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Preface

Over the years, I have taught a two semester graduate course as well
as a similar two semester undergraduate course on quantum mechan-
ics at the University of Rochester. The present book follows that
material almost word-for-word. I have not attempted to polish the
writing, and these lecture notes, therefore, reflect the informality of
the class room. In fact, I even considered presenting the material in
the original format, but lectures have a way of ending and starting in
the middle of a topic, which is neither very appropriate nor expected
for a book. Nonetheless, the subject is presented exactly in the order
it was taught in class.

Some of the material is repeated in places, but this was deemed
important for clarifying the lectures. The book is self-contained, in
the sense that most of the steps in the development of the subject
are derived in detail, and integrals are either evaluated or listed when
needed. I believe that a motivated student can work through the
notes independently and without difficulty. Throughout the book, I
have followed the convention of representing three dimensional vec-
tors by bold-faced symbols.

In preparing lectures for the course, I relied, at least partially,
on the material contained in the following texts:

1. A. Das and A. C. Melissinos, “Quantum Mechanics: A Modern
Introduction”, Gordon and Breach, New York (1986).

2. L. I. Schiff, “Quantum Mechanics”, McGraw-Hill, New York
(1968).

3. R. Shankar, “Principles of Quantum Mechanics”, Plenum, New
York (1980).

Several of my colleagues at Rochester and at other universities,
as well as many of my students, have influenced the development of



vi

these lectures. Most important were, of course, the excellent ques-
tions raised by students in class and during private discussions. I
sincerely appreciate everyone’s input.

The lecture notes were originally typed in KTEX by Judy Mack,
who deserves a lot of credit for her professionalism and sense of per-
fection. The present format of the book in IXTEX is largely due to the
meticulous work of Dr. Alex Constandache, who succeeded in giving
it a more “user friendly” appearance. Most of the figures were drawn
using PSTricks, while a few were done using Gnuplot.

It is also a pleasure to thank the editors of the TRiPS series, as
well as the publisher, for being so accommodating to all my requests
in connection with the book.

Finally, I thank the members of my family, and in particular my
younger sister Jhilli, for patient support and understanding during
the completion of this work in Orissa, India.

Ashok Das
Rochester

Preface to the second edition

The modifications in this second edition of the book arose mainly
from the requests by various readers. Several typos in the earlier
version have been fixed and the presentation made clearer at some
places. The figures now carry captions with references to them in the
text. In addition to the numerous exercises that were already present
in the text, I have now included a few selected problems at the end
of every chapter in the present edition. Schrédinger equation with a
periodic potential and Bloch functions are discussed in the chapter on
symmetries (chapter 6) as an example of finite translation symmetry
in quantum mechanics.

Ashok Das
Rochester



CHAPTER 1

Review of classical mechanics

In this lecture, let us review some of the essential features of classical
mechanics which we will use in the study of quantum mechanics.

1.1 Newton’s equation

Let us consider a particle of mass m, moving in 1-dimension, which
is subjected to a force F. Then, from Newton’s law, we know that

ma = F, (1.1)

where a denotes the acceleration of the particle. This is known as
Newton’s equation. If z denotes the coordinate of the particle, then,
defining its potential energy as (we have chosen the reference point
to be the origin for simplicity)

V(z)=— /dx/ F(2), (1.2)
0

we can write Newton’s equation, (1.1), also as

d?x dVv
This is a second order differential equation and can be solved uniquely
provided we are given two initial conditions, namely, the position of
the particle, g at ¢ = 0 as well as its initial velocity zg. In such a

case, we can determine the trajectory of the particle, x(t), uniquely.

1.2 Lagrangian approach

Another way of looking at the same problem is to define a scalar
(scalar under Lorentz transformations) called the Lagrangian as

L=T-V =L(x,1), (1.4)
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where T and V represent, respectively, the kinetic and the potential
energies of the particle. The Lagrangian may, in principle, also have
explicit time dependence. However, we will not consider such systems
in our discussions.

The integral of the Lagrangian along a trajectory defines an
action associated with the Lagrangian for that particular trajectory,
namely,

ty

Slx] = /dtL(a:,j:). (1.5)

t;

The square bracket is written to emphasize the fact that the action,
S, is a function of a function. In mathematical language S is said to
be a functional of x. As one can easily see, the value of the action
depends on the path or the trajectory (see Fig. 1.1) along which the
integration is carried out.

Iy

Figure 1.1: A trajectory between the initial time ¢; and the final time
ts.

1.3 Principle of least action

The principle of least action says that the actual trajectory, which
the particle follows, is such that the action associated with the La-
grangian along that trajectory is a minimum. In fact, what is strictly
true is that the action is an extremum along the actual trajectory.
In most familiar cases, however, it happens to be the minimum and
hence the name. But there are situations where it can be a maximum
as well.



1.3 PRINCIPLE OF LEAST ACTION 3

Consequences. Suppose we have a function f(z) which has a mini-
mum (extremum) at g as shown in Fig. 1.2. This clearly implies that
the slope of the function at xg must be zero. What this means is that

I
Zo x

Figure 1.2: A function f(z) with a minimum at z.

if we displace the function infinitesimally away from its minimum, we
will obtain, from a Taylor expansion of the function,

Flao+m) = Flao) +n L) +006P),

or, 0f=f(xo+mn)— flzg) =0, (1.6)

to the lowest order in the displacement. Namely, the function is
stationary at its minimum against infinitesimal displacements.

Let us now apply the same ideas to the case of the action. Let
zq(t) be the actual trajectory of the particle, also known as the clas-
sical trajectory, which minimizes the action. Let 7(t) represent an
infinitesimal displacement from the classical trajectory shown in Fig.
1.3. However, since in this case the end points of the trajectory are
held fixed, the displacement has to satisfy the constraints

n(ti) =n(ty) = 0. (1.7)
The infinitesimal change in the action is given by
68 = Slre + 1) — S[zal
ty
= [ dt [L(za+n,da+n) — L (za,2a)]
t;

oL

.OL
+7]%

+ O(nz)]

Tcl Tcl
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Figure 1.3: An infinitesimal change from the classical trajectory .

t

f
B L d [ OL d L )
—/d’f {W*a (%) —@%]xdwm )

%
xcl)

_(,9L
— "o

The first term, on the right hand side of (1.8) vanishes because of
(1.7), namely,

ty
tr OL d oL )
1 tl C.

n(ti) =n(ty) = 0.

Furthermore, we recognize from the previous example (see (1.6)) that
the action functional must be stationary at its minimum. Thus, to
the lowest order, we obtain

iy
oL d oL
t; ¢

Since 7(t) is an arbitrary function, the only way (1.9) can be satisfied

is if
oL d oL
Ooxr dt oz

In other words, the actual trajectory of the particle, x., must satisfy

=0. (1.10)

Lcl

oL d oL

o ST (1.11)
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This is known as the Euler-Lagrange equation of motion for the the-
ory described by the action (1.5) and z is a solution of this equation.
So far, we have talked about particles in one dimension. For

a particle in n dimensions, with coordinates z*, i = 1,2,...,n, the
Euler-Lagrange equations can be shown to have the form
oL d JL
= = (1.12)
oxrt dt ozt

Connection with Newtonian mechanics. Let us consider the familiar
example of the 1-dimensional particle in motion. Then, we have

1
T= imx'Q, V =V(x),
so that
1,
L=T-V =—-mi®—V(x), (1.13)

2
which leads to

oL OV OL

e e it (1.14)

The Euler-Lagrange (E-L) equation, (1.11), in this case, has the form,

ov d .
d?x oV
or, m@ = —% (115)

Thus, we see that the Euler-Lagrange equation of motion actually
gives rise to Newton’s equation and is equivalent to it.

In discussions so far, we have assumed that L =T — V and that
the potential energy depends only on the position and not on the
velocity. However, there are physical situations where the force does
depend on the velocity. A familiar example is the force experienced
by a charged particle moving in a magnetic field,

F=2vxB, (1.16)
C

where g denotes the charge of the particle and c is the speed of light in
vacuum. In such cases, to obtain the correct equations of motion, one
has to introduce a velocity dependent generalized potential energy.
For example, for the case of a charged particle with electromagnetic
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interactions, we have (we are assuming here that the particle experi-
ences both an electric as well as a magnetic force)

1
L:T—U:§mv-v—q<1>—|—gv-A, (1.17)
c

where @ represents the scalar potential while A is the vector potential
and they are related to the electric and the magnetic fields through

10A
c Ot’
B=VxA. (1.18)

E=-Vo -

Exercise. Work out the equation of motion for the particle, starting from the
Lagrangian (1.17), namely, derive the Euler-Lagrange equations for such a particle.

It is clear, however, that the generalized potential energy U in
(1.17) can not be interpreted as the potential energy of the particle,
since the magnetic force does not do any work, being perpendicular
to the velocity. Therefore, in general situations, it is improper to
divide the Lagrangian into kinetic and potential energy terms. It is
rather assumed that the Lagrangian, as a single entity, is a function
of the position and the velocity, L = L(z, ).

Advantages of the Lagrangian approach. We may ask at this point
whether one gains anything by following this approach since, in the
end, it seems to lead to the same Newton’s equations of motion. The
simple answer to this is that there are several nice features in the
Lagrangian approach. First of all, the Lagrangian is a scalar and is,
therefore, much easier to handle, in general, than vectors and tensors.

Second, the Lagrangian gives rise to equations of motion which
have the same form independent of the coordinate system being used.
We can easily convince ourselves of this by recognizing that nowhere,
in the derivation of the equations from the principle of least action,
did we utilize the fact that the coordinates are Cartesian. Thus, in
terms of generalized coordinates ¢* and ¢*,i = 1,2, ...n, we can write
L = L(¢',4") and the Euler-Lagrange equations take the forms

d /0L oL

dt \ 9¢* oq*
Here ¢' can represent the coordinates of a particle in the Cartesian,
or the polar or in any other coordinate system. This has to be con-

trasted with Newton’s equations where the equations take very dif-
ferent forms in different coordinates.
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We can try to bring these equations, (1.19), as close to New-
ton’s equations as is possible by defining the generalized conjugate
momentum

OL
ey 1.20
Pi = 5 (1.20)
and the generalized force
oL
Fy=—. 1.21
= (1.21)
Then, equation (1.19) becomes
dp;
—F,. 1.22
% (1.22)

Although the Euler-Lagrange equations take the same form in any
coordinate system, we should always remember that, in general, p;
does not represent the momentum of the particle, and neither is F;
the force acting on it. In fact, if ¢° (for a fixed i) corresponds to
an angular variable 0, then the corresponding p; would represent an
angular momentum (component) of the particle and, similarly, F;
would denote the torque acting on it.

In the Lagrangian approach it is also easy to recognize quantities
that are conserved. For example, if the Lagrangian is independent of a
particular coordinate, then we say that the corresponding coordinate
is a cyclic variable and the momentum conjugate to such a variable
is conserved. This can be seen as follows. If ¢* (for a fixed ) is cyclic,
then, 2L = 0 and from the Euler-Lagrange equation, (1.19), we have

I 6(11
(for the particular 7)
d oL . dpi oL .

e 1.23
dto¢* dt  0¢* (1.23)
Hence p; (for the particular ¢) is conserved. In Newtonian mechanics,
if a Cartesian coordinate is cyclic the corresponding momentum is
also conserved. However, the situation in the case of the Lagrangian
is more general.

» Example. Let us now illustrate these with an example. Consider a particle
moving in a plane (2 dimensions) and subjected to a force.

L:%m@ﬂﬂﬂ—vwwy (1.24)

We also assume that the functional form of the potential is such that it depends
only on the length of the vector. Thus,

V(z,y) = V(& +y?). (1.25)
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To determine the equations of motion, (1.19), in Cartesian coordinates, we need

8_L =mz 8_L = my

oz " oy Y

oL ov oL oV

Ze_ 27 — = 1.26

Ox ox’ Oy Ay (1.26)
The Euler-Lagrange equations, in this case, take the forms

d (0L oL d’z ov

i (%) % T M@ T on (1.27)

d (0L OL d?y 1%

— =) == — = ——. 1.2

a (ay) oy~ "ae T oy (1.28)

We recognize these to be the Newton’s equations in the Cartesian coordinates and,
in this formulation, conserved quantities of the system are not that obvious. Let
us next derive the equations for the same system in polar coordinates within the
Lagrangian formalism. In polar coordinates, the form of the Lagrangian, (1.24),
can be determined by noting that the Cartesian and the polar coordinates are
related by

x=rcosd = & =1rcosf —rfsinb,

y=rsind = §=7sind+rfcosh, (1.29)
so that
2% o2 =12,

i +9° = #*(cos® 0 + sin® 0) 4 r26%(cos” O + sin® §)
=i +r%0% (1.30)
Therefore, the Lagrangian (1.24) takes the form
1
L= tm(@ 0% - Ve + o)
_ %m(f’2 207 — V(). (1.31)

It follows now from (1.31) that

oL 9V ”

o = ar T

oL

a5 =0 (1.32)

Clearly, 0 is a cyclic coordinate and, therefore, the corresponding conjugate
momentum must be conserved. The conjugate momenta have the forms

p,,q:?:w”;7

_9L _

== =m0, (1.33)
a0

Po
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and we note that pg represents the angular momentum of the particle. In this
case, the equations of motion, (1.19), take the forms

d 0L OL dpe d 2

=2 -/ = 0) = 1.34
dos 00 @ —amro=0 (1.34)

which shows that angular momentum is conserved and the dynamical equation

follows from

doL _oL  dpr_ . e OV
at or _ or ag e aor

(1.35)

Here, the first term on the right hand side represents the centrifugal force while
the second term gives a dynamical radial force. <

Exercise. Transform Newton’s equations, (1.27)-(1.28), from Cartesian coordi-
nates to polar coordinates.

1.4 Hamiltonian formalism

The Lagrangian is a function of the coordinates and the velocities,
which are considered to be independent variables

L= L(¢", ¢"). (1.36)
The conjugate momenta are defined in (1.20) as

oL

and the dynamical equations are given by the Euler-Lagrange equa-
tions (1.19),

d oL dpi . oL
W0 = @ = o (1.38)

Given these, we can define another fundamental quantity asso-
ciated with the system, called the Hamiltonian, which is a function
of the coordinates and the momenta as

H=H(qp) =Y pd —L(¢", ) (1.39)

Here ¢* and p; are treated as independent variables and ¢%’s become
derived functions of ¢’s and p’s. Such a transformation is known as
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a Legendre transformation . It follows from (1.39) that

8H oL c‘?q
] + i
ap; Zp 81)3 Z dgi dp;

y g a¢ .
g Zp o, > p op; (1.40)
OH ~—~ g OL 93
g sz B an Z 84 Ogi
B ¢’ q* oL
sz 8(]9 aq] sz 8(]9 = 8(]9 . (1'41)

Using the Euler-Lagrange equations (see (1.19)), (1.41) becomes

OH OL )

o7~ gl

Thus, from (1.40) and (1.42), we see that the equations of mo-
tion, in the Hamiltonian formalism, take the forms

oH OH

op dq*

- —pi. (1.43)

which are known as the Hamiltonian equations of motion. It is clear
that the n second order Euler-Lagrange equations in the Lagrangian
formalism have become 2n first order equations in the Hamiltonian
formalism. Given the initial values ¢*(0) and p;(0), one can determine
the solutions of the Hamiltonian equations uniquely.

Interpretation of the Hamiltonian. In the absence of nonconservative
forces, the Lagrangian can be written in Cartesian coordinates, in the
form

L=T-V= %m(:ti)Q — V(). (1.44)

Furthermore, the conjugate momenta coincide with the actual mo-
menta in this coordinate system, namely,

oL
ot?

pi = = ma'. (1.45)

(The apparent mismatch of the indices is due to the fact that we are
ignoring the metric, which is the trivial Kronecker delta in Euclidean
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space.) In this case, therefore, we see that
. 1 . .
H= Zpig'nl - L= Z <§m(x2)2 + V(a:l)>

- Z <i + V(ﬂ)) =T+V=E. (1.46)

Thus, the Hamiltonian corresponds to the total energy of the
system in the absence of nonconservative forces. Even though we
showed it in the Cartesian coordinates, this result holds in general.
For example, let us assume that, in a general coordinate system, the
kinetic energy has the form

1 o
T'=3 ZTij(q)q’qJ, T;j = Tji. (1.47)
Z?]

Then, from the definition of the Lagrangian for such a system (with-
out any nonconservative forces)

L=T V() =5 S Ty@d'd ~V(a) (1.48)
ij
it follows that
pi = g—q.Li = EjjTj i, (1.49)
so that

> pid = Tydd’ =T, (1.50)
¢ 4,3

and we obtain

H=Y pd-L=2T—(T-V)=T+V. (1.51)

This shows that the Hamiltonian for such a system can be identified
with the total energy of the system.

Advantages of the Hamiltonian formalism. There are several advan-
tages in using the Hamiltonian description of a dynamical system.
First, the Hamiltonian equations of motion are first order equations
and are, therefore, sometimes easier to handle.
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Furthermore, the equations are symmetric in ¢* and p;. This is of
considerable help when cyclic coordinates are present. We know from
the Lagrangian description that when a cyclic coordinate is present,
the corresponding conjugate momentum is a constant of motion. This
continues to hold in the Hamiltonian formalism as well, since (if the
Lagrangian is independent of a coordinate, the Hamiltonian also is)

oH
g’

- pi=0 (152

However, the difference is that even in the presence of a cyclic coor-
dinate ¢', the Lagrangian is a function of the corresponding velocity
¢*. And therefore, we still have to solve n-equations. On the other
hand, in the Hamiltonian formalism if ¢' is cyclic, p; is a constant
and, therefore,

H=H (qu' . 7qi_17qi+l . 'qn7p17 < Pi—1, 0 Pit 1, - 'pn) .
(1.53)

Consequently, the number of equations we have to solve is reduced.
Furthermore, it is easier to recognize other conserved quantities in
the Hamiltonian formalism.

» Example. Let us consider an arbitrary phase space variable w = w(q, p) which
does not depend on time explicitly. Then, its time evolution can be determined
simply as

dw ow ;  Ow .
dat Z (W’q * 8_pipl>

Ly (2won oo on
- - oq' Op;  Op; O¢°

={w,H}, (1.54)

where we have used Hamilton’s equations and the curly bracket denotes the Pois-
son bracket of two variables. Explicitly, the Poisson bracket of two phase space
variables a(q,p) and b(q,p) is defined to be

da 0b da 0Ob
Clearly,
dw .

Namely, a quantity is conserved if it has a vanishing Poisson bracket with the
Hamiltonian. Let us note that, since {H, H} = 0, this shows trivially that the
Hamiltonian or the total energy of the system is a constant in time. <
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From the definition of the Poisson bracket between any two vari-
ables on the phase space in (1.55), it is easy to check that they satisfy
the following relations

{n,p} =—A{p.n},
{n,c} =0, where cis a constant,

{m +m2,0} = {m,p} +{n2, 0},
{mmne. p} = m {2, p} + {m1, p} m2. (1.57)

Furthermore, it follows from (1.55) that the Poisson bracket between
the coordinates and the momenta satisfy the simple relations

{d'.¢’} = {pi,p;} =0,
{d'pi} =6 =—{psd'}. (1.58)

These are known as the canonical Poisson bracket relations and given
the canonical Poisson bracket relations, the Poisson bracket between
any two phase space variables can be trivially calculated using the
identities given in (1.57).

So far, we have talked about the dynamics of particles. Parti-
cles, besides having a definite mass, are characterized by a definite
momentum and energy (p, F). Namely, particles travel in well de-
fined trajectories. When particles collide, they scatter in such a way
as to conserve the total momentum and the total energy of the sys-
tem. There is, of course, another kind of classical motion that we
are aware of, namely, the wave motion. It is the propagation of a
disturbance. Familiar examples of wave motion consist of ripples on
the surface of water, sound waves, electromagnetic waves and so on.
All such motions are governed by one equation, namely, the wave
equation, which has the generic form

62—1’0 — i82—¢ =0, in one dimension
ox2 w2 o2 7 7
1 2
V2¢ — ﬁ—%;;/} =0, in higher dimensions. (1.59)

Here 1 represents the disturbance, which can be the displacement
(height) of water from its normal surface in the case of ripples, or the
electric and the magnetic fields in the case of light waves. Further-
more, v represents the speed of propagation of the waves. Clearly, a
solution to the wave equation (1.59) is a plane wave of the form (in
one dimension)

Y(x,t) = Ae”Witike, (1.60)
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with
2
w
K== 1.61
e (1.61)
where
2
k = wave number = 7777
w = angular frequency = 27v. (1.62)

It follows from (1.61) and (1.62) that
AV =w. (1.63)

Thus, with each wave is also associated a pair of quantities (A, v)
or (k,w). The constant A in (1.60) is called the amplitude of the wave
and I = [¢|?> = | A|? measures the intensity of the wave. As we can see
from the form of the solution in (1.60), contrary to particle motion
which is localized, the wave phenomenon is highly nonlocal in nature,
i.e., at any given time the disturbance is spread over all space.

Thus, we see that most classical or macroscopic phenomena
can be explained by either of these two descriptions of the system.
Whereas planetary motion can be explained by particle mechanics,
interference and diffraction of light are understood as phenomena in
wave mechanics.

Around the turn of the twentieth century, however, this clear di-
vision of particle and wave mechanics ran into conflicts when applied
to microscopic systems. Phenomena, such as blackbody radiation
and photoelectric effect, needed the interpretation of electromagnetic
radiation as consisting of particles called photons with quantized en-
ergy and momentum. All this led to a re-examination of the prin-
ciples of classical mechanics, when applied to microscopic systems.
But before talking about these in detail, let us get acquainted with
the mathematical tools that we need.

1.5 Selected problems

1. Consider the Lagrangian for a particle of mass m interacting
with static electromagnetic fields (not explicitly dependent on
time) given by (see also (1.17))

1
L= sms* - qo+ %A, (1.64)
(&
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where x represents the three dimensional coordinate vector and
¢, A denote the scalar and the vector potentials respectively,
depending only on the coordinates (and not on velocities) and
q represents the charge carried by the particle. In the static
case (when ¢ = ¢(x),A = A(x)), the usual definitions (see

(1.18))

B=(VxA), (1.65)
reduce to

E=-Vo,

B=(VxA). (1.66)

(a) Show that the Euler-Lagrange equations following from
the Lagrangian (1.64) give rise to Newton’s equations for
a particle with charge ¢ interacting with an electric as well
as a magnetic field (c is the speed of light).

(b) What is the Hamiltonian for this system?

2. If i, p represent two arbitrary phase space variables depending
on (z*,p;), show explicitly from the definition of the Poisson
bracket in (1.55) that the following Poisson bracket relations in
(1.57) hold,

{777/)} = {p777}7
{m +mn2, p} = {m, p} + {m2, p},
{mna, p} = m {2, p} + {m, p} 2. (1.67)

3. Prove the Jacobi identity for Poisson brackets, namely, if n, p
and ¢ denote three classical dynamical variables depending on
the phase space variables (2%, p;), show explicitly from the def-
inition in (1.55) that

. Ap, 3y +{pAC 0} +{¢ {n, p}} =0. (1.68)

4. If a is a complex, classical dynamical variable (function of z, p;)
and a* is its complex conjugate, and if

{a,a"} =1, (1.69)
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calculate
{a,aa*}, {a*,aa*}, {a,a*a}, {a*,a"a}, (1.70)

using (1.69) as well as the properties of Poisson brackets in
(1.67) (or (1.57)).

. Calculate the Poisson brackets

{jxyjy}v {jyij}v {]m]x}7 (1'71)

using the basic canonical Poisson bracket relations (1.58) (as
well as properties of Poisson brackets). Here the classical an-
gular momentum variables are defined as

Jx = YPz — 2Py, Jy = ZPx — TPz, Jz = TPy — YPx- (1'72)



CHAPTER 2

Review of essential mathematics

In the following few lectures, we will recapitulate some of the math-
ematical concepts that we will need for a detailed understanding of
quantum mechanics.

2.1 Linear vector spaces

Definition. A set of quantities {V;}, with a definite rule for addition
and multiplication by scalars, is called a set of vectors if they satisfy

~

. Vi+V; =V; +V;, (commutative law of addition),

2. Vi+ (Vi + Vi) = (Vi +V;) + Vi, (associative law of addition),
3. a(V; +Vj) = aV; + oV,

4. (a+ B)V; = aV; + BV;, (distributive law),

5. (aB)V; = a(BV;), (associative law of multiplication).

We are yet to enumerate the rules for addition and multiplication.
But, let us go ahead and define a vector space.

Definition. If V represents the set of vectors {V;} (namely, V; € V)
such that

1. aV; + BV; € V, where o, 8 are constants,

2. there exists a unique null vector ) € V such that

Vit p=Vi=p+Vi,

3. corresponding to every vector V; € V, there exists a unique
inverse (—V;) € V such that

‘/2+(_‘/2) :¢7

16:34:56.



18 2 REVIEW OF ESSENTIAL MATHEMATICS

4. 0-Vi=0,
then, V is called a linear vector space.

The set over which the parameters «, 8 are defined is called the field,
F(a), over which the linear vector space, V, is defined. (Normally,
one considers «, 8 to belong to real or complex numbers, although
other possibilities are allowed.) For example, the familiar vectors of
3-dimensional Euclidean space represent a real, linear vector space.
In that case, addition is simply defined by the familiar vector addition
and multiplication by a real number corresponds to scaling the vector
by that number as shown in Fig. 2.1. The null vector, in this case,

Vi /A AA

Figure 2.1: Addition of two vectors and multiplication of a vector by
a scalar in 3-dimensional Euclidean space.

is a vector of zero magnitude and the inverse of a given vector is the
vector with the arrow (direction) reversed.

Definition. A set of vectors (Vi,...,Vy,) in a vector space V is said to
be linearly independent if the only solution to the relation

Zn:aiVi = 0, (2.1)
i=1

1s that all the oy ’s vanish, namely,
a; =0, 1=1,2,...,n. (2.2)

Definition. A vector space V is said to be n-dimensional and is denoted
by V™, if the mazimum number of linearly independent vectors that
can be found in that space is n.

16:34:56.
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Theorem. An arbitrary nontrivial vector V in V" can be expressed
uniquely as a linear combination of n linearly independent vectors in
vn.

Proof. Let (Vi,...,V,) be a set of n linearly independent vectors in
V™. Then, a relation of the form
aV + > aiV; =0, (2.3)
i=1

1. cannot imply o = o = 0 for all 4, since then that would imply
that there are n + 1 linearly independent vectors which is im-
possible because we are dealing with an n-dimensional space,
V™. Therefore, some of the parameters have to be nonzero.

2. cannot imply o = 0 because then, with some of the other pa-
rameters not vanishing,

> Vi =0, (2.4)
=1

would imply that not all the V;’s are linearly independent, which
is not true by assumption.

Therefore, at the most, some of the o) would be zero. This
implies that we can write (2.3) also as

V=>"aV, (2.5)
i=1
where

0= -2, (2.6)

This shows that we can express an arbitrary vector in V" as a linear
combination of n linearly independent vectors in that space.

To prove the uniqueness of this expression, let us assume that
there exists another expansion of the same vector in terms of the
same linearly independent vectors as

V=S )
=1

16:34:56.
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Then, subtracting the two expressions in (2.5) and (2.7), we obtain
p=> (ai—B)Vi. (2.8)
i=1

However, since V;’s are linearly independent, using (2.1) and (2.2),
we obtain

a;— B =0, or, o =pf. (2.9)

This proves that any arbitrary nontrivial vector in V™ can be ex-
pressed uniquely as a linear combination of n linearly independent
vectors. -

Definition. Any set of n linearly independent vectors, (Vq,...,V,), is
said to form a basis in V™. The coefficients of expansion of any
vector V' in a given basis are said to be the components of V' in that
basis.

For example, in Cartesian coordinates, a 3-dimensional vector is
represented as © = (z1,x2,x3), where 1, z9, 3 are the components
of the vector in the Cartesian basis. It is worth noting here that once
we have a basis, the rules for addition of vectors and multiplication
by a scalar become simple. For example, suppose that in a basis,
{Vi}, we can expand two vectors V, V as

V=>"aV;, V=) BV (2.10)
i=1 i=1
Then, it follows that

VAV =3 (ai+B)Vi, V=) aVi, aj=cai (211)

i=1 i=1

Namely, adding two vectors leads to a new vector whose components
are the arithmetic sum of the components of the two vectors in the
same basis. Similarly, multiplying a given vector by a number yields
a new vector whose components correspond to the product of the
components of the original vector by the given number.

2.2 Inner product

Definition. An inner product is a procedure for assigning a number to
two vectors in a vector space and is commonly denoted by (V;, Vj). It
satisfies the following properties:

16:34:56.
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1. (V;,V;) >0, (0 only if V; =),
2. (Vi,Vy) = (V;, Vi),
8. (Vi,aVj + BVi) = a(V;, Vj) + B (Vi, V).
It follows from the properties (2) and (3) above that

(@Vj + BVi, Vi) = (Vi aVy + BV)”
=a" (V;, Vi)" + 8" (Vi, Vi)*
=a" (V;,Vi) + 8" (Vi, Vi) - (2.12)
Definition. A vector space, which admits an inner product, is called an

inner product space.

Definition. The norm of a vector V', in an inner product space, is de-
fined to be

V| = (V,V)2. (2.13)

A vector is said to be a unit vector or normalized, if its norm is unity.

Definition. Two vectors are said to be orthogonal if their inner product
vanishes. Namely, if

(Vi, Vj) =0, (2.14)

then, V; and V; are said to be orthogonal.

Definition. A set of vectors (e1,ea,...,e,) in V" is said to be orthonor-
mal if
(eivej) :5ZJ7 Za] = 1727"' y 1. (215)

Such a set consists of n linearly independent vectors and defines an
orthonormal basis in V™.

Let {e;} denote an orthonormal basis in V™. Then, two arbitrary
vectors V and W can be expanded in this basis as

V = Zn:’l)iei, W = Zn:wjej. (216)
i=1 j=1

16:34:56.



22 2 REVIEW OF ESSENTIAL MATHEMATICS

In this case, it follows from (2.2), (2.12) and (2.15) that

n

W, V) = <Zwi€i, Zvjej) = Z (wies, vie;)
i=1 Jj=1

h,j=1

n
=) wivese5)

1,j=1
n n

= E wfvjéij: E wfvi. (217)
1,j=1 i=1

In other words, in an orthonormal basis, the inner product of two
vectors is completely determined, as in (2.17), by the components of
the two vectors in that basis.

Let us note here parenthetically that the above discussion may
give the naive impression that it is always possible to define an in-
ner product. The catch, however, lies in the fact that to define an
orthonormal basis, we must know how to define the norm and, there-
fore, the inner product.

2.3 Dirac notation

We recall (see (2.5) and (2.15)) that an arbitrary vector in V", with
an inner product, can be expressed uniquely in terms of an orthonor-
mal basis {e;} as

=1

A vector V can, then, be represented simply by its components in this
basis as V' = (v1,v9,v3,...,v,) - an ordered n-tuple. The familiar
example in 3-dimensions is that of a vector written as = (z1, x2, x3),
where it is understood that the basis is Cartesian. We can collect the
n-tuple into a column matrix and then the correspondence, in a given
basis, becomes

v
V2
v=| 1. (2.19)

Un

16:34:56.
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Note here that the basis, in this case, is chosen such that

0
0

ei= || 9.20
. (2.20)

0
0

where the non-zero entry is in the i-th row and

n
V= E vie;,
i=1

as discussed in (2.18).

With such a representation of a vector, it is clear now that the
addition of vectors and multiplication of a vector by a scalar obey
matrix formulae. For example,

U1 w1 V1 + w1 21
Vg w2 V2 + W2 Z9
Un Wn Un + Wnp Zn
Qv
(040 ,
av=| " |=v. (2.21)
avy,

This should be compared with (2.11). It is worth emphasizing here
that matrices satisfy all the properties of vectors and can, therefore,
provide a representation for them.

A column representation of a vector is called a ket vector and is
denoted by the correspondence

U1
V!
ket V=)= | (2.22)

Un

However, given a column vector, we can also take its Hermitian con-
jugate to obtain a row vector as

16:34:56.
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1 T 1 * T
=1 . = (vf 5 i ... wh). (2.23)
Up, Un,

Obviously, this can also provide a representation for V. It is called a
bra vector and is denoted by

bra V = (V| = |V)! = (ket V)1
= (v} w3 vy ... vh). (2.24)

This operation is also known as taking the adjoint. Thus, cor-
responding to every ket vector, there exists a unique bra vector and
vice versa. Let us now form the product of a bra vector with a ket
vector, using the matrix laws of multiplication

vy
V2
WV) = (wf wi ... wp)

Un,
n
= WiV + wata + -+ + WUy = E w;v;
=1

= (W, V). (2.25)

which we recognize from (2.17) to be the inner product of W with V.
Since we can express (see (2.18))

n
V= E Vi€,
i=1

where the components v; are numbers and e;’s are the basis vectors,
we can also define basis ket vectors as (the non-zero element is in the
i-th row)

le:) = = [4), (2.26)

16:34:56.
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and the basis bra vectors as
(e =le)t=(0 0 ... 1 0 0 ...0) =i (2.27)

With these, we can write

VY= ule),  (VI=)_viel, (2.28)
i=1 1=1

which leads to

n

(W)=Y (i) (vle;))

1,j=1

n
=) wivileile;)

ij=1

n
S ur (2.29)
i=1
where we have used (2.25) in the last step. This, then, implies that

(eilej) = dij, (2.30)

which is the orthonormality relation for the basis vectors in the Dirac
notation.
Let us note next that if

V)= wjley),
j=1

then, using (2.30), we obtain
<6Z‘V> = Z’Uj <6i‘€j> = Zvjéij = U;. (231)
j=1 j=1

Namely, the components of a ket vector, in a given orthonormal basis,
can be obtained by taking the inner product of the vector with the
appropriate bra basis vectors.

2.4 Linear operators

An operator is a map of a vector into another vector. Thus, if |V)
and |V') are two ket vectors and if 2 is a map which takes |V) to
|[V'), then, we write

V) -5 V), or, QV)=|QV)=|V). (2.32)

16:34:56.
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Alternatively, one says that the operator ) acting on the vector |V)
transforms it to the vector |V'). Operators can also act on bra vectors
to produce other bra vectors. Thus, for example, we can have

(ViQ = (v"|. (2.33)

However, an operator cannot act on a ket vector to give a bra vector
and wice versa.
Linear operators are operators, which obey the following rules

Qa|V;) = a(QV;)), (ais a scalar), (2.34a)
QalVi) + BIVi)) = a(QVi)) + BQUVS))- (2.34b)

Similarly, acting on the bra vectors, linear operators satisfy
((Vile)Q2 = ((Vi|Q2)a, (2.35a)
((Vilee +(V;18)92 = (Vi) + ((V}]2) 3. (2.35h)

The simplest linear operator is the identity operator, 1, which leaves
all vectors invariant. Namely,

1V) =1V), (VI1 = (V.

Clearly, since our ket and bra vectors are column and row matri-
ces respectively, a matrix representation of operators would involve
square matrices with n? elements, in general. A knowledge of the
transformation properties of a given set of basis vectors, under the
action of an operator, determines completely the matrix elements of
the operator in that basis. For example, if

Q’e]> = ‘€;>, j = 1727"' > T, (236)
then,
(eile)) = (eilQej) = Qij, 4,5 =1,2,--- ,n. (2.37)

Therefore, if all the |e)’s are known, this implies that all the €;;’s
are also known, which are called the matrix elements of the operator
(1 in the particular basis. Once the );;’s are known, the transforma-
tion property of any arbitrary vector can be easily worked out. For
example, if

VY= uled, Q) =V =3 vlfen, (2.38)
i=1 i=1

16:34:56.
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then, the transformed components (i.e., the components of the trans-
formed vector in the given basis) can be obtained as

= (ei|V') = (&lQV) = 62\92%1%

_ZUJ (e:Qe;) Z ij

j=1

When two or more operators act on a vector, the order in which
they act is important. For example, Q'Q|V) stands for the action of
Q on |V) followed by the action of the operator Q. In general,

V) £ Q| V). (2.40)

This is clearly reflected in the fact that matrix multiplication is not
commutative (as we have seen, operators can be represented by square
matrices). The object

00— = [, 9, (2.41)

is called the commutator of €' with Q and is, in general, nonzero.
When it vanishes, the operators are said to commute.

We can also define the inverse Q! of an operator 2 such that
the action of 2 on any arbitrary vector followed by the inverse (or
vice versa) leaves the vector unchanged. Namely,

Q7 lQV) = |V) = Q7 V), (2.42)
which implies that
Q710 =007 =1 = identity operator. (2.43)

> Example (ldentity operator). We have encountered the identity operator ear-
lier. Here, let us analyze some of its properties. We know that we can write (see

(2.31))

= Zvi|€i>7
with

Vi = <€1|V>

16:34:56.
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It follows now that

n

n
=2 _viles) = 3 ledw
i=1

i=1

_Z|el Mes| V) = <Z|el &I) V)

=1|V), (2.44)

where we have identified

n
Z les)(ei] = 1 = identity operator. (2.45)
i=1

Relation (2.45) is also known as the completeness relation for the basis vectors
and corresponds to the outer product of the basis vectors.
The matrix elements of the identity operator can now be easily obtained as

Lk = (ej]Ller) = (ej] <Z |e¢><e¢|> lex)

i=1

= lesles)(eilex) =Y 6ijoin
i=1 i=1

5. (2.46)

Namely, the identity operator, as a square matrix, has only unit diagonal elements,
which is what we expect intuitively. <

» Example (Projection operator). Let us note, from (2.45) that we can write

1=> le)es| =Y P, (2.47)
i=1 i=1
where we have defined

P; = |ei){e;| = projection operator onto the i-th state. (2.48)

As we have seen earlier, for an arbitrary vector |V'), we can write the expansion

V)= ujle;).
j=1
It follows from this that

PiV) = v;Piles) =Y vjlei)(eiles)
j=1 j=1

= Zvﬂei)éij = U¢|€i>. (2.49)
j=1

Thus, acting on an arbitrary vector |V), the projection operator P; projects out
the i-th component of the vector, which is why it is called the projection operator.

16:34:56.
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Furthermore, note that
PiPj = |ei){eile;)(e;]
= lei)di; (e
= ijle;)(ej| = 0i; ;. (2.50)

Physically, what this means is that since P; projects out the j-th component of a
vector, action of P; following P; would be zero unless both i and j coincide and
when ¢ = j, P; acts like the identity operator. Symbolically, one can write

P*=P (2.51)

Operators with such properties are called idempotent operators. <

2.5 Adjoint of an operator

If an operator  acting on a ket |V) gives a new ket |V’), then, the
adjoint of €2 is defined to be that operator which transforms the bra
(V] to (V'|. Since, by definition,

QV) = |Vy = |QV), (2.52)
it follows, using (2.24), that

(V)= (V| = (V)" = @v)) = (|9, (2:53)

where QF is known as the adjoint of  and its matrix elements are
obtained to be

Qf; = (elej) = (Qesle;) = (ej]Qes)”

We recognize this to be the Hermitian conjugate of the matrix ele-
ments €);; of the original operator 2.

Exercise. Show that the adjoint of a product of operators is the product of the
adjoint operators in the reversed order, namely,

Q... Q) =00l ..ol (2.55)
Definition. An operator is Hermitian if it is self-adjoint, i.e., Q = QF.
Definition. An operator is anti-Hermitian if Q = —QF.

Definition. An operator is said to be unitary if QQF = QIQ = 1 =
identity operator.

This implies that the adjoint of a unitary operator is the inverse
of the operator.

16:34:56.
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Exercise. Show that a unitary operator U can be written as
U=e", (2.56)
where H is a Hermitian operator.

Theorem. Unitary operators preserve the inner product between vectors
they act on.

Proof. Let U denote a unitary operator such that

V") = U|V), W'y = U|W). (2.57)
It follows from (2.24) that

W' = (wW|UT. (2.58)
Furthermore, since U is a unitary operator, it follows that

(W'IV') = (WUTU|V) = (WL|V) = (W|V), (2.59)

which proves that unitary operators preserve the inner product be-
tween two vectors. ]

2.6 Eigenvectors and eigenvalues

In general, an operator acting on a particular vector takes it to a new
vector

QV) = V). (2.60)

However, if the effect of an operator acting on a particular vector is
to simply multiply it by a constant (scalar), i.e.,

QIV) = w|V), (w is a scalar) (2.61)

then, we say that |V) is an eigenvector of the operator © with the
eigenvalue w. Clearly, for linear operators, if |V') is an eigenvector, so
is a|V') where « is a scalar (since linear operators act only on vectors
and not on scalars, as is evident from (2.34)) and this arbitrariness
can be used to normalize an eigenvector. Note that we can write
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(2.61) also as

(Q—-wl)|V)=0
or, {(&|(Q—wl)|V) =0,

or, (e|(Q—wl ZUJ|€J

or, Zvj<ei\(Q —wl)le;) =0
j=1

or, Z (QZ] - wé,-j) v; = 0. (262)
j=1

This is a set of linear homogeneous equations (in the unknown
variables v;) known as the characteristic equation. A nontrivial solu-
tion, in this case, exists if the determinant of the coefficient matrix
vanishes, i.e.,

det (QZ] — wéij) = 0. (263)

Clearly, if we are working in an n dimensional vector space, this is
an n-th order polynomial equation in w and, therefore, would possess
n solutions for w, which will correspond to all the eigenvalues of the
operator ). These roots need not all be distinct or real. However,
once the eigenvalues are obtained, the eigenvectors can be derived
from the characteristic equation (2.62) in a simple manner.

» Example (Non-degenerate system). In V3, let us consider an operator Q which
has the matrix representation,

10 0
Q=(o0o o -1]. (2.64)
01 0

The characteristic equation,

3
Z - 1] U] =0, (265)

Jj=1

will have a nontrivial solution provided the determinant of the coefficient matrix

16:34:56.



32 2 REVIEW OF ESSENTIAL MATHEMATICS

vanishes (see (2.63)),
det, (Q” — wéij) =0,

l1-w 0 0
or, det 0 —w —1| =0,
0 1 —w

or, (1-w)w’+1)=0,
or, (I1-w)(w+i)(w—1)=0. (2.66)

This determines that w = 1,7, —¢ are the three distinct but complex eigenvalues
of Q.
For w = 1, the linear equations (2.65) become

3 3
Z (QZJ — wéij) vVj = 07 or, Z (QZJ — (5”) vVj = 07 (2.67)
j=1 j=1

and explicitly lead to the three equations

0=0,
—vg —v3 = 0, = v =wv3 =0, wp is arbitrary. (2.68)
V2 — V3 = 0,

Thus, the eigenvector corresponding to the eigenvalue w = 1 has the form

U1
0. (2.69)
0

We can make use of the arbitrariness of v1 in (2.69) to define a normalized eigen-
vector

1
w=1)=1(0], (2.70)
0
such that
(w=1llw=1)=1 (2.71)
|

Exercise. Similarly, show that the normalized eigenvectors for the eigenvalues w =
=+, in the above example, are

0 0

|w:i):ﬁ i , |w:—i>:ﬁ —11 , (2.72)

so that together the three eigenvectors define an orthonormal basis.

» Example (Degenerate system). In the previous example, all the eigenvalues of
Q) were distinct, which is an example of a non-degenerate operator. However, when
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two or more eigenvalues of an operator coincide we talk of a degenerate system.
Let us consider an operator  in V3, which has the matrix representation

Q=

[
S N O

1
0]. (2.73)
1

In this case, for a nontrivial solution of the characteristic equation,

Z (Q” — wéij) vy = O, (274)

J
the vanishing of the determinant of the coefficient matrix gives
det (Qi]‘ — w(sij) =0,

1—w 0 1
or, det 0 2—w 0 =0,

or, (1-w)(2-w(l-w)+1(-(2-w))=0,

or, (2-—w)((1-w)®>—-1)=0,

or, (2—w)(2—-w)(—w)=0,

or, w=20,22. (2.75)

Thus, in this case, we see that all the eigenvalues are real, although two of them
are degenerate.
For w = 0, the characteristic equation, (2.74), becomes

ZQij’l}j = 07 (2.76)
J

and leads to

v1 +v3 =0,
20 = 07 = V2 = 07 v3 = —1, (277)
v1 4+ v3 =0,

so that we can write the normalized eigenvector as

e
lw=0) = NG _01 . (2.78)

For w = 2, the characteristic equation, (2.74), takes the form

> (= 26i5) v; =0, (2.79)
J
and explicitly leads to

—v1 +v3 =0,
0=0, = v3 = w1, v arbitrary, (2.80)
V1 — VU3 = 07
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so that any vector of the form

v |, (2.81)

is an eigenvector of {2 with the eigenvalue w = 2. However, whenever possible, we
would like the eigenvectors of an operator to form an orthonormal basis. With this
in mind, we can choose the arbitrary constants in (2.81) such that the eigenvectors
of ) are not only normalized, but are orthogonal to one another as well. Thus,
for example, for the present case, we can choose

1 1
-1
1 1
1
0
lw=2p=|1], (2.82¢)
0

which would provide an orthonormal basis. However, this is not necessarily the
unique choice. In fact, we could have chosen, as eigenvectors (2.81)

lw=2) =— (1|, jw=2s=—[-2], (2.83)

which would also provide an orthonormal basis. In fact, a general normalized
eigenvector corresponding to w = 2 has the form

v

va
! 1, (2.84)

VISP T \ 2
2

and all such vectors will be orthogonal to (2.78). Thus, we see that there would
be an infinite set of possible eigenvectors corresponding to different values of Z—;
when degeneracy of eigenvalues occurs and we can no longer label the eigenvectors
uniquely by the eigenvalues alone. <

<

Theorem. A Hermitian operator has real eigenvalues.
Proof. Let ) represent a Hermitian operator. Then, by definition,
Q=0 (2.85)

If |w) represents an eigenvector of 2 with eigenvalue w, then, it follows
that

Qw) = wlw), or, (W|Qw) =w(w|w). (2.86)
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Taking the Hermitian conjugate of the first equation in (2.86), we
obtain,

W) = (W] =w*w|, or, (WQuw)=w"{ww). (2.87)
Taking the difference of (2.86) and (2.87), we obtain
(w—w"){w|w) = 0. (2.88)

Since the norm of a vector is positive semi-definite (see (2.13) or
(2.17)),

(Ww) >0, =w=w" (2.89)

That is, all the eigenvalues of a Hermitian operator are real. Note,
however, that the converse is not necessarily true, namely, operators
with all real eigenvalues are not necessarily Hermitian. [

» Example. Let us consider the operator 2 in V2, with the matrix representation,
1 a
Q= <0 1) . (2.90)
The eigenvalues of this operator are determined to be
1—w a _ 2 _
det( 0 1_w>7(1—w) =0, =w=1,1. (2.91)

All the eigenvalues of the operator €2 are real (although degenerate) in this case.
However, as is obvious from (2.90), the operator is not Hermitian. <

Theorem. Figenvectors of a Hermitian operator with distinct eigenval-
ues are orthogonal.

Proof. Let ) represent a Hermitian operator and let |wy), |w2) repre-
sent two of its eigenstates with distinct eigenvalues w1, ws respectively
(namely, wy # wy). Then, we have
Qw1) = wilwr), or, (w2|Qwi) = wi{wa|wr). (2.92)
Similarly, taking the adjoint of the second eigenvalue equation,
Qlws) = walws), (2.93)

we have

(Wa|Q = wa(ws|, or, (w2|Qwi) = walwalwr), (2.94)
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where we have used the fact that €2 is Hermitian and that Hermitian
operators have real eigenvalues. Now, taking the difference of the two
relations (2.92) and (2.94), we obtain

(w1 — w2){walwr) = 0. (2.95)

Since wy # wy by assumption, this implies that (wo|wi) = 0, namely,
the two eigenvectors are orthogonal. Clearly, if the vectors are de-
generate, they don’t automatically have to be orthogonal, but, as
we have already seen, we can always choose them to be orthogonal in
such a case. It follows, therefore, that the eigenvectors of a Hermitian
operator can be chosen to provide an orthonormal basis. [

Exercise. All eigenvalues of a unitary operator have unit norm. All eigenvectors
corresponding to distinct eigenvalues of a unitary operator are orthogonal to one
another.

Theorem. The operator which transforms an orthonormal set of basis
vectors into another is unitary.

Proof. Let |e;) be a set of orthonormal basis vectors and let U be the
operator which takes it to another set of orthonormal basis vectors,
denoted by |w;). Therefore, we have

wi) =Ules),  (wjl = (e;[UT, ij=1,2,--,n. (2.96)
It follows now that

(Wilwi) = (e;|UUes), or, & = (e;|[UTU|es;). (2.97)
We know that |e;) represents an orthonormal basis so that

(ejlei) = 6. (2.98)
It follows, therefore, that UTU = 1 and U is unitary. [

Theorem. If Q is a Hermitian matriz, then there exists a unitary ma-
triz U such that UTQU is diagonal.

Proof. Let U be the matrix which changes the standard, orthonormal
set of basis vectors in (2.26), |e;), to the orthonormal eigenbasis |w;)
of Q. Therefore, we have

|w7«> = U|ei>7 Z — 1727"' s T (299)
where

Qw;) = wj|w;). (2.100)

16:34:56.



2.6 EIGENVECTORS AND EIGENVALUES 37

Clearly, U is unitary since it takes one orthonormal basis into another.
Now

(Wi Qw;) = wi(wj|wi) = w;idi;. (2.101)
On the other hand, using (2.99), we also have

(Wj|Qws) = (e;|UTQU ;). (2.102)
Comparing (2.101) and (2.102), we conclude that

(e;|UTQUe;) = widyj. (2.103)

This shows that UTQU is diagonal with the diagonal elements given
by the eigenvalues of €2. We say that U diagonalizes €. [

Theorem. If Q and A are two commuting Hermitian matrices (opera-
tors), they can be simultaneously diagonalized.

Proof. Let |w;) represent the complete set of eigenstates of € corre-
sponding to the eigenvalues w; with ¢ = 1,2,--- ;n so that

Qluwr) = wilws). (2.104)
Since €2 and A commute,

[Q,A] = QA — AQ =0, (2.105)
and it follows that

(QA — AQ)|wi) =0,
or, Q (Alw;)) = A (Quwi)) = w;i (A|ws)), i=1,2,--- ,n. (2.106)

In other words, A|w;) is also an eigenvector of Q2 with the eigen-
value w;. This is possible only if

Thus, all the eigenstates of € are also eigenstates of A and the same
unitary matrix which diagonalizes 2 would also diagonalize A. [
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=0 z=1L

Figure 2.2: Displacement field of a string fixed at both ends x = 0
and x = L.

2.7 Infinite dimensional vector spaces

So far, we have talked about finite dimensional vector spaces. Let
us now introduce the concept of an infinite dimensional vector space
(which is important from the point of view of quantum mechanics)
through the following example. Imagine a string fixed at two points
x =0 and x = L as shown in Fig. 2.2. If we are talking about the
displacement of the string from its equilibrium position, we can do so
by dividing the interval into n + 1 equal parts and by describing the
displacements at the n discrete (intermediate) points. Let us denote
them by f(z;). Of course, this will not represent the true displace-
ment f(z) of the string, but as n is made larger and larger, it would
come closer to the true description. (It is worth remarking here that
any interval contains a non-countably infinite set of points. However,
the only way we know how to do any practical calculation, such as
integration etc, is by dividing the interval into subintervals of smaller
and smaller lengths. This, in turn, treats the set as a countably in-
finite set of points, but works. Furthermore, the displacements of a
string define a continuous function — they cannot be completely arbi-
trary at different points. This reduces the non-countably infinite set
of displacements to a countably infinite set.)

We can think of the ordered n-tuple (f,,(x1), fn(z2), ..., fu(zn))
as describing an n dimensional vector denoted by

=1 . | (2.108)
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In terms of the basis vectors

< i-th place, (2.109)

cCo o~ .-

we can write
) =D Fulwi)lzi), (2.110)
i=1

where, as we have seen in (2.31)
fu(@i) = (@3] fn)- (2.111)

The basis vectors |x;) obey the orthonormality and the com-
pleteness relations,

(z]) = 645, Z |23 ) ;| = 1. (2.112)

We can imagine dividing the interval into infinitesimal parts and in
the limit of vanishing intervals, the position becomes a continuous
variable and the displacements foo(x) would correspond to the true
displacement of the string. This is now an infinite dimensional vector
space. In this way, one can go from finite dimensions to infinite
dimensions by letting n — oo. But, for this, certain modifications
are necessary in some of the formulae which we discuss next.

2.8 Dirac delta function

Let us note that the inner product of two vectors in the n dimensional
space of the form (2.108) is given by

n

(Falgn) = Y (@)l fi (@) gn(wi)la:)

ij=1

= (@) gn ()i

i,j=1

= fr@i)gn (). (2.113)
i=1
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In particular, the norm of a vector has the form

(falfn) = an (1) fu(2:) Zlfn ()% (2.114)

Clearly, this diverges as n — co. One, therefore, needs a redefinition
of the inner product such that a finite limit is obtained in (2.114) as
n — 0o. This is done by writing

L
fn|.gn an 517@ gn 332

n+1
L L
1225 [ do fi@gule) = [dofalg@), (2109
0 0
where nL—i-l represents the length of each interval, which becomes

smaller and smaller as n becomes larger.
Thus, for vectors defined within an interval a < x < b, the inner
product takes the form

Jn (filg.) — lim [ de £ ()

b
= /dx [ (x)g(x). (2.116)

The completeness relation, of course, still holds as in (2.112) (with
the sum replaced by an integral)

b

/da; )] = 1, (2.117)

a

where 1 is the infinite dimensional identity matrix. Multiplying
(2.117) on the left by (2’| and by |f) on the right, we have

b
/d ezl f) = (&]f),

or, /dx (2'|x) f(z) = f(2). (2.118)
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From the orthogonality relation of the basis vectors we know
that

(2'|z) =0, if z#2. (2.119)

Therefore, we can limit the range of integration in (2.118) to an
infinitesimal interval around =’ to write
z'+€
lir% da (2'|z) f(x) = f(2). (2.120)
e—

x'—e

If (2'|z) is finite at x = 2’ then the left hand side would vanish,
since the range of integration is infinitesimally small. The only way
this relation would make sense is if the inner product diverges at
x = 2'. Let us denote

(2'|z) = 6(2', ). (2.121)

Thus, §(2’,x) = 0 if  # 2’ and it diverges when z = 2/, but in such
a way that the integral of (2, z) is unity, namely, since

/ dz (' 2) f(z) = f(a), (2.122)

which follows from (2.118), choosing f(z) = 1, we obtain

/d;z: 52, z) = 1. (2.123)

Furthermore, it only depends on the difference x — /. The inner
product in (2.121) is known as the Dirac delta function and is used
to normalize continuous basis vectors as

(z|2") = 6(z — 2'). (2.124)

2.9 Properties of the Dirac delta function

The Dirac delta function satisfies several interesting properties.

1. As we have already seen in (2.122), the defining relation gives

/dm Sz —2)f(z) = f(2). (2.125)
Namely, integrating with a delta function simply picks out the

first term in the Taylor expansion of a function (around the
point where the argument of the delta function vanishes).
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2. It is an even function, which is easily seen as follows.

§(x — ) = (2'|z) = (z|2’)*
= (6(z —a))" = b(z — '), (2.126)

where we have used the fact that the delta function is a real
function.

. Upon integration, the derivative of a Dirac delta function mul-

tiplied with a well behaved function leads to

/dx §(x —2)f(x) = —f'(2)), (2.127)

where prime denotes a derivative.

This can be seen as follows. Let us consider the integral in
(2.127), which can be written as

far [ s 00

b
— /dx [di:v (5(m — x/)f(a;)) —0(x — ) dﬁ(;)
b df(x)
=§(x —2')f(x) —/dxé(az—x') d;
= _%S”) = —f'(a"). (2.128)

It is clear that, since the delta function is even, the derivative
of the delta function is an odd function,

d n__d /
a&(m—x)— o Oz — ). (2.129)

In general, we have
/ da 6 (z — o) f(z) = (=) f™ ("), (2.130)

where the superscript (n) represents the number of derivatives
acting on the delta function as well as on f.
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General properties. Let us list below some of the properties of the
Dirac delta function.

0(z) = o(—=). (2.131a)
§(z) = =0 (—x). (2.131b)
2"0(x) =0, n>1. (2.131c¢)
zd' (z) = —5(x). (2.131d)
5az) = % 5(x). (2.131e)
§(2* —a?) = ﬁ[é(m —a)+0(z + a)l. (2.131f)
f@)d(z —a) = f(a)d(x — a). (2.131g)
/ dz 6z — b)3(a — z) = 8(a — b). (2.131h)

2.10 Representations of the Dirac delta function

The Dirac delta function is not a regular function. Rather, it is
a generalized function, which can be thought of as the limit of a
sequence of functions. In what follows, we will describe some of its
representations that are used frequently.

Theorem.

