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Preface

Over the years, I have taught a two semester graduate course as well
as a similar two semester undergraduate course on quantum mechan-
ics at the University of Rochester. The present book follows that
material almost word-for-word. I have not attempted to polish the
writing, and these lecture notes, therefore, reflect the informality of
the class room. In fact, I even considered presenting the material in
the original format, but lectures have a way of ending and starting in
the middle of a topic, which is neither very appropriate nor expected
for a book. Nonetheless, the subject is presented exactly in the order
it was taught in class.

Some of the material is repeated in places, but this was deemed
important for clarifying the lectures. The book is self-contained, in
the sense that most of the steps in the development of the subject
are derived in detail, and integrals are either evaluated or listed when
needed. I believe that a motivated student can work through the
notes independently and without difficulty. Throughout the book, I
have followed the convention of representing three dimensional vec-
tors by bold-faced symbols.

In preparing lectures for the course, I relied, at least partially,
on the material contained in the following texts:

1. A. Das and A. C. Melissinos, “Quantum Mechanics: A Modern
Introduction”, Gordon and Breach, New York (1986).

2. L. I. Schiff, “Quantum Mechanics”, McGraw-Hill, New York
(1968).

3. R. Shankar, “Principles of Quantum Mechanics”, Plenum, New
York (1980).

Several of my colleagues at Rochester and at other universities,
as well as many of my students, have influenced the development of
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these lectures. Most important were, of course, the excellent ques-
tions raised by students in class and during private discussions. I
sincerely appreciate everyone’s input.

The lecture notes were originally typed in LATEX by Judy Mack,
who deserves a lot of credit for her professionalism and sense of per-
fection. The present format of the book in LATEX is largely due to the
meticulous work of Dr. Alex Constandache, who succeeded in giving
it a more “user friendly” appearance. Most of the figures were drawn
using PSTricks, while a few were done using Gnuplot.

It is also a pleasure to thank the editors of the TRiPS series, as
well as the publisher, for being so accommodating to all my requests
in connection with the book.

Finally, I thank the members of my family, and in particular my
younger sister Jhilli, for patient support and understanding during
the completion of this work in Orissa, India.

Ashok Das
Rochester

Preface to the second edition

The modifications in this second edition of the book arose mainly
from the requests by various readers. Several typos in the earlier
version have been fixed and the presentation made clearer at some
places. The figures now carry captions with references to them in the
text. In addition to the numerous exercises that were already present
in the text, I have now included a few selected problems at the end
of every chapter in the present edition. Schrödinger equation with a
periodic potential and Bloch functions are discussed in the chapter on
symmetries (chapter 6) as an example of finite translation symmetry
in quantum mechanics.

Ashok Das
Rochester

 



Chapter 1

Review of classical mechanics

In this lecture, let us review some of the essential features of classical
mechanics which we will use in the study of quantum mechanics.

1.1 Newton’s equation

Let us consider a particle of mass m, moving in 1-dimension, which
is subjected to a force F . Then, from Newton’s law, we know that

ma = F, (1.1)

where a denotes the acceleration of the particle. This is known as
Newton’s equation. If x denotes the coordinate of the particle, then,
defining its potential energy as (we have chosen the reference point
to be the origin for simplicity)

V (x) = −
x∫

0

dx′ F (x′), (1.2)

we can write Newton’s equation, (1.1), also as

m
d2x

dt2
= F = −dV

dx
. (1.3)

This is a second order differential equation and can be solved uniquely
provided we are given two initial conditions, namely, the position of
the particle, x0 at t = 0 as well as its initial velocity ẋ0. In such a
case, we can determine the trajectory of the particle, x(t), uniquely.

1.2 Lagrangian approach

Another way of looking at the same problem is to define a scalar
(scalar under Lorentz transformations) called the Lagrangian as

L = T − V ≡ L(x, ẋ), (1.4)

1



2 1 Review of classical mechanics

where T and V represent, respectively, the kinetic and the potential
energies of the particle. The Lagrangian may, in principle, also have
explicit time dependence. However, we will not consider such systems
in our discussions.

The integral of the Lagrangian along a trajectory defines an
action associated with the Lagrangian for that particular trajectory,
namely,

S[x] =

tf∫

ti

dt L(x, ẋ). (1.5)

The square bracket is written to emphasize the fact that the action,
S, is a function of a function. In mathematical language S is said to
be a functional of x. As one can easily see, the value of the action
depends on the path or the trajectory (see Fig. 1.1) along which the
integration is carried out.

t

x

ti

tf

Figure 1.1: A trajectory between the initial time ti and the final time
tf .

1.3 Principle of least action

The principle of least action says that the actual trajectory, which
the particle follows, is such that the action associated with the La-
grangian along that trajectory is a minimum. In fact, what is strictly
true is that the action is an extremum along the actual trajectory.
In most familiar cases, however, it happens to be the minimum and
hence the name. But there are situations where it can be a maximum
as well.



1.3 Principle of least action 3

Consequences. Suppose we have a function f(x) which has a mini-
mum (extremum) at x0 as shown in Fig. 1.2. This clearly implies that
the slope of the function at x0 must be zero. What this means is that

|

x

f
(x
)

x0

Figure 1.2: A function f(x) with a minimum at x0.

if we displace the function infinitesimally away from its minimum, we
will obtain, from a Taylor expansion of the function,

f(x0 + η) = f(x0) + η
df

dx

∣∣∣∣
x0

+O(η2),

or, δf = f(x0 + η)− f(x0) = 0, (1.6)

to the lowest order in the displacement. Namely, the function is
stationary at its minimum against infinitesimal displacements.

Let us now apply the same ideas to the case of the action. Let
xcl(t) be the actual trajectory of the particle, also known as the clas-
sical trajectory, which minimizes the action. Let η(t) represent an
infinitesimal displacement from the classical trajectory shown in Fig.
1.3. However, since in this case the end points of the trajectory are
held fixed, the displacement has to satisfy the constraints

η(ti) = η(tf ) = 0. (1.7)

The infinitesimal change in the action is given by

δS = S[xcl + η]− S[xcl]

=

tf∫

ti

dt [L (xcl + η, ẋcl + η̇)− L (xcl, ẋcl)]

=

tf∫

ti

dt

[
η
∂L

∂x

∣∣∣∣
xcl

+ η̇
∂L

∂ẋ

∣∣∣∣
xcl

+O(η2)
]
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t

x

xcl

ti

tf

Figure 1.3: An infinitesimal change from the classical trajectory xcl.

=

tf∫

ti

dt

[
η
∂L

∂x
+

d

dt

(
η
∂L

∂ẋ

)
− η d

dt

∂L

∂ẋ

]

xcl

+O(η2)

=

(
η
∂L

∂ẋ

∣∣∣∣
xcl

)∣∣∣∣
tf

ti

+

tf∫

ti

dt η

[
∂L

∂x
− d

dt

∂L

∂ẋ

]

xcl

+O(η2). (1.8)

The first term, on the right hand side of (1.8) vanishes because of
(1.7), namely,

η(ti) = η(tf ) = 0.

Furthermore, we recognize from the previous example (see (1.6)) that
the action functional must be stationary at its minimum. Thus, to
the lowest order, we obtain

δS = 0 =

tf∫

ti

dt η

[
∂L

∂x
− d

dt

∂L

∂ẋ

]

xcl

. (1.9)

Since η(t) is an arbitrary function, the only way (1.9) can be satisfied
is if

(
∂L

∂x
− d

dt

∂L

∂ẋ

) ∣∣∣∣
xcl

= 0. (1.10)

In other words, the actual trajectory of the particle, xcl, must satisfy

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (1.11)
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This is known as the Euler-Lagrange equation of motion for the the-
ory described by the action (1.5) and xcl is a solution of this equation.

So far, we have talked about particles in one dimension. For
a particle in n dimensions, with coordinates xi, i = 1, 2, . . . , n, the
Euler-Lagrange equations can be shown to have the form

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0. (1.12)

Connection with Newtonian mechanics. Let us consider the familiar
example of the 1-dimensional particle in motion. Then, we have

T =
1

2
mẋ2, V = V (x),

so that

L = T − V =
1

2
mẋ2 − V (x), (1.13)

which leads to

∂L

∂x
= −∂V

∂x
,

∂L

∂ẋ
= mẋ. (1.14)

The Euler-Lagrange (E-L) equation, (1.11), in this case, has the form,

− ∂V

∂x
− d

dt
(mẋ) = 0,

or, m
d2x

dt2
= −∂V

∂x
. (1.15)

Thus, we see that the Euler-Lagrange equation of motion actually
gives rise to Newton’s equation and is equivalent to it.

In discussions so far, we have assumed that L = T −V and that
the potential energy depends only on the position and not on the
velocity. However, there are physical situations where the force does
depend on the velocity. A familiar example is the force experienced
by a charged particle moving in a magnetic field,

F =
q

c
v×B, (1.16)

where q denotes the charge of the particle and c is the speed of light in
vacuum. In such cases, to obtain the correct equations of motion, one
has to introduce a velocity dependent generalized potential energy.
For example, for the case of a charged particle with electromagnetic
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interactions, we have (we are assuming here that the particle experi-
ences both an electric as well as a magnetic force)

L = T − U =
1

2
mv · v − qΦ+

q

c
v ·A, (1.17)

where Φ represents the scalar potential whileA is the vector potential
and they are related to the electric and the magnetic fields through

E = −∇Φ− 1

c

∂A

∂t
,

B = ∇×A. (1.18)

Exercise. Work out the equation of motion for the particle, starting from the
Lagrangian (1.17), namely, derive the Euler-Lagrange equations for such a particle.

It is clear, however, that the generalized potential energy U in
(1.17) can not be interpreted as the potential energy of the particle,
since the magnetic force does not do any work, being perpendicular
to the velocity. Therefore, in general situations, it is improper to
divide the Lagrangian into kinetic and potential energy terms. It is
rather assumed that the Lagrangian, as a single entity, is a function
of the position and the velocity, L = L(x, ẋ).

Advantages of the Lagrangian approach. We may ask at this point
whether one gains anything by following this approach since, in the
end, it seems to lead to the same Newton’s equations of motion. The
simple answer to this is that there are several nice features in the
Lagrangian approach. First of all, the Lagrangian is a scalar and is,
therefore, much easier to handle, in general, than vectors and tensors.

Second, the Lagrangian gives rise to equations of motion which
have the same form independent of the coordinate system being used.
We can easily convince ourselves of this by recognizing that nowhere,
in the derivation of the equations from the principle of least action,
did we utilize the fact that the coordinates are Cartesian. Thus, in
terms of generalized coordinates qi and q̇i, i = 1, 2, . . . n, we can write
L ≡ L(qi, q̇i) and the Euler-Lagrange equations take the forms

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
. (1.19)

Here qi can represent the coordinates of a particle in the Cartesian,
or the polar or in any other coordinate system. This has to be con-
trasted with Newton’s equations where the equations take very dif-
ferent forms in different coordinates.
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We can try to bring these equations, (1.19), as close to New-
ton’s equations as is possible by defining the generalized conjugate
momentum

pi =
∂L

∂q̇i
, (1.20)

and the generalized force

Fi =
∂L

∂qi
. (1.21)

Then, equation (1.19) becomes

dpi
dt

= Fi. (1.22)

Although the Euler-Lagrange equations take the same form in any
coordinate system, we should always remember that, in general, pi
does not represent the momentum of the particle, and neither is Fi

the force acting on it. In fact, if qi (for a fixed i) corresponds to
an angular variable θ, then the corresponding pi would represent an
angular momentum (component) of the particle and, similarly, Fi

would denote the torque acting on it.
In the Lagrangian approach it is also easy to recognize quantities

that are conserved. For example, if the Lagrangian is independent of a
particular coordinate, then we say that the corresponding coordinate
is a cyclic variable and the momentum conjugate to such a variable
is conserved. This can be seen as follows. If qi (for a fixed i) is cyclic,
then, ∂L

∂qi
= 0 and from the Euler-Lagrange equation, (1.19), we have

(for the particular i)

d

dt

∂L

∂q̇i
=

dpi
dt

=
∂L

∂qi
= 0. (1.23)

Hence pi (for the particular i) is conserved. In Newtonian mechanics,
if a Cartesian coordinate is cyclic the corresponding momentum is
also conserved. However, the situation in the case of the Lagrangian
is more general.

◮ Example. Let us now illustrate these with an example. Consider a particle
moving in a plane (2 dimensions) and subjected to a force.

L =
1

2
m(ẋ2 + ẏ

2)− V (x, y). (1.24)

We also assume that the functional form of the potential is such that it depends
only on the length of the vector. Thus,

V (x, y) = V (x2 + y
2). (1.25)
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To determine the equations of motion, (1.19), in Cartesian coordinates, we need

∂L

∂ẋ
= mẋ,

∂L

∂ẏ
= mẏ,

∂L

∂x
= −∂V

∂x
,

∂L

∂y
= −∂V

∂y
. (1.26)

The Euler-Lagrange equations, in this case, take the forms

d

dt

(

∂L

∂ẋ

)

=
∂L

∂x
⇒ m

d2x

dt2
= −∂V

∂x
, (1.27)

d

dt

(

∂L

∂ẏ

)

=
∂L

∂y
⇒ m

d2y

dt2
= −∂V

∂y
. (1.28)

We recognize these to be the Newton’s equations in the Cartesian coordinates and,
in this formulation, conserved quantities of the system are not that obvious. Let
us next derive the equations for the same system in polar coordinates within the
Lagrangian formalism. In polar coordinates, the form of the Lagrangian, (1.24),
can be determined by noting that the Cartesian and the polar coordinates are
related by

x = r cos θ ⇒ ẋ = ṙ cos θ − rθ̇ sin θ,

y = r sin θ ⇒ ẏ = ṙ sin θ + rθ̇ cos θ, (1.29)

so that

x
2 + y

2 = r
2
,

ẋ
2 + ẏ

2 = ṙ
2(cos2 θ + sin2

θ) + r
2
θ̇
2(cos2 θ + sin2

θ)

= ṙ
2 + r

2
θ̇
2
. (1.30)

Therefore, the Lagrangian (1.24) takes the form

L =
1

2
m(ẋ2 + ẏ

2)− V (x2 + y
2)

=
1

2
m(ṙ2 + r

2
θ̇
2)− V (r2). (1.31)

It follows now from (1.31) that

∂L

∂r
= −∂V

∂r
+mrθ̇

2
,

∂L

∂θ
= 0. (1.32)

Clearly, θ is a cyclic coordinate and, therefore, the corresponding conjugate
momentum must be conserved. The conjugate momenta have the forms

pr =
∂L

∂ṙ
= mṙ,

pθ =
∂L

∂θ̇
= mr

2
θ̇, (1.33)
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and we note that pθ represents the angular momentum of the particle. In this
case, the equations of motion, (1.19), take the forms

d

dt

∂L

∂θ̇
=
∂L

∂θ
⇒ dpθ

dt
=

d

dt
(mr2θ̇) = 0, (1.34)

which shows that angular momentum is conserved and the dynamical equation
follows from

d

dt

∂L

∂ṙ
=
∂L

∂r
⇒ dpr

dt
= mr̈ = mrθ̇

2 − ∂V

∂r
. (1.35)

Here, the first term on the right hand side represents the centrifugal force while
the second term gives a dynamical radial force. ◭

Exercise. Transform Newton’s equations, (1.27)-(1.28), from Cartesian coordi-
nates to polar coordinates.

1.4 Hamiltonian formalism

The Lagrangian is a function of the coordinates and the velocities,
which are considered to be independent variables

L ≡ L(qi, q̇i). (1.36)

The conjugate momenta are defined in (1.20) as

pi =
∂L

∂q̇i
, (1.37)

and the dynamical equations are given by the Euler-Lagrange equa-
tions (1.19),

d

dt

∂L

∂q̇i
=

dpi
dt

=
∂L

∂qi
. (1.38)

Given these, we can define another fundamental quantity asso-
ciated with the system, called the Hamiltonian, which is a function
of the coordinates and the momenta as

H ≡ H(qi, pi) =
∑

i

piq̇
i − L(qi, q̇i). (1.39)

Here qi and pi are treated as independent variables and q̇i’s become
derived functions of q’s and p’s. Such a transformation is known as



10 1 Review of classical mechanics

a Legendre transformation . It follows from (1.39) that

∂H

∂pj
= q̇j +

∑

i

pi
∂q̇i

∂pj
−
∑

i

∂L

∂q̇i
∂q̇i

∂pj

= q̇j +
∑

i

pi
∂q̇i

∂pj
−
∑

pi
∂q̇i

∂pj
= q̇j , (1.40)

∂H

∂qj
=
∑

i

pi
∂q̇i

∂qj
− ∂L

∂qj
−
∑

i

∂L

∂q̇i
∂q̇i

∂qj

=
∑

i

pi
∂q̇i

∂qj
− ∂L

∂qj
−
∑

i

pi
∂q̇i

∂qj
= − ∂L

∂qj
. (1.41)

Using the Euler-Lagrange equations (see (1.19)), (1.41) becomes

∂H

∂qj
= − ∂L

∂qj
= −ṗj. (1.42)

Thus, from (1.40) and (1.42), we see that the equations of mo-
tion, in the Hamiltonian formalism, take the forms

∂H

∂pi
= q̇i,

∂H

∂qi
= −ṗi. (1.43)

which are known as the Hamiltonian equations of motion. It is clear
that the n second order Euler-Lagrange equations in the Lagrangian
formalism have become 2n first order equations in the Hamiltonian
formalism. Given the initial values qi(0) and pi(0), one can determine
the solutions of the Hamiltonian equations uniquely.

Interpretation of the Hamiltonian. In the absence of nonconservative
forces, the Lagrangian can be written in Cartesian coordinates, in the
form

L = T − V =
1

2
m(ẋi)2 − V (xi). (1.44)

Furthermore, the conjugate momenta coincide with the actual mo-
menta in this coordinate system, namely,

pi =
∂L

∂ẋi
= mẋi. (1.45)

(The apparent mismatch of the indices is due to the fact that we are
ignoring the metric, which is the trivial Kronecker delta in Euclidean
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space.) In this case, therefore, we see that

H =
∑

i

piẋ
i − L =

∑

i

(
1

2
m(ẋi)2 + V (xi)

)

=
∑

i

(
p2i
2m

+ V (xi)

)
= T + V = E. (1.46)

Thus, the Hamiltonian corresponds to the total energy of the
system in the absence of nonconservative forces. Even though we
showed it in the Cartesian coordinates, this result holds in general.
For example, let us assume that, in a general coordinate system, the
kinetic energy has the form

T =
1

2

∑

i,j

Tij(q)q̇
iq̇j, Tij = Tji. (1.47)

Then, from the definition of the Lagrangian for such a system (with-
out any nonconservative forces)

L = T − V (q) =
1

2

∑

i,j

Tij(q)q̇
iq̇j − V (q), (1.48)

it follows that

pi =
∂L

∂q̇i
=
∑

j

Tij q̇
j, (1.49)

so that

∑

i

piq̇
i =

∑

i,j

Tij q̇
j q̇i = 2T, (1.50)

and we obtain

H =
∑

i

piq̇
i − L = 2T − (T − V ) = T + V. (1.51)

This shows that the Hamiltonian for such a system can be identified
with the total energy of the system.

Advantages of the Hamiltonian formalism. There are several advan-
tages in using the Hamiltonian description of a dynamical system.
First, the Hamiltonian equations of motion are first order equations
and are, therefore, sometimes easier to handle.
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Furthermore, the equations are symmetric in qi and pi. This is of
considerable help when cyclic coordinates are present. We know from
the Lagrangian description that when a cyclic coordinate is present,
the corresponding conjugate momentum is a constant of motion. This
continues to hold in the Hamiltonian formalism as well, since (if the
Lagrangian is independent of a coordinate, the Hamiltonian also is)

∂H

∂qi
= −ṗi = 0. (1.52)

However, the difference is that even in the presence of a cyclic coor-
dinate qi, the Lagrangian is a function of the corresponding velocity
q̇i. And therefore, we still have to solve n-equations. On the other
hand, in the Hamiltonian formalism if qi is cyclic, pi is a constant
and, therefore,

H ≡ H
(
q1, . . . , qi−1, qi+1 . . . qn, p1, . . . pi−1, α, pi+1, . . . pn

)
.

(1.53)

Consequently, the number of equations we have to solve is reduced.
Furthermore, it is easier to recognize other conserved quantities in
the Hamiltonian formalism.

◮ Example. Let us consider an arbitrary phase space variable ω = ω(q, p) which
does not depend on time explicitly. Then, its time evolution can be determined
simply as

dω

dt
=
∑

i

(

∂ω

∂qi
q̇
i +

∂ω

∂pi
ṗi

)

=
∑

i

(

∂ω

∂qi
∂H

∂pi
− ∂ω

∂pi

∂H

∂qi

)

≡ {ω,H}, (1.54)

where we have used Hamilton’s equations and the curly bracket denotes the Pois-
son bracket of two variables. Explicitly, the Poisson bracket of two phase space
variables a(q, p) and b(q, p) is defined to be

{a, b} =
∑

i

(

∂a

∂qi
∂b

∂pi
− ∂a

∂pi

∂b

∂qi

)

. (1.55)

Clearly,

dω

dt
= 0, if {ω,H} ≡ 0. (1.56)

Namely, a quantity is conserved if it has a vanishing Poisson bracket with the
Hamiltonian. Let us note that, since {H,H} = 0, this shows trivially that the
Hamiltonian or the total energy of the system is a constant in time. ◭
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From the definition of the Poisson bracket between any two vari-
ables on the phase space in (1.55), it is easy to check that they satisfy
the following relations

{η, ρ} = −{ρ, η} ,
{η, c} = 0, where c is a constant,

{η1 + η2, ρ} = {η1, ρ} + {η2, ρ} ,
{η1η2, ρ} = η1 {η2, ρ}+ {η1, ρ} η2. (1.57)

Furthermore, it follows from (1.55) that the Poisson bracket between
the coordinates and the momenta satisfy the simple relations

{
qi, qj

}
= {pi, pj} = 0,

{
qi, pj

}
= δij = −

{
pj, q

i
}
. (1.58)

These are known as the canonical Poisson bracket relations and given
the canonical Poisson bracket relations, the Poisson bracket between
any two phase space variables can be trivially calculated using the
identities given in (1.57).

So far, we have talked about the dynamics of particles. Parti-
cles, besides having a definite mass, are characterized by a definite
momentum and energy (p,E). Namely, particles travel in well de-
fined trajectories. When particles collide, they scatter in such a way
as to conserve the total momentum and the total energy of the sys-
tem. There is, of course, another kind of classical motion that we
are aware of, namely, the wave motion. It is the propagation of a
disturbance. Familiar examples of wave motion consist of ripples on
the surface of water, sound waves, electromagnetic waves and so on.
All such motions are governed by one equation, namely, the wave
equation, which has the generic form

∂2ψ

∂x2
− 1

v2
∂2ψ

∂t2
= 0, in one dimension,

∇
2ψ − 1

v2
∂2ψ

∂t2
= 0, in higher dimensions. (1.59)

Here ψ represents the disturbance, which can be the displacement
(height) of water from its normal surface in the case of ripples, or the
electric and the magnetic fields in the case of light waves. Further-
more, v represents the speed of propagation of the waves. Clearly, a
solution to the wave equation (1.59) is a plane wave of the form (in
one dimension)

ψ(x, t) = Ae−iωt+ikx, (1.60)



14 1 Review of classical mechanics

with

k2 =
ω2

v2
, (1.61)

where

k = wave number =
2π

λ
,

ω = angular frequency = 2πν. (1.62)

It follows from (1.61) and (1.62) that

λν = v. (1.63)

Thus, with each wave is also associated a pair of quantities (λ, ν)
or (k, ω). The constant A in (1.60) is called the amplitude of the wave
and I = |ψ|2 = |A|2 measures the intensity of the wave. As we can see
from the form of the solution in (1.60), contrary to particle motion
which is localized, the wave phenomenon is highly nonlocal in nature,
i.e., at any given time the disturbance is spread over all space.

Thus, we see that most classical or macroscopic phenomena
can be explained by either of these two descriptions of the system.
Whereas planetary motion can be explained by particle mechanics,
interference and diffraction of light are understood as phenomena in
wave mechanics.

Around the turn of the twentieth century, however, this clear di-
vision of particle and wave mechanics ran into conflicts when applied
to microscopic systems. Phenomena, such as blackbody radiation
and photoelectric effect, needed the interpretation of electromagnetic
radiation as consisting of particles called photons with quantized en-
ergy and momentum. All this led to a re-examination of the prin-
ciples of classical mechanics, when applied to microscopic systems.
But before talking about these in detail, let us get acquainted with
the mathematical tools that we need.

1.5 Selected problems

1. Consider the Lagrangian for a particle of mass m interacting
with static electromagnetic fields (not explicitly dependent on
time) given by (see also (1.17))

L =
1

2
mẋ2 − qφ+

q

c
ẋ ·A, (1.64)



1.5 Selected problems 15

where x represents the three dimensional coordinate vector and
φ,A denote the scalar and the vector potentials respectively,
depending only on the coordinates (and not on velocities) and
q represents the charge carried by the particle. In the static
case (when φ = φ(x),A = A(x)), the usual definitions (see
(1.18))

E = −∇φ− 1

c

∂A

∂t
,

B = (∇×A), (1.65)

reduce to

E = −∇φ,

B = (∇×A). (1.66)

(a) Show that the Euler-Lagrange equations following from
the Lagrangian (1.64) give rise to Newton’s equations for
a particle with charge q interacting with an electric as well
as a magnetic field (c is the speed of light).

(b) What is the Hamiltonian for this system?

2. If η, ρ represent two arbitrary phase space variables depending
on (xi, pi), show explicitly from the definition of the Poisson
bracket in (1.55) that the following Poisson bracket relations in
(1.57) hold,

{η, ρ} = −{ρ, η} ,

{η1 + η2, ρ} = {η1, ρ}+ {η2, ρ} ,

{η1η2, ρ} = η1 {η2, ρ} + {η1, ρ} η2. (1.67)

3. Prove the Jacobi identity for Poisson brackets, namely, if η, ρ
and ζ denote three classical dynamical variables depending on
the phase space variables (xi, pi), show explicitly from the def-
inition in (1.55) that

{η, {ρ, ζ}}+ {ρ, {ζ, η}}+ {ζ, {η, ρ}} = 0. (1.68)

4. If a is a complex, classical dynamical variable (function of xi, pi)
and a∗ is its complex conjugate, and if

{a, a∗} = i, (1.69)
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calculate

{a, aa∗}, {a∗, aa∗}, {a, a∗a}, {a∗, a∗a}, (1.70)

using (1.69) as well as the properties of Poisson brackets in
(1.67) (or (1.57)).

5. Calculate the Poisson brackets

{jx, jy}, {jy , jz}, {jz , jx}, (1.71)

using the basic canonical Poisson bracket relations (1.58) (as
well as properties of Poisson brackets). Here the classical an-
gular momentum variables are defined as

jx = ypz − zpy, jy = zpx− xpz, jz = xpy − ypx. (1.72)



Chapter 2

Review of essential mathematics

In the following few lectures, we will recapitulate some of the math-
ematical concepts that we will need for a detailed understanding of
quantum mechanics.

2.1 Linear vector spaces

Definition. A set of quantities {Vi}, with a definite rule for addition
and multiplication by scalars, is called a set of vectors if they satisfy

1. Vi + Vj = Vj + Vi, (commutative law of addition),

2. Vi + (Vj + Vk) = (Vi + Vj) + Vk, (associative law of addition),

3. α(Vi + Vj) = αVi + αVj ,

4. (α+ β)Vi = αVi + βVi, (distributive law),

5. (αβ)Vi = α(βVi), (associative law of multiplication).

We are yet to enumerate the rules for addition and multiplication.
But, let us go ahead and define a vector space.

Definition. If V represents the set of vectors {Vi} (namely, Vi ∈ V)
such that

1. αVi + βVj ∈ V, where α, β are constants,

2. there exists a unique null vector 0/ ∈ V such that

Vi + 0/ = Vi = 0/+ Vi,

3. corresponding to every vector Vi ∈ V, there exists a unique
inverse (−Vi) ∈ V such that

Vi + (−Vi) = 0/,

         
 16:34:56.



18 2 Review of essential mathematics

4. 0 · Vi = 0/,

5. 1 · Vi = Vi,

then, V is called a linear vector space.

The set over which the parameters α, β are defined is called the field,
F (α), over which the linear vector space, V, is defined. (Normally,
one considers α, β to belong to real or complex numbers, although
other possibilities are allowed.) For example, the familiar vectors of
3-dimensional Euclidean space represent a real, linear vector space.
In that case, addition is simply defined by the familiar vector addition
and multiplication by a real number corresponds to scaling the vector
by that number as shown in Fig. 2.1. The null vector, in this case,

A

B

A
+
B

A αA

Figure 2.1: Addition of two vectors and multiplication of a vector by
a scalar in 3-dimensional Euclidean space.

is a vector of zero magnitude and the inverse of a given vector is the
vector with the arrow (direction) reversed.

Definition. A set of vectors (V1, . . . , Vn) in a vector space V is said to
be linearly independent if the only solution to the relation

n∑

i=1

αiVi = 0, (2.1)

is that all the αi’s vanish, namely,

αi = 0, i = 1, 2, . . . , n. (2.2)

Definition. A vector space V is said to be n-dimensional and is denoted
by Vn, if the maximum number of linearly independent vectors that
can be found in that space is n.
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Theorem. An arbitrary nontrivial vector V in Vn can be expressed
uniquely as a linear combination of n linearly independent vectors in
Vn.

Proof. Let (V1, . . . , Vn) be a set of n linearly independent vectors in
Vn. Then, a relation of the form

αV +

n∑

i=1

α′
iVi = 0, (2.3)

1. cannot imply α = α′
i = 0 for all i, since then that would imply

that there are n + 1 linearly independent vectors which is im-
possible because we are dealing with an n-dimensional space,
Vn. Therefore, some of the parameters have to be nonzero.

2. cannot imply α = 0 because then, with some of the other pa-
rameters not vanishing,

n∑

i=1

α′
iVi = 0, (2.4)

would imply that not all the Vi’s are linearly independent, which
is not true by assumption.

Therefore, at the most, some of the α′
i would be zero. This

implies that we can write (2.3) also as

V =

n∑

i=1

αiVi, (2.5)

where

αi = −
α′
i

α
. (2.6)

This shows that we can express an arbitrary vector in Vn as a linear
combination of n linearly independent vectors in that space.

To prove the uniqueness of this expression, let us assume that
there exists another expansion of the same vector in terms of the
same linearly independent vectors as

V =
n∑

i=1

βiVi. (2.7)
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Then, subtracting the two expressions in (2.5) and (2.7), we obtain

0/ =

n∑

i=1

(αi − βi)Vi. (2.8)

However, since Vi’s are linearly independent, using (2.1) and (2.2),
we obtain

αi − βi = 0, or, αi = βi. (2.9)

This proves that any arbitrary nontrivial vector in Vn can be ex-
pressed uniquely as a linear combination of n linearly independent
vectors.

Definition. Any set of n linearly independent vectors, (V1, . . . , Vn), is
said to form a basis in Vn. The coefficients of expansion of any
vector V in a given basis are said to be the components of V in that
basis.

For example, in Cartesian coordinates, a 3-dimensional vector is
represented as x = (x1, x2, x3), where x1, x2, x3 are the components
of the vector in the Cartesian basis. It is worth noting here that once
we have a basis, the rules for addition of vectors and multiplication
by a scalar become simple. For example, suppose that in a basis,
{Vi}, we can expand two vectors V, Ṽ as

V =

n∑

i=1

αiVi, Ṽ =

n∑

i=1

βiVi. (2.10)

Then, it follows that

V + Ṽ =

n∑

i=1

(αi + βi)Vi, cV =

n∑

i=1

α′
iVi, α′

i = cαi. (2.11)

Namely, adding two vectors leads to a new vector whose components
are the arithmetic sum of the components of the two vectors in the
same basis. Similarly, multiplying a given vector by a number yields
a new vector whose components correspond to the product of the
components of the original vector by the given number.

2.2 Inner product

Definition. An inner product is a procedure for assigning a number to
two vectors in a vector space and is commonly denoted by (Vi, Vj). It
satisfies the following properties:
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1. (Vi, Vi) ≥ 0, (0 only if Vi = 0/),

2. (Vi, Vj) = (Vj , Vi)
∗,

3. (Vi, αVj + βVk) = α (Vi, Vj) + β (Vi, Vk).

It follows from the properties (2) and (3) above that

(αVj + βVk, Vi) = (Vi, αVj + βVk)
∗

= α∗ (Vi, Vj)
∗ + β∗ (Vi, Vk)

∗

= α∗ (Vj, Vi) + β∗ (Vk, Vi) . (2.12)

Definition. A vector space, which admits an inner product, is called an
inner product space.

Definition. The norm of a vector V , in an inner product space, is de-
fined to be

|V | = (V, V )
1
2 . (2.13)

A vector is said to be a unit vector or normalized, if its norm is unity.

Definition. Two vectors are said to be orthogonal if their inner product
vanishes. Namely, if

(Vi, Vj) = 0, (2.14)

then, Vi and Vj are said to be orthogonal.

Definition. A set of vectors (e1, e2, . . . , en) in Vn is said to be orthonor-
mal if

(ei, ej) = δij , i, j = 1, 2, · · · , n. (2.15)

Such a set consists of n linearly independent vectors and defines an
orthonormal basis in Vn.

Let {ei} denote an orthonormal basis inVn. Then, two arbitrary
vectors V and W can be expanded in this basis as

V =
n∑

i=1

viei, W =
n∑

j=1

ωjej . (2.16)
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In this case, it follows from (2.2), (2.12) and (2.15) that

(W,V ) =
( n∑

i=1

ωiei,

n∑

j=1

vjej

)
=

n∑

i,j=1

(
ωiei, vjej

)

=

n∑

i,j=1

ω∗
i vj(ei, ej)

=
n∑

i,j=1

ω∗
i vjδij =

n∑

i=1

ω∗
i vi. (2.17)

In other words, in an orthonormal basis, the inner product of two
vectors is completely determined, as in (2.17), by the components of
the two vectors in that basis.

Let us note here parenthetically that the above discussion may
give the naive impression that it is always possible to define an in-
ner product. The catch, however, lies in the fact that to define an
orthonormal basis, we must know how to define the norm and, there-
fore, the inner product.

2.3 Dirac notation

We recall (see (2.5) and (2.15)) that an arbitrary vector in Vn, with
an inner product, can be expressed uniquely in terms of an orthonor-
mal basis {ei} as

V =

n∑

i=1

viei. (2.18)

A vector V can, then, be represented simply by its components in this
basis as V = (v1, v2, v3, . . . , vn) - an ordered n-tuple. The familiar
example in 3-dimensions is that of a vector written as x = (x1, x2, x3),
where it is understood that the basis is Cartesian. We can collect the
n-tuple into a column matrix and then the correspondence, in a given
basis, becomes

V =




v1
v2
...
vn


 . (2.19)

         
 16:34:56.



2.3 Dirac notation 23

Note here that the basis, in this case, is chosen such that

ei =




0
0
...
1
0
0




. (2.20)

where the non-zero entry is in the i-th row and

V =

n∑

i=1

viei,

as discussed in (2.18).

With such a representation of a vector, it is clear now that the
addition of vectors and multiplication of a vector by a scalar obey
matrix formulae. For example,

V +W =




v1
v2
...
vn


+




ω1

ω2
...
ωn


 =




v1 + ω1

v2 + ω2
...

vn + ωn


 =




z1
z2
...
zn


 = Z,

αV =




αv1
αv2
...

αvn


 = V ′. (2.21)

This should be compared with (2.11). It is worth emphasizing here
that matrices satisfy all the properties of vectors and can, therefore,
provide a representation for them.

A column representation of a vector is called a ket vector and is
denoted by the correspondence

ket V ≡ |V 〉 =




v1
v2
...
vn


 . (2.22)

However, given a column vector, we can also take its Hermitian con-
jugate to obtain a row vector as
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


v1
v2
...
vn




†

=




v1
v2
...
vn




∗ T

=
(
v∗1 v∗2 v∗3 . . . v∗n

)
. (2.23)

Obviously, this can also provide a representation for V . It is called a
bra vector and is denoted by

bra V ≡ 〈V | = |V 〉† = (ket V )†

=
(
v∗1 v∗2 v∗3 . . . v∗n

)
. (2.24)

This operation is also known as taking the adjoint. Thus, cor-
responding to every ket vector, there exists a unique bra vector and
vice versa. Let us now form the product of a bra vector with a ket
vector, using the matrix laws of multiplication

〈W |V 〉 =
(
ω∗
1 ω∗

2 . . . ω∗
n

)




v1
v2
...
vn




= ω∗
1v1 + ω∗

2v2 + · · ·+ ω∗
nvn =

n∑

i=1

ω∗
i vi

= (W,V ). (2.25)

which we recognize from (2.17) to be the inner product of W with V .
Since we can express (see (2.18))

V =
n∑

i=1

viei,

where the components vi are numbers and ei’s are the basis vectors,
we can also define basis ket vectors as (the non-zero element is in the
i-th row)

|ei〉 =




0
...
1
0
...
0




≡ |i〉, (2.26)
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and the basis bra vectors as

〈ei| = |ei〉† =
(
0 0 . . . 1 0 0 . . . 0

)
≡ 〈i|. (2.27)

With these, we can write

|V 〉 =
n∑

i=1

vi|ei〉, 〈V | =
n∑

i=1

v∗i 〈ei|, (2.28)

which leads to

〈W |V 〉 =
n∑

i,j=1

(ω∗
i 〈ei|) (vj |ej〉)

=

n∑

i,j=1

ω∗
i vj〈ei|ej〉

=
n∑

i=1

ω∗
i vi, (2.29)

where we have used (2.25) in the last step. This, then, implies that

〈ei|ej〉 = δij , (2.30)

which is the orthonormality relation for the basis vectors in the Dirac
notation.

Let us note next that if

|V 〉 =
n∑

j=1

vj |ej〉,

then, using (2.30), we obtain

〈ei|V 〉 =
n∑

j=1

vj〈ei|ej〉 =
n∑

j=1

vjδij = vi. (2.31)

Namely, the components of a ket vector, in a given orthonormal basis,
can be obtained by taking the inner product of the vector with the
appropriate bra basis vectors.

2.4 Linear operators

An operator is a map of a vector into another vector. Thus, if |V 〉
and |V ′〉 are two ket vectors and if Ω is a map which takes |V 〉 to
|V ′〉, then, we write

|V 〉 Ω−→ |V ′〉, or, Ω|V 〉 = |ΩV 〉 = |V ′〉. (2.32)
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Alternatively, one says that the operator Ω acting on the vector |V 〉
transforms it to the vector |V ′〉. Operators can also act on bra vectors
to produce other bra vectors. Thus, for example, we can have

〈V |Ω = 〈V ′′|. (2.33)

However, an operator cannot act on a ket vector to give a bra vector
and vice versa.

Linear operators are operators, which obey the following rules

Ω(α|Vi〉) = α(Ω|Vi〉), (α is a scalar), (2.34a)

Ω(α|Vi〉+ β|Vj〉) = α(Ω|Vi〉) + β(Ω|Vj〉). (2.34b)

Similarly, acting on the bra vectors, linear operators satisfy

(〈Vi|α)Ω = (〈Vi|Ω)α, (2.35a)

(〈Vi|α + 〈Vj |β)Ω = (〈Vi|Ω)α+ (〈Vj |Ω)β. (2.35b)

The simplest linear operator is the identity operator, 1, which leaves
all vectors invariant. Namely,1|V 〉 = |V 〉, 〈V |1 = 〈V |.

Clearly, since our ket and bra vectors are column and row matri-
ces respectively, a matrix representation of operators would involve
square matrices with n2 elements, in general. A knowledge of the
transformation properties of a given set of basis vectors, under the
action of an operator, determines completely the matrix elements of
the operator in that basis. For example, if

Ω|ej〉 = |e′j〉, j = 1, 2, · · · , n, (2.36)

then,

〈ei|e′j〉 = 〈ei|Ω|ej〉 = Ωij, i, j = 1, 2, · · · , n. (2.37)

Therefore, if all the |e′j〉’s are known, this implies that all the Ωij ’s
are also known, which are called the matrix elements of the operator
Ω in the particular basis. Once the Ωij’s are known, the transforma-
tion property of any arbitrary vector can be easily worked out. For
example, if

|V 〉 =
n∑

i=1

vi|ei〉, Ω|V 〉 = |V ′〉 =
n∑

i=1

v′i|ei〉, (2.38)
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then, the transformed components (i.e., the components of the trans-
formed vector in the given basis) can be obtained as

v′i = 〈ei|V ′〉 = 〈ei|Ω|V 〉 = 〈ei|Ω
n∑

j=1

vj|ej〉

=

n∑

j=1

vj〈ei|Ω|ej〉 =
∑

j

vjΩij

=
n∑

j=1

Ωijvj. (2.39)

When two or more operators act on a vector, the order in which
they act is important. For example, Ω′Ω|V 〉 stands for the action of
Ω on |V 〉 followed by the action of the operator Ω′. In general,

Ω′Ω|V 〉 6= ΩΩ′|V 〉. (2.40)

This is clearly reflected in the fact that matrix multiplication is not
commutative (as we have seen, operators can be represented by square
matrices). The object

Ω′Ω− ΩΩ′ = [Ω′,Ω], (2.41)

is called the commutator of Ω′ with Ω and is, in general, nonzero.
When it vanishes, the operators are said to commute.

We can also define the inverse Ω−1 of an operator Ω such that
the action of Ω on any arbitrary vector followed by the inverse (or
vice versa) leaves the vector unchanged. Namely,

Ω−1Ω|V 〉 = |V 〉 = ΩΩ−1|V 〉, (2.42)

which implies that

Ω−1Ω = ΩΩ−1 ≡ 1 ≡ identity operator. (2.43)

◮ Example (Identity operator). We have encountered the identity operator ear-
lier. Here, let us analyze some of its properties. We know that we can write (see
(2.31))

|V 〉 =
∑

vi|ei〉,

with

vi = 〈ei|V 〉.
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It follows now that

|V 〉 =
n
∑

i=1

vi|ei〉 =
n
∑

i=1

|ei〉vi

=

n
∑

i=1

|ei〉〈ei|V 〉 =
(

n
∑

i=1

|ei〉〈ei|
)

|V 〉

= 1|V 〉, (2.44)

where we have identified

n
∑

i=1

|ei〉〈ei| = 1 ≡ identity operator. (2.45)

Relation (2.45) is also known as the completeness relation for the basis vectors
and corresponds to the outer product of the basis vectors.

The matrix elements of the identity operator can now be easily obtained as1jk = 〈ej |1|ek〉 = 〈ej |
(

n
∑

i=1

|ei〉〈ei|
)

|ek〉

=
n
∑

i=1

〈ej |ei〉〈ei|ek〉 =
n
∑

i=1

δijδik

= δjk. (2.46)

Namely, the identity operator, as a square matrix, has only unit diagonal elements,
which is what we expect intuitively. ◭

◮ Example (Projection operator). Let us note, from (2.45) that we can write1 =
n
∑

i=1

|ei〉〈ei| =
n
∑

i=1

Pi, (2.47)

where we have defined

Pi = |ei〉〈ei| = projection operator onto the i-th state. (2.48)

As we have seen earlier, for an arbitrary vector |V 〉, we can write the expansion

|V 〉 =
n
∑

j=1

vj |ej〉.

It follows from this that

Pi|V 〉 =
n
∑

j=1

vjPi|ej〉 =
n
∑

j=1

vj |ei〉〈ei|ej〉

=

n
∑

j=1

vj |ei〉δij = vi|ei〉. (2.49)

Thus, acting on an arbitrary vector |V 〉, the projection operator Pi projects out
the i-th component of the vector, which is why it is called the projection operator.
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Furthermore, note that

PiPj = |ei〉〈ei|ej〉〈ej |

= |ei〉δij〈ej |

= δij |ej〉〈ej | = δijPj . (2.50)

Physically, what this means is that since Pj projects out the j-th component of a
vector, action of Pi following Pj would be zero unless both i and j coincide and
when i = j, Pi acts like the identity operator. Symbolically, one can write

P
2 = P. (2.51)

Operators with such properties are called idempotent operators. ◭

2.5 Adjoint of an operator

If an operator Ω acting on a ket |V 〉 gives a new ket |V ′〉, then, the
adjoint of Ω is defined to be that operator which transforms the bra
〈V | to 〈V ′|. Since, by definition,

Ω|V 〉 = |V ′〉 ≡ |ΩV 〉, (2.52)

it follows, using (2.24), that

〈ΩV | = 〈V ′| =
(
|V ′〉

)†
= (Ω|V 〉)† = 〈V |Ω†, (2.53)

where Ω† is known as the adjoint of Ω and its matrix elements are
obtained to be

Ω†
ij = 〈ei|Ω†|ej〉 = 〈Ωei|ej〉 = 〈ej |Ωei〉∗

= 〈ej |Ω|ei〉∗ = Ω∗
ji. (2.54)

We recognize this to be the Hermitian conjugate of the matrix ele-
ments Ωij of the original operator Ω.

Exercise. Show that the adjoint of a product of operators is the product of the
adjoint operators in the reversed order, namely,

(Ω1Ω2 . . .Ωn)
† = Ω†

nΩ
†
n−1 . . .Ω

†
1. (2.55)

Definition. An operator is Hermitian if it is self-adjoint, i.e., Ω = Ω†.

Definition. An operator is anti-Hermitian if Ω = −Ω†.

Definition. An operator is said to be unitary if ΩΩ† = Ω†Ω = 1 =
identity operator.

This implies that the adjoint of a unitary operator is the inverse
of the operator.
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Exercise. Show that a unitary operator U can be written as

U = e
iH
, (2.56)

where H is a Hermitian operator.

Theorem. Unitary operators preserve the inner product between vectors
they act on.

Proof. Let U denote a unitary operator such that

|V ′〉 = U |V 〉, |W ′〉 = U |W 〉. (2.57)

It follows from (2.24) that

〈W ′| = 〈W |U †. (2.58)

Furthermore, since U is a unitary operator, it follows that

〈W ′|V ′〉 = 〈W |U †U |V 〉 = 〈W |1|V 〉 = 〈W |V 〉, (2.59)

which proves that unitary operators preserve the inner product be-
tween two vectors.

2.6 Eigenvectors and eigenvalues

In general, an operator acting on a particular vector takes it to a new
vector

Ω|V 〉 = |V ′〉. (2.60)

However, if the effect of an operator acting on a particular vector is
to simply multiply it by a constant (scalar), i.e.,

Ω|V 〉 = ω|V 〉, (ω is a scalar) (2.61)

then, we say that |V 〉 is an eigenvector of the operator Ω with the
eigenvalue ω. Clearly, for linear operators, if |V 〉 is an eigenvector, so
is α|V 〉 where α is a scalar (since linear operators act only on vectors
and not on scalars, as is evident from (2.34)) and this arbitrariness
can be used to normalize an eigenvector. Note that we can write
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(2.61) also as

(Ω− ω1)|V 〉 = 0,

or, 〈ei|(Ω− ω1)|V 〉 = 0,

or, 〈ei|(Ω− ω1) n∑

j=1

vj|ej〉 = 0,

or,

n∑

j=1

vj〈ei|(Ω− ω1)|ej〉 = 0,

or,
n∑

j=1

(Ωij − ωδij) vj = 0. (2.62)

This is a set of linear homogeneous equations (in the unknown
variables vi) known as the characteristic equation. A nontrivial solu-
tion, in this case, exists if the determinant of the coefficient matrix
vanishes, i.e.,

det (Ωij − ωδij) = 0. (2.63)

Clearly, if we are working in an n dimensional vector space, this is
an n-th order polynomial equation in ω and, therefore, would possess
n solutions for ω, which will correspond to all the eigenvalues of the
operator Ω. These roots need not all be distinct or real. However,
once the eigenvalues are obtained, the eigenvectors can be derived
from the characteristic equation (2.62) in a simple manner.

◮ Example (Non-degenerate system). InV3, let us consider an operator Ω which
has the matrix representation,

Ω =





1 0 0
0 0 −1
0 1 0



 . (2.64)

The characteristic equation,

3
∑

j=1

(Ωij − ωδij) vj = 0, (2.65)

will have a nontrivial solution provided the determinant of the coefficient matrix
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vanishes (see (2.63)),

det (Ωij − ωδij) = 0,

or, det





1− ω 0 0
0 −ω −1
0 1 −ω



 = 0,

or, (1− ω)(ω2 + 1) = 0,

or, (1− ω)(ω + i)(ω − i) = 0. (2.66)

This determines that ω = 1, i,−i are the three distinct but complex eigenvalues
of Ω.

For ω = 1, the linear equations (2.65) become

3
∑

j=1

(Ωij − ωδij) vj = 0, or,
3
∑

j=1

(Ωij − δij) vj = 0, (2.67)

and explicitly lead to the three equations

0 = 0,
−v2 − v3 = 0,
v2 − v3 = 0,







⇒ v2 = v3 = 0, v1 is arbitrary. (2.68)

Thus, the eigenvector corresponding to the eigenvalue ω = 1 has the form





v1
0
0



 . (2.69)

We can make use of the arbitrariness of v1 in (2.69) to define a normalized eigen-
vector

|ω = 1〉 =





1
0
0



 , (2.70)

such that

〈ω = 1|ω = 1〉 = 1. (2.71)

◭

Exercise. Similarly, show that the normalized eigenvectors for the eigenvalues ω =
±i, in the above example, are

|ω = i〉 = 1√
2





0
i

1



 , |ω = −i〉 = 1√
2





0
−i
1



 , (2.72)

so that together the three eigenvectors define an orthonormal basis.

◮ Example (Degenerate system). In the previous example, all the eigenvalues of
Ω were distinct, which is an example of a non-degenerate operator. However, when
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two or more eigenvalues of an operator coincide we talk of a degenerate system.
Let us consider an operator Ω in V3, which has the matrix representation

Ω =





1 0 1
0 2 0
1 0 1



 . (2.73)

In this case, for a nontrivial solution of the characteristic equation,

∑

j

(Ωij − ωδij) vj = 0, (2.74)

the vanishing of the determinant of the coefficient matrix gives

det (Ωij − ωδij) = 0,

or, det





1− ω 0 1
0 2− ω 0
1 0 1− ω



 = 0,

or, (1− ω) ((2− ω)(1− ω)) + 1 (−(2− ω)) = 0,

or, (2− ω)((1− ω)2 − 1) = 0,

or, (2− ω)(2− ω)(−ω) = 0,

or, ω = 0, 2, 2. (2.75)

Thus, in this case, we see that all the eigenvalues are real, although two of them
are degenerate.

For ω = 0, the characteristic equation, (2.74), becomes

∑

j

Ωijvj = 0, (2.76)

and leads to

v1 + v3 = 0,
2v2 = 0,

v1 + v3 = 0,







⇒ v2 = 0, v3 = −v1, (2.77)

so that we can write the normalized eigenvector as

|ω = 0〉 = 1√
2





1
0
−1



 . (2.78)

For ω = 2, the characteristic equation, (2.74), takes the form

∑

j

(Ωij − 2δij) vj = 0, (2.79)

and explicitly leads to

−v1 + v3 = 0,
0 = 0,

v1 − v3 = 0,







⇒ v3 = v1, v2 arbitrary, (2.80)
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so that any vector of the form





v1
v2
v1



 , (2.81)

is an eigenvector of Ω with the eigenvalue ω = 2. However, whenever possible, we
would like the eigenvectors of an operator to form an orthonormal basis. With this
in mind, we can choose the arbitrary constants in (2.81) such that the eigenvectors
of Ω are not only normalized, but are orthogonal to one another as well. Thus,
for example, for the present case, we can choose

|ω = 0〉 = 1√
2





1
0
−1



 , (2.82a)

|ω = 2〉1 =
1√
2





1
0
1



 , (2.82b)

|ω = 2〉2 =





0
1
0



 , (2.82c)

which would provide an orthonormal basis. However, this is not necessarily the
unique choice. In fact, we could have chosen, as eigenvectors (2.81)

|ω = 2〉1 =
1√
3





1
1
1



 , |ω = 2〉2 =
1√
6





1
−2
1



 , (2.83)

which would also provide an orthonormal basis. In fact, a general normalized
eigenvector corresponding to ω = 2 has the form

1
√

2| v1
v2
|2 + 1







v1
v2

1
v1
v2






, (2.84)

and all such vectors will be orthogonal to (2.78). Thus, we see that there would
be an infinite set of possible eigenvectors corresponding to different values of v1

v2
when degeneracy of eigenvalues occurs and we can no longer label the eigenvectors
uniquely by the eigenvalues alone. ◭

Theorem. A Hermitian operator has real eigenvalues.

Proof. Let Ω represent a Hermitian operator. Then, by definition,

Ω = Ω†. (2.85)

If |ω〉 represents an eigenvector of Ω with eigenvalue ω, then, it follows
that

Ω|ω〉 = ω|ω〉, or, 〈ω|Ω|ω〉 = ω〈ω|ω〉. (2.86)
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Taking the Hermitian conjugate of the first equation in (2.86), we
obtain,

〈ω|Ω† = 〈ω|Ω = ω∗〈ω|, or, 〈ω|Ω|ω〉 = ω∗〈ω|ω〉. (2.87)

Taking the difference of (2.86) and (2.87), we obtain

(ω − ω∗)〈ω|ω〉 = 0. (2.88)

Since the norm of a vector is positive semi-definite (see (2.13) or
(2.17)),

〈ω|ω〉 ≥ 0, ⇒ ω = ω∗. (2.89)

That is, all the eigenvalues of a Hermitian operator are real. Note,
however, that the converse is not necessarily true, namely, operators
with all real eigenvalues are not necessarily Hermitian.

◮ Example. Let us consider the operator Ω in V2, with the matrix representation,

Ω =

(

1 a

0 1

)

. (2.90)

The eigenvalues of this operator are determined to be

det

(

1− ω a

0 1− ω

)

= (1− ω)2 = 0, ⇒ ω = 1, 1. (2.91)

All the eigenvalues of the operator Ω are real (although degenerate) in this case.
However, as is obvious from (2.90), the operator is not Hermitian. ◭

Theorem. Eigenvectors of a Hermitian operator with distinct eigenval-
ues are orthogonal.

Proof. Let Ω represent a Hermitian operator and let |ω1〉, |ω2〉 repre-
sent two of its eigenstates with distinct eigenvalues ω1, ω2 respectively
(namely, ω1 6= ω2). Then, we have

Ω|ω1〉 = ω1|ω1〉, or, 〈ω2|Ω|ω1〉 = ω1〈ω2|ω1〉. (2.92)

Similarly, taking the adjoint of the second eigenvalue equation,

Ω|ω2〉 = ω2|ω2〉, (2.93)

we have

〈ω2|Ω = ω2〈ω2|, or, 〈ω2|Ω|ω1〉 = ω2〈ω2|ω1〉, (2.94)
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where we have used the fact that Ω is Hermitian and that Hermitian
operators have real eigenvalues. Now, taking the difference of the two
relations (2.92) and (2.94), we obtain

(ω1 − ω2)〈ω2|ω1〉 = 0. (2.95)

Since ω1 6= ω2 by assumption, this implies that 〈ω2|ω1〉 = 0, namely,
the two eigenvectors are orthogonal. Clearly, if the vectors are de-
generate, they don’t automatically have to be orthogonal, but, as
we have already seen, we can always choose them to be orthogonal in
such a case. It follows, therefore, that the eigenvectors of a Hermitian
operator can be chosen to provide an orthonormal basis.

Exercise. All eigenvalues of a unitary operator have unit norm. All eigenvectors
corresponding to distinct eigenvalues of a unitary operator are orthogonal to one
another.

Theorem. The operator which transforms an orthonormal set of basis
vectors into another is unitary.

Proof. Let |ei〉 be a set of orthonormal basis vectors and let U be the
operator which takes it to another set of orthonormal basis vectors,
denoted by |ωi〉. Therefore, we have

|ωi〉 = U |ei〉, 〈ωj | = 〈ej |U †, i.j = 1, 2, · · · , n. (2.96)

It follows now that

〈ωj |ωi〉 = 〈ej |U †U |ei〉, or, δij = 〈ej |U †U |ei〉. (2.97)

We know that |ei〉 represents an orthonormal basis so that

〈ej |ei〉 = δij . (2.98)

It follows, therefore, that U †U = 1 and U is unitary.

Theorem. If Ω is a Hermitian matrix, then there exists a unitary ma-
trix U such that U †ΩU is diagonal.

Proof. Let U be the matrix which changes the standard, orthonormal
set of basis vectors in (2.26), |ei〉, to the orthonormal eigenbasis |ωi〉
of Ω. Therefore, we have

|ωi〉 = U |ei〉, i = 1, 2, · · · , n, (2.99)

where

Ω|ωi〉 = ωi|ωi〉. (2.100)

         
 16:34:56.



2.6 Eigenvectors and eigenvalues 37

Clearly, U is unitary since it takes one orthonormal basis into another.
Now

〈ωj|Ω|ωi〉 = ωi〈ωj |ωi〉 = ωiδij . (2.101)

On the other hand, using (2.99), we also have

〈ωj|Ω|ωi〉 = 〈ej |U †ΩU |ei〉. (2.102)

Comparing (2.101) and (2.102), we conclude that

〈ej |U †ΩU |ei〉 = ωiδij . (2.103)

This shows that U †ΩU is diagonal with the diagonal elements given
by the eigenvalues of Ω. We say that U diagonalizes Ω.

Theorem. If Ω and Λ are two commuting Hermitian matrices (opera-
tors), they can be simultaneously diagonalized.

Proof. Let |ωi〉 represent the complete set of eigenstates of Ω corre-
sponding to the eigenvalues ωi with i = 1, 2, · · · , n so that

Ω|ωi〉 = ωi|ωi〉. (2.104)

Since Ω and Λ commute,

[Ω,Λ] = ΩΛ− ΛΩ = 0, (2.105)

and it follows that

(ΩΛ− ΛΩ)|ωi〉 = 0,

or, Ω (Λ|ωi〉) = Λ (Ω|ωi〉) = ωi (Λ|ωi〉) , i = 1, 2, · · · , n. (2.106)

In other words, Λ|ωi〉 is also an eigenvector of Ω with the eigen-
value ωi. This is possible only if

Λ|ωi〉 = λi|ωi〉, i = 1, 2, · · · , n. (2.107)

Thus, all the eigenstates of Ω are also eigenstates of Λ and the same
unitary matrix which diagonalizes Ω would also diagonalize Λ.
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x = 0 x = L

x1 x2 · · ·

Figure 2.2: Displacement field of a string fixed at both ends x = 0
and x = L.

2.7 Infinite dimensional vector spaces

So far, we have talked about finite dimensional vector spaces. Let
us now introduce the concept of an infinite dimensional vector space
(which is important from the point of view of quantum mechanics)
through the following example. Imagine a string fixed at two points
x = 0 and x = L as shown in Fig. 2.2. If we are talking about the
displacement of the string from its equilibrium position, we can do so
by dividing the interval into n+ 1 equal parts and by describing the
displacements at the n discrete (intermediate) points. Let us denote
them by fn(xi). Of course, this will not represent the true displace-
ment f(x) of the string, but as n is made larger and larger, it would
come closer to the true description. (It is worth remarking here that
any interval contains a non-countably infinite set of points. However,
the only way we know how to do any practical calculation, such as
integration etc, is by dividing the interval into subintervals of smaller
and smaller lengths. This, in turn, treats the set as a countably in-
finite set of points, but works. Furthermore, the displacements of a
string define a continuous function – they cannot be completely arbi-
trary at different points. This reduces the non-countably infinite set
of displacements to a countably infinite set.)

We can think of the ordered n-tuple (fn(x1), fn(x2), . . . , fn(xn))
as describing an n dimensional vector denoted by

|fn〉 =




fn(x1)
fn(x2)

...
fn(xn)


 . (2.108)
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In terms of the basis vectors

|xi〉 =




0
0
...
1
0
0
0




← i-th place, (2.109)

we can write

|fn〉 =
n∑

i=1

fn(xi)|xi〉, (2.110)

where, as we have seen in (2.31)

fn(xi) = 〈xi|fn〉. (2.111)

The basis vectors |xi〉 obey the orthonormality and the com-
pleteness relations,

〈xi|xj〉 = δij ,
∑

i

|xi〉〈xi| = 1. (2.112)

We can imagine dividing the interval into infinitesimal parts and in
the limit of vanishing intervals, the position becomes a continuous
variable and the displacements f∞(x) would correspond to the true
displacement of the string. This is now an infinite dimensional vector
space. In this way, one can go from finite dimensions to infinite
dimensions by letting n → ∞. But, for this, certain modifications
are necessary in some of the formulae which we discuss next.

2.8 Dirac delta function

Let us note that the inner product of two vectors in the n dimensional
space of the form (2.108) is given by

〈fn|gn〉 =
n∑

i,j=1

〈xj |f∗n(xj)gn(xi)|xi〉

=

n∑

i,j=1

f∗n(xj)gn(xi)δij

=
n∑

i=1

f∗n(xi)gn(xi). (2.113)
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In particular, the norm of a vector has the form

〈fn|fn〉 =
n∑

i=1

f∗n(xi)fn(xi) =
n∑

i=1

|fn(xi)|2. (2.114)

Clearly, this diverges as n→∞. One, therefore, needs a redefinition
of the inner product such that a finite limit is obtained in (2.114) as
n→∞. This is done by writing

〈fn|gn〉 =
n∑

i=1

f∗n(xi)gn(xi)
L

n+ 1

n→∞−−−→
L∫

0

dx f∗∞(x)g∞(x) =

L∫

0

dx f∗(x)g(x), (2.115)

where L
n+1 represents the length of each interval, which becomes

smaller and smaller as n becomes larger.
Thus, for vectors defined within an interval a ≤ x ≤ b, the inner

product takes the form

lim
n→∞

〈fn|gn〉 −→ lim
n→∞

b∫

a

dx f∗n(x)gn(x)

=

b∫

a

dx f∗(x)g(x). (2.116)

The completeness relation, of course, still holds as in (2.112) (with
the sum replaced by an integral)

b∫

a

dx |x〉〈x| = 1, (2.117)

where 1 is the infinite dimensional identity matrix. Multiplying
(2.117) on the left by 〈x′| and by |f〉 on the right, we have

b∫

a

dx 〈x′|x〉〈x|f〉 = 〈x′|f〉,

or,

b∫

a

dx 〈x′|x〉f(x) = f(x′). (2.118)
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From the orthogonality relation of the basis vectors we know
that

〈x′|x〉 = 0, if x 6= x′. (2.119)

Therefore, we can limit the range of integration in (2.118) to an
infinitesimal interval around x′ to write

lim
ǫ→0

x′+ǫ∫

x′−ǫ

dx 〈x′|x〉f(x) = f(x′). (2.120)

If 〈x′|x〉 is finite at x = x′ then the left hand side would vanish,
since the range of integration is infinitesimally small. The only way
this relation would make sense is if the inner product diverges at
x = x′. Let us denote

〈x′|x〉 = δ(x′, x). (2.121)

Thus, δ(x′, x) = 0 if x 6= x′ and it diverges when x = x′, but in such
a way that the integral of δ(x′, x) is unity, namely, since

∫
dx δ(x′, x)f(x) = f(x′), (2.122)

which follows from (2.118), choosing f(x) = 1, we obtain
∫

dx δ(x′, x) = 1. (2.123)

Furthermore, it only depends on the difference x − x′. The inner
product in (2.121) is known as the Dirac delta function and is used
to normalize continuous basis vectors as

〈x|x′〉 = δ(x− x′). (2.124)

2.9 Properties of the Dirac delta function

The Dirac delta function satisfies several interesting properties.

1. As we have already seen in (2.122), the defining relation gives
∫

dx δ(x− x′)f(x) = f(x′). (2.125)

Namely, integrating with a delta function simply picks out the
first term in the Taylor expansion of a function (around the
point where the argument of the delta function vanishes).
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2. It is an even function, which is easily seen as follows.

δ(x′ − x) = 〈x′|x〉 = 〈x|x′〉∗

=
(
δ(x − x′)

)∗
= δ(x− x′), (2.126)

where we have used the fact that the delta function is a real
function.

3. Upon integration, the derivative of a Dirac delta function mul-
tiplied with a well behaved function leads to

∫
dx δ′(x− x′)f(x) = −f ′(x′), (2.127)

where prime denotes a derivative.

This can be seen as follows. Let us consider the integral in
(2.127), which can be written as

b∫

a

dx

[
d

dx
δ(x− x′)

]
f(x)

=

b∫

a

dx

[
d

dx

(
δ(x− x′)f(x)

)
− δ(x− x′) df(x)

dx

]

= δ(x− x′)f(x)
∣∣∣∣
b

a

−
b∫

a

dx δ(x− x′) df(x)

dx

= −df(x)

dx

∣∣∣∣
x=x′

= −f ′(x′). (2.128)

It is clear that, since the delta function is even, the derivative
of the delta function is an odd function,

d

dx
δ(x − x′) = − d

dx′
δ(x− x′). (2.129)

In general, we have
∫

dx δ(n)(x− x′)f(x) = (−1)nf (n)(x′), (2.130)

where the superscript (n) represents the number of derivatives
acting on the delta function as well as on f .
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General properties. Let us list below some of the properties of the
Dirac delta function.

δ(x) = δ(−x). (2.131a)

δ′(x) = −δ′(−x). (2.131b)

xnδ(x) = 0, n ≥ 1. (2.131c)

xδ′(x) = −δ(x). (2.131d)

δ(ax) =
1

|a| δ(x). (2.131e)

δ(x2 − a2) = 1

2|a| [δ(x − a) + δ(x + a)]. (2.131f)

f(x)δ(x− a) = f(a)δ(x − a). (2.131g)
∫

dx δ(x− b)δ(a− x) = δ(a− b). (2.131h)

2.10 Representations of the Dirac delta function

The Dirac delta function is not a regular function. Rather, it is
a generalized function, which can be thought of as the limit of a
sequence of functions. In what follows, we will describe some of its
representations that are used frequently.

Theorem.

1

2π

∞∫

−∞

dk eikx = δ(x). (2.132)

Proof. Let us assume that ǫ is infinitesimal and note that

ǫ∫

−ǫ

dx f(x)× 1

2π

∞∫

−∞

dk eikx

=

ǫ∫

−ǫ

dx f(x)× lim
g→∞

1

2π

g∫

−g

dk eikx

= lim
g→∞

1

2π

ǫ∫

−ǫ

dx f(x)× 2
sin gx

x
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= lim
g→∞

1

π

ǫ∫

−ǫ

dx f(x)
sin gx

x

= lim
g→∞

1

π
Im

ǫ∫

−ǫ

dx f(x)
eigx

x
. (2.133)

Let us define

x′ = gx, then




x = −ǫ, ⇒ x′ = −gǫ,
x = ǫ, ⇒ x′ = gǫ.

With this, the integral on the right hand side of (2.133) becomes

lim
g→∞

1

π
Im

gǫ∫

−gǫ

dx′ f

(
x′

g

)
eix

′

x′
. (2.134)

In the limit g → ∞, we can use the method of residues. There is a
pole at x′ = 0, which yields the value of the integral to be (principal
value has to be used)

Im

[
1

π
× iπ f(0)

]
= f(0). (2.135)

Substituting this back into (2.133), we obtain

lim
ǫ→0

ǫ∫

−ǫ

dx f(x)× 1

2π

∞∫

−∞

dk eikx = f(0), (2.136)

which shows that we can identify

1

2π

∞∫

−∞

dk eikx = δ(x).

It is also clear from the above analysis that

Theorem.

lim
g→∞

1

π

sin gx

x
= δ(x). (2.137)
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x = 0 x

θ
(x
)

1

Let us consider the step function θ(x) defined as

θ(x) =

{
1 for x > 0,
0 for x < 0.

(2.138)

Theorem. The Dirac delta function is related to the step function as

dθ(x)

dx
= δ(x). (2.139)

Proof. (All the test functions we use are assumed to be regular and
vanish at infinity, namely, they satisfy lim|x|→∞ f(x)→ 0.)

Let us consider the integral

ǫ∫

−ǫ

dx
dθ(x)

dx
f(x), (2.140)

where ǫ is considered infinitesimal. Since the slope of the theta func-
tion vanishes away from the origin, we can easily extend the range of
the integral and write

ǫ∫

−ǫ

dx
dθ(x)

dx
f(x) =

∞∫

−∞

dx
dθ(x)

dx
f(x)

= −
∞∫

−∞

dx θ(x)
df(x)

dx

= −
∞∫

0

dx
df(x)

dx
= f(0). (2.141)
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Sometimes one defines a step function slightly differently from
(2.138) as

ǫ(x) = θ(x)− 1

2
, (2.142)

which has the property that

ǫ(x) =

{
1
2 , for x > 0,

−1
2 , for x < 0.

(2.143)

Such a step function is an odd function and is called the alternating
step function. The delta function can also be defined as the derivative
of the alternating step function, namely,

dǫ(x)

dx
=

dθ(x)

dx
= δ(x). (2.144)

Theorem. The delta function can also be represented in terms of a
Gaussian as

lim
α→∞

√
α

π
e−αx2

= δ(x). (2.145)

Proof. First, let us note that,

lim
α→∞

∫
dx

√
α

π
e−αx2

= lim
α→∞

√
α

π
×
√
π

α
= 1. (2.146)

Furthermore, using (2.146), let us note that

∞∫

−∞

dx

√
α

π
e−αx2

f(x)− f(0)

=

∞∫

−∞

dx

√
α

π
e−αx2

(f(x)− f(0))

≤
∞∫

−∞

dx

√
α

π
e−αx2

max

{
df

dx

}
|x|

= max

{
df

dx

} ∞∫

−∞

dx

√
α

π
|x|e−αx2
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= max

{
df

dx

}√
α

π
× 2

∞∫

0

dx xe−αx2

= max

{
df

dx

}√
α

π
×

∞∫

0

dz

α
e−z,

= max

{
df

dx

}
1√
πα

. (2.147)

where z = αx2, dz = 2αxdx. In the limit α → ∞, the right hand
side of (2.147) vanishes leading to

lim
α→∞

∞∫

−∞

dx

√
α

π
e−αx2

f(x)− f(0)

= lim
α→∞

max

{
df

dx

}
1√
πα

= 0. (2.148)

Therefore, we obtain

lim
α→∞

∞∫

−∞

dx

√
α

π
e−αx2

f(x) = f(0), (2.149)

so that we can identify

lim
α→∞

√
α

π
e−αx2

= δ(x).

Exercise. Show that
∞
∫

−∞

dx e−αx2

=

√

π

α
.

Theorem. Another useful representation of the Dirac delta function is
given by

lim
ǫ→0

1

π

ǫ

x2 + ǫ2
= δ(x). (2.150)

Proof. First, let us note that we have

lim
ǫ→0

∞∫

−∞

dx
1

π

ǫ

x2 + ǫ2
= lim

ǫ→0

ǫ

π
× 2πi× 1

2iǫ
= 1. (2.151)
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Next, let us note that

lim
ǫ→0

a∫

−a

dx
1

π

ǫ

x2 + ǫ2
f(x)

= lim
ǫ→0

1

π

a∫

−a

dx

ǫ

1(
x2

ǫ2
+ 1
) f(x). (2.152)

Let us redefine x
ǫ
= x′, which allows us to write the integral in (2.152)

as

lim
ǫ→0

1

π

a
ǫ∫

− a
ǫ

dx′
1

(x′ 2 + 1)
f(x′ǫ)

= lim
ǫ→0

1

π

∞∫

−∞

dx′
1

x′ 2 + 1
f(x′ǫ). (2.153)

The integral in (2.153) can now be evaluated using the method of
residues. We recognize that the integrand has two poles at x′ = ±i,
which yield the value of the integral to be

lim
ǫ→0

1

π
× 2πi× 1

2i
f(iǫ) = lim

ǫ→0
f(iǫ) = f(0). (2.154)

Substituting this back into (2.152), we can identify

lim
ǫ→0

1

π

ǫ

x2 + ǫ2
= δ(x).

Let us also note that we can write

1

π

ǫ

x2 + ǫ2
=

1

2πi

(
1

x− iǫ −
1

x+ iǫ

)
. (2.155)

An alternate characterization is to note that

lim
ǫ→0

1

x∓ iǫ = P

(
1

x

)
± iπδ(x). (2.156)

where P stands for the principal value.
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2.11 Operators in infinite dimensions

We are now familiar with ket |f〉 and the basis vectors |x〉 in infinite
dimensions. Let us next ask how linear operators act on this infinite
dimensional space. As before, let us assume that an operator Ω takes
a vector |f〉 to a new vector |f̃〉, namely,

Ω|f〉 = |f̃〉. (2.157)

Since we can expand the vectors in the coordinate basis as

|f〉 =
∫

dx f(x)|x〉, |f̃〉 =
∫

dx f̃(x)|x〉, (2.158)

we can also think of operators as taking functions f(x) into f̃(x)

f(x)
Ω−→ f̃(x). (2.159)

Let us denote by D the operator which takes f(x) to df(x)
dx ,

namely,

f(x)
D−→ f̃(x) =

df(x)

dx
. (2.160)

Thus, we have

D|f〉 = |f̃〉,

or, 〈x|D|f〉 = 〈x|f̃〉 = f̃(x) =
df(x)

dx
,

or,

∫
dx′〈x|D|x′〉〈x′|f〉 = df(x)

dx
,

or,

∫
dx′〈x|D|x′〉f(x′) = df(x)

dx
. (2.161)

Recalling (2.127), we see that we can identify

〈x|D|x′〉 = Dxx′ = δ′(x− x′)

=
d

dx
δ(x− x′) = − d

dx′
δ(x − x′). (2.162)

This determines the representation of the operator in the |x〉 basis.
Let us next ask if D is Hermitian. In finite dimensional vector

spaces, we know that D is Hermitian if D = D†. In the present case,

(D†)xx′ = D∗
x′x =

d

dx′
δ(x′ − x)

= − d

dx
δ(x− x′) = −Dxx′ . (2.163)
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Thus, in fact, we see that the operator is naively anti-Hermitian. We
can easily make it Hermitian by defining

K = −iD, (2.164)

so that K† = K and this would be naively Hermitian. But, we also
know that for an operator to be Hermitian, it must satisfy

〈g|K|f〉 = 〈g|Kf〉 = 〈Kf |g〉∗

= 〈f |K†|g〉∗ = 〈f |K|g〉∗. (2.165)

Therefore, let us check whether this relation is satisfied as well. We
see that the left hand side of (2.165) gives

L.H.S. = 〈g|K|f〉

=

b∫

a

dx

b∫

a

dx′ 〈g|x〉〈x|K|x′〉〈x′|f〉

=

b∫

a

dx

b∫

a

dx′ g∗(x)

(
i
d

dx′
δ(x− x′)

)
f(x′)

=

b∫

a

dx g∗(x)(−i) df(x)

dx

= −i
b∫

a

dx g∗(x)
df(x)

dx
. (2.166)

On the other hand, the right hand side of (2.165) gives

R.H.S. = 〈f |K|g〉∗

=




b∫

a

dx

b∫

a

dx′ 〈f |x〉〈x|K|x′〉〈x′|g〉



∗

=




b∫

a

dx

b∫

a

dx′ f∗(x)

(
i
d

dx′
δ(x − x′)

)
g(x′)



∗

=




b∫

a

dx f∗(x)(−i)dg(x)
dx



∗
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= i

b∫

a

dx
dg∗(x)
dx

f(x)

= i

b∫

a

dx
d

dx
(g∗(x)f(x))− i

b∫

a

dx g∗(x)
df(x)

dx

= ig∗(x)f(x)

∣∣∣∣
b

a

− i
b∫

a

dx g∗(x)
df(x)

dx
. (2.167)

Thus, comparing (2.166) and (2.167) we see that the operator
K will satisfy (2.165), only if

g∗(x)f(x)

∣∣∣∣
b

a

= 0. (2.168)

In this case, the operator K would be Hermitian. Thus, unlike in the
finite dimensional case, in infinite dimensions, properties like Her-
miticity depend on the space of functions on which the operators act.
If the functions are like the displacements of a string which vanish
at the end (the string is fixed at the ends), then, of course, (2.168)
holds true. We can also think of periodic functions satisfying

f(b) = f(a),

g(b) = g(a), (2.169)

for which (2.168) is also true and the operator K would be Hermitian.
In quantum mechanics one works with functions defined on −∞ ≤
x ≤ ∞. Then, there are two kinds of functions that one deals with –
those that vanish at infinity and others that are oscillatory. The first
category, of course, does not create any problem with (2.168). But,
for the second kind of functions, typically of the form eikx, it is not
obvious whether

e−ikx eik
′x
∣∣∣
∞

−∞
= 0. (2.170)

We note that we can write

e−i(k−k′)x

∣∣∣∣
∞

−∞
= −i(k − k′)

∞∫

−∞

dx e−i(k−k′)x

= −2πi(k − k′)δ(k − k′) = 0, (2.171)
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where we have used the definition of the delta function as well as the
property of the delta function (see (2.131)) that

xδ(x) = 0. (2.172)

This shows that K is Hermitian in this space.

Let us now calculate the eigenvalues and the eigenfunctions of
K. It would seem like a formidable task since K is an infinite di-
mensional matrix and, therefore, the characteristic equation would
involve polynomials of infinite order. But, in practice it is not so bad.
In fact, finding eigenvalues and eigenfunctions in infinite dimensions
becomes equivalent to solving (partial) differential equations, which
we can see in the following way. Let

K|k〉 = k|k〉,

or, 〈x|K|k〉 = k〈x|k〉,

or,

∫
dx′ 〈x|K|x′〉〈x′|k〉 = k〈x|k〉. (2.173)

Defining

〈x|k〉 = ψk(x), (2.174)

and using (2.162) (as well as the identification (2.164)), we obtain
from (2.173)

∫
dx′
(
i
d

dx′
δ(x− x′)

)
ψk(x

′) = kψk(x),

or, − idψk(x)

dx
= kψk(x). (2.175)

The solution of (2.175) is clearly

ψk(x) = Aeikx. (2.176)

Namely, any real number k is an eigenvalue of K with ψk(x) defining
the corresponding eigenfunction. Here, A is an arbitrary constant
which we can choose to be A = 1√

2π
, yielding

〈x|k〉 = ψk(x) =
1√
2π

eikx, (2.177)
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so that the eigenvector |k〉 is normalized.

〈k|k′〉 =
∫

dx 〈k|x〉〈x|k′〉

=

∫
dx ψ∗

k(x)ψk′(x)

=
1

2π

∫
dx e−ikxeik

′x

=
1

2π

∫
dx e−i(k−k′)x

= δ(k − k′). (2.178)

Let us note here that the eigenstates |k〉 define a complete basis, since
K is a Hermitian operator.

Definition. A Hilbert space is an infinite dimensional vector space such
that every vector in this space can be normalized either to unity or to
the Dirac delta function.

2.12 Fourier transformation

Any vector |f〉 can be expanded in the |x〉 basis as well as in the |k〉
basis, which follows because both |x〉 and |k〉 define complete basis
in the infinite dimensional space. Thus, we can write

|f〉 =
∫

dx f(x)|x〉, f(x) = 〈x|f〉. (2.179)

Similarly, since |k〉 also defines a complete basis, we can write

|f〉 =
∫

dk g(k)|k〉, (2.180)

where

g(k) = 〈k|f〉

=

∫
dx 〈k|x〉〈x|f〉

=

∫
dx ψ∗

k(x)f(x) =
1√
2π

∫
dx e−ikxf(x). (2.181)
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Similarly, we can show that

f(x) = 〈x|f〉 =
∫

dk 〈x|k〉〈k|f〉

=

∫
dk ψk(x)g(k) =

1√
2π

∫
dk eikxg(k). (2.182)

We realize that these are nothing other than Fourier transforms. This
shows that the Fourier transformation takes us from one basis to
another.

In the eigenbasis of K, the matrix elements of K are given by

〈k′|K|k〉 = k〈k′|k〉 = kδ(k − k′) = k′δ(k − k′), (2.183)

so that it is diagonal in this basis as we would expect. We can also
ask what is the operator whose eigenfunctions form the basis |x〉. Let
it be denoted by X. Then, by definition,

X|x〉 = x|x〉,

or, 〈x′|X|x〉 = x〈x′|x〉 = xδ(x− x′) = x′δ(x − x′). (2.184)

To find the action of this operator on an arbitrary vector, we note
that

X|f〉 = |f̃〉,

or, 〈x|X|f〉 = 〈x|f̃〉,

or,

∫
dx′ 〈x|X|x′〉〈x′|f〉 = 〈x|f̃〉,

or,

∫
dx′ xδ(x− x′)f(x′) = f̃(x),

or, f̃(x) = xf(x). (2.185)

Thus, we see that the effect of X on a vector is to multiply its
components in the basis |x〉 by x. We can ask what are the matrix
elements of X in the |k〉 basis.

〈k|X|k′〉 =
∫

dxdx′ 〈k|x〉〈x|X|x′〉〈x′|k′〉

=

∫
dxdx′ ψ∗

k(x)xδ(x − x′)ψk′(x
′)

=
1

2π

∫
dx xe−i(k−k′)x
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=
1

2π
i
d

dk

∫
dx e−i(k−k′)x

= i
d

dk
δ(k − k′). (2.186)

We see that, in the |x〉 basis, X acts as x and K as −i d
dx when

acting on functions, whereas in the |k〉 basis, K acts as k andX as i d
dk

on functions . Operators with such reciprocity are called conjugate
operators . Clearly, conjugate operators do not commute, which can
be seen as follows

〈x|X|f〉 = xf(x), (2.187a)

〈x|K|f〉 = −idf(x)
dx

, (2.187b)

〈x|XK|f〉 = −ixdf(x)
dx

, (2.187c)

〈x|KX|f〉 = −i d
dx

(xf(x)). (2.187d)

It follows now that

〈x|(XK −KX)|f〉 = −ixdf(x)
dx

+ if(x) + ix
df(x)

dx

= if(x) = i〈x|f〉. (2.188)

In other words, for any vector |f〉,

[X,K]|f〉 = i|f〉, or, [X,K] = i1. (2.189)

Any two operators whose commutator is proportional to the iden-
tity operator are known as conjugate operators. As we will see, in
quantum mechanics X corresponds to the position operator, while
P = ~K denotes the momentum operator.

◮ Example. As we have seen, Fourier transformation takes us from one basis to
the conjugate basis,

g(k) =
1√
2π

∫

dx e−ikx
f(x). (2.190)

Let us next consider a few examples of Fourier transformation. Let

f(x) = δ(x), (2.191)

then, from (2.190), we obtain

g(k) =
1√
2π

∫

dx e−ikx
δ(x) =

1√
2π
. (2.192)
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Namely, the Fourier transformation of the Dirac delta function is a constant. For
a Gaussian function,

f(x) = e
−α2x2

2 , (2.193)

the Fourier transformation leads to

g(k) =
1√
2π

∫

dx e−ikx
e
−α2x2

2

=
1√
2π

∫

dx e
−α2x2

2
−ikx+ k2

2α2 − k2

2α2

=
1√
2π

∫

dx e
− 1

2 (αx+ ik
α )2− k2

2α2

=
1√
2π

∫

dx′

α
e
− 1

2
x′2

e
− k2

2α2

=
1√
2π

× 1

α

√
2π e

− k2

2α2 =
1

α
e
− k2

2α2 . (2.194)

Thus, we see that the Fourier transform of a Gaussian is a Gaussian, but with
inverse width. ◭

Exercise. Show that

1√
2π

∞
∫

−∞

dx e−
1
2 (αx+ ik

α )2 =
1

α
. (2.195)

2.13 Selected problems

1. If an operator Ω takes a vector |φ〉 to another vector |φ̃〉,

Ω|φ〉 = |φ̃〉,

and the vectors have the coordinate representations

|φ〉 =
∫

dxφ(x)|x〉, |φ̃〉 =
∫

dx φ̃(x)|x〉,

one also says that

φ(x)
Ω−→ φ̃(x).

With this understanding, work out the following problems.

(i) Which of the following operators are linear?
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a) φ(x)
Ω−→ φ(−x),

b) φ(x)
Ω−→ φ2(x),

c) φ(x)
Ω−→ φ(x) + c, c is a constant,

d) φ(x)
Ω−→ φ(x+ c), c is a constant,

e) φ(x)
Ω−→ φ(

x

2
),

f) φ(x)
Ω−→

∞∫

−∞

dx′K(x, x′)φ(x′), with

K(x, x′) = K∗(x′, x),

g) φ(x)
Ω−→

∞∫

−∞

dx′K(x, x′)φ(x′), with

K(x, x′) = −K(x′, x). (2.196)

(ii) Which of the following operators are Hermitian?

a) φ(x)
Ω−→ φ(x+ c), c is a constant,

b) φ(x)
Ω−→ φ∗(x),

c) φ(x)
Ω−→ φ(−x),

d) φ(x)
Ω−→

∞∫

−∞

dx′K(x, x′)φ(x′), with

K(x, x′) = −K(x′, x) and real. (2.197)

2. If A,B,C are Hermitian operators, determine which of the fol-
lowing combinations are Hermitian?

a) A+B,

b)
1

2i
[A,B] =

1

2i
(AB −BA),
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c) (ABC − CBA),

d) A2 +B2 + C2,

e) A+ iB. (2.198)

3. Dtermine the constant Bα such that

lim
α→∞

Bαe
−αr = δ3(r). (2.199)

Here r is the magnitude of the three dimensional vector r (namely,
r = |r|) and you should only check the normalization of the
delta function.

4. Determine the value of the constant B such that, with

tb(x) =

{
0 x2 > b2

B|b− x| x2 < b2
, (2.200)

we have

lim
b→0

tb(x) = δ(x). (2.201)

Once again, you are asked only to check the normalization.

5. a) Using the integral representation for 1
|r−r′| , show that

∇
2

(
1

|r− r′|

)
= −4πδ3(r− r′). (2.202)

b) Using Gauss’ theorem, show that

∇
2

(
1

r

)
= −4πδ3(r), (2.203)

where r is the magnitude of r.
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6. If g(k) represents the Fourier transform of f(x) (in one dimen-
sion), determine the Fourier transforms of

a)
df(x)

dx
, b) f(x+ a) , c) eiµxf(x) (µ real),

d) f∗(x) , e) f(−x), (2.204)

in terms of g(k).

7. a) Calculate the Fourier transform of

f(x) = e−µ|x|, (µ real, positive). (2.205)

Use this result to determine the Fourier transform of

φ(x) =
1

λ2 + x2
, (2.206)

where λ is a real and positive constant.

b) Calculate the Fourier transform of φ(x) in (2.206) by evalu-
ating the integral using contour methods (residue theorem).

8. Determine the Fourier transform of

f(r) =
e−µr

r
, (2.207)

where r is the magnitude of the three dimensional vector r.
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Chapter 3

Basics of quantum mechanics

In the next few lectures, we will introduce the basic concepts of quan-
tum mechanics. However, let us first discuss the reasons for going
beyond the classical description of physical systems, which we have
discussed in the first chapter.

3.1 Inadequacies of classical mechanics

Classical mechanics works well when applied to macroscopic or large
systems. However, around the turn of the twentieth century (1900-
1920), it was observed that microscopic or small systems behaved very
differently from the predictions of classical mechanics. We would, of
course, discuss more quantitatively what we mean by microscopic
systems. But, for the present, let us understand by a microscopic
system, a system of atomic size or smaller and list below various
difficulties that one runs into in applying the classical description to
microscopic systems.

1. Planetary model. The planetary model of the atom, where elec-
trons move in definite orbits around the nucleus, was in serious
trouble. According to classical mechanics, a particle in such
an orbit is being constantly accelerated. Furthermore, we also
know that a classical charged particle, when accelerated, emits
radiation. Therefore, an electron going around a nucleus would
continuously emit radiation and become less and less energetic.
This has the consequence that the radius of the orbit would con-
stantly shrink in size, until the electron falls into the nucleus.
Thus, according to classical mechanics, the planetary motion in
atoms was unstable.

2. Blackbody radiation. The theoretical calculation of the black-
body radiation spectrum, which assumes that electromagnetic
radiation is a wave and, therefore, can exchange energy in any
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continuous amount, leads to a result which does not agree with
the experimental measurement (curve). Planck, on the other
hand, assumed that electromagnetic radiation of frequency ν
can exchange energy only in units of hν, where the constant h
is known as the Planck’s constant,

h = 2π~ = 2π × 1.054 × 10−27 erg-sec, (3.1)

and his calculation led to a blackbody spectrum which agreed
completely with the experimental measurement.

3. Photo-electric effect. Around the same time, it was also ob-
served that it was possible to release electrons from a metal by
irradiating the metal with electromagnetic waves or light. This
was called the photo-electric effect. Furthermore, the interest-
ing feature of these experiments was that it was not always
possible to get electrons out of the metal. In fact, for any
given metal, it was found that the light radiation which would
free electrons had to have a frequency greater than a critical
frequency, characteristic of the metal. With light of a lower fre-
quency, one can make the radiation as intense as possible, but
it would not lead to photo-electric effect (release of electrons).
Einstein solved this puzzle and showed that this was consistent
with Planck’s hypothesis, namely, light with frequency ν can
only exchange energy in the amount

E = hν. (3.2)

For electrons to be released, therefore, we should have

E = hν = BE + kinetic energy, (3.3)

where BE represents the binding energy for the metal under
consideration. Writing BE = hν0, therefore, we obtain from
(3.3)

h(ν − ν0) = kinetic energy ≥ 0. (3.4)

This implies that there cannot be any emission of electrons,
unless ν ≥ ν0.
These two examples (blackbody radiation and photo-electric
effect) clearly illustrate that although classically light is a wave,
it can often behave like particles. This is further confirmed by
the Compton effect.
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4. Compton effect. If one considers the scattering of light by an
electron (see Fig. 3.1), one finds that the experimental result
can be explained only if a photon of frequency ν is considered
to be a particle moving with energy E and momentum p = |p|
given by

γ, ν

γ,
ν
′

θ

Figure 3.1: Scattering of light by an electron commonly known as the
Compton effect. The solid blob represents the electron.

energy : E = hν,

momentum : p =
E

c
=
hν

c
=
h

λ
, (3.5)

where ν, λ denote respectively the frequency and the wavelength
of the light wave. Furthermore, from special theory of relativity,
we know that the energy and the momentum of any particle
have to satisfy Einstein’s relation,

E2 = p2c2 +m2c4, (3.6)

where m denotes the rest mass of the particle. In the present
case, if we think of the photon as a particle, then, (3.5) implies
that

m2
photon =

E2

c4
− p2

c2
= 0. (3.7)

Namely, if we think of the photon as a particle, its rest mass
must vanish.

From these discussions, it is clear that electromagnetic radiation
does possess a dual behavior – sometimes it behaves like waves
and sometimes as particles.

         
 16:35:04.



64 3 Basics of quantum mechanics

5. Davisson-Germer experiment. If one impinges a beam of elec-
trons on a lattice of atoms (crystals), then, one observes a
diffraction pattern. Diffraction, being a wave phenomenon, in-
dicates that the electron, which is a particle, must sometimes
behave like a wave. These observations lead to the general con-
clusion, that all objects must possess both wave and particle
behavior. Of course, an immediate question that arises is what
determines the wavelength associated with a particle. This is
given by de Broglie’s hypothesis, which says that the wavelength
associated with a particle in motion is given by (compare also
with the Compton effect, (3.5))

λ =
h

p
. (3.8)

Furthermore, let us also note that experiments on atomic sys-
tems revealed that various measured quantities assumed only
discrete (quantized) values, unlike the predictions of classical
mechanics, where observable quantities take continuous values.

6. Experiment with waves and particles. Therefore, one believes at
this point in the dual behavior of all materials – sometimes they
behave as particles and sometimes they behave as waves. The
main difference in the behavior of the two, at least classically, is
that particles follow definite trajectories and hence do not show
interference, whereas waves spread out and, therefore, interfere.
Let us now consider the following experiment. Let us take a
beam of particles moving towards a double slit arrangement.
If one closes one of the slits, one obtains an intensity pattern.
With the other slit closed, one also obtains a similar pattern.
And when one opens both the slits simultaneously, then, one
obtains a pattern which is the sum of the two patterns. This is
a particle like behavior, namely, the intensities add up. So the
distribution at any point, with both the slits open, is at least
as big as with one of the slits open.

Consider now the same experiment with the particle source re-
placed by a monochromatic light source. Reduce the intensity
of the source to the extent that only one photon is emitted at
a time. If one now performs the double slit experiment with
one of the slits open, then, one obtains a distribution as in the
previous case. However, when one repeats the experiment with
both the slits open, then, one does not obtain the distribution
to be the sum of the distributions when only one slit is open, as
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one would expect from particles. Rather, one obtains an inter-
ference pattern corresponding to waves. This is quite revealing.
For it says that photons, even though particles, do not move in
well defined trajectories. For if they did, then they would not
exhibit interference.

The result of the experiment can be explained by assuming that
with each particle is associated a wave function ψ(x, t) such
that |ψ(x, t)|2dxmeasures the probability of finding the particle
between x and x+dx. Since the particle is described by a wave
function, it can interfere with itself and, as a consequence, one
obtains an interference pattern, rather than just the sum of the
intensities.

So, one of the first things we learn is that, unlike classical me-
chanics where the position and the momentum of particles are
well determined quantities, in quantum mechanics, there is in-
determinacy. Furthermore, a wave function is associated with
a single particle rather than with a wave. Thus, we look for
a description of microscopic dynamical systems which would
accommodate such behavior and this is commonly known as
quantum mechanics.

Microscopic systems. To determine the behavior of a system, one
performs measurements which consist of a series of operations on the
system. For example, the position of a particle is determined by ra-
diating it with light or photons and then detecting the reflected light.
The process of measurement, therefore, introduces a disturbance into
the system. For example, the measurement of position would change
the momentum of the system. If the system is such that the change
or the disturbance is negligible, then, we say that it is a macroscopic
system. On the other hand, if the disturbance due to the process of
measurement is appreciable, then, we talk of a microscopic system.

Observables. Observables are results of measurements. As we have
discussed, a measurement is some kind of an operation on the system.
Therefore, the process of measurement can be thought of as an oper-
ator acting on a state of the system. The result of an operation is an
eigenvalue of the operator corresponding to the specific measurement
process and, since the results of measurements are real, the oper-
ators corresponding to measurements are assumed to be Hermitian
(see (2.89)). However, we also know that operators do not commute
and the identification of operators with the process of measurement
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would imply that the order of measurements in microscopic systems
is crucial. This is, in fact, true. For example, suppose we determine
the position of a system by radiating photons on it. This changes
the momentum of the system. If we make a momentum measure-
ment subsequently, we no longer obtain the true momentum. On the
other hand, if we had measured the momentum first, we would have
obtained a different value for it and it would have disturbed the po-
sition of the particle (momentum for a charged particle, for example,
can be determined by applying a magnetic field which bends the tra-
jectory) and hence a subsequent measurement of the position would
have yielded a different value from the first measurement. This shows
that the order of measurement is, in general, crucial in microscopic
systems. Translated differently, if A and B are operators representing
two measurements, then,

AB 6= BA. (3.9)

Commutators. For quantum mechanics to be a good description of a
physical system, it should be such that it reduces to classical mechan-
ics when we are talking about macroscopic systems. Classically, of
course, we know that the order of measurements and, therefore, the
order of observable quantities do not matter. Therefore, let us see
what we can deduce about the quantum commutators of operators
from our knowledge of the classical Poisson brackets of observables.
First of all, we note that commutators formally satisfy the same al-
gebraic properties as the classical Poisson brackets (compare with
(1.57)), namely,

[A,B] = AB −BA = − [B,A] ,

[A,C] = 0, C = C 1 = constant,

[A1 +A2, B] = [A1, B] + [A2, B] ,

[A1A2, B] = A1 [A2, B] + [A1, B]A2,

[A,B1B2] = B1 [A,B2] + [A,B1]B2. (3.10)

Let us now consider the evaluation of the Poisson bracket

{η1η2, ρ1ρ2}. (3.11)

Using (1.57), we can calculate (3.11) in two different ways. First, we
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have

{η1η2, ρ1ρ2} = η1{η2, ρ1ρ2}+ {η1, ρ1ρ2}η2
= η1ρ1{η2, ρ2}+ η1{η2, ρ1}ρ2
+ ρ1{η1, ρ2}η2 + {η1, ρ1}ρ2η2. (3.12)

On the other hand, we can also evaluate (3.11) as

{η1η2, ρ1ρ2} = ρ1{η1η2, ρ2}+ {η1η2, ρ1}ρ2
= ρ1η1{η2, ρ2}+ ρ1{η1, ρ2}η2
+ η1{η2, ρ1}ρ2 + {η1, ρ1}η2ρ2. (3.13)

Subtracting (3.13) from (3.12), we obtain

(η1ρ1 − ρ1η1){η2, ρ2} = {η1, ρ1}(η2ρ2 − ρ2η2). (3.14)

In classical mechanics, of course, the order of the quantities does
not matter and, therefore, either way of doing gives the same answer
(namely, the difference vanishes). However, when the order matters,
we must have from (3.14)

{η1, ρ1}
[η1, ρ1]

=
{η2, ρ2}
[η2, ρ2]

. (3.15)

This relation must hold for any pair of observables and, therefore,
the ratio must be equal to a universal constant. Furthermore, the
constant must be imaginary since the ratio in (3.15) is anti-Hermitian.
We also note (from the definition of the Poisson bracket in (1.55))
that the ratio has inverse dimensions of an action so that this constant
must also have the dimensions of inverse action. It is experimentally
determined to be (i~)−1 where ~ = 1.054 × 10−27 erg-sec and is the
Planck’s constant defined in (3.1). Thus, we see that we can write

[η1, ρ1] = i~ {η1, ρ1}. (3.16)

Quantum correspondence principle. This shows that the quantum com-
mutator of two operators is i~ times the value of their classical Pois-
son bracket. It is clear that, for macroscopic systems where effects of
the order of ~ can be taken to be negligible, the commutator can be
neglected and hence the order of quantities would not matter. There-
fore, we see that the Planck’s constant, ~, measures the non-classical
nature of systems. More commonly, one says that one recovers clas-
sical mechanics in the limit ~→ 0.

         
 16:35:04.



68 3 Basics of quantum mechanics

3.2 Postulates of quantum mechanics

We have already seen that the laws of classical mechanics need some
modification so that they can be applied to microscopic systems. And
the modifications should be such that when we are considering a
macroscopic system, we should get back the familiar predictions of
classical mechanics. These modifications are implemented in the fol-
lowing way. Given a classical Hamiltonian system, one goes over
to the quantum description through the following postulates. (We
describe them for an one dimensional system for simplicity. The gen-
eralization to any higher dimension is straightforward.)

1. In classical mechanics a system at a fixed time is described by
the coordinates x(t) and the momenta p(t).

In quantum mechanics the state of a system at a fixed time is
denoted by the infinite dimensional vector |ψ(t)〉 which belongs
to a Hilbert space.

2. Every dynamical variable ω in classical mechanics is a function
of the phase space variables x and p. Thus, ω = ω(x, p).

In quantum mechanics the observables x and p are replaced by
the Hermitian operators X and P with the nontrivial commu-
tation relation

[X,P ] = i~ = i~1. (3.17)

Furthermore, these operators have the following matrix ele-
ments in the eigenbasis of the operator X (see (2.162) and
(2.184)),

〈x|X|x′〉 = xδ(x− x′),

〈x|P |x′〉 = −i~ d

dx
δ(x− x′). (3.18)

Any operator Ω corresponding to the classical observable ω(x, p)
is obtained as the same function of the operators X and P .
Thus,

ω(x, p) −→ Ω(X,P ). (3.19)

However, we note that since in classical mechanics xp = px,
there is an ambiguity of operator ordering in the definition of
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such a product of operators. The ambiguity is resolved by as-
suming that when dealing with products of two non-commuting
operators, one symmetrizes them. Thus, the operator ordering
is effected through

xp −→ 1

2
(XP + PX). (3.20)

3. In classical mechanics if a system is in the state x(t) and p(t),
then, the measurement of an observable ω(x, p) would yield a
unique value and the system will be unaffected by the process
of measurement.

