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Preface

Quantum theory introduces a fundamentally new framework for thinking about
Nature and entails a radical break with the paradigm of classical physics. In spite
of the fact that the shift of paradigm from classical to quantum mechanics has been
going on for more than a century, a conceptual grasp of quantum mechanics has till
today proved elusive. According to leading quantum theorist Richard Feynman, “It
is safe to say that no one understands quantum mechanics” [13].

The foundations of quantum mechanics have been studied by many authors, and
most of their books have been written for specialists working on the foundations of
quantum mechanics and quantum measurement [1, 4, 16]—requiring an advanced
knowledge of mathematics and of quantum mechanics [23, 25, 36]. An exception is
the book by Isham [19], which is very clearly written and discusses the principles
of quantum mechanics for a wider audience.

Given the ubiquitous presence of quantum mechanics in almost all branches of
science and of engineering, there is a need for a book on the enigmatic workings of
quantum mechanics to be accessible to a wider audience.

This book on the foundations of quantum mechanics is for the nonspecialists and
written at a level accessible to undergraduates, both from science and engineering,
who have taken an introductory course on quantum mechanics.

The mathematical formalism has been kept to a minimum and requires only a
familiarity with calculus and linear algebra. The emphasis in all the topics is on
analyzing the concepts and ideas that are expressed in the symbols of quantum
mechanics. Linear vector spaces and operators form the mathematical bedrock of
quantum mechanics, and a few derivations have been done to clarify these structures.

In this book the Schrödinger equation is never solved; instead, the focus is on
the paradoxes and theoretical conundrums of quantum mechanics as well as on the
conceptual basis required for addressing these. In particular, this book concentrates
on issues such as the inherent (quantum) indeterminateness of Nature and the
essential role of quantum measurement in defining a consistent interpretation of
quantum mechanics.

The unusual properties of many widely used technologies are due to quantum
phenomena. Indeed, most of what goes under the name of high technology is a direct
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result of the workings of quantum mechanics, and many modern conveniences that
we take for granted today would be impossible without it.1

Although quantum mechanics has qualitatively changed our view of Nature, a
satisfactory understanding of it is still far from complete, and one can be sure there
are a lot of surprises still awaiting us in the future.

The main focus of this book is to address the reasons why quantum mechanics is
so enigmatic and extraordinary.

A theoretical framework for quantum mechanics is proposed in an attempt
to clarify the underpinnings of quantum mechanics, namely the transempirical
quantum principle, which states the following: A physical entity has two forms
of existence, an indeterminate transempirical form when it is not observed and a
determinate empirical form when it is observed. The transempirical and empirical
forms have completely different behavior. The empirical form is intuitive and
is the (experimentally) observed determinate state of the entity, whereas the
indeterminateness of the transempirical form of the entity leads to all the paradoxes
of quantum mechanics.

1For example, electronic devices, from computers, television, to mobile phones, are all based on
semiconductors, and airplanes, ships, and cars all use semiconductors in an essential manner. More
complex technologies such as superconductors, scanning electron microscope, magnetic resonance
imaging (MRI), and lasers; fabrication of new drugs; modern materials science; and the study of
nanoscale phenomenon all draw upon quantum mechanics.
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1Synopsis

The epoch-making idea of the quantum as a fundamental property of Nature was
introduced by Max Planck in 1900. Quantum mechanics is undoubtedly one of
the most important and experimentally accurate scientific theory in the history of
science.1 Its range of applications and mathematical depth are unmatched, and
quantum mechanics continues to yield novel and unexpected results—in technology
as well as in all scientific fields, including physics and mathematics. Paradoxically
enough, in spite of all its empirical and mathematical success quantum mechanics—
due to its strange and enigmatic conceptual framework—has, until now, defied all
attempts to reach a satisfactory understanding of its inner workings.

The human being’s five physical senses are based on natural processes that can
perceive only a finite range of physical phenomena. In the case of electromagnetic
radiation, only a tiny and limited range of its wavelengths are visible to the human
eye, with radiation of much longer and much shorter wavelengths being invisible.
Since the smallest allowed quantum of energy for light (and for atoms) is truly
minuscule when compared to the energies we encounter in daily life, there are only
a few physical process, most of them being man-made, where one can directly
observe quantum phenomena using one’s five senses. When we extend our five
senses with experimental devices and instruments, we can probe more deeply into
Nature’s secrets, and the quantum aspect of Nature becomes more apparent.

Classical mechanics works very well for the kind of objects one encounters in
daily life that are moving much slower than the velocity of light. Once objects start
to move very fast, we need to modify Newton’s equations to Einstein’s relativistic
equations. On the other hand, for objects that are very small, such as electrons and
atoms, quantum mechanics becomes necessary. If one attempts to extend Newton’s
laws to domains that are far from daily experience, they start to fail and give
incorrect results.

1Accuracy is defined by the degree to which a theoretical value is close to the measured
experimental value. Precision, in contrast, defines the degree to which an experiment, when it
is repeated, produces a series of measured values to within a level of precision, namely, to within a
certain error.
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One can never expect an understanding of quantum mechanics that is similar
in clarity and intelligibility to the one provided by classical mechanics since
the connections of the symbols of classical mechanics to the phenomena that it
represents are directly based on the perception of Nature by our five sense; “you
get what you see.” In the case of quantum mechanics, as will become clear as
one reads this book, the connections of the symbols of quantum mechanics with
observed quantities are more nuanced and opaque than for classical mechanics. One
can nevertheless hope that, over time, quantum mechanics will become as intuitively
obvious and transparent for future generations as is classical mechanics for the older
generations.

Noteworthy 1.1: The experimental accuracy of quantum mechanics

Quantum mechanics is clearly more accurate than classical mechanics, which
it supersedes in every way. The special theory of relativity, which describes the
structure of empty spacetime, has so far has proven to be experimentally as accurate
as quantum mechanics. Einstein’s theory of gravity, namely the theory of general
relativity is outside the domain of quantum mechanics and we compare their
empirical accuracy.

To date, the most accurate test of general relativity is the prediction that a clock
slows down by a factor of 1+U/c2, where U is the gravitational potential. This
prediction has been tested, using the quantum interference of atoms, to an accuracy
of 7× 10−9, about one part in a hundred million [29].

The experimental value of the electron’s magnetic moment is gμB, where
μB = eh/4πm is the Bohr magneton and g-factor is the dimensionless constant for
electron’s magnetic moment; e and m are the charge and mass of the electron and h
is Planck’s constant. The naive value of g = 2, which is given by the Dirac equation
for the electron, is corrected by the effects of the electron’s interaction with the
photon. The most accurate experimental prediction of quantum mechanics is that
g = 2.00231930419922(1±0.7491312684×10−12) [7].

This prediction of quantum mechanics—or more accurately of quantum field
theory, a formulation of quantum mechanics that incorporates special relativity (and
hence the accuracy of special relativity is also being tested)—completely agrees
with the experimental result to an accuracy of 10−12, one part in a trillion. As of now,
the experimental verification of quantum mechanics is more accurate than general
relativity by a factor of more than a thousand, namely, 103. This does not mean that
Einstein’s theory of gravity is not exact, which it may or may not be, but rather that
its proven experimental accuracy is less than that of quantum mechanics.

Building on the pioneering work of Max Planck and Niels Bohr, the modern
formulation of quantum mechanics rests primarily on the ideas of Max Born, Erwin
Schrödinger, Werner Heisenberg, and Paul A.M. Dirac.

In 1926, a quarter century after the Planck’s epoch-making quantum hypoth-
esis, Erwin Schrödinger discovered the dynamical equation of quantum mechan-
ics. It is worth noting that, for almost a century, Schrödinger’s equation has
proved to be flawless, successfully facing numerous and precise experimental tests.
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The Schrödinger equation replaces Newton’s second law of motion and, according
to many scientists, is one of the most important cornerstones of science.

In the period of 1926–1929, the founders of quantum mechanics laid down the
complete mathematical foundations of quantum mechanics, which continues to hold
till today [10].

Einstein’s theory of special and general relativity is a logical development of
classical physics; relativity reinterprets the meaning of classical concepts such as
time, position, mass, velocity, and acceleration. In contrast, quantum mechanics
introduces completely new ideas such as indeterminacy and uncertainty, the state
vector, operators, path integration, as well as the quantum theory of measurement—
concepts that are absent and incomprehensible in the framework of classical physics.

Many books on quantum mechanics follow the historical path by recounting the
motivations and reasons that led to the idea of the quantum [15]. A century after the
advent of the idea of the quantum, an approach based on the inner logic of quantum
mechanics can be now taken.

Most undergraduate textbooks concentrate on the mathematical techniques
required for solving the partial differential Schrödinger equation—with questions
of interpretation and consistency usually touched upon only in passing. In contrast,
this book does not provide any solutions of the Schrödinger equation and, instead,
is primarily focused on those fundamental principles and theoretical aspects
of quantum mechanics that impinge on its internal workings and clarify its
mathematical structure.

In an effort to understand the inner workings of quantum mechanics, the concept
of the trans-empirical quantum principle is postulated as being inherent in Nature.2

Using the paradigm of the trans-empirical quantum principle, the book attempts
to clarify the world of the quantum by reinterpreting the foundation of quantum
mechanics.

The book is organized as follows.
Chapter 2 is a summary of the main ideas of the book. The notion of the quantum

entity is reasoned to be inherently and intrinsically indeterminate and shown to
consist of a pair: the indeterminate quantum mechanical degree of freedom that is
the foundation of the quantum entity and the state vector that provides a quantitative
description of the quantum entity. Five cardinal principles of quantum mechanics
are identified as necessarily arising from the structure of the quantum entity.

Chapter 3 discusses what is real and what exists, two words that are used
synonymously in classical physics but, with appropriate refinements, are shown to
be words that have vastly different meanings in quantum mechanics. In order to
have a conceptually transparent framework of quantum mechanics, the empirical
domain of classical physics is extended to include a new domain termed as the
trans-empirical domain.

The quantum mechanical degree of freedom is shown to be completely
trans-empirical, whereas the state vector straddles two domains—existing in the

2The “trans-empirical quantum principle” is stated in Sect. 3.9 and discussed in detail in Chap. 3.
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trans-empirical domain when it is not experimentally observed and having an
empirical manifestation when it is observed. It is shown that the time evolution of a
quantum degree of freedom is via trans-empirical paths when the path taken is not
experimentally ascertained.

The concept of the trans-empirical quantum principle is formulated to define the
theoretical framework of quantum mechanics.

Chapter 4 discusses the mathematical framework for describing a quantum entity,
namely, the structure and properties of the degree of freedom and the quantum state
vector that describes it. The concept of a linear vector space is introduced, and the
basic properties of a state vector are stated and analyzed.

In Chap. 5, the concept of a Hermitian operator representing physically observ-
able properties of the quantum state is discussed in some detail. The main properties
of operators are stated, and the important examples of a discrete and continuous
degree of freedom are discussed.

Chapter 6 discusses the tensor product of vector spaces and operators. This
provides the mathematical framework for studying the density matrix, including the
pure, mixed, and reduced density matrix. The density matrix provides a criterion for
understanding a special class of state vectors, the so-called entangled states.

Chapter 7 shows that the Bell inequality provides a quantitative criterion for
differentiating quantum indeterminacy from classical randomness. The BKS the-
orem further generalizes the Bell inequality to include all quantum states. Quantum
probability is defined based on Heisenberg’s operator formulation of quantum
mechanics.

In Chap. 8, the remarkable properties of quantum superposition are discussed.
The Mach-Zehnder interferometer is employed to study the indeterminate paths of
a photon and illustrates how quantum interference arises; it is shown that a quantum
eraser can partially erase or restore quantum interference.

Chapter 9 discusses how the process of quantum measurement entails the
preparation, amplification, entanglement, and collapse of the state vector. The
density matrix provides a description of the quantum entity that is mathematically
appropriate for describing the process of measurement.

In Chap. 10, the Stern-Gerlach experiment is discussed in detail to illustrate and
exemplify the process of quantum measurement.

In Chap. 11 the Feynman path integral is derived by applying the trans-empirical
quantum principle to indeterminate paths, and the Dirac-Feynman path integral
formulation of quantum mechanics is briefly discussed. Path integral quantization
is taken as the starting point of quantum mechanics and is shown to yield the
Hamiltonian and its state space.

In Chap. 12 some conclusions are drawn.
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A thing, intuitively, seems to be an à priori form of Nature that is most directly
experienced by our five senses. A physical entity that can be perceived by sensory
perception appears to be one of the most irreducible and primitive notions that
underpins our cognition of Nature. A good place to start exploring the quantum
realm is to understand the difference in how classical and quantum mechanics
conceptualize an entity, a thing, and an object.

The concept of the thing in quantum mechanics soon leads us to a theoretical
framework for describing and explaining Nature that goes against our everyday
intuition that is based, as it is, on our daily experience.

Buried deep inside the mathematical structure of quantum mechanics are un-
resolved paradoxes, mysteries, and enigmatic views about Nature. One has to cut
through a thick shell of formalism to encounter the theoretical underpinnings of
quantum mechanics.

In this chapter, it is shown that the concept of a quantum entity necessarily
leads to the cardinal principles of quantum mechanics. The cardinal principles, in
turn, will lead us to introduce various theoretical constructs that are necessary for
discussing the principles and paradoxes of quantum mechanics.

2.1 What Is a Classical Entity?

The concept of an object in classical physics is founded on the idea of an objective
reality, namely, that a material entity has an intrinsic reality and its properties
(qualities) are inherent in the entity itself. All the interconnections of classical
objects to each other are founded on, and derived from, the objective reality of the
classical entity. Since the classical entity exists objectively, its properties do not
depend on anything external and, in particular, do not depend on whether it is being
observed (measured) or not.

With the development of Maxwell’s equation and Einstein’s theory of gravity,
the classical concept of a physical entity was extended to include the classical field.
A classical field, such as the electromagnetic field, is a physical entity that is spread

B.E. Baaquie, The Theoretical Foundations of Quantum Mechanics,
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a b

Fig. 2.1 (a) A person is looking at the apples. (b) The person is not looking at the apples. The
classical view is that the existence of the apple is an objective reality independent of the observer
(published with permission of © Belal E. Baaquie 2012. All Rights Reserved)

over space and propagates in time; the classical field, like a material thing, exists
objectively and has intrinsic properties such as having energy and momentum at
each spacetime point that it occupies.

According to classical physics, an entity is completely determinate and exists in
an exactly defined state; for example, a classical particle has an intrinsic and exact
position in space. When it is observed, the classical entity is what it appears to be;
hence, the classical entity is completely empirical, with an observation, in principle,
fully and completely describing its state. The Oxford dictionary defines empirical
as being based on, concerned with, or verifiable by observation or experience rather
than theory or pure logic.

We conclude that a classical entity exists objectively and is a determinate
quantity.

Consider a person looking and not looking at the apples, as in Figs. 2.1a,b,
respectively. What is the state of the apples for the two cases? Since, in classical
physics the apples exist objectively, it follows that even when the person looks away,
the apples continue to be in the same state in both cases, as in Figs. 2.1a,b.

However, note that if the person is not looking at the apples, then there is no
experimental basis to claim the apples continue to be in the same state as when
the person looked at it. The claim of classical physics that the world exists as an
objective reality is an assumption.

Dynamics of a Classical Entity

The dynamics (motion, time evolution) of classical dynamical variables (position
and velocity for a particle) are determined by Newton’s second law of motion; in
the modern formulation, it is given by the variation of the system’s action S. The
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a bFig. 2.2 (a) The classical
trajectory x(t),v(t) =
dx(t)/dt of a classical
particle. (b) To specify the
classical state of a particle at
each moment, its dynamical
variables (position x and
momentum p) have to be
specified (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

action is the time integral of the Lagrangian L(x,dx/dt), which is a function of the
kinetic and potential energy of a particle’s trajectory.

Consider the particle’s path for the finite time interval [ti, tf], as shown in Fig. 2.2a
and determined by Newton’s law of motion. Note that at every instant t, the particle
has a definite position x and momentum p = mv, where v = dx/dt is its velocity and
m its mass. The Lagrangian L(x,dx/dt) for the particle can be computed once the
particle’s trajectory is specified.

The action S for a particle is given by the following:

S =
∫ tf

ti
dtL(x,dx/dt) (2.1)

⇒ δS = 0 : Equation of motion (2.2)

with the initial and final positions being specified at ti and tf, respectively.
The equation of motion given in (2.2) means that if one takes any arbitrary

trajectory and computes the value of S, then the numerical value of S will be a
minimum (or maximum) only when the trajectory obeys Newton’s law and hence
will satisfy δS = 0. We conclude that (2.2) is equivalent to Newton’s law.

The state of a classical entity is described by its dynamical variables; for the case
of a particle, the dynamical variables are x and p, which are fixed for each instant
of time t. Hence, the classical state of the particle is completely determinate, with
its exact state given by specifying the dynamical variables x and p, as shown in
Fig. 2.2b.

Classical Probability

If one views an apple as being composed of a large collection of atoms, then one
is hard-pressed to claim that all the atoms that compose the apple continue to be
in the apple; it is highly likely that while one was looking away, some atoms have
detached themselves from the apple and other atoms from the environment have
become attached to it.
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The argument that a description of an apple has unavoidable approximations is
true for any large classical system, such as the practical impossibility of knowing
the precise position and momentum of all the gas atoms in a room. Recall precision
was defined in Chap. 1 as the degree to which an experiment, when it is repeated,
produces a series of measured values to within a certain error, termed as the level
of precision. An approximation is specifying a quantity to a certain well-defined
degree of precision.

Furthermore, the emergence of the discipline of (classical) chaos has shown that
any practical measurement has only a finite accuracy and introduces the idea of
classical randomness in the description of a nonlinear classical system.

Classical randomness, discussed in greater detail in Sect. 7.3, describes phe-
nomenon that lacks predictability, that exhibits the property of chance, and is
mathematically modeled by variables having an outcome determined by its prob-
ability distribution function.

Nevertheless, classical chaos theory does not change the ontological property of
a classical system in that it exists in a determinate and intrinsically exact state.

Ontology: from the Greek term for ‘being’; that which ‘is,’ present participle of the verb
‘be’; the term is used for the nature of being, of existence, or of reality.

The ambiguity and imprecision in the knowledge of a large (macroscopic)
classical system or a chaotic process is entirely due to our ignorance about the exact
state of the system and leads to classical probability theory.

The ignorance of the precise state of a classical object can be modeled and
encoded by considering the classical system to be in a random state, namely, known
to only certain level of precision. It is important to note that the intrinsic state of the
system is exact; the randomness of classical probability theory is an approximate
description of a system that intrinsically exists in an exact state.

The point to note is that an object exhibiting randomness of classical probability
is a classical entity that has an objective existence, having a specific and precise
value before it is observed; this point is of cardinal importance in the formulation of
classical probability, discussed in Sect. 7.3. The practical inability of providing an
exact description of a classical system leads one to the field of chaos and complexity;
one introduces new concepts drawn from classical probability theory that need to
supplement deterministic classical physics for providing a better description of a
classical chaotic system.

In fact, it will be shown in Chap. 7 that quantum probability is fundamentally
different from classical probability since the concept of quantum uncertainty is
essentially different from the idea of classical randomness.

2.2 The Entity in Quantum Mechanics

Our discussion on the “entity” in quantum mechanics does not take the historical
route but rather starts from the quantum conception of the entity and then goes on to
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a b

Fig. 2.3 (a) The person is not observing the atom: The atom is inherently indeterminate; it has the
highest likelihood of being observed in the shaded volume. (b) A person, by observing the atom,
puts the atom into a determinate state (published with permission of © Belal E. Baaquie 2012.
All Rights Reserved)

explain why the mathematical formalism of quantum mechanics logically follows
from the need of describing the quantum entity.

Consider a quantum particle in a box and subjected to repeated measurements.1

When one experimentally measures the position of the particle, one observes that it
has a definite position x1; if one then repeats the identical experiment, one observes
the particle at another position x2; and a third measurement yields yet another
position x3, and so on. Every time one measures the quantum particle’s position—
prepared in exactly the same way—it is observed at a different position.

There are special quantum states discussed in Sect. 5.3, called eigenstates, with
properties, such as energy and angular momentum, that have the same value every
time such an eigenstate is observed. The position degree of freedom for particle in
a box is not such a property.

When it is not observed, the quantum particle does not have any definite position,
and, unlike a classical particle, its position does not have an objective existence.
What is the form of existence of the particle when one does not measure the
particle’s position? If the entity is large, like a piece of stone, then the classical
description in most cases is quite adequate: The observed and unobserved state
appear to be the same. However, if the particle is small, like an electron or an atom,
all our intuition regarding its behavior fails.

For concreteness, let the quantum entity be an atom located in space. When a
man directly looks at the atom, as in Fig. 2.3b, he observes a point-like object, but
when he does not observe the atom, quantum mechanics tells us that the atom no
longer has a determinate position, but instead, the atom’s position is indeterminate;
the atom apparently “exists” at many positions simultaneously—with different
likelihoods—and the region of greatest likelihood is represented by the shaded
portion in Fig. 2.3a; the degree of shading indicates the different likelihood of the

1The concept of repeated quantum measurements is discussed in Sect. 9.3.
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particle being observed at different points, which in principle can extend to all of
space. The word “indeterminate” and the concept of quantum uncertainty are being
used synonymously; the term indeterminate needs to be defined more precisely and
is addressed in Sect. 3.2.

In other words, unlike a classical particle, a quantum particle does not have a
precise position before it is observed. This rather unexpected and strange claim of
quantum mechanics—that there is a fundamental difference between the observed
and unobserved state of a quantum entity—is at the foundation of quantum mechan-
ics. This strange claim of quantum mechanics has been shown to be consistent with
many experiments designed to test these claims.

The central role of observation, of measurement, is what differentiates the
observed from the unobserved state and is the key to quantum mechanics.

Heisenberg used the term potentiality for the indeterminate state of the quantum
entity and the term actuality for the observed condition. Every act of observation
results in the particle making a transition from its state of potentiality to one of its
possible and actual determinate condition [18].

In summary, in quantum mechanics, the entity, the object has two forms of
existence: when it is observed, it is definite and determinate, and when it is not
observed, it is indeterminate and uncertain. Fundamental to the two forms of
existence of a quantum entity is the act of observation, the process of measurement
that connects the unobserved with the observed form.

2.3 Describing an Indeterminate Quantum Entity

The classical description of an entity starts with the dynamical variables describing
the classical state of the entity and completes its description with the equations of
motion for the dynamical variables.

Since the quantum entity is intrinsically indeterminate, the classical approach
is inadequate. What is the route for describing an indeterminate quantum entity?
For concreteness, consider the quantum entity to be a quantum particle. Quan-
tum mechanical indeterminacy requires that the following interrelated issues be
addressed:
• The first step for describing a quantum particle is the quantum generalization of

the classical dynamical variables. In quantum mechanics, due to indeterminate-
ness, a quantum particle no longer has a classical trajectory; this entails giving up
all knowledge of the momentum if one measures the quantum particle’s position.

• Since the quantum entity’s position is indeterminate, the classical particle’s
dynamical variables x and p are superseded by the quantum degree of freedom
F . For a quantum particle moving in one space dimension, the degree of freedom
space is given by the real line, namely, F = ℜ = {x|x ∈ [−∞,+∞]}, and hence,
F is an entire space.

• The position of a quantum particle is an indeterminate degree of freedom when
it is not being observed. To perform measurements on the particle’s degree of
freedom, one needs to introduce the concept of operators that act on the degree
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of freedom, and are discussed in detail in Chap. 5. Suffice for the discussion here
is that position projection operators, discussed in Sect. 9.2, can observe all the
effects of the position degree of freedom.

Repeated observations by the quantum particle’s position operators reveal the
range of possible values that the particle’s position degree of freedom can take—
hence allowing us to theoretically enumerate all the possible positions of the
particle; in effect, the results of the observations allow us to mathematically
reconstruct the degree of freedom space F .

• The quantum degree of freedom is a quantitative entity that numerically describes
all the possible allowed values for the quantum entity and constitutes the space
F . The degree of freedom is a time-independent quantity, with the space F being
invariant and unchanging over time.

• It is an experimental fact that, when the quantum particle is repeatedly observed
using the different position projection operators, the operators acquire different
average values, reflecting the properties of the quantum particle’s degree of
freedom. Repeated observations, besides allowing for the enumeration of the
degree of freedom F , also provide the likelihood of the particle being found
at the different position projection operators.

• A major conceptual leap, following in the footsteps of Max Born, is to postulate
that the result of repeated experimental observations of the state vector yields all
the quantitative properties of a quantum entity.

• A quantitative quantum probabilistic description of the indeterminate quantum
entity is provided by the quantum state vector ψ(F).2 The state vector is
fundamentally statistical in nature, with every outcome being completely unpre-
dictable. The state vector ψ(F) is an element of the state space of the degree of
freedom, denoted by V(F).

• The quantum state vector ψ(F) is postulated to carry a complete description of
the quantum entity and is a superstructure of the quantum degree of freedom
F . Among other things, the state vector ψ(F) determines the likelihood of a
particular experimental outcome for the operators observing the degree of free-
dom.3 The quantum state can also be represented by the density matrix operator,
which is more suitable for analyzing the process of quantum measurements, and
is discussed in Chap. 6.

• The dynamics of a quantum entity is determined by the time evolution of its state
vector ψ(F), also written as ψ(t,F) to explicitly indicate the dependence on
the parameter of time t. The Schrödinger equation determines the dynamics of a
quantum entity. It is a first-order partial differential equation in time and yields
the time evolution of the state vector, namely, ∂ψ(t,F)/∂ t.

• There are two forms of existence of a quantum mechanical entity—the potential
(unobserved) and the actual (observed)—that are connected by a process of
measurement. Indeterminateness is potential and the determinateness is actual.

2Quantum probability is different from classical probability and is discussed in Chap. 7.
3The relation of the state to observed quantities is discussed in Sect. 2.4.
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Quantum Entity

Fig. 2.4 The theoretical superstructure of quantum mechanics; the quantum entity is constituted
by the degree of freedom F and its state vector that is an element of state space V(F); operators
act O(F) act on the state vector to extract information about the degree of freedom and lead to the
final result EV [O(F)]; only the final result, which is furthest from the quantum entity, is empirically
observed (published with permission of © Belal E. Baaquie 2012. All Rights Reserved)

According to Werner Heisenberg, all physical properties of the degree of
freedom F are mathematically represented by operators O(F). The process
of measurement is mathematically represented by applying operators on the
quantum state ψ(F) of the quantum entity.

• Repeating the process of measurement results in the experimental determination
of the average, or expectation value, of the physical operators and is expressed as
Eψ [O(F)]. All physical information about the degree of freedom F is encoded
in the expectation value of operators.
In summary, a quantum entity and its empirically measured properties—shown

in Fig. 2.4—are far more elaborately structured than a classical entity. The quantum
entity itself, when it is not being observed, consists of its degree of freedom F
together with the state vector ψ(t,F) describing its observable properties.

The observed condition of a classical entity exhausts all its properties—“one
sees what one gets.” In the case of a quantum entity, there is an entire unobservable
superstructure between the empirically observed properties of the quantum entity
and the totality of the quantum entity. The hidden quantum superstructure, which is
absent for a classical entity, needs an interpretation for making a connection of the
quantum entity with its experimentally observed properties and that is provided by
the Copenhagen quantum postulate.

2.4 The Copenhagen Quantum Postulate

The Copenhagen interpretation of quantum mechanics was pioneered by Niels Bohr
and Werner Heisenberg and is the standard interpretation of quantum mechanics
that is followed by the majority of practicing physicists—and is the one followed in
this book [10, 34]. The discussion in Sects. 2.2 and 2.3 was essentially a summary



2.4 The Copenhagen Quantum Postulate 13

and explication of the fundamental tenets of the Copenhagen interpretation of
quantum mechanics.

The Copenhagen interpretation is not universally accepted by the physics
community, with many alternative explanations being proposed for understanding
quantum mechanics, and which are summarized in Sect. 12.2. Instead of entering
this debate, this book endeavors to clearly represent the theoretical assumptions that
are implicit in the Copenhagen interpretation—assumptions that are generally quite
opaque due to the mathematical formalism of quantum mechanics.

The Copenhagen interpretation can be summarized by the following postulate:

The quantum entity consists of its degree of freedom F and its state vector ψ(t,F). The
foundation of the quantum entity is its degree of freedom, which takes a range of values
and constitutes a space F . The quantum degree of freedom is completely described by
the quantum state ψ(t,F), a complex-valued function of the degree of freedom that is an
element of state space V(F).
All physically observable quantities are obtained by applying Hermitian operators O(F) on
the state ψ(t,F).
The quantum entity is an inseparable pair, namely, the degree of freedom and its state
vector.
Experimental observations collapse the quantum state and repeated observations yield
Eψ [O(F)], which is the expectation value of the operator O(F) for the state ψ(t,F).
The Schrödinger equation determines the time dependence of the state vector, namely of
ψ(t,F), but does not determine the process of measurement.

It needs to be emphasized that the state vector ψ(t,F) provides only statistical
information about the quantum entity; the result of any particular experiment is
impossible to predict.

The organization of the theoretical superstructure of quantum mechanics is
shown in Fig. 2.4.

The quantum state ψ(t,F) is a complex number that describes the degree of
freedom and is more fundamental than the observed probabilities, which are always
real positive numbers. The scheme of assigning expectation values to operators,
such as Eψ [O(F)], leads to a generalization of classical probability to quantum
probability and is discussed in detail in Chap. 7.

To give a concrete realization of the Copenhagen quantum postulate, consider
a quantum particle moving in one dimension; the degree of freedom is the real
line, namely, F = ℜ = {x|x ∈ (−∞,+∞)} with state ψ(t,ℜ). Consider the position
operator O(x);4 a measurement projects the state to a point x ∈ ℜ and collapses the
quantum state to yield

P(t,x)≡ Eψ [O(x)] = |ψ(t,x)|2 ; P(t,x)> 0 ;
∫ +∞

−∞
dxP(t,x) = 1 (2.3)

Note from (2.3) that P(t,x) obeys all the requirements to be interpreted as a
probability distribution. A complete description of a quantum system requires

4The position projection operator O(x) = |x〉〈x| and is discussed in Sect. 9.2.
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specifying the probability P(t,x) for all the possible states of the quantum system.
For a quantum particle in space, its possible quantum states are the different
positions x ∈ [−∞,+∞]. The position of the quantum particle is indeterminate, and
P(t,x) = |ψ(t,x)|2 is the probability of the state vector collapsing at time t and at
O(x)—the projection operator for position x.

The moment that the state ψ(t,ℜ) is observed at specific projection operator
O(x), the state ψ(t,ℜ) instantaneously becomes zero everywhere else. The transi-
tion from ψ(t,ℜ) to |ψ(t,x)|2 is an expression of the collapse of the quantum state.
It needs to be emphasized that no classical wave undergoes a collapse on being
observed; the collapse of the state ψ(t,ℜ) is a purely quantum phenomenon.

The pioneers of quantum mechanics termed it as “wave mechanics” since the
Newtonian description of the particle by its trajectory x(t) was replaced by the state
ψ(t,ℜ) that looked like a classical wave spread over all of space ℜ. Hence, the term
“wave function” was used for denoting ψ(t,ℜ).

The state ψ(t,F) of a quantum particle is not a classical wave; rather, the
only thing it has in common with a classical wave is that it is sometimes spread
over space. However, there are quantum states that are not spread over space. For
example, the up and down spin states of a quantum particle exist at a single point;
such quantum states are described by a state that has no dependence on space and
hence is not spread over space.

In the text, the terms state, quantum state, state function, or state vector are
henceforth used for ψ(t,F), as these are more precise terms than the term wave
function.

The result given in (2.3) is an expression of the great discovery of quantum
theory, namely, that behind what is directly observed—the outcome of experiments
from which one can compute the probabilities P(t,x) = |ψ(t,x)|2—there lies an
unobservable world of the probability amplitude that is fully described by the
quantum state ψ(t,F).

2.5 Five Pillars of Quantum Mechanics

The description and dynamics of a quantum entity given in Sect. 2.3 can be
summarized as follows. Quantum mechanics is built on five main conceptual pillars
that are given below.
• The quantum degree of freedom space F
• The quantum state vector ψ(F)
• Time evolution of ψ(F) given by the Schrödinger equation
• Operators O(F)
• The process of measurement, with repeated observations yielding the expectation

value of the operators, namely, EV [O(F)]
The five pillars of quantum mechanics are illustrated in Fig. 2.5. Each pillar of

quantum mechanics is briefly summarized in the following sections.
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Fig. 2.5 The five cardinal pillars of quantum mechanics (published with permission of © Belal
E. Baaquie 2012. All Rights Reserved)

2.6 Degree of Freedom Space F
Recall in classical mechanics, a system is described by its dynamical variables,
and its time dependence is given by Newton’s equations of motion. In quantum
mechanics, the description of a quantum entity starts with the generalization of
the classical dynamical variables and, following Dirac [10], is called the quantum
degree of freedom.

The degree of freedom is the root and ground on which the quantum entity
is anchored. The degree of freedom embodies the qualities and properties of a
quantum entity. A single quantum entity, such as the electron, can simultaneously
have many degrees of freedom, such as spin, position, and angular momentum that
all, taken together, describe the quantum entity. The symbol F is taken to represent
all the degrees of freedom of a quantum entity.

The indeterminacy of the quantum degree of freedom is studied in detail in
Chap. 7. A remarkable conclusion of the study—validated by experiments—is that
a quantum degree of freedom does not have any precise value before it is observed;
the degree of freedom is inherently indeterminate. One interpretation of the degree
of freedom being intrinsically indeterminate is that it simultaneously has a range
of possible values; the collection of all possible values of the degree of freedom
constitutes a space that is denoted by F ; the space F is time independent.

The entire edifice of quantum mechanics is built on the degree of freedom and,
in particular, on the space F .

2.7 State Space V(F)

In the quantum mechanical framework, a quantum degree of freedom is inherently
indeterminate and, metaphorically speaking, simultaneously has a range of possible
values that constitutes the space F .

An experimental device is constructed to examine and explore the properties of
a degree of freedom and is built to correspond to the properties of the degree of
freedom. Consider a quantum entity that has spin � and for which the degree of
freedom consists of 2�+ 1 discrete points. A device built for observing a spin �
system needs to have 2�+ 1 possible positions, one for each of the possible values
of the degree of freedom.



16 2 The Quantum Entity and Quantum Mechanics

The experiment needs to be repeated many times due to the indeterminacy of
the quantum degree of freedom, as discussed in Sect. 9.3. The outcome of each
particular experiment is completely uncertain and indeterminate, with the degree
of freedom inducing the device to take any one of its (the device’s) many possible
values.5 However, the cumulative result of repeated experiments shows a pattern—
for example, with the device pointer having some positions being more likely to be
observed than others.

How does one describe the statistical regularities of the indeterminate and
uncertain outcomes of an experiment carried out on a degree of freedom? As
mentioned in Sect. 2.6, the subject of quantum probability arose from the need
to describe quantum indeterminacy. A complex-valued state vector, also called the
state function and denoted by ψ , is introduced to describe the observable properties
of the degree of freedom. The quantum state ψ maps the space F to the complex
numbers C; in particular, for the special case of coordinates x ∈ ℜ = F ,ψ is a
complex function of x. Hence

ψ : F → C

x ∈ ℜ ⇒ ψ(x) ∈ C

The state vector is an element of an infinite-dimensional linear vector state space.
For a consistent probabilistic interpretation of quantum mechanics, discussed in
Chap. 4, it is necessary that the norm of ψ be unity, namely,

|ψ |2 = 1

The state vector hence is an element of a time-independent normed linear vector
space, namely, Hilbert space V , which is the subject matter of Chap. 4. In symbols

ψ ∈ V(F)

2.8 Operators O(F)

The connection of the quantum degree of freedom with its observable and mea-
surable properties is indirect and roundabout and is always, of necessity, mediated
by the process of measurement. A consistent interpretation of quantum mechanics
requires that the measurement process plays a central role in the theoretical
framework of quantum mechanics.

In classical mechanics, observation and measurement of the physical properties
plays no role in the definition of the classical system. For instance, a classical
particle is fully specified by its position and velocity at time t and denoted

5It is always assumed, unless stated otherwise, that a quantum state is not an eigenstate.
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by x(t),v(t); it is immaterial whether a measurement is performed to ascertain
the position and velocity of the classical particle; in other words, as mentioned
earlier, the position and velocity of the classical particle x(t),v(t) exist objectively,
regardless of whether its position or velocity is measured or not.

In contrast to classical mechanics, in quantum mechanics, the degree of freedom
F , in principle, can never be directly observed. All the observable physical
properties of a degree of freedom are the result of a process of measurement carried
out on the state vector ψ . Operators, discussed in Chap. 5, are mathematical objects
that represent physical properties of the degree of freedom F and act on the state
vector; the action of an operators on the state vector is a mathematical representation
of the process measuring these physical properties. Following Dirac [10], operators
that represent physical quantities are also called observables.

The degree of freedom F and its measurable properties—represented by the
operators Oi—are separated by the quantum state vector ψ(t,F); see Fig. 3.3. An
experiment can only measure the effects of the degree of freedom—via the state
vector ψ(t,F)—on the operators Oi. Furthermore, each experimental device is
designed and tailor-made to measure a specific physical property of the degree of
freedom, represented by an operator Oi.

2.9 The Schrödinger Equation for State ψ(t,F)

The discussion so far has been kinematical, in other words, focused on the
framework for describing a quantum system. One of the fundamental goals of
physics is to obtain the dynamical equations that predict the future state of a
system. This requirement in quantum mechanics is met by the Schrödinger equation
that determines the future time evolution of the state function ψ(t,F), where t
parametrizes time. The Schrödinger equation is time reversible.

To write down the Schrödinger equation, one first needs to specify the quantum
generalization of energy. The Hamiltonian operator H represents the energy of a
quantum entity; H determines the form and numerical range of the possible allowed
energies of a given quantum entity.

To exist, all physical entities must have energy; hence, it is reasonable that the
Hamiltonian H should enter the Schrödinger equation. Furthermore, energy is the
quantity that is conjugate to time, similar to position being conjugate to momentum,
and one would consequently expect that H should play a central role in the state
vector’s time evolution. However, in the final analysis, there is no derivation of the
Schrödinger equation from any underlying principle, and one has to simply postulate
it to be true.

The celebrated Schrödinger equation is given by

− h̄
i

∂ψ(t,F)

∂ t
= Hψ(t,F) (2.4)
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where h̄ = h/2π , with h being Planck’s constant. Consider a quantum particle in one
dimension; the degree of freedom is given by F = ℜ; for the coordinate x ∈ ℜ, the
Schrödinger equation is given by

− h̄
i

∂ψ(t,x)
∂ t

= Hψ(t,x) (2.5)

The Hamiltonian, for potential V (x), is given by

H =− h̄2

2m
∂ 2

∂x2 +V(x) (2.6)

The Schrödinger equation given in (2.4) is a linear equation for the state
function ψ ; if ψ1 and ψ2 are solutions of the Schrödinger equation, then their linear
combination

ψ = αψ1 +β ψ2 (2.7)

is also a solution, where α and β are complex numbers. The quantum superposition
of state vectors given in (2.7) is of far-reaching consequence, and its implications
are discussed in Sect. 3.7.

Quantum mechanics introduces a great complication in the description of Nature
by replacing the dynamical variables x and p of classical mechanics, which consist
of only six real numbers for every instant of time, by an entire space F of the
indeterminate degree of freedom; a description of the quantum entity requires, in
addition, a state vector that is a function of the space F . According to Dirac, the
great complication introduced by quantum indeterminacy is “offset” by the great
simplification due to the linearity of the Schrödinger equation [10].

The mathematical reason that state vector ψ is an element of a normed linear
vector space is due to the linearity of the Schrödinger equation. The fact that ψ
is an element of a linear vector space leads to many nonclassical and unexpected
phenomena such as the existence of entangled states and the quantum superposition
principle—to be discussed later in Chaps. 6 and 8, respectively.

2.10 Indeterminate Quantum Paths

The time evolution of physical entities is fundamental to our understanding of
Nature. For a classical entity evolving in time, its trajectory exists objectively,
regardless of whether it is observed or not and shown in Fig. 2.2a, with both its
position x(t) and velocity v(t) having exact values for each instant of time t.

We need to determine the mode of existence of quantum indeterminacy for the
case of the time evolution of a quantum particle.

Consider a quantum particle with degree of freedom x ∈ ℜ = F . Suppose that
the particle is observed at time ti, with the position operator finding the particle at
point xi and a second observation is at time tf, with the position operator finding the
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Fig. 2.6 A quantum particle
is observed at first at initial
position xi at time ti and a
second time at final position
xf at time tf. The quantum
particle’s path being
indeterminate means that the
single particle simultaneously
exists in all the allowed paths
(published with permission of
© Belal E. aaquie 2012. All
Rights Reserved)

particle at point xf. To simplify the discussion, suppose there are N-slits between the
initial and final positions, located at positions x1,x2, . . . ,xN and shown in Fig. 2.6.

There are two cases for the quantum particle making a transition from xi, ti
to xf, tf, namely, when the path taken at intermediate time t is observed and not
observed. The two cases are studied in detail in Chaps. 8 and 11, and the two-slit
case is discussed in Sect. 3.7. For the case when the paths taken at intermediate
time t is observed, one simply obtains the classical result and is discussed further in
Chap. 8.

What is the description of the quantum particle making a transition from xi, ti to
xf, tf when it is not observed at intermediate time t? The following is a summary of
the conclusions:
• The quantum indeterminacy of the degree of freedom leads to the conclusion that

the path of the quantum particle is indeterminate.
• The indeterminacy of the path is realized by the quantum particle by existing in

all possible paths simultaneously, or metaphorically speaking, the single quantum
particle simultaneously “takes” all possible paths.

• For the case of N-slits between the initial and final positions shown in Fig. 2.6,
the quantum particle simultaneously exists in all the N-paths.
The term probability amplitude is used for describing the indeterminate paths

of a quantum system. The probability amplitude is a complex number, and each
determinate path is assigned a probability amplitude.

Since no observation was made to determine which path was taken, all the
paths are indistinguishable, and hence, the particle’s path is indeterminate, with
the particle simultaneously existing in all the N-paths, as shown in Fig. 2.6. The
probability amplitude for the quantum particle that has an indeterminate path is
obtained by combining the probability amplitudes for the different determinate
paths using the quantum superposition principle; this procedure is discussed for the
two-slit case in Sect. 3.7 and for the general case in Chap. 8.
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Let probability amplitude φn be assigned to the determinate path going through
slit at xn with n = 1,2, . . . ,N, as shown in Fig. 2.6, and let φ be the probability
amplitude for a particle that is observed at position xi at time ti and then observed at
position xf at later time tf. The probability amplitude φ for the transition is obtained
by superposing the probability amplitudes for all indistinguishable determinate
paths and yields

φ(xf, tf|xi, ti) =
N

∑
n=1

φn : indistinguishable paths (2.8)

Once the probability amplitude is determined, its modulus squared, namely, |φ |2,
yields the probability for the process in question. For the N-slit case,

|φ(xf, tf|xi, ti)|2 = P(xf, tf|xi, ti) ;
∫

dxfP(xf, tf|xi, ti) = 1

where P(xf, tf|xi, ti) is the conditional probability that a particle, observed at position
xi at time ti, will be observed at position xf at later time tf.

Quantum mechanics can be formulated entirely in terms of indeterminate paths,
a formulation that is independent of the framework of the state vector and the
Schrödinger equation; this approach, known as the Dirac–Feynman formulation, is
discussed in Chap. 11.

2.11 The Process of Measurement

Ignore for the moment details of what constitutes an experimental device. What
is clear from numerous experiments is that the experimental readings obtained
by observing a quantum entity (by a measuring device) cannot be explained by
deterministic classical physics and, in fact, require quantum mechanics for an
appropriate explanation.

Consider a degree of freedom F ; the existence of a range of possible values of
the degree of freedom is encoded in its state vector ψ(F). Let physical operators
O(F) represent the observables of the quantum degree of freedom. The degree of
freedom cannot be directly observed; instead, what can be measured is the effect of
the degree of freedom on the operators that is mediated by the state vector ψ(F).

The preparation of a quantum state yields the quantum state ψ(F), which is then
subjected to repeated measurements.

A concrete example of how the quantum state of a “quantum particle in a box” is
prepared is discussed in Sect. 9.3, which we briefly review.

Electrons are obtained by heating a metal. The electrons ejected by the metal
are fairly well localized in space and can be treated as semiclassical particles; the
electrons are focused towards a cavity using electric and magnetic fields, as shown
in Fig. 9.7a. Once an electron is inside the cavity, a mechanism has to be provided
to ensure that the electron does not hit the wall of the cavity. For a special cavity,
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called a Penning trap, electric and magnetic fields are used to confine the movement
of the electron to a finite region of space, as shown in Fig. 9.7b.

Once the electron is inside the cavity, no further measurement is performed; the
energy of the electron is chosen so that it remains confined inside the “box”; the
electron is described by the quantum state ψ(F) for a quantum particle in a box.

Operators O(F), discussed in Chap. 5, are the mathematical basis of measure-
ment theory. The experimental device is designed to measure the properties of the
operator O(F). Measurement theory requires knowledge of special quantum states,
namely, the eigenstates χn of the operator O(F), which are defined as follows6:

O(F)χn = λnχn

Because the process of measurement ascertains the properties of the degree
of freedom by subjecting it to the experimental device. The measurement is
mathematically represented by applying the operator O(F) on the state of the
system ψ(F) and projecting it to one of the eigenstates of O(F), namely,

ψ(F) → Measurement → χn : collapse of state ψ(F)

Applying O(F) on the state vector collapses it to one O(F)’s eigenstates.
The projection of the state vector ψ to one of the eigenstates χn of the operator

O(F) is discontinuous and instantaneous; it is termed as the collapse of the state
vector ψ . The result of a measurement has to be postulated to lead to the collapse
of the state vector and is a feature of quantum mechanics that is not governed by the
Schrödinger equation.

Unlike classical mechanics, where the same initial condition yields the same final
outcome, in quantum mechanics the same initial condition leads to a wide range
of possible final states. The result of identical quantum experiments is inherently
uncertain.7 For example, radioactive atoms, even though identically prepared, decay
randomly in time precisely according to the probabilistic predictions of quantum
mechanics.

After many repeated observations performed on state ψ(F), all of which in
principle are identical to each other, the experiment yields the average value of the
physical operator O(F), namely,

O → measurements on ψ(F) → Eψ [O(F)]

Because the process of measurement cannot be modeled by the Schrödinger
equation, this has long been a point of contention among physicists since many
physicists hold that the fundamental equations of quantum mechanics should
determine both the evolution of the quantum state and the collapse of the state

6Eigenstates are discussed in (5.5).
7Except, as mentioned earlier, for eigenstates.
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caused by the process of measurement. As of now, there has been no resolution
to this conundrum.

2.12 Summary: Quantum Entity

In light of the superstructure of quantum mechanics, what is a quantum entity? A
careful study of what is an entity, a thing, and an object leads to the remarkable
conclusion that the quantum entity is intrinsically indeterminate and its description
requires a framework that departs from our classical conception of Nature.

The quantum entity’s foundation is its degree of freedom F , and quantum
indeterminacy is due to the intrinsic indeterminacy of the degree of freedom. A
landmark step, taken by Max Born, was to postulate that quantum indeterminacy can
be described by a state vector ψ(F) that obeys the laws of (quantum) probability.
The state vector is inseparable from the degree of freedom and encodes all the
information that can be obtained from the indeterminate degree of freedom and is
illustrated in Fig. 2.7.

It should be noted that the state vector ψ(F) does not “surround” the degree of
freedom in physical space; rather, Fig. 2.7 illustrates the fact that all observations
carried out on the degree of freedom always encounter the state vector and no
observation can ever come into direct “contact” with the degree of freedom itself.
All “contact” of the measuring device with the degree of freedom is mediated by the
state vector.

In summary, the following is a definition of the quantum entity:

A quantum entity is constituted by a pair, namely, the degree(s) of freedom F and the state
vector ψ(F) that encodes all of its properties. This inseparable pair, namely, the degree of
freedom and the state vector, embodies the condition in which the quantum entity exists.

According to the Copenhagen quantum postulate, observations carried out on
the degree of freedom collapse the quantum state to a definite state, namely, an
eigenstate of a physical operator; the outcome of every experiment (except for
eigenstates) is uncertain. Repeated observations yield quantities that describe the
observable and quantifiable properties of the quantum entity.

ψ(   )

Fig. 2.7 A quantum entity is
constituted by its degrees of
freedom F and the state
vector ψ(F) that permanently
encompasses and envelopes
its degrees of freedom
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)
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Heisenberg pioneered a framework for describing quantum mechanics based
on the algebra of operators; quantum indeterminacy and the concepts of quantum
probability are defined in terms of these operators, discussed in Chap. 7.

A third and independent formulation of quantum mechanics is based on the
Dirac–Feynman framework of the degree of freedom having indeterminate paths
(indeterminate time evolution) and is expressed in terms of the Feynman path
integral, discussed in Chap. 11.

Quantum indeterminacy—formulated by Born in terms of the state vector—
was later realized to have a more transparent representation in Heisenberg’s
operator formulation. Physical quantities are represented by operators, and every
experimental device is custom designed for measuring the properties of the operator.
The quantum state is represented by the density matrix operator, discussed in
Chap. 6. The operators extract all the information obtainable about the quantum
entity by acting on its quantum state, which encodes all the physically observable
properties of the degree of freedom, and in effect of the quantum entity as well.

In the ultimate analysis all that one can finally measure in an experiment is the
effect of the quantum entity on the readings of our experimental devices, which in
many cases consists of discrete changes (‘clicks’) in the readings of the device’s
counters.

All of our understanding of a physical entity is based on our theoretical and
mathematical concepts, which in turn are constructed from, and have to be explain,
a plethora of experimental data. In the case of quantum mechanics, the mathematical
construction has led us to infer the existence of the quantum entity. The theoretical
constructions of quantum mechanics are far from being arbitrary and ambiguous;
to the contrary, given the maze of links from the quantum entity to its empirical
properties, it is highly unlikely that there are any major gaps or redundancies in the
theoretical superstructure of quantum mechanics.





3Quantum Mechanics: Empirical
and Trans-empirical

The founders and leading proponents of quantum mechanics were well aware of
the paradoxical and opaque workings of quantum mechanics that do not conform
to our everyday intuition, an intuition derived from the world of macroscopic
objects. Niels Bohr had the following to say about quantum mechanics: “Those who
are not shocked when they first come across quantum mechanics cannot possibly
have understood it” (Quoted by Heisenberg in [18]). Richard Feynman made the
following observation: “I think it is safe to say that no one understands quantum
mechanics. Do not keep saying to yourself, if you can possibly avoid it, ‘But how
can it be like that?’ because you will get ‘down the drain’ into a blind alley from
which nobody has yet escaped. Nobody knows how it can be like that” [13].

The mysteries and paradoxes of quantum mechanics arise due to the following
two reasons:
• The intrinsic indeterminacy and uncertainty exhibited by a quantum entity is

completely absent in our everyday life.
• The linearity of the Schrödinger equation that determines the dynamics of the

quantum state.
The mystery of quantum mechanics is not just only about indeterminism but rather
also about the manner in which this indeterminism is realized.

Dirac has a famous statement that a “picture”, namely, a metaphor, in a scientific
theory need not be a classical construct but rather should be a “way of looking
at the fundamental laws which makes their self-consistency obvious” [10]. In this
spirit of Dirac, a new concept, namely, the trans-empirical, is proposed for inclusion
into the lexicon and conceptual framework of quantum mechanics. The term trans-
empirical is introduced for providing a “picture,” a metaphor, for the equations of
quantum mechanics; the hope is that the trans-empirical concept will bring greater
clarity to the inner workings of quantum mechanics by making it theoretically more
transparent as well as accessible to deeper mathematical analysis.

The following are the topics covered in this chapter:
• Definition of the concept of trans-empirical.
• The reexamination of the various domains of the quantum entity’s superstructure.

B.E. Baaquie, The Theoretical Foundations of Quantum Mechanics,
DOI 10.1007/978-1-4614-6224-8__3, © Springer Science+Business Media New York 2013
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• The study of the two-slit experiment as an exemplar for studying the relation of
the trans-empirical domain to quantum superposition.

• The trans-empirical quantum principle is stated and essentially entails enhancing
the concept of what “exists” in Nature.

3.1 Real Versus Exist

According to Dirac, quantum mechanics is “built up from physical concepts .. which
cannot even be explained in words at all” [10]. Referring to quantum mechanics,
Niels Bohr had the following to say about what is “real”:“We are suspended in
language in such a way that we cannot say what is up and what is down. The word
‘reality’ is also a word, a word which we must learn to use correctly” [30].

Due to its opaque and unfamiliar workings, words that are employed in dis-
cussing, understanding, and explaining the concepts of quantum mechanics have
come to be used in a very specific manner, and one needs to carefully define these
words. Two central concepts that we need to discuss are what is “real” and what
“exists”; these two terms have many implications in quantum mechanics, and hence
it is necessary to clarify their meaning. Whether something is “real” or “exists”
comes down to how these words are defined; the dictionary meaning of the word
“exist” is extended so that it can be used to discuss many concepts that arise in
quantum mechanics.

The Oxford dictionary defines real as actually existing as a thing or occurring in
fact; not imagined or supposed and defines exist to have objective reality or being.
Hence, the words “to exist” and “to be real” seem to have the same meaning, with
“to exist” meaning “to be real” and “to be real” meaning “to exist”; in fact, these
two words are normally used synonymously.

An entity that is real is defined as existing . . . in fact and points to the entity’s
empirical, objective, and factual existence. Quantum mechanics has adopted this
definition of “real” and also provides a new dimension to the concept of what is
“real”; according to Heisenberg, “Reality is in the observations, not in the electron”
[18]: What is defined by Heisenberg to be real is not the electron itself but rather
the result of observations on the electron. The results of observations are taken to
be real, and Heisenberg is silent on the ontological status of the electron itself.

For Heisenberg, similar to its dictionary meaning, the word “real” stands for
an empirical reality, a reality that has an objective and factual existence. Instead
of debating whether this is the most appropriate use of the word “real,” for the
sake of clarity, Heisenberg’s definition of the word “real” is adopted in this book.
Henceforth, the word “real” refers only to the result of observations, or in short, to
what is empirical.

As discussed in Sect. 2.2 and elaborated in detail in Chap. 7 on Quantum Inde-
terminacy, a quantum particle, say, an electron, is inherently indeterminate; what
this means is that, before its position operator is measured, the particle’s “position”
does not have an objective reality; instead, only on being observed does the particle
yield a determinate and real value to the observation. In other words, Heisenberg’s
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statement “Reality is . . . not in the electron” means the following: that in quantum
mechanics, what is real and existing in fact is only the result of an observation (of
the electron) and that the electron itself, as such, does not have an objective reality.

The quantum entity (the degree of freedom and its inseparable quantum state) is
inherently indeterminate and, unlike a classical entity, does not have an objective
reality, but it certainly has some mode of existence since the quantum degree of
freedom continues to “exist” when it is not observed. How should we refer to the
“being” of a quantum entity when it is not being observed, when it is intrinsically
indeterminate?

It is most logical to use the word “exist” for entities that are empirical as well
as trans-empirical. What is at issue is the concept of an objective existence of an
entity and which has crept into the dictionary definition of “exist”. There are many
entities such as mathematics, language, and so on that don’t have an empirical and
objective existence, but nevertheless do exist. To describe such entities as well as the
being of an indeterminate entity, in this book, the meaning of “exist” is no longer
taken to entail having objective reality—which is now reserved for something that is
“real”—and the definition of exist is generalized and extended to describe any entity
that is, namely, has being, and not necessarily has an objective being or an objective
existence or an objective reality.

The word “exist” can now be used for describing the being of entities that
don’t have an objective existence and which includes entities that are inherently
indeterminate. With the modified definition of the word “exist”, the unobservable
and indeterminate quantum degree of freedom is said to exist, namely, it has a
“nonobjective” mode of existence.

In summary, the point of view and ontological stand adopted in this book is that
the unobservable and indeterminate quantum degree of freedom exists; in contrast,
the empirically observed properties of the degree of freedom are real.

3.2 Empirical, Trans-empirical, and Indeterminate

The rather inexplicable and unexpected feature of quantum mechanics—that the
degree of freedom F , in principle, cannot be empirically observed—is explored
in this book. In particular, to explain and understand the unusual properties of the
degree of freedom, the term trans-empirical is introduced for describing F .

The Oxford dictionary defines empirical as being based on, concerned with,
or verifiable by observation or experience rather than theory or pure logic. The
empirical realm is accessible to direct experimental observations.

The term trans-empirical is defined as a domain of existence that lies beyond,
that transcends, the empirical realm. The trans-empirical domain, in particular, is
inaccessible to direct observation, experiential and experimental knowledge, and
only accessible to theory or pure logic.
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The term trans-empirical has been defined in a manner so that it can be used to
denote the virtual and unobservable form of existence of a quantum entity.1 The
adjective trans-empirical is sometimes used for qualifying existence to emphasize
the difference in the meaning of trans-empirical existence from the empirically real.

An entity that is determinate is in a definite state, and this definiteness is
a property intrinsic to the entity; hence, a determinate entity is taken to be
synonymous to being an empirical entity; the quality of determinateness is intrinsic
to the entity and hence exists regardless of whether it is observed or not.

The Cambridge Dictionary defines indeterminate as not measured, counted or
clearly described; this definition is far too literal and narrow a definition since it
implies the objective existence of the entity that is indeterminate; this definition of
indeterminate will not be adopted in this book.

The term “indeterminate” has been used in the foregoing sections as being
synonymous to quantum uncertainty—based on an intuitive understanding of this
word as being the “opposite” of being determinate, definite, and factual. The concept
of “indeterminateness” needs to be defined more precisely so that it can be related
to quantitative questions such as, in an experiment, what can and cannot be termed
as being an “indeterminate” entity.

A classical entity is intrinsically determinate since, at each instant, it has definite
and exact values for its dynamical variables. In contrast, a quantum entity is
intrinsically indeterminate, with the quantum degree of freedom having no exact and
objective existence prior to a measurement being performed. Hence, as one can see
from the description of a classical and quantum entity, the words determinate and
indeterminate provide a consistent manner of describing the contrasting classical
and quantum entities.

The word indeterminate is closely related to the concept of trans-empirical. On
examining the concept of indeterminacy, one comes to the conclusion that it is
another way of describing a trans-empirical entity, since at the root of indeterminacy
is not the lack of precise knowledge of an a priori objectively existing entity, but
rather indeterminacy refers to the intrinsic nature of an entity that does not have
an objective existence. While acknowledging that the word “indeterminate” can be
defined in many different ways, in this book the concept of “indeterminateness”
is defined to mean a trans-empirical entity, namely, a form of existence that is not
observable and is trans-empirical.

The words indeterminate and trans-empirical will be used interchangeably, with
a specific choice being made depending on the context of the discussion.

Consider the earlier example of a quantum particle discussed in Sect. 2.2 The
position degree of freedom of the particle is intrinsically indeterminate in the sense
that it does not have any definite position; instead, the single particle exists at every
point (centered on some average position), and in this sense the particle’s position

1The term “virtual” is henceforth avoided since it has become associated with software-based
simulations such as “virtual reality” and “virtual machines” that are not related, in any manner, to
the virtual states of quantum mechanics.
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is indeterminate. Clearly, the quantum particle is in a trans-empirical state since one
can never empirically observe the particle being at more than one point.

Consider the indeterminate paths discussed in Sect. 2.10 and shown in Fig. 2.6. In
what sense are the paths indeterminate? There are N-paths in Fig. 2.6, paths that are
determinate and have a definite trajectory. The particle’s path being indeterminate
means that it simultaneously exists in all the allowed determinate paths; again, the
particle taking indeterminate paths of necessity requires that the quantum particle
exists in a trans-empirical form since one will never find the particle at more than
one point.

In conclusion, the quantum entity’s indeterminacy and its trans-empirical state
are inseparable since to be indeterminate the quantum entity must exist in a trans-
empirical state and vice versa.

3.3 Quantum Mechanics and the Trans-empirical

This book is written within the framework of the Copenhagen interpretation of
quantum mechanics, developed primarily by Bohr and Heisenberg [17].

Recall in the Copenhagen interpretation only the experimentally observed
quantities of the quantum system are taken to be real. There are a number of issues
on which the Copenhagen interpretation is silent, the main one being the ontological
status of the quantum system when it is not observed.

As argued in Sect. 3.1, clearly the quantum entity, in particular the quantum
degree of freedom, continues to exist even when it is not observed. A primary focus
of this book is to try and clarify the ontological condition of the degree of freedom
when it is not observed. In particular, in what sense does the quantum entity continue
to exist, both before and after it is observed.

The Copenhagen interpretation is augmented and enhanced by expanding the definition of
what is to be considered to exist. The degree of freedom and the quantum state are not taken
to be merely a mathematical representation of nonexistent entities that magically produce
the results of quantum mechanics. Rather, this book explores in what quantum mechanical
sense can the quantum entity, that is, the degree of freedom and its quantum state, be taken
to exist. The existence of the quantum entity is taken to replace the concept of “objective
reality” of classical mechanics.