00
1

Py / dk e*® = §(z). (2.132)

—00

Proof. Let us assume that e is infinitesimal and note that

€ [e.9]

1 .
/dx fx) x o / dk e’ke
€ 1 g
:/da: fx) x li_>m 2—/dkeikm
g—o0 2T
Ze Zq

€

= limi/da:f(x)x2

g—00 270
—€

sin gx
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sin gx

g—x T X

= lim l/da: f(z)

€

] 1 eigx
= lim — Im [ dz f(x) (2.133)
g—oo T x
Let us define
x=—¢, =1 =—ge,

x' = gz, then
r=¢ =2 =ge

With this, the integral on the right hand side of (2.133) becomes
1 9 / T
lim = Im [ do/ f <x—> — (2.134)
g—oo g x
Zge

In the limit ¢ — oo, we can use the method of residues. There is a
pole at 2’ = 0, which yields the value of the integral to be (principal
value has to be used)

1
Im [; X i f(O)] = f(0). (2.135)
Substituting this back into (2.133), we obtain
€ 1 o '
lim [ dz f(z) x — / dk et = £(0), (2.136)
e—0 2

which shows that we can identify

% / dk e*® = §(x).
]
It is also clear from the above analysis that
Theorem.
lim © 59T _ (). (2.137)

g—0 T T
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Let us consider the step function 6(z) defined as

1 forz >0,
bz) = { 0 forz <O0. (2.138)

Theorem. The Dirac delta function is related to the step function as

df(x)
dz

= d(x). (2.139)

Proof. (All the test functions we use are assumed to be regular and
vanish at infinity, namely, they satisfy lim |, f(z) — 0.)
Let us consider the integral

/da: di(;) f(z), (2.140)

—€

where € is considered infinitesimal. Since the slope of the theta func-
tion vanishes away from the origin, we can easily extend the range of
the integral and write

[ do(z) T dox)
_/dZEW f(x) :_/ dxv f(x)

=— 7d3: 0(x) df(;)

d

- —/da: @) _ ), (2.141)
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Sometimes one defines a step function slightly differently from
(2.138) as

e(x) =0(z) — 5, (2.142)

, for x>0,

2.143
, for x<O0. ( )

Such a step function is an odd function and is called the alternating
step function. The delta function can also be defined as the derivative
of the alternating step function, namely,

de(z) db(z)

2 =2 = (). (2.144)

Theorem. The delta function can also be represented in terms of a
Gaussian as

. S _
ah_)n;o\/; e = (). (2.145)

Proof. First, let us note that,

lim | da \/7 e=** = lim \/§ <= =1. (2.146)
a—00 a—00 T o

Furthermore, using (2.146), let us note that

/d:n

312

e f(z) — £(0)

T

e (f(z) — £(0))

= /d:n
e~ ma df ||
x dz

/da:
df T & —aa?
= max { —— dz /= |zle
dz T

E RS

IN
210
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47
= max {g}”ng/d:E:Ee_‘“z
dx T
0
{df} @ [de _,
= max < — —x [ — e 7,
dx T o
0
df 1

where z = az?, dz = 2axdz. In the limit o — oo, the right hand
side of (2.147) vanishes leading to

Jm [ o[t ) - 0

L A

Therefore, we obtain

. Qg2 _
ah_)ngo / dz —e f(z) = £(0), (2.149)
so that we can identify
: O _az?
Jim /e <o)
]

Exercise. Show that

oo

dz e = T
a

— 00

Theorem. Another useful representation of the Dirac delta function is
given by

lim % ﬁ = §(z). (2.150)
Proof. First, let us note that we have
o0
lim dx%riézli_)négx2mx%:1. (2.151)
—00
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Next, let us note that

a

. 1 €
b fde = s @)
17 1
I S fl@). (2.152)
e—0 7T_a € <:§_2+1)

Let us redefine £ = ', which allows us to write the integral in (2.152)
as

oo

T p 1 /
—lg%;/dx T f(@'e). (2.153)

—00

The integral in (2.153) can now be evaluated using the method of
residues. We recognize that the integrand has two poles at 2’ = =1,
which yield the value of the integral to be

lim % X 2i Z%,f(z'e) = lim f(ie) = £(0). (2.154)

Substituting this back into (2.152), we can identify

1 €
lim —— = §(x).
20 T2 + €2 o(z)

Let us also note that we can write

1;:L< LI ) (2.155)

T x2+e 2mi \x—ie x+ie

An alternate characterization is to note that

lim — — P (%) + ind(x). (2.156)

e—0 T F i€

where P stands for the principal value. [
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2.11 Operators in infinite dimensions

We are now familiar with ket |f) and the basis vectors |x) in infinite
dimensions. Let us next ask how linear operators act on this infinite
dimensional space. As before, let us assume that an operator € takes
a vector |f) to a new vector |f), namely,

Qf) =11). (2.157)

Since we can expand the vectors in the coordinate basis as
)= [ f@la 1) = [de Flola) (2158)
we can also think of operators as taking functions f(z) into f(z)

Q ~
f(z) — f(z). (2.159)
. df(z
Let us denote by D the operator which takes f(z) to %,

namely,

fz) 2 f) = d{if)- (2.160)
Thus, we have
DIf)=1f),
L d
or. {e|DIf) = (alf) = flz) = L,
or, [ as'talDle)lg) = S
or, /d$'($|D|$'>f(x/) = dﬁf) (2.161)
Recalling (2.127), we see that we can identify
(x|D|x'y = Dyp = &' (x — ')
d n__d /
=1 O(x — ') ——@5(:5—:5). (2.162)

This determines the representation of the operator in the |z) basis.
Let us next ask if D is Hermitian. In finite dimensional vector
spaces, we know that D is Hermitian if D = DT. In the present case,

d
— (2 — )

DV)yw = D}y =
(D) v =

d /
—b(z — ') = Dy (2.163)
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Thus, in fact, we see that the operator is naively anti-Hermitian. We
can easily make it Hermitian by defining

K = —iD, (2.164)

so that KT = K and this would be naively Hermitian. But, we also
know that for an operator to be Hermitian, it must satisfy

(9I1K[f) = (9| K f) = (K flg)"
= (fIKT|g)* = (f|K|g)*. (2.165)

Therefore, let us check whether this relation is satisfied as well. We
see that the left hand side of (2.165) gives

LS. = (g|K|f)

b b
_ / e / (glz) (| K|a") (' |f)

/dx g ( d{i; ?)
— / dz g (x)d‘g(;). (2.166)

a

On the other hand, the right hand side of (2.165) gives
R.H.S. = (f|K|g)*
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b
:i/dx dg”(z) f(zx)

dx

b b
—i [ar S0 @) —i [ @@
b b af
= ig*(x)f(x) —i/dx g*(x) df) (2.167)

Thus, comparing (2.166) and (2.167) we see that the operator
K will satisfy (2.165), only if

= 0. (2.168)

In this case, the operator K would be Hermitian. Thus, unlike in the
finite dimensional case, in infinite dimensions, properties like Her-
miticity depend on the space of functions on which the operators act.
If the functions are like the displacements of a string which vanish
at the end (the string is fixed at the ends), then, of course, (2.168)
holds true. We can also think of periodic functions satisfying

f(b) = f(a),
g9(b) = g(a), (2.169)

for which (2.168) is also true and the operator K would be Hermitian.
In quantum mechanics one works with functions defined on —oco <
2 < 0o. Then, there are two kinds of functions that one deals with —
those that vanish at infinity and others that are oscillatory. The first
category, of course, does not create any problem with (2.168). But,
for the second kind of functions, typically of the form e, it is not
obvious whether

. .,
e ik ezk:c

=0. (2.170)
We note that we can write

—1 —_— /
e i(k—k")x

= —i(k — k) / dz e k=k)w

= —2mi(k — K')o(k — k') =0, (2.171)
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where we have used the definition of the delta function as well as the
property of the delta function (see (2.131)) that

zd(x) = 0. (2.172)

This shows that K is Hermitian in this space.

Let us now calculate the eigenvalues and the eigenfunctions of
K. It would seem like a formidable task since K is an infinite di-
mensional matrix and, therefore, the characteristic equation would
involve polynomials of infinite order. But, in practice it is not so bad.
In fact, finding eigenvalues and eigenfunctions in infinite dimensions
becomes equivalent to solving (partial) differential equations, which
we can see in the following way. Let

K|k) = k|k),
or, (a|K|k) = kiz|k),
or, /dx’ (2| K2) (2| = k(a]k). (2.173)
Defining
(x]k) = ¥n(), (2.174)

and using (2.162) (as well as the identification (2.164)), we obtain
from (2.173)

[ o' (i e = ) e = ko)

_ Ak (2)

1 = k(). (2.175)

or,
The solution of (2.175) is clearly
Y (x) = Aek (2.176)
Namely, any real number k is an eigenvalue of K with ¢y (z) defining

the corresponding eigenfunction. Here, A is an arbitrary constant
which we can choose to be A = \/%, yielding

(w|k) = Pp(z) = e, (2.177)
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so that the eigenvector |k) is normalized.
(k) = [ do (kle) olk)
~ [ 4o vi@h (o)

_ i/d:ﬂ e—ikmeik’x
:—/dzzte h=k')z

= 5(k — k) (2.178)

Let us note here that the eigenstates |k) define a complete basis, since
K is a Hermitian operator.

Definition. A Hilbert space is an infinite dimensional vector space such
that every vector in this space can be normalized either to unity or to
the Dirac delta function.

2.12 Fourier transformation

Any vector |f) can be expanded in the |z) basis as well as in the |k)
basis, which follows because both |z) and |k) define complete basis
in the infinite dimensional space. Thus, we can write

=/mﬁwm, f(@) = (alf). (2179)

Similarly, since |k) also defines a complete basis, we can write

uw=/dkmmmx (2.180)

where

/d;z: e /dx e~k £ (1), (2.181)
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Similarly, we can show that
f(x) = (2l f) = / dk (z|k) (k| f)

= / dk Pg(z)g(k) = \/% / dk ™ g(k). (2.182)

We realize that these are nothing other than Fourier transforms. This
shows that the Fourier transformation takes us from one basis to
another.

In the eigenbasis of K, the matrix elements of K are given by

(K |K|k) = k(K'|k) = ké(k — k') = K'5(k — ), (2.183)

so that it is diagonal in this basis as we would expect. We can also
ask what is the operator whose eigenfunctions form the basis |z). Let
it be denoted by X. Then, by definition,

X|z) = zl|z),
or, (z/|X|z) =2(2/|z) = 26(x — 2') = 2/6(z — ). (2.184)

To find the action of this operator on an arbitrary vector, we note
that

X1f) =),
, A{2IX|f) = (zlf),

/ da! (x| X|a')a'|f) = (e] ).

O

=]

or, /daj/ z6(z —2) f(z') = f(z),

or, f(x)=xaf(x). (2.185)

Thus, we see that the effect of X on a vector is to multiply its
components in the basis |x) by z. We can ask what are the matrix
elements of X in the |k) basis.

HAK) = [ doda! () el X127 )
= /da:d:z' Vi (z)zd(z — 2 ) (2)

1 , /
_ —i(k—k")x
7 /dx ze
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1 .d . /
_ - —i(k—k")x
=5 de dx e
d
=j— 2.1
de; o(k — k‘) (2.186)

We see that, in the |z) basis, X acts as z and K as —i% when
acting on functions, whereas in the |k) basis, K acts as k and X as i%
on functions . Operators with such reciprocity are called conjugate
operators . Clearly, conjugate operators do not commute, which can
be seen as follows

(| X|f) = 2f(2), (2.187a)
(z|K|f) = —id‘g(;), (2.187D)
(| XK|f) = —iwdj;(f), (2.187¢)
(@K X1f) = =i (@ (@) (2.187d)

It follows now that

(@l(xK ~ Kx)|f) = ~i T i) 4 i D)

do
= if(z) = z'(x]f>. (2.188)

In other words, for any vector |f),
X, K]|f) =ilf), or, [X,K]=il. (2.189)

Any two operators whose commutator is proportional to the iden-
tity operator are known as conjugate operators. As we will see, in
quantum mechanics X corresponds to the position operator, while
P = hK denotes the momentum operator.

» Example. As we have seen, Fourier transformation takes us from one basis to
the conjugate basis,

g(k) = \/% /dm ) (2.190)

Let us next consider a few examples of Fourier transformation. Let
f(z) =d(x), (2.191)
then, from (2.190), we obtain

1

1 —ikax _ -
g(k) = oz /dx e o(z) = T (2.192)
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Namely, the Fourier transformation of the Dirac delta function is a constant. For
a Gaussian function,

fle)y=e" 2", (2.193)

the Fourier transformation leads to

g(k) = \/% /dm e kT em 2
2 k2

2.2
o’z ;
ikax+
2 242

! /d T2 :
= — T e 2a
V2

) 2
- \/1 /dx o3 (ot i)’ =
2
’
- L[ e g
V2 «
1 1 _ k2 1 _ k2
= —— X —V2re 22 = ¢ 22, (2.194)
Var o« a
Thus, we see that the Fourier transform of a Gaussian is a Gaussian, but with
inverse width. <

Exercise. Show that

—_

— / dp e~ 3(eet®)? = 1 (2.195)
2.13 Selected problems
1. If an operator €2 takes a vector |¢) to another vector |¢),
Ql¢) = [9),
and the vectors have the coordinate representations

w:/mmwm @:/m&wm

one also says that
Q ~
¢(z) — o(x).

With this understanding, work out the following problems.

(z) Which of the following operators are linear?
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a) ¢(z) 5 ¢(—x),

D) b(x) = ¢ (w),

o) dla) 5 ¢(zx)+ec,  cisa constant,
d) ¢(x) -5 d(x+c), cisa constant,
¢) o(x) - o(5),

£ o@D [ Ko, with
K(z,2') = K*(2, 2),
9) é(x) 5 / da’ K (z,2")¢(2"), with

K(z,2") = -K(2,2). (2.196)

(#i) Which of the following operators are Hermitian?

a) oz )iﬂzﬁ(x—kc) c is a constant,
b Blx) = ¢"(2),
¢ lx) = b(-w),

Q) b@) -% / dz’ K (2, 2))(x'), with

K(z,2") = —K(2',z) and real. (2.197)

2. If A, B,C are Hermitian operators, determine which of the fol-

lowing combinations are Hermitian?

a) A+ B,
b) L[AB] = —(AB — BA)
2524 '
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¢) (ABC —CBA),
d) A%+ B?4+(C7?,
e) A+iB. (2.198)

3. Dtermine the constant B, such that

lim Bae " = §3(r). (2.199)

a—0o0

Here r is the magnitude of the three dimensional vector r (namely,
r = |r|) and you should only check the normalization of the
delta function.

4. Determine the value of the constant B such that, with

0 2 > b?
tb(x) = { B’b— x‘ 2 < p2 (2200)
we have
lim t(z) = d(z). (2.201)
b—0

Once again, you are asked only to check the normalization.
5. a) Using the integral representation for ——, show that

r—r]’

V2 (ﬁ) = —4n83(r —1'). (2.202)

b) Using Gauss’ theorem, show that

\'%& <1> = 4783 (r), (2.203)

r

where r is the magnitude of r.
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6. If g(k) represents the Fourier transform of f(x) (in one dimen-
sion), determine the Fourier transforms of

o YDy e, o M) (e
o f@). e floa). (2.204)

in terms of g(k).

7. a) Calculate the Fourier transform of

flx) = e Ml (i real, positive). (2.205)

Use this result to determine the Fourier transform of

1

R — 2.2
A2 4 g2’ (2.206)

o(x)
where A is a real and positive constant.

b) Calculate the Fourier transform of ¢(x) in (2.206) by evalu-
ating the integral using contour methods (residue theorem).

8. Determine the Fourier transform of

f(r) = ; (2.207)

where r is the magnitude of the three dimensional vector r.
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CHAPTER 3

Basics of quantum mechanics

In the next few lectures, we will introduce the basic concepts of quan-
tum mechanics. However, let us first discuss the reasons for going
beyond the classical description of physical systems, which we have
discussed in the first chapter.

3.1 Inadequacies of classical mechanics

Classical mechanics works well when applied to macroscopic or large
systems. However, around the turn of the twentieth century (1900~
1920), it was observed that microscopic or small systems behaved very
differently from the predictions of classical mechanics. We would, of
course, discuss more quantitatively what we mean by microscopic
systems. But, for the present, let us understand by a microscopic
system, a system of atomic size or smaller and list below various
difficulties that one runs into in applying the classical description to
microscopic systems.

1. Planetary model. The planetary model of the atom, where elec-
trons move in definite orbits around the nucleus, was in serious
trouble. According to classical mechanics, a particle in such
an orbit is being constantly accelerated. Furthermore, we also
know that a classical charged particle, when accelerated, emits
radiation. Therefore, an electron going around a nucleus would
continuously emit radiation and become less and less energetic.
This has the consequence that the radius of the orbit would con-
stantly shrink in size, until the electron falls into the nucleus.
Thus, according to classical mechanics, the planetary motion in
atoms was unstable.

2. Blackbody radiation. The theoretical calculation of the black-
body radiation spectrum, which assumes that electromagnetic
radiation is a wave and, therefore, can exchange energy in any
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continuous amount, leads to a result which does not agree with
the experimental measurement (curve). Planck, on the other
hand, assumed that electromagnetic radiation of frequency v
can exchange energy only in units of Av, where the constant A
is known as the Planck’s constant,

h = 2nh = 21 x 1.054 x 10727 erg-sec, (3.1)

and his calculation led to a blackbody spectrum which agreed
completely with the experimental measurement.

. Photo-electric effect. Around the same time, it was also ob-

served that it was possible to release electrons from a metal by
irradiating the metal with electromagnetic waves or light. This
was called the photo-electric effect. Furthermore, the interest-
ing feature of these experiments was that it was not always
possible to get electrons out of the metal. In fact, for any
given metal, it was found that the light radiation which would
free electrons had to have a frequency greater than a critical
frequency, characteristic of the metal. With light of a lower fre-
quency, one can make the radiation as intense as possible, but
it would not lead to photo-electric effect (release of electrons).
Einstein solved this puzzle and showed that this was consistent
with Planck’s hypothesis, namely, light with frequency v can
only exchange energy in the amount

E = huv. (3.2)
For electrons to be released, therefore, we should have
E = hv = BE + kinetic energy, (3.3)

where BE represents the binding energy for the metal under
consideration. Writing BE = hyy, therefore, we obtain from
(3.3)

h(v — vp) = kinetic energy > 0. (3.4)
This implies that there cannot be any emission of electrons,

unless v > .

These two examples (blackbody radiation and photo-electric
effect) clearly illustrate that although classically light is a wave,
it can often behave like particles. This is further confirmed by
the Compton effect.
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4. Compton effect. If one considers the scattering of light by an
electron (see Fig. 3.1), one finds that the experimental result
can be explained only if a photon of frequency v is considered
to be a particle moving with energy E and momentum p = |p|
given by

v

/f\\'u
&

Figure 3.1: Scattering of light by an electron commonly known as the
Compton effect. The solid blob represents the electron.

energy : FE = hv,
E  hvy h

momentum : =—=— == 3.5

where v, A denote respectively the frequency and the wavelength
of the light wave. Furthermore, from special theory of relativity,
we know that the energy and the momentum of any particle

have to satisfy Einstein’s relation,
E? = p*c + m?ct, (3.6)

where m denotes the rest mass of the particle. In the present
case, if we think of the photon as a particle, then, (3.5) implies
that
E2 p2
2 _ _

mphoton - 6_4 - 0_2 =0. (37)
Namely, if we think of the photon as a particle, its rest mass
must vanish.

From these discussions, it is clear that electromagnetic radiation
does possess a dual behavior — sometimes it behaves like waves
and sometimes as particles.
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5. Davisson-Germer experiment. If one impinges a beam of elec-

trons on a lattice of atoms (crystals), then, one observes a
diffraction pattern. Diffraction, being a wave phenomenon, in-
dicates that the electron, which is a particle, must sometimes
behave like a wave. These observations lead to the general con-
clusion, that all objects must possess both wave and particle
behavior. Of course, an immediate question that arises is what
determines the wavelength associated with a particle. This is
given by de Broglie’s hypothesis, which says that the wavelength
associated with a particle in motion is given by (compare also
with the Compton effect, (3.5))

A=—. (3.8)

p
Furthermore, let us also note that experiments on atomic sys-
tems revealed that various measured quantities assumed only
discrete (quantized) values, unlike the predictions of classical
mechanics, where observable quantities take continuous values.

. FBxperiment with waves and particles. Therefore, one believes at

this point in the dual behavior of all materials — sometimes they
behave as particles and sometimes they behave as waves. The
main difference in the behavior of the two, at least classically, is
that particles follow definite trajectories and hence do not show
interference, whereas waves spread out and, therefore, interfere.
Let us now consider the following experiment. Let us take a
beam of particles moving towards a double slit arrangement.
If one closes one of the slits, one obtains an intensity pattern.
With the other slit closed, one also obtains a similar pattern.
And when one opens both the slits simultaneously, then, one
obtains a pattern which is the sum of the two patterns. This is
a particle like behavior, namely, the intensities add up. So the
distribution at any point, with both the slits open, is at least
as big as with one of the slits open.

Consider now the same experiment with the particle source re-
placed by a monochromatic light source. Reduce the intensity
of the source to the extent that only one photon is emitted at
a time. If one now performs the double slit experiment with
one of the slits open, then, one obtains a distribution as in the
previous case. However, when one repeats the experiment with
both the slits open, then, one does not obtain the distribution
to be the sum of the distributions when only one slit is open, as
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one would expect from particles. Rather, one obtains an inter-
ference pattern corresponding to waves. This is quite revealing.
For it says that photons, even though particles, do not move in
well defined trajectories. For if they did, then they would not
exhibit interference.

The result of the experiment can be explained by assuming that
with each particle is associated a wave function ¢ (z,t) such
that |t)(x, t)|?dx measures the probability of finding the particle
between x and x + dx. Since the particle is described by a wave
function, it can interfere with itself and, as a consequence, one
obtains an interference pattern, rather than just the sum of the
intensities.

So, one of the first things we learn is that, unlike classical me-
chanics where the position and the momentum of particles are
well determined quantities, in quantum mechanics, there is in-
determinacy. Furthermore, a wave function is associated with
a single particle rather than with a wave. Thus, we look for
a description of microscopic dynamical systems which would
accommodate such behavior and this is commonly known as
quantum mechanics.

Microscopic systems. To determine the behavior of a system, one
performs measurements which consist of a series of operations on the
system. For example, the position of a particle is determined by ra-
diating it with light or photons and then detecting the reflected light.
The process of measurement, therefore, introduces a disturbance into
the system. For example, the measurement of position would change
the momentum of the system. If the system is such that the change
or the disturbance is negligible, then, we say that it is a macroscopic
system. On the other hand, if the disturbance due to the process of
measurement is appreciable, then, we talk of a microscopic system.

Observables. Observables are results of measurements. As we have
discussed, a measurement is some kind of an operation on the system.
Therefore, the process of measurement can be thought of as an oper-
ator acting on a state of the system. The result of an operation is an
eigenvalue of the operator corresponding to the specific measurement
process and, since the results of measurements are real, the oper-
ators corresponding to measurements are assumed to be Hermitian
(see (2.89)). However, we also know that operators do not commute
and the identification of operators with the process of measurement
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would imply that the order of measurements in microscopic systems
is crucial. This is, in fact, true. For example, suppose we determine
the position of a system by radiating photons on it. This changes
the momentum of the system. If we make a momentum measure-
ment subsequently, we no longer obtain the true momentum. On the
other hand, if we had measured the momentum first, we would have
obtained a different value for it and it would have disturbed the po-
sition of the particle (momentum for a charged particle, for example,
can be determined by applying a magnetic field which bends the tra-
jectory) and hence a subsequent measurement of the position would
have yielded a different value from the first measurement. This shows
that the order of measurement is, in general, crucial in microscopic
systems. Translated differently, if A and B are operators representing
two measurements, then,

AB # BA. (3.9)

Commutators. For quantum mechanics to be a good description of a
physical system, it should be such that it reduces to classical mechan-
ics when we are talking about macroscopic systems. Classically, of
course, we know that the order of measurements and, therefore, the
order of observable quantities do not matter. Therefore, let us see
what we can deduce about the quantum commutators of operators
from our knowledge of the classical Poisson brackets of observables.
First of all, we note that commutators formally satisfy the same al-
gebraic properties as the classical Poisson brackets (compare with
(1.57)), namely,

[A,B] = AB — BA= —[B, A],
[A,C] =0, C = C'1 = constant,
[A1 + A, B] = [Ay, B] + [A9, B],
[
[

A1Az, B] = Ay [Ag, B] + [A4, B] Ag,
A BlBg] B, [A, BQ] + [A,Bl] Bs. (310)

Let us now consider the evaluation of the Poisson bracket

{mmn2, prp2}- (3.11)

Using (1.57), we can calculate (3.11) in two different ways. First, we
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have

{mmn2, prp2} = m{n, prp2} + {m, prp2}n2
= mpii{nz, p2} +mine, p1}p2
+ pi{m, p2tne + {m, p1}p2ne. (3.12)

On the other hand, we can also evaluate (3.11) as

{mnz, prp2} = pr{immz, p2} + {mnz, p1}p2
= pim{nz, p2} + pr{m, p2}n2
+minz, p1}oz + {m, p1}mzpe. (3.13)
Subtracting (3.13) from (3.12), we obtain

(mp1 — prm){ne, p2} = {n1, p1}(m2p2 — panz). (3.14)

In classical mechanics, of course, the order of the quantities does
not matter and, therefore, either way of doing gives the same answer
(namely, the difference vanishes). However, when the order matters,
we must have from (3.14)

{m,p1}  {m2p2}
m,p1] [m2,p2) (3.15)

This relation must hold for any pair of observables and, therefore,
the ratio must be equal to a universal constant. Furthermore, the
constant must be imaginary since the ratio in (3.15) is anti-Hermitian.
We also note (from the definition of the Poisson bracket in (1.55))
that the ratio has inverse dimensions of an action so that this constant
must also have the dimensions of inverse action. It is experimentally
determined to be (ik)~! where h = 1.054 x 10727 erg-sec and is the
Planck’s constant defined in (3.1). Thus, we see that we can write

[m1, p1] =il {m, p1}. (3.16)

Quantum correspondence principle. This shows that the quantum com-
mutator of two operators is 44 times the value of their classical Pois-
son bracket. It is clear that, for macroscopic systems where effects of
the order of /& can be taken to be negligible, the commutator can be
neglected and hence the order of quantities would not matter. There-
fore, we see that the Planck’s constant, /i, measures the non-classical
nature of systems. More commonly, one says that one recovers clas-
sical mechanics in the limit A — 0.
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3.2 Postulates of quantum mechanics

We have already seen that the laws of classical mechanics need some
modification so that they can be applied to microscopic systems. And
the modifications should be such that when we are considering a
macroscopic system, we should get back the familiar predictions of
classical mechanics. These modifications are implemented in the fol-
lowing way. Given a classical Hamiltonian system, one goes over
to the quantum description through the following postulates. (We
describe them for an one dimensional system for simplicity. The gen-
eralization to any higher dimension is straightforward.)

1. In classical mechanics a system at a fixed time is described by
the coordinates z(t) and the momenta p(t).

In quantum mechanics the state of a system at a fixed time is
denoted by the infinite dimensional vector |¢(t)) which belongs
to a Hilbert space.

2. Every dynamical variable w in classical mechanics is a function
of the phase space variables x and p. Thus, w = w(z,p).

In quantum mechanics the observables x and p are replaced by
the Hermitian operators X and P with the nontrivial commu-
tation relation

[X,P] =ih=ihl. (3.17)

Furthermore, these operators have the following matrix ele-
ments in the eigenbasis of the operator X (see (2.162) and
(2.184)),

(@|X]a") = 2é(z — a'),

(x|P|2) = —ih% S(x —2). (3.18)

Any operator  corresponding to the classical observable w(x, p)
is obtained as the same function of the operators X and P.
Thus,

w(z,p) — QX, P). (3.19)

However, we note that since in classical mechanics zp = pz,
there is an ambiguity of operator ordering in the definition of
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such a product of operators. The ambiguity is resolved by as-
suming that when dealing with products of two non-commuting
operators, one symmetrizes them. Thus, the operator ordering
is effected through

1
p — 5(XP + PX). (3.20)

3. In classical mechanics if a system is in the state x(t) and p(¢),
then, the measurement of an observable w(z,p) would yield a
unique value and the system will be unaffected by the process
of measurement.

Quantum mechanics, on the other hand, gives probabilistic re-
sults. If a system is in a state |¢)), then a measurement cor-
responding to (2 yields one of the eigenvalues, w;, of 0, with a
probability

N Hwil)? o) =
P(w;) = ol ;P( ;) = 1. (3.21)

As a result of the measurement, the state of the system changes
to the eigenstate |w;) of the operator .

4. In classical mechanics, the state variables change with time ac-
cording to Hamilton’s equations of motion (see (1.43))

. OH ) 0OH

In quantum mechanics, the state vectors evolve with time ac-
cording to the Schrodinger equation

d
iy [W(0) = HIy()), (3.23)

where H = H(X, P) is the Hamiltonian operator.

In fact, this last postulate is not an independent postulate and
can be argued to arise in the following manner. We know that
H(X,P) is the operator corresponding to the total energy of
the system. Therefore, if |1)) is an eigenstate with energy E
then one can write

Hl|p) = Ep), (3.24)
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just as, we have for momentum,
Plp) = plp). (3.25)

In relativistic mechanics, however, we know that the energy
and momentum form a four vector denoted by P, = (F,—p).
They behave like different components of the same object. The
relative negative sign is a consequence of the structure of the
Lorentz group (or the structure of the four dimensional space-
time). In the same way, we also know that space and time are
similar in nature. We have seen in (2.187) that the momenta
in the x basis (coordinate basis) correspond to operators of the
form

d
P — —ih —. 3.26
e (3.26)
Based on arguments of Lorentz transformations, this, therefore,
suggests that

d
H —ih —. 2
— ih p” (3.27)

Therefore, in the (z,t) basis, we expect

d

Hy(t)) = ih - [0(1)), (3.28)

which is the Schrédinger equation.

Implications of the postulates. In quantum mechanics, therefore, the
physical system is described by a state vector belonging to a Hilbert
space. By definition, a Hilbert space is an infinite dimensional vector
space. So, it is natural to ask, how a classical two component system
(specified by z,p) acquires infinite degrees of freedom in going to a
microscopic system. The answer is easy to see if we go to a basis, say
the x basis, where (x|¢(t)) = ¥(z,t) is the coefficient of expansion
of the state and this is also the wave function that we talked about
in connection with the double slit experiment. We know that the
particles in microscopic systems do not move in definite trajectories.
Rather, they spread out and the spread can be infinite. |¢(z,t)>dx
measures not only the probability of finding a particle between =z
and x + dx, but also how the probability changes with time. Thus,
there is an infinite amount of information contained in the state and,
consequently, it is infinite dimensional.
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The probabilistic nature of quantum mechanics, of course, im-
plies that two states |¢)) and «l¢) give the same probability for a
particular measurement. Thus, corresponding to each physical state
|1}, there exists a set of states af¢) for all possible complex values
of a which define a ray in the Hilbert space. For a physical state,
of course, we assume (¥|¢)) = 1 or equal to a Dirac delta function
(namely, normalized states). This still allows for a ray of the form
1)

Since the state vectors define a Hilbert space, if |¢)) and [¢)
define two states of the system, then, a|iy) 4 3|1') also defines a state
because the Schrodinger equation, (3.23), is a linear equation. This
is known as the principle of superposition. This is also quite common
in classical mechanics. However, the implication of the principle of
superposition here is quite different as we will see below. (Note that
the principle of superposition is a consequence of the linear nature of
the operators in quantum mechanics.)

If a state coincides with an eigenstate |w;) of some operator €2,
then, the corresponding measurement would, for sure, yield the value
w;. This follows immediately from the fact that

|{ws ) |2 B | {ws|w;)|? B
W) () (3.29)

Let us next consider the state formed by superposing two eigenstates
|w1) and |we) of the operator €. In other words, let

P(w,) =

alwy) + Blwa)

VIeP +18P

This state is normalized, if the eigenstates |w;) are. If one makes a
measurement corresponding to 2 in this state, then, from the defini-
tion in (3.21), we see that the measurement would yield a value wy
with probability % and a value wy with a probability %
Thus, the measurements reveal that a superposed state sometimes be-
haves like it is in one of the eigenstates and sometimes in the other.
This is quite different from the classical superposition principle. For
example, if f(x) and g(z) correspond to two different configurations
of our string example, then af(z) + Sg(x) also corresponds to a con-
figuration of the string. However, measurements on this configuration
are unique and distinct from those on f(x) and g(x).

If an operator is degenerate, say €2 is doubly degenerate with

eigenstates |w, 1) and |w, 2), then the probability that a measurement

) = (3.30)
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would yield an eigenvalue w is given by (compare with (3.21))

1
P(w) = = [[w, 1) + [w, 216)[*] (3.31)
i | }

Let us also note that there are other plausible explanations, such
as the hidden variable theory, for the failures of classical mechan-
ics. However, these do not help very much in practical calculations.
Hence, we will not discuss them in these lectures.

3.3 Expectation value

Let us suppose that a physical system is in a quantum mechanical
state |¢) and that a measurement corresponding to the operator 2 is
made. Then, clearly, from our earlier discussions, we conclude that
we will obtain an eigenvalue w; with probability P(w;). Now suppose
an infinite number of such experiments are performed. Then, one
obtains a variety of values with different probabilities. We can ask
what is the statistical mean of these measurements, which we can
then, identify with the average value of the operator in the state,
namely,

() = ZP(wi)wi. (3.32)

It now follows that (We are assuming that the state [¢) is normalized
and that the eigenvalues of 2 are discrete. The case of continuous
eigenvalues can be handled by replacing the sums with integrals.)

(Q) = ZP(wim — Z [ {wily)Pw;

= D (@)l = D (Wl (wily)ws

i

= S wily) = (10 (Z rwi><wz~r> )
= (W), (3.33)

where we have used the completeness relation of the eigenbasis of the
operator () in the intermediate steps, namely,

>l wil = 1. (3.34)
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We note that (2) is known as the expectation value of the operator
2 in the state |1)) and gives the statistical mean of the measurements
performed on the system in that state. It is clear from (3.33) that if
the state is an eigenstate of the operator, then the expectation value
would be the eigenvalue corresponding to that state.

We can similarly define the expectation value of the operator Q2
in the state [¢).

Q%) = (Y[Qy) = (¥|Q? <Z |wi><wz-|> %

= D (100w (@ilt)wr = 3wl (wify))o?

(2

= Z P(w;)w?. (3.35)

Similarly, we can calculate the expectation value of any higher power
of the operator and these would correspond to the familiar moments
of a distribution in statistical mechanics.

3.4 Uncertainty principle

Let A and B be two non-commuting Hermitian operators with the
commutator given by (we do not write explicitly the identity operator
on the right hand side)

[A, B] = ih. (3.36)

As we have seen before, A and B, in such a case, are called conjugate
operators. Let AA be the root mean square deviation for the operator
A in a given quantum mechanical state, [¢), so that

(AA)? = (Y|A%|y) — (W|AJY)? = (A%) - (4)%. (3.37)

Similarly, let AB be the root mean square deviation for B in the
same quantum state so that

(AB)* = (B?) — (B)% (3.38)

Then, Heisenberg’s uncertainty relation says that

AAAB >

LS

(3.39)
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To derive the uncertainty relation, (3.39), let us note, first of all,
that we can write

(AA)? = (A?) — (A)? (3.40)
=((4 —(4)*), (3.41)

and, similarly for (AB)2. Let us also define
A=A - (A, B=B —(B). (3.42)

Then, clearly, since the expectation value is a constant,
[A,B] = [A, B] = ih. (3.43)
Furthermore, using (3.41) and (3.42), we can write

(AAP(AB)? = (A = (A)*N(B — (B))*)

— (A2)(B?)
> |(AB))? (Schwartz inequality)
= |(5(AB + BA) + L(AB - BA)?
= [(5(AB + BA) + {4, B
= (5(AB + BA) + TP
1 - = h?
= (5 (AB+ BA)? + T (3.44)

Since the first term on the right hand side of (3.44) is positive semi-
definite, this proves that

AAAB > g (3.45)

This result tells us that for any pair of conjugate variables, there
is a minimum of uncertainty associated with their measurements. Let
us note that if |¢) is an eigenstate of one of the operators, say A, then,

AA = (|A%) — (V]Alh)* = 0. (3.46)

This implies that we can measure the quantity A precisely or accu-
rately in this state. The uncertainty principle, (3.45), then, says that
the measurement of B in this state would be infinitely uncertain,
since

h
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» Example. Let us look for the form of the wave function for the state in which
the uncertainty is the minimum. First of all, note that the Schwartz inequality
becomes an equality if the vectors are parallel (recall that |A|*|B|?> = |A - BJ? if
the two vectors, A and B, are parallel). Thus, for minimum uncertainty, we must
have

Alp) = ABlp),  (p|A=X"(y|B. (3.48)
This implies that
SWIAB + BA)Y) = S\ BB + ABB))

(A + X)(¥|BBJy)

= N= D=

= SO A (BY|By). (3.49)

If this vanishes, then, we see from (3.44) that

h

(A4)(AB) =3,

(3.50)

which is the minimum uncertainty. Since (Bi|Bv) > 0, unless |Bi) = 0, for
the vanishing of (3.49), we must have A + A* = 0, which implies that X is pure
imaginary. Let A = —ic where c is real. Then we see from (3.48) that Al)) =
AB|Y) = —icB|¢). Furthermore, by definition, (3.42),

A=A—-(A), and B=B-(B).

Since A and B are conjugate variables, we can express them as differential oper-
ators, as we have seen earlier. As an example, let us consider

A=X, and B=P (3.51)

Then, in the coordinate basis, we have

(@ = (XN0te) = —ic (—ingl — () ) wio),

or, 28— (-2 @= 00+ (7)) vt
or, (z)= Nexp {—%(x — (X)) + %<P>£C:| . (3.52)

This is a Gaussian centered at z = (X)) with a width Az given by

_2 (3.53)

and the normalization N can be determined easily. <

Exercise. Determine N in the above example.
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3.5 Ehrenfest theorem

Let us consider an operator € and its expectation value (€2) in a state
|1)). We can ask how the expectation value of {2 changes with time.
We can, of course, write

d d
E<Q> = E<T/}|Q|T/)>
= (Y120) + (¥ \ rw> + (120). (3.54)
On the other hand, we know from the Schrédinger equation that
d . .
ihay [9(1) = ihly) = Hly),  —ih(d] = (Y|H. (3.55)
Substituting this into (3.54), we have
d .
= @190p) + ( | |¢> (¥]€y)

LA HOR) + I ) — I )

<! \¢> <¢![H7QH¢>. (3.56)

If the operator 2 has no explicit time dependence, then, the first term
on the right hand side of (3.56) vanishes and we have

d i 1

—(Q)=—=W|[Q,H = —|[Q, H]|v). .
40 = — 1 Wl HJ9) = — (619, H]Y) (357)
This is known as the Ehrenfest theorem. Remembering the quantum
correspondence principle (3.16), namely, [A, B] = ih{A, B} we note
that this is quite analogous to the classical Hamiltonian equation (see
(1.54))

dw
— ={w,H}.
dt { }
In other words, Ehrenfest’s theorem says that expectation values of

operators in quantum states obey classical equations.

» Example. As a direct application of the above discussions to particle motion in
one dimension, where

H= % +V(X), (3.58)
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we can calculate the time evolution of the expectation value of the coordinate
operator using (3.57),

a(x) d _ 1
==l E<¢|X|w> = ZWIX, H][¥)

Vo] )

% g
s J

1w
i
- % — (4| PLX, P] + [X, PIP|Y)
_ % « L X 2h(|P|))
= Liiplyy = 2. (359

Let us recall from (1.43) that in classical mechanics we have & = %—ZI = L which
can be compared with (3.59).
Furthermore, the time evolution of the expectation value of the momentum

operator is obtained to be
d(P)y d 1
o = a(WPW’) = m@/’HRHHT/})

P2

Wl [P+ VOO 10

1
"
= (I[P V(0]
1
ih

dv
= Liiim VD 1y
. dV( ) dV(X)
=~ ) = ~( ). (3.60)
Once again, we note from (1.43) that in classical physics,
. _0_H _ _dV(:c)
P="%5: = dz ’ (3.61)

which can be compared with (3.60).
Thus, we see that, for an operator €2, which does not depend on time ex-
plicitly, the expectation value (©2) has the following evolution equation

)

7 1
S = 20, H)) = (0, H)). (3:62)

Let us consider a state |1)) where the position measurement yields a value x
with uncertainty Azxz. And the momentum measurement yields a value p with
uncertainty ~ ﬁ. If the state is such that the uncertainties Az and ﬁ are
negligible compared to the measured values x and p, then, we can replace

(X) ==,

(P)=p } x and p being classical quantities. (3.63)
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For such a state, therefore, the fluctuation around the mean is negligible and we
can write

(X, P)) = Q((X), (P)) = Q(z,p) = w(z,p). (3.64)
Therefore, in such a case we can write the Ehrenfest equation as

d(©)

dw
o =@ = @) (3.65)

which is nothing other than Hamilton’s equation, (1.54). Thus, we see that quan-
tum mechanics, when applied to macroscopic systems (where uncertainties in mea-

surements can be neglected), indeed reduces to classical Hamiltonian mechanics.
|

3.6 Stationary state solutions

Let us consider a simple quantum mechanical system where the Ham-
iltonian does not depend on time explicitly, namely,

H # H(t). (3.66)

The Schrédinger equation, (3.23), is given by

. d
ih g7 () = Hlw). (3.67)

This is a first order differential equation. Therefore, given one initial
condition, [¢(0)), the solution can, in principle, be uniquely deter-
mined. Given an initial solution, one can also think of the solution
at any finite time as resulting from the effect of an operator acting
on the ket (vector) at ¢t = 0. In other words, we can write

() = U@®)|4(0)), (3.68)

where U(t) is the operator which translates the time coordinate of
the state vectors.

The main interest in quantum mechanics is to determine this
operator U(t). To find U(t), let us work in the eigenbasis of the
Hamiltonian H. Thus, let

H|E) = E|E). (3.69)

In this basis, we can expand the state vector as

(1) =D IENER®) = an(t)|E), (3.70)
E E
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where

ap(t) = (E[(t)). (3.71)

Here, if the eigenvalues of the operator H are discrete, then one
uses a summation. However, if the eigenvalues E take continuous
values, then, one must replace the sum in (3.70) by an integral. We
will assume the energy eigenvalues to be discrete for simplicity. In
this basis, we can write

m— [(t)) = H|yp(2)),
or, ihY_ ay(t)|E) = FEay(t)|E), (3.72)
E E

where we have used the fact that the basis states |E) are time in-
dependent, since the Hamiltonian is. It follows from (3.72) that, for
every energy mode, we can write

ihap(t) = Eag(t),

dag(t i
or, dEt( ) = —ﬁEaE,
or, ap(t)=ap(0)e #E, (3.73)

which allows us to express the state vector as
() = ap(t)|E) =Y ay(0)e 1" |E). (3.74)
E E

On the other hand, from the expansion of the state in the energy
eigenbasis, (3.70), we also recognize that

=Y as(O)|B),  as(0) = (E[(0)). (3.75)
E
Using this in (3.74), we see that we can write
)) = ZaE(O)e_%EﬂE)
E
= > e B (0)B)
E

= > P B) (Bl (0))
E

U(#)[4(0)), (3.76)
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where we have identified

Z e+ EYEV(E (3.77)

This determines the operator U(t), which leads to time evolution of
physical states (and, therefore, is also known as the time evolution
operator). If the eigenvalues of H are degenerate, then we can in-
troduce a label « for the degeneracy and then, the time evolution
operator can be determined in an analogous manner to be

Uty =3 e i B, a)(E,al. (3.78)
a K

Let us note here parenthetically that, since our main goal is to de-
termine U (t), this can be achieved if we know the energy eigenvalues
and eigenstates of a quantum mechanical system.

Clearly, states of the form

Vs (t)) = |E(t)) = e # P E), (3.79)

satisfy the Schrodinger equation. Such states, which are eigenstates of
the Hamiltonian, are called stationary states because, in such states,
the probability for measurement of any time independent operator €2
is independent of time. Namely,

Pw,t) = [(wlbp(®)? = [(w|E)?
= |(w|B)e 7P = |(w|E)|?

= P(w,0), (3.80)

where |w) is assumed to be time independent since {2 is.
We can also write the time evolution operator in the form

=S e B E)N(E
E
—Ze B (B| = e #1Y |B)(E|

E

= et (3.81)

It is also clear that this expression is formally true even if the eigenval-
ues of H are degenerate. We say, formally, because the convergence
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of this series is hard to prove. Since H is Hermitian, it follows that
U(t) is a unitary operator. In other words,

UTU(t) =1 =U@)U(¢), (3.82)
and, consequently,

W@)p(2) = (DO)UT U 1)][(0)) = (¥ (0)[1(0)). (3.83)

If the Hamiltonian depends on time explicitly, namely, if

H = H(t), (3.84)
then, the time evolution operator takes the following form

Ut) =T (e—% Jodt' H <t’>> , (3.85)

where T is the time ordering operator which orders operators with
larger times to the left.

It is clear that the operator U— both for time dependent and
time independent Hamiltonians — depends on the initial time as well
as the final time,

U = Ulta, th), (3.86)
so that
[V (t2)) = Ulte, t1)[b(t1))- (3.87)

Namely, it takes a state at time ¢; to a state at time to. Furthermore,
the time evolution operator satisfies the following relations

Ul(ty,t1) =1,
U(tg,tg)U(tQ,tl) = U(tg,tl),
UT(tQ,tl) = U_l(tg,tl) = U(tl,tg). (388)

Let us now solve the same problem of a time independent Hamil-
tonian in the z-basis (coordinate basis). The Schrédinger equation
leads to

m— () = Hli(t)),

or, ih S (alu() /Mxmmxwo>

O (a1
h(‘)t

or,

= (g 2 V@ ) vl (3:89)
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Since time and space derivatives are completely decoupled in
(3.89), let us assume a separable solution of the form

(e, 1) = u(e)g(t). (3.90)

Substituting this into (3.89), we obtain

2 2
i) G =) (-5 + V) ) ulo)

dt "~ 2mda?
. 2 2
or, m% - ﬁ <—;—m% v V(x)) u(x). (3.91)

Since the left hand side depends only on time and the right hand
side depends only on spatial coordinates, for them to be equal for all
times and space, both sides must be equal to a constant which we
call E. Thus, the relation in (3.91) leads to two equations, the first
of which has the form

L9
ih g(t) b
or, g¢(t)=g(0) e #Et, (3.92)

Furthermore, the second equation following from (3.91) gives

R d?
<—% 12 + V(a:)) u(z) = Eu(z). (3.93)
Thus, we can write the wave function for the system as

V(e t) = u(@)g(t) = u(z)e i, (3.94)

where the constant g(0) has been absorbed into u(z). Equation
(3.93), in the coordinate basis, is also known as the time indepen-
dent Schrodinger equation which determines F from the dynamics of
the system.

Exercise. Convince yourself that E is the energy of the system. How is u(x) related
to the expansion in the energy basis?

3.7 Continuity equation

In electrodynamics, we know that the total charge of a system is a
constant independent of time, namely,

@ = constant # Q(t). (3.95)
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Such a relation is known as a global conservation law. Global conser-
vation laws allow for the possibility of charges disappearing at some
place and appearing suddenly at some other place within a given
region. However, in electrodynamics, we also know of a continuity
equation

Ip(r,1)
ot

where p is the electric charge density and J, the current density at
some point. Integrating (3.96) over a small volume we have

%/dgrp(r,t):—/dng-J:—/dS-J, (3.97)
1% 1% Sv

where Sy is the surface which bounds the volume V. This shows
that any decrease in the charge, in an infinitesimal volume, must be
accompanied by a flux of electric current out of the volume. In other
words, charge has to be locally conserved. Such conservation laws
prohibit simultaneous sudden destruction of charge at some point
and creation of charge at some other point, which is allowed by global
conservation laws.

In quantum mechanics, we also have globally conserved quanti-
ties. For example, we have already seen that (see (3.83))

WD) = O[T ()T 0)](0)) = ((0)|(0). (3.98)

If the states are normalized, this implies that the probability of find-
ing a particle anywhere in space is unity at all times. Namely,

BO(0) = 1= (HH)(0)
- / da: ((t) ) b (1))

— V. J(r,1), (3.96)

_ /daz O (2, )l 1)
_ / dz P(x,1). (3.99)

However, there are also local conservation laws in quantum me-
chanics. For example, let us consider the Schrodinger equation in
three dimensions in the coordinate basis (see (3.89)),

oY(r,t)

ih
RAT

2m

2
= Hip(r,t) = <—h— V2 + V(r)> Y(r,t).  (3.100)
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Taking the complex conjugate of (3.100), we obtain

*(p 2
PR = o) = (—g VPV ) 0w

2m
(3.101)

—ih

Multiplying (3.100) by ¢*(r,¢) and (3.101) by v(r,t) and subtracting
one from the other, we have

* 2
(w Y o2 ) I ety — vy,

2m
h2
or, (YY) = 0 (Vi (V)
or, () = —i VWV~ (VOO (3.102)

We know that 1*(r,t)y(r,t)d3r = P(r,t)dr gives the proba-
bility of finding a particle between r and r 4+ dr at a given time t.
Therefore, P(r,t) corresponds to the probability density. We can also
define a probability current density associated with the particle as

S— L (" (x, )V (r, t) = (Vi (x, 1))y (r, 1)) , (3.103)

2im

so that we have the continuity equation

OP(r,t)
ot

= —V - S(r, ). (3.104)

This again leads to a local conservation law, namely, locally the
change in the probability density must be equal to the negative of
the probability flux out of that volume. In other words, probability
can not suddenly change at distinct points. The continuity equation,
therefore, emphasizes that the solutions of the Schrédinger equation
must be such that both ¢(r,t) and V(r,t) should be continuous
functions (for regular potentials). This can be seen in the follow-
ing manner. Let us note that, for stationary states (see (3.93)), the
Schrodinger equation is a second order differential equation, namely
(consider one dimension for simplicity and note that the time depen-
dent phase drops out in P, S for stationary states),

d?u(z)  2m

o = gz V- B)u(). (3.105)
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Integrating this over an infinitesimal interval around x = {, we obtain

(e &2 ( ) (e 5
. u(x . m
lg% dz 2 - lg% dz =) (V(z) — E)u(z),
(—e (—e
(e
. du(z) e 9
or, lg% I |, = ll_% ) dz V(z)u(z) — 0. (3.106)

which holds for continuous potentials.

3.8 Schrodinger picture and Heisenberg picture

We have seen that the time dependent Schrédinger equation has the
form

d
ih — [s(t)) = Hls(t), (3.107)
and implies that

[0s(t)) = €1 yh(0)), (3.108)

when the Hamiltonian is independent of time. Let us further assume
that operators do not have any explicit time dependence. Then, the
expectation value of operators change with time according to the
Ehrenfest theorem (see (3.57)) as

d d
(2s) = (s (Qss(1))

— sl Hs (1) (3109

Thus, even though the operators do not have time dependence, the
expectation values of the operators, which are physically observable,
change with time because the state vectors bring in time dependence.
Such a description where time dependence is carried entirely by the
state vectors is known as the Schrodinger picture (which is the reason
for the subscript). On the other hand, we can think of a description
where the state vectors do not have any time dependence. That is,
they are constant in time. However, the operators are now functions
of time. Such a description is known as the Heisenberg picture. The
situation here is somewhat analogous to rotations which you are all
familiar with. For example, while considering rotations of physical
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systems, one may consider the reference frame to be fixed and the
system to be rotating. However, one can also view the same phe-
nomenon as if the system were at rest and the reference frame was
rotating in the opposite direction. Physics, of course, does not depend
on what viewpoint one takes.

Thus, it is clear that if we want the state vectors to be indepen-
dent of time, then, we can define them as

Yu) = [1hs(0)) = en ™ [ys(t)). (3.110)
Furthermore, using (3.108) and (3.110), we have

(s (£)| Qs (£)) = (1s(0)]er Tt ge™H M |y5(0))
= (YulQultn), (3.111)

where we have defined
Q= enHiQ e 7t (3.112)

This defines the operators in the Heisenberg picture, so that the ex-
pectation values remain the same in the two descriptions. It is clear
now that

d dQy

d
E(qﬁs(t”QSWS(t» = E<¢H|QH|7;Z)H> = <¢H|T|¢H>
= (¢H|W|¢H> - ﬁ<¢H| [QH,H] |7;Z)H>7 (3-113)

where we have identified
oy _ E%Ht s e—%Ht.
ot ot
(Namely, we are allowing for some explicit time dependence of €g.)
Since, in the Heisenberg picture, the state vectors (bras and kets) do
not depend on time, we can also write (3.113) as an operator equation
dQ o0 i o0 1
S L0, H) = S |
dt ot h ot ih
This describes the time evolution for operators in the Heisenberg pic-
ture, which is quite analogous to the Hamiltonian description of clas-
sical mechanics. We can also derive (3.115) by direct differentiation
of the defining relation for the operator €, in (3.112).

(3.114)

Q. H|. (3.115)

Exercise. Show that the Hamiltonian remains the same in both the Heisenberg
and the Schrodinger pictures.
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3.9 Selected problems

1. Prove the Jacobi identity for non-commuting operators A, B, C,
namely,
(4, [B,C]] + [B,[C, A]] +[C, [4, B]) = 0. (3.116)

2. Prove the Cauchy-Schwarz inequality as well as the triangle in-
equality in a linear vector space with an inner product. Namely,
if | f) and |g) denote two vectors in such a space, then show that

a)  |(flo)® < (f1£){glg), (Cauchy-Schwarz inequality).
(3.117)

o) MY+l < AW+l (Triangle inequality),

where

11417 = (A]4). (3.118)

3. Find a set of three 2 x 2 matrices satisfying

[Qm Qy] = _iQZ7
[ny Qz] = _iQx,
[Q27 Q:c] = _iQy' (3.119)

4. Consider a quantum mechanical operator represented by a 3 x 3
matrix

(3.120)

a) If a quantum mechanical system is in a state (not normalized)
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3 BASICS OF QUANTUM MECHANICS

W) = | 2i |, (3.121)
~1

then, which of the eigenvalues of €2 is most likely to emerge in
a measurement?

b) What would be the average value for the measurement of
in this state?

. a) If Q is a dynamical operator which does not depend on ¢

explicitly, then, show that the expectation value of the operator
in an energy eigenstate satisfies

— —. (3.122)

b) Using this result, show that in one dimension if a particle
moves in a potential V(x) = gz™, where g denotes a coupling
constant, then, in an energy eigenstate

2(T) =n (V). (3.123)
Here T,V denote respectively the kinetic and the potential en-

ergy operators and this relation is known as the quantum virial
theorem.
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CHAPTER 4
Simple applications of Schrodinger
equation

In these lectures, we will apply the principles of quantum mechan-
ics described in the last chapter to study some simple, one dimen-
sional quantum mechanical systems. This will bring out the essential
features of quantum mechanical systems and will also illustrate the
differences of such systems from their corresponding classical coun-
terparts.

4.1 Free particle

Let us consider a free particle of mass m moving in one dimension.
The Hamiltonian, in this case, is simple and has the form

P2
= —. 4.1
o (4.1)
Therefore, the Schrédinger equation,
L d|w(t
in L prpgy, (42)
in this case, takes the form (in the x-basis),
SOt B2 9
o 2m  0z2
P(e,t)  ih Pu(st)
e T e v (43)

This is like the heat equation except that the coeflicient, on the
right hand side, is imaginary. The solution of (4.3) can be written as

2
N _*72
Y(x,t) = ————— e 207+ (4.4)

2 4 it
a+m
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90 4 SIMPLE APPLICATIONS OF SCHRODINGER EQUATION

[AP=)

where “a” is a constant, which can be determined from the initial
value of the wave function. The constant N is determined from the
normalization of the probability (wave function). The probability
density, in this case, is given by

2

N|? T
b = NP e (4.5)

/ 242
ar/a? + P

Thus, we see that the wave function for a free particle, also called
a wave packet, is such that the probability density is described by a
Gaussian. The probability of finding the particle peaks around z = 0
and the Gaussian has a mean width of

1 (4 R 3
A = ﬁ <CL + m2a2> . (46)

Therefore, we see that, by choosing an appropriate “a”, we can lo-
calize the particle fairly well initially (at time ¢ = 0), but as time
grows, the width of the Gaussian increases. This is known as the dis-
persion of the wave packet and is a general feature of most quantum
mechanical systems.

Exercise. Derive the same result by working in the momentum basis and then
transforming to the z-basis.

4.2 Infinite square well

Let us consider the one dimensional potential given by (see Fig. 4.1)

0 for 22 < a2
Vv — ’ - 4.7
(z) { oo, for x? > a2 (4.7)

To examine the motion of a particle in this potential, let us attempt
to solve the system with

0, fora?<a? or, —a<z<a,

|4 = 4.8
(z) {VO, for 22 > a?, or, x > a, z < —a, (48)

and take the limit V[ — oco. In the z-basis, the Hamiltonian has the
form

h? 42
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I 11 111

Figure 4.1: Particle moving in an infinite square well.

with V(x) given in (4.8). The time independent Schrédinger equa~
tion, (3.93), in the present case, takes the form

R? 42
<—% T2 + V(a:)) u(z) = Eu(z). (4.10)
Since the potential in the problem is different in different regions, we
have to solve the Schrodinger equation separately in the three regions.

Region I: x < —a. In this region, the potential is a constant and
the Schrodinger equation has the form

2 d%u
T om g2 V=B
2w 2m
or, @ = ﬁ (‘/0 — E)u, (411)

where we are assuming Vo > E > 0. We note here that, since inside
the potential well the potential vanishes, E represents the kinetic
energy of the particle in that region which has to be positive, leading
to £ > 0. Furthermore, we assume Vy > FE because we are ultimately
going to take the limit Vj — oo. The solution of the equation (4.11),
in region I, can be written in the form

up(z) = Ae™ + Be ", (4.12)

where A and B are constants and we have defined
2m
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92 4 SIMPLE APPLICATIONS OF SCHRODINGER EQUATION

It is clear from the solution (4.12) that if the wave function has to
retain a probabilistic interpretation, we must have

B =0, (4.14)

because, otherwise, it will grow exponentially as x — —oco and would
not converge (can not be normalized). Thus, for x < —a, the solution
for the time independent Schrodinger equation has the form

up(z) = Ae™. (4.15)
However, as Vy — 0o, kK — oo. Therefore, in this limit,
u(x) =0, r < —a. (4.16)

Region I1I: ¢ > a. As in region I, we can show that, in this
region as well, the wave function vanishes,

upr(x) = 0, T > a. (4.17)

Region II: —a < x < a. In this region, the potential vanishes so
that the Schrédinger equation takes the simple form,

r? d%u
T om a2
d%u 2mE 5 5 2mE
T T e TR R
or, ur(x)= Csinkz+ D coskz, (4.18)

where C' and D are arbitrary constants.

