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Preface

The given book presents an introduction to the basic concepts and mathematical tools of
quantum mechanics. It is based on the material that [ have been using in teaching the first
course on quantum mechanics to the undergraduate and M.Sc. students at I. I. T. Delhi.
The last chapter on relativistic generalization of quantum mechanics does not constitute a
part of the usual course and has been added for those who wish to have some basic ideas
of relativistic quantum mechanics.

In presenting the material, I have taken into account the feedback of the students about
the conceptual as well as the mathematical difficulties faced by them during the course. As
a result, I have tried to be as simple as possible. Therefore, I might appear to be too simple
and repetitive at times and I hope the knowledgeable reader will pardon me for that.

The book starts with the basics of quantum mechanics in the traditional way by using
the fundamental tools of mathematical analysis with an emphasis on the physical
explanation for the mathematical treatment of the topics. This part includes the
introduction to the concept of the state of a quantum mechanical system, operators and
their algebra, the basic postulates of quantum mechanics and the solution of the
Schrédinger equation for important one-dimensional systems. The algebraic formalism in
the traditional language of Dirac is then introduced and the entire earlier material is
reformulated in this language so as to make the reader comfortable with the modern
language of quantum mechanics. In the later chapters of the book, I deal with the
three-dimensional problems, hydrogen atom, quantum mechanical theory of orbital as
well as spin angular momentum, and many particle systems. Simple effects related to the
quantum mechanical treatment of the motion of a charged particle in the presence of a
magnetic field are also presented. The basic concepts related to the symmetries of a
system and the corresponding laws of conservation are then introduced and developed. In
particular, the relationship between the fundamental quantum mechanical operators and
the generators of the continuous groups of symmetries of spacetime are established and
discussed. The book ends with an introduction to relativistic quantum mechanics.

XV
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Chapter 1

Introduction

Before the advent of quantum mechanics, classical physics studied the universe as a
system consisting of matter and radiation. Matter was supposed to be made up of tiny
building blocks called particles whose motion in space and time was assumed to be
governed solely by the laws of mechanics formulated by Newton. The state of a classical
system at a given instant of time, 9, was completely defined by prescribing its position
vector, 7y, and momentum, py. For any ¢ > 1, this state was uniquely determined by 7(¢)
and p(r), the solutions of Newton’s equations of motion with the initial conditions
7(to) = 7o and p(t9) = Po.

Radiation, on the other hand, was assumed to be governed by the laws of
electromagnetism formulated in a unified manner by James Clark Maxwell. The
dynamical variables of the radiation field were the components of the electric field, E, and
the magnetic field, B, at every point in space. The spatio-temporal evolution of these fields
was governed by Maxwell’s equations. Unlike matter, the radiation field consisted of
waves, with their characteristic properties exhibited in the phenomena of interference and
diffraction.

Until the end of the nineteenth century, both these theories were on firm footings. The
results of the kinetic theory of gases and statistical thermodynamics made it possible to
verify qualitatively and also quantitatively the basic predictions of this corpuscular theory
of matter. Besides that, all the contradictions that arose between the corpuscular theory
and the wave theory of radiation were overcome by Huygens and Fresnel whose wave
theory of light enabled one to explain all the phenomena involving light, including
geometrical optics. At this stage, it was firmly believed that all phenomena in physics
could be satisfactorily explained in the general framework of matter—radiation theory. If,
in some cases, the explanation was not possible, the blame was put on the mathematical
difficulties involved in the solution of the problems.

However, towards the end of the nineteenth century and the beginning of the twentieth
century, a number of experiments, which were aimed at probing the atomic and
sub-atomic structures of matter, were carried out. The results of these experiments
strongly suggested a non-classical behaviour of matter at the microscopic level. Precisely
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speaking, two major groups of phenomena emerged that could not be comprehended by
classical physics. The first was related to the existence of discrete energy levels for atoms
(discrete physical characteristic up against a continuous one in classical physics) and the
second was related to the so-called wave—particle dualism which appeared both in the
behaviour of light as well as in the behaviour of the then-known elementary particles of
matter. The physical phenomena underlying these experimental observations could not be
explained on the basis of the classical framework of matter—radiation theory. As a result, it
was felt that a new physical insight, radically different from the traditional one, was needed
to explain the physical phenomena behind those, seemingly unusual, experimental results.
As we know now, the result was a new physical theory called quantum mechanics.

In the rest of this Chapter, we shall dwell upon some of the key phenomena that gave a
decisive jolt to the foundations of classical physics and played the most crucial role in the
development of quantum mechanics.

1.1 The Blackbody Radiation

The radiation emitted by a body due to its temperature is called thermal radiation. In
general, the spectral distribution in the thermal radiation emitted by a hot body depends
on its composition. However, experiments show that there is a class of hot bodies whose
spectra of thermal radiation have a universal character. Such hot bodies are known as
blackbodies. Blackbodies are bodies with surfaces that absorb all of thermal radiation
incident on them.

An important example of a blackbody is a cavity with a small hole on the surface.
Any radiation incident upon the hole enters the cavity and undergoes a very large number
of reflections off the walls of the cavity. In this process, it gets trapped and eventually
absorbed by the walls before it can escape through the hole. Thus, the hole is equivalent to
a surface that is a perfect absorber of radiation, like the surface of a blackbody.

Let us now assume that the walls of a cavity with a small hole is heated uniformly to
a temperature 7. Clearly, the interior of the cavity will be filled by the thermal radiation
from the walls of the cavity. A small amount of radiation from the interior will fall on the
hole and escape outside. The hole now acts as an emitter of thermal radiation. As discussed
earlier, the hole has all the properties of the surface of a blackbody and hence the radiation
from the hole of the cavity is called blackbody radiation.

The experimental data about blackbody radiation for various objects show that, at
equilibrium, the radiation emitted has a well defined, continuous energy distribution and
for each frequency, it is characterized by a quantity u(v,T), which is called the energy
density. It is defined as the energy content per unit volume per unit frequency interval of a
cavity at temperature 7. u(v,T) does not depend on the chemical composition of the
object nor does it depend on its shape. It depends only on the temperature of the walls of
the cavity. Apart from that, the energy density shows a pronounced maximum at a given
frequency, which increases with temperature. The experimentally observed dependence of
u(v,T) on frequency, v, is shown in Figure 1.1 for three different temperatures.
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In 1879, J. Stefan, on the basis of his experimental data, established the following
empirical expression for the total power per unit area emitted by a hot body at
temperature 7'

P=oT", (1.1.1)

up(v) (x 10_17j0ule/m3— Hz)

A

2000° K

1500° K

1000° K

v (x 1014 Hz)

Figure 1.1 The energy density of a blackbody radiator as a function of frequency V for
three different temperatures T = 1000K, 1500K and 2000K.

where o = 12k} / (151%¢?) = 5.67 x 1078 W m~2K~* is the Stefan-Boltzmann constant.
The theoretical derivation of Stefan’s law, given by (1.1.1), was provided by Boltzmann
in 1884 by combining the thermodynamical calculations with the principles of Maxwell’s
electrodynamics.

There were various attempts to explain the continuous nature of the blackbody
radiation. In 1894, Wien, using the Stefan—Boltzmann law (1.1.1), obtained the following
formula for the energy density distribution u(v,T)

u(v,T)=av3e PV/T, (1.1.2)
where o and 3 are constants that can be adjusted to fit the experimental data. Wien’s

formula explains the experimental data pretty well at high frequencies but fails miserably
at low frequencies.
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Later, Rayleigh and Jean attempted the theoretical modelling of the blackbody radiation
on the basis of the classical radiation theory and the principle of equipartition of energy
among the degrees of freedom. The resultant formula

(1.1.3)

for the energy density of radiation, where kg is the Boltzmann constant and c is the speed
of light in free space, is known as the Rayleigh—Jeans formula. It is clear that the formula
fails to explain the experimental data at high frequencies.

In Figure 1.2, we have depicted, with dashed lines, the energy density as a function of
the frequency of radiation given by the Rayleigh—Jeans formula and also by Wien’s
formula. The solid curve in Figure 1.2 shows the experimentally obtained result for uz (V)
at 7 = 1500K. The discrepancy between the experimental result and the theoretical
prediction is quite clear from the figure.

uz(v) (x 1071 joule/m3— Hz)

A

Rayleigh-jeans Wien’s law

1500° K

| | | | | | >

1 2 3
v (x 1014 Hz)

Figure 1.2 The energy density of a blackbody radiator as a function of frequency V.
The solid line represents the experimental curve, while the dashed lines
correspond to the Rayleigh—Jeans and Wien’s formulae, respectively.

All attempts, based on statistical thermodynamics and electromagnetic theory, to
explain the continuous nature of the spectral distribution of thermal radiation over the
entire range of frequencies resulted into utter failure until 1901 when Max Planck
formulated his celebrated theory of blackbody radiation. He showed that the experimental
curve could be explained only if one postulated that the energy of the radiation, emitted
by the walls of the cavity, was quantized, that is, it was emitted only in multiples of the
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quantity v, where h = 1.63 x 1073* J s. is a universal constant. On the basis of his
hypothesis of quantized radiation, Planck derived the spectral distribution function

8mv? hv
3 kT’

u(v,T) = (1.1.4)
valid for the entire range of frequency. In terms of the angular frequency, @ = 27w v,
Planck’s formula can be written as

»? ho

2¢3 ho/kgT—1" (1.1.5)

u(w,T) =
At a given temperature 7, the quantity u(,T)do is the energy density in the frequency
interval [©, ® + d ).
In the low frequency limit, when hv < kgT, we have e"®/k87T ~ | + hw /kgT and we
get

2 8 v2

3

u(w,T) = kgT or u(v,T)dv= kT, (1.1.6)

w23’
which is nothing but the Rayleigh—Jeans formula (1.1.3). On the other hand, in the high
frequency limit, when v > kgT, Planck’s formula reduces to Wien’s formula:

"o o skt
M(w,T>:%€ BE (11.7)
Moreover, if we integrate equation (1.1.3) over all frequencies, then using the well known
result

o )3 P
/0 ex—ldx:E’ (1.1.8)

we recover Stefan’s formula.

Thus, Planck’s hypothesis of quantized radiation was a complete departure from the
notions of classical physics and marked the beginning of a new era in physics, the era of
quantum physics.

1.2 The Photoelectric Effect

It was experimentally established that irradiation of metallic surfaces with light led to the
ejection of electrons. This phenomenon of ejection of electrons from a metallic surface
under the action of light is known as photoelectric effect. The phenomenon had some
peculiar properties: (a) when the frequency of the irradiating light was less than the
so-called threshold frequency (vy), irrespective of the intensity of the irradiating light, no
electrons could be ejected, (b) irrespective of the intensity of radiation (high or low),
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electrons were ejected instantaneously provided the frequency of radiation was greater
than the threshold frequency and (c) the kinetic energy of the ejected electrons depended
on the frequency but not on the intensity of the irradiating light.

Note that the threshold frequency is a characteristic of a given metal and is defined as
Vo = ®/h, where ® is the work function of the metal and s Planck’s constant. The work
function is the minimum energy required for an electron to overcome the attractive forces
that bind it to the metal surface.

The dependence of the photoelectric effect on the frequency of the falling radiation,
which must be greater than the threshold frequency, could not be explained in the
framework of classical physics. According to classical wave theory of light, the intensity
of light is proportional to the square of the amplitude of the oscillating electric field.
Hence, light of any frequency with sufficient intensity should be able to supply the
required amount of energy for the electrons to overcome the potential barrier (work
function) and become free. However, this was not the case in reality.

The second important point was the instantaneous ejection of electrons from the
surface. According to classical physics, even if the falling radiation is weak, the electron
would continuously absorb energy from it and in the process would be able to accumulate
enough energy to leave the surface of the metal. Hence, according to classical physics, if
the radiation is weak, the photoelectric effect should take some time before it shows up.
However, no detectable time lag has ever been measured.

In 1905, Einstein used Planck’s concept of quantized radiation and formulated the
theory of photoelectric effect. He assumed light to be consisting of discrete quanta
(photons), each of energy Av, v being the frequency of light. When a metal is irradiated
by light, an electron absorbs a photon (a quantum of energy) and gains an amount of
energy equal to hv irrespective of the intensity of the falling light. If this amount of
energy is greater than the work function of the metal, the electron will be ejected. If the
amount of energy is not greater than the work function of the metal, the electron will not
be able to overcome the potential barrier. Therefore, the photoelectric effect can take
place only if Av > ®. As a result, Einstein’s fundamental equation for photoelectric effect
reads:

hv =®+K, (1.2.1)

where K is the kinetic energy of the ejected electron. Einstein’s theory of photoelectric
effect explained the experimental data completely, including the linear increase in the
kinetic energy of the electrons with the increase in the frequency of the irradiating light.
The latter is evident from the following equation

K=h(v—w), (1.2.2)

representing the dependence of the kinetic energy K on frequency v. Itis clear from (1.2.2)
that K = 0 for v = vy. This shows that a photon of frequency vy has just enough energy to
make an electron free, that is, to make the electron overcome the work function barrier. For
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an electron to leave the metallic surface with some non-zero kinetic energy, the frequency v
of the irradiating light must be greater than v. This explains why the frequency of the light
falling on a metal surface should be greater than the threshold frequency for photoelectric
effect to take place. It also explains the dependence of the kinetic energy of the ejected
electrons on the frequency of light rather than on its intensity. So far as the discrepancy
regarding the time lag is concerned, this is explained by the fact that the energy is provided
in discrete quanta rather than continuously. Therefore, if the quantum of energy Av is
greater than the work function, it will be absorbed by an electron and the electron will be
ejected immediately; no time lag should be observed.

In summary, Einstein’s theory of photoelectric effect and its subsequent experimental
verification gave strong evidence in favour of Planck’s hypothesis of quantized radiation
and showed that light, in general, consists of discrete particles called photons (corpuscles)
of finite energy. This was contrary to the classical description, according to which light of
a given frequency was nothing but a continuous electromagnetic wave. A very important
point to be noted here is that, besides explaining the peculiar properties of photoelectric
effect, Einstein’s theory clearly demonstrated the characteristic wave—particle duality of
the micro-world.

1.3 The Bohr Model of an Atom

Rutherford’s nuclear model of an atom consisting of a positively charged nucleus with
electrons spread around it underwent rigorous experimental verification and left little doubt
about its validity except that it did not guarantee the stability of the atom. For instance, if
the electrons are supposed to be in a stationary arrangement, there is no stable configuration
that would prevent the electrons from being pulled into the nucleus by the Coulomb force
of attraction. On the other hand, if we assume the electrons to be orbiting the nucleus, in
a similar way as the planets revolve around the sun in our solar system, they would be in
an accelerated motion and being charged particles, they would emit energy in the form of
electromagnetic radiation. As a result, the electrons would spiral into the nucleus.

To overcome these difficulties associated with the stability of atoms in the Rutherford
model, Niels Bohr developed his model of an atom on the basis of a set of postulates. He
assumed the electrons to be moving in circular orbits around the positively charged
nucleus under the attractive Coulomb force. He, contrary to the principles of classical
mechanics that allowed an electron to have a infinite set of circular orbits, postulated that
electrons could move only in a selected discrete set of orbits for which its angular
momentum was quantized. He assumed the angular momentum, L of an electron in such
orbits to be an integral multiple of Planck’s constant A, that is, L = nh, where h = h/2n
and n is a positive integer. Bohr also postulated that an electron in any of these allowed
discrete orbits does not radiate and hence, its total energy E is conserved. These Bohr
orbits are called stationary orbits.

Finally, in an attempt to explain the peculiarities involved in the discrete emission and
absorption of radiation by atoms, Bohr postulated that if an electron made a discontinuous
transition from one stationary orbit with energy E; to another stationary orbit with energy
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Ey such that E; > E, it must emit energy in the form of electromagnetic radiation (photon)
whose frequency, Vv, is given by

vy Ei—Er

. (1.3.1)

Using these postulates, Bohr derived his celebrated formula for the total energy of an
electron of mass m, and charge —e in an atom with a positively charged nucleus of charge
+Ze and mass M. It is given by

meZ*e* 1
E=—————, 1.3.2
" 3om2ednt n? (132

where & is the permittivity of free space. We thus see that, according to Bohr, the energy
of an electron in an atom is quantized and its various stationary states are characterized by
the integer n, which is there in the condition for quantized angular momentum. The integer
n, as we shall see later, is called the principal quantum number.

As we know today, Bohr theory of atom was not a consistent quantum theory in the
sense that it imposed an ad hoc quantization condition on otherwise continuous classical
variables. However, it did establish the discrete nature of physical characteristics of
microscopic entities and strengthened the belief that the new microscopic theory of matter
must inevitably incorporate this discreteness in its formalism.

1.4 The Compton Effect

The increase in the wavelength of X-rays after scattering off a free electron is known as
Compton effect. The experiment was first conducted by Compton in 1923, who found that
the wavelength of the scattered radiation was larger than the wavelength of the incident
radiation. This was contrary to the classical theory of radiation according to which the
incident and the scattered radiations should have the same wavelength. In order to explain
the experimental results, Compton assumed that the X-ray beam was not a wave of
frequency v but a bunch of photons, each with energy E = hv. He treated the
phenomenon as an elastic scattering of photons off a free electron. Qualitatively,
according to Compton, the recoil photons emerging from the target constituted the
scattered radiation and, since a photon transfers some of its initial energy, E;, to the
electron it bounces off, the scattered photon must have a lower final energy E;. This
means that it must have a lower final frequency vy and consequently a larger final
wavelength A;. Compton applied energy and momentum conservation to obtain the
required theoretical expression for the shift in the wavelength of the scattered photons.
Consider a photon of energy E¥ = hv and momentum p¥ = E¥/c = hv/c, where c is
the speed of light in vacuum, undergoing an elastic collision with an electron which is
initially at rest. Let the momentum of the photon, after scattering at an angle 6, be p'7.



Introduction 9

If the recoil momentum of the electron after scattering is j., the conservation of momentum
yields:

p?=p"+ Pe. (1.4.1)

On the other hand, if E’Y = hV’ is the energy of the scattered photon and m, the rest mass
of the electron, then energy conservation leads to

hv+E, =E'"+E,, (1.4.2)

where E g = m.c? and E, = \/p2c? + m2c* are the energy of the electron before and after
the collision, respectively. After a bit of algebra, involving equations (1.4.1) and (1.4.2),
we arrive at

5 m2c*
hv +mec” = hv' +hy/ v24+Vv2 —-2vVv/cos 0 + ;;2 . (1.4.3)
Dividing (1.4.3) throughout by &, we obtain
mec> m2ct
Vv + = V24 V2 2y cos O + 22 (1.4.4)

Squaring both sides of (1.4.4) and simplifying, we end up with

11 1 2h 62
———= (1—cosB) = sin <> (1.4.5)

ViV mec? Mec? 2

Finally, converting to wavelength, we have

2
AL = A" — A =4rA, sin (92 ) , (1.4.6)

where A, = h/2xm.c = 3.86 x 10713 m is the Compton wavelength of the electron. This
formula, which explains the experimental results, shows that the change in wavelength
depends only on the angle of scattering 6 and not on the wavelength of the incident
radiation. The Compton effect confirmed the corpuscular behaviour of light that had
surfaced as a surprise after Einstein formulated his theory of photoelectric effect.

The final and decisive impetus was provided by Louis in 1924, who put forward a
courageous hypothesis that every material particle, besides its usual corpuscular properties
described by Newton’s equations of motion, also possesses properties that we assign to a
wave. According to him, a free particle with momentum j can be represented by a plane
wave

y(7r) = A kFon), (14.7)
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where A is a constant. The wave vector k and the angular frequency @ of the wave are
related to the momentum p and the energy E of the particle by the following expressions

] E

k—h, 0= . (1.4.8)
where 7 is equal to Planck’s constant divided by 27m. de Broglie’s hypothesis was
experimentally confirmed by Davisson—Germer in 1927.

All these peculiar and scientifically new developments at the end of the nineteenth and
the beginning of the twentieth centuries inspired the discovery of a new physical theory
capable of describing the phenomena occurring at the microscopic scales. It was
formulated in two different forms: Matrix mechanics (Heisenberg 1925) and wave
mechanics (Schrodinger 1926). Later, they were shown to be equivalent. This new theory
was universally called quantum mechanics.

Example 1.4.1: A light source of wavelength A; illuminates a metal and ejects
photoelectrons with a maximum kinetic energy of 2 eV. If the same metal is irradiated
with another source that emits light at a wavelength half that of the first source, what will
be the maximum kinetic energy of the ejected electrons? The work function of the metal
is1eV.

Solution: According to Einstein’s equation of photoelectric effect

hc
Kinax = T

— P, (1.4.9)
where K stands for the kinetic energy of the ejected electrons, & ~ 6.62 x 1073* J s is
Planck’s constant, ¢ is the speed of light in free space, A is the wavelength of the light
incident on the metal and & is the work function of the metal. In the given case, we have

Kimax = E—(I), (1.4.10)
A
he 2hce

Kpox=——DP=——. 14.11

From (1.4.10), we have hc/ A1 = Kimax + P, and hence
Komax = 2K 1max + @. (1.4.12)
Thus, Kopax =4+ 1 =5eV.

Example 1.4.2: A 500 MeV photon undergoes a head-on collision with a proton (Mc2 =

936 MeV) at rest. Find the maximum loss of energy in the process.
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Solution: Let the initial and the final momenta of the photon be +p and p’ respectively.
Since the proton is initially at rest, momentum conservation requires its final momentum
to be (p — p'). The relativistic formula for energy conservation gives

pc+Mc* = |p'lc+ \/(Mc2)2—|—(p—p’)2c2, (1.4.13)

where we have taken into account that the final momentum p’ may be positive as well as
negative. If p’ > 0, then we get

(pc—ple+M*)? = (M*)?+ (p—p')’c?, = 2M(p—p')c’ =0. (14.14)

This means that p = p’ and the proton remains at rest. Therefore, there is no energy loss.
However, if p’ < 0, then the final proton momentum is (p + |p’|) and we have

(pe—p'le+M?)? = (M) +(p+p')°c® = 2Me(p—|p]) =4plp'|. (1.4.15)
This gives the magnitude of the final momentum of the photon to be

Mcp p
4 Mc+2p 1+42p/Mc ( )

As a consequence, the energy loss is given by

2(cp)? 1
AE =c(p—Ip']) = ](WCQ) e (1.4.17)
1 -
+Mcz

Putting the values cp = 500 MeV and Mc?> = 936 MeV, we obtain AE = 258 MeV.

Example 1.4.3: Muonic hydrogen consists of a muon (a particle just like an electron but with

amass my = 105.7 MeV/c?) bound to a proton. Use the Bohr model to find the energy and
radius of the lowest orbit, and the wavelength of the n =2 — n = 1 transition.

Solution: For the energy of the lowest orbit, we use the Bohr formula

2\’ m 1 &\’
Ee_ _ e 2 1.4.18
<4neo> 7> (47‘680 hc) me ( )

Taking into account that, in general, the nucleus is also moving, we use the reduced mass
for the muon-proton atom

by mympy 105.7 x 638.28

= = MeV/c? = 94.998 MeV /c?. 1.4.19
o+, 105.74638.28 MY/ € ev/e (1419
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Hence, the energy is given by

1/ 1\ 5
E=—3 (137) 94.998 MeV /c? = —2531eV. (1.4.20)

The radius of the orbit is

4 2 122 1 124 27)?
po (A0 e [1240eV nm /277 _ 5 oo (1421)
1z~ \144eVnm  94.998 MeV

For n =2 — n =1 transition, the energy of the photon is given by

1 3 3
Ey=E,—E = — (4 — 1) E| = _ZEI = 12531eV = 1898eV. (1.4.22)

The wavelength is therefore

fic - 1240eV nm

A T Ty

= 0.653 nm. (1.4.23)

Homework Problems

1.

The work function for photo-effect in potassium is 2.25 eV. When a light of
wavelength 3.6 x 107 m falls on the potassium atom, calculate: (a) the stopping
potential Viax of the photoelectrons and (b) the kinetic energy and the velocity of the
fastest of the ejected electrons.

. A photon with 10* eV energy collides with a free electron at rest and is scattered

through an angle of 60°. Calculate (a) the change in energy, frequency and wavelength
of the photon, and (b) the kinetic energy, momentum and direction of the electron after
the collision.

. Calculate the de Broglie wavelength for an electron with a kinetic energy of 20 eV and

200 ke V.

Consider an atom with a nucleus consisting of 2 protons, and instead of an electron, a
muon (207 times as heavy as an electron, or my = 207 x m,). Calculate the energy of
the ground state and the first excited state, and the wavelength of light associated with
the transition.

A 100 keV photon undergoes Compton scattering at an angle of 40°. Find the energy
of the scattered photon, and the energy and angle of the recoil electron.



Chapter 2

The Postulates of Quantum Mechanics

The basic questions that quantum mechanics ventures to answer are the following:

I. How can one define the state of a quantum mechanical system at a given time ¢?

II. How can one represent or describe a measurable physical quantity (position,
momentum, energy, angular momentum etc) in quantum mechanics?

III. How can one calculate the values of various measurable physical quantities in a given
quantum state?

IV. Do all possible measurements of an observable in a given state lead to the same
numerical value? If not, how do we define the value of an observable in a given
state?

V. How, knowing the state of the system at any given instant of time #y, can one
determine the state at any later instant ¢t > #(?

In what follows, we shall discuss these questions and the possible answers to them. This
will eventually lead us to the basic theory of quantum mechanics. Let us start with the
definition of a state of a microscopic system.

As in classical mechanics, we have to first decide how we are going to define the state
of a quantum mechanical system (particle) at a given instant of time and then determine
the equation that governs the time-evolution of the state. In classical mechanics, the state
of a particle at a given instant of time is completely defined by specifying its position and
momentum at that instant. In quantum mechanics, however, due to some specific
properties (which will be discussed later), it is impossible to determine both the position
and momentum of a particle simultaneously and accurately at a given instant of time.
Therefore, for a quantum system we need a new, completely different from the classical
point of view, definition of state. It is done, as we shall see, by introducing a mathematical
object called the wave function.

Note that in this entire book, we shall use the word particle to denote not only a particle,
but also a given quantum mechanical system. That is, the word ’particle’ is synonymous to
system and vice versa.

13
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2.1 Specification of State. Statistical Interpretation

Postulate 1: The state of a quantum system at a given instant of time, #, is completely
defined by a function, y(7,t), of position 7 = {x,y,z} and time, ¢.

It is called the wave function of the particle. The wave function is a complex-valued
function and contains information about the position of the particle at time z.

Statistical Interpretation: The wave function y(7,7) does not have any physical meaning
of its own. However, it has been accepted to consider it as the probability amplitude in the
sense that, if a measurement of the position of the particle is carried out, the probability that
at a given instant of time, ¢, the particle will be found in an infinitesimal volume element,
AV = dxdydz, is given by |y (#,1)|*dV. This is the so-called statistical interpretation of
the wave function proposed by Max Born. It is then obvious that the quantity |y (7) ? plays
the role of the probability density for locating the particle in space at a given instant of
time.

There are two important points to be noted here. Firstly, if we multiply y by a complex
number ¢'%, where « is a real constant, its physical meaning does not change because |y/|?
remains unchanged. Consequently, the probability, P, of locating the particle in a given
volume V,

P:/ lw(7.1))*av, (2.1.1)
\4

also remains unchanged.

Now, since the probability of finding the particle at some point in space at a given
instant of time is definitely equal to 1, if the volume of integration, V, in the above formula
is replaced by all space (i.e., the entire universe), we arrive at:

/ \w(7,1)|?dV :/ dx/ dy/ dz|y(71))? = 1. (2.1.2)
all space —o0 — oo —oo

Equation (2.1.2) is known as the normalization of the wave function. This condition of
normalizability requires the wave function to be square-integrable. As a particular case,
the square—integrability requires the wave function to vanish at spatial infinity:

lim  y(xy,zt)=0. (2.1.3)
(x,y,2)—> oo
In general, an acceptable wave function must satisfy the following conditions:
(a) The wave function must be single-valued.

(b) It must be continuous in the entire region of its arguments (that is, of the independent
variables).

(c) It must be finite everywhere.
(d) The wave function must also be square-integrable.
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We shall call these as standard conditions. If a function does not satisfy even one of these
conditions, it cannot be an acceptable quantum mechanical wave function.

Before we proceed further, let us note that the set of all possible complex wave
functions, y(7.1),¢(%t),x(7.t),..., of a quantum mechanical system forms a linear
vector space which is equipped with a scalar product. This scalar product between any
pair of functions, ¥ and @, is defined as

oo
| wodx=(v.9), (2.1.4)

where d3x = dx dydz. According to the standard conditions, mentioned earlier, this scalar
product has to exist, that is, (¥, ) < .

. . i 2 P
Example 2.1.1: Which of the wave functions y(x,1) = Axe '® and ¢ (x,1) = Axe B*" ¢~
where A, @ and 3 are arbitrary constants, can be an acceptable quantum mechanical wave
function?

Solution: Both the functions are single-valued and continuous. However, y/(x,7) is not finite
everywhere and is not square-integrable:

o0 +oo
/ |1//1(x,t)|2dx:|A|2/ x> dx — oo, (2.1.5)

oo

Hence, it cannot be an acceptable wave function. On the other hand, ¢(x,z) is finite
everywhere and is also square-integrable as shown below:

oo oo
/ lya (x,1)|?dx = |A]2/ 2e 2P gy, (2.1.6)

The integral can be evaluated with the help of the Gaussian integral

I(a) = /je‘J‘)f2 dx = \/z 2.1.7)

If we differentiate /(o) with respect to o, we get

—+o0 T
/ e % gy = o (2.1.8)

In our case, @ = 2f3. Therefore,

oo
/m |w2(x,t)|2dx:,/327;3. (2.1.9)
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We see that ¢ (x,7) satisfies the standard conditions and, hence, is an acceptable quantum
mechanical wave function.

Example 2.1.2: Does the function,

sin(%), 0<x<3
0, Otherwise

represent an acceptable wave function?

Solution: The first three standard conditions are clearly satisfied by the given function. Let
us check the last condition of square-integrability. We have

oo 3
1:/ |l//(x,t)|2dx:/ sin’ (E) dx. (2.1.10)
0 3

—oo

Using the trigonometrical formula cos(2x) = 1 —2 sin®x, we get

7 l/3d 1/3 27x d 3 3 . (2nx
== —— [ cos| — =—-——sin| —

2J0 T2 3 )% 724 3
Hence, the given function satisfies all the standard conditions and is an acceptable quantum
mechanical wave function.

303
=2 <o 2.1.11
=5 (2.1.11)

Example 2.1.3: The wave function of a particle is

I//(x,t) :Ae—a(x_ﬁ)z e_iwz’

where A is an arbitrary constant. Here, o, B and ® are known real constants. (a) Find A.
(b) Where is the particle most likely to be found?

Solution: The normalization condition for the wave function reads

/+°° lw(x,0)[Pdx=|A]? /+°° e~ 0=P)? gmiot y—alx—p)? jtior g,

—o0

~+o0
— \A|2/ e 2B gy — (2.1.12)

oo

Changing the variable x — 3 to &, we get

—+oo
|A]2/ e 208 gE = 1. (2.1.13)
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Taking the integral, we obtain

T 2 _ (2a)t/*
Vag AP=1 = A= (2.1.14)

For the extremum of the probability density, p = |y|?, we must have

dp _ (20)'72 d ( aa(eppy _ _(20)'2 a(—p) _
dx w2 ﬂ(" >—— 12 dalx—B)e =0. (2.1.15)

Equation (2.1.15) shows that x = f is the point of extremum for p. Since

d’p _ (2a)!/2 2 2\ —2a(x—p)?
W . = 71:1/2 [(—4064—160! <x—B) )e :|x:ﬁ
1/2

the probability density reaches its maximal value at x = 3. Therefore, the particle is most
likely to be found at x = 3.

Example 2.1.4: A particle of mass m is confined to move in the region 0 < x < L. Itisin a
state described by the wave function

y(x,0) = A [sin (5) +sin <2Zx>] :

where A and L are arbitrary real constants. (a) Find A. (b) Find the probability of locating
the particle in the interval L/4 < x < 3L/4.

Solution: The normalization condition leads to

L 2 2
I= \A[z/o (sin2 [%} + sin? {21 + 2 sin {21 sin {?]) dx=1. (2.1.17)

Using the formulae cos(2x) = 1 — 2sin’x and cos(a—f) — cos(a+B) = 2sin(x)
sin(f), we get

2
1= |A2|/0L (2—005 [22)6] —Cos [42”]) dx
L 2 X STCX
+/0 Al <cos [f} —cos [LD dx. (2.1.18)
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nmwx

Integrating and using the identity sin ( T

)‘g =0, we get

1
A’L=1. = A= _—_. 2.1.19
N3 ( )

The probability of finding the particle in the interval L/4 < x < 3L/4 is given by
1 3L/4 27 4
P=— 2—cos | | cos o dx
2L Jr/a L L

1 [3L/4 X 37mx
+ I » <cos {f} —Cos [L}) dx. (2.1.20)

Taking the integrals, we finally obtain
1 L L
P=——-—(—-1-1)——(0-0
2L ( 27r( ) 47r( )>

IR A oL
L\7|v2 2| 3n|v2 2|) 27 o
2.2 Observables and Operators

An observable, A, is a dynamical variable of a particle that can be measured. Position,
momentum, angular momentum and energy are examples of observables that we encounter
in classical mechanics. Naturally, the question arises about how to represent these in the
framework of quantum mechanics. Here, and in the following couple of subsections, we
shall discuss this problem.

Postulate 2: An observable, A, is represented by a linear and hermitian operator that is
written as A.

An operator, A, is a mathematical instruction, which when applied to a mathematical
object, say y, gives another mathematical object ¢ of the same nature. It is symbolically
written as Ay = ¢.

Let v be a usual function of one or several variables x;,i = 1,2,3,...: y(x],x2,X3,...).
Then, in the given context, defining an operator means defining the mathematical
instruction(s) that must be applied to the function y(xj,x,x3,...) to obtain a new
function ¢ (x;,x2,x3,...) of the same number of independent variables.

A simple operator, for instance, may contain the instruction for just taking the derivative
of a function. Suppose we call this operator D. Then, for a given function y(x):

Dy(x) = % — o(x). 22.1)
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Or, in shorthand notation, we just write Dy (x) = ¢ (x). The function ¢ belongs to the same
functional space to which y belongs. Another operator could be the instruction to obtain
a new function ¢ (x) by multiplying a given function y(x) by its independent variable x,
that is, ¢ (x) = xy(x). In other words, the independent variable x can also be looked upon
as an operator. It is usually denoted by £. Thus, ¢ (x) = £y (x) = xy(x).

Linear operators: If, for the given scalars o and 8 and functions y(x) and ¢(x), the
operator A satisfies the relation

A(ay(x)+Bo(x)) = aAy(x) +BAg(x), (22.2)

it is said to be a linear operator. If the action of an operator A on a function ¢ (x) is to
multiply that function by some constant a:

Ap(x) =ao(x), (2.2.3)

we say that the constant a is an eigenvalue of the operator A, and we call ¢(x) an
eigenfunction of A. An operator can have more than one eigenvalues. The set of all
possible eigenvalues of an operator constitutes the so-called eigenvalue spectrum (or,
simply spectrum) of the operator. If for every eigenvalue, there is a single eigenfunction,
the spectrum of the operator is called non-degenerate. If for a given eigenvalue, a, there
are more than one eigenfunctions, the eigenvalue a is said to be degenerate. If, for
instance, for a given eigenvalue, ay, there exist m linearly independent eigenfunctions,
then the eigenvalue qy is said to be m-fold degenerate.

Operators in quantum mechanics are, in general, complex and act in the space of
complex functions. Consequently, their eigenvalues are also, in general, complex.

2.3 Hermitian Operators

Given an operator A, let us define an operator A™ by

[ o @ 6w @a= [ (@) Wi @3

—o0 —o0

The operator AT is called the operator hermitian conjugate (adjoint) to the operator A.

If an operator A is equal to its hermitian conjugate operator, that is, AT = A, it is called
a hermitian operator. On the other hand, if AT = —A, then the operator A is called anti-
hermitian.

If an operator, A, is represented by a matrix A of appropriate dimensions, then the
hermitian conjugate operator is given by the matrix, denoted as A", which is hermitian
conjugate to the matrix A. AT is obtained by first transposing the matrix A and then
performing the complex conjugation, that is,

At = [(A)T]*, 2.32)
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where * stands for complex conjugation.

We may ask why do we use hermitian operators to represent dynamical variables in
quantum mechanics. As we shall see later, in quantum mechanics, it is postulated that if
we measure a dynamical variable A of a system in a given quantum state y, the result will
be one of the eigenvalues of the operator A that represents the dynamical variable A. Since
the results of measurement are real numbers (in appropriate units), the eigenvalues of A
must be real. That is why we have to represent a physical characteristic of a system by a
hermitian operator.

Theorem 2.3.1: The eigenvalues of a hermitian operator are real.

Proof: Consider a hermitian operator A and its eigenvalue equation

A~

AW (F) = Aayu (7)., 7= (x,3,2). (2.3.3)

As stated earlier, A, are in general complex. Now, since A is hermitian, we have

oo R oo
/ v (Ay,)d’x = / (Ay,)*y, d°x. (2.3.4)

—o0

Using the eigenvalue equation for A, we have
~+oo
(A —2)) iy, d*x=0. (2.3.5)

For the non-trivial solutions to the eigenvalue equation, ff: Wiy, d3x # 0 and we get:
An = A;. Hence, A, are real.

Theorem 2.3.2: The eigenfunctions of a hermitian operator, corresponding to distinct
eigenvalues, are orthogonal.

Proof: Let us assume that the eigenvalues are non-degenerate. Consider the eigenvalue
equations for the operator A:

AAWm = MnVYm, (236)
Alw,) = Auw, (2.3.7)

where A,, # A,. Using the hermiticity of A, we have

+oo R foo
/ v (A, )d’x = / (Ayn)* why dx. (2.3.8)

—o0
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If we now use the eigenvalue equation for A and the fact that the eigenvalues are real, we
have

—+oo
(A — ) Vi ydix = 0. (2.3.9)
Since A,, # Ay,
~+o0
Vi Ydix = 0. (2.3.10)

The last equation shows that the eigenfunctions Y, and v, are orthogonal. We can
normalize these eigenfunctions and write the content of Theorem 2.3.2 symbolically as

oo
/ Oy Omd>x = Sy (2.3.11)

where 0, is the Kronecker delta symbol and

0 = Vi (2.3.12)

NI

Let us now see whether Theorem 2.3.2 holds or not for the case when an eigenvalue of A
is degenerate. For simplicity, consider the case of two-fold degeneracy, that is, assume
that a given eigenvalue A is two-fold degenerate. Let y; and y, be the two distinct
eigenfunctions corresponding to A. Clearly, two (or more) eigenfunctions corresponding
to the same eigenvalue will be distinct, if they are linearly independent. If they are not
linearly independent, one of them will be proportional to the other and the constant of
proportionality can be absorbed in the normalization of the wave function. As a result, we
will be left with only one eigenfunction. Therefore, we shall assume y; and y» to be
linearly independent. Since, they are linearly independent, the linear combination

YV =c1yi+oy (2.3.13)

where ¢ and ¢; are arbitrary non-zero constants, must be nonzero. We can use this fact
and the eigenfunctions y; and Y, to construct two new mutually orthogonal eigenfunctions
corresponding to A. Firstly, we normalize y; and take it as the first eigenfunction of A with
eigenvalue A:

Y1

\/ [Towividix

¢ = (2.3.14)
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Consider now the linear combination

u=c291+yn, (2.3.15)

where c;1 is an arbitrary constant, and let it be orthogonal to ¢;. This allows us to determine
C21.

~+oo
e = — / o7 yrdx. (2.3.16)

Thus, the function u, with ¢p1 given by (2.3.16), is orthogonal to ¢;. Finally, we normalize
u and take it as the second eigenfunction with the same eigenvalue A:

u
\/ff::u*ud%

Thus, from the linearly independent eigenfunctions y; and y» of the two-fold degenerate
eigenvalue A of A, we were able to construct two new orthonormal eigenfunctions ¢; and
¢> of A with the same eigenvalue A. Clearly, this procedure can easily be generalized to
the case of m-fold degeneracy (m > 2).

In view of the two theorems proved here, we shall always assume that the
eigenfunctions of a hermitian operator satisfy the orthonormality condition
(Equation (2.3.11)).

So, we have a very important and general result: The eigenfunctions of a hermitian
operator form a complete set of mutually orthonormal functions and, hence, can be taken
to be a basis. This set is unique if the operator has no degenerate eigenvalues; it is not
unique if there is even one degenerate eigenvalue.

In particular, the normalized eigenfunctions, {(])n},n =1,2,3,... of the Hamiltonian of
a particle (system) constitute an orthonormal basis. Therefore, an arbitrary function vy,
representing an arbitrary energy state of a particle, can be expanded into a series with

respect to {¢, }:

Y=Y caln. (2.3.18)

0= (2.3.17)

where the expansion coefficients ¢, are determined as

~+oo
cn = o wdx. (2.3.19)

This kind of expansion is frequently used to solve various problems in quantum mechanics.
In fact, this is another reason why representing a dynamical variable with a hermitian
operator is advantageous.
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Before we conclude, let us have the list of fundamental operators that are used in
quantum mechanics:

Dynamical variables Corresponding operators
in classical mechanics in quantum mechanics
Coordinates: { ’ { 4
X, Y, Z XY, Z
— _ h%
Momentum: { P l P w9 0
DPx» py, Dz —lha, —lha*y, _lh7Z
. Fxp
L d d
Ly = yp. —zpy —in (y97 *Zafy)
Angular momentum: 3 3
Ly = zpx—xp; —ih (za —xa—z>
L, =xpy—yp
‘ g ! —ih <xa% — y%)
=2 el A
Energy: H = 5~ 4V (7) —%Vz +V(7)

It is not difficult to check that all the listed operators are hermitian.

Example 2.3.1: Check whether an operator F, acting in the space of square-integrable
functions and defined by the relation Fy(x) = —(d?y/(x)/dx?), is hermitian or not.

Solution: The operator hermitian conjugate to the operator F is defined by following relation
~+oo

/ o) (Fy () de= [ (Fo) wxax (2:3.20)

—o0 —o0

where ¢(x) is an arbitrary square-integrable function. Replacing Fy(x) by
—(d*y(x)/dx?) on the left-hand side of (2.3.20) and integrating by parts, we have

T[T dor(x) dy(x)
+[m o dn (2321

+

/:wa*(x) (Fy(x)) dx=— (P*(x)dtcyb(cx)

—oo
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Since the wave functions and their first derivatives must be zero at x = =0, the first term
on the right-hand side of (2.3.21) vanishes. Integrating once more by parts and using the
same boundary conditions, we arrive at

[Tew e a= [ 7D ya= [T~ Eow) via

e ce dx? oo
(2.3.22)
From the equations (2.3.20) and (2.3.22), we obtain
. A
Fl=——5 =F. 2.3.23
2 ( )
Hence, the operator £ = —d? /dx” is hermitian.

Example 2.3.2: Using the definition of a hermitian conjugate operator (through the integral
expression), find the operator hermitian conjugate to the operator

X d
A :xa%—acos(x),

where « is a real constant.

Solution: From the definition of the hermitian conjugate operator, we have

oo A b .
/ 0"(x) (A ()) dx:/ (A7 (x)) w(x)dx, (2.3.24)

—oo —o0

where ¢ and y are arbitrary square-integrable functions. Let us simplify the right-hand
side (RHS) of (2.3.24),

oo oo
RHS — / dx+/ acos(x) " (x) w(x)dx =1 + b,  (23.25)

Integrating the first term by parts and using the fact that the functions ¢ and y tend to zero
at spatial infinities, we obtain

o0 * o0 *
= [xcb*t/f]fi.f’—[w d(ﬁ )wdxz—/w dgf )wdx

_ /+°° <¢*+xd¢*> wdx. (2.3.26)
dx

—oo

As a consequence, we arrive at

/+w 90" (x) (Ay(x)) dx = /M [(—1 —xdi +a cos(x)> ¢(x)] * w(x)dx. (23.27)

—oo —oo X
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Comparing the equations (2.3.24) and (2.3.27), we see that the hermitian conjugate
operator is given by

P d
L O T
A < 1 +a cos(x)) . (2.3.28)

Theorem 2.3.3: The eigenvalues of an anti-hermitian operator are either purely imaginary
or equal to zero.

Proof: Consider an anti-hermitian operator A and its eigenvalue equation
Ay, = 2y, (2.3.29)

As stated earlier, A, are in general complex. Now, since A is anti-hermitian, we have

+oo +o0
/ v (Ay,)dx = / (—Ay) w, d°x, (2.3.30)

—o0

Using the eigenvalue equation for A, we have
—+oo
(A +A)) / iy, d*x = 0. (2.3.31)

For the non-trivial solutions of the eigenvalue equation, ff: VAR 17 d3x # 0 and we get:
An + A, = 0. This means that Re{A} = 0. Hence, 4, is purely imaginary. Clearly, if
A =0, the equation A, + A, = 0 is automatically satisfied.

Inverse of an operator: The operator A~!, inverse of an operator A, is defined by the
relation: AA~! = A~1A = I, where I is the unit operator, i.e., the operator that leaves any
state unchanged: [y = .

A matrix operator A has an inverse only if the matrix A = (aij), representing the
operator A, is a square matrix and its determinant (det(A)) is non-zero. A matrix that has
an inverse is called a non-singular matrix, while the one with no inverse is called a
singular matrix. The inverse of an operator A is given by the matrix A~!, which is the
inverse of the matrix A.

Given a matrix A, we can find A~! as follows:

1
 det(A)

A7l adj(A), (2.3.32)

where ad j(A) = CT is the matrix adjoint to A and det(A) stands for the determinant of A.
The elements c;; of the matrix C are given by

cij = (—=1)" My, (2.3.33)
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where M;; is the determinant of the submatrix that remains after the i row and j™
column are deleted from A. Obviously, if the determinant of the matrix A equals zero, the
corresponding operator A does not possess an inverse.

The inverse of the product of any two operators A and B is determined by the formula:
(AB)~! = B~'A~!. Similarly, we have

A

(ABC)' =C '8 'A7",  (ABCD)'=D7'C'BAT, (2.3.34)

and so on and so forth.

Quotient of two operators: Dividing an operator A by another operator B (provided that
the inverse B~! exists) is equivalent to multiplying A by B~

—AB~. (2.3.35)

S| 2>

Note that the quotients AB~! and B~'A differ, that is, in general AB~! # B~ A.
Unitary operator: A linear operator U is said to be unitary, if it satisfies
070 =00" =1, (2.3.36)

that is, its inverse operator coincides with its hermitian conjugate.
The product of any two unitary operators is also unitary. Let U and V be two unitary
operators. Then, we have

OWVOV)=VT0T0V =VIV =0V =1 (2.3.37)

It means that (UV)" = (UV)~! and hence, the product operator is unitary. This result can
be generalized to any number of unitary operators:

A

>
N
Z
S
Il
BN
o
>
BN
o
>
Il
~»

(2.3.38)

Theorem 2.3.4: The eigenvalues of a unitary operator are complex numbers of moduli equal
to one and the eigenfunctions of a unitary operator, that does not have any degenerate
eigenvalue, are mutually orthogonal.

Proof: Let v, and v, be the eigenfunctions of a unitary operator U corresponding to non-
degenerate eigenvalues A,, and A, respectively. Using the unitarity of U and the eigenvalue
equations, we have

+oo too
Vi Wndx = / (v, U (Ow,) dx

+oo A . +oo
:/ (Ovw,)" (Ow) d3lemkn/ Vi, dx=0. (2.3.39)
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We can rewrite (2.3.38) as
" Fee
(A — 1) / vy, d*x=0. (2.3.40)

If m = n, we have 4,4, = |A,|?> = 1. Therefore, |A,| = 1. If n # m, then the only
possibility for the equation (2.3.39) to be satisfied, is that

—+oo
YW d°x = (Y, W) =0, (2.3.41)

that is, the eigenfunctions y;, and y, are orthogonal.

2.4 Algebra of Operators

(a) The sum of two operators A and B, given by C = A+ B, is defined through the relation
Cy(x) = (A+B)y(x) =Ay(x) + By(x). (2.4.1)

According to this definition, we act on w with A and B one by one and then add up
the results. The new function, thus obtained, is the function that would result, if we
act on y directly with C.

(b) The product of an operator A with a complex number c, that is, the operator cA is
defined by the relation

A ~

(cA)y = c(Ay). (2.4.2)

(c) The product of two operators A and B is an operator C = AB, which by acting on the
function y transforms it into another function ¢. The function ¢ is obtained by first
applying B on y (which yields a function, say, y) and then acting on the resulting

function by A:
Cy=(AB)y =A(By) =Ay = ¢. (2.4.3)
For instance, if A = x and B = %, then
d dy dy
— =x|— | =x—. 244
<xdx>w x<dx> Ydx ( )

~

(d) Successive application of an operator, A, n times on a function, y, is written as the
power of that operator:

AAA. A(Ay) = A"y (2.4.5)

n—1
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(e) In general, the product of any two operators, A and B, is not commutative. That is,
AB # BA. (2.4.6)

The difference AB — BA is an operator C, which is called the commutator of A and B
and is written as

C=1[4,B]. (2.4.7)

Similarly, AB + BA # 2AB and the operator [A,B], = AB+ BA is called the anti-
commutator of the operators A and B. If [A,B] = 0, the operators are said to be
commuting with each other, while, if [A, B] . = 0, the operators anti-commute.

(f) Rules for hermitian conjugation: Given some algebraic combinations of operators,
we need to consider the rules that allow us to get the corresponding hermitian
conjugate operators. To obtain the hermitian conjugate of any expression, we must
cyclically reverse the order of the factors and make the following replacements:

(i) Replace constants, @, f3,7,..., by their complex conjugates: o — a*, f — B*,
Y—=7v,...
(ii) Replace operators by their hermitian conjugates: A — AT, B — BT, ¢ — CT, etc.
Following these rules, we can write
@ (AN =4, Gi) (ed)" = A", i) (A")" = (AT)",
(V) (A4+B+C+D) =AT+ B +C1+D7, (v) (ABCD)" = D'CTBAT, etc,

(g) The commutator of two hermitian operators is anti-hermitian.

Proof: Consider two hermitian operators A = AT and B = B'. Then, using the rules of
hermitian conjugation, we obtain

— — (AB-BA) = —[A.B]. (2.4.8)

Hence, [A, B] is anti-hermitian.
(h) The anti-commutator of two hermitian operators is hermitian.

Proof: Consider two hermitian operators A = AT and B = B'. Then, using the rules of
hermitian conjugation, we obtain

+
— (AB+BA) = [A,B] . (2.4.9

Hence, [A,B] | is hermitian.
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(i) Some other important properties of the commutators are:

[A,B] = —[B,A], (Anti — symmetry)  (2.4.10)
[A,B+C) = [A,B)+[A, (), (Linearity)  (2.4.11)
[A,BC] = B[A,C] +[A,B]C, (Distributivity) — (2.4.12)
[A,B]" = [BT,AT], (Hermitian conjugation) (2.4.13)
[A,[B,C]]) + [B.[C.A]] + [C.[A,B]] = 0. (Jacobi Identity) ~ (2.4.14)
In addition, by repeatedly using (2.4.12), we can prove that
A A nil A ~ A A
[A,B"] =Y B'[A,B] B, (2.4.15)
k=0
A A nil A~ A A A A
[A",B] =} A" * B[4, B A* (2.4.16)
k=0

Example 2.4.1: Show that the operators A = £ (defined by Ay/(x) = xy/(x)) and the operator
B = p, (defined by By/(x) = —if(dy(x)/dx)) satisfy the commutation relation [%, p,] =
Py — puk = ih.

Solution: We have

= ih [l]/%—xd —xdx] = ihy(x) (2.4.17)

Since y(x) is an arbitrary function, we get
[, pi] = if (2.4.18)

In general, the commutation relations between various Cartesian components of the
position operator, 7 = {£,,2} = {£,%2,%3}, and the momentum operator,
ﬁ - {ﬁxaﬁy,ﬁz} = {ﬁl’ﬁz’ﬁ?)}’ are

(%), k] = ihdj, (2.4.19)

where j,k = 1,2,3 and §j is the Kronecker delta. These are the fundamental
commutation relations. Using these, we can calculate any commutation relation between
any two observables in quantum mechanics.
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Function of an operator: A function, f (A), of an operator, A, is defined through the
corresponding Taylor expansion of the function f(x). That is, if

1 0 af
fx) = ;acnx = g (2.4.20)
exists, then
. 1 . af
A=) —c,A", = —= . 2.4.21
fA) ;nlc T YA A0 ( )

In the above expression, the matrix raised to the power 7 is defined recursively in terms of
the products A=A (A”*I) (see Eq.(2.4.5)).

For instance, consider f(A) = exp [aA] , where a is a constant. Using the above
definition, we obtain

f(A):;nl!( A)”=IA+aA+%a2A2+%a3A3+.... (2.4.22)
Parity operator: Consider the operation of space inversion in which we change the space
variables from 7 = {x,y,z} to —F = {—x,—y,—z}. As a result, a function y(7) goes into
y(—=7). If w(—F) = y(7), the function y(7) is said to be symmetric (even) or, equivalently,
a function with even parity. On the other hand, if y(—7) = —y/(¥), the function y(7) is
said to be anti-symmetric (odd) or, equivalently, a function with odd parity.

The transformation of a function y(7) under space inversion can be written in operator
form as

v (—7) = Py(7), (2.4.23)
where & is the parity operator or space inversion operator.

Theorem 2.4.1: The parity operator is hermitian, that is 27 = .
Proof:
+o0

[ oo v e= [ o @und

—o0 —oo

- / +°°¢*(_?) v(7) d’x = / " [(2¢(7)] w(7)d*x. (2.4.24)

oo —o0

From here we get that 27 = . The theorem is proved.
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Note that the parity operator is also a unitary operator. This can be seen as follows. We
have

Py(7) = 2(Py(7) = Py(-7) = y(7). (24.25)

It follows from the last equation that 22 = [, which means & = &~ The parity operator
is, therefore, unitary, since its hermitian conjugate is equal to its inverse: 2t = 21,

Further, since &2 = [, the eigenvalues of the parity operator are +1. Let the
eigenfunction corresponding to the eigenvalue +1 be .. Then, on one hand we have
Py (F) = w,; (¥), while on the other Py, (7) = y; (—7). Hence, w (F) = y; (—7).
Therefore, y. (), is an even function. Similarly, the eigenfunction, y_, corresponding to
the eigenvalue —1 is an odd function:: y_(7) = —y_(7). It then follows that the
eigenfunctions of the parity operator have definite parity: they are either even or odd. In
addition, the eigenfunctions W4 (7) and w_(7) are orthogonal. In fact, the scalar product
of these eigenfunctions satisfies

—+oo

o) = v max=[ vy (nde=[ yi@w (-nd

—oo

400
—— [ OO de= (). (2426)

Hence it vanishes. Therefore, the functions y (¥) and w_(7) are orthogonal. It turns out
that, since any function ¢ (¥) can be written as ¢ = vy, (7) + y_(¥) with

Ve =500 +0(-7)). v = [0() (7). 4.27)

the eigenfunctions of the parity operator form a complete set of functions.

Definition: An operator A is said to an even operator, if A% = A. On the other hand, if
PAP = —A the operator is said to be odd.

It is easy to show that even operators commute with the parity operator 2, while odd
operators anticommute with P

[A,2)]=0, [BP]. =0, (2.4.28)

where A is an even operator and B is an odd operator.

Since even operators commute with the parity operator and the eigenfunctions of the
parity operator are either even or odd, the eigenfunctions of even operators must have
definite parity, provided they possess non-degenerate eigenvalues. If an even operator has
a degenerate eigenspectrum, its eigenvectors do not necessarily have a definite parity.
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Example 2.4.2: Find the value of the commutator

~

A= [p}, (£py — py)],

where, 7 = (£,9,2) and p = (pu. py,p.) are the position and momentum operators of a
particle, respectively.

Solution: Using the properties of the commutator of operators

[A.B+C] = [A,B]+[A,C], (2.4.29)

[AB,C] = A[B,C] + [A,CB, (2.4.30)

[A,BC) = BIA,C] +[A,B]C, (2.4.31)
we get

(53, (3Dy — $P2)] = [P, 5P,] — [P3.3Px]
= P[P Py] + [Prr2Py] B — PxlPrsIPx] — [P 9By P
= Pkl Prs By] + P[P By + £[Prs y] P + [P K] Py
— P Prr i) — PalPx 9| P — 91 Pxs By B — [P 3] Py
= —il(pxPy + PyPx) = —2i PxPys (2.4.32)

where we have used the fundamental commutators £}, pr] = iidj, j.k=1,2,3.

2.5 The Schrodinger Equation

Postulate 3: The time evolution of the wave function, y(7,t), representing the state of a
quantum mechanical system is governed by the following partial differential equation:

= 2
W) _ —1621;/(?,;) +V(F)y(#1), (2.5.1)

ih
! ot 2m

= 2 2 2 . . . .
where V2 = % + 5972 + g—zz is the Laplacian or Laplace operator and V is the potential

energy function. This is the well-known time-dependent Schrédinger equation.
In one spatial dimension, equation (2.5.1) reduces to:

oy Koy B
lhﬁ__%ﬁ—i_v(x)w’ v = y(x,1). (2.5.2)
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Note that the potential V, in principle, can depend on time. However, we shall not deal
with such problems in this book.

Important properties of the Schrodinger equation:

(a)

(b)

()

Consider a collection of a large number, N, of non-interacting particles in an
infinitesimal volume element d7. Assume also that at some instant ¢, they are all in
the same given state y(7,7). Since y*y d7 is the probability of finding the particle
in an infinitesimal volume element, d7, centered around a given point 7, the quantity
Ny*y dt = (N) will be the average number of particles in d7. By calculating (N)
for a large number of points in space, we can construct the probability density
distribution function at a given instant of time ¢. The significance of the
time-dependent Schrodinger equation lies in the fact that it allows us to determine
the time evolution of the wave function Y, enabling thereby the prediction of the
time evolution of the density distribution function. This in turn allows us to follow
the changes that take place in the system as it evolves in time.

Linearity and homogeneity: Since the Schrodinger equation contains only the first
power of y, it is linear in . The homogeneity is related to the fact that for a given
solution y of the Schrodinger equation, the function ay, where « is a constant, is
also a solution of the Schrodinger equation.

The equation is of first order with respect to time and, therefore, the knowledge of
the wave function at some initial time, ¢, allows us to determine the wave function
at any later time, ¢, uniquely.

An important consequence of the first property is that the superposition principle
holds. This means that if v (7,7), y2(%1),y3(7,1),..., W, (7,1) are solutions of the
Schrodinger equation, then the linear combination of these functions:

n

y(71) =Y ciyi(Fr), (2.5.3)

j=1
where cj, j = 1,2,3,...,n are arbitrary complex constants, is also a solution.

It is important to note here that the quantum mechanical superposition principle is
radically different from its counterpart in classical physics. Firstly, it reflects the
wave-like properties of the micro-particles and hence represents the wave—particle
duality that is a characteristic of the micro-world. Secondly, suppose that a particle
is in a state Y, which is a superposition of two other possible states y; and y» of the
particle, that is, ¥ = y; + y,. If we measure a physical characteristic A of the
particle in the state y;, we shall get some value A;. Similarly, we shall get a value
Aj; for A in the state y». Let us now assume that we measure A in the superposition
state . Classically, the measurement of A in this state will yield a value between A
and A,. As we shall see later, quantum mechanics says that if you measure A in the
state Y, you will get either A; or A, with certain probabilities but nothing in
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between A; and A;. In other words, the process of measurement induces a sudden
transition of the particle from the superposition state Y to one of the states y; and
y». This phenomenon is known as the collapse of the wave function and does not
have a classical analogue. This is one of the conceptual difficulties in quantum
mechanics that is yet to be resolved.

Thus, the quantum mechanical superposition has far-reaching consequences
including the conceptual difficulties that we encounter when we try to draw a naive
parallel between a classical system and a quantum system. However, on the positive
side, the validity of the superposition principle enormously helps in solving various
quantum mechanical problems.

2.6 Time-independent Potentials and the Stationary States

Solutions to the Schrodinger equation with time-independent potentials, V (7), can be
found by employing the method of separation of variables; well known from the theory of
differential equations. This is done by writing the wave function in the form:

v(7r) = o(7) f(1). 2.6.1)
The Schrodinger equation (2.5.1) then leads to

_ldf  m o1

S .
i ?Z_f%(b(?)v o(F)+ V(7). (2.6.2)

The left-hand side of (2.6.2) is a function of time, whereas the right-hand side depends
only on spatial variables, x,y and z. Therefore, for this equality to hold, both the left-hand
side and the right-hand side must be equal to a constant (same for both the sides). Let us
call it E. As a consequence, we get a system of two ordinary differential equations:

Lldf af _ i
and
Bl V2o(R)+ V() =E = —ﬁ§2¢(?)+v(?)¢(?)—f:¢(?) (2.6.4)
2m ¢ (7) o 2m o ’ e

The first of these equations, (see (2.6.3)), can be readily integrated to yield

i

f(r) = e nE", (2.6.5)

The differential equation (2.6.4), satisfied by ¢(7) is called the time-independent
Schrodinger equation (TISE) and its solution depends on the form of the potential V(7).
In view of the standard conditions (to be satisfied by the overall wave function y(7,1)), a
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given specific form of V(7) imposes specific boundary conditions on ¢(7), which we
shall discuss later.
Note that the equation (2.6.4) can be written as

Ho(F) =E¢(7), (2.6.6)
where
A= 7 V24V (7). (2.6.7)
2m

As we shall discuss later, A is nothing but a differential operator representing the classical

Hamiltonian, H = % +V(7), equal to the total energy of the particle. The solutions of this
equation are called the eigenfunctions of the Hamiltonian and the corresponding values
of E (for which the solutions of this differential equation exist), are called the energy
eigenvalues. Therefore, the separation constant E represents the total energy of the particle
in a given state.

It is now clear that, for time-independent potentials, a full solution to the Schrédinger
equation can be written as

w(R1) = ¢ (F) e iE. (2.6.8)

If we calculate the probability density |y/|? for such states, we obtain

W (xn) > =y (7o) y(F) = 0(7)" er™ ¢ (7) e 75 = |9 (7)|”. (2.6.9)
That is, for such states, the probability density is independent of time.

Definition: The states of a quantum mechanical system (particle) for which the probability
density does not depend on time (i.e., remains constant at all times) are called stationary
states.

Depending on the potential, there could be more than one solution to the equation
(2.6.4). Let there be m such solutions: @1 (7), ¢2(7), 93 (7), ..., ¢ (7), with energies E|, E,
Es,...,E,, respectively. In view of the superposition principle, the general stationary state
solution is then given by

y(7r) = Z cj9;(7) e W = 101 (F) e Y 4 crpn (F) e W2 4 O (F) € E,
j=1
(2.6.10)

where cs are arbitrary complex (in general) constants.
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2.7 Measurement and Compatible Operators

Up till now we have discussed three postulates of quantum mechanics regarding the
characterization of state of a quantum system, representation of the observables and the
time-evolution of the state. Let us now discuss how quantum mechanics describes the
process of measurement of an observable and what is its prescription for comparing the
theoretically calculated values of an observable with its experimentally measured ones.

In quantum mechanics, the act of measurement of an observable A, at a given instant
of time in a given state, is theoretically represented as the action of the corresponding
operator, A, on the wave function, W (x,1), representing the state of the particle at that
instant of time: Aw(x,t). So far as the result of measurement is concerned, quantum
mechanics puts forward the following postulate.

Postulate 4: The only possible result of measurement of an observable A, at a given instant
of time, ¢, in a given state W(7,1), is one of the eigenvalues of the corresponding operator
A

(a) If the operator, A, has discrete and non-degenerate eigenvalues, {a,} :A(j)n(?) =
an@n(7), the probability that the measurement of A will yield the eigenvalue a; is

given by
(0 w)[*
Pla;) =170 Q2.7.1)
=" lyy)
where ¢;(7) is the eigenfunction of A with eigenvalue a; and
T i (2 0 3
v = [ 0@ vEnds 272)
e AR
(1//,11/)5[ ly(7,1)]”d’x. (2.7.3)

If the wave function y/(7,7) is normalized to unity, the above mentioned probability
is simply written as

o0 2
Py =| [T o @i 74

As we see here, the act of measurement changes the state of the system. The state of
the system, immediately after the measurement, changes from y(7,1) to ¢;, the jth
eigenstate of A: Wyfier = (7). However, if the particle is in one of the eigenstates,
say, ¢ (7) of the operator A, then the result of measurement will with certainty give
the value a; and the state of the particle will remain unchanged.
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(b) If the eigenvalue a; is m-fold degenerate (i.e., there are m linearly independent

)

eigenfunctions (])j(m
value a; is given by

with the same eigenvalue a;), the probability of getting the

2 2
i 0w BT el (R v d'y
(voy) 72 w(F0) P d3x.

Plaj) = (2.7.5)

(c) If the operator A possesses a continuous eigenspectrum {a}, the probability that the
result of measurement will yield a value between a and a 4 da is given by

_ vl
dP(a) = =@ dd da. (2.7.6)

For instance, for a free particle, there is no restriction on its position in space.
Hence, the eigenvalues x of the position operator, £, can take continuous values.
Therefore, when the position of a particle is measured, the probability of obtaining a
value between x and x + dx is

()]
dP(x) = — dx. (2.7.7)
W)= = )P av

On the basis of the discussions so far, we conclude that, in its essence, quantum
mechanics is a statistical theory in which the results of measurement of a given physical
quantity cannot be predicted exactly, They can only be predicted with certain
probabilities. Therefore, the question as to which result of quantum mechanical
calculations should be compared with the experimentally measured value of a physical
quantity must be answered. We shall talk about this problem and try to come to a certain
conclusion.

In classical mechanics, every dynamical variable takes on a definite numerical value.
This number is nothing but the value that we obtain when we measure it. The justification
for assigning a definite value to the result of measurement in classical physics is the fact
that all possible measurements of a dynamical variable on the system in a given state, yield
the same numerical value.

The situation is radically different in quantum mechanics. Before we show the
difference, let us recollect that the superposition principle holds for the Schrodinger
equation. That is, if y; and y, are two distinct solutions then an arbitrary linear
combination of these wave functions is also a solution of the Schrodinger equation.

Let a system be prepared in a superposition state ¢ = a;@; 4+ a»@», where a; and a; are
arbitrary constants and ¢; and ¢ are the eigenstates of a given observable A corresponding
to the eigenvalues A; and A,, respectively. Clearly, had the system been in the state v,
or in the state y», the measurement of A would have given a value equal to A, or Ay,
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respectively. Let us pose the question: If the the dynamical variable is measured in the
superposition state ¢, what values will be obtained and with what probabilities?

Note that, had the system been a classical system, a definite value A, intermediate
between A; and A; would have resulted. In quantum mechanics, however, measurements
will not produce a value intermediate between A; and A, but one of the values A; or A,
(sometimes A; and sometimes A,) and no other value except A; or A,. Besides that, it is
not possible to predict which measurement will yield A; and which would give A,. One or
the other result is obtained with a well-defined probability. The system, which was in the
state v, before the measurement, makes an abrupt transition either into the state y; or into
the state Y.

This discussion leads to the conclusion that, at a given instant of time, it is not possible
to assign a definite value to an observable in quantum mechanics. It is, however, always
possible to assign a definite probability to the occurrence of one of the possible values.
This implies that the formalism of quantum mechanics allows us to compute only the
probabilities of occurrence of various possible values of an observable. Hence, only the
average value (or, as it is called, the expectation value) of a dynamical variable, computed
in accordance with the theory of probability, should be compared with the experimental
result.

Average value of a dynamical variable: The average value, (A), of a dynamical variable
A, in a given state y of the system, is defined as

W= [T vwlivoles | [T v e e @78)

—o0

where the integration is over the entire region of variation of the independent variables,
x,y, and z. The asterisk stands for complex conjugation. If the wave function is normalized
to unity, the required average value is given by

+oo R
W= [ v @A) dx (2.7.9)
For instance, the average value of the position operator, £, in one spatial dimension in the
normalized state Y,

(x) = /+°° v (x)(Ry) dx = /+oo v (x)xy(x) dx. (2.7.10)

—o0 —o0

Similarly, the expectation value of the x component of momentum, (p,), is given by

~+oo

(px) = / W () (Pew(x)) dx = —if /_ j v () Y 27.11)

oo dx

Let v (7), y2(7), y3(7)...., be the normalized eigenfunctions of a hermitian operator A
with discrete eigenvalues A1, A3, A3,. .., respectively. Let the particle (system), on which
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the measurement of A is done, be in a state y(7), which is not an eigenstate of A. Since
the eigenfunctions of a hermitian operator form a complete set, we can expand Y as

v(7) =Y aw(?), (2.7.12)
k=1

where c;s are arbitrary complex coefficients. Using the eigenvalue equation, Ay (F) =
A Wi (7) and the orthonormality of the eigenfunctions {y;, (7)}, the average value A can be
written as

—+oo
ZZMGZ‘%/ v (F)y x—zzlkcwk&k—zlk\cd
{ k
:)Ll‘Cl‘2+)Lz‘C2‘2+)L3‘C3‘2—|—... (2.7.13)

In view of the orthonormality of the eigenfunctions of A, we have
* tee % 3 * 2
Y X [ Vi =¥ ¥ cicn = e
m n - m n n
=1+ e+ .. = 1. (2.7.14)

If we now recall the expression for the average value of a random variable y from the
theory of probability ((y) = ¥.;y;w;, where w; is the probability of getting the value y; of
the random variable y and }_ ; wy = 1), then the equation (2.7.13) suggests that the number
|cx|? represents the probability, P, of obtaining a value A for A in the state y. Therefore,
the average value of A takes the form

<A>:7Ll PP+ P+3P+..., (2.7.15)

where, in view of (2.7.14), the sum total of all the probabilities P,k = 1,2,3,... is equal
to 1:

Y =1 (2.7.16)
k

On the basis of our discussions, we can now conclude:

1. If an observable, A, is measured on a system in a state Y, then it can have a definite
value if and only if y happens to be an eigenstate of the operator A. In such a case,
the result will yield the corresponding eigenvalue of the operator A in the state y.

2. On the other hand, if v is not an eigenfunction of A, the state y has to be expanded
into a series with respect to the complete set of eigenfunctions of A (see equation
(2.7.12)). The result of a measurement of A will then be one of the eigenvalues ay of
A with a probability |c.|?.
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3. The act of measurement, in general, changes the state of the system from a given
initial state to one of the eigenstates of the observable being measured.

4. For the measurement of an observable on a system in a given state, y, a large
number of identical copies of the system are to be prepared and the observable has
to be measured on each of them independently. The average of the obtained results,
calculated according to the prescription of quantum mechanics, will be the value of
the observable in the state y..

Example 2.7.1: Consider a system, in one spatial dimension, which is in a state with a wave
function

y(x) =Ae @b, (2.7.17)

where o and b are real constants and A, in general, is a complex constant. Calculate the
expectation values of the operators £, £2 and p,.
Solution: Using (2.7.8), we get
~ e * e *
(X) = / v (x) xy(x) dx// v (x)y(x)dx. (2.7.18)

—o0

Let us compute the integrals. We have

oo oo
/ v (x) y(x)dx = |A|2/ e 20 b)? gy — A2 %. (2.7.19)
The numerator is
oo oo 2
/ v (x)xy(x)dx = ]A\z/ xe 2%y (x) dx = 0, (2.7.20)

because the integrand is an odd function of x and it is integrated over the region that is
symmetric with respect to the origin. Therefore, (£) = 0.

Since
oo oo
/ v (x) X2 y(x)dx = |A|? / e 2eb)? gy
T
= !A\zz\/%, 2.7.21)

the average value of £ is given by

(#) = <‘A|24a{/ﬁﬁ> / QM%) = 1/4a. (2.7.22)
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The momentum operator p, = —ihi(d/dx), and we have

b= v 0 (o) dr=—inaP [y () W

—o0

oo .
ye 2 dy =0, (2.7.23)

+o0
= 2iath|A[* / (x —b) e 2400)% g = Djrh|A /

—oo oo

where we have changed the variable of integration from (x —b) to y = x — b and taken into
account the fact that the integrand is an odd function of y and hence, the integral is zero.
As a result, the expectation value of p, is equal to zero: (py) = 0.

Further, we calculate

Py(x) = 20 (e—2“(x—b)2 ~2a e—za(x—mz) . (2.7.24)

oo oo
(p) :/ v (x) (Prw(x))dx = 2057'12|A|2/ [672“()"”)2 —2a(x—b)? e*ZO‘(X*”)Z} dx

oo

n 1 [=m Al2\/TV 2002
=2/APal? [’/m_z’/za] = Hfz (2.7.25)

The expectation value of j? is then given by

o |APVIV20R? V20
(Px) = X e =
2 A|2\/7

ah’. (2.7.26)

Example 2.7.2: Consider a particle of mass m confined to move in one spatial dimension
in the region 0 < x < a. Let the particle be in a state described by the wave function
yi(x,1) = sin(ma/x) exp(—iot), where ® is a constant. Find the average values of the
position and momentum operators in this state.

Solution: First, let us check whether the wave function of the particle is normalized or not.
We have

/a |1 (x,2)|? dx = / sin® (wa/x) dx
0

a
0

N /a ((l — COS (27w/x)) dx — g (2.7.27)
0 2 2
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Therefore, the normalized wave function is

w(nt) = \/g sin (7a/x) exp(—ior). (2.7.28)

The average value of the position operator X will be given by
a ) 2 ra 5
(X) = / Rly(x,1)|"dx = f/ x sin” (mwa/x) dx
0 alo

2 (4 ((x— 2
= / (r=xcos (2na/x)) ;. (2.7.29)
a o 2

Integrating the second term by parts, we arrive at () = a/2. The average value of the

momentum operator p, will be
A a * . d ih a .
(px) = / v (x,1) | —ih— | y(x,t)dx = ——/ sin (27a/ x) dx. (2.7.30)
0 dx T Jo
Taking the integral, we get

(Px) = —% /Oa sin (2ma/x) dx = 0. (2.7.31)

Example 2.7.3: Consider a particle of mass m confined to move in a one-dimensional infinite
potential well of width a. Let, at t = 0, the particle be in a state described by the wave
function y(x,7) = sin® (wa/x). If the energy of the particle is measured, what values will
be obtained and with what probabilities? What will be the average value of energy in this
state?

Solution: We shall show in Chapter 3 that the eigenfunctions and the corresponding
eigenvalues of the Hamiltonian, for a particle of mass m moving in a 1D infinite potential
well of width a, are given by

_ n?m2h?

Y (x) = \/z sin(nma/x), E,=

n=12.3,.. (2.7.32)

2ma? "’

The wave function of the particle at # = 0 can be written as

y(x) = Z sin (wa/x) — % sin (3ma/x) = 3va o1 (x) va

W2 a2

where @, and ¢3 are the ground state and the second excited state wave functions of the
particle in the infinite potential well. Let us check whether the wave function (2.7.33) is
normalized or not. We have

$3(x), (2.7.33)
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a 9 a a
| wePar=2 [CoPar+ 55 [ lostxPax

9a a Sa
/ ¢l ¢3 )dx-32+§—ﬁ,

(2.7.34)

where we have used the fact that the eigenfunctions of the Hamiltonian are orthonormal:

@ 1, if i=j
/O ¢; (x)¢j(x)dx:5ij:{ 0 ;f i #j.. (2.7.35)

As a result, the normalized wave function at t = 0 is

4 3/ 4 \a 3 1
X X) — —= ¢3(x). 2.7.36
9(x) = ﬁ5a4\[¢1( x)— ﬁ5a4\[¢3( x) = s h1(x) m%( ). (2.7.36)
Therefore, when energy is measured on the system, the values that can result are

2£2 232
w°h Onh

Er=5"3 d B3 = —5. 2.7.37

' oma? an 37 ma? (2.7.37)

Now the probability of getting £ is

9
Pi=(1]9) = . (2.7.38)
10
while the probability of getting E; is
) 1
Py =[{¢3] 9)|" = . (2.7.39)
10
The average value of energy in the state y/(x) is
2h2 1 2h2 ZhZ
(E) = PLE) + PsEs = — x omh_Om (2.7.40)

x = )
10 2ma2 10~ 2ma? 10ma?

Compatible operators: In physics, we want to have the maximal information about the
system under study. The same applies to a quantum mechanical system. Obviously, this
is possible only if we are able to determine and measure accurately the maximal number
of relevant physical characteristics of the system. Therefore, it is important to discuss the
possibilities that quantum mechanics offers and the restrictions it puts on achieving this
goal. Keeping this in mind, we are now going to prove some important theorems that will
tell us about the extent to which we can accomplish this task.

Theorem 2.7.1: If two observables A and B are compatible, they possess a common set of
eigenfunctions (this theorem holds for both degenerate and non-degenerate eigenstates).
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Proof: Since the two observables are compatible, the corresponding operators A and B
commute, that is, AB = BA. Let ¢, be the eigenfunction of the operator A with eigenvalue
a,. Then we have

AB¢, = BA¢, = a,(B9,), (2.7.41)

where we made use of the eigenvalue equation for the operator A: A¢, = a,¢,. Equation
(2.7.41) says that §¢n is also an eigenfunction of A with the same eigenvalue a,,. Therefore,
B¢, < ¢, that is,

B¢, = b, ¢y, (2.7.42)

where b,, is the constant of proportionality. Equation (2.7.42) is nothing but the eigenvalue
equation for the operator B with ¢, as the eigenfunction and b, as the eigenvalue. Thus, ¢,
is also an eigenfunction of B with eigenvalue b,. The theorem is proved.

Theorem 2.7.1 can be generalized to the case of many mutually compatible observables
A,B,C,.... All the corresponding compatible operators, AB,C,..., will possess a common
set of eigenfunctions.

Theorem 2.7.2: If two observables A and B have a common set of eigenfunctions, they are
compatible, that is, the corresponding operators A and B commute.

Proof: Let {¢),} be the common set of eigenfunctions for the operators A and B. Then we
have Aqbn = a,¢, and B(bn = b, ¢, where a, and b, are the eigenvalues of the operators A
and B, respectively. We then have

AB¢ = A(budn) = bu(A¢y) = by, (2.7.43)

BA®, = B(an9n) = an(Ben) = anbnn. (2.7.44)
Subtracting (2.7.44) from (2.7.43), we obtain

(AB—BA)¢, = 0. (2.7.45)
For the equation (2.7.45) to be valid for any ¢,, we must have

(AB—BA) =0. (2.7.46)
Thus, the operators A and B commute. The theorem is proved.

Definition: The set of hermitian operators A, B, C,... is called a complete set of
commuting operators (CSCO) if the operators mutually commute and the set of their
common eigenfunctions is complete and unique.

A complete set of operators, may sometimes consist of only one operator. For instance,
the position operator £ of a spinless particle, moving in one spatial dimension, provides a
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complete set. Its momentum operator p also constitutes a complete set. However, if we
combine them together, X and p do not form a complete set because they do not commute.

We shall now discuss the problem of measuring more than one observable on a system
in a given state. Consider two observables represented by the operators A and B. Suppose
we want to measure these on a system which is in a state y. Since, in general, operators
do not commute, the result obtained by measuring A first and then B will differ from the
one obtained by measuring B first and then A. Let us find out the reason behind it.

