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Chapter 1

Early and Modern QM

Quantum Mechanics is one of the most important fundamental concepts dis-
covered in the 20th century. In this chapter we first review some of the early
physical motivations that led to the initial bold steps of quantum mechanics,
and then provide a perspective for the status of Quantum Mechanics as one of
the pillars of fundamental theory of Nature as understood by the beginning of
the 21st century.

1.1 Origins of Quantum Mechanics

1.1.1 Black body radiation

In 1902 Planck suggested that energy is quantized. He was trying to understand
the radiation of black bodies by fitting an empirical curve corresponding to the
energy density as a function of temperature and frequency. He considered a
hot body that emits radiation through a cavity. In the frequency interval ν to
ν + dν, the radiation energy density per unit volume U is given by

dU(ν, T ) =
4πν2

c3
dν × 2× Ē (1.1)

where c is the velocity of light. The first factor is the number of degrees of free-
dom per unit volume in the electromagnetic radiation in the frequency interval
ν to ν + dν, the second factor of 2 counts the number of polarizations of the
emitted photons, and the last factor is the average energy per degree of freedom.
The average energy

Ē =

P
E E e−E/kTP
E e−E/kT

(1.2)

is obtained via statistical mechanical considerations by using the Boltzmann
distribution. In 1900 Planck had already fitted the experimental curve with an

11



12 CHAPTER 1. EARLY AND MODERN QM

empirical formula
dU

dν
(ν, T ) =

8πhν3

c3(ehν/kT − 1) . (1.3)

Fig.1.1 : Planck’s versus the classical curves.

In Fig.1.1 this curve (in bold) is contrasted with the curve that results from
classical considerations, which corresponds to the h → 0 limit of eq.(1.3).
Note that there is a logical problem with the classical formula: if one inte-
grates over all values of the frequency to find the total energy carried away
by all radiation, one finds an infinite result, which is obviously non-sense.
This problem is avoided with Planck’s curve. Planck found that the constant
h = 6.63× 10−15 erg/cm3 deg4, which is now called the Planck constant, gave
the correct experimental fit.
He searched for a theoretical explanation of his empirical formula for the

average energy Ē(ν, T ) that would be consistent with eqs.(1.1,1.2,1.3). Previ-
ously Wien and Raleigh had constructed models for Ē based on classical physics,
but these had failed to give the right answer for all values of the frequency ν.
Namely, in classical physics the energy is continuous, and therefore one would
perform an integral in eq.(1.2), but this gives Ē = kT , which is independent
of ν, and leads to the wrong curve. Instead, Planck had the revolutionary idea
of postulating that energy comes in quantized units E = nhν, where n is an
integer, and that eq.(1.2) would be computed by performing a sum rather than
an integral. He arrived at this view by making an oscillator model for the walls
of the cavity that emit the radiation. He then obtained

Ē =

P∞
n=0 e

−nhν/kTnhνP∞
n=0 e

−nhν/kT =
hν

ehν/kT − 1 , (1.4)

which is precisely the correct experimental result. Note that the classical result
E = kT corresponds to the h → 0 limit of eq.(1.4). He therefore came to the
conclusion that the walls of the black body cavity must be emitting “quanta”
that carried energy in integral multiples of hν.
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1.1.2 Photoelectric effect

Despite Planck’s success, the Physics community did not find it easy to accept
the idea that energy is quantized. Einstein was the next one to argue that elec-
tromagnetic radiation is itself quantized (not just because of the cavity walls),
and that it comes in bunches that behave like particles. In his stellar year of
1905 he wrote his article on the photoelectric effect that shows that light behaves
like particles. He was interested in explaining the behavior of electrons that are
emitted from metals when they are struck by radiation: Electrons were emitted
provided the frequency of the light was above some threshold ν > ν0, and the
number of emitted electrons were determined by the intensity (i.e. the number
of incoming photons). Furthermore, the kinetic energy of the emitted electrons,
plotted against the frequency, displayed a linear relationship Ekin = h(ν − ν0),
with a proportionality constant none other than Planck’s constant h (see Fig.
1.2).

Fig.1.2: Photoelectric effect

To explain these observations Einstein proposed that radiation is made of quanta
(photons), with each photon carrying energy

Ephoton = hν. (1.5)

Furthermore, he postulated that the photons collide with electrons in metals just
like billiard balls that conserve energy and momentum, and that it requires a
minimum amount of workW to knock out an electron from the metal. Once the
electron is struck by a sufficiently energetic quantum of light, it is emitted and
carries the excess energy in the form of kinetic energy Ekin =

1
2mev

2. According
to this billiard ball analogy, the energy conservation equation for each collision
reads Ephoton =W +Ekin. Using W = hν0 this may be rewritten in the form

1

2
mev

2 = h(ν − ν0) (1.6)

which gives correctly the experimental curve for the velocity of the emitted
electrons. This success, had an important impact on the Physics community
for getting closer to the realm of Quantum Mechanics. Millikan performed ex-
perimental tests that confirmed Einstein’s formula, and Compton successfully
extended Einstein’s billiard ball approach to the scattering of photons from
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electrons. Ironically, Einstein never believed in the probabilistic formulation of
Quantum Mechanics that was later developed, and argued against it unsuccess-
fully throughout his life[?][?].

1.1.3 Compton effect

The idea that light behaves like particles was strengthened by the analysis of
the Compton effect. In this case the experiment involves radiation hitting a
metal foil and getting scattered to various angles θ. It turns out that the inten-
sity I(λ) of the scattered light (number of scattered photons) plotted against
the wavelength λ has two peaks: the first is an angle independent peak at a
wavelength close to the incident wavelength λ0, and the second is another peak
at a wavelength which is angle dependent at λ = λ0 +

h
mec

(1− cos θ) (see Fig.
1.3).

Fig. 1.3 - Compton effect.

Classical physics applied to this problem fails to explain both the angle and
wavelength dependence of the observed phenomena. However, by treating light
as a particle, and applying momentum and energy conservation to a billiard ball
type scattering, Compton explained the observed phenomena correctly.

Fig.1.4 - Kinematics

Before the collision the photon and electron have relativistic energy-momentum
(E0 = hν0, p0) and (E0e = mec

2, p0e = 0) respectively, while after the col-
lision they have (E = hν, p) and (Ee =

p
m2
ec
4 + p2ec

2, pe) (see Fig. 1.4).
Momentum and energy conservation require

p0 = p+ pe (1.7)

hν0 +mec
2 = hν +

p
m2
ec
4 + p2ec

2.
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From the first formula one derives pe2 = p20 + p2 − 2p0p cos θ, where one may
substitute the relativistic photon momenta p0 = E0/c = hν0/c and p = E/c =
hν/c. This expression may be replaced in the second formula thus obtaining a
relation between the frequencies (ν, ν0). This relation can be rewritten in terms
of the wavelengths λ0 = c

ν0
and λ = c

ν . Finally by isolating the square-root
and squaring both sides of the equation one derives

λ = λ0 +
h

mec
(1− cos θ). (1.8)

The combination λe = h
mec

= 3.862×10−13m is called the Compton wavelength
of the electron. This result explains the second, angle dependent, peak. The
first peak occurs due to the scattering of the photon from an entire atom. In this
case the mass of the atom must be replaced in place of the mass of the electron
so that the Compton wavelength of the atom λA =

h
mAc

≤ 10−16m appears in
the formula. Since this is much smaller, the peak appears to be almost angle
independent at λ ∼= λ0.

1.1.4 Particle-wave duality

The conclusion from the Planck, Einstein and Compton analyses was that light,
which was thought to be a wave classically, could also behave like a particle at the
quantum level. It was then natural to ask the question of whether this “particle-
wave duality” may apply to other objects that carry energy and momentum?
For example, could a classical particle such as an electron behave like a wave at
the quantum level? Indeed in 1923 DeBroglie postulated such a particle-wave
duality and assigned the wavelength

λ =
h

p
(1.9)

to any particle that has momentum p. This is consistent with the photon’s
electromagnetic wave momentum p = E/c = hν/c = h/λ. But he proposed
this momentum-wavelength relation to be true for the electron or other classical
particles as well, even though the energy-momentum relation for these particles
is quite different than the photon’s (i.e. E = p2/2m or E = (p2c2 +m2c4)1/2 ).

Fig. 1.5 - Interference with electrons.
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To check this idea one needed to look for interference phenomena that can
happen only with waves, similar to the scattering of light from crystals. Indeed,
Davisson and Germer performed experiments in which they scattered electrons
from crystals, and found interference patterns of bright and dark rings that
have striking similarities to interference patterns of X-rays (see Fig. 1.5). The
interference can be understood by considering the difference between the path
lengths of electrons that strike two adjacent layers in the crystal. Given that
the layers are separated by a distance a and that the rays come and leave at an
angle θ, the difference in the path lengths is 2a sin θ. If the electrons behave like
a wave, then there will be constructive interference (bright rings) when the path
length is a multiple of the wavelength, i.e. 2a sin θ = nλ. Thus, for electron
beams with momentum p, or kinetic energy E = p2/2me, one expects bright
rings at angles θn that satisfy

sin θn =
nλ

2a
=

nh

2ap
=

nh

2a
√
2meE

, (1.10)

and dark rings in between these angles. Indeed this is the observation. To
distinguish the interference rings from each other the quantity λ/2a should not
be too small. For electrons in the Davisson-Germer experiment the kinetic
energy was about 160 eV, which gave λ/2a ∼= 1/4. One can perform similar
interference experiments with molecular beams or slow neutrons with kinetic
energies of the order of 0.1 eV . On the other hand for macroscopic objects (e.g.
mass of 0.001 mg) moving at ordinary speeds (e.g. 10 cm/ sec ) the ratio λ/2a
is too small (∼= 10−14) to detect any quantum interference in their behavior.

1.1.5 Bohr atom

While the concept of wave-particle duality was developing, other puzzles about
the structure of atoms were under discussion. In 1911 Rutherford had experi-
mentally established that the atom had a positively charged heavy core forming
the nucleus of charge Ze and that Z electrons travelled around it like planets
around a sun, bound by an attractive Coulomb force. This raised a puzzle: ac-
cording to the laws of electromagnetism, charged particles that accelerate must
radiate energy; since the electrons must accelerate to stay in orbit (radial ac-
celeration) they must gradually loose their energy and fall into the nucleus in
about 10−10 sec. This reasoning must be false since an atom can live essentially
forever, but why? Another puzzle was that when atoms radiated, the emitted
photons came in definite quantized frequencies ν, parametrized experimentally
by two integers ν = const.[(1/n)2 − (1/n0)2] , rather than arbitrary continuous
frequencies as would be the case in classical physics.
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Fig1.6: Circular orbits

The only possibility was to give up classical physics, as was done by Bohr
who gave two rules in 1913 to resolve both puzzles. Without an underlying
theory Bohr declared the following two principles that explain the observations
(see Fig. 1.6)

1) The electron chooses orbits r = rn in which its angular momentum L = mvr
is quantized in units of the Planck constant, L = mvr = n~.

As is customary, we have used ~ = h/ 2π. To find the orbits and the ener-
gies of the electrons one applies the rules of classical physics (force=mass ×
acceleration) and the quantization condition

Ze2

r2
=

mev
2

r
, mevr = n~ , (1.11)

and solve for both the radius and the velocity

r =
a0n

2

Z
, v =

Zαc

n
, (1.12)

where α = e2/~c = 1/137 is the fine structure constant, and a0 = ~2/mee
2 ∼=

0.53 × 10−10m is the Bohr radius. The energy of the electron in such orbits is

En =
1

2
mev

2 − Ze2

r
= −mec

2(Zα)2

2n2
∼= −

Z2

n2
(13.6 eV ) . (1.13)

Note that 1 eV ∼= 1.6× 10−12 erg = 1.6× 10−5 J.

2) Electrons radiate only when they jump from a higher orbit at rn0 to a lower
one at rn, and due to energy conservation, the radiation frequency ν is
determined by the energy difference in these two orbits, hν = En0 −En.

This gives
hν = Z2(13.6 eV )[(1/n)2 − (1/n0)2] , (1.14)

in accordance with observation1.
1When the quantum numbers get large classical physics results should emerge from quan-

tum mechanics, since large quantum numbers may be regarded as the limit ~ → 0 while the
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The wavelength of the radiation emitted for Hydrogen is in the ultraviolet
region, as can be seen by taking the example with n = 1, n0 = 2 which gives
hν = (1 − 1

4)(13.6 eV ) and λ = c/ν ∼= 1200 Angstroms. The success of the
Bohr model is additional evidence for the wave-particle duality, since the Bohr
quantization rulemvr = ~n is rewritten as 2πr = nh/mv = nh/p = nλ, where λ
is the DeBroglie wavelength (which was proposed later). Therefore it says that
an integer number of wavelengths fit exactly into the perimeter of the electron
orbit, thus requiring the electron to perform periodic wave motion around the
orbit (see Fig. 1.7 ).

Fig. 1.7 - Waves around the perimeter.

1.1.6 Fundamental principles of QM

With all these hints, it was time to ask the question: what is the wave equation
satisfied by particles? One already knew that for radiation the wave equation
was given by Maxwell’s equations, i.e. (∇2− 1

c2 ∂
2
t )Aµ = 0. Schrödinger first

proposed to replace the velocity of light in this equation by the velocity of
the particle, but soon afterwards realized that the DeBroglie waves would be
correctly described by the Schrödinger equation

i~∂tψ = [−
~2

2m
∇2 + V ]ψ . (1.15)

Then Born proposed to interpret |ψ(r, t)|2 as the probability of finding the par-
ticle at position r at time t. In the meantime Heisenberg developed a matrix
mechanics approach to Quantum Mechanics. Observed quantities such as posi-
tion or momentum depended on two states and had to be specified in the form
xij and pij . He extracted multiplication rules for these quantities by analyzing
spectral lines for emission and absorption. Finally it was Born and Jordan who
realized that these rules could be rewritten as matrix multiplication. It turned

classical quantity remains finite, e.g. L = ~n. Indeed this correspondance principle may be
seen at work in the radiation frequency. The radiation frequency between two neighboring

states at large quantum numbers n is ν = mec
2

2h
(Zα)2[1/n2 − 1/(n+ 1)2] ∼= mec

2

hn3
(Zα)2. On

the other hand the classical radiation frequency is ν = v/(2πr) which is seen to be the same
once the velocity and radius computed above are substituted in this expression. Thus, for
large quantum numbers quantum mechanics reduces to classical mechanics.
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out that the matrices that represented position and momentum satisfied the
matrix commutation rule

(x) (p)− (p) (x) ≡ [(x) , (p)] = i~ (I) , (1.16)

where (I) is the identity matrix. It was also understood that in wave mechanics
as well there were operators x and p = −i~∇ that satisfy

[xi, pj ] = i~δij , (1.17)

when applied on the wavefunction ψ. It can be shown that the non-commutativity
of position and momentum leads directly to Heisenberg’s uncertainty principle
which states that the uncertainties in the measurement of position and momen-
tum must satisfy the inequality ∆x∆p ≥ ~/2 (see next two chapters). Therefore
it is not possible to measure both position and momentum simultaneously with
infinite accuracy. Quantum Mechanics does not prevent the measurement of the
position (or momentum) of a particle with infinite accuracy, but if one chooses
to do so then the momentum (or position) of the particle is completely unknown.
Finally by 1925, with the work of Born, Heisenberg, Pauli, Jordan, Dirac and
Schrödinger, it was understood that all the empirical quantum rules could be
derived from the statement that canonical conjugates such as position and mo-
mentum do not commute with each other. In fact the commutator is always i~
for any set of canonically conjugate observables. Therefore, the rules for Quan-
tum Mechanics boil down to the commutation rules of canonical conjugate pairs.
In the 1950’s Feynman developed the path integral formalism as an alternative
formulation of Quantum Mechanics and showed that it is completely equivalent
to the canonical commutation rules. The path integral approach resembles sta-
tistical mechanics, and the probabilistic nature of Quantum Mechanics is built
in from the beginning. Modern developments in the past couple of decades in
several areas of fundamental physics (such as quantum field theory, string the-
ory) have relied heavily on the path integral formulation which turned out to
be more convenient for certain computations. These ideas will be explained in
more detail in the coming chapters after developing the mathematical formalism
of Quantum Mechanics and its physical interpretation in a logical rather than
historical sequence.

1.2 QM from one angstrom to the Planck scale

In the 20th century tremendous progress was made in Physics. In Fig.1.8 the
evolution of the fundamental theories which describe natural phenomena is given
along with the interconnections which exist between these theories. Historically
new insight emerged when apparent contradictions arose between theoretical
formulations of the physical world. In each case the reconciliation required a
better theory, often involving radical new concepts and striking experimental
predictions. The major advances were the discoveries of special relativity, quan-
tum mechanics, general relativity, and quantum field theory. All of these are the
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Figure 1.1: Fig.1.8 : Evolution of fundamental theory.

ingredients of the Standard Model, which is a special quantum field theory, that
explains natural phenomena accurately down to 10−17 cm. The question mark
refers to the current status of String Theory which attempts to unify all inter-
actions. These advances were accompanied by an understanding that Nature
is described by mathematical equations that have very deep and very beautiful
symmetries. In fact, the fundamental physical principles are embodied by the
symmetries.

As discussed in this chapter, Quantum Mechanics was born when Planck
discovered that he needed to introduce the fundamental constant ~ in order to
understand the thermodynamics and statistical mechanics of black body radia-
tion. To do so he had to abandon certain concepts in classical mechanics and
introduce the concept of quantized energy.

Special Relativity developed when Einstein understood the relationship be-
tween the symmetries of Maxwell’s equations, which describe the properties of
light, and those of classical mechanics. He had to introduce the then radical
concept that the velocity of light is a constant as observed from any moving
frame. In Special Relativity, one considers two observers that are in relative
motion to each other with velocity vrel as in Fig.1.9.
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Fig.1.9: Observers in relative motion.

If the first observer measures the velocity of a moving object v1 in his own frame
of reference, then the second observer measures v2 such that

v2 =
vrel + v1k + v1⊥

p
1− v2rel/c2

1 + v1 · vrel/c2
, (1.18)

where v1k,v1⊥ are the components of v1 that are parallel or perpendicular to
vrel respectively, and c is the velocity of light. One can verify from this for-
mula that, if the particle has the speed of light according to the first observer
|v1| =

q
v21k + v

2
1⊥ = c , then it also has the speed of light according to the sec-

ond observer |v2| = c, for any relative velocity of the two observer vrel. So, the
velocity of light is always c as seen by any moving or static observer. This is an
example of relativistic invariance (i.e. observations independent of the moving
frame characterized by vrel). Furthermore, for slow moving objects and slow
moving observers which satisfy v1 ·vrel ¿ c2 and v2rel ¿ c2, the rule for the ad-
dition of velocities in eq.(1.18) is approximated by the familiar rule in Newtonian
mechanics v2 → vrel + v1. Thus, Einstein replaced the Galilean symmetry of
Newtonian mechanics (rotations, translations, and Galilean boosts to moving
frames) by the Lorentz symmetry of Maxwell’s equations and of Special Relativ-
ity (rotations, translations, and relativistic boosts to moving frames). Galilean
symmetry is just an approximation to Lorentz symmetry when the velocity of
the moving frame is much smaller as compared to the velocity of light.
General Relativity emerged from a contradiction between Special Relativity

and Newton’s theory of gravitation. Newton’s gravity successfully explained
the motion of the planets and all other everyday life gravitational phenomena.
However, it implies instantaneous transmission of the gravitation force between
two objects across great distances. On the other hand, according to special
relativity no signal can be transmitted faster than the speed of light. The reso-
lution is found in Einstein’s general theory of relativity which is based on very
beautiful symmetry concepts (general coordinate invariance) and very general
physical principles (the equivalence principle). It agrees with the Newtonian
theory for low speeds and weak gravitational fields, but differs from it at high
speeds and strong fields. In General Relativity gravity is a manifestation of the
curvature of space-time. Also, the geometry of space-time is determined by the
distribution of energy and momentum. Thus, the fabric of space-time is curved
in the vicinity of any object, such that the curvature is greater when its energy
(or mass) is bigger. For example space-time is curved more in the vicinity of
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the sun as compared to the vicinity of Earth, while it is flat in vacuum. The
trajectory of an object in curved space-time corresponds to the shortest curve
between two points, called the geodesic. The curving of the trajectory is rein-
terpreted as due to the action of the gravitational force (equivalence principle).
So, gravity acts on any object that has energy or momentum, even if it has
no mass, since its trajectory is affected by the curvature of space-time. Thus,
the trajectory of light from a star would be curved by another star such as the
sun. This tiny effect was predicted with precision by Einstein and observed by
Eddington soon afterwards in 1916.
Following the discovery of Quantum Mechanics most of the successful work

was done for about thirty years in the context of non-relativistic quantum me-
chanics. However, another contradiction, known as the Klein paradox, arose in
the context of relativistic quantum mechanics. Namely, in the presence of strong
fields the formalism of special relativity requires the creation and annihilation
of quanta, while the formalism of non-relativistic quantum mechanics cannot
describe the physical phenomena. The framework in which quantum mechanics
and special relativity are successfully reconciled is quantum field theory. Par-
ticle quantum mechanics is itself a limiting case of relativistic quantum field
theory. Quantum Electrodynamics (QED), which is a special case of relativistic
quantum field theory turned out to explain the interaction of matter and radi-
ation extremely successfully. It agrees with experiment up to 12 decimal places
for certain quantities, such as the Lamb shift and the anomalous magnetic mo-
ment of the electron and the muon. Such successes provided great confidence
that physicists were pretty much on the right track.
There is a special subset of quantum field theories that are especially inter-

esting and physically important. They are called “Yang-Mills” gauge theories,
and have a symmetry called gauge invariance based on Lie groups. QED is the
first example of such a theory. Gauge invariance turns out to be the underlying
principle for the existence of all forces (gravity, electromagnetism, weak and
strong forces). The Electroweak gauge theory of Weinberg-Salam and Glashow
based on the Lie group SU(2)⊗U(1) is a first attempt to unifying two fundamen-
tal interactions (electromagnetic and weak). The Electroweak theory together
with QCD , which describes the strong interactions, form the Standard Model
of Particle Physics based on the gauge group SU(3)⊗SU(2)⊗U(1). The Stan-
dard Model has been shown to be experimentally correct and to describe the
fundamental interactions at distances as small as 10−19m. All phenomena in Na-
ture that occur at larger distances are controlled by the fundamental processes
given precisely by the Standard Model. In this theory there exist gauge particles
that mediate the interactions. The photon is the mediator of electromagnetic
interactions, the W± and Z0 bosons are the mediators of weak interactions and
the gluons are the mediators of strong interactions. All known matter is con-
structed from 6 quarks (each in three “colors”) and 6 leptons which experience
the forces through their quantum mechanical interactions with the gauge parti-
cles. The gauge particles are in one-to-one correspondance with the parameters
of the Lie group SU(3)⊗SU(2)⊗U(1), while the quarks and leptons form an
array of symmetry patterns that come in three repetitive families. The Stan-
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dard Model leaves open the question of why there are three families, why there
are certain values of coupling constants and masses for the fundamental fields
in this theory, and also it cannot account for quantum gravity. However, it is
amazingly successful in predicting and explaining a wide range of phenomena
with great experimental accuracy. The Standard Model is the culmination of
the discoveries in Physics during the 20th century.

There is one aspect of relativistic quantum field theory, called “renormal-
ization”, which bothered theoretical physicists for a while. It involves infinities
in the computations due to the singular behavior of products of fields that be-
have like singular distributions. The process of renormalization removes these
infinities by providing the proper physical definition of these singular products.
Thus, there is a well defined renormalization procedure for extracting the fi-
nite physical results from quantum field theory. This permits the computation
of very small quantum corrections that have been measured and thus provides
great confidence in the procedure of renormalization. However, renormaliza-
tion, although a successful procedure, also leaves the feeling that something is
missing.

Furthermore, there remains one final contradiction: General relativity and
quantum field theory are incompatible because Einstein’s General Relativity
is not a renormalizable quantum field theory. This means that the infinities
cannot be removed and computations that are meant to be small quantum
corrections to classical gravity yield infinite results. The impass between two
enormously successful physical theories leads to a conceptual crisis because one
has to give up either General Relativity or Quantum Mechanics. Superstring
theory overcomes the problem of non-renormalizability by replacing point-like
particles with one-dimensional extended strings, as the fundamental objects of
roughly the size of 10−35 meters. In superstring theory there no infinities at
all. Superstring theory does not modify quantum mechanics; rather, it modifies
general relativity. It has been shown that Superstring theory is compatible
with the Standard Model and its gauge symmetries, and furthermore it requires
the existence of gravity. At distances of 10−32 meters superstring theory is
effectively approximated by Supergravity which includes General Relativity. At
this stage it is early to know whether superstring theory correctly describes
Nature in detail. Superstring theory is still in the process of development.

One can point to three qualitative “predictions” of superstring theory. The
first is the existence of gravitation, approximated at low energies by general
relativity. Despite many attempts no other mathematically consistent theory
with this property has been found. The second is the fact that superstring
solutions generally include Yang—Mills gauge theories like those that make up
the Standard Model of elementary particles. The third general prediction is the
existence of supersymmetry at low energies. It is hoped that the Large Hadron
Collider (LHC) that is currently under construction at CERN, Geneva, Switzer-
land will be able to shed some light on experimental aspects of supersymmetry
by the year 2005.
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1.3 Problems
1. Consider the Hamiltonian

H = p2/2m+ γ |r| . (1.19)

Using Bohr’s method compute the quantized energy levels for circular
orbits.

2. Consider the Hamiltonian

H = c |p|+ γ |r| , (1.20)

and its massive version

H =
¡
p2c2 +m2c4

¢1/2
+ γ |r| . (1.21)

What are the quantized energy levels for circular orbits according to Bohr’s
method?

3. According to the non-relativistic quark model, the strong interactions be-
tween heavy quarks and anti-quarks (charm, bottom and top) can be ap-
proximately described by a non-relativistic Hamiltonian of the form

H = m1c
2 +m2c

2 + p2/2m+ γ |r|− α/ |r| , (1.22)

wherem = m1m2/(m1+m2) is the reduced mass, and p, r are the relative
momentum and position in the center of mass ( H may be interpreted as
the mass of the state, i.e. H =Mc2 since it is given in the center of mass).
The combination of linear and Coulomb potentials is an approximation to
the much more complex chromodynamics (QCD) interaction which con-
fines the quarks inside baryons and mesons. Note that γ, α are positive,
have the units of (energy/distance)=force, and (energy× distance) respec-
tively, and therefore they may be given in units of γ ∼ (GeV/fermi) and
α ∼ (GeV × fermi) that are typical of strong interactions. Apply Bohr’s
quantization rules to calculate the energy levels for circular orbits of the
quarks. Note that we may expect that this method would work for large
quantum numbers. What is the behavior of the energy as a function of n
for large n? What part of the potential dominates in this limit?

4. Light quarks (up, down, strange) move much faster inside hadrons. The
potential approach is no longer a good description. However, as a simple
model one may try to use the relativistic energy in the Hamiltonian (in
the rest mass of the system H =Mc2)

H =
¡
p2c2 +m2

1c
4
¢1/2

+
¡
p2c2 +m2

2c
4
¢1/2

+ γ |r|− α/ |r| . (1.23)

What are the energy levels (or masses of the mesons) for circular orbits
according to Bohr’s method? Note that the massless limitm1 = m2 = 0 is
simpler to solve. What are the energy levels in the limits m1 = 0, m2 6= 0
and m1 = m2 = 0?



Chapter 2

FROM CM TO QM

In this chapter we develop the passage from classical to quantum mechanics in
a semi-informal approach. Some quantum mechanical concepts are introduced
without proof for the sake of establishing an intuitive connection between clas-
sical and quantum mechanics . The formal development of the quantum theory
and its relation to the measurement process will be discussed in the next chapter.
In Classical Mechanics there are no restrictions, in principle, on the pre-

cision of simultaneous measurements that may be performed on the physical
quantities of a system. However, in Quantum Mechanics one must distinguish
between compatible and non-compatible observables. Compatible observables
are the physical quantities that may be simultaneously observed with any pre-
cision. Non-compatible observables are the physical quantities that may not be
simultaneously observed with infinite accuracy, even in principle. In the mea-
surement of two non-compatible observables, such as momentum p and position
x, there will always be some uncertainties ∆p and ∆x that cannot be made both
zero simultaneously. As Heisenberg discovered they must satisfy

∆x∆p ≥ ~/2. (2.1)

So, if the position of a particle is measured with infinite accuracy, ∆x = 0,
then its momentum would be completely unknown since ∆p = ∞, and vice-
versa. In a typical measurement neither quantity would be 100% accurate, and
therefore one must deal with probabilities for measuring certain values. It must
be emphasized that this is not due to the lack of adequate equipment, but it is
a property of Nature.
This behavior was eventually formulated mathematically in terms of non-

commuting operators that correspond to position x̂ and momentum p̂, such
that

[x̂, p̂] = i~. (2.2)

All properties of quantum mechanics that are different from classical mechanics
are encoded in the non-zero commutation rules of non-compatible observables.
The fact that ~ is not zero in Nature is what creates the uncertainty.

29
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In this chapter we will illustrate the methods for constructing the quantum
theory by first starting from the more familiar classical theory of free particles.
This will be like a cook book recipe. We will then derive quantum properties
such as wave packets, wave-particle duality and the uncertainty principle from
the mathematical formalism. It will be seen that the only basic ingredient that
introduces the quantum property is just the non-zero commutation rules among
non-compatible observables, as above. Classical mechanics is recovered in the
limit of ~→ 0, that is when all observables become compatible.
There is no fundamental explanation for the “classical to quantum recipe”

that we will discuss; it just turns out to work in all parts of Nature from one
Angstrom to at least the Electroweak scale of 10−18m, and most likely all the
way to the Planck scale of 10−35m. The distance of 1 Angstrom (10−8cm) nat-
urally emerges from the combination of natural constants ~, e,me in the form
of the Bohr radius a0 = ~2/e2me

∼= 0.529× 10−10m. At distances considerably
larger than one Angstrom the Classical Mechanics limit of Quantum Mechan-
ics becomes a good approximation to describe Nature. Therefore, Quantum
Mechanics is the fundamental theory, while Classical Mechanics is just a limit.
The fact that we start the formulation with Classical Mechanics and then ap-
ply a recipe to construct the Quantum Theory should be regarded just as an
approach for communicating our thoughts. There is another approach to Quan-
tum Mechanics which is called the Feynman path integral formalism and which
resembles statistical mechanics. The Feynman approach also starts with the
classical formulation of the system. The two approaches are equivalent and can
be derived from each other. In certain cases one is more convenient than the
other.
It is amusing to contemplate what Nature would look like if the Planck

constant were much smaller or much larger. This is left to the imagination of
the reader.

2.1 Classical dynamics
The equations of motion of any classical system are derived from an action
principle. The action is constructed from a Lagrangian S =

R
dt L(t). Consider

the easiest example of dynamics: a free particle moving in one dimension1.
Classically, using the Lagrangian formalism, one writes

L =
1

2
mẋ2. (2.3)

Defining the momentum as p=∂L/∂ẋ, one has

p = mẋ =⇒ ẋ =
p

m
. (2.4)

1Everything we say in this chapter may be generalized to three dimensions or d dimensions
(d = 2, 3, 4, · · · ) by simply putting a vector index on the positions and momenta of the
particles. We specialize to one dimension to keep the notation and concepts as simple as
possible.
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The Hamiltonian is given by

H = pẋ− L = p
p

m
− m

2

³ p

m

´2
=

p2

2m
. (2.5)

The Hamiltonian must be expressed in terms of momenta, not velocities. The
classical equations of motion follow from either the Lagrangian via Euler’s equa-
tions

∂t
∂L

∂ẋ
− ∂L

∂x
= 0 =⇒ mẍ = 0 , (2.6)

or the Hamiltonian via Hamilton’s equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
=⇒ ẋ =

p

m
, ṗ = 0. (2.7)

In this case the particle moves freely, since its acceleration is zero or its momen-
tum does not change with time.
The relation between momentum and velocity is the familiar one in this

case, i.e. p = mẋ, but this is not always true. As an example consider the free
relativistic particle moving in one dimension whose Lagrangian is

L = −mc2
p
1− ẋ2/c2. (2.8)

Applying the same procedure as above, one gets the momentum p = ∂L/∂ẋ

p =
mẋp

1− ẋ2/c2
=⇒ ẋ =

pc2p
p2c2 +m2c4

(2.9)

and the Hamiltonian

H = pẋ− L =
p
p2c2 +m2c4. (2.10)

This energy-momentum relation is appropriate for the relativistic particle. Fur-
thermore, note that even though the momentum takes values in −∞ < p <∞,
the velocity cannot exceed the speed of light |ẋ| < c. Hamilton’s equations,
ẋ = ∂H/∂p, and ṗ = −∂H/∂x = 0, indicate that the particle is moving freely,
and that its velocity-momentum relation is the one given above.
Similarly, the classical equations of motion for any system containing any

number of free or interacting moving points xi may be derived from its La-
grangian L(xi, ẋi). In non-relativistic mechanics the Lagrangian for N interact-
ing particles is given by the kinetic energy minus the potential energy

L =
NX
i=1

1

2
miẋ

2
i − V (x1, · · · , xN ) (2.11)

One defines the momentum of each point as pi = ∂L/∂ẋi, and from these
equations determine the relation between velocities and momenta. Then one
may derive the Hamiltonian which is the total energy
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H =
PN

i=1 piẋi − L(xi, ẋi)

=
PN

i=1
p2i
2mi

+ V (x1, · · · , xN ),
(2.12)

that must always be written only in terms of positions and momenta H(xi, pi).
Although (2.12) is the usual form of the Hamiltonian in non-relativistic dy-

namics, it is not always the case for more general situations and sometimes it
may look more complicated. Nevertheless, through Hamilton’s equations we can
find out the time evolution of the system once the initial conditions have been
specified. One may consider the Hamiltonian as the generator of infinitesimal
time translations on the entire system, since Hamilton’s equations ẋi = ∂H/∂pi,
and ṗi = −∂H/∂xi provide the infinitesimal time development of each canonical
variable, that is

xi(t+ �) = xi(t) + �ẋi(t) + · · · and pi(t+ �) = pi(t) + �ṗi(t) + · · · . (2.13)

This point of view will generalize to Quantum Mechanics where we will see that
the Hamiltonian will play the same role.

2.2 Quantum Dynamics

The classical formalism described above provides the means of defining canonical
pairs of positions and momenta (xi, pi) for each point i (that is, xi is associated
with the momentum pi = ∂L/∂ẋi). It is these pairs that are not compatible
observables in Quantum Mechanics. One may observe simultaneously either the
position or the momentum of any point with arbitrary accuracy, but if one wants
to observe both attributes for the same point simultaneously, then there will be
some uncertainty for each point i, and the uncertainties will be governed by the
equations ∆xi∆pi ≥ ~/2 . To express the physical laws with such properties
one needs to develop the appropriate mathematical language as follows.
A measurement of the system at any instant of time may yield the positions

of all the points. Since positions are compatible observables, one may record the
measurement with infinite accuracy (in principle) in the form of a list of num-
bers |x1, · · · , xN > . Also, one may choose to measure the momenta of all the
points and record the measurement as |p1, · · · , pN > . One may also do simul-
taneous measurements of some compatible positions and momenta and record
it as |x1, p2, p3, · · · , xN > . All of these are 100% precise measurements with no
errors. These lists of numbers will be called “eigenstates”. They describe the
system precisely at any instant of time. We will make up a notation for saying
that a particular observable has a 100% accurate measurement that corresponds
to an eigenstate. For this purpose we will distinguish the observable from the
recorded numbers by putting a hat on the corresponding symbol. So, we have
observables (x̂i, p̂i) and the statements that they have precise values in some
eigenstates are written as
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x̂i|x1, · · · , xN > = xi|x1, · · · , xN >
p̂i|p1, · · · , pN > = pi|p1, · · · , pN >
x̂1|x1, p2, · · · > = x1|x1, p2, · · · >
p̂2|x1, p2, · · · > = p2|x1, p2, · · · >

(2.14)

etc.. It is said that these operators are “diagonal” on these eigenstates, and
the real numbers (xi, pi) that appear on the right hand side, or which label the
eigenstates, are called “eigenvalues” of the corresponding operators. From now
on we will adopt this language of “operator”, “eigenvalue” and “eigenstate”.
The language that emerged above corresponds to the mathematical language

of vector spaces and linear algebra. Let us first give an informal description of
the mathematical structure and the corresponding physical concepts. The states
are analogous to column matrices or row matrices, while the operators corre-
spond to square matrices. Any square matrix can be diagonalized and it will
give an eigenvalue when applied to one of its eigenstates. It is well known that
Hermitian matrices must have real eigenvalues. Since only real eigenvalues can
correspond to observed quantities, Hermitian matrices will be the candidates
for observables. Matrices that commute with each other can be simultaneously
diagonalized and will have common eigenstates. These are analogous to compat-
ible observables such as x̂1, x̂2. Matrices that do not commute with each other
cannot be simultaneously diagonalized. They correspond to non-compatible ob-
servables such as x̂1, p̂1. If an observable that is not compatible with the list of
measured eigenvalues is applied on the state, as in p̂i|x1, · · · , xN > , the result
is not proportional to the same eigenstate, but is some “state” that we will
compute later. The vector spaces in Quantum Mechanics are generally infinite
dimensional. They are labelled by continuous eigenvalues such as x or p and
they are endowed with a dot product and a norm (see below). Such an infinite
dimensional vector space is called a Hilbert space.
At this point we can introduce the postulates of Quantum Mechanics. The

first postulate states that: At any instant a physical system corresponds
to a “state vector” in the quantum mechanical Hilbert space. The second
postulate states that: To every physical observable there corresponds a linear
operator in the Hilbert space. The result of any measurement are real numbers
corresponding to eigenvalues of Hermitian operators. These eigenvalues will
occur with definite probabilities that depend on the state that is being measured.
The third postulate gives a mathematical expression for the probability as
given below. These will be clarified in the discussion that follows.

2.2.1 One particle Hilbert Space

To keep our formalism simple, let us return to the one particle moving in one
dimension. In this case there are just two canonical operators x̂ and p̂. Their
eigenstates are |x > and |p > respectively. These will be called “kets” and
we will assign to them the mathematical properties of a complex vector space.
That is, kets may be multiplied by complex numbers and they may be added
to each other. The resulting ket is still a member of the complex vector space.
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Kets are analogous to column matrices. For column matrices in n dimensions
one may define a complete basis consisting of n linearly independent vectors.
Keeping this analogy in mind we want to think of the set of all the kets {|x >}
as the complete basis of an infinite dimensional vector space whose elements
are labelled by the continuous number x and whose range is −∞ < x <∞. The
idea of completeness here is tied to all the possible measurements of position
that one may perform with 100% precision. Similarly, the set of the momentum
kets {|p >} must form a complete basis for the same particle. Therefore we
must think of the position and momentum eigenstates as two complete bases
for the same vector space. In the case of an n−dimensional vector space one
may chose different complete bases, but they must be related to each other by
similarity transformations. Similarly, the position and momentum bases must
be related to each other by similarity transformations, that is

|x >=

Z ∞
−∞

dp |p > Fp,x or |p >=
Z ∞
−∞

dx |x > Gx,p , (2.15)

where the functions F,G are to be found.
In general the particle may not be measured in a state of precise position or

precise momentum. This will be denoted by a more general vector |ψ > which
is a linear superposition of either the position or momentum basis vectors.

|ψ >=

Z ∞
−∞

dx |x > ψ(x) =

Z ∞
−∞

dp |p > eψ(p) . (2.16)

According to the first postulate of Quantum Mechanics any such state is a
physical state, provided it has finite norm (see definition of norm later).
In a vector space it is natural to define an inner product and an outer

product. For this purpose one defines a complete set of “bras” {< x|} that are in
one to one correspondance to the position kets, and similarly another complete
set of bras {< p|} that are in one to one correspondance to the momentum
kets. Bras are analogous to the row vectors of an n−dimensional vector space.
Formally we relate bras and kets by Hermitian conjugation

< x| = (|x >)†, < p| = (|p >)†. (2.17)

Therefore, the general vector in bra-space < ψ| = (|ψ >)†has expansion coef-
ficients that are the complex conjugates of the ones that appear for the corre-
sponding kets

< ψ| =
Z ∞
−∞

dx ψ∗(x) < x| =
Z ∞
−∞

dp eψ∗(p) < p|. (2.18)

The inner product between a bra < φ| and a ket |ψ > is analogous to the
inner product of a row vector and a column vector. The result is a complex num-
ber. The norms of the vectors can be chosen so that the position or momentum
bases are orthogonal and normalized to the Dirac delta function
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< x0|x >= δ(x0 − x) , < p0|p >= δ(p0 − p). (2.19)

The outer product between a ket and a bra is analogous to the outer product
between a column vector and a row vector, with the result being a matrix. So,
the outer product between two states is an operator that will be written as
|ψ1 >< ψ2|. When the same state is involved we will define the Hermitian
operator Pψ

Pψ ≡ |ψ >< ψ|.

In particular |x >< x| ≡ Px is a projection operator to the vector subspace of
the eigenvalue x. So, it serves as a “filter” that selects the part of the general
state that lies along the eigenstate |x > . This can be seen by applying it to the
general state

Px|ψ > =
R∞
−∞ dx0|x >< x|x0 > ψ(x0)

= |x >
R∞
−∞ dx0δ(x− x0)ψ(x0)

= |x > ψ(x)

(2.20)

or similarly < ψ|Px = ψ∗(x) < x|. By taking products

PxPx0 = |x >< x|x0 >< x0| = δ(x− x0)Px

it is seen that the Px satisfy the properties of projection operators. The complete
set of projection operators must sum up to the identity operatorZ ∞

−∞
dx0 |x0 >< x0| = 1 =

Z ∞
−∞

dp0 |p0 >< p0| . (2.21)

The consistency of these definitions may be checked by verifying that the
symbol 1 does indeed act like the number one on any vector. One sees that
1|x >= |x > as follows

1|x >=

Z ∞
−∞

dx0 |x0 >< x0|x >=

Z ∞
−∞

dx0 |x0 > δ(x0 − x) = |x >, (2.22)

and similarly for any state 1|ψ >= |ψ > . Using these properties one may
express the functions Fp,x,Gx,p, ψ(x), eψ(p) as inner products as follows

|x >= 1|x>=
R∞
−∞ dp |p >< p|x > ⇒ Fp,x =< p|x >

|p >= 1|p>=
R∞
−∞ dx |x >< x|p > ⇒ Gx,p =< x|p >

|ψ >= 1|ψ>=
R∞
−∞ dp |p >< p|ψ > ⇒ eψ(p) =< p|ψ >

|ψ >= 1|ψ>=
R∞
−∞ dx |x >< x|ψ > ⇒ ψ(x) =< x|ψ > .

(2.23)

From the above definitions it is evident that

< x|p >= (< p|x >)∗, (2.24)

< ψ|x >= (< x|ψ >)∗ = ψ∗(x),
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etc.. Also, the inner product between two arbitrary vectors is found by inserting
the identity between them

< ψ1|ψ2 > = < ψ1|1|ψ2 >
=

R∞
−∞ dx < ψ1|x >< x|ψ2 > =

R∞
−∞ dx ψ∗1(x)ψ2(x)

=
R∞
−∞ dp < ψ1|p >< p|ψ2 > =

R∞
−∞ dp eψ∗1(p)eψ2(p).

(2.25)
These properties allows us to interpret the projection operator Px as the

experimental apparatus that measures the system at position x. So, a mea-
surement of the system in the state |ψ > at position x = 17 cm will be math-
ematically symbolized by applying the measurement operator Px=17cm on the
state |ψ > as above, P17cm|ψ >= |17 cm >< 17 cm|ψ >. Similarly, a measure-
ment of the system at some momentum with the value p will be symbolized by
the projection operator Pp = |p >< p|. It is seen that when a measurement
is performed on the system |ψ >, then its state collapses to an eigenstate of
the corresponding observable, and this fact justifies calling this mathematical
operation a “measurement”. So, the measurement yields an eigenstate of the
observable times a coefficient, i.e. Px|ψ >= |x > ψ(x) or Pp|ψ >= |p > ψ̃(p).
More generally, if the experimental apparatus is not set up to detect an observ-
able with 100% accuracy, but rather it is set up to detect if the system is in
some state |φ >, then the measurement operator is Pφ = |φ >< φ|, and the
measurement yields the collapsed state Pφ|ψ >= |φ >< φ|ψ > .
At this point we introduce the third postulate of Quantum Mechan-

ics: If the system is in a state |ψ >, then the probability that a measurement
will find it in a state |φ > is given by | < φ|ψ > |2. The roles of φ and ψ
may be interchanged in this statement. This probability may be rewritten as
expectation values of measurement operators

| < φ|ψ > |2 =< ψ|Pφ|ψ >=< φ|Pψ|φ > . (2.26)

This leads to the interpretation of the expansion coefficients ψ(x) =< x|ψ > and
ψ̃(p) =< p|ψ > as probability amplitudes for finding the system in state |ψ >
at position x or with momentum p respectively. The sums of probabilities such
as |ψ(x1)|2+ |ψ(x2)|2 is interpreted as the probability for the system in state ψ
to be found at either position x1 or position x2. The probability interpretation
implies that the system ψ has 100% probability of being found in the same state
ψ, i.e. if φ = ψ then < ψ|ψ >= 1, or

< ψ|ψ >=

Z ∞
−∞

dx ψ∗(x)ψ(x) =

Z ∞
−∞

dp eψ∗(p)eψ(p) = 1, (2.27)

for any physical state |ψ > . The interpretation of this equation makes sense:
the total probability that the particle can be found somewhere in the entire
universe, or that it has some momentum is 100%.
The interpretation of |ψ(x)|2 as a probability density gives rise to the defini-

tion of average position of the system in the state ψ, i.e. xψ =
R∞
−∞ dx x |ψ(x)|2.

Similarly the average momentum is pψ =
R∞
−∞ dp p |ψ̃(p)|2. These may be
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rewritten as the expectation values of the position or momentum operators
respectively xψ =< ψ|x̂|ψ >, pψ =< ψ|p̂|ψ > . This last point may be verified
by inserting the identity operator and using the eigenvalue condition as follows

< ψ|x̂|ψ >=< ψ|x̂1|ψ >=

Z
dx < ψ|x̂|x >< x|ψ >=

Z
dxx |ψ(x)|2 (2.28)

and similarly for < ψ|p̂|ψ > . Generalizing this observation, the expectation
value of any operator Â in the state ψ will be computed as

Aψ =< ψ|Â|ψ > . (2.29)

The uncertainty of any measurement in the state ψ may be defined for any
observable as the standard deviation (∆A)ψ from its average value. Thus

(∆A)2ψ =< ψ|(Â−Aψ)
2|ψ >=< ψ|Â2|ψ > −(< ψ|Â|ψ >)2. (2.30)

So, we may write

(∆x)2ψ =

Z
dx (x− xψ)

2 |ψ(x)|2, (∆p)2ψ =

Z
dp (p− pψ)

2 |ψ̃(p)|2. (2.31)

2.2.2 Quantum rules

Everything that was said so far may apply to Classical Mechanics just as well
as to Quantum Mechanics since Planck’s constant was not mentioned. Planck’s
constant is introduced into the formalism by the fundamental commutation rules
of Quantum Mechanics. Two canonical conjugate observables such as position
and momentum taken at equal times are required to satisfy

[x̂(t), p̂(t)] = i~ (2.32)

when applied on any state in the vector space. An important theorem of linear
algebra states that it is not possible to simultaneously diagonalize two non-
commuting operators. As we will see, this means that position and momentum
are non-compatible observables and cannot be measured simultaneously with
100% accuracy for both quantities. Their non-compatibility is measured by
the magnitude of ~. Note that it follows that position operators at different
times do not commute [x(t), x(t0)] 6= 0 since the Taylor expansion gives x(t0) =
x(t) + (t− t0)ẋ(t) + · · · and the velocity is related to momentum.
One may now ask: what is the state that results from the action of p̂ on a

position eigenstate < x|p̂ =?. It must be consistent with the commutation rule
above so that < x|i~ =< x|[x̂, p̂] = x(< x|p̂) − (< x|p̂)x̂ . The solution to this
equation is

< x|p̂ = −i~ ∂

∂x
< x| . (2.33)

This can be verified by the manipulation (< x|p̂)x̂ = (−i~ ∂
∂x < x|)x̂ =

−i~ ∂
∂x(x < x|) = −i~ < x| + x(< x|p̂) , which leads to the correct result
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< x|i~ =< x|[x̂, p̂]. 2 With similar steps one finds also

p̂|x >= i~
∂

∂x
|x > (2.34)

and

< p|x̂ = i~
∂

∂p
< p| , x̂|p >= −i~ ∂

∂p
|p > . (2.35)

2.2.3 Computation of < p|x >

We are now in a position to calculate the inner product < p|x > . Quantities of
this type, involving the dot product of different basis vectors, are often needed
in quantum mechanics. The following computation may be considered a model
for the standard method. One sandwiches an operator between the two states
such that its action on either state is known. In the present case we know how
to apply either the position or momentum operator, so we may use either one.
For example, consider < p|x̂|x > and apply the operator x̂ to either the ket or
the bra.

< p|x̂|x >=

½
x < p|x >
i~ ∂

∂p < p|x >
(2.36)

The two expressions are equal, so that the complex function < p|x > must
satisfy the first order differential equation

i~
∂

∂p
< p|x > −x < p|x >= 0. (2.37)

This has the solution
< p|x >= ce−

i
~ px (2.38)

where c is a constant. Similar steps give the complex conjugate < x|p >=

c∗e
i
~ px. To find c consider the consistency with the normalization of the basis

and insert identity in the form of the completeness relation

δ(p− p0) =< p|p0 >=
R
dx < p|x >< x|p0 >

=
R
dx|c|2e− i

~ (p−p
0)x

= |c|22π~δ(p− p0)
(2.39)

Therefore, |c| = 1√
2π~
. The phase of c may be reabsorbed into a redefinition of

the phases of the states |x >, |p >, so that finally

|x >=
1√
2π~

Z ∞
−∞

dp |p > e−
i
~ px , |p >= 1√

2π~

Z ∞
−∞

dx |x > e
i
~ px. (2.40)

Therefore position and momentum bases are related to each other through a
Fourier transformation. Furthermore, one has ψ(x) =< x|1|ψ >=

R∞
−∞ dp <

2 Since these steps are sometimes confusing to the beginner, it may be useful to redo
them by defining the derivative of the state by a limiting procedure ( ∂

∂x
< x|)bx =

(lima→0
<x+a|−<x|

a
)bx = lima→0

<x+a|(x+a)−<x|x
a

=< x|+ ∂
∂x

< x|.
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x|p >< p|ψ >= 1√
2π~

R∞
−∞ dp e

i
~ px eψ(p). Similarly, one may insert identity in

x-space in ψ̃(p) =< p|1|ψ > and derive that it is the inverse Fourier transform
of ψ(x)

ψ(x) =
1√
2π~

Z ∞
−∞

dp e
i
~ px eψ(p) , eψ(p) = 1√

2π~

Z ∞
−∞

dx e−
i
~ px ψ(x)

(2.41)
Note that Fourier transforms emerged directly from the commutation rules
[x̂, p̂] = i~. Without using Fourier’s theorem we have shown that the consis-
tency of the quantum formalism proves that if the first relation in 2.41 is true,
then the second one is also true. In other words we proved Fourier’s theorem by
only manipulating the quantum mechanical formalism. This is just an example
of many such mathematical relationships that emerge just from the consistency
of the formalism.

2.2.4 Translations in space and time

Momentum as generator of space translations

In a very general way one can see that the momentum operator p̂ is the infin-
itesimal generator of translations in coordinate space. Consider two observers,
one using the basis |x > and the other using the basis |x + a > because he
measures distances from a different origin that is translated by the amount a
relative to the first observer. Both bases are complete, and either one may be
used to write an expression for a general state vector. How are the two bases
related to each other? Consider the Taylor expansion of |x + a > in powers of
a, and rewrite it as follows by taking advantage of ∂x|x >= − i

~ p̂|x >

|x+ a > =
P∞

n=0
an

n!
∂n

∂xn |x >

=
P∞

n=0
1
n!

³
−iap̂
~

´n
|x >

= e−iap̂/~ |x >

(2.42)

So, a finite translation by a distance a is performed by the translation operatorbTa = exp(−iap̂/~) , and the infinitesimal generator of translations is the mo-
mentum operator. That is, an infinitesimal translation |x+a >= |x > +δa|x >,
is expressed in terms of the momentum operator as

δa|x >= a
∂

∂x
|x >= − ia

~
p̂|x > . (2.43)

Similarly, the position operator performs infinitesimal translations in momen-
tum space. Thus, a shift of momentum by an amount b is given by exp(ibx̂/~)|p >=
|p+ b > .
Since every state in the basis {|x >} is translated by Ta, a general state is

also translated by the same operator. Thus, the second observer can relate his
state |ψ0 > to the state used by the first observer |ψ > by using the translation
operator |ψ0 >= Ta|ψ >, where
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Ta|ψ >=

Z ∞
−∞

dx Ta|x > ψ(x) =

Z ∞
−∞

dx |x+a > ψ(x) =

Z ∞
−∞

dx |x > ψ(x−a)

(2.44)
So the probability amplitudes seen by the second observer are related to those
of the first observer by

ψ(x− a) =< x|Ta|ψ > . (2.45)

Hamiltonian as generator of time translations

By analogy to space translations, we may consider an operator that performs
time translations

U(t, t0)|ψ, t0 >= |ψ, t > . (2.46)

Recall that the Hamiltonian is the generator of infinitesimal time translations
in classical mechanics, as explained in eq.(2.13). Therefore, the expansion of
U(t, t0) should involve the Hamiltonian operator. By analogy to the space
translation operator above we may write U(t, t0) = 1 − i(t − t0)Ĥ/~ + · · · .
Therefore the infinitesimal time translations of an arbitrary state is δt ∂∂t |ψ, t >=
(−iδtĤ/~)|ψ, t > . This statement is equivalent to

i~
∂

∂t
|ψ, t >= Ĥ|ψ, t >, (2.47)

which is the famous Schrödinger equation. Thus, the Schrödinger equation is
simply the statement that the Hamiltonian performs infinitesimal time transla-
tions. The formal solution of the Schrödinger equation is (2.46), which implies
that the operator U(t, t0) must satisfy the differential equation

i~
∂

∂t
U(t, t0) = ĤU(t, t0) . (2.48)

Therefore, when Ĥ is time independent one may write the solution

U(t, t0) = e−i(t−t0)Ĥ/~ . (2.49)

If Ĥ(t) depends on time the solution for the time translation operator is more
complicated

U(t, t0) = T exp[− i

~

Z t

t0

dt0Ĥ(t0)], (2.50)

where T is a time ordering operation that will be studied in a later chapter. For
now we consider the case of a time independent Hamiltonian.
The general time dependent state may be expanded in the position basis

|ψ, t >=
Z ∞
−∞

dx |x > ψ(x, t) = e−itĤ/~ |ψ >, (2.51)
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where we have chosen the initial state |ψ, t = 0 >= |ψ > . By taking the inner
product with < x| we may now derive

ψ(x, t) =< x|ψ, t >=< x|e−itĤ/~ |ψ > . (2.52)

By applying the time derivative on both sides one sees that the time dependent
wavefunction satisfies the differential equation

i~ ∂
∂tψ(x, t) = < x|Ĥ|ψ, t > . (2.53)

Up to this point the formalism is quite general and does not refer to a particular
Hamiltonian. If we specialize to the non-relativistic interacting particle, its time
evolution will be given by

i~ ∂
∂tψ(x, t) = < x|( p̂

2

2m + V (x̂))|ψ, t >
= [− ~2

2m∂2x + V (x)] ψ(x, t).
(2.54)

where the second line follows from the action of p̂ on < x|.We have thus arrived
at the non-relativistic Schrödinger equation!
As another example consider the free relativistic particle for which the Hamil-

tonian takes the form

i~ ∂
∂tψ(x, t) = < x|

p
m2c4 + c2p̂2|ψ, t >

=
p
m2c4 − ~2c2∂2x ψ(x, t).

(2.55)

Since it is cumbersome to work with the square roots, one may apply the time
derivative one more time and derive

[~2(∂2t − ∂2x) +m2c2] ψ(x, t) = 0. (2.56)

This is the Klein-Gordon equation in one space dimension. The solutions of
these equation will describe the time evolution of the corresponding system.
These two examples illustrate that the time development for all systems follows
from the fundamental operator equation (2.46,2.53) regardless of the details of
the Hamiltonian. Furthermore, the solution of the equation is given by (2.52)
for any time independent Hamiltonian, but there remains to compute the matrix
element.

2.2.5 Computation of time evolution

For the free particle the Hamiltonian and momentum operators are compati-
ble [Ĥ, p̂] = 0. Therefore, the Hamiltonian is simultaneously diagonal on the
momentum eigenstates

Ĥ|p >= Ep|p > → Ep =

½ p2

2m non-relativistic
(m2c4 + c2p2)1/2 relativistic

(2.57)

Then the time evolution of the momentum wavefunctions is easily computed as
a phase
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eψ(p, t) =< p|e−itĤ/~ |ψ >= e−itEp/~ eψ(p). (2.58)

The position wavefunction is obtained by the Fourier transform

ψ(x, t) =
1√
2π~

Z ∞
−∞

dp e
i
~ px e−itEp/~ eψ(p). (2.59)

It is easily verified that for any eψ(p) this is the general solution to the Schrödinger
equation above for either the free non-relativistic or relativistic particles3.
In a more general problem, to solve the time evolution of the system one

must find the eigenstates of the Hamiltonian

Ĥ|Ei >= Ei|Ei > (2.60)

and use these as another orthonormal and complete basis for the same particle.
That is

< Ei|Ej >= δij
X
i

|Ei >< Ei| = 1. (2.61)

where 1 is the same identity operator that has a similar expression in terms of
position or momentum bases. Then any state may be expanded in this energy
basis instead of the position or momentum basis

|ψ, t >=
X
i

|Ei > ψEi(t), (2.62)

and the time evolution is computed easily as a phase

ψEi(t) =< Ei|e−itĤ/~ |ψ >= cEi e
−itEi/~ . (2.63)

In particular the position wavefunction may be computed as follows

ψ(x, t) =< x|ψ, t >=
X
i

< x|Ei > e−itEi/~ < Ei|ψ > (2.64)

provided we specify the basis functions ψEi(x) =< x|Ei > and the set of con-
stants < Ei|ψ >= cEi at the initial time. The energy eigenfunctions may be
computed by the same method used for < x|p >, i.e. by sandwiching the oper-
ator Ĥ between the states and evaluating the matrix element in two ways

< x|Ĥ|Ei >=

½
Ei < x|Ei >

[− ~2
2m∂2x + V (x)] < x|Ei >,

(2.65)

3However, the squared Klein-Gordon equation has a second set of solutions with negative
relativistic energies, E = −E(p) , which represent anti-particles (although the square-root
form has only positive energy solutions). The general solution of the Klein-Gordon equation
is the sum of the two types of solutions, with two arbitrary coefficients ψ̃±(p). The negative
energy solution has the interpretation of anti-particle.
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we see that ψEi(x) =< x|Ei > satisfies the time independent Schrödinger equa-
tion

[− ~
2

2m
∂2x + V (x)] ψEi(x) = Ei ψEi(x). (2.66)

From this we see that from the complete knowledge of the eigenfunctions ψEi(x)
and eigenvalues Ei we can predict the time development of the system described
by that Hamiltonian. The free particle cases worked out above are just special
examples of this general procedure.

2.2.6 Wave Packets

According to the third postulate of Quantum Mechanics the quantity |ψ(x, t)|2
is interpreted as the probability for finding the particle in state ψ at position x
at time t. In this section we will clarify this point and show its consistency with
our intuition from Classical Mechanics.
For the free particle we have seen that the general solution to the Schrödinger

equation is given by a general superposition of waves

ψ(x, t) =
1√
2π~

Z ∞
−∞

dp ψ̃(p) ei[px−E(p)t]/~ , (2.67)

E(p) =

½
p2/2m non-relativisticp
p2c2 +m2c4 relativistic

where ψ̃(p) is arbitrary. For a given momentum p the wave exp(i[px−E(p)t]/~)
is periodic under the translation x → x + 2πn(~/p). Therefore the wavelength
is

λ =
~
p
, (2.68)

in agreement with DeBroglie’s idea. Recall that the wave form emerged from
the commutation rules [x̂, p̂] = i~. If ~ were zero there would be no quantum
mechanics, position and momentum would be compatible observables, and the
DeBroglie wavelength would vanish.
Let us start at t = 0 and choose ψ̃(p) in such a way that the DeBroglie waves

interfere constructively in a certain region and destructively outside of that re-
gion. For example, consider the extreme choice ψ̃(p) = (1/

√
2π~) exp(−ipx0/~)

which yields complete destructive interference everywhere except at one point
ψ(x) = δ(x − x0). So the particle is located at x0 without any errors so that
∆x = 0. On the other hand, since the probability distribution in momentum
space |ψ̃(p)|2 = 1/2π~ is independent of momentum, the momentum can be
anything and therefore ∆p =∞. However, this wavefunction is not part of the
physical Hilbert space since its norm is infinite.
Next consider the Gaussian distribution in momentum space

ψ̃(p) =

µ
2α

π~2

¶1/4
e−ipx0/~e−α(p−p0)

2/~2 , (2.69)
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which is normalized
R
dp |ψ̃(p)|2 = 1. It gives

ψ (x) =
¡
2α
π~2
¢1/4 ∞Z

−∞

dp√
2π~ eip(x−x0)/~ e−α(p−p0)

2/~2

=
¡
2α
π~2
¢1/4

eip0(x−x0)/~
∞Z
−∞

dp0√
2π~ eip

0(x−x0)/~−α(p0/~)2

=
¡
2α
π~2
¢1/4

eip0(x−x0)/~e−(x−x0)
2/4α

∞Z
−∞

dp00√
2π~ e−α(p

00/~)2

=
¡

1
2πα

¢1/4
eip0(x−x0)/~ e−(x−x0)

2/4α ,

(2.70)

where p0 = p−p0, p00 = p0−i~x/2α, and the contour has been deformed in the
complex p00 plane back to the real axis since there are no singularities. Note that
all the dependence on x, x0, p0, ~ follows from changes of integration variables,
and only to determine the overall constant we need the intagral

R∞
−∞ du e−u

2

=√
π. The probability distributions and the widths in position and momentum

space are

|ψ (x) |2 = 1√
2πα

e−(x−x0)
2/2α ∆x =

√
α

|ψ̃(p)|2 =
q

2α
π~2 e

−2α(p−p0)2/~2 ∆p = ~
2
√
α
.

(2.71)

For small α the position distribution is sharply peaked and approaches a delta
function, but the momentum is widely distributed (see Fig.2.1).

Fig.2.1 - |ψ(x)|2 and
¯̄̄
ψ̃(p)

¯̄̄2
probability densities.

For large α the opposite is true. Furthermore the uncertainties satisfy the
product

∆x∆p = ~/2. (2.72)

Therefore the Gaussian wave packet gives the minimum possible uncertainties
according to Heisenberg’s relation ∆x∆p ≥ ~/2.
Let us now examine the propagation in time of these Gaussian wave packets

according to (2.67). Since the integrand is sharply peaked near p0 we may
approximate

E(p) = E(p0) + (p− p0)E
0(p0) +

1

2
(p− p0)

2E00(p0) + · · · , (2.73)
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and then perform the integral with the same steps as in (2.70). The result is
the probability distribution (see problem)

|ψ (x, t) |2 = exp(−(x−x0(t))2/2α(t))³
2π
√
α·α(t)

´1/2 , ∆x(t) =
p
α(t) (2.74)

where
x0(t) = x0 +E0(p0) t, α(t) = α+

1

4α
[~t E00(p0) ]2. (2.75)

Therefore, the position distribution is now peaked at x = x0(t) and it spreads as
time goes on. Notice that E0 = ∂E/∂p is just the velocity (recall ẋ = ∂H/∂p),
so that the peak moves just like the classical particle for any definition of the
energy-momentum relation. This is called the group velocity of the wave packet,
and this phenomenon now accounts for the wave-particle duality. Namely,
the wave packet simulates the motion of the particle on the average, while it
participates also in wave phenomena such as interference.
Notice that the spreading is less significant for an extremely relativistic par-

ticle, since for cp0 À mc2,

E00(p0) = m2c6(p20c
2 +m2c4)−3/2 ≈ m2c3/p30 ≈ 0. (2.76)

and there is no spreading at all for particles such as photons or neutrinos that
have zero mass m = 0 and move at the speed of light. We may compute the
amount of time required for doubling the initial uncertainty (∆x)2 = α to 2α.
This is given by ~tE00(p0) ≥ 2α , or

t ≈ 2(∆x)2/(~E00(p0) )⇒

⎧⎨⎩ 2m(∆x)2/~ non-relativistic
2(∆x)2p30/

¡
~m2c3

¢
relativistic

∞ ultra relativistic
(2.77)

So, a non-relativistic electron wave packet localized in the atom within ∆x ≈
10−10m would spread in about t ≈ 10−17s. This simply means that in practice
the electron’s location cannot be pin-pointed within the atom. Furthermore,
in this situation one should remember that if one tries to localize a system to
distances smaller than its natural size, then the forces acting on the system
will dictate a different energy-momentum relation than the one assumed for
the free particle. Generally one cannot localize to distances smaller than the
natural size, for then the quantum mechanical system gets destroyed, as we shall
demonstrate below.

2.2.7 Understanding ∆x ∆p ≥ ~/2 through gedanken ex-
periments

As we have seen from the wave packet analysis there is an inescapable uncer-
tainty in position and/or momentum as dictated by the uncertainty principle.
It is useful to sharpen our intuition about this phenomenon by considering a
few gedanken experiments and explaining the role of the uncertainty principle
in those situations.
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Heisenberg’s microscope

Suppose one tries to measure the position of a moving electron by observing
it through a microscope. This means that the electron collides with a photon,
and the photon is deflected inside the microscope where it is focused to form an
image (see Fig.2.2)

Fig.2.2 - Heisenberg’s microscope

According to the laws of optics the resolving power of the microscope is
given by the size ∆x = λ/ sinφ. Therefore this is the minimum uncertainty
in the position of the observed electron. It would seem that by using very
short wavelengths one could locate the electron’s position to within any de-
sired accuracy. What happens to the momentum? How accurately can we
measure it simultaneously? By momentum conservation, the uncertainty in
the x-component of the electron momentum is equal to the uncertainty in x-
component of the photon momentum. The photon will be deflected to an angle
smaller or equal to φ as shown in the figure. The x-component of its momentum
will be smaller or equal to p sinφ = (hν/c) sinφ. Therefore the uncertainty in
the x-component of the photon momentum (and hence in the electron’s mo-
mentum) will be ∆px = 2(hν/c) sinφ (the factor of 2 takes into account the full
angle). The product of these uncertainties for the electron is

∆x ∆px =
λ

sinφ
× 2hν

c
sinφ = 4π~ (2.78)

where we have used νλ = c. So, one could not beat the uncertainty principle.
Can one measure the recoil of the screen and determine (∆px) photon? No,
because one will have to confront (∆x) for the screen, etc.

Two slit experiment:

Consider the two slit experiment. The distance between the two slits is a, and
the distance to the screen is d . The path difference between two rays passing
through two different slits is a sin θ, therefore at angles a sin θn = λn there is
constructive interference and bright fringes form (see Fig. 2.3)



2.2. QUANTUM DYNAMICS 47

Fig.2.3 - Double slit experiment.

The distance between adjacent fringes is given by

(δy)fringes = yn+1 − yn = d tan θn+1 − d tan θn '
dλ

a
, (2.79)

where we have approximated tan θ ≈ sin θ for small θ. Suppose an observer who
is placed at the slits will attempt to tell which slit the electrons pass from. The
question is whether this measurement is possible and still have the interference
phenomena? If the observer can determine the position of the electron within
∆y < a/2, then he can tell which slit the electron went through. To make an
observation he must impart the electron with a momentum which is imprecise
by an amount ∆py > ~/a. But then there will be an uncertainty in the angle of
the electron given by

∆(sin θ) =
∆py
p

>
~
ap
=

λ

a
(2.80)

This will propagate to an uncertainty on the location the electron hits the screen

∆y ≈ d ∆(sin θ) >
dλ

a
= (δy)fringes . (2.81)

The uncertainty ∆y is larger than the distance between the fringes (δy)fringes.
Therefore, the interference pattern is lost if the observer tries to localize the
electrons at the slits. So, it cannot be done without destroying the system.

Locating the electron position in H-atom

According to Bohr’s calculation (see chapter 1) the electron in the H-atom
travels in quantized orbits with radii given by rn = ~n2/mcα. The distance
between two adjacent radii is δrn = rn+1 − rn = ~(2n+ 1)/mcα. Can we make
an experiment that measures the position of the electron with an error that is
smaller than half this distance, ∆r < δrn/2, so that we can clearly tell where
the electron is within the atom?
According to the uncertainty principle, in such an experiment we can de-

termine the momentum of the electron with an uncertainty ∆pr > ~
2(δrn/2)

=
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mcα/(2n+ 1). Then the energy will be uncertain by an amount

∆E ∼= p∆p/m >
mcα

n
· αc

2n+ 1
∼=
1

2
mc2α2/n2. (2.82)

Since the uncertainty in energy is larger than the binding energy, such a mea-
surement will disturb the atom to the extent of altering its energy level struc-
ture. Therefore, such an experiment cannot be performed without destroying
the atom.

Quick estimates in quantum theory

One can sometimes use the uncertainty relation to make quick estimates about
a quantum system. We give two examples. The first concerns the ground state
energy of the H-atom, and the second the mass of the pion.
(i) The H atom is described by the Hamiltonian H = p2/2m − Ze2/r. The

electron is localized within a radius r, so its momentum must be of order p ≈ ~/r.
Therefore, the energy is estimated to be E ∼ ~2/2mr2 − Ze2/r. To find the
ground state we can minimize the energy with respect to r, ∂E/∂r = 0, and
find r = ~2/me2Z = a0/Z, which is the Bohr radius. Substituting this into the
energy equation we get the correct ground state energy E = −mc2Z2α2/2
(ii) Yukawa postulated that the nuclear force is due to emission and ab-

sorption of the π−meson. From the knowledge that the range of this force is
about one Fermi, we can estimate the mass of the pion by using the energy-time
uncertainty relations. Let us first establish this relation. The uncertainty in
momentum implies an uncertainty in the energy ∆E = p∆p/m, and the un-
certainty in position implies an uncertainty in time ∆t = ∆x/ẋ = ∆xm/p.
Therefore their product is

∆E∆t = ∆p∆x ≥ ~/2. (2.83)

This relation was derived for a non-relativistic particle, however it also applies
unchanged to a relativistic particle described by the equations (2.9) and (2.10).
Now, because of the emission/absorption of the pion the energy is uncertain by
an amount ∆E = mπc

2. Therefore the time that it takes for the pion to reach
another part of the nucleus may be estimated to be t ≈ ~/ mπc

2. The distance
travelled by the pion during this time will be of the order of the range of the
nuclear force, i.e. 10−15m. So, r0 ≈ ct ≈ c~/ mπc

2 ≈ 10−15m. This allows the
computation

mπc
2 =

~c
r0
≈ 130 MeV (2.84)

which is a fairly close estimate of the correct value of 139MeV .

2.3 Problems
1. Consider a particle moving on a circle of radius R instead of the infinite
line. The position and momentum eigenstates are |x > and |p >, respec-
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tively. What are the allowed eigenvalues? Why? Consider probabilities in
providing an answer. What is < x|p >=? Write down the completeness
and orthonormality relations, and show how they work on the set of func-
tions < x|p > . What happens in the infinite radius limit? Next consider
a particle moving on a torus of radii (R1, R2). Generalize your reasoning
and provide the allowed eigenvalues for positions and momenta.

2. Consider two operators α̂ and β̂ whose commutator is a c-number [α̂, β̂] =
c. Prove that

eα̂eβ̂ = eα̂+β̂ × const. (2.85)

and determine the constant. Now consider space translations by a distance
a that are performed by the operator A = exp(−iap̂/~) and momentum
shifts by an amount b that are performed by the operator B = exp(ibx̂/~).
Show that the products AB and BA differ from each other by a phase, i.e.
AB = BAeiφ, and find the conditions on a, b such that [A,B] = 0 become
compatible observables.

3. Consider the Hermitian dilatation operator D = 1
2(x̂p̂+ p̂x̂). It commutes

with the parity operator P . By definition, their eigenvalues and eigen-
vectors satisfy D|λ,± >= λ|λ,± >, and P |λ,± >= ±|λ,± > . These
states must form a complete orthonormal basis just like |x > or |p > .
Therefore one may expand one basis in terms of the others. Find the cor-
rectly normalized position space wavefunctions (or expansion coefficients)
ψ±λ (x) =< x|λ,± >=? , and prove that they are complete and orthonor-
mal X

±

Z ∞
−∞

dλ ψ±∗λ (x) ψ±λ (x
0) = δ(x− x0), (2.86)Z ∞

−∞
dx ψ±∗λ (x) ψ±λ0 (x) = δ(λ− λ0).

4. In class we discussed the Gaussian wave packets at arbitrary times ψ(x, t).
Using these wavefunctions compute the average position, the average mo-
mentum, and the average uncertainty

xψ(t) ≡ < ψ, t|x̂|ψ, t >,
pψ(t) ≡ < ψ, t|p̂|ψ, t >, (2.87)

∆xψ(t) = [< ψ, t|(x̂− xψ(t))
2|ψ, t >]1/2

at arbitrary times, for (i) a free non-relativistic particle, and for (ii) a
massless ultra-relativistic particle. What relation is there between ẋψ(t)
and pψ(t) ?

5. Suppose that at t = 0 the wavefunction of a free non-relativistic particle
is

ψ(x, 0) = Ce−a|x|+ikx. (2.88)
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What is the correct normalization C =? What is the momentum wave-
function ψ̃(p, 0) =? What is ψ(x, t) =?

6. Consider the position and momentum translation operators of problem 2.
Assume that they are applied on the wavefunction of a particle that moves
on a circle. Such a wavefunction must be periodic ψ(x + 2πR) = ψ(x).
Suppose that the translation operator A applied N times on this wave-
function is equivalent to a 2πR translation, i.e. ANψ = ψ. Assume that
the particle is allowed to live only on the discrete points xn = (n/N) 2πR
connected to each other by the translation A (like particles in a periodic
crystal). Labelling the wavefunction at the positions xn as ψn we may
write Aψn = ψn+1 and ψn+N = ψn. There are N independent states, so
we may take them as isomorphic to the N dimensional vector space of
column or row matrices

ψ1 =

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ , · · · , ψN =

⎛⎜⎜⎜⎝
0
...
0
1

⎞⎟⎟⎟⎠ . (2.89)

Furthermore, this position wavefunction is obviously an eigenstate the
operator B :

Bψn = exp (ibxn/~) ψn = exp (ibn2πR/N~) ψn. (2.90)

Note that AN = 1 is simultaneously diagonal on every state. Let’s impose
also the condition that BN = 1 on the wavefunctions. Then the allowed
eigenvalues for B must satisfy exp(iNbxn/~) = 1, for every n, which fixes
bR/~ = k = integer . Using the smallest possible b, we may take k = 1.
Therefore the eigenvalues of B are exp(in2π/N). So, we can write B as a
diagonal N ×N matrix

B =

⎛⎜⎜⎜⎜⎜⎝
exp(i2π/N)

exp(i4π/N)
exp(i6π/N)

. . .
exp(i2π)

⎞⎟⎟⎟⎟⎟⎠
(2.91)

This allows us to interpret ψn as position eigenstates. What is the ma-
trix form of the translation operator A =? (note this is called a “circu-
lar matrix”). Verify explicitly the relation AB = BAeiφ by matrix mul-
tiplication; what is the phase? Now consider the products of transla-
tions in position and momentum space Am1Bm2 . How many such inde-
pendent operators are there? What do get if you try to commute them
[Am1Bm2 , An1Bn2 ] =?

7. The uncertainty relation ∆E∆t ≥ ~/2 was derived for a non-relativistic
particle. Show that it also applies to a relativistic particle described by
the eqs.(2.9) and (2.10).



Chapter 3

STRUCTURE OF QM

3.1 Postulates
Quantum Mechanics is based on three postulates that establish the mathe-
matical language corresponding to the physical concepts. In this chapter the
mathematical structure of QM will be discussed in general terms. The relation
of mathematical concepts to physical concepts, such as Hilbert spaces to physi-
cal states, operators and matrices to observables, eigenstates and eigenvalues to
physical measurements, etc., will be explained. The meaning of solving a quan-
tum mechanical problem completely, will be clarified. Finally these concepts
will be illustrated in a quantum system consisting of only two states.
The three postulates of QM were already introduced in the second chapter

in the discussion of the single free particle. We state them once again in general
terms:

1. A physical state is represented by a vector in the Hilbert space |ψ > .

2. To every physical observable there corresponds a linear, Hermitian oper-
ator in the Hilbert space. Operators have eigenstates and corresponding
eigenvalues. The results of measurements are the eigenvalues of compati-
ble observables. As we will see, the simultaneous eigenstates of a complete
set of compatible observables form a complete basis, such that an arbitrary
state |ψ > in the Hilbert space can be written as a linear superposition of
the basis.

3. When a system is prepared in a state |ψ >, and it is probed to find out
if it is in a state |φ >, after the measurement the state |ψ > collapses to
the state |φ >< φ|ψ >, where < φ|ψ > is a complex number called the
probability amplitude. The probability that a measurement will find the
system in a state |φ > is given by | < φ|ψ > |2.

In principle, in an ideal measurement the state |φ > is an eigenstate of
the observables being measured. Therefore the observed eigenvalues occur with

57
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definite probabilities depending on the state |ψ >. More generally, the state
|φ > may be a superposition of eigenstates of the observables, corresponding to
a distribution of eigenvalues. A consequence of the probability interpretation is
that a physical state must satisfy | < ψ|ψ > | = 1, or

< ψ|ψ >= ±1, (3.1)

since a system prepared in a state |ψ > has 100% probability of being found
in the same state |ψ > . The (−1) case is discarded as part of the postulates
of QM. This corresponds to requiring a unitary positive norm Hilbert space.
We now define the necessary mathematical concepts, relate them to physical
quantities according to these postulates and clarify their meaning.

3.2 States, kets&bras, norm

A physical state has a mathematical description in terms of a vector in a unitary
Hilbert space. A unitary Hilbert space is an infinite dimensional vector space
with a positive norm that is not infinite. However, there are quantummechanical
systems that are effectively described in terms of finite dimensional vector spaces
as well. We will consider a Hilbert space as the n → ∞ limit of a complex
vector space in n dimensions. A complex vector space is a set of elements called
vectors (which we denote here by the ket symbol |• >) that may be multiplied
by complex numbers and added to each other such that the set remains closed
under these operations. So, α|ψ > +β|φ > is in the set if (α, β) are complex
numbers and (|ψ >, |φ >) are vectors in the set. A complex vector space in n-
dimensions boils down to a set of basis vectors {|i >, i = 1, 2, · · ·n}. A general
vector |ψ >=

P
i |i > ψi is a linear superposition with coefficients ψi that are

complex numbers. It is evident that general vectors satisfy the definition.
There is a dual vector space whose elements are put in one to one corre-

spondence to the original vector space by Hermitian conjugation. Formally one
writes the bra < ψ| ≡ (|ψ >)†, and the dual basis vectors are denoted by bras
{< i|, i = 1, 2, · · ·n}. Therefore the general dual vector is < ψ| =

P
i ψ
∗
i < i|,

where the complex conjugate coefficients appear.
It is natural to define inner and outer products < i|j > and |j >< i| respec-

tively. By assumption, the basis is complete, and it is always possible to bring
it to orthonormal form. These statements are expressed as

nX
i=1

|i >< i| = 1, < i|j >= δij =

½
0 i 6= j

1 i = j
, (3.2)

where δij is the Kronecker delta function. The dot product of two general
vectors follows as a complex number

< φ|ψ >=
X
ij

φ∗iψj < i|j >=
X
i

φ∗iψi, (3.3)
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and the norm of the general vector is real and positive

< ψ|ψ >=
nX
i=1

ψ∗iψi, (3.4)

and may be normalized to < ψ|ψ >= 1.
A finite dimensional vector space can be put in one to one correspondence

with column and row matrices. Thus, |i > is represented by a column vector
that has zero entries everywhere except at the i0th row, where the entry is 1.
Similarly, < i| is represented by the Hermitian conjugate row matrix. The outer
product |j >< i| is a square matrix with zeros everywhere except at location
(j, i)

|1 >=

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ · · · |n >=

⎛⎜⎜⎜⎝
0
0
...
1

⎞⎟⎟⎟⎠

< 1| = (1 0 · · · 0) · · · < n| = (0 0 · · · 1)

|1 >< 1| =

⎛⎜⎜⎜⎜⎝
1 0 · · · 0

0 0
...

...
. . .

0 · · · 0

⎞⎟⎟⎟⎟⎠ · · · |1 >< n| =

⎛⎜⎜⎜⎜⎝
0 0 · · · 1

0 0
...

...
. . .

0 · · · 0

⎞⎟⎟⎟⎟⎠ · · ·

(3.5)
Therefore, the general vector |ψ > and < ψ| are general complex columns or
rows respectively, while the linear combination of outer products

M =
X
kl

|k > Mkl < l| =

⎛⎜⎜⎜⎝
M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

. . .
...

Mn1 Mn2 · · · Mnn

⎞⎟⎟⎟⎠ (3.6)

is a general complex matrix with entries Mkl. The matrix elements may be
computed by using the dot products

< i|M |j >=
X
kl

< i|k > Mkl < l|j >=
X
kl

δikMklδlj =Mij . (3.7)

An infinite dimensional vector space may be countable or not. If it is
countable it may be labelled by integers i = 1, 2, · · ·∞ , so that it is de-
fined by simply taking the limit n → ∞ in the above expressions. It may
also be convenient to label it with all integers i = −∞, · · · ,−1, 0, 1, · · · ,∞
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instead of only the positive integers; these are equivalent. If it is not count-
able it may be labelled by a continuous variable, as e.g. the position basis
{|x >, −∞ < x < ∞}. In this case it is useful to think of the continuous
variable as the limit of a lattice with the lattice constant going to zero, i.e.
{x = ia; i = −n, · · · ,−1, 0, 1, · · · , n; a → 0, n → ∞}. This allows us to
define vectors with a new normalization

|x = ia >=
|i >√
a

(3.8)

such that, in the a→ 0 limit, the sums are replaced by integrals (using
R
dx ∼P

a) and the Kronecker delta is replaced by a Dirac delta functionR∞
−∞ dx |x >< x| = lim a→0

n→∞

Pn
i=−n a

|i>√
a
<i|√
a
= 1

< x|y > = lim a→0
n→∞

<i|√
a
|j>√
a
= lim a→0

n→∞

δij
a = δ(x− y).

(3.9)

Therefore, the norm of the vector is infinite < x|x >= δ(0) =∞. However, this
is what is required for consistency with integration of the delta functionZ ∞

−∞
dx δ(x− y) = lim

a→0
n→∞

nX
i=−n

a
δij
a
= 1 (3.10)

and is self consistent as seen in chapter 2. In some applications it is also possible
that the interval in the continuous x-variable is finite x ∈ [−α,α]. In this case
the limits for n and a are not independent, and must be taken such that na = α
always remains finite.
A Hilbert space is an infinite dimensional vector space which admits only

vectors which have a finite norm. Therefore, not all vectors that can be con-
structed from the continuous basis |x > is a member of the Hilbert space. In
particular the vector |x > itself is not in the Hilbert space due to its infinite
norm. Any general vector expressed in terms of a continuous basis, such as
|ψ >=

R
dx |x > ψ(x), or countably infinite basis such as |ψ >=

P∞
i=1 |i > ψi,

is in the Hilbert space provided its norm is finite

< ψ|ψ >=

Z
dx |ψ(x)|2 <∞, or < ψ|ψ >=

∞X
i=1

|ψi|2 <∞. (3.11)

Physical states must have finite norm since the norm is interpreted as probability
that cannot exceed 1.

3.3 Observables, eigenstates, eigenvalues
An observable in Quantum Mechanics has a corresponding observable in Clas-
sical Mechanics. Examples of observables are position, momentum, angular
momentum, spin, charge, isospin, color, etc. for every particle in a system.
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According to the second postulate an observable A is a linear operator in the
Hilbert space. This means that the action on a vector |ψ > in the Hilbert space
involves the first power of A, and the result of the action is another vector |χ >
in the Hilbert space. A similar statement holds for the bra space, thus

A|ψ >= |χ >, < φ|A =< η|,

such that both |ψ > and |χ > (or < φ| and < η|) have finite norm. The action
of the Hermitian conjugate operator is defined through Hermitian conjugation
of the states < ψ| ≡ (|ψ >)†

< ψ|A† =< χ| , A†|φ >= |η > . (3.12)

Sandwiching the operator between a ket and a bra defines a complex number
through the inner product defined in the previous section

< φ|A|ψ >=< φ|χ >=< η|ψ >
< ψ|A†|φ >=< χ|φ >=< ψ|η > .

(3.13)

Therefore the result is the same if one acts first on either the left or the right

< φ|A|ψ >=< φ|(A|ψ >) = (< φ|A)|ψ >= (< ψ|A†|φ >)∗, (3.14)

and the last equality follows from the complex conjugation property of the inner
product < φ|χ >= (< χ|φ >)∗ =

P
φ∗iψi.

It is possible to find a set of vectors {|α >} which are eigenvectors of the
operator A. That is, the action of A reproduces the vector up to an overall
constant which is called the eigenvalue. The eigenvector is labelled conveniently
by the eigenvalue

A|αi >= αi|αi >, < αi|A† = α∗i < αi| . (3.15)

The second equation follows by Hermitian conjugation. The results of physical
measurements are the eigenvalues. Since these have the same meaning as the
classically observed quantities (i.e. position, etc.), the eigenvalues of observables
must be real numbers. To guarantee this property the postulate requires that
a physical observable is a Hermitian operator A† = A. Indeed, for a Hermitian
operator one can show that the eigenvalues must be real, as follows. Consider

< αi|A|αj >=
½
α∗i < αi|αj >
αj < αi|αj >

, (3.16)

which is obtained by acting with the Hermitian operator to the left or the right.
This equality leads to

(α∗i − αj) < αi|αj >= 0. (3.17)

Choosing the same states gives (α∗i − αi) < αi|αi >= 0, which requires real
eigenvalues α∗i = αi since the norm cannot vanish. Furthermore, choosing dif-
ferent eigenvalues αi 6= αj requires < αi|αj >= 0, which shows that eigenstates
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belonging to distinct eigenvalues must be orthogonal. There could be more than
one state with the same eigenvalue. Such states are called degenerate eigen-
states. One can always choose a basis in which the degenerate eigenstates are
also orthogonal among themselves, and they are distinguished from each other
with an additional label on the state. To keep our notation as simple as pos-
sible we assume at first that there are no degenerate states, and discuss them
later. Since all possible measurements of an observable correspond to these
eigenstates, they must be complete. Thus, we have the completeness and or-
thonormality conditions satisfied for the basis defined by the eigenstates of a
Hermitian operator.X

i

|αi >< αi| = 1, < αi|αj >= δij , (3.18)

where the sum runs over all the states (including the degenerate ones, if any).
In this basis one can define matrix elements of any operator B by sandwich-

ing it between bras and kets

Bij ≡< αi|B|αj >, (3.19)

and the operator itself may then be written as a sum over outer products, since
B = 1B1 gives

B =
X
αi,αj

|αi > Bij < αj |. (3.20)

In particular the operator A corresponds to a diagonal matrix in this basis since

Aij =< αi|A|αj >= αi < αi|αj >= αiδij (3.21)

It is evident that there is an isomorphism between the eigenstates of a Her-
mitian observable and the basis of vector spaces discussed in the previous sec-
tion. If the basis of |αi > eigenstates is countable, we may choose the isomor-
phism such that |αi >≡ |i > corresponds to a column vector in n− dimensions
as in (3.5). Then the operator A takes the diagonal matrix form

A =
X
αi

|αi > αi < αi| =

⎛⎜⎜⎜⎝
α1 0 0 0
0 α2 0 0
0 0 α3 0

0 0 0
. . .

⎞⎟⎟⎟⎠ (3.22)

and the normalized eigenstates are precisely the ones listed in (3.5).
If there are degenerate eigenstates, then there will be several α1’s or α2’s

etc. on the diagonal. Then one may think of the above matrix as blocks con-
taining the degenerate eigenvalues, such that the unit matrix within that block
is multiplied by the corresponding eigenvalue. One reason for the occurrence
of degeneracies is the presence of more than one compatible observables (e.g.
[A,B] = 0 ), since the vector space is labelled by their simultaneous eigenval-
ues |αi, βj > . Then necessarily there are degenerate eigenstates since for each
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eigenvalue αi there are many states labelled by the eigenvalues βj . The vec-
tors within each block of degenerate α’s would then be distinguished by the
eigenvalues of B.

3.4 Compatible and incompatible observables

3.4.1 Compatible observables and complete vector space

Given a physical system, there is a maximal number of compatible observables.
These form a set of operators {A1, A2, · · ·AN} that commute with each other

[Ai, Aj ] = 0. (3.23)

In principle the number N corresponds to the number of degrees of freedom
of a system in its formulation in Classical Mechanics. This corresponds to the
number of canonical position-momentum pairs, plus spin, charge, color, flavor,
etc. degrees of freedom, if any. Thus, for a system of k spinless neutral particles
in d dimensions there are N = k × d degrees of freedom that correspond to
compatible positions or momenta needed to describe the system. The operators
{A1, A2, · · ·AN} could be chosen as the N positions or the N momenta or some
other N compatible operators constructed from them, such as energy, angular
momentum, etc.. As explained below, for each choice there is a corresponding
complete set of eigenstates that define a basis for the same physical system. A
physical state may be written as a linear combination of basis vectors for any
one choice of basis corresponding to the eigenstates of compatible observables.
Furthermore any basis vector may be expanded in terms of the vectors of some
other basis since they all describe the same Hilbert space.
Let us consider the matrix elements of two compatible observables A1 and

A2 in the basis that diagonalizes (A1)ij = α1iδij . The matrix elements of the
zero commutator give

0 =< i|[A1, A2]|j >= (α1i − α1j) (A2)ij . (3.24)

Choosing states with different eigenvalues of the first operator α1i 6= α1j we
conclude that (A2)ij = 0. Therefore, the second operator must also be diagonal
on the same basis (A2)ij = α2iδij . This argument is slightly different if there are
degenerate eigenstates with same values of α1i. Then the commutator argument
only says that (A2)ij is block diagonal, where the blocks are defined by the
degenerate eigenvalues of A1, as discussed at the end of the previous section.
However, by an appropriate similarity transformation each block in A2 can
be diagonalized since similarity transformations do not change the blocks of
degenerate eigenvalues of A1. Therefore the result is that the basis can always be
chosen such that the two compatible operators are simultaneously diagonal. The
argument may now be repeated with the pairs (A1, A3) and (A2, A3), arriving
at the result that the three operators are simultaneously diagonal, etc..
So, all observables in the complete maximal compatible set {A1, A2, · · ·AN}

have common eigenstates on which they are simultaneously diagonal. It is wise
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to label the eigenstates with their eigenvalues so that

|i >=⇒ |α1i1 , α2i2 , · · · > (3.25)

corresponds to a possible measurement of the system. As a shorthand notation
we will often use the symbol |i > although we mean (3.25). Since these states
represent all possible measurements that may be performed on the system they
form a complete basis. Any state of the system may be expressed as a linear
superposition of this basis. They can also be chosen orthonormal, as discussed
above. Thus, we may write

P
α1i1 ,α2i2 ,··· |α1i1 , α2i2 , · · · >< α1i1 , α2i2 , · · · | = 1 ,

< α1i1 , α2i2 , · · · |α1j1 , α2j2 , · · · >= δα1i1 ,α1j1
δα2i2 ,α2j2

· · · . (3.26)

All computations may be performed in terms of this basis. Thus, the matrix
label “i” is replaced by a composite label “i1i2 · · · ”, and matrix elements may
be denoted by

(B)ij ≡ (B)i1 i2··· , j1 j2··· , (3.27)

etc.. When the eigenvalues of observables are continuous the corresponding
labels are also continuous, and matrix elements are then functions of those
variables. For example consider an operator acting on position space, with
< x|A|x0 >= A(x, x0) which is a function of two variables. However, it is still
useful to consider these functions as infinite dimensional “matrices”.

3.4.2 Incompatible observables.

Let us now consider an observableB that is not compatible with the set {A1, A2, · · ·AN},
that is [B,Ai] 6= 0. Then we may derive

(αk ik − αk jk) (B)ij =< i|[Ak, B]|j >= 0 (?) (3.28)

The right hand side may or may not be zero; this depends on the states i, j and
operators A,B. Consider the subset of states for which the result is non-zero.
In general when i 6= j the eigenvalues of the Ak’s are different, and the non-
zero result on the right implies that B cannot be diagonal. Therefore, there
cannot exist a basis in which incompatible observables would be simultaneously
diagonal. If there were such a basis, they would commute by virtue of being
diagonal matrices, and this contradicts the assumption.
Let us consider two incompatible observables and their respective sets of

eigenstates
A|αi >= αi|αi >, B|βi >= βi|βi > . (3.29)

Since each set of eigenstates is complete and orthonormal, and they span the
same vector space, they must satisfyP

k |αk >< αk| = 1 =
P

k |βk >< βk|
< αi|αj > = δij = < βi|βj >

. (3.30)
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This allows the expansion of one set in terms of the other by simply multiplying
the state by the identity operator

|αi >=
X
k

|βk >< βk|αi >, |βi >=
X
k

|αk >< αk|βi > . (3.31)

The expansion coefficients satisfy < βk|αi >= (< αi|βk >)∗ therefore they form
a unitary matrix

Uki =< βk|αi > (3.32)

since we can write

(UU†)kl =
P

i UkiU
∗
li =

P
i < βk|αi > (< βl|αi >)∗

=
P

i < βk|αi >< αi|βl >=< βk|βl >
= δkl .

(3.33)

We conclude that the bases of non-compatible observables are related to each
other by a unitary transformation. The unitary operator that performs the
transformation may be written as the outer product of the two bases. By con-
struction we see that the operator U has the following properties:

U =
X
l

|αl >< βl| , |αi >= U |βi >, Uki =< αk|U |αi >=< βk|αi > .

(3.34)
In the case of multiple observables that form complete sets {A1, A2, · · · , AN}
and {B1, B2, · · · , BN} that are not compatible, the unitary transformation from
one basis to the other takes the form

U =
X

l1 , l2 ,···
|α1 l1 , α2 l2 , · · · >< β1 l1 , β2 l2 , · · · | . (3.35)

3.5 Measurement

3.5.1 Projection operators

The third postulate of Quantum Mechanics relates to the measurement process.
To measure a system one must put it in an eigenstate of the observables that
are being measured. If |φ > represents the quantities that we wish to measure,
and the system is in a state |ψ >, then the measurement process collapses the
state to |φ >< φ|ψ > . The probability that the system is found with the
desired values of the observables is | < φ|ψ > |2. Therefore we may represent
the measurement apparatus by the outer product

Pφ = |φ >< φ|. (3.36)

The act of measuring is then equivalent to applying this operator on the state

Pφ |ψ >= |φ >< φ|ψ > . (3.37)
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The probability | < φ|ψ > |2 may be expressed as the norm of the new state
obtained after the measurement, provided we normalize |φ > to one < φ|φ >= 1.
Then the norm of the collapsed state gives the probability which may also be
written as the expectation value of the measurement operator

|Pφ |ψ > |2 =< ψ|P 2φ |ψ >=< ψ|Pφ|ψ >= | < φ|ψ > |2. (3.38)

Since we have a complete set of states defined by the simultaneous eigenval-
ues of compatible observables as in (3.25) we may define the set of all possible
measurements of the observables {A1, A2, · · · , AN} by the measurement opera-
tors

Pi = |i >< i|. (3.39)

We may think of Pi as a filter that projects the general vector |ψ > along the
basis vector |i > and computes the component of the vector. Indeed, the Pi
satisfy the properties of projection operators

PiPj = δijPi,
X
i

Pi = 1. (3.40)

where the last sum follows from (3.26). If one wants to measure only observable
A1, and not the others, one must sum over everything compatible that is not
measured. So, one sums over all the projection operators with a fixed eigenvalue
of A1

Pi1 =
X

α2i2 ,···
|α1i1 , α2i2 , · · · >< α1i1 , α2i2 , · · · | . (3.41)

This projection operator serves as a filter for the eigenvalue α1i1 . The sum of
such projectors is the full identity (3.26)X

i1

Pi1 =
X

i1,i2,···
Pi1,i2,··· = 1 (3.42)

According to these rules, measuring position means multiplying the state
by the projector |x >< x|, and obtaining the state |x >< x|ψ > . The
coefficient < x|ψ >= ψ(x) is the probability amplitude for finding the sys-
tem at position x 1 .Similarly, measuring momentum means multiplying the

1Since the norm of |x > is infinite δ(0) = ∞, rather than 1, we must divide out its norm
if we wish to express the probability as the norm of the state |x >< x|ψ > that results after
the measurement. To be strictly correct, the measurement apparatus cannot be represented
by |x >< x| since the the state |x > is not in the Hilbert space due to its infinite norm. One
should really use a normalized wavepacket |ψx0 > that cooresponds to a sharp probability
distribution concentrated around the measured position x0. Then the measurement apparatus
is really |ψx0 >< ψx0 | (which is more realistic anyway), and there are no problems with infinite
norms. However, in computations it is much more convenient to use the position space vector
|x > as an idealization for the sharp wavepacket, and then one must understand that its
infinite norm should be divided out. The same remarks apply to momentum measurements
|p >< p|, or any other observable that has continuous eigenvalues.
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state with |p >< p|,and interpreting < p|ψ >= ψ̃(p)as the probability am-
plitude for finding the system at momentum p.The same idea applies to en-
ergy, angular momentum, spin, charge, etc. So, for example, the projector
|E, l, q >< E, l, q|represents the simultaneous measurement of the compatible
observables energy, angular momentum and charge. If only one of these quanti-
ties is measured the corresponding projection operator is obtained by summing
over the unmeasured eigenvalues.
If one performs a series of measurements one after the other, these filtering

operators keep track of the system and compute the state after each measure-
ment. Imagine the two possible series of measurements described by the setups
below. where each box represents a measurement.

|ψ >→ [measure #1]
|1><1|ψ> → [measure #2]

|2><2|1><1|ψ> →
[measure #3]

|3><3|2><2|1><1|ψ>

|ψ >→ [measure #1]
|1><1|ψ> → → [measure #3]

|3><3|1><1|ψ>

Thus, after three measurements of observables described by the measuring sys-
tems associated with |1 >, |2 >, |3 > , the system is found in the state

P3P2P1|ψ >= |3 >< 3|2 >< 2|1 >< 1|ψ >, (3.43)

and the probability of finding those attributes in the state |ψ > is given by the
norm of the resulting state P3P2P1|ψ >. Using P 23 = P3, it may be written as

< ψ|P1P2P3P2P1|ψ >= | < 3|2 >< 2|1 >< 1|ψ > |2. (3.44)

On the other hand if one only measures attributes described by |1 > and |3 >,
i.e. not measure in between the attributes described by |2 >, then the resulting
state and probability are

P3P1|ψ >= |3 >< 3|1 >< 1|ψ >, < ψ|P1P3P1|ψ >= | < 3|1 >< 1|ψ > |2.
(3.45)

The second result is unrelated to the first one, and in general it cannot be
recovered from a sum of all possible measurements of attributes |2 >. This
is because of the decoherence or collapse of the state created by the act of
measurement. This would not have happened in classical mechanics.
However, there are cases in which decoherence will not happen. For example

if the series of measurements involve only compatible observables decoherence
will not happen. Thus, if every attribute in |2 > corresponds to compatible
observables with those in |3 > then [P2, P3] = 0 (prove this statement for two
compatible measurements represented by operators of the type (3.41) Pα1 i1 and
Pα2 i2 . see problem 1:). Then one can write

< ψ|P1P2P3P2P1|ψ >=< ψ|P1(P2)2P3P1|ψ >=< ψ|P1P2P3P1|ψ > (3.46)

This means that after summing over all the probabilities for measuring all values
of attributes |2 > we can recover the probability for not measuring attributes



68 CHAPTER 3. STRUCTURE OF QM

|2 > at all (i.e. no filtering of any special attribute |2 >) :X
2

< ψ|P1P2P3P1|ψ >=< ψ|P1P3P1|ψ > . (3.47)

This explains in general why there is no decoherence in Classical Physics. It is
because in the limit ~→ 0 all observables are compatible.

3.6 Uncertainty relations
The average value of an observable A in a physical state |ψ > is defined by the
“expectation value”

Aψ ≡< ψ|A|ψ > . (3.48)

As an example consider the average position

xψ =< ψ|x̂|ψ >=

Z
dx < ψ|x̂|x >< x|ψ| >=

Z
dxx |ψ(x)|2, (3.49)

which makes sense intuitively given the interpretation of |ψ(x)|2 as a probability
distribution. The mean square deviation from the average may be taken as a
definition of the uncertainty in a measurement in the state |ψ >

(∆A)2ψ ≡< ψ|(A−Aψ)
2|ψ > . (3.50)

This quantity is positive since it can be rewritten as the norm of the vector
(A−Aψ)|ψ >≡ |ψA > . Consider two incompatible observables [A,B] 6= 0, and
examine the product of the uncertainties in their measurements

(∆A)2ψ (∆B)
2
ψ =< ψ|(A−Aψ)

2|ψ >< ψ|(B −Bψ)
2|ψ >

=< ψA|ψA >< ψB|ψB >
≥ | < ψA|ψB > |2 = | < ψ|(A−Aψ)(B −Bψ)|ψ > |2
≥ | < ψ| 12i [(A−Aψ), (B −Bψ)]|ψ > |2
≥ | < ψ| 12i [A,B]|ψ > |2,

(3.51)
where we have used the following steps: (i) From line 2 to line 3 we used the
Schwartz inequality for the vectors |ψA > and |ψB >, (ii) from line 3 to line 4
we used the Schwartz inequality for complex numbers α =< ψ|(A − Aψ)(B −
Bψ)|ψ > or α∗ =< ψ|(B−Bψ)(A−Aψ)|ψ >, i.e. |α|2 ≥ (Im α)2 = [(α−α∗)/2i]2,
and (iii) in the last line the c-number terms dropped from the commutators.
Finally taking the square root we obtain the basic uncertainty relation that
applies to any state |ψ >

(∆A)ψ (∆B)ψ ≥ | < ψ| 1
2i
[A,B]|ψ > |. (3.52)

If two observables are compatible it is possible that (∆A)ψ(∆B)ψ = 0 in some
states |ψ >, but this is not necessarily true in every state |ψ > . However, if
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they are incompatible there can be no state in which the product is zero. As an
example, we may now apply this relation to the observables x̂ and p̂ and derive
from first principles the well known Heisenberg uncertainty relation

∆x∆p ≥ | < ψ| 1
2i
[x̂, p̂]|ψ > | = ~

2
< ψ|ψ >=

~
2
. (3.53)

In this final expression the dependence on the state |ψ > dropped out since
the norm of any physical state is 1. Obviously this will always happen if the
commutator of the two observables is a c-number, which is of course the case
for any canonically conjugate pair of generalized “position” and “momentum”.
Therefore, for any such pair the uncertainty relation is the same as the basic
Heisenberg uncertainty relation.