We know from our earlier discussions that the solutions of the
Schrodinger equation have to be continuous everywhere and, in par-
ticular, at the boundaries. Therefore, matching the solutions at
x = +a we have

urr(a) = C'sinka + D cos ka = 0 = upyi(a),
upr(—a) = —C'sinka + D cos ka = 0 = ur(—a). (4.19)

These linear homogeneous equations (in the unknowns C' and D) can
have nontrivial solutions only if the determinant of the coefficient
matrix vanishes, namely,

sin ka cos ka = 0. (4.20)

There are two possible nontrivial solutions to the set of conditions in
(4.20).

16:35:11.



4.2 INFINITE SQUARE WELL 93

1. Even solution: cos ka = 0.

In this case, it follows from (4.19) that
C =0,

and we must have (for cos ka = 0 to hold)

2 1
ka = w, n integer
2 1 2,2
or, kg:7(n+)ﬂ'7
4a?
h2 k2 (2n + 1)2712712
E = no_ . 4.21
o, Sm 2m 8ma? ( )

In this case, the nontrivial solution in region II has the form
un(x) = Dy, cos kpz, —a<z<a, (4.22)
which is an even function of z.

2. Odd solution: sinka = 0.
In this case, it follows from (4.19) that

D=0,
and we must have (for sin ka = 0 to hold)

ka =nm, n integer # 0,

2.2
9 nom
or, k, = 2
h2k2 n2r2h2
E = n _ . 4.23
o En om 2ma? (4.23)

The nontrivial solution in region II, in this case, takes the form
up(x) = Cpsinkyx, —a <z <aq, (4.24)
which is an odd function of x.

We note that corresponding to every value of FE,, given in (4.21) or
(4.23), we will have a physical solution and we can write a general
solution of the Schrédinger equation as a linear superposition

ZAnun Je~wEnt, (4.25)
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94 4 SIMPLE APPLICATIONS OF SCHRODINGER EQUATION

where A,,’s are constants.

One of the things that we notice immediately from this analysis
is that, whereas classically particle motion is allowed for any E > 0,
quantum mechanically particle motion is allowed only for discrete
values of the energy, namely, energy for the system is quantized (see
(4.21),(4.23)). We also see that for this system,

lim w(z) — 0. (4.26)
|z| =00
Such a system, where the wave function vanishes (beyond a certain
range or asymptotically), is called a bound state solution and, for
every bound state, we have quantization of energy. A very familiar
example is the Hydrogen atom which we will study in detail later. In
fact, in the present system,

u(z) =0, for z2 > a®. (4.27)

Therefore, this system is also referred to as a particle in a box of
length 2a. (The probability for finding the particle outside this region
is zero.)

Exercise. Normalize the solutions obtained for the infinite square well potential.
Calculate Ax for the ground state. Estimate the ground state energy from the
uncertainty principle and compare it with the actual value.

Exercise. Plot the first few solutions and describe their qualitative features. In
particular, show that the nth state has (n — 1) nodes inside the well.
4.3 Finite square well

Let us next consider the same potential as in the previous case, but
with a finite value for the height of the potential (see Fig. 4.2),
namely,

0, for—a<z<a
Vv — ’ - =7 4.28
(z) { Vo, forz>a, z<-—a. ( )

Let us consider the bound state motion of a particle in this potential
for which,

Vo> FE > 0. (4.29)

Once again, we have to solve the equation in different regions sepa-
rately, since the potential is different in different regions.
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I 11 111

Figure 4.2: Particle moving in a square well of height Vj.

Region 1: x < —a. In this region, the Schrodinger equation has
the form,

h? d%u
“omae ~ Vo Blu,
2
or, % = Z}Z—T;L(Vo — E)u = r?u,
AiefT L Age KT 2 2m
or, up(x)=A1e"" + Age™ "™, K= ﬁ(VO - E), (4.30)

where Ay, As are constants and the boundedness of the solution (as
x — —o0) requires that Ay = 0, so that we have

up(z) = A1e™, z < —a. (4.31)

Region I11: © > a. In this region, the Schrodinger equation has
the same form as in (4.30) so that

da? ’
or, wug(z)= B1e™ + Bye ", (4.32)

Since the solution has to be bounded as x — oo, we must have By = 0,
which gives

ugnr () = Boe™ 7, T > a. (4.33)

Region 11: —a < x < a. In this region, the potential vanishes
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96 4 SIMPLE APPLICATIONS OF SCHRODINGER EQUATION

and the Schrédinger equation takes the simple form,

K2 d%u
- — _—E
2m dz2 u,
d?u 2mE 9
or, @Z—?u:—k u,
2mE
or, wup(z) = Cysinkx + Cycoskr, k?= %

(4.34)

As we have already discussed, the solutions of the Schrédinger
equation and their derivatives must be continuous across the bound-

aries. Thus, matching solutions at z = a, we have

urtr(a) = un(a),

or, DBoe ™ = (Cisinka+ Cscoska.
Similarly, matching the solutions at x = —a, we obtain

up(—a) = ur(—a),

or, Aje " = —Cysinka + Cscos ka.
Furthermore, matching the derivatives g—g at x = a, we have
dum(x) . dun(x)
- 3 9
dz  |,_, doz  |,._,

or, — kBee " =k(Cycoska— Cysinka).

Similarly, matching of the derivatives at x = —a gives
dur(x) _ durr(z)
da T=—a dz T=—a 7

or, kAje " =k(Cycoska+ Cysinka).
Adding and subtracting (4.35) and (4.36), we obtain
205 coska = (A1 + Bg)e ™,
2Cy sinka = —(Ay — By)e” ™.

Similarly, adding and subtracting (4.37) and (4.38) we have
2kCq coska = k(A; — By)e "¢,
2kCysinka = k(A; + Bg)e™ "%,

16:35:11.
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To simplify the analysis, let us next define
Ay — By = —Dx,
A + By = Ds. (441)

Then, the two sets of equations in (4.39) and (4.40) can be combined
and rewritten as

2C sinka — D1e” " =0,
2kC1 cos ka + kDje” " = 0, (4.42)

and
205 cos ka — Doe™ " =0,
2kCy sinka — kDge™ " = 0. (4.43)

The set of homogeneous linear equations in (4.42) has nontrivial
solutions (for C; and D;) only if

2sinka  —e ¢
det 2k coska ke R =0,

or, 2xsinkae™ " + 2k cos kae™"* =0,

or, kcotka = —k. (4.44)

The other set of homogeneous linear equations in (4.43) has nontrivial
solutions (for Cy and Ds) only if

2coska —e "¢
det 2ksinka —ke " | 0,
or, —2kcoskae " + 2ksinkae™" =0,
or, ktanka = k. (4.45)

It is clear that it is impossible to satisfy both (4.44) and (4.45) simul-
taneously and, therefore, we have two classes of solutions. In either of
the relations (4.44) and (4.45), however, we see that energy is the only
unknown quantity. Therefore, we see again that quantum mechani-
cally motion is allowed only if the energy satisfies certain conditions.
Let us analyze the two classes of solutions in detail

1. Even solution: ktanka = k.
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In this case, we have
Ci =Dy =0.

Let us define the dimensionless variables, ¢ = ka and 1 = ka.
Then, it follows that (see the definitions in (4.30) and (4.34))

7]2+§2:a2(/£2+k2)

2m 2m
2mVpa?

which is the equation of a circle.

= constant, (4.46)

Furthermore, relation (4.45) can be written in these variables
as

katan ka = ka,

or, ftan =n. (4.47)

Figure 4.3: Existence of even solutions corresponds to intersection
points of the two curves.

The simultaneous solutions of the two equations, (4.46) and
(4.47), can be obtained by plotting the two functions and de-
termining their points of intersection. We note that both & and
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7 take positive values and, therefore, plotting the two functions
on the first quadrant only, we obtain the graph shown in Fig.

2mVya?

4.3. It is clear that they intersect once if 0 < =22 < 2.

There are two intersections if 72 < 2""}1#20“2 < (27)%2. And the
number of solutions (intersections) keeps on increasing as the
value of the parameter 2”%0“2 grows. For each such allowed
value of the energy (determined from the point of intersection),

we will have an even solution in the present case.

2. Odd solution: kcotka = —k.

In this case, it follows that
Cy =Dy =0.

We note that (4.46) continues to hold, namely,

2mVpa®
4 &2 = 0% constant,
72
and, in addition, we can write (4.44) in the dimensionless vari-
ables as
kacot ka = —ka,
or, fcot& = —n. (4.48)

Once again, the simultaneous solutions of (4.46) and (4.48) can
be obtained graphically as before. Plotting these functions in
the first quadrant as shown in Fig. 4.4, we see that if 0 <

2mVpa? )2 : : )2 2mVpa?
52 < (5) , there is no solution. For, (5) < e <

(37”)2, there is one solution (intersection) and so on. Thus, we
see that the existence of solutions depends on the parameters
of the problem like the mass, V; as well as the range of the
potential. A simultaneous solution, of course, determines the
allowed energy for which the quantum mechanical motion is
described by an odd wave function, in the present case.

It is interesting to note here that, for both the even and the
odd solutions, u(z) is nonzero outside the well so that there will be
a nonzero probability for finding the particle there, which is different
from what we would expect in classical mechanics. Let us also note
here parenthetically that, if Vo — oo, then, it is easy to see that the
intersections will occur at £ = (n + 3)m, nm, which is what we have
seen in our earlier analysis (see (4.21) and (4.23) respectively).
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Figure 4.4: Existence of odd solutions corresponds to the intersection
points of the two curves.

4.4 Parity

In the case of the infinite square well as well as the finite square well,
we have classified solutions as even and odd. Let us examine the
origin of this. The time independent Schrédinger equation has the
general form

R? 42

[‘% 1

Let us assume now that our potential is symmetric about =z = 0,
namely, V(—z) = V(z), which is, in fact, the case in the two examples

which we have studied. In this case, upon changing x — —x, the
Schrodinger equation, (4.49), becomes

[hz d?

+ V(az)] u(z) = Eu(z). (4.49)

+ V(x)] u(—z) = Eu(—x). (4.50)

This shows that if u(z) is an eigenstate of the Hamiltonian, so is
u(—z) with the same energy eigenvalue. Therefore, they must be
related by a multiplicative constant,

u(—z) = eu(x). (4.51)
Furthermore, iterating this twice, we are led to

u(z) = eu(—x) = u(z). (4.52)
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V(x)
)
I II 11T
=0 a T

Figure 4.5: Particle incident on a barrier of height Vy with energy
E <.

Therefore, this leads to
=1, or, e==+l. (4.53)

We conclude, therefore, that all the eigenfunctions of a Hamil-
tonian with a symmetric potential are either even or odd under a
reflection of the coordinate (changing x — —x), and are said to have
even or odd parity respectively. The transformation x — —x is known
as space reflection or parity. We will study more about parity later
when we discuss symmetries in quantum mechanical systems.

4.5 Penetration of a barrier

Let us next consider the physical example where a particle with en-
ergy £ > 0 is incident on a potential barrier (see Fig. 4.5) given
by

0, 2<0, z>
V(x):{ = e (4.54)

where V) represents the height of the barrier. If £ < Vj, then clas-
sically we expect the particle to be reflected. But, as we will see,
quantum mechanics allows for a transmitted wave in addition to the
reflected beam. In other words, quantum mechanically a particle can
actually tunnel through a barrier.

Since the potential is different in different regions, we have to
solve the Schrodinger equation separately in each of these regions.

16:35:11.



102 4 SIMPLE APPLICATIONS OF SCHRODINGER EQUATION

Regions 1 and I11. First of all, to get our notations right, we note that
a particle, traveling in a potential free region, can be represented by
a superposition of plane waves. Furthermore, a plane wave moving
in the positive x axis is written as e’** whereas one moving in the
opposite direction is written as e~ %%, Both of them have the same
energy. However, for the first the momentum eigenvalue is positive
(hk) indicating that it is moving along the positive z-axis, while, for
the latter, the momentum eigenvalue is negative (—hk) implying that
it is moving in the opposite direction. Since in regions I and III there
is no potential, the Schrédinger equation has the simple form

_% % _ b, (4.55)
so that

ur(z) = Ae’*® 4 Be~ kT, x <0,

upn (z) = Cetk®, x> a, (4.56)

where we have used our physical intuition that in region I there will
be an incident as well as a reflected wave, while in region III there
can at most be a transmitted wave. As before, we have also identified

2mE
B2

e
I

(4.57)

We note that A, B, C, in (4.56) are constants, but to obtain their
physical meaning, let us write down the probability current densities
in both these regions (see (3.103))

St = % (uf(m)dudlia(f) - uﬂx)%ﬁ)
_ % [m ( Aotk 4 B*eikm) ( ke Be_m>
Lik (Aeik:c I Be—ikx) (A*e—ik:c _ B*eikxﬂ

- [2(AA BB*) + (—A*B + A*B)e

—l—(B*A . B*A)e2zk:c:|

=" (4P~ 1BP) = v (147 - 1BP). (4.58)
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Similarly, in region III we obtain

h * dugn (z duf(x
S = %m (UHI(!E) % — upqr () %)

_ IR e - v|C)?. (4.59)
m

Here, we have defined v as the velocity corresponding to the wave
number k. Furthermore, the expressions for S; and Sy suggest that
they can be interpreted as the net probability flux to the right. This
is also consistent with the physical picture of an incident, a reflected
and a transmitted wave. In other words, A represents the amplitude
for the incident wave, B the amplitude for the reflected wave and C'
the amplitude for the transmitted wave, so that we can also write

Sinc - @ |A|27
m
hk
Sreﬂ = _|B|27
m
hk
Strans = _‘C’2 (460)
m

Region I1. Here the potential is a positive constant and, correspond-
ingly, the time independent Schrédinger equation takes the form

h? d%u
T omadg2 T ou= B
d*>u  2m 9 2m
or, @:ﬁ(%—E)u:I{u, KR = ﬁ(‘/o—E),
or, ug(z)= Die """ 4 Dqye"", 0<z<a. (4.61)

Since the region in which this solution is valid is of finite extension,
both the exponentially growing and the damped solutions are allowed.

The solutions and their first derivatives have to be continuous.
Therefore, matching the solutions and their derivatives at x = 0, we
have

uI(O) :uH(O), = A—I—B:Dl—l—Dg,
ui(0) = up(0), = k(A — B) = k(D1 — Da), (4.62)
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where “prime” denotes a derivative (with respect to x). Multiplying
the first relation in (4.62) by ik and taking the sum and the difference
of the two relations, we obtain,

2ikA = (ik — k) D1 + (ik + ) Dy,
2ikB = (ik + k)D; + (ik — k) Ds. (4.63)

Furthermore, matching the solutions and their derivatives at
x = a we have

umnr(a) = up(a), = Cek® = Dy e " + Dy e"®
ui(a) = up(a), = ikCe™ = —k(Dye™™ — Dye™), (4.64)

so that, from the above two relations, we obtain a relation between
D1 and D9 of the form

(tk + k)D1 e " + (ik — k) Dy e = 0, (4.65)
which leads to
D ik —
L UK =R o, (4.66)

D, (tk + k)
Furthermore, using (4 66) in
B (zk + K

(4.63), we have

—(ik — r)(e* — 1)

(ZZIZ K)? e2ra + (Zk + K})

(k2 4 k?)(e?re — 1)
—(Zk’ _ /{)262l€a + (Zk? + /{)2
_ (I{2 + k2)ena(ena _ e—/ia)
(k2 — k2)(1 — e2ra) 4 2ikk(1 4 e2ra)

(/412 + k2)(erm _ e—lﬂl)
(52 _ k2)(e—/§a _ ena) + 22‘:‘43]{3(6_'{“ + ena)

(k? + k?) sinh ka

= . 4.
—(k? — k2) sinh ka + 2ikk cosh ka (4.67)
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This leads to
B/? B (k% + k)% sinh? ka
Al (k2 — k2)2sinh? ka + 4k2k2 cosh? ka
B (k% + k?)? sinh? ka
(k% 4 k2)2sinh® ka + 4K2k2°

(4.68)

where we have used cosh? z = 1 + sinh? z. Putting in the values for
k% and x? from (4.57) and (4.61) respectively, we have

B|? B (%—?%)2sinh2 Ka
E

(%%)2 sinh? ka + 16{22 (Vo — E)

Vi sinh? ka

— , 4.69
V@ sinh® ka + 4E(Vy — E) (4.69)

Similarly, using (4.66) and the second equation in (4.64), we
obtain
—2k (Dy e "% — Dy ef?)
(ik — k) D1 + (ik + k) Do

ezka

=l Q

—2K <e_"m g—; — e’w>
(ik—lﬁ)g—;+(ik+l€)

_ _ ,—Ka (ik—K) 2ka _ _Ka
25( e e © e )

—(ik — k) W e2ma o (ik + k)

2Keha (Zﬁ;: + 1)

(ik—}i-li) X (—(Zk — H)2€2Ha’ + (Zk + l‘i)2)

B 2ke " (2ik)
(k2 — E2)(1 — e2ra) 4 2ikk(1 + e2ra))
2ikk

_ 4.70
(— (k2% — k2) sinh ka + 2ikk cosh ka)’ (4.70)

which leads to

cl® AR2K?
A (k2 — k2)2sinh? ka + 4k2k2 cosh? ka
4% k?

(k2 + k2)2 sinh? ka + 4K2k2
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4B —B)
B V@ sinh? ka +4E(Vy — E)

(4.71)

The quantities |§‘2 and |%‘2 are known respectively as the re-
flection and the transmission coefficients. (They, basically, measure
the fractions of the incident flux that are reflected and transmitted
respectlvely ) It is obvious from (4.69) and (4.71) that

as it should be, since we do not expect probability to disappear sud-
denly. The fact that the particle is able to get to the other side of the
barrier, even when the energy of the particle is lower than the height
of the barrier, is known as tunneling and is a quantum mechanical
phenomenon. Looking at the transmission coefficient, (4.71), it is
clear that for F < Vj, tunneling is highly suppressed. Nonetheless,
tunneling effects are quite physical, particularly in processes such as
radioactive decays.

= (4.72)

4.6 Selected problems

1. Justify why the Schréodinger wave function, u(z), and its deriva-
du( )

tive, , have to be continuous across the boundary for the
finite Square well potential, even though the potential is discon-
tinuous.

2. Solve the Schrodinger equation for a particle bound in an at-
tractive delta potential in one dimension,

V(z) = —vd(x), ~v > 0. (4.73)

Calculate the average kinetic and potential energy for such a
particle in this state (namely, calculate (T') as (E) — (V).

3. Calculate (T') directly for the previous problem, namely, evalu-
ate

1) = [arv o) (~ gt ) vt (474)

2m dz?

and compare with the previous result. (You have to be careful,
since the wave function may not be a smooth function.)
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4. Show that, in one dimension, bound states cannot be degener-
ate.

5. A particle, moving in an infinite square well of width 2a (dis-
cussed in class), is in a state whose wavefunction at time ¢ = 0
is given by

(up(z) + up(z)), (4.75)

Sl -

where ug(z) and wui(x) are the normalized ground state and
the first excited state wave functions respectively. What is its
average kinetic energy and average potential energy in this state
as a function of time? Calculate Az in this state.

6. A particle moves in a potential, in one dimension, of the form

00, z? > a2,
Viz) = { 28(z), 2 < d (4.76)

where v > 0. For sufficiently large «, calculate the time required
for the particle to tunnel from being in the ground state of the
well extending from x = —a to x = 0 to the ground state of the
well extending from z =0 to = = a.

7. The first excited state of a particle moving in a potential in one
dimension is given by

P1(x) = (sinh ax) 1o (z), (4.77)

and is a state corresponding to the energy eigenvalue Fq. Here «
is a constant and () is the ground state wavefunction corre-
sponding to the energy eigenvalue Ey. Determine the potential
(in terms of =, «v, By, E1) in which the particle moves.

8. A particle, moving in one dimension, has a ground state wave
function (not normalized and do not normalize) given by

Yo(r) =€ 1, (4.78)

(where « is a real constant) belonging to the energy eigenvalue
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h2 2
By =2 (4.79)
m
Determine the potential in which the particle moves.
9. In one dimension a particle moves in a potential

0, for <0,
Vix) = (4.80)

—vé(x —a), for x>0,

where the constants v,a > 0. What is the minimum value of
~va above which a bound state is possible?
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CHAPTER 5

Harmonic oscillator

5.1 Harmonic oscillator in one dimension

In quantum mechanics, the harmonic oscillator plays an important
role, much like in classical mechanics. Furthermore, this is also one
of the few physical systems that can be exactly solved. Therefore, we
will spend a few lectures in studying various features of this system.
We will begin with the harmonic oscillator in one dimension before
generalizing the results to higher dimensions.

There are two distinct ways of studying the harmonic oscillator.
Let us first discuss the operator solution for this problem after which
we will also solve the Schrodinger equation for this system explicitly.

5.2 Matrix formulation

We are familiar with the motion of a classical harmonic oscillator. In
one dimension, the Hamiltonian for the system is given by

AR T
H=—+- =T . 1
5 —|-2mw:13 +V. (5.1)

Quantum mechanically, of course, P and X become operators. Let
us now define two new operators from linear combinations of these
as
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110 5 HARMONIC OSCILLATOR

These are dimensionless complex operators and, clearly,

2 .
t, . mw X2 P LXp_pX
“4T on < T +mw( )

mw P2 l
= — (x? — xih
2h < T T e >

S & (5.3)

where we have used the basic commutation relations of quantum me-
chanical operators, (3.17), in the intermediate steps. Therefore, we
recognize that we can write

tha)(cﬁa—k%). (5.4)

Furthermore, using the basic canonical commutation relations
given in (3.17), we obtain

[a,al] = [X + L px- LP]
mw

=—4+-=1. (5.5)
It is, of course, trivially true that
[a,a] = 0 = [al, al]. (5.6)

From the commutation relations in (5.5) and (5.6), we note that
we have

[a,aTa] = [a,aT] a = a,

[aT,aTa] =af [aT,a} = —ql [a,aT] = —al. (5.7)
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5.2 MATRIX FORMULATION 111

Therefore, we can define a new operator
N =dla. (5.8)

such that the Hamiltonian can also be written as

H:hw<N+%>. (5.9)

Using the relations in (5.7) as well as the definitions in (5.8) and
(5.9), we obtain

[G,N] =a= a[a7H]7
1
[af, N] = —al = %[CLT,H],
[H,N] = 0. (5.10)

These commutation relations imply that H and N can be simul-
taneously diagonalized (or that they have a common set of eigenvec-
tors). Let us denote these simultaneous eigenvectors by |n), which
we assume to be normalized, such that

N|n) = nln), (5.11)

where n denotes the eigenvalue of N. Clearly, then,
1 1
H|n) = hw (N + §> In) = hw <n + 5) |n) = Ep|n). (5.12)

Thus, we see that the energy associated with a state |n) is iw (n + %),
namely,

B, = hw (m%) (5.13)

Let us now consider the effect of the following commutator on
the state |n),

[a, H][n) = hwaln),
or, (aH — Ha)|n) = hwal|n),
or, FEpaln) — Haln) = hwaln),
or, Haln) = (E, — hw)a|n),
or, H(aln)) = (E, — hw)(aln)). (5.14)
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This shows that the state a|n) is also an eigenstate of the Hamiltonian
if |n) is, but the energy associated with this state is (E,, — fw). Thus,
we see that the effect of the operator a on an energy eigenstate is to
lower its energy by a unit of Aw. Therefore, a is called the lowering
operator.

Let us note from the value of E,, in (5.13) that

En—hw:hw<n+%>—hw

:hw<(n—1)+%>

= Ln-1, (515)

so that the state a|n) must be proportional to the energy eigenstate
|n — 1). Thus, let us write

aln) = Culn—1), = (n|a’ = Ci(n —1|. (5.16)
The norm of this state leads to

(nlaaln) = CCyin —1n — 1),
or, (n|N|n)=|Cyl?,
or, n(njn) = |Cnl?,

or, |Cp|?=n. (5.17)
We can choose C}, to be real, in which case, we have

Cn,=Cp=+n, (5.18)
and we can write

aln) = v/aln — 1),
or, |n—1)= in\m. (5.19)

This shows that, given the state |n), we can obtain a state with a
lower energy by applying the lowering operator with some suitable
normalization constant.
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Similarly, we can consider the effect of the following commutator
on an energy eigenstate,

[CLT7H”TL> = _hwa”n>7
or, (a'H — Ha")|n) = —hwal|n),
or, E,a'ln) — Ha'|n) = —hwa'|n),

or, H(a'|n)) = (B, + hw)(a'|n)). (5.20)

This shows that (a'|n)) is also an eigenstate of the Hamiltonian with
energy (E, + hw). Thus, the operator af, acting on an energy eigen-
state, raises its energy by a unit of iw. Correspondingly, a' is known
as the raising operator.

Furthermore, since the state |n 4 1) corresponds to the energy
eigenstate with eigenvalue F, + hw = E,, 11, we must have

alln) =ClIn+1), = (nla=C*n+1]|. (5.21)
Thus, the norm of this state leads to
(nlaan) = C,*Cl(n + 1n + 1),
or, ((nlla.a'] +ala) In) = |G,
or, |CL? = (n|(N +1)|n) = (n+1),
or, C! =Cl*=+n+1, (5.22)
so that we can write

a'ln) = vVn+1jn +1),

or, |[n+1)= In). (5.23)
This again shows that, given an eigenstate of energy, we can obtain
a state with a higher energy by operating with af with a suitable
normalization constant.

Thus, we have shown that, given an energy eigenstate, we can
obtain an infinite sequence of states by repeated application of a’s and
al’s. These states would, in general, have energy E,,—wl or E,~+Hw?.
Thus, it would appear that energy can take a series of values between
—oo and +o0o with a spacing of iw between the adjacent levels. Let
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us now consider a general energy eigenstate |n). Then,

E, = (n|H|n)
= (n|hw <N+ %) [n)

1
= hw(n|a'a + §]n>

= hw(nla'a|n) + %(nm)

= hw{an|an) + —(n|n) > 0, w > 0. (5.24)

hw
2
Namely, the right hand side is the sum of two squares (or positive
quantities since each term involves the norm of a state) and, there-
fore, has to be positive definite. This tells us that the energy can
only be positive definite and that the infinite sequence of states must
terminate.

Let us assume that the ground state or the state with the lowest
energy is denoted by |nmin). Then, clearly, what we mean by this is
that we can not obtain a state with a lower energy by applying the
lowering operator on this state. In other words, the operator a acting
on |nmin) should give us a null vector for this to be true,

alnmin) =0, = (nmin]aT =0. (5.25)
Furthermore, from (5.25), we obtain
ala|nmin) = 0,
or, N|nmpin) =0,
Or, Mmin|Mmin) =0, = Nin = 0. (5.26)
Thus, we can denote the ground state as |0) which satisfies

hw
—10
2 |

H|0) = Fo (N + %) 0) = 0. (5.27)

In other words, what we have learnt so far is that the eigen-
vectors of the Hamiltonian can be labeled by the eigenvalues of the
operator IV, which take values

n=0,1,2...,00. (5.28)
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The states are denoted by |n) and the energy eigenvalue associated
with such a state is

1
En:hw<n—|—§>, n=0,1,2--, (5.29)

so that the ground state has the energy

Ey=—. (5.30)
2
The ground state energy of a system is also commonly known as the
zero point energy associated with the system.

We see that, in this system, energy is quantized (contrast this
with the classical oscillator which can have any continuous energy),
and that the quantum of energy is hw. The eigenstate |n) corresponds
to a state with n quanta of energy. Therefore, the operator N is
also known as the number operator, since it counts the number of
quanta of energy present in a state. The lowering operator, acting
on an eigenstate of energy, takes us to another state with a lower
energy, namely, a|n) ~ |[n —1). Therefore, the operator a acting on a
state reduces the number of quanta by one and, correspondingly, it is
also known as the annihilation operator or the destruction operator.
Similarly, the raising operator, acting on an eigenstate of energy,
takes us to a state with a higher energy, namely, af|n) ~ |n + 1).
Hence a' raises the number of quanta by one and, consequently, it is
also known as the creation operator.

Let us now try to find out how various operators look in this
energy eigenbasis. We know that

aln) = v/nln — 1), (5.31)

so that the matrix elements of the annihilation operator can be writ-
ten as

(n'laln) = v/n{n'|n — 1)
=Vndy -1, n,n =0,1,2,--. (5.32)

Similarly, since
a'ln) = Vn+1|n + 1), (5.33)
it follows that

(na’|n) = vn + 1(n/|n 4+ 1) = Vn + 16, ny1. (5.34)
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Writing out explicitly in the energy basis, these operators, therefore,
have the matrix representation of the following off-diagonal forms,

0 0 0
0 vV2 0 0

0 V3 0
a= 0\/1
0

O O O OO

0
0
0
0
V5
0
] . (5.35)

Furthermore, since by definition (see (5.2)),

X = V QZW(G+QT)’
P=—i/ h”;” (a—al), (5.36)

we obtain the matrix elements of the coordinate and the momentum
operators in the energy basis to be

(/| X ) = /5| (a + 1))

h
= \/% [\/ﬁ‘sn’,n_l + \/n—‘i'l(sn’,n+l] )

(1Pl = —i1/ 2 (0 — a o)

h
= —i\| 5 [Vidwot = VA F D] . (5.37)

In the energy basis, they have the following explicit off-diagonal ma-
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trix forms,

0 V1 0
i Vo0 V2

X = 2mw 0 V2 0 V3 |»
0 0 3
0 Vi

- V1 0 V2

P=—iy/M 1 0 —v2 0 V3 . (5.38)
2 0 0 —v3 0

These are manifestly Hermitian operators as they should be, but are
not diagonal in this basis. The Hamiltonian, on the other hand, is
diagonal in the energy basis and has the form

H=" 5 . (5.39)

Since the application of a' gives us a state with a higher energy,
we can construct all the higher energy states from the ground state
|0). For example,

1) = Z210) = af|0),

af at  al (at)?

=A== G A

In general, we can write

10). (5.40)

alf at ot
_ e 5.41
B (n+1)!|>' (5.41)

The fact that any higher state can be written as a product of
creation operators acting on the ground state and the fact that

al0) = 0 = (0a’,
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greatly simplifies the calculation of matrix elements of operators be-
tween different states. For example, consider the matrix element

200 = 01 (5 ) @+t

_ % <%> (0la2(a + a')?|0)

: (5.42)

)

where in the final step we have used the fact that the expectation
value of the product of an odd number of a’s and a!’s vanishes in the
ground state (or in any energy eigenstate). Next, let us calculate

(2[X31) = % <%> * (0a2(a + a')?al|0). (5.43)

The only terms of (a + a')? that would give a nonzero contribution
are (for a non-vanishing expectation value in the ground state, the
number of a’s must equal that of a!’s in a product)

aa'? + a'aal + a'?a, (5.44)

so that we can obtain

3
(2| X31) = % <%> " (0]a2(aa’ +ataa’ +a'?a)al|0). (5.45)

Using [a,a’] = 1, we can simplify

(aa’ —afa) =1,

or, alaa’ = (aa" —1)a’ = aa™ — df, (5.46)
and,

a?a = a'(aa’ — 1) = alaa’ — o

=aa”? —a' —a" = aa™ — 247, (5.47)
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Substituting (5.46) and (5.47) into (5.45), we obtain,

3

(2] X?|1) = % (%) * (0/a%(aa®? + aa'? — af
+aa'? — 2a%)al|0)
_ % (%)g (0]a(3aa’® — 3at)al|0)
_ % (%) ((0la®a10) — (0la%a®|0))
_ % (%)3 (31(3]3) — 21(2]2))
_ % <%>g (31— 21)

(VI3

(5.48)

I

w
N

£ |=
~— 3

This shows how the matrix elements of arbitrary operators can be
calculated in the energy basis.

Let us next note that the wave function associated with an en-
ergy eigenstate is defined as

U (z) = (z|n). (5.49)
This measures the probability amplitude for finding the oscillator at
the coordinate x with an energy F,,. We know that the ground state

satisfies

al0) =0,
or, (x]al0) =0,

or, / dz’ (z|ala’)(2/]0) = 0. (5.50)

Using the definition in (5.2)
mw {
=4/— X+ —P
“ 2h ( t e )’
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as well as the basic coordinate representations of X and P,
(x| X2y = 26(x — ')
(x|P|2") = —ih % §(x — )

we obtain

(zlalz) = \/ZL:;" <a:(5(a: — )+ %%5@; - g/)> L (551)

Using (5.51) in (5.50), we see that the equation for the ground state
wave function for the harmonic oscillator becomes

\/n;:;;/dx/ <:175(:17 -2+ % % §(w — x/)> tho(a’) =0,
A d

This is a simple first order equation, whose solution is easily obtained
to be,

d
T =)
or, o(x)= Age™ 2", (5.53)

Here A is the normalization constant, which can be determined by
requiring that

_mw 2

/dx Yo (x)o(r) = Ao / dz e 5% =1,

mh
or, |A0|2 m = 17

mw
or, |Ao*= ’/E' (5.54)

Choosing Ag to be real, we determine

Ap = A = (%)‘1‘ : (5.55)

so that we can write the normalized ground state wave function as

(5.56)

1
mwy\i _mw,2
e 2

Yo(z) = <E
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To construct the wave functions for higher energy states, we
note that in the z basis,

I LN jrw (R d
a o7 <X me)—) o <x ) (5.57)

Furthermore, recall that

(ah)"
Vn!

Therefore, we determine the wave function for the nth state to be

(wln) = (@)
-7 () (- ) we

_ \/% (%)% (%)E <g; - % %)ne—mgrfz. (5.58)

This completes our investigation of the harmonic oscillator in the ma-
trix (operator) formulation. We have determined the energy eigen-
values and the wave functions for the energy eigenstates (without
explicitly solving the Schrodinger equation).

10).

n) =

5.3 Solution of the Schrodinger equation

The harmonic oscillator is an important system in quantum mechan-
ics. Most complicated systems can often be split into a part that is of
harmonic oscillator type and a part that can be treated as a pertur-
bation on this system. From the studies of black body radiation, we
recall that the electromagnetic radiation is treated like a harmonic
oscillator system with the quantum of energy Aw. In fact, this is a
very general feature. All field theories without any interaction, can
be decomposed into harmonic oscillators. Since the study of this sys-
tem is so significant, we would also study this system by solving the
Schrodinger equation for this system.
As we have seen, the Hamiltonian for the system is given by

(5.59)
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Furthermore, since the Hamiltonian has no explicit time dependence,
we are interested in the stationary state solutions. We know that the
stationary state solutions have the form (see (3.94))

1) = e i Fug (@), (5.60)
where uy(z) satisfies the time independent Schrédinger equation,

R4z 1,

We recognize that ug(z) is the wave function associated with the
eigenstate of the Hamiltonian corresponding to energy FE.

We already know that the energy associated with the oscillator
must be positive. It can also be seen here by writing

E=(H)

dug(z)
dx

2
1
+ §mw2x2 \uE(az)]2> >0, (5.62)

h2

= [da| —

/ v <2m

which follows because the right hand side is the integral of a sum of

two squares (we are neglecting a surface term which vanishes for well
behaved functions).

The time independent Schrodinger equation, (5.61), can be writ-
ten as

d? 2 1
?uf + h—rg <E -5 mw2x2> ug = 0. (5.63)

First of all, let us note that in solving a differential equation it is al-
ways useful to recast the equation in terms of dimensionless variables.
This allows us to write down logarithmic or exponential solutions
without having to worry about the dimensionality of the arguments.
We note that there are three dimensional parameters in our theory
and they are

[A] = erg-sec = ML*T1,
[m] = gm = M,
[w] =sec™t =171, (5.64)
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where M, L, T are three arbitrary units of mass, length and time
respectively. We see from (5.64) that

E MT o (5.65)

Rl T ML2T!

Consequently, we see that if we define

mw

= <7>5 z, (5.66)

then, ¢ will be dimensionless. Furthermore, by the chain rule of
differentiation, we obtain

d _d¢ d_ mwyz d
@‘Ed?‘(h) de’ (5.67)

Substituting (5.67) back into (5.63), we have

(@) d2’LLE(£) + 2_m <E _ lmwz X i§2> up(§) =0,

h dée2 h? 2 mw
d2uE(£) 2F 2
or, ae2 + <ﬂ —¢& ) up(&) = 0. (5.68)
Let us further define
2F
€= T (5.69)

Clearly, € is dimensionless (it measures energy in units of %“) In
terms of these dimensionless variables, equation (5.68) becomes

dzuE(f)

0e2 + (e — EHup(€) =0, (5.70)

where the independent variable as well as the arbitrary parameter
measuring energy are now dimensionless.

Before deriving the solutions, it is useful to find out their asymp-
totic forms, both in the limit £ — oo and £ — 0. First of all, for a
finite € we see that in the limit £ — oo, equation (5.70) becomes

d%uy
d¢?

— Eup(€) = 0. (5.71)
The two independent solutions of this equation have the forms

wp(€) B2 gleta€, (5.72)
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for any finite integer . This can be easily checked by noting that

e 5 ke (o )

d¢
d2 E —00 1¢2 _
e B 36 (00— 12 & (20 + 1)+ 672)

— et = 2y (6). (5.73)

Although both §Zei%52 represent asymptotic solutions, a physical so-
lution would only correspond to the one that is normalizable, namely,

up() 2% ¢lem3€? (5.74)

Furthermore, in the limit £ — 0, equation (5.68) reduces to

——Z 4 euy =0, (5.75)

where p(&) represents a polynomial of positive powers only.
Thus, we can write the general solution of the equation for the
harmonic oscillator as

ug(€) = fo(&)e 2%, (5.77)

with fz(§) representing a polynomial with non-negative powers. We
note from (5.77) that

dug , i
df = (fE(g) - ng(g)) € 2¢ )
2u Lo
e = (0 - 2O + € - V), 67

where primes denote derivatives with respect to . Substituting this
back into (5.68), we obtain

12(6) = 26f5(8) + (€ = ) fp(€) + (e =€) fx(€) =0,
or, fr(§) = 26fp(&) + (e —1)fs(§) = 0. (5.79)
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This is an equation where the asymptotic behavior at infinity
has been factored out. Therefore, we can try a power series solution
of the form

= Z Cngnv
n=0

e = L2 3 e

n=1

Ep(€) =D nCug™ = nCpe",
n=1 n=0

2 o
16 = HHEE =3 nn - 10y
n=2

o0
Z (n+2)(n + 1)Crp2&™, (5.80)

where C),’s are constants. Putting these back into (5.79), we have

oo

S ((C+2)(+1)Crpnt’ = 26CE" + (e = 108" ) =0,
/=0

S (42 + DGk + (e~ 1-20C) =0, (581
=0

If this has to be true for any arbitrary value of &, the coefficients in
the parenthesis must vanish, namely,
(€ + 2)(€ + 1)Cg+2 = —(6 —1- 2€)Cg,
(e—1—2¢)
+2)(t+1) "
This defines a recursion relation between the coefficients in the

power series in (5.80). It is clear that all of the coefficients can be
expressed in terms Cy and C} which are arbitrary. For example,

Cg+2 - — (582)

=%, _ %Q}, (5.83)

16:35:17.



126 5 HARMONIC OSCILLATOR

and so on. The existence of two arbitrary constants in the solution
can be traced to the fact that the Schrodinger equation corresponds
to a second order differential equation, (5.79), and a unique solution
needs two conditions. However, we also know that this system is
invariant under x — —z (or, & — —¢). Therefore, as before, we
expect the solutions to be of two types — odd and even. It is clear that
if Cp = 0, then, all the even powers in f5(£) would vanish and hence
it would be an odd function. On the other hand, if C; = 0, then,
fe(&) would contain only even powers in the expansion and, therefore,
would be symmetric. In general, however, it is clear (independent of
whether Cy = 0 or C1 = 0) that unless the series terminates at some
point, its dominant asymptotic form can be inferred from the ratio

C€+2 l—oo 2
—= .
Cy /

(5.84)

We recognize that this is the same growth as the asymptotic co-
efficients of the function §k652. Therefore, unless the power series
terminates, its asymptotic behavior would correspond to that of this
function. However, this would lead to an unphysical solution (in the
sense that the wave function (5.77) would diverge asymptotically).
Therefore, for a physical solution to exist, the series must terminate.
The only way this can happen is if the numerator of the recursion
relation in (5.82) vanishes for some value ¢ = n, namely,

(e—1—2n)

(D ICES (589)

Cn+2 = -

In other words, if for some n,
e—1—2n=0, (5.86)

then, all the higher coefficients would vanish and the series would
terminate. This implies that

en = (2n + 1), n=0,1,2,---,

or, 2;;" =(2n+1),
1
or, FE,=hw (n + §> . (5.87)

Therefore, we see that physical solutions for the system will exist
only if the oscillator has the energy values in (5.87), which is what
we had obtained earlier in the operator method. (In fact, not only
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should the above energy values hold for physical solutions, one of the
two coeflicients, Cy, C'; should vanish depending on the value n of the
physical solution. For example, if n is even, then, C; = 0 and if n is
odd, then, Cy = 0.) And, when a solution is physical, for each value
of n, the solution will have the form

un(€) = fa()e 28, (5.88)
where
= O™, or, ful§) =) Cornn&¥T, (5.89)
=0 =0

(depending on whether n is even or odd) with the coefficients satis-
fying the recursion relation (5.82).

5.4 Hermite polynomials

The polynomials, f,(£), with €, = (2n + 1) in (5.89) satisfy the
differential equation (see (5.79))

0 () = 26£,,(8) +2nful) = 0. (5.90)

This is known as the Hermite equation and the solutions, f,(&), are

known as the Hermite polynomials of nth order. They are commonly

denoted by H,(§). It is obvious from the recursion relations that

every Hermite polynomial is completely determined in terms of one

arbitrary constant, Cy or Cy, depending on whether n is even or odd.
We can actually define a function of two variables,

S(g, S) = 652_(8_5)2 = 6_82+28£ = Z —Hn(é) Sn, (591)

n!
n=0

where the coefficients of expansion can be identified with the Hermite
polynomials of nth order. To see this, let us calculate

85(573)_ —s°42s __
5% — 2575 256 — 95 Z

9]
H
-2y e =05 B2y
n—=

= QZ_%MTLT_!I(@S”. (5.92)
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On the other hand, differentiating the right hand side of (5.91), we
obtain

05(6,5) _ N~ HA(8)
5% => . (5.93)

Thus, comparing (5.92) and (5.93), we have
H,,(€) = 2nH, 1(8). (5.94)

Similarly, taking derivative of (5.91) with respect to s, we obtain

o0

s ) —5242s H, n
éi 5) (s 4+ 26)e e = (—23—1—25)7; n(f)s
H. g) " — 9 Z H:L('g) Sn+1
9 Z "H" s (5.95)

But, differentiating the right hand side of (5.91), we also have

os %nzo T “—(n- 1)'8
=Y L”*}(é)s". (5.96)
0 n:

Thus, comparing (5.95) and (5.96), we determine

Hn-i—l(f) = 2§Hn(§) - 2an—1(§)7
or, Zan—l(é) = 2£Hn(£) - Hn—l—l(g)' (5'97)

Substituting (5.97) into (5.94), we have
H;m(g) = 20H,(€) — Hn+1(6),
or, H;(§) = 2H,(£) + 26H,,(8 nt1(6)
= 2H, (&) + 26H,,(§) — 2(n + 1) Hn (6)
— 2¢H),(€) — 2nHa(©). (5.98)

§) -
)

16:35:17.



5.4 HERMITE POLYNOMIALS 129

Therefore, we see from (5.98) that the functions, H, (), satisfy the
equation

H;L/(g) - 2£H1/’L(£) + 2an(£) =0, (5'99)

which is the Hermite equation. Consequently, the coefficients of ex-
pansion in (5.91) are indeed the Hermite polynomials. The relations

H;’L(S) = 2an—1(§)7
Hy41(8) = 26Hy(§) — 2nHp1(8), (5.100)

are known as the recursion relations for the Hermite polynomials.
It is clear, from the defining relation (5.91) that we can identify

_0"5(6.s)

o (5.101)

Hn()

s=0

This is why S(€,s) is also known as the generating function for the
Hermite polynomials. Furthermore,

amS(g, ) " oo
Hy(§) = —52—| =556 679
0s s—o Os s=0
_ 20 | _ e <_§>" —(s—€)?
=€ e =€ e
83" s=0 85 s=0
n 52 (9” _52
= (D" o5t (5.102)

ogn

This gives a closed form expression for the Hermite polynomials. The
first few of these polynomials have the explicit forms

Hy(§) =1,

H;(§) = 2¢,

Hy(6) = (4€? - 2), (5.103)
and so on.

We can also work out the orthogonality relations for the Hermite
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polynomials by noting that

[ d OO
_ / ag & L omtoer| 20 aer| e
. s s=0 Ot t=0
oo [T . . .
-z Y & —(s=6)?% ,—(t=¢)
5 D / dé et e e
—o0 s=t=0
o om [T o o o
- _ - —E%—s2— 124 25E+2t€
dsn otm / dc e
—0o0 s=t=0
P )
= _ - —(&—(s+t))*+2st
asn otm / de e
—o0 s=t=0
an am 2st
= 9sn o (Vre™) o
o oo >, (2st)P
= geam (VT
- s=t=0
_J0, if n#m, (5.104)
| vA2n!, when n=m. '

(Here, we note that the Hermite polynomials are polynomials of posi-
tive powers and, consequently, the integral needs a damping factor to
be well defined.) Therefore, we can write the orthogonality relation
for the Hermite polynomials as

/ A€ Hy(€)Hn (€)™ = /72" 0l 6. (5.105)

We can now identify the time independent wave functions, (5.88),
for the harmonic oscillator as

Un(€) = Apfu(€)e 28" = A, H,(€)e 2%, (5.106)

where the constant A,, can be determined from normalization. First
of all, we note that in terms of the original variables (see (5.66) and
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(5.69)), we can write

()’
wun(@) = AnH, <(T¢)%x>e e’ (5.107)

Furthermore, we would like the wave function to be normalized,
namely,

/ dz [ (2)2 = 1. (5.108)

In terms of the £ variable, then, this becomes,

[e.e]

d
[ —luator =1,
e ()
2 h 2
or, |Au| (—) dsH et =1,
mw
or, |An|2< > V2™l =1,
mw\s 1 2
M’M:%:«EJZMJ' (5.109)

Thus, the normalized wave functions for the harmonic oscillator are
given by

1
mw\ 1 1 mw mw, 2
n = (= H, - . 5.110
(@) = (=) W! <\/ ha:)e 3 (5.110)

In particular, the ground state wave function is given by

1
mw\ i 2
ug(x) = <—h > et
T

which agrees with the result obtained earlier in the operator method.
The complete time dependent wave functions for the harmonic oscil-
lator have the forms

1
. mw\ 2z 1 [ Tmw mw x2——En
T;Z)n(:nvt) - < 7Th > \/W HTL < h ':U> e 2k 9
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(5.112)

with

1
E, = hw <n + 5) . (5.113)
We note that these are bound state solutions since they vanish asymp-
totically.

5.5 Discussion of the results

The harmonic oscillator is a very important system to study, both
for physical as well as pedagogical reasons. Physically, of course, one
knows, even from classical physics, that small oscillations around a
minimum of the potential can be approximated by a harmonic oscil-
lator motion. For example, a potential can be expanded around a
minimum as

1
V(z) = V(zo)+(z—10) V/($0)+§(33—330)2 V7 (x0)+--- . (5.114)
Furthermore, if 2o is a minimum of the potential, then, V'(z¢) = 0

(and V" (xg) > 0). Therefore, for small x — xg, we have
1
V(z) = V(o) + 5 (@ = 0)* V" (o). (5.115)

V(zp) is a constant and has no effect on the dynamics. In other
words, we can properly choose the scale of the energy to get rid of
this constant. Then, the potential can be approximated by that of a
harmonic oscillator with

mw? = V" (xq) > 0. (5.116)

This is not just a mathematical exercise, but it actually hap-
pens in physics. Consider, for example, the case of a crystal where
molecules are fixed at definite points as shown in Fig. 5.1. Because
the molecules are heavy, they can not move very much. Hence, if dis-
turbed slightly, they execute small oscillations about their positions
of equilibrium and behave like a system of harmonic oscillators.

The harmonic oscillator is also significant because it is exactly
soluble and we can study various postulates of quantum mechanics
in some detail in this system. We have already seen that the motion
of the oscillator is bounded and, as emphasized earlier, this leads
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oo o o-

Figure 5.1: One dimensional crystal with constituent molecules.

to quantization of energy. Furthermore, the correspondence principle
can also be easily checked here, namely, we can analyze the Ehrenfest
theorem as well as check that the quantum mechanical system does
behave like a classical system for large values of energy. Let us do
this in some detail.

First, we note that we can write the solutions of the classical
harmonic oscillator as

za(t) = A sin(wt + ¢),
pa(t) = mig = mwA cos(wt + @), (5.117)

where A represents the amplitude and ¢ a phase angle, both of which
can be determined from the initial conditions. In fact, let us next
identify

za(0) =29 = A sin ¢,
Pa(0) = po = mwA cos ¢, (5.118)

so that we can write the solution in terms of the initial conditions as
za(t) = zg coswt + P in wt,
mw
pe(t) = po coswt — mwxg sin wt. (5.119)

Furthermore, the energy associated with the harmonic motion is given
by

20) 1 1
_Pall) 1 ey 2L 22, (5.120)

E,
AT Tom T2 cl 2

We see from (5.120) that the energy associated with the harmonic
motion is constant in time and is proportional to the square of the
amplitude which is a continuous variable. Therefore, the energy is
also a continuous function and the minimum energy associated with
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the oscillator is zero, which occurs when the oscillator is sitting at
rest at the position of equilibrium.

We can also ask the following probabilistic question. Suppose
we randomly try to locate the harmonic oscillator, what is the place
where we are most likely to find it. That, of course, would correspond
to the place where the oscillator spends most of its time, namely,
where the velocity is a minimum. In other words, the classical prob-
ability is inversely proportional to the velocity of the oscillator,

P(x) x L _ ! —. (5.121)
(@) w42 — 22)2
Thus, the classical probability peaks around x = A or at the turning
points. It has a minimum at the point of equilibrium where the
velocity is the largest.

We can now compare these with the properties of the quan-
tum harmonic oscillator. First of all, in the energy basis, states are
time independent. This corresponds to the Heisenberg picture of mo-
tion where the operators have time dependence and comparison with
classical mechanics is the simplest in this picture. Therefore, in this
picture, we can ask for the time dependence of various operators. For
example (see (3.115) for the case when the operator has no explicit
time dependence),

da i i .

il [a, H] = ~% (hwa) = —iwa, (5.122)
which can be solved yielding

a(t) = a(0)e ™" (5.123)

Similarly, for the creation operator, we have

-I» . .
= ! H] =~ (~hwal) = iwal, (5.124)
which leads to
al(t) = a’(0)e™. (5.125)

The creation and the annihilation operators are defined in (5.2)
as

mw

o = @(X_LP>,

. %(X+Lp>,

mw
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so that we have
h
X Jo (as ),
2mw

P:—u/hmTW (a—aT). (5.126)

Using (5.123), (5.125) as well as the definition in (5.126), the time
dependence of the coordinate and the momentum operators can be
determined to be

X(t) = R (a(t) + aT(t))

2mw

V5 :M (a(O)e™ + at(0)™")

= % ((a(O) + a'(0)) cos wt

—i(a(0) — a'(0)) sin wt>
P
= (Xo coswt + — sin wt> . (5.127)
mw
Similarly, we can show that
P(t) = Py cos wt — mwXy sin wt. (5.128)

In general, therefore, in any picture we can write
1
(X)(t) = (X)(0) cos wt + %(PNO) sin wt,
(P)(t) = (P)(0) cos wt — mw(X)(0) sin wt. (5.129)

In other words, the expectation values have similar behavior as the
classical variables in (5.119) as Ehrenfest’s theorem would require.

In the case of the quantum oscillator, however, the energy can
not take any continuous value and is quantized

1
En:hw<n—|—§>, n=0,1,2,---. (5.130)
Furthermore, we see from (5.130) that the minimum of the energy
is not zero. This arises basically because of our inability to simul-
taneously specify both the position as well as the momentum in a
quantum mechanical system.
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2
Up(X) ~ (4 x2 - 2) X7
1 1 1 1

1
4 3 -2 -1 0 1 2 3 4
X

Figure 5.2: The first three wave functions of the harmonic oscillator.

Let us plot a few of the lower order wave functions associated
with the motion of the oscillator. We see from Fig. 5.2 that the
probability densities for the oscillator (which is the absolute square
of the wave functions) seem to behave very differently from that of a
classical harmonic oscillator. In particular, for the ground state, we
note that the maximum probability is around the point of equilibrium
(x = 0) and falls off at large distances. This is just the opposite of
the classical behavior. However, if we plot the probability density for
large values of the quantum numbers n (see Fig. 5.3), the behavior is
as follows, as n — oo, the average value of the probabilities of these
plots behaves like the classical oscillator. This is, of course, what the
correspondence principle says, namely, when the energy of the system
becomes large, the system behaves like a macroscopic system.
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Figure 5.3: The wave function of the oscillator for n = 10.

5hw
By = 25"
3hw
=57
Ey ="

Figure 5.4: Energy levels of the oscillator with uniform spacing of

hw.

Notice that the energy levels of the oscillator are spaced uni-
formly without any dependence on the mass parameter of the theory.
Each level differs from the adjacent by fiw as shown in Fig. 5.4. This
allows us to think as if, with an oscillator of frequency w, there are
associated fictitious particles with quanta of energy hw. In crystal
physics, such particles are known as phonons whereas the interaction
of matter with radiation is described in terms of particles known as
photons.

We know that the diagonal values of an operator represent ex-
pectation values of that operator in a given state. In a stationary
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state, these are time independent

Ay = / dz ¥ (2, ) At (2, 1) — / dz w (2) Aun(z).  (5.131)

However, we can also study the off-diagonal matrix elements of an
operator. For example, the matrix element

o0

A = / dz 65 (2, £) A (2, 1), (5.132)

—00

can be thought of as the transition amplitude between the states n
and m induced by the operator A. Just as in the hydrogen atom
where the electron can drop down from an excited level to a lower
level with the emission of a photon, here also any transition between
distinct states is accompanied by an emission or absorption of quanta.
Furthermore, since

U (,t) ~ e R (5.133)
the time dependence of the transition amplitude (5.132) is given by
A o e 7 En=Em)t, (5.134)

The time dependence of the matrix element is, therefore, nontrivial
when n # m (for off-diagonal elements).

5.6 Density matrix

Let us next consider not just one isolated system, but an ensemble
of identical quantum mechanical systems. Of course, each system
in the ensemble can be in a different eigenstate of the Hamiltonian
and, consequently, there will be a statistical distribution of systems
in various eigenstates of the Hamiltonian. Let us denote by p, the
probability of finding any system in the ensemble in the energy eigen-
state |n). Such an ensemble is, in fact, quite physical. For example,
we know that in an ensemble which is in thermodynamic equilibrium
with a heat reservoir, the probability of finding a system in a specific
energy state is given by the Boltzmann distribution law.

Suppose, in such an ensemble we make a measurement of the
operator A. It is clear that the value of the measurement has a
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probability p,, of being (n|A|n). The statistical average of these mea-
surements over the entire ensemble is, therefore,

@ = an<n‘A’n> = an<A>n (5135)

Actually, there are two kinds of averaging being done in (5.135). First

of all, we have the quantum averaging represented by the expecta-

tion value (n|A|n) and then the classical averaging over systems in

different states |n). To distinguish this ensemble average from (A),

the quantum average, we have put a bar over this expectation value.
Let us define an operator

p=2_pnln)inl, (5.136)
n
where p,, is the probability that a system, picked out randomly from
the ensemble, is in the state |n). The p,’s, therefore, satisfy

Pn > 0, for all n,
> pn=1. (5.137)

The operator p is called the density operator or the density matrix.
Let us now calculate

Tr pA = (mlpAlm) = pa(mln)(n|Ajm)

m,n

= anémn<n\A]m> = an<n\A!n>

= (A). (5.138)

Therefore, we see that given any operator €2, its ensemble aver-
age can be defined as

(Q) = Tr p. (5.139)

In particular, we can choose 2 = 1. Then, we have from (5.139)
Trp=) po=1. (5.140)
n

We can also ask about the statistical average of the probability of
obtaining a particular eigenvalue of the operator 2. We know that

P(w) = [(w]|v)]* = @lw){wly) = (| P,]e) = (P.), (5.141)
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so that

( w> = ?(w) =Tr pb,. (5.142)

It is clear from the definition of the density matrix that, when
all the p,’s are zero except for one, it is a pure ensemble. (Namely,
every system, in such an ensemble, is in the same state.) We can
derive the following properties of the density matrix quite easily.

1. The density matrix is Hermitian, namely, p! = p.
2. Trp=1=> pp.
n

3. The density matrix is positive semi-definite, namely, (u|p|lu) >
0.

Proof.

(u|plu) = an (uln)(n|u) = an [(u|n)|? > 0.