Suppose A and B do not commute and y is the n'* eigenstate of the operator A with
eigenfunction ¢, and the corresponding eigenvalue a,. If we measure A first, the
measurement will, with certainty, yield the value a, and the state of the system will
change from y to ¢, (the n'* eigenstate of A). Since A and B do not commute, ¢, is not an
eigenstate of B. If we now measure B, the result of measurement cannot be predicted in
advance. Any of the eigenvalues, b, of B can occur. The probability of obtaining b,, will
be given by ]cnm\z where ¢, is the coefficient in the expansion of ¢, into a series with
respect to the complete set of eigenfunctions, {¥,,}, of B

O =Y Com¥m- (2.7.47)

Now, we reverse the sequence of measurement and measure B first and then A. In this case,
the measurement of B will yield one of the eigenvalues of B, say b j» and the system will
collapse into the eigenstate ;. Since y; is not an eigenstate of A, the measurement of A
can result in any of the eigenvalues of A. The probability of getting the value a,, for A will
be given by |c¢ jm\Z, where ¢, are the coefficients in the expansion of ) into a series with
respect to the complete set of eigenfunctions, {¢,,}, of A

Xi =Y. CimOm (2.7.48)

Obviously, the results of the first set of measurements will, in general, be different from
the results of the second set of measurements. Hence, the result of measurement of more
than one observables on a system depends on the order in which they are measured.

Now assume that the operators A and B commute. Then according to Theorem 2.7.1,
they will han a common set of eigenfunctions, say, {¢;}. Now if y is, say, the nth
eigenstate of A (described by the eigenfunction ¢,) and we measure A, the result we shall
get will be nothing but the eigenvalue a, of A. Clearly, the state of the system will not be
altered by the measurement, i.e., the state remains to be the the n'h eigenstate of A. Since
¢, is also an eigenfunction of B with eigenvalue b,, the measurement of B will now with
certainty yield b,. Conversely, if we measure B first, the result will be b, and again the
state of the system will not be altered. The subsequent measurement of A will with
certainty yield a,,. In both the sequences of measurements, the result will be the same.

Corollary: Compatible observables can be measured simultaneously with any desired
accuracy, while non-compatible observables cannot be measured simultaneously
accurately.
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Note that if an observable, A, represented by a hermitian operator A is measured on a
system in a state Y, the uncertainty, AA, in its measurement is defined as

AA = [ (A2) — (A)2. (2.7.49)

We shall prove in Chapter 4 that, if two hermitian operators, A and B, do not commute
the uncertainties in their measurements in a given state satisfy the following generalized
Heisenberg uncertainty relation

AAAB > %|< [A,B])|. (2.7.50)

Thus, if two observables A and B are compatible, the corresponding operators A and B
will commute and the relation (2.7.50) tells us that both the observables can be measured
simultaneously with high degrees of accuracy.

Example 2.7.4: A system is initially in the state

1 1 1
Vo= \ﬁ‘l’l (x) + E(PZ(X) + %%(x), (2.7.51)

where ¢, are the normalized eigenstates of the system’s Hamiltonian such that H¢, =
n*€y¢,. Here, &) is a constant with dimensions of energy and # is a positive energy.

(a) If energy is measured, what values will be obtained and with what probabilities?

(b) Consider an observable A, which is represented by operator A, whose action on ¢, is
defined by A9, = (n+ 1)ap@,. If A is measured, what values will be obtained and
with what probabilities?

(c) Suppose that a measurement of the energy yields 4€&y. If we measure A immediately
afterward, what value will be obtained?

Solution:

(a) A measurement of the energy in the state ¢, yields the expectation value of the
Hamiltonian, given by

~+oo
E,=(H) = / 0 (x)A ¢, (x) dx = n’e, (2.7.52)
where we have taken into account that the wave function Y is normalized to unity.
Thus, the values of energy that can result, when measured in the state yp, are, E| =
&, Er, = 4€y, E5 = 9¢y.
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The probability for obtaining the value E,, for energy is

P(E, o, (x . 2.7.53
)= erm Wo(x \ dx / JYo(x) dx ( )

Taking into account that

/ - B (X) 9 (x) dx = Sy, (2.7.54)

—o0

we obtain

PE) = |55 [ eiwwdr =3,

PE) = |55 [ eiwdr] =3,

1 [t
PlEY) = | /_ W = (2.7.55)

(b) A measurement of A in the state ¢, yields the expectation value of A, given by

A +00 A
— (A = / 07 (x)Agn (x) dx = (n+ ao, (2.7.56)

—o0

thatis, a; = 2ag, ar = 3ag, a3 =4agp. The probabilities corresponding to these values
of A will be

1 1 1
P(ay) = 3 P(ay) = > P(az) = —. (2.7.57)

(c) Since the average value of the Hamiltonian in the normalized state ¢, is given by

—+oo
/ 05 (x) A2 (x) dx = 4eo, (2.7.58)
an energy measurement giving 4¢p implies that the system, after measurement, is
left in the state ¢»(x). Therefore a measurement of the observable A immediately
afterward yields a value equal to

(A)y = / o 05 (x)Ady (x) dx = 3a. (2.7.59)

—o0
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Example 2.7.5: Two observables, A, and Bof a system are given by the following matrices,
respectively:

=t V) een(h0)

where & has the dimensions of energy. (a) If we measure the observable A in some state
v of a quantum system, what could be the possible results? (b) Find the eigenvectors of A.
(c) If we measure the observable B in the state y, what could be the possible results? (d)
Suppose a measurement of A in the state y yields a value equal to 4&y. Immediately after
that we measure B. What is the probability of getting a value 2/4?

Solution:

(a) According to the measurement postulate of quantum mechanics, the possible results
of the measurement of A will be the eigenvalues of the operator A. Therefore, let
us find these eigenvalues. The characteristic equation for the determination of the
eigenvalues, A, is given by

. 3g— A e (V2 —/5i
A—Af| = ( ) , ( ) =0. = A*—16g =0.
eo(V2+V5i) —(Be+A)
(2.7.60)
This leads to A; = 4¢&p and A, = —4¢,. Hence, the possible results of measurements

are A = 4¢y and A = —4g.

(b) Let us find the eigenvectors of A corresponding to these eigenvalues. For A = 4¢,
we have

< 80(204- V5i) go(fg; v ) < ,‘;‘ >=0- (2.7.61)

—a+(V2-/5i)B)
= g =0. (2.7.62)
(V2+V5i)a—7B

We get from here that B can be an arbitrary constant. Let B = 1. Then, oo = (\f —
\ﬁi). Therefore, the normalized eigenvector of A, corresponding to the eigenvalue
ll =4g,is

v =—— . (2.7.63)
2V2 1
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Similarly, we can calculate the normalized eigenvector of A with A, = —4¢; to be

| -1

" (V2+/5i)

It is easy to check that the eigenvectors y; and Y, are orthonormal.

(2.7.64)

(c) The characteristic equation for the operator B reads:

(h—A) n

B— M\l =
BT ’ i (h—1)

‘ =0. = (h—A)=+h (2.7.65)

This leads to A; = 2A and A; = 0. Hence, the possible results of measurement of B
are B=2hand B = 0.

(d) The eigenvectors of B corresponding to the eigenvalues 27 and 0 are

1 /1 1 1
¢1:ﬁ<1>’ ¢2=ﬂ(_1), (2.7.66)

respectively.

Now, if the measurement of A gives the value 4¢, then after the measurement, the
state of the system will be y;. Then according to the postulates of quantum
mechanics, the probability of getting the value 2% of B will be

v |1 P 8+2v2
P(2h) = ) = ‘4 [\fz— V3it 1} ‘ = SR 06TT. (2760)

Similarly, the probability of getting the value O for B is

2
822
- 16\[ ~0.32322. (2.7.68)

0 = o = i [vi-vai]

Example 2.7.6: A particle of mass m is confined in a one-dimensional infinite potential well
of width a (0 < x < a). It is prepared to be in the second excited state (n = 3). Now the
width of the potential well is suddenly changed to 4 times the initial width without affecting
the state of the particle. If a measurement of the energy is carried out on the particle, what
are the probabilities that the particle is found in the first excited state and the ground state
of the new well?
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Solution: Initially, the particle is in the second excited state of the original well. Hence, the
initial wave function of the particle is (see Eq.(2.7.32))

w(x) = \/g sin <3Zx> : (2.7.69)

The bound state wave functions, ¥, (x), and the corresponding energy eigenvalues, E}, of
the new well are obtained by replacing a with 4a in the formulae (2.7.32):

v, (x) = \/g sin (ZZ ) (2.7.70)

and

2h2
n=1,23,.. 2.7.71)

!/

" 32

Since the wave functions of the original as well as new wells are normalized to unity, the
probability of finding the particle in the first excited state of the new well is given by

[ v wa] =2 [ (20) sin () a

Using the well-known formula, 2sin(A) sin(B) = cos (A — B) — cos (A + B), the integrand
can be written as

7
2sin 3—nx sin (£x> = cos 5—ﬂ:x —cos —ﬂ:x . (2.7.73)
a 2a 2a 2a

The integrals are then given by

2
P =

(2.7.72)

a 5 2 5 “ 2 5 2
/0 cos <27;x> dx = S—a sin <ZZ ) = %sin (2”) = %, (2.7.74)
a n 2a 7r \|* 2a n 2a
dx = — — si =——. 2.7.75
/()cos(za > x=- sm<2a ) 77rsm(2> T ( )

Therefore, the probability of finding the particle in the first excited state is

2 2

. 2_ o4 |2
Sz TIw

P = ==
2 357

=0.04764 ~ 4.8 %. (2.7.76)
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The probability of finding the particle in the ground state of the new well is given by

2 (e T . [(3rm
— / sin (—x) sin <x> dx
a o 4a a

The integrand can again be written as

11 1
2sin 3—nx sin <£x> = COoS —nx — CosS —3ﬂx , (2.7.78)
a 4a 4a 4a

leading to the following values of the integrals

/“ 117 d da . 117
cosS| —x | dx=—sin| —x
0 da 117 4a

2 2

P = ‘ /O v dy| = 2.7.77)

a

0

4a . (Um\  2V2a
=1z sm< ) > = iz (2.7.79)
0 27") T 3r 4" )|,
4a 137 21/2a
= =— 2.7.
137 Sm( 4 > 137 (2.7.50)
Therefore, the probability of finding the particle in the ground state is
02 23| |asval
PP=|—+—| =|——| ~0.023. (2.7.81)
137 11n 1437

Homework Problems

1. Which of the functions
(i) cos(4x), (ii) cosh(4x), (iii) e, (iv) e™*

is (are) a genuine quantum mechanical eigenfunction (eigenfunctions) of the operator
A= —(d2/dx2) and why?

2. Let the wave function of a particle be
v(x,0) =Ae R/2,

where A and b are real constants. Normalize the wave function to find A.
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3. A particle is confined to move in the region 0 < x < L, where L is a positive constant.
If the wave function of the particle is
Y(x.0) =A(x—x).
where A is a real constant, find A. Calculate the probability of finding the particle in
the region L/3 < x <2L/3.
4. An electron is described by the wave function
(x) = 0 x<0
Vi = Ce*(1—e™) x>0
where C is a constant. (a) Find the value of C that normalizes y(x). (b) Where is
the electron most likely to be found; that is, for what value of x is the probability of
finding the electron largest?
5. The wave function of a particle
\/a —a 2 2
x,0)=/5—=xe /2
satisfies the TISE for E = B hw, where o, B and ® are real constants. Find the
potential V as a function of x.
6. A particle, confined to move in the region O < x < L, where L is a positive constant, is
in a state described by the wave function
1 b4 2r
y(x,0) = \/: [sin (fx) + sin (;c)} .
Calculate the probability of finding the particle in the interval from x = 0 to x = L/2.
7. Find the hermitian conjugate of the following operators and discuss their hermiticity:
d d d
—, (b)i—, and x—+5.
(a) e ( )ldx an (c)xdx—i—
8. A and B are hermitian. Under what conditions is the linear combination A + [33,
where o and B are arbitrary complex numbers, hermitian?
9. Show that the operator A = i(£> + 1)% + i% is hermitian. Find its eigenfunction

corresponding to the eigenvalue A = 0. If a particle is in a state described by this
eigenfunction, calculate the probability of finding the particle in the interval
-1 <x<+1.
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10.

11.

12.

13.

14.

15.

16.

Check whether the operator,

N .
A‘( 2 —6i )

is hermitian. Find its eigenvalues.

Find the operator hermitian conjugate to the operator

B =

— O N
S WO

1
1
4

Find the eigenvalues and the normalized eigenvectors of B.

Find the eigenvalues and the normalized eigenvectors of the matrix operators

@)A:(? é) (b)é:(‘ii 6)

Consider an operator A = )?% + o, where « is a constant. Calculate
A N d |~ d
A’ £ s b A9 h s R A9 e .
@A, GEA]. @[ [1L]]
Using the fundamental commutator, [£, p] = if, show that
[#", py] = i
Show that

(9.5 = in? 2D,

where f(%) is an arbitrary differentiable function of £.

Find the inverse of the following operators
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17. Show that the operators
S ()
A cos@ sinf b) B {2 \lﬁ
= 5 = _—— —_ 0
—sin@ cos0 V2o V2
0 0 i
are unitary. Compute their eigenvalues and the corresponding normalized
eigenvectors.
18. The Hamiltonian for a free particle in one dimension is given by
. n 92
H=———.
2m dx?
Check whether the following functions are eigenstates of the Hamiltonian and if they
are, write down the corresponding energy eigenvalues:
. RY/2 5w Ry
(a) e'P/ (b) sin <Lx> , (c) sin <Lx> +2cos (Lx> ,
R}/ T 57 5w
(d) sin (Lx> +2cos <Lx), (e) sin <Lx> cos <Lx>
Here, L is a real constant and p is a constant with dimensions of momentum.
19. A particle is restricted to move in the region 0 < x < a, where a is a positive constant.
Initially (f = 0), it is in a state with the wave function
1. /7x . (3mx
y(x) =4/ — |sin <—) +sin — ||.
a a a
Calculate the probability of finding the particle in the interval § < x < 27“
20. Find the wave function for any ¢ > 0 in Problem 19. Assume that y(x,7) and calculate
the probability density p (x,7) = y* (x,7) y(x,1).
21. The orthonormal states of a system corresponding to the energy eigenvalues, E,, n =
1,2,3,..., are described by the wave functions ¢,(x), n = 1,2,3,.... When energy
is measured on the system in the state y(x,0) at r = 0, the values obtained are E;
with probability 1/6, E, with probability 1/2, E5 with probability 1/9, and E4 with
probability 2/9. (a) Write down the expression for y(x,0) on the basis of the given
information. (b) What will be the expression for y at a later time # > 0? (c) Show that
the expectation value of the Hamiltonian does not depend on time.
22. The state of this system is given in terms of three functions ¢;(x), i = 1,2,3 as

1 7 2
Y= \/;dh + \/;% + \/;%,
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23.

24,

25.

where ¢; constitute a complete set of orthonormal eigenstates of some observable A.

(a) Verify that y is normalized. Then, calculate the probability of finding the system
in any one of the states ¢y, ¢», and ¢3. Verify that the total probability is equal to one.

(b) Consider an ensemble of 500 identical particles. The measurement is done on all
of them to determine their states. Find the number of particles to be found in each of
the states @y, ¢, and ¢s.

An observable A has two eigenfunctions y; and v, with eigenvalues a; and a,
respectively. Another observable B has two eigenfunctions ¢; and ¢, with
eigenvalues b and b, respectively. Eigenfunctions of both these observables are
normalized and are related to each other through the following equations:

_ 391 +44 v, — 491 -3¢, 3¢2
s T s
(a) The observable A is measured on a system in the state y and the result is a;. What
is the state of the system immediately after the measurement?

The observable B is now measured on the system. What are the possible results and
what are their respective probabilities?

The wave function of a particle of mass m moving in a one-dimensional infinite
potential well of width a is

y(x,0) = i\/gsm (7:6) + \/zsin <3Zx> \/Zsm (71:) :

Calculate the average values of the operators £, %%, p, and p2.

Consider the particle and its wave function given in the Problem 24. If we measure
energy, what values would be obtained and with what probabilities? What will be the
average value of the energy of the particle in the given state?



Chapter 3

One-dimensional Problems

In this chapter, we shall first discuss the important properties of stationary state solutions
of the time-independent Schrodinger equation (TISE) in one spatial dimension and then

take up some typical problems.
The TISE in one spatial dimension takes the form:

7 ()

5 e TV @)9() = E9 (), (3.0.1)

where x € (—oo,4o00) is the independent variable. The nature and the properties of the
solutions to this equation depend on the interrelationship between the total energy, E, of
the particle and the potential V (x). Let us discuss some of the important concepts related
to it.

T &)

. E>Vyand V-
Continuum states ! 2

Bound states

! l
! ! i
: . l
| Vmini !
. l
! ! i
| |
A Y A\
X1 0 X2 X3 X

Figure 3.1 Various possibilities for the bound and scattering states of a particle, with
total energy E, moving in an arbitrary one-dimensional potential V (x).

56
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3.1 Bound and Scattering States

Consider an arbitrary form of the potential V (x), shown in Figure 3.1, which is general
enough to allow for the illustration of all the desired features'. Without any loss of
generality, the potential has been assumed to remain finite at spatial infinities:
lim,,_V(x) = V; and lim,_, 1V (x) =V, and it has a minimum Vp;, at some point.
The character of the energy states of the particle is completely determined by the energy
E of the particle in comparison with the asymptotic values of the potential.

In general, the stationary state solutions are categorized as bound state solutions and
scattering state solutions.

Bound states: Bound states occur whenever the particle is confined (or bound) at all
energies to move within a finite and limited region of space. In the case of the potential
shown in Figure 3.1, if the total energy E of the particle is greater than V;, but less than
both the asymptotic values V| and V, of the potential, the particle’s motion is restricted
between the two classical turning points x| and x». The states corresponding to this energy
range are called bound states.

Scattering states: If the total energy of the particle is either greater than V| and less than
V, or greater than both V| and V,, the particle’s motion is not confined to a finite region
of space and the states of the particle, corresponding to these ranges of the total energy,
are called scattering states. Note that for the bound states to exist, the potential V (x) must
have at least one minimum that is lower than V.

Important properties of bound state energy levels and the wave functions in one
dimension:

1. The bound state energy levels of a system in one spatial dimension are discrete and
nondegenerate.

Proof: The solutions of the TISE must satisfy the boundary conditions at the classical
turning points x; and x;. The result is that acceptable solutions exist only for a discrete set
of energy eigenvalues.

The proof of non-degeneracy goes as follows. Suppose there are two solutions ¢ (x)
and ¢, (x) for the same energy eigenvalue E. They both must satisfy the TISE and we get

2

{’:—?T(E—v(x))m, 3.1.1)
2

é’:—h—T(E—V(x))q)z. (3.1.2)

Equations (3.1.1) and (3.1.2) lead to

" "

L_% L ol br— o) =
E— (pz, = dx(¢l ¢2 ¢2¢1)—0 (313)

L andau L.D. and Lifshitz E.M., Quantum Mechanics, Ch. III, p.61, Pergamon Press, 1977
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Integrating 3.1.3 once over x and taking into account the fact that the wave functions and
their first derivatives must vanish at infinity, we obtain

9_
o P

Integrating once more over x and taking into account the boundary conditions, we arrive at

(3.1.4)

01 =Co, (3.1.5)

where C is the integration constant. Since C can be absorbed in the normalization of the
wave function, we conclude that ¢; = ¢». The theorem is proved.

2. The ground state wave function has no nodes, that is, it does not become zero anywhere
in the entire region —eo < x < 4-c0. The next higher energy bound state is called the
first excited state and has one node, that is, it becomes zero only at one point in space.
The second excited state has two nodes and so on. In general, the nth bound state wave
function, ¢,(x), in one spatial dimension has n nodes (that is, ¢,(x) vanishes n times), if
n =0 corresponds to the ground state and (n— 1) nodes if n = 1 corresponds to the ground
state.

The aforementioned property is proved by using the so-called variational principle. We
shall not present it here. Instead, we refer the reader to the book, Methods of Mathematical
Physics, Vol. 1 by R. Courant and D. Hilbert.

Before moving on, let us try to solve the one-dimensional TISE and obtain the
stationary state solutions in a couple of simple cases, which will illustrate the
methodology and the peculiarities of quantum mechanics.

3.2 The Free Particle Solution

A free particle represents a typical example of a stationary state that corresponds to an
unbounded motion (scattering state) both along the positive and the negative x directions.
In this case, the external potential is absent, that is, V (x) = 0, and the TISE reads

nd*o(x) *o(x) | - _
where
K= 2;’_:fE > 0. (3.2.2)

Equation (3.2.1) has two linearly independent solutions:

Oy () =™, o) (x) =e ™. (3:2.3)
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The general stationary state solution is the linear superposition given by
W(x.r) =Apy)e o) L 4 e itheron, (3.2.4)

where A,y and A(_) are arbitrary, in general complex, constants and we have used the fact
that @ = E /h. If we use the de-Broglie formula

p = hk, (3.2.5)

then the solution (3.2.4) can be written as
W) = Agyy eh PN LA TR PR, (3.2.6)

The first term in the above equation represents a particle travelling to the right (positive x
direction) and the second term represents a particle travelling to the left with well defined
momenta ps = + fik and energy E4 = h’k*/2m. The intensities of corresponding waves
are |A,|* and |A_|%, respectively. Since there are no boundary conditions, there are no
restrictions on the values of k and E; all values of k and E give solutions to the TISE. Thus,
a free particle has a continuous energy spectrum.

There is, however, some problems related to the free particle solution. Firstly, the
probability densities corresponding to either solutions are constant

2

Pe= A, (3.2.7)

that is, they depend neither on x nor on ¢. This is due to the fact that, for a state with definite
values of momentum, p = +hk, and energy E+ = h>k?/2m, there occurs a complete loss
of information about the position of the particle and the instant of time at which it is located
at that position. This is the consequence of Heisenberg’s uncertainty principle, according
to which, since the momentum and energy of a particle are known exactly (Ap = 0, and
AE = 0), there must be a total uncertainty about its position and time at which it is located
at that position.

The second difficulty is in an apparent discrepancy between the speed of the wave and
the speed of the particle it is supposed to represent. The speed of the right or the left moving
plane wave is given by

o FE hk
=—=—=— 3.2.8
TR TR 2m (3-2.8)
The velocity of the particle, on the other hand, is given by
hik
y=L -9y (3.2.9)
m m

This means that the particle travels twice as fast as the wave that represents it.
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The third difficulty is that the free particle wave function cannot be normalized:

oo 5 5 [T
/ )P de= A [ dx = o (3.2.10)

—o0 —o0

Hence, as we have discussed earlier, these plane wave solutions of the free Schrédinger
equation cannot be taken as quantum mechanical wave functions representing free
particles. The natural question arises: Is there anyway out of this problem?

The answer is yes! What saves us is the fact that the Schrodinger equation is linear
and superposition principle holds. Therefore, we can superpose a large number of plane
wave solutions and the resulting function will be a solution of the Schrédinger equation.
Such a solution turns out to be localized and is called a wave packet. Mathematically it is
written as

o) = —— [ k) elk@)r-on g 3.2.11
wx’t)_m,m lI/()e ’ ( )

where the amplitude of the wave packet ¥ (k) is given by the Fourier transform of y(x,0):

~(k):i " (x,0) e *@)x gy, (3.2.12)
II/ \/ﬁ - II/ ’

The wave packet represented by the equation (3.2.11) is localized in space, namely atx = 0
(Figure 3.2). This is because of the fact that y(x,?) is a superposition of an infinite number
of plane waves that are, as we know, coherent and will interfere with each other. They add
up constructively at x = 0, while their constructive interference diminishes as we move
away from the point x = 0. The rapid oscillations of the exponential factor ¢/** ensures
that the waves interfere destructively for x — +oo. Similarly, the function (k) represents
a wave packet in k-space (momentum space). It is localized at k = 0 and vanishes at large

values of k.

As a measure of the size of the packet in x-space, it is customary to define a half-width
Ax corresponding to the half-maximum of |y(x,#)|?. It is defined such that when x varies

from 0 to +Ax, the function |y (x)|? drops down to ¢!/ times its initial value:
+AY))F 1
[ xﬂz = . (3.2.13)
lw(0,0)]" ¢

Similarly, one defines a half-width Ak corresponding to the half-maximum of |(k)|?. In
this case it is defined such that when k varies from kg to ko & Ak, the function | (k)|? drops
down to e~!/2 times its initial value:

(3.2.14)

W (£AK) 1
w(0))  e/?
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The quantity Ak is the measure of the size of the packet in the momentum space.

The physical interpretation of the wave packet can be given as follows: |y (x,?)|? is
the probability density for finding the particle at position x at a given ¢ and P(x)dx =
|w(x,t)|?dx gives the probability of finding the particle in the interval between x and x +
dx. Similarly, |@(k)|* and | (k)|?> dk represent the probability density for measuring the
wave vector k (or, equivalently momentum p = k /%) of the particle and the probability of
finding the particle’s wave vector in the interval between k and k + dk. Note that it is not
difficult to see from the equations (3.2.11) and (3.2.12) that if y(x) is normalized to unity,

so is ¥(k).

Envelope

Figure 3.2 The snapshot of a localized wave packet.

The representation of a free particle by a wave packet overcomes the earlier mentioned
difficulties related to the position, the instant of time at which the particle is located at that
position and the normalization of the plane wave solutions. Since the position, and
momentum of a particle, represented by a wave packet, are no longer known exactly (only
probabilistic outcomes are possible), the difficulties related to position and time are
automatically resolved. The difficulty, related to the speed of the particle being twice that
of the speed of the de Broglie wave representing it, is also overcome because, now both
the particle and the wave packet travel with the same speed equal to the group velocity, v,,
of the wave packet. Finally, the wave packet, given by (3.2.11), is normalizable.

3.3 Particle in an Infinite Potential Well

In the last section, we considered the free particle solution as our first example. Here,
we consider a second example in which we make the situation a bit more involved by
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restricting the motion of a free particle to a small region of width a by putting walls of
infinite potential at x = 0 and x = a (see Figure 3.3). This is known as asymmetric infinite
square well potential.

VT oo VT oo

=

0 a X

Figure 3.3 The representative shape of an infinite potential well V (x) of width a. E is
the total energy of the particle trapped in the potential.

Mathematically this is given by the following expression:

0, for 0<x<a,

V(x) = { (3.3.1)

o, for x<0,x>a.

We want to solve the Schrodinger equation for the stationary states of a particle of mass
m moving inside such a potential well. Clearly, due to the infinite walls, the particle is
trapped and cannot leave the region 0 < x < a. If we look at it from the classical point of
view, the particle moves inside the well with a constant speed, p/m = ++/2mE /m, back
and forth getting reflected from the walls at x = 0 and x = a. Since the motion of the
particle is confined inside the well, quantum mechanically, it corresponds to the case of a
bound state problem. In order to find the bound state energies and wave functions, we must
solve the TISE with appropriate boundary conditions. Since the particle cannot penetrate
the regions x < 0 and x > a, the wave function of the particle must be zero in these regions:
Yy =0forx<0andx>a.
The TISE
d*¢ 2m

W—i—?(E—V)q):O (3.3.2)

for the given case can be written as

=——(E-V), (3.3.3)
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where the prime stands for ordinary derivative with respect to x. Inside the well, V =0,
and the solution is given by the linear combination

¢ (x) = A sin(kx) + B cos(kx), (3.3.4)
where A and B are arbitrary constants and

B 2mE

K = — (3.3.5)
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Figure 3.4 Spatial parts of the wave functions for the first three stationary states of a
particle in the infinite square well potential with a = 1.

According to the standard conditions, the wave function has to be continuous across the
boundaries and we must have ¢ = 0 for x = 0 and x = a. The first boundary condition
¢(x=0) =01leads to B=0. So, we are left with ¢ (x) = A sin(kx). The second boundary
condition yields

sin(ka) =0, = ki="" n=123,.. (3.3.6)
a

Taking into account (3.3.6), we conclude that the boundary conditions can be satisfied only
for the discrete values of energy
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2#2 .2
h

E, =" 123, (3.3.7)
2ma?

where we have omitted n = 0 because it leads to an uninteresting result: ¢o(x) = 0 and
Ep = 0. Thus, a particle, trapped inside an infinite potential well, can have only discrete
set of energy eigenvalues given by (3.3.7). The corresponding eigenfunctions are

¢n(x) = By, sin (@x) : (3.3.8)

a

The constant B,, is determined by the normalization condition

+o0 a
]B,,]z/ 0. (x) 9 (x)dx = \Bn\z/ sin? (%@ dx = 1. (33.9)
—oo 0
The result is
2
Bi=1/". (3.3.10)
a

Therefore, the normalized eigenfunctions and the corresponding energies are

2 2h2 2
V(1) = \/> sin <Bn> E,=""" =123, (3.3.11)
a

a 2ma? "’

We thus got an infinite sequence of discrete energy levels corresponding to the positive
integer values of the quantum number 7. The ground state corresponds to n = 1 with energy
E| = *x*/ (2ma®). The states with quantum numbers n > 1 are called the excited states.
Their energies are equal to n> times the ground state energy.

The full stationary state solutions are

2 e
V(1) = \/; sin (En) ¢ (3.3.12)

a

Note that, in view of the linearity of the Schrodinger equation, the most general stationary
state solution for the given case can be written as

2.2

> 2 _jninh
y(e) =Y cn\/; sin (En> e (33.13)
n=1

a

where ¢, are arbitrary constants. The spatial parts of the wave functions, for the first three
stationary states of a particle in the infinite square well potential with a = 1, are depicted
in Fig.3.4.
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Properties of the eigenfunctions: Let us enumerate the important properties of the
obtained solutions. These properties are quite general and hold good for most of the
potentials encountered in quantum mechanics.

1. The eigenfunction ¢,(x) has (n— 1) nodes (zero-crossing).

2. These functions are alternately symmetric and antisymmetric with respect to the
centre of the well. For instance, as shown in Figure 3.4, the functions ¢; and ¢3 are
symmetric whereas the function ¢, is antisymmetric. In general, the eigenfunctions
¢, with odd n are symmetric while those with even n are antisymmetric.

3. None of the energy levels is degenerate, that is, each energy level corresponds to a
unique eigenfunction.

4. The eigenfunctions corresponding to different energy eigenvalues are orthogonal:

+oo a
l B (X) @ (x)dx = /O G (X) 0 (x)dx = Sy, (3.3.14)
where 6,,, is the Kronecker delta:
1 if m=n
Omn = { 0 if m#£n (3.3.15)

5. The eigenfunctions {¢,(x)},n = 1,2,3,... constitute a complete set in the sense that
an arbitrary function f(x) can be expanded as a linear combination of these functions:

- 7 =
f(x) :};Cn¢n(X) = \/;n; ¢y sin (%n) (3.3.16)

where the coefficients ¢, are calculated as
Cn = / o, (x) f(x)dx. (3.3.17)
0

Note that, the ground state corresponds to n = 1 instead of n = 0. The reason behind it
lies in Heisenberg’s uncertainty relation between the position and momentum (see
Eq. (3.10.12)) of the particle. If the particle has zero total energy, it will be at rest inside
the well and we can, in principle, precisely determine its position and momentum
simultaneously at a given instant of time. This is not permitted by the uncertainty relation.

Furthermore, since our particle is localized inside the well of width a, according to the
uncertainty relation, the minimum uncertainty in the momentum of the particle is of the
order of 71/2a, that is, Ap = h/2a. This leads to a minimum possible value of the kinetic
energy of the particle equal to /% /8ma?, which is of the order of the ground state energy
Ei = m2h?/2ma®. This unavoidable minimum energy enforced by the uncertainty
principle is known as the zero-point energy. The zero-point energy therefore reflects the
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necessity of minimum motion of the particle due to localization. It occurs for all bound
state problems. In the case of binding potentials, the lowest energy state has energy higher
than the minimum of the potential energy. This is in contrast to the situation in classical
mechanics where the lowest possible energy is equal to the minimum of the potential
energy with zero kinetic energy. In quantum mechanics, however, the lowest energy state
does minimize the total energy E = T 4 V but leads to a finite nonzero value of the
kinetic energy.

Example 3.3.1: A particle in an infinite symmetrical potential well of width a (=5 < x <
+5) is initially ( = 0) in a state with the wave function

2

w(x,0) =A (1—x>, (3.3.18)

)
where A is an arbitrary real constant. Find the wave function y(x,7) atz > 0.

Solution: First, we normalize the wave function to find A. We have

+a +a 2 4
2 2 X X
—A 128 4+
/_a (W (x,1)]" dx /_a ( a2+a4>dx
4a 2 16
— A2 <2a—3“+5“> :Azl—;: 1. (3.3.19)

This gives the constant A as

V15
A=——. (3.3.20)
4/a
The general solution at t > 0 is given by the linear combination
y(xt) =Y catn(x) e ikt (3.3.21)
n

where ¢, (x) are the normalized time independent solutions of the corresponding TISE. The
coefficients, ¢,, are to be calculated for a given y(x,0). Since the potential is symmetric
with respect to the centre of the well (at x = 0), the solutions are

\/gcos (”aﬂ) , n=1,3,5,..

On(x) = (3.3.22)

\/gsin (”7’”) , n=2,406,..
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For odd n, the coefficients ¢, are

2 +5 +5
clnzA\/;/azcos(mrx dx —\[/ 2x%os )dx—11+12 (3.3.23)
-2

Taking the above integrals and using the expression for A, we obtain

v30 . /nm
I =3 sin (7) , (3.3.24)
and
1 1 . (/NT

For even n, the coefficients ¢, are

Cop = [ \/>/_+2 sin nrcx \/>/+2x2 sin (%) dx] . (3.3.26)

In this case, both the integrals are zero because the integrands are odd functions of x.
Therefore, the expansion coefficients are given by

5 1 . (NT
Cn_m<_n37t3> s1n<7>, n=1,3,5,... (3.3.27)

8nm

As a consequence, the wave function at # > 0 is given by the following linear combination

Zr(&m n317r3> Si“( )‘Pn() e TSy 35
(3.3.28)

3.4 Discontinuous Potentials and the Differentiability of the Wave
Function

We have seen that any physically acceptable solution of the TISE must satisfy the standard
conditions. Since the TISE involves an external potential, V (x), the form of its solutions
and the fulfillment of the standard conditions depend on the properties of the function V (x).
If V(x) is finite and continuous everywhere, we can expect the solutions of the TISE to be
finite, continuous and differentiable. However, if the potential has points of discontinuity,
then we have to examine whether the wave function will be continuous and differentiable
at these points or not. It is evident from the physical interpretation of the wave function
that it has to be continuous everywhere irrespective of the fact whether or not the potential
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has discontinuity. However, the differentiability of the wave function is not guaranteed
in advance and hence, must be examined. This is also important because of the fact that
the general solution of TISE contains two integration constants to be determined by the
boundary conditions and one of the boundary conditions involves the first-order derivative
of the wave function.

(a) The potential has a finite jump (discontinuity), say, at x = 0:

V(x) = 0 for x<0 34.1)
= Vo>0 for x>0. o

The wave function has to be continuous across x = 0. To check the continuity of the
first derivative, we first replace the potential V (x) by a smoothened potential V¢ (x)
in the interval x € [—€,+¢] such that

lim Ve (x) = V. (3.4.2)

£—0

Here € < 1 is an infinitesimal positive parameter. Integrating the time-independent
Schrédinger equation in this interval over x, we obtain

d d 2 +e 2 1e
(di>+ - (dﬁ) :_ZQE/S ¢’(x)dx+21zE/8 V(x)o(x)dx.  (3.43)

If we take the limit € — 0 in (3.4.3), we get

d 2mE +e 2mE te
A<¢> :_an/ 0 (x) dx+ :2 ;ig(,)/_e V)o(x)dr.  (3.4.4)

dx B2 e—0J_¢

The first term on the right-hand side of (3.4.4) is zero because ¢ (x) is continuous
across x = 0 and hence, the integral goes to zero as € becomes zero. The second term
is also zero because

im [ V()6 () dx. = Vo lim o) dr =0, (3.4.5)

e—0/_¢ 0.)_—¢

As a result, we arrive at

d¢\  (do
(). ().

Thus, if the potential has a finite jump at a point, the wave function and its first
derivative are continuous at the point of discontinuity. That is, the wave function is
differentiable at the points of finite discontinuity of the potential.
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(b) The potential V (x) is infinite in a region: In this case, the particle cannot penetrate
through the infinite barrier and the probability of finding the particle inside the barrier
is zero. Therefore, the wave function must vanish everywhere in the region of infinite
potential.

(c) The potential becomes infinite at a point ( that is, has a singularity at a point): We
can model this situation by assuming V (x) = —ot §(x —xp), where o is a positive
constant. The wave function will be continuous at x = xg. In order to verify the
continuity of the first derivative, we once again integrate the corresponding TISE in
the vicinity of the point x = xg. We get

d¢ d(P 2mo. [TE€ 2ma
(d)f>+e_<dx>_g:_:2/8 S(x—x0)p(¥)dr=—""0(x). (347

Thus, the first derivative of the wave function is not continuous across the point of
singularity. Instead, it has a finite jump of (—2ma/%*)¢(xo) at x = xo.

Example 3.4.1: A free particle of mass, m, and total energy, E, is incident from x — —co on
a potential step given by

0 for x<O0
Vx)= (3.4.8)
Vo >0 for x>0,

where Vy > E is a positive constant. Solve the corresponding TISE, apply the appropriate
boundary conditions and determine the wave function.

Solution: The given potential divides the entire region —oo < x < +oo into two halves:
x < 0, where the potential is zero and x > 0, where the potential has a constant value
Vo. We will call them Region 1 and Region 2, respectively. The corresponding stationary
state wave functions in these regions are denoted as W (x,7) = ¢; (x)e /" and y» (x,1) =
¢ (x)e E1/M respectively. In Region 1, the TISE

d? 2mE
quZ) + ?(}5 =0 (3.4.9)

has the following general solution
¢ (x) = Ae ¥  Be~ ik, (3.4.10)

where k% = 2mE /1 and A and B are arbitrary constants. As a result,

w1 (x,1) = A (0iit) 4 geilltite) (3.4.11)
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The first term of this solution represents the incident particle moving along the positive
x-axis, while the second term represents the particle reflected by the potential barrier and
moving along the negative x-axis.

In Region 2, the TISE reads

a’¢  2m(Vo—E)

o 2 ¢ =0. (3.4.12)
Its general solution is
¢(x) = Ce " 4+ Dk, (3.4.13)

where k3 =2m(Vo —E)/ 72 and C and D are arbitrary constants. Since the wave function
must tend to zero at spatial infinities (x — *o0), we must put D = 0, otherwise the solution
will diverge. Therefore, the stationary state solution in the second region can be written as

v (x,1) = Ce Fox—iE/R)L, (3.4.14)

Since the potential has only a finite jump at x = 0, both the wave functions (¢; and ¢,) and
their first-order derivatives must be continuous at x = 0. We thus have
A+B=C, (3.4.15)
iki(A—B) = —kC. (3.4.16)
There is a small problem here because we have only two equations but three constants to

be determined. Let us first determine the coefficients B and C in terms of the constant A
and then see what we can do about A. From the equations (3.4.15) and (3.4.16), we have

B C
1+ ==, 34.17
1= ( )
B ik C
==X 34.18
A kA ( )
Solving these equations for C/A, we get
2k
= . 3.4.19
ki + ik ( )
If we subtract (3.4.18) from (3.4.17) and use (3.4.19), we obtain
ki — ik
=Ty (3.4.20)

ki ik
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Now, without any loss of generality, we might assume that the incident particle’s wave
function (a wave packet) is normalized in such a way that A = 1. Then the required wave
function is

oilkix—ior) + 232 e ilkxtior) . - 0,
0= 5 s . (3.4.21)
k1 +iky € x>0,

where @ = E /h.

Example 3.4.2: A particle of mass m and total energy, —FE (E > 0), is subject to the potential
given by

V(x) = —ad(x),

here o is a positive constant and & (x) is the Dirac delta function. Solve the Schrodinger
equation for the bound states and find the energy levels and the corresponding normalized
wave functions. How many bound states can the particle have in such a potential?

Solution: Let us first solve the time-independent Schrodinger equation

n? d?
_%Txf V()6 = E (3.4.22)

for the wave function ¢ (x). For x < 0 and x > 0, V(x) = 0 and we have

dzi(]) _ 2m|E|
dxz h2

¢ =0. (3.4.23)

Since the standard conditions require the wave function to vanish for x — +oco, we have

9 (x) =

Aek for x<0O
(3.4.24)

Be % for x>0,

where k = \/2m|E| / I and A and B are real but arbitrary constants. The continuity of ¢ (x)
at x = 0 yields

A—B. (3.4.25)

The potential is infinite at x = 0. Therefore, as discussed earlier, the first derivative of the
wave function will be discontinuous and we shall have

d¢ d¢ _ 2mo [TE _ 2ma
<dx> te ; (dx)_e TR [8 8(x)¢(x)dx = —7¢(0)~ (3.4.26)
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If we take the limit € — 0 and put A = B, we obtain

2mo 2mo _mo

- (3.4.27)

We thus see that there is only one bound state for the particle in this case whose energy is

o
E—= —%. (3.4.28)

The normalization of the wave function reads

+oo 0 +oo A2
/ ly(x)|?dx = A? / e dx + A2 / e My = — =1 (3.4.29)
o —oo 0

Hence, A = v/k. The normalized wave function is thus given by

(3.4.30)

8 Vke®  for x<0, mo. _mey
x) = — |
Vke ™®  for x>0. n*

3.5 Conservation of Probability and the Continuity Equation

Continuity equation in quantum mechanics
In Chapter 2, we talked about the statistical interpretation of the wave function in which
the quantity |w(x,7)|? represents the probability density at a given instant of time. The
argument that at any ¢, the particle is definitely somewhere in the universe led to the
normalization condition for the wave function. Later, we also postulated the
time-evolution of the wave function to be governed by the time-dependent Schrédinger
equation. Therefore, it is natural to check whether the statistical interpretation of the wave
function is consistent with its time-evolution. In other words, we want to answer the
following question: If the wave function is normalized at ¢ = 0, does it remain normalized
at any ¢ > 07? It turns out that it does. This is what we are going to show.

Consider, for simplicity, one-dimensional Schrodinger equations both for the wave
function, y, and its complex conjugate function y*. We have

_Jdy 1y

aw* B hZ aZW*

_in __
Mo 2m dx?

V)V (3.5.2)

If we multiply the equation (3.5.1) by y*, the equation (3.5.2) by y and subtract the second
from the first, the result can be written in the form of a continuity equation:
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dplx.t) | djx.t)

oy P 0, (3.5.3)

where p(x,1) = w* (x,1)w(x,1) = |w(x,1)|? is the probability density and j(x,r) = j(x,1)7

is the probability current density given by the following expression:

- . R w(x,t) Jy*(x,t
j(x,t):izl,m<l//*(x,t) "’a(;“ ) _ "’&(; >I;I(x)>. (3.5.4)

Equation (3.5.3) represents the local conservation of quantum mechanical probability the
same way as the continuity equation in electrodynamics represents the local charge
conservation. If we integrate the continuity equation over x from —oo to +oco, we get

dt \J_w 2im ) Ox ox ox
R [ Ov(x)  dyt(xt) i
== _ﬁ |:ll/ (x,t) Ox — Ox II/(X) - . (355)

Due to the standard conditions, the wave function and its first derivative must vanish at
spatial infinities. Therefore, the right-hand side of (3.5.5) becomes zero, and we get

d +oo Hoo
dt(/w pdx) =0 = _ v'ydx=C, (3.5.6)

where C is the integration constant to be determined by the initial condition. If the wave
function is normalized at # = 0, we have C = 1. In other words, the total probability of
finding the particle at some point in space is independent of time and the total probability
is conserved even if the wave function is changing in time according to the time-dependent
Schrodinger equation. In addition, if we have normalized the wave function at r = 0, it
remains normalized for all times to come.

In the three-dimensional case, the probability density, p, and the probability current
density, 7, are given by

p(rt) =y"y (3.5.7)
HEDE % [w" (W) —~ (W*) w] : (3.5.8)

where y = y/(7,1). Consequently, the continuity equation is written in the form

apg’t) V- R0 =0. (3.5.9)
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If we integrate the equation (3.5.9) over all space and use the divergence theorem, we
obtain

% (/:w w*wd3r> . _22117_€m v (Vy) - (Vv a5 (3.5.10)

The surface integral on the right-hand side vanishes because the wave function and its first-
order derivatives must vanish at an infinitely remote surface. The result is once again the
conservation of total probability:

d e * 3 _
dt< viyd r> =0, (3.5.11)

—o0

that is, the total probability of finding a particle somewhere in space is independent of time.
Once again, if we have normalized the wave function at ¢ = 0, it remains normalized for
all times to come.

The physical interpretation of the continuity equation: Note that (3.5.9) can be interpreted
in a more physically meaningful manner if we regard p = |y|?> as the mean particle
density and  as the mean particle flux density defined as the average number of particles
per unit time passing through a unit area held perpendicular to the direction of motion of
the particles. Now, if we multiply p by the mass m of a particle then p,, = m|y|?> will be
the average mass density and correspondingly fwill represent the average current density
of matter. Then the equation (3.5.9) can be thought of as a manifestation of the fact that
the change in time of the average mass density in some infinitesimal volume, dt (Figure
3.5(a)), is due to the inflow or outflow of this mass through the surface enclosing it.
Equation (3.5.11) then says that the average number of particles inside d7 remains
constant. In other words, the average number of particles per unit time entering the
surface, enclosing d7, is equal to the average number of particles per unit time leaving
this boundary surface.

N(@m-3) = v >

—_—
JE—
—_—
e 4 —>
—_—

(a) (b)

Figure 3.5 (a) Infinitesimal volume, (b) Cylinder of unit cross-section and length v.

For instance, suppose we have a stream of particles (all propagating along the x
direction with a velocity V) with density N. Then the particle current density will be given
by f: Nvi. Consider now a cylindrical volume of unit cross-sectional area and length v
lying along the direction of motion of the particles (Figure 3.5(b)). Since the length of the
cylinder is v, the average number of particles entering the cylinder per second through the
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rear cross-sectional area will be equal to Nv and this will in turn be equal to the number of
particles leaving the cylinder per second through the front cross-sectional area, so that the
number of particles inside the cylinder at any instant of time is constant. The continuity
equation (3.5.9) or (3.5.3) can thus be looked upon as expressing the local conservation of
the number of particles.

Example 3.5.1: The wave function is given to be

lI/(X,l‘) :Aei(kx—a)t) _,_Be—i(karwt)’
where A and B are arbitrary complex constants. Calculate the probability density and the

probability current density. Show the validity of the continuity equation. Give the physical
interpretation of the obtained results.

Solution: The probability density p (x,) is given by
plng) = |l//(x,t)|2 _ (A*e—i(kx—a)t) B ei(kx+a)t)> (Aei(kx—a)t) +Be—i(kx+a)t)>
= JA]? +A*Be ?* 4 |B|> + B*Ae** (3.5.12)
Also,

w*%‘lf I (A*e—i(kx—cot) B ei(kx—wt)) (A pilke—or) _Be—i(kx—a)z))
X
— ik (|Ay2 —|BJ? — A* Be~2ilki—an) +B*Ae2i(kx’“”)> . (3.5.13)

Taking the complex conjugate of (3.5.13), we obtain

waaw* -~ <A Gilke—or) _|_Befi(kx7wt)) (A*efi(kxfwt) _B ei(kx%ot))
X

= ik <]A\2 —|B|? + A* Beilkv-or) _ B*Aezl'(kH”)) . (3.5.14)

From (3.5.13) and (3.5.14), we calculate the current density as

. h B} dy Jy* _ hk ) )
Jx—z.[llf O e w(m)] = (A" = B[). (3.5.15)

mi
We see that the probability density is time independent, while the probability current
density is time as well as space independent. Therefore, the continuity equation is
satisfied identically. Physically, it shows that the number of particles passing through a
unit area per second along the positive x direction is numerically equal to the number of
particles crossing the same unit area per second along the negative x direction.
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Example 3.5.2: Atr = 0, a particle of mass m, free to move inside an infinite potential well
with walls at x = 0 and x = a, is in a state that is a linear superposition of the ground state
and the first excited state

R

w501 L5 00 000 = L (2 s (2]

Find the wave function at any # > 0. Check whether the continuity equation holds good for
this state or not.

Solution: The wave function of the particle at# > 0 will be

IR S B 5 N PR 2 W
y(x,t) = 7 [sm( p )e h —|—sm< , >e i ] (3.5.16)

The probability density is calculated to be

! 2
p(X,t) = ’l[/(x,[)’z = — |:Sin2 (E) +Sin2 (ﬂx):l )
a a a
! 2 1) (E1=Ep)
+gin () sin (nx) {&Elﬁ“re’ﬁhw}' (3.5.17)
a a a

We simplify it further, by dividing the last term by 2 and using the Euler formula, to obtain

pts 4 () (2]

2 b/ 21 E\—FE
+ —sin <—x) sin <x> cos [(lz)t] . (3.5.18)
a a a h
Let us now calculate the probability current density. We have
d 1 [n T E, 21 27 E
v_ [ cos (—x> e it 4+ 27 cos (X> e_’hzt] , (3.5.19)
dx ala a a a

v (x,t)&l = %sin (E) cos <E> + m sin (%) cos <275x> eiwlr‘:iﬂ’

ox a a a a? a

2 (E\—Ep) 2 2 2
—{-1 sin X cos (B> P il sin | 222 cos T . (3.5.20)
a? a a a? a a
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Taking the complex conjugate of the last equation, we get

a;: y(x,t) = a—nz sin (%) cos <7rx) + = 7 sin (Zx> cos <27rx> e—i(Elh;EZ)f

a

2 (Ey—Ey) 2 2 2
~|—£2 sin <7rx> cos (E) e 7; sin (nx) cos <71'x> : (3.5.21)
a a a a a a

If we subtract (3.5.21) from (3.5.20), we obtain

. dy  Jdy* _2n X 2nx\ | BB, (BB,
v (x,t)x— e y(x,1) = ?mn( ; ) cos <a> [e Al e

2 (E|—E) (E|—Ey)
~ 7 in <7rx> cos (E> [e’ R b ’] ) (3.5.22)

a? a a

The probability current density j, is therefore given by

. h } dy  Jy*
=5 [w (vt) 5 =5 w(x,t)]

2m
2wh . (7x 2nx\ . [(E)1—Ey)
=—>s 1n< ) cos | — | sin | —¢
ma a a h
h 2 E\—E
~ " sin (m) - (H) sin [“2)1] . (3.5.23)
ma a a h
The time derivative of the probability density is
2(E,—E 2 E\—E
9p(x.1) = _,M sin (E> sin o sin Mt . (3.5.24)
dt a h a a h
Since

(E1—Ey) 1 (m®h*—4r’n*)  37°h
h T h 2ma? T 2ma?’ (3-5.25)

we get from (3.5.24)

dp(x,r) 3mw*n . (mx\ . (2mx\ . [(E\—E»)
% md sin (;) sin W sin Tt . (3.5.26)
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The x derivative of j, can be calculated to be

djx 2m2h X 2rx\  Ar’h . smxy . (27nx\] . [(E1—E)

- = 3 cos(—)cos| — ) ———5sin(— ) sin{ — ) |sin | ~———"1

ox ma a a ma a a h
27%h 27x mx\  mho. (2mx . /ax\] . [(E1—E)

— 3 c0s| —— Jcos{—)——=sin| — | sin(— )| sin | ———1|,
ma- a a ma a a h

dj. 3n’h . smxy . [(27nx\ . [(E,—E
a—jx =— o sm( P ) sin <a) sin [(lhz)t} . (3.5.27)
From (3.5.26) and (3.5.27), we conclude that
dp(x.t) | djx
— =0. 3.5.28
o T ox (3:5:28)

Hence, the continuity equation is indeed satisfied.

3.6 Symmetric Potential and Even and Odd Parity Solutions

In Chapter 2, we discussed about the parity operator and proved that it is hermitian as well
as unitary. We also saw that its eigenfunctions had definite parity and they formed a
complete set. In the following we shall study the properties of the solutions of the
Schrodinger equation with symmetric potentials, i.e., with potentials that are invariant
under parity transformation.

Consider the Schrédinger equation with a potential that is symmetric with respect to
space inversion: V(—x) = V(x). Clearly, when V(x) is symmetric, the corresponding
Hamiltonian,

L 4v(x), (3.6.1)

is also symmetric. In other words, H is an even operator. We have seen in Chapter 2 that
even operators commute with the parity operator &2. Therefore, for symmetric potentials
[32,1:1] = 0 and the Hamiltonian and the parity operator can have a common set of
eigenfunctions.

Theorem 3.6.1: The bound state wave functions of a particle moving in a one-dimensional
symmetric potential have definite parity, that is, they are either even or odd.

Proof: Although this theorem follows immediately from the fact that the parity operator, 2,
and the Hamiltonian, H, are compatible and that the eigenfunctions of the parity operator
has a definite parity, it is useful and instructive to prove the theorem in a straightforward
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way on the basis of the TISE and its solutions. It will, hopefully, make the point and the
content of the theorem more lucid.

Consider now the TISE for the symmetric potential:

n* d?
|:—2’ndxz+V(x):| (P(X) :Ed)(x) (362)
Let us now perform the spatial inversion by replacing x with —x. Then, Z¢ (x) — ¢ (—x)
and 2V (x) — V(—x). Since V(—x) = V(x), the Hamiltonian commutes with the parity
operator and we get

n d?
= —x)=E¢(—x). .6.
StV (=) = Bo(-1) (:63)
Thus, we see that the stationary Schrodinger equation (3.6.3) for the symmetric potential is
satisfied by ¢ (—x) = ¢;(x) as well as ¢ (—x) = —¢2(x). The former, denoted as ¢*(x), is
called the symmetric wave function and has even parity, while the latter, denoted as ¢“(x),
is called the anti-symmetric wave function and has odd parity.

Let us now recollect our earlier result that, in one spatial dimension, the bound state
energy spectrum is discrete and non-degenerate. In view of this result, we conclude that
the wave functions of a particle, moving in a one-dimensional symmetric potential, have a
definite parity (either even or odd) . The theorem is proved.

Note that, if the spectrum of the Hamiltonian corresponding to a symmetric potential is
degenerate, the energy eigenstates do not have definite parity.

Example 3.6.1 Solve the TISE for the potential

] 0, for —a<x<a,
Vix) = { oo, for x< —a,x > a. (3.6.4)

Find the energy eigenfunctions and the corresponding energy eigenvalues.

Solution: The given problem is once again the problem of a particle trapped inside an infinite
square well potential. However, unlike the earlier one, the given well is symmetric with
respect to the center at x = 0: V(—x) = V(x). Therefore, according to Theorem 3.6.1,
the solutions of the corresponding TISE are either symmetric, ¢ (—x) = ¢(x), or anti-
symmetric, ¢ (—x) = —@(x). In the former case the solutions are said to have even parity,
while in the latter they are said to have odd parity.

As discussed earlier, the solutions in the regions on both sides of the well, that is, for x <
—a and x > a, must be identically equal to zero. Inside the well, the TISE has two linearly
independent solutions ¢*(x) = A cos(kx), which is symmetric, and ¢*(x) = B sin(kx),
which is anti-symmetric, where A and B are arbitrary constants and k> = 2mE /1. In view
of the above mentioned properties of the solutions, we treat the two cases separately.



80 Fundamentals of Quantum Mechanics

Symmetric solutions: ¢*(x) = A cos(kx). The continuity condition at the boundaries x =
+a leads to

Acos(ka) =0, = cos(ka) =0, = kya= %n ~1.3.5,... (3.6.5)

The corresponding energies are: E; = n?m’h? /8ma®. The normalization of the wave
function yields: ¢3(x) = /1/acos (n7x/2a).

Anti-symmetric solutions: ¢“(x) = B sin(kx). The continuity condition at the boundaries
x = *aleads to

Bsin(ka) =0, = sin(ka)=0, = ka= %,n —=2.4,6,.. (3.6.6)

The corresponding energies are: E) = n?m?h? /8ma®. The normalization of the wave
function yields: ¢¢(x) = +/1/asin(n7mx/2a).
The two wave functions can be combined together and we have

1 o (—1)% \/gcos (%) n=1,3.5,...
\/> sin [

Gn(x) =1/ = sin | = (x+a)| = (3.6.7)
. . ] (—1)%\/%sin(”2—’ff) n=2,46,...

The corresponding energies are

n?m2h?

E, = :
" 8ma?

n=12.73,.. (3.6.8)
Note that, since the energy is inversely proportional to the square of the width of the
potential, the bound state energies here differ from the corresponding energies of the
asymmetric well by a factor of (1/4).

If we take the total width of the symmetric potential to be a (—a/2 < x < a/2), we
shall get the corresponding wave functions and the energy levels as

\/gcos (%) n=135,...
O (x) = (3.6.9)

\/g sin (%) n=2.4.6,...,

2 2h2
Ey="5 =123 (3.6.10)
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3.7 Particle in a Finite Square Well Potential

Consider the motion of a quantum particle in a finite potential well (Figure 3.6):

0, if |x|<a
V() _{ Vo, if |x|>a. (3.7.1

We are required to solve the TISE with this potential for the bound states, when the total
energy, E, of the particle is less than Vj and determine the eigenfunctions and the
corresponding energy eigenvalues. This type of potential is considered as an approximate
model for the solution of several problems in atomic and nuclear physics.

A V(x)

Figure 3.6 The representative shape of a finite potential well V (x) of depth V.

Solution: The entire range of x from —eo to +oo can be divided into three regions: —a < x <
a (Region I), x < —a (Region II) and x > a (Region III). The general TISE reads

~5 gz TV(x)e=E9. (3.7.2)

The TISE and the corresponding solutions in these regions can be written as:

Region I:

O +higr=0. K ="7.
¢ = Aj cos (klx) + Bj sin (klx) . (3.7.3)
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Region II:
2m(V0 — E)
I kh =0 K=,
0 =A, ohox +B, e kax 3.7.4)
Region III:
¥ — k393 =0,
03 = A3 & + By e k¥, (3.7.5)

In the aforementioned equations, the prime stands for the ordinary derivative with respect
tox, and A; and B; (j = 1,2,3) are arbitrary constants to be determined by the boundary
conditions.

Boundary conditions:

1. The full solution of the TISE must be square-integrable. That means that the solution
must tend to zero at spatial infinities (|x| — o). Therefore, the second term in ¢, which
tends to infinity as x — —oo, must be zero. Similarly, the first term in ¢3, which tends to
infinity as x — +oo, must be zero. Hence, B, = A3 = 0. As a result, the total solution of
the TISE can be written as

¢2 :Az ekzx’ X < —a
o(x) =4 ¢ =A;cos(kix)+B;sin(kix), —a<x<a (3.7.6)
03 = By e k¥, x>a

2. Since the TISE is second order in its spatial derivative with respect to x, the solutions
belonging to different regions in x must be continuous and differentiable at the boundaries
x = +a, that is, ¢1(—a) = ¢2(—a),9{(—a) = 9(—a),¢1(a) = ¢3(a) and ¢{(a) = ¢3(a).

These conditions lead to

Aye % = Ay cos (kja) — By sin (kja), (3.7.7)
kaAye 2% = ki Ay sin (kja) + ki By cos (kja), (3.7.8)
Bz e "2 = A cos (kja) + By sin (kja), (3.7.9)
—kyBse *2% = —ky Ay sin (kja) + ki By cos (kia). (3.7.10)

If we add (3.7.7) and (3.7.9) and subtract (3.7.10) from (3.7.8), we get

(Ay + B3) e 2% = 24, cos (kja), (3.7.11)
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ky (Ay + B3) e *29 = 2k Ay sin (kja). (3.7.12)
Similarly if subtract (3.7.9) from (3.7.7) and add (3.7.8) and (3.7.10), we get

(Ay —B3)e % = —2By sin (kja), (3.7.13)

ky (Ay — B3) e %2* = 2k By cos (kja). (3.7.14)
If A, + B3 # 0 and A; # 0, then the equations (3.7.11) and (3.7.12) yield

ky = k tan(kja). (3.7.15)

Now, from (3.7.13) and (3.7.14), we have

k k2
B sin (kja) = —k—;Bl cos (kja) = — B k% sin (kja), (3.7.16)
2

where we have made use of (3.7.15). We thus get
k2
B (1 + kg) =0, = B;=0. (3.7.17)
1

Equation (3.7.13) or (3.7.14) then yields A, = B3. Taking all these results into account, we
get that the full solution, corresponding to the case when A, + B3 = 0 and A # 0, is

A, ek2x for x< —a
o(x) =< Ajcos(kix) for —a<x<a (3.7.18)
Ay e ko for x>a,

where A and A; are arbitrary constants. It is not difficult to check that the given solution is
a symmetric solution, that is, ¢ (—x) = ¢ (x), and hence has positive parity. The boundary
conditions, as shown earlier, lead to a transcendental equation, given by (3.7.15), for the
determination of the energies of the bound states.

Since the potential is symmetric in x: V(—x) = V(x), there is another solution to the
TISE which is anti-symmetric. Let us determine that solution and the corresponding
transcendental equation for the determination of the energy eigenvalues.

For this purpose, we make use of the equations (3.7.13) and (3.7.14). If A, —B3 # 0
and By # 0, we get

—ki cot(kia) = ky. (3.7.19)
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Figure 3.7 The graphical solutions for the finite square well potential: They are given by

the points of intersection of the curves \/R% — a2 with o, tan( o, ) (solid
lines) and —a, cot( oy, ) (dotted lines).

From (3.7.11) and (3.7.12), we derive

k k?
Aj cos (kja) = k—lAl sin(kja) = — A k% cos (kja), (3.7.20)
2 2
where we have made use of (3.7.19). Equations (3.7.20) leads to
(3.7.21)

k2
A (1+k§>:0, = A =0.
1

Equation (3.7.11) or Equation (3.7.12) then yields A, = —B3. Taking all these results into
account, we get that the antisymmetric solution, corresponding to the case when A, — B3 #

0 and By # 0, is given by
A, ek2* for x<—a

¢o(x) =14 Bysin(kix) for —a<x<a
—Ay e kex for x>a,

(3.7.22)

where A, and B are arbitrary constants. It is not difficult to check that the given solution

is an anti-symmetric solution, that is, ¢ (—x) = —¢ (x), and hence has negative parity. The

boundary conditions, as shown earlier, lead to a transcendental equation (3.7.19) for the
determination of the energy eigenvalues for the corresponding bound states.
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Clearly, for the given values of Vj and a, (3.7.15) and (3.7.19), can be satisfied not for
all values of E but for a selected set of values. This means that a particle, confined inside a
potential well with finite height of the walls (which is the same as a potential well of finite
depth), has a discrete energy spectrum.

Equations (3.7.15) and (3.7.19) are transcendental equations and cannot be solved
analytically. However, they can be solved graphically as described here. Let us introduce
new variables

2mE 2m(Voy —E
o n=hka= 2mo—E) (3.7.23)

Clearly, the following holds

2ma*V,
52 + 772 _ R2, R? — e (3.7.24)
If we multiply (3.7.15) and (3.7.19) by a, they take the form
Etan(§) =, (3.7.25)
=& cot(&) =1. (3.7.26)

Let &, be the n'™ root of the transcendental equations (3.7.15) and (3.7.19). If we introduce
the notation

&) = (kia)* = 2m:22E”, (3.7.27)
then n = \/Ifé,% and the equations (3.7.25) and (3.7.26) take the form

Etané, = \/R2—E2. (For even parity states) (3.7.28)

—&,coté, = /R?—E2. (For odd parity states) (3.7.29)

The left-hand sides of (3.7.28) and (3.7.29) contain trigonometric functions, while the
right-hand sides represent a circle of radius R. The solutions are given by the points where
the circle y/R? — £? intersects the functions &, tan&, and —&, cot&,. The solutions form
a discrete set. Figure 3.7 contains the results of the solution of the equations (3.7.15) and
(3.7.19) for two values of the radius, R = 1 and R = 2, which correspond to
Voa> = h*/2m and Voa> = 2h*/m, respectively. As depicted in Figure 3.7, the
intersection of the small circle (R = 1) with the curve &, tan&, yields only one bound
state, n = 0. The intersection of the larger circle (R = 2) with &, tan§, yields two bound
states, n = 0,2, and its intersection with —&, cor&, yields two other bound states, n = 1,3.
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Hence, for R = 2, the system in all will have four bound states. This analysis shows that
the number of solutions depends on the value of R, which in turn depends on the depth of
the well, Vo, and the width 2a of the well. Clearly, the deeper and wider the well, the
greater the number of points of intersection of the curves and hence, greater will be the
number of bound states of the particle inside the well. Thus, there is always at least one
bound state ( that is, one intersection) no matter how small Vj is. A closer look at Figure
3.7 shows that when
2h2

0<R<Z thatis, 0<Vy< ', (3.7.30)
2 8ma?

there is only one point of intersection of the circle with the function &, tan&, and there is
only one bound state that we call n = 0 state. This is the ground state of the particle and
happens to be an even parity state. When

2%2 7172712

b T
— <R<m thatis, ——<V<——=, 3.7.31

2 Smaz 0 2ma? ( )
there are two bound states: an even state (the ground state) corresponding to n = 0 and the

first odd parity state corresponding to n = 1. Now, if

T2 h? 92h?

3
T<R<>E  thatis, L <vy< (3.7.32)
2 ma?

8ma?’
there exist three bound states: the ground state (even state), n = 0, the first excited state
(odd state), corresponding to n = 1, and the second excited state (even state), which
corresponds to n = 2. Similarly for

3m 92h? 212 K?
— < R<2m, thatis, <W<
2 8ma?

— (3.7.33)
ma

there will be four bound states (two even and two odd) and so on and so forth. In general,

for a given Vj, the width, wg = 2a, of the well that allows for n bound states is determined

by

R=— 3.7.34
> ( )
and equals
h?
= . 3.7.35
wo 2mvon ( )

In the limiting case of ma*Vy — oo for a given a, the radius of the circle becomes infinite
and the intersections occur at
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2n+1

tan(kja) =0 = ka= T,n:0,1,2,3,... (3.7.36)
—cot(kpa) = =  ka=nmn=12.73,.. (3.7.37)
If we combine the two, we obtain
nmw 2mE, n*m?
ka=— = = . 3.7.38
=5 2 4 (3.7.38)
Finally, we arrive at
2,232
nh
E,=2=2 (3.7.39)
8ma

Thus, we recover the energy spectrum of the infinite potential well.

Before we wind up, let us talk a little about the so-called penetration depth in the
classically forbidden region. When E < V;, the regions x < —a and x > a are classically
forbidden for the particle in the sense that it cannot penetrate into these regions. Consider
x > a. The solution of the TISE in this region is ¢ (x) ~ e %%, Let us define

¢(x) = ¢(60) = e hn, (3.7.40)

where x = 7 is the point where the wave function falls by a factor of 1/e. Then, we have

1 7
S

n is called the penetration depth, that is, the distance to which the particle can penetrate
into the classically forbidden region. Hence, the probability of finding the particle inside
the forbidden regions on either side of the finite potential well is in principle non-zero.

(3.7.41)

Example 3.7.2 Find the number of bound states and the corresponding energies for the finite

square well potential when Voa? = K% /2m.

Solution: In the given case R = (2ma*Vy/ hz) V2 _ 1, which means 0 < R < 7 /2 and there
will be only one bound state corresponding to n = 0. The energy eigenvalue for this bound

state is obtained by using the solution, &y, of the equation

otan(&o) = /1 - &7, (3.7.42)
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in the expression kya = /1 — &). We have
& (1+tan*&) =1 = cos’(&) =& (3.7.43)

The numerical solution of the equation (3.7.43) yields & = 0.73909. Therefore,
2mEoa® /h* = (0.73909)2 = 0.54625, and the energy of the bound state n = 0 is given by

. 0.54625 W 0.273125

0~ e (3.7.44)

2ma’? ma

3.8 Potential Barrier and Tunneling

What we are going to discuss now is a very important phenomenon of barrier penetration
— tunneling. Due to this effect, a micro-particle incident on one side of a potential barrier
of height Vj with a total energy E < Vj can pass through the barrier and appear on the
other side. This phenomenon does not have any classical analogue and represents a purely
quantum mechanical effect and has been confirmed experimentally.

Consider an external potential field given by

Vo, for 0<x<a,
Vix)= (3.8.1)

0, otherwise.

Assume that a particle of mass m, moving freely with a velocity ¥ = vi, is incident on this
barrier from the left, that is, from x — —oco. We are required to solve the corresponding
time-independent Schrédinger equation and determine the reflection and transmission
coefficients.

In general, both the cases with E > Vp and E < Vjy are possible. However, as stated
earlier, the case with the total energy E < Vj corresponds to tunnelling and we take up this
case.

For the solution of the problem, we divide the entire region —oo < x < 40 into three
parts: —oo < x < 0 (Region 1), 0 < x < a (Region 2) and a < x < +oo (Region 3). The
one-dimensional potential barrier of width a and height V is shown in Figure 3.8. The
TISE and the corresponding solutions in these regions can be written as:

Region 1:
o =0 b=,

¢1 = A1+ Be T, (3.8.2)

where A and B are arbitrary complex constants. Here the first term in the solution
corresponds to the incident particle propagating along the positive x direction, while the
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second term describes the particle reflected from the potential and propagating along the
negative x direction.

Vix)A

\/

Figure 3.8 One-dimensional potential barrier of width @ and height Vj.

Region 2:
2m(Vo— E
h
¢ =Ce? +De ™, (3.8.3)

where C and D are arbitrary complex constants.

Region 3:
Y+ kg3 =0,
¢3 =F ™%, (3.8.4)

The prime in the aforementioned equations stands for the ordinary derivative with respect
to x. Here, F is an arbitrary complex constant and the solution represents the transmitted
particle travelling along the positive x direction. Note that, because of the fact that the
potential vanishes beyond x = a, there cannot be any reflected particle in this region and
hence, we have taken only the forward propagating plane wave as solution.

Boundary conditions: The wave functions ¢;(x), ¢ (x) and ¢3(x) have to be continuous
in the entire region of x, as required by the standard conditions. Since the potential has a
finite jump at x = 0 and x = q, the first derivatives of the wave functions with respect to x
will also be continuous everywhere. These boundary conditions then yield

A+B=C+D, (3.8.5)

(A—B) = _"kﬁ (C—D), (3.8.6)
1
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k —k ik
Ce?*+De 2% = F "4,

Cekza _Desza — ﬂFeikla
2

If we add up (3.8.7) and (3.8.8), we get

2C M2 = F 1@ (1 + ”“) )
k

Hence,

F . iky _
C="_ ikja 14— kza.
2¢ ( " ) ¢

Now subtracting (3.8.8) from (3.8.7), we obtain

2D e %2 = F oh1a (l — lkl) ,
ky

and therefore

D= geikla (1 — lkl) e,

Substitution of C and D into the equation (3.8.5) yields

B F . iki\ _ ik
1 - _ ikya 1 LAl koa 1— = koa
tAT e [<+kz>e +< kz>(3 ]

_ E ikya _ekza _‘_esza B ﬁ (ekza _e—kza)
A 2 ky 2
F oa.l j k

= — M9 | cosh(kya) — all sinh(kpa) | .
A i ko

Similarly from (3.8.6), we get

B F iky _ iky
12 = ikia e 1 koa LRl 1 koa
A 2A°¢ [( k1+>e +<k1+>e ]

(3.8.7)

(3.8.8)

(3.8.9)

(3.8.10)

(3.8.11)

(3.8.12)

(3.8.13)
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B Eeikla a4 p—koa @ (ekga_ekza)]

A 2 +k1 2

F .0 j k
= — M1 | cosh(kya) + 12 sinh(kya) | .
A¢ | ki

Now, adding (3.8.13) and (3.8.14), we obtain
F ikya . .
2= 1¢ 1412 cosh(kpa) +i| -— — — | sinh(kpa) | .

Similarly, subtraction of (3.8.14) from (3.8.13) leads to

B F . k k
21Z = _lK elkla (k? + k;) Sil’lh(kza).

If we find the value of £ ¢#19 from (3.8.15) and put it into (3.8.16), we obtain

B l(% + %) sinh(kxa)

A [ZCOSh(kZCl) +i<% - %) sinh(kza)} |

The reflection coefficient is defined as

_ Reflected particle flux density  Jg _ vi|B]* _ [BJ?

Incident particle flux density ~ J;  v]A]2  |A]2

It is given by

2
K34-k2 )
< i2k1‘) sinh” (kya)

B —

’ 2o\2 ., '
4cosh” (kya) + < ol ) sinh” (kya)
The transmission coefficient, on the other hand, is defined as

_ Transmitted particle flux density  Jr v B _|F ?

Incident particle flux density ~ J;  wi|A]>2  |A]2

Using (3.8.15) we arrive at
4

2_0N\2 ’
[4cosh2(k2a) + (",31 o ) sinhz(kza)}

T =

(3.8.14)

(3.8.15)

(3.8.16)

(3.8.17)

(3.8.18)

(3.8.19)

(3.8.20)

(3.8.21)
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Further, making use of the well-known formula cosh?x — sinh?x = 1, we can rewrite the
reflection and the transmission coefficients as
T (B2’
=" (818 sinh? (kya), (3.8.22)
4 koky

T = 1 (3.8.23)

[1+ (i;f ) sinhZ(kga)}

Clearly, the transmission probability is finite. Therefore, we conclude that the probability
that a quantum particle could penetrate a classically impenetrable barrier is non-zero.
This is a purely quantum mechanical effect and is due to the wave aspect of microscopic
objects. This barrier penetration effect is usually called the tunneling effect and has
important physical implications. The radioactive decay and charge transport in electronic
devices are typical examples of the quantum mechanical tunneling effect.

Using the expressions for k; and &, in terms of the physical parameters, we have

2 2
SR AN Yo %5 (3.8.24)
koki E(Vo—E) E(Vo—E)

Therefore, we can rewrite the expressions for the reflection and transmission coefficients
as

— 4 L2 (4
1
T = - . (3.8.26)
1+ %E(VOO_E) sinh? < 2m(Vy — E))

Let us consider the case when the energy of the incident particle is much smaller than the
height of the barrier E < Vp. Then, we have

a\f

2m(V0—E 1—— > 1, (3.8.27)

and we can write

1 «/2% TE
sinh <h 2m(Vo— E )>N26 A 1 Vozie(a/h) 2m(Vo—E) (3.8.28)
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Therefore, in the low energy limit, the transmission coefficient .7 is given by

7 _ lsf ( 5()) o~ (20/0)\/2m(Vo—E) (3.8.29)

Also, when E ~ V, it is not difficult to deduce the following expressions for the reflection
and transmission coefficients:

—1

22
Z=1 3.8.30
<+ma2Vo> , (3.8.30)
ma*Vp !
T =1+ . 3.8.31
(1+7030) (3831)

We, thus, see that even if the energy of the particle is much smaller than the barrier height,
there is a finite probability that the particle can tunnel through the barrier and appear on
the other side of it. Classically, such a phenomenon is not possible. The region 0 <
x < a is forbidden for a particle with energy less than the barrier height V. Quantum
mechanically, such tunneling effect is permissible and the apparent paradox arising out of
it can be resolved with the help of Heisenberg’s uncertainty principle (see Section 3.10).

V(x)
A
o
> le— >
0 X Ax Xy X

Figure 3.9 A general one-dimensional potential barrier V =V (x).

Note that in the given example we considered the constant value for the potential barrier.
In a more general case, the potential barrier is not a constant but can be a function of x: V =
V(x) (Figure 3.9). Unlike the constant potential barrier, in this case, the analytical solution
is not possible for potentials with an arbitrary dependence on x. However, an approximate
formula for the transmission coefficient can be derived by dividing the classically forbidden
region between the turning points x; and x, into N (N large enough to approximate the
curve V(x)) small rectangular sequence of barriers, each of width Ax. In each of these
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rectangular barriers, we can assume the potential to be constant. Then for each of them,
the transmission coefficient can be written as:

ZAX,'

T; ~ exp [— 2m(V (x;) —E)] , (3.8.32)

where Ax; is the width of the i rectangular barrier with a constant height V (x;).
The transmission coefficient for the entire potential is then given by the following limit:

T~ exp [—2 lim Y f(x) Axi] , (3.8.33)

T Axi—0 =
where f(x;) = /2m(V(x;) — E). As a result, we obtain

T ~exp [—2/)(261“ [2m(V (x) —E)] . (3.8.34)
x|

Note that the aforementioned approximate analysis is valid and gives satisfactory results
only if the potential is a smooth and slowly varying function of x.

3.9 One-dimensional Harmonic Oscillator

Consider the one-dimensional simple harmonic oscillator characterized by the potential
energy

1
V() =5 mwx?, (3.9.1)
where m is the mass and  is the angular frequency of the oscillator, which is assumed to
be constant. We want to solve the time-independent Schrodinger equation for this
potential and determine the bound state energies and the corresponding eigenfunctions of
the oscillator. We have

h? d> 1
5 d([;(zx) —|—§ma)2x2¢(x) —E¢(x), (3.9.2)

which can be rewritten as
" 2m 2.2
0" (x)+ = |E— zmo°x"| ¢(x) =0, (3.9.3)

where the prime stands for the ordinary derivative with respect to x. Let us introduce the
following abbreviations
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Then (3.9.1) takes the form
0" +[A —a’x*|o = 0. (3.9.5)

This is a second order ordinary differential equation with variable coefficients. Therefore,
in order to have an idea about the behaviour of the solution at large values of x, let ax > 1
so that we can neglect the term A ¢ in comparison with the term o?x*>¢. We then have

0" — (X2x2¢ —0. (3.9.6)
For ¢ = exp (—7yx?), (3.9.6) yields
[—27+47%x% — a®x*]exp (—yx%) = 0. (3.9.7)

Note that, for large x, we can neglect 27 in comparison with the other two terms in (3.9.7).
Consequently, we obtain

y=1. (3.9.8)

Therefore, we look for the solution of the equation (3.9.5) in the form
0 (x) = e /2 (x), (3.9.9)
where f(x) is an arbitrary function of x to be determined. We have
¢ = (—oxf+ f)e %72, (3.9.10)
"= [(—af —oxf + f") + 022 f — axfl)e %2, (3.9.11)

From (3.9.5) and (3.9.9)-(3.9.11), we arrive at the following differential equation for the
function f(x)

f"=2axf' +(A—a)f =0. (3.9.12)

Introducing the dimensionless variable

&=Vax, (3.9.13)
we get
d d d? d?

4 Va

4 C el 3.9.14
ax Vg ae T %ae (3:9.14)



96 Fundamentals of Quantum Mechanics

As aresult (3.9.12) can be rewritten as
/! / A’
=281+ <a—1>f=0, (3.9.15)

where prime stands for ordinary derivative with respect to §&. We look for the series
solution of (3.9.15) in the following form

f(x) =Y ast, (3.9.16)
k=v

where the value of v will be determined later. From (3.9.15) and (3.9.16), we get
- k—2 k A k
Y |k(k—1D)ap& > — 2kar&* + o 1) &%) =o. (3.9.17)
k=v

Writing the series on the left-hand side in the order of increasing powers of &, we obtain

vV =1)ay8" 7+ v(v+Dayn &'+ (v 1) (v +2)ay 28"
“2vayEY <i—1> ayE’ +...=0. (3.9.18)

For this equation to hold good, the coefficient before each power of & must be equal to
zero. We have

viv—=1)=0 = v=0.1, (3.9.19)
viv+1)=0 = v=0,—1. (3.9.20)

The value —1 of v is not acceptable because, in that case, the series (3.9.16) will start with
the term ~ £ ~! that blows up at & = 0. Hence, v can take only two values 0 and 1.