Quantum mechanics, on the other hand, gives probabilistic re-
sults. If a system is in a state |ψ〉, then a measurement cor-
responding to Ω yields one of the eigenvalues, ωi, of Ω, with a
probability

P (ωi) =
|〈ωi|ψ〉|2
〈ψ|ψ〉 ,

∑

i

P (ωi) = 1. (3.21)

As a result of the measurement, the state of the system changes
to the eigenstate |ωi〉 of the operator Ω.

4. In classical mechanics, the state variables change with time ac-
cording to Hamilton’s equations of motion (see (1.43))

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
. (3.22)

In quantum mechanics, the state vectors evolve with time ac-
cording to the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉, (3.23)

where H = H(X,P ) is the Hamiltonian operator.

In fact, this last postulate is not an independent postulate and
can be argued to arise in the following manner. We know that
H(X,P ) is the operator corresponding to the total energy of
the system. Therefore, if |ψ〉 is an eigenstate with energy E
then one can write

H|ψ〉 = E|ψ〉, (3.24)
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just as, we have for momentum,

P |p〉 = p|p〉. (3.25)

In relativistic mechanics, however, we know that the energy
and momentum form a four vector denoted by Pµ = (E,−p).
They behave like different components of the same object. The
relative negative sign is a consequence of the structure of the
Lorentz group (or the structure of the four dimensional space-
time). In the same way, we also know that space and time are
similar in nature. We have seen in (2.187) that the momenta
in the x basis (coordinate basis) correspond to operators of the
form

P → −i~ d

dx
. (3.26)

Based on arguments of Lorentz transformations, this, therefore,
suggests that

H → i~
d

dt
. (3.27)

Therefore, in the (x, t) basis, we expect

H|ψ(t)〉 = i~
d

dt
|ψ(t)〉, (3.28)

which is the Schrödinger equation.

Implications of the postulates. In quantum mechanics, therefore, the
physical system is described by a state vector belonging to a Hilbert
space. By definition, a Hilbert space is an infinite dimensional vector
space. So, it is natural to ask, how a classical two component system
(specified by x, p) acquires infinite degrees of freedom in going to a
microscopic system. The answer is easy to see if we go to a basis, say
the x basis, where 〈x|ψ(t)〉 = ψ(x, t) is the coefficient of expansion
of the state and this is also the wave function that we talked about
in connection with the double slit experiment. We know that the
particles in microscopic systems do not move in definite trajectories.
Rather, they spread out and the spread can be infinite. |ψ(x, t)|2dx
measures not only the probability of finding a particle between x
and x + dx, but also how the probability changes with time. Thus,
there is an infinite amount of information contained in the state and,
consequently, it is infinite dimensional.
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The probabilistic nature of quantum mechanics, of course, im-
plies that two states |ψ〉 and α|ψ〉 give the same probability for a
particular measurement. Thus, corresponding to each physical state
|ψ〉, there exists a set of states α|ψ〉 for all possible complex values
of α which define a ray in the Hilbert space. For a physical state,
of course, we assume 〈ψ|ψ〉 = 1 or equal to a Dirac delta function
(namely, normalized states). This still allows for a ray of the form
eiθ|ψ〉.

Since the state vectors define a Hilbert space, if |ψ〉 and |ψ′〉
define two states of the system, then, α|ψ〉+β|ψ′〉 also defines a state
because the Schrödinger equation, (3.23), is a linear equation. This
is known as the principle of superposition. This is also quite common
in classical mechanics. However, the implication of the principle of
superposition here is quite different as we will see below. (Note that
the principle of superposition is a consequence of the linear nature of
the operators in quantum mechanics.)

If a state coincides with an eigenstate |ωi〉 of some operator Ω,
then, the corresponding measurement would, for sure, yield the value
ωi. This follows immediately from the fact that

P (ωi) =
|〈ωi|ψ〉|2
〈ψ|ψ〉 =

|〈ωi|ωi〉|2
〈ωi|ωi〉

= 1. (3.29)

Let us next consider the state formed by superposing two eigenstates
|ω1〉 and |ω2〉 of the operator Ω. In other words, let

|ψ〉 = α|ω1〉+ β|ω2〉√
|α|2 + |β|2

. (3.30)

This state is normalized, if the eigenstates |ωi〉 are. If one makes a
measurement corresponding to Ω in this state, then, from the defini-
tion in (3.21), we see that the measurement would yield a value ω1

with probability |α|2
|α|2+|β|2 and a value ω2 with a probability |β|2

|α|2+|β|2 .
Thus, the measurements reveal that a superposed state sometimes be-
haves like it is in one of the eigenstates and sometimes in the other.
This is quite different from the classical superposition principle. For
example, if f(x) and g(x) correspond to two different configurations
of our string example, then αf(x)+βg(x) also corresponds to a con-
figuration of the string. However, measurements on this configuration
are unique and distinct from those on f(x) and g(x).

If an operator is degenerate, say Ω is doubly degenerate with
eigenstates |ω, 1〉 and |ω, 2〉, then the probability that a measurement
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would yield an eigenvalue ω is given by (compare with (3.21))

P (ω) =
1

〈ψ|ψ〉
[
|〈ω, 1|ψ〉|2 + |〈ω, 2|ψ〉|2

]
. (3.31)

Let us also note that there are other plausible explanations, such
as the hidden variable theory, for the failures of classical mechan-
ics. However, these do not help very much in practical calculations.
Hence, we will not discuss them in these lectures.

3.3 Expectation value

Let us suppose that a physical system is in a quantum mechanical
state |ψ〉 and that a measurement corresponding to the operator Ω is
made. Then, clearly, from our earlier discussions, we conclude that
we will obtain an eigenvalue ωi with probability P (ωi). Now suppose
an infinite number of such experiments are performed. Then, one
obtains a variety of values with different probabilities. We can ask
what is the statistical mean of these measurements, which we can
then, identify with the average value of the operator in the state,
namely,

〈Ω〉 =
∑

i

P (ωi)ωi. (3.32)

It now follows that (We are assuming that the state |ψ〉 is normalized
and that the eigenvalues of Ω are discrete. The case of continuous
eigenvalues can be handled by replacing the sums with integrals.)

〈Ω〉 =
∑

i

P (ωi)ωi =
∑

i

|〈ωi|ψ〉|2ωi

=
∑

i

〈ωi|ψ〉〈ψ|ωi〉ωi =
∑

i

〈ψ|ωi〉〈ωi|ψ〉ωi

=
∑

i

〈ψ|Ω|ωi〉〈ωi|ψ〉 = 〈ψ|Ω
(
∑

i

|ωi〉〈ωi|
)
|ψ〉

= 〈ψ|Ω|ψ〉, (3.33)

where we have used the completeness relation of the eigenbasis of the
operator Ω in the intermediate steps, namely,

∑

i

|ωi〉〈ωi| = 1. (3.34)
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We note that 〈Ω〉 is known as the expectation value of the operator
Ω in the state |ψ〉 and gives the statistical mean of the measurements
performed on the system in that state. It is clear from (3.33) that if
the state is an eigenstate of the operator, then the expectation value
would be the eigenvalue corresponding to that state.

We can similarly define the expectation value of the operator Ω2

in the state |ψ〉.

〈Ω2〉 = 〈ψ|Ω2|ψ〉 = 〈ψ|Ω2

(
∑

i

|ωi〉〈ωi|
)
|ψ〉

=
∑

i

〈ψ|Ω|ωi〉〈ωi|ψ〉ωi =
∑

i

〈ψ|ωi〉〈ωi|ψ〉ω2
i

=
∑

i

P (ωi)ω
2
i . (3.35)

Similarly, we can calculate the expectation value of any higher power
of the operator and these would correspond to the familiar moments
of a distribution in statistical mechanics.

3.4 Uncertainty principle

Let A and B be two non-commuting Hermitian operators with the
commutator given by (we do not write explicitly the identity operator
on the right hand side)

[A,B] = i~. (3.36)

As we have seen before, A and B, in such a case, are called conjugate
operators. Let ∆A be the root mean square deviation for the operator
A in a given quantum mechanical state, |ψ〉, so that

(∆A)2 = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2 = 〈A2〉 − 〈A〉2. (3.37)

Similarly, let ∆B be the root mean square deviation for B in the
same quantum state so that

(∆B)2 = 〈B2〉 − 〈B〉2. (3.38)

Then, Heisenberg’s uncertainty relation says that

∆A∆B ≥ ~

2
. (3.39)
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To derive the uncertainty relation, (3.39), let us note, first of all,
that we can write

(∆A)2 = 〈A2〉 − 〈A〉2 (3.40)

= 〈(A − 〈A〉)2〉, (3.41)

and, similarly for (∆B)2. Let us also define

Ã = A − 〈A〉, B̃ = B − 〈B〉. (3.42)

Then, clearly, since the expectation value is a constant,

[Ã, B̃] = [A,B] = i~. (3.43)

Furthermore, using (3.41) and (3.42), we can write

(∆A)2(∆B)2 = 〈(A− 〈A〉)2〉〈(B − 〈B〉)2〉

= 〈Ã2〉〈B̃2〉

≥ |〈ÃB̃〉|2 (Schwartz inequality)

= |〈1
2
(ÃB̃ + B̃Ã) +

1

2
(ÃB̃ − B̃Ã)〉|2

= |〈1
2
(ÃB̃ + B̃Ã) +

1

2
[Ã, B̃]〉|2

= |〈1
2
(ÃB̃ + B̃Ã) +

i~

2
〉|2

= |〈1
2
(ÃB̃ + B̃Ã)〉|2 + ~

2

4
. (3.44)

Since the first term on the right hand side of (3.44) is positive semi-
definite, this proves that

∆A∆B ≥ ~

2
. (3.45)

This result tells us that for any pair of conjugate variables, there
is a minimum of uncertainty associated with their measurements. Let
us note that if |ψ〉 is an eigenstate of one of the operators, say A, then,

∆A = 〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2 = 0. (3.46)

This implies that we can measure the quantity A precisely or accu-
rately in this state. The uncertainty principle, (3.45), then, says that
the measurement of B in this state would be infinitely uncertain,
since

∆B ≥ ~

2∆A
→∞. (3.47)
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◮ Example. Let us look for the form of the wave function for the state in which
the uncertainty is the minimum. First of all, note that the Schwartz inequality
becomes an equality if the vectors are parallel (recall that |A|2|B|2 = |A ·B|2 if
the two vectors, A and B, are parallel). Thus, for minimum uncertainty, we must
have

Ã|ψ〉 = λB̃|ψ〉, 〈ψ|Ã = λ
∗〈ψ|B̃. (3.48)

This implies that

1

2
〈ψ|(ÃB̃ + B̃Ã)|ψ〉 = 1

2
〈ψ|(λ∗

B̃B̃ + λB̃B̃)|ψ〉

=
1

2
(λ+ λ

∗)〈ψ|B̃B̃|ψ〉

=
1

2
(λ+ λ

∗)〈B̃ψ|B̃ψ〉. (3.49)

If this vanishes, then, we see from (3.44) that

(∆A)(∆B) =
~

2
, (3.50)

which is the minimum uncertainty. Since 〈B̃ψ|B̃ψ〉 > 0, unless |B̃ψ〉 = 0, for
the vanishing of (3.49), we must have λ + λ∗ = 0, which implies that λ is pure
imaginary. Let λ = −ic where c is real. Then we see from (3.48) that Ã|ψ〉 =
λB̃|ψ〉 = −icB̃|ψ〉. Furthermore, by definition, (3.42),

Ã = A− 〈A〉, and B̃ = B − 〈B〉.

Since A and B are conjugate variables, we can express them as differential oper-
ators, as we have seen earlier. As an example, let us consider

A = X, and B = P. (3.51)

Then, in the coordinate basis, we have

(x − 〈X〉)ψ(x) = −ic
(

−i~ d

dx
− 〈P 〉

)

ψ(x),

or,
dψ(x)

dx
=

(

− 1

c~
(x− 〈X〉) + i

~
〈P 〉
)

ψ(x),

or, ψ(x) = Nexp

[

− 1

2c~
(x− 〈X〉)2 + i

~
〈P 〉x

]

. (3.52)

This is a Gaussian centered at x = 〈X〉 with a width ∆x given by

1

(∆x)2
=

2

c~
, (3.53)

and the normalization N can be determined easily. ◭

Exercise. Determine N in the above example.
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3.5 Ehrenfest theorem

Let us consider an operator Ω and its expectation value 〈Ω〉 in a state
|ψ〉. We can ask how the expectation value of Ω changes with time.
We can, of course, write

d

dt
〈Ω〉 = d

dt
〈ψ|Ω|ψ〉

= 〈ψ̇|Ω|ψ〉 + 〈ψ|∂Ω
∂t
|ψ〉 + 〈ψ|Ω|ψ̇〉. (3.54)

On the other hand, we know from the Schrödinger equation that

i~
d

dt
|ψ(t)〉 = i~|ψ̇〉 = H|ψ〉, −i~ 〈ψ̇| = 〈ψ|H. (3.55)

Substituting this into (3.54), we have

d

dt
〈Ω〉 = 〈ψ̇|Ω|ψ〉 + 〈ψ|∂Ω

∂t
|ψ〉 + 〈ψ|Ω|ψ̇〉

=
i

~
〈ψ|HΩ|ψ〉 + 〈ψ|∂Ω

∂t
|ψ〉 − i

~
〈ψ|ΩH|ψ〉

= 〈ψ|∂Ω
∂t
|ψ〉 + i

~
〈ψ|[H,Ω]|ψ〉. (3.56)

If the operator Ω has no explicit time dependence, then, the first term
on the right hand side of (3.56) vanishes and we have

d

dt
〈Ω〉 = − i

~
〈ψ|[Ω,H]|ψ〉 = 1

i~
〈ψ|[Ω,H]|ψ〉. (3.57)

This is known as the Ehrenfest theorem. Remembering the quantum
correspondence principle (3.16), namely, [A,B] = i~{A,B} we note
that this is quite analogous to the classical Hamiltonian equation (see
(1.54))

dω

dt
= {ω,H}.

In other words, Ehrenfest’s theorem says that expectation values of
operators in quantum states obey classical equations.

◮ Example. As a direct application of the above discussions to particle motion in
one dimension, where

H =
P 2

2m
+ V (X), (3.58)
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we can calculate the time evolution of the expectation value of the coordinate
operator using (3.57),

d〈X〉
dt

=
d

dt
〈ψ|X|ψ〉 = 1

i~
〈ψ|[X,H ]|ψ〉

=
1

i~
〈ψ|
[

X,
P 2

2m
+ V (X)

]

|ψ〉

=
1

i~
〈ψ|
[

X,
P 2

2m

]

|ψ〉

=
1

i~
× 1

2m
〈ψ|P [X,P ] + [X,P ]P |ψ〉

=
1

i~
× 1

2m
× 2i~〈ψ|P |ψ〉

=
1

m
〈ψ|P |ψ〉 = 〈P 〉

m
. (3.59)

Let us recall from (1.43) that in classical mechanics we have ẋ = ∂H
∂p

= p

m
, which

can be compared with (3.59).
Furthermore, the time evolution of the expectation value of the momentum

operator is obtained to be

d〈P 〉
dt

=
d

dt
〈ψ|P |ψ〉 =

1

i~
〈ψ|[P,H ]|ψ〉

=
1

i~
〈ψ|
[

P,
P 2

2m
+ V (X)

]

|ψ〉

=
1

i~
〈ψ|[P, V (X)]|ψ〉

=
1

i~
〈ψ|(−i~) dV (X)

dX
|ψ〉

= −〈ψ|dV (X)

dX
|ψ〉 = −〈dV (X)

dX
〉. (3.60)

Once again, we note from (1.43) that in classical physics,

ṗ = −∂H
∂x

= −dV (x)

dx
, (3.61)

which can be compared with (3.60).
Thus, we see that, for an operator Ω, which does not depend on time ex-

plicitly, the expectation value 〈Ω〉 has the following evolution equation

d〈Ω〉
dt

= − i

~
〈[Ω, H ]〉 = 1

i~
〈[Ω, H ]〉. (3.62)

Let us consider a state |ψ〉 where the position measurement yields a value x

with uncertainty ∆x. And the momentum measurement yields a value p with
uncertainty ≃ ~

2∆x
. If the state is such that the uncertainties ∆x and ~

2∆x
are

negligible compared to the measured values x and p, then, we can replace

〈X〉 = x,

〈P 〉 = p,

}

x and p being classical quantities. (3.63)
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For such a state, therefore, the fluctuation around the mean is negligible and we
can write

〈Ω(X,P )〉 = Ω(〈X〉, 〈P 〉) = Ω(x, p) = ω(x, p). (3.64)

Therefore, in such a case we can write the Ehrenfest equation as

d〈Ω〉
dt

=
dω

dt
= {ω,H}. (3.65)

which is nothing other than Hamilton’s equation, (1.54). Thus, we see that quan-
tum mechanics, when applied to macroscopic systems (where uncertainties in mea-
surements can be neglected), indeed reduces to classical Hamiltonian mechanics.

◭

3.6 Stationary state solutions

Let us consider a simple quantum mechanical system where the Ham-
iltonian does not depend on time explicitly, namely,

H 6= H(t). (3.66)

The Schrödinger equation, (3.23), is given by

i~
d

dt
|ψ(t)〉 = H|ψ〉. (3.67)

This is a first order differential equation. Therefore, given one initial
condition, |ψ(0)〉, the solution can, in principle, be uniquely deter-
mined. Given an initial solution, one can also think of the solution
at any finite time as resulting from the effect of an operator acting
on the ket (vector) at t = 0. In other words, we can write

|ψ(t)〉 = U(t)|ψ(0)〉, (3.68)

where U(t) is the operator which translates the time coordinate of
the state vectors.

The main interest in quantum mechanics is to determine this
operator U(t). To find U(t), let us work in the eigenbasis of the
Hamiltonian H. Thus, let

H|E〉 = E|E〉. (3.69)

In this basis, we can expand the state vector as

|ψ(t)〉 =
∑

E

|E〉〈E|ψ(t)〉 =
∑

E

aE(t)|E〉, (3.70)
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where

aE(t) = 〈E|ψ(t)〉. (3.71)

Here, if the eigenvalues of the operator H are discrete, then one
uses a summation. However, if the eigenvalues E take continuous
values, then, one must replace the sum in (3.70) by an integral. We
will assume the energy eigenvalues to be discrete for simplicity. In
this basis, we can write

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉,

or, i~
∑

E

ȧE(t)|E〉 =
∑

E

EaE(t)|E〉, (3.72)

where we have used the fact that the basis states |E〉 are time in-
dependent, since the Hamiltonian is. It follows from (3.72) that, for
every energy mode, we can write

i~ ȧE(t) = EaE(t),

or,
daE(t)

dt
= − i

~
EaE,

or, aE(t) = aE(0)e
− i

~
Et, (3.73)

which allows us to express the state vector as

|ψ(t)〉 =
∑

E

aE(t)|E〉 =
∑

E

aE(0)e
− i

~
Et|E〉. (3.74)

On the other hand, from the expansion of the state in the energy
eigenbasis, (3.70), we also recognize that

|ψ(0)〉 =
∑

E

aE(0)|E〉, aE(0) = 〈E|ψ(0)〉. (3.75)

Using this in (3.74), we see that we can write

|ψ(t)〉 =
∑

E

aE(0)e
− i

~
Et|E〉

=
∑

E

e−
i
~
Et〈E|ψ(0)〉|E〉

=
∑

E

e−
i
~
Et|E〉〈E|ψ(0)〉

= U(t)|ψ(0)〉, (3.76)
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where we have identified

U(t) =
∑

E

e−
i
~
Et|E〉〈E|. (3.77)

This determines the operator U(t), which leads to time evolution of
physical states (and, therefore, is also known as the time evolution
operator). If the eigenvalues of H are degenerate, then we can in-
troduce a label α for the degeneracy and then, the time evolution
operator can be determined in an analogous manner to be

U(t) =
∑

α

∑

E

e−
i
~
Et|E,α〉〈E,α|. (3.78)

Let us note here parenthetically that, since our main goal is to de-
termine U(t), this can be achieved if we know the energy eigenvalues
and eigenstates of a quantum mechanical system.

Clearly, states of the form

|ψE(t)〉 = |E(t)〉 = e−
i
~
Et|E〉, (3.79)

satisfy the Schrödinger equation. Such states, which are eigenstates of
the Hamiltonian, are called stationary states because, in such states,
the probability for measurement of any time independent operator Ω
is independent of time. Namely,

P (ω, t) = |〈ω|ψE(t)〉|2 = |〈ω|E(t)〉|2

= |〈ω|E〉e− i
~
Et|2 = |〈ω|E〉|2

= P (ω, 0), (3.80)

where |ω〉 is assumed to be time independent since Ω is.

We can also write the time evolution operator in the form

U(t) =
∑

E

e−
i
~
Et|E〉〈E|

=
∑

E

e−
i
~
Ht|E〉〈E| = e−

i
~
Ht
∑

E

|E〉〈E|

= e−
i
~
Ht. (3.81)

It is also clear that this expression is formally true even if the eigenval-
ues of H are degenerate. We say, formally, because the convergence
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of this series is hard to prove. Since H is Hermitian, it follows that
U(t) is a unitary operator. In other words,

U †(t)U(t) = 1 = U(t)U †(t), (3.82)

and, consequently,

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|U †(t)U(t)|ψ(0)〉 = 〈ψ(0)|ψ(0)〉. (3.83)

If the Hamiltonian depends on time explicitly, namely, if

H = H(t), (3.84)

then, the time evolution operator takes the following form

U(t) = T
(
e−

i
~

∫ t
0 dt′ H(t′)

)
, (3.85)

where T is the time ordering operator which orders operators with
larger times to the left.

It is clear that the operator U– both for time dependent and
time independent Hamiltonians – depends on the initial time as well
as the final time,

U = U(t2, t1), (3.86)

so that

|ψ(t2)〉 = U(t2, t1)|ψ(t1)〉. (3.87)

Namely, it takes a state at time t1 to a state at time t2. Furthermore,
the time evolution operator satisfies the following relations

U(t1, t1) = 1,
U(t3, t2)U(t2, t1) = U(t3, t1),

U †(t2, t1) = U−1(t2, t1) = U(t1, t2). (3.88)

Let us now solve the same problem of a time independent Hamil-
tonian in the x-basis (coordinate basis). The Schrödinger equation
leads to

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉,

or, i~
∂

∂t
〈x|ψ(t)〉 =

∫
dx′ 〈x|H|x′〉〈x′|ψ(t)〉,

or, i~
∂ψ(x, t)

∂t
=

(
− ~

2

2m

∂2

∂x2
+ V (x)

)
ψ(x, t). (3.89)
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Since time and space derivatives are completely decoupled in
(3.89), let us assume a separable solution of the form

ψ(x, t) = u(x)g(t). (3.90)

Substituting this into (3.89), we obtain

i~u(x)
dg(t)

dt
= g(t)

(
− ~

2

2m

d2

dx2
+ V (x)

)
u(x),

or, i~
ġ(t)

g(t)
=

1

u(x)

(
− ~

2

2m

d2

dx2
+ V (x)

)
u(x). (3.91)

Since the left hand side depends only on time and the right hand
side depends only on spatial coordinates, for them to be equal for all
times and space, both sides must be equal to a constant which we
call E. Thus, the relation in (3.91) leads to two equations, the first
of which has the form

i~
ġ(t)

g(t)
= E,

or, g(t) = g(0) e−
i
~
Et. (3.92)

Furthermore, the second equation following from (3.91) gives

(
− ~

2

2m

d2

dx2
+ V (x)

)
u(x) = Eu(x). (3.93)

Thus, we can write the wave function for the system as

ψE(x, t) = u(x)g(t) = u(x)e−
i
~
Et, (3.94)

where the constant g(0) has been absorbed into u(x). Equation
(3.93), in the coordinate basis, is also known as the time indepen-
dent Schrödinger equation which determines E from the dynamics of
the system.

Exercise. Convince yourself that E is the energy of the system. How is u(x) related
to the expansion in the energy basis?

3.7 Continuity equation

In electrodynamics, we know that the total charge of a system is a
constant independent of time, namely,

Q = constant 6= Q(t). (3.95)
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Such a relation is known as a global conservation law. Global conser-
vation laws allow for the possibility of charges disappearing at some
place and appearing suddenly at some other place within a given
region. However, in electrodynamics, we also know of a continuity
equation

∂ρ(r, t)

∂t
= −∇ · J(r, t), (3.96)

where ρ is the electric charge density and J, the current density at
some point. Integrating (3.96) over a small volume we have

d

dt

∫

V

d3r ρ(r, t) = −
∫

V

d3r∇ · J = −
∫

SV

ds · J, (3.97)

where SV is the surface which bounds the volume V . This shows
that any decrease in the charge, in an infinitesimal volume, must be
accompanied by a flux of electric current out of the volume. In other
words, charge has to be locally conserved. Such conservation laws
prohibit simultaneous sudden destruction of charge at some point
and creation of charge at some other point, which is allowed by global
conservation laws.

In quantum mechanics, we also have globally conserved quanti-
ties. For example, we have already seen that (see (3.83))

〈ψ(t)|ψ(t)〉 = 〈ψ(0)|U †(t)U(t)|ψ(0)〉 = 〈ψ(0)|ψ(0)〉. (3.98)

If the states are normalized, this implies that the probability of find-
ing a particle anywhere in space is unity at all times. Namely,

〈ψ(0)|ψ(0)〉 = 1 = 〈ψ(t)|ψ(t)〉

=

∫
dx 〈ψ(t)|x〉〈x|ψ(t)〉

=

∫
dx ψ∗(x, t)ψ(x, t)

=

∫
dx P (x, t). (3.99)

However, there are also local conservation laws in quantum me-
chanics. For example, let us consider the Schrödinger equation in
three dimensions in the coordinate basis (see (3.89)),

i~
∂ψ(r, t)

∂t
= Hψ(r, t) =

(
− ~

2

2m
∇

2 + V (r)

)
ψ(r, t). (3.100)
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Taking the complex conjugate of (3.100), we obtain

−i~ ∂ψ∗(r, t)
∂t

= (Hψ(r, t))∗ =

(
− ~

2

2m
∇

2 + V (r)

)
ψ∗(r, t).

(3.101)

Multiplying (3.100) by ψ∗(r, t) and (3.101) by ψ(r, t) and subtracting
one from the other, we have

i~

(
ψ∗ ∂ψ

∂t
+ ψ

∂ψ∗

∂t

)
= − ~

2

2m

(
ψ∗

∇
2ψ − ψ∇2ψ∗) ,

or, i~
∂

∂t
(ψ∗ψ) = − ~

2

2m
∇ · (ψ∗

∇ψ − (∇ψ∗)ψ) ,

or,
∂

∂t
(ψ∗ψ) = − ~

2im
∇ · (ψ∗

∇ψ − (∇ψ∗)ψ) . (3.102)

We know that ψ∗(r, t)ψ(r, t)d3r = P (r, t)d3r gives the proba-
bility of finding a particle between r and r + dr at a given time t.
Therefore, P (r, t) corresponds to the probability density. We can also
define a probability current density associated with the particle as

S =
~

2im
(ψ∗(r, t)∇ψ(r, t)− (∇ψ∗(r, t))ψ(r, t)) , (3.103)

so that we have the continuity equation

∂P (r, t)

∂t
= −∇ · S(r, t). (3.104)

This again leads to a local conservation law, namely, locally the
change in the probability density must be equal to the negative of
the probability flux out of that volume. In other words, probability
can not suddenly change at distinct points. The continuity equation,
therefore, emphasizes that the solutions of the Schrödinger equation
must be such that both ψ(r, t) and ∇ψ(r, t) should be continuous
functions (for regular potentials). This can be seen in the follow-
ing manner. Let us note that, for stationary states (see (3.93)), the
Schrödinger equation is a second order differential equation, namely
(consider one dimension for simplicity and note that the time depen-
dent phase drops out in P,S for stationary states),

d2u(x)

dx2
=

2m

~2
(V − E) u(x). (3.105)
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Integrating this over an infinitesimal interval around x = ζ, we obtain

lim
ǫ→0

ζ+ǫ∫

ζ−ǫ

dx
d2u(x)

dx2
= lim

ǫ→0

ζ+ǫ∫

ζ−ǫ

dx
2m

~2
(V (x)− E) u(x),

or, lim
ǫ→0

du(x)

dx

∣∣∣∣
ζ+ǫ

ζ−ǫ

= lim
ǫ→0

2m

~2

ζ+ǫ∫

ζ−ǫ

dxV (x)u(x)→ 0. (3.106)

which holds for continuous potentials.

3.8 Schrödinger picture and Heisenberg picture

We have seen that the time dependent Schrödinger equation has the
form

i~
d

dt
|ψS(t)〉 = H|ψS(t)〉, (3.107)

and implies that

|ψS(t)〉 = e−
i
~
Ht|ψS(0)〉, (3.108)

when the Hamiltonian is independent of time. Let us further assume
that operators do not have any explicit time dependence. Then, the
expectation value of operators change with time according to the
Ehrenfest theorem (see (3.57)) as

d

dt
〈ΩS〉 =

d

dt
〈ψS(t)|ΩS|ψS(t)〉

=
1

i~
〈ψS(t)|[ΩS,H]|ψS(t)〉. (3.109)

Thus, even though the operators do not have time dependence, the
expectation values of the operators, which are physically observable,
change with time because the state vectors bring in time dependence.
Such a description where time dependence is carried entirely by the
state vectors is known as the Schrödinger picture (which is the reason
for the subscript). On the other hand, we can think of a description
where the state vectors do not have any time dependence. That is,
they are constant in time. However, the operators are now functions
of time. Such a description is known as the Heisenberg picture. The
situation here is somewhat analogous to rotations which you are all
familiar with. For example, while considering rotations of physical
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systems, one may consider the reference frame to be fixed and the
system to be rotating. However, one can also view the same phe-
nomenon as if the system were at rest and the reference frame was
rotating in the opposite direction. Physics, of course, does not depend
on what viewpoint one takes.

Thus, it is clear that if we want the state vectors to be indepen-
dent of time, then, we can define them as

|ψH〉 = |ψS(0)〉 = e
i
~
Ht|ψS(t)〉. (3.110)

Furthermore, using (3.108) and (3.110), we have

〈ψS(t)|ΩS|ψS(t)〉 = 〈ψS(0)|e
i
~
HtΩSe

− i
~
Ht|ψS(0)〉

= 〈ψH |ΩH |ψH〉, (3.111)

where we have defined

ΩH = e
i
~
HtΩSe

− i
~
Ht. (3.112)

This defines the operators in the Heisenberg picture, so that the ex-
pectation values remain the same in the two descriptions. It is clear
now that

d

dt
〈ψS(t)|ΩS|ψS(t)〉 =

d

dt
〈ψH |ΩH |ψH〉 = 〈ψH |

dΩH

dt
|ψH〉

= 〈ψH |
∂ΩH

∂t
|ψH〉 −

i

~
〈ψH | [ΩH ,H] |ψH〉, (3.113)

where we have identified

∂ΩH

∂t
= e

i
~
Ht ∂ΩS

∂t
e−

i
~
Ht. (3.114)

(Namely, we are allowing for some explicit time dependence of ΩS.)
Since, in the Heisenberg picture, the state vectors (bras and kets) do
not depend on time, we can also write (3.113) as an operator equation

dΩH

dt
=
∂ΩH

∂t
− i

~
[ΩH,H] =

∂ΩH

∂t
+

1

i~
[ΩH ,H]. (3.115)

This describes the time evolution for operators in the Heisenberg pic-
ture, which is quite analogous to the Hamiltonian description of clas-
sical mechanics. We can also derive (3.115) by direct differentiation
of the defining relation for the operator ΩH in (3.112).

Exercise. Show that the Hamiltonian remains the same in both the Heisenberg
and the Schrödinger pictures.
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3.9 Selected problems

1. Prove the Jacobi identity for non-commuting operators A,B,C,
namely,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (3.116)

2. Prove the Cauchy-Schwarz inequality as well as the triangle in-
equality in a linear vector space with an inner product. Namely,
if |f〉 and |g〉 denote two vectors in such a space, then show that

a) |〈f |g〉|2 ≤ 〈f |f〉〈g|g〉, (Cauchy-Schwarz inequality).

(3.117)

b) |||f〉+ |g〉|| ≤ |||f〉||+ |||g〉|| , (Triangle inequality),

where

|||A〉||2 = 〈A|A〉. (3.118)

3. Find a set of three 2× 2 matrices satisfying

[Qx, Qy] = −iQz,

[Qy, Qz] = −iQx,

[Qz, Qx] = −iQy. (3.119)

4. Consider a quantum mechanical operator represented by a 3×3
matrix

Ω =




1 0
√
3

0 2 0√
3 0 3


 . (3.120)

a) If a quantummechanical system is in a state (not normalized)
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|ψ〉 =




1
2i
−1


 , (3.121)

then, which of the eigenvalues of Ω is most likely to emerge in
a measurement?

b) What would be the average value for the measurement of Ω
in this state?

5. a) If Ω is a dynamical operator which does not depend on t
explicitly, then, show that the expectation value of the operator
in an energy eigenstate satisfies

d〈Ω〉
dt

= 0. (3.122)

b) Using this result, show that in one dimension if a particle
moves in a potential V (x) = gxn, where g denotes a coupling
constant, then, in an energy eigenstate

2 〈T 〉 = n 〈V 〉. (3.123)

Here T, V denote respectively the kinetic and the potential en-
ergy operators and this relation is known as the quantum virial
theorem.
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Chapter 4

Simple applications of Schrödinger

equation

In these lectures, we will apply the principles of quantum mechan-
ics described in the last chapter to study some simple, one dimen-
sional quantum mechanical systems. This will bring out the essential
features of quantum mechanical systems and will also illustrate the
differences of such systems from their corresponding classical coun-
terparts.

4.1 Free particle

Let us consider a free particle of mass m moving in one dimension.
The Hamiltonian, in this case, is simple and has the form

H =
P 2

2m
. (4.1)

Therefore, the Schrödinger equation,

i~
d|ψ(t)〉

dt
= H|ψ(t)〉, (4.2)

in this case, takes the form (in the x-basis),

i~
∂ψ(x, t)

∂t
= − ~

2

2m

∂2ψ(x, t)

∂x2
,

or,
∂ψ(x, t)

∂t
=

i~

2m

∂2ψ(x, t)

∂x2
. (4.3)

This is like the heat equation except that the coefficient, on the
right hand side, is imaginary. The solution of (4.3) can be written as

ψ(x, t) =
N√

a2 + i~t
m

e
− x2

2(a2+ i~t
m ) , (4.4)

         
 16:35:11.



90 4 Simple applications of Schrödinger equation

where “a” is a constant, which can be determined from the initial
value of the wave function. The constant N is determined from the
normalization of the probability (wave function). The probability
density, in this case, is given by

ψ∗ψ =
|N |2

a
√
a2 + ~2t2

m2a2

e
− x2

a2+ ~2t2

m2a2 . (4.5)

Thus, we see that the wave function for a free particle, also called
a wave packet, is such that the probability density is described by a
Gaussian. The probability of finding the particle peaks around x = 0
and the Gaussian has a mean width of

∆ =
1√
2

(
a2 +

~
2t2

m2a2

) 1
2

. (4.6)

Therefore, we see that, by choosing an appropriate “a”, we can lo-
calize the particle fairly well initially (at time t = 0), but as time
grows, the width of the Gaussian increases. This is known as the dis-
persion of the wave packet and is a general feature of most quantum
mechanical systems.

Exercise. Derive the same result by working in the momentum basis and then
transforming to the x-basis.

4.2 Infinite square well

Let us consider the one dimensional potential given by (see Fig. 4.1)

V (x) =

{
0, for x2 ≤ a2,
∞, for x2 ≥ a2. (4.7)

To examine the motion of a particle in this potential, let us attempt
to solve the system with

V (x) =

{
0, for x2 ≤ a2, or, − a ≤ x ≤ a,
V0, for x2 ≥ a2, or, x ≥ a, x ≤ −a, (4.8)

and take the limit V0 →∞. In the x-basis, the Hamiltonian has the
form

H = − ~
2

2m

d2

dx2
+ V (x), (4.9)
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x

V (x) ∞∞

−a a

I II III

Figure 4.1: Particle moving in an infinite square well.

with V (x) given in (4.8). The time independent Schrödinger equa-
tion, (3.93), in the present case, takes the form

(
− ~

2

2m

d2

dx2
+ V (x)

)
u(x) = Eu(x). (4.10)

Since the potential in the problem is different in different regions, we
have to solve the Schrödinger equation separately in the three regions.

Region I: x ≤ −a. In this region, the potential is a constant and
the Schrödinger equation has the form

− ~
2

2m

d2u

dx2
+ V0u = Eu,

or,
d2u

dx2
=

2m

~2
(V0 −E)u, (4.11)

where we are assuming V0 > E > 0. We note here that, since inside
the potential well the potential vanishes, E represents the kinetic
energy of the particle in that region which has to be positive, leading
to E > 0. Furthermore, we assume V0 > E because we are ultimately
going to take the limit V0 →∞. The solution of the equation (4.11),
in region I, can be written in the form

uI(x) = Aeκx +Be−κx, (4.12)

where A and B are constants and we have defined

κ =

√
2m

~2
(V0 − E). (4.13)
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It is clear from the solution (4.12) that if the wave function has to
retain a probabilistic interpretation, we must have

B = 0, (4.14)

because, otherwise, it will grow exponentially as x→ −∞ and would
not converge (can not be normalized). Thus, for x ≤ −a, the solution
for the time independent Schrödinger equation has the form

uI(x) = Aeκx. (4.15)

However, as V0 →∞, κ→∞. Therefore, in this limit,

uI(x) = 0, x ≤ −a. (4.16)

Region III: x ≥ a. As in region I, we can show that, in this
region as well, the wave function vanishes,

uIII(x) = 0, x ≥ a. (4.17)

Region II: −a ≤ x ≤ a. In this region, the potential vanishes so
that the Schrödinger equation takes the simple form,

− ~
2

2m

d2u

dx2
= Eu,

or,
d2u

dx2
= −2mE

~2
u = −k2u, k2 =

2mE

~2
,

or, uII(x) = C sin kx+D cos kx, (4.18)

where C and D are arbitrary constants.
We know from our earlier discussions that the solutions of the

Schrödinger equation have to be continuous everywhere and, in par-
ticular, at the boundaries. Therefore, matching the solutions at
x = ±a we have

uII(a) = C sin ka+D cos ka = 0 = uIII(a),

uII(−a) = −C sin ka+D cos ka = 0 = uI(−a). (4.19)

These linear homogeneous equations (in the unknowns C and D) can
have nontrivial solutions only if the determinant of the coefficient
matrix vanishes, namely,

sin ka cos ka = 0. (4.20)

There are two possible nontrivial solutions to the set of conditions in
(4.20).
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1. Even solution: cos ka = 0.

In this case, it follows from (4.19) that

C = 0,

and we must have (for cos ka = 0 to hold)

ka =
(2n+ 1)π

2
, n integer

or, k2n =
(2n+ 1)2π2

4a2
,

or, En =
~
2k2n
2m

=
(2n + 1)2π2~2

8ma2
. (4.21)

In this case, the nontrivial solution in region II has the form

un(x) = Dn cos knx, −a ≤ x ≤ a, (4.22)

which is an even function of x.

2. Odd solution: sin ka = 0.

In this case, it follows from (4.19) that

D = 0,

and we must have (for sin ka = 0 to hold)

ka = nπ, n integer 6= 0,

or, k2n =
n2π2

a2
,

or, En =
~
2k2n
2m

=
n2π2~2

2ma2
. (4.23)

The nontrivial solution in region II, in this case, takes the form

un(x) = Cn sin knx, −a ≤ x ≤ a, (4.24)

which is an odd function of x.

We note that corresponding to every value of En given in (4.21) or
(4.23), we will have a physical solution and we can write a general
solution of the Schrödinger equation as a linear superposition

ψ(x, t) =
∑

n

Anun(x)e
− i

~
Ent, (4.25)
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where An’s are constants.

One of the things that we notice immediately from this analysis
is that, whereas classically particle motion is allowed for any E > 0,
quantum mechanically particle motion is allowed only for discrete
values of the energy, namely, energy for the system is quantized (see
(4.21),(4.23)). We also see that for this system,

lim
|x|→∞

u(x)→ 0. (4.26)

Such a system, where the wave function vanishes (beyond a certain
range or asymptotically), is called a bound state solution and, for
every bound state, we have quantization of energy. A very familiar
example is the Hydrogen atom which we will study in detail later. In
fact, in the present system,

u(x) = 0, for x2 ≥ a2. (4.27)

Therefore, this system is also referred to as a particle in a box of
length 2a. (The probability for finding the particle outside this region
is zero.)

Exercise. Normalize the solutions obtained for the infinite square well potential.
Calculate ∆x for the ground state. Estimate the ground state energy from the
uncertainty principle and compare it with the actual value.

Exercise. Plot the first few solutions and describe their qualitative features. In
particular, show that the nth state has (n− 1) nodes inside the well.

4.3 Finite square well

Let us next consider the same potential as in the previous case, but
with a finite value for the height of the potential (see Fig. 4.2),
namely,

V (x) =

{
0, for −a ≤ x ≤ a,
V0, for x ≥ a, x ≤ −a. (4.28)

Let us consider the bound state motion of a particle in this potential
for which,

V0 > E > 0. (4.29)

Once again, we have to solve the equation in different regions sepa-
rately, since the potential is different in different regions.
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x

V (x)
V0V0

−a a

I II III

Figure 4.2: Particle moving in a square well of height V0.

Region I: x ≤ −a. In this region, the Schrödinger equation has
the form,

− ~
2

2m

d2u

dx2
= −(V0 − E)u,

or,
d2u

dx2
=

2m

~2
(V0 − E)u = κ2u,

or, uI(x) = A1e
κx +A2e

−κx, κ2 =
2m

~2
(V0 − E), (4.30)

where A1, A2 are constants and the boundedness of the solution (as
x→ −∞) requires that A2 = 0, so that we have

uI(x) = A1e
κx, x ≤ −a. (4.31)

Region III: x ≥ a. In this region, the Schrödinger equation has
the same form as in (4.30) so that

d2u

dx2
= κ2u,

or, uIII(x) = B1e
κx +B2e

−κx. (4.32)

Since the solution has to be bounded as x→∞, we must have B1 = 0,
which gives

uIII(x) = B2e
−κx, x ≥ a. (4.33)

Region II: −a ≤ x ≤ a. In this region, the potential vanishes
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and the Schrödinger equation takes the simple form,

− ~
2

2m

d2u

dx2
= Eu,

or,
d2u

dx2
= −2mE

~2
u = −k2u,

or, uII(x) = C1 sin kx+ C2 cos kx, k2 =
2mE

~2
. (4.34)

As we have already discussed, the solutions of the Schrödinger
equation and their derivatives must be continuous across the bound-
aries. Thus, matching solutions at x = a, we have

uIII(a) = uII(a),

or, B2e
−κa = C1 sin ka+ C2 cos ka. (4.35)

Similarly, matching the solutions at x = −a, we obtain

uI(−a) = uII(−a),

or, A1e
−κa = −C1 sin ka+ C2 cos ka. (4.36)

Furthermore, matching the derivatives du
dx at x = a, we have

duIII(x)

dx

∣∣∣∣
x=a

=
duII(x)

dx

∣∣∣∣
x=a

,

or, − κB2e
−κa = k(C1 cos ka−C2 sin ka). (4.37)

Similarly, matching of the derivatives at x = −a gives

duI(x)

dx

∣∣∣∣
x=−a

=
duII(x)

dx

∣∣∣∣
x=−a

,

or, κA1e
−κa = k(C1 cos ka+ C2 sin ka). (4.38)

Adding and subtracting (4.35) and (4.36), we obtain

2C2 cos ka = (A1 +B2)e
−κa,

2C1 sin ka = −(A1 −B2)e
−κa. (4.39)

Similarly, adding and subtracting (4.37) and (4.38) we have

2kC1 cos ka = κ(A1 −B2)e
−κa,

2kC2 sin ka = κ(A1 +B2)e
−κa. (4.40)

         
 16:35:11.



4.3 Finite square well 97

To simplify the analysis, let us next define

A1 −B2 = −D1,

A1 +B2 = D2. (4.41)

Then, the two sets of equations in (4.39) and (4.40) can be combined
and rewritten as

2C1 sin ka−D1e
−κa = 0,

2kC1 cos ka+ κD1e
−κa = 0, (4.42)

and

2C2 cos ka−D2e
−κa = 0,

2kC2 sin ka− κD2e
−κa = 0. (4.43)

The set of homogeneous linear equations in (4.42) has nontrivial
solutions (for C1 and D1) only if

det

∣∣∣∣
2 sin ka −e−κa

2k cos ka κe−κa

∣∣∣∣ = 0,

or, 2κ sin kae−κa + 2k cos kae−κa = 0,

or, k cot ka = −κ. (4.44)

The other set of homogeneous linear equations in (4.43) has nontrivial
solutions (for C2 and D2) only if

det

∣∣∣∣
2 cos ka −e−κa

2k sin ka −κe−κa

∣∣∣∣ = 0,

or, − 2κ cos kae−κa + 2k sin kae−κa = 0,

or, k tan ka = κ. (4.45)

It is clear that it is impossible to satisfy both (4.44) and (4.45) simul-
taneously and, therefore, we have two classes of solutions. In either of
the relations (4.44) and (4.45), however, we see that energy is the only
unknown quantity. Therefore, we see again that quantum mechani-
cally motion is allowed only if the energy satisfies certain conditions.
Let us analyze the two classes of solutions in detail

1. Even solution: k tan ka = κ.
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In this case, we have

C1 = D1 = 0.

Let us define the dimensionless variables, ξ = ka and η = κa.
Then, it follows that (see the definitions in (4.30) and (4.34))

η2 + ξ2 = a2(κ2 + k2)

= a2
(
2m

~2
(V0 − E) +

2m

~2
E

)

=
2mV0a

2

~2
= constant, (4.46)

which is the equation of a circle.

Furthermore, relation (4.45) can be written in these variables
as

ka tan ka = κa,

or, ξ tan ξ = η. (4.47)
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Figure 4.3: Existence of even solutions corresponds to intersection
points of the two curves.

The simultaneous solutions of the two equations, (4.46) and
(4.47), can be obtained by plotting the two functions and de-
termining their points of intersection. We note that both ξ and
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η take positive values and, therefore, plotting the two functions
on the first quadrant only, we obtain the graph shown in Fig.
4.3. It is clear that they intersect once if 0 ≤ 2mV0a

2

~2
< π2.

There are two intersections if π2 ≤ 2mV0a
2

~2
< (2π)2. And the

number of solutions (intersections) keeps on increasing as the

value of the parameter 2mV0a
2

~2
grows. For each such allowed

value of the energy (determined from the point of intersection),
we will have an even solution in the present case.

2. Odd solution: k cot ka = −κ.
In this case, it follows that

C2 = D2 = 0.

We note that (4.46) continues to hold, namely,

η2 + ξ2 =
2mV0a

2

~2
= constant,

and, in addition, we can write (4.44) in the dimensionless vari-
ables as

ka cot ka = −κa,

or, ξ cot ξ = −η. (4.48)

Once again, the simultaneous solutions of (4.46) and (4.48) can
be obtained graphically as before. Plotting these functions in
the first quadrant as shown in Fig. 4.4, we see that if 0 ≤
2mV0a

2

~2
<
(
π
2

)2
, there is no solution. For,

(
π
2

)2 ≤ 2mV0a
2

~2
≤(

3π
2

)2
, there is one solution (intersection) and so on. Thus, we

see that the existence of solutions depends on the parameters
of the problem like the mass, V0 as well as the range of the
potential. A simultaneous solution, of course, determines the
allowed energy for which the quantum mechanical motion is
described by an odd wave function, in the present case.

It is interesting to note here that, for both the even and the
odd solutions, u(x) is nonzero outside the well so that there will be
a nonzero probability for finding the particle there, which is different
from what we would expect in classical mechanics. Let us also note
here parenthetically that, if V0 →∞, then, it is easy to see that the
intersections will occur at ξ = (n + 1

2 )π, nπ, which is what we have
seen in our earlier analysis (see (4.21) and (4.23) respectively).
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Figure 4.4: Existence of odd solutions corresponds to the intersection
points of the two curves.

4.4 Parity

In the case of the infinite square well as well as the finite square well,
we have classified solutions as even and odd. Let us examine the
origin of this. The time independent Schrödinger equation has the
general form

[
− ~

2

2m

d2

dx2
+ V (x)

]
u(x) = Eu(x). (4.49)

Let us assume now that our potential is symmetric about x = 0,
namely, V (−x) = V (x), which is, in fact, the case in the two examples
which we have studied. In this case, upon changing x → −x, the
Schrödinger equation, (4.49), becomes

[
− ~

2

2m

d2

dx2
+ V (x)

]
u(−x) = Eu(−x). (4.50)

This shows that if u(x) is an eigenstate of the Hamiltonian, so is
u(−x) with the same energy eigenvalue. Therefore, they must be
related by a multiplicative constant,

u(−x) = ǫu(x). (4.51)

Furthermore, iterating this twice, we are led to

u(x) = ǫu(−x) = ǫ2u(x). (4.52)
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x

V (x)

V0

x = 0 a

I II III

Figure 4.5: Particle incident on a barrier of height V0 with energy
E < V0.

Therefore, this leads to

ǫ2 = 1, or, ǫ = ±1. (4.53)

We conclude, therefore, that all the eigenfunctions of a Hamil-
tonian with a symmetric potential are either even or odd under a
reflection of the coordinate (changing x→ −x), and are said to have
even or odd parity respectively. The transformation x→ −x is known
as space reflection or parity. We will study more about parity later
when we discuss symmetries in quantum mechanical systems.

4.5 Penetration of a barrier

Let us next consider the physical example where a particle with en-
ergy E > 0 is incident on a potential barrier (see Fig. 4.5) given
by

V (x) =

{
0, x ≤ 0, x ≥ a,
V0, a ≥ x ≥ 0,

(4.54)

where V0 represents the height of the barrier. If E < V0, then clas-
sically we expect the particle to be reflected. But, as we will see,
quantum mechanics allows for a transmitted wave in addition to the
reflected beam. In other words, quantum mechanically a particle can
actually tunnel through a barrier.

Since the potential is different in different regions, we have to
solve the Schrödinger equation separately in each of these regions.
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Regions I and III. First of all, to get our notations right, we note that
a particle, traveling in a potential free region, can be represented by
a superposition of plane waves. Furthermore, a plane wave moving
in the positive x axis is written as eikx whereas one moving in the
opposite direction is written as e−ikx. Both of them have the same
energy. However, for the first the momentum eigenvalue is positive
(~k) indicating that it is moving along the positive x-axis, while, for
the latter, the momentum eigenvalue is negative (−~k) implying that
it is moving in the opposite direction. Since in regions I and III there
is no potential, the Schrödinger equation has the simple form

− ~
2

2m

d2u

dx2
= Eu, (4.55)

so that

uI(x) = Aeikx +Be−ikx, x ≤ 0,

uIII(x) = Ceikx, x ≥ a, (4.56)

where we have used our physical intuition that in region I there will
be an incident as well as a reflected wave, while in region III there
can at most be a transmitted wave. As before, we have also identified

k =

√
2mE

~2
. (4.57)

We note that A,B,C, in (4.56) are constants, but to obtain their
physical meaning, let us write down the probability current densities
in both these regions (see (3.103))

SI =
~

2im

(
u∗I (x)

duI(x)

dx
− uI(x)

du∗I (x)

dx

)

=
~

2im

[
ik
(
A∗e−ikx +B∗eikx

)(
Aeikx −Be−ikx

)

+ik
(
Aeikx +Be−ikx

)(
A∗e−ikx −B∗eikx

)]

=
~k

2m

[
2(AA∗ −BB∗) + (−A∗B +A∗B)e−2ikx

+(B∗A−B∗A)e2ikx
]

=
~k

m

(
|A|2 − |B|2

)
= v

(
|A|2 − |B|2

)
. (4.58)
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Similarly, in region III we obtain

SIII =
~

2im

(
u∗III(x)

duIII(x)

dx
− uIII(x)

du∗III(x)

dx

)

=
~k

m
CC∗ = v|C|2. (4.59)

Here, we have defined v as the velocity corresponding to the wave
number k. Furthermore, the expressions for SI and SIII suggest that
they can be interpreted as the net probability flux to the right. This
is also consistent with the physical picture of an incident, a reflected
and a transmitted wave. In other words, A represents the amplitude
for the incident wave, B the amplitude for the reflected wave and C
the amplitude for the transmitted wave, so that we can also write

Sinc =
~k

m
|A|2,

Srefl =
~k

m
|B|2,

Strans =
~k

m
|C|2. (4.60)

Region II. Here the potential is a positive constant and, correspond-
ingly, the time independent Schrödinger equation takes the form

− ~
2

2m

d2u

dx2
+ V0u = Eu,

or,
d2u

dx2
=

2m

~2
(V0 − E)u = κ2u, κ =

√
2m

~2
(V0 − E),

or, uII(x) = D1e
−κx +D2e

κx, 0 ≤ x ≤ a. (4.61)

Since the region in which this solution is valid is of finite extension,
both the exponentially growing and the damped solutions are allowed.

The solutions and their first derivatives have to be continuous.
Therefore, matching the solutions and their derivatives at x = 0, we
have

uI(0) = uII(0), ⇒ A+B = D1 +D2,

u′I(0) = u′II(0), ⇒ ik(A−B) = −κ(D1 −D2), (4.62)
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where “prime” denotes a derivative (with respect to x). Multiplying
the first relation in (4.62) by ik and taking the sum and the difference
of the two relations, we obtain,

2ikA = (ik − κ)D1 + (ik + κ)D2,

2ikB = (ik + κ)D1 + (ik − κ)D2. (4.63)

Furthermore, matching the solutions and their derivatives at
x = a we have

uIII(a) = uII(a), ⇒ Ceika = D1 e
−κa +D2 e

κa,

u′III(a) = u′II(a), ⇒ ikCeika = −κ
(
D1 e

−κa −D2 e
κa
)
, (4.64)

so that, from the above two relations, we obtain a relation between
D1 and D2 of the form

(ik + κ)D1 e
−κa + (ik − κ)D2 e

κa = 0, (4.65)

which leads to

D1

D2
= −(ik − κ)

(ik + κ)
e2κa. (4.66)

Furthermore, using (4.66) in (4.63), we have

B

A
=

(ik + κ)D1 + (ik − κ)D2

(ik − κ)D1 + (ik + κ)D2

=
(ik + κ)D1

D2
+ (ik − κ)

(ik − κ)D1
D2

+ (ik + κ)

=
−(ik + κ) (ik−κ)

ik+κ
e2κa + (ik − κ)

−(ik − κ) (ik−κ)
ik+κ

e2κa + (ik + κ)

=
−(ik − κ)(e2κa − 1)

− (ik−κ)2

ik+κ
e2κa + (ik + κ)

=
(κ2 + k2)(e2κa − 1)

−(ik − κ)2e2κa + (ik + κ)2

=
(κ2 + k2)eκa(eκa − e−κa)

(κ2 − k2)(1− e2κa) + 2iκk(1 + e2κa)

=
(κ2 + k2)(eκa − e−κa)

(κ2 − k2)(e−κa − eκa) + 2iκk(e−κa + eκa)

=
(κ2 + k2) sinhκa

−(κ2 − k2) sinhκa+ 2iκk cosh κa
. (4.67)

         
 16:35:11.



4.5 Penetration of a barrier 105

This leads to
∣∣∣∣
B

A

∣∣∣∣
2

=
(κ2 + k2)2 sinh2 κa

(κ2 − k2)2 sinh2 κa+ 4κ2k2 cosh2 κa

=
(κ2 + k2)2 sinh2 κa

(κ2 + k2)2 sinh2 κa+ 4κ2k2
, (4.68)

where we have used cosh2 x = 1 + sinh2 x. Putting in the values for
k2 and κ2 from (4.57) and (4.61) respectively, we have

∣∣∣∣
B

A

∣∣∣∣
2

=

(
2m
~2
V0
)2

sinh2 κa
(
2m
~2
V0
)2

sinh2 κa+ 16m2

~4
E(V0 − E)

=
V 2
0 sinh2 κa

V 2
0 sinh2 κa+ 4E(V0 − E)

. (4.69)

Similarly, using (4.66) and the second equation in (4.64), we
obtain

eika
C

A
=
−2κ (D1 e

−κa −D2 e
κa)

(ik − κ)D1 + (ik + κ)D2

=
−2κ

(
e−κa D1

D2
− eκa

)

(ik − κ) D1
D2

+ (ik + κ)

=
−2κ

(
−e−κa (ik−κ)

ik+κ
e2κa − eκa

)

−(ik − κ) (ik−κ)
ik+κ

e2κa + (ik + κ)

=
2κeκa

(
ik−κ
ik+κ

+ 1
)

1
(ik+κ) × (−(ik − κ)2e2κa + (ik + κ)2)

=
2κeκa(2ik)

((κ2 − k2)(1− e2κa) + 2iκk(1 + e2κa))

=
2iκk

(−(κ2 − k2) sinhκa+ 2iκk cosh κa)
, (4.70)

which leads to
∣∣∣∣
C

A

∣∣∣∣
2

=
4κ2k2

(κ2 − k2)2 sinh2 κa+ 4κ2k2 cosh2 κa

=
4κ2k2

(κ2 + k2)2 sinh2 κa+ 4κ2k2
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=
4E(V0 − E)

V 2
0 sinh2 κa+ 4E(V0 − E)

. (4.71)

The quantities
∣∣B
A

∣∣2 and
∣∣C
A

∣∣2 are known respectively as the re-
flection and the transmission coefficients. (They, basically, measure
the fractions of the incident flux that are reflected and transmitted
respectively.) It is obvious from (4.69) and (4.71) that

∣∣∣∣
B

A

∣∣∣∣
2

+

∣∣∣∣
C

A

∣∣∣∣
2

= 1, (4.72)

as it should be, since we do not expect probability to disappear sud-
denly. The fact that the particle is able to get to the other side of the
barrier, even when the energy of the particle is lower than the height
of the barrier, is known as tunneling and is a quantum mechanical
phenomenon. Looking at the transmission coefficient, (4.71), it is
clear that for E ≪ V0, tunneling is highly suppressed. Nonetheless,
tunneling effects are quite physical, particularly in processes such as
radioactive decays.

4.6 Selected problems

1. Justify why the Schrödinger wave function, u(x), and its deriva-

tive, du(x)
dx , have to be continuous across the boundary for the

finite square well potential, even though the potential is discon-
tinuous.

2. Solve the Schrödinger equation for a particle bound in an at-
tractive delta potential in one dimension,

V (x) = −γ δ(x), γ > 0. (4.73)

Calculate the average kinetic and potential energy for such a
particle in this state (namely, calculate 〈T 〉 as 〈E〉 − 〈V 〉).

3. Calculate 〈T 〉 directly for the previous problem, namely, evalu-
ate

〈T 〉 =
∫

dxψ∗(x)

(
− ~

2

2m

d2

dx2

)
ψ(x), (4.74)

and compare with the previous result. (You have to be careful,
since the wave function may not be a smooth function.)
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4. Show that, in one dimension, bound states cannot be degener-
ate.

5. A particle, moving in an infinite square well of width 2a (dis-
cussed in class), is in a state whose wavefunction at time t = 0
is given by

ψ(x, t = 0) =
1√
2
(u0(x) + u1(x)) , (4.75)

where u0(x) and u1(x) are the normalized ground state and
the first excited state wave functions respectively. What is its
average kinetic energy and average potential energy in this state
as a function of time? Calculate ∆x in this state.

6. A particle moves in a potential, in one dimension, of the form

V (x) =

{
∞, x2 ≥ a2,

γδ(x), x2 ≤ a2, (4.76)

where γ > 0. For sufficiently large γ, calculate the time required
for the particle to tunnel from being in the ground state of the
well extending from x = −a to x = 0 to the ground state of the
well extending from x = 0 to x = a.

7. The first excited state of a particle moving in a potential in one
dimension is given by

ψ1(x) = (sinhαx)ψ0(x), (4.77)

and is a state corresponding to the energy eigenvalue E1. Here α
is a constant and ψ0(x) is the ground state wavefunction corre-
sponding to the energy eigenvalue E0. Determine the potential
(in terms of x, α,E0, E1) in which the particle moves.

8. A particle, moving in one dimension, has a ground state wave
function (not normalized and do not normalize) given by

ψ0(x) = e−
α4x4

4 , (4.78)

(where α is a real constant) belonging to the energy eigenvalue
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E0 =
~
2α2

m
. (4.79)

Determine the potential in which the particle moves.

9. In one dimension a particle moves in a potential

V (x) =

{
∞, for x ≤ 0,

−γδ(x − a), for x > 0,
(4.80)

where the constants γ, a > 0. What is the minimum value of
γa above which a bound state is possible?
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Chapter 5

Harmonic oscillator

5.1 Harmonic oscillator in one dimension

In quantum mechanics, the harmonic oscillator plays an important
role, much like in classical mechanics. Furthermore, this is also one
of the few physical systems that can be exactly solved. Therefore, we
will spend a few lectures in studying various features of this system.
We will begin with the harmonic oscillator in one dimension before
generalizing the results to higher dimensions.

There are two distinct ways of studying the harmonic oscillator.
Let us first discuss the operator solution for this problem after which
we will also solve the Schrödinger equation for this system explicitly.

5.2 Matrix formulation

We are familiar with the motion of a classical harmonic oscillator. In
one dimension, the Hamiltonian for the system is given by

H =
p2

2m
+

1

2
mω2x2 = T + V. (5.1)

Quantum mechanically, of course, P and X become operators. Let
us now define two new operators from linear combinations of these
as

a =

√
mω

2~

(
X +

i

mω
P

)
,

a† =

√
mω

2~

(
X − i

mω
P

)
. (5.2)
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These are dimensionless complex operators and, clearly,

a†a =
mω

2~

(
X2 +

P 2

m2ω2
+

i

mω
(XP − PX)

)

=
mω

2~

(
X2 +

P 2

m2ω2
+

i

mω
× i~

)

=
P 2

2~ωm
+

1

2~
mωX2 − 1

2

=
1

~ω

(
P 2

2m
+

1

2
mω2X2

)
− 1

2

=
1

~ω
H − 1

2
, (5.3)

where we have used the basic commutation relations of quantum me-
chanical operators, (3.17), in the intermediate steps. Therefore, we
recognize that we can write

H = ~ω

(
a†a+

1

2

)
. (5.4)

Furthermore, using the basic canonical commutation relations
given in (3.17), we obtain

[a, a†] =
mω

2~

[
X +

i

mω
P,X − i

mω
P

]

=
mω

2~

{[
X,− i

mω
P

]
+

[
i

mω
P,X

]}

=
mω

2~

(
− i

mω
× i~+

i

mω
× (−i~)

)

=
1

2
+

1

2
= 1. (5.5)

It is, of course, trivially true that

[a, a] = 0 = [a†, a†]. (5.6)

From the commutation relations in (5.5) and (5.6), we note that
we have

[
a, a†a

]
=
[
a, a†

]
a = a,

[
a†, a†a

]
= a†

[
a†, a

]
= −a†

[
a, a†

]
= −a†. (5.7)
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Therefore, we can define a new operator

N = a†a. (5.8)

such that the Hamiltonian can also be written as

H = ~ω

(
N +

1

2

)
. (5.9)

Using the relations in (5.7) as well as the definitions in (5.8) and
(5.9), we obtain

[a,N ] = a =
1

~ω
[a,H],

[a†, N ] = −a† = 1

~ω
[a†,H],

[H,N ] = 0. (5.10)

These commutation relations imply that H and N can be simul-
taneously diagonalized (or that they have a common set of eigenvec-
tors). Let us denote these simultaneous eigenvectors by |n〉, which
we assume to be normalized, such that

N |n〉 = n|n〉, (5.11)

where n denotes the eigenvalue of N . Clearly, then,

H|n〉 = ~ω

(
N +

1

2

)
|n〉 = ~ω

(
n+

1

2

)
|n〉 = En|n〉. (5.12)

Thus, we see that the energy associated with a state |n〉 is ~ω
(
n+ 1

2

)
,

namely,

En = ~ω

(
n+

1

2

)
. (5.13)

Let us now consider the effect of the following commutator on
the state |n〉,

[a,H]|n〉 = ~ωa|n〉,

or, (aH −Ha)|n〉 = ~ωa|n〉,

or, Ena|n〉 −Ha|n〉 = ~ωa|n〉,

or, Ha|n〉 = (En − ~ω)a|n〉,

or, H(a|n〉) = (En − ~ω)(a|n〉). (5.14)
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This shows that the state a|n〉 is also an eigenstate of the Hamiltonian
if |n〉 is, but the energy associated with this state is (En−~ω). Thus,
we see that the effect of the operator a on an energy eigenstate is to
lower its energy by a unit of ~ω. Therefore, a is called the lowering
operator.

Let us note from the value of En in (5.13) that

En − ~ω = ~ω

(
n+

1

2

)
− ~ω

= ~ω

(
(n− 1) +

1

2

)

= En−1, (5.15)

so that the state a|n〉 must be proportional to the energy eigenstate
|n− 1〉. Thus, let us write

a|n〉 = Cn|n− 1〉, ⇒ 〈n|a† = C∗
n〈n− 1|. (5.16)

The norm of this state leads to

〈n|a†a|n〉 = C∗
nCn〈n− 1|n− 1〉,

or, 〈n|N |n〉 = |Cn|2,

or, n〈n|n〉 = |Cn|2,

or, |Cn|2 = n. (5.17)

We can choose Cn to be real, in which case, we have

Cn = C∗
n =
√
n, (5.18)

and we can write

a|n〉 =
√
n|n− 1〉,

or, |n− 1〉 = a√
n
|n〉. (5.19)

This shows that, given the state |n〉, we can obtain a state with a
lower energy by applying the lowering operator with some suitable
normalization constant.
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Similarly, we can consider the effect of the following commutator
on an energy eigenstate,

[a†,H]|n〉 = −~ωa†|n〉,

or, (a†H −Ha†)|n〉 = −~ωa†|n〉,

or, Ena
†|n〉 −Ha†|n〉 = −~ωa†|n〉,

or, H(a†|n〉) = (En + ~ω)(a†|n〉). (5.20)

This shows that (a†|n〉) is also an eigenstate of the Hamiltonian with
energy (En + ~ω). Thus, the operator a†, acting on an energy eigen-
state, raises its energy by a unit of ~ω. Correspondingly, a† is known
as the raising operator.

Furthermore, since the state |n + 1〉 corresponds to the energy
eigenstate with eigenvalue En + ~ω = En+1, we must have

a†|n〉 = C ′
n|n+ 1〉, ⇒ 〈n|a = C ′∗

n 〈n+ 1|. (5.21)

Thus, the norm of this state leads to

〈n|aa†|n〉 = C ′ ∗
n C ′

n〈n+ 1|n + 1〉,

or, 〈
(
n|[a, a†] + a†a

)
|n〉 = |C ′

n|2,

or, |C ′
n|2 = 〈n|(N + 1)|n〉 = (n+ 1),

or, C ′
n = C ′∗

n =
√
n+ 1, (5.22)

so that we can write

a†|n〉 =
√
n+ 1|n+ 1〉,

or, |n+ 1〉 = a†√
n+ 1

|n〉. (5.23)

This again shows that, given an eigenstate of energy, we can obtain
a state with a higher energy by operating with a† with a suitable
normalization constant.

Thus, we have shown that, given an energy eigenstate, we can
obtain an infinite sequence of states by repeated application of a’s and
a†’s. These states would, in general, have energy En−~ωℓ or En+~ωℓ.
Thus, it would appear that energy can take a series of values between
−∞ and +∞ with a spacing of ~ω between the adjacent levels. Let
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us now consider a general energy eigenstate |n〉. Then,

En = 〈n|H|n〉

= 〈n|~ω
(
N +

1

2

)
|n〉

= ~ω〈n|a†a+ 1

2
|n〉

= ~ω〈n|a†a|n〉+ ~ω

2
〈n|n〉

= ~ω〈an|an〉+ ~ω

2
〈n|n〉 > 0, ω > 0. (5.24)

Namely, the right hand side is the sum of two squares (or positive
quantities since each term involves the norm of a state) and, there-
fore, has to be positive definite. This tells us that the energy can
only be positive definite and that the infinite sequence of states must
terminate.

Let us assume that the ground state or the state with the lowest
energy is denoted by |nmin〉. Then, clearly, what we mean by this is
that we can not obtain a state with a lower energy by applying the
lowering operator on this state. In other words, the operator a acting
on |nmin〉 should give us a null vector for this to be true,

a|nmin〉 = 0, ⇒ 〈nmin|a† = 0. (5.25)

Furthermore, from (5.25), we obtain

a†a|nmin〉 = 0,

or, N |nmin〉 = 0,

or, nmin|nmin〉 = 0, ⇒ nmin = 0. (5.26)

Thus, we can denote the ground state as |0〉 which satisfies

H|0〉 = ~ω

(
N +

1

2

)
|0〉 = ~ω

2
|0〉. (5.27)

In other words, what we have learnt so far is that the eigen-
vectors of the Hamiltonian can be labeled by the eigenvalues of the
operator N , which take values

n = 0, 1, 2, . . . ,∞. (5.28)
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The states are denoted by |n〉 and the energy eigenvalue associated
with such a state is

En = ~ω

(
n+

1

2

)
, n = 0, 1, 2, · · · , (5.29)

so that the ground state has the energy

E0 =
~ω

2
. (5.30)

The ground state energy of a system is also commonly known as the
zero point energy associated with the system.

We see that, in this system, energy is quantized (contrast this
with the classical oscillator which can have any continuous energy),
and that the quantum of energy is ~ω. The eigenstate |n〉 corresponds
to a state with n quanta of energy. Therefore, the operator N is
also known as the number operator, since it counts the number of
quanta of energy present in a state. The lowering operator, acting
on an eigenstate of energy, takes us to another state with a lower
energy, namely, a|n〉 ∼ |n− 1〉. Therefore, the operator a acting on a
state reduces the number of quanta by one and, correspondingly, it is
also known as the annihilation operator or the destruction operator.
Similarly, the raising operator, acting on an eigenstate of energy,
takes us to a state with a higher energy, namely, a†|n〉 ∼ |n + 1〉.
Hence a† raises the number of quanta by one and, consequently, it is
also known as the creation operator.

Let us now try to find out how various operators look in this
energy eigenbasis. We know that

a|n〉 =
√
n|n− 1〉, (5.31)

so that the matrix elements of the annihilation operator can be writ-
ten as

〈n′|a|n〉 =
√
n〈n′|n− 1〉

=
√
nδn′,n−1, n, n′ = 0, 1, 2, · · · . (5.32)

Similarly, since

a†|n〉 =
√
n+ 1|n + 1〉, (5.33)

it follows that

〈n′|a†|n〉 =
√
n+ 1〈n′|n+ 1〉 =

√
n+ 1δn′,n+1. (5.34)
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Writing out explicitly in the energy basis, these operators, therefore,
have the matrix representation of the following off-diagonal forms,

a =




0
√
1 0 0 0 0 0

0
√
2 0 0 0 0

0
√
3 0 0 0

0
√
4 0 0

0
√
5 0

0
. . .




,

a† =




0√
1 0

0
√
2 0

0 0
√
3 0

0 0 0
√
4 0

0 0 0 0
. . .




. (5.35)

Furthermore, since by definition (see (5.2)),

X =

√
~

2mω
(a+ a†),

P = −i
√

~mω

2
(a− a†), (5.36)

we obtain the matrix elements of the coordinate and the momentum
operators in the energy basis to be

〈n′|X|n〉 =
√

~

2mω
〈n′|(a+ a†)|n〉

=

√
~

2mω

[√
nδn′,n−1 +

√
n+ 1δn′,n+1

]
,

〈n′|P |n〉 = −i
√

~mω

2
〈n′|(a− a†)|n〉

= −i
√

~mω

2

[√
nδn′,n−1 −

√
n+ 1δn′,n+1

]
. (5.37)

In the energy basis, they have the following explicit off-diagonal ma-
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trix forms,

X =

√
~

2mω




0
√
1 0√

1 0
√
2

0
√
2 0

√
3

0 0
√
3

. . .


 ,

P = −i
√

~mω

2




0
√
1

−
√
1 0

√
2

0 −
√
2 0

√
3

0 0 −
√
3 0

. . .



. (5.38)

These are manifestly Hermitian operators as they should be, but are
not diagonal in this basis. The Hamiltonian, on the other hand, is
diagonal in the energy basis and has the form

H =
~ω

2




1
3

5
. . .


 . (5.39)

Since the application of a† gives us a state with a higher energy,
we can construct all the higher energy states from the ground state
|0〉. For example,

|1〉 = a†√
1
|0〉 = a†|0〉,

|2〉 = a†√
1 + 1

|1〉 = a†√
2
× a†√

1
|0〉 = (a†)2√

2!
|0〉. (5.40)

In general, we can write

|n+ 1〉 = a†√
n+ 1

|n〉 = a†√
n+ 1

a†√
n
|n− 1〉 = · · ·

=
(a†)n+1

√
(n + 1)!

|0〉. (5.41)

The fact that any higher state can be written as a product of
creation operators acting on the ground state and the fact that

a|0〉 = 0 = 〈0|a†,
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greatly simplifies the calculation of matrix elements of operators be-
tween different states. For example, consider the matrix element

〈2|X3|0〉 = 〈0| a
2

√
2!

(
~

2mω

) 3
2

(a+ a†)3|0〉

=
1√
2

(
~

2mω

) 3
2

〈0|a2(a+ a†)3|0〉

= 0, (5.42)

where in the final step we have used the fact that the expectation
value of the product of an odd number of a’s and a†’s vanishes in the
ground state (or in any energy eigenstate). Next, let us calculate

〈2|X3|1〉 = 1√
2

(
~

2mω

) 3
2

〈0|a2(a+ a†)3a†|0〉. (5.43)

The only terms of (a + a†)3 that would give a nonzero contribution
are (for a non-vanishing expectation value in the ground state, the
number of a’s must equal that of a†’s in a product)

aa†2 + a†aa† + a†2a, (5.44)

so that we can obtain

〈2|X3|1〉 = 1√
2

(
~

2mω

) 3
2

〈0|a2(aa†2+a†aa†+a†2a)a†|0〉. (5.45)

Using [a, a†] = 1, we can simplify

(aa† − a†a) = 1,

or, a†aa† = (aa† − 1)a† = aa†2 − a†, (5.46)

and,

a†2a = a†(aa† − 1) = a†aa† − a†

= aa†2 − a† − a† = aa†2 − 2a†. (5.47)
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Substituting (5.46) and (5.47) into (5.45), we obtain,

〈2|X3|1〉 = 1√
2

(
~

2mω

) 3
2

〈0|a2
(
aa†2 + aa†2 − a†

+ aa†2 − 2a†
)
a†|0〉

=
1√
2

(
~

2mω

) 3
2

〈0|a2(3aa†2 − 3a†)a†|0〉

=
3√
2

(
~

2mω

) 3
2 (
〈0|a3a†3|0〉 − 〈0|a2a†2|0〉

)

=
3√
2

(
~

2mω

) 3
2

(3!〈3|3〉 − 2!〈2|2〉)

=
3√
2

(
~

2mω

) 3
2

(3!− 2!)

= 3

(
~

mω

) 3
2

. (5.48)

This shows how the matrix elements of arbitrary operators can be
calculated in the energy basis.

Let us next note that the wave function associated with an en-
ergy eigenstate is defined as

ψn(x) = 〈x|n〉. (5.49)

This measures the probability amplitude for finding the oscillator at
the coordinate x with an energy En. We know that the ground state
satisfies

a|0〉 = 0,

or, 〈x|a|0〉 = 0,

or,

∫
dx′ 〈x|a|x′〉〈x′|0〉 = 0. (5.50)

Using the definition in (5.2)

a =

√
mω

2~

(
X +

i

mω
P

)
,
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as well as the basic coordinate representations of X and P ,

〈x|X|x′〉 = xδ(x − x′)

〈x|P |x′〉 = −i~ d

dx
δ(x− x′)

we obtain

〈x|a|x′〉 =

√
mω

2~

(
xδ(x− x′) + ~

mω

d

dx
δ(x− x′)

)
. (5.51)

Using (5.51) in (5.50), we see that the equation for the ground state
wave function for the harmonic oscillator becomes

√
mω

2~

∫
dx′
(
xδ(x− x′) + ~

mω

d

dx
δ(x − x′)

)
ψ0(x

′) = 0,

or,

√
mω

2~

(
x+

~

mω

d

dx

)
ψ0(x) = 0. (5.52)

This is a simple first order equation, whose solution is easily obtained
to be,

dψ0(x)

dx
= −mω

~
xψ0(x),

or, ψ0(x) = A0e
−mω

2~
x2
. (5.53)

Here A0 is the normalization constant, which can be determined by
requiring that

∞∫

−∞

dx ψ∗
0(x)ψ0(x) = A∗

0A0

∞∫

−∞

dx e−
mω
~

x2
= 1,

or, |A0|2
√

π~

mω
= 1,

or, |A0|2 =
√
mω

π~
. (5.54)

Choosing A0 to be real, we determine

A0 = A∗
0 =

(mω
π~

) 1
4
, (5.55)

so that we can write the normalized ground state wave function as

ψ0(x) =
(mω
π~

) 1
4
e−

mω
2~

x2
. (5.56)
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To construct the wave functions for higher energy states, we
note that in the x basis,

a† =

√
mω

2~

(
X − i

mω
P

)
→
√
mω

2~

(
x− ~

mω

d

dx

)
. (5.57)

Furthermore, recall that

|n〉 = (a†)n√
n!
|0〉.

Therefore, we determine the wave function for the nth state to be

〈x|n〉 = ψn(x)

=
1√
n!

(mω
2~

)n
2

(
x− ~

mω

d

dx

)n

ψ0(x)

=
1√
n!

(mω
π~

) 1
4
(mω
2~

)n
2

(
x− ~

mω

d

dx

)n

e−
mωx2

2~ . (5.58)

This completes our investigation of the harmonic oscillator in the ma-
trix (operator) formulation. We have determined the energy eigen-
values and the wave functions for the energy eigenstates (without
explicitly solving the Schrödinger equation).

5.3 Solution of the Schrödinger equation

The harmonic oscillator is an important system in quantum mechan-
ics. Most complicated systems can often be split into a part that is of
harmonic oscillator type and a part that can be treated as a pertur-
bation on this system. From the studies of black body radiation, we
recall that the electromagnetic radiation is treated like a harmonic
oscillator system with the quantum of energy ~ω. In fact, this is a
very general feature. All field theories without any interaction, can
be decomposed into harmonic oscillators. Since the study of this sys-
tem is so significant, we would also study this system by solving the
Schrödinger equation for this system.

As we have seen, the Hamiltonian for the system is given by

H =
P 2

2m
+

1

2
mω2X2

→ − ~
2

2m

d2

dx2
+

1

2
mω2x2. (5.59)
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Furthermore, since the Hamiltonian has no explicit time dependence,
we are interested in the stationary state solutions. We know that the
stationary state solutions have the form (see (3.94))

ψ(x, t) = e−
i
~
EtuE(x), (5.60)

where uE(x) satisfies the time independent Schrödinger equation,

(
− ~

2

2m

d2

dx2
+

1

2
mω2x2

)
uE(x) = EuE(x). (5.61)

We recognize that uE(x) is the wave function associated with the
eigenstate of the Hamiltonian corresponding to energy E.

We already know that the energy associated with the oscillator
must be positive. It can also be seen here by writing

E = 〈H〉

=

∫
dx u∗E(x)

(
− ~

2

2m

d2

dx2
+

1

2
mω2x2

)
uE(x)

=

∫
dx

(
~
2

2m

∣∣∣∣
duE(x)

dx

∣∣∣∣
2

+
1

2
mω2x2 |uE(x)|2

)
> 0, (5.62)

which follows because the right hand side is the integral of a sum of
two squares (we are neglecting a surface term which vanishes for well
behaved functions).

The time independent Schrödinger equation, (5.61), can be writ-
ten as

d2uE

dx2
+

2m

~2

(
E − 1

2
mω2x2

)
uE = 0. (5.63)

First of all, let us note that in solving a differential equation it is al-
ways useful to recast the equation in terms of dimensionless variables.
This allows us to write down logarithmic or exponential solutions
without having to worry about the dimensionality of the arguments.
We note that there are three dimensional parameters in our theory
and they are

[~] = erg-sec =ML2T−1,

[m] = gm =M,

[ω] = sec−1 = T−1, (5.64)
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where M,L, T are three arbitrary units of mass, length and time
respectively. We see from (5.64) that

[mω
~

]
=

MT−1

ML2T−1
= L−2. (5.65)

Consequently, we see that if we define

ξ =
(mω

~

) 1
2
x, (5.66)

then, ξ will be dimensionless. Furthermore, by the chain rule of
differentiation, we obtain

d

dx
=

dξ

dx

d

dξ
=
(mω

~

) 1
2 d

dξ
. (5.67)

Substituting (5.67) back into (5.63), we have

(mω
~

) d2uE(ξ)

dξ2
+

2m

~2

(
E − 1

2
mω2 × ~

mω
ξ2
)
uE(ξ) = 0,

or,
d2uE(ξ)

dξ2
+

(
2E

~ω
− ξ2

)
uE(ξ) = 0. (5.68)

Let us further define

ǫ =
2E

~ω
. (5.69)

Clearly, ǫ is dimensionless (it measures energy in units of ~ω
2 ). In

terms of these dimensionless variables, equation (5.68) becomes

d2uE(ξ)

dξ2
+ (ǫ− ξ2)uE(ξ) = 0, (5.70)

where the independent variable as well as the arbitrary parameter
measuring energy are now dimensionless.

Before deriving the solutions, it is useful to find out their asymp-
totic forms, both in the limit ξ → ∞ and ξ → 0. First of all, for a
finite ǫ we see that in the limit ξ →∞, equation (5.70) becomes

d2uE

dξ2
− ξ2uE(ξ) = 0. (5.71)

The two independent solutions of this equation have the forms

uE(ξ)
|ξ|→∞−−−−→ ξℓe±

1
2
ξ2 , (5.72)
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for any finite integer ℓ. This can be easily checked by noting that

duE

dξ

|ξ|→∞−−−−→ e±
1
2
ξ2
(
ℓξℓ−1 ± ξℓ+1

)
,

d2uE

dξ2
|ξ|→∞−−−−→ e±

1
2
ξ2
(
ℓ(ℓ− 1)ξℓ−2 ± (2ℓ+ 1)ξℓ + ξℓ+2

)

−→ e±
1
2
ξ2ξℓ+2 = ξ2uE(ξ). (5.73)

Although both ξℓe±
1
2
ξ2 represent asymptotic solutions, a physical so-

lution would only correspond to the one that is normalizable, namely,

uE(ξ)
|ξ|→∞−−−−→ ξℓe−

1
2
ξ2 . (5.74)

Furthermore, in the limit ξ → 0, equation (5.68) reduces to

d2uE

dξ2
+ ǫuE = 0, (5.75)

whose solutions are easily seen to be of the form

uE(ξ)
ξ→0−−−→ p(ξ), (5.76)

where p(ξ) represents a polynomial of positive powers only.

Thus, we can write the general solution of the equation for the
harmonic oscillator as

uE(ξ) = fE(ξ)e
− 1

2
ξ2 , (5.77)

with fE(ξ) representing a polynomial with non-negative powers. We
note from (5.77) that

duE

dξ
=
(
f ′E(ξ)− ξfE(ξ)

)
e−

1
2
ξ2 ,

d2uE

dξ2
=
(
f ′′E(ξ)− 2ξf ′E(ξ) + (ξ2 − 1)fE(ξ)

)
e−

1
2
ξ2 , (5.78)

where primes denote derivatives with respect to ξ. Substituting this
back into (5.68), we obtain

f ′′E(ξ)− 2ξf ′E(ξ) + (ξ2 − 1)fE(ξ) + (ǫ− ξ2)fE(ξ) = 0,

or, f ′′E(ξ)− 2ξf ′E(ξ) + (ǫ− 1)fE(ξ) = 0. (5.79)
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This is an equation where the asymptotic behavior at infinity
has been factored out. Therefore, we can try a power series solution
of the form

fE(ξ) =
∞∑

n=0

Cnξ
n,

f ′E(ξ) =
dfE(ξ)

dξ
=

∞∑

n=1

nCnξ
n−1,

ξf ′E(ξ) =
∞∑

n=1

nCnξ
n =

∞∑

n=0

nCnξ
n,

f ′′E(ξ) =
d2fE(ξ)

dξ2
=

∞∑

n=2

n(n− 1)Cnξ
n−2

=

∞∑

n=0

(n+ 2)(n + 1)Cn+2ξ
n, (5.80)

where Cn’s are constants. Putting these back into (5.79), we have

∞∑

ℓ=0

(
(ℓ+ 2)(ℓ+ 1)Cℓ+2ξ

ℓ − 2ℓCℓξ
ℓ + (ǫ− 1)Cℓξ

ℓ
)
= 0,

or,
∞∑

ℓ=0

ξℓ ((ℓ+ 2)(ℓ + 1)Cℓ+2 + (ǫ− 1− 2ℓ)Cℓ) = 0. (5.81)

If this has to be true for any arbitrary value of ξ, the coefficients in
the parenthesis must vanish, namely,

(ℓ+ 2)(ℓ+ 1)Cℓ+2 = −(ǫ− 1− 2ℓ)Cℓ,

Cℓ+2 = −
(ǫ− 1− 2ℓ)

(ℓ+ 2)(ℓ+ 1)
Cℓ. (5.82)

This defines a recursion relation between the coefficients in the
power series in (5.80). It is clear that all of the coefficients can be
expressed in terms C0 and C1 which are arbitrary. For example,

C2 = −
(ǫ− 1)

2
C0,

C3 = −
(ǫ− 3)

6
C1,

C4 = −
(ǫ− 5)

12
C2 =

(ǫ− 5)(ǫ− 1)

24
C0, (5.83)
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and so on. The existence of two arbitrary constants in the solution
can be traced to the fact that the Schrödinger equation corresponds
to a second order differential equation, (5.79), and a unique solution
needs two conditions. However, we also know that this system is
invariant under x → −x (or, ξ → −ξ). Therefore, as before, we
expect the solutions to be of two types – odd and even. It is clear that
if C0 = 0, then, all the even powers in fE(ξ) would vanish and hence
it would be an odd function. On the other hand, if C1 = 0, then,
fE(ξ) would contain only even powers in the expansion and, therefore,
would be symmetric. In general, however, it is clear (independent of
whether C0 = 0 or C1 = 0) that unless the series terminates at some
point, its dominant asymptotic form can be inferred from the ratio

Cℓ+2

Cℓ

ℓ→∞−−−→ 2

ℓ
. (5.84)

We recognize that this is the same growth as the asymptotic co-
efficients of the function ξkeξ

2
. Therefore, unless the power series

terminates, its asymptotic behavior would correspond to that of this
function. However, this would lead to an unphysical solution (in the
sense that the wave function (5.77) would diverge asymptotically).
Therefore, for a physical solution to exist, the series must terminate.
The only way this can happen is if the numerator of the recursion
relation in (5.82) vanishes for some value ℓ = n, namely,

Cn+2 = −
(ǫ− 1− 2n)

(n+ 2)(n + 1)
Cn = 0. (5.85)

In other words, if for some n,

ǫ− 1− 2n = 0, (5.86)

then, all the higher coefficients would vanish and the series would
terminate. This implies that

ǫn = (2n+ 1), n = 0, 1, 2, · · · ,

or,
2En

~ω
= (2n + 1),

or, En = ~ω

(
n+

1

2

)
. (5.87)

Therefore, we see that physical solutions for the system will exist
only if the oscillator has the energy values in (5.87), which is what
we had obtained earlier in the operator method. (In fact, not only
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should the above energy values hold for physical solutions, one of the
two coefficients, C0, C1 should vanish depending on the value n of the
physical solution. For example, if n is even, then, C1 = 0 and if n is
odd, then, C0 = 0.) And, when a solution is physical, for each value
of n, the solution will have the form

un(ξ) = fn(ξ)e
− 1

2
ξ2 , (5.88)

where

fn(ξ) =

n
2∑

ℓ=0

C2ℓξ
2ℓ, or, fn(ξ) =

n−1
2∑

ℓ=0

C2ℓ+1ξ
2ℓ+1, (5.89)

(depending on whether n is even or odd) with the coefficients satis-
fying the recursion relation (5.82).

5.4 Hermite polynomials

The polynomials, fn(ξ), with ǫn = (2n + 1) in (5.89) satisfy the
differential equation (see (5.79))

f ′′n(ξ)− 2ξf ′n(ξ) + 2nfn(ξ) = 0. (5.90)

This is known as the Hermite equation and the solutions, fn(ξ), are
known as the Hermite polynomials of nth order. They are commonly
denoted by Hn(ξ). It is obvious from the recursion relations that
every Hermite polynomial is completely determined in terms of one
arbitrary constant, C0 or C1, depending on whether n is even or odd.

We can actually define a function of two variables,

S(ξ, s) = eξ
2−(s−ξ)2 = e−s2+2sξ =

∞∑

n=0

Hn(ξ)

n!
sn, (5.91)

where the coefficients of expansion can be identified with the Hermite
polynomials of nth order. To see this, let us calculate

∂S(ξ, s)

∂ξ
= 2se−s2+2sξ = 2s

∞∑

n=0

Hn(ξ)

n!
sn

= 2

∞∑

n=0

Hn(ξ)

n!
sn+1 = 2

∞∑

n=1

Hn−1(ξ)

(n − 1)!
sn

= 2

∞∑

n=0

nHn−1(ξ)

n!
sn. (5.92)
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On the other hand, differentiating the right hand side of (5.91), we
obtain

∂S(ξ, s)

∂ξ
=

∞∑

n=0

H ′
n(ξ)

n!
sn. (5.93)

Thus, comparing (5.92) and (5.93), we have

H ′
n(ξ) = 2nHn−1(ξ). (5.94)

Similarly, taking derivative of (5.91) with respect to s, we obtain

∂S(ξ, s)

∂s
= (−2s + 2ξ)e−s2+2sξ = (−2s+ 2ξ)

∞∑

n=0

Hn(ξ)

n!
sn

= 2ξ
∑

n

Hn(ξ)

n!
sn − 2

∞∑

n=0

Hn(ξ)

n!
sn+1

= 2ξ
∑

n

Hn(ξ)

n!
sn − 2

∞∑

n=0

nHn−1

n!
sn. (5.95)

But, differentiating the right hand side of (5.91), we also have

∂S(ξ, s)

∂s
=

∂

∂s

∞∑

n=0

Hn(ξ)

n!
sn =

∞∑

n=1

Hn(ξ)

(n− 1)!
sn−1

=

∞∑

n=0

Hn+1(ξ)

n!
sn. (5.96)

Thus, comparing (5.95) and (5.96), we determine

Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ),

or, 2nHn−1(ξ) = 2ξHn(ξ)−Hn+1(ξ). (5.97)

Substituting (5.97) into (5.94), we have

H ′
n(ξ) = 2ξHn(ξ)−Hn+1(ξ),

or, H ′′
n(ξ) = 2Hn(ξ) + 2ξH ′

n(ξ)−H ′
n+1(ξ)

= 2Hn(ξ) + 2ξH ′
n(ξ)− 2(n + 1)Hn(ξ)

= 2ξH ′
n(ξ)− 2nHn(ξ). (5.98)
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Therefore, we see from (5.98) that the functions, Hn(ξ), satisfy the
equation

H ′′
n(ξ)− 2ξH ′

n(ξ) + 2nHn(ξ) = 0, (5.99)

which is the Hermite equation. Consequently, the coefficients of ex-
pansion in (5.91) are indeed the Hermite polynomials. The relations

H ′
n(ξ) = 2nHn−1(ξ),

Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ), (5.100)

are known as the recursion relations for the Hermite polynomials.

It is clear, from the defining relation (5.91) that we can identify

Hn(ξ) =
∂nS(ξ, s)

∂sn

∣∣∣∣
s=0

. (5.101)

This is why S(ξ, s) is also known as the generating function for the
Hermite polynomials. Furthermore,

Hn(ξ) =
∂nS(ξ, s)

∂sn

∣∣∣∣
s=0

=
∂n

∂sn
eξ

2−(s−ξ)2
∣∣∣∣
s=0

= eξ
2 ∂n

∂sn
e−(s−ξ)2

∣∣∣∣
s=0

= eξ
2

(
− ∂

∂ξ

)n

e−(s−ξ)2
∣∣∣∣
s=0

= (−1)neξ2 ∂
n

∂ξn
e−ξ2 . (5.102)

This gives a closed form expression for the Hermite polynomials. The
first few of these polynomials have the explicit forms

H0(ξ) = 1,

H1(ξ) = 2ξ,

H2(ξ) = (4ξ2 − 2), (5.103)

and so on.

We can also work out the orthogonality relations for the Hermite
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polynomials by noting that

∞∫

−∞

dξ Hn(ξ)Hm(ξ)e−ξ2

=

∞∫

−∞

dξ eξ
2 ∂n

∂sn
e−(s−ξ)2

∣∣∣∣
s=0

eξ
2 ∂m

∂tm
e−(t−ξ)2

∣∣∣∣
t=0

e−ξ2

=
∂n

∂sn
∂m

∂tm




∞∫

−∞

dξ eξ
2
e−(s−ξ)2e−(t−ξ)2




s=t=0

=
∂n

∂sn
∂m

∂tm




∞∫

−∞

dξ e−ξ2−s2−t2+2sξ+2tξ




s=t=0

=
∂n

∂sn
∂m

∂tm




∞∫

−∞

dξ e−(ξ−(s+t))2+2st




s=t=0

=
∂n

∂sn
∂m

∂tm
(√
πe2st

)
s=t=0

=
∂n

∂sn
∂m

∂tm


√π

∞∑

p=0

(2st)p

p!




s=t=0

=

{
0, if n 6= m,
√
π2nn!, when n = m.

(5.104)

(Here, we note that the Hermite polynomials are polynomials of posi-
tive powers and, consequently, the integral needs a damping factor to
be well defined.) Therefore, we can write the orthogonality relation
for the Hermite polynomials as

∞∫

−∞

dξ Hn(ξ)Hm(ξ)e−ξ2 =
√
π 2n n! δmn. (5.105)

We can now identify the time independent wave functions, (5.88),
for the harmonic oscillator as

un(ξ) = Anfn(ξ)e
− 1

2
ξ2 = AnHn(ξ)e

− 1
2
ξ2 , (5.106)

where the constant An can be determined from normalization. First
of all, we note that in terms of the original variables (see (5.66) and
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(5.69)), we can write

ξ =
(mω

~

) 1
2
x,

un(x) = AnHn

((mω
~

) 1
2
x

)
e−

mω
2~

x2
. (5.107)

Furthermore, we would like the wave function to be normalized,
namely,

∞∫

−∞

dx |un(x)|2 = 1. (5.108)

In terms of the ξ variable, then, this becomes,

∞∫

−∞

dξ
(
mω
~

) 1
2

|un(ξ)|2 = 1,

or, |An|2
(

~

mω

)1
2

∞∫

−∞

dξ H2
n(ξ)e

−ξ2 = 1,

or, |An|2
(

~

mω

)1
2 √

π 2nn! = 1,

or, An = A∗
n =

((mω
π~

) 1
2 1

2nn!

)1
2

. (5.109)

Thus, the normalized wave functions for the harmonic oscillator are
given by

un(x) =
(mω
π~

) 1
4 1√

2n n!
Hn

(√
mω

~
x

)
e−

mω
2~

x2
. (5.110)

In particular, the ground state wave function is given by

u0(x) =
(mω
π~

) 1
4
e−

mω
2~

x2
, (5.111)

which agrees with the result obtained earlier in the operator method.
The complete time dependent wave functions for the harmonic oscil-
lator have the forms

ψn(x, t) =
(mω
π~

) 1
4 1√

2n n!
Hn

(√
mω

~
x

)
e−

mω
2~

x2− i
~
Ent,
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(5.112)

with

En = ~ω

(
n+

1

2

)
. (5.113)

We note that these are bound state solutions since they vanish asymp-
totically.

5.5 Discussion of the results

The harmonic oscillator is a very important system to study, both
for physical as well as pedagogical reasons. Physically, of course, one
knows, even from classical physics, that small oscillations around a
minimum of the potential can be approximated by a harmonic oscil-
lator motion. For example, a potential can be expanded around a
minimum as

V (x) = V (x0)+(x−x0)V ′(x0)+
1

2
(x−x0)2 V ′′(x0)+· · · . (5.114)

Furthermore, if x0 is a minimum of the potential, then, V ′(x0) = 0
(and V ′′(x0) > 0). Therefore, for small x− x0, we have

V (x) ≈ V (x0) +
1

2
(x− x0)2 V ′′(x0). (5.115)

V (x0) is a constant and has no effect on the dynamics. In other
words, we can properly choose the scale of the energy to get rid of
this constant. Then, the potential can be approximated by that of a
harmonic oscillator with

mω2 = V ′′(x0) > 0. (5.116)

This is not just a mathematical exercise, but it actually hap-
pens in physics. Consider, for example, the case of a crystal where
molecules are fixed at definite points as shown in Fig. 5.1. Because
the molecules are heavy, they can not move very much. Hence, if dis-
turbed slightly, they execute small oscillations about their positions
of equilibrium and behave like a system of harmonic oscillators.

The harmonic oscillator is also significant because it is exactly
soluble and we can study various postulates of quantum mechanics
in some detail in this system. We have already seen that the motion
of the oscillator is bounded and, as emphasized earlier, this leads
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Figure 5.1: One dimensional crystal with constituent molecules.

to quantization of energy. Furthermore, the correspondence principle
can also be easily checked here, namely, we can analyze the Ehrenfest
theorem as well as check that the quantum mechanical system does
behave like a classical system for large values of energy. Let us do
this in some detail.

First, we note that we can write the solutions of the classical
harmonic oscillator as

xcl(t) = A sin(ωt+ φ),

pcl(t) = mẋcl = mωA cos(ωt+ φ), (5.117)

where A represents the amplitude and φ a phase angle, both of which
can be determined from the initial conditions. In fact, let us next
identify

xcl(0) = x0 = A sinφ,

pcl(0) = p0 = mωA cosφ, (5.118)

so that we can write the solution in terms of the initial conditions as

xcl(t) = x0 cosωt+
p0
mω

sinωt,

pcl(t) = p0 cosωt−mωx0 sinωt. (5.119)

Furthermore, the energy associated with the harmonic motion is given
by

Ecl =
p2cl(t)

2m
+

1

2
mω2x2cl(t) =

1

2
mω2A2. (5.120)

We see from (5.120) that the energy associated with the harmonic
motion is constant in time and is proportional to the square of the
amplitude which is a continuous variable. Therefore, the energy is
also a continuous function and the minimum energy associated with

         
 16:35:17.



134 5 Harmonic oscillator

the oscillator is zero, which occurs when the oscillator is sitting at
rest at the position of equilibrium.

We can also ask the following probabilistic question. Suppose
we randomly try to locate the harmonic oscillator, what is the place
where we are most likely to find it. That, of course, would correspond
to the place where the oscillator spends most of its time, namely,
where the velocity is a minimum. In other words, the classical prob-
ability is inversely proportional to the velocity of the oscillator,

P (x) ∝ 1

|v(x)| =
1

ω(A2 − x2) 1
2

. (5.121)

Thus, the classical probability peaks around x = A or at the turning
points. It has a minimum at the point of equilibrium where the
velocity is the largest.