The domain of what exists is extended from the classical domain of the empirical
to a new domain of Nature that is trans-empirical. The concept that Nature has
a trans-empirical domain is introduced in an attempt to explain and understand
the range of phenomena revealed by quantum mechanics. This expanded view of
what exists is postulated with the purpose of clarifying the workings of quantum
mechanics.

The trans-empirical domain does not exist in classical physics since all phenom-
ena in classical physics exist objectively and hence are, in principle, empirical and
directly observable. Quantum theory has enhanced our conception of Nature by its
discovery of the trans-empirical domain.
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Fig. 3.1 The organization of the superstructure of a quantum entity into the empirical, the trans-
empirical, and the transitional domains (published with permission of © Belal E. Baaquie 2012.
All Rights Reserved)

Physics is an empirical science, and all laws of physics are empirical; the relation
of a trans-empirical domain of Nature to the empirical realm of physics is discussed
in Sect. 3.10.

Quantum Superstructure and the Trans-empirical

The five cardinal pillars of the quantum entity’s superstructure, given in Fig. 2.5,
can be organized using the criterion of empirical and trans-empirical; in the next
two sections, each cardinal pillar of quantum mechanics is analyzed from the point
of what is and what is not empirically observable; the results of this analysis are
summarized in Fig. 3.1.
• The foundation of the quantum entity, namely, its degree of freedom F , is a

trans-empirical quantity.
• The empirical manifestation of the quantum entity is observed in experimental

readings. The result of experiments is to provide an empirical value for the
expectation value of observable operators, namely, EV [O(F)].

• The transitional domain—connecting the trans-empirical and empirical
domains—is straddled by quantum state vector. On the one hand, the quantum
state ψ(t,F) is trans-empirical, is in “contact” with the degree of freedom F ,
and encodes all the observable properties of F . On the other hand, measurements
on the degree of freedom F cause the quantum state to collapse to its empirical
manifestation, which after repeated measurements yields the empirical result
EV [O(F)].

• Operators O(F) representing physical observables are in the transition domain
from the side of the empirical domain, causing the quantum state to make a
transition from the trans-empirical to the empirical domain. The operators do
not have direct overlap or “contact” with the degree of freedom F , but instead,
the state vector ψ(t,F) mediates the connection of the operators O(F) with the
degree of freedom F .
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Fig. 3.2 The enveloping
theoretical superstructure that
describes the nature of a
quantum entity (published
with permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

Figure 3.2 illustrates the nature and organization of the superstructure of a
quantum entity. The foundation of the quantum entity is its degree of freedom F ,
with the entire quantum superstructure built on it. The diagram represents the
encompassing nature of the various domains of the quantum entity’s superstructure.
It is logical to conclude that the characteristic features of a quantum entity are a
manifestation of its mode of existence that reflects an ontology far more complex
than that of a classical entity.

3.4 Quantum Degree of Freedom F Is Trans-empirical

The quantum degree of freedom is a quantitative entity that simultaneously exists in
all of its possible allowed values. It is intrinsically and inherently indeterminate and
trans-empirical and constitutes the degree of freedom space F .

As mentioned earlier, an important conclusion of the Bell analysis, discussed
in detail in Chap. 7, is that when a quantum degree of freedom is subjected to an
experiment, mathematically represented by operators O, it can be deduced that the
degree of freedom does not have any precise and determinate value before it is
observed.

Clearly, before a measurement is carried out, the degree of freedom F exists.2

The fact that F does not have a precise value before a measurement refers to its
mode of existence. It has been discussed in Chap. 2 that the mode of existence of
a degree of freedom is that it exists in all of its totality, with its different possible
values being organized as a geometrical space, namely, F ; metaphorically speaking,
the degree of freedom simultaneously exists over the entire range of all of its
possible values. This mode of existence is not empirically observable, and hence,
the degree of freedom is considered to be trans-empirical.

The degree of freedom is an entire space F ; expecting the degree of freedom
to have a single value is like trying to describe the entire space by giving the
coordinates of a single point of that space. The degree of freedom F existing as
an entire space is an explanation of why the degree of freedom does not have a
precise value before it is observed.

2And continues to exist after a measurement as well.
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[O (     ])ˆEVÔ (    )
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Fig. 3.3 The degree of freedom F is veiled and masked by state space V(F) from being directly
observed by operators O(F). A measurement by the operator O(F) is represented by a “net” that
is cast around the quantum entity to extract information about the degree of freedom F . Repeated
observations yield the expectation value EV [O(F)] (published with permission of © Belal E.
Baaquie 2012. All Rights Reserved)

The framework of quantum probability identifies observables with operators
and not with the specific values of the degree of freedom; this is unlike classical
probability theory for which the observables are specific values of a random variable
that are directly observed when the random variable is sampled.

Operators act on the quantum state of the quantum entity, and the expectation
value of the operator is determined by the state vector in question. In other words, an
act of applying the operator to the degree of freedom leads to the operator indirectly
“picking out” the properties of the degree of freedom by collapsing the quantum
state—with the degree of freedom F remaining indeterminate and trans-empirical.

All empirical quantities in quantum mechanics, such as the expectation value of
physical operators, are determinate and have a unique value; empirical properties
are also determinate for a classical random variable. In classical probability theory,
since one can directly observe the random variable, the particular values of the
random variable exist objectively. In contrast, the degree of freedom F always
remains concealed, veiled, and masked by the quantum state vector ψ(F), and the
specific and determinate “points” of the space F cannot be directly observed.

Recall that the quantum entity is constituted by its degree of freedom and its
state vector. The quantum operators representing the observed quantities act on the
quantum state ψ(F) and in general on the state space V(F). The operators O(F)
can only indirectly detect the existence of the degree of freedom via their action
on the quantum state. The quantum state “shields” F from being directly observed
by operators O(F). The action of an operator on state space and its relation to the
underlying degree of freedom are shown in Fig. 3.3.

The degree of freedom thus always exists as a trans-empirical entity, which is an
entire space F . In particular, the degree of freedom is indeterminate because it (the
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degree of freedom) does not exist as a particular value (‘point’) but as an entire space
F , and hence, it (F ) cannot be described by a quantity having a single, determinate
and fixed value.

3.5 The Quantum State ψ : Transition

The trans-empirical quantum degree of freedom, in principle, can never be observed.
The quantum state (or state in short), in contrast, is at the interface of the trans-
empirical degree of freedom on the one hand and the empirical experimentally
measured properties of the degree of freedom on the other hand. The quantum state
connects the trans-empirical domain with the empirical and experimental domain.

The transition—from the trans-empirical to the empirical domain—is effected
by the act of measurement, and the reverse transition—from the empirical to the
trans-empirical domain—is the result of the preparation of a quantum state.3

The empirical and trans-empirical duality is shown in Fig. 3.4. The term “wave-
particle duality,” used by the founders of quantum mechanics, is in fact the duality
of the empirical and trans-empirical domains.

The quantum state is realized in a very specific and particular form in quantum
mechanics. Let the quantum state of the degree of freedom be represented by
ψ(t,F), which is a complex valued function of F and is an element of state
space V(F); the quantum state is sometimes referred as a probability amplitude
to differentiate it from empirically observed probabilities. In the framework of the
empirical and trans-empirical dual domains and the Copenhagen interpretation of
quantum mechanics, the quantum state has the following formulation:
• The quantum state has two forms of existence, namely, a trans-empirical form

when it is not observed and the form of empirical manifestation when it is
observed, as shown in Fig. 3.4.

• When the quantum state is not observed, the quantum state’s existence is trans-
empirical and given by ψ(t,F); the time evolution of the state function ψ(t,F)
takes place entirely in the trans-empirical domain, with all the many different
specific values of the degree of freedomF simultaneously evolving. In particular,
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Fig. 3.4 The trans-empirical
form of the quantum state
vector and its empirical
manifestation are connected
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measurement (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

3The preparation of a quantum state is briefly summarized in Sect. 2.11 and discussed in more
detail in Sect. 9.9.
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the Schrödinger equation evolves the trans-empirical form of the state by an
equation determining ∂ψ(t,F)/∂ t and yields the value of ψ(t,F) for future
time t.

• When the quantum state is observed by a process of measurement—with the
experimental device mathematically represented by an operator O—the state
ψ(t,F) collapses, namely, makes a discontinuous transition, to its empirical
manifestation, as shown in Fig. 3.4. Repeated observations of ψ(t,F) yield the
empirical average value of the operator given by Eψ [O].4

The preparation of a state and its subsequent experimental observation is one
of the cornerstones of quantum mechanics. All processes used for the preparation
and measurement of a quantum state have a finite resolution of points in space
and take place over a finite duration of time; hence, the separation of the empirical
and trans-empirical domains is not a sharp boundary but rather a narrow gray area,
labeled “Measurements” in Fig. 3.4; in the interface, the state of the quantum object
is a mixture of the empirical and trans-empirical states. In Sect. 8.11, quantum
superposition is studied in some detail; it is shown that there are quantum entities
that are in the gray area in Fig. 3.4—being a “mix” of empirical readings and trans-
empirical states.

For concreteness, consider a quantum particle, say, an electron, with a position
degree of freedom given by F = ℜ. Consider observing the state with an operator
that projects the degree of freedom to the specific position x ∈ ℜ of the quantum
particle. The trans-empirical form of the quantum state is ψ(t,ℜ). The process
of measurement is the mechanism of going from its trans-empirical form to its
empirical manifestation, and the preparation of a quantum state causes a transition
from its empirical to its trans-empirical form. The various aspects of the quantum
state and its empirical manifestation, for the position degree of freedom ℜ, are
shown in Fig. 3.5.

Applying the position projection operator to the state ψ(t,ℜ) collapses it to
its empirical manifestation given by |ψ(t,x)|2 and yields the likelihood that the
projection operator at position x detects the state vector, as shown in Fig. 3.5.

The preparation of a quantum system selects a particular quantum state. Once
the quantum system is prepared to be in a specific state and not observed anymore,
it makes a smooth transition to its trans-empirical form and evolves as a trans-
empirical entity, with all the different possible values of the degree of freedom
evolving simultaneously. Hence, as shown in Fig. 3.5, the preparation of a quantum
state causes a transition from the empirical to the trans-empirical state.

The measurement of the position projection operators picks out one possible
outcome for the state vector from the many different possible outcomes. It is because
the quantum degree of freedom is a trans-empirical quantity—having no fixed
value—that identical acts of observing the quantum state lead to many different
possible outcomes, as discussed later in Sect. 9.3.

4It is shown in Sect. 5.8 that Eψ [O] = 〈ψ|O|ψ〉.
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In summary, a remarkable property of the quantum state is that it has two forms
of existence, a trans-empirical form given by ψ(t,F) and its “collapsed” form that
yields its empirical manifestation, given by Eψ [O]. Metaphorically speaking, the
state vector is “alive” in its trans-empirical and is “dead”—ceases to exist—in its
empirical manifestation.

It is due to the quantum state possessing two qualitatively different forms—
concretely, the empirical manifestation |ψ(t,x)|2 and the trans-empirical form
ψ(t,x)—that the quantum state, by being the interface of these two domains, can
connect and straddle two qualitatively different domains of Nature.

3.6 Trans-empirical Domain and Laws of Physics

All laws of physics are empirically grounded, even if this be indirectly. Empirical
science is defined by the following principle enunciated by Richard Feynman:
“Experiment and experiment alone is the sole criterion of scientific truth” [24]. How
does a trans-empirical construct such as the quantum degree of freedom F and the
quantum state ψ(F) enter into an empirical science such as physics?

There are many mathematical constructs in physics, such as the electromagnetic
Maxwell field Aμ , space-like points in special relativity, and the interior of black
holes in general relativity that are not directly observable and are mathematical
objects useful for expressing the physical theory. However, all the mathematical
constructs of classical physics refer to tangible entities that have determinate values
and also have an objective existence (reality) in spacetime.
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In contrast, the quantum entity is not determinate but rather is inherently
indeterminate—which makes the quantum degree of freedom F completely unob-
servable. It is indeterminateness, which is at the foundation of quantum mechanics,
that creates an unbridgeable schism between quantum and classical physics. Inde-
terminate F is described by trans-empirical quantum state ψ(F) which exists in
state space V(F) that is a superstructure on physical spacetime.

ψ(F) has a finite likelihood of simultaneously “existing” at all of the possible
values of the degree of freedom F ; this trans-empirical mode of existence of
the quantum state cannot be experimentally observed since an experiment always
collapses the state to a determinate condition and hence always produces a single
and determinate result.

One can only gain indirect evidence of the quantum entity by experimentally
interacting with the indeterminate degree of freedom F using appropriate operators
O(F). The operators repeatedly encounter ψ(F) in the experiments carried out,
as shown in Fig. 3.3, with all the information that can be extracted from F being
contained in the quantum state ψ(F).

The result of, in principle, infinitely many observations yields the full range of the
possible determinate values of quantum mechanical state vector—together with the
likelihood of a specific determinate value being observed in a particular experiment;
one can theoretically reconstruct the properties of the quantum entity by imagining
(mathematically modeling) its indeterminate degree of freedom F together with its
trans-empirical quantum state ψ(F).

The quantum entity exists in the trans-empirical domain. There are, however,
measurable and empirical consequences of the trans-empirical domain that yield
observable properties of the quantum entity. In fact, it is a matter of supreme
irony that physics, the most empirical of all the sciences, is founded on trans-
empirical entities that appear, of necessity, in the mathematical formalism of
quantum mechanics.

3.7 Quantum Superposition: Trans-empirical Paths

The concept of the indeterminacy of quantum paths was discussed in Sect. 2.10,
and this concept is now studied in some detail using the two-slit experiment.
Indeterminate paths can never be directly observed, and hence indeterminate paths
are trans-empirical paths.

The two-slit experiment goes back to Young (1799), who showed that light
going through two slits results in interference, and was crucial in demonstrating that
light is a wave. The two-slit experiment is one of the deepest and most important
experiments in quantum mechanics and is discussed with the aim of demonstrating
the mode of existence of indeterminate paths, as well as the role of measurement
in causing a transition from the trans-empirical form of the quantum entity to its
empirical manifestation.
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Quantum superposition is one of the bedrocks of quantum mechanics and is
discussed in detail in Chap. 8. The two-slit experiment provides one of the simplest
illustrations of indeterminate trans-empirical paths and quantum superposition.

As explained by Richard Feynman, the two-slit experiment “has been designed
to contain all of the mystery of quantum mechanics, to put you up against the
paradoxes and mysteries and peculiarities of nature one hundred percent”[13].
Feynman further explains that all the other paradoxical situations in quantum
mechanics can always be explained by this experiment—which reveals “nature in
her most elegant and difficult form”[13].

The simplest case of indeterminate trans-empirical paths is for the quantum
particle to simultaneously exist in two distinct paths, as shown in Fig. 3.6, and
which can be generalized to the case of the N-slit, shown in Fig. 2.6. In this
section, the two-slit experiment is analyzed using electrons; it is shown that when
a measurement determines the path of the electron, the path is empirical and
determinate and the electron behaves like a classical particle; however, when the
trajectory is not observed, the electron exists in an indeterminate and trans-empirical
state and exhibits the phenomenon of quantum interference.

The two-slit experiment is employed for analyzing the following topics:
• The concepts of the empirical and trans-empirical are applied to the time

evolution of a quantum entity. In classical mechanics, the classical entity takes
a determinate path, going through either the slit at position x1 or through the
slit at position x2. The result of the two-slit experiment can be explained by
postulating that when the quantum entity is not observed, the path taken by the
quantum entity is indeterminate and trans-empirical, with the quantum entity
simultaneously existing in both paths.

• The superposition of the quantum state vector, which is due to the linearity of
the Schrödinger equation, is also valid for indeterminate paths. For a quantum
particle “taking” indeterminate trans-empirical paths, the probability amplitude
of going from an initial to a final position is shown to result from the quantum
superposition of determinate empirical paths.
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Fig. 3.7 (a) Two-slit experiment with determination of the path taken to reach the screen.
(b) Two-slit experiment without determination of the path taken to reach the screen (published
with permission of © Belal E. Baaquie 2012. All Rights Reserved)

The Experiment

A quantum particle going through two slits, as given in Fig. 3.6, is realized experi-
mentally by the arrangement shown in Fig. 3.7. Unlike Fig. 3.6, the time dependence
of the paths is not shown in Fig. 3.7, where the emphasis is on the measurements
being performed. The information about the paths, in particular whether they are
empirical or trans-empirical, is reconstructed from the experimental measurements.

The experiment consists of an electron gun (source) that sends identically
prepared electrons, through a barrier with two slits, to a screen where a screen
detector keeps track of the point at which the electron hits the screen. Note that
the electrons are sent towards the slits one by one so that at any given time there is
only one electron traveling from the electron gun to the screen.

The electron leaves the source, shown in Fig. 3.7a, b, with the initial position of
the electron denoted by s; it is then observed at the screen at position denoted by x.
There are two possible paths from source to screen, labeled path 1 going through
slit 1 and path 2 going through slit 2, and shown in Fig. 3.7b.

The experiment is performed with detectors 1 and 2, as shown in Fig. 3.7a and
without these two detectors, as shown in Fig. 3.7b. In effect, with detectors 1 and 2
switched on, the path taken by the electron is known, whereas in the case without
the detectors, the path information is not known.

Experiment with Detectors 1 and 2: No Interference

The experiment is shown in Fig. 3.7a; both slits 1 and 2 are open and detectors 1
and 2, at the back of the slits, record which slit the electron passes through. Since
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it is known which slit the electron goes through, one can plot the following three
distribution curves:
• Distribution curve P1 for electrons that pass through slit 1
• Distribution curve P2 for electrons that pass through slit 2
• Distribution curve PD for electrons that pass through either slit 1 or 2
The experimental result is the following:

PD = P1 +P2 ;
∫

dxPD(x) = 1 (3.1)

The behavior of the electron with detection of which path is taken is exactly
the same as one would obtain for bullets being shot through a metal screen
with two openings. When the trajectory of the electron from source to screen is
experimentally observed, the electron received at the screen detector came either
through slit 1 or through slit 2. The two possible ways of getting to the screen are
mutually exclusive, and these do not interact in any manner and do not generate any
interference pattern.

The two-slit experiment has two possible electron paths, namely, path 1 and
path 2. The quantum mechanical description of the two slit experiment is given by
assigning a probability amplitude (a complex number) to each of the two paths. The
probability amplitude is derived from the quantum state of the electron’s quantum
degree of freedom and is discussed (2.8) and in more detail in Sect. 8.3

The following is a notation for the probability amplitude for the different
possibilities5:

φ1 : the trans-empirical probability amplitude for determinate path 1

φ2 : the trans-empirical probability for amplitude determinate path 2

φ : the trans-empirical general probability amplitude

The probability of finding the electron at the screen with detection of path taken
is labeled by PD and without detection of path taken is labeled by PI .6

The experimental result for PD is shown in Fig. 3.7a, and the result for PI is shown
in Fig. 3.7b. Note the experimental results obtained for PD and PI are qualitatively
different and need an explanation.

5To connect with the notation of Chap. 8, one has

φ1 = 〈x|1〉〈1|s〉 , φ2 = 〈x|2〉〈2|s〉.
6All measurements in quantum mechanics are of operators representing a physical quantity.
“Measuring the position” of the electron is a shorthand for the more precise statement that
measurement is mathematically represented by applying the position projection operator (of the
electron) on the electron’s state vector. See Sect. 9.2.
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The explanation of quantum mechanics for the experiment with detectors 1 and 2
switched on is the following. The electron leaves the source s with trans-empirical
probability amplitude φ . When the probability amplitude encounters the detectors at
the barrier, a measurement is performed by either detector 1 or 2, depending at which
slit the electron is detected. The trans-empirical probability amplitude φ collapses
to its empirical manifestation—either |φ1|2 or |φ2|2, depending on whether it is
detected at slit 1 or slit 2, respectively.

The electron arrives at the screen in an empirical state, and the probability of
being observed at a point on the screen is given by either |φ1|2 or |φ2|2. The
probability of finding the electron at the screen detector is the result of the two
mutually exclusive possibilities and hence is given by their sum, namely,

PD = |φ1|2 + |φ2|2 = P1 +P2 : collapse at barrier (3.2)

and one obtains the result given in (3.1).
The result given in (3.1) and (3.2) is equivalent to the classical result obtained by

shooting classical particles through the two slits. The reason being that observations
made by detectors 1 and 2 at the two slits determines which slit the electron went
through by collapsing the probability amplitude and in doing so causes the electron
to take a determinate path, namely, going through either slit 1 or slit 2.

Having the information of which path is taken is equivalent to the classical
description of a particle, since the classical particle always takes a unique path from
its initial to final position.

Experiment Without Detectors 1 and 2: Trans-empirical

Consider now the same experiment as before but with detectors 1 and 2 at the barrier
removed. The experiment is shown in Fig. 3.7b. The electrons are sent in one by one,
and no measurement is made to determine which slit the electron goes through, and
hence the path taken by the electron is no longer known. As shown in Fig. 3.7b, the
electron can take two possible paths to reach the point x at the screen.

The electron leaves the source with trans-empirical probability amplitude φ . On
crossing the slits (barrier), since the electron is not observed, the path taken by the
electron is not known, and hence the path of the electron is trans-empirical and
indeterminate.

One needs to decide as to what is the trans-empirical probability amplitude past
the barrier. Since the propagation of the trans-empirical probability amplitude φ is
determined by the linear Schrödinger equation, from (2.7), the probability amplitude
obeys the superposition principle. The probability amplitudes for the two possible
paths both obey the Schrödinger equation, and hence their linear sum also obeys
the Schrödinger equation; the trans-empirical probability amplitude for arriving at
the screen is given by quantum superposition, namely, summing the probability
amplitude for the two determinate paths and yields

φ = φ1 +φ2 : trans-empirical probability amplitude at the screen
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Note that to obtain φ , one is not superposing material displacements of a medium
as is the case for classical waves, but instead one is superposing trans-empirical
probability amplitudes φ1 and φ2 for determinate paths to obtain the trans-empirical
probability amplitude φ = φ1 + φ2 for the electron taking an indeterminate path;
φ is said to be wavelike since it is spread over space. Quantum superposition is
qualitatively different from superposing, for example, water waves in which one is
adding the physical displacement of the underlying water.

On reaching the screen, the measurement of the electron at the screen detector
collapses the trans-empirical probability amplitude φ to its empirical manifestation
|φ |2 and yields the empirical probability PI . Hence

PI = |φ |2 = |φ1 +φ2|2 : collapse at the screen

⇒ PI = |φ1|2 + |φ2|2 +φ1φ∗
2 +φ∗

1 φ2 ;
∫

dxPI(x) = 1 (3.3)

The probability amplitude for the electron with an indeterminate path has
nonlocal information about the likelihood of occurrence everywhere in space.
In particular, for the two-slit experiment, there are nodal points (minimas) of
interference pattern indicated by Xm in Fig. 3.7b, points for which the probability
amplitude is zero, yielding zero likelihood of that the electron will be detected at
those points. Since the electrons are sent in one by one, each electron, regardless of
where on the screen it is detected, has the information about the entire screen since
no electron ever hits the nodal points on the screen.

The interference pattern PI shown in Fig. 3.7b has been verified by many
experiments and shows that on repeatedly sending in the electrons—sent in one
by one—and detecting the position of the electrons arriving at the screen, results
in building up, step-by-step, the interference pattern given by PI . The probability
amplitude at the screen is φ = φ1 + φ2 and shows that when the path taken by the
electron is not detected, the electron’s path is indeterminate and trans-empirical,
showing interference.7

The trans-empirical superposition is lost in Fig. 3.7a because one detects the
passage of the electron by, say, shining light on the electron as it passes through
the slit. The shining of light is a measurement process that causes a transition by
collapsing the trans-empirical probability amplitude before the barrier, namely, φ =
φ1 +φ2, to the empirical probability given by either |φ1|2 or |φ2|2 after the barrier—
depending at which slit the electron is observed. The empirical expression |φ1|2
or |φ2|2 is said to be particle like since it implies that the electron is following a
definite trajectory. In other words, when the electron’s path is measured, the nonlocal
probability amplitude collapses to an (localized) empirically observed determinate
state that is particle like.

7It is important to note, as discussed in the next section, that the electron is interfering with itself —
a completely nonclassical and enigmatic phenomenon.
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A cardinal point to note is the crucial role of measurement in producing two
qualitatively different results—namely, of PD with the detection of the electron’s
path and of PI without detection of its path. Measurement causes a transition of the
electron from its trans-empirical state to its empirical manifestation, and the two-slit
experiment shows this difference in a stark and clear manner.

In conclusion, the two-slit experiment shows that both quantum states and
quantum paths display empirical and trans-empirical behavior. Furthermore, mea-
surement has a central role in determining whether the electron behaves as an
empirical entity or as a trans-empirical state. When it is not observed, the electron
evolves on indeterminate paths and displays wavelike behavior that reflects its trans-
empirical form, and when the electron is observed, it is in an empirical condition and
behaves like a classical particle.

3.8 Trans-empirical Interpretation of Two-Slit Experiment

The two-slit experiment is interpreted in the framework of trans-empirical and
empirical aspects of the quantum entity to clarify the role played by the trans-
empirical probability amplitude.

Consider the case when no measurement is made to determine the path taken by
the electron for the two-slit experiment. PI , given in Fig. 3.7b, is the probability of
finding a particle at a certain point on the screen when a measurement is not made.
Consider the following term in (3.3), namely,

φ∗
1 φ2 +φ1φ∗

2 (3.4)

that contributes to PI ; how are we to interpret this term?
The expression φ∗

1 φ2 (the other term in (3.4) is similar to this) is a cross-term of
the probability amplitude for electron going through slit 1, represented by φ1 with
the probability amplitude φ2 representing the electron going through slit 2.

One interpretation of the term φ∗
1 φ2 is that when the trajectory of the electron is

not experimentally observed, the single electron’s path is indeterminate; the electron
received at the screen detector simultaneously comes through both paths, in order
words, through both slit 1 and through slit 2, and hence, the electron interferes with
itself ! Clearly, one can never directly observe a single electron simultaneously going
through both slits, or equivalently, of having an indeterminate path that requires the
single electron to simultaneously exist at two different points.

Although our discussion was in the context of the two-slit experiment, it can be
shown that all quantum paths and entities have an empirical and a trans-empirical
component. When the electron is not observed, it is a trans-empirical entity that
is indeterminate: The single electron simultaneously exists at more than one point;
in particular, the time evolution of the electron is indeterminate, evolving along
indeterminate paths such that it goes through both slits simultaneously.
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Fig. 3.8 (a) Two slits with the path taken is not known. (b) The empirically observable aspects of
the experiment—electrons leaving the source and being detected at the screen. (c) The electron’s
unobservable trans-empirical paths, resulting in quantum superposition (published with permission
of © Belal E. Baaquie 2012. All Rights Reserved)

The case when the path taken by the electron travels is not known is shown in
Fig. 3.8a. The empirical part of the experiment is observing the electron leaving the
source and arriving at the screen, as shown in Fig. 3.8b. The two paths in Fig. 3.8c
are drawn with the understanding that these paths are trans-empirical and can never
be experimentally observed; Fig. 3.8c is the trans-empirical aspect of the two-slit
experiment.

3.9 The Trans-empirical Quantum Principle

From an analysis of the quantum entity, it is seen that quantum paths and state
vectors both exhibit two inseparable but distinct forms of behavior, namely, the
empirical and trans-empirical, and which constitute two distinct domains of Nature.
These two domains themselves are the reflection of various aspects of the quantum
entity and are expressed in the trans-empirical quantum principle .

The Copenhagen interpretation is silent on the nature of the quantum entity when
it is not being observed. The trans-empirical quantum principle is a proposal that
extends the Copenhagen interpretation by postulating principles about the mode of
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existence of the quantum entity. The extension of the Copenhagen interpretation,
given below, is made with the aim of making the inner consistency of quantum
mechanics self-evident:
1. The trans-empirical quantum principle states that all entities in Nature have two

forms of existence: empirical and trans-empirical.
2. The foundation of the quantum entity is its degree of freedom that is intrinsically

trans-empirical and inherently indeterminate, uncertain, and in principle can
never be observed. The quantum state of the quantum entity connects the degree
of freedom to experimental observations, which are mathematically represented
by operators.

3. The quantum state is trans-empirical when it is not observed. The time evolution
of the quantum state, determined by the Schrödinger equation, takes place
entirely in the trans-empirical domain.

4. The act of observation causes the quantum state to make a transition to a
determinate, certain, and empirical condition; the transition is effected by the
collapse of the trans-empirical quantum state to its empirical manifestation in
the empirical domain. Preparation of a quantum state creates a reverse transition
from the empirical preparation of the quantum state to its trans-empirical form
of existence.

5. The two domains of the quantum entity, the empirical domain where its empirical
manifestation takes place and the trans-empirical domain where its state vector
exists, constitute an inseparable pair and form an integral and composite whole.
Taken together, the empirical and trans-empirical domains are the appropriate
framework for a complete description of the quantum entity.

3.10 Does the Quantum State ψ(t,F) “Exist”?

The symbolic approach for understanding Nature has been championed by no less
a quantum theorist than Dirac, who states the following: “The symbolic method ..
seems to go more deeply into the nature of things” [10].

Trans-empirical entities cannot be directly observed but, instead, can only
be represented by symbols. In particular, the trans-empirical quantum degree of
freedom is represented by F , and its state vector is represented by the symbol
ψ(t,F); these symbols go more deeply into the nature of things by representing
the inner trans-empirical nature of things.

The point of view adopted in this book is that trans-empirical constructs,
represented by symbols such as F and ψ(t,F), are not “real” in the sense that they
are not empirical entities, but the trans-empirical constructs nevertheless do “exist.”
F and ψ(t,F) have the same ontological status and have the same quality of being
as an empirical quantity such Eψ [O], namely, the empirical average of a physical
property represented by the operator O(F) acting on the state vector ψ(t,F) of the
quantum degree of freedom F .

It is worth noting that for almost a century, Schrödinger’s equation—based on
the trans-empirical construct of the quantum state ψ—has successfully faced a vast
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range of experimental tests. In spite of all its experimental success, many physicists
have an agnostic view that does not attribute any “existence” to the quantum state,
and consider ψ(t,F) to be merely a mathematical tool, not having the same quality
of “a real existence” as an experimental observation.

In fact, one of the prime distinctions between the empirically observed properties
and trans-empirical form of the quantum state lies in the fact that the Schrödinger
equation determines the evolution of only the trans-empirical state ψ(t,F), with the
empirical effects of the quantum state being the result of measurement, and hence
not determined by the Schrödinger equation.

There is an agnostic view—which is of course mathematically consistent—that
one need not consider ψ(t,F) to “exist” in order to carry out all the mathematical
calculations of quantum mechanics or to do experiments to verify these calculations.
The agnostic view is that if one takes the state vector ψ(t,F) to “exist”, then
one will apparently be stuck with paradoxes and contradictions that are thought
to necessarily follow.

This agnostic view, however, misses a number of crucial points. To start with,
there are no internal contradictions or inconsistencies in assuming that the degree
of freedom and the quantum state have the same level of ontological existence as
empirical observations, and this will be demonstrated by many derivations in the
ensuing chapters.

Moreover, similar to the observed outcomes of a quantum state that conserve all
the conserved quantities, even when the state is not observed, the time evolution of
the degree of freedom continues to conserve—in a trans-empirical and probabilistic
sense—all the empirically conserved quantities, including energy and momentum.
Hence, even though the trans-empirical quantum degree of freedom cannot be
directly observed, its quantum state described by the trans-empirical state vector
ψ(t,F) has an existence, a “being”, that is “real enough” to continue to conserve all
the experimentally conserved quantities.

Furthermore, there is another even more important possibility that the agnostic
view excludes. If there indeed exists a trans-empirical domain in Nature—and there
are no empirical grounds for ruling out this possibility—then the only way this
domain would be accessible to human cognition would be through the means of
mental and theoretical constructs similar to the symbolic constructions of quantum
mechanics.

It is only by pursuing the analysis of a possible trans-empirical characteristic of
Nature that the existence of such a domain can be studied and investigated. And by
gaining a greater and deeper understanding of the symbols representing the trans-
empirical domain, appropriate experiments could be designed to discover new and
hitherto unknown properties and features of the trans-empirical domain that could
have an empirical manifestation.

Noteworthy 3.1: ‘Wave- particle duality’

Some authors loosely state that the quantum system “sometimes behaves like
a particle and sometimes behaves like a wave.” It should be kept in mind that the
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concepts of “particle” and “wave” in particle-wave duality do not both refer to a
classical particle and a classical wave.

For a quantum particle, say, an electron, the “particle” refers to an empirically
observed classical behavior, such as the detection of the electron at a definite
position in space, whereas the “wave” refers to the trans-empirical quantum state
vector of the electron.

In contrast, for a photon, the “particle” refers to a quantum excitation of the
quantized electromagnetic field and, when not observed, the photon is in a trans-
empirical state—being spread over all space.8 Only when the photon is absorbed
or emitted by an electron does it behave like a particle carrying its own energy
and momentum. Furthermore, the “wave” that is associated with the photon is the
classical and empirically observable electromagnetic wave, which is a reflection of
the field equation of the photon field. The empirical electromagnetic wave, unlike
the case for the electron, has no relation to the trans-empirical “wavelike behavior”
of the photon field’s quantum state vector.

The wave-particle duality refers to entities that are ontologically distinct, with
one being an empirical entity and the other being a trans-empirical construct.

The confusing and often misleading terminology of “wave-particle duality” is
completely eschewed in subsequent chapters; instead, the terms trans-empirical and
empirical are employed to demonstrate the consistency, internal structure, and inner
workings of quantum mechanics.

3.11 Summary

It is proposed that our conception of a quantum entity can be based on a view of
Nature that extends the realm of empirical reality to include the existence of another
domain, namely, the trans-empirical domain, and the connecting interface of these
two domains. Figure 3.2 graphically shows the various structures that are required
for describing a quantum entity.

The quantum entity exists in the form of an indeterminate trans-empirical degree
of freedom F that is described by a quantum state ψ(t,F), which in turn is
an element of the state space V(F). The quantum state ψ(t,F) contains all the
possible information that can be experimentally extracted from the quantum degree
of freedom F . Knowledge of the existence of the quantum entity, in particular of
its trans-empirical degree of freedom and quantum state, can only be inferred from
the mathematical symbols of quantum mechanics that, in essence, require conscious
reasoning; in particular, one can never directly observe a trans-empirical entity using
any experimental device.

The process of measurement causes a transition from the trans-empirical form of
the quantum state to its empirical manifestation. The preparation of a quantum state

8The photon is nothing like a classical particle since special relativity requires it to be massless.
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creates a reverse transition from the empirical preparation of the quantum state to
its trans-empirical form. Due to quantum indeterminacy, quantum states prepared in
an identical manner, when subjected to the same experiment, will, in general, lead
to many different observed results.

The quantum state straddles the empirical and trans-empirical domains: When
it is not observed, it is trans-empirical and described by ψ(t,F); every time the
value of an operator O(F), representing physical quantities, is experimentally
determined for the quantum state, the state ψ(t,F) collapses to a particular,
determinate, and specific state. The process of measurements is represented by
applying operators O(F) on the quantum state, and repeated experiments yield its
empirical expectation value—given by Eψ [O(F)].

One can question whether the existence of the trans-empirical quantum state can
be inferred from the failure of classical physics, or is the postulate that the trans-
empirical domain exists due to the mathematical symbols of quantum mechanics?
It seems that the empirically observed phenomenon and the mathematical symbols
of quantum mechanics both reinforce each other in leading one to conclude that a
trans-empirical quantum domain, in fact, does exist.

The interplay of the empirical and trans-empirical domains is very finely bal-
anced and can naively give rise to many apparent inconsistencies—as was evidenced
by the debates at the inception of quantum mechanics. The fact that quantum
mechanics is not inconsistent is a nontrivial result and in many cases needs to be
theoretically and experimentally demonstrated. It can be said that due to its subtle
trans-empirical foundations, quantum mechanics runs on the edge of consistency—
in many cases avoiding inconsistencies in strange, novel, and unexpected ways.
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In classical mechanics, the description of an entity, say, a billiard ball, requires that,
at time t, one specifies its position and velocity—namely, x(t) and v(t). In general,
to describe a classical system, one needs to assign unique values to all its dynamical
variables.

As discussed in Chap. 2, a physical entity in quantum mechanics consists of
its degree of freedom F together with the entity’s state vector ψ(t,F). The
quantum generalization of dynamical variables of classical mechanics is the degree
of freedom, which is a space F constituted by all possible values of the degree of
freedom.

A quantum entity is inherently indeterminate and hence requires a mathematical
framework appropriate for describing this indeterminacy. A quantum description is
given by specifying the state vector ψ(t,F), which encodes all possible observable
properties of the degree of freedom.

The state vector ψ(t,F) is an element of the state space V(F), which is a
linear vector state space. As discussed in Chap. 3, the degree of freedom F is
trans-empirical, whereas the state vector ψ(t,F) straddles the trans-empirical and
empirical domains.

Realistic quantum systems come in great variety and diversity, and the key con-
cepts in their description are now introduced. This chapter studies the mathematical
structure of the degree of freedom F and its associated linear vector space V(F).
The following are this chapter’s main topics:
• The relation of state space to the empirically observed quantum phenomena is

discussed.
• The simplest possible degree of freedom is binary, having two possible values is

discussed in great detail, and its state space is derived.
• The (2N + 1)-state degree of freedom is discussed, and the “position” degree of

freedom x having continuous values is obtained as the limiting case of N → ∞.
• The coordinate and momentum basis states for the continuous degree of freedom

are discussed.
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• The general notion of a linear vector state space is lastly discussed in complete
generality, and the notion of the Hilbert space is defined.1

4.1 Dirac’s Formulation of the Quantum State

Dirac’s notation is followed in the book and discussed in detail in Sect. 4.9.
• The term quantum state refers to all the descriptions of the quantum entity and

includes the terms state, state vector, and state function.
• The term state or state vector refers to the quantum state considered as a vector

in state space V , usually denoted by ψ(t,F).
• In Dirac’s bracket notation, a state vector is denoted by |ψ(t,F)〉 or |ψ〉 in short

and is called a ket vector.
• The dual to the ket vector is denoted by 〈ψ(t,F)| or 〈ψ | in brief and is called a

bra vector.
• The scalar product of two state vectors χ ,ψ is a complex number ∈ C and is

denoted by the full bracket, namely, 〈χ |ψ〉 = 〈ψ |χ〉∗, where ∗ denotes complex
conjugation.

• The term state function refers to the components of the state vector and is denoted
by 〈x|ψ(t,F)〉 ≡ 〈x|ψt〉 ≡ ψ(t,x), where x ∈ F , namely, x is an element of the
degree of freedom F .

For degrees of freedom taking discrete values, Dirac’s bra and ket vectors are
nothing except the row and column vectors of a finite-dimensional linear vector
space, with the bracket of two state vectors being the usual scalar product of two
vectors.

When the degree of freedom becomes continuous, Dirac’s notation carries over
into functional analysis and allows for studying questions of the convergence of
infinite sequences of state vectors that goes beyond linear algebra.

4.2 State Space and Experiment

There is a view that “Quantum phenomena do not occur in a Hilbert [state] space.
They occur in a laboratory” [1]. The statement revolves around the words “phe-
nomena” and “occur.” The dictionary meaning of phenomenon is an occurrence,
circumstance, or fact that is perceptible by the senses. The statement is about
“quantum phenomena,” and given that phenomena must be perceptible, it clearly
refers to the detection and measurement of the properties of a quantum entity.

This view is a statement about the empirical aspect of quantum mechanics and
expresses the fact that ψ(t,F), the trans-empirical state vector of a quantum degree
of freedom, has an empirical manifestation in the laboratory, in an experimental
device.

1Hilbert space is a special case of state space and is discussed in Sect. 4.10.
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The statement about quantum phenomena occurring in a laboratory is technically
correct but is only half of the story since it does not address the question as to what
is the form of existence of the quantum entity when it is not observed—namely,
when the entity’s state vector is not actualized into a tangible phenomenon.

When the quantum entity is not being observed, its state vector ψ(t,F) exists
in state space V(F). All elements of the state space are trans-empirical, and
hence, state space V(F) is trans-empirical, with its empirical manifestations being
observed in the laboratory. Moreover, as shown in Fig. 4.1 and discussed in Sect. 3.5,
the quantum state ψ(t,F) straddles both the trans-empirical and empirical domains
that are inseparable and connected by the process of measurement.

In particular, the degree of freedom for position is the real line F = ℜ, and the
state vector ψ(t,ℜ) of the quantum entity exists in state space. When the degree
of freedom ℜ is subjected to a measurement in the laboratory by an experimental
device that is the projection operator for specific position x, discussed later in
Sect. 9.2, the probability of registering a signal for that projection operator is given
by |ψ(t,x)|2.

Hence, the form of existence of the state vector is quite different in the two
domains, being ψ(t,ℜ) in the trans-empirical domain and |ψ(t,x)|2 in the empirical
domain.

The time evolution of ψ(t,F) is entirely trans-empirical and takes place in state
space—being governed by the Schrödinger equation that simultaneously evolves all
possible values of the degree of freedom—and shown as a wavy line in Fig. 4.2a. On
the other hand, as shown in Fig. 4.2b, when an experiment is carried out—shown
by an “x”—the state vector ψ(t,ℜ) “collapses” to only one possible value of the
quantum state vector, namely, |ψ(t,x)|2 and indicated in the figure by |ψ |2, and
which is empirically observed in the laboratory.

Once the experiment is over, then—after a characteristic time determined by the
nature of the experiment—the state vector goes back to its trans-empirical evolution.
The interplay of the observed and unobservable aspects of a quantum state vector is
shown in Fig. 4.2b.
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4.3 Quantum Degree of FreedomFFF
By its very definition the degree of freedom is trans-empirical and hence cannot be
directly observed by any experiment; the conception and construction of the degree
of freedom are entirely theoretical. In fact, one of the main objectives of theoretical
physics is to identify the degree(s) of freedom of a particular phenomenon.

The degree of freedom, F , comes in a vast variety of forms depending on the
nature of the quantum entity. In general, a degree of freedom can be either a discrete
set or a continuous space. The simplest degree of freedom has two discrete values;
on the other extreme, a single quantum entity such as a quantum field is constituted
by infinitely many continuous degrees of freedom.

An example of a discrete degree of freedom is the spin degree of freedom. The
space F for spin � degree of freedom consists of 2�+ 1 number of points, namely,
F = {−�,−�+ 1, . . .,−1,0,1, . . . , �− 1, �}, and is shown in Fig. 4.3.

An example of a continuous degree of freedom is a single quantum particle in a
finite three-dimensional box, denoted by B; the particle can be anywhere inside the
box and hence the degree of freedom space F1 = B since it consists of all points
inside B and is shown in Fig. 4.4. Consider a quantum entity that consists of N
particles in the box B; each degree of freedom consists of the space B, and hence,
the space for N degrees of freedom is given by FN = B×B×B×·· ·×B=BN . If the
box is infinitely large, the space constituted by the degree of freedom is FN = ℜ3N ,
namely, a 3N-dimensional Euclidean space.

Clearly, the degree of freedom space F is not a physical space but rather
another distinct space that is indirectly linked to physical space by the process
of measurements performed on the quantum entity. The state space V(F) of the
quantum entity is built on F . The quantum state vector exists in V(F), and this
is where its time evolution takes place. The relationship of physical space to state
space V(F) is that all processes of measurements and observations take place in
physical space by “collapsing” the state vector, as shown in Fig. 4.2b, whereas the
unobserved quantum state evolves in state space, as shown in Fig. 4.2a.
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4.4 Binary Degree of Freedom and State Space

The simplest quantum degree of freedomF2 is binary, being a double-valued system
that has only two possible values, namely, F2 = {−1,+1}, and is studied in some
detail to motivate the results for more complicated degrees of freedom.

The electron has an intrinsic angular momentum called spin; the (z-component
of the) spin of the electron can either point up or down and hence forms a double-
valued system. Another example of a two-state system is a particle that can have
only two possible positions.

In quantum information theory, the binary degree of freedom is called a qubit
since it is the quantum generalization of the classical “bit” of information science.

A quantum entity having a binary degree of freedom is mathematically described
by specifying the state vector |ψ〉 for its two distinct possible states and which
belongs to the state space V2(F2). The two distinct states should be “orthogonal” to
each other, in the sense that being in one state is completely different from being in
the other state—and are sometimes called “up” or “down” states.

|ψup〉= |u〉; |ψdown〉= |d〉
The state vector of a double-valued system can be represented by a collection of
complex-valued two-dimensional vectors.

One should note that the state space V2(F2) has no relation with a physical space,
but rather should be viewed as a mathematical construction for describing the state
vector of a two-state quantum system. The symbols |u〉 (for up) and |d〉 (for down)
are used to free one from thinking of these vectors as referring to physical space,
which are usually labeled by x- and y-axes.

One possible representation of the quantum basis states is to assign |u〉= ex and
|d〉 = ey, where ex,ey are the basis vectors of the two-dimensional vector space, as
shown in Fig. 4.5. The distinct basis state vectors and their dual basis vectors have
the following representation:
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x

y

ex = |u

ey = |d
Fig. 4.5 Basis vectors for the
two-dimensional state space
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)

|u〉= ex =

[
1
0

]
; |d〉= ey =

[
0
1

]
(4.1)

〈u|= eT
x =

[
1 0

]
; 〈d|= eT

y =
[

0 1
]

The inner product of two vectors is defined as follows:

〈d|u〉= [
0 1

] ·
[

1
0

]
= 0 (4.2)

The completeness equation, which expresses the fact that a collection of basis
vectors forms a compete basis of a linear vector space and is given in (6.2), is
realized for the two-dimensional state space by the outer product of two vector as
follows:

|u〉〈u|+ |d〉〈d|=
[

1
0

]
⊗ [

1 0
]
+

[
0
1

]
⊗ [

0 1
]

=

[
1 0
0 0

]
+

[
0 0
0 1

]
=

[
1 0
0 1

]
= I2 (4.3)

State SpaceV2V2V2 ofF2F2F2

A spin pointing purely up |u〉 or down |d〉 is the closest that, in quantum mechanics,
one can get to a classical object since, on being observed, it is certain to be in either
up or down respectively. The general state vector of a quantum mechanical binary
(two-state) system is more subtle: We can superpose two states, as discussed in
Sect. 3.7, and obtain a trans-empirical state that simultaneously points up and down,
but with only a certain likelihood.2 Superposing a quantum spin pointing up with
one pointing down yields a state vector given by

|ψ〉= α|u〉+β |d〉 ; 〈ψ |= α∗〈u|+β ∗〈d|

2The concept of quantum superposition is discussed, in-depth, in Chap. 8.
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Fig. 4.6 Bloch sphere for the
two-dimensional state space
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)

〈ψ |ψ〉= |ψ |2 = |α|2 + |β |2 (4.4)

where α and β are complex numbers.
For a probabilistic interpretation of |ψ〉, the total probability has to be unity, and

one obtains unit the normalization of the state vector, namely, that

〈ψ |ψ〉= |ψ |2 = |α|2 + |β |2 = 1 (4.5)

The coefficients now have the following physical interpretation:

|α|2 = Probability that the spin is pointing up

|β |2 = Probability that the spin is pointing down

The coefficients α,β parametrize the state space V2 of the two-state system.
Note that state vector |ψ〉 given in (4.4) cannot be in general represented by a two-
dimensional unit vector in ℜ2, since only vectors with real coefficients can be drawn
in Fig. 4.5. In contrast, α,β are complex numbers, and from (4.5), it can be seen
that their possible values span out a three-dimensional sphere S3.

There is, however, a redundancy in this description since the coefficients α,β
can both be rescaled by the same constant phase and yield

|ψ̃〉= eiφ |ψ〉 ⇒ 〈ψ̃ |ψ̃〉= 〈ψ |ψ〉 (4.6)

Hence, both state vectors |ψ〉 and |ψ̃〉 provide the same description; in other words,
states linked by a global pure phase, namely, |ψ〉 → eiφ |ψ〉, are equivalent.3

3φ being a pure phase means that it is real.
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The phase φ forms a space that is isomorphic to a circle S1. Hence, one needs
to “divide out” S3 by S1 to form equivalence classes of state vectors and yields
S3/S1 = S2, which is a two-dimensional sphere.4

In summary, all possible distinct state vectors of a binary quantum system are
parametrized by the angles of the Bloch sphere S2; each point on the Bloch sphere
corresponds to a (unique) state vector of the two-state system state space V2,

Bloch Sphere

The state space V2 of a two-state system is isomorphic to the Bloch sphere S2,
shown in Fig. 4.6. The Bloch sphere allows for a specific representation of the most
general state vector for the two-state system.

Consider the spherical polar coordinates θ ,φ shown in Fig. 4.6. An arbitrary
normalized two-state ket vector |ψ〉, shown in Fig. 4.6, is given by the following
mapping of the Bloch sphere into two-dimensional state space:

|ψ(θ ,φ)〉= cos

(
θ
2

)[
1
0

]
+ eiφ sin

(
θ
2

)[
0
1

]

0 ≤ θ ≤ π ; 0 ≤ φ ≤ 2π (4.7)

The basis states have been chosen to reflect the fact that θ = 0 points in the “up”
direction and θ = π points in the “down” direction and shown in Fig. 4.6; more
precisely, (4.7) yields the following:

|ψ(0,φ)〉=
[

1
0

]
= |u〉

|ψ(π ,φ)〉= eiφ
[

0
1

]
≡
[

0
1

]
= |d〉 (4.8)

Note the ambiguity in the definition of the state vector |ψ(θ ,φ)〉 for θ = π is
automatically removed for quantum states since states differing by a pure phase
are equivalent, as shown in (4.6).

The presence of the phase eiφ in (4.7) shows that vector |ψ(θ ,φ)〉 does not
correspond to a two-dimensional unit vector in Euclidean space, which has only
real-valued components. In fact, every state vector |ψ(θ ,φ)〉 corresponds a (unique)
three-dimensional Euclidean unit vector, as shown in Fig. 4.6, and is uniquely

4To prove this result, one needs to construct S3 by a Hopf fibration, using the mathematics of fiber
bundles, by fibrating the base manifold S2 with fibers given by S1.
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parametrized by the coordinates θ ∈ [0,π ] and φ ∈ [0,2π ]. In summary, every point
on the surface of the Bloch sphere S2 corresponds to a unique state vector in V2.5

4.5 Degree of FreedomF(2N+1)F(2N+1)F(2N+1): State SpaceV(2N+1)V(2N+1)V(2N+1)

The F(2N+1) degree of freedom has (2N +1) possible values; the notation is chosen
to make a systematic transition to the case of N = ∞. The basis states of state space
V(2N+1) are chosen to be basis vectors of ℜ(2N+1). A convenient basis is state vector
|n〉 (column vector) and its dual state vector basis 〈n| (row vector), given by

|n〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; 〈n|= [
0 · · · 1 0 · · · ]︸ ︷︷ ︸

nth position

(4.9)

〈n|m〉 = δn−m

≡
{

1 n = m
0 n �= m

: m,n = 0,±1, . . . ,±N (4.10)

Note δn−m is the Kronecker delta function and has only integer arguments. An
arbitrary quantum state is given by

|ψ〉=
+N

∑
n=−N

cn|n〉

where cn’s are complex numbers such that

〈ψ |ψ〉=
+N

∑
n=−N

|cn|2 = 1

Hence, the V(2N+1)-state space, similar to the case of the two-state system, can be

shown to be isomorphic to S(2N+1)/S1 � V(2N+1).
Similar to (4.3), for state space V(2N+1), the outer product of |n〉 with the dual

〈n|, namely, |n〉〈n|, is given by the following:

5The ambiguity for the special value of θ = π is removed by (4.8).
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|n〉〈n|=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⊗ [

0 · · · 1 0 · · · 0
]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

1
0

. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence, the completeness equation is given by

+N

∑
n=−N

|n〉〈n|=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
1

. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= I2N+1 (4.11)

Noteworthy 4.1: Dirac delta function

The Dirac delta function is required in the study of continuum degrees of
freedom, and some of its essential properties are reviewed. Dirac delta functions
are not ordinary but rather are generalized functions also called distributions. In
essence, the Dirac delta function is the continuum generalization of the discrete
Kronecker delta function given in (4.10).

Consider a continuous line labeled by coordinate x such that −∞ ≤ x ≤+∞, and
let f (x) be an infinitely differentiable function. The Dirac delta function, denoted
by δ (x− a), is defined by the following:

δ (x− y) = δ (y− x)≡
{

∞, x = y
0, x �= y

δ (c(x− y)) =
1
|c|δ (x− y)

∫ +∞

−∞
dx f (x)δ (x− y) = f (y) (4.12)

∫ +∞

−∞
dx f (x)

dn

dxn δ (x− a) = (−1)n dn

dxn f (x)|x=a

To make the connection with the discrete Kronecker delta function given in (4.10),
consider the discretization of the continuous line into a discrete lattice with spacing
a. As shown in Fig. 4.7, the continuous degree of freedom x, −∞ ≤ x ≤ +∞, takes
only discrete values at points x = na with n = 0,±1,±2, . . .. The discretization of
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(4.12), for x = na and y = ma, yields the following:

a
∞

∑
n=−∞

f (na)δ (x− y) = f (ma)

⇒ δ (x− y) = lim
a→0

1
a

δm−n (4.13)

Note from above that the Dirac δ -function has dimension of 1/a.
A representation of the δ -function based on the Gaussian distribution is

δ (x− a) = lim
σ→0

1√
2πσ2

exp

{
− 1

2σ2 (x− a)2
}

4.6 Continuous Degree of Freedom

A quantum particle can be found by the position projection operators at any point
of space; to simplify the discussion, suppose the particle is moving in a one-
dimensional space and can be found on the real line ℜ, namely, at any point
x ∈ [−∞,+∞]. Hence, the degree of freedom is F = ℜ, and specific values of the
degree of freedom x are a real continuous variable. Since there are infinitely many
points on the real line, the quantum particle’s degree of freedom has infinitely many
possible outcomes.

As shown in Fig. 4.7, let the continuous degree of freedom x, −∞ ≤ x ≤ +∞,
take only discrete values at points x = na with lattice spacing a and with n =
0,±1,±2, . . .; in other words, the lattice is embedded in the continuous line ℜ and
the lattice point n is identified with the point na in ℜ. To obtain the continuous
position degree of freedom F , let a → 0 and the allowed values of the particle’s
position x can take any real value, that is, x ∈ ℜ, and hence F → ℜ.

Similar to the finite case given in (4.9), the basis states are labeled by |n〉 and
the dual basis states by 〈n|. The state space for the continuous degree of freedom x
is obtained by considering the state space F(2N+1) in the limit of N → ∞. Note one

+ ∞− ∞ a

−2a −a 2aa0

Fig. 4.7 Discretization of a continuous degree of freedom space F = ℜ (published with permis-
sion of © Belal E. Baaquie 2012. All Rights Reserved)
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needs first to take N → ∞ and then take a → 0 for obtaining the continuous degree
of freedom x.6

The discrete basis vectors of the quantum particle’s state space V are represented
by infinite column vectors with the only nonzero entry being unity in the n-th
position. Hence, taking N → ∞ in (4.9) yields

|n〉 : n = 0,±1,±2, . . . ,±∞

where, more explicitly

|n〉=

⎡
⎢⎢⎢⎢⎢⎣

..

0
1
0
..

⎤
⎥⎥⎥⎥⎥⎦

: nth position

The basis vectors for the dual state space VD are given by

〈n|= [ · · ·0 1 0 · · · ]
⇒ 〈n|m〉= δn−m (4.14)

The completeness of the basis states, taking N → ∞ in (4.11), yields the following:

+∞

∑
n=−∞

|n〉〈n|= diagonal(. . . ,1,1, . . .) = I : Completeness Equation

where I above is the infinite-dimensional unit matrix.
The limit of a → 0 needs to be taken to obtain a continuous x; in terms of the

underlying lattice, the continuous point x is related to the discrete lattice point n by
the following:

−∞ ≤ x ≤+∞ : x = lim
a→0

[na]; n = 0,±1,±, . . . .,±∞

The state vector for the particle is given by the ket vector |x〉, with its dual vector
given by the bra vector 〈x|. The basis state |n〉 is dimensionless; the ket vector |x〉
has a dimension of 1/

√
a since, from (4.13), the Dirac δ -function has dimension of

1/a. Hence due to dimensional consistency,

|x〉= lim
a→0

1√
a
|n〉 ; 〈x|= lim

a→0

1√
a
〈n| (4.15)

6For compact degrees of freedom such as the circle S1, the infinitesimal a is related to N; see
Sect. 5.5.
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The position projection operator is equal to the outer product of the position ket
vector with the bra vector and is given by

|x〉〈x|= lim
a→0

1
a
|n〉〈n| (4.16)

The scalar product, for x = na and x′ = ma, in the limit of a → 0, is given, from
(4.14), (4.15), and (4.13), by the Dirac delta function:

〈x|x′〉= lim
a→0

1
a

δm−n ⇒ 〈x|x′〉= δ (x− x′) (4.17)

The completeness equation has the following continuum limit:

I =
+∞

∑
n=−∞

|n〉〈n|= lim
a→0

a
+∞

∑
n=−∞

|x〉〈x| (4.18)

⇒
∫ ∞

−∞
dx|x〉〈x|= I : Completeness Equation (4.19)

Equation 4.18 shows that the projection operators given in (4.16) are complete and
span the entire of state space V .

I is the identity operator on state space V ; namely, for any state vector |ψ〉 ∈ V ,
it follows from the completeness equation that

I|ψ〉= |ψ〉

The completeness equation given by (4.19) is a key equation that is central to the
analysis of state space and yields the following:

〈x|I|x′〉=
∫ ∞

−∞
dz〈x|z〉〈z|x′〉=

∫ ∞

−∞
dzδ (x− z)δ (z− x′) = δ (x− x′)

that follows from the definition of the Dirac delta function δ (x − x′). The above
equation shows that δ (x− x′) is the matrix element of the identity operator I for the
continuous the degree of freedom F = ℜ in the x basis.

A state space V(F) of a continuous degree of freedom F is also called a function
space, and it is for this reason that the subject of functional analysis studies the
mathematical properties of quantum mechanics.

Consider the special case of F = ℜ; a state vector | f 〉 that is an element of V(ℜ)
yields a state function f (x) given by f (x) = 〈x| f 〉; hence all functions of x, namely,
f (x), can be thought of as elements of a state space V(ℜ). Of course, being an
element of a state space endows the function f (x) with the additional property of
linearity that needs to be consistent with all the other properties of f (x). It should
be noted that not all functions are elements of a quantum mechanical state space.
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4.7 Basis States for State Space

The bra and ket vectors 〈x| and |x〉 are the basis vectors of the VD and V , respectively.
For 2N + 1-dimensional Euclidean space, it can readily be shown that the 2N + 1
vectors |n〉,n = ±1,±2, . . . ,±N given in (4.9) are linearly independent and form a
complete basis for the space: any vector in the 2N+1-dimensional Euclidean space
can be expanded as a linear sum of these basis states. The crucial property of these
basis states is that the complete basis vectors satisfy the completeness equation given
in (4.11), namely, that

+N

∑
n=−N

|n〉〈n|= I ; 〈n|m〉= δn−m

Any 2N + 1-dimensional vector v, denoted by |v〉, can be expanded as follows:

|v〉= I|v〉=
N

∑
n=−N

vn|n〉 ; vn = 〈n|v〉 (4.20)

For the infinite-dimensional state space, a complete basis set of vectors must
satisfy the completeness equation, which for the coordinate basis |x〉 is given by
(4.19) and (4.17), namely,

∫ ∞

−∞
dx|x〉〈x|= I ; 〈x|x′〉= δ (x− x′)

In general, for state vectors |ψn〉 with components give by ψn(x) = 〈x|ψn〉, the
condition for a complete basis is given by

+∞

∑
n=−∞

|ψn〉〈ψn|= I ⇒
+∞

∑
n=−∞

ψn(x) ψ∗
n (x

′) = δ (x− x′)

The completeness equation is also referred as the resolution of the identity since
only a complete set of basis states can yield the identity operator on state space.

