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Preface

Advanced Visual Quantum Mechanics is a systematic effort to investigate
and to teach quantum mechanics with the aid of computer-generated an-
imations. But despite its use of modern visualization techniques, it is a
conventional textbook of (theoretical) quantum mechanics. You can read it
without a computer, and you can learn quantum mechanics from it without
ever using the accompanying CD-ROM. But, the animations will greatly en-
hance your understanding of quantum mechanics. They will help you to get
the intuitive feeling for quantum processes that is so hard to obtain from
the mathematical formulas alone.

A first book with the title Visual Quantum Mechanics (“Book One”) ap-
peared in the year 2000. The CD-ROM for Book One earned the European
Academic Software Award (EASA 2000) for outstanding innovation in its
field. The topics covered by Book One mainly concerned quantum mechan-
ics in one and two space dimensions. Advanced Visual Quantum Mechanics
(“Book Two”) sets out to present three-dimensional systems, the hydrogen
atom, particles with spin, and relativistic particles. It also contains a basic
course of quantum information theory, introducing topics like quantum tele-
portation, the EPR paradox, and quantum computers. Together, the two
volumes constitute a fairly complete course on quantum mechanics that puts
an emphasis on ideas and concepts and satisfies some modest requirements
of mathematical rigor. Nevertheless, Book Two is fairly self-contained. Ref-
erences to Book One are kept to a minimum so that anyone with a basic
training in quantum mechanics should be able to read Book Two indepen-
dently of Book One. Appendix A includes a short synopsis of quantum
mechanics as far as it was presented in Book One.

The CD-ROM included with this book contains a large number of Quick-
Time movies presented in a multimedia-like environment. The movies illus-
trate the text, add color, a time-dimension, and a certain level of interactiv-
ity. The computer-generated animations will help you to explore quantum
mechanics in a systematic way. The point-and-click interface gives you quick
and easy access to all the movies and lots of background information. You
need no special computer skills to use the software. In fact, it is no more
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vi PREFACE

difficult than surfing the Internet. You are not required to produce simu-
lations by yourself. The general idea is that you should first think about
quantum mechanics and not about computers. The movies provide some
phenomenological background. They will train and enhance your intuition,
and the desire to understand the movies should motivate you to learn the
(sometimes nasty, sometimes elegant) theory.

Computer visualizations are particularly rewarding in quantum mechan-
ics because they allow us to depict objects and events that cannot be seen by
other means. However, one has to be aware of the fact that the animations
depict the mathematical objects describing reality, not reality itself. Usually,
one needs some explanation and interpretation to understand the visualiza-
tions. The visualization method used here makes extensive use of color. It
displays all essential information about the quantum state in an intuitive
way. Watching the numerous animations will thus create an intuitive feeling
for the behavior of quantum systems—something that is hardly achieved just
by solving the Schrödinger equation mathematically. I would even say that
the movies allow us to see the whole subject in a new way. In any case, the
“visual approach” had a great influence on the selection of topics as well as
on the style and the level of the presentation. For example, Visual Quantum
Mechanics puts an emphasis on quantum dynamics, because a movie adds
a natural time-dimension to an illustration. Whereas other textbooks stop
when the eigenfunctions of the Hamiltonian are obtained, this book will go
on to discuss dynamical effects.

It depends on the situation, but also on the personality of the student or
of the teacher, how the movies are used. In some cases, the movies are cer-
tainly useful to stimulate the student’s interest in some phenomenon. The
animation thus serves to motivate the development of the theory. In other
cases, it is, perhaps, more appropriate to show a movie confirming the theory
by an example. Personally, I present the movies by video projection as a
supplement to an introductory course on quantum mechanics. I talk about
the movies in a rather informal way, and soon the students start asking in-
teresting questions that lead to fruitful discussions and deeper explanations.
Often, the movies motivate students to study related topics on their own
initiative.

One could argue that in advanced quantum mechanics, visualizations are
not very useful because the student has to learn abstract notions and that he
or she should think in terms of linear operators, Hilbert spaces, and so on. It
is certainly true that a solid foundation of these subjects is indispensable for
a deeper understanding, and you will have occasion to learn much about the
mathematical theory from this text. But, I claim that despite a good train-
ing in the abstract theory, you can still gain a lot from the visualizations.
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Talking about my own experience, I found that I learned much, even about
simple systems, when I prepared the movies for Visual Quantum Mechanics.
For example, having done research on the mathematical aspects of the Dirac
equation for several years, I can claim to have a good background concern-
ing the quantum mechanical abstractions in this field. But nevertheless, I
was not able to predict how a wave packet performing a “Zitterbewegung”
would appear until I started to do some visualizations of that phenomenon.
Moreover, when one tries to understand the visualizations one often encoun-
ters phenomena, that one is able to explain with the theory, but that one
simply hasn’t thought of before. The main thing that you can gain from the
visualizations is a good feeling for the behavior of solutions of the quantum
mechanical equations.

Though the CD-ROM presents a few simple interactive simulations in
the chapter about qubits, the overwhelming content consists of prefabricated
movies. A true computer simulation, that is, a live computation of some
process, would of course allow a higher degree of interactivity. The reader
would have more flexibility in the choice of parameters and initial conditions.
But in many cases, this approach is forbidden because of the insufficient
speed of present-day computers. Moreover, in order to produce a useful
visualization, one has to analyze the physical system very carefully. For
every situation, one has to determine the scale of space and time and suitable
ranges of the parameters where something interesting is going to happen. In
quantum mechanics, the number of possibilities is very large, and if one
chooses the wrong parameter values, it is very likely that nothing can be
seen that is easily interpreted or that shows some effect in an interesting
way. Therefore, I would not recommend to learn basic quantum mechanics
by doing time-consuming computer simulations.

Producing simulations and designing visualizations can, however, bring
enormous benefit to the advanced student who is already familiar with the
foundations of quantum mechanics. Many of the animations on the CD-
ROM were done with the help of Mathematica. With the exception of the
Mathematica software, all the necessary tools for producing similar results
are provided on the CD-ROM: The source code for all movies, Mathematica
packages both for the numerical solution of the Schrödinger equation and
for the graphical presentation of the results, and OpenGL-based software
for the three-dimensional visualization of wave functions. My recommenda-
tion is to start with some small projects based on the examples provided
by the CD-ROM. It should not be difficult to modify the existing Mathe-
matica notebooks by slightly varying the parameters and initial conditions,
and then watching and interpreting the results. You could then proceed
to look for other examples of quantum systems that might be good for a
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physically or mathematically interesting visualization. When you produce
a visualization, often some natural questions about the system will arise.
This makes it necessary to learn more about the system (or about quan-
tum mechanics), and by knowing the system better, you will produce better
visualizations. When the visualization finally becomes useful, you will un-
derstand the system almost perfectly. This is “learning by doing”, and it
will certainly enhance your understanding of quantum mechanics, as the
making of this book helped me to understand quantum mechanics better.
Be warned, however, that personal computers are still too slow to perform
simulations of realistic quantum mechanical processes within a reasonable
time. Many of the movies provided with this book typically took several
hours to generate.

Concerning the mathematical prerequisites, I tried to keep the two books
on an introductory level. Hence, I tried to explain all the mathematical
methods that go beyond basic courses in calculus and linear algebra. But,
this does not mean that the content of the book is always elementary. It is
clear that any text that sets out to explain quantum phenomena must have
a certain level of mathematical sophistication. Here, this level is occasion-
ally higher than in other introductions, because the text should provide the
theoretical background for the movies. Doing visualizations is more than
just obtaining numerical solutions. A surprising amount of mathematical
know-how is in fact necessary to prepare an animation. Without presenting
too many unnecessary details, I tried to include just what I thought was nec-
essary to produce the movies. My approach to teaching quantum mechanics
thus makes no attempt to trivialize this subject. The animations do not re-
place mathematical formulas. But in order to facilitate the approach for the
beginner, I marked some of the more difficult sections as “special topics” and
placed the symbol Ψ in front of paragraphs intended for the mathematically
interested reader. These parts may be skipped at first reading.

Though the book thus addresses students and scientists with some back-
ground in mathematics, the movies (together with the movies of Book One)
can certainly be used in front of a wider audience. The success, of course,
depends on the style of the presentation. I myself have had the occasion
to use the movies in lectures for high-school students and for scientifically
interested people without any training in higher mathematics. Based on this
experience, I hope that the book together with CD-ROM will have broader
applications than each could have if used alone.

According to its subtitle, Book Two can be divided roughly into three
parts: atomic physics (Chapters 1–3), quantum information theory (Chap-
ters 4–6), and relativistic quantum mechanics (Chapters 7, 8). This divi-
sion, however, should not be taken too seriously. For example, Chapter 4 on
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qubits completes the discussion of spin-1/2 particles in Chapter 3 and serves
at the same time as an introduction to quantum information theory. Chap-
ter 5 discusses composite quantum systems by combining topics relevant for
quantum information theory (for example, two-qubit systems) with topics
relevant for atomic physics (for example, addition of angular momenta).

Together, Book One and Book Two cover a wide range of the standard
quantum physics curriculum and supplement it with a series of advanced top-
ics. For the sake of completeness, some important topics have been included
in the form of several appendices: the perturbation theory of eigenvalues, the
variational method, adiabatic time evolution, and formal scattering theory.
Though most of these matters are very well suited for an approach using
lots of visualizations and examples, I simply had neither time nor space (the
CD-ROM is full) to elaborate on these topics as I would have liked to do.
Therefore, these appendices are rather in the style of an ordinary textbook
on advanced theoretical physics. I would be glad if this material could serve
as a background for the reader’s own ventures into the field of visualization.
If there should ever be another volume of Visual Quantum Mechanics, it will
probably center on these topics and on others like the Thomas-Fermi theory,
periodic potentials, quantum chaos, and semiclassical quantum mechanics,
just to name a few from my list of topics that appear to be suitable for a
modernized approach in the style of Visual Quantum Mechanics.

This book has a home page on the internet with URL

http://www.uni-graz.at/imawww/vqm/

An occasional visit to this site will inform you about software upgrades,
printing errors, additional animations, etc.
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Chapter 1

Spherical Symmetry

Chapter summary: In the first book of Visual Quantum Mechanics, we considered
mainly one- and two-dimensional systems. Now we turn to the investigation of
three-dimensional systems. This chapter is devoted to the very important special
case of systems with spherical symmetry.

In the presence of spherical symmetry, the Schrödinger equation has solutions
that can be separated into a product of a radial part and an angular part. In this
chapter, all possible solutions of the equation for the angular part will be determined
once and for all.

We start by discussing symmetry transformations in general. In quantum me-
chanics, all symmetry transformations may be realized by unitary or antiunitary
operators. We define the unitary transformations corresponding to rotations of a
particle in R

3. Their self-adjoint generators are the components of the orbital angu-
lar momentum L. We describe the angular-momentum commutation relations and
discuss their geometrical meaning.

A quantum system is called invariant under a given symmetry transformation
if the Hamiltonian commutes with the corresponding unitary operator. A particle
moving under the influence of a potential V (x) is a spherically symmetric system
(invariant under rotations) if the potential function depends only on the distance
r from the origin. Spherical symmetry implies the conservation of the angular mo-
mentum and determines the structure of the eigenvalue spectrum of the Hamiltonian
(degeneracy). The square L2 and any component Lk of the angular momentum can
be diagonalized simultaneously with the Hamiltonian of a spherically symmetric
system. The structure of the common system of eigenvectors can essentially be de-
rived from the angular-momentum commutation relations. In general, the possible
eigenvalues of the angular-momentum operators are characterized by integer and
half-integer quantum numbers. It turns out, however, that only integer quantum
numbers occur in case of the orbital angular momentum.

The eigenvalues and eigenfunctions (spherical harmonics) of the orbital angular
momentum are then determined explicitly. The spherical harmonics are the energy
eigenfunctions of a particle whose configuration space is a sphere (rigid rotator). The
rigid rotator can serve as a simple model for a diatomic molecule in its vibrational
ground state.

The restriction of the eigenvalue problem to an angular-momentum eigenspace
reduces the Schrödinger equation to an ordinary differential equation. We conclude
the chapter with a brief discussion of this so-called radial Schrödinger equation.

1



2 1. SPHERICAL SYMMETRY

1.1. A Note on Symmetry Transformations

1.1.1. Rotations as symmetry transformations

Consider a physical system S in three-dimensions, for example, a few par-
ticles moving under the influence of mutual and external forces. The state
of S is described with respect to a given coordinate system I in terms of
suitably chosen coordinates x ∈ R

3. We remind the reader of the following
basic assumption.

Homogeneity and isotropy of space:

No point and no direction in R
3 is in any way physically distinguished.

Therefore, the behavior of physical systems should not depend on the
location of the experimenter’s lab or its orientation in space (principle
of relativity).

In order to test the isotropy of space, we can perform an experiment
with the physical system S in the coordinate system I and then repeat the
experiment in a rotated coordinate system I ′. This can be done in several
different ways (see Fig. 1.1).

(1) Rotate the system and the observer. This procedure consists in
rotating the whole experimental setup: the system S (the particles, the
external forces, the devices for preparing the initial state) and the observer
(the measurement devices). The isotropy of space means that with respect
to the rotated frame of reference I ′, the system behaves exactly as it did in
I. The mathematical description is exactly the same as before. The only
difference is that the coordinates now refer to the new coordinate frame I ′.

(2) Rotate the system but not the observer (active transformation).
Now the rotated physical system has to be described by an observer in the
old coordinate frame I. The motion of the system S will look different,
and the observer has to change the mathematical description (in particular,
the numerical values of the coordinates). From the point of view of the
observer, the rotation changes the state of the system. Hence, the rotation
corresponds to a transformation T in the state space of S. We say that the
transformation T is a representation of the rotation in the state space of the
system.

(3) Rotate the observer but not the system (passive transformation).
This procedure is equivalent to procedure (2), but in the mathematical de-
scription, T has to be replaced by the inverse transformation. This can be
seen as follows: With respect to the new coordinates in I ′ (that is, from
the point of view of a rotated observer), the states of the physical system
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I
S

S
II

S

I
′′

′
S
′

(1) (2) (3)

T T −1

Figure 1.1. Symmetry transformations of a physical sys-
tem. (1) Both the physical system S and the frame of ref-
erence I are transformed. The behavior of the system and
the mathematical description remain unchanged (principle of
relativity). (2) The system is transformed with respect to a
fixed coordinate frame I. The states of the system undergo
a transformation T . (3) The frame I is transformed, the sys-
tem is left unchanged. T−1 maps the states in I to the states
in I ′.

appear to be transformed by a mapping T ′. Now we can perform an active
transformation by T , as described in (2), and we end up with situation (1):
Both the physical system and the observer are rotated to I ′, and by the
principle of relativity the behavior in I ′ is the same as it was in I. Hence,
the transformation T ′ followed by the transformation T gives the identity. A
similar argument applies to T followed by T ′. We conclude that T ′ = T−1.

In the following, we prefer the “active” point of view expressed in (2).
We choose a fixed coordinate system and perform rotations with the objects.
Let us assume that an experiment changes the system’s initial state A to a
certain final state B (with respect to the coordinate frame I). The rotated
system has the initial state A′ = T (A) (again with respect to I). Repeating
the experiment with the rotated system changes its state into B′. What is
the relation between the final states B′ and B? The principle of relativity
states that the rotation does not change the physical laws that govern the
system, that is, the mechanism relating the initial and the final state. Hence,



4 1. SPHERICAL SYMMETRY

the same relation that holds for the initial states must also hold for the final
states: B′ = T (B).

If the properties of the system depend on its orientation, then some
additional influence would alter the transition to the final state, and B′
would in general be different from T (B). The same is true if not everything
that is relevant to the behavior of the system is transformed in the same
way. For example, one rotates the particles but not the external fields. In
this case, the system is subject to a changed external influence, and the final
state B′ of the rotated system will differ from the rotated final state T (B)
of the original system.

The discussion above applies not only to rotations but also to other
transformations of the system. In general, a symmetry transformation need
not be related to geometry (an example is the exchange of two identical
particles, see Section 5.9). Let us try to give a general (but somewhat vague)
definition of a symmetry transformation.

A symmetry transformation of a physical system is an invertible trans-
formation T that can be applied to all possible states of the system such
that all physical relations among the states remain unchanged.

The mathematical description of a symmetry transformation T depends
on how the states are described in a physical theory. The next section shows
how symmetry transformations are implemented in quantum mechanics.

1.1.2. Symmetry transformations in quantum mechanics

Quantum states are usually described in terms of vectors in a Hilbert space
H. But the correspondence between vectors and states is not one-to-one.
For a given vector ψ, all vectors in the one-dimensional subspace (ray)

[ψ] = {λψ | λ ∈ C} (1.1)

represent the same state. Hence, the mathematical objects corresponding to
the physical states are rays rather than vectors.

The set of states:

A quantum state of a physical system is a one-dimensional subspace [ψ]
of the Hilbert space H of the system. The set of all possible quantum
states will be denoted by Ĥ,

Ĥ = {[ψ] | ψ ∈ H} (1.2)
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In linear algebra, the set of one-dimensional subspaces of a linear space
is called a projective space.

Exercise 1.1. If ψ and λψ both represent the same state, and if φ and
µφ both represent some other state, why do ψ + φ and λψ + µφ in general
represent different states?

In quantum mechanics, all experimentally verifiable predictions can be
formulated in terms of transition probabilities. The transition probability
from a state [φ] to a state [ψ] is defined by

P ([φ]→[ψ]) = |〈ψ, φ〉|2 = P ([ψ]→[φ]), (1.3)

where φ and ψ are arbitrary unit vectors in [φ] and [ψ], respectively. Tran-
sition probabilities may be regarded as the basic physically observable rela-
tions among quantum states.

Hence, the basic requirement for a symmetry transformation is that the
transition probability between any two states should be the same as between
the corresponding transformed states.

Definition:

A symmetry transformation in quantum mechanics is a transformation
of rays that preserves transition probabilities. More precisely, a map
T : Ĥ → Ĥ is a symmetry transformation if it is one-to-one and onto and
satisfies

P (T [φ]→T [ψ]) = P ([φ]→[ψ]) for all states [φ] and [ψ]. (1.4)

1.1.3. Realizations of symmetry transformations

Instead of working with rays, it is more convenient to describe symmetry
transformations in terms of the vectors in the underlying Hilbert space.
Consider, for example, a unitary or antiunitary1 operator U in the Hilbert
space H. The operator U induces a ray transformation in a very natural way.
To this purpose, choose a vector ψ representing the state [ψ] and define the
ray transformation Û associated with the operator U by

Û [ψ] = [Uψ]. (1.5)

Û transforms the ray [ψ] into the one-dimensional subspace spanned by the
vector Uψ.

1An antiunitary operator A is a one-to-one map from H onto H which is antilinear,
that is, A(αψ +βφ) = α A(ψ)+β A(φ), and satisfies 〈Aψ, Aφ〉 = 〈φ, ψ〉, whereas a unitary
transformation U is linear and satisfies 〈Uψ, Uφ〉 = 〈ψ, φ〉.
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Exercise 1.2. Show that it follows from the linearity or antilinearity of
U that the definition (1.5) does not depend on the chosen representative ψ.

A unitary operator U leaves the scalar product invariant, and hence the
corresponding ray transformation Û must be a symmetry transformation.
The same is true for an antiunitary operator, which does not change the
absolute value of the scalar product.

The following famous theorem due to Eugene P. Wigner states that uni-
tary and antiunitary operators are in fact the only ways to realize symmetry
transformations.

Theorem of Wigner:

Every symmetry transformation T in Ĥ is of the form

T = Û , where U is either unitary or antiunitary in H. (1.6)

Two operators U1 and U2 representing the same symmetry transforma-
tion differ at most by a phase factor,

U1 = eiθ U2, for some θ ∈ [0, 2π). (1.7)

In particular, U1 and U2 are either both unitary or both antiunitary.

Ψ The investigation and classification of the possible symmetry transfor-
mations has played an important role in mathematical physics. For

example, according to the special theory of relativity, a relativistic system
must admit the Lorentz transformations as symmetry transformations. It
must be possible to implement all (proper orthochronous) Lorentz transfor-
mations as unitary operators in the corresponding Hilbert space. This im-
poses some restrictions on the possible choices of Hilbert spaces and scalar
products for relativistic systems. In fact, the theory of group representa-
tions allows one to classify all possible relativistic wave equations and their
associated Hilbert spaces (scalar products).

1.1.4. Invariance of a physical system

A symmetry transformation of the states also induces a similarity transfor-
mation of the linear operators in the Hilbert space of a physical system. Let
U be a unitary or antiunitary operator representing a given symmetry trans-
formation. Assume that two vectors φ and ψ are related by the equation
φ = Aψ, where A is a linear operator. After the symmetry transformation,
the transformed states are related by

Uφ = UAψ = UAU−1Uψ. (1.8)
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Here, we have inserted the operator U−1U = 1 (unitarity condition). Hence,
the corresponding relation between the transformed vectors Uφ and Uψ
is given by the linear operator UAU−1. We see that after applying the
symmetry transformation, an operator A has to be replaced by the operator
UAU−1.

Exercise 1.3. Prove that UAU−1 is self-adjoint, whenever A is self-
adjoint and U is unitary or antiunitary.

Exercise 1.4. Explain in what sense the expectation value of an observ-
able is invariant under symmetry transformations.

Sometimes an observable might be unchanged by a given symmetry
transformation. In such a case the operator is said to be invariant. This
is often very useful information about the system. A physical system for
which the Hamiltonian operator itself is invariant is said to possess a sym-
metry or invariance.

Definition:

A physical system is invariant under a symmetry transformation U (or
symmetric with respect to U) if the Hamiltonian H of the system has
the property

H = UHU−1. (1.9)

The symmetry transformation U is called an invariance transformation
of the system represented by H. Invariance transformations are usually very
helpful for the solution of the Schrödinger equation. In this chapter, we
want to investigate systems that are invariant under rotations (spherically
symmetric). But first we have to describe the unitary operators correspond-
ing to rotations, and their self-adjoint generators, the angular-momentum
operators.

1.2. Rotations in Quantum Mechanics

1.2.1. Rotation of vectors in R
3

Rotations in the three-dimensional space R
3 are described by orthogonal 3×3

matrices with determinant +1. You are perhaps familiar with the following
matrix that rotates any vector through an angle α about the x3-axis of a
fixed coordinate system

R(α) =

⎛
⎝cos α − sin α 0

sin α cos α 0
0 0 1

⎞
⎠ , α ∈ R. (1.10)
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There are similar matrices for rotations about the other coordinate axes. An
arbitrary rotation can be most intuitively characterized by a rotation vector
α = αn, where α specifies the angle of the rotation, and the unit vector n
gives the axis (here the sense of the rotation is determined by the right-hand
rule). We consider only rotation angles α with −π < α ≤ π because the
angles α + 2πk (with k an integer) may be identified with α. Moreover, a
rotation through a negative angle about the axis n is the same as a rotation
through a positive angle about the axis defined by −n. Hence, it is sufficient
to consider rotation angles α in the interval [0, π].

The elements of the 3× 3 rotation matrix R(α) are given by

R(α)ik = δik cos α + ni nk (1− cos α)−
3∑

m=1

εikm nm sin α. (1.11)

Here, we have used the Kronecker delta symbol δik and the totally antisym-
metric tensor εikm, which are defined by

δik =

{
1, if i = k,
0, if i �= k.

(1.12)

εikm =

⎧⎪⎨
⎪⎩

1, if (i, k, m) is a cyclic permutation of (1, 2, 3),
−1, for other permutations,
0, else.

(1.13)

Any rotation matrix has determinant 1 and is orthogonal, that is, the trans-
posed matrix is equal to the inverse:

R(α)� = R(α)−1. (1.14)

Exercise 1.5. Show that (1.35) can be written as

[Lj , Lk] = i�
3∑

m=1

εjkm Lm. (1.15)

Exercise 1.6. Show that an orthogonal transformation leaves the Eu-
clidean scalar product invariant.

Exercise 1.7. What sort of transformation is described by an orthogonal
matrix with determinant −1?

Exercise 1.8. Verify that the matrices R(α) given by (1.10) form a
commutative group under matrix multiplication. In particular:

R(0) = 13, R(α)R(β) = R(α + β), α, β ∈ R. (1.16)

Exercise 1.9. Prove that rotations around different axis in general do
not commute.
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Exercise 1.10. Verify that (1.11) reduces to (1.10) for n = (0, 0, 1).

Exercise 1.11. Prove the following formulas for the Kronecker delta
and the totally antisymmetric tensor:∑

m

εklm εijm = δki δlj − δkj δli, (1.17)

∑
l,m

εklm εilm = 2δki, (1.18)

∑
k,l,m

εklm εklm = 6. (1.19)

Ψ The set of all rotation matrices R(α) forms a (non-commutative)
group. In particular, the composition of any two rotations is again

a rotation. Mathematically, the composition of rotations is described by the
product of the corresponding rotation matrices. The elements of the rota-
tion group can be characterized by their coordinates α = (α1, α2, α3). The
set of all possible coordinates α forms a sphere with radius π in R

3. Note
that the matrix elements depend smoothly (analytically) on the parameters
α. Such a group is called a Lie group. It is a group and a differentiable
manifold at the same time. The rotation group is denoted by SO(3), which
means “special orthogonal group in three dimensions” (“special” refers to
the fact that the determinant is +1). The sphere with radius π in R

3 is a
useful coordinate space for the rotation group. Every element of the rotation
group is uniquely labeled by a rotation vector inside or on that sphere. The
sphere is an image of the group manifold. It has unusual topological prop-
erties because two points on the surface of the sphere that are connected by
a diameter correspond to the same group element (why?) and have to be
identified.

CD 1.1 explores the rotation group. The group manifold is visually
represented by the coordinate sphere. Any rotation is visualized by
the rotation vector α and by the orientation of a rectangular box to
which the rotation is applied. The movies show how the orientation
of the box changes as the rotation vector moves through the group
manifold on straight lines or on closed circles. As a topological space,
the group manifold is not simply connected: there are closed orbits
that cannot be continuously deformed into a point.
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α

ψ

ψ

ψ

(x

x

) = ψ

R(α)−1
x

R(α)x

R(( α) )−1
x

Figure 1.2. A rotation x → R(α)x maps a wave function
ψ to ψ′ = U(α)ψ. The value of the rotated function ψ′ at a
point x is given by the value of ψ at the point R(α)−1x.

1.2.2. Rotation of wave functions

The wave functions considered here are complex-valued functions of the
space variable x. Such a function can be rotated by applying a linear oper-
ator U(α) defined by: (

U(α)ψ
)
(x) = ψ

(
R(α)−1x

)
. (1.20)

Here, R(α) is the rotation matrix defined in (1.11). Figure 1.2 explains
why we use the inverse rotation matrix in the argument of the function we
want to rotate. The operator U(α) acts on wave function by a rotation in
the literal sense. That is, the “cloud” of complex values that represents the
wave function simply gets rotated according to the rotation vector α.

The rotations of a box in CD 1.1 can also be interpreted as the
rotation of a wave function. Just take the box as an isosurface of
some square-integrable wave function ψ, or as the outline of the
characteristic function of the box-shaped region. The action of U(α)
on the wave function ψ just appears as the action of the ordinary
rotation R(α) on the box.

For any rotation α, the operators U(α) are unitary in the Hilbert space
L2(R3). The rotations around a fixed axis form a so-called one-parameter
strongly continuous unitary group. Consider, for example, the rotations
about the x3-axis (see Exercise 1.8). The rotation vector is of the form
α = (0, 0, α) with −π ≤ α ≤ π. We write U(α) = U(α) and extend the
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definition of U to arbitrary real arguments by U(α± 2π) = U(α). Then we
find for all real numbers α and β,

U(α)† = U(α)−1 = U(−α), U(0) = 1, U(α) U(β) = U(α + β). (1.21)

We refer to Appendix A.6 and to Book One for more details about unitary
groups and their self-adjoint generators.

Exercise 1.12. Let U(α), α ∈ R, describe the rotations around the x3-
axis in space. Using Exercise 1.8, prove that these operators form a unitary
group.

Exercise 1.13. For differentiable functions ψ, and for operators U(α)
as in the previous exercise, show that

∂

∂α

(
U(α)ψ

)
(x)

∣∣∣∣
α=0

=
(
x2

∂

∂x1
− x1

∂

∂x2

)
ψ(x) = −iL3 ψ(x). (1.22)

Exercise 1.13 above shows that the operator

L3 = i�
(
x2

∂

∂x1
− x1

∂

∂x2

)
(1.23)

is the generator of rotations around the x3-axis. The operator L3 is the third
component of the angular-momentum operator L defined in Book One (see
also (1.30) below).

If ψ is a differentiable wave function (in the domain of L3), then its
dependence on the angle of rotation can be described by the differential
equation

i�
∂

∂α
ψ(x, α) = L3 ψ(x, α). (1.24)

This equation is completely analogous to the Schrödinger equation for the
time evolution. We can write

U(α) = exp
(− i

�
L3 α

)
. (1.25)

Similar results hold for the rotations about the x1- and x2-axes and the
components L1 and L2 of the angular momentum.

The components L1, L2, and L3 of the angular-momentum operator L
are the infinitesimal generators of the rotations about the x1, x2, and
x3-axis.
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1.3. Angular Momentum

1.3.1. Angular momentum in classical mechanics

An observable that is intimately connected with rotations—both in classical
and in quantum mechanics—is angular momentum. A classical particle that
is at the point x with momentum p has angular momentum

L = x× p =

⎛
⎝x2p3 − x3p2

x3p1 − x1p3

x1p2 − x2p1

⎞
⎠ . (1.26)

The angular-momentum vector is always perpendicular to the plane spanned
by the position vector x and the momentum vector p. In the classical Hamil-
tonian formalism, the angular momentum generates the canonical transfor-
mations describing the rotations of the system. The angular momentum is
a constant of motion whenever the equation of motion is invariant under
rotations. (This is a special case of Noether’s theorem.)

CD 1.2 shows the classical angular momentum in various situations
with spherical symmetry: circular motion (see also Figure 1.3), mo-
tion along a straight line, and the Coulomb motion. The angular
momentum vector is perpendicular to the plane of motion and is
conserved whenever the coordinate origin coincides with the center
of spherical symmetry.

Exercise 1.14. A classical particle moves with constant velocity on a
straight line. Show that its angular momentum is constant in time.

Exercise 1.15. A classical particle with mass m performs a circular
motion around the coordinate origin, as in Figure 1.3. Show that its angular
momentum has the value

L = Iω, (1.27)
where I = mr2 is the moment of inertia, r is the radius of the circle, and ω
is the angular velocity.

Exercise 1.16. Show that the kinetic energy of the particle in the pre-
vious exercise can be written as

E =
1

2m
L2

r2
=

L2

2I
. (1.28)

1.3.2. Angular momentum in quantum mechanics

One can define the angular momentum in quantum mechanics as the operator
corresponding to the classical expression (1.26) via the usual substitution
rule. According to this heuristic rule, the transition to quantum mechanics
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x

x

x

1

2

3

L

Figure 1.3. The angular-momentum vector for a particle
moving with constant angular speed on a circle with center
at the origin is a conserved quantity. Its magnitude is the
product of the radius and the linear momentum, its direction
is perpendicular to the plane of motion and determined by the
right-hand rule: You are looking in the direction of L, when
the motion is clockwise. (CD 1.5.4 is an animated version of
this figure.)

is made by substituting linear operators acting on wave functions for the
classical quantities p and x. The classical momentum p is replaced by
the differential operator p = −i�∇, and the position x is replaced by the
operator of multiplication with x,

xi −→ multiplication by xi, pi −→ −i�
∂

∂xi
. (1.29)

An application of this rule leads to the angular-momentum operator2

L = −i�x×∇ = x× p, (1.30)

which is perhaps familiar from Book One. This observable is also called
the orbital angular momentum in order to distinguish it from other types
of angular momentum (to be described later). The components of the “vec-
tor operator” L contain products of position and momentum operators, for
example, L1 = x2p3 − x3p2. The order of the position and momentum op-
erators does not matter here, because xi and pj commute for i �= j, and
therefore the substitution rule is unambiguous (as explained in Book One).

2Usually, we denote the quantum mechanical operators by the same letter as the
corresponding classical quantities.
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As a generalization of the results in Section 1.2.2, we obtain the following
connection between the angular momentum L and the unitary operators
U(α) describing rotations in quantum mechanics:

Rotations about a fixed axis:

With a given unit vector n, define for an arbitrary wave function ψ the
rotated wave function

ψ(x, α) = U(αn)ψ(x) = ψ
(
R(αn)−1x

)
(1.31)

(rotation through the angle α about the axis defined by the unit vector
n). If ψ is differentiable, then it satisfies the equation

i�
∂

∂α
ψ(x, α) = n · L ψ(x, α). (1.32)

The self-adjoint operator n·L is thus the generator of the rotations about
a fixed axis, and the unitary group can be written as

U(αn) = exp
(− i

�
αn · L)

. (1.33)

1.3.3. Commutation relations of the angular-momentum
operators

The individual components of the angular momentum L do not commute.
Instead, we find, by an explicit calculation, the following result.

Angular-momentum commutation relations:

The three components of the angular-momentum operator

L = −i�x×∇ (1.34)

satisfy the angular-momentum commutation relations

[L1, L2] = i�L3, [L2, L3] = i�L1, [L3, L1] = i�L2. (1.35)

As a consequence of the angular-momentum commutation relations, it is
impossible to prepare a state where the values of all three components can
be predicted with arbitrary accuracy. The product of the uncertainties of
two components is related to the expectation value of the third component,
as you can see from Eq. (A.12) in Appendix A. Hence, you have to be very
cautious when you try to depict the angular momentum as an arrow as in
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classical mechanics. Closely related to the angular momentum in a state ψ
is the vector

Lav = (〈L1〉ψ, 〈L2〉ψ, 〈L3〉ψ), (1.36)
whose components are the expectation values of the three angular-momen-
tum operators. This vector describes a statistical property of an ensemble
of quantum systems. For an individual system, the components of L simply
do not have sharp values simultaneously.

Exercise 1.17. Determine the commutation relations between the com-
ponents of the angular-momentum operator and the components of the posi-
tion and momentum operators,

[L3, x1] = i� x2, etc. (1.37)

Exercise 1.18. Compute the angular-momentum commutation relations
from the result of the previous exercise, using the algebraic rules for commu-
tators, in particular, [A,BC] = B[A,C] + [A,B]C.

Exercise 1.19. Prove the operator identities

p · L = 0, x · L = 0, (1.38)

L× L = i�L, (1.39)
[n · L,v] = i�v × n, (1.40)

where n is a unit vector and v is any of the operators x, p, or L.

The angular-momentum commutation relations are deeply connected
with the properties of the rotation group. This is the topic of the next
section.

1.3.4. The meaning of the angular-momentum commutation
relations

The reason that the components of the angular momentum do not commute
lies in the local structure of the group of rotations. It is an elementary
observation, that two rotations about different axes do not commute.

CD 1.3.1 shows that the final orientation of a body depends on the
order of the rotations applied to it.

Let us now consider the noncommutativity of small rotations. We denote
by Rx(α), Ry(α), and Rz(α) the matrices describing rotations about the x-,
y-, and z-axis, respectively. The noncommutativity of the rotations about
different axis means, for example, that

Rx(α)Ry(α) �= Ry(α)Rx(α). (1.41)
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Now, consider the following matrix

M(α) = Rx(α)Ry(α)−Rz(α2)Ry(α)Rx(α). (1.42)

The matrix M(α) describes the difference between two operations. Each
operation is a composition of rotations. We insert the explicit expressions
for the rotation matrices and compute the matrix product. Thus, we obtain
the explicit form of the matrix M(α) by a little calculation (made easy with
the help of a computer algebra system). Expanding the matrix elements of
M(α) in power series with respect to α (around α = 0), we obtain

M(α) =
α3

2!

⎛
⎝0 0 −1

0 0 −1
1 1 0

⎞
⎠ + O(α4). (1.43)

What does this result mean? It means that whenever α is small, then M(α)
is very small. For small angles, the operations in (1.42) are thus comparable:

Rx(α)Ry(α) ≈ Rz(α2)Ry(α)Rx(α), (1.44)

up to terms of order α3.

Hence, a small rotation through an angle α2 about the z-axis corrects the
noncommutativity of the x- and y-rotations up to terms of third order in α.

CD 1.3.2 shows the difference between the final orientations of a body
to which rotations about the x- and y-axes are applied in different
order. If the angle α is small enough, then the final orientations
differ only by a rotation about the z-axis through an angle α2.

This property of the rotation group now must also be true for the ro-
tations performed on wave functions. Hence, there has to be a relation
analogous to (1.44) between the unitary groups generated by the angular-
momentum operators L1, L2, and L3. For small α we expect, by analogy
with (1.44), something like

e−iL1α e−iL2α = e−iL3α2
e−iL2α e−iL1α + “a small correction”. (1.45)

(We choose units with � = 1 in order to simplify the notation.) Formally,
we can approximate the exponential functions by the lowest-order terms of
the power series

e−iL1α = 1− iL1α− 1
2

L2
1 α2 + . . . , (1.46)

and similarly for L2 and L3. We insert these expansions into (1.45) and
multiply everything out. Assuming that α is small, we keep only the terms
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up to the order α2. After cancellation of the terms that are linear in α, the
right and left sides of (1.45) become

−L1L2 α2 = −(iL3 + L2L1)α2α2 + O(α3). (1.47)

We conclude that (1.45) is accurate for small α up to terms of order α3 if
and only if the generators L1, L2, and L3 satisfy the commutation relation

[L1, L2] = iL3. (1.48)

The angular-momentum commutation relations are an unavoidable conse-
quence of the noncommutativity of rotations.

Ψ The power series expansion of the exponential function converges in
the operator norm if the generator is a bounded operator. In the

Hilbert space L2(R3), the angular-momentum operators are unbounded, and
the expansion (1.46) makes sense only on a dense set of so-called analytic
vectors. We omitted these details here for the sake of a short heuristic
argument. But the above derivation of the commutation relations is rigorous
for unitary representations in finite dimensional Hilbert spaces. See, for
example, Section 4.4.2.

1.4. Spherical Symmetry of a Quantum System

1.4.1. Conservation of angular momentum

A physical system with Hamiltonian H is called invariant under rotations
or spherically symmetric whenever H commutes with the unitary rotation
operators U(α) = exp(−iα · L/�) defined in (1.20), that is, whenever

U(α)H U(α)−1 = H, for all angles α = αn. (1.49)

For the quantum systems considered in this book, H commutes with rota-
tions whenever H commutes with the generators of rotations, the angular-
momentum operators:

[H,Lk] = 0, for k = 1, 2, 3, or simply [H,L] = 0. (1.50)

In the same way that H does not change under rotations, the components
of L do not change under the time evolution,

e−iHt/� L eiHt/� = L, (1.51)

that is, the angular momentum is a conserved quantity, a constant of motion.
In classical mechanics, the close connection between symmetries and

conservation laws is known as Noether’s theorem. Classically, as well as
quantum mechanically, the physical quantity that is conserved during the
time evolution of a spherically symmetric system is the angular momentum.
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Ψ As usual, it is understood that a commutation relation like (1.50) holds
on a suitable dense domain that is left invariant by the operators H

and Lk. One may take, for example, the set S(R3) of rapidly decreasing
smooth functions introduced in Book One, Section 7.7.1. We also note that
the commutativity of unbounded self-adjoint operators is actually defined by
the commutativity of the unitary groups (see also Book One, Section 6.11).
The relation [H,Lk] = 0 on a dense domain implies the commutativity only
if additional conditions are met, which are usually satisfied for the systems
considered here.

1.4.2. Spherically symmetric potentials

If the Hamiltonian is of the particular form H = H0 +V (x), where H0 is the
free-particle Hamiltonian and V (x) is a potential, then the physical system is
spherically symmetric whenever the potential V is spherically symmetric. A
potential V (x) is spherically symmetric if it does not depend on the direction
of x, but only on the distance of the point x from the origin. We write

V (x) = V (r), where r =
√

x2
1 + x2

2 + x2
3 = |x|. (1.52)

Thus, a potential is spherically symmetric if its isosurfaces (the surfaces over
which V is constant) are concentric spheres around the origin. The line of
action of the corresponding force field

F(x) = −∇V (r) = −
( d

dr
V (r)

) x
r

(1.53)

always passes through the coordinate origin (see Fig. 1.4), and the strength
of the force does not depend on the direction of x.

Ψ To a mathematician, Eq. (1.52) constitutes a slight abuse of notation,
which is, however, very common in physics. Two different functions are

denoted by the same letter V (one function depends on the three variables
x = (x1, x2, x3), the other is a function of the single variable r). In physics,
the notation often emphasizes the physical quantity and not the explicit
function describing its dependence on other quantities.

The most important example of a spherically symmetric potential is the
Coulomb potential. It describes the electrostatic energy of an electron in the
field of an atomic nucleus. The Schrödinger equation for this system will be
solved in Chapter 2.

In the presence of spherical symmetry, the Schrödinger equation can be
simplified by the separation of variables technique. This technique seeks a
solution in the form of a product of three functions, one depending on the
radial variable r and the others on angular variables ϑ and ϕ. In that way,
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Figure 1.4. Example of a spherically symmetric force field.
The line of action always passes through the coordinate ori-
gin.

the eigenvalue equation (a partial differential equation) splits into three ordi-
nary differential equations, one for each variable. The spherically symmetric
potential V (r) enters only the equation for the radial part of the wave func-
tion, whereas the equations involving the angular variables ϑ and ϕ are the
same for all systems with spherical symmetry. In this chapter, we are going
to determine the possible solutions of the angular equations once and for all.

CD 1.4 presents three-dimensional views of an attractive harmonic
oscillator force and a repulsive Coulomb force.

Exercise 1.20. Show that the Hamiltonian for a particle in a spherically
symmetric potential commutes with all components of the angular-momen-
tum operator.

1.4.3. Symmetry and degeneracy

A major step in the solution of the Schrödinger equation is to determine
whether the Hamiltonian operator admits eigenstates. An eigenstate or
eigenvector of H is a nonzero square-integrable function ψ for which there
exists a number E (called an eigenvalue) such that

H ψ(x) = E ψ(x). (1.54)
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An eigenvector of the energy operator leads immediately to a stationary
solution of the Schrödinger equation

ψ(x, t) = e−iEt/� ψ(x), (1.55)

for which the time-dependence is only a phase factor (with absolute value =
1), so that predictions of physical properties do not depend on time.

It is important to note that the invariance under a symmetry transforma-
tion may be related to a degeneracy of eigenvalues. An eigenvalue E is called
degenerate if there are several linearly independent eigenvectors belonging
to that eigenvalue. The subspace spanned by all these eigenvectors is called
the eigenspace belonging to that eigenvalue. The dimension of the eigen-
space is called the degree of degeneracy by physicists and the multiplicity
by mathematicians.

Even if a Hamiltonian operator H is invariant under a symmetry trans-
formation U , an eigenvector ψ need not be invariant. However, if ψ is an
eigenvector of H, belonging to the eigenvalue E, then the transformed vector
Uψ is again an eigenvector of H belonging to the same eigenvalue. This can
be seen as follows:

HUψ = (UHU−1)Uψ = UHψ = UEψ = EUψ. (1.56)

Hence, the eigenspace of E is invariant under the transformation U , that is,
Uψ is in that eigenspace whenever ψ is.

Next, we consider the eigenvector ψ belonging to a non-degenerate eigen-
value of H. An eigenvalue is non-degenerate if the corresponding eigenspace
is one-dimensional. A symmetry transformation U that leaves the eigen-
spaces of H invariant must turn ψ into a vector Uψ in the same (one-dim-
ensional) eigenspace. Hence, Uψ is simply a multiple of ψ, and we may
write Uψ = λψ with some complex number λ. But |λ| = 1 because U is
unitary. An eigenstate belonging to a non-degenerate eigenvalue is invariant
(up to a phase factor). In the case of spherical symmetry this means that
for non-degenerate energies the corresponding eigenfunctions are spherically
symmetric.

Likewise, the eigenspaces of the angular-momentum operators (the an-
gular-momentum subspaces) are invariant under the time evolution gener-
ated by a spherically symmetric Hamiltonian H. The operator H leaves the
eigenspace of each of the angular-momentum operators invariant. It can be a
major simplification to solve the eigenvalue problem for H in an eigenspace of
the angular-momentum operators. Thus, our next task is the investigation of
the possible angular-momentum eigenvalues and the associated eigenspaces.
This is done in the next section.
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1.5. The Possible Eigenvalues of
Angular-Momentum Operators

In this section, we present a purely algebraic approach to the solution of the
eigenvalue problem for the angular-momentum operators. For simplicity,
we work with units where � has the numerical value 1. We consider a set
of three symmetric operators J1, J2, and J3 that satisfy the commutation
relations

[J1, J2] = iJ3, [J2, J3] = iJ1, [J3, J1] = iJ2. (1.57)
A lot can be learned by studying these relations. Because of these relations,
we cannot hope to find simultaneous eigenvectors belonging to nonzero eigen-
values.

Ψ Indeed, assume that ψ is a simultaneous eigenvector of, say, J1 and J2.
Let J1ψ = m1ψ and J2ψ = m2ψ. Then we find immediately that

iJ3ψ = [J1, J2]ψ = (m1m2 −m2m1)ψ = 0.

Hence,

J3(J1 + iJ2)ψ = [J3, J1]ψ + i[J3, J2]ψ = (iJ2 − J1)ψ = (im2 −m1)ψ,

and
J3(J1 + iJ2)ψ = J3(m1 + im2)ψ = (m1 + im2)J3ψ = 0.

Hence, im2 −m1 = 0, and because the eigenvalues of symmetric operators
are always real, this implies that m1 = m2 = 0. We conclude that there are
no nontrivial simultaneous eigenvectors belonging to nonzero eigenvalues.

The square of the angular-momentum vector J = (J1, J2, J3), that is, the
operator

J2 = J2
1 + J2

2 + J2
3 (1.58)

commutes with all components Jk,

[J2, Jk] = 0, for k = 1, 2, 3. (1.59)

Hence, we could try to find simultaneous eigenvectors for the operator J2

and any one of the components, say J3. We are going to prove the following
theorem.

Theorem 1.1. Assume that there is a simultaneous eigenvector of the
commuting operators J2 and J3. Then the eigenvalue of J2 is j(j+1) where j
is one of the numbers 0, 1

2 , 1, 3
2 , 2 . . . . Moreover, there are 2j+1 eigenvectors

ψj,m of J3, such that

J2 ψj,m = j(j + 1)ψj,m, J3 ψj,m = m ψj,m, (1.60)

for m = −j,−j + 1, . . . , j − 1, j.
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Proof. We first define the operators

J± = J1 ± iJ2 (1.61)

and note the following commutation properties

[J3, J±] = ±J±, [J2, J±] = 0. (1.62)

The operators J± are not self-adjoint, but formally adjoint to each other,

J†
+ = J−, J†

− = J+. (1.63)

Their products can be expressed in terms of J2 and J3,

J+J− = J2 − J2
3 + J3, J−J+ = J2 − J2

3 − J3. (1.64)

Now, let us assume that there exists a simultaneous eigenvector ψλ
m belonging

to eigenvalues λ for J2 and m for J3:

J2 ψλ
m = λψλ

m, J3 ψλ
m = m ψλ

m. (1.65)

We can always multiply the eigenvector with a suitable complex constant,
and therefore we may assume that ψλ

m is normalized,

‖ψλ
m‖2 = 〈ψλ

m, ψλ
m〉 = 1. (1.66)

Next, consider the state ψ+ = J+ψλ
m. Whenever ψ+ is not the zero vector,

it is an eigenstate of J3 belonging to the eigenvalue m+1. This follows from
the commutation property (1.62):

J3 ψ+ = J3J+ ψλ
m = (J+J3 + [J3, J+])ψλ

m = (J+J3 + J+)ψλ
m

= (J+m + J+)ψλ
m = (m + 1)J+ ψλ

m

= (m + 1)ψ+. (1.67)

The vector ψ+ is still an eigenvector of J2 belonging to the same eigenvalue
λ, because J+ commutes with J2:

J2 ψ+ = J2J+ ψλ
m = J+J2 ψλ

m = J+ λψλ
m = λJ+ ψλ

m = λψ+. (1.68)

An analogous observation holds for the state J−ψλ
m. Either this vector is

the zero vector, or it is a simultaneous eigenstate with eigenvalues m− 1 for
J3 and λ for J2. In order to determine the norm of the vectors J±ψλ

m, we
perform the following calculation

‖J±ψλ
m‖2 = 〈J± ψλ

m , J± ψλ
m〉

= 〈ψλ
m , J∓ J± ψλ

m〉 by (1.63)

= 〈ψλ
m , (J2 − J2

3 ∓ J3) ψλ
m〉 by (1.64)

= λ−m2 ∓m. (1.69)
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From ‖J±ψλ
m‖2 ≥ 0 it follows immediately that

λ ≥ m2 ±m = m(m± 1). (1.70)

Moreover, we find that J+ ψj,m = 0 if and only if λ−m2 −m = 0, that is,

J+ ψλ
m = 0 if and only if λ = m(m + 1), (1.71)

and similarly,

J− ψλ
m = 0 if and only if λ = m(m− 1). (1.72)

Now it is easy to determine the possible values for λ and m. Whenever we
have a simultaneous eigenvector of J2 and J3 with eigenvalues λ and m,
we can also find eigenvectors belonging to eigenvalues m + 1, m + 2, and so
forth, of J3. These eigenvectors are obtained by successive application of the
ladder operator J+. All new eigenvectors belong to the same eigenvalue λ of
J2. This process of creating new eigenvectors will stop as soon as we reach
a maximal value of m, say mmax for which J+ψλ

mmax
= 0, or equivalently, for

which
λ = mmax(mmax + 1). (1.73)

It is crucial to observe that such a maximal value mmax must exist: Oth-
erwise, we could raise the eigenvalue of J3 indefinitely until the inequality
(1.70) would be violated, thus giving a contradiction.

Similarly, using the ladder operator J−, we can lower the eigenvalue m
until we reach a minimum value mmin for which we must have

λ = mmin(mmin − 1). (1.74)

Combining Eqs. (1.73) and (1.74) we find

(mmax −mmin + 1)(mmax + mmin) = 0. (1.75)

Here, because of mmax ≥ mmin, only the second factor can be zero, that is,
mmin = −mmax. Because we can get from mmin to mmax in integer steps (by
applying the operator J+ to the corresponding eigenvectors), we find that
mmax −mmin = 2mmax must be a non-negative integer. Writing mmax = j
we find that the only allowed values of j are 0, 1

2 , 1, 3
2 , 2, and so forth. From

(1.73) we see that λ = j(j + 1).
Finally, write ψj,m instead of ψλ

m. �

Figure 1.5 visualizes the spectrum of possible simultaneous eigenvalues
of J2 and J3 according to Theorem 1.1.

Theorem 1.2. For a fixed j, all the 2j + 1 eigenvalues of J3 have the
same multiplicity k (which might be infinite). The eigenspace of J2 belonging
to the eigenvalue j(j + 1) is therefore k(2j + 1)-dimensional. This space is
invariant under the action of the operators J1, J2, and J3.
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Figure 1.5. The possible values (j, m) for the operators J2

and J3 (with j ≤ 3). Each point represents a simultaneous
eigenvector of J2 and J3. The ladder operators J± let you
jump from one point to the next in the horizontal direction,
that is, within an eigenspace of J2.

Proof. Assume that there are two orthogonal vectors ψ
(1)
j,m and ψ

(2)
j,m

both of which belong to the eigenvalues j(j + 1) of J2 and m of J3. Assume
m < j. Then J+ ψ

(1)
j,m and J+ ψ

(2)
j,m are both nonzero vectors, and

〈J+ ψ
(1)
j,m , J+ ψ

(2)
j,m〉 = 〈ψ(1)

j,m , J− J+ ψ
(2)
j,m〉

= 〈ψ(1)
j,m , (J2 − J2

3 − J3) ψ
(2)
j,m〉

=
(
j(j + 1)−m2 −m

)〈ψ(1)
j,m , ψ

(2)
j,m〉 = 0. (1.76)

And, similarly, for m > −j we find

〈J− ψ
(1)
j,m , J− ψ

(2)
j,m〉 = 0. (1.77)

You can see that the orthogonality is preserved by the ladder operators
J+ and J−. Hence, if there are precisely k orthogonal states for some
eigenvalue m, then there are precisely k orthogonal states for all m =
−j,−j + 1, . . . , j − 1, j. For a given j there are 2j + 1 different values of m.
Because the eigenvectors belonging to different eigenvalues of a symmetric
operator are orthogonal, eigenvectors with different eigenvalues m are or-
thogonal. Therefore, the subspace spanned by all the eigenvectors belonging
to the eigenvalue j(j + 1) of the operator J2 is k(2j + 1)-dimensional. This
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eigenspace is clearly left invariant by the operators J2, J3, and J± (an op-
erator leaves a subspace invariant if the operator maps any vector of this
subspace to a vector in the same subspace). Hence, the eigenspace of J2 is
also left invariant by the operators J1 and J2, which can be written as linear
combinations of J+ and J−. �

Our considerations in this section have shown that the possible eigen-
values of the angular momentum are characterized by angular-momentum
quantum numbers j and m that can have integer and half-integer values.
In the next section, we will find that for the orbital angular momentum
L = x × p only integer values can occur. Angular-momentum operators
with half-integer quantum numbers are nevertheless important for describ-
ing the spin of elementary particles (see Chapter 3).

Exercise 1.21. Verify the commutation relations

[J2, Jk] = 0, for k = 1, 2, 3. (1.78)

Exercise 1.22. Define the three 2× 2-matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.79)

These matrices are called the Pauli matrices. They are symmetric and hence
define self-adjoint operators in the Hilbert space C

2. Verify that the opera-
tors Sj = (1/2)σj, j = 1, 2, 3, satisfy the angular-momentum commutation
relations (1.57). Show that the only eigenvalue of S2 = S2

1 + S2
2 + S2

3 is
s(s + 1) with s = 1/2.

Exercise 1.23. Show that if the operators J1, J2, J3 satisfy the commu-
tation relations [J1, J2] = i�J3, and so forth, then the possible eigenvalues of
J2 are �

2j(j +1) with j = 0, 1
2 , 1, . . ., and for each j the possible eigenvalues

of J3 are �m with m = −j,−j + 1, . . . , j.

Exercise 1.24. Let φj,j be a simultaneous eigenvector of J2 and J3, with
the maximal m = j. Assume that φj,j is normalized, ‖φj,j‖ = 1. Define

φj,m−1 =
1√

j(j + 1)−m(m− 1)
J− φj,m, m = j, j−1, . . . ,−j+1. (1.80)

Show that the vectors φj,m, m = −j,−j +1, . . . , j are normalized simultane-
ous eigenvectors of J2 and J3.
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ϕ
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2

Figure 1.6. Spherical coordinates on R
3. Instead of giving

the Cartesian coordinates (x1, x2, x3), we can also specify the
position of a point in R

3 by spherical coordinates (r, ϑ, ϕ).
See also CD 1.5.

1.6. Spherical Harmonics

1.6.1. Spherical coordinates

In order to determine the eigenvalues and eigenfunctions of the orbital an-
gular-momentum operators L2 and L3, it is convenient to express them as
differential operators in spherical coordinates. On R

3\{0} (three-dimension-
al space without the origin) we can introduce spherical coordinates (r, ϑ, ϕ)
as in Figure 1.6.

In a spherical coordinate system, the position of a point is specified by its
distance r from the origin, its polar angle ϑ and its azimuthal angle ϕ. The
Cartesian coordinates can be expressed in terms of the spherical coordinates
as follows

x1(r, ϑ, ϕ) = r sin ϑ cos ϕ,

x2(r, ϑ, ϕ) = r sin ϑ sin ϕ,

x3(r, ϑ, ϕ) = r cos ϑ.

(1.81)

It is often necessary to invert this formula, that is, to express the spherical
coordinates of a point in terms of its Cartesian coordinates
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r(x1, x2, x3) = |x| ∈ (0,∞),

ϑ(x1, x2, x3) = arccos(x3/|x|) ∈ [0, π],

ϕ(x1, x2, x3) = arctan(x1, x2) ∈ (−π, π].
(1.82)

Here, the function arctan of two variables is defined as

arctan(x1, x2) ≡ π θ(−x1) sgn(x2) + arctan(x2/x1). (1.83)

(This definition has to be extended by continuity for x1 → 0 and x2 �= 0.)
Here, sgn(x) is the sign of x, and θ is the step function (θ(x) = 1 for x > 0
and θ(x) = 0 for x ≤ 0).

CD 1.5.1 is an animated view of a point in a Cartesian coordinate
system similar to Figure 1.6. CD 1.5.2–4 deal with the uniform
motion of a free particle and the circular motion of the rigid rotator
and discuss the description of these systems in terms of spherical
coordinates.

At each point in R
3 \ {0}, we can define the unit vectors in the directions

of the spherical coordinate lines (these are the curves on which two of the
three spherical coordinates are held fixed)

er =(sinϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) =
x
r
,

eϑ =(cos ϑ cos ϕ, cos ϑ sin ϕ,− sin ϑ) =
∂er

∂ϑ
,

eϕ =(− sin ϕ, cos ϕ, 0) =
1

sin ϑ

∂er

∂ϕ
.

(1.84)

Exercise 1.25. Using (1.84), verify the following formulas:

er · eϑ = 0,
eϑ · eϕ = 0,
eϕ · er = 0,

er · er = 1,
eϑ · eϑ = 1,
eϕ · eϕ = 1,

er × eϑ = eϕ,

eϑ × eϕ = er,

eϕ × er = eϑ.

(1.85)

At each point, the three unit vectors thus form a right-handed, orthonormal
system.

Now, if ψ(x1, x2, x3) is a wave function in Cartesian coordinates, then
the same function in spherical coordinates is obtained just by inserting the
expressions (1.81) into the arguments of ψ

φ(r, ϑ, ϕ) = ψ
(
x1(r, ϑ, ϕ), x2(r, ϑ, ϕ), x3(r, ϑ, ϕ)

)
(1.86)



28 1. SPHERICAL SYMMETRY

The collection of formulas is completed by giving the expression for the
gradient operator ∇ in spherical coordinates

∇̂ = er
∂

∂r
+

1
r

(
eϑ

∂

∂ϑ
+ eϕ

1
sin ϑ

∂

∂ϕ

)
. (1.87)

This formula has to be understood as follows. The gradient of a function
can either be evaluated in Cartesian coordinates or in spherical coordinates.
At some point (x1, x2, x3) corresponding to (r, ϑ, ϕ) we have

∇ψ(x1, x2, x3) = ∇̂φ(r, ϑ, ϕ), (1.88)

with φ and ψ being related as in (1.86).

The spherical coordinate space is a three-dimensional space where
the coordinate axes describe the r-, ϑ-, and ϕ-coordinates of a point
in R

3. CD 1.6 visualizes the familiar examples of linear and circu-
lar motion, which look rather unfamiliar in the spherical coordinate
space.

Ψ The transition to spherical coordinates, that is, the mapping U : ψ → φ
defined in (1.86) is a unitary transformation from the Hilbert space

L2(R3) to the Hilbert space L2([0,∞)× S2, dV ). Here, S2 denotes the two-
dimensional surface of the unit sphere, and dV = r2 sin ϑdr dϑ dϕ is the
volume element in spherical coordinates. The points in [0,∞) × S2 have
the coordinates (r, ϑ, ϕ), and integration has to be done with respect to the
volume element in spherical coordinates. It follows from the usual rules of
variable substitution in an integral that∫

R3

|ψ(x1, x2, x3)|2 d3x =
∫ ∞

0

∫
S2

|φ(r, ϑ, ϕ)|2 r2 sin ϑdr dϑ dϕ. (1.89)

This means that the norm of ψ in L2(R3) is equal to the norm of φ in
L2([0,∞) × S2, dV ) (this is the unitarity of U). As a consequence, the
operators ∇ and ∇̂ are unitarily equivalent, that is, ∇̂ = U∇U−1. In the
following, we always put a hat on an operator in spherical coordinates in
order to indicate that it acts on functions φ(r, ϑ, ϕ).

1.6.2. Angular momentum in spherical coordinates

With the results of the previous section, it is easy to derive the expressions
of the angular-momentum operators in spherical coordinates. Using the
formulas from Exercise 1.25, we obtain

L̂ = rer × (−i �∇̂) = i�
(
eϑ

1
sin ϑ

∂

∂ϕ
− eϕ

∂

∂ϑ

)
, (1.90)



1.6. SPHERICAL HARMONICS 29

L̂2 = − �
2

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
− �

2

sin2 ϑ

∂2

∂ϕ2
. (1.91)

Again, the hat (̂ ) simply indicates that the operator acts on wave functions
in spherical coordinates. We have

Lψ(x1, x2, x3) = L̂φ(r, ϑ, ϕ), (1.92)

where φ is the function ψ expressed in spherical coordinates as in (1.86). In
particular, the operators L2 and L̂2 have the same eigenvalues (as well as L3

and L̂3). The angular-momentum operators fulfill the angular-momentum
commutation relations. Hence, Theorem 1.1 in Section 1.5 shows that the
possible eigenvalues of L̂2 are among the numbers �

2�(� + 1), where � is a
non-negative integer or half-integer. For each eigenvalue of L̂2, the third
component has the eigenvalues �m with m = −�,−� + 1, . . . , �.

The expression for L3 in spherical coordinates is particularly simple.
Just insert the third Cartesian component of eϑ and eϕ (see Eq. (1.84)) into
(1.90):

L̂3 = −i�
∂

∂ϕ
. (1.93)

This expression is already familiar from the two-dimensional situation de-
scribed in Book One, Section 8.8.

Now we can see that L̂3 cannot have half-integer eigenvalues m. The
domain of the differential operator L̂3 consists of continuous functions. As
a function of the azimuthal angle ϕ, any eigenfunction of L̂3 must therefore
be a periodic function:

φ(r, ϑ, ϕ + 2π) = φ(r, ϑ, ϕ). (1.94)

Denoting the eigenvalue of L̂3 by m, the eigenvalue equation reads

L̂3φ = −i�
∂

∂ϕ
φ = �m φ (1.95)

so that the ϕ-dependence of φ must be described by exp(imϕ), which is
periodic with period 2π if and only if m is an integer.

The considerations in Section 1.5 thus also exclude the possibility that L2

has half-integer eigenvalues. Only the numbers �
2�(� + 1) with integer � can

occur as eigenvalues of L2. Below, we are going to show that simultaneous
eigenfunctions of L2 and L3 indeed exist for all non-negative integers �.
Hence, we obtain the following result:
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Figure 1.7. The absolute value |L| =
√

L2 of the angular
momentum can only take the values �

√
�(� + 1), with � being

a non-negative integer. For a given �, the component of the
angular momentum in an arbitrary direction (here taken as
the vertical direction) is also quantized and can only have
the values −��,−�(� + 1), . . . + ��. In a classical picture,
the angular momentum vector (if measured with respect to a
certain direction) thus lies on certain cones.

Eigenvalues of the orbital angular momentum:

The eigenvalues of the operator L2 are precisely the numbers �
2�(� + 1),

where � is a non-negative integer. For each �, the operator L3 has the
eigenvalues �m, where m = −�,−� + 1, . . . , �.

A classical vector L for which the values of L2 and L3 are restricted to the
eigenvalues above would have to lie on certain cones which are described in
Figure 1.7. In quantum mechanics, this picture should not be taken seriously
because the same result would be obtained for the possible values of L1 and
L2 (or the component of L in an arbitrary direction).

In spherical coordinates, the operators L̂3 and L̂2 only act on the angular
variables. Hence, we may try a separation of the variables by writing

φ(r, ϑ, ϕ) =
1
r

f(r) χ(ϑ, ϕ). (1.96)

The factor 1/r has been introduced for “cosmetic reasons.” Later, it will
simplify some formulas involving the radial part of the wave function.

It has to be noted that most wave functions φ(r, ϑ, ϕ) cannot be written
in the form of a product of an r-dependent part and a part depending only
on the angular variables. But it turns out that the set of wave functions
of the type (1.96) is large enough to contain an orthonormal basis of the
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Hilbert space L2(R3). Therefore, any wave function has an expansion

φ(r, ϑ, ϕ) =
∞∑

k=0

1
r

fk(r)χk(ϑ, ϕ), (1.97)

the sum being convergent in the Hilbert space norm.
The wave function (1.96) consists of a radial part f(r)/r and an angular

part χ(ϑ, ϕ). The norm is given by (see also (1.89))

‖φ‖2 =
∫
|φ(r, ϑ, ϕ)|2 r2dr sin ϑdϑ dϕ

=
∫ ∞

0
|f(r)|2 dr

∫
S2

|χ(Ω)|2 dΩ. (1.98)

Here, Ω is shorthand for the angular coordinates (ϑ, ϕ). The set of these
coordinates forms the sphere S2 (the two-dimensional surface of the unit
sphere in three dimensions), and dΩ = sin ϑdϑ dϕ denotes the area element
on this sphere.

Hence, the part f(r) of the wave function in spherical coordinates is
square-integrable on [0,∞), and the angular part is a square integrable func-
tion on the sphere S2 (it belongs to the Hilbert space L2(S2)).

The application of the operators L̂2 and L̂3 only affects the angular part
χ. It is thus sufficient to look for angular eigenfunctions

L̂2 χm
� (ϑ, ϕ) = �

2�(� + 1)χm
� (ϑ, ϕ), L̂3 χm

� (ϑ, ϕ) = �m χm
� (ϑ, ϕ). (1.99)

Because we know already that m must be an integer, we only have to look for
solutions with integer �. These can be determined, in principle, as follows.
According to the proof of Theorem 1.1, we first look for a solution of

(L̂1 + iL̂2)χ(ϑ, ϕ) = 0, (1.100)

which can be written as

i cos ϑ
∂χ

∂ϕ
+ sinϑ

∂χ

∂ϑ
= 0. (1.101)

It is easily checked that for each � = 0, 1, 2, 3, . . .

χ(ϑ, ϕ) = N� ei�ϕ
(
sin ϑ

)� (1.102)

is a solution for this equation (where N� is a normalization constant). For
each � we can now obtain 2� + 1 eigenfunctions of L̂2 simply by differenti-
ating, that is, by applying the differential operator L̂1 − iL̂2 to the solution
above. This procedure (which was described in Theorem 1.1) yields, one af-
ter another, the eigenfunctions of L3 for m = �, �−1, . . . ,−�. It is convenient
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to normalize these eigenfunctions by requiring∫
S2

|χ(ϑ, ϕ)|2 dΩ = 1. (1.103)

In that way, one obtains the spherical harmonics Y m
� (ϑ, ϕ), which are de-

scribed in more detail in the next section.

Eigenfunctions of the orbital angular momentum:

In spherical coordinates, the normalized simultaneous eigenfunctions of
the angular-momentum operators L̂2 and L̂3 are the spherical harmonics
Y m

� (ϑ, ϕ),

L̂2 Y m
� (ϑ, ϕ) = �

2 �(� + 1)Y m
� (ϑ, ϕ), � = 0, 1, 2, 3, . . . , (1.104)

L̂3 Y m
� (ϑ, ϕ) = �m Y m

� (ϑ, ϕ), − � ≤ m ≤ �. (1.105)

As an example, Figure 1.8 visualizes the spherical harmonic Y 1
4 .

CD 1.7 visualizes the spherical harmonics Y m
� for � ≤ 6 by vari-

ous methods. The spherical harmonics are complex-valued functions
depending on two angles, hence the most natural visualization uses
a color density plot on the surface of the sphere (either shown as
a globe in three dimensions, or represented by a two-dimensional
map).

1.6.3. Special topic: Properties of the spherical harmonics

The spherical harmonics are usually3 defined by

Y m
� (ϑ, ϕ) =

√
2� + 1

4π

(�−m)!
(� + m)!

eimϕ Pm
� (cos ϑ) for 0 ≤ m ≤ �, (1.106)

Y m
� (ϑ, ϕ) = (−1)m Y −m

� (ϑ, ϕ) for −� ≤ m ≤ 0. (1.107)

Here, the functions Pm
� (z) are the associated Legendre functions,

Pm
� (z) =

(−1)m

2� �!
(1− z2)m/2 d�+m

dz�+m
(z2 − 1)�, (1.108)

defined for −1 ≤ z ≤ 1 and integers 0 ≤ m ≤ �. The function P 0
� (z) = P�(z)

is called the Legendre polynomial of degree �.

3In various books, these definitions can differ by phase factors. We follow the con-
ventions made in Mathematica, Y m

� (ϑ, ϕ) ≡ SphericalHarmonicY[�, m, ϑ, ϕ], and P m
� (z) ≡

LegendreP[�, m, z].
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Figure 1.8. The absolute value of the spherical harmonics
Y m

� (ϑ, ϕ) depends only on ϑ. Therefore, we can visualize
them by plotting a curve in the x1x3-plane where at each
angle ϑ, the distance from the origin is |Y m

� (ϑ, 0)|. This is
shown here for � = 4 and m = 1. More examples and three-
dimensional visualizations can be found on the CD-ROM; see
CD 1.7.

Spherical harmonics with different indices are orthogonal, because they
are eigenfunctions belonging to different eigenvalues of a self-adjoint opera-
tor, and because of their normalization we simply have∫

S2

Y m
� (ϑ, ϕ) Y m′

�′ (ϑ, ϕ) dΩ = δ��′ δmm′ . (1.109)

The spherical harmonics are either symmetric or antisymmetric under a
reflection through the origin,

Y m
� (π − ϑ, ϕ + π) = (−1)� Y m

� (ϑ, ϕ). (1.110)

Finally, we note the addition theorem:

4π

2� + 1

�∑
m=−�

Y m
� (ϑ, ϕ) Y m

� (ϑ′, ϕ′) = P�(cos α). (1.111)
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Here, α is the angle between the directions (ϑ, ϕ) and (ϑ′, ϕ′). Denoting the
corresponding unit vectors by ω and ω′, we have cos α = ω · ω′.

In Cartesian coordinates (x, y, z), with r = (x2+y2+z2)1/2, the spherical
harmonics are (for m ≥ 0)

Y m
� (x, y, z) =

√
2� + 1

4π

(�−m)!
(� + m)!

( x + iy√
x2 + y2

)m
Pm

�

(z

r

)
. (1.112)

For example,

Y 0
0 =

1√
4π

, Y 0
1 =

√
3
4π

z

r
, Y ±1

1 = ∓
√

3
8π

x± iy
r

. (1.113)

1.7. Particle on a Sphere

1.7.1. Classical particle on a sphere

Here, we consider a quantum mechanical system that is only able to perform
a rotational motion. Imagine a particle with mass4 m whose motion is re-
stricted to the surface of a sphere. There are no other forces. This particle
has two degrees of freedom, its position on the sphere is given by two an-
gular coordinates, the longitude and the latitude, described by the angles ϑ
and ϕ. A classical particle subject to these constraints will move along the
geodesics of the sphere (great circles) with constant (angular) velocity. Its
kinetic energy is given by

E =
1
2
mv2 =

1
2
m(rω)2 =

1
2
Iω2, (1.114)

where we have introduced the angular speed ω = v/r and the moment of
inertia

I = mr2. (1.115)
The angular momentum of a particle moving with velocity v on a sphere of
radius r is L = mvr, or v = L/mr. Insert this into the expression for the
energy to obtain

E =
L2

2mr2
=

L2

2I
. (1.116)

CD 1.2.1, CD 1.5.4, and CD 1.6.3 are all visualizations of the classical
motion at a fixed distance from the coordinate origin.

4It is general custom to denote the mass of the particle and the eigenvalue of L3 by
the same letter. Usually there is little danger of confusion. To be on the safe side, we
denote the mass by the roman letter m and use the italic letter m for the eigenvalue of L3.
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1.7.2. The rigid rotator

The particle on a sphere is a mathematical model for the rigid rotator.
Consider two point-like particles of mass m1 and m2 that are connected by a
weightless, rigid rod of length r. Denote by x = x2 − x1 the vector pointing
from m1 to m2. The position of the center of mass is given by

X =
m1x1 + m2x2

m1 + m2
(1.117)

The distances of the particles from the center of mass are therefore

r1 = |x1 −X| = m2 r

m1 + m2
, r2 = |x2 −X| = m1 r

m1 + m2
. (1.118)

If we are only interested in the internal motion of the two-particle system,
we can choose a coordinate system that has its origin at the center of mass.
In this coordinate system, the moment of inertia of the rotator is thus

I = m1r
2
1 + m2r

2
2 =

m1m2

m1 + m2
r2. (1.119)

This is precisely the moment of inertia of a particle with mass

µ =
m1m2

m1 + m2
(1.120)

at a distance r from the origin. Thus, we can replace the two-particle system
with an effective one-particle system. This particle has the so-called reduced
mass µ and the fixed distance r from the origin, that is, it is a particle on a
sphere with radius r.

This is a good model for a diatomic molecule. It consists of two atoms
that can oscillate along the line connecting their centers and rotate around
the center of mass. The vibrational motion is much faster than the rota-
tional motion. So, the vibrations belong to much higher energies. Quantum
mechanically, oscillation states have a quantized energy. As long as the
diatomic molecule is in its vibrational ground state, it is a rigid rotator.

1.7.3. Transition to quantum mechanics

In order to define the quantum mechanical Hamiltonian for a particle that is
constrained to the surface of a sphere, we start with the classical expression
(1.116) for the energy. From this, the Hamiltonian operator of the rigid
rotator is obtained by replacing L2 with the quantum mechanical angular-
momentum operator. Note that r, the radius of the sphere, is treated as a
fixed parameter. Using the expression (1.91) for the angular momentum in
spherical coordinates, we arrive at

Ĥ =
1

2m r2
L̂2 =

1
2I

L̂2. (1.121)
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The operator L̂2 has a discrete spectrum of eigenvalues, therefore the same
is true for the energy of the rotator.

Eigenvalues of the rigid rotator:

A particle with mass m on a sphere with radius r can only have the
energies

E� =
�

2

2mr2
�(� + 1), � = 0, 1, 2, 3, . . . . (1.122)

Each eigenvalue E� has the multiplicity 2� + 1, that is, there are 2� + 1
orthogonal wave functions all belonging to the eigenvalue E�:

ψ�,m(ϑ, ϕ) =
1
r

Y m
� (ϑ, ϕ), m = −�,−� + 1, . . . , �. (1.123)

It follows from (1.109) that∫
S2

r

∣∣ψ�,m(ϑ, ϕ)
∣∣2 r2 sin ϑdϑ dϕ = 1. (1.124)

The factor 1/r in (1.123) thus guarantees that the eigenfunctions are nor-
malized on the sphere with radius r. We conclude that the eigenfunctions
form an orthonormal basis in the Hilbert space L2(S2

r ) of square integrable
functions on the sphere of radius r.

We want to stress that L̂2 is part of any single-particle Hamiltonian,
because it appears in the angular part of the kinetic energy in spherical
coordinates (see (1.150) below). For a particle constrained to the surface
of a sphere, the operator L̂2 plays the same role as the operator −�

2∆ for
a particle in R

3: It is proportional to the kinetic energy and it generates
the free time evolution. (In fact, L̂2/�

2 is the so-called Laplace-Beltrami
operator of the sphere.) The action of the free time evolution exp(−iL̂2t/2I)
on a sphere will be discussed next.

1.7.4. Dynamics of the rigid rotator

The time evolution of an eigenfunction of the rigid rotator Hamiltonian is
rather trivial. If ψ�,m(ϑ, ϕ) is an eigenfunction belonging to the eigenvalue
E�, then the function

ψ�,m(t, ϑ, ϕ) = exp(−iE� t) ψ�,m(ϑ, ϕ) (1.125)

is a solution of the time-dependent Schrödinger equation. The ground state
of the rigid rotator has energy E0 = 0, and hence the corresponding wave
function does not depend on time at all.
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The fact that the Schrödinger equation is linear means that we can con-
sider linear combinations of eigenfunctions. For example, for the initial
function ψ0(ϑ, ϕ) =

∑
�,m c�,m ψ�,m(ϑ, ϕ), the time evolution is

ψ(t, ϑ, ϕ) =
∑
�,m

c�,m exp(−iE� t)ψ�,m(ϑ, ϕ) (1.126)

and this clearly gives us the solution for any initial function that is square
integrable on the sphere, because the set of functions ψ�,m forms an orthonor-
mal basis in L2(S2

r ).
Given any initial function ψ0, the expansion coefficient c�,m can be found

by an integration,

c�,m =
∫

S2
r

ψ�,m(ϑ, ϕ)ψ0(ϑ, ϕ) r2 dΩ (1.127)

(with dΩ = sin ϑdϑ dϕ). It is remarkable that all nonzero energies E� =
�(� + 1)/2I are integer multiples of E1 = 1/I, hence all time-dependent
factors exp(−iE� t) have the same basic time period. Hence, any state of the
rigid rotator is periodic in time.

For the unit sphere (r = 1), we summarize our results in the following
box.

Time evolution of the rigid rotator:

For a particle with mass m = 1 on the unit sphere S2 the time evolution
of any square-integrable initial function ψ0(ϑ, ϕ) is given by the formula

ψ(t, ϑ, ϕ) =
∑
�,m

c�,m exp(−iE� t)Y m
� (ϑ, ϕ) (1.128)

with
c�,m =

∫
S2

Y m
� (ϑ, ϕ) ψ0(ϑ, ϕ) dΩ. (1.129)

The time evolution of the wave function is periodic in time,

ψ(t + T, ϑ, ϕ) = ψ(t, ϑ, ϕ) with period T = 2π. (1.130)

CD 1.9–CD 1.12 is a collection of several movies showing vari-
ous time-dependent states of the rigid rotator. CD 1.13 visualizes
the time evolution of initially well-localized (Gaussian) states. In
CD 1.14, the initial state has roughly the shape of the letter Ψ. This
illustrates that we can indeed compute the time evolution of any
square-integrable initial function on the sphere.
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Figure 1.9. Possible trajectories of classical particles on a
sphere. For all trajectories, the angular-momentum vector
has |L| = √

�(� + 1), with � = 6 and L3 = 6.

1.8. Quantization on a Sphere

1.8.1. Comparison of classical and quantum probability densities

Figure 1.9 shows a set of classical trajectories of particles for which the
angular momenta have a fixed absolute value |L| = L and a fixed value of
the third component L3. The admissible positions of classical particles with
these angular momenta form the classically allowed region on the sphere.
This region is determined by the polar angle of the classical angular-momen-
tum vector. We denote the polar angle of L by θ in order to distinguish it
from the polar angle ϑ of the particle’s position vector, see Figure 1.10.

Assuming L3 = m, we find that the polar angle of L is

θ = arccos
(m

L

)
(1.131)

and hence the classically allowed region for the position of the particle is
between the polar angles

ϑmin = π/2− θ, ϑmax = π/2 + θ. (1.132)

All the classical trajectories are grand circles of the sphere. The particles
move on these circles with a constant angular velocity. When a particle
circles around the sphere, the polar angle ϑ performs a periodic motion
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Figure 1.10. The polar angle θ = arccos(m/L) of the angu-
lar momentum and the time-dependent polar angle ϑ of the
position vector for a classical particle on a sphere.
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Figure 1.11. Polar angle ϑ as a function of time according
to (1.133) for L2 = 42 and m = 2.

between ϑmin and ϑmax. It is given by

ϑ(t) = arccos
(
− 1

L

√
L2 −m2 sin(L t)

)
. (1.133)

An example is shown in Figure 1.11.
The angular-momentum vector is normal to the plane of the circle, hence

the angle θ defined in (1.131) describes the inclination of that plane. If m
is small compared to L, the inclination is large. For m = 0, the classical
motion is on a circle through the poles of the sphere. For m = L (which is
impossible quantum mechanically), the circle of the classical motion is the
equator of the sphere.
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We want to determine the classical probability density as a function of
the coordinate ϑ. This can be done in complete analogy to the calculation for
the harmonic oscillator in Book One, Section 7.2.3. The probability density
that a particle will be found in an interval dϑ around an angle ϑ is equal to
the fraction of a period that is spent in the interval. We first calculate the
time dt(ϑ) spent in an infinitesimal interval dϑ at the point ϑ. During one
period, the trajectory goes twice through ϑ, hence we multiply the time by
2 to obtain the total time spent in dϑ during one period. The time needed
to complete a period is T = 2π/L. Hence, the probability of finding the
particle in dϑ is

p(ϑ) dϑ =
L

2π
2 dt(ϑ) =

L

π

dt(ϑ)
dϑ

dϑ. (1.134)

Hence, one needs to invert the function ϑ(t) and differentiate with respect
to ϑ. It is sufficient to invert the function ϑ(t) on a part of the time interval
during which the trajectory goes through the point ϑ under consideration.
Thus, we write

t(ϑ) = − 1
L

arcsin
( L√

L2 −m2
cos ϑ

)
. (1.135)

The function t(ϑ) is inverse to ϑ(t) on the interval (T/4, 3T/4). Inserting
(1.135) into (1.134), we finally obtain for the classical position probability
density

p(ϑ) =
L sin ϑ

π
√

L2 (sinϑ)2 −m2
. (1.136)

This function is shown as a black line in Figure 1.12 for m = 8 and L =√
�(� + 1) with � = 24.
We want to compare the classical position probability density p(ϑ) with

the corresponding quantum mechanical density. With the eigenfunction ψ�,m

defined in (1.123), we obtain∫
B⊂S2

r

∣∣ψ�,m(ϑ, ϕ)
∣∣2 r2 sin ϑdϑ dϕ (1.137)

as the probability that a particle is found in a region B on S2
r (the surface

of the sphere with radius r). Let us do the integration over the angle ϕ
because we are interested in the ϑ-position irrespective of the ϕ-position.
This gives only a factor 2π because the absolute value of ψ�,m = (1/r) Y m

�

does not depend on ϕ. Hence, 2π |ψ�,m(ϑ, ϕ)|2 r2 sin ϑdϑ is the probability
that a particle on the sphere is in an infinitesimal circular strip of width
dϑ around the polar angle ϑ. Inserting the definition (1.123) gives for the
position probability density as a function of ϑ the expression

pqm(ϑ) = 2π sin ϑ |Y m
� (ϑ, 0)|2. (1.138)
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Figure 1.12. Classical versus quantum position probability
densities as functions of the polar angle ϑ for the rigid rotator.
The quantum probability (filled curve) oscillates around the
classical probability (black line). The quantum wave function
decreases rapidly outside the classically allowed region whose
borders are indicated by the vertical gray lines.

Figure 1.12 compares the quantum and classical probability densities as func-
tions of ϑ.

Similar to Figures 1.9, 1.11, and 1.12, but for various values of L3,
the images in CD 1.8 depict the relations between the classically
allowed region of the rigid rotator, the classical ϑ-oscillation, and
the quantum probability density as a function of ϑ.

1.8.2. Special topic: Curvilinear coordinates

It is worthwhile to consider the transition from classical to quantum me-
chanics for the rigid rotator in more detail. The classical kinetic energy of a
particle with mass m = 1 is given by

T (t) =
1
2

3∑
i=1

ẋi(t)2. (1.139)

Assuming that the motion of the particle takes place on the surface of the
unit sphere, we insert (1.81), that is, x1(t) = sin

(
ϑ(t)

)
cos

(
ϕ(t)

)
and so forth,
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and obtain an expression for the kinetic energy in spherical coordinates,
namely

T (t) =
1
2

(
ϑ̇(t)2 +

(
sin ϑ(t)

)2
ϕ̇(t)2

)
. (1.140)

If there are no external forces, the kinetic energy is a constant of motion.
Another conserved quantity is the angular momentum. In fact, one finds
that the above expression for the kinetic energy is just T = L2/2. In spher-
ical coordinates, we obtain a particularly simple expression for the third
component of the angular momentum,

L3(t) = x1(t) ẋ2(t)− ẋ1(t) x2(t) =
(
sin ϑ(t)

)2
ϕ̇(t). (1.141)

Denoting the constant value of L3 by m, we may eliminate the angular
velocity ϕ̇ and express the kinetic energy solely in terms of ϑ

T =
1
2

(
ϑ̇(t)2 +

m2

sin2 ϑ(t)

)
. (1.142)

This looks like the total energy of a particle with mass 1 in one dimension
(coordinate ϑ), with ϑ̇2/2 being the kinetic energy and V (ϑ) = 1

2m2/ sin2 ϑ
being the potential. This potential confines the motion to the interval (0, π).
Indeed, the equation of motion for the ϑ coordinate is obtained as

ϑ̈ =
m2

sin2 ϑ
cot ϑ (1.143)

and the solutions of this equation are given by (1.133) for arbitrary values
of L and m.

It is tempting to try a transition to quantum mechanics by applying
the standard substitution rule pϑ = ϑ̇ → −i∂/∂ϑ to the classical expression
(1.142). This would lead, however, to the wrong equation. The correct
equation for the ϑ-coordinate was obtained earlier, when we derived the
expression for the Laplacian operator in spherical coordinates. It reads

i
∂

∂t
ψ(ϑ, t) =

1
2

(
− 1

sin ϑ

∂

∂ϑ
sin ϑ

∂

∂ϑ
+

m2

sin2 ϑ

)
ψ(ϑ, t). (1.144)

Obviously, the standard substitution rule does not work in spherical coor-
dinates. The reason is that unlike the situation in Cartesian coordinates,
the components ϑ̇ and ϕ̇ of the velocity in curvilinear coordinates do not
independently contribute to the total kinetic energy.

Let us just state how to obtain the operator for kinetic energy in gen-
eral curvilinear coordinates. We denote the coordinates of a system with
n degrees of freedom by q1, q2, . . . , qn. The classical kinetic energy in these
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coordinates is an expression of the form

T =
1
2

n∑
i,j=1

gij(q1, . . . , qn) q̇i q̇j (1.145)

with a positive definite symmetric matrix gij that is defined at every point
(q1, . . . , qn) of the configuration space. The matrix g = (gij) (the met-
ric tensor) defines a Riemannian metric on the configuration space, which
thus becomes a Riemannian manifold. Let us denote the components of
the inverse matrix g−1 by gij . Then, the operator for kinetic energy in the
coordinates qj is given by

H0 = −1
2

∆ = −1
2

1√
det g

∑
i,j

∂

∂qi

(
gij

√
det g

∂

∂qj

)
. (1.146)

This operator is called the Laplace-Beltrami operator on the Riemannian
manifold with metric g.

The volume element in curvilinear coordinates is
√

det g dq1 dq2 · · · dqn,
hence the Hilbert space consists of functions that are square-integrable in
the sense that ∫

|ψ(q1, . . . qn)|2
√

det g dq1 · · · dqn < ∞. (1.147)

As an example, we consider the unit sphere with q1 = ϑ, and q2 = ϕ.
From (1.140) we find

g =
(

1 0
0 (sin ϑ)2

)
. (1.148)

For the inverse matrix we have g11 = 1, g22 = 1/(sinϑ)2, g12 = g21 = 0.
Because of the relation

√
det g = sinϑ, (1.146) reduces to the well-known

expression (see (1.91))

H0 = −1
2

(
1

sin ϑ

∂

∂ϑ

(
sin ϑ

∂

∂ϑ

)
+

1
sin2 ϑ

∂2

∂ϕ2

)
(1.149)

in the Hilbert space of square-integrable function with respect to the volume
element sin ϑdϑ dϕ.

A transition to a non-Cartesian coordinate system is also necessary to
describe the influence of a gravitational field according to the general theory
of relativity.
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1.9. Free Schrödinger Equation in Spherical
Coordinates

1.9.1. Solutions of the radial equation

For the free-particle Hamiltonian H0, it is easy to obtain an expression in
spherical coordinates by using ∆̂ = ∇̂2 and the expression (1.87) for the
gradient:

Ĥ0 = − �
2

2m
∆̂ =

�
2

2m

(
− d2

dr2
− 2

r

d

dr

)
+

1
2m

1
r2

L̂2. (1.150)

The first part, which involves only derivatives with respect to r, describes
the kinetic energy of the radial motion. The second part, which contains the
operator L̂2 given by (1.91), is the kinetic energy of the angular motion. L̂2

is a partial differential operator that involves only derivatives with respect
to ϑ and ϕ. Hence, L̂2 commutes with the radial kinetic energy and hence
with Ĥ0. The kinetic energy operator Ĥ0 also commutes with L̂3, because
L̂3 = −id/dϕ commutes with L̂2 and with expressions depending on r. This
proves that the operator of kinetic energy is invariant under rotations:

[Ĥ0, L̂
2] = 0. (1.151)

The same commutation relation holds for the operators in Cartesian coor-
dinates, which are related to the operators in spherical coordinates by a
unitary transformation. Hence, [H0, L

2] = 0. Any eigenspace of L2 is left
invariant by H0. If ψ� is an eigenvector of L2, then H0ψ� is an eigenvector
of L2 belonging to the same eigenvalue. We can thus restrict the operator
H0 to an arbitrary eigenspace of L2. Using spherical coordinates, we see
immediately that this restriction reduces the partial differential operator Ĥ0

to the ordinary differential operator

h0� =
�

2

2m

(
− d2

dr2
− 2

r

d

dr
+

�(� + 1)
r2

)
, (1.152)

which is called the free radial Schrödinger operator. Here, the angular kinetic
energy appears in the form of a potential energy �(� + 1)/r2. This term is
called the centrifugal potential energy or centrifugal barrier, because it has
the effect of a repulsive force in the radial direction.

In order to solve the Schrödinger equation in spherical coordinates we
could use the trial function

φ(r, ϑ, ϕ) =
∞∑

�=0

�∑
m=−�

1
r

f�m(r) Y m
� (ϑ, ϕ) (1.153)
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and find immediately that Ĥ0φ = Eφ holds if f�m is a solution of the radial
Schrödinger equation

�
2

2m

(
− d2

dr2
+

�(� + 1)
r2

)
f(r) = E f(r). (1.154)

Note that the factor 1/r in (1.153) makes the first-order term (2/r) d/dr
disappear. The condition for square-integrability of the wave function ψ
(see (1.98)) would mean that each f�m has to be square integrable in the
radial Hilbert space L2([0,∞), that is,∫ ∞

0
|f�m(r)|2 dr < ∞. (1.155)

But we know that the free-particle Schrödinger equation has no square-
integrable solutions with sharp energy. Instead, the solutions of the station-
ary Schrödinger equation are plane waves with arbitrary momentum k. We
expect a similar behavior for the solutions of the radial Schrödinger equa-
tion. Hence, we expect that there exist bounded solutions for E > 0. The
differential equation (1.154) is a Bessel equation. As a differential equation
of second order it has two linearly independent solutions. These solutions
are called Riccati-Bessel functions. With k =

√
2mE/�2 (positive square

root, E > 0), the solutions are

ĵ�(kr) =
√

π

2
kr J�+1/2(kr), n̂�(kr) =

√
π

2
kr N�+1/2(kr) (1.156)

where Jν and Nν are the Bessel function and Neumann functions of order ν.
The function ĵ� is regular for r → 0 whereas n̂� is singular for � > 0.

An interactive plot of the Riccati-Bessel function ĵ�(r) in CD 1.15
allows investigation of the dependence on �.

1.9.2. Special Topic: Properties of the Riccati-Bessel functions

The real-valued functions ĵ�(z) and n̂�(z) are for z > 0 solutions of the
equation

−d2y(z)
dz2

+
�(� + 1)

z2
y(z)− y(z) = 0. (1.157)

We have

ĵ0(z) = sin z, n̂0(z) = cos z, (1.158)
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and the Riccati-Bessel functions of higher order can be computed from

ĵ�(z) = −(−z)�+1
(1

z

d

dz

)�(1
z

ĵ0(z)
)
, (1.159)

n̂�(z) = −(−z)�+1
(1

z

d

dz

)�(1
z

n̂0(z)
)
. (1.160)

Their limiting behavior for small z is given by

ĵ�(z) =
2��!

(2� + 1)!
z�+1

(
1 + O(z2)

)
, as z → 0, (1.161)

n̂�(z) =
(2�)!
2��!

z−�
(
1 + O(z2)

)
, as z → 0. (1.162)

In scattering theory, one often defines the Riccati-Hankel functions

ĥ±
� (z) = n̂�(z)± iĵ�(z) = e±i(z−�π/2)

(
1 + O(1/z)

)
, as z →∞. (1.163)

Further details about the Riccati-Bessel functions can be found in the book
[1], where the notation ĵ(z) = zj(z), and n̂(z) = zy(z) is used.

1.9.3. Special Topic: Expanding the plane wave

The plane waves exp(ik·x) are important solutions of the free-particle Schrö-
dinger equation, despite the fact that they are not square-integrable. Here,
we show that plane waves have an expansion like (1.153). The radial part
of a plane wave in the subspace with angular-momentum quantum number
� is just the Riccati-Bessel function ĵ�(kr). This result is important for
the applications to stationary scattering theory with spherically symmetric
potentials.

Representation of plane waves:

The stationary plane wave exp(ik · x) has the following expansion in
terms of spherical harmonics:

eik·x =
1
r

∞∑
�=0

�∑
m=−�

c�,m(k) ĵ�(kr) Y m
� (ϑ, ϕ), (1.164)

where (r, ϑ, ϕ) are the spherical coordinates of x ∈ R
3. The coefficients

in this expansion are given by

c�,m(k) =
4πi�

k
Y m

� (ϑ′, ϕ′) . (1.165)

Here, (k, ϑ′, ϕ′) are the spherical coordinates of k ∈ R
3.

The proof of the expansion formula uses properties of the Legendre poly-
nomials P�(x) and the addition theorem for spherical harmonics (1.111). The
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Legendre polynomials form an orthogonal set in the Hilbert space of square-
integrable functions on the interval −1 ≤ x ≤ 1. According to Abramowitz-
Stegun [1], the Legendre polynomials satisfy∫ 1

−1
P�(x) P�′(x) dx =

2
2� + 1

δ��′ . (1.166)

From this, we conclude that the functions

f�(x) =

√
2� + 1

2
P�(x) (1.167)

form an orthonormal basis in the Hilbert space L2([−1, 1]).
For any wave number k, the plane wave can be rewritten as

eik·x = eikr cos α = eikrx, with x = cos α ∈ [−1, 1]. (1.168)

α is the angle between the vectors k and x. As a function of x (for fixed
k and r), the function exp(ikrx) belongs to the Hilbert space L2([−1, 1]).
Hence, it can be expanded in the Legendre polynomials in the usual way,

eikrx =
∑

�

c�(kr) f�(x), c�(kr) =
∫ 1

−1
f�(x) eikrx dx. (1.169)

The integral involving a Legendre polynomial and an exponential function
can be evaluated analytically. It is best to consult a good book (see, for
example, [1], Section 10.1.14), where we find∫ 1

−1
P�(x) eiqx dx =

2i�

q
ĵ�(q), � = 0, 1, 2, . . . . (1.170)

With the help of this formula, we find

c�(kr) =
√

2(2� + 1)
i�

kr
ĵ�(kr) (1.171)

and hence

eikrx =
1
kr

∞∑
�=0

(2� + 1) i� ĵ�(kr)P�(x) or (1.172)

eik·x =
1
kr

∞∑
�=0

(2� + 1) i� ĵ�(kr)P�(cos α). (1.173)

The expansion formula (1.173) is visualized in CD 1.16. The missing
square integrability of a plane wave manifests itself in the fact that
the series (1.173) does not converge in the usual sense. With increas-
ing �, the individual summands do not get smaller (with respect to
the norm in L2(R3)), but they contribute only in regions increasingly
far away from the origin.
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We may insert the summation rule (1.111) for spherical harmonics into
(1.173). We choose the angles (ϑ′, ϕ′) in the direction of k, which has an
angle α with the direction of (ϑ, ϕ) (= the direction of x). This leads to the
result

eik·x =
4π

kr

∞∑
�=0

�∑
m=−�

i� ĵ�(kr)Y m
� (ϑ′, ϕ′)Y m

� (ϑ, ϕ), (1.174)

which is identical with (1.164).

1.9.4. Special topic: Spherical harmonics and the Fourier
transformation

Consider a function ψ(x) that can be separated into a radial part and an
angular part,

ψ(x) =
1
r

f(r) Y m
� (ϑ, ϕ), (1.175)

where (r, ϑ, ϕ) are the spherical coordinates of the point x ∈ R
3. Obviously,

ψ is an eigenfunction of the angular-momentum operators L2 and L3. We
want to find the Fourier transform ψ̂(k). To that end, we insert (1.175) into
the formula for the Fourier transform

ψ̂(k) =
( 1

2π

)3/2
∫

R3

e−ik·x ψ(x) d3x (1.176)

=
( 1

2π

)3/2
∫ ∞

0

∫
S2

e−ik·x 1
r

f(r) Y m
� (ϑ, ϕ) r2dr dΩ (1.177)

For the plane wave e−ik·x, we substitute the expansion in terms of spherical
harmonics (the complex conjugate of (1.174)),

e−ik·x =
4π

kr

∞∑
�′=0

�′∑
m′=−�′

(−i)�′ ĵ�′(kr) Y m′
�′ (ϑ′, ϕ′) Y m′

�′ (ϑ, ϕ). (1.178)

Using the orthonormality of the spherical harmonics, Eq. (1.109), we can
perform the integration over the angles ϑ and ϕ. This removes the sum
over �′ and m′, because only the term with �′ = � and m′ = m gives a
contribution. The short calculation gives

ψ̂(k) =
( 1

2π

)3/2
∫ ∞

0

4π

kr
(−i)� ĵ�(kr) Y m

� (ϑ′, ϕ′)
1
r

f(r) r2dr (1.179)

=
1
k

(−i)�
( 2

π

)1/2
∫ ∞

0
f(r) ĵ�(kr) dr Y m

� (ϑ′, ϕ′) (1.180)

=
1
k

h(k) Y m
� (ϑ′, ϕ′), (1.181)
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where (k, ϑ′, ϕ′) are the spherical coordinates of k ∈ R
3. We have found that

the Fourier transform ψ̂(k) is again an eigenfunction of L2 and L3 with the
same quantum numbers � and m. The Fourier transform maps an angular
momentum eigenspace into itself.

The function h is connected to f via an integral transformation that is
known as the Hankel transformation,

h(k) = (−i)�
( 2

π

)1/2
∫ ∞

0
f(r) ĵ�(kr) dr. (1.182)

The Hankel transformation is the “radial Fourier transformation” in the
angular-momentum subspace belonging to the quantum number �. The in-
verse Hankel transformation can be derived from the formula for the inverse
Fourier transformation. It is given by

f(r) = i�
( 2

π

)1/2
∫ ∞

0
h(k) ĵ�(kr) dk. (1.183)

Like the Fourier transformation on L2(R3), the Hankel transformation ex-
tends to a unitary transformation on L2([0,∞)),∫ ∞

0
|f(r)|2 dr =

∫ ∞

0
|h(k)|2 dk. (1.184)

The quantum mechanical interpretation of f and h is straightforward. The
function f is the radial position probability amplitude and h gives the radial
momentum distribution:∫ b

a
|f(r)|2 dr is the probability of finding the particle in a

distance between a and b from the origin.∫ b

a
|h(k)|2 dk is the probability that the absolute value

of the momentum is between a and b.

One should keep in mind that the relation between the radial momentum
distribution and the radial position distribution depends on the angular-
momentum quantum number �. Let us finally put the main result into a
box.

Radial-angular separation and the Fourier transform:

The Fourier transform of 1
r f(r) Y m

� (ϑ, ϕ) is given by 1
k h(k) Y m

� (ϑ′, ϕ′),
where h is the Hankel transform of f . The Fourier transform thus leaves
each angular-momentum subspace invariant.
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An arbitrary function in L2(R3) has an expansion of the form

ψ(x) =
1
r

∑
�,m

f�,m(r) Y m
� (ϑ, ϕ), (1.185)

and the result above can be applied, because the Fourier transformation is
linear.

1.10. Spherically Symmetric Potentials

1.10.1. The structure of the eigenvalue spectrum

A spherically symmetric potential V (x) = V (r) is the operator of multipli-
cation with a function that depends only on the distance r = |x| from the
origin. Because the angular-momentum operators involve derivatives only
with respect to the angular coordinates ϑ and ϕ, and because V does not
depend on the angles, we have the commutation relation

[V (r),L] = 0. (1.186)

The angular momentum also commutes with the kinetic energy, and hence
the quantum mechanical system described by the Hamiltonian H = H0 + V
is rotationally invariant:

[H,L] = 0. (1.187)

The stationary Schrödinger equation in the angular-momentum subspace
with quantum numbers �, m is

�
2

2m

(
− d2

dr2
+

�(� + 1)
r2

)
f(r) + V (r) f(r) = E f(r). (1.188)

This is the radial Schrödinger equation with a potential. Clearly, this equa-
tion does not depend on the eigenvalue m of L3, because a spherically sym-
metric Hamiltonian H does not contain L3.

The eigenvalues of the three-dimensional Schrödinger equation

Hψ =
(
− �

2

2m
∆ + V (|x|)

)
ψ = E ψ (1.189)

are those numbers E�;nr for which (1.188) has a nonzero square-integrable
solution in the Hilbert space L2([0,∞)). Like the radial equation, the eigen-
values E�;nr are independent of the quantum number m. The number nr is
called the radial quantum number. It just serves as a label for the differ-
ent eigenvalues of the radial equation. We denote the radial eigenfunction
belonging to the eigenvalue E�;nr by f�;nr(r).
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Using the radial eigenfunctions, we define eigenfunctions of H belonging
to the eigenvalues E�;nr by

ψ�,m;nr(x) =
1
r

f�;nr(r)Y m
� (ϑ, ϕ), (1.190)

where (r, ϑ, ϕ) are the spherical coordinates of x, and m is any of the eigen-
values of L3. The functions ψ�,m;nr are simultaneous eigenstates of H, L2,
and L3, belonging to the eigenvalues E�;nr , �(� + 1), and m, respectively.
For every possible energy E�;nr and every possible � we have 2� + 1 linearly
independent eigenfunctions ψ�,m;nr , with m = −�,−� + 1, . . . ,+�. Hence,
the degree of degeneracy of the eigenvalue E�;nr is at least 2� + 1. Exper-
imentally, the states belonging to different eigenvalues of L3 can only be
distinguished in the presence of magnetic fields. Hence, m is often called the
magnetic quantum number.

Eigenvalue problem with spherical symmetry:

The simultaneous eigenfunctions of L2, L3, and the spherically symmet-
ric Schrödinger operator H = p2/2m + V (r) are given by

ψ�,m;nr(x) =
1
r

f�;nr(r)Y m
� (ϑ, ϕ), (1.191)

where f�;nr is the nr-th eigenfunction of the radial Schrödinger operator

h� =
�

2

2m

(
− d2

dr2
+

�(� + 1)
r2

)
+ V (r). (1.192)

The corresponding eigenvalues E�;nr do not depend on the quantum num-
ber m. Hence, the multiplicity of each eigenvalue of H is at least 2� + 1.

The radial Schrödinger operator h� is a self-adjoint differential operator
in L2([0,∞)). We can order its eigenvalues according to their size,

E�;nr < E�,nr+1, n = 0, 1, 2, . . . . (1.193)

The quantum number nr counts the number of zeros of the radial eigen-
function f�;nr(r) in the interval (0,∞). The ground state with angular mo-
mentum � has no zero at all (except at r = 0), the first excited state has
precisely one zero, and so forth. To every eigenvalue E�;nr belongs a unique
eigenfunction f�;nr . Hence, the eigenvalues of h� are non-degenerate (but
not the eigenvalues of H).
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Any linear combination of the eigenvectors ψ�,m;nr belonging to some
eigenvalue E of H is again an eigenvector belonging to the same eigen-
value E,

ψ�;nr(x) =
�∑

m=−�

cm ψ�,m;nr(x), where cm ∈ C. (1.194)

In particular, the eigenfunctions

ψ+
�,|m|;nr

(x) =
1√
2

(
ψ�,m;nr(x) + (−1)m ψ�,−m;nr(x)

)
, (1.195)

ψ−
�,|m|;nr

(x) =
i√
2

(
ψ�,m;nr(x)− (−1)m ψ�,−m;nr(x)

)
(1.196)

are real-valued. (Note that the radial part f�;nr can be chosen to be real
because it is a solution of a real differential equation vanishing for r → 0
and r →∞). These eigenfunctions are called real orbitals. A real orbital is
an eigenfunction of the energy and of L2, but not of L3.

The states with angular momenta � = 0, 1, 2, and 3 are sometimes also
denoted by the letters s, p, d, and f. This is the spectroscopic notation.
The letters have the following historical meaning: s = simple, p = principal,
d = diffuse, f = fundamental. Higher quantum numbers are then denoted
alphabetically by g, h, and so forth.

Ψ As a differential equation of second order, (1.188) has two linearly
independent solutions for every energy E, say u(E, r) and v(E, r).

Typically, these solutions behave as u(E, r) ∼ r�+1 and v(E, r) ∼ r−� for
small r, see also (1.161) and (1.162). A physically correct solution is one for
which the corresponding function (1.190) is in the domain of the self-adjoint
operator H. The mathematical theory tells us that these functions have to
be bounded and continuous on R

3, at least for physically meaningful (that
is, not too singular) potential functions V . Therefore, (1/r) f�;nr(r) has to
remain bounded, as r → 0. Only the solution u has this property.5 This
solution is called the regular solution of (1.188). It is distinguished by the
boundary condition u(r) → 0, as r → 0. The solution u(E, r) turns out to be
square-integrable only for exceptional values of the parameter E, that is, for
the eigenvalues E = E�;nr . In these cases, the solution f�;nr(r) = u(E�;nr , r)
also vanishes at infinity.

5For � = 0, the second solution v is also bounded and hence square-integrable in a
neighborhood of r = 0. Hence, the condition of square-integrability alone is not sufficient
to select the physically correct solution.
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1.10.2. The vibrating rotator: A model of a diatomic molecule

In Section 1.7.2, we stated that the rigid rotator is an approximate model
for a diatomic molecule in a vibrational ground state. Here, we are going
to refine the model and take into account the vibrational degree of free-
dom. We assume that the two atoms are bound together as a result of some
complicated interaction between the two nuclei and all their electrons. The
configuration with the minimal potential energy will have the two nuclei at
some distance r0 from each other. The effective force between the nuclei
would be repulsive at closer distances r < r0 and attractive at larger dis-
tances r > r0. It is evident that the details of the effective interaction can
be very complicated because many particles are involved. We are going to
discuss a very simple model that nevertheless shows many essential features
of diatomic molecules. This potential is called Kratzer’s molecular potential
(see Fig. 1.13). It is given by

V (r) = V0

(
r2
0

r2
− 2

r0

r

)
, V0 > 0, r0 > 0, (1.197)

where r is the internuclear distance. This function is spherically symmetric,
and it has a minimum for r = r0, with V (r0) = V0. It is clear that this model
is very unphysical both at very small distances and at very large distances.
At small distances, the model potential describes a very strong repulsive
potential with a 1/r2-singularity (too strong for the Coulomb repulsion of
the positively charged nuclei which is proportional to 1/r). For large r,
the dominating term in V (r) is an attractive Coulomb potential −2V0r0/r.
But at large distances, the two atoms are separated completely. As they
are neutral, the effective force between them will be much weaker than the
attractive Coulomb force described by the model. But nevertheless, the
model is not bad within a certain range of energies. It describes a two-particle
system that is able to perform rotations and simultaneous oscillations around
an equilibrium distance. Moreover, Kratzer’s model is convenient because
the Schrödinger equation with this potential can be solved exactly.

We use the center-of-mass coordinates described in Section 1.7.2 and
insert for m the reduced mass µ of the two atoms. The radial Schrödinger
equation (1.188) with the potential (1.197) reads

�
2

2µ

(
− d2

dr2
+

�(� + 1) + a

r2

)
f(r)− 2 V0 r0

r
f(r) = E f(r), (1.198)

where we used the abbreviation

a =
2µ r2

0

�2
V0. (1.199)



54 1. SPHERICAL SYMMETRY

distance

po
te

nt
ia

l

Effective potential

V (r)V
(r

)
= V0

V0

0

0

r2
0

r2
−

−

2
r0

r0

r

r

Figure 1.13. A simple model for the effective potential be-
tween the two nuclei in a diatomic molecule.

By the variable substitution

f(r) = g(x), x =
a

r0
r, (1.200)

the radial Schrödinger equation is transformed into

1
2

(
− d2

dx2
+

�(� + 1) + a

x2

)
g(x)− 1

x
g(x) =

1
2aV0

E g(x). (1.201)

Writing

ε =
E

2aV0
and λ = −1

2
+

((
� +

1
2

)2
+ a

)1/2

(1.202)

such that λ(λ + 1) = �(� + 1) + a, we arrive at

1
2

(
− d2

dx2
+

λ(λ + 1)
x2

)
g(x)− 1

x
g(x) = ε g(x). (1.203)

This equation is formally identical to the radial Schrödinger equation for
the Coulomb problem (except that the parameter λ need not be an integer).
We are going to solve this equation in the next chapter (see Section 2.5.2,
Eq. (2.99)). Here, we just quote the result (2.62) that (1.203) has the eigen-
values

ελ;nr = − 1
2(nr + λ + 1)2

, n = 0, 1, 2, 3, . . . . (1.204)

Inserting the definitions of λ and ε, we obtain the energy-eigenvalues for this
problem as

E�;nr = −2µr2
0

�2
V 2

0

(
nr +

1
2

+
((

� +
1
2

)2
+

2µr2
0

�2
V0

)1/2 )−2

. (1.205)
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Figure 1.14. Energy eigenvalues arising from Kratzer’s
molecular potential with V0 = 5 and r0 = 5. The graph
shows the eigenvalues with quantum numbers n = nr ≤ 8
and � ≤ 3.
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Figure 1.15. Two-dimensional diagram of the eigenvalue
spectrum according to Kratzer’s model of a diatomic mol-
ecule (V0 = 5 and r0 = 5), showing the quantum numbers
n = nr ≤ 8 and � ≤ 8.

The quantum number nr enumerates the eigenvalues of the radial Schrödin-
ger operator. It thus describes the vibration around the classical equilibrium
at r0. The quantum number � describes the rotational state as usual. We
expect that the formula (1.205) is a good approximation for a diatomic
molecule if the radial oscillations are not too large. This is the case for small
values of the quantum number nr, where the corresponding eigenstates are
localized sufficiently close to the classical equilibrium at r = r0. Similar
restrictions will apply to the quantum number �.

Figures 1.14 and Figure 1.15 show the energies E�;nr for small values of nr

and �, assuming that a� 1 (as it is the case for most molecules). Obviously,
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Figure 1.14 would become too cluttered if more than a few eigenvalues are
shown. In Figure 1.15, we use a two-dimensional plot where the vertical
position of an eigenvalue indicates the quantum number �. For our choice
of parameter values, the energy-difference between two vibrational levels
E�,nr+1 − E�;nr ≈ O(1/a) is much larger than the spacing E�+1;nr − E�;nr

of the rotational levels, which is of order 1/a2. Hence, it needs much more
energy to bring the system from nr = 0 to nr = 1 than to change the
angular-momentum quantum number. If the energies involved are not too
high, the quantum number nr remains unchanged, and the system behaves
like a rigid rotator.



Chapter 2

Coulomb Problem

Chapter summary: Perhaps the most important success of quantum mechanics
is the explanation of the internal electronic structure of atoms on the basis of gen-
eral physical laws. The Schrödinger equation with a Coulomb potential, although
a crude model of a “real” hydrogen atom, can describe its properties with high
accuracy and explains the spectroscopic observations that have puzzled physicists
at the beginning of the 20th century.

Already the classical Coulomb problem has interesting aspects. We discuss, in
particular, the conservation of the Runge-Lenz vector, which implies that the form
and the orientation of the classical orbits (Kepler ellipses) is constant in time and
depends only on the initial conditions. In quantum mechanics, the Runge-Lenz
vector can be used for an elegant algebraic computation of the energy levels given
in Section 2.3.

The following sections are devoted to various approaches to the solution of the
Coulomb problem. As the Coulomb potential is spherically symmetric, we may
apply the results of the previous chapter in order to reduce the problem to the
solution of ordinary differential equations in the angular-momentum subspaces. In
Section 2.4, we use a factorization method to solve the radial Coulomb problem
in an essentially algebraic way. This approach leads to a solution of the Coulomb
problem via a system of simultaneous eigenfunctions of H, L2, and L3 and exhibits
clearly the structure of the energy spectrum, in particular the high degeneracy of
the eigenvalues. In this approach, the �-degeneracy appears as a consequence of
a supersymmetry of the radial Schrödinger operators, which is similar to the one
observed for the harmonic oscillator in Book One.

We continue by outlining the traditional approach the Coulomb problem, which
consists in solving the radial Schrödinger equation in terms of special functions. In
Section 2.5.1, we present a solution of the Coulomb problem in two dimensions
which, naturally, plays an important role for the visualizations accompanying this
book. Finally, we present a method for solving the Schrödinger equation in par-
abolic coordinates. The separation in parabolic coordinates is important for the
investigation of the Stark effect (hydrogen atom in a constant electric field).

In the major part of this chapter, we use dimensionless units in all calcula-
tions. This simplifies mathematical derivations, yields beautiful formulas, and is
by no means a restriction of generality. A simple scaling transformation gives all
information about the eigenfunctions and eigenvalues in SI units (or in any other
system of units). Section 2.7 is devoted to the actual physical dimensions of the

57
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hydrogen atom. Moreover, we describe general scaling transformations (dilations)
as unitary transformations in the Hilbert space, because they are an important
tool in mathematical physics. In this connection, we present the virial theorem in
Section 2.7.4.

Concerning the dynamics of states in the subspace of bound states, we inves-
tigate the behavior of simple superpositions in Section 2.4.5 and the dynamics of
circular Rydberg states in Section 2.8. Circular Rydberg states are highly excited
states that move in the close neighborhood of classical circular orbits. The long
lifetime of these states and their quasiclassical behavior make them an interesting
research topic in atomic physics.

2.1. Introduction

2.1.1. Classical models of atoms

An atom is often described as a small planetary system where the gravita-
tional force is replaced by the electrostatic attraction. Most of the mass of
the atom is concentrated in a nucleus with positive charge Ze, where Z is the
atomic number (the number of protons in the nucleus). In a neutral atom,
Z negatively charged electrons move around the positively charged nucleus
like planets around the sun. The simplest atom is the hydrogen atom, which
consists of a single proton as the nucleus and a single electron.

This classical model of the atom as a system of moving charges dates
back to Rutherford (1911), who could explain in this way the scattering
of α-particles (doubly ionized He++ nuclei) by the atoms of a thin gold
foil. In the framework of classical physics, the planetary system model has
some problems, and many of the facts observed in experiments cannot be
explained in that way. For example, a classical planetary system consisting
of the sun and a single planet is planar. But hydrogen atoms (in their ground
state) appear as spherical objects with a radius of about 10−10 m. The main
difficulty is perhaps the following: The classical elliptic orbit of a charged
particle in the electrostatic field of the nucleus should not be stable, because
the acceleration of a charge would cause an electromagnetic radiation leading
to a continuous loss of energy. The atomic radius should therefore decrease
continuously, and the emitted radiation would have a continuous range of
frequencies. Indeed, energetically excited atoms do emit radiation. But
contrary to the classical expectation, the atom only emits radiation with a
few discrete frequencies. Atoms in their ground state do not emit radiation
at all.

The investigation of the radiation emitted or absorbed by atoms or
molecules is called spectroscopy. The spectrum is the intensity of the emitted
radiation as a function of the frequency. It is the main source of experimen-
tal information about atoms. A gas of atomic hydrogen emits light with
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frequencies νnm described by Balmer’s formula

νnm = RH c
( 1

n2
− 1

m2

)
. (2.1)

Here, c is the speed of light, n and m are positive integers with m > n,
and the factor RH ≈ 1.09678 × 107 m−1 is called the Rydberg constant for
hydrogen.

In 1913, these frequencies have been explained by Niels Bohr by assum-
ing that the electrons in the field of the nucleus can only have the energies
−RH hc/n2, where n is a positive integer, and h is Planck’s constant.1 A
photon is emitted whenever an electron makes a transition from a level with
energy −RH hc/m2 to a level with lower energy −RH hc/n2. The energy of
the photon is the difference in energy between the two levels. According to
an observation of Einstein, the energy of a photon is related to its frequency
by E = hν. From this the formula (2.1) follows immediately. Independent
experimental evidence that the internal energy of atoms can only have dis-
crete values came in particular through experiments with mercury atoms
conducted by Franck and Hertz in 1914.

In retrospect, given deBroglie’s hypothesis relating the energy of a parti-
cle to the frequency of a wave, it appears very natural to describe the discrete
energies of electrons bound to an atomic nucleus by the possible frequencies
of a wave function. In the 1920s it was already well-known that under cer-
tain circumstances, the frequencies of waves can only assume discrete values
(for example, the solutions of the classical wave equation in the presence of
boundary conditions). In 1926, Erwin Schrödinger found the wave equation
that gave the right frequencies and hence energies for the hydrogen atom.
Solving the Schrödinger equation for hydrogen is the topic of this section.

CD 2.2.2 is a short introduction to the spectroscopy of hydrogen
atoms. The radiation emitted by the atoms consists of photons that
carry away the energy set free when an electron makes a transition
from an excited state to a state with lower energy. This is a process
whose complete description requires quantum electrodynamics.

2.1.2. Transitions between eigenstates

From elementary quantum mechanics you certainly know physical systems,
for which the Schrödinger equation has discrete energy levels. See, for ex-
ample, the harmonic oscillator presented in Book One. Soon we are going
to find the energy levels of the hydrogen atom by solving the Schrödinger

1Actually, in Bohr’s model, the Rydberg constant for hydrogen RH is replaced by the
Rydberg constant R∞ ≈ 1.097 × 107 m−1. Bohr obtained this value under the assump-
tion of an infinite nuclear mass. At Bohr’s time, R∞ was in perfect agreement with the
experimental results.
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equation with an electrostatic Coulomb potential. As you certainly know,
the discrete energy levels correspond to stationary states. According to the
theory, stationary states are absolutely stable. Once an electron is in a sta-
tionary state, it remains there forever. In reality, however, electrons make
transitions due to unavoidable perturbations. Even in the complete absence
of external fields, a spontaneous decay of excited states will be stimulated by
the zero-point fluctuations of the vacuum field (a quantum-electrodynamical
effect).

As explained in the previous section, the spectroscopic information about
the energies of an atom is obtained from the transitions between energy
levels. These transitions are associated with the emission or absorption
of photons, and these photons can be observed. Obviously, the Schrödin-
ger equation with a time-independent potential (from which we obtain the
energy levels) cannot describe the physical effect that tells us about these
energy levels. The description of the emission or absorption of photons
requires quantum electrodynamics. This theory combines the (relativistic)
quantum theory of electrons with the quantum theory of electromagnetic
fields. Unfortunately, quantum electrodynamics is beyond the scope of this
book. For now, the stationary solutions of the Schrödinger equation will
have to suffice.