3.7 General solution to a QM problem

3.7.1 Time translations

Just as in Classical Mechanics, in Quantum Mechanics one wants to study the
time development of the system once it is prepared in some initial state |ψ, t0 >.
Solving this problem is a central goal of physics, since this is how we understand
a physical system and predict its behavior. As motivated in chapter 2, the time
development of a state is done through the time translation operator

|ψ, t >= U(t, t0)|ψ, t0 > . (3.54)

The state |ψ, t > is the solution to the Schrödinger equation

i~∂t|ψ, t >= Ĥ|ψ, t > . (3.55)

These two statements combined imply that the time translation operator satis-
fies the first order equation

i~∂tU(t, t0) = ĤU(t, t0) (3.56)

which must be solved with the boundary condition U(t0, t0) = 1. It is easy to
see that

U(t, t0) = exp[−iĤ(t− t0)/~] (3.57)

when the Hamiltonian is time independent. If the Hamiltonian depends on time,
then the differential equation, combined with the boundary condition, can be
put into the form of an integral equation

U(t, t0) = 1− i/~
Z t

t0

dt1 Ĥ(t1)U(t1, t0). (3.58)
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An equation of this type is solved by iteration, i.e. by replacing repeatedly the
same form inside the integral

U(t, t0) = 1− i/~
R t
t0
dt1 Ĥ(t1)

h
1− i/~

R t1
t0

dt2Ĥ(t2)U(t2, t0)
i
= · · ·

= 1− i/~
R t
t0
dt1 Ĥ(t1) + (−i/~)2

R t
t0

R t1
t0

dt1dt2 Ĥ(t1) Ĥ(t2) + · · ·

=
P∞

n=0(−i/~)n
R t
t0
dt1 · · ·

R tn−1
t0

dtn Ĥ(t1) · · · Ĥ(tn)

=
P∞

n=0
(−i/~)n

n!

R t
t0
dt1 · · ·

R t
t0
dtn T

n
Ĥ(t1) · · · Ĥ(tn)

o
= T

n
exp[−i/~

R t
t0
dt1Ĥ(t1)]

o
.

(3.59)
To be able to write a compact form we have introduced the time ordering op-
eration, which instructs to order the operators according to their chronological
order

T {A(t1)B(t2)} = θ(t1 − t2) A(t1)B(t2) + θ(t2 − t1) B(t2)A(t1) . (3.60)

More generally

T {A(t1)B(t2)C(3) · · · } = A(t1)B(t2)C(3) · · · t1 ≥ t2 ≥ t3 ≥ · · ·
= B(t2)A(t1)C(3) · · · t2 ≥ t1 ≥ t3 ≥ · · ·

...
...

Inside the time ordering bracket the order of operators can be changed as if they
commute with each other at different times

T {A(t1)B(t2)} = T {B(t2)A(t1)} , (3.61)

since this gives the same result according to its definition. This property allows
us to write the steps in lines 4 and 5 in the above equation (see problem 3) by

using the fact that T
n
Ĥ(t1) · · · Ĥ(tn)

o
is completely symmetric as a function

of the time variables t1 · · · tn. However, the meaning of these expressions really
boils down to the series on the 3rd line.

Schrödinger and Heisenberg Pictures

We also need to discuss the time development of operators. In Quantum
Mechanics there are several setups of time development. The one we have
been discussing so far prescribes the time development of the states |ψ, t >=
U(t, t0)|ψ, t0 >. Operators are at time t0 and their matrix elements may be
computed in the Hilbert space at time t, for example, < χ, t|B(t0)|ψ, t > . This
approach is called the Schrödinger picture. Another alternative is to peel off the
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time dependence from the state and associate it with the operator by rewriting
the same equation as follows

< χ, t|B(t0)|ψ, t >=< χ, t0|U†(t, t0)B(t0)U(t, t0)|ψ, t0 >
=< χ, t0|B(t)|ψ, t0 >

(3.62)

where we have defined a time dependent operator B(t) = U†(t, t0)B(t0)U(t, t0).
The second approach produces the same matrix elements or probability ampli-
tudes for measurements. This is called the Heisenberg picture. In the second
picture we may keep the Hilbert space unchanged, but compute the time evo-
lution of all observables by this rule. The Heisenberg picture parallels more the
situation in classical mechanics in which there are no states, but there are time
dependent observables.
To emphasize that the rules to be followed for time development are different

in the two pictures, it is customary to attach additional labels on the states and
observables : |ψ >S , BS or |ψ >H , BH where S,H stand for Schrödinger or
Heisenberg pictures respectively. Choosing t0 = 0 for convenience, the two
pictures are related to each other by the unitary transformation U(t) ≡ U(t, 0)

BH(t) = U†(t)BSU(t) |ψ, t >S= U(t)|ψ >H . (3.63)

The time derivative of observables in the Heisenberg picture have a relation to
dynamical equations of motion in classical mechanics. To explore this point
we compute the time derivatives by using the equation of motion satisfied by
U(t, 0)

∂tBH(t) = [∂tU
†(t)]BSU(t) + U†(t)BS [∂tU(t)]

= i
~
¡
U†(t)HS BSU(t)− U†(t)BS HSU(t)

¢
= i

~
¡
U†HSU U†BSU − U†BSU U†HSU

¢
= i

~ (HHBH −BHHH)
= i

~ [HH(t), BH(t)]

(3.64)

where we have defined the Hamiltonian in the Heisenberg picture HH(t) =
U†(t)HSU(t). The Heisenberg Hamiltonian has the same form as the Schrödinger
Hamiltonian HS = Ĥ(x̂S , p̂S), but it is built from the Heisenberg position and
momenta HH = Ĥ(x̂H , p̂H) since

HH = U†Ĥ(x̂S , p̂S)U = Ĥ(U†x̂SU,U
†p̂SU) = Ĥ(x̂H , p̂H).

Furthermore, the equal time commutation rules in the Heisenberg picture are
the same as those of Schrödinger picture [x̂H(t), p̂H(t)] = i~. This is proved by
applying the similarity transformation to products of operators and inserting
the identity operator U†(t)U(t) = 1 in between factors, e.g.

[x̂H(t), p̂H(t)] = [U
†(t)x̂SU(t), U

†(t)p̂SU(t)] = U†(t)[x̂S , p̂S ]U(t) = i~.

The last equation together with (3.64) are in one to one correspondance to the
Poisson bracket formulation of classical mechanics and therefore one expects
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to obtain equations of motion for Heisenberg observables that have the same
form as those in classical mechanics (except for taking care that the orders
of non-commuting operators in the resulting equations must not be changed).
Indeed, as an example, if we apply it to the case of free particles we see that
it produces the same equations of motion for the dynamical observables as in
classical physics

∂tx̂H =
i
~ [ĤH , x̂H ] =

i
~ [

p̂2H
2m , x̂H ] =

p̂H
m

∂tp̂H =
i
~ [ĤH , p̂H ] = 0.

(3.65)

Computation of time development

In most cases we only need to discuss the time independent Hamiltonian, so we
will stick to the solution in (3.57). To actually perform the time translation of
the states in the Schrödinger representation, one must first find the eigenstates
of the Hamiltonian operator (we will avoid writing explicitly the extra index S
for the Schrödinger representation)

Ĥ|Ei >= Ei|Ei >, (3.66)

and expand the general initial state in this energy basis

|ψ, t0 >=
X
Ei

|Ei > cEi . (3.67)

Then the time development follows from

|ψ, t >= U(t, t0)|ψ, t0 >=
X
Ei

|Ei > e−iEi(t−t0)/~cEi . (3.68)

It is easy to verify that this solves the time dependent Schrödinger equation
with the correct boundary condition.

3.7.2 Complete solution

We now clarify what it takes to have a complete solution to a general problem
in Quantum Mechanics. We identify schematically three steps

1. Find a complete Hilbert space. This is defined by means of the set of
eigenvectors {|α1, α2, · · · >} of a complete maximal set of compatible
observables {A1, A2, · · · }. Generally there are several convenient sets of
compatible observables . Each such set defines a complete basis which
may be convenient for different calculations (e.g., position space, versus
momentum space, versus angular momentum space, versus energy space,
etc.).

2. Learn how to expand one convenient basis in terms of others, and how
to apply all the non-diagonal operators on the chosen basis. We say that
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a complete solution for the system is obtained when all expansion coeffi-
cients < β1, β2, · · · |α1, α2, · · · > are known and all operations of the type
B|α1, α2, · · · >, for any operator B and any |α1, α2, · · · > are computed,
at least in principle. In this case one is able to find any desired matrix
element of the type < α1, α2, · · · |B|α01, α02, · · · > and then relate them to
measurable properties.

3. To predict how a state |ψ, t > will evolve with time one needs to con-
sider the basis that includes the Hamiltonian bH =A1, as one of the oper-
ators in the set of compatible observables { bH,A2, · · · }, so that one of the
eigenvalues is the energy. Then the time evolution of the system is solved
as discussed above. This is the fundamental reason for computing the
eigenvalues and eigenstates of the Hamiltonian. To find the space-time
interpretation of the system one needs to also compute the position space
wavefunction, ψEi(x1, x2, · · · ) =< x1, x2, · · · |Ei, · · · >, which is the proba-
bility amplitude. To be able to find the energy eigenvalues and eigenstates
one may need to solve the differential form of the Schrödinger equation
satisfied by this amplitude. In some cases algebraic methods may suffice
to find the energy eigenvalues and/or the position space wavefunction as
we will see in some examples.

To clarify this program let us see how it applies to solvable problems con-
sisting of just free particles:

One free particle in one dimension

For the free particle this program has already been accomplished in chapter 2,
but let us review the essential elements. There are just two basic operators
x̂ and p̂. Therefore at step (1) there are two bases {|x >} and {|p >}. At
step (2) we compute < x|p̂ = −i~∂x < x| and derive the expansion coefficients
< x|p >= (2π~)−1/2 exp(ixp/~). Furthermore, using these results we know how
to compute the matrix elements of any function of the operators F (x̂, p̂) in the
momentum or position basis. The answers to step (3) are easy because the
Hamiltonian is a function of momentum

Ĥ =

½
p̂2/2m non-relativisticp
p̂2c2 +m2c4 relativistic,

(3.69)

and therefore it is already diagonal in momentum space. That is, energy space is
the same as momentum space in this case. Therefore the expansion coefficients
< x|p >=< x|E > are already computed. The general state may be expanded
in the position basis or momentum basis (i.e. energy basis): |ψ >=

R
dx |x >

ψ(x) =
R
dp |p > ψ̃(p), and its time evolution is computed easily in momentum

space. For definiteness let us concentrate on the non-relativistic particle (the
reader may easily generalize the discussion to the relativistic case). Then

|ψ, t > =
R
dp |p > exp(−itp2/2m~) ψ̃(p) . (3.70)
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It is harder to compute it in position space

|ψ, t > =
R
dx e−itĤ/~ |x > ψ(x)

=
R
dx
R
dx0 |x0 >< x0|e−itĤ/~ |x > ψ(x)

=
R
dx0 |x0 > ψ(x0, t)

(3.71)

The final ψ(x, t) is obtained by equating the last line to (3.70) and taking the
inner product with < x|. This produces the Fourier transform

ψ(x, t) =

Z
dp√
2π~

exp(ixp/~− itp2/2m~) ψ̃(p) . (3.72)

The space-time properties of this probability amplitude was discussed in the
previous chapter, where it was interpreted as a wave packet.
Another interesting quantity is the propagator defined by

θ(t) < x0|e−itĤ/~ |x >= θ(t) < x0|x, t >≡ G(x0, x; t). (3.73)

It has the interpretation of the probability amplitude, for a particle that was
initially at position x, to be found at position x0 after some time t. We have
included the step function θ(t) in the definition since this interpretation is valid
only for positive times t ≥ 0. We know by construction that this quantity is a
delta function at zero time

G(x0, x; t = 0) =< x0|x >= δ(x0 − x). (3.74)

Namely, initially the particle is sharply located at x0 = x. For later times,
the probability amplitude is computed by inserting identity in terms of the
momentum basis

G(x0, x; t) = θ(t)
R
dp < x0|e−itĤ/~ |p >< p|x >

= θ(t)
R

dp
2π~ e−itp

2/2m~e−ip(x−x
0)/~

= θ(t)
p

m
2πi~ t exp

³
im(x−x0)2

2~t

´
.

(3.75)

The last integral is performed by the completion of squares method that was
illustrated for wave packets in the previous chapter. We expect that, by con-
struction, in the limit t → 0 this expression should reduce to a delta function,
and indeed it does (see problem 4). For larger times, the probability that the
particle is at some other point increases, since the distribution gets broader.
This is related to the spreading of wave packets (see problem 2 for the relativis-
tic case).
The propagator G(x0, x; t) is actually the Green function for the Schrödinger

equation for the free particle since it satisfies the equationµ
i~∂t0 −

~2

2m
∂2x0

¶
G(x0, x; t0 − t) = i~δ(x0 − x) δ(t0 − t). (3.76)
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This result may be seen in two ways. One may either check the differential
equation by substituting the explicit result for G(x0, x; t) given above, or note
that it must be satisfied by construction (use < x0|p̂2 = −~2∂2x0 < x0| ):

³
i~∂t − ~2

2m∂2x0
´
G(x0, x; t) =

=
³
i~∂t − ~2

2m∂2x0
´³

θ(t) < x0|e−itĤ/~ |x >
´

= i~δ(t) < x0|e−itĤ/~ |x > +θ(t) < x0|(Ĥ − p̂2

2m)e
−itĤ/~ |x >

= i~δ(t) < x0|x >
= i~δ(x0 − x) δ(t).

(3.77)

where we have used Ĥ = p̂2/2m and set t = 0 for the terms multiplying δ(t).
From (3.71) we see that the propagator gives the time evolution of the wave-

function

ψ(x, t) =

Z
dx0G(x0, x; t− t0)ψ(x

0, t0) (3.78)

This is integral is directly in position space and reduces to the same result as
the momentum space integral in integral (3.72).

N free particles in 1-dimension

To see how the general program applies to a system of particles, let us consider
N free non-relativistic particles. Let xi(t) represent the x-coordinate of the i-th
particle at time t. The classical Lagrangian for the system is the total kinetic
energy

L(xi, ẋi) =
1

2

NX
i=1

miẋ
2
i . (3.79)

Using the standard procedure we define momenta pi = ∂L/∂ẋi, and derive the
Hamiltonian which has the expected form

H(xi, pi) =
1

2

NX
i=1

p2i
mi

. (3.80)

For relativistic particles the corresponding Hamiltonian is

H(xi, pi) =
NX
i=1

q
p2i c

2 +m2
i c
4. (3.81)

Quantum mechanics is defined for either case by the commutation rules of com-
patible and non-compatible observables

[x̂i, p̂j ] = i~ δij
[x̂i, x̂j ] = [p̂i, p̂j ] = 0.

(3.82)
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We completely define the Hilbert space of a system of N free particles by giving
one of the following Hilbert bases

{|x1, . . . , xN >}
{|p1, . . . , pN >}
{|E1, . . . , EN >}

(3.83)

or any combination of coordinate, momentum and energy eigenvalues that are
simultaneously observable, like

|x1, p2, x3, E4 · · · > . (3.84)

The properties of orthogonality and completeness are given accordingly

< x1 . . . xN |x01 . . . x
0

N >= δ(x1 − x
0

1) . . . δ(xN − x
0

N )R
dx1 · · ·

R
dxN |x1 . . . xN >< x1 . . . xN | = 1 .

(3.85)

We notice that we really are working in a direct product vector space VTOT =
V1⊗V2⊗ · · ·⊗VN , where Vi is the vector space of particle i. So, the meaning of
|x1, · · · , xN > is the direct product |x1 > ⊗|x2 > ⊗ · · ·⊗ |xN > . All the other
definitions given before hold, provided we make the necessary modifications; in
fact one has

< x1 . . . xN |p1 . . . pN >= ΠNi=1 < xi|pi >= ΠNi=1
eipixi/~√
2π~

(3.86)

and the expansion of the position basis in terms of the momentum basis parallels
the single particle case

|x1 . . . xN > =
R
dp1 · · ·

R
dpN |p1 . . . pN >< p1 . . . pN |x1 . . . xN >

= (2π~)−N/2
R
dp1 · · ·

R
dpN e−i

P
pixi/~ |p1 . . . pN >

(3.87)
To find the time development we consider the momentum space basis |p1 · · · pN >
since the Hamiltonian is diagonal on it

Ĥ |p1 · · · pN >=

Ã
NX
i=1

Ei(pi)

!
|p1 · · · pN > . (3.88)

where

Ei(pi) =

½
p2i /2mi non-relativisticp
p2i c

2 +m2
i c
4 relativistic

(3.89)

Given any state, we compute its expansion in the energy basis |ψ, t = 0 >=R
dp1 · · ·

R
dpN |p1 · · · pN > ψ̃(p1 · · · pN ) and obtain its time development in the

usual manner

|ψ, t >= e−
i
~
bHt|ψ >=

=
R
dp1 e

−itE1(p1)/~
R
dpN e−itEN(pN)/~ |p1 · · · pN > ψ̃(p1 · · · pN ).

(3.90)
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As before, this leads to a collective wave packet for all the particles

ψ(x1, · · · , xN , t) =

Z
dp1 · · ·

Z
dpN e−it

P
i Ei(pi)/~ ψ̃(p1 · · · pN ). (3.91)

If there are no correlations in momentum space in the initial state, then we may
write a specialized wavefunction ψ̃(p1 · · · pN ) = ψ̃1(p1) · · · ψ̃N (pN ) which leads
to a product of position space wave packets

ψ(x1, · · · , xN , t) = ψ1(x1, t) · · ·ψN (xN , t). (3.92)

The propagator takes the form of products

G(x01 · · ·x0N , x1 · · ·xN ; t) =< x01 · · ·x0N | e−iHt/~ |x1 · · ·xN >

=
QN

i=1 < x0i | e−itHi/~ |xi >
=
QN

i=1Gi(x
0
i , xi ; t),

(3.93)

where Gi(x
0
i , xi ; t) is the free propagator for particle of mass mi. It was given

explicitly above for the non-relativistic particle in eq.(3.75).
In this discussion we assumed that all the particles are distinguishable (e.g.

they have different masses). To discuss indistinguishable particles correctly
we must take into account their properties under permutations and how the
wavefunction behaves. Notice that when the masses of particles are equal the
Lagrangian and/or the Hamiltonian remains invariant under the interchange of
the particles. The wavefunction must be labelled by the quantum numbers of
this symmetry. We will postpone this discussion until we learn about symme-
tries and their representations. However, we might as well mention that Nature
chooses only one representation space for the permutation symmetry of identical
particles. If the particles are identical bosons (integer spin) their wavefunction
must be completely symmetric. If they are fermions (integer plus 1/2 spin) their
wavefunction must be completely antisymmetric. Mixed symmetry states are
not allowed for identical particles. So, for identical particles it is not possible to
have uncorrolated wave packets of the type (3.92) since this is not either sym-
metric or antisymmetric. For example for two identical free bosons or fermions
one must have

ψbosons(x1, x2, t) =
1√
2
(ψ1(x1, t) ψ2(x2, t) + ψ1(x2, t) ψ2(x1, t))

ψfermions(x1, x2, t) =
1√
2
(ψ1(x1, t) ψ2(x2, t)− ψ1(x2, t) ψ2(x1, t))

(3.94)

So, there are automatically correlations even for free identical bosons or fermi-
ons. For example two fermions have zero probability for being in the same state
since for ψ1 = ψ2 = ψ the fermion wavefunction vanishes. This peculiar prop-
erty of Nature is explained in terms of the fundamental principles of causality,
Poincaré symmetry and quantization rules in Relativistic Quantum Field The-
ory (spin & statistics theorem), but in our formalism it has to be assumed.
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1 free particle in 3-dimensions.

The Lagrangian of a free non-relativistic particle in three dimensions is given
by its kinetic energy. Using bold characters to denote 3-dimensional vectors we
have

L =
1

2
mẋ2 =

1

2
m

3X
i=1

ẋ2i (3.95)

This problem is mathematically the same as the one discussed above for 3 equal
mass particles moving in 1-dimension. However the physical interpretation is
quite different. As the vector notation suggests, there is a rotational symmetry
since the Lagrangian depends only on the length of the velocity vector and not
its direction. This will be discussed in more detail in later chapters. There
is, of course, also a permutation symmetry among the coordinates, but we do
not impose symmetry or antisymmetry properties on the wavefunction for the
interchanges of the different coordinates, since the interpretation is not the same
as identical bosons or fermions.
The vector spaces are labelled as |x > or |p > . This has the same meaning

as direct products

|x >= |x1, x2, x3 >= |x1 > ⊗|x2 > ⊗|x3 > . (3.96)

Therefore, following the same formalism as the multi-particle case we obtain the
results for the expansion of the position basis in terms of the momentum basis

< x|p >= (2π~)−3/2 exp(ix · p/~) (3.97)

and all other relevant quantities. It all boils down to the expressions of the single
free particle in one dimension, except for substituting vectors everywhere one
encounters a position or momentum symbol, and taking dot products among
them. For example, for the non-relativistic particle, the free propagator in 3
dimensions is

G(x0,x; t) = θ(t)
¡

m
2πi~ t

¢3/2
exp

³
im(x−x0)2

2~t

´
(3.98)

For the relativistic case the results do not follow from the relativistic multi-
particle formalism, since the Hamiltonians are different: For the three dimen-
sional relativistic Hamiltonian we must use

H =
p
p2c2 +m2c4 (3.99)

and not eq.(3.81) with i = 1, 2, 3. Therefore, the results are similar to those of
the single relativistic particle in one dimension except for substituting vectors
and taking dot products.
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N free particles in 3-dimensions

For the non-relativistic case the Lagrangian is

L =
1

2

NX
i=1

miẋ
2
i =

1

2

NX
i=1

mi[ẋ
2
i1 + ẋ2i2 + ẋ2i3] (3.100)

This problem is mathematically equivalent to a set of 3N particles moving freely
in 1-dimension. There is a rotational symmetry. To obtain all the relevant re-
sults it is sufficient to consider the one dimensional multiparticle case, substitute
vectors everywhere and take dot products. For identical particles there is a per-
mutation symmetry, therefore the wavefunctions would have to be completely
symmetric for bosons and completely antisymmetric for fermions.

3.8 Matrix QM with 2 states

It is instructive to examine the Quantum Mechanics problem for a two state
system, since its complete solution provides a model for clarifying many con-
cepts. Furthermore, it has some rather important applications in various parts
of physics.
First we need a basis. We assume that we have diagonalized an observable A

. Following the general discussion let us assume that its normalized eigenstates
are in one to one correspondence to the vectors |i >, i = 1, 2

|1 >=
µ
1

0

¶
|2 >=

µ
0

1

¶
(3.101)

that are orthonormal and complete

2X
i=1

|i >< i| =
µ
1

0

¶
(1 0)

+

µ
0

1

¶
(0 1)

=

µ
1 0
0 1

¶
(3.102)

Then the operator A is diagonal in this basis

A =
2X
i=1

|i > αi < i| =
µ

α1 0
0 α2

¶
. (3.103)

The matrix elements of any other operator B are given by < i|B|j >= Bij , and
it can be represented in the form

B = 1B1 =
X
i,j

|i > Bij < j| =
µ

B11 B12
B21 B22

¶
. (3.104)

The action of B on the vector space is given by

B|k >=
X
i,j

|i > Bij < j|k >=
X
i,j

|i > Bik (3.105)



80 CHAPTER 3. STRUCTURE OF QM

This action on the vector space is identical to matrix multiplication, i.e. B|1 >=
|1 > B11 + |2 > B21 is the same asµ

B11 B12
B21 B22

¶µ
1
0

¶
=

µ
B11
B21

¶
. (3.106)

Thus, any operator may be written as a 2x2 matrix, and its action on the vector
space is well defined. An arbitrary state is

|ψ >= |1 > ψ1 + |2 > ψ2 =

µ
ψ1
ψ2

¶
(3.107)

where ψ1, ψ2 are complex numbers.
Now consider the Hamiltonian operator. Let us assume it does not commute

with the observable A, therefore it should take the form of a general Hermitian
matrix

H =

µ
h1 h3
h∗3 h2

¶
(3.108)

with h1, h2 real and h3 a complex number. The time translation operator is the
matrix

U(t, t0) = exp

∙
i(t− t0)

~

µ
h1 h3
h∗3 h2

¶¸
. (3.109)

This matrix may be constructed by expanding the exponential series, comput-
ing the powers Hn as 2x2 matrices and re-summing the matrix elements (see
problems 6,7). Then one would know how to act with U on any state |ψ > .
However, the easier and standard approach is to go into a basis that diagonalizes
H,

H|E1 >= E1|E1 >, H|E2 >= E2|E2 >, (3.110)

expand every state in terms of that basis, and then easily compute the time
translation. This is an exercise in 2x2 matrix diagonalization. The result is
most conveniently given in terms of the following parametrization h1 = x + y,
h2 = x− y, h3 = reiφ, tan θ = 2|h3|/(h1 − h2) = r/y, that is,

H =

µ
x+ y y tan θ eiφ

y tan θ e−iφ x− y

¶
(3.111)

Then it can be verified that the eigenstates and eigenvalues of the Hamiltonian
are

E1 = x+ y
cos θ , E2 = x− y

cos θ

|E1 >=
µ

cos θ/2 eiφ/2

sin θ/2 e−iφ/2

¶
, |E2 >=

µ
− sin θ/2 eiφ/2
cos θ/2 e−iφ/2

¶
.

(3.112)

This basis is complete and orthonormal
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|E1 >< E1|+ |E2 >< E2| =
µ
1 0
0 1

¶
, < Ei|Ej >= δij . (3.113)

An arbitrary state may be expanded in this basis |ψ >=
P
|Ei > ψ(Ei) where

we may compute the expansion coefficients by taking the inner product of the
new basis with the state in eq.(3.107)

ψ(E1) =< E1|ψ >= ψ1 cos θ/2 e
−iφ/2 + ψ2 sin θ/2 eiφ/2

ψ(E2) =< E2|ψ >= −ψ1 sin θ/2 e−iφ/2 + ψ2 cos θ/2 eiφ/2
(3.114)

The time translation of the state is then

|ψ, t >= |E1 > ψ(E1) e
−i(t−t0)E1/~ + |E2 > ψ(E2) e−i(t−t0)E2/~ (3.115)

which may be written as a two dimensional column after substituting the above
expressions. In particular one may find the time development of the original
basis |i, t > by specializing the calculation above to (ψ1 = 1, ψ2 = 0) or (ψ1 =
0, ψ2 = 1) respectively

|1, t >=

⎛⎝ cos
³
y(t−t0)
~ cos θ

´
− i cos θ sin

³
y(t−t0)
~ cos θ

´
−ie−iφ sin θ sin

³
y(t−t0)
~ cos θ

´ ⎞⎠ e−ix(t−t0)/~

|2, t >=

⎛⎝ −ieiφ sin θ sin
³
y(t−t0)
~ cos θ

´
cos
³
y(t−t0)
~ cos θ

´
+ i cos θ sin

³
y(t−t0)
~ cos θ

´ ⎞⎠ e−ix(t−t0)/~

(3.116)

The matrix elements of the time translation operator are

Uij(t, t0) =< i|U(t, t0)|j >=< i|j, t > . (3.117)

From the above result we see that the operator

U(t, t0) =
X
ij

|i > Uij < j| =
X
j

|j, t >< j| (3.118)

may be written in the form of a matrix U(t, t0) whose first and second columns
are precisely the column vectors of (3.116). One may then compute various
quantities at later times, such as transition probabilities, expectation values,
etc..In particular, the Green function is

Gij(t, t0) = θ(t− t0) < i|j, t >= θ(t− t0)Uij(t, t0). (3.119)

Following the same steps as eq. (3.77), it is expected that, by construction, the
matrix G(t, t0) must satisfy the matrix differential equation,

[(i~∂t −H)G(t, t0)]ij = i~δ(t− t0)δij. (3.120)

The reader should verify this equation explicitly by inserting the matrices for
H and G(t, t0).
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3.9 Quantum Mechanical puzzles and answers

3.9.1 Schrödinger’s cat

3.9.2 Einstein-Rosen-Podolsky paradox

3.9.3 Measuring the phase of the wavefunction

Aharonov-Bohm effect

Recent developments

3.9.4 Quantum Mechanics for the entire universe

3.10 PROBLEMS

1. Consider two compatible observables [A,B] = 0 that have simultaneous
eigenstates |αi, βj > . When one of the observables is not measured, the
measurement apparatus is represented by the projection operators Pαi or
Pβj defined by

Pαi =
X
βj

|αi , βj >< αi , βj |, Pβj =
X
αi

|αi , βj >< αi , βj |. (3.121)

(a)Prove that these satisfy the properties of projection operators.

(b) When two measurements are performed for a system in state |ψ >,
first for the eigenvalue of A, and then for the eigenvalue of B, or in reverse
order, are the results the same or different? What is your answer to part
(b) if the observables are incompatible? (Hint: consider [Pαi , Pβj ]).

2. A and B are observables and they have one or more simultaneous eigen-
states labelled by their eigenvalues as |a, b > .

• If the two observables anti-commute {A,B} = 0, what can we con-
clude about their simultaneous eigenvalues a, b?

• If the states |a, b > are orthonormal and complete, can we always
conclude that [A,B] = 0? If your answer is yes, prove it. If your
answer is no, give a counter example.

3. What is the propagator G(x0, x; t) in the case of a massless relativistic
particle? What is the behavior of this probability distribution as a function
of time?

4. Using the properties of the time ordering prescription, prove the steps in
eq.(3.59). Start by proving it for the n = 2 term that involves only two
integrals, and give convincing arguments for the higher order terms.
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5. The propagator G(x0, x; t) given in eq.(3.75) is expected to reduce to a
delta function in the limit t→ 0. By noticing the rapid oscillatory behavior
in the limit, prove that it indeed acts like a delta function by showing that
its integral with any smooth function satisfies

f(x0) = lim
t→0

Z
dxG(x0, x; t) f(x). (3.122)

6. For the 2-state problem show that the propagator is the Green function
by verifying that it satisfies the matrix differential equation of (3.120).

7. For any 2x2 real or complex matrix M show that the powers Mn may
be rewritten as a linear combination of the matrix M and the matrix 1.
Then verify thatMn = αn1+βnM, where the coefficients are the following
functions of the trace t ≡ tr(M) and determinant d ≡ detM

αn =
−d

2n−1
√
t2−4d

h¡
t+
√
t2 − 4d

¢n−1 − ¡t−√t2 − 4d¢n−1i
βn =

1
2n
√
t2−4d

h¡
t+
√
t2 − 4d

¢n − ¡t−√t2 − 4d¢ni . (3.123)

8. Using the results of the previous problem compute the time translation
operator U(t, t0) for the 2-state problem by re-summing the exponential
series into the form of a 2x2 matrix. The parametrization of H given
in eq.(3.111) simplifies the expressions. Show that you recover the same
results as eqs.(3.116-3.118).



Chapter 4

INTERACTIONS

4.1 The framework

In non-relativistic Classical Mechanics the motion of interacting particles is
governed by a Lagrangian that is equal to the total kinetic energy minus the
potential energy, L =

P
i
1
2miẋ

2
i − V (x1, · · · ,xN ). The standard canonical for-

malism gives the usual momenta, pi = ∂L/∂ẋi = mẋi , and the Hamiltonian is
the total energy

H =
X
i

p2i
2mi

+ V (x1, · · · ,xN ). (4.1)

The equations of motion are ∂txi = ∂H/∂pi = pi/mi and ∂tpi = −∂H/∂xi
= −∂V/∂xi (force). In Relativistic Mechanics interactions cannot be covariantly
discussed in terms of potentials. One needs to consider field theories that are
relativistically covariant. Therefore we will limit our discussion here to non-
relativistic particle mechanics, or more generally to any Hamiltonian that may
be written as a function of positions and momenta H(x,p).

In quantum Mechanics we promote the canonical variables to operators x̂i
and p̂i and impose the canonical commutation rules [x̂iI , x̂jJ ] = 0 = [p̂iI , p̂jJ ],
and [x̂iI , p̂jJ ] = i~δijδIJ . Here we have used low case indices i = 1, · · · , N
to identify the particle, and capital indices I = 1, · · · , d to denote the compo-
nents of a vector in d−dimensions. This part is independent of the details of
the Hamiltonian and is the same as the free particles case studied in previous
chapters. Therefore there can be no difference in the properties of the position
|x1, · · · ,xN> or momentum |p1, · · · pN> states as compared to free particles.
We must have the same setup as before for the position and momentum bases.
In particular, we recall that for a single particle in d−dimensions we must have

89
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< x|x̂I=xI < x|, < x|p̂I=− i~∂xI < x|
p̂I |p > = pI |p >, x̂I |p > = −i~∂pI |p >

< x0|x >=δ(d)(x0 − x) < p0|p >=δ(d)(p0 − p)R
dx |x >< x| = 1 =

R
dp |p >< p|

< x|p >=(2π~)−d/2 eix·p/~ .

(4.2)

The form of the equations of motion of observables in the Heisenberg picture,
∂tAH = i[ĤH , AH ]/~, must be the same as those of Classical Mechanics, as
discussed in the previous chapter. Indeed, it is easy to check that positions and
momenta in the Heisenberg picture satisfy equations of motion that have the
same form as the classical equations written above:

∂t(x̂iI)H = i[ĤH , (x̂iI)H ]/~ = 1
mi
(piI)H

∂t(p̂iI)H = i[ĤH , (p̂iI)H ]/~ = − ∂
∂(x̂iI)H

V.
(4.3)

Therefore, we should expect that the expectation values of observables in the
quantum mechanical system will behave somewhat similarly to the classical
observables at least in a probabilistic sense. This helps us develop physical
intuition about the quantum system from the behavior of the classical one.
For an arbitrary potential V it is not easy to solve the equations of motion
for the observables in the Heisenberg picture, and generally we must work our
way through the diagonalization of the Hamiltonian operator to find the time
development of the system in the Schrödinger picture as described generally in
the previous chapter.
For a single particle the general problem we would like to solve is reduced

to the eigenvalue equation in the Schrödinger representation

Ĥ|E, · · · >= E|E, · · · > . (4.4)

The dots · · · correspond to eigenvalues of simultaneous observables that com-
mute with the Hamiltonian. The additional labels represented by the dots
are needed to specify a complete Hilbert space. We will see examples below.
Furthermore, to give a space-time interpretation, we need to compute the prob-
ability amplitude < x|E, · · · >≡ ψE···(x) . There is a distinct wavefunction for
each choice of compatible quantum numbers represented by the dots “· · · ”, but
for notational convenience we will suppress the extra dots until needed. To solve
for the probability amplitude we sandwich the Hamiltonian between the states
< x| and |E, · · · > , and evaluate it by applying it to the ket or the bra

< x|Ĥ|E, · · · >=

⎧⎪⎨⎪⎩
< x|E, · · · > Eh
− ~2
2m∇2

x + V (x)
i
< x|E, · · · > .

(4.5)

Therefore the probability amplitude must satisfy the time independent Schrödinger
equation.
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∙
− ~

2

2m
∇2

x + V (x)

¸
ψE (x) = E ψE (x) . (4.6)

An arbitrary state at the initial time |ψ > may be expanded in the complete
basis |E, · · · >. Then, as discussed in the previous chapter, the probability
amplitude < x|ψ >= ψ(x, t) at later times will be given by

ψ(x, t) =
X
E,···

cE··· ψE···(x) e
−iEt/~ (4.7)

where ψE···(x) form the basis of energy eigenstates and cE··· =< E, · · · |ψ >
is a set of constants that characterize the initial state |ψ >. This structure is
designed to be the solution to the time dependent Schrödinger equation

i~∂tψ(x, t) =
∙
− ~

2

2m
∇2

x + V (x)

¸
ψ(x, t). (4.8)

4.1.1 Conservation of probability

As always, the time development of an energy eigenstate

ψE,···(x,t) = ψE,···(x) e
−iEt/~ (4.9)

gives a probability density which is stationary in time, i.e. |ψE(x, t)|2 is time
independent. However, the general superposition of energy eigenstates given
above is not stationary, since

|ψ(x, t)|2 =
¯̄
cE1 ψE1 (x) exp(−iE1t/~) + cE2 ψE2

(x) exp(−iE2t/~) + · · ·
¯̄2

(4.10)
depends on time. On the other hand the total probability is conserved, i.e.Z
|ψ (x, t) |2 dx is time independent for any state and any Hamiltonian. To see

this consider the probability density ρ(x, t) and the probability current J(x, t)
defined by

ρ(x, t) = ψ∗(x, t)ψ(x, t), J(x) =
−i~
2m

[ψ∗(x, t)∇ψ(x, t)− ψ(x, t)∇ψ∗(x, t)] .
(4.11)

The probability current may be thought of as the velocity (p̂/m → −i~∇/m)
“times” the probability density. By using the Schrödinger equation (4.8) for
any potential it is easily seen that these satisfy the equation

∂tρ(x, t) =∇ · J(x, t). (4.12)

This is called the probability conservation equation because it can be used to
derive that the total probability for finding the particle anywhere in space is
time independent: i.e.

∂t

Z
dx ρ(x, t) =

Z
dx ∇ · J(x, t) =

Z
dΩ n · J(x, t)|∞ = 0, (4.13)
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where we used Stokes’s theorem to write the volume integral as a surface integral
at infinity, and we assumed that for any localized wave packet the wavefunction
vanishes at infinity. Therefore the normalization of the state does not change
in time, and can be consistently chosen to be 1Z

dx ρ(x, t) =< ψ, t|ψ, t >=< ψ|ψ >= 1. (4.14)

Of course the last equation is equivalent to the statement that the time trans-
lation operator is unitary

U†(t, t0)U(t, t0) = 1, (4.15)

since |ψ, t >= U(t, t0)|ψ, t0 >. We see that conservation of probability and
unitarity of the time evolution operator (or hermiticity. of the Hamiltonian) are
intimately connected1.
For a system of N particles the same arguments hold. The probability den-

sity ρ(x1, · · · ,xN ; t) and the currents for the individual particles J(i)(x1, · · · ,xN ; t),
i = 1, · · ·N

ρ(x1, · · · ,xN ; t) = ψ∗(x1, · · · ,xN ; t)ψ(x1, · · · ,xN ; t) (4.16)

J(i)(x1, · · · ,xN ; t) =
−i~
2m

h
ψ∗∇(i)ψ − ψ∇(i)ψ∗

i
satisfy the conservation law

∂tρ(x1, · · · ,xN ; t) =
NX
i=1

∇(i) · J(i)(x1, · · · ,xN ; t). (4.17)

(see problem). Then it follows that the total probability is conserved

∂t

Z
dx1 · · · dxN ρ(x1, · · · ,xN ; t) = 0. (4.18)

To discuss the main issue of finding the eigenstates and eigenvalues of the
Hamiltonian we will need to develop methods starting with completely solvable
problems of one particle in a potential in one dimension and then working our
way toward more complicated problems with more particles and more dimen-
sions.

4.2 Particle in a potential in 1 dimension

Let us first develop some physical intuition for the motion of particles in poten-
tials. It would be very useful to consider as a model the motion of a particle in

1A dissipative system in which probability is not conserved may be described by a non-
unitary time evolution operator, which in turn may correspond to a non-hermitian Hamil-
tonian.
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a gravitational potential since it is easier to understand intuitively the effects of
the gravitational forces. The mathematics is the same for many physical situa-
tions, therefore the results expected intuitively for the gravitational case can be
carried over to other cases. In this way one roughly knows what to expect before
plunging into the detailed mathematical formalism of Quantum Mechanics.
So, for our physical model, consider a particle (such as a car or a ball) moving

along a road that goes through hills and valleys. The horizontal position of the
particle is denoted by x, and its vertical position by y. The topographical shape
of the road is described by some function y = f(x). The gravitational potential
energy is a linear function of the height, i.e. V ∼ y = f(x) :When the car climbs
a hill along the road in gains gravitational energy and when it comes down into a
valley it loses gravitational energy. Therefore, its gravitational potential energy
is a function of its location along the road, V (x). This function must follow the
actual shape of the hills and valleys. Therefore, the plot in Fig. (4.1) represents
the shape of the hills and valleys as well as the potential energy of the particle.

 

Fig.4.1 - Potential energy with hills and valleys.

The Hamiltonian is the sum of its kinetic and potential energy

H = p2/2m+ V (x). (4.19)

Let us consider the motion of the particle in Classical Mechanics. Imagine
a car, moving ideally without friction, that has total energy H = E at the
bottom of a valley located at x = x0, the potential energy is V (x0), and the
kinetic energy is p2/2m = E − V (x0). Let the driver turn off his motor at the
bottom of the valley. As any car driver knows intuitively, if the total energy E
is large enough, it will manage to climb over the hill and reach the next valley,
and then the next one, and so on. However, if the total energy is not sufficient,
say E = E0 as in the figure, it will climb up to a certain maximum height (or
equivalently it will manage to go up to a maximum distance x2 horizontally).
It will momentarily stop at x2 and then roll back down to the valley, pass the
bottom at x0, and climb the road on the other side. If the energy is not sufficient
to go over the hill again, it will reach some x1 and then return back and repeat
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the process. In other words, if the energy is too low it will remain trapped in
the valley and perform some sort of oscillatory motion between some extreme
positions x1 ≤ x ≤ x2 . At the extreme positions the kinetic energy vanishes and
the total energy is purely potential energy. Thus, at energy level E = E0 there
is a relation E0 = V (x2) = V (x1) as pictured in the figure. On the other hand
if the total energy is sufficiently large, the car can escape the pull of the valley
and can go on travelling (as for E = E2 in the figure). So, the general aspects
of the motion are determined by the total energy. The mathematical equations
of motion are the same for other physical situations described by the same sort
of potential (e.g. electrons moving in atoms, molecules or solids). Therefore,
the classical motions of particles will be intuitively the same for some given
gravitational potential energy function V (x).
As emphasized above, in Quantum Mechanics observables satisfy the same

equations of motion as Classical Mechanics. Therefore, at least in a fuzzy prob-
abilistic sense, one should anticipate that expectation values of observables in
various states will follow the same intuitive behavior described in the previous
paragraph. In the discussion above, the focus was on the observation of the posi-
tion of the particle as a function of the energy. The connection should therefore
be made with the probability amplitude for observing a particle at position x
when it has energy E. That is, we should consider the probability amplitude
< x|E >≡ ψE(x). The expected motion should be reflected in the behavior of
the probability distribution |ψE(x)|2 . It should be large where the particle is
allowed to be classically, and small where it is not allowed to be, as determined
by its energy level. If the particle energy is very low, classically we expect it to
spend most of its time close to the bottom of the valley, i.e. in the vicinity of x0
in a narrow range x1 < x < x2. Therefore, we should expect that at low ener-
gies |ψE(x)|2 will be largest near x0. By the same token, as the energy increases
we should expect |ψE(x)|2 to be less peaked around x0, and more spread out.
Finally, if the energies are much higher than the peaks of the potential energy,
then |ψE(x)|2 should approach the behavior of free particles (i.e. wave pack-
ets) as discussed in the previous chapter, which permit the particle to travel
along x. This intuitive behavior is born out by detailed computations as will be
demonstrated in specific examples.
However, quantum mechanical details of the probability distributions that

are non-intuitive classically, and which relate to interference phenomena of
waves, cannot be obtained without solving for them for a given potential V (x).
For example, the quantum mechanical behavior of the particle at energy E = E1
in the figure is very different than the classical behavior. The particle can tun-
nel from one valley to the next quantum mechanically although it cannot do it
classically.
The time independent Schrödinger equation satisfied by the probability am-

plitude is

∙
− ~

2

2m
∂2x + V (x)

¸
ψE (x) = EψE (x) . (4.20)
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There are two linearly independent solutions to a second order differential equa-
tion. The solution is not unique unless one specifies boundary conditions. The
boundary conditions must be consistent with the expected intuitive physical
behavior discussed above. Thus, if the particle is trapped in the valley, its
probability amplitude must vanish as x gets far away from the valley, i.e.

|ψE(x)|→ 0, as x→ ±∞. (4.21)

On the other hand if the particle has more energy than any potential energy
peak, then ψE(x) should behave like a wave packet, i.e. a superposition of plane
waves. In other words, the boundary conditions to be imposed depends on the
energy.
In order to clarify these issues we will first discuss models that involve some

V (x) for which the differential equations are easy to solve. The detailed results
serve as models to develop intuition for more complicated cases. Some of the
solvable models may also be serious candidates for realistic physical applications.

4.2.1 Piecewise continuous potentials

The first set of models idealizes the valleys or hills with sharply shaped wells or
barriers. The potential energy is therefore discontinuous (see Fig.(4.2)).

 

Fig.4.2 - Approximation to the hills and valleys of fig.4.1 with sharp wells and
barriers.

By continuous deformation of the shape of the potential of Fig. (4.1) we can
extend our intuitive discussion to apply to the case of Fig.(4.2). Thus we expect
similar behavior classically and quantum mechanically.
Let us now begin the discussion of the solutions of the differential equation.

The wavefunction ψE(x) and its derivative ∂xψE(x) must be continuous at the
jumping points of the potential energy (provided it is not an infinitely large po-
tential energy jump!). This continuity is justified by integrating the Schrödinger
equation in the vicinity of a jump at x = a as follows:
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− ~
2

2m

a+εZ
a−ε

dx ∂2xψE(x) =

a+εZ
a−ε

(E − V ) ψE dx −→
ε→0

0 (4.22)

Since the right hand side must vanish as we shrink the region of integration
(ψE(x) must not diverge since it is a probability amplitude), the integral on the
left must tend to zero, thus

∂xψE(x)|
a+ε
a−ε −→ε→0 0. (4.23)

Therefore, we conclude that the derivative is continuous. Next consider the first
integral of the Schrödinger equation

− ~
2

2m
∂xψE(x) = −

~2

2m
∂xψE(x0) +

xZ
xo

(E − V )ψE (x
0) dx0, (4.24)

and integrate it once again in the vicinity of the jump . Again using a similar
argument for the vanishing of the right side as the region of integration shrinks,
one concludes that the wavefunction must also be continuous

ψE(x)|
a+ε
a−ε −→ 0

ε→0
. (4.25)

If the jump in the potential energy is infinitely large, then the integrals in
the vicinity of the jump will not vanish as ε → 0. Accordingly, there may be
discontinuities in the derivative of the wavefunction, or even in the wavefunction
itself, depending on the nature of the jump.
Another way to arrive at the same conclusion is by writing the wavefunction

in the form
ψE(x) = ψ

(1)
E (x) θ(a− x) + ψ

(2)
E (x) θ(x− a) (4.26)

where θ(x) is the step function. ψ(1,2)E (x) are the solutions of the Schrödinger
equation to the left and to the right of the point x = a where the potential
function makes a jump. When this form is inserted into the differential equation,
the derivatives are applied to the step functions as well. These produce extra
terms containing a delta function and its derivative at x = a, i.e. ∂xθ(x− a) =
δ(x − a), etc. These terms must vanish for the Schrödinger equation to be
satisfied everywhere, including at the jumping point. So, the wavefunction and
its derivative must be continuous at the discontinuities of the potential energy
provided the potential energy is not itself singular. If the potential energy is
singular (such as infinite steps, or delta functions, etc.) then they must cancel
against the above terms.
It is convenient to consider the continuity for the ratio of the derivative

∂xψE(x) to the wavefunction ψE(x) since the overall normalization drops out
for the combination (∂xψE(x))/ψE(x) = ∂x ln(ψE(x)). So, often one finds that
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it is an easier procedure to impose the continuity conditions on the wavefunction
and its logarithmic derivative in the form

ψ
(1)
E (x)

ψ
(2)
E (x)

¯̄̄̄
¯
x=a

− 1 = 0, ∂x ln

Ã
ψ
(1)
E (x)

ψ
(2)
E (x)

!
x=a

= 0 (4.27)

at each jumping point. Again, if the potential is singular the right hand side
of these equations is modified accordingly (see problems 6-9). These conditions
are peculiar to piecewise continuous potentials and they must be imposed to
obtain legitimate solutions.

Infinite square well The potential energy is given by V (x) = V0θ(|x| − a)
with V0 →∞, or

V (x) =

½
0 − a < x < a
+∞ |x| > a

(4.28)

This corresponds to two infinitely high walls at x = ±a, as in Fig.(4.3).

Fig.4.3 - Infinite square well

The classical motion consists of bouncing back and forth against the walls. The
particle is trapped in a hole since the kinetic energy is never sufficient to jump
over the infinitely high wall. Let us define the wavefunction in the various
regions as follows

ψE(x) = ψLE(x) θ(−x− a) + ψ0E(x) θ(a− |x|) + ψRE(x) θ(x− a) . (4.29)

The Schrödinger equation outside the hole has the form∙
− ~

2

2m
∂2x +∞

¸
ψL,RE (x) = E ψL,RE (x) . (4.30)

Because of the infinite potential the only way to satisfy this equation is

ψLE(x) = 0 = ψRE(x) (4.31)
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Inside the hole the equation is easily solved since V = 0

− ~
2

2m
∂2xψ

0
E(x) = E ψ0E(x) → ψ0E(x) = AE sin

Ã√
2mE

~
(x− x0)

!
(4.32)

The required continuity conditions of the wavefunction at the boundaries are
ψ0E(−a) = ψLE(−a) = 0 and ψ0E(a) = ψRE(a) = 0 (we do not expect con-
tinuity of the derivative since the potential makes an infinite jump). The
first of these is satisfied by choosing x0 = −a, then the second one imposes
sin(
√
2mE2a/~) = 0, which is possible only with quantization conditions on the

energy,
√
2mE2a/~ = πn. Therefore, the full solution is

ψE(x) = ψn(x) θ(a− |x|), En =
~2π2n2

8ma2
n = 1, 2, 3, · · · (4.33)

where

ψn(x) =
p
1/a sinπn(

1

2
− x

2a
) =

½
in−1

p
1/a cos

¡
πnx
2a

¢
n = 1, 3, · · ·

in−2
p
1/a sin

¡
πnx
2a

¢
n = 2, 4, · · · .

(4.34)
The probability distribution takes the form

|ψE(x)|2 = θ(a− |x|) 1
2a
[1− (−1)n cos(πnx/a)] , (4.35)

and the normalization AE =
p
1/a has been chosen so that

R
dx |ψE(x)|

2 = 1.
A plot of the probability distribution confirms our fuzzy expectations based on
Classical Mechanics (see Fig. (4.4)):

Fig.4.4 - Probability densities for n=1,2,3 eigenfunctions.

For small n the probability of finding the particle near the center x = 0 is
greatest. As n increases, the probability is more distributed over the region.
This may be understood in terms of the classical motions of the particle. During
the same amount of time, a particle that is slow moving (low n, or low energy)
is mostly found in the middle of the region, while a particle that is fast moving
is likely to be found anywhere in the region. However, the detailed results
provided by the probability distributions go well beyond any information that
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may be extracted from Classical Mechanics. For example, (i) The energies
are quantized and (ii) since the probability oscillates, there are positions of
maximum and minimum probability. The locations of such extrema x = xi
depend on the energy.

Energy-Parity representation

The solutions are naturally classified as even and odd under the parity transfor-
mation x→ −x. This is to be expected for the following reasons. In Quantum
Mechanics we define the unitary parity operator SP and its inverse S−1P such
that

SP x̂ S−1P = −x̂, SP p̂ S−1P = −p̂. (4.36)

Then, any Hamiltonian with a potential energy that is an even function ,
V (−x) = V (x), is automatically invariant under parity transformations,

SP ĤS−1P = +Ĥ. (4.37)

This means that the Hamiltonian commutes with the parity operator, [Ĥ, SP ] =
0, and therefore they are simultaneous observables. The eigenvalues of the parity
operator must label the complete set of states along with the eigenvalues of
the Hamiltonian. What are the eigenvalues of the parity operator SP |ψ >=
λP |ψ >? First notice that its action on position space is SP |x >= | − x >,
as required by its action on the position operator. So, its square acts as the
identity operator S2P |x >= |x > . Since position space is complete, S2P is also
identity on any state S2P |ψ >= |ψ > . Therefore the inverse of SP is itself
S−1P = SP , and this requires that its eigenvalues satisfy λ2P = 1. The only
possibility is λP = ±1. Therefore in the present problem energy and parity
eigenvalues combined provide a complete set of labels |E,± > for a complete
Hilbert space.
As we saw through the explicit solutions, we may summarize all the labels by

the integer n, such that the energy is a function of n, while the parity eigenvalues
are associated with even or odd integer. Therefore, we may write the operator
equations in the energy-parity basis |n > as follows

Ĥ|n >=
~2π2n2

8ma2
|n >, SP |n >= (−1)n−1|n > . (4.38)

This basis is orthonormal and complete by definition, just as the position basis
is orthonormal and complete

< n|n0 >= δnn0 , < x|x0 >= δ(x− x0)P∞
n=1 |n >< n| = 1,

R∞
−∞ dx |x >< x| = 1. (4.39)

One complete basis may be expanded in terms of the other

|n >=

Z ∞
−∞

dx |x >< x|n >, |x >=
∞X
n=1

|n >< n|x > (4.40)
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The consistency of these conditions can be checked explicitly (see problem 1)
by inserting identity in between states and using the expansion coefficients <
x|n >=< x|E,± >= ψE,±(x) that were already computed above

< x|n >= θ(a− |x|)
r
1

a
sinπn(

1

2
− x

2a
). (4.41)

In the energy-parity basis the time development of the states is given by

| n, t >= e−iHt/~ |n >= |n > e−iEnt/~ , En =
π2~2n2

8ma2
. (4.42)

The action of various operators on this basis may be computed by taking ad-
vantage of the completeness relations

x̂|n >=
∞X

m=1

|m >< m|x̂|n >=
∞X

m=1

|m > Xmn (4.43)

where the matrix elements of the position operator Xmn in the energy-parity
basis are given by

Xmn =< m|x̂|n >
=
R∞
−∞ dx x < m|x >< x|n >

=
R a
−a dx x

³p
1/a

´2
sin [πm(x/2a+ 1/2)] sin [πn(x/2a+ 1/2)]

= −16amn
π2(m2−n2)2

h
1−(−1)m−n

2

i
(4.44)

Similarly the matrix elements of the momentum operator are

Pmn =< m|p̂|n >
=
R∞
−∞ dx < m|x > (−i~∂x) < x|n >

= −i~a
R a
−a dx sin [πm(x/2a+ 1/2)] ∂

∂x sin [πn(x/2a+ 1/2)]

= −2i~mn
a(m2−n2)

h
1−(−1)m−n

2

i (4.45)

They may be written out in matrix notation

Xmn = −
16a

π2

⎛⎜⎜⎜⎜⎜⎝
0 2

9 0 4
225 · · ·

2
9 0 6

25 0 · · ·
0 6

25 0 12
49 · · ·

4
225 0 12

49 0 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ (4.46)

and

Pmn =
2i~
a

⎛⎜⎜⎜⎜⎜⎝
0 2

3 0 4
15 · · ·

−23 0 6
5 0 · · ·

0 −65 0 12
7 · · ·

− 4
15 0 −127 0 · · ·
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎠ (4.47)
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Because the position or momentum operators are odd under parity their matrix
elements vanish when the parity of both ket and bra are the same. This is the
reason for the many zeroes in these matrices. So there is a “selection rule”
due to the parity symmetry in this problem. There are several quantities that
may be computed exactly, such as the mean square deviations in position and
momentum in each state (∆x)n and (∆p)n . These are left for the reader as
exercises (see problems 2,3).

Finite square well

For the finite square well we will choose the origin of the energy axis such that
the potential energy is either zero or negative. Then we have the potential
energy

V (x) = −V0 θ(a− |x|) (4.48)

corresponding to Fig.(4.5).

Fig.4.5 - Finite well.

The Schrödinger wavefunction may be written in the form

ψE(x) = ψLE(x) θ(−x− a) + ψ0E(x) θ(a− |x|) + ψRE(x) θ(x− a) (4.49)

where the various functions satisfy the Schrödinger equation in the left (L) right
(R) and middle (o) regions

(− ~2
2m ∂2x) ψ

L,R
E = E ψL,RE |x| > a

(− ~2
2m ∂2x − V0) ψ

0
E = E ψ0E |x| < a.

(4.50)

For a bound state solution the energy level must be below the top of the well.
With our definitions this means that we expect bound states for negative ener-
gies and unbound states for positive energies. First we discuss the bound state
negative energies. We define the quantities

E =
~2k2

2m
− V0 = −

~2K2

2m
, α =

r
2mV0
~2

, K =
p
α2 − k2 (4.51)

and write the solution in the form

ψevenE (x) = A+

³
e−K(|x|−a) θ(|x|− a) + cos(kx)

cos(ka) θ(a− |x|)
´

ψoddE (x) = A−
³
e−K(|x|−a) ε(x) θ(|x|− a) + sin(kx)

sin(ka) θ(a− |x|)
´ (4.52)
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where ε(x) = sign(x), and we have already imposed the continuity condition for
the wavefunction at x = ±a. Since the Hamiltonian commutes with the parity
operator we have chosen our basis in terms of even and odd functions. At the
boundaries of the well x = ±a the continuity of the logarithmic derivative gives
(see (4.27))

tan (ka) =
q

α2

k2 − 1 even solution

cot (ka) = −
q

α2

k2 − 1 odd solution.
(4.53)

These transcendental equations cannot be solved for k (or E) analytically, but
an approximate graphical solution provides the essential physics (see Fig.(4.6)).

 

Fig.4.6 - Intersections of curves give the values of akn.

More accurate solutions are obtained numerically. The odd numbers in the
figure mark the intersections of the two solid curves (even solution) and the
even numbers mark the intersection of the two dashed curves (odd solution).
At these values of ka = kna there are values of the energy E = En that solve the
equations (4.53). These quantized energies En correspond to the bound state
energy eigenvalues we are seeking. From the figure we see that the intersections
occur when

(n− 1)π
2
< kna < n

π

2
,

½
n = 1, 3, · · · even solution

n = 2, 4, · · · odd solution.
(4.54)

The number of bound state solutions N is given by the number of intersections
of the two curves and is equal to the number of π/2 intervals that can fit between
akmin = 0 and akmax = aα (see Fig. ( )). Therefore

N = 1 + Int
³
(2a/π~)

p
2mV0

´
(4.55)
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where Int(x) is the largest integer contained in the real number x. Finally, the
overall constants A± are computed by requiring an overall norm of 1, then

A± =
kn
α
(a+ 1/Kn)

−1/2 (4.56)

where (4.53) and (4.51) have been used to simplify the expression. We have
thus found the simultaneous negative energy and parity eigenstates

Ĥ|En >= En|En >, P |En >= (−1)n−1|En >, n = 1, · · · , N, (4.57)

and computed the probability amplitudes in position space, which may be writ-
ten neatly as

< x|En >= 1√
a+1/Kn

h
kn
α e−Kn(|x|−a) (ε(x))n−1 θ(|x|− a) ,

+sin
¡
nπ
2 − knx

¢
θ(a− |x|)

¤ (4.58)

where we have used

sin(
nπ

2
− kna) = kn/α, cos(

nπ

2
− kna) = Kn/α (4.59)

as follows from (4.53) and (4.54).
According to (4.55), a deeper or wider well has a larger number of bound

states. This makes sense intuitively.. It is interesting to consider some limits of
either parameter. One limit is the infinite square well (V0 → ∞) and another
limit is an infinitely narrow and deep one given by a delta function V (x) =
−v0δ(x) (see problems 5,6).
A new feature for the finite well is that the probability does not vanish in

the classically forbidden region beyond the walls. Even though the particle does
not have enough energy to jump over the wall, there is a probability to find
it beyond the wall. However, this probability is exponentially decreasing with
distance. We can estimate the wall penetration distance as the point at which
the probability drops by a factor of e−1 as compared to its value at the wall
boundary, that is

|ψn(a+∆)|2
|ψn(a)|2

= e−
√
2m|En|2∆/~ ∼ e−1; ⇒ ∆ ∼ ~

2
p
2m|En|

. (4.60)

Is it possible to perform an experiment to examine the particle while it is beyond
the wall? This would be particularly interesting since the kinetic energy of the
particle must be negative while it is in that region. Such an experiment would
require an accuracy for the measurement of position ∆x < ~/(2

p
2m|En|).

Then by the uncertainty principle we must probe with momenta p >
p
2m|En|

and the uncertainty in the energy is ∆E > p2/2m = |En|. Therefore, it is not
possible to perform such a measurement since the energy levels of the system
would be destroyed. So, the negative kinetic energy of the particle cannot be
observed.
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We now consider the positive energy solutions. The complete set of states
must include them since we cannot reconstruct the identity operator with only
the finite number of bound states. That is, we need the positive energy eigen-
states to write

NX
n=1

|En >< En|+
Z ∞
0

dE |E >< E| = 1. (4.61)

Classically the particle can move from minus infinity to plus infinity. Therefore
in the quantum theory we expect oscillatory solutions corresponding to unbound
particles for any positive energy. The boundary conditions to be imposed on the
solutions must correspond to the physical process being analyzed. For example,
particles may initially come in from the left, get scattered by the potential
well and then get reflected to the left or transmitted to the right. Then the
corresponding boundary conditions should be right-moving waves exp(iκx) and
left-moving waves exp(−iκx) in the region x < −a and right moving waves
exp(iκx) in the region x > a.With such conditions we can find the appropriate
behavior for the probability amplitude < x|E > . This is left as an exercise for
the reader (see problem 9). Note that the process just described is not left-right
symmetric, therefore the energy eigenstate that describes it should be neither
even nor odd under parity. There is, of course, another state which is the parity
reflection of this state P |E >, which describes the mirror image of the physical
process. Both of these states must be included in the completeness relation.

Barrier penetration

Let us now discuss the potential barrier given in Fig.(4.7).

Fig.4.7 - Barrier

It is described by the potential energy function

V (x) = V0 θ(a− |x|). (4.62)

In Classical Mechanics, for energies E < V0 we expect that a particle moves
freely until it hits the wall, at which point it is reflected and moves again freely
in the opposite direction with the same kinetic energy. For energies E > V0 it
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goes forward after being slowed down temporarily by the barrier (it is easier
to the intuition if one thinks of a smooth hill instead of the sharp barrier). In
Quantum Mechanics transmission can happen even if E < V0 through barrier
penetration, but the probability of the transmission will be smaller as compared
to the probability of the classically expected reflection. Similarly, when the en-
ergy is larger than the barrier energy E > V0, there will be reflection, but at a
smaller probability than the classically expected transmission. These phenom-
ena occur because of the wave nature of Quantum Mechanics and are similar to
the diffraction of ordinary light.
The Schrödinger wavefunction may be written in the form

ψE(x) = ψLE(x) θ(−x− a) + ψ0E(x) θ(a− |x|) + ψRE(x) θ(x− a) (4.63)

where the various functions satisfy the Schrödinger equation in the left (L) right
(R) and middle (o) regions

(− ~2
2m ∂2x) ψ

L,R
E = E ψL,RE |x| > a

(− ~2
2m ∂2x + V0) ψ

0
E = E ψ0E |x| < a.

(4.64)

We define the quantities

E =
~2k2

2m
= −~

2κ2

2m
+ V0 , α =

r
2mV0
~2

, κ =
p
α2 − k2. (4.65)

The solutions may be written as combinations of oscillatory plane waves

A±(k) exp(±ikx) (4.66)

in the regions |x| > a, and combination of exponentials B±(κ) exp(±κx) in the
region |x| < a. In order to choose the correct combinations we must consider
the physical process we are trying to describe and impose boundary conditions
consistent with it. For this we pay attention to the meaning of the plane wave
solutions. We recall that the time evolution of a free particle is described by a
wave packet of the form ψ(x, t) =

R
dp φ(p) exp[(ip(x− x0)− iE(p)t)/~] where

φ(p) is a momentum distribution concentrated around p = p0. Then the packet
is concentrated in x-space around the position x = x0 + vt and moves with
a group velocity v = ∂E(p0)/∂p0 = p0/m. For an idealized sharp momentum
distribution φ(p) = A(p0) δ(p−p0) the position wavefunction reduces to a plane
wave

ψ(x, t) = A(p0)e
−i[p0x0+tE(p0)]/~ exp(ip0x/~). (4.67)

The overall coefficient of the amplitude is closely related to the momentum-
space (or energy-space) wavefunction. The x−dependence of the wavefunction,
which is a plane wave, contains the information that the particle is moving with
momentum p0. It is this part that is relevant to our present discussion. In par-
ticular, the sign of p0 tells us whether the particle moves to the left or right
since it is related to the group velocity of the wavepacket v = p0/m. Follow-
ing this discussion we must interpret the plane wave solution A+(k) exp(+ikx)
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as related to a right moving packet and A−(k) exp(−ikx) as related to a left
moving packet. In these solutions p0 = ±~k is a momentum determined by the
energy eigenvalue E as in (4.65). Wavepackets can indeed be formed by taking
superpositions of the energy eigenstates instead of the momentum eigenstates
of the free particle.
Thus, if a particle begins its motion in the region x < −a by moving toward

the barrier, we expect that on the left of the barrier there will be both right
and left moving waves (incoming and reflected waves), but on the right of the
barrier there can be only right moving waves (transmitted waves). The last
physical input, namely the absence of left moving waves in the region x > a is
the boundary condition we must impose. Accordingly we may write a solution
of the form

ψE(x) = θ(−x− a) A(k) [eik(x+a) + r(k) e−ik(x+a)]

+θ(a− |x|) A(k) 1+r(k)1+b(k)

£
eκ(x+a) + b(k) e−κ(x+a)

¤
+θ(x− a) A(k) 1+r(k)1+b(k)

£
e2κa + b(k) e−2κa

¤
eik(x−a)

(4.68)

where the complicated coefficients are due to the continuity conditions at x =
±a which we have already imposed on the wavefunction. There remains the
continuity of the logarithmic derivatives

∂x ln

µ
eik(x+a) + r(k) e−ik(x+a)

eκ(x+a) + b(k)e−κ(x+a)

¶
x=−a

= 0 = ∂x ln

µ
eik(x−a)

eκ(x+a) + b(k)e−κ(x+a)

¶
x=a

(4.69)
where we have ignored the multiplicative constants since they drop out. These
provide two equations from which we can solve for both r(k) and b(k).

b(k) =
κ− ik

κ+ ik
e4κa, r(k) =

α2(1− e−4κa)

(κ− ik)2 − (κ+ ik)2e−4κa
(4.70)

The transmission (or reflection) coefficient is defined as the ratio of the ampli-
tudes multiplying the transmitted wave exp(ikx) (or reflected wave exp(−ikx))
and the incoming wave exp(ikx). So, the reflection coefficient isR(k) = r(k)e−2ika

and the transmission coefficient T (k) is given by

T (k) = 1+r(k)
1+b(k)

£
e2κa + b(k)e−2κa

¤
e−2ika

= − 4ikκ e−2κa e−2ika

(κ−ik)2−(κ+ik)2e−4κa .
(4.71)

The probability of reflection (transmission) is the ratio of the probabilities for
the reflected (transmitted) wave to the incident wave at the fixed energy eigen-
state. Therefore these are given by |R(k)|2 and |T (k)|2. By probability conser-
vation their sum must add to 1, since there is nothing else that can happen to
the particle. Indeed we can explicitly check that

|R(k)|2 + |T (k)|2 = 1.
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Consider the behavior of the transmission probability for a thick (large a) or
tall (large V0) barrier, defined by exp(−4κa)¿ 1

|T |2 ∼ 16 k
2

α2

µ
1− k2

α2

¶
e−4κa (4.72)

As expected intuitively, the transmission is exponentially small in these cases.
By contrast, a thin or low barrier exp(−4κa) ≈ 1 gives

|T |2 ≈ e−4κa (4.73)

indicating that it is easy to penetrate it. We may also consider the limit of a thin
but tall barrier which is analogous to a delta function potential V (x) = v0δ(x).
This is left as an exercise (see problem 8).
For energies higher than the top of the barrier E > V0 the solution is os-

cillatory everywhere. We may go through the algebra and discover that all ex-
pressions follow by analytic continuation of the energy from the region E < V0
to the new region. This is equivalent to the analytic continuation of κ = −iK,
where K = (k2 − α2)1/2. For example the transmission coefficient is now

T (k) =
4kK e2iKa e−2ika

(K + k)
2 − (K − k)

2
e4iKa

(4.74)

At special energies the transmission coefficient becomes a pure phase indicating
that transmission is 100%. This occurs when 4Ka = 2πn, or when En =
V0 + ~2π2n2/8ma2.

α-decay

A general barrier potential may be thought of as made up a large number of
thin barriers as depicted in Fig.(4.8).

Fig.4.8 - General barrier composed of thin barriers.

The thin barrier centered at xi has width 2a = dx and height V0 = V (xi).
According to the computation above the transmission probability through the
i’th thin barrier is

|Ti(k)|2 ≈ e−4κia ≈ exp
∙
−2dx
~
p
2m(V (xi)− E)

¸
. (4.75)
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One may attempt to obtain an approximate expression for the transmission
probability through the overall barrier by putting together the transmission
probabilities through the individual thin barriers

|T (k)|2 ≈
Y
i

|Ti(k)|2. (4.76)

This is not entirely correct since it ignores the reflections forward and backward
in between the thin barriers (see for example the double delta-shell potential,
problem 9). However, one may hope that this is still a good approximation in
certain cases. In fact the approximation turns out to be valid at sufficiently high
energies as will be justified when we study the semi-classical WKB approxima-
tion. Thus, assuming that we have a valid approximation we may write

|T (E)|2 = exp
"
−2
√
2m

~

Z x2

x1

dx
p
V (x)−E

#
(4.77)

where x1,2 depend on the energy and are given by the relation V (x1,2) = E, as
seen in the Figure.
We can apply this result to learn something about the alpha decay of a

nucleus. Within the range of strong interactions of a radius of about 1 fermi
from the center of a nucleus, r = a ≈ 1 f, the main force is the attraction due
to strong interactions. This may be represented by a well. When an α-particle
moves out of this range the main force is the electromagnetic repulsion between
the Z protons that remain in the nucleus and the two protons in the α. This is
represented by the potential energy Vem(x) = 2Ze2/r. The combined potential
energy is depicted in Fig.(4.9).

Fig4.9 - Nuclear + Coulomb potential for α− decay.

The probability of α decay of the nucleus is measured by the transmission prob-
ability of the α to the outside of the nucleus

|T (E)|2 = exp
"
−2
√
2mα

~

Z b

a

dr
p
2Ze2/r −E

#
(4.78)

where the lower limit on the integral is the range of the nuclear force, and the
upper limit r = b is given by E = 2Ze2/b. Therefore



4.2. PARTICLE IN A POTENTIAL IN 1 DIMENSION 109

|T (E)|2 = exp

⎡⎣−2
~
p
2mαE

bZ
a

dr

r
b

r
− 1

⎤⎦ (4.79)

The integral may be performed by a change of variables r = b sin2 θ . The result
simplifies under the assumption that bÀ a

|T (E)|2 ≈ exp
µ
−4π
~

Ze2

vα
+
4

~
p
4Ze2mαa

¶
(4.80)

where vα =
√
2mαE is the velocity of the α particle that emerges from the

nucleus. The lifetime of the nucleus is inversely proportional to the decay prob-
ability τ−1 ∼ |T (E)|2. This allows us to make the statement that

ln τ ∼ c1
vα
+ c2 (4.81)

where c1= 4π~ Ze
2 is the Gamow factor. To compare this result to experiment we

examine isotopes of heavy nuclei and plot their lifetimes versus the speed of the
emitted α0s. One finds good general agreement.

4.2.2 Harmonic Oscillator in 1d

The harmonic oscillator problem is one of the most important simple mathe-
matical structures that has multiple applications in many areas of classical and
quantum physics. Its applications range from molecular physics to string theory.
It is used do describe vibrations of atoms in molecules, or electrons in crystal,
and in quantum field theory is it is applied to phonons in solid state physics,
photons in electrodynamics, quarks, leptons and other elementary particles. In
this section we study the simple harmonic oscillator in one dimension which is
at the basis of all the applications.
It is useful to keep in mind the classical problem of a particle attached

to the end of a spring, which is the simplest physical system that obeys the
laws of harmonic motion. As the spring is stretched (or contracted) away from
equilibrium (x = a), the restoring force is proportional to the distance F =
−k(x − a), where k is the spring constant. The potential energy that obeys
F = −∂V/∂x = −k(x− a) is

V =
1

2
k(x− a)2. (4.82)

The classical equations of motion mẍ = −k(x− a) have solutions that display
oscillatory motion

x(t) = a+

√
2mE

ω
sin(ωt− ωt0) (4.83)

where ω =
q

k
m and E is the total energy of the system. Raising the energy

gives a larger amplitude of oscillations. Many other physical systems obey the
same equations of motion and have the same vibrating solutions.
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The quantum system is described by the Hamiltonian

Ĥ =
p̂2

2m
+
1

2
mω2x̂2. (4.84)

One must solve the eigenvalue problemµ
p̂2

2m
+
1

2
mω2x̂2

¶
|En >= En|En > . (4.85)

As usual, the energy basis |En > or the position basis |x > are complete, and one
may expand one basis in terms of the other by using the expansion coefficients
< x|En >≡ ψn(x). They represent the probability amplitude for the particle
to be located at position x when it is in the energy eigenstate with E = En.
We expect that the gross features of probability distributions described by wave
packets

ψ(x, t) =
X
m

cm(n) < x|Em > exp(−iEmt/~) (4.86)

with cm(n) chosen to be sharply peaked around some energy E = En, is consis-
tent with the classical physics described by the time dependence of the classical
solutions given above.
There are several methods of computing the energy eigenstates or eigenval-

ues. The most elegant approach is an operator formalism that we will discuss in
the next chapter. The most direct approach is to solve the Schrödinger equation
for the wavefunction in position spaceµ

− ~
2

2m
∂2x +

1

2
mω2x2

¶
ψn (x) = Enψn (x) (4.87)

and impose the boundary condition ψ(±∞) = 0 that is consistent with the phys-
ical situation. First we simplify the expressions by defining the dimensionless
variable u

x = x0u, ∂x =
1

x0
∂u, (4.88)

The equation becomes µ
− ∂2

∂u2
+ u2

¶
ψn(u) = εnψn(u) (4.89)

provided we choose

x0 =

r
~
mω

, En =
~ω
2
εn (4.90)

It is useful to first extract the leading behavior of the solution as u → ±∞.
Ignoring non-leading terms we see that ψ(u) ∼ exp(−u2/2) solves the equation
and boundary conditions. Therefore, it is useful to extract this behavior by
defining ψn(u) = CnHn(u) exp(−u2/2), where Cn is a normalization constant,
and the function Hn(u) cannot grow faster than the exponential as u → ±∞.
Replacing this form in the differential equation one finds that Hn(u) must obey
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∂2uHn − 2u∂uHn + (εn − 1)Hn = 0. (4.91)

Such equations may be solved by a power series

Hn(u) =
∞X
0

b
(n)
j uj = b

(n)
0 + b

(n)
1 u+ b

(n)
2 u2 + b

(n)
3 u3 + ... (4.92)

Replacing it in the differential equation and collecting the coefficients of uj , one
finds that each such coefficient must vanish for every j

(j + 2)(j + 1)b
(n)
j+2 − (2j − εn + 1)b

(n)
j = 0 (4.93)

This provides a recursion relation that determines the coefficients

b
(n)
j+2 =

2j − εn + 1

(j + 2) (j + 1)
b
(n)
j . (4.94)

There are two solutions, one starting with b0, the other starting with b1

Heven
n = b

(n)
0 +b

(n)
2 u2+b

(n)
4 u4+· · · , Hodd

n = b
(n)
1 u+b

(n)
3 u3+b

(n)
5 u5+· · · (4.95)

To determine the asymptotic behavior we analyze the ratio of consecutive terms,
with j = 2m or j = 2m+ 1

b
(n)
j+2u

j+2

b
(n)
j uj

=
2j − εn + 1

(j + 2)(j + 1)
u2 −→

j→∞

u2

m
(4.96)

by comparing to the power series
P (u2)m

m! = eu
2

, for which the ratio of con-
secutive terms is similar, we conclude that the series for Hn(u) will grow faster
than permitted for large u, unless the series is cutoff into a polynomial. This is
accomplished by imposing

εn = 2n+ 1, (4.97)

so that bj+2 vanishes for some value of j = n, thus allowing Hn to be a polyno-
mial. There is a solution for every integer n. Therefore the energy eigenstates
and eigenvalues are

Ĥ|n >= ~ω (n+
1

2
) |n >, n = 0, 1, 2, · · · (4.98)

These must be orthonormal and complete

< n|n0 >= δnn0 ,
∞X
n=0

|n >< n| = 1. (4.99)

Using the recursion relations one finds the coefficients for the even n = 2N or
odd n = 2N + 1 solutions

b
(2N)
2k =

(−4)kN ! b(2N)0

(2k)! (N − k)!
, b

(2N+1)
2k+1 =

(−4)k(N)! b(2N+1)1

(2k + 1)! (N − k)!
, k = 0, 1, 2, · · ·N

(4.100)
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The result may be listed for a few of these solutions

H0 = 1, H1 = 2u, H2 = 4u
2 − 2, H3 = 8u

3 − 12u, · · · (4.101)

where the overall constants b(n)0 , b
(n)
1 have been chosen so that the overall wave-

function is normalized to one

< n|n >=

Z
dx |ψn(x)|2 = 1, (4.102)

Therefore the explicit solution becomes

ψn(x) =
1

2n/2
1√
n!

1p
x0
√
π
e−x

2/2x20Hn(x/x0). (4.103)

The Hn(u) are recognized as the Hermit polynomials. The quantum mechan-
ical setup guaranties that these wavefunctions are orthonormal and complete.
That is, the completeness and orthonormality of the energy basis |n > and po-
sition basis |x > require that the expansion coefficients ψn(x) =< x|n > be
orthonormal and completeZ ∞

−∞
dxψ∗n(x)ψn0(x) = δnn0 ,

∞X
n=0

ψn(x)ψ
∗
n(x

0) = δ(x− x0). (4.104)

This implies that the Hermit polynomials must have these propertiesZ ∞
−∞

du e−u
2

Hn(u)Hn0(u) = 2
nn!
√
πδnn0 ,

∞X
n=0

Hn(u)H
∗
n(u

0)

2nn!
√
π

= eu
2

δ(u− u0).

(4.105)
By explicit computation this can be verified (see problem 12).
The probability densities |ψn(x)|2 may be plotted. By comparing them to

the probability densities for the infinite square well (Fig.(4.4 )) one sees the
similarities between them. Their interpretation is therefore analogous to that
case. All of these results will be re-derived in the next chapter by using purely
operator methods, without solving differential equations.
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4.3 Problems

1. Show that eq.(4.17) follows from the Schrödinger equation for any poten-
tial energy.

2. Consider the infinite well problem. Show that the orthogonality and com-
pleteness conditions of eq.(4.39) are consistent by inserting identity be-
tween states and using the explicit solutions for the wavefunctions < x|n >
as computed in the text.

3. For the infinite well problem compute the mean square root deviations
(∆x)n, (∆p)n in every state |n > for both position and momentum. Are
they consistent with what you would expect intuitively from classical me-
chanics considerations? What is the product of the uncertainties, for which
state is it a minimum?

4. Compute the propagator in the infinite well problem. Show it can be writ-
ten in terms of Jacobi Theta functions, and discuss the physical properties
by using the properties of the Theta functions.

5. Using the matrix elements Xmn and Pmn of position and momentum in
the infinite square well problem, compute the commutator [X,P ]mn =P

k(XmkPkn − PmkXkn). Do you get the expected result?

6. Consider the finite square well with a potential energy function V (x) =
V0 θ(|x| − a) (Fig.4.5). This is the same problem as the one considered
in the text except for a shift in the energy axis to a new origin Enew =
V0 + Eold. Therefore all energy levels are positive and the solution for
the eigenstates or energies are the same except for the shift. In the limit
V0 → ∞ this becomes the infinite square well problem studied in detail
in the text. Show that in this limit the bound state solutions of the finite
well indeed tend to those of the infinite well. In particular discuss what
happens to the continuity of the derivative?

7. Solve for the bound eigenstates and energies of the infinitely narrow and
infinitely deep well represented by the potential energy V (x) = −v0δ(x).
Compare your direct solution to the one obtained as a limit for the square
well V = −v0/2a θ(a−|x|) which approximates the delta function potential
in the limit a → 0 (note that the integral over x is the same for these
potentials).

8. Consider the delta shell potential V (x) = v0δ(x) with v0 > 0. Compute
the reflection and transmission coefficients and show the same result may
be recovered as a limit of an infinitely tall and infinitely thin barrier (limit
of Fig.4.7).
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9. Consider the potential V (x) = aV0δ(|x|−a) which describes two infinitely
tall peaks at x = ±a. Consider a particle that initially is moving to the
right in the region x < −a. Compute the transmission probability to the
region x > a. What is the largest value it can attain, at what energies?

10. Consider delta shell potentials that form two peaks V = v−δ(x + a) −
v+δ(x − a), and allow v± to have all possible signs. Compute the trans-
mission coefficient. When is the reflection back and forth between the two
peaks negligible? Consider the following limits (i) a = 0, (ii) v+ = 0, (iii)
v− = v+ (iv) v− = −v+, and discuss the agreement with results in the
problems above.

11. Compute the transmission coefficient for the square well V (x) = −V0 θ(a−
|x|). Show that the same result follows by analytic continuation of the
transmission coefficient of the finite barrier V (x) = V0 θ(a− |x|) given in
the text, by sending V0 → −V0. Then notice that the transmission is 100%
at certain energies, what are these energies ? (This is called the Ramsauer
effect). What happens as V0 gets large?

12. Consider a particle coming in from the left side at some positive energy E
and then scattered from the one dimensional potential well shown in the
figure

E 

-a  0 

-V0 

V (x) = 0 for x < −a; V (x) = −V0 for −a ≤ x < 0; Infinite wall at x = 0.

a) Is it possible to obtain the reflection probability |R|2 without detailed
computation? If no, why not? If yes, what is it? Explain either way.

b) Compute the reflection coefficient R as a function of the energy and
the parameters of the potential a, V0. You may reparametrize E and V0
in terms of some convenient quantities that simplify your equations while
doing your work.
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c) If you lower the energyE to negative values, discuss carefully the bound-
ary conditions, and find an equation that determines the permitted values
of the quantized energy (do not solve this equation for the energy eigen-
values). You can do this computation easily by modifying your algebra in
part (b) appropriately.

d) Do you see any relationship between the equation you derive in part
(c) and analytic properties of the reflection coefficient R as a function of
the square root of energy

√
E ∼ k in the complex k plane? What is the

property, and how is it explained in physical terms.

13. Uranium is bombarded by α particles, what is the probability for the α’s
to be captured?

14. Show that the Hermit polynomials may be rewritten in the forms

Hn = (−1)neu
2

∂nu e−u
2

= eu
2 2n+1√

π

Z ∞
0

dt e−t
2

tn cos(2ut− nπ/2).

Using these representations prove the orthogonality and completeness re-
lations given in eq.(4.105)

15. Find the bound state eigenvalues and eigenfunctions for the attractive
potential V (x) = −γ2/x2 and compare the behavior of your solutions to
the infinite square well.

16. The relativistic generalization of the Schrödinger equation in 1-dimension
is the Klein-Gordon equation. If a particle of mass m and charge q inter-
acts with the electromagnetic field, gauge invariance dictates the following
equation

[(~∂t + iqA0)
2 − (~∂x + i

q

c
Ax)

2 +m2]φ(x, t) = 0.

Consider a positive energy solution φ(x, t) = ψ(x) exp(−iEt/~), and as-
sume that there is no magnetic field, Ax = 0. Then the equation reduces
to £

m2 − (E − V (x))2 − ~2∂2x
¤
ψ(x) = 0

where V (x) = qA0(x). This equation is analogous to the 1-dimensional
Schrödinger equation that we studied in this chapter. Note that the fa-
miliar non-relativistic limit is obtained by replacing E ≈ m+~2k2/2m and
keeping the leading terms for large m. One may analyse the solutions for
any of the model potentials. In particular consider a particle trapped in a
square well and analyse what happens as the well gets deeper and deeper.
You should discover that the behavior is completely counter intuitive and
paradoxical. This is called the Klein paradox.



Chapter 5

OPERATOR METHODS

Quantum Mechanics is formulated in terms of Hilbert spaces and operators
acting on them. Beyond this, the quantum rules boil down to fundamental
commutation rules for the canonical variables. It is often convenient to repre-
sent the canonical operators as differential or multiplicative operators, such as
p̂ → −i~∂x, x̂ → x, acting in position space, in order to compute the position
probability amplitude ψ(x) = hx|ψi. However, Quantum Mechanics is actually
defined in more abstract terms independent than position or momentum space.
Only the basic commutation rules are sufficient, in principle, to solve a Quan-
tum Mechanics problem, although this may not be the simplest method for a
given Hamiltonian. However, there are a number of problems for which operator
methods are actually much simpler and reveal the structure of the system much
better. The harmonic oscillator in any number of dimensions is one of these
cases, but there are quite a few more examples, such as angular momentum, the
Hydrogen atom, and others. The harmonic oscillator is a fundamental tool that
has a large number of applications in physics. Such applications are found in all
branches of physics, ranging from condensed matter physics through molecular
physics, nuclear physics, quantum field theory and particle physics, to super-
string theory. Therefore, we will devote this chapter exclusively to developing
the operator methods for the harmonic oscillator and applying them to the so-
lution of a number of problems. In later chapters we will introduce operator
methods for other systems.

5.1 Harmonic oscillator in 1 dimension
Recall the Hamiltonian for the simple harmonic oscillator

Ĥ =
1

2m
(p̂2 +m2ω2x̂2). (5.1)

Consider the following combination of the canonical operators

a =
1√
2
(
x̂

x0
+ i

x0
~
p̂), a† =

1√
2
(
x̂

x0
− i

x0
~
p̂), (5.2)

125



126 CHAPTER 5. OPERATOR METHODS

or equivalently

x̂ =
x0√
2
(a+ a†), p̂ = − i~√

2x0
(a− a†). (5.3)

Using the basic commutation rules [x̂, p̂] = i~, one finds

[a, a†] = 1, [a, a] = 0 = [a†, a†], (5.4)

which hold for any value of x0. If this form of x̂, p̂ is substituted into Ĥ, the
Hamiltonian becomes a linear combination of a2+ a†2 and aa†+ a†a. However,
if one chooses x0 as

x0 =

r
~
mω

(5.5)

to kill the coefficient of a2 + a†2, then the Hamiltonian takes a simple form

H =
~ω
2
(aa† + a†a) = ~ω(a†a+

1

2
) = ~ω(N̂ +

1

2
), (5.6)

where we have defined N̂ ≡ a†a. So, to find the eigenstates of Ĥ it is sufficient
to find the eigenstates of N̂. It is useful to further explore the commutators of
N̂ with a and a†

[N̂, a] = −a, [N̂ , a†] = a†. (5.7)

Therefore, moving the operator N̂ from one side of a to the other side gives
N̂a = a(N̂ − 1), and similarly one finds N̂a† = a†(N̂ + 1). By repeatedly using
this result one can find the rule for moving N̂ through any power of a or a†,
thus N̂an = a(N̂ − 1)an−1 = a2(N̂ − 2)an−2 = · · · = an(N̂ − n). So, one can
write

N̂an = an(N̂ − n), N̂a†m = a†m(N̂ +m), N̂ana†m = ana†m(N̂ − n+m).
(5.8)

Let us now assume that we have an eigenstate of N̂ with eigenvalue λ

N̂ |λi = λ|λi,

and consider the states obtained by applying the operators an|λi, a†n|λi on it.
By applying N̂ on these new states one finds that they are also eigenstates with
eigenvalues (λ− n) and (λ+ n) respectively

N̂(an|λi) = an(N̂ − n)|λi = (λ− n) (an|λi)
N̂(a†n|λi) = a†n(N̂ + n)|λi = (λ+ n) (a†n|λi).

Thus each a annihilates a quantum of N̂ and each a† creates one. For this reason
it is appropriate to call a the annihilation operator and a† the creation operator.
They act like ladder down or up operators respectively, moving one state to the
neighboring state that differs by one unit of N̂ . Therefore we must conclude that
the eigenvalues of N̂ differ from each other by integers. Since N̂ is a positive
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operator, it must have a lowest eigenvalue λ0 ≥ 0. The set of eigenvalues must
then be λ0, λ0 + 1, λ0 + 2, · · · . Furthermore, the state a|λ0i which would have
a lower eigenvalue (λ0 − 1) cannot exist by definition of λ0, therefore we must
impose a|λ0i = 0. However, using this condition in the eigenvalue equation for
the lowest state λ0|λ0i = N̂ |λ0i = a†a|λ0i = 0, shows that λ0 = 0. Therefore
we have the result that the eigenvalues of N̂ are the positive integers 0, 1, 2, · · · ,
and the eigenstates are labelled by them as |ni

N̂ |ni = n|ni, n = 0, 1, 2, · · · . (5.9)

It is appropriate to call N̂ the number operator. Each quantum of N̂ is a
quantum of energy since the energy eigenstates are the eigenstates of N̂

Ĥ|ni = ~ω(n+ 1
2
)|ni. (5.10)

The lowest state, which is the energy ground state with E0 = ~ω/2, is annihi-
lated by the operator a

a|0i = 0. (5.11)

The higher states are given by |ni = Cna
†n|0i, where Cn is a normalization

constant. Therefore the ground state is often called the “vacuum state”, mean-
ing it has no excitations N̂ → 0, and the excited states are then created out of
the vacuum by the creation operators. The bra space is obtained by Hermitian
conjugation hn| = C∗nh0|an. The bra vacuum is annihilated by a†

h0|a† = 0. (5.12)

The ground state is assumed to be normalized, h0|0i = 1, and the inner product
for general states is

hm|ni = C∗mCnh0|ama†n|0i. (5.13)

To compute matrix elements of this type one uses the commutation rules to
push the a’s to the right and the a†’s to the left so that they annihilate the
ground state. For example, for n = m = 1 we get

h0|aa†|0i = h0|a†a+ [a, a†]|0i
= 0 + h0|0i
= 1.

(5.14)

For the more general case one uses the rule

[A,BC · · ·DE] = [A,B](C · · ·DE) + · · ·+ (BC · · ·D)[A,E] (5.15)

to compute

[a, a†n] = [a, a†]a†(n−1) + · · ·+ a†(n−1)[a, a†]
= na†(n−1).

(5.16)
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This may be rewritten as aa†n = a†(n−1)(a†a + n), which gives the rule for
moving one power of a from left to right. This may be used repeatedly to move
any power of a or a†

ama†n = a†(n−m) (a†a+ n−m+ 1) · · · (a†a+ n− 1)(a†a+ n) if m ≤ n
ama†n = (a†a+m)(a†a+m− 1) · · · (a†a+m− n+ 1) am−n if m ≥ n

(5.17)
The vacuum expectation value of these expressions are now easy to obtain by
using (5.11) and (5.12).

h0|ama†n|0i = 0 if m 6= n
= n! if m = n.

(5.18)

This determines the normalization of the state

|ni = (a†)n√
n!
|0i, (5.19)

and shows that the number states are orthonormal

hm|ni = δmn. (5.20)

We can now compute more precisely the action of the ladder operators on the
states

a†|ni = (a†)n+1√
n!

|0i =
√
n+ 1 (a

†)n+1√
(n+1)!

|0i
=
√
n+ 1|n+ 1i

(5.21)

Similarly

a|ni = aa†n√
n!
|0i = 1√

n!
a†(n−1)(a†a+ n)|0i = √n (a†)n−1√

(n−1)!
|0i

=
√
n|n− 1i.

(5.22)

The last equation is consistent with the annihilation of the vacuum state for
n = 0. The infinite dimensional Hilbert space that we have just constructed
for the harmonic oscillator is called the Fock space. We may also compute
the probability amplitude ψn (x) = hx|ni for finding the particle in the energy
eigenstate |ni at position x. We will need to apply the creation-annihilation
operators on the position basis

hx|a = hx| 1√
2
( x̂x0 + ix0~ p̂) =

1√
2
( xx0 + x0∂x)hx|

hx|a† = hx| 1√
2
( x̂x0 − ix0~ p̂) =

1√
2
( xx0 − x0∂x)hx|

(5.23)

We start with the vacuum state, sandwich the operator a between the states
and evaluate it by applying it to the left or the right

hx|a|0i = 0 = 1√
2
(u+ ∂u)hx|0i, (5.24)
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where we have used u = x/x0. Therefore hx|0i = ψ0 (x) satisfies a first order
differential equation which is solved by the normalized wavefunction

ψ0(x) =
1p
x0
√
π
e−u

2/2. (5.25)

The wavefunctions for the excited states are

ψn (x) = hx|ni = hx| (a
†)n√
n!
|0i

= 1√
n!

³
(u−∂u)√

2

´n
hx|0i

= 1√
x0
√
π2nn!

(u− ∂u)
n e−u

2/2.

(5.26)

This expression can be simplified by using the following trick. Note that for any

function f(u) we may write (u − ∂u)f = −eu
2/2
³
∂u(e

−u2/2f)
´
. That is, the

differential operator (u− ∂u) may be rewritten as

(u− ∂u) = eu
2/2(−∂u)e−u

2/2, (5.27)

where the derivative is applied on everything that follows on the right. Then
the powers of this operator are

(u− ∂u)
n =

³
eu

2/2(−∂u)e−u
2/2
´³

eu
2/2(−∂u)e−u

2/2
´
· · ·
³
eu

2/2(−∂u)e−u
2/2
´

= eu
2/2(−∂u)ne−u

2/2.
(5.28)

Using this result one finds

(u− ∂u)
n e−u

2/2 = (−1)neu2/2(∂u)ne−u
2

, (5.29)

which leads to
ψn =

1p
x0
√
π2nn!

e−u
2/2Hn(u) (5.30)

where Hn(u) is the Hermit polynomial written in the form

Hn = (−1)ne+u
2

∂nu e−u
2

. (5.31)

The result is identical to the wavefunction computed in chapter 4. The present
formalism is well suited for many computations. For example the matrix ele-
ments of the position and momentum operators x̂, p̂ are

hm|x̂|ni = x0√
2
hm|a+ a†|ni

= x0√
2

¡
hm|n− 1i√n+ hm|n+ 1i

√
n+ 1

¢
= x0√

2

¡√
n δm,n−1 +

√
n+ 1δm,n+1

¢

= x0√
2

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 · · ·
1 0

√
2 0 · · ·

0
√
2 0

√
3 · · ·

0 0
√
3 0 · · ·

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠
(5.32)
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while for the momentum operator one gets

hm|p̂|ni = −i~√
2x0

¡√
n δm,n−1 −

√
n+ 1δm,n+1

¢
. (5.33)

It is also easy to compute powers of these operators (see problem 1).

5.2 Coherent States
Coherent states are quantum mechanical wavepackets which describe nearly
classical behavior of the harmonic oscillator, as will be explained below. They
are defined by

|zi = eza
† |0i, hz| = h0|eaz∗ (5.34)

where z is a complex number. By expanding the exponential, and using the
definition of the number states, one can rewrite them as superpositions of Fock
space states

|zi =
∞X
n=0

zn√
n!
|ni, ⇒ hn|zi = zn√

n!
. (5.35)

Using (5.16) one finds [a, eza
†
] = z eza†, which can be used to show that the

coherent state ket is an eigenstate of the annihilation operator; similarly the
coherent state bra is an eigenstate of the creation operator

a|zi = z|zi, hz|a† = z∗hz|. (5.36)

Since a or a† are not Hermitian, their eigenvalues are not real. Furthermore,
the creation operator acts like a derivative operator on the ket

a†|zi = a†eza
† |0i = ∂z|zi, (5.37)

and the number operator acts like the dimension operator

N̂ |zi = a†a|zi = z∂z|zi, hz|N̂ = z∗∂z∗hz|. (5.38)

The Baker-Housedorf formula

eAeB = eBeAe[A,B], (5.39)

which is valid when both A and B commute with [A,B] (see problem 2 in
Chapter 2), may be used to compute the inner product

hz|z0i = h0|eaz∗ez0a† |0i = h0|ez0a†eaz∗ez0z∗[a,a†]|0i = ez
∗z0 . (5.40)

Therefore, coherent states are not orthonormal, but they are complete

1 =
∞X
n=0

|nihn| = 1

π

Z
d2z e−|z|

2 |zihz|. (5.41)
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The completeness relation is proven by using (5.35) and performing the integrals
in polar coordinates z = r exp(iφ), d2z = rdrdφ. So, any state |ψi may be
expanded as a linear superposition of coherent states by multiplying it with the
identity operator

|ψi =
Z

d2z |ziψ(z, z∗), ψ(z, z∗) =
1

π
e−|z|

2hz|ψi. (5.42)

The expectation value of the position, momentum and energy operators in a
coherent state are easily computed by using (5.36)and (5.40 ).

x̄ = hz|x̂|zi
hz|zi =

x0√
2hz|zi hz|a

† + a|zi = x0√
2
(z∗ + z)

p̄ = hz|p̂|zi
hz|zi =

i~√
2x0hz|zi

hz|a† − a|zi = i~√
2x0
(z∗ − z)

Ē = hz|Ĥ|zi
hz|zi = 1

hz|zihz|~ω(a†a+ 1/2)|zi = ~ω(|z|2 + 1/2).
(5.43)

where we needed to divide by the norm since the coherent state is not normalized
(see (5.40)). By solving this equation one may interpret the complex number z
in more physical terms by relating it to the average position and momentum.

z =
1√
2
(
x̄

x0
+ i

x0
~
p̄). (5.44)

Furthermore, the average energy in the coherent state may be rewritten in the
suggestive classical form

Ē =
p̄2

2m
+

mω2x̄2

2
+E0 (5.45)

where E0 = ~ω/2 is the vacuum energy. The time dependence of these and
other quantities may be computed in the time translated coherent state (see
problem)

|z, ti = exp(−iĤt/~)|zi
= e−iωt/2e−itωa

†aeza
† |0i

= e−iωt/2 exp
¡
ze−iωta†

¢
|0i

= |ze−iωtie−iωt/2.

(5.46)

For example,

x̄(t) = hz, t|x̂|z, ti/hz, t|z, ti
= x0√

2
hze−iωt|a† + a|ze−iωti/hz, t|z, ti

= x0√
2
(z∗eiωt + ze−iωt)

= x̄ cosωt+ p̄
mω sinωt

(5.47)

This shows that the time dependence of the average position of the particle in
a coherent state is just like the oscillatory motion of the particle according to
the rules of classical mechanics. Therefore, a coherent state is interpreted as an
almost classical particle state (see also problem 2).
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5.3 Normal ordering

Consider a product of various powers of creation annihilation operators writ-
ten in some order, for example aa†3a5a†a17 · · · a†2. Suppose that altogether the
product contains n annihilation operators and m creation operators. The nor-
mal ordered product of the same set of operators is defined to be a†man. That
is, one pulls all the creation operators to the left and all annihilation operators
to the right as if they commute, and define the resulting operator as the normal
ordered product. Normal ordering is denoted by placing a column on both sides
of the original product, that is,

: aa†3a5a†a17 · · · a†2 :≡ a†man. (5.48)

Inside the normal ordering signs the order of the operators does not matter since
by definition any order gives the same result

: aa†3a5a†a17 · · · a†2 : = : a†3aa5a†a†2 · · · a17 : = · · · = a†man. (5.49)

The vacuum expectation value of a normal ordered product is zero as long as
m or n is not zero

h0|
¡
: aa†3a5a†a17 · · · a†2 :

¢
|0i = h0|a†man|0i = 0, (5.50)

since the vacuum on the right is annihilated by a and the one on the left is anni-
hilated by a†. Any product may be rewritten as a linear combination of normal
ordered products by using the commutation rules to shift creation operators to
the left and creation operators to the right. Here are a few examples

aa† = a†a+ 1 =: aa† : +1,

a2a† = a†a2 + 2a =: a2a† : +2 : a :, (5.51)

a2a†2 = a†2a2 + 4a†a+ 4 =: a2a†2 : +4 : a†a : +4

Thus, in rewriting ordinary products in terms of normal ordered products, in
addition to the naive normal ordered term one may find terms with fewer num-
bers of creation annihilation operators. In particular, the vacuum expectation
value of an ordinary product is determined by the last term of its expansion in
terms of normal ordered products. Thus, using the examples above,

h0|aa†|0i = 1, h0|a2a†|0i = 0, h0|a2a†2|0i = 4. (5.52)

Normal ordering is a useful tool in quantum field theory, where the field has
the structure of a linear combination of creation/annihilation operators, φ =
αa+β∗a†, where α, β∗ are coefficients. For example the operators x̂, p̂ have this
structure. In quantum field theory one is often interested in evaluating vacuum
expectation values of the form

h0|φ1φ2 · · ·φn|0i (5.53)
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where for each field φi = αia + β∗i a
† generally there are different coefficients

αi, βi, but they all involve the same set of harmonic oscillator operators a, a
†.

So, the vacuum expectation value is a definite function of the coefficients αi, βi.
To perform this computation in an organized way one uses the technique of
normal ordering. That is, rewriting the operator products in terms of normal
ordered products and then taking the vacuum expectation value.

5.3.1 Wick’s theorem

Wick derived the following theorem which gives all the terms and their coeffi-
cients in the expansion of ordinary products in terms of normal ordered products
(see problem at the end of chapter).