4. For a pure ensemble, p? = p.

Proof.
p=> pnln)(n

P _mepn|m m|n 7”L| mepn mn|m< |

m,n

=> piln)in

For a pure ensemble, all the p,’s are zero except for one which
is equal to unity. Hence p? = p [

5. Trp™ <1 forn > 2and the equality holds for a pure ensemble.
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5.7 Planck’s law

With these basics for general ensembles, let us turn to a thermody-
namic ensemble. In classical thermodynamics, a system in thermo-
dynamic equilibrium at temperature T" has a probability of being in
an energy state E given by the Boltzmann law

p(E) = Ne™7t, (5.143)

where N is a normalization constant. Let kT = B~'. If energy is
quantized, this probability for a quantum system becomes

_En _
En € kT € BEn

pn = Ne_ kT — B = —ﬁE s E pn = 1 (5144)
p——— e n
En e kT zn: n

Thus, the density matrix, in such a case, takes the form

> e PEn|n)(n| e PH 2l
p= Zn:pn|n><n| = ;e—ﬁEn - > (nle=BH|n)

n

—BH —BH

e e
S TrePH T Z(B)’
where we have defined the partition function for the system as

Z(B) =Tr e PH = Z(nle_ﬁH\m = Ze‘BE”. (5.146)

n

(5.145)

Our discussion so far has been quite general. Let us next con-
sider an ensemble of harmonic oscillators. For a harmonic oscillator,
we know that the energy eigenvalues are given by

1

Thus, for an ensemble of oscillators, the partition function takes the
form

o0 o0
Z(8) = Y (nle™ M n) = 3 e elrta)
n=0 n=0
_ - Bhw > —Bhwn __ — Bhw 1
=e 2 Ze =€ * \ 1B
n=0
e_% 2

= = ) 5.148
1 —e P ginh % ( )
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In this ensemble the mean (average) energy of the oscillator is given
by (can also be represented as (H))

T7=ﬁpﬂzﬁyizf:_z@f€$)
::._539%52932, (5.149)
s that using (5.148) we obtain
B - _mnTz(ﬁ) _ _% [_@ —n (1- e_ﬁhw)}
:%JF%Z%JF%. (5.150)

This is Planck’s law. Clearly, for very large g (: %) or very small
temperatures, the oscillator remains near the ground state

(E) = % (5.151)

For very high temperatures or small 5, on the other hand, we have
— 1

(5] = 5 = kT (5.152)

This is nothing other than the equipartition of energy (for the one
dimensional oscillator).

5.8 Oscillator in higher dimensions

Let us next consider a harmonic oscillator in p dimensions (p > 1).
The oscillator has p degrees of freedom and the Hamiltonian, in this
case, takes the form

p
H=> H, (5.153)
=1
where
F)z? 1 2 v 2

Namely, the oscillations are harmonic along every direction with the
same angular frequency w. Such an oscillator, whose frequency is
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the same in every direction, is known as the isotropic oscillator. (In
general, the frequency of an oscillator can be different, say w;, in
different directions.) In this case, we know the basic commutation
relations between the coordinates and momenta to be

[(Xi, Xj] =0 =[P, Py,
(X, Pj] = ihd;j, (5.155)
which leads to

To solve this problem, we note that we can think of the system
as a set of decoupled harmonic oscillators each of which can be solved
independently of the others. The Hilbert space of states £ separates,
in this case, into a product space as a consequence of (5.156). Thus,
we can think of

E=E6061 --®E&), (5.157)

where H; acts only on the space &. We can also define, as before,
the annihilation and creation operators (corresponding to every i)

mw )
i=\5 |\ Xit—F ),
“ 2h< +mw >
N LU R 5.158
i 27i< Y omw Z>’ (5.158)

as well as the number operator
1

which act only on the states in &;. The eigenvectors of V;, which are
denoted by |n;), with n; = 0,1,2,...,00, therefore, define the basis
states of the vector space &; and satisfy

Ni|ni) = nilni),

Hilns) = By i) = b <n + %) Ina). (5.160)

Since, the total space is a product of spaces,

E=E606-®E&), (5.161)
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we can label the states in £ by the quantum numbers of the individual
product spaces and define them as

Ini,ng,...,np) =|n1) @ n2) @ - & |nyp), (5.162)
where
ni,ng,...,n, =0,1,2,...,00. (5.163)

It is easy to show, as in our earlier discussion, that

[a;, a;] = [al,a}] =0,
[ai,a}] = 5. (5.164)

Furthermore, let us define an operator
N=Y N;=) ala;, (5.165)
i i

so that

N|ni,ng,...,ny)

= ZNZ- (In1) @ [ng) - @ [nyp))

= (Mifn1)) @ [ng) - -+ @ |np)
+ [n1) @ (N2fng)) - - - @ |np)
+ ...
+ln1) ® [na) -+ ® (Nylp))
=(n1+n2+...1np) (|In1) ®[n2) -+~ @ |np))
=(n1+ng+...np)|n1,n02,...,10p)
=nlni,ng,...,np), (5.166)
where we have defined
n=ny+ng+- - +np. (5.167)

This is the total number of quanta in the state and, correspondingly,
N is called the total number operator. Similarly,

p
H:ZHFMZ<NZ-+%>
% =1

= fw (N + g) : (5.168)
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where we have used the definition in (5.165). We also note that
Hini,na,...,np)

:hw(N+g) Ini,na,...,np)

:hw(n+§) 1,2, .., np). (5.169)

Thus, the energy levels of the isotropic oscillator in p dimensions

are given by

En:i'uu(n—i—g), n=01,2,.... (5.170)

Furthermore, the ground state which is denoted by

10,0,...,0) =1]0) ®|0) ® --- ® |0), (5.171)
satisfies
a;|0,0,...,0) =0, for all 1, (5.172)

and is an eigenstate of the Hamiltonian with energy

hw
Ey = pT. (5.173)
This corresponds to a zero point energy of % for every direction
(or every degree of freedom). Furthermore, any higher state can be

written as

(a)™ (ab)m2 .. (ah)m

nilna! ... ny!

0,0,...,0).  (5.174)

N1, ng,...,np) =

It is clear now that, in higher dimensions, there is degeneracy of
states in the spectrum of the oscillator. For example, the state with
energy

By = hw (1 + g) , (5.175)
is p-fold degenerate. This is easily seen by noting that a state of
the form |1,0,0,...,0) has energy F;. But so does |0,1,0,...,0),
|0,0,1,0,...) and so on. There are p-such states.

A state with energy F» = hw (24 5) has %(p + 1)p-fold de-
generacy. This can be seen by noting that a state of the form
11,1,0,0,...,0) has energy Fs. There are %p(p— 1) such states. But,
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a state of the form |2,0,0,...,0) also has energy F,. There are p
such states. Thus, the total number of states with energy Fs is

%p(p —D+p= %p(p +1). (5.176)

In general, one can show that in p dimensions a state with energy
E, = hw(n+5%) has a ("+£ _1)—f01d degeneracy. Let us check this
against some known cases. First, in one dimension where p = 1, the
degeneracy formula gives (Z) = 1, namely, there is no degeneracy of
states in this case (which we have seen earlier). In p dimensions, for
n = 0, we have the degeneracy (p 51) = 1, implying that the ground
state has no degeneracy. For n = 1 in p dimensions, we have (’1’) = p,
which we have explicitly seen to be the degeneracy of the first excited
state. For n = 2, the formula gives (p;rl) = %(p + 1)p, which is the
degeneracy of the second excited state as we have seen and so on.

5.9 Selected problems

1. Find (X), (P),(X?),(P?) and AXAP in the state |n) of the
harmonic oscillator. What is the uncertainty relation (for the
coordinate and momentum measurements) in the ground state?

2. If up(x) and u,, (x) are the eigenfunctions of the harmonic oscil-
lator in one dimension, corresponding to the energy eigenvalues
hw(n+3) and hw(m+ 1) respectively, use the recursion relations
for the Hermite polynomials to calculate

(PYrm = 7@; u(z) (—m d”dmlf:")) . (5.177)

—0o0

3. A particle moving in one dimension has a first excited state
eigenfunction associated with the energy eigenvalue F; given
by

Y1(z) = zo(x), (5.178)

where 1o (z) is the ground state wave function associated with
the energy eigenvalue Fy. Given that the potential vanishes at
xz =0,

16:35:17.



5.9 SELECTED PROBLEMS 147

a) Determine the ratio %
0

b) What is the potential V(z) in which the particle moves?
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CHAPTER 6

Symmetries and their consequences

Symmetries play an important role in the study of physical systems
— both in classical mechanics as well as in quantum mechanics. In
these lectures we will start with a review of classical symmetry trans-
formations before going into a discussion of symmetries in quantum
mechanics.

6.1 Symmetries in classical mechanics

Physical objects often possess symmetries. For example, if we look
at a circle we say that it is symmetric. That is because if we have not
put any distinguishing marks on the circle, any point on the circle is
indistinguishable from any other point. Furthermore, if we rotate the
circle slightly (about its center) we cannot distinguish it from what
it was before the rotation. A deck of (unmarked) playing cards also
possesses a symmetry, namely, an up-down symmetry. That is, if we
turn the cards upside down we cannot tell it from what it was before
turning it.

Symmetries can be classified into two groups — continuous and
discrete. We can take the circle and rotate it by any amount (about
its center) and it would still look the same. On the other hand, if we
are looking at an equilateral triangle, then, it is symmetric only if we
rotate it about its center by 120° or multiples thereof. In this case,
we speak of the equilateral triangle as possessing a discrete symmetry
whereas we say that the circle has a continuous symmetry.

Any operation which leaves a system invariant is called a sym-
metry transformation of the system. Thus, for the circle rotation
is a continuous symmetry transformation whereas for the deck of
cards reflection (turning the deck of cards upside down) is a discrete
symmetry transformation. Furthermore, let us consider the circle
and note that we can define a rotation which is infinitesimally close
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to the original state. The circle would still be invariant. Any fi-
nite rotation can be thought of as a series of successive infinitesimal
rotations. Therefore, for continuous symmetries, the study of in-
finitesimal transformations gives all the information about any finite
transformation. On the other hand, we note that there does not exist
any infinitesimal transformation for discrete symmetries.

Symmetries are not restricted only to physical objects or pat-
terns. We can have functions or theories which also possess symme-
tries. Thus, for example, consider the simple function

flz,y) = 2%+ 2 (6.1)
Let us note that if we make the change of variables

r— 2 =xcosf —ysinb,

y— 1y =xsind + ycosb, (6.2)
then,

flay) =2>+y° =2+ ? =2 +y* = f(z,y). (6.3)

We say that the function f(z,y) is invariant or symmetric under the
transformation (6.2). Since the parameter 6 (of the transformation)
can take any value and f(z,y) would still be invariant, this is a con-
tinuous symmetry transformation. In fact, we recognize this as the
rotation of coordinates = and y (around the z axis) and the function
f(x,y) as representing the length of a two dimensional vector which
we know to be invariant under a rotation. (Alternatively, we note
that f(x,y) = a? defines a circle and the invariance we are discussing
can be thought of as a mathematical description of rotations as sym-
metries of a circle.) In this case, we can also define an infinitesimal
transformation from (6.2) by identifying

6 = e = infinitesimally small. (6.4)

Then, the transformation (infinitesimal rotation) in (6.2) takes the
form

¥ =1 — ey,
y =ex+uy. (6.5)

A physical theory defined by the Hamiltonian H = H(x, p;) is
said to possess a certain symmetry if the Hamiltonian is invariant un-
der the corresponding transformations. Let us consider the following
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infinitesimal canonical transformation (a canonical transformation is
one which preserves the fundamental Poisson bracket relations)

. ) . .
2= =2"+e g =2+ oz,
Ip;
dg
pi = P =pi — Copi Pt opi, (6.6)

where € represents the infinitesimal parameter of transformation and
g = g(z*,p;) is called the generator of the infinitesimal transforma-
tions.

If the Hamiltonian is invariant under the above transformations,
then, g(x%, p;) — the generator of the transformations — is conserved
or is a constant of motion. To see this, let us note that the change in
the Hamiltonian under the transformations (6.6) is given by

; OH _, OH
0H(z',p;) = Z <8xi o' + 8—p-5pi>

)

_Z 8H€89 +8H _689
B oxrt Op;  Op; oz’

i

B O0H 0g O0H Jg
N GZ ((%ci Op;  Op; 89&)

i

=e{H,g}. (6.7)

If H is invariant, this implies that for all values of the parameter e,

0H =0, or, {H,g}=0. (6.8)
But, by Hamilton’s equation, (1.54), this leads to

dg B B
o =l H}=0. (6.9)

In other words, g(«?,p;) is a constant of motion. Conversely, every
conserved quantity generates a continuous symmetry of the Hamilto-
nian.

Note that any dynamical variable w(x?, p;) has the following
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transformation properties under the transformations (6.6),

- ow .., Ow
50.)(1'17291-) = Z (&T’ oxt + %5pz>

(2000 0w 0
€ ZZ: ((‘hﬂ Op;  Op; (%ci>
= e{w, g}. (6.10)

This is why g is known as the generator of the symmetry transfor-
mation. In particular, choosing w(z",p;) = z*, we have
9g

ox' = e{at g} = Eﬁ—pi’ (6.11)

and, similarly, for w(x?, p;) = p;, we have

opi = e{pi, g} = —6%, (6.12)

which coincides with (6.6). Let us next examine a few classical sym-
metries.

» Example. Let us consider a theory in one dimension described by the Hamilto-
nian H(z,p). Let us choose

9(z,p) = p. (6.13)
In this case, we obtain the transformations explicitly from (6.10) to be

Sz =e{z, g} =e{z,p}=¢, = z o2 =z+¢

op=-e{p,gt =e{p,p} =0, = p—p =p, (6.14)

which we recognize as an infinitesimal translation of the coordinate xz. We see

that momentum is the generator of infinitesimal translations and it follows that

momentum is conserved in theories which are invariant under translations.
Physically what this means is that since for a single particle,

p2

H=—+V(x)=T+YV,

L V) ,
and since the momentum is unaffected by translations of the coordinate, the
kinetic energy is invariant. Furthermore, if the potential is such that V(z) =
V(z + ¢€), ie., if it is a constant, then, the Hamiltonian will be invariant under
translations. In this case, the force acting on the particle is zero and, consequently,

momentum is conserved. <

» Example. Let us next consider the same theory described by the Hamiltonian
H(z,p) and identify

g(z,p) = H(z,p). (6.15)
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In this case, we see that
{H,9} ={H H} =0, (6.16)
and

ox =e{x, H} = ez,

or, 2'(t) = x(t) + edz—it) — ot +e),
5p = 6{p7 H} = 6]57
or, p'(t)=p(t)+ edZ—Ef) = p(t+e). (6.17)

Thus, it is clear that these transformations correspond to a translation of
time and if the Hamiltonian does not depend on time explicitly, then, from (6.16)
we note that it is a symmetry of the theory and the total energy is a constant.
Hamiltonian is the generator of infinitesimal time translations. <

» Example. As another example, let us consider a two dimensional theory param-
eterized by (z,y, pz, py) and described by the Hamiltonian H(z,y,ps,py). Let us
further identify g(z,y, e, py) = TPy — YP= = > = angular momentum about the
z-axis. In this case, we have

o = e{w, g} = e{w,xpy — ypa} = —ey{z, pa} = —ey,

oy = e{y, 9} = e{y, 2py — ypo} = ex{y,py} = ex,

opz = e{ps, 9} = e{pe, 2py — ypz} = epy{ps, T} = —epy,

opy = e{py, 9} = e{py, xpy — ypo} = —epa{py, y} = €pa. (6.18)
It is clear, therefore, that under this transformation,

¥ =x+0r=2x— ey,

v =y+dy=y+ex, (6.19)

and momenta also transform in an analogous manner.

As we have seen earlier in (6.5), this is precisely an infinitesimal rotation
about the z-axis and we conclude that angular momentum is the generator of
rotations. Furthermore, angular momentum is conserved if the Hamiltonian is
invariant under rotations. Hamiltonians of the form of the isotropic harmonic
oscillator

2
1
H = 2p_m + §mw2x27

in higher dimensions would have conservation of angular momentum since both
p? and x? are invariant under rotations. <

Theorem. If the Hamiltonian of a system is invariant under some
transformation (x,p) — (a/,p’) which is not necessarily infinitesi-
mal, then, if (z(t),p(t)) denotes a solution of Hamilton’s equations of
motion, then, so does (z'(t),p(t)).
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Furthermore, symmetries of a theory can be viewed in two dif-
ferent but equivalent ways. First of all, we can think of a fixed co-
ordinate system in which the physical system is being transformed.
Thus, for example, we can think of a particle at x being displaced by
an amount ‘a’. On the other hand, the same phenomenon can also
be viewed as the object being undisturbed, rather the coordinate sys-
tem being displaced by an amount ‘—a’ along the x axis. The former
view of the transformation where the system undergoes a change is
called the active transformation. The second description where the
coordinate system undergoes a change is known as the passive trans-
formation.

6.2 Symmetries in quantum mechanics

Let us now try to investigate how symmetries are realized in quantum
mechanics and what are their consequences. First of all, we note that
in quantum mechanics the position of a particle or its momentum are
not always well defined. Thus, to extend even a simple transformation
like an infinitesimal translation (e is infinitesimal)

T —x+e€ p — D, (6.20)

to quantum mechanics, we have to invoke Ehrenfest’s theorem. We
know that the expectation values of operators behave like classi-
cal quantities. Therefore, the natural generalization of the classical
transformation, (6.20), is

(X) = (X) +¢, (P)y — (P), (6.21)
where we have denoted
() = (L|Q[y). (6.22)

Of course, one of the ways to look at this is to assume that under
a translation the states change as

W) = [e) = [¢) = T(e)|¥), (6.23)
such that (| X |¢) — (/| X|¢") where

<1//‘XW/> = <1/}e‘XW}e> = <¢’X‘¢> + €
or, (YT (OXT(e)|9) = (¥|X[p) +e. (6.24)
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Here T'(€¢) denotes the operator which implements an infinitesimal
translation on the Hilbert space of states. We also have (| P|¢) —
(/| P|y)") such that

(W'P[Y) = (e Pltpe) = ($|Pl),
or, (YT ()PT(e)ly) = (|P). (6.25)

This point of view is known as the active transformation. For here
the state of the system directly undergoes the change.

The passive view, of course, is that the state of the system re-
mains unaltered. Rather, the operators change as

X = THe)XT(e), P — T (e)PT(e), (6.26)
such that
TT(e)XT(e) = X + ell, (6.27)

(which implies that TT(¢)XT(e) also measures position but with re-
spect to an origin shifted by € to the left) and

T'(e)PT(e) = P. (6.28)

Let us first consider translations from the active point of view.
To understand how an arbitrary state transforms under translations,
let us recall how the z-basis vectors transform. We know that under
a translation,

T(e)|z) = |z +e€). (6.29)
Namely, the effect of T'(¢) is to displace x to = + €. Note that

& TH )T (e)|x) = (' + €|z +€) = 6(z' — ) = (a'|z). (6.30)
Since the states are normalized, it follows that

TT(e)T(e) = 1. (6.31)

This means that in quantum mechanics translations are represented
by operators which are unitary .

To understand how an arbitrary state transforms under a trans-
lation, we note that

) = ) = T()) = T(e) / da |z)(z])

= /da: T(e)|z)(x) = /déB |z + €)p(z). (6.32)
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Let us define 2’ = z + ¢, so that we have
W)=l = [ da’ ehte’ - 9 = [ de o)t - o),

or, (z|') = (zle) = (@[T (e)|Y) = ¥(z —e),

or, Ye(x) = (2|T(e)[Y) = (x —e). (6.33)
In other words, if

b(x) ~e ™, (6.34)

then,

Ye(z) =Y(x —€) ~ e~ (@),
This simply means that if the wave function is a Gaussian centered at
the origin z = 0, then the transformed wave function is an identical
Gaussian centered at x = € as shown in Fig. 6.1. Namely, the wave
function simply gets translated without any change in shape.

(6.35)

T T 2 T T T T T TS T
1F yx) ~e™ 1 1+ ws(x)~e'(x-€) i
0.8 |- — 08 | 4
0.6 |- E 06 | ]
04 - h 04 | 1
0.2 y 0.2 _
0 Il Il Il 0 Il Il Il
4 2 0 2 4 -4 2 0 2 4
X X

Figure 6.1: A Gaussian wave function and its translated form.

We can also show that under such a transformation,

Pt = [ ao vzt (<ing ) vt

- /d:n P (x — €) <—ih%> Pz —¢)

_ / da’ *(2') <_m%> (')

= (WIPly), (6.36)
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as we would expect.
Having defined the translation operator T'(¢), let us define the
generator of infinitesimal translations as

T(e)=1-—G, (6.37)

h

where € is the infinitesimal parameter of transformation and the factor
“1” is introduced so that the generator G would be Hermitian, namely,

TtH(e)T(e) = (11 + %GT> (11 — %G)

—1+ 56t - “a o). (6.38)
h h
Since Tt(e)T(¢) = 1, it follows that GT = G, namely, the generator
is Hermitian.
To determine the form of the generator of infinitesimal transla-
tions, let us note that (see (6.33))

(@[T (e)|e)) = P(z —e),

] d
or, {olt— %61y = w(@) - 20 1 o)
' d
or, (z) ~ (@lGl) = b(w) — .
or, —%mqw:—%% (6.39)

This determines G = P and, therefore, the operator implementing
infinitesimal translations in quantum mechanics has the form

1€ 1€
T(e)=1-— EG =1 - EP. (6.40)

In other words, we recover the familiar result that the momentum
operator is the generator of infinitesimal translations.

Furthermore, a quantum mechanical theory would be invariant
under translations if

<¢E|H|¢e> = (¢|H|1,Z)>,
or, (YT (e)HT(e)|y) = (Y|H|Y),

on, (wl (14 5P ) 1 (1= 5P) 10) = witlo)
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or, (P, H]jy) =0,
or, (Y|[P, H]|y) =0. (6.41)

(Incidentally, since this must be true for any state, this also implies
that [P, H] = 0 for translation invariance to hold.) By Ehrenfest’s
theorem this has the consequence that

d

7 (Pr=0 (6.42)

namely, in a translation invariant theory the expectation value of
momentum in any quantum state is a constant in time.

Let us next discuss translations in the passive picture where we
know that states do not change. Rather, the operators change as

TT(e)XT(e) = X + €,
TV (e)PT(e) = P. (6.43)

Substituting T'(€) = 1 — %G into the first relation in (6.42), we have

1€ 1€
<]l+ﬁG>X<]l—EG> =X +€l,

or, %[G,X] =el,
or, G=P+ f(X). (6.44)

On the other hand, upon using (6.44), the second relation in (6.43)
leads to

TT(e)PT(e) = P,

1€
— P e
or, —+ G, P] =0,
or, %[P + f(X),P] =0, (6.45)

which implies that f(X) is at best a constant which we choose to be
zero (since the identity operator does not generate any transforma-
tion). As a result, we determine

1€ 1€
Te)=1——-G=1—-—=P. 4
(¢) hG 5 (6.46)
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Invariance of the Hamiltonian, in this picture, implies that
T'(e)HT(¢) = H, or, [P,H]=0. (6.47)

Let us also note that in the passive picture,
5X =TT ()XT(e) — X = %[P, X] = el,

e
ok

In general, if Q(X, P) is an observable, it is easy to check that it will
transform under an infinitesimal translation as

OP =T'(e)PT(e) — P [P, P] = 0. (6.48)

QX, P) = TH ()X, P)T(e),
or, QX,P)= %[P, Q(X, P)). (6.49)
Clearly, the passive picture is more analogous to classical mechanics.

In general, if G is the generator of an infinitesimal transforma-
tion, then, in the passive picture any dynamical variable (observable)
transforms as

5Q(X, P) = % (G, Q(X, P)]. (6.50)
Such relations are quite useful when one studies complicated symme-
tries in quantum field theory.

Finite translations. Once we understand infinitesimal translations, we
can ask what is the form of the operator which implements a finite
translation in a quantum mechanical system. First of all, let us recall
that any finite translation can be thought of as a series of succes-
sive infinitesimal translations. For example, let ‘a’ represent a finite
translation. Then, we can define ¢ = £ as the parameter of an
infinitesimal translation where N is large. (In other words, a finite
translation by a is achieved by IV successive infinitesimal translations

by an amount € as defined above.) Therefore, clearly,

o) = g (160" = g (1- )"

N—oo N—oo h

g (6.51)
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Physically we know that a translation by an amount ‘a’ followed
by a translation by an amount ‘b’ is equivalent to a translation by an
amount (a + b). Mathematically, this implies that

or, L L e_iiz(“er)P, (6.52)
leading to the fact that (or this is true because)
[P, P] = 0. (6.53)

In other words, the algebra of the generators of infinitesimal trans-
formations defines the combination of two finite transformations.

» Example (Bloch function). Let us consider a simple one dimensional quantum
mechanical system with a periodic potential. Such potentials arise in the study
of electronic properties of solids. For example, in a simple solid we can think of
the positively charged ions of atoms fixed in a one dimensional lattice of lattice
spacing a and the valence electrons moving in the background potential of these
ions. Clearly the potential in this case will be periodic with a period of the lattice
spacing, namely,

V(z)=V(z+a). (6.54)

To solve the time independent Schrodinger equation for such a system, let us note
that the Hamiltonian describing the dynamics

P2
H= 21V (X), (6.55)

will also be periodic. In fact, denoting the operator for a finite translation by an
amount a by T'(a) (see (6.51)), the Hamiltonian, in this case, is invariant under
the finite translation

T'(a)HT(a) = H, (6.56)
as a consequence of (6.54). The translation operator, as we have seen (see (6.31)),
is unitary

T (a)T(a) = 1 = T(a)T"(a). (6.57)

The unitarity relation (6.57) allows us to write the invariance condition
(6.56) also in the equivalent form

HT(a)=T(a)H, (6.58)

which can also be thought of as a consequence of (6.47) (see also (6.51). As a
result, we note that if |¢)r) denotes an eigenstate of the Hamiltonian with the
energy eigenvalue F/, then
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Hl|yp) = ElYns),
or, HT(a)lYs) =T(a)H|r) = ET(a)[{rs), (6.59)

so that |¢g.q) = T(a)|1r) is also an eigenstate of the Hamiltonian with energy F.
On the other hand, as we have discussed earlier, there can be no degeneracy of
states in one dimension. Therefore, the two states must be proportional to each
other, namely,

[¥5.0) = T(a)[¢r) = Aalto),
or, ($s|T"(@)T(a)ls) = Nal*($xl¥s). (6.60)

Furthermore, since the finite translation operator is unitary (see (6.57)), it follows
that
Nal> =1, Aa=e", (6.61)

with J, a real constant. In terms of wave functions, we can write

V(@) = (@T(a)|Ys) = € (a). (6.62)

A form of the wave function that satisfies all these requirements can be
written in the form

Ye(x) = ™ up (@), (6.63)

with

ugp(r —a) = up(zx), (6.64)

so that we have (see, for example, (6.33))

VYpa(z) = Pp(z —a) = e* D up(z —a) = €™ up(z), (6.65)

where we have identified §o = —ka. Wave functions satisfying (6.63) and (6.64)
are known as Bloch functions and arise in the study of systems with a periodic
potential. We note that determining the energy eigenfunction ¥ (x) in such a
case reduces to determining the periodic functions ug ().

We note that the energy eigenfunction of the system satisfies the coordinate
space equation

Hig(z) = EYe(z),

 2m da?

o, < o d —|—V(x)> v (z) = Bvs(z). (6.66)

Substituting the form of the wave function from (6.63), we obtain
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d*up(x) o dug(x)  2m n2 k> _

This can be solved in two neighboring regions with the matching conditions which
would determine the energy eigenvalues. In metals, this leads to allowed bands
of energy values where electron motion is possible with these bands separated by
gaps where motion is not allowed. The value of the gap then determines whether
the material is a conductor or an insulator or even a semi-conductor.

<

6.3 Groups

To understand the properties of symmetry transformations a little
better, let us discuss briefly the concept of a group. A group G is a
set of elements {g;} with a definite multiplication law such that

1. 192 € G, if g1,90 € G.

2. g1(9293) = (9192)g3, where g1, 92,93 € G, namely, multiplica-
tion of group elements is associative.

3. there exists an identity element 1 € GG which satisfies

gl =g, =1g;, forall g; €G.

4. for every element g; in the group, there exists a unique inverse
9; L also in the group satisfying

9 gi = 1=gig "

Let us now define the set of all translations by {T'(a)} with the
range of the parameter —co < a < oc.

1. Clearly, T'(a1)T(a2) = T(a1 + a2) and T'(ay + ag) € {T(a)} if
both T'(a1),T(a2) € {T(a)}.

2. T(a1) (T(a2)T'(a3)) is equal to (T'(a1)T(a2)) T(as), both prod-
ucts being equal to T'(a; + ag + az). This is seen from the fact
that

T(a1) (T(a2)T(a3)) = T'(a1)T (a2 + a3) = T(a1 + a2 + a3),
(T(al)T(ag)) T(ag) =T(a1 + az)T(a3) = T(a1 + ag + as).
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3. Clearly, the translation by an amount zero is the identity ele-
ment since it leaves every element of the group invariant, namely,

T(0) = 1.

4. For every translation T'(a) € {T'(a)}, there exists a unique
translation T'(—a) € {T'(a)} such that

T(@)T(—a)=T(0)=1=T(—a)T(a).

Therefore, we see that the set of all translations form a group.
Furthermore, this is a continuous symmetry group called a Lie group.
The parameter of translation takes values between —o0 < a < oc.
The group is correspondingly called a non-compact group. (It is easy
to check that if ‘a’ takes values over a compact (finite) range, then,
translations will not form a group.) Furthermore, it is clear that if
we know the generators of infinitesimal transformation and their al-
gebra, the structure of the group is completely known. The algebraic
relations satisfied by the generators of infinitesimal transformation
are known as the Lie algebra of the group.

It is clear that translation invariance of a physical theory is
essential. This is because it implies that an experiment performed
at two different places would give the same result. This is quite
important because otherwise physical laws would not be unique.

6.4 Parity

In classical mechanics parity is the operation of reflecting vectors
through the origin. Thus, in one dimension parity corresponds to

T — —, p— —p. (6.68)

Therefore, we recognize that this is not a continuous symmetry. In
stead, it is a discrete symmetry.

From our earlier discussions, we recognize that parity transfor-
mation can be implemented in quantum mechanics through

(X) 2 (LX) = —(X),

Parity
—_—

(P) (=P) = —(P). (6.69)

Let us first discuss parity in the active picture. Let P repre-
sent the operator which implements the parity transformation on a
quantum mechanical system, namely,

[¥) = ') = Ply). (6.70)
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To understand how exactly an arbitrary state transforms under par-
ity, let us see how the z-basis transforms under this operation. It is
clear that

|z) — |2') = Plz) = | — ). (6.71)

This leads to the fact that P is a unitary operator since
Wa’) = (YIPTPlz) = (~y| - x) = 6(y — x) = (yl),

or, P'P=1. (6.72)
Furthermore, since

Plz) =|—z), or, P?z)=|z), (6.73)
we conclude that

P?=1. (6.74)

Clearly, the eigenvalues of P are £1. The eigenvalues are real and
hence P is a Hermitian operator (Real eigenvalues, of course, do not
guarantee that an operator is Hermitian. However, PIP = 1 = P?
determine that the operator P is Hermitian.),

P =Pl (6.75)
Furthermore, P2 = 1 also implies that
p_p-l (6.76)
Therefore, the parity operator satisfies the following relations.
L. P=P =Pk

2. The eigenvalues of P are +1.

» Example. A simple example of an operator with these properties is given by
the 2 X 2 matrix

Q:(?é>, (6.77)

which is easily seen to satisfy

Q=0"'=0 (6.78)
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To see how an arbitrary state transforms under parity, we ex-
pand the state in the z-basis. Namely,

W) = [ dovola) (6.79)
so that

W) =Pl =P [ dele)ota) = [ do Plojuto)

- / dz | — 2)0(z) = / dz |2y (—). (6.80)

Therefore, it follows that

(z[y) = (z[P|y) = ¢(~2). (6.81)
Hence, we see that under parity,

¥(@) = p(—a). (6.82)

We know that since the eigenvalues of P are £1, if |¢)) is an eigenstate
of parity, then,

Ply) = *lv),
or, (z|Pl) = £(z[y)),
or, Y(—z)==xy(z). (6.83)

The states with positive eigenvalue are called even parity states and
the ones with negative eigenvalue are known as odd parity states
(these are the symmetric and the anti-symmetric states that we had
talked about earlier). A general state, however, does not have to be
an eigenstate of parity.

In the passive description, the quantum mechanical states of a
system do not change, rather the operators change under the trans-
formation as

X — PIXP=-X,
P—PlPP=—P (6.84)
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Note that since P = Pt = P~1, we can write the above relations also
as

PX =—-XP,
or, PX+ XP=0,
or, {P,X}=0. (6.85)

The curly bracket represents the anti-commutator in quantum me-
chanics (it is not the Poisson bracket of classical mechanics), which
is also denoted as [-,-], . Similarly, we can also show that

{P,P}=0. (6.86)

A theory is said to be parity invariant (or invariant under parity)
if

PIH(X,P)P = HP'XP,PTPP) = H(—X,—P)
= H(X, P). (6.87)
Using the relations derived earlier, namely,
P =P =p1
we conclude from (6.87) that the theory is invariant under parity if
[P,H] =0. (6.88)

The time evolution operator for a quantum mechanical state is
defined to be

[(8)) = U®)[¥(0)), (6.89)
and, as we have seen earlier (see (3.81) and (3.85)), corresponds to

e—%Ht7
t
= —irqy
ut) Tle ﬁof

when H is time independent,
H(t') |, when H is time dependent.

(6.90)

Therefore, since H commutes with the parity operator when the the-
ory is parity invariant, it follows that

PU) = U(t)P. (6.91)
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In other words, we see that

PU@)|4(0)) = U#)P[1(0)). (6.92)

This implies that in a parity invariant theory, if initially we start
with a system in the state |1(0)) and another person starts with
the parity transformed state of the system P|i(0)), then, after an
arbitrary amount of time ¢, the two states will continue to be parity
transforms of each other.

Parity is also commonly known as handedness. If one stands in
front of a mirror, in most cases one cannot differentiate between the
left hand and the right hand. Namely, our body is left-right sym-
metric — or parity invariant. Most macroscopic systems or theories
possess parity as a symmetry. However, we do find some systems in
nature as well as some microscopic phenomena which do not respect
this symmetry. For example, certain sugar molecules are known to ro-
tate right circularly polarized light differently from the left circularly
polarized light. In quantum mechanics we know of decay processes
such as the beta decay

n—p+e +7,

which are known to violate reflection symmetry (parity).

6.5 Rotations

Let us start with rotations in two dimensions in this lecture. We will
follow this up with a discussion of rotations in three dimensions. We
know classically that if we rotate a system by an angle a about the
z-axis, then, the coordinates of the particle change as (earlier in (6.2)
we had called this angle 6, but we do not use it here in order to avoid
any confusion with angular coordinates)

/ .
r—x =X CoOSx — ySsi «,

y — 1y = xsina + ycosa. (6.93)
Similarly, the momenta transform as

Dz —>pf,c = Pz COS v — py Sina,

Py — Dy = pzSina + py cos a. (6.94)
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We can also write the transformations in (6.93) and (6.94) in the
matrix form as

<m> <m/> <cosa —sina><x>
— / = : )
y y sinaw  cosa Y
/ _ .
()= () -(a ) (5 ) ow
Dy Pl sina cosa Dy
Let us denote by R(a,z) the matrix that rotates these vectors.
Furthermore, let us denote by U(R(«,z)) the operator which imple-

ments the effect of the rotation R(«,z) on the Hilbert space of states.
Then, in the active picture the states will transform as

) = |¥r) = U(R)|¢). (6.96)
Of course, the rotated state |¢z) must be such that
(Vr|X[Vr) = (Y| X)) cos o = (Y]Y|¢)) sin av,
(YrlY[¥r) = (| X|¥) sina + (Y|Y|) cos a,
(Vr|Peltr) = (| Pulth) cos oo — (¥ Fy|¢)) sin
(Yr|Pyltr) = (¥ PelY)) sina + (| Py 1)) cos a, (6.97)
h

which can also be written as

IUT(R)XU(R)[) = (| X[9) cos a — (Y [¢) sinav,
VIUTR)YU(R)|) = (] X[¢) sin @+ ([ [1)) cos a,
YIUNR)PLU(R) ) = (4| Py} cos o — (1| Py[) sin o,
IUT(R)P,U(R)[4) = (| Pulip) sin o + (4| Py|¢h) cos . (6.98)

To find out the effect of rotations on an arbitrary state, let us
examine the effect of rotation on the coordinate basis states

{
{
{
{

U(R)|z,y) = |z cosa — ysina,zsina + ycos ). (6.99)

As in earlier examples we can show from this that the rotation oper-
ator is unitary,

UN(R)U(R) = 1. (6.100)

Let us next write the generator for an infinitesimal rotation around
the z-axis as

U(R(e,2)) = 1 — %EG. (6.101)
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It follows from this that since
U'RUMR)=1, = G'=aG. (6.102)

Namely, the generator of infinitesimal rotations around the z-axis is
Hermitian.
We note that under an infinitesimal rotation

U(R)|z,y) = |z — ey, y + ex), (6.103)

so that we obtain

o) = UR)w) = U(R) [ dody la,y) oyl
:/dxdyU(R)\ﬂC,y>¢($ay)
_ /dgjdy|3: — ey, y + ex) P(z,y)

= /dajdy |z, y) Y(z + ey, y — ex). (6.104)
Therefore, we can identify the rotated wave function with

VYr(r,y) = (z,y|U(R)[¢) = Y(z + ey,y — ex),
op(x,y) _ _ 0v(x,y)

Ox oy
Op(ay) _ Ov(x,y)

or, {.y|L = G} = w(e,y) + ey

1€

= 1
which determines
G=XP,—YP,=L., U(R(e,)=1- %Lz. (6.106)

In other words, the angular momentum operator L, is the generator
of infinitesimal rotations around the z-axis.
In the passive picture, on the other hand, we should have

UN(R)XU(R) = X cosa — Y sin o,

UN(R)YYU(R) = Xsina+ Y cos o,

U'(R)P,U(R) = P, cosa — P,sina,

U'(R)P,U(R) = P,sina + P, cos a. (6.107)
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For infinitesimal rotations we have o = € = infinitesimal and the first
relation in (6.107) yields

1€ 1
<1+EG>X<]I—ﬁeG> =X —¢€Y,

1€
h

which determines

(G, X] = —¢Y, (6.108)

or,

G=-YP, + fi(Y) + fo(X) + f3(Py) + fa(XY)
+ f5(XP) + f6(YP,)) + f«(XYP,). (6.109)

On the other hand, from the second relation in (6.107) we obtain

1€ 7
(1) v (1 La) =y

i€
h

which determines some of the coefficients in (6.109) to be

[G,Y] = X, (6.110)

or,

f5s =XFy,

fs(Py) =0,

fe(YP)) =0,

f7(XYP,) =0, (6.111)
so that we can write

G=XP,—YP, + f1i(Y) + fo(X) + fa(XY). (6.112)

Similarly, from the third relation in (6.107) we obtain

1€ 1€
+ = e |1 — — = P, — eP,,
(]1 G>P< G> eby

1€
h

which determines

or,

(G, P,] = —€P,, (6.113)
f2(X) = f1(XY) =0, (6.114)
so that we can write

G=XP,~YP,+ fi(Y). (6.115)
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Finally, the last relation in (6.107) leads to

<11 + %G) P, (]1 = %G) —¢P,+ P,
ic

h

or,

(G, P, = €P,, (6.116)
which determines f1(Y) = 0 so that we have
G=XP,—YP,=L.. (6.117)

Therefore, we have determined

UR)=1— %LZ. (6.118)

A quantum mechanical theory is invariant under such a rotation
if

U'(R)HU(R) = H. (6.119)

Putting in the infinitesimal form for U(R), the invariance condition,
(6.119), becomes

1€

(L. H] =0, or, [L.,H]=0. (6.120)

We can again construct a finite rotation about the z-axis by taking
successive infinitesimal rotations which leads to

U(R(c,2)) = lim (11 _ %LZ>N

N—oo
Qo N
= (1 B N—hLZ>
— el (6.121)

Since [L,, L,] = 0, it is follows that
U(R(an,2))U(R(a2,2)) = U(R((o1 + ), 2)). (6.122)

Namely, rotations about the same axis are additive (much like trans-
lations).

The two dimensional vectors can equivalently be described in
terms of the polar coordinates (r,¢). A rotation, of course, does not
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change the radial coordinate. Rather, it changes the azimuthal angle
¢. Thus, in this basis,

U(R(a,2))|r, ¢) = |r, ¢ + ). (6.123)

Furthermore, note that since 0 < ¢ < 2w, the parameter of rotation
is also bounded and lies between

0<a<2r (6.124)
In this basis of circular coordinates,
) = UR)IW) = U(R) [ rdrdor )(r, 610)

— [rardou o) vir.0)

- / rdrdg |r, ¢ + ) $(r, )

- / rdrdg |r, 6) ¥(r, ¢ — a), (6.125)

so that we obtain

(r, @lvr) = Yr(r, ) = p(r,¢ — ). (6.126)

Furthermore, for o = € = infinitesimal, (6.126) gives

(r: 9| (11 - %Lz> ) = 1(r, ¢) — e&ﬁg;; ¢
In other words, in the (7, ¢) basis,
L - ingg (6.128)

d¢’

We can show again that in two dimensions rotations form a group.
This is a Lie group (Abelian group like translations). Furthermore,
since the parameter of rotation takes only bounded values, 0 < a <
27, this is a compact group (unlike translations).
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6.6 Selected problems

1. Prove the relation (see (6.51))

1T N .
lim <1 — N) =e ", (6.129)

N—oo

2. Show that under any unitary transformation U

U'f(X,P)U = f(U'XU, U PU). (6.130)

3. Consider the operator describing a general (unitary) infinitesi-
mal transformation of the form

- Gi, (6.131)
where G and €' denote respectively the generators and the con-
stant parameters of the infinitesimal transformation. The in-
dices 7 take values over a range of integers depending on the
transformation under consideration. As we have discussed in
(6.50), the infinitesimal change of any operator, in this case,
can be written as (in higher dimensions)

i€
X, P) = - G, UX,P)]. (6.132)
Show that if one were to do two successive infinitesimal trans-
formations with parameters ¢; and e, then the order of the
transformations will not commute in general and the commu-
tator can be written as

[01,02]QX, P) = 51 (622(X, P)) — d2(012(X, P))
eﬁej
This is often useful in determining the algebra of the generators
of infinitesimal transformations.
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CHAPTER 7

Angular momentum

As we have seen, angular momentum operator is the generator of
rotations. In the next few lectures we will study the algebra of rota-
tions in three dimensions by studying the algebraic properties of the
angular momentum operators.

7.1 Rotations in three dimensions

Let us generalize the results of rotations in two dimensions to three
dimensions. First of all, there are now three different axes about
which we can perform rotations. Therefore, there would be three
possible generators of infinitesimal rotations which would correspond
to the three components of the angular momentum operator. Let us
denote them by

L,=YP,— ZP,
L,=ZP,— XP.,
L.=XP,~YP,. (7.1)

Let us next determine various commutators involving these operators.
For example, we note that

[Ly, X] = [YP, — ZP,, X] = 0,
[L,,X] =[ZP, — XP,,X] = Z [P, X] = —ihZ,
[L.,X] = [XP,— YPy,X] = —Y [P, X] = ihY. (7.2)

<

Similarly, we can derive other commutation relations also. But, to
simplify our calculations, let us introduce a compact notation and
define

X=Xy, P=P, L;=1L,
Y=X,, P,=P, L,=Lo, (7.3)
Z = Xs, pP,=P;, L,=Ls.
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With this notation we can write the three components of the angular
momentum operator in (7.1) as (repeated indices are assumed to be
summed )

Li =€, X;Py, XiPj—X;P =€l 1,5,k=1,2,3, (7.4)

where ¢;;;, represents the Levi-Civita tensor which is totally anti-
symmetric, with €103 = 1. In this notation the canonical commutation
relations take the form

[Xi, Pj] = ihdij, X4, X;] = 0= [P, Pj]. (7.5)
Using the notations in (7.3) and (7.4), we can now calculate
[Li, X;5] = [eipq XpPys X;] = €ipg Xp [Py, Xj]
= Eiqup(—ih(qu) = —iheiijp == Zhaka (76)
Similarly, we can also derive
[Li, Pj| = l€ipg XpPy, Pj] = €ipg| Xp, Pj] Py
= Eipq(’ihépj)Pq = iheiquq = ihe,-jkPk. (77)

The commutators (7.6) and (7.7) merely tell us how the coordinate
as well as the momentum (vector) operators transform under an in-
finitesimal rotation around the i-axis. Furthermore, the commutation
relation between two angular momentum operators can now be de-
termined to be

[Li; Lj] = [Li €jmnXm P
= €jmn ([Li, Xmn] Pn + X[ Li, P])
= €jmn (1h€imp X P + 1h€ink XmPr)
= il ((85i0nk — 0jk0ni) X Pr — (85i0mpk — 0k0mi) X Pr)
— i (6, X Py — X; P, — 8, Xp P + X;P;)
= ih(XiP; — X; F)
- (7.8)

where we have used (7.6) and (7.7) in the intermediate steps. Thus,
we see that the basic commutation relation involving the angular
momentum operators is given by

[LZ', L]] = iheijkLk, (79)

16:35:33.



7.1 ROTATIONS IN THREE DIMENSIONS 177

where repeated indices are assumed to be summed. (Eq. (7.9) ba-
sically defines how the angular momentum (vector) operator trans-
forms under an infinitesimal rotation.) This shows that generators of
rotation along different directions do not commute. (The algebra is
non-Abelian.) However,

[Li, L;] =0, for a fixed 1.

Let us now define a quadratic operator
3
L?=1>=LiLi =) L. (7.10)
i=1

This operator is easily seen to commute with all the components of
the angular momentum operator,

[Li, L] = [Li, LLj) = Ly[Ly, Lj] + [Ly, L] L,
= Lj(iheijpLy,) + (iheiji L) L;
= iheiji(LiLi, + LiL;) = 0, (7.11)

which follows from the anti-symmetry of the Levi-Civita tensor. In
other words, the operator L? commutes with all three generators of
infinitesimal rotations. In group theory, such an operator is known
as the quadratic Casimir operator.

Furthermore, a theory is invariant under rotations if the gener-
ators commute with the Hamiltonian. This implies that for all 4,

[Li, H] = 0, (7.12)

for rotational invariance to hold. Clearly, for such systems it follows
that

[L?, H] = [L;L;, H] = L;|L;, H) + [L;, H)L; = 0. (7.13)

However, since different components of the angular momentum
operator do not commute among themselves, it is clear that H, L? and
only one component of the angular momentum can be simultaneously
diagonalized in a rotationally invariant theory. A simple example of
a rotationally invariant theory is, of course, given by

P2 P2

H=o—+V(R)=5—+ V(X?), (7.14)
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where the potential depends only on the radial coordinate. For ex-
ample, the higher dimensional isotropic harmonic oscillator is such a
theory.

In such a theory (with rotational invariance) we conventionally
choose to diagonalize H, L? and L3 (L) simultaneously. This means
that they are chosen to have simultaneous eigenstates. To study the
eigenvalue spectrum of these operators, let us further define

Ly =Ly +iLo,
L_ =1Ly —iLy, L_= (L))" (7.15)
Since L? commutes with all the components L; it follows that
(L, L% =0,
[L_,L*] =o0. (7.16)
On the other hand, we have
(L4, Ls] = [Ly + iLo, L3] = —ihLy + i(ihLy)
= —h(Ly +iLy) = —hL4,
[L_, Ls] = [Ly — iLo, L3] = —ihLy — i(ihL)
= h(Ly —iL9) = hL_. (7.17)
Furthermore, it is easy to derive
[Ly,L_] = [L1+iLy, L1 — iLo]
[Ly,—iLo| + [iL2, L1]
(—i)(ihLs3) + i(—ihL3)
2hLs3, (7.18)

and we know that the Hamiltonian for a rotationally invariant theory
commutes with all the components of angular momentum operator.
Therefore, we also have

(L, H] =[L_,H] =0. (7.19)

Let |7, m) represent the simultaneous eigenstates of the operators
L? and L3 such that

L3|j7 m> = hm|]7 m>7
L?|j,m) = B*j|j,m). (7.20)
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Let us next examine the effect of the operator L, on a given eigen-
state |7, m). We note that

LsLy|j,m) = ([Ls, L4] + Ly Ls) |j,m)
= (hLy + Ly Ls)[j,m)
= (h+ hm)L4|j,m) = h(m + 1)Ly |j, m). (7.21)
Similarly, we have
L?Ly|j,m) = ([L? Ly] + Ly L?) |j,m)
= Ly L?|j,m)
= h?§ L, |j,m). (7.22)

This shows that the effect of L, acting on a given state |j, m)
is to take it to a state where the eigenvalue of L3 is raised by a unit
of h, while that of L? is unchanged. Therefore, we can write

Lyljom) =T4lj,m+1), (7.23)
with 'y a constant, depending on j and m. We can also show that
LyL_|j,m) = ([L3, L_] + L_L3) |j,m)
= (=hL- + L_L3)|j,m)
— (—h+ hm)L_lj,m) = i{m — 1)L_|j,m),
L*L_|j,m) = L_L?|j,m)
= 1%jL_|j,m). (7.24)

which shows that the operator L_ acting on a state |j, m) lowers the
eigenvalue of L3 by a unit of & while leaving the eigenvalue of L2
unchanged. Therefore, we conclude that

Since the operators Ly and L_ raise and lower the eigenvalue
of L3 respectively, they are correspondingly known as raising and
lowering operators. Furthermore, it follows that given a state |j, m)
we can construct a sequence of states [j,m + 1), [j,m + 2),--- and
|7,m—1), |j,m—2),--- respectively by applying raising and lowering
operators. However, physically this sequence cannot go on without
termination. For, the operator

LP=L3+I13+13 or, [?-L3=L3+13>0. (7.26)

16:35:33.



180 7 ANGULAR MOMENTUM

This is a positive semi-definite operator so that the eigenvalues must
satisfy

h%j —h*m? >0, or, j>m? (7.27)

This implies that there must exist states with a maximum and
a minimum value of m such that

Li]j, Mmax) =0,
or,  (J, Mmax|L— L |j, Mmax) = 0,
or, {(J, Mmax]| (L2 — 12— th) |7, Mmax) = 0,
or, (I*j — F*mipax — F*minax) (s MunaxlJs minax) = 0,

or, Jj — Mmax(Mmax + 1) =0, (7.28)
where we have used
L Ly =(Ly —iLy)(Ly +iLy) = L? + L3 +i[Ly, Lo
= L? — L3 — hLs. (7.29)

We can, similarly, show that there must also exist a state with
a minimum value of m such that

L_ |Jy mmin> =0,

or, <,]7 mmin’L+L—’j7 mmin> = 07

or, <Jy mmin| (L2 - L% + hL3) |]7 mmin> — 07

or, (h2j - h2mr2nin + h2mmin) <]7 mmin’jy mmin> = 07

or, j— mmin(mmin - 1) =0. (7.30)

Comparing the relations in (7.28) and (7.30), it is clear that

Mmin = —Mmax- (731)
(The other solution, muyax = Mmin — 1, violates our assumption that
Mmax > Mmin OF that My, denotes the minimum value of m.) Fur-
thermore, let us assume that one goes from the state |j, mpmin) to

|7, Mmax) by applying k times the raising operator L. Since every
time Ly is applied to a state |j,m) it shifts m — m + 1, it follows
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that
Mmax — Mmin = ky

or, 2Mmax = ka

k
OT;,  Mmax = —Mmin = bR (7.32)
where k is an integer.
Therefore, we can write
, k (k
J = Mmax(Mmax + 1) = 53 +1]. (7.33)

Let us define ¢ = % so that ¢ takes only multiples of half integer

values. Then, we can write

j=L+1), (7.34)
and —¢ < m < ¢ (in steps of unity, namely, m takes 2¢ + 1 values)
where ¢ takes positive multiples of half integer values

1.3
£=0,=,1,=,---
) 27 ) 27 )

We can now determine the normalized eigenstates of the an-
gular momentum operators in the following way. We have already
determined that

L2[,m) = B¢ + 1)|¢,m),
Ls|t,m) = hm|l,m), (7.36)

m=—b, 041, 0—1,1. (7.35)

where —¢ < m < {. Furthermore, we know that
Lil,m) =T1[l,m+1),
or, (,m|L_Lylt,m) = [T,
or, (¢,m|(L*— L3 — hL3) |6, m) = |T4+|?,
or, I (((£+1) —m(m+1)) =|T¢ ]

or, Ty =T%=h/ll+1)—m(m+1), (7.37)

so that

L+|€7m> = h\/f(ﬂ + 1) - m(m + 1)|£7m + 1>7
1

or, [fm 1) = I+ 1) —mmt 1)

L|t,m). (7.38)
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Similarly, we can also show that
L_|t,m) = h\/e(l + 1) —m(m — 1)|{,m — 1),

1
T I+ 1) - m(m - 1)

This, therefore, defines all the simultaneous eigenstates of L? and Ls
for a particular value of £. They define a Hilbert space £ which
is a subspace of the total Hilbert space of the angular momentum
operators. What we mean by this is that the operators L?, L3, L, and
L_ take any vector in this space to another vector in the same space.
In other words they leave the space £©) invariant. The dimensionality
of this space is (2¢ + 1).

or, [{,m—1) L_|¢,m). (7.39)

» Example. Let us now look at a few specific examples of the representations of
angular momentum.
1. £ = 0: In this case, the dimensionality of the representation is 1 and m = 0.

2.4 = %: In this case, the dimensionality of the representation is 2¢ + 1 = 2
and m takes values i%.

Let the basis states in this space be |3, 1) and |, —1). We know from (7.36)

that

(€, m'|Ls|€,m) = hm{€,m'|£,m) = hmSps 1. (7.40)
This implies that

11 11 h 1 1 1 1

(3:3lLsl5: 50 = 5 = —(5, —35lLsl5, —35)

11 1 1 1 1 11

Z el =N =0= (=, —Z|Lal=.2). 41

<272| 3|27 2> 0 <27 2| 3|272> (7 )
Therefore, we have the matrix representation,

h(1 O

Similarly, for L? we have
€, m/|L2|0,m) = B2l + 1), m/ |0, m) = B 4+ 1), 1,
3

= 2h%8m m, 7.43
- (7.43)
so that this is a multiple of the identity matrix,
2_3,2( 1 0\ _ 3,2
L—4h<01)—4h]l. (7.44)

Furthermore, for the raising operator we have from (7.38)

<€7 m/|L+|£7 m> =TIy <€7 ml|£7 m + 1> =146, m+1

=hEL+1) —m(m+1) 6 i1

_h Z —m(m 1) Sy (7.45)
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In the matrix notation, this takes the form

L+:h<8 \/g>:h<0 é) (7.46)

0 0
Similarly, (7.39) leads to
m'|L_le,m)y =T_{&,m'[{,m —1) =T m_1

=Bl +1) —m(m —1)0pr m_1

—h Z —m(m = 1) 8y e, (7.47)

which has the matrix form

0 0
L:h( Ey 0):71(? 8):(L+)T. (7.48)

But, from the defining relation (7.15) we know that L+ = L1 £ iL2 so that
1
Ly = 5(Ly +Lo),

Ly=—=(Ly — L_). (7.49)

_l
2

This determines

h(0 1
Ll — 5 ( 1 0 ) )

h(f 0 —i
L27§< i 0 ) (7.50)
In other words, the generators of rotation (angular momenta) corresponding

to the eigenvalue ¢ = % are none other than the three Pauli matrices (up to
multiplicative constants).

3. £ = 1: In this case, the dimensionality of the representation is 2¢ +1 = 3
and m takes values m = —1,0,1. Let the basis states in this space be
|1,1),]1,0),|1,—1). Since L3 is diagonal in this basis,

(1,m'|L3|1, m) = kim0’ m, (7.51)

and we have
10 O
Ls=h[ 0 0 O . (7.52)
0 0 -1
Similarly, L? is also diagonal with

(1,m/|L|1,m) = B*1(1 + 1)y o = 28200 1ms (7.53)

which leads to the matrix form

1 0 0
=2 0 1 0 |=2r1 (7.54)
0 0 1
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Furthermore, for the raising operator we have

(1,m'|Ly|1,m) = h/2 — m(m + 1) s ma1, (7.55)

so that the matrix representation has the form

0 v2 0
L+:h< 0 0 ﬁ) (7.56)
0 0 0

Similarly, the lowering operator satisfies

(1,m'|[L_|1,m) = h/2 —m(m — 1) 6/ 1, (7.57)

and we have

0 0
L.o=h| v2 0
0 V2
It follows from (7.56) and (7.58), therefore, that

s [0 10
(Ly +L)=—={1 0 1 |,
2\ 0 1 0
h

. 0 —i 0
Lo=—t(Li-L)="0 4 0
2 V2o i o

(

0
0 | =)' (7.58)
0

Ly

N)IH

(7.59)

Thus, we see that the generators of rotation (angular momenta) have dif-
ferent representations in different spaces.

<

To find out the spatial eigenfunctions (wave functions) asso-
ciated with angular momentum operators, we note that rotational
symmetry is best studied in the spherical coordinates (see Fig. 7.1),

x = rsin 6 cos ¢,
y = rsinfsin ¢,
z =rcosb. (7.60)

In spherical coordinates, the angular momentum operators take
the following forms.

Li=L,=1ih (sin qﬁ% + cos ¢ cot 9(‘%) ,

Ly =L, =1ih <—cos<z$aa +sm<;5cot98¢>

0
Ly = L. = —ihg . (7.61)
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Figure 7.1: Cartesian and spherical coordinate systems.