It should be mentioned, however, that in the framework of “ordinary”
quantum mechanics, transitions between stationary states can be modeled
with time-dependent perturbation theory. One starts with an unperturbed
system for which the Hamiltonian has eigenvalues En with corresponding
eigenvectors ψn. If the initial state ψ(0) of the electron is one of the eigen-
states ψn, then its time evolution is just given by ψ(t) = exp(−iEnt)ψn.
Hence, the transition probability from ψ(t) to another eigenstate ψm will be
zero for all times,

|〈ψm, ψ(t)〉|2 = |〈ψm, ψn〉|2 = 0 for m �= n, (2.2)

because two eigenstates belonging to different energies are orthogonal. This
is why we call the eigenstates of the Hamiltonian “stationary states.”

In practice, it is impossible to keep a physical system isolated. There
will always be some (weak) external influence. In a simple mathematical
model, we may describe the external influence by an additional, generally
time-dependent potential that is added to the Hamiltonian of the unper-
turbed system. The whole system is then represented by a time-dependent
Hamiltonian. The energy eigenstates of the unperturbed Hamiltonian are
not stationary with respect to the time evolution of the perturbed system.
If the initial state is ψ(0) = ψn, then the state ψ(t) will depend on time in
a nontrivial way, and the transition probability between ψ(t) and ψm (with
m �= n) will, in general, be nonzero for t �= 0.
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From the remarks above, it should be clear that the Schrödinger equation
with an electrostatic Coulomb potential is just a simplified mathematical
model of the real hydrogen atom. A more realistic model would have to
take into account in particular the following phenomena, ordered according
to their importance:

(1) The spin of the electron (see Chapter 3).
(2) The interaction between the spin magnetic moment and the mag-

netic moment due to the orbital motion (spin-orbit interaction).
(3) Relativistic kinematics.
(4) Nuclear contributions like the interaction with the magnetic mo-

ment of the nucleus and the finite size of the nucleus.
(5) Vacuum fluctuations of the electromagnetic fields.
(6) Vacuum polarization.

These effects lead to corrections of the energy levels obtained from the Schrö-
dinger equation and to a splitting of otherwise degenerate levels. The effects
1 to 3 describe the so-called fine structure of the hydrogen spectrum. They
are successfully dealt with by the Dirac equation. The magnetic moment
of the nucleus is the origin of the hyperfine structure. The finite size of
the nucleus is important, in particular, for hydrogenic atoms with large
atomic number Z. These effects are usually incorporated via perturbation
theory. The effects 5 and 6 can be described with the help of quantum
electrodynamics. The corresponding correction of the eigenvalues is called
the Lamb shift.

Let us now turn to the problem of understanding the hydrogen atom as
it is described by the Schrödinger equation with a Coulomb potential. By
exploiting the symmetries of the system, it is possible to find all stationary
states with analytic (that is, non-numerical) methods. These symmetries
are already present at the level of classical physics. Most obvious is the
fact that the Coulomb potential is spherically symmetric, that is, invariant
under rotations. But there is an additional symmetry that results in the
conservation of the so-called Runge-Lenz vector.

2.2. The Classical Coulomb Problem

2.2.1. The Coulomb force

Using the international system of units (SI), the Coulomb law for the mag-
nitude of the force between two charges q1 and q2 separated by a distance r
is written as

F =
1

4πε0

q1q2

r2
. (2.3)
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Here, ε0 is the permittivity of the vacuum. The unit of the charge in the SI
is the coulomb (C), defined as ampere×second. The charge of an electron is
denoted by −e, where e is the elementary charge

e = 1.6021773× 10−19 C. (2.4)

In atomic physics, it is most common to describe the Coulomb force in
the Gaussian system (cgs-system), where the Coulomb law reads

F =
q1q2

r2
. (2.5)

The Gaussian system uses length, mass, and time as basic dimensions with
the units centimeter (cm), gram (g), and second (s), respectively. The unit
of charge in the Gaussian system is defined to be that charge which exerts
a force of 1 g cm s−1 = 1 dyn on a charge of the same size at a distance of 1
cm. The elementary charge is e = 4.8032× 10−10 g1/2 cm3/2 s−1.

A hydrogenic atom is a one-electron atom or ion, for example, H, He+,
Li2+, and so forth. It consists of an atomic nucleus and an electron that
interacts with the nucleus by the electrostatic Coulomb attraction. The nu-
cleus contains Z protons and has a total charge +Ze. Hence, the magnitude
of the force on an electron at a distance r from the nucleus is given by

F =
Ze2

4πε0 r2
=

γ

r2
. (2.6)

The constant γ = Ze2/4πε0 is the Coulomb coupling constant. This abbre-
viation makes us fairly independent of the chosen system of units. If you
plan to use the Gaussian system instead of the SI, you just have to use the
definition γ = Ze2 in the following (with e in Gaussian units).

In our model of the hydrogenic atom, the nucleus is a point mass. We
assume that the dimensions of the nucleus can be neglected compared to
the dimensions of the atom. If the nuclear charge Z is not too large, this
assumption is indeed satisfied with high accuracy.

The hydrogenic atom is a two-particle system, but we are going to de-
scribe it in the framework of the single-particle formalism. The motion of
the atom as a whole is ignored, and the nucleus is just a fixed center-of-force
at the coordinate origin. Nevertheless, as in Section 1.7.2, we can take into
account the finite mass of the nucleus simply by describing the configuration
of the atom in terms of the relative coordinate vector x = xelectron−xnucleus

and by replacing the electron mass with the reduced mass

µ =
mnucleus me

mnucleus + me
. (2.7)

Here, me is the mass of the electron,

me = 9.10938× 10−31 kg. (2.8)
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mnucleus is the mass of the nucleus. The nucleus of a hydrogen atom consists
of just one proton having about 1836 times the mass of the electron,

mp = 1.67262× 10−27 kg. (2.9)

In this case the reduced mass is

µ =
1836
1837

me = 9.10443× 10−31 kg. (2.10)

The nucleus of a hydrogenic atom is much heavier than the electron. Hence,
the reduced mass µ is roughly equal to the mass of the electron. In Bohr’s
model of the hydrogen atom, it is even assumed that the nucleus has an
infinite mass, hence µ = me.

The Coulomb force on the electron is the negative gradient of a potential
energy V (x),

F(x) = −∇V (x), V (x) = − γ

|x| . (2.11)

The energy of a classical particle in a Coulomb field is given by the kinetic
energy p2/2m plus the potential energy due to the Coulomb attraction:

H =
|p|2
2m

− γ

|x| . (2.12)

Here and in the following, we simply write m for the mass. If you want to
take into account the finite mass of the nucleus, simply set m = µ. If you
want to work within Bohr’s model, use m = me instead.

2.2.2. Classical motion

The energy H = H(p,x) of a particle moving in a Coulomb field is given in
(2.12) as a function of the position x and the momentum p of the particle.
H(p,x) is the classical Hamiltonian function. It is a conserved quantity,
that is, for the motion (p(t),x(t)) of the classical particle we have

H
(
p(t),x(t)

)
= E (independent of t). (2.13)

The angular momentum L = x × p is another constant of motion, because
the potential is spherically symmetric. It follows that the motion takes place
in the plane orthogonal to L, because the position vector x of the particle
satisfies L · x = 0.

The movie CD 1.2.4 shows the classical Coulomb motion with the
conserved angular momentum vector. CD 2.1.1 gives another ex-
ample. Note that the classical motion takes place in a plane. In
contrast, the quantum mechanical solutions make use of all three
space dimensions (the ground state is even spherically symmetric).
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Figure 2.1. (a) Classical trajectory and the conserved quan-
tities L (angular momentum) and K (Runge-Lenz vector).
(b) Stroboscopic image of the motion of the particle. The
spots show the position of the particle after equal time steps.

It has been known since the times of Lagrange that the Coulomb system
has additional conserved quantities. As a consequence, all bounded orbits
in the Coulomb field are closed. After some time, the particle returns to its
initial position, that is, all bounded motions are periodic in time. Among
all spherically symmetric potentials, only the Coulomb potential and the
harmonic oscillator have this property.

As you certainly know, a bounded orbit in a Coulomb field has the shape
of an ellipse. This is Kepler’s first law for the motion of planets around the
sun. The form and the orientation of this ellipse is constant in time and
depends only on the initial conditions. Hence, the vector that points in the
direction along the major axis and whose length is the eccentricity of the
ellipse is a conserved quantity. This vector is known as the Runge-Lenz
vector (see Fig. 2.1). It is defined by

K = L× p + mγ
x
|x| . (2.14)

The three components of the Runge-Lenz vector are all constants of motion.
Together with the energy and the three components of the angular-momen-
tum operator, this makes seven constants of motion that cannot possibly be
all independent of each other (the phase space of the Coulomb problem is
only six-dimensional).

Exercise 2.1. Prove that the vector K is always orthogonal to L, that
is, K · L = 0. Moreover, show that the length of K is determined by the
energy H and the angular momentum L as

K2 = 2mH L2 + m2γ2. (2.15)
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The shape of the Coulomb orbit is easily determined from the Runge-
Lenz vector. We just compute the scalar product between K and x:

K · x = |K| |x| cos φ = −L2 + m γ |x|, (2.16)

where φ is the angle between K and x. Hence, we find

|x| = r =
L2

m γ − |K| cos φ
. (2.17)

The distance r as a function of the angle φ is always finite if K2 ≤ m2γ2, be-
cause in this case the denominator is always nonzero. In view of Eq. (2.15),
this can only happen for orbits with negative energies E < 0. Negative en-
ergies can only occur if γ > 0, that is, if the Coulomb potential is attractive.

Equation (2.17) can be written as

r(φ) =
d

1− ε cos φ
, (2.18)

with d = L2/mγ and ε = |K|/mγ. This is the focal equation of a conic
section. For ε < 1, the focal equation describes an ellipse. The constant ε is
called the eccentricity , and d is the parameter of the ellipse. The distance
r from the origin and the angle φ between position vector and Runge-Lenz
vector can be interpreted as polar coordinates in the two-dimensional plane
of motion. Figure 2.2 shows the ellipse and the geometric meaning of the
various constants. The Runge-Lenz vector always points from the origin
(focus) to the center of the ellipse. In the special case of a circular orbit, we
have |K| = 0 (the focus coincides with the center).

Orbits with positive energies are unbounded. The distance r of the
particle can become infinite if for certain values of φ the denominator of
Eq. (2.18) vanishes. For this we must have ε cos φ = 1, which can only be
the case for ε ≥ 1 or K2 ≥ m2γ2. In view of (2.15), this can only happen
for H(p,x) = E ≥ 0. For E = 0 (that is, K2 = m2γ2 or ε = 1) the orbit is
a parabola, and for H > 0 the orbit is a hyperbola.

CD 2.1.1 shows the motion in a Coulomb field and the vectors K and
L, which determine the shape of the elliptic orbit. CD 2.1.2 explores
the dependence of the Coulomb orbit on the initial condition for the
momentum. The influence of the coupling constant γ is shown in
CD 2.1.3. Finally, CD 2.1.4 shows a collection of orbits with the
same energy.

Exercise 2.2. Consider a bounded circular orbit. Show that the time
needed for one revolution is given by

T =
2πL3

m γ2
. (2.19)
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Figure 2.2. Any bounded and hence periodic orbit of a par-
ticle in a Coulomb potential is an ellipse.

2.3. Algebraic Solution Using the Runge-Lenz
Vector

2.3.1. The Coulomb problem in quantum mechanics

The quantum mechanical wave equation is the Schrödinger equation

i �
d

dt
ψ(x, t) = H ψ(x, t), (2.20)

where H is the Hamiltonian operator describing the energy of the system.
The Hamiltonian H is obtained from the classical Hamiltonian function
(2.12) by replacing the variables xi and pi with linear operators in the Hilbert
space of the system. With Eq. (1.29) we obtain from Eq. (2.12) the Hamil-
tonian operator of the hydrogen atom

H = − �
2

2m
∆− γ

|x| . (2.21)

In order to simplify the following formulas and calculations, we assume that
m = 1, � = 1, and γ = 1 (attractive Coulomb potential). It will be shown
below (Section 2.7) that this can always be achieved by a suitable scaling
transformation of the space and time coordinates. Hence, it entails no loss
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of generality to solve the Schrödinger equation in the simplified form

i
d

dt
ψ(x, t) =

(
−1

2
∆− 1

|x|
)

ψ(x, t). (2.22)

This is the Schrödinger equation in dimensionless units. It is easy to get the
solution in SI units (or in any other system of units) from the solution in
dimensionless units (see Section 2.7).

As usual, the general solution of (2.22) in the subspace of bound states
is found by first solving the eigenvalue problem

H ψ(x) =
(
−1

2
∆− 1

|x|
)

ψ(x) = E ψ(x). (2.23)

We will do so by exploiting the conservation laws already found for the
classical problem.

2.3.2. The Runge-Lenz vector in quantum mechanics

The classical expression (2.14) for the Runge-Lenz vector has to be sym-
metrized in order to find its quantum mechanical analog, because the oper-
ators L and p do not commute.

Exercise 2.3. Prove the following formula for the vector product of the
operators L and p:

(L× p)† = −p× L = L× p− 2ip. (2.24)

In view of (2.24), we define the quantum mechanical Runge-Lenz vector as

K =
1
2
(
L× p− p× L

)
+

x
|x| . (2.25)

Each component K1, K2, and K3 of K is formally symmetric and can thus
give rise to a self-adjoint operator.

Exercise 2.4. Prove the identity

i[L2,p] = L× p− p× L. (2.26)

Using the formula obtained in the previous exercise, we see that the Runge-
Lenz vector can likewise be defined as

K =
i
2

[L2,p] +
x
|x| . (2.27)

This form is often more useful when one tries to compute commutation
relations.
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The three components of the Runge-Lenz vector are conserved during the
time evolution. Indeed, one can verify that K commutes with the Coulomb
Hamiltonian H defined in (2.23),

[H,K] = 0. (2.28)

The relations between K, L, and H essentially carry over from classical
physics. Indeed, from L · x = L · p = 0 one finds the relations

K · L = L ·K = 0. (2.29)

Moreover, a little calculation proves

K2 = K ·K = 2H(L2 + 1) + 1, (2.30)

which is the analog of Eq. (2.15). It is also useful to note the following
commutation relations:

[Lj ,Kk] = iεjkmKm, [Kj ,Kk] = −2iεjkmHLm. (2.31)

In the next section, I am going to show that these algebraic relations between
H, K, and L are sufficient to determine the eigenvalues of H.

2.3.3. The eigenvalues of H

In the following, we restrict ourselves to that part of the state space which
is spanned by the eigenfunctions of H. This is the subspace of bound states,
a Hilbert-subspace of L2(R3). On this subspace, we define the two vector-
operators J+ and J− by

J± =
1
2

(
L± 1√−2H

K
)
. (2.32)

This definition requires a few comments. It follows from general considera-
tions using the virial theorem (see Section 2.7.4 below) that the stationary
states all belong to negative eigenvalues En of H. Hence, the operator
1/
√−2H is well defined on the subspace of bound states because of the mi-

nus under the square-root. Any state in this subspace is a linear combination
of stationary states. Because H (and likewise any function of H) commutes
with K, the action of J± on such a linear combination is given by

J± (∑
n

cnψn

)
=

∑
n

cn
1
2

(
L± 1√

2|En|
K

)
ψn. (2.33)

It is crucial to observe the commutation relations of the operators J±. The
calculation gives

[J+
j , J+

k ] = iεjkm J+
m, [J−

j , J−
k ] = iεjkm J−

m, [J+
j , J−

k ] = 0. (2.34)
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We see that J+ and J− fulfill the commutation relations of two commuting
angular-momentum operators. This gives us occasion to apply our knowl-
edge concerning the possible eigenvalues of angular-momentum operators
(see Section 1.5). Because of

(J+)2 = (J−)2 = −1
2

(
1 +

1
2H

)
(2.35)

the two operators (J+)2 and (J−)2 have the same eigenvalues. Moreover,
these eigenvalues are related to the eigenvalues of H. On the subspace of
bound states we have

H = −1
2

1
1 + 4(J+)2

. (2.36)

We know already from Theorem 1.1 that because of the commutation re-
lations (2.34), the operator (J+)2 can only have the eigenvalues j(j + 1)
with j = 0, 1/2, 1, 3/2, . . .. Thus, because of (2.36), H can only have the
eigenvalues

En = −1
2

1
1 + 4j(j + 1)

= −1
2

1
(2j + 1)2

= − 1
2n2

, (2.37)

where n = 2j +1 = 1, 2, 3, . . . is called the principal quantum number of the
Coulomb problem.

The orbital angular momentum L can only have the eigenvalues �(� + 1)
with � being a non-negative integer. But in an eigenspace of H belonging
to a fixed n, the quantum number � can only have the values 0, 1, . . . , n− 1.
One can see this by using (2.30) to express the eigenvalues of K2 in terms
of n and �. If ψn,� is a simultaneous eigenvector of both H and L2, then

K2 ψn,� =
(
1− 1

2n2

(
�(� + 1) + 1

))
ψn,�, (2.38)

where � is a non-negative integer (see Section 1.6.2). Because the eigenvalue
of K2 must be non-negative, we find that � ≤ n− 1.

For a given j, there are n2 = (2j +1)2 different pairs (m+
j ,m−

j ) of eigen-
values of J+

3 and J−
3 . Therefore, the eigenvalue −1/2n2 of H is n2-fold

degenerate and the corresponding orthogonal eigenvectors may be distin-
guished by the eigenvalues of J+

3 and J−
3 .

CD 2.2.1 shows the eigenvalues of H, indicating the degree of degen-
eracy of each En by the possible eigenvalues of the angular-momen-
tum operators L2 and L3.

So far we have only shown that the eigenvalues of the Coulomb Hamil-
tonian are among the numbers −1/2n2, with n a positive integer. It remains
to prove by an explicit construction of the eigenvectors that all these num-
bers indeed do occur. (This will also prove that (J+)2 has both integer and
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half-integer eigenvalues j.) The joint eigenfunctions of H, (J+)2, J+
3 , and

J−
3 are obtained if one solves the Coulomb problem in parabolic coordinates

(see Section 2.6 below). Because of its importance, we are going to present
several methods for solving the Coulomb problem. In the next section, we
give a solution by exploiting the spherical symmetry.

Ψ The Coulomb Hamiltonian is invariant with respect to rotations in
three dimensions. The three-dimensional rotation group SO(3) (spe-

cial orthogonal transformations in three dimensions) is a three-dimensional
Lie group that has the angular-momentum operators as generators. For the
Coulomb system, we have in fact found two independent angular-momentum
algebras. These six angular-momentum operators generate a six-dimensional
symmetry group that can be described as a product of two rotation groups.
The symmetry group of the Coulomb problem is therefore isomorphic to
the group SO(4) ∼= SO(3) × SO(3), which can be interpreted as a group
of rotations in a four-dimensional space. We note that because of slightly
changed commutation relations in the case of positive energies, the sym-
metry group of the Coulomb Hamiltonian in the positive-energy subspace
(scattering states) is SO(3, 1) (the Lorentz group). This has nothing to do
with relativity (in relativistic quantum mechanics, the generators of SO(3, 1)
have a different physical meaning).

2.4. Algebraic Solution of the Radial Schrödinger
Equation

2.4.1. Factorization of the radial Coulomb problem

The Hamiltonian operator for an attractive Coulomb potential

H = −1
2

∆− 1
|x| (2.39)

is spherically symmetric. In an eigenspace of the angular-momentum oper-
ators, the eigenvalue equation Hψ = Eψ becomes the ordinary differential
equation

h� f(r) = E f(r), where h� =
1
2

(
− d2

dr2
+

�(� + 1)
r2

)
− 1

r
. (2.40)

From this we conclude immediately (see also Section 1.10.1):

The Coulomb Hamiltonian H has the eigenvalue E whenever one of the
radial Hamiltonians h� has E as an eigenvalue.
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Given a solution f(r) of the radial Coulomb problem (2.40), we obtain
a solution of Hψ = Eψ by setting

ψ(x) =
1
r
f(r) Y m

� (ϑ, ϕ). (2.41)

Here, as usual, (r, ϑ, ϕ) are the spherical coordinates of x. The function
f(r) may be interpreted as a radial position probability amplitude (see Sec-
tion 1.9.4).

CD 2.3 presents a collection of images of the radial eigenfunctions
g(r) = f(r)/r, comparing them with the corresponding solutions of
the two-dimensional Coulomb problem (see below).

We present a method of solving (2.40) which will be very similar to
our method of solving the harmonic oscillator problem in Book One. This
method works because of the higher symmetry of the Coulomb problem.
The crucial step toward the solution of the eigenvalue problem is to note
that the radial Hamiltonian h� in Eq. (2.40) can be factorized, that is, we
can write it as the product of two first-order differential operators. Define
the operator

A−
� =

1√
2

( d

dr
+

� + 1
r

− 1
� + 1

)
(2.42)

and the (formally) adjoint operator

A+
� =

1√
2

(
− d

dr
+

� + 1
r

− 1
� + 1

)
(2.43)

for all values � = 0, 1, 2, 3, . . . of the angular-momentum quantum number.
A little calculation shows that

A−
� A+

� =
1
2

(
− d

dr
+

�(� + 1)
r2

)
− 1

r
+

1
2(� + 1)2

. (2.44)

Up to a constant term, this expression is just the radial Hamiltonian operator

A−
� A+

� = h� +
1

2(� + 1)2
. (2.45)

The product of the operators A−
� and A+

� in reverse order is easily calculated.
It gives

A+
� A−

� = h�+1 +
1

2(� + 1)2
. (2.46)

The importance of this observation lies in the following simple fact about
the product of operators:
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Whenever the product of two operators AB has a nonzero eigenvalue
E with an associated eigenvector f , then the product BA has the same
eigenvalue, and the corresponding eigenvector is Bf .

We called this fact the spectral supersymmetry of AB and BA. The
proof is the same as the one given in Book One, Section 7.7.1, for B = A†.

Exercise 2.5. Let ABf = Ef for two operators A and B and some
eigenvalue E �= 0. Show that g = Bf is a nonzero eigenvector of the operator
BA belonging to the eigenvalue E.

The two equations (2.45) and (2.46) will allow us to relate eigenvalues
and eigenvectors of h� for different values of the angular-momentum quantum
number �.

2.4.2. The ground state of the radial Schrödinger operator

First of all, we note that it is quite easy to obtain an eigenfunction of h� for
arbitrary � ≥ 0 just by requiring

A+
� f = 0, that is, − df(r)

dr
+

� + 1
r

f(r) =
1

� + 1
f(r). (2.47)

This differential equation of first order has the solution

f�;0(r) = r�+1 e−r/(�+1), (2.48)

which is square-integrable on 0 ≤ r < ∞ (but not yet normalized). Because
A−

� A+
� f�;0 = 0, we find from Eq. (2.54) that

h� f�;0 = − 1
2(� + 1)2

f�;0. (2.49)

We note that A−
� f = 0 has no square integrable solution for any �, be-

cause any solution of this equation is proportional to r−(�+1) er/(�+1). Hence,
we cannot obtain eigenfunctions of h�+1 by solving A−

� f = 0, as one might
think after inspecting Eq. (2.46).

The radial Coulomb Hamiltonian h� has for each � an eigenvalue

E�;0 = − 1
2(� + 1)2

. (2.50)

Moreover, E�;0 is the lowest possible eigenvalue of h�.
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Proof. It remains to prove that E�;0 is the lowest possible eigenvalue
for a given �. Let

〈f, g〉 =
∫ ∞

0
f(r) g(r) dr (2.51)

be the scalar product in L2([0,∞), dr). Then we have

〈f, A−
� A+

� f〉 = 〈A+
� f, A+

� f〉 = ‖A+
� f‖2 ≥ 0 (2.52)

for all functions f that are differentiable, square-integrable, and satisfy the
boundary conditions f(r) → 0, as r goes to 0 or to ∞. We conclude
that A−

� A+
� cannot have any negative eigenvalues, because otherwise the

scalar product above would be negative for the corresponding eigenfunction.
Hence, f�;0 already belongs to the lowest possible eigenvalue 0 of A−

� A+
� .

Because of (2.54), f�;0 belongs to the lowest possible eigenvalue of h�. �

The eigenvalue E�;0 of h� is, of course, also an eigenvalue of the three-dim-
ensional Coulomb Hamiltonian (2.39). For the three-dimensional problem,
the degree of degeneracy of this eigenvalue is at least 2� + 1, because all the
functions

φ�,m;0(r, ϑ, ϕ) =
1
r

f�;0(r)Y m
� (ϑ, ϕ), m = −�,−� + 1, . . . , � (2.53)

are eigenfunctions of the energy operator Ĥ in spherical coordinates (and,
simultaneously, eigenfunctions of L̂2 and L̂3). This is the normal degree of
degeneracy that we expect in spherically symmetric situations, because the
angular-momentum quantum number m does not occur in the radial Schrö-
dinger equation. In fact, it will turn out that the degree of degeneracy of
the Coulomb eigenvalues is much higher than that.

2.4.3. Excited states of the radial Schrödinger operator

We may rewrite (2.45) and (2.46) as

h� = A−
� A+

� + E�;0 (2.54)

h� = A+
�−1 A−

�−1 + E�−1;0 (for � ≥ 1). (2.55)

For � ≥ 1 we conclude from the second identity that the ground state f�;0 of
h� is also an eigenvector of the operator A+

�−1 A−
�−1:

A+
�−1 A−

�−1 f�;0(r) = (E�;0 − E�−1;0) f�;0(r). (2.56)

The corresponding eigenvalue is obviously nonzero, and therefore we can
introduce the function

f�−1;1(r) = A−
�−1 f�;0(r) (2.57)
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which in view of the spectral supersymmetry (Exercise 2.5) is a solution of

A−
�−1 A+

�−1 f�−1;1(r) = (E�;0 − E�−1;0) f�−1;1(r). (2.58)

Using (2.54) with � replaced by �− 1, this can be rewritten as

h�−1 f�−1;1(r) = E�;0 f�−1;1(r). (2.59)

Thus, the function f�−1;1(r) is a solution of the radial Schrödinger equation
with angular momentum �− 1. It belongs to the eigenvalue E�−1;1 = E�;0 of
the operator h�−1.

According to the result of the previous section, h�−1 has E�−1;0 = −1
2�−2

as the lowest possible eigenvalue. The energy E�−1;1 = −1
2(�+1)−2 > E�−1;0

therefore belongs to the first excited eigenstate of h�−1.

Exercise 2.6. Show that h�−1 can have no eigenvalue between E�−1;0

and E�−1;1, because then E�;0 = E�−1;1 would not be the lowest possible eigen-
value of h�.

The next step is to note the following result:

Assume � ≥ 1. Whenever h� has an eigenvector f belonging to an
eigenvalue E > E�;0, then h�−1 has the same eigenvalue E and the
corresponding eigenvector of h�−1 is given by A−

�−1f .

Proof. Eq. (2.55) implies that E−E�−1;0 is an eigenvalue of A+
�−1A

−
�−1.

It follows from spectral supersymmetry that A−
�−1A

+
�−1 has the same eigen-

value and that the corresponding eigenvector is A−
�−1f . Substituting � − 1

for � in (2.54) shows A−
�−1A

+
�−1 = h�−1 − E�−1;0, and this operator has the

eigenvalue E − E�−1;0. Hence, the operator h�−1 has the eigenvalue E. �

As long as �− 1 ≥ 1, we can thus iterate the process that led to the first
excited level of h�−1. It follows that the second eigenvalue of h�−2 is

E�−2;2 = E�1;1 = E�;0 = −1
2
(� + 1)−2 for � ≥ 2. (2.60)

The corresponding eigenvector is obtained as

f�;2 = A−
�−2 f�;1 = A−

�−2 A−
�−1 f�;0 (2.61)

from the ground state f�;0 of h�.
Now it is also clear that we can obtain all eigenvectors and eigenvalues

of the radial Hamiltonian with fixed index � from the ground states of the
radial Hamiltonian with some higher index. For example, the function f�;2,



2.4. ALGEBRAIC SOLUTION OF THE RADIAL SCHRÖDINGER EQUATION 75
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Figure 2.3. Radial position probability densities |f�;nr(r)|2
for various values of nr and � = 1. The gray regions are the
classically forbidden regions.

which belongs to the eigenvalue E�,2 = −1
2(� + 3)−2, is obtained from the

ground state of h�+2:

f�+2;0 = r�+3 e−r/(�+3),

by applying first the differential operator A−
�+1 and then A−

� . As an example,
Figure 2.3 shows the first four eigenvectors for � = 1. It is very remarkable
that in order to obtain these functions, it is not necessary to solve a differ-
ential equation, except a very simple first-order equation for f�;0. We would
also like to emphasize the following facts:

(1) The eigenvalues of h� except E�;0 also occur as the ground state
energy of another radial Schrödinger operator with higher angular
momentum.

(2) All eigenvalues of all the radial Schrödinger operators with � > 0 are
already contained in the eigenvalue spectrum of the radial Schrö-
dinger operator with � = 0.

(3) The lowest possible energy of the Coulomb system is E0;0 = −1/2.
The corresponding eigenstate has � = 0.

We collect our results in the following box:
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Eigenvalues of the radial Coulomb Hamiltonian:

For each �, the radial Coulomb Hamiltonian h� has infinitely many eigen-
values

E�;nr = − 1
2(nr + � + 1)2

nr, � = 0, 1, 2, . . . . (2.62)

For any nr ≥ 1 the corresponding eigenvectors f�;nr of h� can be obtained
by a successive application of the operators A−

� defined in (2.42) from
the ground state f�+nr;0 of the radial Hamiltonian h�+nr :

f�;nr
(r) = A−

� A−
�+1 · · ·A−

�+nr−1 f�+nr−1;0(r). (2.63)

In order to obtain the explicit r-dependence of the radial eigenfunctions,
one has to compute all the differentiations in (2.63). But still, the eigenfunc-
tions are not normalized. Hence, one has to find a suitable constant c�;nr

from the condition ∫ ∞

0
|c�;nr f�;nr

(r)|2 dr = 1. (2.64)

We omit the somewhat tedious calculation of c�;nr , because in (2.103) and
(2.104) below we are going to derive an explicit formula for the normalized
eigenfunctions with another method. In Figures 2.3 and 2.4, we show a few
plots of the radial position probability densities |f�;nr(r)|2 obtained from the
normalized radial eigenfunctions.

Exercise 2.7. Find an explicit expression for f�;2 according to (2.63).

Exercise 2.8. The function φ0,0;0 defined by (2.53) is the eigenfunction
with the lowest possible energy E0;0 = −1/2 (the ground-state energy). Find
a constant c such that

∫∞
0 |cf0;0(r)|2 dr = 1. As a consequence, show that

c φ0,0;0 has norm 1 in L2(R3).

2.4.4. Quantum numbers of the Coulomb problem

The normalized eigenfunctions of the three-dimensional Coulomb Hamilton-
ian in spherical coordinates have the form

1
r

c�;nr f�;nr(r) Y m
� (ϑ, ϕ). (2.65)

But while the eigenfunctions of the radial Schrödinger equations depend on
nr and on �, we found that the eigenvalues depend only on the sum nr + �.
Therefore, it is natural to introduce the principal quantum number

n = nr + � + 1, (2.66)
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Figure 2.4. Radial position probability densities |f�;nr(r)|2
for nr = 1 and various values of �.

which labels the possible bound-state energies in accordance with Eq. (2.37),

En = − 1
2n2

, n = nr + � + 1 = 1, 2, 3, . . . . (2.67)

The quantum number nr is called the radial quantum number. Figure 2.5
shows the Coulomb spectrum in a similar way as Figure 1.15 shows the
spectrum of the vibrating rotator.

The principal quantum number should also be used to label the Coulomb
eigenfunctions. Thus, we define the normalized radial eigenfunctions

fn,�(r) = c�;nr f�;nr(r) with nr = n− �− 1, (2.68)

and write the Coulomb eigenfunction in Cartesian coordinates as

ψn,�,m(x) =
1
r

fn,�(r)Y m
� (ϑ, ϕ), (2.69)

As always, (r, ϑ, ϕ) are the spherical coordinates of x.
The ψn,�,m are the simultaneous eigenstates of the Coulomb Hamiltonian

H and of the angular-momentum operators L2 and L3. The corresponding
eigenvalues are En, �(� + 1), and m.

The radial quantum number nr = n− �− 1 counts the number of nodes
(zeros) of the radial part fn,�(r) of the wave function. It is a quite general
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Figure 2.5. The structure of the eigenvalue spectrum of the
Coulomb problem (in dimensionless units). Eigenstates be-
longing to different angular quantum numbers have the same
energy.

phenomenon that the n-th eigenstate of a radial Schrödinger operator has
just n zeros (nodes).

The Coulomb eigenvalues are highly degenerate:

• We have the m-degeneracy according to spherical symmetry (as de-
scribed in Section 1.10.1): This means that in each angular-mom-
entum subspace with quantum number �, we can find 2�+1 orthog-
onal eigenstates with the same energy. These eigenstates belong to
different eigenvalues of L3.

• Moreover, we have a certain �-degeneracy according to the “higher
symmetry” of the Coulomb problem: For a given n, we find eigen-
states with the same energy in every angular-momentum subspace
with � ≤ n− 1. These eigenstates belong to different eigenvalues of
L2.

The �-degeneracy is caused by the spectral supersymmetry described in Sec-
tion 2.4.1. It implies that the n radial eigenfunctions f�;nr with quantum
numbers

(�; nr) = (0, n− 1), (1; n− 2), . . . , (n− 1; 0) (2.70)

all have the same energy (although they are solutions of different radial
Schrödinger equations). The total degree of degeneracy of the eigenvalue En
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is therefore given by
n−1∑
�=0

(2� + 1) = n2. (2.71)

This structure of the energy spectrum is depicted in Figure 2.6.

CD 2.3.1 is similar to Figure 2.6 and allows one to adjust the coupling
constant γ, that is, the strength of the attractive Coulomb poten-
tial. CD 2.3.3 presents an analogous image for the two-dimensional
Coulomb problem.
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The Coulomb eigenfunctions are complex wave functions defined on
the three-dimensional space. In CD 2.12–2.14, we present some ex-
amples of eigenstates ψn,�,m and discuss possible visualization meth-
ods using colored isosurfaces or slice planes. We explain in detail
how to recognize the quantum numbers nr, �, and m in the images.

According to the traditional terminology, which has its origin in the
language of spectroscopists, one denotes the energy levels and angular-mo-
mentum quantum numbers by letters. The states with orbital angular mo-
mentum � = 0 are called s-waves (s = sharp), � = 1 are p-waves (p =
principal), � = 2 are d-waves (d = diffuse), and then alphabetically f , g, h,
and so forth, for � = 3, 4, 5, . . .. The spectroscopic notation, which is still
found in many books, denotes the states with quantum numbers n and �
by nx with x = s, p, d, . . . according to the angular momentum. Hence, the
ground state is 1s and the first excited states are 2s and 2p. There are three
states 2p with m = −1, 0, 1, and all of them have the same energy as 2s.
Very often, one attaches the quantum number m as a subscript and writes,
for example, 2p1 for a 2p electron with m = 1.

The states with the same principal quantum number n are said to be-
long to the same energy shell. Hence, the n-th energy shell is just the
n2-dimensional eigenspace of the Coulomb Hamiltonian belonging to the
eigenvalue En. The energy shells are denoted by the letters K, L, M, . . . for
n = 1, 2, 3, . . ..

Figure 2.7 shows the position probability densities |ψn,�,m(x)|2 of a few
Coulomb eigenfunctions. Each plot shows a square region in the xz-plane
with the origin at the center. The bounding box of each image has a side
length of 50 in dimensionless units. The position probability densities of all
eigenfunctions are symmetric with respect to rotations about the z-axis.

The three-dimensional shape of some Coulomb eigenfunctions is shown in
Figure 2.8. All these images belong to the quantum numbers n = 3 and � =
2. The first row shows isosurfaces of the position probability density |ψn,�,m|2
with (a) m = 0, (b) m = ±1, and (c) m = ±2. The remaining images in
Figure 2.8 show real orbitals similar to (1.195) and (1.196). The real orbitals
are linear combinations of ψn,�,m and ψn,�,−m and are proportional to the real
and imaginary parts of ψn,�,m. They are eigenfunctions of H and L2, but
not of L3. Here (d) and (e) belong to |m| = 1 whereas (f) and (g) belong to
|m| = 2.

CD 2.15 is a gallery of the first 20 eigenfunctions and the associated
real orbitals. The visualizations show density plots as well as phase-
colored isosurfaces. We also mention that the first 49 eigenfunctions
of the two-dimensional Coulomb problem are presented in CD 2.5.
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Figure 2.7. Position probability densities of Coulomb eigen-
functions with the quantum numbers n�m as indicated.

In a real hydrogen atom, the �-degeneracy is partially removed by rel-
ativistic corrections. An energy level also splits into different levels when
perturbations like electric or magnetic fields are applied. For example, a
magnetic field removes the m-degeneracy (the independence of the energy
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Figure 2.8. Isosurfaces of the position probability density
show the geometry of some eigenfunctions of the Coulomb
problem with n = 3, � = 2 and (a) m = 0, (b) m = ±1, and
(c) m = ±2. The remaining images are isosurfaces of real
orbitals.

on the eigenvalue m of L3). Therefore, the quantum number m is often
called the magnetic quantum number.

2.4.5. Time evolution of simple superpositions

The time evolution of an eigenstate of H is described by the phase
factor exp(−iEt), where E is the energy of the eigenstate. We show a
few examples in CD 2.6, CD 2.7, and CD 2.16 (in three dimensions).
In the following, we deal with more complicated forms of the time
evolution, as shown for example in CD 2.8.1 and CD 2.9.
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Any superposition of two or more states with different energies shows
a nontrivial time-dependence. In this section, we consider the superposi-
tion of just two eigenfunctions. In Section 2.8 below, we investigate special
superpositions of many eigenstates showing a quasiclassical behavior.

A superposition of two eigenfunctions with energies E1 and E2 depends
on time according to

ψ(r, ϑ, ϕ, t) = c1 ψn1,�1,m1(r, ϑ, ϕ) exp(−iEn1t)

+ c2 ψn2,�2,m2(r, ϑ, ϕ) exp(−iEn2t). (2.72)

If all states are normalized, then |c1|2 is the probability that in a measure-
ment of the energy of an electron in the state ψ, the value E1 would be
obtained, and |c2|2 is the probability for E2. Using the formula (2.69) for
ψn,�,m together with expression (1.106) for Y m

� , we find that for m1 �= m2,
the superposition (2.72) has the form

ψ(r, ϑ, ϕ, t) = g1(r, ϑ) eim1ϕ e−iE1t + g2(r, ϑ) eim2ϕ e−iE2t

= eiλ(ϕ,t)
(
g1 + g2 ei(m2−m1)(ϕ−ωt)

)
, (2.73)

with
λ(ϕ, t) = m1 ϕ− E1 t, ω =

E2 − E1

m2 −m1
. (2.74)

Let us denote the position probability density of the initial state by

ρ(r, ϑ, ϕ) = | g1(r, ϑ) + g2(r, ϑ) ei(m2−m1)ϕ |2. (2.75)

According to (2.73), the time evolution of this quantity is given by

|ψ(r, ϑ, ϕ, t)|2 = ρ(r, ϑ, ϕ− ωt). (2.76)

We find that the time evolution of the position distribution is just a rotation
about the z-axis with a constant angular speed ω.

In a superposition of two eigenfunctions, a radial oscillation can only
occur for m1 = m2. CD 2.8 shows an example in two dimensions.
In three dimensions, CD 2.17.2 and CD 2.17.4 show pure radial os-
cillations within a single angular-momentum subspace (�1 = �2).
CD 2.17.1 and CD 2.17.3 show additional oscillations in the direc-
tion of the polar angle ϑ, because �1 �= �2.

CD 2.18 and CD 2.19 present superpositions of two states with differ-
ent magnetic quantum numbers m1 �= m2. In that case, there are no
radial oscillations nor ϑ-oscillations. The isosurface of the position
probability rotates like a rigid body about the z-axis. The phases
and hence the colors depend on time with exp(iλ(ϕ, t)) according to
Eq. (2.73), but the shape remains constant. CD 2.9 shows rotating
states in two dimensions.
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2.5. Direct Solution of the Radial Schrödinger
Equation

2.5.1. Solution of the Coulomb problem in two dimensions

In this section, we shall outline the conventional approach to the Coulomb
problem by solving the radial Schrödinger equation directly. We do this
here for two space dimensions, because many of the visualizations on the
CD show two-dimensional systems. The radial equation arising from the
three-dimensional problem will be treated along similar lines in the next
section.

In classical physics, the Coulomb problem in two dimensions is equivalent
to the Coulomb problem in three dimensions, because the motion takes place
in a plane anyway. In quantum mechanics, however, the energy levels of the
two-dimensional Coulomb problem are are always below the corresponding
energies in three dimensions. A Coulomb potential binds stronger in two-
dimensions. Moreover, two-dimensional systems have a lower degree of m-
degeneracy.

We look for a solution of the eigenvalue equation Hψ = Eψ by separating
the angular variable ϕ from the radial variable r,

φ(r, ϕ) =
1√
2π

eimϕ g(r). (2.77)

Here, m = ±� with � = 0, 1, 2, 3, . . .. The quantum number m is the eigen-
value of the angular-momentum operator L. In two dimensions, L is a scalar
quantity. It may be interpreted as the third component of an angular-mom-
entum vector L = (0, 0, L) for a particle whose motion is confined to the
xy-plane. In polar coordinates and with � = 1, we have

L = −i
∂

∂ϕ
. (2.78)

This is the same expression as for the operator L3 in three dimensions, and
hence we obtain the same result for the eigenvalues. The function eimϕ/

√
2π

in (2.77) is the normalized eigenfunction of L belonging to the eigenvalue m.
The quantum number � = |m| is the eigenvalue of the operator |L|.

Hence, in two dimensions, the square L2 of the angular momentum has the
eigenvalues �2 (unlike �(� + 1) in three dimensions).

The separation of variables leads to the radial Schrödinger equation for
a two-dimensional system. This equation has been derived already in Book
One (Eq. (8.145) in Section 8.8). For the Coulomb potential V (r) = −1/r
we obtain

1
2

(
− d2

dr2
− 1

r

d

dr
+

�2

r2

)
g − 1

r
g = E g. (2.79)
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We have �2 = m2, and therefore the radial equation does not depend on
the sign of m. The radial equation has two linearly independent solutions
on (0,∞) that can easily be found using a computer algebra system like
Mathematica. Only one of these solutions remains finite for r → 0 (it is
called the regular solution). The other solution is unbounded for r → 0. In
the context of quantum mechanics, we are only interested in the solution
that is regular at 0.

Ψ It has been pointed out in Section 1.10.1 that the reason for choosing
the regular solution has little to do with the requirement of square-

integrability. Indeed, for � = 0, the singularity of the irregular solution is so
mild that it is also square-integrable. In this case, the square-integrability
alone gives no sufficient criterion to select one of the two linearly independent
solutions. The choice of the regular solution comes from the observation that
any eigenfunction of the Coulomb Hamiltonian H must be in the domain
of H. It can be shown that the domain of this second-order differential
operator contains only continuous functions. Any singularity of the radial
function g(r) at r = 0 leads to a discontinuity of ψ and hence ψ would not
be in the domain of H.

For all E, the radial equation has the regular solution

g(r) = N e−
√−2E r r�

1F1

(
� + 1

2 − 1√−2E
, 2� + 1 , 2

√−2E r
)
. (2.80)

Here, 1F1 is the confluent hypergeometric function, and N is an arbitrary
constant. We are going to choose N to normalize the radial wave function
(see (2.93) below).

The properties of this well-known special function are described in great
detail, for example, in [1]. Here, we just quote the definition:

1F1(a, b, r) =
∞∑

n=0

(a)n

(b)n

rn

n!
, (2.81)

where the expressions

(a)0 = 1, (a)n = a (a + 1) · · · (a + n− 1) (2.82)

are sometimes called the Pochhammer symbols.2

Exercise 2.9. Evaluate 1F1(0, b, r) and 1F1(a, a, r). Examine the defini-
tion of 1F1(a, b, r) in the case that b is a negative integer.

2Our definition of the confluent hypergeometric function agrees with the definition
of the Mathematica function Hypergeometric1F1[a, b, r]. The Pochhammer symbols are
implemented by Pochhammer[a, n]
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Exercise 2.10. With the help of the definition (2.81), show that the
function 1F1(a, b, r) is a polynomial in r of degree n, whenever a = −n is a
negative integer or zero (and provided that b is not a negative integer).

In a sense, the hypergeometric function can be seen as a generalization
of the exponential function er = 1F1(a, a, r). Whenever a and b are not equal
to negative integers, the power series above is convergent (even for complex
r). However, in these cases the function diverges, as r → ∞. So the only
hope that f(r) is square-integrable at infinity is that the first argument
in the hypergeometric function is a negative integer or zero. In this case,
the hypergeometric function becomes a polynomial in r and the exponential
factor exp(−√−2E r) lets the function f(r) go to zero very fast, as r goes
to infinity. This is, however, only true if E < 0, otherwise the exponential
factor would just oscillate. Hence, we have to find numbers E�;nr < 0 such
that

� +
1
2
− 1√−2E�;nr

= −nr, with nr = 0, 1, 2, . . . . (2.83)

It is easy to solve this equation for E�;nr ,

E�;nr = − 2
(2nr + 2� + 1)2

, nr, � = 0, 1, 2, . . . . (2.84)

The eigenvalues E�;nr only depend on the sum nr + �. Hence, it makes sense
to introduce the principal quantum number n = nr + � + 1 also in the two-
dimensional Coulomb problem. n can take the values 1, 2, 3, . . .. Then one
can write

E�;nr = En = − 1
2 (n− 1/2)2

. (2.85)

Inserting these numbers into the expression (2.80) for g(r), we find for each
nr = n−�−1 a square-integrable solution of the radial Schrödinger equation
with angular-momentum quantum number �. With the abbreviation

κn =
√
−2En =

1
n− 1/2

(2.86)

we write these solutions as

gn,�(r) = Nn,� e−κn r (2 κn r)�
1F1

(
� + 1− n, 2� + 1, 2 κn r

)
. (2.87)

The factor (2κn)� has been extracted from the normalization constant Nn,�

for cosmetic reasons.
The set of eigenfunctions of the two-dimensional Coulomb Hamiltonian

H (in polar coordinates) is thus given by

φn,�,m(r, ϕ) =
1√
2π

eimϕ gn,�(r), (2.88)
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with � = |m|, m = 0,±1,±2, . . ., and n = 1, 2, . . .. Because of the simple
connection between m and �, it is sufficient to label the eigenfunction with
two indices, that is, we define

φn,m(r, ϕ) = φn,|m|,m(r, ϕ). (2.89)

For a given principal quantum number n, the eigenfunctions φn,m with

m = ±(n− 1),±(n− 2), . . .± 1, 0

all have the same energy. Therefore, the degree of degeneracy of the eigen-
value En of H is only 2n − 1, instead of n2 in three dimensions. In two
dimensions, the m-degeneracy is lower, because L3 can only have two differ-
ent values for a given � (instead of 2� + 1 in three dimensions).

CD 2.2.3 is an interactive image presenting the energy spectrum of
the two-dimensional Coulomb problem and its dependence on the
strength of the Coulomb force. The radial eigenfunctions are shown
in CD 2.3, and the first 49 eigenfunctions ψn,m(r, ϕ) defined in (2.89)
are visualized in CD 2.5. CD 2.4 compares radial oscillations in two
and three dimensions.

We still have to determine the constants Nn,� in (2.87). We require that
the eigenfunctions all have norm 1. This is needed, in particular, for the
eigenfunction expansion. For the norm of φn,m(r, φ) we find

‖φn,m‖2 =
1
2π

∫ ∞

0

(∫ 2π

0
|gn,�(r) eimϕ|2 dϕ

)
r dr (2.90)

=
∫ r

0
r |gn,�(r)|2 dr (with � = |m|). (2.91)

Hence, we may determine the constant Nn,� from the condition that∫ r

0
r |gn,�(r)|2 dr = 1. (2.92)

A long and tedious calculation gives

Nn,� =
1

(2�)!

(
2 κ3

n

(n + �− 1)!
(n− �− 1)!

)1/2
. (2.93)

Quite frequently, the solution is expressed in terms of generalized La-
guerre polynomials. The generalized Laguerre polynomials can be defined
as3

L(m)
n (x) =

(n + m)!
n!m! 1F1(−n, m + 1, x). (2.94)

3The generalized Laguerre polynomials are implemented by Mathematica as
LaguerreL[n, m, x]. They have to be distinguished from the associated Laguerre poly-

nomials Lm
n (x) = (−1)m L(m)

n−m(x), which are also used frequently.
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Hence, the solution of the radial Coulomb problem can also be written as

gn,�(r) = Kn,� e−κn r (2κn r)� L(2�)
n−�−1

(
2κn r

)
, (2.95)

where we used the abbreviation

Kn,� =
(
2 κ3

n

(n− �− 1)!
(n + �− 1)!

)1/2
. (2.96)

We want to emphasize that the set of eigenfunctions of H does not form
a complete orthonormal basis in L2(R2). The eigenfunctions only span the
subspace of bound states. Hence, for a given square-integrable function ψ,
the expression

ψbound =
∑
n,m

〈ψn,m, ψ〉ψn,m (2.97)

does not represent ψ (as it would be the case, for example, for the harmonic
oscillator). Instead, the sum above gives the part of ψ which is in the sub-
space of bound states. The mapping ψ → ψbound is an orthogonal projection
operator.

CD 2.11 shows the effect of projecting Gaussian wave packets onto
the subspace of bound states. The time evolution leaves the sub-
space of bound states invariant. In the absence of perturbations, a
bound state remains a bound state forever. This follows from the
conservation of energy (see also Eq. (2.199) below).

Exercise 2.11. Can you find a transformation g(r) → f(r) such that
f(r) satisfies the radial equation

1
2

(
−d2f

dr2
+

�2

r2
f
)
− 1

r
f = E f ? (2.98)

2.5.2. Solution of the Coulomb problem in three dimensions

It is worthwhile to list the formulas corresponding to the results in the previ-
ous section also for the three-dimensional case. For a particle in a Coulomb
field in three dimensions, the radial Schrödinger equation becomes

1
2

(
−d2f

dr2
+

�(� + 1)
r2

f
)
−1

r
f = E f. (2.99)

We remind the reader that �(� + 1) is the eigenvalue of the operator L2.
The angular-momentum quantum number � is a non-negative integer, � =
0, 1, 2, . . .. The radial equation does not depend on the eigenvalue m of L3,
which for a given � can have all integer values between −� and +�.
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The radial Schrödinger equation (2.99) has the regular solution

f(r) = N e−
√−2E r r�+1

1F1

(
�− 1√−2E

, 2� + 2 , 2
√−2E r

)
. (2.100)

For negative E, this solution becomes square-integrable if the first argument
of the confluent hypergeometric function is a non-positive integer, denoted
by −nr, where nr is the radial quantum number. The first argument of 1F1

equals −nr whenever E is equal to

E�;nr = − 1
2(nr + � + 1)2

, nr = 0, 1, 2, . . . . (2.101)

In terms of the principal quantum number n = nr + � + 1, we obtain the
familiar formula (2.67) for En. Inserting these values into (2.100) and writing√

−2En =
1
n

(2.102)

gives the following family of solutions:

fn,�(r) = Nn,� e−r/n (2 r/n)�+1
1F1

(
� + 1− n, 2� + 2, 2 r/n

)
, (2.103)

with � = 0, 1, 2, . . ., and n = 1, 2, 3, . . . . Choosing the normalization con-
stants

Nn,� =
1

(2� + 1)!n

( (n + �)!
(n− �− 1)!

)1/2
(2.104)

guarantees that ∫ r

0
|fn,�(r)|2 dr = 1. (2.105)

Hence, the three-dimensional solution

ψn,�,m(x) =
1
r

fn,�(r)Y m
� (ϑ, ϕ) (2.106)

is also normalized, ‖ψn,�,m‖ = 1. Here, (r, ϑ, ϕ) are the spherical coordinates
of x.

The following box describes the normalized radial eigenfunction in terms
of the generalized Laguerre polynomials.

Normalized solutions of the radial Schrödinger equation:

For each n = 1, 2, 3, . . . and � = 0, 1, . . . n − 1, the radial Schrödinger
equation (2.99) has the normalized eigenfunction

fn,�(r) =
1
n

( nr!
(n + �)!

)1/2
e−r/n

(2 r

n

)�+1 L(2�+1)
nr

(2 r

n

)
, (2.107)

with nr = n− �− 1. It belongs to the eigenvalue En = −1/(2n2). Here,
L(m)

n (x) is the generalized Laguerre polynomial defined in (2.94). The
function fn,� has precisely nr zeros in 0 < r < ∞.
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CD 2.3 shows a gallery of some radial eigenfunctions according to
the two- and three-dimensional Coulomb problems. CD 2.4 shows
radial oscillations (the time evolution of superpositions of two radial
eigenfunctions in the same angular-momentum subspace).

Exercise 2.12. In order to solve the radial Schrödinger equation (2.99),
write the radial wave function as

f(r) = r�+1 e−κ r u(r), with κ =
√−2E. (2.108)

and show that the function u has to be a solution of the differential equation

d2

dr2
u + 2

(� + 1
r

− κ
) d

dr
u + 2

(1
r
− κ

� + 1
r

)
u = 0. (2.109)

Exercise 2.13. Perform a variable substitution in (2.109). Set ρ = 2κr
and define v(ρ) = u(r). Show that v has to be a solution of the equation

d2

dρ2
v +

(2� + 2
ρ

− 1
) d

dρ
v −

(
� + 1− 1

κ

) 1
ρ

v = 0. (2.110)

Compare this with Kummer’s differential equation

d2

dρ2
v +

( b

ρ
− 1

) d

dρ
v − a

ρ
v = 0. (2.111)

Exercise 2.14. Find a solution to Kummer’s equation (2.111) by setting

v(ρ) =
∞∑

k=0

ck ρk. (2.112)

Insert the power series into the equation and write everything as a single
power series in ρ. Note that the coefficient of each ρk has to vanish. Use
this observation to show that the following recursion relation holds for the
coefficients in (2.112):

ck+1 (b + k)(k + 1) = ck(a + k), k = 0, 1, 2, . . . . (2.113)

Exercise 2.15. Starting with a given c0, iterate (2.113) in order to
obtain all ck. Show that (for b > 0)

ck = c0
a

b

a + 1
b + 1

· · · a + k − 1
b + k − 1

1
k!

. (2.114)

Set c0 = 1 and compare the result with (2.81) and (2.82).
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Figure 2.9. The coordinate curves ξ = const., η = const.
of the parabolic coordinate system in the half-plane where
ϕ = 0 are parabolas.

2.6. Special Topic: Parabolic Coordinates

The Schrödinger equation for the hydrogen atom also separates in parabolic
coordinates. This observation is important because it remains true in the
presence of an additional constant electric field in the z-direction (Stark
effect).

The parabolic coordinates of a point (x, y, z) in R
3 are given by (ξ, η, ϕ),

where

ξ = r + z = r(1 + cos ϑ), x =
√

ξη cos ϕ,

η = r − z = r(1− cos ϑ), y =
√

ξη sin ϕ, (2.115)

ϕ = ϕ, z = (ξ − η)/2.

Here, (r, ϑ, ϕ) are the spherical coordinates of the point (x, y, z). The coor-
dinates ξ and η are non-negative, and ϕ is the familiar azimuthal angle. The
parabolic coordinate system is an orthogonal, right-handed system. Hence,
the coordinate curves meet at right angles. Figure 2.9 shows a few coordinate
curves in the half-plane where ϕ = 0 (the xz-plane). The coordinate surfaces
with constant ξ or η are obtained by rotating the corresponding parabolas
of Figure 2.9 about the z-axis. In Figure 2.10, we see the coordinate surfaces
for ξ = 1 and η = 1.
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Figure 2.10. The surfaces with ξ = 1 (upper paraboloid)
and η = 1 (lower paraboloid) are obtained by rotating the
corresponding parabolas of Figure 2.9 about the z-axis.

The unit vectors along the coordinate lines are given by

eξ =
√

η

ξ + η

⎛
⎝ cos ϕ

sin ϕ√
ξ/η

⎞
⎠ , eη =

√
ξ

ξ + η

⎛
⎝ cos ϕ

sin ϕ

−√
η/ξ

⎞
⎠ , eϕ =

⎛
⎝− sin ϕ

cos ϕ
0

⎞
⎠ .

The gradient in parabolic coordinates reads

∇ = 2eξ

√
ξ

ξ + η

∂

∂ξ
+ 2eη

√
η

ξ + η

∂

∂η
+ eϕ

1√
ξη

∂

∂ϕ
. (2.116)

From this it is not difficult to obtain the expression for the Coulomb Hamil-
tonian (2.39) in parabolic coordinates

H = − 2
ξ + η

(
∂

∂ξ

(
ξ

∂

∂ξ

)
+

∂

∂η

(
η

∂

∂η

))
− 1

2ξη

∂2

∂ϕ2
− 2

ξ + η
. (2.117)

The stationary Schrödinger equation (H − E)ψ = 0 can be separated by
writing

ψ(ξ, η, ϕ) = N f(ξ) g(η) eimϕ, (2.118)
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where m is the magnetic quantum number. For this wavefunction, the Schrö-
dinger equation in parabolic coordinates can be rearranged to give the equa-
tion (

−2
∂

∂ξ

(
ξ
∂f(ξ)

∂ξ

)
+

m2

2ξ
f(ξ)− f(ξ)− Eξ f(ξ)

)
g(η)

+
(
−2

∂

∂η

(
η
∂g(η)
∂η

)
+

m2

2η
g(η)− g(η)− Eη g(η)

)
f(ξ) = 0. (2.119)

This is an expression of the form

v(ξ) g(η) + u(η) f(ξ) = 0, (2.120)

which is supposed to hold for all ξ ≥ 0 and η ≥ 0. This can only be the case
if

v(ξ) = c f(ξ), u(η) = −c g(η). (2.121)

Here, c is called the separation constant. We end up with two almost iden-
tical ordinary differential equations:

−2
d

dξ

(
ξ
df(ξ)
dξ

)
+

m2

2ξ
f(ξ)− (1 + c + Eξ) f(ξ) = 0, (2.122)

−2
d

dη

(
η
dg(η)
dη

)
+

m2

2η
g(η)− (1− c + Eη) g(η) = 0. (2.123)

The following solutions are bounded near the coordinate origin:

f(ξ) = e−
√−2E ξ/2 ξ|m|/2

1F1

(1+|m|
2

− 1+c

2
√−2E

, 1+|m|,√−2E ξ
)
, (2.124)

g(η) = e−
√−2E η/2 η|m|/2

1F1

(1+|m|
2

− 1−c

2
√−2E

, 1+|m|,√−2E η
)
. (2.125)

The hypergeometric functions are polynomials if the first argument is an
integer ≤ 0. In this case, we can expect that the solutions are square-
integrable (because of the exponential damping factor). Hence, we obtain
the equations (quantization conditions)

1 + |m|
2

− 1 + c

2
√−2E

= −n1, (2.126)

1 + |m|
2

− 1− c

2
√−2E

= −n2, (2.127)

with n1, n2 ≥ 0. Subtracting these equations leads to
c√−2E

= n1 − n2 (2.128)
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and adding leads to
1√−2E

= n1 + n2 + |m|+ 1. (2.129)

From this, we get immediately that the allowed energies are

E = − 1
2n2

, n = n1 + n2 + |m|+ 1, (2.130)

and the separation constant becomes

c =
n1 − n2

n
. (2.131)

For given integers n ≥ 1 and m with |m| ≤ n− 1, we see that the quantum
numbers n1 and n2 take all values between 0 and nmax = n− |m| − 1. There
are n− |m| choices of n1 and n2. For given n, the quantum number m can
have the 2n− 1 values between −n + 1 and n− 1. Hence, there are

n−1∑
m=−n+1

n− |m| = n2 (2.132)

different solutions belonging to the energy E = −1/(2n2). This is the result
for the degeneracy of the eigenspace obtained earlier. Hence, the solutions
found in this way span the whole corresponding eigenspace.

The solutions in parabolic coordinates are

ψn1,n2,m(ξ, η, ϕ) = Nn1,n2,m fn1,m(ξ/n) fn2,m(η/n) exp(imϕ) (2.133)

with n = n1 +n2 + |m|+1 denoting the principal quantum number and with

fk,m(ζ) = e−ζ/2 ζ |m|/2
1F1(−k, 1 + |m|, ζ). (2.134)

The function fk,m is a regular solution of the equation

2
∂

∂ζ

(
ζ

∂

∂ζ

)
f(ζ) =

m2

2ζ
f(ζ)−

(
2k + 1 + |m| − ζ

2

)
f(ζ). (2.135)

We choose the constant

Nn1,n2,m =
(−1)m

n2 |m|!2

√
(n1 + |m|)! (n2 + |m|)!

π n1!n2!
(2.136)

so that the functions defined in Eq. (2.133) are normalized:∫ ∞

0
dξ

∫ ∞

0
dη

∫ 2π

0
dϕ 1

4 (ξ + η) |ψn1,n2,m(ξ, η, ϕ)|2 = 1. (2.137)

The factor 1
4 (ξ + η) (the Jacobi determinant of the coordinate transforma-

tion) describes the volume element in parabolic coordinates

d3x ≡ 1
4(ξ + η) dξ dη dϕ. (2.138)
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We note that the functions ψn1,n2,m are not only eigenfunctions of the Hamil-
tonian, but simultaneously eigenfunctions of L3. The operator L3 has in
parabolic coordinates the familiar form

L3 = −i
∂

∂ϕ
(2.139)

and therefore

L3 ψn1,n2,m = m ψn1,n2,m. (2.140)

The third component of the Runge-Lenz vector in parabolic coordinates is
given by

K3 =
ξ − η

ξ + η
− 2η

ξ + η

∂

∂ξ

(
ξ

∂

∂ξ

)
+

2ξ

ξ + η

∂

∂η

(
η

∂

∂η

)
+

ξ − η

2ξη

∂2

∂ϕ2
. (2.141)

Using (2.135), it is not difficult to compute K3ψn1,n2,m. A little calculation
shows that ψn1,n2,m is an eigenfunction of the operator K3:

K3 ψn1,n2,m =
n1 − n2

n
ψn1,n2,m. (2.142)

The parabolic eigenfunctions are therefore eigenfunctions of the operators

J±
3 =

1
2

(
L3 ± 1√−2H

K3

)
(2.143)

which we defined in (2.32). We have

J±
3 ψn1,n2,m =

1
2
(
m± (n1 − n2)

)
ψn1,n2,m = m±

j ψn1,n2,m. (2.144)

Because of (2.35), it is clear that the eigenfunctions of H are also eigen-
functions of the operators (J±)2. We conclude that the parabolic eigenfunc-
tions are joint eigenfunctions of the complete set of commuting observables
H, (J±)2, J±

3 . One can obtain these eigenfunctions also by the algebraic
method using the Runge-Lenz vector and the algebra of pseudo-angular-
momentum operators (Sections 2.3 and 1.5).

Exercise 2.16. What is the shape of the nodal surfaces (= set of zeros)
of the functions ψn1,n2,m?

CD 2.25 shows a gallery of the eigenfunctions arising from the sepa-
ration of the Coulomb problem in parabolic coordinates.
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2.7. Physical Units and Dilations

2.7.1. The Coulomb problem in physical units

Because of its great importance, we want to solve the Schrödinger equation
for the hydrogen atom with all physical constants in a given physical system
of units for mass, length, time, and charge. We denote the space and time
coordinates measured in the physical units by x̂ and t̂. The Schrödinger
equation for the Coulomb problem in physical units has the form

i �
∂

∂t̂
φ(x̂, t̂) = − �

2

2m
∆̂φ(x̂, t̂)− γ

|x̂| φ(x̂, t̂). (2.145)

Here, ∆̂ is the Laplace operator where the derivatives are taken with respect
to the coordinates x̂i. The coupling constant γ is, for example, γ = Ze2 (in
the Gaussian system) or γ = Ze2/4πε0 (in the international system, with
e measured in coulomb = ampere×second). As usual, e is the elementary
charge, m is the mass of the particle, and � is Planck’s constant. All these
constants have to be expressed in the given system of units. Some values
and dimensions in the SI are given in Table 2.1.

So far, we have obtained solutions only for the simpler equation

i
∂

∂t
ψ(x, t) = −1

2
∆ψ(x, t)− 1

|x| ψ(x, t). (2.146)

What does this tell about the solutions of Schrödinger equation in physical
units? You will see that the relation between the equations (2.146) and

Table 2.1. Important physical constants in terms of SI base units.

Physical constant Value in SI units
elementary charge e = 1.602176× 10−19 A s
electron mass me = 9.10938× 10−31 kg
proton mass mp = 1.672622× 10−27 kg
speed of light c = 2.99792458× 108 ms−1

Planck’s constant � = 1.054572× 10−34 kgm2 s−1

permittivity of vacuum ε0 = 8.8541878× 10−12A2 kg−1m−3 s4

coupling constant for hydrogen γ0 = 2.30708× 10−28 kg m3 s−2

Bohr radius a0 = 5.2917721× 10−11 m
atomic time unit t0 = 0.242× 10−16 s
atomic energy unit (hartree) Eh = 4.35974× 10−18 kgm2 s−2

Rydberg constant R∞ = 1.0973731534× 107 m−1

fine structure constant α = 7.297352× 10−3 = 1/137.036
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(2.145) is simply given by a change of units. It is always possible to choose
a system of units where �, m, and the Coulomb coupling constant γ all
have the numerical value 1. These units will be called dimensionless units.
Equation (2.146) is the Schrödinger equation in dimensionless units.

After a change of units, the new value for a physical quantity is obtained
from the value in the old units by multiplication with a conversion factor.
If the equations (2.146) and (2.145) are indeed related by a change of units,
we can express x̂ (which is measured, say, in meters) in terms of x (in
dimensionless units) by

x̂ = ax, with a > 0, (2.147)

where the conversion factor a will be chosen appropriately. Because |x| = 1
corresponds to |x̂| = a, we find that a gives the numerical value of the
dimensionless length unit in meters.

In a similar way, we change the unit of time by multiplication with a
conversion factor b,

t̂ = b t, with b > 0, (2.148)
where t̂ gives the time in seconds and b gives the dimensionless time unit in
seconds.

The coordinate transformation x → x̂, t → t̂ induces a transformation
of wave functions according to

ψ(x, t) = φ(x̂, t̂), with x̂ = ax, t̂ = bt. (2.149)

Next, we have to figure out how to convert the Schrödinger equation. We
can use the chain rule to obtain

∂

∂t
ψ(x, t) =

( ∂

∂t̂
φ(x̂, t̂)

) dt̂

dt
= b

∂

∂t̂
φ(x̂, t̂). (2.150)

A similar calculation can be done for the derivatives with respect to the
components of x:

∂

∂xi
ψ(x, t) = a

∂

∂x̂i
φ(x̂, t̂). (2.151)

If we assume that ψ(x, t) satisfies Schrödinger’s equation (2.146) in dimen-
sionless units, we find immediately that φ(x̂, t̂) satisfies the equation

i b
∂

∂t̂
φ(x̂, t̂) = −a2 1

2
∆̂φ(x̂, t̂)− a

1
|x̂| φ(x̂, t̂). (2.152)

By a suitable choice of a, we can achieve that the coefficients in front of ∆̂
and of 1/|x̂| have the same ratio as the physical constants in the Schrödinger
equation (2.145). Thus, we require

�
2/m
γ

=
a2

a
= a, or a = r0 =

�
2

m γ
. (2.153)
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The quantity r0 is called the first Bohr radius of the hydrogenic system.4

With a = r0, the Schrödinger equation (2.152) becomes

i b
∂

∂t̂
φ(x̂, t̂) =

�
2

m γ2

(
− �

2

2m
∆̂φ(x̂, t̂)− γ

|x̂| φ(x̂, t̂)
)
. (2.154)

Now we can choose the time-conversion factor

b = s0 =
�

3

m γ2
(2.155)

and multiply the resulting equation by m γ2/�
2. This converts Eq. (2.154)

into the Schrödinger equation in physical units, Eq. (2.145).
You can compute the physical dimensions of the quantities

x =
x̂
r0

=
m γ

�2
x̂, t =

t̂

s0
=

m γ2

�3
t̂ (2.156)

by inserting the dimensions of � (= energy × time), m (= mass), and γ (=
mass length3 / time2). You will find that all dimensions cancel out. We say
that x and t are dimensionless quantities.

Our result states that you can always replace the Schrödinger equation
in physical units by the equation in dimensionless units, thereby getting rid
of physical constants. You just have to measure lengths in units of r0 and
times in units of s0.

The Bohr radius r0 sets the length scale of atomic phenomena. Note that
the radial oscillations of the wave function will take place in a neighborhood
of the minimum of the effective radial potential

Veff(r) =
�

2

2m
�(� + 1)

r2
− γ

r
. (2.157)

A little calculation shows that the minimum of the effective potential is at
r = �(� + 1) r0.

Let us now consider the hydrogen atom in Bohr’s model, for which we
have m = me and Z = 1. In this case, we denote the Coulomb coupling
constant by γ0, the Bohr radius by a0, and the time unit s0 by t0, that is

γ0 =
e2

4πε0
, a0 =

�
2

me γ0
, t0 =

�
3

me γ2
0

. (2.158)

The values of these quantities in SI units are given in Table 2.1.
The dimensionless units for the hydrogen atom in the Bohr model are

usually called atomic units. In atomic units, the mass of the electron is
me = 1, also, Planck’s constant and the Coulomb coupling constant γ0 have

4Here, we have γ proportional to Z ≥ 1. In case of a hydrogen atom (Z = 1), the
Bohr radius is denoted by a0.
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the value 1. Hence, Bohr’s radius for the hydrogen atom is the atomic length
unit and t0 is the atomic time unit.

The dimension of the Coulomb coupling constant is (mass) × (length)3 /
(time)2, as you can see from Table 2.1. We can combine γ0 with the physical
constants � and c (the speed of light) into a dimensionless quantity,

α =
γ0

�c
= 1/137.036 (2.159)

which is called Sommerfeld’s fine structure constant. Because this quantity
is dimensionless, it has the same numerical value with respect to all systems
of units. From this value, we can therefore compute the value of c in atomic
units, where � = e = 1. We obtain immediately that

c = 137.036 is the velocity of light in atomic units. (2.160)

The energies and eigenfunctions in SI units will be discussed in Sec-
tion 2.7.3 below.

Exercise 2.17. Convert the speed of light from the SI to atomic units
using a scaling transformation with a = a0 and b = t0 as given in (2.158),
and verify the value of c by a direct computation.

Exercise 2.18. Verify in a similar way that � has the numerical value
1 in atomic units.

Exercise 2.19. Assume that you live in a universe where � has the value
1.0546 × 10−27 kgm2 s−1 instead of the value given in Table 2.1. How large
is a hydrogen atom in this universe (assuming that mass and charge have
their usual values)?

Exercise 2.20. Assume that ψ(x) is an eigenfunction of the Coulomb
Hamiltonian in dimensionless units belonging to the eigenvalue E. Perform
a scaling transformation x̂ = x/a0 and show that the eigenvalue parameter
of the stationary Schrödinger equation in SI units is mγ2E/�

2.

2.7.2. Scaling transformations

In the Hilbert space of wave functions, a change of units induces a linear
transformation, called a scaling transformation or dilation.

Given a wave function φ, we define a scaled wave function ψ by

ψ(x) = Nλ φ(λx), (2.161)

with a suitable normalization constant Nλ. Conversely, we can express φ in
terms of ψ by

φ(x̂) =
1

Nλ
ψ
( x̂

λ

)
. (2.162)
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We choose the constant Nλ such that ψ is normalized whenever φ is normal-
ized. The norm of ψ is

‖ψ‖2 =
∫
|ψ(x)|2 d3x = N2

λ

∫
|φ(λx)|2 d3x. (2.163)

Substituting x̂ = λx and d3x̂ = λ3 d3x, we find

‖ψ‖2 = N2
λ

∫
|φ(x̂)|2 d3x̂

λ3
=

N2
λ

λ3
‖φ‖2. (2.164)

We see that the linear transformation φ → ψ is norm-preserving (that is,
unitary) if we define

Nλ = λ3/2. (2.165)

Dilations:

The linear operators Uλ : φ → ψ, defined on L2(R3) by

ψ(x) = (Uλ φ)(x) = λ3/2 φ(λx) for λ > 0, (2.166)

are called scaling transformations or dilations. They are unitary in the
Hilbert space L2(R3). The inverse transformation is

U−1
λ = U †

λ = U1/λ. (2.167)

The unitary transformation Uλ induces a transformation of linear oper-
ators in the usual way, A → U †

λ A Uλ. Let us now compute the effect of a
scaling transformation on the Hamiltonian. First, we compute the action of
−i∇ (the momentum operator) on a scaled wave function

(−i∇)(Uλφ)(x) = λ3/2(−i∇)φ(x̂) with x̂ = λx

= λ3/2λ(−i∇̂φ)(x̂) by the chain rule

= λ
(
Uλ(−i∇φ)

)
(x) by the definition of Uλ. (2.168)

This is the three-dimensional analog of (2.151). Multiplying everything by
the inverse U−1

λ = U †
λ from the left gives (on the domain of ∇)

U †
λ (−i∇) Uλ = λ (−i∇). (2.169)

Now it is easy to derive the corresponding transformation of the Laplacian
operator −∆ = (−i∇)2 (and hence for the kinetic energy). We obtain im-
mediately

U †
λ (−∆) Uλ = λ2 (−∆). (2.170)

We may also write this in the form

∆(Uλφ)(x) = λ3/2 λ2 ∆̂φ(x̂), (2.171)
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where ∆̂ denotes the Laplacian with respect to x̂ = λx.
The potential energy 1/|x| behaves as follows:

1
|x|Uλφ(x) = λ3/2 1

|x| φ(λx) = λ3/2 λ
1
|x̂| φ(x̂). (2.172)

Hence, we find
1
|x|Uλφ(x) = λUλ

1
|x| φ(x), (2.173)

or, after applying Uλ to both sides of the equation,

U †
λ

1
|x| Uλ = λ

1
|x| . (2.174)

2.7.3. Energies and eigenfunctions in physical units

The transitions between physical and dimensionless units discussed in Sec-
tion 2.7.1 are examples for the application of the scaling transformation Uλ.
Consider, for example, the stationary Schrödinger equation in dimensionless
units,

−1
2

∆ψ(x)− 1
|x| ψ(x) = E ψ(x). (2.175)

Writing ψ(x) = Uλ φ(x), we find (after dividing the whole equation by λ3/2)

−λ2

2
∆̂φ(x̂)− λ

|x̂| φ(x̂) = E φ(x̂). (2.176)

Here, we have used (2.171) and (2.173). With λ = r0 as in (2.153), we obtain
the stationary Schrödinger equation in physical units

− �
2

2m
∆̂φ(x̂)− γ

|x̂| φ(x̂) = Ê φ(x̂), (2.177)

where x̂ = r0 x and

Ê =
mγ2

�2
E =

γ

r0
E. (2.178)

Hence, from our knowledge of the Coulomb Hamiltonian in dimensionless
units, we can immediately obtain eigenvalues and eigenfunctions of the
Coulomb Hamiltonian in physical units. In the same way, we obtain via
a scaling transformation the eigenvalues and eigenfunctions in any given
system of units, provided we know the conversion factor corresponding to
r0.

The stationary Schrödinger equation in physical units (2.177) has the
eigenvalues

Ên =
mγ2

�2
En =

mγ2

2�2n2
= Z2RHhc

1
n2

, n = 1, 2, 3, . . . . (2.179)
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Here, we have introduced the Rydberg constant for hydrogen (see also (2.1))

RH =
mγ2

0

4π�3c
. (2.180)

Inserting for m the reduced mass memp/(me + mp) of the electron-proton
system, one obtains the value RH ≈ 1.09678× 10−7m, which agrees with the
spectroscopically determined value. In the Bohr model of the hydrogen, one
sets m = me and defines the Rydberg constant

R∞ =
meγ

2
0

4π�3c
. (2.181)

The value of this constant is given in Table 2.1.
The atomic energy unit is the hartree

Eh =
meγ

2
0

�2
. (2.182)

All eigenvalues obtained in dimensionless units have to be multiplied by this
factor if we want to know the energies of the hydrogen atom according to
Bohr’s model (with infinite proton mass). In physical units, the energies of
the hydrogen atom according to the Bohr model are

En = − 1
2n2

Eh = −meγ
2
0

2�2n2
= −γ0

a0

1
2n2

= −R∞hc

n2
. (2.183)

Another often used energy unit in atomic physics is the electron volt,
1 eV = 1.60218 × 10−19 J, approximately. With Table 2.1, we compute the
ground state energy of the hydrogen as

E1 = −Eh/2 = R∞hc = 2.17987× 10−18 J = 13.60569 eV (2.184)

Via the scaling transformation Ur0 (with r0 being the Bohr radius), we
can immediately find the normalized eigenfunctions of a hydrogenic atom,
given the normalized eigenfunctions (2.69) in dimensionless units. Whenever
ψ is a solution in dimensionless units, then φ = U †

r0 ψ is a solution of (2.177):

φn,�,m(x̂) =
( 1

r0

)3/2
ψn,�,m

( x̂
r0

)
. (2.185)

Note that the angular part Y m
� of the eigenfunction is not affected by the

scaling transformation.

Exercise 2.21. Show that in n space dimensions, the definition of the
unitary scaling transformation has to be replaced by (Uλ φ)(x) = λn/2 φ(λx).
Show that the equations (2.169), (2.170), and (2.174) are independent of the
space dimension.
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Exercise 2.22. Consider a hydrogenic atom, where the electron has been
replaced by a muon. The muon has the mass 206.8 me, charge e, and a life-
time of about 2.2× 10−6 s. Determine the Bohr radius and the energy levels
and compare the muonic atom with an electronic atom.

2.7.4. The generator of dilations and the virial theorem

A composition of two scaling transformations Uλ and Uµ gives again a dila-
tion:

Uλ1 Uλ2 ψ(x) = (λ1λ2)3/2 ψ(λ1λ2 x) = Uλ1λ2 ψ(x). (2.186)

The scaling parameter should always be positive (otherwise the dilation
would include a reflection about the origin). Hence, we write λ = eθ and
denote the dilation operators by

U(θ) = Uexp(θ), U(θ)φ(x) = e3θ/2 ψ(eθx) with θ ∈ R. (2.187)

Then the composition law (2.186) and the properties of the exponential
function imply

U(θ1) U(θ2) = U(θ1 + θ2). (2.188)

The operators U(θ), θ ∈ R, form a (strongly continuous) unitary group. The
infinitesimal generator can be determined by computing

d

dθ
U(θ)ψ

∣∣∣
θ=0

= D ψ (2.189)

for differentiable wave functions ψ. We obtain the following result (see Ex-
ercise 2.23 below).

The dilation generator:

The generator of the dilation group U(θ), θ ∈ R, is the operator

D =
1
2
(x · p + p · x). (2.190)

It is self-adjoint (on a suitable domain) and

U(θ) = Uexp(θ) = exp(−iDθ). (2.191)

Exercise 2.23. Verify that the operator D is the generator of the dilation
group.

With the help of the dilation generator, we can derive a useful result,
the virial theorem. Whenever ψ is a stationary state, then there exists a
number E with Hψ = Eψ. Evaluating the commutator of the Hamiltonian
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H = p2/2 + 1/|x| with the generator of dilations D = (x · p + p · x)/2, we
find

i [H,D] = p2 − 1
|x| = 2H0 − 1

|x| . (2.192)

Here. H0 is the operator of kinetic energy. But the expectation value of the
commutator in an eigenstate is zero,

〈ψ, [H,D]ψ〉 = 〈Hψ,Dψ〉 − 〈Dψ,Hψ〉
= E(〈ψ, Dψ〉 − 〈ψ, Dψ〉) = 0. (2.193)

The calculation above is valid for ψ in the intersection of the domains of H
and D. (This is always the case for eigenfunctions with negative energy as
one can infer from their explicit form given above). Thus

2〈ψ, H0 ψ〉 = 〈ψ,
1
|x|ψ〉, (2.194)

which means that for bound states in a Coulomb field, the expectation value
of the potential energy is minus twice the expectation value of the kinetic
energy. Therefore, the total energy satisfies

E = 〈ψ, H ψ〉 = 〈ψ, H0 ψ〉 − 〈ψ,
1
|x|ψ〉

= −〈ψ, H0 ψ〉 = −1
2
〈ψ,

1
|x|ψ〉. (2.195)

Ψ A technical refinement of this argument generalizes it to arbitrary
bound states, not just states in the common domain of H and D.

In this generalized form, the consideration above can be used to prove that
bound state energies of the Coulomb Hamiltonian are always negative. That
is, there are no stationary states with positive energy in the Coulomb field.
This statement is based on our choice of the zero of energy (which is charac-
terized by V (x) → 0, as |x| → ∞). We could always shift the energy scale by
adding or subtracting a constant potential, thereby producing bound states
with positive energy. Physically, it is therefore more appropriate to say
that the Coulomb system has no bound states above the so-called ionization
threshold.

The result (2.195) for the Coulomb potential can be generalized to arbi-
trary (differentiable) potentials:

The virial theorem:

Let H = H0 + V with H0 = p2/2 and V a differentiable function of
x ∈ R

3. Suppose that Hψ = Eψ. Then

2 〈ψ, H0 ψ〉 = 〈ψ,x · ∇V ψ〉. (2.196)
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Equation (2.194) agrees with (2.196), because for V (x) = −1/|x| we have
x · ∇V (x) = 1/|x| (for x �= 0).

Exercise 2.24. Prove the virial theorem by mimicking the corresponding
proof for the Coulomb potential.

Exercise 2.25. Show that the total energy E of a classical particle mov-
ing with angular speed ω on a circular orbit in a Coulomb field is

E =
mr2ω2

2
− γ

r
. (2.197)

Eliminate ω from this expression using the fact that the Coulomb force is
equal in magnitude to the centrifugal force, and prove the formula

2E = −γ

r
. (2.198)

2.8. Special Topic: Dynamics of Rydberg States

The time evolution in quantum mechanics is unitary and hence quite
the opposite of a chaotic motion. Nevertheless, the motion of a su-
perposition of several bound states can appear arbitrarily compli-
cated. CD 2.20 shows a superposition of just four eigenstates. A few
examples in two dimensions are presented in the movies CD 2.10.
The examples in CD 2.11 give a detailed analysis of Gaussian wave
packets projected onto the subspace of bound states.

The time evolution of a wave packet belonging to the subspace of bound
states,

Ψ(r, ϑ, ϕ, t) =
∞∑

n=1

n−1∑
�=0

�∑
m=−�

cn,�,m φn,�,m(r, ϑ, ϕ) exp(−iEn t) (2.199)

is, in general, very complicated. But in this section, we are going to consider
very special states of the form

Ψ(r, ϑ, ϕ, t) =
∞∑

�=0

c� ψ�+1,�,�(r, ϑ, ϕ) exp(−iE�+1 t). (2.200)

These wave functions have the following property: The radial quantum num-
ber nr = n − � − 1 is always zero. This implies that in each summand, the
radial part has no zeros and precisely one maximum near r = �(� + 1). The
magnetic quantum number is maximal. In each summand, the angular mo-
mentum is as vertical as possible. That is, the particle is most likely to be
found near the polar angle ϑ = π/2.
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We make one further restriction. We assume that the coefficients c� are
nonzero only in an �-interval �0−∆ ≤ � ≤ �0 + ∆ around some large �0, and
�0 � ∆. Hence, Ψ is of the form

Ψ(r, ϑ, ϕ, t) =
�0+∆∑

�=�0−∆

c� ψ�+1,�,�(r, ϑ, ϕ) exp(−iE�+1 t). (2.201)

Coulomb states of this type are often called circular Rydberg states.
These states can serve as a simple model for a Rydberg atom. An atom
with Z electrons can become a Rydberg atom when its outermost electron
is excited to a very high energy level. This electron is then in an orbit far
outside the core formed by the nucleus and the remaining electrons. To the
excited electron, the core appears as a “nucleus” with charge e. As long as
the electron does not get too close to the core, it behaves like the electron
of a hydrogen atom.

The states ψ�+1,�,� have the following structure:

ψ�+1,�,�(r, ϑ, ϕ) = (−1)� h�(r) y�(ϑ)
ei�ϕ

√
2π

(2.202)

with

h�(r) =
2�+1

(� + 1)�+2
√

(2 � + 1)!
exp

(
− r

� + 1

)
r�, (2.203)

y�(ϑ) =

√
(2� + 1)!
2� �!

√
2

sin�(ϑ). (2.204)

CD 2.21.1 shows the angular functions y� for 50 ≤ � ≤ 300. All
these functions are similar to Gaussians centered at ϑ = π/2 (see
also Figure 2.11). CD 2.21.2 shows the radial parts h� for 60 ≤ � ≤
140. These functions also resemble Gaussian functions (centered at
r = �(�+1)). CD 2.21.3 illustrates that for � close to �0, the function
h� becomes similar to h�0 , as �0 becomes large (see also Figure 2.12).

For � large, the distance between functions y� and y�+1 becomes small.
Figure 2.11 illustrates this fact. Hence, within the range �0 − ∆ ≤ � ≤
�0 + ∆, all functions y� are more or less similar to y�0 . Also, as indicated
by numerical computations, the distance between the functions h� and h�+1

tends to become small with increasing � (see Fig. 2.12). Thus, for large �0,
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Figure 2.11. The angular functions y�(ϑ) for � in an inter-
val of length 20 around �0 = 30 (left image) and �0 = 100
(right image). For large �0, the functions become similar to
a Gaussian centered at ϑ = π/2.

we make only a small error by rewriting (2.201) as follows:

Ψ(r, ϑ, ϕ, t) =
�0+∆∑

�=�0−∆

c� (−1)� h�(r) y�(ϑ)
ei�ϕ

√
2π

exp(−iE�+1 t)

≈ h�0(r) y�0(ϑ)
�0+∆∑

�=�0−∆

c� (−1)� ei�ϕ

√
2π

exp(−iE�+1 t)

= h�0(r) y�0(ϑ) g(ϕ, t). (2.205)

The radial function h�0 has its single maximum at rmax = �0(�0 +1), and the
angular function y�0 has its maximum at ϑ = π/2. For large �0, the functions
h�0 and y�0 both resemble Gaussian functions, which is also apparent from
Figures 2.11 and 2.12. More precisely,

h�0(r) ≈ N�0 exp
(
−(r − �0(�0 + 1))2

2�0(�0 + 1)2
)
. (2.206)

The approximation is with respect to the distance in L2([0,∞)). The form
of the exponent is obtained by comparing the second derivatives of h�0(r)
and N�0 exp

(−k(r − rmax)
)

at r = rmax. For the angular function we write

y�0(ϑ) ≈M�0 exp
(
−�0

2
(
ϑ− π

2
)2
)
. (2.207)

Hence, our wave packet can be described as follows: It is a product of
(approximately) Gaussian wave functions in r and ϑ and a time-dependent
function of ϕ. We are now going to investigate the function g in (2.205).
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Figure 2.12. The radial functions h�(r) for � in an interval
of length 20 around �0 = 100 (left image) and �0 = 2000
(right image). For large �0, the functions become similar to
a Gaussian centered at r = �0(�0 + 1).

Writing � = �0 + k and using k instead of � as the summation index, we
obtain

g(ϕ, t) = ei�0ϕ
+∆∑

k=−∆

dk
eikϕ

√
2π

exp(−iE�0+k+1 t). (2.208)

Here, the coefficients d� determine the shape of the initial function

g0(ϕ) = g(ϕ, 0) = ei�0ϕ 1√
2π

∆∑
k=−∆

dk eikϕ. (2.209)

This is a simple Fourier sum describing a function that is 2π-periodic in ϕ
(Fourier series are treated in Book One, Chapter 2). Choosing, for example,

dk ≈ exp
(
− k2

2∆

)
, (2.210)

we find that g0 approximates a Gaussian function centered at ϕ = 0.

The movie CD 2.21.4. shows the time evolution of the angular part
g(ϕ, t) with a Gaussian distribution of coefficients around �0 = 90,
and with ∆ = 10. You can see the motion of Ψ(r, ϑ, ϕ, t) in the
xy-plane in CD 2.22.1. Neglecting the radial motion for �0 = 90 is
a rather crude approximation. This approximation is much better
for higher angular momenta. This is shown for the wave packet with
�0 = 300 in CD 2.22.2.
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Any finite superposition of eigenstates is periodic in time, because the
ratio between any two Coulomb-energies is a rational number. A finite su-
perposition contains the time factors

exp
(
i

1
2n2

j

t
)
, nj = nrj + �j + 1, j = 1, . . . , k (2.211)

(nj are the principal quantum numbers of the states in the superposition).
The interval of periodicity is determined by the first time t = T0, for which
all time factors are 1. That is, all exponents must be integer multiples of
2π. Hence, the period T0 of the wave function is the smallest number t such
that t/(2n2

j ) = 2πmj with integers mj , and

T0 = 4π LCM(n1, n2, . . . , nk), (2.212)

where LCM denotes the least common multiple. If there are more than a
few states in the superposition, this period is too large to be of any practical
importance. For a superposition of the 21 states with nr = 0 and 1990 ≤
� ≤ 2010, the time-period is

T ≈ 2.4× 10114. (2.213)

There are, however, much smaller times at which the system returns to the
initial state in an approximate sense. Let us rewrite the energy as

E�0+k+1 =
1

2(�0 + k + 1)2
≈ 1

2(�0 + k)2
=

1
2�2

0 (1 + k/�0)2
. (2.214)

For k ∈ [−∆,∆] and �0 � ∆, we find that k/�0 is small. Hence, we can
expand the energy as

E�0+k+1 ≈ 1
2�2

0

− k

�3
0

+
3
2

k2

�4
0

+ O
( 1

�5
0

)
. (2.215)

Assuming that t is not too large (such that t/�5
0 � 1), we may approximate

the time factor in (2.208),

exp(−iE�+1t) ≈ exp
(
−i

1
2�2

0

t
)

exp
(
i

k

�3
0

t
)

exp
(
−i

3
2

k2

�4
0

t
)
. (2.216)

The first exponential is just an overall phase factor. We can ignore it in the
evolution of the state. The second factor is periodic with a period

T0 = 2π�3
0. (2.217)

This is precisely the relation between angular momentum and time period
for a circular orbit in the classical Coulomb problem. As long as the third
exponential factor in (2.216) may still be neglected, the time evolution of the
function g in (2.209) is essentially a multiplication of the coefficients d� with
the exponential factor exp(i kt/�3

0). This simply amounts to a translation
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with respect to ϕ, that is, g(ϕ, t) ≈ g(ϕ − t/�3
0) (up to a phase factor of

modulus 1). We see that (in a first approximation for small times) the
initial wave packet just rotates around the origin with angular speed 1/�3

0,
thereby retaining its shape.

CD 2.22.1 and 2.22.2 show that an initial function of the type de-
scribed in this section moves on a circular orbit, revolving around the
center of force several times. After a few cycles, the wave packet has
spread along its orbit because the influence of the last exponential in
(2.216) cannot be neglected any longer. The wave packet behaves in
a more quasiclassical way if the average angular momentum is higher
(see CD 2.23.1).

The last exponential factor in (2.216) usually cannot be neglected any
longer after a few periods T0. Its presence will distort the shape of the initial
function, causing it to spread along its orbit. This exponential becomes equal
to 1 again after the time

T1 =
2
3

�4
0 π =

�0

3
T0. (2.218)

For �0 large enough, the condition t/�5
0 � 1 is satisfied even for t ≈ T1, and

we may still neglect higher-order terms in (2.216). As a consequence, the
time evolution becomes simple again, and the shape of the initial state is
restored at time T1. This is called a revival of the initial state.

CD 2.22.3 shows the wave packet with �0 = 300 at times that are
integer multiples of T0. You can observe the approximate revival
of the initial state at T1 ≈ 100T0. In CD 2.23, you can see the
angular motion g(ϕ, t) with average angular momentum �0 ≈ 2000
showing a much “cleaner” revival of the initial state (because the
condition t/�50 � 1 is well satisfied). In all these examples, the wave
packet stays close to a circular orbit in the xy-plane (with a sharp
ϑ-distribution around ϑ = π/2. Hence, these states behave as if they
were solutions of the two-dimensional Coulomb problem. Examples
of the two-dimensional motion are shown in CD 2.24.

For �0 = 300, we find that

T1 ≈ 1.7× 1010. (2.219)

This might seem a long time, but in SI units this is still only 4 × 10−7 s,
which is a realistic lifetime for a Rydberg state. Actually, Rydberg states
have a very low probability for spontaneous decay. Hence, they can have a
surprisingly long lifetime up to 10−4 s. (This is extremely long compared to
the typical lifetimes of low-lying energy levels, which is about 10−8 s). We
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finally note that the radius of the circular orbit with �0 = 300 would be
9× 105 in atomic units, hence about 4.8× 10−6 m.

Exercise 2.26. Show that the arguments in this section also apply to
the two-dimensional Coulomb problem.



Chapter 3

Particles with Spin

Chapter summary: This chapter introduces the spin as an important intrinsic
property of electrons. We discuss, in particular, some results that are relevant for
atomic physics. More results will be presented from a slightly more abstract point
of view in Chapter 4.

We start by describing the connection between angular momentum and mag-
netic moment according to classical electrodynamics. Then we proceed to discuss
the Stern-Gerlach experiment, which can only be explained by assuming that the
state of an electron is characterized by the eigenvalues of a spin operator S. This
spin operator has the properties of an angular momentum, but half-integer eigen-
values.

In Section 3.5, we describe the mathematical consequences of this assumption.
We construct a Hilbert space for particles with spin 1/2 and define the operators
describing the components of the spin.

In Section 3.6, we define the Pauli operator, that is, the Hamiltonian for a
spin-1/2 particle in an external field. We discuss the solutions in a constant, homo-
geneous magnetic field, thereby generalizing results from Book One in Section 3.7.
An important difference from the results without spin is the occurence of bound
states with zero energy. This phenomenon also occurs for nonhomogeneous mag-
netic fields and for certain situations in three dimensions (Section 3.8).

The spin is most important for understanding finer details of the spectrum of
hydrogenic atoms. In Section 3.9, we introduce the spin-orbit coupling and describe
the spinor eigenfunctions of the hydrogen atom and the structure of the energy
spectrum.

3.1. Introduction

The description of an elementary particle by a wave function that is a func-
tion of the position (or momentum) alone is often insufficient. In a more
realistic model, one has to use wave functions with a more complicated
structure. A first experimental evidence that electrons have to be character-
ized by additional quantum numbers came from spectroscopic observations.
The doublet fine structure splitting in the spectra of one-electron atoms led
Goudsmit and Uhlenbeck in 1925 to the suggestion that electrons should
have an intrinsic angular momentum which was called the spin. The spin is
a very important property of electrons and other elementary particles, and
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it is crucial for the explanation of many phenomena. For example, together
with the Pauli principle, the spin accounts for the structure of the periodic
system of elements.

The spin is associated with the magnetic moment of the electrons. Hence,
it influences the motion of electrons in an inhomogeneous magnetic field. In
1922, Stern and Gerlach used this effect to measure the magnetic moment
(see Section 3.3).

The spin is an observable with the dimension of an angular momentum.
The total angular momentum, which is the vector sum of the spin and the
orbital angular momentum, is a conserved quantity in rotationally symmet-
ric situations. But despite the fact that the spin is an angular momentum, it
cannot be attributed to a rotational motion of the electron. A rotating par-
ticle must have some extended structure—a spinning point is meaningless.
But if we assume that the electron is a rigid rotator (the quantum mechan-
ical model for a rotating extended structure), then the electron’s angular
momentum would have properties that are very different from the observed
properties of the electron spin. Such a mechanistic model of the spin and the
magnetic moment of the electron would fail. According to our present-day
knowledge, there is no hint that electrons are something else than point-like1

particles with mass and charge.
The most striking difference between the spin angular momentum and

the orbital angular momentum is the following. Whereas for the orbital
angular momentum L the possible eigenvalues are given by non-negative
integer values of the angular-momentum quantum number �, one finds that
the quantum number describing the spin of an electron must be 1/2. This
is a nice example of Theorem 1.1, which already stated the possibility of
half-integer quantum numbers.

While this section concentrates on the description of the electron, we
would like to emphasize that most elementary particles have a nonvanish-
ing spin. For example, the most familiar particles like neutrons, protons,
quarks, positrons, muons, and neutrinos all have spin 1/2 like the electron,
whereas some mesons and the photon have spin 1. The spin is indeed an
omnipresent phenomenon in elementary particle physics. We also note that
particles with half-integral spin are called fermions, and particles with inte-
ger spin (including zero) are called bosons. This classification refers to the
different behavior of systems composed of several identical particles and will
be discussed further in Section 5.9.

1The wave function is an extended structure, but it describes the position probability
density of a point-like particle.
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3.2. Classical Theory of the Magnetic Moment

3.2.1. Magnetic moment of an extended particle

Consider a rigid rotating body in classical mechanics. We denote (for the
moment) by Lint the angular momentum measured with respect to a non-
rotating frame of reference that is attached to the center of mass of the body.
Let us assume that the dimensions of the body are negligible in comparison
to the other dimensions in the experimental setup. In this case, the body is
called a particle, and Lint is called the internal angular momentum or spin
of the particle. The internal angular momentum Lint is to be distinguished
from the orbital angular momentum L due to the center-of-mass motion.
The orbital angular momentum of the body is L = x × p, where x is the
position of the center of mass, and p is the total momentum of the body.
The total angular momentum of the body is given by J = L + Lint.

If electric charges are distributed over a spinning body, then the rev-
olution around the center of mass causes circulating currents. According
to classical electrodynamics, a circular current is the origin of a magnetic
moment µ. A magnetic moment may interact with external electromagnetic
fields (as described below) even if the body as a whole is neutral. Hence,
the internal angular momentum of a particle may have a notable influence
on its center-of-mass motion.

As an example, consider the classical model of the hydrogen atom, where
an electron with charge q = −e and with mass me moves on a circular orbit
with orbital angular momentum Le around a heavy2 nucleus (a proton). As
a whole, the atom is a neutral particle, because the nucleus has the charge
+e. The nucleus is assumed to be at rest in the center-of-mass frame of
the atom. Hence, the internal angular momentum Lint of the atom comes
entirely from the motion of the electron, that is, Lint = Le.

According to classical electrodynamics (see, for example, Jackson’s book
[3]), a charge q with mass m and angular momentum L has the magnetic
dipole moment

µ =
q

2m
L =

q�

2m
L
�

. (3.1)

The factor appearing in front of L/� is called magneton.3 For an electron,

2By “heavy” we mean that it is a good approximation to neglect the influence of the
electronic motion on the motion of the nucleus.

3This expression depends on the chosen system of units. In the SI used here, the unit
of a magneton is A m2 (current × area). In the Gaussian system, a magneton is given by

q�/2mc and its unit is g1/2 cm5/2 s−1.
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we set q = −e and m = me and obtain

µe = −µB
L
�

, with µB =
e�

2me
. (3.2)

Here, µB is called the Bohr magneton. Its value (in SI units) is

µB = 9.274009× 10−24 A m2. (3.3)

In general, it will be necessary to write

µ = g
q�

2m
L
�

, (3.4)

with a dimensionless factor g, called the Landé g-factor. It is undetermined
and can be used to fit µ to its experimentally measured value. In classical
physics, the g-factor could be needed to describe the magnetic moment of
an extended spinning body in a phenomenological way, because the relation
between angular momentum and circular current depends on the details of
the distributions of charge and mass.

The Landé g-factor determines the gyromagnetic ratio γ, which is defined
as the ratio of the magnetic moment to the angular momentum,

γ =
|µ|
|L| . (3.5)

For the orbital motion of a classical electron we have g = 1, and the gyro-
magnetic ratio is e/(2me).

3.2.2. The influence of an external magnetic field on a magnetic
moment

Perhaps the most common realization of a magnetic moment is the needle
of a compass. A magnetic field tries to turn the needle in the direction of
the field lines. In a more quantitative way, this action of the magnetic field4

B on a magnetic moment µ is described by a torque

τ = µ×B. (3.6)

A particle with magnetic moment also possesses an internal angular mo-
mentum Lint, and hence the particle acts as a gyroscope. The reaction of a
gyroscope to a torque is described in the classical mechanics of rigid bod-
ies. It is found that a torque τ changes the angular momentum Lint of a
gyroscope according to

dLint

dt
= τ . (3.7)

4What is called here “magnetic field” and denoted by B is often called magnetic
induction or magnetic flux density. In the SI, B is measured in units of Tesla, 1T =
1kg s−2 A−1. The expression “magnetic field” often refers to the quantity H. In vacuum,
however, the fields B and H are strictly proportional.
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Combining Eqs. (3.6) and (3.7) with (3.4), we obtain the following equation
for the motion of the magnetic moment

dµ

dt
= g

q

2m
µ×B. (3.8)

This equation describes a precession about the direction of B. The magnetic
moment µ remains at a fixed angle with respect to B, and the length of the
vector µ remains constant, because the change dµ/dt is always orthogonal
to both µ and B.

Whereas a torque changes the direction of µ, it does not influence the
center-of-mass motion of the particle. But an inhomogeneous magnetic field
actually excerts a force on a particle with a magnetic moment. This effect
can be used to measure µ, as you will learn in the next section. If the particle
as a whole is neutral, the force is just given by5

F(x) = ∇(
µ ·B(x)

)
. (3.9)

This can be interpreted as the negative gradient of a potential energy,

Vmgn = −µ ·B(x). (3.10)

For convenience, we collect our results in the following box.

Magnetic moment in a magnetic field:

Consider a classical neutral particle with mass m and a magnetic moment
µ that is related to an internal angular momentum according to

µ = g
q

2m
L. (3.11)

Then the motion of the particle in a magnetic field B(x) is determined
by

d

dt
p(t) = ∇(

µ(t) ·B(x(t))
)
,

d

dt
x(t) =

1
m

p(t), (3.12)

d

dt
µ(t) = g

q

2m
µ(t)×B(x(t)). (3.13)

Exercise 3.1. According to classical electrodynamics, the magnitude of
the magnetic moment µ in a closed plane circuit is

µ = current× area, (3.14)

5A derivation of this formula can be found in textbooks about electrodynamics, see,
e.g., [3], Chapter 5.
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and the direction of µ is perpendicular to the plane of the current loop.
Assuming that the current is generated by a single charge q (with mass m)
moving on a circle, show that (3.14) is equivalent to µ = (q/2m) L.

Exercise 3.2. Can you suggest how the equations of motion (3.12)
should be modified if the particle is not neutral?

Exercise 3.3. Using Eq. (3.13), show that |µ| is a constant of motion.

Exercise 3.4. Consider a neutral particle with magnetic moment µ.
At time t = 0, the particle is at the origin with velocity in the positive x-
direction. Assume that the magnetic field B has only a z-component near
the xz-plane, that is, B(x) = (0, 0, B(x)) for x = (x, 0, z). For the sake of a
simple model, assume that only the third component of B has a nonvanishing
gradient, and let ∇B(x) = (0, 0, f) for x = (x, 0, z) in the xz-plane. Find
the classical motion of the particle. In particular, show that the trajectory of
the particle stays in the xz-plane for all times and that the z-component of
µ remains constant.

The influence of an inhomogeneous magnetic field on a classical neu-
tral particle with a magnetic moment is shown in CD 3.1. The first
movie CD 3.1.1 shows the acceleration in the direction of the field
gradient in a simple model case. The situation of Exercise 3.4 is
described in CD 3.1.2. The following movie CD 3.1.3 shows a rather
chaotic motion in the field B(x) = (0,−y, z). For a larger z compo-
nent, the motion becomes simple again, as shown in CD 3.1.4.

3.3. The Stern-Gerlach Experiment

From the discussion in the previous section, it should be clear that an inves-
tigation of the magnetic moment could give some hints about the internal
structure of atoms. Already in the year 1921, Otto Stern and Walther Ger-
lach designed an apparatus for measuring the magnetic moment of atoms
and molecules. The experimental arrangement is schematically depicted in
Figure 3.1. A beam of neutral particles (atoms or molecules) is sent through
the strongly inhomogeneous magnetic field provided by a magnet with a
pointed pole tip. If the particles carry a magnetic moment, then we expect
an influence of the magnetic field on the motion of the particles.

Now, let us look at this experiment more closely. The design of the pole
pieces should guarantee that near the symmetry plane of the magnet (which
we take as the xz-plane), the magnetic field points in the vertical direction
(the z-direction) and increases strongly with increasing z (see Fig. 3.2(a)).
We assume B(x) = (0, 0, B(z)) (on the xz-plane inside the apparatus), with
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Source

Screen

Stern-Gerlach
apparatusBeam of particles

xy

z

Figure 3.1. Schematic setup of a Stern-Gerlach experiment
for measuring the spin. Particles in a strongly inhomogeneous
magnetic field are deflected according to the component of the
magnetic moment in the direction of the gradient of B.

a large positive z-component B(z) that increases with z (that is, ∇B(z)
points in the same direction as B). The force on a neutral particle near the
symmetry plane is then approximately given by

F(x) = ∇(
µ ·B(x)

)
= ∇(

µz B(z)
)

= µz∇B(z). (3.15)

Ψ According to the Maxwell equations, a magnetic field with the proper-
ties required above does not exist. For a magnetic field with a vanishing

x-component, Maxwell’s equation ∇ · B = 0 requires ∂B3/∂z = −∂B2/∂y.
You can see this in Figure 3.2(a). The horizontal y-component of the mag-
netic field is positive on the left side and negative on the right side of the
center. This gradient gives a contribution to the force on the particle when-
ever µy �= 0. Depending on the direction of µ, this force is of the same
size than the force in the z-direction. But note that the z-component of B
has a large value whereas the y-component is close to 0. Hence, a magnetic
moment will perform a rapid precession around the z-axis, which causes µy

to oscillate around 0. The time average of the force in the y-direction will
therefore be very small. The precession of µ around the y-axis can be ne-
glected, because the y-component of B vanishes near the symmetry plane of
the apparatus.

As an example, we consider a beam of atoms entering the apparatus
along the x-direction. We assume that all atoms in the beam have the
same velocity and the same size |µ| of the magnetic moment (notice that
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Figure 3.2. (a) Qualitative behavior of the magnetic field in
a Stern-Gerlach apparatus. The arrow indicates the direction
of the magnetic field and of its gradient near the symmetry
axis. Particles with a magnetic moment entering the device
here will only feel a force in the vertical direction. (b) Clas-
sically expected result for the distribution of particles on a
screen behind the Stern-Gerlach apparatus. (c) Actually ob-
served result.

|µ| remains constant during the experiment; see Exercise 3.3). In case of
hydrogen atoms,6 the magnetic moment should be determined completely
by the angular momentum of the electron as in Eq. (3.1). We know already
that the ground state of the hydrogen is characterized by a vanishing orbital
angular momentum, and on the basis of (3.1) we would expect no magnetic
moment at all. (In fact, the proton forming the nucleus of the hydrogen atom
does have a magnetic moment—but it is very small and may be neglected
here.)

For atoms with a nonzero magnetic moment µ, the deflecting force (3.15)
is proportional to the z-component µz and points in the vertical direction

6Actually, the experiment was performed first with silver atoms. The electronic con-
figuration of a silver atom in the ground state consists of a closed shell structure and a
single valence electron in a state with orbital angular momentum 0. Later, the same result
was obtained by T.E. Phillips and J.B. Taylor with a beam of hydrogen atoms. We note
that a Stern-Gerlach experiment has never been attempted with charged particles, because
the Lorentz force on a moving charge is, in general, much stronger than the weak force
(3.15) due to the field gradient. In a method developed by H.G. Dehmelt and others in
1976, one confines charged particles in an electromagnetic trap where they perform oscil-
lations around an equilibrium position. By measuring the frequency of this oscillation, it
is possible to determine the magnetic moment with a very high precision.
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(the direction of ∇B(z)). When the atoms enter the magnetic field, the
torque τ = µ ×B causes a precession of the vector µ around the direction
of B (the z-direction). This precession does not change the component µz

of the magnetic moment (see Exercise 3.4). The amount of the vertical
deflection from the straight path is thus proportional to the constant value
of µz.

The atoms that enter the Stern-Gerlach apparatus usually emerge from
a heated gas. If we think in terms of classical physics, we would expect
that the magnetic moments in the incident beam have randomly distributed
directions. All the possible values −|µ| ≤ µz ≤ |µ| would occur, and the
force on the particles would vary over all values between −|µ|∇(|B(x)|) and
+|µ|∇(|B(x)|). Hence, classical physics predicts a continuous broadening
of the beam in the vertical direction. On the screen behind the apparatus,
the particles would leave a trace in the form of a continuous vertical line as
in Figure 3.2(b). Instead, one finds a splitting in discrete partial beams, as
indicated in Figure 3.2(c).

CD 3.4 schematically shows the Stern-Gerlach experiment for clas-
sical neutral particles. All particles have magnetic moments of the
same size, but with randomly chosen directions. In the inhomoge-
nous magnetic field of a Stern-Gerlach apparatus, the particles get
deflected up or down according to the (random) value of the compo-
nent µz. In CD 3.4.3 we explain that the Stern-Gerlach apparatus
could be replaced by an arrangement of two or four parallel wires.

In quantum mechanics, we can try to explain the outcome of the Stern-
Gerlach experiment by the quantization of the angular momentum. We
assume that the magnetic moment µ of an atom is related to the angular
momentum of the electron as in Eq. (3.1). Because of (3.15), the splitting of
the beam into n partial beams then just means that the component of the
angular momentum in the vertical direction has precisely n distinct values.

Indeed, this is precisely what we expect from our analysis of the angular
momentum in Chapter 1. The vertical component of the orbital angular
momentum can only have 2� + 1 = 1, 3, 5, . . . different values, corresponding
to the angular-momentum quantum numbers � = 0, 1, 2, . . .. In any case,
we expect a splitting of the beam into an odd number of components. In
particular, for hydrogen atoms in their ground state, we would expect no
splitting at all, because the orbital angular momentum is zero in that case.
But, surprisingly, the Stern-Gerlach experiment with hydrogen atoms in
their ground state shows a splitting of the beam in two components, as
shown in Figure 3.2(c).

Therefore, hydrogen atoms must have a magnetic moment, even if the
electron is in the ground state with orbital angular momentum zero. What
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is the origin of that magnetic moment if it is not the orbital angular mo-
mentum? As stated above, the nucleus does have a magnetic moment, but
it is way too small to acount for the observed splitting.

One concludes that the origin of the atomic magnetic moment must
lie in the electron. One assumes that the electron itself has a magnetic
moment, whose vertical component can only have two distinct values. With
a Stern-Gerlach experiment, one can determine these values quantitatively.
One finds that the z-component of the electronic magnetic moment has the
values

µz = ± e�

2me
= ±µB. (3.16)

The splitting into an even number of partial beams in a Stern-Gerlach ex-
periment cannot be explained with the quantization of an orbital angular
momentum (which would give a splitting into an odd number of partial
beams). Hence, the magnetic moment of the electron is not related to its
orbital motion or to the angular momentum of an extended charge distribu-
tion inside the electron. The electron has no “inner structure” in that sense.
The electron’s magnetic moment has to be considered simply as an intrinsic
property (like the charge or mass).

CD 3.5 shows quantum wave packets in a Stern-Gerlach apparatus.
The visualization shows the position probability density only. When
passing the inhomogeneous magnetic field, any wave packet would
split into precisely two spatially separated parts. Hence, a general
wave packet may be interpreted as a superposition of two types of
wave packets, both having the same initial position and momentum
distribution, but showing an opposite behavior in an inhomogeneous
magnetic field: When sent through a Stern-Gerlach apparatus, type
1 gets pushed upwards, and type 2 moves downwards. CD 3.6 shows
phase-colored plots of the two types of wave packets.

A variant of the Stern-Gerlach experiment can be used to prepare
wave packets of particular type. This is shown in CD 3.7. By putting
an obstacle in the lower part of a Stern-Gerlach apparatus, we can
make sure that any wave packet leaving the apparatus is of type 1.
Such a wave packet would again be deflected upwards in a second
Stern-Gerlach apparatus.

The result of the Stern-Gerlach experiment does not depend on the ori-
entation of the inhomogenous magnetic field. One can, for example, rotate
the Stern-Gerlach apparatus about the x-axis (direction of the beam) by
an arbitrary angle. Then, one observes the same splitting of the beam into
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two components. One is led to the (paradoxical) conclusion that the com-
ponent of the magnetic moment along any direction in space can have just
two values ±µB.

3.4. The Spin Operators

3.4.1. Magnetic moment and spin

Every component of the electron’s magnetic moment is an observable (it can
be measured by a Stern-Gerlach apparatus). In the quantum mechanical
formalism, these observables should be represented by self-adjoint operators
in the Hilbert space of the particle. Here, we are going to postulate the
existence of operators µ = (µ1, µ2, µ3) with suitable properties. In analogy
to (3.4) we write

µ = −g µB
S
�

, (3.17)

with an unknown operator S = (S1, S2, S3). If g is a number, then S must
correspond to a physical quantity with the dimension of angular momentum.
This quantity will be called the spin angular momentum or simply the spin of
the electron. We assume that the components of S satisfy the angular-mom-
entum commutation relations and call S the spin operator of the particle.
We will make no attempt to express S in terms of position and momentum
operators, because we know that the spin cannot be interpreted as an orbital
angular momentum.

The splitting of a beam of hydrogen atoms into two components can
now be explained by assuming that the electron (which has orbital angular
momentum zero) has spin 1/2. More precisely, we mean by this that the
square S2 of the spin operator has the eigenvalue �

2 s(s + 1) with s = 1/2.
Theorem 1.1 tells us that s = 1/2 is indeed among the possible angular-
momentum quantum numbers. Moreover, for s = 1/2 there are precisely
2s + 1 = 2 eigenvalues of the vertical component S3, namely +�/2 and
−�/2. Likewise, because of (3.17), the vertical component µ3 of µ can only
have two different values.

We are going to discuss the formal consequences of assuming the exis-
tence of spin operators in Section 3.5 below. But first, we want to compare
our results with the outcome of a Stern-Gerlach experiment.

3.4.2. The g-factor

Taking into account that the possible values of S3 are ±�/2, we obtain from
Eq. (3.17) for the z-component µz = µ3 of µ the values

µ3 = ∓ g µB
S3

�
= ∓g

2
µB. (3.18)
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Comparing this result with the actually measured values (3.16), we find that
electrons obviously have the g-factor g = 2. We note that the value g = 2
is predicted by the relativistic Dirac equation, which is considered one of its
big successes.

Because of the negative charge of the electron, the magnetic moment is
opposite to its spin. The negative sign in (3.18) corresponds to a positive
eigenvalue of S3. The eigenstates of S3 belonging to the positive eigenvalue
+�/2 are called spin-up eigenstates. When passing a Stern-Gerlach appa-
ratus with a field gradient in the positive z-direction, a spin-up electron
is deflected downwards. The eigenstates of S3 belonging to the eigenvalue
−�/2 (the spin-down eigenstates) describe the opposite behavior. The two
eigenvalues of S3 just correspond to the two types of behavior of electrons
in a Stern-Gerlach experiment.

The magnetic moment of an electron:

Electrons are spin 1/2 particles with g-factor g = 2. Any component of
its magnetic moment can have only two values. In particular,

µ3 = ∓µB. (3.19)

All components of an angular-momentum operator S have the same
eigenvalues. However, different components of S do not have simultane-
ous eigenvectors. We can choose only one component (usually S3, but this
choice is arbitrary) and find simultaneous eigenvectors of that component
and of S2 (see Section 1.5). The arbitrariness of selecting the third compo-
nent S3 corresponds to the experimental observation that the choice of the
vertical axis as the direction of the field in the Stern-Gerlach experiment is
completely irrelevant. The experiment gives the same result with respect to
any direction in space.

The g-factor can be measured very precisely, and it turns out that the
actual value is slightly different from two. The presently known value7. is

g = 2.0023193043738± 0.0000000000082. (3.20)

The small deviation from the value 2 is called the anomalous magnetic mo-
ment. The origin of the anomalous magnetic moment can be explained with
quantum electrodynamics.

It turns out that the magnetic moment due to the orbital angular mo-
mentum has the g-factor 1, as predicted by classical electrodynamics. (In

7Groom, D.E., et al. (Particle Data Group), Eur. Phys. J. C15, 1 (2000) and 2001
partial update for edition 2002 (URL: http://pdg/lbl.gov)
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principle, this can be measured by considering the splitting of a beam of ex-
cited hydrogen atoms sent through a Stern-Gerlach apparatus.) An electron
with orbital angular momentum L thus has the magnetic moment

µ = −µB
L + 2S

�
= −µB

J + S
�

, (3.21)

where J = L + S is called the total angular momentum of the electron. If it
is necessary to distinguish between the various types of magnetic moments,
one denotes by µL the magnetic moment related to the orbital angular mo-
mentum and by µS the magnetic moment due to the spin.

µL = −µB
L
�

, µS = −2 µB
S
�

. (3.22)

Other particles also have spin 1/2, and the results of this chapter can be
easily adapted for these other particles. For example, the proton is a spin
1/2 particle. It has the magnetic moment

µ = gp µN
S
�

, µN =
e�

2mp
(3.23)

where µN is called nuclear magneton. It is smaller by a factor me/mp than
the Bohr magneton, µN ≈ 5.05× 10−27 A m2 . The g-factor of the proton is
rather large, gp ≈ 5.59. The neutron is also a spin 1/2 particle. Note that
the neutron has no charge at all. But it does have a magnetic moment due
to its spin, which is given in terms of the nuclear magneton by

µ = −gn µN
S
�

, µN =
e�

2mp
, with gn ≈ 3.83. (3.24)

3.4.3. Electron in a constant magnetic field

A charged particle in a magnetic field is subject to the Lorentz force. The
Lorentz force is always orthogonal to the magnetic field B and to the velocity
v of the particle. Hence, the Lorentz force changes only the direction but
not the magnitude of the velocity vector. For a classical electron with charge
−e and mass me, the Lorentz force causes the acceleration

d

dt
v(t) = − e

me
v(t)×B. (3.25)

Here, it is assumed that the magnetic field is homogeneous (B is independent
of x) because in an inhomogeneous magnetic field, the magnetic moment µ
would cause an additional acceleration, see Eq. (3.12).

Let us compare this with the classical equation of motion for the magnetic
moment (3.13) with g-factor 2:

d

dt
µ(t) = − e

me
µ(t)×B. (3.26)
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This equation is mathematically identical with the Lorentz-force equation.
As a consequence, the velocity v(t) and the magnetic moment µ(t) in a
constant field are strictly “in phase.” From (3.25) and (3.26) we obtain the
following result.