φ1φ2 · · ·φn =: φ1φ2 · · ·φn : + {hφ1φ2i : φ3 · · ·φn : +all permutations}
+{hφ1φ2i hφ3φ4i : φ6 · · ·φn : +all permutations}+ {· · · } (5.54)

+ {hφ1φ2i hφ3φ4i · · · hφn−1φni+ all permutations}

where hφiφji is the vacuum expectation value of a pair of fields. We can easily
compute

hφiφji = h0|
¡
αia+ β∗i a

†¢ ¡αja+ β∗ja
†¢ |0i = αiβ

∗
j (5.55)

so that all coefficients are determined. The last line is written as if n is even
since all fields have been paired. If n is odd there remains an unpaired field
in each term of the last line. Using this theorem we see that when n is odd
h0|φ1φ2 · · ·φn|0i = 0, and when it is even,

h0|φ1φ2 · · ·φn|0i = α1β
∗
2α3β

∗
3 · · ·αn−1β∗n + all permutations of (12 · · ·n).

(5.56)
This theorem plays a basic role in doing computations in quantum field theory.

5.4 Harmonic oscillator in 2 and d dimensions

The harmonic oscillator in d dimensions is described by the Hamiltonian

H =
�p2

2m
+

mω2�x2

2
(5.57)

where �x = (x1, x2, · · · , xd) is a d−dimensional vector. We may define creation-
annihilation operators

�a =
1√
2
(
�x

x0
+ i

x0�p

~
), �a† =

1√
2
(
�x

x0
− i

x0�p

~
), (5.58)

that are also d−dimensional vectors. Their commutation rules follow from those
of position and momentum operators

[aI , a
†
J ] = δIJ , [aI , aJ ] = 0 = [a

†
I , a

†
J ]. (5.59)
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By choosing x0 = (~/mω)1/2 as before the Hamiltonian takes the simple form

Ĥ = ~ω(�a† · �a+ d

2
). (5.60)

Since this Hamiltonian is a sum of independent Hamiltonians Ĥ = Ĥ1 + Ĥ2 +
· · · + Ĥd, that are constructed from operators that commute with each other,
the overall eigenstates reduce to direct products of eigenstates of the individual
Hamiltonians. From the study of the harmonic oscillator in one dimension
one already knows that the eigenstates of the Hamiltonian in each direction
HI = ~ω(a†IaI +

1
2) are the number states |nIi. Therefore the overall eigenstate

is
|n1, n2, · · · , ndi = |n1i⊗ |n2i⊗ · · ·⊗ |ndi, (5.61)

and the energy eigenvalue depends only on the sum of the integers nI

En1···nd = ~ω(n1 + n2 + · · ·+ nd +
d

2
). (5.62)

There is a unique ground state with nI = 0, which we denote simply by |0i.
However, at higher levels there are many ways to construct the same value for
the total integer

n =
dX

I=1

nI . (5.63)

Therefore, there are many states at each level and it can be checked that the
number of degenerate states at level n is

Dn(d) =
(d+ n− 1)!
(d− 1)! n! . (5.64)

For example for d = 2, n = 0, 1, 2, 3, 4 there are the following states |n1, n2i

n Dn(2) states |n1, n2 >
0 1 |0, 0i
1 2 |1, 0i, |0, 1i
2 3 |2, 0i, |0, 2i, |1, 1i
3 4 |3, 0i, |2, 1i, |1, 2i, |0, 3i
4 5 |4, 0i, |3, 1i, |2, 2i, |1, 3i, |0, 4i

(5.65)

These states are constructed by applying the creation operators on the vacuum
state

|n1, n2i =
a†n11√
n1!

a†n22√
n2!

|0i. (5.66)

It is useful to re-label the states in terms of the sum and difference of the
quantum numbers. Defining

j =
1

2
(n1 + n2), m =

1

2
(n1 − n2), (5.67)
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and renaming a†1 = a†+ and a†2 = a†− , we have

|j,mi = (a†+)
j+m

√
(j+m)!

(a†−)
j−m

√
(j−m)!

|0i
m = −j, −j + 1, · · · , j − 1, j
j = 0, 12 , 1,

3
2 , 2, · · ·

(5.68)

The total number operator

N̂ = �a† · �a = a†+a+ + a†−a− (5.69)

has eigenvalue n1 + n2 = 2j

N̂ |j,mi = 2j |j,mi, (5.70)

The second quantum number m distinguishes the (2j + 1) degenerate states
from each other. Using eqs.(5.21) and (5.22) we see that a±, a

†
± act like ladder

operators that change both j and m by 1/2 unit

a±|j,mi =
√
j ±m |j − 1/2, m∓ 1/2i

a†±|j,mi =
√
j ±m+ 1 |j + 1/2, m± 1/2i. (5.71)

The creation operators increase j while the annihilation operators decrease it.
The products of a creation with an annihilation operator do not change j, but
may change m by at most one unit. This means they must commute with the
operator N̂. Thus, defining the operators

J+ ≡ a†+a−, J− ≡ a†−a+, J0 ≡
1

2
(a†+a+ − a†−a−), (5.72)

one can verify that they commute with the total number operator

[N̂, J±,0] = 0 (5.73)

and that they change m by at most one unit that corresponds to their labels
(+, 0,−). Their action on the states follows from (5.71)

J0 |j,mi = m |j,mi, J±|j,mi =
p
j(j + 1)−m(m± 1) |j,m± 1i. (5.74)

From the following rules for commuting pairs of creation-annihilation operators

[a†IaJ , a
†
KaL] = a†IaL δJK − a†KaJ δLI (5.75)

one can easily derive that the commutation rules for the J±,0 are given by

[J0, J±] = ±J± , [J+, J−] = 2J0 . (5.76)

A set of operators that close under commutation rules to the same set, as above,
is called a Lie algebra. The present Lie algebra is the Lie algebra of SU(2). It
is sometimes rewritten in terms of

J1 =
1

2
(J+ + J−), J2 =

1

2i
(J+ − J−), J3 = J0 (5.77)
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in the form

[J1, J2] = iJ3 , [J2, J3] = iJ1 , [J3, J1] = iJ2 . (5.78)

It is illuminating to note that there is a quadratic function of the J±,0 that can
be rewritten only in terms of the total number operator N̂ (problem 6)

J2 = J20 +
1
2(J+J− + J−J+)

= J21 + J22 + J23

= N̂
2

³
N̂
2 + 1

´
.

(5.79)

Therefore the eigenvalues of J2 are j(j + 1). Even though the total number
operator N̂ commutes with all three operators J±,0, it can be simultaneously
diagonal with only one of them since they do not commute among themselves.
However, they all play a role in clarifying the nature of the degenerate states
at a fixed value of j. In fact, as we will see in the coming chapters, the three
operators J±,0 have a close connection to the symmetry group SU(2), which
is the same group as the group of rotations SO(3) in three dimensions. In
the present case of the two dimensional harmonic oscillator there certainly are
no 3-dimensional rotations. But nevertheless there is a hidden symmetry group
whose mathematical structure is similar to the group of 3-dimensional rotations.
The d−dimensional harmonic oscillator also has a symmetry group which is
SU(d). There is a Lie algebra associated with SU(d) as is evident from eq.(5.75)
taken in d−dimensions. Although we will study this topic in more detail in the
chapter on symmetries, it is appropriate at this juncture to point out how the
symmetry acts. Thus, consider two observers O and O0 who use coordinates
and momenta (�x, �p) and (�x0, �p0) respectively. Let us define the relation between
these observers through a transformation of the creation-annihilation operators
constructed from the respective coordinates and momenta

aI
0 =

dX
J=1

(U)IJ aJ , (a†I)
0 =

dX
J=1

a†J(U
†)JI , (5.80)

where U is a d×d unitary matrix, and U† is its Hermitian conjugate. It may be
clearer to the reader if these relations are explicitly written in matrix notation⎛⎜⎜⎜⎝

a01
a02
...
a0d

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
U11 U12 · · · U1d
U21 U22 · · · U1d
...

...
. . .

...
Ud1 Ud2 · · · Udd

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

a1
a2
...
ad

⎞⎟⎟⎟⎠ (5.81)

and

³
a†01 a†02 · · · a†0d

´
=

³
a†1 a

†
2 · · · a

†
d

´ ⎛⎜⎜⎜⎝
U†11 U†12 · · · U†1d
U†21 U†22 · · · U†1d
...

...
. . .

...
U†d1 U†d2 · · · U†dd

⎞⎟⎟⎟⎠
(5.82)
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Then one finds that the number operators N̂ and N̂ 0 used by the two observers
are unchanged by the transformation, provided the matrix U is unitary, i.e.
UU† = U†U = 1 , since

N̂ 0 =
dX

I=1

a†0I a
0
I =

dX
I,J,K=1

a†J (U
†)JI (U)IK aK =

dX
I,J,K=1

a†J δIK aK = N̂ .

(5.83)
This result indicates that the Hamiltonians of the two observers may be written
in terms of different coordinates and momenta, but the energy does not change.
Therefore, there is a symmetry in the system associated with unitary trans-
formations in d−dimensions. This symmetry is the underlying reason for the
degeneracy of the energy states, as will be more fully explained in the chapter
on symmetries. Thus the SU(2) symmetry of the two dimensional oscillator is
responsible for the degeneracy discussed explicitly above.

5.5 Fermionic oscillators

There is a fermionic version of creation-annihilation operators (bα, b†α) with
α, β = 1, 2, · · ·M, that are defined with anticommutation relations

{bα, b†β} = δαβ , {bα, bβ} = 0 = {b†αb
†
β}. (5.84)

The anticommutator between two operators is defined by {A,B} = AB + BA.
The anticommutation rules imply that the square of each operator vanishes,
b2α = 0 = b†2α . The total number operator is defined as before N̂ =

P
b†αbα, and

its commutation rules with the creation-annihilation operators turns out to be
the same as the bosonic oscillators

[N̂ , bα] = −bα, [N̂, b†α] = b†α. (5.85)

The vacuum state is annihilated by all the bα

bα|0i = 0 (5.86)

and excited states are constructed by applying the creation operators

b†α1b
†
α2 · · · b

†
αn |0i. (5.87)

The total number operator is diagonal on these states, and its eigenvalue is equal
to the total number of excitations, just like the ordinary harmonic oscillator.
However, there cannot be more than one excitation for each oscillator, since
b†2α = 0 for each α. This explains the Pauli exclusion principle, that says that
no two fermions with the same quantum numbers can be in the same state.
Therefore the number of states is finite. ForM oscillators there are 2M distinct
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states that can be explicitly listed for a given value of M

M = 1 : |0i, b†1|0i.
M = 2 : |0i, b†1|0i, b

†
2|0i, b

†
1 b
†
2|0i.

M = 3 :
© |0i, b†1|0i, b†2|0i, b†3|0i,
b†1 b

†
2|0i, b†2 b

†
3|0i, b†3 b

†
1|0i, b†1b

†
2 b

†
3|0i.

...
...

(5.88)

The set of 2M states is the complete Hilbert space for a given value of M. A
state is either empty or full relative to a given fermion labelled by α. The rules
for applying creation-annihilation operators on the number states are easy to
figure out: When the state is empty for quantum number α, bα annihilates it
while b†α fills it. If the state is full, then bα empties it while b†α annihilates it.
So, a completely empty state (the vacuum |0i) is annihilated by all bα, but a
completely filled state is annihilated by all b†α. Thus, the completely filled state
has properties very similar to the vacuum state, and the roles of the creation-
annihilation operators get interchanged when acting on it. One may consider
pairs of creation-annihilation operators b†αbβ and study their commutators

[b†αbβ , b
†
λbσ] = b†αbσ δβλ − b†λbβ δασ, (5.89)

as we did in the bosonic oscillator case. Since the set of operators close, they
form a Lie algebra SU(M). ForM = 2 , renaming b1 ≡ b+ and b2 ≡ b− we may
construct again the Lie algebra of SU(2)

J+ = b†+b−, J− = b†−b+, J0 =
1
2(b

†
+b+ − b†−b−)

[J0, J±] = ±J±, [J+, J−] = 2J0.
(5.90)

The eigenvalues of J2 = j(j + 1) can only take a finite number of values since
there are only 4 states in this case. In fact the vacuum and the filled state
both have j = 0, while the one particle states b†±|0i represent the two states for
j = 1/2.

5.6 Quadratic interactions for N particles
Consider the problem of N particles moving in d−dimensions and interacting
through ideal springs as in Fig.(5.1).
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Fig.5.1: Interactions via springs.

The potential energy stored in the springs is proportional to the square of the
distance between the particles at its two end points. For example for three
springs coupled to three particles in all possible ways the potential energy of
the system is

V =
k12
2
(�x1 − �x2)

2 +
k23
2
(�x2 − �x3)

2 +
k31
2
(�x3 − �x1)

2 (5.91)

where kij are the spring constants, and the kinetic energy is

K =
�p21
2m1

+
�p22
2m2

+
�p23
2m3

. (5.92)

More generally the springs may not be isotropic and may pull differently in
various directions. To cover all possibilities we will consider a Hamiltonian of
the form

H =
1

2

NX
i,j=1

¡
Kijpipj + Vijxixj +WT

ijxipj +Wij pixj)
¢
+

NX
i=1

(αipi + βixi)

(5.93)
where the indices i, j run over the particle types and the various directions, and
we will assume a real general matrix W , arbitrary symmetric matrices K,V,
and coefficients α,β which may be considered column or row matrices (vec-
tors). The mathematics of this system could model a variety of other physical
situations besides the coupled spring problem which we used to motivate this
Hamiltonian.. This general problem has an exact solution in both classical and
quantum mechanics.
By translating the positions and momenta to p̄i = pi − p0i , x̄i = xi − x0i ,

one can find H = Ĥ(x̄ , p̄) + E(x0, p0) such that the linear terms are absent in
the new variables. The constant E(x0, p0) = H(x0, p0) just shifts the energy
of every state by the same amount. Since the commutation rules for the new
variables are the same as the original ones, one may assume that this step has
already been done and start as if αi = βi = 0 without any loss of generality. It
is convenient to write this Hamiltonian in matrix notation in the form

H =
¡
p̄T x̄T

¢ µ K W
WT V

¶µ
p̄
x̄

¶
+E(x0, p0). (5.94)

where we have defined N−dimensional column and row matrices

p̄T = (p̄1, p̄2, · · · , p̄N ), (5.95)

x̄T = (x̄1, x̄2, · · · , x̄N ),

etc. Next define a 2N × 2N transformation M involving both positions and
momenta p̄i =

P
j(Aij p̃j +Bij x̃j), x̄i =

P
j(Cij p̃j +Dij x̃j), orµ

p̄
x̄

¶
=

µ
A B
C D

¶µ
p̃
x̃

¶
, M ≡

µ
A B
C D

¶
. (5.96)
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We require that H has no mixed terms in the new variables (p̃, x̃), which means
it takes the form H = p̃T K̃p̃+ x̃T Ṽ x̃+ E(x0, p0) once we substitute Eq.(5.96)
in Eq.(5.94). Therefore we must require the block diagonalization conditionµ

AT CT

BT DT

¶µ
K W
WT V

¶µ
A B
C D

¶
=

µ
K̃ 0

0 Ṽ

¶
(5.97)

orµ
AT (KA+WC) + CT

¡
WTA+ V C

¢
AT (KB +WD) + CT

¡
WTB + V D

¢
BT (KA+WC) +DT

¡
WTA+ V C

¢
BT (KB +WD) +DT

¡
WTB + V D

¢ ¶
=

µ
K̃ 0

0 Ṽ

¶
(5.98)

The off diagonal blocks vanish provided A,B,C,D are restricted by the following
equation

ATKB +ATWD + CTWTB + CTV D = 0. (5.99)

From this equation we can solve for the parameters of the matrixM that satisfy
the condition.
In addition we require that the commutation rules among the new variables

are the standard canonical rules, i..e. [x̃i, p̃j ] = i~δij , [x̃i, x̃j ] = 0 = [p̃i, p̃j ], and
that these produce the standard canonical rules for the old variables x̄i, p̄i. This
requirement produces the following conditions on A,B,C,D

ABT −BAT = 0, CDT −DCT = 0, ADT −BCT = 1. (5.100)

These equations may be rewritten in the form MTSM = S, or equivalently

M−1 = S−1MTS, with S =

µ
0 1
−1 0

¶
, S−1 = −S. (5.101)

A 2N × 2N linear transformation M that leaves the commutation rules in-
variant is a canonical transformation that is called a symplectic transformation.
Such transformations form the symplectic group Sp(2N). The general symplec-
tic matrix can be parametrized as follows

M =

µ
A B
C D

¶
=

µ
u bu−1T

cu (cb+ 1)u−1T

¶
=

µ
1 b
c (cb+ 1)

¶µ
u 0
0 u−1T

¶
=

µ
1 0
c 1

¶µ
u 0
0 u−1T

¶µ
1 u−1bu−1T

0 1

¶
where b and c are any N ×N real symmetric matrices and u is any N ×N real
matrix that has an inverse u−1. Note that the number of parameters in b or c
is 12N (N + 1) each, and the number of parameters in u is N2. Therefore a real
Sp(2N) symplectic matrix has altogether 1

2N (N + 1) + 1
2N (N + 1) + N2 =
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N (2N + 1) real parameters. It can be checked directly that this form of M
satisfies automatically the symplectic condition MTSM = S. This implies that
the inverse M−1 is given by M−1 = S−1MTS for any b, c, u. We mention in
passing that u is an element of the subgroup GL(N,R) .
The matrices b, c, umust be further restricted to block diagonalize the Hamil-

tonian. We insert the A,B,C,D of Eq.(8.63) in the diagonalization condition
in Eq.(5.99). This gives

Kb+W (cb+ 1) + cWT b+ cV (cb+ 1) = 0 (5.102)

Therefore we need to solve this equation to find b, c for given K,W, V. This
equation imposes N2 conditions, but we have N2 + N free parameters in the
symmetric b, c to satisfy N2 equations, which means there is always a solution1

(see problem 12). Note that u is not restricted by the block diagonalization con-
dition, so it can be taken as the identity matrix 1 for the step above. However,
in the following steps we will see that the degrees of freedom in u will be used
to further simplify the problem.
We also compute K̃ and Ṽ from Eq.(5.98)

K̃ = ATKA+ATWC + CTWTA+ CTV C

= uT
¡
K +Wc+ cWT + cV c

¢
u (5.103)

Similarly we have

Ṽ = BTKB +BTWD +DTWTB +DTV D

= u−1
¡
WT b+ V (cb+ 1)

¢
u−1T (5.104)

where we have used Eq.(5.102) to simplify the expression for Ṽ . In the following
discussion we will need Ṽ K̃, so we compute it as

Ṽ K̃ = u−1
£
WT b+ V (cb+ 1)

¤ £
K +Wc+ cWT + cV c

¤
u (5.105)

Note that we have not used the freedom we have in u, so at this stage u can be
set equal to 1.
Assuming that these steps have been performed, the Hamiltonian takes the

form

Ĥ =
1

2

NX
i,j=1

³
K̃ij p̃ip̃j + Ṽij x̃ix̃j

´
+E(x0, p0). (5.106)

It will be convenient to write this expression in matrix notation as

Ĥ = p̃T K̃p̃+ x̃T Ṽ x̃+E(x0, p0). (5.107)

Next introduce an orthogonal transformation R to diagonalize the symmetric
matrix K̃ = RT k2R, where k2 is assumed to be a positive diagonal matrix .

1 In passing, it is also interesting to note that this equation has the following so-
lution for the general matrix W for given symmetric matrices b, c,K, V, namely W =P∞

n=0 c
n
³
Kb (cb+ 1)−1 + cV

´ ³
b (cb+ 1)−1

´n
(−1)n+1 .
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The positivity is required on physical grounds that the kinetic energy in the
new variables must be positive, so this will be true in any physically meaningful
system. By inserting RTR = 1 the Hamiltonian is rewritten as

Ĥ = 1
2

³
p̃TRT k2Rp̃+ x̃TRTRṼ RTRx̃

´
+ E(x0, p0)

= 1
2

¡
p0T k2p0 + x0TV 0x0

¢
+E(x0, p0)

(5.108)

where p0 = Rp̃, x0 = Rx̃, V 0 = RṼ RT . Since orthogonal transformations also
preserve the canonical commutation rules, we may again assume that this step
is accomplished and reduce the problem to a diagonal K0

ij = k2i δij without
loss of generality. Next introduce a rescaling that also preserves the canonical
structure

p̃0i = kip
0
i, x̃0i = k−1i x0i. (5.109)

This brings the Hamiltonian to the form

Ĥ =
1

2

¡
p̃0T p̃0 + x̃0T (kV 0k)x̃0

¢
+E(x0, p0). (5.110)

Finally using an orthogonal transformation that diagonalizes the symmetric
matrix, (kV 0k) = UTω2U, the Hamiltonian takes its final simplest form by
inserting UTU = 1 and defining p00 = Up̃0, x00 = Ux̃0

Ĥ = 1
2

¡
p̃0TUTUp̃0 + x̃0TUTω2Ux̃0

¢
+E(x0, p0)

= 1
2

¡
p00Tp00 + x00Tω2x00

¢
+ E(x0, p0)

= 1
2

PN
i=1

¡
(p00i )

2 + ω2i (x
00
i )
2
¢
+E(x0, p0).

(5.111)

This decoupled form defines the normal coordinates that are independent os-
cillators. The frequencies ω2i correspond to the eigenvalues of the matrix (kV

0k).
The eigenvalues of (kV 0k) are the same as those of the matrix RT (kV 0k)R, which

can be rewritten as
¡
RT kR

¢ ¡
RTV 0R

¢ ¡
RTkR

¢
=
p
K̃Ṽ

p
K̃. Therefore, to

compute the frequencies we setup the secular equation det
³p

K̃Ṽ
p
K̃ − λ

´
=

0. The solutions for λ correspond to the frequencies ω2i . Now, the determinant
can be rewritten as follows

0 = det
³p

K̃Ṽ
p
K̃ − λ

´
= det

³p
K̃
³
Ṽ − λK̃−1

´p
K̃
´

=
³
det

p
K̃
´
det

³
Ṽ − λK̃−1

´³
det

p
K̃
´
=
³
det K̃

´
det

³
Ṽ − λK̃−1

´
= det

³
K̃Ṽ − λ

´
(5.112)

Now we insert the product K̃Ṽ from Eq.(5.105)

0 = det
³
K̃Ṽ − λ

´
= det

¡
u−1

£
WT b+ V (cb+ 1)

¤ £
K +Wc+ cWT + cV c

¤
u− λ

¢
= det

¡£
WT b+ V (cb+ 1)

¤ £
K +Wc+ cWT + cV c

¤
− λ

¢
(5.113)
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So, we have shown that we can compute the frequencies by solving for the
roots of this secular equation and identifying the solutions with λ = ω2i . When
W = 0 this task is much simpler since then b, c are also zero, and we get simply
det (V K − λ) = 0, where K,V are the original matrices. Once the frequencies
are determined in this way, we have seen that we can write down immediately
the simpler form of the Hamiltonian in Eq.(5.111).
At this stage we can quantize the normal modes and introduce the creation-

annihilation operators

x00i =

r
~
2ωi

(ai + a†i ), p00i = −i
r
~ωi
2
(ai − a†i ), (5.114)

and finally have

H =
NX
i=1

~ωi(a†iai + 1/2) + E(x0, p0). (5.115)

The eigenstates are the usual number states |n1, · · · , nN i, and the energy eigen-
values are

En1···nN =
NX
i=1

~ωi(ni + 1/2) +E(x0, p0). (5.116)

There would be degeneracies only if the frequencies of the normal modes are
accidentally the same. Thus, the solution of the original quantum problem is
reduced to the computation of the frequencies. The series of steps above can
always be accomplished in order to compute them (see problem). The relation of
the creation-annihilation operators to the original position-momentum variables
in (5.93) is obtained by putting together the transformations applied at each
step

a =
p

ω
2~
©
Uk−1R

¡
A(x− x0) +B(p− p0)

¢ª
+i
q

~
2ω

©
UkR

¡
−B(x− x0) +A(p− p0)

¢ª (5.117)

where a, x, p, x0, p0 are column matrices, ω, k are diagonal matrices, U,R are or-
thogonal matrices, and A,B form the 2N×2N symplectic matrix that satisfy the
conditions described above. For any choice of the parameters in these symplec-
tic, orthogonal, diagonal or column matrices, the original position-momentum
commutation rules lead to the standard creation-annihilation commutation rules.
Furthermore, the Hamiltonian is diagonalized when the parameters in these ma-
trices are chosen according to the steps above, so they end up being functions
of the original parameters in K,V,W,α, β (see problem).
There is a quicker way to reach the final result. Starting with H = p̃T K̃p̃+

x̃T Ṽ x̃ + E(x0, p0) we define the canonical transformation p̃0 =
p
K̃p̃ and x̃0 =³p

K̃
´−1

x̃. The Hamiltonian takes the form

Ĥ = p̃0T p̃0 + x̃0T
hp

K̃Ṽ
p
K̃
i
x̃0 +E(x0, p0). (5.118)
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The eigenvalues of the matrix
p
K̃Ṽ

p
K̃ gives the eigenvalues ω2i in agreement

with the discussion above.

5.7 An infinite number of particles as a string
Consider a system of coupled particles and springs as in the previous section,
but with only nearest neighbor interactions with N springs whose strengths are
the same, and N + 1 particles whose masses are the same. The Lagrangian in
d−dimensions written in vector notation is

L(xi, ẋi) =
1

2
m

NX
i=0

(ẋi · ẋi)−
k

2

NX
i=1

(xi − xi−1)2. (5.119)

The index i = 0, · · · , N refers to the i−th particle. We have argued above that
one can always solve a problem like this. We will see, in fact, that the solution
of such a system for N → ∞ will describe the motion of a string moving in d-
dimensions. Let us visualize the system in d = 3. We have an array of particles
whose motion is described by the solution of the coupled equations for xi(t).
Suppose that the N particles are initially arranged as in Fig.(5.2) at t = t0

Fig.5.2: N positions at time t=t0.

As t increases, the configuration of such an array of particles changes. Taking
pictures at t = t1, t = t2, t = t3 we can trace the trajectories as in Fig.(5.3).

Fig.5.3: Trajectories of N particles.
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The overall motion looks like a motion of a discretized string of beads which
sweeps a discretized surface embedded in d dimensions. Let us now suppose
that we have a continuous string parametrized as x(σ, t). At a fixed time, as
the parameter σ changes in some range, say 0 ≤ σ ≤ π, the vector x(σ, t)
represents the location of different points on the string in a continuous fashion.
Allowing also the time to change, one sees that the vector x(σ, t) points at
any location on the two dimensional surface swept by the string. This surface is
called the world sheet of the string. At any point on this surface we may identify
the two tangents to the surface as ∂tx(σ, t) ≡ ẋ(σ, t) and ∂σx(σ, t) ≡ x0(σ, t).
Suppose we divide the range of σ into N discrete parts of equal length a = π/N ,
identify the N + 1 points σ = ia with i = 0, 2, · · · , N and assign their location
x(σ = ia, t)→ xi(t). Then the continuous open string is approximated by N+1
particles. In the limit a → 0, and N → ∞, with Na = π fixed, we recover the
string from the collection of an infinite number of particles. A closed string that
forms a loop may be described similarly. In this case it is more convenient to
double the range of σ to 0 ≤ σ ≤ 2π, discretize it in the same way, but also
add the condition that the first and last point parametrized by σ are really the
same point x0 = xN . In this discretized version the two tangents to the string
world sheet are replaced or approximated by

ẋ(σ, t)→ ẋi(t), x0(σ, t)→ 1

a
(xi(t)− xi−1(t)) . (5.120)

We now see the interpretation of the Lagrangian written above in terms of a
string. Namely, in the limit N → ∞ it represents the kinetic energy plus the
potential energy of a moving open string:

L(x, ẋ) =
µ

2

Z π

0

dσ (ẋ(σ, t))2 − T

2

Z π

0

dσ (x0(σ, t))
2 (5.121)

where we have defined a mass density along the string µ = m/a and a tension
T = ka that remain constant as a → 0. This Lagrangian, together with the
boundary conditions for open or closed strings

x0(0, t) = x0(π, t) = 0 (open string)
x(0, t) = x(2π, t) (closed string)

(5.122)

recover the N →∞ limit of its discretized version (the boundary conditions for
open strings follow from the minimal action principle by allowing free variation
of the end points; they prevent momentum leakage at the end points ). We have
already seen that we can completely solve the classical or quantum mechanics
problem in the discretized version by finding the normal modes. We may also
study it directly in the continuous string version and interpret the normal modes
as the normal modes of string motions (vibrations, rotations, etc.). The quan-
tum theory is easily solved in terms of the normal modes that are represented as
oscillators. Let us first study this Lagrangian classically. The Euler-Lagrange
equation takes the form

(µ∂2t − T∂2σ)x(σ, t) = 0. (5.123)
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This equation is equivalent to the Klein-Gordon equation in one “space” (σ)
and one “time” (t) direction. The general solution is

x(σ, t) = f(ωt+ σ) + g(ωt− σ) (5.124)

where ω =
p
T/µ and f ,g are arbitrary functions of their arguments. For an

open string, imposing the boundary condition x0(0, t) = 0 requires that the
two functions be the same up to a constant f(ωt) = g(ωt) + c. After using
this restriction, imposing the boundary condition x0(π, t) = 0 demands that the
derivative of the function be periodic with period 2π: i.e. f 0(ωt+π) = f 0(ωt−π).
The general real periodic function can be expanded in terms of a Fourier series
in the form

f
0
(u) =

a0
2
+

i

2

∞X
n=1

√
n(ane

iun − a†ne−iun), (5.125)

where the Fourier modes an are arbitrary constants and the extra factor of
√
n

is inserted for later convenience. By integrating this function we have

f(u) = c1 +
a0u
2 + 1

2

P∞
n=1

1√
n

¡
ane

iun + a+n e
−iun¢

g(u) = c2 +
a0u
2 + 1

2

P∞
n=1

1√
n

¡
ane

iun + a+n e
−iun¢ (5.126)

leading to the general solution

x(σ, t) = (c1 + c2) + a0ωt+
∞X
n=1

cosnσ√
n

¡
ane

iωnt + a†ne
−iωnt¢ (5.127)

or

x(σ, t) = x0(t) +
∞X
n=1

1√
n
xn(t) cosnσ (5.128)

Here the zero mode which may be rewritten as

x0(t) = x0 + v0t (5.129)

is interpreted as the free motion of the center of mass. In fact note that the
integral over σ yields just the zero mode, and also the integral is interpreted as
the center of mass variable in the discretized version (with Na = π)

x0 + v0t =
1

π

Z π

0

x(σ, t) dσ ' Na

π

∙
m(x1 + x2 + . . .+ xN )

Nm

¸
(5.130)

So, the center of mass behaves like a free particle. The remaining normal modes
which may be rewritten as

xn(t) =
³
rn cosωnt+

vn
ωn

sinωnt
´

(5.131)

perform oscillatory motion with frequencies that are the multiples of the basic
frequency ωn = nω. The reader is invited to solve the discretized problem
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directly for any N and then take the large N limit to show that the result is the
same. It is useful to get a feeling of the motion performed by a pure normal
mode. For example consider the solution for which x0 = 0 and v0 = 0 so that
the center of mass is at rest, and take all the normal modes equal to zero except
for the first one

x(σ, t) =
³
r cosωt+

v

ω
sinωt

´
cosσ. (5.132)

At t = 0, x(σ, t) = r cos(σ) represents a string stretched from −r to +r. When
t increases, the string vibrates and rotates like a rod about its center of mass
at a rate ω. If v is initially along r there are only longitudinal vibrations, and
if it is initially perpendicular to r there is rotation while the length of string
changes. For t = 2π

ω , the string goes back to its original position. If the string
is purely in the second normal mode

x(σ, t) =
³
r2 cos 2ωt+

v2
2ω
sin 2ωt

´
cos 2σ (5.133)

the string folds on itself, since cos 2σ covers the same values twice while σ
changes from 0 to π. As time goes on it vibrates and rotates while it stays folded.
With a more general superposition of many modes the string performs rather
complicated vibrational, rotational, folding and unfolding motions in addition to
moving as a whole following its center of mass. A closed string is described in the
same way. The boundary conditions allow basically two independent functions
f and g, except for the zero mode that must be the same for periodicity in the
sigma variable to be satisfied for the total x = f + g

f(ωt+ σ) = 1
2 (x0 + v0(ωt+ σ)/ω) + 1

2

P∞
n=1

1√
n

¡
ane

in(ωt+σ) + a†ne
−in(ωt+σ)¢

g(ωt− σ) = 1
2 (x0 + v0(ωt− σ)/ω) + 1

2

P∞
n=1

1√
n

¡
ãne

in(ωt−σ) + ã†ne
−in(ωt−σ)¢
(5.134)

In the sum the sigma dependence drops out for the center of mass motion x0(t) =
x0 + v0t, hence periodicity in the sigma variable is achieved. The amplitudes
of oscillations an, ãn are independent from each other. They represent waves
traveling clockwise or anticlockwise along the closed string. Let us now analyze
the quantum theory. The aim is to express the Hamiltonian in terms of the
normal modes. The classical analysis has already identified them. For the open
string we simply substitute in the Lagrangian (5.121) the derivatives of the
expression in (5.128)

ẋ(σ, t) = ẋ0(t) +
∞X
n=1

1√
n
ẋn(t) cos(nσ), x0(σ, t) = −

∞X
n=1

√
nxn(t) sin(nσ)

(5.135)
and do the integrals over σ. The result is

L =
πµ

2

"
ẋ20 +

∞X
n=1

1

n

¡
ẋ2n − ω2n2x2n

¢#
. (5.136)

We see that the normal modes are indeed separated from each other and that
we have the Lagrangian for the harmonic oscillator for each of the normal modes
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except for the zero mode. Canonical conjugate variables are defined as usual

p0 = πµẋ0 pn = πµẋn/n (5.137)

and the Hamiltonian follows

Hopen =
p20
2πµ +

P∞
n=1 n

³
p2n
2πµ +

πµω2x2n
2

´
=

p20
2πµ +

P∞
n=1 ~ωn

¡
a†n · an + d

2

¢ (5.138)

where the creation-annihilation operators are constructed as usual,

an =
1√
2
(
xn
x0
+ i

x0 pn
~

), x0 =

s
~

πµω
, (5.139)

and they coincide with the an introduced in the Fourier expansion ( 5.125). For
the closed string we follow the same procedure, but we can see that the result
is similar except for the doubling in the number of oscillators

Hclosed =
p20
2πµ +

P∞
n=1 ~ωn

¡
a†n · an + ã†n · ãn + d

¢
. (5.140)

There is one additional requirement for the closed string. It should not matter
where the origin of the sigma coordinate is chosen along the string since there
really is no distinguishable starting point on a loop. Therefore, the energy of
the string should remain invariant under replacements of σ by σ+σ0 for any σ0.
In other words, the physically acceptable states of the closed string are those
that do not change under σ−translations. This is possible if the momentum
along the string, given by the difference of left moving energy and right moving
energy, vanishes. Therefore a physical state of a closed string is one that has an
equal amount of left moving as right moving energy

∞X
n=1

n a†n · an =
∞X
n=1

n ã†n · ãn. (5.141)

We see that the vacuum energy for either open or closed strings is infinite due to
the vacuum energies of an infinite number of harmonic oscillators. However, only
energy differences of excited levels relative to the ground state are physically
significant or measurable. So we may redefine the ground state energy as being
a constant or zero, by subtracting the infinity (or redefining the Hamiltonian
from the beginning). This process is an example of “renormalization” which is
commonly used in quantum field theory. It is a process that subtracts infinities
that are not measurable. As a matter of fact the string theory discussed in this
section is an example of a free field theory. The quantum states of the string are
now quite evident. The simultaneously diagonalizable operators are the center
of mass momentum and the number operators for each mode in each direction.
The ground state, which is the vacuum of the oscillators corresponds to a string
contracted to a single point and moving with momentum p0 = ~k.

|k,0i (5.142)
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Excited states are obtained by applying creation operators for any normal mode.
The larger the index n the higher is the energy quantum associated with that
normal mode. There are degeneracies at various energy levels. For example, for
the open string, at energy level 2 the states

a†2I |k, 0i, a†1I a†1J |k, 0i (5.143)

are degenerate and they both have energy

E =
~2k2

2πµ
+ 2~ω. (5.144)

There are d states of the first kind and d(d + 1)/2 of the second kind. The
degeneracy due to the vector indices I = 1, 2, · · · d is related to rotation in-
variance, but the remaining degeneracies are properties of the quantum string
theory. The states of the closed string must obey also the constraint (5.141). A
few of the lowest energy closed string states and their energies are

|k, 0i E = ~2k2
2πµ

a†1I ã†1J |k, 0i E = ~2k2
2πµ + 2~ω

a†2J ã†2K |k, 0i
ã†1I ã†1J a†2K |k, 0i
a†1I a†1J ã†2K |k, 0i

⎫⎬⎭ E = ~2k2
2πµ + 4~ω.

(5.145)

The occurrence of degeneracy in the last three states, and at higher states, is a
property of string theory. In this section we have studied some aspects of the
non-relativistic quantum string. The relativistic quantum string which is at the
basis of the fundamental String Theory that attempts to unify all interactions
in Nature is studied with very similar methods. The additional ingredient in
that case is the use of relativistic string vectors xµ(σ, τ) that include a string-
like time coordinate x0(σ, τ), while τ is the proper time. The formalism is
supplemented with additional invariances and constraints that seek to eliminate
“ghosts” or negative norm states from the Hilbert space. These additional
complications are present because of the time coordinate x0(σ, τ). However,
after proper manipulation of these issues, the relativistic string theory, treated
in the “light-cone” gauge, reduces to a formalism which is very close to the one
studied in this chapter.

5.8 Problems
1. Compute the matrix elements of the operators (x̂2)mn and (p̂2)mn in the
harmonic oscillator states |ni and extract the uncertainties (∆x)n , (∆p)n
and their product in each state . Is the result consistent with what you
expect on the basis of classical mechanics considerations?

2. Compute the time dependence of the uncertainties ∆x(t) and ∆p(t) in a
coherent state |z, ti. Interpret the result in light of the almost classical
behavior of the coherent state.
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3. Show that the state exp
¡
−a†2/2 + λa†

¢
|0i is an eigenstate of the posi-

tion operator x̂. What is the relation between λ and the eigenvalue of
x̂? Similarly, construct an eigenstate of the momentum operator p̂ with
eigenvalue p.

4. Show that Wick theorem eq.(5.54) is correct for n = 2, 3, 4 by explicitly
rearranging the operator products φ1φ2 · · ·φn in terms of normal ordered
products.

5. Consider the operator U = exp(αa†a). Show that

UaU−1 = e−αa, Ua†U−1 = eαa†. (5.146)

(recall eABe−A = B + [A,B] + 1
2! [A, [A,B]] + · · · .) Using this result

show that, for any function of the creation-annihilation operators, one
has Uf(a, a†)U−1 = f(e−αa, eαa†).

6. Verify that the SU(2) Lie algebra of eq.(5.76) is satisfied by the fermionic
construction in (5.90). What is J2 in terms of fermion number operators?
Using this result verify that the only possible values for j are 0, 1/2.

7. Consider the three operators

A0 =
1

2
a†a+

1

4
, A+ =

1

2
a†a†, A− =

1

2
aa . (5.147)

Obviously A0 is diagonal on Fock space |ni. Show that the A±,0 close
under commutation rules that differ from those of J±,0 in eq.( 5.76) by a
minus sign. These are the commutation rules of the Lie algebra SL(2, R)
(equivalent to the Lorentz group SO(2, 1) in 2-space + 1-time dimensions).
Show that A2 = A20− (A+A−+A−A+)/2 is a constant (not an operator),
and by writing it in the form j(j + 1) identify two fixed values of j =?.
Next find the action of A±,0 on Fock space and show that it can be written
in a form similar to eq.(5.74) with some sign modifications and identify
again the fixed values of j =?.

8. Apply the A±,0 operators of the previous problem on coherent states |zi
and find their action in terms of differential operators. Verify that the
resulting differential operators satisfy the same commutation rules as the
previous problem. What is the action of these operators on the functions
ψm(z) = hm|zi = zm/

√
m! ? Rewrite the result in terms of the ψm and

compare to the previous problem.

9. Consider the coherent states |z1, z2i for the two dimensional harmonic
oscillator. What is the differential operator form of the J±,0 and N̂ of
eqs.(5.72) acting on these states ?

10. Verify that J2 = (N̂/2)(N̂/2 + 1) in terms of oscillators and in terms of
the differential operators constructed in the previous problem
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11. Solve the frequencies for the three body problem given in eqs.(5.91,5.92) in
d-dimensions . Hint: the solution is simplified by noticing that one of the
frequencies must be zero due to the translation invariance of the problem.
The corresponding new position and momentum variables must be the
center of mass variables. After taking into account this fact from the
beginning, the problem reduces to diagonalizing a 2× 2 matrix involving
only two independent relative variables.

12. Consider a Hamiltonian of the form

H =
1

2

N=2X
i,j=1

(Kij�pi · �pj + Vij�xi · �xj) +
N=2X
i=1

³
�αi · �pi + �βi · �xi

´
For the N = 2 case, once the the normal modes are obtained, the Hamil-
tonian takes the form

H = E (x0, p0) + ~ω1
µ
�a†1 · �a1 +

d

2

¶
+ ~ω2

µ
�a†2 · �a2 +

d

2

¶
.

FindE (x0, p0) , ω1, ω2 in terms of the original parameters inKij , Vij , �αi, �βi.

13. The matrices A,B,C,D introduced in Eq.(5.100) in terms of b, c, u, form
a 2N × 2N symplectic matrix M which satisfies MTSM = S. This M is
also required to block diagonalize the Hamiltonianµ

AT CT

BT DT

¶µ
K W
WT V

¶µ
A B
C D

¶
=

µ
K̃ 0

0 Ṽ

¶
.

Consider the N = 2 case, use explicit 2× 2 matrices K,V,W,

K =

µ
k1 k3
k3 k2

¶
, V =

µ
v1 v3
v3 v2

¶
, W =

µ
w1 w3 + w4

w3 − w4 w2

¶
and find A,B,C,D (equivalently, b, c, u) and K̃, Ṽ , in terms of the para-
meters in K,V,W.

14. Write out explicitly all the equations that relate the original parameters in
(5.93) and the transformation matrices at each step and show the overall
relations between the frequencies of the normal modes and the original
parameters. Take into account the results of the previous problem.

15. Consider the 3-dimensional harmonic oscillator and its 3 creation-annihilation
operators. In addition to the total number operator N̂ = a†1a1+a

†
2a2+a

†
3a3

define the following 8 operators that commute with it

J0 =
1
2(a

†
1a1 − a†2a2), J+ = a†1a2, J− = a†2a1

U+ = a†1a3, U− = a†3a1, V+ = a†2a3, V− = a†3a2
Y = 1

3(a
†
1a1 + a†2a2 − 2 a

†
3a3).

(5.148)
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Using the commutation rules in (5.75) it is not difficult to show that
these 8 operators close under commutation. Hence they form the SU(3)
Lie algebra. By analogy to the SU(2) states in (5.68) the number states
|n1, n2, n3i may be rewritten in terms of the eigenvalues of the commuting
operators N̂, J0, Y with eigenvalues n,m, y respectively

|n,m, yi = (a†1)
n/3+y/2+mp

(n/3 + y/2 +m)!

(a†2)
n/3+y/2−mp

(n/3 + y/2−m)!

(a†3)
n/3−yp

(n/3− y)!
|0i

(5.149)
where we have defined

n = n1 + n2 + n3, m =
1

2
(n1 − n2), y =

1

3
(n1 + n2 − 2n3). (5.150)

Furthermore, by concentrating only on the first two oscillators and com-
paring to the two dimensional case it is useful to define the quantum
number j

j =
1

2
(n1 + n2) = n/3 + y/2. (5.151)

So, the state may be labelled |n, j,m, yi with the additional quantum
number j, but keeping in mind that j is a function of n, y but not m.
From the positivity of the integers nI ≥ 0 one derives the allowed values
and ranges of these quantum numbers

n = 0, 1, 2, 3, · · · .
(j, y) = (n2 ,

n
3 ), · · · , (

n−k
2 , n−3k3 ), · · · , (0,−2n3 )

m = −j, −j + 1, · · · , j − 1, j
(5.152)

• Compute the action of the 3 creation and annihilation operators on
the states, writing the resulting state in terms of the labels of the
type |n, j,m, yi.

• Using this result now obtain the action of the 8 operators which do
not change the value of n, and again give your result in terms of
the states labelled by |n, j,m, yi. Since the value of n cannot change
you have found irreducible representations of SU(3) for each value
of n. You will compare your result later in the course to the general
solution of the SU(3) problem and find out that it corresponds to a
subclass of irreducible representations (see problems in Chapter 8).

16. Consider the 8 operators of SU(3) of the previous problem but now con-
structed with fermionic oscillators. Verify that the Lie algebra closes with
identical coefficients as the bosonic case. Show that the list of all possi-
ble values of the quantum numbers (n, j, y) that may be constructed with
fermions is (take into account the SU(2) result discussed in the text)

(n, j, y) = (0, 0, 0), (1, 0,−2/3), (1, 1/2, 1/3)
(2, 0, 2/3), (2, 1/2,−1/3), (3, 0, 0)

j = 1
2

£¡
2
3(n mod3) + y

¢
mod2

¤
.

(5.153)
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Of course, for each value of j the remaining quantum number must take
values −j ≤ m ≤ j. If we interpret j as isospin and y as hypercharge,
then the three states with n = 1 have the quantum numbers of up, down,
strange quarks, while the three states with n = 2 have the quantum num-
bers of antiquarks (also of di-quarks). The states with n = 0, 3 are SU(3)
singlets. There are other applications and/or interpretations of the math-
ematics. For example the three fermions b†α with α = 1, 2, 3 may represent
the three colors of quarks. Then we see that we can make a color singlet
state (3, 0, 0) by putting three quarks of different colors together b†1b

†
2b
†
3|0i

since the 8 SU(3) generators annihilate this state.

17. Compute the vacuum expectation value

h0|V (k1, z1)V (k2, z2) · · ·V (kn, zn)|0i

where V (k, z) =: exp(ik · x(z)) : is the normal ordered product of a string
plane wave defined by

x(z) = q− ip ln z +
∞X
n=1

1√
n

¡
anz

n + a†nz
−n¢ , z = eiωt

V (k, z) =

"
exp

∞X
n=1

iz−n√
n
k · a†n

#
eik·q+k·p ln z

"
exp

∞X
n=1

izn√
n
k · an

#

Hint: use eAeB = eBeAe[A,B] to move creation operators to the left and
annihilation operators to the right. The final result depends only on the
c-number exponential e[A,B]. The sums in the exponents of e[A,B] can be
easily performed and simplified. This computation is related to n strings
scattered from each other.



Chapter 6

CENTRAL FORCE
PROBLEM

The central force problem describes the interaction of two bodies through a
force that depends only on the distance between them and acts in the direction
of the vector that joins them. The gravitational interactions of planets moving
around the sun, the electromagnetic interactions of electrons around nuclei, the
nuclear interactions of two bodies in collision, etc. are all systems described
by the central force problem. Because of the large number of applications, it
is worth studying the system in some generality without specifying the precise
nature of the force. The Lagrangian and Hamiltonian are given by

L = 1
2m1ṙ

2
1 +

1
2m1ṙ

2
1 − V (|r1 − r2|)

H =
p21
2m1

+
p22
2m2

+ V (|r1 − r2|),
(6.1)

where the potential energy V (r) depends only on the distance between the two
bodies r = |r1 − r2|. We do not need to specify this function until we discuss a
particular system, so we will treat it generally for the time being. The classical
Hamilton’s equations of motion ṙi = ∂pi H , ṗi = −∂riH give

ṙ1 =
p1
m1

, ṙ2 =
p2
m2

, ṗ1 = −ṗ2 = −
r1 − r2

r
V 0(r). (6.2)

where V 0(r) = ∂
∂rV. One may then note that, independent of the details of the

potential energy, there are several quantities that remain constant throughout
the motion. These are the total momentum P = p1 + p2, the total angular
momentum LT = r1 × p1+ r2 × p2 , the total energy H, the relative orbital
angular momentum, and the energy of the relative system. To see this and
provide simple expressions for the relative quantities, it is useful to introduce
center of mass and relative coordinates (R, r) and rewrite the Hamiltonian and
equations of motion in terms of them. We define

R =
m1r1 +m2r2
m1 +m2

, r = r1 − r2. (6.3)

163
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Inverting these expressions one has

r1 = R+
m2

M
r , r2 = R−

m1

M
r (6.4)

where M = m1 +m2 is the total mass. The Lagrangian and Hamiltonian take
the form

L = 1
2MṘ2 + 1

2µṙ
2 − V (|r|)

H = P2

2M + p2

2µ + V (|r|) (6.5)

where µ is the reduced mass µ = m1m2/M, and

P = ∂L
∂Ṙ

=MṘ = p1 + p2,

p = ∂L
∂ṙ = µṙ = (m2p1 −m1p2)/M,

p1 =
m1

M P+ p, p2 =
m1

M P− p
(6.6)

The equations of motion for the center of mass and relative variables follows
from the new form of the Hamiltonian, or from the original equations of motion

Ṙ =
P

M
, Ṗ =0, ṙ =

p

µ
, ṗ = −r

r
V 0(r). (6.7)

Thus, the center of mass moves with a constant velocity, like a free particle,
while the relative motion depends on the force F = − rrV 0(r).

6.1 Separation of center of mass
It is clear that the center of mass and relative motions are decoupled from each
other and the conserved quantities are expressed as constants of either the center
of mass or relative motions. They are

Pcm = p1 + p2, Lcm= R×P
Hrel =

p2

2µ + V (r), Lrel= r× p.
(6.8)

For example we can check

∂tLrel = ṙ× p+ r× ṗ =
p

µ
×p+ r×

³
−r
r
V 0(r)

´
= 0. (6.9)

In a later chapter on symmetries we will see that the fundamental reason for
the conservation of these quantities are symmetries of the system under space
translations (Ṗ = 0), time translations (Ḣ = 0) and rotations (L̇cm = L̇rel = 0).
These symmetries are evident when we examine the Lagrangian or Hamiltonian.
Either one of these expressions remains unchanged under these transformations
(see symmetry chapter), therefore the equations of motions derived from them
carry the information about the symmetries.
The importance of this fact for Quantum Mechanics is that the operators

corresponding to these physical quantities must commute with the Hamiltonian,
since the time derivative of an operator is obtained by commuting it with the
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Hamiltonian. To see this result directly one may try the total momentum as an
example

[H,P] = [H,p1 + p2]
= [V (r1 − r2),p1] + [V (r1 − r2),p2]
= i~(∇1+∇2) V (r1 − r2)
= 0.

(6.10)

It works similarly for the other conserved quantities (see problems 1,2). This
means that the conserved quantities are simultaneous observables with the
Hamiltonian and their eigenvalues can serve to label the states of a complete
Hilbert space. It is imperative to take advantage of this fact in order to ex-
hibit the symmetries of the quantum system and obtain a more tractable and
understandable solution of the quantum system.
What should be the labels of the complete Hilbert space? To begin, it

is evident that we need 6 labels corresponding to 6 canonical degrees of free-
dom. These can be any of the following |r1, r2i or |R, ri, or |P,pi, or |P, ri, etc.
Among these it is wise to pick the label for total momentum since it is conserved
and also diagonalizes the center of mass energy. In fact, since the Hamiltonian
is constructed from two decoupled parts H = Hcm(P) +Hrel(p, r) we are com-
pletely finished with diagonalizing the first part, and can concentrate only on the
relative Hamiltonian for any fixed value of the total momentum. The objective
is then to diagonalize Hrel(r,p), and we must find operators constructed from
(r,p) that commute with it, to label a complete Hilbert space. By virtue of the
conservation of the relative angular momentum Lrel= r× p, and the fact that
it is constructed only from relative canonical operators, we have automatically
(see problem)

[Lrel,Hrel] = 0. (6.11)

Therefore, any function of Lrel commutes with Hrel, and we can find two such
functions (L2rel, (Lrel)z) that commute not only with Hrel but also with each
other. This will be discussed below in more detail, but for now we treat it as
a given in order to complete the description of the general structure. Thus, a
complete set of 6 simultaneous observables, that includes the Hamiltonian, is

P, Hrel, L
2
rel, (Lrel)z. (6.12)

we may label the complete Hilbert space with their eigenvalues

|k,E, l,mi. (6.13)

Another complete set is, of course, position space |R, ri. One set may be ex-
panded in terms of the other, and the expansion coefficients are the position
space probability amplitudes hR, r|k,E, l,mi. Because of the separate nature of
the center of mass and relative Hamiltonians, their corresponding states form
direct product spaces |R, ri ≡ |Ri⊗|ri, and |k,E, l,mi ≡ |ki⊗|E, l,mi. For
this reason the wavefunction separates into two factors

hR, r|k,E, l,mi = hR|kihr|E, l,mi ≡ eik·R

(2π~)3/2
ψElm(r). (6.14)
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The first factor describes the free motion of the center mass. It is well known
from the study of the free particle since the operators R,P and the center of
mass Hamiltonian constructed from them satisfy the same mathematics as the
free particle. The second factor is the non-trivial probability amplitude for the
relative motion.
We may examine the Schrödinger equation with the total HamiltonianHtot|ψi =

Etot|ψi. The equation in position space is obtained by taking the inner product
with hR, r| µ

−~2
2M
∇2

R +
−~2
2µ
∇2

r + V (r)

¶
ψ(R, r) = Etotψ(R, r). (6.15)

As argued above this equation is solved by the product

ψ(R, r) = ψcm(R) ψrel(r), (6.16)

where each factor satisfies its own independent equation

−~2
2M ∇2

R ψcm(R) = Ecm ψcm(R); ψcm(R) =
eik·R

(2π~)3/2 , Ecm =
~2k2
2M³

−~2
2µ ∇2

r + V (r)
´
ψrel(r) = Eψrel(r); ψrel(r) = ψElm(r), Etot = Ecm +E

(6.17)
The relative energy E, the wavefunction ψElm(r), and the quantum numbers
(l,m) still remain to be computed.

6.2 Angular momentum commutators

In the previous section the central force problem was reduced to the study of
an effective one-particle problem for the relative motion. From here on the
subscript “rel” will be omitted to save some writing. The equivalent system
describes a single particle interacting with a spherically symmetric potential.
The Hamiltonian and angular momentum operators commute

H =
p2

2µ
+ V (r), L = r× p, [L,H] = 0. (6.18)

According to the discussion in the previous section the two operators must com-
mute since angular momentum is conserved. That is, L does not change under
infinitesimal time translations, and since H is the generator of time translations,
L must commute with it. However, another interpretation of the zero commu-
tator [L,H] = 0 is that the Hamiltonian does not change under infinitesimal
rotations. That point of view will be better appreciated after understanding
that L is the generator of infinitesimal rotations, as follows.
The commutation rules of the angular momentum operators LI with other

operators may be explored. For this purpose the Levi-Civita symbol in three
dimensions �IJK plays a useful role since cross products of vectors are written
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succinctly in the form1

LI = �IJK rJ pK (6.19)

where a summation convention is used for repeated indices. From the basic
canonical variables (r,p) it is possible to construct three linearly independent
vectors (r,p,L), and three independent scalars r2,p2, r · p. Any function of the
canonical variables may be constructed from these basic entities. Therefore,
to find the commutator of LI with any operator in the theory it is useful to
compute the commutator with the basic vectors and scalars. The commutator
of angular momentum with either position or momentum look similar

[LI , rJ ] = �IMN [rMpN , rJ ] = i~�IJK rK
[LI , pJ ] = �IMN [rMpN , pJ ] = i~�IJK pK .

(6.20)

Two angular momentum operators also produce a similar result

[LI , LJ ] = �IKL �JMN [rKpL, rMpN ]
= �IKL �JMN (i~δLM rKpN − i~δKN rMpL)
= i~(rIpJ − rJpI)
= i~�IJK LK .

(6.21)

The commutator with any of the scalar functions is zero. For example, it follows
from (6.20) that

[LI , r.p] = [LI , rJ ]pJ + rJ [LI , pJ ] = i~�IJK ( rKpJ + rJpK) = 0.

Therefore, any scalar function S(r2,p2, r · p) must commute with angular mo-
mentum

[LI , S(r
2,p2, r · p)] =0. (6.22)

1The Levi-Civita symbol can be expressed as a determinant

�ijk =

¯̄̄̄
¯̄ δ1i δ2i δ3i
δ1j δ2j δ3j
δ1k δ2k δ3k

¯̄̄̄
¯̄ .

This makes it evident that it is completely antisymmetric. It takes the value 0 if any two indices
are the same, the value �123 = 1 when i, j, k are in the order 1, 2, 3, or any cyclic permutation,
and the value −1 for any odd permutation of 1, 2, 3, such as �213 = −1. Furthermore the
product of two such symbols has simple properties that follow from

�ijk �mnk =

¯̄̄̄
¯̄ δim δin δil
δjm δjn δjl
δkm δkn δkl

¯̄̄̄
¯̄ .

In particular when one of the indices is summed it yields

�ijk �mnk = δimδjn − δinδjm,

when two indices are summed it gives

�ijk �mjk = 2δim,

and when three indices are summed the result is

�ijk �ijk = 3! .
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Furthermore, the commutator with any vector function V = rS1+pS2+LS3,
where the S1,2,3 are scalar functions, follows from (6.20,6.21) and (6.22)

[LI , VJ ] = i~�IJK VK . (6.23)

So, there is a universal rule for the commutation rules of angular momentum:
LI commutes with any scalar and it gives the same commutator with any vector.
What is the reason? To answer the question introduce an infinitesimal constant
vector ω and examine the combination iω · L/~. Its commutator with any vector
V may be written as an infinitesimal rotation2 of the vector δωV = (ω ×V) by
an infinitesimal angle ω

[
iω · L
~

, VJ ] =
iωI
~
[LI , VJ ] = −�IJK ωIVK = (ω ×V)J = δωVJ . (6.24)

Therefore LI is the generator of infinitesimal rotations around the axis I. It is
now clear why the commutator of angular momentum must be zero with any
scalar: it is because the scalar does not rotate. It is also equally clear why its
commutator with any vector must be universal: it is because all vectors must
rotate with the same formula δωV = (ω ×V).
These results now give a better insight on [L,H] = 0. It means that the

Hamiltonian is a scalar, and therefore it does not rotate. By understanding
that L is the generator of rotations we know the result of the commutation
even before computing it explicitly, since by construction the Hamiltonian is
rotationaly invariant. The same general rule applies to the commutation with
any vector: the vector property of V guarantees that its commutator with
angular momentum must be (6.23). Also, the commutator of LI with other
components of angular momentum and with the square of the vector follow
from the general remarks without any explicit computation. So, just from the
property of rotations we must have

[LI , LJ ] = i~�IJK LK , [LI ,L
2] = 0. (6.25)

From this analysis we conclude that we can simultaneously diagonalize the
operators H,L2, L3, and label the complete set of states with their eigenvalues
as |E, l,mi, as outlined in the previous section. By definition we write the
eigenvalue equations

L2 |E, l,mi = ~2l(l + 1) |E, l,mi
L3 |E, l,mi = ~m |E, l,mi
H |E, l,mi = E |E, l,mi

(6.26)

The eigenvalue of L2 is parametrized as ~2l(l + 1) for later convenience, but at
this stage since the values of l are not specified, this form is to be considered just

2An infinitesimal rotation of a vector V around some axis by an infinitesimal angle ω may
be represented by the vector ω whose magnitude is the angle of rotation and whose direction is
the axis of rotation. The infinitesimal change in the vector is then given by the cross product
δωV = ω ×V. The reader who may not be familiar with this formula is urged to try it for ω
pointing in the z-direction and the vector V lying in the (x, y) plane.
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a symbol. The angular momentum eigenvalue problem for L2, L3 is independent
from the details of the Hamiltonian. Its solution applies quite generally to any
problem that has rotational symmetry. It will be studied by itself in section
(6.4).

6.3 Radial and angular operators

6.3.1 Radial operators

To go further introduce spherical coordinates (r, θ, φ). The direction of the vector
r will be denoted by the solid angle symbol Ω = (θ, φ) and we will also use the
bold character Ω to denote the unit vector

Ω =
r

r
. (6.27)

Introduce the Hermitian operator pr that represents the radial momentum

pr =
1

2
(
r

r
· p+ p·r

r
). (6.28)

Its commutator with the position operator is computed from [rI ,pJ ] = i~δIJ ,
which gives

[rI , pr] = i~ΩI . (6.29)

Furthermore, recall that [f (r) ,p] = i~∇f (r) . From this one can derive that
pr is the canonical conjugate to r =

√
r2 and that it commutes with the unit

vector (or the angles θ, φ) , i.e.

[r, pr] = i~, [Ω,pr] = 0.

Furthermore, since (r, pr) are scalars constructed from dot products, they both
commute with angular momentum

[LI , r] = 0 = [LI , pr].

Thus, the basic commutation rules among the cartesian coordinates (rI ,pJ)
have been transformed to the following basic commutation rules among the
spherical coordinates (r, pr,Ω,L)

[r, pr] = i~, [LI , LJ ] = i~�IJKLK , [LI ,ΩJ ] = i~�IJKΩK , (6.30)

while all other commutators among (r, pr,Ω,L) vanish.
Next we are interested in the inverse relations. Using the definitions of these

operators in terms of the basic cartesian operators (r,p) it is straightforward
to obtain the decomposition of position and momentum in terms of Hermitian
radial and angular operators in spherical coordinates (see problems 4,5)

r = rΩ, p = Ω pr −
1

2r
(Ω× L− L×Ω). (6.31)
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Furthermore, keeping track of order of operators, one finds

L2 = (r× p) · (r× p)
= r2p2 − (r · p)(p · r)− 2i~r.p
= r2(p2 − p2r)

(6.32)

from which it follows that
p2 = p2r +

1

r2
L2. (6.33)

The Hamiltonian now takes the form3

H =
1

2µ
(p2r +

1

r2
L2) + V (r). (6.34)

When H is applied on the common eigenvectors |E, l,mi, L2 becomes a number
and then the Schrödinger equation involves only the radial operators r, pr

H|E, l,mi =
µ
1

2µ
(p2r +

~2l(l + 1)
r2

) + V (r)

¶
|E, l,mi = E |E, l,mi. (6.35)

Therefore, the solution of the central force problem is reduced to the solution of
this simplified eigenvalue equation and the decoupled equations involving only
angular momentum operators as in (6.26).
To investigate the probability amplitude ψElm(r) =hr|E, l,mi in position

space we label the bra in spherical coordinates

hr| ≡ hr,Ω| ≡ hr, θ, φ|
0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. (6.36)

Since the angular and radial systems of operators commute with each other, the
Hilbert space reduces to direct products |ri ⊗ |Ωi and |Eli ⊗ |lmi, while the
wavefunction decomposes to radial and angular factors4

ψElm(r) =REl(r) Ylm(Ω), (6.37)

where
REl(r) = hr|Eli, Ylm(Ω) = hΩ|lmi. (6.38)

3For a generalization of this result to d dimensions, including two dimensions or higher
dimension, see section (6.7) and problem 9.

4 In d dimensions, including d = 3, this is generalized to ψ(r) =REl(r)TI1I2···Il (Ω) , where
the angular momentum wavefunction Ylm (Ω) for angular momentum l is replaced by the
tensor TI1I2···Il (Ω) which is the completely symmetric tensor with l indices constructed from
the unit vector ΩI in d dimensions, I = 1, 2, · · · d. The tensor must also be “traceless” in
the sense that when any pair of indices are set equal to each other and summed the result
must be zero, such as,

Pd
I=1 TIII3···Il = 0. Therefore, TI1I2···Il (Ω) = ΩI1ΩI2ΩI3 · · ·ΩIl −

1
a(l,d)

¡
δI1I2ΩI3 · · ·ΩIl + permutations

¢
, where the permutations insure that the subtracted

factor is completely symmetric and the coefficient a (l, d) is chosen so that
Pd

I=1 TIII3···Il =
0. Examples are given in Eqs.(6.90). These tensors are the solutions of the angular part
of the Schrödinger equation in d dimensions just as the spherical harmonics Ylm (Ω) are
the corresponding solutions in d = 3 dimensions. Indeed, when specialized to d = 3, the
components of the traceless tensor with l indices are proportional to the spherical harmonics
Ylm (Ω) (see Eq.(6.91) and problem 7).
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The quantum numbers (E, l) did not fully separate because they are coupled
through the Schrödinger equation above. We need to compute these functions.
It is evident that the angular part Ylm(Ω) is universal for any central force
problem, and is independent from the potential, while the radial part depends
on the specific Hamiltonian.
The three spherical orthogonal unit vectors will be denoted by bold charac-

ters Ω,Θ,Φ.
 

Fig.6.1- Spherical unit vectors �Ω, �Θ, �Φ.

From Fig.(6.1) one can construct graphically the Cartesian components of the
unit vectors

Ω = ( sin θ cosφ, sin θ sinφ, cos θ)
Θ = ( cos θ cosφ, cos θ sinφ,− sin θ)
Φ = (− sinφ, cosφ, 0)

(6.39)

Using
∂
∂θΩ = Θ,

∂
∂φΩ = sin θ Φ

∂
∂θΘ = −Ω,

∂
∂φΘ = cos θ Φ

∂
∂θΦ = 0, .

∂
∂φΦ = −(cos θ Θ+sin θ Ω)

(6.40)

one finds the small change in the vector r under small variations (δr, δθ, δφ),

δr = δ (rΩ) = δrΩ+rδΩ =δrΩ+rδθ
∂

∂θ
Ω++rδφ

∂

∂φ
Ω

= δrΩ+rδθ Θ + r sin θ δφΦ.

This is useful to compute the gradient in spherical coordinates by demanding
that any wavefunction ψ (r) = ψ (r, θ, φ) must give the same infinitesimal vari-
ation in either the cartesian or spherical coordinates

δψ = δr ·∇ψ = δr
∂ψ

∂r
+ δθ

∂ψ

∂θ
+ δφ

∂ψ

∂φ
.
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Taking into account δr as given above, we see that we must require

∇ = Ω
∂

∂r
+Θ

1

r

∂

∂θ
+Φ

1

r sin θ

∂

∂φ
. (6.41)

We may now find differential operator expressions in spherical coordinates for
the momentum and angular momentum operators when they act in position
space hr|p = −i~∇hr,Ω|, etc. We find (for a generalization of pr and p2r to d
dimensions, see Eq.(6.97))

p = −i~∇ = −i~
³
Ω ∂

∂r +Θ
1
r
∂
∂θ +Φ

1
r sin θ

∂
∂φ

´
L = −i~r×∇ = −i~

³
−Θ 1

sin θ
∂
∂φ +Φ

∂
∂θ

´
pr = −i~( ∂∂r +

1
r ) = −i~

1
r

∂
∂r r

p2r = −~2 1r
∂2

∂r2 r

(6.42)

We can now derive differential equations satisfied by the radial and spherical
wavefunctions by sandwiching some convenient operators between position en-
ergy or angular momentum states and evaluating them on both spaces. In
particular by using hr|H|Eli with the Hamiltonian (6.34) we find∙

~2

2µ

µ
−1
r

∂2

∂r2
r +

l(l + 1)

r2

¶
+ V (r)

¸
REl = E REl. (6.43)

This simplifies further by multiplying through by r and redefining some quan-
tities as follows ³

− ∂2

∂r2 +
l(l+1)
r2 + v(r)− ε

´
fEl(r) = 0

fEl(r) = rREl(r), v(r) = 2mV (r)
~2 , ε = 2mE

~2
(6.44)

To compute the eigenvalue E we will return to this “radial equation” in a later
section when we discuss specific potentials v (r).

6.4 General properties of angular momentum
We have seen in the previous section that the infinitesimal generator of rotations
is angular momentum and it is conserved if the Hamiltonian is invariant under
rotations. The expression for the conserved total angular momentum is different
for different systems. For example it is L = r×p for the single free or interacting
particle, L =

P5
i=1 ri × pi for a system of 5 free or interacting particles, and

even more complicated for a system of spinning particles. We want to consider
the general properties of angular momentum for all cases. For the general case
we will denote angular momentum with the symbol J.
There is one common property in all cases, and that is J is defined as the

generator of infinitesimal rotations. This implies that the rotation of any op-
erator A by an angle ω is given, in any physical system, by A0 = exp(iω ·
J/~) A exp(−iω · J/~), or infinitesimally
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δωA =
i

~
[ω · J, A] . (6.45)

There are immediate general consequences of this statement which apply uni-
versally to any system:

(i) When J is commuted with any scalar, the result must be zero,

[J, scalar] = 0. (6.46)

This is because a scalar does not change under rotations, δω(scalar) = 0.
In particular, in a rotationaly symmetric system the Hamiltonian is a
scalar, and [J,H] = 0. Also, the dot product of any two vectors is a
scalar, and J must commute with it. In particular the square of the
angular momentum vector, J · J is a scalar and one must have

[JI ,J
2] = 0. (6.47)

(ii) When J is commuted with any vector V, it must generate the infinitesimal
rotation appropriate for a vector,

δωV
J =

i

~
[ω · J, V J ] = (ω ×V)J .

This result can emerge only if, in any theory, the commutation of angular
momentum with the vector is

[JI , V J ] = i~ �IJK V K . (6.48)

Candidates of vectors that satisfy this commutation rule are the positions ri,
the momenta pi and the spins Si of the particles i in any theory, as well as any
other vector V(ri,pi,Si) constructed from them. Since the angular momentum
operator itself is a vector, a corollary of (6.48) is

[JI , JJ ] = i~ �IJK JK . (6.49)

From the commutation rules in (6.48) one can immediately verify explicitly that
J commutes with the dot product of any two vectors, and thus prove statements
made in item (i).
From the general property of rotations, we have derived on very general

grounds the commutation rules of angular momentum (6.49). This approach
makes it clear that angular momentum is the generator of infinitesimal rotations.
The reason for the non-zero commutator is the fact that rotations in different
directions do not commute with each other. One can go back to specific examples
and use the basic canonical commutators to verify that (6.49) is indeed true, as
we did for the central force problem. It is evident that there are a multitude
of operator representations of angular momentum; namely, one for every multi-
particle system that can be imagined. Similarly there are a multitude of matrix
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representations of these commutation rules. These will be studied systematically
in the next chapter.
It is useful to note one matrix representation that follows from the universal

formula for rotating a vector infinitesimally δωV
J = (ω ×V)J . By writing the

vector as a column this formula may be rewritten in matrix notation⎛⎝ δωV1
δωV2
δωV2

⎞⎠ =

⎛⎝ 0 ω3 −ω2
−ω3 0 ω1
ω2 −ω1 0

⎞⎠⎛⎝ V1
V2
V3

⎞⎠ . (6.50)

Thus, under an infinitesimal rotation we have the new vector V 0 = V + δωV =
(1+A(ω))V, where A(ω) is the antisymmetric matrix containing the ωI and V is
the column vector representing the vector. To apply a finite rotation with non-
infinitesimal ω, we can divide it into N equal parts where N is large, apply N
infinitesimal rotations, and take the limit forN →∞. This gives the exponential
of the matrix A

V 0 = lim
N→∞

µ
1 +

A

N

¶N
V = eAV (6.51)

Therefore the matrix R = exp(A(ω)) represents a general rotation of a vector.
A close examination of this matrix reveals that, due to the antisymmetry of A,
it is the most general orthogonal matrix of determinant +1

R = eA ⇒ RT = R−1, detR = 1. (6.52)

Such a matrix is a member of the group SO(3) formed by special orthogonal
matrices (special means that the determinant is +1). Therefore rotations have
the group property of SO(3).We will return to a discussion of group theoretical
properties in the chapter on symmetries. Now let us examine the infinitesimal
rotation represented by the matrix A

A =

⎛⎝ 0 ω3 −ω2
−ω3 0 ω1
ω2 −ω1 0

⎞⎠ (6.53)

This may be written as A = ω1A1 + ω2A2 + ω3A3, where the matrix elements
of AI are given by (AI)JK = �IJK

A1 =

⎛⎝ 0 0 0
0 0 1
0 −1 0

⎞⎠ , A2 =

⎛⎝ 0 0 −1
0 0 0
1 0 0

⎞⎠ , A3 =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ .

(6.54)
This set of matrices may be viewed as generators of infinitesimal transformations
that implement the infinitesimal rotation of a vector, that is,

r0I = RIJrJ =
¡
eA
¢
IJ

rJ or r0 = exp (ω̃×) r

since infinitesimal for infinitesimal �ω we have δω rI = AIJrJ = (ω× r)I . There-
fore, the matrices AI are intimately connected to a representation of angular
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momentum . Indeed, by comparing R = exp(ω̃ · �A) = exp(iω̃ · J̃/~) one can
identify a matrix representation of the rotation generators

J= −i~A . (6.55)

By explicit matrix commutation, [A1, A2] = −A3 and cyclic (1, 2, 3) , one can
check that (6.49) is satisfied:

[(−i~A)I , (−i~A)J ] = i~ �IJK (−i~A)K .

This emphasizes once again that the commutation rules (6.49) are a property of
the rotation group, and are satisfied independently of the details of any quantum
theory.

6.5 Hilbert space for angular momentum
What are the properties of rotations that can be observed simultaneously? Since
rotations in three dimensions can be specified with two angles (θ, φ), one must
label the Hilbert space with two rotation quantum numbers. One possible basis
is “position space”, which is angle space |θ, φi. Another possible basis is angular
momentum space. Therefore, angular momentum space must have two labels.
There is a parallel between angle-angular momentum spaces, and the ordinary
position-momentum spaces, respectively. It is useful to keep this analogy in
mind. Similar to ordinary Fourier expansions, one can expand the angle basis
in terms of the angular momentum basis, and vice versa. Instead of the set
of functions exp (ip · x/~) ∼ hr|pi that form a complete basis for a Fourier
expansion, one uses the spherical harmonics hΩ|lmi ∼Ylm (Ω) as a complete
basis for an expansion of angle space into angular momentum space, and vice-
versa, as will be seen below.
The two labels for angular momentum correspond to commuting operators

constructed from functions of the generators J. We have seen that rotation
invariance of scalars guarantee that [J,J2] = 0. Therefore the two simplest
commuting operators can be chosen as (J2, J3), and their eigenvalues may
label the states as |λ,mi

J3|λ,mi = ~m|λ,mi , J2|λ,mi = ~2λ2|λ,mi (6.56)

Since J2 is a positive operator, its eigenvalue must be positive λ2 ≥ 0. Fur-
thermore, both λ2 and m must be real since they are eigenvalues of Hermitian
operators. The action of all the generators J on these states will provide all
possible representations of the Lie algebra (6.49) .
We now need to find out how J1 and J2 operate on the state vectors |λ,mi.

For this purpose define J± = J1 ± iJ2 , which are called raising/lowering op-
erators. It is also conventional to rename J3 = J0. Their commutation rules
follows from (6.49)

[J0, J±] = ±~J± , [J+, J−] = 2~J0 . (6.57)
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We are looking for J±|λ,mi = |?i. Let us act on |?i with J0 and J2

J2(J±|λ,mi) = J±J
2|λ,mi = ~2λ2(J±|λ,mi) (6.58)

J0(J±|λ,mi) = (J±J0 ± ~J±)|λ,mi = ~(m± 1)(J±|λ,mi)

This shows that |?i is an eigenstate of (J2, J0) with eigenvalues ~2λ2 and
~(m± 1) respectively. This justifies writing

J±|λ,mi = β±|λ,m± 1i , (6.59)

where the proportionality constants β+ and β− are obtained through normal-
ization and hermiticity. For J±|λ,mi one has (J±|λ,mi)† = hλ,m|J∓, so that

|J±|λ,mi|2 = hλ,m|J∓J±|λ,mi = |β±|2hλ,m± 1|λ,m± 1i = |β±|2 . (6.60)

Noticing that [J+, J−] = 2~J0, and J2 = J∓J± ± ~J0 + J20 , we obtain

|β±|2 = hλ,m|(J2 ∓ ~J0 − J20 )|λ,mi = ~2[λ
2−m(m± 1)],

|β+(λ,m)| = ~
q
λ2−m(m+ 1), |β−(λ,m)| = ~

q
λ2−m(m− 1)

(6.61)

Since the left hand side is positive and real, we conclude from the right hand
side that

λ2 ≥ m (m± 1) . (6.62)

To determine the allowed values of (λ,m), consider some starting value m =
m0, and apply the rasing/lowering operators n times, (J±)n, to get to a state
with m = m0± n. Because of the bound (6.62), there must be a maximum and
a minimum value of m for a fixed value of λ,

mmin (λ) ≤ m ≤ mmax (λ) (6.63)

Applying J± to the maximal/minimal state must produce β+ = 0 or β− = 0,
since otherwise one reaches a state labelled by an eigenvalue outside of the
allowed set of m’s. Let the maximum value mmax (λ) be denoted by j. Then
from |β+(λ,mmax

)| = 0 in (6.59,6.61) we see that

λ2= mmax(mmax + 1) = j(j + 1). (6.64)

Similarly, from |β−(λ,mmin
)| = 0 we conclude that

mmin(mmin − 1) = λ2=j(j + 1).

where the result of (6.64) is used. The solution of this equation is mmin = −j
or j + 1. Since mmaximmin, the unique solution is j ≥ 0 and therefore

mmax = j, mmin = −j
λ2 = j(j + 1).
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From now on we label the states as |j,mi instead of |λ,mi.We have obtained
J+|jmi and J−|jmi up to a phase factor, which can always be chosen, by
adjusting the relative phases of states, to be 1. Therefore,

J±|jmi = ~
p
j(j + 1)−m(m± 1) |j,m± 1i , (6.65)

where m must lie in the range −j ≤ m ≤ j. Furthermore, one can start with
the maximal state, and by applying J− an integer number of times, reach the
minimal state. Hence, (mmax−mmin) = 2j must be an integer. Thus, one must
conclude that j, and hence also m, is a half integer or an integer.
In summary, the allowed values are

j = 0,
1

2
, 1,

3

2
, 2, · · · − j ≤ m ≤ j . (6.66)

The complete orthonormal set of states are specified by these eigenvaluesX
j

jX
m=−j

|jmihjm| = 1, hjm|j0m0i = δjj0δmm0 . (6.67)

A significant physical result that emerges from this general analysis is the
list of allowed eigenvalues of angular momentum given in (6.66). A physical
quantum state cannot exist for other values of angular momentum. In particular,
the smallest non-zero quantum of angular momentum is j = 1/2. Consequently,
for a spinning particle the smallest intrinsic spin is s = j = 1/2.
According to the Standard Model of elementary particles the smallest build-

ing blocks of all matter fall into two classes: the fundamental fermions, quarks
and leptons, that have spin 1/2, and the fundamental gauge bosons, gluons,
photon, W±, Z0, all of which have spin 1. There may also be a Higgs particle
of spin 0.
In specific quantum mechanical systems only certain values of j listed in

(6.66) may be realized, or the values of j need not extend all the way to infinity.
This will be determined case by case by the specific system. In particular,
we will see in the next section that orbital angular momentum can have only
integer eigenvalues j = 0, 1, 2, · · · . Also, we have already seen in Chapter 5 other
constructions of J in the case of the 2-dimensional harmonic oscillator5. For the
bosonic construction in eq.(5.63) j takes all the values in (6.66) only once. For
the fermionic construction in eq.(5.81) j takes only the values j = 0, 1/2, with
j = 0 repeated twice. This illustrates that the specific system dictates which of
the allowed values occur, and how many times.

6.6 Spherical harmonics
We have defined orbital angular momentum as L = r × p = J. We already
know that the possible eigenvalues are in the set listed in (6.66), but we must

5Of course, in the 2-dimensional harmonic oscillator the meaning of J is different than
angular momentum in 3-dimensions studied in this section, but it satisfies the same mathe-
matics.
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still find out which of the j eigenvalues occur when J has the specific form of
orbital angular momentum. To distinguish this case from the general problem
discussed in the previous section we will label the states with the eigenvalues
l,m, and search for the allowed values of l. We have seen in section (6.3) that
the operator L acts on angle space as a differential operator

hΩ|L = −i~
µ
−Θ 1

sin θ

∂

∂φ
+Φ

∂

∂θ

¶
hΩ|. (6.68)

It is straightforward to verify that this differential operator representation of
angular momentum satisfies the algebra [LI , LJ ] = i~εIJK LK . From this form
we extract the formulas for applying L0 ≡ L3 and L± ≡ L1±iL2 on angle space

hΩ|L0 = −i~ ∂
∂φhΩ|

hΩ|L± = ~e±iφ(± ∂
∂θ + i cot θ ∂

∂φ)hΩ|.
(6.69)

Again one can easily verify that these differential operators satisfy [L+, L−] =
2~L0 and [L0, L±] = ±~L±, as expected. By taking this information into ac-
count we will find that the allowed spectrum for the angular momentum quan-
tum l is only the integers l = 0, 1, 2, · · · , implying that half integer quantum
numbers are excluded for orbital angular momentum.
Angle space |Ωi as well as angular momentum space |l,mi are orthonormal

and complete

1 =
P

l,m |l,mihl,m|, hl,m|l0m0i = δll0δmm0

1 =
R
dΩ |ΩihΩ|, hΩ|Ω0i = δ(Ω− Ω0). (6.70)

The volume element in angle space is the solid angle element

dΩ = dφ d(cos θ) = sin θ dφ dθ (6.71)

which is inherited from the volume element in three dimensions d3r = r2dr dΩ.
Similarly, the delta function in angle space is inherited from the delta function
in 3-dimensions δ(r− r0) = 1

r2 δ(r − r0) δ(Ω− Ω0), where

δ(Ω− Ω0) = δ(φ− φ
0
) δ(cos θ − cos θ

0
) =

1

sin θ
δ(φ− φ

0
) δ(θ − θ

0
). (6.72)

This delta function satisfies the usual condition
R
dΩ δ(Ω − Ω0) = 1, which is

consistent with Eq.(6.70).
Now, we can expand one complete set of states in terms of the other set

|l,mi =
Z

dΩ |ΩihΩ|l,mi. (6.73)

The expansion coefficients Ylm(Ω) = hΩ|l,mi are interpreted as the probability
amplitudes for finding the particle pointing in the direction Ω = (θ, φ) when it
is in the angular momentum eigenstate |l,mi. By sandwiching the operator L
between the ket and the bra hΩ|L|lmi, and using (6.65) and (6.69) to evaluate it
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in two ways, we derive the first order differential equation constraints satisfied
by Ylm

−i ∂
∂φ Ylm(θ, φ) = mYlm(θ, φ)

e±iφ(± ∂
∂θ + i cot θ ∂

∂φ ) Ylm(θ, φ) =
p
l(l + 1)−m(m± 1) Yl,m±1(θ, φ).

(6.74)
If we sandwich the operator L2 we derive a second order differential equationµ

− 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2

¶
Ylm(θ, φ) = l(l + 1) Yl,m(θ, φ). (6.75)

This equation may be recognized as the eigenvalue equation for the Laplacian
∇2 restricted on a sphere of unit radius. The first order differential equations
(6.74) are the first integrals of the second order differential equation (6.75), with
correct boundary conditions. Therefore, the solution of the first order equations
(6.74) will automatically satisfy the second order one (6.75).
It is straightforward to solve the first equation in (6.74)

Ylm(θ, φ) = eimφ ylm(θ) (6.76)

where ylm(θ) is unknown. The second equation in (6.74) then gives a recursion
relationp

l(l + 1)−m(m± 1) yl,m±1(θ) =
µ
± ∂

∂θ
−m cot θ

¶
ylm(θ) (6.77)

Specializing to m = ±l, we haveµ
∂

∂θ
− l cot θ

¶
yl,±l(θ) = 0. (6.78)

The solution is

yl,±l(θ) =
1

2ll!

r
(2l + 1)!

4π
(sin θ)l (6.79)

Where the correct normalization factor is included up to a sign so that
R
dΩ

|Yl,±l|2 = 1, as follows

1 = hl,±l|l,±li =
Z

dΩhl,±l|ΩihΩ|l,±li =
Z

dΩ|Yl,±l|2

=

µ
1

2ll!

¶2
(2l + 1)!

4π

Z 2π

0

Z π

0

dφdθ(sin θ)2l+1

=

µ
1

2ll!

¶2
(2l + 1)!

4π
2π

Z 1

−1

¡
1− x2

¢l
dx = 1

where we have used the change of variables x = cos θ to do the last integral.
We can now see that only integer values of l are consistent with the re-

cursion relation. To prove that l cannot be half integer we check the con-
sistency of the recursion formula for l = 1

2 with this result. So, on the one
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hand we must require from (6.79) that y1/2,±1/2(θ) = C (sin θ)1/2 but on
the other hand, the recursion relation (6.74) for l = 1

2 , m = 1
2 demands

y1/2,−1/2(θ) =
¡
− ∂

∂θ −
1
2 cot θ

¢
y 1
2 ,

1
2
(θ). One finds that the θ dependence of the

two sides of the equation are inconsistent with each other, thus excluding l = 1/2
as a solution of these equations. A similar inconsistency arises for all values
of l that are of the form integer plus 1/2, but there is no inconsistency for
l = integer.

To obtain ylm through the recursion relation it is useful to rewrite (6.77) in
the form

yl,m+1(θ) = γlm (sin θ)
m+1 (− ∂

∂ cos θ
) ( sin θ)−mylm (6.80)

where γlm = [(l −m)(l +m + 1)]−1/2, and apply it repeatedly l +m times by
starting with m = −l. This gives

ylm(θ) =
hQm−1

k=−l γlk
¡
(sin θ)k+1 (− ∂

∂ cos θ ) ( sin θ)
−k¢i yl,−l(θ)

= (−1)m
2l l!

³
2l+1
4π

(l−m)!
(l+m)!

´1/2
(sin θ)m( ∂

∂(cos θ) )
l+m(cos2 θ − 1)l

(6.81)

This expression is recognized as the associated Legendre polynomial Pm
l (cos θ)

except for an overall normalization factor. Therefore, we can write the complete
solution in terms of known functions

Ylm(θ, φ) = (−1)m
s
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (θ) e

imφ. (6.82)

This set of functions are the spherical harmonics. Using well known properties
of associated Legendre polynomials such as

P−ml (θ) = (−1)m (l −m)!

(l +m)!
Pm
l (θ), (6.83)

or by direct examination of our formulas, we can derive relations among the
spherical harmonics

Yl,−m = (−1)mY ∗lm. (6.84)

The completeness relations in (6.70) may be sandwiched between angle states
hΩ| · · · |Ω0i or angular momentum states hlm| · · · |l0m0i to derive completeness
and orthonormality relations for the spherical harmonicsP∞

l=0

Pl
m=−l Ylm(Ω)Y

∗
lm(Ω

0) = δ(Ω− Ω0)R
dΩ Y ∗l0m0(Ω) Ylm(Ω) = δll0δmm0 .

(6.85)

These non-trivial equations that are guaranteed by the consistency of the quan-
tum mechanical setup can be laboriously verified by using the properties of
associated Legendre polynomials (see problem).
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We list a few Ylm explicitly and analyze the probability distribution in angle
space

Y00 =
1√
4π

Y20 =
q

5
4π

¡
3
2 cos

2 θ − 1
2

¢
Y10 =

q
3
8π cos θ Y2,±1 = ∓

q
15
8π sin θ cos θ e±iφ

Y1,±1 = ∓
q

3
8π sin θ e±iφ Y2,±2 =

q
15
2π sin

2 θ e±2iφ

(6.86)

A polar plot is useful to get a feeling of the probability distribution. Thus,
along the direction Ω draw a vector whose length is the probability amplitude
|Ylm(Ω)|. The longer the vector the more probable it is to find the particle at
those angles. A polar plot of Ylm(θ, 0) at φ = 0 is given in Fig.(6.2).

Fig.(6.2) - Polar plot of spherical harmonics.

This plot is the cross section of the probability amplitude in the (x, z) plane,
such that the numerical value of |Ylm(Ω)| at any angle in the (z, x) plane (with
θ measured from the z axis) corresponds to the boundary of the figures at the
given angle. To obtain the full plot one has to rotate the picture around the z-
axis since the probability |Ylm(Ω)| is independent of the angle φ. Through these
pictures one develops a physical intuition of where the particle is located in
angle space when it is in an angular momentum eigenstate |lmi. We can verify
that, except for the fuzzyness imposed by quantum mechanics, the particle is
located roughly where we expect it to be on the basis of its classical motion.
For example, for zero angular momentum, it must be equally distributed in any
direction, as is the case with Y00. For angular momentum |l = 1,m = 1i we may
think of the particle as rotating around a loop close to the equator so that its
angular momentum would point toward the north pole. This is indeed what we
see in the picture since the probability amplitude Y11 is largest near the equator.
Similarly, for |l = 1,m = 0i, the classical motion of the particle is rotation in
the vicinity of a meridian so that the z-component of its angular momentum
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is zero. Again, this is what is indicated by the plot of Y10. Of course, the full
details provided by the exact quantum mechanical functions cannot be guessed
on the basis of classical considerations.

6.6.1 Tensors and spherical harmonics

It is also useful to understand that the Ylm’s represent tensors of rank l, con-
structed from the unit vector Ω. For example, neglecting the overall normaliza-
tion one can verify that for l = 1 the Y1m are rewritten as

Y10 ∼ cos θ =
z

r
= Ω3 ≡ Ω0, (6.87)

Y1,±1 ∼ 1√
2
sin θ e±iθ =

x± iy

r
√
2
=
Ω1 ± iΩ2√

2
≡ Ω± (6.88)

Thus, one may think of Y1m as the 3 components of the vector ΩI taken in the
basis I = (+, 0,−) instead of the conventional cartesian basis labelled by 1,2,3.
The relation between the bases (1, 2, 3) and (+, 0,−) is given by the unitary
transformation U that satisfies UU† = 1 as follows⎛⎝ Ω+Ω0

Ω−

⎞⎠ =

⎛⎜⎝
1√
2

i√
2

0

0 0 1
1√
2

−i√
2

0

⎞⎟⎠
⎛⎝ Ω1Ω2
Ω3

⎞⎠ ,

⎛⎝ Ω1Ω2
Ω3

⎞⎠ =

⎛⎝ 1√
2

0 1√
2

− i√
2

0 i√
2

0 1 0

⎞⎠⎛⎝ Ω+Ω0
Ω−

⎞⎠
The dot product between any two vectors �V · �W in 3 dimension can be written
either in the (1, 2, 3) basis or in the (+, 0,−) basis. In the first case the metric
for the dot product is δIJ while in the latter case it is gIJ given by transforming
the cartesian metric δIJ to the (+, 0,−) basis

gIJ =
¡
U1UT

¢
IJ
=

⎛⎜⎝
1√
2

i√
2

0

0 0 1
1√
2

−i√
2

0

⎞⎟⎠
⎛⎝ 1√

2
0 1√

2
i√
2

0 − i√
2

0 1 0

⎞⎠ =

⎛⎝ 0 0 1
0 1 0
1 0 0

⎞⎠
Thus we can verify that

Ω ·Ω = Ω1Ω1 +Ω2Ω2 +Ω3Ω3 = Ω+Ω− +Ω0Ω0 +Ω−Ω+ = 1

Therefore, if we wish to work in the (1, 2, 3) basis we use as the metric δIJ , and if
we wish to work in (+, 0,−) basis we use the metric gIJ as in Ω ·Ω = ΩIΩJg

IJ

with

gIJ = gIJ =

⎛⎝ 0 0 1
0 1 0
1 0 0

⎞⎠ , where gIJ is the inverse of gIJ . (6.89)
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Following this notation let us consider traceless and completely symmetric
tensors of second rank, third rank, fourth rank, and so on, constructed from
the unit vector Ω. For the sake of generality we write them in a form valid
in d-dimensions, and we can use gIJ=δIJ if we wish to work directly in the
cartesian basis in any dimension

TIJ = ΩIΩJ − Ω̃
2

d gIJ

TIJK = ΩIΩJΩK − Ω̃2

d+2 (gIJΩK + gKIΩJ + gJKΩI)

TIJKL =

⎡⎣ ΩIΩJΩKΩL − Ω̃2

d+4

µ
gIJΩKΩL + gIKΩLΩJ + gILΩJΩK

+gJKΩLΩI + gJLΩIΩK + gKLΩIΩJ

¶
+ d Ω̃2Ω̃2

(d+2)(d+4) (gIJgKL + gIKgLJ + gILgJK)

⎤⎦
(6.90)

Since Ω̃2 = 1 the second or third terms in these equations may be simplified, but
the traceless tensor is defined even if Ω̃2 is arbitrary. In fact, we will later use
tensors constructed from other vectors, therefore we may as well consider Ω as
a general vector in these definitions. Then the tensor of rank l is a homogeneous
polynomial of degree l in powers of the vector Ω.
These tensors are traceless in the sense gIJTIJ = gIJTIJK = gIJTIJKL = 0 ,

as can be verified by using gIJgIJ = d. Of course, contraction of the metric
with any pair of indices in TIJK··· also gives zero because of the permutation
symmetry of the tensor indices.
By comparing the 5 independent components of the second rank tensor in

d = 3 dimensions to the 5 spherical harmonics Y2m, we see the correspondence
up to normalization factors

Y2,±2 ∼ T±± =
sin2 θ

2
e±2iθ, Y2,±1 ∼ T±0 = cos θ

sin θ√
2

e±iθ, (6.91)

Y20 ∼ T00 = −2T+− = cos2 θ −
1

3
(6.92)

where − indices are replaced by + indices under complex conjugation (T− −)∗ =
T++ etc.. Similarly for l = 3 one finds Y33 ∼ T+++, etc. (see problem 7). This
observation can be carried on to tensors of higher rank, so indeed spherical har-
monics Ylm are just the independent components of symmetric traceless tensors
of rank l.

6.7 Radial & angular equations in d-dims.
It is possible to generalize all the results to d-dimensions by following the general
operator approach. In d−dimensions the generator of rotations in the (I, J)
plane is written as

LIJ = rIpJ − rJpI , I, J = 1, 2, · · · d. (6.93)

The LIJ commute with all dot products constructed from (r,p). The commu-
tators of these operators close into the same set (see problem)

[LIJ , LKL] = δJKLIL − δIKLJL − δILLJK + δJLLIK . (6.94)
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This set of commutation rules is the Lie algebra for SO(d). Note that the 3-
dimensional case is a special case that permits the rewriting in terms of the
familiar L1,2,3 as LIJ = �IJKLK . The quadratic Casimir operator is defined by

L2 = 1
2

Pd
I,J=1 L

2
IJ

= r2p2 − (r · p)(p · r)− 2i~r · p. (6.95)

Since it is constructed from dot products it must commute with all LIJ ; this
result may also be verified abstractly by only using the commutation rules of
the SO(d) Lie algebra. The combination (r ·p)(p ·r)+2i~r · p may be rewritten
in terms of the Hermitian operator pr =

P
I

¡
1
r rIpI + pIrI

1
r

¢
and then solve for

p2 in the form (see problem)

p2 = p2r +
1

r2

∙
L2 +

~2

4
(d− 1)(d− 3)

¸
. (6.96)

Furthermore, using r · p = −i~r ∂
∂r on wavefunctions ψ(r) =hr|ψi, one finds that

pr acts as

pr = r−(d−1)/2
µ
−i~ ∂

∂r

¶
r(d−1)/2, p2r = r−(d−1)/2

µ
−~2 ∂

2

∂r2

¶
r(d−1)/2

(6.97)
This form allows one to separate the Schrödinger equation by defining

ψ(r) =r−(d−1)/2 fEl(r)Ylm(Ω), (6.98)

where Ylm(Ω) = TI1···Il is the tensor of rank l. By rotation invariance, one may
argue that this tensor is an eigenfunction of L2 for any set of indices. The
eigenvalue may be computed by taking a special set of indices; for example by
applying the operator in (6.95) to T++···+ = (Ω1 + iΩ2)

l
= (r1/r + ir2/r)

l one
gets the general eigenvalue

L2Ylm(Ω) = ~2l(l + d− 2)Ylm(Ω). (6.99)

The eigenvalue l = 0, 1, 2, · · · is an integer, and there are several eigenvalues
mi that distinguish the degenerate states. The number of linearly independent
angular functions Ylm(Ω) is given by the formula

Dl =
(d+ l − 3)!
(d− 2)! l! (d+ 2l − 2) (6.100)

which is the number of independent components of the traceless symmetric
tensors of rank l in d−dimensions. In fact the simplest way to compute Dl is
through the dimension of this tensor (see problem). The number of distinct
values of mi, for a fixed value of l, is precisely Dl.
The radial equation now takes the form (see problem for 2 dimensions)∙
− ∂2

∂r2
+
1

r2

µ
l(l + d− 2) + 1

4
(d− 1)(d− 3)

¶
+ v(r)− ε

¸
fEl(r) = 0, (6.101)
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where v(r) = 2mV (r)
~2 , ε = 2mE

~2 , as before. This can be put into the same form
as the 3-dimensional radial equation of eq.(6.44) by defining the parameter

ld = l +
d− 3
2

(6.102)

where l, d are integers. Then the radial equation is∙
− ∂2

∂r2
+

ld (ld + 1)

r2
+ v(r)− ε

¸
fEl(r) = 0, (6.103)

and obviously ld = l when d = 3. So, the solutions of the radial equation in
various dimensions are related through analytic continuation l → ld for the
allowed values given above.
In solving the radial equation one must impose physical boundary condition

at u = 0 and u =∞. The boundary condition at u = 0 is

fEl(0) = 0 (6.104)

This is because the space is defined only for r > 0, which means we must erect an
infinite wall at r = 0 that does not permit the particle to penetrate to negative
values of r. The boundary condition at r =∞ depends on whether one considers
a bound state or a scattering state. For a scattering state fEl (r) is an oscillating
function whose normalization must be made consistent with the delta function
in d−dimensions (see below). For a bound state fEl (r) must vanish fast enough
as r →∞ and must be integrable so that it can be normalizedZ ∞

0

dr |fEl|2 = 1. (6.105)

This normalization already assumes that the Ylm (Ω) or TI1···Il (Ω) are also
normalized correctly in d-dimensions. Note also that this normalization is con-
sistent in d-dimensions with

R
ddr |ψ(r)|2 = 1, where ddr = (rd−1dr) ( dd−1Ω).

The mathematical form of the radial equation (6.103) is similar in all di-
mensions. In the following sections we study the radial equation for several
systems in 3 dimensions by taking ld = l, but it is evident that identical meth-
ods would be applied to solve the radial equation in every dimension by using
the appropriate value of ld (see problems for 2 dimensions). Exact solutions of
the radial equation is possible for a few systems as discussed below. However,
since most cases will not be exactly solvable it is worth noting that some “quick
and dirty” estimates of lowest state energies at any fixed angular momentum l
can be obtained for bound states by using the uncertainty principle as follows.

First, we note that the general structure of excited levels of bound state
systems can be summarized by the following diagram
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:  
:  

:  
:  

:  
:  :  

:  

:  
:  

l= 3  l= 0  l= 1  l= 2  l= 4  

E  

Energy levels: structure of excited states for each l.

For each fixed value of angular momentum l there is a lowest energy level.
The absolute ground state normally occurs for l = 0, but here we will aim to get
a rough estimate of the energy for the lowest state at each fixed l. According to
the uncertainty principle, if the particle is bound within some radius r, then its
radial momentum is at least as large as pr ≥ ~/2r. This leads to an estimate
of the derivative of the radial wavefunction −i~∂rf (r) ∼ λ~

r f (r) with some
constant λ or order 1. Inserting this into the radial equation (6.103) we get∙

λ2

r2
+

ld (ld + 1)

r2
+ v(r)− ε

¸
fEl(r) = 0

This leads to the heuristic estimate of the energy ε as a function of r at a fixed
value of angular momentum

ε (r) =
λ2 + ld (ld + 1)

r2
+ v(r)

To obtain the lowest energy (i.e. corresponding to the lowest state for fixed l in
the figure above) we minimize this expression with respect to r

∂rε (r) = −2
λ2 + ld (ld + 1)

r3
+ ∂rv(r) = 0.

Solving this equation we obtain the minimum at some r = rl for a fixed l, which
leads to the estimate for the lowest energy

εlowest (l) =
λ2 + ld (ld + 1)

r2l
+ v(rl).

From the figure above we expect excited energy levels stacked up as a tower
above εlowest (l) for each angular momentum l. The excitations are labelled
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by an additional quantum number which has not emerged yet in the present
discussion. This scheme gives an idea of what to expect roughly for some general
potential v (r) .
For example, let us consider the quark-antiquark bound states for heavy

quarks described in the problems at the end of Chapter 1. As an illustration,
we simplify the problem by ignoring the spins of the quarks and by taking only
the linear potential v (r) = γr which represents the effective confining color force
produced by quantum chromo-dynamics. This example does not have an exact
solution (except for l = 0 which is solved by f0 (r) related to the Airy function),
but we can get a quick estimate as described above, namely

∂rε (r) = −2λ
2 + ld (ld + 1)

r3
+ γ = 0

rl = γ−1/3
¡
2λ2 + 2l2d + 2ld

¢1/3
εlowest (l) = 3

³γ
2

´ 2
3 ¡

λ2 + l2d + ld
¢1/3

.

Here λ is not known, but we can only guess that it is a pure number of order
1. We see from this result the general trend that the energy of the lowest state
increases as a function of ld = l + (d−3)

2 as indicated. When this method is
applied to the exactly solvable problems (e.g. harmonic oscillator, hydrogen
atom) discussed in the following sections it can be verified that it gives a fairly
reasonable estimate of the correct behavior. Of course, this approach is not
a substitute for more reliable approximation methods, such as the variational
approach that will be discussed later in the book, but it should be taken only
as a first quick and easy analysis of a given problem.

6.8 Free particle
For the free particle, the Schrödinger equation in Cartesian coordinates in any
dimension has an energy eigenfunction and eigenvalue of the form

ψk(r) = hr|pi =
eik·r

(2π~)d/2
, E =

~2k2

2m
, p = ~k. (6.106)

Therefore we already know that the energy eigenvalue is given by ε = k2. Con-
sidering next the Schrödinger equation in spherical coordinates, it is convenient
to define the rescaled variable u = kr so that the radial equation becomes∙

−∂2u +
l(l + 1)

u2

¸
fl(u) = fl(u). (6.107)

The dependence on the energy has been absorbed into the rescaled u. This
second order radial differential equation may be recognized as being related to
the spherical Bessel function and hence is solved by consulting a book on this
function. However, here we will use a method of solution that is related to
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“Supersymmetric Quantum Mechanics”. This is a topic we will develop later,
so for now it will seem as if we are just introducing a trick. Thus, define first
order differential operators with the following properties

a−l = −i∂u −
i(l+1)
u , a+l = −i∂u +

i(l+1)
u

a−l a
+
l = −∂2u +

l(l+1)
u2 , a+l a

−
l = −∂2u +

(l+1)(l+2)
u2 .

