1, (4.7)
3
0j0) —O0K0j =2 Z €jkm Om.- (4.8)
m=1

The verification is left as an exercise (see Exercise 4.4 below).

EXERCISE 4.1. Show that all the Pauli matrices have the eigenvalues +1
and —1. Find a basis in C? that consists of eigenstates of the matric o1.

EXERCISE 4.2. Show that any Hermitian two-by-two matriz Q) can be
written in the form (4.6). Show that for a given matriz Q, the coefficients
ap and a = (a1, az,a3) can be determined from

ap ="Tr @, ar, = Tr (Qoy), (4.9)
where Tr denotes the trace of the matriz (the sum of the diagonal elements).

EXERCISE 4.3. Verify the anticommutation relation (4.7) and the com-
mutation relation (4.8) for Pauli matrices.

EXERCISE 4.4. Use the explicit definition (3.38) of the Pauli matrices to
verify the following formulas

3
0j o) = 0j; 1o + Z €jkm Om  for all j, k=1,2,3. (4.10)
m=1

0j0K =0m if (§,k,m) is a cyclic permutation of (1,2,3). (4.11)
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FIGURE 4.1. Feynman’s schematic diagram of a measure-
ment of the spin-component o3. The result is determined
by acquiring the “which-way information.”

4.2. Measurement and Preparation

The procedures of state preparation (preparatory measurement) and state
verification (determinative experiment) can be illustrated clearly with spin
measurements. This gives us an occasion to discuss once again the subtleties
of the quantum measurement process.

4.2.1. Stern-Gerlach experiment

Given qubits in a state 1, we want to measure the observable o3. To that
purpose we send the qubits through a vertically oriented Stern-Gerlach appa-
ratus schematically depicted in Figure 4.1. Each particle that passes through
the device is either deflected up or down. The measurement is done by look-
ing which way the particle takes (“which-way information”). Every single
measurement gives a result that can be described by one of the eigenvalues
of o3, and never something else.

What does quantum mechanics predict about the measurement of o3?
We write the initial state as a linear combination ¥ = c4 ¥4 + c_ ¥ _ of the
eigenvectors ¥4 of 3. The expressions

Pope = (W, 9)]” = lex? (4.12)
are the probabilities that a particle in the state 1 is actually found to be in
the state ¢4 or ¢)_. Measuring o3 in the state ¢ will thus give +1 (“spin-up”)
with probability |cy|?> and —1 (“spin-down”) with probability |c_|>.

One has to admit that the word “measurement” is badly chosen, as it sug-
gests that observables have some value that is revealed by the measurement
procedure. But, this is a classical preconception. Actually, the quantum
mechanical formalism makes no statement about the value of an observable
before the measurement, or whether the observable actually has any value.
In quantum mechanics, observables are represented by operators, and oper-
ators are not values. Except for the special situation that the system is in
an eigenstate of the observable, the observable does not have a value prior
to, and independent of, the measurement.
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FiGURE 4.2. Diagram for the measurement of a qubit ob-
servable (). The device has one input channel and two out-
put channels, corresponding to the two possible results of the
measurement. 1, and 9 denote the eigenvectors belonging
to the two real eigenvalues of the Hermitian two-by-two ma-
trix Q.

Quantum mechanics gives only probabilities for the various possible re-
sults of a measurement. We cannot predict the outcome of an elementary
measurement (a measurement that is performed only once on a single
quantum system), unless we know that the system is in an eigenstate of
the observable being measured.

Figure 4.1 is an abstract symbol for the measurement of the observable
o3. It may be realized by a Stern-Gerlach apparatus for a particle with
spin 1/2, or by a birefringent (doubly refracting) crystal for measuring the
polarization states of a photon (see Section 4.5.1 below). We are going to use
the same symbol for an arbitrary qubit observable @), even if the practical
realization of that measurement bears no similarity with a Stern-Gerlach
experiment (see Fig. 4.2).

Stern-Gerlach experiments are often done with atoms effusing from
a heated gas. The particles thus enter the apparatus in a random
state, and the spin measurement produces just a random bit. CD 4.2
simulates a Stern-Gerlach experiment with qubits in a random state.
As soon as the which-way information becomes available, the qubit
gets projected into the corresponding spin-eigenstate.

The measurement of a quantum observable is a typical random experi-
ment. In probability theory, a random experiment is an experiment whose
outcome is uncertain, until the experiment is actually run. The set of pos-
sible outcomes forms the sample space of the experiment. It is usually
assumed that a random experiment can be repeated indefinitely under iden-
tical conditions. An elementary experiment is just a single run of the random
experiment. A random variable is a function defined on the sample space.
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FIGURE 4.3. A qubit emerging with spin-up from a Stern-
Gerlach apparatus is in the state described by 4. A second
measurement of o3 gives spin-up with certainty.

In each run of the experiment, the random variable thus assumes a value
that depends on the random outcome.

In the case of an experiment with qubits, the sample space consists of
only two elements. For the Stern-Gerlach experiment measuring o3 the sam-
ple space { “upper path”, “lower path”}. We can define a random variable S
with the values +1 and —1 for the two possible outcomes. For each run of the
experiment, the random variable S describes the value of the qubit observ-
able o3. Note that a random variable is only associated with the observable
being measured. In the measurement of o3, no random variable is associated
with o1 or o9, because no values are obtained for these observables.

4.2.2. Projection postulate

After measuring o3 of an individual qubit with a Stern-Gerlach apparatus,
the qubit is in the state specified by the outcome of the measurement. If,
for example, we find the result +1, then—right after the measurement—the
system is in the state described by the eigenvector ¢4 of 3. This can be
verified by sending the particle through a second Stern-Gerlach apparatus
whose inhomogeneous field has the same orientation (see Fig. 4.3). One finds
that whenever a particle emerges from the first apparatus with spin-up, it
will pass the second apparatus also with spin-up. The first measurement
obviously changes the initial state vector ¢ to a state vector ¢ = cy 9y +c__
that satisfies |cy|? = 1 and |c_|?> = 0, because the second measurement of
o3 gives the result “spin up” with certainty. We conclude that ¢ = ¢4, up
to an irrelevant phase factor.

The effect of the measurement of o3 is well summarized by the projection
postulate (see Book One, Section 4.8): Define the projection operators

P=[)(el,  1-=P=[p )] (4.13)

onto the eigenspaces of o3. Assume that the particle is in a state i before
the measurement of o3. Then, after the measurement, the particle is either
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in the state Pi or in the state (1 — P)v, depending on the result of the
measurement.

The measurement of an observable projects the state vector into the
subspace that corresponds to the measured result. This changes the
state, except if the state already belongs to that subspace.

For wave packets, the projection postulate claims that a measurement
causes an instantaneous “collapse.” Let us discuss this with the help of
an example. Consider a spinor-wave packet that splits into two spatially
separated parts when entering a Stern-Gerlach apparatus.

H CD 3.5.3 and 3.12.1 show the splitting of a quantum wave packet in
H an inhomogenous magnetic field (Stern-Gerlach apparatus) without
H showing the measurement of the state.

Measuring the deflection of the particle (the which-way information) tells
us in which part of the wave packet we are going to find the particle. This
amounts to a measurement of the position. The projection erases the “wrong
part” of the wave packet and keeps only the part that agrees with the result
of the measurement. This instantaneous collapse to the “right part” appears
dramatic only if the wave function is regarded as a physical field. I prefer to
see the wave function as a container of physically available information about
the particle at each moment. Then, the collapse just reflects the fact that
new information about the position of the particle has become available.?

In any case, the projection postulate is a rather simple model of the
measuring process. Any real measurement involves several physical systems
(the object, a measuring apparatus, and an observer), and any description
involving only the states of the measured object can only be a crude simpli-
fication.

4.2.3. Stern-Gerlach filter and state preparation

We measure a qubit observable ) by sending the qubit into an appropri-
ate measurement device (see Fig. 4.2) and by determining through which
channel it leaves the apparatus. One radical method to obtain this which-
way information is to block one of the paths in the apparatus, say the path
corresponding to the eigenstate 12. Then, we can be sure that all particles
emerging from the apparatus are in the other eigenstate ;. The modified

2This does not mean that there has to be a conscious observer to register that in-
formation. With “becoming available” I mean that in the combined system consisting of
qubit and measuring apparatus the information is physically realized in a way that it has
influence upon the time evolution in the future.
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FIGURE 4.4. A Stern-Gerlach filter is a Stern-Gerlach ap-
paratus where one of the partial beams is blocked off. All
particles emerging from this device have spin-up (with re-
spect to the positive z-direction). Hence, the Stern-Gerlach
filter is a device for preparing the state ¢ .

Stern-Gerlach apparatus with one blocked channel will be called a Stern-
Gerlach filter (see Fig. 4.4). A filter is a device that passes only particles
with a certain value of the observable the filter measures, that is, particles
with a certain property. In the formalism, properties are represented by
projection operators. For example, the Stern-Gerlach filter for the state ¥4
shown in Figure 4.4 is the physical equivalent of the projection operator
P =)y .

A filter serves to prepare a system in a certain state. For example, if
we need a qubit in the state ¢, we can send it into the filter shown in
Figure 4.4. When the qubit (whose initial state may be unknown) leaves the
filter, then it is in the desired quantum state ¥,. When it gets absorbed or
reflected (which, in principle, can be detected), then our attempt to prepare
1+ has been unsuccessful, and we have to repeat the preparation procedure
with another qubit.

A state preparation requires only a single measurement. Hence, the state
1) that is obtained in that way characterizes a single quantum system.

In Section 4.4.1 below, we are going to prove that any state of a qubit
can be prepared with an appropriately oriented Stern-Gerlach filter.

The act of projecting a spinor-wave packet onto an eigenstate of the
spin by blocking one path in the Stern-Gerlach apparatus is shown
in CD 3.7, CD 3.12.2, and CD 3.12.3. In CD 4.3, we simulate an
experiment where qubits emerging from a random source are first
prepared in the state 1, and then the observable o3 is measured.
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4.3. Ensemble Measurements

4.3.1. State verification

The state 1) describes how a qubit was prepared. Hence, it is meaningful to
speak of the state of an individual qubit. But what is the meaning of the
probabilities that quantum mechanics allows us to compute for this state?
Can we associate probabilities with single events? Indeed, there are ap-
proaches to probability theory that attempt to do just that.® But no matter
how you think about this, a quantitative verification (or falsification) of the
predicted probabilities can only be done by repeating an experiment very
often and by counting the various outcomes. Therefore, we make a clear
distinction between single measurements (which we also called elementary
experiments) and ensemble measurements.

An ensemble measurement consists of repeated elementary experiments
performed on a very large number of identically prepared systems.

An ensemble measurement of o3 in a Stern-Gerlach apparatus divides an
ensemble & of incoming particles into two sub-ensembles £, and £_ according
to the which-way information obtained in the course of the experiment. One
then counts the numbers n, and n_ of particles in the sub-ensembles and
divides by the total number of particles n. If n is large enough, the fractions
n4 /n and n_ /n are approximations to the probabilities for spin-up and spin-
down, respectively. That is, for qubits with initial state 1), we obtain for the
probabilities (4.12):

Ppoipy R % for n large. (4.14)

A probability distribution can only be verified by an ensemble measure-
ment, where we count the fraction of elementary measurements with a
specified outcome.

CD 4.4 simulates a measurement of the observable o1 on qubits pre-
pared in an eigenstate of o3. In CD 4.5, you can determine the
probability that a qubit in the state ¥, is found with spin-up in a
Stern-Gerlach apparatus that is rotated through an arbitrary angle
a about the direction of the beam.

3According to the Bayesian point of view, the numerical value of the probability is a
measure of the plausibility one gives to a hypothesis on the basis of available information.
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When experiments are actually performed, one often works with a beam
of particles, and the probabilities are found by measuring the intensities
of the partial beams emerging from the Stern-Gerlach apparatus. Thus,
ensemble measurements are carried out automatically. Note that we do not
consider interference or interaction between different members of the same
ensemble. In order to make sure that the particles of the ensemble are indeed
independent of each other, one can make the intensity of the particle beam
so low that one particle is already in the detector before the next particle
leaves the source. It is an experimentally verified fact that all predictions of
quantum mechanics remain valid for this situation.

4.3.2. Determining an unknown state

Ensemble measurements are also necessary to determine an unknown state
1 (determinative measurement). In order to determine an unknown state
¥ = c4 ¥4+ + c_1p_ experimentally, we have to measure, among other things,
the probability |c, |*> = 1 —|c_|?. Counting a finite number of spin-up events
of course cannot give the exact numerical value.* An accurate state deter-
mination is impossible with a finite number of elementary measurements.

An ensemble measurement of o3 in the state ¥ = ¢y +c_1)_ can reveal
the values of |c|? (with a fidelity depending on the number of elementary
experiments). But even the knowledge of |c4| is not sufficient to determine
the state (unless the state is one of the eigenstates of 03). Because cy are
complex numbers, we can write ¢y = |c4| exp(i¢+) and

b =9 (Jep vy + [o-] @72 ), (4.15)

The overall phase ¢4 has no physical significance, because all vectors in the
one-dimensional subspace spanned by 1 represent the same state. But the
relative phase ¢, = ¢_ — ¢4 has a physical meaning. (For example, the
linear combination 14 + €™ ¢)_ with relative phase 7 is orthogonal to the
linear combination ¢ +1_ with relative phase 1.) In order to determine ¢,,
one also has to measure the probabilities for spin-up and down with respect
to other directions (see the exercises below).

4A notable exception occurs if we know the orientation of the Stern-Gerlach apparatus
that has been used to prepare the unknown state. Then a single measurement with a Stern-
Gerlach apparatus in the same orientation can tell you whether the state was prepared as
spin-up or spin-down.
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In order to measure an unknown state exactly, one would need an infinite
ensemble of identically prepared systems. Moreover, it is not sufficient
to measure only o3. In general, one needs also information about the
other components of the spin.

It is believed that a qubit can work as a basic information processing unit in a
quantum computer. Quantum computers have a large potential, because the
superposition states of a qubit hold much more information than a classical
bit. The main problem with quantum computers is that this information
is not directly accessible. A quantum computer has no advantage if it is
necessary to repeat the measurement many times in order to determine the
final state of the qubit holding the result.

EXERCISE 4.5. Assume that a qubit is prepared in one of two known
non-orthogonal states 1 and ¥o. Can you decide with a single measurement
which of the two states was actually prepared?

EXERCISE 4.6. With p € [0,1] and ¢ € [0,27), consider the C?-vector

Y =/pYsr +/1—pei_. (4.16)

Can we reasonably assume that any qubit state is represented by a vector like
this? What is the physical meaning of p? Describe a procedure for measuring
p. Can you measure p in a single elementary measurement, or is it necessary
to perform an ensemble measurement?

EXERCISE 4.7. Given ¢ as in the previous exercise, express the probabil-
ity q for finding spin-up in the x-direction in terms of p and ¢. Proceed to
show that some information about the relative phase ¢ can be obtained from
a measurement of o1. More precisely, show that

q—1/2
vp(l—p)
EXERCISE 4.8. The probabilities p and q from the previous exercises still

do not determine v uniquely. What is the remaining ambiguity? Would it
help to measure o9 ?

cos ¢ = (4.17)

If we perform a sufficiently large number of measurements on qubits
in a state v, we can get a good approximation to the true state, be-
cause the measured relative frequencies approximate the true prob-
abilities. This process is called state estimation. It is illustrated by
CD 4.6. This simulation uses the results of Exercises 4.6—4.8.
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4.3.3. Classical teleportation is impossible

Our observations about preparing a state (of individual qubits) versus de-
termining the state (of an ensemble) are often described in a pregnant way
as follows:

It is impossible to measure the state of single qubit in such a way that
the acquired information is sufficient to prepare another qubit in the
same state.

Consider the following setup (see Fig. 4.5). A physicist called Alice re-
ceives a qubit in a quantum state . It is assumed that the preparation
procedure and hence the state of that qubit is unknown to Alice. She mea-
sures the state of the qubit with some measuring apparatus M. Then she
tells the result to another physicist called Bob who resides in a distant labo-
ratory. This information transfer is done by classical methods, for example,
via telephone. Bob uses that information to choose a certain preparation
procedure and to prepare a qubit in some quantum state 1/. Can one ar-
range things in such a way that for every possible input v, Bob’s output 1)’
is identical with ? This would be called classical teleportation,” because
the information transfer uses classical bits and bytes.

We can test the reliability of any proposed teleportation scheme as fol-
lows. We send to Alice a sequence of qubits in randomly chosen states only
known to us. Then we measure some observable on the qubits produced
by Bob. As we know the states of the input qubits, we can predict the
statistical distribution of values measured on these qubits. A successful tele-
portation would mean that any measurement of Bob’s output gives the same
distribution as if the measurement was performed directly on Alice’s input.
This is impossible, because the measurement done by Alice on an individual
qubit gives insufficient information to infer the preparation procedure used
for that qubit. Hence, Bob has to guess the preparation procedure for each
qubit, and our statistical test will reveal his errors. The failure to teleport
qubit states in that way is remarkable, because the teleportation of classical
bits obviously presents no problems.

The impossibility of the classical teleportation is related to the fact that
a quantum state cannot be copied: There is no physical process that uses a
qubit in some (unknown) state ¢ in order to prepare two qubits in the same
state ¢. (This “no-cloning theorem” will be proved in Section 6.8.4 below).
Otherwise, Alice could use a quantum copier to produce many copies of the

5The commonly used expression “teleportation” is badly chosen. One does not at-
tempt to transfer the qubit itself (“only” its state), and the transfer is by no means
instantaneous.
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FIGURE 4.5. The (impossible) classical teleportation proto-
col. Alice receives a qubit in a state 1 and performs some
measurement. The result is sent to Bob via a classical infor-
mation channel. On the basis of this information, Bob tries
to prepare a qubit in the same state.

input and estimate the state via an ensemble measurement as described in
the previous section. Alice can then advise Bob to produce a more or less
accurate copy of the input. (It is still impossible to reconstruct the state
exactly on the basis of a finite number of measurements.) In Section 6.6.2
below, we are going to discuss the possibility of quantum teleportation, where
the classical communication between Alice and Bob is assisted by quantum-
mechanical correlations.

4.4. Qubit Manipulations

It is very natural to ask the following question. If ) is not an eigenstate of
03, perhaps it is a spin-up eigenstate with respect to some other direction
in R3? The answer is given in this section.

4.4.1. All states are “spin-up” in some direction

The component of a vector a € R? in the direction of a unit vector n is given
by the scalar product a - n. Similarly, the Hermitian matrix

O'-n—< "3 ”1_1”2> (4.18)

ni + ing —ng3

defines the component of the spin in the direction of n. We can measure
the observable o - n with a Stern-Gerlach apparatus whose inhomogeneous
magnetic field is oriented in the direction of n.® Hence, we can also prepare
states that are spin-up in the direction of n by blocking one of the paths in

6The usual Stern-Gerlach method has to be changed in order to measure, say, o2
for particles moving in the y-direction. Nowadays, spin-measurements with respect to
arbitrary directions can be performed on laser-cooled atoms released from a magneto-
optical trap.
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FIGURE 4.6. A Stern-Gerlach filter with magnetic field
pointing in the direction n. It prepares the spin-up eigen-
state of o - n. Every possible state of a qubit has a unique
“spin-up direction” and can hence be realized in this way.

the Stern-Gerlach apparatus. The corresponding Feynman symbol is shown
in Figure 4.6.

The Hermitian two-by-two matrix o - n has the eigenvalues +1 and —1
and normalized eigenvectors

o ng £ 1
Vln) = 201+ n3) <n1 + in2> ' (4.19)

On the north pole n = e, and on the south pole —e, of the unit sphere, we
have to complete the definition (4.19). We choose

by (—es) = (‘f) —_(es). (4.20)

14 (n) defines the state with spin-up in the direction of n, ¥_(n) has spin-
down. The two eigenvalues of o -n are the only possible results of measuring
the spin o in the direction n. It is indeed one of the very counterintuitive
features of the spin that its component along any axis shows just two possible
values. The spin cannot be understood as a classical vector attached to the
particle (see Section 4.8.1 below).

Now, let ¢ be any normalized state in C2. Then

(01)y
n(y) = [ (o2)y |, with (o3)y = (¥, 031), (4.21)
(03)y

is a unit vector in R3. By a little calculation you can verify that v is an
eigenvector of o - n(v) belonging to the eigenvalue +1,

(o n(w)) v = 1. (4.22)

The vector ¢4 (n(¢))) defined as in (4.19) is another eigenvector of o - (1))
belonging to the eigenvalue +1. Normalized eigenvectors are unique up to a
phase, hence

¥ = ey (n(y)), (4.23)
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with some suitable phase factor exp(i\), that is, 1) and ¢ (n(w)) describe
the same quantum state. The phase A is just the argument of the upper
component of 1, because the upper component of v, (n) is defined to be
real-valued for all n. We call n(¢) the spin-up direction of 1.

Conversely, if i1 is some unit vector in R3, then v, (1) is the correspond-
ing spin-up eigenstate and

n(y4(n)) = n. (4.24)

Any vector 1 € C? with the property n(@/)) = n can differ from 4 (n) only
by a phase.

Hence, any vector ¢ € C? can be interpreted as a spin-up state with
respect to a unique direction n(t)). The spin-up direction in turn determines
the vector ¥ uniquely up to a phase factor.

There is a one-to-one correspondence between directions n € R3 and the
states of a qubit. The correspondence is given by Eqgs. (4.19) and (4.21)

ne i), %o n). (4.25)

For a given n, the spinor ¢4 (n) is the normalized spin-up eigenvector
of o - n (it is unique up to a phase). For a given v, the components
of n(v) are the expectation values of the Pauli matrices in the state 1.
Any state of the qubit can be prepared as a spin-up eigenstate with an
appropriately oriented Stern-Gerlach filter.

The mapping ¢4 : n — 94 (n) from S? (the unit sphere in R?) into the
set of unit vectors in C? is discontinuous. The lower component has

a phase-discontinuity at the south pole of the unit sphere. The normalized
eigenvectors ¥4 (n) are only unique up to a phase factor exp(i)\(n)). In
Eq. (4.19), we defined the phase by requiring that the first component of ¢4
be real-valued. There is no choice of the phase factor that would lead to a
continuous mapping 4.

The association of qubit states with directions in R3 is visualized
in CD 4.7. In CD 4.8, we represent states by the magnetic needles
already familiar from the visualization of a spinor field in CD 3.8.

EXERCISE 4.9. Verify o -n(y) ¢ = ¢ with n(y) as in (4.21).

EXERCISE 4.10. In spherical coordinates, the azxis n is described by a
polar angle ¥ and an azimuthal angle p. Show that the matriz o - n has the
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following representation in spherical coordinates

o.n— < cos v e smﬁ) (4.26)

e sind  —cosd

EXERCISE 4.11. Show that for any unit vector n in R>, the operator P, =
%(12 + o - n) is a projection operator that projects onto the eigenstate with
spin up in the direction of n. Take an arbitrary state ) = cy iy +c_P_ #P_
and assume that ¢4 > 0 (which can always be achieved by multiplying ¥ with
a phase factor). Show that you can choose n such that Pyt is equal to ¥
after renormalization (that is, Ppatp+ = ki with some constant k). Hence, it
is possible to prepare any state except ¥_ by applying a Stern-Gerlach filter
to particles that are originally in the state Y .

EXERCISE 4.12. Compute n(vy) for 1 = /pyy + /1 —pe®_ and for

.

4.4.2. Rotations of a qubit

Just as rotations of wave functions are generated by the orbital angular-
momentum operator L, the rotations of qubits are generated by the spin
operator S. The rotations around the axis given by a unit vector n are
generated by the component of the spin with respect to this axis, that is, by
S-n.

Spinor rotation:
The rotation of a particle with spin 1/2 through an angle o about an
axis n is given by the unitary operator
i
Ula) = exp(—ﬁ S- a), with a = an. (4.27)
In the standard representation,

Ula) = exp(—% o- a) = (cos %) 15 —i(sin %) o - n. (4.28)

The exponential function of the matrix o - n can be calculated by the power

series
e 1 CanNk k
exp(—150' -n) = kZ_Ok! (—1 5) (o -m)”. (4.29)
The result (4.28) is easily obtained if we use the property (o -n)? = 1, and
compare the resulting power series with the well-known Taylor series for the
sine and cosine functions.
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EXERCISE 4.13. Verify that the infinite sum (4.29) indeed gives (4.28).