We can now compare these with the properties of the quan-
tum harmonic oscillator. First of all, in the energy basis, states are
time independent. This corresponds to the Heisenberg picture of mo-
tion where the operators have time dependence and comparison with
classical mechanics is the simplest in this picture. Therefore, in this
picture, we can ask for the time dependence of various operators. For
example (see (3.115) for the case when the operator has no explicit
time dependence),

da

dt
= − i

~
[a,H] = − i

~
(~ωa) = −iωa, (5.122)

which can be solved yielding

a(t) = a(0)e−iωt. (5.123)

Similarly, for the creation operator, we have

da†

dt
= − i

~
[a†,H] = − i

~
(−~ωa†) = iωa†, (5.124)

which leads to

a†(t) = a†(0)eiωt. (5.125)

The creation and the annihilation operators are defined in (5.2)
as

a =

√
mω

2~

(
X +

i

mω
P

)
,

a† =

√
mω

2~

(
X − i

mω
P

)
,
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so that we have

X =

√
~

2mω

(
a+ a†

)
,

P = −i
√

~mω

2

(
a− a†

)
. (5.126)

Using (5.123), (5.125) as well as the definition in (5.126), the time
dependence of the coordinate and the momentum operators can be
determined to be

X(t) =

√
~

2mω

(
a(t) + a†(t)

)

=

√
~

2mω

(
a(0)e−iωt + a†(0)eiωt

)

=

√
~

2mω

(
(a(0) + a†(0)) cos ωt

−i(a(0) − a†(0)) sin ωt
)

=

(
X0 cosωt+

P0

mω
sinωt

)
. (5.127)

Similarly, we can show that

P (t) = P0 cosωt−mωX0 sinωt. (5.128)

In general, therefore, in any picture we can write

〈X〉(t) = 〈X〉(0) cos ωt+ 1

mω
〈P 〉(0) sin ωt,

〈P 〉(t) = 〈P 〉(0) cos ωt−mω〈X〉(0) sin ωt. (5.129)

In other words, the expectation values have similar behavior as the
classical variables in (5.119) as Ehrenfest’s theorem would require.

In the case of the quantum oscillator, however, the energy can
not take any continuous value and is quantized

En = ~ω

(
n+

1

2

)
, n = 0, 1, 2, · · · . (5.130)

Furthermore, we see from (5.130) that the minimum of the energy
is not zero. This arises basically because of our inability to simul-
taneously specify both the position as well as the momentum in a
quantum mechanical system.
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Figure 5.2: The first three wave functions of the harmonic oscillator.

Let us plot a few of the lower order wave functions associated
with the motion of the oscillator. We see from Fig. 5.2 that the
probability densities for the oscillator (which is the absolute square
of the wave functions) seem to behave very differently from that of a
classical harmonic oscillator. In particular, for the ground state, we
note that the maximum probability is around the point of equilibrium
(x = 0) and falls off at large distances. This is just the opposite of
the classical behavior. However, if we plot the probability density for
large values of the quantum numbers n (see Fig. 5.3), the behavior is
as follows, as n → ∞, the average value of the probabilities of these
plots behaves like the classical oscillator. This is, of course, what the
correspondence principle says, namely, when the energy of the system
becomes large, the system behaves like a macroscopic system.
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Figure 5.3: The wave function of the oscillator for n = 10.

E0 =
~ω
2

E1 =
3~ω
2

E2 =
5~ω
2

Figure 5.4: Energy levels of the oscillator with uniform spacing of
~ω.

Notice that the energy levels of the oscillator are spaced uni-
formly without any dependence on the mass parameter of the theory.
Each level differs from the adjacent by ~ω as shown in Fig. 5.4. This
allows us to think as if, with an oscillator of frequency ω, there are
associated fictitious particles with quanta of energy ~ω. In crystal
physics, such particles are known as phonons whereas the interaction
of matter with radiation is described in terms of particles known as
photons.

We know that the diagonal values of an operator represent ex-
pectation values of that operator in a given state. In a stationary
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state, these are time independent

Ann =

∞∫

−∞

dx ψ∗
n(x, t)Aψn(x, t) =

∞∫

−∞

dx u∗n(x)Aun(x). (5.131)

However, we can also study the off-diagonal matrix elements of an
operator. For example, the matrix element

Amn =

∞∫

−∞

dx ψ∗
m(x, t)Aψn(x, t), (5.132)

can be thought of as the transition amplitude between the states n
and m induced by the operator A. Just as in the hydrogen atom
where the electron can drop down from an excited level to a lower
level with the emission of a photon, here also any transition between
distinct states is accompanied by an emission or absorption of quanta.
Furthermore, since

ψn(x, t) ∼ e−
i
~
Ent, (5.133)

the time dependence of the transition amplitude (5.132) is given by

Amn ∝ e−
i
~
(En−Em)t. (5.134)

The time dependence of the matrix element is, therefore, nontrivial
when n 6= m (for off-diagonal elements).

5.6 Density matrix

Let us next consider not just one isolated system, but an ensemble
of identical quantum mechanical systems. Of course, each system
in the ensemble can be in a different eigenstate of the Hamiltonian
and, consequently, there will be a statistical distribution of systems
in various eigenstates of the Hamiltonian. Let us denote by pn the
probability of finding any system in the ensemble in the energy eigen-
state |n〉. Such an ensemble is, in fact, quite physical. For example,
we know that in an ensemble which is in thermodynamic equilibrium
with a heat reservoir, the probability of finding a system in a specific
energy state is given by the Boltzmann distribution law.

Suppose, in such an ensemble we make a measurement of the
operator A. It is clear that the value of the measurement has a
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probability pn of being 〈n|A|n〉. The statistical average of these mea-
surements over the entire ensemble is, therefore,

〈A〉 =
∑

n

pn〈n|A|n〉 =
∑

n

pn〈A〉n. (5.135)

Actually, there are two kinds of averaging being done in (5.135). First
of all, we have the quantum averaging represented by the expecta-
tion value 〈n|A|n〉 and then the classical averaging over systems in
different states |n〉. To distinguish this ensemble average from 〈A〉,
the quantum average, we have put a bar over this expectation value.

Let us define an operator

ρ =
∑

n

pn|n〉〈n|, (5.136)

where pn is the probability that a system, picked out randomly from
the ensemble, is in the state |n〉. The pn’s, therefore, satisfy

pn ≥ 0, for all n,
∑

n

pn = 1. (5.137)

The operator ρ is called the density operator or the density matrix.
Let us now calculate

Tr ρA =
∑

m

〈m|ρA|m〉 =
∑

m,n

pn〈m|n〉〈n|A|m〉

=
∑

m,n

pnδmn〈n|A|m〉 =
∑

n

pn〈n|A|n〉

= 〈A〉. (5.138)

Therefore, we see that given any operator Ω, its ensemble aver-
age can be defined as

〈Ω〉 = Tr ρΩ. (5.139)

In particular, we can choose Ω = 1. Then, we have from (5.139)

Tr ρ =
∑

n

pn = 1. (5.140)

We can also ask about the statistical average of the probability of
obtaining a particular eigenvalue of the operator Ω. We know that

P (ω) = |〈ω|ψ〉|2 = 〈ψ|ω〉〈ω|ψ〉 = 〈ψ|Pω|ψ〉 = 〈Pω〉, (5.141)
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so that

〈Pω〉 = P (ω) = Tr ρPω. (5.142)

It is clear from the definition of the density matrix that, when
all the pn’s are zero except for one, it is a pure ensemble. (Namely,
every system, in such an ensemble, is in the same state.) We can
derive the following properties of the density matrix quite easily.

1. The density matrix is Hermitian, namely, ρ† = ρ.

2. Tr ρ = 1 =
∑
n
pn.

3. The density matrix is positive semi-definite, namely, 〈u|ρ|u〉 ≥
0.

Proof.

〈u|ρ|u〉 =
∑

n

pn〈u|n〉〈n|u〉 =
∑

n

pn|〈u|n〉|2 ≥ 0.

4. For a pure ensemble, ρ2 = ρ.

Proof.

ρ =
∑

n

pn|n〉〈n|,

ρ2 =
∑

m,n

pmpn|m〉〈m|n〉〈n| =
∑

m,n

pmpnδmn|m〉〈n|

=
∑

n

p2n|n〉〈n|.

For a pure ensemble, all the pn’s are zero except for one which
is equal to unity. Hence ρ2 = ρ

5. Tr ρn ≤ 1 for n ≥ 2 and the equality holds for a pure ensemble.
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5.7 Planck’s law

With these basics for general ensembles, let us turn to a thermody-
namic ensemble. In classical thermodynamics, a system in thermo-
dynamic equilibrium at temperature T has a probability of being in
an energy state E given by the Boltzmann law

p(E) = Ne−
E
kT , (5.143)

where N is a normalization constant. Let kT = β−1. If energy is
quantized, this probability for a quantum system becomes

pn = N e−
En
kT =

e−
En
kT

∑
n
e−

En
kT

=
e−βEn

∑
n

e−βEn
,
∑

n

pn = 1. (5.144)

Thus, the density matrix, in such a case, takes the form

ρ =
∑

n

pn|n〉〈n| =

∑
n
e−βEn |n〉〈n|
∑
n
e−βEn

=

e−βH
∑
n
|n〉〈n|

∑
n
〈n|e−βH |n〉

=
e−βH

Tr e−βH
=
e−βH

Z(β)
, (5.145)

where we have defined the partition function for the system as

Z(β) = Tr e−βH =
∑

n

〈n|e−βH |n〉 =
∑

n

e−βEn . (5.146)

Our discussion so far has been quite general. Let us next con-
sider an ensemble of harmonic oscillators. For a harmonic oscillator,
we know that the energy eigenvalues are given by

H|n〉 = En|n〉 = ~ω

(
n+

1

2

)
|n〉, n = 0, 1, 2, · · · . (5.147)

Thus, for an ensemble of oscillators, the partition function takes the
form

Z(β) =

∞∑

n=0

〈n|e−βH |n〉 =
∞∑

n=0

e−β~ω(n+ 1
2)

= e−
β~ω
2

∞∑

n=0

e−β~ωn = e−
β~ω
2

(
1

1− e−β~ω

)

=
e−

β~ω
2

1− e−β~ω
=

2

sinh β~ω
2

. (5.148)
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In this ensemble the mean (average) energy of the oscillator is given
by (can also be represented as 〈H〉)

〈E〉 = Tr ρH =
Tr He−βH

Tr e−βH
= − 1

Z(β)

∂Z(β)

∂β

= −∂ lnZ(β)
∂β

, (5.149)

so that using (5.148) we obtain

〈E〉 = −∂ lnZ(β)
∂β

= − ∂

∂β

[
−β~ω

2
− ln

(
1− e−β~ω

)]

=
~ω

2
+

~ωe−β~ω

1− e−β~ω
=

~ω

2
+

~ω

eβ~ω − 1
. (5.150)

This is Planck’s law. Clearly, for very large β
(
= 1

kT

)
or very small

temperatures, the oscillator remains near the ground state

〈E〉 = ~ω

2
. (5.151)

For very high temperatures or small β, on the other hand, we have

〈E〉 = 1

β
= kT. (5.152)

This is nothing other than the equipartition of energy (for the one
dimensional oscillator).

5.8 Oscillator in higher dimensions

Let us next consider a harmonic oscillator in p dimensions (p ≥ 1).
The oscillator has p degrees of freedom and the Hamiltonian, in this
case, takes the form

H =

p∑

i=1

Hi, (5.153)

where

Hi =
P 2
i

2m
+

1

2
mω2X2

i . (5.154)

Namely, the oscillations are harmonic along every direction with the
same angular frequency ω. Such an oscillator, whose frequency is
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the same in every direction, is known as the isotropic oscillator. (In
general, the frequency of an oscillator can be different, say ωi, in
different directions.) In this case, we know the basic commutation
relations between the coordinates and momenta to be

[Xi,Xj ] = 0 = [Pi, Pj ] ,

[Xi, Pj ] = i~δij , (5.155)

which leads to

[Hi,Hj] = 0, i, j = 1, 2, · · · , p. (5.156)

To solve this problem, we note that we can think of the system
as a set of decoupled harmonic oscillators each of which can be solved
independently of the others. The Hilbert space of states E separates,
in this case, into a product space as a consequence of (5.156). Thus,
we can think of

E = E1 ⊗ E2 ⊗ · · · ⊗ Ep, (5.157)

where Hi acts only on the space Ei. We can also define, as before,
the annihilation and creation operators (corresponding to every i)

ai =

√
mω

2~

(
Xi +

i

mω
Pi

)
,

a†i =

√
mω

2~

(
Xi −

i

mω
Pi

)
, (5.158)

as well as the number operator

Ni = a†iai, Hi = ~ω

(
Ni +

1

2

)
, (5.159)

which act only on the states in Ei. The eigenvectors of Ni, which are
denoted by |ni〉, with ni = 0, 1, 2, . . . ,∞, therefore, define the basis
states of the vector space Ei and satisfy

Ni|ni〉 = ni|ni〉,

Hi|ni〉 = Eni
|ni〉 = ~ω

(
ni +

1

2

)
|ni〉. (5.160)

Since, the total space is a product of spaces,

E = E1 ⊗ E2 ⊗ · · · ⊗ Ep, (5.161)
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we can label the states in E by the quantum numbers of the individual
product spaces and define them as

|n1, n2, . . . , np〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |np〉, (5.162)

where

n1, n2, . . . , np = 0, 1, 2, . . . ,∞. (5.163)

It is easy to show, as in our earlier discussion, that

[ai, aj ] =
[
a†i , a

†
j

]
= 0,

[
ai, a

†
j

]
= δij . (5.164)

Furthermore, let us define an operator

N =
∑

i

Ni =
∑

i

a†iai, (5.165)

so that

N |n1, n2, . . . , np〉

=
∑

i

Ni (|n1〉 ⊗ |n2〉 · · · ⊗ |np〉)

= (N1|n1〉)⊗ |n2〉 · · · ⊗ |np〉

+ |n1〉 ⊗ (N2|n2〉) · · · ⊗ |np〉

+ . . .

+ |n1〉 ⊗ |n2〉 · · · ⊗ (Np|np〉)

= (n1 + n2 + . . . np) (|n1〉 ⊗ |n2〉 · · · ⊗ |np〉)

= (n1 + n2 + . . . np)|n1, n2, . . . , np〉

= n|n1, n2, . . . , np〉, (5.166)

where we have defined

n = n1 + n2 + · · · + np. (5.167)

This is the total number of quanta in the state and, correspondingly,
N is called the total number operator. Similarly,

H =
∑

i

Hi = ~ω

p∑

i=1

(
Ni +

1

2

)

= ~ω
(
N +

p

2

)
, (5.168)
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where we have used the definition in (5.165). We also note that

H|n1, n2, . . . , np〉

= ~ω
(
N +

p

2

)
|n1, n2, . . . , np〉

= ~ω
(
n+

p

2

)
|n1, n2, . . . , np〉. (5.169)

Thus, the energy levels of the isotropic oscillator in p dimensions
are given by

En = ~ω
(
n+

p

2

)
, n = 0, 1, 2, . . . . (5.170)

Furthermore, the ground state which is denoted by

|0, 0, . . . , 0〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉, (5.171)

satisfies

ai|0, 0, . . . , 0〉 = 0, for all i, (5.172)

and is an eigenstate of the Hamiltonian with energy

E0 =
p~ω

2
. (5.173)

This corresponds to a zero point energy of ~ω
2 for every direction

(or every degree of freedom). Furthermore, any higher state can be
written as

|n1, n2, . . . , np〉 =
(a†1)

n1(a†2)
n2 . . . (a†p)np

√
n1!n2! . . . np!

|0, 0, . . . , 0〉. (5.174)

It is clear now that, in higher dimensions, there is degeneracy of
states in the spectrum of the oscillator. For example, the state with
energy

E1 = ~ω
(
1 +

p

2

)
, (5.175)

is p-fold degenerate. This is easily seen by noting that a state of
the form |1, 0, 0, . . . , 0〉 has energy E1. But so does |0, 1, 0, . . . , 0〉,
|0, 0, 1, 0, . . . 〉 and so on. There are p-such states.

A state with energy E2 = ~ω
(
2 + p

2

)
has 1

2 (p + 1)p-fold de-
generacy. This can be seen by noting that a state of the form
|1, 1, 0, 0, . . . , 0〉 has energy E2. There are

1
2p(p−1) such states. But,
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a state of the form |2, 0, 0, . . . , 0〉 also has energy E2. There are p
such states. Thus, the total number of states with energy E2 is

1

2
p(p− 1) + p =

1

2
p(p+ 1). (5.176)

In general, one can show that in p dimensions a state with energy
En = ~ω

(
n+ p

2

)
has a

(
n+p−1

n

)
-fold degeneracy. Let us check this

against some known cases. First, in one dimension where p = 1, the
degeneracy formula gives

(
n
n

)
= 1, namely, there is no degeneracy of

states in this case (which we have seen earlier). In p dimensions, for
n = 0, we have the degeneracy

(
p−1
0

)
= 1, implying that the ground

state has no degeneracy. For n = 1 in p dimensions, we have
(
p
1

)
= p,

which we have explicitly seen to be the degeneracy of the first excited
state. For n = 2, the formula gives

(
p+1
2

)
= 1

2 (p + 1)p, which is the
degeneracy of the second excited state as we have seen and so on.

5.9 Selected problems

1. Find 〈X〉, 〈P 〉, 〈X2〉, 〈P 2〉 and ∆X∆P in the state |n〉 of the
harmonic oscillator. What is the uncertainty relation (for the
coordinate and momentum measurements) in the ground state?

2. If un(x) and um(x) are the eigenfunctions of the harmonic oscil-
lator in one dimension, corresponding to the energy eigenvalues
~ω(n+ 1

2) and ~ω(m+ 1
2) respectively, use the recursion relations

for the Hermite polynomials to calculate

〈P 〉nm =

∞∫

−∞

dxu∗n(x)

(
−i~ dum(x)

dx

)
. (5.177)

3. A particle moving in one dimension has a first excited state
eigenfunction associated with the energy eigenvalue E1 given
by

ψ1(x) = xψ0(x), (5.178)

where ψ0(x) is the ground state wave function associated with
the energy eigenvalue E0. Given that the potential vanishes at
x = 0,
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a) Determine the ratio E1
E0

.

b) What is the potential V (x) in which the particle moves?
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Chapter 6

Symmetries and their consequences

Symmetries play an important role in the study of physical systems
– both in classical mechanics as well as in quantum mechanics. In
these lectures we will start with a review of classical symmetry trans-
formations before going into a discussion of symmetries in quantum
mechanics.

6.1 Symmetries in classical mechanics

Physical objects often possess symmetries. For example, if we look
at a circle we say that it is symmetric. That is because if we have not
put any distinguishing marks on the circle, any point on the circle is
indistinguishable from any other point. Furthermore, if we rotate the
circle slightly (about its center) we cannot distinguish it from what
it was before the rotation. A deck of (unmarked) playing cards also
possesses a symmetry, namely, an up-down symmetry. That is, if we
turn the cards upside down we cannot tell it from what it was before
turning it.

Symmetries can be classified into two groups – continuous and
discrete. We can take the circle and rotate it by any amount (about
its center) and it would still look the same. On the other hand, if we
are looking at an equilateral triangle, then, it is symmetric only if we
rotate it about its center by 120◦ or multiples thereof. In this case,
we speak of the equilateral triangle as possessing a discrete symmetry
whereas we say that the circle has a continuous symmetry.

Any operation which leaves a system invariant is called a sym-
metry transformation of the system. Thus, for the circle rotation
is a continuous symmetry transformation whereas for the deck of
cards reflection (turning the deck of cards upside down) is a discrete
symmetry transformation. Furthermore, let us consider the circle
and note that we can define a rotation which is infinitesimally close
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to the original state. The circle would still be invariant. Any fi-
nite rotation can be thought of as a series of successive infinitesimal
rotations. Therefore, for continuous symmetries, the study of in-
finitesimal transformations gives all the information about any finite
transformation. On the other hand, we note that there does not exist
any infinitesimal transformation for discrete symmetries.

Symmetries are not restricted only to physical objects or pat-
terns. We can have functions or theories which also possess symme-
tries. Thus, for example, consider the simple function

f(x, y) = x2 + y2. (6.1)

Let us note that if we make the change of variables

x→ x′ = x cos θ − y sin θ,

y → y′ = x sin θ + y cos θ, (6.2)

then,

f(x, y) = x2 + y2 → x′ 2 + y′ 2 = x2 + y2 = f(x, y). (6.3)

We say that the function f(x, y) is invariant or symmetric under the
transformation (6.2). Since the parameter θ (of the transformation)
can take any value and f(x, y) would still be invariant, this is a con-
tinuous symmetry transformation. In fact, we recognize this as the
rotation of coordinates x and y (around the z axis) and the function
f(x, y) as representing the length of a two dimensional vector which
we know to be invariant under a rotation. (Alternatively, we note
that f(x, y) = a2 defines a circle and the invariance we are discussing
can be thought of as a mathematical description of rotations as sym-
metries of a circle.) In this case, we can also define an infinitesimal
transformation from (6.2) by identifying

θ = ǫ = infinitesimally small. (6.4)

Then, the transformation (infinitesimal rotation) in (6.2) takes the
form

x′ = x− ǫy,

y′ = ǫx+ y. (6.5)

A physical theory defined by the Hamiltonian H = H(xi, pi) is
said to possess a certain symmetry if the Hamiltonian is invariant un-
der the corresponding transformations. Let us consider the following
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infinitesimal canonical transformation (a canonical transformation is
one which preserves the fundamental Poisson bracket relations)

xi → x′ i = xi + ǫ
∂g

∂pi
= xi + δxi,

pi → p′i = pi − ǫ
∂g

∂xi
= pi + δpi, (6.6)

where ǫ represents the infinitesimal parameter of transformation and
g = g(xi, pi) is called the generator of the infinitesimal transforma-
tions.

If the Hamiltonian is invariant under the above transformations,
then, g(xi, pi) – the generator of the transformations – is conserved
or is a constant of motion. To see this, let us note that the change in
the Hamiltonian under the transformations (6.6) is given by

δH(xi, pi) =
∑

i

(
∂H

∂xi
δxi +

∂H

∂pi
δpi

)

=
∑

i

(
∂H

∂xi
ǫ
∂g

∂pi
+
∂H

∂pi

(
−ǫ ∂g
∂xi

))

= ǫ
∑

i

(
∂H

∂xi
∂g

∂pi
− ∂H

∂pi

∂g

∂xi

)

= ǫ{H, g}. (6.7)

If H is invariant, this implies that for all values of the parameter ǫ,

δH = 0, or, {H, g} = 0. (6.8)

But, by Hamilton’s equation, (1.54), this leads to

dg

dt
= {g,H} = 0. (6.9)

In other words, g(xi, pi) is a constant of motion. Conversely, every
conserved quantity generates a continuous symmetry of the Hamilto-
nian.

Note that any dynamical variable ω(xi, pi) has the following
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transformation properties under the transformations (6.6),

δω(xi, pi) =
∑

i

(
∂ω

∂xi
δxi +

∂ω

∂pi
δpi

)

= ǫ
∑

i

(
∂ω

∂xi
∂g

∂pi
− ∂ω

∂pi

∂g

∂xi

)

= ǫ{ω, g}. (6.10)

This is why g is known as the generator of the symmetry transfor-
mation. In particular, choosing ω(xi, pi) = xi, we have

δxi = ǫ{xi, g} = ǫ
∂g

∂pi
, (6.11)

and, similarly, for ω(xi, pi) = pi, we have

δpi = ǫ{pi, g} = −ǫ
∂g

∂xi
, (6.12)

which coincides with (6.6). Let us next examine a few classical sym-
metries.

◮ Example. Let us consider a theory in one dimension described by the Hamilto-
nian H(x, p). Let us choose

g(x, p) = p. (6.13)

In this case, we obtain the transformations explicitly from (6.10) to be

δx = ǫ{x, g} = ǫ{x, p} = ǫ, ⇒ x→ x
′ = x+ ǫ,

δp = ǫ{p, g} = ǫ{p, p} = 0, ⇒ p→ p
′ = p, (6.14)

which we recognize as an infinitesimal translation of the coordinate x. We see
that momentum is the generator of infinitesimal translations and it follows that
momentum is conserved in theories which are invariant under translations.

Physically what this means is that since for a single particle,

H =
p2

2m
+ V (x) = T + V,

and since the momentum is unaffected by translations of the coordinate, the
kinetic energy is invariant. Furthermore, if the potential is such that V (x) =
V (x + ǫ), i.e., if it is a constant, then, the Hamiltonian will be invariant under
translations. In this case, the force acting on the particle is zero and, consequently,
momentum is conserved. ◭

◮ Example. Let us next consider the same theory described by the Hamiltonian
H(x, p) and identify

g(x, p) = H(x, p). (6.15)
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In this case, we see that

{H,g} = {H,H} = 0, (6.16)

and

δx = ǫ{x,H} = ǫẋ,

or, x
′(t) = x(t) + ǫ

dx(t)

dt
= x(t+ ǫ),

δp = ǫ{p,H} = ǫṗ,

or, p
′(t) = p(t) + ǫ

dp(t)

dt
= p(t+ ǫ). (6.17)

Thus, it is clear that these transformations correspond to a translation of
time and if the Hamiltonian does not depend on time explicitly, then, from (6.16)
we note that it is a symmetry of the theory and the total energy is a constant.
Hamiltonian is the generator of infinitesimal time translations. ◭

◮ Example. As another example, let us consider a two dimensional theory param-
eterized by (x, y, px, py) and described by the Hamiltonian H(x, y, px, py). Let us
further identify g(x, y, px, py) = xpy − ypx = ℓz = angular momentum about the
z-axis. In this case, we have

δx = ǫ{x, g} = ǫ{x, xpy − ypx} = −ǫy{x, px} = −ǫy,

δy = ǫ{y, g} = ǫ{y, xpy − ypx} = ǫx{y, py} = ǫx,

δpx = ǫ{px, g} = ǫ{px, xpy − ypx} = ǫpy{px, x} = −ǫpy,

δpy = ǫ{py, g} = ǫ{py, xpy − ypx} = −ǫpx{py, y} = ǫpx. (6.18)

It is clear, therefore, that under this transformation,

x
′ = x+ δx = x− ǫy,

y
′ = y + δy = y + ǫx, (6.19)

and momenta also transform in an analogous manner.
As we have seen earlier in (6.5), this is precisely an infinitesimal rotation

about the z-axis and we conclude that angular momentum is the generator of
rotations. Furthermore, angular momentum is conserved if the Hamiltonian is
invariant under rotations. Hamiltonians of the form of the isotropic harmonic
oscillator

H =
p2

2m
+

1

2
mω

2
x
2
,

in higher dimensions would have conservation of angular momentum since both
p 2 and x 2 are invariant under rotations. ◭

Theorem. If the Hamiltonian of a system is invariant under some
transformation (x, p) → (x′, p′) which is not necessarily infinitesi-
mal, then, if (x(t), p(t)) denotes a solution of Hamilton’s equations of
motion, then, so does (x′(t), p′(t)).
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Furthermore, symmetries of a theory can be viewed in two dif-
ferent but equivalent ways. First of all, we can think of a fixed co-
ordinate system in which the physical system is being transformed.
Thus, for example, we can think of a particle at x being displaced by
an amount ‘a’. On the other hand, the same phenomenon can also
be viewed as the object being undisturbed, rather the coordinate sys-
tem being displaced by an amount ‘−a’ along the x axis. The former
view of the transformation where the system undergoes a change is
called the active transformation. The second description where the
coordinate system undergoes a change is known as the passive trans-
formation.

6.2 Symmetries in quantum mechanics

Let us now try to investigate how symmetries are realized in quantum
mechanics and what are their consequences. First of all, we note that
in quantum mechanics the position of a particle or its momentum are
not always well defined. Thus, to extend even a simple transformation
like an infinitesimal translation (ǫ is infinitesimal)

x→ x+ ǫ, p→ p, (6.20)

to quantum mechanics, we have to invoke Ehrenfest’s theorem. We
know that the expectation values of operators behave like classi-
cal quantities. Therefore, the natural generalization of the classical
transformation, (6.20), is

〈X〉 → 〈X〉+ ǫ, 〈P 〉 → 〈P 〉, (6.21)

where we have denoted

〈Ω〉 = 〈ψ|Ω|ψ〉. (6.22)

Of course, one of the ways to look at this is to assume that under
a translation the states change as

|ψ〉 → |ψǫ〉 = |ψ′〉 = T (ǫ)|ψ〉, (6.23)

such that 〈ψ|X|ψ〉 → 〈ψ′|X|ψ′〉 where

〈ψ′|X|ψ′〉 = 〈ψǫ|X|ψǫ〉 = 〈ψ|X|ψ〉 + ǫ,

or, 〈ψ|T †(ǫ)XT (ǫ)|ψ〉 = 〈ψ|X|ψ〉 + ǫ. (6.24)
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Here T (ǫ) denotes the operator which implements an infinitesimal
translation on the Hilbert space of states. We also have 〈ψ|P |ψ〉 →
〈ψ′|P |ψ′〉 such that

〈ψ′|P |ψ′〉 = 〈ψǫ|P |ψǫ〉 = 〈ψ|P |ψ〉,

or, 〈ψ|T †(ǫ)PT (ǫ)|ψ〉 = 〈ψ|P |ψ〉. (6.25)

This point of view is known as the active transformation. For here
the state of the system directly undergoes the change.

The passive view, of course, is that the state of the system re-
mains unaltered. Rather, the operators change as

X → T †(ǫ)XT (ǫ), P → T †(ǫ)PT (ǫ), (6.26)

such that

T †(ǫ)XT (ǫ) = X + ǫ1, (6.27)

(which implies that T †(ǫ)XT (ǫ) also measures position but with re-
spect to an origin shifted by ǫ to the left) and

T †(ǫ)PT (ǫ) = P. (6.28)

Let us first consider translations from the active point of view.
To understand how an arbitrary state transforms under translations,
let us recall how the x-basis vectors transform. We know that under
a translation,

T (ǫ)|x〉 = |x+ ǫ〉. (6.29)

Namely, the effect of T (ǫ) is to displace x to x+ ǫ. Note that

〈x′|T †(ǫ)T (ǫ)|x〉 = 〈x′ + ǫ|x+ ǫ〉 = δ(x′ − x) = 〈x′|x〉. (6.30)

Since the states are normalized, it follows that

T †(ǫ)T (ǫ) = 1. (6.31)

This means that in quantum mechanics translations are represented
by operators which are unitary .

To understand how an arbitrary state transforms under a trans-
lation, we note that

|ψ′〉 = |ψǫ〉 = T (ǫ)|ψ〉 = T (ǫ)

∫
dx |x〉〈x|ψ〉

=

∫
dx T (ǫ)|x〉ψ(x) =

∫
dx |x+ ǫ〉ψ(x). (6.32)
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Let us define x′ = x+ ǫ, so that we have

|ψ′〉 = |ψǫ〉 =
∫

dx′ |x′〉ψ(x′ − ǫ) =
∫

dx |x〉ψ(x − ǫ),

or, 〈x|ψ′〉 = 〈x|ψǫ〉 = 〈x|T (ǫ)|ψ〉 = ψ(x− ǫ),

or, ψǫ(x) = 〈x|T (ǫ)|ψ〉 = ψ(x− ǫ). (6.33)

In other words, if

ψ(x) ∼ e−x2
, (6.34)

then,

ψǫ(x) = ψ(x− ǫ) ∼ e−(x−ǫ)2 . (6.35)

This simply means that if the wave function is a Gaussian centered at
the origin x = 0, then the transformed wave function is an identical
Gaussian centered at x = ǫ as shown in Fig. 6.1. Namely, the wave
function simply gets translated without any change in shape.
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Figure 6.1: A Gaussian wave function and its translated form.

We can also show that under such a transformation,

〈ψǫ|P |ψǫ〉 =
∫

dx ψ∗
ǫ (x)

(
−i~ d

dx

)
ψǫ(x)

=

∫
dx ψ∗(x− ǫ)

(
−i~ d

dx

)
ψ(x− ǫ)

=

∫
dx′ ψ∗(x′)

(
−i~ d

dx′

)
ψ(x′)

= 〈ψ|P |ψ〉, (6.36)
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as we would expect.
Having defined the translation operator T (ǫ), let us define the

generator of infinitesimal translations as

T (ǫ) = 1− iǫ

~
G, (6.37)

where ǫ is the infinitesimal parameter of transformation and the factor
“i” is introduced so that the generator G would be Hermitian, namely,

T †(ǫ)T (ǫ) =

(1+
iǫ

~
G†
)(1− iǫ

~
G

)

= 1+
iǫ

~
G† − iǫ

~
G+O(ǫ2). (6.38)

Since T †(ǫ)T (ǫ) = 1, it follows that G† = G, namely, the generator
is Hermitian.

To determine the form of the generator of infinitesimal transla-
tions, let us note that (see (6.33))

〈x|T (ǫ)|ψ〉 = ψ(x− ǫ),

or, 〈x|1− iǫ

~
G|ψ〉 = ψ(x) − ǫdψ(x)

dx
+O(ǫ2),

or, ψ(x)− iǫ

~
〈x|G|ψ〉 = ψ(x)− ǫdψ

dx
,

or, − iǫ

~
〈x|G|ψ〉 = −ǫdψ

dx
. (6.39)

This determines G = P and, therefore, the operator implementing
infinitesimal translations in quantum mechanics has the form

T (ǫ) = 1− iǫ

~
G = 1− iǫ

~
P. (6.40)

In other words, we recover the familiar result that the momentum
operator is the generator of infinitesimal translations.

Furthermore, a quantum mechanical theory would be invariant
under translations if

〈ψǫ|H|ψǫ〉 = 〈ψ|H|ψ〉,

or, 〈ψ|T †(ǫ)HT (ǫ)|ψ〉 = 〈ψ|H|ψ〉,

or, 〈ψ|
(1+

iǫ

~
P

)
H

(1− iǫ

~
P

)
|ψ〉 = 〈ψ|H|ψ〉,
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or,
iǫ

~
〈ψ|[P,H]|ψ〉 = 0,

or, 〈ψ|[P,H]|ψ〉 = 0. (6.41)

(Incidentally, since this must be true for any state, this also implies
that [P,H] = 0 for translation invariance to hold.) By Ehrenfest’s
theorem this has the consequence that

d

dt
〈P 〉 = 0, (6.42)

namely, in a translation invariant theory the expectation value of
momentum in any quantum state is a constant in time.

Let us next discuss translations in the passive picture where we
know that states do not change. Rather, the operators change as

T †(ǫ)XT (ǫ) = X + ǫ1,
T †(ǫ)PT (ǫ) = P. (6.43)

Substituting T (ǫ) = 1− iǫ
~
G into the first relation in (6.42), we have

(1+
iǫ

~
G

)
X

(1− iǫ

~
G

)
= X + ǫ1,

or,
iǫ

~
[G,X] = ǫ1,

or, G = P + f(X). (6.44)

On the other hand, upon using (6.44), the second relation in (6.43)
leads to

T †(ǫ)PT (ǫ) = P,

or,
iǫ

~
[G,P ] = 0,

or,
iǫ

~
[P + f(X), P ] = 0, (6.45)

which implies that f(X) is at best a constant which we choose to be
zero (since the identity operator does not generate any transforma-
tion). As a result, we determine

T (ǫ) = 1− iǫ

~
G = 1− iǫ

~
P. (6.46)
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Invariance of the Hamiltonian, in this picture, implies that

T †(ǫ)HT (ǫ) = H, or, [P,H] = 0. (6.47)

Let us also note that in the passive picture,

δX = T †(ǫ)XT (ǫ) −X =
iǫ

~
[P,X] = ǫ1,

δP = T †(ǫ)PT (ǫ)− P =
iǫ

~
[P,P ] = 0. (6.48)

In general, if Ω(X,P ) is an observable, it is easy to check that it will
transform under an infinitesimal translation as

Ω(X,P )→ T †(ǫ)Ω(X,P )T (ǫ),

or, δΩ(X,P ) =
iǫ

~
[P,Ω(X,P )]. (6.49)

Clearly, the passive picture is more analogous to classical mechanics.
In general, if G is the generator of an infinitesimal transforma-

tion, then, in the passive picture any dynamical variable (observable)
transforms as

δΩ(X,P ) =
iǫ

~
[G,Ω(X,P )]. (6.50)

Such relations are quite useful when one studies complicated symme-
tries in quantum field theory.

Finite translations. Once we understand infinitesimal translations, we
can ask what is the form of the operator which implements a finite
translation in a quantum mechanical system. First of all, let us recall
that any finite translation can be thought of as a series of succes-
sive infinitesimal translations. For example, let ‘a’ represent a finite
translation. Then, we can define ǫ = a

N
as the parameter of an

infinitesimal translation where N is large. (In other words, a finite
translation by a is achieved by N successive infinitesimal translations
by an amount ǫ as defined above.) Therefore, clearly,

T (a) = lim
N→∞

(T (ǫ))N = lim
N→∞

(1− iǫP

~

)N

= lim
N→∞

(1− iaP

~N

)N

= e−
i
~
aP . (6.51)

         
 16:35:25.



160 6 Symmetries and their consequences

Physically we know that a translation by an amount ‘a’ followed
by a translation by an amount ‘b’ is equivalent to a translation by an
amount (a+ b). Mathematically, this implies that

T (b)T (a) = T (a+ b),

or, e−
i
~
bP e−

i
~
aP = e−

i
~
(a+b)P , (6.52)

leading to the fact that (or this is true because)

[P,P ] = 0. (6.53)

In other words, the algebra of the generators of infinitesimal trans-
formations defines the combination of two finite transformations.

◮ Example (Bloch function). Let us consider a simple one dimensional quantum
mechanical system with a periodic potential. Such potentials arise in the study
of electronic properties of solids. For example, in a simple solid we can think of
the positively charged ions of atoms fixed in a one dimensional lattice of lattice
spacing a and the valence electrons moving in the background potential of these
ions. Clearly the potential in this case will be periodic with a period of the lattice
spacing, namely,

V (x) = V (x+ a). (6.54)

To solve the time independent Schrödinger equation for such a system, let us note
that the Hamiltonian describing the dynamics

H =
P 2

2m
+ V (X), (6.55)

will also be periodic. In fact, denoting the operator for a finite translation by an
amount a by T (a) (see (6.51)), the Hamiltonian, in this case, is invariant under
the finite translation

T
†(a)HT (a) = H, (6.56)

as a consequence of (6.54). The translation operator, as we have seen (see (6.31)),
is unitary

T
†(a)T (a) = 1 = T (a)T †(a). (6.57)

The unitarity relation (6.57) allows us to write the invariance condition
(6.56) also in the equivalent form

HT (a) = T (a)H, (6.58)

which can also be thought of as a consequence of (6.47) (see also (6.51). As a
result, we note that if |ψE〉 denotes an eigenstate of the Hamiltonian with the
energy eigenvalue E, then
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H |ψE〉 = E|ψE〉,

or, HT (a)|ψE〉 = T (a)H |ψE〉 = ET (a)|ψE〉, (6.59)

so that |ψE,a〉 = T (a)|ψE〉 is also an eigenstate of the Hamiltonian with energy E.
On the other hand, as we have discussed earlier, there can be no degeneracy of
states in one dimension. Therefore, the two states must be proportional to each
other, namely,

|ψE,a〉 = T (a)|ψE〉 = λa|ψE〉,

or, 〈ψE|T †(a)T (a)|ψE〉 = |λa|2〈ψE|ψE〉. (6.60)

Furthermore, since the finite translation operator is unitary (see (6.57)), it follows
that

|λa|2 = 1, λa = e
iδa , (6.61)

with δa a real constant. In terms of wave functions, we can write

ψE,a(x) = 〈x|T (a)|ψE〉 = e
iδaψE(x). (6.62)

A form of the wave function that satisfies all these requirements can be
written in the form

ψE(x) = e
ikx

uE(x), (6.63)

with

uE(x− a) = uE(x), (6.64)

so that we have (see, for example, (6.33))

ψE,a(x) = ψE(x− a) = e
ik(x−a)

uE(x− a) = e
iδae

ikx
uE(x), (6.65)

where we have identified δa = −ka. Wave functions satisfying (6.63) and (6.64)
are known as Bloch functions and arise in the study of systems with a periodic
potential. We note that determining the energy eigenfunction ψE(x) in such a
case reduces to determining the periodic functions uE(x).

We note that the energy eigenfunction of the system satisfies the coordinate
space equation

HψE(x) = EψE(x),

or,

(

− ~
2

2m

d2

dx2
+ V (x)

)

ψE(x) = EψE(x). (6.66)

Substituting the form of the wave function from (6.63), we obtain

         
 16:35:25.



162 6 Symmetries and their consequences

d2uE(x)

dx2
+ 2ik

duE(x)

dx
+

2m

~2

(

E − V (x)− ~
2k2

2m

)

uE(x) = 0. (6.67)

This can be solved in two neighboring regions with the matching conditions which
would determine the energy eigenvalues. In metals, this leads to allowed bands
of energy values where electron motion is possible with these bands separated by
gaps where motion is not allowed. The value of the gap then determines whether
the material is a conductor or an insulator or even a semi-conductor.

◭

6.3 Groups

To understand the properties of symmetry transformations a little
better, let us discuss briefly the concept of a group. A group G is a
set of elements {gi} with a definite multiplication law such that

1. g1g2 ∈ G, if g1, g2 ∈ G.

2. g1(g2g3) = (g1g2)g3, where g1, g2, g3 ∈ G, namely, multiplica-
tion of group elements is associative.

3. there exists an identity element 1 ∈ G which satisfies

gi1 = gi = 1gi, for all gi ∈ G.

4. for every element gi in the group, there exists a unique inverse
g−1
i also in the group satisfying

g−1
i gi = 1 = gig

−1
i .

Let us now define the set of all translations by {T (a)} with the
range of the parameter −∞ < a <∞.

1. Clearly, T (a1)T (a2) = T (a1 + a2) and T (a1 + a2) ∈ {T (a)} if
both T (a1), T (a2) ∈ {T (a)}.

2. T (a1) (T (a2)T (a3)) is equal to (T (a1)T (a2))T (a3), both prod-
ucts being equal to T (a1 + a2 + a3). This is seen from the fact
that

T (a1) (T (a2)T (a3)) = T (a1)T (a2 + a3) = T (a1 + a2 + a3),

(T (a1)T (a2))T (a3) = T (a1 + a2)T (a3) = T (a1 + a2 + a3).
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3. Clearly, the translation by an amount zero is the identity ele-
ment since it leaves every element of the group invariant, namely,

T (0) = 1.
4. For every translation T (a) ∈ {T (a)}, there exists a unique

translation T (−a) ∈ {T (a)} such that

T (a)T (−a) = T (0) = 1 = T (−a)T (a).

Therefore, we see that the set of all translations form a group.
Furthermore, this is a continuous symmetry group called a Lie group.
The parameter of translation takes values between −∞ < a < ∞.
The group is correspondingly called a non-compact group. (It is easy
to check that if ‘a’ takes values over a compact (finite) range, then,
translations will not form a group.) Furthermore, it is clear that if
we know the generators of infinitesimal transformation and their al-
gebra, the structure of the group is completely known. The algebraic
relations satisfied by the generators of infinitesimal transformation
are known as the Lie algebra of the group.

It is clear that translation invariance of a physical theory is
essential. This is because it implies that an experiment performed
at two different places would give the same result. This is quite
important because otherwise physical laws would not be unique.

6.4 Parity

In classical mechanics parity is the operation of reflecting vectors
through the origin. Thus, in one dimension parity corresponds to

x→ −x, p→ −p. (6.68)

Therefore, we recognize that this is not a continuous symmetry. In
stead, it is a discrete symmetry.

From our earlier discussions, we recognize that parity transfor-
mation can be implemented in quantum mechanics through

〈X〉 Parity−−−−→ 〈−X〉 = −〈X〉,

〈P 〉 Parity−−−−→ 〈−P 〉 = −〈P 〉. (6.69)

Let us first discuss parity in the active picture. Let P repre-
sent the operator which implements the parity transformation on a
quantum mechanical system, namely,

|ψ〉 → |ψ′〉 = P|ψ〉. (6.70)
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To understand how exactly an arbitrary state transforms under par-
ity, let us see how the x-basis transforms under this operation. It is
clear that

|x〉 → |x′〉 = P|x〉 = | − x〉. (6.71)

This leads to the fact that P is a unitary operator since

〈y′|x′〉 = 〈y|P†P|x〉 = 〈−y| − x〉 = δ(y − x) = 〈y|x〉,

or, P†P = 1. (6.72)

Furthermore, since

P|x〉 = | − x〉, or, P2|x〉 = |x〉, (6.73)

we conclude that

P2 = 1. (6.74)

Clearly, the eigenvalues of P are ±1. The eigenvalues are real and
hence P is a Hermitian operator (Real eigenvalues, of course, do not
guarantee that an operator is Hermitian. However, P†P = 1 = P2

determine that the operator P is Hermitian.),

P = P†. (6.75)

Furthermore, P2 = 1 also implies that

P = P−1. (6.76)

Therefore, the parity operator satisfies the following relations.

1. P = P−1 = P†.

2. The eigenvalues of P are ±1.
◮ Example. A simple example of an operator with these properties is given by
the 2× 2 matrix

Ω =

(

0 1
1 0

)

, (6.77)

which is easily seen to satisfy

Ω = Ω−1 = Ω†
. (6.78)

◭
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To see how an arbitrary state transforms under parity, we ex-
pand the state in the x-basis. Namely,

|ψ〉 =

∞∫

−∞

dx ψ(x)|x〉, (6.79)

so that

|ψ′〉 = P|ψ〉 = P
∞∫

−∞

dx |x〉ψ(x) =
∞∫

−∞

dx P|x〉ψ(x)

=

∞∫

−∞

dx | − x〉ψ(x) =
∞∫

−∞

dx |x〉ψ(−x). (6.80)

Therefore, it follows that

〈x|ψ′〉 = 〈x|P|ψ〉 = ψ(−x). (6.81)

Hence, we see that under parity,

ψ(x)
Parity−−−−→ ψ(−x). (6.82)

We know that since the eigenvalues of P are ±1, if |ψ〉 is an eigenstate
of parity, then,

P|ψ〉 = ±|ψ〉,

or, 〈x|P|ψ〉 = ±〈x|ψ〉,

or, ψ(−x) = ±ψ(x). (6.83)

The states with positive eigenvalue are called even parity states and
the ones with negative eigenvalue are known as odd parity states
(these are the symmetric and the anti-symmetric states that we had
talked about earlier). A general state, however, does not have to be
an eigenstate of parity.

In the passive description, the quantum mechanical states of a
system do not change, rather the operators change under the trans-
formation as

X −→ P†XP = −X,

P −→ P†PP = −P. (6.84)
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Note that since P = P† = P−1, we can write the above relations also
as

PX = −XP,

or, PX +XP = 0,

or, {P,X} = 0. (6.85)

The curly bracket represents the anti-commutator in quantum me-
chanics (it is not the Poisson bracket of classical mechanics), which
is also denoted as [· , ·]+. Similarly, we can also show that

{P, P} = 0. (6.86)

A theory is said to be parity invariant (or invariant under parity)
if

P†H(X,P )P = H(P†XP,P†PP) = H(−X,−P )

= H(X,P ). (6.87)

Using the relations derived earlier, namely,

P = P† = P−1,

we conclude from (6.87) that the theory is invariant under parity if

[P,H] = 0. (6.88)

The time evolution operator for a quantum mechanical state is
defined to be

|ψ(t)〉 = U(t)|ψ(0)〉, (6.89)

and, as we have seen earlier (see (3.81) and (3.85)), corresponds to

U(t) =





e−
i
~
Ht, when H is time independent,

T


e

− i
~

t
∫

0

dt′

H(t′)


 , when H is time dependent.

(6.90)

Therefore, since H commutes with the parity operator when the the-
ory is parity invariant, it follows that

PU(t) = U(t)P. (6.91)
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In other words, we see that

PU(t)|ψ(0)〉 = U(t)P|ψ(0)〉. (6.92)

This implies that in a parity invariant theory, if initially we start
with a system in the state |ψ(0)〉 and another person starts with
the parity transformed state of the system P|ψ(0)〉, then, after an
arbitrary amount of time t, the two states will continue to be parity
transforms of each other.

Parity is also commonly known as handedness. If one stands in
front of a mirror, in most cases one cannot differentiate between the
left hand and the right hand. Namely, our body is left-right sym-
metric – or parity invariant. Most macroscopic systems or theories
possess parity as a symmetry. However, we do find some systems in
nature as well as some microscopic phenomena which do not respect
this symmetry. For example, certain sugar molecules are known to ro-
tate right circularly polarized light differently from the left circularly
polarized light. In quantum mechanics we know of decay processes
such as the beta decay

n→ p+ e− + ν,

which are known to violate reflection symmetry (parity).

6.5 Rotations

Let us start with rotations in two dimensions in this lecture. We will
follow this up with a discussion of rotations in three dimensions. We
know classically that if we rotate a system by an angle α about the
z-axis, then, the coordinates of the particle change as (earlier in (6.2)
we had called this angle θ, but we do not use it here in order to avoid
any confusion with angular coordinates)

x→ x′ = x cosα− y sinα,

y → y′ = x sinα+ y cosα. (6.93)

Similarly, the momenta transform as

px → p′x = px cosα− py sinα,

py → p′y = px sinα+ py cosα. (6.94)
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We can also write the transformations in (6.93) and (6.94) in the
matrix form as

(
x
y

)
−→

(
x′

y′

)
=

(
cosα − sinα
sinα cosα

)(
x
y

)
,

(
px
py

)
−→

(
p′x
p′y

)
=

(
cosα − sinα
sinα cosα

)(
px
py

)
. (6.95)

Let us denote by R(α, ẑ) the matrix that rotates these vectors.
Furthermore, let us denote by U(R(α, ẑ)) the operator which imple-
ments the effect of the rotation R(α, ẑ) on the Hilbert space of states.
Then, in the active picture the states will transform as

|ψ〉 → |ψR〉 = U(R)|ψ〉. (6.96)

Of course, the rotated state |ψR〉 must be such that

〈ψR|X|ψR〉 = 〈ψ|X|ψ〉 cos α− 〈ψ|Y |ψ〉 sinα,

〈ψR|Y |ψR〉 = 〈ψ|X|ψ〉 sin α+ 〈ψ|Y |ψ〉 cosα,

〈ψR|Px|ψR〉 = 〈ψ|Px|ψ〉 cosα− 〈ψ|Py |ψ〉 sinα,

〈ψR|Py|ψR〉 = 〈ψ|Px|ψ〉 sinα+ 〈ψ|Py |ψ〉 cosα, (6.97)

which can also be written as

〈ψ|U †(R)XU(R)|ψ〉 = 〈ψ|X|ψ〉 cos α− 〈ψ|Y |ψ〉 sinα,

〈ψ|U †(R)Y U(R)|ψ〉 = 〈ψ|X|ψ〉 sin α+ 〈ψ|Y |ψ〉 cosα,

〈ψ|U †(R)PxU(R)|ψ〉 = 〈ψ|Px|ψ〉 cosα− (ψ|Py |ψ〉 sinα,

〈ψ|U †(R)PyU(R)|ψ〉 = 〈ψ|Px|ψ〉 sinα+ 〈ψ|Py |ψ〉 cosα. (6.98)

To find out the effect of rotations on an arbitrary state, let us
examine the effect of rotation on the coordinate basis states

U(R)|x, y〉 = |x cosα− y sinα, x sinα+ y cosα〉. (6.99)

As in earlier examples we can show from this that the rotation oper-
ator is unitary,

U †(R)U(R) = 1. (6.100)

Let us next write the generator for an infinitesimal rotation around
the z-axis as

U(R(ǫ, ẑ)) = 1− iǫ

~
G. (6.101)
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It follows from this that since

U †(R)U(R) = 1, ⇒ G† = G. (6.102)

Namely, the generator of infinitesimal rotations around the z-axis is
Hermitian.

We note that under an infinitesimal rotation

U(R)|x, y〉 = |x− ǫy, y + ǫx〉, (6.103)

so that we obtain

|ψR〉 = U(R)|ψ〉 = U(R)

∫
dxdy |x, y〉〈x, y|ψ〉

=

∫
dxdy U(R)|x, y〉ψ(x, y)

=

∫
dxdy |x− ǫy, y + ǫx〉ψ(x, y)

=

∫
dxdy |x, y〉ψ(x + ǫy, y − ǫx). (6.104)

Therefore, we can identify the rotated wave function with

ψR(x, y) = 〈x, y|U(R)|ψ〉 = ψ(x+ ǫy, y − ǫx),

or, 〈x, y|1− iǫ

~
G|ψ〉 = ψ(x, y) + ǫy

∂ψ(x, y)

∂x
− ǫx∂ψ(x, y)

∂y
,

or, − iǫ

~
〈x, y|G|ψ〉 = ǫy

∂ψ(x, y)

∂x
− ǫx∂ψ(x, y)

∂y
, (6.105)

which determines

G = XPy − Y Px = Lz, U(R(ǫ, ẑ)) = 1− iǫ

~
Lz. (6.106)

In other words, the angular momentum operator Lz is the generator
of infinitesimal rotations around the z-axis.

In the passive picture, on the other hand, we should have

U †(R)XU(R) = X cosα− Y sinα,

U †(R)Y U(R) = X sinα+ Y cosα,

U †(R)PxU(R) = Px cosα− Py sinα,

U †(R)PyU(R) = Px sinα+ Py cosα. (6.107)
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For infinitesimal rotations we have α = ǫ = infinitesimal and the first
relation in (6.107) yields

(1+
iǫ

~
G

)
X

(1− i

~
ǫG

)
= X − ǫY,

or,
iǫ

~
[G,X] = −ǫY, (6.108)

which determines

G = −Y Px + f1(Y ) + f2(X) + f3(Py) + f4(XY )

+ f5(XPy) + f6(Y Py) + f7(XY Py). (6.109)

On the other hand, from the second relation in (6.107) we obtain
(1+

iǫ

~
G

)
Y

(1− i

~
ǫG

)
= ǫ+ Y,

or,
iǫ

~
[G,Y ] = ǫX, (6.110)

which determines some of the coefficients in (6.109) to be

f5 = XPy ,

f3(Py) = 0,

f6(Y Py) = 0,

f7(XY Px) = 0, (6.111)

so that we can write

G = XPy − Y Px + f1(Y ) + f2(X) + f4(XY ). (6.112)

Similarly, from the third relation in (6.107) we obtain
(1+

iǫ

~
G

)
Px

(1− iǫ

~
G

)
= Px − ǫPy,

or,
iǫ

~
[G,Px] = −ǫPy, (6.113)

which determines

f2(X) = f4(XY ) = 0, (6.114)

so that we can write

G = XPy − Y Px + f1(Y ). (6.115)
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Finally, the last relation in (6.107) leads to

(1+
iǫ

~
G

)
Py

(1− iǫ

~
G

)
= ǫPx + Py,

or,
iǫ

~
[G,Py ] = ǫPx, (6.116)

which determines f1(Y ) = 0 so that we have

G = XPy − Y Px = Lz. (6.117)

Therefore, we have determined

U(R) = 1− iǫ

~
Lz. (6.118)

A quantum mechanical theory is invariant under such a rotation
if

U †(R)HU(R) = H. (6.119)

Putting in the infinitesimal form for U(R), the invariance condition,
(6.119), becomes

iǫ

~
[Lz,H] = 0, or, [Lz,H] = 0. (6.120)

We can again construct a finite rotation about the z-axis by taking
successive infinitesimal rotations which leads to

U(R(α, ẑ)) = lim
N→∞

(1− iǫ

~
Lz

)N

= lim
N→∞

(1− iα

N~
Lz

)N

= e−
iα
~
Lz . (6.121)

Since [Lz, Lz] = 0, it is follows that

U(R(α1, ẑ))U(R(α2, ẑ)) = U(R((α1 + α2), ẑ)). (6.122)

Namely, rotations about the same axis are additive (much like trans-
lations).

The two dimensional vectors can equivalently be described in
terms of the polar coordinates (r, φ). A rotation, of course, does not
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change the radial coordinate. Rather, it changes the azimuthal angle
φ. Thus, in this basis,

U(R(α, ẑ))|r, φ〉 = |r, φ+ α〉. (6.123)

Furthermore, note that since 0 ≤ φ ≤ 2π, the parameter of rotation
is also bounded and lies between

0 ≤ α ≤ 2π. (6.124)

In this basis of circular coordinates,

|ψR〉 = U(R)|ψ〉 = U(R)

∫
rdrdφ |r, φ〉〈r, φ|ψ〉

=

∫
rdrdφU(R)|r, φ〉 ψ(r, φ)

=

∫
rdrdφ |r, φ+ α〉 ψ(r, φ)

=

∫
rdrdφ |r, φ〉 ψ(r, φ − α), (6.125)

so that we obtain

〈r, φ|ψR〉 = ψR(r, φ) = ψ(r, φ − α). (6.126)

Furthermore, for α = ǫ = infinitesimal, (6.126) gives

〈r, φ|
(1− iǫ

~
Lz

)
|ψ〉 = ψ(r, φ) − ǫ∂ψ(r, φ)

∂φ
,

or, − iǫ

~
〈r, φ|Lz |ψ〉 = −ǫ

∂ψ(r, φ)

∂φ
. (6.127)

In other words, in the (r, φ) basis,

Lz → −i~
∂

∂φ
. (6.128)

We can show again that in two dimensions rotations form a group.
This is a Lie group (Abelian group like translations). Furthermore,
since the parameter of rotation takes only bounded values, 0 ≤ α ≤
2π, this is a compact group (unlike translations).
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6.6 Selected problems

1. Prove the relation (see (6.51))

lim
N→∞

(
1− ix

N

)N

= e−ix. (6.129)

2. Show that under any unitary transformation U

U †f(X,P )U = f(U †XU,U †PU). (6.130)

3. Consider the operator describing a general (unitary) infinitesi-
mal transformation of the form

U(ǫ) = 1− iǫi

~
Gi, (6.131)

where G and ǫi denote respectively the generators and the con-
stant parameters of the infinitesimal transformation. The in-
dices i take values over a range of integers depending on the
transformation under consideration. As we have discussed in
(6.50), the infinitesimal change of any operator, in this case,
can be written as (in higher dimensions)

δΩ(X,P) =
iǫi

~
[Gi,Ω(X,P)]. (6.132)

Show that if one were to do two successive infinitesimal trans-
formations with parameters ǫ1 and ǫ2, then the order of the
transformations will not commute in general and the commu-
tator can be written as

[δ1, δ2]Ω(X,P) = δ1(δ2Ω(X,P)) − δ2(δ1Ω(X,P))

= −ǫ
i
1ǫ

j
2

~2
[[Gi, Gj ],Ω(X,P)] . (6.133)

This is often useful in determining the algebra of the generators
of infinitesimal transformations.
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Chapter 7

Angular momentum

As we have seen, angular momentum operator is the generator of
rotations. In the next few lectures we will study the algebra of rota-
tions in three dimensions by studying the algebraic properties of the
angular momentum operators.

7.1 Rotations in three dimensions

Let us generalize the results of rotations in two dimensions to three
dimensions. First of all, there are now three different axes about
which we can perform rotations. Therefore, there would be three
possible generators of infinitesimal rotations which would correspond
to the three components of the angular momentum operator. Let us
denote them by

Lx = Y Pz − ZPy,

Ly = ZPx −XPz,

Lz = XPy − Y Px. (7.1)

Let us next determine various commutators involving these operators.
For example, we note that

[Lx,X] = [Y Pz − ZPy,X] = 0,

[Ly,X] = [ZPx −XPz ,X] = Z [Px,X] = −i~Z,

[Lz,X] = [XPy − Y Px,X] = −Y [Px,X] = i~Y. (7.2)

Similarly, we can derive other commutation relations also. But, to
simplify our calculations, let us introduce a compact notation and
define

X = X1, Px = P1, Lx = L1,
Y = X2, Py = P2, Ly = L2,
Z = X3, Pz = P3, Lz = L3.

(7.3)
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With this notation we can write the three components of the angular
momentum operator in (7.1) as (repeated indices are assumed to be
summed)

Li = ǫijkXjPk, XiPj −XjPi = ǫijkLk, i, j, k = 1, 2, 3, (7.4)

where ǫijk represents the Levi-Civita tensor which is totally anti-
symmetric, with ǫ123 = 1. In this notation the canonical commutation
relations take the form

[Xi, Pj ] = i~δij , [Xi,Xj ] = 0 = [Pi, Pj ]. (7.5)

Using the notations in (7.3) and (7.4), we can now calculate

[Li,Xj ] = [ǫipqXpPq,Xj ] = ǫipqXp[Pq,Xj ]

= ǫipqXp(−i~δqj) = −i~ǫipjXp = i~ǫijkXk. (7.6)

Similarly, we can also derive

[Li, Pj ] = [ǫipqXpPq, Pj ] = ǫipq[Xp, Pj ]Pq

= ǫipq(i~δpj)Pq = i~ǫijqPq = i~ǫijkPk. (7.7)

The commutators (7.6) and (7.7) merely tell us how the coordinate
as well as the momentum (vector) operators transform under an in-
finitesimal rotation around the i-axis. Furthermore, the commutation
relation between two angular momentum operators can now be de-
termined to be

[Li, Lj] = [Li, ǫjmnXmPn]

= ǫjmn ([Li,Xm]Pn +Xm[Li, Pn])

= ǫjmn (i~ǫimkXkPn + i~ǫinkXmPk)

= i~ ((δjiδnk − δjkδni)XkPn − (δjiδmk − δjkδmi)XmPk)

= i~ (δjiXkPk −XjPi − δjiXkPk +XiPj)

= i~(XiPj −XjPi)

= i~ǫijkLk, (7.8)

where we have used (7.6) and (7.7) in the intermediate steps. Thus,
we see that the basic commutation relation involving the angular
momentum operators is given by

[Li, Lj] = i~ǫijkLk, (7.9)
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where repeated indices are assumed to be summed. (Eq. (7.9) ba-
sically defines how the angular momentum (vector) operator trans-
forms under an infinitesimal rotation.) This shows that generators of
rotation along different directions do not commute. (The algebra is
non-Abelian.) However,

[Li, Li] = 0, for a fixed i.

Let us now define a quadratic operator

L2 = L2 = LiLi =
3∑

i=1

LiLi. (7.10)

This operator is easily seen to commute with all the components of
the angular momentum operator,

[
Li, L

2
]
= [Li, LjLj ] = Lj [Li, Lj ] + [Li, Lj ]Lj

= Lj(i~ǫijkLk) + (i~ǫijkLk)Lj

= i~ǫijk(LjLk + LkLj) = 0, (7.11)

which follows from the anti-symmetry of the Levi-Civita tensor. In
other words, the operator L2 commutes with all three generators of
infinitesimal rotations. In group theory, such an operator is known
as the quadratic Casimir operator.

Furthermore, a theory is invariant under rotations if the gener-
ators commute with the Hamiltonian. This implies that for all i,

[Li,H] = 0, (7.12)

for rotational invariance to hold. Clearly, for such systems it follows
that

[L2,H] = [LiLi,H] = Li[Li,H] + [Li,H]Li = 0. (7.13)

However, since different components of the angular momentum
operator do not commute among themselves, it is clear thatH, L2 and
only one component of the angular momentum can be simultaneously
diagonalized in a rotationally invariant theory. A simple example of
a rotationally invariant theory is, of course, given by

H =
P2

2m
+ V (R) =

P2

2m
+ V (X2), (7.14)
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where the potential depends only on the radial coordinate. For ex-
ample, the higher dimensional isotropic harmonic oscillator is such a
theory.

In such a theory (with rotational invariance) we conventionally
choose to diagonalize H, L2 and L3 (Lz) simultaneously. This means
that they are chosen to have simultaneous eigenstates. To study the
eigenvalue spectrum of these operators, let us further define

L+ = L1 + iL2,

L− = L1 − iL2, L− = (L+)
†. (7.15)

Since L2 commutes with all the components Li it follows that
[
L+, L

2
]
= 0,

[
L−, L

2
]
= 0. (7.16)

On the other hand, we have

[L+, L3] = [L1 + iL2, L3] = −i~L2 + i(i~L1)

= −~(L1 + iL2) = −~L+,

[L−, L3] = [L1 − iL2, L3] = −i~L2 − i(i~L1)

= ~(L1 − iL2) = ~L−. (7.17)

Furthermore, it is easy to derive

[L+, L−] = [L1 + iL2, L1 − iL2]

= [L1,−iL2] + [iL2, L1]

= (−i)(i~L3) + i(−i~L3)

= 2~L3, (7.18)

and we know that the Hamiltonian for a rotationally invariant theory
commutes with all the components of angular momentum operator.
Therefore, we also have

[L+,H] = [L−,H] = 0. (7.19)

Let |j,m〉 represent the simultaneous eigenstates of the operators
L2 and L3 such that

L3|j,m〉 = ~m|j,m〉,

L2|j,m〉 = ~
2j|j,m〉. (7.20)
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Let us next examine the effect of the operator L+ on a given eigen-
state |j,m〉. We note that

L3L+|j,m〉 = ([L3, L+] + L+L3) |j,m〉

= (~L+ + L+L3) |j,m〉

= (~+ ~m)L+|j,m〉 = ~(m+ 1)L+|j,m〉. (7.21)

Similarly, we have

L2L+|j,m〉 =
([
L2, L+

]
+ L+L

2
)
|j,m〉

= L+L
2|j,m〉

= ~
2jL+|j,m〉. (7.22)

This shows that the effect of L+ acting on a given state |j,m〉
is to take it to a state where the eigenvalue of L3 is raised by a unit
of ~, while that of L2 is unchanged. Therefore, we can write

L+|j,m〉 = Γ+|j,m+ 1〉, (7.23)

with Γ+ a constant, depending on j and m. We can also show that

L3L−|j,m〉 = ([L3, L−] + L−L3) |j,m〉

= (−~L− + L−L3)|j,m〉

= (−~+ ~m)L−|j,m〉 = ~(m− 1)L−|j,m〉,

L2L−|j,m〉 = L−L
2|j,m〉

= ~
2jL−|j,m〉. (7.24)

which shows that the operator L− acting on a state |j,m〉 lowers the
eigenvalue of L3 by a unit of ~ while leaving the eigenvalue of L2

unchanged. Therefore, we conclude that

L−|j,m〉 = Γ−|j,m− 1〉. (7.25)

Since the operators L+ and L− raise and lower the eigenvalue
of L3 respectively, they are correspondingly known as raising and
lowering operators. Furthermore, it follows that given a state |j,m〉
we can construct a sequence of states |j,m + 1〉, |j,m + 2〉, · · · and
|j,m−1〉, |j,m−2〉, · · · respectively by applying raising and lowering
operators. However, physically this sequence cannot go on without
termination. For, the operator

L2 = L2
1 + L2

2 + L2
3, or, L2 − L2

3 = L2
1 + L2

2 ≥ 0. (7.26)
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This is a positive semi-definite operator so that the eigenvalues must
satisfy

~
2j − ~

2m2 ≥ 0, or, j ≥ m2. (7.27)

This implies that there must exist states with a maximum and
a minimum value of m such that

L+|j,mmax〉 = 0,

or, 〈j,mmax|L−L+|j,mmax〉 = 0,

or, 〈j,mmax|
(
L2 − L2

3 − ~L3

)
|j,mmax〉 = 0,

or,
(
~
2j − ~

2m2
max − ~

2mmax

)
〈j,mmax|j,mmax〉 = 0,

or, j −mmax(mmax + 1) = 0, (7.28)

where we have used

L−L+ = (L1 − iL2)(L1 + iL2) = L2
1 + L2

2 + i[L1, L2]

= L2 − L2
3 − ~L3. (7.29)

We can, similarly, show that there must also exist a state with
a minimum value of m such that

L−|j,mmin〉 = 0,

or, 〈j,mmin|L+L−|j,mmin〉 = 0,

or, 〈j,mmin|
(
L2 − L2

3 + ~L3

)
|j,mmin〉 = 0,

or,
(
~
2j − ~

2m2
min + ~

2mmin

)
〈j,mmin|j,mmin〉 = 0,

or, j −mmin(mmin − 1) = 0. (7.30)

Comparing the relations in (7.28) and (7.30), it is clear that

mmin = −mmax. (7.31)

(The other solution, mmax = mmin − 1, violates our assumption that
mmax > mmin or that mmin denotes the minimum value of m.) Fur-
thermore, let us assume that one goes from the state |j,mmin〉 to
|j,mmax〉 by applying k times the raising operator L+. Since every
time L+ is applied to a state |j,m〉 it shifts m → m + 1, it follows
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that

mmax −mmin = k,

or, 2mmax = k,

or, mmax = −mmin =
k

2
, (7.32)

where k is an integer.
Therefore, we can write

j = mmax(mmax + 1) =
k

2

(
k

2
+ 1

)
. (7.33)

Let us define ℓ = k
2 so that ℓ takes only multiples of half integer

values. Then, we can write

j = ℓ(ℓ+ 1), (7.34)

and −ℓ ≤ m ≤ ℓ (in steps of unity, namely, m takes 2ℓ + 1 values)
where ℓ takes positive multiples of half integer values

ℓ = 0,
1

2
, 1,

3

2
, · · · , m = −ℓ,−ℓ+ 1, · · · , ℓ− 1, ℓ. (7.35)

We can now determine the normalized eigenstates of the an-
gular momentum operators in the following way. We have already
determined that

L2|ℓ,m〉 = ~
2ℓ(ℓ+ 1)|ℓ,m〉,

L3|ℓ,m〉 = ~m|ℓ,m〉, (7.36)

where −ℓ ≤ m ≤ ℓ. Furthermore, we know that

L+|ℓ,m〉 = Γ+|ℓ,m+ 1〉,

or, 〈ℓ,m|L−L+|ℓ,m〉 = |Γ+|2,

or, 〈ℓ,m|
(
L2 − L2

3 − ~L3

)
|ℓ,m〉 = |Γ+|2,

or, ~
2 (ℓ(ℓ+ 1)−m(m+ 1)) = |Γ+|2,

or, Γ+ = Γ∗
+ = ~

√
ℓ(ℓ+ 1)−m(m+ 1), (7.37)

so that

L+|ℓ,m〉 = ~

√
ℓ(ℓ+ 1)−m(m+ 1)|ℓ,m+ 1〉,

or, |ℓ,m+ 1〉 = 1

~
√
ℓ(ℓ+ 1)−m(m+ 1)

L+|ℓ,m〉. (7.38)
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Similarly, we can also show that

L−|ℓ,m〉 = ~

√
ℓ(ℓ+ 1)−m(m− 1)|ℓ,m− 1〉,

or, |ℓ,m− 1〉 = 1

~
√
ℓ(ℓ+ 1)−m(m− 1)

L−|ℓ,m〉. (7.39)

This, therefore, defines all the simultaneous eigenstates of L2 and L3

for a particular value of ℓ. They define a Hilbert space E(ℓ) which
is a subspace of the total Hilbert space of the angular momentum
operators. What we mean by this is that the operators L2, L3, L+ and
L− take any vector in this space to another vector in the same space.
In other words they leave the space E(ℓ) invariant. The dimensionality
of this space is (2ℓ+ 1).

◮ Example. Let us now look at a few specific examples of the representations of
angular momentum.

1. ℓ = 0: In this case, the dimensionality of the representation is 1 and m = 0.

2. ℓ = 1
2
: In this case, the dimensionality of the representation is 2ℓ + 1 = 2

and m takes values ± 1
2
.

Let the basis states in this space be | 1
2
, 1
2
〉 and | 1

2
,− 1

2
〉. We know from (7.36)

that

〈ℓ,m′|L3|ℓ,m〉 = ~m〈ℓ,m′|ℓ,m〉 = ~mδm′ m. (7.40)

This implies that

〈1
2
,
1

2
|L3|

1

2
,
1

2
〉 = ~

2
= −〈1

2
,−1

2
|L3|

1

2
,−1

2
〉,

〈1
2
,
1

2
|L3|1

2
,−1

2
〉 = 0 = 〈1

2
,−1

2
|L3|1

2
,
1

2
〉. (7.41)

Therefore, we have the matrix representation,

L3 =
~

2

(

1 0
0 −1

)

. (7.42)

Similarly, for L2 we have

〈ℓ,m′|L2|ℓ,m〉 = ~
2
ℓ(ℓ+ 1)〈ℓ,m′|ℓ,m〉 = ~

2
ℓ(ℓ+ 1)δm′ m

=
3

4
~
2
δm′ m, (7.43)

so that this is a multiple of the identity matrix,

L
2 =

3

4
~
2

(

1 0
0 1

)

=
3

4
~
21. (7.44)

Furthermore, for the raising operator we have from (7.38)

〈ℓ,m′|L+|ℓ,m〉 = Γ+〈ℓ,m′|ℓ,m+ 1〉 = Γ+δm′ m+1

= ~

√

ℓ(ℓ+ 1)−m(m+ 1) δm′ m+1

= ~

√

3

4
−m(m+ 1) δm′ m+1. (7.45)
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In the matrix notation, this takes the form

L+ = ~

(

0
√

3
4
+ 1

4

0 0

)

= ~

(

0 1
0 0

)

. (7.46)

Similarly, (7.39) leads to

〈ℓ,m′|L−|ℓ,m〉 = Γ−〈ℓ,m′|ℓ,m− 1〉 = Γ−δm′ m−1

= ~

√

ℓ(ℓ+ 1) −m(m− 1) δm′ m−1

= ~

√

3

4
−m(m− 1) δm′ m−1, (7.47)

which has the matrix form

L− = ~

(

0 0
√

3
4
+ 1

4
0

)

= ~

(

0 0
1 0

)

= (L+)
†
. (7.48)

But, from the defining relation (7.15) we know that L± = L1 ± iL2 so that

L1 =
1

2
(L+ + L−),

L2 = − i

2
(L+ − L−). (7.49)

This determines

L1 =
~

2

(

0 1
1 0

)

,

L2 =
~

2

(

0 −i
i 0

)

. (7.50)

In other words, the generators of rotation (angular momenta) corresponding
to the eigenvalue ℓ = 1

2
are none other than the three Pauli matrices (up to

multiplicative constants).

3. ℓ = 1: In this case, the dimensionality of the representation is 2ℓ + 1 = 3
and m takes values m = −1, 0, 1. Let the basis states in this space be
|1, 1〉, |1, 0〉, |1,−1〉. Since L3 is diagonal in this basis,

〈1,m′|L3|1, m〉 = ~mδm′ m, (7.51)

and we have

L3 = ~





1 0 0
0 0 0
0 0 −1



 . (7.52)

Similarly, L2 is also diagonal with

〈1,m′|L2|1, m〉 = ~
21(1 + 1)δm′ m = 2~2δm′ m, (7.53)

which leads to the matrix form

L
2 = 2~2





1 0 0
0 1 0
0 0 1



 = 2~21. (7.54)
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Furthermore, for the raising operator we have

〈1, m′|L+|1, m〉 = ~

√

2−m(m+ 1) δm′ m+1, (7.55)

so that the matrix representation has the form

L+ = ~





0
√
2 0

0 0
√
2

0 0 0



 . (7.56)

Similarly, the lowering operator satisfies

〈1, m′|L−|1, m〉 = ~

√

2−m(m− 1) δm′ m−1, (7.57)

and we have

L− = ~





0 0 0√
2 0 0

0
√
2 0



 = (L+)
†
. (7.58)

It follows from (7.56) and (7.58), therefore, that

L1 =
1

2
(L+ + L−) =

~√
2





0 1 0
1 0 1
0 1 0



 ,

L2 = − i

2
(L+ − L−) =

~√
2





0 −i 0
i 0 i

0 i 0



 . (7.59)

Thus, we see that the generators of rotation (angular momenta) have dif-
ferent representations in different spaces.

◭

To find out the spatial eigenfunctions (wave functions) asso-
ciated with angular momentum operators, we note that rotational
symmetry is best studied in the spherical coordinates (see Fig. 7.1),

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ. (7.60)

In spherical coordinates, the angular momentum operators take
the following forms.

L1 = Lx = i~

(
sinφ

∂

∂θ
+ cosφ cot θ

∂

∂φ

)
,

L2 = Ly = i~

(
− cosφ

∂

∂θ
+ sinφ cot θ

∂

∂φ

)
,

L3 = Lz = −i~
∂

∂φ
. (7.61)
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z

y

x

φ

θ

r

Figure 7.1: Cartesian and spherical coordinate systems.

This determines the forms for the raising and lowering operators to
be

L± = L1 ± iL2

= i~

[
(sinφ∓ i cosφ) ∂

∂θ
+ (cosφ± i sinφ) cot θ ∂

∂φ

]

= ±~e±iφ

[
∂

∂θ
± i cot θ ∂

∂φ

]
. (7.62)

We know from (7.38) that

L+|ℓ, ℓ〉 = 0. (7.63)

In the spherical coordinate basis, therefore, this condition becomes
[
∂

∂θ
+ i cot θ

∂

∂φ

]
Uℓ,ℓ(r, θ, φ) = 0, (7.64)

where

Uℓ,ℓ(r, θ, φ) = 〈r, θ, φ|ℓ, ℓ〉. (7.65)

Furthermore, we also know that

Lz|ℓ, ℓ〉 = ~ℓ|ℓ, ℓ〉,

or, − i~ ∂

∂φ
Uℓ,ℓ(r, θ, φ) = ~ℓUℓ,ℓ(r, θ, φ),

or,
∂

∂φ
Uℓ,ℓ(r, θ, φ) = iℓUℓ,ℓ(r, θ, φ), (7.66)
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so that we can write

Uℓ,ℓ(r, θ, φ) = Fℓ,ℓ(r, θ)e
iℓφ. (7.67)

Let us now use the method of separation of variables and write

Fℓ,ℓ(r, θ) = Rℓ,ℓ(r)Θℓ,ℓ(θ). (7.68)

Putting (7.67) and (7.68) back into (7.64), we have
(
∂

∂θ
+ i cot θ

∂

∂φ

)
Uℓ,ℓ(r, θ, φ) = 0,

or,

(
d

dθ
+ i cot θ(iℓ)

)
Θℓ,ℓ(θ) = 0,

or,
dΘℓ,ℓ(θ)

dθ
− ℓ cot θΘℓ,ℓ(θ) = 0,

or, Θℓ,ℓ(θ) = A (sin θ)ℓ. (7.69)

Therefore, we have determined

Uℓ,ℓ(r, θ, φ) = Rℓ,ℓ(r)(sin θ)
ℓeiℓφ, (7.70)

where we have absorbed the constant A into Rℓ,ℓ(r).
Furthermore, we note that rotation affects only the angular part

of the solution and only the m quantum number changes under a
rotation, while ℓ is invariant. Therefore, the radial component of the
wave function for a rotationally invariant theory should not depend
on the m quantum number. It can at the most depend on the ℓ
quantum number and would be determined by the dynamics of the
system. Thus, we can write

Uℓ,ℓ(r, θ, φ) = Rℓ(r)(sin θ)
ℓeiℓφ. (7.71)

where we have absorbed the normalization constant into the radial
wave function. This is, therefore, the wave function for the state with
the highest m quantum number for a given l. The wave function for
any other state can be obtained from this by applying the lowering
operator. Namely, (see (7.39))

|ℓ, ℓ− 1〉 = 1

~
√
ℓ(ℓ+ 1)− ℓ(ℓ− 1)

L−|ℓ, ℓ〉 =
1

~
√
2ℓ
L−|ℓ, ℓ〉,

or, Uℓ,ℓ−1(r, θ, φ) = −
1

~
√
2ℓ

~e−iφ

[
∂

∂θ
− i cot θ ∂

∂φ

]
Uℓ,ℓ(r, θ, φ)

= −2e−iφ

√
2ℓ

∂

∂θ
Uℓ,ℓ(r, θ, φ), (7.72)
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where we have used
(
∂

∂θ
+ i cot θ

∂

∂φ

)
Uℓ,ℓ(r, θ, φ) = 0,

or, i cot θ
∂

∂φ
Uℓ,ℓ(r, θ, φ) = −

∂

∂θ
Uℓ,ℓ(r, θ, φ). (7.73)

Using (7.71) in (7.72), we can write

Uℓ,ℓ−1(r, θ, φ) = −
2e−iφ

√
2ℓ

Rℓ(r)e
iℓφ d

dθ
(sin θ)ℓ

= − 2ℓ√
2ℓ
Rℓ(r)e

i(ℓ−1)φ(sin θ)ℓ−1 cos θ

= −
√
2ℓRℓ(r)(sin θ)

ℓ−1 cos θei(ℓ−1)φ. (7.74)

Similarly, a general wave function, Uℓ,m(r, θ, φ), can be obtained by
applying (ℓ − m) times the lowering operator L− with a suitable
normalization.

The interesting conclusions that we can draw from this operator
analysis are that the angular momentum operator L2 has eigenval-
ues of the form ~

2ℓ(ℓ + 1) and that ℓ takes integer as well as half
integer values. This is certainly an improvement over the old quan-
tum theory. Let us note that the energy associated with rotations in
molecules can be denoted by

H =
L2

2I
=
L2

2I
, (7.75)

where L, I represent respectively the orbital angular momentum and
the moment of inertia of the system. In the old quantum theory, one
postulated the eigenvalues of angular momentum to be of the form

eigenvalues of L2 = ~
2ℓ2, where ℓ = 0, 1, 2, · · · . (7.76)

This, in turn, leads to the separation of energy levels in molecules in
the proportions

1 : 3 : 5 : 7 : · · · . (7.77)

However, this was not observed. The observed separations were in
the proportions

1 : 2 : 3 : 4 : · · · . (7.78)
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It is easy to see from (7.75) that this will indeed be the case if

eigenvalues of L2 = ~
2ℓ(ℓ+1), where ℓ = 0, 1, 2, 3, · · · . (7.79)

This says that the orbital angular momentum eigenvalues take in-
teger values and the extra term arises from the non-commutativity
of different components of the angular momentum operators. If we
solve the Schrödinger equation, we would obtain only integer values
for the angular momentum eigenvalue. The operator method, on the
other hand, allows for both integral and half integral eigenvalues.

We will talk about this in more detail later when we solve the
Schrödinger equation. But, at the moment, we can understand the
difference as follows. The Schrödinger wave function that we nor-
mally consider is a scalar function. Thus the effect of a rotation is
simply to change the coordinates to a rotated value. Furthermore,
a scalar function should have the property that when rotated by an
angle 2π around any axis it should come back to its original value.
This constraint leads to only integral values for the angular momen-
tum eigenvalue. On the other hand, the wave function may have a
nontrivial matrix structure of its own such that a rotation not only
changes the coordinates, but also rotates the components of the wave
function. Then, in general, we can write

J = L+ S, (7.80)

where the operator L rotates the spatial coordinates and is known
as the orbital angular momentum operator while S rotates the com-
ponents of the wave function and is known as the spin angular mo-
mentum operator. J is called the total angular momentum operator.
When a wave function has a nontrivial matrix structure, it is not nec-
essary that the wave function remains unchanged under a rotation by
2π. Rather, on physical grounds we would like that the probability
density, which is an observable, remains unchanged under a rotation
of 2π. This implies that

ψ∗ψ
2π−→ ψ∗ψ,

or, (ψ,ψ∗)
2π−→ (±ψ,±ψ∗). (7.81)

When such a situation occurs where the wave functions change sign
under a rotation by 2π, we can have half integral values for the an-
gular momentum. There are a few points to note here.

1. The eigenvalues corresponding to the operator L are integers.
This is because in the absence of S or any matrix structure, the
wave function must be single-valued.
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2. S has both half integer and integer eigenvalues so that J or
the total angular momentum also carries half integer as well as
integer eigenvalues.

3. S,L and J satisfy the same commutation relations (same alge-
bra), namely,

S× S = i~S,

L× L = i~L,

J× J = i~J. (7.82)

Note that the familiar relation

[Li, Lj ] = i~ǫijkLk, (7.83)

can be written as

L× L = i~L,

generalizing the familiar notation of 3-dimensional vector product

C = A×B,

or, Ci = ǫijkAjBk. (7.84)

7.2 Finite rotations

We have already derived the representations of angular momentum
operators corresponding to different eigenvalues. We have noted that
for each value of ℓ there exists a representation of dimensionality
2ℓ + 1. In general, however, we can write the matrix elements of
various operators as

〈ℓ′,m′|L2|ℓ,m〉 = ~
2ℓ(ℓ+ 1)δℓ′,ℓδm′,m,

〈ℓ′,m′|L3|ℓ,m〉 = ~mδℓ′,ℓδm′,m,

〈ℓ′,m′|L+|ℓ,m〉 = ~

√
ℓ(ℓ+ 1)−m(m+ 1)δℓ′,ℓδm′,m+1,

〈ℓ′,m′|L−|ℓ,m〉 = ~

√
ℓ(ℓ+ 1)−m(m− 1)δℓ′,ℓδm′,m−1, (7.85)

where

ℓ = 0, 1
2
, 1, · · · ,∞,

m = −ℓ,−ℓ+ 1, · · · , ℓ− 1, ℓ. (7.86)
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Thus, in the complete space, the operators have the following
representation.

L2 =

(0, 0)

( 1
2
, 1
2)

( 1
2
,− 1

2)

(1, 1)

(1, 0)

(1,−1)
...




0

3~2

4 0

0 3~2

4

2~2 0 0

0 0 0

0 0 2~2

. . .




. (7.87)

Similarly,

L3 =

(0, 0)

( 1
2
, 1
2)

( 1
2
,− 1

2)

(1, 1)

(1, 0)

(1,−1)
...




0
~

2 0

0 −~

2

~ 0 0

0 0 0

0 0 −~
. . .




. (7.88)

We also have

L1 =

(0, 0)

( 1
2
, 1
2)

( 1
2
,− 1

2)

(1, 1)

(1, 0)

(1,−1)
...




0

0 ~

2
~

2 0

0 ~√
2

0

~√
2

0 ~√
2

0 ~√
2

0

. . .




, (7.89)

and similarly for L2.
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First of all, we note that all the operators have infinite dimen-
sional representations. However, the representations are block diag-
onal. Therefore, any product of the operators would also be block
diagonal. In particular, a finite rotation by the angle α, generated
by

U(α) = e−
i
~
α·L, (7.90)

would again be a block diagonal matrix. Let the (2ℓ+1) dimensional
block of U(α), for a given ℓ, be denoted by D(ℓ)(α). Then, D(ℓ)(α)
rotates vectors in the space E(ℓ). In other words, if |ψℓ〉 represents an
arbitrary vector in the subspace spanned by the (2ℓ+1) vectors |ℓ, ℓ〉,
|ℓ, ℓ − 1〉, · · · , |ℓ,−ℓ〉, then, D(ℓ)(α) is the rotation operator which
would act on it. Let us now ask whether D(ℓ)(α) can be written in
a manageable form, at least for small values of ℓ. First of all, note,
from the definition, that

D(ℓ)(α) = e−
i
~
α·L(ℓ)

=
∞∑

0

1

n!

(
− i
~

)n (
α · L(ℓ)

)n
. (7.91)

It would seem like there is an infinite number of independent terms
in this series. However, note that there are only a finite number of in-
dependent (2ℓ+1) dimensional square matrices. Therefore, after a fi-
nite number of terms in the series, we would have linear combinations
of known terms. In fact, for a (2ℓ + 1) dimensional representation,
(α · L(ℓ))n, where n > 2ℓ, can be expressed as a linear combination
of (α · L(ℓ))k, where k ≤ 2ℓ. We can easily check this by restricting
to rotations around the 3-axis. For example, let

α · L(ℓ) → α3L
(ℓ)
3 . (7.92)

Furthermore, we know that the eigenvalues of L
(ℓ)
3 are

−~ℓ, ~(−ℓ+ 1), · · · , ~(ℓ− 1), ~ℓ.

Let us now look at the operator

Ω =
(
α3

(
L
(ℓ)
3 − ~ℓ1))(α3

(
L
(ℓ)
3 − ~(ℓ− 1)1)) · · ·

· · ·
(
α3

(
L
(ℓ)
3 − ~(−ℓ+ 1)1))(α3

(
L
(ℓ)
3 + ~ℓ1)) . (7.93)

If we now take any vector |ψℓ〉 in this space, it is clear that

Ω|ψℓ〉 = 0. (7.94)
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This is because this operator annihilates all the (2ℓ+1) basis vectors
in this space. This, therefore, implies that, in this space, Ω can be
identified with the null operator. This, in turn, determines

(α3L
(ℓ)
3 )2ℓ+1 =

2ℓ∑

k=0

ck(α3L
(ℓ)
3 )k, (7.95)

which proves our earlier assertion. Hence, we can write

D(ℓ) (α) =

2ℓ∑

n=0

fn (α)
(
α · L(ℓ)

)n
. (7.96)

◮ Example. Let us look at the representation with ℓ = 1
2
. We know from (7.42)

and (7.50) that the generators of angular momentum in this representation are
given by

L
( 1
2 )

i =
~

2
σi, i = 1, 2, 3, (7.97)

where σi are the Pauli matrices. They satisfy the commutation relations

[σi, σj ] = 2iǫijkσk. (7.98)

Furthermore, they also satisfy the anti-commutation relations

{σi, σj} = 2δij1, (7.99)

so that we can write

σiσj =
1

2
{σi, σj}+ 1

2
[σi, σj ] = δij1+ iǫijkσk. (7.100)

Multiplying both sides of (7.100) with two arbitrary vectors Ai and Bj we have

AiBj (σiσj) = AiBj (δij1+ iǫijkσk) ,

or, (σiAi) (σjBj) = AiBi1+ iǫijkAiBjσk,

or, (σ ·A)(σ ·B) = (A ·B)1+ iσ · (A×B). (7.101)

Since we have maintained the order of Ai, Bi, this relation also holds for vector
operators that commute with the Pauli matrices. Furthermore, this is consistent
with our theorem.

In this case, the operator for finite rotations takes the form,

D
( 1
2
)(α) = e

− i
~
α·L( 1

2
)

= e
− i

2
α·σ

=
∑

n

1

n!

(

− i

2

)n

(α · σ)n

= 1− i

2
α · σ − 1

2!(2)2
(α · σ)2 + i

3!23
(α · σ)3 + · · ·

=

(

1− 1

2!

1

22
α
2 +

1

4!24
α
4 · · ·

)1
− i

2
α · σ +

i

3!23
(α · σ)α2 · · ·

= 1 cos
α

2
− i (α̂ · σ) sin α

2
, (7.102)
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where α = |α| and we have used the properties of the Pauli matrices following
from (7.98) and (7.99). For a rotation by 2π, namely, for α = 2π, we note that
the rotation operator reduces to

D
( 1
2
)(2π) = 1 cos(π)− i(α̂ · σ) sin(π) = −1. (7.103)

This shows that two component wave functions belonging to ℓ = 1
2
(also known

as spinors) change sign under a rotation by 2π as we have discussed earlier. ◭

7.3 Reducible and irreducible spaces

We have noted earlier that the space E(ℓ) is invariant under rotations.
That is, any state in E(ℓ) goes into another state in E(ℓ) under rota-
tion. Such spaces are called invariant spaces and the reason for this
invariance is clear. Any state in E(ℓ) has associated with it the angular
momentum quantum number ℓ. No rotation will change this value,
since

[
L2, Li

]
= 0 for all i. Thus, a rotated state would continue to

have the same ℓ-quantum number associated with it and hence would
belong to E(ℓ).

Furthermore, these invariant subspaces are irreducible. That is,
they cannot be written as sums of invariant spaces of lower dimen-
sionality. This can be proved by showing that E(ℓ) cannot contain
invariant subspaces other than itself. To show this, let us assume

that E(ℓ) is an invariant subspace of E(ℓ). Let |ψ〉 be an arbitrary

state in E (ℓ). We can choose it to be the state |ℓ, ℓ〉. (Note that this
is always possible by a unitary change of the basis.) Under a rotation

|ℓ, ℓ〉 → D(ℓ) (α) |ℓ, ℓ〉. (7.104)

If we are considering an infinitesimal rotation, then (α is infinitesi-
mal)

D(ℓ) (α) = 1− i

~
α · L(ℓ)

= 1− i

2~

(
α+L

(ℓ)
− + α−L

(ℓ)
+ + 2α3L

(ℓ)
3

)
, (7.105)

where we have defined α± = α1 ± iα2.
Thus, under an infinitesimal rotation,

|ℓ, ℓ〉 →
(1− i

2~

(
α+L

(ℓ)
− + α−L

(ℓ)
+ + 2α3L

(ℓ)
3

))
|ℓ, ℓ〉. (7.106)

Noting that L
(ℓ)
+ |ℓ, ℓ〉 = 0, we conclude that

|ℓ, ℓ〉 → a1|ℓ, ℓ〉+ b1|ℓ, ℓ− 1〉. (7.107)
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However, since E (ℓ) is an invariant subspace and |ℓ, ℓ〉 is a vector in

it, this implies that |ℓ, ℓ− 1〉 must also be in E(ℓ). It is useful to note
here that a vector |ℓ,m〉, in general, transforms as follows under an
infinitesimal rotation.

|ℓ,m〉 → a1|ℓ,m〉+ a2|ℓ,m+ 1〉+ a3|ℓ,m− 1〉. (7.108)

Thus, observing the behavior of successive states under rotation, we

can conclude that E(ℓ) contains all the states |ℓ, ℓ〉, |ℓ, ℓ − 1〉, · · · ,
|ℓ,−ℓ+1〉 and |ℓ,−ℓ〉. Therefore, the dimensionality of E(ℓ) is (2ℓ+1)
and hence must be identical to E(ℓ).

On the other hand, a reducible space is one which can be written
as a sum of spaces of lower dimensionality, which are themselves
invariant spaces. In such a case, the symmetry operators such as
D(ℓ)(α) can be further block diagonalized.

◮ Example. Let us next study a simple example of a reducible space. Let us con-
sider the two element group consisting of (1,P), where P is the reflection operator
(or Parity operator) that we have defined earlier. They satisfy the multiplication
law 11 = 1,1P = P1 = P ,

PP = 1. (7.109)

As operators, they act on scalar functions as (namely, they, of course, act on
vectors, but as we have discussed earlier, the effect can be thought of as changing
the coefficient scalar functions in an expansion of the state in the coordinate basis)1f(x, y, z) = f(x, y, z),

Pf(x, y, z) = f(−x,−y,−z). (7.110)

Let us consider an arbitrary function f1(x, y, z) and let

f2(x, y, z) = Pf1(x, y, z), Pf2(x, y, z) = f1(x, y, z). (7.111)

Let us denote by S the set of functions of the form

f(x, y, z) = a1f1(x, y, z) + a2f2(x, y, z), (7.112)

for all allowed values of the parameter a1 and a2. This set of functions in (7.112)
defines the space of functions spanned by the basis functions f1 and f2. These
functions satisfy all the postulates of a linear vector space. The space S is said
to be two dimensional because any function, in this space, can be expressed as a
combination of the two functions f1 and f2. Furthermore, this space is invariant
under the operation of the group (1,P). Namely, any vector in S, under the effect
of the group, goes into another vector in S.1f(x, y, z) = f(x, y, z),

Pf(x, y, z) = P (a1f1(x, y, z) + a2f2(x, y, z))

= a1f2(x, y, z) + a2f1(x, y, z) ∈ S. (7.113)
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On the other hand, we can define two new functions

f̃1 =
1

2
(f1 + f2) , f̃2 =

1

2
(f1 − f2) , (7.114)

such that

P f̃1 = f̃1, P f̃2 = −f̃2. (7.115)

Let us denote by S1 and S2 the set of functions of the form a1f̃1 and a2f̃2 respec-
tively, where a1 and a2 take all possible allowed values. Clearly, S1 and S2 are
linear spaces. Moreover, they are also invariant under the action of the group.
Namely, 1a1f̃1 = a1f̃1,

Pa1f̃1 = a1f̃1,

}

belongs to S1,1a2f̃2 = a2f̃2,

Pa2f̃2 = −a2f̃2,

}

belongs to S2. (7.116)

Thus S1 and S2 are also invariant spaces but they are of lower dimensionality
because each of them is spanned by only one function. They are called subspaces
of S since any function in S1 or S2 is contained in S. Furthermore, the space S
is said to be reducible to the two invariant subspaces S1 and S2. That is, any
function in S can be expressed uniquely as a combination of functions of S1 and
S2.

f(x, y, z) = a1f1 + a2f2 = a1(f̃1 + f̃2) + a2(f̃1 − f̃2)

= (a1 + a2) f̃1 + (a1 − a2) f̃2. (7.117)

Symbolically, we write

S = S1 ⊕ S2. (7.118)

The study of irreducible, invariant spaces is important because any invariant space
can be built out of them. ◭

7.4 Selected problems

1. Show that

e−iβLy = ei
π
2
Lxe−βLze−iπ

2
Lx , (7.119)

where β is a real constant.

2. In an eigenstate of L2 and L3 denoted by |ℓ,m〉, calculate

〈L1〉, 〈L2〉, 〈L2
1〉, and 〈L2

2〉. (7.120)
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196 7 Angular momentum

3. Consider two harmonic oscillators (in one dimension) with rais-
ing and lowering operators (a, a†; b, b†) respectively. They sat-
isfy the usual commutation relations

[a, a†] = 1 = [b, b†], (7.121)

with all others vanishing.

From the four operators a†b, ab†, a†a, b†b, show, by taking lin-
ear combinations, that one can find operators which have the
same commutation relations as the angular momentum oper-
ators. What operator plays the role of angular momentum
squared?
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Chapter 8

Schrödinger equation in higher

dimensions

In earlier lectures, we solved some quantum mechanical systems in
one dimension. In the next few lectures, we will discuss the solu-
tions of some three dimensional systems with spherically symmetric
potentials.

8.1 Schrödinger equation in spherically symmetric potential

z

y

x

φ

θ

r

Figure 8.1: Cartesian and spherical coordinates

Let us consider a particle of mass m moving in a three dimen-
sional potential of the form V = V

(
x2
)
. Thus, the Hamiltonian of

the system has the form

H =
P2

2m
+ V (X2) =

P2

2m
+ V (R2). (8.1)

In other words, the potential depends only on the magnitude of the
vector from the origin. This Hamiltonian is clearly invariant under
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198 8 Schrödinger equation in higher dimensions

rotations. Therefore, we expect angular momentum to be conserved.
Furthermore, since the potential has spherical symmetry it simplifies
to study the problem in spherical coordinates (see Fig. 8.1) where
we can identify

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ. (8.2)

The gradient operator in spherical coordinates has the form

∇ = r̂
∂

∂r
+

θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ
, (8.3)

and the Laplacian is given by

∇
2 =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.

(8.4)

Furthermore, we know that in spherical coordinates the angular
momentum operators have the forms

Lx = i~

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
,

Ly = i~

(
− cosφ

∂

∂θ
+ cot θ sinφ

∂

∂φ

)
,

Lz = −i~
∂

∂φ
. (8.5)

so that we have

L2
x = (i~)2

(
sinφ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)2

= (i~)2
[
sin2 φ

∂

∂θ2
+ sinφ

∂

∂θ

(
cot θ cosφ

∂

∂φ

)

+ cot θ cosφ
∂

∂φ

(
sinφ

∂

∂θ

)

+cot θ cosφ
∂

∂φ

(
cot θ cosφ

∂

∂φ

)]
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8.1 Spherically symmetric potential 199

= (i~)2
[
sin2 φ

∂2

∂θ2
− sinφ cosφcosec2θ

∂

∂φ

+sinφ cosφ cot θ
∂2

∂θ∂φ

+ cot θ cos2 φ
∂

∂θ
+ cot θ sinφ cosφ

∂2

∂φ∂θ

− cot2 θ sinφ cosφ
∂

∂φ
+ cot2 θ cos2 φ

∂2

∂φ2

]
. (8.6)

Similarly, we have

L2
y = (i~)2

[
cos2 φ

∂2

∂θ2
+ sinφ cosφcosec2θ

∂

∂φ

− sinφ cosφ cot θ
∂2

∂θ∂φ

+ cot θ sin2 φ
∂

∂θ
− sinφ cos φ cot θ

∂2

∂θ∂φ

+cot2 θ sinφ cosφ
∂

∂φ
+ cot2 θ sin2 φ

∂2

∂φ2

]
,

L2
z = (−i~)2 ∂

2

∂φ2
. (8.7)

It follows now, from (8.6) and (8.7), that

L2 = L2
x + L2

y + L2
z

= (i~)2
[
∂2

∂θ2
+ cot θ

∂

∂θ
+ cosec2θ

∂2

∂φ2

]

= (i~)2
[
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]

= (i~)2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (8.8)

Thus, we see from (8.4) and (8.8) that we can also write

∇
2 =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
L2

(i~)2

=
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

~2r2
. (8.9)
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The time independent Schrödinger equation for such a system
has the form

Hψ(r, θ, φ) = Eψ(r, θ, φ),

or,

(
− ~

2

2m
∇

2 + V (r)

)
ψ = Eψ,

or,

[
− ~

2

2m

(
1

r2
∂

∂r

(
r2
∂

∂r

)
− L2

~2r2

)
+ V (r)

]
ψ = Eψ. (8.10)

Let us now use a separable solution of the form

ψ(r, θ, φ) = R(r)F (θ, φ). (8.11)

Substituting this into (8.10), we obtain

F

[
− ~

2

2m

(
1

r2
d

dr
r2

dR

dr

)
+ (V (r)− E)R

]
= −R L2

2mr2
F,

or,
1

R

[
d

dr

(
r2

dR

dr

)
+

2mr2

~2
(E − V (r))R

]
=

1

F

L2

~2
F = λ.