Equating the coefficient of £V equal to zero, we arrive at the recursion relation for the
coefficients of the series

2v— (g - 1)
ay4r = mav. (3921)

Consequently, we shall have two possible solutions for f(&):
A(E) ~ao+arE? +asé* +ast® + ..., (3.9.22)
and

L&) ~arE +a3&’ +asE + ..., (3.9.23)
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Let us take the first of the solutions that starts with v = 0 and see how it behaves for large
values of &. For that, let us determine the behaviour of the ratio ay.,/ay for v — oo, We

have
vi2= (%_1)
ay+2 .. v 2

li =1 = —. 3.9.24
vgrolo ay vgrr}o V2<1+1/V)(1—|—2/V) Vv ( )

For comparison, consider the series

o0 2 4 6 c o2
& _ o1 o L8 L& S
e° = b =l4+~+F++..+5+ + ... 3.9.25
2%(@ 12t 3 gt (3 +1)! (3929
For this exponential series,
= g1 2
im 202 — fim 2 fim 2~ 2 (3.9.26)

by O (gD e (FEDE o

Therefore, for large values of &, the series (3.9.22) behaves as the exponential series given
by (3.9.25). The same applies to the series (3.9.23). Consequently, for large values of &,
the function f(&) blows up because

g2 g2

fE)me T e et (3.9.27)
Thus, the infinite series solution (3.9.16), whose coefficients are determined by the

recursion relation (3.9.21), does not satisfy the boundary conditions and hence, cannot be
the acceptable solution. However, the situation can be retrieved if the infinite series can be

2
converted into a polynomial so that the exponential factor e_%, standing before f (&) (see
Eq.(3.9.9)), could force the wave function ¢ (£) to tend to zero for & — +eo. For this to
happen, the series has to be truncated at some term, say n™ term. In that case, the
numerator in (3.9.21) would be zero for v = n. As a consequence, we get

A A
2n———-1=0, = —=2n+1l (3.9.28)
o o

Substituting the values of A and @, we obtain

2mE,  mo

2 =" en 1), (3.9.29)

Equation (3.9.29) leads to the quantization of energy of the harmonic oscillator:

1
E,=hw <n+ 2> , n=0,1,2,3,... (3.9.30)
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Note that this formula for the quantized energy of the oscillator differs from the one
obtained in the old quantum theory

E,=nho, n=0,1,2,3,.. (3.9.31)

by the fact that it possesses a non-zero energy in the lowest quantum state with n = 0.
This energy is called the zero-point energy, £y, whose value is given by

1
Ey= Eha). (3.9.32)

Let us go back to our problem of finding the solutions to the differential equation (3.9.15).
Evidently, the solutions satisfying the standard conditions can now be written as

0u(E) = Nye &2 H, (&), (3.9.33)

where N, is the normalization constant and H, (&) is the polynomial of degree n whose
coefficients are given by (3.9.21) under the condition A /@ = 2n+ 1. These polynomials
for different n values are known as Hermite polynomials. The coefficient before the term
in the polynomial containing £” is obtained by taking v =n —2 in (3.9.21). It is given by

2(n=2)+1-2n+1) 4
= Ly = — . 3.9.34
fin n(n—1) =2 n(n—1) n=2 ( )
Therefore, we have
nn—1 nn—1
ap—2 = — ( 4 anp = _ixzz)an- (3.9.35)

Similarly, we can compute

(n—=2)(n—1) nn—1)(n—2)(n—73)

ap_a4 = — 2 an_o = (%2 %22 an, (3.9.36)
and so on and so forth. As a result, the polynomial will be given by
—1 —1)(n—-2)(n—-3
Hu(E) = ay [en - "0 D gna  n= D0 =2)=3) 0 ] 5937,

1 x22 1 x2x22

If we put g, =2",n=0,1,2,3,..., we obtain the formulae for the polynomials of the
corresponding degree. A few of these are given here for illustration:

Hy(§) =1, Hi(§) =28,
Hy(E) =4E2 -2, H3(E) =8E3 —12¢, (3.9.38)
Hy(E) = 16E* —48E2 +12, Hs(E) =32E5 —160&3 4 120€.
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Rodriguez’s formula for the Hermite polynomials: The following compact formula for
computing the Hermite polynomials is known as Rodriguez’s formula:

#(9)
Hy(E) = (—1)" ¢ —aE (3.9.39)

It allows us to generate the required polynomial of any degree by simply plugging in the
value of n and simplifying the expression. For instance,

dfe ¢
n=1: H(£) = —e52H = (28) 578 = 2¢, (3.9.40)

n=2: Hy(&) = (—1)%526125;) = —2e'52dd5 (geﬂ?z) —4E2-2.  (3.941)

Recurrence formula for Hermite polynomials: Let us, for the convenience in calculations,
derive a recurrence formula for the polynomials themselves. Using Rodriguez’s formula,
can write

dn+1) (e—é‘z)

_ (_q1\(n1) €2
Hy1(8) =(—=1)"""e PR (3.9.42)
Using the following formulae
d(n+l) (8_52) "
N J __»nZ -&2
dEmD) 2d5n (56 ) (3.9.43)
d" . d'g df d"'g n(n—1) d*f d"2g
dé,,[f(é)g(é)]—fd§n+nEd€H T i e T (3.9.44)
we get
2
d" 2 d" 2 " <eié )
2L (e C) = —& N/
JE (ée >_€d§” (e >+n e (3.9.45)

As a result, we have
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= (~1)"2¢ 52;&”(52)—( 1)L 2n e’ gnll (%) 3946

Using the Rodriguez’s formula once again, we arrive at the desired recurrence relation

Hyy1(&) =2EHy (&) —2nH,—1(&). (3.9.47)
Being the eigenfunctions of a hermitian operator, the eigenfunctions of the harmonic

oscillator corresponding to different eigenvalues are orthogonal. Using this, we can
calculate the normalization constant N, as

*® 2 * 2 g2 eé
[ lm@ras= -y N [ ee s T D e a

Vo )—e dg"
N [redre
:(_1)"\/—% B %&Hn(é)dé. (3.9.48)
Integrating by parts, we obtain
+oo N2 +oo gn —&2 N2 4! —&2 e
[ t@rag = (c1E [ (&) ag = (1) T S i)
2 o gn—1,—E2
+ (_l)nfl N, ted' e dH"(g)dé. (3.9.49)

\/a e dén—l di

H, (&), according to Rodriguez’s formula, contains ¢~%" and its derivatives. Since the

function e~¢” and all its derivatives tend to zero at |E| = oo, the first term on the right-
hand side in (3.9.49) vanishes. As a result

o 2 oo n716752
/: 10.()17d& = (—1)" I\Nf : ddénl dfgéé)dé. (3.9.50)

Therefore, if we integrate (3.9.50) by parts another (n — 1) number of times, we finally get
that

oo 2 oo n
| ln(eyrag = 5&/: o) féf,é)dé. (3.951)

Since H, (&) = 2"&E" +..... is a polynomial of degree n,

dH, (&)
d&n

=2"nl, (3.9.52)
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and we obtain

I 2 0 2
/: 102(&)[7d& = 2%!% /: e 8 dE = 2"n!5%ﬁ. (3.9.53)

The normalization condition then yields

al/?

Hence, the full stationary state solutions to the Schrodinger equation for the harmonic
oscillator potential are

al/Z e i
W(é’t) =1/ We ¢ /an((S)e ﬁE"t, (3.9.55)

where
1
E,=hwo <n+ 2> , n=0,1,2,3,... (3.9.56)
are the corresponding stationary state energies.

3.10 Heisenberg’s Uncertainty Relation

We have proved earlier that two operators which have the same set of eigenfunctions
commute. If we combine this with the fact that a dynamical variable can have a definite
value in its eigenstates only, we come to the conclusion that for two or more dynamical
variables to have definite values simultaneously their corresponding operators must
commute. On the other hand, we have seen that many of the operators of interest in
quantum mechanics do not commute. Therefore, it is quite natural to ask the following
question: What if we measure two non-compatible observables A and B, one after the
other in a given state, how will the inaccuracy in their measurements be related? The
answer to this fundamental question is provided by Heisenberg’s uncertainty principle
which we are now going to derive.

In this regard, we must first decide the way we are going to characterize the accuracy
of measurement. Assume that we have conducted a large number of measurements of
some physical quantity a and obtained a series of its numerical values aj,az,as,... whose
average value we denote by (a). In probability theory, the deviation of a value a; of a
random variable from its average value, (a), is usually characterized by the root-mean-
square deviation defined as

o= /(@ — (@)?) = /(@) — (@2 (3.10.1)
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Although the uncertainty relation can be derived for any pair of non-commuting hermitian
operators A and B in general, here, for the sake of simplicity, we shall deduce it for £ and

Py only.
We shall characterize the inaccuracy in the measurements of the x coordinate and the
corresponding x-component of the momentum, p,, by their root-mean-square deviations:

Ax = /() — ()2, (3.10.2)

Apx =/ (p2) — (px)>. (3.10.3)

Let us choose the system of coordinates in which the origin lies at (x) and the system is
moving with a speed equal to p/m along the x-direction. In such a system (x) =0, (p;) =0

and we shall have Ax = \/(£2) and Ap = /(p32).

Consider the following inequality

/

where o and f3 are two auxiliary real variables.
The integrand is given by

2

d
VI ax>o, (3.10.4)

axl//+BE

dy |’ . Ay dy* dy* dy
ay B = @y e (vl ey ) B
d dy* dy
= — —_. 10.
ocqu/Jrandx(w v)+pB T dx (3.10.5)
From (3.10.4) and (3.10.5), we arrive at the following inequality
Ao? —BaB +CB* >0, (3.10.6)
where
d dy*d
A:/le//*l,l/dx>0, B= —/x—(w w)dx, C= / LALLN (3.10.7)
d dx dx

For inequality (3.10.6) to hold (which is equivalent to the positivity of the quadratic form
(o —oq)(a — ), 0,i = 1,2 being the roots of the quadratic equation Aa> — Baf3 +
CB? = 0), the roots ¢;,i = 1,2 must be complex. This, in turn, requires that

—4AC <0, or, 4AC > B2, (3.10.8)
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Now, since (x) = 0, the expectation value (£?>) = A. Consider the integral B. If we integrate
by parts and take into account that the wave function tends to zero at x = oo, we get

B= —/xj(w*q/)dx: /w*u/dx: 1. (3.10.9)
X

Similarly, we get for C:

/q/ de—i@%). (3.10.10)

Substituting the above values of A, B and C into Eq.(3.10.8), we obtain

\/@ \/@Z g (3.10.11)

Or, using (3.10.2) and (3.10.3), we have the relation

h
AxAp:> 3. (3.10.12)

The same relations result for the other two coordinates, y and z, and the corresponding
components of the linear momentum, p, and p;:

h

AyApy > > (3.10.13)
h

Az Ap, > 7 (3.10.14)

The inequalities (3.10.12)—(3.10.14) are known as Heisenberg’s uncertainty relations and
represent the constraint on the accuracy in the simultaneous measurement of coordinate
and momentum. They show that the product of uncertainties in the measurement of a
coordinate and the corresponding component of momentum cannot be less than 7/2.
Consequently, an exact knowledge of the position of a quantum system, at a given instant
of time, makes its momentum indeterminate and vice versa.

Example 3.10.1: Consider a particle of mass m in an infinite potential well of width @ whose
wave function is given by

Ax(a*>—x*) for 0<x<a,

w(x) = { (3.10.15)

0 elsewhere,

where A is a real constant. (a) Find A so that y(x) is normalized. (b) Calculate the
position and momentum uncertainties, Ax and Ap, and the product AxAp. (c) Calculate
the probability of finding 572/ /2ma? for a measurement of the energy.
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Solution: The normalization of the wave function reads
@002 22 N ) 24, .6
/A x“(a”—x)"dx=A / (a"x” —2a"x" +x") dx
0 0
5

A? a4£a—2a2x—
30 5

X/

7

=1 (3.10.16)

}  8A%d’
0 105

a
0

Hence, the value of A is

/105
A= ek (3.10.17)
a

The average value of £ and £> will be

105 @
(%) = W/ (a4x3—2a2x5+x7)dx
a Jo
1057 4 x4 5,20 81 35a
_ il R - 0 L B 3.10.18
8a7[40 S R N ( )
105 [a
<)22> — % / (a4x4 —2a%x° +x8) dx
a 0
105 4xsa 2x7a Pl a®
— | 24?2 ==, 3.10.19
8a7[a50 “ T, ol T3 ( )

The uncertainty in x is given by

- R a? 354\ 2
Ax=/{#) = (12 =4[5~ (64> ~0.1854. (3.10.20)

The average value of p, and ﬁ?c will be

a
(Px) = —iAzh/ (a*x —4a*x> +3x°) dx
0

o[ a2 , 1t POk
= —iA’h |a* =| —4da® =] +3=—| | =0. (3.10.21)

2 0 4 0 6 0

(ﬁﬁ):6h2A2/ (a®x* —x*)dx
0

105 [ , 2° X7 214
e |2 X A 3.10.22
8a7 [a 3, 5 J 242 ( )
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The uncertainty in p, is given by

21K% i
Ape =/ (p2) — (p,)2 = ~3.24 . 3.10.23
Px = \(P3) = (Px)* =\ 5 3 ; ( )

The product AxAp, ~ 0.6% > 0.57.

Example 3.10.2: Consider a system whose Hamiltonian A and an operator A, representing
an observable A, are given by the matrices

H =& -1 1 0 , A
0 0 -1

Il

R
S B~ O
—_ O &
O = O

where &y and « are constants. &y has the dimensions of energy.

(a) If we measure the energy, what values will obtain? (b) Suppose that when we measure
energy, we obtain a value of —&j. Immediately afterward, we measure A. What values
shall we get for A and what are the probabilities corresponding to each of these values? (c)
Find the uncertainty in the measurement of A.

Solution: According to the postulate of quantum mechanics, the possible results of
measurement of energy will be the eigenvalues of the Hamiltonian. Hence, let us first find
these eigenvalues. The characteristic equation reads

(1-1) -1 0 12 0
&| -1 (1-2) 0 = 50(1—1)‘ 0 (HM‘
0 0 —(1+2)
-1 0
+ &l (142) ‘_o (3.10.24)
The simplification leads to
VAT 420=0, = 4 =0, L =&, A =2&. (3.10.25)

Hence, the values of energy that can result are £y = 0,E; = —&), E3 = 2&).
Let us now calculate the eigenvectors of the Hamiltonian. Consider first the eigenvalue
A1 = 0. We have

Sl -1 1 0 b |=(o0 . (3.10.26)
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a—b=0,
= —a+b=0, = a=bandc=0. (3.10.27)
—c=0.

If we take @ = b = 1 and normalized the eigenvector, we get

1
1
=— |1 ). 10.
|o1) 7 (3.10.28)

Similarly, the other two eigenvectors of H are

0 1
1
- =— | 1] 10.
|§2) (1) and |[¢3) 7 ! (3.10.29)

It is easy to check that these eigenvectors of H are orthonormal: <q) i@ j> = §jj.

(b) If a measurement of the energy yields —&p, this means that the system is left in the
state |¢»). When we next measure the observable, A, the system is in the state |¢»). The
result we obtain for A is given by any of the eigenvalues of A. A diagonalization of of
the matrix A yields three non-degenerate values: o = 17 «, o, =0, and o3 = V17 a:
their respective eigenvectors are given by

4 1

1 1
— V17 |, = 0 , 3.10.30
) = g | VT )= | o) (3.10.30)
1 4
03) = —— 17 |. 3.10.31
|o3) 7 \/1 ( )

Thus, when measuring A on a system, which is in the state |¢), the probability of finding
—+/17a is given by

2
0
1 1
Pla)=[(aa|p)f=|—= (1 V17 1) | 0 || =~ 3.10.32
(on) = [(leu |¢2)] NeT ( V17 1) 1 3 ( )
Similarly, the probabilities of measuring 0 and v/17a are
, | YT
Plop) =[(lan|go)]"=|—= 1 0 -4 | 0 || == (3.10.33)

V17 1 17’
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and
2
Ploz) = |{ > = S V17 1 8 _ 1 3.10.34
o) = |(|a1|92) —ﬁ( ) 1 = (3.10.34)

(c) Since the system, when measuring A is in the state |¢@,), the uncertainty AA is given by

AA = \/<¢2 A2|¢0) — ((02]A| 92))2. (3.10.35)
We have
0 4 0 0
(2|A]¢2) = © 0 1) | 4 0 1 0 | =0, (3.10.36)
0 1 0 1
16 0 4 0
(2% ¢2) = @*© 0 1) [ 0 17 0 0 | =a’ (3.10.37)
4 0 1 1
The uncertainty in the measurement of A in the state ¢, is
AA =/ (2147 62) — (92141 02)” = @ (3.10.38)

Example 3.10.3: Consider a particle of mass m that is moving in a one-dimensional infinite
square well potential with walls at x = 0 and x = a. Atr = 0, it is in the state characterized
by the wave function

Y(x.0) = ;5 [01(x) + 93(1)],

where ¢ (x) and ¢3(x) are the normalized wave functions for the ground and the second
excited states, respectively. (a) Find the average value of £, £2, P, and p? in the state
y(x,0). (b) Check whether the uncertainties in the position and the momentum of the
particle satisfy the uncertainty relation or not.

Solution: Since ¢; (x) and ¢3(x) are normalized, the wave function y is also normalized:

/Oa\l//(x,O)\zdx: % {/Oa]¢1(x)\2dx+/0a|¢3(x)\2dx} = (1;1) =1. (3.10.39)
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Therefore, the average values of X is given by

1 a a 3
(£) = - [/ xsin <B) dx+/ xsin® <7rx>} dx
a |Jo a 0 a
1 fa 2 6
- —/ 2x—xcos [ ) —xcos [ TV | dx= & (3.10.40)
2a Jo a a 2

The average value of £ is

Taking into account that

a 2 2 a 6 2
/ xsin( Zx) de= L / PN —— (3.10.42)
0 a 21 0 a 61
we obtain
2 2 2 2 2
W= L 2 > (3.10.43)

3 472 36m2 3 1872’

The average value of p, is

_—
(Px) = 0 [sin (E) -+ sin <3717x>] {xcos (E) + 3—”005 (37”)] dx
a Jo a a a a a a
:—mh/ 3sin (O fasin () —sin () | ax=0.  (3.1044)
242 Jo a a a
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Now we calculate the average value of p2:

B R el . mx . (3mx n? . /mx\ 9m* . [3mx
(py)=—— sin( — ) +sin | — ——sin(— ) ——5sin| — || dx
a Jo a a a a a a
mWr? e, /mx On’m® [a . smxy . [ 37x
= sin® { — ) dx+ sin( — )sin|{ — | dx
a Jo a a  Jo a a

a 0122 2.2 ra
+ I Gin? (3“> e+ "2 [ sin (™ sin (3’”> dx. (3.10.45)
0 a a a

a3 0 a

The second and the fourth integral on the right-hand side of (3.10.48) equal zero because
of the orthonormality of the eigenfunctions of the infinite potential well. For the rest of the
integrals, using the trigonometrical formula sin?x = (1 — cos(2x))/2, we obtain

242 2%2
o RhT fa  9a\ _ 57h
(Px) =3 <2+ 2)— 5 (3.10.46)

The uncertainty in the measurement of the position is

R R a2 5a> 4> a a

Similarly, the uncertainty in the measurement of momentum is

Sm2h*  mh
Ape =1/ (P2) — (p)? = || e = T2 V5, (3.10.48)
a a

As a consequence,

h h
AxApy = 0.74 x % x %\6% 16557 > 2. (3.10.49)

Hence, the product Ax Ap, satisfies the uncertainty relation.

3.11 Quantum-—Classical Correspondence and Ehrenfest’s Theorem

In this section, we shall discuss the possibility of establishing a connection between
classical and quantum mechanics. Intuitively, we expect the average value of an
observable to play the key role in this regard. Therefore, we should try to deduce the
time-evolution of the expectation value of an operator from the given formalism of
quantum mechanics and see whether it compares with the time-evolution of the
corresponding classical dynamical variable or not. Since Ehrenfest’s theorem holds good
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in general, while deducing the theorem, we shall not confine ourselves to one spatial
dimension.

Time derivative of an operator: In general, an operator, representing an observable,
depends on time as a parameter. We wish to determine its time derivative. Since an
observable cannot have a definite value at a given instant of time (the measurement can
yield any one of its eigenvalues with some corresponding probability). Therefore, it is not
possible to define the time derivative of an operator in the usual way of mathematical
analysis:

dA() A+ -AQ)
dt  A—0 At '

(3.11.1)

However, the expectation (average) value of the observable A, given by (A), can have a
definite value at a given instant ¢. Therefore, for defining the time derivative of an operator,
we must use its expectation value rather than the operator itself. Hence, we adopt the
following proposal:

The time derivative of the expectation value, (A>, of the observable, is equal to the
expectation value of the time derivative of the operator A itself. That means:

d(A)  /dA
) _ <dt>, (3.112)

In the context of quantum mechanics, this proposal should be viewed as the definition of
the dynamical variable dA /dt whose operator in quantum mechanics is given by dA /dk.
According to the formalism of quantum mechanics, we have

A oo % /o A~ R
(A) :/ v (1) Ay(7 1) dr, (3.11.3)

—oo

where dt = dxdydz. Therefore,

dA) [t (dy* 4 L0A LA Oy
—_/ ( S AV Sy ASE ) dn. (3.11.4)

dt —oo
Using the time-dependent Schrodinger equations, we have

dy 1, ay* 1

o —wtY o T aY

o 1 N
*H' = ——y'H, (3.11.5)
ih

where A is the Hamiltonian operator which is hermitian and we have used the general
formula (FG)" = GTFT for any two operators (matrices) ' and G. From (3.11.4) and
(3.11.5), we get
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dlA)y  [t= [0A 1, . .

W [Tw |G cndam)] yar (3.116)
Recollecting that

d(A) dA dA Y il 0A

t_<at> where <a[>_/°o v (r,l‘)gllf(r,l‘)d’[, (3117)
we arrive at

diA) QA L pre

7_7+£/_m v (71) (-HA+AR) y(7,1)d. (3.11.8)

Equation (3.11.8) can be written as

dA) ) 1,
S8 T8 (AA), (3.11.9)

where [A,A] = AH — HA is the commutator of the operator A with the Hamiltonian A and

- oo e
(1A, ]>=Km v (7.1) (AH — HA) y(7.1) d, (3.11.10)

the average value of the commutator in the state y(7,7) at a given instant 7. In the case
when there is no explicit dependence of the operator A on time, we have

CA) (A, (3.11.11)

A comparison of (3.11.9) and (3.11.11) with the Poisson bracket formulation of classical
mechanics leads to an important conclusion which is known as Ehrenfest’s theorem in
quantum mechanics.

Ehrenfest’s theorem: The average values of observables in quantum mechanics obey
the classical equations of motion.

This theorem, to some extent, establishes a ‘bridge’ between classical mechanics and
quantum mechanics, which is impossible to have otherwise.

Quantum mechanical version of Newton’s equations of motion: It turns out that it is
possible to write the equations of motion for the expectation values of the position
momentum operators in a manner completely analogous to the equations of motion in
classical mechanics.
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Since the position operator, £, and the momentum operator, p,, do not depend explicitly
on time, it follows from (3.11.11) that

i€ 1 .. .
o ih<[x’ 1), (3.11.12)
dpx) 1, 4
o = 7 H]). (3.11.13)
Here,
N

is the Hamiltonian operator and V(%) = V(x) is the potential energy operator for the
particle. Simplifying the commutator on the right hand-side of (3.11.12), we have

~2
[%,A] = [ﬁ,p’;%—V(x)] = — [%p7] + £V (x)]. (3.11.15)

we get
1

A | D
8] = 5 puli pu] + [ PP = 5 - (2 ) = zh%. (3.11.16)

As a result, the time evolution equation for (£) reads

di®) _ (px)
— ="t (3.11.17)

We see that the relation between the time derivative of (£) and the expectation value of the
momentum operator in quantum mechanics is exactly the same as that between momentum
px and velocity v, = x in classical mechanics.

Let us now compute the commutator [p,, H]. Since

[Prs D] = Pil P> Pu] + [Prs Pi) Px = 0, (3.11.18)
and
(e f(x)] = —iha];ix), (3.11.19)

for any function f(x) of x, we obtain

AV (x) .

AX’I:I:_.h
[PrH] = —ih—5"

(3.11.20)
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Making use of Ehrenfest’s theorem (3.11.11), we obtain

d(px) oV (x)
=— . 3.11.21
dt < dx ( )
Differentiating (3.11.17) once with respect to time and making use of (3.11.21), we arrive
at
d? (%) aV(x)
pr < I . (3.11.22)

Equation (3.11.22), written for the expectation values of the position operator and the force
as the gradient of the potential, is the quantum mechanical version of Newton’s equations
of motion.

3.12 Periodic Potentials, Bloch’s Theorem and Energy Bands

In this sub-section we shall discuss the solutions of the TISE for the case in which the
potential is a periodic function of x. It has some very useful applications in solid state
physics.

A typical periodic potential is shown in Fig.3.10. As shown, the potential is zero over
a distance a, peaks at V (x) = Vj over a distance b and then repeats itself. It is evident that

V(ix+c)=V(x). (3.12.1)

where ¢ = a + b is the period. Since the potential is a periodic function of x with a period
¢, the Schrodinger equation is invariant under space translations

x—x+nc, n=0,£1,£2,£3,.. (3.12.2)

This invariance imposes certain restriction on the form of the allowable solution of the
Schrodinger equation. To determine this restriction, let us introduce an operator D, called
the space translation operator, which while acting on a function f(x) shifts it horizontally
along the x direction over a distance c:

Df(x) = f(x+c). (3.12.3)

For instance, acting on the potential function V (x), it shifts the entire potential over a
distance ¢: DV (x) = V(x+ ¢). Repeated applications this operator leads to

Df(x) = flx+c),D*f(x) = f(x+2¢),D* f(x) = f(x+3¢),...D" f(x) = f(x+ne).
(3.12.4)
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V),

—(a+b) -b 0 a (a+b) ;

Figure 3.10 This is the sketch of a representative periodic potential with a separation
of a between the peaks of width b.

Consider now the following

2 2
(OAY() = D(EY) =D (-1 5 +V () (o)

2m 9x2

n? 02
—% W +V(x)> W(X+C)

_ ( hz&anV(x—H’)) y(x+c)
(

A

H (Dy(x)) = (HD) y(x). (3.12.5)

In obtaining the above result we have used the fact that

J J  ox )
d(x+c) dxd(x+c) ox (3.12.6)

Thus, the Hamiltonian and the translation operator commute: [D,FI ] = 0. It means that, if
y(x) is an eigenfunction of the Hamiltonian with energy E (i.e., Hy(x) = Ey(x)), then
Dy(x) is also an eigenfunction of the Hamiltonian with the same energy E:

A (Dy(x)) = (AD) y(x) = (DA) y(x) = E (Dy(x)). (3.12.7)

This, in turn means that, if the energy spectrum is non-degenerate, ¥ (x+ ¢) and y(x) must
represent the same state of the system. Therefore, y(x + ¢) can differ from y(x) only by
a constant factor:

y(x+c)=oay(x), (3.12.8)
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where « is a constant of magnitude unity.
2mil
o = exp <l> 0=0,1,2,3,... (3.12.9)
n

Defining now

L (3.12.10)
nc
we arrive at
V(x+nc) =™y (x). (3.12.11)
Now, any function y/(x), satisfying the above condition, can be written as
y(x) = e ug(x), (3.12.12)

where u(x) is a periodic function of x of period c: ux(x+ ¢) = u,(x). To ensure that it is
really so, we write

y(x+c) = H)y(x+c) = e up(x+c). (3.12.13)
Therefore, if u,(x+ ¢) = u(x),
v(x+c) = 0ty (x4 ) = e u(x) = ¥y (x). (3.12.14)

The above result is a fundamental result for condensed matter physics and it is known as
Bloch’s theorem. It states that any solution to the Schrodinger equation, with a periodic
potential of period ¢, must have the form given by equation (3.12.14).

Consider now the case of a particle (mass m and total energy E < Vj) subject to the
above periodic potential. If we introduce

3= (3.12.15)

2m(Vo— E
2= m(‘;oz) (3.12.16)

the solutions of the time-independent Schrédinger equations in the relevant regions can be
written as

y(x) = A cos(kix) +Bsin(kix), (0<x<a), (3.12.17)
v (x) = C cosh(kax) + D sinh(kyx), (—b<x<0), (3.12.18)
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where A, B, C and D are arbitrary constants. They must be chosen such that both y(x) and
v’ (x) are continuous at the boundaries, where the potential has a finite jump, and abide by
Bloch’s theorem.

At x =0, we have

A=C, (3.12.19)
k1B =kyD. (3.12.20)

Furthermore, using the Bloch theorem (with n = 1), we get

v(a) = Xy (-b), (3.12.21)
V' (a) =Xy (—b), (3.12.22)
where
2rl
K= @iy (3.12.23)

The boundary conditions (3.12.21) and (3.12.22) lead to
A cos(kja) + B sin(kja) = €% [C cosh(kab) — D sinh(kyb)],  (3.12.24)
—k A sin(kja) + k; B cos(kja) = €'X¢ [~k C sinh(kyb) + ko D cosh(kpb)].  (3.12.25)

The algebraic equations (3.12.19), (3.12.20), (3.12.24), and (3.12.25), can be written as a
matrix equation: .#X = 0, where X = (A B C D) is a column matrix and

1 0 -1 0
0 ki 0 —ko

cos(kja) sin(kja)  —e'K¢ cosh(kyb) €€ sinh(kob)
—ky sin(kja) ki cos(kja) kye™®¢ sinh(kyb) —ko e cosh(kyb)

M =

(3.12.26)
For the non-trivial solutions the determinant of the matrix, |.#|, must be zero:
1 0 —1 0
0 k1 0 —ko
|| = —0.

cos(kja) sin(kja)  —eK¢ cosh(kyb) €€ sinh(kob)

—ky sin(kja) ki cos(kja) kye™®¢ sinh(kyb) —ko e cosh(kyb)
(3.12.27)
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Using the Gaussian decomposition rule for the determinants, we have

k1 0 _k2
|.#| = | sin(kja) —eK¢ cosh(kab) €€ sinh(kyb)
ki cos(kia) ko e’ sinh(kyb) —ky €€ cosh(kyb)

0 ki —k>
— | cos(kja) sin(kja) 'K sinh(kyb) =0. (3.12.28)
—ky sin(kya) ki cos(kja) —koe®¢ cosh(kyb)
Further simplification of the determinants leads to
ki [ka €€ cosh® (kab) — ko €€ sinh? (kob)| — ko [k2 €™ sinh(kb) sin(kia)
+ki "% cosh(kab) cos(kia)] +ki [—ko €™ cosh(kyb) cos(kia)
+ki %€ sinh(kyb) sin(kia)] + k» [ki cos® (kia) + ki sin®(kja)] = 0. (3.12.29)

Opening up the brackets, we get

ki ky e*K¢ — 3 ¢™K¢ sinh(kyb) sin(kya) — ki ky €'K¢ cosh(kab) cos(kja)
— ki ky e'K¢ cosh(kyb) cos(kya) + k3 %€ sinh(kab) sin(kja) +kiky =0  (3.12.30)

From here, collecting similar terms, we obtain

(kT — k3) sinh(kab) sin(kia) — 2ky k> cosh(kab) cos(kia) +ki ko [e5C +e K] =0.
(3.12.31)

Equation (3.12.31) yields the following transcendental equation for the determination of
the energy eigenvalues

k2 _kZ
(szkl) sinh(kyb) sin(kja) + cosh(kab) cos(kja) = cos[K(a+Db)]. (3.12.32)
1ko

In general, the equation (3.12.32) cannot be solved analytically. For given values of the
model parameters a, b and Vj, it can be solved numerically. It is usually done by using one
of the standard root finding algorithms for a given value of K. As a result of the numerical
solution, one gets the values of k| using which one can calculate the energy eigenvalues as

H2k?
E=—1 (3.12.33)

2m
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Energy Bands: Note that, for practical purposes, the above transcendental equation can be
simplified by imposing some reasonable restrictions on the model parameters.

Assume that the width of the potential tends to zero while the height tends to infinity
such that Vyb remains constant. In such a limit

;1_r>r(1)smh(k2b) = kob, ;I_I)I(I)COS(kzb) =1

Here, we have gone to the leading order in the Taylor expansions of the hyperbolic
trigonometric functions on the left-hand side, and simply let » = 0 on the right-hand side.
We obtain

(k3 — k)

% b sin(kja) + cos(kja) = cos[Kal. (3.12.34)
1

We then find it convenient to define the dimensionless quantity, P = %‘)b“, which
determines the effective strength of the potential. Then we have

F (kja) = cos|Ka], (3.12.35)
where
sin(kja)
F(kja) =P X +cos(kja). (3.12.36)
1
A sin(k;a)
F(kia) = Pk—1 + cos(kya)

Energy gaps

- = B -

Energy bands
0 k 1a

Figure 3.11 A schematic representation of the allowed and forbidden energy bands.
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In this form, for a fixed value of P, it is rather simple to plot the left-hand side as a
function of kja.When the value of the left hand side of the equation (3.12.35) (that is the
value of F (kja)) is between —1 and +1 (which is the range of cos(Ka) for real arguments)
there will be a value of K for which a solution exists. When the value of F (kja) is outside
of this interval, there will be no real K for which (3.12.35) is satisfied. In other words, for
the interval of k; in which the values of F(kja) lower than —1 or greater than +1, there
will not be any acceptable energy eigenfunction. The resultant spectrum of solutions will
then have gaps in the admissible energies. It means that, for certain energies, there will
be no proper solutions to the the Schrodinger equation with periodic potential. Thus the
energy spectrum will consist of bands of continuous energies separated by energy gaps.
The situation has been depicted schematically in Fig.3.11.

Homework Problems

1.

2.

Show that the group velocity for a non-relativistic free electron is also given by v, =
p/me. = vy, where vy is the electron’s velocity.

The dispersion relation for free relativistic electron waves is

o(k) = \/2c + (mec?/ 1),

Obtain expressions for the phase velocity v, and group velocity v, of these waves
and show that their product is a constant, independent of k. From your result, what
can you conclude about v, if v, > ¢?

. If the wave function of the particle at = 0 is given by

1/4
l’/(x’()):< 2 > e—xz/(ﬂ’

ma?

use (3.2.12) to calculate (k). Calculate Ax and Ak at + = 0. Now, use (k) in
(3.2.11) to compute y(x,7) for any r > 0 by expanding the dispersion relation k(®)
into a Taylor series and taking the required integral. On the basis of the obtained
results, comment on the half-width Ax of the packet for ¢ > 0.

. If the ground-state energy of an electron in a one-dimensional infinite square well

potential were of the same magnitude as that of hydrogen in the ground state, how
would the width of the box compare to the Bohr radius?

. Consider a potential well having an infinite wall at x = 0 and a wall of height Vj

at x = L. For the case E < Vp, obtain solutions to the Schrodinger equation inside
the well (0 < x < L) and in the region beyond (x > L) that satisfy the appropriate
boundary conditions at x = 0 and x = oo. Enforce the proper matching conditions at
x = Lto find an equation for the allowed energies of this system. Are there conditions
for which no solution is possible? Explain.
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6.

10.

11.

An electron, trapped at a defect in a crystal, can be modeled as one moving freely in
a one-dimensional infinite potential well of width, say, L = 1 nm with infinite walls
at x = 0 and x = L. (a) Sketch the wavefunctions and probability densities for the
n =1 and n = 2 states. (b) For the n = 1 and n = 2 states, calculate the probability
of finding the electron between x; = 0.15 nm and x, = 0.35 nm. (c) Calculate the
energies in electron volts of the n = 1 and n = 2 states.

. A laser emits light of wavelength A = 800 nm. If this light is due to transitions from

the n = 2 state to the n = 1 state of an electron in an infinite potential well, find the
width, L, of the well.

. Consider an electron trapped in an infinite potential well, with length L = 20 nm (1

nm =10~ m, the electron mass is m, = 9.11 x 1073 kg). What is the energy Es of
the fifth level? And whats the energy of the first (lowest) level? If electron drops
down from the fourth to the first level, the corresponding energy difference has to be
released, for example in the form of a photon. What would be the wavelength of this
photon?

. A free particle of mass, m, and total energy, E, is incident from x — —oo on a potential

step given by

V(x) =

0 for x<0
(3.12.37)

Vo>0 for x>0.

where Vy > 0 is a positive constant with the dimensions of energy. Solve the
corresponding TISE, apply the appropriate boundary conditions and determine the
wave function for the case when E > V.

A particle of mass m and total energy, —E with E > 0, is subject to the potential
given by
V(x)=—-ad(x—a),

where o and a are positive constants. Solve the Schrodinger equation for the bound
states and find the normalized wave functions and the corresponding energies. How
many bound states the particle can have in such a potential?

A particle of mass m and total energy E is subject to a potential given by

o0 for x<0
Vix)=¢ 0 for 0<x<a, (3.12.38)
Vo >0 for x>a.

where E < Vp. Find the energy levels and the corresponding wave functions.
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12.

13.

14.

15.

16.

17.

18.

A particle of mass m and total energy, —E (E > 0), is subject to the potential given
by

V(x)=-a[é(x—a)+8(x+a)]

where o and a are positive constants. Sketch the potential. Determine the number
of bound states supported by this potential. Find the allowed values of energy for
o = h?/ma and o0 = 1* /4ma.

A particle, moving freely in an infinite potential well of width a (0 < x < a), isin a
state described by the wave function

1 3 i 1 5 ;
y(x.1) = Va sin (T) e b4 7 sin <Zx) e wEst

Calculate the probability current density.

Using the continuity equation find the expression for dP,; /dt in terms of the current
density, where P, is the probability of locating the particle in the interval a < x < b.

A particle is free to move in a confined region of space —a < x < a. Att =0 itisin
a state

X 2

y(x,0) = \/1571 cos (Z) + N sin (%) :

(a) Find w(x,1) at a later time 7. (b) Calculate the probability density p(x,7) and the
probability current density j,(x,7). (c) Verify that the probability is conserved:

ap | dje(xr)
W—i_ ox =0

Consider an electron of energy 5.1 eV approaching an energy barrier of height 6.8
eV and thickness L = 750 pm. What is the transmission coefficient .7 ?

A 1500 kg car moving at 20 m/s approaches a hill 24 m high and 30 m long. What is
the probability that the car will tunnel quantum mechanically through the hill?

Find the reflection and the transmission coefficients for a particle of mass m incident
from the left, i.e., from x — —oo on the step-potential

0 for x<0,
V(x) =
Vo for x>0,

where Vj is a real positive constant. Consider both the cases when (i) the energy
of the incident particle is less than the height of the barrier, i.e., E < V; and (ii) the
energy of the particle is greater than the height of the barrier, i.e., £ > V).
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19.

20.

21.

22.

23.

24.

Find the reflection and the transmission coefficients for a particle of mass m incident
from the left, i.e., from x — —oo on the attractive delta potential

V(x) =—ad(x),
where « is a real positive constant. The energy of the incident particle is negative

1e., E <O.

The wave function of a particle is given by

y(x) = @(ax—xz), (0<x<a).

Calculate the average values of £ and £2. Compute the uncertainty in measurement
of the position of the particle in this state.

A particle is in the ground state of the harmonic oscillator with the classical frequency
o, when suddenly the spring constant quadruples without changing the state of the
particle, so that @’ = 2@. If the energy of the particle is now measured, what is the
probability of getting the value 7@ /2? What is the probability of getting the value
hw?

A particle is trapped inside a harmonic oscillator potential. At ¢ = 0, the particle’s
wave function is

¥ (x,0) = Aldo(x) + 1 (x)],
where @y and ¢@; are the ground state and the first excited state wave functions of the
particle.
(a) Find y(x,t) and the probability density p (x,¢) = |y (x,1)|?.
(b) Calculate the expectation value of £ at # > 0. Find the period of its time variation.

(c) Recall Ehrenfest’s theorem and use the result of (b) to obtain the average value of
the momentum in the state y(x,7).

Consider the one dimensional harmonic oscillator potential, with energy levels: E, =
(n + %) ,n=20,1,2,3,..., which are non-degenerate. How do the energy levels and the
degeneracy change, if the potential is modified as

%mw2x2, for x <0,
V(x)=
oo, for x> 07?

The Hamiltonian of a two dimensional harmonic oscillator is given by

N DU
A =S (pi+py) + 5 mo’ (3 +)7).
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25.

26.

27.

28.

Use the separation of variables to reduce the solution of the corresponding TISE to
the solution of the TISE in one spatial dimension and determine the wave functions
and the corresponding energy levels.

Find the average value of £, 2, p,, and p? in the second excited state of the harmonic
oscillator. Check the validity of the Heisenberg’s uncertainty relation.

A particle of mass m is subjected to a symmetric infinite potential well

=] 0 “L/2<r<L/2
YT e x<—-L/2,x>L/2,

where L is a real positive constant. Calculate the product Ax Ap, for the lowest even
and the lowest odd states of the particle in this well.

Consider a particle in a one-dimensional harmonic oscillator potential. At time t =0
the particle is in the state

1
V2
where ¢ and ¢; are the ground state and the first excited state wave functions of a

particle in the harmonic oscillator potential. Evaluate the expectation values (£) and
(px) as functions of time.

¥(x.0) = —=[9o(x) + ¢1 ()]

Electrons move in a series of equidistant O-barriers, with distance between two
neighboring ones equal to ¢. Each potential has the form of V (x) = atd(x), so that
the total potential can be written as

Vix)= ) ad(x—Ni), >0,
Ne—oo

where N is an integer. (a) Find the energy eigenstates. (b) Derive the quantization
condition for the energy eigenstates. (c) Show graphically that the allowed energy
states form bands.



Chapter 4

Algebraic Formulation of Quantum Mechanics

As we know quantum mechanics was initially developed in two seemingly different but
physically equivalent forms: matrix mechanics (Heisenberg, 1925) and wave mechanics
(Schrodinger, 1926). Later, Dirac invented a more general formalism and showed that both
these formulations of quantum mechanics (i.e., wave mechanics and matrix mechanics)
could be cast into a single algebraic framework with the help of the theory of linear vector
spaces and the operators acting in them. It turned out that Dirac’s formalism was a unified
one in the sense that, if it was constructed using a continuous basis, it led to Schrodinger’s
wave mechanics, while its representation in a discrete basis resulted into Heisenberg’s
matrix mechanics.

The linear vector space that one has to use for such a formulation has to be a complex
one (the elements are complex numbers/functions) because of the complex nature of the
wave function discussed earlier. Apart from that it turned out that the complex linear vector
space in quantum mechanics has to have some specific properties: it has to be an infinite
dimensional vector space equipped with an inner (scalar) product. It is called a Hilbert
space and we shall denote it by .77°. A rigorous definition of the Hilbert space will be given
later.

4.1 Linear Vector Spaces

Let us start by defining a linear vector space and listing out its properties. In general, a
linear vector space consists of a set of elements v, @, x,... (called vectors) and a set of
numbers a,b,c, ... (called scalars), a set of rules each for the addition and multiplication of
vectors. The meaning of a vector is assumed to be independent of the coordinate system
chosen to represent its components.

Definition: A linear vector space V is a set of elements y,¢,¥,..., called vectors, for
which the following properties hold:

1. V is closed under addition. This means that if two vectors ¥ and ¢ belong to V then
their sum, written as ¥ 4+ ¢, also belongs to V.

124
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2. A vector ¥ can be multiplied by a scalar a to yield a new, well-defined vector ay that
belongs to V,

3. The addition of vectors is commutative, thatis, y 4+ ¢ = ¢ + y.
4. The addition of vectors is associative, thatis, Y+ (¢ +x) = (v +¢) + x.

5. There exists a unique element called O that satisfies y + 0 = y for every element
yeVv.

6. There exists an identity element, E, in V such that Ey = y for every element y € V.

7. The multiplication of a vector by scalars is associative, that is, (ab)y = a(by).

8. The multiplication of a vector by a scalar is linear, that is, a(y + ¢) = ay + ag,
y(a+b) =ay+by.

9. For each y in V , there exists a unique additive inverse (—y) such that y + (—y)
=0.

If the vectors and the scalars associated with a given vector space are real, we say that we
are working with a real vector space. On the other hand, if the vectors and the scalars are
complex, then we say that we are working with a complex vector space. The vector spaces
used in quantum mechanics are complex.

Basis and dimension of a linear vector space: Basis in linear vector space In order to
define what we mean by a basis and the dimensionality of a linear vector space, we must
introduce the concept of linear independence of a set of vectors.

Linear independence of vectors: Consider a set of n vectors, {¢1, 2,91, ¢s,...,0,}, and
their linear combination a; ¢ +ax ¢ +az¢3 + ... +a,¢,, where a;, j = 1,2,3,...,n are all
constants. The vectors of this set are said to be linearly independent if the equation

a1 +axp +azpz+...+a,0, =0 “4.1.1)

hold only if a; = a» = ... = a, = 0. If this condition is not met, we say that the set is
linearly dependent.

Note that if a set of vectors is linearly dependent, one of the vectors can be expressed
as a linear combination of the others. For instance, assume that

ay+bp+...+cx =0, 4.1.2)

where not all of the scalars are zero. Then one of the vectors can be expressed in terms of
the other vectors as follows. Let a be non-zero. Then, we have

Yy=pd+...+qx, (4.1.3)
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where
4.14)

Definition: A linear vector space, V, is said to have dimension #, if the maximum number
of linearly independent vectors in V equals n.

If this number n is finite, the linear vector space is called finite. On the other hand, if
it is possible to find any number (as large as possible) of linearly independent vectors in it,
then it is called infinite.

Basis: Any set of n linearly independent vectors, {¢;},i = 1,2,3,...,n, belonging to the
n-dimensional linear vector space, V, is called its basis. The elements, ¢, @2, ¢, ..., of this
set are called the basis vectors.

Moreover, a basis is said to be complete if it spans the entire space; that is, there is no
need to introduce any additional basis vector. It also means that every vector y of a linear
vector space V, with a complete basis, can be written as a unique linear combination of the
basis vectors:

V=c1¢1+ 21 +c303+ ... + s (4.1.5)

where the expansion coefficients ¢;,i = 1,2,3,...,n are called the components of the vector
V in the basis {¢;}.

Note that the basis may be discrete, i.e., consisting of discrete vectors {¢;}, or it may
consist of vectors which are functions of one or more continuous parameters. In the latter
case we have an infinite set of continuous basis vectors and, correspondingly, the vector
space is an infinite dimensional one. For instance, the space of all continuous functions
¢i(x), where x takes continuous values in a finite or an infinite interval, constitutes an
example of an infinite dimensional space with continuous basis.

Some examples of linear vector spaces

1. The set of vectors, {Ei,B, C,...}, in the familiar three dimensional space. The addition
of vectors and the multiplication of a vector by a real scalar are defined in accordance
with the rules of vector algebra. The additive unit vector is the null vector 0:d+0=a
for any @ € V. For an arbitrary @ € V there is an additive inverse given by —a:
@+ (—d) = 0. All other aforementioned requirements are also satisfied.

2. The set of all continuous function defined on the interval a < x < b, where a and b are
constants. The addition of vectors and the multiplication by a constant are defined
according to the rules of calculus.

3. The set of n complex numbers placed in a well-defined order: v = (y1,y»,
V3,...,Wy,). The addition of vectors and the multiplication of a vector by a scalar
are given by
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V+o=(vi+0Ly2+ 0¥+ 05, YW+ Gn), (4.1.6)
and
ay = (ay,ayr,ays,....ay,). 4.1.7)

The unit element is the vector
0=(0,0,0,...,0), (4.1.8)
while the role of the element inverse to a given element V¥ is played by the vector

—Y = (YL =V Ve V). (4.1.9)

Example 4.1.1: Show that the vectors

5 1 7
vi=\| 3|, wm=1| 2], y=
4 3 10

are linearly dependent.

Solution: For these vectors to be linearly independent, their linear combination ay; + by, +
cy; must be zero only if a = b = ¢ = 0. Let us check whether it is really the case. For this
purpose, we put ay; + by, 4 cy3 = 0 and determine the values of a, b and ¢ for which this
equation can be satisfied. Hence, we have

5 1 7 Sa+b+7c 0
al 3 |+b| 2 | +c| 7 = 3a+2b-+Tc = 0 |. &.1.10)
4 3 10 4a+3b+ 10c 0

Equation (4.1.10) leads to a system of three algebraic equations for a,b and c. The solution
of these equations yields: a = —c,b = —2c¢. Clearly, (4.1.10) holds good for a = b =
¢ = 0. However, (4.1.10) is also satisfied for non-zero values of the constants a,b and c.
For instance, it is satisfied for a = 1,b = 2 and ¢ = —1, which shows that yj3 is a linear
combination of the other two vectors: W3 = y; + 2y». Hence, the given system of vectors
is linearly dependent.

Example 4.1.2: Check whether the system of vectors

5 0 0
vi=| 0], w=| -2 |, y=|0
0 0 10

is linearly independent or not.
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Solution: Just as in Example 4.1.1, we put ay; + by, 4 cy3 = 0 and determine the
constants. We get

5 0 0 5a 0
al 0 |+b| 2 |+c[ 0 |=[ -2 |=| 0 |. 4.1.11)
0 3 10 10c 0

The only set of solutions for the constants is a = b = ¢ = 0. Hence, the given set of vectors
is linearly independent.

Note that, so far, the only condition that has been imposed on the basis vectors is their
linear independence. However, it is desirable to have an orthonormal basis consisting of
basis vectors that are not only pairwise orthogonal but also have unit length. In order to
incorporate these two concepts, we shall have to introduce and define a mathematical
operation called inner product (scalar product) of vectors. We shall discuss that in the
next section.

4.2 Dirac Notation

We have already stated that vector spaces in quantum mechanics are complex. Therefore,
we assume the elements of our n-dimensional linear vector space to be complex. We also
assume the vector space to have a fixed basis {¢;},i = 1,2,3,...,n. For example, in this
basis, a vector y belonging to our n-dimensional linear vector space is given by its n
components y;,i = 1,2,3,...,n, which are complex numbers.

Dirac notation: We introduce the notation |y) for a vector y belonging to an
n-dimensional linear vector space V, and we call it a ket vector or simply a ket. As
mentioned above, in a fixed basis {¢;},i = 1,2,3,...,n, a ket will be characterized by its
complex components V;,i = 1,2,3,...,n. It is convenient to arrange these components in
to a column vector and write a ket as a column vector:

Vi
15}

V3
4.2.1)

s
I

Vi

Dual vector: The familiar notion of a “scalar product” is incorporated by introducing a
dual vector, written as (y/|, for each of the vectors, |y), of V. In Dirac’s language, it is
called a bra vector. The bra (y/| dual to a ket |y) is constructed by transposing the ket (that
is, we write it as a row vector) followed by complex conjugation. In other words:
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Vi
[ %)
W3
If |v)y=| . ,then (wl=(vi v v . . . v ). (4.2.2)

Yy
This method of complex conjugation is known as hermitian conjugation or dagger
operation:  (y| = (|w))7. There is a one-to-one correspondence between bras

(constructed in this manner) and kets, that is, for a given ket |y), there is a unique bra
(y|. In addition, the following relations hold good:

(@) If[A) = au), then (A| = o™ (u].
(b) If[A) = |au) + B[v), then (| = o™ (| + B*(V|.

The set of bras, dual to the kets of V, also forms a linear vector space, which is called the
dual (to V) vector space. It is denoted as V*.

The inner (or, scalar) product: The inner product (also called the scalar product) of two
vectors |y) and |@) (written as (@ |y)) is defined by the following expression:

Vi
[ %)
V3
Olv)=(9or ¢ o . . . & )| -
vi
= (Vi + B+ oy +..+oiv) =) 6w 4.2.3)
i=1

We call (¢|y) a ‘bracket’. Evidently, the procedure is to take the bra, (¢| € V*,
corresponding to |¢) € V and multiply it with the ket |y) € V according to the rules of
matrix multiplication. Therefore, if |y) and |@) belong to the same vector space, the
products of the type |y)|¢) and (y|(@| are not defined; they are in fact forbidden because
there are no rules in matrix algebra for the multiplication of two column matrices or two
row matrices. However, if |y) and |¢) belong to two different vector spaces, a product of
the type |y)|9) ( (w](@|) is written as |y) ® |¢) ( (y|® (@|) and understood as the tensor
product of two vectors.
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A vector space that also has an inner product is referred to as an inner product space or
Euclidean space.

Properties of the inner product: Let (|y),|y),|0),... be the vectors belonging to a
complex vector space V and let o and B be complex numbers. Then the inner product
satisfies the following properties:

(0ly) = (wl]9)". (4.2.4)

If [A) = a|u), then for any ket |y),

(Aly) = (vIA)" = (ylaw)” = (a({y|u))" = o™ (ylu)" = o (uly). (4.2.5)
(vl(ale)+Blw) = aly|d)+ B (¢ ), (4.2.6)
(ay|+ (Bol)[9) = o™ (y]9) + B (w]9), (4.2.7)
(vly) = 0. (4.2.8)

In (4.2.8), the equality holds, if and only if |y) = 0. If the inner product between two
vectors is zero, (¢|y) = 0, we say that the vectors are orthogonal.

Norm of a vector: The square root of the inner product of a vector with itself is called the
norm, and is written as:

vl = V(vly). (4.2.9)

A vector |y) is said to be normalized if its norm is equal to 1:
vl =v(wly) =1 (4.2.10)

Orthonormal and complete basis: An orthonormal basis consists of the basis vectors
{|¢:)},i =1,2,3,...,n, which have a unit norm and are pairwise orthogonal:

<¢t|¢]> l]’ H¢1H = <¢z‘¢z> =1, (4.2.11)

where §;; is the Kronecker delta. The completeness of an orthonormal basis is
mathematically expressed in terms of a closure relation, which is what we are going to
derive.

Let us first assume the basis to be discrete. An arbitrary vector, |y), belonging to the
linear vector space can be expanded in this basis as

) =Y cil@i). (4.2.12)
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where the expansion coefficients ¢; = (¢;|y) are called the components of the vector y in
the basis {|¢;) }. Note that if |y) is normalized to unity, i.e., (y|y) = 1 then

(vly) = ZZ Pilci cjlo;) ZZC cj(9ilo))
=Y Ycicigi=Ya=1 4.2.13)
[ i

Since (¢;|y)" = (y|¢;), (4.2.13) can be written as

Z|cl! —Zc c,—Z Vo) (¢ily) = <Z|¢, ¢,) . (4.2.14)

Since |y) is normalized to unity,

2190 (il = 1. (4.2.15)

The relation (4.2.15) is known as completeness condition or closure relation for the basis
vectors.

In the case of a continuous basis in which the vector functions depend on a continuous
parameter «, the closure relation reads:

[dalo(@)io(a) =1 (4.2.16)

We shall always assume that we have an orthonormal and complete basis in our linear
vector space unless stated otherwise.

Finally, let us note that in an orthonormal basis {¢;},i = 1,2,3,...,n, an arbitrary ket,
|y) (belonging to the vector space) is represented by a column matrix whose elements are
the expansion coefficients ¢;,i = 1,2,3,...,n

(¢1]y) c
(92| w) &)
(03lw) a3

4.2.17)

s
i
!

(On| W) Cn
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Example 4.2.1: Suppose that |¢;),|¢2),|¢3) constitute an orthonormal basis, that is,
(9i|¢;) = 6;j. Consider the following kets given in this basis:

\W) =3il¢1) +2[¢2) +i[3), (4.2.18)
[¢) =2|¢1) —3|d2) +5[¢3). (4.2.19)

(a) Find (y]| and (¢|.
(b) Compute the inner product (¢|y) and show that (¢|y) = (y]9)".
(c) Leta =2+ 3i and compute |ay).
(d) Find |y + ¢) and |y — ¢).
Solution: (a) Using the properties discussed earlier,

(W] = 3i) (o] +2(p| + ()" |93) = =3i (p1] +2 (92| —i (93] (4.2.20)
(@] =2(d1]| =3 (| +4(g3]. (4.2.21)

(b) To compute the inner product, we rely on the fact that the basis is orthonormal,
(4i1¢;) = 8. (4.2.22)
And so we obtain
(Olw) = (2(01] =3 (9o +4(93]) (3i[91) +2[¢2) +i]¢3))
= 6i (@1]91) +4(d1|92) + 2 (d1]@3) — 9 (92[91) — 6 (2|¢2) —3i (92[¢3)

+12i (3] ¢1) + 8(3|da) +4i (¢3|03)
=6i—6+4i=—-6+10i. (4.2.23)

Now the inner product (y|¢) is

(wlo) = (=3i[g1) +2(¢2) —i|¢3)) (2 (1] — 3 (g2 + 4 (¢3])
= —6i(01¢1) +9i(91|¢2) — 12i (91]93) +4(92]91) — 6 (92[92) + 8 (92[¢3)
—2i(¢3]01) + 3i (P3]92) — 4i (93|¢3)
=—6i—6—4i=—-6—10i = (p|y)". 4.2.24)

(c) To compute |ay), we multiply each coefficient in the expansion by a:

lay) = (2+430) (3i[¢1) +2[¢2) +i[¢3)) = 6i[d1) +4[2) +2i[3)
—9[91) +6i[¢2) —3|¢3) = (—9+6i) [¢1) + (4+60) [¢2) — (3—2i) |¢3). (4.2.25)
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(d) To compute |y + ¢), we add (subtract) each term of |y) to (from) the respective term
of |¢) to get

W+ ¢) = (2+30)|¢1) — [92) + (5+1) [93), (4.2.26)
(W —¢) = (=2+43i) [¢1) +5]¢2) + (=5+10)[¢3). (4.2.27)

Example 4.2.2: Consider the ket vectors and the basis given in Example 4.2.1. Compute the
matrices corresponding to the kets |y) and |¢) in that basis.

Solution: Since the basis is orthonormal, (¢;|¢;) = 6;; and we have for |y):

(911y) = 3i(P1]91) +2(¢1|02) +i(d1]¢3) = 3i, (4.2.28)

(921y) = 3i(92[91) +2(¢2|02) +i(d2[93) =2, (4.2.29)

(93| w) = 3i(93]01) +2(P3]¢2) + (3] ¢3) = i. (4.2.30)
Similarly for |¢):

(9119) = 2(¢1]91) — 3(12) +5(¢1|¢3) = 2, (4.2.31)

(92]9) = 2(¢2[¢1) — 3(¢2[92) + 5(¢2[¢3) = -3, (4.2.32)

(93]9) = 2(¢3]¢1) — 3(¢3]92) +5(¢3[¢3) = 5. (4.2.33)

The column matrices representing the kets |y) and |¢) in the given basis are, respectively

3i 2
vy =1 2 |, oy=1 -3 |. (4.2.34)
i 5

More properties of the inner product of vectors: Let us discuss some more important
properties of the inner product of vectors. They will be very useful later while discussing
some important physical consequences of the fundamental postulates of quantum
mechanics.

Theorem 4.2.1: The scalar product of two vectors |y) and |¢) satisfies

2Re((y]9)) < (y|w) +(9]9). (4.2.35)

Proof: For any ket, |a), we have (a|o) > 0. So if |a) = |y — @), we get

0 < (afa) = (y|y) — (y]¢) — (9|w)" + (9]9). (4.2.36)
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Since (y|¢) is a complex number and 2Re(z) = z+ z* for any complex number z, we get

0 < (y|y) —2Re((y[9)) +(|0). (4.2.37)

The last equation leads to the desired result:

2Re((y]9)) < (wlw)+(0]9). (4.2.38)

Theorem 4.2.2: The absolute value of the scalar product of two vectors |y) and |¢) is less
than or equal to the product of the norms of the vectors:

(wlo)] </ (wlw)\/(9]9). (4.2.39)

Proof: Once again we use the fact that for any ket, |&), we have (@|a) > 0. Let

oy vle)
) = [9) Wiy ly). (4.2.40)
We have
(ala) = (9]9) — {wio) (0lv) MWM. (4.2.41)

(0ly) — WW/\‘P)‘F

(vlw) (vlv) (v]y)

We know from the first property of the scalar product that

(®1w) (wlo) = (o|w)]*. (4.2.42)

Therefore, we can rewrite (4.2.41) as

_ w1, [elw) P _ Celw) I?
(ala) = (¢]¢) —2 Wy + Wy = (99) v > 0. (4.2.43)
From (4.2.43), we arrive at
(wlo)> < (wlw) (9]9). (4.2.44)

Taking the square root in (4.2.44), we obtain the required inequality

(wlo)| < VA {wlw)\v{(0|9). (4.2.45)

The inequality (4.2.45) is known as Schwartz inequality.
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Theorem 4.2.3: For any two vectors |y) and |¢) belonging to V, the norm of the sum of the
vectors is less than or equal to the sum of the norms of the individual vectors.

VW0l +90) </ (wly) +/(0]0). (4.2.46)

Proof: Let z be a complex number. Then |Re(z)| < |z|. Since the inner product is a complex
number, we have |[Re({(y|¢))| < |(y]9)|. To derive the result, we use this fact together
with the Schwartz inequality. First, we expand the inner product (¥ + ¢ |y + ¢):

(W+0ly+0) = (wly) + (o) +{oy) +(¢]¢). (4.2.47)
We note that (y|¢) + (¢|w) = (y|0) + (w|9)* = 2Re((y]9)). Therefore, we have
(W+9lv+9) = (vlw)+(9|¢) +2Re((y]9)). (4.2.48)

Using |Re(z)| < |z| now, we obtain

(Wlw) +(019) +2Re((w(9)) < (wly) + (9]¢) +2| (w|¢) . (4.2.49)

If we apply the Schwartz inequality for the third term on the right-hand side of (4.2.49),
we have

(Wly) +(1¢) +2[(w]o) | < (ywly) +(9) + 2/ {wy)\/(9]9). (4.2.50)

Thus, we get that

W+ 01y +0) < (wly) +(010) +2v/ (wTvI VT010) = (vTwTv) +VTole] )
(4.2.51)

From (4.2.51) we have the required result

Vv + oy +¢) < {(wlw)+/(9]9). (4.2.52)

The inequality (4.2.52) is known as the triangular inequality.

In quantum mechanics, the linear vector spaces are, as a rule, infinite-dimensional.
The so-called Hilbert space plays an exceptional role among all the infinite-dimensional
linear vector spaces. A Hilbert space is equipped with an inner product that is essentially
positive and allows to introduce metric relationship among various quantities. In this
sense, a Hilbert space is a natural generalization of Euclidean spaces to
infinite-dimensional spaces. In the following, we shall present the mathematical definition
of a Hilbert space.
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4.3 Hilbert Space

A Hilbert space .77 is a collection of vectors, v, @, x,. .. and scalars, a, b, c, .. . that satisfies
the following properties.

1. JZ is an infinite-dimensional linear vector space, that is, it has infinite dimensions
and possesses all the properties of a linear vector space discussed earlier.

2. There exists in .57 a real inner product which is finite and satisfies all the
aforementioned properties.

Besides these, a Hilbert space satisfies the following specific properties:

3. 7 is separable. It means that there exists a Cauchy sequence {y,} € 7, n =
1,2,3,..., such that for every y € 7 and € > 0, there is at least one y, of the sequence
for which

Iy =yl <& (4.3.1)

4. A is complete. It means that every Cauchy sequence of elements {y,} € .7
converges to an element of .77, In other words, the relation

lim ||y, — yn| =0, (4.3.2)
n,m—roo
implies a unique limit y € .7 for every Cauchy sequence {y,} belonging to .77,
that is,
lim ||y — y,|| = 0. (4.3.3)
n—oo

Examples of Hilbert space:
(1) A set of complex vectors with infinite components:

Vi
V2
Y3

s
!

7
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satisfying the condition

(yly) =Y |yj|* <o (4.3.4)
j=1

The addition of vectors and the multiplication of a vector by a scalar are defined as

Vi o} v+ 1 ayi
7} (03} Yo+ ¢ ay,
Y3 03 W3+ @3 ays
v +lo)=| - |+| - |= : caly)=1| - . (4.35)
llln ¢n lljn + ¢n Clll/n

The scalar product of two vectors |y) and |¢) is defined as
(9ly) = Z 0; V- (4.3.6)

(i) The set of complex functions, {y(x),¢(x),...,x(x),...}, that are square-integrable on
the entire x-axis:

/+w]l;l(x)2dx<w, /+m|¢(x)]2dx<oo,... (4.3.7)

—o0

The addition of functions and the multiplication of a function by a number are determined
according to the general rules of calculus. The inner product is defined as

O = [ o @wio “38)

Example 4.3.1: Show that for a system of orthonormal vectors {|91),|92),|93),....|0m),...}
to be complete, it is necessary and sufficient that the relation

(v]¢) = Z (W] O (D] ) (4.3.9)

holds good for arbitrary kets |y) and |¢).



138 Fundamentals of Quantum Mechanics

Proof: Let us first show that (4.3.9) is a sufficient condition. For this, we will have to
prove the following. Given that the condition holds, we must show that there does not exist
a non-zero vector y that is orthogonal to all the vectors of the given system {|¢;)},i =
1,2,3,...,m,.... Let us assume that there exists such a vector; then, we can take |y) =
|¢) = |x) and obtain

(xX12) =Y. (1 9m) (®m|x) =0, (4.3.10)

m

whence |x) = 0. This contradicts our assumption. Hence, there does not exist any non-
zero vector ) that is orthogonal to all the orthonormal vectors |¢;). Therefore, the given
system is complete.

To show that the given relation is a necessary condition, we shall have to use the
completeness of the given system of orthonormal vectors. Since {|¢;)},i = 1,2,3,...,
m,...1is complete, we can expand

=Y anl®n).  an=(9unlV), 4.3.11)
m=1

i bin|Pm)» b = (9| ). (4.3.12)

Then, we have

[eS)

_ T T _ -
(Wlo) =Y (0ulv)" (16m)) " (@al®) [00) = Y (W) (Du|®) (Dm| )

mun=1 mn=1
6"111
Z (W] @m) ($n|®) S Z (W[ @) (P D). (4.3.13)

Thus, from the completeness of the system of orthonormal vectors, there follows the
validity of the relation in (4.3.9).

4.4 Observables and Operators

The measurable physical characteristics of a system, such as position, momentum, energy
etc, are called observables and are represented by operators. Mathematically, an operator,
O, can be defined as a map O : V — V that takes a vector, belonging to a vector space V,
to another vector also belonging to V, where V is a linear vector space over the complex
field . In general, an operator is characterized by its action on the basis vectors of V and
hence, in a chosen basis, it is represented by a matrix. The eigenvalues of this matrix give
the possible results of measurements of the observable represented by the operator, while
the eigenvectors of this matrix give us a basis that we can use to represent a general state
of the quantum system.
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An operator, representing an observable A, is usually denote by capital letter A with a
hat over it, i.e., by A. The action of an arbitrary operator A on a ket |y) € V is written as:

Aly) =19). (4.4.1)

where |¢) also belongs to V.
The product of an operator A and a number (complex) a is an operator aA, which takes
a vector |y) € V into the vector a(Ay)) € V:

(al)|y) = a(A|y). (4.4.2)
The sum, C, of two operators A and B is defined as
Cly) = (A+B)|y) =Aly) +Bly). (4.4.3)

It means that we act on |y) with A and B one-by-one and then add up the results. The new
vector, thus obtained, is the vector that would result, if we act on |y) directly with C.

The operators in quantum mechanics are linear. An operator A is said to be linear on
V if for given complex scalars o and f in ¢ and vectors |y) and |¢) in V, the following
holds

Alaly)+B19)) = ad|y)+BAlg). (4.4.4)

The product of two linear operators A and B acts on a vector in the following manner:

(AB) |y) = A(B|y)). (4.4.5)

It means that the product operator AB acting on the ket |y) transforms it into another ket
|¢), which is obtained by first applying B to |y) and then acting on the resulting ket by A.
In other words, if B|y) = |x), we have

(AB)|y) =A(Blw)) =Alx) =19). (4.4.6)
In general, the product of two operators is not commutative, i.e.,
AB # BA. (4.4.7)

The difference (AB — BA) is an operator, called the commutator of the operators A and B,
which is written as

~ A A A A

|A,B] = AB—BA. (4.4.8)
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A A

The operator (AB+ BA) is called the anticommutator of the operators A and B. It is written
as

[A.B), = AB+ BA. (4.4.9)

Up till now we have talked about the operators acting in the linear vector space V of ket
vectors. In an exactly analogous way, one can introduce operators acting in the linear vector
space V* of bra vectors. Consider an operator A acting in V

0) =Aly). (4.4.10)

Let us introduce an operator A" which acts in dual space V* by taking the bra (|,
corresponding to the ket |y), into the bra (@|, corresponding to |¢):

(0] = (w|A. (4.4.11)

The operator A” is called the operator hermitian conjugate (adjoint) to the operator A. By
definition, a conjugate operator acts on the bra vectors from right. In other words, an
operator A stands to the left of a ket, while the hermitian conjugate operator A" stands to
the right of the corresponding bra. Therefore, by definition, A |y) and (y|AT are valid
expressions, but A(y/| and |y)AT are not.

Multiplying (4.4.10) from left by (x| and (4.4.11) from right by |x) and comparing the
left hand-sides of the resulting equations, we arrive at an important result:

(WA |2)" = (x|Aly). (4.4.12)

Equation (4.4.11) can be taken to be the defining equation for the operator A, conjugate
(adjoint) to the operator A. Note that (4.4.11) is completely equivalent to the definition of
a hermitian conjugate operator given in Chapter 2 (see (2.3.1)).

The identity operator: The simplest operator of all is the identity operator, /, which does
nothing to a ket:

Iy) =1y). (4.4.13)
Outer product: The outer product between a ket and a bra is written as:

lw) (@] (4.4.14)

This expression is an operator. If we apply it to a ket |)), it produces a new ket that is
proportional to |y)

(lw) (8] [x) = lw) (Dlx) . (4.4.15)



Algebraic Formulation of Quantum Mechanics 141

The product (¢|x) is simply a complex number, say, o and hence,

(lw) (o) [x) = aly). (4.4.16)

The closure relation: We have seen that, given an orthonormal basis {|¢;)},i = 1,2,
3,...n, we can expand a ket |y) as

=Y cilé) =Y (9lv)191). 4.4.17)
i=1

i=1
which can also be written as

Z 6:) (1)) |w) - (4.4.18)

Equation (4.4.18) implies that
" ~
Y o) (il =1. (4.4.19)
i=1

This is the required closure relation; the same as obtained earlier.

4.5 Matrix Representation of Operators

In a linear vector space equ1pped with an orthonormal and complete basis
{|¢:)},i = 1,2,3,..., an operator F is represented by a square matrix F. The matrix
elements F;; of the matrix F are given by the following inner products:

Fij= (0l F|9;), i,j=123,... 45.1)

The above expression for the matrix elements follows from the fact that, using the
completeness of the basis, we can write

F =Y [0:)(0ilF19;)(9;] = }_Fijl:) (65]- (4.5.2)
L] )
Obviously, the square matrix F has countably infinite numbers of columns and rows and it

1s written as

Fi Fo Fi3
Fy Fn B3

F=(F)=| ~ ] (4.5.3)

Fnl Fn2 Fn3
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When the vector space, in which the operator F' acts, is n dimensional, the components of
the operator can be arranged into an n X n matrix, where Fj; is the element at the intersection
of the i row and j" column:

Fin Fo Fsz . . Fy
iy Fn Bz .. Py
P=E)=| -~ -~ - - - | (4.5.4)
Fu Fo Fs . . Fu
Or,
(011 F191) (1] F|en) : . (D1 F[9n)
(02| F|o1) (92| F|0n) : . (02| F |9n)
(Fj) = : : : : : (4.5.5)
GlPI0) (0lP10) . . (a0

Representation in a continuous basis: Up till now, we have considered the representation
of kets, bras and operators in a discrete basis and saw that they are represented by discrete
matrices. It is not difficult to generalize the formalism to include representations of these
quantities in the continuous basis.

Consider a continuous basis given by the kets {|¢x)}, where the subscript k takes
continuous values. The orthonormality condition for these basis vectors is given by

(x| Ppr) = S(k—K), (4.5.6)
where 8 (k — k') is the Dirac delta function, defined by
§(x) = 217: /_ :w e dk. (4.5.7)
The completeness condition reads
oo
| looeddi =1, (4558)

where [ is the unit operator. The expansion of a state vector |y) in terms of the complete
set of basis vectors {|@) } can be accomplished as follows

= ([ awodad )i = [ artodwion = [ aloga @59

oo
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where a; = (¢r|y) gives the projection of |y) on |¢;). Note that the norm of the discrete
basis vectors is finite, however the norm of the kets |¢) is infinite:

+oo0
<¢k‘¢k/>°</_m dk — o (4.5.10)

This implies that the basis kets |¢) do not belong to a Hilbert space because they are not
square-integrable. However, these kets do constitute a legitimate basis because the norm
of any state vector |y) in this basis is finite. We have

oo oo
(wly) = [ dk”l k' ay ar §(k—K)8(K —K") = lar* = [(ge|y)[* < oo,
4.5.11)

in view of the finiteness of the scalar product (¢|y). Thus, in a continuous basis, {|¢)},
an arbitrary ket, |y), can be represented by the following column matrix

vy = | (&ly) (4.5.12)

which has infinite number of continuous (non-countable) components (¢|y). Similarly,
an arbitrary bra (y/| is represented by the following row matrix

wl=(- - - A&ly) - - ). (4.5.13)

The operators are represented by square continuous matrices whose rows and columns
have continuous and infinite number of components:

~
I

T (4.5.14)
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The trace of an operator: The trace of an operator F is defined as the sum of the diagonal
elements of its matrix in a given basis. It is denoted by Tr(F):

n
Tr(F)=Fi+Fo+F3+..+Fn=YT;
i=1
= (01 £ [¢1) + (02| £ |$2) + (@3] F [93) + .. + ($u] £ [¢n). (4.5.15)
The trace is cyclic, that is,

Tr(FGH) = Tr(GHF) = Tr(HFG). (4.5.16)

Let us prove that Tr(FGH) = Tr(GHF ). Using the closure relation of the basis, we have

Tr(FGH) :Z (6| FGH|¢;) = Z oi|F (I) G (I) H|¢y)

—

I
neh

(0i|F Z 19)) ¢]|GZ |Ox) (P H | i)

J=

I
_

Y. ) (0ilF19;)(0;|Gléx) (x| H i)

]:

I
M:

Il
MR
=
-
LR

I
HM:

Z, Z, ¢J‘G|¢k ¢k’H’¢l><¢l’F|¢J> 4.5.17)

This can be rewritten as

n

TH(FGH) = Y (0)/G kz \¢k><¢k|Hi 10) (8F167)

—1

~

I
=

(9;|GHF|9))

~.
I
R

Te(GHF). (4.5.18)
Similarly, one can prove that Tr(GHF ) = Tr(HF G).

Example 4.5.1: In a linear vector space equipped with an orthonormal basis, {|¢;),
|¢2),|¢3)}, an operator A acts on the basis vectors and the results are as follows:

Algr) =21¢1). (4.5.19)
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Algn) =3191) —i|93), (4.5.20)
Alz) = —|¢2). 4.5.21)

Compute the matrix representation of the operator in the given basis.

Solution: The matrix representation of the operator is given by:

(011 F|¢1)  (01]Alg2) (91|A|e3)
A= (0lAlg1) (92|Al9n) (9a|Alg3)
(031 A101)  (93]Algn) (93]A]93)

2(¢11¢1)  3(dil¢1) —i(i[¢3) —(P1]¢2)
= | 2(dld1) 3{(¢|¢) —i(d|ds) —(d2]0n) |. (4.5.22)
2(dsl01)  3(¢s]¢1) —i(dslds) —(93]2)

Since the basis is orthonormal, we have <¢i|¢ j> = §;; and so the matrix representation of
the operator A in this basis is:

2 3 0
A=1 0 0 -1 |. (4.5.23)
0—i O

Example 4.5.2: The outer product |y) (@] is an operator, and therefore can be represented
by a matrix. Show this for:

2 —1
wy=1| 3 |, 19)=[ o |. (4.5.24)
4 i

Solution: We have
(ol=( -1 0—i). (4.5.25)
Therefore, we have
2 -2 0 =2

vy |=1 3i |x( -1 0—i)=[ -3 0 3 |. (4.5.26)
4 —4 0 —4i
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4.6 Hermitian and Unitary Operators

An operator A is called hermitian, if it is equal to its hermitian conjugate operator. That is
if

AT =A, (4.6.1)

the operator A is hermitian. Recalling the definition of the hermitian conjugate operator
(4.4.11)), we conclude that for hermitian operator, we must have

(wlAlo)" = (9|Aly). (4.6.2)

Let us see how do we get the hermitian conjugate of an operator in practice. Let the
matrix A = (A;;), where i stands for the number of rows and j for the number of columns,
represent an operator A in a linear vector space with an orthonormal basis {|¢;)}. The first
step is to find the matrix A7 which is transposed of the matrix A. It is obtained by
interchanging the rows and columns of A4, i.e.,

T
Al A Az Al Ay Az

AT =| Ay An An =1 A Axn Axm |. (4.6.3)
A3zl Az Az Az Az Az

The second and the final step is to find the matrix complex conjugate to the matrix A7 .
Given a matrix, its complex conjugate is obtained by replacing each of the elements of the
matrix by its complex conjugate. Hence, we have

Al Ap A\ A}, AL Al
AT = Ax An Axn | = 45 A5 A |- (4.6.4)
A3zl Az Az A5 A5 A%

Thus, for any operator £, the corresponding hermitian conjugate operator, £, is given by
the matrix F* which is hermitian conjugate to the matrix F:
Yy By B
T
F'= Fy, Fp Fho|. (4.6.5)
Fy By Fyp
For a hermitian operator, £, the matrix F is equal to its hermitian conjugate matrix F .

The hermitian conjugate of a product of operators A, B,C... is given by reversing their
order, and then forming the hermitian conjugation of each operator:

A ~

(A,B,C..)T = (CTBTAT..). (4.6.6)
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The following properties hold good for hermitian conjugation:

(A+B)" = (AT +87), 4.6.7)
(adA)T = a* AT, (4.6.8)
(ABly))" = (y|B'AY), (4.6.9)
(awF| =a" (y|F", (4.6.10)

where we have used that, for any two matrices F and G, (F + G)T =FT + G7, and
(FG)T =G"FT.

It is clear from the last property that, if an operator is inside the bra, it is replaced by
its hermitian conjugate when taken out of it. A scalar, however, is simply replaced by its
complex conjugate when taken out of a bra.

Using the aforementioned properties, we can write the hermitian conjugate of any
combination of operators and scalars by following the rule:

1. Replace any constants by their complex conjugates.

2. Replace kets by their associated bras, and bras by their associated kets.
3. Replace each operator by its hermitian conjugate.

4. Reverse the order of all factors in the expression.

Eigenvalues and eigenvectors

We have discussed earlier that to each physical observable (energy, momentum, angular
momentum etc.), there corresponds an operator, which can be represented by a matrix
and that the eigenvalues of this matrix are the possible results of measurement for that
observable. For example, if the Hamiltonian, H, for a system is given, we can form a matrix
representing the Hamiltonian operator A. If the measurement of energy of the system is
carried out, the result will be one of the eigenvalues of this matrix. On the other hand, the
eigenvectors (corresponding to these eigenvalues) can be taken to be a basis in the Hilbert
space of the possible quantum states of the system. An arbitrary state of the system can
then be expanded in terms of these basis states. Such a representation of an arbitrary state
in terms of the eigenstates of an observable is frequently used for solving various problems
in quantum mechanics. Therefore, in what follows, we shall briefly review the concepts
and the techniques that are required to determine the eigenvalues and eigenvectors of a
matrix.

Let  be a linear operator on a complex linear vector space 7/, and let A be a complex
number. We say that A is an eigenvalue of £ if:

Flu) = Alu) (4.6.11)

for a vector |u) € #. The vector |u) is called the eigenvector of F'. If for every eigenvalue
there is a single eigenvector, the spectrum of the operator is called non-degenerate. If for a
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given eigenvalue, A, there are more than one eigenfunctions, the eigenvalue A is said to be
degenerate. If, for instance, for a given eigenvalue, A, there exist m linearly independent
eigenfunctions, then the eigenvalue Ay is said to be m-fold degenerate.

To find the eigenvalues and eigenvectors of the matrix F, representing the operator ¥
in 7, we set up the characteristic equation for the determination of A by equating the
determinant of the matrix (F — A1), I being the unit matrix, to zero:

det(F —AI) = 0. (4.6.12)

Equation (4.6.12) is a polynomial equation of degree n, where n is the rank of the matrix
F. The solution of this equation gives us the eigenvalues A. The eigenvectors are found
according to the general methods in the theory of matrices. Let us consider some examples.