The operator U(a) is unitary, U(a)? = U(a)™! = U(—a), and it has
the astonishing property that

U(2mn) = —1,. (4.30)

This means that a rotation through an angle 27 turns a state vector into
its negative. We can accept this, because a vector ¢ and its negative —
describe the same state (they are elements of the same ray in the Hilbert
space).

CD 4.8 visualizes rotations of a qubit around the z- and y-axes. A
rotation through an angle 27 multiplies the state vector with —1.

Now it is time for a little consistency check. On the one hand, rotations
in R? are given by orthogonal 3 x 3 matrices R(a) with determinant +1.
On the other hand, we have claimed that a unitary two-by-two matrix U ()
describes a rotation of spinors. This is only meaningful if a rotation by U ()
turns the basis state ¢4 into the spin-up eigenstate with respect to an axis
that is obtained from the z-axis by the rotation R(a)). More generally, for
any unit vector n € R3,

U(a) 4 (n) = ¢4 (R(a)) (up to a phase). (4.31)

It is easy to verify this statement in special cases; a proof of the general case
is left to Section 4.4.4. For example, consider a rotation around the y-axis,
which maps the z-direction into the positive x-direction. With e;, e,, and
e, denoting the unit vectors in R?,

R(me,/2) e, = e,. (4.32)

It is easy to see that the corresponding unitary two-by-two rotation matrix

mwm:ée‘ﬂ. (4.33)

Hence, the basis vector 14 (spin-up in z-direction) is transformed into

Utre, /264 =5 (}) — (40 (434)

and it is easy to verify that this is an eigenstate of the matrix o belonging
to the eigenvalue +1 (spin-up in z-direction).

We note that any unitary two-by-two matrix U can be written as exp(iQ)
with some Hermitian matrix (). Because any Hermitian two-by-two matrix
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can be written as @ = 01y — a - /2 (see Eq. (4.6)) we find that every
unitary matrix is of the form

U =ele /2, (4.35)

Characterization of unitary qubit transformations:

Up to a phase factor, any two-by-two unitary matrix U can be interpreted
as a rotation matrix, that is,

U=¢"U(a), (4.36)

with suitable parameters § and a. The unitary rotation matrices U ()
are distinguished by the property that their determinant is +1,

DetU(ax) = 1. (4.37)
For example, the matrix
1 /1 1 1
Up = — =— (o140 4.38
H \/5 (1 _1) \/5( 1 3) ( )

can be written as

1
Uy =1iU(mn), withn= 7z (1,0,1). (4.39)

The matrix Uy is called the Hadamard transformation. It is unitary and
Hermitian. Therefore, it also satisfies Ug = 15. We find Uy 01 Uy = 03 and
Uy o3 Uy = 01. Hence, Uy maps the eigenstates of o3 onto the eigenstates
of o1. This is intuitively clear, because the rotation in (4.39) exchanges the
z-axis with the z-axis.

EXERCISE 4.14. Show that with n(v) as in Eq. (4.21),
U(2an(y)) ¢ = e . (4.40)

4.4.3. Time evolution of the spin in a magnetic field

Qubits realized as particles with a magnetic moment can be rotated with
the help of a homogeneous magnetic field. Neglecting the kinetic energy, the
energy of a particle with spin in a magnetic field B is

H=—p-B. (4.41)

As an example, we consider an electron. Using Eq. (3.58), we insert g =
—pup o and obtain the energy operator (in the standard representation)

H=upo-B. (4.42)
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—_— U(a) N

FIGURE 4.7. Diagram representing the unitary transforma-
tion U(a) of a qubit.

The unitary operator of time evolution generated by H is thus a spinor
rotation

exp( = 1 Ht) = exp(—i Ly o) with w=22PB. (143)
h 2 h

The time evolution of a particle with spin 1/2 in the presence of a magnetic

field B is described by a rotation U(tw) where the axis of the rotation is

defined by the direction of B. The rotation has the uniform angular speed

(using pp = eh/2m,)

&
w = —

o |B|, (4.44)
in agreement with the classical result (3.27). Hence, we can always perform
an arbitrary rotation of the state just by putting the particle into a suitable
magnetic field for a certain time. At least in principle, we have a method to
realize an arbitrary unitary transformation (up to a phase) in an experiment.

It is a crucial assumption in quantum information theory that any uni-
tary transformation can be applied to a qubit. The Feynman symbol for a
unitary transformation U is shown in Figure 4.7.

If the qubit is not realized by a particle with spin, but by two states of
some other system (for example, by the polarization states of photons; see
below), then the realization of unitary transformations depends on physics
of that system and the experimental means available for the manipulation
of the system.

4.4.4. Special topic: Spinor rotations

There is a one-to-one correspondence between vectors a € R? and Hermitian
two-by-two matrices with trace zero. This correspondence is given by the

mapping
o as al — iCLQ
a—a-o= (al tias  —ag > (4.45)
In Exercise 4.2, it was shown that the components of the vector a can be
obtained from a given Hermitian matrix ) with trace zero by the formulas

o = %Tr Qo). (4.46)
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Furthermore, a little calculation shows that the determinant of a-o is related
to the length a of the vector a by

Deta-o = —a-a= —ad’. (4.47)

Now an arbitrary unitary transformation U transforms a Hermitian matrix
Q = a- o into a matrix Q' = UQUT. A similarity transformation does
not change the trace of a matrix, therefore Tr@Q’ = 0. Moreover, ' -
(UQUNHT = (UNTQTUT = UQUT = @', hence @’ is again Hermitian. We
may write

Ua-cU'=b-o. (4.48)
This shows that the similarity transformation with a unitary matrix induces
a unique mapping between vectors in R?. The vector b can be determined
from our trace formula Eq. (4.46),

3
1 1 1
bk:§Tr(0kb~0'):§Tr(akUa~0'UT):§ ZTY(UkUJjUT)aj (4.49)

j=1
Hence, the transformation a — b is obviously described by a 3 x 3 matrix
with the matrix elements

1
Ryj = 5 Tr (04U 0 uh. (4.50)

Because the determinant of a complex two-by-two matrix is not changed
under a unitary transformation, we find that

—a?’=Deta-oc=DetUa-ocU ! =Detb-o = —b> (4.51)

Hence, b has the same length as a, which means that the transformation
is orthogonal. In fact, one can show that the matrix Ry; is just the 3 x 3
rotation matrix corresponding to U. The matrix U can be written as U =
U (ax) with a uniquely given rotation vector a. The phase factor ¢ drops
out of the formula (4.50), and

1
Ryj =5 Tr (oxU () 0; UT () = R(ax)y; (4.52)
are just the matrix elements of the 3 x 3 rotation matrix defined in Eq. (1.11).

EXERCISE 4.15. Combine the equations above to show that (4.48) can be
written as

Ul@)a-ocU(a)™! = (R(a)a) - 0. (4.53)
Use this to show the relation
3
U)oy Ula) =) R(a)yoj, k=123, (4.54)

J=1
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which is usually abbreviated to
Ul@)'oU(a) =R(a)o. (4.55)

EXERCISE 4.16. With n(y) defined as in Eq. (4.21), show that

n(U(a)y) = R(a) n(v). (4.56)

EXERCISE 4.17. Prove the relation

Ua)p = e ¢y (R(@)n(v)), (4.57)
where X is the argument of the first component of the spinor U(a)i.

The correspondence between unitary rotation matrices U(a) and or-
thogonal matrices R(a) is not one-to-one. As noted earlier, U(27n) = —15,
hence

U((a+27)n) = U(am) U(2mn) = U(am) (—12) = —U(an), (4.58)

and the matrices £U(an) are both mapped to the same matrix R(an) by
(4.50).

Recall that a symmetry transformation is defined as a ray transformation
(see Section 1.1). Unitary transformations U; and Us that differ only by
a phase factor, U; = e*Us, define the same symmetry transformation U.
Hence, the mapping

R(a) — U(a) (4.59)

is one-to-one from the group of rotations into the set of symmetry transfor-
mations. It is called a ray representation or projective representation of the
rotation group.

4.4.5. Transition probabilities between qubit states

It is a strange result of quantum mechanics that a qubit prepared with
spin up in the z-direction can be found with spin up with respect to some
other direction n (except in the negative z-direction). Here, we are going to
determine the probability for this to happen. In particular, we are going to
prove the following important result for the transition probability:
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Preparative 1/)+ (Il 2)

measurement
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Y o P_(ny)

Determinative
measurement

FIGURE 4.8. Experimental setup for determining a transi-
tion probability. All particles are prepared in the spin-up
eigenstate in the direction of n;. In the second Stern-Gerlach
apparatus, the magnetic field points in the direction defined
by no.

Qubit transitions:

Let ¢ and ¢ be any two qubit states (unit vectors in C?). Then, the
transition probability between ¢ and ¢ is

2 _ a\?
(@) = (cos 5 ) (4.60)
where « is the angle between the spin-up directions of ¢ and ¢, that is
cosa =n(y) - n(p) (4.61)

with n(-) defined as in Eq. (4.21).

You can see again that only the states with spins pointing in opposite
directions (o = 7) are orthogonal.

In order to prove this result, we note that any state is “spin-up” with
respect to some axis. We denote the spin-up direction of 1) by n; and the
spin-up direction of ¢ by ns. Hence, ¥ = ¢4 (n;) and ¢ = 14 (ny), at least
up to a phase factor. We can ignore the phase factors, because they play no
role for the transition probability anyway. The experimental arrangement
for measuring the transition probability from 4 (n1) to ¢4 (ng) is depicted
in Figure 4.8.

Next, we perform a suitable rotation such that the vector n; becomes
the unit vector e, in z-direction and such that ny becomes a unit vector m
that lies in the zz-plane. This rotation is characterized by some rotation
vector agg. We can apply the unitary matrix U(ay) to both spinors ¢ and ¢
without changing the scalar product (this is just the definition of unitarity).
Then

(0, 0)* = [y (1), ¥4 (n2))]? = [ (¥4 (2), ¢ (m)) 2. (4.62)
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We can rotate e, into the vector m by a rotation through an angle a around
the y-axis. The angle « is the same as the angle between the vectors n; and
ny. The rotation matrix for rotations around the y-axis is

_ (cos(a/2) —sin(a/2)
Ulaey) = (sin(a/Z) cos(a/2) > ’ (4.63)

and we have U(aey)tYi(e.) = ¢4(m) (up to a phase). Now, because
4 (ey) = 14, the transition probability becomes simply

(W, = (s, Ulae, )i = (cos 3) (464)

You can verify the formula (4.64) with the screen experiment CD 4.5.

EXERCISE 4.18. Use Equation (4.53) to show the following. Assume
that a qubit is in the state v, with ||¢| = 1. Given an arbitrary unit vector
n € R3, write m = R(a)n, where R(a) is the 3 x 3-rotation matriz that
transforms the spin-up direction n(v) into e, (the unit vector in the posi-
tive z-direction). Then, the expectation value of the spin-component in the
direction of n is given by the third component of m, that is,

(0 -n)y = (Y,0 -ny) =ms. (4.65)

4.5. Other Qubit Systems

4.5.1. Photon polarizations

In many books, two state-systems are discussed with photons as the primary
example. Indeed, many qubit experiments discussed so far are much easier to
accomplish with photons and polarization filters than with spin-1/2 particles
and Stern-Gerlach devices.

Photons are massless particles with spin 1. They are quantum mechan-
ical objects, and the electromagnetic wave may be regarded as their wave
function. A classical electromagnetic wave is a transverse wave where the
electric and the magnetic field vectors E and B are perpendicular to each
other and to the direction of the propagation. The wave is said to be lin-
early polarized if E is always in a plane. If E rotates on a circle, the wave
is circularly polarized. The square of the amplitude of the electromagnetic
wave, that is, the intensity of the light beam, is proportional to the number
of photons in the beam. Photons do not interact among themselves because
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FIGURE 4.9. A clacit crystal is a natural Stern-Gerlach ap-
paratus for photons.

they are chargeless.” They are bosons, which means that an arbitrary num-
ber can occupy the same state, and hence it is easy to perform experiments
with a large ensemble of particles. For light beams with low intensity, the
number of photons in the beam can be counted with a photomultiplier.

But photons are unusual because they are massless, and they move with
the velocity of light. The wave equation that describes the propagation
through space and time is relativistically invariant and hence completely
different from the Schrédinger equation. But here we are only interested in
the internal degrees of freedom that are related to the spin of the photons.

We distinguish two polarization states of photons, v, and vy,. These two
states can be distinguished very easily using a birefringent crystal (calcit),
which is the analog of a Stern-Gerlach apparatus (see Fig. 4.9). We obtain a
polarization filter if one of the beams is prevented from passing the crystal
(nicol prism). Such a filter can also be realized by a thin sheet of transparent
plastic with embedded microcrystals. Hence, unlike a Stern-Gerlach filter,
a polarization filter is an everyday device. Probably you own polarization
filters in form of sun glasses.

Assume that the photons move in the positive y-direction. Then, we
make the following identification: The basis vector ¢, € C? describes the
state 1, of photons that pass a vertically oriented polarization filter. The
vector ¢_ € C? is the state 1/}, of those photons that pass a horizontally ori-
ented polarization filter. The orthogonality of these two states is confirmed
experimentally, because none of the particles emerging from a vertical po-
larizer can pass the horizontal polarizer and vice versa.

By measuring the fraction of particles that can pass a second polariza-
tion filter rotated through an angle o against the first, we can determine
the behavior under rotations experimentally. Denote by ¢4 (¢_) the state

A very small attractive interaction between photons has been predicted due to non-
linear effects in quantum electrodynamics.
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of photons that pass through a polarization filter obtained from the verti-
cally (horizontally) oriented filter by a rotation through the angle o. The
new states are also orthogonal, (¢4, ¢_) = 0, and hence they form another
orthogonal basis in C2. Hence, we assume that the new basis {¢,,¢_} is
related to the reference basis {1y, 1y} via a unitary transformation:

¢+ =V(a)hy, o-=V(a)yn. (4.66)

EXERCISE 4.19. Try to determine the matriz elements of the two-by-
two matriz V(a) on the basis of the following observations. By measuring
intensities, one obtains the transition probabilities

(W, 01 )7 = [(¥n, 6-)|* = cos® v,
(v, 6-)* = |(¢n, 64)|* = sin® a.

Moreover, we have (verify this!)

<¢+7 ¢—> = <¢+a¢+><¢+7 ¢—> + <¢—71/}V><1/}h7 ¢—> =0. (468)
What can you learn from all this about the matriz V («)?

(4.67)

It turns out that the rotation matrix can be chosen as

) = U(2ae,). (4.69)

cosa —sino

Via) = exp(—ioya) = <sina cos

Hence, the eigenstates of o9 remain invariant under rotations. These states
are interpreted as circularly polarized states,

YR = \}i G) = \2(% + itn),

1 /i i .
YL = 7 (1> = E(i/)v — ithp).
Note that the generator of rotations in the plane orthogonal to the direction
of motion is oy, and that it has the eigenvalues +1 (“spin 1”). The compo-
nent oo of the angular momentum in the direction of motion is also called
the helicity. Hence, the circularly polarized states are the helicity eigenstates
of the photons.

The eigenstates of o are obtained from 1, and ¥, by a rotation through

/4. We have
1 /1 -1

(4.70)
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and hence

1 /1 1
o4 = V(ﬂ'/4) Py = E (1> - ﬁ(wv + wh)7 (4‘72)

1 /-1 1
6-=Vin/)in = ( : ) — (b + )
The vector ¢ describes the state of linearly polarized photons that can pass
a polarization filter rotated through an angle of 45° against the vertical axis.
¢_ corresponds to a linear polarization with an angle of 135°.

You can see that the polarization states of the photon are realized mathe-
matically in exactly the same way as the spin 1/2 states of massive particles,
but the interpretation of the state vectors and operators is quite different.
Whereas exp(ioea) can be interpreted as a rotation in space (about the di-
rection of the light ray), the unitary operators exp(ioj«) and exp(ioga) have
no such interpretation.

At first sight, it also appears strange that photons should be a two-
state system, because spin 1 lets us expect a three-state system. But for a
particle moving at the velocity of light, the internal (rotational) degrees of
freedom are reduced. For the sake of a heuristic argument, let us consider
the photons as a limit case of particles with m > 0, v < ¢. In the limit
v — ¢, the Lorentz contraction reduces the rest frame of the particles to a
plane transverse to the direction of motion. Hence, the rotational degrees of
freedom are reduced to the rotations around the axis defined by the direction
of motion. The rotational motion can be clockwise and counterclockwise,
resulting in the two helicity eigenstates. The linearly polarized states are
just superpositions of the helicity states ¥g and ¥y.

4.5.2. Spatial states of photons

The spatial part of a photon’s wave function can also be used to realize a
qubit. Consider the Mach-Zehnder interferometer depicted in Figure 4.10.
In this arrangement, the photons can only occur in two states: moving up
() or moving down (\,). We denote these states by 1, and 14, respec-
tively. These two states form an orthonormal basis in the Hilbert space of
the system. In this description of photons, we ignore the polarization and
consider only the two alternative directions of motion. A general state of the
qubit is a superposition of up-moving and down-moving photon states. Such
a state can be prepared by sending a photon through a beam splitter. Let us
describe the action of the beam splitters and mirrors in the Mach-Zehnder
interferometer with repect to the reference basis {1y, ¥q}.

Assume that a photon enters the first beam splitter from below. This
photon is initially in the state 1,. The beam splitter splits the photon’s
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FiGURE 4.10. The Mach-Zehnder interferometer. It con-
sists of two symmetric 50/50 beam splitters BS; and BSy
(e.g., half-silvered mirrors) and two mirrors M; and Ms. In
this setup (ignoring polarizations), the photons are “spatial
qubits.” The two possible states are described as “moving
up” and “moving down.” These basis states can be mea-
sured by two detectors Dy or Dy on the possible paths of the
photons.

Vup

Y

Uy o, Uy o

wdown

Ficure 4.11. The Mach-Zehnder interferometer of Fig-
ure 4.10 as a qubit diagram. The beam splitters can be de-
scribed by Hadamard transformations and the two mirrors by
o1. The pair of detectors D; and Ds is an analyzer measur-
ing the observable that is represented by the matrix o3 with
respect to the reference basis {1y, 1¥q}.

state into two parts of equal size, one moving up, the other moving down.
Therefore, after the beam splitter, the photon is in an equal superposition
of ¥, and 1gq. The action of the beam splitter on the state 1, may thus be
described by

1
Yu — 7 (tha + ¥a) (4.73)

Similarly, a photon incident from above in the state 14 is converted into
another equal superposition of v, and 4. If the beam splitter is to be
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described by a unitary transformation, then orthogonal initial states have
to be converted into orthogonal states after the beam splitter. Hence, we
assume

Yy —

V2
which is orthogonal to the final state in (4.73). The unitary transformation
describing this transformation is the Hadamard transformation Uy defined
in (4.38).

Now, let us consider the mirrors. Obviously, in the given arrangement,
the mirrors just convert the state ¢, into g and vice versa. This is conve-
niently done by the (unitary) matrix o1. Hence, the combined action of the
Mach-Zehnder interferometer is described by the composition of the three
unitary transformations Uy, o1, and Uy, as depicted in Figure 4.11:

(Yu — a), (4.74)

UMZ = UH 01 UH = 03. (475)

Another important operation that can be performed with spatial photon
states is to put a phase shifter (a waveplate shifting the phase of an elec-
tromagnetic wave) in the path of one photon. With respect to the basis
{1y, ¥q}, the phase shifter placed in the path of an up-moving photon is
represented by the matrix ®(«) and in the path of a down-moving photon

by (), where
v = (4 ). wa= (5 ) (4.76)

Figure 4.12 shows a Mach-Zehnder interferometer with additional phase
shifters and the corresponding qubit diagram. Up to a phase factor, the
operator V() Uy ®(5) o1 Uy P(cr) can represent any unitary operator in the
Hilbert space of the qubit.

EXERCISE 4.20. Verify that

1= () Uy oy Uy (4.77)
o9 = —iUy @(7) 01 Uy. (4.78)

If you send a photon from below into a modified Mach-Zehnder interferom-
eter according to Figure 4.12 with o =0, 8 = w, v = 0, in which direction
will the photon finally leave the interferometer?

EXERCISE 4.21. There is a certain freedom in describing the action of the
beam splitters and mirrors. By definition, a 50/50 beam splitter is unitary
and converts each state of the reference basis into a superposition where both
basis states occur with equal probability 1/2. What is the remaining freedom?
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Phase-
shifter

> P()H Uy o H®B)H Vs qY0) =

FiGURE 4.12. The Mach-Zehnder interferometer with addi-
tional phase shifters is a universal unitary gate. With a suit-
able choice of the angles «, 3, and ~, it can perform an ar-
bitrary unitary transformation with the qubit (up to a phase
factor).

Can we also use the matriz
1 /1 1
Ugs = ﬁ <i 1) (4.79)
to describe the action of the beam splitter? Discuss also the freedom to

describe the action Uy of the two mirrors on the qubit’s state. Can you
define Ugg and Uy in such a way that Ugg Uy Ugg = 17

EXERCISE 4.22. Show that

Ulaey) = e 2 0(7) Uy ®(r) 01 Uy, (4.80)
U(ae,) = —ie 92 W (—n/2) Uy ®(a) o1 Uy (n/2), (4.81)
Ulae,) = —e %20 (a) Uy 01 Uy ®(71). (4.82)

Hence, the qubit rotations about the x-, y-, and z-axes can be represented by
a Mach-Zehnder interferometer equipped with additional phase shifters as in
Figure 4.12.

4.5.3. Two states of a harmonic oscillator

Consider a one-dimensional harmonic oscillator. More precisely, we consider
only the subspace spanned by the ground state ¢g and the first excited state

o1,

oofa) = (1) i exp(_f), 61(x) = V2 do(x). (4.83)
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These two eigenfunctions span a two-dimensional Hilbert space, and hence
they realize a qubit. This simple mathematical model of a qubit will provide
us with additional ways to visualize two-qubit systems in Chapter 5.

The Hilbert space spanned by ¢g and ¢y is Py; L?(R) where Py; is the
projection operator

Po1 = [¢o){¢ol| + |¢1) (1] (4.84)

Of course, we have to be careful with all measurements and manipulations
in order not to excite the oscillator to energies beyond the first level.
We consider the Hamiltonian operator

1
H= 5(p2 +2?) -1, (4.85)

which is the harmonic oscillator Hamiltonian (in dimensionless units) shifted
by a constant potential. In the subspace spanned by ¢g and ¢1, the operator
H has the eigenvalues —1/2 and 1/2 with eigenfunctions ¢y and ¢;. The
two-dimensional Hilbert space is isomorphic to C2. We can identify ¢q with
Y, € C?, and ¢1 with ¢_. The two-by-two matrix S3 = (1/2)o3 can be
identified with the operator —H, because

(—H)¢o = %%, (—H)¢1 = —%qsl. (4.86)

The position and momentum operators do not leave the subspace Py L%(R)
invariant. You can see this if you write z and p in terms of the ladder
operators AT and A introduced in Book One.

:\}Q(AuA), = -4 (4.87)

Then, for example, x¢1 = ¢ + ¢o/v/2, which is not in Py; L2(R). But we
may consider the restrictions of x and of p to the range of Py, that is, the
operators

i
x

2 = Po12Po1, p= PoipFo1. (4.88)
It is easy to see that
I
€T = — e p—
0 \/i 1 b®o \/i 1
1 ; (4.89)
i‘ = — %) = ——
P1 \/§¢0 pé1 \/§¢1
and we have the following interpretation of the qubit observables,
oy 2z,
09 — \/§ﬁ7 (490)

o3 «—— —2H.
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The time evolution is hence a qubit rotation around the z-axis:

t .
exp(iiag) — e HE (4.91)

4.6. Single-Particle Interference

4.6.1. Interferometer

Consider the following situation. We send a particle in a certain spin state
1 into a Stern-Gerlach apparatus. Ignoring the spatial distribution of the
spinor-wave packet, we describe the spin state (a qubit) by the vector

W= (if) . (4.92)

The two components are deflected into different directions, and the spinor-
wave packet splits into two spatially separated parts,

b — (c()*) + <CO> . (4.93)

Now, assume that we do not make the slightest attempt to determine where
the particle actually is. That is, we make no measurement that forces the
qubit to give away any information about its spin-state (“which-way infor-
mation”). This would certainly change the state of the qubit. Instead, by a
clever arrangement of inhomogeneous magnetic fields, we bring the two parts
of the spinor-wave packet together again, without changing the spin-state of
either part. After the reunion, the initial situation is restored completely.
The final state of the qubit equals the initial state.