(8.12)

Here we have used the fact that since the two sides of (8.12) depend on
independent coordinates, they can be the same for arbitrary values of
these coordinates only if each of the expressions is equal to a constant.
Equation (8.12) leads to

d

dr

(
r2

dR

dr

)
+

2mr2

~2
(E − V (r))R = λR, (8.13)

L2F (θ, φ) = ~
2λF (θ, φ). (8.14)

This shows that ~
2λ is the eigenvalue of the operator L2. Fur-

thermore, the solution of the radial equation depends on the form of
the potential and, therefore, on the dynamics. Consequently, we will
concern ourselves only with the angular equation, for the present,
which has the explicit form

L2F (θ, φ) = ~
2λF (θ, φ),

or, −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
= λF (θ, φ). (8.15)

Let us separate the variables further as

F (θ, φ) = Θ(θ)Φ(φ). (8.16)
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Then, equation (8.15) leads to

Φ

[
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λΘ

]
= − Θ

sin2 θ

d2Φ

dφ2
,

or,
1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λ sin2 θΘ

]
= − 1

Φ

d2Φ

dφ2
= α,

(8.17)

so that

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+ λ sin2 θΘ = αΘ, (8.18)

d2Φ

dφ2
=

L2
z

(−i~)2 Φ = −αΦ(φ). (8.19)

The second equation, (8.19), has the simple solution

Φ(φ) ∼ e±i
√
αφ. (8.20)

Since the wave function has to be single valued and continuous,
this implies that

α = m2, where m = 0,±1,±2, · · · = integers. (8.21)

Thus, the normalized eigenstates of Lz can be written as

Φm(φ) =
1√
2π

eimφ, (8.22)

where the integer nature of m arises because we require Φm(φ) =
Φm(φ + 2π) and the factor of 1√

2π
normalizes the solution in the φ

space. (Remember 0 ≤ φ ≤ 2π.) It is also clear that ~m, with m
integer, is the eigenvalue of Lz (m should not be confused with the
mass).

With (8.21) the θ-equation, (8.18), now becomes

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+ λ sin2 θΘ = m2Θ,

or, sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+
(
λ sin2 θ −m2

)
Θ = 0. (8.23)

Let us define

x = cos θ, (8.24)
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so that

d

dθ
=

dx

dθ

d

dx
= − sin θ

d

dx
= −(1− x2) 1

2
d

dx
,

sin θ
d

dθ
= −(1− x2) d

dx
.

In this variable, equation (8.23) becomes

(1− x2) d

dx

(
(1− x2)dΘ

dx

)
+ (λ(1− x2)−m2)Θ = 0,

or, (1− x2)d
2Θ

dx2
− 2x

dΘ

dx
+

(
λ− m2

1− x2
)
Θ = 0. (8.25)

To analyze the asymptotic behavior of the solution of (8.25), let
us divide throughout by (1− x2). Then, the equation becomes

d2Θ

dx2
− 2x

1− x2
dΘ

dx
+

(
λ

1− x2 −
m2

(1− x2)2
)
Θ = 0. (8.26)

Since 0 ≤ θ ≤ π, it follows that −1 ≤ x ≤ 1 and we see that the
coefficients of the terms in (8.26) become singular at x = ±1.

Near x = 1, we can approximate,

2x

1− x2 =
2x

(1− x)(1 + x)
≃ 1

1− x,

m2

(1− x2)2 =
m2

(1− x)2(1 + x)2
≃ m2

4(1− x)2 . (8.27)

Thus, for x ≃ 1, equation (8.26) reduces to

d2Θ

dx2
− 1

1− x
dΘ

dx
− m2

4(1− x)2 Θ = 0. (8.28)

Let us assume a solution of the form (a0 6= 0)

Θ(x) = (1− x)β
[
a0 + a1(1− x) + a2(1− x)2 + · · ·

]
. (8.29)

Putting this back into (8.28), we have for the (leading) term of the
form (1− x)β−2

a0

[
β(β − 1) + β − m2

4

]
= 0,

or, β = ±|m|
2
. (8.30)
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since a0 6= 0. Thus, we have

Θ(x)
x→1−−−→ (1− x)

|m|
2
[
a0 + a1(1− x) + a2(1− x)2 + · · ·

]
,

or, Θ(x)
x→1−−−→ (1− x)−

|m|
2
[
a0 + a1(1− x) + a2(1− x)2 + · · ·

]
.

(8.31)

It is clear that although the first solution in (8.31) is finite when
x → 1 as a physical solution should be, the second solution blows
up as x→ 1. Thus, we conclude that the physical solution of (8.31)
behaves as

Θ(x)
x→1−−−→ (1− x)

|m|
2
[
a0 + a1(1− x) + a2(1− x)2 + · · ·

]
.

(8.32)

Similarly, we can show that the physical solution near x ≃ −1
behaves as

Θ(x)
x→−1−−−−→ (1 + x)

|m|
2
[
a′0 + a′1(1 + x) + a′2(1 + x)2 + · · ·

]
,

(8.33)

so that we expect a solution of (8.26) to have the general form

Θ(x) = (1− x2)
|m|
2

∞∑

k=0

akx
k = (1− x2)

|m|
2 z(x), (8.34)

which leads to

dΘ(x)

dx
= (1− x2)

|m|
2
dz

dx
− |m|x(1− x2)

|m|
2

−1z,

d2Θ(x)

dx2
= (1− x2)

|m|
2
d2z

dx2
− 2|m|x(1 − x2)

|m|
2

−1 dz

dx

− |m|(1− x2)
|m|
2

−1z + |m|(|m| − 2)x2(1− x2)
|m|
2

−2z.
(8.35)

Substituting this back into equation (8.26), we have

(1− x2)
[
(1− x2)

|m|
2
d2z

dx2
− 2|m|x(1 − x2)

|m|
2

−1 dz

dx

+
(
−|m|(1− x2)

|m|
2

−1 + |m| (|m| − 2) x2(1− x2)
|m|
2

−2
)
z

]

− 2x

[
(1− x2)

|m|
2
dz

dx
− |m|x(1 − x2)

|m|
2

−1z

]
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+

(
λ− m2

(1− x2)

)
(1− x2)

|m|
2 z = 0,

or,

(
(1− x2)d

2z

dx2
− 2(|m|+ 1)x

dz

dx
+ (λ− |m|)z

)
(1− x2)

|m|
2

+ (1− x2)
|m|
2

−1
(
|m| (|m| − 2) x2 + 2|m|x2 −m2

)
z = 0,

or, (1− x2)d
2z

dx2
− 2(|m|+ 1)x

dz

dx
+ (λ− |m|(|m|+ 1))z = 0.

(8.36)

Let us next substitute a power series solution for z of the form

z(x) =
∞∑

k=0

akx
k, (8.37)

where ai’s are arbitrary constant coefficients at this point. With this,
equation (8.36) becomes

(1− x2)
∞∑

k=2

k(k − 1)akx
k−2 − 2(|m|+ 1)x

∞∑

k=1

kakx
k−1

+ (λ− |m|(|m| + 1))

∞∑

k=0

akx
k = 0,

or,

∞∑

k=2

k(k − 1)akx
k−2 −

∞∑

k=2

k(k − 1)akx
k

− 2(|m|+ 1)

∞∑

k=1

kakx
k + (λ− |m|(|m|+ 1))

∞∑

k=0

akx
k = 0,

or,

∞∑

k=0

(k + 2)(k + 1)ak+2x
k −

∞∑

k=0

k(k − 1)akx
k

− 2(|m|+ 1)

∞∑

k=0

kakx
k + (λ− |m|(|m|+ 1))

∞∑

k=0

akx
k = 0,

or,

∞∑

k=0

xk
[
(k + 2)(k + 1)ak+2

− (k(k − 1) + 2k(|m| + 1) + |m|(|m| + 1)− λ) ak
]
= 0.
(8.38)
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For this to be true we must have

ak+2

=
1

(k + 2)(k + 1)
(k2 + k(2|m|+ 1) + |m|(|m|+ 1)− λ)ak

=
1

(k + 2)(k + 1)
((k + |m|)(k + |m|+ 1)− λ)ak. (8.39)

Equation (8.39) defines the recursion relation for the coefficients
of the power series solution in (8.37). Clearly, for large k

ak+2 ≃ ak, ⇒ z(x) ∼ 1

1− x2 , for large k, (8.40)

which would imply that the solution blows up for some value of m.
Therefore, for a physical solution to exist, the series must terminate
and we must have

(k + |m|)(k + |m|+ 1)− λ = 0,

or, λ = ℓ(ℓ+ 1), where ℓ = k + |m|. (8.41)

We recognize here that since both k and m are integers, ℓ also
takes integer values. Furthermore, k and |m| are both positive so
that,

ℓ = 0, 1, 2, 3, · · · (8.42)

and for each value of ℓ, the integer m takes (2ℓ+ 1) values between

−ℓ ≤ m ≤ ℓ. (8.43)

Thus, we determine that the eigenvalues of L2 are

~
2λ = ~

2ℓ(ℓ+ 1), where ℓ = 0, 1, 2, 3, · · · (8.44)

and the eigenvalues of Lz are ~m wherem is an integer lying between
−ℓ ≤ m ≤ ℓ. Note also that if k = ℓ − |m| is even, the solution in
(8.37) contains only even powers of x. However, if k is odd, then,
only the odd terms in the series survive. This is again similar to the
solution of the harmonic oscillator.

The power series solution now depends on two quantum numbers
ℓ and m and is denoted by

z(x) = zℓ,m(x).
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This is a polynomial of order ℓ − |m| and, correspondingly, the θ-
solution in (8.34),

Θℓ,m(x) = (1− x2)
|m|
2 zℓ,m(x), (8.45)

is a polynomial of order ℓ and satisfies the equation

(1− x2) d2Θℓ,m

dx2
− 2x

dΘℓ,m

dx
+

(
ℓ(ℓ+ 1)− m2

(1− x2)

)
Θℓ,m = 0.

(8.46)

For m = 0, this equation is known as the Legendre equation and the
solutions Pℓ(x) of the equation

(1− x2)d
2Pℓ(x)

dx2
− 2x

dPℓ(x)

dx
+ ℓ(ℓ+ 1)Pℓ(x) = 0, (8.47)

are known as the Legendre polynomials which are polynomials of
order ℓ. The Θℓ,m’s are related to the Legendre polynomials as

Θℓ,m(x) = (1− x2)
|m|
2

d|m|Pℓ(x)

dx|m| = Pℓ,m(x), (8.48)

for ℓ ≥ |m| and are known as the associated Legendre polynomials.
The Legendre polynomials have a closed form expression given

by

Pℓ(x) =
1

2ℓℓ!

dℓ(x2 − 1)ℓ

dxℓ
, (8.49)

which is known as the Rodrigues’ formula. It explicitly shows that
the Legendre polynomials are ℓth order polynomials and that the
lower order polynomials have the explicit forms

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1). (8.50)

The associated Legendre polynomials, similarly, have a closed form
expression given by

Pℓ,m(x) =
1

2ℓℓ!
(1− x2)

|m|
2

dℓ+|m|(x2 − 1)ℓ

dxℓ+|m| , (8.51)

which are, clearly, also polynomials of order ℓ.
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8.2 Generating function for Legendre polynomials

Let us consider the function of two variables

T (x, s) = (1− 2xs+ s2)−
1
2 =

∞∑

ℓ=0

Pℓ(x)s
ℓ. (8.52)

It can be shown that the coefficient functions, Pℓ(x)’s, are the Leg-
endre polynomials of order ℓ. To see this, let us note that

∂T (x, s)

∂x
= −1

2

1

(1− 2xs + s2)
3
2

(−2s)

=
s

(1− 2xs + s2)
3
2

=
s

1− 2xs+ s2
T (x, s),

∂T (x, s)

∂s
= −1

2

1

(1− 2xs + s2)
3
2

(−2x+ 2s)

=
(x− s)

(1− 2xs + s2)
T (x, s). (8.53)

Thus, we have

(x− s)T (x, s) = (1− 2xs+ s2)
∂T (x, s)

∂s
, (8.54)

s
∂T (x, s)

∂s
= (x− s)∂T (x, s)

∂x
. (8.55)

If we substitute the polynomial form of T (x, s) in (8.52) into
(8.54), we obtain

(x− s)
∞∑

ℓ=0

Pℓs
ℓ = (1− 2xs+ s2)

∞∑

ℓ=1

ℓPℓs
ℓ−1

= (1− 2xs+ s2)

∞∑

ℓ=0

ℓPℓs
ℓ−1, (8.56)

which we can also write as

∞∑

ℓ=0

(
xPℓs

ℓ − Pℓs
ℓ+1 − ℓPℓs

ℓ−1 + 2ℓxPℓs
ℓ − ℓPℓs

ℓ+1
)
= 0.

(8.57)
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Comparing the coefficients of sn−1 in (8.57), we obtain

xPn−1 − Pn−2 − nPn + 2(n− 1)xPn−1 − (n− 2)Pn−2 = 0,

or, nPn − (2n− 1)xPn−1 + (n − 1)Pn−2 = 0. (8.58)

Similarly, putting the polynomial expansion, (8.52), into (8.55),
we have

s
∞∑

ℓ=1

ℓPℓs
ℓ−1 = (x− s)

∞∑

ℓ=0

P ′
ℓ(x)s

ℓ,

or,
∞∑

ℓ=0

ℓPℓs
ℓ = (x− s)

∞∑

ℓ=0

P ′
ℓ(x)s

ℓ = x
∞∑

ℓ=0

P ′
ℓs

ℓ −
∞∑

ℓ=0

P ′
ℓs

ℓ+1.

(8.59)

Again comparing the coefficient of sn−1 in (8.59), we obtain

x
dPn−1

dx
− dPn−2

dx
= (n− 1)Pn−1,

or, x
dPn

dx
− dPn−1

dx
= nPn,

or, xP ′
n − P ′

n−1 = nPn. (8.60)

Let us next differentiate (8.58) with respect to x, which gives

nP ′
n − (2n− 1)Pn−1 − (2n − 1)xP ′

n−1 + (n− 1)P ′
n−2 = 0,

or, nP ′
n − (2n− 1)Pn−1 − (2n − 1)xP ′

n−1

+ (n− 1)xP ′
n−1 − (n− 1)2Pn−1 = 0,

or, nP ′
n − nxP ′

n−1 − n2Pn−1 = 0,

or, P ′
n − xP ′

n−1 − nPn−1 = 0, (8.61)

where we have used (8.60) in the intermediate steps. Eliminating
further P ′

n−1 from (8.61) using (8.60), we have

P ′
n − x(xP ′

n − nPn)− nPn−1 = 0,

or, (1− x)2P ′
n + nxPn − nPn−1 = 0. (8.62)

Furthermore, differentiating (8.62) with respect to x, we obtain

(1− x2)P ′′
n − 2xP ′

n + nPn + nxP ′
n − nP ′

n−1 = 0,

or, (1− x2)P ′′
n − 2xP ′

n + nPn + n2Pn = 0,

or, (1− x2)P ′′
n − 2xP ′

n + n(n+ 1)Pn = 0, (8.63)
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where we have used (8.60). This shows that Pn(x)’s satisfy the nth
order Legendre equation, (8.47), which proves that the function

T (x, s) = (1− 2xs+ s2)−
1
2 =

∞∑

ℓ=0

Pℓ(x)s
ℓ, (8.64)

generates Legendre polynomials. From the relation (8.51), we see
that the generating function for the associated Legendre polynomials
are given by

Tm(x, s) = (1− x2)
|m|
2

d|m|T (x, s)

dx|m|

=
(2|m|)!(1 − x2)

|m|
2 s|m|

2|m|(|m|)!(1 − 2xs+ s2)|m|+ 1
2

=
∞∑

ℓ=|m|
Pℓ,m(x)sℓ. (8.65)

We can now write the complete angular solution (8.16) of the
Schrödinger equation for a spherically symmetric potential as

Fℓ,m(θ, φ) = Yℓ,m(θ, φ) =
Nℓ,m√
2π

Pℓ,m(cos θ)eimφ. (8.66)

Here Nℓ,m’s are normalization constants and Yℓ,m’s are called the
spherical harmonics. Let us note that we can work out the orthogo-
nality relations for the spherical harmonics in the following way. First
of all, we note that

∫
sin θdθdφ Y ∗

ℓ′,m′(θ, φ) Yℓ,m(θ, φ)

=
N∗

ℓ′,m′Nℓ,m

2π

∫
d(cos θ)dφ Pℓ′,m′Pℓ,me

−i(m′−m)φ

= N∗
ℓ′,m′Nℓ,mδm′,m

∫
d(cos θ) Pℓ′,m′Pℓ,m. (8.67)

Thus the integral in (8.67) vanishes unless the m quantum numbers
are equal. Furthermore, it can also be established that even when
the m quantum numbers are the same, the integral vanishes unless

         
48:03.



210 8 Schrödinger equation in higher dimensions

ℓ = ℓ′. To see this, let us recall that Pℓ,m satisfies the equation

(1− x2)d
2Pℓ,m

dx2
− 2x

dPℓ,m

dx
+

(
ℓ(ℓ+ 1)− m2

1− x2
)
Pℓ,m = 0,

or,
d

dx

(
(1− x2)dPℓ,m

dx

)
+

(
ℓ(ℓ+ 1)− m2

1− x2
)
Pℓ,m = 0.

(8.68)

Multiplying (8.68) with Pℓ′,m and integrating over x, we obtain

1∫

−1

dx

[
Pℓ′,m(x)

d

dx

(
(1− x2)dPℓ,m

dx

)

+

(
ℓ(ℓ+ 1)− m2

1− x2
)
Pℓ,mPℓ′,m

]
= 0. (8.69)

The first term can be integrated by parts and written as

(1− x2)Pℓ′,m
dPℓ,m

dx

∣∣∣∣
+1

−1

−
∫

dx (1− x2)dPℓ′,m

dx

dPℓ,m

dx

= −
∫

dx (1 − x2)dPℓ′,m

dx

dPℓ,m

dx
. (8.70)

Relation (8.69), therefore, becomes

∫
dx

[
− (1− x2)dPℓ′,m

dx

dPℓ,m

dx

+

(
ℓ(ℓ+ 1)− m2

1− x2
)
Pℓ′,mPℓ,m

]
= 0. (8.71)

Similarly, had we started out with the equation for Pℓ′,m and
multiplied by Pℓ,m, we would have obtained

∫
dx

[
− (1− x2)dPℓ,m

dx

dPℓ′,m

dx

+

(
ℓ′(ℓ′ + 1)− m2

1− x2
)
Pℓ,mPℓ′,m

]
= 0. (8.72)

Subtracting the two relations in (8.71) and (8.72), we have

(
ℓ(ℓ+ 1)− ℓ′(ℓ′ + 1)

) ∫
dx Pℓ′,mPℓ,m = 0. (8.73)
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However, since ℓ and ℓ′ are arbitrary and different, the only way this
can be true is if

∫
dx Pℓ′,mPℓ,m = 0, for ℓ′ 6= ℓ. (8.74)

Thus, the only nonzero contribution to the normalization in
(8.67) comes from

∫
dx Pℓ,m(x)Pℓ,m(x), (8.75)

and to calculate this, we note from (8.51) (we assumem > 0 although
we will use |m| keeping the general case in mind) that

Pℓ,m = (1− x2)
|m|
2

d|m|Pℓ(x)

dx|m| , (8.76)

so that

dPℓ,m

dx
= (1− x2)

|m|
2

d|m|+1

dx|m|+1
Pℓ(x)

− |m|x(1 − x2)
|m|
2

−1d
|m|Pℓ(x)

dx|m|

=
Pℓ,m+1(x)

(1− x2) 1
2

− |m|x(1− x2)−1Pℓ,m. (8.77)

This determines

Pℓ,m+1(x) = (1− x2) 1
2
dPℓ,m

dx
+ |m|x(1− x2)− 1

2Pℓ,m(x). (8.78)

Squaring both sides of (8.78) and integrating, we obtain

1∫

−1

dx (Pℓ,m+1(x))
2

=

∫
dx

[
(1− x2)

(
dPℓ,m

dx

)2

+ 2|m|xdPℓ,m

dx
Pℓ,m

+
|m|2x2
1− x2 (Pℓ,m)2

]

=

∫
dx

[
(1− x2)

(
dPℓ,m

dx

)2

+ |m|xd(Pℓ,m)2

dx
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+
|m|2x2
1− x2 (Pℓ,m)2

]

= (1− x2)dPℓ,m

dx
Pℓ,m

∣∣∣∣
+1

−1

−
∫

dx Pℓ,m
d

dx

[
(1− x2)dPℓ,m

dx

]

+ |m|x (Pℓ,m(x))2
∣∣∣∣
+1

−1

− |m|
∫

dx (Pℓ,m)2

+

∫
dx
|m|2x2
1− x2 (Pℓ,m)2. (8.79)

The first and the third terms in (8.79) give zero, since Pℓ,m as
well as (1− x2) vanish at x = ±1. Furthermore, we can simplify the
second term by using the equation for Pℓ,m(x), (8.46),

d

dx

(
(1− x2) dPℓ,m

dx

)
= −

(
ℓ(ℓ+ 1)− |m|2

1− x2
)
Pℓ,m, (8.80)

to obtain
∫

dx (Pℓ,m+1(x))
2

=

∫
dx

(
ℓ(ℓ+ 1)− |m|2

1− x2
)
(Pℓ,m)2

+

∫
dx

(
|m|+ |m|

2x2

1− x2
)
(Pℓ,m)2

=

∫
dx
(
ℓ(ℓ+ 1)− |m|2 − |m|

)
(Pℓ,m(x))2

= (ℓ(ℓ+ 1)− |m|(|m|+ 1))

∫
dx (Pℓ,m(x))2. (8.81)

We can apply the relation in (8.81) repeatedly, which leads to
∫

dx(Pℓ,m(x))2

= (ℓ− |m|+ 1)(ℓ+ |m|)
∫

dx (Pℓ,m−1(x))
2

= (ℓ− |m|+ 1)(ℓ+ |m|)(ℓ− |m|+ 2)(ℓ+ |m| − 1)

×
∫

dx (Pℓ,m−2(x))
2

= (ℓ+ |m|)(ℓ+ |m| − 1) . . . (ℓ+ 1)
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×(ℓ− |m|+ 1)(ℓ− |m|+ 2) . . . ℓ

∫
dx (Pℓ(x))

2

=
(ℓ+ |m|)!

ℓ!
× ℓ!

(ℓ− |m|)! ×
2

2ℓ+ 1

=
2

2ℓ+ 1

(ℓ+ |m|)!
(ℓ− |m|)! . (8.82)

Thus, our normalization condition, (8.67), now becomes

∫
sin θdθdφ Y ∗

ℓ,mYℓ,m = 1,

or, |Nℓ,m|2
∫

dx(Pℓ,m(x))2 = 1,

or, |Nℓ,m|2
2

2ℓ+ 1

(ℓ+ |m|)!
(ℓ− |m|)! = 1, (8.83)

which determines the normalization constant to be

Nℓ,m = N∗
ℓ,m = ±

√
2ℓ+ 1

2

(ℓ− |m|)!
(ℓ+ |m|)! . (8.84)

Conventionally, the phase of the spherical harmonics is chosen to be
(−1)m for m > 0 and +1 for m ≤ 0.

Therefore, we can write the normalized angular solutions (which
are the spherical harmonics) as

Yℓ,m(θ, φ) = ǫ

√
2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)! Pℓ,m(cos θ)eimφ, (8.85)

with the phase given by

ǫ =

{
(−1)m, for m > 0,

1, for m ≤ 0,
(8.86)

which we can also write equivalently as ǫ = (−1)
m+|m|

2 .
The complete solution, (8.11), of the Schrödinger equation is

given by

ψℓ,m(r, θ, φ) = R(r)Yℓ,m(θ, φ), (8.87)

where the radial part of the solution is determined from the dynamics
of the system. The equation satisfied by the radial part, (8.13), is
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given by (we represent the mass of the particle as µ to avoid any
confusion with the m quantum number)

d

dr

(
r2

dR

dr

)
+

2µr2

~2

(
E − V (r)− ~

2ℓ(ℓ+ 1)

2µr2

)
R = 0. (8.88)

Thus, we see that a nonzero angular momentum implies the presence
of an additional term in the potential. Furthermore, if we differentiate
this new potential and calculate the force, we find that it pushes the
particle away from the center of the coordinate system and lies along
the radial direction. In other words, a nonzero angular momentum
gives rise to a centrifugal force (barrier) which is very strong at short
distances. In three dimensions, the presence of this repulsive potential
prevents the existence of bound states in many cases.

Furthermore, note that the radial solution depends on the quan-
tum number ℓ and the energy eigenvalue. Thus, we can write

R(r) = RE,ℓ(r). (8.89)

However, it does not depend on the azimuthal quantum number m.
Of course, there are (2ℓ + 1) states with the same ℓ value but with
different m values. All these states will have the same energy and,
therefore, such systems have a (2ℓ+1)-fold degeneracy as a result of
rotational symmetry.

8.3 Parity of spherical harmonics

We can now study the question of parity in the three dimensional
case. First of all, parity implies reflecting a vector through the origin
(see Fig. 8.2). Thus, in spherical coordinates, the coordinate vector
transforms under parity as

(r, θ, φ)
Parity−−−−→ (r, π − θ, π + φ). (8.90)

Since the radial coordinate does not change under reflection, only the
angular part of the solution would be effected by such a transforma-
tion as

Yℓ,m(θ, φ)
Parity−−−−→ Yℓ,m(π − θ, π + φ). (8.91)

We note that

eimφ Parity−−−−→ eim(π+φ) = (−1)|m| eimφ,

x = cos θ
Parity−−−−→ cos(π − θ) = − cos θ = −x. (8.92)
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z

y

x

φ

θ

r

θ

Figure 8.2: Reflection of a vector through the origin.

As a result, we have,

Pℓ,m(x) ∝ (1− x2)
|m|
2
dℓ+|m|(x2 − 1)ℓ

dxℓ+|m|

Parity−−−−→ (−1)ℓ+|m|(1− x2)
|m|
2
dℓ+|m|(x2 − 1)ℓ

dxℓ+|m|

= (−1)ℓ+|m| Pℓ,m(x). (8.93)

Together with (8.92) and (8.93), we obtain

Yℓ,m(θ, φ)
Parity−−−−→ (−1)|m|(−1)ℓ+|m| Yℓ,m(θ, φ)

= (−1)ℓ Yℓ,m(θ, φ). (8.94)

In other words, we see that the angular solutions (spherical har-
monics) are eigenstates of angular momentum with definite parity
eigenvalues. The parity of these states is completely determined by
the ℓ-quantum number. It is worth pointing out that all the (2ℓ+1)
states with different m-quantum numbers have the same parity given
by (−1)ℓ.
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8.4 Behavior of the radial solution

The radial equation, (8.88), has the form

d

dr

(
r2

dRE,ℓ

dr

)
+

2µr2

~2

(
E − V (r)− ~

2ℓ(ℓ+ 1)

2µr2

)
RE,ℓ = 0.

(8.95)

Let us now define

RE,ℓ(r) =
uE,ℓ(r)

r
. (8.96)

Then, equation (8.95) becomes

d

dr

(
r
duE,ℓ

dr
− uE,ℓ

)

+
2µr

~2

(
E − V (r)− ~

2ℓ(ℓ+ 1)

2µr2

)
uE,ℓ(r) = 0,

or, r
d2uE,ℓ

dr2
+

2µr

~2

(
E − V (r)− ~

2(ℓ(ℓ+ 1))

2µr2

)
uE,ℓ(r) = 0,

or,
d2uE,ℓ

dr2
+

2µ

~2

(
E − V (r)− ~

2ℓ(ℓ+ 1)

2µr2

)
uE,ℓ(r) = 0. (8.97)

Therefore, we see that, in terms of this new function uE,ℓ(r), the
equation is the same as the one dimensional Schrödinger equation, but
in the presence of an effective potential

Veff(r) = V (r) +
~
2ℓ(ℓ+ 1)

2µr2
. (8.98)

There are, however, two important differences. First of all, the radial
coordinate takes only nonnegative values,

0 ≤ r <∞, (8.99)

which is to be contrasted with −∞ < x < ∞. Furthermore, even
though we have the same boundary conditions at r → ∞, namely,
for bound states,

u(r)
r→∞−−−→ e−αr, α real and positive, (8.100)

and, for free particle states or scattering states,

u(r)
r→∞−−−→ e±ikr, k real, (8.101)
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there is now a boundary condition to be satisfied at the origin r = 0.
The normalizability of the radial solution requires

∞∫

0

dr r2|RE,ℓ(r)|2 = finite,

or,

∞∫

0

dr r2
|uE,ℓ(r)|2

r2
= finite,

or,

∞∫

0

dr |uE,ℓ(r)|2 = finite. (8.102)

Equation (8.102), in principle, allows that

uE,ℓ(r)
r→0−−−→ c, c = constant. (8.103)

However, if c 6= 0, then, we conclude that near the origin the radial
solution will have the form

RE,ℓ(r)
r→0−−−→ c

r
, (8.104)

and, consequently, will satisfy

∇
2RE,ℓ(r) = ∇

2
( c
r

)
= −4πc δ3(r). (8.105)

On the other hand, if the potential is a smooth function, this would
be hard to satisfy. Thus, for all smooth potentials we have to choose

c = 0. (8.106)

which determines the boundary condition at the origin to be

uE,ℓ(r)
r→0−−−→ 0. (8.107)

Once we keep these two distinctions in mind, we can solve the radial
equation, just like the one dimensional Schrödinger equation.

8.5 3-dimensional isotropic oscillator

Let us analyze the three dimensional isotropic oscillator again, but
now in spherical coordinates. We know that the Hamiltonian for the
system has the form,

H =
P2

2µ
+

1

2
µω2X2 =

P2

2µ
+

1

2
µω2R2, (8.108)
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where the mass is written as µ to distinguish it from the azimuthal
quantum number m. Since this is a spherically symmetric system, we
can use our earlier separation of variables in the spherical coordinates
to write the complete wave function as

ψE,ℓ,m(r, θ, φ) = RE,ℓ(r)Yℓ,m(θ, φ). (8.109)

Furthermore, defining

RE,ℓ(r) =
uE,ℓ(r)

r
, (8.110)

we recognize that the new function will satisfy the equation

d2uE,ℓ(r)

dr2
+

2µ

~2

(
E − 1

2
µω2r2 − ~2ℓ(ℓ+ 1)

2µr2

)
uE,ℓ(r) = 0. (8.111)

Let us first determine the asymptotic behavior of the solutions.
We note that as r →∞, the equation takes the form

d2uE,ℓ(r)

dr2
− µ2ω2r2

~2
uE,ℓ(r) = 0,

or, uE,ℓ(r) ∼ e−
1
2

µωr2

~ = e−
1
2
y2 , (8.112)

where we have defined a dimensionless variable

y =
(µω

~

) 1
2
r. (8.113)

Equation (8.111), written in terms of this dimensionless variable,
takes the form

(µω
~

) d2uE,ℓ

dy2
+

2µ

~2

(
E − 1

2
µω2~y

2

µω
− ~

2ℓ(ℓ+ 1)

2µ × ~y2

µω

)
uE,ℓ = 0,

or,
d2uE,ℓ

dy2
+

2

~ω

(
E − 1

2
~ωy2 − ~ωℓ(ℓ+ 1)

2y2

)
uE,ℓ = 0,

or,
d2uE,ℓ

dy2
+

(
λ− y2 − ℓ(ℓ+ 1)

y2

)
uE,ℓ = 0, (8.114)

where

λ =
2E

~ω
, (8.115)
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is also dimensionless. For y → 0, equation (8.114) becomes

d2uE,ℓ

dy2
− ℓ(ℓ+ 1)

y2
uE,ℓ = 0. (8.116)

The two solutions of (8.116) are easily seen to be

uE,ℓ(y)
y→0−−−→ yℓ+1, or, y−ℓ. (8.117)

However, the boundary condition at the origin (see (8.107)), namely,

uE,ℓ(y)
y→0−−−→ 0, selects

uE,ℓ(y)
y→0−−−→ yℓ+1, (8.118)

as the physical solution.
Equations (8.112) and (8.118) suggest a general solution of the

form

uE,ℓ(y) = e−
1
2
y2v(y) = e−

1
2
y2

∞∑

k=0

aky
k+ℓ+1,

duE,ℓ

dy
= e−

1
2
y2
[
−yv(y) + v′(y)

]
,

d2uE,ℓ

dy2
= e−

1
2
y2
[
(y2 − 1)v(y) − 2yv′(y) + v′′(y)

]
. (8.119)

Putting this back into the equation (8.114), we have

e−
1
2
y2
[
(y2 − 1)v(y) − 2yv′(y) + v′′(y)

+

(
λ− y2 − ℓ(ℓ+ 1)

y2

)
v(y)

]
= 0,

or, v′′(y)− 2yv′(y) +

(
λ− 1− ℓ(ℓ+ 1)

y2

)
v(y) = 0. (8.120)

Let us next use the power series solution

v(y) =

∞∑

k=0

aky
k+ℓ+1,

v′(y) =
∞∑

k=0

(k + ℓ+ 1)aky
k+ℓ,

v′′(y) =
∞∑

k=0

(k + ℓ+ 1)(k + ℓ)aky
k+ℓ−1. (8.121)
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With the relations in (8.121), equation (8.120) now becomes

∞∑

k=0

[
(k + ℓ+ 1)(k + ℓ)aky

k+ℓ−1 − 2(k + ℓ+ 1)aky
k+ℓ+1

+ (λ− 1)aky
k+ℓ+1 − ℓ(ℓ+ 1)aky

k+ℓ−1

]
= 0,

or,
∞∑

k=0

[
((k + ℓ+ 1)(k + ℓ)− ℓ(ℓ+ 1)) aky

k+ℓ−1

+ (λ− 2k − 2ℓ− 3)aky
k+ℓ+1

]
= 0. (8.122)

Looking at the lowest order term in the series in (8.122), namely,
yℓ−1, we have

[(ℓ+ 1)ℓ− ℓ(ℓ+ 1)]a0 = 0,

or, a0 = arbitrary. (8.123)

Looking at the coefficient of the next term in the series in (8.122)
(namely, the coefficient of (yℓ)), we find that

[(1 + ℓ+ 1)(1 + ℓ)− ℓ(ℓ+ 1)]a1 = 0,

or, (ℓ+ 1)(ℓ+ 2− ℓ)a1 = 0,

or, 2(ℓ+ 1)a1 = 0,

or, a1 = 0. (8.124)

Furthermore, from the structure of the equation in (8.122), it
is clear that the coefficients ak+2 are related to the coefficients ak.
Since a1 = 0, this, therefore, implies that only even terms of the
series survive. Thus changing k → 2k in (8.122), we have

∞∑

k=0

(
[(2k + ℓ+ 1)(2k + ℓ)− ℓ(ℓ+ 1)]a2ky

2k+ℓ−1

+(λ− 4k − 2ℓ− 3)a2ky
2k+ℓ+1

)
= 0. (8.125)

Requiring the coefficient of y2k+ℓ+1 to vanish we obtain the recursion
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relation for the coefficients to be

[(2k + ℓ+ 3)(2k + ℓ+ 2)− ℓ(ℓ+ 1)]a2k+2

= (4k + 2ℓ+ 3− λ)a2k,

or, a2k+2 =
(4k + 2ℓ+ 3− λ)

(2k + 2)(2k + 2ℓ+ 3)
a2k. (8.126)

Thus, we see that for large k,

a2k+2

a2k
−→ 1

k
. (8.127)

At large orders, this is the same behavior as that of the series in ey
2

which would lead to an unphysical solution, since it does not fall off
at spatial infinity. Thus, for a physical solution to exist the series
must terminate which implies

4k + 2ℓ+ 3− λ = 0,

or, λ =
2E

~ω
= (2ℓ+ 4k + 3),

or, E = ~ω

(
ℓ+ 2k +

3

2

)
= ~ω

(
n+

3

2

)
, (8.128)

where we have defined n = ℓ+2k. Since ℓ and k take only nonnegative
integer values, it follows that

n = 0, 1, 2, 3, · · · ,

ℓ = n− 2k = n, n− 2, n − 4, · · · , 1 (or 0), (8.129)

depending on the value of n.
The solutions of (8.114), in this case, are obtained to be

un,ℓ(y) = e−
1
2
y2

(n−ℓ)
2∑

p=0

a2py
2p+ℓ+1, (8.130)

and the first few energy eigenvalues are given by

E =
3

2
~ω n = 0 ℓ = 0 m = 0,

E =
5

2
~ω n = 1 ℓ = 1 m = ±1, 0,

E =
7

2
~ω n = 2 ℓ = 2, 0 m = ±2,±1, 0; 0,

... (8.131)
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It is interesting to note that not only are states with differentm values
degenerate, but states with different ℓ values are also degenerate, i.e.,
they have the same energy. Rotational symmetry does not explain
why this degeneracy should arise. This kind of a phenomenon is
known as accidental degeneracy and we would see later that this is a
consequence of a larger symmetry operative in this system.

However, since for each ℓ value there are (2ℓ + 1) values of m
that are degenerate and that for each n value, there are the states
with

ℓ =

{
0, 2, · · · , n, for n even,

1, 3, · · · , n, for n odd,
(8.132)

which are all degenerate, the total number of degeneracy for a given
n is obtained as follows.

1. Even n:

n∑

ℓ=0,2

(2ℓ+ 1) =

n
2∑

p=0,1

(4p + 1)

= 4× 1

2

(n
2

)(n
2
+ 1
)
+
(n
2
+ 1
)

=
1

2
(n+ 1)(n + 2). (8.133)

2. Odd n:
n∑

ℓ=1,3

(2ℓ+ 1)

=

n−1
2∑

p=0,1

(2(2p + 1) + 1)

=

n−1
2∑

p=0

(4p + 3) = 4× 1

2

(n− 1)

2
× (n+ 1)

2
+ 3× n+ 1

2

=
(n+ 1)

2
(n− 1 + 3) =

1

2
(n+ 1)(n + 2). (8.134)

Thus, we see that, independent of whether n is even or odd, the
degeneracy of states is given by

1

2
(n+ 1)(n + 2), (8.135)
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which is the same result we had derived earlier in the Cartesian co-
ordinates.

8.6 Square well potential

Let us now investigate the question of bound states in a three di-
mensional square well potential. The potential depends only on the
radial coordinate and has the form (see Fig. 8.3)

V (r) =

{
0, for r > a,

−V0, for r < a, V0 > 0.
(8.136)

We are going to assume that E < 0 and that |E| < V0 with V0 > 0
for a bound state solution to exist. (Namely, T = E − V > 0 for
motion to exist. If E > 0, we will have free particle motion for r > a.
On the other hand, we are looking for bound state solutions for which
we must have E < 0. From T = E+V0 > 0 in side the well, it follows
that V0 > −E = |E|.)

+

V

0
a

−V0

r

Figure 8.3: Square well potential in three dimensions.

Once again, this is a system with spherical symmetry and, there-
fore, we can carry out the separation of the angular solution. In the
present case, the radial equation in terms of uE,ℓ(r) has the form

d2uE,ℓ

dr2
+

2µ

~2

(
E − V (r)− ~

2ℓ(ℓ+ 1)

2µr2

)
uE,ℓ = 0. (8.137)

Thus, for r < a, the equation has the form

d2uE,ℓ

dr2
+

2µ

~2

(
E + V0 −

~
2ℓ(ℓ+ 1)

2µr2

)
uE,ℓ = 0, (8.138)
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while, for r > a, it has the form

d2uE,ℓ

dr2
+

2µ

~2

(
E − ~

2ℓ(ℓ+ 1)

2µr2

)
uE,ℓ = 0. (8.139)

Let us simplify the problem by first looking at the zero angular
momentum case. For ℓ = 0, the equations are given by

r < a :
d2uE,0

dr2
+

2µ(E + V0)

~2
uE,0 = 0, (8.140)

r > a :
d2uE,0

dr2
+

2µE

~2
uE,0 = 0. (8.141)

This is identical to the equations for the one dimensional square well
potential. Thus, the solutions follow to be

r < a : uE,0(r) = A sin kr +B cos kr,

r > a : uE,0(r) = Ce−αr, (8.142)

where we have defined

k =

(
2µ

~2
(V0 − |E|)

) 1
2

, α =

(
2µ|E|
~2

) 1
2

. (8.143)

The boundary condition at r = 0, namely,

uE,0(r)
r→0−−−→ 0, (8.144)

implies that in (8.142) we should choose

B = 0.

Furthermore, we should match the solution and its derivative at the
boundary r = a. Matching the solutions at r = a, we obtain

A sin ka = Ce−αa. (8.145)

Similarly, matching the derivative of the solutions at r = a, we find

kA cos ka = −αCe−αa. (8.146)

Thus, dividing the two relations, (8.145) and (8.146), we have

ka cot ka = −αa,

or, η cot η = −ξ, η = ka, ξ = αa. (8.147)
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As in the one dimensional case, we have

η2 + ξ2 = k2a2 + α2a2 =
(
k2 + α2

)
a2

=

(
2µ

~2
(V0 − |E|) +

2µ|E|
~2

)
a2

=
2µV0a

2

~2
. (8.148)

We can carry out the graphical solutions for (8.147) and (8.148)
as in the one dimensional case and show that there is no solution if

0 ≤ V0a2 <
π2~2

8µ
, (8.149)

and one solution if

π2~2

8µ
≤ V0a2 <

9π2~2

8µ
, (8.150)

and so on.
Let us next study the solutions for arbitrary ℓ. We will study

the solutions in one region at a time.
Region r < a. In this region the equation for arbitrary ℓ is given

by (see (8.138))

d2uE,ℓ

dr2
+

2µ

~2

(
E + V0 −

~
2ℓ(ℓ+ 1)

2µr2

)
uE,ℓ = 0,

or,
d2uE,ℓ

dr2
+

(
k2 − ℓ(ℓ+ 1)

r2

)
uE,ℓ = 0. (8.151)

Let us now change to the dimensionless variable

p = kr. (8.152)

Then, in terms of this variable equation (8.151) becomes
(

d2

dp2
− ℓ(ℓ+ 1)

p2

)
uE,ℓ = −uE,ℓ. (8.153)

Let us define an operator

dℓ =
d

dp
+
ℓ+ 1

p
, (8.154)

whose adjoint is given by

d†ℓ = −
d

dp
+
ℓ+ 1

p
. (8.155)
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It follows now that

dℓd
†
ℓ =

(
d

dp
+
ℓ+ 1

p

)(
− d

dp
+
ℓ+ 1

p

)

= − d2

dp2
− ℓ+ 1

p2
+
ℓ+ 1

p

d

dp
− ℓ+ 1

p

d

dp
+

(ℓ+ 1)2

p2

= − d2

dp2
+
ℓ(ℓ+ 1)

p2
. (8.156)

On the other hand, we note that

d†ℓdℓ =

(
− d

dp
+

(ℓ+ 1)

p

)(
d

dp
+
ℓ+ 1

p

)

= − d2

dp2
+
ℓ+ 1

p2
− ℓ+ 1

p

d

dp
+
ℓ+ 1

p

d

dp
+

(ℓ+ 1)2

p2

= − d2

dp2
+

(ℓ+ 1)(ℓ + 2)

p2

= dℓ+1d
†
ℓ+1. (8.157)

Thus, using the relation (8.156), we can write the dynamical
equation

[
d2

dp2
− ℓ(ℓ+ 1)

p2

]
uE,ℓ(p) = −uE,ℓ(p), (8.158)

also as

dℓd
†
ℓuE,ℓ(p) = uE,ℓ(p). (8.159)

Upon using (8.157), equation (8.159) leads to

d†ℓ

(
dℓd

†
ℓuE,ℓ(p)

)
= d†ℓuE,ℓ(p),

or, d†ℓdℓ
(
d†ℓuE,ℓ(p)

)
=
(
d†ℓuE,ℓ(p)

)
,

or, dℓ+1d
†
ℓ+1

(
d†ℓuE,ℓ(p)

)
=
(
d†ℓuE,ℓ(p)

)
. (8.160)

From (8.159), we note that uE,ℓ’s are eigenstates of the oper-

ator dℓd
†
ℓ (corresponding to the value ℓ) with eigenvalue 1. Rela-

tion (8.160) implies that d†ℓuE,ℓ(p) is an eigenstate of dℓ+1d
†
ℓ+1 (cor-

responding to the value ℓ+1) with the same eigenvalue 1. Therefore,
we must have

d†ℓuE,ℓ(p) = cℓuE,ℓ+1. (8.161)
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In other words, d†ℓ’s are like raising operators for ℓ and, for the present,
we would omit the normalization constant cℓ’s, for they can be ab-
sorbed into the overall normalization constant of the wave function.
Thus, we write

uE,ℓ+1 = d†ℓuE,ℓ. (8.162)

Let us note here parenthetically that this procedure is related to what
is known as supersymmetry in quantum mechanics.

The radial function is defined to be (the extra factor of k can
be absorbed into the normalization constant)

RE,ℓ =
uE,ℓ

p
, (8.163)

and satisfies

pRE,ℓ+1 = uE,ℓ+1 = d†ℓuE,ℓ = d†ℓ(pRE,ℓ)

=

(
− d

dp
+
ℓ+ 1

p

)
(pRE,ℓ)

= p

(
− d

dp
+
ℓ

p

)
RE,ℓ, (8.164)

so that we can write

RE,ℓ+1 =

(
− d

dp
+
ℓ

p

)
RE,ℓ = pℓ

(
− d

dp

)
RE,ℓ

pℓ
,

or,
RE,ℓ+1

pℓ+1
=

(
−1

p

d

dp

)(
RE,ℓ

pℓ

)

=

(
−1

p

d

dp

)2(RE,ℓ−1

pℓ−1

)

= · · · · · ·

=

(
−1

p

d

dp

)ℓ+1(RE,0

p0

)

=

(
−1

p

d

dp

)ℓ+1

RE,0. (8.165)

Thus, we have the recursion relation

RE,ℓ = pℓ
(
−1

p

d

dp

)ℓ

RE,0 = (−p)ℓ
(
1

p

d

dp

)ℓ

RE,0. (8.166)
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Thus, we see that if we know one solution (say, for ℓ = 0), we
can construct all the others. Now, for ℓ = 0, equation (8.158) leads
to

d2uE,0(p)

dp2
= −uE,0(p),

or, uE,ℓ(p) ∼ sin p or cos p. (8.167)

These are the two independent solutions of the equation. However,
the boundary condition at the origin, namely,

uE,0(p)
p→0−−−→ 0. (8.168)

excludes the solution of the form cos p so that, up to normalization
constants, we can write

uE,0(p) = sin p, (8.169)

in a region including the origin.
On the other hand, let us note that if we are considering a region

where the origin is not included, then, we must allow for the other
solution in (8.167) as well. Keeping this in mind, let us denote the
two independent solutions of (8.167) by

u
(I)
E,0 = sin p,

u
(II)
E,0 = − cos p. (8.170)

All other solutions for higher ℓ values can be obtained from these
through the use of the relation (8.162) or (8.166).

We note from (8.170) that RE,0 =
uE,0

p
has two independent

forms. If

R
(I)
E,0 =

u
(I)
E,0

p
=

sin p

p
, (8.171)

then, it follows that

R
(I)
E,ℓ(p) = (−p)ℓ

(
1

p

d

dp

)ℓ(sin p

p

)
= jℓ(p), (8.172)

which are the spherical Bessel functions of order ℓ.
On the other hand, if

R
(II)
E,0 =

u
(II)
E,0

p
= −cos p

p
, (8.173)
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then, we have

R
(II)
E,ℓ (p) = (−p)ℓ

(
1

p

d

dp

)ℓ(
−cos p

p

)
= ηℓ(p), (8.174)

which are the spherical Neumann functions of order ℓ. The combina-
tions

h
(±)
ℓ = jℓ ± iηℓ, (8.175)

are known as the spherical Hankel functions (of the first and the
second kind) and have the asymptotic forms

h
(±)
ℓ (p)

p→∞−−−→ 1

ip
e±i(p− 1

2
(ℓ+1)π). (8.176)

A few low order spherical Bessel and Neumann functions have the
forms

j0(p) =
sin p

p
,

j1(p) =
1

p

(
sin p

p
− cos p

)
,

j2(p) =

(
3

p3
− 1

p

)
sin p− 3 cos p

p2
,

η0(p) = −
cos p

p
,

η1(p) = −
1

p

(
cos p

p
+ sin p

)
,

η2(p) = −
(

3

p3
− 1

p

)
cos p− 3 sin p

p2
. (8.177)

For our problem, of course, we need just the spherical Bessel
functions in the region r < a, since the solution has to vanish at the
origin. Thus, for r < a,

RE,ℓ =
uE,ℓ(r)

r
= aℓjℓ(kr). (8.178)

Region r > a. In this region, the equation we have to solve has
the form (see (8.139))

d2uE,ℓ

dr2
+

2µ

~2

(
E − ~

2ℓ(ℓ+ 1)

2µr2

)
uE,ℓ = 0,

or,
d2uE,ℓ

dr2
−
(
α2 +

ℓ(ℓ+ 1)

r2

)
uE,ℓ = 0. (8.179)
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We can now define q = iαr, in terms of which equation (8.179) be-
comes

(
− d2

dq2
+
ℓ(ℓ+ 1)

q2

)
uE,ℓ(q) = uE,ℓ(q),

or,

(
d2

dq2
− ℓ(ℓ+ 1)

q2

)
uE,ℓ(q) = −uE,ℓ(q). (8.180)

We note that equation (8.180) is the same as in (8.151), but
in the variable q = iαr. Furthermore, since now the solution does
not include the origin, it can be a combination of both the spherical
Bessel and Neumann functions. Thus, for r > a, we have

RE,ℓ(q) = Aℓjℓ(q) +Bℓηℓ(q). (8.181)

On the other hand, the solution must fall off exponentially at spatial
infinity. This, therefore, selects for us

RE,ℓ(q) = Aℓh
(+)
ℓ (q) = Aℓ(jℓ(q) + iηℓ(q))

r→∞−−−→ Aℓ

iq
ei(q−

1
2
(ℓ+1)π)

= −Aℓ

αr
e−(αr+ i

2
(ℓ+1)π). (8.182)

The first few Hankel functions have the explicit forms

h
(+)
0 (iαr) = − 1

αr
e−αr,

h
(+)
1 (iαr) = i

(
1

αr
+

1

α2r2

)
e−αr,

h
(+)
2 (iαr) =

(
1

αr
+

3

α2r2
+

3

α3r3

)
e−αr. (8.183)

We can now match solutions and the derivatives at r = a to
determine the energy eigenvalues. We have already done this for
ℓ = 0. For arbitrary ℓ, we can apply numerical methods or analyze
graphs to determine the existence of solutions. For ℓ = 1, for example,
the equation becomes

cot η

η
− 1

η2
=

1

ξ
+

1

ξ2
, where η2 + ξ2 =

2µV0a
2

~2
. (8.184)

We can show that, in this case, there is no bound state for V0a
2 <

π2
~
2

2µ . For π2
~
2

2µ ≤ V0a2 <
(2π)2~2

2µ there is one bound state and so on.
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Thus, we see that the minimum value of V0a
2 for p-wave binding

(ℓ = 1) is larger than that for s-wave binding (ℓ = 0), namely, for
bound states,

ℓ = 0 : V0a
2 ≥ π2~2

8µ ,

ℓ = 1 : V0a
2 ≥ π2

~
2

2µ .
(8.185)

Physically, the meaning of this is very clear. In the case of ℓ = 1,
there exists a centrifugal barrier and, therefore, a particle requires
stronger attraction for binding. In fact, it can be shown that the
strength of the square well potential, V0a

2, required to bind a particle
of arbitrary ℓ increases monotonically with ℓ. This system does not
show any degeneracy in the ℓ quantum number.

8.7 Selected problems

1. Find the energy eigenvalues and eigenfunctions of a particle in
a two dimensional circular box that has perfectly rigid walls.

2. A one dimensional square well potential has a bound state for
any positive V0a

2. The three dimensional square well has a
bound state only if V0a

2 ≥ π2
~
2

8µ . What is the analogous con-
dition for a two dimensional circularly symmetric square well
potential?

3. Consider the three dimensional isotropic oscillator described by

H0 =
p2

2µ
+

1

2
µω2

0r
2. (8.186)

Assume that the particle has a charge e > 0 and is in a uniform
magnetic field B along the z-axis. Writing ωL = − eB

2µ and
choosing

A(r) = −1

2
r×B, (8.187)

where A is the vector potential, we can write

H = H0 +HI(ωL). (8.188)

Here, HI(ωL) is a sum of two terms - one which is linear in ωL

(paramagnetic) and the other quadratic in ωL (diamagnetic).
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Determine the exact stationary states of the (complete) system
and their degeneracy. How does the energy of the ground state
vary with ωL? Is the ground state an eigenstate of L2? of Lz?
of Lx? (This is the Zeeman effect for the harmonic oscillator.)

4. A particle moves in a potential in three dimensions of the form

V (r) =

{
∞, z2 ≥ a2,

1
2mω

2(x2 + y2), otherwise.
(8.189)

Determine the energy eigenvalues for this system, the degener-
acy of each level as well as the eigenfunctions associated with
them.

5. A particle moves, in three dimensions, in an anisotropic oscil-
lator potential

V (x, y, z) =
1

2
mω2

(
x2 + 4y2 + 9z2

)
. (8.190)

a) What is the general expression for the energy eigenvalues for
such an oscillator?

b) What are the associated energy eigenfunctions (they need
not be normalized)?

c) What are the degeneracies of the three lowest energy eigen-
values?

6. The range of the strong force which binds a neutron and a pro-
ton in deuteron in a s-wave state (ℓ = 0) is a = 2 × 10−13cm.
The binding can be explained quite well with a three dimen-
sional square well potential of depth (−V0) and range a.

a) Given that the ground state has the binding energy 2.23MeV
and that the potential strength V0 is much larger than the bind-
ing energy, what is the (approximate) value of the potential?

b) Explain qualitatively, from the behavior of the solutions,
whether this model would predict a mean radius of deuteron
shorter or larger than the range of the force.
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Chapter 9

Hydrogen atom

The hydrogen atom is an important physical system that can be ex-
actly solved. In the next few lectures, we will study this system in
detail to bring out various quantum mechanical features. We note
that, unlike the systems we have studied so far, the hydrogen atom is
a two particle system. It consists of a negatively charged electron in-
teracting electromagnetically with a positively charged proton. Thus,
let us first set up the formalism to study such systems.

9.1 Relative motion of two particles

Consider an isolated system of two interacting particles of masses m1

and m2 at positions r1 and r2. Let us suppose that they interact
through a potential which depends only on the relative separation of
the two particles. Then, the motion of the system can be separated
into two distinct and decoupled parts – a part that describes the mo-
tion of the center of mass of the system and another which describes
the relative motion of the two particles. Let us analyze this both in
the classical as well as in the quantum mechanical descriptions.

Classical. The Lagrangian for such a system can be written as

L =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 − V (r1 − r2) . (9.1)

Let us now define the new set of coordinates

r = r1 − r2,

R =
m1r1 +m2r2

(m1 +m2)
, (9.2)

where r,R denote respectively the relative coordinate and the center
of mass coordinate of the two particle system. The relations in (9.2)
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can be inverted to give

r1 = R+
m2

m1 +m2
r,

r2 = R− m1

m1 +m2
r. (9.3)

In terms of the variables in (9.2), the Lagrangian, (9.1), becomes

L =
1

2
m1

(
Ṙ+

m2

m1 +m2
ṙ

)2

+
1

2
m2

(
Ṙ− m1

m1 +m2
ṙ

)2

−V (r)

=
1

2
(m1 +m2)Ṙ

2 +
1

2

(
m1m

2
2

(m1 +m2)2
+

m2m
2
1

(m1 +m2)2

)
ṙ2−V (r)

=
1

2
(m1 +m2)Ṙ

2 +
1

2

m1m2

m1 +m2
ṙ2 − V (r)

=
1

2
MṘ2 +

1

2
µṙ2 − V (r), (9.4)

where we have identified

M = m1 +m2 = total mass of the system,

µ =
m1m2

m1 +m2
= reduced mass of the system. (9.5)

The conjugate momenta corresponding to these two new coor-
dinates can be obtained to be

P =
∂L

∂Ṙ
=MṘ = (m1 +m2)

m1ṙ1 +m2ṙ2

m1 +m2

= m1ṙ1 +m2ṙ2 = p1 + p2

= total momentum,

p =
∂L

∂ṙ
= µṙ =

m1m2

m1 +m2
(ṙ1 − ṙ2)

=
m2p1 −m1p2

m1 +m2
. (9.6)

Thus, the Hamiltonian for the system can be written as

H = PṘ + pṙ− L =
P2

2M
+

p2

2µ
+ V (r). (9.7)

We see that the motion of the system can be equivalently described
by the motion of two fictitious particles – one with the total mass and
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the coordinates of the center of mass of the system and the other with
the reduced mass and with the relative coordinates. Furthermore, the
motion of these two fictitious particles are uncoupled and, since the
variable R is cyclic, it follows that (see (1.52))

Ṗ = 0. (9.8)

The total momentum of the system is constant and, consequently, we
can go to the center of mass frame, in which case we have

P = 0. (9.9)

and in this frame the Hamiltonian (9.7) becomes

H =
p2

2µ
+ V (r). (9.10)

The problem of two interacting particles (with a potential depending
on the relative separation) in the center of mass frame, therefore,
reduces to that of a single particle with a reduced mass and with the
relative coordinates.

Quantummechanical. The Hamiltonian for this system can be written
in terms of the new variables as

H =
p2
1

2m1
+

p2
2

2m2
+ V (r1 − r2)

=
P2

2M
+

p2

2µ
+ V (r). (9.11)

We see that the Hamiltonian of two particles with an interaction
which depends only on the relative separation can be equivalently
written as a sum of two uncoupled terms. Quantum mechanically, of
course, we know that the coordinate and the momentum operators
would satisfy the following commutation relations:

[r1i, r1j ] = [r2i, r2j ] = 0 = [p1i, p1j ] = [p2i, p2j ] ,

[r1i, p2j] = [r2i, p1j ] = 0 = [r1i, r2j ] = [p1i, p2j ] ,

[r1i, p1j] = i~δij1 = [r2i, p2j ] . (9.12)

Using these as well as the definitions in (9.2) and (9.6), we can derive
that

[Ri, Rj ] = [ri, rj ] = 0 = [Pi, Pj ] = [pi, pj ] ,

[Ri, rj ] = [Ri, pj ] = 0 = [ri, Pj ] = [Pi, pj ] , (9.13)
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and

[Ri, Pj ] = i~δij1 = [ri, pj ]. (9.14)

Thus, (r,p) and (R,P) behave like two pairs of conjugate vari-
ables. In the coordinate basis, therefore, we can write these operators
as

p = −i~∇ = −i~ ∂

∂r
,

P = −i~∇R = −i~ ∂

∂R
. (9.15)

Furthermore, since the two sets (r,p) and (R,P) commute with each
other, the Hamiltonian can be written as the direct sum of two Hamil-
tonians

H = HR ⊕Hr, (9.16)

whereHR is the Hamiltonian associated with the motion of the center
of mass and Hr is associated with the relative motion of the two
particles. Since,

[Hr,HR] = 0, (9.17)

they can be simultaneously diagonalized. The Hilbert space, in fact,
becomes a product space of two Hilbert spaces

E = ER ⊗ Er, (9.18)

where (HR,R,P) act only on the space ER while (Hr, r,p) act only
on Er. A general state of E , (9.18), can be written as

|ψR, ψr〉 = |ψR〉 ⊗ |ψr〉. (9.19)

The situation here is exactly like the higher dimensional oscilla-
tor in the Cartesian coordinates that we have discussed earlier. Thus,
a general wave function

〈r,R|ψR, ψr〉 = ψR(R)ψr(r), (9.20)

becomes a product of two wave functions. Consequently, we know
that the Schrödinger equation will separate into two equations (be-
cause the wave function is separable)

− ~
2

2M
∇

2
RψR(R) = ERψR(R),

(
− ~

2

2µ
∇

2 + V (r)

)
ψr(r) = Erψr(r), (9.21)
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where Er +ER = E = total energy of the system. The first equation
in (9.21) is easy to solve and yields

ψR(R) = e−
i
~
P·R, ER =

P2

2M
, (9.22)

which simply represents a free particle motion. Namely, the center
of mass behaves like a free particle independent of the form of the
interaction potential. The interesting dynamics lies in the second
equation in (9.21) describing the relative motion of the two particles.

9.2 Hydrogen atom

The hydrogen atom is a two particle system consisting of an electron
and a proton. In a simplified picture, we can think of the system as
describing the motion of an electron in the Coulomb potential of a
proton since the proton is very much heavier than the electron. In
fact, in the case of the hydrogen atom we know that

m1 = mP ≃ 1000 MeV/c2,

m2 = me ≃ .5 MeV/c2. (9.23)

The Coulomb potential of the proton is e
r
(in CGS units) and, there-

fore, the potential energy of the system is given by

V = V (r) = −e
2

r
, (9.24)

where r = |r1 − r2| is the separation between the proton and the
electron. Thus, we see that our earlier discussion of reducing the
problem to a single particle motion in the center of mass frame can
be applied here and we can identify the Hamiltonian associated with
the relative motion of the two particles with

H = − ~
2

2µ
∇

2 + V (r) = − ~
2

2µ
∇

2 − e2

r
. (9.25)

Note that, in this case,

M = m1 +m2 ≃ m1,

µ =
m1m2

m1 +m2
≃ m2. (9.26)

Therefore, we can identify the proton with the center of mass which
is stationary and the motion of the electron as describing the relative
motion.
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This Hamiltonian has rotational symmetry and, therefore, fol-
lowing our earlier discussions, we can write the solution in the sepa-
rable form as

ψE,ℓ,m(r, θ, φ) = RE,ℓ(r)Yℓ,m(θ, φ). (9.27)

Furthermore, as before, definingRE,ℓ(r) =
uE,ℓ(r)

r
, the radial equation

for uE,ℓ becomes (see (8.97))

d2uE,ℓ

dr2
+

2µ

~2

(
E +

e2

r
− ~

2ℓ(ℓ+ 1)

2µr2

)
uE,ℓ = 0. (9.28)

r

V

VCoulomb

Vcentrifugal

Figure 9.1: Effective potential for the reduced particle in the Hydro-
gen atom.

For a nonzero value of ℓ, the effective potential has the shape
as shown in Fig. 9.1. This shows that the effective potential, in
this case, supports both free particle as well as bound state solutions
and we are interested in studying the bound state solutions, namely,
solutions with E < 0. Therefore, writing

E = −|E|, (9.29)

we see that equation (9.28) has the asymptotic form (r →∞)

d2uE,ℓ

dr2
− 2µ|E|

~2
uE,ℓ = 0,

or, uE,ℓ(r) ∼ e−(
2µ|E|
~2

)
1
2 r = e−

1
2
y. (9.30)
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Here, we have defined the dimensionless variable

y = 2

(
2µ|E|
~2

) 1
2

r,

d

dr
= 2

(
2µ|E|
~2

) 1
2 d

dy
, (9.31)

and have discarded the other solution with the positive exponent
since it is not normalizable.

In terms of the y variable, equation (9.28) becomes

d2uE,ℓ

dy2
+

1

4

(
−1 + e2

|E|r −
~
2ℓ(ℓ+ 1)

2µ|E|r2
)
uE,ℓ = 0,

or,
d2uE,ℓ

dy2
+

(
−1

4
+
λ

y
− ℓ(ℓ+ 1)

y2

)
uE,ℓ = 0, (9.32)

where we have defined another dimensionless variable

λ =

(
µ

2~2|E|

)1
2

e2 =

(
µe4

2~2|E|

) 1
2

. (9.33)

Near the origin, r → 0 (y → 0), equation (9.32) leads to

d2uE,ℓ

dy2
− ℓ(ℓ+ 1)

y2
uE,ℓ = 0,

or, uE,ℓ(y) ∼ yℓ+1, (9.34)

where we have discarded the other solution, y−ℓ, since it does not
satisfy the boundary condition at the origin, (8.107).

The asymptotic forms of the solution in (9.30) and (9.34), there-
fore, suggest a general solution of the form

uE,ℓ(y) = e−
1
2
yv(y) = e−

1
2
yyℓ+1

∞∑

k=0

aky
k = e−

1
2
y

∞∑

k=0

aky
k+ℓ+1,

duE,ℓ

dy
= e−

1
2
y

(
−1

2
v + v′

)
,

d2uE,ℓ

dy2
= e−

1
2
y

(
1

4
v − v′ + v′′

)
. (9.35)
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Substituting (9.35) into (9.32), we obtain the equation for v to be

e−
1
2
y

[
v′′ − v′ + 1

4
v +

(
−1

4
+
λ

y
− ℓ(ℓ+ 1)

y2

)
v

]
= 0,

or,
d2v

dy2
− dv

dy
+

(
λ

y
− ℓ(ℓ+ 1)

y2

)
v = 0. (9.36)

Let us now use the power series expansion for v(y) given in
(9.35),

v(y) =

∞∑

k=0

aky
k+ℓ+1,

dv

dy
=

∞∑

k=0

(k + ℓ+ 1)aky
k+ℓ,

d2v

dy2
=

∞∑

k=0

(k + ℓ+ 1)(k + ℓ)aky
k+ℓ−1. (9.37)

With this, equation (9.36) becomes

∞∑

k=0

[
(k + ℓ+ 1)(k + ℓ)aky

k+ℓ−1 − (k + ℓ+ 1)aky
k+ℓ

+λaky
k+ℓ − ℓ(ℓ+ 1)aky

k+ℓ−1
]
= 0,

or,

∞∑

k=0

[
{(k + ℓ+ 1)(k + ℓ)− ℓ(ℓ+ 1)} akyk+ℓ−1

− (k + ℓ+ 1− λ)akyk+ℓ
]
= 0. (9.38)

Looking at the coefficient of the lowest power of y in (9.38)
(namely, yℓ−1), we obtain

[ℓ(ℓ+ 1)− ℓ(ℓ+ 1)]a0 = 0, or, a0 = arbitrary. (9.39)

The coefficient of the next term in the series (namely, yℓ) gives

[(ℓ+ 2)(ℓ+ 1)− ℓ(ℓ+ 1)]a1 − (ℓ+ 1− λ)a0 = 0, (9.40)

which implies that a1 6= 0 if a0 6= 0.
In general, the recursion relation would connect ak+1 to ak.

Thus, looking at the coefficient of yk+ℓ in (9.38), we have

[(k + 1 + ℓ+ 1)(k + 1 + ℓ)− ℓ(ℓ+ 1)]ak+1 = (k + ℓ+ 1− λ)ak,
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which leads to

ak+1 =
(k + ℓ+ 1− λ)

(k + 1)(k + 2ℓ+ 2)
ak, (9.41)

so that for large k, we have

ak+1

ak
→ 1

k
.

This is the behavior of the series ey for large orders and, therefore,
unless the series terminates, this would lead to an unphysical solution.
The series would terminate if

k + ℓ+ 1− λ = 0,

or, λ =

(
µe4

2~2|E|

) 1
2

= k + ℓ+ 1 = n,

or, |En| =
µe4

2~2n2
,

or, En = −|En| = −
µe4

2~2n2
, (9.42)

which determines the energy eigenvalues for the hydrogen atom. Now,
since both k and ℓ take positive integer values, n also takes positive
integer values. Even when ℓ and k are both equal to zero, n = 1.
Thus, the allowed values for n are

n = 1, 2, 3, · · · . (9.43)

Furthermore, the allowed values of the orbital angular momentum,
for a fixed n-value, are given by

ℓ = n− k − 1 = n− 1, n − 2, · · · , 0. (9.44)

Thus, the solution of the differential equation, (9.32), is obtained
to be

un,ℓ(y) = e−
1
2
y
n−ℓ−1∑

k=0

aky
k+ℓ+1

= e−
1
2
yvn,ℓ(y) = e−

1
2
yyℓ+1wn,ℓ(y). (9.45)
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This leads to

dvn,ℓ
dy

= yℓ+1dwn,ℓ

dy
+ (ℓ+ 1)yℓwn,ℓ,

d2vn,ℓ
dy2

= yℓ+1d
2wn,ℓ

dy2
+ 2(ℓ+ 1)yℓ

dwn,ℓ

dy
+ ℓ(ℓ+ 1)yℓ−1wn,ℓ,

(9.46)

so that the differential equation that wn,ℓ(y) satisfies follows from
(9.36) to be

y
d2w

dy2
+ (2ℓ+ 2− y) dw

dy
+ (n− ℓ− 1)w(y) = 0. (9.47)

We know that the equation

y
d2Lq

dy2
+ (1− y)dLq

dy
+ qLq = 0, (9.48)

is known as the Laguerre equation and Lq’s are known as the Laguerre
polynomials of order q. The functions L p

q (y), related to the Lq’s by
the relation,

L p
q (y) =

dpLq(y)

dyp
, q ≥ p, (9.49)

are known as the associated Laguerre polynomials. (This is one way of
defining the associated Laguerre polynomials and there is an alternate
way in the literature as well. The two, however, are related to each
other and as long as we follow one definition consistently, there is no
possibility for confusion.) They are polynomials of order (q − p) and
satisfy the differential equation

y
d2L p

q

dy2
+ (p + 1− y)dL

p
q

dy
+ (q − p)L p

q (y) = 0. (9.50)

Comparing equation (9.50) with the one satisfied by the wn,ℓ’s, (9.47),
we can identify

wn,ℓ(y) = L2ℓ+1
n+ℓ (y). (9.51)

The generating function for the Laguerre polynomials is

S(y, t) =
e−

yt
1−t

1− t =
∞∑

n=0

Ln(y)

n!
tn, t < 1, (9.52)

         
 16:35:40.



9.2 Hydrogen atom 243

where the coefficient of expansion on the right hand side are the La-
guerre polynomials. To see that this actually generates the Laguerre
polynomials, we note that

∂S

∂y
= − t

1− tS,

or, (1− t)∂S
∂y

= −tS,

or, (1− t)
∞∑

n=0

L′
n

n!
tn = −t

∞∑

n=0

Ln

n!
tn,

or,
∞∑

n=0

L′
n

n!
tn −

∞∑

n=0

L′
n

n!
tn+1 = −

∞∑

n=0

Ln

n!
tn+1,

or,

∞∑

n=0

L′
n

n!
tn −

∞∑

n=1

L′
n−1

(n− 1)!
tn = −

∞∑

n=1

Ln−1

(n− 1)!
tn,

or,

∞∑

n=0

L′
n

n!
tn −

∞∑

n=0

n
L′
n−1

n!
tn = −

∞∑

n=0

Ln−1

n!
tn,

or, L′
n − nL′

n−1 = −nLn−1, (9.53)

or, L′
n+1 − (n+ 1)L′

n = −(n+ 1)Ln. (9.54)

Furthermore, differentiating with respect to t, we obtain

∂S

∂t
= −y

[
1

1− t +
t

(1− t)2
]
S +

1

1− tS

=

[
− y

(1− t)2 +
1

1− t

]
S =

(1− y − t)
(1− t)2 S,

which leads to

(1− 2t+ t2)
∂S

∂t
= (1− y − t)S,

or, (1− 2t+ t2)

∞∑

n=1

Ln

(n− 1)!
tn−1 = (1− y − t)

∞∑

n=0

Ln

n!
tn,

or,
∞∑

n=1

[
Ln

(n− 1)!
tn−1 − 2Ln

(n− 1)!
tn +

Ln

(n− 1)!
tn+1

]

= (1− y)
∞∑

n=0

Ln

n!
tn −

∞∑

n=0

Ln

n!
tn+1,
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or,

∞∑

n=0

Ln+1

n!
tn − 2

∞∑

n=0

n
Ln

n!
tn +

∞∑

n=0

n
Ln

n!
tn+1

= (1− y)
∞∑

n=0

Ln

n!
tn −

∞∑

n=0

Ln

n!
tn+1,

or,

∞∑

n=0

[Ln+1 − 2nLn − (1− y)Ln]
tn

n!

=

∞∑

n=0

−(n+ 1)
Ln

n!
tn+1 = −

∞∑

n=1

n
Ln−1

(n− 1)!
tn

= −
∞∑

n=0

n2
Ln−1

n!
tn. (9.55)

Thus, comparing coefficients, we obtain

Ln+1 = (2n+ 1− y)Ln − n2Ln−1. (9.56)

Differentiating (9.56) with respect to y we have

L′
n+1 = (2n+ 1− y)L′

n − Ln − n2L′
n−1,

or, n2L′
n−1 = (2n+ 1− y)L′

n − L′
n+1 − Ln. (9.57)

Furthermore, multiplying (9.53) throughout by n and eliminating
n2L′

n−1 using (9.57), we have

nL′
n + L′

n+1 − (2n + 1− y)L′
n + Ln = −n2Ln−1,

or, L′
n+1 − (n+ 1− y)L′

n + Ln = −n2Ln−1. (9.58)

If we now use (9.54), equation (9.58) becomes

− (n+ 1)Ln + yL′
n + Ln = −n2Ln−1,

or, yL′
n − nLn = −n2Ln−1. (9.59)

Differentiating (9.59) with respect to y we obtain,

yL′′
n + L′

n − nL′
n = −n2L′

n−1,

or, yL′′
n + (1− n)L′

n = −n2L′
n−1, (9.60)

which upon eliminating the n2L′
n−1 term using (9.57) leads to

yL′′
n + (1− n)L′

n + (2n+ 1− y)L′
n − L′

n+1 − Ln = 0. (9.61)
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Furthermore, eliminating L′
n+1 through the relation (9.54), we finally

obtain

yL′′
n + (1− n)L′

n + (n − y)L′
n + (n+ 1)Ln − Ln = 0,

or, yL′′
n + (1− y)L′

n + nLn = 0. (9.62)

Thus, we see that the Ln’s satisfy the Laguerre equation. It fol-
lows now, from (9.49), that the generating function for the associated
Laguerre polynomials are given by

Sp(y, t) =
∂pS(y, t)

∂yp
=

(−t)p
(1− t)p+1

e−
yt
1−t

=

∞∑

n=p

Lp
n(y)

n!
tn. (9.63)

We can now identify the radial wave function for the hydrogen
atom with

Rn,ℓ = Nn,ℓ e
− 1

2
yyℓL2ℓ+1

n+ℓ (y), (9.64)

where

y = 2

(
2µ|En|
~2

) 1
2

r =
2µe2

~2n
r, (9.65)

and the total wave function is given by

ψn,ℓ,m(r, θ, φ) = Rn,ℓYℓ,m(θ, φ). (9.66)

The normalization constant Nn,ℓ can be obtained from the orthonor-
mality relations for the associated Laguerre polynomials, which can
be derived using the generating functions in the following way. The
orthogonality of the Yℓ,m’s tells us that a nonzero contribution is
obtained only if ℓ = ℓ′ and m = m′ in

∫
d3r ψ∗

n′,ℓ′,m′ψn,ℓ,m, (9.67)

and when these quantum numbers are the same, the angular integral
becomes unity. Thus, we only have to look at the radial part of
the solution. Furthermore, we can also show, using the equations of
motion, that if n 6= n′, this integral vanishes. Therefore, let us look
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at ∫
r2dr Rn,ℓRn,ℓ

=

(
~
2n

2µe2

)3

|Nn,ℓ|2
∫

dy y2e−yy2ℓL2ℓ+1
n+ℓ (y)L

2ℓ+1
n+ℓ (y)

=

(
~
2n

2µe2

)3

|Nn,ℓ|2
∫

dy y2ℓ+2e−yL2ℓ+1
n+ℓ (y)L

2ℓ+1
n+ℓ (y). (9.68)

We now write the associated Laguerre polynomials in terms of their
generating functions as (see (9.63))

L2ℓ+1
n+ℓ (y) =

∂n+ℓ

∂tn+ℓ

[
(−1)2ℓ+1 t2ℓ+1

(1− t)2ℓ+2
e
− yt

(1−t)

]

t=0

. (9.69)

Using this in (9.68), we obtain
∫

dy y2ℓ+2e−yL2ℓ+1
n+ℓ (y)L

2ℓ+1
n+ℓ (y)

=
∂n+ℓ

∂tn+ℓ

∂n+ℓ

∂xn+ℓ

[
(tx)2ℓ+1

(1− t)2ℓ+2(1− x)2ℓ+2

×
∫

dy y2ℓ+2e−ye
− yt

(1−t) e
− yx

(1−x)

]

t,x=0

=
∂n+ℓ

∂tn+ℓ

∂n+ℓ

∂xn+ℓ

[
(tx)2ℓ+1

(1− t)2ℓ+2(1− x)2ℓ+2

×
∫

dy y2ℓ+2e
− y(1−xt)

(1−t)(1−x)

]

t,x=0

. (9.70)

Changing the variable of integration as

y(1− xt)
(1− t)(1− x) → y, (9.71)

the integral in (9.70) becomes

∂n+ℓ

∂tn+ℓ

∂n+ℓ

∂xn+ℓ

[
(tx)2ℓ+1

(1− t)2ℓ+2(1− x)2ℓ+2

×(1− t)2ℓ+3(1− x)2ℓ+3

(1− xt)2ℓ+3

∫
dy y2ℓ+2e−y

]

t,x=0

=
∂n+ℓ

∂tn+ℓ

∂n+ℓ

∂xn+ℓ

[
(tx)2ℓ+1(1− t)(1− x)

(1− xt)2ℓ+3
Γ(2ℓ+ 3)

]

t,x=0

.

(9.72)
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It is clear that terms with different powers of t and x inside the
square bracket vanish since these variables are set to zero at the end.
Thus, the integral becomes

∂n+ℓ

∂tn+ℓ

∂n+ℓ

∂xn+ℓ

[
(tx)2ℓ+1(1 + tx)

(1− tx)2ℓ+3

]

t,x=0

Γ(2ℓ+ 3)

=

[
(2ℓ+ 1)!

(
n+ ℓ

2ℓ+ 1

)
(2ℓ+ 3)(2ℓ + 4) · · ·

· · · (2ℓ+ 3 + n+ ℓ− 2ℓ− 2)(n + ℓ)!

+(2ℓ+ 2)!

(
n+ ℓ

2ℓ+ 2

)
(2ℓ+ 3)(2ℓ+ 4) · · ·

×(2ℓ+ 3 + n+ ℓ− 2ℓ− 3)(n + ℓ)!

]
Γ(2ℓ+ 3)

=

[
(2ℓ+ 1)!

((n + ℓ)!)2

(2ℓ + 1)!(n − ℓ− 1)!

× (2ℓ+ 3)(2ℓ + 4) . . . (n+ ℓ+ 1)

+(2ℓ+ 2)!
((n + ℓ)!)2

(2ℓ + 2)!(n − ℓ− 2)!
(2ℓ+ 3) · · · (n+ ℓ)

]

×(2ℓ+ 2)!

= ((n+ ℓ)!)2(2ℓ+ 2)!

[
(n+ ℓ+ 1)!

(2ℓ+ 2)!(n − ℓ− 1)!

+
(n+ ℓ)!

(2ℓ+ 2)!(n − ℓ− 2)!

]

= ((n+ ℓ)!)2
[
(n+ ℓ)!(n + ℓ+ 1)

(n − ℓ− 1)!
+

(n+ ℓ)!(n− ℓ− 1)

(n− ℓ− 1)!

]

= 2n
((n+ ℓ)!)3

(n− ℓ− 1)!
. (9.73)

(Basically, the origin of the combinatoric factors is as follows. Let us
look at the first term and note that, (2ℓ+1) derivatives of x have to act
on the numerator, since we are setting x = 0. This can act in

(
n+ℓ
2ℓ+1

)

ways and brings out a factor of (2ℓ+1)! from the derivatives. The rest
of the (n−ℓ−1) derivatives act on the denominator and bring out the
factors following these. When we set x = 0, the denominator becomes
unity and the numerator has a power of tn+ℓ. The t derivatives now
give the additional factor of (n+ ℓ)!.)
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Thus, the normalization relation becomes
∫
r2dr Rn,ℓ(r)Rn,ℓ(r) = 1,

or,

(
~
2n

2µe2

)3

|Nn,ℓ|2
∫

dy y2ℓ+2e−yL2ℓ+1
n+ℓ L

2ℓ+1
n+ℓ = 1,

or, |Nn,ℓ|2
(

~
2n

2µe2

)3

2n
((n+ ℓ)!)3

(n − ℓ− 1)!
= 1,

or, Nn,ℓ = −
[(

2µe2

~2n

)3
(n− ℓ− 1)!

2n((n + ℓ)!)3

] 1
2

= N∗
n,ℓ. (9.74)

The normalized radial wave functions can now be written as

Rn,ℓ = −
[(

2µe2

~2n

)3
(n− ℓ− 1)!

2n((n + ℓ)!)3

] 1
2

× e−
µe2

~2n
r

(
2µe2r

~2n

)ℓ

L2ℓ+1
n+ℓ

(
2µe2r

~2n

)
, (9.75)

and the first three radial functions have the explicit forms,

R1,0 = 2

(
µe2

~2

) 3
2

e−
µe2

~2
r,

R2,0 =

(
µe2

2~2

) 3
2
(
2− µe2r

~2

)
e−

µe2

2~2
r,

R2,1 =

(
µe2

2~2

) 3
2 µe2r

~2
√
3
e−

µe2

2~2
r. (9.76)

9.3 Fundamental quantities associated with the hydrogen atom

Looking at the wave functions for the hydrogen atom in (9.75) (or
(9.76)), we notice that there is a fundamental length scale that enters
the solutions,

a0 =
~
2

µe2
. (9.77)

This is known as the Bohr radius for the hydrogen atom. In terms of
this quantity we can write down the radial solution, (9.75), as

Rn,ℓ(r) ∼ e−
r

na0

(
2r

na0

)ℓ

L2ℓ+1
n+ℓ

(
2r
na0

)
. (9.78)
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Remembering that L2ℓ+1
n+ℓ is a polynomial of order (n − ℓ − 1), the

leading behavior of the wave function for large r is given by (r ≫ a0)

Rn,ℓ(r) ∼ rn−1e
− r

na0 , (9.79)

independent of the value of ℓ. Therefore, the dominant (leading)
behavior of the probability for finding the electron (in the nth state)
in a spherical shell of radius r and thickness dr, when r is large, can
be obtained to be

∫

Ω
r2drdΩψ∗

n,ℓ,mψn,ℓ,m = r2dr R2
n,ℓ(r)

≈ e−
2r
na0 r2ndr = Pn(r)dr. (9.80)

We can, therefore, determine the radius of maximum probability
for finding the electron in the nth state as

dPn(r)

dr
=

d

dr

(
r2ne

− 2r
na0

)
= 0,

or, 2nr2n−1e
− 2r

na0 − 2

na0
r2ne

− 2r
na0 = 0,

or,
(
r − n2a0

)
r2n−1e

− 2r
na0 = 0,

or, rmax = n2a0. (9.81)

Thus, we see that the Bohr radius, a0, is the most probable value of
r in the ground state (n = 1) and, therefore, defines the natural size
of the hydrogen atom. We also see that rmax grows as n2 for higher
states.

The theory also possesses a natural energy scale. Let us define

Ry =
µe4

2~2
= Rydberg. (9.82)

In terms of the Rydberg, the energy levels of the hydrogen atom,
(9.42), can be written as

En = −Ry

n2
. (9.83)

Numerical estimates. Let us estimate the values of these length and
energy scales. From the definition of the Bohr radius, (9.77), we note
that

a0 =
~
2

µe2
=

(~c)2

µc2e2
=

~c

µc2
~c

e2
. (9.84)
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We know that ~c ≃ 2000 eV-A◦ (1A◦ = 10−8 cm). Furthermore, as
we have seen in (9.23), µc2 ≃ .5 MeV = 5 × 105 eV. We also know
that

α =
e2

~c
= fine structure constant ≃ 1

137
. (9.85)

The fine structure constant is a dimensionless constant that measures
the strength of electromagnetic interactions. It follows from these
that

a0 ≃
2000 eV-A◦

5× 105 eV
× 137 ≃ .5 A◦, (9.86)

which determines the size of the hydrogen atom. Furthermore,

Ry =
µe4

2~2
=

µc2e4

2(~c)2
=
µc2

2
×
(
e2

~c

)2

≃ 5× 105

2
eV ×

(
1

137

)2

≃ 13.3 eV. (9.87)

A more accurate value for the Rydberg is 13.6 eV (namely, if we
use µc2 = .511 MeV and so on). So using this more accurate value,
we can write the energy levels of hydrogen, (9.83), as

En = −13.6

n2
eV. (9.88)

Thus, the ground state of hydrogen, which is the most tightly bound,
has an energy −13.6 eV and, therefore, it would take 13.6 eV to
release the electron from its ground state. Consequently, this is also
known as the binding energy of the hydrogen atom.

9.3.1 Comparison with experiment. Quantum mechanics predicts ex-
plicit energy levels for the hydrogen atom and, in principle, we can
measure these. However, in practice, we only measure the relative
separation between the energy levels. For example, if an atom is in
the state characterized by the quantum numbers (n, ℓ,m) with en-
ergy En, it would remain there forever – since that is a stationary
state. However, if we disturb the system, it may make a transition
to another state (n′, ℓ′,m′) with energy En′ 6= En. Furthermore, if
En′ < En, the atom would emit a photon with energy (En − En′).
Thus, the frequency of the emitted photon would be

ωn,n′ =
1

~
(En − En′) , (9.89)
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and can be measured in the laboratory. Quantum mechanically, it
follows from (9.88) that in the hydrogen atom we must have

ωn,n′ =
Ry

~

(
1

n′2
− 1

n2

)
. (9.90)

For a fixed value of n′ we get a family of lines (spectra) as we
vary n (for transitions to a given level). Thus, for example,

ωn,1 =
Ry

~

(
1− 1

n2

)
, (9.91)

is called the Lyman series. Similarly,

ωn,2 =
Ry

~

(
1

22
− 1

n2

)
, (9.92)

is known as the Balmer series and so on. These lines are observed
experimentally and agree with the quantum mechanical predictions.
However, there are slight discrepancies between the measurements
and the theoretical predictions. But these can all be explained as
limitations in the form in which we have used quantum mechanics.
For example, we have to correct for the fact that the proton is not
really immobile, i.e., it does not have an infinite mass.

Furthermore, we have treated the electron as a non-relativistic
particle whereas in reality one finds that the relativistic effects are
not completely negligible. These are known as fine structure cor-
rections and are calculable. (We will derive these later when we
discuss perturbation methods.) However, we must remember that
all such corrections are extremely small and that the non-relativistic
Schrödinger equation describes the hydrogen atom extremely well.

Degeneracy of states in the hydrogen atom. The hydrogen atom pos-
sesses rotational symmetry. This implies that

[H,Li] = 0. (9.93)

In particular, this implies that

[H,L±] = 0. (9.94)

However, L± change the m-quantum numbers for a given ℓ. Since
L± commute with the Hamiltonian, this implies that all the 2ℓ + 1
states with different m-values have the same energy. Thus, rotational
invariance implies degeneracy in the m-quantum numbers. On the
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other hand, we have noted in (9.44) that in the hydrogen atom the
orbital angular momentum ℓ takes integer values 0, 1, . . . , n − 1 for
a given value of n. And, furthermore, since the energy levels are
characterized by the n-quantum number only, all these states with
different ℓ-quantum numbers also have the same energy. Thus, for
example, the degeneracy in the first few levels are given by

n En ℓ m

1 −13.6 eV 0 0

2 −13.6
4 eV 0, 1 0;±1, 0

3 −13.6
9 eV 0, 1, 2 0;±1, 0;±2,±1, 0.

(9.95)

In general, the total number of degenerate states for a given n
in the case of the hydrogen atom is obtained as

n−1∑

ℓ=0

(2ℓ+ 1) = 2× 1

2
(n− 1)n + n

= n(n− 1 + 1) = n2. (9.96)

We had seen a similar degeneracy in the ℓ quantum number earlier
in the study of the 3-dimensional isotropic harmonic oscillator and
had characterized this as accidental degeneracy. Such a degeneracy is
not explained by the rotational symmetry since there is no operator
within the rotation group which would change the ℓ-quantum number.
In fact, this degeneracy is a consequence of the special form of the
potential which gives rise to a larger symmetry in the system under
study as we will see next.

9.4 Dynamical symmetry in hydrogen

As we have noted earlier, a special form of the potential can some-
times enhance the geometrical symmetry that we would expect in a
system. Consider, for example, the classical Keplerian problem where

H =
p2

2µ
− κ

r
, (9.97)

where κ is a constant. For the case of the hydrogen, we can identify
κ = e2, but let us leave it arbitrary for the present.

This is a rotationally invariant system and hence angular mo-
mentum is conserved. In this case, we know the classical trajectory of
the particle to be elliptical. Symmetry considerations alone (that is,
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rotational symmetry) tell us that the motion must be planar. Namely,
the motion must lie in a plane so that the angular momentum vec-
tor does not change. However, rotational symmetry alone does not
require the orbit to be closed. For example, if we perturb the orbit
slightly from its closed form, it can, in principle, precess in the same
plane without violating angular momentum conservation. On the
other hand, the fact that closed orbits are stable implies that there
must be another quantity which is conserved and lies in the plane of
motion so that the orbit remains closed. In fact, we know of such a
vector in this classical problem, which is known as the Runge-Lenz
vector and is defined as

M =
p× L

µ
− κ

r
r. (9.98)

It is obvious from the definition in (9.98) that

L ·M = 0,

M2 =M2
i =

(
1

µ
ǫijkpjLk −

κ

r
ri

)2

=
1

µ2
p2L2 − 2κ

µr
L2 + κ2

=
2HL2

µ
+ κ2. (9.99)

It is straightforward to show that M is a conserved quantity, simply
by calculating its Poisson bracket with the Hamiltonian. (It is, of
course, obvious that M2 is conserved.) Furthermore, this is a vector
that is orthogonal to the angular momentum and, therefore, would lie
in the plane of motion. The conservation of the Runge-Lenz vector
is the reason that closed orbits are stable.

Quantum mechanically, for the hydrogen atom, we define the
Runge-Lenz operator as (κ = e2)

Mi =
1

2µ
ǫijk (pjLk − Ljpk)−

e2

r
ri, LiMi = L ·M = 0, (9.100)

where symmetrization of products has been used. Using the funda-
mental canonical commutators, we can show that

[Mi,H] = 0. (9.101)
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Therefore, these are conserved in the quantum system as is the case
classically. Furthermore,

M2 =M2
i =

2H

µ

(
L2 + ~

2
)
+ e4, (9.102)

where the ~
2 term arises from the non-commutativity of quantum

operators.
We already know that the angular momentum operators satisfy

the commutation relations,

[Li, Lj] = i~ǫijkLk. (9.103)

We can also calculate in a simple manner that

[Mi, Lj ] = i~ǫijkMk,

[Mi,Mj ] = −
2i~

µ
ǫijkHLk. (9.104)

The Li’s, of course, generate rotations and define a closed alge-
bra. But, Li’s and Mi’s do not form a closed algebra since the last
relation involves the Hamiltonian. However, remembering that the
Hamiltonian is independent of time, we can work in the subspace of
the Hilbert space that corresponds to a particular energy value, say,
E. In this subspace, the last relation in (9.104) becomes

[Mi,Mj ] = −
2i~E

µ
ǫijkLk. (9.105)

If we are interested in bound states, we note that E < 0 and if we
scale the generators as

Mi →
(
− µ

2E

) 1
2
Mi, (9.106)

then, the commutation relations in (9.103) and (9.104) take the sim-
ple form (in a subspace of constant energy)

[Li, Lj] = i~ǫijkLk,

[Mi, Lj ] = i~ǫijkMk,

[Mi,Mj ] = i~ǫijkLk. (9.107)

This defines a larger symmetry algebra that is operative in this sys-
tem. This algebra is isomorphic (equivalent) to the algebra of ro-
tations in 4-dimensions (or the O(4) group). Since our system is
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3-dimensional whereas the symmetry is four dimensional, this sym-
metry is called a dynamical symmetry as opposed to a geometrical
symmetry. Let us note from the above algebra that

[Mi,L
2] 6= 0. (9.108)

Therefore, in this larger algebra there exist operators that do not
commute with L2 and, therefore, can change the ℓ quantum number.

To understand the representations of this algebra a little better,
let us define two sets of new generators as

Ii =
1

2
(Li +Mi),

Ki =
1

2
(Li −Mi). (9.109)

It is then straightforward to show that

[Ii, Ij ] = i~ǫijkIk,

[Ki,Kj ] = i~ǫijkKk,

[Ii,Kj ] = 0. (9.110)

Furthermore, it is obvious that [Ii,H] = [Ki,H] = 0 so that these
operators are also conserved.

As we see from (9.110), in this basis the algebra becomes equiva-
lent to that of two decoupled algebras of angular momenta. It follows
from our earlier discussion of the angular momentum algebra that the
operators I2 and K2 will have the eigenvalues

I2 : ~2i(i+ 1), K2 : ~2k(k + 1), (9.111)

where i, k = 0, 12 , 1, . . . . We recognize that I2 and K2 are the two
quadratic Casimir operators of the algebra. Equivalently, we can
also define two operators as linear combinations

C = I2 +K2 =
1

2

(
L2 +M2

)
,

C ′ = I2 −K2 = L ·M = 0, (9.112)

where the second relation is the quantum analog of the orthogonal-
ity of L and M in (9.99) (see (9.100)). Furthermore, the second
relation implies that, for any representation, we must have i = k.
Correspondingly, the allowed values of C, for any representation, are

C : 2~2k(k + 1). (9.113)
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We know that, in this subspace (remember the scaling in (9.106),

Mi →
(
− µ

2E

) 1
2 Mi),

M2 = −
(
L2 + ~

2
)
− µe4

2E
, (9.114)

so that we can write

C =
1

2

(
L2 +M2

)

=
1

2

(
L2 − L2 − ~

2 − µe4

2E

)

=

(
−µe

4

4E
− 1

2
~
2

)1 = 2~2k(k + 1)1,
or, E = − µe4

2~2(2k + 1)2
= − µe4

2~2n2
, (9.115)

where n = 2k + 1 = 1, 2, 3, . . . (remember that k = 0, 12 , 1,
3
2 , · · · for

angular momentum algebra).
Thus, we see that we get the right energy levels for the hydrogen

atom from this operator analysis of the symmetries in the theory. Let
us note that it is not objectionable for the eigenvalue k to be half
integer. We only have the physical requirement that the eigenvalues
of the L operator take integer values. Since L = I+K (see (9.109))
we see that it takes values (we are assuming here the composition of
angular momentum which we will discuss later)

ℓ = (i+ k, i+ k − 1, · · · , |i− k|) = (n− 1, n− 2, . . . , 0). (9.116)

All these levels would be degenerate in energy. This explains the
peculiar degeneracy noticed in this system.

9.5 Selected problems

1. a) Prove the Thomas-Reiche-Kuhn sum rule

∑

n′
(En′ − En) |〈n′|X|n〉|2 =

~
2

2m
, (9.117)

where X is the coordinate operator and |n〉 represent the eigen-
states of the Hamiltonian
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H =
p2

2m
+ V (X). (9.118)

b) Test the sum rule on the n-th state of the harmonic oscil-
lator.

2. Consider the Runge-Lenz operator defined in (9.100)

Mi =
1

2µ
ǫijk (pjLk − Ljpk)−

e2

r
ri, (9.119)

where Li denotes the three orbital angular momentum opera-
tors. Given that the Hamiltonian for the Hydrogen atom has
the form

H =
p2

2µ
− e2

r
, (9.120)

show that

a) [Mi,H] = 0.

b) [Mi, Lj ] = i~ǫijkMk.

c) [Mi,Mj ] = −2i~
µ
ǫijkHLk.

3. Find the lowest energy eigenstate (ground state) of the hydro-
gen atom in the coordinate representation starting from the
operator formalism of O(4) symmetry discussed in the last sec-
tion.

4. What are the generators of the larger symmetry group for the
3-dimensional isotropic oscillator? What is the algebra they
satisfy? (The larger symmetry in the oscillator case corresponds
to the group SU(3) which has eight generators.)
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Chapter 10

Approximate methods

So far, we have studied quantum mechanical systems that can be ex-
actly solved. Most often, however, we are confronted with systems
which are very difficult (if not impossible) to solve exactly. That
is, the Hamiltonians for such systems cannot be diagonalized exactly
in a simple way. In such a case, we look for approximate meth-
ods for finding the eigenvalues and eigenstates of the Hamiltonian.
And sometimes, these approximate methods give results which are
amazingly close to the true experimental values. There are various
approximate methods which one can apply to different physical prob-
lems. We will discuss all these methods systematically starting with
the variational method.

10.1 Variational method

The variational method is an excellent approximate method when we
are interested in estimates of the ground state (or higher) energy of
a complicated physical system. The basic idea behind the variational
method is contained in the following two theorems.

Theorem. The expectation value of the Hamiltonian of a physical sys-
tem is stationary in the neighborhood of its eigenstates.

This theorem is also known as the Ritz theorem.

Proof. Let us assume that |ψ〉 is a state in which we are evaluating
the expectation value of the Hamiltonian. The expectation value of
the Hamiltonian, in this state, is defined to be

〈H〉 = 〈ψ|H|ψ〉〈ψ|ψ〉 ,

or, 〈ψ|ψ〉〈H〉 = 〈ψ|H|ψ〉. (10.1)

Here we are assuming that |ψ〉, in general, is not normalized.
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Let us next modify the state infinitesimally to

|ψ〉 → |ψ〉+ |δψ〉. (10.2)

The infinitesimal change in the expectation value of the Hamilto-
nian, introduced by changing the state, can be calculated as follows
(keeping terms up to linear order in the change). First, we note that

δ(〈ψ|ψ〉〈H〉) = 〈δψ|ψ〉〈H〉 + 〈ψ|δψ〉〈H〉 + 〈ψ|ψ〉δ〈H〉. (10.3)

On the other hand, we see that since the Hamiltonian is unchanged,

δ〈ψ|H|ψ〉 = 〈δψ|H|ψ〉 + 〈ψ|H|δψ〉. (10.4)

Thus, comparing (10.3) and (10.4), we obtain from (10.1),

〈ψ|ψ〉δ〈H〉 = 〈δψ|(H − 〈H〉)|ψ〉 + 〈ψ|(H − 〈H〉)|δψ〉. (10.5)

Let us next define

(H − 〈H〉)|ψ〉 = |φ〉. (10.6)

Thus, the relation (10.5) can be written as

〈ψ|ψ〉δ〈H〉 = 〈δψ|φ〉 + 〈φ|δψ〉. (10.7)

As a result, we conclude that the expectation value of H, in the state
|ψ〉, will be stationary (namely, δ〈H〉 = 0) if

〈δψ|φ〉 + 〈φ|δψ〉 = 0,

or, Real 〈φ|δψ〉 = 0. (10.8)

This last relation must be true for any |δψ〉 in order that 〈H〉 is
stationary. In particular, it must be true if (ǫ is an infinitesimal real
parameter)

|δψ〉 = ǫ|φ〉. (10.9)

However, in this case, we will have from (10.8)

〈φ|δψ〉 = ǫ〈φ|φ〉 = 0. (10.10)

In other words, the norm of the state |φ〉 must be zero, which, in
turn, implies that |φ〉 must be the null vector. Thus,

|φ〉 = (H − 〈H〉)|ψ〉 = 0,

or, H|ψ〉 = 〈H〉|ψ〉. (10.11)
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This shows that |ψ〉 must be an eigenstate of the Hamiltonian
for its expectation value to be stationary and this proves the theorem
that the expectation value of the Hamiltonian is stationary near its
eigenstates. (An alternate, simple way to see this is to note that, for
all infinitesimal changes satisfying 〈δψ|φ〉∗ = 〈δψ|φ〉, the expectation
value of the Hamiltonian can be stationary only if 〈δψ|φ〉 = 0, which
implies that |φ〉 = 0.)