Example 4.6.1: Find the operator, F7, hermitian conjugate to the operator £, which given
by the matrix

50 0
F=|( 0 1 =2i ]. (4.6.13)
0 2i -1
Using the result, verify whether F is a hermitian operator or not.

Solution: According to our prescription, we have to first find the transposed matrix. It is
given by

2i . (4.6.14)
-2 -1

5
Fl'={ 0
0
The next step is to take the complex conjugate of the matrix F7'. We have
5 0 0
Ffr={0 1 -2i|, (4.6.15)
0 2i -1

The operator £ is given by the matrix F'. Since F" = F, the operator, £, is hermitian.

Example 4.6.2: Let the Hamiltonian for a system be given by:

H=< & & > (4.6.16)

E &

where € and &, are constants of the dimensions of energy. Find the eigenvalues and the
corresponding eigenvectors of H and, thus, set up the basis in the state space of the system.
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Solution: To find the eigenvalues of the Hamiltonian, we set

. & — A & .
det(H—AI) = det< & £ — A ) =0. (4.6.17)
Simplifying the above equation, we have

A*—2eiA+ (ef —€5) =0. (4.6.18)

The solutions to this equation yield the eigenvalues of H:

AM=¢g+8&, M =¢g—6. (4.6.19)

Let |a;) = < Z > be the eigenvector corresponding to A;. We have

( & o ) ( b ):<81+€2>( b ) (4:6.20)

Equation (4.6.20) leads to

gla+eb= (&g +&)a, (4.6.21)
&a+eb= (& +&)b, (4.6.22)

which in turn yields a = b. As a result,

o) = ( Z >:a< i > (4.6.23)

Consequently, the normalized eigenvector corresponding to A; is

1 1
lo) = \ﬁ ( | > . (4.6.24)
Similarly, the normalized eigenvector corresponding to the eigenvalue A; is given by
_ (1 4.6.25

The orthonormal vectors |@;) and |a) constitute the required basis.

Before we proceed further, let us state and prove some important theorems about the
properties of the eigenvalues and the eigenfunctions of a hermitian operator. These are
essentially the same as we discussed earlier; however, here we shall put them into Dirac
notation.
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Theorem 4.6.1: The eigenvalues of a hermitian operator are real.

Proof: Let £ be a hermitian operator, and suppose that |y) is an eigenvector of F' with
eigenvalue A. Then,

(WIF|w) = Ayly). (4.6.26)

Using the properties of hermitian conjugation, discussed earlier, we get from (4.6.26),

(WIF|y)" = (WIETy) = 2" (y]y). (4.6.27)
Given that F is hermitian (F' = F'T), we have
Myly) =2"(yly) = (A-21")(yly) =0. (4.6.28)

Since (y|y) # 0, the equation (4.6.28) yields: A = A*. That is, A is real and the theorem
is proved.

Theorem 4.6.2: The eigenvectors of a hermitian operator, corresponding to distinct
eigenvalues are orthogonal.

Proof: Let F be a hermitian operator and let |y,,) and |y,) be two of its eigenvectors,
corresponding to two distinct eigenvalues A,, and A, respectively. That is,

FlWn) = AnlW)s FlW0) = W), (A # An). (4.6.29)

Case 1. The eigenvalues of £ are non-degenerate.
Using (4.6.29), we obtain

(Wl F W) = 2 (W W)™ = A (| W), (4.6.30)
(Wl F W) = Ao (W | W) (4.6.31)

where we have used the fact that the eigenvalues of a hermitian operator are real. Since F
is hermitian

(Wl F 1Y) = (Yl E' i) (4.6.32)
Therefore, from (4.3.30) and (4.3.31) it follows that

(Zn — 2) (W Wim) = 0. (4.6.33)

Since A, # Ay, we have (y,|y,) = 0. That is, the eigenvectors |y,,) and |y,) are
orthogonal.
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Case 2. The eigenvalues of F are degenerate.

It is clear from (4.6.33) that, if A,, = A,, the scalar product (y,|y,,) can be non-zero.
Hence, the eigenvectors corresponding to the same eigenvalue will not, in general, be
orthogonal. What to do in such a situation? It turns out that it is possible to construct a set
of orthonormal eigenvectors using the linear combinations of the non-orthogonal
eigenvectors. Let us show this in a particular case of two fold degeneracy.

Let |y;) and |y,) be two linearly independent eigenvectors of F with the same
eigenvalue A, that is,

Fly) = Aly), Fly) =Aly). (4.6.34)
Consider the linear combination

(W) = cily1) + 2l ). (4.6.35)
It is easy to check that y is an eigenvector of £ with the eigenvalue A:

Fly) = F(cilyn) +e2lyn)) = c1F|yn) +ooF [ya) = A(ci|yn) +e2lyn)).  (4.6.36)

We now want to construct those linear combinations of |y;) and |y») that will be
orthogonal and normalized. Let us start with the normalization of the first eigenvector y;
and introduce a normalized vector |@;) by

[91) = lw1) /v wilw). (4.6.37)

Now, consider the following linear combination

1x) = al¢1) + |va), (4.6.38)

where a is, in general, a complex coefficient, and demand it to be orthogonal to |¢;). This
determines the coefficient a:

a=—(¢1]y2). (4.6.39)

Thus, the function given by (4.3.38), with the coefficient a given by (4.3.39), is orthogonal
to |¢;). We now normalize |x) to get

[02) = 120)/ V(x| %)- (4.6.40)

Thus, from the linearly independent eigenfunctions |y;) and |y») of the two-fold
degenerate eigenvalue A of the operator F, we have been able to construct two
orthonormal eigenfunctions ¢; and ¢, corresponding to the same eigenvalue A. Clearly,
this procedure can easily be generalized to the case of k-fold degeneracy (k > 2).

In view of the two theorems proved here, we shall always assume that the
eigenfunctions of a hermitian operator satisfy the orthonormality condition.
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Corollary: The eigenfunctions of a hermitian operator define a complete set of mutually
orthonormal functions. This set is unique if the operator has no degenerate eigenvalues
and is not unique if there is even one degenerate eigenvalue.

Theorem 4.6.3: If two hermitian operators F' and G commute (that is, #G = GF) and if F
has no degenerate eigenvalues, then each eigenvector of F' is an eigenvector of G.

Proof: Since F has no degenerate eigenvalues, to each eigenvalue of £ there corresponds
only one eigenvector. Consider the equation

Flyn) = 2| Wn). (4.6.41)

where |y,) is the eigenvector of F with eigenvalue A,,. Since £ commutes with G, we have
GFly,) = FGly,), or, F(Gly)) =4, (Glyn)). (4.6.42)

That is, G|y, is also an eigenvector of £. Since the operator ¥ has unique eigenvectors,
G|y,) must be proportional to |y;,). Therefore, we must have

GlW) = Kl W), (4.6.43)

that is, |y, ) is also an eigenvector of G with eigenvalue k;,. The theorem is proved.

Note that if 4, happens to be a degenerate eigenvalue, then |y,) is not necessarily
an eigenvector of G. In this case, the only thing we can be sure of is that G|y;,) is an
eigenvector of F' with eigenvalue A,. It does not mean that the operators £ and G do not
have any common set of eigenvectors. In the theory of linear vector spaces, it is proved
that, in such cases, there exist an infinite number of sets of orthonormal eigenvectors that
are common to both these operators.

Skew-hermitian Operator: An operator F is skew-hermitian or anti-hermitian if:
Fi=—F. (4.6.44)

Theorem 4.6.4: The eigenvalues of a skew-hermitian operator are either zero or purely
imaginary.

Proof: Let ¥ be a skew-hermitian operator, and suppose that |y) is an eigenvector of F
with eigenvalue A. Then,

(WIF|w) = Ayly). (4.6.45)

On the other hand,

(WIFTly) = A" (yly). (4.6.46)
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Since the operator is skew-hermitian, F = —F", we have
Ayly) = —2"(yly) = (A +17)(yly)=0. (4.6.47)
The last equation yields: A = —A*. This equation can be satisfied when either A is

identically equal to zero, or when it is purely imaginary. That means that the eigenvalues
of a skew-hermitian operator are either zero or purely imaginary.

Unitary Operator: An operator U is called a unitary operator, if the following holds
U'0=00"=1, (4.6.48)

where I is the unit operator. Clearly, the hermitian conjugate of a unitary operator is equal
to the inverse of the operator: U™ = U~!. Another important characteristic of unitary
matrices, corresponding to unitary operators, is that the rows or columns of a given matrix
form an orthonormal set.

Theorem 4.6.5: The eigenvalues of a unitary operator are complex numbers with moduli
equal to 1; the eigenvectors of a unitary operator that has no degenerate eigenvalues are
mutually orthogonal.

Proof: Let |¢,) and |¢,) be the eigenvectors of a unitary operator corresponding to the
eigenvalues A,, and A, respectively. We then have

(D07 (O16n)) = Ao 2 (O |Bn)- (4.6.49)

Since UTU =1, this equation can be written as
(AmAn = 1) (@] 9n) = 0. (4.6.50)

If m = n, (¢,|9,) > 0, and we have |A,,|> = 1 and hence, |4,,| = 1. However, if m # n, the
only possibility is that (@,,|¢,) = 0. That is, the eigenvectors corresponding to different
eigenvalues are orthogonal. The theorem is proved.

In view of the aforementioned proved theorems, it is tempting to expect that the
eigenvectors of a hermitian operator form an orthonormal basis in the Hilbert space in
which the given operator acts. In order to ascertain this, we must check the following:

1. Does the set of eigenvectors satisfy the completeness relation?

2. Are they orthonormal?

Let us demonstrate it by taking an example. Consider an operator represented by the
following hermitian matrix

0 1
F:< Lo ) (4.6.51)
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The eigenvalues of the matrix are found in the usual way:

0-1 1

det(F—?LI)zdet( 1 0— A

>:7LZ—1:O, = M=+1, h=-1
(4.6.52)

Let |y;) = < Z ) be the eigenvector of F corresponding to A = +1. We then have

F:<(1) (1)><Z>:<Z> = a=b = \W:a(}). (4.6.53)

i

The normalization condition yields a = —=. Therefore, the first normalized eigenvector of

V2
Fis
_ ! 4.6.54
i) = Al ) (4.6.54)
Similarly, the second normalized eigenvector of F, corresponding to A, = —1, is given by
_ ! 4.6.55
ly2) = Al ) (4.6.55)

It is easily determined that the eigenvectors form an orthonormal set:

<t//1|l//1>=\2( 11 )(_11 ):1, (4.6.56)
<II/1|1I/2>=—%( 11 )<_11 ):o, (4.6.57)
(1//2|1//2>:\2( -1 )(_11 ):1. (4.6.58)

Now we need to find out if these vectors satisfy the completeness relation:

[y (vl + [v2) (el =1, (4.6.59)

where [ is the unit matrix. We have

il v tvel =5 () (0 )5 (L ) (1)

1 1 1 1 -1 L/2 0
(Y222 9) = e
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We see that the completeness relation is satisfied, and that these eigenvectors are
orthonormal. Therefore, we conclude that they form a basis. Any 2 x 1 vector can be
written as a linear combination of these basis vectors.

4.7 Change of Basis and Unitary Transformations

One can choose one or the other set of basis vectors in the Hilbert space .77 of states of a
quantum mechanical system to represent the state vectors and the operators belonging to
€. Obviously, when we change from one basis to the other, the components of a state
vector change. Therefore, it is important to ascertain that the change in basis is done in
such a way that the basic physical consequences remain unchanged. Evidently, for this
to be the case, the norm of the state vector in the new basis must not change. The latter
requirement can be fulfilled if the transformation matrix (i.e., the matrix that executes the
change of basis) must be unitary. Let us check whether this holds good or not.

Let {|¢,)} and {|x,)} be two bases in .. Assume that we change from the so-called
original (old) basis {|¢,)} to the new basis {|x,)}. The main task is to determine the
components of the state vector |y,,) in the new basis, {|x,)}, if they are known in the old
basis, {|@,)}.

Using the general procedure, we can expand each ket |y;,) (defined in the old basis set
{|¢n)}) in terms of the new basis set {|x,)} as

i) = (Z|xn><xn|) W) = ¥ Unn 2 470

where

Unm = (Xn|Wm)- (4.7.2)

The matrix U giving the transformation from the old basis to the new basis is given by

xaly) (alv2) alys) - o o (alyw
(lv)  (elv) elys) - o o (elww

U= <XS|‘/’1> <X3’V’2> <X3W’3> S <X3|Wn> . (4.7.3)
lv) Galw) (alws) - o Galv)

Let us prove that the matrix U is indeed a unitary matrix. We have

(wilUU ;) = (wi|U” (lenﬂxn!) Ulyj) = Y (wilU ) (xalU w5)

=Y (talUlwi) (U ) ZU*,-UM. (4.7.4)



156 Fundamentals of Quantum Mechanics

On the other hand, according to (4.7.2),

Y UL =Y 0l wi) vy = Y (wilon) (W) = (il ). (4.7.5)

n n

Equations (4.7.4) and (4.7.5) lead to

(wlUTU ;) = (wily;), (4.7.6)
that is,
Ut =1. 4.7.7)

Therefore, the transformation matrix U is unitary. Thus, we see that a change in basis can
be done with the help of a unitary transformation.

Transformation properties of vectors and operators under a unitary transformation: The
ket |y) and the bra (| transform as

V) =0lw). (y'|=(yl0". (4.7.8)
Consider the transformation of the equation

|0) = Flw) (4.7.9)
where F is an operator. We have

0") = F'|y). (4.7.10)

On the other hand, under the unitary transformation, the kets |y) and |¢) themselves go
into

v)=0ly). 19" =0[9). (4.7.11)
Therefore, we get
Ul¢) = F'O|y). (4.7.12)

Multiplying both sides of this equation by U" = U~ and taking into account that UTU =
UUT = I, we arrive at

0) =U'F'Oly). (4.7.13)
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Subtracting (4.7.13) from (4.7.9) and taking into account that |y) is an arbitrary vector, we
get

A

F=UFO=0"F0, o, F=0F0"=0F0". (4.7.14)

This transformation of an operator under a unitary transformation is called a similarity
transformation. It is frequently used in linear algebra to diagonalize a given matrix.

Properties of unitary transformation

1. If F is a hermitian operator, its transformed operator £ is also hermitian:
(£) = (0F0") = (0" FTOT =0F0T = F. (4.7.15)

2. The eigenvalues of £ and that of £’ are the same: If F|y) = A|y), then

F'ly') = OF0T0 y) = OF|y) = 20|y) = Aly"). (4.7.16)

3. The commutator of two operators £ and G remains unchanged under a unitary
transformation: If [F',G] = o, where @ is a complex number, then

=U[F,G10"=0a0" = a = [F,G]. (4.7.17)

F=aG+BA = F =o6 +BH, (4.7.18)

F=o0XYZ = F =aX'V'Z, (4.7.19)
where the prime over an operator stands for the transform of the operator under the
unitary transformation.

5. Since a scalar remains invariant under a unitary transformation, complex numbers,
such as (y|F'|¢), remain unchanged under a unitary transformation:

(WIF'|¢") = ((wlOT)(OFTT)(09)) = (w|(UTO)F(U70)|9) = (wIF|9).
(4.7.20)

Taking ¥ = I, we conclude that the inner products of the type (w|¢) remain
invariant. This tells us that the norm of a vector, |||y)|| = \/(y|y) remains invariant
under a unitary transformation.
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6. Using these results, it is easy to prove that
(OFO"Y" =0F"07, (4.7.21)
OF(F,G.A,.)07 = FOFOT, 0607, 0007,..) = f(F,C.0)),  (47.22)
for any number of operators £, G, H and so on.

Therefore, we conclude that a unitary transformation does not change the physics of the
system. It only transforms one description into another physically equivalent description.

4.8 The Projection Operator

An operator P is said to be a projection operator if it is hermitian and equal to its own
square

A

pP=p", pP2=p. (4.8.1)

Clearly, the unit operator [ satisfies these properties and is an example of a projection
operator.
Consider an operator, A, equal to the outer product of a ket and its corresponding bra:

A=19)(9l. (4.8.2)

By definition it acts on a ket |y) through the rule

Aly) = (19)(0]) [w) = |¢) (|w). (4.8.3)

The claim is that if |¢) is normalized to unity, the operator A is a projection operator. Let
us check it. We have

AT ={lo)(o}" = [9) (0] =4, (4.8.4)
and

A2 ={10)(0}{10)(61} = |0) {(9]0)} (0] (48.5)
So, if (¢|9) =1,

A2 =1p) (9| = A. (4.8.6)

Since both the required properties are satisfied, A = |¢)(¢/| is a projection operator. That
isA=P.
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Let us mention here that using the closure relation and the definition of the projection
operator, we can rewrite the expansion of a general ket in terms of the basis kets. We have

lv) = (Z!¢i><¢i!) v) =) 1) {(0ily) = Y cilgn). (4.8.7)

where ¢; = (¢;|y), as earlier, are the components of the ket in the basis {|¢;)}. As
mentioned in the section 4.2, these components are arranged in to a column and the ket is
written as a column vector. Since a Hilbert space is an infinite dimensional vector space, a
ket will have an infinite number of components which can again be arranged into a
column and the ket can be represented as a column vector with infinite number of rows.
This is what we did in section 4.3 while discussing the concept of a Hilbert space.

Consider the sum of two projection operators P, and P: P = P, + P,. Let us check
whether this can be a projection operator or not. Since P and P; are projection operators,
Pl =(P+B) = PIT + PZT =P+ P, = P. So, P is hermitian. Let us check the second
property. We have

=P+ P+ PP+ PP (4.8.8)

We see that only if PP, = PP, =0, we have P? = P. Therefore, we conclude that the sum
of two projection operators Py and P, is a projection operator if and only if their product is
Zero.

Two projection operators are said to be orthogonal if their product is zero. Thus, the
sum of two projection operators P and P, is a projection operator if and only P; and P, are
orthogonal.

It is easy to check that for a sum of projection operators P, +P + P +... to be a
projection operator, it is necessary and sufficient that these projection operators be mutually
orthogonal.

Consider the product of two projection operators P = P;P,. We want to find out the
condition under which this product is a projection operator. Since P; and P are projection
operators, we have

P = (PB)" = BlP = B, (4.8.9)

A

B = (BB)? = BB, =

>

A A

(PP P, (4.8.10)

It is quite clear from the aforementioned equations that P will satisfy the required properties
for being a projection operator only if P, and P, commute. It is also clear that, if P, and
P, commute, P does satisfy the required properties for being a projection operator. Thus,
for the product of two projection operators to be a projection operator, it is necessary and
sufficient that the two projection operators commute.
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Example 4.8.1: Consider the two quantum mechanical states given by the state vectors

|w) = 5i|¢1) +2|¢,) and |x) = *ﬁW’l) + \/%qbz), where the two vectors |¢;) and |¢,)

form a complete and orthonormal basis. Check whether |y)(y| and |x) ()| are projection
operators or not.

Solution: We get

(W) (Wl = (=5i(91]+2(¢2]) (5i91) +292))

=25(¢1(¢1) — 10i(1[¢2) + 10i(92|1) + 4(2[¢2), (4.8.11)
i 2 i 2
)2l = (ﬂ<¢l|+\£<¢z\> (—\@\¢1>+\/;\¢2>>
= 2o+ 201190~ Y2 (0l + 2(6n10n). @8.12

Let us check the two required properties for an operator to be a projection operator. We
have

(lw) (W) =25(91101) — 10i(41]9) + 10i(da]91) +4(da|dn) = [W)(y],  (4.8.13)

(1) (x)" = §<¢1|¢1> +?<¢lr¢z> - *f"<¢z|¢l> + §<¢z|¢z> =) (x| @4814)
However, since

(W) (w)? = lw)(wly) (w] = 25 |y)(yl. (4.8.15)

(1) (x)* = 120) el el = o) el (4.8.16)

(Jw)(w])? # |w) (. Hence, only |x) (x| is the projection operator.

The expectation value of an operator: The expectation value of an operator £, in a state
described by the wave function |y), is defined as

o (WIEly) [T v (R) [Ay (7)) dx
®_<ww__ﬁjwmwﬁﬁ, (4.8.17)

If the wave function is normalized to unity, then

—+oo

By =wiFly) = [ v @) Av@)]dx (4.8.18)

—o0
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Example 48.2: A particle s in a state |) = 20[91) —[92) -+ 4i|gs), where {191).92).193)}
constitute an orthonormal basis. An operator, £, is given by £ = |¢1) (¢1] — 2i|¢1) (9| +
|93) (¢3]. Find (F) in this state.

Solution: We have

(W] = —2i(¢1] — (92| — 4i(93]. (4.8.19)
Fly) = (101) (91] = 2i|91) (92| +93) (9]) (20 ]1) — [92) +4i[¢2))

= 2i|g1) (¢1| d1) +2i|d1) ($2] ¢2) + 4i|3) (93] P3)
= 4i|¢1> +4i|¢3> , (4.8.20)

where we have used the orthonormality of the given basis. Therefore, we get

(B = (WIFly) _ 8(d1]¢1) +16(¢3]¢s) _ 24 4821)

(wly) 21 o ar

Finally, let us mention here that the bra—ket formalism and the associated linear algebra
developed earlier can be generalized to the case of a continuous basis in the Hilbert space
using the representations of the vectors and the operators in a continuous basis discussed
earlier. Commonly used continuous bases are (i) the complete set of eigenvectors |F) of the
position operator 7 and (ii) the complete set of eigenvectors |p) of the momentum operator
p. Later, when we derive the Schrodinger equation in the coordinate as well as in the
momentum basis, we shall talk about it in more detail.

4.9 Coordinate and Momentum Representations of the State Vector
and the Schrodinger Equation

In this section we shall derive the coordinate and the momentum representations of the
state vector, |y), and the Schrodinger equation

oY) _

ih =5t =Hly). (4.9.1)

where | ) belongs to the Hilbert space of states .7 of the system and H is the Hamiltonian
operator. The state vector, |y), can be represented by its components in a given basis.
The choice of a particular basis determines a particular representation for the state vector
and the operators acting in the Hilbert space including the Hamiltonian operator H. As a
consequence, we get a particular representation of the Schrodinger equation.

In general, since the eigenvectors of a hermitian operator constitute an orthonormal
and complete set of vectors, the easiest way to construct a particular basis in 7 is to
choose a suitable observable, solve the eigenvalue problem for it and take the set of its
normalized eigenvectors as a basis. However, as mentioned earlier, we are interested in
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describing the system in such a way that we have the maximum possible information about
the system at any given instant of time. This maximal information depends upon the set
of commuting observables of the system: greater the number of commuting observables
in the set, greater will be the number of dynamical variables of the system that can be
measured simultaneously accurately and hence greater will be the information about the
system. Therefore, we first try to determine the maximal set of commuting observables for
a quantum system.

Let us consider a collection of particles in one spatial dimension. Since, according to
the uncertainty principle, classically conjugate dynamical variables can not be measured
simultaneously accurately, the set of measuring apparatus has to be divided into groups
which can detect particles in terms of a given particular set of mechanical characteristics.
For instance, for our ensemble of particles, we can easily divide the set of measuring
apparatus into at least two groups: One which sorts out particles in terms of their
co-ordinates, i.e., in terms of any function of coordinates, say, the potential energy
V(x,y,z), and the other which sorts them out in terms of their momenta, i.e., kinetic
energy. Clearly, in accordance with the uncertainty relation, the first group of apparatus
excludes the selection in terms of momenta while the second excludes the selection of
particles in terms of their coordinates. This fact, as we shall see below, leads to very
stringent limitation on the choice of the required maximal set of commuting observables.

In what follows, while deriving the coordinate and momentum representations for the
Schédinger equation, we shall use the generalized coordinates ¢ = {¢;},i = 1,2,3,... and
the generalized momenta p = {p;},i =1,2,3,....

We know that the observables are functions of the fundamental operators: the position
operator ¢ and the momentum operator p. They can, in general, be represented by arbitrary
functions of the type F (g, p). Therefore, the algebra of observables is determined by the
algebra of ¢ and p:

9.p] = inl, (4.9.2)

which must hold in any representation we wish to construct. Using the definition of a
function of operators and the aforementioned commutation relation it is easy to show that

o oF o
[4.F(§,p)] = zha—ﬁ, and  [p,F(§,p)] = —ih 2 (4.9.3)

where F (g, p) is an arbitrary function of § and p. Consequently, § commutes with F (g, p)
iff F depends on g only and p commutes with F iff ' depends on p alone. Thus for a given
system the maximal set of commuting observables consists either of ¢ (and the observables
which are functions of §), or of p (and the observables that are functions of p). As a result,
we have only two choices for a basis in the Hilbert space: (i) the basis consisting of the
eigenvectors of the position operator ¢ and (ii) the basis consisting of the eigenvectors of
the momentum operator p. The corresponding representations are, respectively, called the
co-ordinate representation and the momentum representation.
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The co-ordinate Representation: The eigenfunctions of the operator g satisfy

qld) =4'ld), (4.9.4)

where, following Dirac, we have used the same letter to represent the eigenkets and the
eigenvalues of §. The eigenvalues (¢’,¢",¢",...) € R are continuous. The eigenfunctions,
|¢"), are normalized as:

(dq"y=06(d"—4"), (4.9.5)

where 6 (¢’ —¢") is the Dirac delta function. The completeness condition for the eigenkets,
|¢), of g reads as

/ \q)dq' (q'| =1. (4.9.6)

We take this complete set of eigenvectors of the position operator as our basis set in the
Hilbert space. In this basis the state vector is characterized by its component (¢'|y) =
v (q',1), defined by the following relation

v() = [ dd\d)dlv(0) = [dd'vid lg). @97)

y(q',t), which is a function of position and time, is called the wave function of the system.
Also, the matrix elements of g in this basis are given by

(qd"\ald") =4'(d"ld') =4'6(d"—4'). (4.9.8)

The time evolution of the system is governed by the Schrodinger equation (4.9.1), where
the Hamiltonian is given by

2 p A
H=—+V 499
5, V) (4.9.9)
The Hamiltonian operator will be defined in this basis only if we determine how § and p
act on the state vector in this basis.
The action of § on a state vector is determined by taking the inner product of §|y) with
the basis vectors:

(d'aly) = /dC/’5(q’ —q"){q"|qly) = /dq”<q’!q”>é<v/’lw>

= / dq"(q'ld")d' (q"|v) = ¢’ / dq"(q'1d"){d"|v) = d{d|lv) =d'w(q). (4.9.10)
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Hence, the action of the operator § on the wave function results in the multiplication of the
wave function by the corresponding eigenvalue: §|y(q',1) = ¢'w(q,1).

The next step is to determine the result of action of the momentum operator, p, on the
state vector. For this purpose we need the matrix element, (¢'|p|q”), of the momentum
operator in this basis. To have this matrix element we make use of the fundamental algebra

(4, p] = ikl 4.9.11)
and calculate its matrix element as shown below:

(d'lap—aplq") = (qlinflq") = in(q'|lq") = in6(q' —4"). (4.9.12)
The left hand-side of (4.9.12) is given by

(d'lapld") — (d'|pale") = (¢'—4")(d'Iplq") (4.9.13)

Therefore, using the identity x6'(x) = —8(x) and combining (4.9.12) and (4.9.13), we
arrive at

; . 0
(4 —4"){d'plqd") = ird(qd — ") = —in(q —q”)a—q,S (¢ —q") (4.9.14)
As a result, we have
ARSI/ . a / "
(dpld") = —zh()—qﬁ(q —q"). (4.9.15)

As a consequence, the action of p on the state vector is determined as
. . . d
py(d) = (d'ply) = /dQ”(—lhaq,5(q’ —q")(d"ly)

/1 . a / /! /! . a /
= [ad Cing s - = (< )wia). @910

Hence, the action of the operator p results into the partial differentiation of the wave
function (standing on the right of it), with respect the co-ordinate multiplied by the factor
—ih.

Schrodinger equation in coordinate representation: Having determined the action of
the fundamental operators § and p on the state vector, let us go back to the Schrédinger
equation (4.9.1) and find its projection on the basis vectors. This will give us the required
form of the Schrodinger equation in this basis. We have
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@i = (A2 v@w) = o a1 v
+ [dd' v @ld) ")

1
:761//—7’—!2
2m/qr( ih)

n? 92
= Tamag —— V(g +/dQ”V (d")d'ld") w(q")

82 / / / A /
aq,z5(CI’—q’)ll/(C1’)+/dQ’<Q’\V(Q)Iq’>W(C1’/)

n* 9? , )
= |—— 1V 7 4.9.17
|: 2m aq,Z (q ):| (q ) ( )
The left-hand side of (4.9.1) gives

L0 ly) 8w()
in ot =i ot

(4.9.18)

Therefore, the Schrédinger equation in the coordinate representation takes the form

d n 92
D [T 2] v (49.19)

where we have dropped the prime, since ¢’ is an arbitrary generalized coordinate. In the
usual case of our three-dimensional space covered with the Cartesian system of
coordinates (x,y,z), the Schrodinger equation will read

. al,l/<?,t) o h2 -2 — — —

where V is the gradient operator:

= ,d ,d d
V= k= 4.9.21
i5- +7 ay+ o ( )
The form of the Schrodinger equation, given by the equation (4.9.20), leads to the

following expression for the Hamiltonian operator in co-ordinate representation:

. -
H=——V>4+V (7. (4.9.22)
2m

Thus the Hamiltonian operator is completely defined, if we know the external potential
field in which the particle is moving. Once the Hamiltonian is given, the solution of a
quantum mechanical problem reduces to the solution of the partial differential equation of
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the parabolic type. The complexity arising in the solution of the problem depends entirely
on the form of the potential.

Schrodinger equation in momentum representation: In this case we choose the
complete set of eigenvectors of the momentum operator, p, as the basis in 7. As in the
previous case, we have

plr’)y ="r'lp'), (4.9.23)
(r'p"y=28(p'—p") (4.9.24)
/ \p)dp'(p'| =1, (4.9.25)

where (p',p",p",... € R! are the momentum eigenvalues. The expansion of the state vector
|y) reads

v = [ar 1)) = [dpv(sa)lp). 4926

The function y(p’,1) is a function of momentum and time and is called the wave function
of the system in momentum representation. Following exactly the same steps as in the
case of coordinate representation, we get that the action of the operator p on the wave
function results in the multiplication of the wave function by the corresponding eigenvalue:
py(p',t) = p'w(p',t) and the action of the operator § results into the partial differentiation
of the wave function (standing on the right of it), with respect the momentum multiplied
by the factor —i%. Therefore, projecting the Schrodinger equation for the state vector on
the basis {|p’)}, we obtain

L OV(pt) _ [P 0

This is the Schrodinger equation in momentum representation. In the usual case of our
three dimensional space covered with the Cartesian system of co-ordinates (x,y,z), the
Schrodinger equation will read

. all/(ﬁ’t) _ ﬁz g = —
YL = Py () +v (—zhvp) v (p.1). (4.9.28)

where V p 1s the gradient operator with respect to the momentum variable:

= .d ,d .0
Vp=io—t joe ke
b apy

. 4.9.29
I Dx Ip; ( )
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Connection between the coordinate and momentum representations of the state vector

It turns out, that the coordinate and the momentum representations of the state vector are
related through a unitary transformation and hence are equivalent. For instance, we can
go from the momentum representation (p-representation) to the coordinate representation
(g-representation) by the following transformation

(alv) = [talp)plv) dp. or, wia) = [talp)v(p) dp, 4930

where (g|p) is the transfer function that effects transition from the momentum
representation to the coordinate representation. Similarly, we can write

vlv) = [la)alv) da. or. w(p) = [(Pla)wia) da. @931)

where (p|q) is the transfer function that realizes the transition from the coordinate
representation to the momentum representation.
We can determine the transfer functions. For instance, from (4.9.23), we have

Pa1p) = @ \olp) = [ 191" ") g,
= /85(61’ ")) dd = ~in -2 (). (4.9.32)
aq aq

Equation (4.9.32) is a differential equation for (¢’|p’) as a function of the variable ¢’. Its
general solution can be written as

(d|p)) =Aet?, (4.9.33)
where A is an arbitrary constant. In quantum mechanics A is taken to be (Znh)_%. Thus,

(alp) = —
qp—\/ﬁ

Analogously, we can get the transfer function (¢'|p’) corresponding to the inverse
transformation as

erir. (4.9.34)

¢TI, (4.9.35)

(rlg) = Nore

Note that

(glp) = (pla)". (4.9.36)
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Let us rewrite the transformation equations (4.9.30) and (4.9.31) in the following symbolic
forms

(qly) =3(q.p) {plw). (4.9.37)

where S(g, p) is an integral operator whose kernel is given by the transfer function (g|p).
Then the inverse transformation can be written as

(plw) =8""(q.p)(qly). (4.9.38)

On the other hand, we have

(ply) = /dq(p|q><q|ll/) = /dq<q|p>T<q|ll/> =8"(q.p)(q|w). (4.9.39)
Equations (4.9.38) and (4.9.39) lead to
$q.p) =S"(q.p) or, S§=88"=1 (4.9.40)

Hence, the integral operator S is a unitary operator.

Note that such a transformation of the wave function is equivalent to changing the
basis in the Hilbert space by a matrix § = (S;;). Consequently an observable A changes to
A" = SAST. It is worth mentioning here that, under such a unitary transformation, the forms
of the wave function and that of the observables do change, however the physical state of
the system remains unaltered because the operator $ is time-independent.

4.10 Basic Postulates of Quantum Mechanics

We now have the basic mathematical tools to formulate the general framework of quantum
mechanics. The formulation given here is based on the fundamental concepts of quantum
mechanics, discussed in the preceding chapters, and simply reformulates these concepts in
algebraic language.

Postulate 1: The state of a quantum mechanical system, at a given instant of time, is
described by a vector, |y (t)), in the abstract Hilbert space A of the system.

|w(t)) is called the state vector and is assumed to contain all the information about the
system, that is, it gives a complete description of the system at a given instant of time. Any
superposition of the state vectors, }. ;¢ ilw;j),cj = const, is also a state vector belonging to
T

As discussed earlier, the state vector is not determined uniquely: it can be multiplied by
an arbitrary complex number without changing the physical state of the system. Because
of that, we would assume that |y/(7)) is normalized to unity.

So far as the solution of a concrete problem is concerned, it is convenient to work
with a set of numbers rather than with the abstract vector |y/()). For this, it is sufficient to



Algebraic Formulation of Quantum Mechanics 169

choose a suitable orthonormal basis {|¢;) }, (¢;|¢;) = &;; in 7 and, using the completeness
condition for the basis vectors, expand |y/()) in terms of this basis:

() =Y (19:)(9:1) ) = Zw,|¢, (4.10.1)

J

In this case, the state vector will be given by the set of complex numbers {y;} = (¢;|y):
the components of |y(7)) in the chosen basis.

Postulate 2. Observables: A measurable physical quantity, A (called an observable or
dynamical variable), is represented by a linear hermitian operator A acting in the Hilbert
space of state vectors.

In a given basis, the operator A is determined by a matrix A whose elements (complex
numbers) are given by

Aji = (9jlA]x). (4.10.2)

Depending on the chosen basis, the matrix A can have a discrete or a continuous
representation, discussed earlier.

Postulate 3. Measurement of an observable: The measurement of an observable A in
a given state may be represented formally by the action of the operator A on the state
vector |y (t)). The only posszble outcome of such a measurement is one of the eigenvalues,
{a;},j=1,2,3,..., of A.

If the result of the measurement of A is a,, the state of the system, immediately after
the measurement is given by

W) atier = (@n| V) [Dn), (4.10.3)

where |¢,) is the eigenvector of the operator A corresponding to the eigenvalue a,and
(w,|w) stands for the inner product of |¢,) and |y) in the basis consisting of the
eigenvectors of A.

What is characteristic of quantum mechanics is the fact that we cannot a priori predict
the result of a measurement. We can only talk about the probability of a given result.

Postulate 4. Probabilistic outcome of a measurement: [f a measurement of an
observable A is made in a state |y(t)) of the quantum mechanical system, the probability
of obtaining one of the non-degenerate discrete eigenvalues a; of the corresponding
operator A is given by

[{9)1w)I?
(wly)
where |Q;) is the eigenfunction of A with eigenvalue a ;- If the state vector is normalized to

unity, P(a;) = [(¢;|w)]*.

P(aj) = (4.10.4)
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If the eigenvalue a; is m-fold degenerate, this probability is given by

X glwl

P(aj) = i (4.10.5)

If the operator A possesses a continuous eigenspectrum {a}, the probability that the result
of measurement will yield a value between a and a + da is given by

_ @R, le@wP
dP(a) = ol d _fj:|q/(a/)y2da/d' (4.10.6)

Postulate 5. Time-evolution of the state vector: The time evolution of the state vector is
governed by the time-dependent Schrodinger equation:

o) _

=" = Hly). (4.10.7)

where H is the Hamiltonian operator corresponding to the total energy of the system.

The principle of superposition: Since the time-evolution of the system is described by the
Schrédinger equation, which is a linear differential equation in |y), any linear combination
of the solutions of the Schrodinger equation (4.10.7) also satisfies this equation and can be
used to describe a state of the system.

In other words, if |y1),|y2),|y3),....|Wn),... describe various possible states of the
system, then
) =Y cilwi), (4.10.8)
i

where ¢; are complex numbers, also represents a possible physical state of the system. The
probability density for this superposition state is given by

2

P= (4.10.9)

Zci|1l/i>

If the states |y;) are mutually orthogonal, then P is equal to the sum of the probability
densities, P;, for the individual states

2

=Y lcl*=Y P (4.10.10)

] ]

P=

Zci!llfi>

Measurement and the average value of dynamical variables: As we have discussed
earlier, the measurement of an observable A, in a in a state |y), is represented by the action
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of the operator A on the state vector |y). As a result, we obtain one one of the eigenvalues
A and the system makes a transition to the corresponding eigenstate of the operator A.
However, a priori, we cannot say which of the eigenvalues of A will result. The only thing
which we can say is the probability of obtaining an eigenvalue of A.

Since, a general state |y) can be represented by a linear superposition of eigenstates ¢,
of A and each measurement can produce a result a ; with a probability P; (see Postulate 4),
a sensible thing will be to make a large number of identical copies of the given system (all
in the same state |y)), perform the measurement on each of them and then take the average
value of the results as the final outcome of the measurement.

Assume that we have a large number of identical copies of a given system, say, of non-
interacting hydrogen atoms. Besides that, assume that all these systems are in the same
quantum state |y). We measure a dynamical variable A on all these systems separately
(one-by-one). Now, we ask the question: What will be the average value of A in the state
|w)? The answer to this question is given by the following theorem.

The average value of the dynamical variable A in the state |y) is given by

(A) = M. (4.10.11)
{vly)

Using the complete set of eigenvectors {|¢,)} of A we can write (A) as

A~

(A) = ZZ V| om) ¢m|A|¢n><¢n|‘l/ W’ Zan| (PnW/ Zan

wl V) (v
(4.10.12)
where we have used that (@,,|A|¢,) = @ (P |0n) = @nSn.
In the case of continuous spectrum of A, the average value is given by
+oo 2
A a|ly(a)|“da Fee
(A) = f:’; v(a)l :/ adp(a). (4.10.13)
S w(d)Pda S

4.11 Generalized Heisenberg Uncertainty Relation

We have earlier discussed that for two observables A and B to be measured simultaneously
accurately, it is necessary and sufficient that they commute. If they do not commute, there
is a correlation between the uncertainties in their measurement: if one of them is measured
with a greater degree of accuracy, there is a corresponding larger degree of inaccuracy
in the measurement of the other. In what follows, we shall give a general proof of the
uncertainty relation between the results of measurements of two observables represented
by two non-commuting hermitian operators.

Let A and B be two hermitian operators representing two observables A and B. Suppose
we measure them on a large number of identical systems; all prepared in the same state
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described by the state vector |y). As usual, we assume |y) to be normalized to unity.
Let (A) = (y]A|y) and (B) = (w|B|y) be the average values A and B with respect to the
state |y). Then, the uncertainties in their measurements are given by the root mean square
deviations:

AA =/ (A2) — (A)2, (4.11.1)

AB = \/(B%) — (B)2. (4.11.2)
Let us introduce two operators

A =A—(A), AB=B—(B), (4.11.3)
whose action on an arbitrary state vector |y) is given by

AAly) = |¢), ABly) = |x). (4.11.4)

Clearly the operators AA and AB are hermitian. Therefore, using the Schwartz inequality
for the state vectors |¢) and |y), given by

(010)(xlx) = 1(012)I%, 4.11.5)
we get
((AA)*)((AB)*) > [(AA AB)P, (4.11.6)

where we have used the fact that

(0190) = (WI(AA)?|w). (x|x) = (w|(AB)*|y). (#|x) = (AAAB). 4.11.7)

The product AAAB can be written as
P O
AAAB = E[AA,AB] + E[AA,AB] [A B+~ [AA AB] .. (4.11.8)

Note that the commutator [A, B] is anti-hermitian, whereas the anti-commutator [AA, AB]
is hermitian. Since the expectation value of a hermitian operator is real, while that of an
anti-hermitian operator is imaginary, we have

(AAAB) = %W é]>+%i!<[AA,AB]+)|. 4.11.9)
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Therefore, we get

(6AAB)P = FI(A B + 1 {[A4,AB )P, (4.11.10)

A A 1~ 4
|<AAAB>|221|<[A,B]>]2. (4.11.11)
Taking into account (4.11.11), we get from (4.11.6) that

([A.B])[>. (4.11.12)

~ ~

Now ((AA)?) = (A%) + (A)2 —2(A)? = (A?) — (A)? = (AA)?. Similarly, ((AB)?) = (AB)>.
As a consequence, using (4.11.12), we arrive at the inequality

~

AAAB > %|([A,B]>], (4.11.13)

which represents the generalized form of Heisenberg’s uncertainty relation for any two
non-commuting hermitian operators A and B.

Time-Energy uncertainty relation: The generalized uncertainty relation (4.11.13) can be
used to derive the time-energy uncertamty relation. Let the operator B represent the time-
independent Hamiltonian operator, H, of a quantum system and let A be another time-
independent observable of the same system. Let |y) be the state vector of the system at
some given instant of time. If we apply Schwartz inequality to the vectors (A—(A))|w)
and (H — (H))|y) and repeat the same steps of calculations which led to (4.11.13), we
shall arrive at the following inequality

AAAE > %\([A,Fm, (4.11.14)

where AA and AE are the uncertainties in the measurements of the observable A and
energy E , respectively.

Let us recollect that the time evolution of (A) is governed by Ehrenfest’s equation

A _ L AR, (4.11.15)

Therefore, the inequality (4.11.14) can now be written as

AAAEleihdm>

, 4.11.16
2 dt ( )
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Or,
AA h
_ > — 1.
‘M AE_2 4.11.17)
dt
Let us introduce a time interval At
AA
di

which represents the characteristic interval of time for any noticeable change in the
statistical distribution of the results of the measurement of the observable A to occur. In
general, A7 is the characteristic time of evolution of the physical properties of a quantum
system.

Evidently, we can introduce a characteristic time for each of the dynamical variables of
the system. Let At be the smallest of all such characteristic time intervals of a quantum
system. Then, if |f —¢'| < At, the statistical distribution of the results of any
measurements done on the system at the instant ¢/, will practically be indistinguishable
from the statistical distribution of the results of the same measurements carried out at the
instant . Therefore, Ar is taken to be the characteristic time of evolution of the quantum
system itself'. With this definition of the characteristic time of evolution of the system,
the inequality (4.11.17) takes the form

h
AtAEZE, (4.11.19)
and represents the so-called time-energy uncertainty relation.

Example 4.11.1: Find the uncertainty relations between the components of the position
vector ¥ and momentum p of a particle.

Solution: We know that the components of 7 and p satisfy the following commutation
relations:

[rj, Px] = ihdr, (4.11.20)

where j,k = 1,2,3. Note that, r; = (r1,72,73) = (x,,2), p = (P1,52.93) = (P Py»P2)
and §;; is the Kronecker delta (6;; = 0, if i # j, 6;; = 1, if i = j). Therefore, using the
uncertainty relation (4.11.13), we get

h
Ai‘jApk Z Eﬁjk, (4.11.21)

which is the well known Heisenberg’s uncertainty relation.

! Albert Messiah, Quantum Mechanics, Volume 1, North-Holland Publishing Company, Amsterdam, 1967.
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4.12 Time-evolution Operator and Pictures of Quantum Mechanics

We have seen that we can have various representations of the state vector and the
operators depending on the basis chosen in 7. As it turns out, they are all equivalent and
related to one another by a unitary transformation. We also saw that under such a unitary
transformation, the forms of the wave function and that of the observables change, but the
physical state of the system remains unaltered because the unitary operator S is
time-independent.

We now want to know whether it is possible to do the same for the time-evolution of
the quantum system. In what follows, we shall show that it is possible to describe the time-
evolution of the state vector by a time-dependent unitary operator, U (¢). U(t) is called the
time-evolution operator or, simply, the evolution operator. It turns out that there are more
than one ways to do it. Each of such descriptions is called a picture of quantum mechanics.

The Schriodinger picture: In this picture, the state vector, |y/()), of a quantum system
depends explicitly on time, while the observables (operators of physical characteristics) of
the system are time-independent. The time evolution of the state vector is controlled by
the Schrodinger equation

ihahggt» =H|y(1)), (4.12.1)

and can be represented in terms of a time evolution operator (propagator), U (¢,ty), as
W (1)) =U(.10)w(10)). (4.12.2)

The condition of conservation of the norm of the wave function under this representation
reads

(w(@®)|w (1)) = (O(t.00) w(10)|U(t.00) w(10))
= (w(10) |0 (1,00) U (1,10) [y (10)) = (w(10) |y (t0))- (4.12.3)

This requires the evolution operator, U (t,ty), to be unitary:
U'(t,1)0(t,10) = U(t,40)07 (t,00) = 1. (4.12.4)

In addition, the evolution operator also satisfies the following properties

Ul(t,t) =1, (4.12.5)
U (t,10) = U~ (1,10) = O (to.1), (4.12.6)
l?(tk,tj)[j(lj,ti) = 0(1},2}), Iy >t > 1. 4.12.7)

The last of the above properties is due to the time translation invariance of the Schrodinger
equation.
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The propagator can be determined as follows. Substitution of (4.12.2) in the
Schrédinger equation (4.12.1) yields

ihaU(z,to)

Framie HU(t,19). (4.12.8)

If the Hamiltonian, A, is time independent, the solution of (4.12.8) satisfying the initial
condition, U (ty,ty) = I, can be written as

O(t.tg) = e #—0)H, (4.12.9)

Using (4.12.9), equation(4.12.2) can be rewritten as

L

Iy (1)) = e 1008 [y (1)), (4.12.10)

The meaning of equation (4.12.10) is the following. We have to expand the wave function
v (g,0) into a series with respect to the eigenfunctions, @,(q),m = 1,2,3,..., of the
Hamiltonian

v(g.00) = Y cmOn(q). (4.12.11)

use the definition of the exponential operator in the form of Mclaurent series

e HAlE-0) = §° ! <_iﬁ(,_;0)> 4.12.12)

n!
=yn! \ h

and act on the wave function. If we do that and take into account that ¢, are
eigenfunctions of the Hamiltonian (H¢,, = E2 ¢,,) and sum up the resulting series, we get
the wave function at time ¢:

vian) = X 1 (S 0-0) Teat
n=0"""

|

|

—iE, ! —LEO (1—19)
=Y cndn Y, — | 50— 10) | =D cmbne T, (4.12.13)

n=0 n:

The Heisenberg picture: In this picture, the state vector, |y), is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |Wy), as

i) = U (t,10) |y (1)), (4.12.14)
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where |y(2)) is the state vector in the Schrodinger picture. With such a definition |yy)
turns out to be time-independent

i) = O (1,10) W (1)). = U (1.10) [y (1)) = et O [y (1)) = |y (1)), (4.12.15)

If we compare (4.12.10) and (4.12.14), we conclude that the definition (4.12.14) is
equivalent to going over to a basis (in the Hilbert space) which is translating in time in the
sense opposite to that in the Schrodinger picture. As a consequence, the state vector |yy)
gets frozen in time. This leads to

dlyg)
7 0. (4.12.16)

Since (4.12.14) represents a unitary transformation of the state vector, physical properties
of a quantum system in both the the Schrodinger and the Heisenberg pictures should be the
same. For instance, consider the average value of time-independent observable, Ag, in the
Schrodinger picture

As) = (y() {AS“/’(I)>=<U(UO)WH }AS‘ﬁ(I’tO)WH>
= <‘I’H’(UT(M0)ASU(MO))’II/H> (4.12.17)

The requirement of the unchanged average value of A in both the pictures gives

A~

An(t) = 0 (t.10)As(10) 0 (1,10) = eh 0 Ag(g9) e —10)A (4.12.18)

Or,

1

As(to) = DA ()0 (1.10) (t.10) = e 1 070H Ay (1)en =0)A (4.12.19)

Equations (4.12.18) and (4.12.19) show that the observables in the Heisenberg and the
Schrédinger pictures are related through a similarity transformation.

The Heisenberg’s equation of motion for an observable is obtained from (4.12.18) by
simply differentiating it with respect to time

dAy i i
dt

= 2 (AyAy —Aufy). (4.12.20)
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Since the evolution operator, e~ r(t=0)H , commutes with the Hamiltonian, we have Hy =

H. Therefore, the Heisenberg’s equation of motion can be written as

dA | RPN
TtH == [An.A]. (4.12.21)

If, in addition, Ay depends explicitly on time, the equations of motion takes the form

A~

dAy Ay 1 .
— = —+ = |Ap.H]|. 4.12.22
dt ot * ih [An 1] ( )
It remind us of the equations of motion of a dynamical variable, A, in the Poisson bracket
formalism

dA 0JA
— ="+ {AH, 4.12.23
dt ot +H{A.H) ( )
in which the Poisson bracket, {A,H} has been replaced by the commutator of the
corresponding operators divided by i7.

Interaction picture: The interaction picture, the same way as the Heisenberg’s picture,
is useful for the solution of the problems involving time-dependent Hamiltonians. In this
picture, both the state vector, |y (7)), and the observables depend explicitly on time. In
the cases when the total Hamiltonian, A, can be separated into a time-independent part,
Hy, and a time-dependent part, W (¢) (interaction Hamiltonian), the state vector, |y;(t)), is
defined through

i

i) = O0g (1.10) [y (1)) = Oy (1,00) | w (1)) = eh 0oy (1)), (4.12.24)

where | (7)) is the state vector in the Schrodinger picture. The equation of motion for the
state vector is obtained as follows. Differentiating |y;) with respect to time, we obtain

a|Illfl> _ l l(l—to)l:lo 'y i(l—lo)ﬂog‘W(I)>
o= e Holw(t)) +ef T (4.12.25)

Using the equation of motion (4.12.1), for |y(z)) in the Schrodinger’s picture, and a bit of
algebra we obtain

dli()) _

= =W (1) |y (), (4.12.26)

i

where W(1) = ei=0H0y (1)e~# (=00 s the time-dependent part of the total
Hamiltonian in the interaction picture.
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Defining an observable, A; (1), in the interaction picture by
Ar(r) = eni=0)o fo=5(—10)Ho, (4.12.27)

where A is the corresponding observable in the Schrédinger’s picture, and following the
same calculations as in the case of Heisenberg’s picture, we arrive at the following equation
of motion for an observable in the interaction picture

dA A
in—" = [A,Hp]. (4.12.28)
dt
We see that, in this picture, the time evolution of the state vector is governed by the time-
dependent interaction Hamiltonian W;(¢) only, while the time variation of an observable is
controlled only by the time-independent part, Hy, of the total Hamiltonian, A.

We would like to note here that all the three pictures of quantum mechanics, discussed
above, are equivalent because they are related trough unitary transformations. Depending
on the problem at hand, one can choose to work with any one of them for relatively easier
and faster solution of the problem.

4.13 Algebraic Treatment of One-dimensional Harmonic Oscillator

The harmonic oscillator: We are now going to discuss the one-dimensional harmonic
oscillator that serves as one of the most important models (if not the most important model)
in quantum theory and can be solved analytically.

The Hamiltonian for the one-dimensional harmonic oscillator (a particle of mass m
attached to a spring) is given by

m_|_7ma) X¥=———4+-—-mmwx, (4.13.1)

where x represents the displacement of the oscillator from the point of equilibrium (which
is taken to be at the origin of the coordinate system) and  is its angular frequency. The
corresponding time-independent Schrodinger equation reads

K* d? 1
5 d(i(zx) +§ma)2)?2¢(X) = E¢(x). (4.13.2)

Our main aim, in this section, is to use the algebraic method for obtaining the energy
eigenvalues and the corresponding bound state wave functions.

Let us introduce the following operators
1

4= ——— (ip+ma3), 4.13.3
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. 1
a'= (—ip+mox). (4.13.4)
2mh

Consider the product

L I
At . A AV (A &y A2 2 2.0, . A A
aa' = (ip + mx) (—ip + mox) o (P> +m* 0% +imo £, p)),
1,5 55 L /p*> 1 L, 1 A 1
- ho) = — (£- 4+ = S= 4. (4135
Sy PO mho) = 5 <2m+2mwx 3 T he T2 G

From (4.13.5), we get that
N O
H=ho(aa" — 5 (4.13.6)

Similarly, we have

1 1
afa= S (=i m@R) (+ip + mof) = o (p* +m* 0’2 — imw %, p)),

1 5 55 1 /p> 1 L,,\ 1 H 1
=_—— - = —(=—= = - (413
Sy (PO mho) ha)(Zm ) T e 2 D

and
. ]
H=ho (a'a+; (4.13.8)

Two important points are to be mentioned here. Firstly, equations (4.13.5) and (4.13.7)
lead to the following commutation relation between @ and 4':

[a,a"] = 1. (4.13.9)

Secondly, the Schrodinger equation (4.13.2) is completely equivalent to any of the
following equations

ho (a*cwr ;) 6 =E¢, or ho (aa* - ;) 0 =E¢. (4.13.10)

Theorem 4.13.1: Assume that ¢, is an eigenfunction of the Hamiltonian A with energy E,.
Then, & ¢, is an eigenfunction of the Hamiltonian with energy (E, + h®).
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Proof: We have

Aa'y, —hw( a-+ )&Tq)n:hw(fﬁw - >¢n

_hw{ (1+a'a) + a} [hw(T ;>¢n+hw¢n}

=a" (A9, +hod,] =a" [E,¢y +hod,] = (E,+ 7o)’ §. (4.13.11)

[\)

Since Ha' ¢, = (E, + hw) a’ ,, the theorem is proved.

Theorem 4.13.2: Assume that ¢, is an eigenfunction of the Hamiltonian A with energy E,.
Then, d¢, is an eigenfunction of the Hamiltonian with energy (E, —i®).

Proof: We have

. 1 .
Ha¢, = ho (aa* — ) ag, = ho <Aa'a ) Oy

= ho {a (aa"—1) — ;a} ¢ =a [hw (aa — ) Oy — ha)q)n}

=a[A¢,—hwd,] = A[Esdy — 109,] = (E, — ho)d" ¢, (4.13.12)

Since Ha' ¢, = (E, — hw) ' ¢, the theorem is proved.

Thus, while acting on the eigenfunction ¢, of H with energy E,, the operator @ lowers
the energy by one unit of i, the operator @' increases the energy by one unit of /.
Hence, if we set out with ¢,(x), describing the nth energy state of the oscillator (with
energy E,), we can generate all possible states of the oscillator, with energies higher than
E, as well as lower than E,,, by repeatedly acting on ¢, (x) with @' and 4, respectively. The
operators @ and 4 are called ladder operators because they permit us to ascend or descend
in energy. The operator d' is also known as creation operator, while the operator 4 is also
called annihilation operator.

However, a paradoxical situation arises if we continue to act with the annihilation
operator infinitely. If we do so, eventually we shall reach a state with energy less than
zero, which for the harmonic oscillator does not exist. Thus, we have the situation where
ag, is a solution of the Schrodinger equation but the corresponding state does not exist. It
means that the given procedure fails at some point or the other. What is the way out? All
what we said earlier suggests that there must exist the lowest energy state (lowest rung in
the ladder) whose wave function @ (x) must satisfy the equation

ao(x) = 0. (4.13.13)
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We can use this to determine @ (x). We have

1
—— (if -+ moog) do(x) = . (4.13.14)
Or,
d‘bdoix) - —n;—wxqbo(x). 4.13.15)

Integrating, we get

2

X

d mo T 52
el _nzﬁ/xdx. = o(x) =Age B =Age %, (4.13.16)

o (x)

where A is a constant to be determined and xo = v/i/m® with the dimensions of length.
To find the energy of this state, let us put this solution into the first of the Schrédinger
equations (4.13.10). We have

ho (a*cwr ) o (x) = — o (x). (4.13.17)

where we have taken into account the fact that d¢y(x) = 0. Hence, the energy of this state,
called the ground state, is i@ /2.

Once we have determined the ground state eigenfunction and energy, we can find the
eigenfunction and the corresponding energy of any excited state of the oscillator by
successively applying the creation operator to the ground state wave function. For
instance, the wave function of the first excited state is obtained as

2 2

1 d -2 2 32

— At — wE 2
x)=a"¢pp(x) = —= | —h— +mox |Age "0 =,/ —=xe 0. (4.13.18
1) =) = = (h 1L mor) o e @iy

Note that the wave function ¢; (x) is normalized to unity
2
/ 2(x)dx = 73/ e Bdx= 2 YT _ (4.13.19)
oo VX J oo Vaxg 2

Since, by acting on an eigenstate of the Hamiltonian, the creation operator increases its
energy by one unit of %@, the energy of the first excited state is iw/2 + hw = 3hw /2.
Similarly, we can apply @' to ¢;(x) to get the wave function of the second excited state
¢2(x), and so on and so forth.
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The number operator and the energy eigenfunctions: Let us introduce an operator N =
a%a. Tt is called the occupation number operator or, simply, the number operator.

First, we notice that the number operator commutes with the Hamiltonian:

(N,A] = [N,NJF ﬂ ho = ho[N,N] + %w (N, 7] =o0. (4.13.20)
Since, N and A commute, they must have a common set of eigenvectors. Let |n) be the nth
joint eigenvector of these operators:

N|n) = n|n), (4.13.21)
and

H|n) = E,|n), (4.13.22)
where 7 is a positive integer and E,,n = 1,2,3,... are the energy eigenvalues. Using the

definition of NV, along with equations (4.13.8) and (4.13.21), the energy eigenvalues for the
oscillator are readily obtained to be E;,, = ii® (n + %)

Next, we compute the commutator of 4 and 47 with N. We have

[Na] = [a"a,a) = a'[a,a) + [a",4)a = —a. (4.13.23)
Similarly,
[N,a'] =a'. (4.13.24)

N(aln)) = a(N —1)|n) = (n—1)aln),
N(@'|n)) =a" (N 4+1)|n) = (n+ 1)a’|n). (4.13.25)

These results say that, if ) is an eigenstate of the number operator N, then @|n) and a'|n)
are also eigenstates of N, but with eigenvalues (n— 1) and (n+ 1), respectively. In other
words, by acting on the state |n), the operator d decreases the number n by unity and
generates a new eigenstate |n — 1), that is, d|n) = a,|n —1). Similarly, the operator 4,
when acting on |n), increases 7 by unity and generates a new eigenstate, [n -+ 1) of N, that
is, @'|n) = by|n — 1). Here, a, and b, are constants to be determined from the condition
that the states |n) be normalized for all values of n.

Using d|n) = a,|n— 1), we have

((na'|) - (aln)) = (n|a*a|n) = (n|N|n) = n{n|n) = n. (4.13.26)
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On the other hand

((na']) - (aln)) = |an|* (n—1n— 1) = |a,|*. (4.13.27)
Therefore, we must have

las)> =n. = a,=+n (4.13.28)
Similarly, we arrive at

ba>=n+1. = b,=+vVn+1. (4.13.29)
Equation (4.13.28) shows that n is equal to the norm squared of the vector d|n) and, hence,
cannot be negative, that is, n > 0. Since, n is a positive integer, the energy spectrum of the
one-dimensional harmonic oscillator is discrete and non-degenerate.

We can now apply the creation operator d' on |0) to generate all possible excited state
energy eigenvectors. We have

1) =a'l0), (4.13.30)
1 I\"— 1 ATZ

2)=a |1>:\ﬁa 0), (4.13.31)
1 A-‘- 1 AT3

3=z d'2)= "), (4.13.32)

...................................... , (4.13.33)

...................................... , (4.13.34)
1 AT 1 ~tn

n) = —— a'ln—1) = —— a'"0o). (4.13.35)

Hence, to find any excited state eigenvector |n), we need to apply the creation operator n
successive times to the vacuum state |0). Furthermore, since the energy spectrum of the
Hamiltonian is non-degenerate, any two of the energy eigenvectors |n') and |n)
(corresponding to different eigenvalues) are orthogonal, and the sequence of the vectors

{10), 1), |2) |3)....,|n)} constitutes an orthonormal and complete basis:
("'|n) = Syp, Z |n)(n| =1I. (4.13.36)
n=0

Note that the formalism of number operator for the harmonic oscillator is very useful and
is frequently used in quantum optics and quantum field theory in general.
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Homework Problems

1.

Check whether the vectors @ = (1,—2,1),b = (0,3,1) and & = (0,0,5) in a usual
three-dimensional Euclidean space are linearly independent or not.

. The following functions are defined on the real x-axis.

(@) f(x) =x.g(x) = (x—1)%hx) = (x+1)%,

(b) f(x) = sin®(x),g(x) = cos?(x),h(x) = sin(2x),

(¢) f(x) = tan?(x),g(x) = 1/2,h(x) = sec?(x),
Which of these sets of functions is linearly dependent and which one is linearly
independent and why?

. Show that the vectors

1 0 i
vi=| 1|, vwv=101], yw=|i
0 2 i

are linearly dependent.

. In an orthonormal basis, consisting of three vectors {|¢;) },i = 1,2,3, two ket vectors

|w) and |¢) are given by the following expressions:

(W) =2il¢1) —3ilg2) +[¢3),  |@) =2(|¢1) +2i[¢2) — 3i]93).

(a) Calculate the norms || y|| and ||@||. (b) Calculate the inner products (y|¢), (¢|y)
and (Y + 9|y + ¢).

. In an orthonormal basis consisting of the vectors |9y ),|¢,) and |¢3), we have two kets

(W) =alo1) —3ilg2) + ild3),  [9) = [¢1) +i[¢2) —i[3),

where a is a constant. Find the value of a so that these kets are orthogonal.

. Consider a potential well having an infinite wall at x = 0 and a wall of height V,

at x = L. For the case E < V), obtain solutions to the Schrodinger equation inside
the well (0 < x < L) and in the region beyond (x > L) that satisfy the appropriate
boundary conditions at x = 0 and x = co. Enforce the proper matching conditions at
x = L to find an equation for the allowed energies of this system. Are there conditions
for which no solution is possible? Explain.

. In an orthonormal basis, consisting of three vectors {|¢;) },i = 1,2,3, two ket vectors

|w) and |@) are given by the following expressions:

W) = 2i[¢1) = 5il92) +[3), @) = 2|¢1) +4i[¢2) —3i[¢3).

Find the matrix representing |y) + |@).
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8. Let |) = il61) — 2i1d2) +2|03). and [9) = g1} +ilda) —ilgs). where {|§,)}.i =
1,2,3 are three orthonormal vectors. Show that |y) and |@) satisfy the Schwartz
inequality.
9. Let |y) = 2i|¢1) —i[92) +[93), and |¢) = |¢1) + i[@2) — 3i|@3), where {[¢;)}.i =
1,2,3 are three orthonormal vectors. Show that they satisfy the triangle inequality.
10. You are given a function f(x) = x". Determine the range of n for which f(x) belongs
to a Hilbert space on the interval x € (0, 1). Here n is real but not necessarily positive.
11. Consider the kets |y) = 3i|¢1) —2i|¢2) +5|93), and |@) =2|91) +i|p2) —i|¢3), where
{|¢:)},i = 1,2,3 three orthonormal vectors. Calculate |y)(¢| and |¢)(y| and check
whether they are equal.
12. Let |y) = 2il1) — il62) + ds). and 9) = 91) +il2) — 3ils), where {|gn)}.i =
1,2,3 are three orthonormal vectors. Calculate Tr(|y)(¢|) and Tr(|¢)(y])
13. In a linear vector space V equipped with an orthonormal basis, {|¢1),|92),|¢3)}, an
operator A acts on the basis vectors and the results are as follows:
Algr) =51¢1)+3]9). (4.13.37)
Alg) =2]¢1) —il93). (4.13.38)
Algs) = 191) +5[02). (4.13.39)
Compute the matrix corresponding to the operator A in V.
14. Show that the trace of an operator is independent of the basis in which it is expressed.
15. By using the ground state wave function and the machinery of the raising and
lowering operators, compute the normalized fifth excited state wave function for the
harmonic oscillator potential.
16. Using the commutation relation [4,4"] = 1, find the value of the commutators [d, N?]
and [a®,N?].
17. Using the ladder operator formalism, show that
(a) <n/‘xA|n> = \/ % <\/J5n’fl,n + \/ﬁsn,n’71> .
(b) <n/‘ﬁx|n> =i Z,Zw <\/’/75n’71,n - \/ﬁSn,n’fl) .
18. Using the ladder operator formalism, show that

3/2
(n'|#|n) =3 <3h> .

2mo



Chapter 5

Quantum Mechanics in Three Spatial Dimensions

So far we have discussed only one-dimensional problems. They serve as approximate
models in several realistic situations and help us understand the basic features of quantum
mechanics. However, in atomic, molecular and nuclear physics, we have to deal with
problems in three spatial dimensions. Therefore, in what follows, we shall discuss the
three-dimensional Schrodinger equation, its basic properties and the methods of its
solution.

5.1 Three-dimensional Schrodinger Equation in Cartesian
Coordinates

The Schrodinger equation, for a particle of mass m, in three spatial dimensions reads as

iha"’;:’t) — Ay(i1), 5.1.1)

where H is the Hamiltonian operator, given by

. PP
H=—+V(7F). 5.1.2
2m+ (r) ( )

Note that the wave function and the potential energy are now functions of 7 = xi+y j+kz
and . Here, in (5.1.2), p is the three-dimensional momentum operator:

A d hd Aa Aa ~ a
p=—ihV, V=i— 4+ j— +k—. 1.
p ey l8x+]8y+ dz (>1.3)

With this 7, the Hamiltonian operator takes the form

712

2m

AH=——V>+V(xyz), (5.1.4)

187
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where

- ok 92 ok
Vie o4 5.1.5

o dy? + 072 (.15
is the Laplacian (Laplace’s operator) in Cartesian coordinates.

In the same way as in the one-dimensional case, the quantity |1//(?,t)|2dV,
dV = dxdydz is interpreted as the probability of finding the particle in an infinitesimal
volume element dV = dxdydz around the point with position vector 7. Hence, as in the
one-dimensional case, the normalization of the wave function reads

/+w|w(7,z)|2dv =1. (5.1.6)

—o0

Note that sometimes we shall also use the symbols d°r or d>x for the infinitesimal volume
element dV.

If the potential is time independent, the three-dimensional Schrodinger equation can
also be solved by the method of separation of variables. The solution, in complete analogy
with the one-dimensional case, allows us to write the stationary state solutions in the form

i

v(7t) = ¢ (F)e i, (5.1.7)

where E is the total energy. The function ¢ (7,7) satisfies the following time-independent
three-dimensional Schrédinger equation

2 —
T () V(M9 (F) = EO () G198

For the special case of a potential, V (x,y,z), that can be written in the form
V(7) = Vi(x) +Va(y) +V3(2), (5.1.9)

the three-dimensional TISE reduces to a system of one-dimensional TISE. Indeed, if we
write the solution in the form

¢(7) =X (0)Y (y)Z(2), (5.1.10)

B 1 d*’x

5% g2 TV (x)] + {— = dy2+V2(Y)]

1 Z+V3<Z)] —FE, (5.1.11)
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where E plays the role of the separation constant. Each term in the equation (5.1.11)
depends on only one of the variables x,y,z and the sum of the three terms is a constant.
This is possible only if each of these terms is a constant such that their sum is equal to E.
In other words,

W1 d*x
X A2 +Vi(x) = Ej, (5.1.12)
W1 d%Y

oMY B2 +Vh(y) = Es, (5.1.13)
W1 d*z
“m 7 4R +V3(z) = Es, (5.1.14)

where E;,E, and E3 are constants such that £y + E, + E3 = E. It is obvious that the
solution of the aforementioned differential equations depends on the concrete form of the
potentials. In what follows, we shall take up some important examples.

5.2 The Free Particle Solution in Cartesian Coordinates

Consider a particle of mass m moving freely in space in the absence of any external force
field. In this case, V(F) = 0 in the Schrodinger equation, and the system of equations
(5.1.12)-(5.1.14) reduces to

R d?x

- T C —EX 5.2.1
o A2 1X, ( )
W d%y

- T —EY 522
om ap - b (5.2.2)
W d*z

- T C—E7Z. 523
o A2 3 ( )

1 .

X(x) = Ee’k’f", (5.2.4)

Y( ):L ikyy (5.2.5

y me , 2.5)
1.

Z(z) = ek, (5.2.6)
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where k? = 2mEj/h2,j = 1,2,3 = x,y,z and hence, E; = h2k§/2m. As a result, the
solution to the free time-independent Schrédinger equation (5.1.8) is given by

| 1 .
W(x,y’z) = (2n)3/zezk1xezk2)ezk3z _ Wezk F (5.2.7)

where k = iky + Jky + kky = ik, + fky + IAckZ is the wave vector. The total energy of the
particle E is given by the sum of the energy eigenvalues E1, E> and E3:

2

h n -
E=Ei+E+E=; (K +k3+Kk3) = %kz. (5.2.8)

2m
We note here that the energy, E, depends on the magnitude of the wave vector % but not on
its direction. Hence, different orientations of k satisfying the condition

K| = /&3 + k3 + k3 = const., (5.2.9)

lead to different eigenfunctions without changing the energy. Since there are infinite
number of possible orientations of &, the energy eigenvalue, E, is infinitely degenerate.

Thus, the solution to the time-dependent Schrodinger equation (5.1.1), for this special
case of zero potential, is given by

V(i) = e e et @;Wei(%'?_wt)’ 6210

where @ = E/h. Note that it is nothing but de Broglie’s plane wave solution given by
(1.4.7). The orthonormality condition, for the wave functions (5.2.10), reads

N = 1 oo i”_”/ 7 — -
(y, (7o) [y (o)) = W/_w KT = §(k—T). (5.2.11)

Once again, due to the infinite extension of the plane wave solutions, representation of
free particles by such solutions leads to the same difficulties as mentioned in Chapter 3.
Therefore, a free quantum particle is represented by a spatially localized wave whose
amplitude is large and non-zero in a small region near the particle and tends to zero
outside this region. Such a solution, as we know, is given by a wave packet, which is
nothing but a superposition of an infinite (large) number of plane waves. Hence, a free
particle is represented by the following three-dimensional wave packet:

7 1 T 7 1 T i
y(R1) = (271)3/2/00 Ak )y (7t d’k = (2n)3/2/ AR *T=OD Pr (5.2.12)

—o0
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where

Z 1 e —i(kF—or) 53
A@Q:menlmw@ﬂe &r. (5.2.13)

The position of the particle is given by the centre of the wave packet, which moves with
the group velocity v, = %—j‘(’ (see Fig.4 of Chapter 3).

5.3 The Infinite Rectangular Well Potential

Consider a spinless particle confined to move in an infinite rectangular potential well
(rectangular box) given by

0 for 0<x<a,0<y<b,0<z<c
V(x,y,z) = (5.3.1)

+oo elsewhere

in three spatial dimensions. We want to find the solutions to the TISE for the given
potential. In this case too, the variables separate because the potential can be written as
V(x,y.2) = Vi(x) + Va(y) + V3(z). If we write y(x,y,z) = X(x)Y(y)Z(z), the original
time-independent Schrodinger equation separates into three independent equations for
X(x), Y(y) and Z(z), each of which coincides with the TISE for the case of 1D
asymmetric square well potential of Chapter 3. Therefore, the normalized solution of the
three-dimensional Schrodinger equation, satisfying the required boundary conditions, can
be written as

8 . T ) T . T
Wninons (X,,2) = \/ . sin (%x) sin (%y) sin (n%z) , ny,na,n3 = 1,2,3,... (5.3.2)

The corresponding energies are given by

W 2 n% n% n%
Eningns = o <a2 + n + 62> , (5.3.3)
where n1,n, and n3 can take all integer values starting from 1.

If a = b = ¢ = L, the potential is called the infinite cubic well potential of side L. In
this case, the wave functions are

8 . /mm ey . [/N3T
Wiinons (6,3,2) =1/ 3 sin (%x) sin (%y) sin <3TZ> ,n,no,n3 =1,2.3,... (5.3.4)

and the corresponding energy eigenvalues are given by

K2

En1n2n3 - 2mL2

(nf+n3+n3), ninany=12.3,... (5.3.5)
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Note that most of the energy levels in the cubic well potential are degenerate. The ground
state, with n; = np = n3 = 1 and energy

3n%m?

Eyjj=>—,
111 2ml2

(5.3.6)
is not degenerate. The first excited state is characterized by three sets of quantum numbers
(n1,n2,n3) = (2,1,1), (ny,n2,n3) = (1,2,1) and (ny,n3,n3) = (1,1,2) and its energy is
given by

6% 2

Erii =Ei1 =Enn
Since the same value energy corresponds to three distinct sets of quantum numbers ny,n;
and n3, the first excited state is three-fold degenerate. The corresponding wave functions
are as follows:

8 . (2w . (T . (T
Woi1(x,y.2) =14/ 3 sin (Lx) sin (zy) sin (ZZ) , (5.3.8)
( )_/§~<E)‘ 2 (E) (5.3.9)
Y121 X,y,2) = L3 S Lx sSin Ly sSin LZ , .
(x,y,2) = Uﬁsin <§x) sin (E )sin kel (5.3.10)
Vie\ey.z) =1\ 13 I 7Y 72 3.

The second excited state is again characterized by three sets of quantum numbers
(n1,n2,n3) = (2,2,1), (n1,n2,n3) = (2,1,2) and (n1,n,n3) = (1,2,2), and it is also
threefold degenerate with energy

9’ 12

i (5.3.11)

Exy = Eyp =Ein =
The third excited state is three-fold degenerate too with (nj,np,n3) = (3,1,1),
(n1,n2,n3) = (1,3,1) and (ny,np,n3) = (1,1,3) yielding the same value of energy.
Similarly, one can determine the degeneracy of all other excited states.

It is worth mentioning here that degeneracy of energy levels is a consequence of some
underlying symmetry of the potential (discussed in detail in Chapter 11). In the given case
of cubic well potential, the symmetry is related to the equivalence of all the three spatial
directions, which is absent in the case of rectangular well potential.

5.4 Schrodinger Equation in Spherical Coordinates

In most of the problems in atomic and molecular physics, the potential is spherically
symmetric, that is, it depends only on the distance from the origin. In such cases, it is
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convenient to work with spherical polar coordinates (r,0,¢) (shown in Figure 5.1). The
transformation from the Cartesian system to the spherical system of coordinates is given
by the following set of equations

x=rsinfcos@,y =rsin0@sin@,z = rcos 0, 5.4.1)
where
r=x2+y2+22, 6 =cos! (E) , @ =tan ! (X) ) (5.4.2)
r X

In these expressions, » measures the radial distance from the origin, 6 is the polar angle
measured from the z-axis and ¢ is the azimuthal angle measured from the x-axis, as shown

in the figure.

ZA

Figure 5.1 Spherical system of coordinates (7,6, ). 7, , and @ are the unit vectors
along the r, 8 and @ axes, respectively.

Using the transformation formulae, we obtain

. cosBcosp d  sing J
xS T 06 T rsing 99 G4
L . d cosOsing d cosp d
gy MOS0 T rinG 09 G4D
d sin@ d

The unit vectors of the spherical system of coordinates can also be calculated to be

F= (sinG cos @i+ sin @ sin @ j + cos 97(), (5.4.6)
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0= (cos@cos(pf—i— cos 6 sin(pf—sinGlAc), 5.4.7
o= (— sin(pf—l—cosq)f). (5.4.8)
Taking these results into account, the gradient operator, V, can be written as
= . ~ . . ~ ~ 8
V = (sin6 cos @i +sin 0 sin @ j + cos k) 3
,
1 L . 2 . ~ g
+ - (cosG cos@Qi—+cosOsingj— s1n9k) —
r 20
in® (— sin(pf—l—cosq)f) % (5.4.9)
Or, using equations (5.4.6)—(5.4.8), we have
= d 14 1 0
V=¢F—+0-——+¢ —_—. 5.4.10
r8r+ r89+q)rs1n9 X0 ( )

The Laplacian (Laplace operator), V2= A, can now be written as

o2 1d (5,0 1 d /. d 1 9
V=2 \Uar) T e e \™ %28 ) T sinte ag? G410

As a consequence, in spherical coordinates, the time-independent Schrédinger equation
takes the form

1o [(,00 1 9 (/. d¢ 1 9% B
—5- [rzar (r ar)—i- 25030 <sm989> +r2sin293<P2] +V(r)o =E¢. (54.12)

In the following sections,we shall discuss the solutions of this equation for some important
cases.

5.5 Spherically Symmetric Potentials and Separation of Variables

If the potential is spherically symmetric, that is it is independent of the angles 6 and ¢ and
depends only on the radial distance r, the radial and angular variables in the Schrodinger
equation can be separated. In such cases, we look for the solution in the form

0(r,0,0) =R(r)Y(6,9). (5.5.1)

Substitution of (5.5.1) into (5.4.12) with subsequent division throughout by RY gives

1d (,dR\ 2mr’ 1[ 1 o0 (. . 0Y 1 9]
e (7)) 5 [ (955 )+ g gr) ~ 092




Quantum Mechanics in Three Spatial Dimensions 195

The first term in (5.5.2) is just a function of r, while the second term is a function of 6
and ¢ only. Since the sum of these terms is zero, each of them must be equal to the same
constant with opposite signs. We take this separation constant to be £(¢ 4 1). The reason
for this specific choice of the separation constant will be clear later, when we discuss
the quantum mechanical theory of angular momentum. There, ¢ will represent the orbital
quantum number and 7i\/¢(¢+ 1), the value of the angular momentum of the particle in a
given state with quantum number /.

Thus, we have the system of differential equations, one each for the radial part R(r)
and the angular part Y (6, @) of the wave function:

1d [ ,dR 2mr? B

[Rdr (r dr> —7(‘/(?) —E)} =L(L+1), (5.5.3)
11 9 (. oY 1 d%
Y [sin@&@ (Sm"ae> e 8(pz] =i+, (554

We now proceed to discuss the solutions of these equations one-by-one.