Classical motion of electrons with magnetic moment:

For a classical particle with charge e and and g-factor 2 in a homogeneous
magnetic field, the velocity v(t) and the magnetic moment µ(t) both
remain constant in magnitude and precess about the direction of B with
a constant angular speed

ω =
e

me
|B| = 2

µB

�
|B| = 2ωL. (3.27)

The quantity ωL is called Larmor frequency.

The anomalous magnetic moment of real electrons, however, causes a
slight asynchronism of the orbital motion and the motion of the magnetic
moment.

For suitable initial conditions, the classical motion of a charged par-
ticle in a homogeneous field takes place on a circle. In CD 3.2, we
show the behavior of particles with various g-factors. If the initial
velocity has a component in the direction of the field, the orbit is a
helix, as shown in CD 3.3.

3.4.4. Properties of the spin operator

In order to describe the two different types of behavior of electrons in an in-
homogenous magnetic field, we have to postulate that the magnetic moment
of the particles is related to a spin operator S with the quantum number
s = 1/2. The components of S are to be defined as self-adjoint operators
in an appropriate Hilbert space. They should satisfy commutation relations
characteristic of angular-momentum operators, so that the results of Sec-
tion 1.5 can be applied. In the absence of magnetic fields, this operator
should not disturb the “normal behavior” of electrons, in order to be com-
patible with our previously obtained results. In particular, we assume that
the spin operator commutes with all components of position and momentum.
Let us collect our assumptions on the spin operator in the following box.
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The spin postulate:

The spin is represented by three self-adjoint operators S = (S1, S2, S3)
satisfying the angular-momentum commutation relations

[Si , Sj ] =
3∑

k=1

i� εijk Sk, (3.28)

and commuting with position and momentum operators. The possible
states of electrons have to be described by eigenstates of the operator S2

belonging to the quantum number s = 1/2. In the Hilbert space of an
electron, the operator S2 must be a multiple of the identity operator,

S2 = S2
1 + S2

2 + S2
3 = �

2 s(s + 1)1 = �
2 3

4
1. (3.29)

It follows that every component Sk has precisely two eigenvalues ±�/2.

Ψ Because of (3.29), all components of the spin are bounded operators
that are defined everywhere in the Hilbert space.

We can choose one component, which is usually S3, and decompose the
Hilbert space into the corresponding eigenspaces,

H = H1 ⊕ H2 (orthogonal direct sum). (3.30)

Here, H1 is the eigenspace of S3 belonging to the eigenvalue +�/2. We say
that the states in this subspace have spin-up. Similarly, the eigenspace H2

belonging to the eigenvalue −�/2 contains the states with spin-down.
In the next section we are going to construct a suitable Hilbert space

that allows us to define spin operators with the desired properties.

3.5. Spinor-Wave Functions

3.5.1. A Hilbert space for a spin 1/2 particle

In the sole presence of an electrostatic field or a homogeneous magnetic field,
the state of the spin has no influence on the spatial motion of an electron.8

In these situations, the electron’s space-time behavior is still described by a
solution of the ordinary Schrödinger equation, no matter whether the elec-
tron has spin-up or spin-down. Hence, we can describe the spin state simply
by attaching an index to the wave function. We write ψ1(x, t) for a wave
function of a particle with spin-up and ψ2(x, t) if we want to indicate that

8This is true, at least, within a reasonable approximation. See the discussion in
Section 3.9.3 later in this chapter.
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the particle has spin-down. The two types of electron wave functions should
behave in the same way unless there is an inhomogeneous magnetic field.

Thus, we construct a Hilbert space of a particle with spin 1/2 in such
a way that L2(R3), the Hilbert space of “ordinary” wave functions, can be
identified with both eigenspaces of S3. Because of (3.30), we have to form
the direct sum of two copies of L2(R3).

The state space for particles with spin 1/2:

The Hilbert space for a particle with spin 1/2 is isomorphic to the direct
sum of two copies of L2(R3),

H ∼= L2(R3)2 = L2(R3)⊕ L2(R3). (3.31)

The elements of L2(R3) ⊕ L2(R3) can be obtained by combining two
square-integrable wave functions ψ1 and ψ2 into a column vector with two
components. Hence, the wave function of a particle with spin is assumed to
be of the form

ψ(x) =
(

ψ1(x)
ψ2(x)

)
, with ψi ∈ L2(R3), for i = 1, 2. (3.32)

Wave functions of this type are called spinor-wave functions or spinors.
When we consider dynamical processes, ψ will also depend on time. We

write

ψ(x, t) =
(

ψ1(x, t)
ψ2(x, t)

)
, (3.33)

and this means that for each time t, the two components of ψ are square-
integrable functions of x.

Ψ A spinor-wave function (3.32) can also be interpreted as a function ψ
of x with values in C

2, the two-dimensional complex linear space whose
vectors are pairs of complex numbers,

ψ : R
3 → C

2. (3.34)

By this we emphasize that at each point of space, the electron has two
internal degrees of freedom. The Hilbert space of C

2-valued functions is
denoted by L2(R3, C2), and it is isomorphic to L2(R3)2. Another way of
writing the Hilbert space of spinor-wave functions is the tensor product

L2(R3)⊗ C
2. (3.35)

We are going to define the tensor product of Hilbert spaces in Chapter 5
(see, in particular, Section 5.2.5).
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We have pointed out already that the discrimination of S3 was an ar-
bitrary decision. We could have started with any other component of the
spin and ended up with a different (but equivalent) description. This will be
discussed further in Section 3.5.3 below. The description obtained here will
be called the standard representation. It is characterized by the choice of a
particular Cartesian coordinate system in space (that is, a fixed z-axis) and
by the choice of the operator S3 and its eigenspaces in the construction of a
Hilbert space.

3.5.2. Spin operators in the standard representation

In the standard representation, spinor-wave functions of the type

ψup(x) =
(

ψ1(x)
0

)
, ψdown(x) =

(
0

ψ2(x)

)
, (3.36)

correspond to particles with spin-up or spin-down, respectively. These are
eigenvectors of the operator S3 corresponding to the two possible eigenvalues
±�/2. Hence, in the Hilbert space L2(R3)2, the operator S3 must have the
form

S3 =
�

2

(
1 0
0 −1

)
. (3.37)

This is a self-adjoint operator, defined everywhere in L2(R3)2. Its action on
a spinor-wave function consists in changing the sign of the lower component
and multiplying everything with �/2. The observable corresponding to this
operator is interpreted as the component of the spin into the z-direction of
a fixed Cartesian coordinate system.

It is now rather straightforward to guess the operators that describe the
other components S1 and S2 of the spin. In Exercise 1.22, we introduced the
three Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.38)

These matrices are often formally combined into a vector σ = (σ1, σ2, σ3).
It is easy to verify (Exercise 1.22) that the three components of

S =
�

2
σ (3.39)

satisfy the angular-momentum commutation relations (3.28). Hence, the
spin observable can be represented by the three matrices Sj = σj/2, j =
1, 2, 3. You can also verify that

S2 = S2
1 + S2

2 + S2
3 = �

2 3
4

12 = �
2 s(s + 1)12 with s =

1
2
. (3.40)
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Hence, all wave functions in the spinor Hilbert space H are indeed eigenvec-
tors of S2 with spin quantum number 1/2.

The spin operators (standard representation):

In the standard representation, the spin S = (S1, S2, S3) is defined in
terms of the Pauli σ-matrices by S = �

2 σ. All spinors in the Hilbert
space L2(R3)2 are eigenvectors of

S2 = S · S = �
2 3

4
12. (3.41)

The kinetic energy operator, the momentum and position operators are
assumed to act component-wise on the spinors in L2(R3)2. For example,

− �
2

2m
∆ψ(x) = − �

2

2m

(
∆ψ1(x)
∆ψ2(x)

)
. (3.42)

It follows immediately that all these operators commute with all components
of the spin operator.

Exercise 3.5. Describe the spinor-wave functions in H that are eigen-
vectors of the spin component S1.

Exercise 3.6. Verify that in the Hilbert space L2(R3)2, the operators
of kinetic energy, position, momentum, and orbital angular momentum all
commute with S1, S2, and S3.

3.5.3. Changing representations

The notion of “spin-up” and “spin-down” refers to the arbitrarily chosen
direction of the z-axis in R

3. For example, one can choose the direction
defined by the inhomogeneous magnetic field in the Stern-Gerlach apparatus
as the z-direction in space. Equivalently, we can assume a magnetic field
in the y-direction (just rotate the Stern-Gerlach apparatus in Figure 3.1
by 90 degrees about the x-axis) and start our construction of the spinor-
Hilbert space with the eigenspaces of S2. The operator S2 also has the
two eigenvalues ±�/2, and the construction described in Section 3.5.1 again
leads to the Hilbert space L2(R3)2. But now the interpretation of the spinors
(3.36) is different, because “spin-up” and “spin-down” now refer to the y-
direction (looking in the direction of the beam in Figure 3.1, we could call
this “spin-left” and “spin-right”). Moreover, in this Hilbert space, it is the
operator S2 that is represented by the diagonal matrix (3.37).

How is this representation related to the standard representation where
S3 is diagonal? It is clear that physical predictions should not depend on
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which axis in space is chosen to define spin-up and spin-down or—put in
a mathematical language—which component Sk of the spin is chosen to be
diagonal. Hence, this relation must be a symmetry transformation. In the
Hilbert space of the system, it must be possible to implement this symmetry
transformation by a unitary or antiunitary operator.

In the standard representation, the eigenvectors of S2 are given by

ψl =
1√
2

(
1
i

)
, ψr =

1√
2

(
i
1

)
. (3.43)

The unitary matrix U that maps the eigenvectors of S3 onto the eigenvectors
of S2 is given by

U =
1√
2

(
1 i
i 1

)
. (3.44)

This matrix defines a unitary operator in L2(R3)2. We can apply it to an
arbitrary spinor-wave function,

U

(
ψ1(x)
ψ2(x)

)
= ψ1(x) ψl + ψ2(x) ψr. (3.45)

The result is spinor whose components in the C2-basis {ψl, ψr} are just ψ1

and ψ2. With respect to this basis, S2 is diagonal. Hence, the operator
U just maps the standard representation to the representation where S2 is
diagonal.

Ψ The operator U actually implements a rotation through an angle −π/2
about the x-axis. Arbitrary rotations and unitary transformations in

the Hilbert space of spinors will be discussed in Chapter 4 (see Section 4.4.2).

3.5.4. Interpretation of spinor-wave functions

The scalar product in H = L2(R3)2 is

〈ψ, φ〉 =
∫

R3

(
ψ1(x) φ1(x) + ψ2(x) φ2(x)

)
d3x (3.46)

and the associated norm ‖ · ‖ is given by

‖ψ‖2 =
∫

R3

(|ψ1(x)|2 + |ψ2(x)|2) d3x. (3.47)

Let us introduce the following abbreviation for the scalar product of vectors
ψ and φ in C

2,
〈ψ, φ〉

2
= ψ1 φ1 + ψ2 φ2, (3.48)

and denote the norm in C
2 by∣∣ψ∣∣2
2

= |ψ1|2 + |ψ2|2 = 〈ψ, ψ〉
2
. (3.49)
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Then the scalar product (3.46) and the norm (3.47) can be simply written
as

〈ψ, φ〉 =
∫

R3

〈
ψ(x), φ(x)

〉
2
d3x, ‖ψ‖2 =

∫
R3

∣∣ψ(x)
∣∣2
2
d3x. (3.50)

For B ⊂ R
3 we interpret the expression

p(B) =
∫

B

∣∣ψ(x)
∣∣2
2
d3x (3.51)

as the probability of finding the particle in the region B. Correspondingly,
we define the partial probabilities

pi(B) =
∫

B
|ψi(x)|2 d3x. (3.52)

The interpretation is as follows: p1 is the probability of finding the particle
in the region B with spin-up, and p2 is the probability of finding the particle
in B with spin-down. We have p(B) = p1(B) + p2(B).

3.5.5. Visualization of spinor-wave functions

Visualization by vectors. A spinor-wave function associates two complex
numbers with each point x ∈ R

3. Hence, it consists of four independent
real-valued functions, the real and imaginary parts of the components ψ1

and ψ2. As described already in Book One, Chapter 1, we can introduce the
following vector field:

v(x) =

⎛
⎜⎝
〈
ψ(x), σ1 ψ(x)

〉
2〈

ψ(x), σ2 ψ(x)
〉
2〈

ψ(x), σ3 ψ(x)
〉
2

⎞
⎟⎠ , where ψ(x) =

(
ψ1(x)
ψ2(x)

)
∈ C

2. (3.53)

Here, we used the C
2 scalar product introduced in Eq. (3.48). The length of

the vector v is given by the position probability density√
v1(x)2 + v2(x)2 + v3(x)2 =

∣∣ψ(x)
∣∣2
2
. (3.54)

The vector field v(x) can be visualized by arrows attached to a grid of
x-values. Our visualizations, however, often show the vector field �v(x) =
v(x)/|ψ(x)|2 in order to reduce the contrast between the smallest and the
largest values. Note that∫

R3

vi(x) d3x =
∫

R3

〈
ψ(x), σi ψ(x)

〉
2
d3x = 〈ψ, σi ψ〉 = 〈σi〉ψ (3.55)

is just the expectation value of the ith component of σ. The vector field v
describes the density of the expectation value of σ,∫

R3

v(x) d3x = 〈σ〉ψ =
2
�
〈S〉ψ. (3.56)
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z

Figure 3.3. A spinor-wave function of the hydrogen atom.
The gray isosurface indicate three levels of the modulus of the
wave function. The lines are the flux lines of the vector field
generated by the spin. The figure is symmetric with respect
to rotations about the z-axis. The quantum numbers for this
state are n = 3, κ = 3, and mj = 3/2 (see Section 3.9.4).

The direction of v(x) at a point x gives the local spin-up direction of the
spinor-wave function. An example is given in Figure 3.3.

The mapping between spinors ψ(x) and vectors v(x) will be discussed
further in Section 4.4.1. Here, we just note that this correspondence is not
one-to-one. Multiplication of the spinor ψ(x) with a phase factor leaves the
functions vi(x) unchanged.
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By plotting arrows on a regular grid of space points, CD 3.8.1 visual-
izes the spin-vector field �v(x) associated with a spinor-wave function
in two dimensions. A spinor-wave packet splits into parts with spin-
up and spin-down due to the influence of an inhomogeneous magnetic
field. In CD 3.8.2 and CD 3.9.1, we use small “magnetic needles”
whose two poles are colored according to the complex values of the
two components of the spinor. Whereas this method is useful for a
single spinor in C

2 (see CD 4.8), it is not capable of showing finer
details of a spinor field. In CD 3.8.3 and CD 3.9.2, we use enlarged
pixels, each containing the two colors derived from the two spinor
components via the standard color map. This method shows the in-
formation about the phases of the two components in great detail (in
particular, in regions where the parts with spin-up and spin-down are
well separated), but is not useful to depict the local spin-direction.

Vizualization by colors. In order to display finer spatial details of a spinor
field, arrays of vectors are not very useful. In these cases we use a color
map. We can use the coloring of the unit sphere in the HLS color system
(as described in Book One) to describe a direction in R

3. According to
this method, the spin-up vector v = (0, 0, 1) is represented by white, and
spin-down is black.

In addition, the absolute value can be symbolized by the saturation of
the color. If the wave function is very small or zero, this will be represented
by a saturation close to zero, that is, by the color gray. As the (three-dim-
ensional) color information is derived from the vector v(x), this method of
visualization again discards the phase information in the spinor ψ(x).

CD 3.10 describes the color map for vectors in three dimensions.
We use this color map to describe the local expectation value of the
spinor field, that is, the vector field defined in (3.53). Examples for
the use of this color map can be found in CD 3.11 and CD 3.12.

3.6. The Pauli Equation

3.6.1. The Pauli operator

In the following sections, we are going to describe the quantum dynamics of
an electron in a magnetic field. We start with a pure magnetic field, that is,
we assume that there are no other external forces. The Hamiltonian of an
electron in a pure magnetic field is obtained by adding the potential energy
(3.10) of the magnetic moment interaction to the usual expression for the
kinetic energy in the magnetic field. This gives (writing me for the mass and
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−e for the charge)

HPauli =
1

2me

(
p + eA(x)

)2 − µ ·B(x), (3.57)

with p = −i�∇, acting component-wise on spinor-wave functions. The
operator HPauli will be called the Pauli operator for an electron in a pure
magnetic field. Here, A is the vector potential, and B = ∇ × A is the
magnetic field.

It is useful to write the expression (3.57) in the standard representation,
where S3 is diagonal. We assume, for simplicity, that the g-factor is 2. Then

µ = − e�

2me
σ = −µB σ. (3.58)

For the negatively charged electrons, the magnetic moment vector µ is an-
tiparallel to the spin. The matrix for the potential energy in the magnetic
field becomes

−µ ·B(x) = µB

(
B3(x) B1(x)− iB2(x)

B1(x) + iB2(x) −B3(x)

)
. (3.59)

The Pauli operator in the standard representation acts on two-component
wave functions and is, in fact, a matrix-differential operator

HPauli =

(
1

2me

(−i�∇+ eA
)2 − µB B3 −µB(B1 − iB2)

−µB(B1 + iB2) 1
2me

(−i�∇+ eA
)2 + µB B3

)
.

(3.60)
If necessary, we may add to this operator an electrostatic potential energy
V (x)12. This is a diagonal matrix multiplication operator. That is, the
function V (x) has to be added in the main diagonal of the matrix HPauli.

The evolution equation with the Pauli operator

i �
d

dt
ψ(t) = HPauli ψ(t) (3.61)

is called the Pauli equation. It describes the time evolution of a particle with
spin 1/2 in an external magnetic field.

The matrix-form of the Pauli operator in the standard representation
shows that in the absence of a magnetic field, the Pauli equation decouples
into two completely unrelated Schrödinger equation equations. Only the
presence of a magnetic field with nonzero B1 or B2 introduces a coupling
between the upper and the lower component of the spinor-wave function.9

Having introduced the Pauli operator with all physical constants in the
international system of units, we now switch to atomic units, where me =

9This is only true in an approximate sense, because relativistic effects are neglected
here. See the discussion in Section 3.9.3.
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e = � = 1, and µB = 1/2. A simple scaling transformation will bring you
back, as described in Section 2.7.

3.6.2. Magnetic fields with constant direction

A special case is given by the magnetic fields B(x) with constant direction.
We choose this direction as the x3-direction and conclude from ∇ · B = 0
that B does not depend on x3 at all (see Book One, Section 8.3). Hence, a
magnetic field with constant direction is of the form B(x) = (0, 0, B(x1, x2)).
We remind the reader that the third component B of the magnetic field is
just given by the third component of ∇×A,

B(x1, x2) =
∂

∂x1
A2(x1, x2)− ∂

∂x2
A1(x1, x2). (3.62)

Moreover, we can assume that A3(x1, x2) = 0.
In atomic units, the Pauli operator in the standard representation is the

diagonal matrix

HPauli =
1
2

3∑
i=1

(
−i

∂

∂xi
+ Ai(x1, x2)

)2
12 +

1
2

B(x1, x2) σ3. (3.63)

(12 is the two-dimensional unit matrix). We note that the sign in front of
the vector potential and the magnetic field reflects the negative charge of an
electron (−1 in atomic units).

The Pauli equation can now be separated into a part that describes the
free motion in the x3-direction and a part that describes the planar motion
in a magnetic field. The Pauli equation for the motion in the x1x2-plane
consists of two independent equations, because HPauli is a diagonal matrix.
With x = (x1, x2), ∇ = (∂1, ∂2), and A = (A1, A2), we write

i
d

dt
ψ1 =

1
2
(−i∇+ A(x)

)2
ψ1 +

1
2
B(x) ψ1,

i
d

dt
ψ2 =

1
2
(−i∇+ A(x)

)2
ψ2 − 1

2
B(x) ψ2.

(3.64)

Hence, a particle that starts with spin-up (that is, ψ2 = 0) will remain
spin-up all the time. The third component of the spin is a constant of
motion. Indeed, we see immediately from (3.63) that HPauli commutes with
S3 = σ3/2.

Exercise 3.7. A neutron is a neutral particle with an anomalous mag-
netic moment µ. Set up the Pauli equation for a neutron in a magnetic field
in two dimensions. As an example, consider the magnetic field B(x, y) = y.
Use the Avron-Herbst formula (Book One) to give a solution of the corre-
sponding initial-value problem.
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3.6.3. Supersymmetric structure

It is an important observation that the Pauli operator with a purely magnetic
field is the square of another operator. Consider the operator

D = σ · (−i∇+ A(x)
)

=
3∑

i=1

σi

(
−i

∂

∂xi
+ Ai(x)

)
. (3.65)

A little calculation using the formula

(σ ·A)(σ ·B) = A ·B + iσ · (A×B) (3.66)

gives (with µ = −σ/2 in atomic units)
1
2
D2 =

1
2

(
σ · (p + A(x)

))2

=
1
2
(
p + A(x)

)2 + i
1
2
σ · (−i∇×A(x)

)
=

1
2
(
p + A(x)

)2 − µ ·B(x) = HPauli.

(3.67)

As the square of another operator, the Pauli operator is always nonnegative.
There are no states with a negative total energy in a pure magnetic field.

The two-dimensional Pauli equation (3.64) can also be factored. Define
the operator

D = −i
∂

∂x1
+ A1(x) +

∂

∂x2
+ iA2(x). (3.68)

This operator is not self-adjoint. Its adjoint is given by

D† = −i
∂

∂x1
+ A1(x)− ∂

∂x2
− iA2(x). (3.69)

Nevertheless, the operator D is useful because we have

D†D =
(−i∇+ A(x)

)2 + B(x),

DD† =
(−i∇+ A(x)

)2 −B(x),
(3.70)

with B(x) as in (3.62), and hence

HPauli =
1
2

(
D†D 0

0 DD†

)
. (3.71)

We remind the reader that the nonzero eigenvalues of the self-adjoint op-
erators D†D and DD† are closely related. Whenever D†D has an eigenvector
ψ belonging to a nonzero eigenvalue λ, then DD† has the same eigenvalue
with corresponding eigenvector Dψ. Whenever DD† has an eigenvalue with
eigenvector φ, then D†D has the same eigenvalue with eigenvector D†φ (you
can check this by a short calculation; see also Exercise 2.5 and Book One,
Section 7.6). This symmetric relation between the spectra of D†D and DD†
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is a very simple example of a so-called supersymmetry. We also note that the
operators D†D and DD† are nonnegative, that is, all nonzero eigenvalues
are positive.

3.7. Solution in a Homogeneous Magnetic Field

3.7.1. The g-factor of orbital motion

For a constant, homogeneous magnetic field, we may choose the coordinate
system such that B(x) = (0, 0, B) (for all x). We write the vector potential
in the Poincaré gauge (see Book One, Section 8.4),

A(x) =
B

2
(−y, x, 0), for all x = (x, y, z). (3.72)

In atomic units and with the g-factor 2 the spin magnetic moment µ = µS

becomes
µS = −S (3.73)

The Pauli operator now reads

HPauli =
1
2
(
p + A(x)

)2 − µS ·B(x)

=
1
2
(
p2 + p ·A(x) + A(x) · p + A(x)2

)
+ B S3

=
1
2
(
p2 + B (xp2 − yp1) + A(x)2

)
+ B S3

=
p2

2
+

B

2
L3 + B S3 +

B2

8
(x2 + y2). (3.74)

The second term is obviously the magnetic interaction energy −µL ·B of the
magnetic moment µL that is caused by the orbital angular momentum,

µL = −1
2

L. (3.75)

Comparison with (3.73) shows that the g-factor belonging to the magnetic
moment µS is twice as large as the g-factor belonging to µL. The magnetic
moment caused by the orbital motion of a charged particle has the g-factor
1.

3.7.2. Solutions with zero energy

The constant magnetic field is a two-dimensional situation with B(x) =
B. Now each of the equations (3.64) becomes equivalent to a Schrödinger
equation in a constant magnetic field. The considerations of Book One also
apply to this case (see Book One, Chapter 8). Here, we present a method
of finding the ground-state solutions which will be useful also in the next
section.
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We assume that the constant magnetic field is B > 0. A vector potential
for this field is

A(x) =
B

2
(−y, x). (3.76)

We also define the auxiliary function

φ(x) =
B

4
(x2 + y2) =

B

4
|x|2, (3.77)

with the property ∆φ(x) = B. Next, we consider the operator D† defined
in (3.69). Assume we can find a solution ψ0 of the equation D†ψ = 0. This
function would also satisfy the equation DD†ψ0 = 0. Hence, in view of
(3.71), the spinor (

ψ1(x)
ψ2(x)

)
=

(
0

ψ0(x)

)
(3.78)

would be an eigenvector of the Pauli operator (3.74) for a constant field in
two dimensions, belonging to the eigenvalue E = 0.

In order to find a solution ψ0, let us first describe the properties that
any solution of D†ψ = 0 must have. First of all, we require ψ0 to be square-
integrable. Next, we write

ψ0(x) = e−φ(x) ω(x) (3.79)

and find that

D†ψ0 = −ie−φ
( ∂

∂x
− i

∂

∂x2

)
ω. (3.80)

Hence, the equation D†ψ0 = 0 is obviously equivalent to the equation

∂ω

∂x1
− i

∂ω

∂x2
= 0. (3.81)

If you write ω(x, x) = u(x, y) + iv(x, y), you will see that (3.81) is in turn
equivalent to the famous Cauchy-Riemann equations characterizing the real
and imaginary parts of an analytic function. More precisely, it turns out that
the function ω has to be an entire analytic function of x − iy! Taking into
account that ψ0 = e−φω should be square-integrable, we have to exclude
those analytic functions ω that increase too fast in some direction of the
complex plane. But this still leaves, for example, all polynomials in x − iy.
Choosing ω(x) = (x− iy)�, where � is a non-negative integer, we find that

ψ0(x) = e−B|x|2/4(x− iy)� (3.82)

satifsfies D†ψ0 = 0. As explained above, we conclude

HPauli

(
0

ψ0(x)

)
=

(
0
0

)
. (3.83)
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We note that all square-integrable functions of the form

ψ0(x) = e−B|x|2/4 ω(x− iy) (3.84)

where ω is analytic, lead to a zero-energy eigenvector of the two-dimensional
HPauli operator for the homogeneous field. We have singled out the solutions
of the type (3.82), because they are simultaneous eigenfunctions of the an-
gular-momentum operator L3 = xp2 − yp1. This can be seen as follows: We
write the complex number x − iy in polar coordinates as r e−iϕ. Then, we
obtain (x− iy)� = r� e−i�ϕ. In spherical coordinates, L3 = −i∂/∂ϕ and hence
L3 ψ

(�)
0 = −� ψ

(�)
0 follows immediately.

Eigenvectors belonging to different eigenvalues of a self-adjoint opera-
tor are orthogonal, therefore {ψ(�)

0 | � = 0, 1, 2, . . .} is an orthogonal set of
simultaneous eigenstates of HPauli and L. This set is even a basis in the
zero-energy eigenspace, because every zero-energy solution can be written
as a superposition of the ψ

(�)
0 . This can be seen as follows: Any zero-energy

solution must be of the form

ψ(x) = e−B|x|2/4

(
0

ω(z)

)
(with z = x− iy), (3.85)

where ω(z) is an entire analytic function of z. Writing ω as a power series
in z,

ω(z) =
∞∑

�=0

a� z� (for all z), (3.86)

we can combine (3.85) and (3.88) to see that ψ has the expansion

ψ(x) =
∞∑

�=0

a� ψ
(�)
0 (x). (3.87)

Ground states in a homogeneous magnetic field:

The Pauli equation for an electron in a constant magnetic field B > 0
in two dimensions has infinitely many zero-energy solutions with spin-
down. The solutions

ψ
(�)
0 (x) = e−B|x|2/4

(
0

(x− iy)�

)
, � = 0, 1, 2, 3, . . . (3.88)

are also eigenfunctions of the orbital angular-momentum operator L =
xp2 − yp1,

HPauli ψ
(�)
0 = 0, L3 ψ

(�)
0 = −� ψ

(�)
0 , S3 ψ

(�)
0 = −1

2
ψ

(�)
0 . (3.89)

The set {ψ(�)
0 | � = 0, 1, 2, . . .} is a basis in the zero-energy eigenspace.
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Zero-energy eigenfunctions of the Pauli operator are time-independent
solutions of the time-dependent Pauli equation (3.64).

The operator (3.74) without the spin term BS3 is equivalent to a Schrö-
dinger operator in a constant magnetic field. We know that the Schrödinger
operator has no zero-energy eigenvalues. Instead, the ground-state energy
is |B|/2 (Book One, Section 8.5). Obviously, the spin term in (3.74) just
compensates the “spinless” ground-state energy.

For the Schrödinger operator as well as for the Pauli operator in a ho-
mogeneous magnetic field, the ground-state energy has an infinite degree
of degeneracy. This degeneracy is caused by the translational symmetry
discussed in Book One, Section 8.6.

3.7.3. The spectrum of eigenvalues

In this section, we are going to use the operators D and D† as ladder opera-
tors to generate all eigenvalues and eigenfunctions of the Pauli operator, just
as we did with the harmonic oscillator (see Book One, Section 7.7). In the
last section, we obtained an infinite number of solutions for Dψ = 0, where
D is the operator defined in (3.68) in case of a constant magnetic field,

D = −i
∂

∂x1
− B

2
x2 +

∂

∂x2
+ i

B

2
x1. (3.90)

This operator has the property

D†D = DD† + 2B. (3.91)

Given a function ψ0 with D†ψ0 = 0, we immediately find

D†D ψ0 = 2B ψ0. (3.92)

Moreover, equation (3.91) tells us that 2B is the smallest eigenvalue of D†D
because the operator DD† is non-negative (and B is assumed to be positive).

We can use ψ0 to form an eigenvector with spin-up of the Pauli operator
(3.71):

HPauli

(
ψ0

0

)
=

1
2

(
D†D 0

0 DD†

) (
ψ0

0

)
= B

(
ψ0

0

)
. (3.93)

Hence, we found that HPauli has the eigenvalue B. There is also a spin-
down eigenvector belonging to the same eigenvalue. This is so because,
whenever D†D has an eigenvalue with eigenvector ψ0, then DD† has the
same eigenvalue with eigenvector Dψ0. Hence,

HPauli

(
0
ψ1

)
= B

(
0
ψ1

)
with ψ1 = Dψ0. (3.94)



142 3. PARTICLES WITH SPIN

We can continue in this way. Because of (3.91), the function ψ1 is also an
eigenfunction of D†D:

D†D ψ1 = DD† ψ1 + 2B ψ1 = 4B ψ1. (3.95)

Also, ψ2 = Dψ1 is an eigenfunction of DD† belonging to the eigenvalue 4B.
This leads to the eigenvalue 2B of the Pauli operator,

HPauli

(
ψ1

0

)
= 2B

(
ψ1

0

)
, (3.96)

HPauli

(
0
ψ2

)
= 2B

(
0
ψ2

)
with ψ2 = Dψ1. (3.97)

If we proceed in this way, we obtain a whole sequence of eigenfunctions and
eigenvalues of the Pauli operator. We conclude

Energy eigenstates in a homogeneous magnetic field:
The two-dimensional Pauli operator in a constant magnetic field B > 0
has the eigenvalues

En = nB (n = 0, 1, 2, 3, . . .). (3.98)

Let ψ0 be a nonzero function with D†ψ0 = 0, and define

ψn = D ψn−1 = Dn ψ0. (3.99)

Eigenvectors of the Pauli operator belonging to the energies En are(
0

ψn

)
and

(
ψn−1

0

)
(n = 1, 2, 3 . . .) (3.100)

with spin-down and spin-up, respectively. There are no spin-up eigen-
vectors for zero energy.

It has to be emphasized that such a sequence of eigenvectors is obtained
for each of the zero-energy eigenstates ψ

(�)
0 defined in (3.88).

3.8. Special Topic: Magnetic Ground States

Because of the negative charge of an electron, spin-up corresponds to mag-
netic moment down and hence the potential energy in a field that points in
the positive z-direction is negative. Obviously, this energy precisely com-
pensates the ground state energy of a charged particle in a homogeneous
magnetic field (see Book One, Chapter 8).

A generalization of the argument that leads to the ground state in a ho-
mogeneous field in Section 3.7.2 can be used to show that the Pauli operator
in two dimensions has zero-energy bound states even if the magnetic field has
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a finite flux. The number of zero-energy bound states of HPauli provides a
lower bound for the number of negative-energy bound states of the operator
H = HPauli +V (x), with the same magnetic field and a negative electrostatic
potential. If ψ is any eigenstate of HPauli belonging to the eigenvalue 0, then
we find for the expectation value of the total energy

〈ψ, Hψ〉 = 〈ψ, HPauliψ〉+ 〈ψ, V (x)ψ〉 = 〈ψ, V (x)ψ〉 < 0. (3.101)

For this result it is only necessary that V (x) ≤ 0 for all x and V (x) < 0 in
some open region, because it turns out that the eigenstates of HPauli cannot
vanish on open regions. Whenever 〈ψj , Hψj〉 < 0 for linearly independent
states ψ1, . . . , ψn, one can prove that the dimension of the subspace with
negative energy is at least n.

It is interesting that the same problem turns out to be much more difficult
in three dimensions. But at least we can show that there are magnetic fields
giving rise to zero-energy bound states also in three dimensions. This result
depends on the spin in a crucial way.

3.8.1. Two dimensions

The following theorem by Aharonov and Casher10 describes the zero-energy
states of the Pauli equation with a magnetic field in two dimensions:

Theorem 3.1. Let B(x) be a magnetic field that vanishes outside a
bounded region in two dimensions and let the flux

F =
1
2π

∫
R2

B(x)d2x (3.102)

be finite. For |F | > 1, the Pauli operator has an eigenvalue with zero energy.
Assume F = n + r, where n is a positive integer, and 0 < r < 1. Then,
the Pauli operator for an electron has precisely n spin-down eigenstates with
energy zero. If F = −n − r, then there are precisely n spin-up eigenstates
belonging to the eigenvalue zero. For r = 0, the multiplicity of the eigenvalue
is n− 1 in both cases.

Proof. The proof uses the idea that a function φ with ∆φ(x) = B(x)
can also be defined for inhomogeneous fields. The Green function of ∆ in
two dimensions is 1

2π ln |x− y|. Therefore, the function

φ(x) =
1
2π

∫
R2

ln |x− y|B(y) d2y (3.103)

satisfies ∆φ(x) = B(x). Moreover, it can be shown that

φ(x)− F ln |x| = O
( 1
|x|

)
, as |x| → ∞. (3.104)

10Aharonov, Y., and Casher, A., Phys. Rev. A19, 2461–2462 (1979).
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We choose the vector potential

A(x) =
(
− ∂

∂y
φ(x),

∂

∂x
φ(x)

)
(3.105)

and look for a solution of

σ · (p + A)ψ = 0, σ = (σ1, σ2). (3.106)

Writing
ω(x) = e−σ3φ(x) ψ(x) (3.107)

we find that (3.106) is equivalent to

σ · pω = 0 or

⎧⎨
⎩
(

∂
∂x + i ∂

∂y

)
ω1(x) = 0,(

∂
∂x − i ∂

∂y

)
ω2(x) = 0.

(3.108)

These equations are equivalent to the Cauchy-Riemann equations. Hence,
ω1 has to be an entire analytic function in the variable z = x + i y whereas
ω2 must be analytic in z = x− i y. It follows from (3.104) and (3.107) that
for large |z| = |x|, these functions behave as

ω1(x) ≈ e−F ln |x|ψ1(x) = |x|−F ψ1(x), (3.109)

ω2(x) ≈ e+F ln |x|ψ2(x) = |x|+F ψ2(x). (3.110)
For positive F we find that ω1 is square integrable at infinity and hence zero,
because an analytic function cannot vanish in all directions, as |z| → ∞.
This shows that ψ1 = 0, and therefore any solution of (3.106) must have
spin-down. But for this we have to fulfill the condition

ψ2 = e−φω1 ∈ L2(R2), (3.111)

which requires that ω2 should not increase faster than |x|F−1−δ, for some
(arbitrarily small) δ > 0. Here, it is assumed that F = n + r with n a
positive integer and 0 ≤ r < 1. Because ω2 is an entire function of z that
should not increase faster than |z|n−1+r−δ, it must be a polynomial in x− i y
of degree ≤ n− 1 if r > 0, or of degree ≤ n− 2 if r = 0. Hence, for r > 0 we
may choose the n linearly independent polynomials

ω2(x) = (x− iy)� with � = 0, 1, 2, . . . n− 1, (3.112)

and for r = 0 we have the condition � ≤ n−2. Correspondingly, the n (resp.
n− 1) solutions of (3.106) are given by

eσ3φ(x)

(
0

(x− iy)�

)
=

(
0

e−φ(x) (x− iy)�

)
(3.113)

and these are the zero-energy solutions of the Pauli operator

HPauli =
1
2
(
σ(p + A)

)2
. (3.114)
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An analogous reasoning applies to the case F < 0. �

The eigenfunctions obtained here are, in general, not eigenfunctions of
L3, because B(x) (and hence φ(x)) need not be cylindrically symmetric.
The theorem relates the number of zero-energy eigenstates of the Pauli op-
erator with a global property (flux) of the magnetic field. The theorem may
be regarded as an elementary example of the famous Atiyah-Singer index
theorem in global analysis.

3.8.2. Three dimensions

There is no analog of the previous theorem in three dimensions. We do not
know general conditions on magnetic fields that lead to zero-energy bound
states, but we do know some examples. Here is a particularly simple one
due to Loss and Yau.11

We want to find a three-dimensional vector potential A(x) and a spinor
ψ(x) with

σ · (p + A(x)
)
ψ(x) = 0. (3.115)

By Eq. (3.67), this would give a magnetic field such that the stationary Pauli
equation HPauliψ = Eψ has a zero-energy solution.

Assume we are given a spinor with ψ(x) �= 0 for all x. Then, we can
form the vector field

v(x) =

〈
ψ(x),σ ψ(x)

〉
2∣∣ψ(x)

∣∣2
2

. (3.116)

According to (3.54), v(x) is a unit vector in R
3. It may be verified that

σ · v(x) ψ(x) = ψ(x). (3.117)

(See also Section 4.4.1 below). Define

A(x) = −λ(x)v(x) (3.118)

with some real-valued function λ and you can see that

σ ·A(x)ψ(x) = −λ(x) ψ(x). (3.119)

It remains to find a real-valued λ and an everywhere nonzero spinor ψ such
that the equation

σ · pψ(x) = λ(x) ψ(x) (3.120)

holds. For example, let

ψ(x) =
12 + iσ · x
(1 + x2)3/2

φ0, (3.121)

11Loss, M., and Yau, H.T., Commun. Math. Phys. 104, 283–290 (1986).
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where φ0 is any unit vector in C
2. We obtain

σ · pψ(x) =
3

1 + x2
ψ(x). (3.122)

Now combine Eqs. (3.119) and (3.120) with λ(x) = 3/(1 + x2) to obtain an
example for (3.115). The solution ψ produces the vector field

v(x) =
1

1 + x2

(
(1− x2)w + 2(w · x)x + 2w × x

)
, (3.123)

which is everywhere nonzero. Here, w = 〈φ0,σ φ0〉2 is a unit vector in R
3.

The magnetic field belonging to the vector potential A(x) = λ(x)v(x) is
given by

B(x) = ∇×A(x) =
12

(1 + x2)2
v(x). (3.124)

3.9. The Coulomb Problem with Spin

3.9.1. Coulomb-Hamiltonian for a particle with spin

Due to the interaction term −µ · B in the Pauli Hamiltonian, the motion
of the particle in space in general depends on the behavior of its magnetic
moment, and vice versa. But this is not the case for a purely electrostatic
field when B = 0. For electrons in a purely electrostatic field, the Hamilton-
ian has the familiar form H = p2/(2me) + V (x) acting component-wise on
spinor-wave functions. Hence, the time evolution of one spinor-component
is completely independent from the behavior of the other. The spin is a con-
stant of motion, and the initial spin-state has no influence on the behavior
of the spinor-wave functions in space.

As an example, we consider a hydrogenic atom. In the standard repre-
sentation, the Hamiltonian is (cf. Eq. (2.21))

H =
(
− �

2

2me
∆− γ

|x|
)
12 =

(
Hcoul 0

0 Hcoul

)
. (3.125)

Here, Hcoul is the familiar Coulomb Hamiltonian as defined in (2.21). Here,
it acts component-wise on spinor wave functions.

Ψ The Hamiltonian H in (3.125) is the direct sum of two Coulomb Hamil-
tonians,

H = Hcoul ⊕Hcoul. (3.126)
This operator is defined in the direct sum L2(R3) ⊕ L2(R3) of “spinless”
Hilbert spaces. Equivalently, we may write the Hilbert space as L2(R3)⊗C

2

and define H as
H = Hcoul ⊗ 12, (3.127)
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where 12 is the identity operator in C
2. In that way, we can see that H acts

like the ordinary Coulomb Hamiltonian on the “space part” of a spinor and
like the identity on the “spin part.”

The Coulomb Hamiltonian (3.125) commutes with the operator S3,

[H,S3] = 0 (on the domain of H). (3.128)

A system of simultaneous eigenfunctions is, for example, given by

ψn,�,m,+(x) =
(

ψn,�,m(x)
0

)
, ψn,�,m,−(x) =

(
0

ψn,�,m(x)

)
, (3.129)

with the Coulomb eigenfunctions described in Section 2.5.2, see Eq. (2.106).
Every eigenfunction of the Coulomb problem appears once with spin-up and
once with spin-down. These spinors are simultaneous eigenvectors of the
set of commuting operators H, L2, L3, and S3. The spin does not change
the eigenvalues En of the Coulomb Hamiltonian. But, accounting for the
spin, the degree of degeneracy of each eigenvalue En is twice the degree of
degeneracy of that eigenvalue in the problem without spin.

3.9.2. Complete set of observables

For the Coulomb problem without spin, it was necessary to specify the eigen-
values of the operators H, L2, and L3 in order to specify a unique eigen-
state. For the Coulomb problem with spin, there is an additional degree
of freedom. Given eigenvalues of H, L2, and L3, we are still left with two
orthogonal eigenstates. We need the eigenvalue of the spin-operator S3 to
specify a unique state.

A useful set of quantum numbers for the Coulomb problem with spin
therefore consists of

n = 1, 2, . . . the principal quantum number labeling the
eigenvalues of H

� = 0, 1, . . . , n− 1 the angular-momentum quantum number
defining the eigenvalues of L2

m� = −�,−� + 1, . . . , � the magnetic quantum number belonging to
the orbital angular momentum L3,

ms = −1/2, +1/2 the magnetic quantum number due to the
spin S3.

Each quadrupel of values (n, �, m�,ms) specifies a simultaneous eigenvector
of (H,L2, L3, S3). This set of quantum numbers is complete in the sense
that the corresponding eigenvector is unique up to a scalar factor (that is,
the corresponding quantum state is unique). A set of commuting observ-
ables whose eigenvalues specify a unique simultaneous eigenstate is called a
complete set of commuting observables.
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Ψ More generally, let us consider n self-adjoint operators Ai, i = 1, . . . , n,
all having a “pure point spectrum.” That is, we assume that the

spectrum contains only eigenvalues and no continuous part. (It is technically
much more demanding to define the completeness when observables with a
continuous spectrum are involved.) The assumption of a pure point spectrum
is fulfilled for the operators L2, L3, S3, and for H in the subspace of bound
states (which is also a Hilbert space).

Definition 3.1. A set of self-adjoint operators {A1, A2, . . . , An} with
pure point spectrum in a Hilbert space H is called a complete set of observ-
ables if the following two conditions are satisfied:

(1) For all (λ1, . . . , λn), where λi is an eigenvalue of Ai, there is a nor-
malized simultaneous eigenvector Ψλ1,...,λn of all Ai that is unique
up to multiplication with a phase factor.

(2) The set of all Ψλ1,...,λn is an orthonormal basis of the Hilbert space.

By definition, the common eigenvectors Ψλ1,...,λn belong to the common
domain D of the operators, that is, to the intersection

D = D(A1) ∩D(A2) ∩ · · · ∩D(An). (3.130)

It follows from the definition that D is a dense subspace of H, because it
contains all vectors of an orthonormal basis. Moreover, the operators Ai

commute with each other

[Ai, Aj ] = 0 on D. (3.131)

It also follows that the operators Ai commute in the sense that the corre-
sponding unitary groups commute (see Book One, Section 6.11).

3.9.3. The spin-orbit interaction

Due to the following relativistic effect, the spin S of electrons is not com-
pletely independent from its orbital motion, even if there is only an electro-
static field. Consider a classical electron that moves at a certain time t with
velocity v in an electrostatic field E. We go into a coordinate system that
moves with velocity v. This coordinate system is at time t the rest frame
of the electron. But while the electron is at rest, the charges generating the
electric field move with velocity −v. Moving charges constitute a current,
and currents are the origin of a magnetic field. In its rest frame, the elec-
tron still has a magnetic moment µS due to its spin. Hence, we expect a
contribution to the energy of the electron from the interaction of the spin
magnetic moment with the magnetic field B′ in the moving frame.
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The strength of the magnetic field B′ in the electron’s rest frame is given
by

B′ = − 1
c2

v ×E. (3.132)

This formula can be obtained from the relativistic transformation law for
electromagnetic fields. It is an approximation that is valid if v is much
smaller than c, the speed of light. Within that approximation, we expect
that the Hamiltonian contains an additional interaction term of the form
(3.10), that is,

−µS ·B′ =
1
c2

µ · v ×E. (3.133)

Next, we consider the classical model of a hydrogenic atom. The atomic
nucleus (with Z protons) causes the electric field

E =
Ze

4πε0

x
|x|3 =

γ

e

x
|x|3 . (3.134)

In the rest frame of an electron at time t, the proton moves with velocity
−v and causes an additional magnetic field

B′ = − γ

ec2

v × x
|x|3 . (3.135)

This is just the Biot-Savart law for the magnetic field of a moving charge.
Introducing the angular momentum L = mx× v, we can write this as

B′ =
γ

emec2

1
|x|3 L. (3.136)

Using the expression (3.17) for the magnetic moment of the electron due to
its spin, the interaction term becomes

−µS ·B′ =
gγµB

�emec2

1
|x|3 S · L =

gγ

2m2
ec

2

1
|x|3 S · L. (3.137)

This expression involves the spin and the orbital angular momentum of the
electron and is therefore called the spin-orbit interaction. A more careful
consideration of relativistic effects, in particular, of the Thomas precession,
shows that the actual size of the spin-orbit energy is only half as large. The
interested reader will find the details of this calculation, for example, in [3].
The final result for the spin-orbit interaction is therefore

Espin-orbit =
gγ

4m2
ec

2

1
|x|3 S · L. (3.138)

In quantum mechanics, this gives a contribution to the Hamiltonian of the
hydrogen atom. Usually, this contribution is treated by perturbation theory.
This term and other contributions from relativistic corrections of the kinetic
energy are automatically accounted for by the Dirac equation.
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Let us now consider the Hamiltonian of a hydrogenic atom if the spin-
orbit energy is taken into account. By adding the operator corresponding
to (3.138) to the Coulomb-Hamiltonian (3.125) for a particle with spin, we
obtain

H =
(
− �

2

2m
∆− γ

|x|
)
12 +

gγ

4m2
ec

2

1
|x|3 S · L (3.139)

For the hydrogen atom (Z = 1) in atomic units, we may set γ = 1, me = 1,
c ≈ 137, g ≈ 2, and the Hamiltonian simplifies to

H =
(
−1

2
∆− 1

|x|
)
12 +

1
2c2

1
|x|3 S · L (3.140)

and we see that the constant in front of the spin-orbit term has a very small
numerical value (≈ 2.7 × 10−5). Hence, we expect that the spin-orbit term
has only a small influence on the Coulomb eigenfunctions.

Ψ The spin-orbit term is usually treated by first-order perturbation the-
ory, because the radial problem corresponding to (3.139) cannot be

solved exactly. This is a very delicate problem in mathematical perturbation
theory. The spin-orbit term dominates the Coulomb potential at small dis-
tances from the origin. Hence, there are wave functions in the Hilbert space
for which the spin-orbit term contributes much more to the energy than
the Coulomb potential. Fortunately, this is not the case for the Coulomb
eigenfunctions, which are indeed only slightly perturbed by the presence of
the spin-orbit interaction. We note that the spin-orbit term is implicitly
contained in the relativistic Dirac equation for the hydrogen atom. In that
framework it is not necessary to employ any perturbation theory, because
the solution is known explicitly. In the following, we investigate the angular
part of the wave function according to the Pauli equation with a spin-orbit
term.

3.9.4. Eigenfunctions of the spin-orbit operator

In a more realistic model of the hydrogen atom that takes into account the
spin-orbit term f(|x|)S · L, the spin S and the orbital angular momentum
L are no longer constants of motion. Neither L3 nor S3 commutes with the
spin-orbit term. Therefore, these operators also do not commute with the
Hamiltonian (3.139). But the system is still spherically symmetric, because
the scalar product S · L is invariant under rotations. Hence, the generator
of rotations, the total angular-momentum operator

J = L + S, (3.141)

must be a constant of motion. Indeed, one finds

[H , Jk] = H Jk − Jk H = 0, k = 1, 2, 3. (3.142)
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We may choose the operators J2, J3, S · L as a set of observables that
commute with each other and with the Hamiltonian (3.140). The operator
S2 = (3/4)1 (sticking with atomic units, � = 1) is just a multiple of the
identity operator, hence it trivially commutes with all other operators.

It is useful to introduce the spin-orbit operator

K = 2S · L + 1. (3.143)

We can express the operators J2 and L2 in terms of K:

J2 = K2 − 1
4
, L2 = K2 −K. (3.144)

It is clear that K commutes with the Hamiltonian (3.140), because K com-
mutes with the spin-orbit term and both S and L commute with the scalar
Coulomb Hamiltonian. Hence, K is a conserved quantity and so are the
observables J2 and L2, which can be expressed in terms of K.

Exercise 3.8. With the help of

σ · L =
(

L3 L1 − iL2

L1 + iL2 −L3

)
, (3.145)

write K as a two-by-two matrix operator and verify (3.144), using the an-
gular-momentum commutation relations.

Equation (3.144) implies that any eigenvector of K is also eigenvector
for the operators J2 and L2. The eigenvalue of J2, which is usually written
j(j + 1) with a non-negative j, is determined by the eigenvalue κ of K. By
solving κ2 = j(j + 1) + 1/4 for j > 0, we find immediately

j = |κ| − 1
2
. (3.146)

We know that the eigenvalue of L2 is �(�+1), where the orbital angular-
momentum quantum number � is a non-negative integer. Because of (3.144),
the eigenvalues of K must fulfill the relation

�(� + 1) = κ2 − κ. (3.147)

Solving for κ, we obtain the two solutions κ = � + 1 and κ = −�. Note that
the value κ = −� = 0 has to be excluded, because the relation K2 = J2+1/4
implies κ2 > 0. Hence, the only possible values for κ are

κ = ±1, ±2, ±3, . . . . (3.148)

This in turn shows that the possible values of the quantum number j are

j =
1
2
,

3
2
,

5
2
, . . . . (3.149)
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The eigenvalue of J3 will be denoted by mj . As we know from Theorem 1.1,
the only possible values for mj are

mj = −j, −j + 1, . . . ,+j. (3.150)

The simultaneous eigenvectors of the operators K and J3 are the spinor
harmonics. They can be defined in terms of the spherical harmonics Y m

� as
follows

Yκ,mj =
1√

2κ− 1

⎛
⎝
√

κ− 1
2 + mj Y

mj−1/2
κ−1√

κ− 1
2 −mj Y

mj+1/2
κ−1

⎞
⎠ , κ ≥ 1, (3.151)

Yκ,mj =
1√

1− 2κ

⎛
⎝−

√
1
2 − κ−mj Y

mj−1/2
−κ√

1
2 − κ + mj Y

mj+1/2
−κ

⎞
⎠ , κ ≤ −1. (3.152)

CD 3.13 presents a gallery of visualization of the spinor harmonics
Yκ,mj

with angular momentum j ≤ 7/2. You may select the function
by specifying the quantum numbers j, mj , and the sign of S · L
(which is related to the sign of κ, see (3.159) below). Because these
functions depend only on the angles ϑ and ϕ, they may be regarded
as functions on the surface of the unit sphere. CD 3.13.2 shows the
upper and lower components as separate plots, CD 3.13.3 visualizes
the spin directions via colors, as described in Section 3.5.5. The
associated spin-vector field is symmetric with respect to rotations
around the z-axis (see CD 3.13.4 and CD 3.13.5).

The spinor harmonics are also eigenfunctions of L2 and S2, but not of
L3, or S3. We have the following result.

Spin-orbit and angular-momentum eigenvalues:

K Yκ,mj = κYκ,mj κ = ±1,±2,±3, . . . , (3.153)

J2 Yκ,mj = j(j + 1)Yκ,mj j = |κ| − 1
2

=
1
2
,
3
2
,
5
2
, . . . , (3.154)

J3 Yκ,mj = mj Yκ,mj mj = −j,−j + 1, . . . , j. (3.155)

It is not difficult to verify the eigenvalue equation for J3 = L3 +S3 using

L3 Y m
� (ϑ, ϕ) = m Y m

� (ϑ, ϕ). (3.156)
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In order to compute the eigenvalue of the matrix operator

S · L =
1
2

(
L3 L1 − iL2

L1 + iL2 −L3

)
, (3.157)

we need that L1 ± iL2 are ladder operators with respect to m. We have

(L1 ± iL2) Y m
� =

√
(�±m + 1)(�∓m) Y m±1

� . (3.158)

A little calculation now shows

S · LYκ,mj =
1
2
(κ− 1)Yκ,mj (3.159)

for both signs of κ. This proves (3.153). The spinor harmonics are also
eigenfunctions of L2.

L2 Yκ,mj = �(� + 1)Yκ,mj with � =

{
κ− 1 for κ > 0,

−κ for κ < 0.
(3.160)

The eigenvalues of J2 = L2 + 2S · L + S2 follow by a straightforward com-
putation.

The sign of the eigenvalue of K also determines the sign of S · L, that
is, whether the spin and the orbital angular momentum are more parallel or
rather antiparallel. (Neither L nor S have a well-defined direction, because
these operators have non-commuting components.) If the eigenvalue of K is
positive, then we find j = κ− 1/2 and � = κ− 1 and hence j = �+1/2. The
total angular momentum j is obtained by adding the spin 1/2 to the orbital
angular momentum �. In a state belonging to a negative eigenvalue of K,
the operator S ·L is strictly negative (S and L have opposite directions). In
this case, we have j = −κ− 1/2, � = −κ, and the total angular momentum
j = � − 1/2 is obtained by subtracting the spin from the orbital angular
momentum.

Without proof, we note the formula

|Yκ,mj (ϑ, ϕ)|2 = |Y−κ,mj (ϑ, ϕ)|2. (3.161)

Here, the modulus is defined as the C
2-norm of the spinor, that is,

|Yκ,mj (ϑ, ϕ)|2 =
〈Yκ,mj , Yκ,mj

〉
2
. (3.162)

This quantity is symmetric with respect to rotations about the z-axis, hence
it actually does not depend on mj .

It is interesting to compare the spinor harmonics with the spherical har-
monics. In Figure 3.4, we show “polar plots” of |Y 1

4 | and |Y±5,3/2| (similar
to Figure 1.8). These are curves in the xz-plane where at each angle ϑ, the
distance from the origin is the absolute value of the function. The spherical
harmonics and the corresponding spinor harmonics have maxima in roughly
the same directions. But the absolute value of the spinor harmonic has no
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Figure 3.4. Polar plots of the absolute values of the spher-
ical harmonic Y 1

4 and of the corresponding spinor harmonics
Y±5,3/2.

zeros for 0 < ϑ < π, because the two components of the spinor do not vanish
simultaneously for ϑ inside this interval.

Some visualizations of the simultaneous eigenfunctions of the Coulomb
Hamiltonian, J2, and K are depicted in Figure 3.5.

CD 3.14 is a gallery of eigenfunctions of the hydrogen atom with
spin (see also Fig. 3.5). Two navigation palettes either show the
quantum numbers n, κ, and mj , or the quantum numbers j, �, nr,
and mj . The visualizations show flux lines of the spin-vector field.
In addition, the flux lines are colored according the direction of that
vector field. (This helps to distinguish the sign of mj .) In these
visualizations, the influence of the spin-orbit term is neglected. Note,
however, that the spin-orbit term would change only the radial part
of the eigenfunction. Moreover, this distortion would affect the radial
wave function only in a small neighborhood of r = 0, which could
not be seen in these images.
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a b

c d

Figure 3.5. Some hydrogen eigenfunctions with n = 4, κ =
4, and (a) mj = 7/2, (b) mj = 5/2, (c) mj = 3/2, and (d)
mj = 1/2. The images show isosurfaces of the absolute value
of |ψn,κ,mj | and some flux lines representing the spin-vector
field (which has a rotational symmetry about the z-axis).

3.9.5. The radial equation

In spherical coordinates, the Coulomb Hamiltonian with the spin-orbit cou-
pling (3.140) becomes (using atomic units)

H = −1
2

∂2

∂r2
+

1
r

∂

∂r
+

1
2

L2

r2
− 1

r
+

1
2c2

S · L
r3

. (3.163)

Here, the part containing the radial derivatives commutes with the part con-
taining angular derivatives, and hence we can find a solution of the eigen-
value equation in the form of a product of a radial part and an angular part
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(separation of variables)

ψ(r, ϑ, ϕ) =
1
r

fκ(r)Yκ,mj (ϑ, ϕ). (3.164)

The angular part is a simultaneous eigenfunction of L2 and of S·L. Inserting
ψ into Hψ = Eψ therefore leads to the radial equation for fκ,(

−1
2

∂2

∂r2
+

1
2

κ(κ− 1)
r2

− γ

r
+

1
4c2

κ− 1
r3

)
fκ(r) = E fκ(r). (3.165)



Chapter 4

Qubits

Chapter summary: A qubit (quantum bit) is a quantum-mechanical two-state
system. Any quantum system that can have two different states can also assume an
arbitrary superposition of these states. Compared to a classical bit, a qubit has a
significantly higher complexity (a continuum of possible states versus two distinct
states 0 and 1). But nevertheless, because the state space is just two-dimensional,
the measurement of any observable can produce at most two different results.

A canonical example of a qubit is provided by the spin of a spin-1/2 particle.
Many ideas in this chapter are formulated with this system in mind. But there are
other realizations of qubits, for example, the polarization states of photons, which
we are going to discuss in Section 4.5.

Because of the relative simplicity of a qubit system, it is worthwhile to review
some peculiarities of quantum mechanics. In Section 4.2, we use a typical Stern-
Gerlach experiment to illustrate the projection postulate, the state preparation by
single-particle measurements, and the state verification by ensemble measurements
(Section 4.3). We ask whether it is meaningful to talk about the state of a single
qubit, and we describe how one can determine (or rather estimate) an unknown
quantum state. Moreover, we discuss the impossibility of “classical” teleportation
in quantum mechanics.

In Section 4.4, we associate a unique “spin-up direction” with every qubit state.
We describe the implementation of rotations as unitary transformations in the
qubit’s Hilbert space and compute the transition probabilities between different
qubit states.

The strange topic of single-particle interference is presented in Section 4.6. We
introduce interferometers and discuss the problems of acquiring the “which-way”
information. We describe a variant of the double-slit experiment and discuss what it
means to rotate a qubit through an angle of 2π. Interaction-free measurement (the
detection of a bomb without actually looking at it) is presented in Section 4.6.4 as
an example illustrating the meaning of the interference of probability amplitudes.

Section 4.7 deals with quantum cryptography. We present an example of a
secure key distribution protocol that allows one to establish a secure communication
via the classical one-time pad. The security of the method depends on the fact that
quantum mechanics indeed gives a complete description of the state of a qubit. In
a hidden variable theory, one assumes that the state of a qubit can be described
by some additional parameters whose knowledge would enable us to make more
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accurate predictions. Section 4.8 presents an example of a hidden variable theory
and discusses its implications.

We conclude this chapter with a section about the spin in a time-dependent
magnetic field (Section 4.9). In particular, we discuss the time evolution in a pe-
riodically time-dependent magnetic field and the phenomenon of spin resonance,
or magnetic resonance. The results are relevant for technological applications like
nuclear spin tomography.

4.1. States and Observables

4.1.1. The Hilbert space of a qubit

Many investigations of quantum systems do not require a “complete” de-
scription of the state. For example, one often neglects the position and
momentum of a particle when one is only interested in the “inner degrees
of freedom” related to the spin. This simplifies the description considerably,
because the Hilbert space describing the spin of a particle with spin 1/2 is
just the two-dimensional complex vector space C

2.

Definition:

A quantum system with a two-dimensional Hilbert space is called a two-
state system or a qubit (quantum bit). The vectors in the Hilbert space
of a qubit are often called spinors.

The qubit is the simplest nontrivial quantum system, but it has many typical
properties of larger quantum systems. Moreover, the qubit is at the basis of
quantum information theory.

The classical analog of a qubit is a bit—the unit of information that can
only have one of two possible values (usually denoted by “0” and “1”). In a
classical computer, bits are usually represented by the voltage in a capacitor.
If miniaturization is brought to an extreme, one might think of representing
a bit by two different states of an elementary particle. But then quantum
mechanics takes over, and the properties of a qubit are very different from
the properties of a classical bit.

The crucial difference between a bit and a qubit is that the two states of
a qubit can form quantum-mechanical superpositions and hence an infinite
number of further states. It is still appropriate to speak of a two-state sys-
tem, because all possible states of a qubit can be described as superpositions
of just two basis states. Moreover, any measurement of a qubit can produce
at most two different results, which may be called “0” and “1”. But the
physical meaning of “0” and “1” depends on the observable one chooses to
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measure. For example, the two eigenstates of the spin observable S1 are
physically distinct from the eigenstates of S3.

It should be stressed that particles with spin 1/2 are not the only ex-
amples of qubits. Other physically important qubit systems are realized,
for example, by the polarization states of photons (Section 4.5.1), or by two
oscillating states of trapped ions. As a mathematical example, the qubit
obtained by restricting the harmonic oscillator to the subspace spanned by
the first two eigenstates will be discussed in Section 4.5.3.

4.1.2. States of a qubit

Let us first choose an orthonormal basis in the two-dimensional Hilbert space
of a qubit, that is, we choose two vectors ψ+ and ψ− with

〈ψ+, ψ−〉 = 0, ‖ψ+‖ = ‖ψ−‖ = 1. (4.1)

The physical interpretation of the basis vectors depends on the physical
system under consideration. Thinking of particles with spin 1/2, we may
assume that the vectors ψ+ and ψ− describe the states with spin-up and
spin-down in the z-direction of a chosen Cartesian coordinate system in
R

3. Thinking of photons, we may take ψ+ to describe the state of vertical
polarization, and ψ− to describe the state of horizontal polarization (see
Section 4.5.1).

With respect to this basis, vectors are represented by column vectors
in C

2, and linear operators are represented by two-by-two matrices. For
example, the basis vectors become

ψ+ =
(

1
0

)
, ψ− =

(
0
1

)
. (4.2)

This representation (again called the standard representation) will be used
throughout this chapter, and the identification between states and column
vectors, observables and two-by-two matrices is generally made without fur-
ther notice.

A general state of a qubit is an arbitrary superposition of the two basis
states,

ψ = c+ ψ+ + c− ψ− =
(

c+

c−

)
, with c± ∈ C. (4.3)

The norm of ψ and the scalar product with φ = d+ ψ+ + d− ψ− are given by

‖ψ‖2 = |c+|2 + |c−|2, 〈ψ, φ〉 = c+ d+ + c− d−. (4.4)

We omit the index 2 used in Section 3.5 to denote the C
2-scalar product,

as long as no confusion with the norm and scalar product of spinor-wave
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functions can arise. Usually, it is assumed that the states are normalized,
that is, ‖ψ‖ = 1.

Very often, the two base vectors are denoted by

ψ+ = |↑〉, ψ− = |↓〉, (4.5)

with the arrows indicating the physical interpretation as spin-up and spin-
down. The ket-symbol |·〉 is used in Dirac’s notation, which is predominant
in the literature about qubit systems. Here, it comes in handy to convert a
graphical symbol into a Hilbert-space vector. In Appendix A.8, we give a
short introduction to Dirac’s notation. Other commonly used ket-symbols
for the C

2-basis vectors are |0〉 and |1〉, or |+〉 and |−〉.

We can visualize a qubit state ψ = c+ ψ+ + c− ψ− by a bar diagram
showing the complex values of coefficients c+ and c−. A few examples
are given in CD 4.1. Other methods of visualizing qubit states will
be discussed later.

4.1.3. Qubit observables

Any observable has to be represented by a self-adjoint operator. With re-
spect to a chosen orthonormal basis in the Hilbert space of a qubit, observ-
ables are thus represented by Hermitian1 two-by-two matrices. The three
Pauli matrices σ = (σ1, σ2, σ3) defined in (3.38) are examples of particular
importance. The basis vector ψ+ is an eigenvector of σ3 belonging to the
eigenvalue +1, and ψ− belongs to the eigenvalue −1 of σ3. The physical
meaning of the Pauli matrices thus depends on the interpretation of ψ±. If
the qubit is realized as a particle with spin 1/2, then the Pauli matrices may
be interpreted as the standard representation of the spin observables S1, S2,
and S3 according to Eq. (3.39).

It is usually assumed that, in turn, every self-adjoint operator corre-
sponds to an observable. Hence, for any Hermitian matrix Q, it is, at least
in principle, possible to build a measurement device that produces the eigen-
values of Q as possible results. The measurement of a qubit-observable can
produce at most two different results, because a two-by-two matrix Q can
have at most two different eigenvalues.

The three Pauli matrices together with the two-dimensional unit matrix
12 form a basis in the four-dimensional real vector space of all Hermitian two-
by-two matrices (see Exercise 4.2 below). Hence, we can make the following
observation:

1By definition, a square-matrix A is Hermitian if A equals the adjoint matrix A† = A
�

.
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Pauli matrices and qubit observables:

With respect to an orthonormal basis in C
2, any qubit observable Q is

represented by a linear combination of Pauli matrices,

Q =
1
2

(
a012 +

3∑
k=1

akσk

)
=

1
2

(
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)
, (4.6)

with real coefficients a0, . . . , a3.

Finally, we note the following useful formulas for Pauli matrices,

σj σk + σk σj = 2 δjk 12, (4.7)

σj σk − σk σj = 2
3∑

m=1

εjkm σm. (4.8)

The verification is left as an exercise (see Exercise 4.4 below).

Exercise 4.1. Show that all the Pauli matrices have the eigenvalues +1
and −1. Find a basis in C

2 that consists of eigenstates of the matrix σ1.

Exercise 4.2. Show that any Hermitian two-by-two matrix Q can be
written in the form (4.6). Show that for a given matrix Q, the coefficients
a0 and a = (a1, a2, a3) can be determined from

a0 = Tr Q, ak = Tr (Qσk), (4.9)

where Tr denotes the trace of the matrix (the sum of the diagonal elements).

Exercise 4.3. Verify the anticommutation relation (4.7) and the com-
mutation relation (4.8) for Pauli matrices.

Exercise 4.4. Use the explicit definition (3.38) of the Pauli matrices to
verify the following formulas

σj σk = δjk 12 +
3∑

m=1

εjkm σm for all j, k = 1, 2, 3. (4.10)

σj σk = σm if (j, k,m) is a cyclic permutation of (1, 2, 3). (4.11)
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ψ

ψ+

ψ−

σ3

Figure 4.1. Feynman’s schematic diagram of a measure-
ment of the spin-component σ3. The result is determined
by acquiring the “which-way information.”

4.2. Measurement and Preparation

The procedures of state preparation (preparatory measurement) and state
verification (determinative experiment) can be illustrated clearly with spin
measurements. This gives us an occasion to discuss once again the subtleties
of the quantum measurement process.

4.2.1. Stern-Gerlach experiment

Given qubits in a state ψ, we want to measure the observable σ3. To that
purpose we send the qubits through a vertically oriented Stern-Gerlach appa-
ratus schematically depicted in Figure 4.1. Each particle that passes through
the device is either deflected up or down. The measurement is done by look-
ing which way the particle takes (“which-way information”). Every single
measurement gives a result that can be described by one of the eigenvalues
of σ3, and never something else.

What does quantum mechanics predict about the measurement of σ3?
We write the initial state as a linear combination ψ = c+ ψ+ + c− ψ− of the
eigenvectors ψ± of σ3. The expressions

pψ→ψ± =
∣∣〈ψ±, ψ〉∣∣2 = |c±|2 (4.12)

are the probabilities that a particle in the state ψ is actually found to be in
the state ψ+ or ψ−. Measuring σ3 in the state ψ will thus give +1 (“spin-up”)
with probability |c+|2 and −1 (“spin-down”) with probability |c−|2.

One has to admit that the word “measurement” is badly chosen, as it sug-
gests that observables have some value that is revealed by the measurement
procedure. But, this is a classical preconception. Actually, the quantum
mechanical formalism makes no statement about the value of an observable
before the measurement, or whether the observable actually has any value.
In quantum mechanics, observables are represented by operators, and oper-
ators are not values. Except for the special situation that the system is in
an eigenstate of the observable, the observable does not have a value prior
to, and independent of, the measurement.
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Qψ

ψ1

ψ2

Figure 4.2. Diagram for the measurement of a qubit ob-
servable Q. The device has one input channel and two out-
put channels, corresponding to the two possible results of the
measurement. ψ1 and ψ2 denote the eigenvectors belonging
to the two real eigenvalues of the Hermitian two-by-two ma-
trix Q.

Quantum mechanics gives only probabilities for the various possible re-
sults of a measurement. We cannot predict the outcome of an elementary
measurement (a measurement that is performed only once on a single
quantum system), unless we know that the system is in an eigenstate of
the observable being measured.

Figure 4.1 is an abstract symbol for the measurement of the observable
σ3. It may be realized by a Stern-Gerlach apparatus for a particle with
spin 1/2, or by a birefringent (doubly refracting) crystal for measuring the
polarization states of a photon (see Section 4.5.1 below). We are going to use
the same symbol for an arbitrary qubit observable Q, even if the practical
realization of that measurement bears no similarity with a Stern-Gerlach
experiment (see Fig. 4.2).

Stern-Gerlach experiments are often done with atoms effusing from
a heated gas. The particles thus enter the apparatus in a random
state, and the spin measurement produces just a random bit. CD 4.2
simulates a Stern-Gerlach experiment with qubits in a random state.
As soon as the which-way information becomes available, the qubit
gets projected into the corresponding spin-eigenstate.

The measurement of a quantum observable is a typical random experi-
ment. In probability theory, a random experiment is an experiment whose
outcome is uncertain, until the experiment is actually run. The set of pos-
sible outcomes forms the sample space of the experiment. It is usually
assumed that a random experiment can be repeated indefinitely under iden-
tical conditions. An elementary experiment is just a single run of the random
experiment. A random variable is a function defined on the sample space.
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ψ

ψ

0

+

ψ−

σ3

σ3

Figure 4.3. A qubit emerging with spin-up from a Stern-
Gerlach apparatus is in the state described by ψ+. A second
measurement of σ3 gives spin-up with certainty.

In each run of the experiment, the random variable thus assumes a value
that depends on the random outcome.

In the case of an experiment with qubits, the sample space consists of
only two elements. For the Stern-Gerlach experiment measuring σ3 the sam-
ple space {“upper path”, “lower path”}. We can define a random variable S
with the values +1 and −1 for the two possible outcomes. For each run of the
experiment, the random variable S describes the value of the qubit observ-
able σ3. Note that a random variable is only associated with the observable
being measured. In the measurement of σ3, no random variable is associated
with σ1 or σ2, because no values are obtained for these observables.

4.2.2. Projection postulate

After measuring σ3 of an individual qubit with a Stern-Gerlach apparatus,
the qubit is in the state specified by the outcome of the measurement. If,
for example, we find the result +1, then—right after the measurement—the
system is in the state described by the eigenvector ψ+ of σ3. This can be
verified by sending the particle through a second Stern-Gerlach apparatus
whose inhomogeneous field has the same orientation (see Fig. 4.3). One finds
that whenever a particle emerges from the first apparatus with spin-up, it
will pass the second apparatus also with spin-up. The first measurement
obviously changes the initial state vector ψ to a state vector φ = c+ψ++c−ψ−
that satisfies |c+|2 = 1 and |c−|2 = 0, because the second measurement of
σ3 gives the result “spin up” with certainty. We conclude that φ = ψ+, up
to an irrelevant phase factor.

The effect of the measurement of σ3 is well summarized by the projection
postulate (see Book One, Section 4.8): Define the projection operators

P = |ψ+〉〈ψ+|, 1− P = |ψ−〉〈ψ−| (4.13)

onto the eigenspaces of σ3. Assume that the particle is in a state ψ before
the measurement of σ3. Then, after the measurement, the particle is either
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in the state Pψ or in the state (1 − P )ψ, depending on the result of the
measurement.

The measurement of an observable projects the state vector into the
subspace that corresponds to the measured result. This changes the
state, except if the state already belongs to that subspace.

For wave packets, the projection postulate claims that a measurement
causes an instantaneous “collapse.” Let us discuss this with the help of
an example. Consider a spinor-wave packet that splits into two spatially
separated parts when entering a Stern-Gerlach apparatus.

CD 3.5.3 and 3.12.1 show the splitting of a quantum wave packet in
an inhomogenous magnetic field (Stern-Gerlach apparatus) without
showing the measurement of the state.

Measuring the deflection of the particle (the which-way information) tells
us in which part of the wave packet we are going to find the particle. This
amounts to a measurement of the position. The projection erases the “wrong
part” of the wave packet and keeps only the part that agrees with the result
of the measurement. This instantaneous collapse to the “right part” appears
dramatic only if the wave function is regarded as a physical field. I prefer to
see the wave function as a container of physically available information about
the particle at each moment. Then, the collapse just reflects the fact that
new information about the position of the particle has become available.2

In any case, the projection postulate is a rather simple model of the
measuring process. Any real measurement involves several physical systems
(the object, a measuring apparatus, and an observer), and any description
involving only the states of the measured object can only be a crude simpli-
fication.

4.2.3. Stern-Gerlach filter and state preparation

We measure a qubit observable Q by sending the qubit into an appropri-
ate measurement device (see Fig. 4.2) and by determining through which
channel it leaves the apparatus. One radical method to obtain this which-
way information is to block one of the paths in the apparatus, say the path
corresponding to the eigenstate ψ2. Then, we can be sure that all particles
emerging from the apparatus are in the other eigenstate ψ1. The modified

2This does not mean that there has to be a conscious observer to register that in-
formation. With “becoming available” I mean that in the combined system consisting of
qubit and measuring apparatus the information is physically realized in a way that it has
influence upon the time evolution in the future.
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ψ

ψ+

σ3

Figure 4.4. A Stern-Gerlach filter is a Stern-Gerlach ap-
paratus where one of the partial beams is blocked off. All
particles emerging from this device have spin-up (with re-
spect to the positive z-direction). Hence, the Stern-Gerlach
filter is a device for preparing the state ψ+.

Stern-Gerlach apparatus with one blocked channel will be called a Stern-
Gerlach filter (see Fig. 4.4). A filter is a device that passes only particles
with a certain value of the observable the filter measures, that is, particles
with a certain property. In the formalism, properties are represented by
projection operators. For example, the Stern-Gerlach filter for the state ψ+

shown in Figure 4.4 is the physical equivalent of the projection operator
P = |ψ+〉〈ψ+|.

A filter serves to prepare a system in a certain state. For example, if
we need a qubit in the state ψ+, we can send it into the filter shown in
Figure 4.4. When the qubit (whose initial state may be unknown) leaves the
filter, then it is in the desired quantum state ψ+. When it gets absorbed or
reflected (which, in principle, can be detected), then our attempt to prepare
ψ+ has been unsuccessful, and we have to repeat the preparation procedure
with another qubit.

A state preparation requires only a single measurement. Hence, the state
ψ that is obtained in that way characterizes a single quantum system.

In Section 4.4.1 below, we are going to prove that any state of a qubit
can be prepared with an appropriately oriented Stern-Gerlach filter.

The act of projecting a spinor-wave packet onto an eigenstate of the
spin by blocking one path in the Stern-Gerlach apparatus is shown
in CD 3.7, CD 3.12.2, and CD 3.12.3. In CD 4.3, we simulate an
experiment where qubits emerging from a random source are first
prepared in the state ψ+, and then the observable σ3 is measured.
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4.3. Ensemble Measurements

4.3.1. State verification

The state ψ describes how a qubit was prepared. Hence, it is meaningful to
speak of the state of an individual qubit. But what is the meaning of the
probabilities that quantum mechanics allows us to compute for this state?
Can we associate probabilities with single events? Indeed, there are ap-
proaches to probability theory that attempt to do just that.3 But no matter
how you think about this, a quantitative verification (or falsification) of the
predicted probabilities can only be done by repeating an experiment very
often and by counting the various outcomes. Therefore, we make a clear
distinction between single measurements (which we also called elementary
experiments) and ensemble measurements.

An ensemble measurement consists of repeated elementary experiments
performed on a very large number of identically prepared systems.

An ensemble measurement of σ3 in a Stern-Gerlach apparatus divides an
ensemble E of incoming particles into two sub-ensembles E+ and E− according
to the which-way information obtained in the course of the experiment. One
then counts the numbers n+ and n− of particles in the sub-ensembles and
divides by the total number of particles n. If n is large enough, the fractions
n+/n and n−/n are approximations to the probabilities for spin-up and spin-
down, respectively. That is, for qubits with initial state ψ, we obtain for the
probabilities (4.12):

pψ→ψ± ≈
n±
n

for n large. (4.14)

A probability distribution can only be verified by an ensemble measure-
ment, where we count the fraction of elementary measurements with a
specified outcome.

CD 4.4 simulates a measurement of the observable σ1 on qubits pre-
pared in an eigenstate of σ3. In CD 4.5, you can determine the
probability that a qubit in the state ψ+ is found with spin-up in a
Stern-Gerlach apparatus that is rotated through an arbitrary angle
α about the direction of the beam.

3According to the Bayesian point of view, the numerical value of the probability is a
measure of the plausibility one gives to a hypothesis on the basis of available information.
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When experiments are actually performed, one often works with a beam
of particles, and the probabilities are found by measuring the intensities
of the partial beams emerging from the Stern-Gerlach apparatus. Thus,
ensemble measurements are carried out automatically. Note that we do not
consider interference or interaction between different members of the same
ensemble. In order to make sure that the particles of the ensemble are indeed
independent of each other, one can make the intensity of the particle beam
so low that one particle is already in the detector before the next particle
leaves the source. It is an experimentally verified fact that all predictions of
quantum mechanics remain valid for this situation.

4.3.2. Determining an unknown state

Ensemble measurements are also necessary to determine an unknown state
ψ (determinative measurement). In order to determine an unknown state
ψ = c+ψ+ + c−ψ− experimentally, we have to measure, among other things,
the probability |c+|2 = 1−|c−|2. Counting a finite number of spin-up events
of course cannot give the exact numerical value.4 An accurate state deter-
mination is impossible with a finite number of elementary measurements.

An ensemble measurement of σ3 in the state ψ = c+ψ++c−ψ− can reveal
the values of |c±|2 (with a fidelity depending on the number of elementary
experiments). But even the knowledge of |c±| is not sufficient to determine
the state (unless the state is one of the eigenstates of σ3). Because c± are
complex numbers, we can write c± = |c±| exp(iφ±) and

ψ = eiφ+

(
|c+|ψ+ + |c−| ei(φ−−φ+) ψ−

)
. (4.15)

The overall phase φ+ has no physical significance, because all vectors in the
one-dimensional subspace spanned by ψ represent the same state. But the
relative phase φr = φ− − φ+ has a physical meaning. (For example, the
linear combination ψ+ + eiπ ψ− with relative phase π is orthogonal to the
linear combination ψ++ψ− with relative phase 1.) In order to determine φr,
one also has to measure the probabilities for spin-up and down with respect
to other directions (see the exercises below).

4A notable exception occurs if we know the orientation of the Stern-Gerlach apparatus
that has been used to prepare the unknown state. Then a single measurement with a Stern-
Gerlach apparatus in the same orientation can tell you whether the state was prepared as
spin-up or spin-down.
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In order to measure an unknown state exactly, one would need an infinite
ensemble of identically prepared systems. Moreover, it is not sufficient
to measure only σ3. In general, one needs also information about the
other components of the spin.

It is believed that a qubit can work as a basic information processing unit in a
quantum computer. Quantum computers have a large potential, because the
superposition states of a qubit hold much more information than a classical
bit. The main problem with quantum computers is that this information
is not directly accessible. A quantum computer has no advantage if it is
necessary to repeat the measurement many times in order to determine the
final state of the qubit holding the result.

Exercise 4.5. Assume that a qubit is prepared in one of two known
non-orthogonal states ψ1 and ψ2. Can you decide with a single measurement
which of the two states was actually prepared?

Exercise 4.6. With p ∈ [0, 1] and φ ∈ [0, 2π), consider the C
2-vector

ψ =
√

p ψ+ +
√

1− p eiφ ψ−. (4.16)

Can we reasonably assume that any qubit state is represented by a vector like
this? What is the physical meaning of p? Describe a procedure for measuring
p. Can you measure p in a single elementary measurement, or is it necessary
to perform an ensemble measurement?

Exercise 4.7. Given ψ as in the previous exercise, express the probabil-
ity q for finding spin-up in the x-direction in terms of p and φ. Proceed to
show that some information about the relative phase φ can be obtained from
a measurement of σ1. More precisely, show that

cos φ =
q − 1/2√
p(1− p)

. (4.17)

Exercise 4.8. The probabilities p and q from the previous exercises still
do not determine ψ uniquely. What is the remaining ambiguity? Would it
help to measure σ2?

If we perform a sufficiently large number of measurements on qubits
in a state ψ, we can get a good approximation to the true state, be-
cause the measured relative frequencies approximate the true prob-
abilities. This process is called state estimation. It is illustrated by
CD 4.6. This simulation uses the results of Exercises 4.6–4.8.
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4.3.3. Classical teleportation is impossible

Our observations about preparing a state (of individual qubits) versus de-
termining the state (of an ensemble) are often described in a pregnant way
as follows:

It is impossible to measure the state of single qubit in such a way that
the acquired information is sufficient to prepare another qubit in the
same state.

Consider the following setup (see Fig. 4.5). A physicist called Alice re-
ceives a qubit in a quantum state ψ. It is assumed that the preparation
procedure and hence the state of that qubit is unknown to Alice. She mea-
sures the state of the qubit with some measuring apparatus M . Then she
tells the result to another physicist called Bob who resides in a distant labo-
ratory. This information transfer is done by classical methods, for example,
via telephone. Bob uses that information to choose a certain preparation
procedure and to prepare a qubit in some quantum state ψ′. Can one ar-
range things in such a way that for every possible input ψ, Bob’s output ψ′
is identical with ψ? This would be called classical teleportation,5 because
the information transfer uses classical bits and bytes.

We can test the reliability of any proposed teleportation scheme as fol-
lows. We send to Alice a sequence of qubits in randomly chosen states only
known to us. Then we measure some observable on the qubits produced
by Bob. As we know the states of the input qubits, we can predict the
statistical distribution of values measured on these qubits. A successful tele-
portation would mean that any measurement of Bob’s output gives the same
distribution as if the measurement was performed directly on Alice’s input.
This is impossible, because the measurement done by Alice on an individual
qubit gives insufficient information to infer the preparation procedure used
for that qubit. Hence, Bob has to guess the preparation procedure for each
qubit, and our statistical test will reveal his errors. The failure to teleport
qubit states in that way is remarkable, because the teleportation of classical
bits obviously presents no problems.

The impossibility of the classical teleportation is related to the fact that
a quantum state cannot be copied: There is no physical process that uses a
qubit in some (unknown) state ψ in order to prepare two qubits in the same
state ψ. (This “no-cloning theorem” will be proved in Section 6.8.4 below).
Otherwise, Alice could use a quantum copier to produce many copies of the

5The commonly used expression “teleportation” is badly chosen. One does not at-
tempt to transfer the qubit itself (“only” its state), and the transfer is by no means
instantaneous.
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M
S1 qubit 1 qubit

Alice BobClassical
communication

channel

Measurement Preparation

ψ ψ ?

Figure 4.5. The (impossible) classical teleportation proto-
col. Alice receives a qubit in a state ψ and performs some
measurement. The result is sent to Bob via a classical infor-
mation channel. On the basis of this information, Bob tries
to prepare a qubit in the same state.

input and estimate the state via an ensemble measurement as described in
the previous section. Alice can then advise Bob to produce a more or less
accurate copy of the input. (It is still impossible to reconstruct the state
exactly on the basis of a finite number of measurements.) In Section 6.6.2
below, we are going to discuss the possibility of quantum teleportation, where
the classical communication between Alice and Bob is assisted by quantum-
mechanical correlations.

4.4. Qubit Manipulations

It is very natural to ask the following question. If ψ is not an eigenstate of
σ3, perhaps it is a spin-up eigenstate with respect to some other direction
in R

3? The answer is given in this section.

4.4.1. All states are “spin-up” in some direction

The component of a vector a ∈ R
3 in the direction of a unit vector n is given

by the scalar product a · n. Similarly, the Hermitian matrix

σ · n =
(

n3 n1 − in2

n1 + in2 −n3

)
(4.18)

defines the component of the spin in the direction of n. We can measure
the observable σ · n with a Stern-Gerlach apparatus whose inhomogeneous
magnetic field is oriented in the direction of n.6 Hence, we can also prepare
states that are spin-up in the direction of n by blocking one of the paths in

6The usual Stern-Gerlach method has to be changed in order to measure, say, σ2

for particles moving in the y-direction. Nowadays, spin-measurements with respect to
arbitrary directions can be performed on laser-cooled atoms released from a magneto-
optical trap.
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ψ+(n)

σ · n

Figure 4.6. A Stern-Gerlach filter with magnetic field
pointing in the direction n. It prepares the spin-up eigen-
state of σ · n. Every possible state of a qubit has a unique
“spin-up direction” and can hence be realized in this way.

the Stern-Gerlach apparatus. The corresponding Feynman symbol is shown
in Figure 4.6.

The Hermitian two-by-two matrix σ · n has the eigenvalues +1 and −1
and normalized eigenvectors

ψ±(n) =
1√

2(1± n3)

(
n3 ± 1

n1 + in2

)
. (4.19)

On the north pole n = ez and on the south pole −ez of the unit sphere, we
have to complete the definition (4.19). We choose

ψ+(−ez) =
(

0
1

)
= ψ−(ez). (4.20)

ψ+(n) defines the state with spin-up in the direction of n, ψ−(n) has spin-
down. The two eigenvalues of σ ·n are the only possible results of measuring
the spin σ in the direction n. It is indeed one of the very counterintuitive
features of the spin that its component along any axis shows just two possible
values. The spin cannot be understood as a classical vector attached to the
particle (see Section 4.8.1 below).

Now, let ψ be any normalized state in C
2. Then

n(ψ) =

⎛
⎝〈σ1〉ψ
〈σ2〉ψ
〈σ3〉ψ

⎞
⎠ , with 〈σi〉ψ = 〈ψ, σiψ〉, (4.21)

is a unit vector in R
3. By a little calculation you can verify that ψ is an

eigenvector of σ · n(ψ) belonging to the eigenvalue +1,(
σ · n(ψ)

)
ψ = ψ. (4.22)

The vector ψ+

(
n(ψ)

)
defined as in (4.19) is another eigenvector of σ · n(ψ)

belonging to the eigenvalue +1. Normalized eigenvectors are unique up to a
phase, hence

ψ = eiλψ+

(
n(ψ)

)
, (4.23)
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with some suitable phase factor exp(iλ), that is, ψ and ψ+

(
n(ψ)

)
describe

the same quantum state. The phase λ is just the argument of the upper
component of ψ, because the upper component of ψ+(n) is defined to be
real-valued for all n. We call n(ψ) the spin-up direction of ψ.

Conversely, if n̂ is some unit vector in R
3, then ψ+(n̂) is the correspond-

ing spin-up eigenstate and

n
(
ψ+(n̂)

)
= n̂. (4.24)

Any vector ψ ∈ C
2 with the property n

(
ψ) = n̂ can differ from ψ+(n̂) only

by a phase.
Hence, any vector ψ ∈ C

2 can be interpreted as a spin-up state with
respect to a unique direction n(ψ). The spin-up direction in turn determines
the vector ψ uniquely up to a phase factor.

There is a one-to-one correspondence between directions n ∈ R
3 and the

states of a qubit. The correspondence is given by Eqs. (4.19) and (4.21)

n �→ ψ+(n), ψ �→ n(ψ). (4.25)

For a given n, the spinor ψ+(n) is the normalized spin-up eigenvector
of σ · n (it is unique up to a phase). For a given ψ, the components
of n(ψ) are the expectation values of the Pauli matrices in the state ψ.
Any state of the qubit can be prepared as a spin-up eigenstate with an
appropriately oriented Stern-Gerlach filter.

Ψ The mapping ψ+ : n �→ ψ+(n) from S2 (the unit sphere in R
3) into the

set of unit vectors in C
2 is discontinuous. The lower component has

a phase-discontinuity at the south pole of the unit sphere. The normalized
eigenvectors ψ+(n) are only unique up to a phase factor exp

(
iλ(n)

)
. In

Eq. (4.19), we defined the phase by requiring that the first component of ψ±
be real-valued. There is no choice of the phase factor that would lead to a
continuous mapping ψ+.

The association of qubit states with directions in R
3 is visualized

in CD 4.7. In CD 4.8, we represent states by the magnetic needles
already familiar from the visualization of a spinor field in CD 3.8.

Exercise 4.9. Verify σ · n(ψ) ψ = ψ with n(ψ) as in (4.21).

Exercise 4.10. In spherical coordinates, the axis n is described by a
polar angle ϑ and an azimuthal angle ϕ. Show that the matrix σ · n has the
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following representation in spherical coordinates

σ · n =
(

cos ϑ e−iϕ sin ϑ
eiϕ sin ϑ − cos ϑ

)
(4.26)

Exercise 4.11. Show that for any unit vector n in R
3, the operator Pn =

1
2(12 + σ · n) is a projection operator that projects onto the eigenstate with
spin up in the direction of n. Take an arbitrary state ψ = c+ψ++c−ψ− �= ψ−
and assume that c+ > 0 (which can always be achieved by multiplying ψ with
a phase factor). Show that you can choose n such that Pnψ+ is equal to ψ
after renormalization (that is, Pnψ+ = kψ with some constant k). Hence, it
is possible to prepare any state except ψ− by applying a Stern-Gerlach filter
to particles that are originally in the state ψ+.

Exercise 4.12. Compute n(ψ) for ψ =
√

p ψ+ +
√

1− p eiφ ψ− and for
ψ.

4.4.2. Rotations of a qubit

Just as rotations of wave functions are generated by the orbital angular-
momentum operator L, the rotations of qubits are generated by the spin
operator S. The rotations around the axis given by a unit vector n are
generated by the component of the spin with respect to this axis, that is, by
S · n.

Spinor rotation:

The rotation of a particle with spin 1/2 through an angle α about an
axis n is given by the unitary operator

U(α) = exp
(
− i

�
S ·α

)
, with α = αn. (4.27)

In the standard representation,

U(α) = exp
(
− i

2
σ ·α

)
= (cos

α

2
)12 − i(sin

α

2
) σ · n. (4.28)

The exponential function of the matrix σ ·n can be calculated by the power
series

exp
(
−i

α

2
σ · n

)
=

∞∑
k=0

1
k!

(
−i

α

2

)k
(σ · n)k. (4.29)

The result (4.28) is easily obtained if we use the property (σ · n)2 = 1, and
compare the resulting power series with the well-known Taylor series for the
sine and cosine functions.
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Exercise 4.13. Verify that the infinite sum (4.29) indeed gives (4.28).

The operator U(α) is unitary, U(α)† = U(α)−1 = U(−α), and it has
the astonishing property that

U(2πn) = −12. (4.30)

This means that a rotation through an angle 2π turns a state vector into
its negative. We can accept this, because a vector ψ and its negative −ψ
describe the same state (they are elements of the same ray in the Hilbert
space).

CD 4.8 visualizes rotations of a qubit around the z- and y-axes. A
rotation through an angle 2π multiplies the state vector with −1.

Now it is time for a little consistency check. On the one hand, rotations
in R

3 are given by orthogonal 3 × 3 matrices R(α) with determinant +1.
On the other hand, we have claimed that a unitary two-by-two matrix U(α)
describes a rotation of spinors. This is only meaningful if a rotation by U(α)
turns the basis state ψ+ into the spin-up eigenstate with respect to an axis
that is obtained from the z-axis by the rotation R(α). More generally, for
any unit vector n̂ ∈ R

3,

U(α)ψ+(n̂) = ψ+

(
R(α)n̂

)
(up to a phase). (4.31)

It is easy to verify this statement in special cases; a proof of the general case
is left to Section 4.4.4. For example, consider a rotation around the y-axis,
which maps the z-direction into the positive x-direction. With ex, ey, and
ez denoting the unit vectors in R

3,

R(πey/2) ez = ex. (4.32)

It is easy to see that the corresponding unitary two-by-two rotation matrix
is

U(πey/2) =
1√
2

(
1 −1
1 1

)
. (4.33)

Hence, the basis vector ψ+ (spin-up in z-direction) is transformed into

U(πey/2)ψ+ =
1√
2

(
1
1

)
=

1√
2
(ψ+ + ψ−), (4.34)

and it is easy to verify that this is an eigenstate of the matrix σ1 belonging
to the eigenvalue +1 (spin-up in x-direction).

We note that any unitary two-by-two matrix U can be written as exp(iQ)
with some Hermitian matrix Q. Because any Hermitian two-by-two matrix



176 4. QUBITS

can be written as Q = θ 12 − α · σ/2 (see Eq. (4.6)) we find that every
unitary matrix is of the form

U = eiθ e−α·σ/2. (4.35)

Characterization of unitary qubit transformations:

Up to a phase factor, any two-by-two unitary matrix U can be interpreted
as a rotation matrix, that is,

U = eiθ U(α), (4.36)

with suitable parameters θ and α. The unitary rotation matrices U(α)
are distinguished by the property that their determinant is +1,

Det U(α) = 1. (4.37)

For example, the matrix

Uh =
1√
2

(
1 1
1 −1

)
=

1√
2

(σ1 + σ3) (4.38)

can be written as

Uh = iU(πn), with n =
1√
2

(1, 0, 1). (4.39)

The matrix Uh is called the Hadamard transformation. It is unitary and
Hermitian. Therefore, it also satisfies U2

h = 12. We find Uh σ1 Uh = σ3 and
Uh σ3 Uh = σ1. Hence, Uh maps the eigenstates of σ3 onto the eigenstates
of σ1. This is intuitively clear, because the rotation in (4.39) exchanges the
z-axis with the x-axis.

Exercise 4.14. Show that with n(ψ) as in Eq. (4.21),

U
(
2αn(ψ)

)
ψ = e−iα ψ. (4.40)

4.4.3. Time evolution of the spin in a magnetic field

Qubits realized as particles with a magnetic moment can be rotated with
the help of a homogeneous magnetic field. Neglecting the kinetic energy, the
energy of a particle with spin in a magnetic field B is

H = −µ ·B. (4.41)

As an example, we consider an electron. Using Eq. (3.58), we insert µ =
−µB σ and obtain the energy operator (in the standard representation)

H = µB σ ·B. (4.42)
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U(α)

Figure 4.7. Diagram representing the unitary transforma-
tion U(α) of a qubit.

The unitary operator of time evolution generated by H is thus a spinor
rotation

exp
(
− i

�
Ht

)
= exp

(
−i

t

2
ω · σ

)
with ω = 2

µB

�
B. (4.43)

The time evolution of a particle with spin 1/2 in the presence of a magnetic
field B is described by a rotation U(tω) where the axis of the rotation is
defined by the direction of B. The rotation has the uniform angular speed
(using µB = e�/2me)

ω =
e

me
|B|, (4.44)

in agreement with the classical result (3.27). Hence, we can always perform
an arbitrary rotation of the state just by putting the particle into a suitable
magnetic field for a certain time. At least in principle, we have a method to
realize an arbitrary unitary transformation (up to a phase) in an experiment.

It is a crucial assumption in quantum information theory that any uni-
tary transformation can be applied to a qubit. The Feynman symbol for a
unitary transformation U is shown in Figure 4.7.

If the qubit is not realized by a particle with spin, but by two states of
some other system (for example, by the polarization states of photons; see
below), then the realization of unitary transformations depends on physics
of that system and the experimental means available for the manipulation
of the system.

4.4.4. Special topic: Spinor rotations

There is a one-to-one correspondence between vectors a ∈ R
3 and Hermitian

two-by-two matrices with trace zero. This correspondence is given by the
mapping

a −→ a · σ =
(

a3 a1 − ia2

a1 + ia2 −a3

)
(4.45)

In Exercise 4.2, it was shown that the components of the vector a can be
obtained from a given Hermitian matrix Q with trace zero by the formulas

ak =
1
2

Tr (Qσk). (4.46)
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Furthermore, a little calculation shows that the determinant of a·σ is related
to the length a of the vector a by

Det a · σ = −a · a = −a2. (4.47)

Now an arbitrary unitary transformation U transforms a Hermitian matrix
Q = a · σ into a matrix Q′ = UQU †. A similarity transformation does
not change the trace of a matrix, therefore Tr Q′ = 0. Moreover, Q′† =
(UQU †)† = (U †)†Q†U † = UQU † = Q′, hence Q′ is again Hermitian. We
may write

U a · σ U † = b · σ. (4.48)

This shows that the similarity transformation with a unitary matrix induces
a unique mapping between vectors in R

3. The vector b can be determined
from our trace formula Eq. (4.46),

bk =
1
2

Tr (σk b · σ) =
1
2

Tr (σk U a · σ U †) =
1
2

3∑
j=1

Tr (σkU σj U †) aj (4.49)

Hence, the transformation a → b is obviously described by a 3 × 3 matrix
with the matrix elements

Rkj =
1
2

Tr (σkU σj U †). (4.50)

Because the determinant of a complex two-by-two matrix is not changed
under a unitary transformation, we find that

−a2 = Deta · σ = DetU a · σ U−1 = Detb · σ = −b2. (4.51)

Hence, b has the same length as a, which means that the transformation
is orthogonal. In fact, one can show that the matrix Rkj is just the 3 × 3
rotation matrix corresponding to U . The matrix U can be written as U =
eiθ U(α) with a uniquely given rotation vector α. The phase factor eiθ drops
out of the formula (4.50), and

Rkj =
1
2

Tr
(
σkU(α) σj U †(α)

)
= R(α)kj (4.52)

are just the matrix elements of the 3×3 rotation matrix defined in Eq. (1.11).

Exercise 4.15. Combine the equations above to show that (4.48) can be
written as

U(α)a · σ U(α)−1 =
(
R(α)a

) · σ. (4.53)

Use this to show the relation

U(α)−1 σk U(α) =
3∑

j=1

R(α)kj σj , k = 1, 2, 3, (4.54)
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which is usually abbreviated to

U(α)−1 σ U(α) = R(α) σ. (4.55)

Exercise 4.16. With n(ψ) defined as in Eq. (4.21), show that

n
(
U(α)ψ

)
= R(α)n(ψ). (4.56)

Exercise 4.17. Prove the relation

U(α)ψ = e−iλ ψ+

(
R(α)n(ψ)

)
, (4.57)

where λ is the argument of the first component of the spinor U(α)ψ.

The correspondence between unitary rotation matrices U(α) and or-
thogonal matrices R(α) is not one-to-one. As noted earlier, U(2πn) = −12,
hence

U((α + 2π)n) = U(αn) U(2πn) = U(αn) (−12) = −U(αn), (4.58)

and the matrices ±U(αn) are both mapped to the same matrix R(αn) by
(4.50).

Recall that a symmetry transformation is defined as a ray transformation
(see Section 1.1). Unitary transformations U1 and U2 that differ only by
a phase factor, U1 = eiλU2, define the same symmetry transformation Û .
Hence, the mapping

R(α) → Û(α) (4.59)

is one-to-one from the group of rotations into the set of symmetry transfor-
mations. It is called a ray representation or projective representation of the
rotation group.

4.4.5. Transition probabilities between qubit states

It is a strange result of quantum mechanics that a qubit prepared with
spin up in the z-direction can be found with spin up with respect to some
other direction n (except in the negative z-direction). Here, we are going to
determine the probability for this to happen. In particular, we are going to
prove the following important result for the transition probability:
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Figure 4.8. Experimental setup for determining a transi-
tion probability. All particles are prepared in the spin-up
eigenstate in the direction of n1. In the second Stern-Gerlach
apparatus, the magnetic field points in the direction defined
by n2.

Qubit transitions:

Let ψ and φ be any two qubit states (unit vectors in C
2). Then, the

transition probability between ψ and φ is

|〈ψ, φ〉|2 =
(
cos

α

2

)2
, (4.60)

where α is the angle between the spin-up directions of ψ and φ, that is

cos α = n(ψ) · n(φ) (4.61)

with n(·) defined as in Eq. (4.21).

You can see again that only the states with spins pointing in opposite
directions (α = π) are orthogonal.

In order to prove this result, we note that any state is “spin-up” with
respect to some axis. We denote the spin-up direction of ψ by n1 and the
spin-up direction of φ by n2. Hence, ψ = ψ+(n1) and φ = ψ+(n2), at least
up to a phase factor. We can ignore the phase factors, because they play no
role for the transition probability anyway. The experimental arrangement
for measuring the transition probability from ψ+(n1) to ψ+(n2) is depicted
in Figure 4.8.

Next, we perform a suitable rotation such that the vector n1 becomes
the unit vector ez in z-direction and such that n2 becomes a unit vector m
that lies in the xz-plane. This rotation is characterized by some rotation
vector α0. We can apply the unitary matrix U(α0) to both spinors ψ and φ
without changing the scalar product (this is just the definition of unitarity).
Then

|〈ψ, φ〉|2 = |〈ψ+(n1), ψ+(n2)〉|2 = |〈ψ+(ez), ψ+(m)〉|2. (4.62)
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We can rotate ez into the vector m by a rotation through an angle α around
the y-axis. The angle α is the same as the angle between the vectors n1 and
n2. The rotation matrix for rotations around the y-axis is

U(αey) =
(

cos(α/2) − sin(α/2)
sin(α/2) cos(α/2)

)
, (4.63)

and we have U(αey)ψ+(ez) = ψ+(m) (up to a phase). Now, because
ψ+(ez) = ψ+, the transition probability becomes simply

|〈ψ, φ〉|2 = |〈ψ+, U(αey)ψ+〉|2 =
(
cos

α

2

)2
. (4.64)

You can verify the formula (4.64) with the screen experiment CD 4.5.

Exercise 4.18. Use Equation (4.53) to show the following. Assume
that a qubit is in the state ψ, with ‖ψ‖ = 1. Given an arbitrary unit vector
n ∈ R

3, write m = R(α)n, where R(α) is the 3 × 3-rotation matrix that
transforms the spin-up direction n(ψ) into ez (the unit vector in the posi-
tive z-direction). Then, the expectation value of the spin-component in the
direction of n is given by the third component of m, that is,

〈σ · n〉ψ = 〈ψ, σ · nψ〉 = m3. (4.65)

4.5. Other Qubit Systems

4.5.1. Photon polarizations

In many books, two state-systems are discussed with photons as the primary
example. Indeed, many qubit experiments discussed so far are much easier to
accomplish with photons and polarization filters than with spin-1/2 particles
and Stern-Gerlach devices.

Photons are massless particles with spin 1. They are quantum mechan-
ical objects, and the electromagnetic wave may be regarded as their wave
function. A classical electromagnetic wave is a transverse wave where the
electric and the magnetic field vectors E and B are perpendicular to each
other and to the direction of the propagation. The wave is said to be lin-
early polarized if E is always in a plane. If E rotates on a circle, the wave
is circularly polarized. The square of the amplitude of the electromagnetic
wave, that is, the intensity of the light beam, is proportional to the number
of photons in the beam. Photons do not interact among themselves because
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Figure 4.9. A clacit crystal is a natural Stern-Gerlach ap-
paratus for photons.

they are chargeless.7 They are bosons, which means that an arbitrary num-
ber can occupy the same state, and hence it is easy to perform experiments
with a large ensemble of particles. For light beams with low intensity, the
number of photons in the beam can be counted with a photomultiplier.

But photons are unusual because they are massless, and they move with
the velocity of light. The wave equation that describes the propagation
through space and time is relativistically invariant and hence completely
different from the Schrödinger equation. But here we are only interested in
the internal degrees of freedom that are related to the spin of the photons.

We distinguish two polarization states of photons, ψv and ψh. These two
states can be distinguished very easily using a birefringent crystal (calcit),
which is the analog of a Stern-Gerlach apparatus (see Fig. 4.9). We obtain a
polarization filter if one of the beams is prevented from passing the crystal
(nicol prism). Such a filter can also be realized by a thin sheet of transparent
plastic with embedded microcrystals. Hence, unlike a Stern-Gerlach filter,
a polarization filter is an everyday device. Probably you own polarization
filters in form of sun glasses.

Assume that the photons move in the positive y-direction. Then, we
make the following identification: The basis vector ψ+ ∈ C

2 describes the
state ψv of photons that pass a vertically oriented polarization filter. The
vector ψ− ∈ C

2 is the state ψh of those photons that pass a horizontally ori-
ented polarization filter. The orthogonality of these two states is confirmed
experimentally, because none of the particles emerging from a vertical po-
larizer can pass the horizontal polarizer and vice versa.

By measuring the fraction of particles that can pass a second polariza-
tion filter rotated through an angle α against the first, we can determine
the behavior under rotations experimentally. Denote by φ+ (φ−) the state

7A very small attractive interaction between photons has been predicted due to non-
linear effects in quantum electrodynamics.
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of photons that pass through a polarization filter obtained from the verti-
cally (horizontally) oriented filter by a rotation through the angle α. The
new states are also orthogonal, 〈φ+, φ−〉 = 0, and hence they form another
orthogonal basis in C

2. Hence, we assume that the new basis {φ+, φ−} is
related to the reference basis {ψv, ψh} via a unitary transformation:

φ+ = V (α)ψv, φ− = V (α)ψh. (4.66)

Exercise 4.19. Try to determine the matrix elements of the two-by-
two matrix V (α) on the basis of the following observations. By measuring
intensities, one obtains the transition probabilities

|〈ψv, φ+〉|2 = |〈ψh, φ−〉|2 = cos2 α,

|〈ψv, φ−〉|2 = |〈ψh, φ+〉|2 = sin2 α.
(4.67)

Moreover, we have (verify this! )

〈φ+, φ−〉 = 〈φ+, ψ+〉〈ψ+, φ−〉+ 〈φ−, ψv〉〈ψh, φ−〉 = 0. (4.68)

What can you learn from all this about the matrix V (α)?

It turns out that the rotation matrix can be chosen as

V (α) = exp(−iσ2α) =
(

cos α − sin α
sin α cos α

)
= U(2αey). (4.69)

Hence, the eigenstates of σ2 remain invariant under rotations. These states
are interpreted as circularly polarized states,

ψR =
1√
2

(
1
i

)
=

1√
2
(ψv + iψh),

ψL =
1√
2

(
i
1

)
=

i√
2
(ψv − iψh).

(4.70)

Note that the generator of rotations in the plane orthogonal to the direction
of motion is σ2, and that it has the eigenvalues ±1 (“spin 1”). The compo-
nent σ2 of the angular momentum in the direction of motion is also called
the helicity. Hence, the circularly polarized states are the helicity eigenstates
of the photons.

The eigenstates of σ1 are obtained from ψv and ψh by a rotation through
π/4. We have

V (π/4) =
1√
2

(
1 −1
1 1

)
(4.71)
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and hence

φ+ = V (π/4)ψv =
1√
2

(
1
1

)
=

1√
2
(ψv + ψh),

φ− = V (π/4)ψh =
1√
2

(−1
1

)
=

1√
2
(−ψv + ψh).

(4.72)

The vector φ+ describes the state of linearly polarized photons that can pass
a polarization filter rotated through an angle of 45◦ against the vertical axis.
φ− corresponds to a linear polarization with an angle of 135◦.

You can see that the polarization states of the photon are realized mathe-
matically in exactly the same way as the spin 1/2 states of massive particles,
but the interpretation of the state vectors and operators is quite different.
Whereas exp(iσ2α) can be interpreted as a rotation in space (about the di-
rection of the light ray), the unitary operators exp(iσ1α) and exp(iσ3α) have
no such interpretation.

At first sight, it also appears strange that photons should be a two-
state system, because spin 1 lets us expect a three-state system. But for a
particle moving at the velocity of light, the internal (rotational) degrees of
freedom are reduced. For the sake of a heuristic argument, let us consider
the photons as a limit case of particles with m > 0, v < c. In the limit
v → c, the Lorentz contraction reduces the rest frame of the particles to a
plane transverse to the direction of motion. Hence, the rotational degrees of
freedom are reduced to the rotations around the axis defined by the direction
of motion. The rotational motion can be clockwise and counterclockwise,
resulting in the two helicity eigenstates. The linearly polarized states are
just superpositions of the helicity states ψR and ψL.

4.5.2. Spatial states of photons

The spatial part of a photon’s wave function can also be used to realize a
qubit. Consider the Mach-Zehnder interferometer depicted in Figure 4.10.
In this arrangement, the photons can only occur in two states: moving up
(↗) or moving down (↘). We denote these states by ψu and ψd, respec-
tively. These two states form an orthonormal basis in the Hilbert space of
the system. In this description of photons, we ignore the polarization and
consider only the two alternative directions of motion. A general state of the
qubit is a superposition of up-moving and down-moving photon states. Such
a state can be prepared by sending a photon through a beam splitter. Let us
describe the action of the beam splitters and mirrors in the Mach-Zehnder
interferometer with repect to the reference basis {ψu, ψd}.

Assume that a photon enters the first beam splitter from below. This
photon is initially in the state ψu. The beam splitter splits the photon’s
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Figure 4.10. The Mach-Zehnder interferometer. It con-
sists of two symmetric 50/50 beam splitters BS1 and BS2

(e.g., half-silvered mirrors) and two mirrors M1 and M2. In
this setup (ignoring polarizations), the photons are “spatial
qubits.” The two possible states are described as “moving
up” and “moving down.” These basis states can be mea-
sured by two detectors D1 or D2 on the possible paths of the
photons.

Uh Uhσ1

ψup

downψ

σ3

Figure 4.11. The Mach-Zehnder interferometer of Fig-
ure 4.10 as a qubit diagram. The beam splitters can be de-
scribed by Hadamard transformations and the two mirrors by
σ1. The pair of detectors D1 and D2 is an analyzer measur-
ing the observable that is represented by the matrix σ3 with
respect to the reference basis {ψu, ψd}.

state into two parts of equal size, one moving up, the other moving down.
Therefore, after the beam splitter, the photon is in an equal superposition
of ψu and ψd. The action of the beam splitter on the state ψu may thus be
described by

ψu −→ 1√
2

(ψu + ψd) (4.73)

Similarly, a photon incident from above in the state ψd is converted into
another equal superposition of ψu and ψd. If the beam splitter is to be
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described by a unitary transformation, then orthogonal initial states have
to be converted into orthogonal states after the beam splitter. Hence, we
assume

ψu −→ 1√
2

(ψu − ψd), (4.74)

which is orthogonal to the final state in (4.73). The unitary transformation
describing this transformation is the Hadamard transformation Uh defined
in (4.38).

Now, let us consider the mirrors. Obviously, in the given arrangement,
the mirrors just convert the state ψu into ψd and vice versa. This is conve-
niently done by the (unitary) matrix σ1. Hence, the combined action of the
Mach-Zehnder interferometer is described by the composition of the three
unitary transformations Uh, σ1, and Uh, as depicted in Figure 4.11:

Umz = Uh σ1 Uh = σ3. (4.75)

Another important operation that can be performed with spatial photon
states is to put a phase shifter (a waveplate shifting the phase of an elec-
tromagnetic wave) in the path of one photon. With respect to the basis
{ψu, ψd}, the phase shifter placed in the path of an up-moving photon is
represented by the matrix Φ(α) and in the path of a down-moving photon
by Ψ(α), where

Φ(α) =
(

eiα 0
0 1

)
, Ψ(α) =

(
1 0
0 eiα

)
. (4.76)

Figure 4.12 shows a Mach-Zehnder interferometer with additional phase
shifters and the corresponding qubit diagram. Up to a phase factor, the
operator Ψ(γ) Uh Φ(β) σ1 Uh Φ(α) can represent any unitary operator in the
Hilbert space of the qubit.

Exercise 4.20. Verify that

1 = Ψ(π) Uh σ1 Uh (4.77)

σ2 = −iUh Φ(π) σ1 Uh. (4.78)

If you send a photon from below into a modified Mach-Zehnder interferom-
eter according to Figure 4.12 with α = 0, β = π, γ = 0, in which direction
will the photon finally leave the interferometer?

Exercise 4.21. There is a certain freedom in describing the action of the
beam splitters and mirrors. By definition, a 50/50 beam splitter is unitary
and converts each state of the reference basis into a superposition where both
basis states occur with equal probability 1/2. What is the remaining freedom?
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Figure 4.12. The Mach-Zehnder interferometer with addi-
tional phase shifters is a universal unitary gate. With a suit-
able choice of the angles α, β, and γ, it can perform an ar-
bitrary unitary transformation with the qubit (up to a phase
factor).

Can we also use the matrix

Ubs =
1√
2

(
1 i
i 1

)
(4.79)

to describe the action of the beam splitter? Discuss also the freedom to
describe the action Um of the two mirrors on the qubit’s state. Can you
define Ubs and Um in such a way that Ubs Um Ubs = 1?

Exercise 4.22. Show that

U(αex) = e−iα/2 Ψ(π) Uh Φ(α) σ1 Uh, (4.80)

U(αey) = −ie−iα/2 Ψ(−π/2) Uh Φ(α) σ1 Uh Φ(π/2), (4.81)

U(αez) = −e−iα/2 Ψ(α) Uh σ1 Uh Φ(π). (4.82)

Hence, the qubit rotations about the x-, y-, and z-axes can be represented by
a Mach-Zehnder interferometer equipped with additional phase shifters as in
Figure 4.12.

4.5.3. Two states of a harmonic oscillator

Consider a one-dimensional harmonic oscillator. More precisely, we consider
only the subspace spanned by the ground state φ0 and the first excited state
φ1,

φ0(x) =
( 1

π

)1/4
exp

(
−x2

2

)
, φ1(x) =

√
2 x φ0(x). (4.83)
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These two eigenfunctions span a two-dimensional Hilbert space, and hence
they realize a qubit. This simple mathematical model of a qubit will provide
us with additional ways to visualize two-qubit systems in Chapter 5.

The Hilbert space spanned by φ0 and φ1 is P01L
2(R) where P01 is the

projection operator
P01 = |φ0〉〈φ0|+ |φ1〉〈φ1|. (4.84)

Of course, we have to be careful with all measurements and manipulations
in order not to excite the oscillator to energies beyond the first level.

We consider the Hamiltonian operator

H =
1
2
(p2 + x2)− 1, (4.85)

which is the harmonic oscillator Hamiltonian (in dimensionless units) shifted
by a constant potential. In the subspace spanned by φ0 and φ1, the operator
H has the eigenvalues −1/2 and 1/2 with eigenfunctions φ0 and φ1. The
two-dimensional Hilbert space is isomorphic to C

2. We can identify φ0 with
ψ+ ∈ C

2, and φ1 with ψ−. The two-by-two matrix S3 = (1/2)σ3 can be
identified with the operator −H, because

(−H)φ0 =
1
2

φ0, (−H)φ1 = −1
2
φ1. (4.86)

The position and momentum operators do not leave the subspace P01L
2(R)

invariant. You can see this if you write x and p in terms of the ladder
operators A† and A introduced in Book One.

x =
1√
2
(A† + A), p =

i√
2
(A† −A) (4.87)

Then, for example, xφ1 = φ2 + φ0/
√

2, which is not in P01L
2(R). But we

may consider the restrictions of x and of p to the range of P01, that is, the
operators

x̂ = P01xP01, p̂ = P01pP01. (4.88)
It is easy to see that

x̂φ0 =
1√
2
φ1

x̂φ1 =
1√
2
φ0

p̂φ0 =
i√
2
φ1

p̂φ1 = − i√
2
φ1

(4.89)

and we have the following interpretation of the qubit observables,

σ1 ←→
√

2 x̂,

σ2 ←→
√

2 p̂,

σ3 ←→ −2H.

(4.90)
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The time evolution is hence a qubit rotation around the z-axis:

exp
(
i
t

2
σ3

)
←→ e−iHt. (4.91)

4.6. Single-Particle Interference

4.6.1. Interferometer

Consider the following situation. We send a particle in a certain spin state
ψ into a Stern-Gerlach apparatus. Ignoring the spatial distribution of the
spinor-wave packet, we describe the spin state (a qubit) by the vector

ψ =
(

c+

c−

)
. (4.92)

The two components are deflected into different directions, and the spinor-
wave packet splits into two spatially separated parts,

ψ →
(

c+

0

)
+

(
0
c−

)
. (4.93)

Now, assume that we do not make the slightest attempt to determine where
the particle actually is. That is, we make no measurement that forces the
qubit to give away any information about its spin-state (“which-way infor-
mation”). This would certainly change the state of the qubit. Instead, by a
clever arrangement of inhomogeneous magnetic fields, we bring the two parts
of the spinor-wave packet together again, without changing the spin-state of
either part. After the reunion, the initial situation is restored completely.
The final state of the qubit equals the initial state.

Schematically, this experiment is depicted by the diagram in Figure 4.13.
A device that temporarily splits the state of the qubit into separated parts is
called an interferometer. A beam of qubits sent through the interferometer
will split into two spatially separated beams. The two partial beams are
refocused again, and a single beam leaves the interferometer. Input and
output as well as the qubits inside the interferometer are described by the
same qubit state. As an operator acting on qubit states, the interferometer
is just the identity. The importance of such a device lies in the possibility
to manipulate the partial beams individually and then observe the effect by
measuring the output state. Examples will be presented in the following
sections.