This determines the forms for the raising and lowering operators to
be

Ly =Ly +ily
=ih [(sin ¢ F icos (b)3 + (cos ¢ %+ isin ¢) cot 93
00 09
= +het [% + i cot 96%] . (7.62)
We know from (7.38) that
Lyt ¢y =0. (7.63)
In the spherical coordinate basis, therefore, this condition becomes
o . 0
[@ + icot 98—¢] Upe(r,0,0) =0, (7.64)
where
Upe(r,0,0) = (r,0,0|(,0). (7.65)

Furthermore, we also know that

L.|6,0) = he|e, 0),
0
or, — Zh8_¢ UM(T‘, 97 qb) = hﬁUé,f(Tv 97 ¢)7
0

or, a—¢Ug7g(T, 9, (25) = Z‘gUg’g(T, 9, ¢), (766)
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so that we can write
Upe(r,0,¢) = Fre(r,0)e. (7.67)
Let us now use the method of separation of variables and write
Fy(r,6) = Reo(r)O0,0(0). (7.68)
Putting (7.67) and (7.68) back into (7.64), we have

o . 0
<@ 4 7 cot 96—¢> U e(r,6,0) =0,

or, (i + ¢ cot 9(%)) O©¢(8) =0,

de
d 0
or, @gé( ) _ lcot 00, 4(0) =0,
or, ©y(0) = A(sin)". (7.69)

Therefore, we have determined
UE,Z(Tu 97 (b) = R@,Z(T)(Sin 9)56i6¢7 (770)

where we have absorbed the constant A into Ry (7).

Furthermore, we note that rotation affects only the angular part
of the solution and only the m quantum number changes under a
rotation, while £ is invariant. Therefore, the radial component of the
wave function for a rotationally invariant theory should not depend
on the m quantum number. It can at the most depend on the /
quantum number and would be determined by the dynamics of the
system. Thus, we can write

Upe(r,0,0) = Ry(r)(sin §)“e™®. (7.71)

where we have absorbed the normalization constant into the radial
wave function. This is, therefore, the wave function for the state with
the highest m quantum number for a given [. The wave function for
any other state can be obtained from this by applying the lowering
operator. Namely, (see (7.39))

1 1
00—1) = LJ06) = ——L_|6,0),
| ) B/Je(€ +1) —£(0 — 1) 60 h/20 160
or, Uper(r,6, ) = _%m he it [% _icot 98%} Use(r,0, )
—i¢
= 2 0 UZ,Z(T797¢)7 (772)

V20 90
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where we have used

o . 0
<% + i cot 08_¢> Upe(r,0,0) =0,

) 0 0
or, icot Ha—quM(r,H,qS) = —%U&g(r,ﬁ,qb). (7.73)

Using (7.71) in (7.72), we can write

2e719 :
Upp—1(r,0,0) = — c Ry(r)e*® % (sin )"

_ _z_gRg(r)ei(é_l)‘f’(Sin )1 cos 6

V20
= —V20R(r)(sin 0)“ ! cos he’ 19 (7.74)

Similarly, a general wave function, Uy, (r, 8, ¢), can be obtained by
applying (¢ — m) times the lowering operator L_ with a suitable
normalization.

The interesting conclusions that we can draw from this operator
analysis are that the angular momentum operator L? has eigenval-
ues of the form h2/(¢ 4 1) and that ¢ takes integer as well as half
integer values. This is certainly an improvement over the old quan-
tum theory. Let us note that the energy associated with rotations in
molecules can be denoted by

L2 IL?

where L, I represent respectively the orbital angular momentum and
the moment of inertia of the system. In the old quantum theory, one
postulated the eigenvalues of angular momentum to be of the form

eigenvalues of L? = h%¢?, where (=0,1,2,--- . (7.76)

This, in turn, leads to the separation of energy levels in molecules in
the proportions

1:3:5:7:---. (7.77)

However, this was not observed. The observed separations were in
the proportions

1:2:3:4:---. (7.78)
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It is easy to see from (7.75) that this will indeed be the case if
eigenvalues of L? = h20(f+1), where ¢ =0,1,2,3,--- . (7.79)

This says that the orbital angular momentum eigenvalues take in-
teger values and the extra term arises from the non-commutativity
of different components of the angular momentum operators. If we
solve the Schrédinger equation, we would obtain only integer values
for the angular momentum eigenvalue. The operator method, on the
other hand, allows for both integral and half integral eigenvalues.

We will talk about this in more detail later when we solve the
Schrodinger equation. But, at the moment, we can understand the
difference as follows. The Schrédinger wave function that we nor-
mally consider is a scalar function. Thus the effect of a rotation is
simply to change the coordinates to a rotated value. Furthermore,
a scalar function should have the property that when rotated by an
angle 2m around any axis it should come back to its original value.
This constraint leads to only integral values for the angular momen-
tum eigenvalue. On the other hand, the wave function may have a
nontrivial matrix structure of its own such that a rotation not only
changes the coordinates, but also rotates the components of the wave
function. Then, in general, we can write

J=L+S, (7.80)

where the operator L rotates the spatial coordinates and is known
as the orbital angular momentum operator while S rotates the com-
ponents of the wave function and is known as the spin angular mo-
mentum operator. J is called the total angular momentum operator.
When a wave function has a nontrivial matrix structure, it is not nec-
essary that the wave function remains unchanged under a rotation by
2m. Rather, on physical grounds we would like that the probability
density, which is an observable, remains unchanged under a rotation
of 27. This implies that

Wi 2y,
or, (1, 4*) T (e, £4%). (7.81)

When such a situation occurs where the wave functions change sign
under a rotation by 27, we can have half integral values for the an-
gular momentum. There are a few points to note here.

1. The eigenvalues corresponding to the operator L are integers.
This is because in the absence of S or any matrix structure, the
wave function must be single-valued.
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2. S has both half integer and integer eigenvalues so that J or
the total angular momentum also carries half integer as well as
integer eigenvalues.

3. S,L and J satisfy the same commutation relations (same alge-
bra), namely,

S x S = ihS,
L x L = ihL,
J xJ=ihd. (7.82)

Note that the familiar relation
[Li, Lj] = iheiji Ly, (7.83)
can be written as
L x L =ihL,
generalizing the familiar notation of 3-dimensional vector product
C =A xB,
or, C;=€;pA;jBy. (7.84)

7.2 Finite rotations

We have already derived the representations of angular momentum
operators corresponding to different eigenvalues. We have noted that
for each value of £ there exists a representation of dimensionality
2¢ + 1. In general, however, we can write the matrix elements of
various operators as

(', m!|L%t,m) = h20(¢ + 1)d¢ 60’ m,
(¢, m!|Ls|t,m) = hmbp ¢6ms m,
(
(

El’ m,|L+|€v m> = h\/f(ﬁ + 1) - m(m + 1)56’,55m’,m+17

Oom!|L_|6,m) = h/e(l +1) —m(m — 1)0p ¢6r m—1,  (7.85)
where
£:07%717"' , 00,

m=—f,—0+1,--,0—1,L. (7.86)
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Thus, in the complete space, the operators have the following
representation.

(0,0) |[o]
(3:3) 20
(3-3) 0 &
2 = (1,1) 52 0 0 . (7.87)
(17_1) O 0 2h2
Similarly,
(0,0) |[o]
(3:3) boo
(3:-3) 0o -2
Ly = (L1 Lo 0 : (7.88)
(1, -1) 00 —h
We also have
(0,0) |[0]
h
(3.3) 0 3
h
-3 [ |29
Ly = (1,1 0 5 0 . (7.89)
1,0 o h_
e
T 0 % 0
2

and similarly for Ls.
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First of all, we note that all the operators have infinite dimen-
sional representations. However, the representations are block diag-
onal. Therefore, any product of the operators would also be block
diagonal. In particular, a finite rotation by the angle a, generated
by

Ula) = e #@L, (7.90)

would again be a block diagonal matrix. Let the (2£+ 1) dimensional
block of U(ex), for a given £, be denoted by D (). Then, D) (a)
rotates vectors in the space £(). In other words, if |1;) represents an
arbitrary vector in the subspace spanned by the (2¢+1) vectors |¢, (),
10,0 —1),---,|¢,—0), then, D®)(a) is the rotation operator which
would act on it. Let us now ask whether D) (a) can be written in
a manageable form, at least for small values of ¢. First of all, note,
from the definition, that

i 1/ i\" n
DO (a) = e ROLY g — <——> a-LO)" . (7.91)
5 n! h ( >

It would seem like there is an infinite number of independent terms
in this series. However, note that there are only a finite number of in-
dependent (2¢+ 1) dimensional square matrices. Therefore, after a fi-
nite number of terms in the series, we would have linear combinations
of known terms. In fact, for a (2¢ + 1) dimensional representation,
(- L) where n > 2/, can be expressed as a linear combination
of (a - L) where k < 2¢. We can easily check this by restricting
to rotations around the 3-axis. For example, let

a-LO — asLd). (7.92)

()
3

Furthermore, we know that the eigenvalues of Ly’ are

RO R(—L+ 1), B(£ — 1), Tt

Let us now look at the operator

0= (a5 (2§~ nen)) (s (2§ = ne—1)1)) -
. <a3 (L:(f) — R+ 1)11)) <a3 (L:(f) + m)) . (7.93)
If we now take any vector |¢y) in this space, it is clear that

Qlupy) = 0. (7.94)
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This is because this operator annihilates all the (2¢+ 1) basis vectors
in this space. This, therefore, implies that, in this space, 2 can be
identified with the null operator. This, in turn, determines

20
l l
(as LYY+ =" eplas L)Y, (7.95)
k=0
which proves our earlier assertion. Hence, we can write

2/
DO (a) =" fula) (e L“))" . (7.96)
n=0

> Example. Let us look at the representation with £ = 1. We know from (7.42)
and (7.50) that the generators of angular momentum in this representation are
given by
Lf%) = g oi,  i=1,2,3, (7.97)
where o; are the Pauli matrices. They satisfy the commutation relations

[04,0;] = 2i€i ) 0%. (7.98)
Furthermore, they also satisfy the anti-commutation relations

{oi,0j} =261, (7.99)
so that we can write

- % (00,05} + % [05,0,] = 81y 1 + ieiyuon. (7.100)
Multiplying both sides of (7.100) with two arbitrary vectors A; and B; we have

A;Bj (0i0j) = AiBj (0551 + i€ijkor) ,
or, (0iA;)(0;B;) = AiB;1+ ic;jiA;Bjor,
or, (0-A)(c-B)=(A-B)l+ioc- (A xB). (7.101)

Since we have maintained the order of A;, B;, this relation also holds for vector
operators that commute with the Pauli matrices. Furthermore, this is consistent
with our theorem.

In this case, the operator for finite rotations takes the form,

i €2 i
D(%)(a) = eiﬁa'L 2= eifa'o-

A e

=1 Cos% —i(é-o)sin % (7.102)
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where o = |a| and we have used the properties of the Pauli matrices following
from (7.98) and (7.99). For a rotation by 27, namely, for o = 27, we note that
the rotation operator reduces to

D(%)(%’) =1 cos(w) —i(& - o)sin(m) = —1. (7.103)

This shows that two component wave functions belonging to ¢ = % (also known
as spinors) change sign under a rotation by 27 as we have discussed earlier. <

7.3 Reducible and irreducible spaces

We have noted earlier that the space £ is invariant under rotations.
That is, any state in £®) goes into another state in £ under rota-
tion. Such spaces are called invariant spaces and the reason for this
invariance is clear. Any state in £ has associated with it the angular
momentum quantum number £. No rotation will change this value,
since [Lz, Li] = 0 for all . Thus, a rotated state would continue to
have the same /-quantum number associated with it and hence would
belong to £O).

Furthermore, these invariant subspaces are irreducible. That is,
they cannot be written as sums of invariant spaces of lower dimen-
sionality. This can be proved by showing that £% cannot contain
invariant subspaces other than itself. To show this, let us assume
that £ is an invariant subspace of £X). Let |¢)) be an arbitrary

state in £, We can choose it to be the state |¢,¢). (Note that this
is always possible by a unitary change of the basis.) Under a rotation

10,0) — DY (a) |0, 0). (7.104)

If we are considering an infinitesimal rotation, then (e is infinitesi-
mal)

DW(a)=1- +a- LY

h
{ ¢ ¢ {4

where we have defined a4 = ag % ias.
Thus, under an infinitesimal rotation,

16,0) — <11 - ;—h <a+L(f’ +a L+ 2a3L§f>)> 16,0).  (7.106)

Noting that LS@M, ¢y =0, we conclude that
|0,0) — ay]l,0) +by]l,0 —1). (7.107)
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)

. =) . . . . .
However, since & “ is an invariant subspace and |¢,¢) is a vector in

it, this implies that |/, — 1) must also be in 3(6). It is useful to note
here that a vector |¢,m), in general, transforms as follows under an
infinitesimal rotation.

|6, m) — ai|l,m) + asl,m + 1) + az|l,m — 1). (7.108)

Thus, observing the behavior of successive states under rotation, we
can conclude that £ contains all the states |0, 0y, |6,6 — 1), -,
|¢,—¢+1) and |¢, —¢). Therefore, the dimensionality of e s (2¢+1)
and hence must be identical to £©).

On the other hand, a reducible space is one which can be written
as a sum of spaces of lower dimensionality, which are themselves

invariant spaces. In such a case, the symmetry operators such as
DU (@) can be further block diagonalized.

» Example. Let us next study a simple example of a reducible space. Let us con-
sider the two element group consisting of (1,P), where P is the reflection operator
(or Parity operator) that we have defined earlier. They satisfy the multiplication
law

11 =1,
1P =P1 =P,
PP =1. (7.109)

As operators, they act on scalar functions as (namely, they, of course, act on
vectors, but as we have discussed earlier, the effect can be thought of as changing
the coefficient scalar functions in an expansion of the state in the coordinate basis)

1f(z,y,2) = f(z,y,2),

Pf(zx,y,2) = f(—z,—y, —2). (7.110)

Let us consider an arbitrary function fi(z,y,z) and let

fo(@,y,2) = Ph(z,y,2),  Phz,y,z2) = fi(z,y2) (7.111)
Let us denote by S the set of functions of the form

f(@y,2) = arfi(z,y,2) + a2 f2(z,y, 2), (7.112)

for all allowed values of the parameter a1 and as. This set of functions in (7.112)
defines the space of functions spanned by the basis functions fi and f2. These
functions satisfy all the postulates of a linear vector space. The space S is said
to be two dimensional because any function, in this space, can be expressed as a
combination of the two functions fi and f2. Furthermore, this space is invariant
under the operation of the group (1,P). Namely, any vector in .S, under the effect
of the group, goes into another vector in S.

1f(z,y,2) = f(z,y,2),
,Pf(xvywz) =P (alfl(x7yvz) + a2f2($7y72))
:a1f2($7y72)+a2f1($7y72) GS (7113)
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On the other hand, we can define two new functions

= 1 = 1

f1=§(f1+f2)7 f2=§(f1—f2)7 (7.114)
such that
Ph=fH, Ph=-F (7.115)

Let us denote by S1 and Sz the set of functions of the form a fl and agfz respec-
tively, where ai and a2 take all possible allowed values. Clearly, S1 and Ss are
linear spaces. Moreover, they are also invariant under the action of the group.
Namely,

laifi = a1 f;
alf} alf}’ belongs to Si,
Pai f1 = a1 f1,
lasfo = asfa,
an? azf2 - belongs to Ss. (7.116)
Pazf2 = —azf,

Thus S1 and S are also invariant spaces but they are of lower dimensionality
because each of them is spanned by only one function. They are called subspaces
of S since any function in S; or Sz is contained in S. Furthermore, the space S
is said to be reducible to the two invariant subspaces S and S2. That is, any
function in S can be expressed uniquely as a combination of functions of S; and
Sa.

f@,y,2) = arfi + azfo = ar(fi + f2) + a2 (fi — f2)

= (a1 + a2) f1 + (a1 — a2) fa. (7.117)
Symbolically, we write
S =51 @52 (7.118)

The study of irreducible, invariant spaces is important because any invariant space
can be built out of them. <

7.4 Selected problems

1. Show that

e WLy — ei%L””e_ﬁLze_i%Lz, (7.119)
where (3 is a real constant.

2. In an eigenstate of L? and L3 denoted by |¢,m), calculate

(L1), (L2), (L), and (L3). (7.120)
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3. Consider two harmonic oscillators (in one dimension) with rais-
ing and lowering operators (a,a’;b,b!) respectively. They sat-
isfy the usual commutation relations

[av aT] =1= [b’ bT]’ (7.121)

with all others vanishing.

From the four operators a'b, ab', afa, b'd, show, by taking lin-
ear combinations, that one can find operators which have the
same commutation relations as the angular momentum oper-
ators. What operator plays the role of angular momentum
squared?
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CHAPTER 8
Schrodinger equation in higher
dimensions

In earlier lectures, we solved some quantum mechanical systems in
one dimension. In the next few lectures, we will discuss the solu-
tions of some three dimensional systems with spherically symmetric
potentials.

8.1 Schrodinger equation in spherically symmetric potential

Figure 8.1: Cartesian and spherical coordinates

Let us consider a particle of mass m moving in a three dimen-
sional potential of the form V =V (xz). Thus, the Hamiltonian of
the system has the form

2

_P 2 _P2 2
H= o~ +V(X*) =~ +V(R). (8.1)

In other words, the potential depends only on the magnitude of the
vector from the origin. This Hamiltonian is clearly invariant under
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198 8 SCHRODINGER EQUATION IN HIGHER DIMENSIONS

rotations. Therefore, we expect angular momentum to be conserved.
Furthermore, since the potential has spherical symmetry it simplifies
to study the problem in spherical coordinates (see Fig. 8.1) where
we can identify

x = rsin 6 cos ¢,
y = rsinfsin ¢,
z =rcosb. (8.2)
The gradient operator in spherical coordinates has the form
8 69 ¢ 0

V= “or +;%+rsin98_¢’ (8:3)

and the Laplacian is given by
10 (4,0 1 0 0 1 0?
2 _ - - - -
V=g ( ar> T TSm0 00 (Sln989> T g0
(8.4)

Furthermore, we know that in spherical coordinates the angular
momentum operators have the forms

L, =1h <Si1r1<;5a —|—Cot0c:os¢8¢>

Ly:ih< cosqﬁ +Cot9s1n¢8¢>

.- _ma% (8.5)

so that we have
9 9\
2 _ (:5)\2 : i _—
L7 = (ih) <s1n¢89+cot9c:os¢a¢>
0 0
2 |2 . o9
= (ih) [sm ¢—892 + sin qﬁae <cot9(:os ¢8¢>

+ cot 0 cos ¢8—¢ <sm¢ 0 )

+ cot 6 cos ¢8¢ <cot9005 ¢aa¢>]
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8.1 SPHERICALLY SYMMETRIC POTENTIAL

199

= (ih)?|sin? gba—z — sin ¢ cos qbcoseczﬁg
00? 0o
2

. 0
+ sin ¢ cos ¢ cot Gm

2
0900
2

+ cot 6 cos? (b% + cot #sin ¢ cos ¢

— cot?fsin ¢ cos (bg + cot? 0 cos? ¢ 0

9¢ 92 ] "

Similarly, we have
L2 = (z’h)2 cos? (ba—z + sin ¢ cos (bcosec292
Y 062 o¢p
2

—sm(bcos(bcotHae&ZS

2
000¢
82

+ cot 0 sin® (b% — sin ¢ cos ¢ cot

+ cot? #sin ¢ cos (b% + cot? @ sin® ¢

82
2 c3\2

It follows now, from (8.6) and (8.7), that
LP=L+ L+ L2
F 52

3} 0?
(2 2
= (ih) _892+cot989—|—cosec 98@52}

= (ih)? | == + cot = +

0 0 1
| 002 90 sin?6 0¢?

_ (iny2 | L 8<sin93>+ ! ‘92],

| sin @ a0 o0 sin® 6 W

Thus, we see from (8.4) and (8.8) that we can also write

V2_18<28>+1 L?

“2or " ar) T (in)p

_ 10 (20 L*
2 9r or h2r2’
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The time independent Schrodinger equation for such a system
has the form

Hy(r,0,¢) = Ey(r,0, ),
or, <—%V2 + V(T)> = E,

R (10 (50 L?
or, [—% <ﬁ§ <7" E) - W) + V(T):| Y = Ev. (8'10)

Let us now use a separable solution of the form

Y(r,0,¢) = R(r)F(0, ). (8.11)

Substituting this into (8.10), we obtain

F[ - (1 d 2@>+(V(T)—E)R]:—R L7 F

Tom \r2dr dr 2mr2”’
1[d [ ,dRY = 2mr? 112
Bl By e L L N = F=
R [dr (r dr>+ ¢ V(T))R] Frel =
(8.12)

Here we have used the fact that since the two sides of (8.12) depend on
independent coordinates, they can be the same for arbitrary values of
these coordinates only if each of the expressions is equal to a constant.
Equation (8.12) leads to

2
% (ﬁi—f) + (B - V)R = AR, (8.13)
L*F(0,6) = K*AF (0, ¢). (8.14)

This shows that A%\ is the eigenvalue of the operator L?. Fur-
thermore, the solution of the radial equation depends on the form of
the potential and, therefore, on the dynamics. Consequently, we will
concern ourselves only with the angular equation, for the present,
which has the explicit form

L2F(9, ¢) — hz)\F(ev ¢)7

1 0 (. 0 1 02
or, — [m% <sm9%> + m@} = AF(0,¢). (8.15)

Let us separate the variables further as

F(0,¢) = 0(0)2(¢)- (8.16)
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Then, equation (8.15) leads to

1 d /. do 0 d’®
® [sin@@ <sm9@> +)\@} N _sin2(9dﬁ¢27
1[{. d /. , dO 9 1d%®
or, o [smH@ <sm9@> + Asin 9@] = _EW = q,
(8.17)
so that
.,d /. dO .9 B
Sln9@ <sm9@> + Asin“ 60 = a0, (8.18)
d?o L?
The second equation, (8.19), has the simple solution
B(p) ~ eTVes, (8.20)

Since the wave function has to be single valued and continuous,
this implies that

a=m? where m=0,4£1,42, .- = integers. (8.21)

Thus, the normalized eigenstates of L, can be written as

D (0) = \/%—w e, (8.22)

where the integer nature of m arises because we require ®,,(¢) =
®,,(¢ + 2m) and the factor of \/% normalizes the solution in the ¢
space. (Remember 0 < ¢ < 27.) It is also clear that Aim, with m
integer, is the eigenvalue of L, (m should not be confused with the

mass).
With (8.21) the #-equation, (8.18), now becomes

sin 9i <sin6@> + Asin? 60 = m?0,

dé dé
. .d (. dO . 9 N o
or, sin 9@ (Sln9@> + (Asin® 6 —m?) © = 0. (8.23)

Let us define

x = cos 0, (8.24)
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202 8 SCHRODINGER EQUATION IN HIGHER DIMENSIONS

so that
d dx d . d o1 d
@—@a——smea——(l—xﬁ@,
. . d 9, d
s1n9@ =—(1-= )E

In this variable, equation (8.23) becomes

(1— 223 <(1 _ :52)@) + (A = 2?) - m2)6 =0,

dzx dzx
r, (1— 2)(12—@—2 @Jr A — m* 0=0 (8.25)
b T a2 Tz 1 — 22 e '

To analyze the asymptotic behavior of the solution of (8.25), let
us divide throughout by (1 — x2). Then, the equation becomes

d*e 2z dO A m?
= > — =0. 2
dz? 1—2? da:+<1—3:2 (1—x2)2>® 0 (8:26)

Since 0 < 6 < , it follows that —1 < z < 1 and we see that the
coefficients of the terms in (8.26) become singular at = +1.
Near x = 1, we can approximate,

2z 2z 1

— ~

1—22 (1-2)(1+2) 1-2

m? m? m?

-7 (1-22(1+2? H1-a2 (8:27)

Thus, for z ~ 1, equation (8.26) reduces to

2 2
e 1 d&_ m 4 (8.28)

Let us assume a solution of the form (ag # 0)
O@x) =1 —2) [ag+ar(l — ) +ax(1—2)*+--]. (829

Putting this back into (8.28), we have for the (leading) term of the
form (1 — 2)%~2

m2

a0 [BB—1)+ 8- | =0,

or, (= :I:M;—‘. (8.30)
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since ag # 0. Thus, we have
x Im|
O@) L (1—2)7 [ag+ar(l —2) +as(l —z)2 +---],

or, O(x) 5 (1- a:)_@ l[ag+a1(1 —z) + az(l —z)* +--].
(8.31)

It is clear that although the first solution in (8.31) is finite when
x — 1 as a physical solution should be, the second solution blows
up as x — 1. Thus, we conclude that the physical solution of (8.31)
behaves as

z—1 Im|

O) == (1—2)2 [ag+a(l —z)+as(l —z)* +---].

(8.32)

Similarly, we can show that the physical solution near x ~ —1
behaves as

T—— Lm|
Ox) ==h (1+2) [ah + ai(1+2) +ab(1+2)>+ -],
(8.33)
so that we expect a solution of (8.26) to have the general form

[m]

O@) = (1-22)% Y apat = (1-2?)'5 2(a), (8.34)
k=0

which leads to

dO(z) _ 2y 1ml 2y 1™l 1
5 = A-a)E o mfa(l - a%) s
d?0(z) o Iml d%z oy Iml_qdz

|m|
— |Im|(1 = 2*) 2 2+ |m|(|m| — 2)2*(1 — 2?) T 2z

8.35)
Substituting this back into equation (8.26), we have

Im| 4 dz
aolzZ

(1 —xz) [(1—3;2)27 —2|m|z(1 —a:2) .

+ (=lml (1= 22+ ol (] - 2)22(1 - 2%) F2) }
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d?z ||

dz
or, <(1 - :Ez)@ —2(|m| + 1):17@ + (A= |m|)z> (1—2z%)7=

[m|

+ (1 =2z " (jm|(Im] — 2) 2* + 2Jm|2* — m?) z = 0,

2
b (1 22) 22 (| + 1):03— + (A= [m(jm]| + 1))z = 0.

dx?
(8.36)

Let us next substitute a power series solution for z of the form
o

x) = Z apa®, (8.37)
k=0

where a;’s are arbitrary constant coefficients at this point. With this,
equation (8.36) becomes

[e.e] o0
(1—2? Zk — Dapae®2 = 2(Im| + Dz Z kapzht
k=2 k=1

+ A =|ml(jm| +1)) ) arz® =0,
k=0
or, Z k(k — Daga* 2 =Y k(k —1aga®
k=2

—2(jm| + 1) kagz® + (A = [m|(Im| + 1)) > apa® =0,

k=1 k=0
or, Z(k: + 2)(k + 1)ago2* — Z k(k —1)aga”
k=0 k=0

—2(lm| + 1)) kagz® + (A = [m|(Im| + 1)) > apz® =0,
k=0 k=0

or, Y aF[(k+2)(k + akse
k=0

— (k(k = 1)+ 2k(Jm| + 1) + [m|(Jm| + 1) — X) ax] = 0.
(8.38)
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For this to be true we must have

ak+2
1
= m(k:2 +k(2m| + 1) + [m|(jm] + 1) — Nay,
1

= Gt FHImhEEml 1) = Na. (8.39)

Equation (8.39) defines the recursion relation for the coefficients
of the power series solution in (8.37). Clearly, for large k

1

Ahy2 2 ag, = 2(xT) ~ 1_ 2

for large k, (8.40)

which would imply that the solution blows up for some value of m.
Therefore, for a physical solution to exist, the series must terminate
and we must have

(k+m[)(k+|m|+1) =X =0,
or, A=/(({+1), where (=Fk-+|m|. (8.41)

We recognize here that since both k and m are integers, ¢ also
takes integer values. Furthermore, k and |m| are both positive so
that,

(=0,1,2,3,--- (8.42)
and for each value of ¢, the integer m takes (2¢ 4 1) values between

—4<m <UL (8.43)
Thus, we determine that the eigenvalues of L? are

R2A = R0+ 1), where £=0,1,2,3,-- (8.44)

and the eigenvalues of L, are him where m is an integer lying between
—¢ < m < (. Note also that if kK = £ — |m| is even, the solution in
(8.37) contains only even powers of . However, if k is odd, then,
only the odd terms in the series survive. This is again similar to the
solution of the harmonic oscillator.

The power series solution now depends on two quantum numbers
¢ and m and is denoted by

2(z) = zgm(2).

48:03.



206 8 SCHRODINGER EQUATION IN HIGHER DIMENSIONS

This is a polynomial of order ¢ — |m| and, correspondingly, the 6-
solution in (8.34),

[m]

Opm(z) = (1 —2%) > 2 m(2), (8.45)
is a polynomial of order ¢ and satisfies the equation

d2@g7m d@g,m m2
(8.46)

(1-2?)

For m = 0, this equation is known as the Legendre equation and the
solutions Py(z) of the equation
d2Pg(x) dPg(x)

(1—a?) gz g, T DR(@) =0, (8.47)

are known as the Legendre polynomials which are polynomials of
order £. The ©,,’s are related to the Legendre polynomials as

Opm(z) = (1 —2%) > —— = = Pr(), (8.48)

for ¢ > |m| and are known as the associated Legendre polynomials.
The Legendre polynomials have a closed form expression given

by

1 df@?-1)f

26 dzt 7

which is known as the Rodrigues’ formula. It explicitly shows that

the Legendre polynomials are ¢th order polynomials and that the
lower order polynomials have the explicit forms

Py(z) (8.49)

Py(z) =1,
Pi(x) ==,
Py(x) = %(39;2 —1). (8.50)

The associated Legendre polynomials, similarly, have a closed form
expression given by

1 ml derml .2 _ 1)¢
Loy e = (8.51)

Fom(@) = dz ]

which are, clearly, also polynomials of order £.
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8.2 Generating function for Legendre polynomials

Let us consider the function of two variables
1 o0
T(z,s) = (1 —2xs+s%)72 = ZP@(QE)SZ. (8.52)
=0

It can be shown that the coefficient functions, Py(z)’s, are the Leg-
endre polynomials of order £. To see this, let us note that

oT (z, s) _ 1 1 _ (—2)
O 2(1 —2xs + s2)2
s s
B (1225 + 52)% T 1 2zs+ 2l (@)
T (z, s) 1 1
—_— = —2x + 2s
s 2(1—23:84—32)%( )
B (x —s)
A2t 5 82)T(a:, s). (8.53)
Thus, we have
(x — 5)T(x,s) = (1 — 2zs + s°) %, (8.54)
s
oT(z,s) oT (x, s)

If we substitute the polynomial form of T'(z,s) in (8.52) into
(8.54), we obtain

[ee] [ee]
(x —s) Z Ps' = (1 —2zs+ 5% ZEPgsz_l
=0 (=1

[ee]
=(1—2zs+ 5% ZEPZSZ_I, (8.56)
=0

which we can also write as

Z (ngsé — Pyt — Pyt 4 202 Pyt — €Pgs€+1> = 0.
(=0
(8.57)
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Comparing the coefficients of s"~! in (8.57), we obtain
xP,_1—Py_o—nP,+2(n—1)zP,_1 — (n—2)P,_2 =0,
or, nP,—2n—-1)zP,—1+ (n—1)P,_2 =0. (8.58)

Similarly, putting the polynomial expansion, (8.52), into (8.55),
we have

SZEP@SZ_l = (z—3s) Z Pj(z)s",
=1

=0
o o o o
or, ZEP@SZ = (z—s) Z P)(z)s" =z Z P)s* — Z Pjstl,
(=0 (=0 =0 =0
(8.59)
Again comparing the coefficient of s”~! in (8.59), we obtain
dPn—l dPn—2
— =(n—-1)P,_
e dz (n=1DFur,
dP, dP,_1 P
or, T— — =n
’ dx dx "
or, zP)— P _,=nPp,. (8.60)

Let us next differentiate (8.58) with respect to x, which gives
nP,—2n—-1)P,_1 —(2n—1)aP,_ +(n—-1)P,_5 =0,
or, nP,—2n—-1)P,_1 —(2n—1)zP,_,
+(n—1zP,_; —(n—1)>2P,_1 =0,
or, nP,—naxP, | —n*P, 1 =0,
or, P, —aP, | —nP,_1=0, (8.61)

where we have used (8.60) in the intermediate steps. Eliminating
further P/, from (8.61) using (8.60), we have

P! —x(xP) —nP,) —nP,_1 =0,
or, (1—x)*P, +nxzP, —nP, 1 =0. (8.62)
Furthermore, differentiating (8.62) with respect to x, we obtain
(1—a2*) P! —2xP, 4+ nP, + nzP, —nP.,_ | =0,
or, (1—2?)P!—2xP,+nP, +n’P, =0,
or, (1—-2?)P)—2xP,+n(n+1)P, =0, (8.63)
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where we have used (8.60). This shows that P,(z)’s satisfy the nth
order Legendre equation, (8.47), which proves that the function

T(z,s) = (1 — 225+ s2) 7% = ipg(x)sf, (8.64)
£=0

generates Legendre polynomials. From the relation (8.51), we see
that the generating function for the associated Legendre polynomials
are given by

ml dlmT
Ton(z,5) = (1 — 22)'%" d™T (2, s)
dzlml

[m|

2lmD!(1 — z2) =z siml
20ml (|m|)I(1 — 2zs + s2)lmI+2

oo

=Y Pra(a)s (8.65)

We can now write the complete angular solution (8.16) of the
Schrodinger equation for a spherically symmetric potential as

Nem .
F&m(ey gb) = Ye,m(e, qb) = # P&m(COS e)emuz:‘ (8'66)

Here Ny,,’s are normalization constants and Yy ,,’s are called the
spherical harmonics. Let us note that we can work out the orthogo-
nality relations for the spherical harmonics in the following way. First
of all, we note that

/Sin 9d0d¢ }/;,m’ (0, ¢) n7m(07 qb)

N Nim o
= “2176 / d(cos 0)d¢ Py Py et —m)?
Y

= N27m/Ng7m5m/7m/d(COS 9) Pgl7m/Pg’m. (867)

Thus the integral in (8.67) vanishes unless the m quantum numbers
are equal. Furthermore, it can also be established that even when
the m quantum numbers are the same, the integral vanishes unless
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¢ = (. To see this, let us recall that P, satisfies the equation
2

1 — 22

d%Py APy,
— 2
da? dz

P 2
or, d <(1 - a:z)ddﬂ> + <€(€+ 1) — %) Py = 0.

dx x
(8.68)

(1—2?) + <€(£ +1) — ) Py =0,

Multiplying (8.68) with Py ,, and integrating over x, we obtain

/jd:n [sz,m(:c)% <(1 - :CQ)%)

2

+ <£(£ +1) - %) Pg,mPg,,m} =0. (8.69)

The first term can be integrated by parts and written as

+1

APy i APy
_ d 1_ 2 ) )
_1 / z( ") de dz

dPy

1— 2Py,
( .Z')g7 dx

APy 1 APy,
= —/da: (1—a?) 4 (8.70)

Relation (8.69), therefore, becomes

APy o APy,
/d;n[—(l—:nz) e

m2
+ <€(£ + 1) 1 3;‘2> Pgl7mPg7m:| =0. (871)

Similarly, had we started out with the equation for Py ,, and
multiplied by P ,,, we would have obtained

dP&m dPgl’m
/da:[—(l—a:2) o da

m2

1— 22

+ <€/(€/ + 1) — > Pg7mPgl7m:| = 0. (872)
Subtracting the two relations in (8.71) and (8.72), we have

(C(t+1) =0 +1)) /daz Py mPrm = 0. (8.73)
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However, since ¢ and ¢ are arbitrary and different, the only way this
can be true is if

/d:E Py Py =0,  for 4 #£ 4. (8.74)

Thus, the only nonzero contribution to the normalization in
(8.67) comes from

/dx Py () Py (), (8.75)

and to calculate this, we note from (8.51) (we assume m > 0 although
we will use |m| keeping the general case in mind) that

mi Al Py ()

Pf,m = (1 - 1'2)T dglml (876)
so that
dPg,m o\ Iml d|m|+1
Az =1 —-a7)> dzm1 ()
m Iml| p
o ]m\x(l o x2)%—1d Z(x)
dzlml
Pyom
= Ll(:‘? — |m|z(1 — 22) " Py (8.77)
(1 22)3

This determines

Pransi(@) = (1= 2%)2 =2 4 fmla(1 = ) "2 Ppyu(2).  (8.78)
Squaring both sides of (8.78) and integrating, we obtain

1

/ 0z (P (2))?

-1

Prm\? P,
= /dx [(1 — x?) (ddé’m> + 2\m!azdd€’mPg,m
X X

’2$2

|m
1— 22

AP\ > A(Pypm)?

+ (Prm)?
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|m|2 2
+1

d AP,
— [dz Ppp— | (1 —2?)—22
_1 / Tty [( ) dz ]

]m\/dx (Prm)?

|2 2
/ @ p, 02 (879)

The first and the third terms in (8.79) give zero, since Py, as
well as (1 — 2?) vanish at 2 = 1. Furthermore, we can simplify the
second term by using the equation for Py, (z), (8.46),

d 2 dPZ,m o ’m‘2
— <(1—:17) = >_—<w+1)—1_$2 P, (8.80)

to obtain

[ o P @)
_ /dx (z(m 1) - 1'?—52) (Pym)’
+ /dm <|m| + ‘fi’ti) (Pé,m)2

— /dx (L +1) — [m|* — |m]) (Prm(2))?

_|_

+ \m!x (Pgm 2

= (6 1) ml(m] + 1)) [ do (P ) (881)
We can apply the relation in (8.81) repeatedly, which leads to

[ as (B @)?

— (¢~ m| + 1)(C + m]) / 4 (Pys (1))
= (¢~ m| + D)€+ )€ — m| +2)(¢ + m| — 1)
X /dx (Pg7m_2($))2

=L+ m)l+|m|—-1)...((+1)
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X (¢ — [m| + 1)(¢ — |m] +2)...£/dx (Py(2))?

(£ + |m])! 14 2
— X X
1l (L—|m)!  20+1
2 (L+|m|)!
= . 8.82
01 (= |m)) (8.82)
Thus, our normalization condition, (8.67), now becomes
/Sin 0dode Y, Yem = 1,
or, |Ng,m|2/d$(ngm(x))2 =1,
2 (4 |m])!
Nyl? =1, 8.83
ot WNeml S T (8.83)
which determines the normalization constant to be
20+ 1 (L —|m|)!
Ny =N;, =+ . 8.84
4, £, \/ 9 (€+ |m|)' ( )

Conventionally, the phase of the spherical harmonics is chosen to be
(=1)™ for m > 0 and +1 for m <0.

Therefore, we can write the normalized angular solutions (which
are the spherical harmonics) as

(2041 (L —|m])! ima
Yim(0,9) = e\/ I (T Py (cosf)e™?, (8.85)

with the phase given by

{(—1)m, for m > 0,
€ =

(8.86)
1, for m <0,

m+|m|

which we can also write equivalently as € = (—1)
The complete solution, (8.11), of the Schrodinger equation is
given by

T;Z)é,m (Tv 0, ¢) = R(T)n,m(ev ¢)’ (8'87)

where the radial part of the solution is determined from the dynamics
of the system. The equation satisfied by the radial part, (8.13), is

48:03.



214 8 SCHRODINGER EQUATION IN HIGHER DIMENSIONS

given by (we represent the mass of the particle as p to avoid any
confusion with the m quantum number)

d 5 dR 2pur? R20(0+ 1) B
. <7’ dr> + 2 <E V(r) 2y R=0. (8.88)

Thus, we see that a nonzero angular momentum implies the presence
of an additional term in the potential. Furthermore, if we differentiate
this new potential and calculate the force, we find that it pushes the
particle away from the center of the coordinate system and lies along
the radial direction. In other words, a nonzero angular momentum
gives rise to a centrifugal force (barrier) which is very strong at short
distances. In three dimensions, the presence of this repulsive potential
prevents the existence of bound states in many cases.

Furthermore, note that the radial solution depends on the quan-
tum number £ and the energy eigenvalue. Thus, we can write

R(r) = Rp(r). (8.89)

However, it does not depend on the azimuthal quantum number m.
Of course, there are (2¢ + 1) states with the same ¢ value but with
different m values. All these states will have the same energy and,
therefore, such systems have a (2¢ + 1)-fold degeneracy as a result of
rotational symmetry.

8.3 Parity of spherical harmonics

We can now study the question of parity in the three dimensional
case. First of all, parity implies reflecting a vector through the origin
(see Fig. 8.2). Thus, in spherical coordinates, the coordinate vector
transforms under parity as

(r,0,6) 2% (rw— 0,7+ ¢). (8.90)

Since the radial coordinate does not change under reflection, only the
angular part of the solution would be effected by such a transforma-
tion as

Yo (0, 6) 2% Yy (m — 0,7 + ¢). (8.91)
We note that

pimé Parity - im(rt¢) _ (—1)lml gime,

z = cos %, cos(m —0) = —cos = —x. (8.92)
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Figure 8.2: Reflection of a vector through the origin.

As a result, we have,

) mdé-i—lm|($2 _ 1)6
Pram(w) oc (1= 2%) % —

i |m|
Parity (_1)“_‘7”‘(1 . :EQ)_

= (=1)m Py (2).

)

Together with (8.92) and (8.93), we obtain

Parity
E—

(=D (=1 Y (0, 9)
= (=1)" Yz,m(6,9).

Yem(0, )

(8.93)

(8.94)

In other words, we see that the angular solutions (spherical har-
monics) are eigenstates of angular momentum with definite parity
eigenvalues. The parity of these states is completely determined by
the (-quantum number. It is worth pointing out that all the (2¢+ 1)
states with different m-quantum numbers have the same parity given

by (—1)°.
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8.4 Behavior of the radial solution

The radial equation, (8.88), has the form

d 2ur? 2 1
d (7‘2 RE’Z>+ sl (E—V(r)—ih o+ )>RE,£:0'

dr dr h? 2ur?
(8.95)
Let us now define
Rp(r) = %%m (8.96)
Then, equation (8.95) becomes
d [ dus _
dr " dr Unt
2ur R20(0+ 1)
+ 53 (E - V(r)— ot up(r) =0,
ug,  2ur R2(6(0 + 1))
or, T3 + T (E —Vi(r)— T) uge(r) =0,

dup,  2u H20(¢ + 1)
or, d’r’2 + ﬁ <E - V('I") — W) UE7Z(7") = 0. (897)

Therefore, we see that, in terms of this new function uy ¢(r), the
equation is the same as the one dimensional Schrédinger equation, but
in the presence of an effective potential
R20(0+ 1)

‘/eff(r) = V(T) + 2,[”’2

(8.98)

There are, however, two important differences. First of all, the radial
coordinate takes only nonnegative values,

0<r<oo, (8.99)

which is to be contrasted with —oco < z < oo. Furthermore, even
though we have the same boundary conditions at » — oo, namely,
for bound states,

u(r) IZ%% e7" « real and positive, (8.100)
and, for free particle states or scattering states,

u(r) =22 ek k real, (8.101)
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there is now a boundary condition to be satisfied at the origin r = 0.
The normalizability of the radial solution requires

o0
/dr 3| Rp(r)]* = finite,
0
o
2
or, /dr 7‘2% = finite,
r
0
o0
or, /dr luge(r)|* = finite. (8.102)
0

Equation (8.102), in principle, allows that

g o(r) LimaN ¢, ¢ = constant. (8.103)

However, if ¢ # 0, then, we conclude that near the origin the radial
solution will have the form

r—0 C

Rp(r) — -, (8.104)

and, consequently, will satisfy

C

V2Ry(r) = V? ( ) = —4me 83(r). (8.105)

T

On the other hand, if the potential is a smooth function, this would
be hard to satisfy. Thus, for all smooth potentials we have to choose

c=0. (8.106)
which determines the boundary condition at the origin to be

upo(r) =% 0. (8.107)
Once we keep these two distinctions in mind, we can solve the radial

equation, just like the one dimensional Schrodinger equation.

8.5 3-dimensional isotropic oscillator

Let us analyze the three dimensional isotropic oscillator again, but
now in spherical coordinates. We know that the Hamiltonian for the
system has the form,

P2 1 ,., P? 1

H="+ —pw?X? = — + —uw?R? 8.108
T o Tt (8.108)
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where the mass is written as p to distinguish it from the azimuthal
quantum number m. Since this is a spherically symmetric system, we
can use our earlier separation of variables in the spherical coordinates
to write the complete wave function as

ZZ)E,E,m (Tv 07 ¢) = RE,@(T)YVZ,M(07 qb) (8109)

Furthermore, defining

Rp(r) = M, (8.110)

r

we recognize that the new function will satisfy the equation

dPuge(r)  2u 1 R+ 1)
T 2 (- e = et =0, a1

Let us first determine the asymptotic behavior of the solutions.
We note that as » — oo, the equation takes the form

dzqu(r) B plw?r?

dr? h? ’I,LE7Z(7") = 0’
LL)TQ
or, ugje(r)~ e = e_%yQ, (8.112)

where we have defined a dimensionless variable

=

y = (%) r (8.113)

Equation (8.111), written in terms of this dimensionless variable,
takes the form

d? 2 1 Shy? R+ 1
(uw> upe u(E__ L (¢ + )) e =0,

o) 2
h dy? h? 2 hy?
Y Hw 20 X "
Pug, 2 1, o hwl(l+1)
on Gt i (B ghert = e =
or, a2 + ()\ -y — " > upe =0, (8.114)
where
2F
=", (8.115)
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is also dimensionless. For y — 0, equation (8.114) becomes
dy? y?

The two solutions of (8.116) are easily seen to be

gy =0. (8.116)

upe(y) Ly o,y (8.117)

However, the boundary condition at the origin (see (8.107)), namely,

upe(y) =20, 0, selects

0
uge(y) =y, (8.118)

as the physical solution.
Equations (8.112) and (8.118) suggest a general solution of the
form

o
upe(y) = eV u(y) = 72y agytY,

k=0
S — b [y) + )]
a yo(y )],
d2uE7f R R ) ’ "
g = [(y* — Dv(y) — 250" (y) + 0" ()] - (8.119)

Putting this back into the equation (8.114), we have
1,2
e 2! {(zﬂ = Do(y) — 2yv'(y) + " ()

(- D)) -0

K(Ey—g 1)> v(y) =0. (8.120)

Let us next use the power series solution

oo
v(y) =Y ary*
k=0

or, v"(y) —2yv'(y) + <A -1-

V(y) =Y (k4 £+ Dagy™™,
k=0
V(y) =) (k+ L+ 1)k + Oagy™ (8.121)

k=0
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With the relations in (8.121), equation (8.120) now becomes

> [(k + 0+ 1)(k + Oagy™™ T = 2(k + £+ 1agy* T
k=0
+ (A= Dagy*H L — (0 + 1)akyk+5_1} =0,
or, Z [((kz + L4+ 1) (k+0) — L0+ 1)) apyF !
k=0

+ (N =2k — 20— 3)akyk+z+1} = 0. (8.122)

Looking at the lowest order term in the series in (8.122), namely,

y' 1, we have

(£ +1)f —¢(f+1)]ag =0,
or, ap = arbitrary. (8.123)
Looking at the coefficient of the next term in the series in (8.122)
(namely, the coefficient of (y*)), we find that
[(I+L+1)(1+4) — L+ 1)]a; =0,
or, ({+1)l+2—F{)a; =0,
or, 2({+1)a; =0,
or, a;=0. (8.124)
Furthermore, from the structure of the equation in (8.122), it
is clear that the coefficients aj o are related to the coefficients ay.

Since a1 = 0, this, therefore, implies that only even terms of the
series survive. Thus changing k — 2k in (8.122), we have

Z ( [(2k + £+ 1)(2k + £) — £( + 1)]agpy®F 1
k=0

SO — 4k — 20— 3)a2ky2k+£+1) —0. (8.125)

2k+4+1

Requiring the coefficient of y to vanish we obtain the recursion
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relation for the coefficients to be
[(2k+ 0+ 3)(2k+ 0+ 2) — (0 + 1)]aggso
= (4k + 20 + 3 — N)ag,

(4k + 2043 — )
2% + 2)(2k + 20+ 3

Thus, we see that for large k,

or, QAggio = ( )agk. (8.126)

a2k+2 1
— —. 8.127
o - ( )

At large orders, this is the same behavior as that of the series in ey’
which would lead to an unphysical solution, since it does not fall off
at spatial infinity. Thus, for a physical solution to exist the series
must terminate which implies

Ak +20+3 -\ =0,

2F
A= —=(204+4k+ 3
or, o (20 + 4k + 3),

or, E:hw<€+2k‘+g>:7w<n—l—g>, (8.128)

where we have defined n = £+2k. Since ¢ and k take only nonnegative
integer values, it follows that

7’L:0,1,2,3,"',
t=n—-2k=nn—2n—4,---,1(or 0), (8.129)

depending on the value of n.
The solutions of (8.114), in this case, are obtained to be

(n—2)
2
Une(y) = 20 Y agyPtH (8.130)
p=0

and the first few energy eigenvalues are given by

E:ghw n=20 =0 m =0,
5
E:§hw n=1 (=1 m = =+1,0,
7
E = hy n=2 (=20 m = %2, £1,0;0,

(8.131)
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It is interesting to note that not only are states with different m values
degenerate, but states with different ¢ values are also degenerate, i.e.,
they have the same energy. Rotational symmetry does not explain
why this degeneracy should arise. This kind of a phenomenon is
known as accidental degeneracy and we would see later that this is a
consequence of a larger symmetry operative in this system.
However, since for each ¢ value there are (2¢ 4 1) values of m
that are degenerate and that for each n value, there are the states
with
- {0,2,--- ,m, for n even, (8.132)
1,3,---,n, for n odd,
which are all degenerate, the total number of degeneracy for a given
n is obtained as follows.

1. Even n:
Z(2£+1) = ZQ: (4p +1)
£=0,2 p=0,1
1/n n n
=5 (5) G+ +(5+1)
_ %(n +1)(n +2). (8.133)
2. Odd n:
> (2e+1)
/=1,3

p=0,1

n—1

2 1(n—1 1 1
:Z(4p—|—3):4><—(n ) D g nt
—~ 2 2 2 2

— (n—2|—1) (n—1+3):%(n—|—1)(n—|—2). (8.134)

Thus, we see that, independent of whether n is even or odd, the
degeneracy of states is given by

%(n L 1)(n+2), (8.135)
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which is the same result we had derived earlier in the Cartesian co-
ordinates.

8.6 Square well potential

Let us now investigate the question of bound states in a three di-
mensional square well potential. The potential depends only on the
radial coordinate and has the form (see Fig. 8.3)

{O, for r > a,

V(r)= (8.136)
—Vy, for r<a, Vo > 0.

We are going to assume that £ < 0 and that |E| <V with V5 >0
for a bound state solution to exist. (Namely, T' = F —V > 0 for
motion to exist. If £ > 0, we will have free particle motion for r > a.
On the other hand, we are looking for bound state solutions for which
we must have £ < 0. From T'= E+Vp > 0 in side the well, it follows
that Vp > —FE = |E|.)

Vo

Figure 8.3: Square well potential in three dimensions.

Once again, this is a system with spherical symmetry and, there-
fore, we can carry out the separation of the angular solution. In the
present case, the radial equation in terms of ug ¢(r) has the form

42 2 200+ 1

dr? + h2 2472

Thus, for r < a, the equation has the form

d? 2 2 1
ety 28 <E + Vo — WU L) )> ug,e =0, (8.138)

dr? h? 2ur?
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while, for r > a, it has the form

dup, 2 R20(0 + 1)

Let us simplify the problem by first looking at the zero angular
momentum case. For £ = 0, the equations are given by

dzuE,O + 2u(E + Vo)

r<a: 02 2 up =0, (8.140)
d? 2uFE
r>a: d?fjo + %um = 0. (8.141)

This is identical to the equations for the one dimensional square well
potential. Thus, the solutions follow to be

r<a: upo(r) = Asinkr + B cos kr,
r>ar: ugo(r) = Ce ", (8.142)

where we have defined

_ <§T§ (Vo — |E|)>%, o= (2’“}‘_1?‘)%. (8.143)

The boundary condition at » = 0, namely,

upo(r) =50, (8.144)
implies that in (8.142) we should choose
B =0.

Furthermore, we should match the solution and its derivative at the
boundary r = a. Matching the solutions at » = a, we obtain

Asinka = Ce™ %, (8.145)
Similarly, matching the derivative of the solutions at r = a, we find

kAcoska = —aCe %, (8.146)
Thus, dividing the two relations, (8.145) and (8.146), we have

kacot ka = —aa,

or, ncotn= —¢, n=ka, &=aa. (8.147)
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As in the one dimensional case, we have

0?4+ & = k%d® + o’a® = (k* + o?) @

2 2ulFE
— <_M(VO—|E|)—|— /;42 ‘>a2

= . (8.148)

We can carry out the graphical solutions for (8.147) and (8.148)
as in the one dimensional case and show that there is no solution if

m2h2
0 < Vpa® < , 8.149
< Voa 8 ( )
and one solution if
2 h2 92 h2
< Vpa? < , 8.150
G < Vo < (5.150)
and so on.

Let us next study the solutions for arbitrary £. We will study
the solutions in one region at a time.

Region v < a. In this region the equation for arbitrary £ is given
by (see (8.138))

d? 2 200+ 1
“E’Z+—M<E—|—Vo—ﬂ>uw=0,

dr? h2 272
o, — 3 + <k‘ S > upe = 0. (8.151)

Let us now change to the dimensionless variable
p = kr. (8.152)

Then, in terms of this variable equation (8.151) becomes

A2 (e +1)
<d—p2 — p2 > UE”@ = —’LLE’Z. (8153)
Let us define an operator
d (41
dy= — + —, 8.154
T (8.154)
whose adjoint is given by
d /(41
di = ——+ Sy (8.155)
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It follows now that

p_(d  f+r1y/od  f+1
déde—(dp_‘_ ’ dp—l— ’

> L+1 f+1d L41d (E41)

dp>  p? p dp p dp p?
A2 (e +1)

- , 1
g 7 (8.156)

On the other hand, we note that

d (t+D\[/d ¢+1
PRE N T
et dp D dp  p

2 (41 £+1d+€+1i (€+1)2

dp? "~ p? p dp ' p dp P>
2 (+1)(0+2)
=T oas Tt
dp p
= dpyd) . (8.157)

Thus, using the relation (8.156), we can write the dynamical
equation

a2 ee+1)
[d—pz - T} Up,e(p) = —upe(p), (8.158)
also as
ded}ug o(p) = ug o(p)- (8.159)

Upon using (8.157), equation (8.159) leads to
d; (dgdZuE,g(p» = d;qu(p),
or, d}dg (dhh;,z(p)) = <dzuE,€(p)) )

or, desrd]y (dfus®)) = (dfuse(p)) (8.160)

From (8.159), we note that uy’s are eigenstates of the oper-
ator dgd; (corresponding to the value ¢) with eigenvalue 1. Rela-
tion (8.160) implies that d}uE,g(p) is an eigenstate of dg+1d};+1 (cor-
responding to the value £+ 1) with the same eigenvalue 1. Therefore,
we must have

dZuE,Z(p) = CpUp 41 (8.161)

48:03.



8.6 SQUARE WELL POTENTIAL 227

In other words, d}’s are like raising operators for £ and, for the present,
we would omit the normalization constant ¢,’s, for they can be ab-
sorbed into the overall normalization constant of the wave function.
Thus, we write

Uppr = dhug,y. (8.162)

Let us note here parenthetically that this procedure is related to what
is known as supersymmetry in quantum mechanics.
The radial function is defined to be (the extra factor of k can
be absorbed into the normalization constant)
u
Ry = —2L, (8.163)
p

and satisfies

pRE,Z—i—l = Upl+1 = dzuE,f = d}; (pRE,Z)

d l
=p <—— + —) Ry, (8.164)
p P

so that we can write

d 4 d\ R
RE,é—i-l = <_d_p + 5) RE,Z = pZ <_d_p> p}z,fj

or RE,£+1 . _li RE,Z
’ pZ-‘rl - pdp pé
~( 1dN\?*(Ree
U pdp pt-1

1 /41

Ry =7’ <—5—>ZRE,0 = (-p) <——>ZRE,O. (8.166)
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Thus, we see that if we know one solution (say, for £ = 0), we
can construct all the others. Now, for ¢ = 0, equation (8.158) leads
to

d®uz0(p)
TPQ = _uE,O(p)a
or, uge(p)~sinp or cosp. (8.167)

These are the two independent solutions of the equation. However,
the boundary condition at the origin, namely,

uso(p) 2% 0. (8.168)

excludes the solution of the form cosp so that, up to normalization
constants, we can write

ug,0(p) = sinp, (8.169)

in a region including the origin.

On the other hand, let us note that if we are considering a region
where the origin is not included, then, we must allow for the other
solution in (8.167) as well. Keeping this in mind, let us denote the
two independent solutions of (8.167) by

Ug,)o sin p,

(

11)
EB,0

Uy, g = — COSP. (8.170)

All other solutions for higher ¢ values can be obtained from these
through the use of the relation (8.162) or (8.166).