Schematically, this experiment is depicted by the diagram in Figure 4.13.
A device that temporarily splits the state of the qubit into separated parts is
called an interferometer. A beam of qubits sent through the interferometer
will split into two spatially separated beams. The two partial beams are
refocused again, and a single beam leaves the interferometer. Input and
output as well as the qubits inside the interferometer are described by the
same qubit state. As an operator acting on qubit states, the interferometer
is just the identity. The importance of such a device lies in the possibility
to manipulate the partial beams individually and then observe the effect by
measuring the output state. Examples will be presented in the following
sections.

It is certainly difficult to build an interferometer on the basis of Stern-
Gerlach devices. But in quantum optics where qubits are realized by pho-
tons, all kinds of interferometers are standard devices. In principle, one
could realize a Stern-Gerlach interferometer for photons by arranging two
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Y — C+¢++C—w— —

FIGURE 4.13. Stern-Gerlach interferometer: The two partial
beams are refocused again (for example, with the help of an-
other inhomogeneous magnetic field with opposite polarity),
and the initial state is restored. The device has no measur-
able effect on the state. It just visualizes the expansion into
the basis of eigenvectors of o3, as indicated below the graph.

Py

> [
Y —> iy (&

FIGURE 4.14. Two birefringent crystals realizing a Stern-
Gerlach interferometer for photons. An additional phase
shifter (retarder plate) in one of the beams can compensate
for eventual phase differences between the partial beams.

birefringent calcit crystals as shown in Figure 4.14. Note, however, that
the Mach-Zehnder interferometer described in in Section 4.5.2 operates in
a different way, which is obvious from the qubit diagram in Figure 4.11.
We also mention neutron interferometers, which play an important role in
experiments illustrating the quantum mechanics of qubits. We refer to the
literature for details (see, for example, the book [8]).

Observing a qubit inside the interferometer changes the physically avail-
able information about the qubit. This amounts to a measurement and
changes the state either to “spin-up” or to “spin-down.” An interferome-
ter with an observer acts like the Stern-Gerlach analyzer in Figure 4.1: In
an ensemble measurement, the which-way information allows an observer to
sort the qubits into two ensembles realizing the states ¥4 and ¢¥_. On the
other hand, if no measurement is made, no projection takes place, and the
state remains unchanged during the qubit’s passage through the interferom-
eter. Indeed, the spatial separation of the two parts cannot be described
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at all in the two-dimensional Hilbert space of a qubit. Hence, the diagram
in Figure 4.13 is just a visualization of the fact that any qubit state v is a
superposition of the two orthogonal states 1 and 1_.

CD 4.9 shows an interferometer operating with or without an ob-
server. In the presence of an observer, the interferometer changes
the state of the qubit into a mixture of qubits with spin-up and
spin-down.

Interferometers are important measurement devices. The spatial sepa-
ration gives us the experimental possibility to manipulate one partial beam
without affecting the other component. The change of the state can be
observed via the interference that takes place when the two parts are recom-
bined.

One cannot help asking what happens if a single qubit is sent through
the interferometer. Will the particle take just one of the two possible ways,
and which? We know for sure that a single particle does not split in two.
If we place detectors along the two paths we always find the entire particle
on just one of the paths (in accordance with the observation that the mea-
surement of o3 always gives a definite result). Nevertheless, it appears as if
the unobserved particle takes both paths at once, because both components
14+ and 1_ are present in the final state . If we do something to one of
the components, the final state will be changed. This phenomenon is called
single-particle interference.

In order to illustrate this strange behavior, we consider several exper-
iments. Each experiment features an interferometer of the type shown in
Figure 4.13. When the experiment is actually performed, the apparatus
temporarily splits the wave packet into two parts that are separated by a
macroscopic distance (see also the discussion about Schrodinger cat states in
Book Omne). Per se, the splitting of the wave packet into spatially separated
parts has no effect on the qubit state and is not reflected by the formalism,
because the motion in space is completely ignored. If no further manipu-
lations are performed, the qubit remains in the same state before entering,
inside, and after leaving the interferometer.

The quintessence of all the experiments is the following: During its pas-
sage through the apparatus, even a single particle can gather information
about the conditions on both paths. Something that happens on one of the
possible paths can change the final outcome. We can put this in a more
abstract way: Whenever there are two possible alternatives for the behavior
of a quantum system, it is wrong to assume that one of these possibilities is
actually realized, unless one performs a measurement.
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Fi1GURE 4.15. Double-slit experiment with Stern-Gerlach in-
terferometers and filters.

4.6.2. A double-slit experiment

The two arrangements of Stern-Gerlach devices shown in Figure 4.15 serve
as a first example exhibiting the interference phenomenon. In both cases, the
first apparatus (a filter) just serves to prepare a qubit in the state 14 (spin-
up in the z-direction). Consider first Figure 4.15(b). The qubit prepared by
the first apparatus is sent through an interferometer oriented in the positive
z-direction. Because

Py = ;5 (4 (e2) — - (e2), (4.94)

the probability amplitudes for both paths in the interferometer are the same.
In a space-time picture, the wave function splits into two orthogonal parts
inside this apparatus (Schrodinger cat state).

The output of the interferometer is collected by a Stern-Gerlach filter
that projects onto the state ¢_. As explained in the previous section, the
interferometer has no influence on the state ¥, of the prepared particles.
But as 14 is orthogonal to the state ¥_, none of the prepared particles can
pass the final Stern-Gerlach filter.

Now, consider Figure 4.15(a). Here, we have blocked one of the paths in
the interferometer (no matter which one). As a consequence, the interfer-
ometer now acts as a filter. Only one-half of the prepared particles can pass,
because (¢4 (ez), ¥ )|?> = 1/2. From the remaining particles another half is
filtered by the final Stern-Gerlach apparatus, because |(1/_, 1+ (e;))|? = 1/2.
Hence, a quarter of the successfully prepared particles finally survive the ex-
periment.
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FIGURE 4.16. Experiment verifying the effect of a rotation
through an angle 27. An interferometer with a unitary trans-
formation in one channel represents, in general, a non-unitary
transformation (except for a = 0, 27, 47).

In CD 4.10.1, you can perform the double-slit experiment as de-
scribed in Figure 4.15. You may verify that the probability to end in
the state ¢_ is 1/4 if one of the paths in the interferometer is blocked.
The probability for the result ¢_ is zero (destructive interference) if
there is no obstacle.

This experiment is the two-state analog of the double-slit experiment
described in Book One. The result is highly paradoxical: If we increase the
number of ways to reach the detector, the probability of getting there actu-
ally decreases. This cancellation of probability amplitudes (if both “slits” of
the splitter are left open) is called destructive interference.

It is strange that the interference also happens if single particles are
sent through the arrangement one after another. The probabilities are thus
accumulated from single-particle events (single-particle interference).

4.6.3. A rotation through 27

The unitary rotation matrix has the property U(2mn) = —15. A rotation
through an angle 27 around any axis turns the state vector into its negative.
The vector — is physically not distinguishable from . If, however, the
state is split into two orthogonal components, then a rotation of only one
of the components will influence the state in a measurable way. Consider
two orthogonal states 11, 19, and the superposition ¢ = 1 + . If you
multiply ¢, by a phase factor, then the state described by 11 + €y is, in
general, different from 1 + 1o, although ey and 1) represent the same
state. Consider the following experiment, depicted in Figure 4.16.

A system is prepared in the state 1, and then enters an interferometer
that splits the beam according to its components with respect to the z-
direction. Because of (4.94), the amplitudes of the two components are the
same. Now a rotation through an angle & = 0 or & = 27 about an arbitrary
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axis is applied to the lower partial beam in the interferometer. If @ = 0
nothing happens, because U(0) = 1. The state v is restored when it leaves
the interferometer and the particle is found in the upper channel of the final
analyzer. If a = 27, the component _(e,) is multiplied by —1. Hence, the
superposition (4.94) is changed into

b= \}5 (4 (e2) + 00— (e2), (4.95)

and the particle is finally detected in the lower channel of the final Stern-
Gerlach apparatus.

CD 4.10.2 simulates an experiment similar to the one shown in Fig-
ure 4.16. You may rotate the qubit in one path of the interferometer
through an arbitrary angle a. However, the transformation is not
unitary unless « is an integer multiple of 27 (see Exercise 4.24).

EXERCISE 4.23. Let Py and P be orthogonal projection operators, such
that P| + P» = 1. An interferometer like the one depicted in Figure 4.16
corresponds to the transformation T' = Py + U Py with a unitary operator U.
Under what condition is T unitary?

EXERCISE 4.24. Assume that in P; = |4 (ez))(V1(ez)], Po =1 — Py,
and that U(a) is a rotation about the z-axis. Show that T'(a) = Py +U(a) P
is not unitary (except for a = 0,2m,4x,...). Show that T(mw)y(e,) = 0.
That is, the apparatus in Figure 4.16 with o = w acts as a filter annihilating
qubits in the state ¢4 (ey).

EXERCISE 4.25. Define T'(«) as in the previous exercise. Compute the
transition probabilities

(W, T(a) i) and  |($-, T(a) ). (4.96)

4.6.4. Interaction-free measurement

The two situations depicted in Figure 4.15 are often described in terms of
an interaction-free measurement and packed into the following story®. Some
malicious person has threatened to put an atomic bomb into a dark room.
It is your task to find out whether this person has spoken the truth and the
bomb is actually there. But there is a difficulty that prevents you from just
looking: The trigger is so sensitive that already the absorption of a single
elementary particle would detonate the bomb. Fortunately, the dark room
contains a perfect vacuum and the light is turned off, so that no gas molecule

8Elitzur7 A.C., and Vaidman, L., Foundations of Physics 2, 987 (1993).
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and no photon inadvertently triggers the explosion. For obvious reasons you
must be very careful. You are not allowed to open the door and turn the
light on. Is it still possible to detect the presence of the bomb?

Despite the total darkness, you have a certain chance to detect the bomb
without catastrophe. You just have to build an experimental setup according
to Figure 4.17 and arrange it around the dark room in such a way that the
bomb, if it is actually there, would block one path of the interferometer.
Next, you send a single particle through the arrangement and had better
look for somewhere to hide.

The idea of the procedure can be explained with the help of the double-
slit experiment in Section 4.6.2. Consider Figure 4.15 and suppose that
we do not know whether one of the paths in the interferometer is actually
blocked. That is, we do not know if the experimental setup is described by
(a) or by (b). We can just send in a particle and see whether it comes out
again. Now, suppose that we detect the particle after the analyzer. Then we
know for sure that one of the paths in the second Stern-Gerlach apparatus is
blocked by an obstacle. The bomb is there! Because the particle has passed
all devices, it has not been absorbed by the bomb. In this single event, the
particle did not interact with the obstacle. The mere fact that it finally
arrives in the detector proves that the bomb is there.

We note that in the presence of a bomb, there is a 25% chance to de-
tect the bomb without actually touching it. This chance can be improved
considerably by the refinement? of the double-slit experiment depicted in
Figure 4.17.

CD 4.11 lets you play around with the apparatus depicted in Fig-
ure 4.17. The simulation contains a detailed step-by-step explanation
of the method.

The filter to the left prepares a particle in the state ¥;. The second
Stern-Gerlach apparatus may or may not contain a bomb that explodes as
soon as it is touched by the particle. If there is a bomb, then it has been
placed such that it blocks the spin-down path of the apparatus. Because
the particle enters the apparatus with spin-up, we are sure that it takes the
upper path. Hence, the bomb is left untouched and the particle leaves the
apparatus, still in the state ¢¥,. Now the arrangement contains a switch
S that diverts the particle and sends it through a device that performs a
rotation U, = U(} e,) around the y-axis through the angle 7/n, where
n is some positive integer. After that, the particle is sent again through

9This experiment was actually done with photons, see Kwiat, P.G., Weinfurter, H.,
Herzog, T., Zeilinger, A., and Kasevich, M.A., Phys. Rev. Lett. 74, 4763 (1995).
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Yes

No

FIGURE 4.17. Schematic arrangement for an interaction free
measurement. It is the goal to determine whether an object
(a bomb) blocks the “spin-down path” of a Stern-Gerlach
magnet. With a probability close to one, the experiment gives
a unique answer. The presence of the bomb is detected with
the help of a particle that apparently never gets in contact
with the bomb. The particle is sent n-times through a circuit
containing a device

the apparatus that possibly contains a bomb. It might seem imprudent to
tempt fate twice, but by choosing n large, we can make the probability of
a catastrophe very small. The probability that the particle takes the upper
path (thus leaving the bomb untouched) is given by

2
Pup = |(¥4, Unty)|? = (cos %) : (4.97)

which is close to 1 if n is large. When the particle (and everybody else)
survives the passage through the apparatus, the process is repeated. The
switch contains a counter, and after n cycles it sends the particle through
an analyzer. Note that the probability that we are still alive is

Pup = (cos 1)% — 1, (4.98)

2n n—o00

which is close to one if n is large. Let us now consider the two cases “bomb”
and “no bomb” separately:

(A) A bomb blocks the “spin-down path”: The Stern-Gerlach apparatus
containing the bomb acts as a projection operator onto 1. After each cycle,
the state 14 is restored with probability pyp. If the particle finally leaves
the circuit after n cycles (with probability py,), the state is still ¢4 and it
will be detected in the spin-up channel of the analyzer.

(B) There is no bomb: If the Stern-Gerlach magnet contains no bomb,
it does nothing to the state of the particle. Hence, in each cycle, the state
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of the particle is changed by the rotation U, applied to it. After n cycles,
the state is

Vinal = Uy 4 = U(mey) g =9, (4.99)
because a rotation through the angle 7 turns spin-up into spin-down. Hence,
the state will be detected in the spin-down channel of the analyzer.

The experiment—although performed with a single qubit—gives a clear
answer: Finding the particle in the state ¥, means “yes, the bomb is there,”
and finding the particle in the state y_ means, “no, there is no bomb.”
And, at least in principle, the probability of obtaining an answer (and thus
surviving the experiment) can be made arbitrarily close to 1.

4.7. Quantum Cryptography

4.7.1. One-time pad

Another application of the quantum mechanics of qubits is the secure key
distribution protocol of quantum cryptography. We consider the following
situation. Alice wants to send secret information to Bob, but an eavesdrop-
per Eve might intercept the message. In order to prevent this, Alice has to
encrypt her message. Presently used encryption methods are only compu-
tationally secure, which means that on the basis of current technology, it is
highly improbable (but not impossible) to crack the encryption within a rea-
sonable time. But there is one (and only one) method that has been proved
to be absolutely secure. It is called the one-time pad or Vernam cipher.'”
The one-time pad uses classical communication to transmit classical bits of
information. It is assumed that Alice and Bob share a secret key. This key
is a string of randomly chosen bits {ki, ko, ..., k,}, with k; € {0,1}. The
message is another string consisting of n bits {my, ma,...,m,}. The key-
string has to be as long as the message-string. Alice encrypts the message
by adding the key-bits to the message-bits. Then, the cryptogram is a string
consisting of the bits

¢i=m;+ ki (mod2), i=1,2,...,n. (4.100)

Alice sends the cryptogram {ci, ca,...cy} to Bob. Bob subtracts the key to
recover the message,

my; :Ci—k‘i (InOdQ), 1= 1,2,...,n. (4.101)

Although the encryption and decryption algorithms and the encrypted mes-
sage are publicly known, it is impossible for Eve to decrypt the message.
Trying every possible sequence of key-bits k; on the message just produces

101t was invented by Gilbert Vernam from AT&T in 1917, see Vernam, G.S., J. AIEE
45, 109 (1926).
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all possible n-bit messages and Eve has no way to decide which is the right
one. To her, any decryption is as likely as any other. In fact, the transmitted
string is just a sequence of random bits that contains no information about
the message. This information about the message is contained in the corre-
lation between the cryptogram and the key. Hence, the code is unbreakable
and the method is secure, provided the key material is secret, truly random,
and used only once.!!

The critical feature of the one-time pad is the exchange of the key infor-
mation between Alice and Bob, because the security of the protocol depends
on the secrecy of the key. If Alice and Bob communicate over a longer period
of time, they are bound to run out of keys, because the keys have to be as
long as the messages and can be used only once. If the necessity arises to
distribute new keys between Alice and Bob, how can they make sure that
information about the key cannot be acquired by Eve? This is the problem
of secure key distribution for which quantum mechanics provides a solution.

4.7.2. Quantum key distribution

Presently, there are several known quantum key distribution schemes. Here,
we are going to describe the B92 protocol.!? This protocol assumes that Alice
and Bob work together (by exchanging classical information) to generate a
new key in a secure way. They use the setup depicted in Figure 4.18. The
method works as follows.

(1) Alice and Bob both generate a sufficiently long list of true ran-
dom bits, S4 and SB. From these two sequences, the key will be
“distilled.”

(2) For each bit of the list S4, Alice prepares a qubit. If the bit is 0,
she prepares the state |1) = 14 (e,) (spin-up in z-direction). If the
bit is 1, she prepares |—) = 1, (e;) (spin-up in a-direction).

(3) Alice sends her qubits one after another to Bob. Bob filters the
qubits according to his bit list SB. If the i*® bit S is 0, he
projects the i*h qubit onto the state |«) = ¢_(e;) (spin-down in
x-direction), and if the bit is 1, he projects onto ||) = ¥_(e,) (spin-
down in z-direction).

(4) Bob records the outcomes of his measurements. For each qubit, the
outcome is either 1 (the qubit passes the filter), or 0 (the qubit gets
absorbed). In that way, Bob will generate another list R of random
bits. Note that Bob can obtain the result R; = 1 for qubit ¢ only

11Shannon7 C.E., Bell Syst. Tech. J. 28, 657 (1949).
2Bennett, C.H., Phys. Rev. Lett. 68, 3121 (1992). See Chapter 2 of [2] for more
information about quantum cryptography.
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FIGURE 4.18. Setup for the B92 quantum key distribution
protocol. Alice and Bob generate an encryption key under
the nose of an eavesdropper Eve. Alice can prepare qubits in
two non-orthogonal states, for example spin-up in the z- or
x-direction. Bob can project onto the spin-down state either
in the z- or z-direction.

if 4 = SP, because otherwise Bob projects onto a state that is
orthogonal to the state prepared by Alice.

(5) Via classical communication, Bob informs Alice about his results.
He sends only the list R. This list contains no information about
the settings chosen for Bob’s measurement device. The classical
communication may be public, but it is assumed that it cannot be
disturbed by Eve.

(6) Both Alice and Bob now examine their lists S4 and S and gen-
erate new lists K4 and KZ by keeping only those bits, for which
Bob recorded 1 in his measurement. This procedure results in two
identical lists K4 = KB = K for Alice and Bob, because R; = 1
can only happen for SZA = SlB. The list K is the key. It is a subset
of 4 or SB. Its length is about one-quarter of the length of the
original lists.

Figure 4.19 shows an example illustrating the generation of the key as
a common subset of the random lists S4 and SB. Both lists S4 and S?
remain with Alice and Bob, and it is assumed that FEve has no knowledge
about the contents of these lists. The message R selects the elements of S4
and SP that constitute the common key. This message can be made public,
because it contains no information about the values of the selected bits.

It can be shown that the B92 key generation protocol is secure. In this
introduction, however, we are not going to analyze all possible eavesdropping
attacks. In one scenario, Eve knows the two non-orthogonal states used
for the protocol, and it is assumed that she can intercept and replace the
qubits being sent to Bob. A single measurement, however, does not give
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FIiGURE 4.19. Example for the generation of a key using the
B92 protocol. S4: list of random bits generated by Alice.
MA: settings of the device for the state preparation. S&:
Bob’s random list. MPB: settings chosen for Bob’s filter. R:
list with Bob’s results, showing 1 if and only if the qubit
passes through the filter. K: the resulting key.

sufficient information about the state of the intercepted qubit (Section 4.3.3),
and copying the qubit is forbidden by the no-cloning theorem (Section 6.8.4
below). Quite generally, it is impossible to distinguish between two non-
orthogonal states without disturbing them. The fake qubits received by Bob
would thus introduce errors into the key. This can be detected if Alice and
Bob sacrifice a portion of their key and compare it via the classical channel.

4.8. Hidden Variables

4.8.1. Failure of classical picture

In quantum mechanics, the three components of the spin are described by
operators. Values are obtained only in measurements and usually cannot be
predicted, except in some cases. For example, the observable “length of o is
represented by the matrix |o| = \/o - & = v/312. Any measurement of that
observable will produce the value v/3 with certainty. This is conveniently but
imprecisely formulated as “the observable || has the value v/3.” Moreover,
we can prepare a state where, for example, o3 has a definite value (either +1
or —1) simultaneously with |o|. But then the other components of the spin
are totally uncertain; a measurement randomly produces +1 or —1. Can we
assume that for an individual qubit these values already exist prior to the
measurement?

The hypothesis of “hidden variables” assumes that physical quantities
actually do have values, although these values might be inaccessible. Of
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FI1GURE 4.20. A classical vector, for which the z-, y-, and z-
components can only have the values £1/2, can only point to
the corners of a centered unit-cube. Quantum mechanically,
this property holds for any orientation of the coordinate sys-
tem.

course, the spin is not a vector whose components have pre-existing values
equal to those measured in Stern-Gerlach experiments: Such a vector would
have the length /3, and every component would have either the value +1 or
—1 (the only values ever obtained in any measurement of these components).
This is impossible. If all components were £1, this would only leave eight
possible spin vectors (see Fig. 4.20). But the orientation of the coordinate
system is completely arbitrary. We could draw the same picture with respect
to a rotated coordinate system and thus obtain eight other possible spin
vectors in contradiction to the first result.

A hidden variable theory therefore usually assumes that the spin com-
ponents have a continous range of possible values and that the experimen-
tal results =1 are an artifact of the method. From that point of view the
quantum-mechanical results just reflect our incomplete knowledge of the sys-
tem and of its interactions with our measurement device. Let us pursue this
idea further in the following section.

4.8.2. Hidden-variable interpretation

Assume, for the moment, that a single qubit is characterized not only by
its quantum state v (descibing the preparation procedure) but also by a
parameter vector A € ) C R" that determines its behavior during a mea-
surement. The components of A are called hidden variables. An improved
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version of quantum theory could perhaps one day provide us with a better
understanding, but according to our present limitations in both experiment
and theory, we are completely ignorant of the hidden variables. Hence, we
expect that the available preparation procedures cannot yield reproducible
values of A. Instead, when we prepare an ensemble of particles, then the
values of A will be distributed randomly according to some probability dis-
tribution. Naturally, this would lead to a probability distribution for the
values of the spin components. But these probabilities would be related to
insufficient knowledge and need not be regarded as a matter of principle.
Perhaps Einstein had something like this in mind when an “inner voice”
told him that God “does not play dice.”

We denote the probability distribution of the hidden variables in a state
1 by py(AX). Here, the subscript indicates that the distribution possibly
depends on the preparation procedure, that is, on . As a probability dis-
tribution, p, must have the property

pd,()\) > 0, /n p¢(>\) d"\ = 1. (4.102)

A measurement of the spin in the direction n on a system in the state v
gives either +1 or —1. The hidden variable theory assumes that the result
depends on the actual value of A for the individual system. The mechanism
of this dependence is still unknown, but here we assume for simplicity that it
is deterministic. The dependence of the result on A is a function sy () that
can only have the values +1 and —1. According to the classical theory of
probability, the probability for spin-up in the direction of n can be expressed
in terms of the probability distribution py(X) by

e, = / PN with B = {A]sap(X) = 41}, (4.103)
B! ’
Y
Similarly, the expectation value of the spin-component o - n in the state
is given by

(i) = [ PN sus(R) (4.104)

Exercise 4.27 below gives an example of a hidden variable theory that can
reproduce all expectation values of all spin components in all states of a
single qubit.