It is certainly difficult to build an interferometer on the basis of Stern-
Gerlach devices. But in quantum optics where qubits are realized by pho-
tons, all kinds of interferometers are standard devices. In principle, one
could realize a Stern-Gerlach interferometer for photons by arranging two
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Figure 4.13. Stern-Gerlach interferometer: The two partial
beams are refocused again (for example, with the help of an-
other inhomogeneous magnetic field with opposite polarity),
and the initial state is restored. The device has no measur-
able effect on the state. It just visualizes the expansion into
the basis of eigenvectors of σ3, as indicated below the graph.

v

h

ψ

ψ ψ
ψ

Figure 4.14. Two birefringent crystals realizing a Stern-
Gerlach interferometer for photons. An additional phase
shifter (retarder plate) in one of the beams can compensate
for eventual phase differences between the partial beams.

birefringent calcit crystals as shown in Figure 4.14. Note, however, that
the Mach-Zehnder interferometer described in in Section 4.5.2 operates in
a different way, which is obvious from the qubit diagram in Figure 4.11.
We also mention neutron interferometers, which play an important role in
experiments illustrating the quantum mechanics of qubits. We refer to the
literature for details (see, for example, the book [8]).

Observing a qubit inside the interferometer changes the physically avail-
able information about the qubit. This amounts to a measurement and
changes the state either to “spin-up” or to “spin-down.” An interferome-
ter with an observer acts like the Stern-Gerlach analyzer in Figure 4.1: In
an ensemble measurement, the which-way information allows an observer to
sort the qubits into two ensembles realizing the states ψ+ and ψ−. On the
other hand, if no measurement is made, no projection takes place, and the
state remains unchanged during the qubit’s passage through the interferom-
eter. Indeed, the spatial separation of the two parts cannot be described
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at all in the two-dimensional Hilbert space of a qubit. Hence, the diagram
in Figure 4.13 is just a visualization of the fact that any qubit state ψ is a
superposition of the two orthogonal states ψ+ and ψ−.

CD 4.9 shows an interferometer operating with or without an ob-
server. In the presence of an observer, the interferometer changes
the state of the qubit into a mixture of qubits with spin-up and
spin-down.

Interferometers are important measurement devices. The spatial sepa-
ration gives us the experimental possibility to manipulate one partial beam
without affecting the other component. The change of the state can be
observed via the interference that takes place when the two parts are recom-
bined.

One cannot help asking what happens if a single qubit is sent through
the interferometer. Will the particle take just one of the two possible ways,
and which? We know for sure that a single particle does not split in two.
If we place detectors along the two paths we always find the entire particle
on just one of the paths (in accordance with the observation that the mea-
surement of σ3 always gives a definite result). Nevertheless, it appears as if
the unobserved particle takes both paths at once, because both components
ψ+ and ψ− are present in the final state ψ. If we do something to one of
the components, the final state will be changed. This phenomenon is called
single-particle interference.

In order to illustrate this strange behavior, we consider several exper-
iments. Each experiment features an interferometer of the type shown in
Figure 4.13. When the experiment is actually performed, the apparatus
temporarily splits the wave packet into two parts that are separated by a
macroscopic distance (see also the discussion about Schrödinger cat states in
Book One). Per se, the splitting of the wave packet into spatially separated
parts has no effect on the qubit state and is not reflected by the formalism,
because the motion in space is completely ignored. If no further manipu-
lations are performed, the qubit remains in the same state before entering,
inside, and after leaving the interferometer.

The quintessence of all the experiments is the following: During its pas-
sage through the apparatus, even a single particle can gather information
about the conditions on both paths. Something that happens on one of the
possible paths can change the final outcome. We can put this in a more
abstract way: Whenever there are two possible alternatives for the behavior
of a quantum system, it is wrong to assume that one of these possibilities is
actually realized, unless one performs a measurement.



192 4. QUBITS

ψ

ψ

σ3

σ3

σ1

σ1

σ3

σ3

a

b

( )

( )

Figure 4.15. Double-slit experiment with Stern-Gerlach in-
terferometers and filters.

4.6.2. A double-slit experiment

The two arrangements of Stern-Gerlach devices shown in Figure 4.15 serve
as a first example exhibiting the interference phenomenon. In both cases, the
first apparatus (a filter) just serves to prepare a qubit in the state ψ+ (spin-
up in the z-direction). Consider first Figure 4.15(b). The qubit prepared by
the first apparatus is sent through an interferometer oriented in the positive
x-direction. Because

ψ+ =
1√
2

(
ψ+(ex)− ψ−(ex)

)
, (4.94)

the probability amplitudes for both paths in the interferometer are the same.
In a space-time picture, the wave function splits into two orthogonal parts
inside this apparatus (Schrödinger cat state).

The output of the interferometer is collected by a Stern-Gerlach filter
that projects onto the state ψ−. As explained in the previous section, the
interferometer has no influence on the state ψ+ of the prepared particles.
But as ψ+ is orthogonal to the state ψ−, none of the prepared particles can
pass the final Stern-Gerlach filter.

Now, consider Figure 4.15(a). Here, we have blocked one of the paths in
the interferometer (no matter which one). As a consequence, the interfer-
ometer now acts as a filter. Only one-half of the prepared particles can pass,
because |〈ψ±(ex), ψ+〉|2 = 1/2. From the remaining particles another half is
filtered by the final Stern-Gerlach apparatus, because |〈ψ−, ψ±(ex)〉|2 = 1/2.
Hence, a quarter of the successfully prepared particles finally survive the ex-
periment.
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Figure 4.16. Experiment verifying the effect of a rotation
through an angle 2π. An interferometer with a unitary trans-
formation in one channel represents, in general, a non-unitary
transformation (except for α = 0, 2π, 4π).

In CD 4.10.1, you can perform the double-slit experiment as de-
scribed in Figure 4.15. You may verify that the probability to end in
the state ψ− is 1/4 if one of the paths in the interferometer is blocked.
The probability for the result ψ− is zero (destructive interference) if
there is no obstacle.

This experiment is the two-state analog of the double-slit experiment
described in Book One. The result is highly paradoxical: If we increase the
number of ways to reach the detector, the probability of getting there actu-
ally decreases. This cancellation of probability amplitudes (if both “slits” of
the splitter are left open) is called destructive interference.

It is strange that the interference also happens if single particles are
sent through the arrangement one after another. The probabilities are thus
accumulated from single-particle events (single-particle interference).

4.6.3. A rotation through 2π

The unitary rotation matrix has the property U(2πn) = −12. A rotation
through an angle 2π around any axis turns the state vector into its negative.
The vector −ψ is physically not distinguishable from ψ. If, however, the
state is split into two orthogonal components, then a rotation of only one
of the components will influence the state in a measurable way. Consider
two orthogonal states ψ1, ψ2, and the superposition ψ = ψ1 + ψ2. If you
multiply ψ2 by a phase factor, then the state described by ψ1 + eiλψ2 is, in
general, different from ψ1 + ψ2, although eiλψ2 and ψ2 represent the same
state. Consider the following experiment, depicted in Figure 4.16.

A system is prepared in the state ψ+ and then enters an interferometer
that splits the beam according to its components with respect to the x-
direction. Because of (4.94), the amplitudes of the two components are the
same. Now a rotation through an angle α = 0 or α = 2π about an arbitrary
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axis is applied to the lower partial beam in the interferometer. If α = 0
nothing happens, because U(0) = 1. The state ψ+ is restored when it leaves
the interferometer and the particle is found in the upper channel of the final
analyzer. If α = 2π, the component ψ−(ex) is multiplied by −1. Hence, the
superposition (4.94) is changed into

ψ− =
1√
2

(
ψ+(ex) + ψ−(ex)

)
, (4.95)

and the particle is finally detected in the lower channel of the final Stern-
Gerlach apparatus.

CD 4.10.2 simulates an experiment similar to the one shown in Fig-
ure 4.16. You may rotate the qubit in one path of the interferometer
through an arbitrary angle α. However, the transformation is not
unitary unless α is an integer multiple of 2π (see Exercise 4.24).

Exercise 4.23. Let P1 and P2 be orthogonal projection operators, such
that P1 + P2 = 1. An interferometer like the one depicted in Figure 4.16
corresponds to the transformation T = P1 + UP2 with a unitary operator U .
Under what condition is T unitary?

Exercise 4.24. Assume that in P1 = |ψ+(ex)〉〈ψ+(ex)|, P2 = 1 − P1,
and that U(α) is a rotation about the z-axis. Show that T (α) = P1 +U(α)P2

is not unitary (except for α = 0, 2π, 4π, . . .). Show that T (π)ψ+(ey) = 0.
That is, the apparatus in Figure 4.16 with α = π acts as a filter annihilating
qubits in the state ψ+(ey).

Exercise 4.25. Define T (α) as in the previous exercise. Compute the
transition probabilities

|〈ψ+, T (α)ψ+〉|2 and |〈ψ−, T (α) ψ+〉|2. (4.96)

4.6.4. Interaction-free measurement

The two situations depicted in Figure 4.15 are often described in terms of
an interaction-free measurement and packed into the following story8. Some
malicious person has threatened to put an atomic bomb into a dark room.
It is your task to find out whether this person has spoken the truth and the
bomb is actually there. But there is a difficulty that prevents you from just
looking: The trigger is so sensitive that already the absorption of a single
elementary particle would detonate the bomb. Fortunately, the dark room
contains a perfect vacuum and the light is turned off, so that no gas molecule

8Elitzur, A.C., and Vaidman, L., Foundations of Physics 2, 987 (1993).
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and no photon inadvertently triggers the explosion. For obvious reasons you
must be very careful. You are not allowed to open the door and turn the
light on. Is it still possible to detect the presence of the bomb?

Despite the total darkness, you have a certain chance to detect the bomb
without catastrophe. You just have to build an experimental setup according
to Figure 4.17 and arrange it around the dark room in such a way that the
bomb, if it is actually there, would block one path of the interferometer.
Next, you send a single particle through the arrangement and had better
look for somewhere to hide.

The idea of the procedure can be explained with the help of the double-
slit experiment in Section 4.6.2. Consider Figure 4.15 and suppose that
we do not know whether one of the paths in the interferometer is actually
blocked. That is, we do not know if the experimental setup is described by
(a) or by (b). We can just send in a particle and see whether it comes out
again. Now, suppose that we detect the particle after the analyzer. Then we
know for sure that one of the paths in the second Stern-Gerlach apparatus is
blocked by an obstacle. The bomb is there! Because the particle has passed
all devices, it has not been absorbed by the bomb. In this single event, the
particle did not interact with the obstacle. The mere fact that it finally
arrives in the detector proves that the bomb is there.

We note that in the presence of a bomb, there is a 25% chance to de-
tect the bomb without actually touching it. This chance can be improved
considerably by the refinement9 of the double-slit experiment depicted in
Figure 4.17.

CD 4.11 lets you play around with the apparatus depicted in Fig-
ure 4.17. The simulation contains a detailed step-by-step explanation
of the method.

The filter to the left prepares a particle in the state ψ+. The second
Stern-Gerlach apparatus may or may not contain a bomb that explodes as
soon as it is touched by the particle. If there is a bomb, then it has been
placed such that it blocks the spin-down path of the apparatus. Because
the particle enters the apparatus with spin-up, we are sure that it takes the
upper path. Hence, the bomb is left untouched and the particle leaves the
apparatus, still in the state ψ+. Now the arrangement contains a switch
S that diverts the particle and sends it through a device that performs a
rotation Un = U(π

n ey) around the y-axis through the angle π/n, where
n is some positive integer. After that, the particle is sent again through

9This experiment was actually done with photons, see Kwiat, P.G., Weinfurter, H.,
Herzog, T., Zeilinger, A., and Kasevich, M.A., Phys. Rev. Lett. 74, 4763 (1995).
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?

U(π
n �ey)

Yes

No
S

σ3 σ3 σ3

Figure 4.17. Schematic arrangement for an interaction free
measurement. It is the goal to determine whether an object
(a bomb) blocks the “spin-down path” of a Stern-Gerlach
magnet. With a probability close to one, the experiment gives
a unique answer. The presence of the bomb is detected with
the help of a particle that apparently never gets in contact
with the bomb. The particle is sent n-times through a circuit
containing a device

the apparatus that possibly contains a bomb. It might seem imprudent to
tempt fate twice, but by choosing n large, we can make the probability of
a catastrophe very small. The probability that the particle takes the upper
path (thus leaving the bomb untouched) is given by

pup = |〈ψ+, Unψ+〉|2 =
(
cos

π

2n

)2
, (4.97)

which is close to 1 if n is large. When the particle (and everybody else)
survives the passage through the apparatus, the process is repeated. The
switch contains a counter, and after n cycles it sends the particle through
an analyzer. Note that the probability that we are still alive is

pn
up =

(
cos

π

2n

)2n −→
n→∞ 1, (4.98)

which is close to one if n is large. Let us now consider the two cases “bomb”
and “no bomb” separately:

(A) A bomb blocks the “spin-down path”: The Stern-Gerlach apparatus
containing the bomb acts as a projection operator onto ψ+. After each cycle,
the state ψ+ is restored with probability pup. If the particle finally leaves
the circuit after n cycles (with probability pn

up), the state is still ψ+ and it
will be detected in the spin-up channel of the analyzer.

(B) There is no bomb: If the Stern-Gerlach magnet contains no bomb,
it does nothing to the state of the particle. Hence, in each cycle, the state
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of the particle is changed by the rotation Un applied to it. After n cycles,
the state is

ψfinal = Un
n ψ+ = U(π ey) ψ+ = ψ−, (4.99)

because a rotation through the angle π turns spin-up into spin-down. Hence,
the state will be detected in the spin-down channel of the analyzer.

The experiment—although performed with a single qubit—gives a clear
answer: Finding the particle in the state ψ+ means “yes, the bomb is there,”
and finding the particle in the state ψ− means, “no, there is no bomb.”
And, at least in principle, the probability of obtaining an answer (and thus
surviving the experiment) can be made arbitrarily close to 1.

4.7. Quantum Cryptography

4.7.1. One-time pad

Another application of the quantum mechanics of qubits is the secure key
distribution protocol of quantum cryptography. We consider the following
situation. Alice wants to send secret information to Bob, but an eavesdrop-
per Eve might intercept the message. In order to prevent this, Alice has to
encrypt her message. Presently used encryption methods are only compu-
tationally secure, which means that on the basis of current technology, it is
highly improbable (but not impossible) to crack the encryption within a rea-
sonable time. But there is one (and only one) method that has been proved
to be absolutely secure. It is called the one-time pad or Vernam cipher.10

The one-time pad uses classical communication to transmit classical bits of
information. It is assumed that Alice and Bob share a secret key. This key
is a string of randomly chosen bits {k1, k2, . . . , kn}, with ki ∈ {0, 1}. The
message is another string consisting of n bits {m1,m2, . . . , mn}. The key-
string has to be as long as the message-string. Alice encrypts the message
by adding the key-bits to the message-bits. Then, the cryptogram is a string
consisting of the bits

ci = mi + ki (mod 2), i = 1, 2, . . . , n. (4.100)

Alice sends the cryptogram {c1, c2, . . . cn} to Bob. Bob subtracts the key to
recover the message,

mi = ci − ki (mod 2), i = 1, 2, . . . , n. (4.101)

Although the encryption and decryption algorithms and the encrypted mes-
sage are publicly known, it is impossible for Eve to decrypt the message.
Trying every possible sequence of key-bits ki on the message just produces

10It was invented by Gilbert Vernam from AT&T in 1917, see Vernam, G.S., J. AIEE
45, 109 (1926).
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all possible n-bit messages and Eve has no way to decide which is the right
one. To her, any decryption is as likely as any other. In fact, the transmitted
string is just a sequence of random bits that contains no information about
the message. This information about the message is contained in the corre-
lation between the cryptogram and the key. Hence, the code is unbreakable
and the method is secure, provided the key material is secret, truly random,
and used only once.11

The critical feature of the one-time pad is the exchange of the key infor-
mation between Alice and Bob, because the security of the protocol depends
on the secrecy of the key. If Alice and Bob communicate over a longer period
of time, they are bound to run out of keys, because the keys have to be as
long as the messages and can be used only once. If the necessity arises to
distribute new keys between Alice and Bob, how can they make sure that
information about the key cannot be acquired by Eve? This is the problem
of secure key distribution for which quantum mechanics provides a solution.

4.7.2. Quantum key distribution

Presently, there are several known quantum key distribution schemes. Here,
we are going to describe the B92 protocol.12 This protocol assumes that Alice
and Bob work together (by exchanging classical information) to generate a
new key in a secure way. They use the setup depicted in Figure 4.18. The
method works as follows.

(1) Alice and Bob both generate a sufficiently long list of true ran-
dom bits, SA and SB. From these two sequences, the key will be
“distilled.”

(2) For each bit of the list SA, Alice prepares a qubit. If the bit is 0,
she prepares the state |↑〉 = ψ+(ez) (spin-up in z-direction). If the
bit is 1, she prepares |→〉 = ψ+(ex) (spin-up in x-direction).

(3) Alice sends her qubits one after another to Bob. Bob filters the
qubits according to his bit list SB. If the ith bit SB

i is 0, he
projects the ith qubit onto the state |←〉 = ψ−(ex) (spin-down in
x-direction), and if the bit is 1, he projects onto |↓〉 = ψ−(ez) (spin-
down in z-direction).

(4) Bob records the outcomes of his measurements. For each qubit, the
outcome is either 1 (the qubit passes the filter), or 0 (the qubit gets
absorbed). In that way, Bob will generate another list R of random
bits. Note that Bob can obtain the result Ri = 1 for qubit i only

11Shannon, C.E., Bell Syst. Tech. J. 28, 657 (1949).
12Bennett, C.H., Phys. Rev. Lett. 68, 3121 (1992). See Chapter 2 of [2] for more

information about quantum cryptography.
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Alice Bob
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1:

0:
1:

Classical

channel

σ3
σ1

σ1
σ3

Eve

Figure 4.18. Setup for the B92 quantum key distribution
protocol. Alice and Bob generate an encryption key under
the nose of an eavesdropper Eve. Alice can prepare qubits in
two non-orthogonal states, for example spin-up in the z- or
x-direction. Bob can project onto the spin-down state either
in the x- or z-direction.

if SA
i = SB

i , because otherwise Bob projects onto a state that is
orthogonal to the state prepared by Alice.

(5) Via classical communication, Bob informs Alice about his results.
He sends only the list R. This list contains no information about
the settings chosen for Bob’s measurement device. The classical
communication may be public, but it is assumed that it cannot be
disturbed by Eve.

(6) Both Alice and Bob now examine their lists SA and SB and gen-
erate new lists KA and KB by keeping only those bits, for which
Bob recorded 1 in his measurement. This procedure results in two
identical lists KA = KB = K for Alice and Bob, because Ri = 1
can only happen for SA

i = SB
i . The list K is the key. It is a subset

of SA or SB. Its length is about one-quarter of the length of the
original lists.

Figure 4.19 shows an example illustrating the generation of the key as
a common subset of the random lists SA and SB. Both lists SA and SB

remain with Alice and Bob, and it is assumed that Eve has no knowledge
about the contents of these lists. The message R selects the elements of SA

and SB that constitute the common key. This message can be made public,
because it contains no information about the values of the selected bits.

It can be shown that the B92 key generation protocol is secure. In this
introduction, however, we are not going to analyze all possible eavesdropping
attacks. In one scenario, Eve knows the two non-orthogonal states used
for the protocol, and it is assumed that she can intercept and replace the
qubits being sent to Bob. A single measurement, however, does not give
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Figure 4.19. Example for the generation of a key using the
B92 protocol. SA: list of random bits generated by Alice.
MA: settings of the device for the state preparation. SB:
Bob’s random list. MB: settings chosen for Bob’s filter. R:
list with Bob’s results, showing 1 if and only if the qubit
passes through the filter. K: the resulting key.

sufficient information about the state of the intercepted qubit (Section 4.3.3),
and copying the qubit is forbidden by the no-cloning theorem (Section 6.8.4
below). Quite generally, it is impossible to distinguish between two non-
orthogonal states without disturbing them. The fake qubits received by Bob
would thus introduce errors into the key. This can be detected if Alice and
Bob sacrifice a portion of their key and compare it via the classical channel.

4.8. Hidden Variables

4.8.1. Failure of classical picture

In quantum mechanics, the three components of the spin are described by
operators. Values are obtained only in measurements and usually cannot be
predicted, except in some cases. For example, the observable “length of σ” is
represented by the matrix |σ| = √

σ · σ =
√

312. Any measurement of that
observable will produce the value

√
3 with certainty. This is conveniently but

imprecisely formulated as “the observable |σ| has the value
√

3.” Moreover,
we can prepare a state where, for example, σ3 has a definite value (either +1
or −1) simultaneously with |σ|. But then the other components of the spin
are totally uncertain; a measurement randomly produces +1 or −1. Can we
assume that for an individual qubit these values already exist prior to the
measurement?

The hypothesis of “hidden variables” assumes that physical quantities
actually do have values, although these values might be inaccessible. Of
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x
y

z

Figure 4.20. A classical vector, for which the x-, y-, and z-
components can only have the values ±1/2, can only point to
the corners of a centered unit-cube. Quantum mechanically,
this property holds for any orientation of the coordinate sys-
tem.

course, the spin is not a vector whose components have pre-existing values
equal to those measured in Stern-Gerlach experiments: Such a vector would
have the length

√
3, and every component would have either the value +1 or

−1 (the only values ever obtained in any measurement of these components).
This is impossible. If all components were ±1, this would only leave eight
possible spin vectors (see Fig. 4.20). But the orientation of the coordinate
system is completely arbitrary. We could draw the same picture with respect
to a rotated coordinate system and thus obtain eight other possible spin
vectors in contradiction to the first result.

A hidden variable theory therefore usually assumes that the spin com-
ponents have a continous range of possible values and that the experimen-
tal results ±1 are an artifact of the method. From that point of view the
quantum-mechanical results just reflect our incomplete knowledge of the sys-
tem and of its interactions with our measurement device. Let us pursue this
idea further in the following section.

4.8.2. Hidden-variable interpretation

Assume, for the moment, that a single qubit is characterized not only by
its quantum state ψ (descibing the preparation procedure) but also by a
parameter vector λ ∈ Ω ⊂ R

n that determines its behavior during a mea-
surement. The components of λ are called hidden variables. An improved
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version of quantum theory could perhaps one day provide us with a better
understanding, but according to our present limitations in both experiment
and theory, we are completely ignorant of the hidden variables. Hence, we
expect that the available preparation procedures cannot yield reproducible
values of λ. Instead, when we prepare an ensemble of particles, then the
values of λ will be distributed randomly according to some probability dis-
tribution. Naturally, this would lead to a probability distribution for the
values of the spin components. But these probabilities would be related to
insufficient knowledge and need not be regarded as a matter of principle.
Perhaps Einstein had something like this in mind when an “inner voice”
told him that God “does not play dice.”

We denote the probability distribution of the hidden variables in a state
ψ by ρψ(λ). Here, the subscript indicates that the distribution possibly
depends on the preparation procedure, that is, on ψ. As a probability dis-
tribution, ρψ must have the property

ρψ(λ) ≥ 0,

∫
Rn

ρψ(λ) dnλ = 1. (4.102)

A measurement of the spin in the direction n on a system in the state ψ
gives either +1 or −1. The hidden variable theory assumes that the result
depends on the actual value of λ for the individual system. The mechanism
of this dependence is still unknown, but here we assume for simplicity that it
is deterministic. The dependence of the result on λ is a function sn,ψ(λ) that
can only have the values +1 and −1. According to the classical theory of
probability, the probability for spin-up in the direction of n can be expressed
in terms of the probability distribution ρψ(λ) by

pup
n,ψ =

∫
Bup

n,ψ

ρψ(λ) dnλ with Bup
n,ψ = {λ | sn,ψ(λ) = +1}. (4.103)

Similarly, the expectation value of the spin-component σ · n in the state ψ
is given by

〈sn,ψ〉 =
∫

Rn

ρψ(λ) sn,ψ(λ) dnλ. (4.104)

Exercise 4.27 below gives an example of a hidden variable theory that can
reproduce all expectation values of all spin components in all states of a
single qubit.

A possible generalization could take into account another source of ran-
domness that originates in our imprecise knowledge of the interaction be-
tween the particle and the measurement device in the determinative experi-
ment. Most likely, the device is not built to react precisely to the actual value
of λ, because the hidden variables influence the outcome in some presently
unknown way. Therefore, one assumes that for a given value of λ, the result
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+1 in the direction n only appears with a certain probability pup
n,ψ(λ). The

result −1 would thus appear with probability pdown
n,ψ (λ) = 1− pup

n,ψ(λ). The
probability for spin-up in direction of n would then be given by

pup
n,ψ =

∫
ρψ(λ) pup

n,ψ(λ) dnλ. (4.105)

A hidden variable theory is considered successful if it makes for all
presently known measurements the same statistical predictions as quantum
mechanics. It is indeed possible to invent such theories (see Exercise 4.27
for an example). The opinion shared by a majority of physicists is that it is
not reasonable to explain the statistical properties of quantum systems on
the basis of hidden variables. Any such assumption would lead into serious
troubles with well established physical principles (in particular, locality) as
soon as one considers systems consisting of more than one qubit. We shall
return to this question in Section 6.5.

Exercise 4.26. Show that the expectation value of the spin in the direc-
tion of n is always given by

〈σ · n〉ψ = 2 pup
n,ψ − 1. (4.106)

Exercise 4.27. Investigate Bell’s example of a hidden variable theory:
In this example, each qubit is characterized by its quantum state ψ and by a
single hidden parameter λ ∈ R. The probability distribution of λ is given by

ρψ(λ) =

{
1/2 for −1 ≤ λ ≤ 1,
0 else.

(4.107)

(Here, ρψ is in fact independent of ψ). Assume that the hidden parameter
λ determines the value of the spin-component σ · n in the direction of an
arbitrary unit vector n by the following formula:

sn,ψ(λ) = sgn(λ + |m3|) sgn(m3), sgn(x) =

{
1, x ≥ 0,

−1, x < 0.
(4.108)

Here, m3 is the third component of the vector m = R(α)n. The rotation
matrix R(α) is determined by the requirement that it should transform the
spin-up direction n(ψ) of the state ψ into the positive z-direction. Show that
all quantum-mechanical expectation values of the spin are described correctly
by this hidden variable theory. To this purpose, show that the relation

〈ψ, σ · nψ〉 =
∫ ∞

−∞
ρψ(λ) sn,ψ(λ) dλ (4.109)

holds for all directions n and all spinors ψ (see also Exercise 4.18).
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4.9. Special Topic: Qubit Dynamics

4.9.1. Time-dependent Hamiltonian

A general time-independent qubit Hamiltonian has the form

H = ω0 12 + ω · σ (4.110)

and the time evolution generated by this Hamiltonian is essentially a rota-
tion:

exp(−iHt) = e−iω0t U(ωt/2), (4.111)
(assuming � = 1) with U as defined in (4.28) (see also Section 4.4.3).

CD 4.12.1 and 2 show the precession of the spin vector about the
direction of the magnetic field, that is, the time evolution generated
by a Hamiltonian like (4.110). In CD 4.12.3, the magnetic field vector
ω slowly rotates about the z-axis.

Here, we consider a Hamiltonian that depends explicitly on time. It
describes, for example, a particle with spin in a time-dependent magnetic
field. In this case, the interaction energy is

H(t) = −µ ·B(t). (4.112)

Now the time evolution is not simply the exponential function of the Hamil-
tonian.

In the simplest case, the Hamiltonians for different times commute,

[H(t), H(s)] = 0, for all t and s. (4.113)

In this case, the solution of the Schrödinger equation

i
d

dt
ψ(t) = H(t) ψ(t) (4.114)

can be obtained by

ψ(t) = exp
(
−i

∫ t

t0

H(s) ds
)

ψ(t0). (4.115)

Note that the time evolution operator not only depends on the time t, but
also on the initial time t0. The time evolution is thus given by a two-
parameter family of unitary operators, (t, s) → U(t, s). Quite generally, it
has the following properties:

U(t0, t0) = 1,

U(t, s)U(s, t0) = U(t, t0),

U(t, s)† = U(s, t) = U(t, s)−1.

(4.116)

In general, we cannot assume that H(t) commutes with H(s) for t �= s. In
this case, we have to be particularly careful. We can expect that the solution
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is still described by a unitary operator depending on two parameters with
the properties (4.116). We have to solve the Schrödinger equation

i
d

dt
U(t, t0) ψ = H(t) U(t, t0)ψ (4.117)

for all initial states ψ. Integrating over time from t0 to t, we obtain the
integral equation

ψ(t) = ψ(t0) + (−i)
∫ t

t0

H(s) ψ(s) dt, (4.118)

which can be solved by iteration,

ψ(t) = ψ(t0) + (−i)
∫ t

t0

H(t) ψ(t0) dt (4.119)

+ (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2 H(t1)H(t2) ψ(t0) + . . . (4.120)

=
∞∑

n=0

(−i)n

∫ t

t0

dt1 . . .

∫ tn−1

t0

dtn H(t1) . . . H(tn)ψ(t0). (4.121)

This is called the Dyson expansion. Notice that it is not possible to exchange
the order of the factors in the integrand, because the operators H(tj) and
H(tk) do not commute. If the Hamiltonian H(t) is a finite-dimensional
matrix, the series always converges in the norm of bounded operators.

Exercise 4.28. In view of the applications, it is useful to consider a
Hamiltonian of the form

H(t) = H0 + H1(t), (4.122)

where H0 is independent of t. Find the equation of motion for ψ̃(t) =
exp(iH0t) ψ(t) and solve it using the Dyson expansion.

4.9.2. Time dependence generated by unitary operators

The Schrödinger equation can be solved exactly if the Hamiltonians at dif-
ferent times are connected by unitary transformations,

H(t + s) = eiAt H(s) e−iAt. (4.123)

Let U(t, s) be the propagator defined by H(t), that is,

i
d

dt
U(t, s) = H(t)U(t, s), (4.124)
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then, for any fixed s ∈ R,

i
d

dt
e−iAs U(t + s, s) eiAs = e−iAs

(
i

d

dt
U(t + s, s)

)
eiAs (4.125)

= e−iAs H(t + s) U(t + s, s) eiAs (4.126)

= e−iAs H(t + s) eiAs e−iAs U(t + s, s) eiAs (4.127)

= H(t) e−iAs U(t + s, s) eiAs. (4.128)

Hence, V (t) = e−iAs U(t + s, s) eiAs is the solution of (4.124) that fulfills the
initial condition V (0) = 1. This shows that

V (t) = e−iAs U(t + s, s) eiAs = U(t, 0), (4.129)

because U(t, 0) is the unique solution of (4.124) with U(0, 0) = 1. Multiply-
ing from the left by e−iAt and from the right by e−iAs U(s, 0),

e−iA(t+s) U(t + s, 0) = e−iAt U(t, 0) e−iAs U(s, 0). (4.130)

This shows that the operators

W (t) = e−iAt U(t, 0) (4.131)

form a one-parameter unitary group, because (4.130) is just the group prop-
erty W (t + s) = W (t)W (s). The generator of the unitary group W is

d

dt
W (t)

∣∣∣
t=0

= H(0) + A, hence W (t) = e−i(H(0)+A)t. (4.132)

Thus, we find that the solution of the initial value problem is given by

ψ(t) = U(t, 0)ψ0 = eiAt W (t) ψ0 = eiAt e−i (H(0)+A)t ψ0. (4.133)

4.9.3. Magnetic resonance

We consider the Hamiltonian

H(t) =
1
2

ω0 σ3 +
1
2
σ · b(t) (4.134)

with
b(t) = λω0 (cos ωt, sin ωt, 0). (4.135)

The time-independent part of the Hamiltonian has the two eigenstates ψ+

and ψ−. The energy difference between these states is just given by ω0. The
second summand is a time-dependent perturbation. The constant λ ≥ 0
describes the strength of this perturbation. The vector b(t) rotates with
constant angular speed ω in the xy-plane. Physically, the perturbation can
be interpreted as a time-dependent magnetic field that is homogeneous in
space, but whose field vector B rotates with a constant angular speed in the
xy-plane. Hence, the time-dependence of the Hamiltonian H(t) is generated
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Figure 4.21. The transition probability p(t) = |〈ψ(t), ψ−〉|2
for the initial state ψ(0) = ψ+ as a function of time. We have
ω0 = 10, λ = 0.2, and (a) ω = 9, (b) ω = 10.

by a rotation around the z-axis. Indeed, using R(ωtez)b(0) = b(t), we find
from Eq. (4.53) that

H(t) = e−iωtσ3/2 H(0) e+iωtσ3/2

=
1
2

ω0 σ3 + e−iωtσ3/2 1
2
σ · b(0) e+iωtσ3/2.

(4.136)

This is of the form (4.123) with A = −ωσ3/2, and the solution is therefore
given by (4.133),

ψ(t) = exp
(
−it

ω

2
σ3

)
exp

(
−it

ω0 − ω

2
σ3 − it

1
2

λω0 σ1

)
ψ(0)

= exp
(
−it

ω

2
σ3

)
exp

(
−it

Ω(λ, ω0, ω)
2

σ · b̂
)

ψ(0)
(4.137)

with the unit vector

b̂ =
1

Ω(λ, ω0, ω)
(λω0, 0, ω0 − ω), where

Ω(λ, ω0, ω) = λω0

√
1 +

1
λ2

(
1− ω

ω0

)2
.

(4.138)

Now it is easy to determine, for example, the time evolution of ψ(0) = ψ+.
It is interesting to consider the (time-dependent) transition probability that
ψ(t) is found to be in the state ψ−. This probability is given by

p(t) = |〈ψ(t), ψ−〉|2 =
λ2ω2

0

Ω(λ, ω0, ω)2
sin2

( t Ω(λ, ω0, ω)
2

)
(4.139)

Explore the parameter dependence of the function p(t) in CD 4.13.1.
The animations CD 4.13.2 show the maximal value pmax(λ, ω0, ω) of
p(t), and CD 4.13.3 investigates the period T (λ, ω0, ω) of p(t).
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Figure 4.22. Resonance curve (pmax as a function of ω) for
λ = 0.1 and ω0 = 10.

We plot the function p(t) in Figure 4.21. We see that p(t) is periodic in
time. At the zeros of p(t), the state is orthogonal to ψ−, that is, the system
is again in the initial state. For these times, the solution ψ(t) must be equal
to ψ+ (up to a phase factor). In particular, we have

ψ(T ) = eiθ ψ+ (4.140)

(where eiθ is a suitable phase factor) at the time

T = T (λ, ω0, ω) =
2π

Ω(λ, ω0, ω)
. (4.141)

The transition probability p(t) oscillates in time between 0 and a maxi-
mal value given by

pmax(λ, ω0, ω) =
λ2ω2

0

Ω(λ, ω0, ω)2
=

(
1 +

1
λ2

(
1− ω

ω0

)2
)−1

. (4.142)

This maximal value describes the strength of the system’s response to the
perturbation b(t). As a function of ω (at fixed values of λ and ω0), pmax has
the shape of a resonance curve (see Fig. 4.22). Notice the following points:

(1) The maximum is at the resonance frequency ω = ω0, where the
maximal value is 1, irrespective of the value of λ.

(2) The width of the resonance depends on λω0.
(3) There is no resonance for negative ω, that is, if the external mag-

netic field rotates in the opposite direction.
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The movies CD 4.14–CD 4.17 show the behavior of a qubit under
various time-dependent perturbations. Resonant and non-resonant
behavior of the magnetic moment vector is shown for circularly and
linearly oscillating magnetic fields. In CD 4.15, the perturbation is
large and the resonance curve is wide. In CD 4.16, the perturbation
is small and the resonance curve is a sharp peak. At the resonance
frequency, it is always possible to turn an initial state ψ+ into the
orthogonal state ψ−, irrespective of the strength of the perturbation.

Atomic nuclei with an odd number of nucleons have a nonzero spin (for
example, the nucleus of a hydrogen atom). The resonant behaviour of the
nuclear spin in magnetic fields can be used to measure the distribution of
these atoms in a sample of material. This technique, known as nuclear
magnetic resonance (NMR), has important applications to medical imaging.



Chapter 5

Composite Systems

Chapter summary: Up to now, we have only considered single-particle systems.
Real physics starts where at least two particles are involved. As a first example of
a two-particle system we consider the Schrödinger equation for two free particles.
This shows us how to construct two-particle states as products of one-particle states
(Section 5.1). An abstract formulation of this method is given by the tensor product
of Hilbert spaces. The Hilbert space of a composite system contains not only prod-
uct states, but also their linear combinations (Section 5.2). In general, these states
are entangled, that is, they cannot be written as simple products. Entanglement
cannot be created by local measurements or manipulations of the subsystems, but
usually, an interaction between the subsystems immediately leads to entanglement
(Sections 5.3 and 5.4).

The theory presented here has applications not only to atomic physics but
also to quantum information theory. An entangled state of a composite system
encodes information about the system as a whole that cannot be measured locally
(that is, by measurements on the subsystems alone). This information describes
correlations between the subsystems. In general, the state of a subsystem cannot
be described by a state vector in the Hilbert space of the subsystem. If the bipartite
system is in an entangled state, then any subsystem is in a statistical mixture of
states. We describe this new situation by a density operator ρ (Section 5.5). The
density operator generalizes the orthogonal projection operator onto the subspace
spanned by a “pure state” ψ. In Section 5.6, we compare pure and mixed states and
discuss the ensemble interpretation of mixed states. We describe the ambiguities
in the preparation of mixed states in Section 5.7 and some mathematical aspects
of bipartite systems in Section 5.8 (the normal form of the state vector, maximally
entangled states, purification, and the projection postulate for mixed states).

Section 5.9 describes the physics of composite systems whose parts are indis-
tinguishable. A major new ingredient is the symmetrization postulate, which says
that all states of the composite system are either symmetric or antisymmetic under
exchange of the subsystems. Hence, one may conclude that there are two families
of elementary particles, bosons and fermions. Fermions obey Pauli’s exclusion prin-
ciple, which states that two fermions cannot occupy the same state. Section 5.10
describes multiparticle systems with spin, thus forming the theoretical foundation
of the physics of atoms, molecules, and matter. Finally, in Section 5.11 we present
the addition of angular momenta as a problem where two systems are combined
into a larger system.

211
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5.1. States of Two-Particle Systems

5.1.1. The Hamiltonian for two free particles

In order to get a feeling for the wave functions of a two-particle system,
we neglect all interactions and consider a system of two free particles. For
reasons that will become clear later, we assume here that the two particles
are not identical, but can be distinguished by some physical property (for
example, we may assume that the particles have different masses m1 �= m2).
Moreover, we assume that the Hilbert space of either particle is L2(Rn). We
are going to follow our usual procedure to set up a quantum Hamiltonian
by correspondence with the classical mechanical system. From the solutions
of the Schrödinger equation with this Hamiltonian, we will learn about the
typical structure of two-particle wave functions.

Assuming that each particle moves in an n-dimensional space, the clas-
sical configuration space of the two-particle system is R

2n. The points
x = (x(1),x(2)) in this space describe the configuration of the system, that
is, the positions x(1) and x(2) of the individual particles. The Hamiltonian
operator for this system is obtained from the classical expression for the
energy with the usual translation rule. According to this rule, the operator
for the momentum p(j) of the particle j is the differential operator −i�∇(j)

(gradient with respect to the coordinates x(j)). The Hamiltonian is the sum
of the kinetic energies of the two particles, that is,

H =
(p(1))2

2m1
+

(p(2))2

2m2
= − �

2

2m1
∆(1) − �

2

2m2
∆(2), (5.1)

with m1 and m2 denoting the masses of the two particles, respectively. Here,
it is assumed that the two particles move freely. In particular, there is no
potential energy term that would describe an interaction between the two
particles.

The linear operator H acts on (differentiable) functions ψ(x(1),x(2)) of
the 2n position variables, and ∆(j) is the Laplace operator that differentiates
with respect to the variables x(j) = (x(j)

1 , . . . , x
(j)
n ),

∆(j) =
∂2

∂(x(j)
1 )2

+ · · ·+ ∂2

∂(x(j)
n )2

. (5.2)

CD 5.1.1 shows the independent (interaction-free) motion of two free
particles on a line. The particles have different mass, move in oppo-
site directions, and both are described by Gaussian wave functions.
The second particle’s wave function is plotted upside-down. CD 5.1.2
shows two independent oscillating particles, that is, two particles
moving without interaction in a harmonic oscillator potential.



5.1. STATES OF TWO-PARTICLE SYSTEMS 213

5.1.2. The Schrödinger equation of a two-particle system

We consider the time-dependent Schrödinger equation with the two-particle
Hamiltonian above. Scaling the units of length, we can get rid of the constant
� and write the Schrödinger equation in the form

i
∂

∂t
ψ(x(1),x(2), t) = −

( 1
2m1

∆(1) +
1

2m2
∆(2)

)
ψ(x(1),x(2), t). (5.3)

We note that the Hamiltonian is a sum of two terms that commute with
one another. Hence, we can find a special set of solutions by a separation of
variables, that is, by writing

ψ(x(1),x(2), t) = ψ1(x(1), t) ψ2(x(2), t). (5.4)

This is a solution of the two-particle Schrödinger equation (5.3) whenever ψj ,
j = 1, 2, are solutions of the one-particle Schrödinger equations for particles
with mass mj .

Exercise 5.1. Insert (5.4) into the Schrödinger equation (5.3) and show
that ψ(x(1),x(2), t) is a solution if and only if ψj(x, t) is a solution of the
equation

i
∂

∂t
ψj(x, t) = − 1

2mj
∆ ψj(x, t). (5.5)

We conclude that the Schrödinger equation for two free particles can
be separated completely into two independent one-particle problems. This
should not be surprising, because a system of two interaction-free particles
consists of completely independent one-particle subsystems. Each of the
particles moves as if the other was not there.

If ψ and φ are solutions of the two-particle Schrödinger equation, then
any linear combination a ψ + b φ is again a solution (superposition principle,
linearity of the Schrödinger equation). One soon realizes that even if the two
solutions ψ and φ are in product form, it is in general impossible to write
the linear combination a ψ+b φ as a product of one-particle solutions. Thus,
the two-particle Schrödinger equation has many solutions that are not just
products of one-particle wave functions.

CD 5.2.1 combines two one-particle solutions into a solution of the
two-particle Schrödinger equation. This is a wave function of the
form (5.4), defined on the configuration space R

2 of the two-particle
system. CD 5.2.2 shows the wave function in configuration space
that is obtained by forming the product of the two independent os-
cillators in CD 5.1.2. The Hamiltonian of this system is a sum of
two harmonic-oscillator Hamiltonians without interaction term.
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5.1.3. Two-particle Hilbert space

What is the most general form of the wave function at a given time t?
Assume that the set {ψj | j = 1, 2, . . .} is an orthonormal basis in the single-
particle Hilbert space L2(Rn). Among the possible states of the two-particle
system are all the products

ψj(x(1)) ψk(x(2)), j, k = 1, 2, 3 . . . (5.6)

and because the set of all possible states is a linear space (superposition
principle), we can form arbitrary linear combinations from these products.
The most general two-particle wave function (at a given time t) thus has the
form

ψ(x(1),x(2)) =
∞∑

j=1

∞∑
k=1

cjk ψj(x(1))ψk(x(2)). (5.7)

This is a square-integrable function of the 2n variables {x(1),x(2)} whenever
the double-sum converges with respect to the norm in L2(R2n). For this it
is necessary and sufficient that the coefficients cjk be square-summable,

∞∑
j=1

∞∑
k=1

|cjk|2 < ∞. (5.8)

In this case, the two-particle wave function ψ is square-integrable over R
2n,

‖ψ‖2 =
∫

R2n

|ψ(x(1),x(2))|2 d2nx =
∑
j,k

|cjk|2 < ∞. (5.9)

In general, it is not possible to write a linear combination of product func-
tions again as a product of two wave functions.

Hilbert space of two particles:

If the state space of a single particle is L2(Rn), then the Hilbert space
of two-particle wave functions is L2(R2n). If {ψk | k = 1, 2, 3, . . .} is an
orthonormal basis in L2(Rn), then the products of the basis states

{ψjk | ψjk(x(1),x(2)) = ψj(x(1))ψk(x(2)), j, k = 1, 2, 3, . . .} (5.10)

form an orthonormal basis of the two-particle Hilbert space.

At any given time t, the most general wave function is thus a (possibly
infinite) linear combination of products of one-particle wave functions.

Exercise 5.2. Show that the states of the two-particle basis (5.10) are
orthonormal if the one-particle states ψj are pairwise orthonormal (that is,
if 〈ψj , ψk〉 = δik). Prove Eq. (5.9).
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In CD 5.3.1, we show a wave function of the two-particle system
that cannot be written as a product of one-particle wave functions.
A state with this property is called entangled. Entangled states will
be discussed later in this section and in Chapter 6. CD 5.3.2 shows
wave function that is a product of one-particle wave functions (this
is called a separable state of the two-particle system).

5.1.4. The interpretation of two-particle wave functions

Analogous to the interpretation of a one-particle wave function, we say that∫
B⊂R2n

|ψ(x(1),x(2))|2 d2nx (5.11)

is the probability of finding the configuration x = (x(1),x(2)) in B ⊂ R
2n.

A natural choice for the region B is a “rectangle” B1 × B2, with Bj ⊂ R
n.

The above expression then gives the probability of finding the first particle
in the region B1 and the second particle in B2. For the special case that the
wave function is a product, this probability also becomes a product,∫

B⊂R2n

|ψ(x(1),x(2))|2 d2nx =
∫

B1

|ψ1(x)|2 dnx

∫
B2

|ψ2(x)|2 dnx. (5.12)

This is the joint probability of the independent events E1 = “particle 1 in
B1” and E2 = “particle 2 in B2.” If the wave function is not a product, the
joint probability will not factorize, which means that the events E1 and E2

are not independent.
Because of the high dimension of the configuration space of two particles,

it is difficult to visualize a two-particle wave function (except in the case that
the space dimension is n = 1). We can, however, visualize the quantity

ρ1(x) =
∫

Rn

|ψ(x,y)|2 dny, (5.13)

which is called the one-particle density function. We interpret ρ1(x) as the
probability density for finding particle 1 at x and particle 2 somewhere.
Thus,

∫
B ρ1(x) dnx is the probability that the position of particle 1 is in B1,

irrespective of the position of particle 2. Similarly, we define

ρ2(x) =
∫

Rn

|ψ(y,x)|2 dny (5.14)

as the position probability density of particle 2 irrespective of the position
of particle 1. Whenever ψ is a product of normalized one-particle states, ρ1

and ρ2 are just the corresponding one-particle densities:

ρ1(x) = |ψ1(x)|2, ρ2(x) = |ψ2(x)|2, if ψ(x,y) = ψ1(x)ψ2(y). (5.15)
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CD 5.5 visualizes the time evolution of a two-particle system in terms
of the one-particle density functions ρ1(x) and ρ2(x). The system
consists of two particles interacting via a harmonic-oscillator force.

5.2. Hilbert Space of a Bipartite System

Let us consider quite generally a quantum system that is made up of two
different parts A and B (this is called a bipartite system). How do we
construct the formalism of the combined system if we know how to describe
the constituent parts? This precisely was the problem we had to face when
we introduced the wave functions of a system consisting of two free particles.
We solved this problem by introducing a larger Hilbert space, which contains
products of single-particle wave functions. The same ideas also works for
other quantum systems (e.g., for qubits).

5.2.1. Construction of the tensor product

We consider two physical systems A and B. The Hilbert spaces of the indi-
vidual systems are denoted by HA and HB, respectively. When we join the
two parts, we have to find a larger Hilbert space that is capable of describ-
ing the states of the compound system. The form of the two-particle wave
functions (5.6) suggests that the compound states should be products of in-
dividual states. Mathematically, the tensor product provides a nice method
to construct a Hilbert space containing all possible products of elements from
two given Hilbert spaces HA and HB.

Let the system A be in a state ψA ∈ HA and B be in a state ψB ∈ HB.
Without further assumptions, a multiplication of ψA with ψB need not make
any sense, because the two Hilbert spaces could be completely different.
Hence, we introduce a new symbol ⊗ and denote the state of the combined
system AB by

ψA ⊗ ψB. (5.16)
This formal product just represents the ordered pair of the states ψA and ψB.
In case of ordinary wave functions, we may replace ⊗ by the usual product
of two functions. Next, we introduce the scalar product

〈ψA ⊗ ψB , φA ⊗ φB 〉 = 〈ψA , φA 〉 〈ψB , φB 〉. (5.17)

The expressions on the right side of this definition are well defined, because
they involve only scalar products of vectors in the same Hilbert space.

The product states of the form ψA ⊗ ψB cannot be the only states of
the compound system. According to the superposition principle, we have to
include arbitrary linear combinations of product states in the state space of
the system AB. We extend the set of product states in such a way that the
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formal product ⊗ is linear in both factors. To that purpose, we introduce
the following rule∑

j

cjψ
A
j ⊗

∑
k

dkψ
B
k =

∑
j,k

cj dk (ψA
j ⊗ ψB

k ). (5.18)

For the scalar product (5.17) we assume, as usual, linearity in the second
and antilinearity in the first factor. In that way, the definition of the scalar
product “automatically” carries over to all vectors of the form (5.18).

The vector space that consists of all elements of the form (5.18) defines1

the tensor product of the Hilbert spaces HA and HB. We denote this vector
space by

HAB = HA ⊗ HB. (5.19)
The introduction of the tensor product for the description of compound sys-
tems is a basic new ingredient in the quantum mechanical theory. Ultimately,
it can only be justified by its success.

Basic assumption about compound systems:

The Hilbert space of a quantum mechanical system consisting of two
parts A and B is the tensor product of the Hilbert spaces HA and HB

associated to the subsystems.

It is straightforward to generalize the considerations above to systems
composed of several subsystems. The tensor product is associative. Up to
isomorphism, we may, for example, identify the following tensor products

HA ⊗ HB ⊗ HC = (HA ⊗ HB)⊗ HC = HA ⊗ (HB ⊗ HC). (5.20)

5.2.2. Orthonormal basis of the tensor product space

Assume that {ψA
j } is an orthonormal basis in HA and {ψB

k } is an orthonormal
basis in HB. Then, one can show that the set formed by the vectors

ψjk = ψA
j ⊗ ψB

k (5.21)

forms an orthonormal basis of the tensor product space. Hence, every vector
ψ in HAB has a unique representation as

ψ =
∑
j,k

cjk ψA
j ⊗ ψB

k with cjk = 〈ψA
j ⊗ ψB

k , ψ〉. (5.22)

1In the infinite dimensional case, the definition of the tensor product includes the
topological closure of the set of finite linear combinations of product states. We refer to
the mathematical literature for a more precise definition of the tensor product of Hilbert
spaces.
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The sum above might be finite or infinite, depending on the dimensions of
the constituent Hilbert spaces. In the infinite-dimensional case, one has the
additional condition

‖ψ‖2 =
∑
j,k

|cjk|2 < ∞. (5.23)

Exercise 5.3. Show that the basis states ψjk defined in (5.21) form an
orthonormal set, that is,

〈ψjk , ψlm〉 = δjl δkm. (5.24)

Exercise 5.4. Describe the Hilbert space of a two-qubit system. What
is its dimension?

5.2.3. Entangled states

Whenever a bipartite system is in a product state, that is,

ψ = ψA ⊗ ψB, (5.25)

then we can say that system A is in the state ψA and system B is in the state
ψB. The state ψA⊗ψB is obtained if the two systems are separately prepared
in the states ψA and ψB, respectively, and juxtaposed without interaction.

But in the Hilbert space of the compound system, most states cannot be
written as a single tensor product. For example, the linear combination

ψ =
1√
2

(ψA
0 ⊗ ψB

0 + ψA
1 ⊗ ψB

1 ) (5.26)

is not a product state, at least if we assume that both sets {ψA
0 , ψA

1 } and
{ψB

0 , ψB
1 } are linearly independent.

Entangled and separable states:

A state of a compound system is called entangled if it cannot be written
as a single tensor product of subsystem states. A state in the product
form (5.25) is called unentangled or separable.

Even if the initial state of a compound system is separable, it will, in general,
become entangled during the time evolution if there is some coupling between
the subsystems. Whenever the state of a compound system is entangled, it
is meaningless to speak of the state of a subsystem in the sense used so far
(that is, as something that can be described by a single vector in the Hilbert
space of the system). We will be forced to generalize our notion of a state.
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Exercise 5.5. Given two orthogonal vectors φA
1 and φA

2 in HA and two
orthogonal vectors φB

1 and φB
2 in HB, show that the state

ψ =
1
2
(
φA

1 ⊗ φB
1 + φA

1 ⊗ φB
2 + φA

2 ⊗ φB
1 + φA

2 ⊗ φB
2

)
(5.27)

is separable whereas the state

ψ =
1√
2

(
φA

1 ⊗ φB
1 + φA

2 ⊗ φB
2

)
(5.28)

is entangled.

5.2.4. Example: Two-qubit system

As an example, we consider a bipartite system where the parts are simple
qubits. The Hilbert space of two qubits A and B is C

2 ⊗ C
2. In each

one-qubit subspace, we choose a basis {ψ+, ψ−}. The basis states could be
realized as spin-up and spin-down eigenstates with respect to some common
reference direction (for example, the z-direction in some inertial frame used
in the description of both particles). For the two-qubit system, we obtain
the following basis of product states,

{ψ+ ⊗ ψ+ , ψ+ ⊗ ψ− , ψ− ⊗ ψ+ , ψ− ⊗ ψ− }. (5.29)

These four basis vectors span a four-dimensional complex vector space. This
shows that the tensor product C

2 ⊗ C
2 is isomorphic to C

4.
In the Hilbert space of the two-qubit system, we can choose another basis

that consists entirely of entangled states. Define

ψ±
e =

1√
2

(
ψ+ ⊗ ψ+ ± ψ− ⊗ ψ−

)
,

ψ±
o =

1√
2

(
ψ+ ⊗ ψ− ± ψ− ⊗ ψ+

)
.

(5.30)

The states ψ±
e are superpositions of product states in which the spins are

parallel. They are sometimes called even parity states. The states ψ±
o , where

the two summands have antiparallel spins, are called the odd parity states.
The basis formed by these states is called the Bell basis.

The experimental realizability of entangled states is of particular impor-
tance for possible applications of quantum computers. A number of methods
for creating two-qubit systems in an entangled state are described in [2].

Exercise 5.6. Show that the Bell basis

{ψ+
e , ψ−

e , ψ+
o , ψ−

o } (5.31)

is an orthonormal basis in the two-qubit Hilbert space.
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CD 5.7 explores several methods to visualize two-qubit states: (a)
As a bar diagram that shows the four coefficients of the expansion
with respect to the basis (5.29). This could be called the “standard
representation” of the two-qubit states. (b) In case of a separable
state, we can show the states of the subsystem in a Bloch sphere
as described in Section 4.4.1. (c) We can visualize qubit states by
the first two eigenstates of a harmonic oscillator as described in Sec-
tion 4.5.3. Two-qubit states may thus be visualized as states of the
harmonic oscillator in two dimensions.

5.2.5. Example: Particle with spin

Another example is the combination of a particle in R
3 whose state space

is L2(R3) and of a qubit whose state space is C
2. The result is simply a

particle with spin in R
3. The tensor product L2(R3)⊗C

2 is spanned by the
linear combination of the product states

ψ(x)⊗
(

c1

c2

)
, ψ ∈ L2(R3), ci ∈ C, (5.32)

We can omit the ⊗ in (5.32), because it makes sense to multiply a function
with a vector. Thus, we identify

ψ(x)⊗
(

c1

c2

)
≡ ψ(x)

(
c1

c2

)
=

(
c1 ψ(x)
c2 ψ(x)

)
. (5.33)

The Hilbert space L2(R3) ⊗ C
2 therefore consists of two-component wave

functions. Every two-component wave function is a linear combination of
two vectors of the type (5.33),(

ψ1

ψ2

)
= ψ1

(
1
0

)
+ ψ2

(
0
1

)
. (5.34)

It is interesting that this state is entangled whenever ψ1 and ψ2 are linearly
independent.

In Section 3.5.1, we introduced the Hilbert space L2(R3)2 of spinor-wave
functions as a direct sum of two copies of L2(R3). Obviously, this Hilbert
space is the same as (isomorphic to) the tensor product of L2(R3) and C

2:

L2(R3)2 = L2(R3)⊕ L2(R3) ∼= L2(R3)⊗ C
2. (5.35)

In certain experimental setups, the spatial states of photons also realize a
qubit (see Section 4.5.2). We can combine these states with the polarization
states into a two-qubit system. For example, a single photon that moves
upwards and is vertically polarized is a two-qubit system in the state

ψuv = ψu ⊗ ψv. (5.36)
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In a similar way, we may define the other basis states ψuh, ψdv, and ψuh. A
Bell state of the photon is, for example, ψ+

e = 2(−1/2) (ψuv + ψdh).

5.3. Interacting Particles

5.3.1. Two-particle interactions

It will turn out that entangled states have some strange properties. There-
fore, one must ask whether entangled states really exist in nature. For
systems of non-interacting particles, we can avoid entangled states by choos-
ing appropriate initial conditions. A state that is initially separable will be
separable for all times. But, for interacting particles this is no longer true,
and entanglement cannot be avoided.

The Hamiltonian for an interacting two-particle systems is again ob-
tained from its analog in classical mechanics. Thus, it could be of the form
(assuming � = 1)

H = − 1
2m1

∆(1) − 1
2m2

∆(2) + V (x(1),x(2)) (5.37)

where again ∆(j) is the Laplace acting on the coordinates of particle (j) (see
Eq. (5.2)). Consider, for example, a helium atom. In the approximation
of infinite nuclear mass, the atomic nucleus is a fixed, point-like center of a
Coulomb force (with charge 2e). The helium atom has two electrons that
interact by Coulomb repulsion. The electrostatic potential energy of the two
electrons can thus be described by the expression

V (x1,x2) = − 2γ

|x(1)| −
2γ

|x(2)| +
γ

|x(1) − x(2)| , (5.38)

where γ = e2/4πε0, as usual. The first two summands describe the electro-
static potential energy of the electrons in the field of the nucleus, and the
last term is the Coulomb repulsion between the two electrons. The presence
of the last term makes it impossible to obtain a solution of the Schrödinger
equation in form of a product of one-particle wave functions (that is, in form
of a separable state). Even if the initial state is separable, the time evolution
will put the system into an entangled state.

CD 5.5 shows the time evolution of a two-particle wave function in
configuration space. It describes two particles moving in one dimen-
sion and interacting via a harmonic oscillator force. Although the
initial state is separable, it soon becomes obvious that the state at
time t > 0 is entangled.
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5.3.2. Separation of the center-of-mass motion

A special case of (5.37) is a Hamiltonian of the form

H = − 1
2m1

∆(1) − 1
2m2

∆(2) + V (x(1) − x(2)). (5.39)

Here, the potential energy depends only on the relative position of the two
particles. This Hamiltonian would arise, for example, in a description of a
hydrogen atom, where the proton is not just treated as a fixed force center,
but as a quantum-mechanical particle. The hydrogen atom consists of a
proton with mass mp and an electron with mass me. These particles interact
by an attractive Coulomb force that depends only on the distance between
the proton and the electron. Hence, the Hamiltonian of the hydrogen atom
becomes

H = − 1
2mp

∆(1) − 1
2me

∆(2) − γ

|x(1) − x(2)| . (5.40)

Again, the time evolution does not preserve the separability of wave func-
tions. But we can find another set of coordinates, where a separation into a
product is still possible.

Starting with the Cartesian coordinates (x(1),x(2)) of the two-particle
system, we introduce center-of-mass coordinates X and relative coordinates
x by

X =
m1x(1) + m2x(2)

m1 + m2
, x = x2 − x1. (5.41)

After the coordinate transformation (x(1),x(2)) → (X,x), the Hamiltonian
(5.39) decomposes into a sum of a part that depends only on X and another
part that depends only on x,

H = − 1
2M

∆X − 1
2µ

∆x + V (x), (5.42)

where M = m1 + m2 is the total mass and µ is the reduced mass

µ =
m1m2

m1 + m2
. (5.43)

The symbols ∆X and ∆x denote the Laplace operators with respect to the
indicated coordinates. Thus, we found a new way to decompose the two-
particle system into two subsystems. One of these subsystems describes the
free motion of the center of mass. It is given by the Hamiltonian

Hcm = − 1
2M

∆X. (5.44)
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The other subsystem describes the relative motion. This subsystem is de-
scribed by the Hamiltonian

Hrel = − 1
2µ

∆x + V (x), (5.45)

which is the same as the Hamiltonian for a particle with mass µ in an external
potential energy V (x). The Hamiltonian of the two-particle system is a sum

H = Hcm + Hrel. (5.46)

The two summands commute with each other, hence the time evolution of
the combined system is

e−iHt = e−iHcmt e−iHrelt. (5.47)

We see that the two subsystems have been chosen in such a way that a
separable initial state remains separable for all times.

Thus, we can solve the two-particle Schrödinger equation with a product

ψ(X,x, t) = Ψ(X, t)ψ(x, t), (5.48)

where Ψ describes a free motion and ψ describes the relative motion of the
two particles,

i
∂

∂t
ψ(x, t) = Hrel ψ(x, t). (5.49)

The linearity of the Schrödinger equation implies that arbitrary linear com-
binations of the solutions (5.48) are again solutions.

It is clear that the bound-state energies are given by the eigenvalues of
the Hamiltonian describing the relative motion.

The movies CD 5.4 and CD 5.6 show states of the two-particle os-
cillator and indicate the coordinate axes of the center-of-mass and
relative coordinates. A blue line (the “x-axis”) shows those configu-
rations of the two-particle system, for which the center of mass is at
the origin (X = 0). The green line (the “X-axis”) is the coordinate
axis with relative coordinates x = 0. The wave packet in configura-
tion space is always symmetric about the blue line. It oscillates in
the x-direction and spreads in the X-direction. The corresponding
classical system (represented as a white point at the center of the
wave packet) always moves on the blue line.

5.4. Observables of a Bipartite System

5.4.1. Tensor product of operators

Given a linear operator S in the Hilbert space HA and another linear operator
T in HB, we can define a linear operator in the Hilbert space of the compound
system. This operator will be called the tensor product of S and T and
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denoted by S ⊗ T . Whenever S and T correspond to observables of the
subsystems (that is, self-adjoint operators), the tensor product S ⊗ T is an
observable of the compound system. The measurable values of S⊗T are the
products of the eigenvalues of S and T .

Let us describe briefly the construction of S ⊗ T . For simplicity, we
consider the case where S and T are bounded (continuous) linear operators.
First, we define the tensor product on separable states as

(S ⊗ T )ψA ⊗ ψB = SψA ⊗ TψB. (5.50)

We extend this definition by linearity to the set of all finite superpositions
of separable states:

(S ⊗ T )
∑
j,k

cjk ψA
j ⊗ ψB

k =
∑
j,k

cjk (S ⊗ T ) ψA
j ⊗ ψB

k

=
∑
j,k

cjk SψA
j ⊗ TψB

k . (5.51)

The result is a bounded and densely defined operator that can be extended
(by continuity) to all of HA ⊗ HB (see Book One, Section 2.5). We have

‖S ⊗ T‖ = ‖S‖ ‖T‖. (5.52)

A separable state ψA ⊗ ψB consisting of eigenvectors,

SψA = sψA, TψB = tψB, (5.53)

is an eigenvector of the product observable,

(S ⊗ T ) ψA ⊗ ψB = st ψA ⊗ ψB, (5.54)

and the eigenvalue is the product of the individual eigenvalues. This follows
immediately from the definition (5.50). Moreover, all eigenvalues of the
tensor product can be written as products of the eigenvalues of the factors.

Eigenvalues of the tensor product:

Suppose that S and T are operators with a discrete spectrum of eigen-
values. Then, the eigenvalues of S ⊗ T are given by the products st,
where s is an eigenvalue of S and t is an eigenvalue of T .

Ψ For unbounded operators (like position and momentum operators) do-
main questions have to be taken into account. Equation (5.50) makes

sense only for ψA ∈ D(S) and ψB ∈ D(T ). Usually, the domains D(S)
and D(T ) are dense sets, and hence the set of finite linear combinations of
separable states ψA ⊗ ψB is dense in HA ⊗ HB. Therefore, Eq. (5.51) gives
us linear operator on a dense domain in HA ⊗ HB. If possible, one takes
the closure of this densely defined operator to complete the definition of the
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tensor product S ⊗ T . In that way, the tensor product of self-adjoint opera-
tors becomes self-adjoint. We refer to the literature for mathematical details
concerning this procedure. According to a general mathematical theorem,
the spectrum of the tensor product is the (closure of the) product of the
individual spectra. (This statement includes the continuous spectra of the
operators.)

Exercise 5.7. Show that the composition of (bounded) tensor-product
operators is given by

(S1 ⊗ T1)(S2 ⊗ T2) = (S1S2)⊗ (T1T2). (5.55)

Exercise 5.8. Given unitary groups V (t) and W (t), show that the tensor
product U(t) = V (t) ⊗ W (t) is also a unitary group, that is, U(0) = 1,
U(s)U(t) = U(s + t).

There are, of course, many observables of the bipartite system that are
not just tensor-products of subsystem operators. An example is the poten-
tial energy V (x(1),x(2)) describing the interaction of a two-particle system
in (5.37), except if V (x(1),x(2)) = V1(x(1))V2(x(2)). Another interesting ex-
ample is the Kronecker sum. It combines two subsystem operators S and
T into the operator S ⊗ 1 + 1 ⊗ T . The generator of a tensor product of
unitary groups is the Kronecker sum of the generators,

e−itS ⊗ e−itT = e−it (S⊗1+1⊗T ). (5.56)

This can be seen as follows. If U(t) is a tensor product of unitary groups,

U(t) = V (t)⊗W (t) = e−itS ⊗ e−itT , (5.57)

then the generator of U(t) is obtained, as usual, by differentiating U(t) at
t = 0. The product rule also applies to the tensor product,

i
d

dt
U(t) =

(
i

d

dt
V (t)

)
⊗W (t) + V (t)⊗

(
i

d

dt
W (t)

)
, (5.58)

and we find

i
d

dt
U(t)

∣∣∣
t=0

= S ⊗ 1 + 1⊗ T. (5.59)

5.4.2. Local manipulations

Sometimes one is interested in measuring an observable defined only for
one of the subsystems. A measurement performed on subsystem A without
perturbation of B is called a local measurement of the subsystem A. This
is possible only if the two systems can be isolated from each other, which is
certainly easier if, as it is sometimes the case, they are already separated by
some spatial distance.



226 5. COMPOSITE SYSTEMS

In the Hilbert space of a composite system, an observable S of the sub-
system A is represented by the operator

S ⊗ 1. (5.60)

This operator acts in a nontrivial way only on the states of system A. It has
the same eigenvalues as the operator S, and whenever S is self-adjoint, so is
S ⊗ 1. Similar considerations apply, of course, to the observables 1 ⊗ T of
the subsystem B.

Subsystem observables:

Observables of the type S ⊗ 1 or 1 ⊗ T are called local observables
or subsystem observables. Subsystem observables belonging to different
subsystems commute with each other,

[S ⊗ 1 , 1⊗ T ] = 0. (5.61)

The unitary group generated by S ⊗ 1 is given by

e−it(S⊗1) = e−itS ⊗ 1, (5.62)

and similarly for 1⊗ T .

Equation (5.61) follows immediately from (5.55). Equation (5.62) follows
from (5.56) by setting T = 0. It implies that the corresponding unitary
groups also commute,

[e−it(S⊗1) , e−it(1⊗T )] = 0. (5.63)

A unitary transformation of the form V ⊗ 1, where V is unitary in
the Hilbert space of subsystem A, is called a subsystem transformation. A
subsystem transformation can be performed by applying V to subsystem
A (that is, to the vectors in Hilbert space HA) and by doing nothing with
subsystem B.

Then, the tensor product of unitary transformations can be written as a
product of subsystem transformations,

V ⊗W = (V ⊗ 1) (1⊗W ). (5.64)

Unitary transformations of this type are called local unitary transforma-
tions. Physically, a local unitary transformation can be performed while the
subsystems are isolated from each other.

A property P of subsystem A is described by an orthogonal projection
operator. Remember that an orthogonal projection operator is a bounded
self-adjoint operator P with P 2 = P . Its only eigenvalues are 0 and 1. The
set of states having the property P is the range of P (for a projection opera-
tor, RanP = the eigenspace belonging to the eigenvalue 1). It turns out that
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P ⊗1 is an orthogonal projection operator whenever P is (see Exercise 5.9).
We conclude that properties of a subsystem are also properties of the com-
pound system. The observable P ⊗ 1 measures whether the subsystem A
has the property P without considering the subsystem B.

As an example, let us consider a two-qubit system. A local measurement
of σ3 on qubit A is a measurement of σ3 ⊗ 1. If the result is “spin up,”
then qubit A is in the state ψ+ afterwards. According to the projection
postulate, we have performed the projection P+ ⊗ 1, where P+ = |ψ+〉〈ψ+|
is an orthogonal projection operator in the Hilbert space of qubit A.

Exercise 5.9. Show that P⊗1 is an orthogonal projection operator onto
the subspace RanP ⊗HB in HA⊗HB whenever P is an orthogonal projection
operator onto RanP in HA.

Exercise 5.10. Compute the action of the projection operator

P = |ψ+〉〈ψ+| ⊗ 1 (5.65)

on the state
1√
2

(
ψ+ ⊗ ψ+ + ψ− ⊗ ψ−

)
. (5.66)

What is the state of qubit B after having found spin-up for qubit A?

Exercise 5.11. Show that a separable state remains separable under a
local unitary transformation. Similarly, an entangled state cannot be turned
into a separable state by means of a local unitary transformation.

5.5. The Density Operator

If the bipartite system is in a separable state ψA ⊗ ψB, then we can say
that the subsystem A is in the state ψA. But how do we characterize the
subsystem if the composite system is in an entangled state?

5.5.1. What does entanglement mean for the subsystems?

Let us consider a two-qubit system in the Bell state

ψ+
e =

1√
2

(
ψ+ ⊗ ψ+ + ψ− ⊗ ψ−

)
. (5.67)

What do we know about the state of the qubits A and B? What informa-
tion about the individual qubits is contained in the entangled state of the
compound system?

The state of ψ+
e is a superposition of two orthogonal product states. In

this state, the probability of finding both qubits with spin up is 1/2, the
same as that of finding both with spin down. Hence, qubit A is in the state
ψ+ or ψ− with equal probability 1/2. It is important to understand that
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the state of qubit A is not a superposition of the states ψ+ and ψ−, but a
statistical mixture.

Statistical mixture:

A statistical mixture of two quantum states ψ1 and ψ2 is an ensemble of
systems, where each individual system is prepared with probability p in
the state ψ1 and with probability 1− p in the state ψ2. Here, the states
ψ1 and ψ2 need not be orthogonal.

Let us now consider three different ensembles of qubits. The ensembles
are distinguished by physically different preparation procedures:

(I) An ensemble of qubits that are part of a two-qubit system in a Bell
state.

(II) An ensemble of qubits that are prepared with equal probability 1/2
either in the state ψ+ or in the state ψ− (a statistical mixture).

(III) An ensemble of qubits in the state ψ+(ex). Here, ex is the unit
vector in the positive x-direction, that is, all qubits are prepared
with spin-up in that direction (see (4.19)).

The ensemble (II) is prepared by randomly choosing a preparation procedure
for each qubit (that is, without the help of an entangled two-qubit system).
This is called a statistical mixture of the states ψ+ and ψ−. Apart from
an obviously different preparation procedure, the two ensembles (I) and (II)
behave in an identical way.

There is no statistical test that can distinguish between the ensembles
(I) and (II).

The ensemble (III) is a superposition of the states ψ+ and ψ−:

ψ+(ex) =
1√
2

(ψ+ + ψ−). (5.68)

This also describes a situation where the probability of finding spin-up or
-down in the z direction is 1/2. Hence, all three ensembles cannot be dis-
tinguished by measurements of σ3. But the superposition differs drastically
from the statistical mixture with respect to measurements of σ1. A mea-
surement of σ1 in the state ψ+(ex) gives the eigenvalue +1 with certainty
(and hence the expectation value of σ1 is +1). In the statistical mixture,
we find ψ+ and ψ− with equal probability, and in both cases there is just a
50% chance to find spin-up in the x-direction. Hence, a measurement of σ1

produces +1 and −1 with equal probability (the expectation value of σ1 is
0).
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The expectation values of the components of the spin are

〈σ1〉 = 〈σ2〉 = 〈σ3〉 = 0 for ensemble (II), (5.69)

〈σ1〉 = 1, 〈σ2〉 = 〈σ3〉 = 0 for ensemble (III). (5.70)

Exercise 5.12. For a two-qubit system in the state ψ−
o , show that

〈ψ−
o , (σk ⊗ 1) ψ−

o 〉 = 0, k = 1, 2, 3. (5.71)

Hence, the expectation value of the spin of qubit A vanishes along any axis.
Show that the same result holds for the other Bell states. This proves (5.69)
for ensemble (I).

Quite generally, given an ensemble of qubit pairs AB in an entangled
state, the ensemble of qubits A is not described by a state vector in the usual
sense, but rather by a statistical mixture of state vectors. A description of
subsystems in terms of state vectors is no longer adequate, and the theory
has to be generalized to accommodate for mixed states. This will be done
in the next sections.

An entangled state describes much more than just a statistical mixture
of subsystem states. This additional information concerns the correlations
between the subsystems. Chapter 6 is, among other things, devoted to a
deeper look into these questions.

5.5.2. Expectation values of subsystem observables

In order to develop a theory describing the states of a subsystem, we want to
figure out how to extract information about subsystems from a given state
of the compound system. To that purpose, we consider an observable S ⊗ 1
of the subsystem A. For simplicity, we assume that S is a bounded operator
in the Hilbert space of system A. Let us compute the expectation value
for this observable. We need some orthonormal bases of vectors ψA

i in HA

and ψB
j in HB. The product states ψA

i ⊗ ψB
j form an orthonormal basis in

HA ⊗ HB. Hence, the state ψ of the compound system can be written as a
linear combination of these product states:

ψ =
∑
i,j

cij ψA
i ⊗ ψB

j . (5.72)

Before we compute probabilities, the vector ψ has to be normalized. Hence,
we assume

‖ψ‖2 =
∑
i,j

|cij |2 = 1. (5.73)
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The expectation value of S ⊗ 1 in the state ψ is obtained by a little calcu-
lation:

〈ψ, S ⊗ 1ψ〉
=

〈∑
i,j

cij ψA
i ⊗ ψB

j ,
∑
k,l

ckl SψA
k ⊗ ψB

l

〉
by (5.51) and (5.72)

=
∑
i,j,k,l

cij ckl 〈ψA
i ⊗ ψB

j , SψA
k ⊗ ψB

l 〉 (anti-) linearity of 〈·, ·〉

=
∑
i,j,k,l

cij ckl 〈ψA
i , S ψA

k 〉 〈ψB
j , ψB

l 〉 by (5.17)

=
∑
i,j,k,l

cij ckl 〈ψA
i , S ψA

k 〉 δjl orthonormality of {ψB
j }.

Finally, using the definition (1.12) of the Kronecker symbol δij , we obtain
the result

〈ψ, S ⊗ 1ψ〉 =
∑
i,k,l

cil ckl 〈ψA
i , S ψA

k 〉. (5.74)

This involves the “matrix elements” of S between many different states of
the subsystem. Usually, the expectation value of an observable S in a state
ψ is just 〈ψ, Sψ〉. Equation (5.74) shows that the expectation value of a
subsystem observable is much more complicated. This suggests that for a
given state of the compound system, the state of the subsystem cannot be
described just by a single vector in the Hilbert space of that subsystem.

Exercise 5.13. Show that for ψ = ψA⊗ψB, the expectation value of the
operator S ⊗ 1 becomes

〈S ⊗ 1〉ψ = 〈ψ, S ⊗ 1ψ〉 = 〈ψA, S ψA〉 = 〈S〉ψA . (5.75)

Next, we are going to verify that the result (5.74) can also be written in
another way. For this we need to define the trace of an operator.

5.5.3. Trace-class operators

Definition 5.1. Assume that for a linear operator S, the series

Tr S =
∑

j

〈ψj , S ψj〉 (5.76)

converges and has the same value in any orthonormal basis {ψj} of the
Hilbert space. Then, Tr S is called the trace of S and the operator S is said
to be of the trace class.
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Ψ The value of the series (5.76) is automatically independent of the cho-
sen orthonormal basis whenever the Hilbert space is finite dimensional,

or whenever the operator S is non-negative (meaning 〈ψ, Sψ〉 ≥ 0 for all ψ).
This is not true in the general case, and therefore we need the assumption
in the definition above. Moreover, we note that a trace-class operator is
always bounded, but not every bounded operator is of the trace class. For a
non-negative trace-class operator we have ‖S‖ ≤ Tr S.

The following definition describes an important subclass of the trace
class.

Definition 5.2. A bounded (hence everywhere defined) linear operator
ρ is called a density operator if it has the following properties:

(1) ρ is non-negative: 〈ψ, ρψ〉 ≥ 0 for all ψ.
(2) ρ is of the trace class and Tr ρ = 1.

As the main characterization of trace-class operators, we quote the following
mathematical result.

Canonical form of trace class operators:

A self-adjoint linear operator S in a Hilbert space H is of the trace class
if and only if there is an orthonormal basis {ψj} in H such that

S =
∑

j

λj ψj 〈ψj , · 〉 =
∑

j

λj |ψj〉〈ψj | (5.77)

with real numbers λj satisfying
∑

j |λj | < ∞. The last expression in
(5.77) uses Dirac’s bra-ket notation (see Appendix A.8).
The trace of S is then given by

Tr S =
∑

j

λj . (5.78)

An operator with the representation (5.77) has the eigenvalues λj and
the corresponding eigenvectors ψj . Each nonzero eigenvalue has at most
a finite degree of degeneracy.

This result states that a trace-class operator is a sum of one-dimen-
sional orthogonal projection operators. If ρ is a density operator, then its
eigenvalues satisfy

λj ≥ 0,
∑

j

λj = 1. (5.79)
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Exercise 5.14. Show that if ρ1 and ρ2 are density operators, then for
any λ with 0 ≤ λ ≤ 1, the operator

ρ(λ) = λ ρ1 + (1− λ) ρ2 (5.80)

is also a density operator.

5.5.4. Density operator of a subsystem

We return to our task of rewriting (5.74). Given a normalized state of the
compound system

ψ =
∑
i,j

cij ψA
i ⊗ ψB

j (5.81)

(where {ψA
i } and {ψB

j } are orthonormal bases), we define the operator

ρA =
∑
i,k,l

cil ckl |ψA
k 〉〈ψA

i |. (5.82)

It can be shown that this operator has the following properties:

(1) ρA is bounded, self-adjoint, and non-negative.
(2) ρA is trace class with Tr ρA = 1.

These results follow by a direct computation that is left as an exercise.
Hence, the operator ρA is a density operator. It has only non-negative eigen-
values that sum to one. Because ρA is trace class and S is bounded, it follows
from the mathematical theory that SρA also belongs to the trace class. Let
us compute the trace

Tr S ρA =
∑

j

〈ψA
j , S ρA ψA

j 〉 definition of trace

=
∑
j,i,k,l

cil ckl 〈ψA
j , S ψA

k 〉〈ψA
i , ψA

j 〉 by (5.82)

=
∑
j,i,k,l

cil ckl 〈ψA
j , S ψA

k 〉 δij orthonormality of {ψA
j }

=
∑
i,k,l

cil ckl 〈ψA
i , S ψA

k 〉. (5.83)

If we compare this result with Eq. (5.74), we see that Tr S ρA is just another
way of writing the expectation value of S ⊗ 1 in the state ψ.
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Expectation value for a subsystem:

Let ψ be a normalized state of a bipartite system in HA ⊗ HB. Let cij

be the expansion coefficients of ψ with respect to an orthonormal basis
{ψA

i ⊗ ψB
j }. Then, the operator

ρA =
∑
i,k,l

cil ckl |ψA
k 〉〈ψA

i | (5.84)

is a density operator. If S is a bounded operator defined on HA, then

〈S ⊗ 1〉ψ = 〈ψ , S ⊗ 1ψ〉 = Tr SρA. (5.85)

A similar result holds for observables of the system B.

Exercise 5.15. Assuming that HA and HB have finite dimension, show
that the operator ρA defined in (5.84) is nonnegative, that is, 〈φ, ρAφ〉 ≥ 0 for
all φ ∈ HA. Moreover, show that Tr ρA = ‖ψ‖2, where ψ is the corresponding
state of the compound system, defined as in (5.81).

Exercise 5.16. By the same reasoning as above, show that the expec-
tation value of a subsystem observable 1 ⊗ S of the system B in the state
(5.81) is given by

Tr SρB =
∑

k

〈ψB
k , S ρB ψB

k 〉 (5.86)

with
ρB =

∑
i,j,l

cij cil |ψB
l 〉〈ψB

j |. (5.87)

5.6. Pure and Mixed States

5.6.1. State of a subsystem

All that can be known about a quantum system is contained in the expec-
tation values of the observables of the system. For a subsystem, we can
compute these expectation values according to (5.85) as soon as we know
the density operator. Thus, the density operator describes the state of the
subsystem.

The state of a subsystem:

If a bipartite system is in a state ψ, then the state of the subsystem A is
characterized by the density operator ρA defined in (5.84), and the state
of the subsystem B is given by a similar expression ρB.
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Earlier in this book, we characterized states as one-dimensional sub-
spaces of the Hilbert space (Book One, Section 4.1). For convenience, we
used a normalized vector ψ of the subspace [ψ] = {cψ | c ∈ C} to represent
the state. Equivalently, we may describe [ψ] by the operator ρ = |ψ〉〈ψ|,
which is the unique orthogonal projection operator with range [ψ]. You may
check that ρ is a density operator (see Exercise 5.17). A density operator is
thus a direct generalization of our earlier concept.

Pure and mixed states:

In general, the state of a quantum system is described by a density
operator ρ. A one-dimensional projection operator

ρ = |ψ〉〈ψ| with ‖ψ‖ = 1 (5.88)

is called a pure state. It is usually represented by the state vector ψ.
Otherwise, ρ is called a mixed state.

Let the bipartite system be in a separable state ψ = ψA ⊗ ψB. We
may assume that ψA belongs to some orthonormal basis. Using this basis in
(5.84), we see immediately that the density matrix describes a pure state:

ρA = |ψA〉〈ψA|. (5.89)

Likewise, the expectation value of S⊗1 is reduced to the familiar expression

Tr SρA = 〈ψA, SψA〉 (5.90)

(see also Exercise 5.13).

Whenever a pure state of the compound system is separable, then the
subsystem is in a pure state.

A stronger version of this statement is given in Section 5.8.1 below.

Exercise 5.17. Show that any one-dimensional projection operator is a
positive self-adjoint trace-class operator with unit trace and hence a density
operator.

5.6.2. Canonical form of the density operator

For a given density operator ρ, we can find an orthonormal basis {ψj} such
that ρ has the canonical form (see Section 5.5.3)

ρ =
∑

j

pj |ψj〉〈ψj |. (5.91)
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Here, the numbers pj are the eigenvalues of ρ, and the vectors ψj are the
corresponding eigenvectors. Because ρ is non-negative with Tr ρ = 1, the
eigenvalues fulfill the conditions

pj ≥ 0 (all j),
∑

j

pj = 1. (5.92)

The projection operator Pk = |ψk〉〈ψk| is an observable describing the prop-
erty of “being in the state ψk.” The probability that a system in the state ρ
is actually found in the state ψk is, as usual, given by the expectation value
of Pk, that is, by

Tr Pk ρ =
∑

l

〈ψl, Pk ρ ψl〉

=
∑
l,j

pj 〈ψl, ψk〉 〈ψk, ψj〉 〈ψj , ψl〉 = pk.
(5.93)

Hence, the eigenvalue pk of ρ is the probability that a system in the mixed
state ρ is found to be in the pure state ψk. The conditions (5.92) show that
the interpretation of the numbers pj as probabilities is consistent.

The meaning of the density operator:

A mixed state ρ of a physical system is a statistical ensemble of pure
states {ψ1, ψ2, . . .} (forming an orthonormal set), where each pure state
ψj occurs with a probability pj . The probabilities pj are just the eigen-
values of the density operator ρ, and the pure states ψj are the corre-
sponding eigenvectors.

Whenever one of the eigenvalues of ρ is degenerate, then the canonical
form of ρ is not unique. Consider, for example, a qubit in a mixed state
described by the density matrix

ρ =
1
2
|ψ+〉〈ψ+|+ 1

2
|ψ−〉〈ψ−| = 1

2
1. (5.94)

Here, the eigenvalue p1 = p2 = 1/2 is degenerate with degree 2. But any
orthonormal basis {ψ1, ψ2} in C

2 has the completeness property

|ψ1〉〈ψ1|+ |ψ2〉〈ψ2| = 1, (5.95)

and hence the density matrix (5.94) can be represented in a multitude of
ways.
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5.6.3. Ensemble interpretation of mixed states

Next, we consider an arbitrary set {φ1, φ2, . . .} of normalized Hilbert space
vectors. These vectors need not be orthogonal to each other. It can be
shown that the operator

ρ =
∑

j

qj |φj〉〈φj | with qj ≥ 0 for all j and
∑

j

qj = 1 (5.96)

is a density operator (see Exercise 5.19). (In general, if the set {φj} is not
orthonormal, the qj are not the eigenvalues of ρ.)

The interpretation of the state (5.96) is as follows:

Interpretation of the density operator:

The density operator ρ in (5.96) describes an ensemble of quantum sys-
tems that have been prepared in the state φk with probability qk.

For an orthonormal set {φj}, the probability qk of being prepared in the
state φk will coincide with the probability pk of being found in the state φk.
But if the states are not orthonormal, the probability pk is larger than qk,
because a system prepared in the state φj with j �= k also has a certain
chance to be found in the state φk. The probability pk is the expectation
value of Pk = |φk〉〈φk| in the state ρ:

pk = Tr
(|φk〉〈φk| ρ

) ≥ qk. (5.97)

Example 5.1. Consider a Stern-Gerlach filter that serves to prepare a
qubit with spin-up in the direction of the inhomogeneous magnetic field.
We assume that the filter can be rotated about the x-axis (the direction of
the beam). Let us consider three orientations, given by the rotation angles
α = 0, α = π/3, and α = 2π/3. Hence, we measure the spin with respect to
three directions given by the unit vectors (shown in Fig. 5.1)

n1 =

⎛
⎝0

0
1

⎞
⎠ , n2 =

1
2

⎛
⎝ 0
−√3

1

⎞
⎠ , n3 =

1
2

⎛
⎝ 0
−√3
−1

⎞
⎠ . (5.98)

In the standard representation, the spinors with spin up in these directions
are φj = ψ+(nj), or

φ1 =
(

1
0

)
, φ2 =

1
2

(√
3
−i

)
, φ3 =

1
2

(
1

−i
√

3

)
. (5.99)

These vectors represent the states that can be prepared by our Stern-Gerlach
filter. Assume we throw a dice and if the result is 1 or 2, we prepare a qubit
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n1

n2

n3

Figure 5.1. The three possible orientations of the Stern-
Gerlach apparatus in Example 5.1, looking in the direction
of the beam.

in the state ψ+(n1) by turning the Stern-Gerlach apparatus (filter) into the
upright position. If the result is 3 or 4, we prepare ψ+(n2), and if we get
5 or 6, we prepare ψ+(n3). Hence, we prepare an ensemble of qubits where
each of the states (5.99) occurs with probability 1/3. The density operator
describing this ensemble is

ρ =
3∑

j=1

1
3
|φj〉〈φj |. (5.100)

In the standard representation we obtain the matrix

ρ =

( 2
3

i
2
√

3

− i
2
√

3
1
3

)
. (5.101)

With the explicit form of ρ, it is easy to determine the expectation values of
qubit observables. For example, the probability that a measurement of σ3

on the ensemble gives +1 is

Tr
( |ψ+〉〈ψ+| ρ

)
=

2
3
. (5.102)

The expectation value of the components of σ is 〈σj〉 = Trσjρ, and a little
computation gives

〈σ1〉 = 0, 〈σ2〉 = − 1√
3
, 〈σ3〉 =

1
3
. (5.103)

Exercise 5.18. Show that (5.84) can be written in the form (5.96) by
setting

qj =
∑

k

|ckj |2, φj =
1√
qj

∑
k

ckj ψA
j , (5.104)

and verify the conditions (5.92).
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Exercise 5.19. Show that the operator ρ defined by (5.96) is indeed
a density operator. Hint: Expand φj in an orthonormal basis {ψA

j } and
show that (5.96) can be written in the form of (5.84). Use the result of
Exercise 5.15.

Exercise 5.20. Repeat the computations of Example 5.1 with the direc-
tions for the Stern-Gerlach measurements as specified by the angles α = 0,
α = 2π/3, and α = 4π/3. Determine ρ and compute the expectation value
of σ · n, where n is some unit vector in R

3. What is the probability that the
qubit is found with spin up with respect to the direction given by n?.

5.7. Preparation of Mixed States

5.7.1. Preparing an ensemble in a mixed state

The interpretation of the density operator tells us how we can prepare an
ensemble of quantum systems in a mixed state ρ if we know how to prepare
the pure states φj in (5.96). We need the help of a (classical) random number
generator that produces the number j with probability pj . Whenever the
random number generator gives a number j, we prepare a copy of the system
in the state φj . Repeating this procedure generates the statistical ensemble
of pure quantum states described by the density matrix ρ as in (5.96).

Any quantum system can be in a mixed state. We even expect that
mixed states are a more realistic description of quantum systems than pure
states. Whenever we prepare an ensemble of quantum systems, there are
experimental inaccuracies and unavoidable fluctuations that will cause each
member of the ensemble to be prepared in a slightly different state, and we
are going to end up with a statistical mixture of the form (5.96). In that
case, the appearance of statistical mixtures of pure states is related to an
imprecise knowledge or inaccuracy of the preparation process.

Suppose we want to prepare an ensemble of hydrogen atoms in the
ground state and let them evaporate from a bottle of liquid hydrogen. As
this preparation method ignores the electronic spin, we expect that all di-
rections of the spin will occur with equal probability. Hence, we expect a
statistical mixture of the states (3.129) with spin up and spin down,

ρ =
1
2
|ψ1,0,0,+〉〈ψ1,0,0,+|+ 1

2
|ψ1,0,0,−〉〈ψ1,0,0,−|, (5.105)

rather than a pure state (unless some unknown influence during the prepa-
ration prefers a particular state). We see that the mixed state ρ expresses
our ignorance about the details of the preparation process. A pure state can
only be obtained by a simultaneous preparatory measurement of a complete
set of commuting observables. Whenever the experiment leaves us ignorant
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of the eigenvalue of at least one of these observables, we have to describe the
state by a density operator.

Ignorance or inaccuracy as a reason for the appearance of mixed states
is not specific to quantum mechanics. In classical physics, the methods of
statistical mechanics have been developed for the very same reason. But the
mixed states describing the subsystems of a compound system appear on a
more fundamental level. We cannot avoid statistical mixtures by attempting
to control the state preparation more carefully (that is by trying to be more
accurate and less ignorant). Even if the compound system is prepared in
the best possible way (that is, in a pure state), it is inevitable that the
subsystem is in a mixed state whenever the compound state is entangled. It
has to be stressed, however, that no statistical test can distinguish between
an ensemble that is in a mixed state because of an inaccurate preparation
procedure and an ensemble that is in a mixed state, because its members
are part of a larger quantum system.

As discussed in Section 5.5.1, there is a difference between a mixed state
and a superposition. Given an orthonormal set {ψ1, ψ2, . . .}, consider

ρ =
∑

j

pj |ψj〉〈ψj | versus ψ =
∑

j

√
pj ψj . (5.106)

To both ρ and ψ, the pure states ψj contribute with probability pj . It is
nevertheless possible to find a statistical test that distinguishes between ρ
and ψ (for example, by measuring the observable |ψ〉〈ψ|). The mathemati-
cal difference between ρ and ψ is the following: The pure state ψ contains
information about the complex phases of the ψj ; the mixed state ρ does not.
If you replace one of the states ψj by exp(iλ)ψj , this would change ψ but not
ρ. The “relative phases” of the ψj have observable consequences for the state
ψ (interference). The mixed state ρ is totally insensitive against phase dif-
ferences of its constituents. Sometimes, the pure state ψ is called a coherent
superposition, and the mixed state ρ is called an incoherent superposition of
the pure states ψj .

Exercise 5.21. Show that ρ2 �= ρ for ρ = p1 |ψ1〉〈ψ1|+ p2 |ψ2〉〈ψ2|, with
pi > 0, p1 + p2 = 1. Hence, ρ is not a projection operator. Extend the proof
to the case where ρ is a mixture of n orthogonal states.

Exercise 5.22. Show that a density operator ρ describes a pure state if
and only if ρ2 = ρ.

Exercise 5.23. Show that in the Hilbert space of a qubit, any density
operator is of the form

ρ =
(

a b

b 1− a

)
with 0 ≤ a ≤ 1 and suitable b ∈ C. (5.107)
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Exercise 5.24. Determine the unitary transformation U that diagonal-
izes the operator ρ in (5.107),

ρdiag = U−1ρU =
(

p 0
0 1− p

)
with p ≥ 1− p, (5.108)

and show that the positivity of ρ is equivalent to the condition

|b|2 ≤ a− a2. (5.109)

5.7.2. Ambiguity of realizing mixed states

The procedure for preparing a mixed state ρ is not unique. This can be seen
already in the simplest case of a qubit. Consider, for example, a qubit in a
mixed state described by the density matrix

ρ =
1
2
|ψ+〉〈ψ+|+ 1

2
|ψ−〉〈ψ−| = 1

2
1. (5.110)

We can prepare this state by creating an ensemble of qubits, where a ran-
domly chosen 50% of the particles is prepared in the state ψ+ (spin-up in
the z-direction), and the rest is prepared in the state ψ−. But we could
also create an ensemble containing the two eigenstates of, say, σ1 with equal
probability. This would produce the mixed state

1
2
|ψ+(ex)〉〈ψ+(ex)|+ 1

2
|ψ−(ex)〉〈ψ−(ex)| = 1

2
1 = ρ. (5.111)

It is intuitively clear that the two representations (5.110) and (5.111) are
equivalent, because each of the pure states ψ±(ex) again has a 50% chance
to be in one of the σ3-eigenstates ψ+ and ψ−. In the ensemble described by
(5.111), we would find ψ+ and ψ− with equal probability, and hence this state
could equally well be described by the mixture (5.110). There is no chance to
determine experimentally which of the two (physically different) preparation
procedures was used to create the given ensemble. Any measurement of any
spin component would just produce a random bit.

Ambiguity of the ensemble preparation:

In general, there are many physically different ways to prepare an ensem-
ble of systems in the state ρ. All preparation procedures are completely
equivalent with respect to determinative measurements. No statistical
test on the ensemble can distinguish between different methods to pre-
pare one and the same state ρ.

Additional information about the preparation procedure, however, can
be used to obtain pure states from a mixed state. If, for example, the
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preparer makes a record of how the qubits were prepared (“first qubit spin-
up, second qubit spin-down, . . .”), this information would allow us to choose
a subensemble in the pure state ψ+. This information is therefore physically
equivalent to a Stern-Gerlach filter (represented by the projection operator
P+ = |ψ+〉〈ψ+|), because this filter would select the same subensemble.

Exercise 5.25. Show that the qubit density operator ρ in (5.107) can be
written as

ρ = (2p− 1)|ψ〉〈ψ|+ (2− 2p)ρm with ψ = Uψ+ and ρm =
1
2

1. (5.112)

The eigenvalue parameter 1/2 ≤ p ≤ 1 and the unitary matrix U have been
introduced in Exercise 5.24. For p > 1/2, ρ describes a “noisy” qubit state
ψ: A measurement of the corresponding component of the spin gives ψ with
probability p and the orthogonal state with the probability 1 − p. The case
p = 1 corresponds to the pure state (ψ is found with certainty), and p = 1/2
describes the “maximally mixed” state ρ = (1/2)1.

5.7.3. Example: Mixed qubit states

From (4.6) we know that any density operator ρ in the Hilbert space of a
qubit can be written as

ρ =
1
2

(
a012 +

3∑
k=1

akσk

)
(5.113)

where, according to (4.9), the coefficients ak, k = 1, 2, 3, are the expectation
values of the observables σk, that is

ak = Tr (σkρ) = 〈σk〉ρ. (5.114)

Moreover, a0 = Tr ρ = 1. The vector a = (a1, a2, a3) satisfies 0 ≤ |a| ≤ 1. It
can be used to visualize the mixed state ρ.

Visualization of density operators for qubits:

Any qubit density operator ρ corresponds to a unique vector a ∈ R
3 with

0 ≤ |a| ≤ 1 such that ρ = ρ(a) with

ρ(a) =
1
2
(
12 + a · σ)

. (5.115)

The components of a describe the expectation values of the components
of σ.

In this connection, the unit sphere {a ∈ R
3 | |a| ≤ 1} is called the Bloch

sphere. A qubit density operator corresponds to a point inside the Bloch
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sphere. The maximally mixed state ρ = 1
21 corresponds to a = 0 (the center

of the Bloch sphere).
For |a| = 1 (the surface of the Bloch sphere), the operator ρ(a) is an

orthogonal projection operator. The vector ψ+(a) defined in (4.19) is the
eigenvector of ρ(a) belonging to the eigenvalue 1 (see Exercise 4.11). Hence,
ρ(a) projects onto the subspace spanned by ψ+(a). We conclude that the
density operators corresponding to the surface of the Bloch sphere are the
pure states.

The qubit density operator ρ(a) is a pure state if and only if |a| = 1. In
this case, we have

ρ(a) =
1
2
(
12 + a · σ)

= |ψ+(a)〉〈ψ+(a)| for |a| = 1. (5.116)

The vector ψ+(a) was defined in (4.19).

Let 0 < |a| < 1, and define â = a/|a| as the unit vector in the direction
of a. The vectors ψ±(â) defined in (4.19) are the eigenvectors of ρ(a), and
we find that the canonical form of ρ(a) is given by

ρ(a) =
1
2
(1 + |a|)|ψ+(â)〉〈ψ+(â)|+ 1

2
(1− |a|)|ψ−(â)〉〈ψ−(â)|. (5.117)

We can assume that a is a linear combination of two other vectors in the
Bloch sphere,

a = λb + (1− λ)c, with 0 ≤ λ ≤ 1. (5.118)
This means that a is on the straight line segment connecting b and c. A
linear combination of the form (5.118) is called a convex linear combination.
Then

ρ(a) = λρ(b) + (1− λ)ρ(c). (5.119)
We can even choose b and c on the surface of the Bloch sphere, with |b| =
|c| = 1. (Obviously, this can be done in an infinite number of ways.) Hence,
any qubit density matrix ρ(a) can be written as a convex linear combination
of pure states,

ρ(a) = λ|ψ+(b)〉〈ψ+(b)|+ (1− λ)|ψ+(c)〉〈ψ+(c)| (5.120)

whenever a = λb + (1− λ)c with |b| = |c| = 1.

An example is shown in Figure 5.2.
According to Section 5.6.3, the equations (5.117) and (5.120) can be in-

terpreted as physically different preparation procedures. In order to prepare
an ensemble in the state ρ(a), we can

(a) prepare individual copies of the qubit in the states ψ±(â) with the
probabilities 1

2(1± |a|), or
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b
a

c

Figure 5.2. Density operators for qubits correspond to vec-
tors in the Bloch sphere. The surface of the Bloch sphere
corresponds to pure states; the center is the maximally mixed
state. Any mixed state ρ(a) is a (non-unique) convex linear
combination of pure states. A convex linear combination of
b and c is a vector a on the line segment joining b and c.

(b) prepare individual copies of the qubit in the states ψ+(b) and ψ+(c)
with the probabilities λ and (1− λ), respectively.

The ensemble in the state ρ(a) finally contains no information about which
of the preparation procedures (a) or (b) has actually been carried through.

Ψ Many of the observations made here are true for more general systems.
For any two density operators ρ1 and ρ2, the convex combination λρ1+

(1− λ)ρ2 is again a density operator. A set with these properties is called a
convex set. Geometrically, a convex set may be visualized as a set with the
property that for any two points in the set, the line segment joining the two
points also belongs to the set. Hence, the set of all density operators (the set
of all states of a physical system) is a convex set, for which the Bloch sphere
is a good example. A point in a convex set is called an extremal point if it
cannot be written as a convex combination of two other points. The pure
states of a quantum system are just the extremal points in the convex set of
states.
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Exercise 5.26. Given a qubit in the state ρ(a) and a unit vector n ∈ R
3,

show that the expectation value of the observable n · σ is given by

〈n · σ〉ρ(a) = a · n. (5.121)

What is the expectation value of n · σ in the state ρ = 1
2 1?

Exercise 5.27. A qubit is in a mixed state obtained by preparing ψ+(ex)
with probability 1/4 and ψ+(ey) with probability 3/4. Find the canonical form
of the density operator and determine the direction for which the probability
that the qubit has spin-up is maximal. What is the probability of finding
spin-up in the x-direction?

5.8. More About Bipartite Systems

5.8.1. Normal form of the state vector

Let us return to our investigation of the states of compound systems. Using
the canonical form (5.91) of the density operator ρA, we can also obtain
a normal form for the state vector of the compound system. This normal
form makes it easy to determine whether the state is entangled or not and
whether ψ is uniquely determined by the states of the subsystems or not.

Let us write a state ψ of a bipartite system as a linear combination of
product states as in (5.22). We choose in HA an orthonormal basis {φA

j }
with respect to which ρA is diagonal. Let {ψB

j } be an arbitrary orthonormal
basis in HB. Then

ψ =
∑
ij

cij φA
i ⊗ ψB

j =
∑

i

φA
i ⊗

(∑
j

cij ψB
j

)
=

∑
i

φA
i ⊗ χB

i , (5.122)

where
χB

i =
∑

j

cij ψB
j . (5.123)

Because ρA is diagonal in the basis {φA
j }, we have, using Eq. (5.84),

ρA =
∑

j

pj |φA
j 〉〈φA

j | =
∑
j,k

∑
l

cjl ckl |φA
k 〉〈φA

j | (5.124)

and hence ∑
l

cjl ckl = pj δjk. (5.125)

This expression is just the scalar product of the vectors χB
j and χB

k , because
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〈χB
j , χB

k 〉 =
∑
lr

cjl ckr 〈ψB
l , ψB

r 〉 =
∑
lr

cjl ckr δlr =
∑

l

cjl ckl.

Hence,

〈χB
j , χB

k 〉 = pj δjk, (5.126)

that is, the vectors {χB
j } form an orthogonal set in HB. After normalization,

we obtain an orthonormal set consisting of the vectors

φB
j =

1√
pj

χB
j . (5.127)

Inserting this into (5.122), we obtain the normal form of ψ,

ψ =
∑

i

√
pi φ

A
i ⊗ φB

i . (5.128)

From this we may conclude the following: ψ is separable if and only if
precisely one of the summands is nonzero, otherwise it is entangled. In the
separable case, we have pk = 1 for precisely one index k, and ρA = |φA

k 〉〈φA
k |

is a pure state. As a consequence, we have the following result:

Pure and mixed states:

A subsystem is in a pure state if and only if the compound system is in
a separable state. The subsystem is in a mixed state if and only if the
state of the compound system is entangled.

If the compound system is described by (5.128), then the state of the
subsystem B is given by

ρB =
∑

i

pi |φB
i 〉〈φB

i |. (5.129)

Hence: For both subsystems A and B, the nonzero eigenvalues of the density
operators are the same! To each eigenvector of ρA belonging to a nonzero
eigenvalue, there is an eigenvector of ρB belonging to the same eigenvalue.
Only the degree of degeneracy of the eigenvalue zero may be different (note
that HA and HB need not have the same dimensions). Moreover, the states
of A and B are either both pure or both mixed.
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Normal form of states:

For a given state ψ ∈ HA ⊗ HB of the compound system, we can find
orthonormal bases {φA

j } in HA and {φB
j } in HB such that

ψ =
∑

i

√
pi φA

i ⊗ φB
i , pi ≥ 0,

∑
i

pi = 1. (5.130)

Equation (5.130) is called a Gram-Schmidt representation of ψ.
If the state of the compound system is given by (5.130), then the

states of the subsystems are described by the density operators

ρA =
∑

i

pi |φA
i 〉〈φA

i |, ρB =
∑

i

pi |φB
i 〉〈φB

i |. (5.131)

Hence, ρA and ρB have the same nonzero eigenvalues. ρA is a pure state
if and only if ρB is a pure state.

Ψ In general, the Gram-Schmidt representation is not unique. As an
example, we consider the vector ψ, given in a Gram-Schmidt represen-

tation as

ψ =
n∑

j=1

φA
j ⊗ φB

j (5.132)

(the corresponding density matrix ρA has a degenerate eigenvalue). We are
going to construct another Gram-Schmidt representation of ψ with the help
of an arbitrary unitary n×n matrix U . In the Hilbert space HA, we consider
the basis transformation defined by the transposed matrix U� according
to ψA

j =
∑

l(U
�)jlφ

A
l . At the same time, we consider the transformation

ψB
j =

∑
m(U−1)jmφB

m in the Hilbert space HB. We note that ψA
j = UφA

j and
ψB

j = U�φB
j . Hence, if the vectors φA

j and φB
j form orthonormal bases, then

the unitarity of the matrix U implies that the sets {ψA
j } and {ψB

j } are also
orthonormal bases. Now we compute

n∑
j=1

ψA
j ⊗ ψB

j =
n∑

j=1

( n∑
l=1

(U�)jlφ
A
l

)
⊗

( n∑
m=1

(U−1)jmφB
m

)

=
n∑

l,m

( n∑
j=1

Ulj(U−1)jm

)
φA

l ⊗ φB
m

=
n∑

l,m

δlm φA
l ⊗ φB

m =
n∑

l=1

φA
l ⊗ φB

l = ψ. (5.133)

Hence, we have obtained another Gram-Schmidt representation of ψ. We
note that the Gram-Schmidt representation is essentially unique if all nonzero
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numbers pj are different (that is, all nonzero eigenvalues of ρA or ρB are
nondegenerate). In this case, the only remaining freedom is the replacement
φA

i ⊗ φB
i → eiλφA

i ⊗ e−iλφB
i .

5.8.2. Maximally entangled states

Because the definition of ρA involves all the coefficients cij of the state ψ
in the basis {ψA

i ⊗ ψB
j }, one might ask to what extent the state ψ of the

bipartite system is already determined by ρA and ρB. In physical terms, the
question is the following: To what extent do measurements of the states of
the subsystems A and B tell us something about the state ψ of the compound
system?

Unfortunately, the connection between the states ψ of the compound
system and the states ρA, ρB of the subsystems is not one-to-one. Many
different states of the compound system may lead to the same states in the
subsystems. For example, any Bell state (5.30) of a two-qubit system leads
to the same density matrix for both subsystems:

ρA =
1
2

12, ρB =
1
2

12, (for any Bell state). (5.134)

Bell states of a two-qubit system are a special case of the following definition.

Definition 5.3. Assume that HA and HB both have dimension n. A
state of the compound system is said to be maximally entangled if

ρA =
1
n

1A, ρB =
1
n

1B. (5.135)

Let {ψ1, ψ2, . . . , ψn} and {φ1, φ2, . . . , φn} be any two orthonormal bases
of n-dimensional Hilbert spaces HA and HB, respectively. A maximally en-
tangled state is, for example,

ψ =
1√
n

n∑
j=1

ψj ⊗ φj i.e., cij =
1√
n

δij . (5.136)

Obviously, this state already has the normal form (5.130). Hence, you can
easily verify Eq. (5.135), using (5.131) and the completeness of bases. For
example,

ρA =
1
n

n∑
j=1

|ψj〉〈ψj | = 1
n

1A. (5.137)

This is a statistical mixture where each of the pure states ψj contributes
with the same probability (a maximally mixed state).

If we choose other orthonormal bases in the subspaces, we obtain another
maximally entangled state of the compound system but the same density
matrices ρA and ρB for the subsystems. Equation (5.137), written in terms of
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another orthonormal basis {ψ′
j}, can be interpreted as a statistical mixture of

the states ψ′
j , but the two representations are completely indistinguishable by

measurements performed on A (as discussed in Section 5.7.2). Corresponding
to the infinite number of orthonormal bases in HA and HB, there is an infinite
number of maximally entangled states, and all of them lead to the same state
of the subsystem.

Different maximally entangled states are different pure states of the com-
pound system. Hence, they can be distinguished by suitable (“global”) mea-
surements performed on the system as a whole. But they cannot be distin-
guished by local measurements, which provide only information about ρA

and ρB. In general, the state ψ of a bipartite system contains more informa-
tion than the states ρA and ρB of the subsystems together. This is nothing
but the quantum mechanical way of saying that the whole is more than the
sum of its parts.

5.8.3. Purification

We consider a quantum system A whose pure states are vectors in a Hilbert
space HA. We assume that the system is in a mixed state, described by a
density operator ρ. We can find an orthonormal basis {φA

j } such that the
density operator is given by

ρ =
∑

i

pj |φA
j 〉〈φA

j |. (5.138)

Now, we take another Hilbert space HB whose dimension is at least the
number m of nonzero eigenvalues of ρ (counting the degree of degeneracy).
Then, we choose an (arbitrary) orthonormal system {ψB

j } in HB consisting
of m vectors and define the state

ψ =
∑

j

√
pj φA

j ⊗ ψB
j . (5.139)

By construction, our system A is now part of a compound system. The state
ψ of the compound system is a pure (entangled) state with the property that
the state of the subsystem A is given by ρA = ρ (according to (5.131)). The
pure state ψ of the larger system is called a purification of ρ. There are many
purifications of ρ, because we have a complete freedom in the choice of the
orthonormal system {ψB

j }. In fact, there is a one-to-one correspondence be-
tween orthonormal systems of m vectors in HB and the possible purifications
ψ of ρ.

We see that any mixed state may be considered a pure state in a larger
Hilbert space. A purification of ρ can also be characterized as a pure state
ψ such that

〈ψ, S ⊗ 1ψ〉 = Tr Sρ (5.140)
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holds for any (bounded) subsystem observable S ⊗ 1.

5.8.4. Projection postulate for mixed states

Consider a system in a mixed state ρ. We assume that the Hilbert space is
finite-dimensional and consider some observable A with a discrete spectrum,

A =
∑

j

λjPj , (5.141)

where λj are the eigenvalues, and Pj are the orthogonal projection operators
onto the corresponding eigenspaces. If a measurement of A produces the
eigenvalue λk, then, immediately after the measurement, the system is in
the state

ρk =
1

Tr Pkρ
Pk ρ Pk. (5.142)

This result follows from the projection postulate. Let ψ be any purification
of ρ. Then, according to the projection postulate, a measurement of the
observable A ⊗ 1 that produces the eigenvalue λk projects the system into
the range of the projection operator Pk⊗1. That is, the state of the purified
bipartite system after the measurement is φk = Nk(Pk⊗1)ψ (with a suitable
normalization constant Nk). In order to compute the density matrix ρk of the
original system after the measurement, we consider the expectation values
of the subsystem observables,

〈S〉 = N2
k 〈(Pk ⊗ 1) ψ, (S ⊗ 1)(Pk ⊗ 1)ψ〉

= N2
k 〈(ψ, (PkSPk ⊗ 1) ψ〉 = N2

k Tr PkSPkρ
(5.143)

and determine the normalization constant from

1 = Tr1ρ = N2
k Tr P 2

k ρ = N2
k Tr Pkρ. (5.144)

By definition, we must have 〈S〉 = Tr Sρk, hence

Tr Sρk =
1

Tr Pkρ
Tr PkSPkρ = Tr S

( 1
Tr Pkρ

PkρPk

)
. (5.145)

Because this holds for all operators S, we finally obtain (5.142).

Exercise 5.28. The state of a qubit is given by

ρ =
(

1/2 1/4
1/4 1/2

)
. (5.146)

What is the probability of finding +1 in a measurement of σ1? What is the
state of the qubit after having obtained this result? Give a quick answer and
verify it by a computation using (5.142).
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Exercise 5.29. Consider a system in an eigenspace of L2 with angular-
momentum quantum number � = 1. Denote the eigenstates of L3 by |m〉
with m = −1, 0, 1. Assume that the system is in a mixed state where |0〉
has the probability 1/2 and the two “real orbitals” 1√

2
(|1〉 ± |−1〉) each have

the probability 1/4. Suppose you want to measure L3, but due to experi-
mental inaccuracies you only get the result that L3 is non-negative. What
is the probability for that result? What is the state of the system after the
measurement according to the projection postulate (5.142)?

5.9. Indistinguishable Particles

5.9.1. (Anti-)symmetric states of bipartite systems

We consider a bipartite system where the subsystems are of the same kind,
for example, two particles in R

3 or two qubits. More precisely, we assume
that both subsystems are described by the same Hilbert space H = HA = HB.
Whenever the system is in the separable state

ψ = ψ1 ⊗ ψ2, (5.147)

then the first system is in the state ψ1 and the second system is in the state
ψ2.

Now, let us exchange the two subsystems. This means that we put the
first system in the state ψ2 and the second system in the state ψ1. Then,
the state of the combined system becomes ψ2 ⊗ ψ1. In general, this state is
different from (5.147),

ψ1 ⊗ ψ2 �= ψ2 ⊗ ψ1 for ψ1 �= ψ2. (5.148)

Therefore, these two states can be distinguished by suitable measurements,
and this allows us to distinguish between the two subsystems. If the two
systems are truly identical, then there should be absolutely no way to tell
whether the first is in the state ψ1 and the second in the state ψ2, or vice
versa. Obviously, this situation cannot be described adequately by a sepa-
rable state like (5.147) with ψ1 �= ψ2.

Identical systems:

Two quantum systems are said to be identical if there is no measurement
that can distinguish between the two systems.

This rather vague definition just states that identical systems are in-
distinguishable. In order to investigate identical systems, we introduce the



5.9. INDISTINGUISHABLE PARTICLES 251

exchange operator X . It is defined in the Hilbert space H⊗H. As usual, we
define first the action of X on separable states,

X (ψ1 ⊗ ψ2) = ψ2 ⊗ ψ1, (5.149)

and extend this definition by linearity and continuity to all vectors in H⊗H

X
∑
j,k

cjk φj ⊗ φk =
∑
j,k

cjk φk ⊗ φj . (5.150)

The operator X is unitary and self-adjoint on H⊗ H, and

X 2 = 1. (5.151)

Hence, the only possible eigenvalues of X are ±1.
The operator X defines a symmetry transformation for the states of the

composite system (see Section 1.1.2). We may now sharpen our definition
of identical systems.

Exchange symmetry:

A bipartite system is said to be composed of identical (or indistinguish-
able) subsystems if all states remain unchanged under the symmetry
transformation defined by the exchange operator X .

What are the consequences of the exchange symmetry for the state vec-
tors? The two normalized vectors ψ and Xψ must correspond to the same
state of the composite system. Hence, these two vectors can only differ by a
phase factor:

X ψ = eiλ ψ for some λ ∈ [0, 2π) (5.152)

(λ is called the exchange phase). From this we obtain

ψ = X 2 ψ = e2 iλ ψ (5.153)

and because of (5.151) we find e2 iλ = 1, that is, the exchange phase can only
be λ = 0 or λ = π. Either we have Xψ = ψ (the state vector is symmetric)
or we have Xψ = −ψ (the state vector is antisymmetric).

Note that all state vectors must be either symmetric or antisymmetric.
It is not possible that some are symmetric and others are antisymmetric, as
long as we adhere to the superposition principle, because a superposition of
a symmetric and an antisymmetric state vector would neither be symmetric
nor antisymmetric. For example, assuming Xψ = ψ and Xφ = −φ, we find
that X (ψ +φ) = ψ−φ is orthogonal to ψ +φ and thus violates the exchange
symmetry. We conclude:
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Symmetrization postulate:

Consider a bipartite system composed of identical subsystems. All state
vectors must be either symmetric,

X ψ = ψ, (5.154)

or antisymmetric,
X ψ = −ψ, (5.155)

under exchange of the subsystems.
Systems described by symmetric state vectors are called bosonic, and

systems with antisymmetric state vectors are called fermionic.

Ψ The statement in the box above is called a postulate, although it
appears as a mathematical consequence of our definition of identity.

However, this definition is based on a rather vague concept of subsystem
exchange. What is the physical meaning of an exchange of two identical
particles? Is it some physical operation or just a mathematical concept?
Can we exclude that the composition of two interchange operations has to
be represented by the operator −1 (like a rotation through 2π of a spin 1/2
particle)? In this case, one would have to replace the exchange operator
(5.149) by an operator X ′ with the property (X ′)2 = −1. (The correspond-
ing ray transformation is still the identity on rays, see Section 1.1.3.) This
would change the mathematical definition of “indistinguishable” and the pos-
sible values of the exchange phase. Indeed, theoretical considerations like
these have led to an experimental search for a violation of the symmetriza-
tion postulate (without success) and to the theoretical concept of anyons,
a hypothetical class of particles in two dimensions (which are employed, for
example, in discussions of the so-called fractional quantum Hall effect).

As a consequence of the symmetrization postulate, we find that the phys-
ical Hilbert space of a system composed of identical subsystems can only be
a subspace of the tensor product H⊗ H.

Starting with a separable state vector ψ1 ⊗ ψ2, it is easy to construct
suitable symmetric or antisymmetric vectors in H⊗ H: The vector

ψs =
1√
2

(
ψ1 ⊗ ψ2 + ψ2 ⊗ ψ1

)
(5.156)

is symmetric whereas

ψa =
1√
2

(
ψ1 ⊗ ψ2 − ψ2 ⊗ ψ1

)
(5.157)

is antisymmetric. The symmetric state vectors form the eigenspace of the
exchange operator X belonging to the eigenvalue +1; the antisymmetric
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state vectors belong to the eigenvalue −1. We may define the projection
operators onto the eigenspaces by

Ps =
1√
2
(1 + X ) and Pa =

1√
2
(1−X ). (5.158)

The symmetrizer Ps and the antisymmetrizer Pa are orthogonal projection
operators. Their ranges are Hilbert spaces. The range of Ps is called the
symmetric subspace or bosonic Hilbert space. The range of Pa is the anti-
symmetric or fermionic Hilbert space.

Symmetric and antisymmetric subspaces:

The appropriate Hilbert space of a bipartite bosonic system is the sub-
space of symmetric states Hs = Ps (H ⊗ H). The Hilbert space of a
fermionic system is Ha = Pa (H ⊗ H). It consists of all antisymmetric
state vectors.

From (5.158), we conclude immediately that H⊗H = Hs⊕Ha (orthogonal
direct sum), and hence any vector ψ ∈ H ⊗ H can be decomposed in a
unique way into a symmetric part and an antisymmetric part, which are
mutually orthogonal. It should be stressed, however, that according to the
symmetrization postulate, the Hilbert space for a system consisting of two
indistinguishable subsystems is either Hs or Ha. Superpositions of symmetric
and antisymmetric states are not allowed, because they violate the exchange
symmetry. Similarly, the only useful observables are those that leave the
symmetric and antisymmetric subspaces separately invariant.

A separable state ψ1 ⊗ ψ2 cannot be antisymmetric.