(6.108)

These operators are Hermitian conjugates of each other a−l = (a
+
l )
†. The radial

equation takes the form
a−l a

+
l fl = fl. (6.109)

If we apply a+l on both sides of the equation, and notice that a
+
l a
−
l is the same

operator as a−l a
+
l except for shifting l → l + 1, we see that we generate a new

solution of the radial equation with l shifted by one unit,

a+l a
−
l (a

+
l fl) = (a

+
l fl) (6.110)

Therefore, we must identify

fl+1 = (a
+
l fl) =

∙
−i∂u +

i(l + 1)

u

¸
fl(u). (6.111)

This equation may be regarded as a recursion relation that allows us to write
the full solution in terms of f0

fl = a+l−1a
+
l−2 · · · a

+
0 f0. (6.112)

This expression is simplified by noting

a+k = uk+2(
−i
u
∂u) u

−k−1. (6.113)

Hence the product of differential operators becomes

fl(u) = ul+1(
−i
u
∂u)

l

µ
f0(u)

u

¶
, (6.114)

(what is the analog of this equation in d-dimensions?). We see that we only
need to solve the second order differential equation for f0(u) with the correct
boundary conditions (6.104) at u = 0, and correct normalization

−∂2u f0(u) = f0(u)

f0(u) =
q

2
π~3 sinu.

(6.115)

The normalization is chosen for consistency with the normalization of the plane
wave in eq.(6.106) in 3 dimensions (see below). Putting everything together
we finally have the radial wavefunction Rl = fl/u, which is recognized as the
spherical Bessel function jl(u) up to a factor

Rl(u) =

r
2

π
ul(
−i
u
∂u)

l

µ
sinu

u

¶
= il

r
2

π~3
jl(u). (6.116)
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uDu

µ
1

u

µ
Du

µ
sinu

u

¶¶¶
(6.117)

: 1
u3

¡
−3u (cosu) + 3 sinu− (sinu)u2

¢
= 3

u3

¡
u− 1

6u
3 + 1

5!u
5
¢
− 1

u

¡
u− 1

6u
3
¢
−

3
u2

¡
1− 1

2u
2 + 1

4!u
4
¢
= 1

15u
2 +O

¡
u3
¢
: 1
15u

2

It is useful to list a few of these functions, and plot them, in order to get a
feeling of the probability distribution they represent

j0(u) =
sinu
u , j1(u) =

sinu
u2 −

cosu
u

j2(u) = (
3
u3 −

1
u ) sinu−

3
u2 cosu, · · · (6.118)

-0.2
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0.4
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1

2 4 6 8 10 12 14u

Fig.(6.3): j0=solid line, j1=dashed line, j2=dotted line

These are plotted in the figure above. These vanish near the origin is jl(u)→
ul and oscillate at infinity with a decreasing overall envelop jl(u) → 1

u sin(u −
lπ/2). These are interpreted as spherical waves such that for l = 0 the probability
is largest at the origin u = 0, and the maximum is farther and farther away for
increasing values of l. This is in accordance with our intuition based on the
motion of the free particle in classical mechanics. Namely, as seen from the
center at a given energy, the freely moving particle has angular momentum¯̄̄
�L
¯̄̄
= |�r × �p| = |�p| |�r| sin θ = |�p| b, where b = |�r| sin θ is the impact parameter.

Taking
¯̄̄
�L
¯̄̄
∼ ~l and |�p| ∼ ~k we estimate l = kb where k is the wave number

which determines the energy E = ~2k2/2m. Thus, at a fixed energy, the larger
l corresponds to the larger impact parameter b. This indicates that for larger l
the particle must be on a straight line trajectory farther away from the origin.
The particle can hit the center only if it has zero angular momentum . Thus, the
quantum mechanical description keeps the main features similar to the intuitive
classical motion, but makes the picture fuzzy by spreading the probability in
detailed ways that are not describable in classical mechanics.
To get an overall intuitive idea of the probability distribution in 3-dimensional

space, at fixed energy and fixed angular momentum, we consider the full wave-
function |ψElm (r)| = |REl (r)| |Ylm (Ω)| and do a polar plot. This means that
the pictures given in Fig.(6.2) will be modulated by the factor |REl (r)| which
corresponds to Fig.(6.3) in the case of a free particle (and other curves in the
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case of bound particles). The resulting polar plot looks like a cloud with higher
concentration of probability where the functions |REl (r)| |Ylm (Ω)| have peaks
and less concentration of probablity where they have minima or vanish. The
overall picture obtained in this way is a fuzzy representation of where we ex-
pect the particle to be. On the average the result is consistent with the motion
expected according to the rules of classical mechanics, but in detail the quan-
tum wavefunction definitely differs from classical mechanics. The difference is
greater the lower energies and/or lower angular momenta, as expected from the
correspondance principle (quantum mechanics approaches classical mechanics
at large quantum numbers). Such detail can be measured in all phenomena
from the level of atoms down to the level of quarks and the results confirm the
validity of quantum mechanics to great accuracy.
The wavefunction at a fixed momentum and energy in position is the plane

wave ψp (r) = hr|pi. It can be expanded in terms of the basis functions in
angular momentum by introducing identity in the following form and using the
probability distributions jl (r) , Ylm (Ω) computed above, as applied to the free
particle in d = 3 dimensions |pi= |E(k),Ωki

hr|pi = eik·r

(2π~)3/2

=
P∞

l=0

Pl
m=−lhr|lmihlm|pi

=
P∞

l=0

Pl
m=−lhΩr|lmihlm|Ωki hr|Eli

=
P∞

l=0

Pl
m=−l Ylm(Ωr)Y

∗
lm(Ωk) i

l
q

2
π~3 jl(kr)

=
P∞

l=0 Pl(Ωr ·Ωk)
2l+1
4π il

q
2

π~3 jl(kr)

(6.119)

where cos θ = Ωr ·Ωk = k · r/kr. After cancelling some factors we see that the
plane wave may be expanded in terms of spherical waves as follows6

eik·r =
∞X
l=0

il (2l + 1) Pl(Ωr ·Ωk) jl(kr). (6.120)

This expression is arrived at as a consistency condition of the quantum mechan-
ical setup. It can be verified by using one of the special integral representations
of spherical Bessel functions jl(u) = 1

2 il

R 1
−1 dx Pl(x) e

iux. This is one way of
justifying the overall normalization chosen for f0(0) above.

6One way of seeing that the sum over m produces the Legendre polynomial is to choose
one of the unit vectors along the z-direction. For example if the momentum points along the
z−direction then the polar angles are both zero θk = 0, φk = 0, and Ylm(0, 0) = yl0(0)δm,0 =

δm,0

p
(2l+ 1) /4π. Therefore only m = 0 survives in the sum for the special direction. Since

Ωr = (θ, φ) are now the angles between the two unit vectors, we finally see

lX
m=−l

Ylm(Ωr)Y
∗
lm(Ωk) = Yl0(Ωr)

p
(2l+ 1) /4π = Pl(cos θ)

2l+ 1

4π
.
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6.9 Harmonic oscillator in 3 dimensions
From our study of the Harmonic oscillator in d−dimensions in the previous
chapter we already know the energy eigenvalue

E = ~ω (n+
d

2
) (6.121)

where the integer n = n1+n2+ · · ·nd is the sum of the excitations in the various
dimensions and takes the values n = 0, 1, 2, · · · . Furthermore, the normalized
wavefunction is also immediately constructed in Cartesian coordinates by using
the direct product form of position space hr| =hr1|hr2| · · · hrd| and number space
|ni=|n1i|n2i · · · |n2i

ψn1···nd(r) = hr|
dY
i=1

a†nii√
ni!

|0i = e−r
2/2x20

dY
i=1

Hni(ri/x0)p
x0
√
π2ni ni!

(6.122)

where x0 = (~/mω)1/2, and we have used the result for hx|ni obtained for the
one dimensional harmonic oscillator as given in eq.(5.30).
To compute the wavefunction in spherical coordinates in 3-dimensions, we

need to solve the radial equation for the potential V (r) = 1
2mω2r2. After

rescaling the coordinates with x0, the equation simplifies somewhat by writing
it in terms of the variable u = r/x0 and the energy parameter λ = 2mEx20/~2 =
2E/~ω µ

−∂2u +
l(l + 1)

u2
+ u2 − λ

¶
fEl(u) = 0, E =

~ωλ
2

. (6.123)

On the basis of the known result (6.121) in Cartesian coordinates, we are expect-
ing to find the quantized values λ = 2n+ 3. It is useful to first find the leading
behavior of the solution as u → 0 and u → ∞ that is consistent with physical
boundary conditions. As u approaches zero the leading term in the differen-
tial equation is the angular momentum term l(l + 1)/u2. Neglecting the other
terms one solves the equation by f ∼ ul+1. Similarly, for u → ∞ the leading
term is u2, and the leading behavior consistent with the boundary conditions is
f ∼ e−u

2/2 × (polynomial). Therefore one expects that

fEl = ul+1e−u
2/2hEl(u), (6.124)

with hEl(u) a polynomial, solves the equation. By replacing this form in the
radial equation one derives the differential equation satisfied by hEl

∂2uhEl − 2(u−
l + 1

u
)∂uhEl + (λ− 2l − 3)hEl = 0. (6.125)

To solve it with the “series method” we substitute the series form

hEl(u) =
∞X
k=0

a
(l)
k (λ) u

k, (6.126)
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collect the coefficients of uk and set it to zero for each k. This generates a
recursion relation for the coefficients

a
(l)
k+2(λ) =

2k + 2l + 3− λ

(k + 2)(k + 2l + 3)
a
(l)
k (λ). (6.127)

Since the leading behavior is already known, one must have a(l)0 6= 0. Therefore,
the solution is given by finding the coefficients (a(l)0 , a

(l)
2 , a

(l)
4 , · · · ) that involve

only the even powers of k. For large values of k = 2n the ratio of two consecu-
tive terms in the series is u2/k, which is similar to the series

P
u2n/n! ∼ eu

2

.
Unless the series is cutoff into a polynomial this will destroy the good physical
asymptotic behavior. Therefore, one must have a quantized value of λ

λ = 2n+ 3 (6.128)

so that the series is cutoff at some even value of k = 2N, with a2N the last
non-zero coefficient. The relation between N and n is then

n = l + 2N. (6.129)

Therefore for fixed n the allowed values of l and energy are

En = ~ω (n+
3

2
)

n = 0, 1, 2, · · · (6.130)

l = n, n− 2, n− 4, · · · ,
½
0 n = even

1 n = odd .

The first few eigenstates are listed

f00 = a00 u e
−u2/2,

f11 = a11 u
2 e−u

2/2, (6.131)

f20 = a20

µ
u− 2

3
u3
¶
e−u

2/2,

f22 = a22 u
3 e−u

2/2.

6.9.1 Degeneracy and SU(3) symmetry

The energy is independent of l.With these restrictions we plot the energy eigen-
states on a n versus l plot in Fig.(6.4)
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Fig (6.4) - Energy levels and degeneracies for the d=3 harmonic oscillator.

The degeneracy of each state with fixed l is due to the rotation invariance
of the problem and is explained by the angular momentum quantum number
−1 ≤ m ≤ l. This accounts for 2l+ 1 states at the same energy level. However,
as we see from the plot there are additional degeneracies for different values
of l. Systematic degeneracies of this type can be explained only with a higher
symmetry. In this case the symmetry is SU(3). It was pointed out in the last
chapter and it will be partially discussed now, but more deeply later. Let us
first explain why SU(3) is responsible for the degeneracy. The approach with
the creation-annihilation operators explains the reason for the degeneracy be-
cause of the SU(3) symmetry: Under an SU(3) transformation a0I = UIJ aJ the
Hamiltonian is invariant, therefore the energy does not change. If the uni-
tary matrix is expanded in terms of infinitesimal parameters hIJ in the form
U = 1+ ih+ · · · , with h Hermitian, then the infinitesimal transformation may
be written in the form

δhaI = ihIJaJ . (6.132)

The quantum generators of this transformations are the 9 operators a†IaJ . This
can be seen as follows. If we combine the parameters with the generators in the
form a†IhIJaj = a†ha (analogous to the case of translations a · p, or rotations
ω · J) then the infinitesimal transformation may be written as a commutator

δhaI = −i
£
a†ha, aI

¤
= ihIJaJ . (6.133)

The commutator of two infinitesimal transformations follows from the formula£
a†ha, a†h0a

¤
= a† [h, h0] a (6.134)

This shows that these operators form a Lie algebra (see chapter on symmetry).
One may also ask for the infinitesimal transformation on the quantum states
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(similar to applying infinitesimal translations or rotations)

δh|ψi = ia†ha|ψi. (6.135)

In particular consider the transformation of the energy eigenstates in the basis
given by the number states |n1, n2, n3i. Evidently, under the transformation one
oscillator is annihilated but another one is created. Therefore, these states get
mixed up with each other under this transformation, but without changing the
total number n of creation operators applied on the vacuum. Therefore all the
states with the same number n belong together in an SU(3) multiplet and are
indistinguishable from each other as far as the symmetry is concerned. Thus,
different values of l that correspond to the same n must belong to the SU(3)
multiplet and hence must be degenerate.
The number of degenerate states Dn at the same level n was derived before

for any dimension in Chap.5. In three dimensions it is given by

Dn(d) =
(d+ n− 1)!
n! (d− 1)! , (6.136)

Dn(3) =
(n+ 2)!

2 n!
.

The correspondence between the number states |n1, n2, n3i and the states |n, l,mi
in the spherical basis, consistent with the number of degenerate states, are as
follows

n = 0 |0i ⇒ |0, 0, m = 0i
n = 1 a†I |0i ⇒ |1, 1, m = 0,±1i
n = 2 a†Ia

†
J |0i ⇒ |2, 2, m = 0,±1,±2i⊕ |2, 0,m = 0i

n = 3 a†Ia
†
Ja

†
K |0i ⇒ |3, 3, m = 0,±1,±2,±3i⊕ |3, 1,m = 0,±1i

n = 4 a†Ia
†
Ja

†
Ka

†
L|0i ⇒

|4, 4, m = 0,±1,±2,±3,±4i
⊕|4, 2,m = 0,±1,±2i⊕ |4, 0,m = 0i

...
...

...
(6.137)

We see that the creation-annihilation states are completely symmetric tensors
of rank n in 3 dimensions, constructed from the vector a†I . On the other hand
we learned that the spherical harmonics are completely symmetric tensors of
rank l that are also traceless. Therefore we expect that a decomposition of
symmetric tensors into symmetric traceless tensors should correspond to the
|n, l,mi labelling of the states. Thus

a†Ia
†
J = T

(2)
IJ +

1
dgIJT

(2)
0

a†Ia
†
Ja

†
K = T

(3)
IJK +

1
d+2 (gIJT

(3)
K + gJKT

(3)
I + gKIT

(3)
J )

a†Ia
†
Ja

†
Ka

†
L

= T
(4)
IJKL +

1
d+4T

(2)
0

Ã
gIJT

(2)
KL + gIKT

(2)
LJ + gILT

(2)
JK

+gJKT
(2)
LI + gJLT

(2)
IK + gKLT

(2)
IJ

!
+ 1

d(d+2) (gIJgKL + gIKgLJ + gILgJK)T
(2)
0 T

(2)
0

...
...

(6.138)



6.10. HYDROGEN ATOM 195

where T (n)I1···Il is a symmetric traceless tensor of rank l in d dimensions, and is
constructed from n oscillators at energy level n. To compare it to the |n, l,mi
notation above we set d = 3. Here gIJ may be taken as δIJ if one wishes to
work in the (1, 2, 3) basis, or it can be taken as in (6.89) if one prefers to work
in the (+, 0,−) basis. Explicitly we have

T
(0)
0 = 1

T
(1)
I = a†I

T
(2)
0 = gKLa†Ka

†
L

T
(2)
IJ = a†Ia

†
J − 1

dgIJ T
(2)
0

T
(3)
I = a†I T

(2)
0

T
(3)
IJK = a†Ia

†
Ja

†
K − 1

d+2(gIJT
(3)
K + gJKT

(3)
I + gKIT

(3)
J )

...

(6.139)

The systematics of this decomposition shows that the degenerate states of level
n are organized into angular momentum multiplets that correspond to tensors
of rank l = n, n − 2, n − 4, · · · 0 or 1. This is precisely the information ob-
tained from the radial equation above. Therefore, we have explained how the
degenerate states with different l belong to the same SU(3) multiplet. Further-
more, except for an overall normalization, we have also explicitly constructed
the states with definite |n, l,mi in the form

T
(n)
I1···Il |0i, l = n, n− 2, n− 4, · · · 0 or 1. (6.140)

6.10 Hydrogen atom
We will consider a hydrogen-like atom consisting of a nucleus with charge Ze
and an electron of charge −e. The Coulomb potential is attractive and given by

V = − Ze2

r
. (6.141)

For a bound state the energy is negative E = −|E|. It will be convenient to
rescale the radial variable r = r0u and choose r0 such as to make the energy
term equal to −1/4, that is, 2µEr20/~2 = −1/4. Then the radial equation takes
the form µ

−∂2u +
l(l + 1)

u2
− λ

u
+
1

4

¶
fEl(u) = 0 (6.142)

where λ = Ze22µr0/~2. By eliminating r0 we relate the energy and λ

E = − 1

2λ2
µc2Z2α2, (6.143)

where the fine structure constant is used α = e2/~c. Note also that r0 is related
to the Bohr radius a0

r0 = λa0/2Z, a0 =
~2

µe2
. (6.144)
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The value of λ is to be determined as a quantum number that solves the radial
equation.
The small u→ 0 leading behavior of the solution is determined by the 1/u2

in the equation. With the correct boundary conditions one finds f ∼ ul+1, as
in the free particle case. The dominant term for u → ∞ is determined by the
constant 1/4 term in the equation, which gives f ∼ e−u/2 for correct physical
boundary conditions. Combining these two behaviors we expect a solution of
the form

fEl(u) = ul+1e−u/2hEl(u). (6.145)

Substituting this form into the radial equation gives a differential equation for
hEl ∙

∂2u +

µ
2l + 2

u
− 1
¶
∂u +

λ− l − 1
u

¸
hEl(u) = 0. (6.146)

Trying the series approach with

hEl(u) =
∞X
k=0

ak(λ) u
k, a0 6= 0, (6.147)

and setting the coefficient of uk equal to zero produces the recursion relation

ak+1(λ) =
k + l + 1− λ

(k + 1)(k + 2l + 2)
ak(λ). (6.148)

If the series is not truncated to a polynomial the solution sums up to an un-
physical asymptotic behavior. Therefore λ = n must be an integer so that the
series is truncated to a polynomial, with the highest non-zero coefficient being
aN for some k = N. The relation between the two integers is

n = N + l + 1 (6.149)

where both l and N can start at zero, so that the lowest value of n is 1. N is
called the radial quantum number and n is called the total quantum number.
For a fixed value of n the allowed values of angular momentum and energy have
emerged as

En = − 1
n2

µc2

2 Z2α2 = − 1
n2

Z2e2

2a0
n = 1, 2, 3, · · ·
l = 0, 1, 2, · · · (n− 1)

(6.150)

We see that at the same value of energy there are many states with different
values of l. For each l there are (2l+1) rotational states distinguished from each
other with −l ≤ m ≤ l. The total number of states is therefore

Dn =
n−1X
l=0

(2l + 1) = n2. (6.151)

These states are plotted in a n versus l plot in Fig.(6.5).
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Fig.(6.5) - Degeneracies for H-atom.

As in the case of the Harmonic oscillator of the previous section we must look
for a symmetry to explain systematically the reason for the degeneracy. This
time it is not very easy to see the symmetry, but there is one, and it is SU(2)⊗
SU(2) = SO(4). We need to learn about addition of angular momentum before
we can explain how it works, therefore that discussion will be postponed till the
symmetry chapter.
The recursion relations produce a polynomial which is recognized as the

associated Laguerre polynomial with indices

hnl(u) = L2l+1n−l−1(u) (6.152)

up to an overall normalization. Putting everything together we list a few of the
solutions for the normalized radial wavefunctions Rnl = fnl/u

n = 1 R10(r) = 2 (Z/a0)
3/2 e−Zr/a0

n = 2

(
R20(r) = 2 (Z/2a0)

3/2
e−Zr/2a0 (1− Zr/2a0)

R21(r) =
2√
3
(Z/2a0)

3/2 e−Zr/2a0 (Zr/2a0)

n = 3

⎧⎪⎪⎨⎪⎪⎩
R30 (r) = 2 (Z/3a0)

3/2
e−Zr/3a0

h
1− 2Zr/3a0 + 2

3 (Zr/3a0)
2
i

R31 (r) =
4
√
2

3 (Z/3a0)
3/2

e−Zr/3a0
£
1− 1

2Zr/3a0
¤

R32 (r) =
2
√
2

3
√
5
(Z/3a0)

3/2 e−Zr/3a0 (Zr/3a0)
2

(6.153)
The full wavefunction

ψnlm(r) = hr|nlmi = Rnl(r) Ylm(Ω) (6.154)
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is used to compute matrix elements of operators such as

hnlm|rk|n0l0m0i =
R
rk+2drdΩ Y ∗lm(Ω)Yl0m0(Ω) R∗nl(r)Rn0l0(r)

= δll0δmm0
R∞
0

dr rk+2R∗nl(r)Rn0l(r).
(6.155)

Plots of probability distributions |rRnl(u)|2 provide an intuitive feeling for where
the particle is located. In Fig.6.6 the n = 3 and l = 0, 1, 2 cases are plotted.

0
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Fig.6.6: l = 0 thick,l = 1 thin,l = 2 dots

By examining such plots one easily sees that the number of peaks in the
probability density is n − l. Only for the highest value of l = n − 1 there is
a single peak and then the atom behaves roughly like the Bohr atom, but for
lower values of l the behavior of the probability distribution is rather different.
For fixed l, the highest peak occurs at larger values of r as n increases. This
is in agreement with the intuition that the more excited atom is bigger. Also,
for fixed n, the peak closest to the origin occurs at a greater value of r as the
value of l increases. Thus the probability of finding the particle near the origin
diminishes as l increases, as expected intuitively.
The expectation value of the radius is of interest since it gives information

on the average position of the electron. For n = n0 the last integral in (6.155)
is defined as the average value hrkinl. We give the result for a few values of k

hrinl = a0
2Z

¡
3n2 − l(l + 1)

¢
hr2inl = a20n

2

2Z2

¡
5n2 + 1− 3l(l + 1)

¢
h1/rinl = Z

na0

h1/r2inl = Z2

a20n
3(l+1/2)

.

(6.156)

From these expressions one sees that the average radius is larger as the en-
ergy (or n) increases, as expected intuitively.. The dependence on the angular
momentum at a fixed value of l may be understood from the behavior of the
wavefunction |fEl| as in the figures above.
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6.11 Problems

1. Using the equations of motion (6.2) or (6.7) prove that all the constants
of motion listed in (6.8) are indeed time independent.

2. Using the basic commutation rules in the laboratory frame or in the cen-
ter of mass frame, show that all the constants of motion listed in (6.8)
commute with the Hamiltonian.

3. Using the commutation rules [rI , pJ ] = i~δIJ show that the commutation
relation among the spherical variables given in Eq.(6.30) follow, while all
other commutators among (r, pr,Ω,L) vanish.

4. Use the definition of angular momentum LI and the unit vector ΩI in
terms of the original Cartesian operators rI ,pI and, while keeping track
of orders of operators, prove the decomposition of the momentum operator
into radial and angular parts as given in (6.31).

5. By using the relations in (6.31) prove that the commutation rules for
the radial and angular operators given in (6.30) lead to the Cartesian
commutation rules [rI ,pJ ] = i~δIJ .

6. Prove the completeness and orthogonality relations for spherical harmonics
of eq.(6.85) by using the properties of associated Legendre polynomials.

7. Write out the 7 independent components of the symmetric traceless tensor
TIJK explicitly in terms of (θ, φ) and compare them to the 7 spherical
harmonics Y3m given by the general formula. Verify that they agree with
each other up to a normalization. (You may cut down your work to 4
functions by taking into account complex conjugation).

8. In two dimensions there is only one component of angular momentum
L0 = r1p2 − r2p1 that corresponds to rotations in the (1,2) plane. What
is the differential operator form of L0 in cylindrical coordinates, what are
its eigenfunctions and eigenvalues, how many states correspond to the
same eigenvalue? Analyze the Laplacian in 2 dimensions in cylindrical
coordinates (i.e. p2 = −~2∇2), and find the radial equation. How do
your results compare to the general expressions for d−dimensions given in
the text?

9. In d−dimensions the generator of rotations in the (I, J) plane is written
as

LIJ = rIpJ − rJpI , I, J = 1, 2, · · · d.

• Show that the LIJ commute with all dot products constructed from
(r,p).

• Show that the commutators of these operators satisfy the Lie algebra
for SO(d) given in Eq.(9.14).
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• Prove the expression for L2 in Eq.(6.95).
• Show that that Eq.(6.33) obtained in three dimensions is generalized
to Eq.(6.96) in d dimensions.

10. Consider the traceless symmetric tensors T, TI , TIJ , TIJK of rank l =
0, 1, 2, 3 in d-dimensions. List explicitly the independent components and
verify that their number Dl agrees with eq.(6.100). For higher values of l
how does the general formula for Dl compare with what you know in 2
and 3 dimensions from other approaches?

11. Solve the radial equation for the harmonic oscillator in 2−dimensions.
Discuss the boundary conditions and derive a recursion relation for deter-
mining the radial wavefunction. Putting all factors together, make sure to
give the full wavefunction ψ (r) with its radial part R(r) and its angular
dependence. Plot your states in the space of energy versus angular mo-
mentum, and label the degeneracy of each state. Let your solution guide
you in keeping track of the number of states at each level.

12. Consider the solution for the two dimensional harmonic oscillator you ob-
tained in the previous problem. Show how your result agrees with the
creation-annihilation approach from the point of view of the energy eigen-
value and the number of states at each level. Then using the following
(+,−) basis for the harmonic oscillators a†± = (a

†
1± ia†2)

√
2 (which differs

from the one in the text of chapter 5), find the correspondence between
the harmonic oscillator states created by a†± and the angular momentum
basis discussed in problem 8 above. Specifically, for each state at level
n=4, show how you relate states of definite angular momentum with states
constructed in terms of creation operators. This is similar to the corre-
spondence between symmetric traceless tensors and spherical harmonics
discussed in the text, but now it is in 2-dimensions instead of 3.

13. Solve the radial equation for the attractive spherical square well potential
V = −V0θ(a−r) in d−dimensions, assuming V0 is positive. Give numerical
values for the bound state energies. How many bound states are there?

14. Solve for the bound states in the delta shell potential V = −V0δ(r/a− 1)
in d−dimensions, assuming V0 is positive.

15. Consider a spherically symmetric potential V (r) in 3 dimensions, which
consists of the infinite square well of width 2a and the delta-shell potential
of strength V0 located at r = a,

V (r) =

½
V0 δ

¡
r
a − 1

¢
for 0 ≤ r ≤ 2a

+∞ for 2a ≤ r
.

V (r) is shown in the figure. Consider bound states at some energy E as
indicated in the figure.
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Figure 6.1: Fig.(6.7) - Delta shell at r = a, infinite walls at r = 0 and r = 2a.

(a) Give the solution of the radial Schrödinger equation in each region,
consistent with boundary conditions, and continuity.

(b) What is the transcendental equation that determines the quantiza-
tion of energy for any l?

(c) For l = 0 these equations take a simple form. Give a plot that
determines roughly the energy of the first few levels for zero angular
momentum.

16. Prove that in d dimensions p2 = p2r+
1
r2

h
L2 + ~2

4 (d− 1)(d− 3)
i
where L2

is given by L2 ≡ 1
2

Pd
I,J=1 L

2
IJ and the radial momentum is the hermitian

operator given by pr =
1
2 (r̂ · p+ p · r̂) =

1
2

¡
1
r r · p+ p · r

1
r

¢
. Hint: first

show that L2 = r2p2− (r ·p)(p ·r)−2i~r · p and next show that (r ·p)(p ·
r) + 2i~r · p =r2p2r + ~2

4 (d− 1) (d− 3) paying attention to the orders of
operators in all steps.

17. Prove that in d dimensions the radial momentum acting on the wavefunc-
tion in position space is given by

prψ (r) = −i~r−(d−1)/2
∂

∂r

³
r(d−1)/2ψ (r)

´
= −i~

∙
∂

∂r
ψ (r) +

1

2
(d− 1)ψ (r)

¸
,

where by definition prψ (r) means prψ (r) ≡ hr|pr|ψi.

18. Using the wavefunctions for the hydrogen atom, verify the average values
hrkinl for k = ±1,±2, as given in Eq.(6.156), and interpret the results.



Chapter 7

PROPERTIES OF
ROTATIONS

In the chapter on the central force problem we have studied some of the basic
properties of angular momentum. We have seen that the angular momentum
operators are the generators of infinitesimal rotations in 3-dimensions. In this
chapter we will study rotations in more detail. We will discuss the classification
of states according to their properties under rotations, the matrix representa-
tions of rotations on wavefunctions of all possible spins or angular momentum,
the addition of angular momentum for products of states or operators, and
related applications in physical systems.
Rotations form the Lie group SU(2), which is the simplest non-trivial exam-

ple of a non-Abelian Lie group. Therefore the study of angular momentum or
rotations is intimately connected to the study of representation theory of Lie
groups. From this point of view the present discussion may be considered as
an example of representation theory of Lie groups from a physical or quantum
mechanical point of view.

7.1 The group of rotations

A group is characterized by a set G, and a “product” between group elements,
with the properties of (i) closure, (ii) unity, (iii) inverse, (iv) associativity. These
properties will be discussed in more detail in the chapter on symmetries. For
now, let us consider the set G that consists of all possible rotations R in 3-
dimensions, and define the product as one rotation followed by another rotation
as applied on any object, for example on a chair, or a vector, or a spinning
electron, or a complex molecule, or a quantum wavefunction, etc.. Then, at
the intuitive level, one can visualize geometrically the four group properties as
follows.
Closure means that some rotation followed by another rotation combine

together to some overall rotation that is included in the set G. If we write the

211
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product symbolically as
R1 ·R2 = R3 , (7.1)

then closure requires that R3 must be in the set G. Note that the product of
two rotations is not commutative: two rotations applied in different orders on
the same object do not produce the same configuration of the object, unless
the two rotations are applied along the same axis (try applying rotations on a
book).
Unity means that applying no rotation at all will be considered to be a

“rotation” that is an element of the set G. The unit element is represented by
1,and its properties are

1 ·R = R · 1 = R. (7.2)

That is, a rotation followed by no rotation is equivalent the original rotation,
etc..
Inverse means that for every rotation that is included in the set G, the

inverse of that rotation, that takes the object back to its original configuration,
is also included in the set G. The inverse of the rotation R is denoted by R−1.
The property of the inverse is

R ·R−1 = R−1 ·R = 1. (7.3)

Therefore, a rotation followed by its inverse gives unity, i.e. it is equivalent to
doing nothing on the object.
Associativity is the property of the product that allows the grouping of the

rotations as follows

R1 ·R2 ·R3 = (R1 ·R2) ·R3 = R1 · (R2 ·R3) . (7.4)

It implies that when three rotations are applied on an object in the sequence
R1 followed by R2 followed by R3, that the overall rotation may be viewed as
the product of two rotations, where the two rotations are either R1 followed
by (R2 ·R3) , or (R1 ·R2) followed by R3. It is easy to verify this property
geometrically by applying various rotations on a book.
Rotations in 3-dimensions are implemented mathematically on quantum

wavefunctions by the rotation operator

R(ω) = exp(
i

~
ω · J) (7.5)

where the vector ω represents an anti-clockwise angle of rotation of magnitude
ω = |ω| , with an axis of rotation in the direction ω̂ = ω/ω (use the right-hand
rule to visualize the rotation: thumb along axis, and fingers in the direction of
rotation. See problem 1.)

hψ|0 = hψ| e i
~ ω ·J . (7.6)

The same rotation on a ket is implemented by the Hermitian conjugate operator
exp(− i

~ω · J). As seen in the previous chapter, the generator of infinitesimal
rotations on any system (single particle or a complicated molecule) is the total
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angular momentum operator J. When ω is infinitesimal, the Taylor expansion
gives the first order term

δωhψ| =
i

~
hψ|ω · J . (7.7)

When applied on quantum states, the “product” of rotations is inherited from
the usual product of quantum operators. That is, a rotation of a quantum state
with the angle ω1, followed by a second rotation ω2 is given by applying the
appropriate rotation operators in the given sequence. Then R1 · R2 = R3 is
represented on a bra in the form

hψ| e i
~ ω1·J e

i
~ ω2·J = hψ| e i

~ ω3·J (7.8)

With this definition of the “product”, closure means that the right hand side
can indeed be written as an exponential with an exponent that has a single
power of J and an ω3 that is a function of ω1 and ω2. This is something that
we need to prove, and furthermore we need to obtain the formula for ω3. If we
accept this property, then the remaining properties that characterize a group
follows. The unit element for the group is the usual unit operator in the quantum
mechanical Hilbert space, and it corresponds to zero rotation 1 = e

i
~ 0·J. The

inverse is obtained just by replacing ω with −ω, since this represents the inverse
rotation i.e.

R−1(ω) =R(−ω) = exp(− i

~
ω · J). (7.9)

Associativity of the group multiplication follows from the associativity of ordi-
nary products of operators in quantum mechanics.
Therefore, provided we can prove closure, all the properties of a group are

satisfied in the quantum mechanical setup. To prove closure consider the prod-
uct of two exponentials expA×expB, expand each one in powers and re-arrange
terms to show that it is possible to re-sum the series into a single exponential
expC of the following form

eAeB = (1 +A+
A2

2!
+ · · · )(1 +B +

B2

2!
+ · · · )

= 1 +A+B +AB +
A2

2!
+

B2

2!
+

A2B +AB2

2!
+ · · · (7.10)

= exp

µ
A+B +

1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]] + · · ·

¶
The crucial observation is that all the terms in the exponent expC are con-
structed only in terms of commutators. In the present case

A =
i

~
ω1·J, B =

i

~
ω2·J, (7.11)

and the commutators constructed from these two operators are always propor-
tional to J since we can use the commutator [JI , JJ ] = i~εIJK JK to reduce the



214 CHAPTER 7. PROPERTIES OF ROTATIONS

multiple commutators to a single power of J as follows

1

2
[A,B] =

1

2

∙
i

~
ω1·J ,

i

~
ω2·J

¸
(7.12)

=
−i
2~
(ω1 × ω2) ·J

and similarly

1

12
[A [A,B]] =

i

12~
(ω1 × (ω1 × ω2)) ·J (7.13)

1

12
[B [B,A]] =

i

12~
(ω2 × (ω2 × ω1)) ·J

etc.. Therefore, the exponent has the expected form expC = exp
¡
i
~ω3·J

¢
with

ω3 = ω1 + ω2 −
1

2
(ω1 × ω2)

+
1

12
(ω1 × (ω1 × ω2)) (7.14)

+
1

12
(ω2 × (ω2 × ω1)) + · · ·

The full ω3(ω1,ω2) will be given below in (7.14) to all orders by using a con-
venient representation of the commutation rules. It is important to realize that
ω3(ω1,ω2) is independent of the state hψ| and only depends on the structure
constants εIJK that characterize the infinitesimal rotation, or the commuta-
tion rules of angular momentum. The formula for ω3(ω1,ω2) is an intrinsic
property of the rotation group; indeed it can be considered as the definition
of the rotation group. The fact that ω3(ω1,ω2) can be built up only from
commutators (or the cross product characterized by εIJK) indicates that the
infinitesimal rotations contain all the necessary information about all rotations.
Therefore, understanding the properties of the infinitesimal generators J, or the
Lie algebra, amounts to understanding the properties of all rotations.
This discussion shows that the group closure property is satisfied, and fur-

thermore, that it is equivalent to the closure of the Lie algebra. Moreover, using
this result one can also show immediately that R (−ω) = exp

¡
− i
~ω · J

¢
is the

inverse of R (ω) . Indeed for A = −B = i
~ω · J, the multiple commutators vanish

[A,B] = [A,−A] = 0 and A+B = 0, proving R (ω)R (−ω) = 1.
Therefore, the rotation operators R (ω) = exp

¡
i
~ω · J

¢
acting on the quan-

tum mechanical Hilbert space do form a Lie group.

7.2 Representations of angular momentum
It is useful to classify the quantum states according to their properties under
rotations. This amounts to classifying the states according to their spin. This
is something we have already done in the previous chapter by diagonalizing J2
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and J0 simultaneously and labelling the states by their eigenvalues |j,mi. Recall
that

J2|j,mi = ~2j(j + 1) |j,mi, J0|j,mi = ~m|j,mi (7.15)

J±|j,mi = ~
p
j(j + 1)−m(m± 1) |j,m± 1i.

This means that the infinitesimal rotation of the state hj,m| is computable, from

δωhjm| =
i

~
hj,m|ω · J (7.16)

=
i

~
X
j0m0

hjm|ω · J|j0m0i hj0m0|

Similarly a finite rotation is computed as follows

hjm|0 = hjm| e i
~ ω ·J (7.17)

=
X
j0m0

hjm|e i
~ ω ·J|j0m0ihj0m0|.

To implement the rotation we need to compute the matrix elements of the
generators

hjm|JI |j
0
m

0i = (JI)jm,j0m0 . (7.18)

They are arranged in a block diagonal matrix, since JI does not mix states with
different values of spin j

hjm|JI |j0m0i = δjj0hjm|JI |jm0i = δjj0 ~ (=I)jmm0 (7.19)

where (=I)jmm0 are (2j + 1)× (2j + 1) matrices. We can then construct a block
diagonal matrix for each JI as follows:

¯̄̄
j0=0
m0=0

E ¯̄̄
j0= 1

2

m0=± 1
2

E ¯̄̄
j0=1

m0=1,0,−1

E ¯̄̄
j0= 3

2

m0=± 3
2 ,± 1

2

E
· · ·­

j=0
m=0

¯̄
¿

j=1/2
m=±1/2

¯̄̄̄
D

j=1
m=1,0,−1

¯̄̄
D

j= 3
2

m=± 3
2 ,±

1
2

¯̄̄
...

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · ·

0 2× 2 0 0 · · ·

0 0
3× 3

0 · · ·

0 0 0
4× 4 · · ·

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.20)

The above block structure of the matrix representation of angular momentum
tells us that only states that have the same total spin (same value of j) can
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rotate into each other. For example, consider a state h12m| which represent a
particle with spin j = 1/2 and (m = ±1

2). When the matrix (ωI=I)
j= 1

2
mm0 is

applied to such a state, then the resulting state will be of the form

δωh
1

2
,m| = α(m) h1

2
,
1

2
|+ β(m) h1

2
,−1
2
|. (7.21)

Thus, the spin j = 1/2 states do not mix with the states of another spin under
rotations. The same is obviously true for any spin. Therefore, for a fixed value
of j the states |jmi , j ≥ m ≥ −j are said to form an irreducible multiplet under
rotations.
Let us see in more detail what the matrix elements look like for the operators

J0, J+, J−. Let us fix j, and let us examine first hjm|J0|jm0i = ~m0hjm|jm0i =
~mδmm0 , so that

(=0) jmm0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j 0 . . . . . . . . . 0
0 j − 1 0 . . . . . . 0
... 0

. . . 0 . . . 0
...

... 0 m
. . .

...
. . .

...
...

. . .
. . . −j + 1 0

0 . . . . . . . . . 0 −j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.22)

For hjm|J+|jm0i we have

hjm|J+|jm0i = ~
p
j(j + 1)−m0(m0 + 1)hjm|j,m+ 1i

= ~
p
j(j + 1)−m0(m0 + 1)δm,m0+1

(7.23)

and so

(=+)jmm0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√
2j 0 0 · · · 0 0

0 0
√
4j − 2 0

. . .
...

...

0 0 0
. . . 0 0

...
...

...
...

. . .
. . . 0 0

...
...

...
. . . 0

√
4j − 2 0

...
...

...
... 0 0

√
2j

0 0 0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.24)

Similarly for J−

hjm|J−|jm0i = ~
p
j(j + 1)−m0(m0 − 1)hjm, jm0 − 1i

= ~
p
j(j + 1)−m0(m0 − 1)δm,m0−1

(7.25)
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so that

(=−)jmm0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 · · · 0 0
√
2j 0 0 0

. . .
...

...

0
√
4j − 2 0

. . . 0
...

...

0 0
. . .

. . .
. . .

...
...

...
... 0

. . . 0 0 0
...

...
... 0

√
4j − 2 0 0

0 0 · · · 0 0
√
2j 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.26)

For every j the matrices (=0,±)jmm0 satisfy the same commutation rules as
the operators 1

~ J0,±. That is, under matrix multiplication we haveh
(=I)j , (=J)j

i
mm0

=
P

m00

n
(=I)jmm00 (=J)jm00m0 − (=J)jmm00 (=I)jm00m0

o
=
P

j00m00

µ
hjm| 1~ JI |j00m00ihj00m00| 1~ JJ |jmi
−hjm| 1~ JJ |jm00ihjm00| 1~ JI |jmi

¶
= 1

~2 hjm|JIJJ − JJJI |jm0i
= iεIJKhjm| 1~ JK |jm0i
= iεIJK (=K)jmm0

(7.27)
In the second line only j00 = j contributes, but the full sum over all j00,m00

allows us to use the completeness relation
P

j00m00 |jm00ihjm00| = 1, to derive
the third line. The final result shows that we have obtained an infinite number
of matrix representations of the commutation rules of angular momentum, one
for every value of j = 0, 1/2, 1, 3/2, · · · .
We can see in particular what these matrices look like for j = 1

2

(=0)j=1/2mm0 =
1

2

µ
1 0
0 −1

¶
mm0

(=+)j=1/2mm0 =

µ
0 1
0 0

¶
mm0

(7.28)

(=−)j=1/2mm0 =

µ
0 0
1 0

¶
mm0

From these we construct the 2× 2 matrix representation of J

(�=)j=1/2mm0 =
1

~
h1/2,m|J|1/2,m0i =

³σ
2

´
mm0

(7.29)

where σ are the three Pauli matrices. Therefore, for spin j = 1/2, rotations are
represented by J→~

¡
σ
2

¢
.

An additional property of the Pauli matrices that we will use below is

σIσJ = δIJ1 + iεIJK σK . (7.30)
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That is, while the commutator of two Pauli matrices reproduces the commu-
tation rules of angular momentum, the anti-commutator is proportional to the
identity matrix {σI , σJ} = 2δIJ1. Unlike the commutation property which is
the same for all j, the anti-commutation property is special for the j = 1/2
representation and it does not hold for higher values of j.
Similarly, for j = 1 the matrix representation is

(=0)j=1mm0 =

⎛⎝ 1 0 0
0 0 0
0 0 −1

⎞⎠
(=+)j=1mm0 =

⎛⎝ 0
√
2 0

0 0
√
2

0 0 0

⎞⎠ (7.31)

(=−)j=1mm0 =

⎛⎝ 0 0 0√
2 0 0

0
√
2 0

⎞⎠
These give the infinitesimal rotations of a vectorV when written in the (+, 0,−)
basis instead of the (1, 2, 3) basis. That is δωV = ω ×V can also be written in
one of the following forms⎛⎝ δωVx

δωVy
δωVz

⎞⎠ =

⎛⎝ 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

⎞⎠⎛⎝ Vx
Vy
Vz

⎞⎠ (7.32)

⎛⎝ δωV+
δωV0
δωV−

⎞⎠ = −i

⎛⎜⎝ ω0
ω+√
2

0
ω−√
2

0 ω+√
2

0 ω−√
2
−ω0

⎞⎟⎠
⎛⎝ V+

V0
V−

⎞⎠ (7.33)

where we have used the definitions Vm ≡ hj = 1, m|V i , with

V0 = Vz, V± = ∓ (Vx ∓ iVy) /
√
2, (7.34)

ω0 = ωz, ω± = (ωx ∓ iωy) .

So the 3×3 matrices that appear in the (x, y, z) or (+, 0,−) bases in (7.32,7.33)
are just (−i�ω · �=)j=1mm0 = −i(ω0=0 + 1

2ω+=+ +
1
2ω−=−)

j=1
mm0 respectively.

7.3 Finite rotations and the Dj matrices
Let us now compute the finite rotation defined by the matrix in (7.17) which is
nonzero only when j0 = j

hjm|0 =
X
m0

Dj
mm0(ω)hjm0|, Dj

mm0(ω) =hjm|e
i
~ ω ·J|jm0i (7.35)

The exponential may be expanded Dj
mm0(ω) =

P
n
in

n! hjm|
¡
ω ·J
~
¢n |jm0i and

then the identity is inserted in the form 1 =
P

j00m00 |j00m00ihj00m00|. However,
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since only j00 = j can contribute, only the sums over the m1,m2, · · · survive as
follows

hjm|
¡
ω ·J
~
¢n |jm0i

=
P

m1,···mn−1

µ
hjm|ω ·J~ |jm1ihjm1|ω ·J~ |jm2ihjm2 · · ·

· · · |jmn−1ihjmn−1|ω ·J~ |jm0i

¶
=
P

m1,···mn−1
(�ω · �=)jmm1

(�ω · �=)jm1m2
· · · (�ω · �=)jmn−1m0

=
³h
(�ω · �=)j

in´
mm0

(7.36)

This shows that one way of computing the matrix Dj
mm0(ω) is by summing the

exponential series of matrices

Dj
mm0(ω) =

P
n
1
n!

³h
i(�ω · �=)j

in´
mm0

=
³
exp

h
i(�ω · �=)j

i´
mm0

(7.37)

These matrices satisfy the group property for each value of jX
m00

Dj
mm00(ω1)D

j
m00m0(ω2) =D

j
mm0(ω3) (7.38)

This can be shown directly by using the same steps as eqs.(7.10-7.14), but now
using matrices A = i(ω̃1 · �=)j and B = i(ω̃2 · �=)j . Another proof is obtained
by inserting the identity operator and using directly the closure property of the
operators X

m00

Dj
mm00(ω1)D

j
m00m0(ω2)

=
X
j00m00

hjm|e i
~ ω1·J|j00m00ihj00m00|e i

~ ω2·J|jm0i

= hjm|e i
~ ω1·Je

i
~ ω2·J|jm0i (7.39)

= hjm|e i
~ ω3·J|jm0i

= Dj
mm0(ω3).

The same ω3(ω1,ω2) is obtained for every value of the spin j since this follows
from only the commutation rules among the operators J that are independent
of the value of j (see also (7.27)). Therefore, the Dj (ω) matrices are said to
form a matrix representation of the rotation group. They simply represent the
action of rotations on the multiplet of spin j.

7.3.1 Relation to spherical harmonics

For the special value m = 0 the entries in the column Dl
0m0 in the rotation ma-

trix are related to the spherical harmonics Dl
0m0 ∼ Ylm0 . To see this, recall the

definition of the spherical harmonics in the form Ylm0(θ, φ) = hθ, φ|lm0i where
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the position space state hθ, φ| is associated with the unit vector r̂ =cosφ sin θ x̂+sinφ sin θ ŷ+
cos θ ẑ. This unit vector is obtained by applying a rotation to the unit vector
in the ẑ direction. So, the state hθ, φ| can be rewritten by rotating the state
hẑ| = hθ = 0, φ = 0|

hθ, φ| = hẑ| eiθL2/~ eiφL3/~ . (7.40)

Therefore, we have

Ylm0(θ, φ) = hẑ| eiθL2/~ eiφL3/~ |lm0i (7.41)

=
X
m

hẑ|lmihlm| eiθL2/~ eiφL3/~ |lm0i

=
X
m

Ylm(0, 0)D
l
mm0(0, θ, φ).

Furthermore, we have Ylm(0, 0) =
q

2l+1
4π δm,0, which leads to

Ylm0(θ, φ) =

r
2l + 1

4π
Dl
0m0(0, θ, φ). (7.42)

So, through the knowledge of the spherical harmonics we have obtained some
of the matrix elements of rotations

Dl
0m0(0, θ, φ) =

r
4π

2l + 1
Ylm0(θ, φ)

= (−1)m
s
(l −m0)!

(l +m0)!
Pm0

l (cos θ) eim
0φ, (7.43)

where Pm0

l (cos θ) is the associated Legendre polynomial.

7.4 Computation of the Dj matrices
There are several methods for computing Dj (ω) for general j. The first one is
by summing the matrix series Dj(ω) = ei=·ω which works well for small values
of j, as illustrated below. However, this becomes cumbersome for larger values
of j. The second method is to introduce Euler angles and derive a differential
equation which is solved by hypergeometric functions. The third method is to
use the two dimensional harmonic oscillator as a model for SU(2),which readily
yields a nice result in the form of a polynomial. The latter two methods are
explained below. The relation among these methods provides a first look at
representation theory of Lie groups, the rotation group being the simplest case
of a non-Abelian Lie group.

7.4.1 Spin j=1/2 case

To compute explicitly the spin-1/2 representation D
1
2 (ω) by direct exponenti-

ation one uses the properties of Pauli matrices that follow from (7.30), namely
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(ω̂ · σ)2 = 1, or (ω̂ · σ)even = 1, (ω̂ · σ)odd = ω̂ · σ. Then

D
1
2 (ω) = e

i
2ω ·σ =

∞X
n=0

1

n!

µ
iω · σ
2

¶n
=

X
n=even

1

n!

µ
iω · σ
2

¶n
+
X
n=odd

1

n!

µ
iω · σ
2

¶n
=

X
n=even

1

n!

µ
iω

2

¶n
+ ω̂ · σ

X
n=odd

1

n!

µ
iω

2

¶n
(7.44)

= cos
ω

2
+ iω̂ · σ sin

ω

2

=

µ
α β
−β∗ α∗

¶
where

α = cos
ω

2
+ iω̂z sin

ω

2

β = (ω̂y + iω̂x) sin
ω

2
(7.45)

1 = |α|2 + |β|2 .

An arbitrary matrix of the form

U =

µ
α β
−β∗ α∗

¶
= a+ ib · σ, (7.46)

detU = |α|2 + |β|2 = a2 + b2 = 1

is a special unitary matrix that is a member of the set SU(2), where “special”
means detU = 1, but otherwise arbitrary. Such matrices form a group, since
they close into the same set under matrix multiplication (try it!). But we have
seen by construction that Dj=1/2 (ω) is the most general such matrix, and that
it forms the rotation group Dj=1/2 (ω1)D

j=1/2 (ω2) = Dj=1/2 (ω3). Therefore,
modulo a subtlety that is pointed out below, the group SU(2)may be interpreted
physically as the rotation group in 3 dimensions.

7.4.2 Spin j=1 case

In the case of j = 1, a unitary transformation from the (+, 0,−) basis to the
(x, y, z) basis, as in (7.34), shows that the rotation in the (x, y, z) basis is given
by the matrix V 0

I =
¡
Dj=1 (ω)

¢
IJ

VJ in the form⎛⎝ V 0
x

V 0
y

V 0
z

⎞⎠ = exp

⎛⎝ 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

⎞⎠⎛⎝ Vx
Vy
Vz

⎞⎠ (7.47)
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This matrix notation is equivalent to the rotation of a vector in the usual vector
notation in the form

V0 = exp (ω×)V = V+ ω ×V+ 1
2!
ω× (ω ×V) + · · · (7.48)

= V+ ω̂ ×V sinω + ω̂× (ω̂ ×V) (1− cosω) .

where the second line is obtained by summing the series. If this rotation is
written in 3 × 3 matrix form, V 0

I = RIJVJ , it yields Dj=1 (ω) = R in the
(x, y, z) basis (see problem 2 for direct exponentiation in (+, 0,−) basis). It can
be verified that the resulting matrix RIJ(ω) is a parametrization of the most
general 3×3 orthogonal matrix with determinant +1. Orthogonal 3×3 matrices
form the group SO(3) (prove it!), which is the rotation group in 3-dimensions
as we have seen in this discussion, by direct construction.
There is a subtle difference between SU(2) and SO(3). In the Dj=1/2 (ω)

representation it takes an angle of rotation of 4π to come back to the same
point. For example, for a rotation of ω = 2π around any axis, we see from
(7.45) that Dj=1/2 (2πω̂) = −1. More generally, for the same 2π rotation we get
Dj (2πω̂) = (−1)2j (see e.g. the rotation of a vector (7.48). Thus, states with
integer spin come back to the same state after a 2π rotation, but it takes a 4π
rotation to get back to the same state if j = 1

2+integer. The difference between
SU(2) and SO(3) is whether or not the representation space contains spin-
1/2+integer or not, and consequently whether we should consider the maximum
range of rotations to be 4π or 2π respectively. This difference becomes apparent
globally. In physical applications the value of the angular momentum determines
the range of the angles.

7.4.3 Product of two rotations

The explicit matrix form of Dj=1/2 (ω) as in (7.44,7.45) is very useful for many
purposes. In particular it provides the simplest way of computing ω3(ω1,ω2).
Recall that according to (7.38) we obtain the same ω3(ω1,ω2) for any value of
j. By using the map between rotations and SU(2) matrices provided by (7.45)
we can easily compute the product of two rotations and extract ω3(ω1,ω2).
The result is (use (7.46) and (7.30) to prove it)

cos
ω3
2
= cos

ω1
2
cos

ω2
2
− (ω̂1 · ω̂2) sin

ω1
2
sin

ω2
2

ω̂3 sin
ω3
2
=

µ
ω̂1 sin

ω1
2 cos

ω2
2 + ω̂2 sin

ω2
2 cos

ω1
2

− (ω̂1 × ω̂2) sin
ω1
2 sin

ω2
2

¶
(7.49)

The series expansion of these expressions for small ω1,ω2 reproduces the first
few terms given earlier in (7.14) (see problem).

7.4.4 Euler angles

An arbitrary rotation may be parametrized in terms of Euler angles which are
defined as follows. Consider first an anti-clockwise rotation of angle γ along the
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positive z-axis, followed by an anti-clockwise rotation of angle θ along the new
y0-axis, and then followed by anti-clockwise rotation of angle φ along the new
z00-axis. These are pictured in Fig.(7.1).

Fig.(7.1) - Euler angles.

On a bra the Euler rotations are implemented by the following operations

hψ|0 = hψ| eiω ·J/~ = hψ| eiγJ3/~eiθJ02/~eiφJ003 /~ (7.50)

The operators J 02 ≡ J·ŷ0 and J 003 ≡ J·ẑ00 are given by

J 02 = J2 cos γ − J1 sin γ = e−iγJ3/~J2 e
iγJ3/~ (7.51)

J 003 = J 03 cos θ + J 01 sin θ = e−iθJ
0
2/~J 03e

iθJ02/~

where J 01 ≡ J·x̂0, J 03 = J3. These are obtained by inspecting Fig.(7.1) and
noting the decomposition of the unit vectors ŷ0 and ẑ00 into components in the
appropriate orthogonal basis. The inverse of these relations are

J2 = eiγJ3/~J 02e
−iγJ3/~ (7.52)

J 03 = eiθJ
0
2/~J 003 e

−iθJ02/~ = J3. (7.53)

The Euler rotations may be rewritten in terms of the original basis J1, J2, J3 as
follows:

eiγJ3/~eiθJ
0
2/~eiφJ

00
3 /~ = eiγJ3~

n
eiθJ

0
2/~eiφJ

00
3 /~e−iθJ

0
2/~
o
eiθJ

0
2/~

= eiγJ3/~eiφJ3/~eiθJ
0
2/~

= eiφJ3/~
n
eiγJ3/~eiθJ

0
2/~ e−iγJ3/~

o
eiγJ3/~ (7.54)

= eiφJ3/~eiθJ2/~eiγJ3/~

In line 1, first insert 1 = e−iθJ
0
2/~eiθJ

0
2/~ and then use eq.(7.53) to go to line

2. To go from line 2 to line 3, first interchange the order of the left-most two
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commuting factors and insert 1 = e−iγJ3/~ eiγJ3/~ on the right. Finally to go
from line 3 to line 4 use eq.(7.52). Thus, the general rotation takes the form

eiω ·J/~ = eiφJ3/~eiθJ2/~eiγJ3/~ . (7.55)

According to the group property of rotations (7.38) this operator relation must
also be true for every matrix representation, hence

Dj (ω)mm0 =
£
Dj (φẑ)Dj(θŷ)Dj(γẑ)

¤
mm0 , (7.56)

which corresponds merely to taking the matrix elements and inserting identity
in between factors. The matrix elements of this relation give

Dj (ω)mm0 = hjm|eiφJ3/~eiθJ2/~eiγJ3/~ |jm0i
= eiφmhjm|eiθJ2/~ |jm0ieiγm0

(7.57)

= ei(φm+γm
0)djmm0(θ)

where we have defined the small d− function

djmm0(θ) ≡ hjm|eiθJ2/~ |jm0i =
³
eiθ=

j
2

´
mm0

= Dj
mm0(θŷ). (7.58)

The d−functions are easily computed and tabulated (see below). Therefore, the
Euler parametrization provides a second approach for computing Dj (ω)mm0 for
general j.
However, one needs to know how to find φ, θ, γ for a given general rotation

ω. Since (7.56) is true for any j, the spin j = 1/2 representation provides the
simplest computation. Using (7.44-7.46) we have

Dj=1/2 (ω) = Dj=1/2 (φẑ)Dj=1/2(θŷ)Dj=1/2(γẑ)

= eiφσ3/2eiθσ2/2eiγσ3/2

=

µ
eiφ/2 0
0 e−iφ/2

¶µ
cos θ2 sin θ

2

− cos θ2 cos θ2

¶µ
eiγ/2 0
0 e−iγ/2

¶
=

µ
ei(φ+γ)/2 cos θ2 ei(φ−γ)/2 sin 12θ
−e−i(φ−γ)/2 sin 12θ e−i(φ+γ)/2 cos θ2

¶
= (7.59)

eiω ·
σ
2 =

µ
cos ω2 + iω̂z sin

ω
2 (ω̂y + iω̂x) sin

ω
2

− (ω̂y − iω̂x) sin
ω
2 cos ω2 − iω̂z sin

ω
2

¶
where the last line is Dj=1/2 (ω) = eiω ·

σ
2 as given in (7.45). By comparing the

two matrix expressions for Dj=1/2 (ω) we can relate φ, θ, γ to ω and vice versa.

7.4.5 Differential equation for djmm0

To derive a differential equation for djmm0(θ) we use the standard quantum
mechanics trick of evaluating a matrix element of an operator in two different
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ways. In the present case we consider the Casimir operator J2 = J21 + J22 + J23
as follows

j(j + 1) djmm0(θ) = hjm|eiθJ2/~ 1
~2
¡
J23 + J22 + J21

¢
|jm0i

= (m0)2 djmm0(θ)− d2

dθ2
djmm0(θ) + hjm|eiθJ2/~ 1

~2J
2
1 |jm0i

(7.60)

where we have used −~2∂2θ hjm|eiθJ2/~ |jm0i = hjm|eiθJ2/~J22 |jm0i. To evaluate
the last term we rewrite eiθJ2/~J21 by using the following rotation e

− i
~ θJ2J3e

i
~ θJ2 =

J3 cos θ + J1 sin θ. Multiply this relation from the left with e
i
~ θJ2 and solve for

the combination e
i
~ θJ2J1

e
i
~ θJ2J1 =

1

sin θ
J3e

i
~ θJ2 − cos θ

sin θ
e
i
~ θJ2J3. (7.61)

Multiply this equation from the right with J1

e
i
~ θJ2J21 =

1

sin θ
J3e

i
~ θJ2J1 −

cos θ

sin θ
e
i
~ θJ2J3J1, (7.62)

use J3J1 = J1J3+ i~J2 to rearrange the second term, and then replace e
i
~ θJ2J1

with the right hand side of (7.61):

e
i
~ θJ2J21 =

1
sin θJ3

h
e
i
~ θJ2J1

i
− cos θ

sin θ

h
e
i
~ θJ2J1

i
J3

− cos θsin θ e
i
~ θJ2 i~J2

= 1
sin2 θ

J23 e
i
~ θJ2 + cos2 θ

sin2 θ
e
i
~ θJ2J23 − 2 cos θsin2 θ

J3e
i
~ θJ2J3

−~2 cos θsin θ
d
dθ e

i
~ θJ2 .

(7.63)

The matrix elements of this equation gives the last term in (7.60)

hjm|eiθJ2/~ 1
~2J

2
1 |jm0i

=
³

1
sin2 θ

m2 + cos2 θ
sin2 θ

(m0)2 − 2mm0 cos θ
sin2 θ

− cos θ
sin θ ∂θ

´
djmm0(θ).

(7.64)

Inserting this expression in (7.60) we obtain the desired differential equation½
d2

dθ2
+ cot θ

d

dθ
+ j(j + 1)− m2 − 2mm0 cos θ +m02

sin2 θ

¾
djmm0(θ) = 0. (7.65)

This is converted to a hypergeometric differential equation in the variable -
(cot θ2)

2. It can be solved by using series methods or by computing the indices
for the hypergeometric function 2F1(a, b; c;−(cot θ2 )2) as follows

djmm0(θ) = Njmm0
¡
sin θ

2

¢2j ¡
cot θ2

¢m+m0

× 2F1(m− j,m0 − j,m+m0 + 1;− cot2 θ
2)

Njmm0 = (−1)j+m0

(m+m0)!

h
(j+m)! (j+m0)!
(j−m)! (j−m0)!

i1/2
.

(7.66)

It can also be given in the form of a polynomial valid for all allowed values of
j,m,m0



226 CHAPTER 7. PROPERTIES OF ROTATIONS

djmm0(θ) = (−1)j+m
0p
(j +m)!(j −m)!(j +m0)!(j −m0)!

×(sin θ
2)
2j
P

k
(−1)k(− cot θ2 )

2k+m+m0

k!(k+m+m0)!(j−k−m)!(j−k−m0)! ,
(7.67)

The constant factor Njmm0 insures consistent normalization with the states
|jmi. It is determined by demanding djmm0(0) = δmm0 as well as completeness
in the form P

m0 d
j
mm0(θ)

³
djm00m0(θ)

´∗
=
P

m0hjm|eiJ2θ/~ |jm0ihjm0|e−iJ2θ/~ |jm00i
=
P

m0hjm|jm00i = δmm00 .

(7.68)

It is useful to list a few djmm0(θ) explicitly

d
1/2

1/2,1/2
=cos θ2 d

3/2

3/2,3/2
= 1
2 (1+cos θ) cos

θ
2

d22,2=
1
4 (1+cos θ)

2

d
1/2

1/2,1/2
=sin θ

2 d
3/2

3/2,1/2
=
√
3
2 (1+cos θ) sin

θ
2

d22,1=
1
2 (1+cos θ) sin θ

d
3/2

3/2,−1/2=
√
3
2 (1−cos θ) cos θ2 d22,0=

√
6
4 sin2 θ

d11,1=
1
2 (1+cos θ) d

3/2

3/2,−3/2=
1
2 (1−cos θ) sin

θ
2

d22,−1=
1
2 (1−cos θ) sin θ

d11,0=
1√
2
sin θ d

3/2

1/2,1/2
= 1
2 (3 cos θ−1) cos

θ
2

d22,−2=
1
4 (1−cos θ)

2

d11,−1=
1
2 (1−cos θ) d

3/2

1/2,−1/2=
1
2 (3 cos θ+1) sin

θ
2

d21,1=
1
2 (1+cos θ)(2 cos θ−1)

d10,0=cos θ d21,0=
√

3
2 sin θ cos θ

d21,−1=
1
2 (1−cos θ)(2 cos θ+1)

d20,0=
3
2 cos

2 θ− 1
2

(7.69)
To obtain the solution for other values of m,m0 one can use the following iden-
tities that follow from the general polynomial expression given above

djmm0(θ) = (−1)m−m
0
djm0m(θ) = dj−m,−m0(θ) (7.70)

djmm0(θ) = djm0m(−θ) = (−1)
m−m0

djmm0(−θ).

7.4.6 2D harmonic oscillator and SU(2) rotations Dj

It is beneficial to take advantage of the SU(2) symmetry of the two dimensional
harmonic oscillator in order to obtain information on the rotation group. Of
course, the SU(2) symmetry has nothing to do with three dimensional rota-
tions, but the mathematics is the same, so the 2D harmonic oscillator may
be used as a model for computations1. Recall that the Hamiltonian H =

1The same approach applied to the d−dimensional harmonic oscillator is beneficial for
SU(d). However, only a subset of the representations for SU(d) can be described by the
d−dimensional harmonic oscillator. This is because only the completely symmetric tensors
of the fundamental oscillators a†I can occur. For d = 2 the fundamental oscillators have spin
1/2, and all higher spins can be obtained only from the complete symmetrization of spin 1/2
wavefunctions. So, for d = 2 there are no other SU(2) representations.
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~ω
³
a†1a1 + a†2a2 + 1

´
is invariant under the SU(2) transformations a0i = Uijaj ,

and a0†i = a†k
¡
U†
¢
ki
and that the states are classified in degenerate SU(2) mul-

tiplets

|jmi = (a†1)
j+m(a†2)

j−mp
(j +m)!(j −m)!

|0i. (7.71)

The generators of the symmetry that commute with the Hamiltonian, and which
satisfy the commutation rules of angular momentum, are J+ = a†1a2, J− =

a†2a1, J0 = (a†1a1 − a†2a2)/2. These may also be rewritten in terms of Pauli
matrices in the convenient form

JI = ~a†k
³σI
2

´
kl
al,

[JI , JJ ] = ~2a†k
hσI
2
,
σI
2

i
kl
al

= i~ εIJK ~a†k
³σK
2

´
kl
al (7.72)

= i~ εIJK JK .

Under the transformation exp (iJ · ω /~) the states rotate as expected

hjm|0 = hjm|eiJ·ω /~ =
X
m0

Dj
mm0 (ω) hjm0| . (7.73)

The aim is to use the properties of the creation-annihilation operators to extract
the properties of these rotations.
First note that the SU(2) transformation of the oscillators is written in op-

erator form as follows

a0i = Uijaj

= e−iJ·ω /~aie
iJ·ω /~

=
³
eiσ ·ω/2

´
ij
aj. (7.74)

∴ U = eiσ ·ω/2 =

µ
α β
−β∗ α∗

¶
.

This may be verified easily for infinitesimal values of ω, or for any ω by us-
ing the identity eABe−A =

P
1
n! [A, [A, · · · , [A,B] · · · ]] . Hence, the oscillators

transform as the spin j = 1/2 doublet of SU(2)

a01 = αa1 + βa2, a02 = −β∗a1 + α∗a2, (7.75)

where the definitions of the parameters α, β in terms of rotation angles coincide
with those given in (7.44,7.45,7.46). Then the harmonic oscillator states hjm|
with spin j may be viewed as if they have been constructed by putting together
2j spin 1/2 quanta. The SU(2) transformation of the state may now be rewritten
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in the form P
m0 D

j
mm0 (ω) hjm0| = hjm|eiJ·ω /~

= h0|eiJ·ω /~e−iJ·ω /~ (a1)j+m(a2)j−m√
(j+m)!(j−m)!

eiJ·ω /~

= h0| (a
0
1)
j+m(a02)

j−m√
(j+m)!(j−m)!

= h0| (αa1+βa2)
j+m(−β∗a1+α∗a2)j−m√
(j+m)!(j−m)!

.

(7.76)

It is now a simple matter to expand the binomials and identify the normalized
states hjm0| on the right hand side of the expansion by collecting powers of the
oscillators. Then comparing the coefficients on both sides of the equation we
can write

Dj
mm0 (ω) =

q
(j+m0)! (j−m0)!
(j+m)! (j−m)! ×

P
k

¡
j+m
k

¢¡
j−m

j+m0−k
¢

×αk(α∗)k−m−m0
βj+m−k(−β∗)j+m0−k.

(7.77)

Setting now α = cos θ2e
iφ+γ2 and β = sin θ

2e
iφ−γ2 we find

Dj
mm0(φθγ) = ei(φm+γm

0)
q

(j+m0)! (j−m0)!
(j+m)! (j−m)! ×

P
k

¡
j+m
k

¢¡
j−m

j+m0−k
¢

× (cos θ2)2k−m−m
0
(sin θ

2)
2j+m+m0−2k (−1)j+m

0−k
(7.78)

The sum extends over the values of k for which the binomial coefficients make
sense. For example, for j = 1/2, m = m0 = 1/2 we get

D
1/2
1/2,1/2(φθγ) =

r
1!0!

1!0!
e
i
2 (φ+γ)

X
k

µ
1

k

¶µ
0

1− k

¶
× (sin θ

2
)2−2k(cos

θ

2
)2k−1 (−1)1−k (7.79)

= e
i
2 (φ+γ) cos

θ

2
= α,

which is the expected result according to (7.44). By shifting k → k + m +
m0 one can show that the sum in (7.78) reproduces the polynomial in (7.67)
identically. The student should verify that this general result agrees with the
other approaches given above.

7.5 Addition of angular momentum
In many physical applications one needs to consider combining the angular mo-
menta of two or more parts of the system. In classical physics this is done by
the adding the vectors that represent the angular momenta of the various parts.
For example the total angular momentum of the Earth orbiting around the sun
is obtained by adding the spin of the Earth around itself to the orbital angular
momentum for rotating around the sun. How is this done in quantum mechan-
ics? We must answer this question in order to understand a host of problems in
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quantum systems such as atoms, molecules, solids, nuclei, particles composed
of quarks, scattering, etc., where the spins of particles must be combined with
their orbital angular momenta, and the total angular momentum of the system
is obtained by adding all the spins and all the orbital angular momenta.
To understand the process of addition of angular momentum it may be help-

ful to first consider the addition of ordinary linear momentum. Thus consider
two particles (or two parts of a system) that have momenta p1 and p2. In
classical physics the total momentum of the system is p = p1+p2. In quantum
mechanics each particle is described by a state |k1i, |k2i labelled with the eigen-
values of the commuting operators p1 → ~k1, p2 → ~k2. The total system is
described by the direct product state

|k1i⊗ |k2i ≡ |k1,k2i. (7.80)

When a function of the operators f(p1,p2) acts on the direct product state, each
operator acts on its corresponding label, leaving the other label untouched. In
particular, the total momentum operator p = p1+p2 may act on this state, and
pick up an overall eigenvalue p→~k1 + ~k2 = ~k. Thus, the state |k1,k2i is
already an eigenstate of the total momentum, and therefore, it is possible to re-
label it in terms of total angular momentum, plus other labels corresponding to
the eigenvalues of operators that commute with the total momentum operator
p (e.g. relative angular momentum, if this is convenient for the application)

|k1i⊗ |k2i ≡ |k1,k2i = |k, · · · i. (7.81)

Addition of angular momentum is conceptually similar to the above process,
except for the last step, because unlike linear momentum, angular momentum
operators in different directions do not commute, and the labelling of the states
involves the squares of operators. Consequently, the direct product states are
not eigenstates of the total angular momentum, but instead they can be ex-
panded as a linear combination of total angular momentum states. The expan-
sion coefficients are called the Clebsch-Gordan coefficients, as will be explained
below.

7.5.1 Total angular momentum

Consider two rotating systems with angular momentum operators J(1) and J(2)

respectively. Some examples are: the orbital angular momentum of an electron
J(1) = L and its spin J(2) = S, the spins of two electrons in a multi-electron
atom J(1) = S(1), J(2) = S(2), etc. The commutation rules are

[J
(1)
i , J

(1)
j ] = i~εijkJ

(1)
k

[J
(2)
i , J

(2)
j ] = i~εijkJ(2)k (7.82)

[J
(1)
i , J

(2)
j ] = 0.
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Each system is described by a state |j1m1, i, |j2m2i, while the combined system
has the direct product state

|j1m1i⊗ |j2m2i ≡ |j1m1j2m2i. (7.83)

We will study how to express this state in terms of total angular momentum
states, where the definition of total angular momentum is consistent with clas-
sical mechanics J = J(1) + J(2).
How does the state |j1m1j2m2i rotate? This must be obtained from the

rotation of each part, thus

|j1m1i
0 ⊗ |j2m2i

0
= e−

i
~ J

(1)·ω |j1m1i⊗ e−
i
~ J

(2)·ω |j2m2i
≡ (e− i

~ J
(1)·ω e−

i
~ J

(2)·ω ) |j1m1, j2m2i
(7.84)

where in the second line each operator J(1),J(2) is understood to act on the
corresponding labels (1 or 2), leaving the others untouched. Note that the
same rotation angles ω must appear in each exponent since the same rota-
tion is applied on the entire system. The exponents may be combined because
[J(1),J(2)] = 0,

(e−
i
~ J

(1)·ω e−
i
~ J

(2)·ω ) = e−
i
~ (J

(1)+J(2))·ω . (7.85)

So, we see that a rotation on the total system is performed by the total angular
momentum (J(1) + J(2)) = J. This is consistent with the concept that the
angular momentum operators for the total system should be the generators of
rotations on the total system. This is verified by showing that the total J has
the commutation rules of angular momentum, as follows

[Ji, Jj ] = [J
(1)
i + J

(2)
j , J

(1)
i + J

(2)
j ]

= [J
(1)
i , J

(1)
j ] + [J

(2)
i , J

(2)
j ] + 0 (7.86)

= i~εijk(J(1)k + J
(2)
k )

= i~εijk Jk.

Furthermore, the total angular momentum rotates J(1),J(2) as vectors,

[Ji, J
(1)
j ] = i~εijkJ(1)k , [Ji, J

(2)
j ] = i~εijkJ(2)k . (7.87)

Since (J(1))2, (J(2))2 are scalars under rotations they must commute with the
total J. Hence, the operators J2, J3, (J(1))2, (J(2))2 are mutually commuting
operators, and one can choose a basis |jmj1j2i labelled by their eigenvalues

J2 |jmj1j2i = ~2j(j + 1) |jmj1j2i
J3 |jmj1j2i = ~m |jmj1j2i (7.88)

(J(1))2 |jmj1j2i = ~2j1(j1 + 1) |jmj1j2i
(J(2))2 |jmj1j2i = ~2j2(j2 + 1) |jmj1j2i.
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The complete set of states |jmj1j2i span the same vector space as |j1m1j2m2i,
and therefore it should be possible to express one basis in terms of the other.
The expansion is obtained by using the completeness relationX

jm

|jmj1j2ihjmj1j2| = 1j1j2 =
X
m1m2

|j1m1j2m2ihj1m1j2m2| (7.89)

The symbol 1j1j2 is the identity operator within the subspace of fixed values
of j1, j2 (it really is a projection operator onto the subspace of fixed values of
j1, j2; the sum over j1,j2 gives the full identity).

|j1m1j2m2i =
X
jm

|jmj1j2ihjmj1j2|j1m1j2m2i (7.90)

|jmj1j2i =
X
m1m2

|j1m1j2m2ihj1m1j2m2|jmj1j2i.

The allowed values of j for given j1, j2 must be specified in the sum
P

jm .
One constraint on j is that the total number of states |jmj1j2i must match the
total number of states |j1m1j2m2i. The numbers of allowed values of m,m1,m2

are (2j + 1), (2j1 + 1), (2j2 + 1) respectively. The total number of states Nj1j2

in the subspace 1j1j2

Nj1j2 =

jmaxX
j=jmin

(2j + 1) = (2j1 + 1)(2j2 + 1) (7.91)

restricts j to the range jmin ≤ j ≤ jmax. Performing the sum gives the relation

(jmax + jmin + 1)(jmax − jmin + 1) = (2j1 + 1)(2j2 + 1) (7.92)

Another simple constraint is obtained by considering the maximum eigen-
value of total angular momentum in the z-direction J3 = J

(1)
3 + J

(2)
3 . In the

|j1m1j2m2i labelling there is a unique maximal eigenstate |j1j1j2j2i with J3 =
~(j1 + j2). In the |jmj1j2i labelling there is also a unique maximal eigenstate
|jmaxjmaxj1j2i with J3 = ~jmax. Since it is the unique state among the Nj1j2

states in either labelling, it must be the same state. Therefore

|jmaxjmaxj1j2i = |j1j1j2j2i (7.93)

jmax = mmax = j1 + j2.

Combining this result with (7.92) gives jmin = |j1 − j2|. Therefore the range of
j is

|j1 − j2| ≤ j ≤ j1 + j2. (7.94)

7.5.2 Reduction to irreducible representations

The expansion coefficients hjmj1j2|j1m1j2m2i are called Clebsh-Gordan coef-
ficients. Since there are an equal number of states with either labelling, these
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coefficients may be viewed as the matrix elements of a Nj1j2 × Nj1j2 square
unitary matrix Cj1j2

hjmj1j2|j1m1j2m2i ≡
¡
Cj1j2

¢
jm,m1m2

(7.95)

that relates one basis to the other. To simplify the notation the j1, j2 labels will
be omitted

hjmj1j2|j1m1j2m2i ≡ hjm|m1m2i ≡ Cjm,m1m2 . (7.96)

The completeness relations of the states correspond to a proof of the unitarity
of the matrix C P

m1m2
hjm|m1m2ihm1m2|j0m0i = δjj0δmm0 ,P

jmhm1m2|jmihjm|m0
1m

0
2i = δm1m2

δm0
1m

0
2
.

(7.97)

Now consider a rotation of the state hj1m1j2m2|

hj1m1j2m2|0 = hj1m1j2m2| eiω ·J/~
=
P

m0
1m

0
2
hj1m1j2m2| eiω ·J/~ |j1m0

1j2m
0
2ihj1m0

1j2m
0
2|

≡
P

m0
1m

0
2
Dj1j2
m1m2;m0

1m
0
2
(ω)hj1m0

1j2m
0
2|

Dj1j2
m1m2;m0

1m
0
2
(ω) = hj1m1| eiω ·J

(1)/~ |j1m0
1ihj2m2| eiω ·J

(2)/~ |j2m0
2i

= Dj1
m1m0

1
(ω) Dj2

m2m0
2
(ω)

(7.98)
If the state is expanded in the total angular momentum basis, the same rotation
is written as

hj1m1j2m2|0 = hj1m1j2m2| eiω ·J/~
=
P

jmhm1m2|jmihj1j2jm|eiω ·J/~
=
P

jmm0hm1m2|jmiDj
mm0(ω)hj1j2jm0|

=
P

m0
1m

0
2

³P
jmm0hm1m2|jmiDj

mm0(ω)hjm0|m0
1m

0
2i
´

×hj1m0
1j2m

0
2|

=
P

m0
1m

0
2
Dj1j2
m1m2;m0

1m
0
2
(ω)hj1m0

1j2m
0
2|

(7.99)

Comparing the two forms of the rotation matrix Dj1j2
m1m2;m0

1m
0
2
(ω) gives

Dj1
m1m0

1
(ω) Dj2

m2m0
2
(ω) =

X
jmm0

(C†)m1m2,jmD
j
mm0(ω)Cjm0,m0

1m
0
2

(7.100)

This shows that the Clebsch-Gordan matrix C performs a unitary transforma-
tion on the Nj1j2 ×Nj1j2 rotation matrix D

j1j2
m1m2;m0

1m
0
2
(ω) in order to reduce it

to a block diagonal form, where the various blocks are the (2j + 1) × (2j + 1)
matrices Dj

mm0(ω) corresponding to the irreducible representations of rotations.
This reduction is written symbolically in the forms

Dj1 ⊗Dj2 =

j1+j2X
j=|j1−j2|

⊕Dj (7.101)

j1 ⊗ j2 = |j1 − j2|⊕ · · ·⊕ (j1 + j2)
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7.5.3 Computation of the Clebsch-Gordan coefficients

It is useful to consider a graphical picture of the two types of labelling of the
states. In Fig.(7.2) each cross in the picture on the left corresponds to the
states |m1m2i for j1 = 3/2 and j2 = 5/2. Similarly, each cross in the picture
on the right corresponds to the states |jmi with jmin = 5/2 − 3/2 = 1 and
jmax = 5/2 + 3/2 = 4. Altogether there are (2 × 3

2 + 1) × (2 ×
5
2 + 1) = 24

states in this example. Similar pictures may be considered for other values of
j1, j2. Our discussion will be for general j1, j2 but we will refer to the figure as
an example.

 

Fig.(7.2) - Lattices of angular momentum states.

A simple constraint follows from the fact that J3 = J
(1)
3 + J

(2)
3 is diagonal

on both sets of states. So, when this operator is sandwiched between the two
kinds of states it gives a relation

hjmj1j2|J3|j1m1j2m2i
½
= ~mhjm|m1m2i
= ~(m1 +m2)hjm|m1m2i

which implies

hjm|m1m2i = δm,m1+m2hj,m1 +m2|m1m2i. (7.102)

The total value of m1 + m2 = m is shown in the picture on the left on the
diagonal lines m = 4, 3, 2, 1, 0, · · · ,−4. Similarly, the total value of m is on the
vertical axis in the picture on the right. By comparing the two sets at fixed
values of m we see that we have the same number of states level by level, as
listed below for the example in the figure. The plan is to compute the relation
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between these states level by level.

m |m1m2 > |jm >

4 |32
5
2i |4, 4i

3 |32
3
2i, |

1
2
5
2i |4, 3i, |3, 3i

2 |32
1
2i, |

1
2
3
2i, |

−1
2
5
2i |4, 2i, |3, 2i, |2, 2i

1 |32
−1
2 i, |

1
2
1
2 i, |

−1
2
3
2i, |

−3
2
5
2i |4, 1i, |3, 1i, |2, 1i, |1, 1i

...
...

...
−4 |−32

−5
2 i |4,−4i

(7.103)

For a given value of total j the top state with maximum m = j will be called
the highest state. Thus, for jmin ≤ j ≤ jmax, the states |jji are “highest”. In the
example above the states |4, 4i, |3, 3i, |2, 2i, |1, 1i are “highest” as seen pictorially
in the figure on the right. The remaining states are called descendants, and
are obtained by applying the lowering operator J− on the highest states. So,
by using J−|jmi =

p
(j +m)(j −m+ 1)|j,m − 1i repeatedly one obtains the

descendants from the highest states

|jmi = (J−)j−m|jji
s

(j +m)!

(2j)!(j −m)!
. (7.104)

If the highest state |jji is expressed in terms of the |m1m2i states, then the
descendant states are computed through this equation by replacing (J−)j−m =
(J
(1)
− +J

(2)
− )j−m and applying it on the |m1m2i states. This gives all the Clebsch-

Gordan coefficients. Let’s describe how the process goes.
At the highest level mmax = m1max + m2max = j1 + j2 = jmax there is a

unique highest state, as seen by comparing the two figures

|j1, j2i = |jmax, jmaxi (7.105)

|3/2, 5/2i = |4, 4i

So, the Clebsch-Gordan coefficient is

hj1j2|jmaxjmaxi = 1. (7.106)

In the probability interpretation, this implies that for the total system to spin
at the maximum level in the z-direction, the two parts of the system must also
be spinning at their maximum levels in the z-direction with 100% probability.
At the second to highest level, m = j1 + j2 − 1, there is one descendant

and one highest state. In the example, |4, 3i is the descendant, and |3, 3i is the
highest state as seen in the figure. The descendant is obtained by applying the
lowering operator on |jmax, jmaxi

|jmax, jmax − 1i =
q

1
2jmax

J−|jmax, jmaxi

=
q

1
2jmax

³
J
(1)
− + J

(2)
−

´
|j1, j2i

=
q

j1
jmax

|j1 − 1, j2i+
q

j2
jmax

|j1, j2 − 1i,

|4, 3i =
q

3
8 |1/2, 5/2i+

q
5
8 |3/2, 3/2i.

(7.107)
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The highest state must be chosen orthogonal to this one since it has a different
value of j = jmax − 1

|jmax − 1, jmax − 1i = −
q

j2
jmax

|j1 − 1, j2i+
q

j1
jmax

|j1, j2 − 1i

|3, 3i = −
q

5
8 |1/2, 5/2i+

q
3
8 |3/2, 3/2i.

(7.108)

Thus, we have computed the Clebsch-Gordan coefficients

hj1−1,j2|jmax, jmax−1i=
q

j1
j1+j2

=hj1,j2−1|jmax−1, jmax−1i

hj1,j2−1|jmax, jmax−1i=
q

j2
j1+j2

=−hj1−1,j2|jmax−1, jmax−1i
(7.109)

which have a probability interpretation.
At the next lower levelm = j1+j2−2 there are three states, but two of those

are descendants, and only one of them is a highest state. In the example above
the states |4, 2i, |3, 2i are the descendants and |2, 2i is the highest state, as seen
in the figure. The two descendants are obtained by applying J− = J

(1)
− + J

(2)
−

on the two states of level m = j1 + j2 − 1 that were constructed above, and the
highest state is constructed by making it orthogonal to the descendants. The
process continues until level m = jmin = |j1 − j2| is reached, and the highest
state |jmin, jmini and its descendants are constructed.
Having explained the process, we can turn to the full computation of the

Clebsch-Gordan coefficients. They obey a recursion relation which is derived
by sandwiching J± = J

(1)
− ± J

(2)
− in hm1,m2 ± 1| · |jmi and evaluating it to the

right or to the left

hm1,m2±1|J±|jmi

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= √

(j∓m)(j±m+1)hm1,m2±1|j,m±1i

=

( √
(j1±m1)(j1∓m1+1)hm1∓1,m2±1|j,mi

+
√
(j2±m2)(j2∓m2+1)hm1,m2|j,mi

(7.110)

Comparing the two answers on the right one obtains a recursion relation. Using
the J+ equation for the highest state m = j, the first line vanishes and gives a
simpler relation among the Clebsch-Gordan coefficients for the highest state

hm1−1,m2+1|j,ji=−
q

(j2−m2)(j2+m2+1)
(j1+m1)(j1−m1+1)

hm1,m2|j,ji
(7.111)

This equation involves all the states with m1+m2 = j on a diagonal line in the
first figure of Fig.(7.2). Starting with m1 = j1, m2 = j − j1 and applying this
recursion n times one obtains all the coefficients hm1,m2|j, ji in terms of one
unknown. This result may be written in the form

hm1, m2|j,ji=δj,m1+m2 (−1)j1−m1 C(j,j1,j2)
q

(j1+m1)! (j2+m2)!
(j1−m1)! (j2−m2)!

.
(7.112)
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The unknown coefficient C(j, j1, j2) is proportional to hj1, j − j1|j, ji. To de-
termine it the normalization condition is imposed

hjj|jji =
j1,j2X
m1,m2

|hm1,m2|j, ji|2 = 1. (7.113)

The result is

C(j, j1, j2) =

s
(2j + 1)! (j1 + j2 − j)!

(j + j1 + j2 + 1)!(j + j1 − j2)! (j + j2 − j1)!
. (7.114)

Note that this is consistent with the results obtained above in (7.106,7.109).
Finally the descent equation (7.104) is used to obtain the general coefficient as
follows

hm1m2|jmi =
q

(j+m)!
(2j)!(j−m)!hm1m2|(J−)j−m|jji

=
q

(j+m)!
(2j)!(j−m)! hm1m2|(J(1)− + J

(2)
− )j−m|jji

=
q

(j+m)!
(2j)!(j−m)!

Pj−m
k1=0

µ
j −m
k1

¶
hm1m2|

³
J
(1)
−

´k1 ³
J
(2)
−

´j−m−k1
|jji

=
q

(j+m)!
(2j)!(j−m)!

Pj−m
k1,k2=0

µ
j −m
k1

¶
hm1 + k1, m2 + k2|jji

×δk1+k2,j−m
q

(j1−m1)! (j1+m1+k1)!
(j1+m1)! (j1−m1−k1)!

q
(j2−m2)! (j2+m2+k2)!
(j2+m2)! (j2−m2−k2)!

(7.115)

where
³
J
(1)
−

´k1 ³
J
(2)
−

´k2
have been applied to the left in the last step. Replacing

the highest state coefficients hm1 + k1, m2 + k2|jji from (7.112) one gets the
final result explicitly

hm1m2|jmi = δm,m1+m2(−1)j1−m1

×
q

(2j+1) (j1+j2−j)! (j+m)! (j−m)!
(j+j1+j2+1)!(j+j1−j2)! (j+j2−j1)!

×
q

(j1−m1)! (j2−m2)!
(j1+m1)! (j2+m2)!

×
Pj−m

k1,k2=0
(−1)k1δk1+k2,j−m

k1! k2!
(j1+m1+k1)! (j2+m2+k2)!
(j1−m1−k1)! (j2−m2−k2)!

(7.116)

It is useful to list the cases for general j1 but specialized values for j2 = 1/2
and 1, as in tables (7.1, 7.2). In particular table (7.1) is useful in the addition
of orbital angular momentum L and intrinsic spin S, when the spin is 1/2.

7.6 Wigner’s 3j symbols
The addition of angular momentum J = J(1) + J(2) may be rewritten in the
form

J(1) + J(2) + J(3) = 0, (7.117)

by renaming J3 = −J. Therefore the expansion of |j1m1i⊗ |j2m2i in terms of
|jmj1j2i must be related to the direct product of three states |j1m1i⊗ |j2m2i⊗
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j
↓ m2 =

1
2 m2 = −12

j1 +
1
2

q
j1+m+

1
2

2j1+1

q
j1−m+ 1

2

2j1+1

j1 − 1
2 −

q
j1−m+ 1

2

2j1+1

q
j1+m+

1
2

2j1+1

Table 7.1: Clebsch-Gordan coefficients < j1m1
1
2m2|jm >

j
↓

m2 = 1
m1 = m− 1

m2 = 0
m = m1

m2 = −1
m1 = m+ 1

j1 + 1
q

(j1+m)(j1+m+1)
(2j1+1)(2j1+2)

q
(j1−m+1)(j1+m+1)

(2j1+1)(j1+1)

q
(j1−m)(j1−m+1)
(2j1+1)(2j1+2)

j1 −
q

(j1+m)(j1−m+1)
2j1(j1+1)

m√
j1(j1+1)

q
(j1−m)(j1+m+1)

2j1(j1+1)

j1 − 1
q

(j1−m)(j1−m+1)
2j1(2j1+1)

−
q

(j1−m)(j1+m)
j1(2j1+1)

q
(j1+m)(j1+m+1)

2j1(2j1+1)

Table 7.2: Clebsch-Gordan coefficients < j1m11m2|jm >

|j3m3i, where the corresponding total angular momentum is zero. The triple
product may be expanded in terms of total angular momentum states JTotal by
combining the states in pairs in two steps as follows

|j1m1i⊗ |j2m2i⊗ |j3m3i =

P
jm (|jmj1j2i⊗ |j3m3i)
×hjm|m1m2i

=

P
jTmT

P
jm |jTmT ; jj3; j1j2i

×hjTmT |mm3ihjm|m1m2i

(7.118)

Now, since JTotal = 0, the only possible values for jT and mT are jT = 0 = mT .
Furthermore, the coefficient h00|mm3i can be non-zero only if j = j3 and m =
−m3, and can be obtained from (7.116)

h00|mm3i = δj,j3δm,−m3 (−1)−j3−m3

r
1

2j3 + 1
. (7.119)

Therefore the triple product reduces to

|j1m1i⊗ j2m2i⊗ |j3m3i = |00, j1j2j3i
µ

j1 j2 j3
m1 m2 m3

¶
. (7.120)

where the 3j symbol is defined in terms of Clebsch-Gordan coefficients asµ
j1 j2 j3
m1 m2 m3

¶
≡ (−1)j1−j2−m3

r
1

2j3 + 1
hj3,−m3|j1m1j2m2i. (7.121)

An extra phase (−1)j3+j1−j2 has been absorbed into this definition in order to
define a state |00, j1j2j3i that is symmetric under permutations of the indices
1,2,3.
The 3− j symbols have some symmetry properties:
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• The overall 3 − j symbol should be the same (up to a minus sign) if the
indices 1, 2, 3 are interchanged. By using the properties of the Clebsch-
Gordan coefficients one finds the following symmetry properties under
cyclic and anti-cyclic permutationsµ

j1 j2 j3
m1 m2 m3

¶
=

µ
j3 j1 j2
m3 m1 m2

¶
,µ

j1 j2 j3
m1 m2 m3

¶
= (−1)j1+j2+j3

µ
j2 j1 j3
m2 m1 m3

¶
,

(7.122)

• Under a reflection J(1,2,3) → −J(1,2,3) the magnetic quantum numbers
change sign, but the total angular momentum remains zero, therefore the
3j symbol can differ only up to a sign, indeed one findsµ

j1 j2 j3
−m1 −m2 −m3

¶
= (−1)j1+j2+j3

µ
j1 j2 j3
m1 m2 m3

¶
. (7.123)

These symmetry properties together (7.121) are useful to relate various
Clebsch-Gordan coefficients. For example from the knowledge of the coefficients
for (32⊗

1
2 → 2) one can obtain the coefficients for

¡
2⊗ 1

2 →
3
2

¢
and

¡
2⊗ 3

2 →
1
2

¢
,

etc.(see problem). Many useful properties of the 3j symbols may be found in
Wigner’s book [?].
Generalizations of the 3j symbols are the more complex 6j symbols, used in

atomic or nuclear physics in the study of systems composed of a larger number
of particles. Their properties may be found in [?].

7.7 Integrals involving the Dj
mm0-functions

The D-functions satisfy some general relations under integration that follow
from simple group theoretical properties. Many familiar identities of spherical
harmonics, or Legendre functions follow from these more fundamental identities,
since the spherical harmonics are a special case of the D-functions. Consider
integrals of the formZ

dµ(φθγ) Dj1
m1m0

1
(φθγ)Dj2

m2m0
2
(φθγ) · · ·Djn

mnm0
n
(φθγ). (7.124)

These can be evaluated in terms of Clebsch-Gordan coefficients by using the
properties of the rotation group, without really doing any integration, as will
be shown below. Here dµ(φ, θ, γ) is the so called Haar measure for the SU(2)
group

dµ(φθγ) = sin θ dθ2
dφ
4π

dγ
4π ,

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ 4π, 0 ≤ γ ≤ 4π,R
dµ(φθγ) = 1.

(7.125)

The integration is extended over the whole range of φ, θ and γ, so that it gives
a double covering of the sphere (recall that SU(2) is a double cover of SO(3),
so that spin 1/2 representations are included in the analysis).
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A very important property of the Haar measure is that it is invariant under
two coordinate transformations (see problem)

dµ(φθγ) = dµ(φ0θ0γ0) = dµ(φ00θ00γ00), (7.126)

where (φ0, θ0, γ0), (φ00, θ00, γ00) are defined by group multiplication from the left
or the right

(Dj(ω)Dj(φθγ))mm0 = Dj
mm0(φ

0θ0γ0), (7.127)

(Dj(φθγ)Dj(ω))mm0 = Dj
mm0(φ

00θ00γ00).

where ω correspond to parameters of rotations. Due to the group property, the
same (φ0, θ0, γ0), (φ00, θ00, γ00) occur for any representation j. The expressions for
(φ0, θ0, γ0), (φ00, θ00, γ00) are complicated, and they can be obtained most directly
by using any of the 2× 2 matrix forms for the j = 1/2 representation given in
(7.44-7.45). However, these details are not needed here, and it is sufficient to
start from this invariance property to derive the following results.
Start with the integral over a single D-function, which is a (2j+1)×(2j+1)

matrix M j
mm0

M j
mm0 ≡

Z
dµ(φθγ)Dj

mm0(φθγ). (7.128)

Multiply the matrix M j from the left or right with Dj(ω), and then use the
invariance property of the Haar measure to write¡

Dj(ω)M j
¢
mm0 =

R
dµ(φθγ)[Dj(ω)Dj(φθγ)]mm0

=
R
dµ(φθγ)Dj

mm0(φ
0θ0γ0)

=
R
dµ(φ0θ0γ0)Dj

mm0(φ
0θ0γ0) =M j

mm0

(7.129)

So the constant matrix M j must satisfy the identities

M j = Dj(ω)M j =M jDj(ω), (7.130)

for any rotation ω. Obviously, this is possible only ifM j = 0, unless j = 0. This
gives the first result Z

dµ(φθγ)Dj
mm0(φθγ) = δj,0. (7.131)

It is also possible to verify this result laboriously by using the explicit form of
Dj
mm0(φθγ) given in the previous sections.
Consider now the integralZ

dµ(φθγ) Dj1
m1m

0
1

(φθγ)Dj2
m2m

0
2

(φθγ). (7.132)

We have already shown in (7.100) that the direct product of D-functions can
be reduced to a single one by means of the Clebsch-Gordan coefficients

Dj1
m1m0

1
(ω) Dj2

m2m0
2
(ω) =

X
jmm0

hm1m2|jmiDj
mm0(ω)hjm0|m0

1m
0
2i (7.133)
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combining this with (7.131) gives the result of the integralZ
dµ(φθγ) Dj1

m1m
0
1

(φθγ)Dj2
m2m

0
2

(φθγ)

= hm1m2|00ih00|m0
1m

0
2i

= δm1+m2,0 δm0
1+m

0
2,0
(−1)2j1−m1−m0

1 δj1j2
2j1 + 1

. (7.134)

From this, and the property of the D-functions in (7.70),

[Dj1
m1m

0
1

(φθγ)]∗ = (−1)−m1+m
0
1Dj1
−m1,−m0

1

(φθγ), (7.135)

it also follows thatZ
[Dj1

m1m
0
1

(φθγ)]∗Dj2
m2m

0
2

(φθγ)dµ(φθγ) =
δj1j2δm1m2δm0

1m
0
2

(2j1 + 1)
. (7.136)

where we have used (−1)−m1+m
0
1(−1)2j1−m1−m0

1 = (−1)2(j1−m1) = 1. This is a
fundamental result of orthogonality.
We can continue on this path, and writeR

dµ(φθγ) [Dj3
m3m

0
3

(φθγ)]∗ Dj1
m1m

0
1

(φθγ) Dj2
m1m

0
1

(φθγ)

=
P

jmm0hm1m2|jmihjm
0 |m0

1m
0

2i
×
R
dµ(φθγ) [Dj3

m3m
0
3

(φθγ)]∗Dj
mm0(φθγ)

=
P

jmm0hm1m2|jmihjm0|m0

1m
0

2i
δjj3δmm3δm0

m
0
3

(2j3+1)

=
hm1m2|j3m3ihj3m

0
3|m

0
1m

0
2i

(2j3+1)

(7.137)

This is equivalent toR
dµ(φθγ) Dj1

m1m
0
1

(φθγ) Dj2
m1m

0
1

(φθγ) Dj3
m3m

0
3

(φθγ)

=

µ
j1 j2 j3
m1 m2 m3

¶µ
j1 j2 j3
m0
1 m

0
2 m

0
3

¶
(7.138)

and so on with more factors of D-functions. Evidently, all such integrals are
evaluated in terms of Clebsch-Gordan coefficients.

7.8 Tensor operators

Tensor operators are operators with definite transformation properties under
rotations. For example, as we have seen before, the operators r,p,J transform
like vectors under rotations

eiω ·J/~ rI e
−iω ·J/~ =

¡
eω× r

¢
I
= rI+(ω × r)I + · · · , etc. (7.139)
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In the (+, 0,−) basis this equation takes the form

eiω ·J/~ rm e−iω ·J/~ =
X
m0

rm0Dj=1
m0m(ω) (7.140)

The first order term in the infinitesimal expansion of this equation is∙
1

~
ω · J, rm

¸
=
X
m0

rm0h1m0|1
~
ω · J|1mi (7.141)

which gives

[J0, rm] = ~mrm
[J±, rm] = ~

p
2−m(m± 1)rm±1. (7.142)

Motivated by this form, we define irreducible tensor operators more generally as
operators that transform irreducibly under rotations, and classify them in one
to one correspondance with the states |jmi ←→ Tjm. Thus, the definition of
an irreducible tensor operator is really the set of operators Tjm, −j ≤ m ≤ j,
which satisfy any one of the following equivalent statements

(1) eiω ·J/~ Tjm e−iω ·J/~ =
P

m0 Tjm0Dj
m0m(ω)

(2)
£
1
~ω · J,Tjm

¤
=
P

m0 Tjm0hjm0| 1~ω · J|jmi

(3)

½
[J0, Tjm] = ~mTjm,

[J±, Tjm] = ~
p
j(j + 1)−m(m± 1)Tj,m±1.

(7.143)

In Chapter-6 we have seen ( eqs.(6.83, 6.126), problem 10) that tensors
with l vector indices TI1I2···Il , in d-dimensions Ik = 1, 2, · · · d, are irreducible
tensors of rank l under SO(d) rotations, provided they are completely symmetric
and traceless with respect to any pair of indices, gI1I2TI1I2···Il = 0. Similarly,
any tensor that is completely antisymmetric is also irreducible. There are also
tensors with mixed symmetry, that are irreducible under certain rules associated
with Young tableaux, a topic that will not be discussed here.
We give some examples in d-dimensions of tensors constructed from the

products of two vector operators p and x

scalar T l=0 = 1
2(x · p+ p · x)

anti-symmetric (T l=1)[IJ] = xIpJ − xIpJ (= εIJKLK in d=3)
symmetric traceless (T l=2)(IJ) = xIpJ + xJpI − 1

d(x · p+ p · x)δIJ
symmetric traceless (T l=3)(IJK) = xIxJxK − x2

d+2 (δIJxK + δKIxJ + δJKxI)

(7.144)
In three dimensions the independent components of all such tensors can be
rewritten in the form Tjm. In particular, if the tensor is constructed from the
same vector v, it is necessarily a symmetric homogeneous polynomial of degree
l. Furthermore, if the length of the vector is restricted to v2 = 1 (unit vector
Ω) then the components of the symmetric traceless tensors are in one to one
correspondance to the spherical harmonics Ylm(Ω) in 3-dimensions.
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Without the restriction to a unit vector one still has an irreducible tensor
since the length of the vector is rotationaly invariant and becomes an overall
factor |v|l in front of the homogeneous polynomial. So, in 3-dimensions the
independent components of a completely symmetric traceless tensor constructed
from the vector v are

Tlm(v) = |v|l Ylm(v̂). (7.145)

The l = 1 example of this equation is the initial vector itself T1m(v) = |v| v̂m =
vm.

As seen above in (7.140), if the vector v is an operator, we expect the tensor
Tlm(v) to satisfy precisely the conditions for being a tensor operator with j = l.
Indeed this is true, since the spherical harmonics for a c-number v̂ satisfy the
equations

Ylm(e
ω×v̂) = heω×v̂|lmi

= hv̂|eiω ·J/~ |lmi (7.146)

=
X
m0

hv̂|lm0iDl
m0m(ω)

=
X
m0

Ylm0(v̂)Dl
m0m(ω)

For an operator v, we may write

eiω ·J/~
³
|v|l Ylm(v̂)

´
e−iω ·J/~ = |v|l Ylm(eiω ·J/~ v̂ e−iω ·J/~)

= |v|l Ylm(eω×v̂) (7.147)

=
X
m0

³
|v|l Ylm0(v̂)

´
Dl
m0m(ω)

where in the last step we have used the previous equation that applies even if
v is an operator, as long as vI commute with each other. Thus, the operators
Tlm(v) = |v|l Ylm(v̂) are examples of tensor operators.