Let us now assume that the state in which the expectation value
is evaluated is not an exact eigenstate but differs infinitesimally from
one. Namely, let

|ψ〉 = |ψn〉+ ǫ|ψn+1〉, (10.12)

where ǫ is an infinitesimal, real parameter and |ψn〉 and |ψn+1〉 are
eigenstates of the Hamiltonian with eigenvalues En and En+1 respec-
tively. Let us now calculate

〈H〉 = 〈ψ|H|ψ〉〈ψ|ψ〉

=
(〈ψn|+ ǫ〈ψn+1|)H(|ψn〉+ ǫ|ψn+1〉)
(〈ψn|+ ǫ〈ψn+1|)(|ψn〉+ ǫ|ψn+1〉)

=
(〈ψn|+ ǫ〈ψn+1|)(En|ψn〉+ ǫEn+1|ψn+1〉)

〈ψn|ψn〉+ ǫ2〈ψn+1|ψn+1〉

=
En + ǫ2En+1

1 + ǫ2
≈ En(1− ǫ2) + ǫ2En+1

= En + ǫ2(En+1 − En) = En +O(ǫ2). (10.13)

This shows that if a wave function differs from an energy eigen-
state by order ǫ terms, then, the expectation value of the Hamiltonian
in this state will be different from the corresponding energy eigenvalue
by O(ǫ2) terms. Therefore, by cleverly choosing a wave function, we
can come very close to the true eigenvalue of the Hamiltonian.

Exercise. Define |ψ′〉 = |ψ〉+ |δψ〉. Then,

δ〈H〉 = 〈ψ′|H |ψ′〉
〈ψ′|ψ′〉 − 〈ψ|H |ψ〉

〈ψ|ψ〉 .

Show from this definition that if |δψ〉 is infinitesimally small, we obtain the result
derived in (10.7).

Theorem. The expectation value of the Hamiltonian in an arbitrary
state is greater than or equal to the ground state energy.

〈ψ|H|ψ〉
〈ψ|ψ〉 ≥ E0. (10.14)
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Proof. To prove this, let us expand the state in the basis of the eigen-
states of the Hamiltonian. Namely, let

|ψ〉 =
∑

n

cn|ψn〉, (10.15)

where |ψn〉’s denote eigenstates of the Hamiltonian with eigenvalues
En. (Here we are assuming the eigenvalues to be discrete. This can
always be achieved by quantizing in a box. However, the theorem is
true otherwise also.) Thus,

〈ψ|ψ〉 =
∑

n

|cn|2,

〈ψ|H|ψ〉 =
∑

n

En|cn|2,

〈ψ|H|ψ〉
〈ψ|ψ〉 =

∑
n

En|cn|2
∑
n

|cn|2
. (10.16)

By definition, En ≥ E0 for all n (where E0 represents the ground
state energy), so that

〈ψ|H|ψ〉
〈ψ|ψ〉 ≥ E0

∑
n

|cn|2
∑
n
|cn|2

= E0. (10.17)

This proves that the expectation value of the Hamiltonian in any
arbitrary state is greater than or equal to the ground state energy.
The equality in (10.17) holds when |ψ〉 happens to coincide with the
ground state of the system.

The variational method makes use of both of these theorems
and is mostly used to determine an upper bound on the ground state
energy of a system. First of all, we know that the ground state energy
is an absolute minimum of the expectation value of the Hamiltonian
in any state. Therefore, we can choose a wave function which would
resemble the ground state wave function as much as is possible, but
allow for a few undetermined parameters in it. The expectation value
of the Hamiltonian in such a state, therefore, becomes a function of
these parameters. The expectation value is then minimized with re-
spect to these parameters, which determines some or all of the values
of these parameters. Furthermore, corresponding to these parame-
ters, the Hamiltonian has an expectation value, which serves as an
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upper bound on the true ground state energy. We can try to lower
this upper bound even further by introducing more and more param-
eters and using more general wave functions. When there is difficulty
in lowering the bound any further, we can think of the expectation
value as essentially close to the true ground state energy.

The choice of a good trial wave function is, therefore, a crucial
part of this method. We, therefore, try to invoke all the symmetry
principles of the system and appeal to all physical intuitions about
the ground state of the system in choosing a trial wave function.

The variational method can give a very good estimate of the
energy eigenvalues. But, it does not determine the wave function
accurately. In other words, we cannot take the wave function and,
therefore, the expectation values of other observables calculated with
it seriously. This is because other observables may not satisfy any
minimum theorem (such as the Ritz theorem).

Furthermore, we can also estimate upper bounds on the energy
eigenvalues of the excited states from the variational method. This
is done simply by noting that if we choose, as a trial wave function, a
state which is orthogonal to the ground state wave function, it would
give an upper bound for the energy of the first excited state. By
considering a series of orthogonal states we can, therefore, in principle
determine upper bounds on all the eigenvalues of the Hamiltonian.

10.2 Harmonic oscillator

We have already studied the harmonic oscillator in one dimension in
detail. Let us analyze here the ground state energy of this system
from the point of view of the variational method. The Hamiltonian
for the system has the form (in the coordinate basis)

H = − ~
2

2m

d2

dx2
+

1

2
mω2x2. (10.18)

We are interested in determining the ground state energy of this
system using the variational method and are, therefore, looking for a
trial wave function that reflects all the properties of the true ground
state wave function. Furthermore, it must have a simple enough form
for manipulations (for carrying out computations).

First of all, we recall that the system is invariant under parity,
i.e., if x↔ −x, the Hamiltonian is invariant. Therefore, all solutions
of this system can be classified as even or odd under the parity op-
eration. We are looking for the ground state wave function. In one
dimension, this would correspond to a function without any node.
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Thus, this must be an even function. Furthermore, we are looking
for bound state solutions which vanish at spatial infinity in either
directions. We can, therefore, choose as a trial wave function

ψ(0)
α (x) = e−αx2

, α > 0, (10.19)

which satisfies all of our symmetry requirements and the constant α
corresponds to the variational parameter.

Let us next calculate

〈ψ(0)
α |ψ(0)

α 〉 =
∫

dx ψ(0)∗
α (x)ψ(0)

α (x)

=

∫
dx e−2αx2

=
( π
2α

) 1
2
,

〈ψ(0)
α |V |ψ(0)

α 〉 =
1

2
mω2

∫
dx x2e−2αx2

=
mω2

2

(
−1

2

d

dα

∫
dx e−2αx2

)

= −mω
2

4

d

dα

( π
2α

) 1
2
=
mω2

8α

( π
2α

) 1
2
,

〈ψ(0)
α |T |ψ(0)

α 〉 = −
~
2

2m

∫
dx ψ(0)∗

α (x)
d2

dx2
ψ(0)
α (x)

= − ~
2

2m

∫
dx e−αx2

(−2α + 4α2x2)e−αx2

= − ~
2

2m

∫
dx (−2α + 4α2x2)e−2αx2

=
~
2α

m

( π
2α

) 1
2 − ~

2α

2m

( π
2α

) 1
2

=
~
2α

2m

( π
2α

) 1
2
. (10.20)

Therefore, we obtain

〈ψ(0)
α |H|ψ(0)

α 〉 = 〈ψ0
α|T + V |ψ0

α〉 =
( π
2α

) 1
2

(
~
2α

2m
+
mω2

8α

)
,

or, 〈H〉 = 〈ψ
(0)
α |H|ψ(0)

α 〉
〈ψ(0)

α |ψ(0)
α 〉

=
~
2α

2m
+
mω2

8α
. (10.21)
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The value of the variational parameter α which gives the mini-
mum of the function in (10.21) is determined to be

d〈H〉
dα

= 0,

or,
~
2

2m
− mω2

8α2
= 0,

or, αmin =
mω

2~
. (10.22)

(The other value of the extremum equation leads to an unphysical
solution, namely, a solution that diverges at infinity.) Substituting
this into (10.21), we determine the value of the upper bound for the
ground state energy to be

〈H〉min =
~ω

2
,

ψ(0)
αmin

= e−
mω
2~

x2
. (10.23)

We note that, in this particular example, the ground state energy
comes out exact because of our choice of the form of the trial wave
function in (10.19).

If we want to calculate the energy for the first excited state of
the oscillator using the variational method, we have to choose a wave
function that is orthogonal to the ground state. Furthermore, it must
have one node and vanish at infinity. This leads to the choice of a
wave function of the form

ψ
(1)
β (x) = xe−βx2

, β > 0,
∫

dx ψ
(1)∗
β (x)ψ(0)

αmin
(x) =

∫
dx xe−(αmin+β)x2

= 0. (10.24)

This trial wave function leads to

〈ψ(1)
β |ψ

(1)
β 〉 =

∫
dx ψ

(1)∗
β (x)ψ

(1)
β (x)

=

∫
dx x2e−2βx2

=
1

4β

(
π

2β

)1
2

,

〈ψ(1)
β |V |ψ

(1)
β 〉 =

1

2
mω2

∫
dx x4e−2βx2

=
mω2

2

(
−1

2

d

dβ

(
1

4β

(
π

2β

) 1
2

))
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=
mω2

2
× 1

2
× 1

4
× 3

2β2

(
π

2β

) 1
2

=
3mω2

8β

1

4β

(
π

2β

) 1
2

,

〈ψ(1)
β |T |ψ

(1)
β 〉 = −

~
2

2m

∫
dx xe−βx2 d2

dx2
(xe−βx2

)

= − ~
2

2m

∫
dx (−6βx2 + 4β2x4)e−2βx2

= − ~
2

2m

(
−6β + 4β2 × 3

4β

)
1

4β

(
π

2β

) 1
2

=
3~2β

2m

1

4β

(
π

2β

) 1
2

. (10.25)

Therefore, we obtain,

〈H〉 =
〈ψ(1)

β |T + V |ψ(1)
β 〉

〈ψ(1)
β |ψ

(1)
β 〉

=

[
3~2β

2m
+

3mω2

8β

]
. (10.26)

The value of the variational parameter β which gives the minimum
of this function is determined to be

d〈H〉
dβ

= 0,

or,
3~2

2m
− 3mω2

8β2
= 0,

or, βmin =
mω

2~
, (10.27)

which leads, from (10.26), to

〈H〉min = E1 =
3~ω

2
, (10.28)

and serves as an upper bound for the energy of the first excited state.
We see, again, that we get the exact eigenvalue for the first excited
state because of our choice of the trial wave function in (10.24).

Let us now examine how different a bound we would have ob-
tained for the ground state had we chosen a different form for the
trial wave function. Let us choose as the trial wave function for the
ground state (which satisfies all the symmetry properties)

ψ(0)
α (x) =

1

x2 + α
, α > 0. (10.29)

         
48:11.



10.2 Harmonic oscillator 267

This leads to

〈ψ(0)
α |ψ(0)

α 〉 =
∫

dx ψ(0)∗
α (x)ψ(0)

α (x) =

∫
dx

1

(x2 + α)2

= 2πi× 1

4iα
√
α

=
π

2α
√
α
,

〈ψ(0)
α |V |ψ(0)

α 〉 =
1

2
mω2

∫
dx

x2

(x2 + α)2

=
1

2
mω2

∫
dx

[
x2 + α− α
(x2 + α)2

]

=
1

2
mω2

[∫
dx

1

x2 + α
− α

∫
dx

1

(x2 + α)2

]

=
1

2
mω2

[
π√
α
− α× π

2α
√
α

]

=
mω2α

2

π

2α
√
α
,

〈ψ(0)
α |T |ψ(0)

α 〉 = −
~
2

2m

∫
dx

1

x2 + α

d2

dx2

(
1

x2 + α

)

= − ~
2

2m

∫
dx

[
−2 + 8x2

x2 + α

]
1

(x2 + α)3

= − ~
2

2m

∫
dx

[
6− 8α

x2 + α

]
1

(x2 + α)3

= − ~
2

2m

[
6× 2πi× 1

2!
(−3)(−4) 1

(2i
√
α)5

−8α× 2πi × 1

3!
(−4)(−5)(−6) × 1

(2i
√
α)7

]

= − ~
2

2m

[
9π

4α2
√
α
− 5π

2α2
√
α

]

=
~
2

4mα

π

2α
√
α
. (10.30)

As a result, we obtain

〈H〉 = 〈ψ
(0)
α |T + V |ψ(0)

α 〉
〈ψ(0)

α |ψ(0)
α 〉

=
~
2

4mα
+
mω2α

2
. (10.31)
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The minimum of this function occurs at a value of α

d〈H〉
dα

= 0,

or, − ~
2

4mα2
+
mω2

2
= 0,

or, αmin =
~

mω
√
2
, (10.32)

which, in turn, gives

〈H〉min =
~
2

4m

mω
√
2

~
+
mω2

2

~

mω
√
2

=
~ω√
2
=
√
2E0. (10.33)

As noted earlier, this is larger than the exact value of the ground
state energy.

Exercise. Calculate 〈x〉, 〈x2〉and 〈x4〉 in this state and compare with the actual
result for these in the ground state of the oscillator.

10.3 Hydrogen atom

Earlier we studied the exact solution of the hydrogen atom. Let us
next calculate the ground state energy of the hydrogen atom using
the variational method. The Hamiltonian for the hydrogen atom, in
the center of mass frame, has the form (see (9.25))

H = − ~
2

2µ
∇

2 − e2

r
. (10.34)

Here we can think of µ as the mass of the electron if we assume the
proton to be infinitely heavy. Otherwise, it can be thought of as the
reduced mass of the system. First of all, we note that rotation is a
symmetry of the system and, therefore, angular momentum is a con-
served quantity. Furthermore, expanding ∇

2 in terms of spherical
coordinates (see (8.9)), we note that a non-vanishing angular mo-
mentum gives rise to a centrifugal barrier. Therefore, for states with
nonzero angular momentum, binding must be weaker. The ground
state is, of course, the most tightly bound. Therefore, the angular
momentum for this state must be zero so that it must be completely
spherically symmetric and hence can only depend on the radial coor-
dinate.
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Let us choose as our trial wave function

ψ(0)
α (r) = e−αr2 , α > 0, for bound state. (10.35)

This wave function satisfies all the symmetry requirements of the
ground state of the hydrogen atom (and it is different from the true
ground state wave function of the system), where α represents a vari-
ational parameter. Using the basic integral,

∫ ∞

0
dxxn e−αx2

=
Γ(n+1

2 )

2α
n+1
2

, Γ(
1

2
) =
√
π, (10.36)

we obtain,

〈ψα|ψα〉 =
∫

d3r ψ(0)∗
α (r)ψ(0)

α (r)

= 4π

∫ ∞

0
dr r2e−2αr2 = 4π

Γ(32)

2(2α)
3
2

= 4π
1

4

1

2α

√
π

2α
=
( π
2α

) 3
2
,

〈ψα|V |ψα〉 =
∫

d3r ψ(0)∗
α (r)

(
−e

2

r

)
ψ(0)
α (r)

= −4πe2
∫ ∞

0
dr r2

1

r
e−2αr2

= −4πe2
∫ ∞

0
dr re−2αr2

= −4πe2 Γ(1)

2(2α)
= −πe

2

α

= −2e2
(
2α

π

)1
2 ( π

2α

) 3
2
,

〈ψα|T |ψα〉 = −
~
2

2µ

∫
d3r ψ(0)∗

α (r)

(
1

r2
d

dr
r2

d

dr
ψ(0)
α (r)

)

= −4π~2

2µ

∫ ∞

0
dr r2e−αr2

(
1

r2
d

dr
(−2αr3e−αr2)

)

= −4π~2

2µ

∫ ∞

0
dr (−6αr2 + 4α2r4)e−2αr2

= −4π~2

2m

(
−6α Γ

(
3
2

)

2(2α)
3
2

+ 4α2 Γ
(
5
2

)

2(2α)
5
2

)
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= −4π~2

2µ

(
−3α

2

√
π

(2α)
3
2

+
3α

4

√
π

(2α)
3
2

)

=
3~2α

2µ

( π
2α

) 3
2
, (10.37)

which yields

〈H〉 = 〈ψα|T + V |ψα〉
〈ψα|ψα〉

=
3~2α

2µ
− 2e2

√
2α

π
. (10.38)

The minimum of this occurs for a value of α determined to be

3~2

2µ
− e2

√
2

πα
= 0,

or, αmin =
8

9π

(
µe2

~2

)2

=
8

9π

1

a20
, (10.39)

where a0 is the Bohr radius defined in (9.77), so that we have

〈H〉min =
3~2

2µ

8

9π

(
µe2

~2

)2

− 2e2
√

2

π

√
8

9π

µe2

~2

=
4

3π

(
µe4

~2

)
− 2

4

3π

µe4

~2
= − 4

3π

µe4

~2

= −µe
4

2~2
8

3π
≃ −0.85Ry. (10.40)

This again gives us an energy which is slightly higher than the
ground state energy. Thus, we see that the variational method gives
us a very good approximation to the ground state energy. The draw-
back of the variational method is that although it gives us an upper
bound, we have no way of knowing how close the bound is to the
true eigenvalue, in the absence of experimental results. For exam-
ple, let us consider the one dimensional case of a particle moving in
a λx4 potential, also known as the quartic potential (λ > 0). The
Hamiltonian has the form

H = − ~
2

2m

d2

dx2
+ λx4. (10.41)

This system is invariant under parity. The ground state, which has no
node, must be an even function. And we choose a trial wave function
for the ground state of the form

ψ(0)
α (x) = e−αx2

, α > 0, (10.42)
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where α is a variational parameter. Using (10.36), we obtain,

〈ψα|ψα〉 =
∫

dx ψ(0)∗
α ψ(0)

α =

∫ ∞

−∞
dx e−2αx2

= 2
Γ(12)

2(2α)
1
2

=

√
π

2α
,

〈ψα|V |ψα〉 = λ

∫
dx x4e−2αx2

=
λΓ
(
5
2

)

(2α)
5
2

=
3

4

λ

4α2

√
π

2α

=
3λ

16α2

√
π

2α
,

〈ψα|T |ψα〉 = −
~
2

2m

∫
dx e−αx2 d

dx
(−2αxe−αx2

)

= − ~
2

2m

∫
dx (−2α+ 4α2x2)e−2αx2

=
~
2α

2m

√
π

2α
, (10.43)

so that we have

〈H〉 = ~
2α

2m
+

3λ

16α2
. (10.44)

The minimum of the expectation value of the Hamiltonian oc-
curs for

~
2

2m
− 3λ

8α3
= 0, or, αmin =

(
3mλ

4~2

) 1
3

. (10.45)

For this value of the parameter, the expectation value of the Hamil-
tonian gives

〈H〉min =
~
2

2m
αmin +

3λ

16α2
min

= αmin

(
~
2

2m
+

3λ

16α3
min

)
=

3~2

4m
αmin

=
3~2

4m

(
3mλ

4~2

)1
3

=
3

8

(
6λ~4

m2

)1
3

. (10.46)
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As we have discussed, this is expected to give an upper bound on
the ground state energy of the system. Furthermore, positivity of the
energy leads to

3

8

(
6λ~4

m2

) 1
3

≥ E0 ≥ 0. (10.47)

However, we have no way of knowing how close this bound is to the
actual ground state energy.

10.4 Ground state of helium

The nucleus of a helium atom consists of two protons and two neu-
trons. There are two electrons in orbit around the nucleus. Thus, for
all practical purposes, we can neglect the motion of the nucleus, i.e.,
assume it to be infinitely heavy. An idealized classical picture of the
system can be given as shown in Fig. 10.1.

2e

−e

−e

r1

r2

r12

Figure 10.1: A schematic diagram for the two electrons in the ground
state of the Helium atom.

Therefore, the Hamiltonian for the system can be written, in the
coordinate representation, as

H = − ~
2

2m

(
∇

2
1 +∇

2
2

)
− 2e2

r1
− 2e2

r2
+
e2

r12
. (10.48)

Here r1 and r2 are the coordinates of the two electrons (with the
nucleus assumed to be at the coordinate origin) and r12 = |r1− r2| is
the distance between them. Thus, in addition to the attractive force
between the electrons and the nucleus, there is also repulsion between
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the two electrons. Here, m denotes the mass of the electron. (Let
us note here parenthetically that we are assuming the two electrons
to be distinguishable, which they are not. However, as long as we
are dealing with the ground state of a two electron system, Pauli
exclusion principle tells us that their spins must point in opposite
directions. Thus, we can treat them effectively as distinguishable.
We are also neglecting the spin-orbit coupling for the present and
will talk about it later.)

This atomic system is only slightly more complex than the hy-
drogen atom and yet it cannot be solved analytically. Consequently,
this system has been studied quite extensively by variational tech-
niques so as to draw clues for handling more complex atoms. Let us
generalize the system slightly, i.e., rather than assuming the nuclear
charge to be 2e, we consider an arbitrary nucleus of charge Ze so that
the Hamiltonian becomes

H = − ~
2

2m

(
∇

2
1 +∇

2
2

)
− Ze2

r1
− Ze2

r2
+
e2

r12
. (10.49)

Furthermore, let us ignore the repulsion term for the moment. The
system, then, is equivalent to two hydrogenic atoms, i.e., the Hamil-
tonian is a direct sum of the Hamiltonians for two hydrogenic atoms
with nuclear charge Ze. Thus, we can write the ground state wave
function for the system to be

ψ0(r1, r2) = ψ0(r1)ψ0(r2). (10.50)

We also know from our study of the hydrogen atom that, in this case
(The simplest recipe for going from the solution of the hydrogen atom
to that of a hydrogenic atom is to let e2 → Ze2.),

ψ0(r1) =

(
Z3

πa30

) 1
2

e
−Zr1

a0 ,

ψ0(r2) =

(
Z3

πa30

) 1
2

e
−Zr2

a0 , (10.51)

where a0 =
~
2

me2
is the Bohr radius. These are the ground state wave

functions for two hydrogenic atoms with nuclear charge Ze and we
obtain from (10.50)

ψ0(r1, r2) = ψ0(r1)ψ0(r2) =
Z3

πa30
e
− Z

a0
(r1+r2). (10.52)
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We note that, by construction, the individual states in (10.51) as well
as the product state in (10.52) are normalized.

The ground state energy for the system, in this case, is the sum
of the ground state energies of the two hydrogenic atoms (in the
absence of the mutual repulsion) which can be calculated using the
definition of the gamma function

∫ ∞

0
dxxn e−αx =

Γ(n+ 1)

αn+1
=

n!

αn+1
, (10.53)

so that (the wave function ψ0(r2) integrates to unity since it is nor-
malized)

∫
d3r1 ψ

∗
0(r1)

(
− ~

2

2m
∇

2
1ψ0(r1)

)

= −4π~2

2m

Z3

πa30

∫
dr1 r

2
1e

−Zr1
a0

(
1

r21

d

dr1

(
r21

d

dr1
e
−Zr1

a0

))

= −4π~2

2m

Z3

πa30

∫
dr1

[
−2Zr1

a0
+
Z2

a20
r21

]
e
− 2Zr1

a0

= −2~2Z3

ma30

(
− a0
2Z

+
a0
8Z
× 2!

)

= −2~2Z3

ma30

(
− a0
4Z

)
=

~
2Z2

2ma20
= Z2

(
me4

2~2

)
,

∫
d3r1 ψ

∗
0(r1)

(
−Ze

2

r1

)
ψ0(r1)

= −Ze24π Z
3

πa30

∫
dr1 r

2
1

1

r1
e
− 2Zr1

a0

= −4Z4e2

a30

∫
dr1 r1e

− 2Zr1
a0

= −4Z4e2

a30

( a0
2Z

)2
= −Z

2e2

a0
= −Z

2me4

~2

= −2Z2

(
me4

2~2

)
. (10.54)

The expectation values of the second terms will contribute an iden-
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tical amount, leading to the ground state energy

E0 = 2
(
Z2 − 2Z2

)(me4
2~2

)

= −2Z2

(
me4

2~2

)
= −2Z2Ry. (10.55)

Thus, if we take the helium atom and neglect the mutual repul-
sion of the two electrons, the ground state energy follows from (10.55)
to be

E0 = −2(2)2Ry = −8Ry = −108.8 eV, (10.56)

where we are using Z = 2 for helium and Ry = 13.6 eV. However,
the measured value of the ground state energy of helium is −78.6 eV.
(The ground state energy is the same as the binding energy or ion-
ization energy and can be easily measured.) Therefore, comparing
with (10.56), we conclude that the mutual repulsion between the two
electrons contributes a significant part to the ground state energy. To
calculate its effect, we use the variational technique in the following
way. First of all, we would like a trial wave function with no angular
momentum, since the ground state has the maximum binding. Fur-
thermore, physical intuition tells us that even though the nucleus has
a charge of 2e, the electrons probably see a much smaller charge be-
cause part of the nuclear charge would be screened by the electrons.
Thus, we use as a trial wave function

ψ0(r1, r2) =
Z3

πa30
e
− Z

a0
(r1+r2), (10.57)

where we let Z be the variational parameter which would determine
the effective charge of the nucleus seen by the electrons. We can cal-
culate the expectation value of the various terms in the Hamiltonian

H = − ~
2

2m

(
∇

2
1 +∇

2
2

)
− 2e2

r1
− 2e2

r2
+
e2

r12
, (10.58)

in this state. We have already calculated, in this state, the expecta-
tion values of the kinetic energy terms as well as the attractive po-
tential energy terms in (10.54) (we have to make appropriate changes
for the coefficients of the attractive potentials.). Therefore, we only
have to evaluate the expectation value of the mutual repulsion term
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in this state.

∫∫
d3r1d

3r2 ψ
∗
0(r1, r2)

e2

r12
ψ0(r1, r2)

=

(
Z3

πa30

)2

e2
∫∫

d3r1d
3r2 e

− 2Zr1
a0

1

r12
e
− 2Zr2

a0 . (10.59)

To evaluate this, let us, first of all, scale all coordinates as

r1 →
2Z

a0
r1,

r2 →
2Z

a0
r2. (10.60)

Then, the integral in (10.59) becomes

=

(
Z3

πa30

)2

e2
∫∫

d3r1d
3r2

( a0
2Z

)3 ( a0
2Z

)3
e−r1

1

r12

2Z

a0
e−r2

=
Ze2

32π2a0

∫∫
d3r1d

3r2 e
−r1

1

r12
e−r2 . (10.61)

The integral can be thought of as the interaction energy of the
charge densities ρ(r1) = e−r1 and ρ(r2) = e−r2 interacting through
a Coulomb potential. This can be evaluated by calculating the po-
tential due to the first distribution by integrating over d3r1 and then
calculating the energy of the second distribution in the field of the
first. The potential due to the first distribution can be calculated in
the following way.

Let us consider a spherical shell of radius r1 and thickness dr1.
The total charge contained in this shell is

4πr21e
−r1dr1. (10.62)

The potential due to this charge at a point r is given by

4πr21e
−r1dr1

1
r1

if r ≤ r1,
4πr21e

−r1dr1
1
r

if r ≥ r1.
(10.63)

Namely, the potential is a constant within the shell and the charge
behaves as if it were at the origin for points outside the shell. Thus,
the potential due to the complete distribution can be obtained by
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integrating over the contributions due to all possible shells,

Φ(r) =

∫ r

0
4πr21e

−r1dr1
1

r
+

∫ ∞

r

4πr21e
−r1dr1

1

r1

=
4π

r

∫ r

0
dr1r

2
1e

−r1 + 4π

∫ ∞

r

dr1r1e
−r1

=
4π

r

(
−r2e−r − 2re−r − 2e−r + 2

)

+ 4π
(
re−r + e−r

)

=
4π

r

(
2− e−r(r + 2)

)
. (10.64)

As a result, the mutual interaction energy, (10.61), becomes

Ze2

32π2a0

∫
d3r2 Φ(r2)e

−r2

=
Ze2

32π2a0
4π

∫ ∞

0
r22dr2

4π

r2

(
2− e−r2(r2 + 2)

)
e−r2

=
Ze2

2a0

∫ ∞

0
dr2

[
2r2e

−r2 − e−2r2
(
r22 + 2r2

)]

=
Ze2

2a0

[
2− 1

4
− 1

2

]
=

5Ze2

8a0
=

5Z

4

(
me4

2~2

)
, (10.65)

which represents the expectation value of the repulsive potential in
this state. (Another way to evaluate this integral is to expand 1

r12
in

terms of Legendre polynomials and use the orthonormality relations
between them.)

Therefore, we can write the expectation value of the total Hamil-
tonian in this state to be (Note that we are evaluating the expectation
value of the helium Hamiltonian in (10.48) (or (10.58)) without the
factor of Z in the attractive potential terms which is the reason for
the form of the second term.)

〈H〉 = 2

(
Z2 − 4Z +

5

8
Z

)
me4

2~2
. (10.66)

The minimum of this function occurs for

2Z − 4 +
5

8
= 0, or, Zmin = 2− 5

16
=

27

16
. (10.67)
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The ground state energy for this value of the variational parameter
turns out to be

〈H〉min = 2Zmin

(
Zmin − 4 +

5

8

)
me4

2~2

= −2Z 2
min

me4

2~2

= −2
(
27

16

)2

Ry

≃ −77.5 eV. (10.68)

This serves as an upper bound on the ground state energy of helium
and we see that this is quite close to the observed value for the ground
state energy. Furthermore, we see that the electrons screen the charge
of the nucleus so that the effective charge seen by each of the electrons
is ≃ 1.7e.

10.5 Selected problems

1. A hydrogen atom is placed in a uniform electric field of strength
E along the z-direction. Choose as a trial wave function

ψα(x, y, z) =

(
1

πa30

)1
2

(1 + αz)e
− r

a0 , (10.69)

where r is the radial coordinate and a0, the Bohr radius. Cal-
culate the bound on the ground state energy using this wave
function. Can you justify the choice of this wave function? (Ne-
glect higher powers than E2. Note that this is the second order
Stark effect in Hydrogen.)

2. A particle of mass m moves in a one dimensional potential of
the form

V (x) =

{
0 for 0 ≤ x ≤ a,
∞ everywhere else.

(10.70)

Inside the well, it is subjected to another potential of the form
A(x − a

2 ) where A is a constant. What is the change in the
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ground state energy of the particle due to this additional po-
tential? (Keep terms only up to A2. Can you guess the trial
wave function from the previous problem?)

3. Calculate the variational bound on the ground state energy of
the Hydrogen atom using the trial wave function

ψα(r) =

{ (
1− r

α

)
r ≤ α,

0 r ≥ α. (10.71)

How is αmin related to the Bohr radius?
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Chapter 11

WKB approximation

In the following lectures, we will study another very powerful approx-
imation method, known as the WKB approximation, that is used in
studying quantum mechanical systems subjected to complicated po-
tentials.

11.1 WKB method

WKB approximation is a very powerful method for obtaining approx-
imate solutions to differential equations where the highest derivative
term is multiplied by a small parameter. The method was known
to Green and Liouville in the early nineteenth century (1837). It
was rediscovered in the context of quantum mechanics by Wentzel,
Kramers, Brillouin and Jeffreys (1926). Hence the name WKB(J).

The method gives an approximate solution of the Schrödinger
equation, no matter how complicated the potential is. It is mostly
used in the study of one dimensional systems. However, in higher
dimensions, if there is rotational symmetry, then, the method can be
applied to the radial equation as well. The idea behind the method
is very simple. Consider the Schrödinger equation in one dimension
(note that ~ is a small parameter that multiplies the second derivative
term)

(
− ~

2

2m

d2

dx2
+ V

)
ψ = Eψ,

or,
d2ψ

dx2
+

2m

~2
(E − V )ψ = 0. (11.1)

Let us assume that E > V and define

k2 =
2m

~2
(E − V ) ≡ p2

~2
. (11.2)
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If the potential V is a constant, then, clearly the solutions of equation
(11.1),

d2ψ

dx2
+ k2ψ = 0, (11.3)

are given by plane waves,

ψ(x) = ψ(0)e±ikx = ψ(0)e±
i
~
px, p = ~k. (11.4)

Thus, the solution, in general, is a superposition of plane waves. We
note that the de Broglie wavelength associated with the motion is

λ =
2π~

p
. (11.5)

and the phase change of the solution, (11.4), per unit length is a
constant p

~
.

Let us next suppose that the potential, rather than being a
constant, varies slowly. Then, within a region, small compared to the
distance over which the potential varies, one can still think of the
solution as representing plane waves with wavelength

λ(x) =
2π~

p(x)
=

2π~

[2m(E − V (x))]
1
2

. (11.6)

The phase shift per unit length p(x)
~

is no longer a constant and the
accumulated phase shift between x = 0 and x is given by

x∫

0

dx′
p(x′)
~

. (11.7)

Thus, the solution can now be represented by

ψ(x) = ψ(0) e
± i

~

x
∫

0

dx′p(x′)

= ψ(x0) e
± i

~

x
∫

x0

dx′p(x′)
. (11.8)

All of this is, of course, valid if the wavelength does not change
rapidly. That is, this will be true if the change in the wavelength over
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a cycle is small compared to the wavelength itself, namely,
∣∣∣∣
δλ

λ

∣∣∣∣≪ 1,

or,

∣∣∣∣∣
dλ
dx λ

λ

∣∣∣∣∣≪ 1,

or,

∣∣∣∣
dλ

dx

∣∣∣∣≪ 1. (11.9)

Thus, intuitively, we expect that if the potential, no matter how
complicated it is in form, changes very slowly, the general solution
will be of the form derived above. Let us now derive things more
rigorously.

We are trying to solve the equation

d2ψ

dx2
+
p2

~2
ψ = 0, p2 = 2m(E − V (x)). (11.10)

The general solution of this equation would have the form

ψ(x) = f(x)eig(x), (11.11)

where f(x) and g(x) are some functions of x (not necessarily real).
Noting that, we can write

f(x) = eln f(x), (11.12)

for non-negative f(x), we see that we can always write the solution
of (11.10) in the form

ψ(x) = e
i
~
φ(x), (11.13)

where we have identified

φ(x) = ~(g(x) − i ln f(x)), (11.14)

with φ(x), in general, assumed to be complex.
If we substitute the form of the solution in (11.14) into the

differential equation, (11.10), we have
((

iφ′

~

)2

+
iφ′′

~
+
p2

~2

)
e

i
~
φ(x) = 0,

or, −
(
φ′

~

)2

+
iφ′′

~
+
p2

~2
= 0. (11.15)
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It is clear now that, for this to be true, φ(x) must depend on ~ as
well. Therefore, we expand φ(x) in powers of ~ as

φ(x) = φ0(x) + ~φ1(x) + ~
2φ2(x) + · · · . (11.16)

Substituting this back into equation (11.15) and keeping terms only
of order ~−2 and ~

−1, we have

− φ′20
~2

+
p2(x)

~2
+
iφ′′0
~
− 2φ′0φ

′
1

~
= 0,

or,
1

~2

(
−φ′20 + p2(x)

)
+
i

~

(
φ′′0 + 2iφ′0φ

′
1

)
= 0. (11.17)

Equating the coefficient of the lowest power of ~ in (11.17) to
zero, we obtain

−φ′20 + p2(x) = 0 or φ0(x) = ±
x∫
dx′ p(x′). (11.18)

This is, of course, consistent with our intuitive classical result, since
in the classical limit, ~→ 0,

lim
~→0

φ(x) = φ0(x),

or, lim
~→0

ψ(x) = e
i
~
φ0(x) = e±

i
~

x
∫

dx′p(x′). (11.19)

However, if we do not set ~ = 0 in the expansion of φ(x) in
(11.16), but rather keep the next order term, then, this is known as
the WKB approximation (also known as the semi-classical approxi-
mation). Once we have solved for φ0, the next order term, φ1, can be
determined by setting the coefficient of terms of order ~−1 in (11.17)
equal to zero. Thus,

φ′′0 + 2iφ′0φ
′
1 = 0,

or, φ′1 =
i

2

φ′′0
φ′0

=
i

2
(ln φ′0)

′. (11.20)

Integrating this, we obtain,

φ1 =
i

2
lnφ′0 + C = i ln(p(x))

1
2 + C, (11.21)

where we have kept the positive root of (11.18) so that the logarithm
is defined. Therefore, to this order, we have

φ = φ0(x) + ~φ1(x)

= ±
∫

dx′ p(x′) + i~ ln(p(x))
1
2 + ~C, (11.22)
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so that the solution, to this order, becomes

ψ(x) = A e
± i

~

x
∫

x0

dx′p(x′)−ln(p(x))
1
2

=
A

(p(x))
1
2

e
± i

~

x
∫

x0

dx′p(x′)
. (11.23)

The constant A can be determined by noting that

ψ(x0) =
A

(p(x0))
1
2

or A = ψ(x0)(p(x0))
1
2 , (11.24)

and we can write,

ψ(x) = ψ(x0)
(p(x0))

1
2

(p(x))
1
2

e
± i

~

x
∫

x0

dx′p(x′)

. (11.25)

This is the WKB solution of the Schrödinger equation and is
valid only if the potential changes slowly with respect to space. In
fact, the WKB solution would be accurate if the successive terms in
the expansion in

φ(x) = φ0(x) + ~φ1(x) + · · ·

drop off fast. In particular, we should have
∣∣∣∣
~φ1
φ0

∣∣∣∣≪ 1. (11.26)

Since |φ0(x)| is a monotonically increasing function of x, unless p(x) =

0, a small ratio |~φ1

φ0
| also implies that |~φ

′
1

φ′
0
| is small. This, therefore,

suggests that
∣∣∣∣
~φ′1
φ′0

∣∣∣∣ =
∣∣∣∣
~p′

2p2

∣∣∣∣ =
1

4π

∣∣∣∣
dλ

dx

∣∣∣∣≪ 1, (11.27)

where we have used λ = 2π~
p
. This, of course, agrees with our earlier

intuitive result in (11.9).
In our derivation we assumed that E > V (x). However, if

V (x) > E, then, everything goes through in a parallel manner. In
fact, the WKB solution, in this case, can be obtained from (11.25)
simply by letting

p(x)→ ±i|p(x)|, (11.28)
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so that for, V (x) > E, we have

ψ(x) = ψ(x0)
|p(x0)|

1
2

|p(x)| 12
e
± 1

~

x
∫

x0

dx′|p(x′)|
, (11.29)

where |p(x)| = [2m(V (x)− E)]
1
2 .

We should note, from (11.25) and (11.29), that the WKB ap-
proximation breaks down at the classical turning points, i.e., at points
where E = V (x). This can be seen simply from the fact that, at such
points, p(x) = 0 and, as a result, the solution blows up. The physical
reason for this breakdown is obvious. In this limit, the de Broglie
wavelength becomes infinite and our assumption that the potential
changes only slowly over a wavelength is no longer true.

Before, talking about the connection formulae at the turning
points, let us see how the WKB method fits into the path integrals
(which we discuss in chapter 17). From the path integral formulation,
we know that

ψ(x, t) =

∫
dx′U(x, t;x′, t′)ψ(x′, t′), (11.30)

where

U(x, t;x′, t′) =
∫
Dx e i

~
S[x]. (11.31)

In the classical limit, ~→ 0 (see chapter 17),

U(x, t;x′, t′) = Ae
i
~
S[xcl]

= Ae

i
~

t
∫

t′
dt′′L(xcl(t

′′),ẋcl(t
′′))

= Ae

i
~

t
∫

t′
dt′′(T−V )

= Ae

i
~

t
∫

t′
dt′′(2T−E)

, (11.32)

where A is a normalization constant.
Since the energy of the system is constant, the second term

becomes (− i
~
E(t− t′)). Furthermore, recalling that

T =
p2

2m
, p = m

dx

dt
, (11.33)
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we obtain,

t∫

t′

dt′′ 2T =
1

m

t∫

t′

dt′′ pm
dx′′

dt′′
=

x∫

x′

dx′′ p, (11.34)

so that, we have

U(x, t;x′, t′) = Ae

i
~

x
∫

x′
dx′′p

e−
i
~
E(t−t′). (11.35)

Substituting this into (11.30), we get

ψ(x, t) = A

∫
dx′ e

i
~

x
∫

x′
dx′′p

ψ(x′, t′) e−
i
~
E(t−t′). (11.36)

Noting that ψ(x, t) = ψ(x)e−
i
~
Et, for stationary states, we obtain

ψ(x) = A

∫
dx′ e

i
~

x
∫

x′
dx′′p

ψ(x′)

= A

∫
dx′ e

i
~

x0
∫

x′
dx′′p+ i

~

x
∫

x0

dx′′p

ψ(x′)

= e

i
~

x
∫

x0

dx′′p
A

∫
dx′ e

i
~

x0
∫

x′
dx′′p

ψ(x′)

= e

i
~

x
∫

x0

dx′′p
ψ(x0). (11.37)

This is, of course, the classical limit of the solution in (11.19). To
obtain the terms of the order of 1√

p
we have to evaluate the transition

amplitude keeping terms next to the leading order.

11.2 Connection formulae

When we have a particle moving in a potential, we can divide the
entire space into various regions depending on the energy of the par-
ticle. For the example of the potential shown in Fig. 11.1, there are
three regions. In regions I and III, V (x) > E and hence we should
have a damped wave function which vanishes at x→ ±∞. The WKB
approximation gives the wave function, in region I, to be (see (11.29))

ψI(x) =
A

|p(x)| 12
e
− 1

~

xa
∫

x

dx′ |p(x′)|
, for x < xa. (11.38)
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xa xb

I II III

E

V (x)

Figure 11.1: A particle with energy E moving in an arbitrary poten-
tial.

In region II, xa < x < xb, on the other hand, we have from (11.25)

ψII(x) =
B

(p(x))
1
2

e

i
~

x
∫

xa

dx′p(x′)
+

C

(p(x))
1
2

e
− i

~

x
∫

xa

dx′p(x′)
, (11.39)

while, in the classically inaccessible region III, we have

ψIII(x) =
D

|p(x)| 12
e
− 1

~

x
∫

xb

dx′|p(x′)|
, x > xb. (11.40)

Here, A,B,C,D are normalization constants and xa, xb denote the
classical turning points. From our study of the Schrödinger equation,
we know that the wave function must be continuous across a bound-
ary. This continuity, in addition to giving the physical conservation
of particles, also leads to the quantization of energy levels in the case
of bound states. If we take the WKB wave functions, however, we
see that the wave functions blow up at the classical turning points
or at the boundary. Thus, in the present form, there is no way to
implement the idea of the matching of solutions in different regions.

Of course, the original Schrödinger equation has smooth solu-
tions at these points as can be seen from the following.

d2ψ

dx2
+
p2

~2
ψ = 0.

The coefficients of all the terms in this equation are smooth in the
limit p→ 0 and hence the solution has to be smooth also. Therefore,
the pathology that we encounter in the WKB wave function is a
consequence of our approximation scheme. In fact, because

p(x) = [2m(E − V (x))]
1
2 ,
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we note that whereas the solutions of the Schrödinger equation are
single valued, the WKB solution is multivalued. The difficulty arises
because we are trying to approximate a single valued function by
multivalued functions. In fact, the question of matching now becomes
even more critical because, besides handling the divergence of the
wave function, we also have to make sure that the solutions to be
matched in the two regions correspond to the same branch. The
approach one takes here is to solve the Schrödinger equation exactly
in a small region around the turning point and derive the correct
prescription for matching.

xa

V (x)

E

Figure 11.2: An infinitesimal region near the classical turning point
x = xa.

Let us consider one of the turning points first and study the
Schrödinger equation in the transition region (shaded area) near x =
xa shown in Fig. 11.2. In this region, we would like to solve the
equation,

d2ψ

dx2
+ k2ψ = 0, (11.41)

where k = p
~
. Let us now define a new function

v(x) =
√
k(x)ψ(x), (11.42)

so that

ψ(x) =
1√
k
v,

dψ

dx
= − 1

2k
3
2

dk

dx
v +

1√
k

dv

dx
,

d2ψ

dx2
=

3

4k
5
2

(
dk

dx

)2

v − 1

2k
3
2

d2k

dx2
v − 1

2k
3
2

dk

dx

dv

dx
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− 1

2k
3
2

dk

dx

dv

dx
+

1√
k

d2v

dx2
(11.43)

=
1√
k

[
d2v

dx2
− 1

k

dk

dx

dv

dx
+

(
3

4k2

(
dk

dx

)2

− 1

2k

d2k

dx2

)
v

]
.

Thus, the equation satisfied by v is obtained from (11.41)-(11.43) to
be

d2v

dx2
− 1

k

dk

dx

dv

dx
+

[
3

4k2

(
dk

dx

)2

− 1

2k

d2k

dx2
+ k2

]
v = 0. (11.44)

Furthermore, let us change variables to

x→ y =

x∫
dx′k(x′), (11.45)

so that we have

dy

dx
= k(x),

dv

dx
=

dy

dx

dv

dy
= k

dv

dy
,

d2v

dx2
=

dy

dx

(
dk

dy

dv

dy
+ k

d2v

dy2

)
= k

dk

dy

dv

dy
+ k2

d2v

dy2
,

dk

dx
=

dy

dx

dk

dy
= k

dk

dy
,

d2k

dx2
=

dy

dx

((
dk

dy

)2

+ k
d2k

dy2

)
= k

(
dk

dy

)2

+ k2
d2k

dy2
. (11.46)

In terms of these variables, then, equation (11.44) becomes

k2
d2v

dy2
+

[
3

4

(
dk

dy

)2

− 1

2k

(
k

(
dk

dy

)2

+ k2
d2k

dy2

)
+ k2

]
v = 0,

or,
d2v

dy2
+

[
1

4k2

(
dk

dy

)2

− 1

2k

d2k

dy2
+ 1

]
v = 0. (11.47)

So far, everything has been exact. We now make an approxima-
tion. Let us assume that the potential is slowly varying so that, near
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the turning point, it can be approximated by a linear term. That is,
near x ≈ xa, let

V (x) ≃ V (xa)− α(x− xa)

= E − α(x− xa), α = −V ′(xa) > 0. (11.48)

Furthermore, we can choose xa to be the origin of the coordinate
system so that x measures the distance from the turning point. Thus,
near the turning point x = xa, we can write

k =
p

~
=

[
2m

~2
(E − V (x))

] 1
2

≃




cx

1
2 for x > 0 where E > V,

c|x| 12 e iπ
2 for x < 0 where E < V.

(11.49)

Here, the constant c is equal to

c =

[
2mα

~2

] 1
2

. (11.50)

It is easy to see that, near the turning point, (for both positive
and negative x)

y =

x∫

0

dx′ k(x′) =
2

3c2
k3, (11.51)

so that, we have

dy

dk
=

2

c2
k2,

or,
dk

dy
=
c2

2

1

k2
, (11.52)

which leads to

d2k

dy2
= −c2 1

k3
dk

dy
= −c

4

2

1

k5
. (11.53)

Putting the relations in (11.52) and (11.53) back into (11.47), we
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obtain, in this approximation,

d2v

dy2
+

[
1

4k2
c4

4k4
− 1

2k

(
−c

4

2

1

k5

)
+ 1

]
v = 0,

or,
d2v

dy2
+

[
5c4

16k6
+ 1

]
v = 0,

or,
d2v

dy2
+

[
1 +

5

36y2

]
v = 0. (11.54)

This equation is related to the spherical Bessel equation in the
following way. We know that the spherical Bessel functions, jℓ, satisfy

d2jℓ
dy2

+
2

y

djℓ
dy

+

[
1− ℓ(ℓ+ 1)

y2

]
jℓ = 0. (11.55)

If we define uℓ(y) = yjℓ(y), then it follows from (11.55) that

d2uℓ
dy2

+

[
1− ℓ(ℓ+ 1)

y2

]
uℓ = 0. (11.56)

Comparing with (11.44), we see that the equation satisfied by v is
exactly the same as (11.56) with

ℓ(ℓ+ 1) +
5

36
= 0,

or, ℓ = −1

6
, −5

6
. (11.57)

Furthermore, recalling that

jℓ(y) =

(
π

2y

) 1
2

Jℓ+ 1
2
(y), (11.58)

we have, for x > 0 (namely, y real),

ψ±
II =

1√
k
v± =

Aℓ√
k
yjℓ(y),

= A±
1√
k

√
ξ1J± 1

3
(ξ1), (11.59)

where we have used (11.50), (11.51) (as well as ℓ = −1
6 , −5

6) and have

defined ξ1 = y = 2c
3 x

3
2 which is real for x > 0. We have absorbed the

factor of
√

π
2 into the normalization constant and note, from (11.50),
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that k = cx
1
2 . The superscripts ± correspond to the two independent

solutions of the Bessel equation. Note that asymptotically, as y →∞,

jℓ(y) −→ e±iy. (11.60)

Similarly, in region I, where y is complex (x < 0), we have

ψ±
I = B±

1√
|κ|
√
ξ2I± 1

3
(ξ2), (11.61)

where ξ2 = |y| = 2c
3 |x|

3
2 , κ =

[
2m
~2

(V (x)−E)
] 1
2 = c|x| 12 > 0 and we

have used standard relations like

In(y) = (i)−nJn(iy), (11.62)

absorbing the factors of (i) into the normalization constant. We note
that, for x→ 0,

lim
ξ1→0

J± 1
3
(ξ1) −→

(
1
2 ξ1

)± 1
3

Γ
(
1± 1

3

) ,

lim
ξ2→0

I± 1
3
(ξ2) −→

(
1
2 ξ2

)± 1
3

Γ
(
1± 1

3

) , (11.63)

so that, as x→ 0,

ψ+
II ≃ A+

(
2c
3

) 1
2

(c)
1
2

(
1
2
2c
3

) 1
3

Γ
(
4
3

) x− 1
4
+ 3

4
+ 1

2

= A+

(
2

3

) 1
2 ( c

3

) 1
3 1

Γ
(
4
3

)x,

ψ−
II ≃ A−

(
2c
3

) 1
2

(c)
1
2

(
1
2
2c
3

)− 1
3

Γ
(
2
3

) x−
1
4
+ 3

4
− 1

2

= A−

(
2

3

) 1
2 ( c

3

)− 1
3 1

Γ
(
2
3

) ,

ψ+
I ≃ B+

(
2c
3

) 1
2

(c)
1
2

(
1
2
2c
3

) 1
3

Γ
(
4
3

) |x|− 1
4
+ 3

4
+ 1

2

= B+

(
2

3

) 1
2 ( c

3

) 1
3 1

Γ
(
4
3

) |x|,
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ψ−
I ≃ B−

(
2c
3

) 1
2

(c)
1
2

(
1
2
2c
3

)− 1
3

Γ
(
2
3

) |x|− 1
4
+ 3

4
− 1

2

= B−

(
2

3

)1
2 ( c

3

)− 1
3 1

Γ
(
2
3

) . (11.64)

It is clear from (11.64) that ψ+
I joins smoothly on to ψ+

II if A+ = −B+

and ψ−
I joins smoothly to ψ−

II if A− = B−. One should note here that
the solutions are well behaved as x → 0 (namely, at the turning
points).

We can now use these relations between the coefficients to derive
information on the asymptotic forms of the solutions. First of all, we
know that

J± 1
3
(ξ1)

ξ1→large−−−−−→
(
1

2
πξ1

)− 1
2

cos
(
ξ1 ∓

π

6
− π

4

)
,

I± 1
3
(ξ2)

ξ2→large−−−−−→ (2πξ2)
− 1

2

(
eξ2 + e−ξ2e−(

1
2
± 1

3)πi
)
. (11.65)

Thus, using the relations for the coefficients in (11.64) already deter-
mined, we see from (11.65) that, for large values of the coordinates,

ψ+
II −→

(
1

2
πk

)− 1
2

cos

(
ξ1 −

5π

12

)

−→ −(2π|κ|)− 1
2

(
eξ2 + e−ξ2− 5πi

6

)
= ψ+

I ,

ψ−
II −→

(
1

2
πk

)− 1
2

cos
(
ξ1 −

π

12

)

−→ (2π|κ|)− 1
2

(
eξ2 + e−ξ2−πi

6

)
= ψ−

I . (11.66)

In region I, however, we must have a solution which vanishes as
x → −∞. This tells us that the physical solution is the sum of ψ+

I

and ψ−
I (with an appropriate phase), which contains only the term

e−ξ2 . This leads to our first connection formula
(
1

2

)
(|κ|)− 1

2 e−ξ2 → (k)−
1
2 cos

(
ξ1 −

π

4

)
,

or,

(
1

2

)
(κ)−

1
2 e

−
xa
∫

x

dx′ κ
→ (k)−

1
2 cos




x∫

xa

dx′ k − π

4


. (11.67)
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Let us note that, since

cos

(∫
dx′ k − π

4

)
= sin

(
−
∫

dx′ k − π

4

)
, (11.68)

we can also write the connection formula, (11.67), as

(
1

2

)
(κ)−

1
2 e

−
xa
∫

x

dx′ κ
→ (k)−

1
2 sin


−

x∫

xa

dx′ k − π

4


 . (11.69)

Similarly, at the other turning point (see Fig. 11.3), we would have
a connection formula

xb

V (x)

E

Figure 11.3: An infinitesimal region near the classical turning point
x = xb.

(
1

2

)
(κ)−

1
2 e

−
x
∫

xb

dx′ κ

→ (k)−
1
2 cos




xb∫

x

dx′ k − π

4


 . (11.70)

Notice that the connection formulae are directional. That is, it
is always the solutions in the classically inaccessible regions that are
matched on to the classically accessible regions. This is because we
know the boundary condition on the wave function in the inaccessible
regions – the wave function has to vanish at infinity. The case of the
potential where there are several inaccessible regions has to be done
extremely carefully. Furthermore, if the form of the potential and
the energy of the particle are such that the turning points are not
separated sufficiently, for example, as shown in Fig. 11.4, one has to
be careful because the region of validity of one solution may overlap
with the next.

Furthermore, if one is not interested in the exact form of the
wave function in the transition region, there is a simpler way of de-
riving the connection formulae. The idea is to think of x as a complex
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xa xb
E

Figure 11.4: A particle moving with energy E in a potential for which
the classical turning points may not be well separated.

variable and go, in the complex plane, from the inaccessible region to
the accessible region by paths which avoid the turning point. Thus,
for example, let us consider the turning point in Fig. 11.5.

xb

II III

E

Figure 11.5: The classical turning point at x = xb.

For x > xb we expect the solution to be of the form

ψIII(x) =
C

(κ)
1
2

e
−

x
∫

xb

dx′ κ

. (11.71)

For x < xb we expect the solution to be of the form

ψII(x) =
C1

(k)
1
2

e
i

x
∫

xb

dx′ k

+
C2

(k)
1
2

e
−i

x
∫

xb

dx′ k

. (11.72)

Let us again choose xb = 0 (to be the origin). Then, in the linear
approximation, in the region x > xb

κ = cx
1
2 . (11.73)

As a complex variable, we can parametrize x as

x = ρeiθ, 0 ≤ θ ≤ 2π. (11.74)
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+
xb

II III

Figure 11.6: The path in the complex x-plane in going from the
classically inaccessible to the classically accessible region.

If we follow the path shown in Fig. 11.6 to go from region III to
region II, then, in the beginning of the semicircle, θ = 0 and hence κ
is real. But at the end of the semicircle (θ = π), κ has become purely
imaginary. In fact, in crossing the turning point, κ→ ik, so that

e
−

x
∫

xb

dx′ κ

→ e
−i

x
∫

xb

dx′ k

, (11.75)

so that

C

(κ)
1
2

e
−

x
∫

xb

dx′ κ

−→ C

(ik)
1
2

e
−i

x
∫

xb

dx′ k

=
Ce−

iπ
4

(k)
1
2

e
−i

x
∫

xb

dx′ k

. (11.76)

Comparing with the form of the solution in region II, (11.72), we see
that this determines

C2 = Ce−
iπ
4 . (11.77)

Similarly, if we had come from region III along a semicircle in the
lower half plane, we would have obtained

C1 = Ce
iπ
4 . (11.78)

Taking the mean of the two ways of coming (namely, (11.77) and
(11.78)), we would have derived the connection formula

1

2(κ)
1
2

e
−

x
∫

xb

dx′ κ

−→ 1

(k)
1
2

cos




x∫

xb

dx′ k +
π

4




=
1

(k)
1
2

cos




xb∫

x

dx′ k − π

4


 , (11.79)
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which can be compared with (11.70). Similarly, the connection for-
mula at the other turning point, xa, can also be derived in a similar
manner.

11.3 Bohr-Sommerfeld quantization condition

In solutions of the Schrödinger equation, in the case of simple poten-
tials, we have observed that the boundary conditions lead to quan-
tized energy levels for bound states. Since we now have the connection
formulae for the WKB solutions, we expect to get quantized energy
levels for bound states here also. Let us look at a particle in a general
potential well as shown in Fig. 11.7. There are two classical turning
points at xa and xb.

xa xb

I II III

E

Figure 11.7: A particle with energy E moving in a general potential
well.

We know that, in region I, the solution must be of the form

ψI(x) ≃
1

2κ
1
2

e
−

xa
∫

x

dx′ κ
, x < xa, (11.80)

where κ =
[
2m
~2

(V (x)− E)
] 1
2 . Furthermore, through the connection

formula, (11.67), this leads to a wave function in region II of the form

ψII ≃
1

k
1
2

cos




x∫

xa

dx′ k − π

4


 , xa ≤ x ≤ xb, (11.81)

where k =
[
2m
~2

(E − V (x))
] 1
2 . On the other hand, we also know that

the wave function in region III is of the form

ψIII(x) ≃
1

2κ
1
2

e
−

x
∫

xb

dx′ κ

, x > xb. (11.82)
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Through the connection formula, (11.70), this leads to a wave func-
tion in region II of the form (xa ≤ x ≤ xb)

ψII(x) ≃
1

k
1
2

cos




xb∫

x

dx′ k − π

4


 ,

=
1

k
1
2

cos




x∫

xb

dx′ k +
π

4


 . (11.83)

If both the wave functions in (11.81) and (11.83) are to describe the
same particle, then, we expect, at most, their phases to differ by
multiples of π (remember that the probability density has to be the
same)

x∫

xa

dx′ k − π

4
=

x∫

xb

dx′ k +
π

4
+ nπ,

or,

xb∫

xa

dx k =

(
n+

1

2

)
π,

or,

∮
dx p =

(
n+

1

2

)
h, n = 0, 1, 2, · · · , (11.84)

where the non-negative nature of n arises because
xb∫
xa

dx k represents

the phase between xa and xb and cannot be negative. Furthermore,
we have used the fact that

k =
p

~
, h = 2π~, (11.85)

and
∮
= area inside the trajectory of the particle in the phase space.

That is, in the phase space of the particle, this is the area enclosed
by the particle starting at xa going to xb and then coming back to xa
as shown in Fig. 11.8.

The condition, (11.84), is known as the Bohr-Sommerfeld quan-
tization condition with half integer values. It is clear that the wave
function vanishes n times inside the potential well, since the total
change of phase is

(
n+ 1

2

)
π. This is in agreement with the true wave

function of the system. However, the WKB method seems to indicate
that there will be

(
1
2n+ 1

4

)
wavelengths inside the well. This does

not exactly fit with our solution of the infinite square well, where we
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xa xb x

p

Figure 11.8: Area enclosed by the classical trajectory in phase space
in going from one turning point to another and coming back.

have seen that there are
(
1
2n+ 1

2

)
wavelengths inside the well. The

discrepancy arises, for an infinite potential well, because the linear
approximation, near the classical turning points, breaks down. We
will discuss this case separately.

11.4 Applications of the quantization condition

In what follows, we will discuss several applications of the Bohr-
Sommerfeld quantization condition.

1. Let us consider first, a particle moving in an one dimensional
potential of the form

V (x) = β|x|, β > 0. (11.86)

The potential, in this case, has the form shown in Fig. 11.9.

Thus, we see that the classical turning points are at

E = V (x) = β|x|, or x = ±E
β
. (11.87)

In this case, the quantization condition, (11.84), gives

xb∫

xa

dx k =

(
n+

1

2

)
π,
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xa xb

x

V (x)
E

Figure 11.9: Graphical representation of a particle moving in the
potential (11.86) with energy E.

or,

E
β∫

−E
β

dx

[
2m

~2
(E − V (x))

] 1
2

=

(
n+

1

2

)
π,

or,

E
β∫

−E
β

dx

[
2m

~2
(E − β|x|)

] 1
2

=

(
n+

1

2

)
π,

or, 2

(
2mE

~2

) 1
2

E
β∫

0

dx

(
1− βx

E

) 1
2

=

(
n+

1

2

)
π. (11.88)

Let us define

y =
βx

E
,

or, dy =
β

E
dx. (11.89)

This leads to

2

(
2mE

~2

) 1
2 E

β

1∫

0

dy (1− y) 1
2 =

(
n+

1

2

)
π,

or, 2

(
2mE

~2

) 1
2 E

β

2

3
=

(
n+

1

2

)
π,
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or, E
3
2
n =

3β

4

(
~
2

2m

) 1
2
(
n+

1

2

)
π,

or, En =

[
3β

4

(
~
2

2m

) 1
2
(
n+

1

2

)
π

] 2
3

. (11.90)

2. As a second example, let us consider the one dimensional har-
monic oscillator, for which the potential is given by

V (x) =
1

2
mω2x2. (11.91)

The classical turning points, for this potential, are at

E =
1

2
mω2x2, or x = ±

√
2E

mω2
(11.92)

Thus, we have, from (11.84),

xb∫

xa

dx k =

(
n+

1

2

)
π. (11.93)

Let us evaluate the left hand side of (11.93).

L.H.S. =

√

2E
mω2∫

−
√

2E
mω2

dx

[
2m

~2

(
E − 1

2
mω2x2

)] 1
2

= 2

(
2mE

~2

) 1
2

√

2E
mω2∫

0

dx

(
1− mω2

2E
x2
)1

2

. (11.94)

If we now make a change of variable,

y =

√
mω2

2E
x, ⇒ dy =

√
mω2

2E
dx, (11.95)
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the left hand side of (11.93) in (11.94) becomes

L.H.S. = 2

(
2mE

~2

) 1
2
(

2E

mω2

) 1
2

1∫

0

dy (1− y2) 1
2

= 2

(
2mE

~2

) 1
2
(

2E

mω2

) 1
2 π

4

=
4E

~ω

π

4
. (11.96)

Therefore, from (11.93), we obtain,

4En

~ω

π

4
=

(
n+

1

2

)
π,

or, En =

(
n+

1

2

)
~ω. (11.97)

In this case, we see that the Bohr-Sommerfeld quantization, fol-
lowing from the WKB approximation, leads to the exact energy
eigenvalues.

3. Let us consider next a particle moving in an one dimensional
quartic potential, for which

V (x) = λx4, λ > 0. (11.98)

The classical turning points, in this case, are determined to be

E = λx4,

or, x = ±
(
E

λ

) 1
4

. (11.99)

Thus, from the quantization condition, we have

(E
λ )

1
4∫

−(E
λ )

1
4

dx k =

(
n+

1

2

)
π. (11.100)
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We can evaluate the left hand side of (11.100) as

L.H.S. =

(
2m

~2

) 1
2

(E
λ )

1
4∫

−(E
λ )

1
4

dx
(
E − λx4

) 1
2

= 2

(
2mE

~2

) 1
2

(E
λ )

1
4∫

0

dx

(
1− λ

E
x4
) 1

2

. (11.101)

Let us define

y =

(
λ

E

) 1
4

x, ⇒ dy =

(
λ

E

)1
4

dx. (11.102)

With this, equation (11.101) becomes

L.H.S. = 2

(
2mE

~2

) 1
2
(
E

λ

) 1
4

1∫

0

dy (1− y4) 1
2

≃ 2

(
4m2

~4λ

) 1
4

E
3
4
9

10
, (11.103)

where we have used

1∫

0

dy (1− y4) 1
2 =

1

4
B(

1

4
,
3

2
) ≃ 9

10
.

Therefore, in this case, the quantization condition, (11.100),
gives

9

5

(
4m2

~4λ

) 1
4

E
3
4
n =

(
n+

1

2

)
π, (11.104)

which determines the energy eigenvalues. Calculating for n = 0,
we obtain from (11.104)

E0 =

(
5

9

) 4
3
(
~
4λ

4m2

) 1
3 (π

2

) 4
3

=

(
5π

18

) 4
3
(

1

24

) 1
3
(
6~4λ

m2

)1
3

, (11.105)
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which can be compared with the value obtained from the vari-
ational method in (10.47),

3

8

(
6~4λ

m2

) 1
3

≥ E0 ≥ 0.

4. As a final application of the quantization condition, let us con-
sider a particle moving in an infinite square well in one dimen-
sion (or particle in a box). In this case, the potential has the
form shown in Fig. 11.10.

xa xb x

V (x)
E ∞

Figure 11.10: A particle with energy E moving in a one dimensional
infinite square well potential.

V (x) = 0, xa ≤ x ≤ xb,
=∞, x ≤ xa and x ≥ xb.

(11.106)

Contrary to our general analysis, here we cannot, of course, ap-
proximate the potential by a linear term in x at the boundaries.
Hence the connection formulae breakdown for this case.

However, in this case, we know that, at the boundaries as well
as outside the well, the wave function has to vanish identically.
This, therefore, suggests the form of the WKB solution, inside
the well, to be

ψ(x) =
1

k
1
2

sin




x∫

xa

dx′ k


 , xa ≤ x ≤ xb,

ψ(x) =
1

k
1
2

sin




x∫

xb

dx′ k


 , xa ≤ x ≤ xb. (11.107)
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Once again, we note that if they are to describe the same parti-
cle, the phase can change by (n+1)π (This is because the phase
change should, at least, be π since xa, xb are distinct points.).
Thus, we obtain

x∫

xa

dx′ k =

x∫

xb

dx′ k + (n+ 1)π,

or,

xb∫

xa

dx k = (n+ 1)π, n = 0, 1, 2, 3 · · · . (11.108)

This, of course, predicts that there are n nodes and
(
1
2n+ 1

2

)

wavelengths inside the well, as we know from the exact solution.
Furthermore, from the definition,

k =

√
2mE

~2
, xa ≤ x ≤ xb, (11.109)

we determine
√

2mEn

~2
(xb − xa) = (n+ 1)π,

or, En =
π2~2(n+ 1)2

2ma2
, xb − xa = a. (11.110)

This is, of course, the exact answer that we have determined
earlier in (4.23).

As we discussed in the beginning, WKB is a semi-classical ap-
proximation. We know that systems tend more towards the
classical behavior as the quantum numbers take larger values.
Thus, WKB is an extremely good approximation for calculating
the behavior of excited states. One should contrast this with
the variational method which is extremely good for ground state
energy eigenvalues. Thus, the two methods complement each
other. (We should, of course, remember that, for certain po-
tentials like the oscillator and the infinite square well, WKB
method gives the exact answer.)

11.5 Penetration of a barrier

In (11.67) and (11.70), we derived a set of connection formulae be-
tween the classically inaccessible and accessible regions by studying
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the exact solution of the Schrödinger equation in the transition re-
gion with a linear approximation for the potential. There were two
independent solutions ∼ J± 1

3
and ∼ I± 1

3
. The formulae we derived

corresponded to a particular combination of these solutions. How-
ever, one can choose a different combination and derive a second
connection formula also. Thus, for the turning point, xa (see Fig.
11.11), we have

1

2|κ| 12
e
−

xa
∫

x

dx′ |κ|
←→ 1

k
1
2

cos




x∫

xa

dx′ k − π

4


 ,

− 1

|κ| 12
e

xa
∫

x

dx′ |κ|
←→ 1

k
1
2

sin




x∫

xa

dx′ k − π

4


 . (11.111)

xa

E

Figure 11.11: The classical turning point x = xa.

Similarly, at the other turning point shown in Fig. 11.12, we
have

1

2|κ| 12
e
−

x
∫

xb

dx′ |κ|
←→ 1

k
1
2

cos




xb∫

x

dx′ k − π

4


 ,

− 1

|κ| 12
e

x
∫

xb

dx′ |κ|
←→ 1

k
1
2

sin




xb∫

x

dx′ k − π

4


 . (11.112)

Even though the connection formulae work both ways, one has
to exercise a certain amount of caution in applying them. That is,
one should always start with the region of space where the boundary
condition on the wave function can be imposed and, then, match
it onto the next region through the connection formula. Thus, for
example, in the case of the motion of a particle inside a well, we
always match the solution in the classically inaccessible region to
that in the classically accessible region.
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xb
E

Figure 11.12: The classical turning point at x = xb.

Let us now study the question of penetration of a barrier using
these ideas. Classically, of course, if a particle has energy less than
the height of the potential barrier, then, it would be completely re-
flected. On the other hand, if its energy is greater than the potential
barrier, then the barrier would behave as if it were completely trans-
parent. Quantum mechanically, however, we know that even when
E < Vmax, in addition to the particle being reflected, there will be
certain amount of transmission. Similarly, if E > Vmax, in addition
to the particle being transmitted, there will be certain amount of
reflection. We shall study the simpler case when E < Vmax. It is
worth noting here that the exact solution to this barrier penetration
problem exists only for square well potentials. However, since not
all potentials in nature are so ideal, WKB approximation comes in
handy.

Let us again consider a general potential which is slowly varying
shown in Fig. 11.13. A particle with energy E is incident from the
left. Part of it is reflected and a part is transmitted so that to the
right of the barrier there is only a transmitted wave.

xa xb
E

I II III

Figure 11.13: A particle with energy E incident from the left on a
general potential.

The entire space can be divided into three regions. Region I is
to the left of the potential barrier for x < xa and Region III is to
the right of the barrier for x > xb. xa and xb are the classical turn-
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ing points and, therefore, regions I and III are classically accessible
regions. The classically inaccessible region is region II for xa ≤ x ≤
xb. Furthermore, WKB method is valid if

xb∫
xa

dx
[
2m
~2

(V (x)− E)
] 1
2 is

large. Thus, we are considering the case where the height and the
width of the potential are sufficiently large. WKB approximation
leads to the wave functions in regions I and III to be of the forms

ψI(x) =
A1√
k
e
i

(

xa
∫

x

dx′ k−π
4

)

+
A2√
k
e
−i

(

xa
∫

x

dx′ k−π
4

)

, x < xa,

(11.113)

with

k(x) =

[
2m

~2
(E − V (x))

] 1
2

, (11.114)

and we have included, for later convenience, the phase factors of π
4

manifestly, which otherwise can always be absorbed into the constants
A1 and A2. Similarly, we can write

ψIII(x) =
A3√
k
e
i

(

x
∫

xb

dx′ k−π
4

)

, x > xb

=
A3√
k


cos




x∫

xb

dx′ k − π

4


+ i sin




x∫

xb

dx′ k − π

4




 .

(11.115)

We can now determine the form of the wave function in region
II through the connection formulae, (11.111) and (11.112). Thus,
starting with region III, we obtain

ψII(x) =
A3

|κ| 12


1
2
e
−

xb
∫

x

dx′ |κ|
− ie

xb
∫

x

dx′ |κ|



=
A3

|κ| 12


1
2
e−γe

x
∫

xa

dx′ |κ|
− ieγe

−
x
∫

xa

dx′ |κ|

 , (11.116)

where we have defined

γ =

xb∫

xa

dx |κ|, (11.117)
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which is assumed to be large. Thus, the first term is small compared
to the second term and we have

ψII(x) ≃ −
iA3

|κ| 12
eγe

−
x
∫

xa

dx′ |κ|
, xa ≤ x ≤ xb. (11.118)

The connection formula between regions II and I (see (11.111)
and (11.112)), namely,

1

2|κ| 12
e
−

x
∫

xa

dx′ |κ|
→ 1

k
1
2

cos




xa∫

x

dx′ k − π

4


 ,

now gives

ψI(x) = −
2iA3e

γ

k
1
2

cos




xa∫

x

dx′ k − π

4


 , x < xa. (11.119)

Comparing this with (11.113), we determine

A1 = −iA3e
γ = A2. (11.120)

Thus, we have

ψI(x) = −
iA3e

γ

k
1
2

e
i

(

xa
∫

x

dx′ k−π
4

)

− iA3e
γ

k
1
2

e
−i

(

xa
∫

x

dx′ k−π
4

)

, x < xa,

ψIII(x) =
A3

k
1
2

e
i

(

x
∫

xb

dx′ k−π
4

)

, x > xb. (11.121)

Recalling the definition of the transmission coefficient, we obtain

T =
vTR|ψTR|2
vINC|ψINC|2

=
kTR|ψTR|2
kINC|ψINC|2

≃ |A3|2
|A3|2e2γ

= e−2γ = e
−2

xb
∫

xa

dx |κ|
. (11.122)

If we calculate the coefficient of reflection, then it is clear that it
seems like unity. This is because we approximated the wave function
in region II by the second term only. If we had kept both the terms,
then, we can show that the reflection coefficient is given by

R = 1− T = 1− e
−2

xb
∫

xa

dx |κ|
, (11.123)
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as it should be to conserve probability. We should note here that, for a
square well potential with height and width V0 and a respectively, this
is the form of the transmission coefficient except for certain numerical
factor. The discrepancy arises because the square well barrier has
discontinuities where WKB approximation breaks down. Also note
that as the mass of the particle increases, the transmission coefficient
in (11.122) decreases. Thus it is difficult for a heavier particle to
tunnel through a barrier.

11.6 Applications of tunneling

Let us study next a few applications of tunneling.

1. Cold emission of electrons from a metal:

The electrons inside a metal move freely in a constant poten-
tial. When they reach the surface or the edge of the metal,
they are reflected back because of a repulsive potential. This
is a very short distance phenomenon (atomic length ∼ 10−8

cm). By applying an external electric field, the electrons can
be given enough energy to overcome this repulsion. The energy
W necessary to release an electron from a metal is known as its
work function. (Let us note here that if the electron picks up
enough energy from thermal motions so that it can go over the
potential barrier, then, the process is called thermal emission.)
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Figure 11.14: The potential in which an electron with energy E moves
inside a metal with W denoting the work function.

The potential in which the electrons move has the shape as
shown in Fig. 11.14. Suppose, we now apply a constant electric
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field E in a direction (say, x) so as to pull out the electrons.
Then, the effective potential seen by the electrons becomes

Veff = V (x)− eEx, (11.124)

and has the form as shown in Fig. 11.15. Because of this
applied electric field, the potential curves down for x > 0 and
an electron with energy E > 0 has now a nonzero probability
for coming out of the metal.

 0
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 0.5
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 1.5

 2
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x
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Figure 11.15: Effective potential which the electron sees with an ap-
plied electric field.

To calculate this probability we would, of course, need the exact
shape of the potential in which the electron moves. However,
since the potential changes shape only within an atomic dis-
tance and since the length xa that the electron has to travel to
come out is much much larger, we can approximate the poten-
tial by the graph shown in Fig. 11.16.

The turning point xa is determined by (Just to give a few more
details, let Vmax = V0 = E +W . Furthermore, we know that
Veff = V0 − eEx = E +W − eEx. Therefore, the turning points
are at E = Veff = E + W − eEx, which determines the only
non-trivial turning point to be as given below.)

W = eExa,

or, xa =
W

eE . (11.125)
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Figure 11.16: Idealized effective potential in which the electron
moves.

It follows now that

γ =

xa∫

0

dx

[
2m

~2
(Veff − E)

] 1
2

=

xa∫

0

dx

[
2m

~2
(W − eEx)

] 1
2

=

(
2mW

~2

) 1
2

W
eE∫

0

dx

(
1− eE

W
x

) 1
2

=

(
2mW

~2

) 1
2
(
W

eE

) 1∫

0

dy (1− y) 1
2

=
2

3

√
2m

W
3
2

~eE . (11.126)

Thus, the transmission coefficient, (11.122), which is the prob-
ability for transmission, becomes

T = e−2γ = e
−2

xa
∫

0

dx |κ|
= e−

4
3

√
2mW

3
2

~eE . (11.127)

From this, one can calculate the current by multiplying this
with the number of electrons hitting the metal edge per second.

We note that the current is larger for a larger applied electric
field. It is also large for metals with a lower work function. This
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behavior agrees extremely well with experiments. However, the
currents observed are numerically larger than predicted by our
WKB analysis. This is explained by the fact that there are
strong irregularities at the metal surfaces. As a result, the
electric field becomes effectively stronger closer to the metal
surface than farther away. Since the current is sensitive to the
electric field strength, this leads to a larger current.

2. α decay:

In heavier nuclei α-particles (namely, the nucleus of the helium
atom consisting of two protons and two neutrons) are bound
by very strong nuclear forces. If the nucleus has a charge Ze,
then outside the nucleus, there is a repulsive Coulomb potential
of the type Ze

r
. The strong force which holds the α-particles

inside the nucleus is extremely short ranged. Hence, inside the
nucleus, the α-particle can be thought of as free. The potential,
therefore, has the shape shown in Fig. 11.17.
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Figure 11.17: The potential in which the alpha particle moves where
the potential on the right is a simplified form of the actual potential
on the left.

The α-particle will experience a repulsive force outside the nu-

cleus and would have a (Coulomb) potential energy 2(Z−2)e2

r
.

Since the potential is invariant under rotations, the angular
part of the solution can be trivially separated and the prob-
lem reduces to an one dimensional problem. Therefore, we can
apply the WKB method. To calculate the transmission coeffi-
cient, or the tunneling probability, in this case, we again have
to know the shape of the potential near r1 (to determine the
turning point). But remembering that the nuclear force is very
short ranged and that the distance r2 − r1 is much larger than
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nuclear distances we can set

r1 ≃ 2× 10−13A
1
3 cm. (11.128)

This is the nuclear radius of the system. Furthermore, we can
also approximate the strong force by a square well and the turn-
ing point r2 is determined from the fact that (we are assuming
that ℓ = 0)

E = V =
2(Z − 2)e2

r2
, or r2 =

2(Z − 2)e2

E
. (11.129)

Thus, we have

γ =

r2∫

r1

dr|κ| =
r2∫

r1

dr

[
2m

~2

(
2(Z − 2)e2

r
− E

)] 1
2

=

(
2mE

~2

) 1
2

r2∫

r1

dr
[(r2

r
− 1
)] 1

2
. (11.130)

Let us define

y =
[r2
r
− 1
] 1

2
,

or, r =
r2

1 + y2
,

or, dr = − 2r2ydy

(1 + y2)2
, (11.131)

so that (11.130) becomes

γ =

(
2mE

~2

) 1
2

(−2r2)
0∫

√

r2
r1

−1

dy
y2

(1 + y2)2

= 2r2

(
2mE

~2

) 1
2

√

r2
r1

−1∫

0

dy
y2

(1 + y2)2

= 2r2

(
2mE

~2

) 1
2
[
1

2
tan−1 y − 1

2

y

1 + y2

]√ r2
r1

−1

0

. (11.132)
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Let us parameterize r1
r2

= cos2 φ,
(
r2
r1
− 1
) 1

2
= tanφ, so that

we have,

γ = 2r2

(
2mE

~2

) 1
2 1

2

[
φ− tan φ

sec2 φ

]

= r2

(
2mE

~2

) 1
2 1

2
[2φ− sin 2φ]. (11.133)

Substituting, r2 = 2(Z−2)e2

E
, v =

√
2E
m
, we have, for the trans-

mission coefficient,

T = e−2γ = e−
4(Z−2)e2

~v
[2φ−sin 2φ]. (11.134)

Every time the α-particle collides against the outer wall, this
is the probability of escape. Since the α-particle is in a well of
depth −V0, its total kinetic energy is

K.E. = E + V0,

vinside =

√
2K.E.

m
=

[
2(E + V0)

m

] 1
2

. (11.135)

The frequency with which it collides against the outer wall is
then determined to be

f =
vinside
2r1

. (11.136)

Thus, the probability of escape per second is

Γ = fT = fe−2γ =
vinside
2r1

e−
4(Z−2)e2

~v
[2φ−sin 2φ], (11.137)

and the mean life of the nucleus is obtained to be

τ =
1

Γ
=

2r1
vinside

e
4(Z−2)e2

~v
[2φ−sin 2φ]. (11.138)

Let us next consider a specific example to get a feeling for some
numbers, namely, let us choose Uranium for which we have,

Z = 92, r1 ≃ 10−12 cm, E = 4.2 MeV. (11.139)
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Let us choose, for simplicity, V0 = 0. Then, for this nucleus, we
have

r2 =
2(Z − 2)e2

E
=

2× 90

4.2 MeV

e2

~c
~c

=
2× 90

4.2 MeV

1

137
× 2× 10−11 MeV-cm

≃ 7× 10−12 cm. (11.140)

It follows, then, that

r1
r2

=
1

7
≃ .14,

φ = cos−1

(
r1
r2

) 1
2

≃ cos−1(.4) ≃ π

2
− .4,

sin 2φ = sin(π − .8) ≃ .8. (11.141)

Thus, we have

2φ− sin 2φ = π − .8− .8 ≃ 1.5,

v = vinside =

√
2E

m
= c

√
2E

mc2

= c

√
2× 4.2 MeV

4× 103 MeV
≃ 4.5× 10−2c. (11.142)

It follows, therefore, that

4(Z − 2)e2

v~
[2φ− sin 2φ]

=
4× 90

v
c

e2

~c
× 1.5

=
4× 90

4.5× 10−2
× 1

137
× 1.5

≃ 4× .7
3
× 102 ≃ 90. (11.143)

Thus, we determine the life time to be,

τ =
2r1
v

e90

=
2× 10−12 cm

4.5× 10−2 × 3× 1010 cm/sec
e90
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≃ 1.5× 10−21 e90 sec

≃ 1.5× 10−21 × 1039 sec ≃ 1.5× 1018 sec

≃ 1011 yrs. (11.144)

11.7 Energy splitting due to tunneling

Let us consider a double well potential in one dimension. Consider it
to be symmetric in x. Such potentials are frequently used in various
branches of physics. A common example is given by

V (x) ∝
(
x2 − b2

)2
, (11.145)

which is shown in Fig. 11.18.

xb

V0

a

E

Figure 11.18: A particle with energy E moving in a double well po-
tential in one dimension.

If there is no tunneling between the two wells, then one can solve for
the Schrödinger equation in each of the wells separately and would
have definite energy eigenvalues. Since the Hamiltonian is parity
invariant, we can assume that both ψ0(x) and ψ0(−x) belong to the
same energy value E0. Furthermore, the definite parity combinations

ψ1(x) =
1√
2
(ψ0(x) + ψ0(−x)) ,

ψ2(x) =
1√
2
(ψ0(x)− ψ0(−x)) , (11.146)

would also belong to the same eigenvalue E0. Thus, we see that there
is a two fold degeneracy in the problem, in the absence of tunneling.
In the presence of tunneling, however, the energy levels split and let
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us calculate the energy splitting in the WKB approximation. We
note that at x = 0, ψ1 =

√
2 ψ0(0) and ψ′

1(0) = 0 and that similar
relations hold for ψ2.

The Schrödinger equations satisfied by ψ0 and ψ1 are

d2ψ0

dx2
+

2m

~2
(E0 − V (x))ψ0 = 0,

d2ψ1

dx2
+

2m

~2
(E1 − V (x))ψ1 = 0, (11.147)

where we are assuming that, because of tunneling, the energy of the
state ψ1 changes to E1.

Let us multiply the first equation in (11.147) by ψ1 and the
second by ψ0 and integrate from 0 to ∞. Subtracting the two, we
have

2m

~2
(E1 − E0)

∞∫

0

dx ψ0ψ1 = ψ′
1(0)ψ0(0)− ψ1(0)ψ

′
0(0)

= −ψ1(0)ψ
′
0(0). (11.148)

But, we know that

∞∫

0

dx ψ0ψ1 ≃
1√
2

∞∫

0

dx ψ2
0 =

1√
2
, (11.149)

and we can use the WKB wave function,

ψ0(0) =

√
ω

2πv0
e
− 1

~

a
∫

0

dx|p|
,

ψ′
0(0) =

mv0
~

ψ0(0), (11.150)

so that v0 =
[
2
m

(V0 − E0)
] 1
2 , ω = 2π

T
with T representing the classical

period for bound motion. (The extra factors are due to normaliza-
tion.) Using these, we obtain from (11.148)

2m

~2
(E1 − E0)

1√
2
≃ −
√
2
mv0
~

ω

2πv0
e
− 2

~

a
∫

0

dx|p|
,

or, (E1 − E0) = −
~ω

2π
e
− 2

~

a
∫

0

dx|p|
. (11.151)
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Similarly, we can show

E2 − E0 ≃
~ω

2π
e
− 2

~

a
∫

0

dx|p|
, (11.152)

so that the splitting between the two levels due to tunneling is ob-
tained to be

E2 − E1 ≃
~ω

π
e
− 2

~

a
∫

0

dx|p|
. (11.153)

11.8 Selected problems

1. Consider the WKB solution for a particle bound in a poten-
tial well and look at wave functions for large quantum numbers
for which the approximation is valid. Assuming that the wave
functions are vanishingly small outside the well, derive the nor-
malization constants for the wave functions. Calculate also,

xnm =

xb∫

xa

dxψ∗
n(x)xψm(x), (11.154)

where xa, xb are the classical turning points.

2. What is the WKB (Bohr-Sommerfeld) quantization rule for a
particle moving in a potential given by

V (x) =

{
∞, for x ≤ 0,

continuous and positive, x > 0.
(11.155)

3. Using WKB method, derive the quantization conditions for the
energy levels of a particle moving in

i) the linear potential V (x) = β|x|, where the real constant
β > 0.

ii) the oscillator potential V (x) = 1
2mω

2x2.

4. Use WKB approximation to show that a spherically symmetric
attractive potential, in three dimensions, that falls off like r−n

for large r, has an infinite number of bound states if n ≤ 2.
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5. In 1974 two new particles called ψ and ψ′ were discovered with
rest energies 3.1 GeV and 3.7 GeV respectively (1 GeV = 109

eV). These are believed to be bound states of a charmed quark
of mass 1.5 GeV/c2 and an anti-quark of the same mass in a
linear potential, V (r) = V0 + kr where V0, k are constants. By
assuming that these are the n = 0 and n = 1 bound states of
zero angular momentum, calculate V0 using the WKB approx-
imation. What would you predict for the rest mass of ψ′′, the
n = 2 state? (The experimental value is ≃ 4.2 GeV/c2.)

6. For a hydrogen atom, in a constant electric field (H1 = −eEz),
find α and β such that

ψ =

(
1

πa30

) 1
2

(1 + αz + βzr)e
− r

a0 , (11.156)

is the ground state wave function correct to first order in E .
Use it to calculate the exact polarizability of the ground state
of hydrogen.
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Chapter 12

Stationary perturbation theory

Perturbation characterizes a series of iterative methods by which one
obtains an approximate solution to a difficult problem. The idea is to
introduce a small parameter ǫ into the problem and obtain a solution
as a series in powers of ǫ. This method is very powerful and is used
in all branches of physics.

As an example of perturbation, let us consider the solution of
the algebraic equation

x3 − 4.001x + 0.002 = 0. (12.1)

The roots of this equation are extremely difficult to obtain exactly.
However, we can resort to perturbation theory to find an approximate
solution quite easily. First of all, let us introduce a small parameter

ǫ = .001. (12.2)

Then, equation (12.1) can be rewritten as

x3 − (4 + ǫ)x+ 2ǫ = 0. (12.3)

Thinking of ǫ as an arbitrary small parameter, we note that the
solution of (12.3) would be a function of this parameter. Therefore,
we expand the variable x in powers of ǫ, namely,

x = x0 + ǫx1 + ǫ2x2 + · · · =
∞∑

n=0

ǫnxn. (12.4)

Putting this back into (12.3) and keeping only terms of order ǫ0, we
have

x30 − 4x0 = 0, or x0 = 0,±2. (12.5)

Thus, to the leading order (in powers of ǫ), the roots of the equation
are 0 and ±2.
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If we choose the root x0 = 0, then the expansion in (12.4) be-
comes

x(0) = ǫx
(0)
1 + ǫ2x

(0)
2 + · · · . (12.6)

Substituting this into (12.3) and keeping terms up to order ǫ, we have

−4ǫx(0)1 + 2ǫ = 0, or x
(0)
1 =

1

2
= 0.5, (12.7)

so that, to this order, this root is

x(0) = x
(0)
0 + ǫx

(0)
1 =

1

2
ǫ = .0005. (12.8)

If we choose to work with the root x0 = 2, then, the expansion
in (12.4) becomes

x(2) = x
(2)
0 + ǫx

(2)
1 = 2 + ǫx

(2)
1 . (12.9)

Putting this into (12.3) and keeping terms up to order ǫ we have

(
8 + 12ǫx

(2)
1

)
− 4

(
2 + ǫx

(2)
1

)
− ǫ(2) + 2ǫ = 0,

or, ǫ
(
12x

(2)
1 − 4x

(2)
1

)
= 0,

or, x
(2)
1 = 0, (12.10)

so that, to this order, we have

x(2) = x
(2)
0 + ǫx

(2)
1 = 2 + 0× ǫ = 2. (12.11)

Similarly, for x0 = −2, the expansion in (12.4) takes the form

x(−2) = x
(−2)
0 + ǫx

(−2)
1 + · · · = −2 + ǫx

(−2)
1 , (12.12)

and, to order ǫ, equation (12.3) gives

(
−8 + 12ǫx

(−2)
1

)
− 4

(
−2 + ǫx

(−2)
1

)
− ǫ(−2) + 2ǫ = 0,

or, ǫ
[
12x

(−2)
1 − 4x

(−2)
1 + 4

]
= 0,

or, x
(−2)
1 = −1

2
. (12.13)
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Thus, to this order, this root is given by

x(−2) = x
(−2)
0 + ǫx

(−2)
1

= −2− .0005 = −2.0005. (12.14)

In fact, we can determine, in a similar manner, that, to the next
order, the roots have the forms

x(0) = 0 +
1

2
ǫ− 1

8
ǫ2 + 0(ǫ3),

x(2) = 2 + 0× ǫ+ 0× ǫ2 + 0(ǫ3),

x(−2) = −2− 1

2
ǫ+

1

8
ǫ2 + 0(ǫ3), (12.15)

where ǫ = 0.001. This gives a solution which is accurate up to one
part in 109 (x = 2 is an exact root.) and shows the power of pertur-
bation theory.

12.1 Non-degenerate perturbation

We now discuss a perturbation approach for physical systems whose
Hamiltonians are independent of time. This is why it is also known
as stationary perturbation theory. This method is applicable when
the complete Hamiltonian is independent of time and can be written
as a sum of two parts

H = H0 +H1, (12.16)

where H0 is the Hamiltonian which we are able to diagonalize. In
other words, we can determine the eigenstates and the eigenvalues of
H0. The second term in the Hamiltonian, H1, is an additional Hamil-
tonian which is assumed to be small. We would see what smallness
means later – for the present, we simply note that the matrix elements
of H1 should be smaller than the differences in the energy levels of
the Hamiltonian H0.

Let |n0〉 denote the eigenstates of H0 with the eigenvalues E
(0)
n .

Thus,

H0|n0〉 = E(0)
n |n0〉. (12.17)

Furthermore, we assume that all the states are discrete and non-
degenerate. The degenerate case has to be discussed separately. Be-
cause of the perturbing Hamiltonian H1, the total Hamiltonian H
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would now have a new set of eigenstates |n〉 with eigenvalues En.
If the perturbing Hamiltonian is small, then these eigenstates and
eigenvalues would be very close to the unperturbed states and eigen-
values. Thus, we can expand these quantities in powers of the effect
of the perturbing Hamiltonian. However, since the Hamiltonian is an
operator we cannot use it as an expansion parameter and, for book
keeping purposes, we introduce a parameter λ to write

H = H0 + λH1. (12.18)

We can now expand various quantities in powers of λ (which
measures the power of change due to the perturbing Hamiltonian)
and, at the end of our calculations, we can set the constant λ = 1 to
recover the original system. Thus, let

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · =

∞∑

m=0

λmE(m)
n ,

|n〉 = |n0〉+ λ|n1〉+ λ2|n2〉+ · · · =
∞∑

m=0

λm|nm〉. (12.19)

We are, of course, assuming that such a series expansion converges
which, in turn, imposes the condition that each successive term in
the expansion must fall off rapidly.

We are now trying to solve the eigenvalue equation

H|n〉 = En|n〉, (12.20)

perturbatively. Putting in the expansion (12.19) into (12.20), we have

(H0 + λH1)

∞∑

m=0

λm|nm〉 =
( ∞∑

m=0

λmE(m)
n

)( ∞∑

m′=0

λm
′ |nm′〉

)
.

(12.21)

Expanding (12.21) to order λ2, we have

H0|n0〉+ λH1|n0〉+ λH0|n1〉+ λ2H0|n2〉+ λ2H1|n1〉+O(λ3)

= E(0)
n |n0〉+ λE(0)

n |n1〉+ λE(1)
n |n0〉+ λ2E(0)

n |n2〉

+ λ2E(2)
n |n0〉+ λ2E(1)

n |n1〉+O(λ3). (12.22)

The order λ0 terms in (12.22) give rise to the relation

H0|n0〉 = E(0)
n |n0〉, (12.23)
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which is the eigenvalue equation for the Hamiltonian H0 in (12.17)
and is automatically satisfied. Terms of order λ give rise to the rela-
tion

H1|n0〉+H0|n1〉 = E(0)
n |n1〉+ E(1)

n |n0〉, (12.24)

or, 〈n0|H1|n0〉+ 〈n0|H0|n1〉 = E(0)
n 〈n0|n1〉+ E(1)

n 〈n0|n0〉,

or, E(1)
n = 〈n0|H1|n0〉. (12.25)

This determines the first order change in the energy eigenvalue
and, to this order, we have

En = E(0)
n + λ〈n0|H1|n0〉. (12.26)

Furthermore, taking the inner product of (12.24) with 〈m0| where
m 6= n, we obtain

〈m0|H1|n0〉+ 〈m0|H0|n1〉 = E(0)
n 〈m0|n1〉+E(1)

n 〈m0|n0〉. (12.27)
But, since m 6= n, the orthonormality relation of the energy basis
leads to 〈m0|n0〉 = 0. Therefore, equation (12.27) determines

〈m0|H1|n0〉+E(0)
m 〈m0|n1〉 = E(0)

n 〈m0|n1〉,

or, 〈m0|n1〉 =
〈m0|H1|n0〉
E

(0)
n − E(0)

m

. (12.28)

Namely, (12.28) determines all the coefficients of expansion of |n1〉 in
the basis |m0〉 when m 6= n. That is, we have

|n1〉 =
∑

c(n)m |m0〉, (12.29)

where

c(n)m =
〈m0|H1|n0〉
E

(0)
n − E(0)

m

, for m 6= n. (12.30)

The coefficient c
(n)
n is determined from the fact that the eigen-

states are normalized. Thus, to this order,

|n〉 = |n0〉+ λ|n1〉 = |n0〉+ λ
∑

m

c(n)m |m0〉, (12.31)

so that

〈n|n〉 = 〈n0|n0〉+ 2λ
∑

m

c(n)m 〈n0|m0〉+O(λ2),

or, 1 = 〈n0|n0〉+ 2λc(n)n = 1 + 2λc(n)n ,

or, c(n)n = 0. (12.32)
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This determines that, to this order, we have

En = E(0)
n + 〈n0|H1|n0〉,

|n〉 = |n0〉+
∑′

m

〈m0|H1|n0〉
E

(0)
n − E(0)

m

|m0〉 = |n0〉+ |n1〉. (12.33)

Here, we have set λ = 1 and the summation with a prime denotes
summation over all values of m except m = n. We note from (12.31)
and (12.32) that |n1〉 is orthogonal to |n0〉,

〈n0|n1〉 = 0. (12.34)

Furthermore, it is obvious from (12.33) that, for the perturbation
method to be applicable, not only should the magnitude of perturba-
tion be small, but its off diagonal matrix elements in the unperturbed
basis should also be small compared to the level differences of the un-
perturbed system. If this is not true, this perturbation scheme breaks
down. Indeed, this happens if the system has degenerate energy lev-
els.

To order λ2, the eigenvalue equation, (12.22), gives

H0|n2〉+H1|n1〉 = E(0)
n |n2〉+ E(1)

n |n1〉+ E(2)
n |n0〉,

or, 〈n0|H0|n2〉+ 〈n0|H1|n1〉 = E(0)
n 〈n0|n2〉+E(1)

n 〈n0|n1〉+ E(2)
n .

(12.35)

Using 〈n0|n1〉 = 0 and 〈n0|H0 = E
(0)
n 〈n0|, we obtain, from (12.35),

E(2)
n = 〈n0|H1|n1〉

= 〈n0|H1

∑′

m

〈m0|H1|n0〉
E

(0)
n − E(0)

m

|m0〉

=
∑′

m

〈m0|H1|n0〉〈n0|H1|m0〉
E

(0)
n − E(0)

m

=
∑′

m

|〈m0|H1|n0〉|2

E
(0)
n − E(0)

m

. (12.36)

Thus, to second order in the perturbation, the energy eigenvalues are
given by

En = E0
n + 〈n0|H1|n0〉+

∑′

m

|〈m0|H1|n0〉|2

E
(0)
n − E(0)

m

. (12.37)
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We note again, from (12.37) that the validity of the perturbation
scheme depends on whether or not the off diagonal elements of the
perturbing Hamiltonian are small compared to the level splittings of
the unperturbed Hamiltonian. We also note that to any order, the
corrections of the eigenvalues depend on the eigenstates one order
lower and this procedure can be carried out systematically to any
order in the perturbation (when the perturbation is small).

◮ Example. Let us consider a one dimensional harmonic oscillator with mass m
and charge q moving in an electrostatic potential (−EX), where E represents a
constant electric field (As we will see, the direction of the electric field is irrelevant
for the shift in the energy levels.). Thus, the total Hamiltonian for the system
can be written as

H =
P 2

2m
+

1

2
mω

2
X

2 − qEX = H0 +H1, (12.38)

where

H0 =
P 2

2m
+

1

2
mω

2
X

2
, H1 = −qEX. (12.39)

The eigenstates of H0 are |n0〉, which we have already studied in detail in chapter
5, where we have seen that the operator X can be expressed in terms of the
creation and annihilation operators as (see (5.36))

X =

√

~

2mω
(a+ a

†). (12.40)

In this case, we know the eigenstates of H0. The set of vectors |n0〉 are such
that

H0|n0〉 = E
(0)
n |n0〉, E

(0)
n =

(

n+
1

2

)

~ω, (12.41)

and 〈n0|k0〉 = δnk. Furthermore, a and a† are the lowering and raising operators
respectively such that

a|n0〉 =
√
n|n0 − 1〉,

a
†|n0〉 =

√
n+ 1|n0 + 1〉. (12.42)

Therefore, the first order change in the energy due to the perturbation, H1,
follows from (12.25) to be

E
(1)
n = 〈n0|H1|n0〉 = 〈n0| − qEX|n0〉

= −qE
√

~

2mω
〈n0|a+ a

†|n0〉 = 0. (12.43)

To first order in the perturbation, therefore, there is no change in the energy.
This result can be understood in simple terms if one works in the coordinate basis
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rather than the n-basis. Thus,

〈n0|H1|n0〉 =
∞
∫∫

−∞

dxdx′ 〈n0|x〉〈x|H1|x′〉〈x′|n0〉

=

∞
∫

−∞

dx ψ∗
n(x)(−qEx)ψn(x)

= −qE
∞
∫

−∞

dx x|ψn(x)|2 = 0. (12.44)

The vanishing of the integral follows because the integrand is an odd function.
The physical way of seeing this result is to note that the operator X changes
sign under reflection (it has odd parity). Since the eigenstates of the Hamiltonian
have definite parity (oscillator states are either even or odd), it follows that the
perturbing Hamiltonian cannot connect two states with the same parity.