A possible generalization could take into account another source of ran-
domness that originates in our imprecise knowledge of the interaction be-
tween the particle and the measurement device in the determinative experi-
ment. Most likely, the device is not built to react precisely to the actual value
of A, because the hidden variables influence the outcome in some presently
unknown way. Therefore, one assumes that for a given value of A, the result
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+1 in the direction n only appears with a certain probability p;";(X). The
result —1 would thus appear with probability pio™(A) =1 — Py (A). The

n7
probability for spin-up in direction of n would then be given by

o = [N @ (1.105)

A hidden variable theory is considered successful if it makes for all
presently known measurements the same statistical predictions as quantum
mechanics. It is indeed possible to invent such theories (see Exercise 4.27
for an example). The opinion shared by a majority of physicists is that it is
not reasonable to explain the statistical properties of quantum systems on
the basis of hidden variables. Any such assumption would lead into serious
troubles with well established physical principles (in particular, locality) as
soon as one considers systems consisting of more than one qubit. We shall
return to this question in Section 6.5.

EXERCISE 4.26. Show that the expectation value of the spin in the direc-
tion of n is always given by

(o -n)y = Qpﬁpw -1 (4.106)

EXERCISE 4.27. Investigate Bell’s example of a hidden variable theory:
In this example, each qubit is characterized by its quantum state ¥ and by a
single hidden parameter A € R. The probability distribution of A is given by

p() = {1/2 for —1 <A< 1,

4.107
0 else. ( )

(Here, py is in fact independent of ). Assume that the hidden parameter
A determines the value of the spin-component o - n in the direction of an
arbitrary unit vector n by the following formula:

1, z >0,

4.108
-1, x<0. ( )

snp(A) = sgn(A + |ms]) sgn(ms),  sgn(x) = {
Here, ms is the third component of the vector m = R(a)n. The rotation
matriz R(a) is determined by the requirement that it should transform the
spin-up direction n(1) of the state 1) into the positive z-direction. Show that
all quantum-mechanical expectation values of the spin are described correctly
by this hidden variable theory. To this purpose, show that the relation

.o ni) = |

o0

puN) smp () dA (4.109)

holds for all directions n and all spinors 1 (see also Ezxercise 4.18).
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4.9. Special Topic: Qubit Dynamics

4.9.1. Time-dependent Hamiltonian

A general time-independent qubit Hamiltonian has the form
H=wl+w- o (4.110)

and the time evolution generated by this Hamiltonian is essentially a rota-
tion:

exp(—iHt) = e 7“0t U (wt/2), (4.111)
(assuming /& = 1) with U as defined in (4.28) (see also Section 4.4.3).

CD 4.12.1 and 2 show the precession of the spin vector about the
direction of the magnetic field, that is, the time evolution generated
by a Hamiltonian like (4.110). In CD 4.12.3, the magnetic field vector
w slowly rotates about the z-axis.

Here, we consider a Hamiltonian that depends explicitly on time. It
describes, for example, a particle with spin in a time-dependent magnetic
field. In this case, the interaction energy is

H(t) = —p - B(1). (4.112)

Now the time evolution is not simply the exponential function of the Hamil-
tonian.
In the simplest case, the Hamiltonians for different times commute,

[H(t),H(s)] =0, foralltand s. (4.113)
In this case, the solution of the Schrédinger equation
. d
i % 0(0) = H) () (1.114)
can be obtained by
¢
b(t) = exp(—i H(s) ds) blto). (4.115)
to

Note that the time evolution operator not only depends on the time ¢, but
also on the initial time t3. The time evolution is thus given by a two-
parameter family of unitary operators, (t,s) — U(t,s). Quite generally, it
has the following properties:

Ulto, o) = 1,
U(t,s)Ul(s,to) = Ul(t, %), (4.116)
Ult,s)' = U(s,t) = U(t,s)" .

In general, we cannot assume that H(t) commutes with H(s) for t # s. In
this case, we have to be particularly careful. We can expect that the solution
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is still described by a unitary operator depending on two parameters with
the properties (4.116). We have to solve the Schrédinger equation

i% Ut to) v = H(t) U(t, to) ¥ (4.117)

for all initial states 1. Integrating over time from ty to ¢, we obtain the
integral equation

t

P(t) = p(to) + (=) | H(s)y(s)dt, (4.118)

to
which can be solved by iteration,

t

¥(t) = ¥(to) + (—i) ) H(t)(to) dt (4.119)
4 (—i)? /t dty /tl dto H(t1) H(ta) (to) + ... (4.120)

SN [at [ dt H@ L H) wt). (4121)

This is called the Dyson expansion. Notice that it is not possible to exchange
the order of the factors in the integrand, because the operators H(t;) and
H(t) do not commute. If the Hamiltonian H(¢) is a finite-dimensional
matrix, the series always converges in the norm of bounded operators.

EXERCISE 4.28. In view of the applications, it is useful to consider a
Hamiltonian of the form
H(t) = Hy + Hi(t), (4.122)

where Hy is independent of t. Find the equation of motion for @(t) =
exp(iHot) ¥ (t) and solve it using the Dyson expansion.

4.9.2. Time dependence generated by unitary operators

The Schrédinger equation can be solved exactly if the Hamiltonians at dif-
ferent times are connected by unitary transformations,

H(t+s) = e H(s)e 4 (4.123)
Let U(t,s) be the propagator defined by H(t), that is,

i%U(t, §) = HOU( ), (4.124)
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then, for any fixed s € R,

d . . . d .
i pn e U(t +5,5) el = o718 (i pn Ut +s, s)) el (4.125)
—e M H(t+5)U(t+ s,5) e (4.126)
= e M H(t+5) e AU (L + 5, 5) e (4.127)
= H(t) e S U(t + 5,5) e, (4.128)

Hence, V() = e 45 U(t + s, 5) ¢'4® is the solution of (4.124) that fulfills the
initial condition V' (0) = 1. This shows that

V(t) =e Ut + s,5) e = U(t,0), (4.129)

because U(t,0) is the unique solution of (4.124) with U(0,0) = 1. Multiply-
ing from the left by e74* and from the right by e74° U{(s, 0),

e AT (1 4+ 5,0) = e t,0)e 5 U(s,0). .
MUt +5,0) = e U (1,0) e U(5,0) (4.130)
This shows that the operators

W(t) = e A U(t,0) (4.131)

form a one-parameter unitary group, because (4.130) is just the group prop-
erty W(t+s) = W(t)W(s). The generator of the unitary group W is

d

£W(t) o H(0)+ A, hence W(t)=e {(HO+A? (4.132)
Thus, we find that the solution of the initial value problem is given by
W(t) = U(1,0) 9o = 4 W (1) g = et e IO gy, (4.133)

4.9.3. Magnetic resonance

We consider the Hamiltonian

1 1
H(t) = S w003 + 50" b(t) (4.134)
with
b(t) = Awp (cos wt, sinwt, 0). (4.135)

The time-independent part of the Hamiltonian has the two eigenstates 1
and ¥_. The energy difference between these states is just given by wg. The
second summand is a time-dependent perturbation. The constant A > 0
describes the strength of this perturbation. The vector b(t) rotates with
constant angular speed w in the xy-plane. Physically, the perturbation can
be interpreted as a time-dependent magnetic field that is homogeneous in
space, but whose field vector B rotates with a constant angular speed in the
xy-plane. Hence, the time-dependence of the Hamiltonian H (t) is generated
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(a) (b)

1k L

AA,

-10 -5 0 ) 10 -10 -9 0 ) 10

FIGURE 4.21. The transition probability p(t) = [{(t),9_)|?
for the initial state 1(0) = 14 as a function of time. We have
wp =10, A =0.2, and (a) w =9, (b) w = 10.

by a rotation around the z-axis. Indeed, using R(wte,)b(0) = b(t), we find
from Eq. (4.53) that

H(t) _ e—iwt03/2 H(O) e+iwt03/2
— le o3 + e—iwt03/2 10, . b(O) e+iwt03/2. <4136)
2 2

This is of the form (4.123) with A = —wo3/2, and the solution is therefore
given by (4.133),

P(t) = exp(—it % 03) exp(—itwo

1
w g3 — ité )\woal) ”(/1(0)

(4.137)
B L w . QN wo,w) .
= exp(—lt 5 O’3> exp(—lt 5 o b) ¥ (0)
with the unit vector
N 1
b= m ()\LL)(), 0, wo — CL)), where
(4.138)
QN wp, w) = Aw \/l+i<1—i>2
s W0, 0 AQ wo .

Now it is easy to determine, for example, the time evolution of ¥ (0) = 9.
It is interesting to consider the (time-dependent) transition probability that
¥ (t) is found to be in the state 1. This probability is given by

Nk : 2(759()\’000»@))

p(t) = [(y(t),v-)* = 0N w0, )2 sin 5 (4.139)

Explore the parameter dependence of the function p(t) in CD 4.13.1.
The animations CD 4.13.2 show the maximal value ppax (A, wo,w) of
p(t), and CD 4.13.3 investigates the period T(\, wg,w) of p(t).
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0.2} 1

0
10 -5 0 5 10 15 20

FIGURE 4.22. Resonance curve (pmax as a function of w) for
A=0.1 and wy = 10.

We plot the function p(¢) in Figure 4.21. We see that p(t) is periodic in
time. At the zeros of p(t), the state is orthogonal to ¢_, that is, the system
is again in the initial state. For these times, the solution (¢) must be equal
to ¥4+ (up to a phase factor). In particular, we have

H(T) =, (4.140)
(where €' is a suitable phase factor) at the time
T = T\ wow) = —0 (4.141)
B T A, wo,w) '

The transition probability p(t) oscillates in time between 0 and a maxi-
mal value given by

A2 1 w2\ !
max(\, wo,w) = ——9— = (14 = (1 - = . 4.142
Pmax(A, 0, &) QN wo,w)? < + )\2( wo) ) ( )

This maximal value describes the strength of the system’s response to the
perturbation b(t). As a function of w (at fixed values of A and wy), pmax has
the shape of a resonance curve (see Fig. 4.22). Notice the following points:

(1) The maximum is at the resonance frequency w = wp, where the
maximal value is 1, irrespective of the value of A.

(2) The width of the resonance depends on Awy.

(3) There is no resonance for negative w, that is, if the external mag-
netic field rotates in the opposite direction.
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The movies CD 4.14-CD 4.17 show the behavior of a qubit under
various time-dependent perturbations. Resonant and non-resonant
behavior of the magnetic moment vector is shown for circularly and
linearly oscillating magnetic fields. In CD 4.15, the perturbation is
large and the resonance curve is wide. In CD 4.16, the perturbation
is small and the resonance curve is a sharp peak. At the resonance
frequency, it is always possible to turn an initial state ¢4 into the
orthogonal state 1 _, irrespective of the strength of the perturbation.

Atomic nuclei with an odd number of nucleons have a nonzero spin (for
example, the nucleus of a hydrogen atom). The resonant behaviour of the
nuclear spin in magnetic fields can be used to measure the distribution of
these atoms in a sample of material. This technique, known as nuclear
magnetic resonance (NMR), has important applications to medical imaging.



Chapter 5

Composite Systems

Chapter summary: Up to now, we have only considered single-particle systems.
Real physics starts where at least two particles are involved. As a first example of
a two-particle system we consider the Schrodinger equation for two free particles.
This shows us how to construct two-particle states as products of one-particle states
(Section 5.1). An abstract formulation of this method is given by the tensor product
of Hilbert spaces. The Hilbert space of a composite system contains not only prod-
uct states, but also their linear combinations (Section 5.2). In general, these states
are entangled, that is, they cannot be written as simple products. Entanglement
cannot be created by local measurements or manipulations of the subsystems, but
usually, an interaction between the subsystems immediately leads to entanglement
(Sections 5.3 and 5.4).

The theory presented here has applications not only to atomic physics but
also to quantum information theory. An entangled state of a composite system
encodes information about the system as a whole that cannot be measured locally
(that is, by measurements on the subsystems alone). This information describes
correlations between the subsystems. In general, the state of a subsystem cannot
be described by a state vector in the Hilbert space of the subsystem. If the bipartite
system is in an entangled state, then any subsystem is in a statistical mixture of
states. We describe this new situation by a density operator p (Section 5.5). The
density operator generalizes the orthogonal projection operator onto the subspace
spanned by a “pure state” 1. In Section 5.6, we compare pure and mixed states and
discuss the ensemble interpretation of mixed states. We describe the ambiguities
in the preparation of mixed states in Section 5.7 and some mathematical aspects
of bipartite systems in Section 5.8 (the normal form of the state vector, maximally
entangled states, purification, and the projection postulate for mixed states).

Section 5.9 describes the physics of composite systems whose parts are indis-
tinguishable. A major new ingredient is the symmetrization postulate, which says
that all states of the composite system are either symmetric or antisymmetic under
exchange of the subsystems. Hence, one may conclude that there are two families
of elementary particles, bosons and fermions. Fermions obey Pauli’s exclusion prin-
ciple, which states that two fermions cannot occupy the same state. Section 5.10
describes multiparticle systems with spin, thus forming the theoretical foundation
of the physics of atoms, molecules, and matter. Finally, in Section 5.11 we present
the addition of angular momenta as a problem where two systems are combined
into a larger system.

211
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5.1. States of Two-Particle Systems

5.1.1. The Hamiltonian for two free particles

In order to get a feeling for the wave functions of a two-particle system,
we neglect all interactions and consider a system of two free particles. For
reasons that will become clear later, we assume here that the two particles
are not identical, but can be distinguished by some physical property (for
example, we may assume that the particles have different masses m; # ms).
Moreover, we assume that the Hilbert space of either particle is L?(R™). We
are going to follow our usual procedure to set up a quantum Hamiltonian
by correspondence with the classical mechanical system. From the solutions
of the Schrodinger equation with this Hamiltonian, we will learn about the
typical structure of two-particle wave functions.

Assuming that each particle moves in an n-dimensional space, the clas-
sical configuration space of the two-particle system is R?”. The points
X = (X(l),X(2)) in this space describe the configuration of the system, that
is, the positions x() and x@ of the individual particles. The Hamiltonian
operator for this system is obtained from the classical expression for the
energy with the usual translation rule. According to this rule, the operator
for the momentum p¥) of the particle j is the differential operator —ihV ()
(gradient with respect to the coordinates x(/)). The Hamiltonian is the sum
of the kinetic energies of the two particles, that is,

(p")? | (p®)? h? NG

= - _ n_
i 2m; + 2my 2m; & 2mo &7 (5.1)

with m; and ms denoting the masses of the two particles, respectively. Here,
it is assumed that the two particles move freely. In particular, there is no
potential energy term that would describe an interaction between the two
particles.

The linear operator H acts on (differentiable) functions 9 (x(M), x()) of
the 2n position variables, and A9 is the Laplace operator that differentiates

with respect to the variables x(7) = (:cﬁj), e 7$'I(’1‘,j))j
&a>:%+...+%, (5.2)
o(zy")? (i)

CD 5.1.1 shows the independent (interaction-free) motion of two free
particles on a line. The particles have different mass, move in oppo-
site directions, and both are described by Gaussian wave functions.
The second particle’s wave function is plotted upside-down. CD 5.1.2
shows two independent oscillating particles, that is, two particles
moving without interaction in a harmonic oscillator potential.
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5.1.2. The Schrédinger equation of a two-particle system

We consider the time-dependent Schrédinger equation with the two-particle
Hamiltonian above. Scaling the units of length, we can get rid of the constant
h and write the Schrédinger equation in the form

0 1 1
P 9 x@ ) = _(7 AD L1 A@)) M %@ 4. 53
We note that the Hamiltonian is a sum of two terms that commute with
one another. Hence, we can find a special set of solutions by a separation of
variables, that is, by writing

P(x, % 1) = 1 (xV, ) o (x ), 1), (5.4)

This is a solution of the two-particle Schrédinger equation (5.3) whenever 1),
j = 1,2, are solutions of the one-particle Schrodinger equations for particles
with mass m;.

EXERCISE 5.1. Insert (5.4) into the Schridinger equation (5.3) and show
that (xM,x) 1) is a solution if and only if 1;(x,t) is a solution of the
equation

0 1
iél/)j(x,t) = _ij AT/}j(X,t). (55)

We conclude that the Schrédinger equation for two free particles can
be separated completely into two independent one-particle problems. This
should not be surprising, because a system of two interaction-free particles
consists of completely independent one-particle subsystems. Each of the
particles moves as if the other was not there.

If ¢» and ¢ are solutions of the two-particle Schrodinger equation, then
any linear combination a1+ b ¢ is again a solution (superposition principle,
linearity of the Schrédinger equation). One soon realizes that even if the two
solutions 1 and ¢ are in product form, it is in general impossible to write
the linear combination a1+ b ¢ as a product of one-particle solutions. Thus,
the two-particle Schrédinger equation has many solutions that are not just
products of one-particle wave functions.

CD 5.2.1 combines two one-particle solutions into a solution of the
two-particle Schrédinger equation. This is a wave function of the
form (5.4), defined on the configuration space R? of the two-particle
system. CD 5.2.2 shows the wave function in configuration space
that is obtained by forming the product of the two independent os-
cillators in CD 5.1.2. The Hamiltonian of this system is a sum of
two harmonic-oscillator Hamiltonians without interaction term.
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5.1.3. Two-particle Hilbert space

What is the most general form of the wave function at a given time t?7
Assume that the set {¢); | j = 1,2,...} is an orthonormal basis in the single-
particle Hilbert space L?(R"). Among the possible states of the two-particle
system are all the products

v e(x?), jk=1,2,3. .. (5.6)
and because the set of all possible states is a linear space (superposition

principle), we can form arbitrary linear combinations from these products.
The most general two-particle wave function (at a given time ¢) thus has the

form
(), % Zz%w] Yr(x®). (5.7)

7=1 k=1

This is a square-integrable function of the 2n variables {x("), x(®)} whenever
the double-sum converges with respect to the norm in L*(R?"). For this it
is necessary and sufficient that the coefficients c;;, be square-summable,

ZZ lejk|? < oo. (5.8)

j=1k=1
In this case, the two-particle wave function 1 is square-integrable over R?",
= [ e )R = Sl <00 (59)
R2n .
Jk
In general, it is not possible to write a linear combination of product func-
tions again as a product of two wave functions.

Hilbert space of two particles:

If the state space of a single particle is L?(R™), then the Hilbert space
of two-particle wave functions is L?(R?*"). If {4y, | k = 1,2,3,...} is an
orthonormal basis in L?(R™), then the products of the basis states

{0 | 0 (xD,x@) = 4 (xV) o (x?), G,k =1,2,3,...}  (5.10)

form an orthonormal basis of the two-particle Hilbert space.

At any given time ¢, the most general wave function is thus a (possibly
infinite) linear combination of products of one-particle wave functions.

EXERCISE 5.2. Show that the states of the two-particle basis (5.10) are
orthonormal if the one-particle states 1; are pairwise orthonormal (that is,

if (Y, vk) = 0ir). Prove Eq. (5.9).
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In CD 5.3.1, we show a wave function of the two-particle system
that cannot be written as a product of one-particle wave functions.
A state with this property is called entangled. Entangled states will
be discussed later in this section and in Chapter 6. CD 5.3.2 shows
wave function that is a product of one-particle wave functions (this
is called a separable state of the two-particle system).

5.1.4. The interpretation of two-particle wave functions

Analogous to the interpretation of a one-particle wave function, we say that
[ ) s (5.11)
BCR2™

is the probability of finding the configuration x = (x(),x(?) in B ¢ R?*".
A natural choice for the region B is a “rectangle” By x Bg, with B; C R".
The above expression then gives the probability of finding the first particle
in the region B; and the second particle in By. For the special case that the
wave function is a product, this probability also becomes a product,

/ (), x @) 2 2 = / ()| d / )P d. (5.12)
BCR2n B1 B

This is the joint probability of the independent events E; = “particle 1 in
By” and Ey = “particle 2 in Bs.” If the wave function is not a product, the
joint probability will not factorize, which means that the events F; and Fs
are not independent.

Because of the high dimension of the configuration space of two particles,
it is difficult to visualize a two-particle wave function (except in the case that
the space dimension is n = 1). We can, however, visualize the quantity

o) = [ exy)Pdy, (513)

which is called the one-particle density function. We interpret p;(x) as the
probability density for finding particle 1 at x and particle 2 somewhere.
Thus, fB p1(x) d"z is the probability that the position of particle 1 is in By,
irrespective of the position of particle 2. Similarly, we define

pa0) = [ xRy (514)

as the position probability density of particle 2 irrespective of the position
of particle 1. Whenever 1 is a product of normalized one-particle states, p;
and py are just the corresponding one-particle densities:

p(x) = [ x)%, pa(x) = [a(x)?, i v(x,y) = vi(x)ea(y).  (5.15)
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CD 5.5 visualizes the time evolution of a two-particle system in terms
of the one-particle density functions p;(x) and p2(x). The system
consists of two particles interacting via a harmonic-oscillator force.

5.2. Hilbert Space of a Bipartite System

Let us consider quite generally a quantum system that is made up of two
different parts A and B (this is called a bipartite system). How do we
construct the formalism of the combined system if we know how to describe
the constituent parts? This precisely was the problem we had to face when
we introduced the wave functions of a system consisting of two free particles.
We solved this problem by introducing a larger Hilbert space, which contains
products of single-particle wave functions. The same ideas also works for
other quantum systems (e.g., for qubits).

5.2.1. Construction of the tensor product

We consider two physical systems A and B. The Hilbert spaces of the indi-
vidual systems are denoted by $H* and $H?, respectively. When we join the
two parts, we have to find a larger Hilbert space that is capable of describ-
ing the states of the compound system. The form of the two-particle wave
functions (5.6) suggests that the compound states should be products of in-
dividual states. Mathematically, the tensor product provides a nice method
to construct a Hilbert space containing all possible products of elements from
two given Hilbert spaces H* and $H”.

Let the system A be in a state ¢* € $* and B be in a state % € H5.
Without further assumptions, a multiplication of 1* with 1) need not make
any sense, because the two Hilbert spaces could be completely different.
Hence, we introduce a new symbol ® and denote the state of the combined
system AB by

P @ . (5.16)
This formal product just represents the ordered pair of the states ¢* and °.

In case of ordinary wave functions, we may replace ® by the usual product
of two functions. Next, we introduce the scalar product

(PP @Y”, " @ ") = (Y*, %) (¥7,97). (5.17)

The expressions on the right side of this definition are well defined, because
they involve only scalar products of vectors in the same Hilbert space.

The product states of the form 1* ® 9” cannot be the only states of

the compound system. According to the superposition principle, we have to

include arbitrary linear combinations of product states in the state space of
the system AB. We extend the set of product states in such a way that the
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formal product ® is linear in both factors. To that purpose, we introduce
the following rule

Dot @Y df =) cidi (%) @Up). (5.18)
7 k 7.k

For the scalar product (5.17) we assume, as usual, linearity in the second
and antilinearity in the first factor. In that way, the definition of the scalar
product “automatically” carries over to all vectors of the form (5.18).

The vector space that consists of all elements of the form (5.18) defines!
the tensor product of the Hilbert spaces 4 and $Z. We denote this vector
space by

NP =92 H". (5.19)
The introduction of the tensor product for the description of compound sys-
tems is a basic new ingredient in the quantum mechanical theory. Ultimately,
it can only be justified by its success.

Basic assumption about compound systems:

The Hilbert space of a quantum mechanical system consisting of two
parts A and B is the tensor product of the Hilbert spaces $* and $H”
associated to the subsystems.