7.8.1 Combining tensor operators and states

In many computations products of operators occur. If each operator is an irre-
ducible tensor operator, then the product is generally not an irreducible tensor
operator. One may reduce the product into a sum of irreducible tensor opera-
tors in the same way a product of states is reduced to total angular momentum
states

|j1m1i|j2m2i =
X
jm

|jmj1j2ihjm|m1m2i (7.148)

Tj1m1Tj2m2 =
X
jm

Tjmhjm|m1m2i (7.149)
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The equations may be inverted by using the completeness relation of the Clebsch-
Gordan coefficients

|jmi =
X
m1m2

|j1m1i|j2m2ihm1m2|jmi (7.150)

Tjm =
X
m1m2

Tj1m1
Tj2m2

hm1m2|jmi (7.151)

The rotation properties of Tjm obtained with this prescription is precisely the
ones obeyed by a tensor operator. This is guaranteed by its parallel structure
to the states of total angular momentum. In particular, the example Tlm(v) =
|v|l Ylm(v̂) may be regarded as a combination of products of l tensor operators
T1m(v) = vm reduced to an irreducible one by the multiple use of Clebsch-
Gordan coefficients.
Similarly, we may consider products of operators and states Tj1m1 |j2m2i.

Without knowing the details of either the operator or the state, we may still
combine them into states that transform irreducibly under rotations

Tj1m1 |j2m2i =
X
jm

|jmihjm|m1m2i hj||Tj1 ||j2i (7.152)

The coefficients hj||Tj1 ||j2i are called reduced matrix elements. They are in-
serted because the states on the left and right are assumed to be normalized;
otherwise the reduced matrix elements hj||Tj1 ||j2i could have been absorbed into
a redefinition of the states. They depend only on j, j1, j2, but are independent
of the magnetic quantum numbers m1,m2,m. Therefore they are scalars under
rotations, and their presence does not alter the rotation properties of the states.
They may be computed by evaluating the matrix elements

hj3m3|Tj1m1
|j2m2i = hj3m3|m1m2i hj3||Tj1 ||j2i, (7.153)

and they obviously depend on the detailed construction of the states and op-
erators. To obtain the reduced matrix element the most convenient values of
m1,m2,m3 may be chosen on the left hand side, as long as the corresponding
Clebsch-Gordan coefficient on the right hand side is non-zero.
The content of eq.(7.153) is called the Wigner-Eckhart theorem. It is a

very powerful result of rotation covariance. It says that all the matrix elements
hj3m3|Tj1m1 |j2m2i are proportional to a single overall constant hj3||Tj1 ||j2i that
depends on the details of the system, while the ratios of the matrix elements
depend only on the Clebsch-Gordan coefficients that are completely known and
independent of the details of the system

hj3m3|Tj1m1 |j2m2i
hj3m0

3|Tj1m0
1
|j2m0

2i
=
hj3m3|m1m2i
hj3m0

3|m0
1m

0
2i
. (7.154)

This result has many interesting applications in all branches of physics. In par-
ticular we mention selection rules in decays or scattering of quantum systems,
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such as atoms, nuclei or particles. The transition amplitude has the same struc-
ture as hj3m3|Tj1m1 |j2m2i where the states are the initial and final states, while
Tj1m1

is the transition operator. Obviously, certain transitions are not allowed if
the corresponding Clebsch-Gordan coefficient vanishes! Also, the allowed tran-
sitions occur with definite ratios that are predetermined by the values of the
Clebsch-Gordan coefficients. The application of this basic idea is very broad.
It must be emphasized that in Eqs.(7.149,7.151) above the operators Tjm

are not necessarily normalized according to any particular rule, so that any
possible rotationally invariant extra factors are absorbed into a redefinition of
the operators. Thus, if the operators Tjm, Tj1m1 , Tj2m2 are each multiplied with
arbitrary constant or operator factors which are rotationally invariant (inde-
pendent of m,m1,m2, but possibly dependent on j, j1, j2), we can still write
the same equations as above for the new operators provided we absorb all the
m,m1,m2 independent extra factors as part of an appropriate redefinition of
the new operators T̃jm, T̃j1m1

, T̃j2m2
. However, in some circumstances, if one

wishes to define operators Tjm, Tj1m1 , Tj2m2 normalized according to some rule
(see e.g. problem 10), then more generally one may include factors Cj1j2j that
may depend on j, j1, j2 in combinaning operators, as follows

Tj1m1Tj2m2 =
X
jm

Cj1j2jTjmhjm|m1m2i, (7.155)

Tjm = (Cj1j2j)
−1 X

m1m2

Tj1m1
Tj2m2

hm1m2|jmi. (7.156)

Here Cj1j2j may be constants or operators. The important point is that the
extra factors Cj1j2j are invariant under rotations, and if it were not for some
desired normalization they could have been absorbed into a redefinition of the
Tjm, Tj1m1

, Tj2m2
. By specializing to some values of m,m1,m2 and using the

corresponding Clebsch-Gordan coefficient one could compute the extra factors
once and for all, so that the equation becomes fully determined for all other
values of m,m1,m2.

7.9 Problems

1. Consider the rotation of the bra in position space hr|0 = hr|eiω ·L/~ . By
using L = r× p show that the result is hr|0 = hr0|, where

r0 = eω×r = r+ ω × r+ ω× (ω × r) + · · · (7.157)

2. Compute the rotation matrices Dj=1 (ω) by summing up the series. Note

that
³
�ω · �=j=1

´n
is proportional to

³
�ω · �=j=1

´
or
³
�ω · �=j=1

´2
depending

on n =even, odd, respectively, and with coefficients that are powers of only
|ω| . Compare your result to eq.(7.48).



7.9. PROBLEMS 245

3. The computation of ω3(ω1,ω2) may be carried out by considering two
rotations applied on a vector as follows

eω2× ¡eω1×r
¢
= eω3×r.

Compute it up to 4th order (i.e. no more than 2 powers in either ω1 or
ω2) and show that your results are in agreement with the expansion in
eq.(7.10).

4. The product of two rotations that yields ω3(ω1,ω2) may be computed ex-
actly by using the j = 1/2 representation as outlined just before eq.(7.14).
Verify this result and then compute the expansion for small ω1,ω2 and
show that it agrees with eq.(7.10).

5. Consider rotations applied on a quantum state hψ|. A first rotation of
π/3 around the ẑ axis is followed by another rotation of π/3 around the
original ŷ axis,

(a) If the original state hψ| has angular momentum j = 2 and m = 1,
what are the probabilities that the rotated state has (j = 1,m = 0),
(j = 2, m = 0), (j = 3, m = 0)?

(b) If the original state is the linear superposition

hψ| = 1√
2
hj = 1,m = 1|+ 1√

2
hj = 2,m = 1|, (7.158)

what is the probality that the rotated state has (j = 1,m = 0), (j = 2, m = 0),
(j = 3, m = 0)?

(c) What is the overall rotation angle ω (magnitude ω and direction ω̂=
x, y, z componets).
You should provide analytic answers in terms of D-functions for an-
gular momentum, and then plug in the numbers and give complete
numerical answers.

6. Compute the rotation vector �ω that is equivalent the rotation produced
by the Euler angles α, β, γ

7. Use the symmetry properties of the 3j symbols to derive the Clebsch-
Gordan coefficients for

j1 × (j1 + 1
2)→

1
2

j1 × (j1 + 1)→ 1
j1 × j1 → 0

by using the coefficients for j1× 1
2 → j1+

1
2 and j1×1→ (j1+1) listed in

Tables (7.1,7.2) respectively. Compare your results to the ones obtained
from the general formula (7.116).
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8. By using any of the spin-1/2 representations given in (7.44-7.45) obtain the
expressions for

¡
φ0, θ0, γ0

¢
,
¡
φ00, θ00, γ00

¢
and verify the left/right invariance

property of the Haar measure, dµ(φ, θ, γ) = dµ(φ0, θ0, γ0) = dµ(φ00, θ00, γ00)
given in (7.125).

9. As an example of a tensor operator consider the creation operators a†1, a
†
2

of the harmonic oscillator in two dimensions. Under commutation with the
SU(2) operators J+ = a†1a2, J− = a†2a1, J0 =

1
2

³
a†1a1 − a†2a2

´
show that

they satisfy the conditions for a tensor operator with j = 1/2. Thus, we
may identify T 1

2m
= a†m where we may usem = ±1

2 , i.e. a
†
m = a†± 1

2

instead

of using the labels a†1, a
†
2. Then show that the annihilation operators also

form a tensor operator am where we need to identify the doublet as a+ 1
2
=

−a2 and a− 1
2
= a1.

10. Generalizing the ideas of the previous problem, show that the following
operator is a tensor operator

Tjm =

³
a†1

´j+m ³
a†2

´j−m
p
(j +m)!

p
(j −m)!

11. Consider the product of two tensor operators of the type given in the
previous problem Tj1m1Tj2m2 . Show that their product is another tensor
operator with j = j1 + j2. How does this fit with the general formula
Tj1m1Tj2m2 =

P
jmhj1m1j2m2|jmiTjm ? From the resulting expression

derive the Clebsch-Gordan coefficient for the angular momentum addition
j1×j2 → (j1 + j2) , and compare to the results for the special cases j1 = j
and j2 = 1/2 or j2 = 1 given in tables (7.1) and (7.2) respectively. Do you
agree with those tables?

12. Consider the states of the two dimensional harmonic oscillator and the
matrix element hj1m1|Tjm|j2m2i. Show how the Wigner-Echart theorem
applies in this case, and compute the reduced matrix element.

13. Application of Wigner-Eckhart theorem to selection rules.

14. The fundamental theory of Quantum Chromodynamics produces an effec-
tive interaction between two heavy spin 1/2 quarks. The dominant part
of this interaction is the linear potential V (r1, r2) = γ |r1 − r2| propor-
tional to the distance between them, as shown in Fig.(6.8a). There is also
a 1/r term, as in the problems at the end of Chapter 1, as well as spin
dependent terms, but for the sake of this excercise we will suppress these
terms, except that the spin effects will be taken into account roughly as
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described below

E 
γ|r| 

V 

|r| 

Fig.(7.3a) . V (r) = γ |r|

 

j=j2 as function of l 

j=j1 as function of l 

. 

. 

. 

Fig.(7.3b) - Energy as function of j (l)

a) Write down the radial Schrödinger equation in relative radial coordi-
nates explaining carefully the relation of each term in your equation to
the two-body Hamiltonian H.

b) Each state is labelled with a quantum number for energy, orbital an-
gular momentum, and spin. In the total angular momentum scheme, if
the orbital quantum number of some state is l give all the values of total
angular momentum j for a fixed l. Then take the spin effects into consid-
eration as follows: If j1 > j2 then the level labelled by the greater j1 has
a higher energy as shown in Fig.(6.8b). Taking this into account, draw an
energy level diagram similar to Fig.(6.8b) for all levels with l = 0, 1, 2, 3.
Give separate diagrams for l = 0 and l 6= 0, and indicate clearly how many
states with same j there are at each level.

c) Using the uncertainty principle, or any other rough approximation
scheme, estimate the energy E of the lowest state for each fixed value of
orbital angular momentum l, and give your answer as a function of the
parameters m,γ,~ and l.

d) Neglecting the spin effects, solve the radial differential equation for the
ground state with l = 0 and give the exact condition for the quantization
of energy for the levels with l = 0. Hint: the equation can be solved in
Fourier space. Then find the relation of the radial wavefunction in r space
to the Airy function and use the properties of this function to find the
energy eigenvalues, either numerically or through a plot.

15. Consider the excited levels of an open string in d=3 dimensions whose
Hamiltonian is written in terms of its normal modes, as discussed in chap-
ter 5

H =
p̃2

2πµ
+ ~ω

∞X
n=1

n Nn, Nn = ã
†
n · ãn = number operator for level n

The ground state is an eigenstate of the center of mass momentum oper-
ator p̃|k, 0i = |k,0i~k̃. Excited states are obtained by applying creation
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operators for any normal mode. These are arranged by the energy levels,
where level is defined by the sum

P
nNn. Thus, the ground state is at

level zero, the states a†1I |k, 0i are at level one, the states a
†
2I |k, 0i, and

a†1I a
†
1J |k, 0i are at level two, and so on. In this problem we will consider

the excited states that can be constructed up to level 4.
The total angular momentum of the string is given by �J = �L + �S where
�L = �r × �p is the orbital angular momentum of the center of mass, and
�S =

P∞
n=1

¡
ã†n × ãn

¢
is the spin contributed by the excitations. Under

rotations the creation operators ã†n transform as vectors, and the various
excited levels can be classified as traceless symmetric or antisymmetric
tensors constructed from these creation operators. For SO(3) an anti-
symmetrizing two vectors gives again a vector due to the existence of the
Levi-Civita tensor (e.g. VIWJ − VJWI = εIJK(�V × �W )K). After taking
this effect into account there remains symmetrizing vectors (or composite
vectors such as �V × �W ) to construct symmetric traceless tensors that cor-
respond to higher spins. The rank of a symmetric traceless tensor is the
spin of the state. For example at level 2 there are states with spin 0,1,2
that correspond to the traceless tensors of rank zero a†1 · a

†
1 |k, 0i, rank

one a†2I |k, 0i, and rank two
³
a†1I a†1J − 1

dδIJa
†
1 · a

†
1

´
|k, 0i, respectively.

The object of the current problem is to classify the spins at every level
up to level 4 by constructing explicitly the traceless tensors. Thus, first
argue on the basis of addition angular momentum, j1 × j2 = |j1 − j2| +
· · ·+(j1 + j2) , which spins you expect at every level, and how many states
with the same spin would occur. Then construct explicitly the traceless
tensors, and specify the spin of each state up to level 4. Then create a
plot of the spin versus the level and insert in the plot the degeneracy of
states that have the same spin and level, at every point of the plot.

16. Consider a spin 2 nucleus placed in a field such that its energy is given by
the Hamiltonian

H = a
³
2S̃2 − 4 (S0)2

´
+ b

³
(S+)

3 + (S−)
3
´
,

where S̃ is the spin operator and a, b are constants. Evidently this Hamil-
tonian is not diagonal in the |smsi basis with s = 2. In this problem we are
interested in the eigenstates and eigenvalues of this Hamiltonian, where
the eigenstates are to be expressed as a linear combination of the |smsi.
Note that parts (d,e,f) can be done without needing the results of parts
(a,b,c).

(a) Give an argument that a 180o rotation around the x-axis is a sym-
metry of this Hamiltonian (formulas not needed, a picture may be
helpful)).

(b) Construct the corresponding symmetry operator R and show that it
commutes with H. From staring at R give a quick argument for what
the eigenvalues of R can be?
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(c) Show how the states |smsi transform under R, and find the trans-
formed states |smsi0 in terms of the |smsi explicitly (i.e. not a formal
answer). [Hint: by considering what happens to S̃ under the 180o

rotation R you can essentially guess the answer; but for a proof use
Euler angles, or use a rotation of the x̂ axis into the ŷ axis, to take
advantage of known djmm0 functions]. From this result construct the
eigenstates of R.

(d) Construct the matrix elements of the Hamiltonian in the |smsi basis.
(e) Find the eigenvalues En of the Hamiltonian (for this step, and the

next, it is useful to first reorganize the matrix into a block diagonal
form).

(f) Find the eigenstates |Eni as a linear combination of the states |smsi.
(g) Find the linear combination of the states |smsi that are simultaneous

eigenstates of H and R.

17. Consider a spin 1/2 electron constrained to move on a spherical shell of
a fixed radius r = r0 (this constraint requires also a vanishing radial
momentum pr = 0). Its interactions include spin-orbit coupling L · S due
to the magnetic moment of the electron, and an interaction proportional
to r̃ · Ẽ = RE cos θ due to an external constant electric field Ẽ. Let
us assume the Hamiltonian is organized into three terms with constant
coefficients a, b, c

H = a (L+ S)
2
+ bL · S+c cos θ

where �L, �S are the orbital and spin angular momenta respectively. In this
problem we are concerned with computing the energy levels and states of
the system in certain limits of the parameters a, b, c. You only need to use
algebraic methods involving angular momentum to answer the following
questions.

(a) In the limit b = c = 0 give the exact energy eigenstates and eigenval-
ues by providing a complete set of labels including the range of all
eigenvalues of simultaneous observables. Provide an energy level dia-
gram including the lowest 3 energy levels in which you clearly indicate
all the states with all their quantum numbers. Give the degeneracy
of each of these energy levels, specifically note that the ground state
is degenerate.

(b) Next, consider a, b 6= 0 while c = 0, and again find the exact energy
eigenvalues and eigenstates. On the energy level diagram indicate
how the degeneracies of the previous case are broken and again clearly
show the energies, other quantum numbers, and degeneracies of the
first three new ground and excited levels.

(c) As the value of b changes from very small to very large consider what
happens to the ordering of the energy levels. At which critical value
of b/a does the order of energy levels begins to change?
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(d) We would like to compute the matrix elements of the Hamiltonian
in the limit b = 0, but a, c 6= 0. Note that cos θ ∼ Y10 (θ) is a vector
operator. Consider only the degenerate states at the ground level
you found in part (1), and take advantage of the Wigner-Eckhart
theorem to compute the matrix elements among these states. For
your answer give the full matrix explicitly, including all coefficient
computed in all detail.

18. Consider the operator R = exp (iπJ1) for a rotation around x-axis by
the angle π. Compute the action of R on the states |jmi for any j,m.
You can compute this with brute force by using the Dj functions, but in
this exercise you are required to do the computation using a more clever
method that takes advantage of the fact that RJ1R−1 = +J1, RJ2R−1 =
−J2, RJ3R−1 = −J3, and R2|jmi = (−1)2j |jmi since R2 is a 2π rotation.
Write out Rm0m = hjm0|R|jmi explicitly in the form of a matrix. Verify
that the Dj functions give the same result. How would you compute the
square root of this matrix? give an expression for it.
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.



Chapter 8

SYMMETRY

Physical systems often have symmetries. This is manifested by different ob-
servers obtaining the same results when they perform experiments under differ-
ent conditions that are related by the symmetry. For example observer A and
observer B that do experiments in laboratories at different locations obtain the
same results because of translation symmetry. Similarly the results are the same
when the laboratories are at different orientations because of rotation symme-
try. These are general properties of the laws of Nature. In addition, complicated
systems of many interacting particles sometimes have internal symmetries. In
this chapter we will be concerned with space-time symmetries of non-relativistic
particle systems, their classical and quantum formulation, their mathematical
properties, and their usage in simplifying and solving problems. However, some
of the discussion is more general and applies to more sophisticated theories in
various branches of Physics.

8.1 Symmetry in classical physics

Observers A and B use their own coordinate systems to keep track of the parti-
cles. For the particle labelled by the index i let us define A’s coordinates by ri
and B’s coordinates by r0i. These are related to each other by coordinate trans-
formations that involve several parameters. For example in the case of transla-
tions r0i = ri + ai, where ai are the parameters. It is useful to consider nearby
observers which are related to each other by infinitesimal coordinate transforma-
tions. If the infinitesimal parameters for N symmetries are �a, a = 1, 2, · · · , N ,
we may expand the relation between ri and r0i to first order in the �a’s, and
write

r
0I
i = rIi + δ�r

I
i , δ�r

I
i =

X
a

�af
Ia
i (r, ṙ) (8.1)

where I = 1, 2, 3 denotes the vector index.
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If the two observers A and B see identical physical phenomena and measure
the same results, it must be that the equations that they use in terms of ri and
r0i respectively have the same form. If one takes A’s equations and substitutes
r0i instead of ri the resulting equations are B’s equations. Only if there is a
symmetry, B’s equations, rewritten in terms of ri, will yield A’s equations in
identical form, not otherwise.
Instead of discussing the symmetries of the equations of motion, it is more

efficient to consider the action from which they are derived by a variational
principle. The action S is constructed from a Lagrangian in the form S(ri) =R 2
1
dt L(ri(t), ṙi(t)). The Euler equations are then

∂

∂t

∂L

∂ṙi(t)
− ∂L

∂ri(t)
= 0 . (8.2)

There will be a symmetry provided, under the substitution ri → r0i, the form of
the action remains invariant up to a “constant”

S(r)→ S(r0) = S(r) + constant(1, 2). (8.3)

This equality will guarantee that the equations of motion derived for r0i will
have an identical form to those derived for ri. The “constant(1, 2)” (which is
zero in most cases) is allowed to depend on the coordinates or velocities at the
end points t = t1, t2. Since the initial and final points are kept fixed (δri(t1) =
δri(t2) = 0) in the variational principle that leads to the Euler equations (8.2)
the “constant(1, 2)” does not contribute to the equations of motion. Whenever
the action has such a symmetry then two observers related to each other by
the symmetry transformation must observe identical physics. Therefore, the
mathematical formulation of symmetry at the classical level is reduced to the
symmetries of the action under coordinate transformations as in (8.3). Now,
substituting in (8.3) the infinitesimal transformation (8.1) valid up to first order
in the parameters, and expanding S(r0i) = S(ri+ δ�ri) ≈ S(ri) + δ�S, one must
get δ�S = 0 to first order because of the symmetry (8.3). Thus, symmetry
implies

δ�S =

Z 2

1

dt[
∂L

∂ṙi(t)
δ�ṙi(t) +

∂L

∂ri(t)
δ�ri(t)] = 0 . (8.4)

Here δ�ṙi(t) is obtained by taking a time derivative of (8.1). Let us give a few
simple examples of symmetric actions.

(i) The free particle moving in one direction is a trivial but useful example.
It is described by the Lagrangian L(x) = 1

2mẋ2. This is invariant under
translations x0 = x+ � since S(x) = S(x0). Therefore two observers using
coordinates whose origin differs by a translation must see the same motion
of the free particle. Indeed the equation of motion used by A is ẍ = 0,
while the one used by B is ẍ0 = 0, which has the same form. These
equations are derived from S(x) and S(x0) respectively.
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(ii) The free particle in 3 dimensions is described by the Lagrangian L(r) =
1
2mṙ

2. It has obvious rotation and translation symmetries. The infinites-
imal transformations are δr = ω × r + a, and when substituted in (8.4)
one gets zero.

(iii) The general central force problem for the two particle system, which is of
great interest in many physical applications, has the Lagrangian

L(r1, r2) =
1

2
m2
1ṙ
2
1 +

1

2
m2
2ṙ
2
1 − V (|r1 − r2|). (8.5)

This system is obviously symmetric under simultaneous translations and rota-
tions of both coordinates as in example (ii), but in addition there is a symmetry
under an extra internal rotation of the relative coordinate. The infinitesimal
symmetry transformations are

δr1 = ω × r1 + a+ m2

m1+m2
��× (r1 − r2) ,

δr2 = ω × r2 + a− m1

m1+m2
��× (r1 − r2).

(8.6)

It is straightforward to check that the action remains invariant. That is, S(r01, r
0
2) =

S(r1, r2) + δS, with δS = 0 to first order in ω, a , or �� (homework problem).
The symmetries of example (iii) may be better understood by defining center

of mass and relative coordinates, as in the chapter on the central force problem

R = (m1r1 +m2r2)/M , r = r1 − r2 ,
M = m1 +m2 , µ = m1m2/M .

(8.7)

In terms of these the center of mass and relative motion decouple, and the
Lagrangian in (8.5) splits into two independent pieces that do not communicate
with each other

L = LCM + Lrel , LCM =
1

2
MṘ2 , Lrel =

1

2
µṙ2 − V (r). (8.8)

Then from (8.6) one can derive the transformation rules of R and r

δR = ω ×R+ a , δr = (ω + ²)× r . (8.9)

This allows one to interpret (ω,a) as the symmetry parameters of the overall
system, with the translations applied only to the center of mass, while�� is clearly
a symmetry parameter of an internal orbital rotation that leaves the Lagrangian
Lrel invariant by itself.

8.2 Symmetry and classical conservation laws
The above examples illustrate some simple physical systems with symmetries.
Now consider a general Lagrangian describing an arbitrary system of particles
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located at ri(t) at time t. Suppose the Lagrangian has a symmetry under the
infinitesimal transformation of (8.1) with some specific functions fIai (rj , ṙj). Ac-
cording to Noether’s theorem, that we will prove below, corresponding to every
symmetry parameter �a there exists a conserved quantity Qa(ri, ṙi) that is time
independent. That is, even though the location and velocities of the particles
may be changing with time, the conserved quantities Qa, which are constructed
from them, remain unchanged, i.e. dQa/dt = 0 . The conservation of energy,
momentum and angular momentum are some examples of consequences of sym-
metry. There are many more interesting cases in specific physical systems.
To construct the explicit form ofQa(ri, ṙi) and prove Noether’s theorem, first

note that the symmetry of the action (8.3) is satisfied most generally provided
the Lagrangian behaves as follows

L(r0i(t), ṙ
0
i(t)) =

∂t0

∂t
L(ri(t

0), ṙi(t
0)) +

∂

∂t
α(ri(t), ṙi(t)). (8.10)

Here t0(t, �) is a change of variables that generally may depend on the parameters
of the symmetry transformation, and ∂t0

∂t is the Jacobian for the change of
variables. α is some function of the dynamical variables and the parameters,
which vanishes as �a → 0. The function α is zero in most cases, but not for
every case, as will be seen in examples below. Also, in most cases t0(t, �) = t,
otherwise the infinitesimal expansion gives t0 = t +

P
a �aγ

a(ri(t), ṙi(t)) with
some functions γa. When equation (8.10) is integrated, the left side yieldsR 2
1
L(r0i(t), ṙ

0
i(t)) = S(r0i), and the right side givesR 2

1
dt∂t

0

∂t L(ri(t
0), ṙi(t

0)) +
R 2
1
dt ∂∂tΛ(ri(t), ṙi(t))

=
R
dt0L(ri(t

0), ṙi(t
0)) + Λ(1)− Λ(2)

= S(ri) + constant(1, 2).

(8.11)

Thus, the condition of symmetry (8.3) is equivalent to (8.10).
Now expand (8.10) to first order in �a on both sides. After dropping L from

both sides it takes the form

δ�L =
dΛ

dt
, (8.12)

where δ�L = ∂L
∂rIi

δ�r
I
i +

∂L
∂ṙIi

δ�ṙ
I
i , and Λ (ri, ṙi) = �aγ

aL+ �a
∂α
∂�a

is some function
of the dynamical variables which is first order in the parameters �a. Λ is zero in
most cases, but not always. That is, when one applies an infinitesimal symmetry
transformation on the Lagrangian, the result is either zero, or at most a total
time derivative. By contrast, if there is no symmetry, the result can be anything.
Now use Euler’s equation of motion d

dt
∂L
∂ṙIi
− ∂L

∂rIi
= 0 (8.2), and recall that the

canonical momentum is pIi =
∂L
∂ṙIi

, to write (8.12) in the form

d

dt
(δ�ri · pi) =

dΛ

dt
(8.13)

This shows that there exist a conserved quantity dQa/dt = 0 for every linearly
independent infinitesimal parameter �a, and that it is given by
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�aQa = δ�ri · pi − Λ. (8.14)

Substituting the explicit form of the transformation (8.1), and differentiating
with respect to �a on both sides one can write

Qa(ri, ṙi) = faIi (ri, ṙi) p
I
i −

∂

∂�a
Λ(ri, ṙi). (8.15)

This is a generalized version of Noether’s theorem that includes the Λ.
We have seen that a conserved charge is associated with every symmetry

parameter. To compute it, all one needs is the explicit form of the infinitesimal
symmetry transformation, i.e. the functions faIi (ri, ṙi), and then plug it into
the Lagrangian in order to compute Λ as in (8.12). Let us see how this works
in the examples (i), (ii), (iii) above for which one finds Λ = 0 :

(i) The free particle in one dimension has a translation invariance under δx = a.
In this case δL = mẋȧ = 0, since a is time independent. Hence Λ = 0.
Then eq.(8.14) takes the form aQ = ap where a has been used instead of
�. Eliminating a from both sides one identifies the conserved quantity as
the momentum

Q = p. (8.16)

So, the canonical momentum p is time independent. Indeed, the equation
of motion is ṗ = 0, which confirms the expected conservation.

(ii) The free particle in three dimensions has a rotation invariance under
δr = ω × r, with Λ = 0. Then eq.(8.14) takes the form ω ·Q =(ω × r) ·p
where ωa has been used instead of �a. Eliminating it from both sides one
finds that the conserved quantity is angular momentum

Q = r× p. (8.17)

In addition, there is a translation symmetry under δr = a with Λ = 0,
which yields another conserved quantity p, which is the three dimensional
momentum. Thus, for the free particle, it is dictated that momentum p
and angular momentum L = r × p are conserved because of translation
and rotation symmetries respectively.

(iii) The central force problem has symmetries under the transformations given
in (8.6). First, let us deal with translations δr1 = δr2 = a, for which Λ = 0.
Eq.(8.14) gives a ·Q = a · p1+a · p2. Hence the conserved quantity is the
total momentum of the system

Q = p1 + p2 ≡ P. (8.18)

Next consider the rotations δri = ω×ri. Eq.(8.14) gives ω ·Q =(ω × r1)·
p1+(ω × r2) ·p2. Therefore the conserved quantity associated with rota-
tions is the total angular momentum of the system

Q = r1 × p1 + r2 × p2 ≡ Ltot. (8.19)
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The total angular momentum may also be written in terms of the center of
mass and relative coordinates defined in (8.7) and their canonical conju-
gate momenta (given in Chap.6) P = p1+p2 and p = (m2p1−m1p2)/M ,

Ltot = r1 × p1 + r2 × p2 = R×P+ r× p. (8.20)

Finally, consider the internal rotations associated with the parameter ��
for which fIa1 = (m2/M)�

IaJ(rJ1 − rJ2 ) and f
Ia
2 = −(m1/M)�IaJ(rJ1 − rJ2 ).

The conserved quantity in this case reduces to the relative orbital angular
momentum

Lrel = r× p. (8.21)

Combining the above results one concludes that the center of mass and
relative orbital angular momenta are independently conserved. This result
is not surprising in view of the decupling of the center of mass and rela-
tive motions, as is evident from (8.8). Therefore, due to the symmetries
associated with the 9 parameters a,ω,�� there are 9 conserved quantities:
the total momentum P, the total angular momentum Ltot = LCM + Lrel
and the relative orbital angular momentum Lrel respectively.

The more general cases involving non-trivial Λ may be illustrated through
the following examples

(iv) Consider any Lagrangian in which the only time dependence comes through
ri(t). Then the transformation r0i(t) = ri(t + �) that corresponds to a
time translation t0(t) = t + � is a symmetry in the sense of (8.3) with
(∂t0/∂t) = 1, α = 0. In this case δri = �ṙi gives δL = �∂tL. Then
eq.(8.14) becomes �Q = �ri ·pi−�L, and the conserved charge is recognized
as the Hamiltonian

Q = H = ri · pi − L.

Thus conservation of the total energy of a system is due to time translation
symmetry.

(v) Consider the harmonic oscillator potential in the central force problem. It
is sufficient to concentrate on the relative motion described in terms of
the relative coordinates Lrel = 1

2µ(ṙ
2 − ω2r2), where ω is the frequency

of oscillations. We have already seen in example (iii) that there is an
internal rotational invariance that gives rise to the conservation of relative
angular momentum L = r× p. In addition, this system has a symmetry
under the transformation δrI = �IJ ṙJ where �IJ is a symmetric matrix of
parameters. In this case one finds

Λ = (µ/2)�IJ(ṙI ṙJ − ω2rIrJ). (8.22)

Note that the index “a” on �a has been replaced by the double index (IJ)
on �IJ and therefore the conserved quantity will be labelled by a sym-
metric tensor QIJ . Applying the general theorem one finds the conserved
quantity from eq.(8.14)

�IJQIJ = �IJ ṙJpI − (µ/2)�IJ(ṙI ṙJ − ω2rIrJ)
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After replacing pI = µṙI this becomes

QIJ =
1

2µ
pIpJ +

µω2

2
rIrJ . (8.23)

Using the equations of motion for the harmonic oscillator one can explic-
itly show that indeed dQIJ/dt = 0 (exercise). The 6 conserved charges
QIJ together with the three conserved angular momentum charges form
the Lie algebra of SU(3) (see Chap.6, and problems at the end of this
chapter). The symmetry of the Lagrangian applies also in any dimension
d = 2, 3, 4, · · · . In that case the symmetry is SU(d) (see below).

(vi) Consider the central force problem with the 1/r potential, as in the plane-
tary problem, or as in the Hydrogen atom. Its Lagrangian that describes
the relative motion is

Lrel =
1

2
mṙ2 +

Ze2

r
(8.24)

This is evidently invariant under rotations, and therefore the relative an-
gular momentum L = r× p is conserved as in example (iii). In addition,
this system is symmetric under the transformation

δεr = r× (ε× ṙ ) + ε× (r× ṙ) (8.25)

δεr
I = εaf

Ia(r, ṙ ) =εa

³
δIar · ṙ+rI ṙa−2raṙI

´
.

The Lagrangian transforms to a total time derivative δεL = ∂tΛ, where
(exercise)

Λ = −m(ε× ṙ ) · (r× ṙ)−Ze2 ε · r
r

. (8.26)

Noëther’s theorem gives (after using p =mṙ )

mQ = L× p−mZe2
r

r
.

This is known as the Runge-Lenz vector, and it is conserved (exercise).
The three conserved charges Q together with three conserved angular
momentum charges L form the Lie algebra of SO(4) (see below, and next
chapter). The symmetry of the Lagrangian is also valid in any dimension
d = 2, 3, 4, · · · , provided one uses the second line in (8.25) that applies to
any dimension. In the more general case the symmetry is SO(d+1). This
symmetry of the H-atom and its consequences will be discussed in more
detail in the next chapter.

8.3 Symmetry in quantum mechanics

Let us consider the conserved quantities Qa associated with a symmetry of
the classical Lagrangian. In quantum mechanics these quantities are operators
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expressed as functions of positions and momenta Qa(ri,pi). The time deriva-
tive of an operator is given by commuting it with the Hamiltonian dQa/dt =
i[H,Qa]/~. Since the Qa are time independent they must commute with the
Hamiltonian

[Qa,H] = 0 . (8.27)

We can then conclude that every conserved “charge” Qa, corresponding to a
given symmetry of the theory, commutes with the Hamiltonian and can thus be
simultaneously diagonalized with H itself.
In determining the Hilbert space on which H and Qa operate, one can select

those “charges" which commute among each other, say Qa1 . . .Qar , so that the
states can be labelled by their eigenvalues

|state >= |E, qa1 , . . . , qar > (8.28)

This implies that in the presence of a symmetry, there is degeneracy in the
energy levels. An example is readily found in the case of rotational symmetry.
A general state can be represented as |E, l,m > where for the same energy level
E there are many states for several values of the angular momentum eigenvalues
l and m.
We have thus seen that Noether’s theorem is very helpful in finding “good"

quantum numbers as labels of the Hilbert space of a particular physical system.
When the Hilbert space is labelled by symmetry quantum numbers, the quantum
problem greatly simplifies and its interpretation becomes much more tractable.
A major application of this fact is the angular momentum basis for rotationally
symmetric systems.
To understand the mathematical structure we now turn our attention to

another implication of Noether’s theorem in Quantum Mechanics, namely that
every symmetry operator Qa is the infinitesimal generator of the corresponding
transformation under which the Lagrangian and/or the Hamiltonian is invari-
ant. This means that an infinitesimal symmetry transformation of any operator
A(ri,pi) in the quantum theory would be given by

δ�A = (i/~)[�aQa, A] . (8.29)

One can easily prove that indeed the Qa are the infinitesimal generators for the
case A = ri and when fIai are independent of velocities. To see this note that
one can use the canonical commutation rules, [pJj , r

I
i ] = −i~δIJδij , to write

δrIi = (i/~)[�aQa, r
I
i ] = (i/~)�afJaj [pJj , r

I
i ] = �af

Ia
i , (8.30)

thus reproducing the transformation law (8.1) through the quantum commuta-
tion rules. One can prove (8.29) for more general cases, but this will not be
treated here (see problem on 3-dimensional harmonic oscillator).
The main lesson of the previous paragraph is that commutation with a sym-

metry operator Qa has to be viewed as being closely related to applying an
infinitesimal symmetry transformation. The result of commuting a symmetry
operator with any other operator A is equivalent to applying an infinitesimal
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symmetry transformation to the operator A. An important consequence of this
is that the commutation with the Hamiltonian [Qa,H] = 0 means that the
Hamiltonian is invariant under infinitesimal symmetry transformations.
One may commute symmetry operators with each other [Qa, Qb]. This is

equivalent to applying symmetry transformations to each other, since δ�Qb =
(i/~)[� · Q,Qb]. By using Jacobi identities, one can show that the composite
operator [Qa, Qb] commutes again with the Hamiltonian

[[Qa, Qb] ,H] = [Qa, [Qb,H]]− [Qb, [Qa,H]] = 0, (8.31)

since each term vanishes on the right hand side. It must be that [Qa, Qb] is some
linear combination of symmetry operators, since any operator that commutes
with the Hamiltonian is a generator of symmetry transformations. Therefore,
we expect the form

[Qa,Qb] = i~fcabQc. (8.32)

This relation indeed holds for all the examples given in this chapter, with some
set of constants f cab (exercise: find the constants for some of the examples).
A relation such as (8.32), that holds for a complete set of operators that close

into the same set under commutation, is called a Lie algebra. Lie algebras form
the mathematical foundation of symmetry in quantum mechanics. Their study
is extremely important both for the formulation of symmetries in fundamental
theories and for performing computations to extract the physical information
from them.
Up to now we have mainly discussed infinitesimal transformations. How

about finite transformations? We will argue that for continuous groups the
infinitesimal transformations contain all the information. By performing a series
of infinitesimal transformations one can build up a finite transformation. For
the operator A one may write the infinitesimal transformation in the form A0 =
A + (i/~)[� · Q,A] . To first order in � this is the same as A0 = (1 + (i/~)� ·
Q) A (1− (i/~)� ·Q). For a finite transformation, one can divide it into N equal
parts, apply it N times, and take the limit of large N . This amounts to

A0 = limN→∞(1 + (i/N~)� ·Q)N A (1− (i/N~)� ·Q)N
= exp(i� ·Q/~) A exp(−i� ·Q/~). (8.33)

Therefore, a finite transformation is applied through the exponentiation of the
infinitesimal generators

U(�) = exp(i� ·Q/~), A0 = UAU−1 . (8.34)

For Hermitian Qa the U ’s are unitary, since upon Hermitian conjugation one
finds U† = U−1 (to prove it, think of U as an infinite series). Therefore, UU† =
1 = U†U . Finite transformations on states are applied according to the rule

|ψ >0= U |ψ > . (8.35)
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Under a unitary symmetry transformation the norm of the state does not change,
since

‘ < ψ|ψ >0=< ψ|U†U |ψ >=< ψ|ψ > . (8.36)

From the above discussion we deduce the following important facts. They
should never be forgotten:

1) The time translation generator for any quantum theory of the type given
in example (iv), is the Hamiltonian of the total system, as shown in that
example. A finite time translation by the amount ∆t is given by U =
exp(−iH∆t/~). Thus, a time translated state is |ψ(t) >= exp(−iH(t −
t0)/~)|ψ(t0) >. Taking a derivative of this equation one arrives at the
Schrödinger equation i~ ∂

∂t |ψ(t) >= H|ψ(t) >. Thus, the time translated
state is a formal solution of the Schrödinger equation.

2) The space translation generator is the total momentum operator of the
system. For the general 2-body system this was derived in the context
of example (ii). For a more complicated system, again it is the total
momentum that generates translations on all canonical variables. A finite
translation by the amount a on all operators and all states is given by
U = exp(ia ·P/~).

3) The rotation generator is the total angular momentum operator of the sys-
tem. For the two body system this was derived in example (iii), and
the same result is true for a general system. When spin is included
the total angular momentum Jtot = Ltot + Stot is the generator. A fi-
nite rotation by the amount ω on all operators and all states is given by
U = exp(iω · Jtot/~).

The above symmetry transformations, and other more specialized symmetry
transformations that occur in specific systems, such as the QIJ of example (v),
play an important role in the analysis and solution of the corresponding quantum
mechanical systems.
The simplest symmetry is translations. Since the translation generator, i.e.

total momentum, is simultaneously diagonalizable with the Hamiltonian, it is
convenient to work in the basis of total momentum eigenstates.. This means
plane waves for the center of mass variables. The total Hilbert space may be
taken as the direct product of these plane waves with the Hilbert space for the
relative motion. This result is a trivial consequence of translation symmetry
which leads to the separation of center of mass variables.
The next simplest non-trivial symmetry is associated with rotations and

angular momentum. For the 2-body central force problem, the orbital angular
momentum basis for the relative motion is of great interest and this was the
subject of the chapter on rotations. There, angular momentum was studied for
an arbitrary system, including intrinsic spin.
In other chapters we also studied other examples of higher symmetry, in-

cluding the cases of the two and three dimensional harmonic oscillators with
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SU(2) and SU(3) symmetries. We will also study the case of the Coulomb force
problem with SO(4) = SU(2) ∗SU(2) symmetry. We will learn that the higher
symmetry has important consequences on observable properties, for example on
the degeneracy of the energy spectrum, transition rates, etc..
Finally we should mention discrete symmetries, such as parity, time reversal

or charge conjugation invariances. These are distinguished from the above since
for these there are no infinitesimal transformations. Rather, they are analogous
to the finite transformations. The action is invariant just as in (8.3) or (8.10).
Similarly, there are even more complicated discrete symmetries, such as the
symmetries of crystals in condensed matter physics, which involve reflections,
inversions, discrete translations and discrete rotations. Finite transformations
of this type form discrete symmetry groups, while those admitting infinitesimal
transformations form Lie groups.
The properties of Lie groups are deduced from the study of the corresponding

Lie algebra of the type given in (8.32). All possible discrete groups and Lie
groups are classified mathematically, and their properties extensively studied.
The study of a Lie group and its representations is very much like solving a
quantum mechanics problem in the sense of finding a complete set of eigenstates
and eigenvalues that diagonalize simultaneous observables. The study of the
rotation group or its Lie algebra is the study of angular momentum and spin,
as was presented in a previous chapter (see also problems on SL(2, R), SU(3)).
There are also physical theories involving symmetries between bosons and

fermions. These are called supersymmetries.. The parameters of supersymmetry
are bosonic (like real or complex numbers) or fermionic (Grassmann numbers).

8.4 Symmetry in time dependent systems
Up to this point we mainly discussed systems in which the time dependence
appears only through the dynamical variables x (τ) , p (τ) . However we also en-
counter physical systems that are described by a Lagrangian or Hamiltonian in
which time may appear explicitly; how do we deal with symmetries for such sys-
tems? We will discuss this in the first order formalism by writing the Lagrangian
in the form

L = ẋipi −H (x, p, τ) (8.37)

where H (�x (τ) , �p (τ) , τ) is assumed to depend on time explicitly. Consider the
transformations generated by some operator Qε (�x (τ) , �p (τ) , τ) which may have
an explicit τ dependence in addition to the implicit τ dependence through �x (τ)
and �p (τ) . The transformations of �x, �p are obtained by computing the Poisson
bracket at equal τ

δεxi (τ) = {xi (τ) , Qε (x (τ) , p (τ) , τ)} , δεpi (τ) = {pi (τ) , Qε (x (τ) , p (τ) , τ)}
(8.38)

In evaluating the Poisson bracket τ is treated like a parameter. Then these give

δεxi =
∂Qε

∂pi
, δεpi = −

∂Qε

∂xi
. (8.39)
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Using these we compute the transformation of the Lagrangian L = ẋipi −
H (x, p, τ) and obtain

δεL =
d (δεxi)

dτ
pi +

dxi
dτ

δεpi −
∂H

∂xi
δεxi −

∂H

∂pi
δεpi (8.40)

=
d
³
∂Qε

∂pi

´
dτ

pi −
dxi
dτ

∂Qε

∂xi
− ∂H

∂xi

∂Qε

∂pi
+

∂H

∂pi

∂Qε

∂xi
(8.41)

=
d

dτ

µ
pi
∂Qε

∂pi

¶
− dpi

dτ

∂Qε

∂pi
− dxi

dτ

∂Qε

∂xi
− {H,Qε} (8.42)

=
d

dτ

µ
pi
∂Qε

∂pi
−Qε

¶
+

∂Qε

∂τ
+ {Qε,H} . (8.43)

In going from the third line to the fourth line we used the fact that the total
time derivative of Qε (�x (τ) , �p (τ) , τ) indicated by

dQε

dτ = ∂Q
∂τ +

dpi
dτ

∂Qε

∂pi
+ dxi

dτ
∂Qε

∂xi

is obtained by differentiating with respect to the explicit τ dependence (partial
derivative ∂Q

∂τ ) as well as the implicit τ dependence (chain rule
dpi
dτ

∂Qε

∂pi
+ dxi

dτ
∂Qε

∂xi
).

Since the Hamiltonian is the generator of infinitesimal time translations on
the canonical variables, namely {xi,H} = ∂τxi , {pi,H} = ∂τpi, and {Qε,H} =
∂Qε

∂xi
∂τxi +

∂Qε

∂pi
∂τpi, the last two terms in Eq.(8.43) represent the total time

derivative of Qε, namely
dQε

dτ = ∂Qε

∂τ +{Qε,H} . If there is a symmetry, then Qε

is conserved, which means its total time derivative dQε

dτ must vanish when the
equations of motion are used. However, to show that there is a symmetry, one
must show that ∂Qε

∂τ + {Qε,H} vanishes without using the equations of motion
for x (τ) , p (τ) . If that works, then we see from Eq.(8.43) that δεL reduces to a
total τ derivative δεL = dΛ

dτ with

Λ = pi
∂Qε

∂pi
−Qε, → Qε = pi

∂Qε

∂pi
− Λ (8.44)

Recalling that Qε was defined as Qε = piδεxi − Λ, we check the consistency
when the expressions above are inserted. Namely we can verify that Qε =

piδεxi − Λ = pi

³
∂Qε

∂pi

´
−
³
pi

∂Qε

∂pi
−Qε

´
= Qε is consistent, as expected.

In conclusion, there is a symmetry whenever one can find aQε (x (τ) , p (τ) , τ)
whose equal τ Poisson bracket with H (x (τ) , p (τ) , τ) satisfies

∂Qε

∂τ
+ {Qε,H} = 0. (8.45)

without using the equations of motion. It should be emphasized that ∂Qε

∂τ is
the τ -derivative with respect to the explicit τ only. This characterization of a
symmetry is valid whether H depends on τ explicitly or not, and can be taken
as a more general statement of a symmetry. The generators of the symmetry
Qa are the coefficients of the τ -independent parameters εa in the expansion

Qε (x (τ) , p (τ) , τ) = εaQa (x (τ) , p (τ) , τ) . (8.46)
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The Qa (x (τ) , p (τ) , τ) should form a Lie algebra under the equal τ Poisson
bracket at any τ in the classical theory, and after operator ordering, under the
equal τ Lie bracket at any τ in the quantum theory.

8.5 A brief tour of Lie groups

Symmetry transformations form a group. What is a group? A group G is a set
of elements G = {g}, together with an operation symbolically denoted by a dot
{·}, that satisfies the properties of (1) closure, (2) associativity, (3) identity, (4)
inverse. Closure means that under the operation two elements in G give a third
element in G, that is

g1 · g2 = g3 , and g3 ∈ G . (8.47)

Associativity requires that, when three elements are combined under the oper-
ation, one obtains the same result if combined in either order according to the
parentheses below

(g1 · g2) · g3 = g1 · (g2 · g3). (8.48)

However, one is not allowed to change the order of the elements 1,2,3 , unless
the operation happens to be commutative. The set must include the identity
element, designated by 1, whose property is

1 · g = g = g · 1 . (8.49)

Finally, the inverse of each element must be included in the set G. When
an element g is combined with its inverse g−1 they must produce the identity
element:

g · g−1 = 1 = g−1 · g . (8.50)

Now consider the set of all symmetry transformations that may be applied
on a physical system. More precisely, consider the action of the system that
remains invariant under the symmetries. To comprehend it better, it may help
to keep the examples of translations and/or rotations in mind. It is physically
evident that two symmetry transformations applied one after the other may
be regarded as a single symmetry transformation that leaves the Lagrangian
invariant. Therefore, symmetries close under this combination into another
symmetry transformation. Applying the symmetry transformation backward
is equivalent to the inverse element, and applying no transformation at all is
equivalent to the identity element. Therefore, the inverse and identity elements
are in the set of symmetries. Finally, one must check associativity of symmetry
transformations to insure that one has a group. Certainly for translations and
rotations this is intuitively evident, but more generally the product of operators
(applied on states or operators) is an associative multiplication in quantum
mechanics .
When the symmetries have continuous parameters, they can be studied in

the neighborhood of the identity. These are called Lie groups. As we saw an
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infinitesimal transformation is generated by the conserved charges Qa, and we
may write the symmetry transformation on any operator or state in terms of
U(²) = 1 + i² · Q/~. The finite symmetry transformation is given by U(²) =
exp(i² ·Q/~). Therefore these operators must satisfy the group properties when
applied on states (as in eq.(8.35)) or operators (as in eq.(8.34))

1− U(²1)U(²2) = U(²3) ,
2− [U(²1)U(²2)]U(²3) = U(²1)[U(²2)U(²3)],
3− U(0) = 1 ,
4− U(−²) = U(²)† = U(²)−1; U(²)U(−²) = 1 .

(8.51)

The properties of specific groups are hidden in the closure property (1), and by
specifying the combination of two parameters into a third one with the functions
²a3(²1, ²2), one completely determines the group. By taking infinitesimal (²1, ²2)
and expanding to lowest order one can give a general relation

��a3 = ��a1 +��a2 +
1

2
fabc��

b
1��
c
2 + · · · (8.52)

in terms of the constants fabc. These constants are called the structure constants
of the Lie group, and they carry all the information about the group. To see
their significance consider the product of two symmetry operators in the form
eAeB. For small A and B one has

eAeB = 1+A+B+AB+
1

2
A2+

1

2
B2+· · · = exp(A+B+

1

2
[A,B]+· · · ). (8.53)

Now use A = i²1 · Q/~, B = i²2 · Q/~ and compare the first line of (8.51)
to (8.53). Using the definition of ²3 in (8.52) one finds that the generators of
symmetry transformations must satisfy the Lie algebra

[Qa,Qb] = i~fcabQc . (8.54)

with the same structure constants given in (8.52).
The expansion in (8.53) can be continued to higher orders exp(A) exp(B) =

exp(C), and it will be seen that the higher powers of A or B contained in C
come always with commutators, e.g. [A, [A,B]] or [B, [B,A]] etc. (exercise).
Therefore, the Lie algebra (8.54) contains all the information about the closure
of the group; thus, knowing only the Lie algebra is sufficient to fully construct
²3(²1, ²2) to all orders. For this reason, the group property is the same for any
representation of the generators that satisfy the Lie algebra. In particular, the
smallest matrix representation of the Lie group (given below) is useful for the
explicit computation of ²3(²1, ²2).
To impose associativity (second line of eq.(8.51)) one must consider three

infinitesimal transformations. In quantum mechanics products of operators is
an associative multiplication. Therefore, this requirement is automatically sat-
isfied. Using this same associativity of products of operators one can prove the
Jacobi identity
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[Qa, [Qb, Qc] + [Qb, [Qc, Qa] + [Qc, [Qa, Qb] = 0 (8.55)

by simply opening up the brackets. However, a second way of evaluating this
identity is to use the Lie algebra 8.54 repeatedly.. Then we obtain the following
condition on the structure constants

fdakf
k
bc + fdbkf

k
ca + fdckf

k
ab = 0 , (8.56)

which is valid for any value of the indices (a, b, c, d). The two equations (8.54)
and (8.56) define a Lie algebra.
All possible Lie algebras were classified by Cartan in the 19th century. His

work consists of finding all possible solutions to the Jacobi identities in (8.56)
and providing explicit sets of constants f cab that determine the Lie algebra.
Therefore all possible continuous symmetry transformations are mathematically
classified and their properties studied. Cartan identified a set of Lie algebras
called “simple Lie algebras”. These form the building blocks of all symmetries
among bosons or among fermions. In addition there are superalgebras discov-
ered during the 1970’s that are relevant for supersymmetries between bosons
and fermions. For supersymmetry there is also a set of “simple superalgebras”.
All remaining Lie algebras or superalgebras can be constructed by either taking
direct sums of “simple” ones (then they are called “semi-simple”), or by tak-
ing certain limits called “contractions” (then they are called “solvable”). Here
we provide the list of compact simple Lie algebras given by Cartan. Their
non-compact versions (i.e. SU(n,m), SO(n,m) etc.) are obtained by analytic
continuation:

algebra group rank (N) dimension (D)

AN SU(N + 1) 1, 2, 3, · · · ,∞ (N + 1)2 − 1
BN SO(2N + 1) 1, 2, 3, · · · ,∞ N(2N + 1)
CN Sp(2N) 1, 2, 3, · · · ,∞ N(2N + 1)
DN SO(2N) 1, 2, 3, · · · ,∞ N(2N − 1)
EN E6, E7, E8 6, 7, 8 78, 133, 248
F4 F4 4 54
G2 G2 2 14

(8.57)

The value of N is the number of commuting generators, and it is called the
“rank”, while the value of D is the number of total generators in the Lie algebra
and it is called its “dimension”. One may consider functions of the generators
that commute with each other as well as with all the generators. These are
called Casimir operators. The number of independent Casimir operators also
coincides with the rank N . In the above notation there are a few Lie algebras
that are identical with each other. These identities are

A1 = B1 = C1,
B2 = C2,
D2 = A1 ⊕A1,
A3 = D3,

(8.58)
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while all others are independent.
As an example consider the familiar rotation group in 3-dimensions. Because

of the equivalence, this corresponds to SU(2) ∼ SO(3) ∼ Sp(2) or A1 = B1 =
C1. It has one commuting operator which may be chosen as J3 and has one
Casimir operator which is �J · �J .
To make the classification of symmetries more concrete it is useful to consider

the following analysis, due to Chevalley, that provides the smallest representa-
tion of most of the above groups and algebras in terms of matrices.
The rotation group SO(3) can be characterized by saying that it leaves

invariant dot products of any two vectors r1 · r2. Similarly, the group SO(d)
can be characterized as the transformations that leaves invariant dot products
of real vectors in d-dimensions. Consider the transformations on such a vector
written in the form of a column x0 = Rx, or in term of components

x0I = RIJxJ , I = 1, 2, · · · d . (8.59)

The dot product may be written as a product of a row vector, which is the
transpose vector, with a column vector, in the form xT y = x1y1 + · · · + xdyd.
Therefore the invariance requires that R is an orthogonal matrix:

xT y =x0T y0 = xTRTRy → RTR = 1 . (8.60)

Orthogonal matrices give again orthogonal matrices under matrix multiplica-
tion. Therefore, they close into the same set. Furthermore, matrix multiplica-
tion is associative, there is a unit matrix, and there is an inverse. Therefore
orthogonal matrices in d-dimensions form a group, namely SO(d).
If R is a transformation connected to the identity infinitesimally, then it

must be possible to expand it in the form R = 1 +A+ · · · , with a matrix AIJ

that contains infinitesimal parameters. Imposing the orthogonality condition
requires an antisymmetric A. Thus, for a finite transformation we can write

orthogonal → R = eA, AT = −A . (8.61)

Now counting the number of independent parameters contained in A, one finds
the dimension of the Lie algebra SO(d), namely D = d(d−1)/2, which coincides
with the numbers given in Cartan’s table for SO(2N + 1) and SO(2N). Two
antisymmetric matrices close under commutation [A1, A2] into another anti-
symmetric matrix (exercise); therefore, the Lie algebra is closed. Associativity,
and hence Jacobi identity is a property of matrix multiplication, so (8.56) is
automatically satisfied.
The same argument may now be used for complex vectors in d dimensions,

zI , I = 1, 2, · · · d. The transformation is z0 = Uz. But now define the dot prod-
uct by taking the hermitian conjugate z†w = z∗1w1 + · · · + z∗dwd, and demand
invariance. This requires a unitary matrix, U†U = 1. An infinitesimal expan-
sion is given by U = 1+H+· · · , and unitarity requires an anti-Hermitian matrix
H. Furthermore, if U has unit determinant, then H must be traceless. Unitary
matrices of determinant one give again matrices in the same set under ordinary
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matrix multiplication. The associativity, unity and inverse conditions are also
satisfied (exercise). Therefore such matrices form a group. Such unitary trans-
formations are called SU(d), or special unitary transformations in d-dimensions
(special means that the determinant is 1). They are characterized by

unitary → U = eH , H† = −H, tr(H) = 0 . (8.62)

The anti-hermiticity condition requires purely imaginary entries on the diagonal
Haa = iya, and related complex entries above and below the diagonal H12 =
−H∗21 = x12 + iy12, etc.. Furthermore, the trace condition allows only (d − 1)
independent diagonal entries. The number of independent real parameters in
such an H is (d − 1) + 2 × d(d − 1)/2 = d2 − 1, and this agrees with Cartan’s
table for d = N+1. Two arbitrary anti-hermitian traceless matrices close under
commutation [H1,H2] into another anti-hermitian traceless matrix; therefore
the Lie algebra (8.54) and Jacobi identities (8.56) are satisfied automatically.
Next consider quaternions instead of real or complex numbers of the previous

cases. A quaternion is a generalization of a complex number; it has one real and
three imaginary directions. It may be written in terms of 2× 2 Pauli matrices
q = a+iσ · b. The quaternionic conjugate, which generalizes complex conjugate,
is q̄ = a− iσ · b. Using quaternionic vectors qI in d dimensions, and taking the
transformation q0 = Sq and a dot product in the form q̄T q = q̄1q1 + · · ·+ q̄dqd,
we may repeat the analysis above. The result is S̄T = S−1. The infinitesimal
form of such a matrix S = 1 +Q+ · · · with the condition that the matrix Q is
odd under the combined transposition and quaternionic conjugation. This gives
the symplectic group Sp(2d):

symplectic → S = eQ, Q̄T = −Q . (8.63)

As in the previous cases such quaternionic matrices (S,Q) form a Lie group and
algebra. The conditions on the matrix Q require that the diagonal is purely
quaternion imaginary Qaa = iσ ·ya, and that the elements above and below the
diagonal are related, Q12 = −Q̄21 = x12 + iσ · y12, etc.. Therefore, the number
of independent real parameters is 3d+4× d(d− 1)/2 = d(2d+1), in agreement
with Cartan’s table for Sp(2d). Two arbitrary quaternionic matrices Q that are
odd under the combined transposition and quaternionic conjugation close under
commutation [Q1, Q2] into the same set of matrices, therefore the Lie algebra
(8.54) and Jacobi identities (8.56) are satisfied.
To understand the groups E6, E7, E8, F4, G2 it is useful to consider octonions,

which is a generalization of complex and quaternionic numbers. But the analysis
is complicated (because octonionic multiplication is not associative), and will
not be given here since it is not needed in this book. Another topic that will
not be discussed further in this chapter is superalgebras, but we will come back
to them in examples in later chapters.
The following subgroup and sub-algebra structures can be easily determined:

1— SO(d − 1) is a subgroup of SO(d); SU(d − 1) is a subgroup of SU(d);
Sp(2d− 2) is a subgroup of Sp(2d). This is evident since one can choose
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to make transformations on the first (d− 1) components of a vector while
leaving the last component unchanged.

2— d×d anti-symmetric matrices A are a subset of d×d anti-hermitian matrices
H; therefore SO(d) is a subgroup of SU(d).

3— If quaternions are represented by 2 × 2 matrices, as above, the size of the
matrices are really 2d×2d, and transposition combined with quaternionic
conjugation becomes equivalent to ordinary hermitian conjugation. Such
quaternionic 2d × 2d matrices Q form a subset of 2d × 2d anti-hermitian
matrices H; hence Sp(2d) is a subgroup of SU(2d).

4— SO(2d) as well as Sp(2d) have an SU(d) subgroup.

There are further subgroup/sub-algebra structures that are harder to see or
to explain, and they will not be dealt with here.

8.6 SL(2,R) and its representations
SU(2) is the simplest non-Abelian group. It can be interpreted as the rotation
group in three dimensions SO(3) . The properties of SU(2) and its representa-
tions have been discussed in previous chapters. SL(2, R) is equivalent to SU(1, 1)
or to SO(2, 1) which has the interpretation of the Lorentz group in 2 space and
1 time dimensions. It can also be thought of as the conformal group in 0 space
and one time dimensions. Just like SU(2) the group SL(2, R) has a large number
of applications in Physics, with interpretations which are not necessarily related
to space-time transformations. The parameters of the rotation group are angles,
and the group element of SU(2) , i.e. the Dj

mm0 (ω) , is periodic when the angles
are changed by 2π when j is integer, or by 4π when j is half integer. Thus,
SU(2) is a compact group since its parameters have a finite range. SL(2,R) is the
simplest non-compact group. Two of its parameters have infinite range while
the third one has a compact range. SL(2, R) can be formally thought of as an
analytic continuation of SU(2) , but its unitary representations are not analytic
continuations of the representations of SU(2). We will discuss here the uni-
tary representations of SL(2, R) and we will show that in some representations
SL(2,R) is closely connected to the Hydrogen atom.
The SL(2,R) Lie Algebra is given by

[J0, J1] = iJ2 , [J0, J2] = −iJ1 , [J1, J2] = −iJ0 (8.64)

This algebra is related to the SU(2) Lie algebra by the analytic continuation
J1,2 → iJ1,2 and J3 → J0. Equivalently one can think that the parameters
associated with these generators are analytically continued. J0 is compact, the
other two are non-compact. It is useful to think of J0 as pointing in the time-like
direction and of J1,2 as pointing in two space-like directions.
One can define J± = J1± iJ2 and rewrite the commutation rules in the form

[J0, J±] = ±J±, [J+, J−] = −2J0. (8.65)
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These differ from those of SU(2) only by the minus sign in the second equa-
tion. The representations of SL(2, R) can be labelled by the eigenvalues of the
quadratic Casimir operator C2 = J20 − J21 − J22 = j (j + 1) and those of the
compact generator J0 = m. These states labelled as |jm > have properties
closely related to those of SU(2). These representations were first worked out
by Bargmann and they have been extensively studied in the literature. The
problems at the end of this chapter provide a guide for deriving them by close
analogy to SU(2) representations.
A particular realization of this algebra was given in terms of oscillators in the

problem section of chapter 5. The reader is advised to review that exercise and
understand that it corresponds to special value of j. A generalization of that
oscillator representation is found in Chapter 9, section 9.4.1 for more general
values of j that correspond to a subset of representations called the discrete
series (see below).
It is also useful rewrite the commutation rules in terms of the lightcone type

combinations

[J0 + J1 , J0 − J1] = −2iJ2 , [J2 , J0 ± J1] = ±i(J0 ± J1). (8.66)

In this section we will explore this approach in detail and obtain all representa-
tions of SL(2, R) in a different and interesting basis that has a close connection
to the H-atom.

8.6.1 A construction

Introduce a canonical set of variables [q, p] = i and two constants s, σ. We now
construct a representation of the generators in terms of these

J0 + J1 = p (8.67)

J0 − J1 = qpq + 2qs+
σ2

p

J2 =
1

2
(qp+ pq) + s

Here q and p are Hermitian operators and s, σ are real parameters. Hence the
generators are Hermitian. By explicit commutation we verify that the commu-
tation rules for the currents are indeed satisfied

[J0 + J1 , J0 − J1] =

∙
p , qpq + 2qs+

σ2

p

¸
(8.68)

= −2i
µ
1

2
(qp+ pq) + s

¶
= −2iJ2
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and

[J2 , J0 + J1] =

∙
1

2
(qp+ pq) + s , p

¸
= ip = i (J0 + J1) (8.69)

[J2 , J0 + J1] =

∙
1

2
(qp+ pq) + s , qpq + 2qs+

σ2

p

¸
= −i

µ
qpq + 2qs+

σ2

p

¶
= −i (J0 − J1) .

8.6.2 Casimir

The quadratic Casimir operator is computed as

J20 − J21 − J22 =
1

2
(J0 + J1) (J0 − J1) +

1

2
(J0 − J1) (J0 + J1)− J22

=
1

2
p

µ
qpq + 2qs+

σ2

p

¶
+
1

2

µ
qpq + 2qs+

σ2

p

¶
p−

−
µ
1

2
(qp+ pq) + s

¶2
=

1

2
(pqpq + qpqp)− 1

4
(pqpq + qpqp+ qppq + pqqp) + σ2 − s2

= σ2 − s2 +
1

4
[q, p] [q, p]

= σ2 − s2 − 1
4

(8.70)

Thus, we may identify

j(j + 1) = σ2 − s2 − 1
4

(8.71)

j = −1
2
±
p
σ2 − s2

We will see later that the unitary representations (with normalizable states) are
uniquely identified as follows

−∞ < j(j + 1) < −1
4
, → j = −1

2
+ i
p
s2 − σ2

principal series,
s2 − σ2 > 0

−1
4

< j(j + 1) < 0, → j = −1
2
+
p
σ2 − s2

supplementary
or discrete series ,
0 < σ2 − s2 < 1

4

0 < j(j + 1) <∞, → j = −1
2
+
p
σ2 − s2

discrete series
σ2 − s2 ≥ 1

4

(8.72)

That is, considering all real values of j(j + 1), for j(j + 1) < −1/4 one finds
the principal series, for −1/4 < j(j + 1) < 0 one finds the supplementary series



8.6. SL(2,R) AND ITS REPRESENTATIONS 291

or the discrete series, and for j(j + 1) ≥ 0 there is only the discrete series.
So, the discrete series occurs for all σ2 ≥ s2 or j ≥ −1/2. Note that there is
a non-trivial representation for j = 0. The value of j is complex only for the
principal series, although j(j + 1) is real in all cases, since it is the eigenvalue
of a Hermitian operator. Weyl reflections that flip the sign of the square roots
produce equivalent representations, therefore it is sufficient to choose one sign
of the square root to identify the value of j, as a convention, as we have done
above.

8.6.3 Wavefunction and unitarity

One may work in the vector space that diagonalizes momentum |p > . As in
usual quantum mechanics this is a complete and orthonormal set of states

< p|p0 >= δ (p− p0) ,

Z +∞

−∞
dp |p >< p| = 1 (8.73)

The operator q acts as
< p| q = i∂ < p| (8.74)

An arbitrary normalizable state in the Hilbert space may be expanded in this
basis

|ψ >=

Z +∞

−∞
dp |p > ψ(p), ψ(p) =< p|ψ > . (8.75)

In particular one complete set of normalizable states is obtained by diagonalizing

the compact generator J0 = 1
2

³
p+ qpq + 2qs+ σ2

p

´
J0|jm >= m|jm > . (8.76)

These states may be expanded in the momentum basis, with the normalization
condition specified as

|jm > =

Z +∞

−∞
dp |p > ψm(p), ψm(p) =< p|jm > . (8.77)

< jm|jm0 >= δmm0 =

Z +∞

−∞
dpψ∗m(p)ψm0(p)

The eigenvalue condition provides a differential equation for the wavefunction

−∂ (p∂ψm) + 2is∂ψm +
µ
p+

σ2

p
− 2m

¶
ψm = 0. (8.78)

This equation simplifies by defining

ψm(p) = pis−1/2φm(p) (8.79)

δmm0 =

Z +∞

−∞

dp

|p| φ
∗
m(p)φm0(p)
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Then the equation takes the same form as the radial equation for the Hydrogen
atom µ

−∂2 + j(j + 1)

p2
− 2m

p
+ 1

¶
φm(p) = 0. (8.80)

Near p = 0 the two independent solutions behave as pj+1 or p−j . The real part
of the power must be positive otherwise the wavefunction is not normalizable.
With the definition of j given in eq.(8.72) the unique solution is picked as the
one that behaves as pj+1 when σ2−s2 > 1/4, while both solutions are admissible
for all other cases.
In solving the equation we take advantage of the analogy to the H-atom. In

comparison to the H-atom equation we have mass = 1/2, angular momentum=
j, Coulomb potential with Ze2 = 2m, and energy E = −1. However, there are
also some important differences: (i) For the H-atom the radial coordinate is
positive, while here the momentum takes both positive and negative values; (ii)
Furthermore, the angular momentum term j(j + 1) is positive for the H-atom,
but here it can take either sign.
Note that we are seeking normalizable states with negative “energy”E = −1.

This can occur only if the effective potential V (p) = j(j+1)
p2 − 2m

p is attractive
(i.e. negative) in a finite range of p. The possible cases are given in Fig.1.

Fig.1 - Effective potential.

If j(j+1) = σ2−s2− 1
4 is positive, then there are bound states only if 2m/p

is positive. Therefore, if m > 0 the momentum must also be positive, and if
m < 0 then the momentum must be negative. This is the case for the discrete
series. This case is exactly analogous to the H-atom that has only positive
radial coordinate. We can simply take over the H-atom solutions that are given
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in terms of Laguerre polynomials. The bound state energy for the H-atom is

En = −
mass

2

(Ze2)2

(j + n+ 1)2
(8.81)

where n = 0, 1, 2, · · · is the radial quantum number (and we used ~ = c = 1). If
we substitute the quantities in our equation we obtain

−1 = −1
4

(2m)2

(j + n+ 1)2
. (8.82)

Therefore, the allowed quantum numbers are

|m| = j + 1 + n, with j + 1 = 1/2 +
p
σ2 − s2. (8.83)

This is in agreement with the well known result for the discrete series (both
positive and negative).
The analysis of the H-atom is conducted for j(j + 1) > 0. But it extends

also to the case −1/4 < j(j + 1) provided one concentrates on the case of
sign(m) = sign(p) and keep only the solution that behaves like pj+1 near the
origin. Then the form of the solution is identical to the one just given above,
but now with −1/2 < j or all values of σ2 > s2. These are all the discrete series
representations. We emphasize that for all discrete series representations the
wavefunction ψm(p) =< p|m > is non-vanishing only when the sign of m and p
are the same, and it is given in terms of the H-atom wavefunctions.
If j(j+1) = σ2− s2− 1

4 is negative, then the angular momentum term is an
attractive potential that swamps the Coulomb term near the origin. Then we
can obtain bound states with negative energies for any sign of m as well as any
sign of p by allowing both solutions that behave like pj+1 or p−j near p = 0.
This is the case for the principal and supplementary series. By studying the
orthonormal properties of the states we discover that the allowed values of m
are given by m = |m0|+ n where n is any positive or negative integer, and m0

may be chosen in the range 0 < |m0| < 1 except for the special values j + 1 or
−j.

8.7 PROBLEMS
1. The Lorentz group in one-time and two-space dimensions has infinitesimal
generators that are somewhat similar to rotations in three dimensions,
but with some sign changes. To see this, introduce canonical conjugates
[xµ, pν ] = i~gµν where gµν = diag (−1, 1, 1) is the Minkowski metric. Then
consider the Lorentz operators Lµν = xµpν − xνpµ that are analogous
to orbital angular momentum except for the sign difference introduced
through the metric gµν instead of δµν . Show that the commutation rules
of the Lµν among themselves may be rewritten in the form

[J+, J−] = −2J0, [J0, J±] = ±J±. (8.84)
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and give the explicit forms of J0 and J± = (J1 ± iJ2) in terms of the
xµ, pµ. Note that, as compared to the angular momentum algebra there
is only one sign change in the first commutator. This is the Lie algebra
of SL(2,R)=SU(1,1) instead of SU(2). Show that the quadratic Casimir
operator that commutes with all the generators J0,± is

C = J20 − (J+J− + J−J+) /2 (8.85)

= J20 − J21 − J22 .

2. The quantum mechanical states for the general SL(2,R) algebra in (8.84)
may be found with the same methods that were used in the analysis of
angular momentum. In this case the simultaneous eigenstates of C and
J0 on states labelled as |jm > are

J0|jm >= ~m|jm >, C|jm >= ~2j(j + 1) |jm > . (8.86)

Note that C is not a positive definite operator, but is Hermitian. Find all
possible values of j,m that are consistent with hermiticity. of J1, J2, J0
and unitarity (i.e. states of positive norm). Note that there are three
(or four, depending on how one counts) independent solutions. These are
called the principal series (complex j =?), the supplementary series real
(j =?) and the discrete series (two of them) (real j =?). What are the
values of m in each case?

3. Show that the following set of operators form the SL(2,R) Lie algebra

J0 − J1 = x

J2 = −1
2
(xp+ px)− s (8.87)

J0 + J1 = pxp+ 2sx+
σ2

x
,

where s, σ are constants. Construct the Casimir operator C and find the
value of j in terms of s, σ. Which series are reproduced when σ = 0 or
when s = 0?

4. Consider the following Lagrangian in 3 dimensions

L =
1

2

ṙ2

1 + r2
− 1
2

(ṙ · r)2

(1 + r2)2
(8.88)

Evidently this Lagrangian is symmetric under rotations δωri = (ω × r)i
since everything is written in terms of dot products. In addition, show
that there is also a hidden symmetry under the transformation δεri= εi+
ε · r ri. Construct the conserved quantities due to both of these symme-
tries, call them L and K respectively, and express them in terms of the
canonical momentum (note p is not just ṙ). Show that they are indeed
conserved when you use the equations of motion. Compute the Poisson
brackets of these six generators and identify the Lie algebra that they
satisfy.
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5. Recall the Wigner-Eckhart theorem for a j = 1/2 tensor operator Kn, n =
+1/2,−1/2, applied on an arbitrary state Kn|jm >=?. Write out explic-
itly the right hand side, including the explicit Clebsch-Gordan coefficients
and the unknown reduced matrix elements. Thus, the right hand side has
two unknown coefficients A and B that are independent of the magnetic
quantum numbers n,m.

6. Consider the following collection of 8 operators:J0, J+, J− (angular mo-
mentum or isospin), Y,Kn, Qn, where the Y operator is a j = 0 oper-
ator, while the Kn and Qn operators are both j = 1/2 tensor opera-
tors with n = +1/2,−1/2 as in problem 1. We will require that the
Kn,Qn operators are complex and that they are hermitian conjugates of
each other by demanding that

K†
+1/2 = −Q−1/2, K†

−1/2 = +Q+1/2 .

The statement that Y,Kn, Qn are tensor operators with the above specified
values of j = 0, 1/2, is equivalent to the following commutation rules with
the angular momentum operators

[J0, J±] = ±J±, [J+, J−] = 2J0, [Y, J±,0] = 0,

[J0,K±1/2] = ±1
2
K±1/2, [J+,K−1/2] = K1/2, [J−,K1/2] = K−1/2,(8.89)

[J0, Q±1/2] = ±1
2
Q±1/2, [J+, Q−1/2] = Q1/2, [J−, Q1/2] = Q−1/2,

[J±,K±1/2] = 0, [J±, Q±1/2] = 0

Note that in the third line ±K∓1/2 may be substituted for Q±1/2 and the
commutation rules would be consistent with hermitian conjugation (note
a similar statement for commutators below). If these commutation rules
are supplemented with

[Y,K±1/2] = K±1/2, [Y,Q±1/2] = −Q±1/2,

[K±1/2,Q∓1/2] = −(J0 ±
3

2
Y ), [K±1/2, Q±1/2] = ±J±, (8.90)

[Kn,Km] = 0 = [Qn,Qm].

then it is found that the Jacobi identities

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (8.91)

are satisfied with the above commutation rules when A,B,C are any of
the 8 operators J, Y,Kn, Qn.

When a system of operators close (that is no new operators appear on
the right hand side) under commutation rules that are consistent with
the Jacobi identity, it is said that these operators form a Lie algebra. In
the present case these 8 operators form the Lie algebra of SU(3) and the
3 operators J0, J+, J− form the Lie sub-algebra SU(2). Verify that the
Jacobi identity is satisfied for
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(i) A = J+, B = J−, C = J0,

(ii) A = K±1/2, B = Q∓1/2, C = J0 and C = Y

(iii) A = K±1/2, B = Q±1/2, C = J±.

7. Consider the 3-dimensional harmonic oscillator and its 3 creation-annihilation
operators. Recall that the eigenstates of the Hamiltonian are the number
states

|n1, n2, n3 >=
(a†1)

n1

√
n1!

(a†2)
n2

√
n2!

(a†3)
n3

√
n3!

|0 > . (8.92)

In addition to the total number operator N̂ = a†1a1 + a†2a2 + a†3a3 define
the following 8 operators that commute with it

J0 =
1
2(a

†
1a1 − a†2a2), J+ = a†1a2, J− = a†2a1

U+ = a†1a3, U− = a†3a1, V+ = a†2a3, V− = a†3a2
Y = 1

3(a
†
1a1 + a†2a2 − 2 a

†
3a3).

(8.93)

Using the commutation rules for harmonic oscillators it is not difficult to
show that these 8 operators close under commutation, hence they form
a Lie algebra. The operators J constructed from the first two oscillators
form an SU(2) sub-algebra. Furthermore, by comparison to the previous
problem we may identify

U+ ≡ K1/2, V+ ≡ K−1/2, U− ≡ K†
1/2 = −Q−1/2, V− = K†

−1/2 = Q1/2.
(8.94)

Hence these 8 operators form the SU(3) Lie algebra. By analogy to the
SU(2) states of the 2D harmonic oscillator the number states |n1, n2, n3 >
may be rewritten in terms of the eigenvalues of the commuting operators
N̂, J0, Y with eigenvalues n,m, y respectively

|n,m, y >=
(a†1)

n/3+y/2+mp
(n/3 + y/2 +m)!

(a†2)
n/3+y/2−mp

(n/3 + y/2−m)!

(a†3)
n/3−yp

(n/3− y)!
|0 >

(8.95)
where we have defined

n = n1 + n2 + n3, m =
1

2
(n1 − n2), y =

1

3
(n1 + n2 − 2n3).

Verify that indeed these operators have the stated eigenvalues. Further-
more, by concentrating only on the first two oscillators and comparing to
the 2-dimensional case it is useful to define the quantum number j

j =
1

2
(n1 + n2) = n/3 + y/2. (8.96)

So, the state may be labelled |n, j,m, y > with the additional quantum
number j, but keeping in mind that it is a function of the others. From



8.7. PROBLEMS 297

the positivity of the integers nI ≥ 0 one derives the allowed values and
ranges of these quantum numbers

n = 0, 1, 2, 3, · · · .
(j, y) = (n2 ,

n
3 ), · · · , (

n−k
2 , n−3k3 ), · · · , (0,−2n3 )

m = −j, −j + 1, · · · , j − 1, j
(8.97)

• Compute the action of the 3 creation and annihilation operators on
the states, writing the resulting state in terms of the labels of the
type |n, j,m, y > .

• Using this result now obtain the action of the 8 operators which do
not change the value of n, and again give your result in terms of the
states labelled by |n, j,m, y > . Since the value of n cannot change
you have found irreducible representations of SU(3) for each value of
n. You will compare your result to the general solution of the SU(3)
problem given below and find out that it corresponds to a subclass
of irreducible representations.

8. Consider the 8 operators of SU(3) of the previous problem but now con-

structed with fermionic oscillators that satisfy
n
bα, b

†
β

o
= δαβ . Verify

that the Lie algebra closes with identical coefficients as the bosonic case.
Show that the list of all possible values of the quantum numbers (n, j, y)
that may be constructed with fermions is

(n, j, y) = (0, 0, 0), (1, 0,−2/3), (1, 1/2, 1/3)
(3, 0, 0), (2, 0, 2/3), (2, 1/2,−1/3),

j = 1
2

£¡
2
3(nmod3) + y

¢
mod2

¤
.

(8.98)

Of course, for each value of j the remaining quantum number must take
values −j ≤ m ≤ j. If we interpret j as isospin and y as hypercharge,
then the three states with n = 1 have the quantum numbers of up, down,
strange quarks, while the three states with n = 2 have the quantum num-
bers of antiquarks (also of di-quarks). The states with n = 0, 3 are SU(3)
singlets. There are other applications and/or interpretations of the math-
ematics. For example the three fermions b†α with α = 1, 2, 3 may represent
the three colors of quarks. Then we see that we can make a color singlet
state (3, 0, 0) by putting three quarks of different colors together b†1b

†
2b
†
3|0 >

since the 8 SU(3) generators annihilate this state.

9. Let us return to the general formulation of SU(3) in problem 2. For
every Lie algebra one can find polynomials constructed from operators that
commute with all operators in the Lie algebra. These are called Casimir
operators. For SU(2) the Casimir operator is J · J and it commutes with
every Ji. For SU(3) there are two Casimir operators, one is quadratic and
the other cubic. Verify that the following two Casimir operators C2, C3
commute with all 8 operators of the Lie algebra (if you find this too long
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do it only for J0, Y,K+1/2, Q+1/2)

C2 = J2 + 3
4Y (Y + 2) +

P
nK

†
nKn

C3 =
J2(Y + 1)− 1

4Y (Y + 1)(Y + 2) +
P

n 2nK
†
nJ0Kn

+K†
+1/2J+K−1/2 +K†

−1/2J−K+1/2 − 1
2

P
nK

†
n(Y + 2)Kn

(8.99)

You now have 5 operators that commute with each other: C2, C3,J2, J0, Y,
and therefore they are simultaneously diagonalizable. Just as it is conve-
nient to parametrize the eigenvalues of J2 as j(j+1), it is also convenient
to parametrize the eigenvalues of C2 and C3 in terms of two integers p, q
as follows

C2 = p+ q + (p2 + pq + q2)/3,
C3 = (p− q)(p+ 2q + 3)(q + 2p+ 3)/27.

(8.100)

Thus, a complete labelling for an SU(3) state is |p, q; j,m, y > where y is
the eigenvalue of the Y operator and the rest are as described above.

10. Using the harmonic oscillator construction of the SU(3) generators show
that the operators C2, C3 can be rewritten only in terms of the total num-
ber operator N̂ (this is shown by rearranging the orders of the harmonic
oscillators). Hence, for this special case the two Casimir operators are not
independent from each other, and their eigenvalues q, p are not most gen-
eral. Show that the only possible eigenvalues are (p, q) = (n, 0) where n
is the eigenvalue of N̂ as it appeared above.

11. The general labelling of SU(3) states allows us, by definition, to immedi-
ately write down the action of the 4 operators J±,0 and Y on the states.
Write them down. There remains to learn how to act with the remaining 4
operators K±1/2 and Q±1/2. They act like ladder operators that shift the
eigenvalues j,m, y but cannot shift p, q. It is straightforward to consider
the commutations [Y,Kn] and [Y,Qn] to learn how y is shifted. In addi-
tion we can figure out immediately how j,m are shifted up to 4 unknown
coefficients A,B,C,D from the knowledge that Kn, Qn are j = 1/2 tensor
operators and using the results of problem1

K±1/2|pqjmy >= Ajmy |pq, j + 1
2 ,m± 1

2 , y + 1 >
±B jmy |pq, j − 1

2 ,m± 1
2 , y + 1 >

Q±1/2|pqjmy >= Cjmy |pq, j + 1
2 ,m± 1

2 , y − 1 >
±Djmy |pq, j − 1

2 ,m± 1
2 , y − 1 > .

(8.101)

In order to completely determine the remaining coefficients we need to
impose the commutation rules for [Kn,Qm] and also insure that C2, C3
have the eigenvalues given above. Impose these conditions and verify that
the 4 coefficients are given by

Ajmy =
q
−G(j+y/2+1) (j±m+1)

(2j+2)(2j+1) , Bjmy =
q

G(−j+y/2) (j∓m)
2j(2j+1) ,

Cjmy = −
q

G(−j+y/2−1) (j±m+1)
(2j+2)(2j+1) , Djmy =

q
−G(j+y/2) (j∓m)

2j(2j+1) .

(8.102)
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where

G(x) = (x+ p+2q+3
3 )(x+ p−q

3 )(x−
2p+q+3

3 )
= x3 − (C2 + 1)x− C3.

(8.103)

Note that with these coefficients we find that, once p, q are fixed, there
are a finite number of states that are shifted into each other since we must
satisfy the inequalities

−G(j + y/2 + 1) ≥ 0, G(−j + y/2) ≥ 0,
G(−j + y/2− 1) ≥ 0, −G(j + y/2) ≥ 0. (8.104)

in order to have real coefficients A,B,C,D (this is the condition of unitar-
ity= positive definite norm). Then the allowed quantum numbers (j, y)
are shown in the figure. The states are represented by the corners of the
cells in this figure. Note the maximum and minimum values of (j,m) at
the extremities of the lattice.

Verify that the allowed quantum numbers are the ones given in the figure,
and that the commutation rules [Kn, Qm] are satisfied and C2, C3 are
diagonal on these states.

Fig. 8.1 — Basis of states for SU(3).

12. Using all of the above information, find the set of states for the cases

(p, q) = (1, 0); (p, q) = (2, 0); (p, q) = (1, 1); (p, q) = (3, 0). (8.105)

How many states are there in each case? Compare your result to the states
(n, 0) of the harmonic oscillator model.
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36. SU(n) MULTIPLETS AND

YOUNG DIAGRAMS

Written by C.G. Wohl (LBNL).

This note tells (1) how SU(n) particle multiplets are identified or labeled, (2) how to
find the number of particles in a multiplet from its label, (3) how to draw the Young
diagram for a multiplet, and (4) how to use Young diagrams to determine the overall
multiplet structure of a composite system, such as a 3-quark or a meson-baryon system.

In much of the literature, the word “representation” is used where we use “multiplet,”
and “tableau” is used where we use “diagram.”

36.1. Multiplet labels

An SU(n) multiplet is uniquely identified by a string of (n−1) nonnegative integers:
(α, β, γ, . . .). Any such set of integers specifies a multiplet. For an SU(2) multiplet such
as an isospin multiplet, the single integer α is the number of steps from one end of the
multiplet to the other (i.e., it is one fewer than the number of particles in the multiplet).
In SU(3), the two integers α and β are the numbers of steps across the top and bottom
levels of the multiplet diagram. Thus the labels for the SU(3) octet and decuplet

1

1

0

3

are (1,1) and (3,0). For larger n, the interpretation of the integers in terms of the
geometry of the multiplets, which exist in an (n−1)-dimensional space, is not so readily
apparent.

The label for the SU(n) singlet is (0, 0, . . . , 0). In a flavor SU(n), the n quarks together
form a (1, 0, . . . , 0) multiplet, and the n antiquarks belong to a (0, . . . , 0, 1) multiplet.
These two multiplets are conjugate to one another, which means their labels are related
by (α, β, . . .)↔ (. . . , β, α).

CITATION: K. Hagiwara et al., Physical Review D66, 010001-1 (2002)

available on the PDG WWW pages (URL: http://pdg.lbl.gov/) June 18, 2002 13:58
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36.2. Number of particles

The number of particles in a multiplet, N = N(α, β, . . .), is given as follows (note the
pattern of the equations).

In SU(2), N = N(α) is

N =
(α+ 1)

1
. (36.1)

In SU(3), N = N(α, β) is

N =
(α+ 1)

1
· (β + 1)

1
· (α+ β + 2)

2
. (36.2)

In SU(4), N = N(α, β, γ) is

N =
(α+1)

1
· (β+1)

1
· (γ+1)

1
· (α+β+2)

2
· (β+γ+2)

2
· (α+β+γ+3)

3
. (36.3)

Note that in Eq. (36.3) there is no factor with (α+ γ + 2): only a consecutive sequence
of the label integers appears in any factor. One more example should make the pattern
clear for any SU(n). In SU(5), N = N(α, β, γ, δ) is

N =
(α+1)

1
· (β+1)

1
· (γ+1)

1
· (δ+1)

1
· (α+β+2)

2
· (β+γ+2)

2

× (γ+δ+2)
2

· (α+β+γ+3)
3

· (β+γ+δ+3)
3

· (α+β+γ+δ+4)
4

. (36.4)

From the symmetry of these equations, it is clear that multiplets that are conjugate to
one another have the same number of particles, but so can other multiplets. For example,
the SU(4) multiplets (3,0,0) and (1,1,0) each have 20 particles. Try the equations and see.

36.3. Young diagrams

A Young diagram consists of an array of boxes (or some other symbol) arranged in one
or more left-justified rows, with each row being at least as long as the row beneath. The
correspondence between a diagram and a multiplet label is: The top row juts out α boxes
to the right past the end of the second row, the second row juts out β boxes to the right
past the end of the third row, etc. A diagram in SU(n) has at most n rows. There can be
any number of “completed” columns of n boxes buttressing the left of a diagram; these
don’t affect the label. Thus in SU(3) the diagrams

, , , ,

represent the multiplets (1,0), (0,1), (0,0), (1,1), and (3,0). In any SU(n), the quark
multiplet is represented by a single box, the antiquark multiplet by a column of (n−1)
boxes, and a singlet by a completed column of n boxes.

June 18, 2002 13:58
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36.4. Coupling multiplets together

The following recipe tells how to find the multiplets that occur in coupling two
multiplets together. To couple together more than two multiplets, first couple two, then
couple a third with each of the multiplets obtained from the first two, etc.

First a definition: A sequence of the letters a, b, c, . . . is admissible if at any point in
the sequence at least as many a’s have occurred as b’s, at least as many b’s have occurred
as c’s, etc. Thus abcd and aabcb are admissible sequences and abb and acb are not. Now
the recipe:

(a) Draw the Young diagrams for the two multiplets, but in one of the diagrams
replace the boxes in the first row with a’s, the boxes in the second row with b’s, etc.
Thus, to couple two SU(3) octets (such as the π-meson octet and the baryon octet), we
start with and a a

b . The unlettered diagram forms the upper left-hand corner of all

the enlarged diagrams constructed below.
(b) Add the a’s from the lettered diagram to the right-hand ends of the rows of the

unlettered diagram to form all possible legitimate Young diagrams that have no more
than one a per column. In general, there will be several distinct diagrams, and all the a’s
appear in each diagram. At this stage, for the coupling of the two SU(3) octets, we have:

a a , a , a , .
a a

a a

(c) Use the b’s to further enlarge the diagrams already obtained, subject to the same
rules. Then throw away any diagram in which the full sequence of letters formed by
reading right to left in the first row, then the second row, etc., is not admissible.

(d) Proceed as in (c) with the c’s (if any), etc.

The final result of the coupling of the two SU(3) octets is:

⊗ a a
b

=

a a ⊕ a a ⊕ a ⊕ a ⊕ a ⊕ .
b a b a b a

b b a a b

Here only the diagrams with admissible sequences of a’s and b’s and with fewer than four
rows (since n = 3) have been kept. In terms of multiplet labels, the above may be written

(1, 1)⊗ (1, 1) = (2, 2)⊕ (3, 0)⊕ (0, 3)⊕ (1, 1)⊕ (1, 1)⊕ (0, 0) .

In terms of numbers of particles, it may be written

8⊗ 8 = 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1 .

The product of the numbers on the left here is equal to the sum on the right, a useful
check. (See also Sec. 13 on the Quark Model.)

June 18, 2002 13:58



Chapter 9

SOME APPLICATIONS
OF SYMMETRY

In this chapter we will discuss exactly solvable quantum mechanical systems
which have a symmetry structure. We will illustrate the power of group theory
in solving the problems and shedding additional light on the structure of the
system as compared to the more standard Schrödinger’s differential equation
approach. We will discuss one dimensional problems with special potentials
such as the Morse potential and it’s SU(2) structure, two dimensional problems
such as a particle in a magnetic field with its “magnetic translation group”
structure, The hydrogen atom in d-dimensions with its SO(d+ 1) structure for
d = 2, 3, · · · , and the Interacting Boson Model of large nuclei with its SU(6)
structure.

9.1 H-atom in d-dimensions and SO(d+1)
The Hydrogen atom in d-dimensions is described by the Hamiltonian

H =
p2

2m
− Ze2

|r| , (9.1)

where r,p are vectors in d-dimensions. The Schrödinger equation for the cen-
tral force problem in d−dimensions was discussed in chapter 6. The complete
wavefunction is

ψ(r) =r−
1
2 (d−1)fEld(r) TI1I2···Il(r̂) (9.2)

where fEld(r) is the radial wavefunction and TI1I2···Il(r̂) is the angular wave-
function that is analogous to the spherical harmonics Ylm(r̂) in three dimensions.
As discussed in Chapter 6 (see section (6.6) and problem (6.10) ) TI1I2···Il(r̂)
can be represented as a completely symmetric traceless tensor constructed from
the direct product of l powers of the unit vector r̂I . The norm isZ

ddr |ψ(r)|2 =
Z ∞
0

dr |fEld(r)|2 = 1. (9.3)

307
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It was shown in section (6.7) that the eigenvalue problem could be reduced to a
radial equation that looked just like the usual radial equation in 3-dimensionsµ

−∂2r +
ld(ld + 1)

r2
− 2mZe2

r
− 2mE

~2

¶
fEld(r) = 0, (9.4)

where

ld = l +
d− 3
2

, (9.5)

and l = 0, 1, 2, · · · , which is a quantum number analogous to the orbital angular
momentum, is the rank of the completely symmetric traceless tensor TI1I2···Il(r̂).
The number of independent components of this tensor for a fixed value of l in
d dimensions is

N(l, d) =
(l + d− 3)!
(d− 2)! l! (2l + d− 2) . (9.6)

In 3 dimensions this number reduces to N(l, 3) = 2l+1, i.e. the familiar number
of spherical harmonics Ylm(r̂). In 2 dimensions it becomes N(l, 2) = 2 for l 6= 0,
and N(l, 2) = 1 for l = 0, which is consistent with the number of angular
momentum wavefunctions exp(imφ), with m = ±l.
The solution of the eigenvalue problem proceeds just like the 3-dimensional

case, and we find that the energy is quantized as

En = −
mc2

2

Z2α2¡
n+ d−3

2

¢2 , (9.7)

where n = nr + l + 1, and nr = 0, 1, 2, · · · is the radial quantum number. The
ranges of the quantum numbers may be rewritten as

n = 1, 2, 3, · · ·
l = 0, 1, · · · (n− 1). (9.8)

The degeneracy of the states for a fixed value of n is

Dn(d) =
n−1X
l=0

N(l, d) =
(n+ d− 3)!

(d− 1)! (n− 1)! (2n+ d− 3) . (9.9)

This general result agrees with the degeneracy of the states computed in Chapter
6 in 2 and 3 dimensions

Dn(2) = 2n− 1 in d = 2
Dn(3) = n2 in d = 3

. (9.10)

A plot of the levels in 2 and 3 dimensions is given in Fig.9.1. The quantum
numbers l, n are shown on the horizontal and vertical axes respectively, and the
degeneracy of each state is indicated.
How is this degeneracy explained? The Schrödinger equation approach out-

lined above has produced degenerate states but has not given a clue for why
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Figure 9.1: Fig.9.1— Degeneracies in d=2 and 3.

there are unexpected degeneracies. The Hamiltonian is manifestly invariant un-
der rotations in d dimensions that form the group SO(d). This explains the
degeneracy for a given value of angular momentum l, but it does not explain
why states with different values of angular momentum have the same energy.
Therefore, we must seek a larger symmetry that is not manifest but nevertheless
is present. As a first clue note that, in two dimensions the number of degener-
ate states, Dn(2) = 2n − 1, coincides with the number of angular momentum
states, 2j+1, provided we identify j = n−1. This suggest that there may be an
underlying SO(3) symmetry for d = 2. Generalizing this clue to 3 dimensions
one comes up with SO(4) symmetry for d = 3. More generally, this observation
suggests that in d dimensions we might expect SO(d+ 1) symmetry.
This detective-like approach gets reinforced with a stronger clue. Using the

definition of eq.(9.6) we may write the number of states computed in eq.(9.9)
in the form

Dn(d) = N(n− 1, d+ 1), (9.11)

which indicates that the degeneracy coincides with the number of independent
components in a traceless symmetric tensor of rank (n−1) in (d+1) dimensions.
This remarkable coincidence strongly suggests that the H-atom has a Hilbert
space isomorphic to the states of the rotation group SO(d + 1), as if there is
one extra dimension!

9.2 The symmetry algebra

With these clues we are now ready to construct the symmetry. To begin with,
the SO(d) rotation symmetry has operators

LIJ = rI pJ − rJ pI (9.12)
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that generate infinitesimal rotations in the (I, J) plane. For example, rotations
in the 1-2 plane, δ12r1 = ε12 r2, δ12r2 = −ε12 r1, δ12r3 = δ12r3 = · · · = 0, are
generated as follows

δ12rI = −
i

~
ε12[L12, rI ] = ε12(r2∂1 − r1∂2)rI = ε12 (r2δ1I − r1δ2I) . (9.13)

In two dimensions there is only one generator L12, while in three dimensions
there are the familiar rotation operators L23 ≡ L1, L31 ≡ L2, L12 ≡ L3. Their
commutation rules follow from those of (rI , pI) for any d

[LIJ , LKL] = i~(δIK LJL + δJL LIK − δIL LJK − δJK LIL). (9.14)

These operators commute with the Hamiltonian since H is constructed only
from rotationally invariant dot products. This symmetry is responsible for the
degenerate states with a fixed value of l. By the same token, the quantities LIJ
are all time independent since they commute with the Hamiltonian.
We must now look for additional operators that will give a higher symmetry

beyond SO(d). In three dimensions it was known in the classical mechanics
of planetary motion (that has the same form of Hamiltonian) that in addition
to the time independent angular momentum vector there is another constant
vector, the Runge-Lenz vector given by

A = L× p−mZe2 r̂, Ȧ = 0. (9.15)

In quantum mechanics we expect this vector to commute with the Hamiltonian.
In d dimensions the Runge-Lenz vector is generalized to

AI =
1

2

¡
LIJ p

J + pJLIJ
¢
−mZe2

rI
r
, (9.16)

where the hermitian combination of LIJ and pJ is taken. One can now check
that this observable does indeed commute with the Hamiltonian (see problem
(4))

[H,AI ] = 0. (9.17)

Hence we can regard AI as generators of a symmetry that leave the energy
invariant. The infinitesimal transformations of rI , pI that give this invariance
may be computed from the commutators (see problem (1 )

δrI = −
i

~
εJ [AJ , rI ], δpI = −

i

~
εJ [AJ , pI ]. (9.18)

We now seek the Lie algebra of all the symmetry operators by commuting
LIJ , AK among themselves. After a lot of algebra one finds (see problem (2) )

[AI , AJ ] = i~(−2mH) LIJ , (9.19)

and of course, that AI rotates like a vector as indicated by the commutation
rule

[LIJ , AK ] = i~ (δIK AJ − δJK AI) . (9.20)
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We notice that if it were not for the operator H on the right hand side of (9.19),
the set LIJ , AK would form a Lie algebra with constant coefficients (as opposed
to operators). However, since H commutes with all the operators LIJ , AK , it
effectively acts like a constant and therefore we may define a more convenient
operator

LI0 =
AI√
−2mH

(9.21)

that has commutation rules with constant coefficients

[LIJ , LK0] = i~ (δIK LJ0 − δJK LI0) (9.22)

[LI0, LJ0] = i~LIJ .

Hence we have a closed Lie algebra among the operators LIJ , LK0.
Which Lie algebra is this? To consult Cartan’s table of Lie algebras we need

the total number of symmetry generators. Counting the number of LIJ and
LI0’s we get

1

2
d(d− 1) + d =

1

2
d(d+ 1), (9.23)

which is the same number of generators as SO(d+ 1). To finally show that the
symmetry is really SO(d + 1) it is convenient to define the rotations as if we
have d+ 1 coordinates labelled by µ = 0, I, where I = 1, 2, · · · d.

Lµν =

⎧⎨⎩
LIJ for µ = I, ν = J

LI0 = −L0I for
©
µ=I, ν=0
µ=0, ν=I

L00 = 0 for µ = ν = 0

(9.24)

Then the commutation rules (9.14,9.22) take the form of the Lie algebra of
SO(d+ 1)

[Lµν , Lκλ] = i~(δµκ Lνλ + δνλ Lµκ − δµλ Lνκ − δνκ Lµλ). (9.25)

Therefore the symmetry of the H-atom in d dimensions is SO(d+ 1)!

9.3 The dynamical symmetry structure of H-
atom

Having established that the Hamiltonian commutes with all the generators of
SO(d+1) one may wonder whether H is a function of the Casimir operators of
SO(d + 1) (this need not be the case in all instances). The quadratic Casimir
operator which commutes with every Lµν is given by

C2 =
1

2

X
µ6=ν

(Lµν)
2 =

1

2

X
I 6=J

(LIJ)
2 +

X
I

(AI)
2

−2mH
. (9.26)
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Using the explicit expression (9.16) for the Runge-Lenz vector one can show
that its square takes the form (see problem (3) )

X
I

(AI)
2 = 2mH

⎡⎣1
2

X
I 6=J

(LIJ)
2
+ ~2

µ
d− 1
2

¶2⎤⎦+ (mZe2)2. (9.27)

The term proportional to ~2 arises from the reordering of quantum operators;
it is absent in the classical theory. Inserting this result into the expression for
the Casimir operator we find a relation between the Hamiltonian and C2

H = −mc2(Zα)2

2

"
1

~2
C2 +

µ
d− 1
2

¶2#−1
, (9.28)

where we have used the expression for the fine structure constant α = e2/~c.
Having established this result, we can now reverse the reasoning: Given a

symmetry group SO(d+1) one can define all the states on which the symmetry
acts irreducibly. This means labelling the states with the eigenvalues of the
Casimir operators and other mutually commuting operators. It is often con-
venient to choose the additional operators as the Casimirs of the next largest
subgroup, then the Casimirs of next sub-subgroup, etc. until we reach the small-
est subgroup SU(2). The eigenvalues of all these Casimirs are known from the
representation theory of groups. Then, the eigenvalues and the eigenstates of
the Hamiltonian are completely solved by group theoretical methods.

9.3.1 2 dimensions

To see how this works, let’s start with the two dimensional Hydrogen atom for
which the symmetry is SO(3). The generators of the symmetry are

J3 = L12 = r1p2 − r2p1

J1 =
1√
−2mH

∙
1

2
(L12 p2 + p2L12)−mZe2

r1
r

¸
J2 =

1√
−2mH

∙
1

2
(−L12 p1 − p1L12)−mZe2

r2
r

¸
(9.29)

C2 = J21 + J22 + J33

The eigenstates and eigenvalues |jm > are well known to students of quantum
mechanics. We only need to decide which of these states belong to the H-atom.
Since m is the eigenvalue of the orbital rotation generator J3 = L12, it can
only take integer eigenvalues. Hence j must be integer. Now we compute the
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eigenvalues of H

H |jm > = −mc2(Zα)2

2

"
1

~2
C2 +

µ
2− 1
2

¶2#−1
|jm >

= −mc2(Zα)2

2
[j(j + 1) + 1/4]−1 |jm > (9.30)

= − mc2(Zα)2

2(j + 1/2)2
|jm >, j = 0, 1, 2, · · ·

Evidently we have recovered the same eigenstates and eigenvalues that were
computed with the Schrödinger equation approach in (9.7), provided we identify
j = n− 1 as anticipated at the end of that section.