An element of the state space V is a ket vector |ψ〉 and can be thought of as
an infinite-dimensional vector with components given by ψ(x) = 〈x|ψ〉. In analogy
with (4.20), the vector |ψ〉 has the following representation in the |x〉 basis:

|ψ〉=
∫ ∞

−∞
dx|x〉〈x|ψ〉=

∫ ∞

−∞
dxψ(x)|x〉 ; ψ(x) = 〈x|ψ〉 (4.21)

The vector |ψ〉 can be mapped to a unique dual vector denoted by 〈ψ | ∈ VD; in
components ψ∗(x) = 〈ψ |x〉 and



4.8 Unitary Transformation: Momentum Basis 63

〈ψ |=
∫ ∞

−∞
dx〈ψ |x〉〈x|=

∫ ∞

−∞
dxψ∗(x)〈x| ; ψ∗(x) = 〈ψ |x〉

Note the state vector and its dual are related by complex conjugation, namely,

〈χ |ψ〉= 〈ψ |χ〉∗ ⇒ 〈x|ψ〉= 〈ψ |x〉∗ (4.22)

The scalar product of two state vectors is given by7

〈χ |ψ〉 ≡
∫

dxχ∗(x)ψ(x)

The vector |ψ〉 and its dual 〈ψ | have the important property that they define
the “length” 〈ψ |ψ〉 of the vector. The completeness equation (4.19) yields the
following:

〈ψ |ψ〉=
∫ ∞

−∞
dxψ(x)∗ψ(x)≥ 0

4.8 Unitary Transformation: Momentum Basis

The degree of freedom space F can be assigned coordinates in order to describe it in
detail. There are a variety of equivalent coordinate systems for a given state space,
the various coordinate systems being related by unitary transformations, denoted by
U; these are transformations that preserve the scalar product of two state vectors.
Let |ψ〉 be a state vector and 〈χ | be a dual state vector; recall from (4.22) that
the dual vector is obtained by complex conjugating the state vector. Consider the
transformations

|ψ〉 → U|ψ〉 ; 〈χ | → 〈χ |U† (4.23)

where U† is transposition and complex conjugation. For an N ×N matrix, one has
M

†
i j =M∗

ji.
The transformation given by (4.23) is unitary if it leaves the scalar product

unchanged, namely,

〈χ |ψ〉 → 〈χ |U†
U|ψ〉= 〈χ |ψ〉

⇒ U
†
U= I : Unitary transformation (4.24)

7A more direct derivation of the completeness equation is the following:

〈χ |ψ〉= 〈χ |{
∫ ∞

−∞
dx|x〉〈x|}|ψ〉 ⇒ I=

∫ ∞

−∞
dx|x〉〈x|
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Fig. 4.8 Coordinates of the
degree of freedom space F of
a quantum particle (published
with permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

For the case of a quantum particle, as shown in Fig. 4.8, one can choose the
position coordinate x or equivalently the momentum coordinate p to coordinatize F .
The different coordinates used for describing the degree of freedom space F yield
different basis states of state space V .

For finite dimension vector spaces, such as a N-dimensional Euclidean space,
a complete set of basis vectors can be rotated to yield a new and equivalent set
of complete basis vectors. The rotations are transformations that leave the scalar
product unchanged, as in (4.24). The change of coordinates for a Euclidean space
is transformations by an orthogonal matrix; for finite-dimensional and real spaces,
unitary transformations in fact reduce to the orthogonal matrices.

The change of basis of a finite-dimensional space generalizes to infinite-
dimensional state space, with the transformations being unitary transformations. In
particular, under a unitary transformationU, a complete coordinate basis of F yields
a new and equivalent complete basis.

For concreteness, consider a quantum particle in one dimension; the degree of
freedom space is F = ℜ and the state space is V(ℜ). The representation of state
space depends on the choice of a coordinate systems for the degree of freedom F .
Note, however, that the state space V , as such, is a coordinate independent object
and in particular does not depend on the basis chosen to represent it.

Two widely used coordinate systems forF =ℜ are the position x and momentum
p coordinates for ℜ and are shown in Fig. 4.8. This yields the following two
representations of the state vector:

|ψ〉 → ψ(x) = 〈x|ψ〉; x ∈ ℜ

|ψ〉 → ψ(p) = 〈p|ψ〉; p ∈ ℜ

The different basis chosen to represent the degree of freedom space F is
not simply a mathematical property of F . Rather, the basis chosen has direct
experimental significance since the design of the experimental device that studies
the degree of freedom F are based on the representation chosen.
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Unitary Transformation U

A unitary transformation connects the basis states of state space V(ℜ) for the two
different coordinates of F = ℜ. Consider the coordinate and momentum ket basis
states |x〉; |p〉 with x, p ∈ [−∞,+∞]; a unitary transformation U maps the coordinate
to the momentum basis and yields the following8

|p〉=
∫ ∞

−∞
dxU[p,x]|x〉

where ∫ ∞

−∞

dp
2π h̄

U[p,x]U†[p,x′] = δ (x− x′) : Unitarity

The Fourier representation of the Dirac delta function yields

δ (x− x′) = 〈x|x′〉=
∫ ∞

−∞

dp
2π h̄

eip(x−x′)/h̄ =
∫ ∞

−∞

dp
2π h̄

〈x|p〉〈p|x′〉 (4.25)

The matrix elements of the unitary transformation is seen to be the scalar product of
the dual momentum basis state 〈p| with the basis state |x〉 and is given by

〈x|U†|p〉 = U
†[p,x] = 〈x|p〉= eipx/h̄

〈p|U|x〉 = U[p,x] = 〈p|x〉= e−ipx/h̄. (4.26)

From (4.25), the completeness equation for momentum space basis |p〉 is
given by

∫ ∞

−∞

dp
2π h̄

|p〉〈p|= I ; 〈p|p′〉= 2π h̄δ (p− p′) (4.27)

In summary, a complete basis states for the state space is provided by either
the coordinate basis |x〉 or the momentum basis |p〉; the unitary transformation
connecting the two bases is given by

|x〉 =
∫ ∞

−∞

dp
2π h̄

|p〉〈p|x〉=
∫ ∞

−∞

dp
2π h̄

e−ipx/h̄|p〉 (4.28)

|p〉 =
∫ ∞

−∞
dx|x〉〈x|p〉=

∫ ∞

−∞
dxeipx/h̄|x〉 (4.29)

8The factor of 2π h̄ in dp has been introduced for dimensional consistency, with U being
dimensionless and the dimension of h̄ = dimension of x× dimension of p; furthermore, all the
factors of 2π h̄ are carried by the momentum integration and momentum delta functions. That h̄ is
Planck’s constant can only be concluded when momentum is defined in Sect. 5.6.
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Note the unitary transformation connecting the coordinate and momentum basis
states, as given in (4.28) and (4.29), shows that the change of basis is a trans-
empirical superposition of basis vectors of state space.

From a mathematical point of view, the coordinate and momentum basis are
equivalent, related by a unitary transformation. However, from the point of view of
quantum mechanics, the choice of the two basis vectors has very different physical
implications and which is related to the theory of quantum measurement.

The state vector |ψ〉 represents the quantum state of the particle. Choosing a
coordinate basis |x〉 to study the quantum system requires projection operators that
detect the quantum state at position x, and with predicted probability |〈x|ψ〉|2 =
|ψ(x)|2, and is discussed in Sect. 9.2. On the other hand, choosing the momentum
basis |p〉 requires measuring the quantum state’s momentum, using a different
device consisting of projection operators that detect the momentum p, and with
predicted probability |〈p|ψ〉|2 = |ψ̃(p)|2.

Note that the function |ψ̃(p)|2 is very different from the function |ψ(x)|2 and
expresses the fact that the state vector yields very different results, depending on
how it is measured.

It will be shown in Sect. 5.7 that the transformations given in (4.28) and (4.29)
relating x and p result in the Heisenberg Uncertainty Principle; among many
implications of the Heisenberg Uncertainty Principle is that both x and p cannot be
simultaneously measured. Hence, choosing the coordinate or momentum basis for
F = ℜ determines how to measure the state vector |ψ〉—with experiments designed
for different basis states giving different, but consistent, results.

4.9 State SpaceVVV
One of the most remarkable properties of the quantum description of Nature is
that the state vector, denoted by |ψ〉, is an element of a state space V that is a
linear vector space. The precise structure of the linear vector space V depends on
the nature of the quantum degree of freedom. From the simplest quantum system
consisting of two possible states to a system having N particles in four-dimensional
spacetime to quantum fields having infinite number of degrees of freedom, there is
a linear vector space V and a state vector defined for these degrees of freedom.

Euclidean space ℜN is a finite-dimensional linear vector space; the linear vector
spaces V that occur in quantum mechanics and quantum field theory are usually state
spaces that are an infinite-dimensional generalization of ℜN . Infinite-dimensional
linear vector spaces arise in many applications in science and engineering, including
the study of partial differential equations and dynamical systems, and many of their
properties, such as the addition of vectors, are the generalizations of the properties
of finite-dimensional vector spaces.

The following are some of the main properties of a linear vector space V :
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1. Since they are elements of a linear vector space, a state vector can be added
to other state vectors. In particular, ket vectors |ψ〉 and |χ〉 are complex-valued
vectors of V and can be added as follows:

|η〉= a|ψ〉+ b|χ〉 (4.30)

where a,b are complex numbers ∈C and yield another element |η〉 of V . Vector
addition is commutative and associative.

2. For every ket vector |ψ〉 ∈ V , there is a dual (bra) vector 〈ψ | that is an element of
the dual linear vector space VD. The dual vector space is also linear and yields
the following:

〈η |= a∗〈ψ |+ b∗〈χ |
The collection of all (dual) bra vectors forms the dual space VD.

3. More formally, VD is the collection of all linear mappings that take elements of
V to C by the scalar product. In mathematical notation,

VD : V →C

The vector space and its dual, shown in Fig. 4.9, are not necessarily isomorphic.9

4. For any two ket |ψ〉 and bra 〈η | vectors belonging to V and VD, respectively, the
scalar product, namely, 〈η |ψ〉, yields a complex number and has the following
property:

〈η |ψ〉= 〈ψ |η〉∗

where recall ∗ stands for complex conjugation. The scalar product is linear and
yields

〈η |ζ 〉= a∗〈ψ |ζ 〉+ b∗〈χ |ζ 〉
In particular, 〈ψ |ψ〉 ≡ |ψ |2 is a real number—a fact of far-reaching consequence
in quantum mechanics.

5. One of the fundamental properties of quantum states is that two states are
distinct if they are linearly independent. In particular, two states |ψ〉 and |χ〉
are completely distinct if and only if they are orthogonal, namely,

〈χ |ψ〉= 0 : orthogonal (4.31)

Two states being distinct is central to the theory of quantum measurement and is
discussed in Chap. 9.

9Two spaces are isomorphic if there is an invertible mapping that maps each element of one space
to a (unique) element of the other space.
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4.10 Hilbert Space

Starting in the 1900s, Hilbert space was studied by David Hilbert, Erhard Schmidt,
and Frigyes Riesz as belonging to the class of infinite-dimensional function space.
The main feature that arises in a Hilbert space is the issue of convergence of an
infinite sequence of elements of Hilbert space, something that is absent in a finite-
dimensional vector space.

To allow for the probabilistic interpretation of the state vector |ψ〉, all state
vectors that represent physical systems must have unit norm, that is,

〈ψ |ψ〉 ≡ |ψ |2 = 1 : unit norm

A linear vector space V that is a normed vector space is called a Hilbert space,
shown schematically in Fig. 4.10. For a Hilbert space, the dual state space is
isomorphic to the Hilbert space, namely, V � VD.

The state space of quantum entities is a Hilbert space. However, there are
classical random systems, for example, that occur in finance and for quantum
dissipative processes, where the state space is not a Hilbert space and in particular
leads to a dual state space VD is not isomorphic to the state space V [3].

ψ ψ

VD=Dual State SpaceV=State Space

Fig. 4.9 A state space V and
its dual space VD; note that
the dual space is not
necessarily isomorphic to the
state space (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

ψ ψ

V=State Space VD V: isomorphic

Fig. 4.10 Hilbert space is a
unit norm state space with
V � VD (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)
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Recall from Sect. 4.5 that for a quantum entity having spin �, its degree of
freedom F = {�,�− 1, . . . ,1,0,−1, . . . ,−�} is the discrete space and its Hilbert
space V(F) is isomorphic to the space S2�+1/S1.

For the continuous degree of freedomF = ℜ, an element of |ψ〉 of Hilbert space
has unit norm and hence yields

〈ψ |ψ〉 ≡ |ψ |2 =
∫ +∞

−∞
dx|ψ(x)|2 = 1 : unit norm

Noteworthy 4.2: Quantum mathematics

Quantum mathematics originates in quantum physics. One of the essential
features of quantum mathematics is the synthesis of calculus with linear algebra.
To illustrate this synthesis, note that in linear algebra the representation of a vector
in N-dimensional Euclidean space ℜN is given in terms of N linearly independent
basis vectors ei. An arbitrary vector is expressed by its components, which in Dirac’s
notation is given as follows:

ei · e j = δi− j = 〈i| j〉 ; f =
N

∑
i=1

fiei =
N

∑
i=1

fi|i〉

In quantum mathematics, an infinite-dimensional generalization of linear algebra
is made by generalizing Euclidean space ℜN to state space V . There are now
a continuous infinity of independent basis vectors |x〉, where x is governed by
rules of calculus. The “vector” | f 〉 belonging to V , from (4.21), has the following
representation in the |x〉 basis:

| f 〉=
∫ ∞

−∞
dx f (x)|x〉; 〈x|x′〉= δ (x− x′)

The Dirac notation provides a transparent representation of the infinite-
dimensional generalization of linear algebra that naturally combines it with
calculus. Function f (x) of a continuous variable x, the mainstay of calculus, in
quantum mathematics is endowed with a linear structure that is inherited from state
(function) space V . The Dirac delta function plays a crucial role in the mathematical
realization of the synthesis of linear algebra with calculus.

4.11 Summary

This chapter was focused on the mathematical description of the degree of freedom
as well as of its state space.

The collection of all the possible values of a quantum entity constitutes its degree
of freedom. The simplest possible quantum degree of freedom, consisting of two
possible values, was analyzed is some detail, and its state space was shown to be
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given by the Bloch sphere. The degree of freedom with 2N + 1 possible values
was studied to show how the continuous degree of freedom emerges in the limit of
N → ∞.

For discrete degrees of freedom, the state space is isomorphic to a subspace of
an N-dimensional Euclidean space, whereas for a continuous degree of freedom,
the state space is an infinite-dimensional generalization of Euclidean space. The
basis states for the continuous degree of freedom were derived, and the unitary
transformation mapping the coordinate to the momentum basis was obtained.

The general properties of the infinite-dimensional state space were discussed and
shown to be a logical development of the concepts of a finite-dimensional vector
space. In quantum mechanics, the state space is a (normed) Hilbert space dictated
by the probabilistic interpretation of the state vector.

The mathematical thinking about quantum mechanics developed by Dirac, partly
expressed in his notation for linear vector spaces, provides a transparent and clear
framework for introducing and developing the ideas of the degree of freedom and
of state space. Dirac’s mathematical formulation of quantum mechanics should not
be thought of as being merely notation but, rather, as a major conceptual revolution.
Dirac’s notation is as far-reaching and groundbreaking as the change in the way of
thinking about the real numbers brought about by the shift from the Roman to the
decimal notation.



5Operators

An observation in classical mechanics experimentally determines the unique
properties of the system, usually specified by its position, energy, momentum,
and so on. A quantum system is indeterminate, and hence one has to define what
one means by an observation. Furthermore, all the physical quantities of classical
mechanics, such as position, momentum, energy, and angular momentum, need to
be generalized to reflect quantum indeterminacy.

Instead of having a unique value, physical quantities for a quantum system take
a whole range of possible values that depend on the state function of the quantum
entity. The state vectors are elements of a state space, which is a Hilbert space
due to the probabilistic interpretation in quantum mechanics.1 All experimental
observations carried out on the state vector are represented and realized by operators
that are also called observables when referring to physical quantities such as energy
and momentum.2

The following topics are covered in this chapter:
• The essential role of operators in extracting information from and about the

degree of freedom.
• Hermitian operators are defined, and their properties are exemplified by the

Hamiltonian operator.
• Position and momentum are studied in some detail as these are amongst the most

important operators in quantum mechanics.
• Some important properties of observables and their quantum numbers are

discussed.
• The Heisenberg commutation equation is derived.

1In the application of quantum mathematics to finance, the Hamiltonians evolving the stochastic
financial instruments are not Hermitian. Furthermore, the state space of financial instruments on
which the Hamiltonian acts is not a positive normed Hilbert space but instead is much larger with
many financial instruments having a divergent, infinite norm [3].
2Operators representing physical quantities have been termed as observables by Dirac, and we use
this terminology [10].

B.E. Baaquie, The Theoretical Foundations of Quantum Mechanics,
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• The framework of state space and Hermitian operators is utilized to briefly
discuss the Schrödinger and Heisenberg formulations of quantum mechanics.

5.1 Operators: Trans-empirical to Empirical

All the information that can be obtained from a degree of freedom F is encoded in
its state vector |ψ〉. Operators O are mathematical mappings of the state space into
itself. The “diagonal” matrix elements of the operators, namely, 〈ψ |O|ψ〉, will be
shown in Sect. 5.8 to be equal to the average observed value of the operator O for a
given quantum state |ψ〉.

In other words, operators O act on the state vector |ψ〉 and project it to the
experimentally measured quantity 〈ψ |O|ψ〉 that yields the empirical content of the
degree of freedom F . As shown in Fig. 5.1, the operator O provides a mapping of
the trans-empirical state space to the empirically observed results of the experiment
that measures the average value of O.

The experimental observation of a quantum system always results in assigning a
real value to the physical quantity being measured. Hence, all operators representing
physical quantities must be assigned real numbers by the state vector that is being
observed, which in turn requires that the observables (operators) are Hermitian
(defined precisely in Sect. 5.2). This is the fundamental reason why, in quantum
mechanics, all physical quantities such as energy and momentum are represented
by Hermitian operators.

The experimental devices that measure the observable properties of a degree
of freedom F are mathematically realized in quantum mechanics by Hermitian
operators Oi, i = 1,2, . . . , I. There is no analog of operators Oi in classical
mechanics.

Trans-empirical
(V: Hilbert Space)

Empirical
(Laboratory)

ψ

Device

ψ ψO
O

Fig. 5.1 The operator O acts on state vector |ψ〉 and causes the state vector to “collapse,” resulting
in the observed value of the operator—given after repeated observations by 〈ψ|O|ψ〉 (published
with permission of © Belal E. Baaquie 2012. All Rights Reserved)
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In summary, all observables (physical quantities) are represented by Hermitian
operators that act on the state vector to yield, after repeated measurements, the
average value of the operators for the quantum state.

5.2 Hermitian Operators

Every degree of freedom F defines a state space V and operators O that act on that
state space. All operators O are mathematically defined to be linear mappings of
the state space V into itself, shown in Fig. 5.2, and yield

O : |ψ〉 → O|ψ〉 ⇒ O : V → V
O
(

a|ψ1〉+ b|ψ2〉
)
= aO|ψ1〉+ bO|ψ2〉 : linear

where a,b are constants.
An operator is an element of the space formed by the outer product of V with its

dual VD, that is,

O ∈ V ⊗VD

All physical quantities of a degree of freedom such as position, momentum,
energy, angular momentum, spin, and charge are all represented by Hermitian
operators. Hermitian operators O map the space V onto itself.

For a two-state system, the state space is given by the Bloch sphere, discussed in
Sect. 4.4, and operators are 2× 2 complex-valued Hermitian matrices. A Hermitian
matrix is only defined for complex square matrices N × N with Mi j with i, j =
1,2, . . . ,N, and Mi j satisfies

M† = (MT )∗ = M ⇒ M∗
ji = Mi j ; i, j = 1,2, . . . ,N : Hermitian (5.1)

Note the crucial point that unless i, j have the same range, the equality in (5.1)
cannot hold for all i, j.

ψ

Hilbert Space

Oψ
O

VV

Fig. 5.2 An operator O
acting on element |ψ〉 of the
state space V and mapping
it to O|ψ〉 (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)
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Hermitian operators on linear vector state space are infinite-dimensional
generalizations of N × N matrices, with N → ∞, and have new properties that
are absent in finite matrices.

The range over which the finite index i takes values for a finite-dimensional
matrix has a generalization for state vectors in Hilbert space V . The domain of the
operator O, denoted by D(O) ⊂ V , is defined by all elements |ψ〉 in V such that
O|ψ〉 ∈ V . Similarly, the vector |χ〉 is in D(O†), the domain of O†, if O†|χ〉 ∈ V .

The analog of Hermitian conjugation being defined only for a square matrix is
that for operators on Hilbert space, the adjoint (Hermitian conjugate) operator can
be defined for only those operators F for which the domain of the operator and its
adjoint are isomorphic or, in other words, D(O) = D(O†).

Hermitian conjugation of operators on state space is defined by

〈ψ |O†|χ〉 ≡ 〈χ |O|ψ〉∗ : Hermitian conjugation

Once the domains of the operator and its conjugate are isomorphic, the form of the
operator has to be invariant under conjugation, that is, O =O†, for the operator to
be self-adjoint.3 More precisely, an operator is Hermitian if its Hermitian conjugate
operator is equal to the operator itself, that is, if

O† =O ⇒ 〈ψ |O|χ〉 ≡ 〈χ |O|ψ〉∗ : Hermitian operator (5.2)

Note that all the diagonal elements of a Hermitian operator O are real since for
any arbitrary state vector |ψ〉, the diagonal element is as shown below:

〈ψ |O|ψ〉= 〈ψ |O†|ψ〉= 〈ψ |O|ψ〉∗ : Real (5.3)

Furthermore, similar to matrices, Hermitian conjugation is a linear operation and
yields, for a sum and products of operators, the following:

(c1O1 + c2O2 + · · ·)† = c∗1O†
1 + c∗2O†

2 + · · · ; (O1O2 . . .)
† = . . .O†

2O†
1

The trace operation for an operator O, similar to matrices, is defined as a sum
of all its “diagonal elements.” To make this statement more precise, one needs a
resolution of the identity operator on state space V . Consider for concreteness the
continuous degree of freedom with the completeness equation given by (4.19) as
follows:

I =
∫ ∞

−∞
dx|x〉〈x|

3One of the reasons for studying the Hermitian conjugate operator is because one can ascertain the
space that an operator acts on, namely whether it acts on V or on its dual VD. For non-Hermitian
operators, and these are the ones that occur in describing classical random systems such as those
that occur in finance [3], the difference is important.
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Trace is a linear operation on O and is defined by

tr(O) = tr(OI) =
∫ ∞

−∞
dx tr

(
O|x〉〈x|

)
=

∫ ∞

−∞
dx〈x|O|x〉 (5.4)

The properties of the trace operation are summarized below:

tr

[
∑

i

ciOi

]
= ∑

i

citr[Oi]

tr

[
∑

i

ciOi

]†

= ∑
i

c∗i tr∗[Oi]

tr(O1O2O3) = tr(O3O1O2) : cyclic

Cyclicity of the trace makes it invariant under unitary transformationsU , namely,

tr[UOU†] = tr[OU†U ] = tr[O]

A unitary operator, the generalization of the exponential function expiφ , is given
in terms of a Hermitian operator O by the following:

U = eiφO ⇒ UU† = I

V =
1− iaO
1+ iaO ⇒ VV † = I

5.3 Eigenstates: Projection Operators

Consider a Hermitian operator O. The eigenstates and (real) eigenvalues are a very
special set of state vectors that are only rescaled by its eigenvalues when the operator
O acts on them and are given by the following:

O|ψn〉= λn|ψn〉 ; λ ∗
n = λn : Real number (5.5)

The eigenstates |ψn〉 of O are the closest one can come to a classical state in
the following sense: every measurement of the properties of an eigenstate |ψn〉, in
particular of its eigenvalue λn, will always yield the same value. In this sense the
outcome of the experiment is deterministic.

Note, however, that the eigenstate |ψn〉 is nevertheless not a classical entity;
the degree of freedom F remains transempirical and indeterminate even for an
eigenstate; what is determinate is a property of the degree of freedom, encoded
in the eigenvalue of the eigenfunction.

For example, for a hydrogen atom in an energy eigenstate, a measurement of
its energy will always yield the energy eigenvalue, but the electron’s coordinate
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degree of freedom is nevertheless indeterminate—having observed values for the
coordinate projection operator only with certain likelihood, which is determined by
the Schrödinger equation.

All Hermitian operators have the following important properties:
• The eigenfunctions are orthonormal and complete, namely,

〈ψn|ψn〉= δn−m ; ∑
n
|ψn〉〈ψn|= I (5.6)

• Every Hermitian operator defines a complete set of projection operators Πn that
are defined below; (5.6) yields

Πn = |ψn〉〈ψn| ; ΠnΠm = δn−mΠn ; ∑
n

Πn = I (5.7)

• The Hilbert space and its dual are isomorphic and hence O ∈ V ⊗VD ≡ V ⊗V ;
the spectral decomposition of a Hermitian operator is given by the following:

O = ∑
n

λn|ψn〉〈ψn|= ∑
n

λnΠn (5.8)

O† = ∑
n

λ ∗
n (|ψn〉〈ψn|)† =O

since all eigenvalues λn are real. In other words, a Hermitian operator is
completely equivalent to the set of all of its projection operators (eigenfunctions)
and eigenvalues.

The collection of eigenvalues of an operator, called its eigenspectrum, depends
on the nature of the operator.

There are quantum degrees of freedom for which observables like momentum
and position can have both discrete and continuous eigenvalues; the discussion
for integer quantum numbers can be generalized these systems .

For example, consider the eigenspectrum of the hydrogen atom. The electron
interacts with the proton via the Coulomb potential. The energy eigenfunc-
tions have a discrete energy spectrum, from −13.6 eV to 0, given by En =
−13.6/n2 eV and correspond to the eigenstates of the hydrogen atom, which
is a bound state of the electron and proton; the integer n is called the principal
quantum number of the hydrogen atom.

There is also a continuous energy spectrum from 0 out to infinite energy of the
electron interacting with the proton via the Coulomb potential, and it corresponds
to energy eigenstates of the electron scattering off the proton .

The eigenspectrum of an electron interacting with a proton via the Coulomb
potential is shown in Fig. 5.3.

• The trace operation, from (5.8), can be defined in terms of the complete
eigenfunctions as follows:

tr(O) = ∑
n

λn tr
(
|ψn〉〈ψn|

)
= ∑

n
λn 〈ψn|ψn〉= ∑

n
λn
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13.6
eVEn

n2
= −

Energy

-13.6 eV 0 ∞

Fig. 5.3 The eigenspectrum of the electron–proton system (published with permission of © Belal
E. Baaquie 2012. All Rights Reserved)

• Since all eigenvalues of a Hermitian operator are real, let them be labeled in
increasing value, that is, λmin, . . . ,λn, . . . ,λmax. For a normalized state vector |ψ〉
(with 〈ψ |ψ〉= 1), the expectation of the operator is bounded by its minimum and
maximum eigenvalue, namely,

λmin ≤ 〈ψ |O|ψ〉 ≤ λmax ; 〈ψ |ψ〉= 1 (5.9)

Since the projection operator obeys Π2
n = Πn, it has two eigenvalues, namely,

0 and 1; hence from (5.9) above,

0 ≤ 〈ψ |Πn|ψ〉 ≤ 1 ; 〈ψ |ψ〉= 1 (5.10)

Equations (5.7) and (5.10) have far-reaching consequences and form the basis of
the theory of quantum probability discussed in Chap. 7.

• Unitary transformations discussed in Sect. 4.8 reflect the fact that an observable
O and its eigenfunctions are only defined up to a unitary transformation, with the
eigenvalues λn being invariant. In particular, under a unitary transformation, the
eigenfunction equation given in (5.5) yields the following:

O→OU = UOU† = ∑
n

λnU |ψn〉〈ψn|U† = ∑
n

λn|χn〉〈χn| (5.11)

OU |χn〉 = λn|χn〉 ⇒ OUU |ψn〉= λnU |ψn〉 ⇒ U |ψn〉= |χn〉

• Functions of Hermitian operators are fundamental to a quantum system; for an
arbitrary operator-valued function f (O), the spectral resolution given in (5.8)
yields

f (O) = ∑
n

f (λn)|ψn〉〈ψn| (5.12)

where f (λn) is an ordinary numerical-valued function of the eigenvalues λn. Note
that from its definition, for Hermitian operator O, the eigenvalues λn are all real
and yields, for f (λn) = f ∗(λn), the following:

f †(O) = f (O†) = f (O) : Hermitian operator
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Parallel and Orthogonal State Vectors

If two states, namely, |χ〉 and |η〉, are parallel, then |χ〉= a|η〉; given that the states
are normalized, one has that a = exp(iφ) is a pure phase. Since all measurements
take the absolute value of the state vector, one can see that the phase φ is removed
from all physical measurements. Hence, in quantum mechanics, two state vectors
that are parallel are identical, that is,

|η〉= eiφ |χ〉 ⇒ |η〉 ≡ |χ〉 (5.13)

It was mentioned in Sect. 4.9 that if two state vectors |χ〉 and |η〉 are orthogonal,
namely,

〈χ |η〉= 0

then they are completely distinct quantum states.
To prove that orthogonal state vectors are completely distinguishable, consider

first the special case when the state vectors are two different eigenstates |ψn〉 and
|ψm〉. Assuming no degeneracy for the eigenstates, in every measurement, the first
state will have energy En and the second state, measured by the same apparatus, will
have energy Em �= En; hence the two state vectors are completely distinguishable.

To prove the general case of orthonormal vectors |χ〉 and |η〉, one can do a
unitary transformation of the basis states and choose |χ〉 and |η〉 as two of the basis
vectors. Then the argument for eigenvectors carries over to the general case.

5.4 Operators and Quantum Numbers

A classical system has conserved quantities such as energy, momentum, and angular
momentum; in fact, one usually characterizes a classical system by its conserved
quantities, called constants of motion. There is a quantum mechanical generalization
of the classically conserved quantities.

Since operators do not commute, define the commutator of two operators by the
following:

[Oi,O j] =OiO j −O jO j ; i, j = 1,2, . . . ,J

Operators fall into following two categories depending on whether they commute
or do not commute:
• Non-commuting operators

[Oi,O j ] �= 0 ; i, j = J + 1,2, . . . , I

• Commuting operators

[Qi,Q j] = 0 ; i, j = 1,2, . . . ,J
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Trans-empirical
(V:Hilbert Space) 

Empirical
(Laboratory)

ψ

O1
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O1

O2
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ON

ψ ψ

ψ ψ

ψ ψ

O2

…

D3
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D1

Fig. 5.4 Different devices Di are required to separately measure the properties of non-commuting
operators Oi for the state vector |ψ〉 (published with permission of © Belal E. Baaquie 2012. All
Rights Reserved)

An experimental device has to be custom designed to measure the properties of
an operator Oi, with each operator requiring a specific device that is capable of
measuring the eigenstates and eigenvalues of operator Oi. For operators Oi that do
not commute, a separate device Di has to be built for each operator, and the operators
have to be studied separately, as indicated in Fig. 5.4.

The Hamiltonian H is the most important operator for a quantum system since
it evolves the state vector in time. Consider a collection of commuting operators
Oi; i = 1,2, . . . ,N that also commute with H, namely,

[Oi,H] = 0; i = 1,2, . . . ,N

[Oi,O j ] = 0; i, j = 1,2, . . . ,N

An important result of Hermitian operators is that all commuting operators can
be simultaneously diagonalized with eigenfunctions |ψn,n1,n2,...,nN 〉 that obey

H|ψn;n1,n2,...,nN 〉 = En|ψn;n1,n2,...,nN 〉; n = 1,2, . . .

Oi|ψn;n1,n2,...,nN 〉 = λ i
ni
|ψn;n1,n2,...,nN 〉; i = 1,2, . . . ,N ; ni = 0,±1,±2, . . .

Suppose |ψn1,n2,...,nN 〉 is the initial state vector and is an eigenfunction of all the
operators Oi; i = 1,2, . . . ,N—but not necessarily an eigenfunction of H; then, from
(5.38) and due to the commutativity of Oi with H,

|ψt;n1,n2,...,nN 〉 = e−itH/h̄|ψn1,n2,...,nN 〉
⇒ Oi|ψt;n1,n2,...,nN 〉 = e−itH/h̄Oi|ψn,n1,n2,...,nN 〉

= λ i
ni

e−itH/h̄|ψn1,n2,...,nN 〉
= λ i

ni
|ψt;n1,n2,...,nN 〉
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Trans-empirical
(V: Hilbert Space)

Empirical
(Laboratory)

O1

O2

…
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ψ ψ

ψ ψ
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Device

O1,O2,…,ON

Fig. 5.5 A single device can simultaneously measure the expectation value of commuting
operators Oi; i = 1,2, . . . ,N for the state vector |ψ〉 (published with permission of © Belal E.
Baaquie 2012. All Rights Reserved)

The result above shows that the set of observables which commute with the
Hamiltonian and with each other provide eigenvalues and eigenfunctions that are
conserved in time.

In principle, all commuting operators can be observed simultaneously and again
in principle by a single device. Figure 5.5 shows a single device measuring the
properties of all the commuting operators.

The integers ni; i = 1,2, . . . ,N are called quantum numbers and replace the
determinate and unique values of the classical observables like momentum, an-
gular momentum, and energy that classically have continuous values. The time-
independent eigenvalues λ i

ni
are constants of motion and are the generalization of

classically conserved quantities. Fixing the values of the various ni’s fully specifies
a particular eigenstate of the observablesOi; i= 1,2, . . . ,N. An arbitrary state vector
for such a system can be expressed by

|ψ(t)〉= ∑
n1,n2,...,nN

cn1,n2,...,nN (t)|ψn1,n2,...,nN 〉

5.5 Periodic Degree of Freedom

The completeness equation is one of the most important properties of the eigen-
functions of a Hermitian operator. To illustrate this property it is shown how, for a
special case, the eigenfunctions yield a resolution of the identity as given in (5.6).
The result is derived for a particle moving on a circle, that is, with the degree of
freedom being S1. Another noteworthy aspect is that the coordinate operator for the
real line ℜ can be seen to arise from the compact degree of freedom that has a finite
normalization for the coordinate eigenfunction.
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Consider the Hamiltonian operator H, which is the generalization of the classical
concept of energy. For concreteness, consider the Hamiltonian in (2.6), with the
potential for a free particle given by V (x) = 0; hence

H =− 1
2m

∂ 2

∂x2 ; x = x+ 2πL (5.14)

Note x is defined on a periodic domain [0,2πL].
Consider the eigenfunctions of H given by

HψE(x) = EψE(x);
∫ 2πL

0
dx|ψE(x)|2 = 1

The ground state (having lowest energy) is nondegenerate and is given by

ψ0(x) =
1√
2πL

All the other energy eigenfunctions are twofold degenerate and given by

Hψ±n(x) = Eψ±n(x); E =
n2

2mL2

ψ±n(x) =
1√
2πL

e±i nx
L , n = 1,2, . . . ,+∞

Hence, from the general results given in (5.6), one concludes that the eigenfunctions
of H are complete and yield the following completeness equation:

I= |ψ0〉〈ψ0|+
+∞

∑
n=1

(|ψ+n〉〈ψ+n|+ |ψ−n〉〈ψ−n|) (5.15)

The completeness equation requires all the eigenfunctions, including all the degen-
erate eigenfunctions, of the Hermitian operator. The matrix element of the identity
operator, from (4.19), is given by

〈x′|I|x〉= δ
(
x− x′

)

Hence, to prove (5.15), we need to find the matrix element of the right-hand side
and show that it is equal to δ (x− x′).

Consider the following expression:

〈x′|{|ψ0〉〈ψ0|+
+∞

∑
n=1

(|ψ+n〉〈ψ+n|+ |ψ−n〉〈ψ−n|)
}|x〉
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=
1

2πL

(
1+

+∞

∑
n=1

(ei n
L (x

′−x) + e−i n
L (x

′−x))

)

=
1

2πL

+∞

∑
n=−∞

ei n
L (x

′−x) =
+∞

∑
n=−∞

δ
(
x− x′+ 2πnL

)

= δ
(
x− x′

)
since x,x′ ∈ [0,2πL]

which proves (5.15). To obtain the final expression requires Poisson’s summation
formula

1
2πL

+∞

∑
n=−∞

ei n
L (x

′−x) =
+∞

∑
n=−∞

δ
(
x− x′+ 2πnL

)
(5.16)

Taking the limit of L → ∞ yields the result for x ∈ [−∞,+∞]; the completeness
equation given in (5.15) for a the circle converges to the unit operator for a
continuous degree of freedom given in (4.19) since

lim
L→∞

1
2πL

+∞

∑
n=−∞

ei n
L (x

′−x) =
1

2π

∫ +∞

−∞
dpeip(x′−x)

= δ (x′ − x) ; x,x′ ∈ [−∞,+∞]

5.6 Position and Momentum Operators x̂ and p̂

A quantum particle has a continuous (real) degree of freedom x ∈ F = ℜ. The state
space consists of all functions of the single variable x, namely, V = {ψ(x)|x ∈ ℜ},
where 〈x|ψ〉= ψ(x) [5].

One of the most important observables is the Hermitian coordinate operator x̂
that represents the coordinate degree of freedom on the state space of the quantum
particle. An experiment to observe the coordinate operator is discussed in Sect. 9.2.

The observable x̂ is defined as a multiplication of the state vector ψ(x) ∈ V by x,
that is,

x̂ψ(x)≡ xψ(x)

The operator x̂ has a continuous spectrum of eigenvalues and eigenstates.
Similar to a N × N matrix M that is fully specified by its matrix elements

Mi j, i, j = 1, . . . ,N, an operator is also specified by its matrix elements. In the bracket
notation,

x̂ψ(x) = xψ(x)

⇒ 〈x|x̂|ψ〉 = x〈x|ψ〉= xψ(x)

In other words, the matrix element 〈x|x̂|ψ〉 of the operator x̂ is given by xψ(x).
Choose the function |ψ〉= |x′〉 that yields
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〈x|x̂|x′〉 = x〈x′|x′〉= xδ (x− x′)

⇒ x̂|x′〉 = x′|x′〉 (5.17)

From above it follows that the observable x̂ has eigenfunctions |x〉 with eigenvalues
x ∈ ℜ; hence the spectral resolution of observable x̂ and its completeness equation
are given by

x̂ =
∫ ∞

−∞
dx|x〉x〈x| ;

∫ ∞

−∞
dx|x〉〈x|= I (5.18)

The last equation above is the completeness equation given earlier in (4.19).
The coordinate position projection operators are given by

Πx = |x〉〈x|; ΠxΠy = δ (x− y)Πx;
∫ ∞

−∞
dxΠx = I (5.19)

where last equation follows from (5.18). Since the eigenfunctions |x〉 are continuous,
the normalization of the eigenfunctions as well as of the coordinate position
projection operators is divergent; a limit has to be taken, such as the one discussed
in Sect. 5.5 for the case of the compact degree of freedom S1, to obtain finite results
for the continuous coordinate operator.

For N particles in three dimensions, one has the following straightforward
generalization of the coordinate operator x̂:

x̂ = [x̂1 ⊗ ŷ1 ⊗ ẑ1]⊗ [x̂2 ⊗ ŷ2 ⊗ ẑ2]⊗·· ·⊗ [x̂N ⊗ ŷN ⊗ ẑN ] (5.20)

The completeness equation is given by

IN =
∫ ∞

−∞
dx1dy1dz1 . . .dxNdyNdzN

×|x1,y1,z1〉〈x1,y1,z1|⊗ · · ·⊗ |xN ,yN ,zN〉〈xN ,yN ,zN |

where |x1,y1,z1〉= |x1〉|y1〉|z1〉, 〈x1,y1,z1|= 〈x1|〈y1|〈z1| and so on.

Momentum Operator p̂

Momentum is a central concept in classical physics, and important classical
quantities—such as energy and angular momentum—depend on momentum. Since
the state vector ψ(x) depends on only x, what is the quantum generalization of
classical momentum p = mdx/dt (quantum particle has mass m)?

In the path integral formulation of quantum mechanics, discussed in Chap. 11,
the momentum of a particle has the classical form, namely, p = mdx/dt, but in the
path integral approach, x(t), for each t, is an integration variable. The definition of
momentum implies that p(t) is an indeterminate quantity; to see this, suppose we
observe x(t) at instant t; the definition of p(t) is given by p = mdx/dt � m(x(t +
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ε)− x(t))/ε, but x(t + ε) at the next instant t + ε is not observed and hence is an
integration variable and not fixed—leading to a p(t) that is indeterminate.

Another equivalent method consists of defining momentum without any refer-
ence to the next instant in time and leads to momentum being realized as an operator
p̂ acting on state space V .

There are many ways of motivating the definition of the momentum operator, but
in the final analysis, one has to postulate the definition of the momentum operator
as there is no way of “deriving” this result from classical physics. Of course, the
definition has to be mathematically consistent, and the final test of whether the
postulate is correct is experiment; the definition adopted for momentum has been
rigorously verified by many experiments.

The momentum operator p̂ is postulated to be the following4:

p̂ =−ih̄
∂
∂x

(5.21)

Note Planck’s constant h̄ enters due to dimensional consistency, but its actual
empirical value is fixed by Nature and has to be obtained by doing an appropriate
experiment.

Consider a particle moving in one dimension. The differential operator ∂/∂x
maps ψ(x) ∈ V to its derivative ∂ψ(x)/∂x ∈ V . The momentum operator is p̂ =
−ih̄∂/∂x; in Dirac’s notation,

〈x|p̂|ψ〉=−ih̄
〈

x| ∂
∂x

|ψ
〉
=−ih̄

∂ψ(x)
∂x

(5.22)

An important feature of differential operators, such as ∂/∂x, is that they always act
on the dual space, as is the case for (5.22).

From (5.2), a Hermitian operator satisfies the following:

p̂† = p̂ ⇒ 〈ψ |p̂†|χ〉 ≡ 〈χ |p̂|ψ〉∗ = 〈ψ |p̂|χ〉 (5.23)

To prove (5.23) that p̂ is a Hermitian operator, doing an integration by parts yields
the following:

〈χ |p̂|ψ〉∗ =

[
−
∫ +∞

−∞
dxχ∗(x)ih̄

∂ψ(x)
∂x

]∗

= −
∫ +∞

−∞
dxψ∗(x)ih̄

∂ χ(x)
∂x

= 〈ψ |p̂|χ〉 : Hermitian

4From (5.20), since the coordinate operator for the 3N degrees of freedom is a tensor product of
the single degree of freedom, it is sufficient to define the momentum operator for one dimension
and build up the momentum for the 3N degrees of freedom by an appropriate tensor product.
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The eigenfunctions of p̂, in the notation of (5.22), are given by

〈x|p̂|p〉= peipx/h̄

The operator p̂, from the completeness equation for momentum given in (4.27), has
the following representation:

p̂ =

∫ ∞

−∞

dp
2π h̄

|p〉p〈p| (5.24)

The momentum operator, acting on the state vector, shifts its position in space.
More precisely, using (5.22), for a constant a, consider the following shift operator:

T (a) = ei a
h̄ p̂; T (a)T (b) = T (a+ b) (5.25)

〈x|T (a)|ψ〉 = ea ∂
∂ x ψ(x) = ψ(x+ a) = 〈x+ a|ψ〉 (5.26)

⇒ T (a)|x〉 = |x− a〉; 〈x|T (a) = 〈x+ a| (5.27)

One definition, from first principles, of the momentum operator p̂ is of being a
translation operator as given in (5.27).

5.7 Heisenberg Commutation Equation

Observables that do not commute occur widely in quantum mechanics and, in fact,
are the reason that operator algebras that occur in quantum mechanics are nontrivial.
One of the most important case of non-commuting observables is that of the position
and momentum operators, for which

[x̂, p̂] = ih̄I �= 0 (5.28)

Equation (5.28) defines the famous Heisenberg commutation equation, also called
the Heisenberg algebra.

To explore the concept of non-commuting operators, (5.28) is derived from first
principles. Consider the following representation of the coordinate and momentum
observables in one dimension given by (5.18) and (5.24):

x̂ =
∫ ∞

−∞
dx|x〉x〈x|; p̂ =

∫ ∞

−∞

dp
2π h̄

|p〉p〈p|

The commutator of the coordinate and momentum of a quantum particle, from above
equations, is given by5

5There is an elementary derivation of [x̂, p̂] using the chain rule of differentiation; this derivation
examines the operator structure of the momentum and coordinate operators.
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[x̂, p̂]≡ x̂ p̂− p̂x̂ =
∫ ∞

−∞
dx

dp
2π h̄

xp
[
|x〉〈x|p〉〈p|− |p〉〈p|x〉〈x|

]
(5.29)

Expressing the commutator entirely in the coordinate basis by transforming the
momentum basis, using (4.29) as well as (4.26), yields

[x̂, p̂] =
∫ ∞

−∞
dxdx′

dp
2π h̄

xp
[
eipx/h̄e−ipx′/h̄|x〉〈x′|− eipx′/h̄e−ipx/h̄|x′〉〈x|

]

=
h̄
i

∫ ∞

−∞
dxdx′x

[
|x〉〈x′| ∂

∂x
δ (x− x′)−|x′〉〈x| ∂

∂x′
δ (x′ − x)

]
(5.30)

=
h̄
i

∫ ∞

−∞
dxdx′

[
(x− x′)

∂
∂x

δ (x− x′)
]
|x〉〈x′|

= ih̄
∫ ∞

−∞
dx|x〉〈x|= ih̄I (5.31)

where (4.25) yields (5.30) and the last equation follows from the identity6

(x− x′)
∂
∂x

δ (x− x′) =−δ (x− x′)

Hence

[x̂, p̂] = ih̄I : Heisenberg commutation equation (5.32)

For N particles moving in three space dimensions, the degrees of freedom are
xai, pai with a = 1,2, . . . ,N and i = 1,2, . . . ,3. The Heisenberg commutation
equation is given by

[x̂ai, p̂b j] = ih̄δa−bδi− jI

[x̂ai, x̂b j] = 0; [p̂ai, p̂b j] = 0

Noteworthy 5.1: Position and momentum are incompatible

Since [x̂, p̂] = ih̄ II position and momentum do not commute and there is no state
vector that is the simultaneous eigenfunction of both x̂ and p̂. The quantum particle
can have an eigenfunction of either the position or the momentum operator, but not
of both. The non-commutativity of x̂ and p̂ is an operator expression of the fact that
if the position of the quantum particle is known at instant t, its momentum is not
known.

6The identity results from the equation

∂
∂ x

[(x− x′)δ (x− x′)] = 0

.
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This is because the quantum particle does not have a unique trajectory, and hence,
there is no unique derivative of the position and consequently no unique momentum.
Consider observing the particle’s position; at the next instant, the quantum particle
is in a trans-empirical state and “is” at all possible points simultaneously, as shown
in Fig. 11.6—and hence has no determinate value for its momentum.

5.8 Expectation Value of Operators

Important operators associated with a particle’s degree of freedom are its position,
momentum, energy, angular momentum, and so on and are represented by Hermitian
operators. Physical quantities are indeterminate; the best that we can do in quantum
mechanics is to measure the average value of the operator that represents a physical
quantity, termed as the expectation value of the operator.

A fundamental postulate of quantum mechanics that follows from (2.3) and
discussed in detail in Sect. 9.6 is the following: On repeatedly measuring the value
of the observable O for some state |χ〉, the expectation value (average value) of the
observable is given by

E[O]≡ 〈χ |O|χ〉 (5.33)

In other words, the expectation value of the observable is the diagonal value of the
operator O for the given state |χ〉. The expected value of a physical quantity, from
(5.3), is always a real quantity, and this is the reason for representing all observables
by Hermitian operators.

Consider some physical quantity, such as a particle’s spin, and let it be repre-
sented by an operator O with eigenvalues λi and eigenstates ψi. A typical physical
state is a superposition of the eigenstates with amplitude ci and is written as

|ψ〉= ∑
i

ci|ψi〉; O|ψi〉= λi|ψi〉 (5.34)

The result of measuring the physical quantity O for the state ψ(x) always results in
the state vector ψ(x) “collapsing” (being projected), with probability |ci|2, to one
of eigenstates of the operator O, say ψi(x)—whose eigenvalue λi is then physically
observed. A detailed discussion is given in Sect. 9.6.

After repeated measurements on the system—each prepared in an identical
manner and hence represented by ψ(x)—the average value of O is given by

Eχ [O] = ∑
i

|ci|2λi = ∑
i

|ci|2〈ψi|O|ψi〉= 〈ψ |O|ψ〉 (5.35)
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5.9 The Schrödinger Equation

The Schrödinger equation, introduced in Sect. 2.9, is reexpressed in the language of
state space and operators that has been developed in Chap. 4 and in this chapter.

The Schrödinger equation determines the time evolution of the state function
|ψ(t)〉, with the symbol t being the time parameter. To write down the Schrödinger
equation, one first needs to specify the degrees of freedom of the system in question
that in turn specifies the nature of the state space V ; one also needs to specify the
Hamiltonian H of the system that describes the range and form of energy the system
can have.

The celebrated Schrödinger equation is given by

− h̄
i

∂ |ψ(t)〉
∂ t

= H|ψ(t)〉 (5.36)

For a quantum particle with mass m moving in one dimension in a potential V (x),
the Schrödinger equation, stated earlier (2.5), is given as follows:

− h̄
i

〈
x| ∂

∂ t
|ψ(t)

〉
=
〈

x|H|ψ(t)
〉

⇒ − h̄
i

∂ψ(t,x)
∂ t

= H

(
x,

∂
∂x

)
ψ(t,x) (5.37)

where the Hamiltonian operator acts on the dual basis, as in (5.22). In the position
basis, the state vector is

〈x|ψ(t)〉= ψ(t,x)

The Hamiltonian for the important case of a quantum particle moving in one
dimension, from (2.6), is given by

H =− h̄
2m

∂ 2

∂x2 +V(x)

A variety of techniques have been developed for solving the Schrödinger equation
for a wide class of potentials as well as for multiparticle quantum systems [15].

Let |ψ〉 be the initial value of the state vector at t = 0 with 〈ψ |ψ〉 = 1.
Equation (5.36) can be integrated to yield the following formal solution:

|ψ(t)〉= e−itH/h̄|ψ〉=U(t)|ψ〉 (5.38)

Similar to the momentum operator translating the state vector in space, as in (5.26),
the Hamiltonian H is an operator that translates the initial state vector in time, as in
(5.38). The evolution operator U(t) is defined by

U(t) = e−itH/h̄ ; U†(t) = eitH/h̄

and is unitary since H is Hermitian; more precisely,
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U(t)U†(t) = I

The unitarity of U(t), and by implication the Hermiticity of H, is crucial for
the conservation of probability. The total probability of the quantum system is
conserved over time since unitarity of U(t) ensures that the normalization of the
state function is time independent; more precisely,

〈ψ(t)|ψ(t)〉= 〈ψ |U†(t)U(t)|ψ〉= 〈ψ |ψ〉= 1

The operator U(t) is the exponential of a Hermitian operator that in many cases, as
given in (2.6), is a differential operator. The Feynman path integral is a mathematical
tool for analyzing U(t) and is discussed in Chap. 11.

The Schrödinger equation has the following remarkable features:
• The Schrödinger equation is a first-order differential equation in time, in contrast

to Newton’s equation of motion that is a second-order differential equation in
time. At t = 0, the Schrödinger equation requires the initial state function for
all values of the degree of freedom be specified, namely, |ψ(ℜ)〉, whereas in
Newton’s law, only the position and velocity at the starting point of the particle
are required.

• At each instant, Schrödinger’s equation specifies the state function for all values
of the indeterminate degree of freedom. In contrast, Newton’s law of motion
specifies only the determinate position and velocity of a particle.

• Equation (5.36) is a linear equation; two solutions |ψ(t)〉 and |χt〉 of the
Schrödinger equation can be added to yield yet another solution given by
a|ψ(t)〉+ b|χ(t)〉. The linearity of the Schrödinger equation is the reason that
all the state vectors |ψ(t)〉 are elements of a linear vector space V .

• The state vector |ψ(t)〉 is a complex-valued vector. In fact, the Schrödinger
equation is the first equation in natural science for which complex numbers
are essential and not just a convenient mathematical tool for representing real
quantities.

5.10 Heisenberg Operator Formulation

Every physical property of a degree of freedom is mathematically realized by a
Hermitian operator O. Generalizing (5.35) to time-dependent state vectors and from
(5.38), the expectation value of an operator at time t, namely, O(t), is given by

Eψ [O(t)] = 〈ψ(t)|O|ψ(t)〉= 〈ψ |eitH/h̄Oe−itH/h̄|ψ〉
= tr

(O(t)ρ) : ρ = |ψ〉〈ψ | (5.39)

The density matrix ρ is time independent and encodes the initial quantum state of
the degree of freedom.
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From (5.39), the time-dependent expectation value has two possible
interpretations: the state vector is evolving in time, namely, the state vector is
|ψ(t)〉 and the operator O is constant, or equivalently, the state vector is fixed,
namely, |ψ〉, and instead, the operator is evolving in time and is given by O(t). The
time-dependent Heisenberg operators O(t) are given by

O(t) = eitH/h̄Oe−itH/h̄

ih̄
∂O(t)

∂ t
= [O(t),H] (5.40)

In the Heisenberg formulation of quantum mechanics, quantum indeterminacy is
completely described by the algebra of Hermitian operators.

All physical observables of a quantum degree of freedom are elements of
the Heisenberg operator algebra and so are the density matrices that encode the
initial quantum state of the degree of freedom. Quantum indeterminacy is reflected
in the spectral decomposition of the operators in terms of its eigenvalues and
projection operators (eigenvectors), as given in (5.8). For example, the single value
of energy for a classical entity is replaced by a whole range of eigenenergies of
the Hamiltonian operator for a quantum degree of freedom, with the eigenfunctions
encoding the inherent indeterminacy of the degree of freedom.

The time dependence of the state vector given by the Schrödinger equation is
replaced by the time dependence of the operators given in (5.40). All expectation
values are obtained by performing a trace over this operator algebra, namely, by
tr
(
ρO(t)) as given in (5.39).
From the point of quantum probability, as discussed in Chap. 7, Heisenberg’s

operator formulation goes far beyond just providing a mathematical framework for
the mechanics of the quantum, but instead, also lays the foundation of the quantum
theory of probability.

5.11 Summary

Observable properties of a degree of freedom are represented in quantum mechanics
by Hermitian operators, also termed as observables. The operators mathematically
map the transempirical form of the state vector of the quantum entity to its
empirical manifestation. The mapping of the operator is empirically realized by
an experimental apparatus that is custom-built to model the mathematical operator.
The empirical value of an observable quantity is obtained by the operator acting on
the underlying quantum state vector.

The structure of an operator is realized by its spectral decomposition, in terms of
all of its eigenfunctions and eigenvalues, and which also yields a representation of
the completeness relation of the underlying state space. The position and momentum
operator were discussed at length as these are the leading exemplars of Hermitian
operators as well as among the most important observables.
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The set of all mutually commuting observables—and which, in turn, all commute
with the Hamiltonian—provide an exhaustive description of all the conserved
quantities of a quantum entity and are the quantum generalization of the constants
of motion of classical mechanics.

The state space and operators for a given degree of freedom provide the appro-
priate mathematical framework for the Schrödinger and Heisenberg formulations of
quantum mechanics.





6Density Matrix: Entangled States

The Hilbert space for a quantum system contains states that behave in a manner that
is similar to classical objects. There are, however, also states in Hilbert space that
are enigmatic and nonclassical in the sense of being forbidden by classical physics.
Two leading exemplars of these nonclassical states are the following:
• Superposed states are obtained by adding state vectors, an operation allowed

since elements of Hilbert space are vectors that can be added. Addition of state
vectors gives rise to the principle of quantum superposition. Superposed states
have been discussed in Sect. 3.7 and in more detail in Chap. 8.

• There is another set of trans-empirical and paradoxical results for quantum
systems having at least two or more degrees of freedom, leading to the existence
of what are called entangled states. It is this aspect of Hilbert space that is the
subject of this chapter.
Nonclassical and trans-empirical states, such as superposed and entangled state

vectors, exhibit behavior that are full of surprises and which are radically different
from what one observes and expects in classical physics.

Entangled states arise due to the tensor product of state vectors and for which, in
particular, the classical concept of separating the quantum system into its component
parts does not hold. The density matrix (operator) ρ is a useful mathematical tool
for studying the properties of entangled degrees of freedom.

In Chap. 7, it is shown that entangled states are an important resource for
studying quantum indeterminacy. The density matrix (operator) ρ plays an essential
role in understanding the paradoxes that arise in studying quantum indeterminacy,
exemplified by the famous EPR (Einstein-Podolsky-Rosen) paradox.

A formulation of a quantum state that is mathematically more appropriate for
describing the quantum entity, before and after a measurement is made, is provided
by the density matrix and is discussed in Sect. 9.6.

The main focus of this chapter is to develop the mathematical machinery required
for studying the tensor product of states and operators and the various results that
follow from it.

B.E. Baaquie, The Theoretical Foundations of Quantum Mechanics,
DOI 10.1007/978-1-4614-6224-8__6, © Springer Science+Business Media New York 2013

93



94 6 Density Matrix: Entangled States

6.1 Tensor Product

Distinct vector spaces V and W , having different underlying degrees of freedom,
yield a tensor product space denoted by V⊗W ; for ket vectors |ψ〉 ∈V and |χ〉 ∈W ,
elements of V ⊗W are given by the tensor product ket vector

|ψ〉⊗ |χ〉= |ψ〉|χ〉

The tensor product space V⊗W inherits the linear structure of the constituent vector
spaces V and W .

The finite-dimensional state space is discussed so that the formulas can be
explicitly written; the infinite-dimensional case has a similar mathematical structure.
Consider an N-dimensional vector |v〉 ∈VN and an M-dimensional vector |w〉 ∈WM;
the tensor product state space is VMN = VM ⊗WN and is an MN-dimensional vector
space.

Consider ket vectors given by

|v〉=

⎛
⎜⎜⎜⎝

v1

v2
...

vN

⎞
⎟⎟⎟⎠ ; |w〉=

⎛
⎜⎜⎜⎝

w1

w2
...

wM

⎞
⎟⎟⎟⎠

The tensor product of an N-dimensional vector with an M-dimensional vector yields
an NM-dimensional vector that is an element of vector space VMN. The tensor
product vector |v〉⊗ |w〉 is defined by multiplying, from the left, each element of
|v〉 into all the elements of |w〉 and yields the following1:

|v〉|w〉 ≡ |v〉⊗ |w〉=

⎛
⎜⎜⎜⎝

v1

v2
...

vN

⎞
⎟⎟⎟⎠

N

⊗

⎛
⎜⎜⎜⎝

w1

w2
...

wM

⎞
⎟⎟⎟⎠

M

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1w1

v1w2
...

v1wM
...

vNw1

vNw2
...

vNwM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

NM

(6.1)

1Multiplying from the right by elements of |w〉 is another, but distinct, way of defining the outer
product. One needs to consistently use only the rule one has chosen.
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Tensor Product of Operators

Consider two matrices A and B that act on space V and W , respectively; the tensor
product of the matrices A⊗B acts on the space V ⊗W . The matrix elements of the
tensor product matrix is given by

〈w′|〈v′|(A⊗B)|v〉|w〉= 〈v′|A|v〉〈w′|B|w〉

Let the matrix elements of A and B be given by

A =

⎡
⎢⎢⎣

a11 a12 .. a1M

a21 a22 .. a2M

. . . .

aM1 aM2 .. aMM

⎤
⎥⎥⎦ ; B =

⎡
⎢⎢⎣

b11 b12 .. b1N

b21 b22 .. b2N

. . . .

bN1 bN2 .. bNN

⎤
⎥⎥⎦

Similar to the case of tensor product state vector, the matrix elements of the tensor
product matrix A⊗B are given as follows:

A⊗B =

⎡
⎢⎢⎣

a11 a12 .. a1M

a21 a22 .. a2M

. . . .

aM1 aM2 .. aMM

⎤
⎥⎥⎦⊗B =

⎡
⎢⎢⎣

a11B a12B .. a1MB
a21B a22B .. a2MB
. . . .

aM1B aM2B .. aMMB

⎤
⎥⎥⎦

Writing out all the matrix elements explicitly yields

A⊗B =

⎡
⎢⎢⎣

a11b11 .. .. a1Mb1N

.. .. .. ..

.. .. .. ..

aM1bN1 .. .. aMMbNN

⎤
⎥⎥⎦ : MN ×MN matrix

6.2 The Outer Product

The outer product of two linear vector spaces is an essential construct in quantum
mechanics and is necessary for studying the Hilbert space of a single degree of
freedom as well as the state space for two or more degrees of freedom.

For a single state space, the outer product space of the vector space with its dual
is given by V ⊗VD; the elements of the outer product space are denoted by |ψ〉〈η |,
with |ψ〉 ∈ V ;〈η | ∈ VD.

Consider a single discrete degree of freedom taking values 1,2, . . . ,N with a finite
set of basis state vectors |i〉, i = 1,2, . . . ,N. The basis set is called complete if any
vector in V can be written as a linear combination of the basis states. In particular,
for a Hilbert space, a complete set of basis states satisfy the following identity:
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N

∑
i=1

|i〉〈i|= I : Completeness Equation (6.2)

where I is the identity operator on V ⊗VD, defined in general by

I|ψ〉= |ψ〉 ; 〈χ |I= 〈χ |

for all |ψ〉,〈χ |. The completeness equation for a continuous degree of freedom is
given in (4.19).