All states of a fermionic system are entangled. It is not possible to
describe a subsystem of a fermionic system by a pure state. Moreover,
for any ψ ∈ H we have

Pa(ψ ⊗ ψ) = 0 (Pauli’s exclusion principle). (5.159)

The Pauli principle states that a fermionic state cannot be obtained
by antisymmetrizing a product state with two identical factors. Its usual
formulation, “two parts of a fermionic system cannot be in the same state”
is rather misleading, because whenever the system is in the state

ψa = Pa(ψ1 ⊗ ψ2) with ψ1⊥ψ2 (5.160)

then both subsystems are actually in the same (mixed) state

ρA = ρB =
1
2
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|

)
. (5.161)
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Bosonic systems are very different from fermionic systems, because

Ps(ψ ⊗ ψ) = ψ ⊗ ψ. (5.162)

Hence, a bipartite bosonic system can be in a separable state where both
subsystems are described by the same pure state. All other states are en-
tangled, for example, the state (5.156) with ψ1 �= ψ2,

ψs = Pa(ψ1 ⊗ ψ2). (5.163)

Again, either subsystem is in the mixed state described by the density op-
erator (5.161).

5.9.2. Example: Bosons and fermions

Consider a system of two particles in R
n. The Hilbert space is

L2(R2n) = L2(Rn)⊗ L2(Rn). (5.164)

For the tensor product of square integrable functions, we may use the ordi-
nary product instead of the symbol ⊗. Given a basis {ψj} of wave functions
in L2(Rn), we can form a basis consisting of the separable wave functions

ψj(x(1))ψk(x(2)) (5.165)

in L2(R2n). A general two-particle wave function can be expanded as

ψ(x(1),x(2)) =
∑
j,k

cjk ψj(x(1))ψk(x(2)). (5.166)

Because the subsystems are particles, the exchange operator X is called the
particle interchange operator. According to (5.150), it given by

X ψ(x(1),x(2)) = ψ(x(2),x(1)). (5.167)

A wave function describing a system of two identical particles is either sym-
metric,

ψ(x(1),x(2)) = ψ(x(2),x(1)), (5.168)
or antisymmetric,

ψ(x(1),x(2)) = −ψ(x(2),x(1)). (5.169)
Examples are shown in Figure 5.3. Particles with symmetric wave functions
are called bosons; particles with antisymmetric wave functions fermions.

Actually, it turns out that all particles with half-integer spin are fermions
whereas all particles with integer spin are bosons. Systems of particles with
spin have to be described, of course, by (anti-)symmetrized tensor products
of spinor-wave functions.

The Hamiltonian operator

H = − 1
2m

(
∆(1) + ∆(2)

)
+V (x(1)) + V (x(2)) + U(|x(1) − x(2)|). (5.170)
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Figure 5.3. Some two-particle wave functions. (a) A sep-
arable wave function, (b) a symmetric, and (c) an antisym-
metric wave function.

describes the energy of two particles in an external potential V . The po-
tential U describes the interaction between the two particles. H applied
to an (anti-)symmetric wave function ψ gives a function Hψ that is again
(anti-)symmetric. Therefore, H is a suitable Hamiltonian also for a system
of two bosons or two fermions.

CD 5.6 shows symmetric and antisymmetric wave functions of two
particles interacting via the harmonic oscillator force. The symmetry
properties of the wave packet are preserved under the time evolution.

5.9.3. Example: Two-qubit system

The state of a system consisting of two identical qubits must be described
either by a symmetric or by an antisymmetric state vector. For fermionic
qubits, the only suitable vector among the states of the Bell basis is

ψ−
o =

1√
2

(
ψ+ ⊗ ψ− − ψ− ⊗ ψ+

)
. (5.171)

On the other hand, there are three orthogonal states for two bosonic qubits:
ψ+

e , ψ−
e , and ψ+

o . Another orthonormal basis in the subspace of a bosonic
two-qubit system is {ψ+ ⊗ ψ+, ψ− ⊗ ψ−, ψ+

o }.
We conclude that the Hilbert space of two fermionic qubits is only one-

dimensional whereas two bosonic qubits have a three-dimensional Hilbert
space. However, this observation is of little practical importance. In the
applications, the qubit states usually only describe a part of the properties
of a system. The fermionic or bosonic nature of a qubit can be accounted
for by the spatial part of its wave function. Consider, for example, a fermion
with spin 1/2. Its state is described by a spinor-wave function. For example,
a state with spin-up is

ψup(x) = φ(x)ψ+ =
(

φ(x)
0

)
with φ ∈ L2(R3). (5.172)
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A two-fermion system can have a symmetric qubit state if only its spatial
part is antisymmetric. For example, from the single-particle states φ1(x)ψ+

and φ2(x)ψ+, we can form the antisymmetric two-particle state

ψ(x,y) = (φ1(x)ψ+)⊗ (φ2(y)ψ+)− (φ2(x)ψ+)⊗ (φ1(y)ψ+)

= (φ1(x)φ2(y)− φ2(x)φ1(y))(ψ+ ⊗ ψ+). (5.173)

Here, the antisymmetry is contained completely in the spatial part of the
two-particle wave function, while the spin-part is given by the symmetric
two-qubit state ψ+ ⊗ ψ+. Therefore, the bosonic or fermionic nature of the
subsystems is usually of no concern in a discussion of qubit systems.

It is interesting to apply the Pauli principle to a spinor-wave function
like (5.173). In this two-particle state, both particles have spin up. Hence,
the space-part is antisymmetric and vanishes for x = y. We conclude

Pauli’s exclusion principle:

Two fermions with the same spin are never found at the same position.

5.10. Special Topic: Multiparticle Systems with
Spin

For particles with spin s, the component S3 of the spin has 2s + 1 different
eigenvalues. The spinor-wave functions have 2s + 1 components, and the
single-particle Hilbert space is

H(1) = L2(R3)2s+1 = L2(R3)⊕ L2(R3)⊕ . . .⊕ L2(R3)︸ ︷︷ ︸
2s + 1 copies

. (5.174)

We denote any spinor-wave function in the eigenspace of S3 belonging to
the eigenvalue ms by ψ(x;ms). An arbitrary spinor-wave function is a sum∑

ms
ψ(x;ms), because the Hilbert space is a direct sum of the eigenspaces.

It is useful to introduce the abbreviation

ξ = (x,ms), x ∈ R
n, ms ∈ {−s,−s + 1

2 , . . . , s}, (5.175)

and write the scalar product between two spinor-wave functions in the con-
venient form

〈ψ, φ〉 =
∫

ψ(ξ)ψ(ξ) dξ =
s∑

ms=−s

∫
Rn

ψ(x, s)φ(x, s) dnx. (5.176)
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The Hilbert space for a system of N particles with spin s is the N -fold
tensor product

H(N) = H(1) ⊗ H(1) ⊗ · · · ⊗ H(1)︸ ︷︷ ︸
N copies

. (5.177)

A wave function for a system of N particles with spin is a function of N
variables ξ(1), . . . , ξ(N), where ξ(j) describes the position coordinate and the
third component of the spin of particle number j. For example, the product
functions can be written as

ψ1(ξ(1)) ψ2(ξ(2)) · · ·ψN (ξ(N)). (5.178)

Arbitrary linear combinations of the product functions yield general N -
particle wave functions ψ(ξ(1), . . . , ξ(N)) in H(N).

For particles with the same physical characteristics (mass, charge, spin,
or other internal quantum numbers), we postulate the physical indistin-
guishability in the following form: Any wave function that is obtained from
ψ(ξ(1), . . . , ξ(N)) by an arbitrary permutation of the particles should describe
the same n-particle state. A permutation of N indices is a one-to-one map-
ping π of the ordered set of numbers {1, 2, . . . N} onto itself. The set of all
permutation of N indices is called the symmetric group SN (it is a group
with respect to the composition of the mappings). This group contains N !
elements (= the number of permutations of N indices). A transposition is
a permutation that just exchanges two of the indices. Any permutation can
be written as a composition of transpositions. The permutation is called
even if it is a composition of an even number of transpositions, otherwise it
is called odd. The sign of the permutation, denoted by sgnπ, is +1 if the
permutation is even and −1 if the permutation is odd.

Permutations π of N indices define transformations Pπ in the space of
N -particle wave functions,

Pπ ψ(ξ(1), . . . , ξ(N)) = ψ(ξ(π(1)), . . . , ξ(π(N))). (5.179)

It is easy to see that Pπ is a unitary transformation in the n-particle Hilbert
space.

Definition 5.4. An N -particle wave function ψ is called symmetric if
Pπ ψ = ψ for all permutations π ∈ SN . The wave function ψ is called
antisymmetric if Pπ ψ = sgnπ)ψ.

We define the linear operators

Ps =
1

N !

∑
π∈SN

Pπ, Pa =
1

N !

∑
π∈SN

(sgn π)Pπ. (5.180)
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These are orthogonal projection operators in the Hilbert space H(N) of N -
particle wave functions. For an arbitrary wave function ψ, we find that Psψ
is symmetric whereas Paψ is antisymmetric. Hence, the range of Ps is called
the bosonic subspace H

(N)
s of the N -particle Hilbert space, and the range of

Pa is the fermionic subspace H
(N)
a . The following result is obtained in the

framework of relativistic quantum field theory.

Spin-statistics theorem:

Particles with integer spin are bosons, and particles with half-integer
spin are fermions.

In particular, a system of N particles with spin 1/2 is always described
by an antisymmetric wave function in the fermionic Hilbert space H

(N)
a . Such

a wave function has the property

ψ = Pa ψ. (5.181)

We can obtain a fermionic wave function by applying the projection
operator Pa to a product wave function (5.178). After multiplication with the
factor

√
N !, we obtain the following wave function in the fermionic Hilbert

space:

ψa(ξ(1), . . . , ξ(N)) =
√

N !Pa ψ1(ξ(1))ψ2(ξ(2)) · · ·ψN (ξ(N))

=
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(ξ(1)) ψ1(ξ(2)) · · · ψ1(ξ(N))
ψ2(ξ(1)) ψ2(ξ(2)) · · · ψ2(ξ(N))

...
...

...
ψN (ξ(1)) ψN (ξ(2)) · · · ψN (ξ(N))

∣∣∣∣∣∣∣∣∣
. (5.182)

This wave function is called the Slater determinant of ψ1, . . . , ψN . It is nor-
malized, ‖ψa‖ = 1, whenever the functions {ψ1, . . . ψN} form an orthonor-
mal set. Starting with an orthonormal basis {ψ1, ψ2, . . .} in the one-particle
Hilbert space, we obtain a basis of the N -fermion Hilbert space H

(N)
a by

forming all possible Slater determinants out of N different basis vectors,

ψk1,...,kN
(ξ(1), . . . , ξ(N)) =

√
N !Pa ψk1(ξ

(1)) · · ·ψkN
(ξ(N)). (5.183)

Whenever two functions are equal (for example, if ki = kj), then two rows of
the corresponding Slater determinant are equal, and hence the determinant
vanishes. This is again Pauli’s exclusion principle.

The operator of multiplication by the coordinate x
(k)
i of the kth parti-

cle makes no sense in the bosonic or fermionic Hilbert space, because this
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operation would destroy the (anti)symmetry of the wave function. Physi-
cally meaningful operators for bosons (or fermions) are only those operators
that leave the Hilbert space of bosons (or fermions) invariant, that is, the
operators map the Hilbert spaces H

(N)
s (or H

(N)
s ) into itself. An example is

the Hamiltonian for a system of N charged particles (all having mass m and
charge q),

H =
N∑

k=1

1
2m

(
p(k)

)2 +
N∑

j<k,j,k=1

q2

|x(j) − x(k)| . (5.184)

Here, p(k) is the momentum operator in the kth single-particle subspace. It is
proportional to the gradient with respect to the coordinates x

(k)
i . Other ex-

amples of operators that preserve the symmetry of the wave function include
the total momentum and total angular-momentum operators

p =
N∑

k=1

p(k), J =
N∑

k=1

(
L(k) + S(k)

)
. (5.185)

All these operators commute with arbitrary permutations Pπ (for this it
is sufficient to verify that the operators commute with arbitrary transposi-
tions), hence they commute with the projection operators Ps and Pa.

5.11. Special Topic: Addition of Angular Momenta

5.11.1. Total angular momentum

In this section, we want to combine two quantum systems with angular
momentum. Let the angular-momentum operators be denoted by JA and
JB. It is an interesting and physically relevant problem to investigate the
angular momentum of the combined system. Actually, we encountered this
problem already when we combined the orbital angular momentum JA = L
with the spin JB = S of a particle, or when we combined two qubits (spin
1/2 particles) into a single two-qubit system. Naturally, this question is very
important for the quantum mechanics of atoms and molecules.

We assume that the square of the total angular momentum has a fixed
constant value in both systems and denote the corresponding quantum num-
bers by jA and jB, respectively. Given these quantum numbers, we may
restrict our attention to the corresponding angular-momentum eigenspaces.
Hence, we assume that the Hilbert space HA is the (2jA + 1)-dimensional
eigenspace of (JA)2 and HB is the (2jB +1)-dimensional eigenspace of (JB)2.
The Hilbert spaces of the subsystems are therefore finite-dimensional, and
the theory developed in this chapter can be applied without difficulties. An
orthonormal basis in HA is given by the eigenstates of JA

3 . We use Dirac’s
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notation and denote these eigenstates simply by |mA〉. It is not necessary
to use the quantum number jA as a second label, because it is kept fixed
throughout this section. We just have to remember that the maximal value
of mA is jA. Similarly, the we denote the eigenstates of JB

3 by |mB〉, where
mB goes in integer steps from −jB to +jB. The states |mB〉 form an or-
thonormal basis in the Hilbert space HB.

We define the total angular momentum of the combined system by

J = JA ⊗ 1B + 1B ⊗ JB. (5.186)

The two subsystem observables commute with each other, because they be-
long to different subsystems:

[JA
k ⊗ 1B,1B ⊗ JB

l ] = 0. (5.187)

The components Jk of the total angular momentum J fulfill the usual an-
gular-momentum commutation relations

[Jk, Jl] =
∑

j

εklj Jj . (5.188)

This follows immediately from the corresponding relations for the subsystem
observables. J is a Kronecker sum as defined in Section 5.4.1. It follows from
(5.56) that a rotation of the combined system can be obtained by separately
rotating the subsystems:

eiα·J = eiα·JA ⊗ eiα·JB
. (5.189)

Our problem is the following: What are the simultaneous eigenvalues
and eigenstates of the operators J2 and J3?

Exercise 5.30. Show that

J2 = (JA)2 ⊗ 1B + 1A ⊗ (JB)2 + 2
3∑

k=1

JA
k ⊗ JB

k , (5.190)

and that J2 commutes neither with JA
3 ⊗ 1B nor with 1A ⊗ JB

3 .

5.11.2. Eigenvalues of J3

Given the orthonormal bases of the subsystems, we can form the product
states

|mA ⊗mB〉 = |mA〉 ⊗ |mB〉. (5.191)

Here, the ⊗ on the left-hand side is just to remind us that these states are
product states. This notation helps us to distinguish the product states from
other states given by two quantum numbers. We remind the reader that the
states |mA ⊗mB〉 form an orthonormal basis of HA⊗HB (see Section 5.2.2).
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Moreover, it follows from (5.186) and (5.50) that the product states are
eigenstates of the operator J3,

J3 |mA ⊗mB〉 = (mA + mB) |mA ⊗mB〉. (5.192)

Thus, the eigenvalues of J3 are all the possible values of the sum mA + mB.

Eigenvalues of J3:

The operator J3 has the 2(jA + jB + 1) different eigenvalues

m = mA + mB = −jA−jB , −jA−jB+1 , . . . , jA+jB. (5.193)

The Hilbert space HA⊗HB has the dimension (2jA +1)(2jB +1), which is
bigger than 2(jA+jB+1). Therefore, at least some of the eigenvalues m must
be degenerate. For example, the sum mA +mB = jA +jB−1 can be obtained
either with (mA,mB) = (jA, jB−1) or with (mA,mB) = (jA−1, jB). Hence,
the vectors |jA ⊗ jB−1〉 and |jA−1⊗ jB〉 both belong to the same eigenvalue
jA + jB − 1 of J3. It is not too difficult to determine the degeneracy d(m)
for an arbitrary eigenvalue m of J3. Assuming jA ≥ jB, we find

d(m) =

{
2jB + 1, |m| ≤ jA − jB,

jA + jB + 1− |m|, jA − jB ≤ |m| ≤ jA + jB.
(5.194)

Figure 5.4 helps to determine d(m): Each point represents an eigenstate
of J3, for which (JA

3 , JB
3 ) have the eigenvalues (mA,mB). On the diagonal

lines, the sum m = mA +mB is constant, hence each diagonal line represents
an eigenvalue m of J3. The number of points on such a line is the degree
of degeneracy d(m) of that eigenvalue. On the dotted lines we have |m| >
jA − jB. The degree of degeneracy has the maximal value 2jB + 1 on the
dashed lines, where |m| ≤ jA − jB.

Exercise 5.31. Assume that {ψn} is an orthonormal basis in a finite-
dimensional Hilbert space. Consider two linear operators A and B and show
the following: If A and B do not commute, then the ψn cannot all be simul-
taneous eigenvectors of A and B.

Exercise 5.32. Combine the results of Exercises 5.30 and 5.32 to show
that the product states |mA ⊗mB〉 cannot all be eigenstates of J2.

5.11.3. The quantum numbers of the total angular momentum

Next, we are interested in the possible eigenvalues of J2, the square of the to-
tal angular momentum of the composite system. From Section 1.5, we know
that the quantum numbers j of J2 are among the numbers 0, 1/2, 1, 3/2, . . ..
Moreover, from Theorem 1.1 we know that whenever we find the quantum
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(jA, jB)

mA

mB

m < jB − jA

︸ ︷︷ ︸
|m| |jA − jB|≥

m > jA − jB

︸ ︷︷ ︸

︸ ︷︷ ︸m=mA + mB

m = const.lines with

m = jA − jB

Figure 5.4. The points represent the product states (5.191)
with all possible values of (mA,mB), assuming jA > jB. Each
diagonal line represents an eigenvalue m of J3.

number j, then there is a 2j + 1-dimensional eigenspace of J2. The eigen-
vectors can be chosen as simultaneous eigenvectors of J3, with eigenvalues
m = −j,−j + 1, . . . ,+j. We denote these simultaneous eigenvectors of J2

and J3 by |j, m〉, that is (assuming � = 1)

J2|j,m〉 = j(j + 1)|j,m〉, J3|j, m〉 = m|j,m〉. (5.195)

As a first step, we consider the Hilbert space H1 = HA ⊗ HB. We know
already all possible eigenvalues m of J3; see (5.193). The largest possible
eigenvalue of J3 is mmax = jA + jB. This, of course, must also be the largest
possible value of the quantum number j:

jmax = mmax = jA + jB. (5.196)

In the following, we write jmax = j1. The corresponding eigenspace of J2

has the dimension 2j1 + 1. In Figure 5.5, this eigenspace corresponds to the
top row of points.

As a second step, consider the orthogonal complement H2 of the eigen-
space with j = j1 (delete the top row in Fig. 5.5). In H2 we find no more
state with the m = j1, because there is just one state with quantum numbers
(j,m) = (j1, j1), and this state is already contained in the eigenspace with
j = j1.

According to (5.193), the next largest m is jA + jB− 1. Originally, there
were two orthogonal states with this quantum number (according to (5.194),
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m

j

j

0− m

+

max

max
j
1

j
2

j m
ax

j
min

mmax

=

jA − jB

=
=

jA
jB

Figure 5.5. The points represent the simultaneous eigen-
states |j, m〉 of the total angular-momentum operators J2 and
J3. The number of points in a row is 2j + 1, the degree of
degeneracy of the eigenvalue of J2. The number of points in
a column is the degree of degeneracy d(m) of the eigenvalue
m of J3 according to (5.194).

d(jA + jB − 1) = 2), but precisely one such state is already contained in the
eigenspace with j = j1. In H2 remains a unique state with m = jA + jB − 1,
and this state must therefore belong to j = j2 = jA + jB − 1. In the
corresponding eigenspace of J2 are the states with quantum numbers m =
−j2,−j2 + 1, . . . ,+j2 (second row in Fig. 5.5).

We may iterate this procedure until we use up all dimensions in the
Hilbert space HA ⊗ HB. In the third step, for example, we consider the
subspace H3 which is orthogonal to the eigenspaces with j = j1 and j = j2

(delete the first two rows in Fig. 5.5). Unless H3 = {0} (containing only the
zero-vector), the maximal value of m in H3 is j2 − 1, and there is precisely
one state with this quantum number in H3. Hence, the quantum number
j = j3 = j2−1 occurs, and there must be a corresponding 2j3+1-dimensional
eigenspace of J2 (symbolized by the third row of points in Fig. 5.5).

Finally, assuming that jA ≥ jB, we find in the step with number 2jB +1
the angular-momentum subspace with quantum number j = j1 − 2jB =
jA − jB. After that, no more states are left, because d(m) = 2jB + 1 for all
m ≤ jA − jB. That is, the quantum number j = jA − jB − 1 cannot occur,
and we find the following minimal value of j:

jmin = jA − jB (if jA ≥ jB). (5.197)

Whenever jA < jB, we simply exchange jA and jB in the argument leading
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j

j

A jB

jB

j
min

j
max

Figure 5.6. The triangular condition states that the values
of the quantum numbers j, jA, and jB could be the lengths
of the sides of a triangle.

to (5.197). In this case, we obtain

jmin = jB − jA (if jA < jB). (5.198)

Let us now collect our results in the following box.

Spectrum of J2:

Whenever the subsystems have the angular momenta jA and jB, then
the quantum number j of the total angular momentum J2 has the values

|jA − jB| , |jA − jB|+ 1 , . . . , jA + jB. (5.199)

Hence, the quantum numbers jA, jB, and j satisfy the triangular condi-
tion

|jA − jB| ≤ j ≤ jA + jB. (5.200)
If jB < jA, then there are 2jB + 1 different values of j.

According to the triangular condition, the three integer or half-integer
numbers j, jA, and jB could represent the sides of a triangle (see Fig. 5.6).

5.11.4. Clebsch-Gordan coefficients

Above, we found that an orthonormal basis of eigenvectors of J3 is given by
the product states |mA ⊗mB〉. Next, we want to determine the simultaneous
eigenvectors |j,m〉 of J2 and J3. Consider the eigenspace belonging to the
maximal quantum numbers (jmax,mmax). This eigenspace is one-dimension-
al, and from (5.193) we know that |jA ⊗ jB〉 is contained in that eigenspace.
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Hence, |jmax,mmax〉 must be proportional to that vector. We set

|jmax,mmax〉 = |jA ⊗ jB〉. (5.201)

This vector is a useful starting point for the construction of the remaining
eigenvectors |j,m〉.

The product states |mA ⊗mB〉 cannot all be eigenvectors of J2 (see Exer-
cise 5.30 and Exercise 5.31). In general, the simultaneous eigenvectors |j, m〉
of J2 and of J3 are entangled and have to be written as linear combinations
of the basis states

|j,m〉 =
∑

mA,mB

|mA ⊗mB〉〈mA ⊗mB|j,m〉. (5.202)

The coefficients 〈mA ⊗mB|j, m〉 are called Clebsch-Gordan coefficients.2

We note that the eigenvectors |j,m〉 are only unique up to a phase factor.
Given arbitrary phases θjm, the vectors exp(iθjm) |j, m〉 would do equally
well. The eigenvectors can be made unique by requiring that the Clebsch-
Gordan coefficients all be real, and that

〈jA ⊗ j − jA | j, j〉 > 0. (5.203)

The Clebsch-Gordan coefficients are known explicitly for arbitrary values
of jA and jB. For practical calculations, one has used tables,3 and today these
coefficients are built into computer-algebra systems.4

In this book, we do not derive the general formula for 〈mA ⊗mB|j, m〉,
but we are going to consider some simple special cases below. Moreover, we
note the following simple property of the Clebsch-Gordan coefficients:

Selection rule for Clebsch-Gordan coefficients:

〈mA ⊗mB|j,m〉 = 0 if mA + mB �= m. (5.204)

Exercise 5.33. Prove the selection rule (5.204) for Clebsch-Gordan co-
efficients.

2Or Wigner coefficients or vector-addition coefficients or vector-coupling coefficients.
3See, for example, Abramowitz-Stegun [1], Section 27.9.
4In Mathematica, the function ClebschGordan[{jA, mA}, {jB, mB}, {j, m}] imple-

ments the Clebsch-Gordan coefficient 〈mA ⊗ mB|j, m〉, with jA and jB being the angular
momenta of the subsystems.
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5.11.5. Angular momentum plus spin 1/2

In Theorem 1.1, we used ladder operators to generate a system of orthogonal
eigenvectors. Consider subsystem A. The maximal eigenvalue of JA

3 is jA.
Starting from the corresponding normalized eigenvector |jA〉 ∈ HA, we can
construct an orthonormal basis of the 2jA + 1-dimensional Hilbert space HA

by applying the operators JA− = JA
1 − iJA

2 repeatedly,

|mA − 1〉 =
1√

jA(jA + 1)−mA(mA − 1)
JA
− |mA〉, (5.205)

for mA = jA, jA−1, . . . ,−jA+1. A similar procedure starting with |jB〉 ∈ HB

leads to an orthonormal basis of vectors |mB〉 for subsystem B.
The ladder operators J± for the combined system can be defined in terms

of the ladder operators for the subsystems by

J± = JA
± ⊗ 1B + 1A ⊗ JB

±. (5.206)

For every |j,m〉 with |jA − jB| ≤ j ≤ jA + jB and −j < m ≤ j, we define

|j,m− 1〉 =
1√

j(j + 1)−m(m− 1)
J− |j,m〉. (5.207)

In that way, a unique orthonormal basis is obtained as soon as we have
chosen the vectors |j, j〉 with the maximal value of m for a given j.

As an illustration, we consider a composite system where subsystem
B has spin 1/2. We combine a system with angular momentum jA > 0
(this could be an orbital angular momentum or a particle with spin) and a
second system with jB = 1

2 . Then, the possible values for the total angular
momentum are, according to (5.199),

j = jA − 1
2 and j = jA + 1

2 . (5.208)

In subsystem B, we denote the normalized eigenvector of JB
3 belonging to

the eigenvalue +1
2 by |↑〉 (“spin-up”), and hence

|↓〉 = JB
− |↑〉 (5.209)

is the normalized eigenvector belonging to the eigenvalue −1
2 (“spin-down”).

Let us construct an orthonormal system in H = HA⊗HB by applying J−
repeatedly to the eigenvector (5.201) with maximal eigenvalues. As a first
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step consider

| jA+1
2 , jA−1

2 〉 =
1√

2jA + 1
J− | jA+1

2 , jA+1
2 〉 (5.210)

=
1√

2jA + 1
(
JA
− ⊗ 1B + 1A ⊗ JB

−
) | jA ⊗ ↑ 〉 (5.211)

=
1√

2jA + 1
(
(JA

− |jA〉)⊗ |↑〉+ |jA〉 ⊗ |↓〉) (5.212)

Using (5.205), we find JA− |jA〉 =
√

2jA | jA−1 〉, hence

| jA+1
2 , jA−1

2 〉 =

√
2jA

2jA + 1
| jA−1 ⊗ ↑〉+

√
1

2jA + 1
| jA ⊗ ↓ 〉. (5.213)

By iterating the application of the operator J−, we obtain all states with
quantum numbers m = jA−1

2 , jA−3
2 , . . . , −(

jA+1
2

)
in the subspace with

j = jA+1
2 . By induction, you may verify the formula

| jA+1
2 , m 〉 =

√
jA + 1

2 + m

2jA + 1
|m−1

2 ⊗ ↑〉+
√

jA + 1
2 −m

2jA + 1
|m+1

2 ⊗ ↓ 〉
(5.214)

which actually holds for all

m = jA+1
2 , jA−1

2 , . . . , −(
jA+1

2

)
. (5.215)

Given ξ = a|ψ〉+ b|φ〉 with |ψ〉 orthogonal to |φ〉, we find that χ = −b|ψ〉+
a|φ〉 is orthogonal to ξ and ‖ξ‖ = ‖χ‖. Hence, the vector

|jA−1
2 , m 〉 = −

√
jA + 1

2 −m

2jA + 1
|m−1

2 ⊗ ↑〉+
√

jA + 1
2 + m

2jA + 1
|m+1

2 ⊗ ↓ 〉
(5.216)

is a normalized vector orthogonal to (5.214), whenever | jA+1
2 , m 〉 consists

of two non-vanishing summands, that is, for

m = jA−1
2 , jA−3

2 , . . . , −(
jA−1

2

)
. (5.217)

We still have to justify the notation |jA−1
2 , m 〉 for the vector defined in

(5.216). Without computation, you can see that this vector is an eigenvector
of J3 = JA

3 ⊗1B +1A⊗JB
3 belonging to the eigenvalue m. Moreover, you can

see that for any given m according to (5.217), the vector (5.216) is orthogonal
to all vectors | jA+1

2 , m′ 〉 with arbitrary m′ in the range (5.215). Moreover,
we find

〈 jA−1
2 , m | jA−1

2 , m′ 〉 = 0 for m �= m′. (5.218)
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We conclude that these vectors span a subspace with dimension 2(jA−1
2)+1

(= the number of different m’s in (5.217)), and that this subspace is orthog-
onal to the subspace belonging to j = jA+1

2 . This subspace is therefore the
eigenspace of J2 belonging to the quantum number j = jA−1

2 . Note that
the signs in (5.216) are chosen such that

〈 jA ⊗ ↓ | jA−1
2 , jA−1

2 〉 > 0, (5.219)

which agrees with the convention (5.203).
From (5.214) and (5.216) we find the nonvanishing Clebsch-Gordan co-

efficients 〈mA ⊗mB | j, m〉 according to the following table.

Table 5.1. Clebsch-Gordan coefficients for jB = 1/2.

mA = m−1
2 , mB = 1

2 mA = m+1
2 , mB = −1

2

j = jA+1
2

√
j + m

2j

√
j −m

2j

j = jA−1
2 −

√
j + 1−m

2j

√
j + 1 + m

2j

Example 5.2. A simple example is obtained by combining two particles
with spin 1/2. Here, jA = jB = 1

2 , and the possible values of the total
angular momentum are j = 1 and j = 0. For j = 1 we obtain from (5.214)
the three states with m = −1, 0, 1, namely

|1,−1〉 = |↓ ⊗ ↓〉, (5.220)

|1, 0〉 =
1√
2

( |↑ ⊗ ↓〉+ |↓ ⊗ ↑〉 ), (5.221)

|1, 1〉 = |↑ ⊗ ↑〉, (5.222)

and for j = 0 we obtain

|0, 0〉 =
1√
2

( |↑ ⊗ ↓〉 − |↓ ⊗ ↑〉 ). (5.223)

The three states with j = 1 are frequently called triplet states, and the single
state with j = 0 is called singlet state. The vector |1, 0〉 is just another way
of writing the basis vector ψ+

o of the Bell basis (5.30), and the singlet state
|0, 0〉 is the same as ψ−

o .
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Example 5.3. As a second example, we consider an orbital angular
momentum jA = � with the eigenvectors |m�〉 = Y m�

� (spherical harmonics)
and combine it with the spin. In the standard representation, the spin
eigenvectors are

|↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
, (5.224)

and the tensor product states are, in accordance with (5.32), given by

|m� ⊗ ↑〉 =
(

Y m�
�
0

)
, |m� ⊗ ↓〉 =

(
0

Y m�
�

)
. (5.225)

The possible values of the total angular momentum are j = � + 1
2 and �− 1

2 .
For j = � + 1

2 , (5.214) becomes

|�+1
2 , mj〉 =

√
1

2� + 1

⎛
⎜⎜⎝
√

� + 1
2 + mj Y

mj− 1
2

�√
� + 1

2 −mj Y
mj+

1
2

�

⎞
⎟⎟⎠ . (5.226)

With κ = � + 1, this is precisely the spinorial harmonic Yκ,mj , as defined in
(3.151). For j = �− 1

2 , (5.216) leads to

|�−1
2 , mj〉 =

√
1

2� + 1

⎛
⎜⎜⎝−

√
� + 1

2 −mj Y
mj− 1

2
�√

� + 1
2 + mj Y

mj+
1
2

�

⎞
⎟⎟⎠ . (5.227)

With κ = −�, this agrees with the definition of Yκ,mj in (3.152).



Chapter 6

Quantum Information Theory

Chapter summary: The question of whether quantum mechanics violates the
principle of locality and Einstein causality has been the subject of ongoing discus-
sions. This is relevant for the theory of quantum communication, which makes use
of the “nonlocal” correlations between the parts of a bipartite system in an entan-
gled state. In Section 6.1, we describe the Bell states of two-qubit systems and
discuss their measurement by means of exchanging locally available information.

In Section 6.2, we discuss the question of whether a manipulation of one qubit of
an entangled pair can in any way influence the other qubit (which may be spatially
separated from the first qubit). Closely related is the famous Einstein-Podolsky-
Rosen (EPR) paradox, which is presented in Section 6.3. In Section 6.4, we describe
the mathematical and statistical properties of the correlations arising from entan-
glement. In Section 6.5, we give an elementary derivation of Bell’s inequality that
is based on classical ideas about the correlation of measurement results (“local re-
alism”). It has been confirmed experimentally that quantum mechanics violates
Bell’s inequality. While quantum mechanics is local in the sense required by Bell’s
theorem, it appears to violate the assumption of realism (that is, the assumption
that observables do have values even if they are not measured).

The strange features of the correlations between the parts of an entangled sys-
tem can be used for quantum information exchange. Alice and Bob can commu-
nicate rather efficiently if they share entangled pairs of qubits. The dense coding
protocol describes the transmission of classical 2-bit information using a single qubit.
The teleportation protocol sends one qubit with the help of two classical bits (see
Section 6.6).

A quantum computer (Section 6.7) applies a sequence of unitary transforma-
tions (“reversible logic gates”) to a quantum register (a system of n qubits). This
transforms an initial state (the input) into a final state (the output) that is mea-
sured. In that way, any task that can be performed by a classical computer can
also be performed by a quantum computer.

The ability of quantum logic gates to operate on superpositions of input states
can be used to do computations with all possible classical inputs in parallel. For
certain problems, one succeeds in using interference in a clever way so that the final
measurement gives the desired result in a few steps, where a classical computer
would need many steps. In Section 6.9, we give a detailed description of a simple
algorithm, where a quantum computer is more efficient than a classical computer.
An overview of important quantum algorithms concludes this chapter.

271
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6.1. Entangled States of Two-Qubit Systems

In this chapter, we consider compound systems whose parts are simple
qubits. Having dealt with the more formal aspects of composite systems
in Chapter 5, it is now time to focus our interest on questions of interpreta-
tion.

6.1.1. Bases of entangled states

As explained in Section 5.2.4, the Hilbert space of the two-qubit system is
C

2 ⊗ C
2 ∼= C

4. We can choose the basis of product states (5.29). When-
ever the compound system is in one of these four basis states, the states
of the subsystems are pure states. But, we can also choose the Bell basis
{ψ+

e , ψ−
e , ψ+

o , ψ−
o } consisting of the states

ψ±
e =

1√
2

(
ψ+ ⊗ ψ+ ± ψ− ⊗ ψ−

)
,

ψ±
o =

1√
2

(
ψ+ ⊗ ψ− ± ψ− ⊗ ψ+

)
.

(6.1)

All Bell states are maximally entangled. Whenever the system is in a Bell
state, the subsystems are in the maximally mixed state

ρA = ρB =
1
2
|ψ+〉〈ψ+|+ 1

2
|ψ−〉〈ψ−| = 1

2
1. (6.2)

This state of a single qubit can be interpreted not only as a mixture of the
states ψ+ and ψ− (spin-up and spin-down with respect to the z-axis), but,
equivalently, as a mixture of ψ+(n) and ψ−(n) with respect to an arbitrary
axis n.

The states ψ±
e,o are simultaneous eigenvectors of the observables

σ3 ⊗ σ3 and σ1 ⊗ σ1. (6.3)

These two operators are self-adjoint in C
4 and they commute:

[σ3 ⊗ σ3, σ1 ⊗ σ1] = 0. (6.4)

We have
σ3 ⊗ σ3 ψ±

e = ψ±
e ,

σ3 ⊗ σ3 ψ±
o = −ψ±

o ,

σ1 ⊗ σ1 ψ±
e = ±ψ±

e ,

σ1 ⊗ σ1 ψ±
o = ±ψ±

o .
(6.5)

So the eigenvalue of σ3 ⊗ σ3 determines the index ‘e’ or ‘o’ (parity bit), and
the eigenvalue of σ1⊗σ1 tells us whether the upper index is ‘+’ or ‘−’ (phase
bit).

The compatibility of the observables σ3⊗σ3 and σ1⊗σ1 is remarkable, as
the observables σ3 and σ1 do not commute in the single-qubit subspaces. It
means that there exists a two-qubit experiment giving numerical values (+1
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or −1) for both observables in a single run. The simultaneous measurement
of the two observables can be used to prepare an arbitrary state of the Bell
basis. This procedure meets great practical difficulties and will be discussed
further in Section 6.1.4 below.

6.1.2. Global aspects of local measurements

It has been pointed out before that the state of a two-qubit system may con-
tain information that is not accessible by measurements on the individual
qubits. Quite generally, measurements on isolated subsystems are called lo-
cal measurements. They have to be distinguished from global measurements,
which are performed on the system as a whole. Only global measurements
can reveal systemic properties (properties relating to the composite system
as a whole).

The tensor product S⊗T of single-qubit operators S and T is a product
of subsystem observables (see Section 5.4.2),

S ⊗ T = (S ⊗ 1) (1⊗ T ). (6.6)

An observable of this form can be measured locally, by measuring S on the
first qubit and T on the second. But, the preparation of a Bell state involves
the simultaneous measurement of two such tensor-product observables (6.3).
This cannot be done with local measurements. In order to understand the
difficulties, we need to discuss the involved procedures carefully. As you
will see shortly, even the local measurement of S ⊗ T involves some global
information exchange.

For this experiment, we need an ensemble of qubit pairs, all prepared in
the same pure two-qubit state. After the preparation, we may separate the
qubits without changing the state of the two-qubit system (the position of
the qubits does not enter our description at all). We give one qubit of each
pair to Alice in Auckland and the other to Bob in Barcelona. Due to the
large spatial separation, any direct physical interaction between the qubits
can be excluded. Hence, Alice and Bob can measure a property of one qubit
without disturbing the other. Their measurements will be perfectly local.
We ask Alice to measure the observable S on her qubits, and Bob to measure
T on his qubits.

CD 5.9 shows an experiment of the type we have in mind. A source
prepares a system in a certain two-qubit state, for example, a com-
posite particle in the singlet state ψ−

o with total angular momentum
zero. Then, the particle decays into two separated qubits moving in
opposite directions. Due to the conservation of the total angular mo-
mentum, the two-qubit system remains in the singlet state, although
its parts get spatially separated by a large distance.
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The following distinction between different variants of local measure-
ments may prevent confusion.

(a) Completely local measurements: Alice and Bob ignore each other.
They perform independent measurements and report only the final
results of their statistical analysis.

(b) Local measurements with information exchange: Alice and Bob
perform the measurements independently. For the final evaluation,
they exchange information about the results obtained for the indi-
vidual members of the ensemble.

Consider first the case (a). Alice and Bob both perform ensemble measure-
ments on the qubits given to them. Both remain completely ignorant about
the other’s results. Nevertheless, Alice can easily obtain the mean value 〈S〉
of S, and Bob can determine the mean value 〈T 〉. Unfortunately, it is not
possible to determine the mean value of S⊗T from this information, because
in general

〈S ⊗ T 〉 �= 〈S〉 〈T 〉. (6.7)
As an example, consider S = T = σ3 and assume that the two-qubit system
was prepared in one of the Bell states (6.1). According to (6.5), the expec-
tation value of σ3 ⊗ σ3 is either +1 or −1. But the mean value obtained by
Alice is

〈σ3〉 = Tr ρAσ3 = Tr σ3 = 0. (6.8)
Similarly, because ρA = 1

21 = ρB, Bob will also obtain 〈σ3〉 = 0. Hence,
it is not enough just to combine the expectation values obtained individu-
ally by Alice and Bob. Some additional information is missing, namely the
information about the correlations of qubits belonging to the same pair.

Now, let us consider method (b). Alice and Bob try to determine the
expectation value of S⊗T by performing individual measurements of S and T
as in method (a). But this time, they keep the information that is necessary
to identify the qubits that belong to the same pair. The qubits of each
ensemble thus have to be numbered, and Alice and Bob need to record these
numbers together with the measured results. Alice obtains results s1, s2, . . .
for the observable S, and Bob gets the values t1, t2, . . . for T . In the final
evaluation, they combine the individually measured values into the products
s1t1, s2t2, . . . (the index shows us which values belong together). The mean
value of these products approximates the expectation value 〈S ⊗ T 〉.

We summarize our observations as follows: In order to learn something
about a two-qubit system from local measurements, Alice and Bob have to
collaborate by recording additional information (the number of the qubit)
together with the observed values and by communicating the results. We
need to know which qubits belong together in order to obtain values for
S⊗T from local measurements. Method (a) is sufficient to learn everything
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about the subsystems. But we need method (b) to determine properties of
the combined system.

6.1.3. Determining a Bell state

As an application of local measurements with information exchange, we de-
scribe a method to determine whether a two-qubit system is in one of the
Bell states (6.1).

We consider again an ensemble of identically prepared qubit pairs. The
individual qubits are sent to the “local observers” Alice and Bob who mea-
sure the observables σ1 and σ3 on their qubits. Because these observables
are not compatible, Alice and Bob measure σ1 on half of the qubits in the
ensemble, and σ3 on the other half. We assume that they make their choices
independently and by independent tosses of a fair coin.

When the system is in a Bell state, we expect that the results of the
local measurements will be +1 or −1 with probability 1/2, because each
subsystem is in the maximally mixed state ρ = (1/2)1. Therefore, Alice
and Bob will both get 0 for the expectation values of σ1 and σ3.

In order to learn something about the state of the two-qubit system, Alice
and Bob have to proceed according to method (b), as discussed above. In
the final evaluation, only those qubit-pairs can be used where Alice and Bob
both measured the same observable (about half of the original ensemble).
The information that allows them to identify these pairs (the ordered record
of individual measurement results) makes the difference between methods
(a) and (b). By combining their results, Alice and Bob can determine the
expectation value of σ1 ⊗ σ1 and of σ3 ⊗ σ3. For a system in a Bell state,
these expectation values must be either +1 or −1, and the state can be
determined from (6.5).

By local measurements with information exchange, Alice and Bob can
determine whether or not a given ensemble of qubits is in one of the Bell
states (and in which one).

CD 5.11 lets you perform a variant of the experiment just described.
The source is known to prepare one of the four Bell states. Alice
and Bob measure σ1 and σ3. You have to combine their results in
order to determine which of the Bell states was prepared. Notice
that without exchange of information, neither Alice nor Bob is able
to learn anything about the state of the two-qubit system.

Can Alice and Bob prepare a Bell state with the same method? (That
is, by measuring σ1 and σ3 separately and communicating the results.) This
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question can be formulated as follows: Given an arbitrary ensemble of qubit
pairs, can Alice and Bob select a subensemble for which both observables
σ1 ⊗ σ1 and σ3 ⊗ σ3 have well-defined values? The answer is no. This is an
important point, so let’s have a closer look.

6.1.4. Preparing a Bell state

A Bell state is a common eigenvector of the commuting operators σ3⊗σ3 and
σ1 ⊗ σ1. We can project an arbitrary two-qubit state onto that eigenvector
by first measuring the observable σ3 ⊗ σ3 and then σ1 ⊗ σ1 (or the other
way round). The following discussion shows that this cannot be achieved by
local measurements.

Two separated observers Alice and Bob can measure the value of σ3⊗σ3

for a single qubit pair by measuring σ3 individually and by checking whether
the results coincide (eigenvalue +1) or not (eigenvalue −1). After that, the
qubit pair is in the corresponding eigenstate of σ3 ⊗ σ3. But this procedure
reveals too much! By measuring the qubits individually, we determine not
only a coincidence, but also the individual values. In fact, using (6.6), Alice
measures σ3 ⊗ 1 and Bob 1 ⊗ σ3. As a result, the qubit pair is projected
onto one of the four separable states ψ± ⊗ ψ±. A subsequent measurement
of σ1 ⊗ σ1 would leave the state separable. We conclude that an entangled
state like a Bell state cannot be prepared by measuring the qubits separately.
Entanglement obviously describes information that is destroyed in a local
measurement.

The eigenspace of σ3 ⊗ σ3 belonging to the eigenvalue +1 is two-dimen-
sional and consists of arbitrary (in general entangled) superpositions of ψ+⊗
ψ+ and ψ−⊗ψ− (both spins up or both spins down). A local measurement as
described above projects an entangled eigenstate onto a separable eigenstate.
But, an ideal measurement of an observable should not change an eigenstate
of that observable.

A preparatory measurement of σ3⊗ σ3 must determine whether the two
spins are equal (eigenvalue +1) or opposite (eigenvalue −1), without
determining the individual spins.

Exercise 6.1. Show that P±,k = 1
2(1⊗1±σk⊗σk). are the projections

onto the eigenspaces of σk ⊗ σk. Show that

P+,3P+,1 = P+,1P+,3 = |ψ+
e 〉〈ψ+

e |. (6.9)

Discuss the result and find similar formulas for the other Bell basis states.
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Exercise 6.2. Define the projection operators P A
±,k = 1

2(1± σk) = P B
±,k

in the Hilbert spaces of the individual qubits A and B. Show that P A
+,k⊗P B

+,k

is an orthogonal projection operator. Show that

P+,k �= P A
+,k ⊗ P B

+,k. (6.10)

Moreover, prove that P A
+,1 ⊗ P B

+,1 does not commute with P A
+,3 ⊗ P B

+,3 and
discuss these results.

As explained above, a preparatory measurement of σ3⊗σ3 cannot be done
by local measurements of the type defined in Section 6.1.2. Theoretically,
a better method of measuring σ3 ⊗ σ3 is to consider the total spin of the
two-qubit system

Σ3 = 1⊗ σ3 + σ3 ⊗ 1. (6.11)

We can measure this observable by combining the two qubits into a single
composite particle that we send through a Stern-Gerlach analyzer. This is
what we called a global measurement on the two-qubit system.

If the qubits are spin-1/2 particles, then the three states ψ+
e , ψ−

e , and ψ+
o

belong to the eigenspace with total angular momentum j = 1 whereas ψ−
o

is the singlet state with j = 0 (see Example 5.2 in Section 5.11.5). (Notice,
however, that the possible values of Σ3 are −2, 0, and 2.)

The square of Σ3 is

Σ2
3 = 2(1⊗ 1 + σ3 ⊗ σ3). (6.12)

We see that knowing the value of Σ2
3 is equivalent to knowing the value

of σ3 ⊗ σ3. The Bell states ψ±
o belong to the zero eigenvalue of Σ2

3, the
states ψ±

e to the nonzero eigenvalue. A Stern-Gerlach analyzer for Σ2
3 is

shown in Figure 6.1. This device is basically a Stern-Gerlach apparatus for
measuring Σ3, where the partial beams belonging to the nonzero eigenvalues
are recombined like in the interferometer described in Section 4.6.1. Without
this recombination, the apparatus would eventually change the eigenstates
of Σ2

3 belonging to nonzero eigenvalues.
The operators Σ2

3 and Σ2
1 commute because of (6.4). We can now project

onto one of the Bell states by measuring the simultaneous values of Σ2
3 (the

parity bit) and of Σ2
1 (the phase bit). We show the necessary arrangement of

Stern-Gerlach devices in Figure 6.2. A setup for measuring the Bell states
of a two-qubit system is called a Bell-state analyzer.

A Bell state can only be prepared by a global measurement, for exam-
ple, by a simultaneous measurement of Σ2

3 and Σ2
1, where Σj are the

components of the total spin of the two-qubit system.
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AB

�ez

Figure 6.1. A measuring device for the square of the com-
ponent S3 of the total spin of a 2-qubit system. An inhomo-
geneous magnetic field splits a beam of combined qubits into
three components (spin 1). The partial beams correspond-
ing to nonzero spin-values are refocused in the manner of a
Stern-Gerlach interferometer.

ψ+
e

ψ−
e

ψ+
o

ψ−
o

�ex

�ex

�ez

AB

Figure 6.2. A Bell-state analyzer can (in principle) be built
by combining measurement devices for Σ2

3 and Σ2
1.

The preparation and measurement of the entangled basis states is a ma-
jor problem in the practical realization of two-qubit systems. The method
described above requires that a (temporary) bound state of the two-particle
system has to be formed without disturbing the spins of the particles (that
is, without disturbing the spin-state of the system). This might be difficult
in practice, but it illustrates that Bell basis measurements can be done at
least in principle.1

6.2. Local and Nonlocal

6.2.1. Nonlocal interaction?

A measurement performed by Alice on a qubit of an entangled pair changes
the state of Bob’s qubit, without Bob being able to notice this change. Con-
sider a two-qubit system, say, in the state ψ+

e . Assume that Alice measures
the spin in z-direction and finds “spin-up.” This measurement corresponds

1Methods to produce Bell states in quantum optics are described in [2].



6.2. LOCAL AND NONLOCAL 279

to the projection operator

P+ ⊗ 1 with P+ = |ψ+〉〈ψ+|. (6.13)

The effect of this projection operator on ψ+
e is easily computed:

(P+ ⊗ 1)ψ+
e =

1√
2

(
(P+ψ+)⊗ ψ+ + (P+ψ−)⊗ ψ−

)
=

1√
2
ψ+ ⊗ ψ+. (6.14)

If Alice measures spin-up, this projects the state of the two-qubit system
into the separable state ψ+ ⊗ ψ+. Hence, Bob’s qubit, which was in the
mixed state ρB = 1, is in the state ψ+ immediately after the measurement.

A measurement performed by Alice may change the state of Bob’s qubit,
provided the two-qubit system is in an entangled state.

We want to show that this is in no way paradoxical and cannot be inter-
preted in terms of an instantaneous transfer of information.

First of all, we note that Bob cannot determine the state of his qubit in
a single measurement, hence there is no way for him to tell if anything has
changed as a consequence of Alice’s measurement. Therefore, we must con-
sider the situation in the context of an ensemble measurement. Assume that
Alice and Bob share an ensemble of qubits in the state ψ+

e . The projection
operator P+ is actually a Stern-Gerlach filter that allows Alice to select a
subensemble of qubits with spin-up. But Bob does not know for which of his
qubits the other has passed the spin-up test by Alice. Bob still owns a whole
ensemble of qubits, and this ensemble just realizes the state ρ = (1/2)1.
Nothing has happened on Bob’s side. There is no statistical test that can
help Bob to decide whether Alice has performed any measurement or not.

The measurements done by Alice indeed select among Bob’s qubits a
subensemble characterized by the state ψ+. Now, assume that Alice and
Bob follow method (b) described in Section 6.1.2. That is, Alice finally tells
Bob which of her qubits gave spin-up. Then he too is able to select the cor-
responding qubits from his ensemble. In that way, he obtains a subensemble
that is characterized by the state ψ+. The information acquired by Alice
allows Bob to perform the projection P+ on his qubits manually. It is remark-
able that purely classical information is sufficient to select a subensemble in
a pure state from qubits in a mixed state ρ. The difference between a pure
and a mixed state is classical information.

The projection operator P+ applied to Alice’s ensemble has no effect on
Bob’s ensemble, unless we use the information gained by Alice to filter the
corresponding qubits on Bob’s side. As long as this information is not added
to Bob’s ensemble, the projection operator P+ ⊗ 1 is not really applied to
the two-qubit system. In short: If Alice proceeds according to method (a)
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(Section 6.1.2), she just performs the projection P+ on her qubits and noth-
ing happens to Bob’s qubits. In order to measure the two-qubit observable
P+⊗1, Alice and Bob have to proceed according to method (b) (that is, by
exchanging information via classical communication) thereby applying the
projection also to the ensemble on Bob’s side. In practice, the transmis-
sion of information has to obey the constraints imposed by the theory of
relativity.

CD 5.12 illustrates the discussion in this section. As soon as Alice
measures the spin of her qubit, she can predict Bob’s result. But
this fact changes nothing on Bob’s side. He still finds his qubits in
a maximally mixed state. As soon as Alice sends information about
her results to Bob, he is able to select a subensemble of qubits in a
pure state.

I think we can learn from this an important lesson: A quantum me-
chanical state is the collection of physically available information about a
system. The state of Bob’s ensemble can only be changed if we put some
information into it. When Alice performs her measurement, the information
is not available at Bob’s location, hence the state of Bob’s qubit ensemble
is not changed automatically by Alice’s actions. The information gained by
Alice first has to be transferred to Bob by means of some physical process
(classical communication). Local measurements in a bipartite system do not
establish a “nonlocal interaction” or a “superluminal communication,” as it
is often claimed.

6.2.2. Local manipulations

By means of purely local unitary transformations, Alice can change the
state of the two-qubit system. She can, for example, apply the unitary
transformation σ1 to her qubit (or rather to all qubits of her ensemble).
This changes the state of the compound system according to

(σ1 ⊗ 1)ψ±
e =

1√
2

(
(σ1ψ+)⊗ ψ+ + (σ1ψ−)⊗ ψ−

)
=

1√
2
(ψ− ⊗ ψ+ ± ψ+ ⊗ ψ−) = ±ψ±

o , (6.15)

(σ1 ⊗ 1)ψ±
o = ±ψ±

e . (6.16)

The second formula follows immediately from the first using σ2
1 = 1.

Exercise 6.3. Show that if Alice performs the unitary transformation
σ3 on her qubit, she can change the phase bit of a maximally entangled state
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of the two-qubit system, that is,

(σ3 ⊗ 1)ψ±
e = ψ∓

e , (σ3 ⊗ 1)ψ±
o = ψ∓

o . (6.17)

No local unitary transformation of the form U ⊗ 1 can in any way in-
fluence subsystem B. The state of Bob’s qubit is not changed by Alice’s
manipulations. You can see this most clearly if you write the state ψ of the
compound system in the Gram-Schmidt form (5.130)

ψ =
∑

i

√
pi φA

i ⊗ φB
i (6.18)

and apply U ⊗ 1 to this expression. This gives

(U ⊗ 1) ψ =
∑

i

√
pi (UφA

i )⊗ φB
i . (6.19)

The resulting vector is again in the Gram-Schmidt form, because {UφA
i } is

just another orthonormal basis in HA. Hence, U ⊗ 1 has no influence on the
subsystem B, which, according to (5.131), remains in the state

ρB =
∑

i

pi |φB
i 〉〈φB

i |. (6.20)

The two states ψ and (U⊗1)ψ of the compound system are just two different
purifications of ρB.

A local unitary transformation U is a product of subsystem transforma-
tions,

U = UA ⊗ UB, with UA, UB unitary. (6.21)

Such a transformation cannot change the entanglement of the system. If ψ
is separable, then Uψ is also separable. If ψ is entangled, so is Uψ.

6.3. The Einstein-Podolsky-Rosen Paradox

Entangled two-qubit states may be used to illustrate a paradox described
by Einstein, Podolsky, and Rosen (EPR) in 1935. The main question is the
following. Given two incompatible observables S and T , quantum mechanics
does not predict the values of T in an experiment where only S is measured.
Is this because of our insufficient knowledge of reality, or is it a property
of reality itself? Is quantum mechanics incomplete, or could it be that the
observable simply does not have a definite value?

Einstein, Podolsky, and Rosen strongly favored the point of view that the
statistical interpretation of a wave function describes the state of knowledge
of an observer and not so much an actual property of the system. Although
they did not question the correctness of quantum mechanics, it was their
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goal to attack the completeness of quantum mechanics as claimed by the
Copenhagen interpretation. They reasoned as follows.

First, they attempted to give a definition of physical reality:

Physical reality:

If, without in any way disturbing a system, we can predict with certainty
the value of a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity.

For example, if the state is described by an eigenvector of an observable
S belonging to the eigenvalue λ, then in a measurement of the observable S,
the value λ will be found with probability 1 (that is, with certainty). Hence,
the value of S may be regarded as an element of reality.

The EPR paper also contains a definition of what the authors consider
to be a complete theory.

Completeness of a theory:

A theory is complete if every element of the physical reality has a coun-
terpart in the physical theory.

If two observables, for example the components σ3 and σ1 of the spin,
do not commute, then knowledge of σ3 makes σ1 completely undetermined.
The principal question is whether this uncertainty is due to an incomplete
knowledge of the observer, or whether this is a “defect” of reality. The
Copenhagen interpretation considers quantum mechanics a complete theory
and hence takes the point of view that the values of σ1 and σ3 are not
simultaneously elements of reality.

Suppose we could show that, by the definition of physical reality given
above, we can find a situation where the values of σ1 and σ3 are simultaneous
elements of the physical reality. Then, it is shown that quantum theory is
incomplete, because nothing in the theory corresponds to these values.

EPR considered an entangled pair as an example of this situation. Sup-
pose Alice and Bob share an ensemble of entangled qubit pairs. We assume
that the state of the compound system is ψ−

o . Among the entangled states,
Bell’s singlet state ψ−

o is distinguished by the property

(σk ⊗ 1)ψ−
o = −(1⊗ σk)ψ−

o , k = 1, 2, 3. (6.22)

You can verify this property by an explicit calculation. We may formulate
this result as follows.
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Anticorrelation of spin in Bell’s singlet state:

Consider a two-qubit system in the state ψ−
o . Then, the measurement of

an arbitrary spin component σk of qubit A gives always the opposite of
the result obtained by measuring σk on qubit B. We say the values of
σk for qubit A and B are strictly anticorrelated.

It has to be stressed that this is indeed a prediction for the coincidence
of measurement results for individual qubit pairs. This can be seen most
clearly by noting that ψ−

o is a simultaneous eigenstate of the observables
σk ⊗ σk (see Section 6.1.2),

(σk ⊗ σk) ψ−
o = −ψ−

o , k = 1, 2, 3. (6.23)

Therefore, a measurement of σk⊗σk in the state ψ−
o gives −1 with certainty.

Measuring σk on the individual qubits of a pair gives opposite values for every
single qubit pair.

CD 5.9 shows a two-qubit system in the state ψ−
o . We simulate

a sequence of elementary measurements of the observable σ · n ⊗
σ · n with respect to three different directions n. The results for
the subsystems are strictly anticorrelated. CD 5.10 shows a classical
two-particle system whose three observable properties show the same
anti-correlations between the subsystems.

For a two-qubit system in the state ψ−
o , the state of either subsystem is

the maximally mixed state ρ = 1
2 1. Hence, according to quantum mechanics,

the value of σ3 is completely undetermined for both qubits of the entangled
pair. Now, let us assume that Alice measures σ3. As usual, we assume
that Alice and Bob are spatially separated, so that Bob’s qubit remains
undisturbed by anything Alice does with her qubit. Whenever she finds
spin-up in an elementary experiment, then she knows that Bob would obtain
spin-down for the other qubit of the pair. Hence, without disturbing Bob’s
qubit in any way, Alice can predict the value of σ3 for Bob’s qubit. Thus, the
value of σ3 for Bob’s qubit must exist beforehand, because the measurement
done by Alice cannot influence Bob’s qubit. The value of σ3 for Bob’s qubit
is thus an element of reality whether Bob performs a measurement of σ3 or
not. In the quantum mechanical formalism, this statement is expressed by
the fact that the observables σ3 ⊗ σ3 and σ3 ⊗ 1 are compatible. Moreover,
a measurement of any of these observables in the state ψ−

o projects onto the
same state of the two-qubit system, either onto ψ+ ⊗ ψ− or onto ψ− ⊗ ψ+.

But Alice could also perform a measurement of, say, σ1 instead of σ3.
Because of the spatial separation, the decision to measure σ1 should not
change the qubit on Bob’s side. Hence the value of σ3 for Bob’s qubit should
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remain an element of reality, no matter, what Alice decides to do. Moreover,
if Alice measures σ1, then the value of σ1 for Bob’s qubit is also an element
of reality. EPR concluded that therefore the values of both observables σ1

and σ3 simultaneously belong to the same reality. Because nothing in the
quantum mechanical theory lets us predict these values, quantum mechanics
must be incomplete—at least in the opinion of EPR.

One might object that Alice still cannot measure the simultaneous values
of σ1 and σ3. That is true, but if Alice and Bob work together, Alice could
measure the value of σ1 on her qubit and Bob could measure the value of
σ3 on the second qubit of the entangled pair. Because the result of Alice’s
measurement lets us predict the value of σ1 for Bob’s qubit, there is no need
for Bob to determine σ1, and he can determine σ3 instead. This possibility of
speaking about the simultaneous values of σ1 and σ3 (which are therefore an
element of the EPR-reality) without the possibility of predicting them lets
the theory appear incomplete. The following box describes what quantum
mechanics has to say about this situation.

The incompleteness of quantum mechanics:

The two-qubit observable σ1 ⊗ σ3 is not compatible with σ1 ⊗ σ1 or
with 1 ⊗ σ1. Hence, in an experiment where Alice measures σ1 and
Bob measures σ3, no value is associated with those other observables, in
particular, the value of σ1 for Bob’s qubit remains undetermined.

A statement describing what “Bob would have obtained if he had per-
formed another measurement instead” is called counterfactual. It refers to
an experimental setup that has never been realized. Without recourse to
counterfactual arguments, it is not possible to speak about the simultaneous
values of noncompatible observables (like different components of the spin,
or like position and momentum). Quantum mechanics is indeed incomplete
in the sense of EPR, but it is incomplete only in view of counterfactual
statements. Quantum mechanics does give a “complete” description of ex-
perimental situations that are actually realized. In a measurement of σ1⊗σ1,
the value of σ1 for Bob’s qubit is indeed an element of the quantum reality,
in a measurement of σ1 ⊗ σ3, it is not.

According to quantum mechanics, an observable (like a component of
the spin of Bob’s qubit) does not have a definite value if actually no attempt
is made to measure this observable. Recall that the state of the system
is the collection of physically available information about this system (in
an operational sense). In a situation where a measurement of an observ-
able cannot be performed (because some other, noncompatible observable is
measured instead), the information about the value of the observable does
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not exist, and hence the corresponding property does not exist in the state
of the system. All possibilities for that property are left open. We have
learned numerous situations where the presence of two possibilities leads to
interference and hence to observable effects (Schrödinger-cat state, double-
slit experiment). Assuming that actually one of the possibilities is realized
destroys the very reason for that interference. We want to stress that this
“denial of counterfactuals” is built deeply into the formalism of quantum
mechanics: a priori, an observable is not represented by a value, but by an
operator in the Hilbert space of the system, and hence by all its possible val-
ues simultaneously. The idea that the possible values are actually described
by some hidden parameters will be put to a test in Section 6.5 below.

6.4. Correlations Arising from Entangled States

Entanglement contains information about the system that can be expressed
as correlations between results of measurements on the subsystems. Ein-
stein, Podolsky, and Rosen used these correlations to construct a paradox.
The objection by EPR is serious enough that it is worth investigating the
correlations in entangled qubit pairs further.

6.4.1. Joint probabilities in two-qubit systems

A measurement of an observable Ŝ is a random experiment. With respect to
that experiment, we define a random variable S that describes the measured
values of the observable Ŝ (see Section 4.2.1). In this section and in the fol-
lowing, we use, wherever necessary, the hat (ˆ) to distinguish an observable
from the associated random variable.

Given a two-qubit system, we choose two unit vectors n and m in R
3

and define the subsystem observables

Ŝ = σ · n⊗ 1B, T̂ = 1A ⊗ σ ·m. (6.24)

Because of (5.61), these observables are compatible. Therefore, they can be
measured simultaneously, and the results are described by two ±1-valued
random variables S and T .

We denote the joint probability that the measurement of Ŝ gives S = ε
and the measurement of T̂ gives T = δ by

prob(S=ε, T=δ), ε, δ = ±1. (6.25)

Note that the joint probability can only be defined for compatible observ-
ables.

Given the state ψ of the two-qubit system, we can compute the joint
probability (6.25) as follows. Let Pε⊗ 1 be the projection operator onto the
eigenspace of Ŝ belonging to the eigenvalue ε. Similarly, define 1⊗Qδ as the
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projection operator onto the eigenspace of T̂ belonging to the eigenvalue δ.
From (6.24) we conclude

P±1 =
1
2
(
1± σ · n), Q±1 =

1
2
(
1± σ ·m)

. (6.26)

We have P1 + P−1 = 1, and Q1 + Q−1 = 1. The operator

(Pε ⊗ 1)(1⊗Qδ) = Pε ⊗Qδ. (6.27)

is also an orthogonal projection operator, because it is the product of two
commuting projection operators. It projects onto the simultaneous eigen-
space of Ŝ and T̂ belonging to the eigenvalues (ε, δ), and hence

prob(S=ε, T=δ) = 〈ψ , Pε ⊗Qδ ψ〉. (6.28)

Two random variables S and T are independent if their joint probability
equals a product of independent factors:

prob(S=ε, T=δ) = prob(S=ε) prob(T=δ). (6.29)

In that case, the outcome of a measurement of Ŝ and the result of a simulta-
neous measurement of T̂ are completely independent of each other. This is
indeed the case whenever the state ψ of the two-qubit system is separable.
From ψ = ψA ⊗ ψB it follows that

prob(S=ε, T=δ) = 〈ψA ⊗ ψB , (Pε ⊗Qδ) ψA ⊗ ψB〉
= 〈ψA, Pε ψA〉 〈ψB , Qδ ψB〉
= prob(S=ε) prob(T=δ). (6.30)

For an entangled state of the two-qubit system, we expect correlations
between the observables of the subsystems. A correlation is an association
between two observables that lets us predict, to some extent, the value of
one observable by a measurement of the other. The best example is the state
ψ−

o , as discussed in Section 6.3 (see Exercise 6.4).
We are going to describe the correlations between two commuting ob-

servables Ŝ and T̂ by the probability that a measurement of Ŝ and T̂ gives
the same result. This is called the probability for coincidence and is denoted
by prob(S=T ). For observables with ±1 as the only eigenvalues, we have

prob(S=T ) =
1
2
(
1 + 〈ST 〉). (6.31)

The expectation value 〈ST 〉 is the correlation coefficient of the two±1-valued
random variables S and T . Note that the expectation value of a product
makes sense only if the operators commute; otherwise 〈ST 〉 = 〈ψ, ŜT̂ψ〉 need
not be a real number.
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Exercise 6.4. Consider a two-qubit system in the state ψ−
o . Choose

Ŝ = σ · n⊗ 1 and T̂ = 1⊗ σ · n. Show that

prob(S=1, T=−1) = 1 �= prob(S=1) prob(T=−1) =
1
4
. (6.32)

Exercise 6.5. Let S and T be random variables with ±1 as the only
possible values. Show that the correlation coefficient 〈ST 〉 can be written as

〈ST 〉 = prob(S=1, T=1) + prob(S=−1, T=−1)

− prob(S=1, T=−1)− prob(S=−1, T=1).
(6.33)

Exercise 6.6. Show that for any ±1-valued random variables S and T
the following is true:

prob(S=T ) = prob(S=1, T=1) + prob(S=−1, T=−1) (6.34)

=
1
2
(
1 + 〈ST 〉). (6.35)

Exercise 6.7. Use (6.33) to show that if S and T are independent, then
S and T are uncorrelated, that is,

〈ST 〉 = 〈S〉〈T 〉. (6.36)

Exercise 6.8. Assume that the two-qubit system is in the state ψ−
o .

Compute the correlation coefficient 〈ST 〉 for Ŝ = σ3 ⊗ 1 and T̂ = 1⊗ σ1.

Exercise 6.9. Let Ŝ be a qubit observable with the eigenvalues ±1 and
corresponding eigenvectors ψ±. Define the orthogonal projection operators
P± = |ψ±〉〈ψ±|. Show that

P+ + P− = 1, P+ − P− = Ŝ, P± =
1
2

(1± Ŝ). (6.37)

Exercise 6.10. Consider a two-qubit system. Let Ŝ be an observable
in the Hilbert space of qubit A with eigenprojections P± as described in the
previous exercise. Assume that T̂ is a similar observable for qubit B and
denote the corresponding projection operators by Q±. Show that

P+ ⊗Q+ + P− ⊗Q− =
1
2

(1 + Ŝ ⊗ T̂ ), (6.38)

P+ ⊗Q− + P− ⊗Q+ =
1
2

(1− Ŝ ⊗ T̂ ). (6.39)

Are these orthogonal projection operators?

Exercise 6.11. Assume that the two-qubit system is in the state ψ−
o .

Compute the correlation coefficient 〈ST 〉 for Ŝ = σ3 ⊗ 1 and T̂ = 1⊗ σ1.
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Figure 6.3. Setup for an experiment testing EPR correlations.

6.4.2. A protocol for verifying joint probabilities

In order to verify the predictions about prob(S=ε, T=δ), we have to per-
form an ensemble measurement on a large number of identical qubit pairs.
Schematically, a possible setup for this experiment is shown in Figure 6.3.
A source prepares pairs of qubits in a certain two-qubit state. As usual, one
qubit is sent to Alice, the other to Bob. In order to exclude any mutual in-
fluence of measurements on the subsystems, we may assume that Alice and
Bob are spatially separated by a large distance and well isolated from each
other. Thus, we make sure that the only connection between the subsystems
is the preparation as a two-qubit state, that is, their common origin.

Quantum mechanics does not distinguish between ensemble measure-
ments performed in parallel (same time, different places) or sequentially
(same place, one after another). In this setup we perform sequential trials,
corresponding to the way that this experiment is actually carried through.
This provides an automatic numbering of the qubits, which is useful because
we want to compare the results for the qubits belonging to the same pair
(method (b) in Section 6.1.2).

In view of the discussion in th following section, we now introduce four
observables by choosing four directions n1, n2, m1, m2 in R

3 and setting

Ŝj = σ · nj ⊗ 1B, T̂k = 1A ⊗ σ ·mk, j, k = 1, 2. (6.40)

Notice that each observable Ŝj is compatible with each observable T̂k, be-
cause these operators act on different parts of the system. Hence, one of the
observables Ŝj can be measured simultaneously with one of the observables
T̂k. It is, however, impossible to obtain values for Ŝ1 and Ŝ2 in a single run
of the experiment whenever n1 �= n2. In quantum mechanics, the random
variables S1 and S2 are never defined in the same experiment.

In the next section, we are going to derive the inequality (6.53) involving
the four coincidence probabilities prob(S1=T1), prob(S1=T2), prob(S2=T1),
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and prob(S2=T2). In an experiment, however, where the values of Ŝ1 and
T̂1 are measured, the random variables S2 and T2 are not defined. In order
to measure these probabilities, we therefore need four different ensemble
measurements. Usually, one proposes the following protocol to determine all
joint probabilities

prob(Sj=ε, Tk=δ), j, k = 1, 2, ε, δ = ±1. (6.41)

This protocol is known as the EPR protocol.
In each trial, the source emits two qubits prepared in a certain two-

qubit state. One qubit is sent to Alice, the other to Bob. When the qubits
are on their way, Alice chooses a random value for the index j (1 or 2 with
probability 1/2), and when the qubit arrives, she measures the corresponding
observable Sj . Similarly and independently, Bob makes a random choice
for k and measures Tk on his qubit. The large distance and the delayed
choice prevents any unwanted communication between Alice and Bob and
guarantees that they will make their decisions independently. This procedure
is repeated many times with identically prepared qubit pairs. According to
these conditions, any particular pair of observables (Ŝj , T̂k) is measured in
about a quarter of all trials.

The experimental setup described in this section can be seen in
CD 5.13. In this simulation, the source generates a pair of qubits
in the state ψ−

o . Alice and Bob both measure the component of the
spin with respect to two randomly chosen directions. The experi-
ment serves to falsify the CHSH inequality discussed in Section 6.5
below.

When all measurements have been performed, Alice can estimate the
probabilities prob(Sj=ε) for both observables Ŝj (j = 1, 2) and for ε = ±1,
Likewise, without consulting Alice, Bob can determine the four probabilities
prob(Tk=δ) (with k = 1, 2 and δ = ±1). But, in order to compute the joint
probabilities for Sj and Tk, Alice and Bob must get together to compare their
results for the individual qubit pairs. The joint probabilities are estimated
by counting:

prob(Sj=ε, Tk=δ) ≈ N(Sj=ε, Tk=δ)
Njk

. (6.42)

Here, Njk is the total number of those trials where Alice had measured Ŝj

and Bob had measured T̂k. N(Sj=ε, Tk=δ) is the number with the desired
result Sj=ε, and Tk=δ. Note that the quantum mechanical probability only
refers to the subset of trials where the observables Ŝj and T̂k are actually
measured (in the other trials, the random variables Sj and Tk are not de-
fined). Hence, the number Njk in the denominator is not the total number
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of trials. From the point of view of quantum mechanics, the set of trials
according to the EPR protocol decomposes into four disjoint subsets. On
each subset, different pairs of random variables are defined because different
sets of observables are measured.

A probability that refers only to a subset of trials where some condition
is satisfied, is usually called a conditional probability. Within the random
experiment according to the EPR protocol, the quantum mechanical proba-
bility prob(Sj=ε, Tk=δ) could thus be interpreted as the conditional proba-
bility for the event Sj = ε and Tk = δ, provided that the observables Ŝj and
T̂k are measured. Note, however, that the same event is not even defined
without this condition.

Exercise 6.12. The joint probabilities prob(Sj=ε, Tk=δ) have certain
properties that we can expect to be true a priori. Using (6.28), prove and
explain the property∑

ε,δ=±1

prob(Sj=ε, Tk=δ) = 1, for all j, k = 1, 2. (6.43)

Exercise 6.13. Show that according to quantum mechanics, the joint
probabilities satisfy the locality condition

prob(Ŝj=ε) =
∑

δ=±1

prob(Ŝj=ε, T̂1=δ) =
∑

δ=±1

prob(Ŝj=ε, T̂2=δ). (6.44)

This result means the following: The probability that Alice obtains the result
Ŝj = ε does not depend on whether Bob measures the observable T̂1 or T̂2.

6.5. Bell Inequalities and Local Hidden Variables

In 1964 J.S. Bell derived a famous inequality for the correlations in a two-
qubit system that can be tested by the experimental setup described in
Section 6.4.2. The proof of Bell’s theorem needs, in particular, an assumption
of realism and an assumption of locality, both well established from the point
of view of classical physics. Moreover, Bell showed that quantum mechanics
predicts a clear violation of Bell’s inequality. Experiments carried out in
1982 by A. Aspect and coworkers (and by many others since) confirm the
predictions of quantum mechanics.

It is often claimed that quantum mechanics is a nonlocal theory, because
the violation of Bell’s inequality can explained by a nonlocal influence be-
tween spatially separated qubits. But, the assumption of locality needed for
Bell’s theorem is perfectly satisfied by quantum mechanics.
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Figure 6.4. The general EPR setup. A source provides
some information Alice and Bob independently use to pro-
duce the outputs A and B (±1-valued random variables).
On either side, the output is generated by sending the in-
formation through a machine (measurement device) that can
operate in two possible modes. The mode of operation is
determined by the two random variables j and k.

On the other hand, realism (as required in the formulation of Bell’s
inequality) assumes that the value of an observable Ŝ1 exists in every ele-
mentary experiment, even if another observable Ŝ2 is measured that is not
compatible with Ŝ1. This assumptions means that we associate random
variable S1 and S2 with both observables. Only the value of the actually
measured observable is known, the other value remains unknown. This is
precisely the sort of counterfactual realism discussed in Section 6.3. This
type of realism has no counterpart in the formalism of quantum mechanics
(where observables are represented by operators and not by values).

Hence, quantum mechanics can violate Bell’s inequality without violating
any principle of locality. Quantum mechanics is local but not realistic. The
experimentally verified violation of Bell’s inequality rather indicates that
any realistic theory behind quantum mechanics (that is, a hidden variable
theory) would have to be nonlocal.

6.5.1. General setup for measuring correlations

We want to describe an experiment for measuring the subsystem correlations
in very general terms. The protocol for this experiment is the same as the
EPR protocol described in Section 6.4.2. The experimental setup according
to Figure 6.4 is a special case of the setup discussed here.2

2Our discussion in part follows the paper by Gill, R.D., Weihs, G., Zeilinger, A., and
Zukowski M., Europhys. Lett. 61, 282-283 (2003), quant-ph/0204169. Note, however,
that their definition of “locality” is expressed in terms of hidden variables and differs
slightly from ours, which is expressed in terms of statistical independence (see below).
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A general EPR experiment consists in a sequence of trials with the fol-
lowing experimental setup. For each trial, a source generates some message
and sends it to Alice and to Bob. The message could be anything: classi-
cal bits and bytes or physical particles or electromagnetic waves. Alice and
Bob have measurement devices A and B that convert the incoming message
either into the output +1 or into −1. The two devices A and B are re-
garded as black boxes. Depending on the physical realization, these could
be Stern-Gerlach apparatus, computers, or coin-tossing machines. (It does
not matter whether these devices work in a deterministic or random way).

The devices A and B can operate in two different modes, depending
(say) on the position of a switch. In case of Stern-Gerlach devices, the two
modes correspond to two possible directions of the magnetic field. For each
trial, the mode of operation is chosen randomly. It is assumed that Alice
and Bob make these choices independently, for example, by tossing a coin,
in such a way that each of the possible combinations (1, 1), (1, 2), (2, 1), and
(2, 2) occurs with the same probability 1/4.

The whole setup is designed to make sure that on both sides only the
locally available information is used to generate the output. Alice is not
allowed to use any information generated on Bob’s side, and vice versa. The
only thing that connects Alice and Bob is the common origin of the message
they receive.

6.5.2. Realism and hidden variables

Mathematically, we may describe the results obtained by Alice and Bob as
±1-valued random variables A and B. There are two more random variables,
namely the indices j and k describing the settings chosen by Alice and Bob
for their devices. The indices j and k have the values 1 and 2 with equal
probability 1/2.

Let us now make our first assumption. It is related to the idea of hidden
variables.

Assumption of realism:

The possible outputs A and B can be described by four ±1-valued ran-
dom variables S1, S2, T1, and T2. These variables describe the output
for the corresponding settings:

A = Sj , B = Tk. (6.45)

According to the EPR setup described in the previous section, only two
of the four quantities are actually observed in each trial. But random vari-
ables have (by definition) well-defined values for each trial, whether they
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are observed or not. Hence, the assumption of realism makes it meaningful
to formulate counterfactual statements like “Alice would have observed the
value of S2 if she had chosen the setting j = 2 instead of j = 1 for her
device.”

The assumption of realism is very natural from the point of view of
classical physics: Here, the source emits classical information (bits and bytes)
or classical physical systems. In principle, Alice can always duplicate this
message and send the two copies of the input to two identical clones of her
device. She may set one device to mode “1”, the other to mode “2”, and
thus generate the outputs for both settings simultaneously in a single trial.
By tossing a coin, Alice now decides which output she keeps and which she
ignores. In each trial, the values of S1 and S2 can both be assumed to exist,
although according to the EPR protocol, only one of these values is actually
recorded.

As explained at the end of Section 6.3, the assumption of realism is very
problematic (to say the least) in quantum mechanics, because it attempts to
justify counterfactual statements. Whenever the observables corresponding
to S1 and S2 are not compatible, quantum mechanics says nothing about
the value of S2 in a single trial where S1 is measured. All but the outputs
that are actually observed must be regarded as hidden variables.

The procedure of duplicating the message is not possible in quantum
mechanics, not even in a thought experiment. Alice cannot duplicate an un-
known qubit in order to determine incompatible properties simultaneously.
Actually, the impossibility to duplicate a quantum system in an unknown
state is a law of nature. It is called the no-cloning theorem and will be
proved in Section 6.8.4.

6.5.3. Statistical independence

The random variables j and k determine the mode of the devices in each
trial. It is assumed that the mechanisms generating the numbers j and k
are not in any way related to the mechanisms generating the output of the
devices. This is what we expect if Alice and Bob make their choices by
independent tosses of fair coins.

Assumption of independence:

The set of random variables {S1, S2, T1, T2} is statistically independent
from the set {j, k}.

Here, it is useful to form the “vector-valued” random variables

X = (S1, S2, T1, T2), Y = (j, k). (6.46)
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Note that X has 24 different values x, corresponding to the 24 possible
quadruples of values of S1, S2, T1, and T2. The four possible values y of
Y describe the four possible settings of the two devices: (1, 1), (1, 2), (2, 1),
and (2, 2).

The assumption of independence means that X and Y are independent
random variables. The statistical independence allows one to compare two
different probabilities. One is the probability prob(X=x) for the event
that X has some given value x. The other is the conditional probability
prob(X=x | Y =y) for the event X=x given that Y has the value y.

Given an ensemble with a total of N trials, the statistical probability
prob(X=x) is for large N approximated by the fraction

prob(X=x) ≈ N(X=x)
N

, (6.47)

where N(X=x) is the number of trials where the indicated event occurred.
The conditional probability is approximated by the relative frequency of

the event in the subensemble of trials where Y = y:

prob(X=x | Y =y) ≈ N(X=x, Y =y)
N(Y =y)

. (6.48)

The statistical independence of X and Y is the statement that

prob(X=x) = prob(X=x | Y =y) all x and y. (6.49)

If two vector-valued random variables X and Y are independent, then
any component of X is independent of any component of Y . For example,
the random variable j is independent of S1 and S2. This means that how
Alice chooses the value of j (coin tossing) is not related to how the potential
outcomes S1 and S2 are generated. In particular, the decision, which output
is to be recorded, must not be influenced by the actual values of S1 or S2.

Another consequence of the assumption of independence is locality. The
random variable k is statistically independent of S1 and of S2. Thus, the
mechanism generating the possible outputs for Alice does not influence and
is not influenced by the choice of the setting k of Bob’s device. This is
what we expect if the labs of Alice and Bob are spatially separated and well
isolated from each other.

Assumption of locality:

The values of the two potential outcomes on one side and the setting
chosen on the other side are independent random variables.

Exercise 6.13 describes the locality condition satisfied by quantum me-
chanics. It means that the values of an observable measured by Alice do not
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depend on which measurement is performed by Bob. Indeed, as we learned
from Eq. (6.44), the probability that Alice gets a certain result Sj = ε is not
changed by anything that Bob does. Quantum mechanics, however, knows
nothing about the values of observables that are not measured. In short:

Quantum mechanics supports the assumption of locality, but not the
assumption of realism.

The assumption of independence actually allows us to determine the
probabilities prob(Sa=ε, Tb=δ) within the EPR protocol. This protocol
only allows us to determine the conditional probability prob(Sa=ε, Tb=δ |
j=a, k=b). The assumption of independence implies that

prob(Sa=ε, Tb=δ) = prob(Sa=ε, Tb=δ | j=a, k=b) (6.50)

for all choices of a, b = 1 or 2 and ε, δ = +1 or −1.
In order to determine prob(Sa=ε, Tb=δ) experimentally, we cannot use

the formula

prob(Sa=ε, Tb=δ) ≈ N(Sa=ε, Tb=δ)
N

(6.51)

because we do not know the total number N(Sa=ε, Tb=δ) of events with
Sa=ε and Tb=δ (Alice and Bob ignore half of the values in each run).

However, from the measurement records of Alice and Bob, we obtain the
fraction of the events with Sa=ε and Tb=δ among the trials with settings
j=a and k=b. Hence, we can approximate the conditional probability as
follows:

prob(Sa=ε, Tb=δ | j=a, k=b) ≈ N(Sa=ε, Tb=δ, j=a, k=b)
N(j=a, k=b)

. (6.52)

By (6.50), the conditional probability prob(Sa=ε, Tb=δ | j=a, k=b) is equal
to the unconditional probability prob(Sa=ε, Tb=δ). But unlike (6.51), the
right-hand side of (6.52) contains only numbers that can be determined
within the EPR protocol.

6.5.4. Bell’s theorem

Bell was the first to derive inequalities for the joint probabilities that can
discriminate between quantum mechanics and local realistic theories. Here,
we present a variant of Bell’s inequality that is directly applicable to our
experimental setup. It is due to Clauser, Horne, Shimony, and Holt (CHSH).
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CHSH inequality:

Let S1, S2, T1, T2 be random variables that have ±1 as the only possible
values. Then the probabilities prob(Sj = Tk) satisfy the inequality

prob(S1=T2) ≤ prob(S1=T1) + prob(S2=T1) + prob(S2=T2). (6.53)

Note that these are actually four inequalities, because we can choose an
arbitrary pair of observables Sj , Tk on the left side of the inequality.

Proof. We have the following implication:

(S1 �=T1) and (S2 �=T1) and (S2 �=T2) ⇒ (S1 �=T2). (6.54)

You may check this by evaluating the left side of the implication for both
possible values of S1. From elementary logic, we know that the statement
A ⇒ B is equivalent with ¬B ⇒ ¬A. Hence,

(S1=T2) ⇒ (S1=T1) or (S2=T1) or (S2=T2). (6.55)

Denote the set of events where S1=T2 by {S1=T2}, and so forth. The im-
plication above shows that this set is a subset of the union of three other
sets:

{S1=T2} ⊂ {S1=T1} ∪ {S2=T1} ∪ {S2=T2}. (6.56)
From this, the CHSH inequality follows as an elementary property of prob-
abilities. �

Whereas the proof of the CHSH inequality is rather simple, the ques-
tion of whether this inequality can be applied in a description of the EPR
experiment is quite non-trivial and has caused ongoing discussions. In the
derivation of the CHSH inequality, we considered the simultaneous occur-
rence of the events S1 = T2 and S2 = T2 in the same trial. This is justified
by the assumption of realism, which is not supported by quantum mechan-
ics. But, perhaps quantum mechanics is incomplete, as claimed by Einstein,
Podolski, and Rosen. Perhaps, Ŝ2 actually has a value (the hidden variable
S2) in an experiment where Ŝ1 is determined. According to the definition of
EPR, the value S2 is an element of reality, even if Alice decides to measure
Ŝ1, because S2 could be determined by Bob by exploiting the antisymme-
try. (In fact, Bob measures T̂1 or T̂2, hence S2 remains undetermined.) We
see that we cannot speak about both random variables S1 and S2 without
recourse to counterfactual arguments.

Bell’s theorem gives us a method to distinguish between quantum theory
and local realism. Here, the expression “local realism” refers to any theory
that satisfies the assumptions of realism and independence (which implies,
in particular, an assumption of locality).
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Bell’s theorem:

Consider the setup and protocol described in Section 6.5.1. Assume
that the possible outputs A and B are determined by a local realistic
theory, as described in the assumptions of realism and independence in
Sections 6.5.2 and 6.5.3. Define the conditional probabilities

Psame(a, b) = prob(A=B | j=a, k=b) (6.57)

for Alice and Bob to obtain the same result, given the settings a and b
of their devices (a, b = 1 or 2). These probabilities satisfy the following
inequality:

Psame(1, 2) ≤ Psame(1, 1) + Psame(2, 1) + Psame(2, 2). (6.58)

Proof. By the assumption of realism, the conditional probability of the
event A=B given that j=a, k=b is described in terms of random variables:

Psame(a, b) = prob(Sa=Tb | j=a, k=b). (6.59)

By the assumption of independence (which again involves realism), the con-
ditional probability is equal to the unconditional probability

prob(Sa=Tb | j=a, k=b) = prob(Sa=Tb). (6.60)

With Psame(a, b) = prob(Sa=Tb), the result (6.58) follows immediately from
the CHSH inequality (6.53). �

In CD 5.14, you can test the CHSH inequality (6.58). Here, the an-
ticorrelation between the two particles is simulated by hidden vari-
ables. Hence, the outcome of the measurements is determined by
information that is generated during the state preparation and car-
ried by the particles to the measurement devices. This simulation
presents an example of the optimal case, where equality holds in
(6.58). Hence, in a finite number of trials, the relative frequencies
might violate the CHSH inequality due to statistical effects. In con-
trast, CD 5.13 shows that quantum mechanics violates the CHSH
inequality by a wide margin. Thus, a violation due to statistical
errors in a finite number of experiments is highly improbable. We
use qubits in the state ψ−

o and choose the observables Sj and Tk as
described in the next section.

6.5.5. Violation of the Bell inequality

Using the experimental setup of Section 6.4.2, we want to test the validity of
Bell’s theorem in quantum mechanics. First, we consider the proof of Bell’s
theorem and note that the formula (6.59) remains meaningful in quantum
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mechanics. The quantity Psame(a, b) describes the conditional probability
that Alice and Bob obtain the same result for a fixed choice (a, b) of settings.
Under this condition, Alice measures Ŝa and Bob measures T̂b, and hence
the random variables Sa and Tb are well defined. Actually, the conditional
probability Psame(a, b) is equal to the quantum mechanical probability that
the two compatible observables Ŝa and T̂b produce the same value in a joint
measurement,

Psame(a, b) = prob(Sa = Tb). (6.61)

But, within the EPR protocol, it is not allowed to interpret the quantum
mechanical probability prob(Sa = Tb) as an unconditional probability (see
the discussion at the end of Section 6.4.2). The reason is that in the other
trials, other pairs of observables than Ŝa and T̂b are measured, and at least
one of the random variables Sa or Tb does not exist (as far as quantum
mechanics is concerned). At this point, the proof of Bell’s theorem breaks
down. It does not apply to quantum mechanics.

This consideration does not prove that the assertion (6.58) is false. How-
ever, given the state of the two-qubit system, quantum mechanics allows us to
compute the probabilities prob(Sa=Tb). Here, we assume that the two-qubit
system is in the Bell state ψ−

o . Moreover, we assume that the observables Ŝa

and T̂b are given by Eq. (6.40) as the components of the spin in the direction
of unit vectors na and mb, respectively.

According to (6.35), we have to compute

prob(Sj=Tk) =
1
2
(1 + 〈SjTk〉) (6.62)

for all choices of j and k. Therefore, we first consider the expectation value
of

(σ · n⊗ 1) (1⊗ σ ·m) = σ · n⊗ σ ·m (6.63)

in the state ψ−
o (for arbitrary unit vectors n and m). Because of Eq. (6.22),

we find that

(1⊗ σ ·m) ψ−
o = −(σ ·m⊗ 1)ψ−

o . (6.64)

Now we obtain

〈ψ−
o , (σ · n⊗ 1) (1⊗ σ ·m)ψ−

o 〉
= −〈ψ−

o , (σ · n⊗ 1) (σ ·m⊗ 1)ψ−
o 〉

= −〈ψ−
o , (σ · nσ ·m⊗ 1) ψ−

o 〉
= −Tr (ρA σ · nσ ·m). (6.65)
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n1

n2

m1

m2

Figure 6.5. Choice of unit vectors illustrating the violation
of Bell’s inequality.

Here, we used (5.85). Whenever the two-qubit system is in a Bell state, the
state of the first qubit is ρA = (1/2)1. Hence,

−Tr (ρA σ · nσ ·m) = −1
2

∑
i,j

nimj Tr (σiσj)

= −
∑
i,j

nimjδij = −
∑

i

nimi

= −n ·m = − cos α (6.66)

where α is the angle between the unit vectors n and m.
Hence, we obtain for the expectation values of the observables ŜjT̂k in

the state ψ−
o the result

〈SjTk〉 = 〈ψ−
o , ŜjT̂kψ

−
o 〉 = − cos αjk, (6.67)

where αjk is the angle between nj and mk. Therefore,

Psame(j, k) = prob(Sj=Tk) =
1
2
(1 + 〈SjTk〉) =

1
2
(1− cos αjk)

= sin2 αjk

2
, j, k = 1, 2. (6.68)

Now, we assume that the vectors n1, n2, m1, and m2 are arranged as in
Figure 6.5, so that

α11 = α21 = α22 =
π

4
, α12 =

3π

4
. (6.69)

Hence,

Psame(1, 1) = Psame(2, 1) = Psame(2, 2) =
1
4
(2−

√
2), (6.70)

Psame(1, 2) =
1
4
(2 +

√
2). (6.71)
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These probabilities satisfy the inequality

Psame(1, 2)−Psame(1, 1)− Psame(2, 1)− Psame(2, 2)

=
1
4
(2 +

√
2)− 3

4
(2−

√
2) =

√
2− 1 > 0. (6.72)

This is a clear violation of the CHSH inequality (6.53) by a wide margin.
This violation has been confirmed in many experiments.

Quantum mechanics is incompatible with a local realistic hidden variable
model.

In CD 5.15 and CD 5.16, we explore another variant of Bell’s the-
orem. We consider three observables A, B, and C with values ±1.
Bell’s inequality states that

prob(A=B) + prob(B=C) + prob(C=A) ≥ 1. (6.73)

CD 5.15 shows the violation of this inequality by two qubits in the
state ψ−

o for appropriately chosen directions of the spin. CD 5.16
shows an example of a classical two-particle system, where each par-
ticle has three well-defined properties, all being strictly anticorre-
lated. Such a system must satisfy (6.73).

The violation of Bell’s theorem—meanwhile confirmed experimentally
beyond reasonable doubt—has led to an ongoing discussion. It has been
speculated that the origin of this contradiction between quantum mechanics
and Bell’s theorem lies in a nonlocal character of quantum mechanics. But,
we have seen that the locality requirement satisfied by quantum mechanics
(see Exercise 6.13) is essentially the same as the one used in the proof of
Bell’s theorem. The reason why Bell’s theorem cannot be applied to quantum
mechanics is that quantum mechanics violates the assumption of realism, as
pointed out in Section 6.5.3. However, locality (sometimes called Einstein
causality) does play a role: One can mimic a violation of Bell’s theorem with
classical systems if one allows a certain amount of communication between
Alice and Bob (or between the subsystems). Therefore, it is assumed that
any hidden variable theory for quantum mechanics has to be nonlocal.

6.6. Entanglement-Assisted Communication

Having investigated the nature of entanglement, it is now time to use it. The
correlations between entangled subsystems can be exploited to enhance the
possibilities for communication between Alice and Bob. Here, we present
two methods that can be applied whenever Alice and Bob share an entan-
gled pair of qubits: The dense coding protocol transmits two classical bits
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of information by sending just one qubit, and the teleportation protocol
transmits one qubit by sending two classical bits.

6.6.1. Dense coding

For the purpose of transmitting information, qubits are at least as good as
classical bits. By the following procedure, Alice and Bob can exchange one
bit of information with the help of one qubit: Alice and Bob agree that they
both measure the spin with respect to the z-axis. Alice prepares a qubit in
one of the two σ3-eigenstates, then she sends the qubit to Bob. Bob performs
a measurement of σ3 in order to find out which of the two eigenstates had
been prepared (a one-bit information).

Not more than one bit of information can be sent with the help of a single
qubit, because any qubit-observable has at most two different eigenvalues.
However, Alice and Bob can make use of entanglement to achieve a better
result using the dense coding protocol3 described below:

Whenever Alice and Bob share a maximally entangled qubit pair, then
Alice can transmit a two-bit message by sending her qubit to Bob.

The method is called the dense coding protocol, because only one qubit
conveys two bits of classical information.

We use the experimental setup described in Figure 6.6. The protocol uses
the fact that Alice can change an entangled two-particle state by a unitary
subsystem transformation, as discussed in Section 6.2.1. Assume that the
two-qubit pair has been prepared in one of the states of the Bell basis, say,
ψ+

e . Alice gets qubit A and Bob takes qubit B.
In order to prepare the information for Bob, Alice applies a unitary

transformation to qubit A. The following unitary operations change ψ+
e into

any of the four states of the Bell basis:

U1 = 1, (U1 ⊗ 1)ψ+
e = ψ+

e ,

U2 = σ1, (U2 ⊗ 1) ψ+
e = ψ+

o ,

U3 = σ3, (U3 ⊗ 1) ψ+
e = ψ−

e ,

U4 = σ3σ1, (U4 ⊗ 1) ψ+
e = ψ−

o ,

(6.74)

This follows immediately from Eqs. (6.15) and (6.17). Having done one of
these unitary operations, Alice sends her modified qubit to Bob. Bob now
puts the two qubits together and performs a Bell-state measurement (as
described in Section 6.1.4). The result enables him to conclude which of the
four transformations Alice did (a two-bit information).

3Bennett, C.H., and Wiesner, S.J., Phys.Rev.Lett. 69, 2881-2884 (1992).
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Figure 6.6. The dense coding protocol. Two bits of classical
information are sent by transmitting a single qubit. Sender
and receiver already share a two-qubit system in a maximally
entangled state.

As noted above, a single qubit does not carry that much information.
The four single-qubit states Ukψ, k = 1, 2, 3, 4 (with arbitrary ψ ∈ C

2) can-
not be linearly independent, and hence cannot be distinguished by a single
measurement. In order to send a two-bit information using only one qubit,
it is necessary that Alice and Bob already share an entangled pair. The
entanglement contains the additional information necessary to distinguish
the four transformed states of qubit A by a single measurement in an un-
ambiguous way. In a sense, however, the heuristic equation 1 bit = 1 qubit
still remains true, because Bob has to use two qubits in order to interpret a
two-bit message.

6.6.2. Quantum state teleportation

Alice and Bob share a pair of maximally entangled qubits A and B. Now,
Alice receives a second qubit C. The following quantum teleportation proto-
col enables Alice to transmit the quantum information contained in system
C to Bob. Alice just needs to send a classical two-bit message to Bob, the
additional information needed by Bob to reconstruct the quantum state of C
is contained in the entanglement of the pair AB. During the whole process,
the state of qubit C is unknown to Alice and Bob.
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Figure 6.7. The teleportation protocol. A qubit is sent by
transmitting two bits of classical information. Sender and
receiver already share a maximally entangled qubit pair.

Whenever Alice and Bob share a maximally entangled qubit pair, then
Alice can transmit the state of a third qubit (that is, the quantum in-
formation unit) by sending two classical bits to Bob.

Figure 6.7 shows the experimental setup for the teleportation protocol.4

Without loss of generality, we may assume that the entangled pair is in
the state ψ+

e . If Alice receives another qubit, we have in fact a three-qubit
problem. Let the state of qubit C be ψ = a+ψ+ + a−ψ−, with arbitrary
complex coefficients a± satisfying |a+|2 + |a−|2 = 1. The state of the three-
qubit system is the tensor product

ψ ⊗ ψ+
e =

1√
2

(a+ψ+ + a−ψ−)⊗ (ψ+ ⊗ ψ+ + ψ− ⊗ ψ−)

=
1√
2

a+ (ψ+ ⊗ ψ+ ⊗ ψ+ + ψ+ ⊗ ψ− ⊗ ψ−)+

1√
2

a− (ψ− ⊗ ψ+ ⊗ ψ+ + ψ− ⊗ ψ− ⊗ ψ−) (6.75)

4Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., and Wootters, W.K.,
Phys.Rev.Lett. 70, 1895–1899 (1993).
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in the Hilbert space Hc ⊗ HA ⊗ HB. In the triple tensor products, the first
factor always refers to qubit C and the second and third factors to qubits A
and B. Alice now puts the qubits C and A together and performs a Bell-
state measurement on the system CA (as described in Section 6.1.4). A little
calculation will show us that she will measure any of the four basis states
with equal probability: In the Hilbert space of the system CA, we write the
product states ψ+ ⊗ ψ+, ψ+ ⊗ ψ−, and so forth, as linear combinations of
Bell states, for example,

1√
2

ψ+ ⊗ ψ+ =
1
2
(ψ+

e + ψ−
e ). (6.76)

Here, ψ±
e and ψ±

o refer to the Bell states of system CA. Then, we insert these
linear combinations for the first two factors in each summand of (6.75). We
obtain

(6.75) =
1
2

a+

(
(ψ+

e + ψ−
e )⊗ ψ+ + (ψ+

o + ψ−
o )⊗ ψ−

)
+

1
2

a−
(
(ψ+

o − ψ−
o )⊗ ψ+ + (ψ+

e − ψ−
e )⊗ ψ−

)
=

1
2

(
ψ+

e ⊗ (a+ψ+ + a−ψ−) + ψ−
e ⊗ (a+ψ+ − a−ψ−)+

ψ+
o ⊗ (a−ψ+ + a+ψ−) + ψ−

o ⊗ (−a−ψ+ + a+ψ−)
)
. (6.77)

This is a superposition of four mutually orthogonal tensor product states. If
Alice determines the Bell state of the pair CA (as described in Section 6.1.4),
she will find one of the four basis states with equal probability 1/4. This
measurement changes the entangled state (6.77) of the compound system
(CA)B into a product state (see Section 6.2.1). That means that after the
measurement, the qubit B is known to be in one of the following states:

(1) a+ψ+ + a−ψ− = ψ if the measurement gave ψ+
e ,

(2) a+ψ+ − a−ψ− = σ3ψ if the measurement gave ψ−
e ,

(3) a−ψ+ + a+ψ− = σ1ψ if the measurement gave ψ+
o ,

(4) −a−ψ+ + a+ψ− = σ1σ3ψ if the measurement gave ψ−
o .

Now Alice tells Bob (by sending a classical two-bit message, that is, one of the
numbers 1, 2, 3, 4) which of the results she obtained. Finally, Bob performs
the corresponding unitary transformation, U1 = 1, U2 = σ3, U3 = σ1, or
U4 = σ3σ1, to convert the state of his qubit to ψ. Then he has qubit B in
the state ψ, that is, qubit B is now an exact copy of qubit C in its original
state.
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6.7. Quantum Computers

The theory of quantum computers is based on ideas of Richard P. Feynman5

and David Deutsch.6 It has been argued that a quantum computer might
outperform a classical computer by making use of superpositions and inter-
ference of n-qubit states. Indeed, more recently one has described a few
computational problems where a quantum computer is more efficient than
any classical computer. Some of these examples are discussed at the end of
this chapter.

In the theory of (classical) computers, a finite array of bits is called
a register. An n-bit register can have 2n different states. The states are
labeled by an n-tuple of 0s and 1s. For example, 01101 is a state of a 5-bit
register. In abstract terms, a (classical) computation is simply a mapping
of an n-bit register to an m-bit register. In a real computer, information
is actually encoded in physical systems. Hence, a computation should be
viewed as a physical process.

As pointed out in Section 4.1.1, the ultimate goal of miniaturization will
be to encode information in qubits. In the theory of quantum computers,
an n-qubit system is called a quantum register. A computation will be a
physical process that transforms the state of a quantum register. In quantum
mechanics, a physical process is described by a unitary time evolution in
the state-space of the system. Hence, we are going to describe a quantum
computation as a unitary transformation of the state of an n-qubit register.

The Hilbert space of quantum register consisting of n qubits is

H = C
2 ⊗ C

2 ⊗ · · · ⊗ C
2. (6.78)

This Hilbert space has the dimension N = 2n, hence it is isomorphic to
C

N . The basis states in a one-qubit subspace are, in the context of quantum
computing, denoted by

ψ+ = |0〉, ψ− = |1〉, (6.79)

in order to reflect the usual notation of bits (‘0’ or ‘1’) in classical information
theory. For n-qubit states we use an abbreviated notation, for example,

|01101〉 = |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉, etc. (6.80)

We see that the 2n product-basis states of a quantum register correspond
precisely to the 2n possible states of a classical n-bit register. In this nota-
tion, the four states of the product basis in the two-qubit Hilbert space are
given by

{|00〉, |01〉, |10〉, |11〉}. (6.81)

5Feynman, R.P., Int.J.Theor.Phys. 21, 467–488 (1982).
6Deutsch, D., Proc.Roy.Soc.London A400, 97–117 (1985).
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and the Bell basis states are

ψ+
e =

1√
2

(|00〉+ |11〉), etc. (6.82)

Another frequent notation uses the decimal number that corresponds to
the binary string representing a product-basis state. For example, we may
interpret the binary string 01101 as the binary representation of the decimal
number 13 and denote the state (6.80) by |13〉.

Here are the basic assumptions (made by theorists) on the realizability
of quantum computing.

Basic assumptions of quantum information theory:

For a system consisting of n qubits, it is, at least in principle, possible
to perform the following actions:

(A) An arbitrary unitary transformation,
(B) A complete measurement with respect to some orthogonal basis.

If {ψ1, ψ2, . . . , ψN} is an orthonormal basis in the Hilbert space C
N of

n qubits (with N = 2n), then a complete measurement with respect to
this basis is defined as a measurement of the simultaneous values of the
commuting observables |ψ1〉〈ψ1|, . . . , |ψN 〉〈ψN |.

The basic assumptions above imply that it is possible to perform a com-
plete measurement with respect to any orthonormal basis, because any two
orthonormal bases are related by a unitary transformation. Assume, for
example, that in the two-qubit system it is possible to perform a complete
measurement with respect to the product basis. Then, you can also per-
form a complete measurement with respect to the Bell basis if the following
unitary transformation is done first:

Ubp :

⎧⎪⎪⎨
⎪⎪⎩

ψ+
e → |00〉

ψ+
o → |01〉

ψ−
e → |10〉

ψ−
o → |11〉

(6.83)

In quite general terms, a quantum computer is some device that takes an
n-qubit system in some state ψin as input and performs a sequence of unitary
transformations resulting in a final state ψout. This part of the computation
is reversible, because all unitary transformations are invertible. Without
restriction, we may assume that the initial state is one of the states of the
product basis, because a suitable unitary transformation can change it to
any other n-qubit state. In that way, comparison with classical computing
is easier, because we can interpret the initial state as a “classical input”.
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Any state of the product basis is described by a classical bit string, that
is, by an n-tuple of 0s and 1s. As long as a quantum computer works with
product-basis states, it operates like a classical computer by manipulating
strings of bits. The power of a quantum computer comes from the fact that
it can perform a computation with a superposition of “classical states” and
produce a result that depends on the interference of all these states. The
ability of a quantum computer to work with superpositions is called quantum
parallelism.

The final step of quantum computation is irreversible. It consists in a
complete measurement of the final state ψout with respect to the product
basis. This measurement gives one of the basis states, that is, a classical bit
string, which may be considered the result of the computation.

Quantum computation:

A typical quantum computation proceeds as follows:
(1) One prepares an n-qubit register in one of the states of the

product basis.
(2) The quantum computer performs a sequence of unitary trans-

formations (“computational steps”).
(3) The final state of the n-qubit register is measured with respect

to the product basis. This gives one of the basis states (that is,
a string of n bits) as the result of the computation.

The final state of the quantum computation remains inaccessible to the
observer, because it cannot be determined with a single measurement (or a
finite number of measurements). The final measurement thus gives a par-
ticular result only with a certain probability. We must require that the
probability to obtain the right answer is strictly larger than 1/2, so that the
result can be amplified by repeating the computation several times.

6.8. Logic Gates

A sequence of unitary transformations of a quantum register constitutes a
quantum algorithm. We want to determine which unitary transformations
may be considered as elementary computational steps, sufficiently versatile
for the construction of useful algorithms. In classical computing, elementary
computational steps involving a few bits are frequently called logic gates.
Some well-known logic gates are and, or, and not. (Actually, these gates
are sufficient to perform any computation.)

In the following, we are going to define a few logic gates for qubits. To
this purpose, we distinguish between local and global transformations. A
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unitary transformation of a multipartite system is called local if it is of the
form

U = U1 ⊗ U2 ⊗ · · · ⊗ Un, (6.84)

otherwise it is called nonlocal or global. A local unitary transformation can
be performed by transforming each of the qubits individually. In that way,
the entanglement of the system cannot be changed. On the other hand, a
global unitary transformation can turn a product state into an entangled
state and vice versa.

6.8.1. Single-qubit gates: The Hadamard transformation

The classical not-gate changes one bit of input to its opposite such that 0
becomes 1 and 1 becomes 0. The quantum not gate is the unitary operator

Unot = σ1, (6.85)

which maps |1〉 → |0〉, and |0〉 → |1〉. Another quantum gate is

U√
not =

1 + i
2

(1− iσ1), (6.86)

which has the property

(U√
not)

2 = Unot. (6.87)

This gate has no counterpart in classical information theory, where the only
possible one-bit transformations are the identity (doing nothing) or the not-
gate.

Another single-qubit gate without a classical analog is the Hadamard
transformation defined by

Uh :

{
|0〉 → 1√

2

(|0〉+ |1〉)
|1〉 → 1√

2

(|0〉 − |1〉) . (6.88)

In the basis {|0〉, |1〉} of the one-bit Hilbert space C
2, the Hadamard trans-

formation corresponds to the matrix defined in (4.38), that is,

Uh =
1√
2

(
1 1
1 −1

)
=

1√
2

(σ1 + σ3). (6.89)
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This transformation is particularly useful for quantum computing, because
if we apply Uh to each of the n qubits in the initial state |00 . . . 0〉, we obtain

|ψ〉 = Uh ⊗ Uh ⊗ · · · ⊗ Uh |00 . . . 0〉
=

1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)⊗ · · · ⊗ 1√

2
(|0〉+ |1〉)

=
1

2n/2

(|00 . . . 0〉+ |00 . . . 1〉+ . . . + |11 . . . 1〉)
=

1
2n/2

2n−1∑
k=0

|k〉. (6.90)

Hence, this operation transforms the initial state of the qubit register into
a superposition of all separable input states (which is still separable). All
the 2n states of the product basis appear with equal probability 1/2n in this
superposition. Applying n one-bit transformations to a classical register
just gives one of the possible states of the register. Applying n one-qubit
transformations to a quantum register as in (6.90) gives a superposition of
all 2n basis states. This gives us the advantage that further computational
steps (that is, unitary transformations of the quantum register) can now
be performed with all possible classical states at once, whereas a classical
computation can only proceed with one of the states of the n-bit register
(quantum parallelism).

But we still have to deal with the following problem. Whereas a single
measurement of a classical register reveals its state, a single measurement
of a quantum register just produces a random result containing (almost) no
information about its state prior to the measurement. A successful quantum
algorithm uses interference among the states to amplify the desired result
while suppressing others (see the examples in Section 6.9 below).

Exercise 6.14. Show that the action of the Hadamard transformation
on an arbitrary n-qubit state |x〉 (where x = x0x1 . . . xn−1, xi ∈ {0, 1}) is
given by

|x〉 −→ 1
2n/2

2n−1∑
y=0

(−1)x.y |y〉, (6.91)

where x.y denotes a bit-by-bit scalar product, that is,

x.y = x0y0 + x1y1 + . . . xn−1yn−1. (6.92)

Hence, the matrix of the n-qubit Hadamard transformation with respect to
the basis {|0〉, |1〉, . . . , |2n − 1〉} is the 2n × 2n matrix

Hxy =
1

2n/2
(−1)x.y. (6.93)
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a a

b a⊕ b

Figure 6.8. The controlled-not gate cnot in classical infor-
mation theory. ⊕ is addition modulo 2.

6.8.2. The controlled-not gate

In order to perform a global unitary transformation, we have to bring two or
more qubits into contact, for example, in a scattering process. An elementary
global unitary transformation of a two-qubit system is the controlled-not,
or cnot transformation Ucnot. It is defined as the linear operator that acts
on the vectors of the product basis as follows:

Ucnot :

⎧⎪⎪⎨
⎪⎪⎩
|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

(6.94)

In the basis {|00〉, |01〉, |10〉, |11〉}, this operator corresponds to the matrix

Ucnot =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ =

(
12 02

02 σ1

)
. (6.95)

If Ucnot is applied twice, it just reproduces the input, that is,

U2
cnot = 14. (6.96)

The classical analog is called a cnot-gate. It switches the second bit
whenever the first bit is 1, otherwise it does nothing. A graphical represen-
tation of the cnot-gate is depicted in Figure 6.8. It is customary to use the
same wiring diagram for the quantum-mechanical cnot-gate (see Fig. 6.9).

Here, the symbol ⊕ denotes the integer addition modulo 2, that is,

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0. (6.97)

The operation a, b→ a⊕b is the classical xor-gate (exclusive or). The xor-
gate is not reversible and thus cannot directly be implemented as a unitary
operator in a two-qubit Hilbert space. Therefore, the classical cnot-gate
keeps a record of the first bit together with the result of the xor-operation.

An immediate generalization of the quantum cnot-gate is the controlled
unitary transformation. Its action on the states of the product basis is
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U|b〉| 〉

|a〉

|b〉

|a〉

|b〉

|a〉 |a〉

a⊕ b U a

b( )a( )

Figure 6.9. (a) The quantum controlled-not gate cnot. (b)
The controlled unitary transformation. The gates are unitary
operators in the two-qubit Hilbert space. The labels indicate
the action of these operators on the product states |ab〉 =
|a〉 ⊗ |b〉, where a, b = 0, 1.

U|b〉

|a〉| 〉

|b〉U aa

ψ a

Figure 6.10. This version of a classically controlled uni-
tary gate has to be distinguished from the controlled unitary
transformation in Figure 6.9. The dashed line symbolizes the
classical bit a = 0 or 1 that is the result of the measurement
of the state |ψ〉 of qubit A.

defined by
|ab〉 → |a〉 ⊗ Ua |b〉 for a, b ∈ {0, 1}, (6.98)

and the corresponding wiring diagram is given in Figure 6.9. The cnot-gate
is obtained by setting U = σ1.

Exercise 6.15. Find the matrix representation of the controlled unitary
transformation (6.98) in the product basis.

The application of the cnot-gate has to be distinguished carefully from
the following procedure (see Fig. 6.10): Perform a measurement of qubit A
and, according to the result, apply the transformation U0 = 1 or U1 = U
to qubit B. This procedure can be carried through with the help of local
operations in combination with classical communication. It does not define
a unitary transformation of the two-qubit system. Nevertheless, it gives the
same output as Ucnot in the case that the input is one of the states of the
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|b̂〉 |b̂〉

| 〉|â〉 ˆ ˆa⊕ b

Figure 6.11. The action of the controlled-not gate cnot in
the basis formed by the states |â〉 = Uh |a〉, with a, b = 0, 1.

product basis. But, for superposition states, the output depends on the
statistical outcome of the measurement.

The unitary transformation Ucnot is nonlocal (global), and cannot be
done without bringing the qubits together. The nonlocality follows from the
fact that the transformation Ucnot changes the entanglement. For example,
Ucnot turns the separable state Uh|0〉 ⊗ |0〉 into the maximally entangled
Bell-basis state ψ+

e .
More generally,

Upb = Ucnot (Uh ⊗ 1) (6.99)
is the unitary transformation that maps the product basis states into the
Bell-basis states. Hence, the operator Upb is the inverse of the operator Ubp

defined in (6.83). Using U2
h = 12 and U2

cnot = 14, we obtain

Ubp = U−1
pb = (Uh ⊗ 1) Ucnot. (6.100)

Hence, a Bell-basis analyzer could be built by first applying the Ucnot opera-
tor to a state ψ of the two-qubit system, followed by a Hadamard transforma-
tion of the first qubit. This maps each of the Bell states onto a corresponding
product state. Finally, a measurement in the product basis (which can be
done separately on the two qubits) shows the Bell state of ψ. Similarly, an
EPR-source can be built by applying (6.99) to a product state (e.g., |00〉).

The commonly used wiring diagram for Ucnot, Figure 6.9, suggests that
the first qubit is never changed by Ucnot. This is not true. Consider, as
an example, the application of Ucnot on products of |0̂〉 = Uh |0〉 and |1̂〉 =
Uh |1〉. We obtain

Ucnot :

⎧⎪⎪⎨
⎪⎪⎩
|0̂0̂〉 → |0̂0̂〉
|0̂1̂〉 → |1̂1̂〉
|1̂0̂〉 → |1̂0̂〉
|1̂1̂〉 → |0̂1̂〉

(6.101)

and now the first qubit is changed depending on the state of the second qubit.
We see that the wiring diagram depends on the chosen basis. With respect to
the basis {|0̂0̂〉, |0̂1̂〉, |1̂0̂〉, |1̂1̂〉}, the wiring diagram for Ucnot actually should
be turned upside down (see Fig. 6.11).
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U

U U U
√

not

1

2 3 4

=

Figure 6.12. Representation of the controlled-
√

not-gate
by elementary quantum gates.

6.8.3. Sequences of quantum logic gates

An arbitrary unitary transformation in the n-qubit Hilbert space can be
composed of single-qubit transformation and the two-qubit transformation
cnot.

As an example for the universality of the cnot-gate, consider Figure 6.12,
where the controlled-

√
not-gate is decomposed into a sequence of single-

qubit operations and cnot-gates. The unitary operators in the wiring dia-
gram are given by

U1 =
(

1 0
0 eiπ/4

)
U2 = U

(π

2
ez

)
U
(−π

4
ey

)
U3 = U

(π

4
ey

)
U4 = U

(−π

2
ez

)
in terms of the rotation matrices U(�α) defined in (4.28).

An important logical gate is the toffoli-gate shown in Figure 6.13(a).
The gate operates on three bits, and the definition in classical information
theory is

(a, b, c) −→ (a, b, ab⊕ c). (6.102)

The last bit (the target bit) is negated if and only if the first two bits (the
control bits) are both 1. Note again that the unitary action of the quan-
tum mechanical gate has to be distinguished from the classically controlled
application of a unitary operator to the third qubit, as described in Fig-
ure 6.13(b). Here, the result of a measurement on the first qubits determines
which unitary operator is chosen. This operation occurs, for example, in the
teleportation protocol (see Fig. 6.14).

The toffoli-gate, which is sometimes also called the controlled-con-
trolled-not-gate, is important because it realizes several elementary logical
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|a〉

|b〉

|c〉

|a〉

|b〉

|ab c〉⊕ Uab

a

b

b( )a( )

Figure 6.13. (a) toffoli-gate. (b) Classically controlled
unitary transformation: The transformation Uab is applied
to the third qubit if a measurement of the first two qubits in
the product basis gives |ab〉.

|a〉

|b〉

Uh

Ua
1 2Ub

Uh|0〉

|ψ〉

|ψ〉|0〉

a

b

EPR-source

Bell-state analyzer

Figure 6.14. The teleportation protocol as a wiring diagram

operations in a reversible way. For example,

for c = 0: (a, b, 0) → (a, b, ab) and-gate,

for b = c = 1: (1, 1, c) → (1, 1, 1⊕ c) not-gate,

for a = 1: (1, b, c) → (1, b, b⊕ c) xor-gate,

for b = 1, c = 0: (a, 1, 0) → (a, 1, a) fanout-gate.

We see that all basic logical operations can be implemented with toffoli-
gates. Therefore, a combination of toffoli-gates can be used to perform
an arbitrary computation with logically reversible operations. The cost for
the reversibility is the inevitable accumulation of “junk” bits that have to
be saved at each gate.
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√
not

√
not

√
not

=

†

Figure 6.15. Representation of the toffoli-gate by ele-
mentary quantum gates.

Figure 6.16. The swap-gate.

Figure 6.15 (together with Fig. 6.12) illustrates that the toffoli-gate
can be built from two-qubit cnot-gates and single-qubit transformations.

Exercise 6.16. Describe the action of the gate depicted in Figure 6.16.