The change in the eigenstates to first order in the perturbation is obtained
from (12.29) and (12.30)

|n1〉 =
∑′

k

〈k0|H1|n0〉
E

(0)
n − E

(0)
k

|k0〉 =
∑′

k

〈k0| − qEX|n0〉
E

(0)
n −E

(0)
k

|k0〉. (12.45)

We can calculate

〈k0|X|n0〉 =
√

~

2mω
〈k0|(a+ a

†)|n0〉

=

√

~

2mω
(
√
n〈k0|n0 − 1〉+

√
n+ 1〈k0|n0 + 1〉)

=

√

~

2mω
(
√
nδk,n−1 +

√
n+ 1δk,n+1), (12.46)

so that equation (12.45) gives

|n1〉 =
∑′

k

(−qE)
√

~

2mω

(√
nδk,n−1 +

√
n+ 1δk,n+1

)

E
(0)
n − E

(0)
k

|k0〉

= −qE
√

~

2mω

(

√
n

|n0 − 1〉
E

(0)
n − E

(0)
n−1

+
√
n+ 1

|n0 + 1〉
E

(0)
n − E

(0)
n+1

)

= −qE
√

~

2mω

(√
n
|n0 − 1〉

~ω
+

√
n+ 1

|n0 + 1〉
−~ω

)

= − qE
ω

√

1

2m~ω

(√
n|n0 − 1〉 −

√
n+ 1|n0 + 1〉

)

. (12.47)

Thus, to this order, the eigenstates are

|n〉 = |n0〉 −
qE
ω

√

1

2m~ω
(
√
n|n0 − 1〉 −

√
n+ 1|n0 + 1〉). (12.48)

We see that the perturbation, in this case, actually mixes only the adjacent
states. We can now calculate the change in the energy to second order in the
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perturbation from (see (12.37))

E
(2)
n =

∑′

k

|〈k0|H1|n0〉|2

E
(0)
n − E

(0)
k

. (12.49)

We know, from (12.46), that

〈k0|H1|n0〉 = −qE
√

~

2mω
(
√
nδk,n−1 +

√
n+ 1δk,n+1), (12.50)

so that

|〈k0|H1|n0〉|2 = q
2E2 ~

2mω

(√
nδk,n−1 +

√
n+ 1δk,n+1

)2

=
q2E2

~

2mω
(nδk,n−1 + (n+ 1)δk,n+1) . (12.51)

Therefore, we determine the second order change in the energy to be

E
(2)
n =

∑′

k

q2E2
~

2mω

(

nδk,n−1 + (n+ 1)δk,n+1

E
(0)
n − E

(0)
k

)

=
q2E2

~

2mω

(

n

E
(0)
n − E

(0)
n−1

+
(n+ 1)

E
(0)
n − E

(0)
n+1

)

=
q2E2

~

2mω

(

n

~ω
+

(n+ 1)

−~ω

)

=
q2E2

2mω2
(n− (n+ 1)) = − q2E2

2mω2
. (12.52)

Thus, to this order, the energy eigenvalue is

En = E
(0)
n + E

(1)
n +E

(2)
n =

(

n+
1

2

)

~ω − q2E2

2mω2
. (12.53)

If we were to calculate the higher order corrections, we will find that, for
this system, all the higher order perturbative corrections to the energy vanish.
Thus, this seems to be the exact energy eigenvalue. In fact, we can see this in the
following way.

H =
P 2

2m
+

1

2
mω

2
X

2 − qEX

=
P 2

2m
+

1

2
mω

2

(

X
2 − 2qEX

mω2

)

=
P 2

2m
+

1

2
mω

2

(

X − qE
mω2

)2

− 1

2
mω

2

(

qE
mω2

)2

=
P 2

2m
+

1

2
mω

2

(

X − qE
mω2

)2

− q2E2

2mω2
. (12.54)

Let us define a new coordinate operator

X̃ = X − qE
mω2

, (12.55)
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so that we can write

H =
P 2

2m
+

1

2
mω

2
X̃

2 − q2E2

2mω2
. (12.56)

P and X̃ continue to be conjugate variables. Therefore, we can think of this

as a harmonic oscillator whose energy levels are shifted by an amount (− q2E2

2mω2 ).

Classically such an oscillator would center around x̃ = 0 or x = qE
mω2 . Such a

system is like a mass attached to a spring hanging under gravity. The effect of
the mass is to shift the equilibrium point down. ◭

Exercise. Show that the perturbed eigenstates are centered around x = qE
mω2 .

12.2 Ground state of hydrogen and the Stark effect

Degeneracy is a consequence of symmetry. As we have seen earlier,
the degeneracy in the m-quantum numbers, in a central potential,
is due to the rotational symmetry of the system. Similarly, we have
seen earlier, that the degeneracy in the ℓ-quantum numbers in the
case of hydrogen atom as well as the isotropic harmonic oscillator
is a consequence of an accidental symmetry associated with the sys-
tem. If one applies a perturbing Hamiltonian to the system which
breaks the symmetry, then, the degeneracy would be lifted. Thus,
if we apply a constant electric field along the z-axis, the accidental
symmetry associated with the hydrogen atom gets broken and the
degeneracy in the ℓ-quantum numbers is lifted. But the degeneracy
in the m-quantum numbers remains, since there is still a rotational
symmetry around the z-axis. If we subject the hydrogen atom fur-
ther to a constant magnetic field along the z-direction, then even the
m-quantum numbers become non-degenerate.

The change in the energy levels due to an external electric field
is called the Stark effect. And that due to an external magnetic field
is known as the Zeeman effect. Because the higher states of hydrogen
are degenerate, we cannot apply non-degenerate perturbation theory
to calculate the change in the energy levels, in general. However,
since the ground state is non-degenerate, we can calculate the change
in its energy due to an electric field, using the perturbation theory
developed so far.

Let us assume that the hydrogen atom is in a constant electric
field, E , along the negative z-direction (The direction of the electric
field, as we will see, is not relevant to the change in the energy up to
second order in perturbation.). Thus, one can write down the scalar
potential to be

Φ(r) = Ez = Er cos θ. (12.57)
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Thus, the total Hamiltonian, in this case, can be written as

H = H0 +H1 = H0 − eEz = H0 − eEr cos θ, (12.58)

where H0 represents the Hamiltonian for the hydrogen atom and we
have used the fact that the electron carries a charge (−e). We know
the unperturbed ground state energy of the system to be (see (9.88))

H0|0〉 = E
(0)
0 |0〉, E

(0)
0 = −Ry = −13.6 eV = − e2

2a0
. (12.59)

The first order correction to the ground state energy follows to be

E
(1)
0 = 〈0|H1|0〉 =

∫
d3r ψ∗

0(r)(−eEr cos θ)ψ0(r)

= −eE
∫

d3r r cos θ|ψ0(r)|2 = 0. (12.60)

This is a consequence of the fact that ψ0(r) has even parity whereas,
under parity,

r→ r,

θ → π − θ,

cos θ → − cos θ,

H1 → −H1. (12.61)

Thus, the first order correction to the ground state energy is
zero which follows from the symmetry properties of the system. Since
the first order correction is proportional to E , one also says that the
ground state of hydrogen does not show any linear Stark effect. The
second order change in the energy eigenvalue is given by

E
(2)
0 =

∑′

k

|〈k0|H1|0〉|2

E
(0)
0 − E

(0)
k

, k 6= 0. (12.62)

We can, of course, evaluate this integral by brute force. We can also
use clever selection rules to restrict the sum to a few terms. We will
evaluate this slightly differently.

Let us assume that there exists an operator, Ω (to be deter-
mined), such that

H1|0〉 = (ΩH0 −H0Ω)|0〉. (12.63)
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Then, it follows that

〈k0|H1|0〉 = 〈k0|(ΩH0 −H0Ω)|0〉

= E
(0)
0 〈k0|Ω|0〉 − E

(0)
k 〈k0|Ω|0〉

=
(
E

(0)
0 − E

(0)
k

)
〈k0|Ω|0〉. (12.64)

Thus, the second order correction, in this case, will follow to be

∑′

k

|〈k0|H1|0〉|2

E
(0)
0 − E

(0)
k

=
∑′

k

〈k0|H1|0〉
E

(0)
0 − E

(0)
k

〈0|H1|k0〉

=
∑′

k

〈k0|Ω|0〉〈0|H1|k0〉

=
∑′

k

〈0|H1|k0〉〈k0|Ω|0〉

= 〈0|H1Ω|0〉 − 〈0|H1|0〉〈0|Ω|0〉, (12.65)

where we have used the closure (completeness relation) of the energy
eigenstates. Furthermore, we have already shown in (12.60) that

〈0|H1|0〉 = 0.

Therefore, it follows that

E
(2)
0 = 〈0|H1Ω|0〉. (12.66)

Thus, determining the second order correction to the ground
state energy depends on finding an operator Ω which satisfies (12.63).
We can assume that Ω depends only on the coordinates and, going
to the spherical coordinates, we can show that

Ω =
ma0eE
~2

(r
2
+ a0

)
z, (12.67)

where a0 represents the Bohr radius. Thus, we have

E
(2)
0 = −ma0e

2E2
~2

〈0|
(r
2
+ a0

)
z2|0〉

= −E2〈0|
( r
2
+ a0

)
z2|0〉, (12.68)

where we have used a0 = ~2

me2
. The ground state expectation value

in (12.68) can be evaluated simply by noting that the ground state
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of the hydrogen atom is spherically symmetric and, consequently, in
such a state,

〈0|f(r)x2|0〉 = 〈0|f(r)y2|0〉 = 〈0|f(r)z2|0〉 = 1

3
〈0|f(r)r2|0〉,

(12.69)

which determines

E
(2)
0 = −9

4
a30E2. (12.70)

Here, we have used

〈0|(r
2
+ a0)r

2|0〉 = 1

πa30

∫
d3r (

r

2
+ a0)r

2e
− 2

a0
r

=
1

πa30
(4π)

∞∫

0

dr (
r

2
+ a0)r

4e
− 2

a0
r

=
a30
8

(
1

4
Γ(6) + Γ(5)

)

=
27

4
a30. (12.71)

Thus, to second order in the perturbation, the ground state
energy becomes

E0 = −
e2

2a0
− 9

4
a30E2. (12.72)

This is the second order Stark effect or often called the quadratic
Stark effect of the ground state of hydrogen. The change in the
energy, in this case, is written as

E
(2)
0 = −1

2
αE2, (12.73)

which defines the polarizability of the hydrogen atom and has the
value

α =
9

2
a30. (12.74)

We note that the effect of the applied electric field is to lower the
ground state energy.

Exercise. Compare this result with a variational calculation. Also check explic-
itly that the operator Ω derived in this example does indeed satisfy the defining
relation (12.63).
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12.3 Ground state of helium

We have already calculated the ground state energy of helium using
the variational method. Let us now see how good perturbation theory
is to the lowest order. The Hamiltonian, as we have seen in (10.48),
can be written as

H = H0 +H1, (12.75)

where we have identified

H0 = −
~
2

2m
∇

2
1 −

~
2

2m
∇

2
2 −

2e2

r1
− 2e2

r2
, (12.76)

and

H1 =
e2

r12
. (12.77)

As we have discussed earlier in chapter 10, here, 1 and 2 label the
two electrons of the system and we are treating the mutual repulsion
of the electrons as a perturbation. The ground state of H0 is given
by (see (10.52))

ψ0(r1, r2) =
8

πa30
e
− 2

a0
(r1+r2), E

(0)
0 = −8 e

2

2a0
= −8Ry. (12.78)

The first order change in this eigenvalue, due to the perturba-
tion, can be calculated to be

E
(1)
0 = 〈0|H1|0〉

=

∫
d3r1d

3r2 ψ
∗
0(r1, r2)

e2

r12
ψ0(r1, r2)

= e2
∫

d3r1d
3r2

1

r12
|ψ0(r1, r2)|2. (12.79)

We have already evaluated this integral earlier in (10.65) which leads
to the result (for Z = 2),

E
(1)
0 =

5e2

4a0
=

5

2

e2

2a0
=

5

2
Ry (12.80)

Thus, to this order, the ground state energy of helium becomes

E0 = E
(0)
0 + E

(1)
0

= −8 Ry +
5

2
Ry = −11

2
Ry

= −11

2
× 13.6 eV = −74.8 eV. (12.81)
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We can compare this with the measured value of the ground state
energy, which is −78.6 eV. As we have already seen, the variational
method gives a value −77.5 eV for the ground state energy of helium.
Thus, we see that the variational method gives a much better value
than the first order perturbation, which simply means that we have
to go to higher orders of perturbation to get closer to the exact energy
value.

12.4 Near degenerate systems

If two of the energy levels of a system are very close to each other
while all others are far away, the perturbation theory that we have
developed so far would not be applicable, since the corrections to the
wave functions as well as energy would be large because of the small
denominator corresponding to these two levels. So we have to modify
our treatment of the problem.

Let the Hamiltonian H0 have two states |ψ(0)
1 〉 and |ψ

(0)
2 〉 with

energy eigenvalues E
(0)
1 and E

(0)
2 such that they are very close to each

other. Thus,

E
(0)
1 −E

(0)
2 ≃ 0, E

(0)
1 > E

(0)
2 . (12.82)

In this case, if we use perturbation theory naively, then, we would
obtain

|ψ1〉 = |ψ(0)
1 〉+

∑′

k

〈ψ(0)
k |H1|ψ(0)

1 〉
E

(0)
1 − E

(0)
k

|ψ(0)
k 〉,

|ψ2〉 = |ψ(0)
2 〉+

∑′

k

〈ψ(0)
k |H1|ψ(0)

2 〉
E

(0)
2 − E

(0)
k

|ψ(0)
k 〉. (12.83)

Thus, unless

〈ψ(0)
1 |H1|ψ(0)

2 〉 = 0, (12.84)

we see that |ψ1〉 would contain a large mixture of |ψ(0)
2 〉 and |ψ2〉

would contain a large mixture of |ψ(0)
1 〉. Namely, we see that the

states |ψ(0)
1 〉 and |ψ

(0)
2 〉 will mix a lot. Consequently, let us choose a

state of the form

|ψ〉 = a|ψ(0)
1 〉+ b|ψ(0)

2 〉, (12.85)
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and try to diagonalize the complete Hamiltonian in this subspace.
That is, we are looking for the solutions of the equation

H|ψ〉 = E|ψ〉,

or, (H − E)|ψ〉 = 0,

or, (H − E)
(
a|ψ(0)

1 〉+ b|ψ(0)
2 〉
)
= 0, (12.86)

where H = H0 +H1. Multiplying (12.86) by 〈ψ(0)
1 |, we have

(H11 − E) a+H12 b = 0. (12.87)

Similarly, multiplying equation (12.86) by 〈ψ(0)
2 |, we obtain

H21 a+ (H22 − E) b = 0, (12.88)

where we have identified Hij = 〈ψ(0)
i |H|ψ

(0)
j 〉, i, j = 1, 2.

For simplicity, let us assume that H12 = H21. Thus, we have
two homogeneous equations, (12.87) and (12.88), with two unknown
parameters a and b. There would exist a nontrivial solution only if
the coefficient matrix has a vanishing determinant, namely,

det

∣∣∣∣
H11 − E H12

H21 H22 − E

∣∣∣∣ = 0, (12.89)

which yields

E2 − E (H11 +H22) + (H11H22 −H12H21) = 0. (12.90)

The roots of (12.90) determine

E1,2 =
(H11 +H22)±

√
(H11 +H22)2 − 4(H11H22 −H12H21)

2

=
1

2

(
(H11 +H22)±

√
(H11 −H22)2 + 4|H12|2

)
. (12.91)

This gives the exact energy values of the two levels. Further-
more, it follows from (12.87) that

a

b
=

H12

E −H11
. (12.92)

Substituting the two roots for E from (12.91) into (12.92) and intro-
ducing the parameterization

tan β =
2H12

H11 −H22
, (12.93)
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we have
(a
b

)

1
= cot

β

2
,

(a
b

)

2
= − tan

β

2
. (12.94)

Thus, the normalized states corresponding to the energy values E1

and E2 can be written respectively as

|ψ1〉 = cos
β

2
|ψ(0)

1 〉+ sin
β

2
|ψ(0)

2 〉,

|ψ2〉 = − sin
β

2
|ψ(0)

1 〉+ cos
β

2
|ψ(0)

2 〉. (12.95)

It is clear now that if

|H11 −H22| ≫ |H12| = |(H1)12|, (12.96)

then, the energy eigenvalues can be expanded as

E1 = H11 +
|H12|2

H11 −H22
+O

(
H4

12

)

= E
(0)
1 + 〈ψ(0)

1 |H1|ψ(0)
1 〉+

|〈ψ(0)
1 |H1|ψ(0)

2 〉|2

E
(0)
1 − E

(0)
2

+O
(
H4

12

)
,

E2 = H22 −
|H12|2

H11 −H22
+O

(
H4

12

)

= E
(0)
2 + 〈ψ(0)

2 |H1|ψ(0)
2 〉+

|〈ψ(0)
2 |H1|ψ(0)

1 〉|2

E
(0)
2 − E

(0)
1

+O
(
H4

12

)
.

(12.97)

We recognize this as nothing other than the usual second order per-
turbation results (see (12.37)).

Furthermore, in this case,

tan β =
2H12

H11 −H22
≃ 0 or β ≃ 0. (12.98)

Therefore, we obtain from (12.95)

|ψ1〉 ≃ |ψ(0)
1 〉+

β

2
|ψ(0)

2 〉

= |ψ(0)
1 〉+

H12

H11 −H22
|ψ(0)

2 〉

= |ψ(0)
1 〉+

〈ψ(0)
2 |H1|ψ(0)

1 〉
E

(0)
1 − E

(0)
2

|ψ(0)
2 〉+O

(
H2

12

)
. (12.99)
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Similarly, we have

|ψ2〉 ≃ −
β

2
|ψ(0)

1 〉+ |ψ
(0)
2 〉

= |ψ(0)
2 〉+

〈ψ(0)
1 |H1|ψ(0)

2 〉
E

(0)
2 − E

(0)
1

|ψ(0)
1 〉+O

(
H2

12

)
. (12.100)

This is exactly what we would expect from non-degenerate perturba-
tion theory.

On the other hand, if

|H11 −H22| ≪ |H12|, (12.101)

then, we have

E1 ≃
1

2
(H11 +H22) +

(
|H12|+

1

8

(H11 −H22)
2

|H12|

)
,

E2 ≃
1

2
(H11 +H22)−

(
|H12|+

1

8

(H11 −H22)
2

|H12|

)
. (12.102)

which is very different from the results of non-degenerate perturba-
tion theory. For a fixed value of |H12| we can plot the eigenvalues
E1 and E2 in (12.102) as a function of (H11 −H22), which have the
forms shown in Fig. 12.1.

H11 −H22

E
E1

E2

Figure 12.1: Energy levels (12.102) of the two level system as a func-
tion of H11 −H22.
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We should note here that the separation between the two levels in-
creases as (H11 − H22) increases. This is known as the repulsion of
the levels.

Furthermore, let us note that, in the limit, |H11−H22| ≪ |H12|,

tan β =
2H12

H11 −H22
→∞,

or, β ≃ π

2
, (12.103)

so that, from (12.95), we obtain

|ψ1〉 = cos
β

2
|ψ(0)

1 〉+ sin
β

2
|ψ(0)

2 〉

≃ 1√
2

(
|ψ(0)

1 〉+ |ψ
(0)
2 〉
)
,

|ψ2〉 = − sin
β

2
|ψ(0)

1 〉+ cos
β

2
|ψ(0)

2 〉

≃ 1√
2

(
−|ψ(0)

1 〉+ |ψ
(0)
2 〉
)
. (12.104)

In other words, in this limit, the eigenstates are linear combinations
of the unperturbed states where each unperturbed state occurs with
equal probability. As a result, the naive perturbation theory devel-
oped so far cannot be applied to such a system (where changes in the
initial states are not small).

12.5 Degenerate perturbation

Suppose we are dealing with a system where some of the levels are
degenerate. Then, in this case, in expressions like

|n〉 = |n0〉+
∑′

k

〈k0|H1|n0〉
E

(0)
n − E(0)

k

|k0〉, (12.105)

the denominator can vanish for some values of k and hence the ex-
pressions become undefined unless, of course,

〈k0|H1|n0〉 = 0, (12.106)

for those values of k. Usually, degeneracy is a consequence of some
symmetry of the system. If the perturbing Hamiltonian does not re-
spect the symmetry, degeneracy would be lifted at least partially and
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hence we do not expect 〈k0|H1|n0〉 to vanish. Thus, our perturba-
tion scheme breaks down in the sense that whereas theoretically we
will predict larger changes in the energy, experimentally the observed
splittings are small.

The reason for the breakdown is not hard to see. Suppose an

eigenvalue has ℓ-fold degeneracy. Then, |ψ(0)
n1 〉, |ψ

(0)
n2 〉, · · · , |ψ

(0)
nℓ 〉 or

any linear combination of them would have the same energy. We have
no information on the unperturbed initial states which are crucial to
carry out the perturbation calculations. On the other hand, we know
that because of the perturbation, the system would choose to go
to a particular state. As we slowly switch off the perturbation, this
state would go into a specific linear combination of the ℓ-unperturbed
states. That is, therefore, the correct unperturbed state to start with
and if we use that, our perturbation calculations will be well behaved.
However, if we choose a different starting state with the same energy,
then, the terms in our perturbation series become large and, as in the
nearly degenerate case, suggest that there is large mixing and hence
the states have to be diagonalized further.

Thus, as in the nearly degenerate case, we choose as starting
states

|ψ(0)
n 〉 =

ℓ∑

i=1

ai|ψ(0)
ni 〉,

H = H0 +H1, (12.107)

where we are assuming that all the states |ψ(0)
ni are degenerate with

the energy eigenvalue E
(0)
n . The first order perturbation equation,

(12.24), in this case gives

H0|ψ(1)
n 〉+H1|ψ(0)

n 〉 = E(0)
n |ψ(1)

n 〉+ E(1)
n |ψ(0)

n 〉,

or, 〈ψ(0)
nj |H0|ψ(1)

n 〉+ 〈ψ
(0)
nj |H1|ψ(0)

n 〉 = E(0)
n 〈ψ

(0)
nj |ψ(1)

n 〉

+ E(1)
n 〈ψ

(0)
nj |ψ(0)

n 〉,

or, 〈ψ(0)
nj |H1|ψ(0)

n 〉 −E(1)
n 〈ψ

(0)
nj |ψ(0)

n 〉 = 0,

or,

ℓ∑

i=1

ai

(
〈ψ(0)

nj |H1|ψ(0)
ni 〉 − E(1)

n δij

)
= 0. (12.108)

This set of homogeneous equations has a nontrivial solution if
the determinant of the coefficient matrix vanishes. That is,

det
(
〈ψ(0)

nj |H1|ψ(0)
ni 〉 − E(1)

n δij

)
= 0. (12.109)
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This is known as the secular equation. We have an ℓ× ℓ determinant
in (12.109). Consequently, it has ℓ roots which are the first order
corrections to the energy levels. If H1 lifts the degeneracy of the
levels completely in the first order itself, then, all these roots would
be distinct and we can determine all the constants ai. However,
if all the roots are degenerate, then H1 fails to lift the degeneracy
in first order and we have to go to the second order equations to
determine ai’s. On the other hand, H1 may lift the degeneracy only
partially. In that case, some of the roots would be distinct and others
degenerate. This would correspond to the case where only some of the
constants, ai’s, would be determined uniquely – the others remaining
arbitrary. If degeneracy is removed in the first order, then, non-
degenerate perturbation theory can be applied in higher orders.

12.6 Doubly degenerate level and resonance

Let us consider a Hamiltonian H0 which has two eigenstates |ψ1〉 and
|ψ2〉 that are degenerate and have the same energy E0. Let us now
perturb the system with a Hamiltonian H ′ such that

〈ψ1|H ′|ψ1〉 = 〈ψ2|H ′|ψ2〉 = 0,

〈ψ1|H ′|ψ2〉 = 〈ψ2|H ′|ψ1〉 = H ′
12. (12.110)

Let us choose a linear combination of the two states as our starting
unperturbed state.

|ψ〉 = a|ψ1〉+ b|ψ2〉. (12.111)

Then, as we have seen in (12.109), there exists a nontrivial solution
for a and b if

det

∣∣∣∣∣
H ′

11 − E
(1)
0 H ′

12

H ′
12 H ′

22 − E
(1)
0

∣∣∣∣∣ = 0. (12.112)

Since H ′
11 = H ′

22 = 0, it follows that

det

∣∣∣∣∣
−E(1)

0 H ′
12

H ′
12 −E(1)

0

∣∣∣∣∣ = 0, or, E
(1)
0 = ±H ′

12. (12.113)

These are the first order changes in the energy. Clearly, the
degeneracy of the two levels is completely lifted. The constants a
and b satisfy the condition (see (12.87) and (12.88))

a

b
=
H ′

12

E
(1)
0

. (12.114)
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Thus, corresponding to the two roots in (12.113), we have

(a
b

)

+
= 1,

(a
b

)

−
= −1. (12.115)

This defines the two initial states of perturbation to be

|ψ+〉 = 1√
2
(|ψ1〉+ |ψ2〉) ,

|ψ−〉 = 1√
2
(|ψ1〉 − |ψ2〉) . (12.116)

These states have energy values E± = E0±H ′
12 up to first order

so that the states evolve in time as

ψ+(x, t) =
1√
2
(ψ1(x) + ψ2(x)) e

− i
~
(E0+H′

12)t

ψ−(x, t) =
1√
2
(ψ1(x)− ψ2(x)) e

− i
~
(E0−H′

12)t. (12.117)

Let us suppose that, at t = 0, the system is in the state |ψ1〉. Thus,
at t = 0, the wave function has the form

ψ(x) = ψ1(x) =
1√
2

(
ψ+(x) + ψ−(x)

)
. (12.118)

The time evolution of this state is, then, obtained from (12.117) to
be

ψ(x, t) =
1√
2

[
ψ+(x, t) + ψ−(x, t)

]

=
1

2

[
(ψ1(x) + ψ2(x))e

− i
~
H′

12t

+(ψ1(x)− ψ2(x))e
i
~
H′

12t
]
e−

i
~
E0t. (12.119)

It is clear that, at t = 0, the system is in the state |ψ1〉. But, as time
grows, it moves more and more into the state |ψ2〉. At t = ~π

2H′
12
, the

system is completely in the state |ψ2〉. In other words, we see that
the system oscillates between the two states |ψ1〉 and |ψ2〉. This is
the quantum resonance phenomenon similar to two springs weakly
coupled to each other. Many physical phenomena, such as the K0 ↔
K̄0 oscillations, can be described in terms of this simple model.
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12.7 Stark effect of the first excited state of hydrogen

The first excited state of hydrogen is four fold degenerate. First of
all, this state corresponds to n = 2. Furthermore, we know that for
every n, the ℓ-quantum number takes values from 0 to n− 1 in steps
of unity. We also know that the m-quantum number for a given ℓ
value goes from −ℓ to ℓ in steps of one. Thus, the degenerate states,
in this case, are

|n, ℓ,m〉 : |2, 0, 0〉, |2, 1,−1〉, |2, 1, 0〉, |2, 1, 1〉. (12.120)

All the four states in (12.120) have the same energy eigenvalue (see
(9.42))

E
(0)
2 = − e2

2a0 × 22
= − e2

8a0
. (12.121)

Since the parity of a state, (−1)ℓ, depends only on the ℓ-quantum
number, we see that the degenerate states do not all have the same
parity.

In the presence of a constant electric field along the z direction,
our naive non-degenerate perturbation calculation would yield

〈2, ℓ,m|H ′|2, ℓ,m〉 = 〈2, ℓ,m| − eEr cos θ|2, ℓ,m〉 = 0, (12.122)

since the perturbing Hamiltonian is parity odd and the states have
definite parity. This, of course, predicts no first order change in
energy. However, this is not true as has been shown in experiments
and we would see how degenerate perturbation theory leads to the
correct result.

Let us choose, as our initial unperturbed state,

|ψ〉 = a1|2, 0, 0〉 + a2|2, 1,−1〉 + a3|2, 1, 0〉 + a4|2, 1, 1〉. (12.123)

Then, there exist nontrivial solutions for the ai’s only if

det
(
〈2, ℓ,m|H ′|2, ℓ′,m′〉 −E(1)

2 δℓℓ′δmm′

)
= 0. (12.124)

Thus, we have to calculate the matrix elements

〈2, ℓ,m|H ′|2, ℓ′,m′〉. (12.125)

Note that

H ′ = −eEZ = −eEr cos θ,

Lz = XPy − Y Px. (12.126)
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As a result, we have
[
Lz,H

′] = 0,

or, 〈n, ℓ,m|
[
Lz,H

′] |n, ℓ′,m′〉 = 0,

or, 〈n, ℓ,m|
[
LzH

′ −H ′Lz

]
|n, ℓ′,m′〉 = 0,

or, ~(m−m′)〈n, ℓ,m|H ′|n, ℓ′,m′〉 = 0. (12.127)

This tells us that 〈n, ℓ,m|H ′|n, ℓ′,m′〉 has to vanish when m 6= m′.
Therefore, only the matrix elements of the type 〈2, ℓ,m|H ′|2, ℓ′,m〉
need to be calculated. Furthermore, note that since H ′ is odd under
parity,

〈n, ℓ,m|H ′|n, ℓ′,m〉 = 0, (12.128)

unless ℓ − ℓ′ = (2k + 1), k = 0,±1,±2, · · · . Thus, we see that the
only non-vanishing matrix elements are

〈2, 1, 0|H ′|2, 0, 0〉, 〈2, 0, 0|H ′|2, 1, 0〉. (12.129)

Noting that the wave functions for the first excited state of hy-
drogen have the forms (see (9.27) and (9.76))

ψ2,0,0(r) =

(
1

32πa30

) 1
2
(
2− r

a0

)
e
− r

2a0 ,

ψ2,1,0(r) =

(
1

32πa30

) 1
2 r

a0
cos θ e

− r
2a0 , (12.130)

we easily obtain

〈2, 1, 0|H ′|2, 0, 0〉 = 〈2, 0, 0|H ′|2, 1, 0〉

= 3ea0E . (12.131)

Thus, we are looking for the roots of the equation

det

∣∣∣∣∣∣∣∣∣

−E(1)
2 3ea0E 0 0

3ea0E −E(1)
2 0 0

0 0 −E(1)
2 0

0 0 0 −E(1)
2

∣∣∣∣∣∣∣∣∣

= 0.

This leads to
(
E

(1)
2

)2((
E

(1)
2

)2
− (3ea0E)2

)
= 0,

or, E
(1)
2 = 0, 0,±3ea0E . (12.132)
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These are the first order corrections to the energy of the first
excited state in hydrogen. In this example, we see that the degener-
acy is lifted only partially. That is, the applied electric field breaks
the accidental symmetry and lifts the degeneracy in the ℓ-quantum
numbers. But, since the field is applied along the z-direction, there
is still a rotational symmetry about the z-axis. This, in turn, im-
plies that the degeneracy in m-quantum numbers still persists. The

eigenvalues E
(1)
2 = ±3ea0E determine the corresponding states to be

1√
2
(|2, 1, 0〉 ± |2, 0, 0〉). (12.133)

However, the zero eigenvalues allow for any linear combinations of
the states |2, 1, 1〉 and |2, 1,−1〉. In particular, we can choose as
the starting states |2, 1, 1〉; |2, 1,−1〉; 1√

2
(|2, 1, 0〉 ± |2, 0, 0〉) and the

perturbation due to the external electric field would be stable.
The eigenvalues can also be given the following interpretation.

Since the energy is linear in the electric field, we can think of the first
excited state of hydrogen as having a permanent dipole moment of
magnitude 3ea0 which can be oriented in three different ways – one
state parallel to the electric field, one state anti-parallel to the field
and two states with zero component along the field. The first excited
state of hydrogen, as we see, exhibits linear Stark effect .

12.8 Fine structure of hydrogen levels

The Schrödinger solution gives a very good description of the hydro-
gen atom. However, as we discussed earlier, there are corrections
to these values of the energy. They are known as the fine structure
corrections and arise from two sources.

1. Although we treated the electron as a non-relativistic particle,
in reality it is not. Note that, in the ground state of hydrogen,
we have (for the classical energies)

T = −1

2
V = 13.6 eV,

or,
(v
c

)2
=

2T

mc2
=

27.2 eV

.5× 106 eV
= 54.4 × 10−6,

or,
v

c
≃ 7× 10−3 ≃ O(α), (12.134)

where α = e2

~c
∼ 1

137 represents the fine structure constant.
Thus, we have to correct for this discrepancy. We define the
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kinetic energy as

T = E −mc2

= (p2c2 +m2c4)
1
2 −mc2

= mc2
(
1 +

p2

m2c2

) 1
2

−mc2

= mc2
(
1 +

1

2

p2

m2c2
− 1

8

p4

m4c4
+ · · ·

)
−mc2

=
p2

2m
− p4

8m3c2
+O(p6). (12.135)

Therefore, under this approximation, the Hamiltonian becomes

H =
p2

2m
− e2

r
− p4

8m3c2
= H0 +H ′. (12.136)

First of all, let us note that H ′ is rotationally invariant. There-
fore, it is diagonal in the |n, ℓ,m〉 basis and we have

〈n, ℓ,m|H ′|n′, ℓ′,m′〉 = 0, if n 6= n′, ℓ 6= ℓ′, m 6= m′.

(12.137)

As a result, even though the energy levels are degenerate, we
can still apply non-degenerate perturbation theory, since the
potentially dangerous terms are zero because the numerator, in
this case, vanishes.

The first order change to the energy levels can be written as

E(1)
n = 〈n, ℓ,m|H ′|n, ℓ,m〉

= − 1

8m3c2
〈n, ℓ,m|p4|n, ℓ,m〉. (12.138)

Let us note that, since

H0 =
p2

2m
− e2

r
, (12.139)

we can write

p2

2m
= H0 +

e2

r
,

p4 = 4m2

(
p2

2m

)2

= 4m2

(
H0 +

e2

r

)2

. (12.140)
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Using this, we obtain,

E(1)
n = − 1

8m3c2
× 4m2〈n, ℓ,m|

(
H0 +

e2

r

)2

|n, ℓ,m〉

= − 1

2mc2

[
E(0)2

n + 2E(0)
n e2〈1

r
〉nℓm + e4〈 1

r2
〉nℓm

]
.

(12.141)

Let us next develop some tricks for calculating these averages.
First of all, we note that the virial theorem applied to hydrogen
implies that

〈T 〉nℓm =

〈
−1

2
V

〉

nℓm

, (12.142)

so that we have

〈H0〉nℓm = 〈T + V 〉nℓm =

〈
−1

2
V + V

〉

nℓm

=
1

2
〈V 〉nℓm = −e

2

2

〈
1

r

〉

nℓm

. (12.143)

Therefore, we obtain

〈
1

r

〉

nℓm

= − 2

e2
〈H0〉nℓm = − 2

e2
E(0)

n

= − 2

e2

(
− e2

2a0n2

)
=

1

a0n2
. (12.144)

To calculate 〈 1
r2
〉nℓm, we note that, if we add a perturbation

H1 =
λ

r2
, (12.145)

to the Hamiltonian of the hydrogen atom, then, the first order
change in the energy can be written as

〈H1〉nℓm = λ

〈
1

r2

〉

nℓm

. (12.146)

On the other hand, with this perturbation, the problem can
be exactly solved. For example, the Hamiltonian for the radial
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equation, in this case, has the form (after factoring out the
angular solutions)

H = H0 +H1

= − ~
2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− ℓ(ℓ+ 1)

r2

]
− e2

r
+
λ

r2

= − ~
2

2m

1

r2
∂

∂r

(
r2
∂

∂r

)
+

~
2ℓ′(ℓ′ + 1)

2mr2
− e2

r
, (12.147)

where we have defined

ℓ′(ℓ′ + 1) = ℓ(ℓ+ 1) +
2mλ

~2
. (12.148)

In other words, ℓ′ = ℓ′(λ) can be thought of as a function of λ.

In terms of ℓ′, the energy eigenvalues have the form

En = − e2

2a0(k + ℓ′ + 1)2
, n = k + ℓ′ + 1

= En(λ). (12.149)

We can now expand En(λ) in a Taylor series,

En(λ) = En(0)+λ
dEn

dλ

∣∣∣∣
λ=0

+
λ2

2!

d2En

dλ2

∣∣∣∣
λ=0

+ · · · . (12.150)

Clearly, En(0) is the unperturbed energy (corresponding to λ =
0), while λ dEn

dλ

∣∣
λ=0

is the first order change in the energy. Thus,
we have

〈H1〉nℓm = λ

〈
1

r2

〉

nℓm

= λ
dEn

dλ

∣∣∣∣
λ=0

, (12.151)

which leads to

〈
1

r2

〉

nℓm

=
dEn

dλ

∣∣∣∣
λ=0

= − e2

2a0

(−2)
(k + ℓ′ + 1)3

dℓ′

dλ

∣∣∣∣
λ=0 or ℓ′=ℓ

. (12.152)
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From the defining relation, (12.148), we note that

ℓ′2 + ℓ′ = ℓ2 + ℓ+
2mλ

~2
,

or, 2ℓ′
dℓ′

dλ
+

dℓ′

dλ
=

2m

~2
,

or,
dℓ′

dλ
=

2m

~2(2ℓ′ + 1)
,

or,

(
dℓ′

dλ

)

λ=0
or, ℓ′=ℓ

=
2m

~2(2ℓ+ 1)
. (12.153)

Using this, we obtain,

〈
1

r2

〉

nℓm

=
e2

a0n3
× m

~2
(
ℓ+ 1

2

) =
1

a20n
3
(
ℓ+ 1

2

)

=
4nE

(0)2
n(

ℓ+ 1
2

)
e4
. (12.154)

To calculate 〈 1
r3
〉nℓm, we use the following trick. Let us define

the radial momentum as

pr = −i~
(
∂

∂r
+

1

r

)
. (12.155)

which is Hermitian and satisfies the canonical commutation re-
lations. It follows now that

p2r = −~2
(
∂

∂r
+

1

r

)(
∂

∂r
+

1

r

)

= −~2
(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2
+

1

r

∂

∂r
+

1

r2

)

= −~2
(
∂2

∂r2
+

2

r

∂

∂r

)
= −~2 1

r2
∂

∂r

(
r2
∂

∂r

)
. (12.156)

Therefore, we can write

H0 =
1

2m

(
p2r +

L2

r2

)
− e2

r
(12.157)
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It follows now that

[H0, pr] =
L2

2m

[
1

r2
, pr

]
− e2

[
1

r
, pr

]

=
L2

2m
(−i~)

[
1

r2
,

(
∂

∂r
+

1

r

)]

− e2(−i~)
[
1

r
,

(
∂

∂r
+

1

r

)]

= − i~L
2

2m

2

r3
+ i~e2

1

r2

= i~

(
e2

r2
− L2

mr3

)
. (12.158)

In an energy eigenbasis, (12.158) would lead to

〈n, ℓ,m|[H0, pr]|n, ℓ,m〉 = 0,

or, i~

〈
e2

r2
− L2

mr3

〉

nℓm

= 0,

or,

〈
e2

r2
− ~

2ℓ(ℓ+ 1)

mr3

〉

nℓm

= 0, (12.159)

which yields

〈
1

r3

〉

nℓm

=
me2

~2ℓ(ℓ+ 1)

〈
1

r2

〉

nℓm

=
1

a0ℓ(ℓ+ 1)

〈
1

r2

〉

nℓm

=
1

a30n
3ℓ(ℓ+ 1)

(
ℓ+ 1

2

) , (12.160)

where we have used (12.154).

Using (12.144) and (12.154), we can now determine the first
order correction to th energy in (12.141) to be

E(1)
n = − 1

2mc2

(
E(0)2

n + 2E(0)
n e2

(
− 2

e2
E(0)

n

)
+ e4

4nE
(0)2
n

e4
(
ℓ+ 1

2

)
)

= − 1

2mc2

(
E(0)2

n − 4E(0)2
n + 4n

E
(0)2
n

ℓ+ 1
2

)
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= −E
(0)2

n

2mc2

(
−3 + 4n

ℓ+ 1
2

)

= − 1

2mc2
e4

4a20n
4

(
−3 + 4n

ℓ+ 1
2

)

= − 1

8mc2

(
me2

~2

)2

e4

(
− 3

n4
+

4

n3
(
ℓ+ 1

2

)
)

= −1

8
(mc2)

(
e2

~c

)4
(
− 3

n4
+

4

n3
(
ℓ+ 1

2

)
)

= −mc
2α4

2n3

(
− 3

4n
+

1(
ℓ+ 1

2

)
)
. (12.161)

2. The other source of correction comes from the spin orbit inter-
action. It was observed that the electron did possess a magnetic
moment which was not due to its orbital motion. Because the
electron is not at rest, in its rest frame the proton or the nu-
cleus is moving. Since a moving charge has a magnetic field
associated with it, this field would interact with the magnetic
moment of the electron. Thus, the spin-orbit interaction Hamil-
tonian has the form

H ′
S−O = −µ ·B = −µ ·

(
−e
c

v × r

r3

)

= − e

mcr3
µ · (r× p) = − e

mc

µ · L
r3

= − e

mc

(
− e

mc

) S · L
r3

=
e2

m2c2r3
S · L. (12.162)

Actually, the correct Hamiltonian is only half of the expression
in (12.162). The factor of 1

2 is due to the fact that the electron
motion is not linear and this factor is known as the Thomas fac-
tor. In a relativistic theory this factor comes out automatically
and we can write the correct spin-orbit interaction as

H ′
S−O =

e2

2m2c2r3
S · L. (12.163)

We note that, in this case, neither Li nor Si commutes with H.
But, we recall that the total angular momentum is given by

J = L+ S. (12.164)
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It is easy to check that Ji commutes with the Hamiltonian even
though Li and Si do not. Furthermore, we can write (Si and
Lj commute)

S · L =
1

2

(
J2 − L2 − S2

)
. (12.165)

This allows us to write

H ′
S−O =

e2

4m2c2r3
(
J2 − L2 − S2

)
. (12.166)

Let us work in the |j,m; ℓ, s〉 basis for the angular part so that

〈n; j′,m′; ℓ′,
1

2
|H ′

S−O|n; j,m; ℓ,
1

2
〉

=
e2

4m2c2

〈
1

r3

〉

nℓ

~
2

[
j(j + 1)− ℓ(ℓ+ 1)− 3

4

]
δjj′δℓℓ′δmm′ .

(12.167)

Thus, the first order change in the energy, due to the spin-orbit
interaction, is obtained to be

E
(1)
n S−O =

e2~2

4m2c2

[
j(j + 1)− ℓ(ℓ+ 1)− 3

4

]〈
1

r3

〉

nℓ

.

(12.168)

Furthermore, since J = L+ S and s = 1
2 , we have

j = ℓ± 1

2
, (12.169)

and this leads to

E
(1)
nS−O =

e2~2

4m2c2

〈
1

r3

〉

nℓ

{
ℓ if j = ℓ+ 1

2

−(ℓ+ 1) if j = ℓ− 1
2

=
e2~2

4m2c2
1

a30n
3ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

{
ℓ

−(ℓ+ 1)

=
e2~2

4m2c2

(
me2

~2

)3
1

n3ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

{
ℓ

−(ℓ+ 1)

=
mc2

4

(
e2

~c

)4
1

n3ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

{
ℓ

−(ℓ+ 1)

=
mc2α4

4

1

n3ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

{
ℓ,

−(ℓ+ 1).
(12.170)
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Thus, adding (12.161) and (12.170), we obtain the total fine
structure splitting in hydrogen to be

E
(1)
nT = E(1)

n + E
(1)
n S−0

= −mc
2α4

2n3

[
− 3

4n
+

1(
ℓ+ 1

2

)
]

+
mc2α4

4

1

n3
(
ℓ+ 1

2

)
{

1

ℓ+ 1
or− 1

ℓ

}

= −mc
2α2

2n2
α2

n

[
− 3

4n
+

1

2
(
ℓ+ 1

2

)

×
{
2−

(
1

ℓ+ 1
or − 1

ℓ

)}]

= −mc
2α2

2n2
α2

n

[
− 3

4n
+

1

(2ℓ+ 1)

{
2ℓ+ 1

ℓ+ 1
or

2ℓ+ 1

ℓ

}]

= −mc
2α2

2n2
α2

n

[
− 3

4n
+

{
1

ℓ+ 1
or

1

ℓ

}]

= −mc
2α2

2n2
α2

n

[
− 3

4n
+

1

j + 1
2

]
. (12.171)

for both j = ℓ ± 1
2 . This is the total fine structure splitting of the

energy levels in hydrogen.

12.9 Selected problems

1. Brillouin-Wigner perturbation: Assume a completely non-degenerate
quantum mechanical system with

H0|un〉 = E(0)
n |un〉. (12.172)

Writing

H = H0 + λH1, (12.173)

derive the perturbation equations by expanding only |ψn〉 (and
not En) in powers of λ. Solve for the wave function up to first
order in λ and the energy eigenvalues up to second order in λ.
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2. A two dimensional isotropic oscillator is subjected to a time
independent perturbation, H ′, whose matrix elements vanish
between two states which have the same parity in either X or
Y (Example: H ′ = XY ).

a) What is the degeneracy of the unperturbed state with energy
eigenvalue E(0) = 3~ω?

b) List, in bra-ket notation, all the matrix elements of H ′, be-
tween the eigenstates belonging to this energy value, which do
not vanish from symmetry considerations.

c) What is the first order change of this energy level in terms
of these matrix elements?

3. Because of the finite size of the nucleus in a hydrogenic atom,
the potential, in which the electron moves, is of the form

V (r) =





−Ze2

r
, r ≥ a,

−Ze2

a

(
3
2 − r2

2a2

)
, r ≤ a,

(12.174)

where Z is the nuclear charge and a is the nuclear radius. As-
suming that a ≪ ~2

me2
= a0 (typically a ∼ 10−13cm, while

a0 ∼ 10−8cm), calculate the first order change in the ground
state energy from its value for a point nucleus.
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Time dependent perturbation theory

Let us consider a system whose Hamiltonian H0 is time independent
and let us assume that we know how to solve for its eigenvalues and
eigenfunctions exactly. We know that the eigenstates, in this case,
will be stationary states.

i~
d

dt
|un(t)〉 = H0|un(t)〉,

|un(t)〉 = e−
i
~
Ent|un(0)〉 = e−

i
~
Ent|un〉, (13.1)

such that

H0|un〉 = En|un〉. (13.2)

These are stationary states. This simply means that if initially the
system is in the state |ui〉 (or |i〉), it remains in that state forever
(unless disturbed). Mathematically, this is denoted by

〈uf |ui(t)〉 = δif × phase factor. (13.3)

That is, the probability amplitude for finding the system in a different
state, at a later time, is zero. Another way of saying this is that the
system is unable to make a transition to a different state all by itself.

If there is a perturbation, however, things are different. The
system can make a transition to a different state because of the per-
turbation. This is a very physical effect. We may have a system in
a stationary state and apply a perturbation for a certain period of
time and ask about the state of the system at the end of the per-
turbation. Clearly it would not necessarily be the same as the initial
state. Therefore, one can calculate the transition probabilities for the
system going into various states.

Let us now define the problem more precisely. Let us assume
that we have a time dependent Hamiltonian of the form

H(t) = H0 +H ′(t). (13.4)
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It is the perturbation Hamiltonian (and, therefore, the total Hamil-
tonian) which depends on time. Thus, energy is not conserved any
more and stationary states are not eigenstates of the total Hamilto-
nian. We are looking for solutions to the equation

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, (13.5)

with the initial condition that

|ψ(0)〉 = |ui〉. (13.6)

That is, the system is initially in the ith unperturbed state.

First of all, we note that although the states, |un〉’s, are no
longer the eigenstates of the complete Hamiltonian, they still form a
complete basis and, therefore, we can expand the state in this basis
as

|ψ(t)〉 =
∑

n

cn(t)|un〉. (13.7)

To convince yourself of this, note that for each fixed value of time
we can do it and hence we can do it for all times. The only point
to note here is that the coefficients of expansion become functions
of time. Furthermore, cn(t) = 〈un|ψ(t)〉 now defines the probability
amplitude for finding the system in the nth unperturbed state at time
t. Remembering that the system was initially in the ith unperturbed
state, this, therefore, measures the transition amplitude from the
ith state to the nth state. Thus, we determine the probability of
transition at time t to be

Pi→n = |cn(t)|2 = |〈un|ψ(t)〉|2. (13.8)

Furthermore, we would like to define a perturbative expansion
for the transition probabilities. Hence we define

H(t) = H0 + λH ′(t)

|ψ(t)〉 =
∑

n,m

λmc(m)
n (t)|un〉, (13.9)

and solve for the time dependent Schrödinger equation, (13.5). This
method was developed by Dirac and is known as the method of vari-
ation of constants.
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Putting the expansions in (13.9) into the Schrödinger equation
(13.5), we have

i~
d

dt
|ψ(t)〉 = (H0 + λH ′(t))|ψ(t)〉,

or,
∑

n,m

λmi~
dc

(m)
n (t)

dt
|un〉 =

∑

n,m

λmcmn (t)
(
H0 + λH ′(t)

)
|un〉.

(13.10)

Taking the inner product with 〈uk|, we obtain from (13.10)

∑

m

λmi~
dc

(m)
k (t)

dt
=
∑

n,m

λmc(m)
n (t)

(
Enδnk + λH ′

kn(t)
)

=
∑

m

λm
(
Ekc

(m)
k (t) + λ

∑

n

c(m)
n (t)H ′

kn(t)
)
.

(13.11)

Matching the lowest power of λ on both sides of (13.11), we obtain,

i~
dc

(0)
k (t)

dt
= Ekc

(0)
k (t),

or, c
(0)
k (t) = c

(0)
k (0)e−

i
~
Ekt. (13.12)

This, of course, tells us that, to zeroth order in the perturba-
tion, the eigenstates are stationary states. Now let us redefine the
coefficients of expansion in (13.9) such that

c
(m)
k (t) = a

(m)
k (t)e−

i
~
Ekt. (13.13)

Then, equation (13.11) becomes

∑

m

λmi~
dc

(m)
k (t)

dt
=
∑

m

λm

(
Ekc

(m)
k (t) + λ

∑

n

c(m)
n (t)H ′

kn

)
,

or,
∑

m

λmi~

[
− iEk

~
e−

i
~
Ekta

(m)
k (t) + e−

i
~
Ekt

da
(m)
k (t)

dt

]

=
∑

m

λm

(
Eke

− i
~
Ekta

(m)
k (t) + λ

∑

n

e−
i
~
Enta(m)

n (t)H ′
kn

)
,

or,
∑

m

λme−
i
~
Ekti~

da
(m)
k (t)

dt
=
∑

n,m

λm+1e−
i
~
Enta(m)

n (t)H ′
kn.

(13.14)
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Defining the Bohr frequency

ωkn =
Ek −En

~
, (13.15)

we can write equation (13.14) as

∑
λmi~

da
(m)
k (t)

dt
=
∑

n,m

λm+1eiωknta(m)
n (t)H ′

kn. (13.16)

Furthermore, matching powers of λ, we now obtain

i~
da

(m)
k (t)

dt
=
∑

n

eiωknta(m−1)
n (t)H ′

kn. (13.17)

For m = 0, this leads to

i~
da

(0)
k (t)

dt
= 0, (13.18)

which implies that

a
(0)
k (t) = a

(0)
k = constant. (13.19)

Similarly, for m = 1, we obtain from (13.17)

i~
da

(1)
k (t)

dt
=
∑

n

eiωknta(0)n H ′
kn. (13.20)

Noting that the system is initially in the state |ui〉, we have

a(0)n = δin. (13.21)

This gives, to first order in the perturbation,

i~
da

(1)
k

dt
=
∑

n

eiωkntδinH
′
kn = eiωkitH ′

ki,

or, a
(1)
k (t) =

1

i~

t∫

0

dt′ eiωkit
′
H ′

ki(t
′)

=
1

i~

t∫

0

dt′ eiωkit
′〈uk|H ′(t′)|ui〉. (13.22)
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Here, we are assuming that the perturbation is switched on at t = 0.
Otherwise, the lower limit of integration will be different. Therefore,
to first order in the perturbation, the probability for transition to a
state different from the initial state is obtained to be

Pi→f (t) =
∣∣∣c(1)f

∣∣∣
2
=
∣∣∣a(1)f

∣∣∣
2

=
1

~2

∣∣∣∣∣∣

t∫

0

dt′eiωfit
′〈f |H ′(t′)|i〉

∣∣∣∣∣∣

2

. (13.23)

We can, of course, carry through this procedure to higher orders
and the perturbation method will be valid only if Pi→f ’s are small
compared to unity.

◮ Example. Let us consider an one dimensional oscillator in its ground state at
t = −∞, which is subjected to a perturbation

H
′(t) = −eEXe−

t2

τ2 . (13.24)

Here e, E and τ are constants. (Namely, we have an oscillator in a time dependent
electric field.) The perturbation is applied over an infinite time interval. The
question we would like to ask is what is the probability that the oscillator will be
in the state |n〉 (of the unperturbed oscillator) as t→ ∞.

In this case, we know, from first order perturbation theory, (13.22) that

a
(1)
k (t) =

1

i~

t
∫

−∞

dt′eiωkit
′

〈uk|H ′(t′)|ui〉. (13.25)

For the present case,

|ui〉 = |0〉,

|uf 〉 = |n〉, ωfi =
Ef − Ei

~
= nω,

X =

√

~

2mω
(a+ a

†). (13.26)

Therefore, we have

〈n|X|0〉 =
√

~

2mω
〈n|(a+ a

†)|0〉 =
√

~

2mω
δn1. (13.27)

Furthermore, we are interested in the transition probability as t → ∞. Thus, we
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obtain from (13.25) and (13.27)

a
(1)
n (∞) =

1

i~

∞
∫

−∞

dt′ einωt′
(

−eEe−
t′2

τ2

)

〈n|X|0〉

= −eE
i~

√

~

2mω
δn1

∞
∫

−∞

dt′ e
− t′2

τ2 +inωt′

= −eE
i~

√

~

2mω
δn1

∞
∫

−∞

dt′ e
−
(

t′

τ
− iωτ

2

)2
−ω2τ2

4

= −eE
i~

√

~

2mω
e
−ω2τ2

4 δn1

√
π τ. (13.28)

In other words, because of this perturbation, the oscillator can make a transition
only to the first excited state, with the transition probability given by (13.23),

P0→1(∞) =
∣

∣

∣a
(1)
1 (∞)

∣

∣

∣

2

=
πe2E2τ 2

2m~ω
e
−ω2τ2

2 . (13.29)

◭

13.1 Harmonic and constant perturbations

Time dependent perturbations can be of various types, which we
discuss in the following.

1. Let us assume that a system is subjected to a perturbation of
the form

H ′(t) = 2Ĥ sinωt, (13.30)

where Ĥ is constant in time. We assume that the perturbation
is turned on between time 0 and t0. Then, at a later time t
(t > t0), we obtain from (13.22)

a
(1)
f (t) =

2

i~

t0∫

0

dt′ eiωfit
′

(
eiωt

′ − e−iωt′

2i

)
Ĥfi

= −Ĥfi

~

t0∫

0

dt′
(
ei(ωfi+ω)t′ − ei(ωfi−ω)t′

)

= −Ĥfi

i~

(
1

ωfi + ω

(
ei(ωfi+ω)t0 − 1

)
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− 1

ωfi − ω
(
ei(ωfi−ω)t0 − 1

))

= −2Ĥfi

~

(
e

i(ωfi+ω)t0
2

sin
(ωfi+ω)t0

2

(ωfi + ω)

− e
i(ωfi−ω)t0

2
sin

(ωfi−ω)t0
2

(ωfi − ω)

)
. (13.31)

Looking at the expression in (13.31), it is clear that the domi-
nant contribution to the transition amplitude comes from

ω = ±ωfi. (13.32)

From the definition in (13.15), we see that the two cases corre-
spond to

Ef = Ei ± ~ω. (13.33)

The two cases correspond, respectively, to the absorption and
emission of a quantum of radiation when electromagnetic inter-
actions are involved. For the present, let us assume that

ω ≃ ωfi. (13.34)

Then, the dominant contribution in (13.31) has the form

a
(1)
f (t) =

2Ĥfi

~
e

i(ωfi−ω)t0
2

sin
(ω−ωfi)t0

2

(ω − ωfi)
, (13.35)

so that the transition probability takes the form

Pi→f (t) =
∣∣∣a(1)f (t)

∣∣∣
2
=

4|Ĥfi|2
~2

sin2
(ω−ωfi)t0

2

(ω − ωfi)2
. (13.36)

This transition probability for a fixed value of t0 is shown in

Fig. 13.1. There is a peak at ω = ωfi with a magnitude
|Ĥfi|2t20

~2
.

Away from this value of the frequency, the probability oscillates
with a very damped amplitude, much like a diffraction pattern.
This is, of course, a resonant behavior. The resonance width is
defined to be the distance between the first zeros on either side
of the resonant frequency. The zeros occur at

(ω − ωfi)t0
2

= ±π. (13.37)
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ωωfi

Pi→f

∆ω

Figure 13.1: Transition probability in (13.36) as a function of fre-
quency ω at a fixed t0.

Thus, the resonance width is determined to be

∆ω =
4π

t0
. (13.38)

This tells us that the longer the perturbation acts, the narrower
the resonance would be. This also has a similarity with the un-
certainty principle. Let us assume that we wish to measure
the energy separation Ef − Ei. We can do this by subjecting
the system to a harmonic perturbation and looking for a res-
onance peak. Clearly, the uncertainty in the determination of
the energy levels (Ef −Ei) will be of the form

∆E =
~∆ω

2
≃ 2π~

t0
=
h

t0
,

or, ∆Et0 ≃ h. (13.39)

Therefore, the product ∆Et0 cannot be smaller than h.

It is obvious that, had we plotted the total transition probability
(without neglecting the contribution from ω = −ωfi), then,
we would have obtained another peak of the same width at
ω = −ωfi. Clearly, we can neglect this resonance while talking
about the one at ω = ωfi provided

2|ωfi| ≫ ∆ω,

or, t0 ≫
1

|ωfi|
=

1

ω
. (13.40)
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From (13.36), it is clear that, if ω = ωfi, then,

Pi→f (t) =
|Ĥfi|2t20

~2
, (13.41)

so that perturbation theory is valid only if

t0 ≪
~

|Ĥfi|
. (13.42)

2. Let us next assume that the system is subjected to a constant
perturbation between the time interval 0 and t0. Thus,

H ′(t) = Ĥ = constant. (13.43)

In this case, we have (t > t0)

a
(1)
f (t) =

1

i~
Ĥfi

t0∫

0

dt′ eiωfit
′
,

= −Ĥfi

~

(
eiωfit0 − 1

)

ωfi

=
2Ĥfi

i~

sin
ωfit0
2

ωfi
e

iωfit0
2 . (13.44)

Therefore, the transition probability becomes

Pi→f (t) =
∣∣∣a(1)f (t)

∣∣∣
2
=

4
∣∣∣Ĥfi

∣∣∣
2

~2

sin2
ωfit0
2

ω2
fi

. (13.45)

This transition probability shown in Fig. 13.2 is again similar
to the case of the harmonic perturbation, except that now we
see a resonance occur when (see also Fig. 13.1)

ωfi = 0. (13.46)

Namely, resonance phenomenon takes place under constant per-
turbation if there are degenerate levels. Once again, it is clear,
from (13.45), that perturbation theory is applicable at reso-
nance only if

t0 ≪
~∣∣∣Ĥfi

∣∣∣
. (13.47)
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ωfiωfi = 0

Figure 13.2: Transition probability in (13.45) as a function of ωfi.

13.2 Long perturbation at resonance

As we have seen in (13.42) and (13.47), if the perturbation acts for
a longer time at resonance, then, our perturbation scheme breaks
down. Here again, as in the case of the nearly degenerate system (in
stationary perturbation theory), we solve the system exactly. First
of all, let us note that if

ω ≃ ωfi, (13.48)

then, the only state, that would have a dominant probability for
transition from the state |ui〉, would be the state |uf 〉. Thus, we
neglect all other states and write (namely, we think of this as a two
level system)

|ψ(t)〉 = ai(t)e
− i

~
Eit|ui〉+ af (t)e

− i
~
Ef t|uf 〉. (13.49)

In this case, we obtain

i~
d

dt
|ψ(t)〉 = (H0 +H ′(t))|ψ(t)〉,

or, e−
i
~
Eit i~

dai(t)

dt
|ui〉+ e−

i
~
Ef t i~

daf (t)

dt
|uf 〉

= e−
i
~
Eit H ′(t)|ui〉 ai(t) + e−

i
~
Ef t H ′(t)|uf 〉 af (t).

(13.50)

Taking the inner product of (13.50) with the state 〈ui|, we have

i~
dai(t)

dt
= (H ′(t))iiai + e−iωfit(H ′(t))ifaf (t). (13.51)
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Furthermore, choosing H ′(t) = 2Ĥ sinωt, we can write (13.51) as

i~
dai(t)

dt
= −i

(
eiωt − e−iωt

)
Ĥiiai(t)

− i
(
e−i(ωfi−ω)t − e−i(ωfi+ω)t

)
Ĥifaf (t). (13.52)

Similarly, taking the inner product of (13.50) with 〈uf |, we obtain

i~
daf (t)

dt
= −i

(
ei(ωfi+ω)t − ei(ωfi−ω)t

)
Ĥfiai(t)

− i
(
eiωt − e−iωt

)
Ĥffaf (t). (13.53)

It is clear that, since

ω ≃ ωfi, (13.54)

the terms with e±iωt and e±i(ωfi+ω)t will contribute negligibly when
integrated. Thus, we can approximate and write

i~
dai(t)

dt
= −ie−i(ωfi−ω)tĤifaf (t),

i~
daf (t)

dt
= iei(ωfi−ω)tĤfiai(t). (13.55)

If we assume that the system is initially in the ith state, then, the
equations in (13.55) have to be solved subject to the initial conditions

ai(0) = 1, af (0) = 0,

dai(t)

dt

∣∣∣∣
t=0

= 0,
daf (t)

dt

∣∣∣∣
t=0

=
1

~
Ĥfi. (13.56)

This system of coupled equations can be exactly solved for ω near
ωfi and the solution gives

Pi→f =
4|Ĥfi|2

4|Ĥfi|2 + ~2(ω − ωfi)2

× sin2
(
√

4|Ĥfi|2 + ~2(ω − ωfi)2 t0

2~

)
. (13.57)

Relation (13.57) is known as the Breit-Wigner formula.
First of all, let us note that this probability lies between 0 and

1, no matter how long the perturbation acts. When the transition
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probability is zero, the system has oscillated back to the initial state.
It is clear that if ω = ωfi, no matter how small the perturbation is,
the system can move from the state |ui〉 to |uf 〉 with a considerable
probability. We also see that if t0 is small (at ω = ωfi), then, (13.57)
gives

Pi→f =
|Ĥif |2t20

~2
, (13.58)

which is, of course, the first order perturbation result that we have
derived earlier in (13.41).

13.3 Transition from a discrete level to continuum

All the perturbation schemes that we have developed so far hold
true, no matter whether the spectrum of the Hamiltonian is discrete
or continuous. In fact, we can think of a continuous spectrum as a
limiting case of a discrete spectrum. Various interesting physical phe-
nomena correspond to a system making a transition from a discrete
level to continuum. To name a few such effects, we have ionization
of an atom when an electron leaves the atom, photoelectric effect,
radioactive beta decay and so on. Let us study such effects in some
detail.

First of all, let us remind ourselves of the continuous spectrum.
The free Schrödinger equation

∇
2ψ + k2ψ = 0, k2 =

2mE

~2
, (13.59)

has solutions of the form

ψ(r) ∼ eik·r, (13.60)

where the momentum, p = ~k, and hence the energy can take any
continuous value. In such a case, we are, of course, not interested
in measuring transition to a particular state, rather we would like to
study the transition to a group of states lying close together. The
reason for this is obvious. There are states lying infinitely close to a
particular state. And since our measuring abilities are limited by the
uncertainty principle as well as by the capabilities of our measuring
devices, we cannot measure a state with appreciable accuracy. There-
fore, we would like to study the transition to any one of a number
of states that lie within a certain energy interval. This requires the
notion of the density of states.
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It is not a priori clear how we should calculate this for the
continuum solutions of the Schrödinger equation. An easy way is
to assume that a particle moves in a box of length L. Thus, we look
for solutions of

∇
2ψ + k2ψ = 0, |x|, |y|, |z| ≤ L

2
. (13.61)

The natural boundary condition to apply, in this case, is that the
wave function vanishes at the walls. However, a more convenient
mathematical boundary condition is that the wave function is peri-
odic at the boundaries. That is,

ψ

(
−L
2
, y, z

)
= ψ

(
L

2
, y, z

)
, (13.62)

and so on for the y, z coordinates. This immediately leads to the
condition that

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, (13.63)

with the wave function taking the form

ψk(r) =
1

(L)
3
2

eik·r. (13.64)

Here, nx, ny and nz take integer values and

Ek = En =
~
2k2

2m
=

4π2~2

2mL2

(
n2x + n2y + n2z

)
=

h2

2mL2
n2. (13.65)

Thus, we see that the imposition of periodic boundary condition
leads to discrete eigenvalues for momentum as well as energy. As we
increase the dimensions of the box, the spacing between the levels
decreases and in the limit of an infinite box, the eigenvalues become
continuous. Thus, we see that this is a convenient way of looking at
the continuous spectrum. Furthermore, it also helps in calculating
various quantities more easily.

To calculate the density of states, we go to momentum space
and note that each momentum state can be represented as a point in
this space with coordinates

(
2π~

L
nx,

2π~

L
ny,

2π~

L
nz

)
. (13.66)

Since only one of the n’s have to change by unity to give another
distinct state or point, the volume associated with each point in this
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space is
(
2π~
L

)3
or
(
h
L

)3
. This is the volume of each state in momen-

tum space. (Let me emphasize here that, in quantum mechanics, a
particle cannot have exact coordinates and momenta simultaneously
because of the uncertainty principle. As a result, the state of a system
cannot be specified as a point in phase space, as in classical mechan-

ics. Rather, it is assigned a Planck cell of volume
(
h
L

)3
.) It follows

now that the number of states in a volume d3p in momentum space
is given by

d3p
(
h
L

)3 =
L3

h3
d3p =

L3

h3
p2dpdΩ =

(
L

2π

)3

k2dkdΩ. (13.67)

On the other hand, a volume d3p in momentum space corresponds to
an energy interval dEp. Therefore, we can write

ρ(Ep)dEp =

(
L

2π

)3

k2dkdΩ, (13.68)

where ρ(Ep) represents the density of states in the energy space.
From the relation for the energy of a free particle, we obtain

Ep = Ek =
~
2k2

2m
,

or, dEp = dEk =
~
2k

m
dk, (13.69)

which determines the density of states, from (13.68), to correspond
to

ρ(Ep) =
mL3

~2(2π)3
kdΩ =

mL3

8π3~2
kdΩ. (13.70)

We note here that, even though L appears in various intermediate
steps, physical results are independent of L.

Let us now assume that a system, which is initially in a discrete
state |i〉, is subjected to a harmonic perturbation (the perturbation
is assumed to be applied for a long time)

H ′(t) = 2Ĥ sinωt. (13.71)

As we have seen in (13.36), the probability for transition to a final
state, in this case, is (ω ≃ ωfi)

Pi→f (t) =
4|Ĥfi|2

~2

sin2
(ω−ωfi)t

2

(ω − ωfi)2
. (13.72)
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Let us further assume that the final state is a state of the continuum,
labeled by the wave number kf (energy Ef ). In this case, of course,
since there is degeneracy of states, the transition can occur to any
nearby state. The relevant question to ask, therefore, is what is the
probability of transition to a state with E = Ef ±∆E. This is given
by

P̃i→f (t) =

∆E∫

−∆E

Pi→f (t)ρf (Ef )dEf

=

∆E∫

−∆E

4|Ĥfi|2
~2

sin2
(ω−ωfi)t

2

(ω − ωfi)2
ρf (Ef )dEf . (13.73)

We notice that the only quantity that oscillates appreciably,
inside the integrand, is the sin2(12 (ω − ωfi)t)/(ω − ωfi)

2 term. Fur-
thermore, its behavior is like a delta function, namely, it picks up
the dominant contribution when ω = ωfi. Thus, we can perform the
integration by taking out the non-varying terms and extending the
limits of integration. In other words (x = (ωfi − ω)t/2),

P̃i→f (t) ≃
4|Ĥfi|2

~2
ρf ×

~t

2

∞∫

−∞

dx
sin2 x

x2

=
2|Ĥfi|2ρf t

~
× π. (13.74)

Thus, the rate of transition to such a group of states is

Ri→f (t) =
P̃i→f

t
=

2πρf |Ĥfi|2
~

. (13.75)

This formula is known as Fermi’s Golden rule and shows that the
rate of transition from a discrete state to a group in the continuum
is a constant independent of time. Let us note here that we cannot
obtain a constant transition rate if only discrete states are involved
in the transition.

13.4 Ionization of hydrogen

Let us consider a hydrogen atom in its ground state subjected to an
oscillating electric field. Thus, we can write the perturbing Hamilto-
nian as

H ′(t) = −2er · E sinωt = 2Ĥ sinωt, (13.76)
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and, in this case, we have

Ĥ = −er · E , (13.77)

where we are assuming that E is constant. We would like to calculate
the probability that the hydrogen atom would be ionized because of
this field.

We may think of such a perturbation as being affected by a
pair of condensers with an alternating voltage. However, this is not
realistic since, for ionization to occur,

|E0| = ~ω,

or, ω =
|E0|
~
,

or, ν =
ω

2π
=
|E0|
2π~

=
|E0|
h

≃ 13.6 eV

6× 10−21 MeV- sec

≃ 2× 1015 cycles/sec. (13.78)

This is a large frequency to achieve in the laboratory. However, the
idea is that a traveling electromagnetic wave can have such high fre-
quencies associated with it and hence can cause such transitions.

The calculation of the matrix element now becomes

〈f |Ĥ|i〉 = 〈k|Ĥ|0〉

= −e|E |
(

1

πa30L
3

)1
2
∫

d3r e−ikr cos θ′r cos θ′′e
− r

a0 , (13.79)

where |k〉 denotes the continuum free particle state with wave number
k and |0〉 represents the ground state of hydrogen. Here, θ′′ is the
angle between the vector r and the electric field, whereas θ′ is the
angle between the momentum vector of the electron and the vector
r. We can choose the momentum vector k to be along the z axis and
define θ as the angle between k and E as shown in Fig. 13.3 (r,E
and k need not be coplanar). In this case, we can write

cos θ′′ = cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ). (13.80)

Using (13.80), it is clear that the integration over φ′ gets rid of
the second term in (13.79). The integration of the first term is quite
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k
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x

φ

φ′

θ
θ′

E

r

Figure 13.3: The three vectors k, r,E in spherical coordinates.

straightforward and the result is

〈f |Ĥ|i〉 = 〈k|Ĥ|0〉 = 32iπe|E |ka50 cos θ(
πa30L

3
) 1

2
(
1 + k2a20

)3 . (13.81)

Remembering that (see (13.70))

ρf = ρ(k) =
mL3

8π3~2
kdΩ, (13.82)

we find that the rate of ionization, in this case, takes the form

Ri→f =
2π

~
|〈f |Ĥ|i〉|2ρf

=
2π

~

322π2e2|E |2k2a100 cos2 θ

πa30L
3
(
1 + k2a20

)6
mL3

8π3~2
kdΩ

=
256me2|E |2a70
π~3

(
1 + k2a20

)6 k
3 cos2 θdΩ

=
256|E |2a60k3
π~(1 + k2a20)

6
cos2 θdΩ. (13.83)

(Note that the physical rate of transition is independent of L as dis-
cussed earlier.) The differential ionizability into the solid angle dΩ,
then, becomes

R

dΩ
∝ cos2 θ. (13.84)
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This result is consistent with our intuition, since the driving force in
the direction of the final momentum is proportional to cos θ.

The other kinds of time dependent perturbations that we come
across are known as: a) adiabatic changes and b) sudden changes,
which we discuss next.

13.5 Adiabatic changes

Let us assume that the Hamiltonian of a system changes slowly from
H(0) to H(t). If the system starts out at t = 0 in an eigenstate |n(0)〉
of H(0) and if the variation of the Hamiltonian is very slow in time,
then, the adiabatic theorem due to Ehrenfest (Bohr) tells us that the
system, at a later time t, would be in the eigenstate |n(t)〉 of H(t).

The slowness of variation is defined as follows. First of all, let
ω be the minimum frequency of motion associated with the system.
For example, it can be the minimum of the splitting of the energy
levels and so on. Furthermore, the time variation of the Hamiltonian
introduces another frequency into the system, namely,

∣∣∣∣∣
∂H′
∂t

H ′

∣∣∣∣∣ . (13.85)

A perturbation is said to be adiabatic, if

∣∣∣∣∣
∂H′
∂t

H ′

∣∣∣∣∣≪ ω. (13.86)

That is, the Hamiltonian should not change appreciably during a
characteristic cycle of motion, for adiabatic approximation to hold.

An example of adiabatic perturbation is, of course, the case of
the one dimensional harmonic oscillator that we have already studied,
where

H ′(t) = −eEXe−
t2

τ2 . (13.87)

Here, τ is the time scale associated with the perturbation and the
adiabatic approximation applies if τ is large. In this case, we have
seen in (13.29) that the oscillator, initially in the ground state, can
make a transition only to the first excited state, with the probability
of transition given by

P0→1(∞) =
πe2E2τ2
2m~ω

e−
ω2τ2

2 . (13.88)
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We see from (13.88) that if

ωτ ≫ 1, (13.89)

which is the condition of validity for the adiabatic approximation,
the transition probability is very small and hence the system would
remain in the ground state.

We can make a connection between the time independent per-
turbation theory and the time dependent one through the adiabatic
approximation in the following way. Let us assume that a system,
whose Hamiltonian is H0 at t = −∞, is subjected to a perturbation,
which changes its value continuously to H0 + H1 at t = 0. In this
case, we can represent

H(t) = H0 + e
t
τH1, −∞ ≤ t ≤ 0, τ > 0. (13.90)

If τ is large, then, the adiabatic theorem tells us that the eigenstate
|n0〉 of H0 would go over into the eigenstate |n〉 of H at t = 0. Thus
if we calculate |n〉 to a given order in the time dependent scheme,
and let τ →∞, we should get back the time independent result. Let
us check this to first order in the perturbation. We know that we can
write

a(1)m (0) =
1

i~

0∫

−∞

dt eiωmnte
t
τ 〈m0|H1|n0〉

=
〈m0|H1|n0〉

i~

0∫

−∞

dt et(
1
τ
+iωmn)

=
〈m0|H1|n0〉

i~

1
1
τ
+ iωmn

,

or, a(1)m (0)
τ→∞−−−→ −〈m0|H1|n0〉

~ωmn
=
〈m0|H1|n0〉
E

(0)
n −E(0)

m

. (13.91)

On the other hand, these are precisely the coefficients of expansion
in the time independent perturbation theory in (13.28), so that we
obtain

lim
τ→∞

a(1)m (0) = 〈m0|n1〉. (13.92)
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13.6 Sudden changes

The other kind of time dependent perturbation that we come across
is the other extreme. Here, the Hamiltonian changes very rapidly if
not instantaneously. This happens, for example, when

∣∣∣∣∣
∂H′
∂t

H ′

∣∣∣∣∣≫ ω. (13.93)

Clearly, a typical example of a sudden change is the system which
initially has a Hamiltonian H0, and at t = 0 it suddenly changes
to H0 + H1. These situations often occur in the laboratory. We
may change the direction or magnitude of an applied magnetic field
suddenly and so on.

In this case, if the system is in a stationary state before t = 0,
then, it would be in one of the eigenstates of H0, say, |un〉. After
the perturbation is switched on, however, this would no longer be
an eigenstate (stationary state) of H0 +H1. Thus, one expands the
initial state in the eigenbasis |vm〉 of H0 +H1, namely,

|ψ〉 = |un〉 =
∑

m

cmn|vm〉, (13.94)

where

cmn = 〈vm|un〉. (13.95)

Here, the assumption is that both H0 and H0 +H1 are soluble, even
if only through perturbation theory. In this case, the time evolution
of the state can be written as

|ψ(t)〉 =
∑

m

cmn|vm〉e−
i
~
Emt, (13.96)

where Em is the total energy eigenvalue of the state |vm〉.
◮ Example. A tritium atom (H3), which has two neutrons and one proton in
its nucleus, suddenly changes to a helium nucleus (He3) of two protons and one
neutron through beta decay. The emitted electron has a kinetic energy of 16 KeV.
We would like to calculate the probability of the ground state electron of H3 to
remain in the ground state of He3+. We note that, in this case,

1

2
mv

2 = 16 KeV,

or,
(v

c

)2

=
2× 16 KeV

mc2
=

32 KeV

.5 MeV
= 64× 10−3

,

or,
v

c
≃ .25. (13.97)
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Therefore, the electron, that is emitted, is extremely relativistic. The ground
state energy of tritium and He3+, on the other hand, are

E
H3

0 = E
H
0 = −13.6 eV,

E
He3 +

0 = 4EH
0 = −54.4 eV. (13.98)

Thus, we see the change in the ground state energies is much smaller than the en-
ergy of the outgoing electron or the change in the Hamiltonian and, consequently,
we can think of this as a sudden change. The emitted electron, of course, has a
very large energy and would come out of the atom right away.

In this case, the initial wave function is given by (both H3 and He3+ are
hydrogenic atoms)

u0(x) =
1

(πa30)
1
2

e
− r

a0 , (13.99)

while the ground state wave function for He3+ has the form

v0(x) =

(

8

πa30

) 1
2

e
− 2r

a0 . (13.100)

Therefore, the transition amplitude is determined from (13.95) to be

c00 =
(8)

1
2

πa30

∫

d3
r e

− 3r
a0 =

√
8

πa30
× 4π

∞
∫

0

r
2dr e

− 3r
a0

=
4
√
8

a30

(

a0

3

)3
∞
∫

0

dy y2e−y =
4
√
8

27
Γ(3) =

8
√
8

27

=
16

√
2

27
. (13.101)

The probability that the system will be in the ground state of the He3+ ion, after
the beta decay, therefore, follows to be

P = |c00|2 =
29

36
≃ 0.7. (13.102)

This calculation shows that, as a consequence of the beta decay, the ground state
electron of tritium has a large probability of remaining in the ground state of
He3+. However, this also shows that there is a finite probability for it to end up
in an excited state. ◭

13.7 Selected problems

1. A one dimensional oscillator, in its ground state, is subjected
to a perturbation of the form

H ′(t) = cpe−α|t| cosωt, (13.103)
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where c, α, ω are constants with α > 0 and p is the momentum
operator. What is the probability that, as t→∞, the oscillator
will be found in its first excited state in first order perturbation
theory? Discuss the result as a function of α, ω, ωc, where ωc

represents the oscillator frequency.

2. Consider the problem done in the last example in this chapter,
where a tritium atom (H3) changes to a Helium (He3+) ion
by emitting an electron. The out-coming electron has kinetic
energy 16 KeV. Assuming that the electron in H3 was in its
ground state before the β decay, what is the probability that
it would end up in the |n = 16, ℓ = 3,m = 0〉 eigenstate of the
He3+ ion?

3. A particle is in the ground state of the one dimensional potential

V (x) =





∞, x ≤ −a,
0, −a ≤ x ≤ a,
∞, x ≥ a.

(13.104)

A time dependent perturbation of the form

H ′(t) = T0V0 sin
πx

a
δ(t), (13.105)

where T0, V0 are constants, acts on the system. What is the
probability that the system will be in the first excited state
afterwards?
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Chapter 14

Spin

From our study of the angular momentum in chapter 7, we have
learned so far the following things.

1. The orbital angular momentum, defined as the operator

L = R×P, (14.1)

and studied within the context of the Schrödinger equation,
has only integer eigenvalues (for, say, Lz) in units of ~. In
particular, the eigenvalues of the operator L2 are given by
~
2ℓ(ℓ+ 1), ℓ = 0, 1, 2, . . . .

2. However, if we treat angular momentum as an abstract oper-
ator satisfying the same commutation relations as the orbital
angular momentum, namely,

[Ji, Jj ] = i~ǫijkJk, (14.2)

and study its representations algebraically, then, we find that
the operator J2 has eigenvalues ~

2j(j + 1) where the quantum
number j takes multiples of half integer values. This gives theo-
retical support for the existence of half integer angular momen-
tum. However, let us emphasize here that whenever angular
momentum is related to the actual physical motion of the par-
ticle, as we have seen earlier, the eigenvalues become restricted
to integers.

On the experimental side, on the other hand, there was increas-
ing evidence that somehow half integer angular momentum must be
associated with the electron. The simple experiments to suggest this
are as follows.
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1. Anomalous Zeeman effect:

As we know, rotational symmetry leads to degeneracy in them-
quantum numbers or the azimuthal quantum numbers. If we
apply a magnetic field along the z-direction, rotational symme-
try is broken and the degeneracy in the m-quantum numbers is
lifted. The azimuthal quantum number, m, takes 2ℓ+1 values.
Thus, each level, under the action of a magnetic field, splits
up into 2ℓ + 1 closely spaced levels. Since the orbital angular
momentum takes only integer values, the number of such lev-
els is expected to be odd. This phenomenon is known as the
normal Zeeman effect. However, for some atoms, particularly
the ones with an odd nuclear charge, the original level splits up
into an even number of closely spaced levels. This is known as
the anomalous Zeeman effect and cannot be explained by an
integer value for the angular momentum.

2. Fine structure:

As we have already seen in chapter 12, even without any ex-
ternal magnetic field, the levels of hydrogen corresponding to
a definite energy show fine structure, which can be explained
only if a half integer angular momentum is associated with the
electron.

3. Stern-Gerlach experiment:

The definitive proof for half integer angular momentum comes
from the Stern-Gerlach experiment. Here a beam of silver
atoms (Ag47, which is paramagnetic and has an odd nuclear
charge) is sent through an inhomogeneous magnetic field. Since
the silver atom is neutral, it does not experience any Lorentz
force. However, the atom has a permanent (magnetic) dipole
moment because of the outer electron and that can lead to a
magnetic energy of the form

H ′ = −µ ·B, (14.3)

where µ denotes the magnetic moment of the electron. The
magnetic moment is related to the angular momentum of the
electron and hence the behavior of the atoms under the influ-
ence of the magnetic field gives information about the angular
momentum of the electron. In fact, the result of the experiment
shows that the beam of silver atoms splits into two, leading to
the fact that the electron must have a half integer angular mo-
mentum associated with it.
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In 1925, Uhlenbeck and Goudsmit introduced the idea that, in
addition to the orbital angular momentum, the electron possesses an
intrinsic spin angular momentum of magnitude ~

2 . The name spin
was introduced because, in the early days, the picture was that the
electron spins around its axis in addition to its motion around the
nucleus. In 1927, Pauli introduced the non-relativistic formalism for
spin. We would see later, in connection with the Dirac equation, that
a relativistic description of particle motion already contains spin in
it. But, let us note here that spin is not a consequence of relativity.
Furthermore, it does not have any classical analogue. It is completely
an intrinsic quantum property of a particle.

This raises a very interesting question. Namely, in developing
quantum mechanics, we emphasized that, given a classical observable,
we go over to quantum mechanics by promoting that observable to an
operator. The commutation relations of the operator can be obtained
from its classical Poisson bracket relations through the quantum cor-
respondence principle. On the other hand, if spin has no classical
analogue, it is not clear how we can determine the properties of this
operator, in particular, its commutation relations. We bypass this
problem in the following way. First of all, we note that the total
angular momentum of a particle consists of two parts – one due to
its orbital motion and the other due to its spin. Thus, we have

J = L+ S. (14.4)

Furthermore, both L and J satisfy commutation relations of an angu-
lar momentum operator. We also know that S is an intrinsic operator,
i.e., it does not depend on coordinates and momenta. Therefore, L
and S commute and it follows that

[Ji, Jj ] = [Li, Lj ] + [Si, Sj ],

or, i~ǫijkJk = i~ǫijkLk + [Si, Sj]. (14.5)

As a result, for this relation to be true, we must have

[Si, Sj] = i~ǫijkSk. (14.6)

This shows that S also has the commutation relations of an
angular momentum operator. Therefore, the operator S2 has eigen-
values ~

2s(s + 1) where s = 0, 1
2 , 1, 3

2 , . . . . Furthermore, the
z-component takes (2s + 1) values from −s~ to s~ in steps of unity.
Each particle has associated with it a particular s-value. Thus, unlike
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the orbital angular momentum, whose value can be changed by ap-
plying an external field, the spin of a particle is fixed. Furthermore,
let us note that, since the spin is a fixed quantity given by ~

2s(s+1),
when ~ → 0 or in the classical limit, spin vanishes. This should
be contrasted with orbital angular momentum where the eigenvalues
are ~

2ℓ(ℓ+1) with ℓ taking any integer value. Hence, in the classical
limit, it does not necessarily vanish, since we can have ~→ 0, ℓ→∞
such that ~2ℓ(ℓ+ 1) is finite.

It can further be shown that particles with integer spin values
obey Bose-Einstein statistics and hence are called bosons. On the
other hand, particles with half integer spin values obey Fermi-Dirac
statistics and are known as fermions. Let us now specialize to the
case of electrons. The experiments showed that the electron has spin
s = 1

2 . Thus, the spin operators, for the electron, act on a (2s+1) = 2
dimensional vector space. The eigenvalues of Sz are ±~

2 and those of

S2 are ~2s(s+1) = 3~2

4 . The two basis states, in this two dimensional
space, are

|s = 1

2
, sz =

1

2
〉, |s = 1

2
, sz = −

1

2
〉, (14.7)

such that

Sz|
1

2
,
1

2
〉 = ~

2
|1
2
,
1

2
〉,

Sz|
1

2
,−1

2
〉 = −~

2
|1
2
,−1

2
〉. (14.8)

Sometimes the basis states in (14.7) are also denoted by |+〉 and
|−〉 respectively, corresponding to the signature of the z-component
of the spin value. The states are normalized so that

〈+|+〉 = 〈−|−〉 = 1,

〈+|−〉 = 〈−|+〉 = 0. (14.9)

In a two dimensional matrix representation, we can choose,

|+〉 =
(

1
0

)
, |−〉 =

(
0
1

)
. (14.10)

Any vector, in this space, can be defined as a linear combination
of these two basis states. Thus, we can write

|ψ〉 =
∑

i

ci|i〉 = c+|+〉+ c−|−〉, (14.11)
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where ci’s represent the components of the vector, |ψ〉, in this basis.
The spin operators have the following matrix representation in this
space,

Sx =
~

2

(
0 1
1 0

)
, Sy =

~

2

(
0 −i
i 0

)
,

Sz =
~

2

(
1 0
0 −1

)
, S2 =

3~2

4

(
1 0
0 1

)
. (14.12)

We see, from (14.12), that we can define the spin operators as

S =
~

2
σ, (14.13)

where σ’s are known as the Pauli matrices and satisfy the following
properties.

1. The Pauli matrices satisfy the commutation relation,

[σi, σj ] = 2iǫijkσk. (14.14)

2. Distinct Pauli matrices anti-commute (the curly brackets de-
note anti-commutators).

{σi, σj} = 0, for i 6= j, (14.15)

which implies that

σiσj = −σjσi, for i 6= j. (14.16)

3. From the two relations in (14.14) and (14.15), it follows that,
for i 6= j,

σiσj − σjσi = 2iǫijkσk,

or, σiσj = iǫijkσk. (14.17)

4. The Pauli matrices are traceless.

Tr σi = 0. (14.18)

Proof. For i 6= j, let us note that

Tr (σiσj) = Tr (σjσi) = −Tr (σiσj) ,

or, Tr (σiσj) = 0, for i 6= j. (14.19)
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With this, it follows, from (14.17), that

Tr (σiσj) = iǫijk Tr (σk) = 0, (14.20)

which proves that

Tr (σk) = 0.

5. Let n̂ denote an arbitrary unit vector. Then,

(n̂ · σ)2 = 1, (14.21)

where 1 represents the two dimensional identity matrix.

Proof. Let us note that the eigenvalues of Sz are ±~

2 so that,
in this space, the operator

(
Sz −

~

2
1)(Sz + ~

2
1) = 0. (14.22)

But, since the z-direction is arbitrary, we can write (14.22) also
as

(
n̂ · S− ~

2
1)(n̂ · S+

~

2
1) = 0,

or, (n̂ · S)2 = ~
2

4
1,

or,

(
~

2
n̂ · σ

)2

=
~
2

4
1,

or, (n̂ · σ)2 = 1. (14.23)

In particular, if we choose n̂ to be along a fixed axis, say i, then,
(14.23) leads to

(σi)
2 = 1. (14.24)

Thus, we see that the square of each Pauli matrix is the identity
matrix.
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6. We can combine (14.15) and (14.24) to write

{σi, σj} = 2δij1, for all i and j. (14.25)

This, in turn, leads to

Tr (σiσj) = 2δij , for all i and j. (14.26)

7. If A and B are two non-commuting vector operators which,
however, commute with the Pauli matrices, then,

(σ ·A) (σ ·B) = (σiAi) (σjBj)

= AiBj (σiσj)

= AiBj

(
1

2
{σi, σj}+

1

2
[σi, σj ]

)

= AiBj

(
1

2
× 2δij1+

1

2
× 2iǫijkσk

)

= AiBi 1+ iǫijkσkAiBj

= (A ·B) 1+ iσ · (A×B) . (14.27)

8. Since the Hilbert space we are considering is two dimensional,
there are four linearly independent matrices acting on it. Let
us include the identity matrix along with the other three Pauli
matrices, σi’s, and denote them collectively as

σα, α = 0, 1, 2, 3, with σ0 = 1. (14.28)

Then, it is clear that

Tr (σασβ) = 2δαβ , α, β = 0, 1, 2, 3. (14.29)

Furthermore, we can also show that these four matrices are
linearly independent. That is,

3∑

α=0

cασα = 0, (14.30)

where cα’s are constants, implies that

cα = 0, for all α. (14.31)
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Proof. We note that (14.30) implies that

3∑

α=0

cασα = 0,

or, σβ

3∑

α=0

cασα = 0,

or, Tr
3∑

α=0

cα (σβσα) = 0,

or,
3∑

α=0

cα2δβα = 0,

or, 2cβ = 0,

or, cβ = 0, for all β, (14.32)

where we have used (14.29). This proves that the set of 2 × 2
matrices consisting of the identity matrix and the three Pauli
matrices (see (14.28)), constitutes a set of linearly independent
operators in this space. Thus, they define a basis for the oper-
ators in this space, namely, any operator M , in this space, can
be written as

M =
3∑

α=0

mασα, (14.33)

where

mα =
1

2
Tr σαM. (14.34)

14.1 Complete Hilbert space for the electron

The spin operators, in the case of the electron, act on a two dimen-
sional Hilbert space, the two basis vectors of which can be defined as
in (14.10)

|+〉 =
(

1
0

)
, |−〉 =

(
0
1

)
. (14.35)
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Let us denote this space by E(spin). This space has no coordinate
or momentum dependence. We also know that the electron wave
function has spatial dependence. Let us denote by E(space) the Hilbert
space on which the operators X and P act. The eigenvectors in this
space are denoted by |r〉. This is an infinite dimensional Hilbert
space. The total electron wave function, of course, depends on both
position as well as spin. Since the spin angular momentum commutes
with both coordinates and momenta, it is clear that the total Hilbert
space for the electron must be a direct product of these two spaces.
That is,

E(total) = E(space) ⊗ E(spin). (14.36)

The basis vectors in this larger space have the form

|r, sz〉 = |r〉 ⊗ |sz〉. (14.37)

Explicitly, we can write

|r,+〉 = |r〉 ⊗
(

1
0

)
=

(
|r〉
0

)
,

|r,−〉 = |r〉 ⊗
(

0
1

)
=

(
0
|r〉

)
. (14.38)

The complete space is now two-fold infinite dimensional correspond-
ing to the fact that each element of |r,+〉 and |r,−〉 is infinite dimen-
sional. But, we can, for simplicity, pretend as if the total space is two
dimensional with the understanding that each element in this space
has infinite dimensions. We, of course, know the two dimensional
structure of the spin operators. They act only on the |sz〉 space.
Similarly, the coordinate operators act only on the |r〉 space and, in
the |r, sz〉 basis, have the forms

X −→
(

X 0
0 X

)
,

P −→
(
−i~ ∂

∂X
0

0 −i~ ∂
∂X

)
. (14.39)

The orthogonality condition, in this basis, is given by

〈r′, s′z|r, sz〉 = δs′z ,szδ
3
(
r′ − r

)
. (14.40)

Similarly, the completeness relation takes the form

1
2∑

sz=− 1
2

∫
d3r |r, sz〉〈r, sz | = 1, (14.41)
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so that any vector, in this space, can be written as

|ψ〉 =
∑

sz

∫
d3r |r, sz〉〈r, sz |ψ〉. (14.42)

Let us next define

〈r,+|ψ〉 = ψ+(r),

〈r,−|ψ〉 = ψ−(r). (14.43)

Thus, we see that, to specify the electron state completely, we must
specify both these functions. We combine both these functions into
a two component object called the (electron) spinor wave function
defined as

ψ(r) =

(
ψ+(r)
ψ−(r)

)
. (14.44)

It is clear that, with this, we can write the wave function in (14.42)
as

|ψ〉 =
∑

sz

∫
d3r |r, sz〉〈r, sz |ψ〉

=

∫
d3r (|r,+〉ψ+(r) + |r,−〉ψ−(r))

=

∫
d3r

(
|r〉 ⊗

(
ψ+(r)

0

)
+ |r〉 ⊗

(
0

ψ−(r)

))

=

∫
d3r |r〉 ⊗

(
ψ+(r)
ψ−(r)

)
=

∫
d3r |r〉 ⊗ ψ(r), (14.45)

where 〈r|ψ〉 = ψ(r).
Furthermore, it is clear that the normalization condition for the

wave function now becomes

〈ψ|ψ〉 =
∫

d3rd3r′ ψ†(r′)⊗ 〈r′|r〉 ⊗ ψ(r)

=

∫
d3rd3r′ δ3

(
r′ − r

)
ψ† (r′

)
ψ(r)

=

∫
d3r ψ† (r)ψ(r)

=

∫
d3r

(
ψ∗
+ (r)ψ+(r) + ψ∗

− (r)ψ− (r)
)
= 1. (14.46)
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We see that the normalization involves both the components of the
wave function.

The wave functions

ψ1 (r) =

(
ψ+(r)

0

)
, ψ2 (r) =

(
0

ψ−(r)

)
, (14.47)

can be easily seen to be eigenstates of σz with eigenvalues 1 and −1
respectively. Thus, these wave functions correspond to an electron
with spin ~

2 or −~

2 along the z-direction (recall that Sz = ~

2 σz). A
general wave function of the electron, however, is a linear combination
of these two states with definite spin along the z-direction. It follows
that

ψ∗
+ (r)ψ+ (r) d3r = |ψ+ (r) |2d3r, (14.48)

measures the probability for finding the electron in the volume d3r
with spin up (or along the z-direction). Similarly,

ψ∗
−(r)ψ−(r)d

3r = |ψ−(r)|2d3r, (14.49)

measures the probability that the electron is in the volume d3r with
its spin anti-parallel to the z-direction. It is worth noting here that
the introduction of spin has led to a multi-component wave function
for the particle. In general, a particle with spin s has a (2s + 1)
component wave function.

14.2 Identical particles

Two particles are said to be identical if they cannot be distinguished
by any physical property. Let us examine a classical phenomenon
involving two identical particles.

For example, let us take two billiard balls (see Fig. 14.1) located
at 1 and 2. Suppose at t = 0, two players hit the balls at 1 and 2 such
that at a later time the two balls go into the holes numbered 3 and
4. For someone who is not observing the play, both of the following
possibilities are equally likely,

1. Ball 1 goes into the hole 3, while ball 2 goes into the hole 4.

2. Ball 1 goes into the hole 4, while ball 2 goes into the hole 3.

Namely, by definition the two balls are identical and, therefore, we
cannot distinguish one process from the other.
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4

1

3

2

Figure 14.1: Scattering of two identical billiard balls.

In classical mechanics, of course, we can distinguish between the
two possibilities. This is simply because we can follow the trajectory
of each ball exactly and hence can determine the particular process
that takes place. In quantum mechanics, on the other hand, the
notion of a trajectory does not exist. In fact, there are uncertain-
ties associated with measurements. Therefore, when we are dealing
with identical particles in quantum mechanics, more care is needed
to specify the state vectors.

First of all, let us consider two distinguishable particles in quan-
tum mechanics. Let the state

|ψ〉 = |a, b〉 = |a〉 ⊗ |b〉, (14.50)

describe the system. That is, this state describes particle 1 at x = a
and particle 2 at x = b. The state which describes particle 1 at x = b
and particle 2 at x = a is then given by

|ψ′〉 = |b, a〉 = |b〉 ⊗ |a〉. (14.51)

Since the particles are distinguishable, the states |ψ〉 and |ψ′〉 are
distinct.

Let us now consider two identical particles. We cannot make
very definitive statements anymore. But, we can ask about the state
which describes one particle at x = a and the other at x = b. Notice
that we cannot talk about particle 1 being at x = a and particle 2
being at x = b any more. That is because we cannot distinguish
between them. There are, of course, two states |a, b〉 and |b, a〉 which
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describe one particle being at x = a and the other being at x = b.
Let us assume that the actual state which describes the system is a
linear combination of the above two states, i.e.,

|ψ(a, b)〉 = α|a, b〉 + β|b, a〉, (14.52)

where α and β are constants to be determined.

We note that, since the particles are indistinguishable, exchang-
ing the two of them must still describe the same state. Namely, we
must have

|ψ(b, a)〉 = λ|ψ(a, b)〉 = λ(α|a, b〉 + β|b, a〉), (14.53)

where λ is a constant. As a result, we see that under two successive
exchanges, we have

|ψ(a, b)〉 −→ |ψ(b, a)〉 = λ|ψ(a, b)〉

−→ λ|ψ(b, a)〉 = λ2|ψ(a, b)〉. (14.54)

Therefore, we have

|ψ(a, b)〉 = λ2|ψ(a, b)〉

or, λ2 = 1, or λ = ±1. (14.55)

In turn, this implies, from (14.52) and (14.53), that

β = ±α. (14.56)

This, therefore, tells us that a quantum mechanical system con-
sisting of two identical particles must be described by a state that
is either symmetric or anti-symmetric under the exchange of the two
particles. That is, we have two classes of state vectors when dealing
with identical particles in quantum mechanics, namely,

|a, b〉S = |a, b〉+ |b, a〉,
|a, b〉A = |a, b〉 − |b, a〉.

(14.57)

where these states are not normalized. However, this still does not tell
us when a symmetric state is to be used and when an anti-symmetric
state is preferred.
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Postulate. States describing identical bosons are given by symmetric
vectors (wave functions) whereas states describing identical fermions
are given by anti-symmetric vectors (wave functions).

Let us emphasize here that the symmetry or the anti-symmetry
of a quantum mechanical state only refers to the total wave func-
tion. Namely, as we have seen, a wave function can be a product
of functions which depend on space, spin as well as other quantum
numbers that we may not have studied so far. It is only when all
these quantum numbers including space and spin are exchanged that
the wave function has to be symmetric or anti-symmetric. A wave
function does not have to be symmetric or anti-symmetric in each of
its quantum numbers. As an example, let us consider a state that
depends only on space and spin and is anti-symmetric.

|ψ〉A = |space〉 ⊗ |spin〉. (14.58)

This immediately tells us that such a state is possible only if: (a) the
space part is anti-symmetric and the spin part is symmetric, (b) the
space part is symmetric and the spin part is anti-symmetric under an
exchange of particles. But the space and the spin parts do not have to
be separately anti-symmetric. In fact, if both the space as well as the
spin parts were anti-symmetric under exchange, then, the total wave
function would be symmetric and, therefore, would be bosonic. Let us
also note here that, in the case of a system containing a large number
of identical particles, the wave function has to be symmetric or anti-
symmetric under the exchange of any pair of particles, depending on
whether they are bosons or fermions.

Let us now consider a state describing two identical fermions.
Let us denote by ωi all the quantum numbers that the particles can
have. Thus, the state containing two identical fermions is given by

|ω1, ω2〉A = |ω1, ω2〉 − |ω2, ω1〉. (14.59)

If we now set ω1 = ω2 = ω, then we obtain

|ω, ω〉A = |ω, ω〉 − |ω, ω〉 = 0. (14.60)

This is the famous Pauli exclusion principle which says that two iden-
tical fermions cannot have the same quantum numbers (Two identical
fermions cannot be in the same quantum state).