It is straightforward to generalize the considerations above to systems
composed of several subsystems. The tensor product is associative. Up to
isomorphism, we may, for example, identify the following tensor products

H'@H°20H°=H"29°) 9 =92 (H” 2 H°). (5.20)

5.2.2. Orthonormal basis of the tensor product space

Assume that {¢'} is an orthonormal basis in $* and {¢;} is an orthonormal
basis in $%. Then, one can show that the set formed by the vectors

Vi = V5 @Yy (5.21)
forms an orthonormal basis of the tensor product space. Hence, every vector
1 in H“8 has a unique representation as

U= el @PP with e = (¥ @Y, ¥). (5.22)

Jk

" the infinite dimensional case, the definition of the tensor product includes the
topological closure of the set of finite linear combinations of product states. We refer to
the mathematical literature for a more precise definition of the tensor product of Hilbert
spaces.
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The sum above might be finite or infinite, depending on the dimensions of
the constituent Hilbert spaces. In the infinite-dimensional case, one has the
additional condition

o] = Z lejx|? < oo. (5.23)
ik

EXERCISE 5.3. Show that the basis states 1)j;, defined in (5.21) form an
orthonormal set, that is,

(Yik s Yim) = 6j1 Okm- (5.24)

EXERCISE 5.4. Describe the Hilbert space of a two-qubit system. What
is its dimension?

5.2.3. Entangled states

Whenever a bipartite system is in a product state, that is,
¥ =Pt QP (5.25)

then we can say that system A is in the state ¢* and system B is in the state
1P, The state 1* ®1? is obtained if the two systems are separately prepared
in the states ¢* and 1, respectively, and juxtaposed without interaction.
But in the Hilbert space of the compound system, most states cannot be
written as a single tensor product. For example, the linear combination

1
Y= ﬁ(¢€®¢é}+¢f®¢f) (5.26)

is not a product state, at least if we assume that both sets {¢{, 7'} and
{8, ¥} are linearly independent.

Entangled and separable states:

A state of a compound system is called entangled if it cannot be written
as a single tensor product of subsystem states. A state in the product
form (5.25) is called unentangled or separable.

Even if the initial state of a compound system is separable, it will, in general,
become entangled during the time evolution if there is some coupling between
the subsystems. Whenever the state of a compound system is entangled, it
is meaningless to speak of the state of a subsystem in the sense used so far
(that is, as something that can be described by a single vector in the Hilbert
space of the system). We will be forced to generalize our notion of a state.
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EXERCISE 5.5. Given two orthogonal vectors ¢7 and ¢35 in H* and two
orthogonal vectors ¢7 and ¢5 in H®, show that the state

1
v=5(07 @ 6f + o1 ® 05 + 5 @ o7 + 63 @ ) (5.27)
1s separable whereas the state
1
)= \ﬁ(ctf ® ¢7 + ¢35 ® ¢5) (5.28)

1s entangled.

5.2.4. Example: Two-qubit system

As an example, we consider a bipartite system where the parts are simple
qubits. The Hilbert space of two qubits A and B is C? ® C?. In each
one-qubit subspace, we choose a basis {¢4,1_}. The basis states could be
realized as spin-up and spin-down eigenstates with respect to some common
reference direction (for example, the z-direction in some inertial frame used
in the description of both particles). For the two-qubit system, we obtain
the following basis of product states,

{1/1+®‘/)+a¢+®T/f—7¢—®¢+7¢—®¢—}- (529)

These four basis vectors span a four-dimensional complex vector space. This
shows that the tensor product C? ® C? is isomorphic to C*.

In the Hilbert space of the two-qubit system, we can choose another basis
that consists entirely of entangled states. Define

yE = \}5(¢+®w+i¢_ Du_),

1
Yo = EW RY_ P @y).
The states wei are superpositions of product states in which the spins are
parallel. They are sometimes called even parity states. The states )T, where
the two summands have antiparallel spins, are called the odd parity states.
The basis formed by these states is called the Bell basis.

The experimental realizability of entangled states is of particular impor-
tance for possible applications of quantum computers. A number of methods
for creating two-qubit systems in an entangled state are described in [2].

(5.30)

EXERCISE 5.6. Show that the Bell basis
R Uaa Uy (5.31)

1s an orthonormal basis in the two-qubit Hilbert space.
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CD 5.7 explores several methods to visualize two-qubit states: (a)
As a bar diagram that shows the four coefficients of the expansion
with respect to the basis (5.29). This could be called the “standard
representation” of the two-qubit states. (b) In case of a separable
state, we can show the states of the subsystem in a Bloch sphere
as described in Section 4.4.1. (c) We can visualize qubit states by
the first two eigenstates of a harmonic oscillator as described in Sec-
tion 4.5.3. Two-qubit states may thus be visualized as states of the
harmonic oscillator in two dimensions.

5.2.5. Example: Particle with spin

Another example is the combination of a particle in R? whose state space
is L?(R3) and of a qubit whose state space is C2. The result is simply a
particle with spin in R®. The tensor product L?(R?) ® C? is spanned by the
linear combination of the product states

v o

We can omit the ® in (5.32), because it makes sense to multiply a function
with a vector. Thus, we identify

vee (2 =vea (2) = (2059). (5.33)

The Hilbert space L?(R?) @ C? therefore consists of two-component wave
functions. Every two-component wave function is a linear combination of
two vectors of the type (5.33),

(Zé) =¥ ((1)> + 92 (?) : (5.34)

It is interesting that this state is entangled whenever 1, and 19 are linearly
independent.

In Section 3.5.1, we introduced the Hilbert space L?(IR?)? of spinor-wave
functions as a direct sum of two copies of L?(R3). Obviously, this Hilbert
space is the same as (isomorphic to) the tensor product of L?(R?) and C2:

L*(R3)? = L*(R®) @ L*(R?) = L*(R?) ® C%. (5.35)

Cl) , e LR, ¢eC, (5.32)

In certain experimental setups, the spatial states of photons also realize a
qubit (see Section 4.5.2). We can combine these states with the polarization
states into a two-qubit system. For example, a single photon that moves
upwards and is vertically polarized is a two-qubit system in the state

¢uv = ¢u & wv' (536)
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In a similar way, we may define the other basis states ¥un, ¥4y, and ¥y, A
Bell state of the photon is, for example, 1)+ = 20-12) (¢hyy + han).

5.3. Interacting Particles

5.3.1. Two-particle interactions

It will turn out that entangled states have some strange properties. There-
fore, one must ask whether entangled states really exist in nature. For
systems of non-interacting particles, we can avoid entangled states by choos-
ing appropriate initial conditions. A state that is initially separable will be
separable for all times. But, for interacting particles this is no longer true,
and entanglement cannot be avoided.

The Hamiltonian for an interacting two-particle systems is again ob-
tained from its analog in classical mechanics. Thus, it could be of the form
(assuming i = 1)

He ol Al - L A0y x@) (5.37)

21111 21112 ’ '

where again AU) is the Laplace acting on the coordinates of particle (j) (see
Eq. (5.2)). Consider, for example, a helium atom. In the approximation
of infinite nuclear mass, the atomic nucleus is a fixed, point-like center of a
Coulomb force (with charge 2e). The helium atom has two electrons that
interact by Coulomb repulsion. The electrostatic potential energy of the two
electrons can thus be described by the expression

2y 2y n Y
x| x@] " |x® = x|’

V(Xl,Xg) = — (538)

where v = €2 /41eg, as usual. The first two summands describe the electro-
static potential energy of the electrons in the field of the nucleus, and the
last term is the Coulomb repulsion between the two electrons. The presence
of the last term makes it impossible to obtain a solution of the Schrédinger
equation in form of a product of one-particle wave functions (that is, in form
of a separable state). Even if the initial state is separable, the time evolution
will put the system into an entangled state.

CD 5.5 shows the time evolution of a two-particle wave function in
configuration space. It describes two particles moving in one dimen-
sion and interacting via a harmonic oscillator force. Although the
initial state is separable, it soon becomes obvious that the state at
time t > 0 is entangled.
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5.3.2. Separation of the center-of-mass motion

A special case of (5.37) is a Hamiltonian of the form

__ a1 A (1) _ @

H = o A Sy A +V(x x\“). (5.39)
Here, the potential energy depends only on the relative position of the two
particles. This Hamiltonian would arise, for example, in a description of a
hydrogen atom, where the proton is not just treated as a fixed force center,
but as a quantum-mechanical particle. The hydrogen atom consists of a
proton with mass m;, and an electron with mass m.. These particles interact
by an attractive Coulomb force that depends only on the distance between
the proton and the electron. Hence, the Hamiltonian of the hydrogen atom

becomes
1 a 1

- @___7
He g A = A (5.40)

Again, the time evolution does not preserve the separability of wave func-
tions. But we can find another set of coordinates, where a separation into a
product is still possible.

Starting with the Cartesian coordinates (x(M,x(3)) of the two-particle
system, we introduce center-of-mass coordinates X and relative coordinates
x by

mlx(l) + IIlQX(Q)

X = , X = X9 — XJ. 5.41
mip + mo 2 ! ( )

After the coordinate transformation (x(!),x(?) — (X, x), the Hamiltonian
(5.39) decomposes into a sum of a part that depends only on X and another
part that depends only on x,

1 1
H=——Ax —

o 2 e V), (5.42)

where M = m; + my is the total mass and p is the reduced mass

miims9

= — 5.43
e (5.43)
The symbols Ax and Ax denote the Laplace operators with respect to the
indicated coordinates. Thus, we found a new way to decompose the two-
particle system into two subsystems. One of these subsystems describes the

free motion of the center of mass. It is given by the Hamiltonian

1

HCM == —m AX (544)
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The other subsystem describes the relative motion. This subsystem is de-
scribed by the Hamiltonian

1
HREL — _ﬂ AX + V(X), (5-45)

which is the same as the Hamiltonian for a particle with mass p in an external
potential energy V' (x). The Hamiltonian of the two-particle system is a sum

H - HCI\/I + HREL' (5.46)

The two summands commute with each other, hence the time evolution of
the combined system is

e—th — e—iHth e_iHRELt. (547)

We see that the two subsystems have been chosen in such a way that a
separable initial state remains separable for all times.
Thus, we can solve the two-particle Schrodinger equation with a product

P(X,x, 1) = U(X, 1) Y(x, 1), (5.48)
where ¥ describes a free motion and 1 describes the relative motion of the
two particles,

i 2 (%, 1) = Huwn (%, ). (5.49)

The linearity of the Schrodinger equation implies that arbitrary linear com-
binations of the solutions (5.48) are again solutions.

It is clear that the bound-state energies are given by the eigenvalues of
the Hamiltonian describing the relative motion.

The movies CD 5.4 and CD 5.6 show states of the two-particle os-
cillator and indicate the coordinate axes of the center-of-mass and
relative coordinates. A blue line (the “x-axis”) shows those configu-
rations of the two-particle system, for which the center of mass is at
the origin (X = 0). The green line (the “X-axis”) is the coordinate
axis with relative coordinates x = 0. The wave packet in configura-
tion space is always symmetric about the blue line. It oscillates in
the x-direction and spreads in the X-direction. The corresponding
classical system (represented as a white point at the center of the
wave packet) always moves on the blue line.

5.4. Observables of a Bipartite System

5.4.1. Tensor product of operators

Given a linear operator S in the Hilbert space $* and another linear operator
T in $H7, we can define a linear operator in the Hilbert space of the compound
system. This operator will be called the tensor product of S and T and
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denoted by S ® T. Whenever S and T correspond to observables of the
subsystems (that is, self-adjoint operators), the tensor product S ® T is an
observable of the compound system. The measurable values of S® T are the
products of the eigenvalues of S and 7.

Let us describe briefly the construction of S ® T. For simplicity, we
consider the case where S and T' are bounded (continuous) linear operators.
First, we define the tensor product on separable states as

(S@T)¢* @¢® = Syt @ TY". (5.50)

We extend this definition by linearity to the set of all finite superpositions
of separable states:

(S@T) Y emvf @uf = e (SOT)v) @ vy
3k gk
= i S @ Ty (5.51)
j?k
The result is a bounded and densely defined operator that can be extended
(by continuity) to all of H* ® H” (see Book One, Section 2.5). We have

ST =ISIHT- (5.52)
A separable state ¥* ® 1” consisting of eigenvectors,
Syt = sy, TyY? =ty”?, (5.53)
is an eigenvector of the product observable,
(S@T)Y* @¢” = st @Y~ (5.54)

and the eigenvalue is the product of the individual eigenvalues. This follows
immediately from the definition (5.50). Moreover, all eigenvalues of the
tensor product can be written as products of the eigenvalues of the factors.

Eigenvalues of the tensor product:

Suppose that S and T are operators with a discrete spectrum of eigen-
values. Then, the eigenvalues of S ® T' are given by the products st,
where s is an eigenvalue of S and t is an eigenvalue of T'.

For unbounded operators (like position and momentum operators) do-

main questions have to be taken into account. Equation (5.50) makes
sense only for ¢* € ®(S) and ¢? € D(T). Usually, the domains D(S5)
and ©(T') are dense sets, and hence the set of finite linear combinations of
separable states 1* ® 1” is dense in H* ® HP. Therefore, Eq. (5.51) gives
us linear operator on a dense domain in $H* ® $HZ. If possible, one takes
the closure of this densely defined operator to complete the definition of the



5.4. OBSERVABLES OF A BIPARTITE SYSTEM 225

tensor product S ® T. In that way, the tensor product of self-adjoint opera-
tors becomes self-adjoint. We refer to the literature for mathematical details
concerning this procedure. According to a general mathematical theorem,
the spectrum of the tensor product is the (closure of the) product of the
individual spectra. (This statement includes the continuous spectra of the
operators.)

EXERCISE 5.7. Show that the composition of (bounded) tensor-product
operators is given by

(51 ® Tl)(SQ X TQ) = (5152) &® (TlTQ). (5.55)

EXERCISE 5.8. Given unitary groups V (t) and W (t), show that the tensor
product U(t) = V(t) @ W(t) is also a unitary group, that is, U(0) = 1,
U(s)U(t) = Us +1).

There are, of course, many observables of the bipartite system that are
not just tensor-products of subsystem operators. An example is the poten-
tial energy V(x(M),x()) describing the interaction of a two-particle system
in (5.37), except if V(xM),x®)) = v (x(V) V5(x?). Another interesting ex-
ample is the Kronecker sum. It combines two subsystem operators S and
T into the operator S ® 1 + 1 ® T. The generator of a tensor product of
unitary groups is the Kronecker sum of the generators,

e—itS ® e—itT — e—it (S®1+1®T) (556)
This can be seen as follows. If U(t) is a tensor product of unitary groups,
Ut)y=V(t)eW(t) =e " oe (5.57)

then the generator of U(t) is obtained, as usual, by differentiating U(¢) at
t = 0. The product rule also applies to the tensor product,

i% U(t) = <i % V(t)) QW) + V() ® (i % W(t)), (5.58)
and we find
i%U(t)L —S®1+1aT. (5.59)

5.4.2. Local manipulations

Sometimes one is interested in measuring an observable defined only for
one of the subsystems. A measurement performed on subsystem A without
perturbation of B is called a local measurement of the subsystem A. This
is possible only if the two systems can be isolated from each other, which is
certainly easier if, as it is sometimes the case, they are already separated by
some spatial distance.
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In the Hilbert space of a composite system, an observable S of the sub-
system A is represented by the operator

S®1. (5.60)

This operator acts in a nontrivial way only on the states of system A. It has
the same eigenvalues as the operator S, and whenever S is self-adjoint, so is
S ® 1. Similar considerations apply, of course, to the observables 1 ® T' of
the subsystem B.

Subsystem observables:

Observables of the type S ® 1 or 1 ® T are called local observables
or subsystem observables. Subsystem observables belonging to different
subsystems commute with each other,

S®1,1T]=0. (5.61)
The unitary group generated by S ® 1 is given by
e—it(S@l) — e—itS ® 1’ (562)

and similarly for 1 ® T

Equation (5.61) follows immediately from (5.55). Equation (5.62) follows
from (5.56) by setting 7" = 0. It implies that the corresponding unitary
groups also commute,

[e7HH(5®) | o—it(A8T)) — g, (5.63)

A unitary transformation of the form V ® 1, where V is unitary in
the Hilbert space of subsystem A, is called a subsystem transformation. A
subsystem transformation can be performed by applying V' to subsystem
A (that is, to the vectors in Hilbert space $*) and by doing nothing with
subsystem B.

Then, the tensor product of unitary transformations can be written as a
product of subsystem transformations,

VoW =Vel) (1eW) (5.64)

Unitary transformations of this type are called local unitary transforma-
tions. Physically, a local unitary transformation can be performed while the
subsystems are isolated from each other.

A property P of subsystem A is described by an orthogonal projection
operator. Remember that an orthogonal projection operator is a bounded
self-adjoint operator P with P? = P. Its only eigenvalues are 0 and 1. The
set of states having the property P is the range of P (for a projection opera-
tor, Ran P = the eigenspace belonging to the eigenvalue 1). It turns out that
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P ®1 is an orthogonal projection operator whenever P is (see Exercise 5.9).
We conclude that properties of a subsystem are also properties of the com-
pound system. The observable P ® 1 measures whether the subsystem A
has the property P without considering the subsystem B.

As an example, let us consider a two-qubit system. A local measurement
of o3 on qubit A is a measurement of o3 ® 1. If the result is “spin up,”
then qubit A is in the state ¢, afterwards. According to the projection
postulate, we have performed the projection Py ® 1, where Py = |14 ) (1]
is an orthogonal projection operator in the Hilbert space of qubit A.

EXERCISE 5.9. Show that P®1 is an orthogonal projection operator onto
the subspace Ran P ® $H% in H* @ H® whenever P is an orthogonal projection
operator onto Ran P in H™.

EXERCISE 5.10. Compute the action of the projection operator
P =l )(y|®1 (5.65)

on the state )
E(QM QU+ Y- ®Y_). (5.66)

What is the state of qubit B after having found spin-up for qubit A?

EXERCISE 5.11. Show that a separable state remains separable under a
local unitary transformation. Similarly, an entangled state cannot be turned
into a separable state by means of a local unitary transformation.

5.5. The Density Operator

If the bipartite system is in a separable state ¥* ® 1?, then we can say
that the subsystem A is in the state ¥*. But how do we characterize the
subsystem if the composite system is in an entangled state?

5.5.1. What does entanglement mean for the subsystems?

Let us consider a two-qubit system in the Bell state

U= (e 0y +U_gu). (5.67)

What do we know about the state of the qubits A and B? What informa-
tion about the individual qubits is contained in the entangled state of the
compound system?

The state of 1] is a superposition of two orthogonal product states. In
this state, the probability of finding both qubits with spin up is 1/2, the
same as that of finding both with spin down. Hence, qubit A is in the state
14 or 1¥_ with equal probability 1/2. It is important to understand that
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the state of qubit A is not a superposition of the states 1, and ¥_, but a
statistical mixture.

Statistical mixture:

A statistical mixture of two quantum states ¥ and 15 is an ensemble of
systems, where each individual system is prepared with probability p in
the state ¥; and with probability 1 — p in the state 2. Here, the states
11 and 9 need not be orthogonal.

Let us now consider three different ensembles of qubits. The ensembles
are distinguished by physically different preparation procedures:

(I) An ensemble of qubits that are part of a two-qubit system in a Bell
state.
(IT) An ensemble of qubits that are prepared with equal probability 1/2
either in the state 14 or in the state 1) (a statistical mixture).
(ITT) An ensemble of qubits in the state 14 (e;). Here, e; is the unit
vector in the positive x-direction, that is, all qubits are prepared
with spin-up in that direction (see (4.19)).
The ensemble (II) is prepared by randomly choosing a preparation procedure
for each qubit (that is, without the help of an entangled two-qubit system).
This is called a statistical mixture of the states ¥, and ¥_. Apart from
an obviously different preparation procedure, the two ensembles (I) and (II)
behave in an identical way.

There is no statistical test that can distinguish between the ensembles
(I) and (II).

The ensemble (III) is a superposition of the states ¢4 and 1_:

b (eg) = j§ (o + o). (5.68)

This also describes a situation where the probability of finding spin-up or
-down in the z direction is 1/2. Hence, all three ensembles cannot be dis-
tinguished by measurements of o3. But the superposition differs drastically
from the statistical mixture with respect to measurements of o1. A mea-
surement of oy in the state ¢ (e;) gives the eigenvalue +1 with certainty
(and hence the expectation value of o1 is +1). In the statistical mixture,
we find ¢4 and ¢_ with equal probability, and in both cases there is just a
50% chance to find spin-up in the z-direction. Hence, a measurement of o
produces +1 and —1 with equal probability (the expectation value of o is
0).
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The expectation values of the components of the spin are
(o1) = (09) = (03) =0 for ensemble (II), (5.69)
(o1) =1, (o2)={(03) =0 for ensemble (III). (5.70)

EXERCISE 5.12. For a two-qubit system in the state 1, , show that
(W ,(op @)y ) =0, k=1,23. (5.71)

Hence, the expectation value of the spin of qubit A vanishes along any axis.
Show that the same result holds for the other Bell states. This proves (5.69)
for ensemble (I).

Quite generally, given an ensemble of qubit pairs AB in an entangled
state, the ensemble of qubits A is not described by a state vector in the usual
sense, but rather by a statistical mixture of state vectors. A description of
subsystems in terms of state vectors is no longer adequate, and the theory
has to be generalized to accommodate for mixed states. This will be done
in the next sections.

An entangled state describes much more than just a statistical mixture
of subsystem states. This additional information concerns the correlations
between the subsystems. Chapter 6 is, among other things, devoted to a
deeper look into these questions.

5.5.2. Expectation values of subsystem observables

In order to develop a theory describing the states of a subsystem, we want to
figure out how to extract information about subsystems from a given state
of the compound system. To that purpose, we consider an observable S ® 1
of the subsystem A. For simplicity, we assume that S is a bounded operator
in the Hilbert space of system A. Let us compute the expectation value
for this observable. We need some orthonormal bases of vectors 1/ in $*
and 97 in H”. The product states PR ¢j form an orthonormal basis in
H* ® HZ. Hence, the state ¢ of the compound system can be written as a
linear combination of these product states:

P = Z Cij 1,[124 ® ’QZJ;B (5.72)
1,J
Before we compute probabilities, the vector ¥ has to be normalized. Hence,
we assume

19> = leyl* = 1. (5.73)
.
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The expectation value of S ® 1 in the state 1 is obtained by a little calcu-
lation:

(¥, S ® 1)

=Y vt @v? Y an Sup @ vP) by (5.51) and (5.72)
1,7 k,l

=Y Gjow (W @y, Syt @ uf) (anti-) linearity of (-, -)

i,7,k,l
= > Gjom (U, Svil) (0F 0f) by (5.17)

1,7,k,l
= Z Cij o (U7, Si) 61 orthonormality of {wf}.

i,7,k,l

Finally, using the definition (1.12) of the Kronecker symbol §;;, we obtain
the result

(¥, S@1Y) = Grow (¥, Svib). (5.74)

ikl

This involves the “matrix elements” of S between many different states of
the subsystem. Usually, the expectation value of an observable S in a state
¥ is just (1, Sv). Equation (5.74) shows that the expectation value of a
subsystem observable is much more complicated. This suggests that for a
given state of the compound system, the state of the subsystem cannot be
described just by a single vector in the Hilbert space of that subsystem.

EXERCISE 5.13. Show that for 1) = ¢* ®@1?, the expectation value of the
operator S ® 1 becomes

(S@1)y = (¥, S @ 1Y) = (Y, S9p") = (S)ya. (5.75)

Next, we are going to verify that the result (5.74) can also be written in
another way. For this we need to define the trace of an operator.
5.5.3. Trace-class operators

DEFINITION 5.1. Assume that for a linear operator S, the series

TrS = ij, Sap;) (5.76)

converges and has the same value in any orthonormal basis {1;} of the
Hilbert space. Then, Tr S is called the trace of S and the operator S is said
to be of the trace class.
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- The value of the series (5.76) is automatically independent of the cho-

sen orthonormal basis whenever the Hilbert space is finite dimensional,
or whenever the operator S is non-negative (meaning (1, S1) > 0 for all ¢).
This is not true in the general case, and therefore we need the assumption
in the definition above. Moreover, we note that a trace-class operator is
always bounded, but not every bounded operator is of the trace class. For a
non-negative trace-class operator we have ||S|| < TrS.

The following definition describes an important subclass of the trace
class.