5.6 Solution of the Angular Part of the Schrodinger Equation in
Spherical Coordinates

Let us take the angular (Equation (5.5.4)) first. We have

1 o0 (. 9Y 1 9%
5in6 96 (smeae) T aTeagr - UFLY (5.6.1)

This can be rewritten in a more familiar form as

O R ¢ -2
smeﬁ <51n689> +0(£+1)sin” Y + Freie 0. (5.6.2)
Separating the variables
Y(6,9) =3(6)®(9), (5.6.3)

substituting for Y(6,¢) in (5.6.2) and dividing the resulting equation throughout by
¥(0)P(¢), we obtain

2
! [sin@a (sin@dﬁ>] +€(€+1)sin29+ld ® o (5.6.4)

26 Dde?

The first term in (5.6.4) is a function of 6 alone; whereas, the second term depends only
on ¢. Since the sum of theses terms is zero, each term must be equal to the same constant
but with opposite signs. Taking this separation constant as m?>, we get
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sine;e (sinG?é) +£(0+1)sin* 0 ¥ = m? (5.6.5)
1 d*® , A,
Bagr= = g TR0 (5.6.6)

Solving the equation (5.6.6) for &, we get
() =™, (5.6.7)

where m is a number and we have omitted the constant of integration, which can be
absorbed in ¥. Since when ¢ advances by 27, we return to the same point in space, we
have

D(@p+27m) =D() = MOT2T) = mo, (5.6.8)
Or, exp (2irm) = 1, which gives that m is an integer:
m=0,+1,+2,43,.... (5.6.9)

The ¥ equation can be reduced to the standard form of the Legendre equation by the change
of variable x = cos 0. Its solutions are

¥(0) =AP/*(x), x=cosH, (5.6.10)

where A is a constant and P}"(x) are the associated Legendre polynomials. They are
given by

7 2 @ d‘m‘
P = (1=x7) % —rPilx), (5.6.11)
where Py(x) are the Legendre polynomials defined by
P = 4y 5.6.12
e(x)—ﬁw(x—), (5.6.12)

with ¢ as a non-negative integer. This formula is known as the Rodriguez formula. From
(5.6.11), we get that if [m| > ¢, then P (x) = 0. This in turn says that for any given ¢, there
are (20 + 1) possible values of m:

0=01,2,.; m=—L,(—0+1),(=0+2),(—0+3),...—1,0,1,...({ = 1),£. (5.6.13)

So, for a given ¢ there is a (2¢ + 1)-fold degeneracy with respect to the quantum number
m. The normalized angular wave functions are given by



Quantum Mechanics in Three Spatial Dimensions 197

Y, (9,<p):e\/ i (cos )e™®, (5.6.14)

where € = (—1)" for m > 0 and € = 1 for m < 0. The functions ¥;"(6,¢) are called
spherical harmonics. The normalization condition for the spherical harmonics reads:

T 21
/ de sinG/ do |Y"(6,0))* =1, (5.6.15)
0 0

Thus, for a given value of £, concrete expressions for ¥;"(6,¢) can be determined easily
with the help of the equations (5.6.11)—(5.6.14).

5.7 Solution of the Radial Part of the Schrodinger Equation in
Spherical Coordinates

Let us consider now the radial equation (5.5.3) for a given /, i.e., for Ry. It can be written
as

d [ ,dRy 2mr?
— Y () —E)Ru = 1(1+ 1)R 71
& () -2 v ()~ B R = 0+ DR 571

where we have introduced an additional subscript n for the radial wave function R,. It is
usually done to identify the energy eigenvalues of the Hamiltonian: H ¢y, = E,, Gppm. 1 is
called the principal quantum number and, as we shall see later, the orbital quantum number
¢ is related to the principal quantum number # in that, for a given n, ¢ can take values from
Oto (n—1).

Equation (5.7.1) can be simplified further by changing the variables:

Une(r) = rRy(r). (5.7.2)
We have
dR,y . (dunf/dr) Un¢ 2anZ . duyy
dr r 2’ F dr r dr Une (5.7.3)
d 2an[ 2 2
= = . 1.4
o (r o ) r(d uye/dr?) (5.7.4)
From (5.7.1) and (5.7.4), we get
d*uy  2m R (041)
02 + o [E —V(r)— R ——— une(r) =0. (5.7.5)
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Equation (5.7.5) for the radial function u,,(r) (and hence for R,¢(r)) can be solved only if
the potential, V (r), is prescribed.

It is customary to introduce an effective potential, Ve(r), by

R (0+1)
Veff(r) = V(’”) + W (576)
and rewrite the radial equation (5.7.5) as
dPuy  2m
12 + e [E—Verr(r)]une(r) =0. (5.7.7)

This equation is similar to the one-dimensional Schrodinger equation with the difference
that the effective potential Vg has an extra term h2€(€ +1)/2mr?. This term is called the
repulsive or centrifugal potential that tries to throw the particle away from the centre.
Although the structure of this equation resembles the one-dimensional Schrodinger
equation, it differs from the latter in the fact that the variable, r, cannot be negative:
r € [0,00]. Therefore, the radial wave function, R, (r), must be finite everywhere from
r =0 to r = oo. Consequently, the function u,,(r) must satisfy

limuye(r) = lim rRy(r) = 0. (5.7.8)
r—0

r—0

Note that for the bound states to exist, the potential V(r) in (5.7.6), must be attractive
because the part /¢ (£ + 1) /2mr* in Vg (r) is repulsive.

Once we solve the radial wave equation for a given V (r), the full wave function will be
given by

Outm (7,0,0) = Rue(r) Y["(6,0). (5.7.9)

Normalization of the wave function: The volume element d7 in spherical coordinates is
given by dt = r*sin6 dr d@ d¢. Hence, the normalization condition for the total wave
function @, (r,0,9) reads as

oo T 2r
/dr/ d9sin6/ do r* | Gum(r,0,0)| (5.7.10)
0 0 0

oo 9 27
:/ 1 |Rue(r)|? dr/ desine/ do|y"(6,0))* = 1. (5.7.11)
0 0 0

Since the spherical harmonics ng(6, @) are already normalized, we have

T 2
/ de do sin@ [Y/"(6,0)> = 1. (5.7.12)
0 0
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Therefore, to have the full wave function, (pngm(r, 0, (p), normalized to unity, we have to
simply normalize the radial wave function, R,¢(r). As a result, we get

/ 7 [Rue(r)|? dr = 1. (5.7.13)
0

Therefore, the stationary state wave functions of a particle, subject to a spherically
symmetric potential V (r), can be written as

Wném(r'ea (P) =A ¢nfm(r-9a (P) eiéEnémt, (5.7.14)

where the constant A is to be determined from the normalization condition, (5.7.13), for
the radial wave function.

Note that the quantity |W,(r.0,¢)|>dt represents the probability of finding the
particle in the volume element d7, while the probability of finding the particle in a
spherical shell enclosed between r and r + dr is given by

T 21
Py (r)dr = (/ sin6d9/ do \l[/ngm(r.e,(p)F) ¥ dr
0 0

T r2r
— Ru(r)2 dr/ / (Y7(6,9)) Y"(0,0) sin® d6 dg
0 JO
= Ry (r)|* 1 dr. (5.7.15)

If we integrate B,y (r) from r = 0 to r = a, where a is a real constant, we get the probability
of finding the particle in a sphere of radius a centered at the origin r = 0.

In what follows, we shall discuss the solutions of the radial Schrodinger equation (5.7.1)
for some important spherically symmetric potentials.

5.8 The Free Particle Solution in Spherical Coordinates

Consider a particle of mass m moving freely in space. In this case, the potential V (r) is
zero and the stationary Schrodinger equation (5.4.12), reduces to

PIi1ad [,d00 1 9 (. d¢ 1 927
5 [1’2(91’ <r (91’) + T5in6 90 <Sm939> + rzsinzea(l)z} =E¢. (5.8.1)

The variables separate and the solution can be represented as @y, (r,0,9) =
Rie(r)Y"(6,¢). Note that in the given case of a free particle the energy, £y = i°k*/2m,
takes continuous values and hence the radial wave function is characterized by the
continuous index k.

The angular part of the wave function, Y (0, ¢), satisfies (5.6.2) and is given by the
equation (5.6.14). The radial wave function, Ry(r), satisfies
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d ( »dRyy

o\ >+k2 PRig = (04 1)Ryy. (5.8.2)

where k% = 2mE; /h*. Introducing p = kr, we have

d’Ri(p) | 2 dRi(p) < 00+ ))
— +(1-— R 0. 5.8.3
dp? o dp p? k(p) = (5.8.3)

This is the spherical Bessel equation whose general solution, for any k (that is, Ey), is
given by

Ri(p) =Arje(p) +Bime(p),£ =0,1,2,3,... (5.8.4)

where j/(p) and n/(p) are the spherical Bessel functions and the spherical Neumann
functions, respectively. They are given by

1 4"\ sinp 1 d'\ cosp

. ol b — (et

0) = (-0) (707 ) “oLons(p) = —(-p) (s ) 22, 6589)
The asymptotic forms of these functions for p — 0 and p — o are, respectively, given by

_ 200, (20-1)! 1

Je(p) = mp ne(p) = _WW(’) —0), (5.8.6)

: b In 1 %4

Jje(p) = Esm (p - 2> n(p) = ECOS <p 2> (p = o0). (5.8.7)

Note that for p — 0, the Neumann function blows up. Since the wave function has to be
finite everywhere in space, the part of the solution containing the Neumann function must
be dropped. As a result, we have

Oeem (P, 0,9) = Agji(kr)Y" (60, 9), (5.8.8)

where k = \/2mEy/h>. Since Ej is a continuous function of k, the energy spectrum is
continuous and infinitely degenerate. This degeneracy corresponds to the spherical
symmetry in the momentum space: all directions of k are equivalent.

Recall that the free particle solution in Cartesian coordinates is proportional to ¢*” (see
(5.2.7)), which can be expanded in terms of the spherical Bessel functions as

, w
. :Z Y comie(kr)Y(6,0), (5.8.9)

(=0m=—/(
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where ¢y, are arbitrary constants. Thus, the solution for a free particle in spherical
coordinates (in terms of the spherical Bessel functions) is completely equivalent to the
free particle solution in Cartesian coordinates (in terms of the plane waves) with
appropriate expansion coefficients c¢,,. The problem then reduces to finding the expansion
coefficients cgy,. For the particular case of propagation along the z-axis (%HZ), m = 0 and
we get

ei%.? _ pkreos® _ Z i€(2€+ l)jg(kr)Pg(COS 9)’ (5.8.10)
(=0

where Py(cosf) are the Legendre polynomials. For this given particular case, the
coefficients ¢y, are thus given by ¢y, = i’ (204 1).

Note that although the free particle solutions in the Cartesian and the spherical
coordinates are equivalent, they do differ in physical content. While the plane wave
solution describes a free particle of energy E; with a well-specified linear momentum but
undefined angular momentum, the solution in terms of the spherical Bessel functions
describes a free particle with a well-defined angular momentum but gives no information
about its linear momentum.

5.9 The Infinite Spherical Well Potential

Consider a particle of mass m moving in the following potential

0, for r<a

V(r) = { (5.9.1)

o, for r>a,

where a is a positive constant with dimensions of length. This potential is called infinite
spherical well potential. Using the radial Schrodinger equation, we want to determine the
bound state energy spectrum and the corresponding normalized wave functions for the case
when the orbital angular momentum of the particle is zero (¢ = 0). Also, we would like to
compute the probability of finding the particle: (i) in a sphere of radius, say, r = a/2 and
(ii) in the annular region between r = § and r = 7.

In the region r < a, the radial wave function u(r) = rR(r) satisfies the following
ordinary differential equation

a2 et

d*u  [2m . I(I+1)
hz 1”2

] u(r) =0, (5.9.2)
which, for ¢ = 0, reduces to

—— - KPu(r) =0,k = . (5.9.3)
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It has its general solution of the form
u(r) = Acos(kr) + Bsin(kr), (5.9.4)
where A and B are arbitrary constant coefficients. As a result, the function R(r) is given by

cos(kr) +B sin(kr)

R(r)=A . .

(5.9.5)

The finiteness of the radial wave function R(r) at r = 0 demands the coefficient A to be
Zero.

For r > a, the potential is infinite. Therefore, the wave function must vanish in this
region, that is, u(r) = 0 for r > a. The continuity of the radial wave function, R, at the
boundary r = a requires that R(a) = 0. So, we have

sin(ka)
a

R(a)=B —0. (5.9.6)

The solution of (5.9.6) yields: k,a = nw, where n = 1,2,3,.... This relation leads to the
discrete energy spectrum of the particle inside the well

2 2h2
g, =" n=1.23... (5.9.7)

2ma? ’

The normalization of the radial wave function R, (r) = B [sin(k,r)/r] reads

-2 (nw 2 2
asin” (—=r Bl|ca [T Bl|“a
1= \3\2/0 r(za)rzdr: ’n‘ﬂ/o sin? pdp = "2 (5.9.8)

Hence, B = v/2/a and the normalized wave functions are
2 sin ("2 r
Ruo(r) = \[ sin (%¢7) (5.9.9)
a r

Using this solution, we can determine the probability of finding the particle inside the
sphere of a given radius. For instance, the probability of finding the particle in a sphere of
radius a/2 is given by

a/2 2 ra/2 2 nm/2
P= / Ryo[2r2dr = = / sin (@r) dr = — sin? pdp. (5.9.10)
0 aJjo a niw.Jjo

B nw/2 B 1 ni . (n/2) _1
P= 7/0 [1—cos2pldp = o (2 — —[sin2p], > =5 (5.9.11)
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Similarly, the probability of finding the particle in the annular region between r = % and
r =7 is given by

% for even n,
1 (nm 1 . /nm 1 1
P= P <4+2nsm <2>> = itz for n=159,..., (5.9.12)
-5 for n=3,711,....

5.10 The Finite Spherical Well Potential

A particle of mass m is moving under the influence of the following potential

V(t) =

—Vo, for r<a
(5.10.1)

0, for r>a,

where Vj and a are positive constants with dimensions of energy and length respectively.
We wish to find the bound state energy eigenvalues and the corresponding wave functions
for |[E| < Vb.

In the region r < a, the radial wave function satisfies the equation

dané % an(
dr? r dr

2m I(I+1
+ rel [Vo—|E|] R = ( 2 )Rng. (5.10.2)

For r > a, the potential V (r) = 0, and we have

d*Ry  2dRy  2mlE| I(1+1)

a2 7 dr 2t = =5 Rt (5.10.3)

For bound states, |E| < Vy. Therefore, we introduce

2m
ki = —2(V0—|E|), (5.10.4)

i
2
ke = ,/h—';’yEy. (5.10.5)

In terms of the function u,¢(r) = rR,¢(r), these equations can then be written as

d*uy, I(1+1
d:fz“r [k%— ( Z )]unz(r) =0,(0<r<a), (5.10.6)

2
du,y
dr?

+ [(ik2)2 - l(l; 1)] une(r) = 0,(r > a). (5.10.7)
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Equation (5.10.6) coincides with the equation satisfied by the free particle wave function
with wave number k. Its solution is given by

ne(r) = Agje(kir) 4 Beng(kyr), (5.10.8)

where Ay and By are arbitrary constant coefficients. Once again due to the requirement of
finiteness of the radial wave function, R,/(r), at r = 0, we omit the second term in (5.10.8).
Therefore, the solution Ri? (r) for 0 < r < ais given by
(1)
I U, \r .
R;(w) (r)= "ér( ) _ Agjo(kir). (5.10.9)

For r > a, the radial equation (5.10.7), has the solution

(1)

Ry (r) = Mf = Dyhy(ikz), (5.10.10)

where hy(iky) = ji(ikar) +ing(ikir) is the Hankel function that asymptotically behaves as
e k2" /r as r — 4oo. Any other linear combination will diverge for r — +oo. Therefore,
the radial wave function of the particle for the given potential, can be written as

Agji(kir), r<a
Rng(r =

Dghg(l'kzl’), r>a,

(5.10.11)

where A; and By are to be determined from the boundary conditions.

The continuity of the wave function and its first derivative at r = a leads to the
transcendental equation

(5.10.12)

for the determination of the energy eigenvalues. The solution is usually found numerically.
It turns out that the roots of the equation (5.10.12) yield a discrete set of energy eigenvalues
for the particle. The constants A; and Dy are related through

Agji(kia) = Dohy(ikya). (5.10.13)
The full bound state wave functions are given by

Je(kir)Y" (6, 9), r<a
Ry (r) =Ay (5.10.14)

jo(kia . m
i{f((ilclza)) he(ikar)Y["(0,9), r>a,
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where the constant Ay is determined from the normalization of the radial wave function.
For the case ¢ = 0, the radial wave function, u,,, satisfies

d*u,
dl:zf + ki (r) =0.(0 <r <a), (5.10.15)
52— kaun(r) =0,(r>a). (5.10.16)

Since jo(kir) = sin(kyr)/ (kir) and ho(ikor) = —(e %"/ (kyr), the solutions to these
equations are given by

R,S?(r) IASIH(flr),(0<r<a), (5.10.17)
—kor
R (r) = B¢ : (r>a), (5.10.18)

where A and B are arbitrary constants. The continuity of the radial wave functions and
their first derivatives at r = a can be simultaneously satisfied by matching the logarithmic
derivatives of the wave functions at r = a:

R (@) R (a)

= . (5.10.19)
1 1
Ri(@) R (@)
Calculating the required derivatives, we get
1 1
ki cot(kja) — o= —ky — > (5.10.20)

From here, we arrive at the transcendental equation, whose roots determine the discrete
values of the energy of the particle:

ky = —kj cot(kja). (5.10.21)
Equation (5.10.21) can be solved graphically as follows. Let us introduce

& =ka,n =ka. (5.10.22)
Multiplying (5.10.21) by a, we get

Ecoté = —n. (5.10.23)
Furthermore, we have

2mVpa?
h2

2m 2m
E+n?=a(k+k) = ;az(vo —|E])+ hfzaz!E! =

, (5.10.24)
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which is the equation of a circle in the coordinates & and 1 with radius \/2mVya2/h*. The
discrete energy levels are determined by the points of intersection of this circle with the
curve N = —& coté.

In the limit £ — 0, we have

2 2
’/rTI?VO cot( h’?vo) —0, (5.10.25)

which yields
2m . (2n+1)
hfz 0_ T”ﬂn_0717273"'" (5.10.26)

Therefore, for one, two and three bound states, we have n = 0,1 and n = 2 and the
corresponding values of Vj are

v Y o

B 3)  257h?
O 8ma? % 8ma? -

8ma?

and V! (5.10.27)

Therefore, if Voa? < T2h?/ 8m, no bound state exists.

5.11 The Hydrogen Atom

A hydrogen atom consists of a proton (charge e and mass m,,) in the nucleus and an electron
(charge —e and mass m,) orbiting around it, which is held in its orbit by the attractive
Coulomb force. For simplicity, we shall ignore the spin degree of freedom in our treatment
of this system.

Let 7, = (X¢,Ye.2e) and 7, = (xp,¥p.2p) be the position vectors for the electron and
the proton, respectively. Since the potential, V, depends only on the relative distance, r,
between the electron and the proton, it is convenient to go over to the center of the mass
system. Let R= (X,Y,Z) be the position vector of the centre of mass, defined by

MeTe +MmpFy
Mme +ny

R= (5.11.1)

and let 7 = (x,y,z) = F, — ¥, represent the relative position vector. The Schrédinger
equation for the system is written as

a"l/(?e’?p’t) h2 —'2 hz —»2
h—————=|——V, — —V. 4V Fo,Tpot). 5.11.2
! ot 2m, ¢ 2my, p V()| WCeTpt) ( )
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It is easy to check that

1 1 1 1

— V24— V2= _ V24 V2 5.11.3

m, e+mpp MR+[.L re ( )
nmem

M:me—i—mp, H:ﬁ, (5114)
e 4

where M and u are the total and the so-called reduced mass, respectively. The operators
V2 and V2 in (5.11.3) are given by
9? 9? 9?
ax2 ot oz

V2= (5.11.5)

and

. (92 82 (92
2 P — [E— [
Vi=oe Tt ez (5.11.6)

We look for the stationary state solutions of the Schrodinger equation (5.11.2) in the form
ET
Y(Pe,Pp,t) = Y(Fe,Fp)e 7, (5.11.7)

where Er is the total energy of the system. Taking into account that, in the SI units, the
Coulomb potential between the electron and proton is given by

2
V(r)=—75——, (5.11.8)
(r) Amey|Fe — 7l
we get from (5.11.2) and (5.11.8) that w(?e,?p) satisfies
hZ =5 hZ = 62
_ V2 v Fou?y) = E7w (70, 7p). 5.11.9
|: 2m,, P om, ¢ 47r£0|?e_?p‘:| l//(re r[’) T‘I’(rg rl’) ( )
Equation (5.11.9) can be rewritten in the centre of the mass system as
WP, - e? L .
— V- —Vi— R,7) = Ery(R,7). 5.11.10
[ oM R oou 47r£0r] Y(R.7) ry(R.7) ( )

Since the potential depends only on the relative coordinate r, we expect the variables to
separate and look for the solution in the form

v(R,7) = ®(R)o (7). (5.11.11)
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Inserting w(R,7) from (5.11.11) into (5.11.10), we obtain

= Er. (5.11.12)

ool o, o o1 e?
Adrwegr|

2 2 V2 (7

The first term on the left-hand side of (5.11.12) is just a function of R, whereas the second
term depends only on 7. The sum of these terms equals a constant E7. Since the vectors R
and 7 are independent, for this equation to hold, each term on the left-hand side must be a
constant. This leads to the following pair of equations

W, - ﬂ

V2 = A1,
o7 VRP(R) = ErD(R), (5.11.13)
h2_’2 €2

"7 7) = E,0 (7). 5.11.14
30 VO )+ 6P = E0(7) (5.11.14)

where
Er =ER+E,. (5.11.15)

Note that (5.11.13) can be interpreted as the stationary Schrodinger equation of a free
particle of mass M. Thus, we conclude that the centre of mass of the electron—proton pair
in a hydrogen atom moves as a free particle of mass M. Consequently, the normalized
solution of this equation is written as

3 1 —ik-R

where K is the wave vector associated with the free motion of the total mass M in the centre
of mass frame and Eg = *&2/2M the kinetic energy of M.

So far as (5.11.14) is concerned, it is nothing but the time-independent Schroédinger
equation for a fictitious particle of mass L moving in a central potential

&2

V(r)= e (5.11.17)

Since the potential is spherically symmetric, it is convenient to solve this equation in

spherical coordinates. Using the expression for 6% in spherical polar coordinates, we can
write (5.11.14) as

Pl [,00 1 9 (/. d¢ 1 9% e
"o [rzar ( ar> 256 90 (Sm"ae> t ran’e 8(p2] t amer? ~EO
(5.11.18)
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where we have set E, = E for convenience. Note that for £ > 0, the Coulomb potential
in (5.11.18) admits continuum energy states describing the scattering of electron on the
proton. For E < 0, it admits the discrete set of bound states that represent the bound states
of the hydrogen atom. Here, we shall take up the solution of the bound state problem only.

The ground state of hydrogen: We start with the simplest case of the ground state of the
hydrogen atom with n = 1 and ¢ = 0. This state, called the s state, possesses a complete
spherical symmetry and the wave function corresponding to this state is given by

1
om (7,0, 9) = Rio(r) Y5 (6,9) = ——R0(r), 5.11.19
Onim (r,60,9) = Rio(r)Yy (6,9) \/47r10() ( )
where the radial wave function, Ryo(r), satisfies
W19 [ ,dR(r) e?
—_—— = R =ER . 5.11.20
21 r2 or <r ar * dmeyr 10(r) t0(7) ( )

Note that in (5.11.20), we have dropped the suffix r from E, for convenience. Equation
(5.11.20) can also be written as

1 d (rzdRm(r)> 2u

-4 LlE
r2 dr dr + K2 [ +

&2

dmeyr

] Rio(r) =0. (5.11.21)

By introducing

2UE 2
2= “2 Lo = M s (5.11.22)
/1 dregh
we rewrite (5.11.21) in a more compact form as
d’R 2dR 2
loz(r> L 2dRu(r) | <A + O‘) Rio(r) = 0. (5.11.23)
dr rodr r

Clearly, we need a solution for this equation satisfying the standard conditions, that is,
the solution must be finite everywhere (including » = 0) and must tend to zero at spatial
infinity, that is, for » — o. We look for such a solution in the form

Rio(r) =ePr, (5.11.24)

where B is a constant and we have omitted a constant factor on the right-hand side, which
can be taken care of by normalization. From (5.11.23) and (5.11.24), we get

B =25+ (A+2%) 0= (B4 1) + (a-p)2 =0 (511.25)
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Since (5.11.25) must be satisfied for any value of r, we have only the following two
possibilities for the value of

B>=—2A and B=oa. (5.11.26)

Using the expressions for @ and A from (5.11.22) in (5.11.26), we obtain the following
formula for the ground state energy, E¢, of the hydrogen atom

2 4 72 2 \2
P A S (e) _ (5.11.27)
(4mwep)2n* 20U 2h= \47mey

Inserting the values of the fundamental constants and the mass of the electron for 1, we
get the value of the ground state energy of the hydrogen atom

E=-136¢eV (5.11.28)

which coincides with the ground state energy, E1, in the Bohr theory of hydrogen atom.
Clearly, the probability of finding the electron in the volume element d7 = r*sin @
drd0d o is given by

wdt = [N[*[R1o(r)|?|Y(6,0)|*r*sin0drd0de, (5.11.29)

where N is the normalization constant. Consequently, the probability of finding the electron
at a distance in the interval [r,r 4 dr] from the nucleus is obtained by integrating over the
angles. Taking into account the normalization of the spherical harmonics, we get

w(r)dr = [N|*r?e P dr = |N|*r?e P dr. (5.11.30)

Since B has the dimension of length inverse, we introduce a new constant a such that
B =1/a. Then,

w(r)dr = |N|*r*e ¥/ dr. (5.11.31)

The probability density w(r) = |N|>r2¢~%/4 equals zero at r = 0 and tends to zero for
r — oo. Therefore, in principle, there is a non-zero probability of finding the electron at
any distance from the nucleus between r > 0 and r = oo. Let us determine the distance at
which this probability reaches its maximum value. We have

d 2 2 2
W:\N\2<2r—r) e 2= 0,=r- " =0 (5.11.32)
dr ap a

Hence, the probability of finding the electron at a distance from the nucleus reaches it

maximum value at ry = a. Now taking into account that a = 1/ = 1/ o = 4megh? / e?,
we get
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4megh?
a="L —0.529% 10 Om. (5.11.33)
Le

If we recall the Bohr theory of hydrogen atom, we notice that a is nothing but the radius of
the first Bohr orbit. This is called Bohr radius. In literature, it is usually written as ag.
Let us now find the normalization constant N. The normalization condition reads

1= \N\z/ e~ 22y = \N\Z/ e~ 2r/a2 gy
0 0

2 3 3
_ \N\Z% - yNyZ%O, (5.11.34)

where we have used the standard integral

= p+l |
_ —bx __ p! _ay P
I—/O xPe X_W_W, (51135)

for p = 2. As aresult,

2
N= (ag)l/z' (5.11.36)
The normalized ground state wave function of the hydrogen atom is given by
2 1 1
Ro(r) = e = e/, 5.11.37
O( ) (a(’j)) 1/2 /7471_ n-ag ( )

Example 5.11.1: Calculate the average distance of the electron from the nucleus in the
ground state of the hydrogen atom. Also, calculate the average values of the potential and
kinetic energies in the ground state of the hydrogen atom. Using the uncertainty relation,
discuss the stability of the hydrogen and hydrogenic atoms in the s state.

Solution: The average value (r) of the distance of the electron from the nucleus is given by

_Jrle(P)Pdr 1 e a [T
<7">_ f|¢(7)|2d17 - (EQS)A re r d}"/o d(P/O dBsin O

Am 3lat 3
SR 2, (5.11.38)

_ = arfag 3.
e r’dr=
(ma3) Jo may (2)* 2
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The average value of 1/r is

1 Lo 1 1 orjay 2, [*7 T
- :/,|¢(,~)| dt= — / —e oOr dr/ d(p/ sin0d o
r r (maj) Jo 1 0 0

e 4 1
= 41— / e 2 Ordr = — =—. (5.11.39)
(may) Jo dp

Therefore, the average value of the potential energy of the electron

NGRS
2| -
2h2<4n80>

Recollecting the expression for the ground state energy Ej, we get that (U) = 2E;. Now,
the total energy E; is equal to sum of the average value of the kinetic energy (7') and the
average value of the potential energy (U): E; = (T') 4 (U). Therefore, we get

(5.11.40)

) = e? 1\ e? _ 2 uét _
© dmey \r/  Amepag  4mep dmeght

~ N
(1) =B~ (V) = ~E1 = <4ﬂ80) . (5.11.41)

These results allow us to explain the stability of the hydrogen and hydrogenic atoms in the
s state in the following way.

Let us assume that the electron in a hydrogen or hydrogenic atom remains at a distance
r = agp on the average. Let the uncertainty in the momentum of the electron be Ap,. Then
in accordance with the aforementioned result, Ap? /2 has to be of the order of (T'), that is,

2 2
(Ap,)? (e h
=(T)=— = —. 5.11.42
2u () 212 \ 4meg duaj ( )

The uncertainty principle, on the other hand, says that

h a1 hooap ag
F > = > — ==X —=— 114
ArAp_2:>Ar_2Apr th > 5 3)

Taking the equality sign in this expression, we conclude that for hydrogen and hydrogenic
atoms to be stable in the s state (with angular momentum zero), the uncertainty in position,
that is, the radius of the sphere in which the electron is confined, cannot be less than ag /2.
In the opposite case, the law of conservation of energy will be violated.

The general solution for the hydrogen atom: Let us go back to (5.11.18),

PIl1ad [,0¢ 1 9 (. d¢ 1 9% e
T [rzar ( ar> t 2sin6 90 (Sm"ae) T e 8q)2] T amey?  EO
(5.11.44)
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and try to find its solution in the general case. Since the potential is spherically symmetric,
the general solutions (with an arbitrary value of /) are given by

0(r,0,0) =Ry(r) Y (6,0), (5.11.45)

where Y;"(60,¢) are the normalized spherical harmonics and the radial wave function
R,¢(r) satisfies

d 2an[<r> 206 7
el / - = 114
P (F i + A+ . F"Ru(r) = 0(£+ 1)Ry(r), 5 6)
where
2
/1:2“2E;a: He (5.11.47)
h dmeph
Or,
d’R,e  2dRy(r) 20 L(L+1)
- — — R =0. 114
dr? rodr H{AF r r2 ne(r) =0 & 8)

As mentioned earlier, we are interested in the bound state solutions for which £ < 0 and
hence, A < 0. Since /|A| has dimensions of inverse of length, we introduce ro = 1/v/—A.
Then (5.11.48) takes the form:

d’R,  2dRy(r) 1 20 ((+1)
4z + -+ R =0. 11.4
dar? rodr i’% r 2 ne(r) =0 G 9

Let us introduce the dimensionless independent variable

p=21 =2r/—A. (5.11.50)

1o
Then, we have

d dpd 2d

— == 5.11.51
dr drdp rodp’ ( )
& _dpd (2d\_4d (5.11.52)
dr* drdp \rodp)  r3dp* o

Using these results in (5.11.49) and multiplying throughout by r% /4, we get

PRulp) 2 dRu(p) ERERRELY
AL -+ — - Ru(p) =0. 5.11.53
dp? b dp 1 ap 02 «(p) ( )



214 Fundamentals of Quantum Mechanics

For p — oo, (5.11.53) reduces to

d*R, 1
d;g”) — 1Rulp) =0, (5.11.54)

which has simple solutions R, (r) = exp(£p/2). Since the solution with positive
exponent tends to oo as r — oo, it does not satisfy the standard conditions. Hence, it has to
be omitted. Consequently, we look for the solution of (5.11.52) in the following form

Ru(p) =e P uy(p), (5.11.55)

where the function u,,(p) must obey the boundary conditions. Differentiating R,,;(p) with
respect to p, we obtain

anf dun[ 1 _p/2
_ _L , 5.11.56
dp ( ap 2" E) ‘ 1150

(5.11.57)

dang B (dzung _ duyy n 1) o P2

dp? dp?>  dp 4

Equation (5.11.53), along with (5.11.55)—(5.11.57), leads to the following differential
equation for the function u,;(p)

2
d Mn€+<2_1> dunf+[< a —1)1—M+1)]une=0- (5.11.58)

dp*  \p dp V=2 p p?

The form of the equation (5.11.58) suggests that we look for the solution in the form

un(p) =p7 Y cjp’, (5.11.59)
j=0

where 7Y, c1,c2,c3,... are constants to be determined. Note that, as in the case of a one-
dimensional harmonic oscillator, in order to guarantee the boundedness of the solution for
p — 0, the series solution must start with p? instead of a constant. The value of ¥ will be
determined from the requirement that the function u,, is finite everywhere. Differentiating
the infinite sum (5.11.58) term by term, we get

dupy

ci(y+j)prt, (5.11.60)

where we have simply rewritten the resulting infinite sum by changing the dummy index
of summation from j to j+ 1. Differentiating once again, we obtain
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d? Uy

dp? ZCJ (y+J) (r+j—1)pr=2 (5.11.61)
J=

From (5.11.58)—(5.11.61), we arrive at

Y ci(r+ ) (r+i=Dp" 2+ Y 26 (v+ ) "= Y ey (v + ) p

j=0 j=0 j=0
> o 1 e+ 1)] ;

T D L THi — . (5.11.62)
JEO ! [(x/—z >p p2 [P

i ci[(y+7) (y+j+1)—£(£+1)] p¥ti—2
0

~.
Il

Z (y+j+1) L)vaﬂ‘—t (5.11.63)

Equation (5.11.63) must hold identically and, hence, the coefficients before identical
powers of p, on both sides of the equation, must be equal. The lowest order term on the
left-hand side contains p?~2 with the coefficient (y(y+ 1) — £(£+ 1))co. The lowest term
on the left-hand side contains p?~!. Therefore,

(Y(y+1)—€(l+1))co=0= (y(y+1)—£(L+1))=0. (5.11.64)
Equation (5.11.64) has two possible solutions

y=1{or y=—(L+1). (5.11.65)
If we take the solution ¥ = —(£+ 1), then the series in (5.11.59) would start with the term

co/p'™! that goes to infinity for p — 0. Therefore, we omit it and take ¥ = ¢. As a result,
(5.11.63) reads

i U+ (E+j+1)—€(L+1)] ptti—2
0

=Y ¢j|(t+j+1)- -t (5.11.66)
0
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Since the coefficient for j = 0 on the left-hand (LHS) side of (5.11.66) is zero, the series
on the LHS starts with j = 1. If we change the dummy index of summation j to j+ 1, we
have

LHS = Y cin [(£+j+1) ((+j+2)—(t+1)] pHi. (5.11.67)
j=0
Consequently Equation (5.11.66) can be written as

oo

y <c,+1 [(C+j+1) (L+j+2)—L(l+1)] ¢ [(HHI)_J%D Pt — g

=0
(5.11.68)

From (5.11.68), we get the following recursion relation for the coefficients of the series in
(5.11.59):

B {(€+j+1)—\/%7}
T+ (o) =+ )T

(5.11.69)

The recursion relation allows us to calculate all the coefficients of the series in (5.11.59) in
terms of one coefficient, say cg, with which the series starts. This coefficient is determined
by the normalization condition. Thus, the series solution of (5.11.58) is given by (5.11.59)
with coefficients determined by the recursion relation (5.11.69)) and the normalization of
the radial wave function. The series in (5.11.59) is an infinite series and hence, we must
check whether its behaviour as p — o is consistent with the finiteness of u(p) or not. For
this, let us look at the ratio ¢;41/c; for large values of j (which obviously corresponds to
large values of p):

poCe (64 j+1) = (a/V=A)] 1

= lim =-. 5.11.70
j=e € joe (U4 j+1)(L+j+2)—L(L+1) ( )
On the other hand, the ratio ay 1/ ay for the series
ok
=Y Py (5.11.71)
k!
k=0
is
k! 1 1
lim &4 — Jim - (5.11.72)

ko ar ke (kH 1) k+1 &

Hence, for large values of p, the series in (5.11.59) is proportional to e”. That means, for
p — o,
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u(p) ~ple = Ruy(p)=e P uy(p)~p'el’?, (5.11.73)

and blows up. Therefore, if we want the required solutions for the radial wave function to
satisfy the standard conditions, the series must be converted into a polynomial. That is, it
must truncate at some appropriate term. This is possible only if, for some value j = jpax,
the numerator in (26) becomes zero, that is,

o
s 1) — ——— =0, 5.11.74
(n ) — ( )

where 1, = jmax is the maximum value of j for which ¢,, 1 = 0. The number n, is called
the radial quantum number. Introducing a new quantum number, 7, by the relation

n=n+0+1, (5.11.75)
we get that
o
——=n. 5.11.76
Nas 1170

n is called the principal quantum number. It allows us to write the recursion relation for
the coefficients of the polynomial as

- [(6+j+1)—n]
T+ j+ 1) (04 j+2)—€(t+1)

¢j. (5.11.77)

Further, we have

2
o
V=S R (5.11.78)
n  4meynh
Or,
2UE 2 \?
_ :< He 2> , (5.11.79)
h dregnh
Therefore, the possible values of energy are
2 2
u e 1
E —_ = . 5.11.80
= () 7 (5.11.80)

We see that the energy depends only on the principal quantum number n. Since the
minimum value of ¢ is 0, it follows from (5.11.73) that the maximum value of ¢ is
obtained when n, = 0, i.e., fmax = n— 1. Therefore, the possible values of ¢, for a given n,
are: £ =0,1,2,3,...n—1.
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We thus see that the energy states of a hydrogen atom can be characterized by three
quantum numbers n,,¢/, and m. However, since n, is determined by n and /
(n, = n— ¢ — 1), the energy states of a hydrogen atom are usually described by the triplet
of quantum numbers n, ¢, and m, as in other cases considered earlier.

Note that all the energy states of hydrogen, except the ground state with » = 1 and
¢ =0, are degenerate. The degree of degeneracy is determined as follows. For a given
value of n, there are n possible values of ¢ (0,1,2,3,...,n — 1) and for every ¢ there are
20+ 1 values of m from —/ to +/. Therefore, the degeneracy g is given by

n—1

g=Y (2+1)=14+3+5+...+(2n-1). (5.11.81)
(=0

This series is an arithmetic series with n terms and the common difference d = 2. Hence,
the sum is given by

n—1

g:Z(2€+1)zg[le—i—(n—l)xZ]:nz. (5.11.82)
/=0

In atomic physics, stationary states with different quantum numbers n are denoted by
specific symbols. A symbol has the principal quantum number n as the coefficient before
a letter which corresponds to different values of /. For instance, the state with n = 1 and
¢ = 0 is written as s state. For n = 2, the states are written as 2s and 2p; for n = 3, they
are written as 3s, 3p and 3d, and so on and so forth.

Let us write down the full form of the stationary state wave functions for the hydrogen
atom. Note that

T 2EE (1 pe N\
_ - — (5.11.83)

> Amegh® nay

where ag is the Bohr radius. Hence, p = 2r/nag. Consequently, the stationary state
energies and the corresponding wave functions of the hydrogen atom are, respectively,

2 2
u e 1
E,=——— —,(n=1,2,3,...), 5.11.84
t (g ) el ) (51184
llfném(r’ 0, (P) = ¢n€m(ra 0, (P)eiﬁEnt = Rné(r)YZm(e, q))ef%E,,t’ (5.11.85)

ny Z ny J
_ —r/ y4 i\ . —r/
Rng(l”) —e nago (P z ij]> —e nag (na()) z Cj (nao) S (5.11.86)

Jj=0 Jj=0
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Y/ (6,0) = (—l)m\/(Zi:(lé)ji;)’?)!%"(cos 6)e™?, (m>0), (5.11.87)
(Lt7+1)—n] (5.11.88)

T )+ j+2)— e+ 1)

where the associated Legendre polynomials, P (x) and the Legendre polynomials, P(x),
of degree ¢, are given by

i
P"(x) = (1 —xz)m”aimlpg(x),x = cos#, (5.11.89)
1 9
Py(x) = WW(XZ_ 1)~ (5.11.90)

The constant ¢ is determined in each case from the normalization of the radial wave
function. Note that the resulting wave functions Wz, (7, 6, @) are mutually orthogonal

/l[/,’[gm(r, 0,0) Wy (1, 9,qo)r2 sin 0drd0d @ = 8,y O Sy » (5.11.91)

which follows from the orthogonality of the spherical harmonics and from the fact that, for
n # n’, they are eigenfunctions of the Hamiltonian with distinct eigenvalues.

To illustrate the procedure of calculations, let us now determine the analytical
expressions for the wave functions of the ground state and the first excited state of the
hydrogen atom.

Ground state: For the ground state of hydrogen, n = 1, { = 0 and m = 0. Therefore, the
wave function is given by

d100(7,0,0) = Rio(r)Y(6,9). (5.11.92)

Now, the radial quantum number n, = n— £ — 1 = 0 and the recursion relation (5.11.77)
gives ¢; = 0. Hence, the radial wave function is given by

Rio(r) = coe™ /4. (5.11.93)

Normalizing the radial wave function, we get

oo 2.3
2
| = cg/ P2/ gy — C‘Lﬂ,i o= ——. (5.11.94)
0
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Therefore,

2
Rig(r) = ——e "4, (5.11.95)

Since Y{(0,¢) = 1/+/4x, the ground state wave function is

1
d100(7, 0, 9) PR e —— ) (5.11.96)

/ \/47r na

First excited state: Here, n = 2 and ¢ can take two values: 0 and 1. For ¢ = 0, we have
m = 0. This state is described by the wave function

$200(7,8,9) = Rao(r) Y3 (0, 9), (5.11.97)

and is called the 2s state. For ¢/ = 1, m can take three values —1,0 and +1. This state is
called the 2p state and it is 3-fold degenerate. The corresponding wave functions are

021-1(r,0,9) = Rzl(r)Yfl(O,(p), (n=20=1m=-1), (5.11.98)
010(r,0,0) = Ry (r)Y2(60,0),(n =2, =1,m = 0), (5.11.99)
$11(r,0,0) = Rot (r)Y;1(6,9), (n =2, = 1,m=+1). (5.11.100)
Consider first the case: n = 2 and / = 0. We have n,, = 1. The recursion relation (5.11.77)
now gives ¢; = —cp/2 and ¢, = 0. Therefore,
Roo(r) = <Co +c1 r) e /20 = ¢ <1 - r) e /20, (5.11.101)
ap 2ag

The normalization for Ryo(r) reads

oo 2
24
1:6‘(2)/|: L—i— ]rzer/aodr—c [2 6+ }
0

ap 0
1
=2ckad, = co = ——. (5.11.102)
2a(3)
As a result,
1
Rao(r) = (1 _ 2;()) e/ 20, (5.11.103)

3
2a0
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Once again, Yé)(O, ©) = 1/+/4m, and hence, the 2s state wave function is given by

r
r,0, — ) e/
o (r:0.0) = \f v (1 2)

1
- <1 . r) ¢/, (5.11.104)

3 2ag
8may

For n =2 and ¢ = 1, we have n, = 0. The recursion relation (5.11.77) now gives ¢; = 0.
Hence,

Rui(r) =co a—roe—r/z‘w. (5.11.105)

Normalization gives

1
co = . (5.11.106)
\/ 244}
Hence, we get
1
Roi(r) = —e"240, (5.11.107)

/na 3 a
24a0 0

Calculating the required spherical harmonics from (5.6.11), (5.6.12) and (5.6.14), we have
1n9e ?, (5.11.108)

cos @, (5.11.109)

—,/%sinee“‘f’. (5.11.110)

Consequently, the 2p state wave functions are given by

L7 20 g geio, (5.11.111)

$1-1(r,0,9) = S a
84/ mag “°

L 7 /20 g9, (5.11.112)

4/2mal 40

¢210(r7 9’ (p) -
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$11(r,6,0) = —

1 ro_ . .
— e 20 6in ge'?.

/.. 3 dag
81/ Tay

(5.11.113)

For convenience in calculations, the first few radial wave functions, R, (r), are presented

in Table 1.

Table 5.1 The first few radial wave functions of hydrogen.

Laguerre polynomials and the radial wave function: The polynomials

nr n .]
Y cipl=Y ¢ <> .
j=0 j=0

2r
nao

(5.11.114)
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in (5.11.86), whose coefficients are defined by the recursion relation (5.11.88), are known
as associated Laguerre polynomials in mathematical physics. In our case, barring
normalization, we can write

Zc p! =121 (p), (5.11.115)

where Ly, (x) are expressed in terms of the ¢'" Laguerre polynomials, L,(x), as
L) = (=1 5L, (5.11.116)
The ¢™ Laguerre polynomial is given by

L ! de 5.11.11
g(x)=¢" @(x ). (5.11.117)

The first few Laguerre polynomials, L,(x), and the associated Laguerre polynomials,
Ly_,(x), are listed in Table 2 and Table 3, respectively.

Table 5.2 The first few Laguerre polynomials, L (x).

Ly(x) = x> —4x+2

Li(x) = —x>+9x* — 18x+ 6

La(x) = x* — 16x° + 72x> — 96x + 24

Ls(x) = —x° 4 25x* — 200x° + 600x> — 600x + 120

Lg(x) = x® — 36x° +450x* — 2400x> + 5400x> — 4320x + 720
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Table 5.3 The first few associated Laguerre polynomials, Ls_ »(x).

=1, 9= —x+1, L=x>—4x+2,
Li=1, LI =—2x+4, L} =3x> - 18x+ 18
L3=2, L =—6x+18, L3 =12x*—96x+ 144

L} =6, L{ =—24x+96, L3 = 60x> —600x + 1200,

Energy (eV)
n==6 E=-038¢eV
n=5 E=-054¢eV
n=4 E=-085eV
n=>3 — E=-151eV

Paschen series

n=2 —_— E=-34¢V
Balmer series

FYYVYYY

n=1 E=-13.6eV

Lyman series
Figure 5.2 Energy levels and transitions between them for the hydrogen atom.

Using these Laguerre polynomials, the normalized wave function of the hydrogen atom
can be written as:
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X {Li“é'l (2r>] Y/"(6,9). (5.11.118)
nago

The spectrum of hydrogen: In principle, if the hydrogen atom is in one of the stationary
states, it will reside there for ever. However, when perturbed (in fact, perturbations are
always present), it may make a transition to another stationary state either by absorbing
energy from the perturbation or by giving off energy under the action of the applied
perturbation. In the first case, it makes a transition to an energetically higher state by
absorbing electromagnetic radiation (usually), while in the latter case, it slides down to an
energetically lower state by emitting electromagnetic radiation. The energy of the
radiation, Ey, is equal to the difference in energy of the stationary states involved in the
transition:

E—E E—£|+_1) (5.11.119)
Y ! 2 2
P

where E; and E; are the energy of the final and the initial stationary states, respectively,
and

p( ey
E = ( ) (5.11.120)

22 \ drg,

is the energy of the ground state (n = 1). The energy of a photon is proportional to the
frequency, v, of the emitted or absorbed radiation according to the formula £y, = hv, where
h is the Planck’s constant. Also, the wavelength, A, of the emitted or absorbed radiation is
given byAd = ¢/ v, where c is the speed of light in vacuum. Therefore,

2
1 u e? 11 11
2 =2 = -= ], 5.11.121
A Arniic (477:80) (n} nf) <n§ ntz) ( )

where % = 1.097 x 107 (1/m) is the Rydberg constant. Equation (5.11.121) represents
the well-known Rydberg formula for the spectrum of hydrogen.

The energy levels and the transitions between them have been depicted in Figure 5.2.
The collection of spectral lines corresponding to the transitions from the higher energy
states to the lower ones are named after the scientists who discovered them
experimentally. The spectral lines corresponding to transitions to the ground state, ny = 1,
fall in the ultraviolet region of the electromagnetic spectrum and constitute the Lyman
series. The spectral lines corresponding to transitions to the first excited state, ny = 2, fall
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in the visible region of the electromagnetic spectrum and constitute the Balmer series,
while the series consisting of spectral lines related to transitions to the 2nd excited state,
with ny = 3, falls in the infrared region and is known as Paschen series; and so on and so
forth.

Example 5.11.2: At = 0, the wave function of a hydrogen atom is given by

1 1 1
v(r.0,0) = \ﬁ%oo(h@@) + \ﬁ%n(he,@) + %%220,9,?)-

(a) What is the wave function at any ¢t > 0? (b) If a measurement of energy is carried out
in this state, what values would result and with what probabilities?

Solution: (a) Since H @i = Eppim,
Ay(r,0,9,0) = E3y(r,0,9,0), (5.11.122)
and the wave function at any ¢ > 0 would be

1 1 1 ;
y(r.0,9.1) = \ﬁ%oo(’”ﬁ,fp)+\ﬁ¢311(”,9,¢)+%¢322(r,9,¢) e i,

(5.11.123)

where E5 = E|/9 = —13.6/9 eV.

(b) Since the wave function is normalized: (y(r,0,¢,0) |y (r,0,¢0,0)) =1, and it is an
eigenfunction of the Hamiltonian, the measurement of energy will give E3 with
probability 1.

Example 5.11.3: Suppose we carry out the following transformation of the independent
variable, r, and the radial wave function R,;:

rzipz’ Ry = X(P)

in the radial equation for hydrogen, where A is a constant. (a) Show that y(p) is a
solution of the radial equation of a two-dimensional harmonic oscillator with frequency
® = \/—2A2E/u and energy 2¢?A / (47&y), where E is the energy of the hydrogen atom.
(b) Using the expression for the energy eigenvalues of the two-dimensional harmonic
oscillator and comparing both the radial equations (for the hydrogen atom and for the
two-dimensional oscillator) term by term to extract the correspondence between the
parameters, determine the energy spectrum of the hydrogen atom. (c) Also, explicitly
construct the normalized ground state wave function of the hydrogen atom.



Quantum Mechanics in Three Spatial Dimensions 227

Solution: The differential equation for the radial wave function R, (r) of the hydrogen atom
reads

d [ ,dRy(r) 2LE 2 2ue? B
dr(r ar ) T amag | Bre) = L+ DRue(r). (5.11.124)

The transformation of the independent variable gives

7Lp 1 d
5 = — dr ﬁ% (5.11.125)
As aresult, (5.11.122) takes the form
1 d [ 5d pe’A UEA? } x(p)
— — |+ 2+ —Ll+1)| == =0. 5.11.126
[4p dp ( dp) 4megh? 212 prott+) p ( )
It can be further simplified as
1[5/ x ld)()] [ue% LEA? £(£+1)]
— P’ (-5 + + + -
4p [p ( p2 ' pdp amegn?” T on? > |x(P)
1 >y dy 1 } [ e’ uEAZ 3 E(H—l)}
[pdp T 4n80h2p o P , x(p)
d’y ldy 1 [uez/l QUEA? 5, 40(0+ 1)]
=S4+ " + —
dp* pdp p? P e 2 |* ()
_dix  ldy [uezl 2UEA? 2] [ 1 4+ 1)}
+ — |+ ———"=|x=0. (5.11.127
“ap? pdp ! |mei? | w2 P AT 2 )% ( )
Finally, we obtain
A’y 1dy [(2£+ )2 pe’A  2uEA? 2]
— 4+ ——=— =0. 5.11.128
dp>  pdp P xenr w2 C % ( )

Let us now compare (5.11.126) with the equation satisfied by the radial wave function
R(p) of a two-dimensional harmonic oscillator:

d*R(p) 1dR(p) [m; mPw* , 2uUE
ip? E ap _|:p2 = — }R 0, (5.11.129)

where my, = 0,£1,42,+£3,... is the magnetic quantum number and m is the mass. The
correspondence among the parameters are given by
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—2A2E 2
me=(2041), o= 22E gt

. 5.11.130
i e ( )

where E is the energy of the hydrogen atom and E’ is the energy of the oscillator. With this
correspondence, ¥ (p) is indeed satisfies the radial equation of a two-dimensional harmonic

oscillator with frequency @ = \/—2A2E/u and energy 2¢°2/(4mey), where E is the
energy of the hydrogen atom.

(b) The energy levels of the two-dimensional harmonic oscillator is given by

E/:ha)(n’—i—l), (5.11.131)
where
n’:|mg|+2np:2(€+np)+1:2n—l, (5.11.132)

np being the radial quantum number for the two-dimensional oscillator and n = (£ +n, +
1) is the principal quantum number as introduced in the case of the hydrogen atom. Hence,

E' = ho[(2n— 1)+ 1] = 2hon. (5.11.133)

As a result, we have

2 2A2E,
AR, B i (5.11.134)
2mey u
The last equation gives the energy levels of the hydrogen atom as
2 2
u e 1
E,=—— —, =1,2,3,... 5.11.135
n 2 <47I'8()> ) n ( )

Equation (5.11.133) gives the same energy spectrum as obtained earlier(see (5.11.84)).

Degeneracy: Given a fixed value of n > 1, the quantum number ¢ will take 0,1,2,3,...,n—
1 values, while the radial quantum number n, will take values n—1,n —2,n—3,...,0.
Therefore, for a given n > 1, the total number of energy states that correspond to the same
energy E, is

(n=1)
Y (ae+1)=n’ (5.11.136)
(=1

(c) Note that the ground state energy of the hydrogen atom has n = 1 and ¢/ = 0. This
means that it corresponds to the m; = 1 and np = 0O state of the 2D harmonic oscillator.
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The corresponding ground state wave function of the 2D oscillator in polar coordinates is
given by

x(p)=Npe 5P, (5.11.137)

where N is the normalization constant. As a consequence the ground state radial wave
function of the hydrogen atom will be given by

Rlo(p)zxi)p)zzve—’%’f’z. (5.11.138)

If we replace m by the reduced mass ( and replace E by the expression for the ground state
energy of the hydrogen atom, we have

222 (2 \* u e’
=/ == — = A1.1
@ \/ u <4n£0) 2n%  dmegh’ (5.11.139)

Therefore, we get

HO _ Ape A
2 8megh®  2ag

(5.11.140)

where ay is the Bohr radius. The ground state radial wave function of the hydrogen atom
can now be written as

_A 52 _r
Ri(r)=Ne %P =N¢ @, (5.11.141)

The normalization condition for this wave function is
3

1:N2/ e %0 dr = %N2 (5.11.142)
0

The normalization constant is thus given by

N = . (5.11.143)
3
ap
The normalized ground state radial wave function of the hydrogen atom is
Rio(r) = ——e @, (5.11.144)
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5.12 The Isotropic Harmonic Oscillator in Spherical Coordinates

Consider a particle of effective mass y moving in isotropic harmonic oscillator potential

V(r) = L per s,
2
where [ is the mass, @ is the angular frequency of the oscillator and r is the radial distance
from the origin. Let us find the energy levels of the particle and determine the full stationary
state wave functions.
We start with the Schrodinger equation in spherical coordinates

Pl1ad [,0¢ 1 9 (. d¢ L), 1 5o
_ﬂ [ﬂ&r <r 8r>+r2sin989<Sm989>+r2s,i11299¢>2]+2uw ¢ =E¢.
(5.12.1)

and look for the solution in the form

¢(r.8,9) =R(r)Y (6, 9). (5.12.2)

The angular solutions remain unchanged and are still given by the spherical harmonics
Yim(6,9), where £ is the orbital quantum number and m is the corresponding magnetic
quantum number. Hence, we concentrate on solving the radial equation

[ld (r2d> w(E—luwzrz—erﬂR(r):O- (5.123)

2dr\ dr) R 2 2ur?
Substituting once again R(r) = u(r)/r, we arrive at

d’u 2 1 R0+ 1
M—i—Fll;l:E—uwer_m

- 5 2 } u(r) = 0. (5.12.4)

To determine the form of solution satisfying the standard conditions, we first examine the
form of possible solutions for the limiting cases of r — 0 and r — oo.

For r — 0, neglecting (2uE /h*)u(r) in comparison with the last term in (5.12.4), we
get

dPu L(L+1)
dr? r2

u(r) =0. (5.12.5)

Let us look for u(r) in the form r*. We then obtain from (5.12.5)

s(s—1)—£(0+1) =0, (5.12.6)
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which has two solutions s = —¢ and s = £+ 1. Since u ~ r~* blows up at r = 0, it is
excluded due to the standard conditions, we conclude that in the vicinity of r = 0, we
should have u ~ /1.

For r — oo, the radial equation (5.12.4) reduces to

2
du (2“E wo r2> u(r) =0, (5.12.7)

er hz h2

Recalling our experience with the Coulomb potential problem, we see that the form of this
equation suggests

2

u(r) ~Ae % v(r), (5.12.8)

where v(r) is some polynomial in r. Let us try the simplest v(r) = 1. Then u(r) = Ae~*" g

Then we obtain from (5.12.7)

2UE o’
402 2o+ S - “hz P =0, (5.12.9)
From the above equation we obtain
a=HC g g=T© (5.12.10)
= an = 2.
Next, we put v(r) = r and get that
uw 3hco
=— E = 211
o 7 and - 6 )

Similarly, for v(r) = 7, we obtain o = p®/2h and E = 5h®/2, and so on and so forth.

Taking into account all this, we come to the conclusion that we must look for the solution
to the radial equation (5.12.4) in the form

u(r) = ! o TR zv(r). (5.12.12)

The above form of the solution tells us that we should change to the new variable

p= /$r. (5.12.13)

In the new variable p, (5.12.4) reduces to

d*u ((+1
d2+</1 p*— (p2 )>u:0, (5.12.14)
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where u = u(p) and A = 2E /hw. Consequently, we look for the solution of the equation
(5.12.14) in the form

u(p) =pe P/ 2y(p). (5.12.15)

Substitution of u from (5.12.15) into (5.12.14) yields the following ordinary second order
differential equation with variable coefficients for the function v(p):

d*v 2(6+1) dv o
dp2+< ) —2p>dp+(7L—2€—3)V—O. (5.12.16)

We look for the solution in terms of an infinite series
v(p) =Y a,p”. (5.12.17)
p=0
where a, are constant expansion coefficients. Using it in (5.12.16), we obtain
Y a,[p(p—1)p" 2+ (20+2) pp?P > =2pp” + (A —20—3) pP] =0. (5.12.18)
p=0
Let us replace p by (p +2) in the first two terms. We then get

Y apen [(p+ 1)(p+2)p" + (20 42) (p+2)p”]
p=-2

+ Y a, (A—20-3-2k) p” =0. (5.12.19)
k=0

The last equation leads to

[eS)

Y [(p+D)(p+2)apia+(20+2) (p+2)apia+ (A —20—3-2p)ay] p*
p=0

+ (20+2)a ; = 0. (5.12.20)

For (5.12.20) to hold both the terms must separately be equal to zero. This leads to a; =0
and the recursion relation for the expansion coefficients

B (204+2p+3-21)
PR T (pr2) +2ir2)(pr2)

(5.12.21)
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Since a; = 0, the recursion relation (5.12.21) tells us that all the coefficients corresponding
to odd values of p in the series (5.12.17) are zero. As a result, we obtain the solution of the
radial equation (5.12.14) as

u(p) =p e P 2u(p), v(p) =Y a,p”, p=024,.... (5.12.22)
P

For p — oo, the above solution diverges as e unless the infinite series is terminated at
some term. Hence, for some p = pmax = k, the coefficient a;, > must vanish. Clearly, this
can be achieved if

2E
204+2k+3-1=0. = l:%:2€+2k+3. (5.12.23)

The above condition leads to the energy eigenvalues of the oscillator associated with a
given value of /:

Ej = ho <k+£+ 3) , (5.12.24)

where k is any even positive integer or zero. If we introduce the quantum number n = k+ ¢,
the energy levels of the 3D isotropic oscillator can be written as

E,=hw <n+ ;) , (5.12.25)

where, in view of the fact that ¢ can take any positive integer value (including zero) and
k is an even and positive integer (including zero), n = k+ /¢ = 0,1,2,3,.... Therefore, n
can take any positive integer values or zero. In this case, we shall have A = 2n + 3 and the
recursion relation will read as

2+p—n)

W= (2 + 204 2) (p2) (5.12.26)

For a given n = k+ ¢, there exists (except for normalization) a unique eigenfunction
Ontm(r,0,0) = Ry o(r) Yo (6, 0). (5.12.27)
with
Ry (r) =B e_ﬁr2/2v([3r) , v(Br)= Zap (Br)P, p=0,2,4,.. .k, (5.12.28)
p
where B = vm®/h. Taking into account that for even n, ¢ can take (n /2 -+ 1) values:

0,2,4,...,n, while for odd n, it can take [(n— 1) /2+ 1] values: 1,3,5,...,n, the degeneracy
of the energy levels is calculated to be
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1 2
Brwen = 3, (2+1)= w, for even n, (5.12.29)
(=0,2,4,...n 2
1 2
Bna = Y, (20+1)= (n+)2(n+) for odd n. (5.12.30)
{=13.35,...,n

For illustration, let us determine the energies and the wave functions of the three lowest
lying states of the oscillator.

Ground state: The ground state corresponds to n = 0 for which ¢ = k = 0. Therefore, the
ground state energy is given by Ey = (3/2)ho.

Since v(Br) = ao, the corresponding wave function is
dooo = aoe™ 7" Yoo (6, 9), (5.12.31)

where aq is determined from the normalization of the radial part of the wave function.
Finally, the normalized ground state wave function is given by

2 mo\ 3/4 _mo 2
¢000=W(7> e 1" Yoo(6,9). (5.12.32)

First excited state: It corresponds to n = 1. Since k has to be even, we have / = 1 and
k = 0. Thus, the energy of the first excited state is E| = (5/2)h.

Once again v(fr) = ap, and the radial wave function is

w 1/2 o)
Ri1 = ao (’"7) re 57, (5.12.33)

The normalization of Ry (r) yields

8 /mw\3/4
w=\377 (7) . (5.12.34)
Consequently, we have
8 5/4 mao
O =13z (?) re 5" Vin(0,9), m=—1,0,1. (5.12.35)

Second excited state: It corresponds to n = 2. Since k has to be even, we have two pairs of
kand ¢: (2,0) and (0,2). Since n = 2, the energy of the first excited state is £} = (7/2)ho.
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Case 1: k=2 and ¢ = 0. In this case

2
v(Br) =ao+ap?r, ar=—Zao. (5.12.36)

The radial wave function is given by

mo 2

2
Ry = ag (1 — gﬁ r2) e’ (5.12.37)

After normalizing Ry (r) we obtain

0200 = ng (

T4

3/4 2 mo
%) (1— ’;Z"#) e B Y00 (6, 9). (5.12.38)

Case 2: k =0 and ¢ = 2. In this case again v(f3r) = ap and the radial wave function is

mm 2

w
Ry = ag m? e B (5.12.39)

After normalizing Ry (r) we obtain

4 (ma))7/4 2 mo 2
—_— r

O2om = \/Ti\/f 7 e " Yo, (6,0). (5.12.40)

Homework Problems

1. Consider the case of a particle moving in the infinite rectangular well potential
discussed in the chapter. What is the probability of finding the particle in the volume
givenby 0 <x<a,0<y<b,and0<z<c/3?

2. A particle is in the second excited state of an infinite cubic potential well of side a.
Determine the wave functions and the corresponding energy for this state. What is
the degeneracy of this level?

3. Anelectron moves in an infinite cubic potential well of side a = 0.5 nm. What energy
does the electron have in (a) the ground state and (b) the first excited state?

4. A particle of mass m is confined to move in an infinite two-dimensional potential
well of side L. (a) Solve the corresponding two-dimensional TISE by the method
of separation of variables and determine the wave functions and the corresponding
energy levels. (b) Find the energies of the ground state and the first excited state. Are
these states degenerate?

5. Find the stationary state wave functions and the corresponding energies for a particle
of mass m moving in a three-dimensional isotropic harmonic oscillator potential
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1
V(xy.2) = gmo (@ +)* +22).

. Assume that the nucleus of an atom can be regarded as a three-dimensional box of

width 2 x 107! m. If a proton moves as a particle in this box, find (a) the ground
state energy of the proton in MeV and (b) the energies of the first and second excited
states. (c) What are the degeneracies of these states?

. Use the Rodriguez formula to construct the first five Legendre polynomials.

8. Use (5.611), (5.6.12) and (5.6.14) to work out the spherical harmonics Yy, Y10, Y1 -1

10.

11.

12.

13.

and Y;;. Check that they are normalized to unity.

. Using the Rodriguez formula, derive the orthonormality condition for the Legendre

polynomials

! 2
/71 Pg(x)Pg/ (X) dx = 21 5551,

where x = cos 6.

Find the ¢ = 0 energy and normalized wave function of a particle of mass m that is
subject to the following central potential

] 0, for a<r<b
V(r)—{ o, for r>a,

where a and b are positive constants. Write down the full stationary state solution.

Find the energy levels and the corresponding normalized wave functions for a particle
of mass m subject to the following central potential

V(r)=—-aé(r—a), a>0,

where « is a positive constant. Discuss the existence of bound states in terms of the
size of a.

Write down the TISE in plane polar coordinates for a two-dimensional isotropic
harmonic oscillator

1
V(xy) = ymo’ (@ +y7),
where @ is the angular frequency of the oscillator. Solve it and find the energy levels
and the corresponding eigenfunctions. Discuss the degeneracy of the energy states.

(a) Calculate the most probable distance of the electron from the nucleus in the
ground state of hydrogen. (b) Find the average distance of the electron from the
nucleus in the ground state of hydrogen and compare it with the result of (a).
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14.

15.

16.
17.

18.

19.

20.
21.

Calculate <r2> in the ground state of the hydrogen atom. Using this and the result of
the Problem 13, calculate the uncertainty in the measurement of the distance of the
electron from the nucleus in the ground state of hydrogen.

The normalized ground state wave function for the electron in the hydrogen atom is

1

Y(r,0,9) = ——e "/,
nay

where r is the radial coordinate of the electron and aq is the Bohr radius. (a) Sketch
the wave function as a function of r. (b) Show that the probability of finding the
electron between r and r 4- dr is given by

4
—3rze*2r/“0dr.
)

(c) Show that the wave function as given is normalized. (e) Find the probability of
locating the electron between ag/2 < r < 3ag/2.
Calculate (x) and <x2> in the ground state of the hydrogen atom.

The radial part of the wave function for the hydrogen atom in the 2p state is given by
¥(r.0.0) = Are "/,

where A is a constant and ag is the Bohr radius. Using this expression, calculate the
average value of r for an electron in this state.

An electron in a hydrogen atom is in the energy eigenstate
¥2.1.-1(r.0.0) = Nre”"/>0y71(6,9).

(a) Find the normalization constant N.
(b) What is the probability per unit volume of finding the electron at r = 2ag, 0 =
45° and ¢ = 60°?

An electron in the Coulomb field of a proton is in a state described by the wave
function

1
Y= 8[41I/100+31I/211 — Y210+ \/Ellleq].

What is the expectation value of energy?
Calculate (r), (r*) and Ar in the state with n = 2,/ =0 and m = 0.

Calculate (W |7|We), (Wt 7 | W) and (W,0|1/7|w,) in the n'M stationary state,
of the hydrogen atom.
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22.

23.

24.

25.

26.

27.

Using the recursion relation, derive the radial wave functions R3g, R3; and R3».
Normalize them and write down the stationary state wave functions W3pg, V320,
Y322, and y3p 1.

A hydrogen-like atom consists of a single electron orbiting the nucleus with Z
protons. (a) Determine the energy spectrum of a hydrogen-like atom, that is,
determine E,(Z). (b) Determine the Bohr radius as a function of Z and the modified
expression for the Rydberg constant Z.

(a) Determine the quantum numbers ¢ and my, for the He' ion in the state
corresponding to n = 3. (b) What is the energy of this state?

(a) Determine the quantum numbers ¢ and my for the Li%T jon in the states
corresponding to n = 1 and n = 2. (b) Determine the energies of these states.

The wavelength for the n = 3 to n = 2 transition of the hydrogen atom is 656.3 nm.
What is the wavelength of this same transition in singly ionized helium?

Calculate the uncertainty product ArAp for the 1s electron of a hydrogen-like atom
with atomic number Z.



Chapter 6

Quantum Mechanical Theory of Orbital Angular
Momentum

6.1 The Angular Momentum Operators in Cartesian Coordinates

In classical mechanics, the angular momentum of a particle is given by L = 7 X j, where
7 and p are the position vector and momentum of the particle, respectively. The quantum

mechanical operator for L, is obtained by replacing 7 and p, with their respective operators,
that is,

i (6.1.1)

TN

L=7x

Using the expressions for 7 and p in the Cartesian system of coordinates, we have L =
il + jLy+ kL,, where

R . L d d
Lx_ypz_Zpy__lh <yaz_zay>, (6.1.2)
(9 2
Ly=zpx—xp; = —ih <zax —xay> , (6.1.3)
(9 9
L, =xpy—ypx=—ih (xay _y8x> . (6.1.4)

It is easy to check that each of these operators is hermitian (see Example 6.2.1 below). The
operator corresponding to the square of the angular momentum is a scalar operator given
by

P2 __F 7 72§24 §2
P=L-L=13+L;+12 (6.1.5)

239
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6.2 Commutation Relations, Measurement and Uncertainty

The algebra of the angular momentum operators is given by their commutation relations,
which can be readily calculated with the help of the fundamental commutators [£;, p| =
ih 8, [£j.%] = [Pj. pr] =0, j,k =1,2,3, and the following properties of commutators
[A+B,C] =[A,C) +[B.C], (6.2.1)
[A,BC] = BJA,C] +[A,B]C, (6.2.2)

where A, B, and C are arbitrary operators. For instance,

[ﬁx,ify] = [yﬁz _Zﬁy,zﬁx _xﬁz] = [)’ﬁz’zﬁx] - [Zﬁy’zﬁx] - [yﬁZ’xﬁZ] + [Zﬁy’xﬁz]-

(6.2.3)
Simplifying, we get
[y Pz2Px] = y [Pz Be] + V.2 Pe] Bz = y2 [Pz Px] 3 [Pz 2] P+ 2 [y Bl P
+ [v,2] P e = —ihy P, (6.2.4)
[2Py2pe] = 2[Pys2pe] + (2.2 5] Py = 2 [y o] + 2Py 2] Pe+ 22, 5l Py
+ [2.2] px By =0, (6.2.5)
v Pzsx pe] = ¥ [Pesx o] + [v.x Pe] o = yx[Pes o] + ¥ [Pos¥] Pz +x [, 2] P
+ [v.x] 3 =0, (6.2.6)
[Zﬁy’xﬁz] =< [ﬁy’xﬁz] + [z x P py=zx [ﬁy’ﬁz] +z [ﬁy’x] p.+x(z.p) Py
+ [2.x] pz py = ihx py. (6.2.7)
Hence, we get
(L, L)) = if (x py —y py) = ihL,. (6.2.8)
The other two commutators are calculated in a similar manner. The net result is
Lol) =ik, [L.0) =inle (Lol = ifl,. 6.2.9)

The commutation relations (6.2.9) can be combined together into a single vector equation

~L

=Lx

~D

in . (6.2.10)
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Equivalently, they can also be written as
[Lj,Ly] = inej Ly, (6.2.11)

where summation over the repeated index ¢ from 1 to 3 is understood. Here, in (6.2.11),
the symbol &; is called the Levi-Civita tensor density and it is defined as

1 if (ijk) is an even permutation of (123)
gjx =4 —1 if (ijk) is an odd permutation of (123) (6.2.12)

0  otherwise.

Measurement and uncertainty relation: We have earlier shown (Chapter 3) that any two
hermitian and non-commuting operators, A and B, satisfy the generalized uncertainty
relation

A

AA AB > % I([A,B])]*. (6.2.13)

Using this result for the angular momentum operators, L., ﬁy and L., we conclude that they
must satisfy the following uncertainty relations

1 A h
AL; 8L > AL L) = S1Lo) (6.2.14)

where (jk¢) are cyclic permutations of (123). It then follows that no two components
of the angular momentum can be measured simultaneously accurately. At first glance, it
might appear that only one of the three components of L can be determined or specified to
characterize a given state of a particle. However, a careful analysis shows that, along with
one of the components of L, the square of the total angular momentum (hence, the absolute
value of the angular momentum) can also be measured accurately in a given state of the
particle. This is because of the fact that [? commutes with each of the components L, Zy
and L,. For instance, we have

>

(22 L. = [(L2+ L3 + L2). L] = [L3.Ld) + [L2.L]
= Ly[Ly, L] + [Ly, L] Ly + Le[Le, L] + (L, L] L
= —ihLyL, — ihL Ly +ihL L, +ihL,L, = 0. (6.2.15)

Similarly, we can prove that ﬁy and L, also commute with L?. As a consequence, we can
write

£%,1] = 0. (6.2.16)



242  Fundamentals of Quantum Mechanics

Hence, in terms of the angular momentum of a particle, its quantum state can be
characterized by the magnitude of the total angular momentum and any one of the
Cartesian components of the angular momentum. Because of the isotropy of space, this
component is always taken to be L,. Consequently, the wave functions of the particle are
characterized by two quantum numbers, the orbital quantum number, ¢ and the magnetic
quantum number, m, or simply m. The meaning of these quantum numbers and their
relationship with the eigenvalues of the operator £> will follow from our later analysis.

Example 6.2.1: Show that the operator L, is hermitian.

Solution: For the hermiticity of L, we must have L[ = I,. Recalling that )?Z = Xg, ﬁz =
Pr, k=1,2,3, we get

Li=(vp:—2p) = (p)" = (2p) = Iy = pi2" = poy—pyz (6.2.17)
Using now that [£;, px] = 0, if j # k, we arrive at the required result

AI: (Yﬁz_zﬁyﬁ:yﬁz_zﬁy:z)ﬁ (6.2.18)
Example 6.2.2: Find the value of the commutators (a) [£,L,], (b) [£, L], and [py,L,].

Solution:
(a) Using the expression for L, in terms of the position and momentum operators, we have

[£,52]. (6.2.19)

Il
=
2
>
2]
+
<>
=
>
[N

|
B
Kl
i~
<

|
[\ Y

Since [£j,%] = 0, for all values of j and k from 1 to 3 and [£;, px] = O for j # k,
[£,L,] =0.
(b) Similarly,

= [%,2] px + 2[R, pu] — [£.%] p, — £ [%, P (6.2.20)
Using [£;,%] = 0, and [£;, pi] = il 81, we get that [£,L,] = inz = iz
(c) In this case, we have
[ﬁx’zy] - [AXv (21516 _fﬁz] = [ﬁx’fﬁx] - [ﬁxﬂeﬁz]
= [ﬁx,f] ﬁx +2Z [ﬁxvﬁx] - [pr’)?] ﬁz —X [ﬁx’ﬁz]~ (6.2.21)

Using [p}, px] = 0, for all values of j and k from 1 to 3 and [£}, px] = ih 8%, we get that
[erly] = in2 = in p.
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6.3 The Eigenvalues of 1> and L,

We shall determine the possible eigenvalues of L? and L. by algebraic means. In other
words, we shall determine their eigenvalues without solving the differential equations
representing the corresponding eigenvalue problems for these operators. Our discussion
will revolve around the commutation relations (6.2.9) and their consequences in the
framework of linear algebra. In such an approach, the angular momentum is simply an
observable represented by three hermitian operators L, I:y, L. that satisfy the
commutation relations (6.2.9). Since the entire discussion is based only on the
commutation relations (6.2.9) of the angular momentum operators, the consequences hold
good for any set of operators satisfying an identical set of commutation relations.

Since [? and L, commute, they have a common set of eigenfunctions. Let y;, u(?)
be a common eigenfunction of L2 and L., corresponding to the eigenvalues %%, and fipL,
respectively. That is,

Py (7) =12y (7). (6.3.1)
Low(7) = iy o (7). (6.3.2)

Note that the dimensions of the angular momentum are those of 7, owing to which we have
introduced the factors 42 and 7 before A and ., respectively, so that they are dimensionless.

Analogous to the case of one-dimensional harmonic oscillator discussed earlier, let us
introduce the operators:

Ly=1L,+il,. (6.3.3)

Using the commutation relations (6.2.9), the commutator of ﬁz with £, can be readily
computed as

[L.,Ly) =L, L] +ill;, L)) = inly +i(—i) hl, = A(L, +iL,) = AL+, (6.3.4)
L.L-]=[L,L,)—ilL; L)) =inly —hL, = —A(L,—iL,) = —hL_. (6.3.5)

+ i (LyL, + L.Ly) £ (LL.+ L.L,) =0. (6.3.6)



244 Fundamentals of Quantum Mechanics

Since L+ do not commute with L, the eigenfunctions of I, are not the eigenfunctions of
L. However, we have the following results

Lo(Liyay) =nloyny+La(Loyny) =n(u+1) (Lo ), (6.3.7)
lA‘z (ﬁ, ll/llvl) = —hi,,l[/)“l —|—ﬁ, (lA'ZWQLu) = h(,u — 1) (i,w,l li) s (638)

which show that if y; , is an eigenfunction of ﬁz with eigenvalue 7, then ﬁ+ V) 1s also
an eigenfunction of L, but with an eigenvalue (% + ). That is, the operator L, by acting
on the eigenfunction of L, with a given eigenvalue, converts it into an eigenfunction of L.
with an eigenvalue raised by one unit of /. Similarly, the operator L_, by acting on the
eigenfunction of L, with a given eigenvalue, converts it into an eigenfunction of L, with
an eigenvalue lowered by one unit of 7. Therefore, the operators ., and L _ are called the
raising (creation) and the lowering (annihilation) operators, respectively.

As a result, for a given value of A (i.e., for a given eigenvalue of the I? operator),
we can construct a ladder of discrete eigenstates of L. by repeatedly acting on a given
eigenfunction of L, with the raising operator L, in which any two neighbouring states
will differ in eigenvalue by one unit of /. Note that if, starting with an eigenstate of L, with
a given eigenvalue, this process is continued indefinitely, we shall land up with a state in
which the z component of the angular momentum will exceed the total angular momentum.
Therefore, we conclude that there must exist an eigenstate, ¥ ,, ., of L. with the highest
possible eigenvalue, 7ilimayx, such that

Z:2 Y Hmax — hz)t Y Hmax > ZZ Y Hmax — h'umax Y Hmax and i+ Y Hmax 0. (639)

The next question is: How to find < ? To answer this question we notice that

Lily = (Byily) (B Fily) = 12+ 125 i(Euky — LyL)

I
S
=~
I
~
)
|
~
)
H_
St
i

1 — 12 i(inl,) ’ (6.3.10)

and hence
[P =Ll + 125 (nl,). (6.3.11)

a

That is, either L2 = L L+ 12 — (L;), or > = L_Ly + 12+ (nL,). Therefore, using the
lower sign in (6.3.11), we obtain

tz ll/l Hmax = iJ*iJ‘F WA Hmax + i’? lllﬂ. Hmax + (hzZ) WA Hmax

= 0+ U V2 tmax T 1 thmax V1 Mmax — 1 thmax (Mmax + 1) W2 Hmax
(6.3.12)
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and hence

A = I Uimax (Umax 4+ 1). (6.3.13)

This gives us the eigenvalues of the operator L7 in terms of the maximal eigenvalue of ..
An argument similar to the one used in the case of L., there must exist an
eigenstate,y; ,, ., of L, with the lowest possible eigenvalue, [y, such that

Py, =0Avyy, . LWy, =himin Wy, and Loy, =0. (6.3.14)
Using the upper sign in (6.3.11), we have

L e = LA L i + L2900 g — (L)W

= (07 iy — 7 Mhonin) Wt iy = 7 bbmin (iwin — D W pye (63.15)

Therefore,

A = 1 thmin (Hmin — 1) (6.3.16)
From (6.3.13) and (6.3.16), we conclude

Hmax (Hmax + 1) = Homin (min — 1). (6.3.17)

We get from (6.3.17) that either Upnin = Umax + 1 OF Umin = —MUmax. Lhe first solution is
unacceptable since, if so, the eigenvalue of the lowest eigenstate of L, will be greater than
the eigenvalue of the highest eigenstate. Thus, Umax = — Umax-

It is obvious now that if we start with y; ,, - and apply L_ to it N integer number of
times, we arrive at y, ,, . . Therefore,

Mmax = Hmin +N. (6.3.18)
Taking into account that Ui, = —Umax 10 (6.3.18), we arrive at
N
Hmax = E (6.3.19)

It is customary to denote Lmax by £ and u by m (or, my). The numbers £ and m are called the
orbital quantum number and the magnetic quantum number, respectively. The eigenvalues
of L? and L, can now be written as

Ao =RU(L+1), W, =hm, (6.3.20)

where, for a given ¢, m takes (2¢ + 1) values from —/ to ¢ and ¢ must be an integer or a
half-integer depending on whether N is even or odd.
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Thus, the joint eigenfunctions of > and L. are characterized by two quantum numbers
¢ and m, where /¢ can take integer as well as half-integer values and, for a given /, m can
take (2¢ 4 1) values from —/ to £. They are denoted as y;". The eigenvalue equations for
[? and L., respectively, are

Py =m0+ )y, Lyl = hmyl, 6.3.21)

where ¢ =0,1/2,1,3/2,...and m = 0,0+ 1,0 +2,—¢+3,...,0,1,2,3,...,0 —1,¢.
Since for a given value of ¢, there are (2¢+ 1) different values of m, the eigenvalue A, =
h20(041) of L7 is said to be (2¢+ 1)-fold degenerate.