We note from (8.170) that Rpo = % has two independent
forms. If

R = 22 -2 5 (8.171)

then, it follows that

RY,(p) = (—p)" <1 d) <Sinp> = Je(p), (8.172)

: pdp P

which are the spherical Bessel functions of order £.
On the other hand, if

'\
m  Ug Ye,0 COS P
= — , 8.173
EO — P P ( )
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then, we have

Rg,lz (p) = (-p)* <1 iy <—COSp> = ne(p), (8.174)

pdp P

which are the spherical Neumann functions of order /. The combina-
tions

h$E = gy +iny, (8.175)

are known as the spherical Hankel functions (of the first and the
second kind) and have the asymptotic forms

oo 1 4
BE) (p) 222 %eﬂ@—%(m)w). (8.176)

A few low order spherical Bessel and Neumann functions have the
forms

. sin
Jo\p) = —,
(p) ,
. 1 /sinp
Ji(p) = = —cosp |,
p b
i) <3 1>s1np 3cosp
20) = | = — = - )
P> p 2
cosp
No\p) = — 9
(p) .
1 (cosp .
m(p) = —= +sinp |,
p p
3 1 Jdsinp
ne(p) =—|———)cosp— . 8.177
@) <p3 p> p? ( )

For our problem, of course, we need just the spherical Bessel
functions in the region r < a, since the solution has to vanish at the
origin. Thus, for r < a,

u T
RE,Z = E7é( )
T

= agjg(lm‘). (8178)

Region r > a. In this region, the equation we have to solve has
the form (see (8.139))

d? 2 200+ 1
Upp 1z (E B ﬂ) g =0,

dr? + h2 2pur?

or, —¥3- = <a + 2 >uE,g =0. (8.179)
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We can now define ¢ = iar, in terms of which equation (8.179) be-
comes

2
(—j—q2 + WQJQ 1)> up,e(q) = wpe(q),

2
or, (j—qz - qu ”) T R (3.180)

We note that equation (8.180) is the same as in (8.151), but
in the variable ¢ = iar. Furthermore, since now the solution does
not include the origin, it can be a combination of both the spherical
Bessel and Neumann functions. Thus, for r > a, we have

Rio(q) = Aeje(q) + Bene(q). (8.181)

On the other hand, the solution must fall off exponentially at spatial
infinity. This, therefore, selects for us

Rps(q) = Achi (q) = Arielg) + ime(q)
oo, A it
q

_ A (e derm) (8.182)
ar

The first few Hankel functions have the explicit forms

1
h(-i-) . - _ —ar
o (iar) o e ",
(+) /- . 1 1 —ar
hy"’ (iar) =1 <_ar + —a2r2> e
(+) /- (1 3 3 —ar
hy'’ (iar) = <_ar + 2,2 + —a3r3> e . (8.183)

We can now match solutions and the derivatives at r = a to
determine the energy eigenvalues. We have already done this for
¢ = 0. For arbitrary ¢, we can apply numerical methods or analyze
graphs to determine the existence of solutions. For ¢ = 1, for example,
the equation becomes

cotn 1 1 1

— =—+—, where n?+¢&=
noon? & &

We can show that, in this case, there is no bound state for Vpa? <

252 252 271)2 K2 .
%. For % < Vpa® < % there is one bound state and so on.

2uVoa?
2

(8.184)
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Thus, we see that the minimum value of Vya? for p-wave binding
(¢ = 1) is larger than that for s-wave binding (¢ = 0), namely, for
bound states,

m2h?

oo (8.185)
_ 1. w2h? '
t=1:  Voa* > T5r.

[
I
o
=
S
[\
v

Physically, the meaning of this is very clear. In the case of £ = 1,
there exists a centrifugal barrier and, therefore, a particle requires
stronger attraction for binding. In fact, it can be shown that the
strength of the square well potential, Vpa?, required to bind a particle
of arbitrary ¢ increases monotonically with £. This system does not
show any degeneracy in the £ quantum number.

8.7 Selected problems

1. Find the energy eigenvalues and eigenfunctions of a particle in
a two dimensional circular box that has perfectly rigid walls.

2. A one dimensional square well potential has a bound state for
any positive Vpa?. The three dimensional square well has a
bound state only if Vya? > %[f. What is the analogous con-
dition for a two dimensional circularly symmetric square well
potential?

3. Consider the three dimensional isotropic oscillator described by

P’ 15,

Hy = M + 5 Hwor”. (8.186)
Assume that the particle has a charge e > 0 and is in a uniform
magnetic field B along the z-axis. Writing wy = —% and
choosing

1

A(r) = —gt X B, (8.187)
where A is the vector potential, we can write

H=H,+ H,(wg). (8.188)

Here, H;(wy) is a sum of two terms - one which is linear in wy,
(paramagnetic) and the other quadratic in wy, (diamagnetic).
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Determine the exact stationary states of the (complete) system
and their degeneracy. How does the energy of the ground state
vary with wz? Is the ground state an eigenstate of L2? of L,?
of L,? (This is the Zeeman effect for the harmonic oscillator.)

A particle moves in a potential in three dimensions of the form

1

V( o 2z 8.189
r) = .
) smw?(z? + y?), otherwise. ( )

Determine the energy eigenvalues for this system, the degener-
acy of each level as well as the eigenfunctions associated with
them.

. A particle moves, in three dimensions, in an anisotropic oscil-

lator potential

1
V(w,y,2) = 5 mw? (2% + 4y* +92%). (8.190)
a) What is the general expression for the energy eigenvalues for

such an oscillator?

b) What are the associated energy eigenfunctions (they need
not be normalized)?

c) What are the degeneracies of the three lowest energy eigen-
values?

. The range of the strong force which binds a neutron and a pro-

ton in deuteron in a s-wave state (¢ = 0) is @ = 2 x 10~ 3cm.
The binding can be explained quite well with a three dimen-
sional square well potential of depth (—V}) and range a.

a) Given that the ground state has the binding energy 2.23MeV
and that the potential strength 1} is much larger than the bind-
ing energy, what is the (approximate) value of the potential?

b) Explain qualitatively, from the behavior of the solutions,
whether this model would predict a mean radius of deuteron
shorter or larger than the range of the force.
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CHAPTER 9

Hydrogen atom

The hydrogen atom is an important physical system that can be ex-
actly solved. In the next few lectures, we will study this system in
detail to bring out various quantum mechanical features. We note
that, unlike the systems we have studied so far, the hydrogen atom is
a two particle system. It consists of a negatively charged electron in-
teracting electromagnetically with a positively charged proton. Thus,
let us first set up the formalism to study such systems.

9.1 Relative motion of two particles

Consider an isolated system of two interacting particles of masses m;
and mg at positions r; and ro. Let us suppose that they interact
through a potential which depends only on the relative separation of
the two particles. Then, the motion of the system can be separated
into two distinct and decoupled parts — a part that describes the mo-
tion of the center of mass of the system and another which describes
the relative motion of the two particles. Let us analyze this both in
the classical as well as in the quantum mechanical descriptions.

Classical. The Lagrangian for such a system can be written as

1 . 1 .
L= §m1r% + §m2r§ —V(ry —ra). (9.1)

Let us now define the new set of coordinates

r=r; — Iy,

_ Mmir] + mar

(& ma) (9.2)

where r, R denote respectively the relative coordinate and the center
of mass coordinate of the two particle system. The relations in (9.2)
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can be inverted to give

rlzR—l—& r,
mi + ma
my
rh=R- —— 9.3
2 mi + ms ( )

In terms of the variables in (9.2), the Lagrangian, (9.1), becomes
1 . mo 2 1 . mi 2
L= R+———1 = R-—r | -V
9" ( +m1+m2r> —|—2m2< m1+m2r> (x)
2

1 : 1 2
:—(m1+m2)R2+—< My T >1"2—V(r)

9 2 \(m1 +ms9)?2  (my + mg)?
1 . 1 mimg .,
= - R +-— =42V
2(m1+m2) + 2m1+m2r (r)
1 . 1
= 5MR2 + 5‘“”2 —V(r), (9.4)

where we have identified

M = mq + mgy = total mass of the system,

= ™MM2  _ educed mass of the system. (9.5)
mi + mg

The conjugate momenta corresponding to these two new coor-
dinates can be obtained to be
oL

P=—=MR=(m +
OR (ma -+ mg) my + mo

mli'l + mgi‘g

= mary + mars = p1 + P2
= total momentum,
oL . mimsa ( . )
= — = r———m —(r1 —r
p or H mi + mso ! 2
mep1 — M
_ Map1 1p2‘ (9.6)
m1 + me
Thus, the Hamiltonian for the system can be written as

. P2 p2
We see that the motion of the system can be equivalently described

by the motion of two fictitious particles — one with the total mass and
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the coordinates of the center of mass of the system and the other with
the reduced mass and with the relative coordinates. Furthermore, the
motion of these two fictitious particles are uncoupled and, since the
variable R is cyclic, it follows that (see (1.52))

P=0. (9.8)
The total momentum of the system is constant and, consequently, we
can go to the center of mass frame, in which case we have

P =0. (9.9)

and in this frame the Hamiltonian (9.7) becomes

p?
H==—+V(r). 9.10
b V) (9.10)
The problem of two interacting particles (with a potential depending
on the relative separation) in the center of mass frame, therefore,
reduces to that of a single particle with a reduced mass and with the
relative coordinates.

Quantum mechanical. The Hamiltonian for this system can be written
in terms of the new variables as

2 2

P1 | S5]
H=—+4+—"2 4V -
s + s +V(r; —r2)

2 p?
= — + — . A1
Wi + o + V(r) (9.11)

We see that the Hamiltonian of two particles with an interaction
which depends only on the relative separation can be equivalently
written as a sum of two uncoupled terms. Quantum mechanically, of
course, we know that the coordinate and the momentum operators
would satisfy the following commutation relations:

(114, 715] = [r2i, 23] = 0 = [p1i, P15] = [P2i, D2j],
(713, p2j] = [12i, p1j] = 0 = [r14,725] = [p14, P25]
(114, p1j]) = 1hdi; 1 = [ro;, p2j] - (9.12)

Using these as well as the definitions in (9.2) and (9.6), we can derive
that

[Ri, Rj] = [ri, 5] = 0= [Py, P] = [pi, pj]
[Ri,7j] = [Ri,pj] = 0 = [, Pj] = [P}, pj] (9.13)
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and
[RZ’, PJ] = Zhézj]l = [Ti,pj]. (914)

Thus, (r,p) and (R, P) behave like two pairs of conjugate vari-
ables. In the coordinate basis, therefore, we can write these operators
as

p = —thV = —ih %,
P = —ihVy = —ih 9 (9.15)
-_— R — 8R- .

Furthermore, since the two sets (r, p) and (R, P) commute with each
other, the Hamiltonian can be written as the direct sum of two Hamil-
tonians

H=H, H,, (9.16)

where Hp, is the Hamiltonian associated with the motion of the center
of mass and H, is associated with the relative motion of the two
particles. Since,

[H.,Hg] =0, (9.17)

they can be simultaneously diagonalized. The Hilbert space, in fact,
becomes a product space of two Hilbert spaces

E=E®E,, (9.18)

where (Hg, R, P) act only on the space £ while (H,,r,p) act only
on &,. A general state of £, (9.18), can be written as

Vg, r) = ) @ [ty). (9.19)

The situation here is exactly like the higher dimensional oscilla-
tor in the Cartesian coordinates that we have discussed earlier. Thus,
a general wave function

(I‘, R|¢R) ¢r> = TZJR(R)TZJT(F% (9'20)

becomes a product of two wave functions. Consequently, we know

that the Schrodinger equation will separate into two equations (be-
cause the wave function is separable)

h2

C2M

B, .
(—@v +v<r>> 6,(0) = By (x), (0.21)

VJ%%(R) = ER¢R(R),
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where E,. + Er = E = total energy of the system. The first equation
in (9.21) is easy to solve and yields
Yr(R) = e PR, Ep=—— (9.22)
which simply represents a free particle motion. Namely, the center
of mass behaves like a free particle independent of the form of the

interaction potential. The interesting dynamics lies in the second
equation in (9.21) describing the relative motion of the two particles.

9.2 Hydrogen atom

The hydrogen atom is a two particle system consisting of an electron
and a proton. In a simplified picture, we can think of the system as
describing the motion of an electron in the Coulomb potential of a
proton since the proton is very much heavier than the electron. In
fact, in the case of the hydrogen atom we know that

my = mp =~ 1000 MeV/C2,

my = me ~ .5 MeV/c?. (9.23)
The Coulomb potential of the proton is £ (in CGS units) and, there-
fore, the potential energy of the system is given by

V=V()=——, (9.24)

where 7 = |r; — ra| is the separation between the proton and the
electron. Thus, we see that our earlier discussion of reducing the
problem to a single particle motion in the center of mass frame can
be applied here and we can identify the Hamiltonian associated with
the relative motion of the two particles with

h? h? e?

H=-—V? =——V2-—. 2
2MV + V(r) 2MV . (9.25)
Note that, in this case,
M =m1 +mg >~ my,
m11msy
= ———" ~ma. 9.26
H mi1 + msy 2 ( )

Therefore, we can identify the proton with the center of mass which
is stationary and the motion of the electron as describing the relative
motion.
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This Hamiltonian has rotational symmetry and, therefore, fol-
lowing our earlier discussions, we can write the solution in the sepa-
rable form as

wE,Z,m(Ta 97 (b) = RE,Z(T)}/Z,m(07 ¢) (927)

ug o(r)

Furthermore, as before, defining Ry, ¢(r) = , the radial equation

for ug ¢ becomes (see (8.97))
Puge  2p ( e? B R20(¢ 4 1)

ot + 7 (B S - une =0 (9:2%)

Vv V::ontrifugal

" VCoulomb

Figure 9.1: Effective potential for the reduced particle in the Hydro-
gen atom.

For a nonzero value of ¢, the effective potential has the shape
as shown in Fig. 9.1. This shows that the effective potential, in
this case, supports both free particle as well as bound state solutions
and we are interested in studying the bound state solutions, namely,
solutions with £ < 0. Therefore, writing

E =—|E]|, (9.29)
we see that equation (9.28) has the asymptotic form (r — o)
T
2u|E| 1
or, ug(r)~e W )T 2 oo, (9.30)
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Here, we have defined the dimensionless variable

1
2u|E|\ 2
y:2< h’2‘> T,

1
d 2ulE|\2 d
— =2 — 9.31
dr ( h? > dy’ (9:31)

and have discarded the other solution with the positive exponent
since it is not normalizable.
In terms of the y variable, equation (9.28) becomes

QPug, 1 e R+ 1)
a1 <‘ "B 2lER > uee =0
d%up, 1L X L+1)
or, dy2 + <_Z + 5 - y2 > Upr = O, (932)

where we have defined another dimensionless variable

1 1
o ow N\ o [ opet 2
v= (i)« = (o) (933

Near the origin, 7 — 0 (y — 0), equation (9.32) leads to
dy? Y
or, uE,Z(y) ~ y£+17 (934)

Upe = 07

where we have discarded the other solution, y—¢, since it does not
satisfy the boundary condition at the origin, (8.107).

The asymptotic forms of the solution in (9.30) and (9.34), there-
fore, suggest a general solution of the form

o0 o0
-1 —Ly 041 k 1 kb1
upye(y) = e 2%(y) = e 2% § apy” =e ZyE aiy ,
k=0 k=0

d 1
et (),

d? 1
duig —em2Y (—v —v' + v”> . (9.35)
Y
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Substituting (9.35) into (9.32), we obtain the equation for v to be

Lyl 1 _1 i_f(ﬁ—l—l) _
e 2 [v v+4v+< 4+y 2 v 0,

d?v  dv A L+
or, d—y2 - d_y + <§ - y2 > v=0. (936)

Let us now use the power series expansion for v(y) given in
(9.35),

_ Z apyFHe,
k=0
d o
o (k+ 0+ 1apy*t*
dy
k=0
Z (k+ 0+ 1)(k + O)apy* =1 (9.37)

With this, equation (9.36) becomes

(o)

S [+ £ 1)+ Oarg = (e £+ Dagy*
k=0

+hapyt Tt — o0+ 1)akyk+5_1] =0,

i [{(k: L) (k+E) — L0 +1)} apy Tt

k=0
— (4 l+1— A)akyk”] = 0. (9.38)
Looking at the coefficient of the lowest power of y in (9.38)
(namely, y*~1), we obtain
[((l+1)—¢(l+1)]ag =0, or, ag= arbitrary. (9.39)

The coefficient of the next term in the series (namely, y¢) gives
[(C+2)+1)— L+ D]ag — (£+1—Nag =0, (9.40)

which implies that a1 # 0 if ag # 0.
In general, the recursion relation would connect api1 to ag.
Thus, looking at the coefficient of y*** in (9.38), we have

[(k+1+L0+1)(k+140) -+ 1)]ags1 = (k+L+1—Nay,
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which leads to

I CEYES Y
= B Dk 2012

(9.41)

so that for large k, we have

a 1
il N

aj k.

This is the behavior of the series e¥ for large orders and, therefore,
unless the series terminates, this would lead to an unphysical solution.
The series would terminate if

k+0+1-—X=0,

4 0\2
or, Az( pe > =k+{+1=n,

22| B
4
ue
or, |En| = Wa
pe’
or, ETL = —|En| = —2712—’”/2, (942)

which determines the energy eigenvalues for the hydrogen atom. Now,
since both k and ¢ take positive integer values, n also takes positive
integer values. Even when ¢ and k are both equal to zero, n = 1.
Thus, the allowed values for n are

n=1,23-. (9.43)

Furthermore, the allowed values of the orbital angular momentum,
for a fixed n-value, are given by

l=n—-k—-1=n—-1n-2,---,0. (9.44)
Thus, the solution of the differential equation, (9.32), is obtained

to be

n—_{—1

1
— 75 E k+0+1
k=0

= e_%yvmg(y) = e_%yy”lwn o(y). (9.45)
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This leads to

dvne g dwng

- 1)/

2 2
d Un,e . £+1d Wn, e

dw
e = 3 2(e+1)y£d_y 00+ 1)y,

(9.46)

so that the differential equation that wy, ¢(y) satisfies follows from
(9.36) to be

d?w dw
— +20+2—y) — —{—-1 =0. A4
v 20+2=9) T (= £ Duly) =0 (9.47)
We know that the equation
d’L, dL
1—9y)—2 gL, = 4
Y dy2 +( y) dy +4q q 07 (9 8)

is known as the Laguerre equation and L,’s are known as the Laguerre
polynomials of order ¢. The functions L (y), related to the Ly’s by
the relation,

dPLy(y)
dyP '

Li(y) = q>p, (9-49)
are known as the associated Laguerre polynomials. (This is one way of
defining the associated Laguerre polynomials and there is an alternate
way in the literature as well. The two, however, are related to each
other and as long as we follow one definition consistently, there is no
possibility for confusion.) They are polynomials of order (¢ — p) and
satisfy the differential equation

"Ly 1 dLg LP
Y, +(p+ —y)d—y+(q—p) J(y)=0. (9.50)

Comparing equation (9.50) with the one satisfied by the w;, ¢’s, (9.47),
we can identify

wne(y) = L25 (y). (9.51)

The generating function for the Laguerre polynomials is

yt

S(y,t) t<1, (9.52)
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where the coefficient of expansion on the right hand side are the La-
guerre polynomials. To see that this actually generates the Laguerre
polynomials, we note that

o5 _ __t_
dy  1—t"’
oS
or, (1-— t)a_y = —tS,
oo
or, (1-t)) ”t”— tZ—t"
n= 0
o o o
L;L n L;L n+1l __ L n+1
R SE T S TR S
n=0 n=0 n=0
o o o
L L L,
or, Yy Smgro NIt = Y g
| —1)! —1)!
= n! ot (n—1)! — (n—1)!
oo oo [ee]
L;L n L/n—l n Ln— n
N LT YT
or, L) —nL),_y=-nL,1, (9.53)
or, L. —(n+1)L, =—(n+1)L,. (9.54)

Furthermore, differentiating with respect to t, we obtain

08 1 t 1

ot 1—t ' (1—¢)72 1—¢
_ y 1 _(d-y—1)
‘[ <1—t>2+1—t}5‘ T2 =
which leads to
(1—2t—|—t)aa—5—(1— —t)S,
or, 1—2t—|—t Z_:l :(1_9_’5);}5“
[ L. ., 2L, L, 1]
v S o
= [(n—1)! (n—1) (n—1)!
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[e.e]

or, Z n+1 —2Zn—t” Z t”"'l

n=0
:(1_y)z%tn Zi'tnﬁ-l’

n=0 n=0

o n
n!

o, 3 [Laa— 2Ly — (- y)L)

> L = L,
;::0 (n+ )n! z_:ln(n—l)!

Ln_
= > nP, (9.55)
n.
n=0

Thus, comparing coefficients, we obtain
Lpt1=2n+1—y)L, —n’L,_;. (9.56)
Differentiating (9.56) with respect to y we have
a1 =(@2n+1-y)L), — L, —n’L,_,,
or, n’Ll, = 2n+1-y)L,— L, | — Ly (9.57)

Furthermore, multiplying (9.53) throughout by n and eliminating
n?L!,_, using (9.57), we have

nL, + Ly —(2n+1—y)L, + L, = —n*L,_1,
or, L. —(mn+1-y)L, +L,=-n?L,_;. (9.58)
If we now use (9.54), equation (9.58) becomes
—(n+1)L, +yL, + L, = —n*L, 1,
or, yL! —nL,=—-n’L,_;. (9.59)
Differentiating (9.59) with respect to y we obtain,
yL! + L —nL! = —nL, _,,
or, yL!'4+ (1 —n)L,=-nL_,, (9.60)
which upon eliminating the n?L/,_; term using (9.57) leads to

yL! + (1 —n)L) + (2n+1—y)L, — Ly, — L, =0.  (9.61)
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Furthermore, eliminating L, ; through the relation (9.54), we finally
obtain
yL! + (1 —n)L), + (n—y)L), + (n+ 1)L, — L, =0,
or, yL'+ (1—y)L!, +nL,=0. (9.62)
Thus, we see that the L,,’s satisfy the Laguerre equation. It fol-

lows now, from (9.49), that the generating function for the associated
Laguerre polynomials are given by

_oPS(yt) (=P e
T o (1—_tp©

_ i Ln() . (9.63)

n!
n=p

Sp(y7 t)

We can now identify the radial wave function for the hydrogen
atom with

_1
Rn,Z = Nn,ée 2yyZLi€_+él(y)v (964)
where
2B\ 2ue?
K| Lm He

and the total wave function is given by

wn,ﬂ,m(ra 0, ¢) = Rn,fn,m(ey gb) (9'66)

The normalization constant NV, o can be obtained from the orthonor-
mality relations for the associated Laguerre polynomials, which can
be derived using the generating functions in the following way. The
orthogonality of the Y, ,,’s tells us that a nonzero contribution is
obtained only if £ = ¢/ and m = m/ in

/ Er 9 oV tms (9.67)

and when these quantum numbers are the same, the angular integral
becomes unity. Thus, we only have to look at the radial part of
the solution. Furthermore, we can also show, using the equations of
motion, that if n # n/, this integral vanishes. Therefore, let us look
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at
/ r2dr Ry, Ry,

h2n 3 _
= <2M€2> | Ny o / dy yPe Yy L2 y) L25 ()

B\ 042 —y 72041 20+1

~ (5] Vsl [y PR ). (008)

We now write the associated Laguerre polynomials in terms of their

generating functions as (see (9.63))
an—i—Z

L2 ) (e
y)= otnte (1 _t)2€+2

ol (9.69)
t=0

n+¢
Using this in (9.68), we obtain
/ dy y* e VLT ) L2 ()

8n+é 8n+é (t$)2é+1

o+l an+l [(1 —)2H2(] — 202

__yt __yz
X/dy y2€+2e—ye O-0e (11)]

t,x=0

8n+£ 8n+£ (tx)%—l—l
= gttt gyntl [(1 —1)20H2(1 — g)20+2
« /dy y2e+2e—(1“tl)(ft)x>] _ (9.70)
t,x=0
Changing the variable of integration as
y(1 — xt)
— .71
the integral in (9.70) becomes
an—l—f an—l—f (tx)2£+1
oL gzl | (1 — £)2+2(1 — g)20+2
(1= )*+3(1 —2)* 3 /dy 22y
(1 _ :Et)2f+3
B an—l—f an—l—f (tx)%—l—l(l . t)(l .
ot Hpnte (1 _ :Et)2f+3

t,x=0

Y 3)}
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It is clear that terms with different powers of ¢ and z inside the
square bracket vanish since these variables are set to zero at the end.
Thus, the integral becomes

gntt gntt (t:l?)%"_l(l + tx)
otn+Lt Hpn+L (1 _ tx)2f+3

] T'(2¢ + 3)

t,x=0

= [(% + 1)!(27;161) (204 3)(20 +4) - -
(2043 +n+L—20—-2)(n+ L)

n+ 4

|
+(2e+2).<%+2

)(2e+3)(2e+4)~-

><(2£—|—3+n—|—€—26—3)(n+€)!]I‘(2€+3)
(n+0)1)?

20+ 1)l (n—¢—-1)

X (20+3)(20+4)...(n+L+1)

(0 + 0

- [(2z+ 1)!

+(2e+2)!(%+2)!(n_6_2)!(2£+3)...(n+e)]
% (20 +2)!

— ((n+ 0220 + 2)! [(% g;(itlg)'_ 0
+<2g+§§§£f)2_zﬂ

= (v o [P ) | e O )

_ 2n7(<75"_ ;e_)'f)’, (9.73)

(Basically, the origin of the combinatoric factors is as follows. Let us
look at the first term and note that, (20+1) derivatives of x have to act
on the numerator, since we are setting x = 0. This can act in (272151)
ways and brings out a factor of (2¢+1)! from the derivatives. The rest
of the (n—¢—1) derivatives act on the denominator and bring out the
factors following these. When we set x = 0, the denominator becomes
unity and the numerator has a power of t"1t. The t derivatives now

give the additional factor of (n + £)!.)
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Thus, the normalization relation becomes

/Tzdr Rn,ﬁ(r)Rn,E(r) =1,

2n 2 2042 —y 7 20+1 7 20+1
or, <2M€2> | Ny e /dyy e yLan Lnfz =1,

2 3 N3
h*n on ((n+20)) 1,
2ue? (n—20—1)!

2\ 3 /1)l
or, Nn,e:—[<2'ue> (n—¢—1)!

or, ’Nn,ZP <

1
2

R2n ) 2n((n+0)!)3

The normalized radial wave functions can now be written as
R _ 2pe2\° (n—2¢-1)!
mE = R2n ) 2n((n+0))3

_HSQT 2M€2T ‘ 2041 [ 2ue?r
xemim (D) L2 (), (9.75)

1
2

and the first three radial functions have the explicit forms,

pe? 2 _ne?
R170:2<ﬁ> e hr2 T7

pe? 2 pelr\ _ue,
R2’°:<W> (2‘ & )

3
2\ 2 2 2
(e pesr  _ue2,
Ry = <—2h2> 52\/36 2n2 ", (9.76)

9.3 Fundamental quantities associated with the hydrogen atom

Looking at the wave functions for the hydrogen atom in (9.75) (or
(9.76)), we notice that there is a fundamental length scale that enters
the solutions,
h2
pe?’
This is known as the Bohr radius for the hydrogen atom. In terms of
this quantity we can write down the radial solution, (9.75), as

14
_r ([ 2r
Ros(r) ~ 70 (n—ao> 2 (). (9.78)

ay = (977)
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Remembering that Li@l is a polynomial of order (n — ¢ — 1), the

leading behavior of the wave function for large r is given by (r > ag)
Ry o(r) ~ 1" le o0, (9.79)

independent of the value of ¢. Therefore, the dominant (leading)
behavior of the probability for finding the electron (in the nth state)
in a spherical shell of radius » and thickness dr, when r is large, can
be obtained to be

/ 7"2d7‘dQ w;,£7m¢n,€,m = Tzdr R?L,Z(T)
Q

~ ¢ a2 dr = Po(r)dr, (9.80)

We can, therefore, determine the radius of maximum probability
for finding the electron in the nth state as

A (r) _i( 2n s ) =0.

= e mnag
dr dr
2r 2 2r
or, 2nr?"le nag — Z_p2eTnag =,
nagp

or, (r—n?ag)r® e o =0,
Or, Tmax = n2ag. (9.81)

Thus, we see that the Bohr radius, ag, is the most probable value of
r in the ground state (n = 1) and, therefore, defines the natural size
of the hydrogen atom. We also see that 7max grows as n? for higher
states.

The theory also possesses a natural energy scale. Let us define

4
2h2

In terms of the Rydberg, the energy levels of the hydrogen atom,
(9.42), can be written as

Ry = = Rydberg. (9.82)

B = X (9.83)

Numerical estimates. Let us estimate the values of these length and
energy scales. From the definition of the Bohr radius, (9.77), we note
that

h? (he)? he he

= =7 9.84
a0 pe?  pcte?  puc? e? (9.84)
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We know that hc ~ 2000 eV-A° (1A° = 1078 cm). Furthermore, as
we have seen in (9.23), uc® ~ .5 MeV = 5 x 10° eV. We also know
that

2

e 1
a= = fine structure constant =~ IETR (9.85)

The fine structure constant is a dimensionless constant that measures
the strength of electromagnetic interactions. It follows from these
that

2000 eV-A°

ao

which determines the size of the hydrogen atom. Furthermore,

Ry fet et et (e
or2 ~ 2(he)? | 2

5 % 10° 1\2
~ — ~ 13. . .
5 eV x <137> 3.3 eV (9.87)

A more accurate value for the Rydberg is 13.6 ¢V (namely, if we
use puc? = .511 MeV and so on). So using this more accurate value,
we can write the energy levels of hydrogen, (9.83), as

E,=——2"¢V. (9.88)

Thus, the ground state of hydrogen, which is the most tightly bound,
has an energy —13.6 eV and, therefore, it would take 13.6 eV to
release the electron from its ground state. Consequently, this is also
known as the binding energy of the hydrogen atom.

9.3.1 Comparison with experiment. Quantum mechanics predicts ex-
plicit energy levels for the hydrogen atom and, in principle, we can
measure these. However, in practice, we only measure the relative
separation between the energy levels. For example, if an atom is in
the state characterized by the quantum numbers (n,¢,m) with en-
ergy F,, it would remain there forever — since that is a stationary
state. However, if we disturb the system, it may make a transition
to another state (n,¢',m’) with energy E,; # E,. Furthermore, if
E, < E,, the atom would emit a photon with energy (E, — E,).
Thus, the frequency of the emitted photon would be

1
Wn,n' = ﬁ (En - En’) 5 (989)
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and can be measured in the laboratory. Quantum mechanically, it
follows from (9.88) that in the hydrogen atom we must have

Ry /1 1
Wnont = - <W — ﬁ) . (9.90)

For a fixed value of n’ we get a family of lines (spectra) as we
vary n (for transitions to a given level). Thus, for example,

Ry 1
1= —2(1- =), 91
Wn, 1 h( 7”L2> (99)

is called the Lyman series. Similarly,

Ry /1 1
Wn2 = I (2—2 - —> ) (9.92)

n2

is known as the Balmer series and so on. These lines are observed
experimentally and agree with the quantum mechanical predictions.
However, there are slight discrepancies between the measurements
and the theoretical predictions. But these can all be explained as
limitations in the form in which we have used quantum mechanics.
For example, we have to correct for the fact that the proton is not
really immobile, i.e., it does not have an infinite mass.

Furthermore, we have treated the electron as a non-relativistic
particle whereas in reality one finds that the relativistic effects are
not completely negligible. These are known as fine structure cor-
rections and are calculable. (We will derive these later when we
discuss perturbation methods.) However, we must remember that
all such corrections are extremely small and that the non-relativistic
Schrodinger equation describes the hydrogen atom extremely well.

Degeneracy of states in the hydrogen atom. The hydrogen atom pos-
sesses rotational symmetry. This implies that

[H,L;] = 0. (9.93)
In particular, this implies that
[H,Ly] =0. (9.94)

However, L. change the m-quantum numbers for a given ¢. Since
L4 commute with the Hamiltonian, this implies that all the 2¢ + 1
states with different m-values have the same energy. Thus, rotational
invariance implies degeneracy in the m-quantum numbers. On the
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other hand, we have noted in (9.44) that in the hydrogen atom the
orbital angular momentum ¢ takes integer values 0,1,...,n — 1 for
a given value of n. And, furthermore, since the energy levels are
characterized by the n-quantum number only, all these states with
different /-quantum numbers also have the same energy. Thus, for
example, the degeneracy in the first few levels are given by

n E, ¢ m
1 -13.
1366 ev. 0 0 (9.95)
2 —BSev 01 0;+1,0
3 —BSev 01,2 0;+1,0;+2,41,0.

In general, the total number of degenerate states for a given n
in the case of the hydrogen atom is obtained as

n—1

> @e+1)=2x %(n— Dn+n
£=0

=nn—1+1)=n (9.96)

We had seen a similar degeneracy in the ¢ quantum number earlier
in the study of the 3-dimensional isotropic harmonic oscillator and
had characterized this as accidental degeneracy. Such a degeneracy is
not explained by the rotational symmetry since there is no operator
within the rotation group which would change the ¢-quantum number.
In fact, this degeneracy is a consequence of the special form of the
potential which gives rise to a larger symmetry in the system under
study as we will see next.

9.4 Dynamical symmetry in hydrogen

As we have noted earlier, a special form of the potential can some-
times enhance the geometrical symmetry that we would expect in a
system. Consider, for example, the classical Keplerian problem where

2
_r_F (9.97)
2u T
where k is a constant. For the case of the hydrogen, we can identify
k = €2, but let us leave it arbitrary for the present.
This is a rotationally invariant system and hence angular mo-
mentum is conserved. In this case, we know the classical trajectory of

the particle to be elliptical. Symmetry considerations alone (that is,
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rotational symmetry) tell us that the motion must be planar. Namely,
the motion must lie in a plane so that the angular momentum vec-
tor does not change. However, rotational symmetry alone does not
require the orbit to be closed. For example, if we perturb the orbit
slightly from its closed form, it can, in principle, precess in the same
plane without violating angular momentum conservation. On the
other hand, the fact that closed orbits are stable implies that there
must be another quantity which is conserved and lies in the plane of
motion so that the orbit remains closed. In fact, we know of such a
vector in this classical problem, which is known as the Runge-Lenz
vector and is defined as

L
_bxx R (9.98)
1 r

M

It is obvious from the definition in (9.98) that

L-M=0,

1 k\?
M? = M7 = <_€ijkijk - —Ti>
L r

(9.99)

It is straightforward to show that M is a conserved quantity, simply
by calculating its Poisson bracket with the Hamiltonian. (It is, of
course, obvious that M? is conserved.) Furthermore, this is a vector
that is orthogonal to the angular momentum and, therefore, would lie
in the plane of motion. The conservation of the Runge-Lenz vector
is the reason that closed orbits are stable.

Quantum mechanically, for the hydrogen atom, we define the
Runge-Lenz operator as (k = e?)

2

1 e
M; = ﬂeijk (pjLi — Ljpr) — gt LiM; =L-M =0, (9.100)

where symmetrization of products has been used. Using the funda-
mental canonical commutators, we can show that

[M;, H] = 0. (9.101)
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Therefore, these are conserved in the quantum system as is the case
classically. Furthermore,

2H
M? = M2 = o (L? + h?) + ¢, (9.102)

where the A2 term arises from the non-commutativity of quantum
operators.

We already know that the angular momentum operators satisfy
the commutation relations,

[Li, Lj] = iheijiLy. (9.103)
We can also calculate in a simple manner that

[M;, Lj] = ihe;jx My,

[M;, M;] = —2;—‘he,~ijLk. (9.104)

The L;’s, of course, generate rotations and define a closed alge-
bra. But, L;’s and M;’s do not form a closed algebra since the last
relation involves the Hamiltonian. However, remembering that the
Hamiltonian is independent of time, we can work in the subspace of
the Hilbert space that corresponds to a particular energy value, say,
E. In this subspace, the last relation in (9.104) becomes

2ihE
[M;, M;] = _ZTEijkLk~ (9.105)

If we are interested in bound states, we note that £ < 0 and if we
scale the generators as

M; — (—%)é M; (9.106)

then, the commutation relations in (9.103) and (9.104) take the sim-
ple form (in a subspace of constant energy)

[Li, Lj] = iheji L,
[MZ’, L]] = iheijkMk,
[Mi,Mj] = ihe,-jkLk. (9.107)

This defines a larger symmetry algebra that is operative in this sys-
tem. This algebra is isomorphic (equivalent) to the algebra of ro-
tations in 4-dimensions (or the O(4) group). Since our system is
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3-dimensional whereas the symmetry is four dimensional, this sym-
metry is called a dynamical symmetry as opposed to a geometrical
symmetry. Let us note from the above algebra that

[M;, L2] # 0. (9.108)

Therefore, in this larger algebra there exist operators that do not
commute with L? and, therefore, can change the ¢ quantum number.

To understand the representations of this algebra a little better,
let us define two sets of new generators as

1

K; = =(Li — M,). (9.109)

1
2
It is then straightforward to show that

[IZ', IJ] = iheijklka

[Ki, KJ] = iheiijk,

I, K;] = 0. (9.110)
Furthermore, it is obvious that [I;, H] = [K;, H] = 0 so that these
operators are also conserved.

As we see from (9.110), in this basis the algebra becomes equiva-
lent to that of two decoupled algebras of angular momenta. It follows

from our earlier discussion of the angular momentum algebra that the
operators I? and K? will have the eigenvalues

1% : B%i(i + 1), K2 : 12k(k + 1), (9.111)
where i,k = 0, %, 1,.... We recognize that I? and K? are the two

quadratic Casimir operators of the algebra. Equivalently, we can
also define two operators as linear combinations

1
C:I2+K2:5 (L? + M?),
C'=T-K’=L-M=0, (9.112)
where the second relation is the quantum analog of the orthogonal-
ity of L and M in (9.99) (see (9.100)). Furthermore, the second

relation implies that, for any representation, we must have ¢ = k.
Correspondingly, the allowed values of C', for any representation, are

C: 21%k(k+1). (9.113)
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We know that, in this subspace (remember the scaling in (9.106),
1
M; — (—%) 2 Mz),

M2 = — (L2 + ?) — et (9.114)
N 2F’ ‘
so that we can write
|y 2
1 ,ue4
I L2 . L2 h2 »=
2 2E>
pet 1, 2
= _E__h 1 =2h"k(k+ 1)1,
4 4
or, B=——"° =K (9.115)

2h2(2k +1)2 ~ 2h2n?’

where n = 2k + 1 =1,2,3,... (remember that k = 0, %, 1, %, for
angular momentum algebra).

Thus, we see that we get the right energy levels for the hydrogen
atom from this operator analysis of the symmetries in the theory. Let
us note that it is not objectionable for the eigenvalue k to be half
integer. We only have the physical requirement that the eigenvalues
of the L operator take integer values. Since L = I+ K (see (9.109))
we see that it takes values (we are assuming here the composition of
angular momentum which we will discuss later)

C=(i+kjit+k—1,---,li—k])=(n—-1,n—-2,...,0). (9.116)
All these levels would be degenerate in energy. This explains the

peculiar degeneracy noticed in this system.

9.5 Selected problems

1. a) Prove the Thomas-Reiche-Kuhn sum rule

2
Y (Bw = Ey) [(0|X|n)[* = zh—m (9.117)

nl

where X is the coordinate operator and |n) represent the eigen-
states of the Hamiltonian
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2
p
H=—+V(X). 9.118

b) Test the sum rule on the n-th state of the harmonic oscil-
lator.

2. Consider the Runge-Lenz operator defined in (9.100)

2

1 e
M; = ﬂeijk (pjLr — Ljpk) — T (9.119)

where L; denotes the three orbital angular momentum opera-
tors. Given that the Hamiltonian for the Hydrogen atom has

the form
2 2
g=2_° (9.120)
2u r
show that

¢) [Mi, Mj] = —2ke; 5, HL.

3. Find the lowest energy eigenstate (ground state) of the hydro-
gen atom in the coordinate representation starting from the
operator formalism of O(4) symmetry discussed in the last sec-
tion.

4. What are the generators of the larger symmetry group for the
3-dimensional isotropic oscillator? What is the algebra they
satisfy? (The larger symmetry in the oscillator case corresponds
to the group SU(3) which has eight generators.)
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CHAPTER 10

Approximate methods

So far, we have studied quantum mechanical systems that can be ex-
actly solved. Most often, however, we are confronted with systems
which are very difficult (if not impossible) to solve exactly. That
is, the Hamiltonians for such systems cannot be diagonalized exactly
in a simple way. In such a case, we look for approximate meth-
ods for finding the eigenvalues and eigenstates of the Hamiltonian.
And sometimes, these approximate methods give results which are
amazingly close to the true experimental values. There are various
approximate methods which one can apply to different physical prob-
lems. We will discuss all these methods systematically starting with
the variational method.

10.1 Variational method

The variational method is an excellent approximate method when we
are interested in estimates of the ground state (or higher) energy of
a complicated physical system. The basic idea behind the variational
method is contained in the following two theorems.

Theorem. The expectation value of the Hamiltonian of a physical sys-
tem is stationary in the neighborhood of its eigenstates.

This theorem is also known as the Ritz theorem.
Proof. Let us assume that [¢)) is a state in which we are evaluating

the expectation value of the Hamiltonian. The expectation value of
the Hamiltonian, in this state, is defined to be

Wl
)= ity
or, (Wl (H) = (WIH]Y). (10.1)

Here we are assuming that [¢), in general, is not normalized.
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Let us next modify the state infinitesimally to

) = [¥) + [69). (10.2)

The infinitesimal change in the expectation value of the Hamilto-
nian, introduced by changing the state, can be calculated as follows
(keeping terms up to linear order in the change). First, we note that

S((Y)(H)) = (YY) (H) + ($|ov)(H) + (Y[¥)é(H).  (10.3)
On the other hand, we see that since the Hamiltonian is unchanged,

S| Hp) = (0Y[H |¢) + (V| H|0Y). (10.4)
Thus, comparing (10.3) and (10.4), we obtain from (10.1),

(W[)o(H) = (69|(H — (H))|[Y) + (W[(H — (H))|6).  (10.5)

Let us next define

(H = (H))[¢) = [)- (10.6)
Thus, the relation (10.5) can be written as
(Y[)o(H) = (5¢]9) + (4]6¢)). (10.7)

As a result, we conclude that the expectation value of H, in the state
|¢), will be stationary (namely, 6(H) = 0) if

(00]¢) + (¢|d9) =0,
or, Real (¢|oy)) = 0. (10.8)

This last relation must be true for any |d¢) in order that (H) is
stationary. In particular, it must be true if (e is an infinitesimal real
parameter)

|0)) = €|@). (10.9)
However, in this case, we will have from (10.8)
(9]6Y) = €(d]¢) = 0. (10.10)

In other words, the norm of the state |¢) must be zero, which, in
turn, implies that |¢) must be the null vector. Thus,

|¢) = (H — (H))|¥) =0,
or, Hy) = (H)[p). (10.11)
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This shows that |¢) must be an eigenstate of the Hamiltonian
for its expectation value to be stationary and this proves the theorem
that the expectation value of the Hamiltonian is stationary near its
eigenstates. (An alternate, simple way to see this is to note that, for
all infinitesimal changes satisfying (d1|¢)* = (01|¢), the expectation
value of the Hamiltonian can be stationary only if (§1)|¢) = 0, which
implies that |¢) = 0.) L]

Let us now assume that the state in which the expectation value
is evaluated is not an exact eigenstate but differs infinitesimally from
one. Namely, let

) = [¥n) + €[tni), (10.12)

where € is an infinitesimal, real parameter and |¢,) and |¢,4+1) are
eigenstates of the Hamiltonian with eigenvalues E,, and F,,1 respec-
tively. Let us now calculate

(Y[ H][)
=)
((Wn| + €@ni1)H([¢n) + €[tn+1))
(Wn| + €(@ns1])([¥n) + €ltni1)
((Yn] + eWnt1]) (Enl|¥n) + €Ens1|Pni1))
(Unltbn) + € (nt1|tnr1)
E, + 62En+1
- 1+ €2

= Ep + €2(Bpy1 — En) = E, + O(é2). (10.13)

~ En(l — 62) + €2En+1

This shows that if a wave function differs from an energy eigen-
state by order € terms, then, the expectation value of the Hamiltonian
in this state will be different from the corresponding energy eigenvalue
by O(€?) terms. Therefore, by cleverly choosing a wave function, we
can come very close to the true eigenvalue of the Hamiltonian.

Exercise. Define |¢)') = |¢) + |6%). Then,

CWIHR)  (WlHW)
M) =y T W)

Show from this definition that if |§¢) is infinitesimally small, we obtain the result
derived in (10.7).

Theorem. The expectation value of the Hamiltonian in an arbitrary
state is greater than or equal to the ground state energy.

WIHWY) Ey. (10.14)

(Wly) —
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Proof. To prove this, let us expand the state in the basis of the eigen-
states of the Hamiltonian. Namely, let

=" cnlthn), (10.15)

where |1),,)’s denote eigenstates of the Hamiltonian with eigenvalues
E,. (Here we are assuming the eigenvalues to be discrete. This can
always be achieved by quantizing in a box. However, the theorem is
true otherwise also.) Thus,

ey Z leal?,

(Y| H ) ZE|cn|
ZEn|Cn|
WHW) >
WY Sl (10.16)

n

By definition, E, > Ej for all n (where Ej represents the ground
state energy), so that

Z |cn]?
Z |Cn|2

(Y| H]Y)
(¥l)

e = E. (10.17)

This proves that the expectation value of the Hamiltonian in any
arbitrary state is greater than or equal to the ground state energy.
The equality in (10.17) holds when |¢)) happens to coincide with the
ground state of the system. [

The variational method makes use of both of these theorems
and is mostly used to determine an upper bound on the ground state
energy of a system. First of all, we know that the ground state energy
is an absolute minimum of the expectation value of the Hamiltonian
in any state. Therefore, we can choose a wave function which would
resemble the ground state wave function as much as is possible, but
allow for a few undetermined parameters in it. The expectation value
of the Hamiltonian in such a state, therefore, becomes a function of
these parameters. The expectation value is then minimized with re-
spect to these parameters, which determines some or all of the values
of these parameters. Furthermore, corresponding to these parame-
ters, the Hamiltonian has an expectation value, which serves as an
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upper bound on the true ground state energy. We can try to lower
this upper bound even further by introducing more and more param-
eters and using more general wave functions. When there is difficulty
in lowering the bound any further, we can think of the expectation
value as essentially close to the true ground state energy.

The choice of a good trial wave function is, therefore, a crucial
part of this method. We, therefore, try to invoke all the symmetry
principles of the system and appeal to all physical intuitions about
the ground state of the system in choosing a trial wave function.

The variational method can give a very good estimate of the
energy eigenvalues. But, it does not determine the wave function
accurately. In other words, we cannot take the wave function and,
therefore, the expectation values of other observables calculated with
it seriously. This is because other observables may not satisfy any
minimum theorem (such as the Ritz theorem).

Furthermore, we can also estimate upper bounds on the energy
eigenvalues of the excited states from the variational method. This
is done simply by noting that if we choose, as a trial wave function, a
state which is orthogonal to the ground state wave function, it would
give an upper bound for the energy of the first excited state. By
considering a series of orthogonal states we can, therefore, in principle
determine upper bounds on all the eigenvalues of the Hamiltonian.

10.2 Harmonic oscillator

We have already studied the harmonic oscillator in one dimension in
detail. Let us analyze here the ground state energy of this system
from the point of view of the variational method. The Hamiltonian
for the system has the form (in the coordinate basis)
2 42

H = —;—m % + % mw?a?. (10.18)
We are interested in determining the ground state energy of this
system using the variational method and are, therefore, looking for a
trial wave function that reflects all the properties of the true ground
state wave function. Furthermore, it must have a simple enough form
for manipulations (for carrying out computations).

First of all, we recall that the system is invariant under parity,
i.e., if z <> —x, the Hamiltonian is invariant. Therefore, all solutions
of this system can be classified as even or odd under the parity op-
eration. We are looking for the ground state wave function. In one
dimension, this would correspond to a function without any node.
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Thus, this must be an even function. Furthermore, we are looking
for bound state solutions which vanish at spatial infinity in either
directions. We can, therefore, choose as a trial wave function

pO(z) = e, a>0, (10.19)

which satisfies all of our symmetry requirements and the constant «
corresponds to the variational parameter.
Let us next calculate

w&%w9»=3/d$w$”cw¢gka

2 d
() ()

2 BN
WO = 5o [ do 60 @) {700 @)

=5 dz e““z(—2a + 4a2x2)6_‘“2
m

2

I
=5 dz (—2a + 4042952)6_2‘”2

) ()

- 22—72‘ (%)é . (10.20)

Therefore, we obtain
WOHID) = AT + Vi) = ()7 (22 4 e
o @ @ @ 20 2m Sa )’

(0) (0) 2 2
or, (H)= Yo lHWaT) o  mw” (10.21)
(e pt”)  2m o Ba
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The value of the variational parameter o which gives the mini-
mum of the function in (10.21) is determined to be

d(H)
SN
da ’
2 mw?
or — =
" 2m  8a? ’
OF, Cmin = % (10.22)

(The other value of the extremum equation leads to an unphysical
solution, namely, a solution that diverges at infinity.) Substituting
this into (10.21), we determine the value of the upper bound for the
ground state energy to be

hw
H min — )
P, = e (10.23)

We note that, in this particular example, the ground state energy
comes out exact because of our choice of the form of the trial wave
function in (10.19).

If we want to calculate the energy for the first excited state of
the oscillator using the variational method, we have to choose a wave
function that is orthogonal to the ground state. Furthermore, it must
have one node and vanish at infinity. This leads to the choice of a
wave function of the form

T,Z)(gl)(l") —ze P, B>,
/ dz 9§ (), (z) = / dz pe~(@mintH2* _ (10.24)
This trial wave function leads to

WPWP) = / dz " (@)D (@)

( ]VWJ > 1mw2/dx gle—287
B mw? 1d 1 [7\?
~o2 | 2dp\48 <ﬁ>
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mw
=—X
2

_3mw2 1 <7T>é
© 88 4p\28) 7

2
wPITIu?) =——/wm 0w

=—— /dx (—682% + 4,82$4)6_2Bx2
2m

R WEARNEAE
- 2m<65+45 M@(%)

BB 1 (7\?
=5 <%> . (10.25)

Therefore, we obtain,
W?W+VWQX_FW6+%w1
) 2m ~ 8f

The value of the variational parameter § which gives the minimum
of this function is determined to be

(H) = (10.26)

d(H
)
dg
or ﬁ - —3mw2 =0
" 2m 832
or, Pmin = n;—: (10.27)
which leads, from (10.26), to
3hw
(H)pin = E1 = —, (10.28)

2
and serves as an upper bound for the energy of the first excited state.
We see, again, that we get the exact eigenvalue for the first excited
state because of our choice of the trial wave function in (10.24).

Let us now examine how different a bound we would have ob-
tained for the ground state had we chosen a different form for the
trial wave function. Let us choose as the trial wave function for the
ground state (which satisfies all the symmetry properties)

1
O)(z) = . 10.2
v, () o a>0 (10.29)
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This leads to
WO = [ do v @ @) = [ao s

=21 X

1
diacy/a 2o/’

B
9"Me Va 20/
mw2a s
\/_7
1
0 1
< ‘TW} 2m w2+adw2 <x2+a>
_» dz |—2 4 82 1
- 2m 2+ a] (22 +a)
h? 8« 1
= d
“oam | [6 z? + oz] (22 + )3
_ 1 1
8o x 27i x 1( £)(=5)(—6) x ——
« ™ al (21'\/5)7
R [ 9% 57
B 402/a 202/«
h? T
=T— . 10.
dma 2an/a (10.30)

As a result, we obtain

A g0)|T+V|¢,(10)> B K2 n mwia

WO®y  4ma 2 (10.31)
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The minimum of this function occurs at a value of «

d(H)
/)
da ’
on dma? 2 7
h
or, Qmin = ——F—=, 10.32
— (10.32)
which, in turn, gives
<H>min = h_2mW\/§ + mW2 h
4dm h 2 mwyv2
hw
= — =/2E,. (10.33)

V2

As noted earlier, this is larger than the exact value of the ground
state energy.

Exercise. Calculate (z), (z%)and (z*) in this state and compare with the actual
result for these in the ground state of the oscillator.

10.3 Hydrogen atom

Earlier we studied the exact solution of the hydrogen atom. Let us
next calculate the ground state energy of the hydrogen atom using
the variational method. The Hamiltonian for the hydrogen atom, in
the center of mass frame, has the form (see (9.25))
2 2
-2 & (10.34)
2u T
Here we can think of u as the mass of the electron if we assume the
proton to be infinitely heavy. Otherwise, it can be thought of as the
reduced mass of the system. First of all, we note that rotation is a
symmetry of the system and, therefore, angular momentum is a con-
served quantity. Furthermore, expanding V? in terms of spherical
coordinates (see (8.9)), we note that a non-vanishing angular mo-
mentum gives rise to a centrifugal barrier. Therefore, for states with
nonzero angular momentum, binding must be weaker. The ground
state is, of course, the most tightly bound. Therefore, the angular
momentum for this state must be zero so that it must be completely
spherically symmetric and hence can only depend on the radial coor-
dinate.
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Let us choose as our trial wave function

PO (r) = e—or?, a >0, for bound state. (10.35)

«

This wave function satisfies all the symmetry requirements of the
ground state of the hydrogen atom (and it is different from the true
ground state wave function of the system), where « represents a vari-
ational parameter. Using the basic integral,

00 , () 1
/ dzae " = —2°, (<) =7, (10.36)
0 207 2
we obtain,

(alba) = / &r YO (r)pO ()

o0 T 3
= 471/ dr r2e=20m% — 4777(2)3
0 2(2a)2

3
2

11 s ™
- ()
42a \ 2« 2

alVlia) = [ @ vy (=S ) o0

o0 1 2
= —471'62/ drr?=e20r
0

r
o0 2
= —471'62/ dr re=207
0
(1) me?
e 2(2a) o'

B 9 [ 2a¢ 2o $
= <7> (32)"
2 . 1d,d
(WalTYa) = =3 / d*r () <§5r25wﬁ?> <r>>

47Th2 o0 2 —067”2 1 d 3 —O!T2
=— o /0 dr r“e <§5(—2ar e )>

4 h2 00
S / dr (—6ar? + 40427‘4)6_20”2
21 Jo

4 <_GQL%>

2m 2(2c)

Y
[\~
~—~
[\
Q
~—
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4rh? 3a /7T 3a 7
=" 5, \ 5 zt 3
24 2 20)2 4 (20)2
3h2a 7 TN\ 3
_ o 10.
20 <2a> ’ (10.37)
which yields
(Vo|T + Vths) 3R« s [2a
=T = (1038)
The minimum of this occurs for a value of o determined to be
2
3h 2 i _o,
2u T
8 [ pe? 2 8 1
or, Qmin = 9_7'(' <ﬁ> = 9—7[_?, (1039)

where q is the Bohr radius defined in (9.77), so that we have

=2 () oo

4 (ue) 24,ue4_ 4 pet

iz 3r B2 31 K2
4
- —%3% ~ —0.85Ry. (10.40)

This again gives us an energy which is slightly higher than the
ground state energy. Thus, we see that the variational method gives
us a very good approximation to the ground state energy. The draw-
back of the variational method is that although it gives us an upper
bound, we have no way of knowing how close the bound is to the
true eigenvalue, in the absence of experimental results. For exam-
ple, let us consider the one dimensional case of a particle moving in
a Az potential, also known as the quartic potential (A > 0). The
Hamiltonian has the form

R? 42

g 4 10.41
2md2—|—)\:13 (10.41)

This system is invariant under parity. The ground state, which has no
node, must be an even function. And we choose a trial wave function
for the ground state of the form

O() =e, >0, (10.42)
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where « is a variational parameter. Using (10.36), we obtain,
<¢a|¢a> — /dﬂi‘ 7/)&0)*7!)&0) _ / dx 6_2ax2

I(3) T

=2 T
2(20)2 201

<walija> = )‘/dx x4e—2ax2

AL (2)

N Ut

™

A
402\ 2c

(20)3

_ 3N T
1602\ 22

h? o2 d o2
(ValTlt) = ~5 [ doe™e* 2o (~2aze=2")

e~ w

h2
= /d;p (—2a + 40(23:2)6_2‘”2
2m

o [rw
= —y/— 10.4
om \ 2a’ (10.43)
so that we have
ha 3\
H)Y= — 4+ —. 10.44
(H) 2m + 1602 ( )

The minimum of the expectation value of the Hamiltonian oc-
curs for

1
2 3\ 3mA 3
&o_2A min = [ 22" 10.4
5 8ol 0, or, « <4h2> (10.45)

For this value of the parameter, the expectation value of the Hamil-
tonian gives
2 3
<H>min = %amin + W

min

h? 3 3h?
— i\ 5 ¥ 1663, ) T I e

min

1 1
382 /3mA\3 3 /(6 R*\3
- (W) -2 < L ) | (10.46)
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As we have discussed, this is expected to give an upper bound on
the ground state energy of the system. Furthermore, positivity of the
energy leads to

m2

3 6B
8

1
3
) > Ey > 0. (10.47)

However, we have no way of knowing how close this bound is to the
actual ground state energy.

10.4 Ground state of helium

The nucleus of a helium atom consists of two protons and two neu-
trons. There are two electrons in orbit around the nucleus. Thus, for
all practical purposes, we can neglect the motion of the nucleus, i.e.,
assume it to be infinitely heavy. An idealized classical picture of the
system can be given as shown in Fig. 10.1.

Figure 10.1: A schematic diagram for the two electrons in the ground
state of the Helium atom.

Therefore, the Hamiltonian for the system can be written, in the
coordinate representation, as
22 2¢? e?
H=——(VitV3) - "— "+ —. 10.48

2m ( 1 2) T 9 T12 ( )

Here ry and re are the coordinates of the two electrons (with the
nucleus assumed to be at the coordinate origin) and 713 = |r; —ra| is
the distance between them. Thus, in addition to the attractive force
between the electrons and the nucleus, there is also repulsion between
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10.4 GROUND STATE OF HELIUM 273

the two electrons. Here, m denotes the mass of the electron. (Let
us note here parenthetically that we are assuming the two electrons
to be distinguishable, which they are not. However, as long as we
are dealing with the ground state of a two electron system, Pauli
exclusion principle tells us that their spins must point in opposite
directions. Thus, we can treat them effectively as distinguishable.
We are also neglecting the spin-orbit coupling for the present and
will talk about it later.)