9.3.2 3 dimensions

The H-atom in 3 dimensions was first solved by Pauli. In this case there are
the three angular momentum operators L = r× p and the three Runge-Lenz
vectors K = A/

√
−2mH. It is instructive to rewrite their commutation rules

given in (9.25) in the form

[LI , LJ ] = i~ �IJK LK (9.31)

[LI ,KJ ] = i~ �IJK KK

[KI ,KJ ] = i~ �IJK LK .

It is further useful to define the combinations

J(±) =
1

2
(L±K) (9.32)

that have commutation rules

[J
(+)
I , J

(+)
J ] = i~ �IJK J

(+)
K (9.33)

[J
(−)
I , J

(−)
J ] = i~ �IJK J

(−)
K

[J
(+)
I , J

(−)
J ] = 0.

So, J(±) satisfy two independent SU(2) Lie algebras that are equivalent to the
SO(4) Lie algebra

SO(4) ∼ SU(2)+ ⊗ SU(2)− . (9.34)

Therefore the states of SO(4)may be rewritten as the states of SU(2)+⊗SU(2)−

|j+,m+; j−,m− >, j± = half integers (9.35)

This is the complete solution of the quantum mechanics problem (eigenstates
and eigenvalues) for SO(4). We only need to decide which of these states belong
to the Hydrogen atom. Furthermore, this notation brings us to familiar terri-
tory since we can now use the mathematics of addition of angular momentum.
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Indeed, as seen from the definitions in (9.32), the orbital angular momentum of
the hydrogen atom is the diagonal sum of the two commuting SU(2) algebras

L = J(+) + J(−). (9.36)

Therefore, we may also find it convenient to use the “total angular momentum”
states that determine l in terms of j±

|j+, j−; l,ml >, l = |j+ − j−|, · · · , (j+ + j−) (9.37)

The quadratic Casimir operator of SO(4) given in (9.26) may be rewritten
in terms of the Casimir operators of the two SU(2)0s

C2 = L
2 +K2 = 2

³
J2(+) + J

2
(−)

´
(9.38)

Furthermore, in the present problem L and K are perpendicular L ·K =0 (this
is easy to see in vector notation in the classical theory as given in eq.(9.15), but
is also true as operators). A consequence of this is J2(+) = J2(−) so that their
eigenvalues are forced to be the same

j+ = j− ≡ j. (9.39)

This means that for the Hydrogen atom we can only admit the subset of SO(4)
states (9.37) of the form

|j, j; l,ml >, l = 0, 1, · · · , 2j , j = 0, 1/2, 1, 3/2, · · · . (9.40)

On these states the SO(4) Casimir (9.38) takes the values

C2 |j, j; l,ml >= 4~2j(j + 1) |j, j; l,ml >, (9.41)

and the Hamiltonian has the eigenvalues

H |j, j; l,ml > = −mc2(Zα)2

2

"
1

~2
C2 +

µ
3− 1
2

¶2#−1
|j, j; l,ml >

= −mc2(Zα)2

2
[4j(j + 1) + 1]

−1 |j, j; l,ml > (9.42)

= −mc2(Zα)2

2(2j + 1)2
|j, j; l,ml >,

½
j = 0, 1/2, 1, 3/2, · · ·
l = 0, 1, · · · , 2j

This result is in complete agreement with the Schrödinger equation approach,
provided we identify the total quantum number as

n = 2j + 1. (9.43)

Furthermore, the degeneracy is easy to understand. The number of states in
the SO(4) multiplet |j+,m+; j−,m− > is (2j+ + 1)(2j− + 1). However, for the
H-atom we specialize to j+ = j− = j, which leads to the degeneracy

D = (2j + 1)2 = n2, (9.44)

as found in Fig.9.1. Evidently, we have now gained a lot more insight into the
multiplet and symmetry structure of the H-atom in three dimensions.
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9.3.3 d dimensions

With the experience gained in d = 2 and d = 3 we are now prepared to iden-
tify the symmetry structure of the eigenstates and eigenvalues of the H-atom
in higher dimensions. The general SO(d + 1) problem has a Hilbert space la-
belled by the [(d+1)/2] Casimir operators. For the H-atom we need to identify
the appropriate representations that correspond to a subset of these Casimir
eigenvalues. In d = 2, 3 we saw that we had to restrict to a subset also.
The degeneracy computed in eq.(9.11) identifies the number of states that

should be found in the SO(d+1) multiplet as Dn(d) = N(n−1, d+1). Namely,
the correct multiplet corresponds to the traceless symmetric tensor of rank (n−
1) in (d + 1) dimensions. That is, we are invited to think of the Hilbert space
of the H-atom as being isomorphic to the Hilbert space of angular momentum
in (d+1) dimensions. The quadratic Casimir operator is then easily evaluated:
we just apply the same formulas derived in Chapter 6, eq.(6.90), but with the
substitution l→ (n− 1) and d→ (d+ 1), namely

C2(n− 1, d+ 1) = ~2(n− 1)[(n− 1) + (d+ 1)− 2)]. (9.45)

Therefore the Hamiltonian has the eigenvalue

En(d) = −mc2(Zα)2

2

"
1

~2
C2 +

µ
d− 1
2

¶2#−1
(9.46)

= −mc2(Zα)2

2

∙
n+

d− 3
2

¸−2
which agrees completely with the Schrödinger equation approach.
The mathematical structure of the symmetry is now fully clarified. The

symmetry is isomorphic to rotations in d+ 1 dimensions and the Hilbert space
of the H-atom is isomorphic to angular momentum states in d+ 1 dimensions.
We conclude that the H-atom in d dimensions is a quantum system isomorphic
to a particle moving on the surface of the unit sphere in d+ 1 dimensions. The
Hamiltonian of such a particle reduces precisely to C2 when the constraint

xµ = (x0,x), x20 + x
2 = 1 (9.47)

is taken into account

C2 =
dX

µ=0

(pµ)
2 =

1

2

X
µ6=ν

(Lµν)
2
, (9.48)

with
Lµν = −i~(xµ∂ν − xν∂µ). (9.49)

The Hilbert space of the particle problem is precisely the traceless symmetric
tensors Tµ1µ2···µ(n−1)(x) constructed from a unit vector in d+1 dimensions. The
Hamiltonians of the particle problem in d+1 dimensions and of the H-atom are
related to each other as given above.
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9.4 Interacting oscillators and dynamical sym-
metries.

There are many problems in physics that can be formulated (at least approxi-
mately) in terms of harmonic oscillator creation-annihilation operators and their
interactions.
We recall from Chapter () that any multiparticle Hamiltonian which is at

the most a quadratic polynomial in the positions or momenta may always be
diagonalized exactly in terms of normal modes that correspond to independent
harmonic oscillators. For the purpose of the present section, these harmonic
oscillators will be called “free”, and the free Hamiltonian will be denoted by

H0 = ~
NX
i=1

ωi a
†
iai (9.50)

where ωi is the frequency of the normal mode i.
In applications these creation-annihilation operators may represent the creation-

annihilation of particles (electrons, protons, neutrons, etc.) or collective exci-
tations of a crystal such as phonons, or collective bosons in nuclei that corre-
spond to paired nucleons, etc.. Accordingly a†i , ai may be fermions or bosons
and therefore their quantization is specified with canonical anti-commutators or
commutators respectively

fermions :
n
ai, a

†
j

o
= δij , {ai, aj} = 0 =

n
a†i , a

†
j

o
(9.51)

bosons :
h
ai, a

†
j

i
= δij , [ai, aj ] = 0 =

h
a†i , a

†
j

i
.

These particles are allowed to interact with each other. During the inter-
action the particle number may be conserved or violated. Interactions of these
types may involve the creation of n particles and the annihilation of m ones, as
represented by the operator

a†i1a
†
i2
· · · a†inaj1aj2 · · · ajm . (9.52)

It turns out that quite a few physical systems have an approximate description
in terms of Hamiltonians that involve particle conserving quartic interactions of
the form

H = ~
NX
i=1

ωi a
†
iai +

X
λi1i2j1j2 a

†
i1
a†i2aj1aj2 + · · · . (9.53)

There are, of course, also other systems for which there are particle non-conserving
quartic interactions, as well as interactions that are described by other polyno-
mials of creation-annihilation operators (including cubic, etc.) as implied by
the dots · · · .
In general it is not easy to find the eigenstates and eigenvalues of these

systems. However, in some cases the coefficients λi1i2j1j2 etc. have certain rela-
tions among them such that the overall Hamiltonian has a symmetry structure.



9.4. INTERACTINGOSCILLATORS ANDDYNAMICAL SYMMETRIES.317

Then the symmetry permits an exact quantum mechanical solution of the sys-
tem. In the following we give a few examples of this type. Some of them are
purely mathematical structures that help to explain the idea, while some others
are real applications that have been very useful in the description of complex
physical systems (interacting boson model, etc.)

9.4.1 SL(2,R) and harmonic oscillator in d-dimensions

Consider the following construction of the generators for SL(2,R)

J+ =
1

2
�a† · �a†, J− =

1

2
�a · �a (9.54)

J0 =
1

2
�a† · �a+ d

4

where the creation-annihilation operators are vectors in d−dimensions aI , a†I , I =
1, 2, · · · d. The commutation rules are

[J+, J−] = −2J0, [J0, J±] = ±J± . (9.55)

These differ from SU(2) only by a minus sign, i.e. −2J0 instead of 2J0. We
have learned in problem () that for SL(2,R) we can simultaneously diagonalize
J0 and the quadratic Casimir operator given by

C2 = J20 −
1

2
(J+J− + J−J+) (9.56)

= J0(J0 − 1)− J+J−

The states for SL(2,R) are labelled |j,m > . In the general case j,m may take
values in any of the four unitary representations: principal series, supplementary
series, and the two discrete series. We will see that in the present case we obtain
all of them, but only for special values of j in each series.
We may consider a Hamiltonian constructed from the oscillators aI , a

†
I , I =

1, 2, · · · d such that H is a function of only C2. Let’s construct the Hamil-
tonian (or C2) in terms of oscillators by substituting the generators in terms of
oscillators

C2 =

µ
1

2
�a† · �a+ d

4

¶2
− 1
2
�a† · �a− d

4
− 1
4
�a† · �a† �a · �a (9.57)

=
d2

16
− d

4
+
(d− 2)
4

�a† · �a+ 1
4

¡
�a† · �a �a† · �a− �a† · �a† �a · �a

¢
So, this is a particle conserving type quartic interaction with some special co-
efficients. In this case we anticipate two symmetries. The first is SO(d), the
rotation symmetry in d−dimensions, due to the fact that only dot products of
the oscillators appear. In addition, we also have an SL(2, R) symmetry since
the generators J0,± commute with C2.
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There is one further simplification we can make by noticing that the quartic
interaction can be rewritten in terms of the Casimir operator of SO(d). Re-
call from the study of the d-dimensional harmonic oscillator, that the angular
momentum operator in d−dimensions is

LIJ = i~
³
a†IaJ − a†JaI

´
(9.58)

and the Casimir operator that commutes with all LIJ is

C2 (SO(d)) =
1

2~2
X
I,J

(LIJ)
2 (9.59)

= (d− 2) �a† · �a+
¡
�a† · �a �a† · �a− �a† · �a† �a · �a

¢
Furthermore, the eigenvalues of angular momentum for the harmonic oscillator
in d−dimensions are completely determined at level �a† · �a = n as follows (as in
eq.())

1

2~2
X
I,J

(LIJ)
2 = l(l + d− 2) (9.60)

l = n, n− 2, · · · ,
½
0 if n = even

1 if n = odd

Putting these results together we can write C2 for SL(2,R) in terms of the
eigenvalues of the harmonic oscillator states

C2 =
1

4

⎛⎝d2

4
− d+

1

2~2
X
I,J

(LIJ)
2

⎞⎠
j(j + 1) =

1

4

Ã
(d− 2)2

4
+ l(l + d− 2)− 1

!

=
1

4

µ
ld +

1

2

¶2
− 1
4

(9.61)

j = −1
2
± 1
2

µ
l +

d− 2
2

¶
j + 1 =

1

2

µ
l +

d

2

¶
or

1

2

µ
−l − d

2
+ 1

¶

9.5 Particle in a magnetic field
Consider a spinless particle moving in a time independent magnetic fieldB =∇×A,
where A is the electromagnetic vector potential. The Hamiltonian is

H =
1

2
mv2 (9.62)

mv = p−e
c
A(r)
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where p is the momentum canonically conjugate to r. Note that v has the
commutation rules

[(mvI) , (mvJ)] = i~
e

c
(∇IAJ −∇JAI)

= i~
e

c
εIJK BK(r) . (9.63)

The Hamiltonian may be rewritten in the form

H =
1

2m

µ
p2 − 2e

c
A · p+ie

c
∇ ·A+e2

c2
A2

¶
, (9.64)

where the ∇ ·A arises from commuting p to the right hand side. We will
consider a couple of examples of magnetic fields

1. A constant magnetic field B =Bẑ pointing in the z-direction, where B is
a constant.

2. A radial magnetic field of the form B(r) = (
Br20
r2 ) r̂ due to a magnetic

monopole.

Constant magnetic field

For a constant magnetic field B =∇×A the vector potential is1

A =
1

2
B× r. (9.65)

1More generally the vector potential takes the form

A =
1

2
B× r+∇Λ

where Λ is an arbitrary gauge function of x, y, z. A convenient gauge choice which we use
in the text is Λ = 0, but other gauge choices are also convenient for various purposes. For
example B = ẑB is also obtained if A is of the form (A1 = 0, A2 = x1B, A3 = 0). This
case may be written in the form A =1

2
B× r+∇(Bx1x2), or Λ = Bx1x2. The Hamiltonian

is simply

H =
1

2m

¡
p21 + (p2 − eBx1/c)

2 + p23
¢
.

This Hamiltonian can be diagonized in a basis in which p2 and p3 are diagonal. Then the
motion in the x1 direction corresponds to a translated harmonic oscillator. The choice of
gauge changes the explicit symmetry of the problem. In the present case there is explicit
translation invariance in the ŷ, ẑ directions. But the actual physical symmetry as well as the
physical results are still the same as the ones presented in the text, as seen in the following
discussion.
In the general gauge consider the modified momentum and angular momentum operators

p̄ = mv+
e

2c
B× r = p−e

c
∇Λ

J = r× p̄

The commutation rules of the p̄I are the same as the canonical pI , namely

[rI , p̄J ] = i~ δIJ ,

[p̄I , p̄J ] = i~
e

c
(∇I∇JΛ−∇J∇IΛ) = 0.
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The Hamiltonian takes the form

H =
p23
2m

+
m

2

¡
v21 + v22

¢
=

1

2m

¡
p21 + p22 + p23

¢
+

e2B2

8mc2
¡
x21 + x22

¢
− eB

2mc
L3 (9.66)

=
p23
2m

+
1

2m

µ
p2r +

L23 − ~2/4
r2

¶
+

e2B2

8mc2
r2 − eB

2mc
L3

where r = (x21 + x22)
1/2, pr = r−1/2 (−i~∂r) r1/2 are canonical conjugate ra-

dial variables in 2-dimensions (see chapter on central force problem) and L3 =
(x1p2−x2p1) is the angular momentum in the z-direction. We recognize the 2D
harmonic oscillator as part of the Hamiltonian.
This Hamiltonian is evidently symmetric under translations and rotations

along the ẑ-axis. The generators of these symmetries p3 and L3 are constants
of motion. The classical motion of the particle can be easily inferred: to keep
the constants of motion, the particle must move uniformly along the z-direction
while rotating uniformly along the z-direction. So, this is a spiraling motion
along the z-axis combined with oscillations perpendicular to the z-axis.
The quantum wavefunction is labelled with the simultaneous eigenvalues of

energy H = E, angular momentum L3 = ~µ and momentum p3 = ~k. Then
H|E,µ, k >= E|E,µ, k > is rewritten in the formh

1
2m

³
p2r +

~2(µ2−1/4)
r2

´
+ mω2

2 r2
i
|E,µ, k >

= (E + ~ωµ− ~2k2
2m )|E,µ, k >

(9.67)

where ω = eB
2mc . The left hand side is just the 2-dimensional harmonic oscillator

Hamiltonian whose eigenvalues are ~ω (n+ 1) . Recall that the quantum number

This allows us to compute easily the commutators of J = r× p̄ with J, r,mv = p̄− e
2c
B× r,

and H = 1
2
mv2 in any gauge as follows

[JI , JJ ] = i~ εIJK JK

[JI , rJ ] = i~ εIJK rK , [JI , p̄J ] = i~ εIJK p̄K

[J3, v1] = i~ v2, [J3, v2] = −i~ v1

[J3,mv3] = 0, [J3, H] = 0, [mv3,H] = 0.

This shows that in any gauge J3 and mv3 = p̄3 commute with the Hamiltonian as well as
each other. Hence they generate symmetries, and their eigenvalues label the degenerate energy
eigenstates.
In the gauge Λ = 0 the generators of the symmetries become mv3 = p3, J3 = L3, hence

the symmetries are translations and rotations along the z-direction. However, even if Λ 6= 0
breaks the manifest symmetries, as in the example above, there still are “translation” and
“rotation” symmetries that lead to the same degeneracies and classification of states. In the
example above these are given by p̄3 = p3 and the following form of J3.

J3 = x1p̄2 − x2p̄1

= x1p2 − x2p1 +
eB

2c
(x22 − x21),

[J3, H] = 0.
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n is the sum of a radial quantum number nr and angular momentum l = |µ| .
Thus identifying this eigenvalue with the right hand side we find

E =
eB~
2mc

(nr + |µ|− µ+ 1) +
~2k2

2m
,

nr = 0, 2, 4, 6 · · · (9.68)

µ = 0,±1,±2, · · ·

Note that the vacuum state is infinitely degenerate since nr + |µ| − µ = 0
occurs for an infinite number of values. In fact in order to exhibit correctly the
degeneracy of each state we define

2N = nr + |µ|− µ , (9.69)

since nr + |µ|− µ is an even integer. Then we may rewrite

E =
eB~
mc

µ
N +

1

2

¶
+
~2k2

2m

N = 0, 1, 2, · · · (9.70)

µ = −N,−N + 1, · · · , 0, 1, 2, · · ·

We now see the infinite degeneracy as labelled by the magnetic quantum number
µ. A given energy level N may be achieved either by radial excitations (nr)
or by orbital excitations that spiral in the clockwise direction (negative µ), or
a combination of the two. There is no energy gain for anti-clockwise orbital
excitations (positive µ).
The wavefunction in position space ψn,µ,k(r) =< r|E,µ, k > is given in

terms of the 2D harmonic oscillator radial wavefunction Rnr,µ(r)

ψN,µ,k(r) = Ceikx3eiµφRnr,µ(r), (9.71)

nr = 2N + µ− |µ|

where the 2D harmonic oscillator radial quantum number nr is related to the
total quantum number N and degeneracy label µ of the current problem. This
probability amplitude is consistent with the classical motion described above
(spiraling in the z-direction combined with oscillating in the radial direction).
For a given energy level N the lowest radial quantum number nr = 0 is obtained
for the most negative magnetic quantum number µ = −N, corresponding to a
particle that is spiraling in the direction opposite to the magnetic field.

Algebraic method

There is another quick algebraic solution that yields the same results. Since
this gives more insight and provides an example of useful methods as well, we
describe it here. From (9.63) we have [v1, v2] = i~eB/cm2. Except for the overall
normalization, these commutation rules are isomorphic to the commutation rules
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of position-momentum operators. So we may define one-dimensional harmonic
oscillators and rewrite the Hamiltonian in terms of them

a =

r
cm2

2~eB
(v1 + iv2), a† =

r
cm2

2~eB
(v1 − iv2) (9.72)

H =
p23
2m

+
m

2

¡
v21 + v22

¢2
=

p23
2m

+
eB~
mc

µ
a†a+

1

2

¶
Therefore, the eigenstates are

1√
N !
(a†)N |0, k >, (9.73)

and the spectrum is

E =
~2k2

2m
+

eB~
mc

µ
N +

1

2

¶
(9.74)

N = 0, 1, 2, · · ·

This agrees with the spectrum obtained above.
Next we need to understand the role of angular momentum and explain the

degeneracy as well. The Hamiltonian is axially symmetric, so it is simultane-
ously diagonalizable with angular momentum L3. The commutation rules with
the oscillators are

[L3, a] = a,
£
L3, a

†¤ = −a† (9.75)

Therefore, each time a creation operator is applied on a state it lowers its angular
momentum by one unit. So, we must identify the magnetic quantum number of
the state as follows

|N,µ, k >=
1√
N !
(a†)N |0, µ+N, k > . (9.76)

However, we still need to find out the allowed values for µ. For this we need the
properties of the wavefunction.
The wavefunction is separable as

ψN,µ,k(r) = < r|N,µ, k > (9.77)

=
eikx3√
2π~

FNµ(x1, x2),

where FNµ is computed by exploring the properties of a and a† as follows

< x1, x2|a =< x1, x2|
hp

c
2~eB (p1 + ip2) +

q
eB
8~c(x2 − ix1)

i
=

∙q
~c
2eB (∂2 − i∂1) +

q
eB
8~c(x2 − ix1)

¸
< x1, x2|

(9.78)

Defining

w =

r
eB

2~c
(x2 + ix1) = i

r
eB

2~c
re−iφ (9.79)
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we can write

< x1, x2|a =
µ

d

dw
+

w∗

2

¶
< x1, x2| (9.80)

< x1, x2|a† =
µ
− d

dw∗
+

w

2

¶
< x1, x2|.

This leads to

FNµ(x1, x2) =
1√
N !

< x1, x2|(a†)N |0, µ+N >

=
1√
N !

µ
− d

dw∗
+

w

2

¶N
F0,µ+N(x1, x2) (9.81)

F0,µ+N (x1, x2) ≡ < x1, x2|0, µ+N >

The ground state wavefunction F0,µ+N satisfies a differential equation derived
by acting with a to the right or left as follows

0 =< x1, x2|a|0, µ+N >=

µ
d

dw
+

w∗

2

¶
F0,µ+N . (9.82)

The general solution of this first order equation is F0,µ+N (w,w∗) = fµ+N (w
∗) exp(−ww∗/2).

But we also know that the angular momentum of the state is L3 = µ+N, which
demands that the wavefunction be proportional to exp(iφ(µ + N)). This fixes
fµ+N (w

∗) = C (w∗)µ+N . So, we have derived the wavefunction except for the
overall normalization

F0,µ+N (x1, x2) = Cµ+N (w∗)µ+N e−
1
2ww

∗

FNµ(x1, x2) =
Cµ+N√

N !

µ
− d

dw∗
+

w

2

¶N h
(w∗)µ+N e−

1
2ww

∗
i
(9.83)

=
Cµ+N√

N !
e−

1
2ww

∗
µ
− d

dw∗
+ w

¶N
(w∗)µ+N

The vacuum state must have positive values of angular momentum so that its
wavefunction is well behaved near the origin x1 = x2 = 0. Hence µ + N ≥ 0,
which implies that the degeneracy of the state at energy N is given by

µ = −N,−N + 1, · · · , 0, 1, 2, · · · . (9.84)

This is the same result obtained above.

Particle in a magnetic monopole field

Consider a particle moving in a radial magnetic field of the form

B(r) =
g

4πr2
r̂ = −∇ g

4πr
. (9.85)



324 CHAPTER 9. SOME APPLICATIONS OF SYMMETRY

The value of the magnetic field at r = r0 is normalized to the constant B0 ≡
B(r0) =

g
4πr20

. The divergence of this field is

∇ ·B = −∇2 g

4πr
= gδ3(r), (9.86)

which indicates that the field is due to a magnetic monopole at the origin whose
magnetic charge is equal to the flux passing through the spherical shell at r = r0,

g = 4πr20B0.

The vector potential that produces this magnetic field through ∇×A = B
is the Dirac monopole field. In spherical coordinates (r, θ, φ) it is given as

A = − g

4π

cot θ

r
φ̂+∇Λ. (9.87)

where φ̂ is the unit vector in the φ-direction, and Λ is a gauge function that we
will fix to Λ = 0 in our discussion. To verify this result recall that

∇ = r̂∂r + θ̂
1

r
∂θ + φ̂

1

r sin θ
∂φ (9.88)

∂θφ̂ = 0, ∂φφ̂ = −(θ̂ cos θ+r̂ sin θ).

The Hamiltonian (9.62) may be rewritten in the form

H =
m

2

µ
v2r +

1

r2
(r× v)2

¶
(9.89)

vr ≡ 1

2
(r̂ · v+ v · r̂) = 1

m
pr

where pr = 1
r (−i~∂r) r is the radial momentum that is canonically conjugate to

r in three dimensions, as seen in previous chapters. This has the familiar form
of spherical decomposition. The term (r×mv)2 looks like the square of angular
momentum . However, since the components of v do not commute with each
other (see (9.63)) the expression for angular momentum needs modification so
that it forms the correct Lie algebra. Thus one finds that there is a modified
expression that works as follows

J = r× (mv)+~sr̂
[JI , JJ ] = i~εIJK JK (9.90)

s = −eg/4π~c.

where s is dimensionless. It is useful to represent J purely in terms of angles

J = ~s r̂+ θ̂ (~s cot θ +
i~
sin θ

∂φ)− φ̂ i~∂θ

J± = ~e±iφ(±∂θ + cot θ ∂φ +
s

sin θ
), J0 = −i~∂φ (9.91)

(r×mv)2 = (J−~sr̂)2 = J2 − ~2s2 = ~2[j(j + 1)− s2].
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The terms proportional to s are due to the presence of the magnetic field. Thus,
the Hamiltonian can be written in terms of the modified angular momentum

H =
1

2m
[p2r +

1

r2
(J2 − ~2s2)]. (9.92)

Therefore, H commutes J, which implies that H is invariant under the modified
“rotations” generated by J. Note the problem with the same symmetries can be
generalized by including also an arbitrary potential V (r)

H 0 =
1

2m
[p2r +

1

r2
(J2 − ~2s2)] + V (r) . (9.93)

The states may now be labelled as |E, j,m > and we need to find out the
allowed values of j,E. To do so we must consider the wavefunction in position
space

ψEjm(r) = < r|E, j,m >= REj(r) gjm(θ, φ) (9.94)

and impose the structure of J in terms of angles. Thus, by sandwiching the
J0, J±,J

2 operators between states we derive the following constraints

−i∂φgjm(θ, φ) = mgjm(θ, φ)

e±iφ(±∂θ + cot θ ∂φ + s
sin θ )gjm(θ, φ) = ±

p
j(j + 1)−m(m± 1) gj,m±1(θ, φ)

−1
sin2 θ

[(sin θ ∂θ)
2
+ (∂φ − is cos θ)2]gjm(θ, φ) = j(j + 1)gjm(θ, φ)

The solution is the rotation matrix up to a normalization constant since it
satisfies the same conditions (e.g. compare the third equation to eq.() in chapter
7),

gjm(θ, φ) = CjmsD
j
ms(φ, θ, 0) = Cjmse

imφdjms(θ). (9.95)

Furthermore, the radial wavefunction satisfies the equation

[p2r +
~2q(q + 1)

r2
+ v (r)]REj(r) = (2mE) REj(r) (9.96)

j(j + 1)− s2 ≡ q(q + 1)

which is identical to the radial equation of the free particle, as studied in chapter
6, if v (r) = 0. In this case, its solutions are given in terms of spherical Bessel
functions REj(r) = jq(kr), and the energy E = ~2k2/2m is continuous.
We see that, as compared to the free particle angular solution Ylm(θ, φ) ∼

eimφdjm0(θ), the angular solution in the present case involves d
j
ms(θ), where the

non-zero s is due to the magnetic field. However, for consistency with angular
momentum quantization, it must be that s is quantized! Since the allowed
quantized values of j are either half integer or integer, so the allowed quantized
values of s are also half integers or integers. Therefore

|s| =
¯̄̄ eg

4π~c

¯̄̄
= integer or

µ
integer +

1

2

¶
(9.97)

This quantization seems surprising at first, but it is consistent with other argu-
ments that the charges of monopoles must be quantized. Therefore, its magnetic
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field is also quantized. The value of |s| is a-priori determined by the magnetic
monopole at the origin. The minimum non-trivial value of |s| is 1/2.
Now we are prepared to give the allowed values of j. Since s plays the role

of third component of angular momentum in djms(θ) =< jm| exp(iJ2θ)|js >,
then j ≥ |s| . Thus the solution is completed by giving the following list of the
allowed values for the quantum numbers

j = |s| , |s|+ 1, |s|+ 2, |s|+ 3, · · · (9.98)

q = [(j + 1/2)2 − s2]1/2

ψEjm(r) = Cjms jq(kr) d
j
ms(θ) e

imφ.

We see that there is a minimum value of q

qmin(s) = −1/2 +
p
|s|+ 1/4. (9.99)

Hence, for non-zero s the wavefunction must vanish at the origin, which means
that the particle has little probability to sit on top of the monopole at the origin.

9.6 PROBLEMS
1. Compute [AI ,H] and show that it is zero. It is useful to use as much as
possible that LIJ commutes with scalars. For some of the computation,
it is also useful to recall that p2 can be written in terms of the radial
momentum and angular momenta

p2 = p2r +
1

2r2
L2IJ , (9.100)

and that the commutator between angles and the radial momentum van-
ishes [r̂I , p2r] = 0.

2. Compute [AI , rJ ] that appeared in eq.(9.18). It is useful to use as much
as possible the properties of [LIJ , rK ] . Give your answer in terms of the
quantities D = 1

2 (r · p+ p · r) , the antisymmetric LIJ , and the symmet-
ric traceless tensor QIJ = rIpJ+rJpI− 2

dD. Recall that the set (LIJ , QIJ)
form together the SU(d) Lie algebra and D, which is the dimension oper-
ator, commutes with these dimensionless quantities.

The infinitesimal transformation that leaves the classical action for the
H-atom invariant is obtained from = − iεI

~ [AI , rJ ] as a linear combination
of these operators (find it). Now, replacing p =mṙ and ignoring orders of
operators classically show that it reduces to

δεr = ε r · ṙ − 2ε · r ṙ+ ε · ṙ r (9.101)

= r× (ε× ṙ ) + ε× (r× ṙ).

(the first line is in any dimension, the second one is valid only in three
dimensions). Next show that the classical Lagrangian L = 1

2mṙ
2 + Ze2

r
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transforms to a total time derivative, which is consistent with the symme-
try of the action (see chapter on symmetry)

δεL = ∂tΛε

Λε = −m(ε× ṙ ) · (r× ṙ)−Ze2 ε · r
r

. (9.102)

3. Compute the commutator [AI , AJ ] that appeared in eq.(9.19). It helps to
first compute [AI , rJ ] and [AI , pJ ] as in problem 2.

4. Compute
P

I A
2
I that appeared in eq.(9.27) and verify the result given in

the text.

5. Consider the Hydrogen atom perturbed by external fields or forces such
that

H = H0 +H1

H0 =
p2

2m
− Ze2

r
(9.103)

H1 = ε A3

where A =1
2(L× p− p× L)−mZe2r̂ is the Runge-Lenz vector, and ε is

a positive parameter. Using the SU(2)+ ⊗ SU(2)− symmetry structure
of the problem, as given in the attached class notes, solve exactly for the
eigenvalues and eigenstates of the total Hamiltonian.

Then plot the 4 states for the n = 2 level, indicating their relative energies,
together with their quantum numbers.
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9.8 Particle on spherical shell in monopole field
The problem we have just solved may be modified by putting a constraint that
the particle be restricted to move on the surface of the spherical shell at r = r0.
This implies that the radial momentum vanishes on the wavefunction prψ = 0.
Therefore, the Hamiltonian in (9.89,9.92) reduces to

H =
m

2r20
(r× v)2

=
1

2mr20
(J2 − ~2s2) (9.116)

=
−~2
2mr20

1

sin2 θ
[(sin θ ∂θ)

2 + (∂φ − is cos θ)2]

We have already solved this problem above, and found the solution listed in
(9.98), but in this case the energy is quantized

E(j) =
~2
£
j(j + 1)− s2

¤
2mr20

, (9.117)

ψjm(r̂) = Cjms d
j
ms(θ) e

imφ

Let us now take r0 = 1 in some units, and consider the stereographic pro-
jection of the spherical shell on the plane that passes through the equatorial
plane. The mapping is done by drawing a straight line from the north pole to
a point on the plane. The line cuts the sphere at a point parametrized by the
spherical coordinates (θ, φ) , and cuts the plane at a point parametrized by the
cylindrical coordinates (ρ, φ). Note that we have the same coordinate φ in both
cases, as can be seen by drawing a picture. Graphically it is also easy to see
that

ρ = cot
θ

2
. (9.118)

The north pole (θ = 0) is mapped to infinity (ρ = ∞) and the south pole
(θ = π) is mapped to the origin (ρ = 0). We next make one more change of
variables to a set of generalized coordinates (q1 = ln ρ, q2 = φ) whose ranges
are −∞ < q1 < ∞, and 0 ≤ q2 ≤ 2π, corresponding to the infinite strip. The
relation between the spherical angles and the variables on the strip are now

eq1+iq2 = cot
θ

2
eiφ. (9.119)

The Hamiltonian takes a simple form in terms of the variables on the strip by
noting that

sin θ ∂θ = ∂q1 ,

−1
sin2 θ

[(sin θ ∂θ)
2
+ (∂φ − is cos θ)2]

=



Chapter 10

VARIATIONAL METHOD

With this chapter we begin the study of approximation methods in quantum
mechanics. We will study several methods that yield approximate results of
different kinds. The variational method, the WKB approximation, and per-
turbation theory, both time independent and time dependent, are the major
approximation techniques. The variational method is a “quick and dirty” ap-
proach to obtain an approximate description of the ground state energy and
wavefunction. The accuracy of the results depend mostly on the physical in-
tuition that one has about the system. The WKB approximation yields the
leading orders in an expansion of ~. Thus, it is a semi-classical approximation
and works well for states with large quantum numbers. Finally perturbation
theory is a systematic expansion in a small parameter that represents a small
perturbation of an exactly solvable quantum mechanical system. In principle,
with perturbation theory one may compute systematically to all orders, but in
practice it is difficult to compute beyond a few orders. Low order perturbation
theory works well when the parameter of expansion is indeed small.

The variational method may be applied to simple as well as complicated
systems. It is worth trying this approach for a quick estimate of the properties
of the system in its ground state. One may also obtain less reliable information
on the next few excited states. The method requires a guess for the form of the
ground state. The closer the guess is to the actual ground state, the better the
results are. But, in the absence of an exact computation, there is no way to
know how good the guess is. This is why a good physical intuition about the
physical system is of great importance.

10.1 Variational theorems

The following two theorems are at the basis of the variational method. Consider
any Hamiltonian H, and any quantum state |ψ >, and define the expectation

331
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value for the energy in this state

E(ψ) =
< ψ|H|ψ >

< ψ|ψ >
.

Theorem 1 When |ψ > is varied |ψ >→ |ψ + δψ >, then the energy E(ψ)
is stationary when |ψ > is in the vicinity of an eigenstate of the Hamiltonian
|ψ >∼ |En >.

Theorem 2 The energy E(ψ) is always larger than the true ground state energy
E0, i.e. E(ψ) ≥ E0.

To prove these theorems consider the variation of E(ψ)

δE(ψ) =
1

< ψ|ψ >
(< δψ|H|ψ > −E(ψ) < δψ|ψ >) + h.c.

where h.c. stands for hermitian conjugate. If |ψ > is an eigenstate of energy
|En >, then using H|En >= En|En > and E(ψ) = En, it is evident that
δE(ψ) = 0. This proves the first theorem.
Next consider E(ψ) − E0, multiply the second term with identity in the

form 1 =< ψ|ψ > / < ψ|ψ >, and then introduce the identity operator
1 =

P
m |Em >< Em| as follows

E(ψ)−E0 =
1

<ψ|ψ> (< ψ|H|ψ > −E0 < ψ|ψ >)

= 1
<ψ|ψ>

P
m (< ψ|H|Em >< Em|ψ > −E0 < ψ|Em >< Em|ψ >)

= 1
<ψ|ψ>

P
m(Em −E0) |< ψ|Em >|2 ≥ 0

(10.1)
The last inequality follows since every term in the sum is positive thanks to
the fact that E0 is, by definition, the lowest energy. This proves the second
theorem.
As a result of these theorems it is possible to obtain an estimate for the

ground state energy by making an educated guess for the ground state wave-
function. One uses a trial wavefunction ψ(x, λi) which includes some parameters
λi that relate to the physical properties of the system. As a function of the para-
meters one is really considering a family of trial wavefunctions. By minimizing
E(ψ) = E(λi) with respect to these parameters, i.e. δE(ψ) = 0, or

∂E

∂λi
= 0, → λi = λ0i

one obtains an estimate for the value of E0 ∼ E(λ0i ) (note that E0 is a lower
bound, since E(λi) ≥ E0). Thus the “best” ground state wavefunction within
the trial family, ψ0(x) ∼ ψ(x, λ0i ), has the value of the parameters λ0i that
minimize the energy. One may improve the estimate of the ground state energy
E0, by including more parameters in the family of wavefunctions.
One may consider excited states as well. The first theorem holds. In the

proof of the second theorem, one may substitute E1, the next excited energy
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level. If one insures that the state |ψ > is orthogonal to the true ground state,
< ψ|E0 >= 0, then every term in the sum is positive, and therefore for such
|ψ > one gets E(ψ) ≥ E1. To consider higher excited states one must choose
|ψ > orthogonal to all lower energy eigenfunctions. The difficulty is that the true
eigenfunctions are unknown. At best, one may compute at each step an estimate
for the energy eigenfunctions, such as ψ0(x) ∼ ψ(x, λ0i ), etc.. Therefore, errors
accumulate as one considers higher energy levels, so that the estimates become
less and less reliable. The situation improves if there are additional conserved
quantum numbers, such as angular momentum, that help define orthogonal
eigenfunctions. Then one may obtain a good estimate for the lowest energy
level with a fixed angular momentum l = 0, 1, · · · ,etc.

10.2 Examples
Example 1.— Consider the Hamiltonian for a 1-dimensional infinite well

H = − ~
2

2m
∂2x + V (x), where V (x) =

½
0 |x| ≤ a
∞ |x| > a

. (10.2)

as given in the figure

Fig.10.1.–Square well

The true (exact) solution for the ground state is known,

ψ0(x) =
1√
a
cos(

πx

2a
) θ(a− |x|), E0 =

~2π2

8ma2
.

Let us consider the features that are expected on intuitive grounds, and incor-
porate them in the trial wavefunction. For the ground state one expects an even
wavefunction, with the greatest probability near the center of the well, and zero
probability on the outside. As a first guess one may choose an non-normalized
trial wavefunction without any parameters

ψ =

½
((a2 − x2) |x| ≤ a
0 |x| > a

(10.3)

The expectation value of the Hamiltonian is

E(ψ) =
− ~2
2m

R a
−a dx (a

2 − x2) d
2

dx2 (a
2 − x2)R a

−a(a
2 − x2)2dx

=
10

π2
~2π2

8ma2
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which is already pretty close to the exact ground state energy E0

E(ψ) =
10

π2
E0 = 1.013 E0.

One can do better by choosing a wave function which depends on a parameter
λ. For example, let

ψ =

½
aλ − |x|λ |x| ≤ a
0 |x| > a

. (10.4)

The

E(ψ) =
(λ+ 1)(2λ+ 1)

(2λ− 1)
~2

4ma2

Imposing now dE
dλ = 0 and solving for λ, one gets

λ0 =
1 +
√
6

2
' 1.72

So that

E(λ0) =
5 + 2

√
6

π2
π2~2

8ma2
'1.00298 E0

The approximate answer agrees with the exact one within 0.3%, and it is a great
improvement over the no-parameter trial wavefunction chosen originally.
The next excited state can be considered by taking a trial wavefunction that

is odd. Recall that in this problem there is a parity symmetry. An odd wave-
function is automatically orthogonal to the ground state wavefunction which
is even. Therefore, the variational method can be applied in a straightforward
manner to get an estimate of the first excited state. This is left as an exercise
for the student (see problem ()).
Example 2.–Suppose we now want to solve the problem of the H-atom

by means of the variational method. The Hamiltonian is

H =
p2

2m
− Ze2

r
.

We need to make an educated guess for ψ. By studying just the asymptotic be-
havior of the Schrödinger equation, one expects an exponential fall-off. There-
fore, one may take the trial wavefunction for the ground state

ψ = e−r/a

where a is a variational parameter. The norm is

< ψ|ψ > =
R
e−

2r
a d3r = πa3 (10.5)

and the expectation for the energy is

E(a) = 1
<ψ|ψ> < ψ|H|ψ >

= 1
πa3

R
e−

r
a

³
− ~2∇2

2m − Ze2

r

´
e−

r
a d3r

= ~2
2ma2 −

Ze2

a

(10.6)
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For later purposes it is useful to note that the first term is the expectation value
of the kinetic energy, and the second is the expectation value of the potential
energy. Minimizing with respect to a yields

dE(a)

da
= 0 → − ~2

ma3
+

Ze2

a2
= 0 → a =

~2

Zme2
=

a0
Z

where a0 is the Bohr radius. So the minimized energy is

E(a) = −Ze2

2a0
= E0

ψ0 = e−
Zr
a0 .

(10.7)

This is actually identical to the exact result. The exactness of our result followed
from the lucky choice of the trial wave function.
Example 3.–Problem: Estimate the first excited state and energy of the H-

atom, by considering a state with angular momentum l = 1, e.g. ψ(r) =R(r)Y10(r̂) =R(r)
cosθ, where R(r) is a variational wavefunction.

10.3 Helium atom

Neglecting the motion of the nucleus, but taking into consideration the electron-
electron repulsion, the Hamiltonian of the Helium atom is written as follows

H =
p21
2m

+
p22
2m
− 2e

2

|r1|
− 2e

2

|r2|
+

e2

|r1 − r2|
.

If it were not for the repulsive term, this Hamiltonian would be equivalent to
the sum of two Hamiltonians for two hydrogen-like systems. In that case the
total eigenstate would be the direct product of two hydrogen-like eigenstates

ψ(r1, r2) = ψn1c1m1
(r1) ψn2c2m2

(r2) . (10.8)

This form neglects the intrinsic spin of the electron, to which we will return later.
To take into account the repulsion as well, we make the educated guess that each
electron will see an effective potential consisting of the Coulomb attraction of
the nucleus, but partially shielded by the other electron. In that case, the
trial wavefunction can be taken in the same form as 10.8, but with an effective
charge Z replacing the nuclear charge. This effective charge plays the role of
the variational parameter. Actually, for more accuracy, we may introduce two
parameters Z1, Z2 , one for each electron.
Before applying the variational method, let’s estimate the energy by adding

naively the energy of each electron in hydrogen-like orbits |ψ >∼ |n1l1m1 >
|n2l2m2 >. We would then make the following naive guess for the ground state
energy

En1n2 = E(1)n1 +E(2)n2 = −
µ
Z21
n21
+

Z22
n22

¶
Ry
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where Ry ' 13.6 eV. For the ground state, both electrons are in hydrogen-
like 1S states, |ψ >∼ |1S > |1S > . If we take naively Z1 = Z2 = 2, and set
n21 = n22 = 1, we get

E0 = −8 Ry

For the state |1S > ⊗|2S > or higher ones |1S > ⊗|n2S >, we need to take into
account the screening effect of the 1S-electron to obtain a fair estimate of the
energy the state. In general, for such excited states we have the naive estimate
Z1 = 2, Z2 = 1, so that

E = −
"µ
2

1

¶2
+

µ
1

n2

¶2#
Ry., n2 = 2, 3, 4, · · · ,∞

The ionization energy is defined as the energy corresponding to the escape of
the second electron, i.e. n2 =∞.

Eion ' −4 Ry.

Consider also the case of two electrons excited to the second energy level, with
Z1 = Z2 = 2

E(2S, 2S) = −
∙
4

4
+
4

4

¸
Ry = −2 Ry.

This energy is roughly twice as high as the ionization energy of one electron.
Collecting these estimates we compare the naive theory to experiment.

state naive theory experiment
|1S,1S> -8 Ry -5.8 Ry
|1S,2S> -4.25 Ry - ... Ry
...

...
...

|1S,∞S> -4 Ry —4 Ry

|2S,2S> -2 Ry –––

We see roughly that it is more favorable to excite one of the electrons to arbitrary
levels rather than exciting both electrons to the second level.
The way at which we have looked at our problem up to this point is very

inaccurate indeed. We can do better if we introduce the parameters Z1, Z2 as
variational parameters and minimize the energy. To find the energy of the |1S >
⊗|1S > state we can start from the trial wave function with Z1 = Z2 = Zeff
and using a0 = ~2/me2

ψ0(r1, r2) = e−Zeff (
r1
a0
+
r2
a0
) →

E(ψ) = <ψ|H|ψ>
<ψ|ψ> =

R R
d3r1 d3r2 ψ(r1,r2) H ψ(r1,r2)R R
d3r1 d3r2 ψ(r1,r2) ψ(r1,r2)

(10.9)

Let us start from the norm in the denominator, which involves two indepen-
dent integrals, each one the same integral as (10.5) except for substituting
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a = a0/Zeff ,

< ψ|ψ >=

Ã
πa30
Z3eff

!2
(10.10)

For the numerator, the expectations of the kinetic and 1/r potential energy
terms also involve decoupled integrals that can be performed with the same
computations as (10.6) except for substituting a = a0/Zeff ,

< ψ| p
2
1

2m |ψ >= < ψ| p
2
2

2m |ψ >=
³
e2Z2

eff

2a0

´³
πa30
Z3
eff

´2
< ψ|− 2e2

|r1| |ψ >=< ψ|− 2e2

|r2| |ψ >=
³
−2e

2Zeff
a0

´³
πa30
Z3
eff

´2
where we have used a0 = ~2/me2. The only new integral to be evaluated is the
expectation of the repulsive termZ

d3r1

Z
d3r2e

−Zeff ( r1a0+
r2
a0
) e2

|r1 − r2|
e−Zeff (

r1
a0
+
r2
a0
) (10.11)

The above integral is of the typeZ
d3r1

Z
d3r2

e−Ar1e−Br2

|r1 − r2|
= 2(4π)2

A2 +B2 + 3AB

A2B2(A+B)3
(10.12)

Here A = B =
2Zeff
a0

, so that it becomes

e2 × 2(4π)2 5A
2

8A7
=
5(4π)2e2

4A5
=

µ
5e2

8

Zeff
a0

¶Ã
πa30
Z3eff

!2
. (10.13)

Putting everything together

E(Zeff ) = 2×
³
e2Z2

eff

2a0

´
+ 2×

³
−2e

2Zeff
a0

´
+
³
5e2

8
Zeff
a0

´
= e2

a0

³
Z2eff − 27

8 Zeff

´
.

(10.14)

Minimizing the energy ∂E
∂Zeff

= 0 yields

Zeff =
27

16
= 1.6875. (10.15)

We see that the effective charge seen by each electron is less than Z = 2,
indicating that even when they are in the same orbit, they shield the nucleus
from each other to a certain extent. So the best estimate for the ground state
energy is

E0(Zeff ) =
e2

2a0
2×

Ãµ
27

16

¶2
− 27
8

µ
27

16

¶!
(10.16)

≈ −5.7 e2

2a0
= −5.7 Ry. (10.17)
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Comparing this value with the experimental result of E0(expt) = −5.8Ry, we
see that the agreement is not bad, and certainly better than our first guess of
−8Ry.
Similarly, the estimates for the higher excited states can be improved by us-

ing two effective charges Z1, Z2 as variational parameters, and insuring that the
variational state is orthogonal to the ground state that we have just computed
above. The orthogonality may be imposed by putting the second electron in an
l = 1 state. So, the variational state may be taken as

|1S, 2P > → ψ1S2P (r1, r2) = ψ100(r1, Z1) ψ210(r2, Z2) (10.18)

ψ100(r1, Z1) = e−Z1r1/a0 , ψ210(r2, Z2) = e−Z2r2/2a0 r2 Y10(r̂2).

where the second wavefunction is the |2P > state of a hydrogen-like atom with
an effective nuclear charge Z2. The presence of Y10(r̂2) = cos θ2/

√
4π guaranties

orthogonality to the ground state independently of its detailed r-dependence.
It is also possible to take a |1S, 2S > variational state, however since we do not
know the exact r-dependence of the ground state wavefunction there is no way
to choose the variational wavefunction orthogonal to it. The best we can do is
to make ψ1S2S(r1, r2) orthogonal to the approximate ground state wavefunction
(10.9) that we estimated above. Therefore it is expected that the errors in the
ground state estimate will propagate to the excited state. So one may take a
variational state of the form

ψ1S2S(r1, r2) = ψ100(r1, Z1) ψ200(r2, Z2)
ψ100(r1, Z1) = e−Z1r1/a0 ,

ψ200(r2, Z2, c) = e−Z2r2/2a0
³
Z2r2
2a0
− c (Z2)

´
,

(10.19)

where the constant c (Z2) = 24Z2/(8Z2 + 27) is chosen so that the |2S > wave-
function with an unknown Z2 is orthogonal to the ground state |1S > that
has Zeff = 27/16 (note that if Z2 were equal to Zeff then c = 1 just like the
exact |2S > Hydrogen wavefunction). Then both Z1 and Z2 can be used as
variational parameters. According to physical intuition based on the screening
effects, we expect to find Z1 ≈ 2 and Z2 ≈ 1 for both variational wavefunctions
suggested above. The computations for these variational wavefunctions are left
as exercises for the student (see problem (2)). However, there are additional
important physical effects that must be taken into account before attempting
to improve the variational computation. These have to do with the exclusion
principle and the spin states of the two electrons, as discussed below.
Nevertheless, if we ignore the exclusion principle, we find the following vari-

ational results (see problem 2). For the |1s2s > configuration the variational
calculation gives Z1 = 1.9934, and Z2 = 1.232 and

E1s2s = E1 +E2 + I

= −4− 0.81586 + 0.50736 (10.20)

= −4.3087
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For the |1s2p > configuration the variational calculation gives Z1 = 1.99828,
and Z2 = 1.0179 and

E1s2p = −4.252 (10.21)

Effectively, the 2s electron is not as well shielded as the 2p electron (compare
Z2 for the two cases). This is reasonable since the 2s electron can penetrate
more easily the shielding cloud of the 1s electron and “see” more of the nucleus.
Because of this the 2s electron is more attracted to the nucleus relative to the
2p electron and its energy is lower E1s2s < E1s2p. The more careful analysis,
including the exclusion principle, is consistent with this picture as seen below.

10.4 Identical particles
Let us consider a two body wavefunction ψa1a2(r1, r2) that describes the proba-
bility amplitude of two identical particles, where a1, a2 stand for a collection of
quantum numbers such as spin, charge, etc. quantum numbers. The probability
that these particles are found within some volume element at locations r1, r2 is
|ψa1a2(r1, r2)|2d3r1d3r2. If the particles are identical, an observer will measure
the same probability if the two particles are interchanged

|ψa1a2(r1, r2)|
2d3r1d

3r2 = |ψa2a1(r2, r1)|
2d3r1d

3r2.

This implies that under the permutation of the two particles the wavefunctions
can differ at the most by a phase

ψa1a2(r1, r2) = eiφ(ψ)ψa2a1(r2, r1).

We now argue that the phase eiφ(ψ) should be the same for all wavefunctions
ψ : The general state of the two particles can always be written in terms of
some basis states ψa1a2(r1, r2) =

P
An ψ

(n)
a1a2(r1, r2). Under the interchange of

the two particles each basis state can differ at the most by an overall phase
exp(iφn). Thus, one must have

ψa1a2(r1, r2) = eiφ(ψ)ψa2a1(r2, r1)X
An ψ

(n)
a1a2(r1, r2) =

X
An e

iφn ψ(n)a2a1(r2, r1)

= eiφ(ψ)
X

An ψ(n)a2a1(r2, r1)

If the phases are different for each basis function it is impossible to satisfy
these relations. Therefore, the phase must be universal for all wavefunctions
eiφ(ψ) = eiφn = eiφ. Furthermore, by permuting the two particles twice we
must return to the same wavefunction

ψa1a2(r1, r2) = eiφψa2a1(r2, r1) = ei2φψa1a2(r1, r2)

Therefore we must have

ei2φ = 1, or eiφ = ±1.
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Let us formally write this result by defining a permutation operator Π which
just interchanges all the attributes of the two particles (i.e. position, spin, etc.)

Πψa1a2(r1, r2) = ψa2a1(r2, r1)

= ±ψa1a2(r1, r2).

This implies that the operator is diagonal on the two particle wavefunction.
Furthermore, note that the Hamiltonian for two identical particles is symmetric
under their interchange

ΠH(1, 2)Π−1 = H(2, 1) = H(1, 2),

By multiplying both sides of this equation by Π from the right, we find that the
permutation operator commutes with the Hamiltonian,

ΠH = HΠ → [Π,H] = 0.

This implies that Π is a constant of motion, and that it can be diagonalized
simultaneously with the Hamiltonian. Thus, if we pick either the +1 or the −1
eigenvalue, it will remain fixed for all times.
It turns out that Nature has chosen a particular sign as follows:

• If the identical particles have integer spins, i.e. they are bosons, then the
wavefunction must be symmetric, i.e. Π must have the +1 eigenvalue.

• If the identical particles have half-integral spins, i.e. they are fermions,
then the wavefunction must be anti-symmetric, i.e. Π must have the (−1)
eigenvalue.

Within non-relativistic quantum mechanics there is no fundamental explana-
tion of this fact. But in relativistic quantum field theory this rule is derived
from fundamental facts such as relativistic invariance, locality and causality. It
turns out that all bosons must satisfy Klein-Gordon type equations with the field
quantized with commutators, and all fermions must satisfy Dirac type equations
with the field quantized with anticommutators. This explains simultaneously
the symmetry or antisymmetry of the wavefunctions as well as the fact that
bosons satisfy Bose-Einstein statistics and fermions satisfy Fermi-Dirac statis-
tics. All this goes under the name of the “spin-statistics theorem” in relativistic
quantum field theory.
Returning now to the non-relativistic wavefunction, let us assume that we

have two identical fermions. Furthermore suppose that their motion is uncor-
related, so that the two particle wavefunction is to be constructed from the
product of single fermion wavefunctions ψa1(r1), φa2(r2). However, we must
impose antisymmetry, therefore

ψa1a2(r1, r2) =
1√
2

¡
ψa1(r1) φa2(r2)− ψa2(r2) φa1(r1)

¢
.
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Even if there is no interaction between the particles, the antisymmetry creates a
correlation whose effects will be clearly demonstrated below. The clearest sign
of a correlation is the fact that if the quantum numbers are the same then the
identical particles cannot be found at the same point r1 = r2 since then the
wavefunction vanishes. This is Pauli’s famous exclusion principle.

10.5 Helium and the exclusion principle
Let us now return to the variational wavefunctions for Helium. Even though the
Hamiltonian is independent of the spin of the electrons, the wavefunctions must
be labelled by their spin quantum numbers in addition to the orbital quantum
numbers ψa(r) → ψnlml,

ms
(r) with ms = ±1

2 for each electron. In the present
case the space dependence of the wavefunction is the same whether the electron
spins up or down, and we may write it in the form of a 2-dimensional spinor
ψnlml,,ms

(r) =ψnlml
(r)χms

, where χms
is the spinor

¡
1
0

¢
for spin up and

¡
0
1

¢
for

spin down. The antisymmetric variational state is

ψ
n1l1ml1
ms1

(r1) ψ
n2l2ml2
ms2

(r2)− ψ
n1l1ml1
ms2

(r2) ψ
n2l2ml2
ms1

(r1) =

ψn1l1ml1 (r1) χ
(1)
ms1

ψn2l2ml2 (r2)χ
(2)
ms2
− ψn1l1ml1 (r2) χ

(1)
ms2

ψn2l2ml2 (r1)χ
(2)
ms1

.
(10.22)

When the two electrons are in the ground state (n1l1ml1) = (n2l2ml2) = (100),
this structure is necessarily symmetric under the interchange of the coordinates
and antisymmetric in the spin indices ms1 ,ms2

ψ1S1S(r1, r2) ≡ ψ100(r1, Zeff ) ψ100(r2, Zeff ) χ
S=0
ms1ms2

. (10.23)

The spin part is the antisymmetric 2×2 matrix

χS=0ms1ms2
=

µ
0 1
−1 0

¶
ms1ms2

(10.24)

which has only one component, implying that the spins of the two electrons
must couple to total spin S = 0. The space part is the same as the one assumed
in a previous section, so that the estimates obtained for Zeff = 27/16 and the
energy E0 = −5.7 Ry, are valid after taking into account the exclusion principle.
When one of the electrons is in the ground orbital and the other one is in an

excited orbital then it is possible to construct two independent antisymmetric
variational states from (10.22) as follows

ψ+1Snl =
χS=0ms1ms2√

2

³
ψ100(r1, Z1) ψ

(+)
nlm(r2, Z2) + ψ100(r2, Z1) ψ

(+)
nlm(r1, Z2)

´
ψ−1Snl =

χS=1ms1ms2√
2

³
ψ100(r1, Z1) ψ

(−)
nlm(r2, Z2) − ψ

(−)
100(r2, Z1) ψnlm(r1, Z2)

´
(10.25)

In the first one the spins are coupled to S = 0, therefore the orbital part must be
symmetrized. In the second one the spins are coupled to a symmetric matrix,
of which there are three possibilities that may be written in terms of Pauli
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matrices as χS=1ms1ms2
∼(σ2�σ)ms1ms2

, implying that S = 1. Therefore, the orbital
wavefunctions must be anti-symmetrized when S = 1.

We can now make a brief digression on the spectroscopic notation for multi-
electron atoms. The notation goes as follows; consider STOT , JTOT and LTOT ,
and write the spectroscopic state, for the system as follows

(2STOT+1) [LTOT ]JTOT ,

using the letters

LTOT = S, P,D, F,G, · · ·

instead of the numbers LTOT = 0, 1, 2, 3, 4, · · · . We notice that, in our case,
STOT = 0, 1; the He atom thus has its electrons paired either in a singlet state
(2S+1 = 1) or in a triplet state (2S+1 = 3). Experimentally, the spectroscopic
lines for these two spin states are different. The spectroscopic lines belonging
to the triplet spin state are called orthohelium, and the ones with singlet spin
state are called parahelium.
Another digression for a technical remark is necessary. In order to satisfy the

second variational theorem for excited states, the variational wavefunctions must
be chosen orthogonal to all the lower energy level wavefunctions. Since we are
trying to keep Z1, Z2 as unknown variational parameters, orthogonality to the
lower energy orbitals, that have a different value of Z1, Z2, is not guaranteed by
the standard form of hydrogenic wavefunctions Rnl(r, Z)Ylm(r̂), and therefore
appropriate modifications must be made to Rnl(r, Z). For example, for the
|1S, 2S > case we must choose

ψ200(r,Z2, c±) = e−Z2r2/2a0
³
Z2r2
2a0
− c±

´
c+ = 24Z2/(8Z2 + 27), c− = 3Z2/(2Z1 + Z2)

(10.26)

similar to eq.(10.19), and then insert it in eq.(10.25). However, by virtue of
the orthogonality of spherical harmonics, for each new orbital, the highest an-
gular momentum state l = n − 1 , i.e.e ψn,n−1,0(r) =Rn,n−1(r, Z)Ynn(r̂), is
automatically guarantied to be orthogonal to all lower energy orbitals, with no
modifications to Rn,n−1(r, Z). An example of this is the ψ210((r,Z2) function
used in eq.(10.18).
Using these methods an estimate of the excited states can be given. The

quantitative details are left as an exercise to the student (see problem (3)).
On physical grounds we are expecting that Z1 should be fixed by the variation
around the value Z1 ∼ 2 and Z2 ∼ 1 (see problem). Here we discuss the
qualitative features for the variational states |1S2S > and |1S2P > of eq.(10.25).
The expectation value of the energy takes the form

E±(Z1, Z2) = [ε1(Z1) + εnl(Z2) + Inl(Z1, Z2)]N
±
nl(Z1, Z2)

± [2∆εnl(Z1, Z2) + Jnl(Z1, Z2)]N
±
nl(Z1, Z2).



10.5. HELIUM AND THE EXCLUSION PRINCIPLE 343

The norm factors of the state are defined by­
ψ±1Snl|ψ

±
1Snl

®
= N1(Z1)Nn(Z2)± |Nnl(Z1, Z2)|2

N1(Z1) =< 100, Z1|100, Z1 >
Nn(Z2) =< nlm,Z2|nlm,Z2 >

Nnl(Z1, Z2) =< 100, Z1|nlm,Z2 >= δl0Nn0(Z1, Z2)

N±
nl(Z1, Z2) =

N1(Z1)Nn(Z2)

N1(Z1)Nn(Z2)±δl0|Nn0(Z1,Z2)|2

Note that when l 6= 0 the overall norm factor simplifies to N±
nl(Z1, Z2) = 1. The

energies are

ε1(Z1) =< 100, Z1|H0|100, Z1 > /N1(Z1)
εnl(Z2) =< nlm,Z2|H0|nlm,Z2 > /Nn(Z2)

∆nl(Z1, Z2) = δl0
<100,Z1|H0|n00,Z2>Nn0(Z1,Z2)

N1(Z1)Nn(Z2)

Inl ± Jnl =

D
ψ±1Snl

¯̄̄
e2

|r1−r2|

¯̄̄
ψ±1Snl

E
N1(Z1)Nn(Z2)

H0 is an H-like atom Hamiltonian with a nucleus charge of 2, H0 = p
2/2m −

2e2/r. Again, for l 6= 0 the cross term is absent ∆nl(Z1, Z2) = 0. The Inl(Z1, Z2)
and Jnl(Z1, Z2) are called the direct and exchange integrals. They are given by

Inl = e2
R R

d3r1d
3r2

|ψ100(r1,Z1)|2|ψnlm(r2,Z2)|2
N1(Z1)Nn(Z2) |r1−r2|

Jnl = e2
R R

d3r1d
3r2

ψ100(r1,Z1)ψnlm(r1,Z2)ψ
∗
100(r2,Z1)ψ

∗
nlm(r2,Z2)

N1(Z1)Nn(Z2) |r1−r2| .

These integrals can be performed by using the formula (10.12) and its derivatives
with respect to A or B.

Fig. (10.2) - Qualitative plot of energy levels for helium.

It can be argued that (ε1+εn ± 2∆εn0δl0), Inlm, Jnlm, N±
n , are all positive

quantities, therefore qualitatively we expect the splitting of the energy levels
given in Fig.(10.2). Using the procedure outlined in problem 3 we find the
variational results summarized below. The experimental measurements for the
excited levels of Helium Expt are included for comparison.
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Parahelium (S = 0) Orthohelium (S = 1).
...

...

2 1P1

⎧⎪⎪⎨⎪⎪⎩
Z1 = 1.99
Z2 = 1.0893
E = −4.26138 Ry
Expt = −4.24 Ry

2 3P2,1,0

⎧⎪⎪⎨⎪⎪⎩
Z1 =
Z2 =
E = Ry
Expt = −4.25 Ry

2 1S0

⎧⎪⎪⎨⎪⎪⎩
Z1 = 1.99517
Z2 = 1.1137
E = −4.2909 Ry
Expt = −4.290 Ry

2 3S1 :

⎧⎪⎪⎨⎪⎪⎩
Z1 = 2.0085
Z2 = 1.3891
E = −4.3439 Ry
Expt = −4.345 Ry

1 1S1

⎧⎨⎩ Z1 = Z2 = 27/16
E = −5.6953 Ry
Expt = −5.809 Ry

(10.27)

The quantitative estimates provided by the variational scheme above come
pretty close to the measured values.
The physical reason for the lower energy in the spin triplet S = 1 states (ei-

ther the ψ−1S2S =
3S1or the ψ

−
1S2P =

3P2,1,0) as compared to the corresponding
S = 0 states (either the ψ+1S2S =

1S0 or the ψ
+
1S2P =

1P1) is the antisymmetry
versus the symmetry of the wavefunction, as dictated by the Pauli exclusion
principle. In the antisymmetric state the probability amplitude vanishes when
the electrons get together ψ−( r1 = r2) = 0. This means that the contribution
from the positive repulsive energy to the integral < ψ−| 1

|r1−r2| |ψ
− > is less

important near r1 = r2 = r as compared to the integral < ψ+| 1
|r1−r2| |ψ

+ > .

Therefore, the antisymmetric state has a lower energy.
Similarly, there is a physical reason for the |1S2S > state to be lower as

compared to the |1S2P > . One explanation was provided at the end of section
(10.3). Further physical arguments can be given as follows: The 2S electron is
on the average farther from the nucleus as compared to the 1S electron. Due to
the repulsion between the two electrons, the 1S electron is pushed a little closer
to the nucleus, so that its negative energy increases. This effect also happens in
the |1S2P > state, however it is more important in the 2S case, because a 2P
electron remains further away from the nucleus due to its angular momentum,
and thus it cannot push the 1S electron toward the nucleus as much as the 2S
electron can. These physical effects are evident from the fact that the effective
charge Z1 in the |1S2S > case is larger than the |1S2P > case.

10.6 Multi-electron atoms

10.6.1 Hund’s rules and their applications

The variational approach and the Pauli exclusion principles can be applied to
multi-electron atoms to get some quick estimates. The variational wavefunction
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is taken to be a product of H-like wavefunctions for each electron. The Pauli
exclusion principle, including spin, requires that each electron uccupies a differ-
ent state. Thus, in the 1s level there can be at the most two electrons, at the 2s
level also two, at the 2p level 6 electrons, an so on. The experimental ordering
and maximum occupation numbers of the levels are

(1s)2 (2s)2 (2p)6 (3s)2 (3p)6
h
(4s)2 (3d)10

i
(4p)6

h
(5s)2 (4d)10

i
5p(10.28)h

(6s)2 (4f)14 (5d)10
i
(6p)6

h
(7s)2 (5f)14 (6d)10

i
· · ·

where the exponents are the maximum number of electrons allowed at that level.
Brackets are placed around those levels that are out of numerical or alphabetical
order. For example 4s is lower than 3d, etc. This ordering of levels can be easily
remembered through the following grid

1s . .
2s 2p . .
3s 3p 3d . .
4s 4p 4d 4f . .
5s 5p 5d 5f 5g . .
6s 6p 6d 6f 6g 6h .
7s 7p 7d 7f 7g 7h 7i
...

...
...

...
...

...
...

(10.29)

By reading the grid along the minor diagonals, in the direction indicated by the
arrows, the correct physical ordering of levels emerge. The significance of this
observation is not understood. In this notation the electronic configuration of
various atoms are illustrated by the following examples

H = (1s)1 , He = (1s)2 , Li = (1s)2 (2s)1 , Be = (1s)2 (2s)2 ,

B = (1s)
2
(2s)

2
(2p)

1
, C = (1s)

2
(2s)

2
(2p)

2
, N = (1s)

2
(2s)

2
(2p)

3
,(10.30)

O = (1s)2 (2s)2 (2p)4 , F = (1s)2 (2s)2 (2p)5 , Ne = (1s)2 (2s)2 (2p)6 .

In these examples He, Be, Ne correspond to completely filled levels. Filled
levels always have total angular momentum zero. Because of this their interac-
tions with other atoms is weaker. This is related to the fact that in chemical
reactions they are less active than other atoms. To understand this fact as well
as the properties of other atoms, we consider a crude approximation: completely
filled levels will be considered as part of an effective core that behaves like an
effective nucleus of a given charge, and then try to understand the behavior
of the remaining outer electrons in unfilled levels. The wavefunctions of each
outer electrons ψµm are labelled with intrinsic spin µ and orbital spin m labels,
such that µ = ± and m = −l,−l+1, · · · , l− 1, l. The product of the electronic
wavefunctions ψµ1m1

ψµ2m2
ψµ3m3

· · · have to be totally antisymmetrized due to
Pauli’s exclusion principle. For example if it is totally symmetric in the µ quan-
tum numbers it must be totally anti-symmetric in them quantum numbers, and
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vice versa. More generally the symmetry could be mixed for µ, then m must
have exactly the opposite mixed symmetry. Young tableaux can be used as a
mathematical device to keep track of the symmetry. The symmetry properties
in µ and m determine the total spin S and total orbital angular momentum L of
the state. The total angular momentum J is obtained by using addition of an-
gular momentum, thus |L− S| ≤ J ≤ (L+ S). The values of S,L, J determine
also the energy level of the state E = E(S,L, J). Under normal circumstances
the atom prefers to be in the lowest energy state. These quantum numbers of
the ground state determine the chemical properties of the atom.
Hund discovered that some general rules apply in trying to determine the

spin, orbital and total angular momentum quantum numbers of the ground
state. Hund’s rules are:

1. Combine the intrinsic spins of electrons such as to get the largest possible
total spin Stot which is also consistent with the Pauli principle for the
overall atom.

2. Coose the maximum value of L consistent with the Pauli principle and
with rule #1.

3. If the shell is less than half full, choose the minimum J = |L− S|, and if
the shell is more than half full choose the maximum value of J = L+ S.

We now apply Hund’s rules to find the ground states of various atoms, and
discuss some of their properties.
Helium: (1s)2, L = 0 since both electrons are in s states. This is symmetric

in L, therefore in spin it must be antisymmetric. Thus we must combine the
two spin 1/2 electrons to S=0. Then only J = 0̇ is possible. The spectroscopic
notation for this configuration is 1S0 where the superscript corresponds to the
number of spin spin states 2S+1 = 1, the subscript corresponds to total angular
monentum J = 0, and the letter S corresponds to L = 0. The ground state
energy was computed earlier in this chapter as E(1s)2 = (−Ry) × 2 × Z∗2

12 '
−79 eV with Z∗ = 27/16. Consider ionizing one electron, then the remaining
electron has energy E = (−Ry) × 22

12 = −54.4 eV . Therefore the ionization
energy is ∆E = (79− 54.4) = 24.6 eV.
Lithium: (1s)2 2s, S=1/2, L=0, therefore J=1/2. Spectroscopic notation:

2S1/2. Last electron ∆E = (−Ry) × Z∗2

22 . Naively Z∗ = 3 − 2 = 1, but the
2s electron can penetrate the cloud, therefore really Z∗ ' 1.26. Therefore,
ionization energy is ∆E ' 5.4eV.
Beryllium: (1s)2 (2s)2, S=0 antisymmetric, space symmetric L=0, therefore

J=0. The spectroscopic notation is 1S0. The last two electrons contribute ∆E =
(−Ry)× Z∗2

22 ×2 to the ground state energy. To estimate the effective charge Z∗
one must take into account the fact that the (2s)2 electrons can penetrate the
cloud of the (1s)2 electrons, so that the effective charge of the core is Z = 4−2+ε
where ε > 0. However, the (2s)2 electrons also screen each other from the
nucleus, almost cancelling ε. The net effect is an effective charge Z∗ ≈ 2 (for a
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more careful estimate see problems 4 &5). Therefore∆E (Be) ≈ −13.6×22

22×2 ≈
−27.2 eV. If one electron is ionized the remaining 2s electron sees the effective
charge of the core which is estimated 2+ε ≈ 2.3 in problems 4&5. The remaining
single electron has energy −13.6× (2.3)2

4 eV ≈ −17.9 eV . Then the estimate for
the ionization energy is

27.2 eV − 17.9 eV = 9.3 eV, (10.31)

which experimentally correct. In fact, this number is used as an input to justify
ε ≈ 0.3 above.
Boron: (1s)2 (2s)2 2p, S=1/2, L=1, therefore J=1/2,3/2. The ground state

has J=1/2 (Hund2). The spectroscopic notation is 2P1/2. The ionization energy
is 8.3 eV. It is smaller than that of Be since the 2p electron is somewhat higher
than the 2s electron (for an estimate compare He excited states 1s2s to 1s2p,
the average difference is about 1eV).
Carbon: (1s)2 (2s)2 (2p)2, S=1 (Hund1) symmetric, L=1 antisymmetric,

J=0 (Hund2). Spectroscopic notation: 3P0. To estimate the ionization energy
we may give a quick and dirty argument similar to that of Beryllium. However,
since the mutual screening of the (2p)2 electrons is not as important as that
of the (2s)2 electrons of Beryllium, we must use a Z∗ somewhat larger than
2. Therefore the ionization energy is higher as compared to Beryllium. The
experimental number is approximately 11.3 eV.
Nitrogen: (1s)2 (2s)2 (2p)3, S=3/2 (Hund1) symmetric, L=1×1×1→0 an-

tisymmetric, J=3/2. Spectroscopic notation: 4S3/2. Ionization 14.5eV, Z∗ in-
creased because repulsion is less important.
Oxygen: (1s)2 (2s)2 (2p)4, think 2 holes (2p)2, S=1 (Hund1) symmetric,

L=1 antisymmetric, J=2 (Hund2, more than half full), Spectroscopic notation:
3P2. The fourth electron occupiesml value already occupied, therefore repulsion
is more important, so ionization 13.6eV.
Fluorine: (1s)2 (2s)2 (2p)5, think 1 hole (2p)1, S=1/2, L=1, J=3/2 (Hund,

more than half), Spectroscopic notation: 2P3/2. Ionization 17.4eV
Neon: (1s)2 (2s)2 (2p)6, closed shell. S=0, L=0, J=0: 1S0. Ionization

21.6eV.
The ionization keeps increasing since Z∗ keeps increasing (more electrons,

but shielding of nucleus not perfect). It was not monotonic from Beryllium
to Boron because the 2p electrons are higher than the 2s electrons. Also not
monotonic from Nitrogen to Oxygen because of the mixed symmetry.
Estimating some excited levels and their spectroscopic configurations.
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10.7 Problems
1. Using the variational approach, estimate the energy and wavefunction of
the first excited state for a particle trapped in the one dimensional infinite
square well. Note that a good wavefunction would have the properties
that it will vanish at the walls and be an odd function so that it will be
orthogonal to the ground state.

2. Consider two electrons moving around a core of charge Z (which may be
different than 2). The Hamiltonian is

H =
p21
2m

+
p22
2m
− Ze2

|r1|
− Ze2

|r2|
+

e2

|r1−r2|
. (10.32)

Use the variational principleto find the ground state energy of the system,
assuming that both electrons are in the (1s) Hydrogen-like orbitals. This
system could describe the (1s)2 core of the Li atom or the Be atom, etc..
What is the effective charge Z∗ seen by each electron as a function Z?
(recall that for He Z = 2, and the effective charge is Z∗ = 27/16).

3. If the second electron is ionized what is the ground state energy of the
remaining (1s) electron? By taking the difference of the energies find the
ionization energy of the second electron. Apply your results to the He
atom (Z = 2) and find the ionization energy (experiment is about 24.6
eV).

4. Repeat problem 2 by assuming that the two electrons are in (2s) states.
This could describe the 2s electrons in the atom Be ((1s)2 (2s)2) with an
effective core of Z (estimate for Be Z = 4 − 2 + ε, see next problem), or
some other system. What is the binding energy of the electrons and what
is the effective charge Z∗ as a function of Z?

5. Repeat problem 3 by ionizing a (2s) electron. This should provide an
estimate for the ionization energy of Be, with Z = 2+ε (the (2s)2 electrons
can penetrate the cloud of the (1s)2 electrons, so the screening of the
nucleus from charge 4 to charge 2 is not perfect, therefore ε > 0). Given
that the experimental result is 9.3 eV, what is Z =?.

6. Apply the variational approach to solve for the ground state energies and
wavefunctions of the systems described in the problems at the end of
Chapter 1.

7. Using the |1S, 2S > and the |1S, 2P > variational wavefunctions given in
the text in eqs.(10.19, 10.18), and neglecting for the moment the effects
of the Pauli exclusion principle, estimate the energy of the first excited
state. Compare your results to eq.(10.20,10.21).

8. Using the variational wavefunctions |1S, 2S > and |1S, 2P >, and tak-
ing into account the Pauli exclusion principle, as in eqs.(10.25), compute
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the necessary quantities defined in the text as functions of Z1, Z2. Then
minimize the energies E±(1S2S) and E±(1S2P ) to obtain variational es-
timates of the energy levels of parahelium and orthohelium. Verify the
values of the effective charges and energies given in eq.(10.27)? Amplify
the qualitative physical arguments in the text by supporting them with
your quantitative computations.

9. Consider two distinguishable particles of spin 1
2 (e.g. electron and positron)

interacting via a spin dependent Hamiltonian of the form (with A,B pos-
itive)

H = A�S(1) · �S(2) +B(S
(1)
0 − S

(2)
0 ). (10.33)

Assume that they are spinning in opposite directions so that the total
third component of spin S(1)0 +S

(2)
0 = 0, but the total intrinsic spin �S may

be anything allowed.

(a) What are the exact states and energies that you expect in the limits
A→ 0 or B → 0? Give your answer in either the direct product basis
|j1m1j2m2 > or total angular momentum basis |j1j2jm > whichever
is most convenient. List all eigenstates, compute their energies and
indicate which one is the ground state in the appropriate limit.

(b) Find the estimated ground state energy and wavefuction as a function
of A,B using a variational approach. Show that your energy and
wavefunction tend to the expected limits as either A or B vanish.

10. Consider the atom Ti that has 22 electrons. Recall that atomic shells are
ordered as 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, · · · ,

(a) Give the electron configuration for this atom (e.g. He = (1s)2, Li =
(1s)2(2s)1, etc.). Counting both spin and orbital angular momentum
states, how many states are available to the outer shell electrons after
you take into account the Pauli exclusion principle? (for example
(2p)2 has 6 states for each electron and 6×5

2 = 15 states for both
electrons because of antisymmetrization). Among these states show
that the ground state has the spectroscopic configuration 3F2 and
justify it with appropriate arguments.

(b) What are the S,L, J quantum numbers of all the other states available
to the outer shell electrons? If their energies were proportional only
to J(J +1)−L(L+1)−S(S+1) construct a diagram for the energy
levels, and give the number of states at each level, together with their
spectroscopic notation (the total number of states should match the
number of states in part (a) ). You may use the table provided for
symmetric (S) and antisymmetric (A) products of orbital angular
momentum wavefunctions.

11. The deuteron consists of a proton and a neutron which have masses 938
MeV/c2 and 940 MeV/c2, respectively. It has a binding energy of 2.23
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MeV/c2. In order to obtain an estimate of its structure we can neglect
the spins, and treat the system non-relativistically. The Hamiltonian,
with the Yukawa potential is given by H = p2/2m− V0e

−µr/µr,where m
is the reduced mass, µ = mπc/h̄ with the pion mass mπ = 139MeV/c2.
Consider its ground state with zero angular momentum. The radial wave-
function f(r) = rR(r) must behave asymptotically as f(r)→ C exp(−κr).
As a variational state that is also well behaved at the origin we will take
f(r) = C exp(−κr)[1− exp(−λr)], with λ > 0.

a) Compute κ−1 by analyzing the asymptotic behavior of the radial dif-
ferential equation.

b) Express both κ−1 and µ−1 in centimeters and by comparing them
decide whether the deuteron is a tightly or loosely bound system.

c) Using λ as a variational parameter estimate the ground state energy
in terms of the unknown V0 and then give the value of V0 that agrees
with the observed binding energy. From this value estimate the ratio
of the strong interactions to the electromagnetic interactions between
two protons at nuclear distances.

12. A particle of mass m is trapped in a 3-dimensional harmonic oscillator
type potential with a cutoff at r = b, namely V (r) =kr2

2 θ(b − r) +
kb2

2 θ(r − b) as plotted in the figure

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1 1.2 1.4r

V(r)/( 12kb
2) plotted versus r/b

The special degeneracies of the 3-dimensional harmonic oscillator are
not expected to survive when b <∞. We would like to compute the
shifts of the energy levels relative to the b → ∞ case. Recall that
in the b → ∞ limit, V (r) =kr2

2 , the energies are En = h̄ω(n + 3/2)

where ω =
p
k/m, with the angular momentum taking values l =

n, n− 2, · · · , (0 or 1).
Use the variational approach to estimate the ground state energy.
Use some analysis of the Schrödinger equation to guide you in making
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an educated guess for the wavefunction. Propose your best educated
guesses for any angular momentum l, using one variational parame-
ter, and using two variational parameters. Explain your reasoning
for making those proposals. For the computations that follow use
the guess with a single parameter and concentrate only on the l = 0
ground state. You can use Mathematica or other programs to com-
pute, plot and do numerical estimates. Give your answer in the form
E = h̄ωε, where you estimate ε for several values of b (it is better
to use the dimensionless combination α = mωb2

h̄ ). Provide a table of
results for ε (α) for a range of values of α. Is there a range of α (or
b) without any bound states? Test the validity of your estimate by
taking the limit b → ∞, and comparing to the known exact result.
How close are you?

13. The Hamiltonian for a spinning top and a perturbation is given by

H =
1

2I
J2 + aJz + bJx, (10.35)

where J are angular momentum operators. If b = 0 it is evident that the
states |jm > are exact energy eigenstates. Use a variational approach with
a states |θ, jm >= exp (−iθJy) |jm >, where θ is a variational parameter,
to estimate the new energy levels. Is this method correctly applicable for
all values of j,m?



352 CHAPTER 10. VARIATIONAL METHOD

14. The Nuclear Shell Model is based on the 3-dimensional harmonic oscilla-
tor hamiltonian H0 with a perturbation of the form H1 = −

−→
L · −→S f(r)

where f is positive, and
−→
S is the spin of the proton or neutron moving

in the average harmonic oscillator potential. Use addition of angular mo-
mentum, as we did for the H-atom, to give a spectroscopic labelling of
the states (nLj) and show the splitting of the states (watch the sign of
the interaction). Now consider putting identical protons and/or neutrons
together in these levels to construct an estimate of the ground state of a
nucleus (as in the variational approach, but with nothing to vary). Ob-
serving the Pauli exclusion principle, find how many identical particles can
go on each level? Count the total number of particles that give you filled
shells. These numbers are the magic numbers of nuclear physics; when a
nucleus has that many protons or neutrons it is more stable. Show your
reasoning for how you obtain them.



Chapter 11

WKB APPROXIMATION

The Wentzel-Kramers-Brillouin (WKB) approximation is a semiclassical ap-
proximation based on an expansion in powers of ~. Therefore it is expected to
work best for states with large quantum numbers (such as energy, angular mo-
mentum, etc.) in which one can evoke the correspondance principle between
quantum and classical physics. However, in certain cases the WKB method
works better than naively expected, and sometimes it may even yield the exact
result (such as the harmonic oscillator energy levels). In any case, one may
trust the WKB approximation for highly excited states and then try to push its
limits toward the low lying states with less confidence. In this sense it is com-
plementary to the variational method that works well near the ground state.
Together, these two techniques give quick but not very precise information for
low lying states and highly excited states.

11.1 Semiclassical expansion
We will discuss only the problem of a particle in a potential, or the interacting
two particle problem that can be reduced to the one particle problem in the
center of mass. Similar methods would apply to more complicated systems as
well. Thus, consider the Schrödinger equation with potential energy V (r)

i~∂tψ(r,t) =
µ
− ~

2

2m
∇2 + V (r)

¶
ψ(r,t). (11.1)

Without loss of generality one may write

ψ(r,t) = A exp (iW (r, t)/~) , (11.2)

as long as W (r, t) is a complex function. The normalization constant A could
be absorbed into W, but it is convenient to keep it separate, so that W may
be defined up to an additive complex constant. Substituting this form into the
Schrödinger equation one gets

∂tW +
1

2m
(∇W )2 + V − i~

2m
∇2W = 0. (11.3)

371
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First consider the limit ~ = 0

∂tW0 +
1

2m
(∇W0)

2 + V = 0, (11.4)

and compare this form to the Hamilton-Jacobi equation for the principal func-
tion in classical mechanics

∂tW0 +H(r,p) =0. (11.5)

It is evident that these two equations are the same for H = p2/2m + V (r),
provided we identify

p(t) =∇W0(r, t). (11.6)

Thus, the solution of the Hamilton-Jacobi classical equations yield the function
W0(r, t) from which one gets the classical particle trajectories p(t) as a function
of time. Another way of writing this classical result is the familiar form for the
current in quantum mechanics

p(t) =− i~
2

³
ψ∗0
←→∇ψ0

´
, (11.7)

where ψ0 = exp(iW0(r, t)/~), with realW0. This means that, in the ~ = 0 limit,
the probability amplitude ψ0 contains all the information about the classical
motion of the system. To go beyond classical mechanics consider an expansion
in powers of ~

W =W0 + ~W1 + ~2W2 + ~3W3 + · · · . (11.8)

Replacing it in (11.3) and collecting powers of ~, one gets a set of equations that
must be satisfied for each order of ~

∂tW0 +
1
2m (∇W0)

2
+ V = 0

∂tW1 +
1
m∇W0 ·∇W1 − i

2m∇
2W0 = 0

∂tW2 +
1
m∇W0 ·∇W2 +

1
2m (∇W1)

2 − i
2m∇2W1 = 0

...

(11.9)

These equations may be solved in principle by feeding the solutions of the lower
orders into the higher orders. It is evident that W is a complex function. For
an energy eigenstate the exact eigenfunction has the form

ψ(r, t) = ψE(r)e
−iEt/~ = A exp

∙
i

~
(S(r)−Et)

¸
(11.10)

W = S(r)−Et, S= S0 + ~S1 + ~2S2 + · · ·

This implies that all the explicit time dependence is in W0 = S0(r)−Et, while
all higher orders Wn = Sn(r) have vanishing partial time derivatives ∂tW1 =
∂tW2 = · · · = 0. Therefore the equations simplify to

1
2m (∇S0)

2
+ V = E

∇S0 ·∇S1 − i
2∇

2S0 = 0

∇S0 ·∇S2 + 1
2 (∇S1)

2 − i
2∇2S1 = 0

...

(11.11)
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It is not easy to solve these equations in general, however they are quite simple
in one dimension. Therefore, consider either a genuine one dimensional prob-
lem, or a higher dimensional problem that can be reduced to an effective one
dimensional Schrödinger equation because of some symmetry. For example, the
central force problem in d−dimensions with a rotationally invariant potential
V (r) is reduced to the radial Schrödinger equation, which is equivalent to a one
dimensional problem in the effective potential (see chapter on the central force
problem)

Veff (r) = V (r) +
~2ld(ld + 1)

r2
(11.12)

ld = l +
1

2
(d− 3), l = 0, 1, 2, · · · .

For any such one dimensional problem the Schrödinger wavefunction ψE(x) =
A exp iS(x)/~ can be reconstructed from the solutions of the simplified equations
in one variable

1
2m (S

0
0)
2
+ V = E

S00S
0
1 − i

2S
00
0 = 0

S00S
0
2 +

1
2 (S

0
1)
2 − i

2S
00
1 = 0

...

(11.13)

where the prime is the derivative S0n ≡ ∂xSn, and x may be used as the symbol
for the radial variable r. It will be useful to consider separately two types of
domains of x, called “region I” or “region II”, as in Figs.11.1 to 11.5. In these
regions we define½

E > V (x) region I : p(x) ≡
p
2m (E − V (x))

E < V (x) region II : p̃(x) ≡
p
2m (V (x)−E)

(11.14)

The physical meaning of E − V (x) is the kinetic energy of the particle at the
point x. Therefore, one may interpret p(x) as the momentum of the particle at
the point x. Then

S00 = ±p, S01 =
ip0

2p
, (11.15)

S02 = ±
µ
3

8

(p0)2

p3
− 1
4

p00

p2

¶
...

The solution of the first two equations in the corresponding regions are

S0(x) =

½ ±
R x

dx0 p(x0)

±i
R x

dx0 p̃(x0)
, S1(x) =

½ i
2 ln p(x)
i
2 ln p̃(x) .

(11.16)

The third equation is solved by

S2(x) =

½ ∓14 p0

p2 ∓
1
8

R x (p0)2

p3

± i
4
p̃0

p̃2 ±
i
8

R x (p̃0)2

p̃3 .
(11.17)
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Therefore, to first order in ~ the wavefunction takes the form

ψE(x) = A exp (iS0/~+ iS1 +O(~))

ψE(x) =

½ A±
I√
p(x)

e±
i
~
R x dx0 p(x0) [1 +O(~)]

A±
II√
p̃(x)

e±
1
~
R x dx0 p̃(x0) [1 +O(~)] .

(11.18)

The contributions from S2, S3, · · · vanish as ~ → 0. Physical boundary condi-
tions must be considered in order to decide which combination of solutions are
valid in the different regions of type I , II. Such considerations also determine
the constants A±I , A

±
II in the appropriate regions.

11.2 Extrapolation through turning points
Before proceeding further, let us investigate the conditions under which the
approximation is valid. The obvious criterion is that all neglected terms must
be small. Formally, the higher order terms in ~ are small, however one must take
care that the coefficients that multiply these powers are not large. Therefore,
the correct criterion is

~ |S2| << |S1| . (11.19)

It is clear from (11.17) that this condition cannot be met in the vicinity of
x ∼ xi(E) where the local momentum vanishes p(xi) = p̃(xi) = 0, or

V (xi) = E. (11.20)

At these points the classical momentum changes sign, thus such points are the
classical “turning points”. Hence the expression for the wavefunction given
above is certainly not valid near the classical turning points. By examining the
expressions for S1, S2 one notices that, as long as p(x), p̃(x) are not near zero,
and they are slowly varying functions, the condition is met in the domains of x
where

~ |p0|
p2

<< 1 , (11.21)

and similarly for p̃(x). The physical meaning of this criterion is understood by
defining the local deBroglie wavelength λ(x) = ~/p(x) and writing

λ(x)

¯̄̄̄
p0(x)

p(x)

¯̄̄̄
<< 1. (11.22)

The local rate of change of momentum is |p0δx/p| = |δp/p|. The rate of change
of momentum for one wavelength is approximately obtained by substituting
δx ∼ λ(x). Therefore, as long as the rate of change of momentum in the interval
of one wavelength is small, the approximation is good in that domain of x. These
conditions are met for a slowly varying potential V (x) in the domains that are
sufficiently far away from turning points. In such domains the expression for the
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wavefunction given above is a good approximation. Since there may be several
regions of type I, II for a given potential V (x) one must connect the solutions
in different regions to one another. To do so more information near the turning
points are needed. So, consider again the exact Schrödinger equation in the
form (no expansion in ~) £

~2∂2x + p2(x)
¤
ψE(x) = 0 (11.23)

and solve it near a classical turning point, for which

p2(x) ≈ α(x− xi)
n [1 +O (x− xi)] . (11.24)

Normally n = 1, but it will be kept arbitrary in the present analysis. The
solution near the turning point x ∼ xi can be written in the form

ψE(x) =

½ A±i

rR x
xi

p(x0) dx0

p(x) J± 1
n+2

³
1
~
R x
xi
p(x0) dx0

´
∓A±i

qR xi
x

p̃(x0) dx0

p̃(x) I± 1
n+2

¡
1
~
R xi
x

p̃(x0) dx0
¢
,

(11.25)

where J±ν(z), I±ν(z̃) are the standard Bessel functions with index ν = 1
n+2 . The

two forms of the solution are analytic continuations of each other as (x − xi)
changes sign, hence the solution is valid on both sides of the turning point,
with the same overall constants A±i . Actually, (11.25) is valid for all values of
x strictly only for p2(x) = α(x − xi)

n. Now consider ( 11.25) in terms of the
general p2(x) that is not strictly equal to α(x− xi)

n but which merely behaves
like α(x− xi)

n near the turning point. Then, in an expansion near the turning
point, only the leading terms of the form above would be valid. The Schrödinger
equation is not expected to be satisfied by (11.25) away from the turning point.
What is then the advantage of writing the solution in terms of the general
p(x)? Here comes the crucial observation: remarkably, the asymptotic forms of
Jν(z), Iν(z̃) for real z, z̃

J±ν(z)→
q

2
πz cos

¡
z ∓ νπ

2 −
π
4

¢ £
1 +O( 1z )

¤
I±ν(z̃)→

q
1
2πz

n
ez̃
£
1 +O( 1z̃ )

¤
+ e−iπ(

1
2±ν)e−z̃

£
1 +O( 1z̃ )

¤o
I−ν(z̃)− Iν(z̃)→ sin(νπ)

q
2
πz̃ e
−z̃ £1 +O( 1z̃ )

¤ (11.26)

are such that, far away from the turning point, i.e. for large z = 1
~
R x
xi
p or z̃ =

1
~
R xi
x

p̃(x0), appropriate linear combinations of (11.25) agree with the asymptotic
forms (11.18). Therefore, even though one may not trust (11.25) at intermediate
points, it is reliable near the turning points as well as in regions asymptotically
far away from them. This allows one to use (11.25) to interpolate between
regions of type I, II and find the relation between the constants A±I , A

±
II in all

asymptotic regions, for any given potential V (x).
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Fig. (11.1) - Regions I and II.

The result of this analysis is the following asymptotic connection formulas:
For a potential V (x) that is decreasing through the turning point, with region
II on the left of region I, as in Fig. (11.1a), the useful connection formulas are
(see problem 1)

exp
¡
− 1
~
R xi
x

dx0 p̃(x0)
¢p

p̃(x)
→

II→I

cos
³
1
~
R x
xi
dx0 p(x0)− π

4

´
p
p(x) sin π

4+2n

(11.27)

sinφ exp
¡
1
~
R xi
x

dx0 p̃(x0)
¢

2
p
p̃(x) sin π

4+2n

←
II←I

cos
³R x

xi
1
~ dx

0 p(x0)− π
4 + φ

´
p
p(x)

,

where φ is an arbitrary phase that gives a linear combination of sines and cosines
in the asymptotic region I. Similarly, when the potential V (x) is increasing
through the turning point, with region I on the left of region II, as in Fig.
(11.1b), the connection formulas are

cos
¡
1
~
R xi
x

dx0 p(x0)− π
4

¢p
p(x) sin π

4+2n

←
I←II

exp
³
− 1
~
R x
xi
dx0 p̃(x0)

´
p
p̃(x)

(11.28)

cos
¡
1
~
R xi
x

dx0 p(x0)− π
4 + φ

¢p
p(x)

→
I→II

sinφ exp
³
1
~
R x
xi
dx0 p̃(x0)

´
2
p
p̃(x) sin π

4+2n

.

In the connection formula I → II the negligible decaying exponential exp(−z̃)
is dropped. Note that for n = 1, which is the usual case, one has sin π

4+2n =
1
2 .

For some potentials, such as square wells or barriers, there are special boundary
conditions at the turning points, since one cannot write p2(x) ∼ (x−xi)n. Then
the above analysis should be modified. The asymptotic forms (11.18) are still
valid, but the interpolating wavefunctions (11.25) must be changed according
to the problem at hand. For example, for the infinite square well of the type
shown in Fig. (11.2) the wavefunction in region I must vanish at the wall. In
this case the connection formula is simply

0 ↔
II↔I

sin
³
1
~
R x
xi
dx0 p(x0)

´
p
p(x)

. (11.29)
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More generally, for a finite square well or barrier, one may use a linear combi-
nation of the asymptotic forms, extrapolate it naively all the way to the barrier
from both sides, and fix the relative coefficients by requiring continuity of the
wavefunction and its derivative at the turning points.

Fig. (11.2) - At infinite wall ψ(x1) = 0.

11.3 Applications

11.3.1 Bound states

Consider the potential well of Fig.(11.3). What are the eigenvalues and eigen-
states? Of course, for an arbitrary function V (x) it may not be possible to obtain
an exact answer. But the WKB method gives a quick approximate answer that
is accurate for sufficiently excited levels.

Fig. (11.3) - Potential well.

There are two regions of type II. The physical boundary conditions require
that the wavefunction should decrease asymptotically. Therefore the asymptotic
solutions in the left and right regions are selected from those given in (11.18) as

ψIIL (x) =
ALp
p̃(x)

exp

µ
−1
~

Z x1

x

dx0 p̃(x0)

¶
(11.30)

ψIIR (x) =
ARp
p̃(x)

exp

µ
−1
~

Z x

x2

dx0 p̃(x0)

¶
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The connection formulas can be applied from left as well as right in order to
obtain the solution in region I far away from the turning points. The two
expressions are

ψI(x) = AL

cos
³
1
~
R x
x1
dx0 p(x0)− π

4

´
p
p(x) sin π

4+2n

(11.31)

= AR

cos
¡
1
~
R x2
x

dx0 p(x0)− π
4

¢p
p(x) sin π

4+2n

.

These should be the same function in the domain I. Using
R x
x1
dx0 p(x0) =R x2

x1
dx0 p(x0)−

R x2
x

dx0 p(x0), and cos(θ) = (−1)N cos(Nπ−θ) one sees that these
two expressions are indeed the same providedAL = (−1)NAR and

R x2
x1

p(x0) dx0 =

~π
¡
N + 1

2

¢
. Therefore there is a bound state provided the energy is quantized

as follows Z x2

x1

p
2m(E − V (x))dx = ~π

µ
N +

1

2

¶
. (11.32)

Note that x1(E) and x2(E) also contain energy dependence. Solving for E(N)
one obtains the quantized energy levels.
As an example consider the harmonic oscillator V (x) = mω2

2 x2, with x1(E) =
− 1

ω

p
2E/m and x2(E) =

1
ω

p
2E/m. The integral gives

Z 1
ω

√
2E/m

− 1
ω

√
2E/m

p
(2mE −m2ω2x2)dx = E

π

ω
= ~π

µ
N +

1

2

¶
(11.33)

Therefore E(N) = ~ω(N + 1/2). Although we only had the right to expect
an approximate result for the excited states, we have obtained an exact result
which works even for the ground state. This kind of exact result is an accident
(which can be explained!). For additional examples see the problems at the end
of the chapter.
Let us now consider a spherical potential in the l = 0 angular momentum

state, that has an infinite wall at r = 0, as depicted in Fig. (11.4).

Fig. (11.4) - Veff (r) = V (r) for l = 0.
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What are the eigenvalues? Near r = 0 the wavefunction behaves as rld+1,
and it has the following asymptotic form in region II on the right

ψIIR (r) =
ARp
p̃(r)

exp

µ
−1
~

Z r

r2

dr0 p̃(r0)

¶
. (11.34)

The connection formula gives the wavefunction in region I away from the turning
point

ψI(r) = AR

cos
¡
1
~
R r2
r

dr0 p(r0)− π
4

¢p
p(r) sin π

4+2n

(11.35)

According to (11.29) this wavefunction must vanish at the origin. This requires
the argument of the cosine to be (N + 1/2)π. ThereforeZ r2(E)

0

dr
q
2m(E − Veff (r)) = ~π

µ
N +

3

4

¶
. (11.36)

For example, for the 3-dimensional harmonic oscillator we have Veff (r) =
mω2

2 r2 in the l = 0 state. Doing the integrals we obtain

EWKB = ~ω
µ
2N +

3

2

¶
for l = 0. (11.37)

Recall that the exact energy eigenvalues of the 3-dimensional harmonic oscillator
are En = ~ω(n+3/2), and the angular momentum is l = n, (n−2), (n−4), · · · , 0
or 1. Zero angular momentum is possible only if n = 2N = even. Therefore, the
exact zero angular momentum states are

Eexact = ~ω
µ
2N +

3

2

¶
for l = 0. (11.38)

We see that the WKB approximation gives the correct behavior in the quantum
number N, as well as the correct value of the ground state. Thus, as expected,
the WKB approximation gives the correct answer for highly excited states, but
the fact that it is also exact for low lying states is an accident for the har-
monic oscillator. This latter feature is not expected to be true in general, and
for a better approximation for low lying states one should use the variational
approach.
As a further example consider the Hydrogen atom for any dimension, and

compute the energy eigenvalues using the WKB method. Using the effective
potential in the radial equation for any dimension (see Chapter 6), the WKB
quantization condition becomes

I =

Z r2

r1

dr

µ
2mE +

2mZe2

r
− ~

2ld(ld + 1)

r2

¶1/2
(11.39)

= ~π
µ
N +

1

2

¶
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where ld = l + (d − 3)/2. The solution for the turning points is (with E =
negative):

r1 =
e2Z
2|E| −

r³
e2Z
2|E|

´2
− ~2

2m|E| ld(ld + 1)

r2 =
e2Z
2|E| +

r³
e2Z
2|E|

´2
− ~2

2m|E| ld(ld + 1)

(11.40)

To do the integral it is useful to make a change of variables

u = ln(r), du = dr
r

I =
p
2m |E|

R ln r2
ln r1

p
(eu − r1) (r2 − eu)du

I =
p
2m |E| π2

¡
r1 + r2 − 2

√
r1r2

¢
I =

p
2m |E| π2

³
e2Z
|E| − 2

q
~2

2m|E| ld(ld + 1)
´

I = π
2

³
e2Z

q
2m
−E − 2~

p
ld(ld + 1)

´
= ~π

¡
N + 1

2

¢
(11.41)

Solving for the energyE one obtains theWKB approximation for the eigenvalues

EWKB = −mc2Z2α2

2

∙p
ld(ld + 1) +N +

1

2

¸−2
(11.42)

ld = l +
d− 3
2

N, l = 0, 1, 2, · · ·

Comparing to the exact results of chapter 6

Eexact = −
mc2Z2α2

2

∙
(l +N + 1) +

d− 3
2

¸−2
(11.43)

one sees that theWKB approximation is good for large quantum numbersN, l, d,
but not for small ones, as expected. However, note that there would be exact

agreement if one replaces
p
ld(ld + 1)→

q
ld(ld + 1) +

1
4 = ld + 1/2.

Repeating the same approach for the harmonic oscillator in d-dimensions
one finds (see problem 1)

EWKB = ~ω
³p

ld(ld + 1) + 2N + 1
´

(11.44)

Eexact = ~ω
µ
l + 2N +

d

2

¶
Again, the result is good for large quantum numbers N, l, d, but not for small
ones, as expected. But there would be exact agreement if one replaces

p
ld(ld + 1)→q

ld(ld + 1) +
1
4 = ld + 1/2.

11.3.2 Tunneling

Consider α-decay, the process of a nucleus of charge (Z+2) splitting up into an α
particle of charge 2 and a smaller nucleus of charge Z. At small distances within
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the nucleus the α particle is attracted back to the center by the nuclear force
that is larger than the electrostatic repulsion between the charge Z fragment
and the α. But its kinetic energy overcomes the attraction and it escapes. Once
it is outside of the range of the nuclear force R ∼ 10−12cm, there remains only
the electrostatic repulsion and the angular momentum barrier. The effective
potential energy

Veff = Vnuclear(r) +
2Ze2

r
+
~2l(l + 1)

r2
(11.45)

has the shape given in Fig.(11.5) for zero angular momentum.

Fig. (11.5) - Barrier for α−decay.
At large distances in region III the 1/r Coulomb repulsion

Veff (r) →
rÀR

2Ze2

r
(11.46)

dominates all other terms . What is the lifetime of the nucleus τ =? It is
inversely proportional to the decay probability P , which is given by the ratio of
the probabilities for finding the α-particle outside versus inside the nucleus.