DEFINITION 5.2. A bounded (hence everywhere defined) linear operator
p is called a density operator if it has the following properties:

(1) p is non-negative: (¢, p1p) > 0 for all 9.
(2) pis of the trace class and Trp = 1.

As the main characterization of trace-class operators, we quote the following
mathematical result.

Canonical form of trace class operators:

A self-adjoint linear operator S in a Hilbert space ) is of the trace class
if and only if there is an orthonormal basis {;} in $ such that

S = Z%‘ Vj (Yj,) = Z)\j |5) (¥4 (5.77)

with real numbers A; satisfying >, [Aj| < oo. The last expression in
(5.77) uses Dirac’s bra-ket notation (see Appendix A.8).
The trace of S is then given by

TrS=>) A (5.78)

An operator with the representation (5.77) has the eigenvalues \; and
the corresponding eigenvectors ;. Each nonzero eigenvalue has at most
a finite degree of degeneracy.

This result states that a trace-class operator is a sum of one-dimen-
sional orthogonal projection operators. If p is a density operator, then its
eigenvalues satisfy

=0, > N=1 (5.79)
J
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EXERCISE 5.14. Show that if p1 and ps are density operators, then for
any A with 0 < XA <1, the operator

p(N) = Ap1+ (1= X) pa (5.80)

1s also a density operator.

5.5.4. Density operator of a subsystem

We return to our task of rewriting (5.74). Given a normalized state of the
compound system

b= cij @F (5.81)
i,

(where {1;'} and {17} are orthonormal bases), we define the operator

pr = G [ (. (5.82)

ik,

It can be shown that this operator has the following properties:

(1) p* is bounded, self-adjoint, and non-negative.
(2) p* is trace class with Tr p* = 1.

These results follow by a direct computation that is left as an exercise.
Hence, the operator p* is a density operator. It has only non-negative eigen-
values that sum to one. Because p* is trace class and S is bounded, it follows
from the mathematical theory that Sp* also belongs to the trace class. Let
us compute the trace

TrSp* = (1,8 p" 1)) definition of trace
J

=) o (), SU W, by by (5.82)
yEN N

= > o (¥, S i orthonormality of {7}
YEN N

= Giew (¥, Syp). (5.83)
ik,

If we compare this result with Eq. (5.74), we see that Tr S p# is just another
way of writing the expectation value of S ® 1 in the state 1.
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Expectation value for a subsystem:

Let 1) be a normalized state of a bipartite system in H* ® H”. Let ¢;;
be the expansion coefficients of ¢ with respect to an orthonormal basis
{v® wf}. Then, the operator

ph = cwen Vi) (W (5.84)
ikl
is a density operator. If S is a bounded operator defined on $H#, then
(S®@1)y = (¢, S®1y) =TrSp". (5.85)

A similar result holds for observables of the system B.

EXERCISE 5.15. Assuming that $* and $H® have finite dimension, show
that the operator p* defined in (5.84) is nonnegative, that is, (¢, p*®) > 0 for
all ¢ € H*. Moreover, show that Tr p* = ||1b||?, where 1) is the corresponding
state of the compound system, defined as in (5.81).

EXERCISE 5.16. By the same reasoning as above, show that the expec-
tation value of a subsystem observable 1 @ S of the system B in the state
(5.81) is given by

TrSp” = (0F, S p” ¥F) (5.86)
k
with
p" = agea )Wl (5.87)
4,7,

5.6. Pure and Mixed States

5.6.1. State of a subsystem

All that can be known about a quantum system is contained in the expec-
tation values of the observables of the system. For a subsystem, we can
compute these expectation values according to (5.85) as soon as we know
the density operator. Thus, the density operator describes the state of the
subsystem.

The state of a subsystem:

If a bipartite system is in a state v, then the state of the subsystem A is
characterized by the density operator p* defined in (5.84), and the state
of the subsystem B is given by a similar expression p®.
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Earlier in this book, we characterized states as one-dimensional sub-
spaces of the Hilbert space (Book One, Section 4.1). For convenience, we
used a normalized vector ¢ of the subspace [¢)] = {c¢ | ¢ € C} to represent
the state. Equivalently, we may describe [¢)] by the operator p = |¢)(¢],
which is the unique orthogonal projection operator with range [¢)]. You may
check that p is a density operator (see Exercise 5.17). A density operator is
thus a direct generalization of our earlier concept.

Pure and mixed states:

In general, the state of a quantum system is described by a density
operator p. A one-dimensional projection operator

p =) with [l¢f =1 (5.88)

is called a pure state. It is usually represented by the state vector .
Otherwise, p is called a mixed state.

Let the bipartite system be in a separable state ¥ = ¥+ @ ¢¥?. We
may assume that ¥* belongs to some orthonormal basis. Using this basis in
(5.84), we see immediately that the density matrix describes a pure state:

pt = ") (. (5.89)
Likewise, the expectation value of S®1 is reduced to the familiar expression
TrSp* = (7, 597) (5.90)

(see also Exercise 5.13).

Whenever a pure state of the compound system is separable, then the
subsystem is in a pure state.

A stronger version of this statement is given in Section 5.8.1 below.

EXERCISE 5.17. Show that any one-dimensional projection operator is a
positive self-adjoint trace-class operator with unit trace and hence a density
operator.

5.6.2. Canonical form of the density operator

For a given density operator p, we can find an orthonormal basis {t;} such
that p has the canonical form (see Section 5.5.3)

p= ij |1h7) (¥ (5.91)
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Here, the numbers p; are the eigenvalues of p, and the vectors 1; are the
corresponding eigenvectors. Because p is non-negative with Trp = 1, the
eigenvalues fulfill the conditions

p; >0 (allj), Y pj=L1 (5.92)
J

The projection operator Py = | ) (1| is an observable describing the prop-
erty of “being in the state 1;.” The probability that a system in the state p
is actually found in the state 1y is, as usual, given by the expectation value
of P, that is, by

Tr Pep =Y (ti, Pipthr)

l

= 3" pj (Wor, ) (ks ) (5, 91) = i

l7j

(5.93)

Hence, the eigenvalue pg of p is the probability that a system in the mixed
state p is found to be in the pure state 1. The conditions (5.92) show that
the interpretation of the numbers p; as probabilities is consistent.

The meaning of the density operator:

A mixed state p of a physical system is a statistical ensemble of pure
states {11,19, ...} (forming an orthonormal set), where each pure state
1j occurs with a probability p;. The probabilities p; are just the eigen-
values of the density operator p, and the pure states 1); are the corre-
sponding eigenvectors.

Whenever one of the eigenvalues of p is degenerate, then the canonical
form of p is not unique. Consider, for example, a qubit in a mixed state
described by the density matrix

p= gl @l + 5 W) | = 51 (5.94)

Here, the eigenvalue p; = ps = 1/2 is degenerate with degree 2. But any
orthonormal basis {¢1, %5} in C? has the completeness property

1) (1] + |h2) (o] =1, (5.95)

and hence the density matrix (5.94) can be represented in a multitude of
ways.



236 5. COMPOSITE SYSTEMS

5.6.3. Ensemble interpretation of mixed states

Next, we consider an arbitrary set {¢1, ¢2, ...} of normalized Hilbert space
vectors. These vectors need not be orthogonal to each other. It can be
shown that the operator

p=3a;l6;)(¢;] withq;>0foralljand > g;=1  (5.96)
J J

is a density operator (see Exercise 5.19). (In general, if the set {¢;} is not
orthonormal, the g; are not the eigenvalues of p.)
The interpretation of the state (5.96) is as follows:

Interpretation of the density operator:

The density operator p in (5.96) describes an ensemble of quantum sys-
tems that have been prepared in the state ¢, with probability g.

For an orthonormal set {¢;}, the probability g of being prepared in the
state ¢ will coincide with the probability pi of being found in the state ¢.
But if the states are not orthonormal, the probability py is larger than gy,
because a system prepared in the state ¢; with j # k also has a certain
chance to be found in the state ¢g. The probability pi is the expectation
value of Py = |¢x)(¢r| in the state p:

pk = Tr (|or) (¢k| p) > qi- (5.97)

ExAMPLE 5.1. Consider a Stern-Gerlach filter that serves to prepare a
qubit with spin-up in the direction of the inhomogeneous magnetic field.
We assume that the filter can be rotated about the z-axis (the direction of
the beam). Let us consider three orientations, given by the rotation angles
a=0,a=m7/3, and « = 27w/3. Hence, we measure the spin with respect to
three directions given by the unit vectors (shown in Fig. 5.1)

0 1 0 1 0
n; = 0 , ny = 5 —\/3 , ns = 5 —\/3 . (598)
1 1 -1

In the standard representation, the spinors with spin up in these directions
are ¢; = . (ny), or

o1 = (é) ;o 2= % (f) ;P33 = % (_il\/§> . (5.99)

These vectors represent the states that can be prepared by our Stern-Gerlach
filter. Assume we throw a dice and if the result is 1 or 2, we prepare a qubit
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n,

n,

ng

FIGURE 5.1. The three possible orientations of the Stern-
Gerlach apparatus in Example 5.1, looking in the direction
of the beam.

in the state ¢4 (n1) by turning the Stern-Gerlach apparatus (filter) into the
upright position. If the result is 3 or 4, we prepare ¥ (n3), and if we get
5 or 6, we prepare 14 (n3). Hence, we prepare an ensemble of qubits where
each of the states (5.99) occurs with probability 1/3. The density operator
describing this ensemble is

3
p=3glo)el (5.100)

In the standard representation we obtain the matrix

2 i
o= ( : 2{?7) . (5.101)
T 2v3 3

With the explicit form of p, it is easy to determine the expectation values of
qubit observables. For example, the probability that a measurement of o3
on the ensemble gives +1 is

T (o) () = 2 (5.102)

The expectation value of the components of o is (o) = Trojp, and a little
computation gives

(01) =0, (02)=———7, (03)=r7. (5.103)

EXERCISE 5.18. Show that (5.84) can be written in the form (5.96) by
setting

1
q = Z lew;?, ¢ = —— ch;’ (e (5.104)
: Va o

and verify the conditions (5.92).
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EXERCISE 5.19. Show that the operator p defined by (5.96) is indeed
a density operator. Hint: Expand ¢; in an orthonormal basis {w;-‘} and
show that (5.96) can be written in the form of (5.84). Use the result of
Exercise 5.15.

EXERCISE 5.20. Repeat the computations of Example 5.1 with the direc-
tions for the Stern-Gerlach measurements as specified by the angles o = 0,
a = 2m/3, and o = 4w /3. Determine p and compute the expectation value
of o - n, where n is some unit vector in R3. What is the probability that the
qubit is found with spin up with respect to the direction given by n?.

5.7. Preparation of Mixed States

5.7.1. Preparing an ensemble in a mixed state

The interpretation of the density operator tells us how we can prepare an
ensemble of quantum systems in a mixed state p if we know how to prepare
the pure states ¢; in (5.96). We need the help of a (classical) random number
generator that produces the number j with probability p;. Whenever the
random number generator gives a number j, we prepare a copy of the system
in the state ¢;. Repeating this procedure generates the statistical ensemble
of pure quantum states described by the density matrix p as in (5.96).

Any quantum system can be in a mixed state. We even expect that
mixed states are a more realistic description of quantum systems than pure
states. Whenever we prepare an ensemble of quantum systems, there are
experimental inaccuracies and unavoidable fluctuations that will cause each
member of the ensemble to be prepared in a slightly different state, and we
are going to end up with a statistical mixture of the form (5.96). In that
case, the appearance of statistical mixtures of pure states is related to an
imprecise knowledge or inaccuracy of the preparation process.

Suppose we want to prepare an ensemble of hydrogen atoms in the
ground state and let them evaporate from a bottle of liquid hydrogen. As
this preparation method ignores the electronic spin, we expect that all di-
rections of the spin will occur with equal probability. Hence, we expect a
statistical mixture of the states (3.129) with spin up and spin down,

1 1
P=3 91,0,0,4-) (¥1,0,0,+ | + 3 191,0,0,—) (¥1,0,0,— 1, (5.105)

rather than a pure state (unless some unknown influence during the prepa-
ration prefers a particular state). We see that the mixed state p expresses
our ignorance about the details of the preparation process. A pure state can
only be obtained by a simultaneous preparatory measurement of a complete
set of commuting observables. Whenever the experiment leaves us ignorant
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of the eigenvalue of at least one of these observables, we have to describe the
state by a density operator.

Ignorance or inaccuracy as a reason for the appearance of mixed states
is not specific to quantum mechanics. In classical physics, the methods of
statistical mechanics have been developed for the very same reason. But the
mixed states describing the subsystems of a compound system appear on a
more fundamental level. We cannot avoid statistical mixtures by attempting
to control the state preparation more carefully (that is by trying to be more
accurate and less ignorant). Even if the compound system is prepared in
the best possible way (that is, in a pure state), it is inevitable that the
subsystem is in a mixed state whenever the compound state is entangled. It
has to be stressed, however, that no statistical test can distinguish between
an ensemble that is in a mixed state because of an inaccurate preparation
procedure and an ensemble that is in a mixed state, because its members
are part of a larger quantum system.

As discussed in Section 5.5.1, there is a difference between a mixed state
and a superposition. Given an orthonormal set {11, s, ...}, consider

p=Y pilp){l  versus =) \/pji. (5.106)
J j

To both p and 1, the pure states ¢; contribute with probability p;. It is
nevertheless possible to find a statistical test that distinguishes between p
and 1 (for example, by measuring the observable [¢)(1)|). The mathemati-
cal difference between p and 9 is the following: The pure state ¢) contains
information about the complex phases of the v;; the mixed state p does not.
If you replace one of the states 1; by exp(i)) ¢, this would change 1 but not
p. The “relative phases” of the v; have observable consequences for the state
1 (interference). The mixed state p is totally insensitive against phase dif-
ferences of its constituents. Sometimes, the pure state 1 is called a coherent
superposition, and the mixed state p is called an incoherent superposition of
the pure states ;.

EXERCISE 5.21. Show that p* # p for p = p1 |[¥1){(¥1] + p2 [¥2) (1|, with
p; >0, p1 +p2 = 1. Hence, p is not a projection operator. Fxtend the proof
to the case where p is a mizture of n orthogonal states.

EXERCISE 5.22. Show that a density operator p describes a pure state if
and only if p*> = p.

EXERCISE 5.23. Show that in the Hilbert space of a qubit, any density
operator is of the form

p= <Z ) f a> with 0 < a <1 and suitable b € C. (5.107)
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EXERCISE 5.24. Determine the unitary transformation U that diagonal-
izes the operator p in (5.107),

Pdiag = U_lpU = (p 0 > with p > 1 — p, (5.108)
0 1—p
and show that the positivity of p is equivalent to the condition
b2 < a —d?. (5.109)

5.7.2. Ambiguity of realizing mixed states

The procedure for preparing a mixed state p is not unique. This can be seen
already in the simplest case of a qubit. Consider, for example, a qubit in a
mixed state described by the density matrix

p= gl @l + 5 W)l = 51 (5.110)

We can prepare this state by creating an ensemble of qubits, where a ran-
domly chosen 50% of the particles is prepared in the state ¥4 (spin-up in
the z-direction), and the rest is prepared in the state ¢¥_. But we could
also create an ensemble containing the two eigenstates of, say, o1 with equal
probability. This would produce the mixed state

S0 e (o) + 5 (o)) (b (o) = 51 =p. (5.111)

It is intuitively clear that the two representations (5.110) and (5.111) are
equivalent, because each of the pure states ¥4 (e;) again has a 50% chance
to be in one of the o3-eigenstates 14 and ¥_. In the ensemble described by
(5.111), we would find ¥4 and v with equal probability, and hence this state
could equally well be described by the mixture (5.110). There is no chance to
determine experimentally which of the two (physically different) preparation
procedures was used to create the given ensemble. Any measurement of any
spin component would just produce a random bit.

Ambiguity of the ensemble preparation:

In general, there are many physically different ways to prepare an ensem-
ble of systems in the state p. All preparation procedures are completely
equivalent with respect to determinative measurements. No statistical
test on the ensemble can distinguish between different methods to pre-
pare one and the same state p.

Additional information about the preparation procedure, however, can
be used to obtain pure states from a mixed state. If, for example, the
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preparer makes a record of how the qubits were prepared (“first qubit spin-
up, second qubit spin-down, ...”), this information would allow us to choose
a subensemble in the pure state 1. This information is therefore physically
equivalent to a Stern-Gerlach filter (represented by the projection operator
P, = |14)(¢4]), because this filter would select the same subensemble.

EXERCISE 5.25. Show that the qubit density operator p in (5.107) can be
written as

1
p=2p=DI)W|+ (2= 2p)pm  with = Uty and pn = 5 1. (5.112)

The eigenvalue parameter 1/2 < p <1 and the unitary matriz U have been
introduced in Exercise 5.24. For p > 1/2, p describes a “noisy” qubit state
P: A measurement of the corresponding component of the spin gives ¢ with
probability p and the orthogonal state with the probability 1 — p. The case
p =1 corresponds to the pure state (¢ is found with certainty), and p = 1/2
describes the “mazimally mized” state p = (1/2)1.

5.7.3. Example: Mixed qubit states

From (4.6) we know that any density operator p in the Hilbert space of a
qubit can be written as

3
1
P=5 (aolg + Z akok) (5.113)

k=1
where, according to (4.9), the coefficients ay, k = 1,2, 3, are the expectation
values of the observables o}, that is

ap = Tr (okp) = (oK) - (5.114)

Moreover, ag = Tr p = 1. The vector a = (aj, ag, az) satisfies 0 < |a] < 1. It
can be used to visualize the mixed state p.

Visualization of density operators for qubits:

Any qubit density operator p corresponds to a unique vector a € R? with
0 < |a] <1 such that p = p(a) with
1
p(a) = 3 (124+a-0). (5.115)

The components of a describe the expectation values of the components
of o.

In this connection, the unit sphere {a € R3 | |a| < 1} is called the Bloch
sphere. A qubit density operator corresponds to a point inside the Bloch
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sphere. The maximally mixed state p = %1 corresponds to a = 0 (the center
of the Bloch sphere).

For |a| = 1 (the surface of the Bloch sphere), the operator p(a) is an
orthogonal projection operator. The vector 14 (a) defined in (4.19) is the
eigenvector of p(a) belonging to the eigenvalue 1 (see Exercise 4.11). Hence,
p(a) projects onto the subspace spanned by 14 (a). We conclude that the
density operators corresponding to the surface of the Bloch sphere are the
pure states.

The qubit density operator p(a) is a pure state if and only if |a| = 1. In
this case, we have
1
pla) =5 (12+a-0) = |)i(a))(@(a)] for fa| = 1. (5.116)
The vector 14 (a) was defined in (4.19).

Let 0 < |a|] < 1, and define a = a/|a| as the unit vector in the direction
of a. The vectors ¢4 (a) defined in (4.19) are the eigenvectors of p(a), and
we find that the canonical form of p(a) is given by

1 . . 1 . ~

p(a) = 5 (1 +[a))[p+ (@) ¢+ (@) + 51— [a)[v-(a)){y-(a)].  (5.117)
We can assume that a is a linear combination of two other vectors in the
Bloch sphere,

a=Xb+(1—-XNc, witho<A<1. (5.118)
This means that a is on the straight line segment connecting b and c. A
linear combination of the form (5.118) is called a convex linear combination.
Then
p(a) = Ap(b) + (1 — N)p(c). (5.119)
We can even choose b and ¢ on the surface of the Bloch sphere, with |b| =
|c| = 1. (Obviously, this can be done in an infinite number of ways.) Hence,
any qubit density matrix p(a) can be written as a convex linear combination
of pure states,

p(a) = A4 (b)) (¢4 (b)| + (1 = Mo (c)) (¢ (c)] (5.120)
whenever a = Ab + (1 — \)c with |b| = |c| = 1.
An example is shown in Figure 5.2.
According to Section 5.6.3, the equations (5.117) and (5.120) can be in-

terpreted as physically different preparation procedures. In order to prepare
an ensemble in the state p(a), we can

(a) prepare individual copies of the qubit in the states 14 (a) with the
probabilities (1 + |a), or
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FI1GURE 5.2. Density operators for qubits correspond to vec-
tors in the Bloch sphere. The surface of the Bloch sphere
corresponds to pure states; the center is the maximally mixed
state. Any mixed state p(a) is a (non-unique) convex linear
combination of pure states. A convex linear combination of
b and c is a vector a on the line segment joining b and c.

(b) prepare individual copies of the qubit in the states 14 (b) and ¥4 (c)
with the probabilities A and (1 — \), respectively.

The ensemble in the state p(a) finally contains no information about which
of the preparation procedures (a) or (b) has actually been carried through.

Many of the observations made here are true for more general systems.

For any two density operators p; and p2, the convex combination Ap; +
(1 — A)p2 is again a density operator. A set with these properties is called a
convex set. Geometrically, a convex set may be visualized as a set with the
property that for any two points in the set, the line segment joining the two
points also belongs to the set. Hence, the set of all density operators (the set
of all states of a physical system) is a convex set, for which the Bloch sphere
is a good example. A point in a convex set is called an extremal point if it
cannot be written as a convex combination of two other points. The pure
states of a quantum system are just the extremal points in the convex set of
states.
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EXERCISE 5.26. Given a qubit in the state p(a) and a unit vector n € R3,
show that the expectation value of the observable n - o is given by

(n-0),n =a-n (5.121)

What is the expectation value of n- o in the state p = % 17?

EXERCISE 5.27. A qubit is in a mized state obtained by preparing V4 (e;)
with probability 1/4 and ¢4 (e,) with probability 3/4. Find the canonical form
of the density operator and determine the direction for which the probability
that the qubit has spin-up is maximal. What is the probability of finding
spin-up in the x-direction?

5.8. More About Bipartite Systems

5.8.1. Normal form of the state vector

Let us return to our investigation of the states of compound systems. Using
the canonical form (5.91) of the density operator p”®, we can also obtain
a normal form for the state vector of the compound system. This normal
form makes it easy to determine whether the state is entangled or not and
whether 1 is uniquely determined by the states of the subsystems or not.

Let us write a state 1 of a bipartite system as a linear combination of
product states as in (5.22). We choose in $”* an orthonormal basis {¢7}
with respect to which p* is diagonal. Let {7} be an arbitrary orthonormal
basis in $%. Then

wZZCW?@W :Z o; @ (Z%lﬁ) ZZ ot @ x?,  (5.122)
@ J i

ij
where

Xi =) ey (5.123)
J
Because p” is diagonal in the basis {¢7}, we have, using Eq. (5.84),

Pt =D il et =D Y ciew o) (7 (5.124)
J 7k 1

and hence
Zcijlckl = p; 0jk- (5.125)
l

This expression is just the scalar product of the vectors Xf and x, because
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<Xf,Xf> = Z@Ckr (%B,lﬁf) = Z@ckr O = Z@Ckl-
Ir Ir l

Hence,
(X7 XE) = Pj Sjk, (5.126)

that is, the vectors {x}} form an orthogonal set in $”. After normalization,
we obtain an orthonormal set consisting of the vectors

1
P = —— 7. (5.127)
J \/ITJ J

Inserting this into (5.122), we obtain the normal form of ),
=Y Vi ® P (5.128)
i

From this we may conclude the following: 1 is separable if and only if
precisely one of the summands is nonzero, otherwise it is entangled. In the
separable case, we have p;, = 1 for precisely one index k, and p* = |¢;) (o]
is a pure state. As a consequence, we have the following result:

Pure and mixed states:

A subsystem is in a pure state if and only if the compound system is in
a separable state. The subsystem is in a mixed state if and only if the
state of the compound system is entangled.

If the compound system is described by (5.128), then the state of the
subsystem B is given by

o =3 mlof)or) (5120)

Hence: For both subsystems A and B, the nonzero eigenvalues of the density
operators are the same! To each eigenvector of p* belonging to a nonzero
eigenvalue, there is an eigenvector of p? belonging to the same eigenvalue.
Only the degree of degeneracy of the eigenvalue zero may be different (note
that H* and $H” need not have the same dimensions). Moreover, the states
of A and B are either both pure or both mixed.
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Normal form of states:

For a given state v € H* @ H of the compound system, we can find
orthonormal bases {¢7} in §* and {¢7} in H” such that

V=Y VP dteel, pi=0, Y pi=1 (5.130)

Equation (5.130) is called a Gram-Schmidt representation of .
If the state of the compound system is given by (5.130), then the
states of the subsystems are described by the density operators

ot =2 pild) @, 07 =D pilof) (97 (5.131)

Hence, p* and p® have the same nonzero eigenvalues. p” is a pure state
if and only if p? is a pure state.