6.4 The Angular Momentum Operators in Spherical Coordinates

Having determined the possible eigenvalues of L> and L., let us proceed to find the
corresponding eigenfunctions. For the given purpose it is convenient to go over to the
spherical system of coordinates (see Fig. 5.1 ). Using the chain rule for differentiation and
the transformation equations (5.4.1) and (5.4.2), we obtain

0 _axa o 00
00 Jdpdx Jpdy d@Iz

.. 0 . )
= —rsin6 sm(pa +rsin6 cos(pa—y

d d

— xaiy _ya’ (6.4.1)
and
d d d d
90 = cotO <x<9x +yay> — taneza—z. (6.4.2)

If we now use the equations (5.4.3)-(5.4.5) along with the transformation equations (5.4.1)
and (5.4.2), then the expressions for the x, y and z components of the angular momentum
operator in spherical coordinates can be written as

s d 0

L,=ih (sm(p 8 4+ cot6 cos @ <9(p> , (6.4.3)
iy = —incos -2 —cotOsing 2 (64.4)
y = —i cos(pae co sm(pa(p 4.
Q:—mﬁa (6.4.5)

L)
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The expression for L2 is obtained by first writing the operators L, and L_ in spherical
coordinates and then using any one of the two expressions for L2, in terms of L, and L_
and L., given in (6.3.11). Hence, we start with the operator L. We have

. . . d d d
Ly=L,+ily="n|iz=—+z75 — y) = 6.4.6
+ T+ y lzay+zax (x+ly)az ( )
Taking into account that z = r cos 6 and
xdiy=rsinf(cosQ+ising) =re ?sind, (6.4.7)

we get

Ly =he®(ire " cos® 9 +re "9 cos Qi —r sinGi
dy ox dz

. P 0 )
[(p . _ . . _ . 7_ . e
lie |:l (x—iy) cot® 5T (x—iy) cot@ax rsmGaJ

: 0 0 0 d d
g 19 _ _ — - | - — V=
he [Cote <x8x+y8y> tan9z82+lcot9 <x8y y&x)} . (6.4.8)
With the help of (6.4.1) and (6.4.2), we arrive at
. - d d
= o _—_ ] _
Ly =he <86 +lCOt98(p> . (6.4.9)

A similar calculation leads to

R ; d d
= — -9 - —_—
L_ hie <89 lcoteaq)) . (6.4.10)
Using now

PN : d 0 : d d

= — 2i¢ / S Ll _
L.L_ h-e (89 +zc0t98(p> {e <86 zcotea(p>}

02 d 9? d
_ _ 52 2 .
=—h <892+cot989+c0t 98(p2+18(p>’ (6.4.11)

and

P?=1L L +1?—hl., (6.4.12)
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we finally obtain the formula for L2 in spherical coordinates:

. 9 J . 1 &
2 _ 52 Y I T
P2=-n <892+cot989+sin298¢2>. (6.4.13)

6.5 The Eigenfunctions of > and L,

We start with the eigenfunctions of .. To find it, we must solve the following eigenvalue
equation for L:

2 9D(9) _
—ih 30 =ad(e), (6.5.1)

where @ (@) is the eigenfunction and « is the corresponding eigenvalue. In addition, we
must require the fulfillment of the standard conditions of continuity, single-valuedness and
boundedness by the resulting solutions. The solution is readily obtained as

D(p) = Ppe 9, (6.5.2)

where @ is a constant to be determined by the normalization condition. Clearly, these
solutions are continuous and bounded in the entire range of variation of ¢ (0 < ¢ < 27).
To check whether the solutions (6.5.2) are single-valued or not, we notice that the variable
¢ is cyclic and, hence, the solutions will be single-valued only if

e = R X0 2 (6.5.3)
This is possible only if
o = *£mh, (6.5.4)

where m is an integer including zero. Thus, o, = mhA,m = 0,£1,£2,+£3,... are the
eigenvalues of L., which rightly happen to be the same as obtained earlier by algebraic
means. However, there is an important difference: the boundary conditions have
eliminated the half-integer values for m. It means that, if we measure L., we must get
only those values which are integral multiples of 7. Once again, the characteristic number
m is called the orbital magnetic quantum number.

Finally, using the normalization condition

27 . ,
|y 2 / dpem—me — | (6.5.5)
0
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we obtain @ = 1/+/27. Hence, the normalized eigenfunctions of the operator L, are

1 .
P(p) = Ee"’”, m=0,+1,+2,43,.. (6.5.6)

Eigen functions of [*
Using (6.4.13), the eigenvalue equation for L can be written as

o 19 (. dy(6.9) 1 9%y (6,9)
h{smeae SN0 ) T ae ¢

b=t v e.)
(6.5.7)

By multiplying (6.5.7) throughout by sin’ 8, we can rewrite it as

m 23,
d (Siw&w (9,<p)>+8 v/ (6,0)

sin @ — 30 902

=5 +0(£4+1) sin® 0 y"(0,9) =0. (6.5.8)

Equation (6.5.8) can be solved by the method of separation of variables. So, we look for
the solution in the form

v/'(0,9) =9/"(0) D(9). (6.5.9)

Using y}'(0,¢), given by (6.5.9), in (6.5.8) and dividing the resulting equation
throughout by ;" ®, we obtain

L[, d (. 0O . 5 10°®
{1955" [sm@de (sm@()eﬂ +4(£+1)sin 9} ga—q)z =0, (6.5.10)

The first term in (6.5.10) is a function of 0, while the second term is a function of ¢
alone. Therefore, for this equation to be valid for any values of the independent variables
6 and ¢, each of the terms must be a constant such that the sum is equal to zero. That is,

1 d do)
o [sin@de (sin@def)] + (04 1)sin® 6 = m?, (6.5.11)
1 0%® ) *P )

where m? is the real and positive separation constant.

Equation (6.5.12) coincides with the eigenvalue equation for the L, operator considered
earlier. The solutions of this equation, satisfying the standard conditions, are once again
given by

D(@) = ——¢'"?, m=0,+1,£2,43,.. (6.5.13)
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The differential equation (6.5.11) for ¥;" can be written as

1 d . dv) m2 .
T (sm6> + [E(H 1) — s,inZeJ O = 0. (6.5.14)

With the substitution x = cos 0, it can be reduced to

2

dzﬁfm(x) _2xd19£"(x) : m 2)
1—x

dx? dx

(1—x%) + {e(u 1)— ] /" (x) =0, (6.5.15)

which is known as the associated Legendre differential equation in the theory of special
functions. Its solutions are given in terms of the associated Legendre polynomials
P}"(cos0):

9/"(0) = C. P/"(cos ), (6.5.16)

where C!, are constants to be determined by the normalization condition. The associated
Legendre polynomials P}"(cos ) are defined by

m|
Pl'(x) = (1 —xz)’"“j Pi(x), (6.5.17)

x|m‘

where x = cos 0 and P;(x) is the Legendre polynomial of degree ¢, which is calculated
with the help of the formula

1 dt

_ 2 4

Py (x)

In literature, the formulae (6.5.17) and (6.5.18) are known as Rodriguez formulae. Note
that if we change m to —m in (6.5.17), we get that

P (x) = P/ (x). (6.5.19)
From the normalization condition for y}"(6,¢), we get

|Cm‘2 2 T , ¥

il / do / d6'sin @ (Pg? (cos e)) P"(cos6) = 1. (6.5.20)
2w Jo 0

Integrating over ¢ and using the following orthogonality condition

/11 /11 _ ,
/O desme( i (cose)) P"(cos@) = ST (g_m)!sa (6.5.21)
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for the associated Legendre polynomials in (6.5.20), we arrive at

2”2(—1)’"\/(%;1) Eﬁiz)): (m>0). (6.5.22)

The expression for ;" now reads

o = (—1)'"\/(2@L D Eﬁiz))ip;’(cose). (6.5.23)

The full normalized eigenfunctions of L are now given by

204+1)(0—m)! ;
v/ (6.9) :8\/( 4—;(25_’%)! ) P*(cos0)e™?, (6.5.24)
where € = (—1)" for m > 0 and € = | for m < 0. Note that it is straightforward to
check that y"(6, ) are also eigenfunctions of L. with eigenvalues mh, where m = 0,41,
42,43, and so on. If we refer to the theory of spherical functions, we recognize that the
functions given by (6.5.24) are nothing but the normalized spherical harmonics, ¥;" (6, @).
Thus, the complete set of spherical harmonics, Y;"(0, @), constitutes the set of common
eigenfunctions of L? and L_:

22" (0,0) = L(+ 1) H*Y"(0,0), (6.5.25)
L.Y"(0,9) =mnY]"(6,0), (6.5.26)
21 T ,
/ do / 40 sin Y. (6,0)Y"(6.0) = 818, (6.5.27)
0 0

where ¢ =0,1,2,3,...andm= —¢,—(+1,...,0—1,¢.

For later references it is useful to have analytical expressions for a few of the frequently
used associated Legendre functions and spherical harmonics. We have presented them in
Tables 6.1 and 6.2, respectively.

Comments: 1. Since the magnitude of the angular momentum, for a given /, is given by
V4(£+ 1) h, different values of ¢ correspond to the states with correspondingly different
values of the angular momentum. In atomic physics, these states are denoted by the letters
s,p,d, f,... according to the following scheme:

= 0 1 2 3

state s p d f
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Table 6.1 The first few associated Legendre functions.

P=1 P)=1(3cos?6—1)
P! =sin@ P} = 15sin6(1 —cos®0)
P) = cos6 1332:155in290050
P} =3sin’ 0 P} = 3sin6 (5cos’6 — 1)

P} =3sinfcos® PY=1(5cos’6—3cos0)

Table 6.2 The first few spherical harmonics.

= (ﬁ)l/z Y2 = (%)l/zsinzeeﬂ"‘l’

Y = (%)1/2 cos 6 YY) = (#)1/2 (5co0s*6 —3cos0)

Y == (%)I/ZSinGei"‘P vitl = (%)1/2 sin@ (5cos®> @ — 1) e™i®
Yy, = (%)1/2 (3cos”6 1) Y2 = (%)l/zsmze cos B ¢*2i®

/2 . ; 1/2 . ;
v =F (82) /2 in @ cos 6 ¢+ Y2 =F (&) /2 in3 0 e*3i®

2. In the s state, £ = 0 and the total angular momentum of the particle is zero. Consequently,
the value of my is also zero. This state is non-degenerate. In the state p, we have £ = 1 and
hence the quantum number m can take three values —1,0, 4 1. Consequently, the projection
of the angular momentum on the z-axis can have three values —#,0, +7, respectively. So,
the p-state is three-fold degenerate. Similarly, the d-state is 5-fold degenerate, the f-state
is 7-fold degenerate, and so on.

Example 6.5.1: Determine the wave function that represents a non-trivial state of a system,
such that it is an eigenstate of L? with eigenvalue 7>/ (L+1)= 24% and also an eigenstate
of L, with eigenvalue 0.

Solution: It is given that an eigenvalue of L. equals 2. That is, #2¢(¢+ 1) = 272, It implies
that £ = 1. Since for £ = 1, the magnetic quantum number m, takes three values —1,0 and
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+1, the given state is three-fold degenerate. The required wave function, y(6, @), will be

a linear combination of the spherical harmonics ¥|" with m = —1,0, 1. Therefore, we can
write

v(8,9) =AY + B! +cy !, (6.5.28)
A,B and C are arbitrary constants. Since this wave function is also an eigenfunction of
i, =5 ;L* with eigenvalue 0, we have

Li+L-

% (ArY + By +cv; 1) =0. (6.5.29)

With the help of the formulae

Leovp = n/(Fm)(E£m+ DY, (6.5.30)

Equation (6.5.30) yields

[BY! + (A+C)Y)+BY, '] =0. (6.5.31)
Since the spherical harmonics are linearly independent, each of the coefficients in (6.5.31)
must be zero. We obtain A = —C and B = 0. Hence, the normalized wave function is

1
0,9)=— (v} -y 1. 6.5.32
v(0.9)=—7 -1 (6.5.32)

Example 6.5.2: A rigid rotator consists of two particles, each of mass m, attached to the
ends of a weightless rigid rod of length a, whose midpoint is fixed in space. The system
can rotate about this midpoint. Let this rigid rotator be free from any external force field.
Find the rotational energy states and the corresponding eigenfunctions of the rotator.

Solution: The energy of the rotator is purely kinetic

I 5 a\? ma

E=lo 1=2m(5) ="5, 6.5.33

2 "2 2 (6::33)

where / is the moment of inertia of the rotator about its midpoint and @ is its angular

velocity. Since L = I @ is the angular momentum about the axis passing through the
midpoint of the rotator, the Hamiltonian is given by

H—i(zmz)—L—2 (6.5.34)
21 o o
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The time-independent Schrodinger equation reads
Hp =E¢, = [*¢=F¢, (6.5.35)

where E’ = 2IE. Equation (6.5.35) is nothing but the eigenvalue equation for the square
of the angular momentum operator in spherical coordinates

L*0"(6,9) =E'0"(6,0), (6.5.36)

which we have already solved. According to the earlier solution, the energy levels of the
rotator are

h 00+ 1
Ej=n\/(({+1), = Eg=(21+>, (=0,1,2,3,... 6.5.37)

The corresponding normalized eigenfunctions are given by the spherical harmonics
Y7"(6,9):

9/'(6.9) =Y/"(6,9). (6.5.38)
Note that the energy levels of the rigid rotator are (2¢ 4 1)-fold degenerate: for a given
value of ¢, there are (2¢+ 1) eigenfunctions: ¥/,¥/ ', ¥/7%,...,¥,”", all corresponding to

the same energy given by (6.5.38).

Example | 6.5.3: A particle is in the state with the wave function

- 1 x+iy 1 222 —x*—y? 3z
Iw(x,y,z)>_A{m e 2 —i—\/E; , (6.5.39)

where A is an arbitrary constant. (a) Find A. (b) What is the average value of the orbital
angular momentum in this state? (c) What is the average value of L, in this state?

Solution: Using the expressions for x, y and z in spherical polar coordinates and the
expressions for the spherical harmonics, we get

1w (6.9)) :A{\@Yl‘)(&@) + \/EYI‘ (6.9)+ \EYQ(M)} : (6.5.40)

(a) The normalization condition for the wave function reads

1 1 1
(viw) = AR {5 02190 + 5 (i 5 () | =1 (6541)

ladapted from N. Zettili, Quantum Mechanics: Concepts and Applications, John Wiley, 2009.
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Using the orthonormality of the spherical harmonics, we get the normalization constant
A and the normalized wave function as

15 _ ]2 y0 NERY /3 yo

(6.5.42)

(b) The average value of the orbital angular momentum is given by

=/ (V|2 v) = \/2><2h2 3(6h2): %h. (6.5.43)

(c) The average value of I:+ is

A A 5 33v8,_1IvV2
L) = (y|L =~ V2h4 = - 5.44
(i) ={Wilyly) = ZVan+ 5 =oh=— (6.5.44)

6.6 Space Quantization

Space quantization is essentially the quantization of the direction of the orbital angular
momentum L in space with respect to the z-axis.

This can be understood as follows. We have seen that, although we can precisely
determine the magnitudes of the total angular momentum L and its projection on the
z-axis L;, we cannot have any information about the other two components (L, and Ly) of
L. Since the knowledge of all the three components of a vector is essential for specifying
its direction, it follows that, in quantum mechanics, the direction of the angular
momentum cannot be specified. One can then ask the question: ‘Does this mean that L
can have an arbitrary direction in space in a given quantum state in which it has precisely
determined magnitude’? The answer is ‘No’. Let us explain. We have established that
both L and L, are quantized. The discrete set of values that L can have are given by

0(£+1), where /¢ is an integer including zero. On the other hand, the discrete values
that L, can have are given by mh, where m = —{,—{ +1,...,£ — 1,¢ is the orbital
magnetic quantum number. It is because of this intrinsic relation between ¢ and m that L
cannot be arbitrarily oriented in space. For a given value of the orbital magnetic quantum
number m, it has to be inclined to the z-axis at a precisely defined angle. This angle, say
0, can take only discrete values given by

0 = cos™! mih = cos~! _n . (6.6.1)
n/Il+ 1) e+
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For instance, consider the state with ¢ = 1. The magnitude of L in this state is V2h. The
values that m can have in this state are —1,0 and +1. Correspondingly, the angular
momentum vector L can be inclined to the z-axis only at three discrete angles 0:

6, = cos™! (\2) , 6, =cos™! (0), 63= —cos™! <\2> . (6.6.2)

In other words, the direction of L in space is quantized. This can be graphically
demonstrated as shown in Fig. 6.1.

Figure 6.1 Graphical representation of the quantization of the direction of Liorl =1,
where the radius of the sphere is equal to L = V2h.

Note that in the Bohr theory of hydrogen atom too the angular momentum is quantized.
However, the situation in quantum mechanics is radically different from the quantization
of angular momentum in the Bohr theory. In the Bohr theory, all the three components
of the angular momentum, Z, are strictly determined and hence, we can talk about the
direction of L in space. In quantum mechanics, however, only one component, L,, of L
is determined, and hence, we can talk of the orientation of the angular momentum vector
only with respect to a chosen axis; its overall orientation in space remains undefined.

In order to further clarify the concept of space quantization, consider once again the
state with ¢ = 1, that is, the p state. There are three eigenfunctions

Wi =sin 9e’¢, Yo =-cosO, y_ =sin Qe ¢ (6.6.3)
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of [? with the same eigenvalue 2%. Since the state is three-fold degenerate, the wave
function, v, of this state is given by the superposition of these three eigenfunctions,that is,

V=Y +oWotcyo, (6.6.4)

where ¢y, ¢y and c3 are arbitrary and in general, complex coefficients.

Because of the isotropy of space, all directions in space are equivalent unless we pick
one of them up by imposing some specific physical condition. Therefore, if we want to
know the projection of the angular momentum along a direction, we must somehow isolate
it in space. For instance, this can be done by switching on a magnetic field parallel to this
direction. If we now measure the projection of L on this direction and find the value +7,
then the state after the measurement will be described by the wave function y; and we
shall have |c1|? = 1, |c2]? = |c3]> = 0 and w = ., that is, L, will have a definite value,
while the other two components of L will be indeterminate. If we now decide to know the
projection of L on some other axis, then we must switch off the magnetic field that was
along the previous direction and switch it on along the newly chosen direction. As a result,
the state preceding the measurement is destroyed and a new state comes into existence in
which, once again, only one component of L can be specified.

Example 6.6.1: Find the angles between the angular momentum vector L and the z-axis,
giving all possible orientations of L for ¢ =3.

Solution: In this case, m = —3,—2,—1,0, 1,2,3. We know that the angle between the angular
momentum vector L and the z-axis is given by

6, =cos | [ — . (6.6.5)
((041)
Therefore, we get

0 3 =cos” <_> 150°, @, =cos™ ! <_2> — 125.26° (6.6.6)
-3 \/» 5 ) 2\/§ . s .0.

6_; =cos” < > =106.78°, 6y = cos”! (0) =90°, (6.6.7)

6, = cos < > 73.23°, 6, =cos”! (2) = 54.73° (6.6.8)
1 . , g 2\/§ . , .0.

6; =cos~ (\f) = 30°. (6.6.9)
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6.7 Matrix Representation of Angular Momentum Operators

We know that 2 and I:Z commute. Therefore, it is convenient to take the complete set of
spherical harmonics {Y;"(8, ¢), which happens to be the common set of eigenfunctions of
[? and L, as the basis set in the Hilbert space.

Obviously, £? and L, are diagonal in this basis

21 T ;.
/ do / d6 sin0 Y2 L2V = 020+ 1)808,0m, 6.7.1)
0 0
2 T .
/ do / d6 sinB Y LY = mhdyiSpm. 6.7.2)
0 0

The diagonal elements of the corresponding matrices L? and L, are h/ (¢+1) and mh,
respectively. The operators L, and L_ do not commute with I.. Therefore, they are
represented by non-diagonal matrices in this basis. In order to determine these matrices,
we shall have to first find the result of the action of the operators L, and L_ on the basis
functions {Y;"(6,¢)}. . R
What we know is that the operators L, and L_, while acting on the eigenfunction of
L., change the value of m by unity. Therefore, we have
Loy =ci vy, (6.7.3)

where Cgim are constants. They can be determined by requiring that the functions Y, Zmil be
orthonormal. It is easy to check that L, and L_ are hermitian conjugates of L_ and L,
respectively. So, we have

21 T R 27 T P

/O do /0 d6 sin0Y;" (LL1)ym = /0 do /0 46 sin0Y;" (L1 )Y".  (6.7.4)
Alternatively,

Tag a6 sinov (LiLoyvy = (cEPR [ de [Ta0sinoy; "= v 67
; (0] ; sin@Y,; " (LLL+)Y)" = |Cy, | ; (0] ; sin@Y, Y= (6.7.5)
Therefore, on one hand, if the functions Yg’”il are to be orthonormal, we have

21 T ) PN L
/0 d(p/o dOsin0Y,"™ (LLL.)Y" =|C}, |", (6.7.6)

On the other hand, using the relations

Ll =1* 1250l (6.7.7)
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Py =+ 1)nyp, (6.7.8)
LY =mnY}", (6.7.9)
we obtain

21 T A 2r T A R R
/ d(p/ desin0Y;™ (LLL.)y" :/ d(p/ de sin@Y;™ (L* — L2 ¥ hl,)Y)"
0 0 0 0

e & « (m'+1)
= [e(+ 1)~ WP em] [ do [ a6 siney; "Dy
0 0

= (IFm)(l+m+1), (6.7.10)

where, besides (6.7.1) and (6.7.2), we have used the orthonormality of the spherical
harmonics given by (6.5.27). If we now compare (6.7.6) and (6.7.10) we get

Chy=m\J(IFm)(I£m+1). 6.7.11)

As a consequence, we have

Loy =n\J(l—m) (I +m+ 1)y, (6.7.12)

Loy =ny/(+m) (I —m+ )y (6.7.13)

A

Since Ly = (Ly +L_)/2and L, = (L+ —L_)/2i, we get

A 1., .
Loy =S[Ly + L]y
h
= - [\/(l—m)(l—}-m—{— 1) ngJrl + \/(l—l—m)(l—m—i— 1) ngl] (6.7.14)
2
A J
Lme = —[LJF —i—L,]YEm

- % [\/(l —m)(I+m+1) Y7 - \/(l +m)(l—m+1) Yg’"‘l] . (67.15)

From (6.7.9), (6.7.12), (6.7.13) and the orthonormality condition for the spherical
harmonics, (6.5.27), we find the matrix elements of f,+, I and ﬁz as
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2 T A
/ do / d0 sinO ;" (Lo¥) =hy/(1=m) (I 4 m+ 1)3uSpper.  (67.16)
0 0

2 T ;o
/ d(p/ desin@Y;™ (L_Y") = h\/(l—i—m) (I—=m~+1)8p¢8 1, (6.7.17)
0 0

2 T A
/ o / 40 sin0Y;" (LYI") = mh Sy (6.7.18)
0 0

With the help of the aforementioned calculated matrix elements, we can easily compute
the matrices corresponding to the operators I? L;, L+, Ly and Ly in a state with a definite
value of the angular momentum,that is, for a given value of £.

Example 6.7.1: Consider a particle in a superposition state with the wave function

1 1
v(6,9)) = \ﬁYr’(e,@HAYH\[SYJ(GJP), (6.7.19)

where A is an arbitrary constant and ;" are the spherical harmonics. (a) Find A so that y is
normalized. (b) What is the probability that a measurement of L, will yield a value L, = 0?
(c) Find the expectation values of 2 and L in this state.

Solution:

(a) For the normalized wave function, we must have

2 T
(v|y) :/ d(p/ doy*(0,90)y(6,0)sin6d6 = 1. (6.7.20)
0 0

Using the orthonormality condition for the spherical harmonics, we get

(yly) = %JrA2 =1l,= A= \E 6.7.21)

(b) The normalized wave function is now given by

1 3 1
v(6,9) = \[SY(‘(OAPH\/?YPJF\/ng(e,cp), (6.7.22)

and therefore the probability of finding the value L, = 0 is

L w3

=, 6.7.23
R (0723
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(c) From (6.7.8), we have

Lly(6.9)) =L* [\/EYII(GAP) + \/§Y1°+ \EYB(GAP)] = 21| y(6.9)).

(6.7.24)

The expectation value of L will be

72
(12) = L) _ o Wl) _ o (6.7.25)

(vly) (vly)
Using (6.7.12), we get

R 6 6
Lilw(6,0)) = \/ngo—i—\/;Yll. (6.7.26)

Therefore, the expectation value of L, is given by

<£+>:<IV‘L+|V’>:‘/6h+\/6h:2\5/§h. (6.7.27)

(vly) 5 5

Example 6.7.2: Consider the case in which ¢ = 1. Find the matrices representing the

operators I?, f,z, Ly, I,and Zy. Show that the matrices L, and L, do not commute. Find
their commutator.

Solution: For ¢ = 1, we have m = —1,0,1 and the joint eigenfunctions of L? and L. are:
[Yll Y 10 , Yl_l} . Therefore, the matrix representing L2 is given by

o) i) 1o o
L>=| @byl Ly LRy =2 0 1 0 [, (6.7.28
(L) (L) Ly 00 1

where we have used (6.5.25) and (6.5.27) to get

2 T
(Y, L2Y™ = mPn(n+ 1)/ d(p/ dO sin@ Y *Y™) = 1*n(n+1) 8,8 (6.7.29)
0 0
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Similarly, by making use of (6.5.26) and (6.5.27), we obtain the matrix representing £, in

this basis:
<Y11’Z‘Z 1> (Yll’ 4 1> <Yll’ 4 1_l> 1 0 0
L= | 0Ly (X Ly (¥ Ly =n|l 0 0 0
IS I IR RS 0O 0 -1
(yyLLyh  (LLy?) (vt "

The matrices, corresponding to L, and L_ in this basis, are calculated to be

L, =+2h , L_=+2n

S OO

1
0
0

O = O
O = O
- O O
o O O

Taking into account that L, = (L. +L_)/2 and L, = (L4 —L_) /2i, we get

s [0 10 s [0 =i 0
Li=— (1 0 1|, Li=—|i 0 —i
V2o 1 o V2\o i o

Now, we have to check whether L, and L, commute or not. We have

2 0O 1 O 0 —i O 2 i 0 —i
L.L,= > 1 0 1 i 0 —i = 5 0 0 O
0 1 0 0 i 0 i 0 —i
On the other hand,
72 0O —i O 0 1 0 2 —1i 0 —i
L)L, = > i 0 —i 1 0 1 = > 0O O
0 1 0 0O 1 0 i 0 i

Clearly, L,Ly # LyL, and hence the matrices L and L, do not commute.
Their commutator is given by

72 i 0 —i —i 0 —i
L.L,—L)L, = > 0O 0 0 |- 0o 0 O
i 0 —i i 0 i
1 0 0
= iw*| 0 0 0 | =inl,,
0 0 -1

as it should be.

(6.7.30)

(6.7.31)

(6.7.32)

(6.7.33)

(6.7.34)

(6.7.35)
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Homework Problems

1.

Calculate the commutators

(a) [£, L], [9,Ly] and [2,L,],
(b) [P L), [Py, Ly] and [p.,L;].
(c) [£,L%], and [p.,L7].

. Use the lowering operator, to find the angular dependence (without worrying about

the normalization) of ¥;*(6,¢) for m = 3,2,1,0. You are given
v}(0,0) = Ae*? sin* 0.

. Use the expression for the spherical harmonics to construct ¥/ (0, ¢) and Y7(6,9).

Check that they satisfy the angular equation for appropriate values of / and m.

. A particle is in the state

2
V5

which is a superposition of the normalized eigenstates, YZ’"(G, ), of the [? operator.
Calculate the value of the total angular momentum of the particle in this state. Also,
calculate the expectation value of the operator L L_ in this state.

P(0.9)+—= Y, '(6.9) — —= Y, (6.9),

1
"l’>:\ﬁY

. A particle moving in a two dimensional harmonic oscillator potential is in a state

described by the wave function

3 (o2 /2 4 ,
‘I/(P"P):\/ﬁa3 ple (p?/2a%) (1—3s1n2q)> sin ¢,

where p and ¢ are the planar polar coordinates and a is a constant. If the projection
of the angular momentum on the axis perpendicular to the plane of oscillation is
measured, what is (are) the possible value (values) that can be obtained?

. Calculate numerical values for the total angular momentum |L|, and L, for the 2p

and 4d states of hydrogen.

. Consider the case when / = 1. Find the matrices representing the operators L in the

basis consisting of the eigenvectors of L, and L.

. Calculate the expectation values (average values) of the operators L, I:y, lﬁ%, and ﬁg,

in the eigenstate ¥;" of L2

. A particle in a spherically symmetric potential is in a state described by the wave

function

w(x,y,2) = Clxy+yz+2x) e @,
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where o is a constant. What is the probability that the measurement of the square of
the angular momentum yields 6/>?

10. Consider an electron for which n = 4, ¢ = 3, and m = 3. Calculate the numerical
value of (a) the orbital angular momentum and (b) the z component of the orbital
angular momentum.

11. The Hamiltonian of a rotator is given by

72 72 £
gttt L
21 2L’
where I} and [, are the moments of inertia about the x-axis and the y-axis,
respectively.
(a) Calculate the energy eigenvalues and the degeneracy of each of the corresponding
energy levels.
(b) What are the energy eigenvalues for the various levels of £ = 3?
12. The Hamiltonian of an axially symmetric rotator is given by
H:2+§+Q
21 ’
where / is the moment inertia of the rotator. Find the energy levels and the
corresponding degeneracies.

13. Calculate the orbital quantum number ¢ and the corresponding energy degeneracy for
a rigid rotator for which the magnitude of the total angular momentum is v/ 72 f.

14. A system is found in the state

’ 15 .
v=Y,00,0)= P sin @ cos 6 cos Q.
If the observable L. is measured in this state, what are the values of L. that the
measurement will give and with what probabilities?
15. Determine the expectation value of L, in the state of a system that is given in

Problem 4.
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16.

17.

Consider a particle of mass  constrained to move on a circle of radius R. Show that
the Hamiltonian of this system is

.12
H=-—"_.
2UR?

Find the eigenvalues and the corresponding wave functions of the system. What is
the degeneracy, if at all, of the eigenstates?

Consider the following 3 x 3 representation of the angular momentum operators

L, [0 10 L [0 =i 0 L (1 0 0
Li=— |1 0 1), Ly=—[i 0 —i|,L,=—41{i 0
V2o 1 1 V2o i 1 V2o 0 -1

of a system in a given state. (a) If L. is measured, what values will obtain? (b) What
are <ix> and <IAJ,2€> in the state in which L, = 1? (c) What is the uncertainty AL, in
this state with L, = 1?



Chapter 7

Simple Magnetic Field Effects

In this Chapter, we shall discuss a few important effects that arise when we consider
quantum mechanical description of motion of a charged particle in an external magnetic
field. We shall confine our discussions to the normal Zeeman effect in the presence of a
constant magnetic field, Aharonov-Bohm effect arising from the gauge invariance of the
electromagnetic fields, and the motion of free electrons in a constant magnetic field
leading to what is known as Landau levels which are important for understanding the
quantum Hall effects.

7.1 The Schrodinger Equation for a Spinless Charged Particle in an
Electromagnetic Field

Consider a particle, without spin, of mass m and charge ¢ in an electromagnetic field.
Classically, the electromagnetic field is represented by the vector potential K(?,t) and the
scalar potential ®(7,¢). In ST units, the expressions for the electric field E and the magnetic
field B are

—

JdA

E=-V®&-—, B=VxA. (7.1.1)
ot
The Lagrangian of such a particle moving in an electromagnetic field is given by
1 ., -
inmv +4q(vV-A) — g, (7.1.2)
The generalized momentum j is given by
dL -
P == =mV+qA. (7.1.3)
av

266
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The classical Hamiltonian is therefore given by

- 1 - 1
H:ﬁ-V—L:m172+qA-\7—5m172—q(\7-A)+q<I>: Emvz+qc1>. (7.1.4)
Since
y=P"9 (7.1.5)
m
we arrive at
= A’ 2
He P g (7.1.6)
2m

Expanding the square, we obtain

L(ﬁ—qﬁ)zzLﬁz—i(ﬁ.fﬂ—ﬁ-ﬁ)%——A? (7.1.7)
2m 2m 2m

The quantum mechanical Hamiltonian operator is obtained from the correspondence
principle according to which we must replace p and K(?,t) by their corresponding
operators. However, in doing so, we have to be careful about the product [3’ - A because 1‘3’
is a differential operator and A is a function of coordinates. By taking into account that for
any function f(x,y,z),

p-(Af) = —inV-(Af) = —inf (V-A)—in&- (V) = —inf (V-A) + (A-P)f. (1.1.8)
we can write the Hamiltonian in the form
H:—hi%%rihﬁ(A’ﬁ)ﬂhi(%.ﬁwq—zﬁ% P (7.1.9)
2m m 2m 2m T o

As we know, the electromagnetic potentials do not determine the electromagnetic fields
uniquely. If we carry out the transformations

A=A+ VA, cp’:cp—‘?;; (7.1.10)

on the potentials, where A(7¢) is an arbitrary differentiable scalar function, the
transformed fields £/ and B’ are identical with the old ones:

, . .
E=-Vd -"— =_Vd+V <M> —?;:—gt(vx) = —Vd)—f;: =E, (7.1.11)
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-

B =VxA =VxA+Vx(VA)=VxA=B. (7.1.12)

This property is known as the gauge invariance of electrodynamics and the aforementioned
transformations of the potentials are known as gauge transformations. In order to fix this
arbitrariness in the choice of the potentials, one of the following conditions

VAJFa;:o, (7.1.13)

A=0, (7.1.14)

<t

is usually imposed on the potentials. When we do that, we say that we have chosen a gauge
to work in. The first of these conditions is known as the Lorentz gauge, while the second
is called the Coulomb gauge.

In what follows, we shall be working in the Coulomb gauge. In this gauge, the
Hamiltonian takes the form

H=—-——V —i—zh—(A-V)—i——A + g. (7.1.15)
2m m 2m

The second term in (7.1.15), proportional to (A' . %) is called the paramagnetic term,
while the third term, proportional to A2, is known as the diamagnetic term. With the
Hamiltonian given by (7.1.15), the Schrodinger equation for a charged but spinless
particle in an electromagnetic field can be written as

] aW(?’t) n’ 2, 9 7= = q2 225 - =
=T, A V) A @ CARI
i 5 - —Hhm( (7,1) )+2m (7,t) +q®(7,t) | w(7,1). (7.1.16)

7.2 The Case of a Constant Magnetic Field

Let Bbea spatially uniform and time-independent magnetic field. The vector potential for
such a field is given by

1

A:—Ewé. (7.2.1)

One can easily check that V x A does produce the required constant magnetic field B.
If we use the aforementioned vector potential, we get the following expression for the
paramagnetic term in the Hamiltonian:

q q

(A-V)= L (#x p)-B=-=(B-L), (72.2)

ih
! 2m 2m

3=

where L = (7 x p) is the angular momentum of the particle.
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Using the well-known identities, G- (b x &) = b- (¢ xd) = &- (@ x b) and @ x (b x
¢) =b(d-¢)—&(d-b), from vector algebra, we obtain the following expression for the
diamagnetic term in the Hamiltonian:

2 2 2 p2
LG 4 (R - 7 BP) = % (2 +?), (723)
where the direction of the magnetic field has been taken to be along the z-axis: B=B2.
Let us compare the order of magnitude of the paramagnetic and the diamagnetic terms
for an electron without spin in an atom. With x> +y? ~ a3, where g is the Bohr radius and
the average value of the z component of the angular momentum is given by (L;) ~ &, we
get the ratio

1
—_ 10°°B = (7.2.4)

(e?/8m,) (x*+y*)B*> e a}B
(e2/2m,) (L)B 4

The realistic fields, usually achieved in laboratories, are of the order of 1.0 7. Thus, the
quadratic term in A is negligible whenever (L;) # 0. Therefore, under laboratory
conditions, diamagnetic effects are smaller than paramagnetic effects for electrons bound
in atoms. However, there do, exist situations in which the diamagnetic and paramagnetic
terms can be of comparable magnitude. For instance, this is the case for free electrons in a
metal. The diamagnetic term is also important under conditions such as those prevailing
on the surfaces of neutron stars: there, fields up to 108 7 occur, which leads to a
considerable change in the atomic structure.
Finally, let us compare the paramagnetic term with the Coulomb energy:

(eBli/2m,) eh

1
= B~435x10°B —, 7.2.5
mecta?/2  (m2c?o?) . T (7.2.5)

where

e < ] (7.2.6)
" dmeghe 137 -

is the fine structure constant. This means that under laboratory situations, the paramagnetic
term is again very small compared to the Coulomb energy.

7.3 The Normal Zeeman Effect

If an atom is placed in an external magnetic field, the atomic energy levels are split.
Because of this, when an emitting or absorbing atom is placed in a uniform external
magnetic field, the observed spectrum changes. This was first seen experimentally by the
Dutch physicist Pieter Zeeman and is hence called the Zeeman effect. Depending on the
strength of the external magnetic field, the phenomenon manifests itself differently in
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terms of the number of spectral lines into which the original spectral line splits. For weak
magnetic fields (B ~ 0.8T or less), it is divided into two classes: the normal Zeeman
effect and the anomalous Zeeman effect. In the normal Zeeman effect, the splitting of
spectral lines is determined by the orbital angular momentum alone, while in the
anomalous case, it cannot be explained in terms of orbital angular momentum alone; one
has to include the spin angular momentum. In fact, the generic nature of the anomalous
Zeeman effect led to the discovery of spin angular momentum. For strong external fields
(B > 1.5 T), the phenomenon manifests itself through what is called the Paschen—Back
effect. In what follows, we shall deal only with the normal Zeeman effect.

Consider for concreteness, the case of a hydrogen-like atom, with a single electron
placed in a uniform external magnetic field B. As discussed earlier, keeping in mind the
intensity of the magnetic field that can be achieved under realistic laboratory conditions, the
stationary Schroédinger for a spinless electron, moving in a Coulomb field in the presence
of a constant magnetic field, takes the form

> . eBoy(F) 2m, . N

\% l//(r)—7 90 Ps) (E-U(7))y(F) =0, (7.3.1)
where U = —e®(7) is the potential energy of the electron in the force field of the nuclear
proton.

Since we are dealing with the motion of a particle in the central force field, we look
for the solution in the form y = y/(r,0,¢) = R(r)©(6)¢ (). Now, let us recollect that
for the central potentials, the function ¢(¢) = e™?, where m is the magnetic quantum
number, and hence, W(r,0,9) = R(r)®(8)e™?. In this case,

ieB dy B

and we obtain
2m, Bh .
Aoy (r.0,0)+ ;_:; (E + Zm m— U(r)) v(r,0,0)=0. (7.3.3)

Equation (7.3.3) can be rewritten in a more familiar form as

2m, .
Aro.g¥(r.0.0) + =5 (E'=U(r)) y(r.6.0) =0, (7.34)
where
B
E =g+ B, (13.5)
2m,

For a hydrogen-like atom, for instance,

Ze?
U(F)=— . 7.3.6
(I’) 471'80}’ ( )
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The resulting equation coincides with the corresponding stationary Schroédinger equation
for the hydrogen-like atom with a modified stationary state energy E’. The solution of this
equation, as we know, will lead to a series of energy eigenvalues E{,E;, E5,....E[,... .
According to (7.3.5),

B
E = E|— < m =E| — haym, (1.3.7)
2m,
where
B
o = <2, (7.3.8)
2m,

is the Larmor frequency.

m=+2
eB

|m=+l / hzme
m=0

m=-1

m=-2

eB

_________ m=+1 ﬁthe
"""" m=0

S m=—1

Figure 7.1 Zeeman effect in an external magnetic field.

Thus, the an energy level E; in the absence of the magnetic field differs from the
corresponding energy level E’ by —%m. Since m can take all integer values from —/ to
+/, each of the energy levels E, which is (2¢+ 1)-fold degenerate in the absence of the
magnetic field, splits up into 2¢ 4 1 discrete energy levels. So far as the wave functions
are concerned, they remain the same as in the absence of the magnetic field. Thus, we can
say that the magnetic field removes degeneracy with respect to the magnetic quantum
number m by displacing the (2/+ 1) coinciding sub-levels with respect to each other in
such a way that the distance between any two discrete sub-levels equals i@,. Evidently,
this distance between the split sub-levels is proportional to the intensity of the magnetic
field and is independent of the quantum numbers n and /.

This equidistant splitting caused by the magnetic field is called the normal Zeeman
effect (see Fig.7.1). Since m takes integer values, each degenerate energy level must split
into an odd number of discrete levels. However, in the hydrogen atom the splitting leads to
an even number of levels, as if the angular momentum were half integrals. This departure
from the general rule (7.3.7) is due to the spin angular momentum of the electron (see
Chapter 8) which takes half-integer values.
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7.4 Transformation of the Wave Function under Gauge
Transformation

We have seen in the previous section that Maxwell’s electrodynamics is invariant under the
local gauge transformation of the potentials given by (7.1.10). In view of this, we want to
find out whether this has anything to do with the wave function of our charged particle and
the differential equation satisfied by the transformed (new) wave function.

Since the electric and magnetic fields do not change under gauge transformation and
they are the measurable physical entities (not the potentials), the wave function of the
particle, interacting with the electromagnetic field, should not undergo any significant
changes that could affect the physical content of the theory. It then follows that, under the
gauge transformation of the electromagnetic potentials, the wave function of the particle
can at most acquire a phase factor. Accordingly, we look for the transformed wave
function y'(7,1) in the following form:

v (7.1) = w(71) A0, (7.4.1)

where A is an arbitrary function to be determined. Our goal is to determine A and the
differential equation that is satisfied by y'(7,1).

Before the gauge transformation of the potentials is carried out, the wave function, in
the Coulomb gauge (6 -A), satisfies the Schrédinger equation

. 8W(?’t) ﬁ2 qz 29 4,2 2 .
=15, 7,4 —(A-V 7) + q® . 42
4 ot 2m+2m +lhm( )+V(l’)—|—q W(r’t) (7 )

To determine the equation satisfied by y'(7,1), we proceed as follows. The time and space
derivatives of y’(7,) are

. a‘lf . 31[// IA 1Y —iN(Fp)

2 d 2 N — x4 [ N (AT 1 —iAF)

ind (A.-Vyy =in {(A'V)q/ z(A.VA)q/} e : (7.4.4)
m m

_i*z 24! ~h2 Y, AL ﬁ 2 /
. 1//—[ Vay' +i— (VA Vl//)+12m(V A)y

+ = (61\)2‘//,] e—iA(?,t)’ (7.4.5)
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Substituting for y in (7.4.2) from (7.4.1) and using (7.4.3)—(7.4.5), we obtain

. al//, _ h 72 12 h2 oA, 97 O / -hz w2 /
- oA
+z—(VA V)y' —Hh%( Vv + V(R + (qq)—hat> v (14.6)

Note that if A = A (7,1), then the transformed wave function takes the form
v (R.1) = w(R1) e nr ), (7.4.7)

Consequently, in the Coulomb gauge (6 .A = 0), (7.4.6) can be rewritten as

29

/

al// q 22 =2 /
= .V
5 2m+2 A" +in- ( )+ V(7)) +q®P

in v/ (71), (7.4.8)

where the primed potentials are the gauge-transformed potentials:

A=A+VA, & = c1>—aa’tI (7.4.9)

and we have taken into account that V2A = 0 due to the Coulomb gauge condition.

It follows from these discussions that if, along with the gauge transformation of the
electromagnetic potentials, we transform the wave function by multiplying it with a phase
factor ¢/4*("*) that contains the same function A(7,t) which is used for the gauge
transformation, the new wave function satisfies the same Schrodinger equation (7.4.2)
(which is satisfied by the wave function prior to the gauge transformation) but with the
gauge-transformed potentials.

Thus, the gauge transformation induces an additional space-and time-dependent phase
factor into the wave function. However, the change in gauge has no observable physical
consequences, since the probability density, | y/|?, and the average values of the observables
do not change.

7.5 The Aharonov—Bohm Effect

The form invariance of the Schrodinger equation for a particle under the gauge
transformation of the potentials and the induction of an additional phase into the wave
function of a charged particle in an external electromagnetic field lead to an observable
physical phenomenon which is known as Aharonov-Bohm effect.

Consider a charged particle, of mass m and charge ¢, travelling along a path L; from a
point P to another point P; in a region in which the magnetic field is identically equal to
zero: B = 0. However, the vanishing of the magnetic field does not imply that the vector
potential A is zero. For instance, in the case of an infinitely long solenoid, the magnetic
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field is confined inside the solenoid and is identically equal to zero outside. However, in
the region outside the solenoid, A can be expressed as the gradient of a scalar field A (7):

A= 61, (7.5.1)
so that
PR
A= A-dl. (7.5.2)
Py

Now the wave function in the field-free region can be obtained by solving either (7.4.2)
or from the gauge transformed equation (7.4.8). Note that if we choose —A(7,7) as the
function to gauge transform the potentials, the vector potential can be made to vanish in
our field-free region

= —

A =A-VA=0. (7.5.3)

Furthermore, since there is no electric field present here, we can set ® = &' = 0 and the
wave function can be found by solving either (7.4.2) in which the scalar potential is
absent or from the gauge-transformed equation

A

ﬁZ / /
. +V (r)] v'(71), (7.5.4)

/

dy
ot

in

in which both the potentials (the vector as well as the scalar potentials) do not occur. The
relationship between these wave functions is obtained by replacing A in (7.4.7) with —A:

v(7.1) = v/ (71) exp [—iZ/LA'Jz} , (7.5.5)

where y’(7,t) is the wave function in the potential V (¥) with magnetic field B identically
equal to zero in all space.

Let us go back to our charged particle moving along the path L;. In view of the
aforementioned result, in traversing the path from P; to P, the wave function of the
particle will acquire a phase

P,
1 [17%.4 (7.5.6)

hS
|
[
~

If we consider another path L, with the same end points but traversed in the opposite
direction, the phase accumulated by the wave function will be

q Py [
A-dl, (7.5.7)
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P

Py
Figure 7.2 Closed path traversed by the particle in the field-free region.

where the minus sign is due to the reversed direction traversed along L. Therefore, the
total change in phase of the wave function traversing the closed path, from Py to P, and
back to Py (see Fig.7.2), will be given by

Acp:<p1+<p2:Q?§K- /% x A)-di = q/Bd (7.5.8)
hJr h

where the line integral runs over the loop from P; to P, and back to P and the surface
integral, according to Stokes’ theorem, is over the surface S enclosed by this loop. Thus,
Ag is proportional to the flux of the magnetic field, through the surface S. Hence, in the
absence of the magnetic field the total change in the phase of the wave function is zero.

If, however, the loop encloses a region of non-zero magnetic field, confined within a
small region inside, the flux through the surface enclosed by the loop will be non-zero and,
hence, even if there is no magnetic field along the paths L; and L,, the net change in the
phase of the wave function will be non-zero.

To show the physical consequence of this magnetic flux dependent phase shift, consider
the double slit electron interference experiment, shown in Fig.7.3, in which the magnetic
field is confined to the interior of the ‘infinitely’ long solenoid', perpendicular to the plane
of the figure and depicted by a circle.

The electrons emitted by the electron gun are incident on the wall with two slits 1 and 2
as shown in Fig.7.3. A current carrying ‘infinitely’ long solenoid is placed behind the wall
containing the slits and screened by the part of the wall between the slits. Because of this
screening, the electrons are restricted to the region B = 0. Let ¥ (7) be the wave function
when only slit 1 is open. Then, according to (7.5.5), we have

o (0) e [ - -
vi(F) =y, (Ft) exp |i— A-dl|, (7.5.9)
hJp—1

g, Munley, Am. J. Phys., v. 53, p. 779, 1985.
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Screen

Electron gun Long solenoid

Figure 7.3 The electron interference experiment in which the electron cannot penetrate
into the region of the magnetic field.

(0)

where y; " (7,1) is the solution of the field-free Schrodinger equation and the line integral
runs from P through slit 1 to the point Q on the screen. Similarly, the wave function v, (7),
when only slit 2 is open, is given by

o (0) e ¢ - -
W (F) =y, ' (Ft)exp i A-dl|, (7.5.10)
hJp—2

(0)

where y, " (7,1) is the solution of the field-free Schrodinger equation and the line integral
runs from P through slit 2 to the point Q on the screen. Now, the wave function y1,(7),
when both the slits are open is given by the superposition of the wave functions y; (¥) and

va(71):

o . .
A-dﬁ]. (7.5.11)

e . .
v (F) = 1//1(0) (7,1) exp [ie/ A-df} + l//z(o) (7,1) exp [ie
hJp hJp—2

—1

Using (7.5.8), yi2(7) can be written as

Q

v (7) = ( O 7 1) exp [i%%} + oyl (?,t)) exp [z; X-Je] , (7.5.12)

P—2

where ¢p is the flux of the magnetic field through the surface, S, enclosed by the loop
P—-1—-Q—>2—PF:

0p = /SB'-da. (7.5.13)
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Thus, the relative phase between the wave functions y;(7) and y»(7,7) changes in the
presence of a narrowly confined region of a magnetic field, behind the wall containing the
slits. As a consequence, the position of the resulting interference pattern on the screen
shifts relative to the interference pattern in the absence of the magnetic field, although the
electrons cannot penetrate into the region of the magnetic field of the solenoid. This
phenomenon was predicted by Aharonov and Bohm in 1959 and is known as
Aharonov—-Bohm effect. The prediction was experimentally confirmed within a few
months by Robert G. Chambers in 1960.

7.6 Free Electrons in a Magnetic Field: Landau Levels

Let us consider the problem of a free (unbound) electron interacting with a static and
uniform magnetic field. This study leads to the concept of Landau levels, which is crucial
for the understating of phenomena, like Landau diamagnetism, de Haas—von Alphen effect
and the integer quantum Hall effect.

Consider a spinless electron moving freely in the xy-plane and subject to a static
magnetic field, B= By lAc, directed along the z-axis, where By is constant. We want to solve
the stationary state Schrodinger equation for the electron and determine energy
eigenvalues and the corresponding wave functions. To accomplish this task, we first need
to specify a gauge potential A such that V x A = Bok. Clearly, this can be done in several
ways. In the given problem, though, it is convenient to work in the so-called Landau
gauge, in which

A =Byx]. (7.6.1)

It is trivial to check that V-A =0 and V x A = Bok. Tt is also worth mentioning here that
the given magnetic field B is invariant under translations and rotations in the xy-plane.
However, our choice of A is not; it breaks the rotational symmetry and the translational
symmetry in the x direction. But, there is nothing to worry about—although the
intermediate calculations will not be manifestly invariant, the physics will be invariant
under all symmetries. This kind of compromise is inevitable while dealing with magnetic
fields.
The Hamiltonian for our electron in the Landau gauge takes the form

a

5 2\? I o, 0 A 22
o (p + eA) =5 (px + Py + 2eBoxpy +e BO) . (7.6.2)
Note that the Hamiltonian commutes with p,; they both share a common set of
eigenfunctions. Since the eigenfunctions of j, are plane waves propagating along the y

direction, we look for the solution of the stationary Schrodinger equation

1 A A A
S (P o+ P2+ 2eBoxp, + ¢*B3) w(x.y) = Ew(x.) (7.63)
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in the following form

w(xy) = e ¢ (x). (7.6.4)
where k, = k = p,/h. Since

A : J ikyy iky

Prwlny) = —in g (% 0x(x)) = (k) € g (x) = Ak y(x.), (7.6.5)
the Schrédinger equation (7.6.3) takes the form

n* 92 +e233 nK?
2m dx>  2m

x% + 2 eBylik x + Zm) O (x) = E ¢ (x), (7.6.6)

which can be re-written as

n 0% B} ik \*
[—2m 2t 2, <x+ eB()) O (x) = E ¢ (x), (7.6.7)
or,
n”oo? 1 2
[_Zm R Ea)f (x+kt3) ] P (x) = E ¢i(x), (7.6.8)
where
W, = é and (g = E, (7.6.9)
m eB

are the electron’s cyclotron frequency and the magnetic length, respectively. Note that
the cyclotron frequency, @, is just the classical frequency of the orbital motion of the
electron in a magnetic field and ¢ is a characteristic length scale that governs any quantum
phenomena in a magnetic field.

Equation (7.6.8) is nothing but the Schrodinger equation of a harmonic oscillator in the
x direction, which is centred at x; = —ké%. Using this fact, we can now straightaway write
down the energy eigenvalues

E, = ho, <n + ;) , (7.6.10)

where n can take any integer values including 0 and k € R. These energy levels of a free
electron in a constant magnetic field are equally spaced and each of them is proportional
to the magnitude of the magnetic field. They are known as Landau levels.
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The corresponding wave functions can be written as
Yk (6,y) = Ce™ H, (x+ ) e~ 05 /205 (7.6.11)

where x; = k(% is the classical centre of the electron’s orbit and C is a constant to be
determined by normalization. Here, H,(x + x;) is the the usual hermite polynomial of
degree n. We notice that the wave functions depend on two quantum numbers n and k
but the energy levels depend only on n. Since we can have many different k, = k all
with same E,, each of the Landau levels is highly degenerate. In order to understand
this degeneracy consider a finite region in the xy-plane with extensions L, and L, along
the x and y directions. Since there is translational invariance along the y direction, we
assume periodic boundary condition: y(x,y+Ly) = y/(x,y). Then the allowed values of
k— vectors are

21
k= L—ny, ny=0,1,2,3,...

Y

Hence the allowed values of x; are separated by

202
Ax =03 Ak = :B.

So, the total number of states in the region is

L., eB

T 2md 2@

where A = L,Ly is the area of the region under consideration. It means that each Landau
level has 1/27¢% states per unit area.

Finally, note that although we treated x and y asymmetrically for convenience of
calculation, in reality, we cannot distinguish between the two due to the symmetry of the
original problem with magnetic field in the z direction.

Homework Problems

1. Consider a particle of mass m attached to a rigid massless rod of fixed length R whose
other end is fixed at the origin. The rod is free to rotate about the origin. The particle
has no internal spin degree of freedom, but carries an electric charge +e. It is placed
in a uniform magnetic field B. Using the principle of minimal substitution, write
down the Schrédinger equation for this charged rigid rotator.

2. The Schrodinger equation in the first question can be solved exactly if the magnetic
field is weak. Compute the energy levels of the system , assuming that the magnetic
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field is weak (i.e., assume that the term in the Hamiltonian that is quadratic in B can
be neglected).

3. For B = Byk, where By is a constant, show that the resulting Schrodinger equation,
in the previous Problem 2, is exactly solvable. Find the solutions.



Chapter 8

Quantum Mechanical Theory of the Spin Angular
Momentum

8.1 Spin

Spin angular momentum or simply spin is a fundamental property of all particles,
irrespective of whether they are elementary or composite. It belongs to an internal degree
of freedom (completely independent of the spatial degrees of freedom) and manifests
itself as some intrinsic angular momentum of the particle. It was introduced in quantum
mechanics as an attempt to explain the experimentally observed fine structures of the
spectral lines in the emission spectra of alkali metals and the peculiarities involved in the
anomalous (complex) Zeeman effect that showed the unusual splitting pattern of atomic
energy levels in the presence of a weak external magnetic field. Note that all efforts, prior
to the conjecture about spin, to explain the aforementioned experimental results on the
basis of the Schrodinger equation without spin had miserably failed.

An atom of any of the alkali metals has an almost inert core, consisting of the nucleus
and (Z — 1) inner electrons, together with a single outer electron. The transitions of the
outer electron between energy levels are responsible for the aforementioned spectral lines.
Therefore, any additional property required to be postulated for the explanation of the fine
structures of the spectral lines or anomalous Zeeman effect, had to be attributed to the
valence electron. It is because of this reason that Uhlenbeck and Goudsmit put forward
their conjecture about electron’s spin. They assumed that, similar to Earth’s spinning
motion about its axis, an electron, in addition to its orbital motion about the nucleus, also
possessed a spinning motion about its axis of symmetry. The angular momentum related
to this spinning motion was given the name ‘spin’. Uhlenbeck and Goudsmit also
assumed that, analogous to the magnetic dipole moment related to the orbital angular
momentum, an electron possessed an intrinsic magnetic dipole moment associated with
the spin angular momentum, whose interaction with the external magnetic field was the
key for resolving the discrepancies. Later theoretical and experimental developments did
confirm the existence of spin.

281
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It is worth mentioning here that, conceptually, the spinning motion of an electron,
proposed by Uhlenbeck and Goudsmit, was highly questionable in view of the fact that an
electron was a point particle and the classical notion of angular momentum of a rigid
body did not apply. However, as we know now, the theory constructed on the basis of such
an ad hoc assumption did succeed in explaining the experimental results to a great degree
of accuracy.

8.2 Spin Operators and their Commutation Relations

Spin is denoted by a vector S. As required by the rules of quantum mechanics, it is

represented by an operator S with Cartesian components S, §y and S.. Since it is a kind of
angular momentum, the operators S, S'y and S, must satisfy the same set of commutation
relations that is satisfied by the Cartesian components of the orbital angular momentum.
Consequently, we have

[$,,$,] = ihS., (8.2.1)
[$y,S,] = inS,, (8.2.2)
[S.,8,] = inS,. (8.2.3)

Given the commutation relations (8.2.1)—(8.2.3), it is straightforward to check that $?
commutes with each of the operators §,, S, and S, that is,

§,]=0, [§%5,]=0. (8.2.4)

From (8.2.1)~(8.2.4), it follows that only 2, and hence the magnitude of the total spin,
and the projection of spin on a given axis, say §;, can be specified simultaneously in a
given state of the particle. The other two components S, and Sy of S cannot be specified at
all. Thus, the orientation of spin in space, in general, cannot be defined. It can be defined
only with respect to a chosen axis. Also, similar to the case of orbital angular momentum,
the direction of spin in space is quantized and we have the second example of space
quantization.

Further, since [$2,5.] = 0, the operators S2 and S, can have a common set of
eigenvectors, |s,my), characterized by two quantum numbers s and m,. The quantum
number s is called the spin quantum number and takes integers as well as half-integer
values. On the other hand, the quantum number m is called the spin magnetic quantum
number and takes (2s+ 1) values from —s to s. Similar to the case of orbital angular
momentum, the eigenvectors |s,m;) satisfy

S2|s,my) = s(s+1)

8, M), (8.2.5)

S’Z\s,ms> = himg|s, my), (8.2.6)
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and

S |s,my) :h\/s(s+1) —mg(mg £ 1)]s,my), (8.2.7)

where S = S, + iSAy are the raising and lowering operators for spin. Also, in a given state
with quantum number s, the magnitude of spin is given by S = /s(s+1)i. The z
component of spin is quantized, S, = myh, and takes (2s+ 1) different values.

Now, the magnetic dipole moment associated with spin is given by

fy=——3§, (8.2.8)

where e is the magnitude of the electronic charge and m, is the mass of the electron. As
a consequence, the Hamiltonian for an electron, with spin, in an external magnetic field B
along the positive z direction, will have a potential energy term

L. eB 1B
AW =i, B=5.=¢

M ne

M. (8.2.9)

As a consequence, the original energy levels will be shifted by (e B/m,) ms. Since m;
takes (2s+ 1) values, the original degenerate energy level will split into (25 + 1) distinct
levels.

Note that unlike the case of orbital angular momentum where the boundary conditions
on the eigenfunctions allowed one to exclude the half-integer values of ¢, for the spin
angular momentum, there is no such restriction and s can take both the integer and the
half-integer values in the units of 7. We shall see in the next chapter that nature supports
both kinds of particles: particles with integer spin, called bosons, and particles with half-
integer spin, called fermions. For instance, photons (s = 1), m-mesons (s = 0), gravitons
(s = 2) and so on are bosons, while electrons (s = %), protons (s = %), neutrons (s = %),

delta particles (s = %) and so on are fermions.

8.3 Spin and Pauli Matrices

Let us consider the famous Stern—Gerlach experiment (schematically shown in Figure 8.1)
in which a beam of silver atoms in their ground state was made to pass through a region
of inhomogeneous magnetic field in the direction perpendicular to the direction of the
field. At the exit from this region, the beam was collected on a screen. The results of the
experiment showed that the original beam split into two after passing through the region of
the inhomogeneous magnetic field. It was evident from the pair of spots that appeared on
the screen, symmetrically placed on either side of the central spot that would have occurred
in the absence of the magnetic field.
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It was argued that the splitting of the beam could take place only if silver atoms had
some magnetic moment subject to a force from the applied magnetic field whose direction
depended on the relative orientation of the magnetic field and the magnetic moment of the
atom. In this context, it is important to note that a silver atom has 47 electrons out of which
46 constitute the spherically symmetric charge distribution around the nucleus: they fill all
the sub-shells for n = 1,n = 2, and n = 3, and the 4d sub-shell and contribute nothing to
the orbital angular momentum of the atom. The 47" electron is in the 5s state and it cannot
have any orbital angular momentum too. Thus, a silver atom in its ground state does not
have any orbital angular momentum and hence there is no magnetic moment associated
with it, which can lead to the splitting of the atomic beam during passage through an
inhomogeneous magnetic field. Therefore, it was argued that the splitting of the beam into
two could happen only if silver atoms had some kind of an intrinsic angular momentum
(not at all related to orbital motion) and a magnetic moment associated with it. But then,
this intrinsic angular momentum had to be attributed to the valence electron in the 5s sub-
shell because of the reasons stated earlier. We shall keep this fact in mind while discussing
the consequences of the Stern—Gerlach experiment.

Z
y
X
<
Source of silver atoms Spin-u
: - o
@--.lllll! H e——- O
<

/ Spin-down
Inhomogeneous magnetic field E

along the z-direction Magnet

Figure 8.1 Schematic representation of the Stern—-Gerlach experiment.

Since the beam split into two, it follows from the theory discussed in the previous section
that

1
2s+1=1 = s= 7 (8.3.1)

Therefore, for an electron, the spin quantum number s = % and the spin magnetic quantum
number m; can take only two values: —i—% and —%. It means that the eigenvalue of 57 is

equal to (3/4) 12, and the projection of spin on the z-axis can have two values +%/2 and
—h/2. Given these facts, we shall now try to construct the quantum mechanical theory of
an electron by taking into account its spin properties.
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We know by now that spin is a purely quantum mechanical property of a particle with no
classical analogue at all. Also, the spin degree of freedom is completely independent of the
spatial degrees of freedom. Therefore, new concepts and mathematical tools are required
to incorporate this novel aspect of motion into the formalism of quantum mechanics. Let
us see how it can be accomplished.

Since the state of an electron is characterized by two values, +%/2 and —#/2, of the
projection of its spin on the z-axis, the wave function of the electron must consist of two
components: . (7,t), corresponding to S, = +h/2, and y_(7,1)corresponding to S, =
—h /2. It is convenient to write it as a column vector:

+(7,
l//(?,t)=< z&g ) (8.3.2)

Note that if only y (7,7) is non-zero, it corresponds to the case when the projection of
electron’s spin is along the positive z-direction, and if only y_(71) is non-zero, the
projection of the electron’s spin is along the negative z-direction. A general state, y, is a
superposition of these two states.

After defining the state of an electron with spin, we must now determine the operator S
corresponding to the dynamical variable S. Since, S acts on vectors belonging to a
two-dimensional Euclidean space, it must be represented by a 2 x 2 matrix. Evidently, its
Cartesian components, Sy, Sy, and S, will also be a 2 x 2 matrix.

Following Pauli, let us introduce a new vector matrix G =60+ 6, ]+ 6.k by the
formula

S—_8&. (8.3.3)

(SR
Qb

Replacing the Cartesian components of S'in the commutation relations (8.1.1)—(8.1.3) with
the corresponding Cartesian components of &, we get the commutation relations satisfied
by the ¢ matrices:

[61.6,] = 2i6., (8.3.4)
[6,.6.] = 2i6,, (8.3.5)
(6., 6] = 2i6,. (8.3.6)

Let the axis for the projection of spin be the z-axis in an arbitrarily oriented Cartesian
system of coordinates. Then the eigenvalues of S, will be +7/2 and —//2. Therefore, the
eigenvalues of 6; will be 41 and —1. It means that the operator 6, must be represented by
a diagonal matrix with diagonal elements 41 and —1, that is,

X 1 0
oZ:< 0 i ) (8.3.7)
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and 612 will be a 2 x 2 unit matrix. This is usually called the S,-representation for the
sigma matrices. It then follows from the isotropy of space (equivalence of all the directions
in space) that the matrices 672 and é'yz will also be 2 x 2 unit matrices with eigenvalues 1,
that is,

A2 A2 A2 1 0
Gx—y—z—l—<0 1>. (8.3.8)

= 6,(6,6, — 6,6,) + (6,6, — 6.6,)6, = 0. (8.3.9)

Taking into account the commutation relations of o-matrices, we obtain
2i(6y6,+ 6,6y) =0. =  6:6,+6,6,=0. (8.3.10)
This means that the matrices 6y and &, anti-commute. Similarly, one can prove that all

the o-matrices anti-commute with each other. This property along with the commutation
relations leads to the following useful formulae

6,6, = —6,6, = 6., (8.3.11)
6,6. = —6.6, = i6,, (8.3.12)
6.6, = —6,6, = i6,. (8.3.13)

If we multiply the first of the aforementioned relations by 6, from the right, we arrive at
the identity

6.6,6, = il (8.3.14)

which will be useful later.

Let us determine the concrete expressions for the sigma matrices. The general form of
6, can be written as

@:(m ”), (8.3.15)

asz a4
where the matrix elements aj,a;,a3 and a4 are, in general, complex and have to be
determined using the basic properties of the sigma matrices.

First of all, 6, must be hermitian, that is, 8, = 8. It gives a] = aj,a}; = a4 and a} =
az,a; = ap. That is, the diagonal elements are real and the off-diagonal elements are
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complex conjugate to each other. Since 6y and 6, anti-commute, that is, 6,6, = —6,6;,
we have

a T@ y_( a4 @ (8.3.16)
as —day4 as ay ’ o

Therefore, a; = 0 and a4 = 0. Using the property that 63 =1, we get

wmaz 0 (1 0 B B
< 0 a3a2>_<0 1) = @eu=an=1 (8.3.17)

Since a, = ag and a3 = a;, we conclude that |a;|? = |a3|*> = 1. Therefore, a, = ¢/* and

a3 = e~'*, where « is an arbitrary real constant. Since, without any loss of generality, we

can put o equal to zero, we have

~ (0 1

6y = < 1 0 > (8.3.18)
Now using the relation i6, = 6,6;, we obtain

~ (0 —i

6y = ( P00 ) (8.3.19)

The matrices

~ (0 1 ~ (0 —i ~ (1 0
Gx—<1 0>,Gy—<i 0),@-(0 _1>, (8.3.20)

are called Pauli matrices in the S, representation and along with the unit matrix

1 0
I = ( 0 1 > (8.3.21)

form the basis in the space of 2 x 2 matrices. Any 2 X 2 matrix can be expanded as a linear
combination of these matrices.

Now consider 6. Its eigenvalues are 1. In the state corresponding to the eigenvalue
+1, the spin of the electron points along the +z-axis and we call it spin-up state. Similarly,
in the state corresponding to the eigenvalue —1, the spin of the electron points along the
—z direction and it is called the spin-down state. The eigenfunctions of 6, with eigenvalues
+1 and —1, respectively, are readily computed as

L (1 /0
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Let us check whether these spin functions are eigenfunctions of 6, and &y or not. We have

e (0 ) (3)=(9)-x 8329
6XXZ_:<(1) >(?>:<é>:xj, (8.3.24)
cm;:( ? _Oi ) ( é ): ( (1. )zixz, (8.3.25)
&yx. = < ? _(f > < (1) ) = ( 'é > = —iy" (8.3.26)

These results tell us that, in the states described by the eigenfunctions . and x. of &,
only S, has definite values equal to 7 /2. The projections of spin on the x-and y-axes are
completely unknown. This is nothing but the consequence of the fact that the matrices 6,
6, and 6; and hence the spin matrices, Sy, S, and S; do not commute with each other.

)

O =

Example 8.3.1: (i) Find the eigenvalues and the eigenvectors (eigenfunctions) of the
matrices 6, and &,. (ii) Show that irrespective of the direction of a chosen axis, the
projection of spin on the axis can take only two values equal to +7/2.

Solution:
(i) The characteristic equation for & reads

'O—A 1

— 32 _ 1
1 0— 2 '—l 1=0. (8.3.27)

Therefore, the eigenvalues of 6, are A = +1. Let

a
( b ) (8.3.28)

be the eigenvector of 6,. Then for A; = £1, we have

0 1 a a
(00)(2)=2(8) = bose 5329

Thus, the eigenvectors of G, corresponding to the eigenvalues A} = +1 and A, = —1
are

=) w=gd)
w=75l1) w=7 1) (8.3.30)
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respectively. Similarly, the eigenvalues of 6, are A = +1 and the corresponding
normalized eigenvectors are given by

1 /1 I A
xj=ﬁ<i), xy:ﬂ<_i>. (8.331)

(ii) Since G =16, + féy + k6., the projection of G on an arbitrarily oriented axis with
directional cosines, £,m and n, is given by the matrix M = {0, + moy + no;, or

n {—im
M = < Cim —n > (8.3.32)

The characteristic equation for the eigenvalues A of M reads

n—A {—im
(+im —(n+A)

’:AZ—(£2+m2+n2) =A2—1=0, (8.3.33)

where we have used the property of the directional cosines, namely, > +m? +n> = 1.
From (8.2.33), we get the eigenvalues of M to be £1. It means that the eigenvalues of
the operator corresponding to the projection of spin S on this axis will be
Stmn = £h/2. Thus, irrespective of the direction of the chosen axis, the projection of
spin on that axis can take only two values +7/2. Thus, we see that Pauli matrices
(0x,0y,07) and the related spin matrices (Sy,Sy,S;) satisfy all the requirements of
quantum mechanics and are consistent with the experimental results.

Example 8.3.2: Find the eigenvalues and eigenstates of the spin operator S of an electron in
the direction of a unit vector 7 that lies in the xy plane making an angle 6 with the x-axis.

Solution: The projection of the spin operator Son A will be S, = %6,1, where

A 0 cos B 0 —isin® \ 0 0
On = ( cos O 0 >+< isin@ 0 ) - < 0 0 ) (8.3.34)

The requirement of non-trivial solutions to the eigenvalue equation for 6, yields

-y efie

o S, =0 = A==l (8.3.35)

Hence, the eigenvalues of the operator S, are j:g.
For the eigenvectors of S,,, We have

0 e a\ [ be N\ __i8/2 g . .i8/2
(60 57 )(5)=(tm )=2(5) = a=eoro=sen

(8.3.36)

SR
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where the + signs in b correspond to +7#/2, respectively. The normalized eigenvectors of
Sy, corresponding to the eigenvalues +7/2, are

. 1 e—ie /2 B 1 e—i9/2
Xn _ﬂ< £i0/2 ) Xn —\@< _0i0/2 ) (8.3.37)
Before proceeding further, let us summarize the basic properties of sigma matrices and
write down some useful formulae that are easily derived from them. We have

L. ,j 6, Tr(6;) =0, det(6) =—1 (k= x,y,2), (8.3.38)
11. =1, (k=x,y,2), (8.3.39)
11, a,-ak = igjby (j # k), (8.3.40)
IV. 6,6+ 6.6; =0 (j #k), (8.3.41)
V. [6},6¢] = 2igj 6 (j.k,l =x,y,2), (8.3.42)

where [ the 2 x 2 unit matrix, € ikt 1s the Levi-Civita tensor density and the summation from
1 to 3 over the repeated index, ¢, is implied. The properties in (8.2.39) and (8.2.41) can be
combined together as

[6),6¢]+ =208, (8.3.43)

where [6, 6;] - stands for the anti-commutator of &; and 6; and & is the Kronecker delta.
On the other hand, the properties in (8.2.39) and (8.2.40) can be combined together into a
single formula

6j6k = 5jk-|-i8jkg@g. (8.3.44)

where once again summation from 1 to 3 over ¢ is implied.
Because the spin and spatial degrees of freedom are completely independent, the spln
operators S x,S and S, commute w1th the position operator 7, the momentum operator p

and the angular momentum operator L.

N
A

GR] =0, S5, =0, [$,L]=0, (jk=xz). (8.3.45)

The next question that we may ask is: “How do we write the wave function of an electron
by taking into account its spin properties”? The answer to this question is as follows.
Because of the independence of the spatial and the spin degrees of freedom, the total wave
function of the particle is the product of the spatio-temporal part, y(7,¢), and the spin part,

x(S):

y(76;8) = w(R1)x(S). (8.3.46)
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Or, taking into account our earlier notation given in (8.2.2), the same can be written as
+ +
w(71:9) :( v ): l//(?,t)( X ) (8.3.47)

where the spin functions Y+ and y~ correspond to spin-up and spin-down cases,
respectively.
In Dirac notation, it can be written as

lw(71;8)) = [y(7.1)) @ |s.my), (8.3.48)

where s is the total spin and m; is the spin-magnetic quantum number. The spin functions,
|s,my), are given by

11 11
oo, o T=ls o). 3.4
x ‘2,2>, x ‘2, 2> (8.3.49)

Example 8.3.3: An electron is in the spin state

xX=A < 12 ) : (8.3.50)
(a) Find the constant A. (b) If a measurement of S, is made on the electron, what is the
probability of getting the value S, = —% ? (c) If, instead, a measurement of S, is carried

out, what is the probability of getting the value S, = %?
Solution:
(a) The normalization of the wave function reads

; 1
AR( =i 2 )( ' >:1, > SAP=1 = A=, (83.51)

(b) To find the answer, we have to expand J in terms of the complete set of eigenvectors of
6, thatis, y = By.” +C ., where B and C are arbitrary complex constants. A little
bit of algebra gives, B =i/+/5 and C = 2/+/5. Therefore,

= ()2 ()
1= Br \G<0>+\6 ) (8.3.52)

The probability, P,(—%/2), of obtaining S, = —2 is therefore given by

. 4
P(—1n/2)=|(x) 21> =ICI* =

5 (8.3.53)
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(c) In this case, we have to express x in terms of the complete set of eigenvectors of &y,
thatis, y = D x;r +E X, , where D and E are arbitrary complex constants. We get

(Db (D) e

The probability, P,(%1/2), of obtaining Sy = % is therefore given by

1

P(1/2) = (% )|> = ID]* = 10 (8.3.55)

Example 8.3.4: Consider the spin state of an electron in the previous problem. (a) Find the

expectation values of S‘x,ﬁy and S’Z. (b) Find the uncertainties in the measurements of the
observables Sy, Sy and ;.

Solution:

(a) The normalized spin wave function is given by

_ L[
x_ﬁ<2>. (8.3.56)

Therefore, the expectation values of Sy, §y and S, are given by

A A Aol 0 1 [
— AT A —
<Sx>—xSxx—2><5( i 2)<l O><2>_0, (8.3.57)
. A o1 0 —i i 2
— o — v ( = E—
<y)—xSyx_2><5( i 2)(1, 0 ><2>_ h, (8.3.58)
A A o1 1 0 i 3
— AT — v _( = - _=
(S ="y =3 x5 ( i 2)<0 _1><2>_ o (8.3.59)
(b) The average values of $2 §§ and Sg are given by
o e en B
() = (Sy) = (Sv) = (8.3.60)

Therefore, the uncertainties in the measurements of §x,§y and S, are given by

2
ASy = <§§>—<§x>2=\/%— zg, (8.3.61)



Quantum Mechanical Theory of the Spin Angular Momentum 293

2
AS, = (8 — sz [ Al 3y (8.3.62)
y yITY 4 25 107 .

AS, =/ ($2) = (§,)2 = | — — —h* = Zh. (8.3.63)

Example 8.3.5: When S, is measured on a spin % particle, the result is % Immediately after
that the projection of spin in the direction of a unit vector 7, which lies in the xy plane
making an angle 8 with the x-axis, is measured on the particle. What is the probability of
getting the value %?

Solution: After the first measurement, the particle must be in the eigenstate of S,
corresponding to the eigenvalue g, that is, in the state

1
o = 7 ( i > (8.3.64)

()

In order to answer the question, we must first expand ), ' into a linear combination of the
eigenvectors of S, cos 6 +8,sin 6. So, we write

1 1 1 e~ i0/2 1 e 10/2
ﬁ ( 1 > = (Xﬁ < ei9/2 +B ﬁ _eig/z ) (8365)
and determine the coefficients & and . From this matrix equation, we get the following
set of algebraic equations:

a+p=e%"2, (8.3.66)
a—pB =2 (8.3.67)

From (8.2.65) and (8.2.66), we obtain

0 .. (0
o = cos <2> , B=isin (2> . (8.3.68)

Therefore, the probability of getting the value % for S, is

P(+h/2) = cos? (g) : (8.3.69)
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8.4 Spin Precession in a Uniform External Magnetic Field

Let us consider what happens to a spin % charged particle (charge ¢ and mass m) when it

is placed in an external magnetic field, B such that it is at rest at a fixed location. We know
from electrodynamics that a spinning charged particle is equivalent to a magnetic dipole
whose magnetic dipole moment, [i, is proportional to its spin angular momentum, S:

=78, (8.4.1)

where ¥ is called the gyromagnetlc ration'. We also know that a magnetic dipole

experiences a torque T = [l X B, in an external magnetic field B, which tries to align it
along the applied field. The magnetic potential energy of such a dipole in the external
field is given by

W, =—Ji-B=—7S-B. (8.4.2)
So, the Hamiltonian, Hg, representing the potential energy of interaction is given by

As=—vS-B. (8.4.3)

Therefore, in general, the time evolution of the wave function of a spin % particle in the
presence of an electromagnetic field will be governed by the time dependent Schrodinger
equation (see Chapter 7)

dy 1 /5 N2 N
in S = (P-qA) w+q@y+Asy, (8.4.4)
ot 2m
Equation (8.4.4), which takes into account the contribution from the spin of the particle, is

also known as Pauli equation.

Since the spinning charged particle is at rest at a fixed location in the magnetic field and
its spin is the only degree of freedom, (8.4.4) yields the following equation for the time
evolution of the spin wave function y (7):

dx(t N
ihgg) — Hsx (1) (8.4.5)
If the magnetic field is uniform and directed along the z axis , i.e., B = 2By, then H =
—yS B= —vByS.. So, the Hamiltonian commutes with S, and the eigenstates of S, are

also the eigenstates of the Hamiltonian. Hence, we have

~ ~ ’}/B()h
Hy = —?’BOSzX;_ = —Tx;' EE+XZ+, (8.4.6)

)/Boh
2

Hy, =—vBoS:x. =——x =E 1. (8.4.7)

ISee, for instance, D.J. Griffiths, Infroduction to Electrodynamics, Prentice Hall, 1999, 3rd ed., page 252.
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where ET = —(yBoh)/2 and E~ = (yBoh)/2. Thus, the general spin wave function of
the particle at + = 0 will be given by the linear superposition x(0) = ao x." + bo x. ,
where ag and by are arbitrary constants. Normalization requires ag and by to satisfy the
condition a% + b% = 1. Without any loss of generality, this condition can be fulfilled by
choosing ayp = cos(0/2) and by = sin(6/2), where 6 is constant whose physical
meaning will be clarified later.