τ = τ0/P, P =
|ψ(out)|2

|ψ(in)|2
(11.47)

Since we want to avoid the details of the nuclear potential we will try to compute
P up to an overall constant and absorb some of the details of the nuclear po-
tential in a redefinition of τ0. The asymptotic form of the wavefunction outside
of the nucleus must be an outgoing wave of the WKB form

ψWKB(out) =
AIIIp
p(r)

exp
i

~

∙Z r

r2

dr0 p(r0)− π

4
+ φ

¸
. (11.48)

The WKB connection formulas (for n = 1) gives the asymptotic expressions for
region II when r is far away from both r1 and r2

ψIIWKB(r) = AIII ei(φ−π/2)
exp

¡
1
~
R r2
r

dr0 p̃(r0)
¢p

p̃(r)
(11.49)
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Inside the nucleus ψ(in) must vanish at the origin r = 0. Feeding this informa-
tion to region II by using (11.25) gives (i.e. first write it in terms of J±1/3 and
then analytically continue through r1 to region II)

ψII(r) = AI

sR r
r1

p̃(r0)

p̃(r)

∙
I−1/3

µZ r

r1

p̃(r0)

~

¶
− I1/3

µZ r

r1

p̃(r0)

~

¶¸
(11.50)

This form is valid near r = r1 and far away from it, but is not valid near r2.
The asymptotic form of this expression away from r1 is

ψII(r) →
rÀr1

ψIIWKB(r) =
AI exp

³
− 1
~
R r
r1
dr0 p̃(r0)

´
p
p̃(r)

. (11.51)

This is connected to the asymptotic WKB form inside the nucleus

ψWKB(in) =
AIp
p(r)

sin

∙
1

~

Z r

0

dr0 p(r0)

¸
. (11.52)

One sees that AI is a measure of the maximum amplitude inside the nucleus
and AIII is a similar measure for outside the nucleus. Therefore the decay
probability is proportional to the ratio |AIII/AI |2 . Matching the two forms
(11.49,11.51) of ψIIWKB(r) at any r in the region r1 ¿ r ¿ r2 one finds the
ratio AIII/AI

AIII

AI
= e−i(φ−π/2) exp

µ
−1
~

Z r2

r1

dr0 p̃(r0)

¶
. (11.53)

Squaring it gives the decay probability up to an overall factor C that may be
considered a constant for slowly varying potentials

P = C exp

Ã
−2
~

Z r2(E)

r1(E)

dr0 p̃(r0)

!
. (11.54)

The overall normalization is fixed to C = 1 by requiring P = 1 at energies for
which r1 (E) = r2 (E) . Here r1(E), r2(E) are the turning points that solve the
equation Veff (r) = E, as shown in Fig.(11.5). A discussion of the details of the
nuclear potential is avoided by estimating that r1 is of the order of the nuclear
radius

r1 ≈ R ≈ 10−12cm. (11.55)

Similarly, r2 (E) is estimated by using the asymptotic form of the effective po-
tential in (11.46) which is purely Coulomb, r2 ∼ 2Ze2

E . Furthermore, the energy
E is equal to the kinetic energy of the free α particle outside of the nucleus
E ≈ 1

2mαv
2, where the velocity v is measured by an observer. Here one must

use the reduced mass that appears in the radial equation

mα =
MαMZ

Mα +MZ
(11.56)
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where Mα,MZ are the actual masses of the α and the remaining nuclear frag-
ment. Thus, both r1 and r2 are pinned down approximately by experimental
quantities

r1 ≈ R, r2 ≈
4Ze2

mαv2
. (11.57)

The decay probability is then

P = exp

Ã
−2
~

Z 4Ze2

mαv2

R

dr
q
2mαVeff (r)−m2

αv
2

!
. (11.58)

In the region of integration one can ignore the short range nuclear potential.
Furthermore, specializing to the zero angular momentum state l = 0 , the inte-
gral can be easily performed, leading to the decay rate

τ (Z+2)→Z+α = τ0 exp

"
2

~

Z 4Ze2

mαv2

R

dr

r
4Ze2mα

r
−m2

αv
2

#
(11.59)

= τ0 exp

∙
4Ze2

~v
{π − γ − cos γ}

¸
where γ < π/2 is defined by

sin γ =

r
mαv2R

4Ze2
=

r
R

r2
< 1, (11.60)

and 4Ze2/~v = mαvr2/~ is an angular momentum just outside the nucleus, in
dimensionless units.
The decay rate computed above is a function of Z and v. It can be plotted

against these quantities and compared to experiment. The characteristic lifetime
is of order τ0 ∼ 10−21 sec . The exponential can be large. The fit is a reasonably
good one over a large range of lifetimes.

11.4 Problems
1. Compute the energy eigenvalues and eigenstates for the harmonic oscilla-
tor in d-dimensions in the WKB approximation.

2. Compute the energy levels for the 1-dimensional potential

V (x) =

µ
|x|
a
− 1
¶

V0 θ (a− |x|) . (11.61)

in the WKB approximation. If 2mV0a
2

~2π2 = 9, how many bound states are
there?

3. Compute the energy levels for H = p2/2m+ γr in the WKB approxima-
tion.
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4. Derive the connection formulas (11.27,11.28) by using the properties of
Bessel functions.

5. Consider examples of one-dimensional potentials, of the type discussed
in the text and the problems in Chapter 4, for which the transmission
coefficient can be computed exactly. Then apply the WKB method to
the same problem to compute the probability of tunneling. Compare the
exact and WKB results.



Chapter 12

PERTURBATION
THEORY

Perturbation theory is a systematic expansion of the physical quantities of a
system in terms of a small parameter in the Hamiltonian. It provides accurate
results to the extent that the expansion parameter is small. Typically it arises
when the Hamiltonian has the form

H = H0 +H 0, (12.1)

where H 0 is small as compared to H0, within certain validity criteria that will
be discussed below. The underlying assumption is that the physical system
described byH0 is exactly solved, and that the system described byH = H0+H

0

is difficult to solve exactly. Then perturbation theory provides a series expansion
of all physical quantities (energies, states, matrix elements) in powers of H 0. In
principle the expansion provides answers to any desired accuracy, but in practice
the approach is useful if one does not need to go beyond a few terms, usually
first order or second order perturbation theory.
In this chapter only time independent perturbation theory is discussed. The

time dependent cases will be covered in the next chapter. To begin, the exact
formal solution of the eigenstates and eigenvalues of the total system described
by H = H0 + H 0 are given. This closed form may be computed exactly, if
possible for certain cases. Otherwise, it has a form that is convenient for an
expansion in powers of H 0, so that perturbation theory appears as an ordinary
series expansion.

12.1 Diagonalization of H

One assumes that the quantum problem forH0 is already solved. That is,H0 has
been diagonalized, and if there are any additional operators {Ai

0, i = 1, 2, · · · }
that commute with H0, the complete set has been found and simultaneously

387
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diagonalized together with H0. These eigenvalues and eigenstates define the
complete Hilbert space that we will refer to as the “zeroth order” or “perturba-
tive” Hilbert space. The eigenvalues of the operators may be used to label the
zeroth order states as |E0n, ai0mi :

H0|E0n, ai0mi = E0n|E0n, ai0mi (12.2)

Ai
0|E0n, ai0mi = ai0m|E0n, ai0mi

Similarly, in principle, there is an “exact” Hilbert space which is defined by the
eigenvalues of the total H and a complete set of operators {Ai, i = 1, 2, · · · }
that commute with it. The states of the exact Hilbert space |En, a

i
mi satisfy

H|En, a
i
mi = En|En, a

i
mi (12.3)

Ai|En, a
i
mi = aim|En, a

i
mi

In general the set {Ai, i = 1, 2, · · · } is different than the set {Ai
0, i = 1, 2, · · · },

although, depending on the problem, some of the operators may overlap. Having
mentioned the existence of the operators Ai

0 and Ai, they will be suppressed
from the discussion from now on, and we will concentrate only on the eigenvalues
E0n, En as if they are the only labels of the states |E0ni, |Eni. Both sets are
complete and orthonormalP

n |E0
nihE0

n| = 1, hE0n|E0mi = δnmP
n |EnihEn| = 1, hEn|Emi = δnm

(12.4)

In the completeness relation the sum would be replaced by an integral for the
eigenvalues that are continuous. Similarly, in the orthogonality relations the
Kronecker delta δnm would be replaced by the Dirac delta function for con-
tinuous eigenvalues. Keeping this in mind, for the sake of simplicity, we will
continue to use orthogonality and completeness relations as if all eigenvalues
are discrete. It is easy to make the appropriate modification when they are not
discrete.
One may expand any quantum state |ψi in terms of either set. In particular

the exact eigenstates may be expressed as a linear combination of the zeroth
order states by multiplying with the identity operator

|Eni =
X
n0

|E0n0ihE0n0 |Eni

=
X
n0

|E0n0iU
†
n0n (12.5)

U†n0n ≡ hE0n0 |Eni

The matrix U is unitary as a consequence of the completeness and orthogonality
conditions ¡

UU†
¢
nn0

=
P

n00 Unn00U
†
n00n0

=
P

n00 hEn|E0
n00ihE0n00 |En0i

= hEn|En0i = δnn0 .

(12.6)
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One may construct a unitary operator Û that maps the perturbative Hilbert
space to the exact Hilbert space and establishes a one-to-one correspondance
between the states

Û =
X
k

|E0kihEk|, Û† =
X
k

|EkihE0k|, (12.7)

|E0ni = U |Eni, |Eni = U†|E0ni, (12.8)

where the second line follows from orthogonality. The matrix elements of Û†

evaluated in the perturbative Hilbert space coincide with U†n0n as seen below

hE0n0 |Û†|E0ni =
X
k

hE0n0 |EkihE0k|E0ni (12.9)

= hE0n0 |Eni = U†n0n (12.10)

Here we have used orthogonality and the definition of U†n0n given in (12.5).
The aim is to find the eigenstates |Eni, eigenvalues En, and the operator

Û as a function of H 0. In the zeroth order Hilbert space |E0ni it is assumed
that the matrix element of any operator may be computed. In particular one
assumes that the following computations have already been performed

hE0m| H |E0ni ≡ Hmn = E0
n δmn +H 0

mn. (12.11)

Then the Hamiltonian operator may be expressed in either basis by using the
different forms of the identity operator

H = 1H1

=
X
nn0

|E0nihE0n| H |E0n0ihE0n0 |

=
X
nn0

|E0ni
£
E0n δmn +H 0

mn

¤
hE0n0 | (12.12)

=
X
mm0

|EmihEm| H |Em0ihEm0 |

=
X
mm0

|EmiEmδmm0hEm0 |

By using the relation |E0ni =
P

m |EmiUmn between the two complete Hilbert
spaces the third line may be rewritten in a form that is comparable to the last
line

H =
X
mm0

|Emi
"X
nn0

Umn (E
n
0 δnn0 +H 0

nn0)U
†
n0m0

#
hEm0 | (12.13)

This shows that the matrix U which provides the map between the two Hilbert
spaces must be identified with the matrix that performs the diagonalization of
the Hamiltonian in matrix form

U†mn (E
n
0 δnn0 +H 0

nn0)Un0m0 = Emδmm0 . (12.14)
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So, in principle this is a method for computing both the eigenvalues and eigen-
states.
The aim of this chapter is to develop an approximation technique for comput-

ing En, |Eni, Umn, but before doing so we will first obtain some exact relations
that follow from the definitions given above. Furthermore, there are sufficiently
simple cases for which the diagonalization procedure can be carried out exactly.
It is useful to discuss these exact expressions before considering the perturbative
expansion.

12.2 Two level Hamiltonian
It is useful to solve the problem exactly in a simple case and use the result as a
guide for the perturbative expansion. The 2-level system is an important prob-
lem worth discussing exactly, since it has many practical physical applications
(lasers, magnetic resonance, K0−K̄0 system in particle physics, etc.). This case
also serves as a simplified laboratory to illustrate the methods of approximation.
The Hamiltonian has the form

H = H0 +H 0 =

µ
E01 0
0 E02

¶
+

µ
k1 h
h∗ k2

¶
(12.15)

where we have used the basis

|E01i =
µ
1
0

¶
, |E02i =

µ
0
1

¶
. (12.16)

We seek a transformation U that diagonalizes the matrix and identify the eigen-
states. This problem was solved in Chapter 3, section 3.8, where the Hamil-
tonian was written as

H =

µ
x+ y y tan θ eiφ

y tan θ e−iφ x− y

¶
, (12.17)

with the definitions

x =
1

2
(E01 +E02) +

1

2
(k1 + k2)

y =
1

2
(E01 −E02) +

1

2
(k1 − k2) (12.18)

tan θ =
|h|
y
, ei2φ =

h

h∗
.

Then, the exact energy eigenvalues and eigenfunctions are conveniently given
by

E1 = x+
y

cos θ
, E2 = x− y

cos θ

|E1i =
µ

cos θ2
− sin θ

2 e
−iφ

¶
, |E2i =

µ
sin θ

2 e
iφ

cos θ2

¶
(12.19)

U =

µ
cos θ2 sin θ

2 e
iφ

− sin θ
2 e
−iφ cos θ2

¶
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The reader can verify directly that these expressions satisfy H|Eii = Ei|Eii,
and UHU† = E.
Perturbation theory corresponds to expanding in the small parameters k1, k2, h.

For the purpose of comparing to perturbation theory it will be useful to rewrite
this result in terms of the original parameters

E1 =
1

2

¡
E0
1 +E02 + k1 + k2

¢
+
1

2

h¡
E01 −E02 + k1 − k2

¢2
+ 4 |h|2

i1/2
(12.20)

E2 =
1

2

¡
E0
1 +E02 + k1 + k2

¢
− 1
2

h¡
E01 −E02 + k1 − k2

¢2
+ 4 |h|2

i1/2
(12.21)

cos
θ

2
=

1√
2

⎡⎣1 +Ã1 + 4 |h|2

(E01 −E02 + k1 − k2)
2

!−1/2⎤⎦1/2 (12.22)

sin
θ

2
=

√
2 |h|

"
1 + 4|h|2

(E0
1−E0

2+k1−k2)
2 +

µ
1 + 4|h|2

(E0
1−E0

2+k1−k2)
2

¶1/2#−1/2
(E01 −E02 + k1 − k2)

(12.23)
A consistent expansion is obtained by rescaling the parameters by an overall

factor λk1, λk2, λh, and expanding in powers of λ. The result is

E1 = E01 + λk1 + λ2
|h|2

E01 −E02
+ λ3

(−k1 + k2) |h|2

(E01 −E02)
2 + λ4

|h|2
³
(−k1 + k2)

2 − |h|2
´

(E01 −E02)
3 + · · ·

E2 = E02 + λk2 − λ2
|h|2

E01 −E02
− λ3

(−k1 + k2) |h|2

(E01 −E02)
2 − λ4

|h|2
³
(−k1 + k2)

2 − |h|2
´

(E01 −E02)
3 − · · ·

sin
θ

2
= λ

|h|
E01 −E0

2

− λ2
(k1 − k2) |h|
(E01 −E02)

2 − λ3 |h|
3 |h|2 + 2

¡
k21 − k22

¢
2 (E01 −E02)

3 + · · ·

cos
θ

2
= 1− λ2

|h|2

2 (E01 −E02)
2 + λ3

(k1 − k2) |h|2

(E01 −E02)
3 + · · · (12.24)

At the end of this computation we set λ = 1. This expansion should be compared
to the computation using perturbation theory in the following section.

12.3 Formal exact solution

We will now construct the exact solution in the general case. This will be
a formal solution in the sense that more work will be needed for a complete
answer. However, the form of the formal solution is useful because it will lend
itself to a systematic perturbative expansion in powers of H 0.
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Consider the exact eigenvalue problem

(H −En)|Eni = 0, (12.25)

and rewrite it by using H = H0 + H 0 and En = E0n + ∆n, where ∆n is the
energy difference between the exact and the perturbative state. The equation
above becomes

(H0 −E0n)|Eni = (∆n −H 0) |Eni. (12.26)

If one takes a dot product with the bra hE0n| the left hand side vanishes. This
shows that the state (∆n −H 0) |Eni is orthogonal to |E0ni

hE0n| (∆n −H 0) |Eni = 0. (12.27)

From this equation we find a formula for the energy difference ∆n

(En −E0n) =
hE0n|H 0|Eni
hE0n|Eni

= ∆n (12.28)

Since the right hand side of (12.26) does not contain the state |E0ni nothing
changes if it is multiplied by the projection operator (Q2n = Qn)

Qn = 1− |E0
nihE0n| =

X
k 6=n

|E0kihE0k|. (12.29)

Next eq.(12.26) is rewritten by multiplying it with the inverse (H0 −E0n)
−1 on

both sides

|Eni = (H0 −E0n)
−1Qn (∆n −H 0) |Eni+ Z−1/2n |E0ni. (12.30)

The inverse (H0 − E0n)
−1 is well defined on the right hand side since the state

|E0ni is absent in the first term, and this is emphasized by the insertion of the
projector Qn. Hence (H0 − E0n)

−1Qn must be understood as the inverse of
H0 −E0n in the subspace of the Hilbert space excluding the state |E0ni. On the
right hand side of (12.30) one is free to add an arbitrary term proportional to
|E0ni with proportionality constant Z

−1/2
n , because if one applies (H0 −E0n) on

both sides of (12.30) the original equation (12.26) is recovered for any Z−1/2.
Thus the two equations (12.26) and (12.30) are equivalent.
The exact state |Eni can now be obtained in terms of the perturbative state

by solving (12.30) formally

|Eni = Z−1/2n

£
1− (H0 −E0n)

−1Qn (∆n −H 0)
¤−1 |E0ni. (12.31)

The meaning of Z−1/2 is now understood as a normalization constant. It can
be computed in two ways. The first is by dotting eq.(12.30) with hE0n| on both
sides and using the norm hE0n|E0ni = 1

Z−1/2n = hE0n|Eni. (12.32)
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The second is by imposing hEn|Eni = 1 for the |Eni given in Eq.(12.31). We
can now construct the operator Û through its definition (12.7)

Û† =
X
n

Z−1/2n

£
1− (H0 −E0n)

−1Qn (∆n −H 0)
¤−1 |E0nihE0n| . (12.33)

Its matrix elements are given by

U†mn = hE0
m|
£
1− (H0 −E0n)

−1Qn (∆n −H 0)
¤−1 |E0

niZ−1/2n . (12.34)

This exact expression for U†mn involves only matrix elements in the perturbative
Hilbert space |E0

ni. Note that since hE0n|Qn = 0, the diagonal entries U†mn are
given by the normalization factor U†nn = Z

−1/2
n . The exact Hilbert space |Eni

is obtained either in the form of Eq.(12.30) or by inserting the U†mn above the
sum of Eq.(12.5)

|Eni =
X
m

|E0miU†mn. (12.35)

In summary, the equations (12.28,12.31,??,12.33) provide exact expressions
for En, |Eni, Û† in terms of the original Hilbert space |E0ni and the matrix
elements of the operators H0,H

0. This is a formal solution because ∆n appears
non-linearly in |Eni and Zn, and satisfies the non-linear equation (12.28), from
which it remains to be solved. This non-linear equation for ∆n is equivalent to
the secular equation for the eigenvalues

det
¡
H −E0n −∆n

¢
= 0. (12.36)

If the secular equation is solved, the above formulas provide the eigenstates
|Eni and the unitary operator U . When it cannot be solved exactly we need
the perturbative expansion discussed in the next section.

12.3.1 2-level problem revisited

In order to appreciate the general exact formulas of this section it is useful to
apply them to the exactly solvable 2-level problem of the previous section, and
rederive the same exact results using the general formalism given above. So, if
we take E01 + k1 = x+ y, E02 + k2 = x− y,with

|E01i =
µ
1
0

¶
, |E0

2i =
µ
0
1

¶
, (12.37)

we have the setup

H0 =

µ
x+ y 0
0 x− y

¶
, H 0 =

µ
0 y tan θ eiφ

y tan θ e−iφ 0

¶
. (12.38)

The projection operators are

Q1 =

µ
0 0
0 1

¶
, Q2 =

µ
1 0
0 0

¶
,
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We then find

(H0 −E01)
−1Q1 =

µ
0 0
0 1

−2y

¶
, (H0 −E02)

−1Q2 =

µ 1
2y 0

0 0

¶
,

and £
1− (H0 −E01)

−1Q1 (∆1 −H 0)
¤−1

=

∙
1−

µ
0 0
0 1

−2y

¶µ
∆1 y tan θ eiφ

y tan θ e−iφ ∆1

¶¸−1
=

µ
1 0

−12 tan θ e−iφ 1 + 1
2y∆1

¶−1
=

µ
1 0

y tan θ
2y+∆1

e−iφ 2y
2y+∆1

¶
.

Therefore, the eigenstate follows from (12.31)

|E1i = Z
−1/2
1

µ
1 0

y tan θ
2y+∆1

e−iφ 2 y
2y+∆1

¶µ
1
0

¶
= Z

−1/2
1

Ã
1

y tan θ e−iφ

2y+∆1

!
.

The normalization follows from hE1|E1i = 1,

Z1 = 1 +

µ
y tan θ

2y +∆1

¶2
,

and the equation for the energy difference ∆1 from (12.28)

∆1 = Z
1/2
1 hE0

1 |H 0|E1i

=
¡
1 0

¢µ 0 y tan θ eiφ

y tan θ e−iφ 0

¶Ã
1

y tan θ e−iφ

2y+∆1

!

=
y2 tan2 θ

∆1 + 2y
. (12.39)

Similarly, for the second state one gets

£
1− (H0 −E02)

−1Q2 (∆2 −H 0)
¤−1

=

µ
− 2y
∆2−2y

y tan θ
∆2−2y e

iφ

0 1

¶
,

and

|E2i = Z
−1/2
2

Ã
y tan θ eiφ

∆2−2y
1

!
, Z2 = 1 +

y2 tan2 θ

(2y −∆2)2
, ∆2 =

y2 tan2 θ

∆2 − 2y
. (12.40)

The solutions of the quadratic equations for ∆1,∆2 (12.39,12.40) are (the choice
of roots is consistent with the limit E1,2 → E01,2 while θ→ 0 )

∆1 = −y +
y

cos θ
, ∆2 = y − y

cos θ
.
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This leads to

Z
−1/2
1 = Z

−1/2
2 = cos

θ

2
.

This exact result is in full agreement with the exact solution of the previous
section, using En = E0n +∆n

E1 = x+
y

cos θ
, E2 = x− y

cos θ
. (12.41)

Furthermore, the exact states |Eni are also in agreement

|E1i =
µ

cos θ2
− sin θ

2 e
−iφ

¶
, |E2i =

µ
sin θ

2 e
iφ

cos θ2

¶
. (12.42)

12.4 Perturbative expansion (non-degenerate)
If H 0 is small compared to H0 we can approximate the exact solution by using
an expansion in powers of H 0. In order to do this systematically we multiply H 0

with the parameter λ, and expand in powers of λ. For this purpose it is useful to
work with the unnormalized state |Eni ≡ Z

1/2
n |Eni and write the exact results

of the previous section as follows

|En, λi =
£
1− (H0 −E0n)

−1Qn {∆n (λ)− λH 0}
¤−1 |E0ni (12.43)

∆n (λ) = hE0n|λH 0 £1− (H0 −E0n)
−1Qn {∆n (λ)− λH 0}

¤−1 |E0ni (12.44)

Zn (λ) = hEn, λ||En, λi (12.45)

|En, λi = |En, λiZ−1/2n (λ) . (12.46)

The systematic expansion in λ is

|En, λi = |E0ni+ λ |Eni(1) + λ2 |Eni(2) + λ3 |Eni(3) + · · · (12.47)

∆n (λ) = 0 + λ∆(1)n + λ2∆(2)n + λ3∆(3)n + λ4∆(4)n + · · · (12.48)

Zn (λ) = 1 + λZ(1)n + λ2Z(2)n + λ3Z(3)n + λ4Z(4)n + · · · (12.49)

This is plugged into the equations above and powers of λn are compared on
both sides. It is useful to do the expansion in two steps. In the first step one
expands the inverse [1− · · · ]−1 formally as a power series£
1− (H0 −E0n)

−1Qn {∆n (λ)− λH 0}
¤−1

= 1 + (H0 −E0n)
−1Qn {∆n (λ)− λH 0}

+ (H0 −E0n)
−1Qn {∆n (λ)− λH 0} (H0 −E0n)

−1Qn {∆n (λ)− λH 0}+ · · ·

The terms that involve the ∆n (λ) in bold can be dropped since the whole ex-
pression is applied on |E0ni and we obtain ∆n (λ)Qn|E0

ni = 0 for each such term
of the expansion. In the second step substitute∆n (λ) = 0+λ∆

(1)
n +λ2∆

(2)
n +· · ·

for the remaining ∆n (λ)’s and re-expand in powers of λ. By collecting powers
of λ consistently the various terms in the expansion are obtained (the details
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are srtaightforward and left as an exercise for the student). Next use the pro-
jector Qn in the form Qn =

P
k 6=n |E0

kihE0k| as given in (12.29) and evaluate
the operator H0 on its own eigenstates wherever it occurs. At the end of this
procedure one sets λ = 1.
The results are as follows. The un-normalized state |Eni up to second power

in H 0 is

|Eni = |E0ni+
X
k 6=n

|E0ki
H 0
kn

E0n −E0k
−
X
k 6=n

|E0ki
H 0
knH

0
nn

(E0
n −E0k)

2

+
X

k 6=n,l6=n
|E0ki

H 0
klH

0
ln

(E0n −E0k) (E
0
n −E0l )

+ · · · (12.50)

The energy eigenvalue up to third power in H 0 is

En = E0n +H 0
nn +

X
k 6=n

H 0
nkH

0
kn

E0n −E0k
−H 0

nn

X
k 6=n

H 0
nkH

0
kn

(E0n −E0k)
2

+
X

k 6=n, l6=n

H 0
nkH

0
klH

0
ln

(E0n −E0k) (E
0
n −E0k)

+ · · · (12.51)

The normalization can be shown to satisfy Z−1n = ∂En/∂E
0
n. We need the

lowest terms in the expansion for Z−1/2, which is obtained by taking the square
root and then expanding in powers of H 0

Z−1/2n = 1− 1
2

X
k 6=n

|H 0
kn|

2

(E0n −E0
k)
2 + · · · (12.52)

Finally, the normalized state is obtained by multiplying Z
−1/2
n |Eni and re-

expanding in powers of H 0

|Eni = |E0ni

⎛⎝1− 1
2

X
k 6=n

|H 0
kn|

2

(E0n −E0k)
2

⎞⎠+X
k 6=n

|E0ki
H 0
kn

E0n −E0k
(12.53)

−
X
k 6=n

|E0ki
H 0
knH

0
nn

(E0n −E0
k)
2 +

X
k 6=n,l 6=n

|E0ki
H 0
klH

0
ln

(E0n −E0k) (E
0
n −E0l )

+ · · ·

The U†mn = hE0m|Eni are then, up to second order given by

U†mn = δmn

⎛⎝1− 1
2

X
k 6=n

|H 0
kn|

2

(E0
n −E0k)

2

⎞⎠+ (12.54)

+(1− δmn)

⎧⎨⎩ H 0
mn

E0n −E0m
− H 0

mnH
0
nn

(E0n −E0m)
2 +

X
l 6=n

H 0
mlH

0
ln

(E0n −E0m) (E
0
n −E0l )

⎫⎬⎭+ · · ·
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In these formulas E0
n − E0k appear in the denominator. The expansion is

valid for level n provided the energy differences
¯̄
E0n −E0k

¯̄
with all other energy

levels k 6= n are not small. Typically, the approximation is valid for a given
level n if for that level

|H 0
kn| ¿

¯̄
E0n −E0k

¯̄
(12.55)

is satisfied. If this is the case, this expansion is called non-degenerate perturba-
tion theory for level n. If the contrary is true for some levels, either because of
degenerate or nearly degenerate states for which E0

n−E0k = 0 or small, one needs
to reconsider the expansion carefully for those levels and apply the methods of
degenerate perturbation theory that is discussed next.

12.5 Degenerate perturbation theory

In the previous discussion of perturbation theory we assumed that there was
a one to one correspondence between the set of eigenvectors {|E0ni} and the
corresponding set of eigenvalues {E0n}; that is, we have postulated no degen-
eracy in our energy eigenvalues. We also mentioned that if such degeneracy is
present we cannot use the non-degenerate perturbation theory because of the
appearance of zeroes in the denominator of the expressions of the En’s or |Eni
in eqs.(12.51,12.53).
There would also be a problem even if no degeneracy is present, but the

condition (12.57) is violated. Then the ratio

|H 0
nk|

|E0n −E0k|
(12.56)

is not small for some of the terms in the sums in eqs.(12.51,12.53), and the per-
turbative expansion is no longer a good approximation. It must be emphasized
that these problems will depend on the specific eigenvalue E0

n. The pertubative
expansion continues to hold for the states labelled by E0

n that satisfy

|H 0
nk| ¿

¯̄
E0
n −E0k

¯̄
all k 6= n (12.57)

The problem occurs only for the states En which violate this condition.
The cure to the problem is to perform an exact (or almost exact) partial

diagonalization of the matrix Hmn = H0
mn +H 0

mn in the blocks of degenerate
or almost degenerate states. If necessary, one can relabel the states so that the
degenerate or almost degenerate states appear in blocks in the form

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

E01 a # # # #
a∗ E01 + ε1 # # # #
# # E02 b c #
# # b∗ E0

2 + ε2 d #
# # c∗ d# E02 + ε02 #

# # # # #
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (12.58)
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The entries indicated by # are assumed not to create a problem. In the first
2×2 block there would be a problem if |a| ≥ ε1, including the degenerate limit
ε1 = 0. Similarly in the 3×3 block there would be a problem if |b| ≥ ε2, or
|c| ≥ ε02 or |d| ≥ |ε2 − ε02|, including the degenerate limit ε2 = ε02 = 0. One must
then diagonalize these blocks exactly or approximately “by hand”, or without
the perturbative expansion, as discussed in the previous sections. This defines

a new basis
n
|Ẽni

o
and new eigenvalues through the transformation Umn that

performs the partial diagonalization. U has a block diagonal form

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

U
(1)
11 U

(1)
12 0 0 0 0

U
(1)
21 U

(1)
22 0 0 0 0

0 0 U
(2)
11 U

(2)
12 U

(2)
13 0

0 0 U
(2)
21 U

(2)
22 U

(2)
23 0

0 0 U
(2)
31 U

(2)
32 U

(2)
33 0

0 0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12.59)

Each block is determined as the matrix that diagonalizes the corresponding
block of the Hamiltonian, i.e.

U†HU = H̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ẽ1 “0” #̃ #̃ #̃ #̃

“0” Ẽ1 + ε̃1 #̃ #̃ #̃ #̃

#̃ #̃ Ẽ2 “0” “0” #̃

#̃ #̃ “0” Ẽ2 + ε̃2 “0” #̃

#̃ #̃ “0” “0” Ẽ2 + ε̃02 #̃

#̃ #̃ #̃ #̃ #̃
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12.60)

The entries labelled by “0” are 0, unless U is chosen differently as discussed
below. The off diagonal blocks are also transformed to new values labelled by
#̃, and the states are transformed to the new basis

|Ẽni =
X
k

|E0kiU
†
kn. (12.61)

Now, the matrix H̃ corresponds to the original Hamiltonian computed in the
new basis, and it may again be split into two parts

H̃mn = hẼm|H|Ẽni = H̃0
mn + H̃ 0

mn. (12.62)

As long as the condition¯̄̄
H̃ 0
nk

¯̄̄
¿
¯̄̄
Ẽn − Ẽk

¯̄̄
all k 6= n (12.63)

is satisfied in the new basis (for a given Ẽn), one may apply perturbation theory
from this point on for the level Ẽn, as in the previous section.
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If the partial diagonalization is actually accomplished, the entries labelled
by “0” are 0. For small enough matrices, of course one can perform the diag-
onalization exactly. If this step is too difficult technically, one may resort to
finding a U that gives small enough numbers for the entries labelled by “0”,
because then perturbation theory would also be applicable.

12.5.1 More on degeneracy

There is one more step to discuss if the eigenvalues in the same block are still
exactly degenerate after the partial diagonalization. For example, suppose in the
first block ε̃1 = 0, while “0”=0. This degeneracy continues to create a problem
as follows. For simplicity consider a 3-level problem whose Hamiltonian matrix
has the form

H =

⎛⎝ A 0 C
0 A D
C∗ D∗ B

⎞⎠ (12.64)

So that we identify

H0 =

⎛⎝ A 0 0
0 A 0
0 0 B

⎞⎠ , H 0 =

⎛⎝ 0 0 C
0 0 D
C∗ D∗ 0

⎞⎠ (12.65)

The basis is given by

hE01 | = (1 0 0) , hE02 | = (0 1 0) , hE03 | = (0 0 1) (12.66)

and the initial energies are E0
1 = A, E02 = A, E03 = B. There is a problem

in the perturbation series due to the degeneracy E01 = E0
2 = A if C or D is

non-zero, as follows. The expansion of (12.51) up to second order is

E1 = E01 +
H 0
12H21

E01 −E02
+

H 0
13H

0
31

E01 −E03
+ · · · = A+

0

0
+

|C|2

A−B
+ · · · (12.67)

E2 = E02 +
H 0
21H

0
12

E02 −E01
+

H 0
23H

0
32

E02 −E03
+ · · · = A+

0

0
+

|D|2

A−B
+ · · · (12.68)

E3 = E03 +
H 0
31H

0
13

E03 −E01
+

H 0
32H

0
23

E03 −E02
+ · · · = B +

|C|2

B −A
+

|D|2

B −A
+ · · · (12.69)

The 0
0 is undetermined, and one must find its meaning. To do so, we apply

a unitary transformation in such a way as to create a fully isolated 1×1 block
with all off diagonals zeros

U†HU =

⎛⎝ # 0 0
0 # #
0 #∗ #

⎞⎠ (12.70)
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This is easy to accomplish because any unitary transformation of the 2×2 block
form

U =

⎛⎝ # # 0
# # 0
0 0 1

⎞⎠ , (12.71)

leaves H0 unchanged U†H0U = H0 since the 2×2 block of H0 is proportional to
the matrix 1. Then U can be chosen to rotate the row vector

¡
C∗ ,D∗

¢
and

the corresponding column vector to point in only the second direction. Since a
unitary transformation cannot change the length of the vector the result takes

the form
³
0 ,

q
|C|2 + |D|2

´
. The transformation is easy to find

U†HU =

⎛⎜⎜⎝
A 0 0

0 A
q
|C|2 + |D|2

0

q
|C|2 + |D|2 B

⎞⎟⎟⎠ ≡ H̃ (12.72)

U† =

⎛⎜⎜⎝
D√

|C|2+|D|2
−C√

|C|2+|D|2
0

C∗√
|C|2+|D|2

D∗√
|C|2+|D|2

0

0 0 1

⎞⎟⎟⎠ . (12.73)

The new basis is given by hẼn| =
P

khE0
k|U

†
kn

hẼ1| =
³

D√
|C|2+|D|2

, −C√
|C|2+|D|2

, 0
´

(12.74)

hẼ2| =
³

C∗√
|C|2+|D|2

, D∗√
|C|2+|D|2

, 0
´

(12.75)

hẼ3| =
¡
0, 0, 1

¢
(12.76)

In this new basis we have

H̃0 =

⎛⎝ A 0 0
0 A 0
0 0 B

⎞⎠ , H̃ 0 =

⎛⎜⎜⎝
0 0 0

0 0

q
|C|2 + |D|2

0

q
|C|2 + |D|2 0

⎞⎟⎟⎠
(12.77)

Since the first 1×1 block is fully isolated in the form (12.70), the exact eigenvalue
is E1 = A, and the exact eigenstate is hE1| = hẼ1| as given above. For the
remaining 2×2 block perturbation theory may be applied without any problem
to get the eigenvalues

E1 = A (12.78)

E2 = Ẽ2 +
H̃ 0
23H̃

0
32

Ẽ2 − Ẽ3
+ · · · = A+

|C|2 + |D|2

A−B
+ · · · (12.79)

E2 = Ẽ3 +
H̃ 0
32H̃

0
23

Ẽ3 − Ẽ2
+ · · · = B +

|C|2 + |D|2

B −A
+ · · · (12.80)
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We see that the 0/0 problem of eqs.(12.67,12.68) is resolved, and the correct
answer obtained.
We can verify that this is the correct answer by computing the exact eigen-

values for this problem. The secular equation for the exact diagonalization of
the original Hamiltonian is

det

⎛⎝ A− λ 0 C
0 A− λ D
C∗ D∗ B − λ

⎞⎠ = 0 (12.81)

This gives the cubic equation

(A− λ)
³
λ2 − λ (A+B) +AB − |C|2 − |D|2

´
= 0 (12.82)

which has three solutions

λ = E1 = A (12.83)

λ = E2 =
1

2
(A+B)− 1

2

r
(A+B)2 + 4

³
|C|2 + |D|2

´
(12.84)

λ = E3 =
1

2
(A+B) +

1

2

r
(A+B)

2
+ 4

³
|C|2 + |D|2

´
(12.85)

Assuming (A+B)
2 À

³
|C|2 + |D|2

´
one may expand the square root and

compare the result to the perturbative computation above, and verify that it is
the same expansion.
In summary, in the degenerate or nearly degenerate case, one must use other

means to resolve the degeneracy so that for the remaining problem perturbation
theory would be applicable. In some cases one may use the symmetries of the
problem to find a “good” basis that would be appropriate for the perturbative
computations.

12.6 Fine structure of Hydrogen

In a previous chapter, the Hydrogen-like atom with Hamiltonian H0 =
p2

2µ−
Ze2

r
was discussed, and its eigenvalues and eigenstates were completely determined.
In this section we will consider two corrections to H0, namely the relativistic
correction due to the fast motion of the electron, and the spin-orbit coupling
correction due to the spin of the electron. These two corrections are of the same
order of magnitude and therefore they must be treated simultaneously. Together
they correspond to the “fine structure” of the Hydrogen atom for Z = 1.

12.6.1 Relativistic correction

The energy of a relativistic free particle is given by E =
p
c2p2 +m2c4. The

kinetic energy K is obtained after subtracting the rest energy E0 = mc2, thus

K =
p
c2p2 +m2c4 −mc2. (12.86)
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The velocity of the particle is given by

v

c
=
pc

E
=

pcp
c2p2 +m2c4

, (12.87)

and it cannot exceed the velocity of light as seen from the formula. Small
velocities occur when the mass term is much larger than the momentum term.
In this case one may use the expansion of the square root

√
1 + x2 = 1+ 1

2x
2−

1
8x

4 + · · · , with x2 =
¡
c2p2

¢
/
¡
m2c4

¢
, to write the kinetic energy in the form

K = mc2
³p

1 + x2 − 1
´
=
p2

2m
− 1
8

¡
p2
¢2

m3c2
+ · · · (12.88)

The first term is the non-relativistic kinetic energy already included in H0, and
the second term is the relativistic correction which takes the form

Hrel = −
1

2mc2

µ
p2

2m

¶2
. (12.89)

For later convenience it will be useful to write p2

2m = H0 + Ze2/r and insert it
in Hrel

Hrel = −
1

2mc2

∙
H2
0 + Ze2

µ
H0
1

r
+
1

r
H0

¶
+

Z2e2

r2

¸
(12.90)

where the orders of operators are respected.
We may now compare the size of Hrel to that of H0 for a generic state

of the atom, with Z = 1. We had computed before h p
2

2mi ∼ h
e2

2r i ∼ hH0i with
hH0i ∼ 1

2mc2α2, where α = e2/~c ≈ 1/137. Using these for orders of magnitude
we may estimate

hHreli
hH0i

≈ hH0i2
2mc2hH0i

=
1

4
α2 ≈ 1.3× 10−5. (12.91)

This shows that the relativistic correction is fairly small, and that perturbation
theory at first order would provide an adequate approximation.

12.6.2 Spin-orbit coupling

We begin with a classical argument to motivate the additional energy due to
the spin-orbit coupling. From the point of view of the nucleus the electron goes
around it, say counterclockwise. However, from the point of view of the electron
the nucleus goes around it in a circle in the opposite direction, say clockwise.
The moving charged nucleus creates an electric current, which in turn produces
a magnetic field B at the center of the circle where the electron is located. The
magnetic moment of the spinning electron µ interacts with the magnetic field
and this produces an additional interaction term in the Hamiltonian

HL·S = −
1

2
µ ·B (12.92)
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The extra factor of 12 is explained by the “Thomas precession”. A more direct
explanation is provided by the Dirac equation in the non-relativistic approxi-
mation. This additional energy must be added to the total Hamiltonian of the
Hydrogen atom. As we will see, it is proportional to the dot product of the
orbital angular momentum and the spin of the electron L ·S, and this is why it
is called the “spin-orbit coupling”.
Every spinning particle has a magnetic moment proportional to its spin and

inversely proportional to its mass

µ =
geS

2mc
, (12.93)

where g is the gyro-magnetic ratio. For the electron we have g = 2 as explained
by the Dirac equation. The induced magnetic field at the center of the circle is
given in terms of the velocity tangential to the circle v = p/m, and the electric
field E (r)

B = −1
c
(v×E).

The electric field is computed in terms of the scalar potential, which is the
Coulomb potential (there is no time dependent vector potential in this problem)

E = −∇Φ = −∇
µ
−Ze
r

¶
=
−Ze
r3

r

Therefore

B =
Ze

cr3
(
p

m
× r) = − Ze

mcr3
L

where L is the angular momentum. So now we have the energy

HL·S = −
1

2

µ
2eS

2mc

¶
·
µ
− Ze

mcr3
L

¶
=
1

2

Ze2

m2c2r3
S · L =e2α2

2a0

a30
r3
S · L
~2

(12.94)

where we have used the relations for the fine structure constant α = e2/~c and
the Bohr radius a0 = ~2/

¡
me2

¢
that we had learned in the study of the H-

atom. We may again estimate the size of this correction for Z = 1 by using
hH0i ∼ 1

2mc2α2. Then, we find

hHL·Si
hH0i

∼ α2 (12.95)

which is of similar order of magnitude to the relativistic correction. Therefore
HL·S and Hrel must be taken into account simultaneously as corrections of the
same order.

12.6.3 First order pertubation

The total Hamiltonian is

H = H0 +H 0 (12.96)

H0 =
p2

2m
− Ze2

r
, H 0 = Hrel +HL·S (12.97)
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Since we have argued that H 0 is about 10−4 smaller than H0 we may apply first
order perturbation theory to obtain the fine structure correction.
The basis of states must now include the information about the spin and the

angular momentum of the electron. Therefore, the unperturbed states may be
labelled as |E0ni ∼ |nlml; smsi. This means that every state of the H-atom
we had discussed before without spin, is now doubled due to the two possible
states of the spin ms = ±1

2 . However, due to the spin-orbit coupling it is more
convenient to work in the total angular momentum basis |E0ni = |nls; jmji,
where J = L+ S, and the eigenvalues |jmji correspond to the operators J2 →
~2j(j + 1) and J3 → ~mj when applied on the states. With this choice of basis
vectors, H0 andH 0 are diagonal as far as spin is concerned, since we may express
L · S as follows :

L · S = 1

2

£
(L+ S)2 − L2 − S2

¤
=
1

2

¡
J2 − L2−S2

¢
→ ~2

2

µ
j(j + 1)− l(l + 1)− 3

4

¶
on states.

When j takes the values j = l ± 1
2 the quantity in paranhesis becomes l or

− (l + 1) respectively.
The lowest lying H-atom levels are labelled as follows. For n = 1 the orbital

angular momentum is l = 0 and the electron spin is s = 1
2 , therefore the total

spin is j = 1
2 and mj = ±1

2 . In atomic physicists’s notation these two states
are labelled as |1s1/2i where the mj label is suppressed. Before H 0 is included,

the two n = 1 levels are degenerate and have energy E01 = −12mc2α2 = − e2

2a0
=

−13.6 eV. Similarly for n = 2, the orbital angular momentum is l = 0, 1 and the
electron spin is s = 1

2 , therefore the total spin is j =
1
2 (l = 0) or j =

1
2 ,

3
2 (l =

1). In atomic physicists’s notation these eight states are labelled as |2s1/2i or
|2p1/2i, |2p3/2i, where again the mj labels are suppressed. Before H 0 is included

the eight level n=2 states are degenerate and have energy E02 = − e2

4a0
= −3.

4 eV. We can go on in this way to define to define the zeroth order basis, and
then construct the matrix elements of H0 +H 0 in this basis as follows (the mj

labels are suppressed)

(H0 +H 0)nm =

1s1/2 2s1/2 2p1/2 2p3/2 · · ·
1s1/2 E01 + k1s h12 0 0 · · ·
2s1/2 h∗12 E02 + k2s 0 0 · · ·
2p1/2 0 0 E02 + k2p1 0 · · ·
2p3/2
...

0
...

0
...

0
...

E02 + k2p3
...

· · ·

(12.98)
Let us first explain the zero entries. These are due to angular momentum
conservation. Since H0+H

0 is invariant under rotations J (including rotation of
the spin S) it commutes with the total generator of rotations J. Since H0+H 0 is
a scalar under rotations its the matrix elements between different values of j,mj

vanish. Furthermore H0 +H 0 commutes also with L2, and therefore its matrix
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elements between different values of l also must vanish. The matrix element
h12 does not vanish since the total spin j and orbital quantum number l of the
states 1s1/2, 2s1/2 are the same. However, off diagonal elements, such as h12,
contribute only to second order in perturbation theory (see Eqs.(12.51,12.53)).
Therefore the effects of off diagonal terms will be negligible compared to the
diagonal elements k1s, k2s, k2p1 , k2p3 that contribute in first order.
The general matrix element of H 0 is computed in the zeroth order basis as

follows
H 0
nl,n0l = hnlj|H 0|n0lji (12.99)

where |nlji are the H0 eigenstates with the quantum numbers s = 1
2 and mj

suppressed. Note the same values of l, j in the bra and ket because of the
conservation laws mentioned above. The matrix elements of Hrel andHLS given
in Eqs.(12.90,12.94)) are computed as follows, where we use H0|nlji = E0n|nlji,
with E0n = − 1

2n2mc2α2 = − e2

2n2a0
− 13.6

n2 eV

hnlj|Hrel|n0lji = −
1

2mc2

µ¡
E0n
¢2
δnn0 +

¡
E0
n +E0n0

¢ e2
a0
hnl|a0

r
|n0li+ e4

a20
hnl|a

2
0

r2
|n0li

¶
hnlj|HLS |n0lji =

e2α2

2a0

1

2

µ
j (j + 1)− l (l + 1)− 3

4

¶
hnl|a

3
0

r3
|n0li

The matrix elements of powers of r are given by

hnl|r−k|n0li =
Z ∞
0

dr r2−khnl|rihr|n0li =
Z ∞
0

dr r2−kRnl (r)Rn0l (r) ,

where Rnl (r) are the radial wavefunctions studied earlier in the chapter on the
H-atom. Using these functions we evaluate the integrals and obtain

hnl|1
r
|nli = 1

a0

1

n2
, hnl| 1

r2
|nli = 1

a20

2

n3 (2l + 1)
,

hnl| 1
r3
|nli = 1

a30

2

n3 (2l + 1) (l + 1) l
, · · ·

Combining these results we find the diagonal elements of H 0 which we define as
knlj ≡ hnlj|H 0|nlji

knlj = E0nα
2

∙µ
− 3

4n2
+

1

n (l + 1/2)

¶
−

j (j + 1)− l (l + 1)− 3
4

n (2l + 1) (l + 1) l

¸
= E0nα

2

µ
− 3

4n2
+

1

n (j + 1/2)

¶
(12.100)

where the equivalence of the the two expressions can be verified for j = l ± 1
2 .

Note that the result depends only on j rather than j and l independently. Using
these results for n = 1, 2 and l = 0, 1 we get the matrix elements of (H0 +H 0)nm
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in the lowest states of the H-atom. These come out as follows

E01 + k1s = −
e2

2a0

µ
1 +

1

4
α2
¶
, E02 + k2s = −

e2

2a0

1

22

µ
1 +

5

16
α2
¶

E02 + k2p1 = −
e2

2a0

1

22

µ
1 +

5

16
α2
¶
, E02 + k2p3 = −

e2

2a0

1

22

µ
1 +

1

16
α2
¶

The terms of order α2, namely the k’s, are the corrections to the energy levels
in first order perturbation theory, as see from Eqs.(??,??).
The off diagonal term h12 can be computed in a similar way, and it is found

to be of similar order of magnitude to the k’s above. h12 contributes to the
correction of the energy levels or the states in second order perturbation theory
through Eqs.(12.51,12.53). Since the term |h12|2 /

¡
E01 −E02

¢
is much smaller

compared to the k’s by a a factor of α2 ∼ 10−4, the second order perturbation
correction can safely be neglected in this level of approximation to the H-atom.
Note that the 2s1/2 and 2p1/2 states are still degenerate at this level of accu-
racy. In the real world there is a tiny splitting called the Lamb shift, whose
measurement by Lamb was the source of a Nobel prize. The shifts of the energy
levels due to all corrections are shown in the diagram.

1s

2s,2p

1s

1s(1/2)

2p(3/2)
2p(1/2)2s(1/2),2p(1/2)
2s(1/2)

2p(3/2)

Lamb shift

3s,3p,3d

Fig.12.1. Hyperfine structure and Lamb shift.

There are further small corrections due to additional physical effects. One
of them is the vacuum quantum fluctuations of the electromagnetic field and
pair creation of electrons and positrons out of the vacuum. This is understood
in detail in quantum electrodynamics, and explains the Lamb shift to 12 deci-
mal places in agreement with experiment. Another small physical effect is the
the non-zero size of the nucleus which leads to a potential energy V (r) for a
charge distribution in the vicinity of the nucleus as opposed to the point charge
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approximation of V = −e2/r. These corrections are treated in the problems at
the end of this chapter.

12.7 H-atom in an external magnetic field

When an electron of charge −e is placed in an external electromagnetic field, its
kinetic energy must be modified by replacing the momentum with the covariant
momentum and by adding the energy due to the interaction with the external
scalar potential. Furthermore the magnetic moment of the electron interacts
with the magnetic field and produces additional energy. Hence, including the
interaction with a potential V (r) , the total Hamiltonian is

H=
1

2m

³
p−e

c
A
´2
− eA0 + µ ·B+V (r) (12.101)

The magnetic moment is proportional to the spin of the particle µ =gµ0S where
µ0 is called the Bohr magneton, and g is gyromagnetic ratio. For the electron,
the Dirac equation explains that g = 2 (there are also extremely small quantum
corrections) and µ0 has the value

µ0 =
e~
2mc

' 0.6× 10−8 Gauss. (12.102)

In quantum mechanics, with p→− i~∇, we have

1

2m

³
i~∇+e

c
A
´2

ψ (r) =

µ
− ~

2

2m
∇2 + i

~e
mc
A ·∇

¶
ψ (r)+

µ
i
~e
2mc
∇ ·A+ e2

2mc2
A2

¶
ψ (r)

where the first parenthesis is a differential operator while the last one can be
regarded an additional contribution to the potential. In the Coulomb gauge one
may take ∇ ·A =0.
Now consider a constant external magnetic field B, and no external electric

field. This implies A0 = 0 and A =1
2r×B, which satisfies ∇×A = B. Then

we note that the term

i
~e
2mc

A ·∇ =i
~e
2mc

(r×B) ·∇ =
e

2mc
B· (r× p)=µ0B · L (12.103)

produces an interaction between the magnetic field and the orbital angular mo-
mentum proportional to the Bohr magneton µ0. Combined with the magnetic
moment interaction these two terms give the energy µ0B· (L+gS) .
Now consider the Hydrogen atom with the potential V (r) that includes the

relativistic and spin-orbit corrections, and then place it in an external magnetic
field. The Hamiltonian is H = H0 +H 0 where

H0 =
p2

2m
− Ze2

r
+Hrel +HL·S , H 0 = µ0B (J3 + S3) . (12.104)
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where we assume that B points in the z direction, and used L3+2S3 = J3+S3.
We recall Hrel+HL·S are of order 10−4eV. Using the value of µ0 we estimate H

0

is of order
¡
10−8eV

¢
× B

Gauss . Therefore H
0 is small compared to Hrel +HL·S

for B < 104 Gauss which is an extremely large field.
The energy levels of H0 were computed in the previous section in the basis

|nljmi. We recall the diagonal elements

hnljm|H0|nljmi = Enj = −
e2

2a0

1

n2

µ
1 + α2

µ
− 3

4n2
+

1

n (j + 1/2)

¶¶
We now compute the matrix elements of H 0 in the same basis

hnljm|H 0|n0l0j0m0i = µ0B
³
mδjj0 + (S3)jj0

´
δmm0δll0δmm0 (12.105)

where
(S3)jj0 =

X
l,ml,ms

hjm|lml
1

2
msimshlml

1

2
ms|j0mi (12.106)

Here ml = m ∓ ms, ms = ±1/2 and j = l ± 1/2. Using the Clebsch-Gordan
coefficients, we compute

for j = j0 = l ± 1/2 : (S3)jj = ±
m

2l + 1
, (12.107)

for j = l ± 1/2 and j0 = l ∓ 1/2 : (S3)jj0 = −

q
(l + 1/2)2 −m2

2l + 1
. (12.108)

With this information we can setup the matrix for the total Hamiltonian
1s1/2 2s1/2 2p1/2 2p3/2 · · ·

− e2

2a0

¡
1+1

4α
2
¢

+2mµ0B
h12 0 0 · · ·

h∗12
− e2

8a0

¡
1+ 5

16α
2
¢

+2mµ0B
0 0 · · ·

0 0
− e2

8a0

¡
1+ 5

16α
2
¢

+2
3mµ0B

− µ0B
3

q
9
4−m2δ|m|, 12

0
...

0
...

−µ0B
3

q
9
4−m2δ|m|, 12

− e2

8a0

¡
1+ 1

16α
2
¢

+4
3mµ0B
...

This matrix is easily diagonalized. In the first block h12 ∼ e2α2

2a0
is neglected

since its contribution to the eigenvalue in second order perturbation theory is

of order
³
|h12|2 / e2

2a0

´
∼ e2

2a0
α4. Therefore, the eigenvalues in the first block

are approximately the diagonal entries in the matrix above. Similarly, for the
2p3/2, m = ±3/2 states, the matrix is already diagonal. For the second block
that describes the 2p1/2, 2p3/2 states with m = ±1/2, the exact eigenvalues are

E±2p (m) = −
e2

8a0

µ
1+

3

16
α2
¶
+mµ0B±

"µ
e2

8a0

2

16
α2 +

1

3
mµ0B

¶2
+ (µ0B)

2

µ
1

4
− m2

9

¶
δ|m|, 12

#1/2
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For non-zero magnetic field all degeneracies have been broken, and every state
has a different eigenvalue. We examine the splitting of the states for various
values of m as the value of B increases from zero toward large values.

The behavior of the energy levels as a function of B is shown in Figure
(12.2) which is not to scale, and exagerated, to illustrate the effects. The ver-
tical axis is energy and the horizontal axis is the magnetic field. Before the
hyperfine splitting the two lowest levels of the H-atom are shown (at zero B).
The bottom one is the 1s1/2 and the top one corresponds to the degenerate
2s1/2, 2p1/2,2p3/2 states. After the hyperfine splitting one sees three levels (still
at zero B). The bottom one is the 1s1/2, the middle one is the degenerate states
2s1/2, 2p1/2 (except for the Lamb shift, not shown) and the top one is the 2p3/2.
In the presence of the magnetic field all remaining degeneracies due to rotational
symmetry are broken as shown (non-zero B). As B increases the splitting gets
larger, as shown by the diverging lines. Note that there are critical values of
the magnetic field at which there is level crossing which can occur for many
levels. These are experimentally observed and analysed, and are found to be in
agreement with the computations.

E

B

Fig.12.2 - bottom 1s 1
2
, middle 2s 1

2
, 2p 1

2
, top 2p 3

2

For small of µ0B first and second order perturbation theory is sufficient
to describe the splitting. This splitting of levels is called the Zeeman effect.
This amounts to the expansion of the expressions above up to the second
power in (µ0B) . Of course, for the

¡
1s1/2,m = ±1/2

¢
,
¡
2s1/2,m = ±1/2

¢
and¡

2p3/2,m = ±3/2
¢
there is only the first power, so that for various values of

m’s the splitting is linear in (µ0B) . For the E
±
2p (m) ,m = ±1/2 eigenvalues the

expansion includes the second and higher powers as well which follows from the



410 CHAPTER 12. PERTURBATION THEORY

Taylor expansion

E−2p = −
e2

8a0

µ
1+

5

16
α2
¶
+
1

3
mµ0B − 16

(µ0B)
2

α

2a0
e2

µ
1

4
− m2

9

¶
δ|m|, 12 + · · ·

E+2p = −
e2

8a0

µ
1+

1

16
α2
¶
+
1

3
mµ0B + 16

(µ0B)
2

α

2a0
e2

µ
1

4
− m2

9

¶
δ|m|, 12 + · · ·

This amounts to second order perturbation theory. From first order pertur-
bation theory we see that the splitting is proportional to m (µ0B) , therefore
for positive m the level goes up and for negative values it goes down. Thus
the splitting of the four levels of 2p3/2 is such that they appear in the order
m = 3/2, 1/2,−1/2,−3/2 from top to bottom. For the degenerate 2s1/2, 2p1/2
levels the slope of the splitting is smaller for the 2p1/2 states. Therefore the in-
ner two lines that emanate from the middle level in the figure are the m = ±1/2
levels of the 2p1/2 states, while the outer lines are the m = ±1/2 levels of the
2s1/2 states.
For large values of B the splitting of the levels increases linearly only for some

every levels, while it tends to some constant values for others. This is called the
Paschen-Bach effect. The linear nature is evident for the

¡
1s1/2,m = ±1/2

¢
,¡

2s1/2,m = ±1/2
¢
and

¡
2p3/2,m = ±3/2

¢
, while for the 2p1/2, 2p3/2 states with

m = ±1/2, the behavior is seen by computing the asymptotic expansion of
E±2p (m). We find

E−2p

µ
1

2

¶
= − e2

8a0

µ
1 +

19

48
α2
¶
+ · · · ,

E+2p

µ
−1
2

¶
= − e2

8a0

µ
1 +

17

48
α2
¶
+ · · ·

E+2p

µ
1

2

¶
= − e2

8a0

µ
1 +

17

48
α2
¶
+ (µ0B) + · · · ,

E−2p

µ
−1
2

¶
= − e2

8a0

µ
1 +

19

48
α2
¶
− (µ0B) + · · ·

The neglected terms vanish asB →∞, and have the form±
³
1
4 −

m2

9

´³
e2

2a0

´2
α4×³

(32)2 (µ0B)
´−1

. As seen in the figure, the energies of the 2p1/2,m = 1/2 state

and 2p3/2,m = −1/2 state approach the constant values E+2p
¡
−12
¢
, E−2p

¡
1
2

¢
respectively for large values of B as computed above.

12.8 H-atom in an external electric field

We recall the Hamiltonian in the presence of an electromagnetic field

H=
1

2m

³
p+

e

c
A
´2
− eA0 − µ ·B+V (r)
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For a constant external electric field the gauge potential is given by A =0 and
A0 = −E · r, so that E = −∇A0 is verified. We choose the electric field in the
z direction, hence A0 = −Ez = Er cos θ. Therefore the Hamiltonian takes the
form

H = H0 + eEr cos θ (12.109)

where H0 is the Hydrogen atom Hamiltonian. We compute the matrix elements
in |nljmji basis. Of course H0 is diagonal as in the previous sections. The
perturbation has the following matrix elements

hnljm|eEr cos θ|n0l0j0m0i = eEδmm0hnl|r|n0l0ihljm| cos θ|l0j0mi

We will concentrate on a given level n, such as n = n0 = 2 as an illustration.
The orbital angular momentum l, l0 must differ by one unit because the operator
cos θ or r has odd parity while the states have parity (−1)l. Therefore we take
the values l = 0 and l0 = 1. Thus we need to calculate h2s1/2|eEr cos θ|2p1/2,3/2i

h2s1/2,m|eEr cos θ|2p1/2,3/2,mi = eEh2s|r|2pi hs1/2,±
1

2
| cos θ|p1/2,3/2,±

1

2
i

First we compute

h2s|r|2pi =
Z ∞
0

drr3R20 (r)R21 (r) = −3
√
3
a0
Z

Next we compute the matrix elements of cos θ by transforming into the |lml, smsi
states by using Clebsch-Gordan coefficients hj,m|lml, smsi. Furthermore we
write cos θ in terms of the spherical harmonics cos θ =

p
4π/3Y10 (θ)

hs1/2,m| cos θ|p1/2,3/2,mi = h
1

2
,m|0, 0, 1

2
,mi h0, 0| cos θ|1, 0i h1, 0, 1

2
,m|p1/2,3/2,mi

On the left side only l = 0 contributes since we start with the l = 0 state s1/2.
This also fixes ml = 0. Similarly on the right hand side we must have l = 1.
Since cos θ =

p
4π/3Y10 also hasm = 0 on the right hand side we must also have

ml = 0. The Clebsch-Gordan are obtained from a table h1, 0, 12 ,±
1
2 |
1
2 ,±

1
2i =

∓
p
1/3, and h1, 0, 12 ,±

1
2 |
3
2 ,±

1
2i =

p
2/3, while

h0, 0| cos θ|1, 0i =
p
4π/3

Z
dΩY00Y10Y10 =

p
1/3

Therefore we have the matrix elements

hs1/2,±
1

2
|eEr cos θ|p1/2,±

1

2
i = eE

³
−3
√
3
a0
Z

´³
∓
p
1/3
p
1/3
´
= ±
√
3

Z
eEa0

hs1/2,±
1

2
|eEr cos θ|p3/2,±

1

2
i = eE

³
−3
√
3
a0
Z

´³p
2/3
p
1/3
´
= −
√
6

Z
eEa0.
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This provides the necessary information to construct the matrix H

2s1/2 2p1/2 2p3/2 · · ·
2s1/2 − e2

8a0

¡
1+ 5

16α
2
¢
− ∆2 ±

√
3eEa0 −

√
6eEa0 · · ·

2p1/2 ±
√
3eEa0 − e2

8a0

¡
1+ 5

16α
2
¢
+ ∆

2 0 · · ·
2p3/2 −

√
6eEa0 0 − e2

8a0

¡
1+ 1

16α
2
¢

...
...

...
...

(12.110)
The Lamb shift ∆ is also included.
If we diagonalize the 2 × 2 sector of the 2s1/2, 2p1/2 states exactly, we find

the eigenvalues

E± = −
e2

8a0

µ
1+

5

16
α2
¶
± 1
2

q
∆2 + 12e2E2a20 (12.111)

For small electric field this has the expansion

eEa0 ¿ ∆ : E± = −
e2

8a0

µ
1+

5

16
α2
¶
± ∆
2
± 3e

2E2a20
∆

+ · · · (12.112)

This is second order perturbation theory. For large electric field we have another
expansion

eEa0 À ∆ : E± = −
e2

8a0

µ
1+

5

16
α2
¶
±
√
3eEa0 ±

√
3∆2

24eEa0
+ · · · (12.113)

In the new basis the difference between eigenvalues E+−E− ≈ 2
√
3eEa0 is com-

parable to the off diagonal elements that mix with the 2p3/2 states. Therefore,
one must apply the nearly degenerate perturbation theory methods to include
the effects of the remaining off diagonal terms. The situation is somewhat sim-
ilar to the one discussed in Eqs.(12.64-12.85), now with a matrix of the form⎛⎝ A− a 0 a

0 A+ a a
a a B

⎞⎠ (12.114)

The solution of the complete problem is left as an exercise for the student in a
homework problem.
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12.9 Problems
1. Apply the general formulas for the formal exact solution forEn, |Eni, Zn, U†mn

to the 2-level problem, and show that you obtain the same exact results
as the standard matrix diagonalization methods.

2. Consider two distinguishable particles of spin 1
2 (e.g. electron and positron)

interacting via a spin dependent Hamiltonian of the form

H = A�S(1) · �S(2) +B(S(1)z − S(2)x ).

Assuming that B ¿ A, compute the the energy to second order and the
normalized wavefunction to first order? (note that this is a 4× 4 matrix
problem).

3. Finite size nucleus.
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4. Lamb shift.

5. Apply the methods of Eqs.(12.64-12.85), or any of the other methods dis-
cussed in class, to find the eigenvalues and eigenstates of the Hamiltonian
in Eq.(12.110)



Chapter 13

TIME DEPENDENT
PROBLEMS

We now turn our attention to time dependent problems. We consider a Hamil-
tonian of the formH = H0+H

0 (t) where we assume that all the eigenvalues and
eigenstates of H0 are known, and that the complete set of states are labelled
as |Eni. When H 0 (t) is zero, the time dependence of these states is simply
e−itH0/~ |Eni = |Enie−itEn/~ , implying that the energy eigenstate changes at
most by a phase, and does not make a transition to another state. However,
when H 0 (t) is not zero, eigenstates of H0 are no longer stationary in time. A
common question is: what is the probability amplitude that the system will
make a transition from some initial energy eigenstate |Eni to some other final
energy eigenstate |Emi when the time dependent interaction is turned on?
More generally the system may be in some general initial state |ii which may

or may not be an energy eigenstate of H0, and we would like to compute the
probability amplitude for making a transition to some general final state |fi.
To answer the question we need to compute the time development of the state
|ii which is governed by the Schrödinger equation. As long as H 0 (t) is zero we
have already learned in past chapters that the time development of any state
will be given by the time translation operator |ψ, ti = e−itH0/~ |ψi. Now we will
imagine that H 0 (t) remains zero up to some time t0, or that H 0 (t) it is turned
on very slowly so that it starts to become appreciable around the time t = t0,
and compute the subsequent time development of the state. This will be given
by the time translation operator which we will call U (t, t0) , so that

|i, ti+ = U (t, t0) |i, t0i. (13.1)

The superscript + is to remind us that the evolution of this state is determined
by the full Hamiltonian H = H0 + H 0 (t) . Our first task is to compute the
operator U (t, t0) and then compute the transition amplitude.
While the initial state of the system develops in time, our measuring appara-

tus also develops in time. We will assume that our measuring apparatus is not

423
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subject to the interactions described by H 0 (t) and that its time development
is governed by H0. To find out if the system described by state |ii will make a
transition to some final state |fi we must prepare a detector described by the
state |fi. Up to the time t = t0, the time development of both states |ii, |fi are
governed by H0,

|i, t0i = e−it0H0/~ |ii, |f, t0i = e−it0H0/~ |fi. (13.2)

But for t > t0 the detector is still governed by H0 while the system is governed
by the total Hamiltonian H = H0 + H 0 (t). Therefore for t > t0 the time
dependence of the detector is given by

|f, ti = e−i(t−t0)H0/~ |f, t0i. (13.3)

The transition amplitude Afi (t) measured at time t is simply the overlap be-
tween the system and the detector at time t, and is given by

Afi (t, t0) = hf, t|i, ti+ = hf, t0|ei(t−t0)H0/~U (t, t0) |i, t0i. (13.4)

By substituting |i, t0i, |f, t0i this can be further developed to the form

Afi (t, t0) = hf |eitH0/~U (t, t0) e
−it0H0/~ |ii, (13.5)

where the states |ii, |fi are the initial and final states well before the inter-
action was turned on. Note that on the left t appears while on the right t0
appears. The time dependence of the transition amplitude will be determined
by understanding the time translation operator U (t, t0) in more detail.
There are many possible physical circumstances in Nature to which this

setup is applied. In some cases, such as the turning on of some external electro-
magnetic field at time t0 is controlled by the experimentalist in the laboratory,
then t0 is some fixed time and t is some subsequent time. In other cases, such as
the scattering of two free particles by short range forces, the interaction H 0 (t)
is turned on very slowly as the particles approach each other as a function of
the distance between them; it becomes appreciable only for a very short time
period, and it becomes negligible again as the particles fly apart after scatter-
ing. For such circumstances we will be interested in taking the limits t0 → −∞
and t →∞, and then |ii, |fi are interpreted as the initial and final states that
describe free particles. In the latter case Afi (∞,−∞) is called the S-matrix, or
the scattering matrix, which we will study in more detail in the next chapter.
Before we deal with the problem of a general time dependent H 0 (t) , let us

consider the case of a perturbation H 0 which turns on at t = t0, but remains
constant as a function of time after that point. Then we already know the time
translation operator

U (t, t0) = exp

µ
− i

~
(t− t0) (H0 +H 0)

¶
, iff ∂tH

0 = 0. (13.6)

which leads to the transition amplitude

Afi (t, t0) = hf |eitH0/~e−i(t−t0)(H0+H
0)/~e−it0H0/~ |ii, iff ∂tH

0 = 0. (13.7)
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In this expression the time dependence of the process has been made quite
explicit. Note that in general H0,H

0 are operators that do not commute with
each other, and therefore the exponentials cannot be combined naively. Beyond
this point the computation depends on the details of the operators H0,H

0. We
will return to this expression later when we consider some examples.

13.1 Interaction picture

To compute the time development operator for the general case H 0 (t) , we will
distinguish between different formalisms that deal with time dependent prob-
lems in quantum mechanics. These are called the Schrödinger picture, the
interaction picture and the Heisenberg picture.
The Schrödinger picture is the one we discussed above. In this case operators

such as r,p or their functions O (r,p) are all taken at time zero in the Hamil-
tonian formalism. The time dependence is all in the states and is governed by
the Schrödinger equation

i~∂t|ψ, ti = H|ψ, ti. (13.8)

The Heisenberg picture is the opposite, where operators such as r (t) ,p (t) or
their functions O (r (t) ,p (t)) are taken as dynamical observables that develop
in time while the states are all time independent. To distinguish the Heisenberg
states from the Schrödinger states we will append an extra H as a subscript.
When the Hamiltonian is independent of time the Heisenberg states are related
to the Schrödinger states, which have no subscript, as

|ψ, ti = e−itH/~ |ψiH ↔ |ψiH = eitH/~ |ψ, ti, (13.9)

while the Heisenberg operators OH are related to the Schrödinger operators O
by

OH (t) = eitH/~Oe−itH/~ . (13.10)

The interaction picture is somewhere in between the Heisenberg and Schrödinger
pictures. It is defined by

|ψ, ti = e−itH0/~ |ψ, tiI ↔ |ψ, tiI = eitH0/~ |ψ, ti (13.11)

where, compared to the Heisenberg picture, eitH0/~ appears instead of eitH/~ .
The equation of motion for the interaction picture state |ψ, tiI is derived by
computing its time derivative as follows

i~∂t|ψ, tiI = i~∂t
¡
eitH0/~ |ψ, ti

¢
= eitH0/~ (i~∂t|ψ, ti)−H0e

itH0/~ |ψ, ti
= eiH0t/~ (H0 +H 0 (t)) |ψ, ti−H0|ψ, tiI =

¡
eitH0/~H 0(t)e−itH0/~

¢
|ψ, tiI .

Define now the interaction picture Hamiltonian

HI(t) = eitH0/~H 0(t)e−itH0/~ . (13.12)
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Then we see that the time development of the interaction picture state is gov-
erned just by HI(t)

i~∂t|ψ, tiI = HI(t)|ψ, tiI . (13.13)

The solution of this equation may be written as

|ψ, tiI = UI (t, t1) |ψ, t1iI (13.14)

where UI (t, t1) is the time translation operator in the interaction picture, and
t1 is some intial time. If the original perturbation H 0 (t) were zero, then the
interaction picture Hamiltonian would be zero, and the inteaction picture state
|ψ, tiI would be time independent. Indeed, in the interaction picture the initial
and final states up to the point t = t0 are just the original states |ii, |fi as seen
below

t ≤ t0 : |i, tiI = eitH0/~ |i, ti = eitH0/~e−itH0/~ |ii = |ii, (13.15)

and similarly for |f, tiI = |fi. This makes sense since during the time period
t ≤ t0 both H 0 (t) and H 0

I (t) vanish. Therefore, in the interaction picture
|i, t0iI = |ii and the time development of the initial state at times later than t0
is given by

t ≥ t0 : |i, tiI = UI (t, t0) |ii. (13.16)

We compare this to the result in Eq.(13.1) obtained in the Schrödinger picture
by using Eq.(13.11) which relates the two pictures

|i, ti+ = U (t, t0) |i, t0i = U (t, t0) e
−it0H0/~ |ii (13.17)

= e−itH0/~ |ψ, tiI = eitH0/~UI (t, t0) |ii (13.18)

From the last expressions in the two lines we extract the relation between the
time translation operators in the two pictures. Noting that the relation is in-
dependent of the state |ii, or that it must be true for all states, we can write
the following equation that relates the time translation operators in the two
pictures

U (t, t0) = e−itH0/~UI (t, t0) e
it0H0/~ , UI (t, t0) = eitH0/~U (t, t0) e

−it0H0/~

(13.19)
Inserting this in the transition amplitude given in Eq.(13.5) we find

Afi (t, t0) = hf |UI (t, t0) |ii. (13.20)

So the transition amplitude can be computed directly in the interaction picture
as the matrix element of the time translation operator UI (t, t0) sandwiched
between the time independent states |ii, |fi. All the time dependence is now in
UI (t, t0) which remains to be computed.
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13.2 Integral equations
We have already seen that the time translation operator in the interaction pic-
ture UI(t, t0) satisfies an integral equation that represents the solution to the
Schrödiger equation and incorporates also the initial condition UI(t0t0) = 1

UI(t, t0) = 1−
i

~

Z t

t0

dt0 HI(t
0)UI(t

0, t0). (13.21)

The formal solution was given in the previous section in the form of the Dyson
series.
This integral equation implies also an integral equation for the time transla-

tion operator in the Schrödinger picture. By inserting Eq.(13.19) in Eq.(13.21)
we obtain

eitH0/~U(t, t0)e
−it0H0/~ = 1− i

~

Z t

t0

dt0 HI(t
0)eit

0H0/~U(t0, t0)e
−it0H0/~

Furthermore by replacing HI(t
0) = eit

0H0/~H 0 (t0) e−it
0H0/~ and re-arranging the

factors we obtain

U(t, t0) = e−i(t−t0)H0/~ − i

~

Z t

t0

dt0 e−i(t−t
0)H0/~H 0(t0)U(t0, t0). (13.22)

By applying both sides of this equation on the state |i, t0i and using Eq.(13.1)
we derive an integral equation for the state |i, ti+

|i, ti+ = |i, ti− i

~

Z t

t0

dt0 e−i(t−t
0)H0/~H 0(t0)|i, t0i+. (13.23)

The state |i, ti without the superscript + implies that its time evolution is
determined by H0, not by the full H. The integral equation is a formal solution
to the full Schrödinger equation i~∂t|i, ti+ = (H0 +H 0 (t)) |i, ti+ and satisfies
the boundary condition. We will return to the investigation of this integral
equation in later section.

13.3 Dyson series
Now we compute UI (t, t0) formally for the general time dependent Hamiltonian
H 0 (t) . First we derive a differential equation for UI (t, t0) by taking the deriv-
ative of Eq.(13.16) and using Eq.(13.13)

i~∂t|ψ, tiI = H 0
I (t) |ψ, tiI → i~∂t (UI (t, t0) |ψi) = H 0

I (t)UI (t, t0) |ψi

Since this equation must be satisfied for every |ψi it must be true as an operator
equation

i~∂tUI (t, t0) = H 0
I (t)UI (t, t0) . (13.24)
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This can be converted to the following integral equation that satisfies not only
the differential equation, but also the initial condition UI(t0t0) = 1

UI(t, t0) = 1−
i

~

Z t

t0

dt0 HI(t
0)UI(t

0, t0). (13.25)

A solution for UI(t, t0) can now be obtained by recursively substituting the
expression for UI(t, t0) into the right hand side, so that

UI(t, t0) = 1− i
~
R t
t0
dt1HI(t1)

h
1− i

~
R t
t0
dt2HI(t2)UI(t2t0)

i
= 1− 1/~

R t
t0
dt1HI(t1) +

¡
− i
~
¢2 R t

t0
dt1H

0

1(t1)
R t1
t0

dt2 HI(t2)UI(t2t0)

= 1− i
~
R t
t0
HI(t1)dt1 +

¡
− i
~
¢2 R t

t0
dt1H

0

1(t1)
R t1
t0

dt2HI(t2)

+
¡
− i
~
¢3 R t

t0
dt1H

0

1(t1)
R t1
t0

dt2HI(t2)
R t2
t0

dt3HI(t3) + · · ·

In this way we obtain the infinite series

UI(t, t0) =
∞X
n=0

µ
− i

~

¶n Z t

t0

dt1

Z t1

t0

dt2 · · ·
Z tn−1

t0

dtn [HI(t1) · · ·HI(tn)] .

(13.26)
Note that the HI (tk) are time ordered, with the later times to the left side. This
order could not be altered since the HI (tk) gererally do not commute with each
other at different times. Following this observation we define a time ordering
operator T which is applied on a product of operators that depends on various
instances of time. It instructs to write the operator with the larger time to the
left side of the operator with the smaller time. It is given by the definition

T {A(t1)B(t2)} = A(t1)B(t2)θ(t1 − t2) +B(t2)A(t1)θ(t2 − t1). (13.27)

Inside the time ordering operator T the order of the operators could be switched,
even if the operators A(t1), B(t2) do not commute, since the result is still the
same after the definition of T is used

T {A(t1)B(t2)} = T {B(t2)A(t1)} . (13.28)

Therefore, inside the T ordering operator any set of operators A (t) , B (t0) com-
mute at arbitrary times. Extending the definition of time ordering to the prod-
uct of any number of operators, we can write the time ordered product

HI(t1) · · ·HI(tn) = T (HI(t1) · · ·HI(tn)) , (13.29)

and inside the time ordering operator T the orders of theHI (tk) can be switched
arbitrarily. Thus inside the time ordering, the products (HI(t1) · · ·HI(tn)) can
be regarded as a completely symmetric function of the times t1, t2, · · · , tn as if
the HI (tk) commute at any tk.
It can be argued that for a symmetric function f(t1, . . . , tn), nested integrals

can be rewritten as integrations in the full range as followsZ t

t0

dt1 · · ·
Z tn−1

t0

dtnf(t1, · · · tn) =
1

n!

Z t

t0

dt1 · · ·
Z t

t0

dtnf(t1, · · · tn).
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This is easily verified for n = 2. First one can see that by renaming t1 ↔ t2 and
using the symmetry f (t1, t2) = f (t2, t1) , it follows that

R t
t0
dt1
R t1
t0

dt2 f(t1, t2)

=
R t
t0
dt2
R t2
t0

dt1f(t1, t2). This says that integrating f(t1, t2) in the two different
regions that are indicated gives the same result. Then one can show, just by
looking at a diagram of the integration region in the (t1, t2) plane, that the
integral in the second region can also be written in a different order of nesting the
integrals

R t
t0
dt2
R t2
t0

dt1f(t1, t2) =
R t
t0
dt1
R t
t1
dt2 f(t1, t2). Now one can write the

original nested integral as half the sum of the integrations in the two equivalent
regions

R t
t0
dt1
R t1
t0

dt2 f(t1, t2) and
R t
t0
dt1
R t
t1
dt2 f(t1, t2). But this is precisely

1
2!

R t
t0
dt1
R t
t0
dt2 f(t1, t2). The general proof for any n can be given with a similar

reasoning.
Having established this result, we can write UI(t, t0) in the following way by

pulling out the time ordering operator in front of the sum

UI(t, t0) =
∞X
n=0

µ
− i

~

¶n Z t

t0

dt1

Z t1

t0

dt2 · · ·
Z tn−1

t0

dtnT (HI(t1) · · ·HI(tn))

= T
∞X
n=0

µ
− i

~

¶n
1

n!

Z t

t0

dt1

Z t

t0

dt2 · · ·
Z t

t0

dtn (HI(t1) · · ·HI(tn))

= T exp

µ
− i

~

Z t

t0

HI(t
0)dt0

¶
(13.30)

In the last step the series is formally summed to what is called a “time ordered
exponential". The last expression is a definition. It cannot be computed di-
rectly; its meaning and computation follows from the Dyson series form that
appears in the second line or the first line of Eq.(13.30). Note that if the HI(tk)
commute at different times then there is no need for time ordering and the
result becomes a usual exponential that solves the differential equation or the
integral equation in Eqs.(13.24,13.25). In any case, the Dyson series is very
useful for perturbative approximations to time dependent problems since the
series is given in powers of the perturbation for any H 0 (t) .

13.3.1 Time dependent perturbation theory

Time dependent perturbation theory is now well defined. The perturbative
approximation to the transition amplitude Afi (t, t0) = hf |UI (t, t0) |ii is given
by computing the matrix elements

Afi (t, t0) = hf |ii−
i

~

Z t

t0

dt1hf |HI (t1) |ii (13.31)

+

µ
− i

~

¶2 Z t

t0

dt1

Z t1

t0

dt2hf |HI (t1)HI (t2) |ii+ · · ·

Recall that HI (t) = eitH0/~HI(t)e
−itH0/~ . Inserting the energy eigenstates as

a complete set of states 1 =
P

n |E0nihE0n|, and assuming also that |ii, |fi are
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energy eigenstates (not so in general), we obtain

Afi (t, t0) = δfi −
i

~

Z t

t0

dt1e
it1(Ef−Ei)/~H 0

fi (t1) (13.32)

+

µ
− i

~

¶2X
n

Z t

t0

dt1e
it1(Ef−En)/~H 0

fn (t1)

Z t1

t0

dt2e
it2(En−Ei)/~H 0

ni (t2) + · · ·

The time integrals cannot be done until the time dependence of H 0 (t) is speci-
fied.
Of course, if H 0 (t) is time independent, then the integrations are straight-

forward. In that case we expect agreement with the computation of Eq.(13.7)
which should correspond to the full sum of the Dyson series

Afi (t, t0) = hf |eitH0/~e−
i
~ (t−t0)(H0+H

0)e−it0H0/~ |ii, iff ∂tH
0 = 0

= eitEf/~eit0Ei/~hf |e−i(t−t0)(H0+H
0)/~ |ii, (13.33)

After performing the integrals in Eq.(13.32) the series in powers of H 0 should
match at each order. Therefore, the sum of the series should become the ex-
pression given above. The direct proof by perfornming the integrals is left as an
exercise in problem 2. A more clever proof is the general discussion in the next
section.

13.3.2 Summing up the Dyson series

There are a few special cases in which it is actually possible to sum up the infinite
Dyson series. In this section we will discuss the case of a time independent H 0,
and the case of a time dependence of the form

H0 +H 0 (t) = eitH1/~H2e
−itH1/~ , (13.34)

where both H1,H2 are time independent arbitrary operators. We will also
discuss a general property of the Dyson series that is useful for transformations
from one picture to another, including Schrödinger, interaction and more general
pictures, and then give the most general form ofH 0 (t) for which the Dyson series
can be summed up.
First we deal with the case of a time independent H 0. For this special

case the time translation operator in the Schrödinger representation U (t, t0) is
already computed in Eq.(13.6). The time translation operator in the interaction
representation follows from Eq.(13.19) and can now be written in the form

UI (t, t0) = T exp

µ
− i

~

Z t

t0

HI(t
0)dt0

¶
= eitH0/~U (t, t0) e

−it0H0/~ . (13.35)

This allows us to rewrite the relation above as

T exp

µ
− i

~

Z t

t0

dt0 eit
0H0/~H 0e−it

0H0/~
¶

(13.36)

= eitH0/~ exp

µ
− i

~
(t− t0) (H0 +H 0)

¶
e−it0H0/~ , iff ∂tH

0 = 0.
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Next we turn to the highly interesting less trivial case in Eq.(13.34) which
has several very important applications discussed in the next section. For this
case it is useful to define a third picture which we will call the “stationary
picture". We define the stationary picture states |ψ, tis as

|ψ, tis = e−itH1/~ |ψ, ti+ = e−itH1/~eitH0/~ |ψ, tiI (13.37)

in analogy to the interaction picture or the Heisenberg picture. This form is
inspired by the fact that the original Schrödinger wavefunction |ψ, ti+ satisfies
the equation

i~∂t|ψ, ti+=
³
eitH1/~H2e

−itH1/~
´
|ψ, ti+, (13.38)

Using this equation to compute the derivative of |ψ, tis one finds the simple
equation

i~∂t|ψ, tis = (H1 +H2) |ψ, tis (13.39)

which can be integrated

|ψ, tis = e−i(H1+H2)(t−t0)/~ |ψ, t0is (13.40)

From this we obtain the solution in the Schrödinger picture

|ψ, ti+ = eitH1/~e−i(H1+H2)(t−t0)/~e−it0H1/~ |ψ, t0i (13.41)

This gives the time translation operators in the Schrödinger picture and the
interaction picture as follows

U (t, t0) = eitH1/~e−i(H1+H2)(t−t0)/~e−it0H1/~ (13.42)

UI (t, t0) = eitH0/~eitH1/~e−i(H1+H2)(t−t0)/~e−it0H1/~e−it0H0/~ (13.43)

The combination of the time translations eitH0/~eitH1/~ is equivalent to a single
time translation V (t) given by

V (t) = eitH0/~eitH1/~ . (13.44)

V (t) = eiQ(t) through the Baker-Campbell-Housedorff theorem discussed in
Eq.(close1),

Q (t) = t (H0 +H1) +
t2

2
[H0,H1] +

t3

12
[H0, [H0,H1]] +

t3

12
[H1, [H1,H0]] + · · · .

(13.45)
In some cases the series terminates, while in some other cases it is possible
to use properties of Lie groups to compute the product of the exponentials
directly and obtain Q (t) fully. In particular, this shows how to sum up the

Dyson series T exp
³
− i
~
R t
t0
dt0H 0

I (t
0)
´
= UI (t, t0) when H 0

I (t) has the form

H 0
I (t) = eitH0/~

¡
eitH1/~H2e

−itH1/~ −H0

¢
e−itH0/~ .

A more general property of the time ordered product is

T exp

µ
− i

~

Z t

t0

dt0 A (t0)

¶
= V (t)T exp

µ
− i

~

Z t

t0

dt0 Ã (t0)

¶
V −1 (t0) (13.46)
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where
Ã (t0) = V −1 (t0)A (t0)V (t0)− V −1 (t0) i~∂t0V (t0) , (13.47)

This relation is satisfied for any A (t) and any V (t) that has a well defined
inverse. In particular, if A is hermitian and V is unitary then Ã is also hermitian.
One can verify Eq.(13.46) by noting that it is correct at t = t0, and that the time
derivatives ∂t of both sides are equal. The rule for taking the time derivative of
a time ordered exponential is given in Eq.(13.24). This relation can be used to
make transformations to arbitrary pictures. Thus, if A (t0) is the Hamiltonian
in the interaction picture, and one makes a transformation from the interaction
picture to another pictute by applying the operator V (t), then the Hamiltonian
in the new picture is Ã (t0) . We see that the transformations discussed above
V (t) = eitH0/~ between the interaction and Schrödinger pictures is a special case
of this more general transformation with a general V (t) . The transformation
V (t) is analogous to a local gauge transformation is a gauge theory1.
Observe that if one can find a V (t0) that gives a constant Ã for some given

A (t0) , then the integral on the right hand side can be performed T exp
³
− i
~
R t
t0
dt0 Ã

´
=

e−i(t−t0)Ã/~ , and hence the Dyson series can be summed up explicitly

T exp

µ
− i

~

Z t

t0

dt0 A (t0)

¶
= V (t) exp

µ
− i

~
(t− t0) Ã

¶
V −1 (t0) . (13.48)

Turning this observation around we can show that any A (t) that has this prop-
erty must be of the form

A (t) = V (t) ÃV −1 (t)− V (t) i~∂tV −1 (t) (13.49)

where Ã is time independent and V (t) is arbitrary.
The special forms of the Hamiltonians discussed above for which the Dyson

series was summed up are special applications of this observation since they
correspond to some specific form of V (t) and A (t) . We can now state that the
most general Hamiltonian for which we can sum up the Dyson series is of the
form H = H0 +H 0 (t) with

H0 +H 0 (t) = V (t) H̃V −1 (t)− V (t) i~∂tV −1 (t) . (13.50)

where H̃ is any time independent operator and V (t) is any unitary operator
with any time dependence. This can be verified by retracing the discussion
above backwards, and is left as an exercise for the student.

13.4 Two level system
Consider a physical system that, under certain circumstances and for certain
phenomena, can be approximated by two quantum levels. It turns out that

1This relation can be recognized in the context of gauge theories as a local gauge transfor-
mation U(t) of a gauge potential A (t) and its effect on the corresponding Wilson line integral
constructed from A (t) .
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this kind of approximation is indeed valid for several important phenomena in
Nature, including spin or nuclear magnetic resonance, masers, and the K0−K̄0
elementary particle system.
In the stable configuration the system is described by the two level Hamil-

tonian H0 given by

H0 =

µ
E1 0
0 E2

¶
= E0 × 1 + ~ω12

σ3
2

(13.51)

where we parametrized E0 = 1
2 (E1 +E2) and ω12 = 1

~ (E1−E2) and introduced
the Pauli matrix σ3. Now consider disturbing the system by a time dependent
perturbation of the form

H 0 (t) =

µ
0 ~γe−iωt

~γ∗eiωt 0

¶
(13.52)

In a physical setting this could represent the turning on of an external electro-
magnetic field. Note that H0 + H 0 (t) is of the form of Eq.(13.34) which we
studied above. Explicitly we have

H0+H
0 (t) =

µ
e−iωt/2 0
0 eiωt/2

¶µ
E1 ~γ
~γ∗ E2

¶µ
eiωt/2 0
0 e−iωt/2

¶
(13.53)

which identifies

H1 =

µ
− ~ω2 0
0 ~ω

2

¶
= −~ωσ3

2
, (13.54)

H2 =

µ
E1 ~γ
~γ∗ E2

¶
= E0 × 1 + ~ω12

σ3
2
+ ~γ1σ1 + ~γ2σ2 (13.55)

where γ = γ1− iγ2. Therefore we expect to solve this problem exactly by using
the methods of the previous section.
The interaction picture Hamiltonian HI(t) = eitH0/~H 0(t)e−itH0/~ becomes

HI (t) =

µ
0 γe−i(ω−ω12)t

γ∗ei(ω−ω12)t 0

¶
. (13.56)

The Schrödinger equation in the interaction picture i~∂t|ψ, tiI = HI (t) |ψ, tiI
is now a matrix differential equation with two unknown functions Ihψ, t| =
(ψ∗1 (t) , ψ

∗
2 (t)) . This can be solved by coupled differential equation methods.

But we can also apply our general solution of the previous section to this
matrix problem, and give directly the solution in the form of Eq.(13.43) with
eitH0/~eitH1/~ = eiQ(t). In the present case the Baker-Campbell-Housedorff for-
mula Eq.(13.45) is simple because [H0,H1] = 0 and we haveQ (t) = (H0 +H1) t.
The solution |ψ, tiI = eit(H0+H1)/~e−i(t−t0)(H1+H2)/~e−it0(H0+H1)/~ |ψi can be
written in matrix form. The part of H0 and H2 proportional to E0 cancels out
since it is proportional to the identity, and we obtain

|ψ, tiI = eit(ω12−ω)
σ3
2 e−i(t−t0)((ω12−ω)

σ3
2 +γ1σ1+γ2σ2)e−it0(ω12−ω)

σ3
2 |ψi (13.57)
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where |ψi is a general initial state. The exponential of the Pauli matrices is
computed with the methods we discussed before when we studied rotations
exp (iv · σ) = cos v + iv̂ · σ sin v. In this case the components of the vector v
are v1 = − (t− t0) γ1, v2 = − (t− t0) γ2 and v3 = − (t− t0) (ω12 − ω) /2, and
the length of the vector is

v = Ω (t− t0) , Ω ≡
µ
|γ|2 + 1

4
(ω12 − ω)

2

¶1/2
, (13.58)

while the quantity v̂ · σ = σ · v/v is

v̂ · σ = 1
Ω

³
(ω12 − ω)

σ3
2
+ γ1σ1 + γ2σ2

´
. (13.59)

We can now compute transition amplitudes. If the initial state is |ii is
the first energy eigenstate |ii =|E1i and the final state is the second energy
eigenstate |fi =|E2i then the transition amplitude is

A21 (t) = hE2|eit(ω12−ω)
σ3
2 e−i(t−t0)((ω12−ω)

σ3
2 +γ1σ1+γ2σ2)e−it0(ω12−ω)

σ3
2 |E1i
(13.60)

= e−
i
2 t(ω12−ω)

³
e−i(t−t0)((ω12−ω)

σ3
2 +γ1σ1+γ2σ2)

´
21
e−

i
2 t0(ω12−ω) (13.61)

= e−
i
2 t(ω12−ω) (cos v + iv̂ · σ sin v)21 e−

i
2 t0(ω12−ω) (13.62)

= i
γ

Ω
sin (Ω (t− t0)) e−

i
2 (t+t0)(ω12−ω) (13.63)

By squaring it we obtain the probability for making this transition

|A21(t)|2 =
|γ|2

Ω2
sin2 (Ω (t− t0)) . (13.64)

Similarly we can compute the probablity for staying in the same state, which
is |A11(t)|2. Since the probabilty for all transitions must sum up to 1, we must
have |A11(t)|2 + |A21(t)|2 = 1. Indeed we can prove generally that the sum of
all probabilities for transitions to all states starting from some initial state must
sum up to 1 as followsX

n

|Ani|2 =
X
n

A∗niAni =
X
n

hi| (UI (t, t0))† |nihn|UI (t, t0) |ii = hi|ii = 1

(13.65)
Note that the sum over n includes the initial state i. Therefore, the probability
for staying in the same state |A11(t)|2 is

|A11(t)|2 = 1−
|γ|2

Ω2
sin2 (Ω (t− t0)) . (13.66)

If we have a more general initial and final states, they are generally normalized
states of the form |ii = cos θi|E1i+ sin θi|E2i and |fi = − sin θf |E1i+ cos θf |E2i.
The transition amplitude is then

Afi (t) = − sin θf cos θi A11 (t)+cos θf cos θi A21 (t)−sin θf sin θiA12 (t)+cos θf sin θi A22 (t) .



13.4. TWO LEVEL SYSTEM 435

Let us plot the probabilities |A21(t)|2 and |A11(t)|2 as a function of time as
in Fig.13.1.

0

0.2

0.4

0.6

0.8

1

y

1 2 3 4 5t

Fig. 13.1 - |A11(t)|2 dash, |A11(t)|2 solid

We see that the system keeps making transitions between the two states.
At time t = t0 = 0 the system starts out 100% in state 1 as seen from the
figure (dashed curve at 1, solid curve at 0). As time goes on the state 1 gets
depleted (decreasing dashed curve) while state 2 gets populated (increasing
solid curve). But the state 2 does not get populated 100%; instead it reaches

a maximum amplitude given by |γ|2
Ω2 < 1. At this point it begins to lose its

population while state 1 begins to absorb it. This process of emission and
absorbtion oscillates over time and goes on indefinitely as shown in the figure.
The maximum transition probability is |γ|2

Ω2 which is reached periodically at
certain times. This quantity is given by

|γ|2

Ω2
=

|γ|2

|γ|2 + 1
4 (ω12 − ω)

2 (13.67)

In Fig.13.2 we plot it as a function of the frequency of the external field ω

0.5

1

y

0 2 4 6 8 10

Fig.13.2 - Amplitude peaks at ω = ω12.
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It a bell-shaped curve that peaks at ω = ω12, at which point
|γ|2
Ω2 = 1. Thus,

when the external field is adjusted to the critical frequency ω12 then state 2 can
get populated 100% and the system can make a full transition from state 1 to
state 2. This frequency is called the resonance frequency since the effect is the
maximum possible. At the resonance frequency both curves at Fig.13.1 have
the maximum amplitude and oscillate as a function of time between 0 and 1.
One can perform experiments in which the system is observed and the curves

in Figures 13.1 and 13.2 are plotted. From the location of the peak of the curve
one reads off ω = ω12 and from this learns the energy difference between the
two levels

E1 −E2 = ~ω12. (13.68)

Then one measures the width of the curve when the amplitude is half of its
maximum |γ|2

Ω2 =
1
2 . Lets call the measured width q. The half width is given by

a value of the frquency ωc that satisfies ωc − ω12 = q/2. Inserting this in the

relation |γ|2
Ω2 =

1
2 we can extract the quantity |γ|

|γ|2

|γ|2 + 1
4

¡
q
2

¢2 = 1

2
→ |γ| = q

4
. (13.69)

This value of |γ| is a measure of the strength of the interaction between the ex-
ternal field and the system. This measurement is used to extracts some relevant
property of the system as we will see in the next section.

13.4.1 Spin magnetic resonance

An example of the two-level problem discussed before is given by the spin mag-
netic resonance of a set of nuclei at rest. In fact, if we apply to such system a
constant magnetic field �B0 in the z direction B0 = B0 ẑ, and a “small” oscil-
lating field in the x − y plane, Bx(t) = b0 cosωt and By(t) = b0 sinωt. We can
write the Hamiltonian

H (t) = −µ ·B (t) . (13.70)

The magnetic moment is proportinal to the spin operator µ =µS of the nucleus
, then

H (t) = −µ(B0Sz + b0 cosωt Sx + b0 sinωt Sy) (13.71)

or
H = H0 +H 0(t) (13.72)

with

H0 = −µB0Sz, H 0(t) = −µ (b0 cosωt Sx + b0 sinωt Sy) (13.73)

We can write
H 0(t) = e−iωtSz/~ (−µb0Sx) eiωtSz/~ (13.74)

Therefore, this is of the form H 0 (t) = eitH1/~H2e
−itH1/~ which we can solve

exactly, with H1 = ωSz and H2 = −µb0Sx.
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The states of H0 are angular momentum states |jmi for a fixed j, and has
eigenvalues Em = −µB0m. The transitions will be between different rotation
states and can be computed for any j in terms of the D-functions for rotation
matrices. The general case is left as an exercise for the student. Here we discuss
the case of spin j = 1/2. For that case the spin operator is represented by Pauli
matrices S = ~σ/2. Therefore the Hamiltonian takes the 2× 2 matrix form

H = H0+H
0(t) =

µ
−12~µB0 0

0 1
2~µB0

¶
+

µ
0 ~γe−iωt

~γ∗e+iωt 0

¶
, (13.75)

with
|γ| = 1

2
µb0. (13.76)

This is precisely the problem we studied in the previous section. By making
the measurments of the resonance frequency ω and of the width of the curve q
indicated in the previous section we learn

µB0 = ω,
1

2
µb0 =

q

4
. (13.77)

Since an experimentalist has control of the external fields B0, b0 and can vary
them, these measurements allow us to extract the value of the magnetic moment.
The setup can also be used in reverse to make instruments for which µ is

known, and use it to measure electromagnetic properties of systems.

13.4.2 Maser

An Ammonia molecule (NH3) has two opposite parity eigenstates |Ai and |Si.
The energy of the state |Ai is slightly higher than the energy of the state |Si.
Suppose now we apply an electric field in a given direction oscillating at a
frequency

ω ' (EA −ES)/~ . (13.78)

In this case we reproduce the same situation as we have discussed before, where
the transition probability |A21(t)|2 has a maximum peak of value 1. Suppose
now we construct the following apparatus.

The molecular beam of NH3 containing both |Ai and |Si states goes through
a filter. The emerging beam now contains only the |Ai state. Then the beam
goes through a microwave cavity that has an oscillating electric field. The
excited |Ai state now makes transitions to the lower |Si state and the beam
oscillates between the two states as it continues its journey through the cavity.
The amount of time it takes for one cycle of full transition from |Ai to |Si at
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resonance frequency, when Ω = |γ| , is ∆t = π
2|γ| . If one now chooses the length

of the cavity L in such a way that the outgoing beam of NH3 is completely
in the |Si state just when it exits the cavity, then one expects that the energy
inside the cavity would rise, as it happens in practice. This excess energy is
given up to the time dependent potential inside the cavity, so that the radiation
field grows in magnitude. This is the MASER = Microwave Amplification by
Stimulated Emission of Radiation.

13.5 Time independent interaction.
Consider once again the probability amplitude Afi(t) = hft|iti+ and recall the
integral equation 13.23

|iti+ = |iti− i/~
Z t

t0

dt0e−iH0/~(t−t0)H 0|it0i+ (13.79)

We recall that the above expression for |iti+ is a formal solution for a state at
any time t. So now

hft|iti+= hft|iti−i/~
Z t

t0

dt0e−iEf/~(t−t
0)hft0|H 0(t0)|it0i+ (13.80)

We see the structure
hft|iti+= δfi−

i

~
T̃fi (13.81)

where we have defined

T̃fi =

Z t

t0

dt0hft0|H 0(t0)|it0i+ =
Z t

t0

dt0e+i/~Ef (t
0−t0)hft0|H 0(t0)|it0i+ (13.82)

Suppose now H 0 does not depend on time and that we are looking for a
perturbative approximation by inserting |iti+ = |iti on the right hand side,
then

T̃fi =
R t
t0
dt0ei/~Ef (t

0−t0)hft0|H 0e−i/~Ei(t
0−t0)|it0i

=
R t
t0
dt0hft0|H 0|it0ie−i/~(Ei−Ef )(t

0−t0)

= hft0|H 0|it0i2πδ ((Ei −Ef ) /~)
(13.83)

where in the last step we took the limit t0 → −∞ and t → ∞. The result
shows that when the Hamiltonian does not depend on the time explicitly the
energy is conserved. The integral equation can be solved by continuing the
iteration and one finds that at each order of the perturbative expansion the
delta function appears. We can thus write generally the following form for the
transition amplitude when H 0 is time independent

Afi(t) = hft|iti+ = δfi − i2πδ(Ef −Ei)Tfi (13.84)

Because of energy conservation we are now forced to choose eigenstates |iti+
and |iti such that H|i, ti+= Ei|i, ti+, and H0|i, ti = Ei|i, ti. This matching of
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the energies is easily satisfied when both H0,H have continuous energy eigenval-
ues. Because of this, the time dependence of these states can be made explicit
|i, ti+= e−i/~Eit|Eii

+
, |i, ti = e−i/~Eit|Eii. Then the integral equation becomes

|Eii+ = |Eii−
i

~

Z t

t0

dt0e−i/~(H0−Ei)(t−t0)H 0|Eii+ (13.85)

Similarly the transition amplitude becomes

Afi = hEf |Eii−
i

~

Z t

t0

dt0ei/~(Ef−Ei)t
0hEf |H 0|Eii+ (13.86)

Taking the limits t0 → −∞ and t → ∞ we recover the delta function. Afi in
this limit is called the S-matrix, so we can write the form

Sfi = δfi − 2πiδ (Ef −Ei)Tfi (13.87)

where we identify
Tfi = hEf |H 0|Eii+. (13.88)

This is the transition amplitude when f 6= i which we would like to compute.
In the limits considered it is called the T-matrix.
We would now like to take the limit t0 → ∞ more carefully. Before we do

this we must first give a prescription; namely, first replace Ei with Ei + iε (ε
infinitesimal but positive) and then set t0 = −∞. Since H 0 is time-independent,
we can readily perform the integration on t0, to obtain

|Eii+ = |Eii+
µ
1− e+i/~(Ei+iε−Ho)(t−t0)

Ei−H0 + iε

¶
H 0|Eii+ (13.89)

We see that the “iε-presciption” is related to the boundary condition that |Eii0
is an eigenstate in the remote past. It also represents a way to define a green’s
function for the operator (Ei−H0). If we now take the limit t0 → −∞, we have

|Eii+ = |Eii+
1

(Ei −H0 + iε)
H 0|Eii+ (13.90)

This equation is called Lipmann-Schwinger equation. We could arrive at the
same equation by a time independent approach as follows

H|Eii+= Ei|Eii+, → (H0 +H 0)|Eii+= Ei|Eii+, → (Ei −H0)|Eii+= H 0|Eii+
(13.91)

The solution of the last relation is exactly given by the Lippmann-Schwinger
equation. In fact, we can verify that the Lippmann-Schwinger equation satisfies
the last equation

(Ei −H0)|Eii+= (Ei −H0)|Eii0 +
Ei −H0

Ei −H0 + iε
H 0|Eii+ =

ε→0
0 +H 0|Eii+

(13.92)
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We see that in the time independent derivation the inverse of (Ei −H0) needs
to be given some meaning. As we saw above the iε prescription derived through
the time dependent formalism provides the meaning and it implies causality.
The Lippmann Schwinger equation can be solved formally for |Eii+ in terms

of |Eii as follows

|Eii+ =
∙
1− 1

(Ei −H0 + iε)
H 0
¸−1

|Eii, (13.93)

By inserting this in the expression above we obtain the following expression for
the transition amplitude

Tfi = hEf |H 0|Eii+ = hEf |T (Ei) |Eii (13.94)

T (Ei) = H 0
h
1− (Ei −H0 + iε)−1H 0

i−1
(13.95)

=
h
1−H 0(Ei −H0 + iε)

−1
i−1

H 0. (13.96)

If we expand T (Ei) in powers as a geometric series and insert the identity in
the form of intermediate states we obtain the series form

Tfi =
∞X
n=1

X
k1···kn−1

(−1)n−1
(H 0)fk1 (H

0)k1k2 · · · (H
0)kn−1i

(Ef −Ek1 + iε)(Ef −Ek2 + iε) · · · (Efn−1 −Ekn−1 + iε)

(13.97)
We will return to study this expression in more detail.