Two distinct vector spaces V and W , having different underlying degrees of
freedom, yield an outer product space denoted by V ⊗W ; for ket vectors |ψ〉 ∈ V
and |χ〉 ∈W , elements of V⊗W are given by the outer product of the ket times the
bra vector and is written as

|χ〉⊗ 〈ψ | ≡ |χ〉〈ψ |

Consider the following N-dimensional ket vector |ψ〉 and the M-dimensional bra
(dual) vector 〈χ |:

|ψ〉=

⎡
⎢⎢⎣

a1

a2

..

aN

⎤
⎥⎥⎦ ; 〈χ |= [

b∗1 b∗2 .. b∗M
]

The outer product of an N-dimensional vector with an M-dimensional vector
yields an NM-dimensional matrix. The outer product is defined by multiplying all
the components of the ket (column) vector |ψ〉 from the left into each element of
the bra (row) vector 〈χ | on the right to yield the following2:

|ψ〉〈χ | =

⎡
⎢⎢⎣

a1

a2

..

aN

⎤
⎥⎥⎦⊗ [

b∗1 b∗2 .. b∗M
]

=

⎡
⎢⎢⎣

a1b∗1 a1b∗2 .. a1b∗M
a2b∗1 a2b∗2 .. a2b∗M
. . . .

aNb∗1 aNb∗2 .. aNb∗M

⎤
⎥⎥⎦ : N ×M matrix (6.3)

The NM-dimensional matrices yield linear transformations of underlying vector
space VNM.

2One can equivalently define the outer product by multiplying the entire row vector from the right
into each element of the column vector on the left and obtain the same result.
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6.3 Partial Trace for Outer Products

Consider the outer product of two state vectors given by

O = |ψ〉〈χ | ; 〈x′|O|x〉= ψ(x′)χ∗(x)

In the position basis, for a continuous degree of freedom x, trace is defined in (5.4)
as follows:

tr[O] =

∫
dx〈x|O|x〉 (6.4)

In particular, the trace operation for the outer product of two states is, from (6.4),
the following:

O = |ψ〉〈χ | ⇒ tr[O] =
∫

dxψ(x)χ∗(x)

If the state vectors are elements of an N-dimensional Euclidean space, then O is
simply an N ×N matrix, and the trace of O is the sum of its diagonal elements,
since for matrix Mi j, trace is defined by ∑i Mii; hence, it follows that

tr[O] =
N

∑
i=1

〈i|O|i〉=
N

∑
i=1

ψ(i)χ∗(i)

Consider a system with two degrees of freedom with state vectors |ψ1〉|ψ2〉; the
outer product is given by

O = |ψ1〉〈ψ1|⊗ |ψ2〉〈ψ2|
One can now perform a partial trace on O, say over system 2, and yields

tr2(O) = |ψ1〉〈ψ1|
[〈ψ2|ψ2〉

]
= c|ψ1〉〈ψ1| with 〈ψ2|ψ2〉= c

One can further generalize the concept of a partial trace; consider the following
linear sum of the outer product of states:

O =
N

∑
i=1

pi|ψ i
1〉|〈ψ i

1|⊗ |ψ i
2〉〈ψ i

2|

where pi are numbers. The partial trace over system 2, using the linearity of trace as
given in (5.4), is defined as follows:

tr2(O) =
N

∑
i=1

pi|ψ i
1〉〈ψ i

1|〈ψ i
2|ψ i

2〉

=
N

∑
i=1

pici|ψ i
1〉〈ψ i

1| with 〈ψ i
2|ψ i

2〉= ci (6.5)
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6.4 Density Matrix ρ

The density matrix plays a central role in the Heisenberg operator formulation,
discussed in Sect. 5.10, with the Schrödinger state vector being replaced by the
density matrix. The density matrix is a special Hermitian operator that has many
applications and provides a quantum mechanical generalization of the concept of
conditional probabilities for a quantum mechanical degrees of freedom.3

Pure Density Matrix

The pure density matrix is a Hermitian operator that is equivalent to the state vector
and provides an operator description of the quantum entity.

For a state vector |χ〉, the pure density matrix is defined by

ρP = |χ〉〈χ | (6.6)

A pure density matrix ρP is a projection operator and has the following properties:

ρP = |χ〉〈χ | ; ρ2
P = ρP

tr(ρ2
P) = tr(ρP) = 1 : Pure state (6.7)

Expressing the state vector in terms of a complete basis state given by |χi〉 yields
the following:

|χ〉 = ∑
i

ci|χi〉 ; ρP ≡ |χ〉〈χ |

⇒ ρP = ∑
i j

cic
∗
j |χi〉〈χ j|= ∑

i
|ci|2|χi〉〈χ j|+ ∑

i j; i
= j

cic
∗
j |χi〉〈χ j| (6.8)

The off-diagonal terms i 
= j given in (6.8) are completely quantum mechanical in
origin and are due to correlations between two different eigenstates |χi〉 and |χ j〉.

The expectation value of any operator O in a state |ψ〉 can be obtained from the
pure state density matrix and is discussed in Sect. 6.11. The density matrix for a
pure state, namely, ρP, is equivalent to the state vector |ψ〉 and encodes the result of
all observations that can be made on the quantum system.

3The density matrix should be termed the density operator since, in general, it is not a finite or
infinite matrix; however, the term density matrix is so widely used that its proper definition is
implicitly understood.
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Mixed Density Matrix

A mixed density matrix is defined for a collection of orthonormal projection
operators |ψi〉〈ψi| and is given by

ρM =
N

∑
i=1

pi|ψi〉〈ψi| (6.9)

0 < pi < 1 ;
N

∑
i=1

pi = 1 ⇒ tr(ρM) =
N

∑
i=1

pi = 1

Note the cardinal point that for the mixed density matrix, there are no off-diagonal
terms such as the terms |χi〉〈χ j|, i 
= j given in (6.8).

The mixed density matrix has the following defining property:

ρ2
M = ∑

i

p2
i |ψi〉〈ψi| ⇒ tr(ρ2

M) = ∑
i

p2
i < 1 (6.10)

Only for a pure state, where only one of the pi is 1, is tr(ρ2) = 1. Hence, a definition
of a mixed state is

tr(ρ2
M)< 1 : Mixed state (6.11)

In (6.5), it was shown that if one starts with a pure density matrix and a partial
trace is performed over one of the degrees of freedom, then one obtains a mixed
density matrix. Performing a partial trace erases information about the degree of
freedom, and hence, the density matrix of a mixed state contains less information
than a pure state.

The density matrix for a mixed state is required for mathematically representing
the result of quantum measurements, discussed in Sect. 9.6, and is a precise measure
of how much information is lost in performing an observation on a quantum system.

Another important application of the mixed density matrix is in the description
of quantum mechanical states that, in addition to quantum indeterminacy, also
have classical randomness—as is the case for the thermodynamics of a quantum
system—and is discussed in Sect. 6.11.

Density Matrix for a Two-State System

The general expression for a ket vector |ψ〉 of a two-state, parametrized by the Bloch
sphere, is given by (4.7) as follows:

|ψ〉= cos

(
θ
2

)[
1
0

]
+ eiφ sin

(
θ
2

)[
0
1

]
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The density matrix for the pure state is

ρP = |ψ〉〈ψ |= 1
2

[
I+ i

3

∑
i=1

n̂iσi

]
; trρ2

P = n̂2 = 1 (6.12)

where the σi are the Pauli spin matrices given by

σ1 =

[
0 1
1 0

]
; σ2 =

[
0 −i
i 0

]
; σ3 =

[
1 0
0 −1

]
; tr(σiσ j) = 2δi− j (6.13)

The unit vector n̂ is an arbitrary three-dimensional vector that lies on the Bloch
sphere, shown in Fig. 4.6, and is given by

n̂ = (sinθ cosφ ,cosθ cosφ ,sin φ) ; 0 ≤ θ ≤ π ; 0 ≤ φ ≤ 2π

A vector lying inside the Bloch sphere is given by

an̂ ; a ∈ [0,1]

It can be shown that the most general two-state mixed density matrix is given by

ρM =
1
2

[
I+ ia

3

∑
i=1

n̂iσi

]
; trρ2

M = a2n̂2 = a2 < 1 (6.14)

For a mixed state, the density matrix is ρM with 0 ≤ a < 1, and hence, all the
density matrices for mixed states lie inside the Bloch sphere. For a pure state trρ2

P =
1 and which yields a = 1. Hence, all the density matrices for pure states are on the
surface of the Bloch sphere.

The two-state density matrix has a major application in the study of quantum
information, in particular on studying the effect of measurements on qubits.

6.5 The Schmidt Decomposition

A general normalized state vector for two degrees of freedom, including both
entangled and non-entangled states, is given by

|Ψ〉=
N

∑
i, j=1

ci j|ei〉|e j〉 ;
N

∑
i, j=1

|ci j|2 = 1 (6.15)

〈ei|e j〉= δi− j
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where |ei〉 is a complete basis for both the degrees of freedom.4

The general expression for the state vector given in (6.15) can be simplified
by choosing a new basis. In particular, one can choose the Schmidt basis, which
depends on the state vector |Ψ〉, to obtain a much simpler representation that
requires only a single summation and is given by

|Ψ〉=
N

∑
i=1

ci|ψ I
i 〉|ψ II

i 〉 ; ∑
i

|ci|2 = 1 (6.16)

〈ψ I
i |ψ I

j〉= δi− j = 〈ψ II
i |ψ II

j 〉

The coefficients ci and state vectors |ψ I
i 〉, |ψ II

i 〉 are all functions of |Ψ〉.
The expression given in (6.15) is shown to be reducible to (6.16). The pure

density matrix for the state vector given in (6.15) is the following:

|Ψ〉〈Ψ|=
N

∑
i, j=1

N

∑
i′, j′=1

ci jc
∗
i′ j′ |ei〉〈ei′ |⊗ |e j〉〈e j′ |

Consider the following operator and its eigenfunctions:

ρ =
N

∑
i=1

N

∑
i′=1

[
N

∑
j=1

ci jc
∗
i′ j

]
|ei〉〈ei′ | ; tr(ρ) = 1 (6.17)

ρ |ψ I
i 〉= αi|ψ I

i 〉 ;
N

∑
i=1

|ψ I
i 〉〈ψ I

i |= I

From (6.17)
N

∑
k=1

αk = tr(ρ) = 1 (6.18)

Using the completeness equation of |ψ I
i 〉 yields the following:

|Ψ〉 =
N

∑
i, j=1

ci j

[
N

∑
k=1

|ψ I
k〉〈ψ I

k |
]
|ei〉|e j〉

=
N

∑
k=1

|ψ I
k〉|Λk〉 (6.19)

where

4One can take the complete basis states of the degrees of freedom that is of larger dimension N and
use it for the other degree of freedom, with some left over unused basis vectors.
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|Λk〉=
N

∑
i, j=1

ci j〈ψ I
k |ei〉|e j〉 ; k = 1,2, . . . ,N

The state vectors |Λk〉 are orthogonal; to prove this note that

〈Λk|Λl〉 =
N

∑
i′, j′=1

N

∑
i, j=1

c∗i′ j′ci j〈ei′ |ψ I
k〉〈e j′ |e j〉〈ψ I

l |ei〉

=
N

∑
i′,i′=1

N

∑
j=1

c∗i′ jci j〈ei′ |ψ I
k〉〈ψ I

l |ei〉

= 〈ψ I
l |
[

N

∑
i′,i′=1

N

∑
j=1

c∗i′ jci j|ei〉〈ei′ |
]
|ψ I

k〉

= 〈ψ I
l |ρ |ψ I

k〉= αk〈ψ I
l |ψ I

k〉= αkδk−� (6.20)

Hence, it follows from (6.20) that

〈Λk|Λ�〉= αkδk−�

Defining the orthonormal basis states by

|ψ II
k 〉= 1√

αk
Λk

yields, from (6.18) and (6.19), the representation

|Ψ〉 =
N

∑
i=1

√
αi|ψ I

i 〉|ψ II
i 〉 ;

N

∑
k=1

αk = 1

〈ψ I
i |ψ I

j〉 = δi− j = 〈ψ II
i |ψ II

j 〉

and is the result stated in (6.16) with ci =
√

αi.

6.6 Reduced Density Matrix

The concept of reduced density matrix can be defined for a system having two or
more degrees of freedom. Consider an experiment in which the projection operators
for only one of the degrees of freedom are measured, with the projection operators
for the other degrees of freedom being completely ignored. Clearly, there is a loss
of information regarding the state of the other degrees of freedom. The reduced
density matrix provides a precise measure on how much information is lost in such
a “partial” experiment.
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Consider a quantum entity with only two different degrees of freedom, with its
state vector, using the Schmidt decomposition given in (6.16), as follows:

|Ψ〉 =
N

∑
i=1

ci|ψ I
i 〉|ψ II

i 〉 ; ∑
i
|ci|2 = 1

〈ψ I
i |ψ I

j〉 = δi− j = 〈ψ II
i |ψ II

j 〉

The pure density matrix for the system is given by

ρ = |Ψ〉〈Ψ|=
N

∑
i j=1

cic
∗
j |ψ I

i 〉〈ψ I
i |⊗ |ψ II

i 〉〈ψ II
i | (6.21)

If measurements are made on only the state vectors ψ I
i , then the loss of information

encoded in state vectors ψ II
i is mathematically realized by performing a partial trace

over the II degrees of freedom, as discussed in Sect. 6.3. Performing the partial trace
in (6.21) yields the reduced density matrix ρR, namely,

ρR = trII(ρ) = trII
(|Ψ〉〈Ψ|)

=
N

∑
i j=1

c∗i c j|ψ I
i 〉〈ψ I

j |
[
〈ψ II

j |ψ II
i 〉

]

⇒ ρR =
N

∑
i=1

|ci|2|ψ I
i 〉〈ψ I

i | (6.22)

Hence, (6.22) shows that the loss of information for a pure density matrix, given
in (6.21), yields a reduced density matrix that is a mixed density matrix, defined in
(6.9).

The analysis carried out for discrete degrees of freedom to obtain the reduced
density matrix given in (6.22) can also be done for continuous degrees of freedom.
Consider, for concreteness, a quantum system with two degrees of freedom, for ex-
ample, two particles with degrees of freedom x1,x2 (coordinates in one dimension),
respectively, and with state vector ψ(x1,x2). Consider a non-factorizable state vector
and its density matrix given by

〈x1,x2|ψ〉 = ψ(x1,x2) 
= ψ1(x1)ψ2(x2)

ρ = |ψ〉〈ψ | ; 〈x1,x2|ρ |x′1,x′2〉= ψ(x1,x2)ψ∗(x′1,x
′
2) (6.23)

One can sum over one of the degrees of the freedom—in general, by performing
a partial trace of ρ over a degree of freedom as was done in (6.5)—say over the
coordinate x2 and obtain the reduced density matrix ρR that provides a complete
description for all measurement carried out on only the degree of freedom x1; in
symbols
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ρR = tr2(ρ) = tr2(|ψ〉〈ψ |)

〈x1|ρR|x′1〉 =
∫

dx2ψ(x1,x2)ψ∗(x′1,x2) (6.24)

Comparing (6.24) and (7.12), it can be seen that the reduced density matrix provides
a quantum mechanical generalization of the concept of the marginal probability
distribution.

6.7 Separable Quantum Systems

A separable quantum system is defined to be a system in which the degrees of
freedom can be exactly factorized in the sense that the state vector for the degrees
of freedom is a tensor product, as given below:

|ψ〉= |ψI〉|ψII〉 ; 〈x1,x2|ψ〉= ψI(x1)ψII(x2) (6.25)

and yields the pure density matrix given by

ρP = |ψ〉〈ψ |= |ψI〉〈ψI |⊗ |ψII〉〈ψII |

The reduced density matrix, as discussed in (6.22), is obtained by performing a
partial trace over the x2 degree of freedom and for the separable quantum system is
given by5

ρP,R = tr2
(|ψ〉〈ψ |)= |ψI〉〈ψI |

(〈ψII |ψII〉
)

= |ψI〉〈ψI | ; tr(ρP,R) = 1 = tr(ρ2
P,R)

In other words, the reduced density matrix of a separable system is also a pure
density matrix.

Consider two different systems with their own degrees of freedom with density
matrices ρA

i and ρB
i such that

tr(ρA
i ) = 1 = tr(ρB

i )

One can think of the density matrices as projection operators for the two different
systems.

A general representation of a composite system consisting of two separable
subsystems is given by the following bipartite (mixed) density matrix:

5A similar result holds for taking a partial trace over the x1 degree of freedom.
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ρAB =
N

∑
i=1

piρA
i ⊗ρB

i ⇒ tr(ρAB) =
N

∑
i=1

pi = 1 ; pi ∈ [0,1] (6.26)

It is the condition of ∑N
i=1 pi = 1 that implies that the system is separable, with

a complete description of system A and B being contained solely in ρA
i and ρB

i ,
respectively.

The bipartite density matrix represents a separable quantum system for which the
degrees of freedom for A and B can be considered in isolation from each other. In
other words, one can unambiguously separately measure the degrees of freedom for
A and B and still obtain the correct result for the expectation value of all observables
pertaining to only one of the systems.

The reduced density matrix for the separable system is given by

ρA,R = trB(ρAB) =
N

∑
i=1

piρA
i ; ρB,R = trA(ρAB) =

N

∑
i=1

piρB
i (6.27)

6.8 Entangled Quantum States

In classical mechanics, the point particles obeying Newton’s laws are always distinct
entities. In contrast, the distinct “identity” of a particular quantum mechanical
degree of freedom is only meaningful for special cases.

More precisely, if the state vector for the two degrees of freedoms can be
completely factorized, namely, if the joint state vector is a tensor product of the
individual state vectors of each degree of freedom, then one of the degrees of
freedom can be observed independently from the other. However, if the joint state
vectors cannot be factorized, which are called entangled states, the two degrees
of freedom become inseparable, and one cannot consider either of the degrees of
freedom independently of the other. The state given in (6.23) is an example of an
entangled state.

One needs a quantum system with two or more degrees of freedom to obtain an
entangled state.

An entangled state vector does not have any dynamics, and the property of
entanglement is purely kinematic, namely, it pertains entirely to the structure of
the state vector and not to how it evolves in time (dynamics). The quantum entity
represented by an entangled state does not exist in classical physics and shows the
rich structure of quantum mechanics.

Recall from Sect. 4.7 that the basis states of state space are only defined up to a
unitary transformation. Hence, a state vector that is apparently not separable could,
in fact, be separable if the basis states are transformed to a new basis. To provide a
precise basis-independent formulation of entangled states, one needs to express the
quantum system in the language of the density matrix. Just such a general criterion
is provided by the reduced density matrix and is derived below.
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The pure density matrix for the state vector |ΨE〉 given in (6.16) is the following:

ρE = |ΨE〉〈ΨE|=
N

∑
i j=1

cic
∗
j |ψ I

i 〉〈ψ I
j |⊗ |ψ II

i 〉〈ψ II
j | ; tr(ρ2

E) = 1

As was the case for (6.22), performing a partial trace over the degree of freedom II
yields, from (6.5) and (6.16), the reduced density matrix for the entangled state as
follows:

ρE,R = trII

(
|ΨE〉〈ΨE|

)
=

N

∑
i=1

|ci|2|ψ I
i 〉〈ψ I

i | (6.28)

tr(ρ2
E,R) =

N

∑
i=1

|ci|4 < 1 (6.29)

tr(ρ2
E,R) < 1 is a basis-independent result, since a unitary change of basis, as

discussed in Sect. 4.7, leaves tr(ρ2
E,R) invariant.

tr(ρ2
E,R)< 1 leads to the conclusion that the state |ΨE〉 itself cannot be written, in

any set of basis states, as a product state |ψI〉|ψII〉. This is because a partial trace of
the product state would lead to a reduced matrix ρE,R that would be a pure density
matrix—and thus contradict the result that tr(ρ2

E,R)< 1, obtained in (6.29).
In conclusion, for ci 
= 0

|ΨE〉=
N

∑
i=1

ci|ψ I
i 〉|ψ II

i 〉 
= |χI〉|χII〉 : Entangled

|ΨE〉 is an entangled state; in general, the two or more degrees of freedom for an
entangled state need to be treated as one indecomposable and inseparable system,
with the identities of the individual degrees of freedom, taken in isolation, being
meaningless. In contrast, for a separable system, each degree of freedom can be
considered to be a distinct entity and separate from the other degree of freedom.

Entanglement for Composite Systems

The criterion of entanglement for a pure density matrix ρP = |ψ〉〈ψ | is given
by examining its reduced density matrix ρR; if tr(ρ2

R) < 1, then the state |ψ〉 is
entangled. This criterion does not hold for density matrix of systems that are the
composite of two or more different systems. In particular for bipartite states,

ρAB =
N

∑
i=1

piρA
i ⊗ρB

i ⇒ tr
(
(ρAB)

2)=
N

∑
i=1

p2
i < 1

Although one has tr((ρAB)
2)< 1, this does not necessarily imply that either system

A or B is entangled. Separable systems have been proven to satisfy, using definitions
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given in (6.27), the following two inequalities:

IA ⊗ρB,R−ρAB ≥ 0 ; ρA,R ⊗ IB −ρAB ≥ 0

The operator inequality means that all the eigenvalues of the operator are nonnega-
tive. If any one of these two conditions are violated, then ρAB represents a composite
system that is entangled. This is called the reduction criterion [27].

6.9 A Pair of Entangled Spins

Consider a pair of spins (two-state systems) with basis states |u1〉, |d1〉 and |u2〉, |d2〉
defined in (4.1).

A general expression for a separable product state for the pair of spins is the
following:

|ΨS〉=
[
a|u1〉+ b|d1〉

][
α|u2〉+β |d2〉

]
; |a|2 + |b|2 = 1 = |α|2 + |β |2

In contrast, an example of an entangled state for the two spins, using the rules of
tensor product of vectors given in (6.1), is given by

|ΨE〉 = a|u1〉|d2〉+ b|d1〉 |u2〉 ; |a|2 + |b|2 = 1 (6.30)

= a

(
1
0

)
⊗
(

0
1

)
+ b

(
0
1

)
⊗
(

1
0

)
=

⎛
⎜⎜⎝

0
a
b
0

⎞
⎟⎟⎠

The entangled state vector |ΨE〉 has been studied extensively and plays a central
role in the EPR paradox as well as in empirical tests of Bell’s theorem and is
discussed in Sect. 7.6.

The proof that (6.30) is an entangled state requires the evaluation of the reduced
density matrix. The density matrix is given by a outer product and, using the rules
given in (6.3), yields

ρE = |ΨE〉〈ΨE|
= |a|2|u1〉〈u1|⊗ |d2〉〈d2|+ |b|2|d1〉〈d1|⊗〉|u2〉〈u2|+ off-diagonal (6.31)

=

⎛
⎜⎜⎝

0 0 0 0
0 |a|2 ab∗ 0
0 a∗b |b|2 0
0 0 0 0

⎞
⎟⎟⎠

The reduced density matrix is defined by taking the partial trace over the degree of
freedom of the second spin; under the partial trace, the off-diagonal terms in (6.31)
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are all zero. The result is the following:

ρER = tr2(ρE)

= |a|2|u1〉〈u1|+ |b|2|d1〉〈d1| (6.32)

=

[ |a|2 0
0 |b|2

]

Taking the trace of the reduced matrix over the degree of freedom of the first spin
yields, from (6.32), the following:

trρER = |a|2 + |b|2 = 1 : Normalization

tr(ρ2
ER) = |a|4 + |b|4 = 1− 2|ab|2 < 1 (6.33)

Note if either a or b is zero, (6.33) shows that there is no entanglement, as indeed
is the case since the state vector given in (6.30) becomes a product state and is
separable.

Hence, we conclude from (6.33) that since the reduced density matrix tr(ρ2
ER)< 1,

the state vector given in (6.30) is entangled, namely,

|ΨE〉= a|u1〉|d2〉+ b|d1〉 |u2〉 : Entangled

Noteworthy 6.1: Quantum superposed states and entangled states

Since the state vector is an element of a linear vector space, it can be added to
other state vectors as well as “multiplied” with other state vectors to form tensor
product state vectors. Both the quantum superposed states and entangled states have
no classical analog and are states of the quantum system that are trans-empirical.
• The addition of quantum state vectors a|ψ〉+ b|χ〉 yields a trans-empirical state

and is a result of the quantum superpostion principle.
• Tensor product of two states of the kind |ψ1〉|χ2〉+ |ψ2〉|χ1〉 is a trans-empirical

state and is an example of entangled states.
Some of the important nonclassical results are discussed in Chap. 7 on Quantum
Indeterminacy, in Chap. 8 on Quantum Superposition, and in Chap. 9 on Quantum
Measurement; in particular, it will be shown that the process of measurement
crucially hinges on the formation of entangled states.

6.10 Quantum Entropys

Entropy is a measure of the ignorance regarding a system. The concept of entropy
in statistical physics has a natural analog for quantum systems and, following von
Neumann, is defined as follows:
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S =−tr(ρ lnρ) =−
N

∑
i=1

pi ln pi (6.34)

ρ =Udiag(p1, p2, . . . , pN)U
† ; UU† = I

Consider a pure state with p1 = 1 and pi = 0; i 
= 1; then

ρ = |ψ〉〈ψ | ⇒ S =−tr(ρ lnρ) = 0

A pure state yields zero entropy since, as expected, there is no ignorance in knowing
the state of the system. In contrast to a pure state, if one has no information about a
system, then one expects that entropy should be a maximum.

The entropy of a mixed state, from (6.9) and (6.34), is the following:

S = −tr(ρM lnρM) =−
N

∑
i=1

pi ln pi

ρM = Vdiag(p1, p2, . . . , pN)V
† ; VV † = I

To find the density matrix that yields a maximum value of entropy S, we
maximize S with respect to all the pi’s, with the constraint that ∑N

i=1 pi = 1; using
Lagrange multiplier λ yields the maximization problem:

L = S+λ

[
N

∑
i=1

pi − 1

]

0 =
∂L
∂ pI

=−kB(ln pI + 1)+λ ⇒ pI = constant

0 =
∂L
∂λ

=
N

∑
i=1

pi − 1 ⇒ pI =
1
N

The result above shows that maximum entropy state is one for which all the
states are equally likely. The fact that all states are equally likely is precisely what
one expects for a system about which one is totally ignorant.

The density matrix is proportional to the identity operator I since ∑N
i=1 |ψi〉

〈ψi|= I; hence, for an N-state maximally uncertain system

ρmax =
1
N
I ⇒ tr(ρmax) = 1

Smax =−tr(ρ lnρ) =
1
N

ln(N)tr(I)

⇒S = ln(N) : maximum entropy (6.35)
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Maximally Entangled States

For a state vector with two degrees of freedom consider, from (6.16), the following
entangled state in the Schmidt representation:

|ΨE〉 =
N

∑
i=1

ci|ψ I
i 〉|ψ II

i 〉 ;
N

∑
i=1

|ci|2 = 1

〈ψ I
i |ψ I

j〉 = δi− j = 〈ψ II
i |ψ II

j 〉

that yields, from (6.36), the reduced density matrix for the entangled state as
follows:

ρER = tr2

(
|ΨE〉〈ΨE|

)
=

N

∑
i=1

|ci|2|ψ I
i 〉〈ψ I

i |

The maximally entangled state has the maximum entropy and hence yields

ρER

∣∣∣
Maximal

=

[
N

∑
i=1

|ci|2|ψ I
i 〉〈ψ I

i |
]

Maximal

=
1
N
I (6.36)

since the completeness of the eigenfunctions of a Hermitian operator gives a
resolution of the identity operator.6 Hence one obtains

|ci|2 = 1
N

⇒ ci =
1√
N

eiφi

and yields the maximally entangled state given by7

|ΨE〉= 1√
N

N

∑
i=1

eiφi |ψ I
i 〉|ψ II

i 〉 (6.37)

An example of a pair of maximally entangled spins is given by the following
density matrix of a nonseparable system:

ρNS =
1
4
I⊗ I ; tr(ρNS) = 1 ; I=

[
1 0
0 1

]

The reduced density matrix shows that the pair of spins is entangled since

ρNS,R = tr2(ρNS) =
1
2
I ; tr(ρ2

NS,R) =
1
2

: Maximally entangled

6Namely, ∑N
i=1 |ψ I

i 〉〈ψ I
i |= I.

7The maximally entangled state is the same whether the partial trace is performed over quantum
system I or system II.
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An Entangled State of Two Spins

An entangled state for two spin degrees of freedom, from (6.30), is given by

|ΨE〉= a|u1〉|d2〉+ b|d1〉 |u2〉 ; |a|2 + |b|2 = 1 (6.38)

with the reduced density matrix, from (6.32), given by

ρER = tr2(ρE)

= |a|2|u1〉〈u1|+ |b|2|d1〉〈d1| (6.39)

=

[ |a|2 0
0 |b|2

]

⇒ p1 = |a|2 ; p2 = |b|2

Hence, from (6.34), the entropy of this state is given by

S = −tr(ρER lnρER) =−p1 ln p1 − p2 ln p2 (6.40)

= −|a|2 ln(|a|2)−|b|2 ln(|b|2) (6.41)

For the following special case, and from (6.35),

|a| = 1√
2
= |b|

⇒ S = ln(2) : Maximum entropy (6.42)

Hence, a maximally entangled state of two spins is given by

|ΨE〉= 1√
2

[
eiφ |u1〉|d2〉+ |d1〉 |u2〉

]
(6.43)

6.11 Pure and Mixed Density Matrix

The density matrix, introduced in Sect. 6.4, is a Hermitian operator closely related
to the state vector; recall from (6.45) that the pure density matrix for a state vector
|χ〉 is defined by

ρP = |χ〉〈χ | (6.44)

From (5.33), the measurement of the expectation value of observable O can be
expressed in terms of the density matrix of a pure state ρP as follows:

Eχ [O]≡ 〈χ |O|χ〉= tr(O|χ〉〈χ |) = tr(OρP) (6.45)
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Equation (5.35) for the expectation value of an operator O with eigenvectors
O|ψi〉= λi|ψi〉 can be rewritten in terms of the mixed density matrix ρM as follows:

Eψ [O] = 〈ψ |O|ψ〉= tr(∑
i
|ci|2O|ψi〉〈ψi|) = tr(OρM)

⇒ ρM = ∑
i

pi|ψi〉〈ψi| ; pi = |ci|2

The mixed density matrix ρM can be used for evaluating the expectation value of any
function of the operator O. However, if one uses ρM for evaluating the expectation
value of another operatorQ that does not commute with O, namely, [O,Q] 
= 0, then
there are unavoidable errors. The magnitude of these errors is set by the Heisenberg
Uncertainty Principle and is discussed in Sect. 9.10.

Consider a quantum mechanical system to be in thermal equilibrium with a heat
bath at temperature T . The system now has a quantum mechanical indeterminacy
as well as classical uncertainty due to thermal randomness. The behavior of the
quantum system is described by the canonical ensemble’s probability distribution of
energy eigenstates—given by the Boltzmann distribution.

Let H be the quantum mechanical Hamiltonian with the following spectral
decomposition in terms of the energy eigenfunctions |ψi〉 and eigenvalues Ei

H = ∑
i

Ei|ψi〉〈ψi|

A quantum system with thermal uncertainty is described by the density matrix ρT

given by

ρT =
1
Z

e−H/kBT =
1
Z ∑

i

e−Ei/kBT |ψi〉〈ψi| ; Z = tre−H/kBT (6.46)

⇒ ρT = ∑
i

pi|ψi〉〈ψi| ; tr(ρT) = ∑
i

pi = 1 ; pi =
1
Z

e−Ei/kBT

where kB is the Boltzmann constant. The thermal density matrix ρT for the canonical
ensemble is a mixed state since

tr(ρ2
T) = ∑

i

p2
i < 1

The reason that ρT is a mixed state is because thermal randomness leads to
a classical uncertainty in the state of the system; this in turn entails that all
the quantum state vectors |ψi〉 must be decoherent since there are no quantum
correlations between the different quantum states—unlike the case for a pure density
matrix ρP that has off-diagonal terms as given in (6.8).

The expectation value of an operator O, for which [O,H] 
= 0, and that is in
equilibrium with a heat bath is given by
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ET [O] = tr(OρT) = ∑
i

pi〈ψi|O|ψi〉

= ∑
i

piαi ; αi = 〈ψi|O|ψi〉

The thermal density matrix ρT encodes both thermal and quantum uncertainty,
reflected in probability pi that the quantum system is in eigenstate Ei and the
expectation value αi of the operator in this eigenstate.

6.12 Summary

The tensor and outer product of states and operators were discussed to prepare the
mathematical tools for discussing various properties of the tensor product states and
the density matrix.

The density matrix provides an alternative formulation of a quantum entity and is
equivalent to the description of the quantum entity by a state vector. Moreover, the
density matrix has many advantages over the state vector in describing the properties
of tensor product states of a system having many degrees of freedom.

Entangled states are purely kinematical in that these are quantum entities with
state vectors that exist in Hilbert space that have remarkable nonclassical properties.
Nowhere in the discussion on entangled states was the role of the Hamiltonian
required.

Of course, if one would like to create an entangled state from a state vector
that is initially a product (non-entangled) state, then one needs to subject it to
interactions—and for which a Hamiltonian is required; an example of such case
is discussed in Chap. 10 on the Stern-Gerlach experiment.

For a pure density matrix, the reduced density matrix being mixed provides a
criterion for deciding whether the (two or more) degrees of freedom of a state vector
are entangled. The condition that the reduced density matrix be mixed works only
for pure states of the composite system given by state vector |ψ〉. If the whole system
is in a pure state, then indeed one could conclude from the condition tr(ρ2

R)< 1 for
the reduced density matrix that the composite system is indeed entangled.

On the other hand, the general state of a bipartite composite separable system is
given by ρAB = ∑i piρA

i ⊗ ρB
i . When the composite system is mixed, the reduced

density matrices are also mixed and one cannot conclude anything about the
entanglement from the purity, or otherwise, of the subsystem’s reduced density
matrix tr(ρ2

A,R) or tr(ρ2
B,R). Entanglement for a bipartite system is more complicated

and cannot be read from the properties of the reduced density matrix; a “reduction
criterion” for deciding whether the composite system is entangled was discussed for
this case.

Quantum entropy provides a measure for the degree of information that a density
matrix holds. A maximally entangled state was shown to have maximum entropy.
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Quantum mechanics superseded classical physics due to its empirical success and
leads to a conception of Nature based on quantum indeterminacy and uncertainty.
The paradigm of quantum mechanics is that Hermitian operators B extract in-
formation from the quantum state vector ψ(F) that describes the indeterminate
and trans-empirical degree of freedom F ; the particular and specific values of the
degrees of freedom are, in principle, experimentally inaccessible and can never be
directly observed. Every specific experiment measures a particular possible value
of the operator B; repeated measurements yield its average value Eψ [B]. Figure 7.1
illustrates the paradigm of quantum mechanics.

Many of the paradoxes of quantum mechanics result from the fact that the
quantum degree of freedom is indeterminate. One may wonder how is quantum
indeterminacy different from classical randomness, since there are many classical
systems that are random but don’t have the paradoxes of quantum mechanics. For
example, it is well known since the nineteenth century that statistical mechanics,
based as it is on classical mechanics and classical probability, discussed in Sect. 7.3,
works very well for large thermodynamical systems.

In essence, one needs to address the question as to whether classical physics,
together with classical probability, can explain the results of all experiments and
thus negate the need for quantum mechanics.

To compare classical randomness with quantum indeterminacy, one needs to
carefully define what is the difference of these two concepts [35]. It would seem
that such a subtle question as to which of these two is realized in Nature might be
difficult to define theoretically and to resolve experimentally. Ironically enough, the
difference between classical randomness and quantum indeterminacy was brought
into a sharp focus by a landmark paper of Einstein, Podolsky, and Rosenfeld (EPR)
[11] in which it was claimed that quantum mechanics is incomplete; an example was
presented that seemed to contradict the indeterminateness that is at the foundation
of quantum mechanics.

B.E. Baaquie, The Theoretical Foundations of Quantum Mechanics,
DOI 10.1007/978-1-4614-6224-8__7, © Springer Science+Business Media New York 2013
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Quantum Probability

B E B⎡ ⎤⎣ ⎦

ψ

Fig. 7.1 The paradigm of
quantum mechanics
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)

7.1 The EPR Paradox

The EPR paradox is based on the analysis of two back-to-back photons—in a
net spin zero state—created by the annihilation of an electron-positron pair. For
simplicity, following Bohm, consider two identical spin 1/2 particles, say, two
electrons e−,e−, in a net spin zero state, emanating from the decay of a spin zero
particle, as shown in Fig. 7.2.

The EPR state vector factorizes into a space-dependent and a spin-dependent
component; one needs to only analyze the spin-dependent component, denoted by
|ψ〉EPR. Let the z-component of the spin pointing up be represented by |u〉 and
pointing down be represented by |d〉; the net spin zero state, indicated in Fig. 7.2, is
given by1

|ψ〉EPR =
1√
2

[
|u1〉⊗ |d2〉− |d1〉⊗ |u2〉

]
(7.1)

and which follows from the conservation of angular momentum.
Consider the two particles being well separated, for example, one of them being

on Earth and the other being on the Moon.
The z-component of the spin of the two particles given in |ψ〉EPR can be measured

independently by two separate devices, namely, device 1 and device 2. From the
state vector given in (7.1), it follows that if detector 1 measures spin up, namely,
|u1〉, then one can predict that the other spin in detector 2 is down, namely, |d2〉—
without performing a measurement. This feature of the state vector |ψ〉EPR led EPR
to conclude that the z-component of spin 2 has an objectively reality independent of
any measurement.

If, without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an element
of reality corresponding to that quantity [11].

1 |ψ〉EPR is an example of a maximally entangled state vector, as discussed in (6.43).
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Fig. 7.2 Experimental arrangement for the EPR paradox. There are two detectors, labeled 1 and
2 on end of each arm. Each arm of the device has only one electron, and the figure is drawn to
indicate that the electron can point either up or down in either arm (published with permission of
© Belal E. Baaquie 2012. All Rights Reserved)

The EPR paper has two paradoxes:

• The possibility that all components of a spin can be known precisely, thus
contradicting the Heisenberg Uncertainty Principle.

• The nonlocal collapse of the state vector.

All Spin Components Can Be Measured?

The EPR paradox seemed to provide an example that contradicted the quantum view
that the quantum degree of freedom is inherently indeterminate; the state of spin 2
seemed to be in a determinate state since its value can be predicted without the need
to make a measurement.

The pair of spins is in a net zero angular momentum state, and hence, the
quantum state is spherically symmetric. Consider the two spins having a large space-
like separation when they are observed. Suppose the z-component of the spin 1
is observed; then the z-component of spin 2 is fixed due to angular momentum
conservation.

According to the EPR reasoning, the first observer could have chosen to measure
the x- or y-component of spin 1 instead of the z-component, which would have
meant that the x- or y-component of spin 2 was fixed. Since space-like separated
events should not influence each other, the freedom of experimenter 1 to choose
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to measure either z or x or y spin components implies that all the components of
spin 2 should have been fixed beforehand, leading to a violation of the Heisenberg
Uncertainty Principle.

From this analysis, EPR concluded (incorrectly) that quantum theory is incom-
plete as it does not allow for any state vector to have fixed values for all the
components of spin; they then concluded that quantum theory needs to be completed
by a more comprehensive theory that, in particular, would allow fixing all the
components of spin.

Bohr’s Response

In response to the EPR paradox, Bohr, in his typically opaque and elliptic manner,
pointed out that the EPR view of the state of spin 2 being determinate is an illusion
and reflects what one chooses to measure. If, instead of measuring the z-component
of spin 2, detector 2 measures the x- or y-component of spin 2, as shown in Fig. 7.2,
then quantum indeterminateness will be seen to exist for these components of the
spin degree of freedom. Furthermore, Bohr pointed out that the second observer
cannot set up any experiment that can actually measure all the components of spin
2 [15].

Classical Versus Quantum Correlations: Special Relativity

The EPR highlighted the correlations of the state vector across space-like distances
that apparently seemed to lead to a contradiction between the nonlocal and
instantaneous collapse of the state vector and special relativity.

If one measures the z-component of spin 1 as being up, then one can conclude
that the z-component of spin 2 is down even without performing a measurement.
This correlation in of itself is not surprising since even in classical physics, if
two projectiles fly away from an explosion that conserves momentum, then the
momentum of one projectile is exactly opposite that of the other. What special
relativity demands is that, once the projectiles have a space-like separation, any
change made on the momentum of one projectile cannot affect the momentum of
the other projectile.

In the case of quantum mechanics, the paradox lies in the fact that until a
measurement is made, the z-components of both the spins are indeterminate, as
shown in Fig. 7.3. It is only after a measurement is made on the z-component of spin
1 that the corresponding value of spin 2 is fixed by the nonlocal and instantaneous
collapse of the state vector. The nonlocal EPR correlations are also called quantum
correlations.

The question arises, how is the “information” that a measurement has been per-
formed on spin 1 communicated instantaneously to spin 2? The conventional answer
is that the one has no control on the outcome of the measurement performed on spin
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Fig. 7.3 EPR correlation (published with permission of © Belal E. Baaquie 2012. All Rights
Reserved)

xσ ⊗

xσ⊗

yσ ⊗

yσ⊗

Fig. 7.4 Four operator for
Bell’s theorem. Each operator
commutes with its nearest
neighbor (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

1 and consequently one does not known in advance what will be the corresponding
value for spin 2. Hence, no information is transferred in the instantaneous collapse
of the state vector.

It is only after the result of the two spin measurements are physically sent to a
common point, and which can be done only at a speed less or equal to the speed of
light, that can one see the exact correlation of the result of measurements made on
the two spins.

7.2 The Bell-CHSH Operator

In a seminal paper published in 1964, John Bell proposed—in response to the EPR
paradox—a precise experiment to experimentally differentiate quantum indetermi-
nacy from classical randomness; based on his insight, an experiment was designed
to decide whether Nature is best described by classical or quantum indeterminacy.
Experiments showed that quantum indeterminacy is the appropriate description of
Nature.

The result of Bell, however, goes far beyond the EPR paradox and leads to a
criterion for demarcating quantum indeterminacy from classical probability. Due to
the generality of the Bell’s result, it is now referred to as the Bell theorem.

Since the electrons are well separated so that no light signal can connect them,
the operators for the two electrons commute. The state vector for the two electrons
is taken to be an entangled state, and hence, their spins are quantum correlated.
Suppose the x- and y-components of the spin of each of the electron are measured,
as shown in Fig. 7.2; the operators for measuring the spins, shown in Fig. 7.4, are
given by the following:
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Electron 1 : σx ⊗ I; σy ⊗ I

Electron 2 : I⊗σx; I⊗σy

The Pauli σ -matrices are given in (6.13), with the notation2

σx = σ1, σy = σ2, σz = σ3 (7.2)

The spin operators σi⊗I for the first electron commute with the spin operators I⊗σi

of the second electron; the four operators are shown in Fig. 7.4.
Define the operators (2×2 matrices) a,b,a′,b′ by the following:

a = σx; b = σy; a′ = σx; b′ = σy (7.3)

⇒ a2 = 1 = b2; (a′)2 = 1 = (b′)2 (7.4)

Define the (Hermitian) Bell-CHSH operator [9] :

B = a⊗ (a′+ b′)+ b⊗ (b′− a′) (7.5)

From (7.3),

B = σx ⊗ (σx +σy)+σy ⊗ (σy −σx) (7.6)

An experimental device measures the expectation value of the (Hermitian)
operator B. Let the quantum state of the electrons be described by the pure density
matrix ρ given by

ρ = |ψ〉〈ψ |; tr(ρ) = 1

Rq is equal to the absolute value of the quantum expectation value of B and is given
by the following:

Rq =
∣∣Eq[B]

∣∣= ∣∣tr{ρB}∣∣ (7.7)

Note that since

tr{ρ
(B−RqI

)2} ≥ 0

we obtain the important identity

R2
q = tr2(ρB)≤ tr(ρB2) (7.8)

2Note [σi,σ j] = 2i∑3
k=1 εi jkσk and εi jk is the completely antisymmetric tensor.
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The definition of B from (7.10) yields, using [σx,σy] = 2iσz, the following
diagonal representation:

B2 = 4I+[a,b]⊗ [a′,b′] (7.9)

= 4I− 4σz⊗σz = 4− 4 ·diag(1,−1,−1,1)

⇒ B2 = diag(0,8,8,0) (7.10)

Note the crucial commutator term [a,b]⊗ [a′,b′] in (7.9) that results from the
operator structure of quantum mechanics. It is this term that leads to a violation
of the Bell inequality (to be derived later in Sect. 7.4), an inequality that holds for
all classical probabilistic systems.

For any quantum state, the largest expectation value of B2—in fact of any
Hermitian operator—is bounded by it’s largest eigenvalue as in (5.9); hence, (7.10)
implies, together with (7.8), that

R2
q = tr2(ρB)≤ tr(ρB2)≤ 8

⇒ Rq ≤ 2
√

2 = 2.82842712 . . . : Quantum inequality (7.11)

7.3 Classical Probability: Objective Reality

A precise definition needs to be given of classical probability theory so that we can
address the question of whether the readings of an experimental device measuring a
given physical system can be explained using the framework of classical probability.

In statistical mechanics, a large collection of gas molecules are described by
assuming the position and velocity of each molecule is a classical random variable.
Each molecule objectively exists in some state, and the uncertainty in the knowledge
of the state of the molecule is attributed to our ignorance of the microscopic state of
a very large collection of molecules.

Classical probability is based on the concept of a random variable, which takes
a range of values, and that exists objectively regardless of whether it is measured
(sampled) or not. A unique probability, called the joint probability distribution, is
assigned to a collection of random variables and predicts how frequently will a
collection of specific values appear when the random variables are sampled.

Following Kolomogorov, classical probability theory is defined by the following
postulates:

• A collection of all possible allowed random sample values labeled by ω , which
forms a sample space Ω

• A joint probability distribution function P(ω) that determines the probability for
the simultaneous occurrence for these random events and provides an exhaustive
and complete description of the random system

The events can be enumerated by random variables, say, X = (X ,Y,Z, . . .), that
map the random events ω of the sample space Ω to real numbers (Fig. 7.5), namely,
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Fig. 7.5 Classical random
events: the number of black
and white balls inside a
closed box exist objectively,
independent of being
observed or not. Furthermore,
there exists a probability
pB, pW that is intrinsic to
each possible outcome and is
assigned to each black and
white ball (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

X : Ω → ℜN

X ,Y,Z : ω → ℜ⊗ℜ⊗ℜ; ω ∈ Ω

P(X ,Y,Z) : joint probability distribution

Every element of the sample space Ω is assigned a likelihood of occurrence that
is given by the joint probability distribution function P(ω); for the mapping of ω
by random variables X ,Y,Z to the real numbers, the joint probability distribution
function is P(X ,Y,Z).

The assignment of a likelihood of occurrence P(ω) to each element of the sample
space, namely, to each ω ∈Ω, is the defining property of classical probability theory;
this assignment implicitly assumes that each element ω of Ω exists objectively—
regardless of being observed or not—and an experiment finds it in its preexisting
state with probability specified by the probability distribution. It is precisely on this
point that quantum probability will be seen to differ from classical probability.

Joint, Marginal, and Conditional Probabilities

The joint probability distribution function obeys all the laws of classical probability.
Consider random variables X ,Y,Z. Their joint probability distribution is given by

1 ≥ P(X ,Y,Z)≥ 0;
∫ ∞

−∞
dxdydzP(x,y,z) = 1
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In other words, P(X = x,Y = y,Z = z) yields the probability for the simultaneous
occurrence of the sample values x,y, and z of the random variables X ,Y,Z. Consider
a function H that depends on the random variables X ,Y,Z; its (average) classical
expectation value is given by

Ec[H] =

∫
dxdydzH(x,y,z)P(x,y,z)

If the random variables are independent, the joint probability distribution func-
tion factorizes and yields

P(x,y,z) = P1(x)P2(y)P3(z)

For many random variables, one can form various marginal and conditional
probability distributions. The probability that random variables are observed having
random values X ,Y , regardless of the value of Z, is given by the marginal
distribution for two random variables, namely,

P(X ,Y ) =
∫ ∞

−∞
dzP(X ,Y,z);

∫ ∞

−∞
dxdyP(x,y) = 1 (7.12)

The conditional probability for events A,B is defined as follows. Let P(A,B) be
the joint probability distribution that events A and B both occur. The conditional
probability P(A|B) that A occurs, given that B has definitely occurred, is given by
conditional probability

P(A|B) = P(A,B)
P(B)

⇒ P(A|B)P(B) = P(B|A)P(A)

For the case of a classical random particle such as a gas molecule in a room,
the probability of finding the classical particle at point x,y, given that it has been
definitely observed at z, is given by the conditional probability

P(X ,Y |Z) = P(X ,Y,Z)
P(Z)

=
P(X ,Y,Z)∫ ∞

−∞ dxdyP(x,y,Z)
;

∫ ∞

−∞
dxdyP(x,y|Z) = 1

7.4 The Bell Inequality

Consider the Bell-CHSH operator that is being measured, namely,

B = a⊗ (a′+ b′)+ b⊗ (b′− a′)

From (7.4), a2 = b2 = (a′)2 = (b′)2 = 1; on being experimentally observed, the
quantities a,b,a′,b′ take two possible values, namely, ±1. Since the values of
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a,b,a′,b′ are indeterminate and random, one can consider explaining the result of
the experiment in terms of classical random variables f ,g, f ′,g′ that take random
values of ±1, namely,3

a → f ; b → g; a′ → f ′; b′ → g′

f 2 = g2 = ( f ′)2 = (g′)2 = 1

The random variables are discrete, taking only two values and hence yield a sample
space Ω = 24: a four dimensional lattice of 16 discrete points.

The probability of the random variables f ,g, f ′,g′ simultaneously taking differ-
ent values is given by the joint probability distribution P( f ,g, f ′,g′).

In terms of the classical random variables, the Bell-CHSH operator that is being
observed is modeled by a classical random function H. The binary valued operators
a,b,a′,b′ are replaced by binary valued classical random variables f ,g, f ′,g′; the
tensor product ⊗ is replaced by ordinary multiplication since classical random
variables do not have any linear structure that a quantum operator is endowed with
by the underlying Hilbert space.

Hence, the representation of the Bell-CHSH operator based on classical random
variables is as follows:

B→ H = f ( f ′+ g′)+ g(g′ − f ′) (7.13)

The expectation value of H is given by

Ec[H] = ∑
f , f ′,g,g′=±1

H( f ,g, f ′,g′)P( f ,g, f ′,g′)

Since all the random variables f ,g, f ′,g′ commute, similar to (7.9), one has the
following:

H2 = 4 (7.14)

Note that H2 = 4 differs from Q2 given in (7.10) because H is a scalar, not having
any operator structure. Similar to (7.8), using (7.14) yields the Bell inequality

R2
c = |Ec[H]|2 ≤ E(H2) = 4

⇒ Rc = |Ec[H]| ≤ 2 : Bell inequality (7.15)

3The random variables f ,g, f ′,g′ take only two discrete values; the value of ±1 is not fundamental
but convenient; the proof goes through for the more general case of the random variables f ,g, f ′,g′
being uniformly distributed on [0,1].
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In summary, there are two inequalities: one for the expectation value of B,
based as it is on quantum mechanics, with Rq ≤ 2

√
2 given in (7.11), and another

inequality based on classical probability given by Rc ≤ 2 as in (7.15), namely, the
Bell inequality.

An experiment, performed by Aspect in 1982, showed that the value of E[B] is
just less than 2

√
2, violating the limit set by the Bell inequality and demonstrating

that quantum mechanics gives the correct description of Nature [2].
The validity of the inequality based on quantum mechanics implies that although

the joint probability distribution P( f ,g, f ′,g′) does exist, it, nevertheless, cannot
correctly produce the experimental violation of the Bell inequality.

Furthermore, the result of Bell in fact shows that no classical probability theory,
based as it is on a joint probability distribution, can produce the violation of Bell’s
inequality.

Noteworthy 7.1: Hidden variables

The EPR paper was written in the context of a debate whether quantum
mechanics was a complete theory or had some elements missing that led to the
apparent indeterminacy that is its hallmark. What EPR proposed is that there are
variables not being accounted for in the current formulation of quantum mechanics,
and for this reason called hidden variables.

It is postulated that there are hidden variables, and are classical dynamical vari-
ables, and are required for describing a quantum system. Since the hidden variables
are not observed, it is postulated that the observed magnitude of a system’s physical
property is the average value over all possible values of the hidden variables, with
the different specific values of the hidden variables being random and governed by
a classical probability distribution. Every specific value of the hidden variable exists
objectively, independent of any observation. It can be shown that hidden variables
can explain the quantum behavior of spin 1/2 (degree of freedom with two values),
but not for degrees of freedom with three or more distinct values [15].

It was Einstein’s view that, on including hidden classical variables, quantum
mechanics could be shown to be equivalent to a classical random system, with
quantum indeterminacy being similar to the randomness that appears in statistical
mechanics. Bell’s analysis shows that this view of Einstein is, in fact, not valid.

7.5 The Bell Inequality Non-violation

The quantum inequality, given in (7.11), states that the expectation value of the
Bell-CHSH quantum operator obeys the inequality

Rq = |tr(ρB)| ≤ 2
√

2 : Quantum inequality

whereas for classical random variables, from (7.15), the expectation value has a
smaller lower bound, namely,
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Rc = |Ec[H]| ≤ 2 : Bell inequality

It is shown in this section that non-entangled states and separable systems do not
violate the classical bound; hence, as far as the Bell criterion is concerned, they are
indistinguishable from a system described by classical random variables.

Non-entangled States

Recall, from (7.10), the Bell-CHSH operator is defined

B = a⊗ (a′+ b′)+ b⊗ (b′− a′)

If the quantum system is not entangled, as discussed in Sect. 6.7, its state vector
factorizes and is given by

|ψ〉= |ψ1〉⊗ |ψ2〉

and density matrix also factorizes and can be represented as follows:

ρ = |ψ〉〈ψ |= ρ1 ⊗ρ2; ρ1 = |ψ1〉〈ψ1|; ρ2 = |ψ2〉〈ψ2|

Hence, the expectation value of the Bell-CHSH operator is given by

tr
(
ρB) = tr

(
(ρ1 ⊗ρ2)B

)

= tr(ρ1a) · tr(ρ2(a
′+ b′))+ tr(ρ1b) · tr(ρ2(b

′ − a′)) (7.16)

Recall from (7.4) that

a2 = 1 = b2; (a′)2 = 1 = (b′)2

⇒−1 ≤ tr(ρ1a), tr(ρ1b), tr(ρ2a′), tr(ρ2b′) ≤+1 (7.17)

Hence, from (7.16) and (7.17),

Rq ≡
∣∣∣tr
(
(ρ1 ⊗ρ2)B

)∣∣∣
≤ |tr(ρ1a) · tr(ρ2(a

′+ b′))|+ |tr(ρ1b) · tr(ρ2(b
′ − a′))|

≤ |tr(ρ2(a
′+ b′))|+ |tr(ρ2(b

′ − a′))|
≤ |s+ s′|+ |s− s′| (7.18)

where

s = tr(ρ2b′); s′ = tr(ρ2a′); s,s′ ∈ [−1,+1]
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The right-hand side |s+ s′|+ |s− s′| is bounded by 2; for example, if s = s′ = 1, the
first term is 2 and second term is zero, and when s = −s′ = 1 the first term is zero
and the second term is 2.

Hence, as given in (7.15),

Rq ≤ 2 : non-entangled states obey the Bell inequality (7.19)

One can conclude that a non-entangled quantum system can be described by
classical probability and in fact, using the Bell inequality as a criterion, cannot be
distinguished from a classical random system.

Separable Systems

The proof that a separable system does not violate Bell’s inequality is similar to the
one given above for non-entangled states.

Consider a general separable state shared by two parties A and B, with states ρA
i

and ρB
i are held by parties A and B, respectively. From (6.26), this state is given by

the following bipartite (mixed) density matrix:

ρAB =
N

∑
i=1

piρA
i ⊗ρB

i ;
N

∑
i=1

pi = 1; pi ∈ [0,1]

Recall, from (7.10), the Bell-CHSH operator is defined

B = a⊗ (a′+ b′)+ b⊗ (b′− a′)

The average value of the Bell-CHSH operator B for a separable bipartite system is
given by

tr(BρAB) =
N

∑
i=1

pitr
(B(ρA

i ⊗ρB
i )
)

The trace in the equation factorizes due to the tensor product of operators in B
and, using

∣∣tr(σxρB
i )
∣∣ ≤ 1 and

∣∣tr(σyρB
i )
∣∣ ≤ 1, yields the following for a separable

bipartite system:

RS
q =

∣∣∣tr(BρAB)
∣∣∣

≤
N

∑
i=1

pi

∣∣∣tr(B(ρA
i ⊗ρB

i )
)∣∣∣

≤
N

∑
i=1

pi

{∣∣tr(σxρB
i )
∣∣∣∣∣tr(σxρB

i )+ tr
(
σyρB

i )
∣∣∣+ ∣∣tr(σyρB

i )
∣∣∣∣∣tr(σxρB

i )− tr
(
σyρB

i )
∣∣∣
}

≤
N

∑
i=1

pi

{∣∣∣tr(σxρB
i )+ tr

(
σyρB

i )
∣∣∣+ |

∣∣∣tr(σxρB
i )− tr

(
σyρB

i

)∣∣∣
}
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Since σ2
x = 1 = σ2

y , we have

si = tr(ρB
i σy); s′i = tr(ρB

i σx); si,s
′
i ∈ [−1,+1]

Hence,

RS
q ≤

N

∑
i=1

pi

{∣∣∣s′i + si

∣∣∣+
∣∣∣s′i − si

∣∣∣
}

Equation above is the generalization of the result obtained in (7.18) for a single
quantum system.

Similar to the reason for obtaining result given in (7.19), the equation above
yields

RS
q ≤ 2 : separable states obey the Bell inequality

The proof that a separable bipartite system and a non-entangled do not violate
Bell’s inequality does not mean that these are equivalent to classical states. The
only statement we can make for these systems is that the Bell inequality cannot
differentiate them from a classical system. As we shall discuss later, in Sect. 7.7,
the criterion of “contextuality” is more general and can be used to show that the
behavior of no quantum state, except for the spin 1/2 case, can be explained by
classical probability theory.

7.6 Bell Inequality Violation: Entangled States

The question naturally arises as to what are the quantum states that violate the
classical bound encoded in the Bell inequality; namely, what are the quantum states
for which

2 ≤ Rq = |tr(ρB)| ≤ 2
√

2 : Quantum regime

Entangled states yield a violation of the Bell inequality and hence cannot be
explained by classical probability theory. Instead of giving a general proof of
the Bell inequality for entangled states, the expectation value of the Bell-CHSH
operator is explicitly calculated for a specific form of an entangled state, namely, a
pair of spins discussed in Sect. 6.9.

In particular, the value of the quantity Rq is derived in terms of the parameters of
the entangled state. The extreme limit of Rq = 2

√
2 will be shown to be the value of

Rq for a maximally entangled state.
From (6.30), a class of entangled states for a system of two spin 1/2 degrees of

freedom, in tensor product notation, is given by
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|ψ〉 = α|u1〉⊗ |d2〉+β |d1〉 ⊗ |u2〉; |α|2 + |β |2 = 1; ρ = |ψ〉〈ψ | (7.20)

The Bell-CHSH operator, from (7.6), has the following explicit representation:

B = σx ⊗ (σy +σx)+σy ⊗ (σy −σx) (7.21)

and the expectation value of the Bell-CHSH operator is given by

tr
(
ρB)= 〈ψ |

[
σx ⊗ (σy +σx)+σy ⊗ (σy −σx)

]
|ψ〉 (7.22)

The representation for the σ matrices is given in (7.2), and let the basis states be
given, from (4.1), as follows:

|u〉=
[

1
0

]
; |d〉=

[
0
1

]
; 〈u|= [

1 0
]

; 〈d|= [
0 1

]

The representation chosen yields the following nonzero terms:

tr(ρB) = αβ ∗〈d1|⊗ 〈u2|
[
σx ⊗ (σy +σx)+σy⊗ (σy −σx)

]
|u1〉⊗ |d2〉

+complex conjugate

= αβ ∗
[
〈d1|σx|u1〉

{
〈u2|σy|d2〉+ 〈u2|σx|d2〉

}

+〈d|1σy|u1〉
{
〈u2|σy|d2〉− 〈u2|σx|d2〉

}]
+ c.c.

= αβ ∗[1 · (i+ 1)− i · (i− 1)]+ c.c.