Normalization of states. Let us next study the question of normal-
ization of such states. First, if we have a symmetric state of two
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identical particles, we can write

|a, b〉S = α (|a, b〉 + |b, a〉)

= α (|a〉 ⊗ |b〉+ |b〉 ⊗ |a〉) . (14.61)

In this case, normalization would require

S〈a, b|a, b〉S = 1 = 2αα∗, (14.62)

so that we can choose

α = α∗ =
1√
2
. (14.63)

Thus, we determine the normalized symmetric state to be

|a, b〉S =
1√
2
(|a, b〉+ |b, a〉). (14.64)

Similarly, for an anti-symmetric state, we have

|a, b〉A = β(|a, b〉 − |b, a〉)

= β(|a〉 ⊗ |b〉 − |b〉 ⊗ |a〉), (14.65)

and normalization gives

A〈a, b|a, b〉A = 1 = 2ββ∗, (14.66)

so that we can choose

β =
1√
2
= β∗. (14.67)

The normalized anti-symmetric state, therefore, has the form

|a, b〉A =
1√
2
(|a, b〉 − |b, a〉). (14.68)

14.3 General discussion of groups

We had discussed earlier, very briefly, the concept of a group in con-
nection with the properties of translation (see chapter 6). Let us
study this a bit more in some detail.

A group G consists of a set of elements with a definite combina-
tion (multiplication) rule such that
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1. if g1, g2 ∈ G, then, g1g2 = g3 ∈ G. That is, a group is closed
under multiplication. (The real numbers 0, 1, 2 . . . 10, for
example, do not form a group because 5 + 6 = 11 is not in the
set. In this case, combination is simply through addition. On
the other hand, the set of all real numbers does form a group.)

2. if g1, g2, g3 ∈ G, then,

g1(g2g3) = (g1g2)g3.

That is, the multiplication of group elements is associative.

3. There exists an identity element 1 ∈ G such that1gi = gi = gi1.
(In case of the example of the real numbers above, 0 is the
identity element.)

4. For every element g ∈ G, there exists an inverse element g−1 ∈
G such that

gg−1 = 1 = g−1g.

(In case of the example of the reals above, inverses correspond
to negative numbers which are contained in the set.)

The group multiplication (composition) is not necessarily com-
mutative. When it is, the group is called Abelian, otherwise, it is
known as a non-Abelian group. If the number of elements in a group
is finite, then the group is called a finite group. However, if there are
an infinite number of discrete elements, then the group is known as an
infinite discrete group. If, however, the elements form a continuum (in
a topological sense), then the group is said to be a continuous group
(by definition, they are infinite groups). Lie groups are continuous
groups where each element possesses derivatives (in the continuous
parameters of the group) up to all orders.

It is clear that if we take all the n × n square matrices with
non-vanishing determinants, then they form a group, i.e.,

1. All n× n matrices close under multiplication.

2. Matrix multiplication is associative.
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3. The identity element is the n dimensional identity matrix1 =




1
1

1
. . .

1



.

4. Since det g 6= 0 (g’s are n×n matrices), the inverse, g−1, exists
such that

g−1g = 1 = gg−1.

A matrix, in addition, can contain functions of parameters as its
elements. The functions may be continuous functions of the param-
eters in which case the group is a continuous group. Furthermore, if
the parameters take values over a bounded range, then the group is
called compact. It is known as non-compact otherwise.

These groups can be classified into various categories. The most
general is the n×n complex matrices with non-vanishing determinant.
This group is known as GL(n,C) or the complex general linear group
in n dimensions. It has (n2 complex) 2n2 parameters. If we restrict
all the elements to be real, then the group is called GL(n,R) and has
n2 parameters. It is obvious that

GL(n,R) ⊂ GL(n,C). (14.69)

Let us note here that GL(4, R) corresponds to the group of coordinate
transformations in Einstein’s theory.

If one takes all the matrices of GL(n,C) and demands that the
determinant of the matrices be unity, then the subset of the matrices
form a group called SL(n,C) (special linear). These matrices have
2
(
n2 − 1

)
(real) parameters. If one is only dealing with real matrices

with determinant unity, then they form a group known as SL(n,R)
which has

(
n2 − 1

)
parameters. It is clear that

SL(n,R) ⊂ SL(n,C) ⊂ GL(n,C). (14.70)

We note here that SL(2, C) is known as the (homogeneous) Lorentz
group and describes spinors naturally. On the other hand, we note
that

SL(n,R) ⊂ GL(n,R),

SL(n,C) 6⊂ GL(n,R), (14.71)
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which implies that Einstein’s theory cannot incorporate spinors di-
rectly.

All n× n matrices that are unitary, i.e., those satisfying

g†g = 1 = gg†, (14.72)

form the unitary group U(n) and depend on n2 parameters. Further-
more, the unitary matrices leave the form

∑
i z

∗
i zi unchanged. That

is, if

z → z′ = gz, (14.73)

where g belongs to U(n), then,

z′†z′ = z†g†gz = z†1z = z†z. (14.74)

It is clear that

U(n) ⊂ GL(n,C). (14.75)

If we choose, from all the n × n unitary matrices, only those
whose determinant is 1, then they form a group called SU(n), the
special unitary group. It has n2−1 independent parameters. Clearly,

SU(n) = U(n) ∩ SL(n,C). (14.76)

All n× n complex orthogonal matrices also form a group called
O(n,C). They satisfy the condition

gT g = 1 = ggT , g ∈ O(n,C), (14.77)

and leave invariant the complex quadratic form
∑

i z
2
i . It is clear,

from (14.77), that

det g = ±1. (14.78)

Thus, the group O(n,C) decomposes into two disconnected pieces,
since we cannot go continuously from one to the other. The matrices
with determinant 1 form the special complex orthogonal group de-
noted by SO(n,C) and it depends on n(n− 1) parameters. It is also
clear that

SO(n,C) = O(n,C) ∩ SL(n,C). (14.79)

If the set of orthogonal matrices with determinant 1 is real, then they
form the special real orthogonal group denoted by SO(n,R). These
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depend on 1
2n(n − 1) parameters, leave invariant the real quadratic

form
∑

i x
2
i and

SO(n,R) = O(n,R) ∩ SL(n,R). (14.80)

We have already seen, in chapter 7, that rotations in three di-
mensions are generated by orthogonal matrices whose determinant
is equal to 1. By our classification we see, therefore, that SO(3, R)
(or, simply SO(3)) is the group of proper rotations in 3 dimensional
space. Furthermore, we also showed from the form of the infinitesi-
mal rotations that the generators of rotation are the orbital angular
momentum operators, which satisfy the commutation relations (Let
us set ~ = 1 for simplicity.)

[Li, Lj ] = iǫijkLk, i, j, k = 1, 2, 3. (14.81)

This is known as the Lie algebra of SO(3) group, where Li’s denote
the generator of the group. The algebra is closed in the sense that the
commutator of two generators is again a generator. The constants,
ǫijk, are known as the structure constants of the group. We also
know that there exists only one Casimir operator L2 for this algebra.
The number of Casimir operators gives the rank of the group. Thus,
we say that SO(3) is a group of rank 1. Let us further note that the
Pauli matrices also satisfy the same algebra as the angular momentum
operators. They are Hermitian. Thus, we can define a set of 2 × 2
complex matrices as

g = eiθ·σ. (14.82)

These would be unitary since σ†i = σi. Furthermore, since the Pauli
matrices are traceless, det g = 1 and the set of matrices {g} defines
the group SU(2). The Pauli matrices which are three in number
are, therefore, the generators of this group and satisfy the same Lie
algebra as that of the SO(3) group. When the generators of two
different groups satisfy the same algebra, they are said to be locally
isomorphic to each other. Thus, we have shown that

SO(3) ≃ SU(2), (locally isomorphic). (14.83)

Local isomorphism simply implies that the two groups are equivalent
near the identity element or for infinitesimal transformations. Finite
transformations for the two groups, however, may be very different.
The other way of saying the same thing is that the global structure
of the two groups may be very different.
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To note the difference between the two groups, let us consider
the following. Let us denote by {R} the set of all SO(3) matrices
which rotate the 3 dimensional space on to itself. These matrices
preserve the length, namely,

x′ = Rx, ⇒ x′21 + x′22 + x′23 = x21 + x22 + x23. (14.84)

Furthermore, let us consider the 2 dimensional complex space
where length is defined to be

|λ1|2 + |λ2|2 = λ∗1λ1 + λ∗2λ2 = λ∗αλα = λ†λ. (14.85)

Let U denote all the 2 × 2 unitary matrices with determinant equal
to 1 so that they belong to SU(2) and have the form

U =

(
α β
−β∗ α∗

)
, |α|2 + |β|2 = 1. (14.86)

These matrices, U , leave the length of a vector invariant in this space.
Furthermore, let us consider the Hermitian, traceless matrix (Cayley-
Klein parameterization)

x =

(
x3 x1 + ix2

x1 − ix2 −x3

)
. (14.87)

Under the action of the matrices U , this changes to x′ as

x′ =

(
x′3 x′1 + ix′2

x′1 − ix′2 −x′3

)
= x′ = UxU−1. (14.88)

It follows now that

detx′ = detx,

or, −
(
x′21 + x′22 + x′23

)
= −

(
x21 + x22 + x23

)
. (14.89)

Thus, we can think of the matrices U as rotating the 3 dimen-
sional space such that the length of the vector is invariant. Therefore,
we can think of SU(2) rotations as equivalent to SO(3) rotations.
There is one difference though. We see, from (14.88), that the ma-
trices U and −U give the same rotation. Therefore, we see that each
SO(3) rotation corresponds to two distinct SU(2) rotations. This is
also known as the doubly connectedness of the SO(3) group. This
can be seen in a different way in the parameter space. An SO(3)
rotation is an angle φ about some axis with magnitude 0 ≤ |φ| ≤ π.
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This can be represented as a sphere of radius π. Furthermore, since
a rotation about an axis by π is the same as the rotation by −π, op-
posite points on the surface of the sphere are identified. Any series of
rotations can be represented as a curve in this sphere. If all possible
curves representing the same rotation can be reduced to one single
curve, then, the space is said to be simply connected. However, in
the case of SO(3) rotations, we see that there are two distinct paths
for a rotation. Thus, SO(3) is doubly connected.

The parameter space for SU(2), on the other hand, is again a
sphere with radius π. However, in this case all points on the surface
are identified. This is seen from the fact that

U(θ) = eiθ·σ = cos θ + iθ̂ · σ sin θ, (14.90)

where θ = |θ|. It is clear now that

U(θ = πθ̂) = −1, (14.91)

irrespective of the direction of the rotation. As a result, all points on
the surface of a sphere can be identified. Hence it is easy to see that
each curve in this space can be reduced to just one path. Therefore,
SU(2) is simply connected and is known as the covering group of
SO(3).

14.4 Addition of angular momentum

Suppose we have a system consisting of two particles. With each par-
ticle is associated an angular momentum operator, which we denote
by J1 and J2 respectively. The commutation relations satisfied by
these operators can be written in the compact form

J1 × J1 = i~J1,

J2 × J2 = i~J2,

[J1,J2] = 0. (14.92)

With each angular momentum is also associated a Casimir oper-
ator. Thus, we have two Casimir operators J2

1 and J2
2, which commute

with all the generators of the algebra. Therefore, we can label the
representations of the enlarged algebra by the eigenvalues of these
Casimir operators. Let us assume that the values of the angular
momenta for the two particles are j1 and j2 respectively. Thus,

J2
1 : ~

2j1(j1 + 1),

J2
2 : ~

2j2(j2 + 1). (14.93)
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Furthermore, the z-components of the angular momenta can take the
range of values

J1z : ~m1,
J2z : ~m2,

j1 ≥ m1 ≥ −j1,
j2 ≥ m2 ≥ −j2.

(14.94)

Let us denote by E(j1) the space on which the operators J1 act. Sim-
ilarly, E(j2) is the space on which the operators J2 act. Since J1 and
J2 commute, the total space is a direct product of the two spaces.

E = E(j1) ⊗ E(j2),

or, |j1,m1; j2,m2〉 = |j1,m1〉 ⊗ |j2,m2〉. (14.95)

We can, of course, define the total angular momentum opera-
tor for the system as the sum of the individual angular momentum
operators, namely,

J = J1 + J2. (14.96)

It is clear that

[Ji, Jj ] = i~ǫijkJk,
[
J2, Ji

]
= 0,

[
J2,J2

1

]
= 0 =

[
J2,J2

2

]
. (14.97)

However, it can be checked easily that

[
J2, J1i

]
6= 0,

[
J2, J2i

]
6= 0. (14.98)

Thus, it is clear that rather than working in the basis in which the
operators J2

1,J
2
2, J1z and J2z are diagonal, we can equivalently also

work in the basis in which the operators J2, Jz,J
2
1,J

2
2 are diagonal.

Let us denote the states in this basis by

|j,m; j1, j2〉. (14.99)

The question that we would like to address is the possible values of
the quantum numbers j and m, given a j1 and j2.

First of all, let us note that the space spanned by |j1,m1〉 is
(2j1 + 1) dimensional, since m1 takes 2j1 + 1 values. Similarly, the
space spanned by |j2,m2〉 is (2j2 + 1) dimensional. Thus, the total
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space, which is a direct product of the two, must have dimension
(2j1 + 1)(2j2 + 1). Furthermore, let us observe that

Jz|j1,m1; j2,m2〉

= (J1z + J2z) |j1,m1; j2,m2〉

= J1z|j1,m1〉 ⊗ |j2,m2〉+ |j1,m1〉 ⊗ J2z|j2,m2〉

= ~(m1 +m2)|j1,m1; j2,m2〉. (14.100)

Therefore, the eigenvalues of Jz, namely ~m, are such that

m = m1 +m2. (14.101)

But, we know that

j1 ≥ m1 ≥ −j1, j2 ≥ m2 ≥ −j2. (14.102)

It follows, then, that the quantum number m can take values

(j1 + j2) ≥ m ≥ −(j1 + j2). (14.103)

However, it is also clear that a particular m value may be obtained
from different values of m1 and m2 so that we expect degeneracy of
states in this space.

If we assume that the eigenvalues of J2 are ~
2j(j + 1), then, as

we have seen from the algebra of angular momentum, m is expected
to take values

j ≥ m ≥ −j, (14.104)

for every value of j. Furthermore, we have seen in (14.103) that
mmax = j1 + j2. Therefore, it follows from (14.104) that

jmax = j1 + j2. (14.105)

We note that jmax cannot be the only value of j because then the
dimensionality of the space would be (2jmax + 1) = (2j1 + 2j2 + 1).
However, for nontrivial j1, j2

(2j1 + 2j2 + 1) 6= (2j1 + 1)(2j2 + 1). (14.106)

Thus, j must take other values also. To determine these, let us note
that the state withm = mmax = j1+j2 is unique and can be identified
with

|j1 + j2, j1 + j2; j1, j2〉 = |j1, j1〉 ⊗ |j2, j2〉. (14.107)

         
49:07.



402 14 Spin

However, the state with m = j1 + j2 − 1 is doubly degenerate in the
sense that there are two possible states with this quantum number,
namely, both

|j1, j1〉 ⊗ |j2, j2 − 1〉, |j1, j1 − 1〉 ⊗ |j2, j2〉, (14.108)

give the same value for m. In the |j,m; j1, j2〉 basis, on the other
hand, the state

|j1 + j2, j1 + j2 − 1; j1, j2〉, (14.109)

gives one state with m = j1+ j2−1. The second state, therefore, has
to be of the form

|j1 + j2 − 1, j1 + j2 − 1; j1, j2〉, (14.110)

so that j = j1 + j2 − 1 is another allowed value for the total angular
momentum quantum number.

We can carry out this analysis further and show that the quan-
tum number j takes the values

j : j1 + j2, j1 + j2 − 1, j1 + j2 − 2, . . . , jmin. (14.111)

The minimum value, jmin, should be such that the dimensionality of
the total space is equal to (2j1 + 1)(2j2 + 1). For each j value, the
dimensionality of the space is (2j + 1). Therefore, this constraint
leads to

j1+j2∑

jmin

(2j + 1) = (2j1 + 1)(2j2 + 1),

or, (j1 + j2)(j1 + j2 + 1)− jmin(jmin − 1) + j1 + j2 − jmin + 1

= (2j1 + 1)(2j2 + 1). (14.112)

Simplifying this, we obtain,

j2min = j21 + j22 + 2j1j2 + j1 + j2 + j1 + j2 + 1

− (4j1j2 + 2j1 + 2j2 + 1)

= j21 + j22 − 2j1j2 = (j1 − j2)2,

or, jmin = |j1 − j2|. (14.113)
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Thus, the total angular momentum operator takes values form j1+j2
down to |j1 − j2|, decreasing in steps of unity and we have

E = E(j1) ⊗ E(j2) =
j1+j2∑

j=|j1−j2|
⊕E(j). (14.114)

This simply means that the |j,m; j1, j2〉 basis defines a reducible space
and operators take block diagonal form in this basis.

14.5 Clebsch-Gordan coefficients

We see that a system consisting of two angular momentum operators
can be equivalently described in terms of two alternate basis, namely,

|j1,m1; j2,m2〉, or, |j,m; j1, j2〉. (14.115)

We also know that two equivalent basis can be related through a
unitary transformation. In fact, we can express one basis completely
in terms of the other basis, since each defines a complete basis. Thus,
we can write

|j,m; j1, j2〉

=
∑

m1,m2

|j1,m1; j2,m2〉〈j1,m1; j2,m2|j,m; j1, j2〉

=
∑

m1,m2

C(j, j1, j2;m,m1,m2)|j1,m1; j2,m2〉. (14.116)

The coefficients of the expansion are called the Clebsch-Gordan-
Wigner coefficients and are nontrivial only if |j1 − j2| ≤ j ≤ j1 + j2.
We note that, since

Jz|j,m; j1, j2〉

=
∑

m1,m2

C(j, j1, j2;m,m1,m2)(J1z + J2z)|j1,m1; j2,m2〉,

(14.117)

we have

∑

m1,m2

(m−m1 −m2)C(j, j1, j2;m,m1,m2)|j1,m1; j2,m2〉 = 0.

(14.118)
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This implies that

C(j, j1, j2;m,m1,m2) = 0, m 6= m1 +m2. (14.119)

In other words,

C(j, j1, j2;m,m1,m2) = 〈j1,m1; j2,m2|j,m; j1, j2〉 = 0,

(14.120)

if m 6= m1 +m2 and j1 + j2 ≥ j ≥ |j1 − j2| does not hold. Thus, we
can effectively write

|j,m; j1, j2〉 =
∑

m1

C(j, j1, j2;m1,m−m1)|j1,m1; j2,m−m1〉.

(14.121)

The normalization condition for the basis states,

〈j′,m′; j1, j2|j,m; j1, j2〉 = δj′jδm′m, (14.122)

further leads to the relation,

∑

m′
1,m1

C∗ (j′, j1, j2;m′
1,m

′ −m′
1

)

×C(j, j1, j2;m1,m−m1)δm′
1m1

δm′m = δj′jδm′m,

or,
∑

m1

C∗ (j′, j1, j2;m1,m
′ −m1

)

×C (j, j1, j2;m1,m−m1) δm′m = δj′jδm′m. (14.123)

This is the orthogonality relation for the Clebsch-Gordan coefficients.
Furthermore, the phases of the coefficients are fixed by demanding
that

〈j1, j1; j2, j − j1|j, j; j1, j2〉 = C (j, j1, j2; j1, j − j1) , (14.124)

is real and positive, which fixes the phases of all the other coefficients.
We can also define recursion relations for the Clebsch-Gordan coef-
ficients by applying the raising and lowering operators and, in this
way, can determine all of them. In a particular problem, however, it
is much simpler to construct them from first principles rather than
look for general results.

Even though we have talked about the addition of angular mo-
mentum for two distinct particles, the same analysis holds even if we
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are considering the addition of, say, L and S for the same particle.
Addition of three angular momenta can be done by first combining
any two of them and then adding the third one to the resultant of the
first two. Furthermore, just as one can expand |j,m; j1, j2〉 states in
the |j1,m1; j2,m2〉 basis, one can also invert the expansion and write

|j1,m1; j2,m2〉 =
∑

m,j

|j,m; j1, j2〉〈j,m; j1, j2|j1,m1; j2,m2〉

=
∑

m,j

C∗ (j, j1, j2;m,m1,m2) |j,m; j1, |j2〉. (14.125)

◮ Example. Let us consider the sum of two angular momenta with eigenvalues 1
2

each and analyze the resulting eigenvalues and eigenstates. In this case, we have

j1 =
1

2
, j2 =

1

2
, (14.126)

and, therefore,

m1 = −1

2
,
1

2
; m2 = −1

2
,
1

2
. (14.127)

The basis states for each of the angular momentum operators, in this case, is
easily determined to be

|j1,m1〉 : |1
2
,
1

2
〉, |1

2
,−1

2
〉,

|j2,m2〉 : |1
2
,
1

2
〉, |1

2
,−1

2
〉. (14.128)

Since both j1 = j2 = 1
2
, we drop these and denote the states by their m quantum

numbers only so that

|j1,m1; j2, m2〉 = |j1, m1〉 ⊗ |j2,m2〉 ⇒ |m1, m2〉 = |m1〉 ⊗ |m2〉. (14.129)

Clearly, there are four independent basis states in the total space which
we can denote by |+,+〉, |+,−〉, |−,+〉, |−,−〉. Here the ± signs stand for the
signatures of the z-components of the angular momenta. We see that

Jz|+,+〉 = (J1z + J2z) |+,+〉

= (J1z|+〉)⊗ |+〉+ |+〉 ⊗ (J2z|+〉)

= ~|+,+〉. (14.130)

Similarly, we can show that

Jz|+,−〉 = 0,

Jz|−,+〉 = 0,

Jz|−,−〉 = −~|−,−〉, (14.131)
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which implies that, in the product basis, we can write

Jz −→
(+,+)

(+,−)

(−,+)

(−,−)









~ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −~









. (14.132)

This makes it clear that the allowed values for the azimuthal quantum number m
are +1, 0,−1. This is consistent with our general result in (14.103).

Furthermore, using the result

J
2 = J

2
1 + J

2
2 + 2J1 · J2

= J
2
1 + J

2
2 + 2J1zJ2z + J1+J2− + J1−J2+, (14.133)

we can show that, in the product basis,

J
2 −→ ~

2









2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2









. (14.134)

Thus, we see that J2, the total angular momentum squared, is not diagonal in
this basis. In fact, even though the |+,+〉 and |−,−〉 states are eigenstates with
eigenvalue j = 1, the |+,−〉 and |−,+〉 states are not. We can diagonalize this
matrix and show that the states

|+,+〉,
1√
2
(|+,−〉+ |−,+〉) ,

|−,−〉,
(14.135)

represent the eigenbasis corresponding to j = 1 and

1√
2
(|+,−〉 − |−,+〉) , (14.136)

corresponds to the eigenstate with j = 0.
This determines that j = 0, 1 which agrees with our general result in

(14.111). Furthermore, it is clear that we can identify

|j = 1,m = 1〉 = |+,+〉,

|j = 1,m = 0〉 = 1√
2
(|+,−〉+ ||−,+〉) ,

|j = 1,m = −1〉 = |−,−〉,

|j = 0,m = 0〉 = 1√
2
(|+,−〉 − ||−,+〉) . (14.137)

The states with j = 1 are known as the triplet states, whereas the one with
j = 0 is called the singlet state, following the conventions of atomic spectra. It
is clear that the triplet states are symmetric under exchange whereas the singlet
state is anti-symmetric. Furthermore, we can write the relation, (14.137), between
the two sets of basis states in the matrix form as









|1, 1〉
|1, 0〉
|1,−1〉
|0, 0〉









=









1 0 0 0
0 1√

2

1√
2

0

0 0 0 1
0 1√

2
− 1√

2
0

















|+,+〉
|+,−〉
|−,+〉
|−,−〉









. (14.138)
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The elements of the matrix connecting the two sets of basis states are the Clebsch-
Gordan coefficients for this problem. Symbolically, we can write the composition
of the angular momenta, in this case, as

1

2
⊗ 1

2
= 1⊕ 0. (14.139)

◭

14.6 Selected problems

1. a) Show that any 2 × 2 matrix that commutes with the three
Pauli matrices, ~σ, is a multiple of the identity matrix.

b) Show that there is no 2× 2 matrix that anti-commutes with
the three Pauli matrices.

2. In (14.33)-(14.34), we showed that any 2×2 matrix, M , can be
written as

M =

3∑

α=0

mασα. (14.140)

Use this to prove that

(σ ·A)(σ ·B) = (A ·B) + i(A×B) · σ, (14.141)

where A and B are two vector operators which commute with
the Pauli matrices but do not commute among themselves.

3. Find the Clebsch-Gordan coefficients for

1

2
⊗ 1 =

3

2
⊕ 1

2
. (14.142)

4. Two particles with angular momenta j1 = j2 = 1 form a state
with total angular momentum j = 2 and the z-component of
the total angular momentum m = 1. Construct such a state as
a linear combination of the states |j1,m1; j2,m2〉.
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5. The ground state electron in a hydrogen atom experiences an
interaction because of the magnetic moments of the electron
and the proton. This interaction, known as the hyperfine inter-
action, has the form

H ′
hyperfine = AS1 · S2, A > 0, (14.143)

where S1 and S2 are the spins of the electron and the proton
respectively. Show that this interaction splits the ground state
into two levels. Calculate the energy of the two levels to first
order in perturbation theory.

6. Let the Hamiltonian describing only the spin of two spin 1
2

particles be

H = H0 +H ′, (14.144)

where

H0 =
4A

~2
S1 · S2,

H ′ =
2B

~
S1,z. (14.145)

Here A,B are constants.

a) Determine the eigenvalues and the eigenstates of H0.

b) Calculate the lowest order effect of H ′ on the energy eigen-
values.
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Chapter 15

Scattering theory

Scattering is a valuable probe to study the structure of particles when
we cannot directly see them. For example, it is through scattering
experiments that we have learned that the hydrogen atom consists of
a nucleus and an electron going around it. We know that electrons
are point particles also from the results of scattering experiments.
Furthermore, the scattering experiments have told us that protons
consist of yet other constituents – the quarks. Therefore, we see that
scattering is an essential tool in our understanding of the quantum
nature of particles. We will, therefore, spend some time studying this
topic. However, let me begin by recapitulating some of the features
of scattering theory in classical physics.

Classically, the simplest scattering that we can consider is that
of a beam of particles from a fixed center of force as shown in Fig.
15.1. We can think of the fixed center of force to be a charged particle
of infinite mass, if the particles that are being scattered are thought
of as electrons or protons. Let us assume that a beam of particles is
incident on the fixed source of force along the z-axis. The trajectories
of the particles change due to the force experienced and the deflection
of the trajectory, from the initial direction, is known as the scattering
angle.

θ

z →

Figure 15.1: Classical scattering of a beam of particles from a scat-
tering source.
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Classically, of course, we are not interested in measuring the
exact trajectory of each of the particles. In fact, it is impossible if
the number of particles involved is very large. We can only measure
the initial velocity of the particles (which are assumed to be of the
same energy) and their final velocities. Furthermore, this is done
statistically. Namely, we measure how many particles scatter into a
solid angle dΩ at θ. Thus, if N is the number of incident particles
per unit area per unit time and if n of them scatter by an angle θ
into the solid angle dΩ per unit time, then we define the differential
cross section for scattering as

σ(θ, φ) =
n

N
. (15.1)

Note that the cross section has the dimension of an area. The unit
in which the scattering cross section is measured in quantum exper-
iments (i.e., nuclear physics, particle physics, etc.) is called a barn,
where

1 barn = 10−24 cm2. (15.2)

Furthermore, if the interaction is rotationally invariant, then the
scattering cross section will be independent of the azimuthal angle
and we can define an alternate cross section by integrating out the
azimuthal angle, namely,

σ(θ) =

2π∫

0

dφσ(θ, φ) = 2πσ(θ, φ). (15.3)

We can also define a total cross section by integrating over all scat-
tering angles, namely,

σtot =

π∫

0

sin θdθ σ(θ) =

∫
dΩσ(θ, φ), (15.4)

which measures the total scattering by any angle.

In classical mechanics, of course, the trajectory (or the orbit) of
a particle is completely fixed, if we know both its angular momen-
tum and energy. Let ‘b’ be the impact parameter associated with
a particular trajectory shown in Fig. 15.2. Here v0 represents the
initial velocity of the particle at infinity along the z-axis. Because of
rotational invariance and the azimuthal symmetry, we can consider
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v0

χ

θ

b r0

Figure 15.2: Classical trajectory of a single particle in the beam under
the influence of a scattering source.

motion to lie on a plane. A point on the trajectory can then be de-
scribed by the angle it makes with the z-axis. Furthermore, since
this angle changes by χ coming from ∞ to r0 - the point of closest
approach to the scattering source - the change in the angle in going
from r0 to ∞ would also be χ so that the scattering angle is given by

θ = π − 2χ. (15.5)

Let us note that 0 ≤ θ ≤ π, so that 0 ≤ χ ≤ π
2 .

Let us recall from the definition of the orbital angular momen-
tum that

ℓ = mv0b = b
√
2mE = mr2

dχ

dt
,

or, dχ =
ℓdt

mr2
, (15.6)

where we have used E = 1
2mv

2
0 . We also know that

dr

dt
= v(r) =

[
2

m

(
E − V − ℓ2

2mr2

)]1
2

,

or, dt =
dr

[
2
m

(
E − V − ℓ2

2mr2

)] 1
2

. (15.7)

As a result, we obtain, from (15.6) and (15.7),

dχ =
ℓdt

mr2
=

ℓdr

mr2
[

2E
mr2

{
r2(1− V

E
)− ℓ2

2mE

}] 1
2

=
ℓdr

√
2mE

[
r2
{
r2
(
1− V

E

)
− b2

}] 1
2
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=
bdr

[
r2
{
r2
(
1− V

E

)
− b2

}] 1
2

,

or, χ = b

∞∫

r0

dr
[
r2
{
r2
(
1− V

E

)
− b2

}] 1
2

. (15.8)

Here, as we have noted earlier, r0 is the closest distance of ap-
proach of the trajectory to the scattering source, which is determined
from the roots of the equation

v(r) = 0. (15.9)

(Note that, even if the force is attractive, at short distances, the cen-
trifugal barrier is strong enough to lead to repulsion and, therefore,
to a closest distance of approach. For attractive potentials much
stronger than the centrifugal barrier, the particle would simply fall
into the scattering source.) The scattering angle is, therefore, deter-
mined, from (15.5) and (15.8), to be

θ = π − 2χ = π − 2b

∞∫

r0

dr
[
r2
{
r2
(
1− V

E

)
− b2

}] 1
2

. (15.10)

From (15.10), it is clear that if we take a beam of mono-energetic
particles, particles with a definite impact parameter ‘b’ would scatter
by the same angle, θ. If N is the number of incident particles per unit
area per second, then the number of particles with impact parameter
between b and b+ db is given by

2πNbdb. (15.11)

All these particles would scatter by θ and θ − dθ. But from the
definition of the cross section in (15.1), we note that the number of
such particles is given by

Nσ(θ, φ)(−2π sin θdθ). (15.12)

(We note here that particles with a larger impact parameter scatter
less, which implies that particles with impact parameters between
b and b + db would scatter by angles θ and θ − dθ respectively.)
Therefore, comparing (15.11) and (15.12), we have

2πNbdb = −Nσ(θ, φ)2π sin θdθ,

or, σ(θ, φ) =
b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ , (15.13)
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which determines

σ(θ) = 2πσ(θ, φ) = 2π
b

sin θ

∣∣∣∣
db

dθ

∣∣∣∣ . (15.14)

This gives an expression for the differential scattering cross section,
once we know the form of θ as a function of the impact parameter
(or vice versa).

◮ Example (3-dimensional hard sphere). Let us consider scattering from a fixed
center of force described by the potential

V (r) =

{

∞ r < a,

0 r > a.
(15.15)

It is clear from (15.15) that if b > a, the particle would not experience any force
and would pass through without any scattering. Therefore, we conclude that

θ = 0, if b > a. (15.16)

For b < a, on the other hand, the particle cannot approach a distance closer than
‘a’ classically, since the velocity would then become imaginary. Thus, the closest
distance of approach, in this case, is r0 = a and it follows from (15.10) that

θ = π − 2b

∞
∫

a

dr

[r2 (r2 − b2)]
1
2

= π − 2b

∞
∫

a

dr

r (r2 − b2)
1
2

= π − 2b

[

1

b
sec−1 r

b

]∞

a

= π − 2
[π

2
− sec−1 a

b

]

= 2 sec−1 a

b
= 2 cos−1 b

a
. (15.17)

From (15.17), we note that we can write

b = a cos
θ

2
,

db

dθ
= −a

2
sin

θ

2
,

b

sin θ
=
a cos θ

2

sin θ
=

a

2 sin θ
2

. (15.18)

Substituting these into (15.14), we obtain

σ(θ) = 2π
b

sin θ

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

= 2π
a

2 sin θ
2

a

2
sin

θ

2
=
a2

4
2π =

πa2

2
. (15.19)

The total scattering cross section is now determined to be

σtot =

π
∫

0

sin θdθ σ(θ) =

π
∫

0

sin θdθ
πa2

2
= πa

2
. (15.20)

Thus, we see that the differential cross section for scattering, in this case, is
a constant independent of the angle and the total scattering cross section is equal
to the area of a diametrical section of the scattering sphere. ◭
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◮ Example (Rutherford scattering). In this case, the force experienced by the
scattered particles is given by the Coulomb potential

V (r) =
Ze2

r
, (15.21)

where e denotes the charge of the particles being scattered, while Ze is the charge
of the scattering source. The closest distance of approach, in this case, is obtained
from the roots of the equation (see (15.7) and (15.9))

E − V − ℓ2

2mr2
= 0,

or. 1− V

E
− b2

r2
= 0,

or, r
2 − Ze2r

E
− b

2 = 0, (15.22)

which determines

r =

Ze2

E
±
√

(

Ze2

E

)2

+ 4b2

2
. (15.23)

Since the radial vector can only take positive values, we conclude, from (15.23),
that

r0 =
Ze2

2E

(

1 +

√

1 +
4b2E2

Z2e4

)

. (15.24)

In this case, we obtain, from (15.8), that

χ = b

∞
∫

r0

dr
[

r2
{

r2
(

1− Ze2

Er

)

− b2
}] 1

2

. (15.25)

Let us define x = 1
r
which implies that dx = − dr

r2
, or dr = − dx

x2 so that we can
write (15.25) as

χ = −b
0
∫

x0

dx

x2
[

1
x2

{

1
x2

(

1− Ze2x
E

)

− b2
}] 1

2

= −b
0
∫

x0

dx
(

1− Ze2x
E

− b2x2
) 1

2

. (15.26)

Furthermore, using the standard integral,

∫

dx
√

α+ βx+ γx2
=

1√−γ cos−1

(

− β + 2γx
√

β2 − 4αγ

)

, (15.27)
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we determine

χ = −b 1

b
cos−1

Ze2

E
+ 2b2x

[

(

Ze2

E

)2

+ 4b2
] 1

2

∣

∣

∣

∣

0

x0

= − cos−1 1 + 2b2E
Ze2

x
(

1 + 4b2E2

Z2e4

) 1
2

∣

∣

∣

∣

0

x0

= − cos−1 1
(

1 + 4b2E2

Z2e4

) 1
2

+ cos−1

1 + 2b2E
Ze2

2E

Ze2

[

1+
(

1+ 4b2E2

Z2e4

) 1
2

]

(

1 + 4b2E2

Z2e4

) 1
2

= − cos−1 1
(

1 + 4b2E2

Z2e4

) 1
2

+ cos−1
1 +

(

1 + 4b2E2

Z2e4

) 1
2
+ 4b2E2

Z2e4

1 + 4b2E2

Z2e4
+
(

1 + 4b2E2

Z2e4

) 1
2

= − cos−1 1
(

1 + 4b2E2

Z2e4

) 1
2

+ cos−1(1) = − cos−1 1
(

1 + 4b2E2

Z2e4

) 1
2

. (15.28)

In this case, therefore, we obtain

θ = π − 2χ = π + 2 cos−1 1
(

1 + 4b2E2

Z2e4

) 1
2

,

or,
1

(

1 + 4b2E2

Z2e4

) 1
2

= cos

(

θ

2
− π

2

)

= cos

(

π

2
− θ

2

)

= sin
θ

2
, (15.29)

which leads to

2bE

Ze2
= cot

θ

2
. (15.30)

This, in turn determines

b =
Ze2

2E
cot

θ

2
,

db

dθ
= −Ze

2

4E
cosec2

θ

2
,

b

sin θ
=
Ze2

2E

cot θ
2

sin θ
=
Ze2

4E
cosec2

θ

2
. (15.31)

Therefore, in this case, the differential cross section is determined to be

σ(θ) = 2π
b

sin θ

∣

∣

∣

∣

db

dθ

∣

∣

∣

∣

= 2π

(

Ze2

4E

)2

cosec4
θ

2
. (15.32)

This is known as the Rutherford scattering formula. If we integrate this to de-
termine the total cross section, we find that the total cross section diverges. This
is a consequence of our assumption that the Coulomb force extends to infinite
distances. Hence, any particle, no matter how far away it is from the scattering
source, suffers a change in its trajectory. In reality, of course, the Coulomb force
is screened and hence we have a finite total cross section. ◭
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15.1 Laboratory frame and the center of mass frame

We have so far considered the scattering of an incident particle by
a fixed source. However, in practice, one shoots beams of particles
at fixed targets which, after being hit, are also in motion. Thus, the
problem is not quite the same as we have studied so far. However,
we can translate the problem to an equivalent one. For example, we
have seen, in chapter 9, that the motion of two particles interacting
through a potential, which depends on the relative separation of the
two particles, can be split into the motion of the center of mass and
the motion of a particle with a reduced mass. Furthermore, in the
center of mass frame, the center of mass is at rest and, therefore, any
scattering can be reduced to that of incident particles with a reduced
mass scattering from a fixed source. We can utilize the formulae we
have developed in the last section in the center of mass frame and, to
obtain quantities in the laboratory frame, we simply have to make a
transformation, which we describe below. However, let us first note
that scattering can be of two types. If in a scattering the internal
energy of the particles change, then it is called an inelastic scattering.
However, if there is no change in the internal energy, the scattering
is known as an elastic scattering.

Let us consider an elastic scattering of a particle of mass m1

incident with a velocity v1 on a stationary target of mass m2 in the
laboratory as shown in Fig. 15.3. This process can be equivalently
described in the laboratory frame or in the center of mass frame. Let
us assume that there is azimuthal symmetry so that the azimuthal
angle is not so important. The center of mass, in this case, moves to
the right with a velocity

vCM =
m1v1

m1 +m2
. (15.33)

In the center of mass frame, therefore, the particles 1 and 2 move
towards each other with speeds (see Fig. 15.4)

ṽ1 = v1 − vCM =
m2v1

m1 +m2
,

ṽ2 = vCM =
m1v1

m1 +m2
, (15.34)

where we are only talking about the magnitudes of the velocities.
If θlab and θCM denote respectively the scattering angles in the

laboratory frame and the center of mass frame, then, for the compo-
nents of the final velocities parallel and perpendicular to the center
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m1, v1 m2

m1, v

θlab

Figure 15.3: Scattering of a particle incident on another particle at
rest in the laboratory.

of mass velocity, we must again have

v cos θlab − vCM = ṽ1 cos θCM,

or, v cos θlab = vCM + ṽ1 cos θCM, (15.35)

and

v sin θlab = ṽ1 sin θCM. (15.36)

It follows from (15.35) and (15.36) that

tan θlab =
sin θCM

cos θCM + vCM
ṽ1

=
sin θCM

γ + cos θCM

, (15.37)

where we have defined

γ =
vCM

ṽ1
=
m1

m2
. (15.38)

Equation (15.37), therefore, determines the transformation between
the scattering angles in the two frames.

We are discussing so far an elastic scattering. However, if we
had an inelastic scattering of the form

m1 +m2 → m3 +m4,

then, a relation of the form (15.37) is still valid except that the quan-
tity γ is now defined to be

γ =

(
m1m3

m2m4

E

E +Q

) 1
2

, (15.39)
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m1, ṽ1 m2, ṽ2

m1, ṽ1

θCM

Figure 15.4: The same scatterin as in Fig. 15.3 viewed in the center
of mass frame.

where Q denotes the amount of internal energy that is converted into
the kinetic energy of the emerging particles and E is the initial energy
of both the particles in the center of mass frame. (Let us note that
(15.39) reduces to (15.38) – the elastic case – when Q = 0,m3 =
m1,m4 = m2.)

The relation between the cross sections in the center of mass
frame and the laboratory frame can now be obtained from the fact
that the same particles which go into the solid angle dΩCM at θCM in
the center of mass frame go into the solid angle dΩlab at θlab in the
laboratory frame. Therefore, we have

σlab(θlab) sin θlabdθlab = σCM(θCM) sin θCMdθCM. (15.40)

Using (15.37), this can be simplified to give

σlab(θlab) =

(
1 + γ2 + 2γ cos θCM

) 3
2

|1 + γ cos θCM|
σCM(θCM). (15.41)

This formula holds for both elastic as well as inelastic collisions with
the appropriate identification of γ. It should be noted that the total
cross section is the same in both the laboratory frame and the center
of mass frame, as it should be expected.

Let us note, from (15.37), the following.

1. For γ < 1, θlab increases from 0 to π as θCM increases from 0
to π.
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2. For γ = 1, θlab = θCM
2 , 0 ≤ θlab ≤ π

2 , and 0 ≤ θCM ≤ π. In
this case, (15.41) yields

σlab(θlab) = 4 cos θlabσCM(2θlab), (15.42)

which shows that there is no backward scattering in this case.

3. For γ > 1, θlab increases from 0 to a maximum value as θCM

increases from 0 to cos−1
(
− 1

γ

)
. Then it decreases to 0 as θCM

increases to π.

15.2 Quantum theory of scattering

Figure 15.5: The quantum mechanical description of the scattering
of a beam of particles from a scattering source.

Unlike the case of classical scattering, where particles with a
given initial velocity and angular momentum follow a definite trajec-
tory, in quantum mechanics, the concept of a definite trajectory with
a definite velocity does not exist. As we know, for example, if we
measure the velocity of a particle to be exactly parallel to the z-axis,
then the component of its velocity perpendicular to the z-axis is zero.
This would imply that there would be an infinite uncertainty in the
value of the impact parameter of the particle. Therefore, we have to
pose the question of quantum scattering differently. The scattering
set up is still the same as shown in Fig. 15.5. Namely, we still mea-
sure the initial velocity of the particles and the number of particles
going into the solid angle dΩ at θ after interaction. The definitions
of the differential cross section and the total cross section are still
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the same as given in (15.1) and (15.4) respectively. However, the
solutions are now obtained from the Schrödinger equation.

We will begin with the simplest of scattering problems, namely,
scattering from a fixed potential which has rotational symmetry and
which is independent of time. Furthermore, the particles being scat-
tered are assumed to be spinless. In addition, we assume that the
initial particles are incident along the z-axis. Thus, conceptually, we
have a beam of free particles incident along the z-axis. There is in-
teraction and we have outgoing scattered particles at large distance.
Thus, we are looking for solutions of the Schrödinger equations (µ
denotes the mass of the particle so as to avoid confusion with the
azimuthal quantum number)

(
∇

2 + k2
)
ψ = 0, for the incident particles,

{
∇

2 +

(
k2 − 2µ

~2
V (r)

)}
ψ = 0, in the scattering region,

(
∇

2 + k2
)
ψ = 0, after scattering as r →∞. (15.43)

Let us also consider here the case of the elastic collision for simplicity.

We note that the theory has rotational symmetry and hence, we
look for solutions in the spherical coordinates. Let us recall that, in
spherical coordinates,

∇ = r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin θ

∂

∂φ
,

∇
2 =

∂2

∂r2
+

2

r

∂

∂r
− L2

~2r2
=

1

r2
∂

∂r

(
r2

∂

∂r

)
− L2

~2r2
. (15.44)

Furthermore, we have already seen that the solutions of the free
Schrödinger equation

(
∇

2 + k2
)
ψ = 0, k2 =

2µE

~2
,

can be written in the spherical coordinates as

ψℓ,m(r, θ, φ) = Rℓ(r)Yℓ,m(θ, φ), (15.45)

where Rℓ(r) satisfies the radial equation

1

r2
d

dr

(
r2

dRℓ

dr

)
+

(
k2 − ℓ(ℓ+ 1)

r2

)
Rℓ(r) = 0. (15.46)
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The angular part of the solution, Yℓ,m, corresponds to the spherical
harmonics defined as (see (8.85) and (8.86))

Yℓ,m(θ, φ) = (−1)
m+|m|

2

√
2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)!Pℓ,m(cos θ)eimφ,

(15.47)

where the Pℓ,m(cos θ)’s are the associated Legendre functions and are
related to the Legendre functions Pℓ(cos θ)’s through the relation

Pℓ,m(t) = (1− t2)
|m|
2

d|m|Pℓ(t)

dt|m| . (15.48)

Furthermore, the radial equation, (15.46), is simplified by defin-
ing

Rℓ(r) =
uℓ(r)

r
, (15.49)

so that the uℓ(r)’s satisfy the equation

d2uℓ
dr2

+

(
k2 − ℓ(ℓ+ 1)

r2

)
uℓ(r) = 0. (15.50)

As we have seen, in chapter 8, if the solutions of the Schrödinger
equation are to be well behaved (normalizable), uℓ(r)’s must satisfy
the boundary condition uℓ(0) = 0 (see (8.107)).

Changing to the new variables y = kr, equation (15.50) takes
the form

d2uℓ
dy2

+

(
1− ℓ(ℓ+ 1)

y2

)
uℓ(y) = 0. (15.51)

The two independent solutions of this equation are related to the
spherical Bessel functions, namely,

uℓ(y) = yjℓ(y), or, uℓ(y) = yj−ℓ−1(y), (15.52)

so that the most general solution of (15.51) can be written in the
form

uℓ(y) = uℓ(kr) = kr (a1jℓ(kr) + a2j−ℓ−1(kr)). (15.53)

Furthermore, we know that, near the origin (as x→ 0),

jℓ(x) ∝ xℓ

∝ 1
x|ℓ|+1

for ℓ > 0,

for ℓ < 0.
(15.54)
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Since uℓ(kr)’s have to satisfy the boundary condition uℓ(0) = 0, it
follows that

a2 = 0. (15.55)

Thus, we have determined that

uℓ(kr) = a1 krjℓ(kr). (15.56)

The radial solution, therefore, becomes

Rℓ(y) =
uℓ(y)

y
= jℓ(y), (15.57)

so that the complete solution of the Schrödinger equation has the
form

ψℓ,m(r, θ, φ) = Nℓ Rℓ(r)Yℓ,m(θ, φ)

= Nℓ jℓ(kr)Yℓ,m(θ, φ), (15.58)

where Nℓ is the normalization constant and can be determined by
using the orthonormality relations

∫
dΩ Y ∗

ℓ,m(θ, φ)Yℓ,m(θ, φ) = 1,

∞∫

0

r2dr jℓ(kr)jℓ(kr) =
π

2k2
. (15.59)

Namely, using the relations in (15.59), we obtain

∫
d3r ψ∗

ℓ,m(r, θ, φ)ψℓ,m(r, θ, φ) = 1,

or, |Nℓ|2
∫
r2drdΩ jℓ(kr)jℓ(kr)Y

∗
ℓ,m(θ, φ)Yℓ,m(θ, φ) = 1,

or, |Nℓ|2
π

2k2
= 1,

or, Nℓ = N∗
ℓ =

√
2k2

π
. (15.60)

This determines the normalized free particle wave functions to be

ψk,ℓ,m(r, θ, φ) =

√
2k2

π
jℓ(kr)Yℓ,m(θ, φ). (15.61)
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These free particle wave functions form a complete basis so that
any other wave function can be expressed in terms of them. As an
example, let us consider the expansion of a plane wave in this basis.
That is, we consider a plane wave of wave number k incident along
the z-axis,

ψ(plane wave) = eikz = eikr cos θ. (15.62)

This does not depend on the azimuthal angle, which simply reflects
the fact that the wave has no angular momentum along the z-axis.
Therefore, its expansion in the spherical basis would involve only the
m = 0 components of the spherical harmonics and we can write

eikz = eikr cos θ =

∞∑

ℓ=0

aℓψk,ℓ,0(r, θ, φ)

=

∞∑

ℓ=0

aℓ

√
2k2

π
jℓ(kr)Yℓ,0(θ, φ)

=

√
2k2

π

∞∑

ℓ=0

aℓ jℓ(kr)

√
2ℓ+ 1

4π
Pℓ(cos θ), (15.63)

where we have used the definition of the spherical harmonics intro-
duced in (15.47).

The expansion coefficients, aℓ’s, are determined from the orthog-
onality relations of the Legendre polynomials,

π∫

0

sin θdθ Pℓ(cos θ)Pℓ′(cos θ) =
2

2ℓ+ 1
δℓℓ′ , (15.64)

as well as the integral representation for the spherical Bessel func-
tions,

jℓ(x) =
1

2iℓ

π∫

0

sin θdθ eix cos θPℓ(cos θ). (15.65)

For example, using the orthogonality of the Legendre polynomials,
(15.64), we obtain, from (15.63),

∫
dΩ Pℓ(cos θ)e

ikr cos θ =

√
2k2

π
aℓjℓ(kr)

√
2ℓ+ 1

4π
2π

2

2ℓ+ 1

=

√
8k2

2ℓ+ 1
aℓjℓ(kr). (15.66)
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On the other hand, the use of the integral representation of the spher-
ical Bessel functions, (15.65), leads to

√
8k2

2ℓ+ 1
aℓjℓ(kr) =

∫
dφ sin θdθ eikr cos θPℓ(cos θ)

= 2π

π∫

0

sin θdθ eikr cos θPℓ(cos θ)

= 2π × 2iℓjℓ(kr). (15.67)

This determines

aℓ = 4πiℓ
√

2ℓ+ 1

8k2
= 2πiℓ

√
2ℓ+ 1

2k2
. (15.68)

Therefore, we see that a plane wave incident along the z-axis can be
expanded as

eikz =

∞∑

ℓ=0

2πiℓ
√

2ℓ+ 1

2k2

√
2k2

π

√
2ℓ+ 1

4π
jℓ(kr)Pℓ(cos θ)

=

∞∑

ℓ=0

(2ℓ+ 1) iℓ jℓ(kr) Pℓ(cos θ). (15.69)

Recalling that, for large r,

jℓ(kr) −→
1

kr
sin

(
kr − ℓπ

2

)
, (15.70)

we see that a plane wave, incident along the z-axis, is equivalent to a
superposition of an infinite number of spherical waves with all angular
momentum values. In other words, in a plane wave, components of
angular momentum corresponding to all values of ℓ would be present
(which is what we had observed earlier, namely, the impact parameter
will become infinitely uncertain in this case). Classically, the part of

the plane wave corresponding to angular momentum (ℓ(ℓ + 1))
1
2~

would correspond to an impact parameter b = (ℓ(ℓ+1))
1
2

k
and would

pass through the scattering region with a definite distance of closest
approach r0ℓ. Quantum mechanically, however, the probability of
finding a particle of this angular momentum at a distance r < r0ℓ is
not zero, but rapidly falls off.
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We are now ready to solve the scattering problem. We have an
incident plane wave along the z-direction. Thus,

ψinc = eikz. (15.71)

After scattering, we have a spherical scattered wave which is outgoing
at large distances. Thus, for large r, we can write

ψsc(r, θ, φ) −→
eikr

r
f(θ, φ). (15.72)

Therefore, the total wave function, at large distances away from the
scattering source, can be written as

ψ = ψinc + ψsc = eikz +
eikr

r
f(θ, φ). (15.73)

The quantity f(θ, φ) measures the angular distribution of the outgo-
ing spherical wave.

We can now define the current densities for both the incident as
well as the scattered waves. Thus,

jinc =
~

2iµ
(ψ∗

inc∇ψinc −∇ψ∗
incψinc) =

~k

µ
ẑ, (15.74)

where we have used ψinc = eikz. The incident current measures the
probability that an incident particle crosses a unit area per unit time.
Similarly, the current density for the scattered beam at large distances
is given by

jsc =
~

2iµ
[ψ∗

sc∇ψsc −∇ψ∗
scψsc] . (15.75)

Substituting the form of the gradient operator in the spherical basis,
(15.44), and taking the form of the scattered wave in (15.72), we
have, for large distances,

jsc −→
~k

µ

|f(θ, φ)|2
r2

r̂. (15.76)

Thus, we find the flux of scattered particles across an area ds of
a sphere of radius r to be

jsc · ds =
~k

µ

|f(θ, φ)|2
r2

r2dΩ =
~k

µ
|f(θ, φ)|2dΩ. (15.77)
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The other way of saying this is that the flux of particles scattered
into the solid angle dΩ is

~k

µ
|f(θ, φ)|2dΩ. (15.78)

Thus, we immediately see, from the definition in (15.1), that the
differential cross section for scattering is given by

σ(θ, φ) = |f(θ, φ)|2. (15.79)

We see that the function f(θ, φ), which measures the angular distri-
bution of the outgoing waves, determines the differential scattering
cross section. f(θ, φ) is correspondingly also known as the scattering
amplitude. Our main interest lies in determining the scattering am-
plitude, which, in turn, would determine the scattering cross section.

We note that the incident plane wave is the solution of the free
Schrödinger equation

(
∇

2 + k2
)
ψinc = 0,

and has the expansion

ψinc = eikz =

∞∑

ℓ=0

(2ℓ+ 1)iℓjℓ(kr)Pℓ(cos θ)

r large−−−−→
∞∑

ℓ=0

(2ℓ+ 1)iℓ
sin
(
kr − ℓπ

2

)

kr
Pℓ(cos θ). (15.80)

The total wave function, which is the solution of

[
∇

2 +

(
k2 − 2µ

~2
V (r)

)]
ψ = 0, (15.81)

would also have a similar form at large distances, if V (r)→ 0 faster
than 1

r2
for large r. This is because, then the potential term can be

neglected (at large distances) compared to the centrifugal barrier and
the equation would again have the form of a free equation

(
∇

2 + k2
)
ψ = 0.

However, each angular momentum component of the incident wave
function would suffer a phase change due to interactions with the
scattering source. This can be intuitively seen as follows. If the
scattering potential is attractive, then, in the scattering region, the
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particle will be accelerated and consequently the wavelength would
be shorter. Conversely, if the scattering potential is repulsive, then,
the particle would be decelerated in the scattering region and, con-
sequently, would suffer a change in its wavelength. In either case,
away from the scattering region, the phase of each angular momen-
tum component of the wave function would be different from the one
in the absence of scattering as is shown in the Fig. 15.6.

b b
b b

b b
b b

b b b b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b c
bc
bc
bc
bc
bc
bc
bc bc

bc bc
bc bc

bc bc
bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

bc
bc
bc
bc
bc
bc bc bc bc bc bc bc bc bc bc bc bc

Figure 15.6: Qualitative depiction of phase change in an angular
momentum component of the wave due to scattering. The black and
white dots show respectively the cases of scattering from an attractive
and a repulsive potential.

Thus, the total wave function, at large distances, must have the
form

ψ −→
∞∑

ℓ=0

Aℓ(2ℓ+ 1)iℓ
sin
(
kr − ℓπ

2 + δℓ
)

kr
Pℓ(cos θ), (15.82)

where Aℓ’s are constants. The quantity δℓ is known as the phase shift
in the ℓ th partial wave or the component of the wave function with
angular momentum ℓ and δℓ is positive if the potential is attractive,
while it is negative for a repulsive potential. We know that, for large
r,

ψ −→ eikz +
eikr

r
f(θ, φ). (15.83)

Thus, we expect, for large r,

eikr

r
f(θ, φ)→ ψ − eikz

=

∞∑

ℓ=0

Aℓ(2ℓ+ 1)iℓ
sin
(
kr − ℓπ

2 + δℓ
)

kr
Pℓ(cos θ)
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−
∞∑

ℓ=0

(2ℓ+ 1)iℓ
sin
(
kr − ℓπ

2

)

kr
Pℓ(cos θ)

=

∞∑

ℓ=0

(2ℓ+ 1)
iℓ

kr

Pℓ(cos θ)

2i

{[
Aℓe

i(kr− ℓπ
2
+δℓ) − ei(kr− ℓπ

2 )
]

−
[
Aℓe

−i(kr− ℓπ
2
+δℓ) − e−i(kr− ℓπ

2 )
]}
. (15.84)

The right hand side of (15.84) contains both incoming and out-
going spherical waves whereas the left hand side corresponds only
to an outgoing spherical wave. We note that the incoming spherical
waves would be absent, on the right hand side, only if

Aℓ e
−iδℓ = 1,

or, Aℓ = eiδℓ . (15.85)

Substituting this into (15.84), we obtain

eikr

r
f(θ, φ)

=

∞∑

ℓ=0

(2ℓ+ 1)
iℓ

kr

1

2i
ei(kr−

ℓπ
2 )
(
e2iδℓ − 1

)
Pℓ(cos θ)

=
eikr

r

∞∑

ℓ=0

(2ℓ+ 1)

2ik
(i)ℓ(−i)ℓ

(
e2iδℓ − 1

)
Pℓ(cos θ). (15.86)

Comparing both sides, we determine

f(θ, φ) =

∞∑

ℓ=0

(2ℓ+ 1)

2ik

(
e2iδℓ − 1

)
Pℓ(cos θ) =

∞∑

ℓ=0

fℓ(θ), (15.87)

where we can think of fℓ(θ) as the scattering amplitude for the ℓth
partial wave.

The differential scattering cross section can now be determined
using (15.79) and the total scattering cross section can be obtained
as

σtot =

∫
dΩ|f(θ, φ)|2

= 2π

π∫

0

sin θdθ
∑

ℓ,ℓ′

1

4k2
(2ℓ+ 1)(2ℓ′ + 1)
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× |e2iδℓ − 1||e2iδℓ′ − 1|Pℓ(cos θ)Pℓ′(cos θ)

= 2π
∑

ℓ,ℓ′

1

4k2
(2ℓ+ 1)(2ℓ′ + 1)|e2iδℓ − 1||e2iδℓ′ − 1|

×
π∫

0

sin θdθ Pℓ(cos θ)Pℓ′(cos θ)

= 2π
∑

ℓ,ℓ′
(2ℓ+ 1)(2ℓ′ + 1)|e2iδℓ − 1|2 2δℓℓ′

2ℓ+ 1

=

∞∑

ℓ=0

4π

4k2
(2ℓ+ 1) 4 sin2 δℓ

=
4π

k2

∞∑

ℓ=0

(2ℓ+ 1) sin2 δℓ. (15.88)

Thus, we see that if we know the phase shifts for every partial wave,
we know everything about the scattering. This is known as the par-
tial wave analysis or the phase shift analysis. In many cases, only the
lower angular momentum components of the wave suffer the maxi-
mum amount of phase shift. Then, the infinite sum in (15.88) can be
approximated by only a few terms.

It is worth noting here that the forward scattering amplitude
can be obtained from (15.87) to be

f(0) =
∞∑

ℓ=0

2ℓ+ 1

2ik

(
e2iδℓ − 1

)
Pℓ(1)

=
∞∑

ℓ=0

2ℓ+ 1

k
eiδℓ sin δℓ. (15.89)

As a result, we note that

Imf(0) =

∞∑

ℓ=0

2ℓ+ 1

k
sin2 δℓ. (15.90)

Comparing with (15.88), we note that we can identify

σtot =
4π

k
Imf(0). (15.91)

Even though we have derived this relation for elastic scattering, as
we will discuss later, this relation is more general and is known as
the optical theorem.
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In the quantum theory of scattering, we realize that there is
no minimum distance of approach. However, it is also true that the
probability of finding a particle with angular momentum ℓ is very

small at a distance r < (ℓ(ℓ+1))
1
2

k
. On the other hand, if the potential

is such that it becomes negligible for r > (ℓ(ℓ+1))
1
2

k
, then it would

have very little influence on components of wave function with such
angular momentum quantum numbers. Thus, the phase shift for such
components would be negligible. The number of phase shifts that will
influence the scattering in any given case can then be obtained, for a
short range potential, by calculating ℓ such that

ℓ(ℓ+ 1) ≤ k2r20, (15.92)

where r0 is the distance (or radius) beyond which the potential has
become negligible. For short range potentials in nuclear physics, this
relation severely restricts the number of phase shifts that contribute
to scattering. In fact, in many nuclear scattering phenomena of inter-
est, only the ℓ = 0 wave suffers any appreciable phase shift. On the
other hand, for long range potentials like the Coulomb potential, scat-
tering, even at low energies, contains significant contributions from
many ℓ values.

◮ Example (n− p scattering at low energies). The strong force between a neu-
tron and a proton can be represented by a spherical square well of the form

V (r) =

{

−V0 r < a,

0 r > a,
(15.93)

which is shown in Fig. 15.7.
In this case, we have

r0 = a ≃ 2× 10−13 cm = 2F, (15.94)

where ‘F’ stands for a Fermi. This is the range of the nuclear force which is very
small. Furthermore, let us consider a neutron of energy 1 MeV incident on a
stationary proton so that, in the center of mass, the neutron will have an energy
0.5 MeV. This leads to

p =
√
2ME =

1

c

√
2Mc2E =

1

c

√

2× 103 × 1

2
MeV ≃ 30

c
MeV,

k =
p

~
=

30 MeV

~c
≃ 30 MeV

200 MeV-F
≃ 30 MeV

2× 10−11 MeV-cm
≃ 1012

cm
, (15.95)

so that we obtain

k
2
r
2
0 = k

2
a
2 ≃

(

1012 × 2× 10−13)2 =
(

2× 10−1)2 ≪ 1. (15.96)

Comparing with (15.92),

ℓ(ℓ+ 1) < k
2
a
2
, (15.97)
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a

r

V

−V0

0

Figure 15.7: The square well potential represents well the strong force
between nucleons.

we immediately see, from (15.96), that only the ℓ = 0 wave or the s-wave would
suffer significant phase change. Parenthetically, we note that the relation (15.97)
can be seen in a simple manner as follows. Let us consider the radial equation of
the form

d2uℓ

dr2
+

(

k
2 − ℓ(ℓ+ 1)

r2

)

uℓ = 0. (15.98)

It is clear that, at any distance r, the probability of finding a component with
angular momentum ℓ is appreciable, only if (otherwise, we will have a damped
solution)

k
2
r
2
> ℓ(ℓ+ 1). (15.99)

If the potential has a range r0, then, the only components that would suffer
appreciable scattering are the ones satisfying

k
2
r
2
0 > ℓ(ℓ+ 1). (15.100)

The higher angular momentum components will not feel the effect of the scattering
source.

To calculate the phase shift for the s-wave, let us specialize to the case of a
shallow potential well where we do not have any discrete levels. The case where
there are discrete levels has to be considered separately. Let us write k20 = 2mV0

~2
.

We want to solve the radial equation, which, for r < a, has the form (ℓ = 0)

d2u

dr2
+
(

k
2 + k

2
0

)

u = 0,

or,
d2u

dr2
+ k

2
1u = 0, (15.101)

where k21 = k2 + k20 and k2 = 2mE
~2

. The general solution is easily seen to be

u(r) = A sin k1r +B cos k1r. (15.102)

However, the wave function has to satisfy the boundary condition

u(r = 0) = 0, (15.103)
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which implies that

B = 0. (15.104)

The solution of (15.101) can, therefore, be written as

u(r) = A sin k1r, r < a. (15.105)

For r > a, the equation we have to solve is

d2v

dr2
+ k

2
v = 0, (15.106)

which leads to the solution

v(r) = C sin(kr + δ), r > a. (15.107)

(An alternate way of saying this is that, for large distances, the s-wave component
of the wave function for the incoming particle is given by uinc ∼ sin kr, while the
total wave function has the form sin(kr+ δ), namely, it is the same wave with the
phase shifted (see (15.82)).)

We have to match the solutions and their first derivatives at the boundary,
which leads to

u(a) = v(a),

or, A sin k1a = C sin(ka+ δ),

u
′(a) = v

′(a),

or, k1A cos k1a = kC cos(ka+ δ). (15.108)

Taking the ratio of the two relations in (15.108), we have

1

k1
tan k1a =

1

k
tan(ka+ δ). (15.109)

Remembering from (15.96) that ka≪ 1, we can write

1

k1
tan k1a =

1

k
tan(ka+ δ) = a+

δ

k
,

or,
δ

k
=

1

k1
tan k1a− a =

1

k1
(tan k1a− k1a), (15.110)

where we have assumed that the phase shift is small. Thus, we obtain

σtot =
4π

k2
sin2

δ ≃ 4π

(

δ

k

)2

= 4π

(

tan k1a− k1a

k1

)2

≃ 4π

(

tan k0a− k0a

k0

)2

, for k0 ≫ k. (15.111)

This determines the total scattering cross section, which, when k0 ≫ k, is
seen to be independent of the energy of the incident particles. This formula, of
course, becomes inapplicable if the depth and the range of the potential are such
that

k1a ≃ k0a ≃ π

2
(2n+ 1). (15.112)

We would discuss this special case in the next section. ◭
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15.3 Resonance scattering

For low energy scattering by a spherical square well potential, we see,
from (15.111), that the scattering cross section enhances considerably
if

(k0a)
2 =

2mV0a
2

~2
≃
(
2n+ 1

2

)2

π2. (15.113)

From the solutions of the three dimensional spherical square well in
chapter 8, we know that these are precisely the values where bound
states can occur for ℓ = 0 with zero energy. Thus, in this case the
scattered particle which has almost zero energy would be in resonance
with such a level.

Let us assume that there is, among the levels of the well, only one
discrete state whose energy, (−E), is close to zero. We also assume
that

k0a ≃
π

2
, E ≃ 0. (15.114)

(In fact, one implies the other.) Thus, the Schrödinger equation for
the bound state, in this case, is

d2u

dr2
− 2m

~2
(E + V (r)) u = 0. (15.115)

For r < a, we note that V (r) is large compared to E and, therefore,
we can write the equation, in this region, as

d2u

dr2
+ k20u = 0,

or, u(r) = A sin k0r, (15.116)

where k20 = 2mV0
~2

. This wave function vanishes at the origin, as it
should.

For r > a, the equation is

d2u

dr2
− α2u = 0,

or, u(r) = Be−αr +Ceαr, (15.117)

where α2 = 2mE
~2

. However, the wave function must vanish at infinity,
which determines

C = 0, (15.118)
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so that we have

u(r) = Be−αr, r > a. (15.119)

Matching the wave functions at the boundary, we have

A sin k0a = Be−αa. (15.120)

Furthermore, matching the first derivatives of the wave functions at
the boundary, we have

k0A cos k0a = −αBe−αa. (15.121)

Taking the ratio of the two relations in (15.120) and (15.121), we
obtain

k0 cot k0a = −α,

or, − cot k0a =
α

k0
,

or, k0a =
π

2
+
α

k0
, (15.122)

where we have used

− cot k0a = − tan
(π
2
− k0a

)
≃ −

(π
2
− k0a

)
. (15.123)

Such relations between the depth of the potential, the range of the
potential and the bound state energy values, as in (15.122), are known
as effective range relations.

From the solution of the scattering problem, we know that

k tan k1a = k1 tan(ka+ δ), (15.124)

where

k1 = (k20 + k2)
1
2 ≃ k0 (15.125)

Thus, k0 should be such that both the relations (15.122) and (15.124)
are satisfied.

k tan k1a = k1 tan(ka+ δ) = k1
tan ka+ tan δ

1− tan ka tan δ
. (15.126)
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Since ka ≪ 1, we approximate k1 ≃ k0 and use the effective range
relation, (15.122), to write

k tan

(
π

2
+
α

k0

)
= k0

ka+ tan δ

1− ka tan δ ,

or, − k cot α
k0
≃ −kk0

α
= k0

ka+ tan δ

1− ka tan δ ,

or, − k(1− ka tan δ) = α(ka + tan δ),

or, tan δ(−α + k2a) = k(αa + 1),

or, cot δ =
(−α+ k2a)

k(αa+ 1)
≃ −α

k
,

or, cosec2δ = 1 + cot2 δ =
k2 + α2

k2
. (15.127)

Thus, we can determine the total scattering cross section to be

σtot =
4π

k2
sin2 δ =

4π

k2 + α2
=

2π~2

m(E + E) . (15.128)

We note that the scattering cross section has a Breit-Wigner form.
We see that, unlike the previous case, now the scattering cross section
depends on the energy of the particle being scattered. Furthermore,
the scattering cross section is significantly larger in the case of a
resonance than in its absence.

The physical way to understand this result is as follows. If the
well has a bound state level whose energy is close to zero, then the
scattered particles have a tendency to get bound to the well. On the
other hand, since the energy is not really negative for the incident
particles, they cannot actually form bound states. Rather, they tend
to interact much more strongly which leads to the enhanced scattering
cross section.

15.4 Examples of scattering

1. Ramsauer-Townsend effect:

From the formula for the scattering amplitude in (15.87),

f(θ, φ) =
∞∑

ℓ=0

2ℓ+ 1

k
eiδℓ sin δℓ Pℓ(cos θ), (15.129)

it is clear that if δℓ = π then, the scattering amplitude and,
therefore, the scattering cross section vanishes, in all directions.
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Such an effect, in fact, occurs in physical systems. When very
low energy electrons are scattered against rare gas atoms, there
is no scattering at all. The medium behaves completely trans-
parent to the electrons. This effect is known as the Ramsauer-
Townsend effect.

This effect can be explained as follows. First of all, we note
that if the electrons are of extremely small energy, then only
the s wave or ℓ = 0 wave would suffer any appreciable change in
phase. Furthermore, if the attractive potential is strong enough,
then it can change the phase of the ℓ = 0 wave quite a bit with-
out influencing the other wave components at all. In particular,
if the strength of the potential and its range are such that the
phase of the s-wave changes by 180◦, then clearly, the scatter-
ing amplitude as well as the cross section would vanish in all
directions. That is, there will be no scattering at all. We can
think of this as due to the destructive interference of the waves.

2. Repulsive square well potential:

We have determined, in (15.111), the low energy scattering cross
section from an attractive potential to be given by (k0 ≫ k)

σtot = 4π

(
tan k0a− k0a

k0

)2

, k20 =
2mV0
~2

. (15.130)

It is then obvious that the scattering cross section, from a re-
pulsive potential of height V0, is simply obtained by changing

k0 → iκ0, (15.131)

so that, for a repulsive potential, we obtain the total scattering
cross section, from (15.130), to be

σtot = 4π

(
tanhκ0a− κ0a

κ0

)2

. (15.132)

The total scattering cross section from a hard sphere at low
energies is now obtained by letting κ0 →∞ in (15.132), which
leads to

σ
(hard sphere)
tot = 4πa2. (15.133)

This shows that, at low energies, the scattering cross section
from a hard sphere is independent of the incident energy and
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is four times the classical value. We would expect that for high
energy particles we would get back the classical value for the
scattering cross section. If we carry out the calculations, now
keeping higher ℓ waves, it turns out that the total scattering
cross section, at high energies, is

σ
(hard sphere)
tot = 2πa2. (15.134)

This is still twice the classical value. This difference from the
classical value arises because of the wave nature of particles.
There is diffraction around the edges of the sphere which leads
to constructive interference.

Exercise. Solve the Schrödinger equation for the hard sphere where the in-
cident particles have very low energy and verify that the formula, (15.133),
is true.

3. Scattering from a delta potential:

Let us assume that we are scattering low energy particles from
a spherically symmetric delta function potential shown in Fig.
15.8,

V (r) = γδ(r − a), γ > 0. (15.135)

a rr = 0

V

Figure 15.8: A delta potential centered at r = a.

Here, γ measures the strength of the potential. Furthermore,
since particles have low energy, only the ℓ = 0 wave or the s
wave will be involved in the scattering. Thus, for r < a, the

         
02:20.



438 15 Scattering theory

radial equation to solve is (ℓ = 0)

d2u

dr2
+ k2u = 0,

or, u = A sin kr, (15.136)

where

k2 =
2mE

~2
. (15.137)

This solution satisfies the boundary condition that the wave
function has to vanish at the origin.

For, r > a, the equation is again the same

d2u

dr2
+ k2u = 0,

or, u = B sin(kr + δ), (15.138)

where δ represents the phase shift introduced by scattering.

Matching the solutions in (15.136) and (15.138) at the bound-
ary, we have

A sin ka = B sin(ka+ δ). (15.139)

Furthermore, since there is a δ function potential, we analyze
the Schrödinger equation to determine the discontinuity in the
first derivatives at the boundary.

d2u

dr2
+ k2u =

2m

~2
γδ(r − a)u,

or, lim
ǫ→0

a+ǫ∫

a−ǫ

dr

(
d2u

dr2
+ k2u

)
=

a+ǫ∫

a−ǫ

dr
2mγ

~2
δ(r − a)u,

or, lim
ǫ→0

du

dr

∣∣∣∣
a+ǫ

− du

dr

∣∣∣∣
a−ǫ

=
2mγ

~2
u(a),

or, kB cos(ka+ δ) − kA cos ka =
2mγ

~2
B sin(ka+ δ).

(15.140)
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Dividing (15.140) by (15.139), we obtain

k cot(ka+ δ) − k cot ka =
2mγ

~2
,

or, cot(ka+ δ) =
2mγ

~2k
+ cot ka,

or,
1− tan ka tan δ

tan ka+ tan δ
=

2mγ

~2k
+ cot ka,

or, tan δ

(
2mγ

~2k
+ cot ka+ tan ka

)
= −2mγ

~2k
tan ka.

(15.141)

It follows from (15.141) that

tan δ = −
2mγ
~2k

tan ka
2mγ
~2k

+ 1
cos ka sinka

= −
2mγ
~2k

sin2 ka

1 + 2mγ
~2k

sin ka cos ka

≃ −
2mγ
~2k

k2a2

1 + 2mγ
~2k

ka
≃ −

2mγka2

~2

1 + 2mγa
~2

,

cot δ =
1

tan δ
= −

1 + 2mγa
~2

2mγka2

~2

,

cosec2δ = 1 + cot2 δ =

4m2γ2k2a4

~4
+
(
1 + 2mγa

~2

)2

(
2mγka2

~2

)2 .

(15.142)

This determines the total scattering cross section, in this case,
to be

σtot =
4π

k2
sin2 δ

=
4π

k2
×

(
2mγka2

~2

)2

1 + 4mγa
~2

+ 4m2γ2a2

~4
(1 + k2a2)

≃
16πm2γ2a4

~2

1 + 4mγa
~2

+ 4m2γ2a2

~2

= 4π

(
2mγa2

~2

1 + 2mγa
~2

)2

= 4πa2

(
2mγa
~2

1 + 2mγa
~2

)2

. (15.143)
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Once again, we see that the scattering cross section is indepen-
dent of energy at low energies.

15.5 Inelastic scattering

We have seen, in (15.82) and (15.85), that the total wave function for
a scattering process can be written, for large distances, as

ψ = ψinc + ψsc

→
∞∑

ℓ=0

(2ℓ+ 1)

2ikr
iℓ
[
e2iδℓei(kr−

ℓπ
2 ) − e−i(kr− ℓπ

2 )
]
Pℓ(cos θ)

=
∞∑

ℓ=0

(2ℓ+ 1)

2ikr

[
e2iδℓeikr − (−1)ℓe−ikr

]
Pℓ(cos θ)

=
∞∑

ℓ=0

(2ℓ+ 1)

2ikr

[
e2iδℓeikr + (−1)ℓ+1e−ikr

]
Pℓ(cos θ). (15.144)

The phase shifts, δℓ, are all real when the potential is real. Further-
more, let us define

Sℓ = e2iδℓ . (15.145)

With this, we can write, for large r,

ψ →
∞∑

ℓ=0

2ℓ+ 1

2ikr

[
Sℓe

ikr + (−1)ℓ+1e−ikr
]
Pℓ(cos θ),

ψ∗ ∂
∂r
ψ → −

∑

ℓ,ℓ′

2ℓ′ + 1

2ikr

2ℓ+ 1

2ikr

×
[
S∗
ℓ′e

−ikr + (−1)ℓ′+1eikr
]
Pℓ′(cos θ)

× (ik)
[
Sℓe

ikr + (−1)ℓ+2e−ikr
]
Pℓ(cos θ)

= −ik
∑

ℓ,ℓ′

2ℓ′ + 1

2ikr

2ℓ+ 1

2ikr

[
S∗
ℓ′e

−ikr + (−1)ℓ′+1eikr
]

×
[
Sℓe

ikr + (−1)ℓe−ikr
]
Pℓ(cos θ)Pℓ′(cos θ)

= −ik
∑

ℓ,ℓ′

2ℓ′ + 1

2ikr

2ℓ+ 1

2ikr

[
S∗
ℓ′Sℓ + (−1)ℓ+ℓ′+1
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+(−1)ℓS∗
ℓ′e

−2ikr − (−1)ℓ′Sℓe2ikr
]
Pℓ(cos θ)Pℓ′(cos θ).

(15.146)

Thus, the radial current, at large distances, has the form

jr =
~

2mi

(
ψ∗ ∂ψ

∂r
− ∂ψ∗

∂r
ψ

)

→ − ~

2mi
ik
∑

ℓ,ℓ′

2ℓ′ + 1

2ikr

2ℓ+ 1

2ikr

[
S∗
ℓ′Sℓ + (−1)ℓ+ℓ′+1

+ (−1)ℓS∗
ℓ′e

−2ikr − (−1)ℓ′Sℓe2ikr + Sℓ′S
∗
ℓ + (−1)ℓ+ℓ′+1

+(−1)ℓSℓ′e2ikr − (−1)ℓ′S∗
ℓ e

−2ikr
]
Pℓ(cos θ)Pℓ′(cos θ).

(15.147)

Equation (15.147) leads to the flux of probability out of a sphere
of large radius R to be

∫
ds jr =

∫
R2 sin θdθdφ jr = 2πR2

π∫

0

sin θdθ jr

= 2πR2 (−~)
2mi

ik
∑

ℓ,ℓ′

2ℓ′ + 1

2ikR

2ℓ+ 1

2ikR

[
· · ·

]
2

2ℓ+ 1
δℓℓ′

=
4π~k

2m

∑

ℓ

2ℓ+ 1

4k2
(
2|Sℓ|2 − 2

)

=
π~

mk

∞∑

ℓ=0

(2ℓ+ 1)
(
|Sℓ|2 − 1

)
. (15.148)

We see that if the phase shifts are real,

|Sℓ|2 = 1, (15.149)

and hence the net flux moving out of a large sphere is zero. This
simply is the conservation of probability. It says that the amount of
particles that go in is the same as the number of particles that are
scattered.

However, there occur, in nature, processes in which the number
of particles is not conserved in a scattering process. In fact, when a
neutron is scattered off a complex nucleus, two things may happen.
The neutron may scatter elastically. It may also scatter inelastically

         
02:20.



442 15 Scattering theory

by raising the nucleus to an excited state or may be absorbed by the
nucleus. Clearly, this means that the net radial flux out of a large
sphere would not vanish in such cases. In fact, it should be negative
since we are losing particles. Looking at the expression for the flux
in (15.148), it is clear that for this to happen, we must have

|Sℓ|2 < 1. (15.150)

This implies that if we parameterize, as in (15.145),

Sℓ = e2iδℓ , (15.151)

then, δℓ cannot be completely real. In fact, we note that if we write

δℓ → δℓ + iηℓ, ηℓ > 0, (15.152)

we would have

Sℓ = e−2ηℓe2iδℓ , (15.153)

which will lead to |Sℓ|2 < 1, compatible with (15.150).

Thus, we see that a complex phase shift corresponds to non-
conservation of probability which is necessary to describe inelastic
scattering processes. To understand further what this means, let us
go back to the Schrödinger equation (let us assume V is real)

i~
∂ψ

∂t
=

[
− ~

2

2m
∇

2 + V

]
ψ,

−i~ ∂ψ∗

∂t
=

[
− ~

2

2m
∇

2 + V

]
ψ∗. (15.154)

Multiplying the first relation in (15.154) by ψ∗ and the second by ψ,
and subtracting the two we have

i~

(
ψ∗ ∂ψ

∂t
+ ψ

∂ψ∗

∂t

)

= ψ∗
[
− ~

2

2m
∇

2 + V

]
ψ − ψ

[
− ~

2

2m
∇

2 + V

]
ψ∗,

or, i~
∂

∂t
(ψ∗ψ) = − ~

2

2m

(
ψ∗

∇
2ψ − ψ∇2ψ∗)

= − ~
2

2m
∇ · (ψ∗

∇ψ −∇ψ∗ψ) ,

         
02:20.



15.5 Inelastic scattering 443

or,
∂

∂t
(ψ∗ψ) = − ~

2mi
∇ · (ψ∗

∇ψ −∇ψ∗ψ) ,

or,
∂

∂t

∫

Ω

d3r P (r, t) = −
∫

Ω

d3r ∇ · j = −
∫

S

ds · j. (15.155)

This, of course, tells us that if the flux out of a closed area is
zero, then the particles are in stationary states and the probability
of finding them in a closed volume does not change with time. That
is, there are no sources or sinks of particles. This result is, of course,
derived by assuming that the potential is real. Suppose we now allow
for a complex potential, then, we can follow the earlier derivation and
it follows that

i~
∂

∂t
(ψ∗ψ) = − ~

2

2m
∇ · (ψ∗

∇ψ −∇ψ∗ψ) + (V − V ∗)ψ∗ψ.

(15.156)

Furthermore, if we write

V = VR − iVI, (15.157)

then, equation (15.156) takes the form

∂

∂t
P (r, t) = −∇ · j− 2

~
VIP (r, t),

or,
∂

∂t
P (r, t) +∇ · j = −2

~
VIP (r, t). (15.158)

This is the continuity equation in the presence of a complex
potential. Furthermore, since P (r, t) is positive it is clear that the
potential acts as a source of particles if VI < 0 and as a sink if VI > 0.
If we can find a region in which

∇ · j = 0, (15.159)

then, it follows, from (15.158), that, in that region, we will have

P (r, t) ∝ e− 2
~
VIt. (15.160)

The wave function, therefore, would have a time dependence of the
form

ψ(r, t) ∝ e− i
~
(E−iVI)t. (15.161)

This implies that the particle is no longer in a stationary state and the
probability of finding the particle in a volume decreases with time.
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(This can describe the case where a particle decays. This is one of
the ways to look at the non-conservation of probability. An alternate
way is through inelastic scattering.)

In scattering theory, however, we assume the wave functions to
be stationary states of the form

ψ(r, t) ∝ e− i
~
Et. (15.162)

It is clear, therefore, that, in such a case, we cannot find a region
where both VI 6= 0 and∇·j = 0. (This simply means that, to describe
processes like absorption in scattering theory, we have to introduce a
complex potential, which leads to complex phase shifts which leads
to a nonzero flux out of a closed surface.) In fact, integrating the
continuity equation, (15.158), over a volume of large dimensions we
have

∂

∂t

∫

Ω

d3r P (r, t) = −
∫

Ω

d3r ∇ · j− 2

~

∫
d3r VI|ψ|2,

or, 0 = −
∫

S

ds · j− 2

~

∫
d3r VI|ψ|2. (15.163)

The first term on the right hand side simply measures the flux of
particles removed from the incident beam. From the definition of the
cross section in (15.1) we can, therefore, define the total cross section
for absorption as

σabs = −
m

~k

∫

S

j · ds = −1

v

∫

S

j · ds = 2

~v

∫

Ω

VI|ψ|2 d3r. (15.164)

We have seen, in (15.148), that, for a sphere of large radius, we
can write

∫

S

j · ds = π~

mk

∞∑

ℓ=0

(2ℓ+ 1)
[
|Sℓ|2 − 1

]
. (15.165)

The total cross section for absorption can, therefore, be written as

σabs = −
m

~k

∫

S

ds · j = −m
~k

π~

mk

∞∑

ℓ=0

(2ℓ+ 1)
[
|Sℓ|2 − 1

]

=
π

k2

∞∑

ℓ=0

(2ℓ+ 1)
[
1− |Sℓ|2

]
. (15.166)
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We also know, from (15.87), that the scattering amplitude is
obtained from the phase shift analysis to be

f(θ, φ) =
∞∑

ℓ=0

2ℓ+ 1

2ik

(
e2iδℓ − 1

)
Pℓ(cos θ)

=

∞∑

ℓ=0

2ℓ+ 1

2ik
(Sℓ − 1)Pℓ(cos θ), (15.167)

so that the total cross section, for elastic scattering, is

σel =

∫
sin θdθdφ |f(θ, φ)|2

=
π

k2

∞∑

ℓ=0

(2ℓ+ 1)|Sℓ − 1|2. (15.168)

The total cross section, which is the sum of the elastic as well as the
absorptive cross sections, is then obtained to be

σtot = σel + σabs

=
π

k2

∞∑

ℓ=0

(2ℓ+ 1)
[
1− |Sℓ|2 + |Sℓ − 1|2

]

=
π

k2

∞∑

ℓ=0

(2ℓ+ 1) [2− Sℓ − S∗
ℓ ]

=
2π

k2

∞∑

ℓ=0

(2ℓ+ 1) [1− Re Sℓ] . (15.169)

It is clear that this expression reduces to the familiar expression for
elastic scattering in (15.88) when the phase shifts are real.

15.6 Generalized optical theorem

Rather than considering the incident particles to be moving along
the z-axis, let us consider a more general situation. Let the incident
particle have a momentum k along some arbitrary direction. The
beam is scattered with a momentum k′ along some other arbitrary
direction as shown in Fig. 15.9. Thus, for large distances, we can
write the total wave function as

ψk(r)→ eik·r + f(k′,k)
eikr

r
. (15.170)
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Here f(k′,k) is the scattering amplitude which measures scattering
from k to k′. Furthermore, k is the magnitude of the wave number.

k

k′

Figure 15.9: An incident particle with momentum k scattering with
momentum k′.

Let us emphasize here that f(k′,k) is general, in the sense that it can
account for both elastic as well as inelastic scattering (absorption).

Next, let us consider the time reversed process. Namely, the
particle is incident with momentum −k′ and scatters with momentum
−k. The wave function for such a process can again be written, for
large distances, as

ψ−k′(r)→ e−ik′·r + f(−k,−k′)
eikr

r
. (15.171)

Since time reversal is a good symmetry of the system, it is clear that
the scattering amplitude for the original scattering process must be
the same as that for the time reversed process. In other words,

f(k′,k) = f(−k,−k′). (15.172)

This is known as the reciprocity relation for the scattering amplitude.

The Hamiltonian for scattering is, in addition, invariant under
space reflections or the parity operation. Thus, we also have

f(k,k′) = f(−k,−k′). (15.173)

Comparing (15.172) and (15.173), we obtain

f(k′,k) = f(k,k′). (15.174)

We know from the continuity equation that, when integrated
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over a large sphere of radius r,

−
∫

S

ds · j− 2

~

∫

Ω

d3r VI|ψk|2 = 0,

or, r2
2π∫

0

dφ

π∫

0

sin θdθ

(
ψ∗
k

∂ψk

∂r
− ∂ψ∗

k

∂r
ψk

)

+
4mi

~2

∫
|ψk|2VId

3r = 0. (15.175)

Putting in the asymptotic form for the wave functions in (15.170),
we obtain

r2
2π∫

0

dφ

π∫

0

sin θdθ

[
2ik cos θ

+

[
ik

r
(1 + cos θ)− 1

r2

]
f(k′,k)eikr(1−cos θ)

+

[
ik

r
(1 + cos θ) +

1

r2

]
f∗(k′,k)e−ikr(1−cos θ)

+
2ik

r2
f∗(k′,k)f(k′,k)

]

+
4mi

~2

∫
d3r |ψk|2VI = 0. (15.176)

The first term in the integral vanishes. The 1
r2

terms are negli-
gible for large r compared to the 1

r
terms in the second and the third

parenthesis. Furthermore,

π∫

0

sin θdθ (1 + cos θ) eikr(1−cos θ) =

+1∫

−1

dx (1 + x) eikr(1−x)

=
(1 + x)

−ikr eikr(1−x)

∣∣∣∣
+1

−1

+
1

ikr

+1∫

−1

dx eikr(1−x)

= − 2

ikr
+

1

(kr)2

(
1− e2ikr

)

≃ − 2

ikr
, for large r. (15.177)
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Thus, we have, from (15.176),

2πr2
[
ik

r

(
− 2

ikr

)
f(k,k) +

ik

r

(
2

ikr

)
f∗(k,k)

]

+
2ikr2

r2

∫
dΩ f∗(k′,k)f(k′,k) +

4mi

~2

∫
d3r |ψk|2VI = 0,

(15.178)

which leads to

2ik

∫
dΩ|f |2 + 4mi

~2

∫
d3r |ψk|2VI = −4π [f∗(k,k) − f(k,k)] ,

or,

∫
dΩ|f |2 + 2m

~2k

∫
d3r |ψk|2VI = −

2π

ik
(f∗ − f) ,

or, σel + σabs =
4π

k
Im f(k,k),

or, σtot =
4π

k
Im f(k,k) =

4π

k
Im f(0). (15.179)

This proves the generalized optical theorem which says that, even in
the presence of inelastic scattering, the total cross section is related
to the imaginary part of the forward scattering amplitude.

15.7 Integral equations for scattering

The central idea behind this method is that rather than analyzing
each angular momentum component separately, we can try to obtain
the scattering amplitude as a whole by solving an integral equation. It
is clear that such an approach is quite useful if a significant number of
angular momentum components suffer appreciable scattering. Thus,
we try to solve the Schrödinger equation

∇
2ψ(r) + k2ψ(r) =

2m

~2
V (r)ψ(r). (15.180)

where k2 = 2mE
~2

.
We know how to solve such an equation. This is, in fact, similar

to the Poisson equation in electrostatics,

∇
2φ = −4πρ. (15.181)

We can solve this equation simply by defining the Green’s function
for the Laplacian,

∇
2G(r) = −4πδ(r). (15.182)
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Furthermore, we know the solution of equation (15.182) to be

G(r) =
1

|r| , (15.183)

from which it follows that we can write the solution of the Poisson
equation, (15.181), as

φ(r) =

∫
d3r′ G

(
r− r′

)
ρ
(
r′
)
=

∫
d3r′

ρ (r′)
|r− r′| . (15.184)

Thus, we see that the solution is given by an integral of the sources
over all space.

We can extend the same method to our present problem also.
We simply have to define a Green’s function for the problem. Fur-
thermore, our solution for large spatial distances must have the form

ψ(r)→ eik·r + f(θ, φ)
eikr

r
. (15.185)

Let us assume that G(r, r′) is the Green’s function for the operator
(∇2 + k2). That is,

(
∇

2 + k2
)
G
(
r, r′

)
= δ

(
r− r′

)
. (15.186)

We, of course, have to determine the form of G(r, r′). But, let us
note that if such an object can be determined, the solution of the
Schrödinger equation can be written as

ψ(r) =
2m

~2

∫
d3r′ G

(
r, r′

)
V
(
r′
)
ψ
(
r′
)
. (15.187)

This is easily checked as

(
∇

2 + k2
)
ψ(r) =

2m

~2

∫
d3r′

(
∇

2 + k2
)
G
(
r, r′

)
V
(
r′
)
ψ
(
r′
)

=
2m

~2

∫
d3r′ δ

(
r− r′

)
V
(
r′
)
ψ
(
r′
)

=
2m

~2
V (r)ψ(r). (15.188)

Thus, this is like the solution for the Poisson equation except
that, in the present case, the solution ψ(r) depends on the source
which is a function of ψ(r) itself. Such a solution is known as an
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integral equation. Furthermore, the above solution is not unique in
the sense that

ψ(r) = ψ(0)(r) +
2m

~2

∫
d3r′ G

(
r, r′

)
V
(
r′
)
ψ
(
r′
)
, (15.189)

is also a solution of the Schrödinger equation if

(
∇

2 + k2
)
ψ(0)(r) = 0. (15.190)

Namely, we can always add any homogeneous solution of a differential
equation to a given solution. This non-uniqueness can however, be
fixed from the physical requirement that when V = 0 (i.e., when
there is no scattering), the solution has the form

ψ(r)→ eik·r. (15.191)

Therefore, we can write

ψ(r) = eik·r +
2m

~2

∫
d3r′ G(r, r′)V

(
r′
)
ψ
(
r′
)

= eik·r + ψsc → eik·r + f(θ, φ)
eikr

r
, (15.192)

for large distances. By comparison, it is clear that the particular
solution of the differential equation represents the scattered wave,
namely,

ψsc =
2m

~2

∫
d3r′ G(r, r′)V (r′)ψ(r′). (15.193)

The integral solution of the Schrödinger equation is known as
the Lippman-Schwinger solution. However, it is not always easy to
solve an integral equation exactly. But, we can solve it iteratively.
That is, let us introduce the notation

ψ(r) = ψ(0)(r) +
2m

~2

∫
d3r′ G(r, r′)V (r′)ψ(r′)

= ψ(0)(r) +
2m

~2
G(r, r′)V (r′)ψ(r′), (15.194)

where ψ(0)(r) = eik·r and integration over the intermediate variables
is understood. If we substitute the lowest order form of the solution
on the right hand side, we obtain to first order

ψ(1)(r) = ψ(0)(r) +
2m

~2
G(r, r′)V (r′)ψ(0)(r′). (15.195)
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Putting this in the right hand side of the integral equation we obtain,
to second order,

ψ(2)(r) = ψ(0)(r) +
2m

~2
G(r, r′)V (r′)ψ(0)(r′)

+

(
2m

~2

)2

G(r, r′)V (r′)G(r′, r′′)V (r′′)ψ(0)(r′′).

(15.196)

Thus, we can iterate to as many orders as is desirable. This kind of an
approximation is known as the Born approximation and is extremely
useful if the strength of the potential is not large enough so that
only a few orders can be kept in the expansion. (This is, in fact, a
perturbative solution for the wave function where the perturbation is
the potential.)

15.8 Green’s functions

Let us now determine the Green’s function for the differential oper-
ator governing scattering, which we need for any calculation. The
Green’s function satisfies the equation

(
∇

2 + k2
)
G
(
r, r′

)
= δ

(
r− r′

)
. (15.197)

From the translational invariance of the equation, it is clear that
G(r, r′) has to have the form

G
(
r, r′

)
= G

(
r− r′

)
. (15.198)

Furthermore, let us define the Fourier transforms

G
(
r− r′

)
=

∫
d3q eiq·(r−r′)G̃(q),

δ
(
r− r′

)
=

1

(2π)3

∫
d3q eiq·(r−r′). (15.199)

Substituting these relations into the differential equation, we obtain
an algebraic equation for G̃(q), namely,

(
−q2 + k2

)
G̃(q) =

1

(2π)3
,

or, G̃(q) = − 1

(2π)3
1

q2 − k2 . (15.200)
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b b

q = −k q = k Re q

Im
q

Figure 15.10: The poles of the integrand of the Green’s function on
the real axis.

Here q = |q| and we note that the Fourier transform of the Green’s
function depends only on the magnitude of the momentum vector.

First of all, we note that the function in (15.200) has simple
poles at q = ±k as shown in Fig. 15.10. Thus, to obtain a unique
G (r− r′), we must specify the contour of integration. Each choice
of the contour would lead to a distinct Green’s function and some
of the possible forms of the contour are shown in Fig. 15.11-Fig.
15.13. In the case of a space-time dependent Green’s function, the
contours in Fig. 15.11 lead to the retarded and advanced Green’s
functions and are quite useful in the study of classical mechanics.
Furthermore, we can also choose the principal value in evaluating the
integral which would lead to another Green’s function (known as the
stationary Green’s function). In quantum mechanics, on the other
hand, a different Green’s function – known as the causal Green’s
function (also called the Feynman Green’s function in the space-time
dependent case) – plays an important role and we will study this
particular Green’s function in the following.

b b b b
−k k

−k kRe q Re q

Figure 15.11: Contours yielding advanced and retarded Green’s func-
tions.

First, let us note that we can simplify the Green’s function by
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evaluating the angular integrals as follows.

G
(
r− r′

)
=

∫
d3q eiq·(r−r′)G̃(q)

= − 1

(2π)3

∫
d3q

eiq·(r−r′)

q2 − k2 . (15.201)

Let us define

r− r′ = R, (15.202)

so that we have

q ·
(
r− r′

)
= qR cos θ, (15.203)

and this leads to (see (15.201)),

G(r− r′) = − 1

(2π)3

∫
dφ sin θdθq2dq

eiqR cos θ

q2 − k2

= − 1

(2π)3
2π

∫
q2dq sin θdθ

eiqR cos θ

q2 − k2

= − 1

(2π)2

∞∫

0

q2dq
1

iqR

1

q2 − k2
(
eiqR − e−iqR

)

= − 1

(2π)2iR

∞∫

0

dq
q

q2 − k2
(
eiqR − e−iqR

)

= − 1

(2π)2iR

∞∫

−∞

dq
qeiqR

q2 − k2 . (15.204)

This integral, of course can be evaluated using Cauchy’s residue
theorem. The contour has to be closed in the upper half plane because
only then will the exponential be damped. If we choose the contour
in the way shown in Fig. 15.12, that is, if we enclose only the pole
at q = −k then the value of the integral in (15.204) becomes

G(r− r′) = lim
q→−k

− 1

(2π)2iR
2πi

(q + k)qeiqR

q2 − k2

= − 1

(2π)2iR
2πi

(−k)e−ikR

(−2k)

= −e
−ikR

4πR
= − e

−ik|r−r′|

4π|r− r′| . (15.205)
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bb

k

−k
Re q

Figure 15.12: An alternate contour in the complex plane for the
Green’s function.

On the other hand, we can choose to enclose only the pole at
q = k by choosing the contour shown in Fig. 15.13 and then the
integral in (15.204) would become

G(r− r′) = lim
q→k
− 1

(2π)2iR
2πi

(q − k)qeiqR
q2 − k2

= − 1

(2π)2iR
2πi

keikR

(2k)

= − e
ikR

4πR
= − eik|r−r′|

4π|r− r′| . (15.206)

bb
k

−k Re q

Figure 15.13: Yet another contour for the Green’s function.

For the present case, we note that the Green’s function is the wave
function at r due to a delta source at r′. Furthermore, since we
want the scattered wave function to be outgoing, the contour for
the Green’s function must be chosen such that it has an outgoing
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form. Thus, we see that the proper boundary condition is imposed
by choosing the second contour, in which case the appropriate Green’s
function has the form, (15.206),

G(r− r′) = − eik|r−r′|

4π|r− r′| . (15.207)

There is another way we can obtain the correct Green’s function.
This method is used extensively in quantum field theory and is due to
Feynman. The idea is to change the denominator of the momentum
space Green’s function by an infinitesimal imaginary amount as in
Fig. 15.14. That is, let us define

G̃(q) ∝ lim
ǫ→0+

1

q2 − k2 − iǫ

≃ lim
ǫ→0+

1

q −
(
k + iǫ

2k

)2 = lim
η→0+

1

q2 − (k + iη)2

= lim
η→0+

1

(q + k + iη)(q − k − iη) . (15.208)

b

b

k + iη

−k − iη

Figure 15.14: An equivalent way of denoting the contour in Fig. 15.13
by shifting the poles into the upper and the lower half planes by giving
an infinitesimal imaginary part to the momentum.

Thus, now the poles of the Green’s function move away from the real
axis and there is no ambiguity in choosing the contour.

G(r− r′) = lim
η→0+

lim
q→k+iη

− 1

(2π)2iR
2πi

(q − k − iη)qeiqR
q2 − (k + iη)2
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= lim
η→0+

− 1

(2π)2iR
2πi(k + iη)

ei(k+iη)R

2(k + iη)

= − e
ikR

4πR
= − eik|r−r′|

4π|r− r′| . (15.209)

This prescription gives the correct Green’s function and is known as
Feynman’s iǫ prescription.