This atomic system is only slightly more complex than the hy-
drogen atom and yet it cannot be solved analytically. Consequently,
this system has been studied quite extensively by variational tech-
niques so as to draw clues for handling more complex atoms. Let us
generalize the system slightly, i.e., rather than assuming the nuclear
charge to be 2¢, we consider an arbitrary nucleus of charge Ze so that
the Hamiltonian becomes

2 2 2
H:—%(Vl-FV%)—ZT—T—ZT—z—I—%. (10.49)
Furthermore, let us ignore the repulsion term for the moment. The
system, then, is equivalent to two hydrogenic atoms, i.e., the Hamil-
tonian is a direct sum of the Hamiltonians for two hydrogenic atoms
with nuclear charge Ze. Thus, we can write the ground state wave
function for the system to be

Yo(r1,m2) = Yo(r1)vo(r2). (10.50)

We also know from our study of the hydrogen atom that, in this case
(The simplest recipe for going from the solution of the hydrogen atom
to that of a hydrogenic atom is to let e? — Ze2.),

1
Z3\2 _2n
wirn) = (Z5) 5

7T(10
1
Z3 2 _Zrg
Yo(r2) = <—3> e o, (10.51)

where ag = 72—22 is the Bohr radius. These are the ground state wave

functions for two hydrogenic atoms with nuclear charge Ze and we
obtain from (10.50)

Z3

Yo(r,72) = Golr o (rs) = — ¢ w0 "7, (10.52)
7T(I0
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We note that, by construction, the individual states in (10.51) as well
as the product state in (10.52) are normalized.

The ground state energy for the system, in this case, is the sum
of the ground state energies of the two hydrogenic atoms (in the
absence of the mutual repulsion) which can be calculated using the
definition of the gamma function

> n ,—az F(TL + 1) n!
/0 dz z = o T ol (10.53)

so that (the wave function 1y (r2) integrates to unity since it is nor-
malized)

/d3r1 Wi (ry <——V17,Z)o(7”1)>

4rh* 73 /d o 2 (1 d 2 d -z
= - — ryrie ° — a
2m ﬂag th r2 drq drl

Arh? 73 / [ 27r  Z? ] _2Zr)
=— dry |— + e

—n

2m ma} ag a?

_ _@ (_ ao ag !>

— + —=x2
mag 2Z+8Z><

_ _2h2Z3 (_a_()) _ h?z? _ 2 m_e4
ma} 4z 2ma? 2hr% )’

[ @i (-2 ze” 2% watr)

Z3 1 2711
= —Ze247r—3 dry r%—e a9

424 2 _27r
= /drl rie %

B 42462 <a0 )2 Z%e? Z%°met

a \27) T

a K2
9 4
=27 <%2 > (10.54)

The expectation values of the second terms will contribute an iden-
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tical amount, leading to the ground state energy

4
. 2 ) me
Ey=2(2°-22°) (—%2)
_ a2 (M _ —97°Ry (10.55)
212 ‘ ‘

Thus, if we take the helium atom and neglect the mutual repul-
sion of the two electrons, the ground state energy follows from (10.55)
to be

Fy = —2(2)’Ry = —8Ry = —108.8 eV, (10.56)

where we are using Z = 2 for helium and Ry = 13.6 eV. However,
the measured value of the ground state energy of helium is —78.6 eV.
(The ground state energy is the same as the binding energy or ion-
ization energy and can be easily measured.) Therefore, comparing
with (10.56), we conclude that the mutual repulsion between the two
electrons contributes a significant part to the ground state energy. To
calculate its effect, we use the variational technique in the following
way. First of all, we would like a trial wave function with no angular
momentum, since the ground state has the maximum binding. Fur-
thermore, physical intuition tells us that even though the nucleus has
a charge of 2e, the electrons probably see a much smaller charge be-
cause part of the nuclear charge would be screened by the electrons.
Thus, we use as a trial wave function

73 _Z( o,
Yolri,r) =~ e ag (11 +72). (10.57)
0

where we let Z be the variational parameter which would determine
the effective charge of the nucleus seen by the electrons. We can cal-
culate the expectation value of the various terms in the Hamiltonian

1 2e2  2e%2 €2
H=-—(vipwv2) 22 _ 22, 10.58
2m ( 1 2) el r9 + ria’ ( )

in this state. We have already calculated, in this state, the expecta-
tion values of the kinetic energy terms as well as the attractive po-
tential energy terms in (10.54) (we have to make appropriate changes
for the coefficients of the attractive potentials.). Therefore, we only
have to evaluate the expectation value of the mutual repulsion term
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in this state.

2
// dngd &) ¢0(T1,T2) ¢ 1/10(T1,T2)

_2Z’r1 1 _2Z’r2
< > / / d3rid3ry e 0 —e a0 | (10.59)
7TCL0 712

To evaluate this, let us, first of all, scale all coordinates as

27
ry - —ry,
ao

27
ro — —7TI9. (1060)
ag

Then, the integral in (10.59) becomes

= < ) / d3r1d3r2 ao) <ﬂ>3€_”i%€_w
ma 27 T12 A

Ze? 1
_ L // d3rid®rg e — e7"2. (10.61)

N 3271'2(10 T12

The integral can be thought of as the interaction energy of the
charge densities p(r1) = e™"* and p(re) = e~ " interacting through
a Coulomb potential. This can be evaluated by calculating the po-
tential due to the first distribution by integrating over d3r; and then
calculating the energy of the second distribution in the field of the
first. The potential due to the first distribution can be calculated in
the following way.

Let us consider a spherical shell of radius r1 and thickness dry.
The total charge contained in this shell is

drrie 1 dry. (10.62)
The potential due to this charge at a point r is given by

4rr?e~"1dry Ti it r<wmr,
) 11 ) (10.63)
drrie” " dry . if 2>

Namely, the potential is a constant within the shell and the charge

behaves as if it were at the origin for points outside the shell. Thus,
the potential due to the complete distribution can be obtained by
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integrating over the contributions due to all possible shells,

" 1 & 1
D(r) :/ drrie " dry ~ +/ drrie " dr, —

1
/ drlr e "M —|-47T/ dririe™"?

:—(T2€T—27’6T—2 +2)

+ 47 (Te_r + e_’")
4: (2—e"(r+2). (10.64)

As a result, the mutual interaction energy, (10.61), becomes

Ze? .
32n%an /d3T2 D(rg)e™ "

Ze? > 4
-z 471/ radry hull (2—e"(rg+2))e "
0

32712a0 2
Z [oe)
= 2—50 i dry [2r9e™" — €722 (15 + 219)]
Ze? 1 1 5Ze¢? 57 4
e P e i (10.65)
2a 4 2 8ag 4 \ 2m2

which represents the expectation value of the repulsive potential in
this state. (Another way to evaluate this integral is to expand % in
terms of Legendre polynomials and use the orthonormality relations
between them.)

Therefore, we can write the expectation value of the total Hamil-
tonian in this state to be (Note that we are evaluating the expectation
value of the helium Hamiltonian in (10.48) (or (10.58)) without the
factor of Z in the attractive potential terms which is the reason for
the form of the second term.)

5 me?
_ 2 _ e S
(Hy =2 <Z 47 + 3 Z) TR (10.66)

The minimum of this function occurs for

5 ) 27
27 — 4 + g = 0, or, Zmin =2 - E = 1_6 (1067)
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The ground state energy for this value of the variational parameter
turns out to be

5\ me?

H)win = 2Znin | Zuin — 4+ 5 ) o35

() ( - 8> 2h2
4

me
= —27Z%, oz

27\ 2
-—2(5) ™
~ —775 eV. (10.68)

This serves as an upper bound on the ground state energy of helium
and we see that this is quite close to the observed value for the ground
state energy. Furthermore, we see that the electrons screen the charge
of the nucleus so that the effective charge seen by each of the electrons
is >~ 1.7e.

10.5 Selected problems

1. A hydrogen atom is placed in a uniform electric field of strength
£ along the z-direction. Choose as a trial wave function

1
Yoz, y,2) = <i3> i (1+ az)e_;_O, (10.69)
may
where r is the radial coordinate and ag, the Bohr radius. Cal-
culate the bound on the ground state energy using this wave
function. Can you justify the choice of this wave function? (Ne-
glect higher powers than £2. Note that this is the second order
Stark effect in Hydrogen.)

2. A particle of mass m moves in a one dimensional potential of
the form

0 for0 <z <a,

oo everywhere else. (10.70)

V(z) = {

Inside the well, it is subjected to another potential of the form
A(x — §) where A is a constant. What is the change in the
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ground state energy of the particle due to this additional po-
tential? (Keep terms only up to A%, Can you guess the trial
wave function from the previous problem?)

3. Calculate the variational bound on the ground state energy of
the Hydrogen atom using the trial wave function

Ya(r) z{ (1=5) r=o (10.71)

0 r> .

How is apiy related to the Bohr radius?
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CHAPTER 11

WKB approximation

In the following lectures, we will study another very powerful approx-
imation method, known as the WKB approximation, that is used in
studying quantum mechanical systems subjected to complicated po-
tentials.

11.1 WKB method

WKB approximation is a very powerful method for obtaining approx-
imate solutions to differential equations where the highest derivative
term is multiplied by a small parameter. The method was known
to Green and Liouville in the early nineteenth century (1837). It
was rediscovered in the context of quantum mechanics by Wentzel,
Kramers, Brillouin and Jeffreys (1926). Hence the name WKB(J).

The method gives an approximate solution of the Schrodinger
equation, no matter how complicated the potential is. It is mostly
used in the study of one dimensional systems. However, in higher
dimensions, if there is rotational symmetry, then, the method can be
applied to the radial equation as well. The idea behind the method
is very simple. Consider the Schrédinger equation in one dimension
(note that & is a small parameter that multiplies the second derivative
term)

2 2
(2 )

 2m da?

d2
d—;f+2h—?(E—V)¢:0. (11.1)

or,

Let us assume that £ > V and define

2m p?

k2:—(E—V);ﬁ

2 (11.2)
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If the potential V is a constant, then, clearly the solutions of equation
(11.1),

d2
d—;f + k%) =0, (11.3)

are given by plane waves,
() = P(0)e=hT = p(0)e=FrT,  p=hk. (11.4)

Thus, the solution, in general, is a superposition of plane waves. We
note that the de Broglie wavelength associated with the motion is

_ 2k
il

A (11.5)

and the phase change of the solution, (11.4), per unit length is a
constant £.

Let us next suppose that the potential, rather than being a
constant, varies slowly. Then, within a region, small compared to the
distance over which the potential varies, one can still think of the
solution as representing plane waves with wavelength

2mh 2mh
M) = p(z) 2m(E — V(m))]% (1L6)

The phase shift per unit length I% is no longer a constant and the
accumulated phase shift between x = 0 and z is given by

< /

/ da’ ZM (11.7)

h
0

Thus, the solution can now be represented by

L
T4 gdx’p(x’)

P(x) = (0) e

:I:% fdx’p(m’)
=¢(xp) e ™0 . (11.8)

All of this is, of course, valid if the wavelength does not change
rapidly. That is, this will be true if the change in the wavelength over
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a cycle is small compared to the wavelength itself, namely,

5\
— 1
| S

dA
dx

A

or, < 1,

dA
— 1. 11.
or, 1z < (11.9)

Thus, intuitively, we expect that if the potential, no matter how
complicated it is in form, changes very slowly, the general solution
will be of the form derived above. Let us now derive things more

rigorously.

We are trying to solve the equation

d27/) p2 2

@ + ﬁ T,Z) = 0, p = 2m(E - V(l‘)) (11.10)
The general solution of this equation would have the form

Y(x) = f(x)ed), (11.11)

where f(x) and g(z) are some functions of x (not necessarily real).
Noting that, we can write

fla) =€, (11.12)

for non-negative f(z), we see that we can always write the solution
of (11.10) in the form

Y(z) = e, (11.13)
where we have identified

6(x) = hlg(e) — il f()), (11.14)

with ¢(x), in general, assumed to be complex.
If we substitute the form of the solution in (11.14) into the
differential equation, (11.10), we have

N 2 v 2 )
((%) +%+%> i) =0,

/N 2 Y/
or, — <£> +%+p—2:0. (11.15)
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It is clear now that, for this to be true, ¢(x) must depend on 7 as
well. Therefore, we expand ¢(z) in powers of & as

¢(x) = do(x) + M1 (x) + Mo () + - . (11.16)

Substituting this back into equation (11.15) and keeping terms only
of order =2 and h™!, we have

o (@) | idy 2009
h? h2 h h

or, g (=06 +p°(2)) + % (64 + 2idhet) = 0. (11.17)

Equating the coefficient of the lowest power of i in (11.17) to
zero, we obtain

=0,

— ¢ +p*x) =0 or ¢o(z)= :l:/d:n' p(x). (11.18)

This is, of course, consistent with our intuitive classical result, since
in the classical limit, & — 0,

lim 0(x) = do(x),

or, ?lil_H)?(l) P(x) = i@ = ¢ £ ] aa'pe ), (11.19)

However, if we do not set & = 0 in the expansion of ¢(x) in
(11.16), but rather keep the next order term, then, this is known as
the WKB approximation (also known as the semi-classical approxi-
mation). Once we have solved for ¢, the next order term, ¢, can be
determined by setting the coefficient of terms of order A1 in (11.17)
equal to zero. Thus,

¢ + 2igpd) =0,
P9 i
2 ¢) 2

Integrating this, we obtain,

or, ¢ = In ¢)’. (11.20)

b = %ln(ﬁé—l—C’: in(p(z)) + C, (11.21)

where we have kept the positive root of (11.18) so that the logarithm
is defined. Therefore, to this order, we have

¢ = ¢o(x) + ho1(z)

_ / dz’ p(a') + ik In(p(z))? + KC, (11.22)
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so that the solution, to this order, becomes

+i [ da'p(a’)~In(p())}

ba)=Ae
:I:% f dz'p(z")
__ 4 e . (11.23)
(p(z))2
The constant A can be determined by noting that
A 1
Y(x0) = ——— or A =1(z0)(p(r0))2, (11.24)
(p(z0))2
and we can write,
L4 fdx’p(z’)
X 2 h
(a) = plag) BEDZ T : (11.25)

(p(x))?

This is the WKB solution of the Schrodinger equation and is
valid only if the potential changes slowly with respect to space. In
fact, the WKB solution would be accurate if the successive terms in
the expansion in

d(x) = go(x) + hpy () + - -

drop off fast. In particular, we should have

h
i) ¢ 1. (11.26)
o
Since |¢g(x)| is a monotonically increasing function of z, unless p(z) =

0, a small ratio \%\ also implies that \hﬁll] is small. This, therefore,
0

suggests that

hey
0

where we have used A\ = 22, This, of course, agrees with our earlier
intuitive result in (11.9).

In our derivation we assumed that E > V(z). However, if
V(x) > E, then, everything goes through in a parallel manner. In
fact, the WKB solution, in this case, can be obtained from (11.25)
simply by letting

dA

_ | dA
dx

= [3,2

1
Cdn

<1, (11.27)

p(x) = +ilp(z)], (11.28)
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so that for, V(x) > E, we have

L2l [l
¥(x) = ¥(x0) % e H : (11.29)

where |p(x)| = 2m(V (z) — E)]%

We should note, from (11.25) and (11.29), that the WKB ap-
proximation breaks down at the classical turning points, i.e., at points
where E = V (z). This can be seen simply from the fact that, at such
points, p(z) = 0 and, as a result, the solution blows up. The physical
reason for this breakdown is obvious. In this limit, the de Broglie
wavelength becomes infinite and our assumption that the potential
changes only slowly over a wavelength is no longer true.

Before, talking about the connection formulae at the turning
points, let us see how the WKB method fits into the path integrals
(which we discuss in chapter 17). From the path integral formulation,
we know that

P(z,t) = /da:’U(a:,t; o (2, 1), (11.30)
where
Uz, t;2,t') = /Da: enSlal, (11.31)

In the classical limit, A — 0 (see chapter 17),
Uz, t;2' ) = AeSlecl

ot
) L[ At Lz (") @ (t"))
= e t/

ot
i fae(T-v)
= Ae ¥

i fdt"(zT—E)
= Ae ¥ : (11.32)
where A is a normalization constant.

Since the energy of the system is constant, the second term
becomes (—E(t —t')). Furthermore, recalling that

2
P dz
T:— = _
9y p mdt’

11.
2m ( 33)
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we obtain,
t 1 t d " T
x
/dt" 2T = E/dt”pm T /dx” D, (11.34)
t t !

so that, we have

>l

s
(oW
Eg\
o

Uz, t; 2, t') = Ae e n B, (11.35)

Substituting this into (11.30), we get

. T
(3

- f dx"p

P(z,t) = A/dx' e (' t) e~ n Bt (11.36)

Noting that ¢(z,t) = w(x)e_%Et, for stationary states, we obtain

.z
+ [da'p
!

() :A/dx’e 2 @)

] T
+ [da"p+ [ da''p
:A/dx/ e 0 (')
oz
1

T
)

i fdw”p i fdw”p
=" A/daz’ e+ ()

% f dz'"p
=e "0 (). (11.37)
This is, of course, the classical limit of the solution in (11.19). To
obtain the terms of the order of % we have to evaluate the transition

amplitude keeping terms next to the leading order.

11.2 Connection formulae

When we have a particle moving in a potential, we can divide the
entire space into various regions depending on the energy of the par-
ticle. For the example of the potential shown in Fig. 11.1, there are
three regions. In regions I and III, V(z) > E and hence we should
have a damped wave function which vanishes at x — +00. The WKB
approximation gives the wave function, in region I, to be (see (11.29))

—1 7 da! [p(a)]
Yi(z) = A e " [ty , for xr < Zq. (11.38)
Ip()]

(SIS
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Figure 11.1: A particle with energy E moving in an arbitrary poten-
tial.

In region II, z, < x < xp, on the other hand, we have from (11.25)

% f dz'p(z’) —% f dz'p(z")
Y (z) = Ble% + Clerw . (11.39)
(p(x))2 (p(x))2

while, in the classically inaccessible region III, we have

D —i] @)
e , T > Tp. (11.40)

xTr) =
(T
Here, A, B,C, D are normalization constants and xz,,x; denote the
classical turning points. From our study of the Schrédinger equation,
we know that the wave function must be continuous across a bound-
ary. This continuity, in addition to giving the physical conservation
of particles, also leads to the quantization of energy levels in the case
of bound states. If we take the WKB wave functions, however, we
see that the wave functions blow up at the classical turning points
or at the boundary. Thus, in the present form, there is no way to
implement the idea of the matching of solutions in different regions.

Of course, the original Schrédinger equation has smooth solu-
tions at these points as can be seen from the following.

2 2

RN AT

dx?2 A2
The coefficients of all the terms in this equation are smooth in the
limit p — 0 and hence the solution has to be smooth also. Therefore,
the pathology that we encounter in the WKB wave function is a
consequence of our approximation scheme. In fact, because

p(x) = 2m(E — V(2))]2,
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we note that whereas the solutions of the Schrodinger equation are
single valued, the WKB solution is multivalued. The difficulty arises
because we are trying to approximate a single valued function by
multivalued functions. In fact, the question of matching now becomes
even more critical because, besides handling the divergence of the
wave function, we also have to make sure that the solutions to be
matched in the two regions correspond to the same branch. The
approach one takes here is to solve the Schrodinger equation exactly
in a small region around the turning point and derive the correct
prescription for matching.

Figure 11.2: An infinitesimal region near the classical turning point
T = Tq.

Let us consider one of the turning points first and study the
Schrodinger equation in the transition region (shaded area) near z =
o shown in Fig. 11.2. In this region, we would like to solve the
equation,

d2
d_xf LR =0, (11.41)

where k = %. Let us now define a new function

v(x) = VE(x)Y(z), (11.42)

so that
T) = ——v,
¥(z) N
dv 1 dk 1 dv
dx ok dx Vk dz
d>p 3 (dk)? 1 d%k 1 dkdv
dx

EET Copid? gideds
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ka1
oks dedr  /k da?

_ L v ldkdv (3 (dk\T L%\
- VE |d2? kdxdr 4k2 \ dz 2k da? '

Thus, the equation satisfied by v is obtained from (11.41)-(11.43) to
be

(11.43)

d2y  1dkdv 3 [dk 2_id2k
2k dx?

¢uv_ardv S — 4k v=0. (11.44
22 kdede T |m2 \ @ + ]” (11.44)

Furthermore, let us change variables to

T

r—y= /dx'k(x'), (11.45)

so that we have

dy

= _k

T~ ko),

dv dy dv  dv

de  dz dy  dy’
@:% %@4_ @ :]{;%@4_]{3@7
dz?  dx \dy dy dy? dy dy dy?
ah _dyak _,
de dzdy ~dy’

A2k dy [ [dk\?  d%k dk\? 5 d%
S L) g (S8 B2 (114
dz?  da ((dy> e <dy> Y (11.46)

In terms of these variables, then, equation (11.44) becomes

d2v |3 /dk\? 1 dk\ 2 d2k
P+ |2 (=) == k(= B + k| v=
a [4 <dy> 2k < (dy> i dy2> i
d2y 1 /dk\?%? 1 d%

So far, everything has been exact. We now make an approxima-
tion. Let us assume that the potential is slowly varying so that, near
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the turning point, it can be approximated by a linear term. That is,
near r = I, let

V(z) = V(zg) — alr —z4)
=F—a(x — x,4), a=-V'(z4) > 0. (11.48)

Furthermore, we can choose z, to be the origin of the coordinate
system so that x measures the distance from the turning point. Thus,
near the turning point x = x,, we can write

1
2

poP_

2m
h

S - V()]

cr? for >0 where E >V,
~ | i (11.49)
clx|zez for x <0 where E<V.

Here, the constant c is equal to
5 1
2
C:{jﬁ}, (11.50)

It is easy to see that, near the turning point, (for both positive
and negative z)

T

2
y = /dx’ k(z') = @k?’, (11.51)
0
so that, we have
dy 2 o
7 _Zk
dk 2
dt 21
o= %ﬁ (11.52)
which leads to
d%k o 1dk 4

ct 1

Putting the relations in (11.52) and (11.53) back into (11.47), we
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obtain, in this approximation,

d2v+_1 A 1 1 t1lv=0
dy? " |4k2akT T 26\ 2 KD vew
d?v [ 5¢
i = i1l =
or, 4 + | T6KS + ]v 0,
d?v [ 5
or, d—yg +1+ W] v =0. (11.54)

This equation is related to the spherical Bessel equation in the
following way. We know that the spherical Bessel functions, jy, satisfy

d?%j, 2 dj e+1)7 .
— + - = 1-— = 0. 11.

If we define uy(y) = yje(y), then it follows from (11.55) that

d?uy (L+1)
— 1-— =0. 11.
42 + |: " :| ug =10 (11.56)

Comparing with (11.44), we see that the equation satisfied by v is
exactly the same as (11.56) with

5
(0+1)+ — =
(C+1) + 55 =0,
1 5
(=—=, -2, 11.
or, & TG (11.57)

Furthermore, recalling that

. T2
Je(y) = <@> Jor1(y), (11.58)
we have, for z > 0 (namely, y real),
1 A
v Loy A
’lzZ)H \/E,U \/Ey]é(y)’
1
= As V0T, (&), (11.59)

where we have used (11.50), (11.51) (as well as £ = —%, —2) and have
defined & =y = % % which is real for > 0. We have absorbed the

factor of /T into the normalization constant and note, from (11.50),
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that k = cx2. The superscripts & correspond to the two independent
solutions of the Bessel equation. Note that asymptotically, as y — oo,

+iy

je(y) — e (11.60)

Similarly, in region I, where y is complex (z < 0), we have

1
Ui = Bim\/g[j:%(éé)a (11.61)

3
where & = |y| = ¥|z|2, & = [22(V(z) — E)]
have used standard relations like

[N

= c|x|% > 0 and we

In(y) = (i) " Jn(iy), (11.62)

absorbing the factors of (i) into the normalization constant. We note
that, for x — 0,

5111210 Jp1(&) — TaAxD

: (
5121230 Ii1(&) — ED) (11.63)

so that, as x — 0,
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—-B_ <§>E <§>_é - (1%). (11.64)

It is clear from (11.64) that ¢;" joins smoothly on to ¥ if A, = —B.
and ¢y joins smoothly to ¢y if A_ = B_. One should note here that
the solutions are well behaved as z — 0 (namely, at the turning
points).

We can now use these relations between the coefficients to derive
information on the asymptotic forms of the solutions. First of all, we
know that

1
1 -2
Jy1(61) Silaree, <§7T§1> cos (51 ¥ % - %) ;
I,1(é) Lalrge ong,) 3 <e§2 + e‘&e—(%i%)”) . (11.65)

Thus, using the relations for the coefficients in (11.64) already deter-
mined, we see from (11.65) that, for large values of the coordinates,

1 B oT
wl—ii — <§7T]€> COS <§1 — E)
— —(271\&])_% (652 + 6_62_%) = zpfr,
L\
_ T
wH — <§7T]€> COS (51 — E)

s

s (2n|w)) "3 (e52 e e % ) = . (11.66)

N

In region I, however, we must have a solution which vanishes as
x — —oo. This tells us that the physical solution is the sum of wfr
and 1; (with an appropriate phase), which contains only the term
e~¢2. This leads to our first connection formula

<%> (Ik])"2e % = (k)2 cos (51 - %) ;
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Let us note that, since

cos (/ da’ k — %) — sin <— /da:’k - %) , (11.68)

we can also write the connection formula, (11.67), as
— [de'k /
<—> (/{)_%e { — (k:)_% sin —/daz'k: - % . (11.69)

Similarly, at the other turning point (see Fig. 11.3), we would have
a connection formula

Figure 11.3: An infinitesimal region near the classical turning point
T = Tp.

1 —fdx’n b
— | (K _%e b — (k -3 CoS do’ k — T . 11.70
4

Notice that the connection formulae are directional. That is, it
is always the solutions in the classically inaccessible regions that are
matched on to the classically accessible regions. This is because we
know the boundary condition on the wave function in the inaccessible
regions — the wave function has to vanish at infinity. The case of the
potential where there are several inaccessible regions has to be done
extremely carefully. Furthermore, if the form of the potential and
the energy of the particle are such that the turning points are not
separated sufficiently, for example, as shown in Fig. 11.4, one has to
be careful because the region of validity of one solution may overlap
with the next.

Furthermore, if one is not interested in the exact form of the
wave function in the transition region, there is a simpler way of de-
riving the connection formulae. The idea is to think of x as a complex
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Figure 11.4: A particle moving with energy E in a potential for which
the classical turning points may not be well separated.

variable and go, in the complex plane, from the inaccessible region to
the accessible region by paths which avoid the turning point. Thus,
for example, let us consider the turning point in Fig. 11.5.

Figure 11.5: The classical turning point at x = x.
For = > z, we expect the solution to be of the form

C —fxdx’n
T,Z)HI(:E):( e b . (11.71)

K)2
For x < x, we expect the solution to be of the form
ifxd:c’k s —ifd:c’k

e +—Fe . (11.72)

P ! (k)

Let us again choose x;, = 0 (to be the origin). Then, in the linear
approximation, in the region x > x

[N

K =CIr2.

(11.73)
As a complex variable, we can parametrize x as

z=pe?  0<6<2m (11.74)
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I/

Figure 11.6: The path in the complex z-plane in going from the
classically inaccessible to the classically accessible region.

If we follow the path shown in Fig. 11.6 to go from region III to
region II, then, in the beginning of the semicircle, 8 = 0 and hence &
is real. But at the end of the semicircle (§ = 7), k has become purely
imaginary. In fact, in crossing the turning point, k — ik, so that

—fxdx’n —ifxdx’k
e " —e " , (11.75)
so that
C —fxd:c’n C —ifdx’k
e ™ — e b
()} (k)

it i [da'k
_Cerd T (11.76)
(k)

Comparing with the form of the solution in region II, (11.72), we see
that this determines

=

(s

Cy=Ce 7. (11.77)

Similarly, if we had come from region III along a semicircle in the
lower half plane, we would have obtained

Ci=Cex. (11.78)

Taking the mean of the two ways of coming (namely, (11.77) and
(11.78)), we would have derived the connection formula

1 —fdm’ﬁ

- e b — 11005 /da:'k:+z
2(k)2 (k)2 4
b
1 T’
= — cos /dx'k‘— T , (11.79)
(k)2 4
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which can be compared with (11.70). Similarly, the connection for-
mula at the other turning point, x,, can also be derived in a similar
manner.

11.3 Bohr-Sommerfeld quantization condition

In solutions of the Schrodinger equation, in the case of simple poten-
tials, we have observed that the boundary conditions lead to quan-
tized energy levels for bound states. Since we now have the connection
formulae for the WKB solutions, we expect to get quantized energy
levels for bound states here also. Let us look at a particle in a general
potential well as shown in Fig. 11.7. There are two classical turning
points at z, and x.

Figure 11.7: A particle with energy F moving in a general potential
well.

We know that, in region I, the solution must be of the form

e =@ ) T < Zq, (11.80)

1
where k = [%'Z(V(:E) — E)]2. Furthermore, through the connection
formula, (11.67), this leads to a wave function in region II of the form

1
i ~ — cos /d:U'k‘ -z 1o < <y, (11.81)

K 4]
1
where k = [%—Z@(E — V(z))]*>. On the other hand, we also know that
the wave function in region III is of the form

1 — fdx’n
e , T > Tp. (11.82)

Y (x) ~

D=

2K
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Through the connection formula, (11.70), this leads to a wave func-
tion in region II of the form (z, <z < )

Ty
1
r(x) o~ /<;_ cos /d:z:/k‘—% ,

[NIES

xr
1
= — Cos /d:lt'k‘ +2. (11.83)
k= 4

b

If both the wave functions in (11.81) and (11.83) are to describe the
same particle, then, we expect, at most, their phases to differ by
multiples of 7 (remember that the probability density has to be the
same)

X xr
/d$'k—%:/dx/k+%+mr,
Tq Ty
Tp

1
or, /dxk:<n+§>ﬂ,

Za
1
or, %d;ﬂp:<n+§> h, n=0,1,2,---, (11.84)

Ty

where the non-negative nature of n arises because | dz k represents
Ta

the phase between z, and x; and cannot be negative. Furthermore,

we have used the fact that

k= %, h = 2nh, (11.85)
and § = area inside the trajectory of the particle in the phase space.
That is, in the phase space of the particle, this is the area enclosed
by the particle starting at x, going to x; and then coming back to z,
as shown in Fig. 11.8.

The condition, (11.84), is known as the Bohr-Sommerfeld quan-
tization condition with half integer values. It is clear that the wave
function vanishes n times inside the potential well, since the total
change of phase is (n + %) 7. This is in agreement with the true wave
function of the system. However, the WKB method seems to indicate
that there will be (%n + i) wavelengths inside the well. This does
not exactly fit with our solution of the infinite square well, where we
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Figure 11.8: Area enclosed by the classical trajectory in phase space
in going from one turning point to another and coming back.

have seen that there are (%n + %) wavelengths inside the well. The
discrepancy arises, for an infinite potential well, because the linear
approximation, near the classical turning points, breaks down. We
will discuss this case separately.

11.4 Applications of the quantization condition

In what follows, we will discuss several applications of the Bohr-
Sommerfeld quantization condition.

1. Let us consider first, a particle moving in an one dimensional

potential of the form
V(z) =Blz|,  B>0. (11.86)

The potential, in this case, has the form shown in Fig. 11.9.

Thus, we see that the classical turning points are at

E=V(z)=plz], or xz= :l:%. (11.87)

In this case, the quantization condition, (11.84), gives
Tp
1
dek=|n+=)m,
2
Ta
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Figure 11.9: Graphical representation of a particle moving in the

potential (11.86) with energy E.

B
5
b / 2
_E
5
B
B 9 %
or, / dz [h—?(E — Blw\)] = <n+ 5) T,

48:40.
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r E% = % h—2 : n+ L s
b B E T\ om 7)™
38 [ 22 N1

2. As a second example, let us consider the one dimensional har-
monic oscillator, for which the potential is given by

or, F,=

V(z) = 1mw2$2. (11.91)

1
E=_—mwz? or z=4/— (11.92)

Thus, we have, from (11.84),

Tp
/d:n k= <n + %) . (11.93)

Let us evaluate the left hand side of (11.93).

If we now make a change of variable,

mw? mw?
_ ./ ooy = ) 11.
Y oE dy g 4 (11.95)
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the left hand side of (11.93) in (11.94) becomes

1 1
2mE\? ( 2F
s - (2 (22)

|
o —__
o,
<
—
—_
|
<
o
SN—
I

_(2mE\%(2E\ix
N h? mw? ) 4
4F
= ——. 11.96
ol (11.96)
Therefore, from (11.93), we obtain,
A8y T_ n+ 1 7T
how 4 2) "
1
or, E,= <n + 5) hw. (11.97)

In this case, we see that the Bohr-Sommerfeld quantization, fol-
lowing from the WKB approximation, leads to the exact energy
eigenvalues.

. Let us consider next a particle moving in an one dimensional
quartic potential, for which

V(z) =Mz,  A>0. (11.98)

The classical turning points, in this case, are determined to be

1
1
or, v== <X> : (11.99)

/ dz k = <n + %) . (11.100)
%)
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We can evaluate the left hand side of (11.100) as

1 1
o[ 2mE\?2 A a4\?2
0

Let us define

1 1
A2 A2
Y= <E> r, =dy= <E> dx. (11.102)

With this, equation (11.101) becomes

1 11
L (2mE\? (E\i .
0

4m? i
w2 ()

where we have used

NI

oY

9
— 11.1
= (11.108)

Therefore, in this case, the quantization condition, (11.100),
gives

1
4m2\1 3 1
%(é%) Eé:<n+§>m (11.104)

which determines the energy eigenvalues. Calculating for n = 0,
we obtain from (11.104)

5Y35 (HIANT (i
: P
Fo = <§> <4m2> (5)
5r\5 / 1\3 [6hIN)3
_(5m\E (L (6hTA 11.1
(%) @) (7). (1109
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which can be compared with the value obtained from the vari-
ational method in (10.47),
3 <6h4>\

8

1

5 > ’ > Ey > 0.

m

4. As a final application of the quantization condition, let us con-
sider a particle moving in an infinite square well in one dimen-
sion (or particle in a box). In this case, the potential has the
form shown in Fig. 11.10.

Lq Ty x

Figure 11.10: A particle with energy £ moving in a one dimensional
infinite square well potential.

V(z) =0, 2o < 1 < 1y,

(11.106)
= o0, r <z, and x > xp.

Contrary to our general analysis, here we cannot, of course, ap-
proximate the potential by a linear term in x at the boundaries.
Hence the connection formulae breakdown for this case.

However, in this case, we know that, at the boundaries as well
as outside the well, the wave function has to vanish identically.
This, therefore, suggests the form of the WKB solution, inside
the well, to be

1 x
¢(3§') = k_l sin /dﬂj/k,’ ) ZTq <X < Xy,
2
1 . i ,
P(z) = PR sin dz'k |, g < x < T (11.107)
3
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Once again, we note that if they are to describe the same parti-
cle, the phase can change by (n+1)7 (This is because the phase
change should, at least, be 7 since z,, xp are distinct points.).
Thus, we obtain

/dx'k:/dx/k—i-(n—kl)ﬂ,
Ta 2
Tp
or, /dxk:(n—kl)m n=0,1,2,3---. (11.108)

This, of course, predicts that there are n nodes and (%n + %)
wavelengths inside the well, as we know from the exact solution.
Furthermore, from the definition,

omE
k= % 2y <z < TP, (11.109)
we determine
2mE
Tn (xp — 24) = (n+ 1),
2h2 1 2
or, =T+ (11.110)

2ma?

This is, of course, the exact answer that we have determined
earlier in (4.23).

As we discussed in the beginning, WKB is a semi-classical ap-
proximation. We know that systems tend more towards the
classical behavior as the quantum numbers take larger values.
Thus, WKB is an extremely good approximation for calculating
the behavior of excited states. One should contrast this with
the variational method which is extremely good for ground state
energy eigenvalues. Thus, the two methods complement each
other. (We should, of course, remember that, for certain po-
tentials like the oscillator and the infinite square well, WKB
method gives the exact answer.)

11.5 Penetration of a barrier

In (11.67) and (11.70), we derived a set of connection formulae be-
tween the classically inaccessible and accessible regions by studying

48:40.



11.5 PENETRATION OF A BARRIER 307

the exact solution of the Schrodinger equation in the transition re-
gion with a linear approximation for the potential. There were two
independent solutions ~ .J 1 and ~ I, 1 The formulae we derived
corresponded to a particular combination of these solutions. How-
ever, one can choose a different combination and derive a second
connection formula also. Thus, for the turning point, z, (see Fig.
11.11), we have

Za xr
1~ fars) 1
e @ < — cos /d:n'k‘—z ,
2|k|2 k2 4
1 [axin 1 i
T |K
—en 5 —sin /dx'k— 1. (11.111)
nf? T 1

a

Figure 11.11: The classical turning point x = z,.

Similarly, at the other turning point shown in Fig. 11.12, we
have

Ty

A

1
e b +— — cos /da:’k:—z ,
2|k|2 k2 4
x
T xp
1 Jda|sl 1
— e e —sin| [d/k-Z]. (11.112)
1 kl 4
|K|2 2 /

Even though the connection formulae work both ways, one has
to exercise a certain amount of caution in applying them. That is,
one should always start with the region of space where the boundary
condition on the wave function can be imposed and, then, match
it onto the next region through the connection formula. Thus, for
example, in the case of the motion of a particle inside a well, we
always match the solution in the classically inaccessible region to
that in the classically accessible region.
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Figure 11.12: The classical turning point at x = xy.

Let us now study the question of penetration of a barrier using
these ideas. Classically, of course, if a particle has energy less than
the height of the potential barrier, then, it would be completely re-
flected. On the other hand, if its energy is greater than the potential
barrier, then the barrier would behave as if it were completely trans-
parent. Quantum mechanically, however, we know that even when
FE < Vhax, in addition to the particle being reflected, there will be
certain amount of transmission. Similarly, if £ > Viyax, in addition
to the particle being transmitted, there will be certain amount of
reflection. We shall study the simpler case when E < Vij.x. It is
worth noting here that the exact solution to this barrier penetration
problem exists only for square well potentials. However, since not
all potentials in nature are so ideal, WKB approximation comes in
handy.

Let us again consider a general potential which is slowly varying
shown in Fig. 11.13. A particle with energy F is incident from the
left. Part of it is reflected and a part is transmitted so that to the
right of the barrier there is only a transmitted wave.

Figure 11.13: A particle with energy E incident from the left on a
general potential.

The entire space can be divided into three regions. Region I is

to the left of the potential barrier for z < z, and Region III is to
the right of the barrier for x > x3. x, and x; are the classical turn-
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ing points and, therefore, regions I and III are classically accessible
regions. The classically inaccessible region is region II for z, < x <

xp. Furthermore, WKB method is valid if f dz [EQ (V(x) — E)]% is

large. Thus, we are considering the case Where the height and the
width of the potential are sufficiently large. WKB approximation
leads to the wave functions in regions I and III to be of the forms

Ay i(j‘adx'k—g) Ay —i(?adm’k—g)
— e \z —+ e T

Yr(x) = 7 —= , T < g,
(11.113)
with
k(z) = [ifz(zz V( ))}E , (11.114)

and we have included, for later convenience, the phase factors of 7
manifestly, which otherwise can always be absorbed into the constants
Aq and As. Similarly, we can write

x
Jdz' k-5

() = %GZ(’”’ >, x>

_A3 ’ , T o ’ , 7
_ﬁ cos /dxkz—z + 4 sin /d:z:k‘—z
b b
(11.115)

We can now determine the form of the wave function in region
IT through the connection formulae, (11.111) and (11.112). Thus,
starting with region III, we obtain

Ty Ty
Ay |1 —[dal |l [da!|s|
Pr(x) = —|-e @ —jex
EENE:
A |1 I da’ |s] — [ da’ |l
=22 |2 e —ieVe “a : (11.116)
EERE

where we have defined

Tp
= /dx ||, (11.117)
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which is assumed to be large. Thus, the first term is small compared
to the second term and we have

Ay, ] e’
Y(x) ~ — ! |? ele @wa , g < < Ty (11.118)
K|2

The connection formula between regions II and I (see (11.111)
and (11.112)), namely,

x Ta
1 — [ da’ |x| 1
- e 2a — — cos /d:v'k;—z )
2|k|2 k3 4
x
now gives
Aser [
9;
Yr(x) = — zk?e cos /dx'k - % , T < Zg. (11.119)
2

xT

Comparing this with (11.113), we determine
A1 == —Z'Ageﬁ{ == Ag. (11120)

Thus, we have

1Ase” i(f dx’k—g) iAze” —i(f dx'k—g)
Yr(x) = — e\ - e \w , T < Zg,

k2 k2
A z(fdx’k—”)
Ym(x) = e \ . x> (11.121)

2

Recalling the definition of the transmission coefficient, we obtain

UTRWTR‘2 _ kTRWTR‘2

T — -
UINC‘wINCP kINC‘wINCP
zp,
|A3|2 L —2xf dz |k
~ W = e T = e a . (11122)

If we calculate the coefficient of reflection, then it is clear that it
seems like unity. This is because we approximated the wave function
in region II by the second term only. If we had kept both the terms,
then, we can show that the reflection coefficient is given by

—23}bdx\n|
R=1-T=1-¢ % (11.123)
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as it should be to conserve probability. We should note here that, for a
square well potential with height and width Vj and a respectively, this
is the form of the transmission coefficient except for certain numerical
factor. The discrepancy arises because the square well barrier has
discontinuities where WKB approximation breaks down. Also note
that as the mass of the particle increases, the transmission coefficient
in (11.122) decreases. Thus it is difficult for a heavier particle to
tunnel through a barrier.

11.6 Applications of tunneling

Let us study next a few applications of tunneling.

1. Cold emission of electrons from a metal:

The electrons inside a metal move freely in a constant poten-
tial. When they reach the surface or the edge of the metal,
they are reflected back because of a repulsive potential. This
is a very short distance phenomenon (atomic length ~ 1078
cm). By applying an external electric field, the electrons can
be given enough energy to overcome this repulsion. The energy
W necessary to release an electron from a metal is known as its
work function. (Let us note here that if the electron picks up
enough energy from thermal motions so that it can go over the
potential barrier, then, the process is called thermal emission.)

Figure 11.14: The potential in which an electron with energy F moves
inside a metal with W denoting the work function.

The potential in which the electrons move has the shape as
shown in Fig. 11.14. Suppose, we now apply a constant electric

48:40.



312 11 WKB APPROXIMATION

field £ in a direction (say, x) so as to pull out the electrons.
Then, the effective potential seen by the electrons becomes

Ve = V(z) — €€z, (11.124)

and has the form as shown in Fig. 11.15. Because of this
applied electric field, the potential curves down for > 0 and
an electron with energy E > 0 has now a nonzero probability
for coming out of the metal.

Figure 11.15: Effective potential which the electron sees with an ap-
plied electric field.

To calculate this probability we would, of course, need the exact
shape of the potential in which the electron moves. However,
since the potential changes shape only within an atomic dis-
tance and since the length x, that the electron has to travel to
come out is much much larger, we can approximate the poten-
tial by the graph shown in Fig. 11.16.

The turning point xz, is determined by (Just to give a few more
details, let Vinax = Vo = E + W. Furthermore, we know that
Veg = Vo —efx = E+ W — ef£x. Therefore, the turning points
are at £ = Vog = E + W — efx, which determines the only
non-trivial turning point to be as given below.)

W = efx,,

w

== (11.125)

or, g
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2 F 1 T T L
15 | w —
1f E -1
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Figure 11.16: Idealized effective potential in which the electron
moves.

It follows now that

Ta _ 1
2m 2
9 L
Ta _2 %
m
= /dw ™l (W — eé’w)]

2

3 he&’
Thus, the transmission coefficient, (11.122), which is the prob-
ability for transmission, becomes

(11.126)

W7

T=e2=¢ o = em3V2miE (11.127)

From this, one can calculate the current by multiplying this
with the number of electrons hitting the metal edge per second.

We note that the current is larger for a larger applied electric
field. It is also large for metals with a lower work function. This
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behavior agrees extremely well with experiments. However, the
currents observed are numerically larger than predicted by our
WKB analysis. This is explained by the fact that there are
strong irregularities at the metal surfaces. As a result, the
electric field becomes effectively stronger closer to the metal
surface than farther away. Since the current is sensitive to the
electric field strength, this leads to a larger current.

. « decay:

In heavier nuclei a-particles (namely, the nucleus of the helium
atom consisting of two protons and two neutrons) are bound
by very strong nuclear forces. If the nucleus has a charge Ze,
then outside the nucleus, there is a repulsive Coulomb potential
of the type % The strong force which holds the a-particles
inside the nucleus is extremely short ranged. Hence, inside the
nucleus, the a-particle can be thought of as free. The potential,

therefore, has the shape shown in Fig. 11.17.

1F T IRT T T3 1F T 7 T T 173
0.5 ¢ 0.5 é
0 0

-0.5 J B -05 | B
-1 LT -1 el | 4

1 1 2 1 - T
0051152253 0051152253
X X

Figure 11.17: The potential in which the alpha particle moves where
the potential on the right is a simplified form of the actual potential
on the left.

The a-particle will experience a repulsive force outside the nu-
cleus and would have a (Coulomb) potential energy w
Since the potential is invariant under rotations, the angular
part of the solution can be trivially separated and the prob-
lem reduces to an one dimensional problem. Therefore, we can
apply the WKB method. To calculate the transmission coeffi-
cient, or the tunneling probability, in this case, we again have
to know the shape of the potential near 71 (to determine the
turning point). But remembering that the nuclear force is very
short ranged and that the distance ro — 1 is much larger than
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nuclear distances we can set

rp~2x 1071343 cm. (11.128)

This is the nuclear radius of the system. Furthermore, we can
also approximate the strong force by a square well and the turn-
ing point 79 is determined from the fact that (we are assuming
that £ =0)

2(Z — 2)e? 2(Z — 2)e?

E=V=——"— or nr

= 11.129
9 E ( )

Thus, we have

7 T T2m (207 - 2)e 2
= /dr\n[ = /dr [ﬁ <7r —E>}
r1 r1

_ <27;;_2E>% /dr [(7;—2 - 1)}%. (11.130)

Let us define

r 1
y:|:_2_1:|27
T
)
Or? 1+y27
2royd
or, dr=——12 (11.131)
(149
so that (11.130) becomes
omE 0
m
= — -2 d
! <h2> r2) / I (ERE 1+y
i
_2_
= 2ry d
( ) / e 1+y
0
omE\ 2 [1 1 Bl
m Y 1
=2 t - . (11132
() ), o
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=

Let us parameterize % = cos? ¢, <;—f - ) = tan ¢, so that
we have,

5 2mE 2 1 p tan ¢

= 4T — I —

U 2\ 2 2 sec2 ¢

1
2mE\ 2 1

:r2< 7;; > 5 [26 — sin2g]. (11.133)
Substituting, ro = 2(252)62,?1 = %, we have, for the trans-

mission coefficient,

T = o2 — o~ 2525 [26-sin24], (11.134)

Every time the a-particle collides against the outer wall, this
is the probability of escape. Since the a-particle is in a well of
depth —Vj, its total kinetic energy is

KE. = E+V,

1
/ 2
Vinside = 2K.B. — |:2(E + ‘/0):| . (11135)
m m

The frequency with which it collides against the outer wall is
then determined to be

Vinside
= nde 11.136
f 27‘1 ( )

Thus, the probability of escape per second is

D=fT=fe™ = —U;l;id‘)e‘%[%‘m?@, (11.137)
1

and the mean life of the nucleus is obtained to be

_ 211 AP Ginog) (11.138)

1
T==
r Vinside

Let us next consider a specific example to get a feeling for some
numbers, namely, let us choose Uranium for which we have,

Z=92, r~10""2cm, FE=42MeV. (11.139)
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Let us choose, for simplicity, V{y = 0. Then, for this nucleus, we

have
2(Z —2)e? 2x90 e?
ro = = —— nc
E 4.2 MeV hc
2x90 1 11
=————x2x10 MeV-
12 Mev 137 erem
~7x 107" cm.
It follows, then, that
T1 1
— ==~ 14
T2 7 ’
1
-1 1 2 -1 Vs
¢ = cos (7‘2) cos™ " (.4) 5 ,

sin2¢ = sin(7m — .8) ~ .8.
Thus, we have

2¢ —sin2¢p =7 — .8 — .8 ~ 1.5,

2FE 2k
U = Vinside = m =c 2

2 % 4.2 MoV i
—e |22V g5 x 102
CA\ Tx 108 Moy © O X107

It follows, therefore, that
4(Z — 2)e?
vh
4 %90 ¢
2 he
— ﬂ X i X 15
4.5 x 1072~ 137
UAxT
3

Thus, we determine the life time to be,

[2¢ — sin 2]

x 1.5

% 10% ~ 90.

27’1
r="=¢%
v
2 x 10712 cm 9%
e

T 45x 1072 x 3 x 1010 cm/sec
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~ 1.5 x 10721 % sec
~ 1.5 x 1072 x 10% sec ~ 1.5 x 10'® sec

~ 10" yrs. (11.144)

11.7 Energy splitting due to tunneling

Let us consider a double well potential in one dimension. Consider it
to be symmetric in z. Such potentials are frequently used in various
branches of physics. A common example is given by

V(z) o (a2 = 1%)°, (11.145)

which is shown in Fig. 11.18.

E

|
a b T

Figure 11.18: A particle with energy F moving in a double well po-
tential in one dimension.

If there is no tunneling between the two wells, then one can solve for
the Schrodinger equation in each of the wells separately and would
have definite energy eigenvalues. Since the Hamiltonian is parity
invariant, we can assume that both 1y (z) and 1y(—2z) belong to the
same energy value Fy. Furthermore, the definite parity combinations

() = % (Wo() + Yo(—2))

1
V2
would also belong to the same eigenvalue Fy. Thus, we see that there

is a two fold degeneracy in the problem, in the absence of tunneling.
In the presence of tunneling, however, the energy levels split and let

() (to(z) = Po(—x)), (11.146)
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us calculate the energy splitting in the WKB approximation. We
note that at x = 0, 91 = v/2 10(0) and 7 (0) = 0 and that similar
relations hold for 1)s.

The Schrodinger equations satisfied by ¢ and 1 are

d?y 2m

d:c20 + oy (Bo = V(@) =0,

d?y 2m

dxal + oy (B1= V(@)1 =0, (11.147)

where we are assuming that, because of tunneling, the energy of the
state ¥ changes to Fj.

Let us multiply the first equation in (11.147) by %; and the
second by g and integrate from 0 to co. Subtracting the two, we
have

oo

2
2 (B~ Bo) [ o doin = 61 0000(0) — 61 (0)4(0)
0
— —n (0)(0). (11.148)
But, we know that
[ e s = [ aw oz — L
O/dx ¢01/11 ~ \/Eo/dx ¢0 = \/5, (11.149)
and we can use the WKB wave function,
w4 [ aslyl
to(0) = 27 c ’
(0) = 22 4y (0), (11.150)

h

1
so that vg = [% (Vo — Eo)] 2 w= 2% with T representing the classical

period for bound motion. (The extra factors are due to normaliza-
tion.) Using these, we obtain from (11.148)

2m 1 mvy w —%fdw\p\
S (B - Ey)—= ~ —2—2 0
h? (B 0)\/5 h 27wy ¢ ’
o 2] dxll
or, (By—FEy)=——¢e¢ "0 . (11.151)

2T
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Similarly, we can show

hw —2[delp
@—%:%e% , (11.152)

so that the splitting between the two levels due to tunneling is ob-
tained to be

(11.153)

11.8 Selected problems

1. Consider the WKB solution for a particle bound in a poten-
tial well and look at wave functions for large quantum numbers
for which the approximation is valid. Assuming that the wave
functions are vanishingly small outside the well, derive the nor-
malization constants for the wave functions. Calculate also,

Th

Ty = /da;w;(x)aﬂ/}m(x), (11.154)

Za
where x,, xp are the classical turning points.

2. What is the WKB (Bohr-Sommerfeld) quantization rule for a
particle moving in a potential given by

oo, for x <0,
Vix) = ) . (11.155)
continuous and positive, x > 0.

3. Using WKB method, derive the quantization conditions for the
energy levels of a particle moving in

i) the linear potential V(x) = S|z|, where the real constant
5> 0.

ii) the oscillator potential V(z) = imw?a?.

4. Use WKB approximation to show that a spherically symmetric
attractive potential, in three dimensions, that falls off like »—"
for large r, has an infinite number of bound states if n < 2.
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5. In 1974 two new particles called 1 and 1)’ were discovered with
rest energies 3.1 GeV and 3.7 GeV respectively (1 GeV = 10°
eV). These are believed to be bound states of a charmed quark
of mass 1.5 GeV/c? and an anti-quark of the same mass in a
linear potential, V(r) = Vp + kr where Vp, k are constants. By
assuming that these are the n = 0 and n = 1 bound states of
zero angular momentum, calculate V using the WKB approx-
imation. What would you predict for the rest mass of ¢”, the
n = 2 state? (The experimental value is ~ 4.2 GeV/c?.)

6. For a hydrogen atom, in a constant electric field (H; = —e€z),
find « and 3 such that

1

) = (%)5 (1—|—O£Z—|—527")6_%, (11156)
Ta,

0

is the ground state wave function correct to first order in £.
Use it to calculate the exact polarizability of the ground state
of hydrogen.
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CHAPTER 12

Stationary perturbation theory

Perturbation characterizes a series of iterative methods by which one
obtains an approximate solution to a difficult problem. The idea. is to
introduce a small parameter € into the problem and obtain a solution
as a series in powers of €. This method is very powerful and is used
in all branches of physics.

As an example of perturbation, let us consider the solution of
the algebraic equation

2% — 4.001z + 0.002 = 0. (12.1)

The roots of this equation are extremely difficult to obtain exactly.
However, we can resort to perturbation theory to find an approximate
solution quite easily. First of all, let us introduce a small parameter

e = .001. (12.2)
Then, equation (12.1) can be rewritten as
23 — (44 €)x +2¢ = 0. (12.3)

Thinking of € as an arbitrary small parameter, we note that the
solution of (12.3) would be a function of this parameter. Therefore,
we expand the variable x in powers of €, namely,

o0
T =20+ €x] + Exg+ o= Z €z, (12.4)
n=0

Putting this back into (12.3) and keeping only terms of order €, we
have

T — 49 =0, or zo=0,+2. (12.5)

Thus, to the leading order (in powers of €), the roots of the equation
are 0 and +2.
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If we choose the root zp = 0, then the expansion in (12.4) be-
comes

20 = €$§0) + e2x§0) +--- (12.6)
Substituting this into (12.3) and keeping terms up to order ¢, we have
1
—4ez\” +2¢=0, or 20 = 5 =05, (12.7)
so that, to this order, this root is
x(

0 = 20 1 el = %e — .0005. (12.8)

If we choose to work with the root x¢g = 2, then, the expansion
in (12.4) becomes

2? = x(()2) + ex§2) =2+ eazg). (12.9)
Putting this into (12.3) and keeping terms up to order € we have
(84 12e0() —4 (24 eal?) — e(2) + 2 = 0,
or, € (12x§2) — 43;52)) =0,
or, =0, (12.10)

so that, to this order, we have

2@ =2 4P =240xe=2 (12.11)
Similarly, for xg = —2, the expansion in (12.4) takes the form
2D =l p el 4 = 2@l (12.12)

and, to order €, equation (12.3) gives
(-8+12eaf™) — 4 (-2 + al™) — e(-2) +2e =0,
or, € [12x§_2) — 43:&_2) + 4] =0,

or, o =_1 (12.13)
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Thus, to this order, this root is given by

22 = (72 + ezl

= —2—.0005 = —2.0005. (12.14)

In fact, we can determine, in a similar manner, that, to the next
order, the roots have the forms

1 1
2© =0+ 5€ gez +0(e%),

2 =240xe+0xe+0(e),

1 1
27 = 2 3¢ + gez + 0(e), (12.15)
where € = 0.001. This gives a solution which is accurate up to one
part in 10° (z = 2 is an exact root.) and shows the power of pertur-
bation theory.

12.1 Non-degenerate perturbation

We now discuss a perturbation approach for physical systems whose
Hamiltonians are independent of time. This is why it is also known
as stationary perturbation theory. This method is applicable when
the complete Hamiltonian is independent of time and can be written
as a sum of two parts

H = Hy+ H,, (12.16)

where Hg is the Hamiltonian which we are able to diagonalize. In
other words, we can determine the eigenstates and the eigenvalues of
Hy. The second term in the Hamiltonian, H1, is an additional Hamil-
tonian which is assumed to be small. We would see what smallness
means later — for the present, we simply note that the matrix elements
of Hy should be smaller than the differences in the energy levels of
the Hamiltonian Hy.

Let |ng) denote the eigenstates of Hy with the eigenvalues ET(LO).
Thus,

Holno) = EY|no). (12.17)

Furthermore, we assume that all the states are discrete and non-
degenerate. The degenerate case has to be discussed separately. Be-
cause of the perturbing Hamiltonian H;, the total Hamiltonian H
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would now have a new set of eigenstates |n) with eigenvalues E,,.
If the perturbing Hamiltonian is small, then these eigenstates and
eigenvalues would be very close to the unperturbed states and eigen-
values. Thus, we can expand these quantities in powers of the effect
of the perturbing Hamiltonian. However, since the Hamiltonian is an
operator we cannot use it as an expansion parameter and, for book
keeping purposes, we introduce a parameter A to write

H = Hy+ \H;. (12.18)

We can now expand various quantities in powers of A (which
measures the power of change due to the perturbing Hamiltonian)
and, at the end of our calculations, we can set the constant A\ = 1 to
recover the original system. Thus, let

E,=EQ + AED + XED ... =Y AmEM,
m=0

n) = Ino) + Alna) + Xng) + - =Y A" np). (12.19)
m=0

We are, of course, assuming that such a series expansion converges
which, in turn, imposes the condition that each successive term in
the expansion must fall off rapidly.