⇒ tr(ρB) = 2(αβ ∗+α∗β )+ 2i(αβ ∗−α∗β )

Choose the following parametrization4:

α = eiφ sin(θ ); β = cos(θ ); θ ∈ [0,π ]; φ ∈ [0,2π ]

that yields the state vector

|ψ〉 = eiφ sin(θ )|u1〉⊗ |d2〉+ cos(θ )|d1〉 ⊗ |u2〉 (7.23)

Hence, we obtain the following violation of the Bell inequality:

4Since state vectors are only defined up to a phase, this is the most general parametrization.
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Fig. 7.6 (a) The values of Rq for different entangled states. (b) The quantum entropy S of the
reduced density matrix for the entangled states (published with permission of © Belal E. Baaquie
2012. All Rights Reserved)

tr(ρB) = 4sin(θ )cos(θ )[sin(φ)+ cos(φ)] = 2
√

2sin(2θ )sin(φ +
π
4
)

⇒ Rq = |tr(ρB)|= 2
√

2
∣∣∣sin(2θ )sin(φ +

π
4
)
∣∣∣ ∈ [0,2

√
2]

Figure 7.6a shows the value of Rq for different entangled states labeled by θ ,φ ;
there is an entire range of θ and φ for which Rq is greater than the classical limit of
2. The maximum value of Rq is given by the following parameters:

θ = φ =
π
4

⇒ Rq = 2
√

2

The maximum value of Rq = 2
√

2 corresponds, from (7.23), to the state vector

|ψ〉 = 1√
2

[
eiπ/4|u〉⊗ |d〉+ |d〉 ⊗ |u〉

]
(7.24)

which is a maximally entangled state, as discussed in (6.43). It is noteworthy that the
maximum value of Rq = 2

√
2—furthest from the classical limit Rq = 2—is given

for a state that is also the most nonclassical, namely, a maximally entangled state.
The degree of entanglement, from (6.34), is given by quantum entropy of the

reduced density matrix

S =−tr(ρR lnρR)

For the state given in (7.20), the entropy S, as shown in Fig. 7.6b, is given by (6.40)
and yields the following:

S(θ ) = −2|α|2 ln(|α|)− 2|β |2 ln(|β |)
= −2sin2 θ ln(|sinθ |)− 2cos2 θ ln(|cosθ |) (7.25)
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As given in (6.42), the maximally entangled state has the maximum quantum
entropy given by

SMax = S
(π

4

)
= ln(2)

It can be seen from Fig. 7.6a that only for values for θ ,φ for which Rq > 2—near
the maximally entangled state—is the Bell inequality violated. This does not mean
that entangled states with Rq ≤ 2 do not violate the Bell inequality.

In fact, all entangled states violate the Bell inequality. If the Bell-CHSH operator
does not show a violation for an entangled state, then one needs to find another
operator that is appropriate for the entangled state in question—and an analysis
similar to the one given for the states given in (7.20) will show the expected
violation. Furthermore, the maximal violation of the Bell inequality does not
necessarily need maximally entangled states, with Rq = 2

√
2 being the value for

some non-maximally entangled states as well.

7.7 The Bell–Kochen–Specker Inequality

A system is said to be contextual if the outcome of a measurement of one of the
observables depends upon what other measurements are performed alongside with
it. The outcomes for classical probability theory are predefined and non-contextual;
all observations in deterministic classical physics are similarly non-contextual;
classical properties are inherent to the entity and do not depend on the observations
of other properties.

In contrast, the properties of a quantum entity are not intrinsic; the observed
value of an operator for a given state vector depends on what other operators are
being measured as well, namely, on the context of the measurement. Contextuality
is a reflection of quantum indeterminateness since a quantum entity does not exist
objectively in a determinate state but instead has many possible outcomes depending
on how it is observed.

The Kochen–Specker (KS) theorem states that the empirical predictions of
quantum mechanics cannot be produced by any non-contextual theory [21].

A maximal set of commuting observables define a context. Consider the case of
three Hermitian operators A,B, and C such that [A,B] = 0= [A,C] but [B,C] �= 0. The
KS theorem states that the value of E[A] depends on whether it is measured together
with experiments performed to measure B or C or neither. In other words, the
value of E[A] depends on the context of its measurement, defined as performing—
simultaneous with the experiment on A—other experiments that measure other
operators that commute with A but not necessarily with each other.

The generalized Bell inequality, due to Kochen and Specker, namely, the Bell–
Kochen–Specker (BKS) inequality, analyzes under what condition a single degree
of freedom exhibits the inequivalence between explanations based on classical and
quantum probabilities. There is no need to consider entangled states, which requires
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Fig. 7.7 Five-operator
generalization of Bell’s
theorem. Each operator
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neighbor (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

at least two or more degrees of freedom, and neither is it necessary to have spins
with space-like separation (so that the operators operating on the different spins
commute). All that is needed for the BKS theorem is the existence of a certain
collection of Hermitian operators.

In this section, the BKS inequality is applied to degrees of freedom with three
and four distinct values, namely, a single spin 1 two spin 1/2 systems, respectively.5

Spin 1

The BKS inequality can be derived for a spin 1 system that is located at a single
point; so the issue of space-like separation of the degrees of freedom is excluded.
Furthermore, since there is only one degree of freedom, the quantum state cannot
be an entangled state [20].

Consider the case of P1,P2,P3,P4,P5, namely, five commuting and non-
commuting operators that are arranged in Fig. 7.7. Let the operators be numbered
periodically with P6 ≡ P1; then the commutation equations are given by the
following:

[Pn,Pn+1] = 0; [Pn,Pn+2] �= 0; n = 1,2, . . .5

and is a generalization of the diagram given for the four operator Bell inequality in
Fig. 7.4.

It can be shown that the BKS inequality for this case is given by classical
probability theory and yields

∑
i

Ec[Pi]≤ 2 : BKS inequality (7.26)

5A single spin 1/2 (with degree of freedom having only two distinct values) can be fully explained
by classical hidden variables and hence has no contextuality [15].
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The “contextual” inequality, obtained by evaluating the expectation value of Pi in
a quantum state, is given by

∑
i

Eq[Pi]≤
√

5 (7.27)

and violates the BKS inequality given in (7.26).

State-Independent Violation of BKS Inequality

The pentagram inequality is state dependent since only a restricted set of states obey
(7.27) and violate the inequality given in (7.26). On the other hand, there are state-
independent inequalities that hold for all spin 1 quantum states; in fact, it can be
shown that for a spin 1 degree of freedom, one requires at least 13 operators to
show the violation of the BKS inequality for all spin 1 states [37].

Consider 13 operators Qn, which are 3×3 matrices such that Q2
n = 1. Similar

to Fig. 7.7, the 13 operators are placed on a planar orthogonality graph, but with a
more complicated layout, with some operators having up to four neighbors. If one
represents these operators by classical discrete random variables qn taking only two
values of ±1 with q2

n = 1, then an analysis similar to the Bell-CHSH analysis can
be carried out for this case.

The classical expectation value for the 13 random variables qn, taken over all
classical probability distribution functions, yields the following:

13

∑
n=1

Ec[qn]− 1
4

13

∑
m,n=1

ΓmnEc[qmqn]≤ 8 : BKS inequality (7.28)

Γmn is the adjacency matrix, with Γmn = 1 if the random variables qm and qn are
neighbors on the orthogonality graph, and zero otherwise.

A quantum expectation value taken for all possible spin 1 state vectors yields the
following result:

13

∑
n=1

Eq[Qn]− 1
4

13

∑
m,n=1

ΓmnEq[QmQn]≤ 8
1
3

(7.29)

Comparing (7.28) and (7.29) shows that the quantum case violates the BKS
inequality and cannot be explained by any non-contextual theory.

Recall spin 1/2 has no contextual property and, as mentioned earlier, can be
explained by hidden variables. Spin 1 is of fundamental importance since it is
irreducible to spin 1/2 and is a minimal three-valued degree of freedom; the fact
that spin 1 exhibits contextuality leads to the expectation that all quantum degrees
of freedom, except for the spin 1/2, are contextual and hence cannot be explained
by classical probability theory.
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Two Spin 1/2

It can be shown that one needs at least four operators for a two spin 1/2 system, such
as the Bell-CHSH operator with commutation relations given in Fig. 7.7, to show
that a classical probability distribution function cannot yield the correct quantum
result for a two spin 1/2 system.

It is shown below that any collection of three operators is inadequate for showing
the violation of the Bell inequality.

Consider the case of three Hermitian operators A,B, and C such that [A,B] = 0 =
[A,C] but [B,C] �= 0 and constructed from the two spin 1/2 degrees of freedom. Since
A can be simultaneously measured with other operators that commute with it, the
joint probability distribution functions p1(A,B) and p2(A,C) can be measured, and
which are theoretically also obtainable from quantum mechanics.

Although not within the framework of quantum mechanics, a classical joint
probability distribution function does in fact exist for A,B,C considered as classical
random variables and is given as follows:

p(A,B,C) =
p1(A,B)p2(A,C)

p(A)
(7.30)

where

∑
B

p1(A,B) = p(A) =∑
C

p2(A,C)

This construction reproduces the experimentally measurable marginal probabil-
ity distribution function. One recovers, for instance, the experimentally observed
p1(A,B) by summing over the outcomes for C in p(A,B,C) and which results in
a cancellation of p(A) on the right-hand side of (7.30), leading to the required
probability p1(A,B).

A similar analysis can be done for the case of three Hermitian operators A,B, and
C such that [A,B] = 0 but [B,C] �= 0 and [A,C] �= 0; it can be shown for this case that
a classical p̃(A,B,C) exists for this case as well. For the case of all three operators
A,B, and C either all commuting with each other or none of them commuting,
a classical probability distribution function exists for both cases as discussed in
general in Sect. 7.8 .

Hence, since the expectation of three operators can be fully described by a
classical probability distribution function, no operator constructed out of their
combination can show a violation of the Bell inequality.

Recall in Sect. 7.6 a violation of the Bell inequality was shown for a specific
entangled state using the Bell-CHSH operator. In general, it is not known what is
the minimum collection of operators that can show a Bell violation for all entangled
quantum states.

For a degree of freedom with four values, which includes the two spin 1/2 case,
it is possible to show, using contextuality, that every state vector is essentially
quantum and inequivalent to any classical system; the proof needs a set of 18
operators [22, 32].
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Discussion

The tests to decide whether a system can be described by quantum or classical
probability are more and more stringent.

The most basic and fundamental is contextuality; this criterion works for all
quantum entities, and the operators constructed to show contextuality act on all
the degrees of freedom. The second test is entanglement that requires two or more
degrees of freedom. The third test is a violation of the Bell inequality and is the
most special case since it requires that the quantum entity be in the form of a tensor
product structure of two subsystems A and B—and with the Bell-CHSH type of
operators having a similar tensor product structure.

For many applications in quantum information such as cryptography and telepor-
tation, the Bell inequality criterion and entanglement are more useful because they
have more structure.

The violation of the BKS inequality is essentially due to the indeterminacy of
the degree of freedom that is at the foundation of a quantum entity. State vectors
representing a quantum entity and physically observable quantities (of the quantum
entity) being determined by the expectation values of Hermitian operators acting on
the degree of freedom’s Hilbert space of states is the schema of quantum mechanics.
Classical probability is unable to explain or describe the physics of the quantum.

In conclusion, in the BKS scheme there always exists an appropriate collection of
operators that can decide at the most basic level whether a system can be described
by quantum or classical probability theory.6

7.8 Commuting and Non-commuting Operators

To prove the inequivalence of classical and quantum probability, one needs to have
a collection of both commuting and non-commuting operators, as seen in Figs. 7.4
and 7.7. It is shown in this section that experiments that measure a collection of only
commuting or only non-commuting operators are indistinguishable from a classical
random system. Let the quantum system consists of N degrees of freedom xi ; i =
1,2, . . . , N with state vector given by ψ(x1,x2, . . . , xN) = 〈x1,x2, . . . , xN |ψ〉.

For the case of all commuting operators Oi; [Oi,O j] = 0; i, j = 1,2, . . . , N, all
the operators can be measured simultaneously. For concreteness, let the operators
be the coordinate operators represented by

Oi = |xi〉〈xi| ≡ I⊗ I⊗ . . . |x〉〈x| . . .⊗ I︸ ︷︷ ︸
ith position

[Oi,O j] = 0; i, j = 1,2, . . . , N

6I thank Ravishankar Ramanathan for many useful discussions on the Bell inequality, entangle-
ment, and contextuality.
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and define the operator

O =O1O2 . . .ON = |x1〉〈x1|⊗ |x2〉〈x2| . . .⊗|xN〉〈xN |

The joint probability distribution is given by

P(x1,x2, . . . , xN) = tr(ρO) = |ψ(x1,x2, . . . , xN)|2; ρ = |ψ〉〈ψ |

Hence, if a quantum system is observed with only commuting operators, then it can
be described by classical probability since there exists a joint probability distribution
P(x1,x2, . . . , xN) that yields all the expectation values and is provided by quantum
mechanics itself. And conversely, the entire field of classical probability is seen to
be equivalent to that subset of quantum probability that explains the behavior of
commuting operators.

For the case of all non-commuting operators, consider, for example, observing
non-commuting operators x and p; each has to be measured separately leading a
probability distribution given by P1(x) and P2(p), respectively. A joint probability
distribution, given by P1(x)P2(p), provides the marginal distributions that yield the
result for the measurement of either x or p. Similarly, consider a collection of non-
commuting operators Ji; [Ji,J j ] �= 0 ; i, j = 1,2, . . . , N such that no two operators
can be observed simultaneously; a joint probability distribution that yields all the
observed marginal distributions is given by

P(x1,x2, . . . , xN) = ∏
i

Pi(xi) = ∏
i
|ψi(xi)|2

The joint probability distribution ∏i Pi(xi) is a theoretical construct that is outside
the framework of quantum mechanics and is based on classical probability.

From the above discussion, it can be seen that it is only an appropriate collection
of commuting and non-commuting operators that can show a possibility of violating
the Bell inequality. The result can be shown to follow from the BKS theorem [21].
In particular, for systems that violate the Bell inequality, it follows that there does
not exist a joint probability distribution P(x1,x2, . . . , xN) that can correctly yield all
the expectation values and marginal probability distributions required by quantum
indeterminacy.

7.9 Quantum Probability

The framework of quantum probability identifies Hermitian operators O(F) with
observables—instead of with random variables as is the case for classical probability
theory. Observables act on the state space V(F) of the quantum degree of freedom
F , and the expectation value of the observable 〈ψ |O(F)|ψ〉 is determined by
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the state vector |ψ〉 of the degree of freedom. In other words, it is the operators
that “pick out” the properties of the degree of freedom that is being observed by
collapsing the state vector—with the degree of freedom remaining indeterminate
and trans-empirical.

A remarkable conclusion of the Bell analysis is that a quantum degree of freedom
does not have any precise and determinate value before it is observed. Clearly, the
degree of freedom exists—before and after it is subjected to an experiment—and
not being able to observe its specific values refers to its mode of existence.

It has been discussed in Sect. 3.4 that the mode of existence of a degree of
freedom is to exist in all of its totality as an entire space; metaphorically speaking,
the degree of freedom simultaneously exists over the entire range of all its possible
values. For example, x, the position degree of freedom of a quantum particle,
simultaneously exists at all points and forms the degree of freedom space ℜ =
{x : −∞ ≤ x ≤ +∞}: the real line. Hence, the position degree of freedom never
“takes” a particular value—unlike the classical random variable X that actually takes
particular values x with probability P(x).

The mode of existence of the degree of freedom is not empirically observable,
and hence, the degree of freedom is trans-empirical.

The fundamental reason that classical probability fails to explain quantum
indeterminacy is because the particular and specific values of a quantum degree of
freedom do not exist objectively, that is, do not exist independent of a measurement.
The degree of freedom does not have a particular value and is intrinsically an entire
space F that is trans-empirical; this is an explanation of why the particular values
of the degree of freedom do not exist objectively. Since the degree of freedom does
not exist objectively for a quantum system, a sample space Ω does not exist for a
quantum degree of freedom; hence, a probability distribution function cannot be
assigned to the particular values of the degree of freedom space F .

Quantum probability—represented in Fig. 7.1—necessarily follows from
Heisenberg’s idea that all physical quantities are mathematically represented by
Hermitian operators O and experiments measure the expectation value of these
operators.

According to the quantum theory of measurement, one can only assign a
likelihood to the outcome of a process of measurement, which mathematically
consists of applying a projection operator on the state vector of the degree of
freedom. All the observable properties of the degree of freedom are represented by
operators that act on the Hilbert space of states. On repeatedly applying an operator
to the quantum state, one obtains the average value of the operator for that state.

The algebra of all the Hermitian projection operators defined on state space,
namely, {Πn; n = 1,2,3, . . .}, replaces the sample space Ω of classical probability
theory. Quantum probability assigns probabilities to a complete set of Hermitian
projection operators Πn—and consequently to any function of these operators as
well. The assignment of probabilities to Hermitian operators fully takes into account
the non-commutative structure and contextual nature of quantum mechanics. The
projection operators also play a central role in the theory of measurement as
discussed in Chap.9.
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Every Hermitian (or more generally self-adjoint) operator is the sum of
projection operators, which in turn obeys the completeness equation, discussed
in (5.7), and given as follows7:

O =
N

∑
in=1

λnΠn; ΠmΠn = δm−nΠn; ∑
n

Πn = I (7.31)

Since Π2
n =Πn, (5.10) shows that the expectation value of Πn, namely, pn ∈ [0,1].

The process of measurement yields the expectation value of the projection operator
Πn for the state ψ ; hence,

Eψ [Πn] = pn; Π2
n = Πn ⇒ 0 ≤ pn ≤ 1

The expectation value of the completeness equation of Πn given in (5.7)

∑
n

Πn = I

yields the following result:

⇒
N

∑
n=1

pn = ∑
n

Eψ [Πn] = Eψ [∑
n

Πn] = Eψ [I] = 1 (7.32)

The remarkable property Π2
n = Πn of the projection operators yields pn ∈ [0,1],

and hence, pn can be interpreted as the probability of Πn detecting the state vector
|ψ〉, as shown in Fig. 7.8, by collapsing the state vector to 〈ψ |Πn|ψ〉. Furthermore,
Πn’s obeying the completeness equation yields the required result that the total
probability is 1, as given in (7.32).

The average value of the projection operator Πn for a given quantum state |ψ〉 is
equal to the probability pn.8 The projection operators yield the following quantum
probabilities:

pn = Eψ [Πn] ∈ [0,1] : probability of Πn observing the quantum state (7.33)

N

∑
n=1

pn = 1; {pn ∈ [0,1]; n = 1,2, . . . , N} : Quantum probabilities

7The most general formulation of quantum measurement theory is in terms of self-adjoint operators
that are not necessarily projection operators and which are called positive-operator valued measure
(POVM) [1].
8Note that probability pn = |cn|2, where the state vector |ψ〉 = ∑n cn|ψn〉 and Πn = |ψn〉〈ψn|; see
discussion in Sect. 9.4.
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Fig. 7.8 Measurement and
projection operators
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)

Figure 7.8 illustrates the role played by the projection operators. Consider making
a measurement of the quantum state |ψ〉 using the Hermitian operator O; a device
is designed to embody the properties of operator O, which entails constructing the
projection operators Πn that are characterized by their eigenvalues λn.

Every time |ψ〉 is measured by the device, as shown in Fig. 7.8, the state is
detected by collapsing it to only one of the projection operators Πn; on repeatedly
measuring |ψ〉, it is found that there is a probability pn that projection operator
Πn will detect the state |ψ〉. All the observable properties of the state |ψ〉 can be
expressed in terms of pn and λn.

In summary, quantum mechanics defines a theory of probability by assigning
probabilities pn to the expectation value of projection operators Πn and not to the
specific values of the degree of freedom. When the state vector is experimentally
observed by the projection operator Πn, the probability that the projection operator
Πn will detect the state vector is given by pn.

Every Hermitian operator has a spectral representation in terms of the projection
operators Πn and its eigenfunction |ψn〉 and eigenvalues λn, as given in (5.8); more
precisely, one has, for operator O and its function f (O), the following:

O = ∑
n

λnΠn; Πn = |ψn〉〈ψn|; 〈ψn|ψn〉= 1

f (O) = ∑
n

f (λn)Πn

All expectation values can then be evaluated as follows:

Eψ [O] = ∑
n

λnEψ [Πn] = ∑
n

λn pn

Eψ [ f (O)] = ∑
n

f (λn)pn
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Quantum probability is a synthesis of operator algebra and probability theory,
similar to the synthesis of linear algebra and calculus in defining Hilbert state space.
The random variables of classical probability theory, which can be integers or real
numbers, are replaced by Hermitian projection operators. Every projection operator
has eigenvalues and eigenstates—and hence has an underlying linear vector space
structure that is absent for the random variables of classical probability theory.

Position Degree of Freedom

Consider the important example of the position degree of freedom x; quantum
probability assigns a probability to the position projection operators detecting the
state vector |ψ〉 and not to the occurrence of a particular value of a quantum degree
of freedom.

There is a common misconception that |ψ(x0)|2 is the probability of finding a
quantum particle’s degree of freedom, namely, its position x, as having a specific
value of x0; in fact, |ψ(x0)|2 is the probability of the observation occurring at
the projection operator |x0〉〈x0| that belongs to the measuring device, such as the
photographic plate discussed in Sect. 9.2.

What is measured and observed is the expectation value of the position projection
operator |x0〉〈x0|. As discussed in detail in Sect. 9.2, the probability of the quantum
state collapsing at projection operator |x0〉〈x0| is given by

p(x) = Eψ

(
|x0〉〈x0|

)
= tr

(
ρ |x0〉〈x0|

)
= |ψ(x0)|2; ρ = |ψ〉〈ψ |

The completeness equation is given by
∫

dx |x〉〈x|= I and yields

tr(ρ) = tr(ρI) =
∫

dx tr
(

ρ |x〉〈x|
)
=

∫
dxψ∗(x)ψ(x)

⇒
∫

dx|ψ(x)|2 =
∫

dx p(x) = 1 : Total probability is 1.

Noteworthy 7.2: Paradox of probability in quantum mechanics

Every quantum state has (nonlocal) information about the possible outcomes of
all the projection operators |x〉〈x|; for example, for a particle in a box, the observed
value of the projection operator at all of the forbidden nodal points is always zero.
Nonlocal information seems to contradict the relativistic principle that information
can only propagate at the speed of light or slower, but quantum mechanics avoids
this contradiction; however, it is not clear what is the mechanism by which the
particle has nonlocal information.

Every outcome is statistically independent of all the other outcomes; every time
a measurement is performed, the projection operators can, in principle, detect the
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state vector anywhere that the degree of freedom exists. Quantum mechanics forbids
the observer from having any à priori knowledge about the result of a particular
outcome, since each outcome is statistically independent. The state vector encodes
all information about the degree of freedom, but it is not clear how the state vector
can build up the observed pattern.

For a particle confined inside a box, the probability distribution is seen to emerge
by the repeated observations by the position projection operator of the particle’s
state vector. Similarly, in the two-slit experiment without detecting which path is
taken, electrons are sent in one by one and projection operators at the screen detect
each incoming electron, one by one. How does the interference pattern emerge?
Namely, what is keeping count?

To appreciate the paradox of quantum mechanics, one needs to contrast it with
classical probability theory. There is no need to keep count of the outcomes of the
sampling of a classical random variable since each possible outcome has its own
intrinsic probability of occurrence. In contrast, the particular values of a quantum
degree of freedom do not have any intrinsic probability of occurrence.

Since each measurement is identical and every particular outcome is the result
of a measurement, one needs to keep count of the outcomes to form the quantum
probability distribution. The question arises as to what is the mechanism in Nature
that is keeping count of all the experimental outcomes? It is, after all, only the result
of many repeated measurements that yields the expected probability distribution.
Quantum mechanics has no answer to this question.

7.10 A Metaphor

Heisenberg made the following observation: It is a trite saying that ‘Analogies
cannot be pushed too far,’ yet they may be used to describe things for which our
language has no words [17]. Since the quantum entity, and the quantum degree
of freedom in particular, is something that human language does not ordinarily
encounter, a metaphorical description of the quantum entity, and of quantum
probability in general, is given.

Consider a quantum degree of freedom that is inside a safe box; the safe is unlike
anything classical in the sense that the door of the safe, in principle, can never be
opened—as shown in Fig. 7.9. Keys to the safe are metaphors for operators B; these
keys are special in the sense that they fit the locks of the safe.

On repeatedly applying the keys to the locks to open the safe, it is found that
the safe does not open but the keys themselves undergo a transformation! The
transformed state of the keys yields all the information that can be extracted from
and about the degree of freedom inside the box. The locks are a metaphor for the
state vector |ψ〉 of the quantum degree of freedom, and the transformed state of the
key is a metaphor for the expectation value of the operators, namely, Eψ [B].
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Fig. 7.9 A safety box that, in
principle, can never be
opened is a metaphor for the
mode of existence of a
quantum degree of freedom
F (published with permission
of © Belal E. Baaquie 2012.
All Rights Reserved)

One can push this analogy further and ask how, in the first place, did the degree
of freedom get inside a safe that cannot be opened? This comes back to the question
as to what is a quantum entity? One of the conclusions drawn in Sect. 2.12 is that
the quantum entity exists as the inseparable combination of the degree of freedom
and its quantum state, which describes the quantum entity to an observer. Following
Heisenberg’s advice, one cannot push the analogy too far since any physical safe
can be opened, if necessary by being broken up—whereas the degree of freedom
can never be directly observed. However, the analogy remains useful.

Since it is permanently enveloped by the “veil” of the quantum state, the degree
of freedom is not directly empirically accessible; in other words, being empirically
inaccessible is the mode of existence of the degree of freedom. Quantum mechanics
tries to explain how Nature exists; as with all explanations in physics, there is
no attempt to address why Nature is the way it is. Moreover, unlike classical
physics that ontologically provides a description of what Nature is as such, in itself,
independent of any observer, quantum mechanics instead takes observation to be
a fundamental property of Nature and formulates a description of Nature based on
what an observer can know about Nature.

7.11 Summary

In summary, quantum mechanics is a theory of probability that is a synthesis of
the linear structure of Hermitian operators with the concept of uncertainty and
indeterminateness.

It was shown that quantum mechanics defines a theory of quantum probability
that is a generalization of classical probability. One of the conclusions reached in
this chapter is that although the degree of freedom space F superficially looks
similar to the sample space Ω of a classical random variable, this identification
is not correct. The fundamental reason that quantum probability is more general
than classical probability is because, unlike sample space Ω, the space F has an
associated linear vector (Hilbert) space V(F) as well as Hermitian operators O(F)
representing physical observables.
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A classical random variable X takes a range of values. The different values x
of the classical random variable, namely, the sample values of the random variable
X , exist intrinsically and objectively, and hence, an intrinsic probability p(x) can
be assigned to each value of the classical random variable; in particular, being
observed or not makes no difference to this assignment of classical probabilities
to the elements of the sample space Ω.

The BKS theorem shows, conclusively and clearly, that no classical system—
including one that contains classical random variables—can explain the behavior
of a quantum entity.9 In particular, the quantum degree of freedom—unlike a
classical random variable—has no precise intrinsic value before it is observed. The
violation of the BKS inequality demonstrates that, at the most fundamental level,
a quantum degree of freedom—unlike the case of a classical random variable—is
intrinsically indeterminate and can never be observed directly. It shows that quantum
indeterminacy is different from the classical randomness of a classical random
entity.

The violation of the BKS inequality results from representing the quantum
system by a state vector and operators acting on the state vector—and by defining
probabilities based on projection operators; in particular, the dynamics of a quantum
state—given by its time evolution driven by the Hamiltonian operator—does not
enter the Bell or BKS analysis; what is at issue is the nature of the quantum entity
itself. Violation of the Bell inequality is one of the more special criteria for deciding
if a physical system can be described by quantum or classical probability.

The quantum degree of freedom is a trans-empirical quantity that simultaneously
“exists” in all of its possible states; the trans-empirical existence of the degree
of freedom, as the term denotes, cannot be directly observed. The experimentally
observable properties of the degree of freedom are described by its Schrödinger
state vector (or equivalently by its density matrix ρ).

As shown in Fig. 7.1, a quantum entity is a pair: the degree of freedom and its
state vector ψ . By interposing the state vector between the indeterminate degree
of freedom and its (degree of freedom’s) observable properties—encoded by the
operators B—quantum mechanics interprets the notion of quantum indeterminacy
as a form of quantitative uncertainty.

When a property of a quantum degree of freedom is experimentally observed,
quantum probability assigns a likelihood that the state vector’s collapse will be
detected by a particular projection operator. By assigning probabilities to projection
operators, an entirely new and distinct field of quantum probability was created by
the founders of quantum mechanics.

With the wisdom of hindsight, it can now be said that the genius of Werner
Heisenberg was not just to have discovered the operator formulation of quantum
mechanics but to have discovered quantum probability as well and that too in
1925—several years before the theory of classical probability was rigorously
defined in 1933 by Kolmogorov [35].

9Ignoring the special case of spin 1/2.
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There are two forms of quantum indeterminacy, namely, that of the indetermi-
nate degree of freedom reflected in the state vector and that of indeterminate
paths expressed in the superposition of probability amplitudes, introduced in
Sects. 2.7 and 2.10. For both cases, the linearity of the Schrödinger equation,
combined with the intrinsic indeterminacy of the quantum entity, leads to the physics
of superposition—with each case having distinctive and specific features.

In the subsequent sections, the following topics are studied:

• The superposition of state vectors
• The superposition of probability amplitudes for determinate and indeterminate

paths
• The Mach–Zehnder interferometer and the superposition of photons
• The dependence of quantum superposition on measurements
• The quantum eraser and quantum superposition

Classical Superposition

To highlight the nonclassical properties of quantum superposition, consider first the
case of classical superposition.

In classical physics, superposition arises in the study of waves. A typical wave,
such as a shallow water wave, obeys a linear wave equation and consists of periodic
oscillations of an underlying classical medium, namely, water.

A wave is an extended object, spread over space, and is described by the
amplitude h1(t,r), defined as the value (of the displacement) of the periodically
oscillating medium at point r. The question naturally arises: what happens when two
waves, described by amplitudes h1(t,r) and h2(t,r), overlap—as shown in Fig. 8.1a?
For linear waves, the answer is very simple: The resultant wave is obtained by
adding the amplitude of the two waves at every point of space, called superposition,
with the following superposed wave:

B.E. Baaquie, The Theoretical Foundations of Quantum Mechanics,
DOI 10.1007/978-1-4614-6224-8__8, © Springer Science+Business Media New York 2013
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h(t,r) = h1(t,r)+ h2(t,r)

Note the classical superposed wave at any given point, as shown in Fig. 8.1a, has
only one value. The value of the resultant wave is different from the two component
waves—with the values at different points taking a value that lies in between the sum
and difference of the values of the two component waves. In summary, for classical
waves, once the component waves have been superposed, there is only one value for
the displacement of the resultant wave.

8.1 Superposing State Vectors

Let state vectors ψ1 and ψ2 be energy eigenfunctions with energy E1 and E2, as
shown in Fig. 8.1b. The state vector embodies the indeterminacy of the underlying
degree of freedom F . Furthermore, due to the linearity of the Scrhödinger equation,
the superposed state vector is given by adding the two state vectors

|ψ〉= a|ψ1〉+ b|ψ2〉; |a|2 + |b|2 = 1 (8.1)

and is also a solution of the Schrödinger equation. The superposed state vector |ψ〉
encodes both the indeterminacy of F and the dynamics arising from the Schrödinger
equation.

What is the interpretation of the superposed state vector |ψ〉? What are its
physical properties?
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Fig. 8.1 (a) Superposition of classical waves. (b) Superposition of two quantum state vectors,
with energy eigenvalues of E1 and E2 (published with permission of © Belal E. Baaquie 2012.
All Rights Reserved)
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The superposed state vector is a trans-empirical state, with the degree of freedom
existing simultaneously in two distinct quantum states. Its discrete and trans-
empirical nature is revealed in the measurement of energy of the superposed state
ψ : Every measurement of the state’s energy results in only the discrete energy E1 or
E2 being observed. Hence, unlike the classical case, the superposed state vector |ψ〉
“remembers” the component state vectors out of which it is composed.

If the energy measurement is repeated many times, it will be found that the
average energy Ē of ψ , as derived in (9.5), is given by

Ē = |a|2E1 + |b|2E2 (8.2)

The intermediate value of energy Ē is realized by observing energies E1 or E2

with probability |a|2 or |b|2, respectively—and not by the value Ē being directly
observed as the energy of the state ψ . Hence, in contrast to the classical wave that
has displacement very different from the component waves, every time the energy
of ψ is measured, it is either E1 or E2—but never any other value.

In summary, classical superposition produces an empirical wave from the
component empirical waves. In contrast, quantum superposition creates a trans-
empirical state |ψ〉 with the superposed state being simultaneously in two possible
states, specified by the component state vectors |ψ1〉 and |ψ2〉, which continue to
preserve their identity. When a measurement is performed on |ψ〉, the energy of
each component has a likelihood of being detected.

As discussed in Sect. 5.8, to measure the average value of an operator O for the
state |ψ〉, one needs to first represent |ψ〉 as a trans-empirical superposition of the
eigenfunctions |χn〉 of O, namely, as in (5.34)

|ψ〉= ∑
n

cn|χn〉

The decomposition of |ψ〉 into a superposed trans-empirical state is a fundamental
precursor to the process of quantum measurement.

Superposition for Spin 1/2

Consider the superposition of a two-state spin 1/2 state vectors. The eigenstates of
σz, the operator for measuring the z-component of the spin, are the following:

|+〉=
[

1
0

]
; |−〉=

[
0
1

]
⇒ σz|±〉=± h̄

2
|±〉

where

σz =
h̄
2

[
1 0
0 −1

]
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An example of a superposed state given in (8.1), for the case of the spin 1/2 state
vectors, is the following:

|Ψ〉= α|+〉+β |−〉=
[

α
β

]
; 〈Ψ|= [

α∗ β ∗ ] (8.3)

All measurements for the value of spin observable σz on state vector |Ψ〉 will
produce either +h̄/2 or −h̄/2 and no other value. The average value of the z-
component of spin for the superposed state—which is a concrete realization of
(8.2)—is given by

EΨ[σz] = 〈Ψ|σz|Ψ〉= h̄
2

[
|α|2 −|β |2

]
; |α|2 + |β |2 = 1 (8.4)

8.2 Probability and Probability Amplitudes

The quantum degree of freedom F is indeterminate and trans-empirical; a descrip-
tion of the quantum degree of freedom at a particular instant is given by the state
vector, namely, |ψ〉. The likelihood of the projection operator |x〉〈x| observing the
degree of freedom ℜ = F is given by tr(|x〉〈x|ρ) = |〈x|ψ〉|2, where ρ = |ψ〉〈ψ |.

Another class of quantum indeterminacy, as discussed in Sect. 2.10, consists of
a quantum particle taking indeterminate trans-empirical paths in evolving from an
arbitrary initial state vector to an arbitrary final state vector, as shown in Fig. 8.2. The
probability amplitude is used for describing the indeterminate and trans-empirical
paths of a quantum particle.

Time

tf

ti

Space

x1t x2

xi

xf

Fig. 8.2 A quantum particle’s space–time trajectory is empirical (determinate) or trans-empirical
(indeterminate), depending on whether a measurement is performed or not performed to determine
the path taken, respectively (published with permission of © Belal E. Baaquie 2012. All Rights
Reserved)
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Fig. 8.3 Probability amplitudes for transition from initial state vector |s〉 to final state vector |x〉
via N different possible intermediate paths (published with permission of © Belal E. Baaquie 2012.
All Rights Reserved)

Consider the case of an electron making a transition from the initial position
eigenstate |xi〉 at time ti to the final position eigenstate |xf〉 at time tf, via two
slits, as shown in Fig. 8.2.1 In all subsequent discussions in this chapter the space–
time trajectories, be they determinate or indeterminate, are not shown explicitly, but
instead are assumed.

In particular, in Fig. 8.3, the layout of the N-slits only in space is shown, with
the time evolution of the electron from its initial to final position being assumed.
The focus is on measurements of the initial and final states of the electron and, in
particular, if any measurements are made to determine the path taken by the electron.
From these measurements (or lack of them thereof) the space–time trajectories—be
they determinate or indeterminate—can be deduced.

Consider a quantum system making a transition from an arbitrary initial state
function |ψ〉 to an arbitrary final state function |η〉; the probability amplitude for this
transition is given by the scalar product 〈η |ψ〉, and the likelihood for this transition
is given by |〈η |ψ〉|2. In other words, the probability and probability amplitude for
the transition are given by the following:

Initial state function : |ψ〉; Final state function : |η〉
Probability Amplitude : 〈η |ψ〉; Probability of transition : |〈η |ψ〉|2

A quantum particle making a transition from an initial to a final state can go
through N intermediate paths, as shown in Fig. 8.3. The law for combining the effect
of these paths, and which yields the probability amplitude, has two different cases:

• No measurement is made between the initial and final positions of the electron,
and the information on which path has been taken by the quantum particle is

1Position measurements are made by projection operators |x〉〈x| and discussed in Sect. 9.2.
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not known. Hence, the intermediate paths are indistinguishable; the electron’s
path from its initial and final position is indeterminate and trans-empirical; the
quantum particle exists in all possible paths.

• The intermediate paths are distinguishable due to measurements carried out
to determine which path is taken. All the paths are now determinate, exist
objectively, and are empirical; the quantum particle takes a unique path from
initial to final state.

8.3 Empirical and Trans-Empirical Paths

The case of the two slits has been discussed in detail in Sect. 3.7 to illustrate the
paradoxes of quantum superposition. The discussion is now extended to the general
N-slit case.

Consider the case of an initial state vector |s〉 making a transition to a final state
vector |x〉 via N intermediate slits given by |i〉; i = 1,2, . . . , N and shown in Fig. 8.3.
The experimental realization of this transition is for electrons to start at point |s〉 and
then, later, be detected at final position |x〉 with the appropriate projection operators.

In going from |s〉 to |x〉, the particle can go through any of the N-slits. The
probability amplitude for going from state observed at |s〉 to the one observed at
|x〉 is given by 〈x|s〉. What is the probability that the particle starting at |s〉 arrives
at |x〉?

There are two very different expressions for the transition probability P. Unlike
classical physics, the answer depends on whether the intermediate states are
distinguishable or indistinguishable, namely, whether a measurement is performed
to ascertain which one of the N slits the particle went through.

• When the intermediate paths are distinguished by performing a measurement, the
path taken is a determinate and empirical path; the probability for going through
the different empirical paths is added and yields

PD = |〈x|s〉|2 =
N

∑
i=1

∣∣〈x|i〉〈i|s〉∣∣2

⇒ PD =
N

∑
i=1

PxiPis; Pxi = |〈x|i〉|2; Pis = |〈i|s〉|2 (8.5)

Classical probability theory yields the transition probability PD and cor-
responds to the case when all the intermediate states are distinguished and
empirical and which in turn implies that the paths exist objectively.

• For the case when the intermediate paths are indistinguishable, the paths
taken are indeterminate and trans-empirical. The probability amplitudes for
the transition via one of the trans-empirical paths are added to yield the total
probability amplitude; this yields for ψxi = 〈x|i〉 the following:
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〈x|s〉=
N

∑
i=1

〈x|i〉〈i|s〉 =
N

∑
i=1

ψxiψis (8.6)

PI =
∣∣〈x|s〉∣∣2 = ∣∣∣ N

∑
i=1

〈x|i〉〈i|s〉
∣∣∣2
=
∣∣∣ N

∑
i=1

ψxiψis

∣∣∣2 (8.7)

⇒ PI =
N

∑
i=1

PxiPis +
N

∑
i j;i�= j

〈x|i〉〈i|s〉〈x| j〉∗〈 j|s〉∗

There is no analog of (8.7) in classical probability theory since the indeterminate
paths do not objectively exist. The paths are indeterminate and trans-empirical,
with the electron simultaneously existing in all the possible paths.
The quantum result PI is nonclassical and involves the interference of the

different paths due to the inclusion of off-diagonal elements in PI. The superposition
of indistinguishable and indeterminate paths is an expression of quantum probability
discussed in Chap. 7; there is no classical probability distribution function that can
explain the results of a transition mediated by indistinguishable and indeterminate
paths.

In summary, the fundamental difference between the two cases, having distin-
guishable and indistinguishable intermediate paths, is how the probability amplitude
is composed.

• For the distinguishable paths, all the paths taken by the electron exist objectively,
and the probabilities for all the paths are composed as per the rules of classical
probabilities and yield PD = ∑N

i=1 PxiPis.
• For the indistinguishable paths, the paths are indeterminate; the probability

amplitudes for all the indeterminate paths are composed, namely, ∑N
i=1 ψxiψis

the probability is given by PI = |∑N
i=1 ψxiψis|2—thus yielding interference

terms in PI.

To simplify the notation, define φi, the probability amplitude to go through slit
i—shown in Fig. 8.4—as given by

φi = 〈x|i〉〈i|s〉 ≡ ψxiψis

For the distinguishable paths, the probability of going from the state observed at |s〉
to the one observed at |x〉, from (8.5), is given by

PD =
N

∑
i=1

|φi|2 (8.8)

For the case of indistinguishable and indeterminate paths, the probability amplitudes
for all the various paths through N-slits are added, that is, are superposed. From (8.6)
and (8.7), the indistinguishable case yields
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Fig. 8.4 The probability amplitude φ1,φ2, . . . , φn for the different paths (published with permis-
sion of © Belal E. Baaquie 2012. All Rights Reserved)

〈x|s〉=
N

∑
i=1

φi (8.9)

PI = |〈x|s〉|2 = |
N

∑
i=1

φi|2 =
N

∑
i=1

|φi|2 +
N

∑
i j;i�= j

φiφ∗
j (8.10)

For the case of indistinguishable paths, the indeterminate paths consist of all
the possible determinate paths taken together, as one single unit (collection). The
particle’s path being indeterminate means that it simultaneously exists in all the
possible determinate paths. The superposition of probability amplitudes for the
indistinguishable case is obtained by adding all these determinate paths to obtain
〈x|s〉 as in (8.9). Although summing over indeterminate paths looks similar to
the superposition of classical waves, it is fundamentally different: one is adding
the probability amplitudes for different possible determinate paths, whereas for
classical waves, one is adding the physical amplitude of oscillation of the material
medium. Furthermore, as discussed above, the probability amplitude is no ordinary
wave, but rather embodies all the information that can be extracted from the
indeterminate quantum paths.

For the N-slit case, the interference term ∑N
i j;i�= j φiφ∗

j given in (8.10) shows that
— for indistinguishable paths a single electron simultaneously exists in all paths that
go through the N slits. One can go even further and remove all the slits; the result
is that the single electron simultaneously exists in all possible paths going from |s〉
to |x〉, with the probability for the transition |〈x|s〉|2 given by the interference of all
the paths with each other. The approach of summing over all possible indeterminate
paths yields the Feynman path integral and is discussed in detail in Chap. 11.
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8.4 Successive Slits

One can have a situation where the quantum particle successively encounters a
number of slits.

Figure 8.5 shows the case of the quantum particle encountering two successive
double slits, one after the other. There are four possible probability amplitudes,
corresponding to four possible paths to go from |s〉 to |x〉 given by the following:

φ1 = 〈x|a〉〈a|1〉〈1|s〉; φ2 = 〈x|a〉〈a|2〉〈2|s〉 (8.11)

φ3 = 〈x|b〉〈b|1〉〈1|s〉; φ4 = 〈x|b〉〈b|2〉〈2|s〉 (8.12)

• Determinate paths
If the path taken by the particle is observed, then the probability of particle going
from initial to final state is given, as in (8.8), by the addition of the probabilities
for the individual paths and yields

PD = |φ1|2 + |φ2|2 + |φ3|2 + |φ4|2

• Indeterminate paths
If all the four paths are indistinguishable, the paths taken by the quantum
particle are trans-empirical, and hence the probability amplitude is given by the
superposition of the probability amplitudes for the different paths and yields, as
in (8.9), the following:

PI =
∣∣φ1 +φ2 +φ3 +φ4

∣∣2
The generalization of the probability amplitude for many successive slits is straight-
forward; the quantum superposition of trans-empirical (indistinguishable) paths is
the basis of the Feynman path integral that is discussed in Chap. 11.

s x

1

2

a

b
f3

f4

f2

f1

Fig. 8.5 Superposition of probability amplitude for indistinguishable possibilities (published with
permission of © Belal E. Baaquie 2012. All Rights Reserved)
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In summary, for the case when the path taken is not known, the total probability
amplitude is obtained by superposing the probability amplitudes ∑i φi for the
indistinguishable paths and results in a trans-empirical state; the probability of
transition is given by PI = |∑i φi|2.

For the case when the path taken is known, the quantum system does not obey
the quantum superposition principle; instead, the transition probability is given by
the result of classical probability, namely, PD = ∑i |φi|2, which is the sum of |φi|2,
namely, the probability of the electron taking the empirical and objectively existing
path through slit i.

8.5 The Mach–Zehnder Interferometer

The discussion of the two-slit experiment in Sect. 3.7 using electrons is repeated
using photons instead of electrons and for which one needs to employ the Mach–
Zehnder interferometer. The two-slit experiment is revisited using photons to
examine the role of measurement in causing a transition between the empirical and
trans-empirical paths of a quantum entity.

Let the photon traveling in the x- and y-direction be denoted by state vector |x〉
and |y〉, respectively—as shown in Fig. 8.6—with

〈x|x〉= 1 = 〈y|y〉; 〈y|x〉= 0

m
irr
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m
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beam
splitter b1

phase
shifter

detector d1

detector d2

x

y

xΨI = x

y

Fig. 8.6 A Mach–Zehnder interferometer arranged to show no interference (published with
permission of © Belal E. Baaquie 2012. All Rights Reserved)
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In this section, all the experiments consist of only a single photon—that is either
taking (superposed) trans-empirical paths or a definite empirical path.

The detectors d1 and d2 are projection operators in the x- and y-direction and
given by

d1 = |x〉〈x|; d2 = |y〉〈y| (8.13)

In the Mach–Zehnder interferometer, as shown in Fig. 8.6, a single photon, in an
initial quantum state denoted by |ΨI〉 = |x〉, is directed toward a beam splitter,2

namely, b1, where the photon has an equal probability of passing through the
mirror—or of being reflected upwards and hence transformed to state |y〉. The beam
splitter conserves probability and performs the following unitary transformation B
on the photon:

[ |x′〉
|y′〉

]
= B

[ |x〉
|y〉

]
=

1√
2

[
1 1
−1 1

][ |x〉
|y〉

]
(8.14)

After going through the beam splitter, the single photon is in a trans-empirical
superposed state and simultaneously travels along paths in the x- and y-direction,
as shown in Fig. 8.6, and is subsequently reflected by the mirrors. Mirror 1 reflects
the photon going along the x-axis to the y-axis, and mirror 2 reflects the photon
going along the y-axis to the x-axis, as shown in Fig. 8.6. The unitary operator M
representing the mirrors is given by

[ |x′〉
|y′〉

]
=M

[ |x〉
|y〉

]
=

[
0 1
1 0

][ |x〉
|y〉

]

After being reflected by the mirror 1 and going through a phase shifter, the photon
ends up at detector d2; similarly, the photon reflected off mirror 2 ends up at
detector d1.

The phase shift is the result of slightly changing the photon’s path length so
that the photon reflecting off mirrors 1 travels a distance slightly different from the
photon reflecting off mirror 2. A photon traveling along the two paths has a (slightly)
different relative phase when it arrives at the detectors and which is denoted by φ .
In symbols

|y〉 → Phase shifter → eiφ |y〉 : after mirror 1

|x〉 → Phase shifter → |x〉 : after mirror 2

The unitary operator for the phase shift is given by

2A beam splitter is usually a half-silvered mirror that has an equal probability of the photon being
reflected or of being transmitted without reflection.
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[ |x′〉
|y′〉

]
= P

[ |x〉
|y〉

]
=

[
1 0
0 eiφ

][ |x〉
|y〉

]

8.6 Determinate Empirical Paths: No Interference

The experiment shown in Fig. 8.6 detects the path taken by the photon: detector
d1(d2) will click only if the photon was reflected off mirror 1(2). The setup in
Fig. 8.6 is analogous to the case of an electron traveling through the two slits with
detection; continuously changing the phase shift (leading to a possible change in the
intensity of photons received if there is interference) is analogous to continuously
moving the detector up and down the screen, as in Fig. 3.7.

In terms of the state vectors, for this process, the initial state undergoes the
following transformations:

|ψI〉= |x〉

→ Beam splitter b1 → 1√
2
[|x〉+ |y〉]

→ Mirrors → 1√
2
[|y〉+ |x〉]

→ Phase shifter → 1√
2
[eiφ |y〉+ |x〉] = |ψF〉 (8.15)

The probability of the projection operators (detectors) d1 and d2 detecting the
photon, denoted by P1 and P2, respectively, is given from (8.13) by the following:

P1 = tr
(
d1ρ

)
= tr

(|x〉〈x|ρ)= |〈x|ψF〉|2 = 1
2

P2 = tr
(
d2ρ

)
= tr

(|y〉〈y|ρ)= |〈y|ψF〉|2 = 1
2

P1 +P2 = 1; ρ = |ψF〉〈ψF|

Since there is only a single photon in the system, only one of the detectors receives
a photon and is the reason that P1 +P2 = 1. The result of the experiment is shown
in Fig. 8.7; for a given phase difference φ , both detectors d1 and d2, on the average,
receive the same number of photons.

As the relative phase φ is varied, the detector readings are constant and there is
no interference, as shown in Fig. 8.7; the reason being that the information of the
path taken by the photon is known. Hence, for all values of the phase difference, the
path taken by the photon in the interferometer is empirical. The lack of interference
is shown by the fact that the counts in detectors d1 and d2 are independent of the
phase shift φ .
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Fig. 8.7 No interference;
which path taken by the
photon is known (published
with permission of © Belal E.
Baaquie 2012. All Rights
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Fig. 8.8 A Mach–Zehnder interferometer arranged to show interference (published with permis-
sion of © Belal E. Baaquie 2012. All Rights Reserved)

8.7 Indeterminate Trans-Empirical Paths: Interference

Suppose that, as shown in Fig. 8.8, a second beam splitter b2 is put in just before the
photon reaches the detectors. By putting the second beam splitter b2, the information
about which path the photon took is lost since the photon received in detector d1

and d2 could have come from either the x- or y-direction. The photon is now in
a superposed trans-empirical state. More precisely, as shown in Fig. 8.8 and using
(8.14), the final state is the following:
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|ψI〉 = |x〉

→ Beam splitter b1 → 1√
2
[|x〉+ |y〉]

→ Mirrors → 1√
2
[|y〉+ |x〉]

→ Phase shifter → 1√
2
[eiφ |y〉+ |x〉]

→ Beam splitter b2 → 1
2

(
eiφ [|y〉− |x〉]+ [|x〉+ |y〉]

)

→ 1
2

[
(1− eiφ)|x〉+(1+ eiφ)|y〉]

]
= |ψF〉 (8.16)

The photon arriving at the detectors could have come from either path and hence
what is received at the detector is a superposed state of the photon, with equal
amplitude to have taken either path. The detectors hence now show interference,
with the probability for the photon—having relative phase difference of φ—being
detected at detectors d1 and d2 given by

P1 = tr
(
d1ρ

)
= |〈x|ψF〉|2 = sin2(

φ
2
) (8.17)

P2 = tr
(
d2ρ

)
= |〈y|ψF〉|2 = cos2(

φ
2
) (8.18)

P1 +P2 = 1 (8.19)

The result of the experiment is shown in Fig. 8.9; for a given phase difference
φ , detectors d1 and d2, on the average, receive different number of photons that
is the result of the photon’s probability amplitudes for the trans-empirical paths
interfering. Since there is only one photon, the total probability of detection has to
be unity and is shown in Fig. 8.9.
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For the case of two beam splitters b1 and b2, the classical explanation is that the
photon takes an empirical and objectively existing path—taking either path reflected
off mirror 1 or path that reflects off mirror 2; the classical analysis predicts that
intensity of photons received at the detectors should have no interference, which is
shown by experiments to be incorrect.

In contrast, the quantum mechanical explanation is that the single photon exists
in indeterminate trans-empirical paths—for which the single photon simultaneously
exists in both paths. Since the two paths have a phase difference of φ , the
photon existing in the two paths interferes with itself —either constructively or
destructively—thus giving rise to the interference pattern. As expressed by Dirac
“each photon .. interferes only with itself. Interference between two different
photons never occurs” [10].

The interference that results from the superposed trans-empirical state has been
experimentally confirmed time and again for a great variety of cases.

Needless to say, one can never experimentally observe the photon existing in both
paths simultaneously; instead, one can only infer the existence of the trans-empirical
paths due to the photon making a transition from its trans-empirical state to an
empirical photon—that in turn is actually detected in an experimental apparatus.

8.8 Quantum Eraser

We take a closer look at the process of measurement to decide if we can erase the
information on the path taken by the photon even after an experimental arrangement
has apparently measured the path taken. The earlier experiments are reviewed, and
then modifications are made to introduce the idea of erasure of information.

Recall in the experimental setup in Fig. 8.8 there are two beam splitters b1 and
b2 that have been placed between the source of the photon and its detection. The
paths taken by the photon arriving at detectors d1 and d2 are indeterminate and
trans-empirical. Hence the photon exhibits interference and yields the interference
pattern shown in Fig. 8.9.

One can ask the question: can the interference pattern for the case of a single
photon, as discussed in Sect. 8.7, be erased after the photon has left the source? The
quantum eraser is such a device. It is important to note that the final state of the
quantum eraser consists of two photons, namely, the initial photon and the second
photon that is due to the down conversion of the initial photon.

The quantum eraser can erase the interference of a single photon with itself but
at expense of creating another photon in the device that contains information on the
path taken by the original photon.

Moreover, the quantum eraser also creates new forms of interference, but
involving not one but, instead, two photons.
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8.9 Erasing Interference

The quantum eraser is shown in Fig. 8.10.

• The photon from the source, after going through beam splitter b1 but before
reflecting off either mirror 1 or mirror 2, goes through a device, called a down
converter, where a nonlinear process splits the single photon—conserving energy
and momentum—into two photons. One of the resulting photons continues along
the original path, and the other photon heads in an orthogonal direction, as shown
in Fig. 8.10, with detectors d3 and d4 detecting the down-converted photon.

• Consider the case of there being two photons in the Mach–Zehnder interferom-
eter. Even though we still have beam splitters b1 and b2 in place at the source
of light and at detectors d1 and d2, respectively, there will no interference. This
is because the down conversion render’s the photon—detected by either d1 or
d2—into an empirical photon that takes a well-defined and determinate path.

• Consider, for example, the case when a photon is detected by say detector d4;
we then know that the photon detected in either d1 or d2 has taken the path of
being reflected off mirror 1, since only a photon traveling toward mirror 1 could
have undergone the down conversion and sent a photon to detector d4. Hence, in
spite of having beam splitter b2 in place, detectors d1 and d2 will not show any
interference! And this is precisely what experiments confirm to be the case.
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Fig. 8.10 Quantum eraser: the down-converted photon yields information on the path taken by
the photon (published with permission of © Belal E. Baaquie 2012. All Rights Reserved)
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Let |x〉, |y〉 denote the photons traveling in the x,y-direction towards detectors
d1,d2, respectively. A down-converted photon |1〉 traveling towards detector d3

takes place only when there is a photon traveling towards mirror 2, with no down-
converted photon traveling towards detector d4. Similarly, a down-converted photon
|2〉 exists only if a photon is traveling towards mirror 1.

A precise definition of the state vectors of the down-converted photons is the
following:

• |1〉: One down-converted photon traveling in the x-direction towards detectors
d3; no down-converted photon traveling in the y-direction.

• |2〉: One down-converted photon traveling in the y-direction towards detectors
d4; no down-converted photon traveling in the x-direction.

With these definitions, detectors d3 and d4 are projection operators in the one-
and two-direction and given by

d3 = |1〉〈1|; d4 = |2〉〈2| (8.20)

The state vector yields the following realization of the quantum eraser:

|ψI〉 = |x〉

→ Beam splitter b1 → 1√
2
[|x〉+ |y〉]

→ Down converter→ 1√
2
[|x〉|2〉+ |y〉|1〉]

→ Mirrors and phase shift → 1√
2
[|y〉|2〉+ eiφ |x〉|1〉]

→ Beam splitter b2 → 1
2

(
[|y〉− |x〉]|2〉+ eiφ [|x〉+ |y〉]|1〉]

)

= |ψN〉

One can perform a coincident measurement by simultaneously recording the
photons received in detectors d1,d2 and d3,d4. Consider the pure state density matrix

ρ = |ψN〉〈ψN | (8.21)

The density matrix given in (8.21) has encoded in it the down conversion of the
photon.

The information of the path taken by the photon is known by the experiment,
regardless of whether the information is recorded or not. To know whether the
original interference pattern of the single photon considered in Sect. 8.5—obtained
without down conversion—is still valid or not, one needs to only record the result
obtained in detectors d1,d2, ignoring the results recorded by detectors d3,d4. This, in
effect, requires that a partial trace be taken of ρ over the states detected by detectors
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d3,d4; performing a partial trace over the detector states |1〉, |2〉 using (6.5) yields
the following:

ρN,R = tr|1〉,|2〉 (|ψN〉〈ψN |) ; 〈i| j〉 = δi− j ; i, j = 1,2

⇒ ρN,R =
1
2
(|x〉〈x|+ |y〉〈y|) ; trρ2

N,R =
1
2
< 1

P1 = tr(ρN,Rd1) = tr(ρN,R|x〉〈x|) = 1
2

P2 = tr(ρN,Rd2) = tr(ρN,R|y〉〈y|) = 1
2

The reduced density matrix ρN,R is mixed, since information contained in detectors
d3,d4 has been traced over, and shows that there is no interference—since the
probability for finding a photon for both detectors is equal to 1/2, regardless of
the relative phase angle φ .

8.10 Restoring Interference

Consider placing a third beam splitter b3 between detectors d3 and d4, as shown in
Fig. 8.11.

As was the case for the erasure of interference, the photon from the source, after
going through beam splitter b1 but before reflecting off either mirror 1 or mirror 2,
goes through the down converter, where a nonlinear process splits the single photon
into two photons. One of the resulting photons continues along the original path,
and the other photon heads in an orthogonal direction, as shown in Fig. 8.11, with
detector d3 or d4 detecting the down-converted photon.

After down conversion, the Mach–Zehnder interferometer has two photons in
the apparatus, unlike the case discussed in Sect. 8.5 and similar to that discussed
in Sect. 8.9. Since we now have yet another beam splitter b3, the down-converted
photon must go through b3, as shown in Fig. 8.11, before the photon is detected by
either detector d3 or d4.

After the beam splitter b3 is put in place, it will be seen that interference
is restored. Detecting a photon in either detector d3 or d4 no longer yields the
information on which path was taken by the photons that are detected by d1 or d2;
however, the interference now involves a coincident measurement of two photons.

The down-converted photon that is received at d3 or at d4 could have come from
either of the two paths taken by the photon. Hence, detecting the down-converted
photon no longer yields the which-path information that led to the absence of
interference for a photon detected by detectors d1 and d2.

Hence, interference is restored since the path taken’s knowledge has been erased
by beam splitter b3. However, as will be seen below, the measurements that yield
interference are quite different than the case for the interference of a single photon.

To see how interference is restored, consider the following analysis:
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|ψI〉= |x〉

→ Beam splitter b1 → 1√
2
[|x〉+ |y〉]

→ Down converter → 1√
2
[|x〉|2〉+ |y〉|1〉]

→ Beam splitter b3 → 1
2
(|x〉[−|1〉+ |2〉]+ |y〉[|1〉+ |2〉])

→ Mirrors and phase shift → 1
2

(
|y〉[−|1〉+ |2〉]+ eiφ |x〉[|1〉+ |2〉]

)

→ Beam splitter b2 → 1

2
√

2

(
[|y〉− |x〉][−|1〉+ |2〉]+ eiφ[|x〉+ |y〉][|1〉+ |2〉]

)

=
1

2
√

2

[
(1+ eiφ )|x〉|1〉+(1+ eiφ)|y〉|2〉− (1− eiφ)|x〉|2〉− (1− eiφ)|y〉|1〉

]

= |ψF〉 (8.22)

Coincident measurements consist of measuring two detectors simultaneously; for
the quantum eraser, there are four possible coincident measurements. Detectors
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d1,d2 given in (8.13) are measured simultaneously with detectors d3,d4 given in
(8.20) and correspond to readings by the following combination of detectors, given
below together with their likelihood of occurrence:

Px1 : d1 ⊗ d3 = |x〉〈x|⊗ |1〉〈1|; Py1 : d2 ⊗ d3 = |y〉〈y|⊗ |1〉〈1|
Px2 : d1 ⊗ d4 = |x〉〈x|⊗ |2〉〈2|; Py2 : d2 ⊗ d4 = |y〉〈y|⊗ |2〉〈2|

All the computations have the following generic derivation; let ρ = |ψF〉〈ψF|;
then, from (8.22)

Px1 = tr
[(

d1 ⊗ d3
)
ρ
]

=
1
8

∣∣(1+ eiφ)
∣∣2tr

[(
d1 ⊗ d3

)(|x〉〈x|⊗ |1〉〈1|)]

=
1
2

cos2
(

φ
2

)∣∣∣〈x|x〉〈1|1〉∣∣∣2 = 1
2

cos2
(

φ
2

)

Hence, repeating the derivation for other cases leads to the following result:

Px1 =
1
2

cos2
(

φ
2

)
= Py2; Px2 =

1
2

sin2
(

φ
2

)
= Py1

⇒ Px1 +Px2 +Py2 +Py1 = 1 (8.23)

Equation (8.23) states the following: It is certain that one photon will be found
by either detector d1 or d2 and another photon will certainly be detected by either
detector d3 or d4.

If one does a coincidence measurement by counting only those cases when
photons are simultaneously detected by both detectors d1 and d3 (one photon in
each detector)—or equivalently, by both detectors d2 and d4—then, as one varies
the relative phase φ , one obtains an interference pattern from Px1,Px2—or Py2,Py1—
which is similar to one given in (8.17) and (8.18).