6.8.4. An impossible gate

The cnot-gate has the property

Ucnot

(|a〉 ⊗ |0〉) = |a〉 ⊗ |a〉 for a = 0, 1. (6.103)

This copying process, however, does not work for superpositions such as
|ψ〉 = a|0〉+ b|1〉. For example, the state Uh|0〉 becomes the entangled state

Ucnot

(
Uh|0〉 ⊗ |0〉

)
= ψ+

e �= Uh|0〉 ⊗ Uh|0〉. (6.104)

It is impossible to construct a unitary transformation that does a better job.
This is the no-cloning theorem in its simplest form.

No-cloning theorem:

A unitary transformation that maps |ψ〉 ⊗ |0〉 to |ψ〉 ⊗ |ψ〉 for all ψ does
not exist.

For a proof of the no-cloning theorem we assume that there exists a
unitary operator U such that

U |ψ〉 ⊗ |0〉 = |ψ〉 ⊗ |ψ〉, U |φ〉 ⊗ |0〉 = |φ〉 ⊗ |φ〉 (6.105)
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holds for all ψ and φ. Because of the assumed unitarity, the scalar product
must be preserved. From the definition of the scalar product for separable
states we obtain

〈ψ, φ〉〈0, 0〉 = 〈ψ, φ〉 = 〈ψ, φ〉〈ψ, φ〉 (6.106)

which would be wrong whenever 〈ψ, φ〉 is neither 1 nor 0. Hence, such an
operator U does not exist.

6.9. Quantum Algorithms

6.9.1. Function evaluation

The toffoli and cnot gates implement all basic logic operations, hence,
at least in principle, we are able to compute any Boolean function

f : Z
n
2 → Z

m
2 , where Z2 = {0, 1}. (6.107)

(Zn
2 is the set of n-bit integers.) By definition, a Boolean function maps

an n-bit register onto an m-bit register. Let us consider here as a simple
example a function f that associates with each n-bit register a value in {0, 1}.
Certainly, this function is not invertible. In order to implement the function
evaluation in a unitary way, we repeat the trick of keeping a record of the
input. The mapping

Uf : |xa〉 = |x〉 ⊗ |a〉 −→ |x〉 ⊗ |a⊕ f(x)〉 (6.108)

is defined for x ∈ Z
n
2 and a ∈ {0, 1} and hence for all separable basis states

of a n+1-qubit register. By assuming that Uf is a linear transformation, we
extend its domain of definition from the set of basis vectors to all vectors of
the n + 1-qubit Hilbert space. Obviously Uf is unitary, because it maps the
set of basis states onto itself. Hence, it can be implemented by a sequence
of elementary logical operations as described previously. From now on, we
consider the function evaluation as a black box, which maps any n + 1-
qubit state to another state of the n + 1-qubit register. This black box is
usually called an oracle. If we want to know the value of the function f for
a particular binary string x ∈ Z

n
2 , then we prepare the input state |x0〉 and

send it through the black box. This gives the output |x〉 ⊗ |f(x)〉, and we
simply measure the state of the last qubit in order to determine the value
f(x) = 0 or 1. In that respect, the quantum algorithm for the computation
of f is not at all better than a classical algorithm.

The power of quantum computing comes into play if we apply the black
box to a superposition state. Applying Hadamard transformations to the
first n-qubits in the product state |00 . . . 0〉, we obtain a superposition of all
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possible n-qubit states. Still, we can send this superposition into the black
box:

Uf
1

2n/2

2n−1∑
x=0

|x0〉 =
1

2n/2

2n−1∑
x=0

Uf |x0〉 =
1

2n/2

2n−1∑
x=0

|xf(x)〉. (6.109)

Now all possible outputs f(x) for x ∈ Z
n
2 contribute to the final superposi-

tion. In a single run, the black box has obtained all 2n results simultaneously.
This is called quantum parallelism. It does not appear to be of much help,
however, because a measurement of the final state in the product basis would
only reveal one of the results, chosen randomly. After the measurement, the
output register is projected into the corresponding product state, which con-
tains no further information about f .

A superposition state is, however, capable of holding global information
about the function f . The following examples illustrate that it is possible
to take advantage of quantum parallelism in order to extract this global
information in an efficient way.

6.9.2. Simple quantum algorithms

We define the set D of all functions

f : Z
n
2 → Z2 = {0, 1} (6.110)

that are either constant or balanced. A function is balanced if we have
f(x) = 0 for exactly 2n−1 values of x ∈ Z

n
2 (that is, for exactly half of all

possible inputs) and f(x) = 1 for the other 2n−1 input values. f is constant
if for all x, the value f(x) is the same (either 0 or 1).

Exercise 6.17. Let a = a1a2 . . . an ∈ Z
n
2 be an n-bit string �= 0 (at least

one of the bits aj must be nonzero). Show that the function

ga(x) = a.x (6.111)

is balanced. Here, the scalar product a.x is defined modulo 2,

a.x = a1x1 + a2x2 + . . . + anxn mod 2 (6.112)

= a1x1 ⊕ a2x2 ⊕ . . .⊕ anxn. (6.113)

Exercise 6.18. Consider a balanced function f : Z
n
2 → Z2 and show

that ∑
x∈Zn

2

(−1)f(x) = 0. (6.114)

As a consequence of the previous exercise, prove the formula∑
x∈Zn

2

(−1)a.x (−1)b.x =

{
2n for a = b,
0 for a �= b.

(6.115)
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Here is the Deutsch-Jozsa problem: It is promised that a given function
f belongs to D. How can you tell whether f is constant or balanced? Clas-
sically, it will be necessary to compute the values f(x) for several inputs x.
If you are lucky, you can indeed know the answer after evaluating f for two
different inputs x (in case you get two different results). In the worst case,
however, you will need 2n−1 + 1 function evaluations in order to be sure. It
is clear that no classical computer can do better than that. But what about
the quantum computer?

The quantum computer would not be better than a classical computer
if you use the black box (unitary operator) just to compute the values of f
for different inputs x. But, by exploiting superposition and interference in
a clever way, it is indeed possible to get the answer with a single call to the
black box.

We prepare the input state

|0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
n times

⊗|1〉 = | 0 . . . 0︸ ︷︷ ︸
n times

1〉 (6.116)

and send each qubit through a Hadamard gate in order to obtain a super-
position of all input states. By (6.90) we obtain

Uh ⊗ · · · ⊗ Uh︸ ︷︷ ︸
n + 1 times

|0 . . . 01〉 =
1

2n/2

∑
x∈Zn

2

|x〉 ⊗ Uh|1〉. (6.117)

Next, this superposition of all possible inputs is sent through the black
box Uf . What will happen? We know that according to (6.108)

|x0〉 Uf−→ |x f(x)〉, |x1〉 Uf−→ |x (1⊕ f(x))〉
and hence

|x〉 ⊗ Uh|1〉 = |x〉 ⊗ 1√
2
(|0〉 − |1〉)

Uf−→ 1√
2

{
|x0〉 − |x1〉 if f(x) = 0
|x1〉 − |x0〉 if f(x) = 1

= (−1)f(x)|x〉 ⊗ Uh|1〉.
By the linearity of Uf , we can compute the action on the superposition
(6.117),

1
2n/2

∑
x∈Zn

2

|x〉 ⊗ Uh|1〉 Uf−→ 1
2n/2

∑
x∈Zn

2

(−1)f(x)|x〉 ⊗ Uh|1〉. (6.118)
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Finally, we perform a Hadamard transformation with the first n qubits (the
last qubit is no longer of interest). Using (6.91) we obtain

Uh ⊗ · · · ⊗ Uh︸ ︷︷ ︸
n times

1
2n/2

∑
x∈Zn

2

(−1)f(x)|x〉

=
1
2n

∑
x∈Zn

2

(−1)f(x)
∑
y∈Zn

2

(−1)x.y|y〉

=
∑
y∈Zn

2

cy |y〉, with cy =
1
2n

∑
x∈Zn

2

(−1)f(x)+x.y. (6.119)

(Here, x.y is the scalar product modulo 2 as defined in Exercise 6.17.) The
probability that the final measurement of the first n qubits gives |y〉 =
|0, . . . 0〉 is

|c0...0|2 =
∣∣∣ 1
2n

∑
x∈Zn

2

(−1)f(x)
∣∣∣2 =

{
1 if f is constant,
0 if f is balanced.

(6.120)

Hence, a single measurement of the first n qubits tells you whether f is
balanced or not.

Deutsch-Jozsa problem:

Assume that f : Z
n
2 → Z2 is either constant or balanced. A quantum

computer can determine this property with a single evaluation of f . A
classical computer has to evaluate f at least twice and at most 2n−1 + 1
times.

A variant of the Deutsch-Jozsa problem is the Bernstein-Vazirani prob-
lem. We consider the function f(x) = a.x with a �= 0 (see Exercises 6.17
and 6.18). For this function, the coefficient cy in (6.119) becomes, according
to (6.115)

cy =
1
2n

∑
x∈Zn

2

(−1)a.x(−1)x.y =

{
1 for a = y,
0 for a �= y.

(6.121)

Hence, the final state (6.119) of the first n qubits in the Deutsch-Jozsa
algorithm simply becomes |a〉. A single measurement of the |x〉 register thus
gives the result a. Classically, we would need to evaluate the function f for
the n inputs

x(j) = 0 . . . 010 . . . 0 (with ‘1’ on the jth place) (6.122)
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This gives all the binary digits aj = f(x(j)) = a.x(j) of a. There is no faster
way to compute a with a classical computer, because any evaluation of Z2-
valued function f reveals only one bit of information, and hence we need at
least n bits of information to determine the n-bit string a.

Bernstein-Vazirani problem:

Consider the function f(x) = a.x from Z
n
2 to Z2 with unknown a ∈ Z

n
2 .

A quantum computer allows computation of a with a single evaluation
of f . A classical computer has to evaluate f precisely n times.

Note that when comparing classical with quantum computing, the time
needed to compute the function f is not taken into account.

6.9.3. Further applications of quantum computers

The quantum algorithms described in the previous section show that for
some problems, quantum computers are more powerful than classical com-
puters. Here, we list some further examples that are treated in detail in the
specialized literature about this subject7:

6.9.3.1. Grover’s algorithm. In 1996, Lov Grover considered the problem
of searching an unsorted database of N items (looking for a needle in a
haystack). As an example, imagine the task of finding in a phone directory
the entry belonging to a particular phone number.

In an abstract language, we can formulate this problem as follows: We
assume that the database contains N = 2n items labeled by x ∈ Z

n
2 . It is

our task to retrieve one of these items, say, x = a. Clearly, there has to be
a test that tells us whether we have picked the right one. This test may be
represented by a function fa : Z

n
2 → Z2, given by

fa(x) =

{
1 for x = a,
0 for x �= a.

(6.123)

Again, the function should be imagined as a black box (oracle). A database
query is the evaluation of fa(x) for some input x. Grover’s problem is to
determine the unknown element a ∈ Z

n
2 with a reasonably high probability

with as few queries as possible.
The best classical algorithm is to examine the items one by one until

one hits the right one by chance. Hence, one has to examine an average of
N/2 elements to find a with a probability of 50%. Grover’s method exploits
quantum parallelism, that is, fa is evaluated for the superposition of all pos-
sible input states. A sequence of state rotations (“Grover iterations”) then

7See, for example, [6], [5], [2], and [12].
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enlarges the probability amplitude of the correct result by constructive inter-
ference while supressing the wrong results. The number of database queries
required by Grover’s algorithm is therefore only of order

√
N . Moreover, it

has been shown that Grover’s algorithm is optimal. We say that Grover’s
algorithm provides a quadratic speedup with respect to any classical algo-
rithm.

6.9.3.2. Simon’s algorithm. We consider a function f : Z
n
2 → Z

n
2 for

which there exists a ∈ Z
n
2 , a �= 0, such that

f(x⊕ a) = f(x), for all x ∈ Z
n
2 . (6.124)

Note that f is actually 2-to-1, because (x ⊕ a) ⊕ a = x. It is our task to
determine the period a with as few function evaluations as possible. Simon’s
algorithm, which is quite similar to the algorithms presented in Section 6.9.2,
provides an exponential speedup over any classical algorithm. The number
of function evaluations required by Simon’s algorithm is of order n; the
number required by any classical algorithm is of order 2n. This is an exam-
ple where the classical problem belongs to another complexity class as the
corresponding problem in quantum computing.

6.9.3.3. Period finding and the quantum Fourier transform. We write
the input x in decimal representation as an integer in the interval [0, 2n−1].
We consider a periodic function f : Z

n
2 → Z

m
2 . Such a function is called

periodic if there is an integer r (the period) in the interval [1, 2n − 1], such
that

f(x + r) = f(x), whenever x and x + r are in [0, 2n − 1]. (6.125)

In order to determine an unknown period by classical methods, one has to
evaluate the function a number of times that increases exponentially with
n. Peter Shor described a quantum algorithm that finds the period with
a polynomial number of function evaluations. His method is based on an
efficient quantum implementation of the Fourier transform. The quantum
Fourier transform is the unitary transformation whose action on the basis
vectors |x〉 is defined by

UQFT|x〉 =
1√
N

N−1∑
y=0

e2πix.y/N |y〉, with N = 2n. (6.126)

The quantum Fourier transformation provides an exponential speedup com-
pared to the classical FFT algorithm (FFT = fast Fourier transformation).
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6.9.3.4. Shor’s algorithm. In 1994, Peter Shor published a quantum algo-
rithm for finding the prime factors of an N -digit number. Making extensive
use of superposition and entanglement, the algorithm solves the problem in
a time of order N3 (roughly). It is believed that any classical factoring al-
gorithm would need a time depending exponentially on N (but this is not
proved). Shor’s algorithm is based on a quantum algorithm for finding the
period of a function using the quantum Fourier transformation. The other
parts of Shor’s factorization method can be performed on classical comput-
ers. Shor’s algorithm is of considerable interest, because the computational
hardness of the factorization of large integers is a key feature of the popular
RSA method for encrypting messages.

6.9.3.5. Error correction. Quantum algorithms are particularly vulner-
able to perturbations. Coherent superpositions of quantum states are ex-
tremely difficult to preserve. As soon as one of the qubits interacts with the
surrounding, the qubit has to be considered a part of a much larger system,
and its state is turned from a superposition into a statistical mixture. This
destroys at least a part of quantum parallelism, and the specific advantage
of a quantum computer is lost. Therefore, the possibility of quantum error
correction, that is, the restoration of the exact quantum state of a perturbed
qubit, is of particular importance. Peter Shor showed in 1995 that quantum
error correction can be implemented in a way similar to error correction in
classical algorithms. The algorithm uses redundant qubits to detect errors
and to restore the perturbed qubit’s original state.

It is certain that quantum effects will sooner or later play a major role
in the realization of computers. Whether quantum algorithms will ever be
used in the solution of real-world problems remains to be seen. In order
to have some practical advantage over classical algorithms, the computation
has to be done with many qubits, and with a clock rate similar to classical
computers. At the time of this writing, we are very far from achieving this
goal, but at least it appears that no physical law or principle speaks against
the realization of quantum computers.



Chapter 7

Relativistic Systems in One
Dimension

Chapter summary: The fundamental equation of relativistic quantum physics
is the Dirac equation. It combines the special theory of relativity with quantum
mechanics. In this chapter, we restrict our attention to free particles moving in one
space dimension, leaving the more general case to the next chapter. In one dimen-
sion, relativistic particles are described by wave functions with two components,
which are comparatively easy to visualize and, nevertheless, show many features of
higher-dimensional solutions that have puzzled a whole generation of physicists.

Dirac originally derived his equation by linearizing the classical relativistic
energy-momentum relation using matrix-valued coefficients (Section 7.2). A direct
generalization of the nonrelativistic interpretation of wave functions in terms of po-
sition probability densities leads to a natural Hilbert space for the Dirac equation
and to a tentative one-particle interpretation (Section 7.3). In Section 7.4, we find
plane-wave solutions of the Dirac equation and form (approximately) localized wave
packets as “continuous superpositions” of plane waves. It turns out that the Dirac
operator (the energy observable of a free particle) has a spectrum consisting of pos-
itive and negative energies. Correspondingly, the Hilbert space can be decomposed
as a direct sum of subspaces with positive and negative energy (Section 7.5).

Surprisingly, the kinematics of wave packets according to the Dirac equation
turns out to be a rich and interesting subject (Section 7.6). The presence of a
limiting velocity (the velocity of light) leads to characteristic distortions of wave
packets in position space. Moreover, a wave packet with negative energy moves
in a direction opposite to its average momentum. A very peculiar effect called
Zitterbewegung—an oscillating motion of the average position—occurs under cer-
tain conditions for superpositions of positive and negative energies. This and other
interference effects are discussed in Section 7.7. In Section 7.8, we describe wave
packets in energy space and in velocity space. These are representations where the
energy or the (classical) velocity are diagonal. The energy and velocity distributions
are important for an analysis and understanding of a wave packet’s time evolution.

The free-particle Dirac equation is relativistically invariant. The group of
Poincaré transformations has a unitary representation in the Hilbert space. We
discuss the Lorentz contraction of wave packets and find interesting interference ef-
fects for a velocity transformation of superpositions involving positive and negative
energies (Section 7.9).

323
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7.1. Introduction

The replacement of the momentum by the operator −i�∇ in the nonrelativis-
tic expression for the kinetic energy leads to the free-particle Hamiltonian
of quantum mechanics. We want to follow an analogous approach in the
relativistic case. According to the special theory of relativity, the relation
between the energy and the momentum for a free particle is

E =
√

c2 p2 + m2 c4. (7.1)

For particles at rest (p2 = 0), this becomes Einstein’s famous equation E =
mc2. We can obtain an operator in position space for the relativistic kinetic
energy by applying the usual substitution rule p→ −i�∇ to this expression:

Hsqrt =
√
−c2�2∆ + m2c4. (7.2)

The equation

i�
∂

∂t
ψ(x, t) = Hsqrt ψ(x, t) (7.3)

is often called the square-root Klein-Gordon equation. Several arguments
have been put forward against this equation:

(1) There is no easy way to modify this equation to incorporate electro-
magnetic fields in a way that is compatible with the special theory
of relativity.

(2) The operator Hsqrt − γ/r, where γ is the Coulomb coupling con-
stant defined in (2.6), gives wrong (inaccurate) eigenvalues for the
hydrogen atom.

(3) The square root of a differential operator is a nonlocal operator.
Hence, the time derivative of ψ at a point x is, according to (7.3),
related to the values of ψ(y, t) at all points y ∈ R

3.
(4) The time evolution generated by this operator is acausal. A wave

packet that is initially strictly localized in a finite region of space
instantaneously spreads over the entire R

3.
(5) The solutions of the square-root Klein-Gordon equation are scalar

wave functions. Real electrons have spin, and in position space they
should be described by a matrix-wave equation.

In 1926, Paul A.M. Dirac followed another approach to derive a relativis-
tic wave equation. We are going to explain Dirac’s idea in the simple case
of particles moving in one space dimension. The generalization to two and
three dimensions will turn out to be rather straightforward. Many effects
can be explained for one-dimensional wave packets, which are so much easier
to visualize.
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7.2. The Free Dirac Equation

7.2.1. The relativistic energy-momentum relation

In our treatment of particles with spin, we used spinor wave functions with
two components. Correspondingly, the Hamiltonian describing the energy
of a particle with spin is a matrix operator. Thus, it is not so far-fetched
to look for a matrix Hamiltonian also in the relativistic case. Dirac had
the ingenious idea that the additional degrees of freedom offered by matrix
operators would allow him to “linearize” the square-root in (7.1). He wrote
the energy of a particle with momentum p in one dimension as

E = α cp + β mc2, (7.4)

with two unknown coefficients α and β. The corresponding expression in
quantum mechanics was then obtained with the usual substitution rule p −→
−i�d/dx.

Let us compute the square of the expression (7.4). To this purpose,
we assume that the coefficients α and β are square matrices with constant
coefficients. We have to be careful not to set αβ equal to βα, because two
matrices do not necessarily commute. But we can assume that a constant-
coefficient matrix commutes with the momentum p (or with the momentum
operator p = −i� d/dx). Hence, we obtain

E2 =
(
α cp + β mc2

)2 = α2c2p2 + αβpmc3 + βαpmc3 + β2m2c2. (7.5)

Next. we compare this result with the classical expression for the square of
the energy, namely

E2 = c2p2 + m2c4. (7.6)

We require that the two expressions for E2 are equal. This tells us something
about α and β: For example, we see that it is impossible to meet this
requirement if the matrices α and β commute. The right sides in (7.5) and
(7.6) are only equal if the following relations hold:

αβ + βα = 0, α2 = β2 = 1. (7.7)

Here, 0 and 1 denote the zero and unit matrices, respectively. We also note
that the matrices α and β should be Hermitian. Otherwise, the expression
corresponding to (7.4) in quantum mechanics has no chance to become a
self-adjoint operator.

It is not so difficult to find Hermitian matrices satisfying the relations
(7.7). In fact, we know matrices with these properties already. Take, for
example, the Pauli matrices α = σ1 and β = σ3, and the relations are
satisfied automatically. Thus, we have reached the following conclusion.
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Dirac’s energy momentum relation:

The expression

E = σ1cp + σ3mc2 =
(

mc2 cp
cp −mc2

)
(7.8)

relates the energy and the momentum of a particle moving in one di-
mension in such a way that

E2 = (c2p2 + m2c4)1. (7.9)

You can see immediately that the choice α = σ1 and β = σ3 is not unique,
because any other pair of Pauli matrices would serve our purpose equally
as well. For later reference, we call the choice made in (7.8) the standard
representation.

Exercise 7.1. Show that the dimensions of any two matrices α and β
satisfying (7.7) must be an even number. Hint: Show that their eigenvalues
must be ±1 and compute the trace in (7.7).

7.2.2. The Dirac operator

The Hamiltonian operator obtained with the linearized energy (7.4) is the
free-particle Dirac operator in one space dimension,

H0 = αc
(
−i�

d

dx

)
+ βmc2. (7.10)

The free-particle Dirac operator is a matrix-differential operator representing
the energy observable of a free particle. In the standard representation, we
have α = σ1, β = σ3, and

H0 =

(
mc2 −i�c d

dx

−i�c d
dx −mc2

)
. (7.11)

The Dirac operator acts as a linear operator on vector-valued functions of
the type

ψ(x) =
(

ψ1(x)
ψ2(x)

)
∈ C

2. (7.12)

At each point x, the wave function ψ is now a vector with two components.
Each component is a complex number. The operator H0 is applied to ψ via
the rules of matrix multiplication,

H0 ψ(x) =
(

mc2 ψ1(x)− i�c ψ′
2(x)

−i�c ψ′
1(x)−mc2 ψ2(x)

)
, (7.13)

where the prime denotes the differentiation with respect to x.
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The evolution equation with the Dirac operator as the generator of the
time evolution is called the Dirac equation.

i�
∂

∂t
ψ(x, t) = H0 ψ(x, t). (7.14)

As usual, we are going to use units with � = 1 from now on.

Exercise 7.2. Show that the variable substitution (t, x) → (�t, �x) re-
moves the constant � from the free-particle Dirac equation (7.14).

Exercise 7.3. Show that any two Pauli matrices (σj , σk) with j �= k can
be obtained from (σ1, σ3) via a unitary transformation U (depending on j
and k). As a consequence,

σjcp + σkmc2 = UH0U
†, (7.15)

where H0 is the free-particle Dirac operator (7.11) in the standard represen-
tation. Hint: Use the theory described in Section 4.4. Rotate the x1- and
x3-axes into the xj- and xk-axes, respectively.

7.3. Dirac Spinors and State Space

7.3.1. A Hilbert space for the Dirac equation

In order to apply the methods and techniques of quantum theory, we need
to define a Hilbert space for the Dirac equation. A suitable state space for
the one-dimensional Dirac equation must consist of vector-valued functions

ψ(x) =
(

ψ1(x)
ψ2(x)

)
(7.16)

with two components in order to match the dimension of the Dirac matrices.
We assume that the components are square-integrable functions,∫ ∞

−∞
|ψj(x)|2 dx <∞ (j = 1, 2). (7.17)

The set of all ψ with two square-integrable component functions forms the
Hilbert space

L2(R)2 = L2(R)⊕ L2(R). (7.18)
We encountered a Hilbert space of two-component functions already in Sec-
tion 3.5.1, where we introduced wave functions describing particles with spin
1/2. In the present context, the elements ψ of the Hilbert space L2(R)2 are
frequently called Dirac spinors.1

1In case of one-dimensional systems, the name “spinors” is badly chosen, because it
will turn out that the two components have nothing to do with the spin.
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The scalar product between two Dirac spinors is

〈ψ, φ〉 =
∫

R

〈
ψ(x) , φ(x)

〉
2

dx. (7.19)

Here, the integrand is the C
2-scalar product of the C

2-vectors ψ(x) and φ(x).
It is defined as in (3.48) by〈

ψ(x) , φ(x)
〉
2

= ψ1(x) φ1(x) + ψ2(x)φ2(x). (7.20)

Accordingly, the norm ‖ψ‖ of a Dirac spinor ψ is given by

‖ψ‖2 = 〈ψ, ψ〉 =
∫

R

|ψ(x)|22 dx, (7.21)

and | · |2 is the norm of a vector in C
2 (see (3.49)), that is,

|ψ(x)|2 =
√
|ψ1(x)|2 + |ψ2(x)|2. (7.22)

Figure 7.1 shows our favorite method of visualizing Dirac spinors.2 The
example shows a spinor where both components are Gaussian functions. The
graph actually combines plots of three curves: phase-colored plots of ψ1(x)
and ψ2(x), where the second component is plotted upside-down and with less
saturation, and a filled plot of |ψ(x)|2 is in the background. Any method that
visualizes the components individually depends on the chosen representation
of Dirac matrices. We use the standard representation (α, β) = (σ1, σ3) for
all visualizations on the CD-ROM. Any change of representation ψ → Uψ
(where U is a unitary matrix) would change how the Dirac spinor is split
into components.

CD 6.1.1 discusses various methods of visualizing Dirac spinors. We
prefer to combine separate plots of the upper and the lower compo-
nents into one single graph as in Figure 7.1. It has to be stressed,
however, that any such method depends on the particular represen-
tation of Dirac matrices.

7.3.2. The standard interpretation

Choosing a Hilbert space of square-integrable functions was perfectly natural
for the Schrödinger equation: The requirement of square-integrability was
inevitable because |ψ(x)|2 was interpreted as a position probability density.
Hence, a wavefunction describing a particle that is somewhere in space with
certainty must satisfy the normalization condition

‖ψ‖2 =
∫

R

|ψ(x)|2 dx = 1. (7.23)

2Unfortunately, Figure 7.1 is reproduced here as a gray-scale image. Many color
images of Dirac spinors can be found on the CD-ROM.



7.3. DIRAC SPINORS AND STATE SPACE 329
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Figure 7.1. A Gaussian Dirac spinor in the standard rep-
resentation. Both components are Gaussian functions with
some average momentum. The average momentum deter-
mines the distance between the equally colored stripes (wave-
length) and the order of colors as in nonrelativistic quantum
mechanics (see CD 6.9.3 for a color version of this image).

But is square-integrability also reasonable for the solutions of the Dirac
equation?

It makes perfect sense to require square-integrability for Dirac spinors
if we can interpret |ψ(x)|22 as the position probability density of a relativis-
tic particle. This is certainly the most direct generalization of the non-
relativistic interpretation, therefore it is called the standard interpretation.

Standard interpretation:

A relativistic particle in one space dimension is described by a square-
integrable Dirac spinor ψ, and the expression∫

B
|ψ(x)|22 dx (7.24)

is the probability of finding the particle in the region B ⊂ R. Ac-
cordingly, the function x → |ψ(x)|22 will be called the standard position
probability density.

The standard interpretation is a consistent “one-particle interpretation,”
because the time evolution generated by the Dirac equation is unitary (see
Section 7.4.3 below). If ψ(t) describes a one-particle state at the initial time
t = 0, then there is one and only one particle for all times: A normalized
initial wave packet remains normalized, ‖ψ(t)‖ = 1 for all t.
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The standard interpretation has to be regarded as a tentative interpre-
tation rule that is not universally accepted. The strange behavior of the
solutions of the Dirac equation (to be discussed below) has led physicists to
look for alternatives. For example, one can define a suitable unitary trans-
formation U and interpret |(Uψ)(x)|22 as the position probability density.
Presently, it is not possible to reach a final verdict, because none of the
many possible interpretations is without flaws. In fact, any one-particle for-
malism has to be regarded as a compromise between simplicity and accuracy,
because at high energies additional particles and antiparticles are created.
Hence, only a formalism with a variable number of particles (quantum-field
theory) can be self-consistent. Concerning the interpretation of the one-
particle Dirac equation, I’m going to vote for a pragmatic point of view in
Section 8.4.3 below.

7.3.3. The relativistic momentum space

By a direct generalization of the corresponding nonrelativistic ideas, we also
obtain a tentative interpretation rule for the momentum observable. We
denote by ψ̂ the Fourier transform of a Dirac spinor ψ. For vector-valued
wave functions, the Fourier transformation is applied to each component
separately,

ψ̂j(k) =
(Fψj

)
(k) =

1√
2π

∫
R

e−ikx ψj(x) dx, j = 1, 2. (7.25)

The result ψ̂ is again a Dirac spinor, and the Fourier transformation can
be defined as a one-to-one mapping of L2(R)2 into itself, with the property
‖ψ‖ = ‖ψ̂‖ (Fourier-Plancherel relation; see Book One, Chapter 2). The
Fourier transform as a unitary mapping in the Hilbert space L2(R)2 is again
denoted by the letter F .

The inverse Fourier transformation F−1 : ψ̂ → ψ describes each spinor-
component ψj as a continuous superposition of plane waves exp(ikx),

ψj(x) =
(F−1ψ̂j

)
(x) =

1√
2π

∫
R

eikx ψ̂j(k) dk, j = 1, 2. (7.26)

By analogy with nonrelativistic quantum mechanics, we may interpret
ψ̂ as the representation of ψ in momentum space. Hence, we define |ψ̂(k)|22
as the standard momentum probability density.
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Standard interpretation (continued):

For a particle described by a square-integrable Dirac spinor ψ, the ex-
pression ∫

G
|ψ̂(p)|22 dp (7.27)

is the probability of finding the momentum of the particle in G ⊂ R.

In favor of this interpretation, we state that it is consistent with choosing
p = −id/dx as the momentum operator. It would be hard to accept anything
else, because this interpretation of the momentum was built into the theory
from the very beginning; see Equation (7.4). The momentum operator acts
component-wise, that is, the differentiation is applied to each component
of the spinor. As in all other physical theories, the momentum operator
generates translations in position space (see Book One, Chapter 6),(

e−ipaψ
)
(x) = ψ(x− a), (7.28)

where e−ipa again acts component-wise on Dirac spinors.
We would also like to remind the reader that the Fourier transform F

turns a differential operator into a multiplication operator. As in Book One
we find

F(−i
d

dx
ψ
)
(k) = k(Fψ)(k) = kψ̂(k). (7.29)

We can even evaluate the action of the free-particle Dirac operator H0 in
momentum space. It becomes multiplication with the k-dependent matrix

h0(k) = cαk + βmc2 =
(

mc2 ck
ck −mc2

)
(7.30)

(the matrix form refers to the standard representation). That is,

(FH0ψ)(k) = h0(k) (Fψ)(k) or FH0F−1ψ̂(k) = h0(k) ψ̂(k) (7.31)

which we write briefly as

FH0F−1 = h0(k). (7.32)

7.3.4. A solution of the Dirac equation

The behavior of solutions of the time-dependent Dirac equation is rather
strange. A numerical solution of this equation that starts from some reason-
able initial condition (a Gaussian wave packet) reveals a quite unexpected
behavior that is typical also for solutions of the Dirac equation in higher
dimensions. An example of this behavior is shown in Figure 7.2.
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Figure 7.2. Snapshots from the time evolution of a Gauss-
ian wave packet according to the one-dimensional Dirac equa-
tion (position probability density).

CD 6.1.2 shows a numerically obtained solution of the Dirac equa-
tion, similar to the one in Figure 7.2. Despite the “nice” initial con-
dition, the solution shows strange oscillations and self-interference
effects.

Figure 7.2 shows three snapshots from the time evolution ψ(t) of the
initial function

ψ0(x) = N exp(−x2/2)
(

1
1

)
. (7.33)

This is a spinor with Gaussian initial functions in both components. More
precisely, the pictures show the absolute value |ψ(x, t)|2 of the spinor at time
t. According to the standard interpretation, the square of this quantity is
the position probability density. We see that the shape of the wave packet
at later times shows strange distortions. The wiggles are similar to those
caused by interference phenomena.

7.4. Plane Waves and Wave Packets

In this section, we determine plane wave solutions of the Dirac equation.
They belong to a fixed value of the momentum, but their position is com-
pletely undetermined. Localized wave packets can be formed in complete
analogy to our treatment of the Schrödinger equation (see Book One, Chap-
ter 3). This procedure involves the Fourier transformation.

7.4.1. Diagonalization in momentum space

The Fourier transformation F converts the free-particle Dirac operator H0 (a
matrix-differential operator) into the matrix-multiplication operator h0(k)
given by

h0(k) = FH0F−1(k) = cαk + βmc2. (7.34)
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For each k ∈ R, the matrix h0(k) is a Hermitian two-by-two matrix. It can
be diagonalized with the help of a unitary matrix, but the diagonalization
procedure depends on the particular representation of the Dirac matrices α
and β. Using the methods of linear algebra, we find a unitary matrix u(k)
that diagonalizes h0(k) in the standard representation. The choice of u(k)
is not unique, because we can always multiply it by a phase factor. Here,
we consider the matrix

u(k) = d+(k)12 + d−(k)βα (7.35)

where

d+(k) =
1√
2

(
1+

mc2

λ(k)

)1
2
, d−(k) =

sgn(k)√
2

(
1− mc2

λ(k)

)1
2
, (7.36)

and
λ(k) =

√
c2k2 + m2c4 (positive square-root). (7.37)

It may be checked that

u(k)h0(k)u(k)−1 = λ(k) β. (7.38)

This equation is independent of the representation. In the standard repre-
sentation, λ(k)β is diagonal, and u(k) is indeed the matrix that diagonalizes
h0(k). It may be checked that u(k) is unitary,

u(k)† = u(k)−1 = d+(k)12 − d−(k) βα. (7.39)

From (7.38) we conclude that the eigenvalues of the matrix h0(k) are
+λ(k) and−λ(k), because the Dirac matrix β has the eigenvalues +1 and−1.
The set of all possible eigenvalues of h0(k) for each k defines the spectrum
σ(H0) of the free-particle Dirac operator:

σ(H0) = {±λ(k) | k ∈ R} = (−∞,−mc2] ∪ [mc2,∞). (7.40)

You will certainly recognize the relativistic energy-momentum relation in the
expression (7.37). Both signs of the square root of (7.9) play a role in (7.40)
and hence in Dirac’s theory. The occurrence of the negative eigenvalue has
remarkable consequences that we are going to describe in the next sections.

Exercise 7.4. Verify the following properties of the quantities d±, which
are defined in (7.36):

d2
+ + d2

− = 1, d2
+ − d2

− =
mc2

λ(k)
, 2d+d− =

ck

λ(k)
. (7.41)

Exercise 7.5. For the velocity v of a free particle, one has the relation

v2

c2
=

c2k2

λ(k)2
. (7.42)
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Show that

d2
+ − d2

− =

√
1− v2

c2
, 2d+d− =

ck(E)
E

= sgn(k)
|v|
c

. (7.43)

Exercise 7.6. Investigate the limits of d±(k) and of the matrices h0(k)
and u(k), as k goes to 0.

Exercise 7.7. Show that the inverse of the matrix u(k) is given by
(7.39).

Exercise 7.8. Verify the relation (7.38).

7.4.2. Eigenvectors and plane-wave solutions

The eigenvectors of the matrix h0(k) are the columns of the matrix u(k)†.
In the standard representation, we have

u(k)† = d+(k)12 − i d−(k) σ2. (7.44)

Hence, the eigenvector of h0(k) belonging to the positive eigenvalue +λ(k)
is

upos(k) = u†(k)
(

1
0

)
=

(
d+(k)
d−(k)

)
, (7.45)

and the eigenvector belonging to −λ(k) is

uneg(k) = u†(k)
(

0
1

)
=

(−d−(k)
d+(k)

)
. (7.46)

Now, it is fairly easy to construct plane-wave solutions. From the relation
H0 eikx = h0(k) eikx, we conclude immediately that the stationary plane
waves

upos(k;x) =
1√
2π

upos(k) eikx, uneg(k;x) =
1√
2π

uneg(k) eikx (7.47)

are eigenfunctions3 of H0,

H0 upos(k;x) = λ(k) upos(k;x), H0 uneg(k;x) = −λ(k)uneg(k;x). (7.48)

In order to obtain a solution of the time-dependent Dirac equation, we only
have to multiply the stationary plane wave with the corresponding time
factor exp(±iλ(k)t) and arrive at the following result.

3The plane waves are not eigenvectors in the sense of Book One, Definition 5.1, because
they are not square-integrable. Hence, they do not belong to the domain of H0.
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Plane-wave solutions of the Dirac equation:

The free-particle Dirac equation in the standard representation

i
∂

∂t
ψ(x, t) = −icσ1

∂

∂x
ψ(x, t) + σ3mc2ψ(x, t) (7.49)

has for each k ∈ R the following two plane-wave solutions

upos(k;x, t) =
1√
2π

upos(k) eikx−iλ(k)t, (7.50)

uneg(k;x, t) =
1√
2π

uneg(k) eikx+iλ(k)t, (7.51)

with upos(k) and uneg(k) given by (7.45) and (7.46).

We call upos(k;x, t) a plane wave with positive energy and uneg(k;x, t) a
plane wave with negative energy . For the moment, these are just names. It
is not yet clear what the occurrence of negative energies means physically.
We are going to investigate the behavior of these “solutions with negative
energy” more closely before we assign a meaning to them in Section 8.4.1.

Let us first have a closer look at the two types of plane waves. Because
of

|d+(k)| > |d−(k)|, (7.52)

the upper component of upos is always larger in absolute value than the lower
component.4 On the other hand, the lower component of uneg is, for all k,
larger than the upper component. From the behavior of d−(k) in the limit
k → 0, we conclude that the smaller component of the plane waves vanishes
in the limit k → 0.

CD 6.2 investigates the stationary plane waves in the standard rep-
resentation, as defined in (7.47). Observe the relation between wave-
length and momentum, which is the same as nonrelativistic quantum
mechanics. The relation between the size of the upper and the lower
component is characteristic for the sign of the energy. Moreover,
caused by the additional minus in (7.46), positive and negative en-
ergies are distinguished by different phase relations between upper
and lower components. These properties will still be recognizable in
the visualizations of wave packets.

4Of course, this observation is only relevant with respect to the chosen standard
representation. Changing the representation of Dirac matrices (that is, multiplying all
solutions with a constant unitary matrix) gives an equivalent description with other re-
lations between upper and lower components. But, nevertheless, the relative size of the
components in the standard representation is useful for identifying the type of solution in
a visualization.
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Figure 7.3. Phase velocity of plane waves as a function of
the momentum k. The phase velocity is always larger than
the velocity of light. For negative energy, the sign of the
velocity is opposite to the sign of the momentum.

The phase velocity of a plane wave exp(ikx− iλ(k)t) is given by λ(k)/k.
In our case we have

vph(k) = ±
√

c2k2 + m2c4

k
−→

{
±c, as k →∞,
±∞, as k → 0 (from above).

(7.53)

Here, the sign depends on the sign of the energy. For a plane wave with
negative energy, the sign of the phase velocity is opposite to the sign of the
momentum. Figure 7.3 shows a plot of the phase velocity as a function of k.
We see that the phase velocity approaches a finite limit ±c, the velocity of
light, as the momentum k goes to infinity. It appears strange that the phase
is always faster than light, |vph(k)| > c (for all k). But the phase velocity
is physically not observable and carries no information from one point to
another, hence there is no conflict with the theory of relativity.

It might also seem strange that the phase velocity increases when the
momentum k decreases and that in the limit of zero momentum, the phase
velocity even tends to infinity. But this effect already occurs in nonrelativis-
tic quantum mechanics. Consider the Schrödinger equation with a constant
potential V (x) = V0 = limk→0 E(k), where E(k) = k2/2m+V0 is the energy
as a function of k. The corresponding plane wave exp(ikx− iE(k)t) has the
phase velocity (k2/2m + V0)/k, which diverges like V0/k, as k → 0. For the
Dirac equation, a plane wave with energy ±λ(k) feels an “effective constant
potential” ± limk→0 λ(k) = ±mc2.

As in the case of the Schrödinger equation, the phase velocity of relativis-
tic plane waves can be changed by adding a constant to the Dirac operator.
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For example, we may subtract the rest energy and consider the Dirac equa-
tion with the Hamiltonian H0−mc2. Then, for sufficiently small k, the phase
velocity of a positive energy solution behaves similarly to the phase velocity
according to the free-particle Schrödinger equation. If we are only interested
in the plane waves with negative energy, we may add the constant mc2 to
the Dirac operator.

CD 6.3 shows the time evolution of plane waves with various mo-
menta and positive and negative energies. The time-dependent Dirac
equation is linear, and hence the superposition of plane waves with
different momenta is again a solution. CD 6.3.3–CD 6.3.5 present a
few typical examples of superpositions.

Exercise 7.9. For each k ∈ R, show that the two vectors upos(k) and
uneg(k) form an orthonormal basis of C

2, that is, show that the equations

|upos(k)|2 = 1, |uneg(k)|2 = 1, 〈upos(k), uneg(k)〉2 = 0 (7.54)

hold for all k ∈ R (consider also the case k = 0).

Exercise 7.10. Verify by a direct calculation that (7.50) and (7.51) are
solutions of (7.49).

Exercise 7.11. Find the plane-wave solutions of the Dirac equation with
a constant potential V0. For this, replace the Dirac operator H0 by H0 + V0.
All energies get shifted by V0. Compute the phase velocities of the two types
of plane-wave solutions and discuss their behavior as a function of k. What
do you get for V0 = ±mc2?

7.4.3. Building wave packets

The time-dependent free-particle Dirac equation can now be solved in exactly
the same way as the Schrödinger equation in Book One. We perform a
Fourier transformation F of the initial spinor

ψ(x, t=0) = φ(x), (7.55)

which is assumed to be square-integrable. The result is the square-integrable
spinor in momentum space

φ̂(k) =
1√
2π

∫
R

e−ikx φ(x) dx. (7.56)

Next, we write this vector as a linear combination of the basis vectors upos(k)
and uneg(k),

φ̂(k) = φ̂+(k) upos(k) + φ̂−(k)uneg(k), (7.57)
where the expansion coefficients are given by C

2-scalar products

φ̂+(k) = 〈upos(k), φ̂(k)〉2, φ̂−(k) = 〈uneg(k), φ̂(k)〉2. (7.58)
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The next step is to multiply the parts of φ̂(k) by the appropriate time factors
exp(∓iλ(k)t),

ψ̂(k, t) = φ̂+(k) upos(k) e−iλ(k)t + φ̂−(k) uneg(k) eiλ(k)t. (7.59)

Finally, we perform an inverse Fourier transform

ψ(x, t) =
1√
2π

∫
R

eikx ψ̂(k, t) dk

=
∫

R

(
φ̂+(k) upos(k;x, t) + φ̂−(k) uneg(k;x, t)

)
dk. (7.60)

and obtain the solution of the time-dependent free-particle Dirac equation
(in position space) with the initial condition ψ(t=0) = φ.

Ψ Equation (7.60) defines a solution of the Dirac equation for all initial
conditions φ ∈ L2(R)2, provided that the integral is defined as a limit

n → ∞ of integrals over finite intervals from −n to n. The limit n → ∞
is also needed for a proper definition of the Fourier integral (7.56) as a
unitary transformation with the domain L2(R)2 (as explained in Book One,
Section 2.5.4). The solution thus obtained for initial conditions not in the
domain of the Dirac operator H0 is a so-called mild solution of the Dirac
equation (see Book One, Section 6.1). An initial function in the domain
of H0 gives a strict solution (a solution that is in the domain of H0 for
all times). The domain of H0 can be described as the set of those square-
integrable Dirac spinors φ, for which λ(k) φ̂(k) is still a square-integrable
function of k.

Let us collect the main result of this section in the following box.

Solution of the Dirac equation:

Let φ ∈ L2(R)2. The time evolution generated by the free-particle Dirac
operator H0 is unitary. It is given by

ψ(x, t) = e−iH0t φ(x)

=
∫ ∞

−∞

(
φ̂+(k)upos(k;x, t) + φ̂−(k)uneg(k;x, t)

)
dk, (7.61)

where
φ̂±(k) =

〈
upos

neg

(k), φ̂(k)
〉
2
, (7.62)

and φ̂ is the Fourier transform of the initial vector φ.
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Exercise 7.12. Show that φ̂+(k) and φ̂−(k) are the components of the
Dirac spinor u(k) φ̂(k). Thus

u(k) φ̂(k) =
(

φ̂+(k)
φ̂−(k)

)
. (7.63)

Exercise 7.13. Using the Fourier-Plancherel relation, prove that

‖φ‖2 =
∫ ∞

−∞

(
|φ̂+(k)|2 + |φ̂−(k)|2

)
dk. (7.64)

Exercise 7.14. Use (7.64) to prove that the norm of the solution (7.61)
is independent of t,

‖ψ(·, t)‖2 = ‖φ‖2. (7.65)

Exercise 7.15. A generalization of the previous exercise is the following.
Assume that φ and ψ are two Dirac spinors. Define φ̂±(k) and ψ̂±(k) as
before and prove that

〈φ, ψ〉 =
∫ ∞

−∞

(
φ̂+(k) ψ̂+(k) + φ̂−(k) ψ̂−(k)

)
dk. (7.66)

Exercise 7.16. For an initial spinor in the domain of H0, show that
ψ̂(k, t) given by (7.59) is a solution of the Dirac equation in momentum
space,

i
d

dt
ψ̂(k, t) = h0(k) ψ̂(k, t). (7.67)

7.5. Subspaces with Positive and Negative
Energies

From Equation (7.61) at time t = 0 we see that any square-integrable spinor
φ can be written as a continuous superposition of the stationary plane waves
upos(k;x) and uneg(k;x),

φ(x) =
∫

R

φ̂+(k) upos(k;x) dk +
∫

R

φ̂−(k) uneg(k;x) dk

= φpos(x) + φneg(x). (7.68)

The first summand is a wave packet made exclusively out of plane waves
with positive energy. Any such wave packet will be called a wave packet
with positive energy . It has the general form

ψ(x) =
∫ ∞

−∞
f(k) upos(k;x) dk, (7.69)
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where f(k) is a suitable function that describes the distribution of momenta
in the wave packet. Obviously, the wave packet ψ has the property that

ψ̂+(k) =
〈
upos(k), ψ̂(k)

〉
2

= f(k), ψ̂−(k) =
〈
uneg(k), ψ̂(k)

〉
2

= 0. (7.70)

We can apply the Dirac operator H0 to this wave packet. Using (7.48) we
find

H0 ψ(x) =
∫ ∞

−∞
f(k) H0 upos(k;x) dk =

∫ ∞

−∞
λ(k) f(k)upos(k;x) dk. (7.71)

The action of the Dirac operator H0 on ψ can thus be described as the
multiplication of f(k) by λ(k). We may now easily calculate the expectation
value of the Dirac operator H0. In view of (7.66) we find, using λ(k) > mc2,
that

〈ψ, H0 ψ〉 =
∫ ∞

−∞
f(k) λ(k) f(k) dk =

∫ ∞

−∞
λ(k) |f(k)|2 dk > mc2, (7.72)

and this is sufficient reason to call ψ a wave packet with positive energy.
Similarly, a wave packet with negative energy is a superposition of plane

waves with negative energy, like

φ(x) =
∫ ∞

−∞
g(k) uneg(k;x) dk. (7.73)

For this wave packet we find

φ̂+(k) = 0 and φ̂−(k) = g(k). (7.74)

The action of the Dirac operator H0 on φ amounts to a multiplication of g(k)
with −λ(k). Hence, the expectation value of H0 in the state φ is negative,

〈φ,H0 φ〉 < −mc2. (7.75)

Using (7.66), we find immediately that the scalar product between a wave
packet ψ with positive energy and a wave packet φ with negative energy is

〈ψ, φ〉 =
∫ ∞

−∞

(
f(k) · 0 + 0 · g(k)

)
dk = 0. (7.76)

A wave packet with positive energy is always orthogonal to a wave packet
with negative energy.

Thus, every wave packet φ in the Hilbert space L2(R)2 can be split in a
unique way into a sum of two orthogonal parts φpos and φneg, where φpos is
a wave packet with positive energy, and φneg is a wave packet with negative
energy. Figure 7.4 shows this decomposition for the wave packet

ψ(x) =
( 1

3π

)1/4
(

exp(−x2/6)
0

)
. (7.77)
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Figure 7.4. The Dirac spinor of Equation (7.77) and its
parts with positive and negative energy. (a) |ψ(x)|2. (b)
|ψpos(x)|2. (c) |ψneg(x)|2.

The set of all wave packets with positive energy is itself a Hilbert space,
a subspace of L2(R)2. This subspace will be called the positive-energy sub-
space Hpos(H0). Similarly, the wave packets with negative energy form the
negative-energy subspace Hneg(H0).

Positive/negative-energy subspaces:

The Hilbert space L2(R)2 is the direct sum of two orthogonal Hilbert
subspaces,

L2(R)2 = Hpos(H0)⊕ Hneg(H0). (7.78)
This means that every square-integrable spinor ψ has a representation

ψ = ψpos + ψneg, 〈ψpos, ψneg〉 = 0 (7.79)

as a sum of two uniquely determined, mutually orthogonal parts with

〈H0〉ψpos > mc2 > 0, 〈H0〉ψneg < −mc2 < 0. (7.80)

In momentum space, the decomposition of a wave packet into positive-
and negative-energy parts is described by (7.57). The functions

ψ̂pos(k) = ψ̂+(k)upos(k), and ψ̂neg(k) = ψ̂−(k)uneg(k) (7.81)

are the Fourier transforms of ψpos(x) and ψneg(x). It follows from the or-
thogonality of positive- and negative-energy parts and from the unitarity of
the Fourier transformation that

‖ψ‖2 = ‖ψpos‖2 + ‖ψneg‖2 = ‖ψ̂pos‖2 + ‖ψ̂neg‖2. (7.82)

The Dirac operator in momentum space is just multiplication by ±λ(k) on
the parts of positive and negative energy,

F (H0ψ)(k) = λ(k) ψ̂pos(k)− λ(k)ψ̂neg(k). (7.83)
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Similar results hold for functions of H0. In particular, the time evolution
exp(−iH0t) is described by

F (e−iH0t ψ)(k) = e−iλ(k)t ψ̂pos(k) + eiλ(k)t ψ̂neg(k). (7.84)

We conclude from this that a wave packet with ψ̂neg = 0 stays in the positive-
energy subspace for all times.

For the solutions of the free-particle Dirac equation, the sign of the
energy is a conserved quantity. A wave packet that initially has positive
energies, has positive energies for all times.

We note that this result remains true for the Dirac equation with time-
independent external fields, because it follows directly from the conservation
of the energy.

Exercise 7.17. Consider the operator

Ppos =
1
2

(
1 +

H0√
H2

0

)
. (7.85)

Describe its action in momentum space

Ppos(k) = F PposF−1 (7.86)

and compute u(k) Ppos(k)u(k)−1, where u(k) is the matrix defined in (7.35).

Exercise 7.18. Show that in the standard representation

Ppos(k) = upos(k) · upos(k)† =
(

d+(k)
d−(k)

)
· (d+(k) , d−(k)

)
(7.87)

and derive a similar relation involving uneg.

Exercise 7.19. Show that Ppos is an orthogonal projection operator, that
is,

P 2
pos = Ppos = P †

pos. (7.88)

Compute its action on a wave packet with positive (negative) energy and
show that

Ppos L2(R)2 = Hpos. (7.89)

Exercise 7.20. Find a similar operator Pneg that projects onto the sub-
space Hneg and show that

Ppos Pneg = Pneg Ppos = 0, Ppos + Pneg = 1. (7.90)
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Figure 7.5. (a) Dirac spinor in momentum space. It has
positive energy and a wide Gaussian momentum distribution
stretching into the relativistic regime. (b) The position prob-
ability density is initially similar to a Gaussian, but at later
times develops “shock fronts” that travel approximately with
the velocity of light (units with m = c = � = 1).

Exercise 7.21. Show that the free-particle Dirac operator acts like the
square-root Klein-Gordon operator on a wave packet with positive energy,

H0ψpos = (c2p2 + m2c4)1/2 ψpos. (7.91)

Describe its action on a wave packet with negative energy.

7.6. Kinematics of Wave Packets

7.6.1. The limiting velocity

The Dirac equation has solutions that behave in a quite familiar way. Any
wave packet that consists only of positive energies and that has a momen-
tum distribution corresponding to nonrelativistic velocities behaves approx-
imately in the same way as a solution of the Schrödinger equation.

CD 6.4.1 shows a wave packet with positive energy. It has a momen-
tum distribution in a neighborhood of k = 0, and all contributing
momenta correspond to nonrelativistic velocities |v| < c/2. As a
consequence, the wave packet evolves similar to a solution of the
Schrödinger equation familiar from Book One. On the other hand,
CD 6.4.2 and CD 6.4.3 show the distortions arising from the contri-
butions of relativistic velocities.

For the nonrelativistic Schrödinger equation of a free particle, Gaussian
wave packets have a particular importance. (A Gaussian is a function of the
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type exp(ax2 + bx + c) where a has a negative real part). If the initial func-
tion is a Gaussian, then the wave packet at later times is again a Gaussian
function. In momentum space, the free nonrelativistic time evolution is just
multiplication by the (Gaussian) phase factor exp(−ik2t/2). For the Dirac
equation, Gaussian functions are no longer convenient. For example, the
Gaussian Dirac spinors(

exp(−x2)
exp(−x2)

)
,

(
exp(−x2)

0

)
,

(
0

exp(−x2)

)
(7.92)

all have nonzero parts with positive and negative energy, which are not
Gaussian functions. In momentum space, the time evolution multiplies the
positive-energy part with the (non-Gaussian) phase factor exp(−iλ(k)t) and
the negative-energy part with exp(+iλ(k)t). Consequently, the wave packet
at later times is not a Gaussian spinor any longer.

The non-Gaussian distortion is most clearly visible if the wave packet has
a very wide momentum distribution. An example is provided by Figure 7.5.
It shows a wave packet with positive energy and a Gaussian momentum
distribution. The momentum distribution is symmetric around k = 0 and
extends far into the region |k| > 1. For the visualization, we use scaled units
with m = c = 1, hence v = k/

√
k2 + 1 is measured in units of the speed of

light, and the momenta |k| > 1 correspond to relativistic velocities |v| > 0.7.
We note that a linear relation between velocity and momentum would

be necessary in order to preserve the Gaussian shape in position space (as
is the case in nonrelativistic quantum mechanics). But according to the
special theory of relativity, no part of a wave packet can move faster than
light. Instead, the components with high momenta all move with similar
velocities close to ±c. Therefore, these fast parts cannot spread as usual
and form wave fronts in position space, as shown in Figure 7.5(b).

CD 6.5 shows a few examples of propagating wave packets with posi-
tive average momentum. The wave packet in CD 6.5.1 behaves essen-
tially like a solution of the Schrödinger equation. The time evolution
in momentum space is shown in CD 6.5.2, illustrating the fact that
the momentum distribution is constant in time. The wave packet
in CD 6.5.3 moves with relativistic speed and shows virtually no
dispersion. CD 6.5.4 shows a wave packet with a wide momentum
distribution ranging from slow to relativistic momenta (similar to
Figure 7.6). As a result, the Gaussian-like initial shape gets heavily
distorted in position space.

An example of a propagating wave packet is shown in Figure 7.6. This
illustration also shows the position and velocity distributions in the wave
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Figure 7.6. Non-Gaussian distortion of a moving wave
packet with a wide momentum distribution and positive en-
ergy. (a) Snapshots of the time evolution at t = 0, t = 35, and
t = 70. (b) Momentum distribution. (c) Velocity distribution
(c = 1).

packet. Though the momentum distribution has a Gaussian shape, the ve-
locity distribution is distorted by the presence of a limit for the propagation
speed of any signal. (Here, we use scaled units with c = 1). We see that the
position distribution asymptotically approaches a scaled version of the veloc-
ity distribution. (This kinematical fact was observed earlier in the context
of nonrelativistic quantum mechanics, see Book One, Section 3.6.)

The illustrations belonging to this section all show wave packets with pos-
itive energy. The initial wave packet is a superposition of the form (7.69). It
is a characteristic feature of these wave packets that positive momenta corre-
spond to positive velocities. The velocity distribution ρ(v) of a wave packet
with positive energies is obtained from the momentum distribution |ψ̂(k)|2
by a variable substitution:

ψ ∈ Hpos(H0) : ρ(v) =
∣∣ψ̂(

k(v)
)∣∣2, (7.93)

where

k(v) =
mv√

1− v2/c2
(7.94)

is the momentum as a function of the velocity.
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Exercise 7.22. Find a Dirac spinor in momentum space with positive
energy and a Gaussian momentum distribution, that is,

|ψ̂(k)|2 =
(|ψ̂1(k)|2 + |ψ̂2(k)|2)1/2 = exp(−k2/2). (7.95)

Does this spinor have a Gaussian position distribution?

7.6.2. Negative-energy wave packets

CD 6.6 shows the time evolution of wave packets with negative en-
ergy. Observe that in the standard representation, you can recognize
the sign of the energy from the relative size of the upper and lower
components. For a negative-energy wave packet, the lower compo-
nent is larger than the upper component. CD 6.6.1 shows a wave
packet with average momentum zero. CD 6.6.2 shows a wave packet
with a positive average momentum, similar to the one in Figure 7.7.
It is interesting that this wave packet moves toward the left, that
is, in a direction opposite to its momentum. CD 6.6.3 shows the
corresponding time evolution in momentum space.

A wave packet with negative energy moves in a direction opposite to its
average momentum. Hence, the velocity distribution ρ(v) of a wave packet
with negative energy is obtained from its momentum distribution |ψ̂(k)|2 by
the following substitution:

ψ ∈ Hneg(H0) : ρ(v) =
∣∣ψ̂(−k(v)

)∣∣2, (7.96)

where k(v) is the momentum as a function of the velocity as defined in (7.94).
Figure 7.7 shows some snapshots from the motion of a wave packet with

negative energy. This wave packet moves toward the left, although it is
composed of positive momenta only.

The modulus of the momentum in Figure 7.7 is larger than in the example
of the previous section, Figure 7.6. Hence, the velocity distribution (see
Fig. 7.7(c)) is a narrow peak around an average velocity close to −c. But, a
narrow velocity distribution means less spreading in position space. Indeed,
Figure 7.7(a) shows less dispersion compared to the example in Figure 7.6.
At very high energies, the momentum is approximately proportional to the
energy, E ≈ ck. In position space, these high-energy wave packets move
essentially without spreading. The limiting case E = ck is exactly realized
for electromagnetic waves, which move with the speed of light and have no
dispersion at all.

In general, a wave packet has nonvanishing parts with positive and neg-
ative energies. Figure 7.8 shows, as an example, the motion of the initial
spinor

ψ(x) = N exp(−x2/2 + i k0 x)
(

1
0

)
. (7.97)
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Figure 7.7. Non-Gaussian distortion of a moving wave
packet with negative energy. The wave packet has positive
momentum but negative velocity. (a) Snapshots of the time
evolution. (b) Momentum distribution. (c) Velocity distri-
bution (c = 1).

This wave packet has a Gaussian momentum distribution around a positive
mean value k0 and a Gaussian position distribution. It is a superposition of
parts with positive and negative energies. The part with positive energies
moves to the right (because k0 is positive). The part with negative energy
moves in a direction opposite to its momentum. As a consequence, the
wave packet will split into two parts. Indeed, we can see this behavior in
Figure 7.8.

Several examples of wave packets that split into parts with positive
and negative energies moving in opposite directions are shown in
CD 6.9 and in CD 6.11. In all these examples, the momentum distri-
bution is centered around some positive momentum, hence the part
moving to the left has negative energy.

7.7. Zitterbewegung

7.7.1. The standard position operator

The standard interpretation described in Section 7.3.2 leads naturally to the
assumption that the operator x (multiplication by the variable x) represents
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Figure 7.8. Strange behavior of a wave packet with positive
momentum. The initial wave packet (7.97) has only an upper
component and a momentum distribution around a positive
mean value. It splits into a part with positive energy moving
to the right and a (smaller) part with negative energy moving
to the left.

the position observable. This position operator, however, is not generally
accepted among physicists, and there have been many suggestions for al-
ternative position operators. In order to distinguish x from other possible
choices, we make the following definition.5

Definition:

The linear operator x of component-wise multiplication by the position
variable x,

(xψ)(x) =
(

x ψ1(x)
x ψ2(x)

)
(7.98)

is called the standard position operator.

The (dense) domain of x consists of those spinors in L2(R)2, for which
xψ is again a square-integrable Dirac spinor.

It is interesting to examine the expectation value of the standard position
for the wave packet shown in Figure 7.2. The expectation value of x in the
state ψ(t) is (according to our interpretation) the average position of the
particle at time t. It is given by

x(t) = 〈x〉ψ(t) =
∫ ∞

−∞
x |ψ(x, t)|22 dx. (7.99)

Figure 7.9 shows this function for the initial spinor ψ defined in (7.33). It
shows an asymptotically damped rapid oscillation around some mean value.

5As we prefer not to introduce too many symbols, we denote, as usual, a multiplication
operator by the same symbol as the expression by which it multiplies.
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Figure 7.9. The expectation value of the position of the
wave packet in Figure 7.2 oscillates around a mean-value.

Despite the very symmetric initial condition, the mean value has a slow pos-
itive drift-velocity. The oscillatory motion of Dirac spinors was discovered
in the year 1930 by Schrödinger, who called it “Zitterbewegung” (a German
word which means “quivering motion”). This is a rather strange phenom-
enon, because it says that a free particle does not move with a constant
velocity—a clear violation of Newton’s second law.

The Zitterbewegung is strange enough to deserve a closer investigation.
Is it a physically measurable phenomenon or is it just an artifact of the
formalism and its interpretation?

Examples of wave packets showing Zitterbewegung are CD 6.7.2, all
of CD 6.9, CD 6.10, CD 6.11, and CD 6.12.3 and CD 6.12.4. The
strange behavior seen in CD 6.12.1 and CD 6.12.2, however, cannot
be attributed to Zitterbewegung.

7.7.2. Velocity of the standard position

The time-dependence of wave packets moving according to the Dirac equa-
tion usually cannot be determined explicitly. But we can describe the tempo-
ral behavior of the standard position operator in order to gain an impression
of quantum-relativistic kinematics.

We remind the reader of the fact that the expectation value of x in the
state ψ(t) is given by

〈x〉ψ(t) = 〈x(t)〉ψ, where x(t) = eiH0 t x e−iH0 t, (7.100)

and H0 is the free-particle Dirac operator according to (7.10). The time-
dependent position operator x(t) tells us how the average position of the
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spinor changes with time. In the following, we are going to derive an explicit
expression for x(t). This will, in particular, describe the Zitterbewegung (see
Fig. 7.9).

The time evolution of an observable can be computed from the Heisen-
berg equation (see Book One, Section 7.4.1). For the standard position
operator x(t), we obtain

d

dt
x(t) = eiH0t i[H0, x] e−iH0t = eiH0t i[cαp, x] e−iH0t

= ic eiH0t α [−id/dx , x] e−iH0t = c eiH0t α e−iH0t = c α(t). (7.101)

We call cα the standard velocity operator , because it is the time-derivative of
the standard position operator. In nonrelativistic quantum mechanics, the
velocity operator is equal to the momentum operator divided by the mass.
Hence, the velocity is a constant of motion under the nonrelativistic free time
evolution—in agreement with Newton’s second law, which characterizes the
free motion by a constant velocity. In relativistic quantum mechanics, how-
ever, Eq. (7.101) leads to the following apparently paradoxical conclusions:

(1) The standard velocity operator is not related to the momentum
of the particle, instead, it is c times the Dirac matrix α. In the
standard representation, the observable corresponding to the Pauli
matrix σ1 is not the spin, but rather a velocity.

(2) The operator α(t) is unitarily equivalent to the Dirac matrix α, and
hence it has the eigenvalues ±1. A measurement of the standard
velocity at any time t therefore can only give the results ±c. It
appears as if Dirac particles can only move with the velocity of
light.

(3) The standard velocity operator cα(t) depends on time in a nontriv-
ial way. A little calculation shows

d

dt
α(t) = eiH0t i[H0, α] e−iH0t = 2iH0α(t)− 2icp. (7.102)

7.7.3. The classical velocity operator

The results about the velocity obtained in the previous section are not what
we would have expected from classical relativistic kinematics. In particu-
lar, the statements (2) and (3) at the end of the previous section appear
paradoxical, and one is tempted to look for alternative interpretations of the
Dirac equation that are connected with “more reasonable” velocity opera-
tors. Comparison with classical relativistic mechanics leads to the definition
of the classical velocity operator vcl, which describes the average position of
Dirac wave packets (see (7.118) below).
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In classical mechanics, the connection between the kinetic energy E, the
momentum p, and the velocity v can be described by the formula

p =
m v√

1− v2/c2
or v =

c2 p√
c2p2 + m2c4

=
c2 p

E
. (7.103)

In Dirac’s theory, the classical expression for E is replaced by the Dirac op-
erator H0. Translating the classical expression for the velocity into quantum
mechanics thus leads to the operator

vcl = c2 p H−1
0 , (7.104)

which we call the classical velocity operator. Its definition involves the in-
verse of the free-particle Dirac operator. In momentum space, where H0 is
the operator of multiplication with the matrix h0(k), the inverse operator
H−1

0 is just the multiplication with the k-dependent matrix h0(k)−1. Hence,
vcl is a matrix-multiplication operator in momentum space,

vcl(k) = c2 k h0(k)−1. (7.105)

We note that the operators H−1
0 and vcl commute with the momentum op-

erator p and with H0. In particular, vcl is a constant of motion for the free
time evolution.

Exercise 7.23. Prove the equation

H−1
0 =

H0

c2p2 + m2c4
. (7.106)

Exercise 7.24. In momentum space, the classical velocity is given by the
matrix c2k h0(k)−1. Find the eigenvalues wj(k) of this matrix as functions
of k. Show that the range {wj(k) | k ∈ R, j = 1, 2} of possible values of the
classical velocity (that is, the spectrum of the operator vcl) is the continuous
range of numbers from −c to +c.

7.7.4. Time evolution of the standard velocity

Let us define the operator that describes the difference between the Dirac
velocity cα and the classical velocity:

F = cα− vcl. (7.107)

Comparison with (7.102) shows that this operator is related to the time-
derivative of the standard velocity operator,

d

dt
cα(t) = 2iH0F. (7.108)

We may call this operator the standard acceleration, because it is the second
derivative of the standard position operator.
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The operator F anticommutes with the Dirac operator H0, that is, the
relation

F H0 = −H0 F (7.109)
holds on the domain of H0. As a consequence, we find (see Exercise 7.26)

F e−iH0t = eiH0t F. (7.110)

Now we conclude immediately, that

F (t) = eiH0t F e−iH0t = e2iH0t F = F e−2iH0t. (7.111)

Hence, we obtain
d

dt
F (t) = 2iH0F, (7.112)

which is precisely the standard acceleration (7.108). We can even determine
the indefinite integral of F (t),∫ t

F (s) ds =
1
2i

H−1
0 F (t) (7.113)

One can verify this formula immediately by a differentiation. By integrating
Eq. (7.112) (or directly from the definition (7.107)) we obtain

cα(t) = vcl + F (t). (7.114)

We can even integrate the standard velocity operator cα(t) with respect to
t. The result, which will be given in the next section, describes the time-
dependence of the standard position operator x(t).

Exercise 7.25. Verify that F anticommutes with H0. Prove that

FH−1
0 = −H−1

0 F. (7.115)

Exercise 7.26. Define the bounded operators

A1(t) = F e−iH0t and A2(t) = eiH0t F. (7.116)

Show that both operators obey the same differential equation −idA/dt = H0A
with the same initial condition. Hence, A1 = A2 (on the domain of H0).

7.7.5. Time evolution of the standard position

When integrating (7.114), we make use of the fact that vcl is a constant
of motion (it commutes with H0) and that x(t=0) = x. We obtain, using
(7.113) and (7.110),

x(t) = x +
∫ t

0
cα(s) ds = x + vcl t +

∫ t

0
F (s) ds

= x + vcl t +
1
2i

H−1
0

(
e2iH0 t − 1

)
F. (7.117)



7.7. ZITTERBEWEGUNG 353

Time evolution of x:

Under the time evolution generated by the free-particle Dirac operator,
the standard position x behaves as follows:

x(t) = x− (2iH0)−1 F + vcl t + (2iH0)−1 e2iH0t F. (7.118)

The domain of the standard position operator does not depend on time.

With this result, we can easily determine the expectation value of x(t)
in the state ψ. According to (7.100), this is equal to the expectation value
of x in the state ψ(t) that evolves from ψ(0) = ψ. Using the properties of F
we find

〈ψ , (2iH0)−1 e2iH0t F ψ〉 = 〈e−iH0tψ , (2iH0)−1 F e−iH0tψ〉 (7.119)

and hence

〈x(t)〉ψ = 〈x− (2iH0)−1 F 〉ψ + t 〈vcl〉ψ + 〈(2iH0)−1 F 〉ψ(t). (7.120)

Obviously, the second term, which is proportional to t, is responsible for
the slow drift of the wave packet in Figure 7.2. The last term describes the
Zitterbewegung,

zψ(t) = 〈(2iH0)−1 F 〉ψ(t). (7.121)

All sections on the CD-ROM which show wave packets with Zitter-
bewegung also contain a plot of the average position 〈x(t)〉ψ as a
function of time (see, for example, CD 6.7.2). Moreover, in the vi-
sualizations of wave packets in position space, the average position
is always indicated as a vertical gray line.

7.7.6. Superpositions and Zitterbewegung

Equation (7.109) shows that the operator F maps the subspace with positive
energy into the subspace with negative energy, and vice versa

ψ ∈ Hpos ⇒ Fψ ∈ Hneg, ψ ∈ Hneg ⇒ Fψ ∈ Hpos, (7.122)

The operator (2iH0)−1 F whose expectation value describes the Zitterbewe-
gung according to (7.121) has the same property. Whenever ψ has positive
energies, then

φ = (2iH0)−1 F ψ (7.123)

has negative energies, and vice versa. We conclude immediately that when-
ever ψ is a positive-energy wave packet, then

zψ(t) = 〈ψ(t) , (2iH0)−1 F ψ(t)〉 = 〈ψ(t) , φ(t)〉 = 0, (7.124)
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because a state ψ with positive energy is always orthogonal to a state φ with
negative energy. The same is true for negative-energy states. Hence,

zψ(t) = 0 for all ψ ∈ Hpos and all ψ ∈ Hneg. (7.125)

We note that any solution of the free-particle Dirac equation with zψ(t) = 0
for all t behaves in accordance with classical relativistic kinematics:

〈x(t)〉ψ = 〈x〉ψ + t 〈vcl〉ψ whenever zψ(t) = 0 for all t. (7.126)

All solutions belonging to a definite sign of the energy show this “reasonable”
behavior.

In general, however, a square-integrable Dirac spinor in L2(R)2 is a su-
perposition of positive- and negative-energy parts, ψ = ψpos + ψneg, and we
expect that the term describing Zitterbewegung is nonzero

zψ(t) =
〈
ψneg(t) , (2iH0)−1 F ψpos(t)

〉
+

〈
ψpos(t) , (2iH0)−1 F ψneg(t)

〉
. (7.127)

The operator (2iH0)−1 F is a nonlocal operator in position space but is a
simple matrix-multiplication operator in momentum space

F (2iH0)−1 F F−1 = (2i)−1 h0(k)−1
(
cα− c2 k h0(k)−1

)
=

1
2i

mc

k2 + m2c2
β α =

1
2

mc

k2 + m2c2

(
0 −i
i 0

)
. (7.128)

The last expression is only valid in the standard representation. Zitterbe-
wegung vanishes, whenever the spinors ψ̂pos(k) and ψ̂neg(k) do not overlap
(have disjoint support in momentum space). An example is shown in Fig-
ure 7.10.

In case of the wave packet

ψ1(x) = N exp(−x2/2)
(

1
1

)
, (7.129)

the parts with positive and negative energy are located in the same region
of momentum space, and therefore the spinor shows Zitterbewegung.
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Figure 7.10. Time evolution of a Dirac wave packet show-
ing |ψ(x, t)|22 (the standard position probability density). The
parts with positive and negative energy have the same veloc-
ity distribution but a disjoint momentum distribution. Al-
though there is no Zitterbewegung, there is an ongoing inter-
ference between the parts with positive and negative energy.
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Figure 7.11. Image of a wave packet in momentum space,
showing the upper component, the lower component (plotted
upside down), and |ψ|2 (the gray curve in the background).
The part with positive momentum (on the right side) has
positive energy. The part with negative momentum (on the
left side) has negative energy. Hence, both parts move in
the same direction and keep interfering in position space, as
shown in Figure 7.10.

An initial function like (7.129) is explored in CD 6.7. The first topic
CD 6.7.1 allows you to explore the various parts with positive and
negative energy. It is interesting that although this wave packet
has a completely symmetric momentum distribution with average
momentum k = 0, the average velocity is positive. The expecta-
tion value of the position oscillates around a mean value that slowly
drifts to the right. CD 6.7.2 shows the time evolution in position
space, and CD 6.7.3 shows the time evolution in momentum space.
While the momentum probability distribution remains constant, the
upper and lower components of the Fourier transform exhibit the
Zitterbewegung in momentum space.
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On the other hand, the spinor

ψ2(x) = Ppos ψ(x)eik0x + Pneg ψ(x)e−ik0x (7.130)

has a positive energy part that is shifted to the mean value k0 in momentum
space and a negative energy part that is shifted to −k0 in momentum space.
When k0 is sufficiently large, the overlap of the two parts is approximately
zero, and there is no noticeable Zitterbewegung (see Fig. 7.11). Note, how-
ever, that the two parts with opposite momenta correspond to parts with the
same velocity in position space. Hence, the parts with positive and negative
energy move together in position space and keep interfering with each other.
The interference pattern is clearly visible in Figure 7.10.

CD 6.12.1 shows the time evolution of an initial function similar to
(7.130). Here, a small remaining overlap in momentum space causes
a Zitterbewegung with a very small amplitude. In CD 6.12.2 we see
a wave packet, where the parts with positive and negative energy are
widely separated in momentum space, as in Figure 7.11. Although
there is an ongoing interference of positive and negative energies in
position space (as in Fig. 7.10), the average position moves essentially
without Zitterbewegung.

In case of the wave packet

ψ3(x) = N exp(−x2/2 + ik0x)
(

1
0

)
, (7.131)

the parts with positive and negative energy do overlap in momentum space.
In position space, however, these parts move away from each other in op-
posite directions and ψneg and ψpos become (approximately) orthogonal to
each other (see Fig. 7.8). At the same time, but to a lesser extent, the func-
tion (2iH0)−1 F ψpos becomes more and more orthogonal to ψneg so that the
Zitterbewegung gradually vanishes. Indeed, one can show quite generally
that

zψ(t) → 0 for any ψ ∈ L2(R)2. (7.132)

CD 6.9 shows examples of the type defined in (7.131) with a rapidly
vanishing Zitterbewegung. The oscillation of the average position
vanishes as soon as the parts with positive and negative energy be-
come sufficiently separated in position space. The wave functions in
CD 6.8 are symmetric with respect to reflections at x = 0. Hence,
the expectation value of the position remains at the origin for all
times and shows no Zitterbewegung. However, the time evolution of
the wave packet develops the interference patterns characteristic of
a superposition of positive and negative energy wave packets.
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Figure 7.12. Space-time diagram of the motion of the wave
packet in Figure 7.10. The local maxima of the position den-
sity move faster than light.

7.7.7. Superluminal motion?

The motion of a classical particle in one space dimension is described by a
function t �→ x(t). The space-time trajectory or world line is the set of all
points (x(t), ct) that are occupied by the particle in space-time. (Here, the
time-coordinate is multiplied by c to give it the dimension of a length.) A
world line is usually plotted as a curve in a space-time diagram with x as
the horizontal coordinate and ct as the vertical coordinate. For example,
the ct-axis is the world line of a particle that is at rest at x = 0. The angle
between the world line and the vertical ct-axis is a measure for the velocity
of the particle. All world lines of massive particles must be steeper than the
world line of a photon (which has an angle of 45◦).

Figure 7.12 is a space-time diagram of a wave packet. It shows the de-
pendence of the standard position probability density on space and time
coordinates. This image shows the wave packet of Figure 7.10, whose po-
sition density has several local maxima. We see that these ripples move at
superluminal speed; the world line of a photon (the dashed white line) is
steeper than the dark stripes of the position probability density. The solid
white line is the world line of the average position 〈x(t)〉ψ. The classical
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Figure 7.13. A Moiré pattern produced by two hair combs.

velocity of the particle is slower than the velocity of light. As explained in
the previous section, the wave packet shows practically no Zitterbewegung.

CD 6.13.1 shows an animation of the wave packet discussed here
similar to the one of Figure 7.10. Here, we compare the velocity
of the interference ripples of this wave packet with the velocity of
light. CD 6.13.2 shows that the velocity of the ripples is equal to
the average phase velocity of parts with positive and negative en-
ergy. According to Section 7.4.2, the phase velocity is faster than
the velocity of light. CD 6.13.3 is a classical example of an inter-
ference pattern (a Moiré pattern, see below) that moves faster than
light. CD 6.13.4 shows that no information can propagate with the
interference ripples. The information about a sudden perturbation
of one of the ripples can at most spread with the velocity of light.

The superluminal motion of the ripples of a wave packet does not contra-
dict the theory of relativity. These ripples are the result of the interference
of slower moving wave packets with positive and negative energies. An inter-
ference pattern does not carry information from one point to another, and
hence it can move with arbitrary speed.

A classical example of this effect is the Moiré pattern produced by over-
laying two slightly different periodic patterns. For example, you can observe
a Moiré pattern by looking through the teeth of two pocket combs, one
placed in front of the other, as shown in Figure 7.13. Slide one comb slowly
and watch how the Moiré pattern moves quickly.

Figure 7.14 shows the world lines of two patterns. Both patterns are one-
dimensional regular grids of black dots. With respect to the given coordinate
system, one of the patterns is at rest (the world lines of the black dots are
vertical). The other pattern slides slowly to the right. Its world lines are
slightly tilted.

In the given coordinate system, the patterns have a slightly different
periodicity length. The superposition of the two pattern therefore leads to a
Moiré pattern, a periodic succession of dark and bright areas in space. The
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Figure 7.14. Space-time diagram of two one-dimensional
patterns producing a Moiré pattern moving at superluminal
velocity. In the moving coordinate system represented by the
tilted coordinate axis, the Moiré pattern has no spatial struc-
ture.)

slowly drifting motion of one of generating patterns causes the Moiré pattern
to move very quickly. Actually, the dark areas move much faster than light.

According to the special theory of relativity, a moving coordinate frame
is given by tilted coordinate axis, as indicated in Figure 7.14. We can find
a moving coordinate frame where both patterns have the same periodicity
length, and hence the Moiré pattern completely looses its spatial structure.
But due to the relative motion of the generating patterns, the Moiré pattern
still depends on time. An observer in the moving frame has uniformly dark
and bright times in periodic succession.

7.8. Special Topic: Energy Representation and
Velocity Space

For a careful analysis of the behavior of spinor wave packets, it is useful
to visualize the probability distributions of the energy and the classical ve-
locity. This section provides the necessary theoretical and mathematical
background.
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Figure 7.15. Time evolution of a wave packet with Gauss-
ian initial shape according to the free-particle Dirac equation.
The images show the standard position probability distribu-
tion at the times t = 0, 9, 18, 27.

As an example, consider Figure 7.15. It shows a Gaussian initial spinor
that develops an interesting interference pattern during its time evolution.
The energy distribution in this wave packet is plotted in Figure 7.16. It
shows that the wave packet has equally sized parts with positive and neg-
ative energy. The interference of these parts is responsible for the ripples
of the position probability density in position space. The range of allowed
energies has a gap from −mc2 to +mc2, but in the dimensionless units used
in Figure 7.16 we have m = c = 1, and the gap extends from −1 to +1.

The velocity distribution of this wave packet is plotted in Figure 7.17
(left image). More precisely, this is the probability density of the values of
the classical velocity operator vcl. These values must be within the interval
(−c, c). (In dimensionless units, the values are strictly between −1 and +1.)
The shape of the velocity distribution describes the averaged shape of the
position distribution at late times. This shows the comparison with the
position probability density at a late time (see the right part of Fig. 7.17).
(A similar observation has been made in Book One, Sections 3.6 and 3.7.)

Both the energy and velocity distributions do not depend on time, be-
cause H0 and vcl are conserved quantities.

CD 6.10.1 shows an animation of the wave packet in Figure 7.15. The
right-moving part and the left-moving part are both superpositions
of positive and negative energies.

7.8.1. Variable substitutions

Some relevant physical observables for a free particle in one space dimension
are the energy E, the momentum k, and the velocity v. In Dirac’s quantum
mechanics, all these quantities may be positive or negative. According to
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Figure 7.16. The stationary energy distribution of the wave
packet in Figure 7.15 shows parts with positive and negative
energies.
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Figure 7.17. Comparison of the velocity and position dis-
tributions at a late time for the wave packet in Fig. 7.15.

the special theory of relativity, these observables are connected by

v =
c2k

E
, (7.133)

and for a particle with mass m, we have

E2 = c2k2 + m2c4. (7.134)

These two relations allow us to express any of these quantities as a function
of any other and the sign of the third. For example, you may check that

v =
c2k√

c2k2 + m2c4
sgn E =

c
√

E2 −m2c4

E
sgn k. (7.135)
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Exercise 7.27. Find the formulas that express k as a function of v and
sgn E or as a function of E and sgn v. Similarly, prove that

E =
√

c2k2 + m2c4 sgn k sgn v =
mc2√

1− v2/c2
sgn k sgn v. (7.136)

7.8.2. Energy representation

For scattering theory, it is sometimes useful to use the energy as a variable.
We can obtain this energy representation essentially by a variable substitu-
tion. When we replace the variable k by the variable E, one has to take into
account that k is not only a function of E, but also depends on the sign of
v, that is, on the direction of motion. We define

κ(E) =
E

c

(
1− m2c4

E2

) 1
2
, for all E ∈ σ(H0), (7.137)

so that k = κ(E) sgn v. Here, σ(H0) denotes the energy spectrum of the
Dirac operator H0, as defined in (7.40). Let us now define a plane wave with
a positive velocity (the corresponding wave packets will move to the right).
Using upos,neg from (7.47), we define the stationary solutions

ω−→(E;x) = n(E)

{
upos(κ(E), x) for E > mc2,
uneg(κ(E), x) for E < −mc2,

(7.138)

and the time-dependent plane wave with positive velocity

ω−→(E;x, t) = ω−→(E;x) e−i Et. (7.139)

For E < 0, the momentum κ(E) in the argument of the plane wave uneg is
negative. This corresponds to a positive velocity, as discussed before. The
factor n(E) is a normalization constant. We choose

n(E) =

√
E

cκ(E)
. (7.140)

Similarly, we choose the plane-wave solution with negative velocity as

ω←−(E;x) = n(E)

{
upos(−κ(E), x) for E > mc2,
uneg(−κ(E), x) for E < −mc2,

(7.141)

ω←−(E;x, t) = ω←−(E;x) e−i Et. (7.142)

The arrow, of course, indicates the direction of motion.
It is useful to define

b±(E) =

√
1
2

(
1± mc2

E

)
, for E ∈ σ(H0). (7.143)
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These functions can be expressed in terms of the functions d±(k) defined in
(7.36):

b±(E) =

{
d±(κ(E)) for E > mc2,
∓d∓(κ(E)) for E < −mc2.

(7.144)

Now, the definitions of ω←− and ω−→ above can be rewritten as

ω−→(E;x, t) =
1√
2π

ω−→(E) ei κ(E) x−iEt, (7.145)

ω←−(E;x, t) =
1√
2π

ω←−(E) e−i κ(E) x−iEt, (7.146)

where

ω−→(E) = n(E)
(

b+(E)
b−(E)

)
, (7.147)

ω←−(E) = n(E) sgn E

(
b+(E)
−b−(E)

)
. (7.148)

We note the formulas

n(E) b+(E) =
1√
2

(E + mc2

E −mc2

)1/4
, n(E) b−(E) =

1
2 n(E) b+(E)

, (7.149)

and

ω←−(E) = sgnE σ3 ω−→(E), ω←−(E;x, t) = sgnE σ3 ω−→(E,−x, t). (7.150)

We can form wave packets as usual. For example, take any square-
integrable function g−→(E) and build the wave packet

ψ−→(x, t) =
∫

σ(H0)
g−→(E) ω−→(E;x, t) dE. (7.151)

Then, this wave packet moves to the right. Similarly, the wave packet

ψ←−(x, t) =
∫

σ(H0)
g←−(E) ω←−(E;x, t) dE (7.152)

moves to the left. The normalization constant n(E) was chosen in order to
have the relation ∥∥ψ−→

∥∥2 =
∫

σ(H0)

∣∣ g−→(E)
∣∣2 dE, (7.153)

(independent of t) and similarly for ‖ψ←−‖. Moreover, ψ−→ and ψ←− are orthogo-
nal. Any wave packet ψ can thus be decomposed into a right-moving and a
left-moving part,

ψ = ψ−→+ ψ←−, 〈ψ−→, ψ←−〉 = 0, (7.154)
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and the corresponding functions g−→(E) and g←−(E) are given by the C
2-scalar

products

g−→(E) =
〈
ω−→(E), ψ̂(κ(E))

〉
2
, (7.155)

g←−(E) =
〈

ω←−(E), ψ̂(−κ(E))
〉
2
. (7.156)

The vector-valued function g defined for E ∈ σ(H0) by

g(E) =

(
g−→(E)
g←−(E)

)
, (7.157)

is called the energy representation of ψ. When ψ is square-integrable, so is
g, and

‖ψ‖2 =
∥∥ψ−→

∥∥2 +
∥∥ψ←−

∥∥2 =
∫

σ(H0)

(∣∣ g−→(E)
∣∣2 +

∣∣ g←−(E)
∣∣2) dE = ‖g‖2. (7.158)

Hence, the mapping ψ ∈ L2(R, dx)2 to g ∈ L2(σ(H0), dE)2 is unitary. In
the energy representation, the Dirac operator acts as a multiplication by the
variable E. This means that the function E g(E) is the energy representation
of H0ψ(x), assuming that g(E) is the energy representation of ψ(x).

7.8.3. Velocity representation

For the sake of completeness, we list some formulas for the representation,
where the classical velocity v is used as a variable. We define

k(v) =
m v√

1− v2/c2
, −c < v < c. (7.159)

We start with a Dirac spinor ψ̂ in momentum space and write

ψ̂(k) = ψ̂pos(k) + ψ̂neg(k), ψ̂ pos
neg

(k) =
1
2

(
1± h0(k)

λ(k)

)
ψ̂(k). (7.160)

Then we define

fpos(v) =
√

m(
1− v2/c2

)3/4
ψ̂pos

(
k(v)

)
, (7.161)

fneg(v) =
√

m(
1− v2/c2

)3/4
σ3 ψ̂neg

(−k(v)
)
. (7.162)

For each v in the interval (−c, c), these two vectors are orthogonal in C
2,〈

fpos(v), fneg(v)
〉
2

= 0. (7.163)

We define
f(v) = fpos(v) + fneg(v) (7.164)
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as the velocity representation of ψ. The factors in (7.161) and (7.162) have
been chosen such that∫ c

−c
|f(v)|22 dv =

∫ ∞

−∞
|ψ̂(k)|22 dk. (7.165)

Hence, the transformation ψ̂ → f is a unitary transformation from the
momentum space L2(R, dk)2 into the “velocity space” L2((−c, c), dv)2. The
action of the classical velocity operator vcl in momentum space is given by

vcl(k) ψ̂(k) =
c2k

λ(k)
ψ̂pos(k)− c2k

λ(k)
ψ̂neg(k). (7.166)

Making the transition to the velocity representation, we find

vcl(k) ψ̂(k) → c2k(v)
λ
(
k(v)

) fpos(v)− c2(−k(v))
λ
(
k(v)

) fneg(k) = v f(v). (7.167)

Hence, in velocity space the classical velocity operator acts as a multiplica-
tion by the variable v.

All sections CD 6.7–CD 6.12 contain visualizations of the energy
representation g(E) and the velocity representation f(v) of the wave
packet under consideration. Moreover, you can explore the initial
wave packet ψ(x) and its various parts in both position and mo-
mentum space: The parts with positive/negative energy ψpos(x),
ψneg(x), the parts with positive/negative velocity ψ−→(x), ψ←−(x), and
their Fourier transforms.

7.9. Relativistic Invariance

7.9.1. Lorentz transformations

An event is something that happens at a definite time at a definite place, that
is, at a point in space-time. Examples of events are the emission of a photon
or the detection of a particle. The coordinates of an event are described
with respect to a suitable inertial frame.6 For simplicity, we consider a one-
dimensional situation. We use space-time coordinates (ct, x) ∈ R

2, where
x is the space coordinate and ct is the time coordinate of the event. The
factor c denotes the velocity of light. It gives the first coordinate ct the
dimension of a length. The coordinate transformations I → I ′ between all
possible inertial frames are called Poincaré transformations. The principle
of relativity states that all inertial frames are equivalent for the description

6An inertial frame is usually defined as a space-time coordinate system in which the
law of inertia holds.
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of nature. Hence, the Poincaré transformations should be represented by
symmetry transformations within any physical theory.

Let us start in an inertial frame I, where the space-time coordinates of
an event are denoted by (ct, x). Consider a second inertial frame I ′, where
the same event has the space-time coordinates (ct′, x′). We assume that I ′
moves with a velocity −v with respect to the first frame I, and that at time
t = 0 the origin of I ′ is at x = 0. Then, any book on special relativity tells
you that the transformation

ct′ = γ(v)
(
ct +

v

c
x
)
, x′ = γ(v)

(
x +

v

c
ct
)

(7.168)

gives the coordinates (ct′, x′) in terms of the coordinates (ct, x). Here

γ(v) =
1√

1− v2/c2
. (7.169)

The Poincaré transformation (7.168) is called a one-dimensional Lorentz-
boost or velocity transformation. In order to be consistent with our presen-
tation of rotations, we rather want to consider the “active” point of view,
where (ct′, x′) are the coordinates of a particle in I that has been boosted
with velocity +v.

In view of −1 < v/c < 1, it is useful to introduce the parameter ω such
that

v

c
= tanhω, γ(v) = cosh ω. (7.170)

Then the Lorentz boost can be written as

ct→ ct′ = ct cosh ω + x sinhω, (7.171)

x→ x′ = ct sinhω + x cosh ω. (7.172)
We denote the two-by-two matrix of a Lorentz boost by

Λ(ω) =
(

cosh ω sinhω
sinhω cosh ω

)
. (7.173)

The parametrization by ω has the following advantage. If we compose two
Lorentz boosts, the corresponding parameters ω are simply added,

Λ(ω2) Λ(ω1) = Λ(ω1 + ω2). (7.174)

Hence, the result of this composition is again a Lorentz boost. The resulting
boost has the velocity

v3 =
v1 + v2

1 +
v1v2

c2

. (7.175)

This relativistic law for adding velocities follows immediately from the iden-
tity

tanh(ω1 + ω2) =
tanhω1 + tanhω2

1 + tanhω1 tanhω2
. (7.176)
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In the vector space R
2, we may define the Minkowski scalar product

a · b = a0 b0 − a1 b1, a =
(

a0

a1

)
∈ R

2, b =
(

b0

b1

)
∈ R

2. (7.177)

You may verify that
Λ(ω)a · Λ(ω)b = a · b. (7.178)

One may define a Lorentz transformation as a linear map of R
2 into itself that

leaves this scalar product invariant. The set of all Lorentz transformations
contains

Λ(ω) : R
2 → R

2, (ω ∈ R) all Lorentz boosts,

ΛP : (ct, x) → (ct,−x) the space-reflection (parity transform),

ΛT : (ct, x) → (−ct, x) the time reversal,

ΛPT : (ct, x) → (−ct,−x) the space-time inversion,

together with all possible compositions (matrix products) of these mappings.
This set is called the Lorentz group in two dimensions.

7.9.2. Transformation of the Dirac equation

Lorentz transformations are symmetry transformations, and they should be
implemented as unitary transformations in the Hilbert space of the Dirac
equation. Because a velocity transformation mixes the space and time coor-
dinates, we have to consider time-dependent spinors, that is, solutions ψ(x, t)
of the Dirac equation. We want to implement the Lorentz transformation
as a unitary mapping ψ → ϕ of Dirac spinors in such a way that if ψ is a
solution of the Dirac equation, then so is the Lorentz-transformed function
φ.

We start by applying the inverse Lorentz transformation to the argu-
ments x and t of a solution ψ(x, t) of the Dirac equation. This is analogous
to our definition of a rotated wave function in Section 1.2.2. In Chapter 1, we
showed that for any solution ψ(x, t) of a spherically symmetric Schrödinger
equation, the rotated function ψ(x′, t), with x′ = R(α)−1x, gives another
solution.

Let us substitute x and t in ψ(x, t) by x′ and t′, where(
ct′
x′

)
= Λ−1

(
ct
x

)
, (7.179)

and where Λ is any Lorentz transformation. In order to investigate the effect
of this substitution, it is convenient to write the free-particle Dirac equation
in a form that involves the space and time coordinates in a more symmetric
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way. The free-particle Dirac equation (7.14) reads(
i

∂

∂t
+ i cα

∂

∂x
− βmc2

)
ψ(x, t) = 0. (7.180)

We multiply this equation by β/c from the left and obtain, using β2 = 1,(
iβ

∂

∂ct
+ iβα

∂

∂x
−mc

)
ψ(x, t) = 0. (7.181)

Let us introduce the abbreviations

∂ =
(

(1/c) ∂/∂t
−∂/∂x

)
, γ =

(
β
βα

)
. (7.182)

Define the product γ ·∂ as in (7.177). Then we can write (7.181) in the form(
i γ · ∂ −mc

)
ψ(x, t) = 0. (7.183)

Next, we want to investigate the effect of the variable substitution (7.179)
on the Dirac equation. Replacing (x, t) with (x′, t′) gives(

i γ · ∂′ −mc
)
ψ(x′, t′) = 0, (7.184)

where

∂′ =
(

(1/c) ∂/∂t′
−∂/∂x′

)
. (7.185)

We want to find out whether the function ψ(x′, t′) is related to a solution
of the original Dirac equation. To that purpose, we must express ∂′ in terms
of ∂. In order to be specific, we consider a proper Lorentz transformation
and use

Λ−1 =
(

cosh ω − sinhω
− sinhω cosh ω

)
. (7.186)

Let us compute ∂ ψ(x′, t′). By applying the chain rule, we obtain for the
first component of ∂ψ(x′, t′)

1
c

∂

∂t
ψ(x′, t′) =

1
c

∂

∂t′
ψ(x′, t′)

∂t′

∂t
+

∂

∂x′ ψ(x′, t′)
1
c

∂x′

∂t

=
(
cosh ω

1
c

∂

∂t′
− sinhω

∂

∂x′
)

ψ(x′, t′). (7.187)

Similarly, for the second component −∂/∂x of ∂, we obtain

− ∂

∂x
ψ(x′, t′) =

(
sinhω

1
c

∂

∂t′
− cosh ω

∂

∂x′
)

ψ(x′, t′). (7.188)

We can combine these results into

∂ ψ(x′, t′) =
(
Λ ∂′)ψ(x′, t′). (7.189)

Multiplying this equation from the left by Λ−1 gives(
Λ−1∂

)
ψ(x′, t′) = ∂′ ψ(x′, t′). (7.190)
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Hence, (7.184) becomes(
i γ · (Λ−1∂)−mc

)
ψ(x′, t′) = 0. (7.191)

Hence, the function ψ(x′, t′) is not a solution of the Dirac equation (7.183).
In order to define the Lorentz transformation of a spinor, the variable

substitution alone is not sufficient.

7.9.3. Representation of Lorentz boosts

Before we proceed, we want to investigate the properties of the matrix

γ · u = β u0 − βα u1. (7.192)

Note that γ · ∂ appears in the Dirac equation (7.183). We are going to need
the following result.

Lorentz boosts:

Let ω ∈ R, u =
(

u0

u1

)
∈ R

2, and γ =
(

β
βα

)
.

Then
exp

(ω

2
α
)

γ · u exp
(
−ω

2
α
)

= γ · v (7.193)

with v = Λ(ω) u.

Proof. In order to prove this useful formula, we first note that the
exponential function of the matrix ωα/2 is given by the usual power series

exp
(ω

2
α
)

=
∞∑

n=0

1
n!

(ω

2
α
)n

. (7.194)

Using the property α2 = 12, we find αn = 12 if n = 2k is even, and αn = α
if n = 2k + 1 is odd. Hence, the power series becomes

12

∞∑
k=0

ω2k

(2k)!
+ α

∞∑
k=0

ω2k+1

(2k + 1)!
. (7.195)

Comparing this with the power series of cosh and sinh, we find the result

exp
(ω

2
α
)

= 12 cosh
ω

2
+ α sinh

ω

2
. (7.196)

Now, the matrix α anticommutes with β and as a consequence we obtain

exp
(ω

2
α
)

β = β exp
(
−ω

2
α
)
. (7.197)
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Likewise, α anticommutes with the matrix γ · u. But then

exp
(ω

2
α
)

γ · u exp
(
−ω

2
α
)

= exp
(ω

2

)
exp

(ω

2

)
γ · u = exp(ωα) γ · u

= (cosh ω + α sinhω) (β u0 − βα u1)

= (β (u0 cosh ω + u1 sinhω)− βα (u0 sinhω + u1 cosh ω)

= γ · (Λ(ω) u
)
. (7.198)

This proves (7.193). �

Exercise 7.28. Show that in the standard representation α = σ1, we
have exp(ωα) = Λ(ω).

7.9.4. Invariance of the free-particle Dirac equation

With these results, we can prove the invariance of the Dirac equation under
Lorentz boosts. From Eq. (7.193) we conclude that

γ · (Λ(ω)−1∂) = exp
(
−ω

2
α
)

γ · ∂ exp
(ω

2
α
)

(7.199)

and hence Equation (7.191) can be written as

(
i exp

(
−ω

2
α
)

γ · ∂ exp
(ω

2
α
)
−mc

)
ψ(x′, t′) = 0. (7.200)

Multiplying this equation by exp(ωα/2) from the left leads to

(
i γ · ∂ −mc

)
exp

(ω

2
α
)

ψ(x′, t′) = 0. (7.201)

This is again the Dirac equation (7.183). Hence, the function

ϕ(x, t) = exp
(ω

2
α
)

ψ(x′, t′)

= exp
(ω

2
α
)

ψ
(
x cosh ω − ct sinhω , t cosh ω − (x/c) sinhω

)
(7.202)

is a solution of the Dirac equation whenever ψ(x, t) is.
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Lorentz invariance of the free-particle Dirac equation:

Consider a solution ψ(x, t) of the free-particle Dirac equation. A Lorentz
boost applied to ψ gives

ϕ(x, t) = exp
(ω

2
α
)

ψ(x′, t′) (7.203)

with (
ct′
x′

)
= Λ(ω)−1

(
ct
x

)
. (7.204)

The function ϕ(x, t) is a solution of the free-particle Dirac equation.

7.9.5. Unitary implementation of Lorentz boosts

Let us see how the Lorentz transformations are implemented in the Hilbert
space L2(R)2 of the Dirac equation. Consider a Dirac spinor (at time t = 0)

ψ(x) =
(

ψ1(x)
ψ2(x)

)
. (7.205)

An active Lorentz transformation converts this spinor into

ϕ(x) = exp
(ω

2
α
)

ψ
(
x cosh ω , −(x/c) sinhω

)
(7.206)

Here, ψ(x, t) = exp(−iH0t)ψ(x) is the solution of the Dirac equation with
initial condition ψ(x, 0) = ψ(x). Now, we are going to investigate the prop-
erties of the mapping UL(ω) : ψ → ϕ.

The infinitesimal generator of a Lorentz boost:

A Lorentz boost of a Dirac spinor is a unitary transformation in the
Hilbert space L2(R)2,

UL(ω)ψ(x) = exp
(ω

2
α
)

ψ
(
x cosh ω , −(x/c) sinhω

)
. (7.207)

The infinitesimal generator is given by

N =
1
2
(H0 x + x H0), (7.208)

(which is self-adjoint on a suitable dense domain). We have

UL(ω) = exp
(
iω

N

c

)
. (7.209)
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Proof. The generator N is obtained as usual by differentiation of UL(ω)
with respect to ω at ω = 0

N

c
ψ = −i

d

dω
exp

(
iω

N

c

)
ψ
∣∣∣
ω=0

. (7.210)

Hence, we compute

−i
d

dω
exp

(ω

2
α
)

ψ
(
x cosh ω,−(x/c) sinhω

)
=− i exp

(ω

2
α
)(α

2
+ x (sinhω) ∂1 − (x/c) (cosh ω) ∂2

)
ψ
(
x cosh ω,−(x/c) sinhω

)
. (7.211)

In the last step, we have used the chain rule. Here, ∂1 is the derivative
of the Dirac spinor with respect to the first argument, and ∂2 denotes the
derivative with respect to the second argument. Any solution ψ of the Dirac
equation satisfies

i ∂2 ψ = H0 ψ, (7.212)

where H0 is the free-particle Dirac operator. Substituting this in (7.211)
and evaluating (7.211) at ω = 0 gives

N

c
= −i

α

2
+ x

H0

c
=

1
2c

(H0 x + x H0). (7.213)

This proves (7.208) above. Though the symmetry of N is rather obvious,
the proof of self-adjointness on a suitable domain is a bit more technical and
is omitted here. The self-adjointness of N proves that UL(ω) is a strongly
continuous one-parameter unitary group. �

We note that similar considerations lead to the conclusion that the parity
transformation ΛP can be implemented as the unitary transformation

UP ψ(ct, x) = β ψ(ct,−x). (7.214)

It is, however, necessary to realize the time reversal as well as the space-time
inversion via antiunitary operators. All these operators thus define symme-
try transformations of the Dirac theory. Moreover, the free-particle Dirac
equation is invariant with respect to all Lorentz transformations (including
the discrete transformations ΛP , ΛT , and ΛPT .
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Figure 7.18. Behavior of a positive-energy wave packet un-
der a velocity transformation. The right image shows the
wave packet after a Lorentz transformation (boost) with the
indicated velocity v (measured in units of c). The relative
motion of observer and wave packet causes a Lorentz contrac-
tion.

We note that a spinor-wave packet whose components are per-
fectly symmetric with respect to reflections at the origin need not
be invariant under a parity transformation. An example is the
wave packet shown in CD 6.7. Here, the initial wave packet sat-
isfies ψ(x) = ψ(−x), but for the parity-invariance, we would need
ψ(x) = β ψ(−x). Indeed, the time evolution of this wave packet
reveals its asymmetry (the average velocity of this wave packet is
positive). On the other hand, the wave packets in CD 6.8 are all
invariant with respect to a parity transformation.

It is interesting to see the Lorentz boost of a wave packet. Consider a
wave packet with positive energy that is at rest in some inertial frame. The
average velocity of this wave packet is zero, and the Fourier transform is
localized around the origin in momentum space. In Figure 7.18, we show
the wave packet with positive energy and its Lorentz transformation. After
the transformation, the wave packet has the average velocity v = 0.8c in the
positive x-direction. The effect of the Lorentz contraction is clearly visible.

The interactive images in CD 6.14 show the effect of (active) Lorentz
boosts on a wave packet with positive energy and on a wave packet
with negative energy. For a wave packet with negative energy, an
active boost with a positive velocity produces a wave packet with
negative momentum.

Next, consider a wave packet with positive and negative energies, like the
spinor that is a Gaussian function in both components. A Lorentz transfor-
mation shifts the positive-energy part toward positive momenta whereas the
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Figure 7.19. A superposition of positive and negative en-
ergy wave packets before and after a Lorentz boost. Apart
from the Lorentz contraction, the relative motion of observer
and wave packet produces interference effects. The interfer-
ence is caused by the separation of the negative and positive-
energy parts in momentum space.

negative-energy part is shifted in the opposite direction, because for nega-
tive energies the momentum is minus the velocity. The interference of these
two parts causes the ripples in position space that are shown in Figure 7.19.
Note: This image can also be interpreted as a snapshot of the wave packet as
it is seen from a moving inertial frame (with velocity −v). The interferences
are caused only by the relative motion of the wave packet and the observer.

Figure 7.20 shows a space-time diagram of the standard position prob-
ability density, that is, a density plot of the function |ψ(x, t)|22. At t = 0
(along the x-axis), the wave packet has a Gaussian shape as shown in Fig-
ure 7.19 (left image). During the time evolution (observed with respect to
the (x, t)-coordinate system) the wave packet develops interference ripples
(see also Fig. 7.2). A moving observer describes the position probability
density with respect to the (x′, t′)-coordinate system. As is well-known from
the special theory of relativity, the events happening at t′ = 0 in the moving
coordinate system (on the x′-axis) are not simultaneous with respect to the
(x, t)-coordinates. On the inclined x′-axis, the position probability density
has the interference ripples visible in the right image of Figure 7.19.

CD 6.15 explores the effect of Lorentz boosts applied to wave packets
that are superpositions of positive and negative energies. In momen-
tum space, a velocity transformation shifts the parts with positive
and negative energies in opposite directions (CD 6.15.3). This causes
an interference in position space.
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Figure 7.20. Space-time diagram of the position density of
the wave packet in Figure 7.19. At t = 0 the density has a
Gaussian shape. If viewed from a moving frame of reference
at t′ = 0 (that is, along the x′-axis) the density has ripples.



Chapter 8

The Dirac Equation

Chapter summary: In this chapter, we obtain the Dirac equation with external
fields in three dimensions (Section 8.1). The number of components of the Dirac
spinors is doubled compared to the one-dimensional situation. Roughly speaking,
there are two spin components for each sign of the energy.

In the presence of external fields, the Dirac equation cannot be invariant under
Lorentz transformations. But the Dirac equation is covariant in the sense that a
Lorentz-transformed solution of the Dirac equation is a solution of the Dirac equa-
tion with an appropriately transformed potential energy (Section 8.2). It is possible
to classify the potential functions according to their behavior under Poincaré trans-
formations as scalar, electromagnetic, and tensor fields (Section 8.3).

Wave packets with negative energy behave quite differently from wave packets
with positive energy if put into an external electromagnetic field. By introducing
the operation of charge transformation, one can see that a wave packet with negative
energy actually describes the behavior of a particle with positive energy but with
opposite charge (Section 8.4). We can thus interpret the solutions with negative
energy as antiparticles. But this interpretation only works in situations where the
splitting of the Hilbert space in electronic and positronic states is meaningful and
unambiguous. A counter-example showing the limits of Dirac theory is the Klein
paradox, where particles starting as electrons may end up as positrons.

In Section 8.5, we investigate the connection between Dirac’s theory and the
nonrelativistic Pauli equation for particles with spin. The eigenvalues and eigen-
functions of the Dirac equation tend to their nonrelativistic counterparts as c→∞.
We derive some formulas that let us compute relativistic perturbations of nonrela-
tivistic energies up to first order in 1/c2.

The role of spherical symmetry in relativistic quantum mechanics is as im-
portant as in nonrelativistic quantum mechanics. In Section 8.6, we describe the
angular-momentum subspaces of Dirac’s theory. The radial Dirac equation becomes
a system of two ordinary differential equations.

The hydrogen atom is perhaps the most important testing ground for any quan-
tum mechanical theory. Fortunately, the Dirac equation for a hydrogen-like system
can be solved analytically, and the results are in almost perfect agreement with the
measurements. This success was one of the main reasons for the quick acceptance
of the Dirac equation. In Section 8.8, we solve the radial Dirac equation for the hy-
drogen atom by factorization methods (“supersymmetry”). The higher symmetry
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of the Coulomb problem in the relativistic case is related to the conservation of the
Biedenharn-Johnson-Lippmann operator.

8.1. The Dirac Equation

8.1.1. Free Dirac operator in two and three dimensions

Many results obtained for the one-dimensional Dirac equation are completely
analogous in higher space dimensions.

CD 6.16 and CD 6.17 show solutions of the free-particle Dirac equa-
tion in two dimensions. These solutions show Zitterbewegung and
interference effects similar to one-dimensional solutions. The visu-
alization of a C

2-valued function is, of course, much more difficult
in two dimensions. Here, we decided to visualize the upper and the
lower component in separate plots.

The Dirac operator in higher dimensions is a matrix-differential operator
that depends linearly on the momentum cp and the rest energy mc2, that
is,

H0 = cα · p + β mc2. (8.1)
Again, p = −i∇ is the usual momentum operator and

α · p =
n∑

k=1

αk pk, pk = −i
∂

∂xk
, (8.2)

where n is the space dimension. Note that throughout this chapter, we use
units with � = 1. The n + 1 quantities α = (α1, . . . , αn) and β (the Dirac
matrices) are matrices with constant coefficients, hence they commute with
the momentum operator p,

[αj , pk] = [β, pk] = 0, j, k = 1, . . . , n. (8.3)

All these operators act on spinor-wave functions with several components
(depending on the dimension of the Dirac matrices).

We want the Dirac matrices to be Hermitian, otherwise the Dirac oper-
ator would not be self-adjoint. And we want the square of H0 to satisfy the
classical relativistic relation

H2
0 = c2p2 + m2c4 = −c2∆ + m2c4. (8.4)

This imposes the following conditions on the Dirac matrices

αjαk + αkαj = 2δjk 1 with j, k = 1, . . . , n.

αjβ + βαj = 0 with j = 1, . . . , n. (8.5)

β2 = 1.
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Now, we have to distinguish between two and three space dimensions. For
n = 2, we need three anticommuting Hermitian matrices. A good example
of such a set is already known to us, namely, the Pauli matrices

α1 = σ1, α2 = σ2, β = σ3. (8.6)

In three dimensions we need four anticommuting matrices. But it is not
possible to find a fourth Hermitian 2×2 matrix that anticommutes with the
three Pauli matrices. For n = 3, we thus have to consider higher dimensional
matrices. A suitable set of four anticommuting matrices is given by the 4×4
matrices

αj =
(
02 σj

σj 02

)
j = 1, 2, 3, β =

(
12 02

02 −12

)
. (8.7)

Other realizations of the anticommutation relations (8.5) can be obtained
from the set (8.7) by transformations UβU †, UαjU

† (where U is an arbitrary
unitary matrix). It is usually best not to rely on a particular representa-
tion of Dirac matrices. All that one really needs are the anticommutation
relations. However, for the purpose of visualization, we need to choose a
particular set of Dirac matrices, and we shall refer to the choice (8.7) or
(8.6) as the standard representation.

It is not possible to obtain solutions of the two- or three-dimensional
Dirac equation as products of solutions of the one-dimensional Dirac equa-
tion. The free-particle Dirac operator in higher dimensions is not just a
direct sum of lower-dimensional Dirac operators (as it is the case with the
free-particle Schrödinger operator).

The Dirac equation in one and two space dimensions is solved by two-
component spinors. The Dirac equation in three space dimensions is an
equation involving four-component spinors. The Hilbert space of the Dirac
equation in three space dimensions is therefore

H = L2(R3)4, (8.8)

the space of square-integrable spinors with four components. In the standard
representation, the free-particle Dirac operator is the matrix-differential op-
erator

H0 =

⎛
⎜⎜⎝

mc2 0 cp3 c(p1 − ip2)
0 −mc2 c(p1 + ip2) −cp3

cp3 c(p1 − ip2) mc2 0
c(p1 + ip2) −cp3 0 −mc2

⎞
⎟⎟⎠ . (8.9)
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8.1.2. Properties of the free-particle Dirac operator

The free-particle Dirac operator H0 is best analyzed in momentum space
where it is just a matrix-multiplication operator. With the help of the uni-
tary Fourier transform F (applied to each component of a Dirac spinor), we
convert the Dirac operator into

F H0F−1 = h0(k) = cα · k + βmc2 =
(

mc212 cσ · k
cσ · k −mc2 12

)
. (8.10)

Hence, the matrix-differential operator H0 and the matrix-multiplication
operator h0(k) are unitarily equivalent.

In the standard representation, the matrix h0(k) can be diagonalized
with the unitary matrix

u(k) = a+(k)14 +
a−(k)

k
β α · k, (8.11)

where k = |k| and

a±(k) =
1√
2

(
1± mc2

E(k)

)1/2
, (8.12)

with
E(k) =

√
c2 k2 + m2 c4 (positive square-root). (8.13)

It may be checked by an explicit calculation using the commutation relations
(8.5) that

u(k)h0(k)u(k)−1 = E(k)β. (8.14)

Hence, for each k ∈ R
3, the matrix u(k) is just the unitary matrix that

diagonalizes the Hermitian 4×4 matrix h0(k) in the standard representation
(where β is represented by a diagonal matrix).

The Dirac matrix β has the eigenvalues +1 and −1, hence the eigenvalues
of the matrix h0(k) are +E(k) and −E(k). The set of all possible eigenvalues
for all k is the spectrum of the multiplication operator h0(k) and hence also
of the free-particle Dirac operator H0, which is unitarily equivalent with
h0(k):

σ(H0) = {±E(k) | k ≥ 0} = (−∞,−mc2] ∪ [mc2,∞). (8.15)

Let upos(k) be an eigenvector of h0(k) belonging to the eigenvalue E(k), and
let uneg(k) be an eigenvector belonging to the eigenvalue −E(k). Then

u pos
neg

(k;x) = u pos
neg

(k) eik·x (8.16)

are solutions of the stationary free-particle Dirac equation,

H0 upos(k;x) = E(k)upos(k;x), H0 uneg(k;x) = −E(k) uneg(k;x).
(8.17)
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The functions upos and uneg are analogs of stationary plane waves. The spec-
trum σ(H0) is the set of all energies for which the stationary free-particle
Dirac equation has plane-wave-like solutions (out of which square-integrable
wave packets can be formed). According to (8.15), σ(H0) is the continuum
of all real numbers except the numbers in the spectral gap, the open in-
terval (−mc2,mc2). The Dirac equation in three dimensions hence also has
solutions with negative energy.

The Hilbert space of the Dirac equation in three space dimensions is

H = L2(R3)4, (8.18)

the space of square-integrable spinors with four components. This Hilbert
space can be decomposed into the subspace of positive and negative energies,

L2(R3)4 = Hpos ⊕ Hneg. (8.19)

The projection operator that projects onto the subspace of positive energies
is given by

Ppos =
1
2

(
1 +

H0√
H2

0

)
, (8.20)

Similarly,

Pneg =
1
2

(
1− H0√

H2
0

)
, (8.21)

is the projection operator onto negative energies according to the free-particle
Dirac equation. We have

Ppos L2(R3)4 = Hpos, Pneg L2(R3)4 = Hneg. (8.22)

8.1.3. Electromagnetic fields

In order to introduce an electromagnetic field, the Dirac equation is modified
as follows (see also Book One, Section 4,6): For a charged particle in a
magnetic field, we replace the canonical momentum p by

p− e

c
A(x), (8.23)

where e is the charge of the particle, and A(x) is the magnetic vector poten-
tial. In classical mechanics and nonrelativistic quantum mechanics, (8.23) is
just mass times velocity.

In the presence of an electric field, we add the electrostatic potential
energy e φel(x) to the energy. The operator describing the electrostatic po-
tential energy is defined as the operator that multiplies each component of
a spinor with the function e φel(x). Hence, we take

Vel(x) = e φel(x)14. (8.24)
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The Dirac operator in an external electromagnetic field becomes

H = cα ·
(
p− e

c
A(x)

)
+ β mc2 + Vel(x) = H0 + Velm(x). (8.25)

Here, we have introduced the electromagnetic potential matrix

Velm(x) = e φel(x)14 − eα ·A(x). (8.26)

In the standard representation, this matrix is

Velm = e

⎛
⎜⎜⎝

φel 0 −A3 −A1 + iA2

0 φel −A1 − iA2 −e A3

−A3 −A1 + iA2 φel 0
−A1 − iA2 −A3 0 φel

⎞
⎟⎟⎠ . (8.27)

This 4 × 4 matrix multiplication operator has to be added to the matrix
differential operator H0 in (8.9).

There are two strong reasons why this choice of the Dirac operator is a
good one:

(1) The Dirac equation with electromagnetic fields is covariant with re-
spect to Poincaré transformations, and hence is consistent with the
special theory of relativity and in particular with electromagnetism
(see Section 8.2).

(2) The Dirac equation with the Hamiltonian H given by (8.25) predicts
energy levels for the hydrogen atom which are in excellent agree-
ment with the experimental observations (see Section 8.8). The
same is true for other well-known external fields, for example, the
constant magnetic field.

8.2. Relativistic Covariance

The special theory of relativity describes the symmetry transformations link-
ing physically equivalent inertial systems. These transformations are called
Poincaré transformations. In this chapter, we define the Poincaré transfor-
mations, show how they can be implemented as symmetry transformations
in Dirac’s relativistic quantum mechanics, and investigate how external fields
have to be transformed.

8.2.1. Poincaré transformations

The Minkowski space is the four-dimensional space-time consisting of space-
time points x = (x0, x1, x2, x3) = (ct,x). It is equipped with the metric1

〈x, y〉 = x0 y0 − x · y. (8.28)

1Here, the word “metric” refers to a non-definite scalar product.
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A Lorentz transformation, described by a 4×4 matrix Λ, is a linear mapping
that preserves the metric in Minkowski space,

〈Λ x,Λ y〉 = 〈x, y〉. (8.29)

The set of all Lorentz transformations forms a group, the Lorentz group.
A special set of Lorentz transformations are the boosts or velocity trans-

formations. We characterize a boost by the velocity of a particle after the
boost,

v = cn tanhω. (8.30)

The matrix describing a boost is

Λ(v) =
(

cosh ω n� sinhω
n sinhω 13 − nn�(1− cosh ω)

)
. (8.31)

Here, we interpret the unit vector n describing the direction of the boost
as a column vector, its transpose n� is a row vector, and nn� is the 3 × 3
matrix (nn�)ik = nink. The inverse matrix is

Λ−1(v) = Λ(−v). (8.32)

The group of rotations is a subgroup of the Lorentz group. A rotation matrix
is given by

Λ
(
R(ϕn)

)
=

(
1 0�
0 R(ϕn)

)
(8.33)

where ϕn is the rotation vector and R(ϕn) is an orthogonal 3× 3 rotation
matrix as defined in (1.11).