13.6 Cross section for scattering
We will now compute the cross section of a scattering process which is propor-
tional to |Sfi|2. In fact, writing

Sfi = δfi − i2πδ(Ef − Ei)Tfi (13.98)

for f 6= i |Sfi|2 = 2πδ(0)2πδ(Ef −Ei)|Tfi|2 writingZ ∞
−∞

dt0e−i/~(Ef−Ei)t
0
= 2π~δ(Ef − Ei) (13.99)

we see that

2π~δ(0) =
Z ∞
−∞

dt0 = lim
t→∞

t (13.100)

Define now the transition probability per unit time by dividing out this infinite
time factor. Indeed in an measurement an observation takes a certain amount
time, not an infinite amount of time, and one may report the average probability
per unit time by dividing by the length of time it takes for the observation.
Therefore we obtain

Ṗfi =
∆|Sfi|2
∆t

=
2π

~
δ(Ef −Ei)|Tfi|2. (13.101)
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Next we take into account the limitation of instruments that, rather than mea-
suring the transition to a single energy eigenstate, they actually measure the
transition to a collection of states in the same energy neighborhood as Ef within
some resolution dEf . So the transition rate must be multiplied by the number
of states in the energy interval determined by the resolution of the instrument.
We represent the number of states as ρ(Ef )dEf where ρ(Ef ) is the number den-
sity per unit energy interval, per unit volume (in space), in the vicinity of Ef .
We will later see how to compute ρ (E) in some examples. Thus, the measured
probability per unit time of the transition from the initial state to a group of
final states is dW fi

dWfi = Ṗfi ρ(Ef )dEf (13.102)

for the energy range Ef±1
2dEf . For the complete energy range, we have the

integral

Wfi =

Z
Ṗfi ρ(Ef )dEf =

2π

~

Z
δ(Ef −Ei)|Tfi|2ρ(Ef )dEf (13.103)

=
2π

~
|Tfi|2ρ(Ef )

¯̄̄̄
Ef=Ei

. (13.104)

13.6.1 Fermi’s golden rule

If we evaluate |Tfi|2 in the first approximation, then we use

T
(1)
fi = (H

0)fi (13.105)

W
(1)
fi =

2π

~
|(H 0)fi|2ρ(Ef )

¯̄̄̄
Ef=Ei

(13.106)

This is such a simple and useful formula that it has acquired the name “Fermi’s
Golden Rule”.

13.6.2 First order, time dependent perturbation

Afi(+) = hft|iti+ = hf, t|U(t, t0|i, t0iI (13.107)

For UI(t, t0) = 1− (i/~)
R t
t0
HI(t

0)dt0 +O(H
02
I ), we have

Afi(t) = δfi − i/~
R t
t0
dt0 hf |HI |ii

= δfi − i/~
R t
t0
dt0 hft0|e−iH0t0/~e+iH0t0/~H 0e−iH0t

0
/~e+iH0t0/~ |i, t0i+

=δfi − i/~
R t
t0
dt0ei/~(Ef−Ei)(t

0−t0)hf, t0|H 0|i, t0i
(13.108)

Consider now the perturbation due to a radiation field (photons)

H 0(t) = Aeiωt +A†e−iωt. (13.109)
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where A is some operator. Then

Afi(t) = δfi−
i

~
ei(Ef−Ei)t0/~

"
hf, t0|A|i, t0i

R t
t0
ei[(Ef+Ei)+~ω]t

0/~dt0

+hf, t0|A†|i, t0i
R t
t0
ei[(Ef−Ei)−~ω]t

0/~dt0

#
(13.110)

If we send t0 → −∞ and t → ∞, we obtain delta functions δ(Ef − Ei ± ~ω),
which indicate energy emission or absorbtion, and certainly not energy conser-
vation. This is called stimulated emission or absorbtion under the influence of
an external radiation field. Evidently one of the terms must vanish if the other
does not. In computing the probability |Afi|2 we apply the same reasoning as
the previous section, and divide out the by the factor 2π~δ (0) . Then for f 6= i,
we obtain the transition probability per unit time in the form

d|Afi(t)|2/dt =
2π

~

½
δ(Ef −Ei + ~ω)|hf |A|ii|2
+δ(Ef −Ei − ~ω)|hf |A†|ii|2

¾
(13.111)

This must again be multiplied by the density of final states as discussed in the
previous section. A transition is possible only if Ef −Ei = ±~ω.

13.6.3 Ionization of a Hydrogen atom by a radiation field

Consider the H-atom in a time dependent oscillating electric field which is spa-
cially constant. The scalar potential is A0 = −r ·E (t) and the electron interacts
with the electric field via the term −eA0 in the Hamiltonian. Therefore, for an
electric fiels in the z direction the perturbation is

H 0 (t) = er ·E (t) = eE (t) r · Ê. (13.112)

We will take E (t) = E0
¡
eiωt + e−iωt

¢
, and choose later a convenient direction

Ê for the electric field. Then

H 0 (t) = Aeiωt +A†e−iωt, A = eE0r · Ê (13.113)

Following the computation in the previous section we have

d

dt
|Afi(t)|2 =

2π

~

½
δ(Ef −Ei + ~ω)|hf |A|ii|2
+δ(Ef − Ei − ~ω)|hf |A†|ii|2

¾
. (13.114)

For the ionization of Hydrogen, we take the initial state to be the ground state,
while the final state is a free particle state with mometum p. Therefore we need
to compute

hf |A|ii = eE0hp|r · Ê|100ir0 (13.115)

=eE0

Z
d3r0 hp|r0i r0r̂0·Ê hr0|100i (13.116)

= eE0

Z
d3r

1

(L)3/2
exp

µ
− i

~
p·r0

¶
r0 r̂0·Ê e−r

0/a0p
πa30

(13.117)

=
eE0√

π(La0)3/2

Z
d3r0 exp

µ
− i

~
p·r0

¶
r0 r̂0·Ê e−r

0/a0 (13.118)
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We have used the plane wave expression hp|r0i = 1
(L)3/2

exp
¡
− i
~p·r0

¢
for a par-

ticle in a box of size L. It is now convenient to choose p in the z direction, and
let Ê be in the z-x plane, with an angle θ relative to the z plane. The vector r0

points in a general direction with angles
¡
θ0, φ0

¢
and makes the angle θ00 with

the direction Ê. Thus

r̂0
0
=
¡
sin θ0 cosφ0, sin θ0 sinφ0, cos θ0

¢
(13.119)

p̂=(0, 0, 1) , Ê =(sin θ, 0, cos θ) (13.120)

So we can derive the relation between the angles

Ê·̂r00 = cos θ0 cos θ + sin θ sin θ0 cosφ0, p̂·̂r0 = cos θ0 (13.121)

The integrals can now be performed

hf |A|ii = 32πeE0 (p/~) a50 cos θp
πL3a30

¡
1 + 1

~2 p
2a20
¢3 . (13.122)

The transition probability per unit time to a group of final states with ap-
proximately the same energy Ef is given by

dWfi =

Z
|hf |A|ii|2 × 2π

~
δ(Ef −Ei + ~ω)× ρ(Ef )dEf × L3 (13.123)

where the number of states available to the emitted particle in the box is
ρ(Ef )dEf × L3. Thus, we also need to discuss the density of final states. For a
free particle in a box the momentum is quantized pi = 2π~ni/L. The number of
states in the range dp1dp2dp3 is dn1dn2dn3 = (L/2π~)3 dp1dp2dp3. The density
of states per unit volume is obtained by dividing by the volume (dn1dn2dn3) /L3 =
d3p/(2π~)3. This is identified with the number of states in some energy interval
ρ(Ek)dEk where ρ(Ek) is the density of states per unit energy. Therefore the
density of states for the free particle emitted by the atom is given by

ρ(Ek)dEk =
d3p

(2π~)3
. (13.124)

Writing d3p = d
2
Ωp2dp and using E = p2/2m to convert dE = 1

mpdp, we find

ρ(E)dE =
1

(2π~)3
d2Ωp2dp =

pmdΩ

(2π~)3
dE. (13.125)

The result is

dWfi =
256e2E20a

7
0mp3

π~6(1 + 1
~2 p

2a20)
6
cos2 θd2Ω. (13.126)

From conservation of energy we have

p2/2m = −me4/2~2 + ~ω (13.127)

We solve for p and substitute to get a final expression in terms of the frequency
of the external field ω.
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13.7 Problems
1. Prove that for a symmetric function f(t1, . . . , tn), ordered integrals can be
rewritten as integrations in the full range as follows.Z t

t0

dt1

Z t1

t0

dt2 · · ·
Z tn−1

t0

dtnf(t1, t2 · · · tn) =
1

n!

Z t

t0

dt1

Z t

t0

dt2 · · ·
Z t

t0

dtnf(t1, t2, · · · tn).

2. Perform the integrals in Eq.(13.32) for order n, and show that the series
sums up to the expression in Eq.(13.7).

3. Prove that the Dyson series satisfies the relation

T exp

µ
− i

~

Z t

t0

dt0 A (t0)

¶
= V (t) exp

µ
− i

~
(t− t0) Ã

¶
V −1 (t0)

with Ã (t0) = V −1 (t0)A (t0)V (t0)−V −1 (t0) i~∂t0V (t0) , for any A (t0) and
any V (t) . This can be shown that proving that both sides satisfy the same
boundary condition and that their derivatives are equal.

4. Consider a time dependent Hamiltonian H = H0 +H 0 (t) of the form

H0 +H 0 (t) = V (t) H̃V † (t)− V (t) i~∂tV † (t) .

where H̃ is any time independent operator and V (t) is any unitary oper-
ator with any time dependence. Obtain the solution of the Schrödinger
equation |i, ti+ for t > t0 if the initial state at very early times is a state
|ii in the Hilbert space owhose time dependence is governed by H0.

5. Consider now the general spin magnetic resonance problem for arbitrary
spin j. The Hamiltonian is H = H0 + H 0, with H0 = H̃0 − ΩJ0 and
H 0 = −λΩ(J1 cosωt− J2 sinωt). The part H̃0 has eigenvalues E0(j) that
are rotationally symmetric. Ω = µB is the Larmor frequency. Suppose
you have an initial state at t = t0 which is an eigenstate of H0 and labelled
as |jmi. The interaction H 0(t) is turned on at t = t0. Find the probability
amplitude for observing a final state of H0, |jm0i at times t > t0 ? You
can solve this problem easily by using the methods discussed in the text
for transforming to a new basis in which the Hamiltonian becomes time
independent. Then you should be able to give an exact result in terms of
rotation D-functions. Compare your result to the one obtained in the text
when you specialize to j = 1/2.

6. Consider a system that is described by H1 for t < t0 and by H2 for t > t0.
Both H1 and H2 are time independent. Let us label the respective Hilbert
spaces with indices as |∗, ti1, |∗, ti2 during the appropriate time intervals.

a) What are the time development operators before and after t0 ? If
we have an initial state labelled as |i, t1i1 for t1 < t0 give its time
dependence |i, ti+ for t > t0 in terms of these time development
operators.
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b) What is the probability amplitude for making a transition from an
initial eigenstate of H1, |E1i1, to a final eigenstate of H2, |E2i2 ?
Give the time dependence of the transition amplidude, if any.

7. Consider a H-like atom whose nuclear charge undergoes a sudden change
Z → Z+1 (example via beta decay). If the atom is initially in its ground
state, what is the probability that it will be excited to the 2s level ?
Give an exact answer using the known Hydrogen-like atom eigenstates
(with arbitrary nuclear charge). Hint: use the formalism of the previous
problem.

8. Consider again the physical process of the previous problem. Formulate
the problem as a small change of the potential and apply perturbation
theory when Z is large. How does your result compare to the result of the
previous problem?

9. Consider a Hamiltonian H = H0 + H 0
S , where H

0
S is time independent.

This was discussed in class. Now, you will complete some of the steps as
an exercise, starting with the S-matrix the form

Sfi = hf |UI(∞,−∞)|ii, UI(∞,−∞) = T

∙
exp

µ
− i

~

Z ∞
−∞

dt0HI(t
0)

¶¸
.

Perform all the time ordered integrals for each term of the series expansion
by using the iε prescription, and show that you obtain

Sfi = δfi − i2πδ(Ef −Ei)Tfi

Tfi =
∞X
n=0

hf |H 0
S

1

Ei −H0 + iε
H 0
S · · · 1

Ei −H0 + iε
H 0
S |ii

= hf |
∙
1−H 0

S

1

Ei −H0 + iε

¸−1
H 0
S |ii

in agreement with the methods presented in class.

10. Consider a l-dimensional harmonic oscillator described by

H =
p2

2m
+
1

2
mω2 (t)x2

where the frequency ω (t) is time dependent

ω (t) = ω0 + ω1 cos (bt) .

and ω1 ¿ ω0. Use perturbation theory to calculate the probability that a
transition occurs from the ground state, as a function of time, given that
the system is initially at the ground state. To which state(s) is the main
transition ?



Chapter 14

SCATTERING THEORY

14.1 Lippmann-Schwinger equation
We are now ready to attack a typical scattering problem of an incoming free
particle of momentum p =~k interacting with a time independent potential
V (r). This process is time dependent even though the Hamiltonian does not
explicitly depend on time. The Hamiltonian is

H = H0 +H
0
=
p2

2m
+ V (r).

The goal is to determine the probability amplitude Ψk(r) for finding an outgo-
ing particle at a position r after the scattering of the incoming particle. This
information can be obtained by solving the Schrödinger equation with the ap-
propriate initial conditions. One approach is to derive an integral equation,
called the Lippmann-Schwinger equation, that is equivalent to the Schrödinger
equation and which incorporates the boundary conditions.
Because of the time independent Hamiltonian, energy is conserved during

the scattering process, so we must match the energy eigenvalues of H0 and H
as we learned in the previous chapter. Since H0 governs the incoming state
|Ei, while H governs the state |Ei+ during the scattering process, we write the
eigenvalue equations with the same E

H|Ei+ = E|Ei+, H0|Ei= E|Ei.

As we have learned in the previous chapter, the Lippmann-Schwinger equation
describes the evolution of the initial state |Ei into the state |Ei+ as a result of
the interaction

|Ei+ = |Ei+ (E −H0 + iε)
−1
H

0 |Ei+.
Recall that the +iε prescription takes into account causality in the time evolu-
tion of the system.
The energy eigenstate of H0 = p2/2m is the free particle state |Ei = |ki

with definite momentum p|ki = ~k|ki, and E = ~2k2
2m . We can define the energy

451
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eigenstate of the total H as |Ei+ ≡ |ki+ where the superscript + indicates that
the state corresponds the evolution of the initial free particle state |ki. The
direction of the vector k still indicates the direction of the incoming particle.
So we can write the Schrödinger equation with the total Hamiltonian asµ

p2

2m
+ V (r)

¶
|ki+ = ~2k2

2m
|ki+.

Rescaling with the overall factor 2m/~2 and re-arranging terms we have

¡
k2 − p2/~2

¢
|ki+ = v (r) |ki+, v (r)≡2m

~2
V (r).

The Lippmann-Schwinger equation takes the following form in our case

|ki+ = |ki+ (k2−p2/~2 + iε)
−1
v (r) |ki+.

We can now dot this expression on the left by the position bra hr| and insert
identity in the form 1 =

R
d3r

0 |r0ihr0| to obtain

hr|ki+ = hr|ki+
Z

d3r
0hr|

¡
k2 − p2/~2 + iε

¢−1 |r0ihr0|v (r) |ki+.
The quantity hr|ki+ is the wavefunction Ψk(r) ≡ hr|ki+ which represents the
probability amplitude that an incoming particle of momentum ~k will be found
at position r after scattering. Similarly, hr|ki = e+ik·r/(2π)3/2 is the plane wave
for the incoming free particle. The quantity

G+k (r, r
0
) = hr|

¡
k2−p2/~2+iε

¢−1 |r0i
is the Green function for inverting the operator

¡
k2 − p2/~2

¢
with appropriate

boundary conditions imposed at t→ −∞ (remote past). So now, we can write
the Lippmann-Schwinger equation in the form

Ψk(r) =
e+ik·r

(2π)3/2
+

Z
d3r

0
G
(+)
k (r,r

0
)v(r

0
)Ψk(r

0
).

It is easy to see that the Green function satisfies the differential equation
(∇2r + k2)G

(+)
k (r,r

0
) = δ(3)(r− r0), namely

(∇2r + k2)G
(+)
k (r,r

0
)=

Z
d3q

(2π)3
(−q2 + k2)(k2 + q2 + iε)

−1
e+iq·(r−r

0
)

=

Z
d3q

(2π)3
e+iq·(r−r

0
) = δ(3)(r−r0).

We can compute the Green function by inserting identity in momentum space
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1 =
R
d3q |qi hq|, with p|qi = |qi~q, and using the plane wave for hr|qi

G
(+)
k (r,r

0
)=

Z
d3q hr|qi hq|

¡
k2−p2/~2+iε

¢−1 |r0i
=

Z
d3q

e+iq·r

(2π)3/2
(k2 − q2 + iε)

−1 e−iq·r
0

(2π)3/2

=
1

(2π)3

Z
d3q e+iq·(r−r

0
) (k2 − q2 + iε)

−1

The integration
R
d3q is performed as follows

G
(+)
k =

1

(2π)3

Z ∞
0

q2dq
¡
k2 − q2 + iε

¢−1 Z 2π

0

dφ

Z 1

−1
d(cos θ)e+iq|r−r

0 | cos θ

=
1

(2π)3

Z ∞
0

dq q2(k2 − q2 + iε)
−1 2π

iq|r−r0 |
³
e+iq|r−r

0 | − e−iq|r−r
0 |
´

=
i

(2π)2|r−r0 |

Z ∞
−∞

dq
q

k2 − q2 + iε
e−iq|r−r

0 |

The remaining integral can be performed by complex integration. We can write
k2 − q2 + iε = (k− q+ iε)(k+ q+ iε) since k is positive and ε→ 0. This shows
that there are two poles in the complex q plane at q = ± (k + iε) . Since |r− r0 |
is always positive we can close the contour clockwise in the lower complex q
plane, and pick up the residue of the pole at q = −k − iε. Therefore

G
(+)
k =

i (−2πi) Res{q = −k − iε}
(2π)2|r−r0 | =

i(πi)eik|r−r
0 |

(2π)2|r−r0 |

= − eik|r−r
0 |

4π|r−r0 | .

Finally we can write

Ψk(r) =
e+ik·r

(2π)3/2
−
Z

d3r
0 eik|r−r

0 |

4π|r−r0 |v(r
0
)Ψk(r

0
) (14.1)

This integral equation determines the probability amplitude Ψk(r) of finding
the outgoing particle at a position r after the scattering of the incoming free
particle of momentum p =~k.

14.2 Scattering amplitude, S-Matrix, T-matrix
In general, the observation point r is located at a distance much greater than
the scattering center. So it is appropriate to take the limiting value of the
above integral equation for |r|→∞. The first term on the right hand side will
not be affected by the limit, since it represents an oscillating plane wave. The
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integral in the second term has a term eik|r−r
0 ||r−r0 |−1. Assuming a reasonably

short range potential, the r0 integration will get its main contribution for small
values of r0 close to the center. Therefore the denominator of this term will be
approximated by |r−r0 | ∼|r| for large values |r|. However, in the exponential
we perform the following expansion

|r−r0 | =
p
r2 − 2r · r0 + r02 ' r − r̂·r0 +O(r

02/r)

so that for large r we have

Ψk(r) =
e+ik·r

(2π)3/2
− eikr

4πr

Z
d3r

0
e−ikr̂·r

0

v(r
0
)Ψk(r

0
).

We define
k
0
= kr̂

and interpret this vector as the momentum of the outgoing particle. This is jus-
tified since r is the location of a detector where the scattered particle is detected,
and therefore r̂ is the direction of the scattered particle. Furthermore, since the
particle is a free particle after the scattering takes place, and since energy is
conserved, its momentum must have absolute value ~k so that the energy is
E = ~2k2/2m. Therefore, we have now an expression for the wavefunction that
depends on the incoming and outgoing momenta

¡
k,k0

¢
Ψk(r) →

r→∞

e+ik·r

(2π)3/2
− eikr

4πr

Z
d3r

0
e−ik

0 ·r0 v(r
0
)Ψk(r

0
)

=
1

(2π)3/2

∙
e+ik·r +

eikr

r
f(k,k0)

¸
(14.2)

where

f(k,k0)=−(2π)
3

4π

Z
d3r0

e−ik
0·r0

(2π)3/2
v(r

0
)Ψk(r

0)

=−2π2hk0|v (r) |ki+ (14.3)

The last line is verified by inserting identity in the form 1 =
R
d3r

0 |r0ihr0|. We
may notice that the term eikr

(2π)3/2r
is a spherical wave that originates at the scat-

tering center, weighted by a function f(k,k0). Therefore, f(k,k0) represents the
probability amplitude for an incoming particle of momentum k to be scattered
into the direction r̂ with momentum k

0
= kr̂.

Recall that that hk0|ki+ is the transition amplitude Afi (∞,−∞), which is
the S-matrix. Analysing this quantity directly through the Lippmann-Schwinger
equation, |ki+ = |ki+ (k2−p2/~2 + iε)

−1
v (r) |ki+, we obtain

hk0|ki+ = δ(3)(k0 − k) + hk0|v (r) |ki+
³
k2 − k

02 + iε
´−1
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As long as k0 is not in the forward direction we may drop the delta func-

tion, and the remaining term hk0|v|ki+
³
k2 − k

02 + iε
´−1

is identified as the

T-matrix. From this expression we recognize the scattering amplitude f(k,k0)
as the residue of the pole in the momentum wave function hk0|ki+, multiplied
by the factor (−2π2), as given in Eq.(14.3).
Thus there are two ways of computing the scattering amplitude f(k,k0). The

first is by examining the asymptotic behavior of the wavefunction Ψk(r), where
Ψk(r) is the scattering solution of the Schrödinger equationµ

− ~
2

2m
∇2 + V (r)

¶
Ψk(r) =

~2k2

2m
Ψk(r).

Since the asymptotic behavior has the form of Eq.(14.2), f(k,k0) is obtained by
taking the ratio of the coefficients for the incoming plane wave e+ik·r and the out-
going spherical wave eikr

r . A second approach for computing f(k,k
0) is to exam-

ine the T-matrix in momentum space. The residue of the pole
³
k2 − k

02 + iε
´−1

times the factor (−2π2) is the scattering amplitude f(k,k0).
The discussion above was given in three space dimensions, but it can be

repeated for any dimension. In particular the transmission and reflection coef-
ficients that one learns to compute by solving the Schrödinger equation in one
dimension correspond to the scattering amplitude. The student should develop
experience for computing f(k,k0) by solving some of the problems at the end
of the chapter.

14.3 Differential and total cross section
The differential cross section is defined as follows

dσ =
number of particles scattered into solid angle dΩ per unit time
number of incident particles per unit time per unit area

Thus an experimentalist simply counts particles in the incident beam and in
the detector that captures the scattered particles, and reports the ratio de-
scribed above. The mathematical expression for what he sees is computed as
follows. The denominator is just the probability current of the incident particles
dNin

dt(dA) = |k̂ · Jin|, where the current is to be computed from the incident wave-
function far away from the interaction region. The numerator can be expressed
as the area of an infinitesimal detector times the number of radially scattered
particles per unit area per unit time. This amounts to the probablity current
of the outgoing particles dNout

dt(dA) = |̂r·Jout| times the area element r2dΩ that
represents an infinitesimal detector located at some solid angle. The current is
to be computed from the outgoing wavefunction far away from the interaction
region. Therefore one should compare the experimentalist measurements to the
expression

dσ =
|̂r · Jout| r2dΩ
|k̂ · Jin|
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Recall that the probability current for any wavefunction Ψ is given by

J = −i ~
2m
(Ψ∗∇Ψ−Ψ∇Ψ∗) = Re

µ
1

m
Ψ∗ (−i~∇)Ψ

¶
We can thus compute Jin and Jout by using the asymptotic form of the wave-
function given in Eq.(14.2)

Ψin(r) = e+ik·r, Ψout(r) =
eikr

r
f(k,k0).

We do not need to worry about the overall normalization since we are interested
only in the ratio. Hence for the incident current we have |k̂ · Jin| = ~k

m , and for
the scattered current we have

|̂r · Jout| =
¯̄̄̄
Re

µ
−i~
m
Ψ∗

∂

∂r
Ψ

¶¯̄̄̄
=

r→∞

~k
mr2

|f(k,k0)|2

Therefore the differential cross section is

dσ = |f(k,k0)|2dΩk0 .

In real life the detector has a finite size and the experimentalist counts all
the particles that reach the finite size detector. His measurement correspond to
integrating the differential cross section over the size of the detector

σ =

Z
det ector

|f(k,k0)|2dΩk0 (14.4)

The total cross section corresponds experimentally to setting up detectors
everywhere around the scattering center and capturing all scattered particles.
This amounts to integrating the differentail cross section over all angles

σtot=

Z
tot

|f(k,k0)|2dΩk0

The cross section has unit of area. It can be pictured as a small effective disk
of area σ which deflects the beam from its initial path. The larger/smaller the
cross section the larger/smaller the disk.

14.4 Optical theorem

We will first discuss the implications of the conservation of probability in scat-
tering theory. Consider the Schrödinger equation for any potential energy V (r)

i~∂tΨ =
µ
− ~

2

2m
∇2 + V (r)

¶
Ψ.
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The divergence of the probability current J = −i (~/2m) (Ψ∗∇Ψ − Ψ∇Ψ∗) is
computed by substituting ∇2Ψ from the Schrödinger equation. The potential
terms cancel and one finds

−i ~
2m
∇ · (Ψ∗∇Ψ−Ψ∇Ψ∗) = −∂t|Ψ|2.

The right hand side is the time derivative of the probability density ρ = |Ψ|2.
Hence this equation is nothing more than the continuity equation for the prob-
ability current

∇ · J+∂ρ

∂t
= 0.

For energy eigenstates ΨE(r,t) = e−iEt/~Ψ(r) the probability density is time
independent ∂

∂t [ΨE(r,t)Ψ
∗
E(r,t)] =

∂
∂t [ψ(r)ψ

∗(r)] = 0, and therefore the current
has vanishing divergence ∇ ·J =0. Its integral on a spherical volume reduces to
a surface integral on the spherical shell by using Stoke’s theorem

0 =

Z
sphere

d3r ∇ · J =
Z
shell

dΩr2(r̂ · J)

We let the volume go to infinity, r →∞, and compute this integral for the as-
ymptotic form of the scattering wavefunctionΨk(r,t)→ (2π)−3/2

£
eik·r + f(k,k0)eikr/r

¤
as follows. We compute

r2(r̂ · J)= ~
m(2π)3

n
r2r̂ · k+k |f(k,k0)|2+r Im

£
i (k + r̂ · k) eikr−ik·rf(k,k0)

¤o
where we used that r̂ ·∇ is just the radial derivative ∂/∂r, and dropped non-
leading terms that become negligible as r → ∞. Then the integral of the first
term vanishes

R
dΩ r̂ · k =0, and the rest give

0 =

Z
dΩ
h
k |f(k,k0)|2+kr Im

n
f(k,k0)

³
i+ ir̂ · k̂

´
eikr−ik·r

oi
= kσtot + I

(14.5)
The first term is proportional to the total cross section as defined in the pre-
vious section

R
dΩk |f(k,k0)|2 = kσtot (k). In the second integral I we recall

that the direction of k0 is the same as the direction of r, therefore we write
f(k,k0) = f (k, θ) to indicate the angle dependence of the scattering amplitude.
The integration over φ in the solid angle integral dΩ = dφd (cos θ) is performed
trivially

R
dφ = 2π. The remaining integral over θ

I = lim
r→∞

2πkr Im

½Z 1

−1
d (cos θ) eikr(1−cos θ) (i+ i cos θ) f (k, θ)

¾
is to be performed for r → ∞. Due to the rapid fluctuations of the phase,
we use the saddle point method. The phase is stationary at θ = 0, since this
is the solution of ∂θ (1− cos θ) = sin θ = 0. Expanding the integrand around
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θ = 0, and then rotating the contour along the steepest descent direction in the

complex plane θ =
q

2ix
kr , we obtain

I = lim
r→∞

2πkr Im

½
2if (k, 0)

Z
eikrθ

2/2dθ2/2

¾
= Im

½
−4πf (k, 0)

Z ∞
0

e−xdx

¾
= −4π Im f (k, 0)

Therefore Eq.(14.5) reduces to the “optical theorem”

Im (f (k, 0)) =
k

4π
σtot (k) . (14.6)

This theorem relates the total cross section to the imaginary part of the scatter-
ing amplitude in the forward direction, and is a direct consequence of the fact
that the total probability density is conserved.

14.4.1 Generalized optical theorem

There is a more general statement that applies to the scattering amplitude
f(k,k0) for any potential V (r) . Consider two solutions of the Schrödinger equa-
tion ΨE (r,t) = e−Et/~Ψk1 (r) , and ΨE (r,t) = e−Et/~Ψk2 (r) with the same en-
ergy but with the momenta k1,k2 pointing in two arbitrary directions although
they have the same magnitude

|k1| = |k2| = k, (14.7)

and therefore the same energy E = ~2k2/2m. Using the Schrödinger equation
with any potential V (r) one can easily prove the identity

Ψ∗k1 (r)∇
2Ψk2 (r)−Ψ∗k2 (r)∇

2Ψk1 (r) = 0.

This can be written in the form of a divergenceless current

∇ · J =0, J ≡Ψ∗k1 (r)∇Ψk2 (r)−Ψ∗k2 (r)∇Ψk1 (r) .

Integrating it over a large sphere, and applying Stoke’s theorem we derive an
equation similar to Eq.(14.5)

0 =

Z
sphere

d3r ∇ · J =
Z
shell

dΩr2(r̂ · J)

= lim
r→∞

Z
dΩr2

½
Ψ∗k1 (r)

∂

∂r
Ψk2 (r)−Ψ∗k2 (r)

∂

∂r
Ψk1 (r)

¾
,

The wavefunctions have the formΨk1,2(r)→ (2π)−3/2
£
eir·k1,2 + f(k1,2,k

0)eikr/r
¤

at r → ∞, with k0 = kr̂. To evaluate the surface integral we expand the plane
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waves eir·k1,2 in terms of outgoing and incoming spherical waves e±ikr/r for
large r,

exp (ir · k1,2) =
r→∞

2π

∙
e+ikr

ikr
δ
¡
Ωk1,2 − Ωr

¢
− e−ikr

ikr
δ
¡
Ωk1,2 − Ωr

¢¸
(14.8)

where we have used Eq.(14.7). This relation is derived as outlined in a problem
at the end of this chapter. It is now straightforward to take the radial derivatives
and evaluate the surface integral. After a rearrangement of the terms the result
can be written as

1

2i
(f(k1,k2)− f∗ (k2,k1)) =

k

4π

Z
dΩk0f

∗ (k2,k
0) f(k1,k

0). (14.9)

The optical theorem discussed in the previous section is a special limit of this
more general relation. Indeed for the case of k1 = k2 = k, Eq.(14.9) reduces to
Eq.(14.6).

14.5 Scattering of identical particles
Consider two identical particles that are scattered by a finite range potential
V (r). The total wavefunction Ψ(r1, r2) can be written in terms of the cen-
ter of mass and relative coordinates R and r respectively. In this basis the
wavefunction is separable

Ψ(r1, r2) = Ψ(R, r) = Ψcm(R)Ψrel(r)

Since Ψcm(R) is trivial we concentrate on Ψrel(r) and for simplicity rename it
Ψ (r) .
Allowing for spin degrees of freedom, each wavefunction has an additional

spin index to represent an appropriate spinning wavefunction. Therefore the
two particle wavefunction has a pair of spin indices, and is denoted as Ψσ1,σ2(r).
Under the interchange of two identical particles this wavefunction must satisfy
quantum statistics.
First we consider spinless bosons. There are no spin indices and the wave-

function must be even under the interchange of the positions of the two particles.
For the relative wavefunction this amounts to

Spinless bosons: Ψ(r) = Ψ(−r)
Hence the wave function for scattered particles must have the form

Ψk(r) =
C

(2π)3/2

∙
(eik·r + e−ik·r) +

eikr

r
(f(k, r̂) + f(k,−r̂))

¸
=

C

(2π)3/2

∙
(eik·r + e−ik·r) +

eikr

r
(f(E, θ) + f(E, π − θ))

¸
where we have used f(k, r̂) = f(E, θ).
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Next we consider spin 1/2 fermions. The wavefunction must be odd un-
der the interchange of the positions and of the spins of the two particles. We
may rewrite the wavefunction in terms of total spin 0,1 components by using the
Clebsch-Gordan coefficients χ0σ1σ2 ≡ h

1
2 , σ1;

1
2 , σ2|0, 0i and χsσ1σ2 ≡ h

1
2 , σ1;

1
2σ2|1, si

where s = 0,±1
Ψσ1σ2(r) = χ0σ1σ2Ψ

0

k
(r) + χsσ1σ2Ψ

s

k
(r).

Under the interchange of the two spins the spin 0 channel is antisymmetric
χ0σ1σ2 = − χ0σ2σ1 , while the spin 1 channel is symmetric χ

s
σ1σ2 = + χsσ2σ1 . There-

fore Ψ0k(r) must be symmetric while Ψ
s
k(r) must be antisymmetric so that the

overall wavefunction is antisymmetric Ψσ1σ2(r) = −Ψσ2σ1(−r)

Spin 1/2 fermions: Ψ0k(r) = Ψ
0
k(−r), Ψsk(r) = −Ψsk(−r).

Thus we can write the following forms

Ψ0k(r) =
C0

(2π)3/2

∙
(eik·r + e−ik·r) +

eikr

r
(f0(E, θ) + f0(E, π − θ))

¸
Ψsk(r) =

Cs

(2π)3/2

∙
(eik·r − e−ik·r) +

eikr

r
(f1(E, θ)− f1(E, π − θ))

¸
From these expressions we derive some general observable consequences of

quantum statistics, independent of the details of the forces, as follows. Consider
the differential cross section observed by an experimentalist. In the case of
spinless bosons we have

Spinless bosons:
µ
dσ

dΩ

¶
B

= |f(θ) + f(π − θ)|2. (14.10)

In the case of spin 1/2 fermions, if the final spin is observed to be spin zero we
have

Spin 1/2 fermions, total spin 0:
µ
dσ

dΩ

¶
0

=
1

4
|f0(θ) + f0(π − θ)|2

where the factor of 1/4 comes from spin averaging over the initial spins of the
fermions, with a factor of 1/2 for each fermions (1/2)2 = 1/4. If the final total
spin is observed to be 1 but the orientation is not observed, we get

Spin 1/2 fermions, total spin 1:
µ
dσ

dΩ

¶
1

=
3

4
|f1(θ)− f1(π − θ)|2

where the factor of 1/4 is explained above, while the factor of 3 is due to the fact
that there are 3 spin states but the probablities are summed over the 3 states.
In general, if the initial or final spins are not observed, then the differential cross
section includes factors that correspond to averaging over the initial spins and
summing over the final spins.
Note that at θ = π/2 the differential cross section

¡
dσ
dΩ

¢
1
vanishes, which

means that in the spin 1 channel an experimentalist should see no particles
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scattered at 900 from the direction of the beam. This is in clear distinction to
both

¡
dσ
dΩ

¢
B
and

¡
dσ
dΩ

¢
0
which do not vanish. This is a rather general property

that follows only from quantum statistics, independent of any details of the
scattering system.
There is an even easier test under further assumptions. If the total spin of

the scattered fermions is not observed either, then the differential cross section
is is obtained by summing over all spin components in the final state. Assuming
that the scattering force is independent of spin we use f0(θ) = f1(θ) = f(θ) and
obtain

Fermions:
µ
dσ

dΩ

¶
F

=
1

4
|f(θ) + f(π − θ)|2 + 3

4
|f(θ)− f(π − θ)|2. (14.11)

Comparing boson versus fermion scattering at θ = π/2, we haveµ
dσ

dΩ

¶
B

→θ→π/2 4|f(π/2)|2,
µ
dσ

dΩ

¶
B

→θ→π/2 |f(π/2)|2 (14.12)

We notice an enhancement for bosons relative to fermions. This is due to the
constructive interference for bosons at θ = π/2, and the destructive interference
for fermions in the spin 1 channel.

14.6 Born approximation

We have seen that the differential cross section dσ is directly proportional to
|f(k,k0)|2, which, in turn, was expressed as f(k,k0) = −2π2hk0|v (r) |ki+. Scat-
tering experiments then give us a possibility to discover the matrix elements of
V (r) in momentum space thus revealing the properties of the interaction V (r) .
This property is particularly evident in the First Born Approximation de-

noted as f (1)(k,k0), which corresponds to approximating the state |ki+ with
the free particle state |ki. We will later investigate the conditions under which
the approximation is valid. In this case indeed f (1)(k,k0) is proportional to the
matrix elements of V (r) in the free particle Hilbert space hk0|V (r) |ki which is
given by representing the states with plane waves as in Eq.(14.3)

f (1)(k0,k)=−2π2
Z

d3r
e−ik

0·r

(2π)3/2
2m

~2
V (r)

eik·r

(2π)3/2
.

This is just a Fourier transform of the potential using the momentum transfer
~ (k0 − k)

f (1)(k0 − k) = − m

2π~2

Z
d3rV (r)e−i(k

0−k)·r (14.13)

For a rotationally invariant potential this is a function of only |k0 − k| = 2k sin (θ/2) .
Thus, from the scattering amplitude one can extract the details of the potential
V (r) through the inverse Fourier transform. One can thus probe the scatterer
by bombarding it with a beam of known particles and extract the nature of the
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forces between beam and target by measuring the energy and angle dependence
of the differential cross section.
To justify the approximation we start from the general expression of the scat-

tering amplitude f(k,k0) = −2π2hk0|v (r) |ki+, and the Lippmann-Schwinger
equation |ki+ = |ki +Gv|ki+, where G =

¡
k2 − p2/~2 + iε

¢−1
is the opera-

tor version of the Green function. We solve formally for |ki+ and substitute it
in f(k,k0) to get the exact expressions

|ki+ = (1−Gv)−1|ki, f(k,k0) = −2π2hk0|v (r) (1−Gv)−1|ki. (14.14)

If the incoming energy E = ~2k2/2m is sufficiently large compared to the po-
tential energy V (r), then Gv is roughly of order v/k2 = V (r) /E and is small.
This will be examined in more detail below. Under such circumstances we can
approximate the expressions for |ki+ or f(k,k0) by expanding in a power series
and obtain

f(k0,k) = −2π2 hk0|v + vGv + vGvGv + · · · |ki. (14.15)

The nth Born approximation is defined by keeping the first n terms in this ex-
pansion. Thus, the first Born approximation is f (1)(k0,k) as given above, while
the second Born approximation is given by f(k0,k) = f (1)(k0,k) + f (2)(k0,k)
with f (2)(k0,k) given by

f (2)(k0,k) = −2π2hk0|vGv|ki,
and so on.

14.6.1 Scattering from the Yukawa Potential

As an example consider the Yukawa potential

V (r) = V0
e−r/r0

r/r0
,

where r0 is the distance scale that determines the range of the potential. As-
suming a sufficiently high incoming energy compared to the potential strength
V0 we can approximate the scattering amplitude by using the first Born ap-
proximation. This amounts to the Fourier transform of the Yukawa potential
as given in Eq.(14.13)

f (1)(k,k0) = − 2m

4π~2

Z ∞
0

r2dr V0
e−r/r0

r/r0

Z 2π

0

dφ

Z 1

−1
d(cos θ)e+i|k−k

0|(cos θ)r

= −m

~2

Z ∞
0

r2dr V0
e−r/r0

r/r0

e+i|k−k
0|r − e−i|k−k

0|r

i|k− k0|r

After cancelling the r2 factors in the numerator and denominator, the remaining
integral is easily performed and we obtain

f (1)(k,k0) = −
¡
2mV0r

3
0/~2

¢
(k0−k)2r20 + 1

= −
¡
2mV0r

3
0/~2

¢
4k2r20 sin

2
(θ/2)+1

. (14.16)
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From this expression we obtain the differential cross section due to the
Yukawa potential as a function of incoming energy E = ~2k2/2m and scat-
tering angle θ

dσ

dΩ
=

Ã ¡
2mV0r

3
0/~2

¢
4k2r20 sin

2
(θ/2)+1

!2
.

The results of experiments can be plotted as a function of k and θ for differ-
ent ranges of these experimentally adjustable parameters and compared to the
calculated expression above.

0

1

1 2 3theta

Fig.14.1 - Plots of dσ/dΩ versus θ

In Fig.14.1 the theoretical differential cross section is plotted for 0 ≤ θ ≤ π
for three different values of the energy. The vertical axis is normalized by
dividing by the value of the forward scattering cross section, (dσ/dΩ) (θ = 0) =¡
2mV0r

3
0/~2

¢2
, which is independent of both k, θ. The dotted line is at some

low energy, the thin line is at a higher energy, and the thick line is at an even
higher energy. We see that the forward peak (small θ) is sharper for higher
energies, which indicates that more and more particles tend to be scattered in
the forward direction as the incoming energy is increased. It is clear that by
obtaining such curves experimentally and comparing to the predicted shapes
one can extract the range of the potential r0 and the strength of the potential
V0, thus reconstructing the potential V (r) .

It is useful to compare this result to the equivalent computation via a Feyn-
man graph in first order perturbation theory in relativistic quantum field theory.
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p2’p2

p1’p1 

p1’- p1= p2- p2’

Fig.14.2 - Particle exchange

The Feynman diagram in Fig.14.2 describes two particles of initial 4-momenta
pµ1 and pµ2 interacting by exchanging another particle (dotted line) and coming
out with 4-momenta p0µ1 and p0µ2 . The strength of the interaction at each ver-
tex is represented by a constant g. The exchanged particle propagates from
one interaction point in space-time to the other by carrying the 4-momentum
transfer

pµ = p0µ1 − pµ1 = pµ2 − p0µ2 .

This is written in two forms due to momentum and energy conservation pµ1+p
µ
2 =

p0µ1 + p0µ2 . The scattering amplitude in lowest order perturbation theory for this
process is given by the mathematical expression for this Feynman graph, which
is

f (1) = gG (p) g.

Here G (p) is the Feynman propagator G (p) =
¡
p2c2 −m2c4 + iε

¢−1
, where m

is the mass of the exchanged particle and p2 = p·p = (p0)2−p2 is the relativistic
dot product which takes the form p2 = (p01 − p1)

2
= (E01 −E1)

2 − (p01 − p1)
2
.

The iε in the propagator can be set to zero as long the Feynman graph has no
loops.
In the case of elastic scattering off a heavy (static) target, as in our case

of scattering off a potential V (r), the energy is conserved at each vertex E02 =
E2 or E01 = E1. Therefore the Feynman propagator depends only on the 3-

momentum transfer G (p) = −
³
(p01 − p1)

2
c2 +m2c4

´−1
. To compare to our

notation in potential scattering, we take p1 = ~k and p01 = ~k0. Then we find
that the Feynman amplitude gG (p) g takes an identical form to the first Born
approximation for the Yukawa potential as in Eq.(14.16)

f (1)(k,k0) =
−g2

(~k0 − ~k)2 c2 +m2c4
= −

¡
g/mc2

¢2
(~/mc)

2
(k0−k)2 + 1

.

By comparing these expressions for f (1)(k,k0) we also learn that the range r0
and strength V0 of the Yukawa potential are determined by the mass m and the
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coupling constant g of the exchanged particle respectively

r0 =
~
mc

, V0 =
g2

2~c
. (14.17)

This expression for r0 is just the Compton wavelength of the exchanged particle.
This point was the crucial observation in Yukawa’s proposal for the pion. He

suggested that pion exchange was the underlying process that gives rise to the
strong interactions among nucleons. By using ~c = 197MeV fm, and the known
range of the nuclear interaction, r0 ' 1 to 2 fm, he predicted the existence and
the mass of the pion mπc

2 = 140 MeV, although at that time he thought he
was describing the muon.
As we know it today, the underlying force in strong interactions is the color

interactions among quarks via gluon exchange, and these give rise to an effective
interaction that is described mainly as pion exchange among nucleons. The
effective interaction description is valid as long as the energy of the scattering
is not much larger than a few hundred MeV, as is the case in the nucleus and
in low energy particle physics. But when the scattering energies go well above
a few GeV the details of the quark-gluon structure become evident through the
form of the scattering cross section in its dependence on energy and angle.
The weak force is mediated by the exchange of the W± and Z0 particles

whose masses are mW c2 = 80.4 GeV and mZc
2 = 91.2 GeV . These large

masses explain the very short range of the weak interaction

(r0)weak ≈
~c

mW c2
=
197 MeV × fm

80.4 GeV
' 2.5× 10−18 m (14.18)

Similarly, the electromagnetic force is mediated by the exchange of massless
photons, therefore the range of the electromagnetic force is infinite.

14.6.2 Scattering from the Coulomb Potential

The Coulomb potential is obtained from the Yukawa potential in the large r0
limit, provided that r0V0 = q1q2 is held fixed as r0 → ∞. Then the Yukawa
potential reduces to the Coulomb potential V (r) = q1q2/r. We can apply the
same reasoning to every step of the computation of the scattering amplitude
and cross section for the Yukawa potential and therefore obtain the correspond-
ing results for the Coulomb potential by the limiting procedure. Thus, from
Eq.(14.16) we obtain the first Born approximation for Coulomb scattering

dσ

dΩ
=

µ
q1q2

4E sin2 θ/2

¶2
,

where we have replaced E = ~2k2/2m. Since ~ does not appear in this expres-
sion we may conclude that this must be the same as the classical result for the
differential cross section. Indeed this should be expected on the basis of the cor-
respondance principle at high energies, which is when the Born approximation
is valid.
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This formula was derived by Rutherford to describe the scattering of α-
particles from thin foils. From this expression that fitted his experiments he
concluded that the α particles were scattered by a charged pointlike heavy
center which resided inside the atoms that made up the thin foil. This followed
from the fact that this formula was derived under the assumption of a pointlike
positively charged heavy target as described by the Coulomb potential. If this
assumption is replaced by another one in which the positive charge is distributed
throughout the atom, then the energy and angular dependence of the differential
cross section is quite different. These observations led Rutherford to propose
the structure of the atom, namely that the atom must contain a small point-like
heavy charged nucleus, much smaller than the size of the atom.

14.6.3 Validity of the Born approximation

The exact scattering amplitude which was given in Eq.(14.3) can be written as

f(k,k0)=− 1

4π

Z
d3r e−ik

0·r v(r) (2π)3/2Ψk(r).

where Ψk(r) satisfies the integral equation in Eq.(14.1)

(2π)3/2Ψk(r) = e+ik·r −
Z

d3r
0 eik|r−r

0 |

4π|r−r0 |v(r
0
) (2π)3/2Ψk(r

0
)

The first Born approximation f(k,k0) ' f (1)(k,k0) was obtained by keeping only
the first term in (2π)3/2Ψk(r) = eik·r+∆k(r) where

∆k(r) = −
1

4π

Z
d3r0

eik|r−r
0|

|r−r0| v(r
0) (2π)3/2Ψk(r

0).

Hence in f(k,k0) we have neglected a term of the form

∆f(k0,k) = − 1

4π

Z
d3r e−ik

0·r v(r) ∆k(r).

We would like to estimate the error we make by neglecting the term ∆f(k,k0).
Since the integrals in these equations involve a potential v(r) with a finite range,
we may approximate ∆k(r) ≈ ∆k(r = 0) in the formula for ∆f(k,k0). Thus,
∆f(k0,k) is proportional to ∆k(r = 0). This will be negligible compared to the
the first Born approximation f (1)(k,k0), as long as near r = 0 the ∆k(0) part
of the wavefunction (2π)3/2Ψk(0) = 1+∆k(0) is negligible compared to 1. Thus
we must check under what conditions we obtain

validity: |∆k(0)| ¿ 1 (14.19)

This condition takes the following form when we approximate (2π)3/2Ψk(r0) by
the plane wave consistently with the Born approximation

|∆k(0)| '
¯̄̄̄
¯− 1

4π

Z
d3r0

eikr
0

r0
v(r0)eik·r

0

¯̄̄̄
¯¿ 1 (14.20)
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The angular integrals are easily performed for a rotationally invariant potential
and the condition becomes

∆k(0)'
1

k

Z ∞
0

dr sin(kr)eikrv(r) =
C

k
(14.21)

where C is a constant determined by the potential. This shows that ∆k(0)
decreases as the incoming energy increases. Therefore for sufficiently large in-
coming energies as compared to the strength of the potential we see that the
Born approximation is valid.
However, the criterion |∆k(0)| ¿ 1 could be satisfied for some potentials

even if the incoming energies are not very high. In particular, consider the low
incoming energy limit given by k → 0. In this limit ∆k(0) becomes

lim
k→0
∆k(0) =

Z ∞
0

dr0r0v(r0)¿ 1. (14.22)

As long as this quantity is much smaller than 1, the Born approximation can
be applied even at low energies.

Validity for the spherical square well

We now check the criterion to the spherical square well V (r) = −V0θ (a− r) .
For any energy we compute

∆k(0)'
1

k

2mV0
~2

Z a

0

sin(kr)eikrdr = i
mV0a

2

~2 (ka)

µ
1− sin ak

ak
eiak

¶
For large k this vanishes as an inverse power, ∆k(0)'mV0a

2

~2(ak) , and therefore
|∆k(0)| ¿ 1 can always be satisfied for sufficiently large incoming energies.
For validity of the First Born approximation at low energies we require

|∆k(0)| ¿ 1 → 2m |V0|
~2

Z a

0

dr0r0 =
m |V0| a2
~2

¿ 1. (14.23)

This relation can also be derived by an intuitive type of reasoning as follows.
For sufficiently low energies the particle could be trapped in the spherical well.
If that occurs, then the particle is located within a distance ∆x ∼ a, therefore
by the uncertainty principle it has momentum p ∼ ~/a. Its kinetic energy is
estimated as Ekin ≈ p2/2m = ~2

2a2m . For scattering to happen, we must require
that the particle is not trapped in the well, which would be the case when the
kinetic energy is larger than the depth of the well

no binding: |V0| ¿
~2

2a2m

Except for the factor of 2 this is the same as the validity criterion derived above.
This amounts to saying that the first Born approximation is valid whenever the
particle has sufficient energy so that it is not trapped in the well.
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While this intuitive discussion is instructive, it should not be taken too far.
For example, if we have a potential barrier instead of a potential well there will
never be a bound state, but still there is a criterion of validity for the first Born
approximation which is the same as Eq.(14.23).

Validity for the Yukawa Potential

We now analyze the criterion for the Yukawa potential

∆k(0)=
1

k

2mV0
~2

Z ∞
0

sin(kr)eikr
e−r/r0

r/r0
dr

=
mV0r

2
0

~2 (kr0)

∙
tan−1 (2kr0) +

i

2
ln
¡
1 + 4k2r0

2
¢¸

This expression is similar to the one above for the square well, which is not
surprizing since the square well can be thought of as a deformed version of the
Yukawa potential. If we analyze the above expression for low and high energies,
we find

kr0 À 1 : ∆k(0)→
mV0r

2
0

~2 (kr0)

µ
π

2
+ i ln (2kr0) +O

µ
1

kr0

¶¶
(14.24)

kr0 ¿ 1 : ∆k(0)→ 2
mV0r

2
0

~2
(1 +O (kr0)) (14.25)

We again find that the first Born approximation is always valid for sufficiently
high energies. Furthermore, when

2mV0r
2
0/~2 ¿ 1

it is also valid at low energies. As expected the critrion as well as the meaning
of these equations is similar to the case of the spherical square well.

Validity for the Coulomb Potential

One could try to analyze the validity criterion for the Coulomb potential by
taking a limit of the Yukawa potential. Then we find

∆k(0)=
mq1q2
~2k

lim
r0→∞

∙
tan−1 (2kr0) +

i

2
ln
¡
1 + 4k2r0

2
¢¸

(14.26)

=
mq1q2
~2k

µ
π

2
+

i

2
ln (∞)

¶
(14.27)

Because of the diverging term we could suspect that the first Born approxima-
tion would not be valid in this case. However, it turns out that the 1st Born
approximation is valid also for the Coulomb potential, the reason being that
any divergence can be absorbed in the phase of f(k,k0), thus producing a finite
differential cross section.
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We discussed a few examples in which the Born approximation works quite
well. However, not every potential behaves so nicely with respect to the first
Born approximation. While it is always possible to obtain a good approximation
at high energies, for some potentials it is not always possible to use the Born
approximation at at low energies. This happens when the criterion¯̄̄̄Z ∞

0

r0v(r0)dr0
¯̄̄̄
¿ 1

is not satisfied. If suffices to consider the simple example of V = V0
¡
r0
r

¢3
, for

which the divergence at r = 0 is too strong, making the above condition invalid.

14.6.4 Optical theorem and the Born approximation

We discussed above that the optical theorem is satisfied independent of the de-
tails of any potential V (r) . Consider the expression for the scattering amplitude
in the first Born approximation f (1)(k, θ) as given in Eq.(14.13). It is straight-
forward to see that this expression is real since the integral does not change when
k − k0 is replaced by − (k− k0). The optical theorem appears to be violated
by the the first Born approximation since Im

©
f (1)(k, 0)

ª
= 0 while the cross

section as computed in the first Born approximation σ (k) =
R
dΩ
¯̄
f (1)(k, θ)

¯̄2
obviously is nonzero. Is there a problem?
There is no problem since Im

©
f (1)(k, 00)

ª
is first order, while

R
dΩ
¯̄
f (1)(k, θ)

¯̄2
is second order, in the expansion of the exact formulas in powers of the potential
as in Eq.(14.15). If we insert an artificial parameter λ to keep track of the order
of the perturbative expansion, then the optical theorem reads

Im

( ∞X
n=1

λnf (n)(k, 0)

)
=

Z
dΩ

¯̄̄̄
¯
∞X

m=1

λmf (m)(k, θ)

¯̄̄̄
¯
2

.

The eqution is satisfied for each power of λ independently. For n = 1, we have
Im
©
f (1)(k = k0)

ª
= 0, while, for n = 2, we obtain

Im
n
f (2)(k, 0)

o
=

Z
dΩ
¯̄̄
f (1)(k, θ)

¯̄̄2
.

So, the optical theorem predics that indeed Im
©
f (1)(k, 0)

ª
= 0, and that the

total cross section determines the imaginary part of the second Born approxi-
mation in the forward direction. The generalized optical theorem of Eq.(14.9)
makes an even stronger predictions about similar relations of terms in of suc-
cessive Born approximations.

14.7 The eikonal approximation
When V (r) is a slowly varying function in r, and the incoming energy is suf-
ficiently large so as to satisfy ~2k2/2m À V (r), we can find an approximation
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based on semi-classical methods. This is the basis of the eikonal approximation
discussd in this section. The wavefunction may be written in the form

Ψk(r) =
1

(2π)3/2
eiS(k,r)/~

for a complex S(k, r). Then the Schrödinger equation reduces to an equation
for S(k, r)

(∇S)2 − i~∇2S = 2m(E − V (r))

Since V (r) is slowly varying with r, one expects that S(k, r) is also a slowly
varying function in r, and neglect second order derivatives of S(k, r). This can
also be justified on the basis of large momenta which is represented by the
first derivative term (∇S)2. Under this assumption the equation reduces to the
classical Hamilton-Jacobi equation

(∇S)2 = 2m(E − V (r)).

This is like the WKB approximation, but now it is argued on the basis of the
large incoming energy, rather than a small ~. The solution to this equation
will be taken as the approximation for Ψk(r) for the purpose of computing the
scattering amplitude

f(k,k0)=− 1

4π

Z
d3r e−ik

0·r v(r) (2π)3/2Ψk(r)

= − 1

4π

Z
d3r e−ik

0·r v(r) eiS(k,r)/~

To solve the eikonal equation, consider the sketch below

 

projectile 
 b 

k z

r

target 

detector 

Fig.14.3 - Eikonal approximation

The projectile hits the target at some distance b from its center. Due to its
high energy it does not change course very much, so it roughly continues its
path along the incident direction, and then it is observed at some distance z
from the target, at position r from the center. The small angle that the vector
r makes with the axis of the target is the scattering angle θ. The vector r may
be written as

r = b+ zk̂, r =
p
b2 + z2

where k̂ is the direction of the incident particle. We compute (∇S)2
³
b+ zk̂

´
in this parametrization. Since (∇S) represents the semi-classical momentum we
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expect that the derivatives with respect to b are negligibly small as compared
to derivatives with respect to z. Therefore we can write (∇S)2 ' (∂S/∂z)2 and
obtain the equation µ

∂S

∂z

¶2
= 2m

³
E − V

³p
b2 + z2

´´
The solution is

S(z, b) =

Z z

−∞

r
2m(E − V

³p
b2 + z02

´
)dz0 + const.

The constant has to be chosen in such a way that the wavefunction Ψk (r) re-
duces to the the free particle plane wave when the potential vanishes. Therefore
we require 1

~ S(z)→ kz when V → 0, which gives

1

~
S(z) = kz +

Z z

−∞

"r
k2 − v

³p
b2 + z02

´
− k

#
dz0

For high energies, k2 À v(r), we can approximate
√
k2 − v ' k − v

2k , so that

1

~
S(z) ' kz − 1

2k

Z z

−∞
v
³p

b2 + z02
´
dz0.

Hence the wavefunction becomes

Ψk(r) = Ψk(b+ k̂z) =
eikz

(2π)3/2
exp

µ
− i

2k

Z z

−∞
v
³p

b2 + z02
´
dz0
¶

We are now ready to compute the scattering amplitude using the above
outgoing wave-function. Defining

k0 = kr̂, r0 = b+ k̂z0, r̂ · k̂ = cos θ,

where r is the location of the detector, and r0 is some other point, we have

f(k0,k) = − 2π2

(2π)3

Z
d3r0 e−ik

0·r0eik·r
0
v
³p

b2 + z02
´
exp

Ã
− i

2k

Z z0

−∞
v
³p

b2 + z002
´
dz00

!
(14.28)

where we substituted eikz
0
= eik·r

0
. We replace r = b+ k̂z0 and d3r0=d2bdz0,

furthermore note that the factor of v in the integrand may be rewritten by
taking a derivative of the exponential, as follows

f(k0,k) = − 1

4π

Z
d2be−i(k

0−k)·b
Z ∞
−∞

dz eikz(1−k̂
0·k̂)
µ
2k

−i

¶
∂

∂z0
exp

Ã
− i

2k

Z z0

−∞
v
³p

b2 + z002
´
dz00

!
.
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For small scattering angle θ we can approximate eikz(1−k̂
0·k̂) ≈ ei0 = 1. Then

the integrand over z becomes a total derivative, so the integration is triv-
ial and we get contributions from the boundaries at z = ±∞ in the formh
exp

³
− i
2k

R z0
−∞ v

¡√
b2 + z002

¢
dz00

´i∞
−∞

. Defining the phase

∆(b) = − 1
4k

Z ∞
−∞

dz0v
³p

b2 + z02
´
= − m

2k~2

Z ∞
−∞

dz0V
³p

b2 + z02
´
,

we can write the expression

f(k0,k) =
k

2πi

Z
d2b e−i(k

0−k)·b
h
e2i∆(b) − 1

i
.

Next we write (k0−k) · b =b |k0−k| cosφ, d2b =bdbdφ, and |k0−k| = 2k sin θ/2,
and perform the integral over φ by using

1

2π

Z 2π

0

e−b|k
0−k| cosφdφ = J0(2kb sin

θ

2
).

So we obtain

f(E, θ) = −ik
Z ∞
0

bdbJ0(2kb sin
θ

2
)
h
e2i∆(b) − 1

i
(14.29)

Here b is called the impact parameter. The integration over b gets its main
contribution up to a distance r0, which represents the range of the potential
V (r), because ∆(b) vanishes for bÀ r0.
This result was derived under the assumption of a small scattering angle

θ, therefore the argument of the Bessel function should be 2kb sin θ
2 ≈ kbθ.

However, it is possible to reconsider the derivation more carefully and show
that the final expression given above is valid also for large values of the angle.
Hence the expression above for any angle is the scattering amplitude in the
eikonal approximation.
At high energies we can relate the eikonal and Born approximations by

examining Eq.(14.28). In the large k limit we can drop the last phase factor

exp

Ã
− i

2k

Z z0

−∞
v
³p

b2 + z002
´
dz00

!
→ 1. (14.30)

Then Eq.(14.28) becomes precisely the first Born approximation. We can thus
conclude that the eikonal approximation and the 1st Born approximation are
equivalent at high energies.
We will later see that the eikonal approximation may also be related to the

partial wave scattering amplitudes in the limit of high energy scattering. From
this relation, and also from a direct computation, one can verify that the Eikonal
approximation satisfies the optical theorem
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14.8 Partial waves

Let us consider scattering from a rotationaly invariant potential V = V (r). In
our previous discussion the beam of incoming particles was represented by the
momentum ket |ki. Since the Hamiltonian H0 = p2/2m commutes with L2

and Lz, the free particle can also be represented in the angular momentum and
energy basis as |klmi. One basis has an axpansion in terms of the other

|ki=
X
lm

|klmihlm|k̂i =
X
lm

|klmiYlm
³
k̂
´
.

where E = ~2k2/2m. The total Hamiltonian, including the potential is also in-
variant under rotations. By the same arguments, the exact eigenstate |ki+
can also be expressed in the angular momentum basis |klmi+, and have the
expansion

|ki+ =
X
lm

|klmi+hlm|k̂i =
X
lm

|klmi+Ylm
³
k̂
´
.

Since L commutes with the total Hamiltonian, angular momentum is conseerved
during the scattering process.
Let us see what is the advantage of using the angular momentum basis.

Consider the following sketch of a beam of particles hitting the target of a size
determined by a radius a. Semi-classically, the radius a represents the range of
the interaction potential.

r

p }a = range 

Fig.14.4 - Angular momentum of incoming particle.

The angular momentum of the particle is L = r× p. The length of this vector
is L = rp sin θ = pb, where b = r sin θ is the impact parameter. When the impact
parameter exceeds the range a the particle cannot be scattered. Therefore, the
maximum angular momentum in the scattering process is determined semi-
classically as Lmax ∼ pa = ~ka = ~lmax. This leads us to expect that, in
the expansion in the angular momentum basis, mainly the modes of angular
momentum l ≤ lmax will contribute to the scattering amplitude. Hence, for
small energies (k small) and/or small ranges of the potential, ka is a small
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number, and thus only few “partial waves” are expected to play an important
role in the expansion.
To obtain quantitative results, start from the Lippmann-Schwinger equation

|ki+ = |ki+Gkv|ki+. After substituting the angular momentum expansion for

each state, and matching the coefficients of Ylm
³
k̂
´
on both sides, this equation

reduces to

|klmi+ = |klmi+Gkv|klmi+, Gk =
¡
k2 − p2/~2 + iε

¢−1
since the operators G, v are rotationally invariant. The bra hr| can also be ex-
panded in angular momentum basis hr| =

P
lmhr̂|lmihrlm| =

P
lm Y ∗lm(r̂)hrlm|.

Taking a dot product with the bra hrlm| the Lippmann-Schwinger equation
becomes

hrlm|klmi+ = hrlm|klmi+ hrlm|Gkv(r)|klmi+

The values of l,m must be the same for the kets and bra since otherwise
we get zero due to orthogonality. Next we insert the identity operator 1 =R∞
0

r
02dr0

P
l0m0 |r0l0m0ihr0l0m0| and again use conservation of angular momen-

tum for rotationally invariant uperators to argue that only l0 = l and m0 = m
can contribute. In fact every term is independent of m, and the equation takes
the form

hrl|kli+ = hrl|kli+
Z ∞
0

r
02dr0hrl|Gk|r0liv(r0)hr0l|kli+.

Thus the Lippmann-Schwinger equation becomes

Al(k, r) = jl(kr) +

Z ∞
0

r
02dr0Gl

k(r, r
0)v(r0)Al(k, r

0) (14.31)

whereGl
k(r, r

0) ≡ hrl|Gk|r0li is the Green function, and the quantities hrl|kli and
hrl|kli+ are just the radial wavefunctions for the free particle and the interacting
particle respectively. For the free particle we consult section (6.8) to remind
ourselves that hrl|kli is written in terms of the spherical Bessel function as

hrl|kli =
p
π/2jl(kr).

It satisfies the radial equationµ
−1
r
∂2rr +

l(l + 1)

r2
− k2

¶
jl(kr) = 0.

Similarly, for the interacting particle we define hrl|kli+ ≡
p
2/πAl(kr), where

Al(k, r) satisfies the radial equation including the potential∙
−1
r
∂2rr +

l(l + 1)

r2
− v(r)− k2

¸
Al(k, r) = 0.

Next we compute the Green function. We insert identity in energy and
angular momentum space 1 =

R∞
0

k
02dk0

P
l0m0 |k0l0m0ihk0l0m0| and again argue
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that only l0 = l and m0 = m can contribute due to the rotation invariance of
the operator Gk. Therefore

Gl
k(r, r

0) ≡ hrl|Gk|r0li =
Z ∞
0

k
02dk0 hrl|

¡
k2 − p2/~2 + iε

¢−1 |k0lihk0l|r0li
The operator p2 is diagonal and gives the eigenvalue ~2k02, and we get

Gl
k(r, r

0) =

Z ∞
0

k
02dk0

hrl|k0lihk0l|r0li
k2 − k02 + iε

=
2

π

Z ∞
0

k
02dk0

jl(k
0
r)jl(k

0
r0)

k2 − k02 + iε
.

It can be checked that this expression for the Green function is a solution to the
equation µ

1

r
∂2rr −

l(l + 1)

r2
+ k2

¶
Gl
k(r, r

0) =
1

r2
δ(r − r0).

To obtain an explicit expression for Gl
k(r, r

0), we need to compute the inte-
gral. Since the integrand is even we can write

Gl
k(r, r

0) =
1

π

Z ∞
−∞

q2dq
jl(qr>)jl(qr<)

k2 − q2 + iε
,

where r< is a symbol to indicate the smaller among r and r0 and similarly
r> indicates the larger among r and r0. We will perform the integral by using
complex integration techniques in the complex q plane. The function jl(z) can
be written in terms of the spherical Bessel functions hl (z) , h∗l (z) which have
the asymptotic behavior in the complex z plane indicated below

jl(z) =
1

2
(hl(z) + h∗l (z)) →

|z|→∞

eiz

2iz
− e−iz

2iz

This behavior can be used to perform the integral as follows. We substitute
jl(qr>) =

1
2 (hl(qr>) + h∗l (qr>)) . For the term involving hl(qr>) the contour

−∞ < q < ∞ can be closed in the upper half plane, and similarly for the
term involving h∗l (qr>) the contour can be closed in the lower half plane. The
asymptotic behavior of jl(qr<) in each of these regions is overwhelmed by jl(qr>)
therefore it can be ignored in the argument for the choice of countours at the
infinite circles. The upper half plane contour encloses the ploe at q = k + iε
in the clockwise direction, while the lower half plane contour encloses the ploe
q = −k − iε in the counterclockwise direction. Then the result of the integral
can be written as as the sum of the residues

Gl
k(r, r

0) = 2πi Res (k + iε)− 2πi Res (−k − iε)

Res (k + iε) =
1

2

1

π

k2jl(kr<)hl(kr>)

−2k ,

Res (−k − iε) =
1

2

1

π

k2jl(−kr<)h∗l (−kr>)
2k

.
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After using properties of the Bessel functions one finds that the second term is
equal to the first term, so we obtain finally

Gl
k(r, r

0) = −ik jl(kr<) hl(kr>).

The Lippmann-Schwinger equation in Eq.(14.31) for Al(k, r) now takes the
form

Al(k, r) = jl(kr)− ik

Z ∞
0

dr0r
02jl(kr<)hl(kr>)v(r

0)Al(kr
0)

= jl(kr)− ikhl(kr)

Z r

0

dr0r
02jl(kr

0)v(r0)Al(kr
0)

− ikjl(kr)

Z ∞
r

dr0r
02hl(kr

0)v(r0)Al(kr
0)

We can now compute the asymptotic limit of this expression for large r by
using the asymptotic behavior. The second term vanishes so, after substi-
tuting jl(kr) =

1
2 (hl(kr) + h∗l (kr)), the wavefunction Al(k, r) takes the form

Al(k, r) →
r→∞

1
2h
∗
l (kr) +

1
2hl(kr)Sl(k) where

Sl(k) = 1− 2ik
Z ∞
0

dr0r
02jl(kr

0)v(r0)Al(k, r
0). (14.32)

Thus, using the asymptotic limit of the Bessel functions hl(kr) and h∗l (kr) given
above we have the asymptotic behavior

Al(k, r) →
r→∞

− 1

2ikr

h
e−i(kr−lπ/2) − ei(kr−lπ/2)Sl(k)

i
. (14.33)

The general form is Al(k, r) → ale
−ikr/kr + ble

ikr/kr, where the first/second
term is proportional to an incoming/outgoing spherical wave. Therefore, Sl(k)
is identified as the ratio of the coefficients of the outgoing and incoming spherical
waves modulo the extra signs (−1)l+1 that arise from the l dependent phases,
that is Sl(k) = (−1)l+1 bl/al.
We will now prove that Sl(k) is a pure phase. From the arguments leading

to the optical theorem we know that the probability current density satisfies
r2
R
r̂ · JdΩ = 0. The radial current is computed as r̂ · J ∝ i(A∗l (k, r)∂rAl(k, r)−

Al(k, r)∂rA
∗
l (k, r)) where we insert the asymptotic form of Al (k, r) given above

and keep only the leading terms for large r. Then we obtain

0 = r2
Z
r̂ · JdΩ ∝ 2ik(|Sl|2 − 1).

From this we conclude that Sl is a pure phase. It must be emphasized that this
result follows from conservation of probability. Thus we can write

Sl(k) = e2iδl(k) = 1− 2ik
Z ∞
0

drr2jl(kr)v(r)Al(k, r) (14.34)
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where δl(k) is real and is called the phase shift. If the potential v (r) vanishes the
phase shift also vanishes. Therefore the phase shift in the outgoing spherical
wave relative to the incoming spherical wave is a measure of the interaction.
Note that this expression corresponds to the matrix element below

Sl(k) = 1−
ik

π
hkl|v (r) |kli+ = e2iδl(k). (14.35)

We now turn to the computation of the scattering amplitude. Recall that

f(k, θ) = −2π2hk0|v|ki+.

We insert identity in position space and use the definitions of the various dot
products and other quantities defined above

f(k, θ) = −2π2
X
lm

Z ∞
0

r2drhk0|rlmihrlm|v(r)|ki+

= −2π2 2
π

X
l

Z ∞
0

r2drjl(kr)v (r)Al(kr)
X
m

hk̂0|lmihlm|k̂i

= −4π
X
l

1− Sl(k)

2ik

X
m

Y ∗lm(k̂
0)Ylm(k̂)

=
X
l

Sl(k)− 1
2ik

Pl(k̂ · k̂0)(2l + 1)

Hence the angular momentum expansion of the scattering amplitude is obtained
in terms of the Legendre polynomials Pl(cos θ)

f(k, θ) =
X
l

(2l + 1)fl(k)Pl(cos θ) (14.36)

with fl(k) written in various forms in terms of the phase shift

fl(k) =
e2iδl(k) − 1

2ik
=
1

k
eiδl(k) sin δl (k) =

1

k

1

cot δl (k)− i
. (14.37)

From these expressions we learn that all possible values of kfl(k) must lie on a
circle centered at i/2 in the complex plane, as seen from the form

kfl(k) =
i

2
+
1

2
e2iδl(k)−iπ/2

and as shown in the figure below which is called an Argand diagram
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-π/2 
+2δ

0

i/2

Fig.14.5 - Argand diagram.

The point on the circle at the tip of the arrow is the value of the complex
number i

2 +
1
2 exp (2iδl(k)− iπ/2) . The arc segment from the point zero to

the tip of the arrow spans the angle 2δl (k) . The tip of the arrow changes
as a function of k but always remains on the circle for elastic scattering for
which probability is conserved. If probability is not conserved, as in inelastic
scattering (discussed later), then kfl(k) is no longer on the circle, but moves
into the interior of the circle. By doing experimental measurements it is possible
to obtain the trajectory of the point on the Argand diagram as function of the
energy for either elastic or inelastic scattering.

14.8.1 Differential cross section

The differential cross section was given before as dσ
dΩ = |f(k, θ)|2. In terms of

the partial waves it becomes

dσ

dΩ
=
1

k2

X
ll0

(2l + 1)(2l0 + 1)ei(δl−δl0 )

× sin δl sin δl0Pl(cos θ)Pl0(cos θ)

where fl(k) = 1
ke

iδl sin δl has been used. This expression becomes useful when
there are a few partial waves which dominate the sum, as in the case of low
energy scattering for which lmax = ka could be small, as argued at the beginning
of section (14.8).

The total cross section σtot =
R 2π
0

dφ
R 1
−1 d(cos θ)

¡
dσ
dΩ

¢
simplifies thanks to

the orthogonality of the Legendre polynomialsZ 1

−1
Pl(x)Pl0(x)dx =

2

2l + 1
δll0 .
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Hence,

σtot (k) =
4π

k2

X
l

(2l + 1) sin2 δl (k) .

Again, this is a useful expression when a few partial waves dominate the sum.
We will now prove that the optional theorem is satisfied by the expression

for f(k, θ) in Eq.(14.36). In the forward direction we have Pl(cos 0) = 1, so that

f(k, 0) =
1

k

X
l

(2l + 1)eiδl sin δl.

The imaginary part of f(k, 0)

Im (f(k, 0)) =
1

k

X
l

(2l + 1) sin2 δl

is clearly proportional to the total cross section given above, and indeed satisfies
the optical theorem

σtot =
4π

k
Im (f(k, 0)) .

14.8.2 Phase shift δl
We have seen that the asymptotic behavior of the radial wavefunction takes the
form

Al(kr) →
r→∞

−1
2ikr

n
e−i(kr−lπ/2) − ei(kr−lπ/2+2δl)

o
where the outgoing spherical wave is phase shifted by the additional phase 2δl
compared to the free particle. Thus δl is a measure of the interaction. Here we
want to prove that the phase shift δl (k) is a decreasing function of l. This point
is intuitively understood through Fig.14.4, which suggests that there is little or
no scattering when l > lmax = ka. Hence at a fixed k, as l increases the phase
shift must decrease since we approach and then surpass lmax. To see this point
more formally consider the radial differential equation for Al(kr)∙

1

r
∂2rr −

µ
l(l + 1)

r2
+ v(r)

¶
+ k2

¸
Al(k, r) = 0.

As l increases the effective potential l(l+1)r2 +v(r) gets more and more dominated

by the l(l+1)
r2 term. Therefore the radial equation at large l becomes more and

more like the one for the free particle, which implies that for large l the radial
wavefunction Al(k, r) approaches the free particle wavefunction jl (kr) . Thus,
at large l we may approximate Eq.(14.34), which determines the phase shift, by
the following expression

e2iδl ' (1 + 2iδl + · · · ) ' 1− 2ik
Z ∞
0

drr2jl(kr)v(r)jl(kr)
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If the range of v(r) is small, the contributions to the integral come from the
vicinity of r ∼ 0, where we can use jl(kr)→ (kr)l/(2l + 1)!!. Therefore for large
l we obtain the expression

δl ' −
k2l+1

[(2l + 1)!!]2

Z ∞
0

r(2l+2)v(r)dr.

Now suppose V (r) is approximated by a constant V0 within the range r < a.
Then we obtain

δl ' −
2mV0a

2

~2
(ka)2l+1

(2l + 3) [(2l + 1)!!]2
.

This expression decreases rapidly for l ¿ ka, showing that indeed there is a
maximum angular momentum lmax ∼ ka beyond which the phase shift vanishes.

14.8.3 Low energy scattering and partial waves

Consider the low energy scattering where very few partial waves contribute to
the total cross section, as described above. In particular suppose ka < 1 so
that only the l = 0 partial wave contributes. Then the total cross section is
determined just by δ0 (k)

for k → 0 :
dσ

dΩ
' 1

k2
sin2 δ0, σtot '

4π

k2
sin2 δ0. (14.38)

This differential cross section is totally independent of the direction of obser-
vation, thus the scattering at low energies is isotropic. As the energy increases
the angular dependence becomes more and more significant.

14.8.4 Connection with the eikonal approximation

We now examine the scattering amplitude

f(k, θ) =
1

2ik

∞X
l=0

(2l + 1)Pl(cos θ)
h
e2iδl(k) − 1

i
for large energies. Since (ka) ∼ lmax is large, we can approximate the sum over
l by a continuous integral over a continuous variable l; therefore,

f(k, θ) =
1

2ik

Z ∞
0

dl(2l + 1)Pl(cos θ)
h
e2iδk(k) − 1

i
This integral my be written in terms of the impact parameter by writing l = kb
as explained in the discussion related to Fig.14.4. Then dl = kdb and (2l+1) ≈
2kb, and Pl(cos θ) = Pkb(cos θ). Now, for large k and small θ, in the regime
kbθ = finite, the Legengre polynomial becomes the zeroth Bessel function

Pkb(cos θ) →
k=big,θ=small

J0(kbθ).
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Furthermore we can write δl(k) = δkb(k) = ∆ (k, b) and obtain

f(k, θ) = −ik
Z ∞
0

bdbJ0(kbθ)
h
e2i∆(k,b) − 1

i
This expression is the scattering amplitude in the eikonal approximation when
δl(r) is replaced by ∆l(b).
Now, since the optical theorem is satisfied in the partial wave method we

can conclude that it is also satisfied in the eikonal approximation.

14.8.5 Finite range potential

Consider the radial differential equationµ
1

r
∂2rr −

l(l + 1)

r2
− v(r) + k2

¶
Al(k, r) = 0

The boundary conditions to the above equations are

r→ 0 Al(k, r) → rl

r→∞ Al(k, r)→ al
e−ikr

r
+ bl

eikr

r

The coefficients al (k) , bl (k) are computed in principle by solving the differential
equation. As we have learned their ratio gives the phase shift

exp (2iδl (k)) = (−1)l+1
bl
al
.

Consider a finite range potential that vanishes outside of a range a. The
vanishing could be smooth, but for simplicity we will assume an abrubt drop to
zero potential. An example is the spherically symmetric well or barrier. Then,
the radial differential equation takes the form³

1
r∂

2
rr −

l(l+1)
r2 + k2

´
A
(out)
l (k, r) = 0 r > a³

1
r∂

2
rr −

l(l+1)
r2 − v(r) + k2

´
A
(in)
l (kr) = 0 r < a

The solutions are given as follows. For r > a the outside solution is written in
terms of the free particle spherical Bessel functions

r > a : Aout
l (kr) = cl

³
h∗l (kr) + e2iδl(k)hl(kr)

´
where we have already identified the phase shift as one of the ratio of the two
terms as explained before. This can also be written in the form

Aout
l (r) = cle

iδl [cos δljl(kr)− sin δlnl(kr)]
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Similarly there is some solution Ain
l (r) for r < a, which is assumed to satisfy the

correct boundary condition at r = 0. The logarithmic derivatives of the inside
and outside solutions must match at r = a.µ

1

Aout
l

r∂rA
out
l

¶
r=a

=

µ
1

Ain
l

r∂rA
in
l

¶
r=a

≡ γinl

The left side of this equation givesµ
1

Aout
l

r∂rA
out
l

¶
r=a

= ka
cos δl j

0
l (ka)− sin δl n0l (ka)

cos δl jl (ka)− sin δl nl (ka)

where j0l (z) = ∂zjl (z) and n0l (z) = ∂znl (z) . From the matching condition we
can solve for δl (k) and obtain

tan δl =
(ka) j0l (ka)− γinl jl (ka)

(ka)n0l (ka)− γinl nl (ka)
.

Once γinl is computed, this equation determines the phase shift for every l and
every k.

14.8.6 Hard Sphere Scattering

Consider the potential

V (r) =

½
0 for r > a
∞ for r < a

This represents an impenetrable sphere. Therefore the solution inside is zero
Ain
l (k, r) = 0. The matching condition requires A

out
l (k, a) = 0 at r = a. Using

the solution obtained above gives

tan δl (k) =
jl (ka)

nl (ka)
, or e2iδl(k) = −h

∗
l (ka)

hl(ka)
.

The phase shifts for this potential are now known for any l. For example, for
l = 0 we have

tan δ0 =
j0(ka)

n0(ka)
=

sin(ka)/ka

− cos(ka)/ka = − tan(ka)

which gives
δ0 = −ka.

One can show generally that the sign of the phase shift is the opposite sign as
the potential. That is, for a repulsive potential the sign is negative and for an
attractive potential the sign is positive. In the present case the hard sphere
is a repulsive potential, and we see explicitly that the sign computed above is
consistent with the expectation.
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The total cross section is

σtot =
4π

k2

X
l

(2l + 1) sin2 δl

=
4π

k2
sin2 δ0 + · · ·

=
4π

k2
sin2(ka) + · · ·

where the dots · · · represent the contribution from higher partial waves.
At low energies the l = 0 term dominates. Therefore we get the low energy

limit of the cross section for small ka as

σtot ' 4πa2.

This value is 4 times the classical geometric cross section of a disk πa2. We see
that the quantum effect is very significant at low energies.
At high energies we compute the phase shift exp (2iδl (k)) = −h∗l (ka)/hl(ka)

by using the asymptotic forms of the Bessel functions. These differ according
to whether l < ka or l > ka. When l > ka the asymptotic limit of hl(ka) is real
and therefore δl (k)→ 0. On the other hand for l < ka we find the asymptotic
limit hl(ka) → exp (ika− i (l + 1)π/2) /ka, and this gives exp (2iδl (k)) →

k→∞
exp

¡
2i
¡
−ka+ lπ2

¢¢
, or

δl (k) →
k→∞

−ka+ l
π

2
for l < ka.

This gives the high energy cross section

σtot =
4π

k2

kaX
l=0

(2l + 1) sin2
³
ka− l

π

2

´
.

To get an estimate of the sum we may replace sin2
¡
ka− lπ2

¢
by the average

value of the sin2 function, which is 1/2, and replace the sum by an integral.
Then we obtain

σtot =
4π

k2
1

2

Z ka

0

2l dl ' 4π

k2
(ka)2

2
= 2πa2.

This value of the high energy quantum cross section is still twice as big as the
classical geometrical cross section.
To understand the origin of the factor of two consider the scattering ampli-

tude at high energies

f (k, θ) =
1

2ik

kaX
l=0

(2l + 1)
³
(−1)l exp (−2ika)− 1

´
Pl (cos θ)
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The differential cross section dσ/dΩ = |f (k, θ)|2 for this expression is plotted in
Fig.14.6. We see a very sharp peak in the forward direction at small values of θ
as shown in the figure, followed by a uniform smooth curve for most of the range
from small θ up to θ = π. The hight of the forward peak is [dσ/dΩ]θ=0 = ka3/2,
while the average hight of the smooth part is a2/4

this area 
πa2 

this area 
πa2 

θ=4/ka θ=π 

k a3/2 

}a2

Fig. 14.6 - Forward peak.

The width of the forward peak vanishes as ∆θ ∼ 4/ka, but the area under
the forward peak is πa2 and does not vanish as k increases. The area under
the curve for most of the full range is also πa2. Thus the total cross section of
2πa2 is accounted for by the forward peak and the rest of the differential cross
section. The classical cross section of πa2 misses the forward peak.

14.9 Inelastic scattering

14.9.1 Unitarity

14.9.2 Black holes

Inelastic scattering

If the target is not just a point particle, but has some structure, such as a pro-
ton made of quarks, or a nucleus made of nucleons, etc., then, besides elastic
scattering, there are additional phenomena that happen in a collision. The tar-
get may get excited to a new state, the initial particle may be absorbed and
a new particle may come out, or many particles may emerge in the final state



14.9. INELASTIC SCATTERING 485

in a high energy collision, etc.. When all phenomena of both target and pro-
jectiles are taken into account the overall probability or unitarity is conserved,
however the probability of one type of species of particles appears not to be
conserved by itself. In potential scattering theory (which is the formalism used
here)phenomena such as particle creation and annihilation cannot be described
since one deals with the wavefunction ψ (r, t) of a single species of particles.
Since one can keep track only of one type of particle,probability or unitarity
will appear to be violated when one attempts to describe inelastic scattering in
this formalism. Effectively, one can try to describe the violation of unitarity as
being due to a complex potential V (r) .

Elastic and inelastic cross sections

Here we will assume that spherical symmetry is valid, so one can analyze the
scattering in terms of partial waves. We will also assume that outside the target
region the potential decreases to zero, so that at fixed l the outgoing wave is a
spherical wave for a free particle. The scattering amplitude f (k, θ) has both an
elastic and an inelastic part. The elastic part is the one that corresponds to the
one species of particles that is present in the in-going beam and then detected
by an observer after the scattering. The wavefunction ψ (r,t) that describes the
probability amplitude of this particle satisfies the Schrödinger equation with a
complex potential V (r). Therefore we may apply the same reasoning as before,
and derive that the wavefunction in spherical coordinates

ψE (r,t) =

r
2

π

X
lm

A
(elastic)
l (k, r) Ylm (θ, φ) (14.39)

has the asymptotic behavior that was derived in the previous formalism

A
(elastic)
l (kr) →

r→∞

−1
2ikr

n
e−i(kr−lπ/2) − Sl (k) e

i(kr−lπ/2)
o
. (14.40)

The only difference is that when there is inelastic scattering the amplitude of
the outgoing wave is less than one

|Sl (k)| < 1. (14.41)

The elastic scattering amplitude is given in terms of Sl (k) as before

fel (k, θ) =
1

2ik

X
l

(2l + 1) Pl (cos θ) (Sl (k)− 1) (14.42)

and the elastic cross section is

σel (k) =

Z
dΩ

¯̄
fel (k, θ)

¯̄2
(14.43)

=
π

k2

X
l

(2l + 1) |Sl (k)− 1|2
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On the other hand we can obtain the total cross section by following the same
steps as in the derivation of the optical theorem. We had seen that the number
of particles taken out of the initial beam per second is given in terms of the
scattering amplitude in the forward direction. In the present case the same
reasoning givesµ

number of particles taken
out of the initial beam

¶
=

vk

(2π)
3/2

4π

k
Im
£
fel (k, 0)

¤
(14.44)

The initial flux vk/ (2π)
3/2 is also given as before in terms of the velocity vk =

~k/m. The ratio of these quantities is the total cross section, therefore

σtot (k) =
4π

k
Im
£
fel (k, 0)

¤
(14.45)

=
2π

k2

X
l

(2l + 1) [1−Re (Sl (k))] .

Finally, using the fact that the total cross section is the sum of the elastic and
inelastic cross sections

σtot = σel + σinel (14.46)

we derive the inelastic cross section

σinel (k) =
π

k2

X
l

(2l + 1)
h
1− |Sl (k)|2

i
. (14.47)

If the phase shift δl (k) defined by

Sl(k) = e2iδl(k) = 1− 2ik
Z ∞
0

dr r2 jl(kr) v(r)Al(k, r) (14.48)

were real, then |Sl (k)| would have been 1 and the inelastic cross section would
have vanished. This is certainly the case when the potential is real, as we have
proven before. But for a complex potential V (r) the phase shift is complex and
the inelastic cross section is non-zero.

Black sphere scattering

As an example of inelastic scattering consider an ideal black sphere. It has the
property of absorbing any particle that touches it. Particles that do not touch
it continue their travel unaffected. This is similar to a black hole that swallows
all matter that come within its horizon. Thus, the potential V (r) is such that

V (r) =

½
r < a : complete absorbtion
ria : V = 0

(14.49)

To take this property into account consider angular momentum semi-classically

�L = r× p (14.50)

~l ≈ b× ~k
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where b is the impact parameter b = r |̂r× p̂|. If the impact parameter is
smaller than the radius a of the black sphere then the particle will be completely
absorbed since it will touch it, and if it is larger than a there will be no scattering
at all. Then the properties of the potential imply the following properties of
Sl (k)

l < ka : Sl (k) = 0 (no outgoing wave) (14.51)

l ≥ ka : Sl (k) = 1 (zero phase shift)

With these we may compute the elastic and inelastic cross sections by plugging
the values of Sl (k) in the expressions given above. We obtain

σel =
π

k2

ka−1X
l=0

(2l + 1) |0− 1|2 + π

k2

∞X
l=ka

(2l + 1) |1− 1|2

=
π

k2

½
2
(ka− 1) ka

2
+ ka

¾
+ 0 (14.52)

= πa2

and similarly σinel = πa2, σtot = 2πa
2. Also, the elastic differential cross section

is

dσel
dΩ

=
1

4k2

¯̄̄̄
¯
ka−1X
l=0

(2l + 1) Pl (cos θ)

¯̄̄̄
¯
2

(14.53)

Black hole radiation

The classical “black” properties of a black hole derive from the fact that the
gravitational attraction is extremely large within its horizon. The horizon is the
surface of a sphere centered at the black hole and whose radius is given by the
Schwarzchild radius

a =
GM

c2
(14.54)

where G is Newton’s gravitational constant, M is the mass of the black hole
and c is the velocity of light. Any matter that falls inside its horizon is com-
pletely absorbed. Light or other signals cannot be emitted by a black hole
because their paths bend under the gravitational attraction so strongly that
they cannot escape the black hole. This is why the black hole is “black”. How-
ever Hawking showed that in quantum mechanics black holes do radiate energy
just like a black body, contrary to the expectation in classical mechanics. To
understand this quantum mechanical effect we make an analogy between the
black sphere scattering described above and the black hole radiation. Classi-
cally, the black sphere of the previous section has very similar properties to a
black hole. Namely, all matter that comes within the radius a is completely
absorbed, and the classical cross section for emission is zero. However, in the
quantum calculation we found out that the black sphere does radiate with a
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cross section

dσel
dΩ

=
1

4k2

¯̄̄̄
¯
ka−1X
l=0

(2l + 1) Pl (cos θ)

¯̄̄̄
¯
2

(14.55)

σel = πa2.

This is the analog of the Hawking radiation. This is simultaneously coupled
with a violation of unitarity, since |Sl (k)| differs from 1 for l < ka. Hawking’s
computation has raised many puzzles that remain unsolved today. These include
the violation of unitarity or the “information puzzle” as well as issues revolving
around “black hole thermodynamics”. If the black hole radiates like a black
body one wonders about its final state. Does it completely disappear or is there
a remnant? If it completely disappears then all the information that went in
comes out only in the form of thermal radiation, which is white noise devoid
of any detailed quantum numbers except for the mass, spin and charge that
characterizes a black hole. On the other hand the matter that went in carries
all sorts of other quantum numbers. Hence there is loss of information. This is
called the“information puzzle” and it is coupled to the violation of unitarity.
There has been a lot of inconclusive debate on what really goes on at the

fundamental level. Some, including Hawking, believe that the laws of Quantum
Mechanics break down and that they should be changed, others believe that the
calculation as well as the physics is incomplete but have not managed to do it
right either so far. Here is our point of view at the current time (1996). In the
case of inelastic scattering we know that unitarity is re-established by taking
into account all microstates of the projectiles and of the target. This requires
a change of formalism to describe correctly the physics at the quantum level
for the systems that are involved (see below for an example). The analogous
steps are required to understand correctly black hole phenomena. However, in
the case of the black hole the physical theory that describes its structure is not
yet fully available. In the first place, one needs a correct theory for quantum
gravity, and we know that a naive quantization of Einstein’s General Relativity
(which predicts black holes classically, and Hawking’s radiation semi-classically)
is not the correct quantum theory. Superstring theory is the only theory known
to have a consistent description of quantum gravity. Its generalizations that
includes “D-branes”, which is under development in 1996, seems to have the
correct ingredients for solving the puzzles in terms of the microstates of a black
hole. These questions are of fundamental importance because it is believed that
their resolution would lead us to the fundamental unified theory for all physical
phenomena.

14.9.3 Inelastic electron scattering
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14.10 Analytic properties of the scattering am-
plitude

14.10.1 Jost function

14.10.2 Unitarity

14.10.3 Bound states

14.10.4 Regge poles



490 CHAPTER 14. SCATTERING THEORY

14.11 Problems

1. Consider the Lippmann-Schwinger formalism for scattering |ψi+ = |ψi+
1

k2−p2/~2+iε
2mV
~2 |ψi+, and apply it in one dimension as follows:

(a) Derive the x-space version of this equation by computing the Green’s
function G(x, x0) = hx| 1

k2−p2/~2+iε |x0 >.

(b) Apply the formalism to the one dimensional problem with an attrac-
tive delta function potential V = − ~

2γ
2m δ (x), and compute fully the

wavefuntion for all x.

(c) Consider x > 0 or x < 0 and then give the scattering amplitude
for the transmitted and reflected waves (i.e. forward and backward
scattering).

(d) What can you tell about the bound state spectrum by analysing the
scattering amplitude that you have derived?

2. Prove the identity in Eq.(14.8) for the expansion of a plane wave in terms
of spherical waves at asymptotic values of r. Hint: use the expansion of
the free particle wavefunction in an angular momentum basis as given in
Eq.(6.115,??)

exp (ik · r)=4π
∞X
l=0

lX
m=−l

Ylm(Ωr)Y
∗
lm(Ωk) i

l jl(kr)

and use the asymptotic form of the Bessel functions jl(kr). Then perform
the sum over l,m by using completeness properties of spherical harmonics
to obtain the dot products hr̂| ± k̂i = δ (Ωr ∓ Ωk) .

3. A particle of mass m is scattered in a 3-dimensional harmonic oscillator
potential with a cutoff V (r) = 1

2mω2
¡
r2 − a2

¢
θ(a − r) (the form of V is

analogous to the finite well potential).

(a) What are the two possible high energy approximations to the scat-
tering amplitude? Write the expressions for both high energy ap-
proximations with all the details (limits, factors, etc.). Perform any
integrals that are not hard and simplify your expressions as much as
possible.

(b) What are the two low energy approximations? Briefly mention the
underlying reason for why this is a good approximation. What is
the range of validity for either one in terms of the parameters of the
given potential?

(c) Compute the l = 0 partial wave phase shift by solving the radial
Schrödinger equation with the correct boundary conditions.
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4. Prove

σtot =
m2

π~4

Z
d3r d3r0V (r)V (r0)

sin2 k |r− r0|
k2 |r− r0|2

in each of the following ways

(a) By integrating the differential cross section computed using the 1st

Born approximation.

(b) By applying the optical theorem, including the 2nd Born approxima-
tion to the forward scattering amplitude (since f (1)(k, 0) is real in
the 1st Born approximation).

5. Consider the delta-shell potential

V (r) = V0δ(
|r|
r0
− 1).

(a) Compute the scattering amplitude in the first Born approximation.
Under what conditions is the approximation valid at high or low
energies? What is the width of the resulting high energy diffraction
peak?

(b) Calculate the scattering amplitude in the Eikonal approximation giv-
ing explicitly the phase ∆(k, b) and carefully specifying the range of
integration for the impact parameter b. What is the range of validity
of this approximation ?

(c) Using the integral equation approach compute the radial wavefuc-
tion Al (k, r) exactly. Furthermore, derive an exact expression for
the phase shift exp (2iδl (k)) . Then analyze the low energy limit of
the scattering amplitude and compare to your results above; is there
agreement? What is the low energy limit, and the angular depen-
dence, of the differential cross section?

6. Consider the scattering of a particle from a set of N identical potentials
which are centered at points ri, i = 1, 2, · · · , N , that is V (r) =

PN
i=1 v(r−

ri). Show that the differential cross section in lowest Born approximation
is given by

dσ

dΩ
=

dσ0
dΩ

¯̄̄̄
¯
NX
i=1

eiq·ri

¯̄̄̄
¯
2

,

where ~q is the momentum transfer in the collision, and dσ0
dΩ is the differ-

ential cross section for the scattering off one potential. Assume now that
these scattering potentials are equally spaced on a line and discuss the
angular dependence of the cross section. What is the physical situation
that is roughly simulated by this model?

7. Consider the spherical potential well V (r) = V0θ(a − r) with either sign
of V0. By solving the differential equation with the correct boundary con-
ditions obtain
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(a) an explicit expression for the l = 0 phase shift, involving only trigono-
metric functions.

(b) an expression for arbitrary l, involving spherical bessel functions. In
the limit V0 → +∞ does your result agree with the one discussed in
class for the hard sphere?

(c) How does the sign of the phase shift depend on the sign of V0 (the sign
of the phase shift is directly correlated with the attractive/repulsive
nature of the potential, if the potential does not change signs).

8. Consider the delta-shell potential

V (r) = V0δ

µ
|r|
r0
− 1
¶
.

(a) Using either the differential or integral equation approach (recom-
mended) calculate the phase shifts e2iδl for any angular momentum
l . Then show that δl(k) → ∆(k, b) in the range of validity ( use
l ∼ kb, thus identifying δl(k) ∼ ∆(b, k)).

(b) Compare the cross sections for 1st Born and partial wave approaches.

9. It can be shown that for the potential V = − 2ba2e−ar

[be−ar+1]2 the solution of the
l = 0 Schrödinger equation which behaves like an incoming spherical wave
is

ψ
(−)
l=0(k, r) =

e−ikr

r

2k[be−ar + 1] + ia[be−ar − 1]
[be−ar + 1](2k − ia)

while the one that behaves like an outgoing spherical wave is ψ(+)l=0(k, r) =

ψ
(−)
l=0(−k, r) =

³
ψ
(−)
l=0(k, r)

´∗
.

(a) Find the partial wave scattering amplitude Sl=0(k).

(b) In general the poles of Sl (k) on the positive imaginary axis at k =
ian, with an > 0, correspond to bound states with energy En =
−~2a2n/2m. From the analyticity properties of Sl=0(k) computed in
part (a), obtain the number of l = 0 bound states for various regions
of the parameter space a, b (consider all signs and ranges from −∞
to +∞) and give the binding energies.

(c) Does a plot of the potential V (r) for the various signs and regions of
a, b that are relevant for part (b) agree qualitatively with the bound
state structure you find? Give the plots of the potential energy and
present your reasoning..

10. Recall that the general form of the scattering amplitude is given by f =
−2π2hk0|(2m/~2)V (r) |ki+. Consider a potential V whose matrix ele-
ments are given by

hr0|V |ri = δ3(r0 − r)V0(r) + λ u(r0)u(r)
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with V0(r) describing a hard sphere, i.e. V0(r) =∞ for r < a, and V0(r) =
0 for r ≥ a, while u(r) is a Yukawa-like function u(r) = exp(−r/b)/r .

(a) What is a high energy approximation to the scattering amplitude?

(b) If you drop entirely the hard sphere part, solve exactly for the wave-
function and scattering amplitude. Which partial waves contribute to
this scattering amplitude ? (Hint: use the integral equation approach
and note that you can find a relation and solve for the unknown in-
tegral by integrating once more on both sides of the equation).

(c) Keeping all parts of the potential, show that the l 6= 0 phase shift is
independent of u (r), while the l = 0 phase shift satisfies

2kbd cot(δ0 + ka) = (k2b2 + 1)2 + (k2b2 − 1) d,

where d = 4πm
~2 λb3 exp(−2a/b) is a dimensionless combination of the

constants.

11. Consider the elastic scattering of a fast electron by a hydrogen atom in
the ground state. We will treat the system as a two-body system of two
electrons in the presence of a static nucleus. The Hamiltonian is H0 +H 0

where H0 = H(atom bound electron)+H(free electron kinetic energy) and
H 0 is the potential energy due to the interaction

(a) Write the potential energy H 0 of the fast electron taking into account
its interaction with the nucleus and the bound electron in the H-atom.

(b) The initial state |ii describes the bound electron in the ground state
plus the free electron with some momentum. The final state |fi is
the bound electron in the ground state and the free electron with
a scattered momentum. In an appropriate approximation give the
expression for the scattering amplitude without performing any in-
tegrals but carefully labelling all integration variables. When is the
approximation valid ?

(c) Compute the differential cross section using the integrals
R
d3r e

i�q·�r

r =
4π
q2 and h0|ei�q·�r|0 >= 16

(4+q2a20)
2 , where |0i is the ground state of H-

atom and a0 is the Bohr radius.
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