One may object that in the case of the quantum eraser, one has shifted one’s
attention from single photon interference to the case of the interference involving
two photons. This shift is unavoidable since the path of the initial photon is being
probed with another (down-converted) photon, and, hence, both photons have to be
observed to obtain the path information.

The experimental arrangement of the quantum eraser is not simply to detect
whether the initial photon exists in an empirical or in a trans-empirical state; in
fact, after down conversion, there are now two photons in the apparatus, and they
are jointly in an empirical or a trans-empirical state depending on the measurements
being carried out. The fact that interference exists for the coincidence counts shows
that it is the two-photon system that is now in the trans-empirical state and which
gives rise to the interference.
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To see that the interference does not exist for the single photon detected by either
detector d1 or d2, consider the density matrix formed from the state vector given in
(8.22), namely,

ρ = |ψF〉〈ψF|

Performing a partial trace over the states |1〉, |2〉—namely ignoring the readings of
the detectors d3 and d4—using (6.5) yields, after some algebra, the following the
reduced matrix

ρR = tr|1〉,|2〉 (|ψF〉〈ψF|) = 1
2
(|x〉〈x|+ |y〉〈y|)

and which, from the earlier discussion, does not have any interference.
In other words, if one were to only measure a single photon using detectors d1

and d2, then one would completely miss the interference effect.

8.11 Partial Quantum Eraser

For the case of both the two-slit experiment, the Mach–Zehnder interferometer and
the quantum eraser, one either had full interference or no interference. We now
examine the case for which the path information in only partially erased.

The Mach–Zehnder interferometer is used for setting up an experiment that
smoothly interpolates between having full knowledge of the path taken—and thus
destroying quantum interference, to the case of having no knowledge of the path
taken—and thus fully restoring interference.

For the case of partial erasure, the Mach–Zehnder interferometer has two beam
splitters b1 and b2 and two detectors d1 and d2, with a relative phase shifter φ . The
general idea is to couple a measuring device—which consists of another quantum
system, say a spin variable |s〉—to the photon’s path.

Measuring the state of the spin |s〉 determines whether the photon has taken a
particular path. One can gradually turn on the spin-photon coupling (interaction) and
examine the influence of the coupling on the interference pattern. The experimental
arrangement is shown in Fig. 8.12.

The spin |s〉 has an interaction U with the photon. If the photon travels on the
path that reflects off mirror 2, then it interacts with |s〉—and causes |s〉 to undergo a
transition to state |s′〉—given by the following:

|s〉 → |s′〉 = U |s〉

〈s′|s〉 = 〈s|U†|s〉 ≡ |α|exp(iχ); |α| ∈ [0,1]

The parameter α measures the strength of the coupling of the spin to the photon.
There is a similar coupling that one can introduce in the quantum eraser. If beam
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splitter b3, shown in Fig. 8.11, transmits the photon with only some finite likelihood,
then the parameter |α| is a measure of the degree of transparency of beam splitter b3.

The value of |α|= 0 corresponds to the beam splitter b2 having no effect on the
photon and |α|= 1 corresponding to the full action of the beam splitter, as given in
(8.14). It can be shown that quantum eraser shown in Fig. 8.11 is equivalent to the
case of partial quantum superposition discussed in this Sect. 8.11.

The initial state of the system |ψI〉 is equal to the tensor product |x〉|s〉. The initial
state evolves in the following manner to the final state |ψF〉:

|ψI〉 = |x〉|s〉

→ (beam splitter b1)→ 1√
2

[
|x〉+ |y〉

]
|s〉

→ Mirrors → 1√
2

[
|y〉+ |x〉

]
|s〉

→ Phase shifter → 1√
2

[
eiφ |y〉+ |x〉

]
|s〉
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→ Interaction → 1√
2

(
eiφ |y〉|s〉+ |x〉|s′〉

)
(8.24)

→ Beam splitter b2 → 1
2

(
eiφ{|y〉− |x〉}|s〉+ {|x〉+ |y〉}|s′〉

)

≡ |a〉|s〉+ |b〉|s′〉
= |ψF〉 (8.25)

where

|a〉 ≡ 1
2

eiφ (|y〉− |x〉); |b〉 ≡ 1
2
(|x〉+ |y〉) (8.26)

Note the formation of an entangled state given in (8.24), which is the result of the
photon interacting with the spin degree of freedom.

The process of the interaction of the spin degree of freedom |s〉 with the device
represented by U is irreversible; for example, if the interaction leads to a state |s′〉=
U |s〉 such that 〈s|s′〉 = 0, then one can be certain that the photon was reflected off
mirror 2; in this case, the information extracted by the spin degree of freedom is
reflected in the absence of interference for the photon—even if only the photon’s
state is recorded.

The density matrix for the final state is given by

ρ = |ψF〉〈ψF|
= |a〉〈a|⊗ |s〉〈s|+ |a〉〈b|⊗ |s〉〈s′|+ |b〉〈a|⊗ |s′〉〈s|+ |b〉〈b|⊗ |s′〉〈s′|

that encodes the information for an experiment in which both the photon and spin
degree of freedom’s state are measured.

The reduced density matrix ρR, obtained by tracing over the spin degree of
freedom, has less information, namely, what is required for an experiment in which
the state of only the photon degree of freedom is measured, with no measurement
being performed to ascertain the state of the spin degree of freedom. Since we are
only interested in studying whether there is interference for the photon, consider the
experiment in which only the final state of photon is recorded at detectors d1 and d2.
The result of the experiment is encoded in the reduced density matrix ρR for which
the spin degrees of freedom have been traced over and given by

ρR = trs,s′(ρ) = trs,s′ (|ψF〉〈ψF|)

= |a〉〈a|+ |α|
(

eiχ |a〉〈b|+ e−iχ|b〉〈a|
)
+ |b〉〈b|

since
〈s|s〉|= 1 = 〈s′|s′〉; 〈s′|s〉= |α|eiχ
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Consider measurements carried out by detectors d1 and d2, with P1,P2 being the
likelihood that a photon is detected by d1 and d2, respectively. Then, setting χ = 0
without any loss of generality, we have3

P1 = tr(d1ρR) = tr(|x〉〈x|ρR) = 〈x|ρR|x〉
= |〈x|a〉|2 + |α|

(
〈x|a〉〈b|x〉+ 〈a|x〉〈x|b〉

)
+ |〈x|b〉|2

=
1
2

[
1−|α|cos(φ)

]
(8.27)

where (8.26) has been used to obtain (8.27). Similarly

P2 = tr(d2ρR) = tr(|y〉〈y|ρR) = 〈y|ρR|y〉= 1
2

[
1+ |α|cos(φ)

]
(8.28)

P1 +P2 = 1

The result obtained in (8.27) and (8.28) shows that the constant |α| smoothly
interpolates between interference and no interference. The result is illustrated in
Fig. 8.13—with the case of full interference given by |α| = 1 gradually going into
the case of no interference with |α|= 0.

• |α|= 0. No interference

3The equations below are obtained by displacing φ → φ − χ ; the result is independent of χ since
it simply redefines the origin of φ , which in the first place is arbitrary.
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Since 〈s|s′〉= 〈s|U |s〉 = 0, the final and initial states are different with 100 %
certainty.4 Hence, the photon’s path is fully known. As expected

|α|= 0; 〈s|s′〉= 0

P1 → 1
2

; P2 → 1
2

P1 +P2 = 1

• |α|= 1. Full interference
The case of |α| = 1 yields that |s′〉 = |s〉 implying that there is no interaction

of the photon with the spin—leading to the complete loss of knowledge about
which path was taken. As expected

|α|= 1; |s′〉= |s〉

P1 → sin2 φ
2

; P2 → cos2 φ
2

P1 +P2 = 1

In summary, as one varies the strength of the interaction by varying the value
of |α|, one smoothly interpolates between the photon taking trans-empirical paths
(interference) to the limit of the photon taking an empirical path (no interference).

• For the case when 0 < |α| < 1 the photon exists in a state that is a mixture
of indeterminate and determinate paths corresponding to a partial erasure of
information. We conclude that, for 0 < |α| < 1, the quantum system exists in
a state that is partly empirical and partly trans-empirical, as expressed in (8.27)
and (8.28).

For the general case |α| given in (8.27) and (8.28), the quantum entity is partly
empirical and partly trans-empirical. This result illustrates that the detailed structure
of the transitional domain between the empirical and trans-empirical domains,
shown as the gray area and labeled as “Measurement” in Fig. 3.4, depends on the
accuracy and other details of the experiment being used to study the quantum entity.

8.12 Summary

Quantum mechanics is based on the trans-empirical quantum principle that a quan-
tum entity has an indeterminate and trans-empirical form that makes a transition to
its empirical form when the quantum entity is observed. Superposition in quantum

4In quantum mechanics, two states are distinguishable with 100 % confidence if the states are
orthogonal, that is, if 〈s|s′〉= 〈s|U |s〉 = 0. See discussion in Sect. 5.3.
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mechanics yields the results of classical probability when empirical paths are
composed and nonclassical results when indeterminate paths are superposed.

Quantum superposition adds the probability amplitudes for indeterminate and trans-
empirical paths. All the paradoxes of quantum superposition reflect the trans-empirical
nature of the indeterminate paths.

The superposition of the state vector and probability amplitudes were analyzed
to show that the role of measurement is central to the workings of quantum
superposition. For the case of the superposed state vector, measurements reveal its
constituent state vectors and their respective eigenvalues.

A detailed analysis was carried out of the physics of determinate and indetermi-
nate paths, with quantum superposition of indeterminate paths being the realization
of the linearity of quantum mechanics for probability amplitudes. It was shown that
the probability amplitude has two forms depending on whether the quantum entity
takes an empirical path or trans-empirical paths. Performing or not performing a
measurement determines whether the path taken is empirical or trans-empirical,
respectively.

The Mach–Zehnder interferometer was used to analyze cases where the path
taken by a photon traveling through the interferometer was either not observed
or observed—leading to interference or the lack of it. Interference for a quantum
particle is a nonclassical result, and the lack of interference is the expected classical
behavior. Partial and imprecise measurements were studied to show how interactions
can be used to obtain information on which path was taken by a photon. And finally,
the quantum eraser was discussed to show how information can be preserved or
erased even after information on the path taken has apparently been generated in
one segment of the apparatus.

Quantum superposition is nonclassical due to the trans-empirical nature of the
state vector and the probability amplitude. Unlike symbols of classical physics such
as position and momentum that can be directly related to measurable quantities,
the physical content of the symbols for the trans-empirical quantities of quantum
mechanics can never be directly observed. For example, it is the mathematical
expression for the probability amplitude of a quantum entity “taking” indeterminate
paths that yields predictions for the observable consequences of quantum superpo-
sition.

One of the conclusions from our study of quantum superposition is that it is the
analysis of the symbols of quantum mechanics which leads us to infer that the trans-
empirical form of the quantum entity does indeed exist.
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A careful analysis of the process of observation in atomic physics has shown that the
subatomic particles have no meaning as isolated entities, but can only be understood as in-
terconnections between the preparation of an experiment and the subsequent measurement.
Erwin Schrödinger.

A quantum entity, as discussed in Sect. 2.12, consists of an inseparable pair,
namely, its degree of freedom and state vector. One of the most enigmatic features
of a quantum entity is that its degree of freedom can never be directly observed.
On attempting to observe its degree of freedom, what one ends up observing is the
state vector of the degree of freedom, as illustrated in Fig. 3.3. In fact, as discussed
in Sect. 7.9, one does not even observe the state vector; every experiment ultimately
observes only the effect of the state vector on the projection operators, which are
physical detectors. Quantum probability assigns probabilities to the likelihood of a
projection operator detecting the state vector.

The role of measurement in experimentally observing the properties of a quantum
entity is its fundamental difference from a classical thing—since it is the exceptional
role of measurement in quantum mechanics that gives meaning to the concept and
existence of the state vector.

This chapter studies exactly what do we mean by detecting a state vector and
precisely what constitutes a projection operator.

In classical physics, Nature is considered to exist objectively and to be in an
exact and determinate state, and whether one observes it or not does not matter. In
contrast, the quantum entity’s observed empirical form of existence is fundamentally
different and distinct from its unobservable, indeterminate, and trans-empirical
form. Measurement is the connecting link between the empirical and trans-empirical
forms of a quantum state vector, as shown in Fig. 3.4.

In classical physics, all the changes caused by experimentally observing an object
can, in principle, be accounted for exactly; in particular, all experimental error can,
in principle, be reduced to zero. In quantum mechanics, experimental precision is
intrinsically limited due to the nonzero value of h̄ and reflects the indeterminate
characteristic of the degree of freedom that yields uncontrollable and unpredictable

B.E. Baaquie, The Theoretical Foundations of Quantum Mechanics,
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results for the measurement; the Heisenberg Uncertainty principle encodes this
aspect of quantum measurements.

The role of measurement is central to the interpretation of quantum mechanics.
An experimental observation carried out on the state vector ψ(F) of the degree of
freedom F causes a discontinuous transition from the trans-empirical form of the
state vector to its empirical manifestation.
• The measurement process is mathematically represented by applying the operator

O(F) on the trans-empirical state |ψ(F)〉 to yield another trans-empirical state
O(F)|ψ(F)〉.

• The act of measurement causes a collapse—a discontinuous and irreversible
change—of the trans-empirical state O(F)|ψ(F)〉 to an empirical reading of a
measuring device.

• Repeated measurements yield the average value of the operator for the given
quantum state, namely, Eψ [O(F)] = 〈ψ |O(F)|ψ〉.
Note the discontinuous change caused by the physical act of measurement cannot

be produced by the Schrödinger equation, which evolves the state vector |ψ〉
by a continuous unitary evolution. Hence, a consistent interpretation of quantum
mechanics requires both the Schrödinger equation’s unitary evolution as well as a
non-unitary discontinuous transition.

All experiments and experimental detectors used for studying quantum phenom-
ena have the following characteristics:
• The repeated and independent preparations of the same quantum state, which is

subsequently subjected to repeated measurements.
• The detector greatly amplifies the quantum quantity being studied so that its

value can be inferred from macroscopic quantities that are observable in the
macroscopic world. Amplification is required when studying the quantum realm.

• The process of measurement entangles the quantum system’s degrees of freedom
with the degrees of freedom of the detector, creating a joint entangled state vector
of the quantum system and detector.

• The act of measurement culminates in the quantum state collapsing to one of
the states of the detector—in other words, causing a discontinuous change in the
state vector—and in doing so brings about an irreversible change in the quantum
system.

• Due to the entanglement of the quantum state and the detector, the final
(macroscopic) state of the detector—the result of the observation—allows us to
conclude with certainty on the value of the microscopic quantum quantity that is
being observed.
In summary, all quantum measurements require four ingredients, namely, prepa-

ration, amplification, entanglement, and collapse (irreversibility). This is the view
of experiment that is practically followed by the majority of physicists. However,
there are physicists who consider this interpretation of quantum mechanics as being
incomplete and inadequate. Various theories have been proposed to resolve the
problem of measurement and are discussed in Sect. 9.11.

To clarify the concept of measurement in quantum mechanics, the following
diverse aspects of the process of measurement are discussed:
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• A photographic plate’s exposure as a form of quantum measurement.
• Measuring the expectation value of an operator for a state vector.
• The experimental device.
• The process of measurement and the preparation of a quantum state.
• The measurement process, in particular the collapse of the state vector, in terms

of the density matrix.
• The Heisenberg Uncertainty Principle is motivated by analyzing the measure-

ment of two non-commuting observables.

Noteworthy 9.1: Macroscopic quantum systems

There are macroscopic quantum entities such as a superconductor or a superfluid
for which the amplification needed for making a quantum measurement is not
necessary. A superconductor has zero resistance for a D.C. current, which is a
macroscopic classical quantity; similarly, viscosity is a macroscopic property of
classical fluids, which is zero for a superfluid—and hence there is no need for any
amplification. However, these macroscopic quantum systems tend to be very special.

Even for macroscopic quantum systems, amplification is required for observing
the microscopic and quantum basis for their macroscopic features. At low
enough temperatures, in some metals pairs of electrons form a bound state—
which are microscopic in nature—and that condense to form a superconductor;
similarly, magnetic flux quantization of magnetic field trapped in a superfluid needs
amplification to be observed.

9.1 Measurement: Trans-Empirical to Empirical

Consider the coordinate degree of freedom x ∈ ℜ = F . Measurement plays an
indispensable role in quantum mechanics since it connects the trans-empirical form
of the quantum state, as described by the state vector |ψ(t)〉, with the expectation
value of the position projection operator |x〉〈x| given by |ψ(t,x)|2.

The nonclassical nature of |ψ(t)〉 can be seen from the following fact: The
moment the quantum particle is observed (measured) by the position projection
operator |x〉〈x|, the state vector of the quantum particle instantaneously “collapses,”
that is, becomes zero everywhere in space—except where it is observed—since once
the particle is detected by operator |x〉〈x|, there is zero likelihood of a projection
operator at any other point finding it.

No classical wave collapses on being observed driving home the point that the
state vector |ψ(t)〉 is not like any ordinary classical wave. A classical wave, like the
waves on an ocean, exists objectively and remains in its state whether one observes
it or not.

Some of the new concepts that have been introduced by quantum mechanics are
the following:
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• The quantum state embodies the exhaustive and complete description of a
quantum entity and, in particular, describes the trans-empirical state vector as
well as the empirical manifestation of the quantum entity.

• Once a quantum state is prepared and no longer observed, it makes a transition
from the empirical to the trans-empirical state. In contrast, measurement causes
a discontinuous transition of the quantum state from the trans-empirical to the
empirical domain.

9.2 Position Projection Operator

The process of measurement is illustrated in Fig. 9.1. An incoming particle—
represented by a state vector |ψ〉, with state function given by ψ(x) = 〈x|ψ〉—is
shown in Fig. 9.1a to be spread out to represent the fact that the particle has a finite
probability of being detected by the projector operators located at many different
points of space.

The photographic plate represents a typical detector carrying out a position
measurement; every grain of the photographic plate at position x represents a
projection operator |x〉〈x|. On hitting the photographic plate, the particle deposits all
of its energy at a single point x (or more precisely, in a volume having a dimension
much, much smaller than the spread of its state function), as shown in Fig. 9.1b.

It is concluded that the process of measurement has resulted in the particle’s state
vector being observed by the projection operator |x〉〈x| at point x.

Figure 9.2 shows the empirical form |ψ(x0,y0)|2 and the trans-empirical form
ψ(x,y) of the state function for a particle being observed by the photographic plate.
The empirical manifestation |ψ(x0,y0)|2 of the quantum state function is nonzero
only at a given position x0,y0; the trans-empirical and indeterminate form ψ(x,y) of
the same state function is nonzero for all x,y.

The quantum concept of repeated measurements is discussed in Sect. 9.3. In the
case of a particle being detected at the photographic plate, of course once it has
been detected, the particle is “lost.” For this case, one repeats the experiment using
identical particles and with identical preparations.

State vector
Film

Exposed grain

Film

2
a b c

y y

Fig. 9.1 (a) A quantum particle approaches a photographic plate. (b) The state vector collapses at
the position where the grain is exposed. (c) An observer not observing and observing the particle
(published with permission of © Belal E. Baaquie 2012. All Rights Reserved)
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Fig. 9.2 Representation of
the photographic plate: the
empirical manifestation
|ψ(x0,y0)|2 of the quantum
state function and its
trans-empirical and
indeterminate form ψ(x,y)
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)
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b

Fig. 9.3 (a) The theoretical superstructure of quantum mechanics for a continuous degree of
freedom F . (b) The superstructure of a quantum particle that is being measured by the position
projection operator |x〉〈x| (published with permission of © Belal E. Baaquie 2012. All Rights
Reserved)

If the same experiment is now repeated many, many times, it will be found that
the average value of the position projection operator |x〉〈x| at different points x is
given by tr(ρ |x〉〈x|) = |ψ(x)|2, where ρ = |ψ〉〈ψ |. The result |ψ(x)|2 can also be
interpreted as the probability that the operator |x〉〈x|, located at position x on the
photographic plate, is likely to detect the state vector.

There is another class of quantum measurements in which the same quantum
entity can be repeatedly observed. Take the case of shining light on an atom and
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observing the light it emits; once the emission is over, the atom returns to its original
state, and one can again shine light on the atom—with the subsequent emitted light
being observed again, and so on.

Quantum Mechanical Superstructure for Position Operator

The superstructure of the quantum entity has a concrete and transparent form when
degree of freedom and the projection operators performing the measurements are
specified. The various domains of the quantum entity, as given in Figs. 2.4 and 2.5,
are expressed in a more concrete manner, shown in Fig. 9.3a and b, using the
concepts and notation developed so far.

For the case of the position projection operator |x〉〈x|, as shown in Fig. 9.3b,
the degree of freedom is the continuous Euclidean space F = ℜ with x ∈ ℜ. For
the continuous degree of freedom, the Hilbert space V(F) consists normalized state
vectors that are functions of the coordinate x, namely, ψ(t,x) with

∫
dx|ψ(t,x)|2 = 1.

The observables are Hermitian differential operators O = O(x,∂/∂x) that act on
the state function ψ(t,x). The expectation value of the operator for the quantum
state is what is empirically measured and is a diagonal matrix element given by

Eψ [O] = 〈ψ |O|ψ〉=
∫

dxψ∗(t,x)
[

O

(

x,
∂
∂x

)

ψ(t,x)

]

For the position projection operator |x〉〈x|, the probability of the state vector
collapsing at |x〉〈x| is given by Eψ [|x〉〈x|] = |ψ(t,x)|2.

9.3 Repeated Observations in Quantum Mechanics

In quantum mechanics, the term “repeated observations” does not mean that one
successively observes the same quantum system, say a particle, many times. Instead,
what it means is that one first experimentally prepares a quantum entity to be in
a particular quantum state that is of interest; once the preparation is completed,
the quantum entity is then experimentally observed. After the observation is
over, the quantum entity is again experimentally prepared to be in exactly the
same particular quantum state and then again experimentally observed—with the
outcome not necessarily being same as the previous case.

Note that quantum mechanics generalizes the concept of causality. The prepara-
tion of the same particular quantum state leads to a multiplicity of outcomes when
observed. In other words, the same cause, namely, the preparation of the state, leads
on being observed to a multiplicity of effects.

This process of preparation and observation of the quantum entity needs to be
carried out many many times to be able to observe all the possible values of the
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operators in quantum state, together with the likelihood for the various values.
Hence, in quantum mechanics, it is necessary to repeatedly observe a quantum entity
to determine the probability of the different possible outcomes.

A crucial point to note is that each preparation of a particular quantum state must
be independent of the other preparations. Furthermore, each experimental obser-
vation is independent of all other observations. In other words, each preparation
and observation must be statistically independent of all the rest. The statistical
independence ensures that the outcomes are not correlated and the result yields the
probability distribution.

The process of repeated measurement in effect creates an ensemble of states,
each having the possibility of yielding a different result on being observed.
Each process of measurement collapses the state vector to a definite value of
the observing projection operator. One can think of collecting all the identically
prepared quantum states and carrying out all measurements simultaneously. The
result of such a procedure, for infinitely many identically prepared states, yields
all possible outcomes for the quantum state, of course with different likelihoods.
In effect, the repeated observations yield a classical random ensemble, and the
results of classical probability can be applied to the result of repeated measurements.
Before the measurements are carried, what we have prepared is a quantum ensemble
(collection) of state vectors; this ensemble has no relation to the classical random
ensemble that consists of the different values of the random variable; in contrast,
the quantum ensemble is a collection of state vectors with the degree of freedom
remaining indeterminate and trans-empirical.

Repeated measurements make sense only in quantum mechanics, where each
measurement can potentially give a new result. In classical physics, there is a
rigid one-to-one correspondence between cause and effect, with one cause giving
rise to one and only one effect. In classical physics—which includes Einstein’s
general theory of relativity—one would expect to obtain exactly the same result,
within experimental errors, on observing states that were prepared in an identical
manner. Hence, in classical physics there is no a priori reason for making repeated
measurements of the same system.

9.4 Expectation Value of Projection Operators

The expectation value of operators has been discussed in Sects. 5.8 and 7.9. The
main results are re-derived in the context of measurement theory.

Consider carrying out observations on a state vector |χ〉 using the Hermitian
operator O. Since O is a Hermitian operator (observable), it has a complete set of
eigenstates |ψn〉 with eigenvalues λn and yields the spectral resolution, from (5.8),
given by

O =
N

∑
n=1

λn|ψn〉〈ψn|; O|ψn〉= λn|ψn〉 (9.1)
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⇒O =
N

∑
n=1

λnΠn; Πn = |ψn〉〈ψn|; Π2
n = Πn (9.2)

All eigenvalues λn are real because operator O is Hermitian.
Since eigenstates |ψn〉 are complete, the state vector |χ〉 has an eigenfunction

decomposition

|χ〉= ∑
n

cn|ψn〉 (9.3)

The state |χ〉 is repeatedly prepared, in an identical manner, and the preparation
entails fixing the values of all the coefficients cn in the decomposition given in (9.3).
Every time the experiment is repeated, measurements are made independently of all
the other measurements.

Every time the value of the operator O is observed for the state |χ〉, the operator
O is always found to have one of its eigenvalues λn (with probability |cn|2)—and
never any other value. This is one of the salient features of quantum superposition,
as discussed in Sect. 8.1, of which the expression of χ in terms of the eigenstates as
in (9.3) is a particular case.

As discussed in Sect. 5.8, the quantum mechanical interpretation of |cn|2 is that
it is the probability of finding the state |χ〉 in the state specified by eigenstate |ψn〉,
which has the eigenvalue λn.

In the formulation of quantum probability, as discussed in Sect. 7.9, the fun-
damental postulate of quantum mechanics made by Max Born can be restated as
assigning probabilities to the projection operators Πn. It is postulated that observing
the operator O entails, as shown in Fig. 7.8, applying the projection operator Πn on
the quantum state vector and which yields, after repeated applications, the average
value of the projection operator Πn for state |χ〉, given by the following:

|cn|2 = Eχ [Πn] = |〈ψn|χ〉|2 = tr(ρΠn); ρ = |χ〉〈χ | (9.4)

The quantum probabilities pn given in (7.33) are determined by the state vector |χ〉
and given by

pn = |cn|2 = Eχ [Πn]; ∑
n

pn = 1

The observed values of λn can be different each time the identically prepared
states are observed. Carrying out observations many times results in finding the
average value ofO, namely, E[O], for a state vector |χ〉, which from (9.2) is given by

Eχ [O] = ∑
n

λnEχ [Πn] (9.5)

where Eχ [Πn] is the expectation value of Πn for quantum state |χ〉. Hence, from
(9.4) and (9.5),
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Eχ [O] = ∑
n

λn|cn|2 = ∑
n

λn|〈ψn|χ〉|2 = ∑
n

λn〈χ |ψn〉〈ψn|χ〉

= 〈χ |O|χ〉 (9.6)

where (9.1) yields the final result. From above, it is clear that the diagonal value
of the operator O for a given state, namely, 〈χ |O|χ〉, is the average value of the
eigenvalues λn of the operator O for the state vector |χ〉.

Hence, in general the value of any physical quantity O for a given quantum
state |χ〉 is obtained by finding the diagonal matrix element of the operator, namely,
〈χ |O|χ〉. From (9.6), the expectation value of the observable O is given by

〈χ |O|χ〉= ∑N
i=1 |ci|2λi = tr(O|χ〉〈χ |) (9.7)

⇒ 〈χ |O|χ〉= tr(ρO) ; ρ = |χ〉〈χ | (9.8)

The projection operators Πn are orthonormal since

Πn = |ψn〉〈ψn|; ΠnΠm = δn−mΠn (9.9)

∑n Πn = I (9.10)

where the last equation follows from the completeness equation given in (5.6).
On being observed by the operator O, the state vector |χ〉 “collapses” to |ψn〉

or, equivalently, is projected to state |ψn〉; from (9.4), the process of measurement
yields the following:

O → |χ〉 → |〈ψn|χ〉|2 = 〈χ |Πn|χ〉= Eχ [Πn]

Decoherence

From an operational point of view, the process of measurement applies the
projection operator Πn on the state |χ〉 and projects it to the state vector |ψn〉; in
symbols

|χ〉 → Measurement → Πn|χ〉√〈χ |Πn|χ〉
=

[
〈ψn|χ〉√〈χ |Πn|χ〉

]

|ψn〉

= eiφn |ψn〉 (9.11)

where φn is a pure phase.
It was shown in (5.13) that eiφn |ψn〉 and |ψn〉 are parallel and thus are identical

since they differ by only a constant phase; the measuring process given in (9.11)
projects the state vector |χ〉 to |ψn〉.

Hence, from (9.11), the process of measurement discontinuously projects the
state |χ〉 to state |ψn〉 as follows:
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Fig. 9.4 Collapse of the state vector |ψ〉 = ∑n cn|ψn〉 to |cn|2 = |〈ψn|ψ〉|2 and the collapse of
pure density matrix ρ to the mixed density matrix ρM, which is equivalent to a classical random
ensemble (published with permission of © Belal E. Baaquie 2012. All Rights Reserved)

|χ〉 → eiφn |ψn〉

Every time a measurement is made, a different and random φn results from the
process of measurement. To explain decoherence, von Neumann [36] postulated
that repeated measurements result in the experiment taking the average over all the
random φn’s and yield the following result1:

ρ =
N

∑
i j=1

cic
∗
j |ψi〉〈ψ j| : coherent (9.12)

→ Measurements →
N

∏
n=1

∫ +π

−π

dφn

2π

N

∑
i j=1

ei(φi−φ j)cic
∗
j |ψi〉〈ψ j|

=
N

∑
i=1

|ci|2|ψi〉〈ψi|= ρM : decoherence (9.13)

State vector |χ〉 is a trans-empirical state and, as shown in Fig. 9.4, is a
quantum superposition of the basis eigenstates {|ψn〉;n = 1,2, . . . , N}. The process
of measurement collapses ρ to ρm and the entire state vector |χ〉 to the state |ψn〉
with probability |cn|2, as shown in Fig. 9.4.

The collapse of the state vector and of the density matrix is illustrated in Fig. 9.4.
Decoherence is defined as the loss of information due to the cancellation of

the off-diagonal terms in the sum ∑N
i j=1 cic∗j |ψi〉〈ψ j | = |χ〉〈χ |. The process of

1It should be noted that there is no experimental proof that von Neumann’s postulate is correct.
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measurement reduces the pure density matrix ρ to the mixed density matrix ρM [33].
The relation of the mixed density matrix to the process of measurement is discussed
in Sect. 9.7.

9.5 The Experimental Device

To study the operator O from an experimental point of view, one has to construct a
device that measures the eigenfunctions and eigenvalues of the operator O. The
device, in particular, can determine the likelihood of |χ〉 being observed in a
particular eigenstate of O.

Every observable (Hermitian operator) O needs a specific experimental device
to measure its properties. The detector (device) has a number of states |Dn〉 that
can be coupled to the quantum system. The detector states |Dn〉 are macroscopically
distinguishable configurations of the device and form a complete orthonormal basis
of the detector’s Hilbert space VD.

M

∑
n=1

|Dn〉〈Dn|= ID ; 〈Dn|Dm〉= δn−m

One can think of the device states |Dn〉 as the needle of a counter pointing
at position xn that is well separated from all other counterpositions xi; i �= n; in
particular, one can represent the device states by sharply peaked Gaussian functions
given by the following:

〈x|Dn〉=
(

1
πσ2

)1/4

exp

{

− 1
σ2 (x− xn)

2
}

(9.14)

It can be shown that, for small enough σ2 and large enough M, the detector states
|Dn〉 yield the completeness equation

M

∑
n=1

〈x|Dn〉〈Dn|x′〉 
 δ (x− x′)

The experimental apparatus is schematically represented in Fig. 9.5. Note the
similarity of the experimental device with the schema for the device given in terms
of projection operators in Fig. 7.8. In fact, each counter reading xn corresponds to a
projection operator Πn of the operator O—defined in (9.2)—since the experimental
apparatus has been designed based on the correspondence Πn ↔ |Dn〉〈Dn|.

Let the state vector of the quantum system belong to a Hilbert space VQ. A subset
of the device state vectors are in one-to-one correspondence with the eigenstates and
eigenvalues of the operator O given in (9.1), namely,

|ψn〉 ↔ |Dn〉; n = 1,2, . . . , N < M (9.15)
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Fig. 9.5 The experimental device: the incoming quantum state |ψ〉 goes through the experimental
apparatus, interacts with the device states |D〉, and emerges being resolved into the detector states
realized as the counter pointing to position |xn〉, n = 1,2, . . . , N (published with permission of ©
Belal E. Baaquie 2012. All Rights Reserved)

λn ↔ xn (9.16)

The correspondence of the eigenvalues λn with the state of the device, symbolized
by the position of the counter being at xn, is taken to mean that the eigenvalues of an
operator O can be recovered from the readings of the counter.2 The correspondence
of eigenstates and eigenvalues with the device states and counterpositions is based
on the premise that the experimental device is designed to measure the properties of
the said operator O.

For example, for a system having angular momentum �, the eigenstates are given
by |�,m〉, with the expectation value of the z-component of angular momentum
Lz being given by m = 0,±1,±2, . . . ,±�. For a given �, the device is designed
to measure the 2�+ 1 eigenstates and eigenvalues. Each pointer position xn of the
experimental device, shown in Fig. 9.5, can be taken to be the reading of the counter
for a specific values of m, with 2�+ 1 = N. The special case for spin s = 1/2,
with states |1/2,m〉 having m =±1/2, will be discussed in Sect. 10.6 for the Stern–
Gerlach experiment.

Another example is a device measuring the eigenenergies of the hydrogen atom,
with the experimental detector designed to measure the absorption and emission
radiation by the hydrogen atom.

To describe the state vector of the quantum entity that belongs to Hilbert space
VQ, the device Hilbert space VD needs to contain the Hilbert space VQ, namely,

VD ⊃ VQ

2The more general statement is that the eigenvalues λn can be reconstructed from the collection of
all the counter readings xi; i = 1,2, . . . , N. The assumption that λn depends only on xn is made for
simplicity.
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The states of the quantum entity and those of the device are described by elements
of the tensor product space Hilbert space

VQ ⊗VD

Observables O that represent the physical properties of the quantum degree of
freedom act only on the state vector |χ〉 ∈ VQ and do not have any action on the
experimental device; hence, on the enlarged Hilbert space VQ⊗VD, the observables
are extended to act trivially on the device Hilbert space and represented by

O →OE =O⊗ ID (9.17)

where I is the identity operator on device Hilbert space VD.
The quantum degree of freedom and the experimental device are coupled so that

the states of the device can provide a measurement of the properties of the quantum
entity. Let HQ be the Hamiltonian of the quantum system that acts only on VQ; one
has to add an interaction Hamiltonian HQD that evolves the device states as well
as couples the quantum degrees of freedom to the device; HQD acts on the larger
Hilbert space VQ ⊗VD.

Hence, the Hamiltonian H required for performing a measurement is given by

H = HQ ⊗ ID +HQD : VQ ⊗VD →VQ ⊗VD (9.18)

9.6 The Process of Measurement

The subject of what constitutes a “measurement” in quantum mechanics is a vast
subject, and the underlying principles are still being debated. Instead of discussing
this subject in full generality, only two specific questions given below are addressed.
The discussion of this section is revisited in Sect. 10.6 in the concrete context of the
measurement of the electron’s spin in the Stern–Gerlach experiment.

The fundamental role of the experimental device is to (a) amplify the quantum
properties so that they can be made to correspond to macroscopically observable
quantities and (b) to “collapse” the quantum state and in doing so causing an
irreversible change. The process of measurement is illustrated in Fig. 9.6; the
quantum state ψ is generated by a source in the laboratory and then sent to the
device, where the quantum state and device state D are entangled, with the quantum
state being amplified; a measurement is then performed on the quantum state thus
bringing about an irreversible change, with the result being recorded by the detector.

Figure 9.6 illustrates the roles played by the empirical and trans-empirical
domains in an experiment. The quantum state ψ is prepared empirically so as to
create a non-entangled product state of the quantum entity and the device, namely,
|ψ〉|D〉. The time evolution of both, the quantum state and the detector states, then
takes place for a duration of t∗ entirely in the trans-empirical domain and leads to
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Fig. 9.6 The process of quantum measurement: empirical preparation of the quantum state and
the transition from its trans-empirical state to the empirical manifestation. The collapse of the
state vector |ψ〉⊗ |D〉 to a specific state |ψn〉⊗ |Dn(t∗)〉 is shown by the downward-pointing arrow
(published with permission of © Belal E. Baaquie 2012. All Rights Reserved)

the amplification of the quantum state as well as its entanglement with the detector
states. At later time t∗, the quantum state is empirically detected by collapsing the
quantum state at the detector state |Dn(t∗)〉.

Consider the complete orthonormal eigenstates |ψn〉 of O, as given in (9.1), and
that provide its spectral representation

O =
N

∑
n=1

λn|ψn〉〈ψn|; O|ψn〉= λn|ψn〉 (9.19)

We address, in this and the following Sect. 9.8, the following two issues:
• Given a given state vector

|χ〉=
N

∑
n=1

cn|ψn〉 (9.20)

how can one experimentally determine the coefficients |cn|2?
• How can one experimentally determine the expectation value of O for the state

|χ〉, namely, 〈χ |O|χ〉? In particular, this entails determining all the eigenvalues
λn of the operator O.

The measurement process has the following three components:

• Initial product state: The initial state of the quantum system |χ〉 and device |D〉
is a non-entangled product state as the two are not yet coupled; this yields the
following initial product state and pure density matrix:
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|Φin〉 = |χ〉⊗ |D〉; 〈D|D〉= 1

ρin = |Φin〉〈Φin| (9.21)

• Amplification and entanglement: The initial state vector’s evolution is driven
by the Hamiltonian H given in (9.18); the coupled quantum entity and device
evolve for a time t∗, which is a characteristic time scale for amplifying the
quantum quantities by coupling distinct microscopic quantum states to distinct
macroscopic device states. The Hamiltonian H is designed to entangle the
quantum and device states.

At the end of time t∗, for an ideal device, one has a maximally entangled state,
as derived in (6.37), given by the following:

|Φout〉= e−it∗H |Φin〉

=
N

∑
n=1

cn|ψn〉⊗ |Dn(t∗)〉

ρout = |Φout〉〈Φout| (9.22)

Note that (9.22) is an expression of the so-called Schrödinger cat problem: the
state |Φout〉 consists of a quantum superposition of the macroscopic states of the
device—the correctness of which is still being debated.3

• Collapse of state vector: The final stage of the measurement process, according to
Bohr and Heisenberg, is to collapse the state vector; this collapse entails making
an irreversible change in the coupled quantum system-device arrangement—by,
for example, recording the result of the measurement.

9.7 Mixed Density Matrix ρM

The collapse of the state vector yields a discontinuous transition from the pure ρout

to the mixed density matrix ρM given by

ρout → Measurement → ρ̃M

ρ̃M =
N

∑
n=1

|cn|2|ψn〉〈ψn|⊗ |Dn(t∗)〉〈Dn(t∗)|

tr(ρ̃2
M)< 1 (9.23)

3Schrödinger illustrated the paradox of superposing macroscopic states by the famous cat example.
A device releases a poison, if triggered by the (uncertain) alpha decay of an unstable atom, that
kills a cat. Before the cat is observed, the state of the cat is the following superposed state, namely,
|cat〉= |cat; dead〉|+ |cat; alive〉. The paradox lies in explaining how can the cat be dead and alive
at the same time.
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Recall from (9.12) and (9.13) that the result of every measurement, without any
reference to the experimental device, results in decoherence and yields the mixed
density matrix ρM for the state vector given by

ρ =
N

∑
i j=1

cic
∗
j |ψi〉〈ψ j| → Measurement → ρM =

N

∑
n=1

|cn|2|ψi〉〈ψi|

Every measurement records the outcome |ψi〉〈ψi|, which corresponds to a specific
eigenstate and has a likelihood of |ci|2| of occurrence. The fundamental indetermi-
nacy of the quantum degree of freedom is reflected in the fact that it is impossible to
predict which projector |ψi〉〈ψi| will detect the collapse; all one can say is that there
is a certain probability of the collapse occurring at only one particular detector.

The off-diagonal terms |ψi〉〈ψ j|, i �= j are purely quantum mechanical and their
abscence reflects that the interference of trans-empirical states is completely absent.
The mixed density matrix is an observable quantity and exists in the empirical
domain in contrast to the pure density matrix that exists in the trans-empirical
domain, and is illustrated in Fig. 9.4.

Obtaining the mixed density matrix ρ̃M given in (9.23) completes the process
of measurement and yields a result that is similar to (9.13), except now the
device eigenstates are maximally entangled with the state vector. The quantum
superposition cross-terms cic∗j that appear in (9.22) for ρout have all been removed
from ρ̃M by the process of measurement—and leading to the collapse of the state
vector (decoherence).

The mixed density matrix ρ̃M is a critical link in the interpretation of quantum
mechanics—its crucial feature being the absence of cross-terms of detector states,
namely, |ψm〉|Dm(t∗)〉〈Dn(t∗)|〈ψn|,m �= n; these terms would imply the collapse
of the state vector being simultaneously recorded by two detectors—and would
invalidate the interpretation of |cn|2 as the probability pn of observing the collapsed
state at detector state |Dn(t∗)〉.

What is remarkable is that all measurements performed on a quantum entity are
consistent with the postulate of the collapse of the state vector—with only a single
detector recording the collapse of the state vector.4

Noteworthy 9.2: Classical random ensemble

Classical probability theory is discussed in Sect. 7.3. Consider a classical random
variable X that takes only two values, represented by two balls that are either
B and W ; on observing (sampling) the random variable, one obtains its different
possible values with probability given by pB and pW , with pB + pW = 1. One way
of representing the sampling of the random variable is to theoretically construct a

4More advanced books on the foundations of quantum mechanics take issue with this interpretation
arguing that a measurement in fact leads to UρMU† that brings back the mixing of all the detector
states [4]. The transformation by U can, in principle, be undone by a rotation of the basis states
being used to make the measurements.
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classical ensemble that has infinitely many B and W balls, and with the number of
the balls in the ensemble being in proportion to pB and pW . When a ball is picked
from the ensemble, every ball has an equal likelihood of being chosen; hence, when
a ball is chosen from the ensemble, the likelihood of choosing either B or W will
converge to pB and pW as the number of times one chooses goes to infinity.

The fundamental difference between classical randomness and quantum indeter-
minacy lies in the nature of the classical random ensemble; a similar construction
is invalid for the quantum degree of freedom since no experiment can sample
the specific values of the degree of freedom, which before the quantum entity is
observed has no preexisting value. This aspect of quantum mechanics has been
discussed in Chap. 7.

Since there is no quantum superposition of the different states of the detector
every time the state vector is detected, there will be one and only one reading of the
detectors, and by repeating the experiment, one can obtain the probability pn = |cn|2
that the collapse of the state vector is detected by the detector state |Dn(t∗)〉. Hence,
both the mixed density matrices ρM and ρ̃M are equivalent to empirical quantities.
This conclusion is discussed further in Sect. 9.8.

It is essential that there be no quantum cross-terms in the mixed density matrix.
Since the basis states being used to make the measurements are only defined up to a
unitary transformation, as discussed in (5.11), to interpret the mixed density matrix
as being equivalent to a classical random ensemble, one only needs to prove that
there exist complete basis states in which the mixed density matrix is diagonal, as
given in (9.13) or (9.23).

Both ρM and ρ̃M are equivalent to classical random ensembles and for which all
the random outcomes, unlike the case of quantum indeterminacy, exist objectively
before they are observed. What this means is that there is a classical ensemble that is
equivalent to ρM and ρ̃M; the classical ensemble consists of a collection of possible
outcomes, say |ψi〉〈ψi|; the key point is that one can objectively assign a probability
pn = |cn|2 that the outcome |ψi〉〈ψi| will be observed when the ensemble is sampled.

9.8 Reduced Density Matrix ρR

Consider the quantum entity-device being described by the mixed density matrix
ρ̃M as given in (9.23), namely,

ρ̃M =
N

∑
n=1

|cn|2|ψn〉〈ψn|⊗ |Dn(t∗)〉〈Dn(t∗)|

If one takes a reading of the device after one run of the experiment has been
completed, one will find the device to be in a state |Dn(t∗)〉, with the pointer of the
dectector at position xn; if one does a thought experiment in which one subsequently
(or simultaneously with the measurement of the state by the device) measures the
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state of the quantum entity, one is certain to find the quantum entity to be in state
|ψn〉 due to the entanglement of the quantum states and the detector states.5

Hence knowing the state of the device automatically gives us full knowledge of
the quantum state vector. This is the reason one does not need to directly observe
the quantum state |ψn〉; instead, it is sufficient to observe only the detector states
|Dn(t∗)〉 and infer the properties of the quantum state [15].

Determining the Coefficients |cn|2

Due to entanglement of the state vector and detector states, only the state of the
device |Dn(t∗)〉 is observed, regardless of the state of the quantum entity. Completely
ignoring the quantum degree of freedom results in a loss of information and is
expressed by summing the mixed density matrix ρM over the degrees of freedom
of Hilbert space VQ and yields the reduced density matrix ρR given by

ρR = trVQ

[
ρ̃M

]
= trVQ

[ N

∑
n=1

|cn|2|ψn〉〈ψn|⊗ |Dn(t∗)〉〈Dn(t∗)|
]

=
N

∑
n=1

|cn|2|Dn(t∗)〉〈Dn(t∗)| (9.24)

⇒ tr(ρR|Dn(t∗)〉〈Dn(t∗)|) = |cn|2 = pn (9.25)

Since the mixed density matrix ρ̃M represents a classical random system, on being
observed, the system will be found in the state |ψn〉⊗ |Dn(t∗)〉 with likelihood pn;
in symbols

tr
(
ρR|Dn(t∗)〉〈Dn(t∗)|

)
= pn (9.26)

From the fundamental postulate of quantum mechanics due to Max Born, we can
conclude that |cn|2 = pn, and this completes the determination of the coefficients cn.

Determining the Expectation Value of O and Eigenvalues λn

The operator O and its expectation value are given, from (9.6), by

O =
N

∑
n=1

λn|ψn〉〈ψn|; ρ = |χ〉〈χ ; |χ〉= ∑
n

cn|ψn〉

5One can create a more complicated experiment where a subsequent measurement is performed on
the final state with another device and come to the same conclusion as the thought experiment.
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Eχ [O]≡ 〈χ |O|χ〉=∑
n

λn|cn|2 = tr(ρO)

On being coupled to the device, the state vector |χ〉 is extended to |χ〉⊗ |D〉; the
expectation value is given on the tensor product state vector of the extended operator
OE (given in (9.17)) and yields the following:

Eχ [O] = Eχ⊗D[OE ] = tr
{
(O⊗ ID)ρin

}

On evolving the density matrix ρin for time t∗ yields

Eχ⊗D[OE ] = tr
{
(O⊗ ID)ρout

}

and completing the measurement process by collapsing the state vector gives

ρout → ρ̃M ⇒ Eχ⊗D[OE ] = tr
{
(O⊗ ID)ρ̃M

}

where ρ̃M is given by (9.23).
The expectation value of the operator OE is evaluated in two steps; first a partial

trace is performed over the quantum entity’s Hilbert space VQ and one is left with
performing the trace over the device Hilbert space VD. Using the notation of OE|χ
to denote the partial trace of operator OE over VQ yields6

OE|χ ≡ Eχ [OE ] = trVQ

{
(O⊗ ID)ρM

}

= trVQ

{
(O⊗ ID)

N

∑
n=1

|cn|2|ψn〉〈ψn|⊗ |Dn(t∗)〉〈Dn(t∗)|
}

=
N

∑
n=1

|cn|2〈ψn|O|ψn〉 · ID|Dn(t∗)〉〈Dn(t∗)|

⇒ OE|χ =
N

∑
n=1

λn|cn|2|Dn(t∗)〉〈Dn(t∗)|

The final result is given by tracing over the detector Hilbert space VD and yields

Eχ [O] = Eχ⊗D[OE ] = ED[OE|χ ]

= trVD

{OE|χ
}
=

N

∑
n=1

λn|cn|2

6Note the notation used implies that OE|χ = Eχ [OE ] is an operator on VD and not equal to Eχ [O],
which is a real number.
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One can observe the coefficients λn|cn|2 of the operator OE|χ by measuring its
expectation value for the state vector |Dn(t∗)〉 given by

〈Dn(t∗)|OE|χ |Dn(t∗)〉= λn(xn)|cn|2 (9.27)

Each device state |Dn〉 is in one-to-one correspondence with the eigenstates |ψn〉 as
in (9.15); the value of the counter reading xn is put into a one-to-one correspondence
with the eigenvalue λn, that is, as discussed in (9.16)

λn = λn(xn)

Summing over the readings of all the device states yields the sought for E[O],
namely,

Eχ [O] = ∑
n
〈Dn(t∗)|OE|χ |Dn(t∗)〉= ∑

n
λn|cn|2

The eigenvalues λn can be obtained from the results obtained. The coefficients
|cn|2 are equal to the empirically observed probability pn that have been obtained in
(9.26), and using them with (9.27) yields

〈Dn(t∗)|OR|Dn(t∗)〉
pn

= λn (9.28)

where λn is the eigenvalue of the operator O, thus completing the determination of
all the eigenvalues of O.

Mixed Density Matrix and Decoherence

Note that measurement leads to an irreversible change since all the off-diagonal
terms in (9.12)—which are responsible for quantum interference and other nonclas-
sical effects—are zero in (9.13), and reflect the loss of information.

In other words, the process of measurement leads to decoherence by collapsing
a pure state into a mixed state and, as given earlier in (9.23), yields the following:

ρ → ρ̃M

ρ̃M =
N

∑
n=1

|cn|2|ψn〉〈ψn|⊗ |Dn(t∗)〉〈Dn(t∗)|

The result of measurement, as in (9.23), is to collapse ρ to ρ̃M.
The mixed density matrix ρ̃M represents classical probability: the probability of

observing a state |ψn〉⊗ |Dn(t∗)〉 is given by pn = |cn|2, with the pn’s obeying the
rules of classical probability.
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• The discontinuous transformation of ρ to ρ̃M is irreversible and is described by
an increase in quantum entropy, defined in (6.34). More precisely, for the pure
state,

S =−tr(ρ lnρ) = 0

whereas the mixed state, for pi = |ci|2 �= 1, yields

SM = −tr(ρ̃M ln ρ̃M) =−kB

N

∑
i=1

pi ln pi > 0 (9.29)

• Any unitary transformation on the state vector, such as the time evolution due to
the Schrödinger equation, results in |χ〉 → U |χ〉, where UU† = I. This in turn
induces the following unitary transformation on the pure density matrix ρ →
UρU† and results in the entropy of ρ being invariant.

However, from (9.29), it is seen that the measurement process increases the
entropy. Hence the change of ρ to ρ̃M cannot be brought about by a unitary
transformation, and as mentioned earlier, the process of measurement cannot
result from the time evolution driven by the Schrödinger equation.

• From the analysis of measurement, one reaches the conclusion that was men-
tioned in the introduction to this chapter, namely, that quantum mechanics is
founded on two assumptions. Firstly, the time evolution of the state vector is
unitary and determined by the Schrödinger equation, and secondly, the process
of measurement brings about a non-unitary change in the state vector, and this
change is not determined by the Schrödinger equation.
In summary, the measurement process causes an irreversible change in the state

vector |ψ〉—by projecting its density matrix from pure state ρ to mixed state ρM,
which describes a classical random system. The very process of measurement results
in decoherence being induced on the state vector. Hence

ρ → Measurement → ρM : Decoherence (9.30)

Noteworthy 9.3: “Collapse” of state vector and nonlocality

The process of the collapse of the state vector causes an irreversible change in
the system and is called decoherence. The nonlocal collapse of ψ(t,x) has puzzled
physicists since the beginning of quantum mechanics.

For the collapse to take place instantaneously apparently requires that “infor-
mation” about the state vector being detected by a particular projection operator
is communicated at infinite speed to the rest of space—and would seem to violate
the special theory of relativity according to which the velocity of light is the fastest
speed for any and every form of communication.
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The nonlocal nature of the state vector ψ(t,x) is consistent with all the
experiments that have been devised to test this aspect of quantum mechanics. In
particular, the famous EPR paradox is a test of the nonlocal characteristic of the
state vector, and experiments have shown that it is, in fact, nonlocal. Moreover, a
detailed analysis shows that quantum measurement theory is consistent with the
special theory of relativity [6].

A central unresolved mystery of quantum mechanics is the instantaneous col-
lapse of the state vector. It is, in fact, the collapse of the state vector that gives
meaning to the intrinsically probabilistic nature of quantum mechanics and to
the concomitant existence of the trans-empirical domain that embodies all the
nonclassical behaviors of the quantum entity.

My own view is that a possible explanation of the instantaneous collapse of the
state vector is to take the “picture” of the state vector existing in the trans-empirical
domain as being literally true. The state vector |ψ〉 has a symbol-like reality since it
is a mathematical construct that contains the likelihood of all possible outcomes. A
precise measurement of the state of the system is equivalent to the complete erasure
of the symbol-like structure.7

Hence, the collapse of the state vector due to an observation can be thought of as
the analog of the “symbol” ceasing to exist; this erasure of the symbol takes place
for the entirety of the symbol and is expressed as the instantaneous collapse of the
state vector. Since the state vector as a symbol exists only in the trans-empirical
domain, the laws of relativity do not apply as relativity limits the speed of transfer
of information only for classical signals that exist solely in the empirical domain.

The physics of the trans-empirical domain is determined by laws that are
fundamentally nonclassical, symbolic, and mathematical in essence.

9.9 Preparation of a Quantum State

The preparation of a quantum state has features that are similar to the measurement
of a state vector but also has some differences. A measurement of a quantum state
ascertains the quantitative values of properties of a state vector that exist before the
measurement is made; a measurement may destroy the measured state, as is the case
of a particle being detected by a photographic plate and being lost in the plate. In
contrast, the preparation of a state is made with the intention of studying the degree
of freedom’s state vector after its preparation. Furthermore, it is essential that the
state be left intact after the preparation so that it may be studied further [4, 19].

Consider one of the simplest, but nevertheless, one of the most important
quantum states, namely, a “free” electron inside a box. The preparation of the state
is illustrated in Fig. 9.7.

7A partial erasure of the symbol is also possible, as discussed in Sect. 8.8 on the Quantum Erasure.
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Fig. 9.7 (a) Electrons emitted by a source are post-selected for obtaining an electron with a
definite momentum p→. (b) The electron inside a cavity (box) is kept confined to the cavity using a
three-dimensional Penning trap (published with permission of © Belal E. Baaquie 2012. All Rights
Reserved)

Free electrons are obtained from a source, which can be a metal that is heated
by a flame. An electric field is applied to the electrons to collimate the beam of
electrons as well as to increase their energy. For electrons moving at velocities of a
few km/sec, the quantum states are sharply localized wave packets with the motion
of the wave packet being well approximated by classical electromagnetism. Hence,
one can use a semiclassical analysis for analyzing the evolution of the wave packet.

Electrons with different momentum p→, p→′ p→′′ and so on are separated by
imposing a magnetic field on the electrons. An electron with momentum p→ is
chosen to enter into a cavity, also called a box. In symbols, the initial state of the
electron is given by ρ = |χ〉〈χ |; the procedure for separating the state into different
momentum states |ψp→〉 leads to the following:

ρ → |ψp→〉〈ψp→|
The selection of a momentum eigenstate for the electron is shown in Fig. 9.7a:

the magnetic field causes the electron wave packets to move in a circular motion
determined by its momentum, with an electron with a momentum p→, up to some
small error, entering the aperture to the cavity. The electron is in a momentum
eigenstate when it enters the cavity. Once the electron crosses the aperture, the
shutter is closed, and the electron is now inside the cavity with state vector

|ψp→〉 : state vector entering cavity

The process of selection of momentum eigenstate is a measurement of the momen-
tum of a quantum state: Any momentum measurement made after the selection will
yield, with probability 1, momentum p→.
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If, inside the cavity, the electron is not acted upon with some form of interaction,
its momentum will lead it to collide with the wall of the cavity and the electron will
be lost.

To confine the electron to the cavity, the electron is subjected to new (energy and
momentum conserving) interactions. There are various devices that can confine an
electron to a cavity, the most widely used ones being the Paul trap and the Penning
trap [26].

The Paul trap is an electric quadrupole ion trap that can confine a charged
particle inside a cavity in both one and three dimensions.8 The ion trap uses a time-
dependent electric field to confine the ion to a cavity; in particular, it uses a constant
gradient electric field and an electric field oscillating at the radio frequency to trap
the ions.

The Penning trap, in contrast, confines charged particles inside a cavity using
both a homogeneous static magnetic field and a spatially inhomogeneous static
electric field. Figure 9.7b shows a drawing of the Penning trap confining an electron
to the cavity.

The state preparation yields the state vector of the electron inside the cavity
box. Once the electron enters the cavity, it is subjected to new electromagnetic
interactions that changes the nature of its state vector. Being confined to the cavity
leads to the boundary condition that the state vector be zero on the boundary of the
cavity.

Once the electron enters the cavity, one no longer has any knowledge of its
quantum state. Since the electron inside the cavity is no longer being observed,
the electron makes a smooth transition from being an empirical entity—for which
it is known to be in definite state—to a trans-empirical and indeterminate state. The
transition of the electron from the empirical condition to its trans-empirical state
is smooth in contrast to its transition from its trans-empirical state to its observed
empirical manifestation.

Inside the cavity, the electron’s behavior is described by its trans-empirical state
vector given by

|ψ〉Box = |ψp→〉Zero on boundary of cavity : state vector inside cavity

For a box with dimensions L × L × L and momentum p→ = 2π h̄
L (nx,ny,nz) with

nx,ny,nz being integers, the state vector for a free particle in a box is given by

〈x,y,z|ψ〉Box = 〈x,y,z|ψp→〉Zero on boundary of cavity

=

(
2
L

)3/2

sin

(
2πxnx

L

)

sin

(
2πyny

L

)

sin

(
2πznz

L

)

8Static electric fields alone cannot act as a trap since the electron will drift along the direction of
the electric field and finally hit the electric charge that is the source of the electric field.



9.10 The Heisenberg Uncertainty Principle 195

9.10 The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle is one of pillars of quantum mechanics and is
a fundamental result required for avoiding many apparent inconsistencies. Chapter 7
discusses the EPR paradox that seems to imply that the Heisenberg Uncertainty
Principle is violated; in spite of what one would naively think, the uncertainty
principle turns out to be valid in a remarkable and nontrivial manner.

The expectation value of commuting operators On,n = 1,2, . . . , N can be
simultaneously evaluated since there exist state vectors that are simultaneously the
eigenstate of all the commuting operators. Hence, one can design an experiment, as
illustrated in Fig. 5.5, in which all the N eigenvalues are measured simultaneously,
and as given in (9.8), one can simultaneously evaluate tr(ρOn) for all n =
1,2, . . . , N.

What happens when one tries to simultaneously evaluate, for a given state vector
|ψ〉, the expectation values of two non-commuting operators, say A and B?

Let us consider an experiment that can exactly measure the expectation value of
A and then examine what this measurement process yields for the expectation value
of B. The experimental device is designed to measure the eigenstates of A, with no
reference being made to the eigenstates of the operator B. The state vector |ψ〉 is
decomposed in terms of the eigenstates of A, namely, |n〉 with eigenvalue an; the
action of the operators is given by the following:

A|n〉= an|n〉 ; B|n〉= ∑
m

bnm|m〉 ; |ψ〉= ∑
n

cn|n〉 ; ρ = ∑
nm

cnc∗m|n〉〈m|

⇒ E[A] = tr(ρA) =∑
n
|cn|2an ; E[B] = tr(ρB) = ∑

nm
bnmcnc∗m (9.31)

Equation (9.31) provides exact expressions for both A and B, so it would seem one
should be able to measure the expectation value of both non-commuting operators.
This, however, is not possible due to decoherence (collapse of the state vector) that
is an essential component of the process of measurement. As shown in (9.30), the
process of measurement yields

ρ → Measurement → ρM

⇒ E[A] = tr(ρA)→ Measurement → tr(ρMA) = ∑
n
|cn|2an = E[A] (9.32)

E[B] = tr(ρB)→ Measurement → tr(ρMB) = ∑
n

bnn|cn|2 �= E[B] (9.33)

Equation (9.32) shows that measurement yields the correct expectation value for
A. But as seen from (9.33), the same measurement yields an incorrect value for
the expectation value for the non-commuting operator B—since all the off-diagonal
terms in (9.31) required for correctly evaluating E[B] have been canceled out due
to the collapse of the state vector—namely, due to decoherence. Clearly, one cannot
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find the expectation of both operators A and B since there is no state vector that is
the simultaneous eigenstate of both the operators.

In the case considered, the expectation value of A was evaluated exactly, with the
errors for operator B being uncontrolled. One may ask, can one choose a complete
basis—with the basis states not necessarily being eigenstates of either A or B—so
that the joint error in the evaluation of both E[A] and E[B] is minimized? The answer
to this question is given by the Heisenberg Uncertainty Principle.