In general, the Gram-Schmidt representation is not unique. As an
example, we consider the vector 1, given in a Gram-Schmidt represen-
tation as

n
b=> ¢} @¢? (5.132)

j=1
(the corresponding density matrix p* has a degenerate eigenvalue). We are
going to construct another Gram-Schmidt representation of 1 with the help
of an arbitrary unitary n x n matrix U. In the Hilbert space $#, we consider
the basis transformation defined by the transposed matrix U' according
to ¥ = S (UT) ¢, At the same time, we consider the transformation
Y7 = > (U1 jm @k, in the Hilbert space 7. We note that %A = Uqﬁ;‘ and
Y7 =U Td)f. Hence, if the vectors qﬁj‘ and ¢7 form orthonormal bases, then
the unitarity of the matrix U implies that the sets {¢/'} and {¢/} are also

orthonormal bases. Now we compute

n

S ureus =S (S0 6) @ (30 mot)
j=1

Jj=1 1=1 m=1

=3 (v ) ot @
Im j=1

=) Gt @dp =) ¢ @ =1 (5.133)
Lm I=1

Hence, we have obtained another Gram-Schmidt representation of ¢. We
note that the Gram-Schmidt representation is essentially unique if all nonzero
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numbers p; are different (that is, all nonzero eigenvalues of p* or p? are
nondegenerate). In this case, the only remaining freedom is the replacement
(mA ® ¢f N e1/\¢%4 ®e’1)‘¢f.

5.8.2. Maximally entangled states

Because the definition of p* involves all the coefficients ¢;; of the state 1
in the basis {1;' ® 9]}, one might ask to what extent the state 1) of the
bipartite system is already determined by p* and p”. In physical terms, the
question is the following: To what extent do measurements of the states of
the subsystems A and B tell us something about the state v of the compound
system?

Unfortunately, the connection between the states i of the compound
system and the states p*, p? of the subsystems is not one-to-one. Many
different states of the compound system may lead to the same states in the
subsystems. For example, any Bell state (5.30) of a two-qubit system leads
to the same density matrix for both subsystems:

1 1
pt = 5 15, pP = 5 15, (for any Bell state). (5.134)

Bell states of a two-qubit system are a special case of the following definition.

DEFINITION 5.3. Assume that $% and $H® both have dimension n. A
state of the compound system is said to be maximally entangled if

1 1
pt = =14 p’==1" (5.135)
n n
Let {¢1,v2,...,%n} and {¢1, ¢2, ..., dn} be any two orthonormal bases
of n-dimensional Hilbert spaces $H* and $H?, respectively. A maximally en-

tangled state is, for example,

1 — 1
\/ﬁ; 7 Tvn

Obviously, this state already has the normal form (5.130). Hence, you can
easily verify Eq. (5.135), using (5.131) and the completeness of bases. For
example,

A Iy = L
p —n;\w»w—nl- (5.137)

This is a statistical mixture where each of the pure states v; contributes
with the same probability (a maximally mixed state).

If we choose other orthonormal bases in the subspaces, we obtain another
maximally entangled state of the compound system but the same density
matrices p* and p” for the subsystems. Equation (5.137), written in terms of
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another orthonormal basis {@/}}}, can be interpreted as a statistical mixture of
the states 1/19, but the two representations are completely indistinguishable by
measurements performed on A (as discussed in Section 5.7.2). Corresponding
to the infinite number of orthonormal bases in $* and $%, there is an infinite
number of maximally entangled states, and all of them lead to the same state
of the subsystem.

Different maximally entangled states are different pure states of the com-
pound system. Hence, they can be distinguished by suitable (“global”) mea-
surements performed on the system as a whole. But they cannot be distin-
guished by local measurements, which provide only information about p*
and p”. In general, the state 1) of a bipartite system contains more informa-
tion than the states p* and p”® of the subsystems together. This is nothing
but the quantum mechanical way of saying that the whole is more than the
sum of its parts.

5.8.3. Purification

We consider a quantum system A whose pure states are vectors in a Hilbert
space $*. We assume that the system is in a mixed state, described by a
density operator p. We can find an orthonormal basis {¢7} such that the
density operator is given by

p=2_piloi)ol (5.138)

Now, we take another Hilbert space $” whose dimension is at least the
number m of nonzero eigenvalues of p (counting the degree of degeneracy).
Then, we choose an (arbitrary) orthonormal system {17} in $” consisting
of m vectors and define the state

=2 o] oy, (5.139)
J

By construction, our system A is now part of a compound system. The state
1 of the compound system is a pure (entangled) state with the property that
the state of the subsystem A is given by p* = p (according to (5.131)). The
pure state ¢ of the larger system is called a purification of p. There are many
purifications of p, because we have a complete freedom in the choice of the
orthonormal system {@ZJJB}. In fact, there is a one-to-one correspondence be-
tween orthonormal systems of m vectors in $® and the possible purifications
1 of p.

We see that any mixed state may be considered a pure state in a larger
Hilbert space. A purification of p can also be characterized as a pure state
1) such that

(p,S®1y)="TrSp (5.140)
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holds for any (bounded) subsystem observable S ® 1.

5.8.4. Projection postulate for mixed states

Consider a system in a mixed state p. We assume that the Hilbert space is
finite-dimensional and consider some observable A with a discrete spectrum,

A=) "\P, (5.141)
j

where \; are the eigenvalues, and P; are the orthogonal projection operators
onto the corresponding eigenspaces. If a measurement of A produces the
eigenvalue A\, then, immediately after the measurement, the system is in
the state

Pk Pk pPk. (5.142)

Tr Pp
This result follows from the projection postulate. Let 1 be any purification
of p. Then, according to the projection postulate, a measurement of the
observable A ® 1 that produces the eigenvalue A\ projects the system into
the range of the projection operator P, ®1. That is, the state of the purified
bipartite system after the measurement is ¢ = N (Pr®1) v (with a suitable
normalization constant Ny). In order to compute the density matrix py of the
original system after the measurement, we consider the expectation values
of the subsystem observables,

(S) = NH(Py®1)¥, (S®1)(Py® 1))

) 5 (5.143)
= Ni{(¢, (PSP, ® 1)¢) = Nj; Tr P.SPyp
and determine the normalization constant from
1=Trlp= N Tt P}p= NETr Ppp. (5.144)
By definition, we must have (S) = Tr Spy, hence
TeSp = — ;kp Tr PuSPyp = Trs(Trlpkp Pkak>. (5.145)

Because this holds for all operators S, we finally obtain (5.142).

EXERCISE 5.28. The state of a qubit is given by
1/2 1/4
p— (1§4 1§2> . (5.146)

What is the probability of finding +1 in a measurement of o1 ¢ What is the
state of the qubit after having obtained this result? Give a quick answer and
verify it by a computation using (5.142).
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EXERCISE 5.29. Consider a system in an eigenspace of L? with angular-
momentum quantum number { = 1. Denote the eigenstates of L3 by |m)
with m = —1,0,1. Assume that the system is in a mized state where |0)
has the probability 1/2 and the two “real orbitals” %(|1> +|-1)) each have

the probability 1/4. Suppose you want to measure L3, but due to experi-
mental inaccuracies you only get the result that L3 is non-negative. What
is the probability for that result? What is the state of the system after the
measurement according to the projection postulate (5.142)¢

5.9. Indistinguishable Particles

5.9.1. (Anti-)symmetric states of bipartite systems

We consider a bipartite system where the subsystems are of the same kind,
for example, two particles in R3 or two qubits. More precisely, we assume
that both subsystems are described by the same Hilbert space § = H* = H%.
Whenever the system is in the separable state

=1 @1y, (5.147)

then the first system is in the state ¥; and the second system is in the state
Pa.

Now, let us exchange the two subsystems. This means that we put the
first system in the state v and the second system in the state ;. Then,
the state of the combined system becomes 12 ® 11. In general, this state is
different from (5.147),

VY1 @Yo # Yo @91 for Py £ Pa. (5.148)

Therefore, these two states can be distinguished by suitable measurements,
and this allows us to distinguish between the two subsystems. If the two
systems are truly identical, then there should be absolutely no way to tell
whether the first is in the state 1 and the second in the state 19, or vice
versa. Obviously, this situation cannot be described adequately by a sepa-
rable state like (5.147) with 1)1 # 1)s.

Identical systems:

Two quantum systems are said to be identical if there is no measurement
that can distinguish between the two systems.

This rather vague definition just states that identical systems are in-
distinguishable. In order to investigate identical systems, we introduce the
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exchange operator X. It is defined in the Hilbert space H ® §. As usual, we
define first the action of X on separable states,

X (Y1 @ h2) = b2 ® ¢y, (5.149)
and extend this definition by linearity and continuity to all vectors in $H ® $H
XD b @dp=> cikdr® ;. (5.150)

Jk gk

The operator X is unitary and self-adjoint on $ ® 9, and
x?=1. (5.151)

Hence, the only possible eigenvalues of X are +1.

The operator X defines a symmetry transformation for the states of the
composite system (see Section 1.1.2). We may now sharpen our definition
of identical systems.

Exchange symmetry:

A bipartite system is said to be composed of identical (or indistinguish-
able) subsystems if all states remain unchanged under the symmetry
transformation defined by the exchange operator X.

What are the consequences of the exchange symmetry for the state vec-
tors? The two normalized vectors ¢ and X1 must correspond to the same
state of the composite system. Hence, these two vectors can only differ by a
phase factor:

Xy =eMyp  for some A € [0, 27) (5.152)
(X is called the exchange phase). From this we obtain
P =X%2p =e*Py (5.153)

and because of (5.151) we find e?!* = 1, that is, the exchange phase can only
be A =0 or A = . Either we have X1 = v (the state vector is symmetric)
or we have X'1) = —1) (the state vector is antisymmetric).

Note that all state vectors must be either symmetric or antisymmetric.
It is not possible that some are symmetric and others are antisymmetric, as
long as we adhere to the superposition principle, because a superposition of
a symmetric and an antisymmetric state vector would neither be symmetric
nor antisymmetric. For example, assuming Xy = ¢ and X¢ = —¢, we find
that X'(¢¥ 4 ¢) = 1) — ¢ is orthogonal to 1) + ¢ and thus violates the exchange
symmetry. We conclude:
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Symmetrization postulate:

Consider a bipartite system composed of identical subsystems. All state
vectors must be either symmetric,

Xy =1, (5.154)
or antisymmetric,

Xy = —1, (5.155)
under exchange of the subsystems.

Systems described by symmetric state vectors are called bosonic, and
systems with antisymmetric state vectors are called fermionic.

The statement in the box above is called a postulate, although it
appears as a mathematical consequence of our definition of identity.
However, this definition is based on a rather vague concept of subsystem
exchange. What is the physical meaning of an exchange of two identical
particles? Is it some physical operation or just a mathematical concept?
Can we exclude that the composition of two interchange operations has to
be represented by the operator —1 (like a rotation through 27 of a spin 1/2
particle)? In this case, one would have to replace the exchange operator
(5.149) by an operator X’ with the property (X’)2 = —1. (The correspond-
ing ray transformation is still the identity on rays, see Section 1.1.3.) This
would change the mathematical definition of “indistinguishable” and the pos-
sible values of the exchange phase. Indeed, theoretical considerations like
these have led to an experimental search for a violation of the symmetriza-
tion postulate (without success) and to the theoretical concept of anyons,
a hypothetical class of particles in two dimensions (which are employed, for
example, in discussions of the so-called fractional quantum Hall effect).

As a consequence of the symmetrization postulate, we find that the phys-
ical Hilbert space of a system composed of identical subsystems can only be
a subspace of the tensor product H ® §.

Starting with a separable state vector ¥ ® 19, it is easy to construct
suitable symmetric or antisymmetric vectors in 9 ® $: The vector

s = \}5 (101 R P2+ P2 ® 1/)1) (5.156)

is symmetric whereas

Yo = \}i (wl Q2 — P2 ® 1/11> (5.157)

is antisymmetric. The symmetric state vectors form the eigenspace of the
exchange operator X belonging to the eigenvalue +1; the antisymmetric
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state vectors belong to the eigenvalue —1. We may define the projection
operators onto the eigenspaces by

1 1
P = \/§(1+X) and P, = \/5(1 X). (5.158)
The symmetrizer Py and the antisymmetrizer P, are orthogonal projection
operators. Their ranges are Hilbert spaces. The range of Py is called the
symmetric subspace or bosonic Hilbert space. The range of P, is the anti-
symmetric or fermionic Hilbert space.

Symmetric and antisymmetric subspaces:

The appropriate Hilbert space of a bipartite bosonic system is the sub-
space of symmetric states 5 = Ps($H ® $). The Hilbert space of a
fermionic system is $, = P, ($ ® $). It consists of all antisymmetric
state vectors.

From (5.158), we conclude immediately that H®$H = HsDH, (orthogonal
direct sum), and hence any vector ¢y € $ ® $H can be decomposed in a
unique way into a symmetric part and an antisymmetric part, which are
mutually orthogonal. It should be stressed, however, that according to the
symmetrization postulate, the Hilbert space for a system consisting of two
indistinguishable subsystems is either g or $,. Superpositions of symmetric
and antisymmetric states are not allowed, because they violate the exchange
symmetry. Similarly, the only useful observables are those that leave the
symmetric and antisymmetric subspaces separately invariant.

A separable state ¥ ® ¥9 cannot be antisymmetric.

All states of a fermionic system are entangled. It is not possible to
describe a subsystem of a fermionic system by a pure state. Moreover,
for any ¢ € $H we have

Py(¢ ®1) =0 (Pauli’s exclusion principle). (5.159)

The Pauli principle states that a fermionic state cannot be obtained
by antisymmetrizing a product state with two identical factors. Its usual
formulation, “two parts of a fermionic system cannot be in the same state”
is rather misleading, because whenever the system is in the state

Ya = Py(Y1 @1p2)  with g Lapo (5.160)

then both subsystems are actually in the same (mixed) state

ot = 07 = 5 ()] + ) (2] (5.161)
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Bosonic systems are very different from fermionic systems, because

Py @) =9 @9, (5.162)

Hence, a bipartite bosonic system can be in a separable state where both
subsystems are described by the same pure state. All other states are en-
tangled, for example, the state (5.156) with 1 # g,

Ys = Pry(11 ® 2). (5.163)

Again, either subsystem is in the mixed state described by the density op-
erator (5.161).

5.9.2. Example: Bosons and fermions
Consider a system of two particles in R™. The Hilbert space is
L*(R*") = L*(R") ® L*(R"). (5.164)

For the tensor product of square integrable functions, we may use the ordi-
nary product instead of the symbol ®. Given a basis {1);} of wave functions
in L?(R™), we can form a basis consisting of the separable wave functions

W (x ) g (x?) (5.165)
in L?(R?"). A general two-particle wave function can be expanded as
P, x) = e (x W)y (x@). (5.166)
g,k

Because the subsystems are particles, the exchange operator X" is called the
particle interchange operator. According to (5.150), it given by

X p(x1, x@) = (x?, xM). (5.167)

A wave function describing a system of two identical particles is either sym-
metric,

P(xM x?)) = (@, xW), (5.168)
or antisymmetric,
P(xW x@) = —p(x?) M), (5.169)
Examples are shown in Figure 5.3. Particles with symmetric wave functions
are called bosons; particles with antisymmetric wave functions fermions.
Actually, it turns out that all particles with half-integer spin are fermions
whereas all particles with integer spin are bosons. Systems of particles with
spin have to be described, of course, by (anti-)symmetrized tensor products
of spinor-wave functions.
The Hamiltonian operator

H= _QL (AW + A1V (xM) + v (x®) + U(xV - x®))).  (5.170)
m
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FIGURE 5.3. Some two-particle wave functions. (a) A sep-
arable wave function, (b) a symmetric, and (c) an antisym-
metric wave function.

describes the energy of two particles in an external potential V. The po-
tential U describes the interaction between the two particles. H applied
to an (anti-)symmetric wave function 1 gives a function Ht that is again
(anti-)symmetric. Therefore, H is a suitable Hamiltonian also for a system
of two bosons or two fermions.

CD 5.6 shows symmetric and antisymmetric wave functions of two
particles interacting via the harmonic oscillator force. The symmetry
properties of the wave packet are preserved under the time evolution.

5.9.3. Example: Two-qubit system

The state of a system consisting of two identical qubits must be described
either by a symmetric or by an antisymmetric state vector. For fermionic
qubits, the only suitable vector among the states of the Bell basis is

1
v =5 (vr @0 —v-@vy). (5.171)
On the other hand, there are three orthogonal states for two bosonic qubits:
¥, s, and 9T, Another orthonormal basis in the subspace of a bosonic
two-qubit system is {1 ® i, @ _, T}

We conclude that the Hilbert space of two fermionic qubits is only one-
dimensional whereas two bosonic qubits have a three-dimensional Hilbert
space. However, this observation is of little practical importance. In the
applications, the qubit states usually only describe a part of the properties
of a system. The fermionic or bosonic nature of a qubit can be accounted
for by the spatial part of its wave function. Consider, for example, a fermion
with spin 1/2. Its state is described by a spinor-wave function. For example,
a state with spin-up is

unl) = o9 = (*0) with o € L9, (5.172)
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A two-fermion system can have a symmetric qubit state if only its spatial
part is antisymmetric. For example, from the single-particle states ¢1(x)1)4
and ¢2(x)¥4, we can form the antisymmetric two-particle state

Y(x,y) = (01(x)0+) ® (P2(y)¥+) — (P2(x)¥+) @ (P1(y)¥+)
= (¢1(x) p2(y) — ¢2(x) d1(y)) (V+ @ ¥4 ). (5.173)

Here, the antisymmetry is contained completely in the spatial part of the
two-particle wave function, while the spin-part is given by the symmetric
two-qubit state ¢y ® ;. Therefore, the bosonic or fermionic nature of the
subsystems is usually of no concern in a discussion of qubit systems.

It is interesting to apply the Pauli principle to a spinor-wave function
like (5.173). In this two-particle state, both particles have spin up. Hence,
the space-part is antisymmetric and vanishes for x = y. We conclude

Pauli’s exclusion principle:

Two fermions with the same spin are never found at the same position.

5.10. Special Topic: Multiparticle Systems with
Spin
For particles with spin s, the component S3 of the spin has 2s + 1 different

eigenvalues. The spinor-wave functions have 2s + 1 components, and the
single-particle Hilbert space is

oW = L2R)H%H = 2R} ¢ L2(RY) ... & L2(R?). (5.174)

-~

2s 4+ 1 copies

We denote any spinor-wave function in the eigenspace of S® belonging to
the eigenvalue mgs by 1(x;ms). An arbitrary spinor-wave function is a sum
> m, Y (x;ms), because the Hilbert space is a direct sum of the eigenspaces.
It is useful to introduce the abbreviation

E=(x,ms), x€R" mye{—s,—s+ %, cey St (5.175)

and write the scalar product between two spinor-wave functions in the con-
venient form

w.o)= [TOveE = Y [ TEeexadn  Ga70)

ms=—s
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The Hilbert space for a system of N particles with spin s is the N-fold
tensor product

5:)(N) — 57)(1) ® 57)(1) R ® 57_)(1) . (5.177)

N copies

A wave function for a system of N particles with spin is a function of N
variables €U, ..., ¢WN) where ¢ describes the position coordinate and the
third component of the spin of particle number j. For example, the product
functions can be written as

1(EW) o (€P)) - (6. (5.178)

Arbitrary linear combinations of the product functions yield general N-
particle wave functions zp(g(l), . ,§(N)) in HWN).

For particles with the same physical characteristics (mass, charge, spin,
or other internal quantum numbers), we postulate the physical indistin-
guishability in the following form: Any wave function that is obtained from
P(EW, ..., W) by an arbitrary permutation of the particles should describe
the same n-particle state. A permutation of /N indices is a one-to-one map-
ping 7 of the ordered set of numbers {1,2,... N} onto itself. The set of all
permutation of N indices is called the symmetric group Sy (it is a group
with respect to the composition of the mappings). This group contains V!
elements (= the number of permutations of N indices). A transposition is
a permutation that just exchanges two of the indices. Any permutation can
be written as a composition of transpositions. The permutation is called
even if it is a composition of an even number of transpositions, otherwise it
is called odd. The sign of the permutation, denoted by sgnr, is +1 if the
permutation is even and —1 if the permutation is odd.

Permutations 7 of N indices define transformations Pr in the space of
N-particle wave functions,

Prap(6M, .. M)y = (e gDy, (5.179)
It is easy to see that Py is a unitary transformation in the n-particle Hilbert

space.

DEFINITION 5.4. An N-particle wave function 1 is called symmetric if
Pr1 = 1 for all permutations w € Sy. The wave function ¢ is called
antisymmetric if Pr 1 = sgn) .

We define the linear operators

1 1
P= > Pr,  Pi= N > (sgn)Pr. (5.180)

wESN weSN
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These are orthogonal projection operators in the Hilbert space H V) of N-
particle wave functions. For an arbitrary wave function v, we find that Py
is symmetric whereas P,1) is antisymmetric. Hence, the range of Py is called
the bosonic subspace 5§N) of the N-particle Hilbert space, and the range of
P, is the fermionic subspace ﬁgN). The following result is obtained in the
framework of relativistic quantum field theory.

Spin-statistics theorem:

Particles with integer spin are bosons, and particles with half-integer
spin are fermions.

In particular, a system of N particles with spin 1/2 is always described

by an antisymmetric wave function in the fermionic Hilbert space ﬁgN). Such
a wave function has the property

Y =Py (5.181)

We can obtain a fermionic wave function by applying the projection
operator P, to a product wave function (5.178). After multiplication with the
factor v N!, we obtain the following wave function in the fermionic Hilbert
space:

Pa(EW, M) = VNI Py (EW)ho (6P - - hy (€)

wl(g(l)) ¢1(§(2)) ¢1(5(N))
1 [2(€M) h(€®) - (M)

= — 5.182
VN! : : : ( )
Un(ED) P (E@) o ()
This wave function is called the Slater determinant of 11, ..., v¥yN. It is nor-
malized, ||¢a|| = 1, whenever the functions {¢1,...%¢x} form an orthonor-

mal set. Starting with an orthonormal basis {11, 12, ...} in the one-particle

Hilbert space, we obtain a basis of the N-fermion Hilbert space ﬁgN) by
forming all possible Slater determinants out of N different basis vectors,

Vet den (€D, €M) = VNP g (EW) iy (6. (5.183)

Whenever two functions are equal (for example, if k; = k;), then two rows of
the corresponding Slater determinant are equal, and hence the determinant
vanishes. This is again Pauli’s exclusion principle.

The operator of multiplication by the coordinate 2% of the kth parti-

i
cle makes no sense in the bosonic or fermionic Hilbert space, because this
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operation would destroy the (anti)symmetry of the wave function. Physi-
cally meaningful operators for bosons (or fermions) are only those operators
that leave the Hilbert space of bosons (or fermions) invariant, that is, the
operators map the Hilbert spaces .‘r')éN) (or f)gN)) into itself. An example is
the Hamiltonian for a system of N charged particles (all having mass m and
charge q),

N 1 ) N q2
_ (k) S
H=Y" 5 ()" + | Z OEOTE (5.184)
k=1 j<k,j,k=1

Here, p® is the momentum operator in the k™ single-particle subspace. It is

proportional to the gradient with respect to the coordinates :z:z(k). Other ex-
amples of operators that preserve the symmetry of the wave function include
the total momentum and total angular-momentum operators

N N
p=> p®,  I=3 (LW +8W). (5.185)
k=1 k=1

All these operators commute with arbitrary permutations Pr (for this it
is sufficient to verify that the operators commute with arbitrary transposi-
tions), hence they commute with the projection operators Ps and P,.