Now that we know the form of the Green’s function, we can
write down the solution of the Schrödinger equation, (15.192) as

ψ(r) = eik·r +
2m

~2

∫
d3r′G(r− r′)V (r′)ψ(r′)

= eik·r +
2m

~2

(
− 1

4π

)∫
d3r′

eik|r−r′|

|r− r′| V (r′)ψ(r′). (15.210)

We see that the first Born approximation gives

ψ(r) = eik·r − m

2π~2

∫
d3r′

eik|r−r′|

|r− r′| V (r′)eik·r
′
. (15.211)

We are interested in the form of the wave function as r →∞. Since
the range over which the potential is appreciable is finite, r′ ≪ r.
Thus, we can expand

|r− r′| =
(
r2 + r′2 − 2r · r′

) 1
2

= r

(
1 +

r′2

r2
− 2

r · r′
r2

) 1
2

≃ r
(
1− 2

r · r′
r2

) 1
2

≃ r
(
1− r · r′

r2

)
. (15.212)

This leads to

1

|r− r′| ≃
1

r
(
1− r·r′

r2

) ≃ 1

r

(
1 +

r · r′
r2

)
. (15.213)

Thus we see that, for large r, we can replace

1

|r− r′| ≃
1

r
. (15.214)

On the other hand,

eik|r−r′| ≃ eikr
(

1− r·r′
r2

)

≃ eikr−ikf ·r′ , (15.215)
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where kf = kr̂ is the momentum of the outgoing particle. It has
the same magnitude as the initial momentum but is along the radial
direction.

Substituting (15.214) and (15.215) into (15.211), we get, for
large r,

ψ(r) = eik·r − m

2π~2

∫
d3r′

eikr

r
e−ikf ·r′V (r′)eik·r

′

= eik·r − eikr

r

m

2π~2

∫
d3r′ e−ikf ·r′V (r′)eik·r

′

= eik·r + f(θ, φ)
eikr

r
. (15.216)

Thus, comparing, we determine the form of the scattering amplitude
in the first Born approximation to be

f (kf ,ki) = −
m

2π~2

∫
d3r′ e−ikf ·r′V (r′)eiki·r′

= − m

2π~2

∫
d3r′ ei(ki−kf )·r′ V (r′). (15.217)

This shows that the scattering amplitude, in the first Born approxi-
mation, is proportional to the Fourier transform of the potential with
respect to the momentum transfer q = ki − kf . The angular depen-
dence of the scattering amplitude is contained in the factor eiq·r

′
.

15.9 Validity of the Born approximation

As we have seen, the total wave function is given by

ψ(r) = eik·r + ψsc

= eik·r − m

2π~2

∫
d3r′

eik|r−r′|

|r− r′| V (r′)ψ(r′). (15.218)

In the first Born approximation, we replace the wave function on the
right hand side of (15.218), under the integral, by the incident wave.
Thus,

ψB(r) = eik·r − m

2π~2

∫
d3r′

eik|r−r′|

|r− r′| V (r′)eik·r
′
. (15.219)

We expect this approximation to be a good approximation if in the
range in which the potential influences strongly, we have

|ψsc| ≪ |eik·r| = 1. (15.220)
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Since the influence of the potential is the maximum at the origin, if
|ψsc(0)| ≪ 1, then this approximation would be a good approxima-
tion.

Let us assume, for simplicity, that V (r′) = V (r′), namely, it is
rotationally invariant. Then, the Born approximation will be valid if

|ψsc(0)| ≪ 1,

or,

∣∣∣∣∣
m

2π~2

∫
d3r′

eikr
′

r′
V (r′)eik·r

′

∣∣∣∣∣≪ 1,

or,

∣∣∣∣∣
m

2π~2
2π

∫
r′2dr′

eikr
′

r′
V (r′)

1

ikr′

(
eikr

′ − e−ikr′
)∣∣∣∣∣≪ 1,

or,
2m

~2k

∣∣∣∣∣∣

∞∫

0

dr′ eikr
′
V (r′) sin kr′

∣∣∣∣∣∣
≪ 1. (15.221)

This is the condition for validity of the Born approximation.

At low energies, kr′ → 0 which implies that sin kr′ ≃ kr′ and
eikr

′ ≃ 1. Thus, the condition for validity, (15.221), becomes

2m

~2k

∣∣∣∣∣∣

∞∫

0

dr′ V (r′) kr′

∣∣∣∣∣∣
≪ 1,

or,
2m

~2

∣∣∣∣∣∣

∞∫

0

dr′ r′V (r′)

∣∣∣∣∣∣
≪ 1. (15.222)

Therefore, we see that if the potential has a height V0 and range r0,
then the condition for validity at low energies, (15.222), becomes

m|V0|r20
~2

≪ 1. (15.223)

At high energies, kr′ →∞, on the other hand, the exponential in
(15.221) oscillates rapidly and picks up contribution only for r′ ∼ 1

k
.

Thus, the condition for the validity of the Born approximation , in
this case, becomes (for a square well as before)

2m

~2k

∣∣∣∣∣∣∣

1
k∫

0

dr′ eikr
′
sin kr′V (r′)

∣∣∣∣∣∣∣
≪ 1,
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or,
2m

~2k

∣∣∣∣∣∣∣

1
k∫

0

dr′ eikr
′

(
eikr

′ − e−ikr′

2i

)
V (r′)

∣∣∣∣∣∣∣
≪ 1,

or,
2m

~2k

|V0|
2

1

k
≪ 1,

or,
m|V0|r20

~2
≪ (kr0)

2. (15.224)

We see, from (15.223) and (15.224), that if the Born approximation
is valid at low energies, it is valid at all energies.

◮ Example (Square well potential). Let us consider low energy scattering from a
square well of the form

V (r) =

{

V0 r < a,

0 r > a.
(15.225)

In this case, the Born approximation, (15.217), gives

fB (kf ,ki) = − m

2π~2

∫

d3
r
′
e
iq·r′

V (r′), (15.226)

where we have defined

q = ki − kf , (15.227)

so that we have

q
2 =

(

k
2
i + k

2
f − 2ki · kf

)

. (15.228)

On the other hand, we have

k
2
i = k

2
f = k

2
, ki · kf = k

2 cos θ. (15.229)

Using (15.229), we obtain

q
2 =

(

k
2 + k

2 − 2k2 cos θ
)

= 2k2(1− cos θ) = 4k2 sin2 θ

2
, ⇒ q = 2k sin

θ

2
. (15.230)

Consequently, we now obtain from (15.226)

fB (kf ,ki) = − m

2π~2

2π
∫

0

dφ′
π
∫

0

sin θ′dθ′
a
∫

0

r
′2dr′eiqr

′ cos θ′
V0

= −mV0

2π~2
2π

a
∫

0

r
′2dr′

1

iqr′

(

e
iqr′ − e

−iqr′
)

= −mV0

iq~2

a
∫

0

dr′r′
(

e
iqr′ − e

−iqr′
)
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= −mV0

iq~2

a
∫

−a

dr′r′eiqr
′

= −mV0

iq~2





1

iq
r
′
e
iqr′
∣

∣

∣

∣

a

−a

− 1

iq

a
∫

−a

dr′eiqr
′





= −mV0

iq~2

[

1

iq
a
(

e
iqa + e

−iqa
)

− 1

(iq)2

(

e
iqa − e

−iqa
)

]

=
2mV0

q2~2

[

a cos qa− 1

q
sin qa

]

. (15.231)

Since k is small at low energies, it follows from (15.230) that qa≪ 1. Thus,
we can write

fB ≃ 2mV0

q2~2

[

a

(

1− q2a2

2!

)

− 1

q

(

qa− (qa)3

3!

)]

=
2mV0

q2~2

[

− q
2a3

2
+
q2a3

6

]

=
2mV0

q2~2

(

−2q2a3

6

)

= −2mV0a
3

3~2
. (15.232)

Therefore, in this approximation, the total scattering cross section becomes

σtot =

∫

dΩ|fB |2 = 4π|fB |2 = 4π

(

−κ
2a3

3

)2

, (15.233)

where

κ
2 =

2mV0

~2
. (15.234)

The condition for validity of the Born approximation at low energies, in this case,
is

κa ≪ 1. (15.235)

◭

Exercise. Show that under this assumption the phase shift analysis also gives the
same scattering cross section.

◮ Example (Gaussian potential). As a second example, let us consider scattering
from the potential

V (r) = V0e
−α2r2

. (15.236)
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The Born amplitude, in this case, is obtained to be

fB = − m

2π~2

∫

d3
r
′
e
iq·r′

V (r′)

= − m

2π~2

2π
∫

0

dφ′
π
∫

0

sin θ′dθ′
∞
∫

0

r
′2dr′ eiqr

′ cos θ′
V0e

−α2r′2

= −mV0

2π~2
2π

∞
∫

0

dr′r′2e−α2r′2 1

iqr′

(

e
iqr′ − e

−iqr′
)

= −mV0

i~2q

∞
∫

−∞

dr′ r′e−α2r′2+iqr′

= −mV0

i~2q

∞
∫

−∞

dr′ r′e
−α2(r′− iq

2α2 )2− q2

4α2

= −mV0

i~2q
e
− q2

4α2

∞
∫

−∞

dr′ (r′ +
iq

2α2
)e−α2r′2

= −mV0

i~2q
e
− q2

4α2
iq

2α2

√
π

α

= −
√
πmV0

2~2α3
e
− q2

4α2 . (15.237)

Thus, the differential cross section, in this approximation, is given by

σ(θ, φ) = |fB |2 =
πm2V 2

0

4~4α6
exp

(

− q2

2α2

)

=
πm2V 2

0

4~4α6
exp

(

−2k2 sin2 θ
2

α2

)

. (15.238)

We can show that the Born approximation is valid for all energies in this case.
Therefore, this is a good formula for the differential scattering cross section. Fur-
thermore, the total cross section which is obtained by integrating this quantity
over all angles is also finite. ◭

15.10 Coulomb scattering

The Coulomb potential is probably the most familiar of all poten-
tials. It has a long range. In fact, the range of the potential is
infinite. Therefore, the conventional phase shift analysis does not ap-
ply in the case of scattering from a Coulomb potential. The reason
is not very hard to understand. In the usual phase shift analysis, we
assume that the incident wave is a plane wave. However, because

         
02:20.



462 15 Scattering theory

the Coulomb potential has an infinite range, it is clear that even at
infinite separation the incident particles feel the force and, therefore,
cannot be represented by a plane wave. Furthermore, the long range
also has the consequence that even at low energies, quite a large num-
ber of partial waves suffer appreciable scattering. Thus, we see that
the partial wave analysis is not the proper way to handle Coulomb
scattering.

Let us note here that because of the special form of the Coulomb
potential, Coulomb scattering can be exactly solved in the parabolic
coordinates. It is also clear from (15.222) that, even at low energies,
the Born approximation for Coulomb scattering is not valid. The
condition for validity of Born approximation at low energies is

2m

~2

∣∣∣∣∣∣

∞∫

0

dr rV (r)

∣∣∣∣∣∣
≪ 1. (15.239)

However, since V (r) = Ze2

r
,

∞∫

0

dr rV (r)→∞. (15.240)

As a result, the Born approximation breaks down. (This simply
means that we have to go to higher orders in the iteration.) How-
ever, we get around this difficulty in the following way. Consider the
scattering potential to be

V (r) =
αe−µr

r
, (15.241)

where α and µ are constants. It is clear now that 1
µ
defines the range

of the potential. This potential is known as the Yukawa potential
because of Yukawa’s postulate that the form of the potential due to
exchange of mesons between nucleons is the one given above.

If we are considering low energy scattering from the Yukawa
potential, the condition for validity of the Born approximation is

2m

~2

∣∣∣∣∣∣

∞∫

0

dr rV (r)

∣∣∣∣∣∣
=

2m

~2

∣∣∣∣∣∣

∞∫

0

dr r
αe−µr

r

∣∣∣∣∣∣

=
2m

~2

∣∣∣∣
αe−µr

−µ

∣∣∣∣
∞

0

=

∣∣∣∣
2mα

~2µ

∣∣∣∣≪ 1. (15.242)
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Thus, we see that the Born approximation can be valid in this case.
We can show that, in this case, the Born approximation is also valid
at high energies.

Let us now calculate the Born amplitude for scattering from the
Yukawa potential.

fB = − m

2π~2

∫
d3r′ eiq·r

′
V (r′)

= − m

2π~2
2π

∞∫

0

dr′r′2
αe−µr′

r′
1

iqr′

(
eiqr

′ − e−iqr′
)

= −mα
i~2q

∞∫

0

dr′
(
e(−µ+iq)r′ − e(−µ−iq)r′

)

= −mα
i~2q

[
e(−µ+iq)r′

−µ+ iq
− e(−µ−iq)r′

−µ− iq

]∞

0

= −mα
i~2q

[
1

µ− iq −
1

µ+ iq

]

= − 2mα

~2 (µ2 + q2)
= − 2mα

~2
(
µ2 + 4k2 sin2 θ

2

) , (15.243)

where we have used

q2 = 4k2 sin2
θ

2
. (15.244)

Thus, we obtain the differential scattering cross section, in this ap-
proximation, to be

σ(θ, φ) = |fB(θ, φ)|2 =
4m2α2

~4
(
µ2 + 4k2 sin2 θ

2

)2 . (15.245)

Let us note, from (15.241), that the Coulomb potential can be
obtained as a limit of the Yukawa potential, namely, it is a potential
with an infinite range. In other words, when

µ = 0, α = Ze2,

VYukawa →
Ze2

r
= VCoulomb. (15.246)
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Thus, in this limit, we obtain the differential cross section for the
Coulomb scattering, from (15.245), to be

σCoulomb(θ, φ) =
4m2(Ze2)2

~4
(
4k2 sin2 θ

2

)2

=

(
mZe2

2~2k2

)2

cosec4
θ

2

=

(
Ze2

4E

)2

cosec4
θ

2
. (15.247)

We recognize this to be the exact classical formula for the differential
cross section for a Coulomb potential (see (15.32)). This also happens
to be the exact quantum mechanical result. This is again one of the
accidental results associated with the Coulomb potential. Let us note
here that although this trick of obtaining Coulomb scattering gives
the correct differential cross section, the Born amplitude is not the
correct Coulomb amplitude. Rather, the exact scattering amplitude
is given by

fC(θ, φ) = fB(θ, φ) exp

(
−i mZe

2

~2k
ln sin2

θ

2
+ iη

)
, (15.248)

where η is a constant. Namely, the exact scattering amplitude is the
Born amplitude multiplied by a phase factor whose effect is irrelevant
in the differential cross section.

15.11 Scattering of identical particles

So far, we have assumed that the scattering process involves dis-
tinguishable particles. However, if the particles being scattered are
indistinguishable, i.e., suppose that we are scattering electrons off
electrons, then one has to take into account the symmetry properties
that the wave function has to satisfy. Thus, for example, suppose we
are scattering identical bosons, then the total wave function has to
be symmetric under the interchange of coordinates. For simplicity,
let us assume that the bosons are spinless so that the wave function
only depends on the spatial coordinates.

ψtot (r1, r2) = ψCM(rCM)ψ(r), (15.249)

where

rCM =
r1 + r2

2
, r = r1 − r2. (15.250)
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The total wave function has to be symmetric. We see that,
under an exchange of coordinates,

rCM → rCM, ψCM (rCM)→ ψCM (rCM) . (15.251)

Under an exchange of the coordinates,

r→ −r, (15.252)

we must, therefore, have

ψ(r)→ ψ(−r). (15.253)

We note that

r→ −r ⇒ r → r, θ → π − θ, φ→ π + φ. (15.254)

Since we have to symmetrize the wave function, for large dis-
tances, we can write

ψ(r)→ eikz+e−ikz+f(θ, φ)
eikr

r
+f(π−θ, π+φ)e

ikr

r
. (15.255)

In this case, we define a symmetrized scattering amplitude as

fsym(θ, φ) = [f(θ, φ) + f(π − θ, π + φ)]. (15.256)

The differential scattering cross section, in this case, becomes

σ(θ, φ) = |fsym(θ, φ)|2

=
[
|f(θ, φ)|2 + |f(π − θ, π + φ)|2

+2Ref(θ, φ)f∗(π − θ, π + φ)] . (15.257)

The first two terms are, of course, what we would obtain if we had
two distinguishable particles. The cross terms represent the quantum
interference that accompanies whenever identical particles scatter.

Let us next consider the scattering of two identical fermions.
Suppose that the fermions are two electrons. Then, s = 1

2 for each of
them and they can be in a state with total angular momentum equal
to one or zero. Correspondingly, we say that they are in the triplet
state or in the singlet state. The triplet state is symmetric in the spin
space. Since the total wave function has to be anti-symmetric, this
implies that the wave function has to be anti-symmetric in its space

         
02:20.



466 15 Scattering theory

coordinates. But the CM wave function is symmetric under exchange
of coordinates and, therefore, we must have

ψtriplet(r) = −ψtriplet(−r). (15.258)

This leads to the form of the scattering amplitude in the triplet state
to be

ftriplet(θ, φ) = [f(θ, φ)− f(π − θ, π + φ)]. (15.259)

As a result, the differential cross section takes the form

σtriplet = |ftriplet|2

=
[
|f(θ, φ)|2 + |f(π − θ, π + φ)|2

−2Ref(θ, φ)f∗(π − θ, π + φ)] . (15.260)

On the other hand, if the electrons are in the singlet state, then
the wave function is anti-symmetric in the spin space. This means
that the wave function has to be symmetric in its spatial coordinates.
Since ψCM (rCM ) is already symmetric, this implies

ψsinglet(r) = ψsinglet(−r). (15.261)

As a result, the form of the singlet state scattering amplitude is de-
termined to be

fsinglet(θ, φ) = [f(θ, φ) + f(π − θ, π + φ)], (15.262)

so that

σsinglet(θ, φ) = |fsinglet(θ, φ)|2

=
[
|f(θ, φ)|2 + |f(π − θ, π + φ)|2

+2Ref(θ, φ)f∗(π − θ, π + φ)] . (15.263)

In most scattering experiments, however, the particles can form
either the singlet or the triplet state. Consequently, we define, in
such cases, a spin averaged cross section. Thus, for example, in the
case of two electrons, there are four final states available out of which
three belong to the triplet state and one to the singlet. Therefore,
the triplet state is three times as likely as the singlet state and a spin
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averaged differential cross section is given by

σav(θ, φ) =
1

4
[3σtriplet + σsinglet]

=
1

4

[
4|f(θ, φ)|2 + 4|f(π − θ, π + φ)|2

−4Ref(θ, φ)f∗(π − θ, π + φ)]

=
[
|f(θ, φ)|2 + |f(π − θ, π + φ)|2

−Ref(θ, φ)f∗(π − θ, π + φ)] . (15.264)

For example, if we take the exact form of the Coulomb scattering
amplitude in (15.248),

fC(θ, φ) = fB(θ, φ) exp

(
− ime

2

~2k
ln sin2

θ

2
+ iη

)

= − me2

2~2k2 sin2 θ
2

exp

(
− ime

2

~2k
ln sin2

θ

2
+ iη

)

= − e2

4E sin2 θ
2

exp

(
− ime

2

~2k
ln sin2

θ

2
+ iη

)
, (15.265)

we obtain

σCoulomb
av (θ, φ) =

(
e2

4E

)2

×


 1

sin4 θ
2

+
1

cos4 θ
2

−
cos
(
me2

~2k
ln tan2 θ

2

)

sin2 θ
2 cos

2 θ
2


 . (15.266)

Note that even though the Born approximation gives the exact cross
section for the Coulomb scattering in the simple case, since the am-
plitude is not exact, it would lead to a wrong cross section in this
case, simply because the interference terms would be different.

15.12 Selected problems

1. A particle is scattered by a potential at a sufficiently low energy
that δℓ = 0 for ℓ > 1. Assume that the potential is invariant
under rotations.

a) Show that the differential scattering cross section has the
form
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σ(θ, φ) = A+B cos θ + C cos2 θ, (15.267)

and determine A,B,C in terms of the phase shifts.

b) Determine the total scattering cross section in terms of A,B,C.

c) Assume that the differential cross section is known for θ =
90◦ (σ = α2), θ = 180◦ (σ = β2) and θ = 45◦ (σ = γ2).
Determine σ(θ, φ) for θ = 0◦ in terms of α, β, γ.

d) Obtain the imaginary part of the forward scattering ampli-
tude in terms of α, β, γ.

2. What must V0a
2 be for a three dimensional square well potential

(attractive) so that the scattering cross section is zero at zero
bombarding energy (Ramsauer-Townsend effect)?

3. Determine the total scattering cross section for particles of low
energy (namely, keep only ℓ = 0) in a potential

V (r) =
α

r4
, α > 0, (15.268)

where r = |r|.

4. Consider a spherically symmetric repulsive potential

V (r) =
α

r2
, α > 0, (15.269)

where r = |r|. Use the first Born approximation to calculate
the angular dependence as well as the energy dependence of the
differential cross section.

5. Derive the Greens functions for one dimensional scattering,

d2G(x, x′)
dx2

+ k2G(x, x′) = δ(x− x′), (15.270)
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satisfying the property that

G(x, x′) ∼
{

f+e
ik(x−x′), x− x′ →∞,

f−e−ik(x−x′), x− x′ → −∞.
(15.271)

6. Let V (x, y, z) = 0 everywhere except inside a cube of length a
defined by x2 ≤ (a2 )

2, y2 ≤ (a2 )
2, z2 ≤ (a2 )

2. Inside the cube, the
potential is a constant V0. A plane wave eikz is incident on the
cube. What is the differential cross section for scattering as a
function of the angles (θ, φ) in the Born approximation?

7. Consider a situation where, after scattering, particles are “in-
going”. Find the wave function for such a scattering problem as
a series in Pℓ(cos θ) for spherically symmetric potentials. The
“ingoing” solutions have the form

ψ(−) = eikz + ψ(−)
sc → eikz + f (−)(θ)

e−ikr

r
, (15.272)

whereas the outgoing solutions discussed in this chapter have
the form

ψ(+) = eikz + ψ(+)
sc → eikz + f (+)(θ)

eikr

r
. (15.273)

What relation exists between f (+)(θ) and f (−)(θ)?
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Chapter 16

Relativistic one particle equations

We have so far studied only non-relativistic quantum mechanical sys-
tems. In the following lectures, we would like to extend the discussion
to a relativistic quantum mechanical system describing a single par-
ticle.

16.1 Klein-Gordon equation

In non-relativistic quantum mechanics, we start from a classical Ha-
miltonian system and promote each observable to an operator. As we
have seen, the Schrödinger equation, for a free particle, for example,
has the form

i~
∂

∂t
= Hψ =

p2

2m
ψ. (16.1)

In fact, this method is not relativistic in the sense that we have started
from a Hamiltonian formalism which is not relativistically invariant.
This is reflected in the fact that the time variable is singled out in
the Schrödinger equation.

A relativistic formulation of a dynamical system, on the other
hand, must treat both space and time symmetrically. A wave func-
tion which would give a relativistic description of the system must,
therefore, satisfy an equation which is the same in different Lorentz
frames. Before, proceeding any further, however, let us introduce
some standard notation. The length interval that is invariant under
a Lorentz transformation is given by

c2t2 − x2. (16.2)

This is different from rotations in three dimensions which leave the
length x2 unchanged.

The three dimensional space, that we are used to, is called a
Euclidean space where the metric for the space is the Kronecker delta
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and hence we do not distinguish between covariant and contravariant
vectors. In the case of Lorentz transformations, on the other hand,
we note that if we combine time and space into a four vector (ct,x), in
the definition of the length, there is a relative negative sign between
the time and the space components. Such a space is known as a
Minkowski space and the metric is defined to be

ηµν = diagonal (1,−1,−1,−1) =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (16.3)

The inverse metric also has the same form, namely,

ηµν = diagonal (1,−1,−1,−1), (16.4)

so that

ηµληλν = δµν . (16.5)

Since the metric is not positive definite, in this case, we have
to distinguish between a covariant and a contravariant vector. The
contravariant coordinate four vector, xµ, is defined to be

xµ = (ct,x), µ = 0, 1, 2, 3. (16.6)

The covariant four vector xµ is then obtained from (16.6) to be

xµ = ηµνx
ν = (ct,−x), (16.7)

since the metric raises and lowers the indices. (The covariant and the
contravariant vectors transform differently under a Lorentz transfor-
mation – something we will not go into.) The contravariant derivative
(contragradient) is defined to be

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,−∇

)
. (16.8)

Similarly, the covariant derivative (cogradient) is defined as

∂µ =
∂

∂xµ
=

(
1

c

∂

∂t
,∇

)
. (16.9)

The scalar product, in this space, is defined to be

a · b = aµbνηµν = aµbνη
µν = aµb

µ = aµbµ

= a0b0 − a · b. (16.10)

         
49:26.



16.1 Klein-Gordon equation 473

Here summation over repeated indices is understood. In this space,
the invariant length of an arbitrary vector, aµ, is, then, obtained to
be

a2 = a · a = (a0)2 − a · a. (16.11)

An expression is Lorentz invariant if and only if all the Lorentz indices
in it have been contracted. That is, there is no free Lorentz index
available.

We can define an invariant length interval in this space as

ds2 = ηµνdx
µdxν = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2. (16.12)

A vector, aµ, is said to be time like, if

a2 = aµa
µ = (a0)2 − a · a > 0. (16.13)

If

a2 < 0, (16.14)

then it is said to be space like. An intermediate case is when

a2 = 0. (16.15)

In this case, we say that the vector is light like.
To develop the relativistic equation for a free scalar particle, let

us recall that the non-relativistic formulation of quantum mechanics

corresponds to starting with the classical relation E = p2

2m in the
absence of any interaction. We then promote both E and p to be
operators and denote them as

E → i~
∂

∂t
, p→ −i~∇. (16.16)

Relativistically, however, the classical relation between energy and
momentum is given by

E2 = p2c2 +m2c4. (16.17)

Here, m is the rest mass of the particle. Thus, we see that the
relativistically invariant relation in (16.17) can be written as

E2 − p2c2 = m2c4,

or,
E2

c2
− p2 = m2c2. (16.18)
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This relation is true in all Lorentz frames and is known as Ein-
stein’s relation. Furthermore, we can define a momentum four vector
(consisting of energy and momentum) as

pµ =

(
E

c
,p

)
,

pµ = ηµνp
ν =

(
E

c
,−p

)
, (16.19)

so that the relation, (16.18), can be written as

pµp
µ =

E2

c2
− p2 = m2c2. (16.20)

The Lorentz invariant nature of this relation is now manifest. Fur-
thermore, we note that, since E → i~ ∂

∂t
and p→ −i~∇, we can write

(see (16.19))

pµ → i~∂µ = i~
∂

∂xµ
=

(
i~

c

∂

∂t
,−i~∇

)
,

pµ → i~∂µ = i~
∂

∂xµ
=

(
i~

c

∂

∂t
, i~∇

)
. (16.21)

Thus, the simplest relativistic wave equation that we can write
down is

pµp
µψ = m2c2ψ. (16.22)

Since ψ is assumed to be a scalar wave function and since pµp
µ is

a Lorentz invariant quantity, this equation holds true in all Lorentz
frames. Putting in the differential forms for the four momentum
operators in (16.21), we have

i~∂µ (i~∂
µ)ψ = m2c2ψ,

or, − ~
2

(
1

c2
∂2

∂t2
−∇

2

)
ψ = m2c2ψ,

or,

(
1

c2
∂2

∂t2
−∇

2

)
ψ = −m

2c2

~2
ψ,

or, �ψ = −m
2c2

~2
ψ,

or,

(
�+

m2c2

~2

)
ψ = 0, (16.23)
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where we have defined

� = ∂µ∂
µ =

1

c2
∂2

∂t2
−∇

2. (16.24)

This is known as the D’Alembertian operator (It is the analog of the
Laplacian in the four dimensional Minkowski space.) and the above
equation is known as the Klein-Gordon equation. If m = 0, namely,
if the particle is massless, then we know that this equation represents
the wave equation describing traveling waves.

In fact, the Klein-Gordon equation, (16.24), also has plane wave
solutions (much like the wave equation) of the form

ψ(r, t) ∼ e−i(ωt−k·r). (16.25)

It is clear that these plane waves are eigenfunctions of i~ ∂
∂t

and −i~∇
with eigenvalues

E = ~ω, p = ~k. (16.26)

Furthermore, substitution of the plane wave solutions in (16.25) into
the Klein-Gordon equation, (16.24), gives the relation

(~ω)2 = (~ck)2 +m2c4,

or, ~ω = ±
√

(~ck)2 +m2c4. (16.27)

Thus, we see that the Klein-Gordon equation has plane wave solutions
with positive as well as negative energy. This is a consequence of the
fact that the Klein-Gordon equation, unlike the Schrödinger equation,
is a second order equation in the time derivative.

Writing out explicitly, the Klein-Gordon equation, (16.24), has
the form

(
∇

2 − 1

c2
∂2

∂t2

)
ψ =

m2c2

~2
ψ. (16.28)

Similarly, the complex conjugate of this equation gives

(
∇

2 − 1

c2
∂2

∂t2

)
ψ∗ =

m2c2

~2
ψ∗. (16.29)

Multiplying equation (16.28) with ψ∗ and equation (16.29) with ψ,
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and subtracting the two, we obtain

ψ∗
(
∇

2 − 1

c2
∂2

∂t2

)
ψ − ψ

(
∇

2 − 1

c2
∂2

∂t2

)
ψ∗ = 0,

or,
1

c2

(
ψ∗ ∂

2ψ

∂t2
− ψ∂

2ψ∗

∂t2

)
=
(
ψ∗

∇
2ψ − ψ∇2ψ∗) ,

or,
1

c2
∂

∂t

(
ψ∗ ∂
∂t
− ψ∂ψ

∗

∂t

)
= ∇ · (ψ∗

∇ψ − ψ∇ψ∗) ,

or,
∂

∂t

(
− ~

2mic2

(
ψ∗ ∂
∂t
− ψ∂ψ

∗

∂t

))

= − ~

2mi
∇ · (ψ∗

∇ψ − ψ∇ψ∗) ,

or,
∂

∂t
ρ(r, t) = −∇ · J(r, t), (16.30)

where

ρ(r, t) =
i~

2mc2

(
ψ∗ ∂
∂t
− ψ∂ψ

∗

∂t

)
, (16.31)

and J(r, t) is the usual probability current density in (3.103).
Putting in the form of the plane wave solution in (16.25), it is

clear that

ρ(r, t) =
~ω

mc2
. (16.32)

This quantity is not positive definite since ~ω can be positive as well
as negative (see (16.27)). Thus, unlike the case of the Schrödinger
equation, ρ(r, t), in the present case, cannot be thought of as a proba-
bility density, which has to be strictly non-negative. For this reason,
the Klein-Gordon equation was abandoned for a long time as be-
ing inadequate. Pauli and Weisskopf resurrected it long after the
Dirac equation by reinterpreting the quantities ρ(r, t) and J(r, t).
The interpretation is roughly as follows. If we do not consider the
Klein-Gordon equation as a single particle equation, but consider it
as a field equation, then after quantizing the fields properly, the as-
sociated energy comes out to be positive even though the parameter
~ω can have both positive and negative values. Furthermore, the
quantities ρ(r, t) and J(r, t), when multiplied by the electric charge
associated with the field, simply represent respectively the electric
charge density and the electric current density associated with the
theory. These quantities can, of course, become negative without
leading to any inconsistency.
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16.2 Dirac equation

It is clear that the difficulty with the Klein-Gordon equation arises
because it is second order in the time derivative. Thus, to avoid such
difficulties, we look for a first order equation of the form

i~
∂ψ

∂t
= Hψ. (16.33)

Relativistic invariance would require that the equation be symmetri-
cal in space and time coordinates. Thus, H is required to be linear
in the momentum operators. If we take the usual energy momentum
relation in classical physics (see (16.17)), we obtain

E =
√

p2c2 +m2c4, (16.34)

where we are keeping only the positive root, it is clear that this is
not a linear function of the momenta. Thus, Dirac introduced the
following form of the Hamiltonian in (16.33)

H = cα · p+ βmc2, (16.35)

where the quantities α and β are assumed to be independent of co-
ordinates and momenta. With this, equation (16.33) becomes

i~
∂ψ

∂t
= c (α · p+ βmc)ψ, (16.36)

is symmetrical in space and time. Furthermore, since α and β are
independent of coordinates and momenta, they commute with all
such operators. However, they need not commute among themselves,
i.e.,

[αi, αj ] 6= 0, [αi, β] 6= 0. (16.37)

Furthermore, if H is the correct Hamiltonian, then by squaring
it, we should get back the relation from relativity (16.17) (the Einstein
relation). That is,

c2p2 +m2c4 = H2 = c2 (α · p+ βmc)2

= c2
(
αipiαjpj + (αipiβmc+ βmcαipi) + β2m2c2

)

= c2
(
pipj

1

2
{αi, αj}+mcpi {αi, β}+ β2m2c2

)
. (16.38)

         
49:26.



478 16 Relativistic one particle equations

Thus, we see that the left hand side of (16.38) will be equal to the
right hand side, only if

{αi, αj} = 2δij1, {αi, β} = 0, β2 = 1, (16.39)

where the curly bracket denotes an anti-commutator. The four quan-
tities, αi and β, must, therefore, anti-commute in pairs and their
squares must be equal to unity. Since these quantities anti-commute
rather than commute, they cannot be scalars. In fact, they are ma-
trices.

Let us determine the dimensionality of these matrices. We know,
from (16.39), that

αiβ + βαi = 0, for any i. (16.40)

Let us further assume that these matrices are non-singular, i.e., their
inverses exist. Then, we can write (16.40) also as

αiβα
−1
i = −β, for any i. (16.41)

If we assume the matrix β to be diagonal, that is, of the form

β =




b1
b2

. . .

bn


 , (16.42)

then, since β2 = 1, this implies that all the diagonal elements can
only be ±1.

If we now take the trace of the relation in (16.41), we obtain

Tr
(
αiβα

−1
i

)
= −Tr β, (16.43)

which, upon using the cyclicity of the trace

Tr (ABC) = Tr (CAB), (16.44)

leads to

Tr β = −Tr β, or Tr β = 0. (16.45)

That is, all the diagonal elements in β must add up to zero. Since
each element is ±1, this is possible only if the matrices are even
dimensional. Thus, we conclude that α and β are 2n× 2n matrices.
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If n = 1, the matrices are 2-dimensional. As we already know,
there are four linearly independent 2× 2 matrices which we can rep-
resent by (1,σ). Although σi’s anti-commute among themselves, the
identity matrix commutes with every matrix. In other words, we
cannot find four anti-commuting matrices in two dimensions.

The next possibility is n = 2. In this case, we can, in fact, find
four anti-commuting 4×4 matrices. They lead to the simplest form of
the Dirac equation. It is also clear that since the Hamiltonian is now
a 4× 4 matrix operator, the wave functions on which it acts must be
four component column matrices. We can contrast this with the non-
relativistic electron wave function which has only two components.
We will solve the Dirac equation and study the physical significance
of the four components shortly.

Thus, we see that, for Dirac equation to be compatible with
relativity, the minimum dimensionality of the α and β matrices must
be 4× 4. Furthermore, since

H = cα · p+ βmc2, (16.46)

it is clear that α and β must be Hermitian so that the Hamiltonian
is Hermitian. It is not necessary to know the exact forms of the
matrices α and β for most physical calculations (In fact, the forms
are not unique.). All we really need to know is that

α†
i = αi, β† = β,

α2
i = 1 = β2, for each i,

{αi, β} = 0, for all i,

{αi, αj} = 0 i 6= j. (16.47)

However, to have an idea of the forms of these matrices, let us
define

αi =

(
0 σi
σi 0

)
,

β =

(1 0
0 1) , (16.48)

where the identity submatrices in (16.48) correspond to 2×2 matrices.
It is clear from the properties of the Pauli matrices that

α2
i = β2 = 1, for every i.
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Furthermore,

{αi, αj} =
(
{σi, σj} 0

0 {σi, σj}

)
= 0, for i 6= j,

{αi, β} =
(
0 −σi
σi 0

)
+

(
0 σi
−σi 0

)
= 0, for all i.

Let us note here that the forms of the matrices in (16.48) are not
unique. If we make a similarity transformation

α′
i = S−1αiS,

β′ = S−1βS. (16.49)

clearly, α′
i and β

′ would also satisfy all the relations in (16.47) which
αi and β satisfy.

It is clear that since the Hamiltonian is now a 4× 4 matrix, the
wave function will be a four component column matrix. Thus, let us
write

ψ(r, t) =




ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)


 . (16.50)

The Dirac equation is given by

(
cα · p+ βmc2

)
ψ(r, t) = i~

∂ψ(r, t)

∂t
. (16.51)

This is a matrix equation or equivalently four simultaneous partial
differential equations. First of all, we note that since the wave func-
tion has more than one component, it must be connected with a
particle with a nontrivial spin and we recall from our discussions in
chapter 14 (see (14.36)) that

E(total) = E(space) ⊗ E(spin). (16.52)

We can, therefore, write the wave function in (16.50) as a product of
a matrix and a plane wave.

ψ(r, t) = u e−
i
~
(Et−p·r), (16.53)

where u is a coordinate independent four component matrix. This
will represent a solution of the free Dirac equation if

(
cα · p+ βmc2

)
u = Eu. (16.54)
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Remembering the non-relativistic case of the electron, we think
of u as a four component spinor. To solve for u, we simplify the
problem by assuming that the particle is moving along the z-axis. In
this case, equation (16.54) becomes

(
cαzpz + βmc2

)
u = Eu,

or,

(
mc21 cpzσ3
cpzσ3 −mc21)u = Eu. (16.55)

This can be written explicitly as




mc2 − E 0 cpz 0
0 mc2 − E 0 −cpz
cpz 0 −mc2 − E 0
0 −cpz 0 −mc2 − E







u1
u2
u3
u4


 = 0.

(16.56)

There would exist a nontrivial solution of the coupled homo-
geneous set of equations in (16.56) only if the determinant of the
coefficient matrix vanishes. That is, for a nontrivial solution, we
must have

det

((
mc2 − E

)1 cpzσ3
cpzσ3 −

(
mc2 + E

)1) = 0,

or, det
(
−
(
mc2 − E

) (
mc2 + E

)1− c2p2z1) = 0,

or, det
((
E2 − c2p2z −m2c4

)1) = 0,

or,
(
E2 − c2p2z −m2c4

)2
= 0, (16.57)

which leads to

E = E± = ±
√
c2p2z +m2c4. (16.58)

Thus, we see that there are four eigenvalues which are degenerate in
pairs, namely,

E = E+, E+, E−, E−, (16.59)

and a nontrivial solution exists only if the energy coincides with one
of these eigenvalues (namely, only if the Einstein relation is satisfied).
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If E = E+, the set of equations to solve follows from (16.56) to
be

(
mc2 − E+

)
u1 + cpzu3 = 0,

(
mc2 − E+

)
u2 − cpzu4 = 0,

cpzu1 −
(
mc2 + E+

)
u3 = 0,

− cpzu2 −
(
mc2 + E+

)
u4 = 0. (16.60)

Any solution of these equations must extrapolate smoothly to the
zero momentum limit. The other way of saying this is that one can
solve this set of equations in the rest frame and then Lorentz boost
the solutions to obtain the momentum dependence. It is clear from
looking at the equations that at the zero momentum limit the first
two equations do not give us any information on the unknowns. Thus
we have to solve the second two equations. The two independent
solutions of (16.60), corresponding to the eigenvalue E+, are

u1 = 1, u2 = 0, u3 =
cpz

E+ +mc2
, u4 = 0, (16.61)

and

u1 = 0, u2 = 1, u3 = 0, u4 = −
cpz

E+ +mc2
. (16.62)

Similarly, for E = E−, the two independent solutions of (16.60)
are

u1 = −
cpz

mc2 − E−
, u2 = 0, u3 = 1, u4 = 0, (16.63)

and

u1 = 0, u2 =
cpz

mc2 − E−
, u3 = 0, u4 = 1, (16.64)

so that we can write the four normalized solutions of the free Dirac
equation as

u
(+)
↑ =

√
E+ +mc2

2E+




1
0
cpz

E++mc2

0


 ,

u
(+)
↓ =

√
E+ +mc2

2E+




0
1
0

− cpz
E++mc2


 ,
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u
(−)
↑ =

√
E− −mc2

2E−




− cpz
mc2−E−
0
1
0


 ,

u
(−)
↓ =

√
E− −mc2

2E−




0
cpz

mc2−E−
0
1


 . (16.65)

The notation is suggestive. Namely, if the momentum is zero, then
the first two solutions look like the spin states of the non-relativistic
theory (see (14.35)). They are degenerate and have energy eigen-
value E+ which is positive. In the same limit, the last two solutions
also look like the non-relativistic spin states, but they belong to the
energy eigenvalue E− which is negative. Let us note here that the
normalization of the wave functions, in this case, is carried out by
requiring

∫
d3xψ†

k(x)ψk′(x) = δ3(k − k′). (16.66)

16.3 Continuity equation

Since the Dirac equation has both positive as well as negative energy
solutions, it is worth investigating whether we can define a meaningful
probability density in this theory. We note that, in the coordinate
space, the Dirac equation, (16.36), has the form

i~
∂

∂t
= Hψ =

(
− i~cα ·∇+ βmc2

)
ψ. (16.67)

Taking the Hermitian conjugate of (16.67), we obtain

−i~∂ψ
†

∂t
= ψ†(i~cα · ←−∇ + βmc2), (16.68)

where the gradient, on the right hand side of (16.68), is assumed to
act on ψ†. Multiplying (16.67) by ψ† on the left and (16.68) by ψ
on the right and subtracting the second from the first, we obtain (we
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drop the overall factor of ~ on both sides)

iψ† ∂
∂t

+ i
∂ψ†

∂t
ψ = −ic

(
ψ†α ·∇ψ + (∇ψ†) ·αψ

)
,

or, i
∂

∂t
(ψ†ψ) = −i∇ ·

(
ψ†cαψ

)
,

or,
∂

∂t
(ψ†ψ) = −∇ ·

(
ψ†cαψ

)
. (16.69)

This is the continuity equation associated with the Dirac equa-
tion and we note that we can identify

ρ = ψ†ψ = probability density,

 = ψ†cαψ = probability current density, (16.70)

to write the continuity equation in (16.69) as

∂ρ

∂t
= −∇ · . (16.71)

This suggests that we can define a current four vector as

µ = (ρ, ) = (ψ†ψ,ψ†cαψ), (16.72)

so that the continuity equation can be written in the manifestly co-
variant form

∂µ
µ = 0. (16.73)

This, in fact, shows that the probability density, ρ, is the time com-
ponent of µ and, therefore, must transform like the time coordinate
under a Lorentz transformation. (We are, of course, yet to show
that µ transforms like a four vector.) On the other hand, the total
probability

P =

∫
d3x ρ =

∫
d3xψ†ψ, (16.74)

is a constant independent of any particular Lorentz frame. We have,
of course, already used this Lorentz property of ρ in defining the
normalization of the wave function in (16.66).

Let us conclude this discussion by noting that since the Dirac
equation is first order in the time derivative, the probability density
is independent of time derivatives. Consequently, the probability
density, as we have checked explicitly, can be defined to be positive
semi-definite even in the presence of negative energy solutions.
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16.4 Dirac’s hole theory

It is clear that, as in the case of the Klein-Gordon equation, the Dirac
equation also leads to negative energy solutions. It is because of this
that the number of components in the relativistic theory doubles
compared with the non-relativistic counterpart, since each solution is
possible for both positive as well as negative energy eigenvalues. The
negative energy is a difficult concept to accept for various reasons.
We note that the positive energy solutions and the negative energy
solutions are separated by a gap as shown in Fig. 16.1. Classically,
of course, we do not expect a system to make transitions through the
gap. Thus, we can restrict the energy to be positive classically.

mc2

−mc2

Figure 16.1: Spectrum of a free Dirac particle.

Quantum mechanically, on the other hand, transitions between dis-
crete states can occur. In fact, since negative energy solutions are
lower in energy eigenvalue and since a system always prefers to go
into the lowest energy state, it is obvious that any kind of interaction
– even when it is attractive – when applied to a system would repel
it. Namely, the system would prefer to jump down into the negative
energy levels. This is completely counter intuitive and would lead to
the collapse of all our known models like the hydrogen atom.

At this point, we may raise the question as to why we don’t
simply rule out the negative energy solutions as being unphysical. It
is not such an easy thing. Quantum mechanically our system lives
in a Hilbert space. The Hilbert space contains, as a complete set
of basis states, the states corresponding to both positive as well as
negative energy values. If we restrict ourselves only to the positive
energy states, then we are restricting ourselves to only a subspace of
the complete Hilbert space and this causes major difficulty.

The conclusion so far is that, for a relativistic theory, we need
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both positive as well as negative energy states. There is no way to
escape this and when we have negative energy states, issues such as
the stability of matter will naturally arise. Thus, Dirac put forward
the following hypothesis to get around the instability of matter.

The hypothesis is that, unlike what our naive intuition tells us,
the vacuum state of the theory is a state where all the negative en-
ergy states are filled with electrons. Furthermore, these are all pas-
sive electrons in the sense that they do not produce any observable
electromagnetic field etc. Once this new definition of the vacuum is
accepted, it is clear that the problem of instability does not arise any-
more. This is because of the fact that since all the negative energy
states are filled with electrons and since electrons are fermions, Pauli
principle forbids any positive energy electron to cascade down. We
should contrast this with the situation in the case of the Klein-Gordon
equation which describes bosons.

Dirac’s hypothesis, furthermore, has far reaching consequences.
For example, if we give sufficient energy to the system, then we can
excite one of the negative energy electrons into a positive energy
state. Furthermore, since the negative energy states are all filled, the
absence of the electron would appear as a hole with opposite charge
and positive energy. This hole has the same mass as the electron
but opposite charge. This is what we know as the positron and this
process is called pair production. Thus Dirac’s equation predicts that
for every particle there must exist an anti-particle of identical mass
and opposite charge.

The above hypothesis of Dirac is known as the hole theory. Let
us note here that Dirac’s theory is not really a one particle theory.
In fact, it is an infinitely many particle theory simply because the
vacuum has been redefined to contain infinitely many particles. Thus
any physical wave function has to contain this information. This is
a general feature of combining relativity with quantum mechanics.
That is, we cannot avoid dealing with many particle states. This
leads us to the study of quantum field theory in a natural manner.
Furthermore, unlike the case of the Dirac equation where the vacuum
is so unsymmetrical in the charges, the Dirac field leads to a charge
symmetrical description of the vacuum.

16.5 Spin of the electron

The Dirac equation automatically incorporates in it the spin angular
momentum of the electron. To see this, let us define the generalized
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Pauli matrix (spin operator)

α̃i =

(
σi 0
0 σi

)
. (16.75)

Let ρ be the matrix which connects the two matrices αi and α̃i

(it should not be confused with the probability density defined in
(16.70)), namely,

αi = ρα̃i. (16.76)

We can easily determine the form of ρ to be

ρ =

(
0 11 0

)
. (16.77)

In fact, we see that

ρα̃i =

(
0 11 0

)(
σi 0
0 σi

)
=

(
0 σi
σi 0

)
= αi,

α̃iρ =

(
σi 0
0 σi

)(
0 11 0

)
=

(
0 σi
σi 0

)
= αi. (16.78)

Thus, we conclude that ρ commutes with α̃i. Let us also note
the following useful relations

[ρ, α̃i] = 0,

ρ2 = 1,
αi = ρα̃i,

[α̃i, α̃j ] = 2iǫijkα̃k, (16.79)

which can be easily checked. Furthermore,

[α̃i, β] =

(
σi 0
0 σi

)(1 0
0 −1)− (1 0

0 −1)(σi 0
0 σi

)

= 0. (16.80)

In terms of these matrices, we can write down the Dirac Hamil-
tonian as

H = cα · p+ βmc2 + V (r)

= cρα̃ · p+ βmc2 + V (r)

= cρα̃ipi + βmc2 + V (r). (16.81)
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Here we have added a spherically symmetric potential to allow for a
rotationally invariant interaction. We know that since the Hamilto-
nian is invariant under rotations, angular momentum must be con-
served. The z-component of the orbital angular momentum is given
by

L3 = x1p2 − x2p1, (16.82)

so that we can calculate

[L3,H] =
[
L3, cρα̃ipi + βmc2 + V (r)

]

= [x1p2 − x2p1, cρα̃ipi]

= cρα̃i [x1, pi] p2 − cρα̃i [x2, pi] p1

= cρα̃ii~δi1p2 − cρα̃ii~δi2p1

= i~cρ (α̃1p2 − α̃2p1) , (16.83)

where we have used the fact that the potential commutes with L3

since it is spherically symmetric.
Thus, we see that L3 does not commute with the Hamiltonian

and, therefore, cannot be conserved. That is, the orbital angular
momentum is no longer a constant of motion. Let us also note that

[α̃3,H] =
[
α̃3, cρα̃ipi + βmc2 + V (r)

]

= cρ [α̃3, α̃i] pi +mc2 [α̃3, β]

= cρ2iǫ3ij α̃jpi

= 2icρ (α̃2p1 − α̃1p2) . (16.84)

Thus, from (16.83) and (16.84), we see that the operator

L3 +
1

2
~α̃3, (16.85)

commutes with the Hamiltonian and hence must be conserved. As
a result, the total angular momentum which is conserved must have
the form

J = L+
1

2
~α̃. (16.86)

Thus, it follows that the spin of the electron can be identified with

S =
1

2
~α̃. (16.87)

Furthermore, since the eigenvalues of the matrix α̃i are ±1, this tells
us that the spin of the electron is 1

2 .
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16.6 Selected problems

1. Consider a simple Lorentz transformation along the x-axis de-
fined by

t′ = γ

(
t− β

c
x

)
,

x′ = γ (−βct+ x) ,

y′ = y,

z′ = z, (16.88)

where β = v
c
and γ = 1√

1−β2
. The transformations can be

written in the proper tensor language as

x′µ = Λµ
νx

ν , x′µ = Λ̃ ν
µ xν . (16.89)

a) Determine the 4× 4 matrices Λµ
ν and Λ̃ ν

µ . Show that

Λ̃ ν
µ = Λ ν

µ . (16.90)

b) Calculate detΛµ
ν and det Λ̃ ν

µ .

c) Determine the product Λµ
νΛ λ

µ (µ is summed) and, from this,
show that x2 = xµxµ is the invariant length.

2. Consider the Klein-Gordon equation in the presence of a static
Coulomb potential of the form (obtained through minimal cou-
pling)

(�+m2 + 2ieφ
∂

∂t
− e2φ2)ψ(t,x) = 0, (16.91)

where, for simplicity, we will assume that the scalar potential,
φ, depends only on z and has the form
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φ =

{
0 for z ≤ 0,
φ0 for z ≥ 0.

(16.92)

Here φ0 is a constant. (Because of the presence of the potential,
the form of ρ will be different from the one derived in class.)

Consider a plane wave incident along the z-axis with a positive
energy ω. Assuming that eφ0 > ω + m, and that there is an
incident as well as a reflected wave in the left region while only
a transmitted wave is in the region to the right, show that ρ is
positive in the left region while it is negative in the region to
the right. Namely, even if we start from a state with a positive
ρ, the interaction can take us to a state with a negative ρ so
that we cannot avoid such states.

3. a) Show that the solutions of the Dirac equation, for arbitrary
k, have the forms

u+(k) =

(
ũ(k)

σ · k
ω +m ũ(k)

)
, u−(k) =

(
− σ · k
ω +m ṽ(k)

ṽ(k)

)
,

(16.93)

where ω =
√
k2 +m2.

b) Show explicitly that these are eigenstates of the Hamiltonian
operator. What are the corresponding eigenvalues?
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Chapter 17

Path integral quantum mechanics

Let us recapitulate very briefly what we have learnt so far in quantum
mechanics. We have seen that, given a set of dynamical variables in
classical mechanics, we go over to quantum mechanics by promoting
these variables to operators. In particular the Hamiltonian or the
total energy of a classical system also becomes an operator. These
operators operate on an infinite dimensional Hilbert space labeled by
time.

The operators do not commute in general. Their commutation
relations can be obtained from the classical Poisson brackets (when
classical Poisson brackets are defined). We can represent the op-
erators as matrices in certain basis. The knowledge of the matrix
elements, then, gives all the information about an operator. We can
also determine the eigenstates and the eigenvalues of an operator.
Thus, for example, for the coordinate operator, we have

X|x〉 = x|x〉. (17.1)

The eigenvalues of the operators are the results of measurement cor-
responding to that operator. They are the diagonal elements in their
eigenbasis. The off-diagonal elements are known as transition ampli-
tudes and are responsible for transition between different quantum
states.

The time evolution of quantum states, describing a physical sys-
tem, is given by the Schrödinger equation, namely, they satisfy

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉. (17.2)

We can write (17.2), in the x-basis, as

i~
∂ψ(x, t)

∂t
= Hψ(x, t) =

(
− ~

2

2m

∂2

∂x2
+ V

)
ψ(x, t), (17.3)
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where the wave function ψ(x, t) is defined as (we are assuming, for
simplicity, that the system is one dimensional)

ψ(x, t) = 〈x|ψ(t)〉, (17.4)

and gives the probability amplitude for the system to be at the co-
ordinate x at time t. When the Hamiltonian is independent of time,
we have seen, in chapter 3, that the wave function separates, in a
simple manner, to factors depending on time and space separately
(see (3.94)),

ψ(x, t) ∼ u(x) e− i
~
Et. (17.5)

Such states are known as stationary states, since the probability
for a system to be in such a state is independent of time. In general,
of course, this need not be true. As in classical mechanics, we look
for solutions of the Schrödinger equation with a given initial state. In
other words, the purpose behind solving the Schrödinger equation is
to obtain the time evolution operator, which takes the state at t = 0
to a state at an arbitrary time t so that

|ψ(t)〉 = U(t)|ψ(0)〉. (17.6)

In general the time evolution operator, U , depends on an initial and
a final time, namely,

U = U(t2, t1), (17.7)

such that

|ψ(t2)〉 = U(t2, t1)|ψ(t1)〉. (17.8)

Furthermore, as we have noted earlier in (3.88), the time evolution
operator satisfies the following relations:

U(t2, t1)U
†(t2, t1) = 1,

U−1(t2, t1) = U(t1, t2),

U(t2, t3)U(t3, t1) = U(t2, t1). (17.9)

The knowledge of the time evolution operator is the ultimate goal in
solving the Schrödinger equation because once this is known the wave
functions at any time can be obtained. The wave function, of course,
contains all the information about the system. In the simple case
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when the Hamiltonian is time independent, we have seen in (3.81)
that

U(t2, t1) = e−
i
~
H(t2−t1). (17.10)

The knowledge of this operator implies knowing all the matrix el-
ements in a given basis. For example, in the coordinate basis, we
have

〈x2|U(t2, t1)|x1〉 = 〈x2|e−
i
~
H(t2−t1)|x1〉 = U(x2, t2;x1, t1).

(17.11)

All of what we have said so far is in the Schrödinger picture
where the state of the system evolves with time but the operators
are time independent. The Heisenberg picture, on the other hand,
assumes that the state of the system is fixed in time and that the
operators evolve with time. Thus, we recall from (3.110) and (3.112)
that

|ψ〉H = |ψ(0)〉S 6= |ψ(t)〉,

ΩH = ΩH(t) = e
i
~
HtΩS e

− i
~
Ht, (17.12)

where we are assuming that

ΩS 6= ΩS(t). (17.13)

It is clear that the eigenstates of the operators (in particular, the
coordinate operator) would now depend on time, namely,

XH(t)|x, t〉H = x|x, t〉H , (17.14)

and that the wave function for the system would be given by

ψ(x, t) =H 〈x, t|ψ〉H . (17.15)

It is clear, therefore, that the eigenstates for the Heisenberg operators
are related to those of the Schrödinger operators as

|x, t〉H = e
i
~
Ht|x〉S . (17.16)

If we now calculate in the Heisenberg picture, the probability
amplitude for a system at the coordinate x1 at time t1 to go to x2 at
time t2 is obtained to be

H〈x2, t2|x1, t1〉H = S〈x2|e−
i
~
Ht2e

i
~
Ht1 |x1〉S

= S〈x2|e−
i
~
H(t2−t1)|x1〉S

= U(x2, t2;x1, t1), (17.17)

         
02:38.



494 17 Path integral quantum mechanics

where we have used the identification in (17.11).

We note that the operator formalism for quantum mechanics,
which we have studied so far and which is also known as the canoni-
cal formalism, is completely non-relativistic in the sense that it singles
out the time coordinate in a special way. Thus, it is not suited for
relativistic problems. Furthermore, in this formalism we solve the
Schrödinger equation and iteratively obtain the dynamics of a sys-
tem. In that sense, it is analogous to Newton’s or Euler’s method in
classical mechanics. On the other hand, the action principle in clas-
sical mechanics (see chapter 1), which leads to the Euler-Lagrange
equations, determines the entire classical trajectory as the one with
the least action. This is like a global method. In quantum mechan-
ics, there is also a corresponding method and is known as the Path
Integral method.

S P

A1

A2

Figure 17.1: Double slit experiment in quantum mechanics where the
process can take place through two different paths.

To understand path integral method let us go back again to the
double slit experiment. As we have noted earlier, in the microscopic
domain, we obtain an interference pattern independent of whether
we use a light source or a particle source. This can, of course, be
explained by saying that there is a probability amplitude associated
with each path. Thus for example, suppose φ1 is the probability
amplitude associated with the path SA1P and φ2 is the probability
amplitude associated with the path SA2P shown in Fig. 17.1. Thus,
the total probability amplitude for the particle to go from S to I,
given by φ has the form

φ = φ1 + φ2. (17.18)
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Consequently, the intensity, which is proportional to the probability,
takes the form

I ∝ |φ|2 = |φ1 + φ2|2 6= |φ1|2 + |φ2|2. (17.19)

This, therefore, leads to interference patterns rather than particle
behavior. Thus we know one thing that the total probability ampli-
tude associated with a particle moving from one point to another is
the sum of probability amplitudes associated with each possible path
between those two points. In general, we can write

φ =
∑

i

φi, (17.20)

where φi denotes the probability amplitude corresponding to the ith
possible path (see Fig. 17.2).

i

Figure 17.2: A quantum mechanical process that can take place along
many different paths.

Feynman’s postulate. Feynman’s postulate says that the probability
amplitude associated with the transition from the point (xa, ta) to
(xb, tb) is the sum over all paths with the action as a phase angle,
namely,

Amplitude =
∑

all paths

e
i
~
S, (17.21)

where S is the classical action associated with each path. Comparing
with (17.17), we can, therefore, write

H〈xb, tb|xa, ta〉H = U(xb, tb;xa, ta)

=
∑

all paths

e

i
~

tb
∫

ta

dt L

. (17.22)
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We would show that this is indeed equivalent to Schrödinger
equation and conversely we will also show that the operator formalism
also leads to this. But assuming that this is true let us discuss some
of its features.

1. First of all we note that the action is a scalar quantity. Thus,
this can also be applied to a relativistic description of systems.
In fact, the path integral is more suited for description of rel-
ativistic systems as well as very complicated physical theories
like the gauge theories.

2. The quantities that one deals with in this formalism are classical
quantities – for example the classical action associated with a
particular path between the initial and the final points.

3. This is quite a physical picture of the propagation of the system.
The system moves from xa at ta to xb at tb. Thus the postulate
is already time ordered, in the sense that tb > ta.

4. Whereas classically we know that the actual trajectory of the
particle is the one for which the action is the minimum, Feyn-
man’s postulate seems to say that, for a quantum mechanical
system, all paths contribute equally. A natural question that
immediately arises is how does one obtain the classical trajec-
tory as the unique trajectory in the classical limit when ~→ 0,
or S ≫ ~.

This question can be answered in the following way. Let us
suppose that S ≫ ~ and that we are considering a path that is
far away from the classical path as shown in Fig. 17.3. Let us
denote this path by x1. If we change the path slightly,

then, we have

x1 → x2, S(x1)→ S(x2). (17.23)

Clearly if ∆x is very small on a classical scale, then, the change
in the action ∆S = S(x2)−S(x1) will also be small on a classical
scale. But on a quantum scale or in units of ~ this would be
large. Thus ∆S

~
would be very large and, for every path, there

would be a path which contributes negatively and so all such
paths far away from the classical trajectory would average out
to zero.

On the other hand, if we are considering the paths near the
classical trajectory, an infinitesimal change would lead to no

         
02:38.



497

b

b

ta

tb

xcl(t)

x1

x2

Figure 17.3: Several distinct paths connecting two points among
which xcl(t) denotes the classical path.

change in the action, which follows from the principle of least
action. Thus, all paths near the classical trajectory would con-
tribute coherently. In fact, all trajectories which differ from xcl
contribute as long as their contribution is within π~ of Scl. It is
clear, therefore, that for all practical purposes only the classical
trajectory is picked up in the classical limit.

Constructing the sum over paths. The number of paths between any
two points is obviously infinitely many. Therefore, we have to first
define what we mean by constructing the sum over all paths.

Let us begin with the Riemann definition of an integral. Let us
consider a curve given by a function f(x). To find out the area under
this curve (see Fig. 17.4), we divide the interval between x0 and xN
to N equal intervals of length a and define

| | | | | | | | | | | | x

f(x)

x0 xN

Figure 17.4: Riemann’s definition of an integral as the area under a
curve.
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A ∼
∑

i

f(xi). (17.24)

We can define the area under the curve as the limit of (17.24) when
the interval length a→ 0. But, clearly this limit does not exist (since
it is an infinite sum). Thus, we need some normalization constant
which will make it well defined in this limit. In the case of the Rie-
mann integral, this constant turns out to be the length of the interval
so that

A = lim
a→0

(
a
∑

i

f(xi)

)
, (17.25)

represents the area under the curve. We recognize that, in this con-
tinuum limit, the number of interval increases but the length of each
interval decreases so that the product is finite.

t

x

b
ta

b
tb

Figure 17.5: Discretized representation of a given path between an
initial and a final point.

To construct the sum over all paths we can follow the same
procedure. First of all we divide the time interval between tb and ta
into N equal parts of length ǫ as in Fig. 17.5. Let us identify

ta = t0, tb = tN , (17.26)

so that

ǫ = ti+1 − ti,

Nǫ = tb − ta,

x(ti) = xi. (17.27)
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In particular xa = x0 and xb = xN . With this notation, therefore,
the action associated with a particular path (which is the integral of
the Lagrangian) can be written, following (17.25) as

S = lim
ǫ→0

ǫ
∑

i

L[xi]. (17.28)

All possible paths between the initial and the final points are,
of course, automatically generated if we let xi take all possible values
(keeping x0 and xN fixed). Therefore, we can define the sum over all
paths in (17.22) as

U(xb, tb;xa, ta) = lim
ǫ→0

N→∞
Nǫ=tb−ta

A

∫
· · ·
∫

dx1 · · · dxN−1 e
iǫ
~

∑

i

L[xi]
,

(17.29)

where the integration dxi is over all possible values of the coordinates,
xi. We note that we do not integrate over the end points since they are
held fixed. Furthermore, we have also put a normalization constant
A in front so that the limit indeed exists.

17.1 Free particle

To understand the path integral formalism better, let us study the
simplest example of a free particle in one dimension. In this case, we
know that the Lagrangian has the simple form

L =
1

2
mẋ2. (17.30)

As a result, we obtain, from (17.28),

S = lim
ǫ→0

ǫ
∑

i

1

2
mẋ2i = lim

ǫ→0

mǫ

2

∑

i

(
xi+1 − xi

ǫ

)2

= lim
ǫ→0

m

2ǫ

∑

i

(xi+1 − xi)2. (17.31)

It now follows from (17.29) that, in this case,

U(xb, tb;xa, ta)

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A

∞∫

−∞

· · ·
∞∫

−∞

dx1 · · · dxN−1 e
im
2~ǫ

∑

i

(xi+1−xi)2

. (17.32)
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Let us scale the variable of integration as

yi =
( m
2~ǫ

) 1
2
xi. (17.33)

With this, the expression, (17.32), becomes

U(xb, tb;xa, ta) = lim
ǫ→0

N→∞
Nǫ=tb−ta

A

(
2~ǫ

m

) (N−1)
2

×
∞∫

−∞

· · ·
∞∫

−∞

dy1 · · · dyN−1 e

∑

i

i(yi+1−yi)
2

. (17.34)

Let us look at the term, inside the integrand, of the form

∞∫

−∞

dy1 e
i[(y1−y0)2+(y2−y1)2]

=

∞∫

−∞

dy1 e
i

[

2
(

y1− (y2+y0)
2

)2
+ 1

2
(y2−y0)2

]

= e
i
2
(y2−y0)2

(
iπ

2

) 1
2

. (17.35)

Let us next consider the term

∞∫∫

−∞

dy1dy2 e
i[(y1−y0)2+(y2−y1)2+(y3−y2)2]

=

(
iπ

2

) 1
2

∞∫

−∞

dy2 e
i
2
(y2−y0)2+i(y3−y2)2

=

(
iπ

2

) 1
2

∞∫

−∞

dy2 e
3i
2

(

y2− (y0+2y3)

3

)2
+ i

3
(y3−y0)2

=

(
iπ

2

) 1
2
(
2iπ

3

) 1
2

e
i
3
(y3−y0)

2

=

(
(iπ)2

3

) 1
2

e
i
3
(y3−y0)

2

. (17.36)
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Thus, a pattern now follows and we see that we can write (17.34)
as

U(xb, tb;xa, ta)

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A

(
2~ǫ

m

)N−1
2
[
(iπ)N−1

N

] 1
2

e
i
N
(yN−y0)

2

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A

(
2~ǫ

m

)N
2

(iπ)
(N−1)

2

( m

2~Nǫ

) 1
2
e

im
2~Nǫ

(xN−x0)
2

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A

(
2iπ~ǫ

m

)N
2 ( m

2iπ~Nǫ

) 1
2
e

im
2~Nǫ

(xN−x0)
2

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A

(
2iπ~ǫ

m

)N
2
[

m

2iπ~(tb − ta)

]1
2

e
im
2~

(xb−xa)2

tb−ta .

(17.37)

The normalization factor A is determined by noticing that as tb → ta
(see (17.11) or (17.17))

U(xb, tb;xa, ta)→ δ(xb − xa). (17.38)

which leads to (see (2.145))

A =
( m

2iπ~ǫ

)N
2
=

(
2iπ~ǫ

m

)−N
2

= B−N . (17.39)

Conventionally, one associates a factor of 1
B

with each integration
variable to write

U(xb, tb;xa, ta)

= lim
ǫ→0

N→∞
Nǫ=tb−ta

1

B

∫
· · ·

∞∫

−∞

dx1
B
· · · dxN−1

B
e

iǫ
~

∑

i

L[xi]

=

b∫

a

Dx(t) e i
~
S[x(t)]. (17.40)
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In the simple case of the free particle, therefore, we have

U(xb, tb;xa, ta) =

[
m

2iπ~(tb − ta)

] 1
2

e
im
2~

(xb−xa)2

(tb−ta) . (17.41)

From the definition of the U in (17.17), it is obvious that

H〈xb, tb|ψ〉H = ψ(xb, tb) =

∫
dxa H〈xb, tb|xa, ta〉H H〈xa, ta|ψ〉H

=

∫
dxa U(xb, tb;xa, ta)ψ(xa, ta). (17.42)

Thus if at ta = 0 we choose ψ(xa, 0) = δ(xa), then, we obtain from
(17.41) and (17.42)

ψ(xb, tb) = U(xb, tb; 0, 0) =

[
m

2iπ~tb

] 1
2

e
im
2~

x2b
tb . (17.43)

This can be compared with (4.4) (with a = 0), where we had obtained
the wave function by solving the Schrödinger equation.

It is clear from the form of U in (17.41) that

∂U

∂tb
= − 1

2(tb − ta)
U − m

2i~
(xb − xa)2

(
−1

2

1

(tb − ta)2
)
U

=

[
− 1

2(tb − ta)
+

m

2i~

(xb − xa)2
(tb − ta)2

]
U,

∂U

∂xb
= − m

2i~

2(xb − xa)
tb − ta

U,

∂2U

∂x2b
=

[
−m
i~

1

tb − ta
+
(m
i~

)2 (xb − xa)2
(tb − ta)2

]
U. (17.44)

It follows now, from (17.44), that

i~
∂U

∂tb
= − ~

2

2m

∂2U

∂x2b
. (17.45)

Thus the probability amplitude satisfies the Schrödinger equation.
Furthermore, since we know (see (17.42))

ψ(xb, tb) =

∫
dxa U(xb, tb;xa, ta)ψ(xa, ta), (17.46)

we obtain

i~
∂ψ(xb, tb)

∂tb
= − ~

2

2m

∂2ψ(xb, tb)

∂x2b
. (17.47)

Namely, the wave function obtained in the path integral formalism
obeys the Schrödinger equation.
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Gaussian path integrals. The simplest path integral corresponds to
the case where the dynamical variables appear at the most up to
quadratic order in the Lagrangian (the free particle is an example
of such a system). Such systems are, therefore, described by path
integrals where the integrands are Gaussians. We can write the most
general (one dimensional) Lagrangian which is quadratic in the dy-
namical variables as

L = a1ẋ
2 + a2ẋx+ a3x

2 + a4ẋ+ a5x+ a6(t). (17.48)

Here we have allowed for an explicit time dependent term. This is
of course a highly generalized Lagrangian and, in physical situations,
the quadratic Lagrangians have much simpler forms.

For a quantum mechanical system described by a Lagrangian of
the form (17.48), the amplitude, (17.17), can be written as (see also
(17.40))

U(xb, tb;xa, ta) =

b∫

a

Dx(t) e i
~
S[x]. (17.49)

This concise notation, of course, implicitly implies the limiting proce-
dure we talked about earlier. For a Gaussian action the integrations
can be performed. However, rather than doing it tediously let us
evaluate it in a different manner.

First of all, let xcl(t) be the classical trajectory so that δS = 0
around the classical trajectory. Furthermore, rather than labelling
the paths by coordinates from an arbitrary origin, let us measure
them from xcl(t). Thus, for any path, we define

x(t) = xcl(t) + y,

S[x] = S[xcl + y]

= S[xcl] + linear in y + quadratic in y. (17.50)

We can show that the coefficients of the linear term vanishes since
δS|xcl

= 0 (principle of least action). Furthermore, the form of the
quadratic terms follows from (17.48) to be

a1ẏ
2 + a2ẏy + a3y

2. (17.51)

As a result, we can write

S[x] = S[xcl] +

tb∫

ta

dt
(
a1ẏ

2 + a2ẏy + a3y
2
)
. (17.52)
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We can now integrate over all possible values of y which will
generate all possible paths between the initial and the final points.
Correspondingly, we have

Dx(t)→ Dy(t). (17.53)

Using this as well as (17.52), the amplitude, (17.49), takes the form

U(xb, tb;xa, ta)

=

0∫

0

Dy(t) e
i
~

[

S[xcl]+
tb
∫

ta

dt (a1 ẏ2+a2ẏy+a3y
2)

]

= e
i
~
S[xcl]

0∫

0

Dy(t) e
i
~

tb
∫

ta

dt (a1 ẏ2+a2ẏy+a3y
2)

. (17.54)

The integration limits on Dy(t) imply that since the end points
are held fixed y starts from and returns to zero. Clearly the inte-
gral can only depend on the end points ta and tb since there is no
dependence on xa and xb any more. Thus, we can write

U(xb, tb;xa, ta) = e
i
~
S[xcl] F (tb, ta). (17.55)

Furthermore, if the Lagrangian has no explicit time dependence, then
time translation must be a symmetry of the system and, consequently,
we must have

F (tb, ta) = F (tb − ta). (17.56)

Thus, for a time independent quadratic Lagrangian (for which a6(t) =
0), we have

U(xb, tb;xa, ta) = e
i
~
S[xcl]F (tb − ta). (17.57)

Comparing (17.57) with the result obtained for the free particle in
(17.41), we obtain

F (free particle)(tb − ta) =
[

m

2iπ~(tb − ta)

] 1
2

. (17.58)

Gaussian path integrals can, in fact, be exactly evaluated and we will
work out the harmonic oscillator later in this chapter from the path
integral point of view.
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17.2 Equivalence with Schrödinger equation

The Schrödinger equation, which has the form

i~
d

dt
|ψ(t)〉 = H|ψ(t)〉, (17.59)

implies that, for an infinitesimal time interval ǫ, we can write

|ψ(ǫ)〉 − |ψ(0)〉 = − iǫ
~
H|ψ(0)〉. (17.60)

In the coordinate basis, (17.60) leads to

ψ(x, ǫ)− ψ(x, 0) = − iǫ
~

(
− ~

2

2m

∂2

∂x2
+ V (x, 0)

)
ψ(x, 0). (17.61)

We would now show that the path integral also predicts this
behavior for the wave function. First of all, we note, from (17.42),
that the path integral predicts

ψ(x, ǫ) =

∞∫

−∞

dx′ U(x, ǫ;x′, 0)ψ(x′, 0), (17.62)

where for an infinitesimal time interval ǫ, the transition amplitude is
given by (see (17.29))

U(x, ǫ;x′, 0) =
( m

2iπ~ǫ

) 1
2
e

iǫ
~
L(x−x′

ǫ
,x+x′

2
,ǫ)

=
( m

2iπ~ǫ

) 1
2
e

iǫ
~
[ 1
2
m

(x−x′)2
ǫ2

−V (x+x′
2

,ǫ)]. (17.63)

It follows from (17.62) and (17.63) that

ψ(x, ǫ) =
( m

2iπ~ǫ

) 1
2

∞∫

−∞

dx′ e[
im
2~ǫ

(x−x′)2− iǫ
~
V (x+x′

2
,ǫ)] ψ(x′, 0).

(17.64)

We note, from (17.64), that if x′ is appreciably different from
x, then because the infinitesimal interval ǫ is in the denominator of
the first term (in the exponential), the integrand oscillates rapidly.
The potential has an ǫ multiplying it because of which it is a smooth
function and so also is ψ(x′, 0). Thus, all such contributions where x′

is very different from x would average to zero. The only substantial
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contribution would, therefore, come from paths around x′ = x. Hence
let us define

x′ − x = η, (17.65)

in terms of which, the expression, (17.64), becomes

ψ(x, ǫ) =
( m

2iπ~ǫ

) 1
2

∞∫

−∞

dη e
imη2

2~ǫ
− iǫ

~
V (x+ η

2
,ǫ) ψ(x+ η, 0). (17.66)

Let us note that the dominant contribution, in (17.66), comes
from the region

mη2

2ǫ~
≤ π, or, |η| ≤

(
2ǫ~π

m

) 1
2

. (17.67)

We are interested in terms up to order ǫ in the expansion of the right
hand side of (17.66) (see (17.61)). Furthermore, from (17.67), we see

that the terms that contribute are those for which η ∼ ǫ
1
2 . Thus,

we can expand the integrand keeping terms up to order η2 in the
expansion. As a result, we obtain,

ǫV (x+
η

2
, ǫ) = ǫV (x, 0) +O(ǫ

3
2 ),

ψ(x+ η, 0) = ψ(x, 0) + η
∂ψ(x, 0)

∂x
+
η2

2!

∂2ψ(x, 0)

∂x2
. (17.68)

Putting these back into (17.66), we have

ψ(x, ǫ) =
( m

2iπ~ǫ

) 1
2

∞∫

−∞

dη e
imη2

2ǫ~

(
1− iǫ

~
V (x, 0)

)

×
(
ψ(x, 0) + η

∂ψ(x, 0)

∂x
+
η2

2!

∂2ψ(x, 0)

∂x2

)

=
( m

2iπ~ǫ

) 1
2

∞∫

−∞

dη e
imη2

2~ǫ

[
ψ(x, 0) + η

∂ψ(x, 0)

∂x

+
η2

2!

∂2ψ(x, 0)

∂x2
− iǫ

~
V (x, 0)ψ(x, 0)

]
. (17.69)
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Using the standard results

∞∫

−∞

dη e
imη2

2~ǫ =

(
2iπ~ǫ

m

) 1
2

,

∞∫

−∞

dη η e
imη2

2~ǫ = 0,

∞∫

−∞

dη η2 e
imη2

2~ǫ =
i~ǫ

m

(
2iπ~ǫ

m

) 1
2

, (17.70)

we obtain, from (17.69),

ψ(x, ǫ) =
( m

2iπ~ǫ

) 1
2

[(
2iπ~ǫ

m

) 1
2
(
1− iǫ

~
V (x, 0)

)
ψ(x, 0)

+
1

2!

i~ǫ

m

(
2iπ~ǫ

m

)1
2 ∂2ψ(x, 0)

∂x2

]

=

(
1− iǫ

~
V (x, 0) +

iǫ~

2m

∂2

∂x2

)
ψ(x, 0). (17.71)

It follows from (17.71) that

ψ(x, ǫ)− ψ(x, 0) = − iǫ
~

(
− ~

2

2m

∂2

∂x2
+ V (x, 0)

)
ψ(x, 0), (17.72)

which is the same as (17.61). Thus we have shown that the path
integral formalism leads to the Schrödinger equation for infinitesimal
time intervals. Since any finite interval can be thought of as a series of
successive infinitesimal intervals the equivalence would still be true.

We would next show how starting from the operator formalism
one can recover Feynman’s formula. We start with the definition in
(17.17)

U(xb, tb;xa, ta) = H〈xb, tb|xa, ta〉H = 〈xb|e−
i
~
H(tb−ta)|xa〉.

(17.73)

Let us now divide the time interval into N equal parts of length ǫ so
that

tb − ta = Nǫ. (17.74)
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Therefore, we can write

U(xb, tb;xa, ta) = 〈xb|e−
i
~
HNǫ|xa〉

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A〈xb|
(
1− iǫ

~
H

)N

|xa〉

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A

∫
dx1 · · · dxN−1 〈xb|

(
1− iǫ

~
H

)
|xN−1〉

× 〈xN−1|
(
1− iǫ

~
H

)
|xN−2〉 · · · 〈x1|

(
1− iǫ

~
H

)
|xa〉.

(17.75)

There is a time ordering involved in (17.75), namely, we are
assuming that

tb > tN−1 > tN−2 · · · t1 > ta. (17.76)

Furthermore, let us note that

〈p|H|x〉 = 〈p|x〉H(x, p), (17.77)

where H(x, p) is the classical Hamiltonian and we also know that (see
(2.177))

〈p|x〉 = 1√
2π~

e−
i
~
px. (17.78)

Thus each element of (17.75) can be rewritten as

〈x2|
(
1− iǫ

~
H

)
|x1〉 =

∫
dp1 〈x2|p1〉〈p1|

(
1− iǫ

~
H

)
|x1〉

=

∫
dp1
2π~

(
1− iǫ

~
H(x1, p1)

)
e

i
~
p1(x2−x1). (17.79)

Using these formulae, therefore, we can write

U(xb, tb;xa, ta)

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A

∫
dx1dp1
2π~

· · ·
∫

dxN−1dpN−1

2π~

× e
i
~

N−1
∑

n=0
pn(xn+1−xn)

N−1∏

n=0

(
1− iǫ

~
H(xn, pn)

)
. (17.80)
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Let us next use the definition of the exponential

lim
N→∞

N∏

n=0

(
1 +

Zn

N

)
= lim

N→∞

N∏

n=0

e
Zn
N . (17.81)

With this, the amplitude in (17.80) becomes

U(xb, tb;xa, ta)

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A

∫
dx1dp1
2π~

· · ·
∫

dxN−1dpN−1

2π~

× e
i
~

N−1
∑

n=0
[pn(xn+1−xn)−ǫH(xn,pn)]

= lim
ǫ→0

N→∞
Nǫ=tb−ta

A

∫
dx1dp1
2π~

· · ·
∫

dxN−1dpN−1

2π~

× e
iǫ
~

N−1
∑

n=0
[pn(

xn+1−xn

ǫ
)−H(xn,pn)]

. (17.82)

In the limit ǫ → 0, N → ∞, we can write the exponent of the
exponential as

i

~

tb∫

ta

dt (pẋ−H(x, p)), (17.83)

so that, in this limit, we have

U(xb, tb;xa, ta) = A

∫
DxDp exp




i

~

tb∫

ta

dt (pẋ−H(x, p))



 ,

(17.84)

where we have used the notation

Dx =

N−1∏

n=1

dxn√
2π~

, Dp =
N−1∏

n=1

dpn√
2π~

. (17.85)

Let us now specialize to the case where the Hamiltonian has the
standard form

H =
p2

2m
+ V (x), (17.86)
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with V (x) representing an arbitrary potential. We can, in this case,
perform the p-integration in (17.84).

∫
Dp e

i
~

tb
∫

ta

dt

(

pẋ− p2

2m
−V (x)

)

=

∫
Dp e

− i
2m~

tb
∫

ta

dt(p−mẋ)2+ i
~

tb
∫

ta

dt( 1
2
mẋ2−V (x))

=

(
2m~π

i

)N
2
(

1

2π~

)N
2

e

i
~

tb
∫

ta

dt L(x,ẋ)

=
(m
i

)N
2
e

i
h

tb
∫

ta

dt L(x,ẋ)

, (17.87)

where we have followed a derivation as in (17.37) as well as the defi-
nition in (17.85). Putting this result back into (17.84), we have

U(xb, tb;xa, ta) = A′
∫
Dx e

i
~

tb
∫

ta

dt L(x,ẋ)

= A′
∫
Dx e i

~
S . (17.88)

This is Feynman’s formula (see (17.40)) and the constant A′ is an
infinite normalization constant which drops out in the calculation of
relative probability amplitudes of the form 〈xb,tb|O|xa,ta〉

〈xb,tb|xa,ta〉 .
The knowledge of U helps in calculating the matrix elements of

various operators. Thus, for example,

〈xb, tb|T (X(t1)X(t2) · · ·X(tn))|xa, ta〉

= A′
∫
Dx x(t1)x(t2) · · · x(tn) e

i
~

∫

dt L(x,ẋ). (17.89)

Exercise. Prove formula (17.89) for n = 2. Use complete intermediate states to
derive the formula.

Even the form, (17.89), in which we have derived the matrix
elements, is not very useful because it is extremely difficult to evaluate
the integrals. So, let us develop some simplifications. Let us assume
that the Lagrangian does not depend on time explicitly. Let φn(x) =
〈x|n〉 be the wave function associated with the nth energy state of the
system. Thus, φ0(x) would represent the ground state wave function
of the system. Let us assume that the system is in the ground state at
a time T in the distant past. We want to calculate the amplitude for
the system to be in the ground state at some time T ′ in the distant
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future, when an arbitrary external source J(t)x(t) is added to the
Lagrangian in some intermediate time interval. Thus, we take J(t)
to be an arbitrary function with the constraint that it is non-vanishing
only between t′ and t such that

T ′ > t′ > t > T. (17.90)

We denote this amplitude as

〈xb, T ′|xa, T 〉J =

∫
DxDp e

i
~

T ′
∫

T

dt [pẋ−H(x,p)+Jx]
. (17.91)

On the other hand, using the completeness relation of the coordinate
basis states, we can write the left hand side of (17.91) as

〈xb, T ′|xa, T 〉J =

∫
dx′dx〈xb, T ′|x′, t′〉〈x′, t′|x, t〉J 〈x, t|xa, T 〉.

(17.92)

Here, we have used the fact that since J is non-vanishing only between
t′ and t, only the second factor, on the right hand side of (17.92),
would have a J dependence. Furthermore, using a complete basis of
energy eigenstates, we obtain

〈x, t|xa, T 〉 = 〈x|e−
i
~
H(t−T )|xa〉

=
∑

n

〈x|e− i
~
H(t−T )|n〉〈n|xa〉

=
∑

n

e−
i
~
En(t−T )φn(x)φ

∗
n(xa). (17.93)

If we now consider the limit T → i∞ (namely, we are considering the
amplitude in the Euclidean space, a technicality that we will not get
into), then, clearly all terms with n > 0 drop out. Thus, we have

lim
T→i∞

〈x, t|xa, T 〉 = e
i
~
E0Tφ0(x, t)φ

∗
0(xa). (17.94)

Similarly, we can show that

lim
T ′→−i∞

〈xb, T ′|x′, t′〉 = e
i
~
E0T

′
φ0(xb)φ

∗
0(x

′, t′). (17.95)
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Substituting (17.94) and (17.95) into (17.92), we obtain

lim
T→i∞

T ′→−i∞

〈xb, T ′|xa, T 〉J

e−
i
~
E0(T ′−T )φ∗0(xa)φ0(xb)

=

∫
dxdx′ φ∗0(x

′, t′)〈x′, t′|x, t〉Jφ0(x, t)

= Z[J ] = eiW [J ]. (17.96)

The right hand side of (17.96) simply represents the ground state to
ground state transition amplitude. Since

〈x′, t′|x, t〉J =

∫
DxDp e

i
~

t′
∫

t

dτ [pẋ−H(x,p)+Jx]
, (17.97)

we see that the effect of varying J in Z is to bring down a factor of
x. Thus, let us consider

δnZ[J ]

δJ(t1) · · · δJ(tn)

∣∣∣∣
J=0

=
(i)n

~n

∫
dxdx′ φ∗0(x

′, t′)φ0(x, t)

×
∫
DxDp x(t1) · · · x(tn) e

i
~

t′
∫

t

dτ (pẋ−H(x,p))
. (17.98)

We recognize this as the matrix element of the time ordered product
T (X(t1) · · ·X(tn)) between the ground state at time t and the ground
state at t′. Thus we can obtain the ground state expectation value
of operators quite easily. Such expectation values are called correla-
tion functions in statistical mechanics. In quantum field theory they
are known as vacuum Green’s functions and are directly related to
physically observable quantities. In field theory, one is cavalier about
infinite normalization constants, mainly because they drop out in
normalized amplitudes and writes

Z(J) ∼ lim
T→i∞

T ′→−i∞
〈xb, T ′|xa, T 〉J

= lim
T→i∞

T ′→−i∞

∫
Dx e

i
~

T ′
∫

T

dt (L[x]+J(t)x(t))
. (17.99)

We note here that Z[J ] is known as the generating functional for
Green’s functions while W [J ] is called the generating functional for
connected Green’s functions.
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17.3 Harmonic oscillator

Let us now consider a harmonic oscillator with a source term. In this
case, the Lagrangian has the form

L =
1

2
mẋ2 − 1

2
mω2x2 + Jx. (17.100)

We recognize that this is a system described by a quadratic La-
grangian. Let us again define

x = xcl + η, (17.101)

so that we can write

L[x] ≡ L[xcl + η]

=
1

2
m (ẋcl + η̇)− 1

2
mω2 (xcl + η)2 + J (xcl + η)

=
1

2
mẋ2cl −

1

2
mω2x2cl + Jxcl +mẋclη̇ −mω2xclη + Jη

+
1

2
mη̇2 − 1

2
mω2η2. (17.102)

Remembering the fact that the classical trajectory satisfies the
equation

mẍcl +mω2xcl − J = 0, (17.103)

we note that we can write the action, in this case, to be

S =

∫
dt L[xcl + η] =

∫
dt
[
L[xcl] +

m

2
η̇2 − m

2
ω2η2

]
, (17.104)

where we have used integration by parts. In other words, the linear
terms in η drop out and we have identified

L[xcl] =
1

2
mẋ2cl −

1

2
mω2x2cl + Jxcl. (17.105)

In this case, therefore, we can write the transition amplitude as

〈x′, t′|x, t〉J ∼
∫
Dη e i

~
S[xcl] e

i
~

t′
∫

t

dτ ( 1
2
mη̇2− 1

2
mω2η2)

= e
i
~
S[xcl]

∫
Dη e

i
~

t′
∫

t

dτ ( 1
2
mη̇2− 1

2
mω2η2)

. (17.106)
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The integrand, in (17.106), is a Gaussian and, therefore, the path
integral can be explicitly evaluated. Let us do it in the following way.
First of all, let us note that the Lagrangian does not depend on time
explicitly. Therefore, we can shift the limits of integration from 0 to
T = t′ − t. Furthermore, η’s satisfy the condition η = 0 at t = 0 as
well as at t = T (see (17.101)). Thus, we can expand η as

η(t) =
∑

n

an sin
nπt

T
, n integers. (17.107)

It follows now that

T∫

0

dt η̇2 =
∑

n,m

T∫

0

dt
nπ

T

mπ

T
anam cos

nπt

T
cos

mπt

T

=
T

2

∑

n

(nπ
T

)2
a2n,

T∫

0

dt η2 =
∑

n,m

T∫

0

dt anam sin
nπt

T
sin

mπt

T

=
T

2

∑

n

a2n. (17.108)

If we assume that the time interval is divided into N +1 subin-
tervals, then, there will only be a finite number (N) of coefficients,
an. Thus, we can write

∫
Dη e

i
~

T
∫

0

dt (m
2
η̇2−m

2
ω2η2)

= A

∫
da1da2 · · · daN e

i
~

mT
4

N
∑

n=1
((nπ

T
)2−ω2)a2n

. (17.109)

Each term in the integrand of (17.109) is a Gaussian and gives
∫

dan e
imT
4~

(n
2π2

T2 −ω2)a2n

=

(
4iπ~

mT

) 1
2
(
n2π2

T 2
− ω2

)− 1
2

=

(
4iπ~

mT

) 1
2
(
n2π2

T 2

)− 1
2
(
1− ω2T 2

n2π2

)− 1
2

. (17.110)
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Therefore, we have

A

∫
da1da2 · · · daN e

i
~

mT
4

N
∑

n=1
((nπ

T
)2−ω2)a2n

= A′
N∏

n=1

(
1− ω2T 2

n2π2

)− 1
2

, (17.111)

where we have lumped the other factors of the integral into the con-
stant A′. We note that if the time interval ǫ is made vanishingly small
so that N →∞ (keeping Nǫ fixed), then, in that limit

lim
ǫ→0

N→∞
Nǫ=T

N∏

n=1

(
1− ω2T 2

n2π2

)
=

sinωT

ωT
. (17.112)

With this, our expression, (17.111) becomes

A

∫
da1 · · · daN e

i
~

mT
4

N
∑

n=1
((nπ

T
)2−ω2)a2n

= A′
(
sinωT

ωT

)− 1
2

.

(17.113)

Furthermore, we note that in the limit ω = 0, our path integral
reduces to that of a free particle, which we have evaluated earlier (see
(17.58)) and which has the value

√
m

2πi~T . The constant A′ does not
depend on the frequency and, consequently, we determine

lim
ǫ→0

N→∞
Nǫ=T

A′ =

√
m

2πi~T
. (17.114)

As a result, we obtain,

∫
Dη e

i
~

t′
∫

t

dτ (m
2
η̇2−m

2
ω2η2)

=
[ m

2πi~T

] 1
2

[
ωT

sinωT

] 1
2

=
[ mω

2πi~ sinωT

] 1
2
, (17.115)

so that we can write the transition amplitude, (17.106), as

〈x, t′|x, t〉J = e
i
~
S[xcl]

∫
Dη e i

~

∫

dt (m
2
η̇2−m

2
ω2η2)

=
[ mω

2πi~ sinωT

] 1
2
e

i
~
S[xcl]. (17.116)
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To determine S[xcl], we note that the equation of motion satis-
fied by xcl is (see (17.103))

mẍcl +mω2xcl = J(t),

or,

(
d2

dt2
+ ω2

)
xcl =

J(t)

m
. (17.117)

The solution of this equation consists of two parts

xcl = xH + xI , (17.118)

where the homogeneous part of the solution can be written as

xH = Aeiωt +Be−iωt. (17.119)

The inhomogeneous part (or the particular solution) of (17.117)
can be obtained from the Green’s function of the differential equation
(see chapter 15). For example, if

(
d2

dt2
+ ω2

)
G(t− t′) = −δ(t− t′), (17.120)

then, we can write the particular solution as

xI(t) = −
tb∫

ta

dt′ G(t− t′) J(t
′)

m
. (17.121)

As we have discussed earlier, G(t−t′) is known as the Green’s function

for the operator
(

d2

dt2
+ ω2

)
and is determined in the following way.

Let us look at the differential equation for the Green’s function in
the Fourier transformed space. Thus, defining,

G(t− t′) =
∫

dk eik(t−t′) G(k), (17.122)

and recalling the Fourier transform of the delta function,

δ(t − t′) = 1

2π

∫
dk eik(t−t′), (17.123)

we obtain, from (17.120),

(
−k2 + ω2

)
G(k) = − 1

2π
,

or, G(k) =
1

2π

1

k2 − ω2
. (17.124)
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This leads to

G(t− t′) = 1

2π

∫
dk

eik(t−t′)

k2 − ω2
. (17.125)

The integral in (17.125), however, is not well defined because of
the singularities at k = ±ω. Therefore, a prescription for the contour
of integration has to be given for a unique expression. Depending on
whether t−t′ > 0 or t−t′ < 0 one defines two Green’s functions known
as retarded and advanced Green’s functions as discussed in chapter
15. However, in quantum mechanics, as we have noted earlier, it is
the Feynman Green’s function (or the causal Green’s function) that
plays an important role and the prescription for the contour, in this
case, is as shown in Fig. 17.6.

bb

ω

−ω
Re k

Figure 17.6: Contour in the complex plane for the Feynman Green’s
function.

For t − t′ > 0 the contour is closed in the upper half plane so
that the Green’s function becomes

G+(t− t′) = 2πi
1

2π
lim

k→−ω
(k + ω)

eik(t−t′)

(k + ω)(k − ω)

= i
eiω(t−t′)

−2ω =
1

2iω
eiω(t−t′), t− t′ > 0. (17.126)

For t − t′ < 0, on the other hand, the contour is closed in the lower
half plane and the Green’s function becomes

G−(t− t′) = −2πi 1

2π
lim
k→ω

(k − ω) eik(t−t′)

(k + ω)(k − ω)

= −i e
iω(t−t′)

2ω
=

1

2iω
eiω(t−t′), t− t′ < 0. (17.127)
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The Feynman Green’s function can be written in terms of G+

and G−, defined in (17.126) and (17.127) respectively, as

GF(t− t′) = θ(t− t′)G+(t− t′) + θ(t′ − t)G−(t− t′). (17.128)

It is an even function and satisfies(
d2

dt2
+ ω2

)
GF(t− t′) = −δ(t− t′). (17.129)

We can, therefore, write down the inhomogeneous part (particular
solution) of the solution now as (see (17.121))

xI(t) = −
tb∫

ta

dt′ GF(t− t′)
J(t′)
m

= −
t∫

ta

dt′ G+(t− t′)J(t
′)

m
−

tb∫

t

dt′ G−(t− t′)J(t
′)

m

= − 1

2imω




t∫

ta

dt′ e−iω(t−t′)J(t′) +

tb∫

t

dt′ eiω(t−t′)J(t′)


 .

(17.130)

Using this, we can write the complete solution, (17.118), as

xcl(t) = xH(t) + xI(t)

= Aeiωt +Be−iωt

− 1

2imω




t∫

ta

dt′ e−iω(t−t′)J(t′) +

tb∫

t

dt′ eiω(t−t′)J(t′)


 .

(17.131)

Furthermore, the boundary conditions lead to

xcl(t = ta) = xa = Aeiωta +Be−iωta

− 1

2imω

tb∫

ta

dt′ eiω(ta−t′)J(t′),

xcl(t = tb) = xb = Aeiωtb +Be−iωtb

− 1

2imω

tb∫

ta

dt′e−iω(tb−t′)J(t′). (17.132)

         
02:38.



17.3 Harmonic oscillator 519

From the relations in (17.132), we obtain

xae
iωtb − xbeiωta

= B
[
eiω(tb−ta) e−iω(tb−ta)

]

− 1

2imω

tb∫

ta

dt′ J(t′)
[
eiω(tb−ta−t′) − e−iω(tb−ta−t′)

]

= 2iB sinωT − eiωta

mω

tb∫

ta

dt′J(t′) sinω(tb − t′), (17.133)

where we have identified T = tb − ta. Equation (17.133) determines

B =
1

2i sinωT

[ (
xae

iωtb − xbeiωta
)

+
eiωta

mω

tb∫

ta

dt′ J(t′) sinω(tb − t′)
]
. (17.134)

Similarly, from the relations in (17.132), we also obtain

xbe
iωta − xae−iωtb

= A
[
eiω(tb−ta) − e−iω(tb−ta)

]

− 1

2imω

tb∫

ta

dt′ J(t′)
[
eiω(tb+ta−t′) − e−iω(ta−tb−t′)

]

= 2iA sinωT − e−iωtb

mω

tb∫

ta

dt′ J(t′) sinω(ta − t′), (17.135)

which determines

A =
1

2i sinωT

[ (
xbe

−iωta − xae−iωtb
)

+
e−iωtb

mω

tb∫

ta

dt′ J(t′) sinω(t′ − ta)
]
. (17.136)
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Using (17.133) and (17.135), we obtain

Aeiωt +Be−iωt

=
1

2iωT

[
xb

(
eiω(t−ta) − e−iω(t−ta)

)

+ xa

(
eiω(tb−t) − e−iω(tb−t)

) ]

+
1

mω

tb∫

ta

dt′ J(t′)

[
e−iω(tb−t) sinω(t′ − ta)

+ e−iω(t−ta) sinω(tb − t′)
]

=
1

sinωT

[
xb sinω(t− ta) + xa sinω(tb − t)

+
1

2mω

tb∫

ta

dt′ J(t′)

[
e−iωT cosω(t− t′)

− cosω(tb + ta − t− t′)
]]
. (17.137)

As a result, we can write the complete solution in (17.131) as

xcl =
1

sinωT

[
xb sinω(t− ta) + xa sinω(tb − t)

+
1

2mω

tb∫

ta

dt′ J(t′)

[
e−iωT cosω(t− t′)

− cosω(tb + ta − t− t′)
]]

(17.138)

− 1

2imω




t∫

ta

dt′ J(t′)e−iω(t−t′) +

tb∫

t

dt′ J(t′)eiω(t−t′)


 .

We can now determine

S[xcl] =
mω

2 sinωT

[(
x2a + x2b

)
cosωT − 2xaxb

]

         
02:38.



17.4 Selected problems 521

+
xb

sinωT

tb∫

ta

dt′ J(t′) sinω(t′ − ta)

+
xa

sinωT

tb∫

ta

dt′ J(t′) sinω(tb − t′)

− 1

mω sinωT

tb∫

ta

dt

t∫

ta

dτ J(t)J(τ) sinω(tb − t)

× sinω(τ − ta), (17.139)

so that, with (17.139), the transition amplitude, (17.116), is com-
pletely determined to be

〈x′, t′|x, t〉J =
[ mω

2πi~ sinωT

] 1
2
e

i
~
S[xcl]. (17.140)

Furthermore, from the definition in (17.96),

Z[J ] =

∫
dxdx′ φ∗0(x

′, t′)〈x′, t′|x, t〉Jφ0(x, t), (17.141)

as well as the form for the ground state wave function for the oscillator
(see (5.56))

φ0(x, τ) =
(mω
π~

) 1
4
e−

m
2~

ωx2
e−

i
2
ωτ , (17.142)

we can show that (we are interested only in the dependence on J)

Z(J) ∼ exp


 i
~

t′∫

t

dσ

σ∫

t

dτ J(σ)

×
{

i

2ωm
exp[−iω(σ − τ)]

}
J(τ)

]
. (17.143)

Any correlation function for the system can now be obtained by dif-
ferentiating the generating functional in (17.143) with respect to an
appropriate number of J ’s.

17.4 Selected problems

1. Find the transition amplitude U (xb, tb;xa, ta) for the quantum
mechanical systems described by the Lagrangians
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i) L = 1
2mẋ

2 + fx, where f is a constant independent of x.

ii) L = 1
2m
(
ẋ2 + ẏ2 + ż2

)
+ eB

2C (xẏ − yẋ), wheree, B and C are
constants.

2. Prove the relation (17.112), namely,

lim
N→∞

N−1∏

n=1

(
1−

( x

nπ

)2)
=

sinx

x
. (17.144)

3. From the transition amplitude for the harmonic oscillator dis-
cussed in this chapter, obtain the energy levels (spectrum) of
the system.

4. If the wave function for a harmonic oscillator at t = 0 is given
by

ψ(x, 0) = exp
[
−mω

2~
(x− a)2

]
, (17.145)

then show that at a subsequent time T

ψ(x, T ) = exp

[
− iωT

2
− mω

2~

{
x2 − 2axe−iωT +

1

2
a2
(
1 + e−2iωT

)}]
.

(17.146)

         
02:38.



Index

action, 2
adiabatic change, 374

algebra
Lie, 163, 397

alpha decay, 314

anti-commutator, 166
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radial solution, 216
Schrödinger

time independent, 82
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Breit-Wigner, 367
connection, 287, 294
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identical particles, 389
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inadequacies of, 61
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operator, 25
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raising, 113, 179
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perturbation
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Einstein’s, 63, 474
reciprocity, 446
uncertainty, 73

relative motion, 233
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