We are now trying to solve the eigenvalue equation

H|n) = E,|n), (12.20)
perturbatively. Putting in the expansion (12.19) into (12.20), we have
(Ho + \H,) i A ) = (i AWEW) (i /\m/|nm/>> .
m=0 m=0 m'=0
(12.21)
Expanding (12.21) to order A%, we have
Ho|no) + AH1|no) + AHo|n1) + N2 Ho|ne) + A2 Hi|n1) + O(N?)
= EVno) + AEL |n1) + AE [no) + N2 E o)
+ X E@|ng) + X2 EWM|ng) + 0(\3). (12.22)
The order A terms in (12.22) give rise to the relation

Holno) = EY|no), (12.23)
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which is the eigenvalue equation for the Hamiltonian Hy in (12.17)
and is automatically satisfied. Terms of order A give rise to the rela-
tion

Hi|no) + Holna) = E{ [n1) + E{V[no), (12.24)
or, (no|Hilno) + (no|Holn1) = E (noln1) + E (no|n),
or, EW = (ng|Hi|ng). (12.25)

This determines the first order change in the energy eigenvalue
and, to this order, we have

E, = E© + X(no|Hy|no). (12.26)

Furthermore, taking the inner product of (12.24) with (mg| where
m # n, we obtain

(mo|Hi|no) + (mo| Holn1) = B (mg|n1) + B (mo|no). (12.27)

But, since m # n, the orthonormality relation of the energy basis
leads to (mg|ng) = 0. Therefore, equation (12.27) determines

(mo|H1|no) + EX) (mo|n1) = EL) (mo|n1),

(mo|Hi|no)
or, (molny) = 0E1LIN0) (12.28)
EY - B

Namely, (12.28) determines all the coefficients of expansion of |n1) in
the basis |mg) when m # n. That is, we have

[n1) = > el Imo), (12.29)
where
o) _ (molHilno)
mo 5(0) (0)
EY - EY
The coefficient csl") is determined from the fact that the eigen-
states are normalized. Thus, to this order,

[n) = [no) + Alm1) = |no) + A e jma), (12.31)

, for m # n. (12.30)

so that
(nln) = (nolno) + 21> _ i (nglmo) + O(X?),

or, 1= (ng|ng) + 2™ =14 2xcM,

or, ™ =0. (12.32)
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This determines that, to this order, we have

E, = E,(LO) + (n0]H1]n0>,

1 {mg|H1|n
)= o+ Z % |mo) = [no) + [n1). (12.33)

Here, we have set A = 1 and the summation with a prime denotes
summation over all values of m except m = n. We note from (12.31)
and (12.32) that |n;) is orthogonal to |ng),

Furthermore, it is obvious from (12.33) that, for the perturbation
method to be applicable, not only should the magnitude of perturba-
tion be small, but its off diagonal matrix elements in the unperturbed
basis should also be small compared to the level differences of the un-
perturbed system. If this is not true, this perturbation scheme breaks
down. Indeed, this happens if the system has degenerate energy lev-
els.
To order A%, the eigenvalue equation, (12.22), gives

Holno) + Hilm1) = EV o) + E ) + EP|no),
or, (no|Ho|na) + (no|Hln1) = B (noln2) + B (nolna) + EP.
(12.35)
Using (ng|n1) = 0 and (ng|Hy = EY (no|, we obtain, from (12.35),

EQ) = (no|Hi|n1)

_ 7 (mo| Hi |no)
= (no|H1 ) 20 _ g0 Imo)

m n

_ Z’ (mo|Hi|no) (no|Hi|mo)

T B0 D
m0|H1|n0

Z e e o (12.36)
m E Em

Thus, to second order in the perturbation, the energy eigenvalues are
given by

1 [{mo|Hi|no)|?

2O 0 (12.37)

E, = Eg + (no|H1|no) + Z
m
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We note again, from (12.37) that the validity of the perturbation
scheme depends on whether or not the off diagonal elements of the
perturbing Hamiltonian are small compared to the level splittings of
the unperturbed Hamiltonian. We also note that to any order, the
corrections of the eigenvalues depend on the eigenstates one order
lower and this procedure can be carried out systematically to any
order in the perturbation (when the perturbation is small).

» Example. Let us consider a one dimensional harmonic oscillator with mass m
and charge ¢ moving in an electrostatic potential (—£X), where £ represents a
constant electric field (As we will see, the direction of the electric field is irrelevant
for the shift in the energy levels.). Thus, the total Hamiltonian for the system
can be written as

2
H:P—+lmw2X2—q5X:Ho+H17 (12.38)
2m = 2
where
P2 1 5.4
Ho= — + —mw“X~, H, = —¢€X. (12.39)
2m 2

The eigenstates of Hy are |ng), which we have already studied in detail in chapter
5, where we have seen that the operator X can be expressed in terms of the
creation and annihilation operators as (see (5.36))

X = ,/QTZW (a+a). (12.40)

In this case, we know the eigenstates of Ho. The set of vectors |no) are such
that

Ho|n0> = E£0)|n0>7 E”(LO) = <n—|— %) 77,(,;)7 (1241)

and (nolko) = dnk. Furthermore, a and a' are the lowering and raising operators
respectively such that

alno) = v/nno — 1),
a'|no) = vn + 1|no + 1). (12.42)

Therefore, the first order change in the energy due to the perturbation, Hi,
follows from (12.25) to be

B = (no|Hi|no) = (no| — g€ X |no)

_ [_h ) —
= —q€ m(n(ﬂa +a'|no) = 0. (12.43)

To first order in the perturbation, therefore, there is no change in the energy.
This result can be understood in simple terms if one works in the coordinate basis
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rather than the n-basis. Thus,

(ol Hx o) = / / deds’ (nolz) (x| Hal') ' |no)

(oo}

= / dz Yy, (z)(—q€x)hn(T)
= —q¢& / dz x|t (z)|> = 0. (12.44)

The vanishing of the integral follows because the integrand is an odd function.
The physical way of seeing this result is to note that the operator X changes
sign under reflection (it has odd parity). Since the eigenstates of the Hamiltonian
have definite parity (oscillator states are either even or odd), it follows that the
perturbing Hamiltonian cannot connect two states with the same parity.

The change in the eigenstates to first order in the perturbation is obtained
from (12.29) and (12.30)

_ ' (kolHi|no) _ x {ko| — g€ X]no)
m) =" @ — o ko) = P e o o) (12.45)
k n k k n k
We can calculate
(ol X[no) = y/ ——{kol(a + o' o)
0 0) — 2w 0 0
h

=1/ 5—(Vn(ko|no — 1) + v/n + 1(ko|no + 1))

2mw

[ R —
= m(\/ﬁdk,nfl +vn+ 15k,n+1)7 (1246)

so that equation (12.45) gives

|n1> — Z, (_qg) h (\/ﬁ(sk,nfl + vVn + 16k,n+1)

ko)
. 2mw E7(L0) _ E}(CO)
h -1 +1
=%\ 50 <‘/ﬁ (LZ;O (>0> tvntl ('30 <>o> )
En _Enfl En _En+1
_ e P Ino — 1) o + 1)
= —q€ 5 <\/ﬁ T +vn+1 -
S (Vnlno — 1) — Vn+1jng + 1)) . (12.47)
w 2mhw

Thus, to this order, the eigenstates are

%,/ S (Vo — 1) — vV Tino + 1)), (12.48)

We see that the perturbation, in this case, actually mixes only the adjacent
states. We can now calculate the change in the energy to second order in the

In) = [no) —
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perturbation from (see (12.37))

j : k0|111|”0 |
E(2) | .
O O

We know, from (12.46), that
<k0|H1|n0>__q5\/ (\/_5kn 1+ Vn+ 10k nt1),
so that

h
|<k0|H1|n0>|2 = q252M (\/ﬁak,nfl +vn+ 15k,n+1)2

_ &%
T 2mw

(ndkn—1+ (n+ 1)k, n+1) -
Therefore, we determine the second order change in the energy to be

1 *E%h <n5k,n1 +(n+ 1)5k,n+1>

2mw gLO) _ EIEO)

&% n (n+1)

-5 (i e

_ *E%h (1 n (n+1)>
2mw \ hw —hw
PE?

=L -+ 1) = -

EY

quZ
2mw?’

Thus, to this order, the energy eigenvalue is

E = E(O) —|—E(1) —|—E(2) _ 1 ngz
n — Hn n n =N + 3 hw — .
2 2muw?

(12.49)

(12.50)

(12.51)

(12.52)

(12.53)

If we were to calculate the higher order corrections, we will find that, for
this system, all the higher order perturbative corrections to the energy vanish.
Thus, this seems to be the exact energy eigenvalue. In fact, we can see this in the

following way.

2
m= L exe ¢€X
2m = 2
2
_ P_ +-m 2 X2 o 2q€X
2m mw?
P2 2 qg 2 1 2 qg 2
= — — X — _ =
om 2™ < mw? 2" ne?
p? 1 5 q€ 2 ¢2&?
=— 4= X — — .
2m + i ( mw? 2mw?
Let us define a new coordinate operator
¥ —x_ q_€27
mw
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so that we can write

2 202
gt ek 8
2m 2 2mw?

(12.56)

P and X continue to be conjugate variables. Therefore, we can think of this

202
as a harmonic oscillator whose energy levels are shifted by an amount (_QQmiQ ).

Classically such an oscillator would center around & = 0 or x = 77‘352. Such a

system is like a mass attached to a spring hanging under gravity. The effect of
the mass is to shift the equilibrium point down. <

_ _4€
 mw?”

Exercise. Show that the perturbed eigenstates are centered around x

12.2 Ground state of hydrogen and the Stark effect

Degeneracy is a consequence of symmetry. As we have seen earlier,
the degeneracy in the m-quantum numbers, in a central potential,
is due to the rotational symmetry of the system. Similarly, we have
seen earlier, that the degeneracy in the f-quantum numbers in the
case of hydrogen atom as well as the isotropic harmonic oscillator
is a consequence of an accidental symmetry associated with the sys-
tem. If one applies a perturbing Hamiltonian to the system which
breaks the symmetry, then, the degeneracy would be lifted. Thus,
if we apply a constant electric field along the z-axis, the accidental
symmetry associated with the hydrogen atom gets broken and the
degeneracy in the /-quantum numbers is lifted. But the degeneracy
in the m-quantum numbers remains, since there is still a rotational
symmetry around the z-axis. If we subject the hydrogen atom fur-
ther to a constant magnetic field along the z-direction, then even the
m~quantum numbers become non-degenerate.

The change in the energy levels due to an external electric field
is called the Stark effect. And that due to an external magnetic field
is known as the Zeeman effect. Because the higher states of hydrogen
are degenerate, we cannot apply non-degenerate perturbation theory
to calculate the change in the energy levels, in general. However,
since the ground state is non-degenerate, we can calculate the change
in its energy due to an electric field, using the perturbation theory
developed so far.

Let us assume that the hydrogen atom is in a constant electric
field, &€, along the negative z-direction (The direction of the electric
field, as we will see, is not relevant to the change in the energy up to
second order in perturbation.). Thus, one can write down the scalar
potential to be

O(r) =&z = Ercosk. (12.57)
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Thus, the total Hamiltonian, in this case, can be written as
H=Hy+ H =Hy—eEz= Hy—eErcosb, (12.58)

where Hy represents the Hamiltonian for the hydrogen atom and we
have used the fact that the electron carries a charge (—e). We know
the unperturbed ground state energy of the system to be (see (9.88))
0 0 ¢’
Holo) = Eg”|0), By’ = Ry=-136eV = —5—.  (12.59)
ao

The first order correction to the ground state energy follows to be
Eél) = (0|H1|0) = /d3T g (1) (—eEr cos 0)y(r)

= —eé’/dgr 7 cos A)io(r)]? = 0. (12.60)

This is a consequence of the fact that 1y(r) has even parity whereas,
under parity,

r—,

0—m—0,

cosf) — —cos,

Hl — —Hl. (12.61)

Thus, the first order correction to the ground state energy is
zero which follows from the symmetry properties of the system. Since
the first order correction is proportional to £, one also says that the

ground state of hydrogen does not show any linear Stark effect. The
second order change in the energy eigenvalue is given by

|{ko| H1|0)[?
Z E(O 5O k # 0. (12.62)
k

We can, of course, evaluate this integral by brute force. We can also
use clever selection rules to restrict the sum to a few terms. We will
evaluate this slightly differently.

Let us assume that there exists an operator, Q (to be deter-
mined), such that

Hy|0) = (QHy — HoQ)|0). (12.63)
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Then, it follows that
(kolH1|0) = (ko|(2Ho — Ho$2)|0)
= B (ko|210) — B (kol210)
— (E((]O) - E}f’) (ko|©]0). (12.64)

Thus, the second order correction, in this case, will follow to be
7 | {ko| H1|0) | r (ko|H1|0)
Z 0 0 Z 0 o7 (01 H1]ko)
SN I R O D

— 3 (ko[210) (0] H | ko)

k

= > (01 H1lko) ho|2[0)
k

= (0[H1£2|0) — (0[H1]0)(0]2|0), (12.65)

where we have used the closure (completeness relation) of the energy
eigenstates. Furthermore, we have already shown in (12.60) that

(0]H4[0) = 0.
Therefore, it follows that
EP = (0|H,90). (12.66)

Thus, determining the second order correction to the ground
state energy depends on finding an operator €2 which satisfies (12.63).
We can assume that 2 depends only on the coordinates and, going
to the spherical coordinates, we can show that

_ mage€ r
Q=" (2 n ao) 2, (12.67)
where ag represents the Bohr radius. Thus, we have
202
(2) _ mage & r 2
Ep = =220 (0] (5 + a0) 2210)
= —&2(| (g + ao) 22|0), (12.68)

where we have used ag = n’zzg The ground state expectation value
in (12.68) can be evaluated simply by noting that the ground state
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of the hydrogen atom is spherically symmetric and, consequently, in
such a state,

(01f (r)2?|0) = (0[.f (r)y?|0) = (0] f(r)2%|0) = %<0|f(7“)7"2l0>,

(12.69)
which determines
EPY = - D a3e2, (12.70)
Here, we have used
015+ a0)r®0) = 5 [ dr (G ag)r?e "
mad
= —(4n) [ dr(= 4, 0"
7Ta8 T / r 2+a0)re 0
3
ay (1
=—|(-T T
(110 +10)
27
=7 ag. (12.71)

Thus, to second order in the perturbation, the ground state
energy becomes

Ey=—5——7 052 (12.72)

This is the second order Stark effect or often called the quadratic
Stark effect of the ground state of hydrogen. The change in the
energy, in this case, is written as

2) 1

EY = —5a€?, (12.73)

which defines the polarizability of the hydrogen atom and has the
value
9 3

a = 5ap. (12.74)

We note that the effect of the applied electric field is to lower the
ground state energy.

Exercise. Compare this result with a variational calculation. Also check explic-
itly that the operator ) derived in this example does indeed satisfy the defining
relation (12.63).
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12.3 Ground state of helium

We have already calculated the ground state energy of helium using
the variational method. Let us now see how good perturbation theory
is to the lowest order. The Hamiltonian, as we have seen in (10.48),
can be written as

where we have identified
K2 9 K2 9 2e2 22

Ho— M o B 12.
0 2m 1 2mv2 (&) T9 ’ ( 76)
and
62
Hy=—. (12.77)
T12

As we have discussed earlier in chapter 10, here, 1 and 2 label the
two electrons of the system and we are treating the mutual repulsion
of the electrons as a perturbation. The ground state of Hy is given
by (see (10.52))

8 2 (ri4r) (0) e?
: EY = 8% — _8Ry. (12
vo(r1,re) = s e @ ) 5 82a0 8Ry. (12.78)

The first order change in this eigenvalue, due to the perturba-
tion, can be calculated to be

ESY = (0[H, |0)

2
e
= /d3r1d3r2 ¢3(T17T2)E¢0(T17T2)

1
= 62/(137’1(137‘2 7‘_12 |¢0(r1,7‘2)|2. (12.79)
We have already evaluated this integral earlier in (10.65) which leads
to the result (for Z = 2),
2 2
(1) 5e 5 e 5
pb_= _=2° _° 12.
0 Ty 2200 20 (12.80)
Thus, to this order, the ground state energy of helium becomes

Ey=E + E}
5 11
——8Ry+§ Ry——; Ry

11
=5 x136eV =-Td8eV. (12.81)
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We can compare this with the measured value of the ground state
energy, which is —78.6 eV. As we have already seen, the variational
method gives a value —77.5 eV for the ground state energy of helium.
Thus, we see that the variational method gives a much better value
than the first order perturbation, which simply means that we have
to go to higher orders of perturbation to get closer to the exact energy
value.

12.4 Near degenerate systems

If two of the energy levels of a system are very close to each other
while all others are far away, the perturbation theory that we have
developed so far would not be applicable, since the corrections to the
wave functions as well as energy would be large because of the small
denominator corresponding to these two levels. So we have to modify
our treatment of the problem.

Let the Hamiltonian Hy have two states ]1/1&0)> and ]1/150)> with

energy eigenvalues E&O) and Eéo)

other. Thus,

such that they are very close to each

EY_Eg®~0  EY>ED (12.82)

In this case, if we use perturbation theory naively, then, we would
obtain

O 1O
o = of?) + 3 L) 10
B

0
o 5
) 7. 1,0
(g [Hilgy”)
o) = ) + > ~rg—t ). (12.83)
P R O

Thus, unless
(W Hy ) = o, (12.84)

we see that [¢1) would contain a large mixture of ]1/150)> and |1s)
would contain a large mixture of ‘¢§0)>- Namely, we see that the

states \w§0)> and \w§0)> will mix a lot. Consequently, let us choose a
state of the form

1) = alpi”) + by, (12.85)
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and try to diagonalize the complete Hamiltonian in this subspace.
That is, we are looking for the solutions of the equation

Hy) = E|4),
or, (H-—E)[Y) =0,
or, (H-—E) (ay¢§°)> + by¢§°)>> —0, (12.86)

where H = Hy + H;. Multiplying (12.86) by <1[)§0)|, we have

(Hyy — E)a+ Hiab =0, (12.87)
Similarly, multiplying equation (12.86) by (1/150)], we obtain

Hya+ (Hyp — E)b=0, (12.88)

where we have identified H;; = <w§0)\H\w§O)>,i,j =1,2.

For simplicity, let us assume that Hio = Hsy. Thus, we have
two homogeneous equations, (12.87) and (12.88), with two unknown
parameters a and b. There would exist a nontrivial solution only if
the coefficient matrix has a vanishing determinant, namely,

Hy - F Hyo

det =0, 12.89
Hoy Hyp — E ( )

which yields
E? — E(Hyy + Hy) + (Hy Hoy — Hi2Hop) = 0. (12.90)

The roots of (12.90) determine

El 5 = (Hll + H22) + \/(Hll + H22)2 — 4(H11H22 — H12H21)
’ 2

1
=3 ((Hll + Hao) + /(Hyy — Ho)? + 4!H12]2> . (12.91)

This gives the exact energy values of the two levels. Further-
more, it follows from (12.87) that

a  Hi

b E—Hy'
Substituting the two roots for £ from (12.91) into (12.92) and intro-
ducing the parameterization

2H12
Hyy — Hyy'

(12.92)

tan 8 = (12.93)
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we have
(@) =od Q)= =

Thus, the normalized states corresponding to the energy values Ej
and F5 can be written respectively as

1) = cos 5 o) +sin 5 04,
B
2

It is clear now that if

o) = —sin & [{”) + cosg ). (12.95)

|Hi1 — Hao| > |Hig| = |(Hi)i2|, (12.96)
then, the energy eigenvalues can be expanded as

|Hia|?

By = Hyy + 12
! "UHL — Ho

+0 (Hfz)
A

E%O) . E§0)

= B0+ Oy ) + +0 (HY),

|Hio|?

Fo=Hyy — ——————
2 *" Hy, — Hyy

+0 (Hy)

oSO Hy 0 2

_ (0 (0) (0)
=Ey" + (¥ [HilYy ") + E§0) _ E§0)

+ 0 (Hy) .

(12.97)

We recognize this as nothing other than the usual second order per-
turbation results (see (12.37)).
Furthermore, in this case,

tanf= ——"——~0 or B~0. (12.98)

Therefore, we obtain from (12.95)

o) = (9 + S )

His
Hyi1 — Hao

) 77 1,,(0)
s | Hyly
= @y 4 2 [l ) 2(0)‘ 1 (10)>!1/z§°)>+0(H122). (12.99)

= [p{”) + )
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Similarly, we have

o) = 21 + [0?)

_ g0y 4 W)
2 Eéo) _ E§0)

17 + 0 (HZ) . (12.100)
This is exactly what we would expect from non-degenerate perturba-
tion theory.

On the other hand, if

|H11 — Hao| < |Hial, (12.101)

then, we have

1 1 (Hyy — Hy)?
By =~ §(H11 +H22) + <’H12‘ + g%) )

1(Hy — H22)2> (12.102)

1
E22§(H11+H22)— <|H12|—|-§ ™

which is very different from the results of non-degenerate perturba-
tion theory. For a fixed value of |Hjs| we can plot the eigenvalues
E; and Es in (12.102) as a function of (Hy; — Hag), which have the
forms shown in Fig. 12.1.

o

Figure 12.1: Energy levels (12.102) of the two level system as a func-
tion of Hy1 — Has.
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We should note here that the separation between the two levels in-
creases as (Hy; — Hag) increases. This is known as the repulsion of
the levels.

Furthermore, let us note that, in the limit, |Hyy — Haa| < |Hi2l,

2Hqo
tan3 = ———— — 00,
& Hyy — Hoo
s
or, [~ 5 (12.103)

so that, from (12.95), we obtain
1) = cos 5 194 + sin & Juf”)

= (1) + ")
2} = = sin & %) +cos 5 juf”)

~

=5 (1) + 1)) . (12.104)
In other words, in this limit, the eigenstates are linear combinations
of the unperturbed states where each unperturbed state occurs with
equal probability. As a result, the naive perturbation theory devel-
oped so far cannot be applied to such a system (where changes in the
initial states are not small).

12.5 Degenerate perturbation

Suppose we are dealing with a system where some of the levels are
degenerate. Then, in this case, in expressions like

7 (ko|H1|no)
In) = |ng) + Y  ———Clko), (12.105)
2}; ED g0

the denominator can vanish for some values of k and hence the ex-
pressions become undefined unless, of course,

(ko|H1|no) =0, (12.106)

for those values of k. Usually, degeneracy is a consequence of some
symmetry of the system. If the perturbing Hamiltonian does not re-
spect the symmetry, degeneracy would be lifted at least partially and
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hence we do not expect (ko|Hj|no) to vanish. Thus, our perturba-
tion scheme breaks down in the sense that whereas theoretically we
will predict larger changes in the energy, experimentally the observed
splittings are small.

The reason for the breakdown is not hard to see. Suppose an
eigenvalue has ¢-fold degeneracy. Then, \wr(lol)% ]1/17(102)%--- ,\wiob or
any linear combination of them would have the same energy. We have
no information on the unperturbed initial states which are crucial to
carry out the perturbation calculations. On the other hand, we know
that because of the perturbation, the system would choose to go
to a particular state. As we slowly switch off the perturbation, this
state would go into a specific linear combination of the /-unperturbed
states. That is, therefore, the correct unperturbed state to start with
and if we use that, our perturbation calculations will be well behaved.
However, if we choose a different starting state with the same energy,
then, the terms in our perturbation series become large and, as in the
nearly degenerate case, suggest that there is large mixing and hence
the states have to be diagonalized further.

Thus, as in the nearly degenerate case, we choose as starting
states

l
W) =3 ailpD),
=1

H:Ho—l-Hl, (12107)

where we are assuming that all the states |1,Z)£2) are degenerate with

the energy eigenvalue Eﬁlo). The first order perturbation equation,
(12.24), in this case gives

HolpV) + Hi |9y = ED |[p{My + ED [0y,
or, (@O HolyD) + (2 [H1[p®) = BEQ (V)
1) 7,,.(0)1.,.(0

or, (@O H ) — ED w2 [p0) = o,

l
or, > ai (Wl 1 [6)) — BV ) =o. (12.108)
i=1
This set of homogeneous equations has a nontrivial solution if
the determinant of the coefficient matrix vanishes. That is,

det () [Hfuy) — BV ) = 0. (12.109)
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This is known as the secular equation. We have an £ x ¢ determinant
in (12.109). Consequently, it has ¢ roots which are the first order
corrections to the energy levels. If H; lifts the degeneracy of the
levels completely in the first order itself, then, all these roots would
be distinct and we can determine all the constants a;. However,
if all the roots are degenerate, then H; fails to lift the degeneracy
in first order and we have to go to the second order equations to
determine a;’s. On the other hand, H; may lift the degeneracy only
partially. In that case, some of the roots would be distinct and others
degenerate. This would correspond to the case where only some of the
constants, a;’s, would be determined uniquely — the others remaining
arbitrary. If degeneracy is removed in the first order, then, non-
degenerate perturbation theory can be applied in higher orders.

12.6 Doubly degenerate level and resonance

Let us consider a Hamiltonian Hy which has two eigenstates [¢)1) and
|th2) that are degenerate and have the same energy Ey. Let us now
perturb the system with a Hamiltonian H’ such that

(1| H'|1p1) = (o H'[1h2) = 0,
(1[H'[1p2) = (2| H'[th1) = His. (12.110)

Let us choose a linear combination of the two states as our starting
unperturbed state.

Y) = aly1) + blepa). (12.111)

Then, as we have seen in (12.109), there exists a nontrivial solution
for a and b if

/o (1) /
det| 1 F0 e a | =0 (12.112)
Hiy Hy, — Ej
Since H{; = H), = 0, it follows that
_ D) /
det /0 Hl(zl) — 0, or, E(()l) — Zl:Hi2 (12113)
Hi, -k

These are the first order changes in the energy. Clearly, the
degeneracy of the two levels is completely lifted. The constants a
and b satisfy the condition (see (12.87) and (12.88))

a Hij,

b gD

(12.114)
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Thus, corresponding to the two roots in (12.113), we have

(%>+ _ 1, (%)_ - _1. (12.115)

This defines the two initial states of perturbation to be

[F) = 7 ([¥1) + [2)),

™) = —= (1) — [¥2)) . (12.116)

E

These states have energy values £y = Fy=+ Hj, up to first order
so that the states evolve in time as

T;Z)+($v t) = (¢1 (l‘) =+ ¢2 (;17)) e_}%(EO"'H{Q)t

}_.Q“,_\
[\

Y (z,t) = ﬁ(l/}l(x) — thy(x)) e~ i FoHia)t, (12.117)

Let us suppose that, at ¢ = 0, the system is in the state |¢);). Thus,
at ¢ = 0, the wave function has the form

d(a) =i(a) = —= (VT (@) + ¢~ (2)). (12.118)

1
V2
The time evolution of this state is, then, obtained from (12.117) to
be

Y(z,t) = [1/)+(:17 t) + 9 (x,t)]

%\

(1(z) + o(w))e izt

NI)—t
—

+(¥1(2) — wz(w))e%%t} e~ bt (12.119)

It is clear that, at t = 0, the system is in the state [¢);). But, as time
grows, it moves more and more into the state [p2). At t = 5 H, , the
system is completely in the state |¢)3). In other words, we see that
the system oscillates between the two states |11) and |i9). This is
the quantum resonance phenomenon similar to two springs weakly
coupled to each other. Many physical phenomena, such as the K0 <>
KV oscillations, can be described in terms of this simple model.
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12.7 Stark effect of the first excited state of hydrogen

The first excited state of hydrogen is four fold degenerate. First of
all, this state corresponds to n = 2. Furthermore, we know that for
every n, the f-quantum number takes values from 0 to n — 1 in steps
of unity. We also know that the m-quantum number for a given ¢
value goes from —/ to £ in steps of one. Thus, the degenerate states,
in this case, are

In,6,m) . [2,0,0), [2,1,—1), [2,1,0), |2,1,1). (12.120)

All the four states in (12.120) have the same energy eigenvalue (see
(9.42))

e? e?

0) _ _
Ey’ = T2 B (12.121)
Since the parity of a state, (—1), depends only on the /-quantum
number, we see that the degenerate states do not all have the same
parity.

In the presence of a constant electric field along the z direction,
our naive non-degenerate perturbation calculation would yield

(2,0,m|H'2,0,m) = (2,0,m| — e€rcosb]2,¢,m) =0, (12.122)

since the perturbing Hamiltonian is parity odd and the states have
definite parity. This, of course, predicts no first order change in
energy. However, this is not true as has been shown in experiments
and we would see how degenerate perturbation theory leads to the
correct result.

Let us choose, as our initial unperturbed state,

1) = a1]2,0,0) + ag|2,1, —1) + a3|2,1,0) + aql2,1,1). (12.123)

Then, there exist nontrivial solutions for the a;’s only if

det <<2, 0m|H')2, ¢ m) — Eg”awamm,) = 0. (12.124)
Thus, we have to calculate the matrix elements

(2,0, m|H'|2,0',m'). (12.125)

Note that

H = —e£Z = —eErcosb,
L,=XP,-YP,. (12.126)
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As a result, we have
[L.,H'] =0,
or, (n,¢,m| [LZ,H/] In, ¢/, m'y =0,
or, (n,¢,m| [LZH' — H'Lz] In, ¢',m'y =0,
or, h(m —m'){n,t,m|H |n,¢,m') =0. (12.127)

This tells us that (n,¢,m|H'|n,¢',m’) has to vanish when m # m/.
Therefore, only the matrix elements of the type (2,¢,m|H'|2,¢',m)
need to be calculated. Furthermore, note that since H' is odd under
parity,

(n, €, m|H'|n,¢',m) =0, (12.128)
unless { — ¢/ = (2k + 1), k = 0,+1,4+2,---. Thus, we see that the
only non-vanishing matrix elements are

(2,1,0|H’|2,0,0), (2,0,0|H’|2,1,0). (12.129)

Noting that the wave functions for the first excited state of hy-
drogen have the forms (see (9.27) and (9.76))

1 r __r
e R 2 S 2a
¥2,00(r) <327m8> ( a0> ©

1 r _r
= | ——= — 0 2a 12.130
V2,1,0(r) <32m8 > a0 cosf e 20, ( )

N

(NI

we easily obtain

(2,1,0[H"[2,0,0) = (2,0,01H"[2,1,0)

= 3eapf. (12.131)
Thus, we are looking for the roots of the equation
—E{Y  3eapE 0 0
_ @
det 3eap€ E, 0(1) 0 _o
0 0 —E, 0
0 0 0 ~e

This leads to

(E§1>)2 ((Eél))z - (3ea0€)2> —0,

or, ESY =0,0,+3eaf. (12.132)
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These are the first order corrections to the energy of the first
excited state in hydrogen. In this example, we see that the degener-
acy is lifted only partially. That is, the applied electric field breaks
the accidental symmetry and lifts the degeneracy in the f-quantum
numbers. But, since the field is applied along the z-direction, there
is still a rotational symmetry about the z-axis. This, in turn, im-
plies that the degeneracy in m-quantum numbers still persists. The

eigenvalues Egl) = 4+3eap€ determine the corresponding states to be

1
E

However, the zero eigenvalues allow for any linear combinations of
the states [2,1,1) and |2,1,—1). In particular, we can choose as
the starting states |2,1,1); [2,1,—1); %(|2,1,0> +12,0,0)) and the
perturbation due to the external electric field would be stable.

The eigenvalues can also be given the following interpretation.
Since the energy is linear in the electric field, we can think of the first
excited state of hydrogen as having a permanent dipole moment of
magnitude 3eap which can be oriented in three different ways — one
state parallel to the electric field, one state anti-parallel to the field
and two states with zero component along the field. The first excited
state of hydrogen, as we see, exhibits linear Stark effect .

(12,1,0) + |2,0,0)). (12.133)

12.8 Fine structure of hydrogen levels

The Schrodinger solution gives a very good description of the hydro-
gen atom. However, as we discussed earlier, there are corrections
to these values of the energy. They are known as the fine structure
corrections and arise from two sources.

1. Although we treated the electron as a non-relativistic particle,
in reality it is not. Note that, in the ground state of hydrogen,
we have (for the classical energies)

1
T= —§V =13.6eV,
v\2 2T 27.2eV
-) = = =544 x 1076
on <c> mc2 5 x 106eV . ’
or, L~7x1073 ~0(a), (12.134)
c
where a = z—i ~ ﬁ represents the fine structure constant.

Thus, we have to correct for this discrepancy. We define the
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348 12 STATIONARY PERTURBATION THEORY

kinetic energy as

T =FE —mc®

[NIES
|
3
Q

— (2 + m2ch)

m2c2
— e 1 p’ 1 p e
2m2c2  8maict
2 4
_ b P, o(p®). (12.135)

Therefore, under this approximation, the Hamiltonian becomes

2 2 4
p € p /
H=—— — — — _ = H, H'. 12.136
2m r  8m3c? o+t ( )

First of all, let us note that H' is rotationally invariant. There-
fore, it is diagonal in the |n, ¢, m) basis and we have

(n, ,m|H'|n' 0',m'y =0, ifn#n/, L4, m#m'.
(12.137)

As a result, even though the energy levels are degenerate, we
can still apply non-degenerate perturbation theory, since the
potentially dangerous terms are zero because the numerator, in
this case, vanishes.

The first order change to the energy levels can be written as
EW = (n,0,m|H'|n, 0, m)
1 4
=g (n, L, m|p*|n, £, m). (12.138)
Let us note that, since

2 2
Hy=2 < (12.139)

- 2m r

we can write

2\ 2 02\ 2
p* = 4m? <p—> = 4m? (HO + —> . (12.140)
T
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12.8 FINE STRUCTURE OF HYDROGEN LEVELS 349

Using this, we obtain,

2\ 2
1 — 2 ¢
E)) = S 4m*(n,l, m| (Ho—i— T) In, €, m)
1 0)2 0) 2,1 a1
= — chz |:E7(L ) + 2E7(L )6 <;>nfm +e <ﬁ>n3m .

(12.141)

Let us next develop some tricks for calculating these averages.
First of all, we note that the virial theorem applied to hydrogen
implies that

@me=:<—%v>ﬁm, (12.142)

so that we have

(Ho)nem = (T'+ V)nem = <—%V + V>

ném
1 e? /1

= =(Vnom = —— { = . 12.14
2 <V> ‘ 2 < r >n£m ( 3)

Therefore, we obtain
1 2 2
- =2 (H S S
< r >n€m 62 ( 0>ném 62 n

:_%< e2>: L (12.144)

2a9n? agn?’

To calculate (;%)ngm, we note that, if we add a perturbation

oA

r2

: (12.145)

to the Hamiltonian of the hydrogen atom, then, the first order
change in the energy can be written as

CH Yo = A <Ti2>nem. (12.146)

On the other hand, with this perturbation, the problem can
be exactly solved. For example, the Hamiltonian for the radial
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equation, in this case, has the form (after factoring out the
angular solutions)

H=Hy+ H
P10 (20 D] e A
2m | r2 Or or r2 r o r2
1 0 5 0 R0 +1) e
o (r E) - (12147)
where we have defined
2mA
O 1) =0+ 1) + % (12.148)

In other words, ¢ = ¢'(\) can be thought of as a function of \.
In terms of ¢/, the energy eigenvalues have the form

2

e
E, =—- , =k+0+1
2a9(k + 0/ +1)2 " TeF
= E,(\). (12.149)
We can now expand E,()) in a Taylor series,
E,(\) =F (O)+)\dE" A dE, + (12.150)
e dX |\, 2! dAZ |, ' '

Clearly, E,,(0) is the unperturbed energy (corresponding to A =
0), while A 4E=

| \—o 18 the first order change in the energy. Thus,
we have
1 dE,
H)pom =2 = =A , 12.151
< 1> ‘ <T2 >ném dA A=0 ( ’ )

which leads to

1 dE,
e (2 A
2a0 (k + 0 +1)3 dA

A=0

. (12.152)
A=0 or ¢'=¢(
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12.8 FINE STRUCTURE OF HYDROGEN LEVELS 351

From the defining relation, (12.148), we note that

A
£/2+£/:£2+€+%,
¢  ar  2m
/ [
o ARt D T
. d_€’ B 2m
TN T R 1)
ds 2m
ac ___m 2.1
b (d/\> r=0 R0+ 1) (12.153)

Using this, we obtain,

<i> B e2 " m B 1
r2 ném_aon?’ h2 (6—1—%) _a%n3 (€+%)

(0)?
AnkE;,
= m. (12.154)
2

To calculate ( 5 )nem, We use the following trick. Let us define
the radial momentum as

pr = —ih <% + %) . (12.155)

which is Hermitian and satisfies the canonical commutation re-
lations. It follows now that

o 1 o 1
J— 2 —_— —
= <87‘+r> <87‘+7‘>

92 10 1 10 1
——h2< +————+——+r—2>

or2  ror 72 ror

”? 29 19 d
= 12 <ar2 + ;§> =W < 8r> . (12.156)

Therefore, we can write
1 L2 2
Hy= — ( 2 4 —> . (12.157)
m r

r2
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352 12 STATIONARY PERTURBATION THEORY

It follows now that

L? 1 1
H r] = r| — 2 —HPr
[ 0,P ] om |:T27p :| € |:T p :|

ihL? 2
2m 3 r2

= ih (i P ) . (12.158)

r2  mr3

In an energy eigenbasis, (12.158) would lead to

<7’L, Ev m| [H(]v pT] |’I’L, E) m> = 07

L /e? L?
or, th{—— — =0,
r mrs /o

2 2 1
or, (& _MAEDN (12.159)
r2 mr3 nlm

which yields

(%), = w5 ()
Tg nfm_h2€(€+1) 7’2 ném

__ v /1
~apl(L+1) \ 2 b

1
= (12.160)

adnd(t+1) (0+ 1)

where we have used (12.154).

Using (12.144) and (12.154), we can now determine the first
order correction to th energy in (12.141) to be

(0)?
EW = _ ! | B 2B (—%E,@) + e44”E7"1
2mec e et (f + 5)

(0)
S > | BO? —4p” bap :
2me {+3
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12.8 FINE STRUCTURE OF HYDROGEN LEVELS 353

S E(0)2 _3 _|_ 4—7’L
T 2me? C+ 5 1

-3
2mc24a n4 +€+ )

mc2at 3 1
= 4+ —]. 12.161
2n3 4n + (f + %) ( 61)

2. The other source of correction comes from the spin orbit inter-
action. It was observed that the electron did possess a magnetic
moment which was not due to its orbital motion. Because the
electron is not at rest, in its rest frame the proton or the nu-
cleus is moving. Since a moving charge has a magnetic field
associated with it, this field would interact with the magnetic
moment of the electron. Thus, the spin-orbit interaction Hamil-
tonian has the form

evxr
H o=-p B=-p- < >

c 73

___e . __epL
- mcr?’u (I'Xp)—

mec 13

2

e e\ S-L e
G = S.L. 12.162
mc < mc> rd m2c2r3 ( )

Actually, the correct Hamiltonian is only half of the expression
n (12.162). The factor of § is due to the fact that the electron
motion is not linear and this factor is known as the Thomas fac-
tor. In a relativistic theory this factor comes out automatically
and we can write the correct spin-orbit interaction as

e?

o
H. = 2m202r3s L. (12.163)
We note that, in this case, neither L; nor S; commutes with H.
But, we recall that the total angular momentum is given by

J=L+S. (12.164)
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It is easy to check that J; commutes with the Hamiltonian even
though L; and S; do not. Furthermore, we can write (S; and
L; commute)

1
S-I,::§(J2——L2——52). (12.165)
This allows us to write
2
_ ¢ 2 2 2
Hy o= 555 (- 1" =5). (12.166)

Let us work in the |j,m; ¢, s) basis for the angular part so that
-/ /. p! 1 ! . 1
<TL,] , M 7€ ) _‘Hsfoln;jam;ga _>
2 2
e? 1 3
=— (=) BG4+ =l 4+1) = =] 80000 6mmy -
oz () 0 =t 1) = 38
(12.167)

Thus, the first order change in the energy, due to the spin-orbit
interaction, is obtained to be

272
(1 e h . 3 1
E = — 1) — 1)— -1 {—= .
ns—oO 4m202 |:J(] + ) E(é_‘_ ) 4:| <7"3 "y
(12.168)
Furthermore, since J =L + S and s = %, we have

1
j=t*s, (12.169)

and this leads to
ot At ¢ if j=¢+1
nSO T am2e2 \ 3/, | —(e+ 1) i j=0-1

e 1 { 14
o Am2 agndl (04 ) (0+1) | —(£+1)

B e?h? <me2>3 1 { ¢
CAm2 \ R ) wde(e+ L)y e+1) L -0+ 1)

() mre e o

2 .4

meo 1 L,
T4 me@+%ﬂe+m{-%ﬂ+n- (12.170)
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Thus, adding (12.161) and (12.170), we obtain the total fine
structure splitting in hydrogen to be

Eyp = B + B,

__mcal) 3 1
23 4n (6-1-%)

+m02a4 1 { 1 or—l}
4 n3(€+%) {+1 ¢

- mca? o 3 n 1
22 n dn - 2(0+3)
1 1
9 _ _Z
% { <e+1 4T H
__mc2a2a_2’_3+ 1 2041 2041
Co2n2 n | 4n o (20+1) | £+1 1
__mc2a2a_2 —_3+ 1 orl
202 n | 4n +1 L
2.2 2 [
meca” o 3 1
= — — |- . 12.171
2n2 n 4n+j+% ( )

for both j = ¢+ % This is the total fine structure splitting of the
energy levels in hydrogen.

12.9 Selected problems

1. Brillouin-Wigner perturbation: Assume a completely non-degenerate
quantum mechanical system with

Holun) = EO|uy,). (12.172)
Writing
H = H(] + /\Hl, (12173)

derive the perturbation equations by expanding only [¢,) (and
not E,) in powers of A. Solve for the wave function up to first
order in A and the energy eigenvalues up to second order in A.
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2. A two dimensional isotropic oscillator is subjected to a time

independent perturbation, H’, whose matrix elements vanish
between two states which have the same parity in either X or
Y (Example: H' = XY).

a) What is the degeneracy of the unperturbed state with energy
eigenvalue E©) = 3hw?

b) List, in bra-ket notation, all the matrix elements of H’', be-
tween the eigenstates belonging to this energy value, which do
not vanish from symmetry considerations.

c¢) What is the first order change of this energy level in terms
of these matrix elements?

. Because of the finite size of the nucleus in a hydrogenic atom,

the potential, in which the electron moves, is of the form

_Ze rza
Vi(r) = i - (12.174)
4 (3-42),  r=a

where Z is the nuclear charge and a is the nuclear radius. As-
suming that a <« % = ag (typically a ~ 10~'3cm, while
ag ~ 1078cm), calculate the first order change in the ground
state energy from its value for a point nucleus.
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CHAPTER 13

Time dependent perturbation theory

Let us consider a system whose Hamiltonian H is time independent
and let us assume that we know how to solve for its eigenvalues and
eigenfunctions exactly. We know that the eigenstates, in this case,
will be stationary states.

i () = Holun (1)),

dt
[un(t)) = €7 E un (0)) = e~ ), (13.1)
such that
Holup) = Epluy). (13.2)

These are stationary states. This simply means that if initially the
system is in the state |u;) (or |7)), it remains in that state forever
(unless disturbed). Mathematically, this is denoted by

(uflui(t)) = 6;f x phase factor. (13.3)

That is, the probability amplitude for finding the system in a different
state, at a later time, is zero. Another way of saying this is that the
system is unable to make a transition to a different state all by itself.

If there is a perturbation, however, things are different. The
system can make a transition to a different state because of the per-
turbation. This is a very physical effect. We may have a system in
a stationary state and apply a perturbation for a certain period of
time and ask about the state of the system at the end of the per-
turbation. Clearly it would not necessarily be the same as the initial
state. Therefore, one can calculate the transition probabilities for the
system going into various states.

Let us now define the problem more precisely. Let us assume
that we have a time dependent Hamiltonian of the form

H(t) = Ho+ H'(t). (13.4)
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358 13 TIME DEPENDENT PERTURBATION THEORY

It is the perturbation Hamiltonian (and, therefore, the total Hamil-
tonian) which depends on time. Thus, energy is not conserved any
more and stationary states are not eigenstates of the total Hamilto-
nian. We are looking for solutions to the equation

d
ZﬁEW(t» = H(t)[1(1)), (13.5)
with the initial condition that

[1(0)) = |ui).- (13.6)

That is, the system is initially in the ith unperturbed state.

First of all, we note that although the states, |u,)’s, are no
longer the eigenstates of the complete Hamiltonian, they still form a
complete basis and, therefore, we can expand the state in this basis
as

(1) = en(t)un). (13.7)

To convince yourself of this, note that for each fixed value of time
we can do it and hence we can do it for all times. The only point
to note here is that the coefficients of expansion become functions
of time. Furthermore, ¢,(t) = (u,|t(t)) now defines the probability
amplitude for finding the system in the nth unperturbed state at time
t. Remembering that the system was initially in the ith unperturbed
state, this, therefore, measures the transition amplitude from the
ith state to the nth state. Thus, we determine the probability of
transition at time ¢ to be

Pioyn = len(t)* = [{unlv:(1))1*. (13.8)

Furthermore, we would like to define a perturbative expansion
for the transition probabilities. Hence we define

H(t) = Ho+ M\H'(t)

[0(8) =A™ (t)|un), (13.9)

and solve for the time dependent Schrédinger equation, (13.5). This
method was developed by Dirac and is known as the method of vari-
ation of constants.
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Putting the expansions in (13.9) into the Schrédinger equation
(13.5), we have

m%wm = (Hy+ AH'(0)[(1)),

delm
> Amin— ¢ ZA’” (1) (Ho + NH'(1)) |un)-
(13.10)
Taking the inner product with (ug|, we obtain from (13.10)
m; dck m (m
= Z X" (Epel™ () + )\Z (m) () H], (t)
(13.11)
Matching the lowest power of A on both sides of (13.11), we obtain,
e’ () _ . o
inE = Bl ),
or, c,(go) (t) = c,(go) (O)e_%E’“t. (13.12)

This, of course, tells us that, to zeroth order in the perturba-
tion, the eigenstates are stationary states. Now let us redefine the
coefficients of expansion in (13.9) such that

™ () = al™ (£)emnBrt, (13.13)

Then, equation (13.11) becomes
d m
S 40 DI (E SRS Hk)

Z)\m [ k —7Ekt (m)( )_i_e—}ilEktdalgm)(t)]

=2\ (Eke-%EktaSJ”) (1) + 2D e afm <t>H,gn) :

mo— LBt da,im)() m+1 ,—} Ent ( ) (¢
or, Z)\ e h th Z)\ (t)Hy,,,.

m n,m

(13.14)
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360 13 TIME DEPENDENT PERTURBATION THEORY

Defining the Bohr frequency

E,—E
W = % (13.15)

we can write equation (13.14) as

d
S Amin a’f ZAmH “knl o(m) () HY,,. (13.16)

Furthermore, matching powers of A, we now obtain

dal(gm zwkn m 1) /
Z e (t)Hj,. (13.17)

For m = 0, this leads to

dal” (t)

ih
T

=0, (13.18)
which implies that
a]go) (t) = a,io) = constant. (13.19)

Similarly, for m = 1, we obtain from (13.17)

daV (¢ -
. a/at( ) _ S cimntqO) g (13.20)

Noting that the system is initially in the state |u;), we have

) _ g, (13.21)

an,

This gives, to first order in the perturbation,

da(l) ) )
9 5 s, i, — oty

n

¢
1 o
or, a,(:)(t) = /dt/ ™Rt [T ()
0

1 / / zwkl /
:ﬁo/dt (| H () ). (13.22)
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Here, we are assuming that the perturbation is switched on at ¢t = 0.
Otherwise, the lower limit of integration will be different. Therefore,
to first order in the perturbation, the probability for transition to a
state different from the initial state is obtained to be

2 2
Prost) = || = ]af?)
t 2
1 iw
— | [ e O (13.23)
0

We can, of course, carry through this procedure to higher orders
and the perturbation method will be valid only if P;_,;’s are small
compared to unity.

» Example. Let us consider an one dimensional oscillator in its ground state at
t = —oo, which is subjected to a perturbation

+2

H'(t) = —e£Xe 2. (13.24)

Here e, € and 7 are constants. (Namely, we have an oscillator in a time dependent
electric field.) The perturbation is applied over an infinite time interval. The
question we would like to ask is what is the probability that the oscillator will be
in the state |n) (of the unperturbed oscillator) as t — oo.

In this case, we know, from first order perturbation theory, (13.22) that

t
algl)(t):% / At st (g | H' (') |us). (13.25)

—o0

For the present case,

|ui) = 10),
E; - E;
lug) = |n), wpi = fT = nw,
X =/ (a+ah) (13.26)
TV 2mw ' '

Therefore, we have

(n|X]0) = 1/%(n|(a+af)|o> _ ,/%m. (13.27)

Furthermore, we are interested in the transition probability as ¢ — oco. Thus, we
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obtain from (13.25) and (13.27)

s . , 12
alP (c0) = Zlﬁ /dt’ einet (—ege*%)mmm)

£ | r 2
e h / _t +inwt’
——\/ =—9, dt 2
h\ 2me ™ / ¢
—o0

o ef h ’ ,(t_;,ioér)2iw24r2
=\ 2 m /dt €

h/ w22
—% e 1 ST T (13.28)

In other words, because of this perturbation, the oscillator can make a transition
only to the first excited state, with the transition probability given by (13.23),

wiT

‘ ol ‘ _ me?&2r? - 2,2
2mhw

Po_1(co (13.29)

<

13.1 Harmonic and constant perturbations

Time dependent perturbations can be of various types, which we
discuss in the following.

1. Let us assume that a system is subjected to a perturbation of
the form

H'(t) = 2H sinwt, (13.30)

where H is constant in time. We assume that the perturbation
is turned on between time 0 and t3. Then, at a later time ¢t
(t > to), we obtain from (13.22)

to . .
t/ —iwt!
W 2 )t [ € —€ oy
ay (t)_ih dt’ e™f 5 Hyg;
0
A to
_ _Hp f (ez(wﬁw)t' B ei(wﬁ_w)t'>
h

0
- _Hfi <# <ei(wfz'+w)to _ 1)
th \wyp +w
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13.1 HARMONIC AND CONSTANT PERTURBATIONS 363

wfil_ - (ei(wfz‘—w)to _ 1) >

(writw)to
2

Qﬁf,- i(writw)to sin
=——1e 2 - s
h (wfi + w)

i(wpi—w)to S (wri—w)to
e )tou) (13.31)
(wfi — w)

Looking at the expression in (13.31), it is clear that the domi-
nant contribution to the transition amplitude comes from

w = Fwy. (13.32)
From the definition in (13.15), we see that the two cases corre-
spond to

B = E; + ho. (13.33)

The two cases correspond, respectively, to the absorption and
emission of a quantum of radiation when electromagnetic inter-
actions are involved. For the present, let us assume that

W~ Wy (13.34)

Then, the dominant contribution in (13.31) has the form

S X o . (w—wfi)to
(1) 2Hyp;  iwpimwito sin ———
t) = _s 13.35
af ( ) h € 2 (OJ o sz) 9 ( )
so that the transition probability takes the form
2 AH |2 sin? (w—wpgi)to
Praslt) = |a | = LS — (13.36

R (w—wpi)?

This transition probability for a fixed value of ¢y is shown in
Fig. 13.1. There is a peak at w = wy; with a magnitude ‘H—’;{ﬁ.
Away from this value of the frequency, the probability oscillates
with a very damped amplitude, much like a diffraction pattern.
This is, of course, a resonant behavior. The resonance width is
defined to be the distance between the first zeros on either side

of the resonant frequency. The zeros occur at

(w — wfi)to

5 = 4. (13.37)
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Pi—>f

Wi w

Figure 13.1: Transition probability in (13.36) as a function of fre-
quency w at a fixed .

Thus, the resonance width is determined to be

_471'

Aw = —.
to

(13.38)

This tells us that the longer the perturbation acts, the narrower
the resonance would be. This also has a similarity with the un-
certainty principle. Let us assume that we wish to measure
the energy separation Ey — E;. We can do this by subjecting
the system to a harmonic perturbation and looking for a res-
onance peak. Clearly, the uncertainty in the determination of
the energy levels (Ey — E;) will be of the form
ap_he 2eh _h
2 to  to
or, AFEty~h. (13.39)

Therefore, the product AFEty cannot be smaller than h.

It is obvious that, had we plotted the total transition probability
(without neglecting the contribution from w = —wy;), then,
we would have obtained another peak of the same width at
w = —wy;. Clearly, we can neglect this resonance while talking
about the one at w = wy; provided

2Jwyi| > Aw,

1 1
or, tp> —=—. (13.40)
wril - w
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13.1 HARMONIC AND CONSTANT PERTURBATIONS 365

From (13.36), it is clear that, if w = wy;, then,

’ﬁ i’2t2
Pisp(t) = 55—, (13.41)
so that perturbation theory is valid only if
h
t) < ——. (13.42)

| H g

2. Let us next assume that the system is subjected to a constant
perturbation between the time interval 0 and ¢y. Thus,

H'(t) = H = constant. (13.43)

In this case, we have (t > tg)
to
' 1 ot
a;)(t) — %Hfi /dt' elwrit’,
0

Hyi (et —1)

h Wi
Zg . Qi wfito iwp,t
i el WP (13.44)
ih Wi
Therefore, the transition probability becomes

4 (H ’ t

RYINL: fi| sin? 2%
Pys(t) = M )(t)‘ - 2 (13.45)

w;

This transition probability shown in Fig. 13.2 is again similar
to the case of the harmonic perturbation, except that now we
see a resonance occur when (see also Fig. 13.1)

wpi = 0. (13.46)

Namely, resonance phenomenon takes place under constant per-
turbation if there are degenerate levels. Once again, it is clear,
from (13.45), that perturbation theory is applicable at reso-
nance only if

(13.47)
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Wi =0 Wi

Figure 13.2: Transition probability in (13.45) as a function of wy;.

13.2 Long perturbation at resonance

As we have seen in (13.42) and (13.47), if the perturbation acts for
a longer time at resonance, then, our perturbation scheme breaks
down. Here again, as in the case of the nearly degenerate system (in
stationary perturbation theory), we solve the system exactly. First
of all, let us note that if

W~ Wy, (13.48)

then, the only state, that would have a dominant probability for
transition from the state |u;), would be the state |us). Thus, we
neglect all other states and write (namely, we think of this as a two
level system)

[ (8)) = ai(B)e™ T ug) + ap(t)e 5 uy). (13.49)

In this case, we obtain

m%@@%%%+H%mwm,

_ipy . dai(t) _i dag(t)
Eit @ Eyt f
Tt h— i W f _
or, e nHih—r lu;) + e~ n"1" ik & lug)
= o B H () ui) ai(t) + e n P H (0)]uy) ag(0).
(13.50)
Taking the inner product of (13.50) with the state (u;|, we have

dai(t)
dt

ih = (H'(t))iia; + e "t (H'(t))iras(t). (13.51)
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Furthermore, choosing H'(t) = 2H sinwt, we can write (13.51) as

: dai(t) - w —iw 3
ih ET —1 (e t_e t) Hj;a;(t)

i (e—“wﬁ—w)t - e—i(www)t) Hijap(t).  (13.52)

Similarly, taking the inner product of (13.50) with (us|, we obtain

. daf (t) . i(wpitw)t i(wri—w)t 7
- UwWriTwW)t _ U Wiy -
th ;= ¢ (e e > Hyiai(t)

—i (™ — e Hypay(t). (13.53)
It is clear that, since

W~ wy, (13.54)

the terms with ¥t and e*(@rit@)t will contribute negligibly when

integrated. Thus, we can approximate and write

A(t P
Zth:ii ) — —je i(wys w)tHifaf(t),
d t . ~
ih%() — ’iel(wfi_w)tHfiai(t)- (13.55)

If we assume that the system is initially in the ith state, then, the
equations in (13.55) have to be solved subject to the initial conditions

CLZ(O) = 1, af(O) = O,

da;(t) day(t) 1.
dt |, 0 dt |, h7 (13.56)

This system of coupled equations can be exactly solved for w near
wy; and the solution gives

_ Al H
4’Hfi‘2 + h2(w — o.)fi)2

4‘];} i’2 + hz(w — W i)2 to
X sin? <\/ d o ! > (13.57)

Relation (13.57) is known as the Breit-Wigner formula.
First of all, let us note that this probability lies between 0 and
1, no matter how long the perturbation acts. When the transition

Pi—)f
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probability is zero, the system has oscillated back to the initial state.
It is clear that if w = wy;, no matter how small the perturbation is,
the system can move from the state |u;) to |us) with a considerable
probability. We also see that if ¢y is small (at w = wy;), then, (13.57)
gives

|Hif|*t]

. (13.58)

Pi—> f=
which is, of course, the first order perturbation result that we have
derived earlier in (13.41).

13.3 Transition from a discrete level to continuum

All the perturbation schemes that we have developed so far hold
true, no matter whether the spectrum of the Hamiltonian is discrete
or continuous. In fact, we can think of a continuous spectrum as a
limiting case of a discrete spectrum. Various interesting physical phe-
nomena correspond to a system making a transition from a discrete
level to continuum. To name a few such effects, we have ionization
of an atom when an electron leaves the atom, photoelectric effect,
radioactive beta decay and so on. Let us study such effects in some
detail.

First of all, let us remind ourselves of the continuous spectrum.
The free Schrodinger equation

2mE
V2 4+ k2 = 0, K2 = o (13.59)
has solutions of the form
() ~ e, (13.60)

where the momentum, p = ik, and hence the energy can take any
continuous value. In such a case, we are, of course, not interested
in measuring transition to a particular state, rather we would like to
study the transition to a group of states lying clos