An Operator Inequality

Let A,B be Hermitian operators; to analyze the error in their expectation values,
define the following:

Ā = A−E[A]; B̄ = B−E[B]; ρ = |ψ〉〈ψ |
(ΔA)2 = E

(
Ā
)2

= tr(ρA2)− (tr(ρA))2

(ΔB)2 = E (B̄)2
= tr(ρB2)− (tr(ρB))2

and E
(
[A,B]

)
= tr(BρA)− tr(AρB) (9.34)

The derivation given below yields the following result:

ΔAΔB ≥ 1
2
|E[A,B]| : Generalized Uncertainty Principle (9.35)

Define the following state vectors:

Ā|ψ〉= |ψA〉; B̄|ψ〉= |ψB〉
⇒ (ΔAΔB)2 = 〈ψA|ψA〉〈ψB|ψB〉

For any two vectors a and b in an N-dimensional Euclidean space, one has

the triangle inequality given by |a||b| ≥ a · b, where |a| =
√

a2
1 + · · ·+ a2

N . The
generalization of the result for Euclidean space to Hilbert space operators is the
Schwarz inequality given by

(ΔAΔB)2 ≥ ∣
∣E

[
ĀB̄

]∣
∣2 (9.36)

The identity

ĀB̄ =
1
2
[A,B]+

1
2
{A,B}
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yields from the Schwarz inequality (9.36), for Hermitian operator C =−i[A,B], the
following:

(ΔAΔB)2 ≥ 1
4

∣
∣
∣E[({A,B})2]+ i

(
E[C]

)2
∣
∣
∣

Choosing |ψ〉 such that |ψA〉= |ψB〉 makes the term E[({A,B})2] = 0 and yields the
following generalized Heisenberg inequality:

(ΔAΔB)≥ 1
2

∣
∣
∣E[C]

∣
∣
∣=

1
2

∣
∣
∣E([A,B])

∣
∣
∣ (9.37)

The generalized Heisenberg Uncertainty Principle states that there will always
be errors ΔA,ΔB when the expectation values of two non-commuting operators A,B
are experimentally measured for any state vector; the minimum joint error is given
in (9.37) and is equal to 1

2 |E([A,B])|. It is appropriate that only the commutator of
A and B, namely, [A,B], determines the minimum error since the commutator is a
precise measure of the extent to which the two operators do not commute.

Position Momentum Uncertainty Relation

For the position and momentum operators x̂ and p̂, the commutation equation is
given by

[x̂, p̂] = ih̄

The generalized Heisenberg Uncertainty Principle, given in (9.35), yields the
celebrated result of Heisenberg, namely, that

Δx̂Δp̂ ≥ 1
2

h̄ : Heisenberg Uncertainty Principle (9.38)

Consider the ground state vector of the simple harmonic oscillator, which is not
an eigenstate of either x̂ or p̂, given by

ψ0(x) =
(mω

π h̄

)1/4
exp

{

−
(mω

h̄

) x2

2

}

It can be shown that ψ0(x) yields the minimum value for the joint errors of x̂ and p̂,
namely,

Δx̂Δp̂
∣
∣
∣
ψ0

=
1
2

h̄
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Time–Energy Uncertainty Relation

The role and definition of time in quantum mechanics is quite different from
position; as discussed in some detail in Chap. 2, the position of a quantum entity
becomes the position degree of freedom, which is a dynamical variable, while time
remains an external parameter.9 In contrast, time is not a degree of freedom and has
the following threefold interpretations in quantum mechanics [28]:
• Intrinsic time is the parameter t that occurs in the Schrödinger equation, and

every degree of freedom is a dynamical variable with a time evolution that marks
the passage of intrinsic time.

• Experiments take place in space and time. The detectors and switches for electric
and magnetic fields in the laboratory, the recording times of detectors, and so on
consist of measurements of external time carried out by clocks in the laboratory.

• The observation of quantum events, such as the time of arrival of decay products
from a radioactive source or the time of tunneling of an electron through a
barrier, are examples of observable time that are random and have a statistical
distribution.
Intrinsic time cannot be placed on the same basis as the position degree of

freedom; the reason being that time is conjugate to energy, and an unbounded
Hermitian operator representing time, due to the Heisenberg Uncertainty Principle,
would require an unbounded energy operator—resulting in a Hamiltonian having a
ground state unbounded from below, with minus infinite energy. This would lead to
all quantum systems being unstable [15].

All references to time in this book are to intrinsic time, namely, the time that
appears in the Schrödinger equation.10 The time–energy uncertainty is for intrinsic
time versus the observed energy of a quantum degree of freedom.

Consider an operator A; the Heisenberg equation of motion as given in (5.40)
(and which is equivalent to the Schrödinger equation) is given by

ih̄
dA
dt

= AH −HA = [A,H]

The parameter t is the intrinsic time of the quantum system. The general result given
in (9.34) and (9.35) yields

ΔAΔH ≥ 1
2

∣
∣
∣E

(
[A,H]

)∣∣
∣=

h̄
2

∣
∣
∣E

(dA
dt

)∣∣
∣ (9.39)

9This asymmetry of time and position is resolved in relativistic quantum field theory by “demoting”
position from being a degree of freedom, as is the case for nonrelativistic quantum mechanics, to
being a parameter like time; both space and time coordinates label the quantum field’s degrees of
freedom. Thus, having both t,x as parameters allows one to have exact relativistic invariance under
Lorentz transformations on t,x.
10All three concepts of time, namely, external, intrinsic, and observed time, can be employed to
study a quantum process [28].
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Fig. 9.8 Time–energy
uncertainty (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

Define the characteristic time for the operator A by the following equation:

Δt =
ΔA

| d
dt E[A]| (9.40)

The uncertainty in energy is given by ΔH = ΔE . Equation (9.39) then yields the
time–energy uncertainty as being given by

ΔtΔE ≥ 1
2

h̄ (9.41)

To illustrate the time–energy uncertainty relation, consider state vectors of atoms
that have two well-separated domains for the energy eigenstates: a ground state
with energy E0 and a continuum of eigenstates with eigenenergies in the interval
[E,E +ΔE], as shown in Fig. 9.8.

Let the operator A represent, at time t, the number of atoms N(t) that are de-
scribed by a state vector which is a superposition of eigenstates with eigenenergies
in the range [E,E+ΔE]; the time–energy uncertainty relation states the rate of decay
of the number of states is given by

N(t) = N0e−t/Δt ; Δt =
h̄

2ΔE

In other words, the uncertainty in the energy ΔE of the state vector results in the
state being unstable, having a lifetime of Δt and steadily decaying to the ground
state. It also follows that if there is no uncertainty in the energy, that is, if ΔE = 0,
then the lifetime of the state is infinite, which indeed it must be since a state vector
with ΔE = 0 is an eigenstate of the Hamiltonian that never decays.

Heisenberg Uncertainty Principle and the Quantum Entity

The Heisenberg Uncertainty Principle is a tangible and measurable consequence of
the indeterminacy of the underlying degree of freedom F .
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The transition from the trans-empirical state vector to its empirical manifestation
requires a finite time Δt and is illustrated in Fig. 9.9. Consider a thought experiment
carried out on a quantum entity with a perfect device. Every such experiment has an
inherent inaccuracy Δt in the experimental determination of the intrinsic parameter
of time t that appears in the Schrödinger equation. The limitation in accurately
determining t is related to the unavoidable experimental inaccuracy, namely, ΔE ,
with which the energy E of the quantum state can be determined. These two
limitations are related by the Heisenberg Uncertainty Principle—given in (9.41).

The quantum mechanical description of the degree of freedom by a state vector
and Hermitian operators necessarily leads to the uncertainty principle. The degree
of freedom F can have mathematical representations that are related by unitary
transformations, and there is a different experimental device for ascertaining the
properties of F for each representation. For non-commuting operators representing
incompatible properties of the degree of freedom, the uncertainty principle sets a
limit of how accurately the operators can be simultaneously measured.

In particular, due to (9.38), the uncertainty principle states the following. One
can do a thought experiment that can exactly measure the values of either the
coordinate projection operators |x〉〈x| (with Δp̂ = ∞) based on state vector ψ(t,x)
or the momentum projection operators |p〉〈p| (with Δx̂ = ∞) based on state vector
ψ(t, p), as shown in Fig. 9.9.

Consider a hypothetical scenario of the Planck’s constant h̄ varying smoothly
and one tracks the quantum description of the degree of freedom, as shown in
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Fig. 9.9. As h̄ → 0, the purely quantum description—in terms of state vectors that
are eigenstates of either the coordinate operators |x〉〈x| or momentum operators
|p〉〈p|—goes to zero.

The mixed description of the quantum system, with partial information about
both the coordinate and momentum representations, is shown in the intermediate
domain, with the accuracy of the description given by Δx̂Δp̂ ≥ h̄/2. As one takes
h̄ → 0, the values of both Δx̂ and Δp̂ go to zero, and one obtains the classical
description for which the values of both x, p are known exactly that is with Δx̂Δp̂= 0
and is shown as the classical limit in Fig. 9.9.

In summary, the mathematical representation of the quantum entity by a degree
of freedom, state vectors, and operators—and the experimental determination of
the physical properties of the quantum entity—necessarily leads to the Heisenberg
Uncertainty Principle.

9.11 Theories of Quantum Measurement

There is at present no consensus amongst quantum theorists as to what constitutes
a measurement. We have used the concept of the “collapse of the state vector” to
explain the result of quantum measurements, but all the results can be obtained
without invoking the collapse concept. There are five main schools of thought on
what constitutes a quantum measurement.
• The Copenhagen interpretation is that, on being experimentally observed, the

quantum state undergoes an inexplicable collapse to one of the allowed eigen-
states; this collapse is not described by the Schrödinger equation. More techni-
cally, the state vector collapsing to one of its allowed eigenstates is the detection
of the quantum state by one of the projection operators that constitute the
measuring device [10].

• All measurements of a quantum system invariably need a device that greatly
amplifies the signal from the state vector. Consider using a Geiger counter for
measuring the emission of charged particles from a radioactive material. The
Geiger counter has an internal high voltage such that the presence of a single
charged particle causes a cascade of electrons from the detector’s material,
releasing up to 107–108 electrons. The recording of the cascade of electrons is
the signal indicating the presence of a charged particle.

There is a view that a large detector—consisting of ≈108 degrees of freedom
and obeying the laws of quantum mechanics—creates decoherence by its uncon-
trollable interactions with the quantum entity and leads to an observed classical
state [33].

• In the “many-world” interpretation of quantum mechanics, every measurement
is thought to bifurcate the state vector into new branches, depending on the
outcome of the measurement. In other words, if one measures a superposed
state, such as ψ = ψu +ψd, then sometimes one observes ψu and at other times
one observes ψd. According to this interpretation, an observation leads to two
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possible Universes, the first Universe when the state vector ψu is observed and
the other Universe when the state vector ψd is observed.

Each Universe is taken to be equally real, and the subsequent temporal evolu-
tion of the state vector takes place—determined by the Schrödinger equation—in
the Universe that has been chosen by the experiment, until the next experiment
is performed [8].

• Another approach is to introduce a random (fluctuating) classical force that acts
on macroscopic objects and causes superposed quantum states to continually
fluctuate. This random force causes the transempirical superposed states to
rapidly evolve into empirical states that are governed by classical probability.

• There is view that a measurement does not take place in any apparatus, which is
in any case governed by quantum principles, but instead, a measurement occurs
only when a consciousness-like entity becomes aware of the measurement. In
this view, the human brain is thought to be described by quantum mechanics,
but the human mind—taken to be an exemplar of consciousness—is thought
to be outside the workings of physical laws. A “recording” of the result of a
measurement by the human mind causes an irreversible change by collapsing the
state vector and brings the process of measurement to a completion [12].

• My own view, and the one taken in this book, is close to the Copenhagen
interpretation that the Schrödinger equation by itself cannot explain the process
of measurement. Measurement is a projection of the trans-empirical quantum
state onto a unique empirical reading of a device; this projection, namely,
the collapse of the quantum state, is an assumption that needs to be made in
addition to the Schrödinger equation. A dynamical process is needed to make
this projection and which would explain the state vector collapse; this mechanism
needs to operate on the interface of trans-empirical and empirical domains.

A new equation is required that combines aspects of the Schrödinger equation,
which is operational only when the quantum entity exists as a trans-empirical
state vector, with another equation that represents the process of measurement.
This (new) equation needs to be applied to the quantum state every time an
experiment is carried out (on the quantum state) and operates at the interface
of the trans-empirical and the empirical domains—causing the quantum state to
make a transition from its trans-empirical state to its empirical manifestation.

9.12 Summary

To extract information from the state vector and about the observables, repeated
measurements have to be performed. For a given state vector, the degree of
freedom is of central significance; although the degree of freedom can have many
mathematical representations, for a given problem there is usually a natural choice.

To measure the properties of an observable operatorO, a given state vector has to
be expressed as a superposition of the eigenstates of O; furthermore, an experiment
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has to be designed to measure the eigenvalues and eigenstates of O to ascertain the
value of O for the state vector. The experiment needs to entangle the detector’s state
vector with that of the quantum state being observed.

What is remarkable in the physics of measurement is the fundamental role played
by the quantum states in Hilbert space. In particular, the existence of entangled
states is crucial in coupling the macroscopic experimental device to the microscopic
quantum entity.

Measurement lies at the heart of quantum mechanics, but paradoxically, even
after over 100 years of Planck’s quantum postulate, the process of measurement
still remains an enigma. Although the procedures for carrying out measurements on
a quantum state are garden variety, well understood, and carried out every day, the
theoretical understanding of measurement is far from clear.

The device can be thought of as a quantum mechanical system in its own right;
the combined state vector of the quantum system (which is being observed) and
the device evolves according to the Schrödinger equation and never undergoes
any collapse. So where is the collapse? The fundamental conundrum in quantum
measurement is the mechanism by which the state vector collapses, or what is
the same thing, how does the trans-empirical quantum state “choose” a particular
empirical outcome when observed by the projection operators.

All reasoning so far regarding the collapse of the state vector, which in essence is
an irreversible change in the combined quantum entity-detector, rests on the fact that
the detector is a large system and hence undergoes decoherence and which in turn
induces decoherence on the quantum entity. It has been proposed that any collection
of atoms larger than 108, the number of electrons that cascade in a Geiger counter,
can function as a quantum mechanical detector [6].

The fundamental indeterminacy of the quantum degree of freedom is reflected
in the fact that when a quantum state |χ〉 is measured by a process of measurement
using projector operators |Dn〉〈Dn|, it is impossible to predict which projector will
detect the state vector’s collapse; all one can say is that there is a certain probability
of the collapse occurring at a particular projector operator.

There are some “pragmatic” physicists who, focusing on the operational side of
measurements, consider theoretical questions regarding “what is a measurement”
as being unimportant. But the fact remains that the process of measurement is
currently outside the Schrödinger equation and points to a need for either a deeper
understanding of quantum mechanics or for a new theory that goes beyond quantum
mechanics.





10The Stern–Gerlach Experiment

The discussion in Chap. 9 shows that the theory of measurement in quantum
mechanics is a complex subject. Although widely studied, there is, however, no
agreement as to what is the crux of a quantum measurement. Given the central
importance of measurements in quantum mechanics, this chapter studies the Stern–
Gerlach experiment, which is one of the few experiments that can be examined in
great detail and can help to further our understanding of the subtleties of quantum
measurements.

Spin is a quantum degree of freedom with only two possible outcomes for
its z-component and is one of the simplest quantum system; the Stern–Gerlach
experiment measures σz, the z-component of the spin of an electron.

The mathematics of this experiment is comparatively simple, leaving us to focus
on the physics of measurement. The Stern–Gerlach experiment is modeled by a
simplified Hamiltonian proposed by Gottfried and Yan [15]; the advantage of this
Hamiltonian is that all the results can be obtained exactly. The measurement process
is studied by using the Schrödinger equation to evolve the state vector of the electron
through all the stages of the experiment.

This chapter is more technical than others because a qualitative discussion cannot
address the controversies that surround the problem of measurement; instead, there
is a need to quantitatively study the problem so that one makes generalizations that
have a precise mathematical basis.

10.1 The Experiment

An electron consists of its position and spin degrees of freedom, with the term
“electron” referring to its degrees of freedom. The Stern–Gerlach experiment
measures the z-component of the electron’s spin, which are eigenvalues of the
eigenstates of σz, given in Sect. 8.1. For ease of reference, the eigenvalues and
eigenstates of σz are given below:

B.E. Baaquie, The Theoretical Foundations of Quantum Mechanics,
DOI 10.1007/978-1-4614-6224-8__10,
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Fig. 10.1 The Stern–Gerlach experiment. The arrows pointing up represent an inhomogeneous
magnet field. (a) The incoming electron is represented by a wave packet. (b) The incoming
electron’s spin is a superposed state; after crossing the magnetic field, the up and down spin
eigenstates are well separated (published with permission of © Belal E. Baaquie 2012. All Rights
Reserved)

|up〉= |+〉=
[

1
0

]
; |down〉= |−〉=

[
0
1

]
⇒ σz|±〉=± h̄

2
|±〉

where

σz =
h̄
2

[
1 0
0 −1

]

The trans-empirical superposed state vector for spin 1/2, from (8.3), is given by

|Ψ〉= α|+〉+β |−〉=
[

α
β

]
; 〈Ψ|= [

α∗ β ∗ ] (10.1)

Figure 10.1 shows a schematic representation of the process of measurement:
The incoming state vector is an electron wave packet traveling in an inhomogeneous
magnetic field, as shown in Fig. 10.1a; the spin is in a superposed state |Ψ〉 of the
up and down spin states. The magnet field separates the up and down spin states,
and the electron’s state vector finally hits the detector, which is a screen that records
the collapse of the electron’s state vector, and in effect yielding the position of the
electron at screen, as shown in Fig. 10.1b.

The intuitive concept of the Stern–Gerlach experiment is the following. The state
vector subjected to an inhomogeneous magnet field propagates (on the average)
along two paths: For “up” spin, case the state vector goes upwards and for the
“down” spin case, goes downwards. Measuring the trajectory of the electron’s wave
packet is equivalent to determining the electron’s spin. This is the essence of the
Stern–Gerlach experiment, and the remaining sections express this intuitive idea in
the mathematical framework of quantum mechanics.

The Stern–Gerlach experiment has the following arrangement:
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• The electrons travel along the x-axis and with z = 0. The electron’s state vector
is a wave packet with a well-localized position.

• An inhomogeneous magnetic field points in the z-direction, with the field getting
stronger for increasing z. The electron is in the magnetic field for a distance a
along the horizontal direction.

• After leaving the magnetic field, the electron’s state vector is found by the
detectors at the screen to be either above or below z = 0.

• The final vertical position z of the electron is measured at horizontal position
x = a, as shown in Fig. 10.1, where a screen is placed.

• The distance a that the electron travels in the magnetic field is adjusted so that
there is a clear separation of the up and down paths of the electron. In particular,
the separation of the two wave packets is much greater than the spread of the
wave packets.

• From the position measurement of the electron’s state vector at the screen, it is
concluded whether the electron’s spin is pointing up or down.

• The probabilities Pu and Pd are obtained by repeating the experiment many times
and counting how many times the electron’s state vector is found at the screen in
the up or down positions.
In more general terms, the electron has two distinct degrees of freedom,

namely, its position degrees of freedom x,y,z and its spin degree of freedom. The
Stern–Gerlach experiment uses the electron’s position degree of freedom z as the
macroscopic variable that is measured in the laboratory and plays the role of the
macroscopic counter reader.

The microscopic values of the z-component of spin, namely, ± h̄
2 , are inferred

from the position readings. In essence, due to the effect of the magnetic field, once
the two trajectories for the “up” and “down” states have separated out more than the
spread of the incident wave packet, the position of the final state yields the value of
the observed eigenvalue of the spin operator σz.

10.2 Classical and Quantum Predictions

As shown in Fig. 10.1, electrons produced at the source are collimated into an
electron beam that travels across an inhomogeneous magnetic field and is finally
observed on a screen. The electrons coming out of the source have their spins in an
arbitrary superposed state. In the classical picture, the spins are pointing in arbitrary
directions. Classical physics predicts that the position of the electron on the screen
will lie everywhere between the maximum up position, for a spin pointing up, and
the minimum down position for a spin pointing down. Classical physics predicts
that the observed electrons will lie on a continuous line, as shown in Fig. 10.2a.

The quantum mechanical solution for a spin moving in an inhomogeneous
magnetic field is dramatically unlike the classical result. The electron coming out of
the source has a state vector given by the quantum superposition of the up and down
spin states and given by (8.3), namely,
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Fig. 10.2 (a) Classical prediction for the Stern–Gerlach experiment. (b) Quantum prediction for
the Stern–Gerlach experiment (published with permission of © Belal E. Baaquie 2012. All Rights
Reserved)

|Ψ〉= α|+〉+β |−〉=
[

α
β

]
; |α|2 + |β |2 = 1

Since the electrons coming from the source have an arbitrary orientation, the
coefficients α,β can take all the allowed values on the Bloch sphere discussed in
Sect. 4.4. The electron is in a trans-empirical state, simultaneously being in both
the up and down state, and each electron has an indeterminate and trans-empirical
path, simultaneously propagating along two different possible paths, as shown in
Fig. 10.2b and later in Fig. 10.5b.

Quantum superposition predicts that every experiment will only obtain the
eigenvalues of the components of the superposed state. The analysis for the quantum
superposition of the spin 1/2 degree of freedom is discussed in Sect. 8.1. For the
spin 1/2 case, every measurement of σz, the z-component of spin, will result in
either the up value of the spin or the down value, namely, h̄/2 or −h̄/2, and with
no other value for the spin (that is in between the up and down values), as shown in
Fig. 10.2b; this follows from the principle of superposition discussed in Sect. 8.1.

In other words, on the screen, all the electrons will be observed at only two points,
either in the up position for the case of σz equal to h̄/2 or in the down position for
the case of σz equal to −h̄/2, and nowhere else.

The predictions of classical and quantum mechanics are in stark contrast
and shown in Fig. 10.2a, b. Experiments confirm the prediction of quantum
superposition.

The average value of the z-component of spin, as in (8.4), is given by

〈Ψ|σz|Ψ〉= h̄
2

[
|α|2 −|β |2

]

10.3 The Stern–Gerlach Hamiltonian

The electron’s spin is measured by greatly amplifying the (different) effect of the
experimental device on the two spin states. The process of amplification is realized
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by the electron’s spin interacting with the apparatus that is represented by a quantum
Hamiltonian.

The process of measuring the electron’s spin is modeled by a linearized version of
the Stern–Gerlach Hamiltonian—so that all the steps can be carried out exactly. For
ease of notation, we set h̄ = 1 and we will restore its value if necessary. Following
Gottfried and Yan [15], the Stern–Gerlach Hamiltonian is given by

H =− 1
2m

[
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

]
− iασz f (x)

∂
∂ z

σz =

[
1 0
0 −1

]
; f (x) =

{
1 x ∈ [0,a]
0 otherwise

(10.2)

where the coupling of the magnetic field to the spin is given by α .1 The term
∂/∂ z reflects the increasing strength of the magnetic field with increasing horizontal
distance z. The function f (x) reflects the fact that the inhomogeneous magnetic field
is nonzero only for the horizontal distance x ∈ [0,a].

The classical solution to this Hamiltonian has two possible trajectories, with the
classical spin initially pointing up or down and with the z-coordinate of the particle
linearly rising or falling in the interval x ∈ [0,a], as is shown in Fig. 10.3, for the two
spin cases, respectively.

Consider a steady flux of electrons going through the apparatus, one by one.
The expected (average) position of the electron follows a time-dependent trajectory,
being incident as a free particle on the magnetic field from the left, at x = 0,
propagating in the magnetic field until the point of x = a, and then propagating as a
free particle along the x-axis for x > a. The time-dependent Schrödinger equation,
for r = (x,y,z), is given in (2.4) (h̄ = 1)

1α = μeB, where μe is the magnetic moment of the electron and B has dimension of the magnetic
field.
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i
∂ψ(t,r)

∂ t
= Hψ(t,r) (10.3)

and needs to be solved for the Stern–Gerlach system.
The time-dependent state function ψ(t,x,y,z) is expanded in the basis provided

by the stationary eigenstates of H. Let

ξ+ =

[
1
0

]
; ξ− =

[
0
1

]
; σzξμ =

μ
2

ξμ ; μ =±1

The energy eigenstates of the Hamiltonian H [given in (10.2)] are labeled by p =
(px, py, pz) and μ , shown in Fig. 10.3, and are given by

Hψ μ
E (r;p)ξμ = E(μ ,p)ψ μ

E (r;p)ξμ ; μ =±1 (10.4)

ψ μ
E (r;p) =

⎧⎨
⎩

Ψin(r;p); x < 0
Ψμ

M(r;p); 0 < x < a
Ψμ

out(r;p); x > a
(10.5)

For x < a and x > a, there is no potential, and hence the eigenstates are plane
waves. It can be verified that the energy eigenstates are given by

Ψin(r) = exp i{xpx + ypy+ zpz}; x < 0

Ψμ
M(r) = exp i{xp̃x + ypy+ zpz}; 0 < x < a

Ψμ
out(r) = exp i{xpx + ypy+(z− z̄μ)pz}; x > a (10.6)

where

E(μ ,p) =
1

2m
[p2

x + p2
y + p2

z ] =
1

2m
[p̃2

x + p2
y + p2

z ]+αμ pz

p̃x =
√

p2
x − 2mαμ pz

Note that the incoming eigenfunction Ψin(r) does not depend on μ . The effect of
the magnetic field is encoded in the eigenstate Ψμ

M(r), with its momentum p̃x being
modified from the free particle case. The constant phase z̄μ in Ψμ

out(r) is fixed by
requiring continuity of the state function as a function of t and r.2

An arbitrary time-dependent state vector that satisfies the Schrödinger equation
given in (10.3) has the following expansion:

2The value of z̄μ is given in (10.17).
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ψ(t,r) = ∑
μ=±1

cμξμ

∫
d3 p
(2π)3 g(p)ψ μ

E (r;p)e−itE(μ,p)/2m (10.7)

The coefficients cμ and g(p) are fixed by the initial condition at initial time t = 0.

10.4 Electron’s Time Evolution

To analyze the electron’s propagation in time, let t∗ be the time required by the
electron to travel across the region of the magnetic field, from x = 0 to x = a. The
following notation is used for the state vector and for the different intervals of time
and regions of space.

ψ(t,r) =

⎧⎨
⎩

ψin(t,r); t < 0; x < 0
ψM(t,r); 0 < t < t∗; 0 < x < a
ψout(t,r); t > t∗; x > a

(10.8)

An initial incoming electron wave packet with energy E = p2/2m is given by

ψin(t,r) = χ(t,r) ∑
μ=±1

cμξμ ; x < 0

χ(t,r) =
∫

d3 p
(2π)3 g(p)eixpx+iypy+zpze−itp2/2m (10.9)

Note the position and spin degrees of freedom for ψin(t,r) are not entangled since
they are in the form of a product: The state vectors for the spin and position degrees
of freedom of freedom are completely factorized in ψin(t,r).

As indicated in Fig. 10.1, the incident state function needs to be a wave packet
that is well localized in space so that the detector can observe the motion of the
center of the wave packet as it traverses the magnetic field—with the motion of the
center of the wave packet yielding information about the spin of the electron.

To create the incident wave packet that is well localized in space, the following
function g(p) is chosen:

g(p) =
(

2π
β 2

)3/2

e
− 1

2β2 (p−K)2

; K = (K,0,0) (10.10)

The wave packet is chosen to be traveling in the x-direction. Choosing β � K
ensures that the momentum of the wave packet is peaked around K and does not
spread as it traverses the magnetic field. The average momentum K is chosen to be
large enough so that there is no reflected component of the state vector at x = 0. For
this choice of g(p), at t = 0, the wave packet is well localized around x = y = z = 0.
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Wave Packet Inside the Magnetic Field: Formation
of Entanglement

For 0 < t < t∗, the wave packet is inside the magnetic field and yields the following
time-dependent state function:

ψM(t,r) = ∑
μ

cμξμ χμ(t,r); x > 0; 0 < t < t∗

χμ(t,r) =
∫

d3 p
(2π)3 g(p)Ψμ

M(r)e−itp2/2m; 0 < x < a

=

∫
d3 p
(2π)3 g(p)eixp̃x+i(ypy+zpz)e−itp2/2m (10.11)

As the electron propagates along the x-axis, the position and spin degrees of
freedom for ψM(t,r) become entangled. We study how this entanglement is brought
about by the interaction Hamiltonian H given in (10.2).

The momentum of the incident wave packet, due to g(p), is peaked at K along the
x-direction; hence, in the momentum integral given in (10.11), px can be expanded
about the momentum K and yields for p̃x the following:

p̃x =
√

p2
x − 2mαμ pz � px −mμα pz/px � px − μα pz/v (10.12)

v = px/m � K/m

Equation (10.12) yields, in (10.11), the following:

eixp̃x eizpz � eixpxeipz(z−μαx/v) (10.13)

Equation (10.13) is the key to understanding the mechanism of entanglement. Due to
the magnetic field, the propagation in the z-direction now has a contribution μαx/v;
furthermore, the propagation is now entangled with the spin of the electron, since
the trajectory for μ = 1 separates out from the one for μ = −1; in other words, the
position and spin degrees of freedom become entangled due to the interaction of the
electron’s degrees of freedom with the magnetic field.

Performing the Gaussian integrations in (10.11) using (10.10) and (10.13) yields,
for 0 < x < a and 0 < t < t∗, the following3:

χμ(t,r) =
∫

d3 p
(2π)3

(
2π
β 2

)3/2

e
− 1

2β2 (p−K)2

eixpx+iypyeipz(z−μαx/v)e−itp2/2m

=N′ exp

{
− mβ 2

2(m+ itβ 2)

[
y2 +

(
z−μαx

v

)2
]}

eiKx
∫

dpe
− 1

2β2 p2− it
2m (p+K)2

eipx

3N ′,N are normalization constants.
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=N exp

{
− mβ 2

2(m+ itβ 2)

[
y2 +

(
z− μαx

v

)2
+(x− vt)2

]}
eiKxe−

it
2m K2

(10.14)

The average positions are given by (10.14) and yield, to leading order,

Eχ [x] =
∫ a

0
dx

∫
dydz x |χμ(t,r)|2 � vt

Eχ [z] =
∫ a

0
dx

∫
dydz z |χμ(t,r)|2 � μα

v
Eχ [x] = μαt

The trajectory of the wave packet is obtained by the expectation value of the
position of the wave packet; for r = (x,y,z), the equations above yield, to leading
order, the expected position, given by r̄μ(t), as follows:

r̄μ(t) = 〈χ(t)|r|χ(t)〉= Eχ [r] = (vt,0,μαt) (10.15)

The trajectory of the wave packet is the motion of its expected position r̄μ(t).
For 0 < x < a, the trajectories r̄+(t) and r̄−(t), given in Fig. 10.3, are the upward
and downward sloping straight lines, as expected from (10.15).

Wave Packet After Crossing the Magnetic Field:
Entangled State

The domain of the magnetic field, defined by 0 < x < a, is chosen so that—on
crossing the distance a—the separation of the electron wave packet for μ = ±1 is
much greater than its spread, schematically shown in Fig. 10.1.

On reaching x = a in time t∗ = a/v, the wave packet is out of the magnetic field,
and there is no longer any average motion in the z-direction. The trajectory for t >
t∗ = a/v is determined by the state function Ψμ

out(r) given by (10.6), which together
with (10.5) yields

ψout(t,r) = ∑
μ

cμξμζμ(t,r); x > a; t > t∗ = a/v

ζμ(t,r) =
∫

d3 p
(2π)3 g(p)Ψμ

out(r)e
−itp2/2m

=

∫
d3 p
(2π)3 g(p)exp i{xpx + ypy +(z− z̄μ)pz}e−itp2/2m (10.16)
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Recall the constant phase z̄μ is fixed by the requirement that the state function ψ(t,r)
is continuous at x = a and for time t∗ = a/v; hence, from (10.14),

z̄μ =
μαa

v
(10.17)

Similar to the derivation given in (10.14), in the approximation that K 
 β , from
(10.16), the state function for x > a and t > t∗ is given by

ζμ(t,r) =N e
− mβ2

2(m+itβ2)
[y2+(z− μαa

v )2+(x−vt)2]
eiKxe−

it
2m K2

(10.18)

⇒ r̄μ(t) =
∫ ∞

a
dx

∫
dydz r |ζμ(t,r)|2 �

(
vt,0,

μαa
v

)
(10.19)

Note that the two state functions ζμ are orthogonal, that is, 〈ζν |ζμ〉= δμ−ν .
The trajectory of the wave packet is given by the motion of its expected position,

given by r̄μ(t); after time t∗, the trajectories r̄+(t) and r̄−(t) travel in a straight line
parallel to the x-axis and at a height of z̄±—and are shown, in Fig. 10.3 for x > a, as
two lines parallel to the x-axis.

10.5 Entanglement of Spin and Device

To understand the measurement process, recall from (10.9) that the incident state
function is given by

ψin(t,r) = χ(t,r) ∑
μ=±1

cμξμ ; x < 0; t < 0

The incident state function is a product state—of the space state function χ(t,r)
multiplied by the superposed state of the spins ∑μ cμξμ . There is no correlation
between the position of the electrons and its spin; measuring the position of the
electron yields no information about the spin of the electron.

The Hamiltonian given in (10.2) introduces an interaction of the spin with the
external magnetic field and creates a macroscopic amplification between the two
microscopic spin eigenstates. The up spin eigenstate has an average trajectory, given
by r̄+(t), that is clearly different from the average trajectory of the down spin
eigenstate r̄+(t).

After passing through the magnet, the electron’s position degree of freedom
becomes entangled with its spin degree of freedom, with the deflection of the
electron in the z-direction depending on its spin state defined by μ . More precisely,
from (10.16),

ψout(t,r) = ∑
μ

cμξμζμ(t,r); x > a; t > t∗ = a/v
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⇒ |ψout〉 = ∑
μ

cμ |ξμ〉|ζμ〉; 〈ζν |ζμ〉= δμ−ν (10.20)

On leaving the magnetic field, the electron is in an entangled state, for which the
electron takes the up and down paths that are exactly correlated with the state of the
spin: Measuring the position of the electron is tantamount to measuring its spin. Or
put differently, due to entanglement, immediately after the position measurement of
z̄μ , the spin is certain to be in a spin eigenstate ξμ ; if an independent measurement
of spin is carried out immediately after the measurement of the position yields z̄μ ,
then the spin is certain to be found in the state ξμ .

Hence, a measurement of position in effect is also a measurement of spin and can
be represented by the projection to state function |ξμ〉|ζμ〉; (10.20) then yields

|〈ζμ |〈ξμ |ψout〉|2 = |cμ |2

Equivalently, note that the Stern–Gerlach experiment does not directly observe the
spin states of the electron. Hence, a measurement of only the position degree of
freedom results in a partial trace over the spin degrees of freedom and yields the
following reduced density matrix:

ρR = trspin
(|ψout〉〈ψout|

)
= ∑

μ
|cμ |2|ζμ〉〈ζμ | (10.21)

The reduced density matrix ρR represents a classical random system. After it
crosses the magnetic field, the probability of finding the electron in device state
|ζ+〉, with the pointer at position z̄+ is Pu and, similarly, the probability of finding
the device in state |ζ−〉, with pointer at position z̄−, is Pd; (10.21) then states that

Pu = |c+|2; Pd = |c−|2

The experiment determines the average value of the z-component of spin, as in (8.4),
and is given by

〈Ψ|σz|Ψ〉= h̄
2

[
|c+|2 −|c−|2

]
=

h̄
2

[
Pu −Pd

]

10.6 Summary of Spin Measurement

We recapitulate the process of measurement to highlight its conceptual underpin-
nings and connect the specific example of the spin measurement to the general
features of a quantum measurement discussed in Sects. 9.6–9.8.

The Stern–Gerlach experiment measures the spin magnetic moment, in short
the spin, of the quantum spin degree of freedom. The measurement is carried
out by entangling the spin degree of freedom with the degrees of freedom of the
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experimental device. The z-coordinate of the electron’s position degree of freedom
is, in fact, a representation of the experimental device, since the z-position of the
electron is what the device measures. Hence, the z-coordinate degree of freedom of
the electron plays the role of the degree of freedom of the device.

The counterposition of the device is the point on the screen at which the electron’s
state vector is detected. Hence, the position of the electron on the screen is the degree
of freedom of the device. The state of the device has the following three values:
• The counterposition z = 0 indicates the neutral position of the counter and

contains no information about the spin of the system and is represented by state
|D0〉.

• The counterposition z = z̄+ = αa/v shows that the spin is in the up state and is
represented by state |D+〉.

• The counterposition z = z̄− =−αa/v shows that the spin is in the down state and
is represented by state |D−〉.

The three states of the device, represented by the state vectors |D0〉, |D+〉, |D−〉, are
given by

|D0〉= χ(t,r); |D+〉= ζ+(t,r); |D+〉= ζ−(t,r)

The measurement process is constituted by the following stages:
• The initial quantum state is prepared at the source to be in a superposed state of

the spin degree of freedom. The initial quantum state and device state are in a
joint product state.

|ψin〉= |D0〉
(

c1|ξ1〉+ c2|ξ2〉
)

: device and spin not entangled

• After the interaction of the device and the electron’s spin, the final state is an
entangled state given by

|ψin〉 → |ψout〉= c1|ξ1〉|D+〉+ c2|ξ2〉|D−〉 : device and spin entangled

• The third stage in measuring the spin of the electron is to perform the measure-
ment by recording the quantum state of the electron—hence bringing about an
irreversible change in the spin-device system by collapsing the state function.
This process yields the mixed density matrix ρM given by

ρ = |ψout〉〈ψout| → Measurement → ρM

ρM = |c1|2|ξ1〉〈ξ1|⊗ |D+〉〈D+|+ |c2|2|ξ2〉〈ξ2|⊗ |D−〉〈D−|

• Since the value of the spin degree of freedom is not measured, the Stern–Gerlach
in effect performs a partial trace over the spin degree of freedom and yields the
reduced density matrix ρR that gives the final result:
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ρR = trspin
(
ρM

)
= |c1|2|D+〉〈D+|+ |c2|2|D−〉〈D−|

10.7 Irreversibility and Collapse of State Vector

As discussed in Chap. 9, measurement involves four steps, namely, preparation,
amplification, entanglement, and irreversibility. The process of measurement is
brought to a closure by recording the outcome of the measurement, and this process
of recording the result brings up about an irreversible change in the detector as well
as in the quantum system being observed.

Recall for the Stern–Gerlach experiment, the applied magnetic field brought
about an amplification of the up and down quantum states of the electron’s
spin by separating these states into macroscopically separated electron (average)
trajectories. Furthermore, the electron’s position became entangled with its spin
degree of freedom, thus allowing for the unambiguous determination of the state of
the spin degree of freedom by measuring only the position of the electron.

However, both amplification and entanglement do not bring an irreversible
change in the system. As shown schematically in Fig. 10.4, one can apply a reversed
magnetic field to the entangled state of the electron and disentangle it and deamplify
the separation of the quantum states so that the original state of the electron is
restored. According to Wigner [12], the passage of the electron through the magnetic
field is not a complete measurement, and it is only when the position of the electron
is recorded, for example, by a photographic plate as in Fig. 9.1, that an irreversible
change is made and the process of measurement is completed.

Registering the electron’s position is a process that causes a collapse of the state
vector and brings about an irreversible change in the system—called decoherence.
The concept of quantum entropy as discussed in (6.34) provides an appropriate
mathematical description of irreversibility in quantum mechanics.

This view of Wigner has been contested by some physicists pointing to the
necessity replacing the classical magnetic field with the quantized electromagnetic
field [31]; suffice to say, the relevant point in this discussion is that an irreversible
change needs to be made for completing the measurement process. If the preparation
of the state vector or its subsequent propagation through the magnetic field brings
about such an irreversible change, then it proves Wigner’s point.

N

S

S

N
Fig. 10.4 Reversing
amplification and
entanglement (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)
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10.8 Interpretation of Spin Measurement

The empirical and trans-empirical interpretation of the Stern–Gerlach experiment is
given in Fig. 10.5.

Figure 10.5a–c is a representation of the different aspects of the measurement
process of the electron’s spin. Figure 10.5a is the usual drawing of the experiment
indicating both the possible paths for the electron; Fig. 10.5b and c resolves the
experiment into two components: the empirical part shown in Fig. 10.5b and the
trans-empirical part shown in Fig. 10.5c.

The stages of the measurement process are the following:
• At the “source,” the quantum state to be measured is prepared together with the

experimental device that performs the measurement and is shown in Fig. 10.5a.
ψ(μ ,r) is the state function of the electron that is emitted by the source, where
μ = ±1 (up, down) is the spin of the electron; D(z0) is the state function of the
detector with z0 being the initial value of the detector pointer. The preparation
results in a product state ψ(μ ,r)⊗D(z).

• Figure 10.5b and c is an empirical and trans-empirical interpretation of the
experiment. The experimental device is the “screen,” which is in the empirical
domain, where both the source and screen (detectors) are placed and shown in
Fig. 10.5b. The superposed state of the electron’s spin is simultaneously in both
the up and down states and hence is trans-empirical. Figure 10.5c shows the trans-
empirical state of the electron that does not exist in (physical) space but rather
exists in Hilbert space.

• During the transit of the electron from the source to the screen, the state
vectors of the electron and the device become entangled, as shown in Fig. 9.6;
moreover, the difference between the up and down state of the electron’s

Source

N

S

Source

N

S

Interpretation

=

Empirical

Trans-empirical

Device
Screen

Screen

a

b

c

Fig. 10.5 (a) Stern–Gerlach experiment. (b) Empirical and (c) trans-empirical interpretation of
the Stern–Gerlach experiment (published with permission of © Belal E. Baaquie 2012. All Rights
Reserved)
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spin is vastly amplified. The trans-empirical entangled state vector is given by
∑s=± csψ(s,r)⊗D(zs).

• Both the eigenstates arrive at the screen as a trans-empirical superposed state
vector.

• When the entangled state vector ψ hits the screen, it makes a discontinuous and
irreversible transition from its trans-empirical form ψ to its empirical form |ψ |2.
Only one of the trans-empirical states is actualized at either z+ or z−, with a
likelihood given by |c+|2 or |c−|2, respectively.

• Suppose the electron’s state vector is detected at position z+ that is shown in
Fig. 10.5b in the empirical setup of the experiment. The detector’s state vector is
put into a definite state D(z+) when the electron’s state vector is detected; due to
entanglement, one can conclude that the electron’s spin is also put into a definite
state ψ(+,z+).

• Repeating the experiment many times gives the probability for the electron’s spin
to be in the different possible eigenstates, namely, yields |c±|2.

10.9 Summary

Measurement of the properties of a quantum degree of freedom lies at the heart
of quantum mechanics. The measurement of the state vector of a spin 1/2 degree of
freedom was studied in great detail, using the Stern–Gerlach experiment, to examine
each step in the process of measurement.

A model Hamiltonian was used to obtain the state vector of the electron and
evolve it through the experimental apparatus, in particular, from the source of
electrons, through the inhomogeneous magnetic field and finally to the screen where
the electron’s state vector is detected.

The time-dependent state vector yields explicit expressions on how the entangle-
ment of the spin degree of freedom with the position degree of freedom develops
due to the interaction of the electron’s degrees of freedom with the magnetic
field. The state vector also demonstrates how the amplification of the microscopic
difference between the up and down spin states is a function of time, with the time
spent in the magnetic field determining the degree of macroscopic separation of the
two possible paths of the electron.

Recording the collapse of the state vector of the electron on the screen causes the
state vector to collapse. This collapse of the state vector has to be postulated and
brings to a conclusion the Stern–Gerlach experiment.

Measuring only the position of the electron is mathematically realized by a partial
trace of the electron’s density matrix over the spin degree of freedom and yields the
reduced density matrix, which in turn yields the likelihood of finding the spin to be
in the up or down state.

The Stern–Gerlach experiment was lastly analyzed to determine the empirical
and trans-empirical aspects of the experiment. It was seen that only the preparation
of the initial state and the measurement of the final state are empirical events, with
the evolution of the electron’s state vector, the formation of entanglement, and the
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amplification of the physical effect of the spin degree of freedom all being trans-
empirical processes.

In summary, the Stern–Gerlach experiment illustrates all four ingredients of a
quantum measurement, namely, the preparation of the quantum state, entanglement
of the degree of freedom being measured with the device, amplification of the
quantum quantity to a macroscopic magnitude, and the irreversible collapse of the
state vector.
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The following two independent and equivalent formulations of quantum mechanics
have been discussed:
• The Schrödinger equation is a partial differential equation based on the concept

of the state vector ψ . It determines the expectation value for the operators of the
underlying quantum degree of freedom, discussed in Sect. 5.9.

• Heisenberg’s operator formulation in which operators representing observable
quantities are evolved using the Heisenberg operator equations, as discussed in
Sect. 5.10.
A formulation of quantum mechanics has been given by Dirac and Feynman,

which is a third formulation of quantum mechanics that is independent of, and
equivalent to, the other two.

In the Dirac–Feynman approach, the inherent indeterminacy of the quantum en-
tity is realized by the time evolution of the degree of freedom having indeterminate
trans-empirical paths discussed in Sect. 3.7. A complex number is assigned to the
probability amplitude for each empirical path. For a quantum degree of freedom
evolving from an observed initial state to the observed final state—and with no other
observations made—the Feynman path integral is a mathematical construction that
computes the probability amplitudes by summing over all the possible empirical
paths [5, 14].

11.1 Probability Amplitude and Time Evolution

Recall that the description of a quantum entity, at a particular instant, is given by
its state vector, namely, |ψ〉, that yields ρ = |ψ〉〈ψ |. The likelihood of observing
the degree of freedom’s position operator |x〉〈x| for the quantum state is given by
|〈x|ψ〉|2 = tr

(|x〉〈x|ρ).
To avoid confusion with the state vector, the term probability amplitude is used

for describing a quantum entity undergoing transitions in time.
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Time

t = 0

t

State Function

t

η

Fig. 11.1 Evolving state
vector |ψ〉 through time t to
state vector |ψt〉 to find the
probability amplitude 〈η |ψt〉
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)

Consider a quantum entity making a transition from an arbitrary initial state
function |ψ〉 at time ti = 0 to an arbitrary final state function |η〉 at final time tf = t.

To find the probability amplitude for this transition requires the initial state
vectors to be at the same time as the final state vector and hence is written as 〈η |ψt 〉.
To simplify the notation, the probability amplitude and probability for the transition
are given by the following:

Initial state function : |ψ〉 at time=0; Final state function : |η〉 at time=t

Probability Amplitude : 〈η |ψt〉; Probability of transition : |〈η |ψt〉|2

The state vector |ψ〉 must be evolved for a duration of time t to reach the time
at which the final state vector is located, as shown in Fig. 11.1. The initial state
vector |ψ〉 is evolved by applying the evolution operator on it. From (5.38), the time
evolution of the state vector is given by

|ψt〉= e−itH/h̄|ψ〉=U(t)|ψ〉 (11.1)

Hence, the probability amplitude to go in time t from an arbitrary initial state |ψ〉 to
another arbitrary final state |χ〉 is given by

〈η |ψt〉= 〈χ |e−itH/h̄|ψ〉 : Probability amplitude (ψ → χ ; t) (11.2)

and the probability is given by

|〈η |ψt 〉|2 = |〈χ |e−itH/h̄|ψ〉|2 : Probability(ψ → χ ; t)

The initial state |ψ〉 is the “history state” of the transition amplitude, and the
final state 〈χ | is its “destiny state.” In quantum theory both the history state and the
destiny state can be independently specified.

Consider superposed states given by



11.2 Evolution Kernel 223

|ψ〉= ∑
i

ci|ψi〉; |χ〉= ∑
i

bi|χi〉

From (11.2), the probability amplitude is given by

〈η |e−itH/h̄|ψ〉= ∑
i, j

b∗i c j〈χi|e−itH/h̄|ψ j〉

Hence, the fundamental expression that needs to be evaluated is the general
matrix element

〈χi|e−itH/h̄|ψ j〉
All probability amplitudes can be evaluated from the general matrix element of
e−itH/h̄ given above.

Consider the important special case of a quantum particle with the degree of
freedom given by the coordinate x. From (11.2), the probability amplitude, using
the completeness equation (4.19), is given by

〈η |e−itH/h̄|ψ〉=
∫

dxf dxiη∗(xf)〈xf|e−itH/h̄|xi〉ψ(xi)

11.2 Evolution Kernel

The time evolution, also called the transition amplitude, of the state vector is
determined by the operator e−itH/h̄. The transition amplitude or evolution kernel
is the matrix element of e−itH/h̄ and is given by

K(xf, tf;xi, ti) = 〈xf|U(t)|xi〉= 〈xf, tf|xi, ti〉; t = tf − ti

⇒ K(xf, tf;xi, ti) = 〈xf, tf|xi, ti〉= 〈xf|e−i(tf−ti)H/h̄|xi〉 (11.3)

Simplifying the notation, the evolution kernel is written as

K(x,x′;t)≡ 〈x|e−itH/h̄|x′〉 (11.4)

Note the time evolution of a state vector, from (5.38), and using the completeness
equation given in (4.19) yields the following:

ψ(t,x) = 〈x|e−itH/h̄|ψ0〉=
∫

dx′〈x|e−itH/h̄|x′〉〈x′|ψ0〉

=

∫
dx′K(x,x′;t)ψ0(x

′) (11.5)

and is illustrated in Fig. 11.2.
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x′

t y (t,x)

y0(x′)

Fig. 11.2 The evolution
kernel K(x,x′; t) propagates
the initial state vector ψ0(x)
through time t to state vector
ψ(t,x) (published with
permission of © Belal E.
Baaquie 2012. All Rights
Reserved)

The solution of Schrödinger’s equation given in (5.38) and (11.5) is formal since
one needs to evaluate the matrix elements of the evolution operator U(t), which in
turn requires solving for all the eigenenergies and eigenfunctions of the Hamiltonian
H. Let the eigenfunctions of the Hamiltonian be given by

H|ψn〉= En|ψn〉 (11.6)

The completeness equation, from (5.8), is then given by

I= ∑
n
|ψn〉〈ψn| (11.7)

Using the completeness equation given in (11.7) yields the evolution kernel

K(x,x′;t) = 〈x|e−itH/h̄|x′〉= ∑
n

e−itEn/h̄〈x|ψn〉〈ψn|x′〉

Even though the expression for the transition amplitude K(xf,xi; t) has greatly
simplified, the sum over all eigenstates is still quite nontrivial for many realistic
cases such as the harmonic oscillator.

All the eigenfunctions and eigenvalues of H are seldom known, and hence
equation above is only a formal expression for the transition amplitude; one would
like to have other avenues for approximately computing K(xf,xi; t).

The conditional probability for the particle that starts from the coordinate
eigenstate |xi〉 to end up, after evolving for time t = tf − ti, at the coordinate |xf〉,
is given by the following:

P(xf|xi;t) =
|〈xf|e−itH/h̄|xi〉|2∫

dxf|〈xf|e−itH/h̄|xi〉|2
(11.8)

The normalization is necessary since one is comparing the likelihood of the particle
going from xi to xf with the particle ending up at any other position. In particular,

∫
dxfP(xf|xi;t) = 1
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Free Particle

Consider the Hamiltonian of a free quantum particle given by

H =
p→2

2m
=− h̄2

2m
∂
∂ x̃

· ∂
∂ x̃

The eigenstates of H are given by the plane wave eigenstates |p→〉

H|p→〉= p→2

2m
|p→〉 (11.9)

that yield, from (4.27), the completeness equation

∫ ∞

−∞

dp→

(2π h̄)3 |p→〉〈p→|= I; 〈p→|p→′〉= (2π h̄)3δ (p− p′) (11.10)

The evolution kernel of the free particle, from (11.3), is given by

K(x,x′;τ) = 〈x→|e−it p→2

2mh̄ |x′〉=
∫

dp→

(2π h̄)d e−it p→2

2mh̄ eip→·(x→−x→′)/h̄

=

(√
m

2π ih̄t

)3

exp

{
i
h̄

m(x→− x→′)2

2t

}
(11.11)

Noteworthy 11.1: Boundary conditions in classical and quantum mechanics

In classical mechanics, a particle is fully described by its position and velocity.
Since Newton’s equations of motion is based on acceleration that requires the
second time derivative, one needs to specify two boundary conditions to uniquely
specify a classical trajectory. Once the boundary conditions are specified, Newton’s
equations of motion yield a determinate and unique trajectory. In particular, if the
position and velocity of a particle is specified at some instant, its future trajectory is
fully determined.

In quantum mechanics the situation is quite different. The quantum degree
of freedom is described by a state vector that yields the likelihood of being
experimentally observed by a particular projection operator. The Schrödinger
equation involves only the first time derivative of the state vector; hence, one
needs to specify either the initial or the final state vector. Quantum mechanics,
unlike classical mechanics, is a theory of probabilities. The initial state vector |ψ〉
evolves into a state |ψt〉 that has nonzero probability amplitude 〈χ |ψt〉 with many
different state vectors 〈χ |—showing that the time evolution of the quantum particle
is indeterminate and trans-empirical, with a likelihood of evolving from its initial
state to many different possible final states.
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11.3 Superposition of Trans-Empirical Paths

The probability amplitude for making a quantum transition from an initial to a final
state can go through many intermediate paths and has been discussed in detail
in Sect. 8.3; the discussion did not take into account the time dependence of the
probability amplitudes, which is addressed in this section; the relevant expressions
are re-derived to highlight the time evolution of the quantum entity.

Recall that the probability amplitude has two very different and distinct cases:
• The intermediate paths are indistinguishable and trans-empirical, namely, the

information on which path has been taken by the quantum entity is not known.
• The intermediate paths are distinguishable and the path taken is known and

empirical.
When the path is not known, the intermediate state of the quantum entity is trans-
empirical; and empirical when the path taken is known.

The nonclassical content of the probability of a quantum event comes out in a
remarkable manner for the case of an initial state vector making a transition to a
final state via many indistinguishable and trans-empirical paths.

Consider the case of an initial state vector |xi, ti〉 making a transition to a final
state vector |xf, tf〉 via N intermediate slits given by |i〉 ; i = 1,2, . . . , N and shown
in Fig. 11.3. In going from |xi, ti〉 to |xf, tf〉, the particle can go through any of the N-
slits. The probability amplitude, in the notation of (11.3), is given by K(xf, tf;xi, ti) =
〈xf, tf|xi, ti〉.

The probability P of the transition from an initial state |xi, ti〉 to a final state |xf, tf〉,
as shown in Fig. 11.3, has two different expressions:

Time

tf

ti

Space

t x3x2x1 xN

xi

xf

Fig. 11.3 Probability amplitudes for transition from initial state vector |xi〉 at time ti to final state
vector |xf〉 at time tf—for N different possible intermediate paths (published with permission of ©
Belal E. Baaquie 2012. All Rights Reserved)
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• The paths taken for the transition are empirical and determinate due to a
measurement being made at time t to ascertain which intermediate position xi

is taken by the particle; in this case, the probability for the different paths are
added and yields the probability of transition PD given by

PD =
N

∑
n=1

|〈xf, tf|xn, t〉〈xn, t|xi, ti〉|2

=
N

∑
n=1

Pxf,xn Pxn,xi

where Pxf,xn = |〈xf, tf|xn, t〉|2; Pxn,xi = |〈xn, t|xi, ti〉|2 (11.12)

The result for PD follows from the classical composition of conditional probabil-
ities, with the intermediate states being the allowed intermediate states.

• For the case when the intermediate paths are trans-empirical and indistinguish-
able, the probability amplitudes for the different determinate paths are added to
yield the transition probability amplitude 〈xf, tf|xi, ti〉 given by

〈xf, tf|xi, ti〉=
N

∑
n=1

〈xf, tf|xn, t〉〈xn, t|xi, ti〉 (11.13)

The probability amplitude yields the following observable transition
probability PI:

PI =
∣
∣
∣〈xf, tf|xi, ti〉

∣
∣
∣
2
=
∣
∣
∣

N

∑
n=1

〈xf, tf|xn, t〉〈xn, t|xi, ti〉
∣
∣
∣
2

=
N

∑
n=1

Pxf,xn Pxn,xi

+
N

∑
n 	=m

〈xf, tf|xn, t〉〈xn, t|xi, ti〉〈xf, tf|xm, t〉∗〈xm, t|xi, ṫi〉∗ (11.14)

There is no analog of (11.14) in classical probability theory.

11.4 The Dirac–Feynman Formula

Consider the case of a determinate and discrete path, with infinitesimal steps ε—as
shown in Fig. 11.4a—that goes from xi at ti to final position xf at time tf. Let the
intermediate points in the path be denoted by the following:

xi = x0 ; x1 ; x2 ; x3 ; xn ; . . . . ; xN−1 ; xN = xf; tn = ti + εn; tN = tf
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Time

Space

ε

Time

Space

xi

x1

x3x2
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x3x2
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a b

Fig. 11.4 (a) A single determinate path, discretized by time steps ε, from initial to final position.
(b) The ε → 0 continuum limit of the discretized path (published with permission of © Belal E.
Baaquie 2012. All Rights Reserved)

The path is empirical since all the intermediate points xn are known (by a hypothet-
ical experimental observation). Hence the principle of quantum superposition for
successive steps, discussed in Sect. 8.4, tells us that the net amplitude φi is equal to
the product of the probability amplitude for each infinitesimal determinate step and
yields

φ [path] = 〈xN ;tN |xN−1;tN−1〉 . . . 〈xn+1;tn+1|xn; tn〉 . . . 〈x1; t1|x0; t0〉

Writing the probability amplitude in product notation yields

φ [path] =
N−1

∏
n=0

〈xn+1;tn+1|xn; tn〉 (11.15)

For each infinitesimal determinate step ε = tn+1 − tn, the probability amplitude
is postulated to be given by the Dirac–Feynman formula:

〈xn+1;tn+1|xn;tn〉=N (ε)exp

{
ε

i
h̄
L(xn,xn+1;ε)

}
(11.16)

where N (ε) is a normalization constant and L is the Lagrangian of the particle
given in (2.1). Using the Dirac–Feynman formula, given in (11.16), the probability
amplitude for the discretized determinate path given in (11.15) has the following
form:

φ [path] =
N−1

∏
n=0

〈xn+1;tn+1|xn;tn〉

= N exp

{

ε
i
h̄

N−1

∑
n=0

L(xn,xn+1;ε)

}

(11.17)
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= N exp

{
i
h̄

S[path]

}
(11.18)

where the discrete and determinate path that appears in S[path] is shown in
Fig. 11.4a. N is a path-independent normalization.

S is the action functional, defined earlier in (2.1), and, for the discrete paths, is
given from (11.18) and (11.17) as follows:

S[path] = ε
N−1

∑
n=0

L(xn,xn+1;ε) (11.19)

11.5 The Lagrangian

Let the total time interval tN − t0 = tf − ti be kept fixed and let N = (tf − ti)/ε. In
the continuum limit, ε → 0 and the paths become continuous. The discretized path
shown in Fig. 11.4a converges to the continuous path shown in Fig. 11.4b.

The continuum limit ε → 0 (N → ∞) yields

xn+1 − xn

ε
→ dx

dt
; t = nε

L(xn,xn+1;ε)→L(x,dx/dt)

S[path]→ S[x(t)] =
∫ tf

ti
dtL(x,dx/dt)

The quantum particle’s Lagrangian for continuous for time is L(x,dx/dt) and
S[x(t)] is the action functional for the continuous path x(t); the notation used for the
action is to indicate that the action depends on the entire path x(t) with t ∈ (ti, tf).

The probability amplitude for the determinate continuous path x(t)—going from
xi at time ti to final position xf at time tf—is given by the continuum limit of (11.18),
and hence, the continuum action replaces the discretized action, namely, S[path].
Hence

φ [x(t)] =N exp

{
i
h̄

S[x(t)]

}
(11.20)

The action S[x(t)] has the dimensions of h̄, and dividing it by h̄ is required since
only the dimensionless quantity S/h̄ can be exponentiated; it is an empirical result
that h̄ is given by Planck’s constant.

Equation (11.20) gives the probability amplitude for the quantum particle making
a transition from the initial to its final position via a specific possible path. In other
words, the path x(t) can be any determinate path from the initial to the final position
and not necessarily the path determined by classical mechanics.
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The Hamiltonian given in (2.6) yields the following Lagrangian and action:

L(x,dx/dt) = 1
2 m

(
dx(t)

dt

)2 −V(x(t)) (11.21)

S[x(t)] =
∫ tf

ti
dtL(x,dx/dt) (11.22)

Although the Lagrangian and action given in (11.21) and (11.22) look like classical
expressions, they are vastly different from the classical case. The reason being that,
for quantum mechanics, the symbol x(t) that appears in the Lagrangian and action
is an integration variable for each t; in contrast in classical mechanics, x(t) in the
Lagrangian and action is restricted to the classical path xc(t), for which the particle’s
path is a numerical function of time t.