Other examples of Lorentz transformations are the parity transformation
x → −x and the time-reversal operation t → −t. These discrete Lorentz
transformations require a separate treatment, and the Lorentz group with-
out the discrete transformations is called the proper orthochronous Lorentz
group. Any proper orthochronous Lorentz transformation can be written
as a composition of a boost and a rotation. The set of boosts alone do
not form a subgroup of the Lorentz group, because the composition of two
boosts along different directions is not a pure boost (this fact is related to
the Thomas precession mentioned in Section 3.9.3).

A Poincaré transformation P = (Λ, a) consists of a Lorentz transforma-
tion Λ and a translation by a in space-time:

P(x) = Λ x + a. (8.34)

The set of all Poincaré transformations forms a 10-dimensional Lie group.
This means that 10 continuously varying parameters are necessary to de-
scribe the group elements (3 for rotations, 3 for boosts, and 4 for the space-
time translations).
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8.2.2. Poincaré covariance of the Dirac equation

We want to describe the action of a Poincaré transformation on a solution
of the Dirac equation

i
∂

∂t
ψ(x, t) =

(
cα · ∇+ β mc2 + V(x, t)

)
ψ(x, t) (8.35)

where V (x, t) is (for each t) some Hermitian matrix multiplication operator.
In the following, we only consider solutions ψ that are differentiable functions
of the space-time coordinates. For notational convenience, we write

ψ(x, t) = Ψ(x) with x = (ct,x). (8.36)

Multiplying the Dirac equation (8.35) from the left by the Dirac matrix β
and dividing by c gives the equation

i 〈γ, ∂〉Ψ(x) = mc ψ(x) + Vcov(x) Ψ(x), (8.37)

called the Dirac equation in covariant form. Here, γ = (γ0,γ) is a four-dim-
ensional vector whose components are matrices (the Dirac gamma matrices),

γ = (γ0, γ1, γ2, γ3) = (γ0,γ), (8.38)

with
γ0 = β, γ = βα. (8.39)

Hence, 〈γ, x〉 = cβt − βα · x is a 4 × 4 matrix for every x in Minkowski
space. The symbol ∂ combines the derivatives with respect to time- and
space-coordinates into a four-vector,

∂ =
( 1

c

∂

∂t
, −∇ )

. (8.40)

The covariant potential matrix Vcov is defined as

Vcov(x) =
1
c

β V (x, t), where x = (ct,x). (8.41)

From β2 = 14 we see immediately that

V (x, t) = c β Vcov(x). (8.42)

The Dirac equation in covariant form (8.37) is useful for the investigation
of relativistic invariance, because mc is a scalar (which by definition of a
scalar is invariant under Lorentz transformations) and the term 〈γ, ∂〉 is
written in the form of a Minkowski scalar product. Hence, if γ and ∂ were
ordinary vectors in Minkowski space, the invariance of this term would be
already guaranteed by (8.29).

For a given Poincaré transformation P = (Λ, a) and a given solution
Ψ(x) of the Dirac equation, we define a transformed solution in analogy to
(7.203),

Ψ′(x) = T(Λ) Ψ
(P−1(x)

)
= T(Λ) Ψ

(
Λ−1(x− a)

)
. (8.43)
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Here, T(Λ) is a representation of the Lorentz transformation Λ in terms
of four-dimensional matrices in the space of four-component spinors. The
representation matrices T(Λ) for Lorentz transformations will be chosen in
such a way that the following relation holds

T(Λ) 〈γ, x〉T(Λ)−1 = 〈γ,Λ x〉 = 〈Λ−1γ, x〉. (8.44)

Below, we present a choice of representation matrices T(Λ) satisfying this
requirement. The relation (8.44) is equivalent to the matrix-relation

Λγ = T(Λ)−1 γ T(Λ). (8.45)

On the left-hand side, Λ acts as a 4× 4 matrix on the four-vector γ, thereby
producing another four-vector whose components are matrices. Likewise,
the right-hand side of this equation is a four-vector with matrix-valued com-
ponents, and the kth component is an ordinary matrix product of the three
4× 4 matrices T(Λ)−1, γk, and T(Λ).

The Dirac equation is compatible with Poincaré transformations in the
following sense:

Covariance of the Dirac equation:

Let Ψ(x) be a solution of the Dirac equation

i
〈
γ, ∂

〉
Ψ(x) =

(
mc + Vcov(x)

)
Ψ(x). (8.46)

Then, the transformed spinor

Ψ′(x) = T(Λ) Ψ
(
Λ−1(x− a)

)
(8.47)

is a solution of the Dirac equation with the transformed potential

V ′
cov(x) = T(Λ) Vcov(Λ−1(x− a))T(Λ)−1. (8.48)

It follows that the free-particle Dirac equation is invariant under all
Poincaré transformations.

Proof. In order to perform a Poincaré transformation of (8.46), we
replace x everywhere by x′ = Λ−1(x − a) and multiply both sides of (8.46)
by T(Λ). This gives

iT(Λ)
〈
γ, ∂′〉Ψ(x′) = mcT(Λ) Ψ(x′) + T(Λ) Vcov(x′) Ψ(x′),

= mcT(Λ) Ψ(x′) + V ′
cov(x)T(Λ) Ψ(x′), (8.49)

where ∂′ denotes the derivative with respect to x′, and V ′ is the Poincaré-
transformed potential according to (8.48). The chain rule of differentiation
implies that

∂ Ψ(x′) = Λ−1 ∂′ Ψ(x′) (8.50)
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with Λ−1 coming from the derivative of x′ with respect to x. Hence,

T(Λ)
〈
γ, ∂′〉ψ(x′) = T(Λ)

〈
γ,Λ−1∂

〉
ψ(x′)

= T(Λ)
〈
γ,Λ−1∂

〉
T(Λ)−1T(Λ) ψ(x′). (8.51)

Finally, we apply the algebraic property (8.44) to obtain

T(Λ)
〈
γ,Λ−1∂

〉
T(Λ)−1 =

〈
γ,ΛΛ−1∂

〉
= 〈γ, ∂〉. (8.52)

Combining everything gives the equation

i 〈γ, ∂〉T(Λ)Ψ(x′) =
(
mcT(Λ) + V ′

cov(x)
)
T(Λ) Ψ(x′) (8.53)

which shows that Ψ′(x) = T(Λ)Ψ(x′) is indeed a solution of the Dirac equa-
tion with the Poincaré-transformed potential. This is what we wanted to
prove. �

The behavior of the covariant potential Vcov under a Poincaré trans-
formation described in (8.48) implies that the potential matrix V (x) =
c γ0 Vcov(x) is transformed into

V ′(x) = γ0T(Λ) γ0V (Λ−1(x− a))T(Λ)−1. (8.54)

Special examples of Lorentz transformations are described next.

8.2.3. Velocity transformations

For Lorentz boosts Λ(v), we define the representation matrices

T
(
Λ(v)

)
= e(ω/2) α·n, where v = cn tanh ω. (8.55)

The matrix-exponential exp(ω α · n/2) is computed as usual via the power
series of the exponential function and gives

e(ω/2) α·n = 14 cosh
ω

2
+ α · n sinh

ω

2
. (8.56)

These matrices are not unitary2 in C
4. Nevertheless, the boosts define uni-

tary operators in L2(R3)4.
Consider the transformation Ψ(x) → Ψ′(x) defined in (8.47). Here, we

assume that Ψ is a solution of the free-particle Dirac equation. Then, by
a computation analogous to the one-dimensional case (Section 7.9.5), we
obtain the generators of the Lorentz boosts as

N =
1
2
(H0 x + xH0). (8.57)

2It can be shown that finite-dimensional representations of non-compact Lie groups
cannot be unitary. The Lorentz transformations constitute the non-compact part of the
Lorentz group, because the parameter ω varies in the unbounded (non-compact) set R.
See [9] for more details concerning the representation theory of the Lorentz and Poincaré
groups.
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The three components (N1, N2, N3) of N define self-adjoint operators, show-
ing that the transformations Ψ(x) → Ψ′(x) define a unitary representation
of Lorentz boosts in L2(R3)4:

Ψ′(x) = exp
(
i
ω

c
n ·N

)
Ψ(x) = e(ω/2) α·n Ψ

(
Λ−1(v) x

)
. (8.58)

Here, it is necessary to consider solutions of the free-particle Dirac equation,
because the structure of the Lorentz group requires certain commutation
relations for its generators (which are elements of the Lie-algebra). The
generators of boosts, in particular, satisfy the commutation relations

1
c2

[Nj , Nk] = −i
3∑

l=1

εjkl Jl, (8.59)

where Jl is the generator of a rotation (that is, an angular-momentum oper-
ator). It is clear that, in general, (8.59) cannot hold if the free-particle Dirac
operator H0 is replaced by the Dirac operator H in an external field. Hence,
in the presence of an external field, (8.47) does not define a representation
of the Poincaré group.

8.2.4. Rotations

As in nonrelativistic quantum mechanics, the generators of the rotations are
the angular-momentum operators. But here, the angular momentum is a
sum of an orbital angular momentum and the spin,

J = L + S, L = x× p, S =
1
4
α×α. (8.60)

In the standard representation, the spin S can be written in terms of the
Pauli matrices as

S =
1
2

(
σ 02

02 σ

)
. (8.61)

This is quite analogous to the definition of the spin in Chapter 3, see (3.39).
We note that (each component of) the spin S commutes with the orbital
angular momentum and hence

exp(−iϕn · J) = exp(−iϕn · S) exp(−iϕn · L). (8.62)

Here, the unitary operator generated by L acts only on the argument of the
wave function (as in nonrelativistic quantum mechanics) whereas the unitary
matrix exp(−iϕn · S) only affects the spinor components. Hence, we find
that a rotated spinor wave function is given by(

e−i ϕn·J ψ
)
(x) = e−i ϕn·S ψ

(
R(ϕn)−1x

)
= e−i ϕn·S Ψ

(
Λ(R(ϕn))−1x

)
, (8.63)



388 8. THE DIRAC EQUATION

where R(ϕn) is the orthogonal 3×3 rotation matrix defined in (1.11). Using
the power series representation of the exponential function and the property
(n · S)2 = 1/4, we easily obtain

T
(
Λ(R(ϕn))

)
= e−iϕn·S = 14 cos

ϕ

2
− 2in · S sin

ϕ

2
. (8.64)

These matrices are unitary in C
4. Note that the angle ϕ/2 appears in the

matrix (8.64), as it did in (4.28). It means that a rotation through 2π is
represented by the matrix −1.

We finally note that more general Lorentz transformations are now ob-
tained easily because any proper orthochronous Lorentz transformation can
be written in a unique way as the product of a boost and a rotation:

Λ = Λ(v) Λ
(
R(ϕn)

)
. (8.65)

8.2.5. Unitary representation

The set of solutions of the free-particle Dirac equation implements a unitary
representation of the orthochronous Poincaré group. For example, the time
evolution according to the free-particle Dirac equation is a special Poincaré
transformation, namely a translation in the time-direction of Minkowski
space. It is a unitary transformation generated by the free-particle Dirac
operator H0:(

eiH0tΨ
)
(x0,x) = Ψ(x0 − ct,x), translation by a = (ct, 0, 0, 0). (8.66)

Here, it is necessary to consider the free time evolution, because the Lie-
algebra relations of the Poincaré group require that the generators of space
and time translations commute, [H0, pk] = 0. This would not be true if the
generator H0 of time translations were replaced with H. Hence, in general,
the transformations given by (8.47) do not define a representation of the
Poincaré group.

Unitary representation of Poincaré group:

In the Hilbert space L2(R3)4 of the Dirac equation we can define a uni-
tary representation of the orthochronous Poincaré group (all Poincaré
transformations except the time reversal). Let ψ(x) = Ψ(0,x), where

Ψ(ct,x) = Ψ(x) = exp(−iH0t) ψ(x) = ψ(x, t). (8.67)

Then, the representation U(Λ, a) of a Poincaré transformation (Λ, a) is
defined by

U(Λ, a)ψ(x) = T(Λ) Ψ
(
Λ−1(x− a)

)
with x = (0,x). (8.68)
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The parity transformation P can be represented by

(Pψ)(x) = βψ(−x). (8.69)

According to a result of E.P. Wigner, the time reversal T has to be repre-
sented by an antiunitary transformation. There are several (nonequivalent)
ways to implement the discrete transformations {P, T, PT} in the Hilbert
space of the Dirac equation.

8.3. Classification of External Fields

8.3.1. Poincaré transformations of external fields

With the help of γ0 = β and γk = βαk, k = 1, 2, 3, we define the following
sixteen matrices Γ1, . . . ,Γ16,

Γ1 : 14,

Γ2, . . . ,Γ5 : γ0, iγ1, iγ2, iγ3,

Γ6, . . . ,Γ11 : γ0γ1, γ0γ2, γ0γ3, iγ2γ3, iγ3γ1, iγ1γ2,

Γ12, . . . ,Γ15 : γ1γ2γ3, iγ0γ2γ3, iγ0γ3γ1, iγ0γ1γ2,

Γ16 : γ5 = iγ0γ1γ2γ3. (8.70)

These matrices form a basis in the (real) vector space of all Hermitian 4× 4
matrices. Any Hermitian matrix Γ can be written as a linear combination
Γ =

∑
cjΓj , with real-valued coefficients ci ∈ R. Similarly, any potential

matrix V (x) (a Hermitian 4× 4 matrix) can be written as a linear combina-
tion of the Gamma-matrices Γj with real-valued coefficient functions:

V (x) =
16∑

j=1

vj(x) Γj (vj real-valued). (8.71)

The behavior under Poincaré transformations is best determined for the
covariant potential

Vcov(x) =
1
c

∑
j

vj(x) γ0 Γj . (8.72)

According to (8.48), a Poincaré transformation converts this expression into

V ′
cov(x) =

1
c

16∑
j=1

vj(Λ−1(x− a))T(Λ) γ0Γj T(Λ)−1. (8.73)

We can expand the transformed external field as

V ′
cov(x) =

1
c

∑
j

v′j(x) γ0 Γj . (8.74)
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If the Dirac equation should be covariant under Poincaré transformations, it
has to be assumed that V ′

cov(x) describes the external field at the space-time
point x after a Poincaré transformation. The transformation law (8.45)
for the Dirac-γ-matrices now implies a certain transformation law for the
coefficient functions vj . This will be illustrated with several examples below.

8.3.2. Electromagnetic vector potential

In Section 8.1.3, it has been claimed that the potential matrix

V (x) = e φel(x)14 − eα ·A(x) (8.75)

describes a charged particle in an electromagnetic field (φel,A). If we ex-
pand this matrix in the basis of Γ-matrices, we see that the electromagnetic
potentials are the coefficients of the matrices Γ1, Γ6, Γ7, and Γ8. The corre-
sponding covariant potential can be written as

Vcov(x) =
e

c
〈γ, A(x)〉, (8.76)

where A(x) is an abbreviation for (φel(x),A(x)). After a Poincaré transfor-
mation, this becomes

V ′
cov(x) =

e

c
T(Λ) 〈γ, A(Λ−1(x− a))〉T(Λ)−1

=
e

c
〈γ,ΛA(Λ−1(x− a))〉. (8.77)

Here, we used the relation (8.44) again. We see that the requirement of rel-
ativistic covariance is that the fields A(x) = (φel(x),A(x)) are transformed
according to

A′(x) = Λ A(Λ−1(x− a)
)
. (8.78)

Indeed, this is precisely the behavior of electromagnetic potentials as ex-
pected from Maxwell’s equations. We note that the electric and magnetic
field strengths are

E(x) = −∇φel(x)− 1
c

∂A(x)
∂t

, B(x) = ∇×A(x). (8.79)

If we perform a Poincaré transformation of the electromagnetic potentials
according to (8.78), then the corresponding new field strengths E′ and B′
will again satisfy Maxwell’s equations.
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Electromagnetic potentials and covariance of Dirac’s equation:

Let ψ be a solution of the Dirac equation with electromagnetic poten-
tials A. The Poincaré-transformed solution ψ′ is a solution of the Dirac
equation with new electromagnetic potentials A′ that are obtained by
a Poincaré transformation from the original potentials. The transfor-
mation of the potentials is in accordance with the transformation law
required by Maxwell’s equations.

This compatibility of the transformation behavior gives us the right to
call the coefficient functions of Γ1, Γ6, Γ7, and Γ8 in (8.71) “electromagnetic
potentials.”

In a similar way, we can give a meaning to the other coefficient functions.

8.3.3. Scalar potential

Consider a real-valued function φsc of x = (ct,x) and define the potential
matrix

V (x) = βφsc(x). (8.80)

The corresponding covariant potential is

Vcov(x) = 1
c φsc(x)14. (8.81)

A Poincaré transformation Vcov → V ′
cov according to (8.48) requires the

replacement
φsc(x) → φsc

(
Λ−1(x− a)

)
, (8.82)

and hence φsc must behave like a scalar field under a Poincaré transforma-
tion. The Dirac operator with a scalar potential becomes

H = cα · p + β
(
mc2 + φsc(x)

)
. (8.83)

This shows that a scalar potential φsc acts like an x-dependent rest mass.

8.3.4. Anomalous magnetic moment

We have seen that γ combines with a four-vector field A into a covariant
potential matrix. Similarly, products of γ matrices combine with tensor
fields. For example,

Vcov(x) =
µa

2c

3∑
µ,ν=0

Fµν(x) γµ γν (8.84)

has the right behavior for the Dirac equation if the coefficient functions
Fµν(x) behave like a contravariant tensor field of second rank. That means
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that we can take Fµν to be the electromagnetic field tensor. This leads to
the following potential

V (x) = µa

(
iβα ·E(x)− 2β S ·B(x)

)
. (8.85)

In (8.71), the coefficient functions of the matrices Γ3,Γ4,Γ5 and Γ13,Γ14,Γ15

can thus be interpreted as the electric and magnetic field strengths.
Physically, the potential (8.85) describes a particle with an additional

anomalous magnetic moment. The magnitude of the anomalous moment is
given by the coupling constant µa in units of the Bohr-magneton.

The remaining types of potential matrices (pseudoscalar-, pseudovector-,
and pseudotensor-fields) occur less frequently in atomic physics and will not
be discussed here.

8.4. Positive and Negative Energies

8.4.1. Negative-energy wave packets are positrons

In the presence of an external field, solutions with positive energy behave
differently from solutions with negative energy. We consider a potential V (x)
that is very small outside a bounded region, like the electrostatic barrier
shown in Figure 8.1. We put a well-localized wave packet in a region where
the potential can be neglected. The energy of this wave packet is essentially
determined by the free-particle Dirac operator. Hence, a wave packet in
the subspace Hpos (according to the free-particle Dirac equation) is a good
approximation of a wave packet with positive total energy. Similarly, a wave
packet ψ ∈ Hneg that is (approximately) localized far away from the region
with the potential, has a negative total energy.

Figure 8.1 compares a positive-energy wave packet with a negative-
energy wave packet when they hit an electrostatic barrier. The upper row in
Figure 8.1 shows that the positive-energy wave packet behaves as expected:
The wave packet gets reflected at the positive (repulsive) potential barrier,
because its energies are lower than the height of the barrier. The lower
row in Figure 8.1 shows a negative-energy wave packet with the same initial
shape and initial velocity. It hits the same potential barrier, but instead of
being reflected it gets accelerated and passes quickly through the barrier.

CD 6.18 is an animated version of Figure 8.1, showing phase-colored
plots of the spinor-wave packets. This helps to distinguish between
positive and negative energy solutions from the beginning. The
positive-energy wave packet is reflected at a positive potential bar-
rier (as expected). The negative-energy wave packet behaves as if it
would describe a particle with the opposite charge.
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Figure 8.1. Wave packet hitting a “speed bump” (electro-
static barrier, thick line). Upper row: Three snapshots from
the time evolution of a wave packet with positive energy.
Lower row: Same for a wave packet with negative energy.
Both wave packets have the same initial velocity distribution.

A negative-energy wave packet behaves like a particle with the same
mass but with opposite charge. In short: If the positive-energy solutions
describe an electron, then the solutions with negative energy behave like a
positron. Indeed, we can give a formal proof of this observation.

We denote the Dirac operator for a particle with mass m and charge e
in an external field (φel,A) by

H(e,m) = cα · (p− e

c
A(x, t)

)
+ β mc2 + eφel(x, t). (8.86)

Consider the antiunitary transformation

Cψ = UC ψ. (8.87)

Here, the bar denotes a complex conjugation, and UC is a unitary 4 × 4
matrix satisfying

βUC = −UCβ, αkUC = UCαk, k = 1, 2, 3. (8.88)

In the standard representation, we may choose

UC = iβα2. (8.89)

The operator C is an antiunitary transformation in the Hilbert space of the
Dirac equation. Hence, it is a symmetry transformation by the definition in
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Chapter 1. In particular, all transition probabilities are left invariant, that
is,

|〈Cψ, Cφ〉|2 = |〈ψ, φ〉|2. (8.90)
A little calculation shows the following result: Whenever ψ(t) is a solution
of the Dirac equation with Hamiltonian H(e,m), then Cψ(t) is a solution of
the Dirac equation with Hamiltonian H(−e,m). We have

C H(e,m) C−1 = −H(−e,m). (8.91)

Therefore, the symmetry transformation C is called charge conjugation. C
maps the negative-energy subspace of H(e,m) onto the positive-energy sub-
space of the Dirac operator H(−e,m) for a particle with the same mass but
opposite charge. Hence, if ψ describes an electron, then Cψ describes a
positron.

In analogy with (7.22), we denote by | · |4 the C
4-norm of a four spinor.

The unitarity of the matrix UC immediately implies∣∣Cψ(x)
∣∣
4

=
∣∣UC ψ(x)

∣∣
4

=
∣∣ψ(x)

∣∣
4

=
∣∣ψ(x)

∣∣
4
. (8.92)

The position distribution of a spinor-wave packet cannot be distinguished
from the position distribution of the charge-transformed wave packet. We
conclude:

The motion of a negative-energy spinor-wave packet ψ is indistinguish-
able from the motion of the positive-energy spinor-wave packet Cψ.

In view of this discussion, we may modify our standard one-particle
interpretation in the following sense:

The Dirac equation describes two kinds of particles: States in the posi-
tive-energy subspace describe electrons, and states in the negative-energy
subspace actually describe antiparticles with positive energy.

This statement is only meaningful for situations where the sign of the
energy clearly distinguishes between electronic and positronic behavior. This
is not always the case, as shown in the following section.

CD 6.19 shows the behavior of various wave packets in a linear elec-
trostatic potential (constant electric field). We expect electronic
behavior, whenever the energy of the wave packet is higher than
V (x) + mc2 in the region where the wave packet is (approximately)
localized. We expect positronic behavior for wave packets whose en-
ergy is less than V (x) − mc2. A general wave packet quickly splits
into two parts, one part moving in the direction of the field’s gradi-
ent (electronic wave packet) and one moving in the opposite direction
(positronic behavior).
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Figure 8.2. Illustration of the Klein paradox. The upper
row of figures show the total reflection of a positive-energy
wave packet at a potential step whose height is higher than
all the energies of the wave packet. The lower row shows that
when the same wave packet encounters a very high potential
step, part of the packet is transmitted as a positron.

8.4.2. Relativistic scattering in one dimension: The Klein
paradox

The Klein paradox occurs for a high one-dimensional electrostatic potential
step. This step divides space into two regions with a different interpretation
of particles and antiparticles. This is shown in Figure 8.2.

For the Dirac operator with a constant potential V (x) = V0 1, the energy
spectrum consists of a positronic part (−∞,−m c2 + V0] and an electronic
part [m c2+V0,∞). The corresponding plane-wave solutions are ω−→(E−V0;x)
and ω←−(E − V0;x) with the solutions defined in (7.138) and (7.141).

We consider the Dirac operator with a one-dimensional step potential

V (x) = φel(x)1, φel(x) =

{
0 for x ≤ 0,
V0 for x > 0.

(8.93)

The motion of wave packets in the region x ≤ 0 is thus governed by the
free-particle Dirac equation whereas the behavior in the region x > 0 is
described by the Dirac equation in a constant potential. Whenever V0 is
bigger than 2mc2, we see that the range of electronic energies according to
the free-particle Dirac operator overlaps with the range of positronic energies
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according to the Dirac operator with the constant potential. A particle with
energies in (mc2,−mc2+V0) can thus propagate on both sides of the potential
step, as an electron on the left side, and as a positron on the right side. The
Dirac equation with the potential (8.93) now has the following plane-wave
solution:

u(E;x) =

{
ω−→(E;x) + R←−(E) ω←−(E;x) for x ≤ 0,

T−→(E) ω−→(E − V0;x) for x > 0.
. (8.94)

The coefficients R←−(E) (coefficient for reflection to the left) and T−→(E) (co-
efficient for transmission to the right) follow from a continuity condition at
x = 0. The continuity condition reads

ω−→(E) + R←−(E) ω←−(E) = T−→(E) ω−→(E − V0). (8.95)

We insert the expressions (7.147) and (7.148) with the following abbrevia-
tions for the components,

n(E) b+(E) = η, n(E − V0) b+(E − V0) = η0, (8.96)

and note that, because of (7.149),

n(E) b−(E) =
1
2η

. (8.97)

Then, we can write the continuity condition as(
1 + R←−(E)) η = T−→(E) η0,

(
1− R←−(E))

1
η

= T−→(E)
1
η0

. (8.98)

From these equations, we determine

R←−(E) =
η2
0 − η2

η2
0 + η2

, T−→(E) =
2 η0 η

η2
0 + η2

. (8.99)

Let us consider the case V0 > 2mc2. The transmission coefficient T−→(E) is
seen to be real and positive for energies mc2 < E < −mc2 + V0. Moreover,
we have ∣∣R←−(E)

∣∣2 +
∣∣T−→(E)

∣∣2 = 1. (8.100)

A plot of |T−→(E)|2 for energies in mc2 < E < −mc2 + V0 is shown in Fig-
ure 8.3.

We may use the plane wave solutions (8.94) to form a wave packet with
energies in the range mc2 < E < −mc2 + V0,

ψ(x, t) =
∫ −mc2+V0

mc2
g(E)u(E;x) e−iEt dE. (8.101)

This describes a wave packet that is initially (for t � 0) located far to the
left of the step, with positive velocities. At the step, the wave packet splits



8.4. POSITIVE AND NEGATIVE ENERGIES 397
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mc2 −mc2+V0
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E

←T (E)∣∣ 2

Figure 8.3. Square of the transmission coefficient for a high
electrostatic potential step V0 > 2mc2.

into a reflected part and into a transmitted part. The reflected part (having
positive energies) behaves like an electronic solution of the free-particle Dirac
equation to the left of the potential step. The transmitted part belongs to the
positronic energy region of the Dirac equation with a constant potential. It
describes a wave packet that moves to the right and behaves like a positron.
The existence of this solution is paradoxical, because it describes a wave
packet that starts as an electron and has a certain chance to be finally
detected as a positron. Hence, this solution violates the principle of charge
conservation.

CD 6.20 shows the scattering of wave packets at potential steps of
various heights. In case of a high potential step, we see Klein’s para-
dox. The transmitted wave packet to the right of the step shows all
characteristic features of negative-energy solutions. CD 6.21 dis-
cusses the scattering of Dirac-wave packets in momentum space.
CD 6.22 shows variants of the Klein paradox in momentum space.

The Klein paradox remains unresolved in the framework of a single-
particle theory with external fields. Here, it serves to illustrate the limita-
tions of that theory. In reality, the field energy of a high potential step would
presumably cause the generation of electron-positron pairs, which leads us
into the range of quantum electrodynamics. Presently, quantum electrody-
namics is still mathematically incomplete, and one may argue that there is no
fully satisfactory and commonly accepted description of the Klein paradox
at the time of this writing.
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8.4.3. Physical Hilbert space and relativistic observables

The Hilbert space H = L2(R)4 contains states that are superpositions of
positive and negative energy states. But, a single quantum system can hardly
be imagined as a superposition of a particle and an antiparticle (although a
similar phenomenon is known for neutral K-mesons). Therefore, one makes
the assumption that physically allowed states should be restricted to either
the positive-energy subspace or to the negative-energy subspace. This makes
sense for free particles, because the time evolution leaves the subspaces with
positive and negative energy invariant. An initial state with positive energy
has positive energies for all times, that is,

ψ(t) ≡ exp(−iH0t)ψ ∈ Hpos if and only if ψ ∈ Hpos. (8.102)

As we have seen, there are situations where the sign of the energy does
not distinguish between electronic and positronic behavior (Klein’s para-
dox). Consequently, transitions from electronic to positronic states cannot
be excluded. In particular, the energy is not conserved if the potentials de-
pend on time. Thus, an initial state with positive energy may turn into a
superposition of electronic and positronic states.

Fortunately, these effects become important only if the potential energies
are very high (of the order of 2mc2). These situations are not very likely
to occur in atomic and molecular physics. For a sufficiently weak time-
independent potential that vanishes, as |x| → ∞, one can still distinguish
between particle and antiparticle solutions. Hence, there is a wide range
of possible applications of the Dirac equation where the above-mentioned
interpretational difficulties play no role, at least not in a practical sense.

The above reasoning suggests that in many cases of physical interest, the
Hilbert space H = L2(R3)4 contains as a “physical” subspace Helectron, the
subspace containing electronic states. A Hilbert space of positronic states
Hpositron can be constructed via a charge conjugation from the orthogonal
complement of Helectron in H. In case of free particles or weak (static) external
fields, the Helectron coincides with the subspaces with positive energy Hpos,
and Hpositron is given by CHneg. Superpositions of electronic and positronic
states should be regarded as unphysical. Whenever these superpositions
arise in an unavoidable way, one should apply the methods of quantum field
theory. In these situations high energies are involved, pair creation is likely
to happen, and the one-particle Dirac equation is an insufficient model of
reality (as would be a “many-particle” version of the Dirac equation with a
fixed number of particles).

From a pragmatic point of view, we believe that this interpretation of
the Dirac equation is good for a certain set of physical situations (or range
of energies) that encompasses the situations typically encountered in atomic
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physics. Here, one should consider the positive-energy subspace Hpos as
the physical Hilbert space for an electron. All calculations should be done
within that Hilbert space. In particular, a minimization of the energy has to
be carried out with the constraint that ψ be (approximately) orthogonal to
Hneg.3 Doing otherwise would lead to the well-known “variational collapse,”
because the Dirac operator is not bounded from below on the space of all
square-integrable functions.

One question, however, cannot be avoided completely. It is again that
of relativistic observables. In view of this interpretation, only an observable
that leaves the subspace of positive energy invariant, is a good observable.
With ψ ∈ Hpos we should also require that Aψ ∈ Hpos, otherwise a measure-
ment of the observable A would throw the state out of the electronic Hilbert
space.

This requirement rules out the standard position operator (multiplication
by x), because it does not commute with the sign of the energy. This is
related to the fact that the subspace of positive energies does not contain
strictly localized spinors. There is no wave function that vanishes everywhere
in an open region of space. All positive-energy wave packets are essentially
spread over all of space. Still, there are wave packets that are approximately
localized in the same sense as a Gaussian wave packet. Examples of such
Gaussian-type wave packets are, for example, in Figures 8.1 and 8.2. But,
if we still maintain the interpretation of |ψ(x)|2 as a density of the position
probability, then we have to live with the fact that there are no strictly
localized particles. Physical reasons may be given for this. If we want to
prepare a particle whose wave function strictly vanishes outside some region,
we would have to enclose the particle by an infinitely high potential barrier.
But, this provides an infinite energy reservoir, and pair-creation processes
or variants of the Klein paradox are to be expected.

8.4.4. Relativistic confinement

Our discussion of the electron-positron interpretation shows that the Dirac
equation can have bound states for both attractive and repulsive electric
potentials. Consider for example an attractive electrostatic potential well
eV (x) < 0. It may support some bound states at energies En in the gap
(−mc2,mc2). A charge conjugation shows that the Dirac operator with a re-
pulsive potential well −eV (x) then has eigenvalues at the energies −En.
According to our interpretation, the bound states in the attractive well
are electrons, and the bound states in the “repulsive” well are, of course,
positrons. As long as the well is not too deep, the electronic states and the
positronic states remain well separated. Obviously, the situation becomes

3Griesemer, M., Siedentop, H., J. London Math. Soc. 60, 490–500 (1999).
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Figure 8.4. The (electrostatic) harmonic oscillator poten-
tial in the Dirac equation cannot bind particles. Any wave
packet that is initially inside the potential (in the region I)
can tunnel through the “classically forbidden” region II into
the positronic region III.

more problematic if the ground state has a binding energy larger than mc2.
In this case, the sign of the energy cannot separate the electronic from the
positronic states any longer. If we continuously increase the strength of an
attractive potential well, the bound state energies will move through the
gap and finally dive into the positronic continuum where they turn into res-
onances. These problems have been investigated in the context of heavy ion
collisions, where for some period of time a very heavy nucleus is formed.
It is clear that in this context, the solutions of the Dirac equation have to
be interpreted in the light of quantum field theory. Physically, as well as
mathematically, this is partially an open problem.

Consider an electrostatic potential that goes to infinity, as |x| → ∞. A
typical example would be the harmonic oscillator V (x) = x2 14. Because of
the Klein paradox (see Fig. 8.2), this potential is not able to bind particles.

CD 6.24 shows how a wave packet escapes from a deep electrostatic
potential well, because the wave packet tunnels into a region where
it can escape as a positronic wave packet. This effect vanishes if the
potential well is not so deep.

Figure 8.4 shows the harmonic oscillator potential V (x) and the dashed
curves V (x) ± mc2. Electrons have a positive kinetic energy if the total
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energy of the particle exceeds the potential energy plus the rest energy (in
the region I). This is a region where a nonrelativistic wavepacket would be
confined, with exponentially decaying “tails” into the classically forbidden
region (where the total energy is less than V (x) + mc2). According to the
Dirac equation, a positronic solution can exist in the region where the total
energy is less than V (x)−mc2. Note that the “attractive” harmonic oscillator
is actually repulsive for positronic wave packets. The Klein paradox shows
that a wave packet can indeed tunnel through the forbidden region II from
the electronic to the positronic region. Hence, any state that is initially in
the region I will sooner or later tunnel through the region II and will finally
escape as a positronic scattering state. Instead of a bound state, we can at
best expect a resonance of positronic scattering. For this reason, the Dirac
operator with an electric potential that goes to infinity has no bound states
at all. The energy spectrum σ(H) in this case is purely continuous and
consists of the whole real line: σ(H) = R.

It should be stressed that the spectral properties of Dirac operators de-
pend very much on the matrix structure of the potential. For a scalar poten-
tial V (x) = φsc(x) β, and after a unitary transformation with the constant
matrix

T =
1√
2

(
1 i
i 1

)
, (8.103)

we can write the Dirac operator in the following form

H =
(

0 cσ · p + i
(
mc2 + φsc(x)

)
cσ · p− i

(
mc2 + φsc(x)

)
0

)
. (8.104)

A charge conjugation does not change the sign of the scalar potential relative
to the other terms in the Dirac operator. Hence, a scalar potential acts in
the same way on electrons and positrons. If it is repulsive for electrons, so
it is for positrons.

Next, we consider the case of a scalar potential that increases toward
infinity. The square of this Dirac operator becomes

H2 =
(

A+ 0
0 A−

)
, A± = c2p2 ± cσ · ∇φsc(x) + (mc2 + φsc(x))2 (8.105)

If φsc(x) increases toward infinity (without oscillating too much), the square
of the scalar potential will finally dominate the term σ · ∇φsc. Hence, H2

consists of Schrödinger operators with confining potentials. With H2 also
the Dirac operator H will have discrete eigenvalues. Therefore, a scalar
harmonic oscillator potential V (x) = x2β will produce a purely discrete
energy spectrum.
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CD 6.23 shows that there is no Klein paradox in case of a scalar
potential step. CD 6.24.3 shows that a scalar potential well, no
matter how deep, can bind particles.

8.5. Nonrelativistic Limit and Relativistic
Corrections

8.5.1. The nonrelativistic limit

In a nonrelativistic theory, all velocities of the system are small in magnitude
compared to c, the speed of light. Mathematically, the nonrelativistic limit
of a relativistic theory is therefore described by the limit c → ∞, which
removes the relativistic bound on the propagation speed of signals. However,
we cannot simply set c = ∞ in the Dirac equation, because this would just
give infinity in all matrix elements of the free-particle Dirac operator (8.1).

Even the classical relativistic expression for the energy of a free particle
goes to infinity, as c goes to infinity,

E(c) =
√

c2p2 + m2c4 = mc2 +
p2

2m
− p4

8m3c2
+ O

( 1
c4

)
. (8.106)

The leading term is the rest mass mc2, a purely relativistic object. It seems
reasonable to subtract this term from the Dirac operator before taking the
nonrelativistic limit. In the following, we consider the limit c→∞ of

H(c)−mc214 =
(

eφel(x) + φsc(x) cσ · (p− e
cA(x)

)
cσ · (p− e

cA(x)
)

eφel(x)− φsc(x)− 2 mc2

)

=
(

V+ cD†

cD V− − 2 mc2

)
. (8.107)

This expression refers to the standard representation. We have introduced
the abbreviation

D = σ · (p− e

c
A(x)

)
= D†. (8.108)

The distinction between D and its adjoint D† in (8.107) has been made in
view of possible generalizations.

The operator D still contains the parameter c. Nevertheless, we are
going to keep D unchanged in the nonrelativistic limit. If we let the factor
1/c in front of the vector potential go to infinity, we would “turn off” the
magnetic field. Actually, this factor is of an electrodynamic origin and has
little to do with relativistic kinematics.

For the sake of simplicity, we assume that the potentials

V± = eφel(x)± φsc(x) (8.109)
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are bounded functions. The treatment of the more general case, for example,
the Coulomb potential, poses some technical complications (which can be
dealt with by the use of bounded resolvents instead of unbounded operators).

Let us now consider the eigenvalue equation(
H(c)−mc214

)
ψ = E ψ. (8.110)

The eigenvalue E, like the eigenfunction ψ, will, of course, depend on the
parameter c. We write(

V+ cD†

cD V− − 2 mc2

)(
f

g

)
= E

(
f

g

)
(8.111)

with two-component spinors f and g. From this system, we may eliminate
the two “lower components” g,

g =
(
1− 1

c2

V− − E

2m

)−1 1
2mc

D f. (8.112)

Inserting this expression into (8.111), we obtain the following equation for
the “upper components” f :

1
2m

D†
(
1− 1

c2

V− − E

2m

)−1
D f + V+ f = E f. (8.113)

(This step is mathematically rigorous only for bounded V− and large enough
c, such that the operator 1 − (V−−E)/(2mc2) is invertible.) The equation
(8.113) contains the velocity of light only in the form of the small parameter
1/c2. In the nonrelativistic limit, we may set 1/c2 = 0, and the eigenvalue
problem becomes

1
2m

D†D f (0) + V+ f (0) = E0 f (0). (8.114)

Nonrelativistic limit of the Dirac operator:

The nonrelativistic limit of the Dirac operator

H(c)−mc2 =
(

V+ cD†

cD V− − 2 mc2

)
(8.115)

is the operator

H(0) =
D†D
2m

+ V+. (8.116)
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Using the above definition of D and p = −i∇, we obtain
1

2m
D†D + V+ =

1
2m

(
σ · (p− e

c
A(x)

))2

=
1

2m
(
p− e

c
A(x)

)2 − e

2mc
σ ·B(x). (8.117)

This is precisely the nonrelativistic Hamiltonian for a particle with spin-1/2
in a magnetic field B = ∇×A. Hence, the energy due to the interaction of
the spin with the magnetic field is

−gµ ·B, with µ =
e

4mc
σ, g = 2. (8.118)

This shows that the Dirac theory of the electron has the correct g-factor
g = 2 in the nonrelativistic limit.

Ψ The precise mathematical meaning of the statement in the box above is
that the resolvent of the operator H(c)−mc2 converges (with respect

to the norm of bounded operators) to the resolvent of the operator H(0)

times a projection operator onto the upper components:

lim
c→∞

(
H(c)−mc2 14 − z 14

)−1 =

((
H(0) − z 12

)−1 0
0 0

)
(8.119)

holds for all z ∈ C with Im z �= 0.

8.5.2. Relativistic corrections

The eigenvalue problem, written in the form (8.113) as an equation for the
upper components only, depends only on the parameter 1/c2. Hence, we
assume4 that the eigenvalues and eigenfunctions of (8.113) depend analyti-
cally on 1/c2. We are interested in an eigenvalue E = E(c) close to the nth

eigenvalue of the corresponding nonrelativistic problem and write

E(c) = E(0)
n +

1
c2

E(1) +O
( 1

c4

)
. (8.120)

For simplicity, we assume that this eigenvalue is non-degenerate and that
f

(0)
n is the unique nonrelativistic eigenvector belonging to E

(0)
n ,(D†D

2m
+ V+

)
f (0)

n = E(0)
n f (0)

n . (8.121)

By the assumed analytic dependence of the relativistic eigenfunction f =
f(c) on 1/c2, we have

f(c) = f (0)
n +

1
c2

f (1) +O
( 1

c4

)
. (8.122)

4A proof of the analyticity in 1/c2 for a large class of potentials including the Coulomb
potential is given in [10].
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We compute the lowest order relativistic corrections E(1) and f (1) to the
nonrelativistic eigenvalue problem by the method presented in Appendix B.2.
To that purpose, we assume that f (1) has an expansion in the eigenfunctions
of the nonrelativistic problem

f (1) =
∑

k

akf
(0)
k , f(c) =

∑
k

(
δkn +

1
c2

ak

)
f

(0)
k +O

( 1
c4

)
. (8.123)

Let us insert all this into the relativistic eigenvalue problem (8.113), ignoring
terms of order 1/c4:∑

k

( 1
2m

D†
(
1− 1

c2

V− − E
(0)
n

2m

)−1
D + V+

)
(δkn +

1
c2

ak) f
(0)
k

=
∑

k

(E(0)
n +

1
c2

E(1)) (δkn +
1
c2

ak) f
(0)
k . (8.124)

Taking the scalar product with f
(0)
m and using the orthonormality of the

eigenfunctions, we find∑
k

〈f (0)
m ,

( 1
2m

D†
(
1− 1

c2

V− − E
(0)
n

2m

)−1
D + V+

)
f

(0)
k 〉 (δkn +

1
c2

ak)

= (E(0)
n +

1
c2

E(1)) (δmn +
1
c2

am). (8.125)

Next, we may expand5

(
1− 1

c2

V− − E
(0)
n

2m

)−1
= 1 +

1
c2

V− − E
(0)
n

2m
+ O(1/c4). (8.126)

Using 〈f (0)
m , f

(0)
m 〉 = δmn and keeping only terms up to the order 1/c2, we

obtain

E(0)
m δmn +

1
c2

1
4m2

〈f (0)
m , D†(V− − E(0)

n )D f
(0)
k 〉+

1
c2

E(0)
m am

= E(0)
n δmn +

1
c2

E(1) δmn +
1
c2

E(0)
n am. (8.127)

From this we obtain for m = n,

E(1) =
1

4m2
〈D f (0)

n , (V− − E(0)
n )D f (0)

n 〉 (8.128)

and for m �= n,

am =
1

E
(0)
n − E0

m

〈D f (0)
m , (V− − E(0)

n )D f (0)
n 〉. (8.129)

5Strictly speaking, the expansion formula (8.126) is only valid if the operator V− is
bounded (see Book One, Section 2.5.2).
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We note that only the matrix element V− of V is relevant for the calculation
of the 1/c2-correction to the nonrelativistic eigenvalue. Equation (8.109)
shows that V− is different from V+ in the presence of a scalar (non-electro-
static) potential.

Ψ Using analytic perturbation theory (see Appendix C), one can extend
the result above to potential matrices V that are relatively bounded

with respect to the free-particle Dirac operator. The relative H0-bounded-
ness (Appendix C.1) is a regularity assumption that includes, for example,
the Coulomb potential (with arbitrary coupling constant), but nothing with
more severe singularities. In the degenerate case we have the following result:

Consider the Dirac operator

H = H0 + V, H0 =
(

mc2 cD†
cD −mc2

)
, V =

(
V+ 0
0 V−

)
, (8.130)

with a relatively H0-bounded potential V . Let E(0) be an isolated, r-fold
degenerate eigenvalue of the nonrelativistic problem,(D†D

2m
+ V+

)
f

(0)
j = E(0) f

(0)
j , j = 1, . . . , r. (8.131)

Then, there exists a neighborhood of 1/c2 = 0 where the Dirac operator
H − mc2 has k ≤ r distinct eigenvalues Ej , j = 1, . . . , r. The eigenvalue
Ej has the degree rj of degeneracy such that

∑k
j=1 rj = r. Moreover, Ej is

analytic in 1/c2, and

Ej = E(0) +
1
c2

E
(1)
j + O

( 1
c4

)
, (8.132)

where the numbers E
(1)
j , j = 1, . . . , r, are the eigenvalues of the Hermitian

r × r matrix A with matrix elements

Aik =
1

4m2

(
D f

(0)
i , (V− − E(0))D f

(0)
k

)
. (8.133)

The rj eigenvectors ψj,kj
of H −mc2 belonging to the eigenvalue Ej can be

chosen in the form

ψj,kj

(1
c

)
=

(
fj,kj

( 1
c2

)
1
c gj,kj

( 1
c2

)

)
, kj = 1, . . . rj , (8.134)

where fj,kj
and gj,kj

are analytic in 1/c2, and

fj,kj
(0) = f

(0)
j , gj,kj

(0) =
1

2m
D f

(0)
j . (8.135)



8.5. NONRELATIVISTIC LIMIT AND RELATIVISTIC CORRECTIONS 407

Therefore,

ψj,kj

(1
c

)
=

(
f

(0)
j

0

)
+

1
2mc

(
0

D f
(0)
j

)
+ O

( 1
c2

)
. (8.136)

Hence, the relativistic eigenvectors converge to the corresponding non-
relativistic eigenvectors, as c →∞. Convergence in the Hilbert space, how-
ever, does not imply pointwise convergence. Indeed, the eigenfunctions of
the Dirac-Coulomb problem have a (square-integrable) singularity at the
origin which is absent from the Coulomb eigenfunctions of the Schrödinger
equation.

8.5.3. Spin-orbit interaction and the Darwin term

We consider the Dirac operator with an electrostatic potential

H(c)−mc2 1 = cα · p + (β − 1)mc2 + φel(x)1. (8.137)

In the standard representation, the matrix elements of (8.107) are given by

V+(x) = V−(x) = φel(x)12, D = D† = σ · p = −iσ · ∇. (8.138)

The nonrelativistic limit of (8.137) is the Schrödinger operator

H(0) = − 1
2m

D†D + V+(x) =
(
− 1

2m
∆ + φel(x)

)
12. (8.139)

Acting on two-component wavefunctions, it describes the energy of particles
with spin in an electrostatic field, without taking into account the spin-orbit
interaction.

Relativistic perturbations:

Let φel(x) be a bounded, twice continuously differentiable function of x.
Let E(0) be a non-degenerate eigenvalue of H(0),

H(0) f (0) = E0 f (0), ‖f (0)‖ = 1. (8.140)

Then, a first approximation to the corresponding eigenvalue of the Dirac
operator (8.137) is given by E(0) + E(1)/c2, where

E(1) =
1

4m2

〈
σ · p f (0), (φel − E0)σ · p f (0)

〉
(8.141)

=− 1
8m3

〈
f (0) , p4 f (0)

〉
(8.142)

+
1

4m2

〈
f (0) ,

(
σ · (∇φel)× p

)
f (0)

〉
(8.143)

+
1

8m2

〈
f (0) , ∆φel f

(0)
〉
. (8.144)
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Proof. Equation (8.141) follows immediately from (8.128).

E(1) =
1

4m2
〈f (0),σ · p (φel − E(0)) σ · p f (0)〉

=
1

4m2
〈f (0), (σ · pφel σ · p− E(0)(σ · p)2) f (0)〉

=
1

4m2
〈f (0), (σ · pφel σ · p−H(0) p2)f (0)〉

=
1

4m2

〈
f (0),

(
− 1

2m
p4 + [σ · p , φel ]σ · p

)
f (0)

〉
. (8.145)

With p = −i∇ we find

[σ ·p , φel]σ ·p = −i (σ ·∇φel) σ ·p = −(∇φel) ·∇+σ · (∇φel)×p. (8.146)

Next, we observe that〈
f (0),

1
2

(∆φel) f (0) + (∇φel) · (∇f (0))
〉

=
1
2
〈f (0), [∆, φel]f (0)〉 =

1
2
〈f (0), 2m[φel − E(0) , φel]f (0)〉 = 0. (8.147)

Here, we just inserted ∆f (0) = 2m(φel−E(0)) f (0) and used the self-adjoint-
ness of ∆. Finally, we obtain

〈f (0) , [σ·p , φel ]σ·p f (0)〉 =
〈
f (0) ,

(1
2

(∆φel)+σ·(∇φel)×p
)
f (0)

〉
, (8.148)

from which (8.141) follows immediately. �
We note that the result (8.141) remains true for the Coulomb potential,

while the derivation of (8.142)–(8.144) breaks down because of severe singu-
larities at x = 0, for example, a δ-function in (8.144). Nevertheless, it turns
out that the scalar products (8.142)–(8.144) all remain finite even for the
Coulomb potential.

The various terms (8.141) can be interpreted physically. The classical
relativistic kinetic energy of electrons (with positive energy) is given by√

c2p2 + m2c4 −mc2 =
p2

2m
− p4

8m3c2
+ O

( 1
c4

)
. (8.149)

We see that (8.142) is just the expectation value of the operator correspond-
ing to the term of order 1/c2. The operator

Hkin = − 1
8m3

p4 = − 1
8m3

∆2 (8.150)

is therefore called the relativistic kinetic-energy correction.
The second summand (8.143) is the expectation value of

Hspin-orbit =
1

4m2
σ · (∇φel)× p (8.151)
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This expression is called the spin-orbit term. It can be explained as follows.
A particle with spin-1/2, charge q, and g-factor 2 has the magnetic moment

µ =
q

2m
σ (in units with � = 1). (8.152)

The magnetic moment interacts with an external magnetic field. As ex-
plained in Section 3.9.3, there is a magnetic field in the rest frame of the
particle, and the corresponding interaction energy is, according to (3.133),

1
c2

µ · v ×E = − 1
mc2

µ ·E× p =
1

2m2c2
σ · (∇φel)× p. (8.153)

Here, we used qE = −∇φel. This expression is twice as large as Hspin-orbit/c2.
But, there is still another contribution due to the Thomas precession men-
tioned in Section 3.9.3. The term due to the Thomas precession combines
with (8.153) to give the spin-orbit term Hspin-orbit/c2.

The expression (8.144) is called the Darwin term,

HDarwin =
1

8m2
∆φel. (8.154)

It is sometimes heuristically explained as an effect related to Zitterbewegung,
but this is rather doubtful, because electronic bound states are stationary
and hence perform no Zitterbewegung at all.

Ψ We note that the result (8.141) remains true for the Coulomb poten-
tial whereas the derivation of (8.142)–(8.144) breaks down because of

severe singularities at x = 0, for example, a δ-function in (8.144). Neverthe-
less, it turns out that the scalar products (8.142)–(8.144) all remain finite
even for the Coulomb potential.

The perturbation formula (8.142)–(8.144) gives the wrong impression,
that it is justified to apply first-order perturbation theory (as described in
Appendix B.2, in particular, (B.28)) to a relativistically perturbed Hamil-
tonian

Hrel(c) = H(0) +
1
c2

(
Hkin + Hspin-orbit + HDarwin

)
. (8.155)

Unfortunately, even in the absence of an external field, the term Hkin

dominates in an operator-theoretic sense all other summands including H(0)

so that for finite c, the spectrum of Hrel(c) is completely different from H(0)

(for example, Hrel(c) has no negative eigenvalues at all). Hence, (8.155)
should not be taken as the basis for perturbation theory.

However, an alternative approach to relativistic corrections due to Foldy
and Wouthuysen leads in first order precisely to (8.155). This method con-
sists in computing a sequence of approximate diagonalizations of the Dirac
operator with an external field. At each step, the Foldy-Wouthuysen method
introduces increasingly singular perturbations that cannot easily be justified
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mathematically. In contrast, the method described in Section 8.5.2 uses only
the mathematically well-established methods of analytic perturbation theory
(see Appendix C).

8.6. Spherical Symmetry

8.6.1. Matrix potentials with spherical symmetry

In accordance with Section 1.4.1, we say that a Dirac operator H is spher-
ically symmetric whenever it commutes with all rotations. But now, the
potential V (x) is a Hermitian 4 × 4 matrix, and hence the rotations (8.62)
will affect both the argument x and the matrix structure of the potential.
Therefore, it is not quite trivial to tell if V (x) is spherically symmetric.

The free-particle Dirac operator is invariant under rotations, hence we
find

e−i ϕn·J H ei ϕn·J = H0 + e−i ϕn·J V (x) ei ϕn·J

= H0 + e−i ϕn·S V (R−1x) ei ϕn·S. (8.156)

Therefore, the Dirac operator is invariant under rotations whenever

e−i ϕn·S V (R−1x) ei ϕn·S = V (x). (8.157)

It is clear that an electrostatic potential of the form

V (x) = φel(r)14 with r = |x| (8.158)

is invariant under rotations. Moreover, we find that the scalar potential (see
Section 8.3.3)

V (x) = φsc(r) β with r = |x| (8.159)

is also invariant under rotations, because the Dirac matrix β commutes with
all components of S. Another example is given by the potential matrix

V (x) = iβ α · er φam(r) with er = x/r. (8.160)

This type of potential matrix occurs for particles with an anomalous mag-
netic moment. In order to see that (8.160) is spherically symmetric, we use
the relation (8.44). We insert γ = (β, βα), x = (0,x), T(Λ) = e−i ϕn·S, and

Λ =
(

1 0
0 R(ϕn)

)
(8.161)

into (8.44) and obtain

e−i ϕn·S βα · (R−1x) ei ϕn·S = βα · x. (8.162)

From this (8.157) follows immediately.
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Dirac operators with spherical symmetry:

The Dirac operator H = H0 + V with a potential matrix of the form

V (x) = φel(r)14 + φsc(r) β + iφam(r) β α · x/r (8.163)

is spherically symmetric. It commutes with all rotations exp(−iϕn · J).

As shown in (8.85), the potential matrix (8.160) can be used to describe
a particle with an anomalous magnetic moment. For example, consider an
electron with an anomalous moment µa. In a spherically symmetric electric
field

E(x) = −∇φel(r) = −1
r

d

dr
φel(r) (8.164)

it has the potential energy

V (x) = e φel(r)14 − iµaβ
α · x

r

dφel(r)
dr

. (8.165)

The Dirac operator with this potential matrix is spherically symmetric.

8.6.2. Operators that commute with the Dirac operator

In order to write the Dirac operator in spherical coordinates, we use the
formula

−i∇ = −i er
∂

∂r
− 1

r
(er × L). (8.166)

This expression for the gradient in spherical coordinates can be obtained
by combining the equations (1.87) and (1.90). Next, we use the algebraic
relation

(α ·A) (2S ·B) = i γ5A ·B− iα · (A×B) (8.167)
which holds for any two vectors A and B. Here, γ5 = −iα1α2α3. This
implies that

−1
r

α · (er × L) =
i
r

(α · er) (2S · L). (8.168)

Hence, we find

−iα · ∇ = −i (α · er)
∂

∂r
+

i
r

(α · er) (2S · L) (8.169)

and, putting everything together, we arrive at the following expression for
the free-particle Dirac operator in spherical coordinates:

H0 = −i c(α · er)
( ∂

∂r
+

1
r
− 1

r
βK

)
+ βmc2. (8.170)

Here, we have introduced the relativistic spin-orbit operator

K = β(2S · L + 1) = β(J2 − L2 + 1
4). (8.171)
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The operator K describes the part of the Dirac operator that acts on the
angular variables. All other summands in (8.170) obviously only affect the
radial variable r of a wave function. Clearly, the spin-orbit operator (8.171)
is the relativistic analog of the spin-orbit operator defined in (3.143).

The reason for introducing the Dirac matrix β in the definition of the
relativistic spin-orbit operator K is that this operator commutes with H0.
First, we note that 2S · L + 1 anticommutes with α · er,

(2S · L + 1)α · er = −α · er (2S · L + 1). (8.172)

As the Dirac matrix β also anticommutes with α · er, we conclude that

[K, α · er] = 0. (8.173)

Moreover, β commutes with S · L, and therefore

[K, β] = 0. (8.174)

Hence, K commutes with the free-particle Dirac operator H0 in (8.170),

[K, H0] = 0. (8.175)

We know already that H0 commutes with each of the angular-momen-
tum operators Jk because H0 and Jk are generators of a representation of
the Poincaré group.

[H0, Jk] = 0, for k = 1, 2, 3. (8.176)

Also, K commutes with rotations and hence with J2 and Jk. We conclude
that H0, K, J2, and J3 form a system of commuting operators. J2 is,
however, not independent of K because we have, as in (3.144),

J2 = K2 − 1
4
. (8.177)

Moreover, the relation
L2 = K2 − β K (8.178)

shows that L2 commutes with K and J3 but not with H0, because the matrix
β anticommutes with α.

Moreover, because K commutes with β and βα · er, and because L per-
forms only angular derivatives, we find that K commutes with the spherically
symmetric potential matrix (8.163). Therefore, if H is a Dirac operator with
the spherically symmetric potential (8.163), then H, K, and J3 are a system
of commuting operators.

Exercise 8.1. Verify that each component Jk of the total angular mo-
mentum commutes with S · L and hence with K.
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8.6.3. Angular-momentum eigenfunctions

The operators K and J3 act only on the angular coordinates of a wave
function ψ(r, ϑ, ϕ) in spherical coordinates. Hence, we may consider these
expressions as operators acting only in the Hilbert space L2(S2)4. This is
a Hilbert space of spinor-wave functions defined on the surface of the unit
sphere S2. In this section, we describe the eigenvalues and eigenfunctions of
these operators, which are easily constructed from the results of the nonrel-
ativistic theory in Section 3.9.4.

There is a complete system of common orthonormal eigenvectors Φκ,mj ∈
L2(S2)4 and eigenvalue parameters κ and mj , such that

K Φκ,mj = κ Φκ,mj , κ = ±1,±2,±3, . . . , (8.179)

J3 Φκ,mj = mj Φκ,mj , mj = −j,−j + 1, . . . ,+j, (8.180)

where
j = |κ| − 1

2
(8.181)

is the angular-momentum quantum number describing the eigenvalue of J2,

J2 Φκ,mj = j(j + 1) Φκ,mj , j = 1
2 , 3

2 , 5
2 , . . . , (8.182)

The eigenvectors Φκ,mj are functions of ϑ and ϕ (that is, functions on the
unit-sphere S2). For each pair of eigenvalues κ, mj , one finds in fact two or-
thogonal eigenfunctions Φ±

κ,mj
in L2(S2)4, hence the corresponding common

eigenspace of the operators K, J3 is two-dimensional. We may choose a basis
and write any eigenvector as a linear combination of these basis vectors,

Φκ,mj = c+Φ+
κ,mj

+ c−Φ−
κ,mj

, (8.183)

with suitable complex constants c+ and c−. Here, we define the following
basis vectors with respect to the standard representation

Φ+
κ,mj

=

⎛
⎝iYκ,mj

0
0

⎞
⎠ , Φ−

κ,mj
=

⎛
⎝ 0

0
Y−κ,mj

⎞
⎠ , (8.184)

where Yκ,mj are the spinor harmonics introduced in (3.151) and (3.152).
Note that the spinor harmonics are two-component spinors, hence the spinors
Φ±

κ,mj
have four components. Obviously, they are also eigenfunctions of the

Dirac matrix β (which is diagonal in the standard representation),

β Φ±
κ,mj

= ±Φ±
κ,mj

. (8.185)

The functions Φ±
κ,mj

are also eigenfunctions of L2 = K2 − β K and of
J2 = K2 − 1/4 (because they are eigenfunctions of β and K). We have

L2 Φ±
κ,mj

= (κ2 ∓ κ) Φ±
κ,mj

, J2 Φ±
κ,mj

=
(
κ2 − 1

4
)
Φ±

κ,mj
. (8.186)
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As usual, we denote the eigenvalues of L2 by �(� + 1) and the eigenvalues
of J2 by j(j + 1). We conclude that both eigenfunctions have the total an-
gular-momentum quantum number j = |κ| − 1/2. But, we find that Φ+

κ,mj

has the orbital angular-momentum quantum number � = �+, where

�+ =

{
κ− 1 = j − 1/2, if κ > 0,

−κ = j + 1/2, if κ < 0,
(8.187)

whereas the second basis state Φ−
κ,mj

belongs to � = �− = �+ + 1. As
in nonrelativistic quantum mechanics, the quantum number � has integer
values. We have � = j − 1/2 = 0, 1, 2, . . . for Φ+

κ,mj
if κ > 0 and for Φ−

κ,mj

if κ < 0. In these cases, the orbital angular momentum � and the spin 1/2
add up to the total angular momentum j = � + 1/2. We have � = j + 1/2 =
1, 2, 3, . . . for Φ+

κ,mj
if κ > 0 and for Φ−

κ,mj
if κ < 0. In these cases, the spin

1/2 is subtracted from the orbital angular momentum to give j = �− 1/2.
Finally, we need the formula

iα · er Φ±
κ,mj

= ∓Φ∓
κ,mj

. (8.188)

This follows from a property of the spinor harmonics Yκ,mj which we state
here without proof:

σ · er Yκ,mj = Y−κ,mj . (8.189)

8.6.4. The angular-momentum subspaces

We denote the two-dimensional subspace of the Hilbert space L2(S2)4 that
contains the linear combinations of the basis vectors Φ±

κ,mj
by

Kκ,mj = { c+Φ+
κ,mj

+ c−Φ−
κ,mj

| (c+, c−) ∈ C
2 }. (8.190)

This is the simultaneous eigenspace of the operators J3, and K. From (8.185)
and (8.188), we see that the subspaces Kκ,mj are left invariant by the opera-
tors β and α · er. With respect to the basis {Φ+

κ,mj
,Φ−

κ,mj
}, these operators

are represented by two-by-two matrices,

β =
(

1 0
0 −1

)
, −iα · er =

(
0 −1
1 0

)
. (8.191)

The completeness of the eigenfunctions means that any Dirac spinor
ψ(ϑ, ϕ) that is square-integrable in the angular variables ϑ and ϕ is a linear
combination

ψ(ϑ, ϕ) =
∑
κ,mj

(
c+
κ,mj

Φ+
κ,mj

+ c−κ,mj
Φ−

κ,mj

)
(8.192)
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of the basis eigenfunctions with square-summable coefficients,∑
κ,mj

(|c+
κ,mj

|2 + |c−κ,mj
|2)= ‖ψ‖2. (8.193)

Consider two square-integrable functions f+(r) and f−(r) on 0 ≤ r < ∞.
Define

ψ(r, ϑ, ϕ) =
1
r

f+(r) Φ+
κ,mj

(ϑ, ϕ) +
1
r

f−(r) Φ−
κ,mj

(ϑ, ϕ)

=
1
r

(
i f+(r)Yκ,mj (ϑ, ϕ)

f−(r)Y−κ,mj (ϑ, ϕ)

)
. (8.194)

This is a function in the angular-momentum subspace L2((0,∞), dr)⊗Kκ,mj .
Its norm is given by

‖ψ‖2 =
∫ ∞

0

(|f+(r)|2 + |f−(r)|2) dr. (8.195)

Making the transition back to Cartesian coordinates, we obtain a square
integrable function Ψ(x) = ψ(r, ϑ, ϕ) in L2(R3)4 whose norm is given by the
above expression. An arbitrary Dirac spinor is a linear combination of the
form

Ψ(x) =
1
r

∑
κ,mj

(
f+

κ,mj
(r) Φ+

κ,mj
(ϑ, ϕ) + f−

κ,mj
(r) Φ−

κ,mj
(ϑ, ϕ)

)
, (8.196)

with square-integrable coefficient functions f± ∈ L2(0,∞).
The action of the Dirac operator H0 on a function like (8.194) in a

particular angular-momentum subspace can be obtained in a straightforward
manner, because we know already the action of all parts of H0 that appear in
the expression (8.170). For example, the action of K is just multiplication by
the eigenvalue κ. The action of the Dirac matrices β and α·er in the angular-
momentum subspace is described by (8.191). Likewise, we can compute the
action of a spherically symmetric potential in one of the angular-momen-
tum subspaces. We finally note that the factor 1/r in the definition of the
wave functions in spherical coordinates (8.194) simplifies the operator d/dr+
1/r, which is part of expression for the Dirac operator in polar coordinates,
because ( d

dr
+

1
r

) 1
r

f(r) =
1
r

d

dr
f(r). (8.197)

We put everything together and obtain the following result:
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The radial Dirac operator:

The action of the Dirac operator H = −icα · ∇ + β mc2 + V with a
spherically symmetric potential

V (x) = φsc(r)β + φel(r)14 + iβ α · er φam(r) (8.198)

on a spinor of the form

Ψ(x) =
1
r

(
f+(r) Φ+

κ,mj
(ϑ, ϕ) + f−(r) Φ−

κ,mj
(ϑ, ϕ)

)
(8.199)

is described by the radial Dirac operator

hκ =

(
mc2 + φsc(r) + φel(r) c

(− d
dr − κ

r

)
+ φam(r)

c
(

d
dr − κ

r

)
+ φam(r) −mc2 − φsc(r) + φel(r)

)
(8.200)

acting on the coefficient functions
(

f+(r)
f−(r)

)
.

This means that

(H0 + V )Ψ(x) =
1
r

(
g+(r) Φ+

κ,mj
(ϑ, ϕ) + g−(r) Φ−

κ,mj
(ϑ, ϕ)

)
(8.201)

where (
g+(r)
g−(r)

)
= hκ

(
f+(r)
f−(r)

)
. (8.202)

In particular, the Dirac operator leaves each of the angular-momentum sub-
spaces invariant, that is, the result of its action is a wave function in the
same angular-momentum subspace.

It is therefore sufficient to solve the eigenvalue problem HΨ = EΨ in
each of the angular-momentum subspaces. Whenever we have a solution of

hκ

(
f+(r)
f−(r)

)
= E

(
f+(r)
f−(r)

)
(8.203)

(this is just a two-dimensional system of ordinary differential equations),
then E is an eigenvalue of the Dirac operator H, and Ψ defined as in (8.199)
is the corresponding eigenvector. Note that the energy eigenvector Ψ is a
superposition of a vector with orbital angular momentum �+ and another
vector with �− = �+ + 1, hence it is not an eigenvector of L2. This is, of
course, due to the fact that H and L2 do not commute and is often expressed
by saying that the orbital angular momentum is “not a good quantum num-
ber” in relativistic physics.

The radial Dirac operator hκ does not depend on the magnetic quantum
number mj . Hence, there are 2j+1 orthogonal eigenfunctions of H belonging
to the same eigenvalue E. These eigenfunctions are labeled by the quantum
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number mj = −j,−j +1, . . . ,+j, with j = |κ| − 1/2. This is the degeneracy
due to the spherical symmetry of the system. In nonrelativistic quantum
mechanics, the degeneracy due to spherical symmetry of the Schrödinger
equation with spin is 2(2� + 1), as discussed in Section 3.9.1. A part of this
degeneracy has been removed by relativity.

In general, the energy depends on the sign of κ. This sign describes the
two possible orientations of the spin with respect to the orbital angular mo-
mentum. We can understand the splitting of the energy levels heuristically:
From the point of view of a particle that moves in an electrostatic field, it’s
the field-generating charges that are moving. Hence, the particle “sees” a
magnetic field that causes the two spin-states to be energetically different.

8.7. The Dirac-Coulomb Problem

8.7.1. The radial Dirac-Coulomb equation

The stationary Dirac equation for a hydrogenic atom reads (in SI units)(
−i�cα · ∇+ β µc2 − Ze2

4πε0

1
|x|

)
ψ = Eψ. (8.204)

Here, µ is the reduced mass of the electron-nucleus system. We divide this
equation by �c and consider the eigenvalue equation(

−iα · ∇+ β m− γc

|x|
)

ψ = ε ψ (8.205)

with the abbreviations

m =
µc

�
, γc =

Ze2

4πε0 �c
, ε =

E

�c
. (8.206)

The atomic number Z is an integer, but we treat γc simply as a real param-
eter. We note that

e2

4πε0�c
≈ 1

137.036
. (8.207)

is the dimensionless fine structure constant.
In this section, we assume that γc is positive. A positive coupling con-

stant γc > 0 describes an attractive Coulomb potential. The Schrödinger
equation has no bound states for “repulsive” potentials, that is, for negative
γc. In case of the Dirac equation, however, a potential that is repulsive for
electrons is attractive for positrons (negative-energy wave packets). Hence,
we expect that the Dirac equation has bound states also for negative cou-
pling constants γc. It is not necessary to discuss this separately, because
the positronic bound states for γc < 0 can be obtained from the electronic
bound states by a charge conjugation.
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Using the spherical symmetry of the Coulomb potential, we introduce
the radial operators

hκ =

(
m− γc

r − d
dr − κ

r

d
dr − κ

r −m− γc

r

)
= −iσ2

d

dr
− σ1

κ

r
+ σ3m− γc

r
1. (8.208)

The eigenvalue problem (8.205) can now be replaced by the eigenvalue prob-
lems

(hκ − ε)
(

f+

f−

)
= 0, κ = ±1,±2, . . . , (8.209)

The parameter κ is the eigenvalue of the spin-orbit operator K defined in
(8.171).

8.7.2. A useful similarity transformation

As on several occasions before, we use a method of solving the radial Dirac
equation that works in an essentially algebraic way by the method of fac-
torization. First, we multiply the eigenvalue equation (8.209) by the matrix
iσ2 in order to bring the derivative to the main diagonal,

iσ2 (hκ − ε) = 1
d

dr
+

(−κ −γc

γc κ

)
1
r

+
(

0 −ε−m
ε−m 0

)
. (8.210)

We can now diagonalize the matrix in front of 1/r. We find

M−1

(−κ −γc

γc κ

)
M =

(
s 0
0 −s

)
, s =

√
κ2 − γc

2. (8.211)

with

M =
(

s− κ γc

γc s− κ

)
. (8.212)

In terms of the functions (
u
v

)
= M−1

(
f+

f−

)
(8.213)

the eigenvalue equation (8.209) is thus equivalent to

M−1iσ2(hκ − ε)M
(

u
v

)
= 0. (8.214)

Multiplying this equation by −iσ2, we obtain the following result.
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An equivalent eigenvalue problem:

The radial Dirac-Coulomb equation(
m− γc

r − d
dr − κ

r

d
dr − κ

r −m− γc

r

)(
f+

f−

)
= ε

(
f+

f−

)
(8.215)

is equivalent to the equation(
m − d

dr + s
r − γcε

s

d
dr + s

r − γcε
s −m

)(
u
v

)
= −κε

s

(
u
v

)
. (8.216)

In the new eigenvalue equation (8.216), all r-dependent parts appear as
off-diagonal matrix elements. Note that the new matrix explicitly depends
on the eigenvalue ε to be determined. We have to find those values of ε, for
which the equation (8.216) admits square-integrable solutions.

8.7.3. The second-order equations

We introduce the abbreviation

D0(ε) ≡ d

dr
+

s

r
− γcε

s
, (8.217)

and note that the adjoint of D0(ε) is simply given by

D0(ε)† ≡ − d

dr
+

s

r
− γcε

s
. (8.218)

Inserting D0(ε), Eq. (8.216) becomes(
m D0(ε)†

D0(ε) m

)(
u
v

)
= −κε

s

(
u
v

)
. (8.219)

The structure of the system (8.219) is very special. It is again a system of
two ordinary differential equations of first order, but the coupling between
u and v is now rather simple. Applying the matrix operator in (8.219) once
again to both sides of that equation immediately leads to the two uncoupled
equations

D0(ε)†D0(ε)u(r) + m2 u(r) =
κ2ε2

s2
u(r), (8.220)
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and

D0(ε)D0(ε)† v(r) + m2 v(r) =
κ2ε2

s2
v(r). (8.221)

Using the definition of D0(ε) in (8.217), we rewrite (8.220) as

(
− d2

dr2
+

s(s + 1)
r2

− 2γcε

r
+ m2

)
ψ = ε2 ψ, (8.222)

and (8.221) as

(
− d2

dr2
+

s(s− 1)
r2

− 2γcε

r
+ m2

)
ψ = ε2 ψ. (8.223)

(Here, we used κ2 = s2 + γc
2.)

For later use, we define the sequence of operators

Dnr(ε) =
d

dr
+

s + nr

r
− γcε

s + nr
for nr = 0, 1, 2, . . . . (8.224)

The operator Dnr(ε) is obtained from D0(ε) in (8.217) through the replace-
ment s → s + nr. For each nr, the adjoint of Dnr(ε) is the operator

Dnr(ε)
† = − d

dr
+

s + nr

r
− γcε

s + nr
. (8.225)

The crucial property of the operators Dnr = Dnr(ε) and D†
nr is the relation

D†
nr−1Dnr−1 − γc

2ε2

(s + nr − 1)2
= DnrD

†
nr
− γc

2ε2

(s + nr)2
, (8.226)

which holds for all nr ≥ 1.

8.7.4. Supersymmetry

We note that the two “second-order equations” (8.220) and (8.221) are re-
lated by the spectral supersymmetry described in Section 2.4.1 (and in Book
One, Section 7.7.1). It is also important that a solution of one of the sec-
ond order equations in turn determines a solution of the “first-order system”
(8.219). We state this result in the following box:
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Supersymmetric structure:

Let D be a suitable operator and let u be a solution of

D†Du + m2u = λ2u, (8.227)

with Du �= 0. Then (
u
v

)
=

(
u

1
λ+mDu

)
(8.228)

is a solution of (
m D†
D −m

)(
u
v

)
= λ

(
u
v

)
. (8.229)

Moreover, v is a solution of

DD†v + m2v = λ2v. (8.230)

Similarly, for any solution v of (8.230) such that D†v �= 0 we find that(
u
v

)
=

(
1

λ−mD†v
v

)
(8.231)

is a solution of (8.229) and that u is a solution of (8.227).

You can verify this result by inserting (8.228) or (8.231) into the first-
order equation (8.229). We note that the condition Du �= 0 is equivalent with
D†Du �= 0. Therefore, (8.227) implies λ2 �= m2 and the solution (8.228) is
well defined. A similar observation holds for (8.231).

Next, consider a nonzero solution u of (8.227) with Du = 0. Then,
supersymmetry tells us nothing about the solutions of the other second-order
equation (8.230). But, we can learn something about the matrix equation
(8.229). Inserting Du = 0 into this equation gives

m u + D†v = λu, −m v = λ v. (8.232)

So either we have v = 0 and λ = m, or we have v �= 0, λ = −m and
D†v = −2m u. In the second case, we find DD†v = −2m Du = 0. Hence,
the first equation in (8.232) leads to λ = m, because u is assumed to be
nonzero and because DD†v = 0 is equivalent to D†v = 0. This is an obvious
contradiction. So the only remaining possibility is that v = 0 and λ = m.

A quite similar statement can be proved for a nonzero solution v of
(8.230) with D†v �= 0. We summarize these results as follows.

The solutions of the equation(
m D†
D −m

)(
u
v

)
= λ

(
u
v

)
(with m > 0) (8.233)
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have the following property:

u �= 0 and Du = 0 implies v = 0 and λ = m. (8.234)
Similarly,
v �= 0 and D†v = 0 implies u = 0 and λ = −m. (8.235)

Thus, we arrive at the following conclusion:

An operator of the form (
m D†
D −m

)
(8.236)

has the eigenvalue λ = m if and only if u is a nonzero solution of Du = 0.
The corresponding eigenvector is

(
u
0

)
.

Similarly, (8.236) has the eigenvalue λ = −m if and only if v is a
nonzero solution of D†v = 0. In this case, the corresponding eigenvector
is

(
0
v

)
.

In the following sections, we are going to apply these results in order
to determine (non-normalized) eigenfunctions and eigenvalues of the Dirac-
Coulomb problem.

8.7.5. The ground state

The differential equation D0(ε)† v(r) = 0, or(
− d

dr
+

s

r
− γcε

s

)
v(r) = 0, (8.237)

has for arbitrary values of the parameters the solution

v(r) = rse−(γcε/s)r. (8.238)

This solution is square-integrable if and only if γcε/s > 0. By definition,
we have s > 0, and by assumption γc > 0, hence we must have ε > 0. The
first-order equation (8.216) has the form of an eigenvalue equation for an
operator of the form (8.236) and with λ = −κε/s. Now the result at the end
of the previous section tells us that D0(ε)†v = 0 implies λ = −m, that is,

κε

s
= m, or ε = ε0 =

ms

κ
. (8.239)

Because of ε > 0, this condition can only be satisfied for κ > 0.
We note that the square-integrable solution of (8.216) belonging to ε = ε0

is (
u0(r)
v0(r)

)
=

(
0

r2 exp
(−(γcε0/s) r

)) . (8.240)
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Automatically, the second component v0 is also a solution of the second-
order equation (8.221). The non-negativity of the operator D0(ε)D0(ε)†
implies that ε0 is the smallest possible value of the energy parameter ε. This
can be seen as follows. Let v be any square-integrable solution of (8.221).
Take the scalar product of (8.221) with v to obtain

〈v, D0(ε)D0(ε)† v〉+ m2 ‖v‖2 =
κ2ε2

s2
‖v‖2. (8.241)

Here, the first term is non-negative:〈
v, D0(ε)D0(ε)† v

〉
= ‖D0(ε)† v‖2 ≥ 0. (8.242)

This implies immediately

m2 ≤ κ2ε2

s2
. (8.243)

With ε0 as in (8.244), we obtain the smallest possible value (= m2) on the
right-hand side of (8.243).

Equation (8.216) is equivalent with the radial Dirac-Coulomb equation.
According to (8.213), we obtain the corresponding eigenfunction by applying
the matrix M to the solution (8.240). We summarize our findings in the
following box.

Ground-state of the Dirac-Coulomb problem:

The lowest possible eigenvalue of the radial Dirac equation (8.215) is

ε0 =
ms

κ
= m

(
1 +

γc
2

κ2 − γc
2

)− 1
2

(κ > 0). (8.244)

This eigenvalue is only possible for κ > 0. The corresponding square-
integrable solution of the radial Dirac-Coulomb equation is(

f+
0 (r)

f−
0 (r)

)
= N0M

(
0

v0(r)

)
= n0

(
γcv0

(s− κ)v0

)
, (8.245)

where N0 is an appropriate normalization constant, and

v0(r) = rs exp
(
−γcε0

s
r
)
. (8.246)

A second possibility to obtain a solution of the Dirac-Coulomb problem
would be to solve D0(ε)u(r) = 0. This differential equation is solved (for
any ε) by

u(r) = r−se(γcε/s)r. (8.247)
This solution has to be excluded because of the singularity at r = 0.



424 8. THE DIRAC EQUATION

Ψ The function u(r) defined in (8.247) is not square integrable whenever
s > 1/2, that is, whenever |γc| < (κ2 − 1/4)1/2. But, for s < 1/2 (and

γcε < 0), u is square integrable despite being singular at r = 0. In this case,
the solution can only be excluded by specifying a boundary condition of the
form

lim
r→0

u(r) = 0. (8.248)

From a mathematical point of view, the choice of a boundary condition (a
condition for a reflection at the origin) amounts to the choice of a distin-
guished self-adjoint extension of the operator hκ for values of γc for which
hκ is not essentially self-adjoint. As long as s < 1, this method of obtaining
a self-adjoint Dirac operator is fairly unambiguous.

8.7.6. The first excited state

We observe that (8.222) can be obtained from (8.223) simply by replacing
the parameter s with s + 1. The same must be true for (8.220) and (8.221).
Hence, if we replace in (8.221) the operator D0(ε) by D1(ε) and κ2 = s2 +γ2

c

by (s + 1)2 + γ2
c , then we obtain (8.220) in the form(

D1(ε)D1(ε)† + m2
)
u =

(
ε2 +

γc
2ε2

(s + 1)2

)
u. (8.249)

We can easily find a solution for this equation if we only know a solution of

D1(ε)†u = 0. (8.250)

From the definition (8.225) of D1(ε)†, we see that this equation is of the
same type as (8.237). Therefore, for any ε, we obtain the solution

u1(r) = rs+1 exp
(
− γcε

s + 1
r

)
, (8.251)

just by replacing s with s + 1 in (8.238). For ε > 0, γc > 0, the function
u1 is even square-integrable. Inserting u1 into (8.249), we find a solution for
ε = ε1, where

ε1 = m2

{
1 +

γc
2

(s + 1)2

}−1/2

. (8.252)

Having found a solution u1 of (8.220) with D0(ε1)u1(r) �= 0, we obtain a
solution of the first-order equation (8.219) according to (8.228). Finally,
an eigenvector belonging to the eigenvalue ε1 of the radial Dirac operator
(8.208) is obtained by(

f+
1

f−
1

)
= N1 M

(
u1(

m− κε1
s

)−1
D0(ε1) u1

)
. (8.253)
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with the matrix M as defined in (8.212) and an appropriate normalization
constant N1.

The eigenvalue ε1 is the smallest parameter for which (8.249) (or, equiv-
alently, (8.220)) has a square-integrable solution, because D1D

†
1 is a non-

negative operator. As the solutions of the Dirac equation with ε > ε0 are in
one-to-one correspondence to the solutions of (8.220), we find that there is
no further eigenvalue between ε0 and ε1.

8.7.7. Further eigenfunctions

For the operators Dnr = Dnr(ε) defined in (8.224), we can make the following
observation:

For nr ≥ 1, u is a solution of the equation

(DnrD
†
nr

+ m2)u =
(

ε2 +
γc

2ε2

(s + nr)2

)
u (8.254)

if and only if v = Dnru is a solution of

(Dnr−1D
†
nr−1 + m2)v =

(
ε2 +

γc
2ε2

(s + nr − 1)2

)
v (8.255)

with D†
nr−1v �= 0.

This can be proved as follows: Consider the equation

(D†
nr−1Dnr−1 + m2)u =

(
ε2 +

γc
2ε2

(s + nr − 1)2

)
u. (8.256)

The relation (8.226) shows that (8.256) is the same as (8.254). Moreover, for
arbitrary nr ≥ 1, the equation Dnr−1u = 0 has no suitable square-integrable
solution at all (see the discussion at the end of Section 8.7.5). This shows
that any square integrable solution u of (8.256) satisfies Dnr−1u �= 0 and
is hence an eigenvector of D†

nr−1Dnr−1 belonging to a nonzero eigenvalue.
Hence, by the spectral supersymmetry described in Exercise 2.5, the opera-
tor Dnr−1D

†
nr−1 in (8.255) has the same eigenvalue, and the corresponding

eigenvector is given by v = Dnru. The condition D†
nr−1v �= 0 is equivalent to

Dnr−1D
†
nr−1v �= 0. The spectral supersymmetry holds for all nonzero eigen-

value of D†
nr−1Dnr−1 and Dnr−1D

†
nr−1, and therefore all solutions of (8.255)

with D†
nr−1v �= 0 can be obtained in this way from solutions of (8.254).

Obviously, if v is a solution of (8.254) with nr ≥ 2, then

u = D1D2· · ·Dnr−1v (8.257)
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is a solution of the equation with nr = 1. Equation (8.254) with nr = 1 is
the same as Eq. (8.249), which in turn is identical with (8.220).

We can now determine successively all solutions of (8.249) by considering
only the ground-state solutions for the problems (8.254) with nr = 0, 1, 2, . . ..
For example, the ground state of the problem with n = 3 gives the first
excited state of the problem with nr = 2, hence the second excited state of
the problem with nr = 1 (which is just (8.249)).

We find the ground-state solution of (8.254) for arbitrary nr by solving
the by now well-known equation

(Dnr)
†v =

(
− d

dr
+

s + nr

r
− γcεn

(s + nr)

)
v = 0, (8.258)

which gives
vnr(r) = rs+nr exp

(
− γcεnr

s + nr
r
)
. (8.259)

Again, for γc > 0, vnr is square integrable if and only if εnr > 0. By inserting
vnr into (8.254) we find that the energy eigenvalue is

εnr = m
(

1 +
γc

2

(s + nr)2

)− 1
2

. (8.260)

We note that the factor describing the exponential decay of the eigenfunc-
tions can be written as

γcεn

s + nr
=

mγc√
(s + nr)2 + γc

2
=

√
m2 − ε2

nr
. (8.261)

For all nr ≥ 2, we obtain the solution of the Dirac-Coulomb equation
belonging to the energy εnr as(

f+
nr

(r)
f−

nr
(r)

)
= Nnr M

(
unr(r)(

m− κεnr
s

)−1
D0unr(r)

)
, (8.262)

where
unr(r) = D1(εn)D2(εn) · · ·Dnr−1(εnr) vnr(r). (8.263)

Again, Nnr is an appropriate normalization constant. Determining the norm
by computing the integral (8.195) is a long and tedious calculation, which is
not done here.

8.8. Relativistic Hydrogen Atom

8.8.1. Eigenvalues and eigenfunctions

It is possible to express the radial eigenfunctions (8.262) in terms of hyper-
geometric functions. Without going into the details of this calculation, we
present the results in the following box.
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Solution of the Dirac-Coulomb problem:

For 0 < γc < 1 the radial Dirac-Coulomb operator

hκ =

(
m− γc

r − d
dr − κ

r
d
dr − κ

r −m− γc

r

)
(8.264)

has infinitely many eigenvalues

εnr = m
(

1 +
γc

2(
nr +

√
κ2 − γc

2
)2

)−1/2

, nr = 0, 1, 2, 3, . . . . (8.265)

The corresponding eigenvectors are(
f+

nr
(r)

f−
nr

(r)

)
= rs e−knr r

(γcm
knr

+ κ
)

1F1(−nr, 2s + 1, 2knrr)
(

N+
nr−N−
nr

)

− rs e−knr r nr 1F1(1− nr, 2s + 1, 2knrr)
(

N+
nr

N−
nr

)
. (8.266)

Here, knr =
√

m2 − ε2
nr

, s =
√

κ2 − γc
2.

With the constants

N±
nr

=
(2knr)s+3/2

4mΓ(2s + 1)

√
(m± εnr) Γ(2s + nr + 1)

γc

(
γcm + κknr

)
nr!

, (8.267)

these solutions are normalized,∫ ∞

0

(|f+
nr

(r)|2 + |f−
nr

(r)|2) dr = 1. (8.268)

All eigenvalues of the Dirac-Coulomb problem are in the interval 0 < ε < m.
The eigenvalues and eigenfunctions of the radial problem determine the

eigenvalues and eigenfunctions of the Dirac-Coulomb operator

HDC = cα · p + β µc2 − γ

|x| (8.269)

(here γ = γc�c = Ze2/4πε0). The eigenvalues of HDC are related to the
eigenvalues (8.265) of the radial operator hκ by Enr = εnr�c. In (8.265), we
replace γc by γ/�c and m by µc/� and obtain

Enr = µc2

(
1 +

γ2/�
2c2(

nr +
√

κ2 − γ2/�2c2
)2

)−1/2

. (8.270)

All energies Enr are in the interval 0 < E < µc2. The eigenfunctions (8.266)
of the radial Dirac-Coulomb problem determine the eigenfunctions of HDC
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by

Ψ(x) =
1
r

(
f+

nr
(r) Φ+

κ,mj
(ϑ, ϕ) + f−

nr
(r) Φ−

κ,mj
(ϑ, ϕ)

)
, (8.271)

where (r, ϑ, ϕ) are the spherical coordinates of x ∈ R
3.

8.8.2. Degeneracy and higher symmetry

The eigenvalues do not depend on the sign of the spin-orbit quantum num-
ber κ. The degeneracy of an eigenvalue Enr with angular momentum j is
2(2j + 1), except if nr = 0. The degeneracy is thus higher than one would
expect from spherical symmetry alone (this is the “higher symmetry” of the
relativistic Coulomb problem). For nr = 0, only the radial eigenfunction
with κ > 0 is square-integrable. Indeed, the normalization constants N±

0 are
not defined for κ < 0, because the factor γcm + κk0 = γcm(1 + sgn κ) in the
denominator of the square root becomes zero.

The higher symmetry of the relativistic Coulomb problem is related to
the existence of an additional conserved quantity. One can show that the
Dirac-Coulomb operator HDC commutes with

B =
2

mc
S ·

(
β

2
(L× p− p× L) + mγ

x
|x|

)
+

γ

mc2

1
|x|Kα1α2α3. (8.272)

The operator B is called the Biedenharn-Johnson-Lippmann operator. It is
the relativistic counterpart of the Runge-Lenz vector (see (2.14) and (2.25))

1
2
(L× p− p× L) + mγ

x
|x| , (8.273)

which is a conserved quantity for the nonrelativistic Coulomb problem. Un-
fortunately, the operator B does not commute with the relativistic spin-orbit
operator K and hence cannot be diagonalized simultaneously with the an-
gular momentum. Instead, B anticommutes with the spin-orbit operator
K,

{B,K} = BK + KB = 0. (8.274)
If Ψ is a common eigenfunction of the energy HDC and the spin-orbit operator
K with eigenvalues En and κ, then BΨ belongs to the eigenvalues En and
−κ. This explains the degeneracy of the Dirac-Coulomb eigenvalues with
respect to the sign of κ.

8.8.3. Angular momentum and spectroscopical notation

In order to compute the nonrelativistic limit of the Coulomb energies, we
subtract the rest-mass µc2 and consider the limit, as c goes to infinity, of

Enr − µc2 c→∞−→ Enonrel = −µγ2

�2

1
2 (nr + |κ|)2 . (8.275)
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In the nonrelativistic limit, the eigenvalue depends only on the “principal
quantum number”

n = nr + |κ|, (8.276)
which leads to the much higher degree of degeneracy in the nonrelativistic
Coulomb problem.

The angular-momentum operators S and L commute with each other,
but not with the Dirac-Coulomb Hamiltonian. Only the total angular mo-
mentum is conserved, but the spin-angular momentum and the orbital an-
gular momentum depend on time. In the nonrelativistic limit, the Dirac-
Coulomb operator becomes the two-component Schrödinger operator (3.125),
which commutes with both S and L, as described in Section 3.9.

Furthermore, in the nonrelativistic limit, the lower components of the
bound-state wave functions vanish. Therefore, Dirac’s matrix β becomes
the identity operator on eigenstates. The operator K = β(2S ·L+1) simply
becomes the nonrelativistic spin-orbit operator (3.143). If K is positive on
some eigenstate (that is, κ > 0), then the spin is parallel to the orbital
angular momentum in the nonrelativistic limit, that is, j = � + 1/2. On
the other hand, κ < 0 implies for the nonrelativistic limit that j = � − 1/2
For all common eigenstates of HDC, K, and J2, the values of the spin-orbit
quantum number κ and of the total angular momentum j are unchanged in
the nonrelativistic limit. Hence, κ is uniquely determined by j and the value
of the orbital angular momentum in the nonrelativistic limit,

κ =

{
−� if j = �− 1/2,
� + 1 if j = � + 1/2.

(8.277)

The principal quantum number n, the total angular momentum j, and the
orbital angular momentum � can therefore be used to label the relativistic
Coulomb eigenstates, even if the orbital angular momentum is not conserved
in the relativistic theory. In the spectroscopic notation one writes nxj , with
x denoting the nonrelativistic orbital angular momentum as usual:

� = 0, 1, 2, 3, 4, . . . corresponds to x = s, p, d, f, g, . . . . (8.278)

Hence, the eigenstates of HDC are denoted by

1s1/2

2s1/2 2p1/2 2p3/2

3s1/2 3p1/2 3p3/2 3d3/2 3d5/2

etc. (8.279)

This notation does not distinguish between states that belong to different
eigenvalues mj of J3. Hence, there are 2j + 1 orthogonal states denoted
by nxj , and the degree of degeneracy of the corresponding eigenvalue is
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2j + 1. The higher symmetry of the relativistic Coulomb problem (that is,
the degeneracy with respect to the sign of κ) implies that the following states
have the same energy, respectively:

np1/2 (κ = −1) and ns1/2 (κ = 1), for n ≥ 2,

nd3/2 (κ = −2) and np3/2 (κ = 2), for n ≥ 3, etc. (8.280)

The states 1s1/2, 2p3/2, 3d5/2, and so forth, corresponding to nr = 0 are
all nondegenerate. All states with the same n have the same energy in the
nonrelativistic limit. We also note that the relativistic electron bound state
energies are always below the corresponding nonrelativistic eigenvalues.

8.8.4. Fall to the center

Consider the eigenvalues (8.265) as a function of the coupling constant. As
soon as γc > 0, all eigenvalues are strictly below the threshold ε = m (which
corresponds to the energy µc2). If the coupling strength is increased, the
eigenvalues decrease continuously (that is, the binding energy µc2 − εnr in-
creases). In the angular-momentum subspace κ = 1, the lowest eigenvalue
ε0 (which belongs to the ground state of the Coulomb problem) approaches
0 for γc → 1,

lim
γc→1

ε0(γc) = 0, (8.281)

with
dε0(γc)

dγc
→∞, as γc → 1 (for κ = 1). (8.282)

Here, the binding energy approaches the rest-energy µc2. All eigenvalues
|κ| = 1 become complex for and γc > 1. This indicates that the operator
hκ = h1 (and hence the Dirac-Coulomb operator HDC) ceases to be self-
adjoint. No Coulomb-eigenvalue dives below ε = 0.

The formula for the bound-state energies obviously looses its validity as
soon as the coupling constant γc gets too large. The reason for this limitation
lies in relativistic kinematics. Because of the relativistic energy-momentum
relation, the kinetic energy increases linearly with |p| for large momenta. (In
the nonrelativistic case, E increases like |p|2.) The kinetic energy combines
with the potential energy −γc/|x| to a constant total energy. With increasing
coupling strength, the wave function gets closer to the origin where both the
kinetic and the potential energy tend to infinity. In the relativistic case, the
slow increase of the kinetic energy cannot balance the more rapid increase
of the potential energy, and the problem becomes ill defined. Physically, one
may think that the particle is drawn into the singularity and hits the origin
within a finite time.

In nonrelativistic quantum mechanics, the angular-momentum barrier
prevents the collapse to the center. The angular-momentum barrier is an
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effective potential of the form �(�+1)/2r2 that has its origin in the expression
for the kinetic energy in polar coordinates. In the radial Dirac equation, the
angular-momentum barrier is given by the off-diagonal term κ/r. For both
signs of κ, this term acts like a repulsive potential: For large |κ|, the wave
function is driven away from the origin by the factor rs in (8.266). We run
into problems as soon as the Coulomb attraction dominates the angular-
momentum barrier, that is, as soon as |γc| > |κ|.

Even in classical physics, the time evolution and the particle’s trajectory
are not defined after the particle hits a singularity of the potential, unless one
specifies a “reflection condition” that allows a unique continuation of the tra-
jectory. In quantum mechanics, such a condition is specified by a boundary
condition at the origin. Indeed, the boundary condition limr→0 f±(r) = 0
was necessary to define a unique square-integrable eigenfunction (see Sec-
tion 8.7.5) for γ2

c > κ2 − 1/4. For κ = 1 and γc >
√

3/2 (corresponding
to atomic numbers Z > 118), this boundary condition defines a self-adjoint
extension of the Dirac operator which is physically distinguished by the
property that the kinetic and the potential energy both remain finite for all
bound-state wave functions.

For γc > 1, the eigenvalues (8.265) with |κ| = 1 become complex. A
complex eigenvalue means that the time evolution is not unitary, hence the
generator (that is, the Dirac operator) cannot be self-adjoint any longer. We
may define the complex square-root in such a way that εnr has a negative
imaginary part Im εnr < 0 for γc > 1 (corresponding to the definition of a
non-self-adjoint extension of the Dirac operator). Then, the wave function
gets sucked away with time according to

exp(−ictεnr) = exp(−ictRe εnr) exp(ct Im εnr) → 0 as t →∞. (8.283)

This would correspond to the heuristic image of a particle falling into the
singularity.

The condition γc < 1 is not a serious limitation. It means that the
number of protons in the nucleus must be less than 137. This is rather far
away in the transuranic region. When Z approaches 137, the ground-state
wave function is drawn very close to the origin, and the finite size of the
nucleus will become important. For large atomic numbers, the Coulomb
potential with a point-like singularity (which is the origin of all troubles)
is certainly not a good model of the physical reality. A potential model
for an extended nucleus would rather resemble a smooth potential well. In
this case, all problems with self-adjointness would disappear. A problem
would still arise at much higher coupling constants, when the binding energy
becomes −2µc2. In this case, the lowest eigenvalue dives into the negative-
energy continuum and becomes a resonance for positronic scattering states—
a situation similar to the one discussed in Section 8.4.4. It is not quite clear
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how this should be interpreted. One expects some sort of spontaneous pair
creation—something that the Dirac equation alone cannot handle. Quantum
field theory is needed to describe these phenomena, but the mathematics is
tricky, and a final word has not yet been spoken.

Introducing a cut-off of the Coulomb potential at short distances intro-
duces some arbitrariness. The anomalous magnetic moment of the electron
also regularizes the Dirac-Coulomb Hamiltonian. One can show that the
additional term describing the anomalous magnetic moment, though highly
singular, is repulsive and forces the wave function away from the singularity.
Hence, the Dirac-Coulomb operator with an anomalous magnetic moment is
well defined and self-adjoint for all values of γc and κ. The behavior of the
eigenvalues is similar to the case of a potential with cut-off singularity.



Appendix A

Synopsis of Quantum
Mechanics

This book assumes that the reader is familiar with the basic notions of
quantum theory. Here, we give a brief outline of the quantum-mechanical
formalism to the extent that is needed for this book. Details, explanations,
and examples can be found in many introductory books, for example, in
Book One [11].

A.1. The Hilbert Space of Quantum Mechanics

Quantum mechanics describes the physical reality in terms of rather abstract
mathematical objects. From these, any predictions about the results of
measurements have to be derived with the help of interpretation rules. The
mathematical framework for the quantum-mechanical formalism is defined
by associating a suitable Hilbert space with a given physical system.1

A Hilbert space H is a linear space over the field of complex numbers C

with a scalar product 〈·, ·〉 (see Book One, Section 2.2). A scalar product is
a mapping that associates a complex number with an ordered pair of vectors
φ and ψ such that

• 〈ψ, ψ〉 > 0 for ψ �= 0 (positive definiteness)
• 〈φ, aψ1 + bψ2〉 = a 〈φ, ψ1〉+ b 〈φ, ψ2〉 (linearity in 2nd argument)
• 〈φ, ψ〉 = 〈ψ, φ〉 (skew-symmetry)

The scalar product induces a norm

‖ψ‖ =
√
〈ψ, ψ〉 (A.1)

and Hilbert spaces are by definition complete with respect to this norm (see
Book One, Section 2.2.3).

1Here, we do not attempt to give a formal definition of the expression “physical
system.” It has the usual intuitive meaning of something that can be described in physical
terms and that is sufficiently distinguished so that it is clear what one is talking about. In
this book we deal with rather simple systems—an electron, or just the spin of an electron,
an atom, or a measuring apparatus.

433
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Examples: A (structureless) particle in an n-dimensional space is asso-
ciated with the infinite dimensional Hilbert space L2(Rn). This is the space
of square-integrable complex-valued functions with the scalar product

〈φ , ψ〉 =
∫

R3

φ(x) ψ(x) d3x. (A.2)

If the motion is restricted, for example to an interval [a, b] in R, then the
Hilbert space is L2([a, b]). The states of a relativistic particle with spin-1/2
form the Hilbert space L2(R3)4 of C

4-valued square-integrable functions (see
Section 7.3.1).

If we are only interested in the internal states of a spin-1/2 particle, we
choose the two-dimensional Hilbert space C

2 (see Chapter 4). A general
example of a finite-dimensional Hilbert space is the n-dimensional complex
vector space C

n, consisting of vectors ψ = (ψ1, . . . , ψn), with ψi ∈ C, and
with the scalar product defined by

〈φ , ψ〉 =
n∑

i=1

φi ψi . (A.3)

A.2. States of a Physical System

The state of a physical system is a usually well-defined collection of informa-
tion about the system, for example, the values of certain physical quantities
at some given time (see Book One, Section 4.1.1). This set of information
should be as complete as possible in the sense that it allows one to make
statements about physical quantities of interest. Moreover, the information
should be precise enough so as to determine the future behavior of the state.
In the mathematical framework of quantum mechanics, states are described
in terms of vectors in the Hilbert space associated with the system, but
the mapping between vectors and states is not one-to-one (see Book One,
Section 4.1.1).

Postulate A.1. The (pure) states of the physical system at any instant
of time are uniquely given by the one-dimensional subspaces (rays)

ψ̂ = {φ = λψ | λ ∈ C} (A.4)

of the Hilbert space H of the system.

Here, the word “pure” distinguishes this type of state from the mixed
states discussed in Section 5.6.1. By choosing a representative ψ ∈ ψ̂ with
‖ψ‖ = 1, one can say that the state is described by a normalized vector in
the Hilbert space. This is usually assumed in the formulas that describe the
interpretation rules. The projection operator

ρψ = ψ 〈ψ, ·〉. (A.5)



A. SYNOPSIS OF QUANTUM MECHANICS 435

projects onto the one-dimensional subspace spanned by ψ and thus can also
serve to characterize the state of the system.

Superposition principle: The linear structure of the Hilbert space
allows us to form arbitrary linear combination of state vectors. The result
of the linear combination is again a vector in the Hilbert space. The cor-
responding one-dimensional subspace defines a new state, which is called a
superposition of the given states. Obviously, any superposition of states is
another possible state of the quantum system. This statement is called the
superposition principle.

A.3. Observables

An observable of a physical system is a physical quantity for that a numerical
value can be obtained in a well-defined process. This process is usually called
a measurement.2

Postulate A.2. The physical observables are represented by linear self-
adjoint operators acting in the Hilbert space of the system.

In a finite-dimensional Hilbert space H, a linear operator A is a mapping
H → H with the property

A(aψ1 + bψ2) = aAψ1 + bAψ2 (A.6)

and its adjoint is a linear operator A† defined by

〈φ,Aψ〉 = 〈A†φ, ψ〉. (A.7)

An operator is self-adjoint if A = A†. For a self-adjoint operator, the quan-
tity 〈ψ, Aψ〉 is always a real number. In the case of infinite-dimensional
Hilbert spaces, one has to take into account the domain of definition of the
linear operators, as discussed in Book One (Section 6.6).

Examples: The components of position are represented by the opera-
tors of multiplication with the variables x = (x1, . . . , xn). The momentum
operator is given by the differential operator −i∇ (where i is the imaginary
unit and ∇ is the gradient). A particular role is played by the energy op-
erator (Hamiltonian) H. For a particle with mass m and charge q moving
under the influence of an electromagnetic field, the energy operator is

H = − 1
2m

(
−i∇− q

c
A(x)

)
+ qV (x). (A.8)

Here, (V,A) are the electromagnetic potentials that describe the electric and
magnetic fields by E = −∇V and B = ∇×A.

2We do not claim that an observable has a value independently of the measurement.
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A.4. Interpretation Rule

In general, quantum mechanics makes only probabilistic predictions about
the outcomes of measurements, even if the state of the system is known
exactly. The measurement of an observable A is thus a random experiment.
It allows one to define a random variable describing the numerical values
associated with the observable in each run of the experiment.3

If, at any particular moment, the state of a physical system is represented
by a normalized state ψ, then

〈A〉ψ = 〈ψ ,Aψ〉 (A.9)

is the expectation value (mean value) of the observable A.
The uncertainty or standard deviation ∆ψA

∆ψA ≡ ‖(A− 〈A〉ψ)ψ‖ =
√
〈(A− 〈A〉ψ)2〉ψ (A.10)

of an observable A in the state ψ (which is assumed to be normalized)
describes the dispersion of the values of A around the mean value 〈A〉ψ.

If the state ψ is an eigenvector of the linear operator A, that is,

Aψ = aψ, for some real number a, (A.11)

then the result of a measurement of A gives a with certainty, that is, ∆ψA =
0. Note, however, that there are self-adjoint operators (for example, posi-
tion and momentum) that have no eigenvalues at all (they have a purely
continuous spectrum).

For an observable that has only eigenvalues (no continuous spectrum),
these eigenvalues are the only possible measurement results.

Two observables are called incompatible if the corresponding operators
A and B do not commute, that is [A,B] = AB − BA �= 0. One cannot
obtain numerical values for two incompatible observables within a single
experiment. The product of their uncertainties in a given state ψ obeys the
inequality

∆ψA ∆ψB ≥ 1
2

∣∣ 〈[A,B] 〉ψ
∣∣, (A.12)

hence the uncertainties of incompatible observables A and B cannot both
be small.

A.5. Projections and Properties

An orthogonal projection operator is a bounded self-adjoint operator P that
has only the eigenvalues 0 and 1. Hence, it is characterized by P 2 = P =
P †. The physical observable represented by a projection operator describes
whether the system has a certain property or not. Measuring a property can

3The observable A, the self-adjoint operator representing A, and the random variable
describing the values of A are usually denoted by the same letter.
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only give the results “yes” (eigenvalue 1) or “no” (eigenvalue 0). The range
of P , that is, the eigenspace belonging to the eigenvalue 1, is the subspace
of states with that property.

For every observable A, there is a unique family of projection operators
PB(A), labeled by (measurable) subsets B of R. The projection operator
PB(A) describes whether the observable A has a value in the set B ⊂ R or
not. The mapping B → PB(A) is called an orthogonal projection operator-
valued measure, or spectral measure associated with the observable A. The
famous spectral theorem states that this mapping between self-adjoint op-
erators and spectral measures is one-to-one.

For example, the operator of multiplication by the characteristic function
χB(x) of a region B is a projection operator. Its expectation value is just
the probability of finding the particle in the region B. The operators χB(x)
define the spectral measure of the position operator x.

Assume that a particle in R is described by a normalized wave function
ψ ∈ L2(R). Then, the quantity

∫
B |ψ(x)|2 dx is the probability of finding

the particle in the region B ⊂ R. Similarly: Let ψ̂ be the Fourier transform
of ψ. Then

∫
B |ψ̂(k)|2 dk is the probability of finding the momentum of the

particle in B ⊂ R.
A one-dimensional projection operator ρφ is given by

ρφψ = φ 〈φ , ψ〉, also written as ρφ = φ 〈φ, · 〉 = |φ〉〈φ|. (A.13)

It projects onto the one-dimensional subspace {λφ | λ ∈ C}. The observable
ρφ describes the property of being in the state described by the vector φ.
The expectation value 〈ρφ〉ψ is the probability that a system in the state ψ
is found to be in the state φ,

pψ→φ = 〈ρφ〉ψ = |〈φ, ψ〉|2. (A.14)

This is called the transition probability from ψ to φ.

A.6. Time Evolution

The third postulate describes the time evolution of a state. An operator is
called unitary if U † = U−1.

Postulate A.3. The time evolution of a physical system is described
by the unitary operator exp(−iHt), where H is the energy operator of the
system. If the state at time t0 is given by ψ0, then the state at time t is given
by

ψ(t) = e−iH(t−t0) ψ0. (A.15)
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In particular, if the initial state ψ0 is in the domain D(H) of the Hamil-
tonian H, then ψ(t) is a solution of the Schrödinger equation

i
d

dt
ψ(t) = H ψ(t). (A.16)

If the initial state ψ0 is an eigenstate of the Hamiltonian, Hψ0 = Eψ0 (with
some real number E), then (A.15) specializes to

ψ(t) = e−iE(t−t0) ψ0. (A.17)

The time evolution is thus reduced to a simple multiplication by a time-
dependent phase factor, something that does not change the state at all.
Hence, the eigenstates are also called stationary states.

Unitary Groups: An important mathematical theorem (Stone’s The-
orem) states that any self-adjoint operator H generates a group of unitary
operators exp(−iHt) such that Eqs. (A.16) and (A.15) hold. The operator-
valued exponential function satisfies in particular

e−iH0 = 1, e−iHt e−iHs = e−iH(t+s), (A.18)

and the mapping ψ → ψ(t) = e−iHtψ is continuous with respect to t for all
ψ in the Hilbert space.4

Among the unitary groups that are important in quantum mechanics, we
mention the translations, which are generated by the momentum operator,
and the rotations, which are generated by the angular-momentum operators
(see Section 1.2.2).

Time-dependence of observables: The time evolution of an observ-
able A is defined by

A(t) = eiHt A e−iHt. (A.19)

Hence, the expectation value of A(t) fulfills the relation

〈A(t)〉ψ = 〈A〉ψ(t). (A.20)

The function t → A(t) is a solution of Heisenberg’s equation of motion,

d

dt
A(t) = i[H,A(t)], (A.21)

with the initial condition A(0) = A. Observables A that are conserved
under the time evolution, A(t) = A, are called constants of motion. They
generate symmetry transformations of the system. The constants of motion
are self-adjoint operators that commute with the Hamiltonian, [H,A] = 0.

4For a fixed t, the mapping ψ → ψ(t) is also continuous with respect to ψ, because
a unitary operator is continuous. This means that the solution depends continuously on
the initial data.
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A.7. Measurements

A measurement is usually a complicated interaction between an object and a
measuring device. For a surprisingly large variety of situations, it is sufficient
to use one of the following simple models of measurement processes.

(1) Determinative measurement or state verification. It is the goal to
determine the state of a system or to verify a quantum-mechanical predic-
tion. One has to repeat the measurement very often on identically prepared
copies of the system, because one has to verify a probability distribution pre-
dicted by the quantum mechanical formalism. The collection of identically
prepared systems is called a statistical ensemble. In order to be explicit, we
sometimes call the measurement on an individual system (that is, a single
run of the random experiment) an elementary experiment. With a finite
number of elementary experiments, it is only possible to obtain approximate
information about the state (state estimation).

(2) Preparative measurements or state preparation. This can be inter-
preted as an operation performed on an individual system. The measurement
of a physical quantity usually gives a random result, but once the result is
determined, immediately after the measurement, the system is in a state (or
in a subspace of states) that is characterized by the outcome of the measure-
ment. A second measurement would then give the same result with certainty.
The state preparation procedure is described by a projection operator (pro-
jection postulate). As a special case, consider an observable A with discrete
eigenvalues. If the measurement of A gives the value a (that is, one of the
eigenvalues), then, immediately after the measurement, the system is in the
eigenspace belonging to the eigenvalue a.

The description of a preparative measurement as a (non-unitary) pro-
jection is also called a collapse of the state. The projection postulate is a
useful and simple mathematical model of a complicated physical process. It
describes how the information content of the system changes as a result of
the interaction between the system and an (often macroscopic) object (mea-
surement device). Much more could be said about this in a more detailed
quantum mechanical analysis (decoherence theory), which is, unfortunately,
beyond the scope of this text.

A.8. Dirac’s Formalism

In this book, I make use of Dirac’s bra-ket formalism only for finite-dimen-
sional systems (in the context of quantum information theory). The Dirac
formalism provides some mathematical pitfalls, is difficult to justify rigor-
ously, and is completely unusual in the mathematical literature about the
subject. For these reasons, I avoid the Dirac formalism in the quantum
theory of systems with infinite dimensional Hilbert spaces. Nevertheless, in
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order to be able to read other books on quantum mechanics, one should
know some basic facts about this formalism.

A vector ψ in Hilbert space is denoted by a ket symbol |ψ〉. Very often, if
an eigenstate of the Hamiltonian is characterized by certain quantum num-
bers, then the list of these quantum numbers is written instead of the ψ. For
example, the eigenstates of the hydrogen atom ψn,�,m would be written as
|n, �, m〉 (it is more common to use the principal quantum number N instead
of n). The linear forms in the Hilbert space are denoted by a bra symbol
〈φ|. Linear forms (sometimes also called linear functionals) are continuous
linear maps from the Hilbert space into the complex numbers. The vector
space of linear forms on a Hilbert space can be identified in a natural way
with the Hilbert space itself (Riesz lemma). Hence, there is actually no need
to distinguish in notation between the linear forms and the vectors in the
Hilbert space. As a linear form, a vector φ acts on the Hilbert space by
associating to each vector ψ the scalar product 〈φ, ψ〉. In Dirac’s formalism,
the application of a bra 〈φ| to a ket |ψ〉 is written as 〈φ|ψ〉 and gives again
just the scalar product of two vectors φ and ψ.

Let us list the entries in our dictionary:

ψ ←→ |ψ〉 (vector in Hilbert space) (A.22)

〈ψ , · 〉 ←→ 〈ψ| (linear form in Hilbert space) (A.23)

〈φ , ψ〉 ←→ 〈φ |ψ〉 (scalar product) (A.24)

The action of a linear operator A on a vector ψ is written as A|ψ〉 in Dirac’s
formalism. Moreover, one introduces an action to the left:

A ψ ←→ A |ψ〉 (applying an operator), (A.25)

A† ψ ←→ 〈ψ|A (adjoint operator). (A.26)

Here is a little problem with Dirac’s formalism: We have the identification

〈φ , Aψ〉 ←→ 〈φ|A |ψ〉 (A.27)

for all φ ∈ H and ψ ∈ D(A). On the other hand, one also has

〈A†φ , ψ〉 ←→ 〈φ|A |ψ〉, (A.28)

but this time for φ ∈ D(A†) and all ψ ∈ H. Hence, Dirac’s formalism
does not encourage a correct treatment of the domains of operators. But,
a careless manipulation of expressions is dangerous as physical properties
depend on the domains of the operators.

There is, however, no problem with bounded operators (in particular,
with operators in finite-dimensional Hilbert spaces). In this case, the domain
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can always be assumed to be the whole Hilbert space. For example, a one-
dimensional projection operator can be written in a very intuitive form

ψ 〈ψ , · 〉 ←→ |ψ〉〈ψ| (projection operator). (A.29)

Hence, for example, the expectation value of a projection operator P =
|ψ〉〈ψ| in a state |φ〉 is calculated as

〈P 〉φ = 〈φ|P |φ〉 = 〈φ|ψ〉〈ψ|φ〉 = |〈φ|ψ〉|2. (A.30)

The orthonormality and completeness of an orthonormal basis {ψj} just
becomes

〈ψj |ψk〉 = δjk,
∑

k

|ψk〉〈ψk| = 1, (A.31)

and the expansion of a vector φ in the orthonormal basis can be done as
follows

|φ〉 = 1 |φ〉 =
∑

k

|ψk〉〈ψk|φ〉. (A.32)

The Dirac notation comes in handy whenever we want to specify a state
in terms of a complete set of quantum numbers or in terms of a graphical
symbol. It is notationally more convenient to write |n, �, m�,ms〉 for an
eigenvector of the Coulomb problem with spin, than to attach the quantum
numbers as indices, as in ψn,�,m�,ms .

Another feature of Dirac’s formalism is that it introduces the symbols
|x〉 and |k〉 for the generalized eigenvectors of the position and momentum
operators, respectively. The object |x〉 corresponds to Dirac’s delta function
δ(· − x), and |k〉 is just the plain wave exp(ikx). Both do not belong to the
particle’s Hilbert space. One often writes

ψ(x) ←→ 〈x|ψ〉 (values in position space) (A.33)

ψ̂(k) ←→ 〈k|ψ〉 (values in momentum space). (A.34)

The ket-vector |x〉 is in fact a distribution. Like the plane wave |k〉, it
cannot be interpreted in terms of position probabilities. A mathematically
rigorous justification of these elements of Dirac’s formalism can be done in
the framework of Gelfand triples. This is, however, highly nontrivial.

It is considered an advantage of the Dirac formalism that it deals with
objects |ψ〉 in an abstract Hilbert space, and position and momentum rep-
resentation are just different concrete realizations. In that sense, the values
ψ(x) are just the components of ψ in the basis of position eigenfunctions,
in the same sense as ψn�m = 〈n, �, m|ψ〉 are the components of ψ in the
eigenbasis of the hydrogen Hamiltonian. However, you should note that all
Hilbert spaces are isomorphic to L2 in the infinite dimensional case and to
C

n in the finite-dimensional case. Hence, from a mathematical point of view,
the Dirac formalism is by no means more general than the usual formalism.



Appendix B

Perturbation of Eigenvalues

Very often in physics and mathematics, we need to solve a problem that
differs only slightly from a problem that has already been solved. A typ-
ical situation is the following: Assume that we know the eigenvalues and
eigenfunctions of a Hamiltonian with potential V . Now, we change the po-
tential a bit by adding a small perturbation W . What can we say about the
eigenvalues and eigenfunctions of the Hamiltonian with potential V + W?

B.1. Introduction

Consider a self-adjoint operator H(0) (the unperturbed operator) in some
Hilbert space H. Usually, H(0) is the Hamiltonian of a physical system
whose solutions are well-known. In the following, the superscript “(0)” will
always refer to this unperturbed system.

We are interested in the perturbed operator

H(γ) = H(0) + γ H(1), (B.1)

where H(1) is some other self-adjoint operator, called the perturbation, and γ
is some (small) parameter, called the coupling constant of the perturbation,
or the perturbation parameter.

Let ψ
(0)
n be an eigenvector belonging to the nth discrete1 eigenvalue E

(0)
n

of H(0)

H(0) ψ(0)
n = E(0)

n ψ(0)
n . (B.2)

We look for a solution of the perturbed eigenvalue problem

H(γ)ψ(γ) = E(γ) ψ(γ). (B.3)

Our notation indicates that the perturbed eigenvalues and eigenvectors (if
they exist) will somehow depend on γ. We want to address the following
questions:

1An eigenvalue is isolated if it is contained in an interval that contains no other part
of the spectrum of the operator. An eigenvalue is discrete if it is isolated and has a finite
degree of degeneracy.

443
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• Can we find a solution En(γ) and ψn(γ) of the perturbed eigenvalue
problem, such that En(0) = E

(0)
n and ψn(0) = ψ

(0)
n ?

• Will the perturbed eigenvalues and eigenvectors depend smoothly
on γ?

The answers to these questions will depend on the “smallness” of the
perturbation γ H(1), which is not only determined by the smallness of γ but
also by the mathematical properties of H(1) and H(0).