5.11. Special Topic: Addition of Angular Momenta

5.11.1. Total angular momentum

In this section, we want to combine two quantum systems with angular
momentum. Let the angular-momentum operators be denoted by J* and
JE. Tt is an interesting and physically relevant problem to investigate the
angular momentum of the combined system. Actually, we encountered this
problem already when we combined the orbital angular momentum J* = L
with the spin J? = S of a particle, or when we combined two qubits (spin
1/2 particles) into a single two-qubit system. Naturally, this question is very
important for the quantum mechanics of atoms and molecules.

We assume that the square of the total angular momentum has a fixed
constant value in both systems and denote the corresponding quantum num-
bers by j* and j%, respectively. Given these quantum numbers, we may
restrict our attention to the corresponding angular-momentum eigenspaces.
Hence, we assume that the Hilbert space $* is the (25 + 1)-dimensional
eigenspace of (J#)? and $7 is the (2j” + 1)-dimensional eigenspace of (J?)2.
The Hilbert spaces of the subsystems are therefore finite-dimensional, and
the theory developed in this chapter can be applied without difficulties. An
orthonormal basis in $* is given by the eigenstates of J3'. We use Dirac’s
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notation and denote these eigenstates simply by |m*). It is not necessary
to use the quantum number j* as a second label, because it is kept fixed
throughout this section. We just have to remember that the maximal value
of m* is j*. Similarly, the we denote the eigenstates of J§ by |m”), where
mP goes in integer steps from —j? to +j”. The states |m?®) form an or-
thonormal basis in the Hilbert space H%.

We define the total angular momentum of the combined system by

J=J"®1°+1°2J". (5.186)

The two subsystem observables commute with each other, because they be-
long to different subsystems:

[Ji ®1%17 @ JP] = 0. (5.187)

The components J of the total angular momentum J fulfill the usual an-
gular-momentum commutation relations

[Tk, 1] = Zﬁkzj Jj. (5.188)

J

This follows immediately from the corresponding relations for the subsystem
observables. J is a Kronecker sum as defined in Section 5.4.1. It follows from
(5.56) that a rotation of the combined system can be obtained by separately
rotating the subsystems:

el = glad? g g d? (5.189)

Our problem is the following: What are the simultaneous eigenvalues
and eigenstates of the operators J2 and J3?

EXERCISE 5.30. Show that
3
P=J)?e1”+10 0 (J7)? +2)) Tt e Jp, (5.190)
k=1

and that J* commutes neither with Ji @ 17 nor with 1* @ J3.

5.11.2. Eigenvalues of J3

Given the orthonormal bases of the subsystems, we can form the product
states

Im* @ m®) = |m?) @ |m”). (5.191)
Here, the ® on the left-hand side is just to remind us that these states are
product states. This notation helps us to distinguish the product states from
other states given by two quantum numbers. We remind the reader that the
states |m* ® m”) form an orthonormal basis of H* ® H” (see Section 5.2.2).
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Moreover, it follows from (5.186) and (5.50) that the product states are
eigenstates of the operator Js,

J3 m* @ m®) = (m”* +m?) jm* @ m”). (5.192)

Thus, the eigenvalues of J3 are all the possible values of the sum m* + m?.

Eigenvalues of Js:
The operator J3 has the 2(j* 4 j? + 1) different eigenvalues
m=mAtmP = jA_jB _jA_GBL1 | jAL4P, (5.193)

The Hilbert space $* ®$H” has the dimension (254 +1)(2j”%+1), which is
bigger than 2(j*+j?+1). Therefore, at least some of the eigenvalues m must
be degenerate. For example, the sum m* +m? = j*+j” —1 can be obtained
either with (m*, m?) = (j4,j%—1) or with (m*,m?) = (j*—1,j?). Hence,
the vectors |j* ® j%—1) and |j*—1 ® j®) both belong to the same eigenvalue
j*+ 3% — 1 of J3. It is not too difficult to determine the degeneracy d(m)
for an arbitrary eigenvalue m of Js. Assuming j* > j?, we find

-B - A *B
d(m) = {2;7\ +.i’ ’?”‘ S.] T (5.194)
JEHIT 1= ml, §t =7 <mf <50+ 7.
Figure 5.4 helps to determine d(m): Each point represents an eigenstate
of Js, for which (J3', J§') have the eigenvalues (m”*,m”). On the diagonal
lines, the sum m = m* +m? is constant, hence each diagonal line represents
an eigenvalue m of Js. The number of points on such a line is the degree
of degeneracy d(m) of that eigenvalue. On the dotted lines we have |m| >

A +B

j* — 4B, The degree of degeneracy has the maximal value 257 + 1 on the

dashed lines, where |m| < j* — j5.

EXERCISE 5.31. Assume that {1y} is an orthonormal basis in a finite-
dimensional Hilbert space. Consider two linear operators A and B and show
the following: If A and B do not commute, then the v, cannot all be simul-
taneous eigenvectors of A and B.

EXERCISE 5.32. Combine the results of Exercises 5.30 and 5.32 to show
that the product states |m* ® mP) cannot all be eigenstates of J*.

5.11.3. The quantum numbers of the total angular momentum

Next, we are interested in the possible eigenvalues of J2, the square of the to-
tal angular momentum of the composite system. From Section 1.5, we know
that the quantum numbers j of J? are among the numbers 0,1/2,1,3/2,....
Moreover, from Theorem 1.1 we know that whenever we find the quantum
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FIGURE 5.4. The points represent the product states (5.191)
with all possible values of (m*, m?), assuming j* > j?. Each
diagonal line represents an eigenvalue m of Js.

number j, then there is a 2j + 1-dimensional eigenspace of J2. The eigen-
vectors can be chosen as simultaneous eigenvectors of J3, with eigenvalues
m = —j,—j+1,...,4+7. We denote these simultaneous eigenvectors of J?
and Js3 by |j, m), that is (assuming i = 1)

J2j,m)y = 3G+ Dlg,m),  Jslg,m) =m|j,m). (5.195)

As a first step, we consider the Hilbert space $; = 94 ® HZ. We know
already all possible eigenvalues m of J3; see (5.193). The largest possible
eigenvalue of J3 is mmax = j* + j2. This, of course, must also be the largest
possible value of the quantum number j:

Jmax = Mmax = jA +jB- (5'196)

In the following, we write jmax = j1. The corresponding eigenspace of J?
has the dimension 2j; + 1. In Figure 5.5, this eigenspace corresponds to the
top row of points.

As a second step, consider the orthogonal complement £ of the eigen-
space with j = j; (delete the top row in Fig. 5.5). In $2 we find no more
state with the m = j1, because there is just one state with quantum numbers
(j,m) = (j1,J41), and this state is already contained in the eigenspace with

J =7t
According to (5.193), the next largest m is j* + j% — 1. Originally, there
were two orthogonal states with this quantum number (according to (5.194),
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FiGure 5.5. The points represent the simultaneous eigen-
states |7, m) of the total angular-momentum operators J? and
J3. The number of points in a row is 2j + 1, the degree of
degeneracy of the eigenvalue of J2. The number of points in
a column is the degree of degeneracy d(m) of the eigenvalue
m of J3 according to (5.194).

d(j7* 4+ j® — 1) = 2), but precisely one such state is already contained in the
eigenspace with 7 = 1. In $2 remains a unique state with m = j* + j% — 1,
and this state must therefore belong to j = jo = j4 + j% — 1. In the
corresponding eigenspace of J? are the states with quantum numbers m =
—j2,—j2 +1,...,4j2 (second row in Fig. 5.5).

We may iterate this procedure until we use up all dimensions in the
Hilbert space $H* ® $H”. In the third step, for example, we consider the
subspace $)3 which is orthogonal to the eigenspaces with j = j; and j = jo
(delete the first two rows in Fig. 5.5). Unless $3 = {0} (containing only the
zero-vector), the maximal value of m in 93 is jo — 1, and there is precisely
one state with this quantum number in $3. Hence, the quantum number
7 = j3 = joa—1 occurs, and there must be a corresponding 2j3+1-dimensional
eigenspace of J2 (symbolized by the third row of points in Fig. 5.5).

Finally, assuming that j* > jZ, we find in the step with number 2j% + 1
the angular-momentum subspace with quantum number j = j; — 257 =
j* — jP. After that, no more states are left, because d(m) = 2j% + 1 for all
m < j* — jB. That is, the quantum number j = 54 — j% — 1 cannot occur,
and we find the following minimal value of j:

Jmin = J* =37 (f 5 > 57). (5.197)

Whenever j* < j?, we simply exchange j* and j® in the argument leading
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FIGURE 5.6. The triangular condition states that the values
of the quantum numbers j, 5%, and jZ could be the lengths
of the sides of a triangle.

to (5.197). In this case, we obtain
jmin = jB - jA (lf jA < ]B) (5198)

Let us now collect our results in the following box.

Spectrum of J?:

Whenever the subsystems have the angular momenta j* and jZ, then
the quantum number 5 of the total angular momentum .J? has the values
74 =45, 17 = 4%+ 1, ..., 5t + 5. (5.199)
Hence, the quantum numbers j#, j?, and j satisfy the triangular condi-
tion
=37 <5<t + 5" (5.200)
If 7% < 54, then there are 2j% + 1 different values of j.

According to the triangular condition, the three integer or half-integer
numbers j, j*, and j” could represent the sides of a triangle (see Fig. 5.6).

5.11.4. Clebsch-Gordan coefficients

Above, we found that an orthonormal basis of eigenvectors of J3 is given by
the product states [m* ® m?). Next, we want to determine the simultaneous
eigenvectors |j,m) of J? and J3. Consider the eigenspace belonging to the
maximal quantum numbers (jmax, Mmax)- Lhis eigenspace is one-dimension-
al, and from (5.193) we know that |j* ® j*) is contained in that eigenspace.
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Hence, |jmax, Mmax) must be proportional to that vector. We set

UmaXa mmax> = ’jA ®jB>‘ (5.201)

This vector is a useful starting point for the construction of the remaining
eigenvectors [j, m).

The product states [m* ® m?”) cannot all be eigenvectors of J? (see Exer-
cise 5.30 and Exercise 5.31). In general, the simultaneous eigenvectors |j, m)
of J? and of J3 are entangled and have to be written as linear combinations
of the basis states

|7, m) = Z Im* @ m”Y(m* @ m®|j,m). (5.202)
mA mB
The coefficients (m* ® m?|j,m) are called Clebsch-Gordan coefficients.?
We note that the eigenvectors |j, m) are only unique up to a phase factor.
Given arbitrary phases 6,,, the vectors exp(if;y,)|j, m) would do equally
well. The eigenvectors can be made unique by requiring that the Clebsch-
Gordan coefficients all be real, and that

(t®i—3"14.4) >0 (5.203)

The Clebsch-Gordan coefficients are known explicitly for arbitrary values
of 74 and j®. For practical calculations, one has used tables, and today these
coefficients are built into computer-algebra systems.*

In this book, we do not derive the general formula for (m* ® m?|j, m),
but we are going to consider some simple special cases below. Moreover, we
note the following simple property of the Clebsch-Gordan coefficients:

Selection rule for Clebsch-Gordan coefficients:
(m*@mPlj,m) =0  if m*+m” #m. (5.204)

EXERCISE 5.33. Prove the selection rule (5.204) for Clebsch-Gordan co-
efficients.

20r Wigner coefficients or vector-addition coefficients or vector-coupling coefficients.

3See, for example, Abramowitz-Stegun [1], Section 27.9.

“In Mathematica, the function ClebschGordan[{j*,m"},{j% m?®},{j,m}] imple-
ments the Clebsch-Gordan coefficient (m* ® m”|j, m), with j* and j” being the angular
momenta of the subsystems.
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5.11.5. Angular momentum plus spin 1/2

In Theorem 1.1, we used ladder operators to generate a system of orthogonal
eigenvectors. Consider subsystem A. The maximal eigenvalue of J3' is j*.
Starting from the corresponding normalized eigenvector |j4) € $H*, we can
construct an orthonormal basis of the 2j* + 1-dimensional Hilbert space $#
by applying the operators J# = Jj* — iJ5' repeatedly,

A1y — 1 A lmA
1) = e T ), (5.205)

form# = j4 j*—1,...,—j*+1. A similar procedure starting with [j®) € $H”
leads to an orthonormal basis of vectors |m?) for subsystem B.

The ladder operators Jy for the combined system can be defined in terms
of the ladder operators for the subsystems by

Jr=Ji®1" +14 e JI. (5.206)
For every |j,m) with [j* — 77| < j < j*+ j® and —j < m < j, we define

1

=T J_ |5, m). (5.207)

In that way, a unique orthonormal basis is obtained as soon as we have
chosen the vectors |j, j) with the maximal value of m for a given j.

As an illustration, we consider a composite system where subsystem
B has spin 1/2. We combine a system with angular momentum j* > 0
(this could be an orbital angular momentum or a particle with spin) and a
second system with 7% = % Then, the possible values for the total angular
momentum are, according to (5.199),

A

j=j*—4% and j=j"+1 (5.208)

In subsystem B, we denote the normalized eigenvector of J§ belonging to
the eigenvalue —i—% by [1) (“spin-up”), and hence

1L =JZ0) (5.209)

is the normalized eigenvector belonging to the eigenvalue —% (“spin-down”).

Let us construct an orthonormal system in ) = H* ® $H” by applying J_
repeatedly to the eigenvector (5.201) with maximal eigenvalues. As a first
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step consider

1

|5 +5, 0" —3) = N aake |74+3, 4 +3) (5.210)
—\/ﬁ(Jf®18+1A®J_B)‘jA®T> (5.211)
- (s e ) Ga)
Using (5.205), we find J2 %) = /254 |j*—1), hence
A1 a1l 254 9
M i) = g L ey g 1t e ). (B:219)

By iterating the application of the operator J_, we obtain all states with

quantum numbers m = jA—%, 'A—%, ceey —(jA—i-%) in the subspace with

Jj= jA—|—%. By induction, you may verify the formula

, [i*+1+m [jA+3—m
’]A+%,m>: Til‘m_%(glw—’— Z]Aiillm—i_%@l)

(5.214)
which actually holds for all

m=j"+%, 4=, o (D). (5.215)

Given £ = aly)) + b|¢) with [¢)) orthogonal to |¢), we find that x = —bly)) +
a|@) is orthogonal to £ and ||£]| = ||x||.- Hence, the vector

A 1
v 127"
254 +1

A 1
ta—m 1
2411 |m+35 @ 1)

(5.216)
is a normalized vector orthogonal to (5.214), whenever |j*+%, m) consists
of two non-vanishing summands, that is, for

|jA—%,m \m—% ®1)+

m=j"=3, =5, ..., —("-3%) (5.217)

We still have to justify the notation | jA—% , m) for the vector defined in
(5.216). Without computation, you can see that this vector is an eigenvector
of J3 = J3 ®174+14® J3 belonging to the eigenvalue m. Moreover, you can
see that for any given m according to (5.217), the vector (5.216) is orthogonal
to all vectors | j4+3 , m’) with arbitrary m’ in the range (5.215). Moreover,
we find

<jA_l m ’ ]'A_%’ m’> =0 form 75 m’. (5.218)
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We conclude that these vectors span a subspace with dimension 2(j*—3) +1
(= the number of different m’s in (5.217)), and that this subspace is orthog-
onal to the subspace belonging to j = jA—i—%. This subspace is therefore the
eigenspace of .J? belonging to the quantum number j = jA—%. Note that

the signs in (5.216) are chosen such that
(7" ®lli"=5,0"=3) >0, (5.219)

which agrees with the convention (5.203).
From (5.214) and (5.216) we find the nonvanishing Clebsch-Gordan co-
efficients (m* ® m”? | j,m) according to the following table.

TABLE 5.1. Clebsch-Gordan coefficients for j? = 1/2.

mA:m—%,mB:% mA:m—l—%,mB:—%
a1l 7+m ]—m
I 2 2
]:jA_l B j+1—m j+1+m
2 2j 2j

EXAMPLE 5.2. A simple example is obtained by combining two particles
with spin 1/2. Here, j* = j% = %, and the possible values of the total
angular momentum are j = 1 and j = 0. For j = 1 we obtain from (5.214)

the three states with m = —1,0, 1, namely

1
1,0) = \ﬁ(\T®i>+u®T>), (5.221)
L) =[Te1), (5.222)
and for 7 = 0 we obtain
1
0,0) = E(IT®l>—Il®T>)- (5.223)

The three states with j = 1 are frequently called triplet states, and the single
state with j = 0 is called singlet state. The vector |1,0) is just another way
of writing the basis vector ¥ of the Bell basis (5.30), and the singlet state
|0,0) is the same as 17 .
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ExXaMPLE 5.3. As a second example, we consider an orbital angular
momentum j* = ¢ with the eigenvectors |my) = Y;"* (spherical harmonics)
and combine it with the spin. In the standard representation, the spin

eigenvectors are
1) = (é) L= ((1)) , (5.224)

and the tensor product states are, in accordance with (5.32), given by

me® 1) = (ngu) ; my® |) = (Y?’”) . (5.225)

The possible values of the total angular momentum are j = ¢+ % and £ — %
For j = ¢+ %, (5.214) becomes

JOr Lt fm vy
. ) 1 2 i te
e mil =\ 5

41
mji+35

l+5—m;Y,

(5.226)

With x = £ + 1, this is precisely the spinorial harmonic Y m,, as defined in
(3.151). For j = ¢ — 3, (5.216) leads to

L

AR
—3 M) =5y 1
2R Nl

With k = —/, this agrees with the definition of Yy ., in (3.152).

(5.227)



Chapter 6

Quantum Information Theory

Chapter summary: The question of whether quantum mechanics violates the
principle of locality and Einstein causality has been the subject of ongoing discus-
sions. This is relevant for the theory of quantum communication, which makes use
of the “nonlocal” correlations between the parts of a bipartite system in an entan-
gled state. In Section 6.1, we describe the Bell states of two-qubit systems and
discuss their measurement by means of exchanging locally available information.

In Section 6.2, we discuss the question of whether a manipulation of one qubit of
an entangled pair can in any way influence the other qubit (which may be spatially
separated from the first qubit). Closely related is the famous Einstein-Podolsky-
Rosen (EPR) paradox, which is presented in Section 6.3. In Section 6.4, we describe
the mathematical and statistical properties of the correlations arising from entan-
glement. In Section 6.5, we give an elementary derivation of Bell’s inequality that
is based on classical ideas about the correlation of measurement results (“local re-
alism”). Tt has been confirmed experimentally that quantum mechanics violates
Bell’s inequality. While quantum mechanics is local in the sense required by Bell’s
theorem, it appears to violate the assumption of realism (that is, the assumption
that observables do have values even if they are not measured).

The strange features of the correlations between the parts of an entangled sys-
tem can be used for quantum information exchange. Alice and Bob can commu-
nicate rather efficiently if they share entangled pairs of qubits. The dense coding
protocol describes the transmission of classical 2-bit information using a single qubit.
The teleportation protocol sends one qubit with the help of two classical bits (see
Section 6.6).

A quantum computer (Section 6.7) applies a sequence of unitary transforma-
tions (“reversible logic gates”) to a quantum register (a system of n qubits). This
transforms an initial state (the input) into a final state (the output) that is mea-
sured. In that way, any task that can be performed by a classical computer can
also be performed by a quantum computer.

The ability of quantum logic gates to operate on superpositions of input states
can be used to do computations with all possible classical inputs in parallel. For
certain problems, one succeeds in using interference in a clever way so that the final
measurement gives the desired result in a few steps, where a classical computer
would need many steps. In Section 6.9, we give a detailed description of a simple
algorithm, where a quantum computer is more efficient than a classical computer.
An overview of important quantum algorithms concludes this chapter.

271
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6.1. Entangled States of Two-Qubit Systems

In this chapter, we consider compound systems whose parts are simple
qubits. Having dealt with the more formal aspects of composite systems
in Chapter 5, it is now time to focus our interest on questions of interpreta-
tion.

6.1.1. Bases of entangled states

As explained in Section 5.2.4, the Hilbert space of the two-qubit system is
C? ® C? = C* We can choose the basis of product states (5.29). When-
ever the compound system is in one of these four basis states, the states
of the subsystems are pure states. But, we can also choose the Bell basis
{d s, 195} consisting of the states

yE = %(mwﬁw- Du_),

vy = \2(1/4@1/1— + - @),

All Bell states are maximally entangled. Whenever the system is in a Bell
state, the subsystems are in the maximally mixed state

1 1 1
Pt =07 = S ) ] + S ) (] = 51 (6.2

This state of a single qubit can be interpreted not only as a mixture of the
states ¢4 and ¥_ (spin-up and spin-down with respect to the z-axis), but,
equivalently, as a mixture of ¥4 (n) and ¢ _(n) with respect to an arbitrary
axis n.

The states ngfo are simultaneous eigenvectors of the observables

(6.1)

o3®03 and o1 ® 01. (6.3)
These two operators are self-adjoint in C* and they commute:
[o3 ® 03,01 ® 01] = 0. (6.4)
We have
@Oz = ¢S, o1 ®@o1Yg =+,
o3ROz, = =y, 1@ 01, =+

So the eigenvalue of 03 ® o3 determines the index ‘e’ or ‘o’ (parity bit), and
the eigenvalue of 01 ® o tells us whether the upper index is ‘+’ or ‘—’ (phase
bit).

The compatibility of the observables 03 ® o3 and 01 ® o is remarkable, as
the observables o3 and o1 do not commute in the single-qubit subspaces. It
means that there exists a two-qubit experiment giving numerical values (+1

(6.5)
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or —1) for both observables in a single run. The simultaneous measurement
of the two observables can be used to prepare an arbitrary state of the Bell
basis. This procedure meets great practical difficulties and will be discussed
further in Section 6.1.4 below.

6.1.2. Global aspects of local measurements

It has been pointed out before that the state of a two-qubit system may con-
tain information that is not accessible by measurements on the individual
qubits. Quite generally, measurements on isolated subsystems are called lo-
cal measurements. They have to be distinguished from global measurements,
which are performed on the system as a whole. Only global measurements
can reveal systemic properties (properties relating to the composite system
as a whole).

The tensor product S ® 7T of single-qubit operators S and T is a product
of subsystem observables (see Section 5.4.2),

SeT=(S®1)1aT). (6.6)

An observable of this form can be measured locally, by measuring S on the
first qubit and 7" on the second. But, the preparation of a Bell state involves
the simultaneous measurement of two such tensor-product observables (6.3).
This cannot be done with local measurements. In order to understand the
difficulties, we need to discuss the involved procedures carefully. As you
will see shortly, even the local measurement of S ® T' involves some global
information exchange.

For this experiment, we need an ensemble of qubit pairs, all prepared in
the same pure two-qubit state. After the preparation, we may separate the
qubits without changing the state of the two-qubit system (the position of
the qubits does not enter our description at all). We give one qubit of each
pair to Alice in Auckland and the other to Bob in Barcelona. Due to the
large spatial separation, any direct physical interaction between the qubits
can be excluded. Hence, Alice and Bob can measure a property of one qubit
without disturbing the other. Their measurements will be perfectly local.
We ask Alice to measure the observable S on her qubits, and Bob to measure
T on his qubits.

CD 5.9 shows an experiment of the type we have in mind. A source
prepares a system in a certain two-qubit state, for example, a com-
posite particle in the singlet state ¢, with total angular momentum
zero. Then, the particle decays into two separated qubits moving in
opposite directions. Due to the conservation of the total angular mo-
mentum, the two-qubit system remains in the singlet state, although
its parts get spatially separated by a large distance.
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The following distinction between different variants of local measure-
ments may prevent confusion.

(a) Completely local measurements: Alice and Bob ignore each other.
They perform independent measurements and report only the final
results of their statistical analysis.

(b) Local measurements with information exchange: Alice and Bob
perform the measurements independently. For the final evaluation,
they exchange information about the results obtained for the indi-
vidual members of the ensemble.

Consider first the case (a). Alice and Bob both perform ensemble measure-
ments on the qubits given to them. Both remain completely ignorant about
the other’s results. Nevertheless, Alice can easily obtain the mean value (S)
of S, and Bob can determine the mean value (T'). Unfortunately, it is not
possible to determine the mean value of S®T from this information, because
in general
(SaT)#(S)(T). (6.7)

As an example, consider S =T = o3 and