Infinite Divisibility of Quantum Paths

Equation (11.17) is the reason that probability amplitude for a determinate path
has a finite limit when the path is infinitely divided. As one makes the step size ε

smaller, the Dirac–Feynman formula for each infinitesimal determinate step, say,
from xn to xn+1, yields the correspondingly smaller expression in the exponential,
namely, exp{iεL(xn,xn+1;ε)/h̄}; this property of the paths leads, for N → ∞, to a
well limit of the infinite product for probability amplitude given in (11.15), namely,
φ [path] → φ [x(t)], given in (11.20). The Dirac–Feynman formula given in (11.16)
is the reason that the continuum limit of ε → 0 exists for the probability amplitude.

One can turn the above discussion around and argue that, for quantum mechanics
to exist for continuous time, the probability amplitude for an infinitesimal step in
time, of necessity, needs to be an exponential of an infinitesimal—of the form given
by the Dirac–Feynman formula. This is because any determinate path is infinitely
divisible in continuous time and hence requiring a concomitant convergent proba-
bility amplitude. The fact that for an infinitesimal step the probability amplitude is
an exponential, which is proportional to the Lagrangian, is another deep insight of
Dirac [10] and further developed by Feynman [14].

The requirement for a convergent probability amplitude for continuous paths
answers a fundamental question as to why the action S that appears in classical
physics (and which determines the dynamics of a classical system as in (2.1)) needs
to be exponentiated in quantum mechanics as in exp{iS/h̄} given in (11.19). The
classical to quantum transition is schematically given by

S[xc(t)]→ exp

{
i
h̄

S[x(t)]

}

One explanation provided by the probability amplitude is that the requirement of
quantum processes taking place in continuous time necessitates the exponentiation
of the action. One may even state that the exponentiation of the action in quantum
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mechanics is also the reason why quantum mechanics is qualitatively different from,
and “exponentially” more complex, than classical mechanics.

11.6 The Feynman Path Integral

The result of the previous section provides an expression for the probability
amplitude for the quantum entity to take a specific and determinate path in going
from its initial to its final position. What is the probability amplitude if the quantum
particle is only observed at its initial and final position? Due to the quantum
indeterminacy of a quantum entity, we expect that the entity’s degree of freedom’s
path will be indeterminate and hence it will “take” all possible paths simultaneously.

How many indeterminate paths are there between the initial and final positions?
Clearly, there are many paths, and to develop a sense of these paths, consider putting
barriers between the initial and final position to limit the number of possible paths,
as shown in Fig. 11.5, so that we can enumerate the indeterminate paths. Once the
procedure for enumerating the indeterminate paths becomes clear, the barriers will
be removed, and all the indeterminate paths will then be included in our analysis.

Figure 11.5 shows a quantum particle going from initial state xi at time ti to final
position xf at time tf through barriers that restrict the number of paths available to the
quantum particle. Let an entire continuous path—going from initial state xi to final
state xf through the successive slits as shown in Fig. 11.5—be denoted by path(n),
with the probability amplitude denoted by φ [path(n)]. One can take path(n) to be
straight lines from xi, ti to the successive slit positions and another straight line from
the last slit to xf, tf, as shown in Fig. 11.5.

Consider the case where the particle is observed at initial time ti to be at xi and
then another measurement is only performed at final time tf—with the particle being
detected at xf. The barriers are placed between the initial and final positions, and
let there be N total number of different paths going from xi to xf. There are N

Time

tf

ti
xi

xf

Space

�

�

�

�

Fig. 11.5 Probability
amplitudes for transition from
initial state vector |xi, ti〉 to
final state vector |xf, tf〉 for
many successive slits with
indistinguishable
trans-empirical paths
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)
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indeterminate paths from xi, ti to xf, tf that are all indistinguishable and hence trans-
empirical. From the superposition principle given in (11.13), the total probability
amplitude is given by adding the probability amplitudes for all the indistinguishable
determinate paths and yields

〈xf, tf|xi, ti〉=
N

∑
n=1

φ [path(n)] (11.23)

The probability amplitude φ [path(n)] for each determinate path is given by (11.20)
and yields the following

φ [path(n)] =N exp{iSn/h̄} (11.24)

Sn = S[path(n)]; n = 1,2, . . . , N (11.25)

where S[path(n)] is the action for the continuous path(n) and N is a path-
independent normalization.

Hence, from (11.23) and (11.24), the total space–time probability amplitude that
the initial state vector |xi, ti〉 makes a transition to the final state vector |xf, tf〉—
via trans-empirical paths—is given by superposing the amplitude for all the trans-
empirical paths and yields

〈xf, tf|xi, ti〉 = N
N

∑
n=1

eiS[path(n)]/h̄ =N
N

∑
n=1

eiSn/h̄

= N{eiS1/h̄ + eiS2/h̄ + · · ·}

From (11.3), the evolution kernel (total transition amplitude) has the following
representation:

K(xf, tf;xi, ti) = 〈xf, tf|xi, ti〉=N
N

∑
n=1

eiS[path(n)]/h̄ (11.26)

One can successively shrink the barriers between the initial and final positions
of the quantum particle, as discussed in Sect. 8.4, and as shown in Fig. 11.5, there
will be great proliferation of possible paths. When there are no longer any slits,
one has the limit of N → ∞ or what is the same thing, there are infinitely many
trans-empirical paths.

The transition amplitude is given by the sum over all possible paths, going from
the initial position xi at time ti to the final state xf at time tf, as shown in Fig. 11.6,
and yields the following :

K(xf, tf;xi, ti) =N ∑
all paths

eiS[path]h̄ : Feynman path integral (11.27)
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xi xf

ti

tf
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tFig. 11.6 All possible
trans-empirical paths from the
initial to the final state vector
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)

The sum in (11.27) looks more figurative than a precise mathematical expression.
After all, how are we supposed to actually perform a sum over infinitely many paths?
Equation (11.27) is recast into a precise and mathematical expression in Sect. 11.7.

In summary, all the paths going xi to final state xf are indistinguishable and hence
trans-empirical since no measurement is performed for the duration, from time ti to
time tf. The total probability amplitude to make a transition from initial state xi to
final state xf is equal to the sum over all the individual probability amplitude eiS/h̄

for a specific path from initial state xi to final state xf.

Noteworthy 11.2: Euclidean time τ

For physical (Minkowski) time, the Schrödinger’s equation yields

ψt = e−itH/h̄ψ0

Minkowski time is analytically continued to Euclidean time τ , defined by

t =−iτ h̄ (11.28)

Propagation in Euclidean time is effected by operator T = e−τH and yields

ψτ = e−τHψ0

The reason for studying quantum systems in Euclidean time is to have a well-defined
operator exp{−τH} that is convergent and not oscillatory. In Minkowski time, one
is faced with a similar oscillatory expression such as eiS/h̄, which needs to be defined
using the theory of distributions when S → ∞.

Analytic continuation to Euclidean time entails no loss of information since T
and H have the same eigenfunctions, with the Euclidean Hamiltonian equal to the
original Minkowski Hamiltonian given by

T = e−τH ; H =
p→2

2m
+V(x→); p→ =

∂
i∂x→
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The eigenvalues Tn,En are related by

En =−1
τ

lnTn

11.7 Path Integral for Evolution Kernel

Recall from (11.4), the evolution kernel (probability amplitude) is defined by

K(xi,xf;t) = 〈xf|e−itH/h̄|xi〉

To render the sum over all paths in continuous space, namely, ∑all paths and given
in (11.27), into a well-defined mathematical quantity, a derivation is given of the
path integral starting from the Schrödinger equation. A corollary result will be to
show that the definition given of K(xi,xf;t) given in (11.4) is equivalent to the one
derived in (11.27).

The evolution kernel is evaluated in Euclidean time since the expressions
are mathematically more rigorous and transparent than in Minkowski time. The
Euclidean (imaginary time) evolution kernel is given by

K(x,x′;τ) = 〈x|e−τH |x′〉 (11.29)

Note [p̂2,V̂ ] 	= 0, and it is this non-commutativity that poses the main problem

in quantum mechanics. Ignoring the non-commutativity yields e−τH � e−τ p2
2m e−τV ,

and for this case

K(x,x′;τ) � 〈x|e−τ p2
2m e−τV |x′〉

� e−τV (x′)〈x|e−τ p2
2m |x′〉 (11.30)

and the evolution kernel K requires the kernel for the free particle Hamiltonian
p2/2m given in (11.11).

Note the remarkable fact that for non-commuting operators A and B

eAeB = eA+B+ 1
2 [A,B]+··· (11.31)

For τ = ε, infinitesimal time, one has the following result:
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e−εĤ = e−ε( p̂2
2m+V̂ )

= e
−εp̂2

2m e−εV̂ +O(ε2) (11.32)

Hence, for infinitesimal time ε, from (11.30), the transition amplitude K(x,x′;ε) can
be evaluated exactly to O(ε2).

The path integral approach is employed fundamentally to build up the finite time
transition amplitude by composing the infinitesimal time transition amplitude by
repeatedly using the resolution of the identity operator given in (4.19).

The evolution kernel for particle to go from initial position xi to final position xf

in time τ can be written as follows:

K(xf,xi;τ) = 〈xf|e−τH |xi〉
= 〈x|(e− τ

N H)N |x′〉 (11.33)

where for ε = τ
N , we have

K = 〈xf|e−εHe−εH · · ·e−εH
︸ ︷︷ ︸

N-times

|xi〉 (11.34)

Inserting N − 1 times, the completeness equation given in (4.19)

I=

∫ ∞

−∞
dx|x〉〈x|

yields the following:

K(xf,xi;τ) =
∫

dx1dx2 . . .dxN−1〈xf|e−εH |xN−1〉〈xN−1|e−εH |xN−2〉

· · · 〈xn+1|e−εH |xn〉 · · · 〈x1|e−εH |xi〉 (11.35)

Consider the matrix element

〈x|e−εH |x′〉=
∫ ∞

−∞

dp
2π

〈x|e−εH |p〉〈p|x′〉 (11.36)

Since 〈x|p〉= eipx, one has from (11.32)

〈x|e−εH |x′〉 = e−εV (x′)
∫

dp
2π

e−
εp2
2m eip(x−x′)

=

√
m

2πε
e−

m
2ε (x−x′)2−εV (x′) (11.37)
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Recall from (11.16), the Dirac–Feynman formula, for each infinitesimal determi-
nate step ε, is given by

〈xn+1;tn+1|xn;tn〉=N (ε)exp

{
ε

i
h̄
L(xn,xn+1;ε)

}

Recall from (11.3), the evolution kernel (transition amplitude) is defined by

K(xf, tf;xi, ti) = 〈xf, tf|xi, ti〉= 〈xf|e−i(tf−ti)H/h̄|xi〉

From (11.16) and (11.3), and simplifying the notation yields the Lagrangian, defined
for infinitesimal Euclidean time ε, given by

N (ε)eεL(x,x′;ε) = 〈x|e−εH |x′〉 : Dirac–Feynman formula (11.38)

Hence, from (11.37)

N (ε)eεL(x,x′ ;ε) = 〈x|e−εH |x′〉

=

√
m

2πε
e−

m
2ε (x−x′)2−εV (x′) (11.39)

For the particle degree of freedom, the Hamiltonian, for potential V (x), from
(2.6), is given by

H =− h̄2

2m
∂ 2

∂x2 +V(x)

and its Lagrangian is given by (11.39), for discrete time t = nε, by

L=−m
2

(
x− x′

ε

)2

−V(x) (11.40)

The Euclidean Lagrangian is sometimes written more symmetrically as

L=−m
2

(
x− x′

ε

)2

− 1
2
[V (x)+V (x′)] (11.41)

and to O(ε) is same as the one given in (11.40).
Hence, the transition amplitude is given by

K(xf,xi;τ) =
∫ N−1

∏
n=1

dxn

N−1

∏
n=0

〈xn+1|e−εH |xn〉

≡
∫

DXeε∑N−1
n=0 L(xn+1,xn) ≡

∫
DXeS (11.42)

Boundary conditions : x0 = xi; xN = xf (11.43)
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where the lattice action and path integral integration measure are given by

S = −ε
N−1

∑
n=0

m
2

(
xn+1 − xn

ε

)2

− ε
N−1

∑
n=0

V (xn)

∫
DX =

( m
2πε

) N
2

N−1

∏
n=1

∫ +∞

−∞
dxn

In the continuum limit ε → 0, one obtains the following:

S =
∫ τ

0
Ldt; L=−m

2

(
dx
dt

)2

−V(x)

∫
DX = N

τ

∏
t=0

∫
dx(t) (11.44)

The continuum Euclidean path integral representation for the evolution kernel is
given by

K(xf,xi;τ) = 〈xf|e−τH |xi〉

=

∫

B.C.
DXeS : Feynman path integral (11.45)

Boundary condition : x(0) = xi , x(τ) = xf

All paths between the initial and final position, figuratively shown in Fig. 11.6,
are summed over in the

∫
DXeS path integration given in (11.45). The figurative

summation over all paths ∑all paths eiS/h̄ given in (11.27) is given a mathematical
realization in (11.45), which is a Euclidean integration over all paths.

At each instant, the position degree of freedom takes all its values; at instant t,
the degree of freedom is equal to the real line ℜt ; the total space of all paths is given
by a tensor product over all instants and yields the total space of all paths equal to
⊗tℜt . In general, for degree of freedom space given by F , the path space is given
by ⊗tFt .

Similar to the arbitrariness in choosing complete basis states, as discussed in
Sect. 4.7, the choice of the coordinates for the integration variables in the path
integral is arbitrary. Just as one can make a change in the basis states of Hilbert space
by a unitary transformation, one can make a change of the integration variables; the
analog of the requirement of unitarity in changing the basis states is that the change
of the path integration variables needs to be invertible, and which in turn yields
a positive Jacobian of the transformation. More precisely, let the new integration
variables be defined by y = y(x); then,

dy(t) =
∫

dt ′C(t, t ′)dx(t ′) ⇒ DY = J[x]DX
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where J = det[C] is the Jacobian of the transformation.
In summary, the Feynman path integral is an efficient mathematical instrument

for evaluating the finite time matrix elements (of the Euclidean continuation) of the
unitary operator U(t), namely, of 〈xf|e−τH |xi〉.

Free Particle Path Integral

A path integral derivation is given of the evolution kernel for a free particle degree
of freedom moving in one dimension (d = 1) and which was obtained earlier in
(11.11) using the eigenfunctions of the free particle Hamiltonian.

Let ε = t/N; from (11.35), the path integral for finite ε is given by a multiple
integral. Using the infinitesimal form of (11.11), which also directly follows from
the Dirac–Feynman formula, yields (set h̄ = 1)

K(x,x′;τ) =
N−1

∏
n=0

K(xn+1,xn;ε)

=

(√
m

2πε

)N−1

∏
n=1

√
m

2πε

∫ +∞

−∞
dxne−

m
2ε ∑N−1

n=0 (xn+1−xn)
2

≡
∫

DXe−
m

2ε (x−xN−1)
2 · · ·e− m

2ε (x2−x1)
2
e−

m
2ε (x1−x′)2

Boundary conditions : x = xN ; x′ = x0 (11.46)

and where ∫
DX ≡

(√
m

2πε

)N−1

∏
n=1

√
m

2πε

∫ +∞

−∞
dxn (11.47)

Note the identity

√
m

2πε

∫ +∞

−∞
dx1e−

m
2ε (x2−x1)

2− m
2ε (x1−x′)2

=

√
1
2

e−
m
2 · 1

2ε (x2−x′)2

One can evaluate the path integral exactly by performing the DX integrations
recursively, starting from the end with x1. The successive integrations over the
variables x1 → x2 → x3 · · · → xN−1 yields

K(x,x′;τ) =
√

m
2πNε

e−
m
2 · 1

Nε (x−x′)2
=

√
m

2πτ
e−

m
2τ (x−x′)2

(11.48)

and is the result obtained in (11.11).
The case for a free particle in arbitrary d-dimensional space follows from

(11.48), since the d-dimensional transition amplitude factorizes into separate one-
dimensional components.
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To obtain the evolution kernel in Minkowski time, recall from (11.28) that

τ =
i
h̄

t (11.49)

Hence, from (11.48), the Minkowski time evolution kernel, denoted by subscript M,
and restoring h̄ in the formula yields the following:

KM(x,x′;t) =
√

m
2πτ

e−
m

2τ h̄ (x−x′)2
=

√
m

2π ih̄t
ei m

2th̄ (x−x′)2
(11.50)

and was obtained in (11.11) using the free particle Hamiltonian.

11.8 Composition Rule for Probability Amplitudes

Consider the case of a particle going through N-slits, as shown in Fig. 11.3, with all
the paths being indistinguishable. Equation (11.14) yields the following probability
amplitude:

〈xf, tf|xi, ti〉=
N

∑
n=1

〈xf, tf|xn, t〉〈xn, t|xi, ti〉

Suppose the slits have spacing a, so that xn = na, with n = 0,±1,±2, . . . ,±∞,
that is, the slits extend over the entire x-axis. The probability amplitude, extending
(11.14) to the entire x-axis, is given by

〈xf, tf|xi, ti〉=
+∞

∑
n=−∞

〈xf, tf|xn, t〉〈xn, t|xi, ti〉 (11.51)

To take the continuum limit of (11.51), the bra and ket vectors |xn, t〉, 〈xn, t|
defined on a discrete set xn = na need to be written in continuum notation; for a→ 0,
let z = na. The connection of the continuous and discrete state vector is given by
(4.15):

lim
a→0

: |xn, t〉 →
√

a|z, t〉; xn = na

〈xn, t| →
√

a|〈z, t|; −∞ ≤ z ≤ ∞ (11.52)

Also, let ti = 0, t = τ , and tf = τ + τ ′. The initial and final state vectors are defined
for continuous initial and final positions and hence have the limit

|xi, ti〉 → |x,0〉; 〈xf, t| → 〈x′,τ + τ ′| (11.53)
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Fig. 11.7 (a) Probability amplitudes for transition from initial state vector |x〉 to final state vector
|x′〉, summing over all indistinguishable paths passing through position z at time τ . (b) The
probability amplitude with path going through many intermediate positions z1, z2, . . . , zn at times
τ1,τ2, . . . , τN (published with permission of © Belal E. Baaquie 2012. All Rights Reserved)

As shown in Fig. 11.7a, taking the a → 0 limit, from (11.51), (11.52), and (11.55),
yields

〈x′,τ + τ ′|x,0〉 = a
+∞

∑
n=−∞

〈x′,τ + τ ′|z,τ〉〈z,τ|x,0〉 (11.54)

⇒ 〈x′,τ + τ ′|x,0〉 →
∫ +∞

−∞
dz〈x′,τ + τ ′|z,τ〉〈z,τ|x,0〉 (11.55)

Writing the transition amplitude in (11.55) in terms of the evolution kernel given
in (11.3), for Euclidean time, yields the following:

K(x′,x;τ + τ ′) =
∫ +∞

−∞
dzK(x′,z;τ ′)K(z,x;τ) (11.56)

Equation (11.56), illustrated in Fig. 11.7a, shows that the definition of the evolution
kernel is consistent with the rules for the composition of probability amplitudes by
summing over all indistinguishable paths.

In writing (11.56), only the property of the action was used. Consider a finite
time slice [0,τ + τ ′], as shown in Fig. 11.7a; due to the term (dx/dt)2 in the action
given in (11.44), one needs to specify the initial value x at t = 0 and a final value z at
t = τ , since two boundary conditions are required to specify paths going from x to z.
The state space appears in the path integral via the boundary conditions imposed on
the paths over which the path integration is defined.
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Condition given in (11.56) is a fundamental property of probability amplitudes
that allows one to define the state space—since the path integral can be interpreted
as the matrix element connecting the initial and final state vectors. The fundamental
reason that the action satisfies the composition law is because, writing the action
in terms of its initial and final boundary variables as S[xf,xi], the action given in
(11.44), in the notation of Fig. 11.7a, has the form

S[x′,x] = S[x′,z]+ S[z,x] (11.57)

Interestingly enough, the above equation holds only for state space expressed in
terms of coordinate state vectors |x〉; unlike the Schrödinger equation that holds
equally in momentum space, the composition law given in (11.56) does not hold
when expressed in terms of Fourier transformed variables essentially because
(11.57) does not hold for Fourier transformed variables.

In many complicated cases such as quantum mechanical systems that are higher
order in time and for quantum field theory on curved space–time, the quantum
theory is defined directly in terms of the action, and a Hamiltonian may not exist; in
such cases, one can directly base the existence of the state space on the properties
of the Lagrangian and action.

For the case where there is a well-defined Hamiltonian, (11.56) follows directly
from the definition of the evolution kernel in terms of the Hamiltonian given in
(11.29) and the completeness equation; more precisely,

K(x′,x;τ + τ ′) = 〈x′|e−(τ ′+τ)Ĥ |x〉

=
∫ +∞

−∞
dz〈x|e−τ ′Ĥ |z〉〈z|e−τĤ |x′〉

=

∫ +∞

−∞
dzK(x′,z;τ ′)K(z,x;τ)

since e−(τ ′+τ)H = e−τ ′He−τH

11.9 Trans-Empirical Paths and Path Integral

The Feynman path integral is a summation over all the trans-empirical paths that go
from the initial position xi to the final position xf and yields the transition amplitude
K(xf|xi; t) = 〈xf|e−itH/h̄|xi〉; (11.8) yields the conditional probability given by

P(xf|xi;t) =
|〈xf|e−itH/h̄|xi〉|2∫

dxf|〈xf|e−itH/h̄|xi〉|2

What is actually measured in the laboratory are only the initial and final position
projection operators for xi and xf, with an elapsed time between the measurements
given by t = tf − ti. The particle’s state is prepared to be at position xi and observed
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Fig. 11.8 (a) The experiment measuring the initial prepared at time ti and the final position xf
at time tf. (b) The quantum mechanical superstructure of trans-empirical indeterminate paths to
explain the observed results (published with permission of © Belal E. Baaquie 2012. All Rights
Reserved)

at time ti. The particle then evolves without any measurement till time tf, and a
second measurement is made to determine the particle’s position, which is found by
projection operators at position xf.

One then repeats the experiment many times, each time starting with the same
prepared state at position xi and finding that the quantum particle is observed to
be at different final positions xf. On making a frequency table of the frequency
for the various final positions and normalizing it, one experimentally obtains the
conditional probability P(xf|xi;t).

Figure 11.6 showing the trans-empirical paths that are summed over in the path
integral is resolved into Fig. 11.8a and b. Figure 11.8a shows what is actually
measured in an experiment; Fig. 11.8b represents the superstructure of quantum
mechanics that is required for explaining the results of the experiment. Figure 11.8a
exists in the laboratory, whereas Fig. 11.8b shows that the trans-empirical paths exist
in path space, which does not exist in physical space.

The trans-empirical paths clearly show the indeterminate nature of the quantum
degrees of freedom, since all the degrees of freedom x(t), for ti < t < tf, are
integration variables, taking all the allowed values in defining the path integral.
The path integral formulation of quantum mechanics clearly shows the interplay
between observables and unobservables: all integration variables are in principle
unobservable since they are summed over for producing any observable effect.

For the path integral, the observables are the initial and final states, namely,
the boundary conditions of the path integral, together with time parameter t that
labels the degrees of freedom. In quantum field theory, due to the extensive nature
of quantum fields, the only observables are parameters of the theory as well as
functions of space–time points as these are the labels of the quantum fields’ degrees
of freedom.
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11.10 State Vector and Trans-Empirical Paths

One can connect the indeterminate degrees of freedom, viewed as integration
variables, with the Schrödnger formulation based on the quantum state. The state
vector ψ(t,x) provides a description of the degree of freedom at time t. In contrast,
from (11.4), the evolution kernel is given by

K(x,x′;t f − ti) = 〈x|e−i(tf−ti)H/h̄|x′〉

The relation to the state vector ψ(t,x) and indeterminate and trans-empirical
space–time paths is the following. At some intermediate time t0 ∈ (ti, tf), consider
setting up an experiment that consists of projection operators at every point of space,
namely, |x〉〈x|, x ∈ ℜ, to detect the quantum state. The quantum state of the degree
of freedom at time t0, according to the Schrödnger formulation, is described by the
state vector ψ(t0,x), with density matrix ρ = |ψ〉〈ψ |. The Schrödinger state vector
ψ(t0,x) is shown in Fig. 11.9.

The likelihood of the projection operator at t0,x0 recording the degree of freedom
is given by

E[|x0〉〈x0|ρ ] = |ψ(t0,x0)|2

Hence, the probability the projection operator makes a recording is given by

P(t0,x0)dx = |ψ(t0,x0)|2dx = Prob(x0 < x < x0 + dx)

The coordinate basis obeys the completeness equation, and consequently it is
certain that the passage of the particle’s degree of freedom must be measured one of
the projection operators; hence, the total probability must be 1 and leads to

1 =
∫ +∞

−∞
dxP(t0,x)

ti

xi xf

tf

x

t

t0
x0 x0 + dx

y (t0,x)Fig. 11.9 The Schrï£¡dinger
wave function yields the
likelihood of the quantum
particle being near some point
(published with permission of
© Belal E. Baaquie 2012. All
Rights Reserved)
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Hence, the path integral yields the Schrödinger state function ψ(t0,x) together
with the probabilistic interpretation required by quantum mechanics, as shown in
Fig. 11.9.

The state function ψ(t0,x) obeys the Schrödinger equation with boundary
condition given by the initial condition, namely

〈x|ψ(t0;x′)〉 ≡ ψ(t0;x′,x) = 〈x|e−i(t0−ti)H/h̄|ψ(ti;x′)〉
〈x|ψ(ti;x′)〉= δ (x− x′) (11.58)

The state vector and the evolution kernel is given by

K(x,x′;t f − ti) = 〈x|e−i(t f −t0)H/h̄|ψ(t0;x′)〉

The problem with the expression above is that one does not obtain a normalizable
state vector |ψ(t)〉 with the definitions given above.

The state vector ψ(ti,x) needs to smeared out a bit in order to obtain a
normalizable state vector ψ(t0,x). For example, one can take the initial state vector
to be a Gaussian sharply peaked at x as given below:

χ(z;x′) = 〈z|χ(x′)〉=
(

1
2πσ2

)1/4

exp

{
− 1

4σ2 (z− x′)2
}

|ψ̃(t0;x′)〉 = e−i(t0−ti)H/h̄|χ(x′)〉; 〈ψ̃(t0;x′)|ψ̃(t0;x′)〉= 1

and the evolution kernel is given by

K(x,x′;t)� 〈x|e−i(tf−t0)H/h̄|ψ̃(t0;x′)〉

The limit of σ2 → 0 needs to be taken for recovering the exact expression given for
K(x,x′; t f − ti).

11.11 Path Integral Quantization: Action

The result obtained in (11.45) can be taken to be the starting point of path integral
quantization. Instead of starting from a Hamiltonian, as was done in Chap. 11, one
can instead model the quantum phenomena in question by postulating a Lagrangian.

The starting point is the Lagrangian, and one needs to choose an appropriate
potential V (x) and to obtain the (Euclidean) Lagrangian and action given by

L = −1
2

(
dx
dt

)2

−V(x)
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S =
∫ tf

ti
dtL

One postulates that the system takes all possible trans-empirical paths from the
initial to the final state. The evolution kernel is given by the superposition of all the
trans-empirical (indistinguishable) paths and is equal to sum of eS over all possible
paths; hence,

〈xf|e−τH |xi〉=
∫

B.C.
DXeS : Feynman path integral (11.59)

Boundary condition : x(0) = xi , x(τ) = xf

One can derive both, the state space and the Hamiltonian, from (11.59).
Path integral quantization is more general than starting from the Schrödinger

equation for two reasons:
• In the Schrödinger approach, one needs to postulate the properties of state space

in addition to the Hamiltonian driving the Schrödinger equation.
• The space–time symmetries of the quantum system are explicit in the

Lagrangian-based path integral approach, whereas in the Schrödinger approach
these are implicit and need to be extracted using the properties of the Hamiltonian
and state space. In particular, one has to derive the symmetry operators that
commute with the Hamiltonian.

These considerations come to the forefront for complicated systems like non-
Abelian gauge fields, where the starting point is the Lagrangian—and path integral
quantization turns out to be more efficient than the Schrödinger approach.

11.12 Hamiltonian from Lagrangian

Recall in Sect. 11.6, the Lagrangian was derived from the Hamiltonian using the
Dirac–Feynman formula.

The question naturally arises that if the Lagrangian is known, how would one
derive its Hamiltonian; the purpose of this section is to carry out this derivation
using quantum mechanical techniques. A Lagrangian that is more general than the
one discussed in Sect. 11.6, and which arises in the study of option theory in finance
[3], is chosen to illustrate some new features. Let the degree of freedom be the real
variable φ .

Consider the following Lagrangian and action:

L(t) = −1
2

[
me−2νφ{dφ

dt
+α(φ , t)

}2
+V(φ)

]

S =

∫ τ

0
dtL(t) =−1

2

∫ τ

0
dt

[
me−2νφ{dφ

dt
+α(φ , t)

}2
+V(φ)

]
(11.60)
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For greater generality, mass has been taken to depend on the degree of freedom φ ,
namely, that mass = me−2νφ and a φ dependent drift term α(φ , t) has also been
included in the Lagrangian.

The path integral is given by the following generalization of (11.44):

K(φi,φf;τ) =
∫

Dφe−νφ eS

∫
Dφe−νφ ≡

τ

∏
t=0

∫ +∞

−∞
dφ(t)e−νφ(t)

Boundary conditions φ(τ) = φf ; φ(t = 0) = φi (11.61)

Note that, up to a normalization the path integral integration measure
∫

Dφ has a
factor of e−νφ needed to obtain a well-defined Hamiltonian.

Recall from the discussion of the evolution kernel in Sect. 11.6, the path integral
is related to the Hamiltonian H by (11.45), namely,

K(φi,φf;T ) =
∫

Dφ e−νφ eS = 〈φf|e−τH |φi 〉 (11.62)

One needs to extract the Hamiltonian H from the left-hand side of (11.62). Since
the Hamiltonian propagates the system through infinitesimal time, it is discretized
into a lattice of spacing ε, with t = nε and N = T/ε. The path integral reduces to
a finite (N − 1)-fold multiple integral, analogous to what was obtained in (11.35).
Discretizing the time derivative by dφ/dt → (φn+1 −φn)/ε yields the lattice action
and Lagrangian given by

〈φN |e−εNH |φ0〉=
N−1

∏
n=1

∫
dφne−νφneS(ε)

S(ε) = ε
N−1

∑
n=0

L(n)

L(n) =−me−2νφn

2ε2

[
φn+1 −φn + εαn

]2 − 1
2
[V (φn+1)+V(φn)] (11.63)

As in Sect. 11.6, the completeness equation
∫

dφ |φ 〉〈φ | = I is used N − 1 times to
write out the expression for e−εNH , and the Hamiltonian is identified as

〈φn+1|e−εH |φn 〉 = e−νφneεLn

= e−νφn exp

{
−me−νφ

2ε

[
φn+1−φn+εαn

]2 − ε

2
[V (φn+1)+V(φn)]

}

Since the matrix elements of the Hamiltonian depend on the value of φ at two
different instants, to simplify notation, let



11.12 Hamiltonian from Lagrangian 247

φn+1 = φ ; φn = φ ′; αn = α

Ignoring terms that are of O(ε) in (11.63) yields the following:

〈φ |e−εH |φ ′〉= e−νφ exp
{
− me−2νφ

2ε

[
φ −φ ′+ εα

]2 − εV (φ)
}

(11.64)

Note that unlike (11.38), for which the Hamiltonian is known and the Lagrangian
was derived from it, in (11.64) one needs to derive the Hamiltonian from the known
Lagrangian.

The key feature of the Lagrangian that in general allows one to derive its
Hamiltonian is that the Lagrangian contains only first-order time derivatives; hence,
on discretization the Lagrangian involves only φn that are nearest neighbors in time,
thus allowing it to be represented as the matrix element of e−εH , as in (11.64).
Furthermore, the time derivatives appear in a quadratic form; hence, one can use
Gaussian integration to rewrite (11.64) in the following manner1:

〈φ |e−εH |φ ′〉= e−νφ e−εV (φ)
∫ +∞

−∞

dp
2π

exp
{− ε

2m
p2 + ip[φ −φ ′+ εα]e−νφ}

= e−εV (φ)
∫ +∞

−∞

dp
2π

exp

{
−εe2νφ

2m
p2 + ip

(
φ −φ ′+ εα)

}
(11.65)

where the pre-factor of e−νφ has been canceled by rescaling the integration variable
p → peνφ .

The Hamiltonian H = H(φ ,∂/∂φ) is a differential operator and acts on the
dual coordinate φ , as is required for all differential operators, as mentioned earlier
after (5.22). Hence, for the state function |ψ〉, which is an element of the state
space, the Hamiltonian acts on the dual basis state 〈φ |, and yields 〈φ |H|ψ〉 =
H(φ ,∂/∂φ)ψ(φ), similar to the result given in (5.37).

The Hamiltonian is hence given by the following representation2:

〈φ |e−εH |φ ′〉= e−εH(φ ,∂/∂φ)〈φ |φ ′〉= e−εH(φ ,∂/∂φ)
∫ +∞

−∞

dp
2π

eip(φ−φ ′) (11.66)

since 〈φ |φ ′〉 = δ (φ − φ ′). Ignoring overall constants and using the property of the
exponential function under differentiation, one can rewrite (11.65) as

〈φ |e−εH |φ ′〉= exp

{
1

2m
εe2νφ ∂ 2

∂φ2 + εα
∂

∂φ
− εV (φ)

}∫ +∞

−∞

dp
2π

eip(φ−φ)

(11.67)

1Ignoring irrelevant constants.
2From (4.26), the convention for scalar product is 〈p|φn 〉 = exp(−ipφn), and the sign of the
exponential in (11.66) reflects this choice. The definition of H requires it to act on the dual state
vector 〈φ ′|; if one chooses to write the Hamiltonian as acting of the state vector |ϕ ′〉, H† would
then have been obtained. Since H is not Hermitian, this would lead to an incorrect result.
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Comparing (11.67) above with (11.66) yields the Hamiltonian

H =− 1
2m

e2νφ ∂ 2

∂φ2 −α(φ)
∂

∂φ
+V(φ) (11.68)

The Hamiltonian is quite general since both V (φ) and α(φ) can be functions of
the degree of freedom φ . Note that the Hamiltonian H is non-Hermitian for a general
value of α and is Hermitian only for a pure imaginary α . The path integral has a
nontrivial integration measure exp{−νφ} that needs to be specified in addition to
the Hamiltonian.

11.13 Summary

The path integral is an independent formulation of quantum mechanics. To show
the path integral’s connection to the underlying foundations of indeterminacy of
the quantum degree of freedom, the path integral was derived from Schrödinger’s
state vector formulation. The probability amplitude for a given determinate path
was evaluated by breaking up the path into a series of infinitesimal paths; the
Dirac–Feynman formula yields the probability amplitude for each infinitesimal
path; composing all the infinitesimal paths yields the probability amplitude to be
proportional to exp{iS/h̄}, where S is the action for the quantum degree of freedom.

The transition of a quantum entity from its initial to final state, without any
observations during the interregnum, is made by the degree of freedom simulta-
neously taking all the trans-empirical indeterminate paths, which is a collection of
many indistinguishable determinate paths. The principle of quantum superposition
yields the transition amplitude as the sum of the probability amplitudes of all the
indistinguishable determinate paths and leads to the summing of exp{iS/h̄} over all
the trans-empirical paths and yields the Feynman path integral.

The sum over all paths is given a precise mathematical expression by directly
evaluating the transition amplitude using techniques based on the Hilbert space
and, in particular, by the repeated employment of the completeness equation;
the Lagrangian for the quantum entity was derived from its Hamiltonian. For a
quantum particle, the Feynman path integral is seen to be the summation over all the
continuous paths from the initial to the final position. From a mathematical point of
view, the Feynman path integral is an integration over all the values of the degree
of freedom for each instant between the initial and final states and is an infinite
dimensional functional integral.

The path integral can directly provide the quantum theory for a given entity and
instead of starting from its Hamiltonian operator, as is the case for the Schrödinger
and Heisenberg formulations, one starts from its Lagrangian. The path integral
is postulated to represent the quantum behavior of the given quantum entity. To
show the equivalence of path integral to Schrödinger’s state vector formulation,
the Hamiltonian and state space of the quantum entity were derived from the
Lagrangian.
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The Feynman path integral is the point of departure for analyzing more complex
systems and in particular for studying quantum field theory. The formulation of
non-Abelian gauge fields and fermions and the study of renormalization are most
effectively expressed in terms of the path integral. The crowning achievement
of high energy physics, namely, the Standard Model of particles and forces, is
formulated in terms of the Feynman path integral. The theory of superstrings is
exploring new frontiers of physics and mathematics using the mathematical tool of
the path integral [5].
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Quantum mechanics is an empirical science, with experimental observations being
the final and sole criterion of what is true and what is false. The founders of
quantum mechanics, in particular Niels Bohr and Werner Heisenberg, were at pains
to emphasize that theoretical physics should and could explain only the results
of experiments. They stayed away from trying to explain what is Nature as such,
independent of observations, with the implicit message that such an explanation
would have no appropriate basis.

The theoretical superstructure of quantum mechanics—to which Heisenberg
made unequaled contributions—is a mathematical construct of the human mind.
The symbols and icons that are indispensable for explaining quantum phenomena
are the free creations of human consciousness. There is a complex web of interpre-
tations that finally relates the mathematical symbols to experimentally observable
quantities.

How should we view the symbols of quantum mechanics? What is the ontological
essence of these symbols? This question was not clearly addressed by the founders
of quantum mechanics. The symbols were taken to be mathematical tools, a sort
of a “mathematical language,” necessary for describing and explaining quantum
entities and processes. The ontological significance of the mathematical structures
of quantum mechanics was not addressed, leaving a major conceptual gap in the
theoretical edifice of quantum mechanics.

The pioneers of quantum mechanics probably considered the ontological signif-
icance of the symbols to be a question that could not be addressed experimentally
and hence did not pursue this question. However, after a century of unbroken
experimental success of quantum mechanics, the symbols are now seen to be
a crucial link in connecting the structures of quantum mechanics to observed
phenomena. This holds out the prospect that the symbols themselves contain more
information than simply what they predict for experiments. In other words, the
symbols themselves reflect a truth about Nature and need to be studied from this
point of view.
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DOI 10.1007/978-1-4614-6224-8__12,
© Springer Science+Business Media New York 2013
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There is an agnostic view that the symbols of quantum mechanics don’t have
any “existence” but, rather, are mathematical tools to be used solely for computing
physically observable effects. Although the agnostic view is consistent, it is
incomplete. My own view, and the one consistently taken in this book, is quite the
opposite of the agnostic view. The theoretical symbols of quantum mechanics are
not considered as being “imaginary” and fictitious, having no ontological reality,
having no “being.” In fact, the entire thrust of this book is to postulate the existence
of a trans-empirical domain that only be represented by mathematical symbols and
theoretical constructs.

The symbolic trans-empirical realm is another form of existence of Nature, a
realm that goes beyond the empirical domain. Quantum mechanics is the expression
and manifestation of the symbolic and trans-empirical realm of Nature.

The quantum degree of freedom, which is at the foundation of the quantum
entity, can never be directly observed in any experiment, being trans-empirical and
indeterminate and having a purely symbolic form of existence. The quantum state
that describes the properties of the degree of freedom straddles the trans-empirical
and empirical domains; the enigmatic “collapse” of the state vector, precipitated
by experimentally observing the quantum state, is a transition of the quantum state
from its trans-empirical form to its empirical manifestation.

The experimental apparatus is mathematically represented by Hermitian op-
erators, which act on the state vector and cause it to collapse to one of many
possible final states. It is impossible to predict what is the outcome of any particular
experiment, reflecting the intrinsic indeterminacy of the quantum degree of freedom.
Repeated experiments yield the underlying statistical regularities of the quantum
entity. In the final analysis, the only quantity that one can measure is the likelihood
of a specific detector, representing a projection operator, detecting the collapse of
the state vector. Probabilities are assigned to the likelihood of the various projection
operators detecting the state vector’s collapse, and this is all that experiments can
observe; the theoretical structure of quantum mechanics computes these observed
probabilities.

This, in essence, is the theoretical schema of quantum mechanics that has
successfully withstood the tests, for over a century, of numerous and varied
experiments.

12.1 Three Formulations of Quantum Mechanics

Quantum mechanics has the following three independent, but equivalent, mathemat-
ical formulations for describing quantum indeterminacy:
• The Schrödinger equation for the state vector postulates that a quantum state

vector encodes all the information that can be extracted from a quantum degree
of freedom. The degree of freedom forever remains trans-empirical since all
measurements only encounter the quantum state vector, causing it to collapse
to an observed manifestation.
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• The Heisenberg operator formalism. The state vector is completely dispensed
with and a pure density matrix, which is an operator, represents the quantum
entity. All observations consist of detecting of the collapse of the density matrix,
which makes a transition from the pure to a mixed density matrix; the detection
of the mixed density matrix by projection operators results in the experimental
determination of the probability of the various projection operators detecting the
quantum entity.

Quantum probability assigns probabilities to projection operators. The trans-
empirical nature of the degree of freedom is reflected in that it is never
detected by any of the operators. The BKS inequality shows that the quantum
indeterminacy cannot be explained by classical probability theory; in particular,
the degree of freedom has no objective existence before an observation showing
its trans-empirical nature.

• The Feynman path integral. The quantum degrees of freedom appear as integra-
tion variables in the path integral and provide the clearest representation of the
trans-empirical degree of freedom. An integration variable has no fixed value but,
rather, takes values over its entire range; for the degree of freedom, this means
that the entire degree of freedom space F is integrated over. The freedom to
change variables for path integration is equivalent to changing the representation
chosen for the degree of freedom and is similar to the freedom in choosing basis
states for Hilbert space.

The path integral was derived as the sum over all the trans-empirical paths,
from the initial to the final state, and reflects quantum indeterminacy that is at the
foundation of quantum mechanics. The state vector appears as initial and final
conditions for the trans-empirical paths that are being summed over.

Each framework has its own advantages, throwing light on different aspects of
quantum mechanics that would be otherwise difficult to express. For example, the
Schrödinger equation is most suitable for studying the bound sates of a quantum
entity; the Heisenberg formulation is most suited for studying the structure of
quantum probability, and the Feynman path integral is most appropriate for studying
indeterminate and trans-empirical paths.

12.2 Interpretations of Quantum Mechanics

Some of the main interpretations of quantum mechanics have been discussed in
various chapters, in particular in Sect. 9.11, and are summarized below to gain a
perspective on the different approaches to quantum mechanics.
• The Copenhagen interpretation. This view, pioneered by Heisenberg and Bohr,

is the standard approach and taught in most textbooks. This interpretation
holds that quantum mechanics does not provide a description of an “objective
reality”—namely, a reality that exists independent of experiment—but rather is a
theory that provides a probabilistic prediction of the results of experiments. The
measurement process causes one of the possible outcomes to be actualized.
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The outcome of quantum experiments cannot be explained by using a solely
“particle” or a “wave” description, leading to the famous “wave-particle” duality;
the wave-particle duality is discussed in Sect. 3.10. Bohr further developed this
duality into the law of complementarity.

• The many-worlds interpretation. In this view, there is no quantum uncertainty,
rather, the Universe has potentially infinite many branches; an apparent random
outcome of an experiment in effect results in the Universe choosing a particular
branch. Every experiment results in the bifurcation of the Universe into branches.

• Bohm’s interpretation. In this approach, there is no indeterminacy, but rather, the
Universe is taken to be determined by the laws of classical mechanics. To explain
the results of experiments it is assumed that every particle has an associated “pilot
wave” and that results in the “wave-particle” duality of quantum mechanics.

• ‘t Hooft’s Planckian determinism. In a more recent development, Gerard ‘t Hooft
developed the idea of a deterministic theory at the Planck scale that results in the
apparent quantum randomness at the macroscopic scale. He introduces the idea
of “beables” and “changeables” to explain the observed behavior of quantum
phenomena.

• The trans-empirical interpretation. The approach followed in this book. Nature
is taken to have two distinct realms, namely, the empirical realm that is observed
in daily life, with all entities appearing to be determinate and particular, and the
trans-empirical realm that, in principle, cannot be experimentally observed and
is represented by the symbols of quantum mechanics.

The quantum entity is an inseparable pair, consisting of the trans-empirical
degree of freedom and the state vector that straddles the empirical and trans-
empirical domains; an experimental observation causes a transition of the
quantum state from the trans-empirical to the empirical domain.
The mathematical and symbolical representation of Nature, as exemplified in

quantum mechanics, provides a means for understanding of Nature that direct
perception using our five senses can never provide. The process of reasoning,
reflection, and symbolical thinking comes to the fore in our encounter with
physical phenomena that are far removed from everyday life. The study of quantum
mechanics leads to the conclusion that Nature at the deepest and most fundamental
level is indeed amenable to only representations using symbols and mathematics.

The proposal presented in this book is to interpret the symbols of quantum
mechanics as being expressions of a realm of Nature that can never be directly
empirically observed; this realm, termed as trans-empirical, has an existence as
fundamental as the empirical and observed realm. The trans-empirical realm can
be grasped only by the human mind—using theory, symbols, signs, and icons that
are mathematical in nature and form the superstructure of quantum mechanics.

The best result of this interpretation would be to provide a perspective on
quantum mechanics that is different from the current mainstream view and which,
in turn, could lead to new experiments and novel insights on the inner workings of
quantum mechanics.
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In conclusion, in quantum mechanics the trans-empirical realm becomes ‘visible’
to consciousness in the form of the state function, which straddles both the trans-
empirical and empirical domains. The degree of freedom is entirely trans-empirical.
The quantum entity is an inseparable pair, namely the degree of freedom and its
state function. The trans-empirical realm exists as such in Nature; it can be cognized
only by human consciousness, using signs and icons; this realm cannot be directly
observed by our five senses or by any experimental device. The mathematical
symbols of quantum mechanics provide a specific and particular representation of
the trans-empirical realm.





Glossary of Terms

Action. The time integral of the Lagrangian.
Bra and ket vectors. Dirac’s notation with the “ket” vector |χ〉 representing an
element of the state space and the “bra” vector 〈ψ | representing a vector from the
dual state space and with 〈ψ |χ〉 being a complex number.
Completeness equation. Equation is a statement that the basis states for a state
space are linearly independent and span the entire state space.
Contextuality. The observed properties of an entity depend on what other properties
are measured. A purely quantum mechanical effect; all classical properties are
non-contextual.
Determinate. An entity that is in a definite state; an entity that is empirical.
Density matrix. A description of the quantum entity using operators and which is
equivalent to the state vector description.
Dual state space. A space associated with a vector space, consisting of all mappings
of the state space into the complex numbers.
Entangled state. A quantum mechanical entity for which its two or more degrees
of freedom cannot be viewed in isolation from each other.
Eigenfunctions. Special state vectors that are associated with an operator such
that under the action of the operator, they are only changed up to a multiplicative
constant, called the eigenvalues.
Exist. Describes any entity that “is,” namely, has being, and does not necessarily
have an objective and empirical existence.
Empirical. Empirical quantities are based on observations. Empirical entities are
accessible to direct experimental observations.
Hamiltonian. A Hermitian operator H that is the quantum mechanical generaliza-
tion of energy. H is the differential operator that evolves the system in time.
Hermitian operators are invariant under conjugation.
Hilbert space. A linear vector space for which all the state vectors have unit norm.
Indeterminate. An indeterminate entity is trans-empirical, namely, has a form of
existence that is not directly observable.
Indeterminacy. The property of indeterminate entities. Quantum uncertainty is
termed indeterminate to differentiate it from classical randomness.
Indeterminate path. An entity’s path being indeterminate means that it simultane-
ously exists in all of its allowed determinate paths.
Lagrangian. A function of a determinate path.
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Measurement. The collapse of a state vector by the application of projection
operators that correspond to an experimental device.
Ontology. From the Greek term for “being”; that which “is,” the present participle
of the verb “be”; the term is used for the nature of being, of existence, or of reality.
Operators. The generalization of matrices that act on the state space. Empirically
observable quantities are represented by Hermitian operators.
Operator conjugation. The transposition and complex conjugation of operators.
Path. A trajectory in time, usually denoted by x(t), where t is time.
Path integral. An infinite-dimensional integral over all the possible indeterminate
paths taken by a quantum entity.
Probability. The theory for explaining random and uncertain behavior.
Quantum degree of freedom. A quantity that exists in many possible states
simultaneously, inherently indeterminate and trans-empirical.
Quantum degree of freedom space. The degree of freedom constitutes the space
F , which is invariant and unchanging over time.
Quantum entity. A quantum entity is constituted by a pair, namely, the degree(s)
of freedom F and the state vector ψ(F) that encodes all of its properties.
Random variables. Random variables describe classical random phenomena and
are described by a joint probability distribution.
Real. Refers only to the result of observations, to what is empirical. Real entities
exist objectively.
State vector. The state vector is a function of the degree of freedom space F and
carries all the information that can be extracted from F .
State space. A linear vector space, the generalization of a finite-dimensional vector
space, that contains the state vectors of a quantum entity.
Superposition. The adding of state vectors; the adding of paths that are
indeterminate.
Trans-empirical. The trans-empirical domain is inaccessible to direct observation
and is accessible only to theory or to symbolic representations.
Uncertainty. A term reserved for describing the intrinsic indeterminateness and
lack of definiteness of quantum phenomena.



List of Symbols

Only new symbols introduced in a chapter are listed. A consistent system of notation
has been used as far as possible.

Chapter 2: The Quantum Entity and Quantum Mechanics

S Action
L Lagrangian
F Degree of freedom space
ψ(F) State vector of the degree of freedom F
O(F) Operators of the degree of freedom F
P(t,x) Probability of an observation by an operator at x and at time t
ψ(t,F) Time-dependent state vector
Eψ [O(F)] Expectation value of O(F) for ψ(t,F)

H Hamiltonian operator
φn Probability amplitude for a determinate path labeled by n
φ(xf, tf;xi, ti) Transition amplitude from xi at time ti to xf at time tf

Chapter 3: Quantum Mechanics: Empirical and Trans-empirical

PD Probability of detection of state vector at screen
with path taken by electron being known

PI Probability of detection of state vector at screen
with path taken by electron not being known

Chapter 4: Degree of Freedom F ; State space V
|ψ〉 Ket state vector
〈χ | Bra state vector
C Complex numbers
〈χ |ψ〉 Scalar product ∈ C

FN Space of N-degrees of freedom
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260 List of Symbols

ℜ3N 3N-dimensional Euclidean space
|n〉 Column vector
〈n| Row vector
δn−m Kronecker delta function
|n〉〈n| Matrix with single entry at diagonal position n,n
δ (x− y) Dirac delta function
|x〉 Ket vector at position x
〈x| Bra state vector at position x
|x〉〈x| Projection operator at x∫ ∞
−∞ dx|x〉〈x| Sum over all position projection operators
U Unitary operator
U† Hermitian conjugate of operator

Chapter 5: Operators

V ⊗VD Tensor product of state space with its dual
D(O) Domain of V on which O acts
D(O†) Domain of V on which O† acts
〈χ |O|ψ〉 Matrix element of O for state vectors 〈χ | and |ψ〉
tr(O) Trace of operator O
|ψn〉 Eigenstate of O
λn Eigenvalue of O
Πn = |ψn〉〈ψn| Projection operator
|ψn;n1,n2,...,nN 〉 Energy eigenstate n with quantum numbers n1,n2, . . . ,nN

|ψt;n1,n2,...,nN 〉 Time-dependent state vector with quantum numbers
n1,n2, . . . ,nN

x̂ Position operator
p̂ Momentum operator
T (x) Unitary position shift operator
ρ = |ψ〉〈ψ | Density matrix for state vector |ψ〉

Chapter 6: Density Matrix: Entangled States

V ⊗W Tensor product of two state spaces
|ψ〉⊗ |χ〉 Tensor product of two state vectors
|ψ〉|χ〉 Tensor product of two state vectors
|χ〉⊗ 〈ψ | Outer product of two state vectors
ρP Pure density matrix
ρM Mixed density matrix
ρR Reduced density matrix
ρT Thermal density matrix
σ1,σ2,σ3 Pauli 2×2 spin matrices
|ΨE〉 Entangled state vector
S Quantum entropy
exp{−H/kT} Boltzmann distribution
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Chapter 7: Quantum Indeterminacy

B The Bell-CHSH operator
Rq Absolute value of the expectation value

of the Bell-CHSH operator
ω Classical random sample value
Ω Classical sample space
X ,Y,Z Classical random variables
P(X ,Y,Z) Classical joint probability distribution
P(A|B) Classical conditional probability distribution
P(X ,Y |Z) Classical conditional probability distribution
Rc Absolute value of the expectation value

of the classical H random function
RS

q Absolute value of the expectation value
of the Bell-CHSH operator for separable systems

ρAB Bipartite density matrix
Γmn Adjacency matrix for spin 1 BKS inequality
Qn Operators for spin 1 BKS inequality
qn Classical random variables for spin 1 BKS inequality
Oi Commuting operators
Ji Non-commuting operators

Chapter 8: Quantum Superposition

〈x|s〉 Probability amplitude for going from initial state |s〉
to final state 〈x|

〈x|i〉〈i|s〉 Probability amplitude for taking determinate path from
initial state |s〉 to final state 〈x| via the slit at |i〉

d1, d2 Detectors for observing single photons
B Unitary operator representing the beam splitter
M Unitary operator representing the mirror
P Unitary operator representing the phase shifter
|ΨI〉 Initial state vector
|ΨF〉 Final state vector
d1 ⊗ d3 Detectors for observing two coincident photons
U Interaction of spin states |s〉 with device

Chapter 9: Quantum Theory of Measurement

Eχ [O] Expectation value of O for state vector |χ〉
|Dn〉 Detector states
xn Detector readings
VQ Hilbert space of the quantum entity
VD Hilbert space of the detector
VQ ⊗VD Hilbert space of the quantum entity and detector
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OE Operator O extended to space VQ ⊗VD
HQ Hamiltonian of the quantum entity
HQD Hamiltonian coupling the quantum entity and to the

detector
|Φin〉 Initial state of the quantum entity and the detector
|Φout〉 Final state of the quantum entity and the detector
ρ̃M Mixed density matrix of the quantum entity and the

detector
OE|χ Partial trace of OE over VQ

|φ〉box State vector for particle in a box
ΔA Uncertainty in quantity A

Chapter 10: The Stern-Gerlach Experiment

ξ+,ξ− Spin eigenstates
ψ μ

E (r;p) Energy eigenstates for the Stern-Gerlach Hamiltonian
Ψin(r), Incoming state vector for the Stern-Gerlach experiment
Ψμ

M(r), State vector propagating in the magnetic field
for the Stern-Gerlach experiment

Ψμ
out(r) The final state vector for the Stern-Gerlach experiment

g(p) Gaussian wave packet
χμ State vector propagating in the magnetic field
ζμ State vector after crossing the magnetic field

Chapter 11: The Feynman Path Integral

〈xf, tf|xi, ti〉 Probability amplitude for transition from initial
xi at time ti to final position xf at time tf

K(x,x′; t) Evolution kernel; transition amplitude
P(xf|xi;t) Conditional probability for the occurrence

of xf given xi occurred at earlier time t
φ [path] Probability amplitude for discrete and determinate path
S[path] Action for discrete path
S[x(t)] Action for continuous path x(t)
xc(t) Classical path∫

DX Path integral measure
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B
basis states

mixed density matrix, 187
unitary transformations, 77

Bell inequality, 123
entangled states, 128
maximal violation, 130
non-entangled states, 126
quantum, 121
separable system, 127
violation, 129

Bell-CHSH operator, 119, 120
BKS inequality, 131

violation, 133
Bloch sphere, 56
Bohr, 2, 13, 25, 251, 254

reality, 26
Born, 2, 11

C
classical entity, 5
commutation equation, 85
completeness equation, 61, 235
contextuality, 131

pentagram, 132
spin 1, 133
state independent, 133
two spin 1/2, 134

Copenhagen interpretation, 12
enhanced, 29

correlation, 118

D
decoherence, 179, 190, 217

mixed density matrix, 190
degree of freedom, 15, 31, 52

binary, 53
continuous, 59
periodic , 80

density matrix, 93, 98
bipartite, 104, 127
mixed, 99, 111, 185
pure, 98, 111
reduced, 102, 167, 187
thermal, 112
two state, 99

determinate, 6
Dirac, 2, 25, 44, 159

bracket notation, 50
words, 26

Dirac delta function, 58
Dirac-Feynman formula, 227, 236

continuous path, 230
discrete path, 229

E
eigenspectrum, 76
eigenstates, 75
eigenvalues, 75, 77

operators, 76
projection operators, 77

empirical
definition, 27

ensemble
classical, 186
quantum, 177

entangled state, 105
bipartite system, 106
composite system, 106
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entangled state (cont.)
maximal, 110
pair of spins, 107
two spins, 111

entanglement
spin/device, 214

EPR paradox, 116
Euclidean time, 233
evolution kernel, 223

free particle, 225
exist:definition, 26
expectation value

operator, 87
experimental device, 181

F
Feynman, 25, 35, 37
Feynman path integral, 152, 231

evolution kernel, 232

H
Hamiltonian, 71, 79, 81, 88, 90, 224

path integral, 236
Stern-Gerlach experiment, 208

Heisenberg, 2, 10, 13, 25, 141, 143, 251, 254
reality, 26

Hermitian matrix, 73
hidden variables, 125
Hilbert space, 68

I
indeterminacy, 115
indeterminate, 10

definition, 28
paths, 18
trans-empirical, 29

K
Kolomogorov, 121, 143

L
Lagrangian, 7, 229

path integral, 236

M
Mach-Zehnder interferometer, 154

interference, 157
no interference, 156

measurement, 20
empirical, 173
mixed density matrix, 185
operators, 172
photographic plate, 172
preparation, 172
process, 183
reduced density matrix, 187
repeated, 176
state vector, 172
theories, 201
trans-empirical, 173

O
objective reality, 6, 17, 18, 121
ontology, 8
operators, 16, 72

commuting, 79, 135
expectation value, 87
Hermitian, 73
momentum, 83
non-commuting, 78, 135
position, 82

outer product, 95
partial trace, 97

P
path integral

continuum limit, 237
evolution kernel, 234
free particle, 238
Hamiltonian, 245
Lagrangian, 245
quantization, 244
time lattice, 236
trans-empirical paths, 241

paths
determinate, 153
empirical, 150
indeterminate, 153
trans-empirical, 150

photon
coincident measurements, 164
down conversion, 161
interference, 157
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Mach Zehnder, 155
no interference, 156
self-interference, 159

Planck, 1
probability

conditional, 224
probability amplitude, 14, 19, 148

composition rule, 239
distinguishable paths, 151
indistinguishable paths, 151
time evolution, 221

probability distribution
conditional, 122
joint, 122
marginal, 122

probability theory
classical, 7, 121
quantum, 136

projection operator
measurement, 174
position, 174

projection operators, 75
expectation value, 177

Q
quantum entity, 8, 10, 22

amplification, 172
collapse, 172
definition, 22
entanglement, 172
measurement, 171

quantum entropy, 108
Bell violation, 131
maximum, 109
measurement, 191

quantum eraser, 159
interference, 162
no interference, 160
partial, 165

quantum mathematics, 69
quantum mechanics

experimental accuracy, 2
interpretations, 253
operator formulation, 89
three formulations, 252
trans-empirical, 29

quantum numbers, 78
quantum paths

infinite divisibility, 230
quantum principle

trans-empirical, 43

quantum probability, 136
measurements, 138
metaphor, 141
paradox, 140
position projection operator, 140
projection operators, 139

quantum state, 15, 33
quantum superposition

trans-empirical paths, 36
quantum superstructure, 13

position operator, 176
trans-empirical, 30

R
random variable, 122
real:definition, 26

S
sample space, 122
Schmidt decomposition, 100
Schrödinger, 2, 171
Schrödinger equation, 17, 88, 223

measurement, 13, 45, 172, 191, 202
properties, 89

separable system, 104
spectral decomposition, 76
state preparation, 34
state space, 33, 49

basis states, 62
binary, 54
continuous degree of freedom, 59
degree of freedom, 15
experiment, 50
properties, 66

state vector
orthogonal, 78
parallel, 78
preparation, 192
statistical, 13
trans-empirical paths, 243

state vector collapse, 21, 172, 173, 217
non-local, 192

Stern-Gerlach experiment, 205
eigenfunctions, 210
Hamiltonian, 208
quantum/classical, 207
spin measurement, 215
time evolution, 211

successive slits, 153
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superposition
classical, 145
indeterminate paths, 152
interference, 152
quantum, 146
quantum interference, 36
spin 1/2, 147
state vectors, 146
trans-empirical paths, 226

symbol, 2, 15, 44, 45

T
tensor product, 94

matrices, 95
operators, 135
position operator, 83
state space, 73
vectors, 94

trans-empirical
definition, 27

indeterminate, 28
laws of physics, 35
spin measurement, 218
two slit experiment, 42

trans-empirical paths
path integral, 241
state vector, 243

transition amplitude, 223
two slit experiment, 36

trans-empirical, 42
with detectors, 38
without detectors, 40

U
uncertainty principle, 118, 195

position/momentum, 197
quantum entity, 199
time/energy, 198

unitary transformations, 63, 187
basis states, 77
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