To study the time-evolution of the spin state of the particle in the external magnetic field,
we use (8.4.5). Using the expressions for .~ and y. , we get

L[ a )\ _  yBh( 1 O a\ _ho, [ —a
a((8) -0 () (), s

where dot stands for the ordinary time derivative and w; = Y By is the Larmor frequency.
We thus get the following set of equations

a=i(wp/2)a, b=—i(w,/2)b. (8.4.9)

The solutions of the above equations consistent with the initial condition lead to the
following time-dependent spin function

cos(8/2) Bo/2
x(1) = ( (o2 iriois? ) (8.4.10)

In order to see the physical meaning of the constant 0, let us calculate the average values
of the spin components Sy, S, and S,. We have

(S =27 (1)8x (1) = Z sin @ cos(yBot), (8.4.11)
(5,) = 1 (08, 2(t) = —g Sin 6 sin(yBo1), (8.4.12)
(S) = x"()S.x(t) = g cos 6. (8.4.13)

On the basis of (8.4.11)—(8.4.13), we conclude that the spin component along the field
direction is conserved. The average spin (S) is tilted at a constant angle 6 to the field
direction (that is the z-axis) and precesses about the field direction at the Larmor frequency
y,.

Example 8.4.1: Consider a spin % particle at rest in a uniform magnetic field pointing in the
+z direction. It is initially in the spin state . at time ¢ = 0. (a) What will be the state at
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some later time ¢? (b) If we measure S, at time #, what are the probabilities of finding :I:%?
(c) What are the probabilities of finding j:g, if we measure §; at time ¢?

Solution: Att = 0, we have

o= ()-8 () e o

(a) As discussed earlier, the state at any r > 0 will be

1 Byt

.YBgyt
Y20

1
x(f):ﬁe 2 %Z'*'—i—ﬁe* 2 X (8.4.15)

(b) Since x () is normalized to unity, according to the measurement postulate of quantum
mechanics, the probability of obtaining % for Sy at any ¢ > 0 is given by

P(Sc=1/2) = [(xF lx(0)]*. (8.4.16)

Using (8.4.14) and (8.4.15), we obtain
1/ ;vBor _YBot
P<Sx:h/2):‘2<‘" P + e 1))

n 1 71471320[
(¢

.YBgt 2

)+ e )

(8.4.17)

Taking into account the orthonormality of the eigenvectors of 6;, we get

2
= cos’ (YI;Ot) . (8.4.18)

171 7Bt _jYBot
P(szh/2):'2[el P e )|

By taking into account that

the probability for finding the value S, = —% is computed in an analogous manner. The
result is
11 B IR | L Byt
P(Sy=~1/2) = |is. [e’ Pl e (| >} :sm2<72° ) (8.4.20)

(c) Similarly, if a measurement of §; is carried out at ¢t > 0, the probabilities of obtaining
the values S, = i% are given by
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2

1 .rByt 1

P(s.=1/2) = () = | S )| = 3, s.4.21)
LY, |

P(S:=1/2)=|(x; [x(1)|" = ‘ﬁe’zmlm =5 (8.4.22)

Homework Problems

1.

Let @ and b be any two vectors that commute with G = 16y -+ i 6, + k6. Show that
(G-@)(G-b) = (a-b)[+ic-(axb).
Find the eigenvalues and eigenstates of the spin operator S of an electron in the direction

of a unit vector 4 = j cos & + k sin & that lies in the yz plane making an angle o with
the y-axis.

A

The Hamiltonian of a system is H = & (E} -7), where & is a constant with the
dimensions of energy. Here, i = isin6 cos + /sin® sin¢ + k cos 6 is an arbitrary
unit vector in three dimensions and 6 = 7 6, + ] 6, +k 6.. Find the energy eigenvalues
and normalized eigenvectors of H.

An electron in a hydrogen atom occupies a combined spin and position state, given by
the wave function

y(r,0,¢) =Rz (ﬂYz‘) X+ + \E (v, '-1)) X—) :

(a) If £? and i,z are measured in this state, what values will result and with what
probabilities? (b) If $? and S, are measured in this state, what values will result and
with what probabilities?

An electron is in the spin state

o 243
w=a ()

(a) Determine the normalization constant A. (b) If S, is measured, what is the
probability of getting the value %/2? (c) Calculate the average values of S, S'y, S, @%,
§§ and §§ (d) Show that the uncertainties in the measurements of S, and §y satisfy the
Heisenberg uncertainty relation.

Consider a spin % particle at rest in a spatially uniform but time-dependent magnetic

field B = By sin(ot) 2, where By and @ are constants. At ¢ = 0, it is in the spin state
x;“ . (a) What will be the state at some later time #? (b) If S, is measured at a later time

t, what are the probabilities of finding j:%?



Chapter 9

Addition of Angular Momenta

9.1 General Theory and the Clebsch—Gordan Coefficients

In many problems of interest it is necessary to add angular momenta. For instance, one is

required to add the orbital angular momentum, Z, and the spin angular momentum, §,
while studying spin-orbit coupling in atoms. Then, there are problems related to the
studies of multi-electron atoms where one has to add two or more orbital angular
momenta. Therefore, it is important to discuss the procedure of addition of angular
momenta in quantum mechanics. In view of this, in what follows, we shall discuss the
general algebraic method for the addition of any two angular momenta.

Note that, in this Chapter, we shall write the eigenfunctions of [? in the bra—ket
notation as: |¢,m). Thus, |¢,m) is an eigenvector (or eigenket) of L? with two quantum

numbers ¢ and m. If L happens to be orbital angular momentum, then ¢ represents the
orbital quantum number and m stands for the orbital magnetic quantum number. On the

other hand, if L happens to be the spin angular momentum (L =S), then £ is spin quantum
number i.e., £ = s and m equals the spin magnetic quantum number i.e., m = m.

Let us, W1thout spemfymg the nature, con51der the addition of two angular momenta Ll

and L2 J L1 + L2 Individually, L1 and L2 satisfy the following quantum mechanical
commutation relations (see Chapter 6):

[Lyi,Lyj]) = in Z&jkﬁlk, (9.1.1)
!

[Lailnj] = in' Y &jlo. (9.1.2)
3

where the indices i, j and k take values from 1 to 3. Note that, it is assumed here that L

and iz either correspond to different degrees of freedom, or correspond to the same degree
of freedom but belong to different particles.

298
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In view of the preceding assumption, the operators il and 22 act in different vector
spaces: L, acts in the (2¢; + 1) dimensional space spanned by the kets {|¢;,m;)}, while

L, acts in the (20 + 1) dimensional space spanned by the kets {|(2,m;)}). Hence, they
commute and can have a common set of eigenvectors. Let us write these common
eigenvectors as

|01,my300,mp) = [€1,my) ® |lr,my), (9.1.3)

where ¢;,i = 1,2 and m;,i = 1,2 are the individual quantum numbers and ® stands for the
direct (tensorial) product. Then according to the earlier discussions

2 0, mysy,my) = B0 (0 + 1) [0, my; 60, my), (9.1.4)
Ly e1,mys0,ma) = hmy [0y, my; 6o, my) 9.1.5)
L2|£1,m1,£2, ma) = W0y (0 + 1) [0, my; 6, my), (9.1.6)
Loc| 01, my; 00,ma) = hmo| 0y, my; 00, my) 9.1.7)

Let us show that the total angular momentum operators Ji = Ly + Ly, (i =1,2,3) also
obey the usual angular momentum commutation relations, i.e.,

N

Vidj] =in) &, (9.1.8)
k

where, once again, each of the indices 7, j and k takes three values 1, 2 and 3. We have
[Jiodj] = [Lvi+ Lo Ly j+ Laj) = [Lai Laj] + [Lyis Loj) + [Loi, Ly j] + [Lai, Laj]
= in Y el +in) &l
k r
= ih Z&jk(ilk + Loy)
k

= in)_ &k (9.1.9)
k

where we have taken into account that [Ly;, L,] = 0 and [L;,L,;] = 0.

Our main task is the following. Given the values of the individual angular momenta \21]
and |Z2\ (i.e., the quantum numbers ¢; and /¢;), find the values that the total angular
momentum |f| (i.e., the quantum number j corresponding to it) can take and given the
values of the individual magnetic quantum numbers m; and m, find the values that the
total magnetic quantum number m; of the combined system can take. To accomplish this
programme, we proceed as follows.
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Since the total angular momentum operators J;, (i = 1,2,3), satisfy the usual angular
momentum commutation relations, using the results of the earlier chapters, we can easily
show that

~

(2 h]=0, [FAJ]=0, [JoJ]=2nk, | |[[.Ji]=+R]s, (9.1.10)

where J4 = (i +iJy)/2 and J_ = (J; —iJy)/2i are the total angular momentum raising
and lowering operators, respectively. Further,the Hilbert space in which the total angular
momentum operator J2 acts is the product space .# = J# ® 4, spanned by the kets
|01, 02,my,mp) = |€1,m1) ® |la,my). Since the kets {|j;,m;)} and {|j2,m2)} individually
form a complete orthonormal basis (being the eigenvectors of hermitian operators), the
kets {|¢1,¢2,m1,my)} also form a complete and orthonormal basis:

(01,0 my,ma| 0y, 0y, my,mby) = (Cy,my [0y, m)) (Ca,ma| 0y, m)h)

= 6515’1 6425’2 amlm’] 6m2m’2, (9111)
Y 10 basmy,my) (6 bamy my)|
mymy
él 52 N .
=< ) Iﬁl,m1><€1,m!>< Y Ifz,mz><€z,m2!) =P=1 (9.1.12)
my=—{y my=—1/

It is straightforward to prove that [/2,13] = 0, [/2,13] =0, [/,,L2] = 0, [/,,[3] = 0, but
[/2,L1;] # 0.and [J,L5,] # 0. Therefore, the maximal set of commuting operators for
the system is given by fz,fz,ﬁ% and I:%,. They can be simultaneously diagonalized and
their joint eigenfunctions are characterized by four quantum numbers j (quantum number
representing the total angular momentum), m; (magnetic quantum number characterizing
the projection of the total angular momentum on z-axis), ¢; (orbital angular momentum of
particle 1) and ¢, (orbital angular momentum of particle 2).

Let |(1,¢, j,m) be the simultaneous eigenfunctions of J? and J.. Since ¢; and ¢ are
fixed, we shall write these vectors as | j,m). Clearly, for every j, the number m has (2j+ 1)
allowed values:m = —j,—j+1,...,j — 1, j. The above completeness and orthonormality
conditions can now be re-written as

j
Y X limyml =1, (9.1.13)
Jom=—j

(Jj'sm'|jm) = 8 8y (9.1.14)

Also, it is not difficult to show that

Pljm)y = j(j+ D)E|j,m), (9.1.15)
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Jelj,m) = mh| j,m), (9.1.16)
Foljomy = \J (= m)(j+m+ Dh|jum+1), 9.1.17)
Foljom)y = \J(+m)(j—m+ DAl jm—1), (9.1.18)

)= ) (9.1.19)
Jiljm=j)=0, J_|jm=—j)=0. (9.1.20)

Since J? and fZ are hermitian, the vectors |j,m) also constitute an orthonormal and
complete basis in .77.

In order to achieve the goal, stated above, we have to find the linear combination of
|€1,02;my,mp), with fixed ¢; and ¢, which are eigenfunctions of J, = Jj, + J, with

eigenvalues m and also eigenstates of and J2 = (L; + L,)? with eigenvalues j(j+1). It
then follows from linear algebra that this goal can be achieved, if we succeed in finding a
unitary matrix that relates the bases {|¢1,¢2;m;,my)} and {|j,m)}. For this purpose let us
expand the besis vector | j,m) in terms of the basis {|¢},¢2;m;,my)} as

) = Z Z Cply " 10 bosmy ms), (9.1.21)

my=—Lymy=—{;
where the coefficients of expansion
CZIEZij (fl,ﬁg;ml,m2|j,m) (9.1.22)

are called the Clebsch-Gordan (CG) coefficients. Therefore, the solution of the problem of
addition of two angular momenta reduces to the determination of the Clebsch-Gordan
coefficients which are nothing but the elements of the unitary matrix that effects the
transition from the basis {|¢1,{2;m;,m;) '}

By convention, Clebsch-Gordan coefficients are taken to be real, i.e.,

(0y,0imy,ma| j,m) = (01, 623my,ma|j,m)Y = (j,m|ly,Ca;my,ms). (9.1.23)
Also, using (9.1.12), we get

Z <j',m’]€1,€2;m1,m2><€1,€2;m1,m2]j,m> = 6j/j5m/m- 9.1.24)

myny
Since the Clebsch-Gordan coefficients are real, we can write this equation as

Z (01,02;my,ma|j ,m") {0y, b my,my|j,m) = 01 O/ - (9.1.25)

mypmp
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The last equation leads to

Y (G lasmy mo|j,m)? = 1. (9.1.26)

mymy

Similarly, we can derive the following relation

J
Z Z .<€1,€2,m/1,m’2\j,m><£1,€2;m1,m2\j,m> = Sm/lmlém/zmz, (9.1.27)
Jom==j
which yields
. 2
Y Y Grjpmimljm)® =1 (9.1.28)
Jom==j

Our next step is to find the eigenvalues of the operator J? in terms of the eigenvalues of
the operators ﬁ% and ﬁ% and the eigenvalues of the operator J. in terms of the eigenvalues
of the operators ﬁlz and ﬁzz so that we could express j in terms of ¢; and ¢, and m in
terms of m; and my.

Constraints on the indices of CG coefficients: (A) Since J, = L, + Ly, we have
(1, 03my,ma| T, — Ly, — Loz | j,m) = 0. (9.1.29)

Using the following relations

Jelj,m) = mh|j,m), (9.1.30)

(01, 03my,ma|Ly; = my R0y, bosmy my], (9.1.31)

(01, 03my,ma| Loy = moh (01, basmy my], (9.1.32)
we obtain

(m—my —my)(ly,02;my,my|j,m) = 0. (9.1.33)

Therefore, for (¢1,¢2;my,my|j,m) to be nonzero, we must have m = mj; + my. This is the
first constraint for the Clebsch-Gordan coefficients.

(B) Further, the maximum values of m; and m;, are ¢; and ¢,, respectively, and hence the
maximum value of m is mm,x = ¢1 + ¢2. However, |m| < j, and therefore, jmax = ¢1 + 2.

We have to now find jjp, i.€., the minimum possible value of j. Since the dimension of
the product space is N = (201 + 1) x (205 + 1), there are (2¢; + 1) x (202 4+ 1) number of
basis vectors |j,m) in this space. On the other hand, for each value of j there are (2 + 1)
basis vectors |j,m), and hence
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jmax
Y @j+1)=0Lh+1)(20+1). (9.1.34)

j=jmin

Since jmax = ¢1 + {2, the left hand-side of (9.1.34) has jimax — jmin+ 1 =41+ 42+ 1 — jmin
terms. Therefore, we have

jmaX
S= Y (2j+1) = 2jmin+1) + (2jmin +3) + (2jmin +5) + .. 4+ (261 +£2) +1).
Jjmin
(9.1.35)
We can write the above series in two equivalent ways

§= (ijin+ 1) +2(jmin +3) + (2jmin+5) +...+ (2(61 +€2) + 1),

S=Q2+6)+1)+ Q26 +6)—1)+ (206 + ) =3) + ... + (2jmin + 1).

(9.1.36)
Adding up the aforementioned two equations term by term, we obtain
S=([(tr+L+1) + jmin] +[(61 ++1) + jmin] + [(€1 + L2+ 1) + jimin]
o H[(L1 4+ L+ 1) + jmin]) - (9.1.37)

Since S in (9.1.37) contains ( jmax — jmin + 1) = (£1 +¢2 + 1 — jmin) terms, using (9.1.34),
we arrive at

(0 + L+ 1= jimin) [(0r Lo+ 1) + jimin] = (201 +1) (262 +1). (9.1.38)
Or,

Jmin = (01 = £2)*. 9.1.39)
Hence jmin = |¢1 — ¢2| and we have the following range of variation of j:

[ =] < j< (U +£2). (9.1.40)
So, j changes from [¢; — ¢5| to (£; 4 £2) in integer steps:

J= 10 =0 — b+ 1,0 — L] +2,..., (61 + £2). (9.1.41)
Thus the second constraints for the Clebsch-Gordan coefficients is that, simultaneously

with m = my 4+ my, we must also have |j; — j2»| < j < (ji1 + j2). Note that m takes values
from —j to +.
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9.2 Calculation of Clebsch—Gordan Coefficients

The computation of Clebsch-Gordan coefficients from first principles is somewhat
cumbersome. For practical use, however, they have been tabulated in the literature and
can be readily obtained. In some simple cases, these coefficients can be determined in a
straightforward manner. For instance, it can be shown that the CG coefficients
corresponding to two limiting cases {m; = £1,my = {»,j = {1 + lo,m = ({1 + ¢2)} and
{my = —l1,my = —lp,j =1 +lr,m = —({;+{»)} are equal to 1. That is

(01, 02,01, | (0 +62), (0 + o)) = 1, 9.2.1)
(01,02, =Ly, —a| (01 +£2), — (€1 + £2)) = 1. 9.2.2)
In general, to calculate CG coefficients, other than the aforementioned simple cases, one
uses either the recursion relations between the CG coefficients or the ladder operator

method. Below, we shall demonstrate these methods of calculation by taking up a
concrete problem.

Recursion relations between CG Coefficients: To determine the recursion relations it is
required to evaluate the matrix elements,
(01,02;my,ma| S| j,m),

in two different ways and equate the results. Let us do it. Firstly, using (9.1.17) and (9.1.18),
we have

(1, basmy,ma|Jx|j,m) =R \/(j:Fm)(jim+ 1) (01,02;my,my|j,m=£1). (9.2.3)
Secondly, replacing J. by Ji4 + />4, where

~ 1. o

J = 5 (L i), k=12, 9.2.4)

and acting on the bra (¢1,¢;m;,m;|, we obtain

(0, basmy,mp| Ty | j,m) = h\/(fliml)(fleml +1) (01,02;m F 1,ma| j,m)

+ (G m) (Fmy+1) (0. bimymy F 1 jom). (9.2.5)

From (9.2.3) and (9.2.5), we arrive at the first recursion relation between CG coefficients

\/(jim)(jim—kl) (01,ly;my,my|j,m=+1)
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= \/(61 +my) (0 Fmyp+1) (01, 0;m F 1,my|j,m)

-+ \/(62 imz) (52 Fmy + 1) <£1,€2;m1,m2 F1 ]j,m}. (9.2.6)
Now, considering the matrix elements
(1. bimy my|fe|jom T 1),

and repeating the same steps that led to (9.2.6), we obtain the second recursion relation

VUEmGFm+1) (. limrmolj.m)

= \/(51 +my) (0 Fmi+1) (0, bsm F 1Lma|j,mF 1)

+ \/(Ezj:mz)(€2$m2+ 1) (1, 625my,mp F 1

jmE1). 9.2.7)

The recursion relations (9.2.6) and (9.2.7) along with the orthonormality conditions
(9.1.25) and (9.1.27) enable one to calculate all the CG coefficients, except for the sign,
for given values of /1, ¢, and j.

The sign is determined by the so-called phase convention (Wigner’s convention),
according to which the coefficient

(1, b2, 00, (J—21)| ] J), (9.2.8)

is considered to be real and positive. Since all the CG coefficients are obtained from
this single coefficient by repeated applications of the recursion relations, and since this
coefficient is taken to be real, all other CG coefficients must be real.

Example 9.2.1: Find the ClebschGordan coefficients associated with the coupling of the
spins of two spin 1/2 particles with zero orbital angular momentum.

Solution: We wish to solve this problem by both the methods mentioned above.

1. The recursion relation method': Since (| = 5| = % by =15,= %, and j =s=1,0. When
s = 0, we have m = m; = 0 and there is a spin singlet state |0,0). When s = 1, m = m; can
take three values —1, 0, and 1. Correspondingly, there is a triplet of spin states: |1,—1),
|1,0) and |1, 1).

Let us expand these states in terms of the states |sy,sp;my,my), where m; = my, and
my = my,, such that m = my +m;:

IN. Zettili, Quantum Mechanics: Concepts and Applications, John Wiley, 2009.
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11 111 1 11 11 11 11
|0,0) = <2 5 5’ *‘ > ‘2,2,2,—2>+<2,2,—2,2’0,0> '2,2,—2,2>, (9.2.9)
1111
L1)= 5953505 2.1
|1, 1) < 2,2,2,2>, (9.2.10)
1 1 1 111 1 11 11 1 1 1 1

11 1 1
ST — o= ) 9.2.12
‘2,2, > ( )

Calculation of the coefficients (3, 5;+5,F5(0,0)

In order to calculate these coefficients, let us go to the recursion relation (9.2.6) with upper
signsandput j =s=0,m=0and m; =my = % to obtain

11 11 111 1
=, =; 0, - =;=,—=]0,0). 2.13
<292a ‘ > <2,2727 2’ s > (9 )

Also, if we now put j =5 = 0 and m = 0 in (9.1.26) and take into account the constraint
that m = m; + my, we are led to

2 2
11 1 1 111 1
- . 0,0 — ——.——10.0 =1. 2.14
<2927 ‘ > <292$27 2‘ s > (9 )
From (9.2.13) and (9.2.14), we obtain
111 1 1
Z .- __ . 2.1
<2’2’2’ z|0’0> V2 9.2.15)
Note that, according to the phase convention, the sign of (%,5;%,—%|0,0> has to be
positive. Thus, we have
111 1 1
Z 22 0.0y = —. 2.16
<2’2’2’ 210 > V2 (9.2.16)

Then, in accordance with (9.2.13), we get that

11 11 1
—, = 0,0 —. 2.17
(33-3300) == ©:2.17)
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Calculation of the coefficients <%,%;%,%|1,1)and<%,% 3 2\1 1)
For (j=s=1,m=1)and (j =s=1,m= —1), we, after taking into account that m =
my + my, get from (9.1.26) that
1111
<2 37 2|1 1> 1, (9.2.18)
11 1 1 2
L L 1y Vo 9.2.19
<2 27272 > ©-2.19)

Since, according to the phase convention, both <% %; %,%H, 1) and <% %; —%, —%|1,—1> are

real and positive, we obtain
1111
<2 35 2|1 1>_1, (9.2.20)

11 1 1
<2,2;_2,_2|1,_1>:1, (9.2.21)

Calculation of the coefficients (3, %;3,—1(1,0) and (3, 7;— %, 1[1,0)

These coefficients are obtained by putting j =s=1,m =0,m; = %,mz = —% and j=s=
1,m=0,m = —%,mz = % into the recursion relation (9.2.7) with lower sign, respectively.
Using (9.2.21), we arrive at
111 1 1 1111 1
777;79_7 130 - = 757;797 131 — = (9222)
222 2 V2 \2°2°2°2 V2
11 11 1 1111 1
777;_797 170 - = 7’7;797 191 - = 9.2.23
<2 27 22 > V2 <2 2°2°2 > /2 ( )

I1. Ladder Operator Method”: The calculations are done in the following steps:

Step 1. We start with the state with the maximal total spin. It corresponds to the case when
both the particles have spins parallel and "up”. The normalized spin wave function of the
system is given by

1 1 1 1
L =2 ( =M = 2) ® (Sz = 5oy = 2) =22, (©.224)

2David J. Griffiths, Introduction to Quantum Mechanics, Pearson Prentice Hall (2005).
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where the superscript stands for the particle number. The subscript + denotes spin “up”.
This is also written as

111
’7;7,7 . -2.2
2’2 2> (0225

N =

1,1):’

Step 2. We now subject the maximal spin state to the lowering operator, S_,
corresponding to the total spin: S_ = SA(,I) + SA(}) , where SA(J) and SA’(E) are the lowering
operators corresponding to the first and the second particles, respectively.

On one hand, making use of the equation (8.1.7) with lower sign, we obtain
S_|1,1) = V21]|1,0). (9.2.26)
On the other hand,
A A1) a2 |11 11 11 11 111 1
L1 = —, === )= —, ===, = -, =;=,—=)]. (922
S-IL1) = (57452 >’2’2’2’2 i 2’27 272 + 22727 2 ©-2.27)

From (9.2.26) and (9.2.27), we obtain

1 11 11 111 1
Loy= (L LD IN b LT DA 9.2.28
1.0) ﬁ(‘zz 22>+‘222 2>> (-2.28)
Step 3. Further, we act on |1,0) with § = s 48@).
On one hand, we have
S_11,0) = V2h|1,—1). (9.2.29)

On the other hand,

. 1,
$_11,0) = S_<

_1§1)11_11+1111 N
V2T 2’2’2 2 2’27 272

Lo/t 11 1 11 11

— S e — S
+ 5~ <’2’2’2’ 2>+‘2’2’ 2’2>>

1 11 1 1 11 1 1
= — |h|=,—1—=,— 0+0+h|=,—;——,—

2 |: 272’ 2, >+ + + ’292’ 2’ 2>:|

2
:\@h‘l 1._1_1>' (9.2.30)
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From (9.2.29) and (9.2.30), we obtain

1111
1,—1) = ‘2,2,_2,_2>, (9.2.31)

This completes the construction of the manifold of spin s = 1 states-the spin triplet states:

1) = [T 1)
s=1:miplet—q [10) = 5 ([ L) T2)+[11)[42)) (9.2.32)
1=1) = [d)[d2)

Step 4. The state |s = smax — 1,/ = Smax — 1) = |0,0) must be orthogonal to the state
| = Smax>M = smax — 1). Hence, we first write the state |0,0) as the linear combination

|0,0) =a

11 11 111 1
2a29_9>+b ‘292’29_>- (9233)

The orthonormality with

1,0), given by (9.2.28), leads to

atb
V2

On the other hand, the normalization of |0,0) gives

(1,00,0) =

0. (9.2.34)

(0,0(0,0) = a* +b* = 1. (9.2.35)
From the above two equations we obtain

1
b=x—a. 9.2.36
7 ( )

In accordance with the phase convention (in the given context) the coefficient (si,s,
s1,(s—s1)|s,8) = (s1,52,51, (s —51)|0,0) must be positive. Therefore b = (1/2,1/2,1/2,
—1/2/0,0) = 1/+/2. Then a = —1/+/2. Thus, the final result is

Lt o1\ 111 11
0.0y = — (L L1 Th 1AL 1 11\ 9.2.37
0.0)="7 ‘2 2'2 2> V2 ‘2 2’2 2> 023D

Q) + §(,2)) or the raising operator

S, = §$) + SA'(f)) to |0,0), we obtain zero. This means that the state |0,0) is a singlet
state.

If we apply the lowering operator (§_ = §
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If we now compare (9.3.25), (9.2.28), (9.2.31), and (9.2.37) with the respective
expressions in the system (9.2.9)-(9.2.12), we obtain the following results for the CG
coefficients

111 1 1

St - 2.
<272727 2070> 27 (9 38)
11 11 1

sa_ 2t - 2.
<272’ 292070> \/i’ (9 39)
111 1 11 11 1

777;77_ 170 - 7’7;_777 170 - 5 9.2.40
<2 2°2° 2 > <2 20 272 > V2 ( )
1111 11 1 1

el =(z.5—5,—3|1,—-1)=1. (9.2.41)
2°2°2°2 2’27 27 2

We see that the same values for the CG coefficients are the same as obtained earlier by
recursion relation method. Thus, both the methods yield identical results as it should be.

Thus we conclude that addition of the spins of two spin half particles, leads to two
possible spin states of the composite system: (i) |1, 1>mplet {|1,1),]1,0),|1,—1), which is
symmetric with respect to the interchange of the spin "up” state with the spin ”down” state
and vice versa, and (i1) |0,0>singlet, which is anti-symmetric with respect to the interchange
of the spin "up” state with the spin "down” state and vice versa.

9.3 Algebraic Addition of the Orbital and the Spin Angular
Momenta

Let us consider the addmon of the orbital angular momentum and the spin angular

momentum, i.e., J L + S of a spin half particle (say, of an electron) In the given case
¢1 =/ (an integer) m; = my (takes values from —(to £), {, =s = 5, and my = m; = & 1.

The value of j in this case is restricted in the interval
l 1<'<£+1 9.3.1)
S =TS Ak 3.

Clearly, j can have two limiting values jma.x = ¢+ % and jnin = —¢+ %

The maximal set of commuting observables in this case is given by: {J/%,12,5?,/.}. The
joint eigenvectors of these operators are: |(, s, my,my). The eigenvectors of J2 are: |j,m) =
|¢,s; j,m); ¢ and s being fixed. Obviously, the following hold:

)= j(j+ 1)),
Y =12 L(041)]),

my, (9.3.2)

)s (9.3.3)
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. 3
82 j,m)y = w2 s(s+1)|j,m) = th |j,m), (9.3.4)
J|j.m) =hm|j,m). (9.3.5)

The state with maximal total angular momentum j =/ +1 5 and Mmax = Mimax + Mymax =
= (ml)max + (ms)max = Z—|— 2 is

) 1 1 11
|]max,mmax> = ‘€+2,€+ 2> = |€,€>®‘2,2> (9.3.6)
The corresponding CG coefficient
1 1 1 1

in accordance with our earlier discussions.

Let us act on the state | jmax, ”max) With the lowering operator /- = I._ 4 $_ to generate

states with m = mpax — 1,m = mpax — 2 and so on till we reach mpy,x = —j. On one hand
we have
. 1 1 1 1 1 1 1 1
J_ €+2,€+2> = h\/[<€+2) + <€+2>] <€+2—€—2+1> ’€+2,E—2>
1 1
= h\/2£+1‘€+2,€2>, (9.3.8)

while on the other
A 1 1 11 5 |11
(L_—|—S_)‘£—i—2,£—|—2> =L |60 ’2 2>—|—£,£>®S_’2,2>
11 11
= V20,0 1)® ‘2 2>+h|M> ‘ 2>.(9.3.9)

From (9.3.8) and (9.3.9) we get that

1 1 11 1 1
‘£+2,£—2> \/T[fw H® ’2 2>+| 0H® ‘2,—2>]. (9.3.10)
‘We now act on }64—2,6 >W1thJ to find {E—F %>.Wehave

J

€+ >—h\/2€>< ‘54— N > (9.3.11)
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on the other hand

N o 1 1 20 11
L _ - —— Iy S —
( +S>‘“2’€ 2> i lbe-ne ‘2’2>
20 L 111 1 . 1 1
1 i i
T\ gt es- ‘2 2>+\ﬁzz+1 'E’@@’z’ 2>
1 ~ |1 1
n enos [L LY 9.3.12
T bS5 2> ©:3.12)

_ l,—%> =0, we obtain

(L +$ )’£+£—> " ‘W>|M_2>®‘11>

20+1 2°2
11
S 3.13
5 2> (9.3.13)

20 1 1 20
i s lhi-ne '2’_2>+h sy - he

From (9.3.11) and (9.3.13), we obtain

1 3 20 — 11 1 1
'£+2,£—2> e tle-de ’2,2>+ o lee-ne '2,—2>.<9.3.14>

The other M + %,m> states are given by

e b\ s
") =\ T2

AN
’ 2 2°2

(—m+% 1 11
where
1 1 3 1 1
m_e+2,£—2,£—2,...—£+2,—<£+2>. 9:3.16)

All these states are with j = ¢+ 2 The states with j = ¢ — % are found in an identical
manner starting with the state }E 1— > which must be orthogonal to the state

1 1 1 1 1
bt e el sl B o
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If we do the calculations the same way as earlier and take into account the phase
convention, we obtain

1 1 1 11
33) = e [0 8 gy ) e ve )] o3

Calculations similar to those leading to (9.3.14) yield

1 3 20 — 1 1 2 11
‘€‘€‘> S r‘¢> 21 B0 >®¢xz>~

272 2041
(9.3.19)
The other ‘E — %,m> states are given by
1 C+m+3 1 11
P‘z”§-—vM+1&m+z>®z*z>
[0—m+3 1 11
where
1 3 3 1

The required CG coefficients are readily read off from (9.3.14), (9.3.15) and (9.3.17)-
(9.3.20).

Example 9.3.1: Consider the case of / = 1 and s = % Find all the states and the
corresponding CG coefficients.

Solution: In this case, for the states !E + %,m>, the equation (9.3.16) shows that m can take

four values é %, %, and —%. Therefore, from (9.3.15) we get

33\ _ Jlbata | 3 I\ LN JIoa g | 3 1\ 1L
2’2/ 241 22 2°2 2+1 202 272
11 1 1
= 1,1 — =) =|1,=:1,= 3.22
‘,>®‘2’2> ’27 52>a (93 )

31 1+3+5]. 1 1 11 1-1+1
AN’ A — A 1 1 1’7_7 ® AN’ A + A 4
272 2+1 2 2 2°2 241

11+1®1 1
202 27 2
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2 11 1 11
_ \ﬂu,o>®‘2,2>+\f31,1>®‘2,—2>
21 1 1 1
=4/211,2:0, = -
\g 202>+\£
1 1—141 11 11 1+141
3N Izt L IV AL TN, ety
2’ 2 2+1 2 2 2°2 241
1 11 2 1 1
1] 1 1 21 1 1
= o 1,7;_1’7 Py 197a s A~ ) . 24
\g 2 2>+\/;' 20 2> 9324
33\ _ fleada | 3 AN JLIN G JUadg ) 3 1\ 1L
27 2/ 241 202 2°2 241 202 27 2

1 1 1 1

1 1
1,=;1 —>, (9.3.23)

277 2
NS AR
22 27 2

Similarly, for the states ’E — %,m> the equation (9.3.21) shows that m can take two values
% and —%. Therefore, from (9.3.15) we get
! 1 1 . 11
22 2°2

L - I D AN ) AN O e R A T
2’2/ 2+1 202 20 2 2+1
2 1 1 1 11
= \g‘l’l>®‘2’_2>_\ﬁ‘l’0>®‘2’2>
2 1 1 1 1 1
= \[3 1,2,1,—2>—\[3‘1,2,0,2>, (9.3.26)

11 1—141 11 11 14141 11 11
LU Y s St A UL UL O R S Bt Suab- ) PSR O L
2’ 2 241 22 2’ 2 241 2 2 2’2

1 11 2 11
=4/=1 S == ) =/ L= ® |z,
V3hoelp-5)-y5n-nelss)
111 2.1 1
= \ﬁ 1,2,0,—2>—\[3 1,2,—1,2>. (9.3.27)
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By taking the appropriate scalar products in (9.3.22)-(9.3.27), we obtain the required CG
coefficients.

Example 9.3.2: In an atom there are two valence electron; each in the state 3p. (a) What

are the possible values for the total spin quantum number, s, where S=25,+5,? (b) What
are the possible values for the total angular momentum quantum number, ¢, where
L =L+ L»? (c) Given that under the exchange symmetry the parity of the spatial part of
the wave function of the two-electron system is decided by the parity of the total orbital
quantum number ¢, determine which combinations of s and ¢ are allowed states for the
two-electron system. (d) For each allowed combination, what are the possible values of
the quantum number j, where J=L+5?

Solution:

(a) As discussed s will take values from spax t0 Spin in integer steps. Since Spmax =
s1+ s> = 1 and spin = 51 —s2 = 0, s can take only two values: s =0, 1.

(b) Both the electrons are in the 3p state and, therefore, £; = ¢, = 1. Hence lyax =
ly 44y =2 and lpyin = 1 — ¢ = 0. As a consequence £ =0, 1,2.

(c) The total wave function of the system must be antisymmetric (see Chapter 10). Now,
for s = 0 the spin part of the wave function of the system will be antisymmetric
and hence only those values of ¢ can be paired with s = 0 which make the total
wave function antisymmetric. We know that the parity of the spatial part of the two-
electron system is decided by whether (—1)% is +1 or —1: when (—1) = +1 it s
symmetric, whereas when (—1)¢ = —1 it is antisymmetric. Therefore, / = 0 and ¢ =
2 will correspond to the symmetric spatial part, while £ = 1 will give antisymmetric
spatial part of the wave function. Hence, the possible pairs in this case are: (¢,s) =
(0,0),(0,2).

On the other hand, since the spin part of the wave function is symmetric under the
exchange symmetry for s = 1 (see Chapter 10), the only allowed pairis (s,¢) = (1,1).

(d) Since j varies from |¢ —s| to £+ s in integer steps, for (¢,s) = (0,0), the only possible
value of j is j = 0. For both the other two combinations (¢,s) = (1,1) and (¢,s) =
(0,2), three values of j are possible: j =0,1,2.

9.4 \Vectorial Addition of the Orbital and the Spin Angular Momenta
for an Electron

Consider an electron on its orbit in an atom with orbital angular momentum L and spin
angular momentum S. Since the components of the angular momentum operator,
ﬁk,k = 1,2,3, do not commute, no two components of L can be measured simultaneously
accurately. Therefore, it is impossible to assign a vector (in the usual sense) to the orbital
angular momentum in quantum mechanics. It is simply not defined. The same applies to
the spin angular momentum vector S. In spite of this difficulty, it turns out that one can
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use the so-called semi-classical model for adding two or more angular momenta
vectorially. For instance, it can be used to add orbital and spin angular momenta. How it
is done is explained in what follows.

J

\

Figure 9.1 Semi-classical model for the vectorial addition of orbital and spin angular
momenta.

According to this model, we can treat L and S as usual three-dimensional vectors
keeping in mind their quantized nature. The resultant angular momentum vector, usually
written as J, is obtained by the familiar rule of parallelogram for the addition of vectors in
vector algebra:

J=L+S§. (9.4.1)

We know that L and S have their corresponding magnetic moments [, and ﬁs,
respectively, through which they can interact. Classically, due to th1s interaction, both L
and S precess around the direction of the total angular momentum J (see Fig. 9.1). Th1s
classical treatment, however, is supplemented by quantum conditions. In particular, L
which is numerically equal to /1 /(£ 4 1), where / is the orbital quantum number, cannot
be arbitrarily oriented in space. According to the phenomenon of space quantization, L
has to have only those orientations in space for which its projection on the vertical
direction (z-axis), L, = myh, where my is the magnetic quantum number. Similarly, S,
which is numerically equal to 7 +/s(s+ 1), where s is the spin quantum number, cannot
be arbitrarily oriented in space. It also has to have such orientations that its projection on
the vertical direction (z-axis) S, = m,h, where my is the spin magnetic quantum number.
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Due to this reason, the angle between L and S cannot be arbitrary. It is bound to take
only discrete set of values. Consequently, the magnitude of the total angular momentum J
takes discrete set of numerical values given by

J=nr4/j(j+1), (9.4.2)

j=l4s=0+—. (9.4.3)

The projection of J on the z-axis takes values according to
J, = mjh, (9.4.4)

where m, the magnetic quantum number corresponding to the total angular momentum,
can take (2 + 1) values from —j to + .

This vector model can also be generalized to the case of atoms with more than one
electrons. It allows one not only to explain the fine structure of atomic spectra but also
the details of anomalous Zeeman splitting of spectral lines in the presence of a magnetic
field. This vector model can also be generalized to the case of atoms with more than one
electron.

Homework Problems

1. A particle is in the j = 1 state. The measurement of J; in this state yields the value
h. If J, is now measured, what values would result and with what probabilities?

2. Add angular momenta ¢; = 1 and ¢, = 1. Using the ladder operator method with the
steps given in the chapter, express all the eigenvectors |j,m) in terms of the
eigenvectors (1,0, my,my).

3. Let S; and S, denote the spins of a spin 1 and a spin 2 particles, respectively and let S
be the total spin of the combined system. (a) If S2 is measured, what are the possible
results? (b) If the system is in a spin state with §2 = 2h% and the z component of spin
of the spin 1 particle is measured, what is the probability of getting the result /?

4. Consider the system of particles mentioned in Problem 3. The measurement of S,
yields a value 7 when the system is in a state with §? = 212 1f immediately afterward
S2 is measured again, what is the probability of obtaining a value 12/%?

5. LetJ=L+S. Using the method described in this chapter, identify and calculate all

non-zero Clebsch—Gordan coefficients for the case when ¢ =2 and s = %

6. A particle of spin % is in a state of orbital angular momentum ¢ = 2. What are its
possible states of total angular momentum?
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7. Consider a system of three non-identical particles, each with angular momentum %

Find the possible values of the total spin S of this system and specify the number of

angular momentum eigenstates corresponding to each value of S.

8. Consider a system of three non-identical particles, each with angular momentum %

Find the possible values of the total spin S of this system and specify the number of
angular momentum eigenstates corresponding to each value of S.



Chapter 10

Quantum Mechanics of Many-Particle Systems

10.1 General Theory

Consider a system consisting of N particles with masses my,ma,m3,...,my. Let 7}, j =
1,2,3,...,N, be the position vector of the jth particle. The wave function of such a system
will depend on the position vectors of all the particles and time:

Y = l[/(?l,?z,?g,...,?N,t). (10.1.1)

The quantum mechanical formalism for a many-particle system is developed by
generalizing the single-particle machinery to the N-particle system. The Schrédinger
equation for this N-particle system is written as

v

ihg IHI[/<71,?2,73,...,7N,Z‘), (10.1.2)

where the Hamiltonian A is given by

N h _‘2
Z 2—V] V(F1.72. 73, T). (10.1.3)

Here, V(Fi,72,75,...,Fy) is the potential energy of the system, and 63 is the Laplace
operator with respect to the coordinates of the jth particle, that is,

= > 9% 09?
V=2 47 17 10.1.4
7o N dy> + 975 ( )

J

In analogy with the single-particle case, the quantity

(W (F1, 72, Fa e Pot) |2 d Ty d T2d 3. d Ty, (10.1.5)

319
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is interpreted as the probability, at a given instant 7, of finding the particle 1 in the
infinitesimal volume element d7; around 7, particle 2 in the infinitesimal volume element
d Ty around 7, particle 3 in the infinitesimal volume element dt3 around 73, and so on,
particle N in dty around 7y. Therefore, as earlier, the normalization for the wave function
1s written as

Foo +oo 4o +oo )
/ drl/ dn dTs... dty|W(F1,72, 73, s 1) |7 = 1. (10.1.6)

If the potential, V, is time independent, the stationary states of an N-particle system are
characterized by the wave functions of the form

i
— LBt

Y (71,72, 73, ..s TNst) = O (F1, 72,73, ..., Ty e 777, (10.1.7)

where E is the total energy of the system and the function ¢ (71,72,73,...,7x) satisfies the
following time independent Schrédinger equation

NhZ

—Zivz O(Fryes PN) +V (Flaees ) O (Fra s Py) = EQ (71, oo Py ). (10.1.8)

As in the case of a single-particle system, the probability density, p,

= ’1[1‘2 = (I’l, . N)ehEt¢(l"1, ,7]\7)87%& = |¢(71,...,7N)|2, (10.1.9)

and the probability current density, 7,

23 i mi (V0" (Fra?) ) 9 (Fros i) = 97 (P ) (Va0 (o) ) |
: (10.1.10)
do not depend on time in a stationary state. Also, the expectation value,
+oo
(y|A|y) = [m O (F1,...7x) A ¢(71,....7x) dT1d1dT3...d Ty, (10.1.11)

of a time-independent observable A does not depend on time in a stationary state.
Consequently, it is conserved. For instance, energy of a many-particle system in a
stationary state is conserved.

So far as the commutation relations for the operators are concerned, the operators
representing observables related to different (distinct) particles commute, while those
related to a given (specific) particle satisfy the commutation relations valid for a
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single-particle system. For instance, the position and momentum operators satisfy the
following commutation relations

[(Pa)k> (Pp)e] = ihSke S (10.1.12)
where the Roman indices, k,/,..., stand for the particle’s number (1,2,3,...,N) in the
system, while the Greek indices «,f3,..., represent the Cartesian components of the

position vector, 7, and momentum, p. Note that if k = ¢, we are talking about the one and
the same particle. For instance, if k = ¢ = 1, we have the following commutation relations
among the position and momentum operators of the first particle:

[(Fa) 1. (Pp)1] = ih6110p = ihSep. (10.1.13)

If « = B =1in(10.1.13), we get that [(£)1, (p1)1] = ifid1; or [£1, px1] = ih. On the other
hand, if @ = 1 and 8 = 2, we have [£], py2] = ifi6; = 0. Similarly, we can calculate the
aforementioned commutators for other values of o and 3.

In summary, the coordinate and momentum operators of different particles commute,
while the coordinate and momentum operators of the same particle satisfy the usual single-
particle commutation relations.

It is quite clear now that in order to study the physical characteristics of a many-particle
system in a stationary state, we have to solve the equation (10.1.8) for a given potential
energy operator V. In the general case of arbitrary V, it is very difficult (almost impossible)
to solve the equation (10.1.8). Our earlier experience tells us that it would be possible to
find the solutions if (10.1.8) could somehow be split into a system of N single-particle time
independent Schrodinger equations. It turns out that this can be achieved in a special case
of systems consisting of the so-called, independent particles. We shall discuss these in the
following subsections.

10.2 System of Independent and Distinguishable Particles

When the particles belonging to a quantum mechanical system do not interact among
themselves and are subject solely to an externally applied potential, they are called
independent. This is because of the fact that each of them experiences its own potential,
independent of all other particles of the system. For such a system, the potential in
(10.1.8) can be written as

N
V(71,7075 Tr) = Y V(7)) (10.2.1)
Jj=1

where V;(7;) is the potential experienced by the jth particle. If, in addition, the particles
can be distinguished from each other in terms of one or several individual properties, they
are called distinguishable. The system of particles is then said to be consisting of
distinguishable independent particles. Let us assume that the particles of our system are
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distinguishable by their masses, that is, each of the particles has its own mass
mj, j=1,2,3,...,N, different from the masses of all other particles of the system. Under
these conditions, the time-independent Schrodinger equation (10.1.8) permits separation
of variables leading to N independent single-particle Schrodinger equations

n oo, e . ,
—ﬁviq)(rj) +V(7)9;(7) =E;9;(F;), Jj=12.3,..N. (10.2.2)
J
The solution of each of these equations yields a single-particle wave function ¢y,
corresponding to the energy eigenvalue E,;, j = 1,2,3,...,N, where n; stands for the entire
set of quantum numbers of the jth particle. The stationary state wave function of the
system is then given by the product of the single-particle wave functions

YR Past) = 01 (71)02(F2) 93(73) . () ¢ (E1HE Bt En)e
N X
= <H ¢j(?j)> e E (10.2.3)
=1

with energy

N
E=E+E+E+..+Ey=) E; (10.2.4)
j=1

Example 10.2.1: Three spinless non-interacting particles, with respective masses mj,mo,
and mj3 in the ratio my : mp : m3 = 1:2: 3, are subject to a common infinite square well
potential of width L in one spatial dimension. Determine the energies and the
corresponding wave functions in the three lowest lying states of the system.

Solution: In the given case, the stationary Schrodinger equation (10.1.8)) splits up into three
independent single-particle equations (one each for the individual particles):
W d*9(x))
2m; dx?

+V(x))0;(xj) = E;o;(x;), =123 (10.2.5)
The corresponding single-particle wave functions and energies are:

2 . I’ljﬂf .
On; (x)) = \/; sin (ij) , j=1,2,3, (10.2.6)

nf 21>

i= 2m;L?’

Jj=1273. (10.2.7)
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Ground state: For the ground state, we have n; = np = n3 = 1, and the energy of the
system will be

Ei =

22 222
111 1
°h ( ) h (10.2.8)

22 \my " my  ms) T 12mLE

The corresponding ground state wave function is given by

/8 . (& . (T . (T
Vi (x1,x0,x3) = 73 sin (le) sin (sz) sin (Zx3>. (10.2.9)

First excited state: Since m3 > my > my, the first excited state will correspond to n; =
np = 1 and n3 = 2. This is because of the fact that this combination of the quantum numbers
yields the minimum value of energy that must be given to the system to go from the ground
state to the first excited state. Consequently, the energy of the first excited state, Eq12,
will be

(10.2.10)

nh* [ 1 1 4 1772h2
Eip = =

22 \my  mn  omz ) 12mL%

The wave function of the first excited state reads

/8 . /m /T (2
Yi12(x1,x0,x3) = 3 sin (Z)q) sin (sz) sin <Lx3> ) (10.2.11)

Second excited state: The second excited state corresponds to the case when n; = 1 and
ny = n3 = 2. Hence, its energy, E122, equals:

(10.2.12)

wh [ 1 4 4 137272
Eipn = + =

22 \my "y om3 ) 6mL2”

The corresponding wave function is given by

/8 . /m . (27 . [(2%;
1[1122<X1,XQ,)C3) = E Sin (le) sin (sz> sin (LX3> . (10.2.13)

Similarly, one can determine the energies and the corresponding wave functions of all other
excited states of this three-particle system.

Example 10.2.2: Consider two distinguishable non-interacting particles 1 and 2 with
masses mj and my, respectively. If m; > my and they are subject to a common
three-dimensional potential

{ 0, for0<x<a0<y<b0<z<ec,

V(632 =\ o forx>a,y>b,z>c,

(10.2.14)
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where a < b < ¢ are positive constants, determine the energies and the wave functions
of the ground and the first excited states of the system. What is the energy that will be
required to excite the system from the ground state to the first excited state?

Solution: In this case, the single-particle wave functions and energies are:

8 . /nyT . (N T
(anln_vlnzl(xl,yl,ZI): 7abc Sin P X1 ), SIn

zl) . (102.15)
C

. [Ny T
S

_ 8 . /hyT . (N, n;,T
Py ey (x2,y2,22) = . sm( » x2> , sm( ) sm< . Zz) , (10.2.16)
222 2 "2 2
nh nz i
J

Ground state: For the ground state of the system, both the particles will occupy the single-
particle ground state with ny; = ny, = n;; =1, j = 1,2. The energy of the system in the
ground state will be

232 1 1
£0) _ W LA t (10.2.18)
2m1m2 bZ

The ground state wave function of the system is simply the product of the single-particle
wave functions, that is,

lI/(O) (x1.y1,215%2,2,22) = G111 (x1,y1,21) 111 (x2,32,22)

8
= —sin <Ex1) sin (E)Q) sin <Ey1) sin (Ey2> sin <Ezl> sin <Ezl> . (10.2.19)
abc a a b b c c

The first excited state: One of the particles is in the single-particle ground state, while the
other is in the single-particle first excited state. Since z = c is the largest side of the box, the
particle in the first excited state will have n, = n, = 1 and n, = 2. But m| > my, therefore
the first particle with mass m; will be in the first excited state. Hence, the first excited state
will have energy

£ _ nzhz{((’"l“@ {12+1D +(’"1+4’"2)}, (10.2.20)
a®> b2

2mymy 2mymoc?

The wave function of the first excited state of the system will be

lI/(l)(xl,y1,Z1;X2,y2,Z2) = d112(x1,51,21) 0111 (x2,¥2,22)
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2
= i sin (E)q) sin <Ex2) sin <£y1> sin (Eyz) sin —nzl sin (Ezl) . (10.2.21)
abc a a b b c c

The energy required to excite the system will be

o) _ 37[2712

EW_g0) =227
2myc?

(10.2.22)

10.3 System of ldentical Particles

Let all the particles constituting the system be identical, that is, they all have the same
physical characteristics. In classical mechanics, these particles, despite being identical,
may be distinguished from each other. For instance, we can colour them differently atz =0
and then keep track of their individual trajectories separately in time. This will enable us
to distinguish them at any instant of time . We thus conclude that in classical mechanics,
identical particles are always distinguishable.

Let us see whether identical and classically distinguishable particles remain
distinguishable in quantum mechanics or not. In quantum mechanics, colouring the
particles means putting separate tags on them which we cannot do. This is because putting
a tag on them means specifying some distinct physical characteristic for each of the
particles of the system and this cannot be achieved in view of the fact that all of them have
the same maximal set of commuting observables. Secondly, due to the uncertainty
principle, even if the position of a particle is known at a given instant of time, its
momentum is completely indeterminate. Therefore, the very concept of trajectory of a
quantum particle loses its meaning and we cannot follow trajectories of the individual
particles, the way we proposed to do in classical mechanics. Therefore, there is no way to
distinguish between identical particles in quantum mechanics. Clearly, identical particles
are inevitably indistinguishable in quantum mechanics. This indistinguishability of
identical quantum particles has some interesting consequences, which we are going to
discuss here.

It turns out that, due to indistinguishability, it is possible to deduce some important
properties of the wave functions of a system of N identical particles without solving
(10.1.8). For this purpose, let us define the so-called permutation operator ij, which
interchanges the particles that are at the positions 7; and 7. Its action on the wave
function of the system will then read

P (F1,72, s P oos T o N) = O (P12 Ty o Py ooy T (10.3.1)
—— ——
Since the particles are indistinguishable, no experiment can determine which of the

particles of the system is at 7; and which one is at 7. The probability density, therefore,
should remain unchanged, that is,
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O (F1oFa s P ooes P eos IN ) |2 = [0 (P, Py oo Py o P s ) | (10.3.2)

This, in turn, gives
O (P17 s Pl eoes Ty s IN ) = O (F1L P2y ooy Pl s B o TN ). (10.3.3)

As a consequence, the wave function of a system of N identical particles can either be
symmetric or anti-symmetric with respect to the interchange of any pair of particles of the
system. In nature, as confirmed by experiments, particles with integer spin
(s = 0,1A,2h,3h,...) have symmetric wave functions, while the particles with half-odd
integer spin (%/2,3h/2,5h/2,...) are characterized by the anti-symmetric wave functions.
The former satisfy Bose—Einstein statistics and are called bosons, whereas the latter
satisfy Fermi—Dirac statistics and are called fermions. Note that the relation between spin
and statistics can be derived only in relativistic quantum mechanics. In our non-relativistic
quantum mechanics, it is taken to be as an axiom.

Composite particles: The natural question arises: What are the symmetry properties of the
wave functions of composite particles under the interchange transformation?

Particles that are not elementary but consist of several identical elementary particles
(electrons, positrons, muons, etc) are called composite particles. They can also be
classified as fermions and bosons. The thing is that the spin of a composite particle can be
obtained by adding up the spins of its constituents. If the spins of the constituent particles
add up to a half-odd integer (in the units of 7), the composite particle has a half-odd
integer spin and it behaves like a fermion. Consequently, it obeys Fermi—Dirac statistics.
If, on the other hand, the resultant spin has an integer value, the composite particle
behaves like a boson and obeys Bose-FEinstein statistics. For instance, nucleons are
fermions because they consist of three quarks with half-odd integer spins, while mesons
are bosons because they consist of two quarks only. Atoms can also be classified likewise.
For instance, a hydrogen atom consisting of two fermions (an electron and a proton) is a
boson, while the isotope *He of the helium atom is a fermion since it consists of three
fermions: one neutron and two protons. The wave functions of all such composite
particles also abide by the symmetry properties discussed earlier.

10.4 Exchange Degeneracy

The Hamiltonian of a system of N identical particles is a sum of the kinetic energy
operators and the potential energy operators of all the particles

N
A o o oo p N o o o
H(F1, P2y ees Tl ooy Py s TN ) = Z ’;1—I—V(rl,rg,...,rj,...,rk,...,rN) (10.4.1)

If we exchange any pair of particles, say the jth and the kth, the potential energy must
remain unchanged, that is,
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V(?l,...,fi,...,7k,...,7N) — ‘7(71,...,7k,...,7j,...,?N):‘7(?1,...,?j,...,?k,...,?N). (10.4.2)

If it is not so, the particles will be distinguishable and that will contradict the quantum
mechanical assertion that identical particles are indistinguishable. Since the kinetic energy
part of A remains unchanged, if any two particles are interchanged, the total Hamiltonian
of the system will be invariant under the exchange of any pair of particles of the system.
In other words, H is completely symmetric with respect to the coordinates of the particles.
This fact leads to a novel phenomenon called the exchange degeneracy.

Consider the eigenvalue problem

Ao Pl PN O (Fla s P oo e oa Py ) = EQ(Fleois P oo Fer o Py ). (10.4.3)

In view of the invariance of the Hamiltonian under the exchange of any pair of particles,
the wave functions corresponding to all possible permutations of particles of the system
will have one and the same energy E. That is, the eigenstates of the Hamiltonian are
degenerate. This is called the exchange degeneracy.

Furthermore, we have

HPjd (Fry oo Pl oo Py oo By ) = HO(Fry oo Pl oo Pl oo )

=EQ(Flyeos oo eoos Fo e IN) = EPj@ (F1y oo Py ooy s s T )

=PyrEQ(F1,ocesFjy s Ps s ') = PrH O (1, s P oo P oo P ). (10.4.4)
In other words,

(APy — Py )¢ (71, eosFs oo P oo Py ) = 0. (10.4.5)
The last equation shows that the operator ij commutes with the Hamiltonian

(APy — Py ) = [H,Py] = 0. (10.4.6)

It means that the symmetry property of the wave function of a system of N identical
particles is conserved in time, that is, if at t = 7y the system starts out with a symmetric
(anti-symmetric) wave function, the wave function remains symmetric (anti-symmetric) at
any instant ¢ > #y. In addition, since ij and A are hermitian and commute, they possess a
complete set of common eigenfunctions (see Chapter 3).

10.5 Symmetric and Anti-symmetric Wave Functions and the Pauli
Exclusion Principle

Let us construct the wave functions for a system of identical particles. Let us for the sake of
convenience, combine the spatial and the spin variables together and write them as &, that
is, & = (7#,5). By doing so, we put a label on the particles using their position vector 7 and
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spin S. For instance, if we write y;, (&), then what we mean is that this is the wave function
of the nth energy state of the particle with spin variable S and the position 7. Sometimes,
it is also written as y,(k), meaning thereby the wave function of the kth particle or of a
particle with a label k. Note that the latter method of labelling identical particles is not
quite acceptable because the particles are indistinguishable and we cannot identify which
one is the " and which one is the j** or which one is the k" etc.

Proceeding further, let ¢, (§1), @n, (&2), Oy (E3).-.., Pny (En) be the normalized single-
particle wave functions, where each of the indices ny, ny, ns,...,ny stands for the total set
of quantum numbers relevant to the problem at hand. We shall assume, for now, that ny,
ny, ns,...,ny are all different.

The first guess could be to write the wave function of the system as a product

Oniny..ny (81,62,63 -+, 6N) = By (81) By (82) By (83) - Py (&) (10.5.1)

However, this is incorrect because writing the wave function this way means that we can
distinguish between the particles and that contradicts our earlier assertion about the
indistinguishability of identical particles in quantum mechanics. Secondly, such a product
function is neither symmetric nor anti-symmetric, whereas our wave function has to be
either symmetric or anti-symmetric in view of the indistinguishability of the particles.
The problem is overcome by taking the linear combination of the products of the
single-particle wave functions corresponding to all possible permutations of the particles.

Thus, the symmetric and the anti-symmetric wave functions, ¢;(&1,&;,&3,...,Ey) and
04(&1,62,85,....,En) respectively, of the system of N identical and indistinguishable
particles are written as

(gla§2 §3’ \/t; {‘Pnl(&1)¢n2(62)¢n3(§3)---¢N(§N)}’ (10.5.2)
¢a(&1.82.83, ..., ; )PP {0n, (61)ny (&2) Bny (83).-0n(En)} (10.5.3)

where the sum stands for the summation over all possible permutations (N! in all) of the
particles. It is worth noting that in the case of the anti-symmetric wave function,
(—1)P = +1, if (&1,6,....8j,....&i, ... En) (resulting from the interchange of the ith and
the jth particles) is an even permutation of (&, &2, ..., & .ors &}y oy En), While (—1)F = —1,
if (&1,62,....8j, ..., &, ... &) is an odd permutation of (&1, &, ....&;, ..., &, ..., Ey). Note that
the factor 1/v/N! comes from the normalization and, as stated earlier, all
nj,j=1,2,3,...,N have been taken to be different.

Accordmg to this prescription, the symmetric wave function for a system of two
indistinguishable particles assumes the form

¢S(§1’§2) = [¢Vl1 (gl)gbnz (‘52) + ¢n1 (52)¢n2(§1)] s (10.5.4)

R
V2
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while the anti-symmetric wave function for the same system can be written as
1
V2

The factor of 1/+/2, in these formulae, comes from normalization of the two-particle wave
function. It is easy to check that if we interchange the particles, ¢s(&2,&1) = ¢5(&;1, &) but

04(&2,E1) = —9a(&1, &), as it should be.

Similarly, for a three-particle system, the symmetric wave function has the form

9a(81,62) = —= [9n, (G1) 9ny (82) — By (&2) 9, (G1)]- (10.5.5)

0:(61.62.83) = \% (91 (81) By (82) 95 (S3) + P, (G2) 9, (83) B3 (&1)
+ ¢ﬂ1 (53)(])"2 (51 )¢n3 <€2) + (Pnl (51)(?”2 (63)(’)"3 (62)
+ ‘pnl (53)(1)”2 (‘SZ)(}DM (gl) + ¢n1 (52)¢n2 (‘Sl)(pna (§3)] ) (10.5.6)
while the anti-symmetric wave function for the three-particle system can be written as
$a(&1.62.85) = \/15 (901 (§1)@ny (82) Pns (3) + By (82) 9y (G3) 0 (&1)

+ O, (83) 9y (61) 0n3 (82) — By (81) 9y (G3) 03 (E2)
= Ony (83) 9, (82) 9y (81) — Oy (82) By (G1) 9 (83)] - (10.5.7)

As in the previous case, the factor 1/+v/3! comes from normalization. Clearly, using the
general formulae, we can write down the wave functions for a system of any given number
of identical particles.

Slater determinant
The anti-symmetric wave functions (10.5.5) and (10.5.7) can also be written as
determinants:

¢n1(§1) ¢n1(é2)
(pnz(él) (])nz(éz) ’

1

0.(61.82) = 7 (10.5.8)

%(él,éz,m:\} (&) 0n(E) 0m(Es) |. (10.5.9)
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In general, the N-particle anti-symmetric wave function can be written as

¢n| (51) ¢ﬂ| (62) ¢n1(éN)
1 ¢n2(§1) ¢n2(§2) ¢n2(€N)
04(81,82.83,...68) = —| ...

Wi (10.5.10)

Oy (81)  Ouy(S2) - Buy(Sn)
This is known as the Slater determinant. The product of the diagonal elements of the
determinant gives the original unsymmetrized product of the single-particle wave
functions, and the rest of the terms correspond to all permutations of the particles with
proper signs. Note that interchanging any two identical particles is equivalent to
interchanging the corresponding columns of the Slater determinant. In other words,
exchanging two columns exchanges the labels on two particles. From the properties of the
determinants, we know that interchanging two columns of a determinant results in the
multiplication of the determinant by (—1), that is, the sign of the determinant changes.
Thus, writing down the wave function of a system, consisting of fermions, as a Slater
determinant is consistent with the anti-symmetry of the wave function under the exchange
of any pair of fermions.

Let us now ask the question: What will be the expressions for the functions ¢, and ¢,
when some (or may be all) of nj, j = 1,2,3,...,N coincide?

1. Symmetric wave function

(a) In this case, if all nj, j = 1,2,3,...,N coincide (n =ny =n3 = ... =ny =n), the
symmetric wave function is given by
(PS(éla---’éN) - ¢n(§1)¢n(§2)¢n(§3)¢n(‘gN) (10.5.11)

(b) If some of these n; coincide, then we have to avoid double counting. For instance,
if n; occurs m times, ny occurs mp times, ..., ny occurs my times, then the total
number of distinct permutation of N indices will be

N!
P= , (10.5.12)
my'mylms!...my!

and hence, the symmetric wave function of the system will be

0. G1vefn) = | ML, (60 (60} (10513

For instance, consider a system of four independent identical bosons with n; =
ny = n3 = n, and ng4 # n. Since m; = 3, we get
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00/ L (00 (6100 )00 ()00 60)

L
R

+ 0n(51) 00y (52)0n(63) 9n(84) + 0y (G1) 90 (82) 9 (83)8n(84)] . (10.5.14)

(90 (81)0n(G2) 9 (83) O,y (G4) + 00 (E1) Bn(G2) Py (G3) P (84)

2. Anti-symmetric wave function.

In this case, all n; have to be different, otherwise the wave function will vanish. For
instance, if the particles at positions x; and x; are in the same spatial and spin states,
that is, n; = ny, then the jth and the kth rows of the Slater determinant will coincide
and the determinant will vanish. Consequently, the wave function of the system will be
identically equal to zero: ¢,(&;,&,&3,....E) =0.

Conclusion: In a system of N identical fermions, no two fermions can occupy the same
single-particle state at a time; every single-particle state can be occupied by (at most)
one fermion only. This is known as the Pauli exclusion principle.

Note that the Pauli exclusion principle does not apply to a system of identical bosons.
There is no restriction on the number of bosons that can occupy a single-particle state.
On the contrary, it so happens that, under suitable conditions, bosons tend to occupy
the same quantum state, the ground state. This phenomenon has been experimentally
observed and is known as the Bose—Einstein condensation.

Note that £ includes spatial as well as spin variables. Since spin represents an internal
degree of freedom (independent of the spatial degrees of freedom), the wave function
of a particle is written as a product of the spatial and the spin parts (see Chapter 5), that
is, 9(&) = ¢(7.5) = ¢ (#)x(S). Generalizing it to the system of N identical particles,
we have

¢)(71,...,7N,§1,...,§N) = (I)(?l,...,?N) X(§1,...,§N). (10.5.15)

Since this wave function, as discussed earlier, has to be either symmetric or
anti-symmetric, the parities of the spatial part and that of the spin part of the wave
function cannot be arbitrary. They must be such that their product gives, depending on
the nature of the particles, the required parity of the total wave function. In the case of
identical bosons, when the wave function must be symmetric, the spatial and the spin
parts must have the same parity, that is, they are both either symmetric or
anti-symmetric. Thus,

. o (Ply o Py Xs (St oS,
{ Os(P1, s N ) X5 (S N) (105.16)

B (F1sees s S1s s S1) = o i
¢a(rl,--~’rN) Xa(Sla""SN)’
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where the suffixes s and a stand for the symmetric and the anti-symmetric wave
functions, respectively.

For a system of N identical fermions, the wave function must be overall anti-symmetric
and, therefore, the spatial and the spin parts of the wave function must have opposite
parities, that is, if one of them is symmetric, the other has to be anti-symmetric, and
vice versa. Thus,

L= O (F1soes ) Xa (St SN
1 (F1s s TNS ST, s S I - i 10.5.17
¢ (7”1 R 1) { ‘Pa(rl’ )XS(S ( )

Example 10.5.1: Two identical non-interacting particles are in an isotropic harmonic
oscillator potential. Find the degeneracy of the ground state and the first excited state of
the system (a) if the particles are spin-1/2 fermions and (b) when they are spin-1 bosons.

As shown in Chapter 4, the nth stationary state of a single-particle in an isotropic
harmonic oscillator potential can be characterized by a triplet of non-negative integers
ny,ny and n;. It has energy Ej, »n, = (nx +ny+n;+ %) hw. The ground state corresponds
to n, = ny = n; = 0, while the first excited state corresponds to n, = 1,n, =n, =0 or
ny=0,n,=1,n,=0o0rn, =0,n,=0,n, = 1.

(a) In the ground state of the system, both the particles are in the single-particle ground
states (ny; = ny; =ng; =0, j = 1,2) with opposite spins. Since the quantum numbers
coincide, the anti-symmetric spatial part of the wave function,

oo 1
¢a(rler2) = \ﬁ |:¢n"1nylnll <x1’y1,Zl)¢nx2ny2nzz (x27y2522)

= Oungmyny (2:32,22) By, (e1.31,21)] (10.5.18)

vanishes. It means that the spatial part of the total wave function of the system will
be symmetric:

oL 1
¢s(rl,r2> = % |:¢nxlnylnzl (xla)’l’Zl)(Pannyznzz <x2’y2912)

By (2:92,22) By (51.3121) | (10.5.19)

Therefore, in view of the fact that, for spin 5 L particles, the overall wave function must
be anti-symmetric, the spin part of the wave function must be the anti-symmetric
singlet spin function. Hence, the ground-state energy is non-degenerate, that is, its
degeneracy equals 1.

The first excited state corresponds to one particle in the single-particle ground state,
ny = ny, = n; = 0 and the other in the first excited state with n, = I,n, =n, =0
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or ny = 0,ny = 1,n, = 0 or n, = 0,n, = 0,n; = 1. Since the spatial parts of the
single-particle wave function of the particles are different, both the symmetric and
the anti-symmetric spatial parts of the total wave function will be non-zero. The
former will have to be combined with the anti-symmetric singlet spin state, while the
latter has to be combined with the symmetric triplet spin state. Hence, there are in
all four spin configurations. In addition, as mentioned earlier, the first excited state
of one of the particles can be realized in three different ways. Therefore, the total
degeneracy of the first excited state of the system is 3 x 4 = 12.

(b) In the case of two spin-1 bosons, the overall wave function must be symmetric. The
system’s spin function is obtained by combining the spins of the two particles. As
we know, there are six symmetric and three anti-symmetric spin functions for this
system. For the ground state of the system, when both the bosons are in the
single-particle ground state with ny; = ny, = n;; =0, j = 1,2, there is a single
symmetric spatial part of the wave function, which must be combined with one of
the six symmetric spin functions to give an overall symmetric wave function.
Hence, the degeneracy of the ground state in this case is six.

The first excited state, analogous to the case of fermions, will have a symmetric or an
anti-symmetric spatial part of the wave function. Once again the symmetric spatial
part is combined with the three anti-symmetric spin parts and the anti-symmetric
spatial part is combined with six symmetric spin parts of the wave function. In this
case too, the first excited state of one of the particles can be realized in three different
ways. So, in this case of bosonic system, the total degeneracy of the first excited state
will be 9 x 3 = 27.

Example 10.5.2: Two non-interacting particles, each of mass m, are confined to move in a

one-dimensional potential well: V (x) =0, for 0 < x < 2a and V (x) = oo elsewhere, where
a is a positive constant. What are the energies and the corresponding degeneracies of the
three lowest lying states of the system, if the particles are (i) indistinguishable spin-1/2
fermions?, and (ii) distinguishable spin-1/2 fermions?.

Solution: The single-particle spatial part of the stationary state wave functions, satisfying
the standard boundary conditions at x = 0 and x = 2a, are

W (E.1) = B (x) e 1%, (10.5.20)

where 7 is a positive integer,

On(x) = \/Tsm (’;Z ) (10.5.21)
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and &, given by

2 252
T°h
& =" . (10.5.22)
8ma
is the single-particle energy in the nth state.

It is obvious that the nth energy state of the system will be characterized by two sets
of quantum numbers 71 and ny. The corresponding stationary state wave function of the
system will be

Wiy (E1,E2,1) = @nyny (x1,%2) X (S1,82) e~ #Emm!, (10.5.23)
where

2 K2
8ma?

Enny = €y + &y = (ni +13) (10.5.24)

gives the total energy of the system.

(i) Since the particles are indistinguishable fermions, the ground state of the system will
have both the fermions in the single-particle states with n; = n, = 1 under the condition
that they will have opposite spins. Hence, the ground state will have energy E|; =
S +E = 7r2h2/4ma2.

We have n; = np = 1, which means that the anti-symmetric spatial part of the wave
function will be zero. Since for a fermionic system the overall wave function must be
anti-symmetric, the ground state wave function will be given by

1 . /mrm . (M
vii(61,8) = _ sin (ixl) sin (227362) Xsinglet (51,52), (10.5.25)

where Xsinglet(51,52) given by

1 _ _
Hangia(81:52) = =5 P e Tt P (10.5.26)

is anti-symmetric with respect to the interchange of particles. The superscripts ‘(+)’
and ‘(—)’ stand for spin up and spin down, respectively. Evidently, the ground state
will be non-degenerate (degeneracy equal to one).

The first excited state of the system will correspond to ny =2,np =1 orn; = 1,ny =2.
This state will have energy

572h?

Eip =FEy = S

(10.5.27)
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(ii)

The wave function of the system will be given by

G5 (x1,X2) Xsinglet (51,52)
(E1.8) = 10.5.28
v (él 52) { ¢a(x1’x2)Xtriplet(sl’SZ)- ( )

where Xsinglet (51,52) is given by (10.5.26), while Xgipiet (s1,52) stands for three possible
symmetric spin functions given by

( (), (+)

X] XZ s
Xt (51,52) = {5 [x(“xz( )+ xl(’);é*)] (10.5.29)
| ),

The spatial parts of the wave function are
T
(52)]. aos30

= g (o) = ()25

0q(x1,x2) = \fa [sm (n)q) sin (n;2> —sin (%) sin <%)} . (10.5.31)

Since there are four possible spin configurations, the first excited state of the system is
4-fold degenerate.

The second excited state of the system corresponds to n; = ny = 2 and the energy of
the system in this state will be

T

EQ =Ey) = (10.5.32)

ma? "’

Once again, since the overall wave function of the system must be anti-symmetric and
n; = np = 2, the anti-symmetric spatial part of the wave function will be zero. Hence,
the total wave function of the second excited state will be

T . T
¥2(81,6) = — sin (%) sin (%) Xsinglet (51,52). (10.5.33)

Just like the ground state, the second excited state of the system will also be non-
degenerate.

Since the particles are distinguishable fermions, there is no restriction on the symmetry
of the wave functions: neither on the spatial part nor on the spin part.
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The ground state of the system will correspond to n; = np = 1 and its energy will be
the same as in the previous part. The spatial part of the ground-state wave function is
given by

1
011 (x1,x2) = = sin (%) sin (%2) . (10.5.34)
This can be combined with four possible spin functions

xl(+)x2(+)’ %(_)X2(+), xl(ﬂx(—)’ X(_)%(_)a

where ‘4’ and ‘—’ stand for spin up and spin down, respectively. Therefore, the ground
state in this case is 4-fold degenerate.

The first excited state: It will have ny = 1,n, =2 or nj = 2,n, = 1 and its energy will
be given by

st

g ST
8ma?

(10.5.35)

So far as the spatial part of the wave function is concerned, there are two possibilities

1
012(x1,%2) = ~ sin (@) sin (@) (10.5.36)
a 2a a
or
_ 1 . /¢mx; 5%
(PZ] (X],Xz) = ; sSin (7) Sin <Z) . (10537)

Each one of these can be combined with the previously written four possible spin
functions. Hence, the first excited state of the system will have 8-fold degeneracy.

The second excited state of the system will correspond to n; = ny = 2 with energy

242
n°h
E® =Ep="—. (10.5.38)
ma
The spatial part of the second excited state wave function is given by
1 . T X . T )CQ)
X)) = — — — ). 10.5.39
P22(31.%2) a sm( 2a > sm< 2a ( )

This can again be combined with four possible spin functions

), =) ) (+)

X X X X s X x(’) )i,

X1 X

Therefore, the second excited state is also 4-fold degenerate.



Quantum Mechanics of Many-Particle Systems 337

Example 10.5.3: Two identical and non-interacting spin-1 particles are moving in a common
infinite square well potential of width a. Determine the energy and the wave functions of
this two-particle system in the ground state and the first excited state.

Solution: The single-particle energy levels and the corresponding spatial parts of the wave
functions are
2252 2232
w°h w°h
Gy =" g, =2 (10.5.40)

2ma? "’ 2ma?

Ony (x1) = \/gsin (%xl) , (10.5.41)

Oy (x2) = \/g sin (%m) : (10.5.42)

where the quantum numbers 7| and n; take positive integer values.

The stationary state wave function of the system has to be symmetric. Therefore, it is
given by the linear combination of the two symmetric wave functions that can be
constructed with the help of the full (spatial plus the spin part) single-particle wave
functions:

1 _i
Vin, (E1.60,1) = 7 (05 (x1,%2) X5 (51,52) + a(x1,%2) Xa(51,52)] € #Emm! . (10.5.43)
Here, E,,,, = &, + &5, and, as earlier, the subscripts s and a stand for the symmetric and

the anti-symmetric wave functions, respectively. The symmetric and the anti-symmetric
spatial parts of the wave function are given by

Oy (x1,x2) = \% [0, (x1) Py (x2) + Gy (x2) Dy (x1)] (10.5.44)
Bulx1,12) = é [0y (1) B (52) — Gy (32) by (1)), (10.5.45)

The spin part of the wave function of the system, X (s;,s2), is obtained by combining the
spins of the two particles. We know that for a system of two spin-1 particles, there are in
total, six states that are symmetric: five |2,my) states, with mg = 0,+1,+2 corresponding to
the total spin of 2 and a singlet state corresponding to s = 0. In addition, we have a triplet
of states, |1,m;) with mg = 0,1, which correspond to s = 1 and are anti-symmetric. Given
these inputs, let us find the required energy states and the wave functions of the system.
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Ground state: In this case, both the particles will be in the single-particle ground state with
n; = 1 and ny = 1. The energy of the system will be given by

2 h?

E(O):E11:£1+£2: 7
ma

(10.5.46)

Since n; = np = 1, the anti-symmetric spatial part ¢, (xl,xz) will vanish and the wave
function of the system will be

2 .
yl® (x1,51,%2,52) = @1 (x1) 1 (x2) X5 (51,52) = . sin (gxl) sin (gm) xs(s1.52),
(10.5.47)

where x(s1,52) can be any one of the six symmetric states. Clearly, the ground state of
the system is 6-fold degenerate.

First excited state: One of the particles will be in the single-particle ground state, while
the other will be in the first excited state, that is, either n; = 1,np =2 orny = 2,np, = 1.
The energy of the system in this state will be

5m2h%

EV =E,=E) =>"—.
R=Ea =55

(10.5.48)
The state will have either symmetric or anti-symmetric spatial part of the wave function.
The former must be coupled with the six symmetric spin functions y(s;,s2), while the
latter should be coupled with the three anti-symmetric spin functions x,(sq,s2).
Consequently, the wave function of the system will be given by

(x1,x2) Xs5(s1,52),

vy (&,8) :{ (c1.52) Za(s1.52).

s s

[sin (Zx;) sin (2£x;) + sin (2£x;) sin (Zx2)] x5(s1.52),

|
5 of

[sin (%xl) sin (27”)62) + sin (%”xl) sin (%xz)] Xa(51,52).
(10.5.49)

The first excited state will be 9-fold degenerate.

Second excited state: In the second excited state of the system, both the particles will be
in the single-particle first excited state with n; = np, = 2. The energy of the system equals

A2 K2

EV=En=&+6&=—73. (10.5.50)
ma



Quantum Mechanics of Many-Particle Systems 339

Since ny =ny =2, ¢, (xl,xg) vanishes and the wave function of the system will be

2 . (2n . (2n
V) (1.51.52,52) = 02()a12) s (1.2) = —sin (axl) (am) Ke(51.52).
(10.5.51)

The second excited state of the system is 6-fold degenerate.

Example 10.5.4: Consider three identical and non-interacting particles moving, in one
spatial dimension, in a common infinite square well potential of width a: V(x) = 0 for
0 < x < a and o otherwise. Determine the eigenfunctions and the corresponding energies
of the system for the ground state, the first excited state and the second excited state, in
the following cases: (i) the particles are spinless bosons and (ii) spin-1/2 fermions.

Solution: As discussed earlier, the total wave function is a product of the spatial part
Onynyns (X1,X2,x3) and the spin part x(S;,52,53), which are to be constructed from the
single-particle wave functions. The spatial parts of the single-particle wave functions
vanish for x < 0 and x > a. In the region 0 < x < a, they satisfy their individual
time-independent Schrodinger equation:

20 :(x:
g’;ﬁ”ﬁf@ﬂ —0. =123 (10.5.52)
J

where kf =2mé&;/ 1. The energy eigenvalues, én; and the corresponding wave functions,
n, (x;) (satisfying the required boundary conditions: @, (x;) = 0 at x; = 0 and x; = a),
are given by

2 2 2h2

by (1) = \f sin ("), 6y =" =123, (10.5.53)
a a ma
2 2 2h2

On, (x2) = \/; sin(nzzxz), oy = ”22’7;7 ny =1,2.3.... (10.5.54)
2 2 27’-12

Oy (x3) = \/> sin (52, g =0 =123, (10.5.55)
a a . ma

(i) In this case, the particles are spinless bosons and, therefore, the ground state corresponds
to n; = ny = n3 = 1. The ground state energy is given by

T2 h? 3m2h?
1+1+1)=
2ma? (I+1+1)

EO —F = (10.5.56)

2ma?’
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Since there is no spin part of the wave function to be taken into account, and
n; = ny = n3 = 1, the ground-state wave function, q)(o) (x1,x2,x3), is given by the simple
product of the single-particle wave functions

WO (x1,30,33) = 91 (x1) 1 (12) 01 (x3) = \/gsin (ﬂ> sin (ﬁ) sin (%) . (105.57)

a a

The first excited state corresponds to the case when two of the bosons are in the ground
state while one boson is in the first excited state. There are three possible particle
configurations with ny = 2,np =n3 =1, np =2,ny =n3 =1and n3 =2,n =ny =1
with the same total energy which is equal to

n’h? 3m2h?