Example B.1. As a simple example, consider the Hamiltonian of a qubit
with a magnetic field in the z-direction. In the standard representation, it
can be written as H(0) = ωσ3, with some constant ω describing the strength
of the magnetic field and of the magnetic moment (for electrons, ω = µBBz).
Its eigenvalues are ±ω, and the eigenvectors are the spinors of the standard
basis, ψ+ and ψ−. The perturbation is a small magnetic field in the x-
direction. We assume that the potential energy due to the perturbation is
γσ1. Hence, the perturbed Hamiltonian (in the standard representation) is
of the form

H(γ) = ωσ3 + γσ1 =
(

ω γ
γ −ω

)
. (B.4)

This matrix has the eigenvalues ±
√

ω2 + γ2. We can expand these eigen-
values in power series with respect to the perturbation parameter γ. For
example, the positive eigenvalue is (assuming ω > 0)

E(γ) =
√

ω2 + γ2 = ω +
1
2ω

γ2 − 1
8ω3

γ4 + . . . . (B.5)

Due to the branch-cut singularities of the square-root (for complex γ = ±iω),
this power series has a finite radius of convergence even for real γ (in this
example, it is actually a power series in γ2, because the coefficients of the
odd powers of γ vanish). For the corresponding normalized eigenvector,

ψ(γ) =
1√

2
(
ω2 + ω

√
ω2 + γ2 + γ2

)
(

ω +
√

ω2 + γ2

γ

)

=
(

1
0

)
+ γ

(
0

1/(2ω)

)
− γ2

(
1/(8ω2)

0

)
− γ3

(
0

3/(16ω3)

)
+ . . . , (B.6)

we also obtain a Taylor series in γ that converges in some neighborhood of
γ = 0.

In the next example, the addition of the perturbation changes the domain
of the unperturbed operator. In this case, perturbation theory becomes a
delicate task.
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Figure B.1. The sum of a Coulomb potential and a linear
potential has no bound states, because a particle would tun-
nel through a classically forbidden region as long as the region
has a finite diameter. The gray regions II and III are the
classically forbidden regions for the ground-state energy E

(0)
1

of the unperturbed Coulomb problem.

Example B.2. The Stark effect: We consider a hydrogen atom with
Hamiltonian (in atomic units)

H(0) = −1
2

∆− 1
|x| (B.7)

and perturb it with a small electrostatic field. The external field is a constant
homogeneous field in the z-direction, E = γ(0, 0, 1). This adds a potential
energy that depends linearly on the z-coordinate.

H(γ) = −1
2

∆− 1
|x| + γ z. (B.8)

We know that the unperturbed hydrogen atom has infinitely many isolated
eigenvalues. The operator (B.8), however, has no eigenvalues at all, as soon
as γ �= 0.

We want to explain the vanishing of bound states with the help of Fig-
ure B.1. It shows the potential −1/|x| + 0.01z along the z-axis (where
|x| = |z|). Because of the linear perturbation, the Coulomb potential essen-
tially becomes a potential well with a finite potential barrier on one side.
The figure shows a local maximum of the potential energy V (z) at z = −10
(in three dimensions, this is actually a saddle point).
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The horizontal lines in Figure B.1 are the energy levels of the unper-
turbed system (Coulomb problem in atomic units). We see that the excited
levels E

(0)
2 , E

(0)
3 , . . . are all above the local maximum of the perturbed po-

tential V (z) at z = −10a0. Electrons with energies higher than the maximal
value of the potential barrier will escape to the region behind the barrier,
that is, toward z → −∞. This is true for quantum mechanics as well as for
classical mechanics.

Now, consider an electron in the ground state of the unperturbed system.
It has the energy E

(0)
1 = −1/2, and its wave function is centered around the

origin (essentially in the white region between II and III in Figure B.1).
This wave function decreases exponentially for |x| → ∞, but it is nonzero
everywhere in space. As soon as the perturbation is “turned on,” the elec-
tron is separated by a potential barrier of finite width (region II) from the
region I. Given enough time, the electron will tunnel through this barrier
(a classically forbidden region) into the region I where it accelerates toward
−∞ (this is essentially a free fall in a linear potential).

B.2. Rayleigh-Schrödinger series

In this section, we treat a special case, where the perturbed eigenvalue de-
pends analytically on the perturbation parameter γ. The assumption of
analyticity means that the perturbed quantities have a power series expan-
sion in a neighborhood of γ = 0.

Assumption 1: For small γ, the perturbed eigenvalue and the perturbed
eigenvector are given by power series in γ,

En(γ) = E(0)
n + γ E(1)

n + γ2 E(2)
n + . . . , (B.9)

ψn(γ) = ψ(0)
n + γ ψ(1)

n + γ2 ψ(2)
n + . . . . (B.10)

Actually, this is a rather strong assumption that is not justified in some
physically interesting situations, like in Example B.2 above. Under this as-
sumption, we may insert the expressions (B.9) and (B.10) into the eigenvalue
equation (B.3),

(H(0) + γ H(1)) (ψ(0)
n + γ ψ(1)

n + . . .)

= (E(0)
n + γ E(1)

n + . . .) (ψ(0)
n + γ ψ(1)

n + . . .), (B.11)
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and compare the coefficients of the equal powers of γ on both sides of this
equation. This gives

γ0 : H(0) ψ(0)
n = E(0)

n ψ(0)
n , (B.12)

γ1 : H(0) ψ(1)
n + H(1) ψ(0)

n = E(0)
n ψ(1)

n + E(1)
n ψ(0)

n , (B.13)

γ2 : H(0) ψ(2)
n + H(1) ψ(1)

n = E(0) ψ(2)
n + E(1) ψ(1)

n + E(2) ψ(0)
n (B.14)

...
...

The first equation (B.12) is identical with the unperturbed eigenvalue equa-
tion (B.2).

Let us now consider the special case that the unperturbed eigenvalue
E

(0)
n is non-degenerate. Hence, ψ

(0)
n is the only eigenvector belonging to

this eigenvalue. We may form the scalar product of ψ
(0)
n with both sides of

(B.13). For the first term on the left side of this equation we obtain〈
ψ(0)

n , H(0) ψ(1)
n

〉
=

〈
H(0) ψ(0)

n , ψ(1)
n

〉
= E(0)

n

〈
ψ(0)

n , ψ(1)
n

〉
. (B.15)

The first term on the right side of (B.13) gives the same expression,〈
ψ(0)

n , E(0)
n ψ(1)

n

〉
= E(0)

n

〈
ψ(0)

n , ψ(1)
n

〉
. (B.16)

Therefore, (B.13) simplifies to

E(1)
n =

〈
ψ(0)

n , H(1) ψ(0)
n

〉
. (B.17)

This is the most important formula in this section. We conclude that up to
terms of second order in γ, the perturbed eigenvalue is just the expectation
value of H(γ) in the unperturbed eigenstate:

En(γ) =
〈
ψ(0)

n , H(γ) ψ(0)
n

〉
+O(γ2). (B.18)

Here, the expression O(γ2) (Landau symbol) is a handy abbreviation for “a
term that behaves like γ2 in the limit under consideration.” It means that
limγ→0O(γ2)/γ2 is a finite nonzero constant.

In order to compute the first-order perturbation of the eigenvector, we
make the following assumption:

Assumption 2: The first-order perturbation ψ
(1)
n is contained in the sub-

space spanned by the eigenvectors of H(0).

Given this assumption, ψ
(1)
n can be written as

ψ(1)
n =

∑
k

an,k ψ
(0)
k (B.19)

where {ψ(0)
k | k = 1, 2, . . .} is the orthonormal set of eigenvectors of the

unperturbed operator H(0), which may be finite or infinite. We insert the
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expression (B.19) into (B.13). A scalar multiplication of this equation by
ψ

(0)
m with m �= n then gives

E(0)
m an,m +

〈
ψ(0)

m , H(1) ψ(0)
n

〉
= E(0)

n an,m. (B.20)

The term with E
(1)
n vanishes, because 〈ψ(0)

m , ψ
(0)
n 〉 = 0. From m �= n and the

fact that E
(0)
n is non-degenerate it follows that E

(0)
n �= E

(0)
m . Hence, we find

an,m =

〈
ψ

(0)
m , H(1) ψ

(0)
n

〉
E

(0)
n − E

(0)
m

(for m �= n). (B.21)

This finally gives the first-order correction of the eigenvector:

ψ(1)
n =

∑
k

an,k ψ
(0)
k = an,n ψ(0)

n +
∑
k �=n

〈
ψ

(0)
k , H(1) ψ

(0)
n

〉
E

(0)
n − E

(0)
k

ψ
(0)
k . (B.22)

The still unknown coefficient an,n can be determined from a normalization
condition. It is most convenient to require that

〈ψ(0)
n , ψn(γ)〉 = 1. (B.23)

(Hence, in general, ‖ψn(γ)‖ �= 1). This requirement implies that for all λ in
a neighborhood of λ = 0,

〈ψ(0)
n , ψn(γ)〉 = 〈ψ(0)

n , ψ(0)
n 〉+ γ〈ψ(0)

n , ψ(1)
n 〉+ γ2 〈ψ(0)

n , ψ(2)
n 〉+ . . . = 1, (B.24)

and from 〈ψ(0)
n , ψ

(0)
n 〉 = 1 we find

〈ψ(0)
n , ψ(1)

n 〉 = 〈ψ(0)
n , ψ(2)

n 〉 = . . . = 0. (B.25)

This result together with (B.22) implies immediately that an,n = 0. We
collect out results in the following box:



B. PERTURBATION OF EIGENVALUES 449

First order perturbation (non-degenerate eigenvalue):

Let E
(0)
n be an isolated, non-degenerate eigenvalue of H(0),

H(0) ψ(0)
n = E(0)

n ψ(0)
n . (B.26)

Under the assumptions stated above, the perturbed operator H(γ) =
H(0) + γ H(1) has for small γ an eigenvalue

En(γ) = E(0)
n + γ E(1)

n + γ2 E(2)
n + . . . (B.27)

with
E(1)

n =
〈
ψ(0)

n , H(1) ψ(0)
n

〉
. (B.28)

Assuming that the corresponding eigenvector ψn(γ) is normalized ac-
cording to

〈ψ(0)
n , ψn(γ)〉 = 1, (B.29)

we find the first-order correction

ψ(1)
n =

∑
k �=n

〈
ψ

(0)
k , H(1) ψ

(0)
n

〉
E

(0)
n − E

(0)
k

ψ
(0)
k . (B.30)

We note that formulas can also be obtained for the higher-order pertur-
bations, for example,

E(2)
n =

∑
k �=n

∣∣〈ψ
(0)
k , H(1) ψ

(0)
n

〉∣∣2
E

(0)
n − E

(0)
k

. (B.31)

These formulas become more nasty with increasing order, and today they
have less practical importance due to the availability of efficient numerical
algorithms for computing eigenvalues and eigenfunctions.

B.3. Degenerate eigenvalues

Here, we treat perturbation theory for degenerate energy levels. We assume
that the nth discrete eigenvalue E

(0)
n of the unperturbed system is d-fold

degenerate. The corresponding orthonormal eigenvectors are denoted by
ψ

(0)
n,j , j = 1, 2, . . . , d. In order to compute the first-order corrections according

to the perturbation H(1), we choose an unperturbed eigenvector ψ
(0)
n in the

eigenspace belonging to E
(0)
n . This eigenvector may be expanded in the given

orthonormal basis,

ψ(0)
n =

d∑
j=1

cj ψ
(0)
n,j . (B.32)
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We may insert this expression into the first-order equation (B.13) and take
the inner product with the vector ψ

(0)
n,k. The terms involving ψ

(1)
n on each

side cancel and, exploiting orthonormality, we obtain∑
j

cj

〈
ψ

(0)
n,k , H(1) ψ

(0)
n,j

〉
= E(1)

n ck. (B.33)

The d× d matrix A with the components

Akj =
〈
ψ

(0)
n,k , H(1) ψ

(0)
n,j

〉
(B.34)

is Hermitian if, as it is normally the case, the perturbation H(1) is a sym-
metric operator. This follows from

〈
ψ

(0)
n,k , H(1) ψ

(0)
n,j

〉
=

〈
H(1) ψ

(0)
n,k , ψ

(0)
n,j

〉
=

〈
ψ

(0)
n,j , H(1) ψ

(0)
n,k

〉
. (B.35)

(Here, as usual, the overbar signifies complex conjugation.) Note that (B.33)
is just the eigenvalue equation with the matrix A,∑

j

Akj cj = E(1)
n ck. (B.36)

The column vector of the coefficients (c1, c2, . . . , cd) thus has to be chosen as
an eigenvector of the matrix A. The Hermitian d×d matrix A has exactly d
orthogonal eigenvectors cν , ν = 1, . . . d. For each eigenvector, we obtain the
corresponding eigenvalue E

(1)
n,ν as a possible solution of (B.33). A Hermitian

d× d matrix has only real eigenvalues, some of which may be equal.

Perturbation of a degenerate eigenvalue:

Assume that the nth discrete eigenvalue E
(0)
n is d-fold degenerate. Then,

there are d perturbed eigenvalues

En,ν(γ) = E(0)
n + γ E(1)

n,ν + . . . , ν = 1, 2, . . . , d, (B.37)

all analytic in γ in a neighborhood of γ = 0, but not necessarily differ-
ent from another. The first-order corrections E

(1)
n,ν are obtained as the

eigenvalues of the Hermitian d× d matrix with entries〈
ψ

(0)
n,k , H(1) ψ

(0)
n,j

〉
. (B.38)
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B.4. Alkali atoms

A canonical example is the following model of alkali atoms. The spectra
of alkali atoms (Li, Na, K, . . .) are very similar to the spectra of hydrogen
atoms. Alkali atoms have a single valence electron and a core consisting of
the nucleus and Z − 1 inner electrons (where Z is the atomic number). The
core is a stable configuration that is little perturbed by the presence of the
valence electron. Hence, one may assume that the valence electron moves in
an electrostatic field that consists of the Coulomb field of the nucleus and
an averaged field of the core electrons (which is repulsive). The field of the
core electrons shields the field of the nucleus. Outside the core, where the
valence electron is found with the highest probability, the potential energy
is (using atomic units)

V (x) ≈ −1/|x|, for |x| large. (B.39)

Very close to the nucleus, we expect

V (x) ≈ −Z/|x|, for |x| small. (B.40)

A simple model for the potential energy of the valence electron is

V (x) = − 1
|x| + Vc(x), (B.41)

where Vc is only nonzero in the neighborhood of the nucleus, and negative.

Vc(x) →
⎧⎨
⎩

1− Z

|x| , as |x| → 0,

0, as |x| → ∞.
(B.42)

The contribution of the potential Vc is only significant if the valence electron
enters deep into the core. So we can treat Vc = H(1) as a perturbation of
the Coulomb Hamiltonian

H(γ) = −1
2
∆− 1

|x| + γVc(x). (B.43)

Actually, we are interested in the Hamiltonian with γ = 1, which is not
small. Therefore, one should not expect quantitatively accurate results from
first-order perturbation theory. But we can expect some qualitative results.
In an eigenspace belonging to the eigenvalue E

(0)
n , we choose the basis con-

sisting of the eigenvectors ψ
(0)
n,�,m of the unperturbed Coulomb problem. The

eigenvalues and eigenvectors of the Coulomb problem have been described
before, see Chapter 2, Eqs. (2.67) and (2.69). Here, we attached the su-
perscript “(0)” to indicate that these quantities refer to the unperturbed
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problem. According to (B.38), we consider the matrix

〈ψ(0)
n,�,m , Vc ψ

(0)
n,�′,m′ 〉 =

∫
R3

ψ
(0)
n,�,m(x)Vc(x) ψ

(0)
n,�′,m′(x) d3x. (B.44)

In a first approximation, we may assume that Vc is spherically symmetric,
Vc(x) = Vc(r). Then, we may perform the integration in (B.44) using spheri-
cal coordinates. Using the expression ψ

(0)
n,�,m = (1/r) fn,�(r) Y m

� (ϑ, ϕ) for the
Coulomb eigenfunction in spherical coordinates, the matrix element above
becomes∫ ∞

0
Vc(r) fn,�(r) fn,�′(r) dr

∫
S2

Y m
� (ϑ, ϕ)Y m′

�′ (ϑ, ϕ) dΩ (B.45)

(with dΩ = sinϑdϑ dϕ). The spherical harmonics form an orthonormal set
of functions on the unit sphere S2, hence

〈ψ(0)
n,�,m , Vc ψ

(0)
n,�′,m′ 〉 = δ��′ δmm′

∫ ∞

0
Vc(r) |fn,�(r)|2 dr . (B.46)

This defines a diagonal matrix. We conclude that the eigenvalue E
(0)
n splits

into at most n different eigenvalues En,�(γ), with � = 0, 1, . . . , n− 1. These
eigenvalues are still degenerate, because a spherically symmetric potential
always leads to energy eigenvalues that are degenerate with respect to the
quantum number m (see Section 1.10.1), and the degree of degeneracy is
given by 2� + 1.

The radial integral in (B.46) measures the shift of energy in first-order.
Because Vc is everywhere negative, the integral is negative, hence all levels
of the alkali atom are below the corresponding level of the hydrogen atom.
Moreover, Vc is small for large r and gives significant contributions only for
small r. The radial position probability amplitude fn,� is concentrated at
small values of r only if � is small. For larger values of �, the integral must
be smaller. Hence, we expect that in first-order perturbation theory,

E
(1)
n,� > E

(1)
n,�′ , if � < �′. (B.47)

B.5. Ground state of helium

The helium atom consists of a nucleus with charge 2e surrounded by two
electrons. Assuming that the nucleus has infinite mass, we obtain the Hamil-
tonian

H =
1

2me
(p2

1 + p2
2)− 2γ0

( 1
|x1| +

1
|x2|

)
+ γ

1
|x1 − x2| . (B.48)
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Here, pj are the momenta and xj are the position vectors for the two elec-
trons, and γ0 is the hydrogen coupling constant

γ0 =
e2

4πε0
. (B.49)

The last summand in (B.48) is interpreted as a perturbation,

H(1) =
1

|x1 − x2| . (B.50)

It describes the repulsion between the two electrons. γ is the perturbation
parameter and the physical helium atom is obtained for γ = γ0.

The unperturbed Hamiltonian

H(0) =
1

2me
p2

1 −
2γ0

|x1| +
1

2me
p2

2 −
2γ0

|x2| (B.51)

is a sum of two independent single-electron Coulomb Hamiltonians. Its
ground state is the product of two hydrogenic ground states,

ψ(0)(x1,x2) =
1
π

( 2
a0

)3
exp

(
− 2

a0
(|x1|+ |x2|)

)
. (B.52)

Here, a0/2 is the Bohr radius of a hydrogen-like atom with atomic number
Z = 2.

In our consideration, we neglect contributions to the energy due to the
spin of the electrons. Hence, the required antisymmetry of the two-electron
wave function can be taken into account by an antisymmetric spin-part.
The fermionic ground state of the Hamiltonian (B.51) in the Hilbert space
of antisymmetric spinor-valued two-particle wave functions is

ψ(x1,x2) =
1√
2

(
(φ1(x1)ψ+)⊗ (φ2(x2)ψ−)− (φ1(x1)ψ−)⊗ (φ2(x2)ψ+)

)
= φ1(x1)φ2(x2)

1√
2

(ψ+ ⊗ ψ− − ψ− ⊗ ψ+)

= φ1(x1) φ2(x2)ψ−
o . (B.53)

Here, ψ−
o is the odd-parity Bell state defined in Eq. (5.30).

The ground-state energy of the Hamiltonian (B.51) is the sum of the
ground-state energies of two independent Coulomb Hamiltonians with atomic
number Z = 2,

E(0) = −2
Z2γ0

2a0
= −4

γ0

a0
. (B.54)

If we compare this with the experimental value

Eexp = −2.92
γ0

a0
, (B.55)

we see that the zero-order approximation is not very good.
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In order to compute the first-order approximation 〈ψ(0), H(1) ψ(0)〉, we
need the integral∫

R6

1
|x1 − x2| exp

(−c (|x1|+ |x2|)
)
d3x1 d3x2 =

20π2

c5
. (B.56)

Using this formula, one finally obtains

〈ψ(0), H(1) ψ(0)〉 =
5

4a0
. (B.57)

Hence,

E(γ) ≈ E(0) + γE(1) = −4
γ0

a0
+

5
4

γ

a0
. (B.58)

Setting γ = γ0, we obtain the result

E(γ) ≈ −2.75
γ0

a0
, (B.59)

which is already rather close to the observed value (B.55).



Appendix C

Special Topic: Analytic
Perturbation Theory

In this appendix, we sketch some ideas of analytic perturbation theory, which
is the mathematical basis of the results in Appendix B. In particular, we
show how the analyticity of the eigenvalues is related to the analyticity of
the resolvent of the perturbed Hamiltonian. More mathematical details and
proofs of the quoted results can be found, for example, in the books [4] or
[7].

C.1. Relative boundedness

In Section B.2, we needed some assumptions in order to compute perturba-
tion series for eigenvalues. The mathematical condition that is implicit in
these calculations is stated here for the sake of completeness:

Assumption on operator domains: The domain of the self-adjoint per-
turbation H(1) is larger than the domain of the unperturbed operator H(0).

This assumption guarantees that the perturbed operator H(γ) = H(0) +
γ H(1) is self-adjoint on the domain of the unperturbed operator for small
enough values of γ. Hence, the perturbed eigenvector and its approximations
are all in the domain of H(0), H(1), and H(γ). The assumption on the
domains implies, in particular, the following statement:

Relative boundedness condition: There are non-negative constants a
and b such that for all vectors in the domain of H(0) the following inequality
holds:

‖H(1) ψ‖ ≤ a ‖H(0) ψ‖+ b ‖ψ‖ for all ψ ∈ D(H(0)). (C.1)

The analytic dependence of isolated eigenvalues on γ (Assumption 1) fol-
lows from this condition. For Schrödinger operators H(0) = H0 + V (x) and
H(1) = V1(x), the relative boundedness condition is fulfilled (as a rule of
thumb) whenever V1 is less singular than V . That is, whenever V1(x) tends
to infinity (for x → x0 or for x → ∞), then the unperturbed potential V

should go to infinity at least as fast as V1. If H(0) is a Coulomb Hamiltonian,
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then V1(x) = γ/|x| is fine but V1(x) = γ S · L/|x|3 (spin-orbit term) is too
singular for analytic perturbation theory. If H(0) is a harmonic oscillator
Hamiltonian, then V1(x) = γ|x| is fine but V1(x) = γ |x|4 (anharmonic os-
cillator) diverges too fast, as |x| → ∞. Analytic perturbation theory does
not work whenever the perturbation is more singular than the unperturbed
potential. Unfortunately, this is the case for many well-known examples in-
cluding the Stark effect and the anharmonic oscillator. It is interesting that
perturbation theory is not quite useless in these cases and that the pertur-
bation formulas do retain a certain physical and mathematical meaning.

We note that the relative boundedness condition is central to many re-
sults in perturbation theory. For example, the Kato-Rellich theorem on
self-adjointness: Let H(0) be self-adjoint. Assume that we can find b > 0
and a < 1 such that (C.1) holds. Then, H(γ) is self-adjoint on the domain
of H(0) for all γ with γa < 1.

C.2. The resolvent

Today, analytic perturbation theory is less important as a practical tool for
computing eigenvalues, but it is essential as a method to decide whether
there are perturbed eigenvalues and if they depend on γ in an analytic way
(power series).

A useful tool for perturbation theory is the resolvent of a self-adjoint
operator H. The resolvent R is an operator valued function of a complex
variable z. It is defined as the inverse of the operator H−z1 for those z ∈ C

for which the inverse is defined as a bounded operator. It is usually simply
written as

R(z) = (H − z)−1. (C.2)

Note that H − z1 is not invertible if z is an eigenvalue of H, because then
(H − z1)f = 0 for some nonzero vector, that is, H − z1 is not injective.
The set of all z ∈ C for which the resolvent either does not exist, or is an
unbounded operator, is called the spectrum σ(H) of the operator H. In case
of a self-adjoint operator, the spectrum is always subset of the real axis. The
resolvent set ρ(H) consists of all z that are not in the spectrum of H. For
z ∈ ρ(H), the operator R(z) is defined everywhere on the Hilbert space and
maps onto the domain of H. The resolvent set is open in C, that is, for every
point z0 ∈ ρ(H), there is a disk of radius ε around z0 which also belongs to
the resolvent set.

Whenever H has an eigenvalue E, then the eigenvector ψ is also an
eigenvalue of R(z),

R(z) ψ =
1

E − z
ψ if and only if Hψ = Eψ. (C.3)
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The resolvent contains all information about the eigenvalues of the operator
H. Consideration of the resolvent frees us from tedious technicalities (like
domain questions), because it is a bounded operator that is everywhere
defined.

The resolvent is an analytic function of z. This follows from the first
resolvent equation

R(z)−R(z0)
z − z0

= R(z)R(z0). (C.4)

(You can verify this equation by multiplying both sides from the left by H−z
and from the right by H − z0.) Taking the limit as z → z0 on both sides of
(C.4), we obtain

d

dz
R(z)

∣∣∣
z0

= R(z0)2. (C.5)

Thus, the resolvent is differentiable, hence analytic. Analyticity means that
there is a power series expansion for z in a neighborhood of z0,

R(z) =
∞∑

n=0

(z − z0)n R(z0)n+1. (C.6)

This is called the Neumann series of the resolvent. As an analytic function,
the resolvent fulfills an operator analog of Cauchy’s formula,∮

Γ
R(z) dz = 0 (C.7)

whenever Γ is a closed curve that lies, together with its interior, entirely
within the resolvent set of H. Now, assume that Γ encircles an isolated
eigenvalue E of H, such that no other part of the spectrum is inside the
curve. Then it can be shown that

P = − 1
2πi

∮
Γ

R(z) dz (C.8)

is the projection operator onto the eigenspace belonging to the eigenvalue
E. The projection of H onto that eigenspace is

PHP = EP = − 1
2πi

∮
Γ

z R(z) dz. (C.9)

This operator can be represented by a m×m matrix if the degree of degen-
eracy of the eigenvalue E is m (the degree of degeneracy is the dimension
of the eigenspace). If Γ encircles more than one eigenvalue, then P is the
projection operator onto the subspace spanned by all eigenvectors belonging
to the eigenvalues inside Γ.



458 C. SPECIAL TOPIC: ANALYTIC PERTURBATION THEORY

C.3. Analytic dependence on the perturbation parameter

Next, we consider the behavior of the resolvent under a perturbation of
the self-adjoint operator. Let H(γ) = H(0) + γ H(1), and write

R(0)(z) = (H(0) − z)−1, R(γ, z) = (H(0) + γ H(1) − z)−1. (C.10)

Then, we find the second resolvent equation

R(γ, z) = R(0)(z)− γ R(γ, z)H(1) R(0)(z) (C.11)

(which can be verified by multiplying from the left by H − z and from the
right by H(0) − z.) One usually tries to solve this equation by iteration,
writing

R(γ, z) = R(0)(z)− γ R(0)(z) H(1) R(0)(z)

+ γ2 R(0)(z) H(1) R(0)(z)H(1) R(0)(z) + . . .

=
∞∑

n=0

γn R(n)(z) (C.12)

where

R(n)(z) = R(0)(z)
(
H(1) R(0)(z)

)n
, n = 0, 1, 2 . . . . (C.13)

These expressions are well defined whenever H(1) is well defined on the do-
main of H(0). For this, the relative boundedness condition (C.1) is needed.
It implies that the operator H(1) R(0)(z) has a finite norm. Hence, the power
series (C.12) converges, whenever the absolute value of γ is small enough.
The fact that there is a power series expansion of the resolvent in the per-
turbation parameter γ around γ = 0 shows that the resolvent is an analytic
operator-valued function of γ. (In the mathematical literature, the family
H(γ) described here is called an analytic family of type A.) One can show
that if z is in the resolvent set of H(γ0), then it is in the resolvent set of
H(γ) for γ in some neighborhood of γ0.

Again, let Γ be a small circle around an isolated eigenvalue E(0) of H(0),
and consider the m-dimensional projection operator

P (0) = − 1
2πi

∮
Γ

R(0)(z) dz. (C.14)

For γ small, the points on Γ are still in the resolvent set of H(γ) and hence

P (γ) = − 1
2πi

∮
Γ

R(γ, z) dz. (C.15)

is the projection operator onto the eigenspaces of all eigenvalues of H(γ)
inside Γ. The total degree of degeneracy of these eigenvalues is m. From the
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analyticity of R(γ, z) in the parameter γ it follows that also P (γ) is analytic
in γ near γ = 0.

P (γ) =
∞∑

n=0

γnP (n), P (n) = − 1
2πi

∮
Γ

R(n) dz. (C.16)

With the help of the projection operators P (γ) and P (0) = P (0), we define
the unitary operator

U(γ) =
(
1− (P (γ)−P (0))2

)−1/2 (
P (γ)P (0) + (1−P (γ))(1−P (0))

)
(C.17)

Note that A ≡ (P (γ)− P (0))2 commutes with P (γ) and P (0). The operator
A is bounded, and we have ‖A‖ < 1 if |γ| is sufficiently small, because
limγ→0 P (γ) = P (0) with respect to the operator norm. For ‖A‖ < 1 can
define the inverse square root in Eq. (C.17) by the power series

(1−A)−1/2 = 1 + 1
2 A + 3

8 A2 + . . . . (C.18)

The operator valued function U(γ) is called transformation function for
P (γ), because

U(γ)P (0) = P (γ)U(γ), (C.19)
that is, U(γ) intertwines between the projection operators P (γ) and P (0).
Clearly, U(γ) is analytic in γ around γ = 0, from the expansion of P (γ) and
Eq. (C.18), we obtain

U(γ) P (0) = P (0) + γP1P
(0) + γ2(P2P

(0) + 1
2 P 2

1 P (0)) + . . . (C.20)

Similarly as in Eq. (C.9), we can define an analytic family of bounded self-
adjoint operators

P (γ)H(γ)P (γ) = − 1
2πi

∮
Γ

z R(γ, z) dz. (C.21)

The range of the projection operator P (γ) is generally different for each γ.
But with the help of the transformation function, we can define an ana-
lytic family of bounded self-adjoint operators which is unitarily equivalent
to (C.21) and which acts on one fixed subspace P (0)H.

H̃(γ) = U(γ)−1P (γ)H(γ)P (γ)U(γ)

= − 1
2πi

P (0)U(γ)−1

∮
Γ

z R(γ, z) dz U(γ)P (0)

= E(0)P (0) − 1
2πi

P (0)U(γ)−1

∮
Γ
(z − E(0)) R(γ, z) dz U(γ)P (0).

(C.22)

Hence, the problem of finding the eigenvalues of H(γ) near the eigenvalue
E(0) of H(0) is completely reduced to the diagonalization of a self-adjoint
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operator in a finite dimensional Hilbert space. Hence, we can apply the
following theorem of Rellich.

Theorem C.1. Let H̃(γ) be a family of operators in a finite dimensional
Hilbert space, such that H̃(γ) is analytic in a neighborhood of γ = 0. Suppose
that H̃(γ) is self-adjoint for real γ and let E(0) be an eigenvalue of H̃(0)
whose degree of degeneracy is m. Then, there are k < m distinct functions,
E1(γ), . . . , Ek(γ), which are analytic in γ in a neighborhood of γ = 0, and
which are all eigenvalues of H̃(γ). The degree of degeneracy of the eigenvalue
Ej(γ) is mj, such that

∑k
j=1 mj = m.

We also note that the eigenvectors of H̃(γ) are simply given by

φl(γ) = U(γ)φ(0)
l , l = 1, . . . , m, (C.23)

where the vectors φ
(0)
l form a basis of the eigenspace of H(0) belonging to

the eigenvalue E(0). This result follows immediately from the fact that the
unitary operator U(γ) maps P (0)H onto P (γ)H. Analyticity of H̃ and its
eigenvalues implies that there is an expansion of the form

H̃(γ) =
∞∑

n=0

γn H̃(n), Ej(γ) =
∞∑

n=0

γn E
(n)
j . (C.24)

If E(0) is nondegenerate, then the first-order term in the expansion of E(γ)
is given by

E(1) = 〈φ(0), H̃(1)φ(0)〉. (C.25)

If the degree of degeneracy of E(0) is m, then E
(1)
j , j = 1, . . . , k, are the

eigenvalues of the self-adjoint m×m matrix

Ajk = 〈φ(0)
j , H̃(1)φ

(0)
k 〉. (C.26)



Appendix D

Variational Method

The ground state can be obtained by minimizing the energy as a functional
of the state vector.

D.1. Critical points of the energy functional

Here, we consider the expectation value of a Hamiltonian H as a functional
of the state vector ψ. For a vector ψ of arbitrary normalization in the Hilbert
space H, we define the energy functional

W (ψ) =
〈ψ, Hψ〉
‖ψ‖2 (D.1)

for all ψ in the domain D(H) of the operator H. A functional is a mapping
from the Hilbert space into the complex numbers. As H is assumed to be
self-adjoint, W is a real-valued functional.

A vector ψ in D(H) is called a critical point or stationary point if

d

dλ
W (ψ + λφ)

∣∣∣
λ=0

= 0 for all φ ∈ D(H). (D.2)

Examples for critical points are maxima, minima, and saddle points.

Theorem:

ψ is a critical point of W if and only if ψ is an eigenvector of H with
eigenvalue W (ψ).

Proof. From the definition (D.1),

W (ψ + λφ) ‖ψ + λφ‖2 = 〈ψ + λφ, H(ψ + λφ)〉. (D.3)

Expanding both sides we obtain

W (ψ + λφ)
(‖ψ‖2 + 2λ Re 〈φ, ψ〉+ λ2‖φ‖2)
= 〈ψ, Hψ〉+ λ 〈ψ, Hφ〉+ λ 〈φ,Hψ〉+ λ2 〈φ,Hφ〉
= 〈ψ, Hψ〉+ 2λ Re 〈φ,Hψ〉+ λ2 〈φ,Hφ〉. (D.4)

461
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Forming the derivative at λ = 0 gives
d

dλ
W (ψ + λφ)

∣∣∣
λ=0

‖ψ‖2 + 2W (ψ) Re 〈φ, ψ〉 = 2Re 〈φ,Hψ〉, (D.5)

or
d

dλ
W (ψ + λφ)

∣∣∣
λ=0

= 2Re
〈φ,Hψ〉 −W (ψ) 〈φ, ψ〉

‖ψ‖2 . (D.6)

If Hψ = Eψ, then W (ψ) = E, and (D.6) evaluates to zero for all φ in the
domain of H. Conversely, if (D.6) is zero for some ψ �= 0 and all φ ∈ D(H),
then it is zero also for iφ, that is, we can omit taking the real part in (D.6)

0 = 〈φ,Hψ〉 −W (ψ) 〈φ, ψ〉 = 〈φ, (H −W (ψ))ψ〉. (D.7)

Hence, (H −W (ψ))ψ is orthogonal to all vectors in D(H) (a subspace that
is dense in H). But, the only vector that is orthogonal to a dense subspace
is the zero vector, and we conclude

Hψ = W (ψ) ψ. (D.8)

This proves the theorem. �

D.2. Semibounded Hamiltonians and the minimal energy

The energy spectra of the Hamiltonians used in atomic physics have in most
cases the following structure. There is a finite or infinite number of discrete
eigenvalues at the bottom of the energy spectrum. A discrete eigenvalue is,
by definition, an isolated eigenvalue with a finite degree of degeneracy. The
ground-state energy E1 is usually non-degenerate (or has a “trivial” degree
of degeneracy due to the spin of the electron). The discrete eigenvalues can
be ordered according to their size,

E1 ≤ E2 ≤ E3 ≤ . . . (D.9)

Then there is the essential spectrum, usually a semi-infinite interval [E∞,∞).
It consists of scattering energies forming the continuous spectrum and in ad-
dition it may contain embedded (non-isolated) eigenvalues, or accumulation
points of eigenvalues, or eigenvalues with infinite degree of degeneracy. The
bottom of the essential spectrum, E∞, may or may not be an eigenvalue.
There is no spectrum (no eigenvalues and no essential spectrum) in the in-
terval (−∞, E1) to the left of the ground-state energy. A Hamiltonian with
this property is called semibounded. An important counter-example is the
Dirac operator (see Section 8.1.2).

In the subspace of bound states, the eigenstates form an orthonormal
basis. Assume that ψ is in that subspace, then

ψ =
∑

n

cnψn, with cn = 〈ψn, ψ〉,
∑

n

|cn|2 = ‖ψ‖2. (D.10)



D. VARIATIONAL METHOD 463

We find

〈ψ, Hψ〉 =
∑

n

〈ψ, ψn〉〈ψn, H ψ〉 =
∑

n

〈ψ, ψn〉〈H ψn, ψ〉

=
∑

n

En 〈ψ, ψn〉〈ψn, ψ〉 =
∑

n

En |〈ψ, ψn〉|2

≥ E1

∑
n

|〈ψ, ψn〉|2 = E1 ‖ψ‖2. (D.11)

Hence,
W (ψ) ≥ E1 for all ψ ∈ D(H) (D.12)

and
W (ψ) = E1 if and only if Hψ = E0ψ. (D.13)

This observation can be turned into a practical method to estimate the
ground state energy from above. We consider a Hamiltonian H with eigen-
states ψn and eigenvalues En at the bottom of its energy spectrum. In
order to find the ground-state energy, we have to find the minimum of the
functional W , that is,

E1 = min
ψ∈D(H)

W (ψ). (D.14)

As it might be difficult or impossible to minimize W over all ψ ∈ D(H),
one often chooses vectors ψλ depending on one or more parameters λ, and
considers the function

f(λ) = W (ψλ) ≥ E1. (D.15)
Then, the minimal value of f is an upper bound for the ground-state energy:

min
λ

f(λ) ≥ E1. (D.16)

This method is useful, when one has already a rough idea how the ground
state wave function looks. Then, we set up functions with a similar shape
and use the parameter λ for fine tuning.

Ψ In general, it may be necessary to write “infimum” instead of “min-
imum” in (D.14) and (D.16), because the minimal value could be

achieved for λ →∞, or for some λ → λ0 for which ψλ0 is not in the domain
of H (consequently, f is not defined for λ0). The infimum is the largest
lower bound of a set, but it need not belong to that set. A minimum is
an infimum that is actually attained by some element within that set. In
particular, if there are no eigenvalues at the bottom of the energy spectrum,
then minW (ψ) does not exist. As an example, consider the free-particle
Hamiltonian H0 = −∆/2m. This operator has no eigenvalues at all, but it
is semibounded, which means that

W0(ψ) =
〈ψ, H0ψ〉
‖ψ‖2 > 0 for all ψ ∈ D(H0). (D.17)
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The infimum of W (ψ) over all ψ ∈ D(H) exists and is equal to zero (the
bottom of the essential spectrum),

inf
ψ∈D(H0)

W0(ψ) = 0, (D.18)

but this value is not achieved for any square-integrable function ψ.

D.3. The ground state of helium (again)

Again we take the Hamiltonian

H =
1

2me
(p2

1 + p2
2)− 2γ0

( 1
|x1| +

1
|x2|

)
+

γ0

|x1 − x2| . (D.19)

We consider the family of functions ψλ ∈ L2(R6), defined by

ψλ(x1,x2) =
1
π

( λ

a0

)
exp

(
− λ

a0

(|x1|+ |x2|
))

. (D.20)

Hence, this wave function describes the ground state of

Hλ =
1

2me
(p2

1 + p2
2)− λγ0

( 1
|x1| +

1
|x2|

)
+

γ0

|x1 − x2| , (D.21)

belonging to the ground-state energy

Eλ = −λ2 γ0

a0
. (D.22)

From the virial theorem, we conclude immediately that this energy is minus
the average kinetic energy and half of the average potential energy. Hence,〈

ψλ ,
1

2me
(p2

1 + p2
2) ψλ

〉
= −Eλ, (D.23)

〈
ψλ , −λγ0

( 1
|x1| +

1
|x2|

)
ψλ

〉
= 2Eλ. (D.24)

With the help of (B.56), we compute〈
ψλ ,

γ0

|x1 − x2| ψλ

〉
=

5
8

λ
γ0

a0
= −5

8
Eλ

λ
. (D.25)

Putting all these pieces together, we obtain

f(λ) = 〈ψλ, H ψλ〉 = −Eλ +
2
λ

Eλ − 5
8λ

Eλ =
(
λ2 − 27

8
λ
) γ0

a0
. (D.26)

This expression achieves its minimum value at λ = 27/16. We obtain

min f(λ) = −
(27

16

)2 γ0

a0
≈ 2.85

γ0

a0
. (D.27)

The constant 2.85 is closer to the observed value 2.92 than the value 2.75
obtained by first-order perturbation theory. This is due to the fact that the
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unperturbed eigenvector (B.52) is among the functions ψλ (indeed, ψ(0) =
ψλ0 with λ0 = 2). Hence,

E(0) + γ0 E(1) = 〈ψ(0), (H(0) + γ0 H(1))ψ(0)〉 = f(λ0) ≥ min f(λ). (D.28)

D.4. Finding excited states by variational methods

We have seen that the ground-state energy E1 is characterized by

E1 = min
φ∈D(H)

W (φ), with W (φ) =
〈φ,Hφ〉
‖φ‖2 . (D.29)

Now suppose that we know the ground state ψ1, for which W (ψ1) = E1. We
can restrict the Hamiltonian H to the subspace of the Hilbert space that
is orthogonal to ψ1. In this subspace, the lowest energy eigenvalue is E2.
Thus, we can find the eigenvalue E2 by minimizing W (φ) over all φ that are
orthogonal to ψ1,

E2 = min
φ∈D(H)

φ⊥ψ1

W (φ). (D.30)

In general, we know only an approximation ϕ to the true eigenvector ψ1.
We assume that ϕ can be written as a linear combination of eigenvectors,

ϕ =
∑

n

anψn. (D.31)

Choose, for example, φ = a2 ψ1 − a1 ψ2. Then, it is easy to see that φ is
orthogonal to ϕ and

W (φ) =
|a2|2E1 + |a1|2E2

|a1|2 + |a2|2 ≤ E2, (D.32)

because E1 ≤ E2. Hence, taking the minimum of W over all φ that are
orthogonal to ϕ gives something that is smaller than E2! Therefore,

E2 = max
ψ

min
φ∈D(H)

φ⊥ψ

W (φ). (D.33)

Note that this characterization of E2 is independent of ψ1.
Assuming that H has at least n eigenvalues at the bottom of its spectrum,

we find that we can characterize the nth eigenvalue in an analogous way.
Denoting the subspace spanned by m vectors ϕ1, . . . ϕm by [ϕ1, . . . ϕm], we
find

En = max
ϕ1,...ϕn−1

min
φ∈D(H)

φ⊥[ϕ1,...ϕn−1]

W (φ). (D.34)
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D.5. The minimax principle and the Rayleigh-Ritz technique

Assuming that we are given a semibounded Hamiltonian H that has eigen-
values at the bottom of its spectrum, we want to determine the first n of
these eigenvalues. Each of these eigenvalues is given by a formula like (D.34).

We can set up a system of n trial functions φ1, . . . , φn in the domain of H,
and we assume that the trial functions have been chosen to be orthonormal.
Hence, these functions form the basis of an n-dimensional subspace Hn of
the Hilbert space H. The restriction of the Hamiltonian to this subspace can
be represented by the Hermitian matrix Ĥ = (Hij) with matrix elements
Hij = 〈φi, Hφj〉. We can diagonalize this matrix on a computer and obtain
an n-tuple of eigenvalues Ê1 ≤ Ê2 ≤ . . . ≤ Ên. The mth of these eigenvalues
is characterized by

Êm = max
ϕ1,...ϕm−1∈Hn

min
φ∈Hn

φ⊥[ϕ1,...ϕm−1]

〈φ, Ĥφ〉
‖φ‖2 . (D.35)

The maximum is actually achieved if ϕ1, . . . , ϕm−1 are chosen as eigenvectors
of the n× n matrix Hij . Hence, it does not matter if we take the maximum
over all ϕ1, . . . ϕm−1 ∈ H:

Êm = max
ϕ1,...ϕm−1∈H

min
φ∈Hn

φ⊥[ϕ1,...ϕm−1]

〈φ,Hφ〉
‖φ‖2 . (D.36)

We replaced Ĥ with H, because 〈φ, Ĥφ〉 = 〈φ,Hφ〉 for all φ ∈ Hn. But if
we now take the minimum over the larger set φ ∈ D(H), we obtain

Êm ≥ max
ϕ1,...ϕm−1∈H

min
φ∈D(H)

φ⊥[ϕ1,...ϕm−1]

〈φ,Hφ〉
‖φ‖2 . (D.37)

The right side is equal to En by Eq. (D.34). Hence, we find

Êm ≥ Em, for m = 1, . . . , n. (D.38)

This observation is the basis of numerical methods for finding the eigenvalues
of the Schrödinger equation Hψ = Eψ (Rayleigh-Ritz technique).



Appendix E

Adiabatic and Geometric
Phases

We consider a Hamiltonian H(γ) depending on one or several parameters
γ. We assume that the eigenvalue problem has been solved for each value
of the parameter γ. What happens if we let γ change slowly with time?
What can we say about the solutions of the Schrödinger equation with the
time-dependent Hamiltonian Hγ(t))?

E.1. The adiabatic approximation

Assume that H(γ) has for all γ under consideration an orthonormal basis
of eigenvectors ψj(γ). For simplicity, we assume that all eigenvalues are
nondegenerate. We have

H(γ) ψj(γ) = Ej(γ)ψj(γ). (E.1)

This time, we assume that for each value of γ, the eigenvalues and eigen-
functions are already known. The eigenvectors for different values of γ have
nothing to do with each other, but we assume that the eigenvectors are cho-
sen in such a way that they depend on γ in a differentiable way. Moreover,
we assume 〈

ψj(γ) ,
d

dγ
ψj(γ)

〉
= 0. (E.2)

This condition replaces (B.29). It states that infinitesimally small changes
of ψj are orthogonal to ψj . The fact that the norm of ψj is independent of
γ implies that

d

dγ
〈ψj(γ), ψj(γ)〉 = 2Re

〈
ψj(γ) ,

d

dγ
ψj(γ)

〉
= 0. (E.3)

Now we assume that the parameter γ depends on time in a differentiable
way. We look for a solution of

i
d

dt
Ψ(t) = H

(
γ(t)

)
Ψ(t). (E.4)

467
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The functions ψj

(
γ(t)

)
form an orthonormal basis of eigenvectors of H

(
γ(t)

)
.

Clearly, we expand the solution at time t in this basis.

Ψ(t) =
∑

j

cj(t)ψj

(
γ(t)

)
. (E.5)

We insert this into the time-dependent Schrödinger equation.

i
d

dt
Ψ(t) = i

∑
j

( d

dt
cj(t)

)
ψj

(
γ(t)

)
+ i

∑
j

cj(t)
d

dt
ψj

(
γ(t)

)
,

= H
(
γ(t)

)
Ψ(t) =

∑
j

cj(t) Ej

(
γ(t)

)
ψj

(
γ(t)

)
. (E.6)

We note that
d

dt
ψj

(
γ(t)

)
=

d

dγ
ψj(γ)

∣∣∣
γ=γ(t)

dγ(t)
dt

. (E.7)

We take the scalar product of (E.6) with the vector ψk

(
γ(t)

)
. Using the

orthonormality of the basis vectors and (E.2), we obtain

i
d

dt
ck(t) + i

dγ(t)
dt

∑
j �=k

cj(t)
〈
ψk(γ) ,

d

dγ
ψj(γ)

〉∣∣∣
γ(t)

= ck(t)Ek

(
γ(t)

)
. (E.8)

Solving this coupled system of equations for the coefficients cj(t) solves the
time-dependent Schrödinger equation.

If γ varies only slowly with t, we can assume that the sum proportional
to dγ/dt can be neglected. This is the adiabatic approximation.

i
d

dt
ck(t) = ck(t) Ek

(
γ(t)

)
. (E.9)

ck(t) = ck(0) exp
(
−i

∫ t

0
Ek

(
γ(s)

)
ds

)
. (E.10)

Whenever the state starts out in an eigenstate of H
(
γ(0)

)
, say

Ψ(0) = ψk

(
γ(0)

)
, that is, cj(0) = δjk, (E.11)

then the solution of the Schrödinger equation in the adiabatic approximation
will be

Ψ(t) = ck(t)ψk

(
γ(t)

)
= exp

(
−i

∫ t

0
Ek

(
γ(s)

)
ds

)
ψk

(
γ(t)

)
. (E.12)

If the Hamiltonian depends on time very slowly, then the solution clings to
an eigenstate.

The adiabatic approximation is only valid if dγ/dt is very small and if
the scalar products 〈ψk , ψ′

j〉 for j �= k do not get large for some value of
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γ (the prime denotes differentiation with respect to γ). Differentiate the
eigenvalue equation (E.1) (omitting the argument γ)

H ′ ψj + H ψ′
j = E′

j ψj + Ej ψ′
j (E.13)

and take the scalar product with ψk. Using the self-adjointness of H and
the orthonormality of the eigenvectors, we obtain〈

ψk , H ′ ψj

〉
+ Ek

〈
ψk , ψ′

j

〉
= E′

j δkj + Ej

〈
ψk , ψ′

j

〉
. (E.14)

This gives, for k �= j,〈
ψk(γ) ,

d

dγ
ψj(γ)

〉
=

〈
ψk(γ) , H ′(γ) ψj(γ)

〉
Ej(γ)− Ek(γ)

. (E.15)

We see that we have to assume that during the whole change of γ the eigen-
values Ej(γ) and Ek(γ) stay well separated from each other.

E.2. The Berry phase

Very often, the Hamiltonian does not only depend on one but on several
parameters. If a quantum system is adiabatically moved along a curve C
in a higher-dimensional parameter space, then a new type of phase factor
exp(iλ(C)) appears. Its presence was discovered by M.V. Berry in 1983, and
hence λ(C) is called the Berry phase.

We assume that the parameters γ = (γ1, . . . γN ) lie in some subset U of
R

N and consider a Hamiltonian operator H(γ) depending on these param-
eters. We also assume that there is an orthonormal basis of non-degenerate
eigenvectors for each value of γ in U ,

H(γ) ψj(γ) = Ej(γ) ψj(γ). (E.16)

Again we assume that eigenvectors and eigenvalues depend on γ in a differ-
entiable way. The eigenvectors are all normalized, hence

∂

∂γk
‖ψj(γ)‖2 = 2Re

〈
ψj(γ) ,

∂

∂γk
ψj(γ)

〉
= 0, (E.17)

for all j, all k = 1, 2, . . . , N , and all γ ∈ U . Can we impose a normalization
condition similar to (E.2)? In general,

Im
〈
ψj(γ) ,

∂

∂γk
ψj(γ)

〉 �= 0. (E.18)

Let us multiply the eigenvector ψj(γ) by a phase factor,

φ(γ) = eiλ(γ) ψj(γ), (E.19)

where λ : U → R is real-valued and differentiable. The normalization of φ
implies that (E.17) holds with ψj replaced by φ. Can we adjust the phase λ
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such that also the expression for the imaginary part corresponding to (E.18)
vanishes? With the abbreviations

∂k =
∂

∂γk
, 〈ψj , ∂kψj〉 =

〈
ψj(γ) ,

∂

∂γk
ψj(γ)

〉
, etc., (E.20)

we compute

〈φ, ∂kφ〉 = e−iλ
〈
ψj , i(∂kλ)eiλψj + eiλ∂kψj

〉
= i(∂kλ) + 〈ψj , ∂kψj〉. (E.21)

If this expression should vanish, then we must choose λ in such a way that

i〈ψj , ∂kψj〉 = ∂kλ. (E.22)

This equation states that the real-valued vector field �v : U → R
N ,

�v(γ) = (v1(γ), v2(γ), . . . , vN (γ)) with vk(γ) = i 〈ψj , ∂kψj〉 (E.23)

has to be the gradient (with respect to γ) of a scalar function λ(γ). This is
equivalent with the condition that the exterior derivative of �v with respect
to the parameters γ vanishes. We are going to show that this condition need
not be satisfied. In the following section, we are going to demonstrate that
this condition need not hold in general. Our example involves a three-dim-
ensional parameter space, where the exterior derivative is just the curl of the
vector field �v:

�v(γ) = ∇γ λ(γ) if and only if ∇γ × �v = 0 (N = 3). (E.24)

We are going to show that, in general, the curl of �v is nonzero. Hence, there
is no scalar function λ such that (E.22) holds.

We note that in the case of a one-dimensional parameter space (N = 1),
we can always find λ by a simple integration. For N = 3, we can choose
a differentiable curve C : [0, T ] → U with C(0) = γ0 and C(T ) = γ1 and
define

λ(γ1) =
∫

C
�v(γ) · dγ =

∫ T

0
�v(γ(t)) · dγ(t)

dt
dt. (E.25)

If the vector field �v is not a gradient, then the value of λ at γ1 depends on
the chosen curve C. In particular, if C is a closed curve such that γ0 = γ1,
then, using Stokes’ theorem of vector analysis,

λ(C) =
∮

C
�v(γ) · dγ =

∫ ∫
∇γ × �v(γ) df (N = 3). (E.26)

In our case,

λ(C) = i
∮

C

〈
ψj(γ) , ∇γ ψj(γ)

〉 · dγ

= i
∫ T

0

3∑
k=1

〈
ψj(γ) ,

∂

∂γk
ψj(γ)

〉∣∣∣
γ(t)

dγ(t)
dt

dt. (E.27)
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The fact that we cannot define a unique phase λ(γ) on all of parameter
space has important physical consequences. In order to see this, we combine
the considerations of this section with the results about the adiabatic limit.

Assume that we start at t = 0 with one of the eigenvectors Ψ(0) =
ψj(γ(0)). We move the parameter along some curve C in the parameter
space

C : t −→ γ(t), with γ(t) ∈ U for all t. (E.28)
If this change is done slowly enough that the state can adjust, the system
will evolve adiabatically and finally at time T be in a state proportional
to ψj(γ(T )). However, the computation leading to (E.8) in Section E.1 is
changed in one respect. The summand with j = k does not vanish. This
changes (E.9) to

i
d

dt
ck(t) = ck(t) Ek

(
γ(t)

)− ick(t)
dγ(t)

dt
· 〈ψk(γ) , ∇γ ψk(γ)

〉∣∣∣
γ(t)

. (E.29)

By integration along the curve C in parameter space, we may compute the
coefficient ck(t). In (E.29), we recognize the integrand of (E.27). Hence,
integration of (E.29) around a closed loop gives

ck(T ) = ck(0) exp
(
−i

∫ T

0
Ek

(
γ(s)

)
, ds + iλ(C)

)
(E.30)

with λ(C) as in (E.26) and (E.27). One might argue that the additional term
in (E.29) vanishes in the adiabatic limit, as dγ/dt → 0. But, this is not true
for a closed curve C, because the value λ(C) does not depend on how fast
we move along the loop, it just depends on the geometry of the curve C.
This geometric phase λ(C) can be measured by comparing a system that
has been moved adiabatically around a closed loop in parameter space with
a system that has not been moved.

Exercise E.1. Consider an eigenvector ψ(γ) of H(γ) that depends on
the parameters in a differentiable way. Changing the parameters slowly along
a curve C from γ0 to γ changes the initial vector ψ(γ0) into a vector that
differs from ψ(γ) at most by a phase factor (in the adiabatic limit). De-
termine this phase factor by inserting Ψ(t) = exp(iϕ(t, C)) ψ(γ(t)) into the
Schrödinger equation

i
d

dt
Ψ(t) = H(γ(t))Ψ(t). (E.31)

E.3. Example: Spin in magnetic field

In this section, we consider a qubit in a magnetic field. The Hamiltonian is
of the form

H(γ) = σ · γ = σ1γ1 + σ2γ2 + σ3γ3. (E.32)
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Here, γ involves the magneton µ and the magnetic field strength B. Hence,
the parameter space is three-dimensional. The two eigenvalues of H(γ) are
±|γ|. Normalized eigenvectors are the spinors with spin-up and spin-down
with respect to the direction of γ (compare (4.19))

ψ±(γ) =
1√

2|γ|2 ± 2γ3|γ|

(
γ3 ± |γ|
γ1 + iγ2

)
. (E.33)

Let us now consider the eigenvector with “spin-up” in the direction of γ. A
little calculation shows that

�v(γ) = i
〈
ψ+(γ) , ∇γ ψ+(γ)

〉
=

1
2|γ|2 + 2γ3|γ| (γ2,−γ1, 0). (E.34)

Finally, we obtain

�w(γ) = ∇γ × �v(γ) = −1
2

γ

|γ|3 . (E.35)

Because the curl of �w is a spherically symmetric vector field, the flux of
∇γ × �v through a surface bounded by C is equal to the flux through the
surface of the unit sphere that is bounded by the projection of the curve C
in radial direction onto that surface. (We assume that the curve does not
go through the origin where the eigenvalue of H(γ) is degenerate). On the
surface of the unit sphere �w is just −nr/2, with nr being the outward normal
unit vector. Hence, the flux is just −1/2 times the area of the area on the
unit sphere, that is, the solid angle Ω(C) under which the curve C is seen
from the origin in parameter space:

λ+(C) = −1
2

Ω(C). (E.36)

Here, the index ‘+’ refers to the eigenvector ψ+. For the eigenvector ψ−,
one obtains the geometric phase

λ−(C) =
1
2

Ω(C). (E.37)

A simple special case is obtained when we move the vector γ along a circle
with center at the origin. Then, the curve is seen under the solid angle
Ω(C) = 2π (given by half the surface of the unit sphere). We conclude that
Berry’s phase in this case is just λ(C) = −π. Hence, when the eigenvector ψ+

of H is adiabatically transported around this circle, it gets rotated through
an angle 2π and acquires a geometric phase factor

eiλ(C) = e−iΩ(C)/2 = e−iπ = −1. (E.38)

Hence, we have obtained again our result in Section 4.4.2, that a rotation of
a qubit through an angle 2π turns a state vector into its negative.
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CD 4.18 shows the time evolution (oscillating phase) of the spin-
up eigenvector in a time-constant magnetic field in the z-direction.
This situation is compared with one where the magnetic field slowly
changes its direction. The state adjusts to the magnetic field, and
the direction of the spin vector adiabatically follows the direction of
the magnetic field. Compared to the eigenvector at rest, the eigen-
vector that has been slowly turned around has acquired the phase
factor −1.

Let us now consider a more general situation with a three-dimensional
parameter space. We want to compute the curl of the vector field

�v(γ) = i
〈
ψj(γ) , ∇γ ψj(γ)

〉
. (E.39)

Consider, for example, the first component

(∇γ × �v)1 = ∂2 v3 − ∂3 v1 = i〈∂2ψj , ∂3ψj〉 − i〈∂3ψj , ∂2ψj〉
= −2 Im 〈∂2ψj , ∂3ψj〉 = −2 Im

∑
k

〈∂2ψj , ψk〉〈ψk, ∂3ψj〉

= −2 Im
∑
k �=j

〈∂2ψj , ψk〉〈ψk, ∂3ψj〉. (E.40)

The summand with k = j is real because of (E.18) and hence it vanishes
after taking the imaginary part. A computation similar to the one leading
to (E.15) gives

〈ψk, ∂mψj〉 =
〈ψk, (∂mH)ψj〉

Ej − Ek
(E.41)

and we obtain as the final result

(∇γ × �v)1 = −2 Im
∑
k �=j

〈(∂2H)ψj , ψk〉〈ψk(∂3H)ψj〉
(Ek − Ej)2

. (E.42)

Similar formulas are easily obtained for the other components.



Appendix F

Formal Scattering Theory

F.1. Bound states and scattering states

The states of a particle are usually distinguished into bound states and
scattering states, according to their behavior in space and time. We define
the subspace of bound states Hbound(H) as the Hilbert space spanned by
the linear combinations of eigenstates of the Hamiltonian H. In general,
bound states are not stationary, because linear combinations of eigenstates
depend on time in a nontrivial way. Geometrically, one may characterize
bound states by the property that they remain essentially localized within a
sufficiently large sphere. More precisely, a particle is in a bound state if the
probability of finding it outside a sphere of radius R can be made arbitrarily
small for all times by choosing R large. This property is described by the
formula

lim
R→∞

sup
t∈R

∫
|x|>R

∣∣ψ(x, t)
∣∣2 d3x = 0 (bound state). (F.1)

Scattering states, on the other hand, escape toward infinity, as time goes
to infinity. The probability of finding a scattered particle inside a sphere of
radius R becomes arbitrarily small for large times |t|, no matter how large
R is. The wave function ψ(t,x) describes a scattering state if for all R > 0

lim
|t|→∞

∫
|x|≤R

∣∣ψ(x, t)
∣∣2 d3x = 0 (scattering state). (F.2)

In this chapter, we are concerned with the scattering states of a particle
moving under the influence of an external force. Bound states can only occur
if the force attracts the particle to some region of space. Scattering states
can occur if the external force is repulsive or if the binding force goes to
zero for large distances from the origin. In most cases of physical relevance,1

the subspace of scattering states consists of precisely those states that are

1Other types of behavior are possible if the Hamiltonian has a so-called singularly
continuous spectrum (which is usually not the case). Here, we assume that the scattering
states belong to the absolutely continuous spectrum of H.
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orthogonal to all bound states, and we have

H = Hbound(H)⊕ Hscatt(H). (F.3)

We assume that the Hamiltonian operator H is of the form

H = H0 + V with H0 = generator of free time evolution. (F.4)

The operator H0, the free-particle Hamiltonian, describes the kinetic en-
ergy of the particle. This could be, for example, the Schrödinger opera-
tor (−1/2m)∆ in the Hilbert space H = L2(Rn), or the Dirac operator
cα ·p+βmc2 in the Hilbert space H = L2(R3)4. For the free-particle Hamil-
tonian H0 we have

Hbound(H0) = ∅, Hscatt(H0) = H. (F.5)

The operator V , usually an operator of multiplication by a function V (x)
of the position, describes the potential energy of the particle. We assume that
V (x) goes to zero, as |x| → ∞. Hence, for large times, any scattering state
leaves the region in space where it is influenced by the external force, and
its time evolution will asymptotically resemble the free time evolution. The
asymptotic comparison of the actual motion with a simpler time evolution
(the free motion) is one of the main goals of scattering theory.

F.2. Asymptotic completeness

We are now going to formulate the main requirements for scattering theory.
These requirements can only be fulfilled if the potential goes to zero suffi-
ciently fast, as |x| → ∞. First one demands that there are sufficiently many
scattering states.

Existence:

For every vector φ ∈ H there exist scattering states ψ± ∈ Hscatt(H) such
that

e−iH0tφ− e−iHtψ± → 0, as t → ±∞. (F.6)

In many cases of physical interest, the following assertion will also be
true. It says that the motion of every scattering state is asymptotically (in
time) equal to a freely evolving state.
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Completeness:

For every scattering state ψ ∈ Hscatt(H) there are vectors φin and φout

in H such that

e−iHtψ − e−iH0tφ out
in
→ 0, as t → ±∞. (F.7)

The freely evolving vectors φin and φout in (F.7) are called the incoming and
outgoing asymptotes of the scattering state ψ. Hence, the existence property
means that every state in the Hilbert space of the system is the asymptote
of a scattering state. Completeness means that every scattering state has
asymptotes.

Asymptotic completeness:

A scattering system is called asymptotically complete if it has both the
existence and the completeness property.

F.3. Wave operators

The condition (F.6) is equivalent to

lim
t→±∞ ‖e

−iH0tφ− e−iHtψ±‖ = lim
t→±∞ ‖e

iHte−iH0tφ− ψ±‖ = 0. (F.8)

This follows from the fact that ‖eiHtψ‖ = ‖ψ‖ for all ψ (that is, from the
unitarity of eiHt). The existence condition requires that for each φ ∈ H, we
can find vectors ψ± such that the above limit exists, that is, existence of

Ω out
in

φ = lim
t→±∞ eiHt e−iH0t φ for all φ ∈ H. (F.9)

Here, we introduced the Møller wave operators Ωin and Ωout. These oper-
ators are well defined (everywhere on the Hilbert space) if and only if the
existence property holds. The Møller operators are so-called strong limits
of the unitary operators U(t) = eiHte−iH0t. The following mathematical
theorem applies to this situation.

Theorem F.1. Let Ω be the (strong) limit of unitary operators, that is,

Ω ψ = lim
t→∞U(t)ψ for all ψ ∈ H. (F.10)

Then Ω is isometric, that is,

〈Ωψ, Ωφ〉 = 〈ψ, φ〉 for all ψ and φ ∈ H. (F.11)
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The range of Ω is a closed subspace of H, characterized by an orthogonal
projection operator P ,

Ω : H −→ Ran Ω = PH. (F.12)

We have
Ω†Ω = 1, ΩΩ† = P, (F.13)

and
Ω† ψ = lim

t→∞U(t)† P ψ for all ψ ∈ H. (F.14)

Equation (F.13) shows that the restriction of Ω† to Ran Ω is the inverse
of Ω. This restriction is an isometric operator that maps Ran Ω onto H.

The completeness property (F.7) means that for all ψ ∈ Hscatt(H), we
can find φ± such that

ψ − eiHte−iH0tφ± → 0, as t → ±∞. (F.15)

This just means that every ψ ∈ Hscatt(H) is in the range of the Møller
operators

Ran Ω out
in

= Hscatt(H). (F.16)

Asymptotic completeness holds whenever the Møller operators have the do-
main H and the range Hscatt(H):

Asymptotic completeness:

The scattering system characterized by the Hamiltonians H and H0 is
asymptotically complete if and only if

Ω out
in

: D(Ω out
in

) = H −→ Ran Ω out
in

= Hscatt(H). (F.17)

Ψ Proof of Theorem F.1: The isometry (F.11) follows from the continuity
of the scalar product in both factors. Ω†Ω = 1 follows from

〈ψ , Ω†Ω φ〉 = 〈Ωψ , Ωφ〉 = 〈ψ , φ〉 all ψ, φ ∈ H. (F.18)

Define P = ΩΩ†. This operator is defined everywhere, self-adjoint

P † = (ΩΩ†)† = Ω††Ω† = ΩΩ† = P, (F.19)

and idempotent
P 2 = ΩΩ†ΩΩ† = Ω1Ω† = P, (F.20)

and hence an orthogonal projection operator. The definition P = ΩΩ† im-
plies that RanP ⊂ Ran Ω. On the other hand,

Ω = Ω1 = ΩΩ†Ω = PΩ (F.21)
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implies that Ran Ω ⊂ RanP . Hence, Ran Ω = Ran P = PH. Unitarity of
U(t) implies with (F.10) that

0 = lim
t→∞ ‖Ωψ − U(t)ψ‖ = lim

t→∞ ‖U(t)†Ωψ − ψ‖, (F.22)

or
ψ = lim

t→∞U(t)†Ωψ. (F.23)

Let ψ = Ω†φ for some (arbitrary) φ ∈ H. Then

Ω†φ = lim
t→∞U(t)†ΩΩ†φ = lim

t→∞U(t)†Pφ, (F.24)

which proves (F.14). �

F.4. The scattering operator

For an asymptotically complete scattering system, the Møller operators are
isometric with

Ω†
outΩout = 1, ΩoutΩ

†
out = Pscatt(H) (F.25)

(and similarly for Ωin). Here, Pscatt(H) is the orthogonal projection operator
onto the subspace of scattering states.

We define the scattering operator

S = Ω†
out Ωin. (F.26)

In case of an asymptotically complete scattering system, Ωin maps H iso-
metrically onto Hscatt(H), and Ω†

out maps Hscatt(H) isometrically onto H.
Hence, S is an isometry with domain H and range H, that is, S is a unitary
operator.

Unitarity of the scattering operator:

For every ψ ∈ H, we have

S ψ = Ω†
out Ωin ψ = lim

t→∞ eiH0t e−2iHt eiH0t ψ. (F.27)

The scattering operator S is unitary if and only if the scattering system
is asymptotically complete.

The scattering operator S maps an incoming asymptote onto the correspond-
ing outgoing asymptote as shown in Figure F.1. A non-unitary scattering
operator would mean that there are incoming asymptotes for which there
are no outgoing asymptotes.

It is interesting to note that asymptotic completeness in the form stated
above does not hold for the Coulomb potential. The Coulomb potential
is a so-called long-range potential that keeps influencing the particles even
asymptotically. This situation requires a special treatment. Asymptotic
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Ωin

Ω out

S

φ in

φout

φout

t→−∞

t→+∞

ψ(t)

ψ(t=

=

0)
(t=0)

(t=0)

e−i H0t

e−i H0t

φ in

e−i Ht ψ

Figure F.1. The freely evolving asymptotes of a scattering
state are symbolized by straight lines. The Møller operators
map the asymptotic states at t = 0 onto the scattering state
at t = 0. The unitary scattering operator maps the incoming
asymptote to the outgoing asymptote.

completeness in the sense described above can only hold for short-range
potentials, which go to zero faster than the Coulomb potential, as |x| → ∞.
Let us quote the following theorem:

Theorem F.2. Assume that H = H0 + V (x) is self-adjoint on D(H0),
where H0 = −(1/2m) ∆ is the free-particle Schrödinger operator. Let V (x)
be a short-range potential,2 that is, there is some R > 0 such that

|V (x)| ≤ 1
|x|1+δ

for some δ > 0 and all |x| > R. (F.28)

Then the scattering system is asymptotically complete.

F.5. Properties of wave and scattering operators

Every self-adjoint operator H generates a one-parameter unitary group e−iHt

(see Book One, Sections 6.1–6.3). Using the continuity of the operator e−iHt

2We refer to the mathematical physics literature for more general short-range
conditions.
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and the group property, we find

e−iHt Ω out
in

= e−iHt lim
τ→±∞ eiHτ e−iH0τ = lim

τ→±∞ e−iHt eiHτ e−iH0τ

= lim
τ→±∞ eiH(τ−t) e−iH0τ = lim

τ−t→±∞ eiH(τ−t) e−iH0τ

= lim
s→±∞ eiHs e−iH0(s+t) = lim

s→±∞ eiHs e−iH0s e−iH0t

= Ω out
in

e−iH0t (F.29)

This “commutation relation” is called the intertwining property of the Møller
operators. The intertwining relation carries over to the generators H and
H0. We write the generator in terms of the unitary group:

H ψ = i
d

dt
e−iHt ψ

∣∣∣∣
t=0

= i lim
t→0

1
t
(e−iHt − 1) ψ, (F.30)

for all ψ ∈ D(H). Hence, we obtain, using (F.29) and the fact that the
Møller operators are bounded and hence continuous,

Ω out
in

H0 ψ = i lim
t→0

1
t
Ω out

in
(e−iH0t − 1) ψ

= i lim
t→0

1
t
(e−iHt − 1) Ω out

in
ψ = H Ω out

in
ψ. (F.31)

Hence, whenever ψ ∈ D(H0), we find that Ω out
in

ψ ∈ D(H) and

Ω out
in

H0 = H Ω out
in

on D(H0). (F.32)

An analogous relation holds for the adjoint operators

Ω†
out
in

H = H0 Ω†
out
in

on D(H). (F.33)

From this we conclude that the scattering operator S = Ω†
outΩin commutes

with the free-particle Hamiltonian.

Conservation of the kinetic energy:

In an asymptotically complete scattering system, the S operator com-
mutes with H0,

S H0 = H0 S on D(H0). (F.34)
The kinetic energy of the incoming particles is the same as the kinetic
energy of the outgoing particles.
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F.6. Scattering operator in the energy representation

Mathematically, the most important consequence of [S, H0] = 0 is that the
scattering operator S is diagonal in the spectral representation of H0. The
spectral representation of H0 is that representation where the operator is
just multiplication by E. Here, it is called energy representation, because
H0 describes the energy of a free particle (see also Book One, Section 3.8).
The transformation that links the Hilbert space L2(R3) with the spectral rep-
resentation space is called the spectral transformation. For H0 = −∆/(2m)
the spectral transformation is given by the Fourier transformation, the tran-
sition to polar coordinates in momentum space, and the variable substitution
k → E = k2/(2m). For a given wave packet ψ, we consider its Fourier trans-
formation ψ̂(k) and introduce spherical coordinates in momentum space,
k ≡ (k, ω), where ω = (ϑ, ϕ) are spherical angles. Then we define

g(E, ω) = (2m3E)1/4 ψ̂(
√

2mE, ω). (F.35)

The function g is considered an element of the Hilbert space

K = L2([0,∞), dE)⊗ L2(S2, dω). (F.36)

Here, as usual, S2 is the unit sphere, and dω = sinϑdϑ dϕ. Note that

‖ψ‖2 =
∫
|ψ(x)|2 d3x =

∫
|ψ̂(k)|2 d3k

=
∫ ∞

0
k2 dk

∫
S2

dω |ψ̂(k, ω)|2

=
∫ ∞

0
dE

∫
S2

dω (2m3E)1/2 |ψ̂(
√

2mE, ω)|2. (F.37)

In the last step, we performed the variable substitution k2 = 2mE, dk =√
m/2E dE. Hence, we obtain

‖ψ‖2 =
∫
|g(E, ω)|2 dE dω, (F.38)

that is, the norm of ψ in L2(R3, d3x) equals the norm of g in the Hilbert
space K. Hence, there is a unitary relation between ψ(x) and g(E, ω). We
know already that in momentum space, H0 just becomes multiplication by
k2/(2m). For the functions g(E, ω), this just amounts to multiplication by
the variable E:
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Energy representation:

The energy representation g of a wave packet ψ is given by (F.35). In
the energy representation, the operator H0 acts as multiplication by the
variable E

H0 : g(E, ·) → E g(E, ·). (F.39)

Hence, if ψ corresponds to g as described above, then H0ψ corresponds
to Eg. Note that for fixed E ≥ 0, g(E, ·) is a square-integrable function
on the unit sphere S2, that is, an element of L2(S2). One can prove the
following result:

Scattering operator:

The action of any bounded (self-adjoint, unitary) operator S that com-
mutes with H0 can be described in the spectral representation of H0

by
S : g(E, ·) → S(E) g(E, ·), (F.40)

where S(E) is for every E a bounded (self-adjoint, unitary) operator in
L2(S2).

In scattering theory, the operator S(E) is called the on-shell scattering
operator.

F.7. Stationary Scattering Theory

The stationary free-particle Schrödinger equation H0φ = Eφ has plane wave
solutions φ(k,x) = exp(ik · x), with k2/(2m) = E. For energies E in
the continuous range of scattering energies,3 we expect that the stationary
Schrödinger equation

Hψ = Eψ (F.41)
also has plane-wave like solutions that are not square-integrable. These
solutions are asymptotically similar to plane waves for |x| → ∞.

We can obtain these solutions heuristically as follows. Scattering states
are related to solutions of the free-particle Schrödinger equation by the
Møller operator Ω−. Hence, a free plane-wave φ should be related to a
plane-wave like solution ψ by

φ = Ω†
−ψ = lim

t→−∞ eiH0t e−iHt ψ. (F.42)

3Usually, if the potential goes to zero as |x| → ∞, these are the positive energies
0 < E < ∞.
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For any self-adjoint operator H we have
d

dt
e−iHt = −iH e−iHt = i e−iHt H. (F.43)

Hence, using the product rule of differentiation, we may write
d

ds
eiH0s e−iHs = i eiH0s (H0 −H) e−iHs = −i eiH0s V e−iHs. (F.44)

Now we obtain, by a formal application of the fundamental theorem of cal-
culus,

eiH0t e−iHt = 1 +
∫ t

0

( d

ds
eiH0s e−iHs

)
ds

= 1− i
∫ t

0
eiH0s V e−iHs ds. (F.45)

From Hψ = Eψ, we conclude that e−iHsψ = e−iEsψ, and hence

φ = ψ − i lim
t→−∞

∫ t

0
eiH0s V e−iHs ψ ds

= ψ − i lim
t→−∞

∫ t

0
ei(H0−E)s V ψ ds

= ψ − i
∫ −∞

0
ei(H0−E)s V ψ ds. (F.46)

The problem with this expression is that we cannot expect that ei(H0−E)s

goes to zero for s→ −∞. Therefore, the integral above does not exist, unless
we introduce some regularization. Hence, we write

φ = ψ − i lim
ε→+0

∫ −∞

0
eεs ei(H0−E)s ds V ψ. (F.47)

The exponential factor exp(εs) decays exponentially, as s → −∞, whenever
ε > 0. In this case, we expect the integral to converge, and (by an elementary
integration)

−i
∫ −∞

0
eεs ei(H0−E)s ds =

(
H0 − (E + iε)

)−1
. (F.48)

Hence, stationary scattering theory has to investigate the limit of the re-
solvent (H0 − z)−1, as z approaches the positive real axis from above. The
equation (F.46) now becomes the Lippmann-Schwinger equation

ψ = φ− lim
ε→+0

(
H0 − (E + iε)

)−1
V ψ. (F.49)

In case of the Schrödinger equation, free plane waves with energy E => 0
are given by φ(k,x) = exp(ik · x) with E = k2/2m. The free resolvent
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is a well-known integral operator, and the Lippmann-Schwinger equation
becomes

ψ(k,x) = eik·x − m
2π

∫
R3

eik|x−y|

|x− y| V (y) ψ(k,y) d3y. (F.50)

Solutions of the Lippmann-Schwinger equation give the plane-wave like
solutions of the stationary Schrödinger equation. We may use these station-
ary plane waves to build wave packets, as described earlier:

ψ(x) =
∫

R3

g(k) ψ(k,x) d3k. (F.51)

will be a wave packet in the subspace of scattering states. Its time evolution
will be given by

ψ(x, t) =
∫

R3

g(k) exp
(−i

k2

2m
t
)
ψ(k,x) d3k. (F.52)

Ψ The integral kernel of the resolvent,

G+(E,x,y) =
m
2π

eik|x−y|

|x− y| , where k =
√

2mE (F.53)

is the Green function of the free-particle Schrödinger equation, that is, a
solution of the distributional equation(

− 1
2m

∆− E
)

G(E,x,y) = δ(x− y) (F.54)

(where δ is Dirac’s delta distribution). This equation has two solutions,

G±(E,x,y) =
m
2π

e±ik|x−y|

|x− y| , where k =
√

2mE. (F.55)

These solutions are distinguished by their behavior at infinity. G+ describes
an outgoing spherical wave and G− an incoming wave. Using the inverse
Fourier transform, the Green functions can be written as

G±(E,x,y) =
m
2π

∫
R3

e−ik·(x−y)

k2/2m− E ± iε
d3k. (F.56)

F.8. Scattering amplitude

We want to investigate the asymptotic behavior of the solutions of the
Lippmann-Schwinger equation (F.50). In order to avoid technicalities, we
assume that the potential V (x) vanishes outside a finite region. We consider
x with |x| � |y| for all y in the region contributing to the integral in (F.50).
Then, we can approximate

|x− y| =
√

x2 − 2x · y + y2 ≈ |x| − x · y
|x| + O

( 1
x2

)
. (F.57)
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Keeping only the leading terms,

eik |x−y|

|x− y| ≈
eik |x|

|x| exp
(
−ik

x · y
|x|

)
. (F.58)

Let us introduce the vector

k′ = k
x
|x| with |k′| = |k| = k. (F.59)

The asymptotic form of the Lippmann-Schwinger equation (F.50) for large
|x| now becomes

ψ(k,x) ≈ eik·x − eik |x|

|x|
m
2π

∫
R3

e−ik′·y V (y) ψ(k,y) d3y. (F.60)

By choosing a suitable frame of reference, we may assume that k points in
the positive z-direction, such that k = (0, 0, k). The integral can then be
written as a function of the spherical coordinates (k, ϑ, ϕ) of k′.

Asymptotic behavior for |x| → ∞:

The asymptotic form of a solution ψ(k,x) of the Lippmann-Schwinger
equation is given by

ψ(k,x) ≈ eik·x +
eik |x|

|x| f(k, ϑ, ϕ), as |x| → ∞. (F.61)

Here, (ϑ, ϕ) are the spherical angles of x in a coordinate frame where
k = (0, 0, k). Equation (F.61) is the superposition of an incoming plane
wave eik·x moving in the positive z-direction and an outgoing spherical
wave with an angular-dependent amplitude

f(k, ϑ, ϕ) = −m
2π

∫
R3

e−ik′·y V (y) ψ(k,y) d3y, k′ = k
x
|x| , (F.62)

called the scattering amplitude.

F.9. Scattering cross section

The prototype of a scattering experiment is Rutherford’s classical investi-
gation of the diffraction of alpha particles by a gold foil, which he began
in 1909 and which led to the discovery of the atomic nucleus. This type of
scattering experiment is depicted schematically in Figure F.2. It shows a
source sending a beam of particles toward a target. As indicated, the frame
of reference is usually oriented such that the incoming particles move in the
z-direction. A detector is located far away from the target in a direction
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x

y

z

Source

Detector

Target

Incoming
wave ϑ

dω

packet

Figure F.2. A typical scattering experiment.

given by spherical angles ω = (ϑ, ϕ). It counts the number dN of particles
that are deflected per unit time into a cone of opening angle dω about ω.

The experiment is usually done in such a way that the incoming particles
have a well-defined momentum. Hence, we may assume that the energy is
sharply concentrated around some average energy E. In a situation where
the energy of the incident particle is not changed by the collision, the outgo-
ing particles might have different momenta, but the same energy distribution
as the incoming particles.

We assume further that the particles in the incident beam do not interact
with one another. This condition can be met if the beam has a low intensity
(that is, if it consists of very few particles per unit volume). A measure for
this is the incident flux fin, the number of particles crossing per unit time a
unit surface perpendicular to the direction of the incident beam.

Here, we assume that the target consists of individual scattering centers
(atoms, nuclei) that are sufficiently separated that each particle of the in-
cident beam interacts only with one of the scattering centers in the target.
Often, the target is only a thin foil in order to reduce the probability of
multiple scattering events.

If all these conditions (low density of particles in the incoming beam and
in the target) are met, we can assume that the whole experiment actually
consists of a large ensemble of independent scattering processes. Each el-
ementary experiment consists in the scattering of a single particle by the
external force produced by a single scattering center. In Rutherford’s scat-
tering experiment, the external force is the Coulomb force of an atomic
nucleus at some fixed position inside the target.
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The experimental setup is designed to determine the probability that
an incoming particle after interaction with the target is finally found in
a cone defined by the solid angle dω about ω. The number dN(E, ω) of
particles scattered per unit time into the cone will depend on the energy of
the incoming particles and on the direction ω. Moreover, we may assume
that for fixed E and ω, the number dN(E, ω) is directly proportional to the
size of the solid angle dω and to the incoming flux fin,

dN(E, ω) ∝ fin dω. (F.63)

The constant of proportionality is known as the differential scattering cross
section

dσ(E, ω)
dω

=
dN(E, ω)

fin dω
. (F.64)

The integral ∫
B⊂S2

dσ(E, ω)
dω

dω (F.65)

will be proportional to the probability that an incoming particle with energy
E is scattered into a conical region defined by the angles ω = (ϑ, ϕ) ∈ B ⊂
S2. (Here, S2 is the unit sphere in three dimensions, that is, the set of all
directions ω = (ϑ, ϕ) with the volume element dω = sinϑdϑ dϕ).

The integral or total scattering cross section σtot(E) is defined by inte-
grating the differential cross section over all directions,

σtot(E) =
∫

S2

dσ(E, ω)
dω

dω. (F.66)

It has the physical dimension of a surface.
In Book One, we defined the current density

j =
i

2m
(
(∇ψ) ψ − ψ (∇ψ)

)
(F.67)

which describes the flow of the density |ψ|2. In stationary scattering theory,
j·n is assumed to be proportional to the flux of particles in the beam (that is,
the number of particles that go per unit time through a unit surface defined
by the normal vector n). For the incoming wave ψ = exp(ik ·x), the current
is

jin =
k
m

, (F.68)

hence, the incoming flux is

fin = c jin · ez = c
k

m
. (F.69)
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For the outgoing wave, we compute the radial current with the help of
the radial derivative ∇r = ∂/∂r,

j · er = jrad =
i

2m

( (∂ψ

∂r

)
ψ − ψ

(∂ψ

∂r

) )
. (F.70)

For the radial wave (1/r) exp(ikr) f(k, ϑ, ϕ), we easily compute the radial
current at a distance r from the origin as

jrad =
k

m r2
|f(k, ϑ, ϕ)|2. (F.71)

The number of particles going per unit time through a spherical surface
element r2dω about some angle ω = (ϑ, ϕ) is therefore

dN(E, ω) = c jrad r2 dω = c
k

m
|f(k, ϑ, ϕ)|2 dω. (F.72)

Here, E = k2/2m and ω = (ϑ, ϕ). Finally, we obtain the scattering cross
section as

dσ(E, ω)
dω

=
dN(E, ω)

fin dω
= |f(k, ϑ, ϕ)|2. (F.73)



Appendix G

Books

This bibliography lists the books cited in the main text. A more compre-
hensive list of books dealing with quantum mechanics in general was given
in Book One [11].
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Appendix H

Movie Index

0. Introduction

CD 0.1. Welcome
(1) Hello, and a quick overview
(2) What’s new
(3) Sort of a disclaimer

CD 0.2. Organization
(1) The main menu
(2) Chapters and sections
(3) Sections and topics

CD 0.3. Buttons
(1) Navigation
(2) Getting additional information
(3) Hyperlinks

CD 0.4. Movies and controllers
(1) Animation of a time-dependent function
(2) Interactive image (parameter dependence)

CD 0.5. Keyboard shortcuts

CD 0.6. About Book One

CD 0.7. Adjust colors

CD 0.8. Visualization of complex numbers
(1) Mapping phases to colors
(2) Colors for phase and absolute value

CD 0.9. Mathematica notebooks

CD 0.10. Examples from Book One – 1
(1) Free fall – classical motion and quantum wave packet
(2) Quantum-mechanical effects dominate

CD 0.11. Examples from Book One – 2
(1) Particle hitting an impenetrable barrier
(2) Interference effects in front of the barrier
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CD 0.12. Examples from Book One – 3
(1) Double-slit experiment
(2) Single-slit experiment

1. Spherical Symmetry

CD 1.1. The rotation group
(1) Exploring the group manifold
(2) Closed orbits on the surface
(3) Closed orbit inside
(4) Closed orbit that cannot shrink to a point

CD 1.2. Angular momentum
(1) Classical motion on a circle
(2) Center of motion not at the origin
(3) Linear motion
(4) Classical Coulomb motion

CD 1.3. The rotation group
(1) Rotations do not commute with each other
(2) The commutator of two rotations (small angles)

CD 1.4. Spherical symmetry
(1) Force field of the harmonic oscillator
(2) Repulsive Coulomb force

CD 1.5. Spherical coordinates
(1) Polar and azimuthal angle
(2) Uniform motion in a straight line
(3) Discontinuity of the azimuthal angle
(4) Motion on a circle (rigid rotator)

CD 1.6. Spherical coordinate space
(1) Linear motion
(2) Linear motion (discontinuous ϕ)
(3) Circular motion (rigid rotator)
(4) Map of the world

CD 1.7. Spherical harmonics
(1) Introduction
(2) Spherical plot of the absolute value
(3) Spherical plot of orbitals
(4) Map of complex values
(5) Color plot on the unit sphere

CD 1.8. Rigid rotator
(1) Classical orbits with given L
(2) Time-dependence of polar angle
(3) Classical vs. quantum probabilities
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CD 1.9. Quantum rotator
(1) Superposition |1, 1〉+ |2, 2〉
(2) Superposition |1, 1〉+ |2,−1〉

CD 1.10. Spherical harmonics Quantum rotator
(1) Superposition |1, 1〉+ . . . + |4, 1〉
(2) Superposition |1, 1〉+ . . . + |4, 4〉

CD 1.11. Particle of a sphere
(1) Oscillating state |0, 0〉+ |1, 0〉
(2) Superposition of eigenstates
(3) Superposition of orbitals

CD 1.12. Particle of a sphere
(1) Superposition with random coefficients
(2) “Boltzmann distribution” of energies

CD 1.13. Gaussian on a sphere
(1) Particle near the equator
(2) Initial state “at rest”

CD 1.14. Ψ on a sphere

CD 1.15. The Riccati-Bessel functions

CD 1.16. Expansion of a plane wave

2. Coulomb Problem

CD 2.1. Classical Coulomb problem
(1) Motion on a Kepler ellipse
(2) Various orbits
(3) Dependence on the coupling constant
(4) Orbits with the same energy

CD 2.2. Coulomb spectrum
(1) Degeneracy of eigenvalues
(2) Transitions and spectroscopy
(3) Structure of spectrum in two dimensions

CD 2.3. Radial Coulomb eigenfunctions
(1) Introduction
(2) Gallery of radial eigenfunctions
(3) Dependence on the coupling constant

CD 2.4. Radial Coulomb motion in two and three dimensions
(1) Superposition with � = 1
(2) Superposition with � = 3

CD 2.5. Coulomb functions in two dimensions
(1) Introduction
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(2) Gallery of complex-valued eigenfunctions
(3) Real-valued eigenfunctions (orbitals)

CD 2.6. Time-evolution of eigenstates
(1) Eigenstate |8, 3〉
(2) Orbital |8, 3〉+ |8,−3〉

CD 2.7. Some flowers
(1) Eigenstate |6, 5〉+ |6,−5〉+ |6, 4〉
(2) Eigenstate |6, 1〉+ |6,−2〉+ |6, 4〉
(3) Eigenstate |6, 5〉+ |6,−2〉+ |6, 4〉
(4) Eigenstate |6, 5〉+ |6,−5〉+ |6, 2〉

CD 2.8. Radial oscillations
(1) |5, 3〉+ |6, 3〉
(2) |5, 4〉+ . . . + |9, 4〉
(3) Centered Gaussian

CD 2.9. Rotating states
(1) |5,−1〉+ |6, 2〉
(2) |4,−1〉+ |7, 4〉
(3) |6,−2〉+ |7, 3〉
(4) |6, 3〉+ |7,−3〉

CD 2.10. Simple superpositions
(1) |7,−3〉+ |5,−1〉+ |5, 1〉+ |7, 3〉
(2) Superposition with radial quantum number 3.
(3) |m| ≤ 4, Boltzmann distribution

CD 2.11. Various Gaussians
(1) Centered, with nonzero momentum
(2) Initially at rest
(3) Orbiting state
(4) Revivals of the initial state

CD 2.12. Eigenstates in three dimensions
(1) Variable isosurface of |7, 4, 2〉
(2) Variable isosurface of |11, 5, 3〉
(3) The state |18, 9, 5〉 from all sides

CD 2.13. Hydrogen |11, 5, 3〉
(1) Slice parallel to the yz-plane
(2) Slice parallel to the xy-plane

CD 2.14. Hydrogen orbitals in three dimensions
(1) Variable isosurface of |11, 5, |3|〉 (1)
(2) Variable isosurface of |11, 5, |3|〉 (2)
(3) Variable isosurface of |11, 5, 0〉

CD 2.15. Eigenfunctions in three dimensions
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(1) Introduction
(2) Visualization via isosurfaces
(3) Visualization via slice planes
(4) Orbitals of the first kind
(5) Orbitals of the second kind

CD 2.16. Stationary superposition
(1) Superposition of eigenstates |2, 4, 2〉+ |2, 4,−1〉
(2) Variable slice plane

CD 2.17. Oscillations
(1) The superposition |3, 1, 0〉+ |4, 2, 0〉
(2) The superposition |3, 1, 0〉+ |4, 1, 0〉
(3) The superposition |3, 1, 1〉+ |4, 2, 1〉
(4) The superposition |3, 1, 1〉+ |4, 1, 1〉

CD 2.18. Rotating states
(1) The superposition |3, 1, 0〉+ |4, 2, 2〉
(2) The superposition |3, 1, 1〉+ |4, 2, 2〉
(3) The superposition |3, 1, 1〉+ |4, 2,−1〉

CD 2.19. Rotating state
(1) Superposition of eigenstates |5, 1,−1〉+ |6, 3, 2〉
(2) Data slice of the initial state (yz-plane)

CD 2.20. Motion of a bound state
(1) Superposition of four eigenstates
(2) Data slice of the initial state (yz-plane)

CD 2.21. Rydberg states
(1) Angular part of the wave function
(2) Radial part of the wave function
(3) Radial distribution (large angular momenta)
(4) Angular motion (on the equator)

CD 2.22. Rydberg states
(1) Radial and angular motion
(2) Radial and angular motion
(3) Time step = Kepler period

CD 2.23. Rydberg states
(1) Very high angular momenta
(2) Revival of the initial state

CD 2.24. Rydberg states in two dimensions
(1) Radial and angular motion
(2) Radial and angular motion
(3) Radial and angular motion

CD 2.25. Coulomb eigenstates
(1) Separation in parabolic coordinates
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3. Spin

CD 3.1. Inhomogeneous magnetic field
(1) Neutral particle with a magnetic moment
(2) Acceleration in direction of the field gradient
(3) Motion in a more realistic magnetic field
(4) Approximation of 1 by a realistic field

CD 3.2. Homogeneous magnetic field
(1) Classical electron moving on a circle
(2) Charged particle, g-factor < 2
(3) Charged particle, g-factor > 2

CD 3.3. Homogeneous B-field
(1) Charged particle with g-factor 4
(2) Classical electron moving on a helix

CD 3.4. Stern-Gerlach - classical
(1) Neutral particles with various spins
(2) Trajectories for particles with random spins
(3) Two- and four-wire fields

CD 3.5. Model of Stern-Gerlach experiment
(1) Type-1 particles in an inhomogeneous field
(2) Particles of type 2
(3) Superposition of the two types
(4) Another superposition

CD 3.6. Stern-Gerlach experiment
(1) Component with spin-up
(2) Component with spin-down

CD 3.7. Stern-Gerlach filter
(1) Preparing a spin-up wave packet
(2) Preparing a spin-down wave packet

CD 3.8. Spinor-field visualization
(1) Vectors indicating the local spin direction
(2) Method using colored “magnetic needles”
(3) Bipartite enlarged data pixels

CD 3.9. Homogeneous B-field
(1) The direction of the spin
(2) Interlaced colored density plots
(3) Comparison with scalar wave packet

CD 3.10. Color map for vector fields
(1) The colored sphere
(2) Slice parallel to the xz-plane
(3) Slice parallel to the xy-plane
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CD 3.11. Spinor to colors
(1) Splitting into parts with spin-up/down
(2) Landau orbit in homogeneous B-field

CD 3.12. Spin in Stern-Gerlach device
(1) x-polarized particle through analyzer
(2) Projection onto spin-up state
(3) Projection onto spin-down state

CD 3.13. Spinor harmonics
(1) Introduction
(2) Color density plot of the two components
(3) Map of the spin-vector field
(4) Spin-vectors on the unit circle (xz-plane)
(5) Spin-vectors on the unit sphere

CD 3.14. Hydrogen atom with spin
(1) Graphics gallery

4. Qubits

CD 4.1. States of a qubit

CD 4.2. Stern-Gerlach analyzer

CD 4.3. State preparation

CD 4.4. Spin transition
(1) With observation
(2) Without observation

CD 4.5. Transition probabilities

CD 4.6. Determinative measurement
(1) Special preparation (restricted set of states)
(2) Complete measurement of a general state

CD 4.7. Qubit in Bloch sphere

CD 4.8. Qubit rotations
(1) Rotation around the z-axis
(2) Rotation around the y-axis

CD 4.9. Stern-Gerlach interferometer

CD 4.10. Fun with interferometers
(1) A double-slit experiment
(2) Rotating the qubits in one path

CD 4.11. Interaction-free measurement (Bomb Quest)

CD 4.12. Spin precession
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(1) Vertical magnetic field
(2) Magnetic field in another direction
(3) Slowly moving magnetic field vector

CD 4.13. Theory of spin resonance
(1) Transition probability to orthogonal state
(2) The resonance curve
(3) The time needed to return to the initial state

CD 4.14. Spin resonance – 1
(1) Below the resonance frequency
(2) At the resonance frequency
(3) Above the resonance frequency
(4) Perturbation with an even higher frequency

CD 4.15. Spin resonance – 2
(1) Large perturbation, below the resonance
(2) Still below the resonance
(3) At the resonance frequency
(4) Above the resonance frequency

CD 4.16. Spin resonance – 3
(1) Small perturbation, below the resonance
(2) Still below the resonance
(3) At the resonance frequency
(4) Above the resonance frequency

CD 4.17. Spin dynamics
(1) B-field with an oscillating x-component
(2) Large amplitude, slow oscillation
(3) Small perturbation, resonance
(4) Small perturbation, rapid oscillation

CD 4.18. Berry phase
(1) Rotation through 2π and geometric phase
(2) Adiabatic motion and geometric phase

5. Composite Systems

CD 5.1. Two-particle systems in one dimension
(1) Two independent free particles
(2) Two independent oscillating particles

CD 5.2. Two-particle configurations
(1) Configurations of two free particles
(2) Configurations of oscillating particles

CD 5.3. Separable and entangled
(1) Entangled state of two free particles



6. RELATIVISTIC SYSTEMS 501

(2) Counter example: A separable state

CD 5.4. Interacting system
(1) Two particles bound by oscillator force
(2) Oscillator with equal masses

CD 5.5. Individual position densities
(1) Harmonic oscillator system
(2) Oscillator consisting of equal masses
(3) Both particles heavy

CD 5.6. Two identical particles
(1) Antisymmetric state (fermion system)
(2) Symmetric state (boson system)

CD 5.7. States of a two-qubit system
(1) Bases of qubit states
(2) Some product states
(3) Realization by harmonic oscillator

CD 5.8. Pure and mixed states
(1) Determinative measurement on an ensemble

CD 5.9. Bell’s singlet state – 1
(1) The spins are totally anticorrelated

CD 5.10. Bell’s singlet state – 2
(1) Classical model of anticorrelation

CD 5.11. Determine a Bell state
(1) Local measurements with comparison

CD 5.12. Remote state preparation
(1) Alice can predict Bob’s result
(2) ... but there is no information for Bob
(3) Classical information prepares a state

CD 5.13. CHSH inequality – 1
(1) Violation of local realism

CD 5.14. CHSH inequality – 2
(1) Local hidden variables

CD 5.15. Quantum correlations
(1) Violations of Bell’s inequality

CD 5.16. Classical hidden variables
(1) Local realism and Bell’s inequality

6. Relativistic Systems

CD 6.1. Introduction
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(1) Spinor-valued wave functions
(2) A solution of the Dirac equation

CD 6.2. Relativistic plane waves
(1) Plane waves with positive energy
(2) Plane waves with negative energy
(3) Eigenspinors of the Dirac operator

CD 6.3. Kinematics of plane waves
(1) Dependence of phase velocity on k
(2) Phase velocity for negative energy
(3) Superposition with negative energy
(4) Positive plus negative energy, same momenta
(5) Opposite energies and momenta

CD 6.4. Wave packets “at rest”
(1) Positive-energy wave packet
(2) Contributions of relativistic momenta
(3) Extreme relativistic case

CD 6.5. Wave packets in motion
(1) Spreading of a positive-energy solution
(2) Motion in momentum space
(3) Wave packet with a high average momentum
(4) Wide momentum distribution

CD 6.6. Solutions with negative energy
(1) Wave packet “at rest”
(2) Spreading of a moving wave packet
(3) Time-evolution in momentum space

CD 6.7. Wave-packet anatomy
(1) Various parts and representations
(2) Time evolution in position space
(3) Time evolution in momentum space

CD 6.8. Special initial conditions
(1) Only an upper component at t = 0
(2) A wider momentum distribution
(3) Only an upper component at t = 0
(4) Projection of 1 onto negative energies

CD 6.9. Special initial conditions
(1) Equal momenta for both components
(2) Similar to 1, only faster
(3) Phase shift between spinor components

CD 6.10. Special initial conditions
(1) Components with opposite momenta
(2) Similar to 1, only faster
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(3) Phase shift between spinor components

CD 6.11. Special initial conditions
(1) Upper component with positive momentum
(2) Lower component with positive momentum

CD 6.12. Strange superpositions
(1) Positive and negative energies with equal velocities
(2) Interference at relativistic velocities
(3) Positive and negative energies with opposite velocities
(4) Yet another fine example of Zitterbewegung

CD 6.13. Superluminal motion?
(1) Shapes moving faster than light
(2) Phase velocity and interference patterns
(3) Classical interference effect: Moiré pattern
(4) Signals have a limiting velocity

CD 6.14. Lorentz transformations
(1) Boost of a positive-energy wave packet
(2) Boost of a negative-energy wave packet

CD 6.15. Lorentz transformations
(1) Lorentz-boost of a superposition
(2) Positive- and negative-energy parts
(3) Lorentz transformation in momentum space
(4) Another example

CD 6.16. Solutions in two dimensions
(1) Only an upper spinor-component at t = 0
(2) Gaussian initial function in both components

CD 6.17. Wave packet moving in two dimensions
(1) Only an upper spinor-component at t = 0
(2) The two components are equal
(3) Components have opposite momenta

CD 6.18. External field
(1) Behavior of a positive-energy wave packet
(2) Behavior of a negative-energy wave packet

CD 6.19. Constant force field
(1) A wave packet splits into two parts
(2) Initial state with positive kinetic energy
(3) Electronic wave packet
(4) Positronic wave packet

CD 6.20. Klein’s paradox
(1) Scattering at a small potential step
(2) Potential step of intermediate size
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(3) Total reflection at a high potential step
(4) Nonzero transmission for very high steps

CD 6.21. Spinor in momentum space
(1) Scattering at a small potential step
(2) Scattering and partial reflection
(3) Negative-energy wave packet

CD 6.22. Klein’s paradox revisited
(1) Total reflection in momentum space
(2) Klein’s paradox in momentum space
(3) Scattering at an even higher step

CD 6.23. Scalar potential step
(1) Scattering at a small scalar step
(2) No Klein paradox for scalar fields

CD 6.24. Relativistic potential well
(1) Confinement in an electrostatic well
(2) Wave packet escapes from a deep well
(3) No Klein paradox in a scalar well

CD 6.25. Particle in a double well



List of Symbols

∈ is contained in, 2
⊂ set inclusion, 132
≈ approximately equal to, 16
≡ by definition equal to, 27
∼= isomorphic to, 70
[·, ·] commutator, 14
〈·, ·〉 scalar product, 433
‖ · ‖ norm, 433
〈 · | · 〉 scalar product (Dirac notation), 440
〈 · |, | · 〉 Dirac’s bra and ket symbols, 440
† (superscript) adjoint of a matrix or operator, 435
! (superscript) transpose of matrix or vector, 8
⊗ tensor product, 216
⊕ orthogonal direct sum, 127
0n n× n zero matrix, 310
1 identity operator, 11
1n n× n identity matrix, 8
1 identity matrix, identity operator, 438
A linear operator, 6
A, B parts of a composite system, 216
A magnetic vector potential, 135
A† adjoint of A, 435
A±

� ladder operators, 71
a0 Bohr radius, 96
a±(k) auxiliary quantities, 380
B some region in space, 437
B magnetic induction, 116
C set of complex numbers, 433
c speed of light, 96
D domain of an operator, 438
d parameter of an ellipse, 65
∂ partial derivative, 11
∂ space-time derivative, 368
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506 List of Symbols

d± auxiliary quantities, 333
dx length element, 437
d3x volume element, 434
dΩ area element on unit sphere, 31
E energy, eigenvalue of the Hamiltonian, 19
E relativistic energy, 324
E electric field strength, 148
E

(0)
n , E

(1)
n unperturbed eigenvalue, first-order perturbation, 443

e Euler’s number, 16
e elementary charge, 96
er, eϑ, eϕ coordinate unit vectors, 27
F force, 62
F force vector, 18
F Fourier transform, 330
G some region in momentum space, 331
g Landé g-factor, 116
H0 free Hamiltonian (Schrödinger), 18
H0 free Hamiltonian (Dirac), 326
Hsqrt square-root Klein-Gordon operator, 324
H(0), H(1) unperturbed Hamiltonian, perturbation, 443
H Hamiltonian, 435
H Hilbert space, 4
Ĥ set of states, 4
Hpos, Hneg subspaces with positive/negative energy, 381
h� radial Schrödinger operator, 51
� Planck’s constant, 96
i imaginary unit, 435
Jν(z) Bessel functions, 45
ĵ�(kr) Riccati-Bessel functions, 45
K Runge-Lenz vector, 64
k wave number, momentum, 437
L = (L1, L2, L3) angular-momentum operator, 11
� orbital angular momentum quantum number, 29
L̂, L̂2, L̂3 angular momentum in spherical coordinates, 28
L3 third component of angular momentum, 11
L2 square of orbital angular momentum, 26
L2 Hilbert space of square-integrable functions, 10
L2(R3)4 Hilbert space for Dirac equation, 381
M total mass, 222
m mass of a particle, 34
m magnetic quantum number, 29
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me electron mass, 96
mp proton mass, 96
N generator of Lorentz boosts, 371
N generator of boosts in three dimensions, 387
Nν(z) Neumann functions, 45
n principal quantum number, 69
n unit vector, 14
nr radial quantum number, 50
n̂�(kr) Riccati-Neumann functions, 45
O Landau symbol, 447
P projection operator, 436
P parity transformation, 389
P Poincaré transformation, 383
Ppos, Pneg projection operators, 381
P�(z) Legendre polynomial, 32
Pm

� (z) associated Legendre functions, 32
p momentum in one dimension, 325
p transition probability, 169
p momentum in three dimensions, 12
q charge, 115
RH Rydberg constant (hydrogen), 59
R(α) rotation matrix, 8
R set of real numbers, 434
R

3 three-dimensional Euclidean space, 2
Ran range of an operator, 478
r radial coordinate, radius, 26
S scattering operator, 479
S, Sk spin operators, 127
S2 square of the spin, 127
S2 unit sphere, 31
SO(3) rotation group, 9
T time period, 65
T time reversal transformation, 389
T representation of Lorentz transformations, 385
t, t0 time parameter, initial time, 437
t0 atomic time unit, 96
upos, uneg plane-wave spinors, 381
U unitary matrix or operator, 437
U(α) unitary rotation, 10
u(k) matrix diagonalizing Dirac operator, 333
v velocity, 125



508 List of Symbols

Vcov covariant potential, 384
Velm electromagnetic potential matrix, 382
Vel electrostatic potential matrix, 382
V (x) potential energy, 63
x space-time four vector, 384
x = (x1, x2, x3) coordinates in position space, 2
Y m

� (ϑ, ϕ) spherical harmonics, 32
z complex conjugate of z, 433
α fine structure constant, 96
α Dirac alpha matrix (one space dimension), 325
α, α rotation angle and vector, 8
α vector of Dirac matrices, 378
β Dirac beta matrix, 325
Γk matrices of Dirac algebra, 389
γ perturbation parameter, 443
γ Coulomb coupling constant, 62
γ gyromagnetic ratio, 116
γ Dirac gamma matrices, 368
γ0 coupling constant for hydrogen, 96
γ(v) factor in Lorentz transformation, 366
∆ Laplace operator, 43
∆ψ uncertainty, 436
δik Kronecker delta symbol, 8
∇ gradient operator (nabla), 435
∇̂ gradient in spherical coordinates, 28
ε eccentricity of an ellipse, 65
εikm totally antisymmetric tensor, 8
ε0 permittivity of vacuum, 96
ϑ polar angle, 26
Λ(ω) matrix of Lorentz boost, 366
λ(k) relativistic energy, 333
µ reduced mass, 62
µ magnetic dipole moment, 115
µB Bohr magneton, 116
µN nuclear magneton, 125
π the number π, 6
σ(H0) spectrum of H0, 333
σ = (σ1, σ2, σ3) vector of Pauli matrices, 129
σk Pauli matrices, 25
τ torque, 116
ϕ azimuthal angle, 26
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φsc scalar potential function, 391
φel electrostatic potential function, 381
φin, φout incoming and outgoing asymptotes, 477
χB(x) characteristic function, 437
ψ vector in Hilbert space, 4
ψ wave function, 10
[ψ] one-dimensional subspace (ray), 4
ψ̂ Fourier transform of ψ, 330
ψ0 initial state, 37
ψ

(0)
n , ψ

(1)
n unperturbed eigenvector, first-order perturbation, 443

ψ± scattering states, 476
Ωin, Ωout Møller wave operators, 477
ω parameter for Lorentz boost, 383
ωL Larmor frequency, 126
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active transformation, 2
adiabatic approximation, 467
adiabatic limit, 471
adiabatic phase, 467
alkali atoms, 451
analytic perturbation theory, 456
analyticity, 446
angular momentum, 12
angular-momentum operator, 13, 69,

70, 77, 84
angular-momentum quantum numbers,

25, 80, 88, 121, 123
angular-momentum subspace, 20, 78,

263, 415
anharmonic oscillator, 456
anomalous magnetic moment, 124
anticorrelation, 283
antisymmetric state vector, 252
antisymmetric subspace, 253
antisymmetric wave function, 257
antisymmetrizer, 253
antiunitary operator, 5
anyon, 252
associated Legendre functions, 32
asymptotes, 477
asymptotic completeness, 477
atomic number, 58

balanced function, 317
Bell basis, 219
Bell inequality, 295
Bell state, 272
Bell’s singlet state, 277
Bell’s theorem, 297
Bell-state analyzer, 277

Bernstein-Vazirani problem, 320
Berry phase, 469
Biedenharn-Johnson-Lippmann opera-

tor, 428
bipartite system, 216
bit, 158
black box, 316
Bloch sphere, 241
Bohr magneton, 116
Bohr radius, 98, 103, 453
Boolean function, 316
boost, 383
bosonic Hilbert space, 253
bosonic system, 252
bosons, 254
bound states, 475
bra, 440

Cauchy’s formula, 457
center-of-mass coordinates, 222
centrifugal barrier, 44
centrifugal potential energy, 44
charge conjugation, 394
CHSH inequality, 296
circular Rydberg states, 106
circularly polarized, 181
classical teleportation, 170
classical velocity operator, 351
Clebsch-Gordan coefficients, 265
CNOT, 310
coherent superposition, 239
coincidence probability, 286
collapse, 165, 439
commutation relations – angular

momentum, 14
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512 Index

complete, 433
complete basis measurement, 306
complete set of observables, 147
completeness, 477
conditional probability, 290
configuration, 212
constant function, 317
constant of motion, 17, 438
continuous spectrum, 436
controlled-NOT, 310
convex linear combination, 242
convex set, 243
Coulomb coupling constant, 62
Coulomb potential, 18, 445
Coulomb problem, 54, 57, 147, 451

relativistic, 422
counterfactual, 284
coupling constant, 443
covariant Dirac equation, 384
critical point, 461
cross section, 488
current density, 488

Darwin term, 409
database search, 320
decoherence theory, 439
degenerate eigenvalue, 20
degenerate eigenvalues, 449
degree of degeneracy, 20
dense coding protocol, 301
destructive interference, 193
detector, 486
Deutsch-Jozsa problem, 318
differential cross section, 488
dilation, 99
dimensionless quantities, 98
Dirac equation, 327, 384

covariant form, 384
Dirac gamma matrices, 384
Dirac matrices, 378
Dirac operator

electromagnetic field, 382
free particles, 326, 379
momentum space, 331, 380
spectrum, 333

spherical coordinates, 411
Dirac spinors, 327
Dirac-Coulomb problem, 427
discrete eigenvalue, 462
discrete Lorentz transformation, 383
double-slit experiment, 192
Dyson expansion, 205

eccentricity, 65
eigenspace, 20
electromagnetic potential matrix, 382
electrostatic field, 445
elementary experiments, 167
elementary measurement, 163
energy functional, 461
energy representation, 482
ensemble measurements, 167
entangled, 215, 218, 272
EPR protocol, 289
error correction, 322
essential spectrum, 462
even parity states, 219
exchange operator, 251
exchange phase, 251
existence (of scattering states), 476
expectation value, 436
external force, 475
extremal point, 243

fermionic Hilbert space, 253
fermionic system, 252
fermions, 254
fine structure, 61
first-order perturbation, 447
Foldy-Wouthuysen method, 409
Fourier transform, 321
fractional quantum Hall effect, 252
free-particle Dirac operator, 326
free-particle Hamiltonian, 476
functional, 461

geometric phase, 467
global measurement, 273
global transformation, 308
global unitary transformation, 310
Gram-Schmidt representation, 246
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Green function, 485
ground state, 35, 36, 51, 120, 142, 187,

400, 422, 430
ground state (helium), 452, 464
ground state (hydrogen), 58, 72, 80, 102
ground state (upper bound), 463
Grover’s algorithm, 320
gyromagnetic ratio, 116

Hadamard transformation, 176, 316,
319

Hamiltonian, 435
Hankel transformation, 49
Heisenberg equation, 438
helium, 452
Hermitian matrix, 160
hidden variables, 201
Hilbert space, 433
hydrogen atom, 58, 445
hyperfine structure, 61

identical, 250
incident flux, 487
incoherent superposition, 239
incoming, 477
indistinguishable, 250
inertial frame, 365
infimum, 463
integral cross section, 488
interaction-free measurement, 194
interference, 191, 285, 318, 356, 358,

360, 374
interferometer, 189
invariance, 7
invariance transformation, 7
isolated eigenvalue, 443
isometric, 477
isotropy of space, 2

joint probability, 285

Kato-Rellich theorem, 456
ket, 440
ket-symbol, 160
kinetic energy, 476
kinetic-energy correction, 408

Klein paradox, 395, 398, 402
Kratzer’s potential, 53
Kronecker sum, 225
Kummer’s equation, 90

ladder operator, 23, 141, 153, 188, 266
Lamb shift, 61
Landé g-factor, 116
Laplace-Beltrami operator, 43
Larmor frequency, 126
Legendre function, 32
Legendre polynomial, 32
linear potential, 445
linearly polarized, 181
Lippmann-Schwinger equation, 484, 486
local measurement, 225, 273
local observable, 226
local realism, 296
local unitary transformation, 226, 308
logic gates, 307
Lorentz force, 125
Lorentz group, 383
Lorentz transformation, 6, 383

Møller operators, 477
magnetic field, 444, 471
magnetic quantum number, 51, 82
magneton, 115, 472
maximally entangled state, 247, 272
maximally mixed, 247
maximally mixed state, 241, 272
mean value, 436
metric, 382
metric tensor, 43
mild solution, 338
Minkowski space, 382
mixed state, 234
Moiré pattern, 358
multiplicity, 20
muonic atom, 103

needle in a haystack, 320
Neumann series, 457
no-cloning theorem, 170
Noether’s theorem, 12, 17
nonlocal interaction, 278
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norm, 433
nuclear magneton, 125
nucleus, 18, 58, 61, 62, 106, 115, 122,

149, 221, 431, 451, 452, 486

observable, 435
odd parity states, 219
one-particle density function, 215
one-time pad, 197
operator

unitary, 5
oracle, 316
orbital angular momentum, 13
orbitals, 80
orthogonal projection, 287
orthogonal projection operator, 88, 194,

211, 226, 234, 242, 253, 286, 342,
436, 478, 479

outgoing, 477

parabolic coordinates, 91
parameter of an ellipse, 65
parity bit, 272
parity transformation, 383
particle interchange operator, 254
passive transformation, 2
Pauli equation, 135
Pauli exclusion principle, 253
Pauli matrices, 25, 129, 160, 173, 325,

379
Pauli operator, 135
Pauli’s exclusion principle, 258
period finding, 321
permittivity, 62
perturbation parameter, 443
perturbed eigenvalue, 443
perturbed operator, 443
phase bit, 272
plane wave with negative energy, 335
plane wave with positive energy, 335
Poincaré transformation, 383
potential energy, 476
prime factors, 322
principal quantum number, 76, 86
principle of relativity, 2

projection operator, 434
projective representation, 179
projective space, 5
proper orthochronous Lorentz group,

383
property, 226
pure state, 234
purification, 248

quantum algorithm, 307, 316
quantum Fourier transform, 321
quantum parallelism, 307
quantum register, 305
quantum teleportation, 171
qubit, 158

radial current, 489
radial quantum number, 50
radial Schrödinger equation, 45, 50
radial Schrödinger operator, 44, 51
random experiment, 163
random variable, 163, 285
ray, 4, 434
ray representation, 179
ray transformation, 5
Rayleigh-Ritz technique, 466
Rayleigh-Schrödinger series, 446
real orbitals, 52, 80
reduced mass, 35
register, 305
regular solution, 85
relative boundedness, 455
relative coordinates, 222
Rellich’s theorem, 460
representation, 2
resolvent, 456
resolvent set, 456
Riccati-Bessel functions, 45
Riemannian manifold, 43
Riemannian metric, 43
rotation, 7, 383, 472
rotation matrix, 8
rotational invariance, 17
RSA method, 322
Runge-Lenz vector, 428
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Rutherford, 58, 486
Rydberg atom, 106
Rydberg constant, 102
Rydberg constant for hydrogen, 59, 102
Rydberg states, 106

sample space, 163
scalar product, 433
scaling transformation, 99
scattering amplitude, 486
scattering cross section, 488
scattering states, 475
Schrödinger equation, 438

Coulomb problem, 66
radial, 45, 50
time dependent Hamiltonian, 204
two particles, 213

self-adjoint, 435
semibounded, 462
separable, 218
separable state, 215
separation of variables, 18
Shor’s algorithm, 322
Simon’s algorithm, 321
single measurements, 167
single-particle interference, 191, 193
singlet state, 268, 277
Slater determinant, 258
spectral gap, 381
spectral representation, 482
spectral transformation, 482
spectroscopy, 58
spectrum, 333, 456
spherical harmonics, 32, 452
spherical symmetry, 17, 51, 70, 78, 150,

410, 452
spin-orbit interaction, 149
spin-orbit operator, 151, 411
spin-orbit term, 409
spin-up direction, 173
spinor harmonics, 152, 413
spinor-wave functions, 128
spinors, 128, 158
square-root Klein-Gordon equation, 324
standard acceleration, 351

standard deviation, 436
standard interpretation, 329
standard position operator, 348

time evolution, 353
standard position probability density,

329
standard representation, 129, 159, 326
standard velocity operator, 350
Stark effect, 91, 445
state, 434
state estimation, 169, 439
state of the subsystem, 233
stationary point, 461
stationary scattering theory, 483
stationary state, 438
statistical mixture, 228
Stern-Gerlach filter, 166
Stokes’ theorem, 470
Stone’s Theorem, 438
strict solution, 338
subspace of bound states, 475
subspace of scattering states, 475
subsystem observable, 226
superluminal speed, 357
superposition, 435
symmetric state vector, 252
symmetric subspace, 253
symmetric wave function, 257
symmetrizer, 253
symmetry, 7
symmetry transformation, 4, 179, 251,

366, 382, 393

target, 486
tensor product, 216, 217
theorem

of Aharonov and Casher, 143
of Bell, 297
of Kato and Rellich, 456
of Noether, 17
of Rellich, 460
of Stokes, 470
of Wigner, 6
virial, 104

Thomas precession, 149, 383
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time reversal, 383
total angular momentum, 125, 260
total cross section, 488
transformation function, 459
transition probability, 5, 437
triangular condition, 264
triplet states, 268
two-particle system, 212
two-state system, 158

uncertainty, 436
unentangled, 218
unitary group, 10, 438
unitary operator, 5
unperturbed operator, 443

valence electron, 451

variational collapse, 399
variational method, 461, 465
vector-addition coefficients, 265
vector-coupling coefficients, 265
velocity transformation, 383
Vernam cipher, 197
virial theorem, 103, 464

wave operators, 477
wave packet with negative energy, 340
wave packet with positive energy, 339
which-way information, 162
Wigner coefficients, 265
Wigner’s theorem, 6

XOR-gate, 310

Zitterbewegung, 349, 353, 409
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