EW=Ey =Epm =Ein=5>—(1+1+4)= :
211 = E21 = Enn 2ma2( +1+44) o

(10.5.58)

Clearly, the state is 3-fold degenerate. The second excited state corresponds to the case
when one of the bosons is in the ground state (n; = 1), while the other two are in the first
excited state (n; = 2). The corresponding energy level is again 3-fold degenerate and the
energy of the system in this state is

T2 h? 92h?
2ma? o

E® = Ep) =Eim =Eyn = (10.5.59)
To find the wave function of the first excited state, we notice that, since the particles are
indistinguishable, we cannot say which particle is in the ground state (with n = 1) and
which in the first excited state (with n = 2); all that we can say is that two of the particles
are in the ground state and one is in the first excited state. In other words, two of the indices
ni,ny and n3 coincide. The total number of distinct permutations is, therefore, equal to
3!/2!. Consequently, the wave function for the first excited state of the system will be

y W (x1,20,x3) = @111 (x1,30,x3) = \/g[fl’l (x1) 91 (x2) 92(x3) + @1 (x2) d1 (x3) P2 (x1)

+ ¢1(x3)91(x1)92(x2)]

20 | . ( TX] ) ) < X ) . [ 27x3
=4/ = |sin{—) sin[ —=) sin
3! a a a

(10.5.60)
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The wave function corresponding to the second excited state of the system will be

y (x1,x0,x3) = \/3[4)1 (x1)92(x2) 92 (x3) + @2 (x1) P (x2) P2 (x3)
+ ¢2(x1)92(x2) 91 (x3)]

201 . (ﬂxl ) . [ 27xn . [ 27x;3
=4/ = |sin(—) sin sin
3! a a a
, <27rx1 > L /TX2\ . <277:x3 >
+sin| —— | sin <—> sin
a a a
2 2
+ sin ( 717)61) sin ( an) sin (W)] ) (10.5.61)
a a a

(ii) Now the particles are spin-1/2 fermions. Therefore, we have to take the Pauli principle
into account. Consequently, the ground state of the system is the one in which two of the
particles are in the single-particle ground state, n; = 1, with opposite spins and the third
particle is in the first excited state, n; = 2, with either positive (up) or negative (down) spin.
The ground state energy is given by

242

2ma’

3w2h?

E® = E,  =Ej1p=Epy = (14+1+4)= — (10.5.62)

In this case, the ground state wave function is given by the corresponding Slater
determinant:

Gr(x1) x(s1)  @1(x1) x(s2)  d2(x1) x(s3)
llfa(o) (x1,%2,%3,51,52,53) = | ¢1(x2) x(s1) @1(x2) x(s2) @2(x2) x(s3) |. (10.5.63)
o1(x3) 2(s1)  @1(x3) x(s2)  d2(x3) 2(s3)
Note that since there are four ways in which we can configure the spins of three fermions,
the ground state is 4-fold degenerate.
Let us write down the wave function of the ground state for one of the four

configurations shown in Figure 10.1. The wave function corresponding to this
configuration will be

2 (x2) 2 (s3) |, (10.5.64)
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Figure 10.1 One of the four possible configurations of the system with two of the
fermions in the single-particle ground state with n = 1 and the third fermion
in the single-particle first excited state with n = 2.

where

(+_ (11 (-)
x '2’2>’ x

Simplifying we arrive at

‘1 _1>, 2B = ‘1 i1>. (10.5.65)

i) = % [91(x1)91 (x2) 2 (x3) — 61 (x1) 92 (2) 1 (x3) — 91 (x1) b1 (x2) 2 (1)

% \2 [X(H (s)x ) (s2) — 2 (s1)X(+)(S2)] 2 (s3). (10.5.66)

The first excited state of the system will be the one in which two of the fermions, with
opposite spins, will be in the first excited state, n; = 2, while the third will be in the ground
state, n; = 1, with either up or down spin. Therefore, the first excited state energy of the
system will be given by

T2 h? 92 i?
1+4+4) = .
2ma? (1+4+4) ma?

EW = Eyyy = Epyy = Expp = (10.5.67)

The corresponding first excited state wave function will be

Or(x1) x(s1)  a(xr) x(s2)  2(x1) x(s3)

l[/(l)(X1,X2,X’S1,S2,S3) = ¢1 (XZ) %(S]) ¢2(X2) )((Sz) ¢2(X2) )C(S3) . (10.5.68)
Or(x3) 2(s1)  92(x3) 2(s2)  92(x3) x(s3)

Once again, there are four ways in which we can configure the spins of three fermions.

Consequently, there are four states corresponding to the same energy E (1), Hence, the first
excited state is 4-fold degenerate. The situation is depicted in Figure 10.2.
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!

Spin up or down

t

n=1 @

Figure 10.2 One of the four possible configurations of the system with two of the
fermions in the single-particle first excited state with n = 2 and opposite
spins and the third fermion in the single-particle ground state with n = 1
and spin up.

In the second excited state, two of the fermions will be in the single-particle ground
state with n; = 1 while the third will be in the single-particle second excited state with
n; = 3. Hence, the second excited state of the system will have energy

2h2 11 2h2
(4149 = (10.5.69)

E® =Ej3 =Ejj3=Ep3 = I
na ma

The corresponding second excited state wave function of the system will be

Or(x1) x(s1)  @1(x1) 2(s2)  d3(x1) x(s3)
1/1(2) (xl,xz,x,sl,sz,s_g) = ¢)1 (XQ) %(Sl) ¢1 (XQ) X(Sz) ¢3 ()Cz) )((S3) . (10.5.70)
Or(x3) 2(s1)  91(x3) 2(s2)  93(x3) x(s3)

This state too is 4-fold degenerate.

Example 10.5.5: A system of two independent identical spin-1/2 particles are subject to a
common one-dimensional harmonic oscillator potential of frequency @. Both the particles
are in the spin-down state characterized by the spin function ‘s = %,ms = —%> = %, —%>
Find the energies and the wave functions of the ground and the second excited states.

Solution: We know from Chapter 3 that, for the one-dimensional harmonic oscillator
potential, the single-particle energies, &,, and the spatial part of the corresponding wave
functions, ¢, (x), are

1
& = (n+2> ho,n=0,1,2,3,... (10.5.71)

0n(x) = ———— e~ V20 1, (x/xp), (10.5.72)
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where xo = v/h/me® and H,(x/xo) is the Hermite polynomial of degree n.

The ground state: Since both the fermions are in the same spin state, according to the Pauli
principle, they cannot occupy the same energy state. Therefore, the ground state will have
one fermion each in the n = 0 and n = 1 states. The energy of the system will be

EO© — G + ;) ho = 2 ho. (10.5.73)

Now, the wave function of our system of spin-1/2 particles must be anti-symmetric.
Therefore, because both particles are in the same spin state, the spatial part of the wave
function has to be anti-symmetric. The ground state wave function is therefore given by

W = s ()0 o) ~ o) (00)) 5.3 ) (10574)

The first excited state: 1t will correspond to one particle in the n = 0 energy state and the
other in the n = 2 energy state. The state with n = 1 will be empty. As a result, the second
excited state will have energy

E? — (; + ;) ho = 3ho, (10.5.75)

and its wave function will be

1 1 1
W = s () aoa) — o)) 3. ) (10576)
The particle distribution among the energy states for both the cases are depicted in
Figure 10.3.

n=2 ——&—

n=] —e&——— _ Empty
n=1
n=0 —e—— n=0—e—
(a) (b)

Figure 10.3 Distribution of particles among the energy states for the system of two spin-
1/2 fermions in a common one-dimensional harmonic oscillator potential:
(a) in the ground state and (b) in the first excited state.
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Homework Problems

1.

Consider a system of four non-interacting distinguishable bosons that are confined
to move in a one-dimensional infinite potential well of length a with walls at x = 0
and x = a. Determine the energies and wave functions of the ground state, the first
excited state and the second excited state, if their respective masses satisfy the relation:
my = 2my = 4mz = 8my.

. Three non-interacting distinguishable particles move in a common external

one-dimensional harmonic oscillator potential. Find the energies and the wave
functions of the ground state, the first excited state, and the second excited state of the
system, if their respective masses satisfy the relation: m; = 4my = 8ms.

Prove that the exchange operator B; that interchanges the particles at 7 and 7; is
hermitian.

Prove that two interchangeable operators P, ; and Py commute if the sets of indices
(i,7) and (k,?) refer to different pairs of particles.

. Check whether the following functions are symmetric or anti-symmetric under the

exchange of particles:

(x1 —x2)%  3x;+x

(a) §(x1,x2) =

5x1x2 xX2+x3
(b) ¢)<x1,x2) = % |:Sin (27[)61) sin <S7TX2> _sin <57TX1> sin <27DC2>:| .
a a a a P
f(x%—i-x%)
e
(C) (p(X],Xz) = m

Symmetrize the following wave function and normalize it to find the constant A:

5 10
O(x1,x) =A sin< nxl) sin( an) :
a a

. Anti-symmetrize the wave function:

2
‘p(Xl,Xz) = A sin ( 77.7X1> sin (571')(2) ‘
a a

and normalize it to find the constant A.

. Three non-interacting identical bosons (each of mass m) are subject to a common

external one-dimensional harmonic oscillator potential. Find the energy levels and
wave functions of the ground state, the first excited state and the second excited state
of the system.
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9.

10.

11.

12.

Consider a system of four non-interacting identical spin-1/2 particles (each of mass m)
that are confined to move in a one-dimensional infinite potential well of length a with
walls at x = 0 and x = a. Determine the energies and wave functions of the ground
state and the first three excited states. Draw a figure showing how the particles are
distributed among the levels.

Two identical particles of spin-1/2 are enclosed in a one-dimensional infinite square
well potential of length a with rigid walls at x = 0 and x = a. Assuming that the two-
particle system is in a singlet spin state, find the energy levels, the wave functions and
the degeneracies corresponding to the three lowest states.

Two identical spin-1/2 particles are moving under the influence of a one-dimensional
harmonic oscillator potential. Assuming that the two-particle system is in a triplet spin
state, find the energy levels, the wave functions and the degeneracies corresponding to
the three lowest states.

A system of three independent identical spin-1/2 particles are subject to a common

one-dimensional harmonic oscillator potential of frequency w. Both the particles are
in the spin-up state characterized by the spin function |s = %,ms = %> = % %) Find
the energies and the wave functions of the first three lowest-lying states.



Chapter 11

Symmetry and Conservation Laws

According to Herman Weyl, by symmetry of an object (or a physical system) we mean
the property of the object to appear unchanged after some operation has been done on
it. We then say that the object is symmetrical under the given operation. For instance,
consider a square. It is indistinguishable after rotations by %n, 7 and %n’ about the axis
passing through its geometrical center and perpendicular to its plane (Shown by the dot
in the figure). This axis is said to be the axis of symmetry of the square. Note that the
angle of rotation, for which the square possesses symmetry, takes on only discrete values.
Consequently, it has, as we say, a discrete symmetry. On the other hand, a sphere looks
unchanged after all rotations (infinitesimal or finite) about its axis of symmetry. Since the
angle of rotation can take continuous values, the rotational symmetry of the sphere is a
continuous symmetry.

Square Splllere

Figure 11.1 Invariance of a square under discrete rotations and that of a sphere under
continuous rotations, about the respective axes of symmetry.

It turns out that, for each continuous symmetry of a physical system, there exists a
conserved quantity, i.e., a physical characteristic that remains constant as the system
evolves in time according to a given dynamical equation. This result is known as the
celebrated Nother theorem. For example, if we place a system of particles in empty space,

347
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far from anything that might affect it, it does not make a difference where exactly we
put it. There are no preferred locations in empty space; all locations are equivalent. As
a consequence, there is a symmetry for a system of particles with respect to translations
in empty space. This translational symmetry leads to the law of conservation of the total
linear momentum of the system. Similarly, there exists a symmetry for a system of particles
in empty space with respect to rotations of the system as a whole because there are no
preferred directions in empty space. This rotational symmetry leads to conservation of the
total angular momentum of the system. Another important symmetry is the symmetry with
respect to shift in time. It turns out that it does not matter when we perform an experiment
on an isolated system. The results will be the same. This symmetry with respect to shift in
the origin of time gives rise to the law of conservation of energy.

The aforementioned conservation laws hold good in classical as well as in quantum
mechanics. However, in quantum mechanics, there appear some new laws of conservation
related to the invariance of the system with respect to a change in its quantum mechanical
characteristics. For instance, the invariance of the probability density "y under a change
of the phase of the wave function by a constant quantity leads to the conservation of charge.
Another example is the exchange symmetry (discussed in Chapter 10), related to a strictly
quantum mechanical phenomenon of indistinguishability of identical particles, which leads
to novel physical consequences that do not have any classical analogue.

The relationship between the symmetries and the conservation laws is important. This
is because, besides allowing us to formulate the known conservation laws, it also enables
us to discover new laws of conservation that play crucial roles in physics at large. Apart
from that, there is another important aspect that requires a serious study of the invariance
properties of a quantum mechanical system. It is related to the fact that the Schrodinger
equation can be solved exactly only for a handful of simple cases; in all other cases, one
has to adhere to approximate methods of solution. It turns out that a detailed study of the
symmetry properties of a given quantum system allows us to deduce a number of important
physical properties of the system without solving the corresponding Schrodinger equation
explicitly.

In view of the importance of symmetry principles in quantum mechanics, we shall
discuss the invariance properties of a quantum system in more detail and derive some
important results. In doing so, we shall use the language of group theory, which is the
appropriate mathematical language for dealing with such properties.

11.1 Transformation of the Wave Function under Coordinate
Transformations

In general a coordinate transformation may be either active or passive. By active
transformation we mean the one in which the position vector of the point is changed while
the coordinate system remains unchanged. For instance, the position vector 7 of the point
P can be rotated. On the other hand, in a passive transformation the position vector of the
point remains unchanged, while the basis vectors, that define the coordinate axes of the
coordinate system, undergo a change. In our case, we consider the wave function, y(7),
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of a particle at the point P with the position vector 7 and aim is to deduce its
transformation property, when we go over from one system of coordinates to another.

Let ¢ stand for the operation with the help of which we move over to a new coordinate
system in which the point P is represented by the position vector 7’. That is,

7 =87 (11.1.1)
The inverse transformation is given by
F=g"17. (11.1.2)

Since the value of the wave function at P has not changed as result of the coordinate
transformation, we must find the same value of y for 7' which was there for 7. Hence, we
obtain

v'(7) = y(@). (11.1.3)
Taking into account (11.1.2), we land up with

y'(7) =w(g 7). (11.1.4)

Note, however, that the functional form of the wave function might change due to the
coordinate transformation. This fact is indicated by putting prime on the wave function for
7. For instance, consider the case of one spatial dimension and let y = Ay exp(—ax) and
x" = exp(bx), where Ay, a and b are constants, then

v'(x)=y(x) = ll/(S*l(x’)) = Ap exp <—%ln(x’)> — [x,](a/b)' (11.1.5)

We now argue that the wave function y'(7’) can be obtained from y(7’) by acting on

y(7') with a suitable operator I?g, where the subscript g shows that this operation is
induced by the coordinate transformation (11.1.1). Thus, we can write

v'(7) =Ry (7). (11.1.6)
Comparing (11.1.4) and (11.1.6) we get the rule according to which R, acts on y(7'):

Row(7) = w(g 7). (11.1.7)

Ry (F) =w(g'7), (11.1.8)

which determines the rule according to which the wave function should transform under
the coordinate transformation (11.1.1).
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Since the physical properties of a system should not depend on the coordinate system
chosen to describe the system, the normalization of the wave function must be preserved.
Hence,

(W) v (7)) = (wE) [RER W) ) = (w() | () = 1. (11.1.9)
It follows from (11.1.9) that the operator I?g must be a unitary operator:

RiR, =R,R} =1, (11.1.10)
where [ is the unit operator.

Consider now the effect of two successive transformations of the coordinates: first by
applying the operator ¢; and then by applying the operator g»:
PP =817, P o7 =7 (11.1.11)
Let I?gl and Iégz be the operators, corresponding to g; and g, respectively, which act on
the wave function y (7). Then, on one hand

l,l/”(?”) — Iégzll’,(?”) — Iégzégl w(;;//) (11112)

On the other hand, since the value of the wave function should not change as a result of the
coordinate transformations, we must have

v (7)) =y =w(g '8 ). (11.1.13)

It follows from (11.1.12) and (11.1.13) that, after the aforementioned two successive
coordinate transformations, we shall have

Re, Ry, w(F) = w(g7' 8, 7). (11.1.14)

Equation (11.1.14) gives the transformation of the wave function under two successive
coordinate transformations. The point to be noted here is that the order of the g-inverse
operators acting on the argument of the wave function is reversed in comparison with the
order in which the operators I?gl and I?gz act on the wave function.

It is obvious now that, if the set of coordinate transformations, represented by the
operators {g}, form a group, say g, then the group G(R), formed by the operators {R,}, is
said to be the representation of g in the linear vector space whose elements are nothing
but the set of all possible wave functions of the system.
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11.2 Group of Symmetry of the Schrodinger Equation and the
Conservation Laws

Consider the Schrodinger equation for a system of n particles
ih—=— = Hy, (11.2.1)

where v = y(7,7,...,Pt) and H(#.72,...,7,) are the wave function and the
Hamiltonian operator of the system, respectively. Mathematically, the values of the wave
function can either be numbers or elements of a multi-dimensional linear vector space. If
the wave function belongs to a m-dimensional linear vector space, then we choose an
appropriate orthonormal basis, {‘fj(?') Yhi=123,....m

0, if j#k
<fj|fk>:5jk:{ N o jik (11.2.2)

in this space and characterize the vector wave function, |1;/(?1,?2, ... ,FH,t)>, by its set of
components

V(AL W Fnt) = (filw), j=1273,....n. (11.2.3)

In this case, the Schrédinger equation (11.2.1) is rewritten as
' OV m
in % =Y Huw, (11.2.4)
A

where Hj; = < fi ‘I-AI ‘ fk> are the matrix elements of the Hamiltonian operator, H, in this
basis.

By definition, the Schrédinger equation (11.2.1) is said to be invariant with respect to
a certain operation, represented by an operator R, if every solution y of this equation is
transformed by R into a new wave function, ¥’ = Ry, which also satisfies the Schrodinger
equation (11.2.1) and all the required boundary conditions. That is

A

/ A
in a;’: — Ay, — in a(g;,/) — ARy (11.2.5)

If the set of all such operators {R} forms a group, say G(R), then G or any of its subgroups
is called the group of symmetry of the Schrodinger equation (11.2.1).

It is usually assumed that the operators {R}, besides being linear, commute with the
operation of differentiation with respect to time, that is,

0,4\ S0y
E(Rl//) =R—-" (11.2.6)
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Multiplying (12.2.1) by R from left and using (12.2.6), we get that

=R(Av). (11.2.7)

From (12.1.5) and (12.1.7) we arrive at
(HR—RH)y =0. (11.2.8)
Since y is an arbitrary solution of the Schrodinger equation, it follows from (11.2.8) that
RH—-HR= [R,H]=0. (11.2.9)

Hence, the elements of the group of the Schrodinger equation commute with the
Hamiltonian. Clearly, the operator, R', hermitian conjugate to R, also commute with H:

N A

[RT,A] =0. (11.2.10)

As a consequence, the hermitian operators

A1

Fi=-(R+R"), and o= (R-R"), (11.2.11)

2 2i

also commute with the Hamiltonian.

The commutativity of the operators F, and F> leads to the following important
consequences. In particular, it turns out that F; and F; are conserved in time. In order to
establish that, let us prove the following simple theorems.

Theorem 11.2.1: If at a given instant 7y the wave function Y(7,7,...,7,,f) is an
eigenfunction of the operators F; and F7,

Eiy (PP, Futo) = AW (P Fas. . Fato), = 1,2, (11.2.12)

then at any other instant, ¢, it is again the eigenfunction of these operators with the same
eigenvalues, A;.

Proof: Consider the function
0;(F1. P2 Funt) = By W (P Fas o Fust) — A W (P Fas . Fnt), j = 1,20 (11.2.13)

The operators F; and >, being the symmetry operators, commute both with d /¢ and the
Hamiltonian. Hence F i Y (71,7, ..,y t) satisfies the Schrodinger equation. It means that
both the terms on the right hand-side of (11.2.13) satisfy the Schrodinger equation.
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Therefore, the function ¢(7,7,...,7,¢) also satisfies the the Schrddinger equation.
Since the Hamiltonian does not depend on time explicitly, the solution to the Schrodinger
equation at any ¢ > ty is uniquely given by

1

0;(F1.Fon. . Fnt) = e 100 Ay (7 7 Rogg) j=1,2. (11.2.14)

Because of the fact that at r = 1y we have q)j(?] P2, Taylp) =0, the equation (11.2.4) tells
us that §;(7,72,...,7,,1) = 0 at any ¢ > fo. Hence,

Fiw (o, Ft) = A W(FLPas . Fnt), =12V t>1. (11.2.15)

Therefore, (71,72, ...,7y,t) are eigenfunctions of F;,j=1,2atanyt > fy corresponding
to the same eigenvalues A;.

Theorem 11.2.2: The average values of the operators £ and £, in a given state of a quantum
system with a time-independent Hamiltonian, are conserved.

Proof: The time evolution of the average values (in a given state y(z)) of these operators is
governed by the following Ehrenfest’s equations:

d{F)

=" = ([F1,H]), (11.2.16)
ihd<j2> = (B, A)), (11.2.17)
t
where

L v Ey)dx

<F]>_W’ Jj=12, (11.2.18)
v o JY(FLAly)d Y

([Fj,H]) = Tyds j=12. (11.2.19)

Since F| and F> commute with the Hamiltonian, we conclude that the average values of the
operators F, and F, are conserved in time.

Theorem 11.2.1 and Theorem 11.2.2 show that the hermitian operators F, and B
represent conserved physical quantities. This, in turn means that to every element of the
group of symmetry of the Schrodinger equation, there corresponds a law of conservation.
However, all these conservation laws are not independent. Therefore, the question arises:
How can we, out of the totality of conservation laws provided by a group of symmetry of
the Schrodinger equation, find the smallest number of independent conservation laws
from which all other conservation laws can be derived? Note that this is very important in
the context of continuous groups of symmetry which lead to a continuum of conservation
laws.
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The following theorem, which is proved using the theory of Lie groups!, provides the
answer to this question.

Theorem 11.2.3: Let the symmetry group, G(R), of the Schrodinger equation be an m
dimensional Lie group with m parameters «i,0,03,...,0, and the corresponding
generators [1,I,15,...,I,,. Then the following hold good: (a) every generator
I;,j=1,2,3,...,m corresponds to a conserved physical quantity, and (b) all conservation
laws related to the elements of the group G follow from the m conservation laws
corresponding to the generators.

Proof: Consider a group element R(a),a = {a, ..., 0, }. From the theory of Lie groups
we know that R can be represented as

m
R(au,...,cn) =exp < iocjfj> , (11.2.20)
j=1

where the generator [}, corresponding to the parameter ¢; is calculated as

JR(0,0,...,0j,...,0,0}

I=—i
/ 80@

(11.2.21)

O{jZO

Since R is an element of the symmetry group of the Schrédinger equation, it commutes
with the Hamiltonian. Hence,

n
A i O N N
RH| = [Zn!<zlaj1j> H
n=0 j=1

n o 1 n N
<l—|—l’ZOCj1j—|—2'l'2 Z OCj(XkIjIk
=1 Sy

13 & :
+ -0 ) ajakagljlklg—i—...),H =0. (11.2.22)

I
3! ik l=1

For the above relation to hold good, each of the m generators, I 7 =1,2,3,...,m, must
individually commute with the Hamiltonian. That is, we must have

1,H]=0 j=123,...,m. (11.2.23)

Equation (11.2.23) shows that each generator of the group of symmetry of the
Schrodinger equation, G, leads to a conservation law. Evidently, in view of (11.2.20), all
conservation laws related to the elements of the group G follow from the m conservation
laws corresponding to the generators.

'M. Tinkham, Group Theory and Quantum Mechanics, New York: McGraw-Hill Book, 1964.
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11.3 Homogeneity of Time and Space: Conservation of Energy and
Momentum

(a) Homogeneity of time: Consider a quantum mechanical system with constant external
conditions. For such a system, all the instants of time are equivalent. This is known as
homogeneity of time. It means that if y(7,7) is a solution of the Schrodinger equation at
a given instant 7, and the system is displaced in time by an infinitesimal amount 7, that
is, 7 goestot’ = g:t =1t + 7, where we have —oo < T < +oo, then the wave functions

v (7)) =Rew(Ft) = w(7g;'t) = w(Ft — 1) (11.3.1)

will also be the solutions of the Schrodinger equation. In this case, the group of
symmetry of the Schrodinger equation is a one-parameter Lie group,
G = {R(a = 1)}, of time translations whose generator is calculated as

~>
—~
~
~—
<
—
N1
~
~—
Il

I e 9
i 2R W),y = <"’(;T)>T_O =i 2y,
(113.2)

HOzij. (11.3.3)

Since G = {R(7)} is the group of symmetry, the generator / = i(d/dt) must commute
with the Hamiltonian and hence, it is conserved.

Let us recollect that in quantum mechanics, the operator for the total energy of a system
under constant external conditions is given by £ = ifi (9 /dt). If we now look at [, we
come to two important conclusions: (i) The quantum mechanical operator for energy
is proportional to the generator of the group of time translations and the constant of
proportionality is given by f; and (ii) the physical quantity that is conserved due to
the invariance of the Schrodinger equation with respect to translations in time of the
system, as a whole, is the total energy of the system.

(b) Homogeneity of space: Consider now a quantum mechanical system (for simplicity
consider a single-particle system with position vector #) which is subject to spatially
homogeneous external conditions. This means that all the points in space are
indistinguishable for the system. As a consequence, the potential energy does not
change if the system as a whole is translated in space by a constant vector d, say from
7 to 7+ d. Then, the set of operators {R(a@)}, whose action on the wave function is
defined through

R(@)y(7t) = w(g;'Ft) = w(F—a.t), (11.3.4)
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forms the symmetry group, G, for the Schrodinger equation. It is a three-parameter
Lie group of spatial translations whose parameters are taken to be the Cartesian
components (a; = ay,a; = ay, and a3 = a;) of the vector d. Correspondingly, there
are three generators I, j =1,2,3, that are computed as

Ij(aj)y(71) = —i5— (R@w(71))], o= —iale (w(F=d.1))l,,=0

. d
_zgjw(m). (11.3.5)

aj:O
Hence,

5 . d .
I](a])—laxj, j=1,2,3. (11.3.6)
Since the group, G, of space translations is the symmetry group for the Schrédinger
equation, these generators must commute with the Hamiltonian and be conserved.

As we know, in quantum mechanics, p; = —inl i»J = 1,2,3 is the operator for the jth
component of the linear momentum. Taking this into account, we come to the conclusions:
(i) The quantum mechanical operator for linear momentum is proportional to the generator
of the group of space translations and the constant of proportionality is given by —#; and
(i1) the physical quantity, which is conserved due to the invariance of the Schrodinger
equation with respect to spatial translations of the system as a whole in a given direction,
is the linear momentum of the system along that direction.

11.4 Isotropy of Space: Conservation of Angular Momentum

Isotropy of space means that there is no preferred direction in space: all directions are
equivalent. Consider a one-particle system on which no external force is acting. Because
of the isotropy of space, the properties of this system will remain unchanged under arbitrary
rotations of the system as a whole. Let us see what are the consequences, if the system is
subject to an infinitesimal rotation about a given direction in space.

Consider an infinitesimal rotation by an angle ¢, about an axis passing through a point
in 3-dimensional space. Such a rotation is characterized by a vector 5_’¢, whose magnitude
coincides with the angle of rotation and whose direction is along the direction of the axis
of rotation. If we perform such a rotation, the change in the position vector, 7, of a particle
(system) is given by 67 = [5_%1) x 7). In other words,

FoF+ (50 x 7. (11.4.1)

In this case, the set of operators, R(Sqq)), defined by

—

R(89)w(7.t) = (7~ [8¢ x 7].1), (11.4.2)
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forms the symmetry group, G(BA(P), of the Schrodinger equation. It is a 3-parameter Lie
group of rotations whose parameters are taken to be the Cartesian components (6¢; =

80,81 = 8¢y, and 8¢3 = 5¢.) of the vector 5.

Since
R o 3 P
—(89x7)-V=— ) €8x 5, (11.4.3)
=1 e

where & are the components of the Levi-Civita tensor density:

+1, if (¢jk) are even permutations of (123),
gj =14 —1, if ({jk) are odd permutations of (123), (11.4.4)
0, otherwise,

the three generators, £,,(8¢) (m = 1,2,3), of this group are given by

1 (80)y(7,1) :—im (ﬁ( qd’W(?’t)) ‘5%,:0

-

=i 2 (e CeNVy(5n))|

Y e+ Y e 2
=i Emk Xk =— (7 t) =i Emke Xk =— W (7,1). (11.4.5)
kt=1 dx k=1 dxy
Hence,
. 3 0
1n(80m) =i ). Emuexi5—, m=1,23. (11.4.6)
kl=1 Xe

Recollecting that the quantum mechanical operator for the angular momentum, L, is
given by

L=#xp. (11.4.7)
Or,
. 3
Ln="Y emexpe. (11.4.8)
k=1

we conclude that: (i) the components of the angular momentum operator are also
proportional to the corresponding generators of the group of rotations in three
dimensional space, and the constant of proportionality is given by —h, that is,
L, = —hl,,m=1,2,3, and (ii) the physical quantity, which is conserved due to the
invariance of the Schrédinger equation with respect to the rotation of the system as a
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whole about a given direction in space, is the component of the angular momentum along
that direction.

Comment: Note that Quantum Mechanics does not give a general prescription for
constructing operators corresponding to an arbitrary function of classical variables. In
this context, the above analysis shows that the relevant operators in quantum mechanics
have their origin in the invariance of the classical analogue of the quantum mechanical
system, under the continuous groups of time translations, space translations and rotations
which, in turn represent homogeneity of time, homogeneity of space and the isotropy of
space, respectively. The individual operators are proportional to the corresponding
generators with position operator being proportional to the generator of the group of
translations in the momentum space.

11.5 Symmetry of the Hamiltonian and Degeneracy

We have seen that in many of the problems in two or three spatial dimensions the energy
eigenvalues are degenerate. For instance, all the stationary states of the hydrogen atom,
barring the ground state with n = 1, are degenerate. While talking about degeneracy we
did mention that it was the result of some underlying symmetry of the Hamiltonian. Our
main aim in this section will be to understand the cause of degeneracy of energy states of
quantum systems.

Consider the time-independent Schrodinger equation

H|¢n) = Ey|¢n) (11.5.1)

where H is the Hamiltonian operator. Let G(R,) be the m-dimensional representation of
some symmetry group of the Hamiltonian, where I?g corresponds to the element g of the
symmetry group. Then, starting with a given eigenfunction |¢,) of A with the eigenvalue
E,, we can generate m more linearly independent eigenfunctions {|¢)),|02),[¢>),
..»|@")} of the Hamiltonian by acting on |¢,) with all the elements of the group G. All
these m + 1 eigenfunctions will correspond to the same energy eigenvalue E,. It is
therefore clear that if A has a group of symmetry of order m, each of the energy states of
the system has the potential to be (m + 1)-fold degenerate. Thus degeneracy has its origin
in the symmetry properties of the Hamiltonian.

The wave functions corresponding to a degenerate energy state can be used to form an
irreducible representation of the symmetry group G in which they serve as basis functions.
In general, basis functions belonging to different irreducible representations of G must
correspond to different energy eigenvalues. Thus, for each energy eigenvalue E,, there is
a corresponding irreducible representation of the symmetry group G with dimension equal
to the degree of degeneracy of E,. Evidently, an energy level cannot be degenerate unless
the symmetry group has an irreducible representation of dimension two or more.
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In many cases, it turns out that, for certain values of physical parameters, two or more
eigenfunctions, belonging to different irreducible representations, have the same energy
eigenvalue. This type of degeneracy, which is not a consequence of any symmetry of the
system, is called accidental degeneracy. The degeneracy related to the symmetry properties
of the system is usually called the essential degeneracy.

To clarify the difference between these two types of degeneracy, let us take up an
example®. Consider a two level (states / and ) finite potential well with electrons, in the
absence of any magnetic field. It is obvious that each of these levels is two-fold
degenerate in the sense that each of them can accommodate two electrons, one with spin
up’ and the other with spin ’down’. This degeneracy of the energy states is an essential
one because the electronic states with spin up and spin down are indistinguishable in the
absence of any external perturbation. If we now switch on an external perturbation in the
form of a magnetic field, B, the degeneracy is removed and each of the energy states / and
II split up into two. The separation between the sub-levels (I, ) and (II;, 1) is
proportional to the strength of the magnetic field B. As a consequence, for a particular
value of the magnetic field B, the energies of the sub-levels I, and /1; will coincide (point
P in the Fig. 11.2). The two-fold degeneracy at the point P is an accidental one because it
does not have its origin in any symmetry property of the original Hamiltonian.

In order to throw some more light on accidental degeneracy, let us take up another
example®. Consider an infinite rectangular well potential with sides a,b, and ¢ (also
referred to as rectangular box). We know that the stationary state wave functions and the
energies are given by

1 b9
Onunyn,(:3.2) = | g sin ( ”"Zx) sin ("yb—y) sin (”ZT”Z) , (115.2)
w2h* [ n? n§ n?
_ X Z
By = 5 [ 3+ 55+ 3 |- (11.5.3)

where ny, ny and n; are nonzero integers.

Unless at least two of the sides a,b, and ¢ have integer values, there is no degeneracy. In
the opposite case, however, there is degeneracy. For example, if a = p and b = ¢, where p
and g are integers, then

E(sp)(sq)n. = E(7p)qn. (11.5.4)

Obviously, this type of parameter-dependent degeneracy is accidental and not essential.

So far we have talked about continuous symmetries of the Hamiltonian and the
degeneracy related to them. In such symmetries finite transformations can be realized by

2A.W. Joshi, Elements of Group Theory for Physicists, John Wiley and Sons Ltd., p. 177, 1988.
3C.A. Hollingsworth, Accidental Degeneracies of the Particle in a Box, J. Chem. Edu., 67, No. 12, p. 999, 1990.
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successive infinitesimal transformations. There are, however, symmetry operations that
cannot be obtained in this way, for instance, space inversion, lattice translation and time
reversal. They fall into the category of the so-called discrete transformations. In what
follows, we shall discuss the degeneracies related to such discrete symmetries of the
Hamiltonian, if it does exist.

Energy (A.U.)
A
I; I
I =7
I I
P
1, 11,
1 e
1, 1,

Magnetic field strength B (A.U.)

Figure 11.2 The schematic illustration of double degeneracy of energy states: The
two-fold degeneracy of the states | and Il is essential, while the double
degeneracy of energy states at the point P is accidental.

11.6 Space Inversion Symmetry
We have seen in Chapter 2 that the space inversion transformation consists of reflecting the
coordinate system with respect to the origin

X—=—Xx, y—>—y, 7— —Z (11.6.1)

This is a discrete operation, i.e. the operation which cannot be composed of infinitesimal
operations. As a consequence, it does not possess any generators. It is accomplished by the
so-called parity operator &7 which is hermitian as well as unitary and it can have only two
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eigenvalues A = +1. There we also discussed about the properties of the eigenfunctions
of the parity operator. Let us, following Sakurai, reformulate the the entire thing in terms
of the eigenkets of the position and momentum operators.

Let us keep the coordinate system fixed and assume the parity operator to act on the
elements of the Hilbert space of states of a quantum system. In other words, given a state
|v), we introduce a space-inverted state obtained by acting on |y) with the parity
operator &:

W) — P|y). (11.6.2)

We require & to be norm preserving. So, it is unitary: 2T = 2~1. We also require the
average value of the position operator 7 to satisfy

(w| 2172 |v) =~ (ylfly) Yv). (11.6.3)
It then follows from (11.6.3) that
PRP =P} (11.6.4)

Taking into account that the parity operator is unitary, we conclude that the position
operator anticommutes with the parity operator:

[(2.,7]+ =0. (11.6.5)

We now wish to find the result of action of the parity operator on the eigenvectors of the
position operator. Let |#’) be the position eigenket:

7'y =r'|7). (11.6.6)

S

Then, we have
PP = — PP = —r' P, (11.6.7)

It follows from (11.6.7) that & |#’) is an eigenket of the position operator with eigenvalue
—r'. Hence, & |[#') must be proportional to | —7'):

Py = |7, (11.6.8)

where ¢/* is the phase factor and « a real constant. The phase factor is usually taken to
be unity. We thus have the rule according to which the parity operator acts on the position
eigenket:

P =|-7"). (11.6.9)
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Applying the parity operator once more on the position eigenket, we regain the initial state
Py = 2| -7 = 7). (11.6.10)
As a consequence, we have

P? =1, (11.6.11)
Thus, the parity operator is not only unitary, it is also hermitian

A

P =P =D (11.6.12)

Since 2% = [, the parity operator can have only two eigenvalues A = +1.

Let us now deduce the result of the action of the parity operator on the momentum
eigenkets. For that we require the operation of infinitesimal space translation followed by
space inversion to be equivalent to the operation of space inversion followed by
infinitesimal space translation in the opposite direction. So, if ﬁ(cfr) stands for the
generator of infinitesimal translation, then our requirement boils down to the following
equality

A

PD(dr) = D(—dr) 2. (11.6.13)

We know that the momentum operator in quantum mechanics is proportional to the
generator of spatial translation. Therefore, using the substitution

D(dr)=1- %ﬁ, (11.6.14)
in the aforementioned equation, we obtain
ﬁ(l—%ﬁ) - <1+;ﬁ> P. (11.6.15)

It follows from (11.6.15) that the momentum operator anticommutes with the parity
operator

(2.p]+ =0. (11.6.16)
Also,

PP =—p. (11.6.17)
So far as the operator of orbital angular momentum, i =7x 1‘3’ is concerned it should

commute with the parity operator because both, the position and the momentum operators
are odd with respect to inversion. Thus, we have
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(PL]=0, or P'LP =1. (11.6.18)

The spin operator, S also transforms as L:

N
5.

(D.5] =5 (11.6.19)

AN

0, or ,@TSA"

Wave functions under space inversion: Now we wish to look at the parity property of wave
functions. Consider a spinless particle in the state |y). Let y(7') be the wave function of
particle in the state |y). We know from Chapter 4 that

y(7') = (7'|y), (11.6.20)

where we have chosen the basis in the Hilbert space consisting of the eigenkets, {|7’) }, of
the position operator. The wave function of the space-inverted state, represented by the ket
Z|y) will be

(F'|2|y) = (—F'|y) = w(-F"), (11.6.21)

where we have taken into account (11.6.9) and the fact that & is hermitian. Equivalently,
we have

Py (') = y(-F"). (11.6.22)
Suppose that |y) is a parity eigenstate, i.e.,
Py) = +|y). (11.6.23)

Then the space-inverted wave function satisfies
y (=) = (F|Ply) = £(F|ly) = £y (7). (11.6.24)

If y(—7") = y(#'), the wave function is said to have even parity, while, if y(—7') =
—y(7'), it is said to have odd parity. Thus the eigenfunctions of the parity operator have
definite parity: they are either symmetric or antisymmetric functions of coordinates.

It is worth mentioning here that not all wave functions have parity properties in the
aforementioned sense, i.e., not all wave functions are eigenfunctions of the parity operator.
For instance, the eigenfunctions of the momentum operator, given by exp [i(p-F) /1], is
neither symmetric nor antisymmetric under space inversion.

So far as the wave functions of the angular momentum operator L (given by the
spherical harmonics ng(e, @)) are concerned, under space inversion transformation
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r—r,
0— (1—0), (11.6.25)
o—(p+m),

they transform as
2Y"(6.9) = (—1)'¥"(6.9). (11.6.26)

Let us now have a look at the parity properties of energy eigenfunctions. Consider the case
when the potential energy operator is invariant under inversion. Then, although p changes
its sign, the Hamiltonian operator, being quadratic in momentum operator, will be invariant
under inversion. It then follows that the parity operator, being a symmetry operator for the
Hamiltonian, must commute with it

[(2.A] =0. (11.6.27)

This means that, if y(7) is an eigenfunction of the Hamiltonian with a nondegenerate
eigenvalue E, 2y is also an eigenfunction of the Hamiltonian with the same energy E.

Note that the theorem fails when the non-degeneracy condition for £ is not met. For
instance, although the Hamiltonian for a free particle is invariant under space inversion
and commutes with the parity operator, the eigenfunctions of 1‘3’ (which are also the
eigenfunctions of the Hamiltonian) are not the eigenfunctions of the parity operator.
However, since these energy wave functions are two-fold degenerate (with exp [i(7 - 7) /]
and exp [—i(p-F) /| corresponding to the same energy eigenvalue), it is possible to form
two linear combinations resulting into sin(p - 7/h) and cos(p - ¥/h), which are
eigenfunctions of the parity operator with eigenvalues —1 and +1, respectively.

In general, if the Hamiltonian is invariant under parity transformation and the solution,
v, of the eigenvalue equation for the Hamiltonian is neither symmetric nor anti-symmetric
function of coordinates, one construct the linear combinations

(w7 + 2y (7)) (11.6.28)

(w(®) - 2y(), (11.6.29)

which will be eigenfunctions of the parity operator as well as the eigenfunctions of the
Hamiltonian with the same energy as that of the state y.

11.7 Time Reversal Symmetry and Time Reversal Operator

Many physical systems contain an invariance under the reversal of the direction of flow of
time. This is true of classical systems as well as quantum mechanical systems. If for a
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motion picture of a mechanical system it is not possible to decide whether it is shown in
the forward or reverse direction, the system is said to have time-reversal symmetry.

In order to clarify the meaning, for concreteness consider a classical particle in three
spatial dimensions described by a Hamiltonian H (7, ), where 7 and p are the position
vector and momentum, respectively. The equations of motion are given by Hamilton’s
equations

di JdH dp JH

oot 2T (11.7.1)

dt  dp dt a7
The classical notion of time-reversal symmetry, as stated above, is directly related to a
symmetry property of the Hamiltonian. Namely, if the Hamiltonian is invariant under the
P — —p,then the equations of motion (11.7.1) are invariant under the transformation

(7, p.t) = (F,—p,—1). (11.7.2)

What this actually means is that, if the pair (g(z),p(r)) describes the trajectory of a
possible motion of the particle in the phase space with the initial conditions (go, po), then
the pair (g(—1),—p(—r)) also does the same but with the initial conditions (go, —po). For
the configuration space, it will mean that if ¢(7) is a solution of the equations of motion,
then G(—1) is also a solution of the same equations of motion.

To check whether quantum dynamics is invariant under time reversal or not, consider
the time-dependent Schrodinger equation

ih(?l//(r,t) n?

5 = o VWE) V(v (). (11.73)

If we replace ¢ by —t, the Schrédinger equation goes into

Ay (7, —t n -

—ih"’(a"t) = —%qu/(a —1) +V () (7 —1), (11.7.4)
which does not coincide with the previous equation. That means that Schrodinger equation
is not invariant under time reversal. If, however, we perform complex conjugate on both
sides of (11.7.4), we get

alll (7, —t) n o, ok
T sz v (7, —t)+V(F)y" (F,—1). (11.7.5)

Equation (11.7.5) for y*(7#,—t) coincides with the Schrodinger equation (11.7.3) for
y(7,t). Thus, the quantum dynamics is invariant under time reversal transformation
followed by complex conjugation: @ : (¢t — —t) x Complex con jugation. This fact tells
us that even if |y(7, —1)) is not a solution it is possible to find an anti-linear operator that
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transforms |y(7,—t)) into the time-reversed solution |yg(7,1)) = |y*(7,—1)) of the
Schrodinger equation.

Furthermore, we want that if the system is in a time-reversed state |y (7,1)), the probability
of finding it in a state |@g(7,7)) is equal to the probability of finding it, at the time —¢, in
the state |¢ (7,1)) when the system is known to be the original state |y/(7,7)). In fact, since

(Or(7.0)|Wr(7.1)) = (¢ (7, —1) W (7, —1))",
{0r(F.0) | Wr(F.0)) P = (0 (F. =) [w(F.—1)) . (11.7.6)

Keeping all this in mind, let us define the time reversal operator €] by
\wr(71)) = Uly(7,—1))" = UK|y(7,—1)) = Oly(#,—1)), (11.7.7)

where UT0 = UUT = I and K is the complex conjugation operator. The operator O=U0K
is antiunitary, i.e., it is anti-linear and preserves the norm:

((vO") (Ow)) = (vlv). (11.7.8)

Note that the effect of the operator K depends on the representation used.This is because,
in a chosen basis for a particular representation, the state vector is represented by its
coefficients. Then, by definition |y)* is the vector obtained by taking, in the same basis,
the complex conjugate of these coefficients. Thus, if

) =Y 16:)(0ilw). (11.7.9)

in an orthonormal basis {|¢;) }, then

v)" =Y [0 (@ilw)". (11.7.10)

Also, The operator, O* complex conjugate to the operator O is defined in this basis as

0" =Y 10 (#:lK19,)" (9. (11.7.11)
L]

Further, since the operation of complex conjugation carried out twice is equivalent to the
identity operation, K> = [, and therefore K~' = K. As a consequence, we have
©~! = KU™. Note that the unitary operator U depends on the nature of the Hamiltonian
and like K depends on the representation used for the wave function.

Recollecting the effect of time reversal in classical mechanics, we require the
transformation properties of the operators 7 and p, under time reversal, to be such that
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(T =)W (7 1)) = (wr(70)[7lyr(7.0)), (11.7.12)

(W@ —0)|ply (7, 1)) = —(wr(7.0) | plyr(7.1)). (11.7.13)
These in turn require that

OFO'=F O6po6'=—p (11.7.14)

Let us show that the relations given by (11.7.14) do preserve (11.7.12) and (11.7.13). We
have

A

(W) Iy (=) = (W(E=00) F Oy 1)) = (v EOlFa(E1).
(11.7.15)

A

(W@ —0)plw(7.~1)) = —(w(7~0)|0~") 5 (Oly(7.~1))) = —(wr(.1) |plyr(7.1)).
(11.7.16)

It is easy to check that the fundamental commutation relation [£;, p;] = ifi §;; remains
invariant under the transformation (11.7.14).

So far as the operator for the orbital angular momentum is concerned, it transforms as

O =_1I. (11.7.17)

~b

¢

and anticommutes with the time reversal operator: [@,Z]+ = 0. Also, this transformation
law preserves the commutation relation for the components of the angular momentum
operator [L;,L;] = ih & jiLy.

The spin operator, S, being intrinsic angular momentum, transforms the same way as L
transforms

O 1=_5 (11.7.18)

SIS

©
and anticommutes with the time reversal operator: [@, §] + = 0. The commutation relation

between the components of the spin operator is also preserved: [§i, S i =ing ijk-

Time-reversal operator for spinless particles: Consider a particle moving in a
time-independent potential V (7). In the coordinate representation, in view of the fact that
7 is real, we have

AN A

Ory =0 (RFR YRy =0 ?y*. (11.7.19)

Since @?l,l/ = ?@l// = ?@l//*, we conclude that U commutes with 7.
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Furthermore, in the coordinate representation p= —ihV and we have
O(—inV)y = inOVy* = in(OVO )0 y* = invO y*. (11.7.20)

It then follows that U commutes with # and V and so it can neither be a function of the
coordinates nor a differential operator of the coordinates. Hence, in the coordinate
representation, U has to be a multiplicative constant of modulus unity. Since the phase
factor can always be consumed in the wave function, we assume U to be unity. We thus
see that, in the coordinate representation, the time-reversal operator for spinless particles,
O, coincides with the complex conjugation operator, K, except for a phase factor which
can always be taken to be unity. Thus, in coordinate representation we have

O =K. (11.7.21)
and

yr(7t) = Wy (F,—1). (11.7.22)

The invariance of the Hamiltonian under time reversal, i.e., under 7 — —p is equivalent to
saying that H commutes with O, i.e.,

[0,A] =0. (11.7.23)

Remembering that p= —ilV, we see that (11.7.23) will hold if A does not contain any
odd powers of p, i.e., if H is real.

Time-reversal operator for particles with spin: In order to determine the time-reversal
operator for particles with spin, we start with the transformation properties of angular

momentum operator under time-reversal. Since L and S both anticommute with the time
reversal operator, the total angular momentum J will also anti-commute with ®. So, we
have

OO =T (11.7.24)

We have seen that in the standard representation (S;-representation in which the z-axis
is taken to be the axis of projection), the matrices corresponding to S. and S, are real,
while the matrix corresponding to §y is purely imaginary. Under the action of the complex
conjugation operator, we therefore have

A A

RS, K" =38,, KRS.K'=8., KS$,K" = -38,. (11.7.25)
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Now, ® = UK and K~ = K and therefore we can write U as U = OK. Using this and the
equations (17.7.14), (11.7.18) and (11.7.21), we arrive at

Ur0"=0K7RNO ' =070 =7, (11.7.26)
UpU0"=0KpRHO ' =-0p0! =p, (11.7.27)
U0S,0"=0(KRS,KNO'=085,6""=-4, (11.7.28)
U8,0"=0(KS$,kNO'=-0850""'=3, (11.7.29)
US.0"=0(KS.KNO =056 =-3. (11.7.30)

Since U commutes with both 7# and p, U has an effect only on the spin variables of the
particle. The equations (11.7.28)-(11.7.30) in fact show that U corresponds to a rotation
through 7 about the S, axis in the spin space of the particle. As a consequence, we obtain

0 = exp (—%n@), (11.7.31)

which leads to

O = exp (—%nS}) R. (11.7.32)
For a spin-half particle, Sy = %h 6y and we get that U=—i 6. Therefore, for a spin-half
particle

O =—-i6K. (11.7.33)

The above result is easily generalized to a system of n particles

@ = exp <_;1 7l'§1y> exp <—;_l 7'L'§2y> exp (—; 7'L'§3y) ...exp <_;'l 7'[§,W> 13,

(11.7.34)

where S; is the spin operator of the i —th particle and S‘iy is the y-th component of the spin
operator of the i —th particle. Since §,-y acts on the spin variable of the i —th particle alone,
all these operators commute with each other and the order of the factors in (11.7.37) is thus
immaterial.
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11.8 Kramers’ Degeneracy and Kramers’ Theorem

According to Kramers, in the absence of any magnetic field, the energy states of a system
with odd number of electrons is at least doubly degenerate even in the presence of an
external electric field. Since it is a quite general statement of degeneracy, one suspects
that this may be related to some symmetry of the Hamiltonian of the quantum system.
Wigner showed that this underlying symmetry is time-reversal invariance.

In fact, from (11.7.37), we get

©? =exp <—2; n§1y> exp (—2;1 7r§2y> exp <—2;_l n§3y> ...exp (—2;1 ﬂ§ny> ,

(11.8.1)

where we have taken into account that K> = /. Each factor on the right-hand side of
(11.8.1) denotes a rotation through 27 about the Sy-axis in the spin space. The i factor
will be equal to +1 or —1 depending on whether the spin of the i particle is an integral
multiple or a half-odd-integral multiple of 7. It then follows that ®> = +1, where +1
corresponds to the case when the number of particles with half-odd-integral spin is even
and —1 corresponds to the case when it is odd.

Now, if y is is an eigenfunction of the system, whose Hamiltonian is invariant under
time-reversal operation,, then O is also an eigenfunction of the system. If y is a non-
degenerate eigenfunction, @y must be proportional to y. Let Oy = ay, where o is a
complex constant. Operating once again by O, we have

Qy=0(ay)=a"Oy=a"ay=|afv. (11.8.2)

Thus, if @> = 41, then |a|?> = 1 and « is just a phase factor. But if @ = —1, there is no
number o for which || = —1, so that the eigenfunction @1[/ and y must be linearly
independent. Since both y and @1// correspond to the same energy eigenvalue, the energy
states of the system is at least two-fold degenerate. This is known as Kramers’
degeneracy. Further, since ©®% y = — y is a multiple of the original wave function v, the

degeneracy must be even-fold. We thus arrive at the following theorem*:

Kramers’ Theorem: Every energy level of a system with an odd number of electrons in
the presence of any electric field but no magnetic field is even-fold degenerate.

There is another theorem closely related to Kramer’s theorem which states that the
expectation value of the magnetic moment is zero in any non-degenerate state. It has
important consequences in the theory of paramagnetic susceptibilities’. Before we end
this section, let us note that Kramers’ degeneracy is removed by applying an external

4H.A. Kramers, Proc. Amsterdam Acad., v 33, p- 959, 1930.
SMartin J. Klein, Am. J. Phys., vol. 20, p. 65, 1952.
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magnetic field because the latter introduces additional terms in the Hamiltonian which are
not invariant under time-reversal.

Homework Problems

1.

Which components or combinations of components of the linear momentum p and the
angular momentum L are conserved when a particle is moving in the external potential
field of a homogeneous cone?

. Which components or combinations of components of the linear momentum p and the

angular momentum L are conserved when a particle is moving in the external potential
field of an infinite homogeneous helix?

. Show that the Runge—Lenz vector

Zer 7
4reg v’

N 1 5 o
M:—(ﬁxL—Lxﬁ)— (11.8.3)

2u

is conserved for a charged particle moving in a Coulombic potential

Which components or combinations of components of the linear momentum p and the
angular momentum L are conserved when a particle is moving in the external potential
field of an infinite homogeneous prism?

. Derive the quantum mechanical operator that generates translational symmetry for a

charged particle moving in external homogeneous electric and magnetic fields.



Chapter 12

Relativistic Generalization

According to Einstein’s special principle of relativity, the laws of physics must be
formulated in a form which is Lorentz invariant, that is, the description should not allow
one to differentiate between frames of reference that are moving relative to each other
with a constant velocity V. Therefore, the equations governing the physical laws of the
micro-world must also be formulated in the so-called Lorentz invariant/covariant form. In
view of this requirement, we shall discuss the relativistic generalization of quantum
mechanics. We shall, however, confine ourselves to the discussions of the Klein—Gordon
and Dirac equations, which happen to be the starting point of quantum field theory or any
other related advanced physical theories. We start with the revision of the basic principles
and consequences of the special theory of relativity. We then proceed to derive the
aforementioned relativistic equations, find their plane wave solutions and discuss the
properties of the latter.

12.1 Lorentz Transformations

Einstein’s special theory of relativity (STR) is the generalization of Galilean invariance of
Newtonian mechanics to include electromagnetism in its framework. It was based on the
basic properties of space and time, namely, homogeneity of space and time, the isotropy of
space and the constancy of the speed of light, ¢, in vacuum in all inertial frames. The result
yielded the so-called Lorentz transformations that relate the space and time coordinates,
(x,y,z,t) of a point in an inertial frame K with the coordinates, (x',y’,7,#’), of the same
point in the frame K’, which is in rectilinear motion with respect to the frame K along the
x direction at a constant speed V. It is assumed, for convenience that the origins O and O’
of the two systems coincide at 7 =t = 0 and that the respective coordinate axes of the two
inertial frames are parallel. Such an arrangement of the two inertial frames of interest is
known as the standard configuration, which is shown in Figure 12.1.

372
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\
=Y

V4

Figure 12.1 The standard configuration of two inertial frames with K’ in rectilinear
motion with respect to the frame K along the positive x direction at a
constant speed V.

The resulting Lorentz transformations are

XY= (12.1.1)
V2
1— —
62
Y =y, (12.1.2)
7=z (12.1.3)
B 2
t = M (12.1.4)
-
C

It is worth mentioning here that, while using the aforementioned Lorentz transformations,
one should make sure that the layout of the inertial frames is consistent with the standard
configuration. The factor

1 1

YZ\/ ZhRiv

(12.1.5)

2

with B = V /¢, known as the Lorentz factor (or, relativistic factor), is a measure of the
importance of the relativistic effect: larger the value of vy, greater is the necessity for
taking into account the relativistic effect.

We know from the mathematical theory of special relativity that the Lorentz covariant
form of the equations of physics can be obtained if we could write them in tensorial form.
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This follows from the fact that under any coordinate transformation, tensors transform in
a manner that is linear and homogeneous; hence, they guarantee the form invariance of
the equations of physics. Owing to this, in what follows, we shall give a geometrical
structure to the 4-dimensional Minkowski spacetime of special relativity that will help us
in generalizing the Schrodinger equation to the realm of relativity.

Geometry of spacetime in special relativity

We write the components of the contravariant spacetime 4-vector, x, as
x = (") = (x%x",x%,x%), where

xozct, x! =X, x2:y, X =z (12.1.6)
Note that using x = ct instead of x° = t means measuring time in the units of length. For

instance, x° = 1 m means the time taken by light in traversing a distance of 1 m in vacuum.
The Lorentz transformations can now be written as

x0 = y(x° - Bxh), (12.1.7)
1= y(x! = Bx0), (12.1.8)
x? =, (12.1.9)
x? =43, (12.1.10)

Since tensors are usually represented in the matrix form, let us rewrite the aforementioned
set of equations in the matrix form as

x'=Ax, (12.1.11)
where
X0 x’0
x= ; . A= j; , (12.1.12)
x? x3

are the column matrices representing the spacetime 4-vectors in the unprimed and the
primed systems of coordinates, respectively, and the Lorentz matrix A is given by

14 By 0 0

- 0 0
A= Py 7 (12.1.13)

0 0 1 0

0 0 0 1
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In the component form, the transformation equations are written as
3
=Y AR (12.1.14)
v=0

Note that in the matrix element Aﬁf , W enumerates the rows, while v represents the number
of columns.

Four vectors: An arbitrary four vector a* is defined as a set of four components

(a°,a',a?,a*), which, under Lorentz transformation, transforms in the same way as the

spacetime 4-vector x:

a” = y(a® — Ba), (12.1.15)
a'l = y(a' — Ba), (12.1.16)
a” =d, (12.1.17)
a®=d’. (12.1.18)

Scalar product of 4-vectors: Clearly, the scalar product of any two 4-vectors, say,
a = (a’a',a*,a®) and b = (b°,b',h*,b*), has to be defined in such a manner that it
remains invariant under Lorentz transformations. Accordingly, it is defined as
a-b=a""—a'd' —a’b* - a’b’. (12.1.19)
It is easy to check that it is indeed invariant under Lorentz transformations:
a’0~b'0 — 7/2(610_[3611)(b0_ﬁbl) —}’Z(al —ﬁao)(bl —ﬁbo) —a2b2 _a3b3
— yz[(l _ﬁZ)aObO+ (1 —Bz)albl] — b — BB
=a"’ —a'b' —a?p* —a’b* =a-b. (12.1.20)

In order to keep track of the minus sign in the scalar product, we introduce another type of
4-vector with lower indices:

ay = (ap,ar,az,a3) = (ao,—al,—az,—a3). (12.1.21)

The 4-vector with upper indices is called a contravariant vector, whereas the one with the
lower indices is called a covariant vector. The scalar product can now be written as

3 3
a-b=Y da'by =Y a,bt. (12.1.22)
u=0 u=0



376 Fundamentals of Quantum Mechanics

In literature, it has been agreed that the scalar product in (12.1.22) is to be written as
a-b=a"by =a,b*, (12.1.23)

in which one adheres to Einstein’s summation convention. According to this convention,
if an index is repeated, once as a covariant index and once as a contravariant index, it is
summed over from O to 3.

As evident, raising and lowering of the indices costs a minus sign for the spatial parts,
while it costs nothing for the temporal part. It is usually done by introducing the so-called
metric tensor g,y or gV,

1 0 0 O

0 -1 0 O
— oMV , 12.1.24
Buv =8 0 0-1 0 ( )

0 0 0 -1

which is a tensor of rank 2.
It is easy to check that
3 3

ay =Y guva’ and a* =Y g"'ay. (12.1.25)

v=0 v=0

Note that, using the metric tensor, the scalar product in (12.1.19) can be re-written as

a-b:guva“bv :8'uvaubv- (12.1.26)

Interval: The most important contribution of Einstein’s special theory of relativity to
physics is the unification of space and time into one entity called the spacetime. Because
of this, the concept of distance between physical events taking place at two spatially
separated points in usual Newtonian physics had to be changed accordingly. In special
relativity, distance is replaced by the concept called interval. It is constructed as follows.
Suppose two events, 1 and 2, take place at spacetime points x‘f and xg = xﬁl + dx*,
respectively. Then dx with components dx*, u = 0,1,2,3, is the displacement 4-vector
between these two points, where dx* = xg —x‘l‘ . The scalar product of this displacement

vector with itself is given by
dx-dx = guydit dx¥ = (dx°)? — (dx")? — (dx*)* — (dx*)*. (12.1.27)
Or, in terms of the time difference dt between the events and the spatial separation |d7|,

dx-dx = *di* — dx* — dy? — dz* = 2dr® — (d7)>. (12.1.28)
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The interval between the given two events is defined as

22
ds = \/dx,dx" :cdt\/l—Z—z, (12.1.29)

where i = d7/dkt is the usual three-dimensional velocity of the particle. Note that in spite
of the fact that time as well as spatial coordinates change when we go over from one inertial
frame to the other, the interval between two events does not change, that is, ds is invariant
under Lorentz transformations.

Proper and improper Lorentz transformations: Invariance of the interval under Lorentz
transformations yields

A guv Aj = gap- (12.1.30)
Further, we can write (12.1.30) in matrix form as

ATgA =g (12.1.31)
Taking the determinant on both sides of (12.1.31), we get

(detA) (detAT) = (detA)? =1, (12.1.32)
from where it follows that

detA ==+ 1. (12.1.33)

Transformations for which det/A = +1 are called proper Lorentz transformations. They
include boost with a constant velocity along a given direction, three-dimensional rotations
and three-dimensional translations. They are continuous transformations in the sense that
the parameters of transformations take on continuous values. As a consequence, any finite
proper Lorentz transformation can be obtained from the identity transformation by
successively applying infinitesimal transformations.

Transformations for which det(A) = —1 are called improper Lorentz transformations.
They are discrete transformations and contain spatial and temporal reflections. Since the
parameters of improper Lorentz transformations take discrete values, no improper Lorentz
transformation can be obtained from the identity transformation by successive infinitesimal
transformations.

Elements of relativistic mechanics: We now want to present the basic concepts and
important formulae of relativistic mechanics of particles, which will be very useful for
making the transition to relativistic quantum mechanics.

Proper time: For the generalization of Newtonian mechanics to the realm of relativity, it
is advantageous to introduce a time interval that will be invariant under Lorentz
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transformation. Since the interval ds and the speed of light ¢ are invariant quantities, we
define the proper time interval, d7, as

— -
dr=L g (1- N a1, (12.1.34)
c c?

cidt

7 is called the proper time. It is the time measured by the clocks moving with the particle,
that is, by the clock that is at rest with respect to the particle. Using this proper time
interval, one defines a velocity 4-vector U*

_dx!

UH =
drt

(12.1.35)

with components

dx® dx! .
Uozdizé, =
T P2 7k P
1—— 1——
dx? , dx3
Uy = di S N N (12.1.36)
T 2 17k 2
1—— 1——
Note that

U U =UpU° + 0% =

< = (12.1.37)
u u
(-5) (%)
The spatial part, U, of U* is called the proper velocity. Since the U* transforms like a
4-vector under Lorentz transformations, it is advantageous to work with U* while dealing
with mechanical problems.

Now we are in a position to define the momentum of a particle in relativistic mechanics.
The 4-vector of momentum of a particle is defined as

B — o UM — moc Mo , 12.1.38
e (wl—ﬁz/ca -7/ (12159

where my is a numerical quantity, which characterizes the inertial properties of the particle
and is called the rest mass. Later, we shall see why it is called the rest mass.
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Having defined the 4-vector of velocity, we now define the 4-vector of acceleration as

dU*  d’xH
b= = — 12.1.39
“ dt dt? ( )
Newton’s equations of motion can now be written as
dU* d?xH
mo i (12.1.40)

dr ’

where F* is the 4-dimensional generalization of force whose spatial components are the
components of the three-dimensional force F, which appears in Newton’s equations of
motion. This form of Newton’s equation is relativistically covariant in the sense that both
sides of the equation transform, under Lorentz transformations, as 4-vectors. What is left
now is to determine the physical meaning of various components of this equation and relate
them to their non-relativistic counterparts.

Since U, U* = ¢?, differentiating this expression with respect to 7, we obtain

d(UUR)  dut
dt  Hdar

=0. (12.1.41)

Multiplying Newton’s equations of motion, (12.1.40), with U, and summing over i, we
arrive at

UyF* =UgF’~U -F = 0. (12.1.42)
Or,
07
po_Ur (12.1.43)
Uo

If we now go back to (12.1.40) and consider its zeroth component, we get

T

dUO_FO_ﬁ-

= =_ 12.1.44
mo—_— s ( )

Using (12.1.35) and the expression for U°, we arrive at

d(moc®/ /(1 —u2/c2
< " ( )) =id-F\/(1—i2/c?). (12.1.45)

dt

In order to see whether we can assign any physical meaning to this equation, let us
introduce

—

f=1/(1—-i2/c)F, (12.1.46)
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I mo (12.1.47)

V=22

where f is the relativistic generalization of the three-dimensional force and the velocity
dependent quantity, m, is called relativistic mass. It is easy to check that in the
non-relativistic limit # < ¢ (u ~ 0), m goes into mg and that is why my is called the rest
mass.

We now see that the right hand-side of (12.1.45) represents the rate of work done on
the particle by the force acting on it. Therefore, invoking the work—energy theorem of
classical mechanics, we conclude that the quantity E = mc? under the differential sign in
the numerator on the left hand-side of (12.1.45), must be the total energy of the particle.
The fact that this is actually so is confirmed by the non-relativistic limit, # < ¢, of the
quantities mc?:

-

mc? = moc? (1 +a ) ~ moc® 4 2 moii® (12.1.48)

2¢2 2
Since the second term on the right-hand side in (12.1.48) is the non-relativistic expression
for the kinetic energy of the particle and the first term, moc?, has dimensions of energy;
moc?is called the rest energy of the particle. Thus, the total energy of the particle is equal
to the sum of its rest energy and the kinetic energy.
The spatial part of (12.1.40) reads:

d —»/ l_"2/ 2
(mﬂu m) :ﬁm_ (12.1.49)

dt
Since
. 7
1—6—2:]‘, (12.1.50)

we arrive at the following relativistic form of Newton’s second law

d(mii)

— 7 12.1.51
I f ( )

which goes into d(mgii) /dt = F in the non-relativistic limit.

Thus we see that the zeroth component of (12.1.40) represents the work—energy
theorem in relativistic form and establishes the equivalence of energy and mass through
the famous Einstein’s formula E = mc2, where m is the relativistic mass. On the other
hand, the spatial part of (12.1.40) gives the relativistic generalization of Newton’s
equations of motion.
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Relativistic relation between energy and momentum: We have

2.2 222 2 2
B (02 (5= e M _CTW 0002 (19150
pl.lp (p ) (p) (1—ﬁ2/62> (l—ljﬂ/cz) Cz—ﬁzmoc myc-. ( .. )
On the other hand,
E*
pupt =5 = (P)". (12.1.53)
E* - p*c? = mdct. (12.1.54)

This formula allows one to calculate £ when p is known and vice versa, without ever
having to determine the velocity.

12.2 Klein—Gordon Equation

The Klein—Gordon equation was the first relativistic (Lorentz covariant) quantum
mechanical model. It serves as an excellent pedagogical tool for the introduction of basic
concepts related to relativistic generalization of quantum mechanics. As we shall see later
in this Chapter, the analysis of this equation in the general framework of quantum
mechanics led to the contradiction with the probabilistic interpretation of the wave
function. This fact forced researchers to look for other possible relativistic generalizations
of the Schrodinger equation and ultimately led to the discovery of the Dirac equation.
The Hamiltonian of a free particle in nonrelativistic mechanics is given by
=2

H=2"_ (12.2.1)

C 2my’
where my is the nonrelativistic mass (rest mass) of the particle and p is the 3-momentum
of the particle. The usual Schrodinger equation for a single-particle, with no force acting
on it, is obtained from the correspondence principle by replacing the energy of the particle,
E, and its momentum, p, by their respective operators in the equation

ﬁz
E—H=1t_ (12.2.2)
2m0
Recollecting that
L d o
E — ih—, p — —inV, (12.2.3)

ot’
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where V is the gradient operator, we obtain the required Schrodinger equation for the free
particle as

2
ih— = ——— Vv, (12.2.4)

where y(7,7) is its wave function. One can argue in the same heuristic way for a particle
of mass mp moving in an external field described by the potential V(7). In this case the
Hamiltonian equals the total energy of the particle

=2

E=H=2—1v(@), (12.2.5)

2my

and the resulting Schrodinger equation is

Loy hz 22 -

We have used the correspondence 7 = 7 and the fact that V (7) = V(7).

If we use the relativistic relation between energy and momentum of a particle of rest
mass myg, given by (12.1.54), we obtain the following second order partial differential
equation for the wave function y(7,1):

192 = m2 2

27‘2’/ _V2W+ h2 v =0. (12.2.7)
It was derived by Schrodinger in 1926. It was also independently proposed by Gordon in
1926 and Klein in 1927. However, in literature, it is known as the Klein—Gordon (KG)
equation.

The standard probabilistic interpretation of the wave function is also assumed to be
valid for the Klein—-Gordon equation. Keeping this in mind, let us derive the continuity
equation for the probability density, p, and the probability current density, f, analogous to
the case of the non-relativistic Schrodinger equation.

The KG equation for the complex conjugate wave function y*(7,1) will read:

1 2y - 2
- _VZ *
c2 o0r? Vit e h2

vt = (12.2.8)

If we multiply (12.2.7) by y* from the left, we get

1 *82 2
?Wag v Vi 4 zww 0. (12.2.9)
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Similarly, by multiplying (12.2.8) by y from the right, we obtain

1 v L m3
> a;’z’ vV Y Ty =0, (12.2.10)

Subtracting (12.2.9) from (12.2.10), we get:

1 d *‘9‘l’ a‘l’* O * 7 Ok _
< v >+V-<y/ Vy - Vy w) —0. (12.2.11)

c2 ot

Note that, if we decide to have the expression for the current density, /, the same as in the
case of the nonrelativistic Schrodinger equation, then we shall have to multiply (12.2.11)
throughout by ﬁol so that we obtain

W = -
W4_V.J =0, (12.2.12)
with
T DL (VLA L A DL WL A
plR1) = 2mc? (W ot ot ll/> ~ 2mgc (W ox0 90 ¥ (12.2.13)
and
7)) = f (w*%w—%y/* 1//). (12.2.14)
’ 2myi

Note that in the non-relativistic limit, when we put iid, w = Ey (E being the total energy of
the particle) and take into account that E ~ mc?, p reduces to its non-relativistic expression:
p =y

Since the wave function in the Klein—Gordon equation has only one component, it
transforms like a scalar under Lorentz transformations:

v(x) = w(x'), (12.2.15)

where x = (x°,7) and x’ = (x’°,7) represent the spacetime coordinates of a point in the
inertial frames K and K’, respectively. Therefore, the particles described by y(x) cannot
have any other degrees of freedom except translations in spacetime. Also, since W
transforms like a scalar under Lorentz transformation, it follows from the group theoretic
analysis' that it must describe a particle with zero spin.

The Klein—-Gordon equation can be written in the relativistically covariant form as

2.2
<D T mgzc ) w(x) =0, (12.2.16)

'M. Tinkham, Group Theory and Quantum Mechanics, New York: McGraw-Hill Book, 1964.
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where,

1 92

- __V? 12.2.17
c2 012 ( )

is the D’ Alembertian operator and the summation from O to 3 over the repeated index is
implied. Note that, in (12.2.17), we have d, = d/dx*,d* = gtV o,.

If we introduce current density 4-vector j* = (cp,f), where c is the speed of light in
vacuum, the continuity equation takes the following Lorentz invariant form

duj* =0. (12.2.18)

12.3 Properties and Physical Interpretation

I. We have seen above that, similar to the one for the nonrelativistic Schrodinger
equation, it is possible to derive the continuity equation for the Klein—Gordon
equation. However, there is a problem here with p. Since, Klein—Gordon equation is
second-order in time derivative, irrespective of the choice of the probability current
density, p has to contain the first-order time derivative of the wave function. On the
other hand, the solution of KG equation requires ¥ and d, ¥ to be prescribed at some
initial moment ¢t = ty. These initial conditions, however, can be prescribed arbitrarily
and depend on space coordinates 7. Hence, as y evolves in time according to the KG
equation, p can assume positive as well as negative values. Therefore, due to the fact
that the probability density must always be positive definite, p for the KG equation,
cannot be interpreted as probability density. Because of this difficulty related to the
probabilistic interpretation, Klein—Gordon equation was abandoned for many years
before Pauli and Weisskopf” interpreted KG equation as a classical field equation and
formulated its quantized theory. In this formulation, p and fare interpreted as charge
and current densities, respectively, of the particles of the field.

1. Plane wave solutions of the Klein—-Gordon equation: It can be directly verified by
substitution that the Klein—-Gordon equation admits plane wave solutions of the form

w(F1) =Age i e = Age i (Poo—P7), (12.3.1)

provided

E
po=—==+4/p2+m}c (12.3.2)
C

Here, in these equations, Ay is an arbitrary constant and p* = (%, ﬁ) 1s the 4-momentum
of the particle. Note that either sign on the right-hand side of (12.3.2) gives a solution. It

2W. Pauli and V. Weisskopf, Helv. Phys. Acta, Vol. 7, p. 709, 1934.
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means that Klein—Gordon equation allows for solutions with both positive and negative
energies. This is a characteristic property of relativistic quantum mechanics.

The occurrence of negative energy solutions should not present any problem for free
particles. If initially the particle is in a positive energy state with energy,

E=cy\/p*+ m% 2, then it will always remain in that state due to the absence of any
interaction. In such a state, the probability density is given by

E
p=

= ly|?, (12.3.3)

and is clearly positive definite, p > 0, and remains so for all times by virtue of the
equations of motion.

In the presence of interaction with external fields, a particle, initially in the positive
energy state may make transitions to the negative energy states with

E=—c\/p*+ m(2) c2. According to the quantized theory of Pauli and Weisskopf, such

states should be interpreted as particles of negative charge (if positive E corresponds
to positive charge) but of positive energy. Transition from a state of positive to one of
negative E is interpreted as the production (or annihilation) of a pair of particles of
opposite charge.

12.4 Electrically Charged Spin Zero Particle and Interaction with the
Electromagnetic Field

The basic description of a charged spin zero particle is carried out in exactly the same
manner except that the Hamiltonian is modified by the so-called minimal coupling
formalism with the following gauge invariant replacements for the momentum p and the
total energy E of the particle in SI units (see Chapter 7):

P— P—eA, (12.4.1)
E — E —e®, (12.4.2)
where ®(7,7) and A(7,1) are the scalar and the vector potentials of the electromagnetic

field, respectively. The particle has been assumed to be negatively charged with charge e.
The Klein—Gordon equation is now modified to

2 SN2
(ihgt—ecp) — <—ihV—eA) v+ micty (12.4.3)

Using (12.4.3) and the same procedure as before, it can be shown that the continuity
equation still holds in the presence of the electromagnetic field with

ih [ oy dy ed
:2m62< v_v >_mc2"’ v, (12.4.4)

"’az az"’

p(7.t)
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and

jFe) = 2i (W Vy-Vvy) - dyy). (12.4.5)
im im

The interpretation of the solutions of the Klein—Gordon equation in the presence of an
external electromagnetic field is no longer simple. For instance, consider the scattering of
a spin zero particle by an external potential that is non-zero for a small time interval AT.
Clearly, since we are dealing with a real incident particle, the wave function of the
incident particle is a superposition of the positive energy solutions of the Klein-Gordon
equation. Now, after time AT has elapsed, it is possible for the wave function of the
scattered particle to have negative energy components due to interaction with the external
potential. This means that after scattering, the probability of finding the particle in the
negative energy state becomes non-zero to which, a priori, it is not possible to give any
physical explanation?.

It is natural to ask: What will happen, if the external potential is time independent? In
this case, the variables will separate to allow for the stationary state solutions of the form

i

v(t,7) = ¢(F)e n k!, (12.4.6)
to exist. For such solutions, the probability density takes the form

E—ed

mc?

0. (12.4.7)

p:

For instance, as we know, in the case of Coulomb potential when

7 2
e®(F) = — 47:20;»’ (12.4.8)

the Klein—Gordon equation allows for positive as well as negative energy solutions to
exist*. Although, in the given case, a particle initially in the positive energy case will
remain in that for all times to come, the difficulty arises because of the fact that the
probability density (12.4.7) becomes negative for sufficiently small r for which the motion
is essentially relativistic and the one-particle interpretation breaks down. In spite of the
fact that it is not possible to give an acceptable physical interpretation of the solutions of
the Klein—Gordon equation in the presence of an external field, its solutions are physically
relevant in the field theoretic interpretation as shown by Pauli and Weisskopf.

12.5 The Dirac Equation

Dirac started with an aim to derive a relativistically covariant equation free from the
problem of negative probability encountered by the Klein—Gordon equation. The reason

3Silvan S. Schweber, An Introduction to Relativistic Quantum Field Theory, Row, Peterson and Company, New York, 1961.
4L.1. Schiff, Quantum Mechanics, McGraw-Hill, 1949.
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behind this negative probability density was the appearance of the first order time
derivative in the expression for p. This was, in turn, related to the fact that the
Klein—Gordon equation contained second order time derivatives. Therefore, Dirac’s main
idea was to avoid the second order time derivative in the differential equation describing a
relativistic particle. But then, since in the theory of relativity x, y, z and ct are treated
symmetrically, the wave function y in the required equation must satisfy a first order
differential equation in all four coordinates. Furthermore, the equation must be linear so
that the superposition principle of quantum mechanics holds. Apart from that, the
correspondence principle also requires that the Klein—Gordon equation be satisfied so that
in the limit of large quantum numbers, classical relativity holds and we have the correct
relativistic relation between energy and momentum: E2 = ¢?jp> + m%c“.

In general, the first order differential equation (with appropriate dimensional factors)
for an N-component wave function
Vi
%)

L&)
V= , (12.5.1)

YN

of a free particle, where N is yet unspecified, can be written as’

- i ime =0, 12.5.2
+J§'a X+ v ( )

where oy,i = 1,2,3 and B are dimensionless square matrices of order N. Note that
homogeneity of spacetime for a free particle requires ;i = 1,2,3 and f to be
independent of the spacetime coordinates x°,x!,x%,x>. For convenience, introducing the

vector matrix
R 27 37
a=o 1+a" j+a’k, (12.5.3)

where i, f and k are the unit vectors along the coordinate axes, x, y and z, respectively, we
rewrite (12.5.2) as

1oy _ = imc
- (V - =0. S.
cat+a( W%Fh By=0 (12.5.4)

SFor convenience in writing the equations, we have dropped the subscript 0 from the symbol myq for the rest mass of the
particle.
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As in the case of the Klein—Gordon equation, we wish to find an expression for the
probability density p and the probability current density j that satisfy the continuity
equation (12.2.12). We, therefore define, analogous to the Klein—Gordon equation,

p=cyly, (12.5.5)

where v is the matrix hermitian conjugate to y. Thus, ¥ is a row matrix, with one row
and N columns, whose elements are complex conjugate of the corresponding components

of y:
vi=(w wow oo ), (12.5.6)

where asterisk stands for complex conjugation. Taking the hermitian conjugate of (12.5.4),
we get the equation satisfied by y:

1oy" - imc

27+( v .o - v BT =0, (12.5.7)

where we have used the well-known formula (AB)" = B'AT for any two matrices A and B.
Multiplying (12.5.4) on the left by y, (12.5.7) on the right by v and adding, we obtain

1 9 ow' oo = . imc
: <w'a‘f+a";w> o (V) + (V') aly+ =y (BB =
(125.8)
If
i i p_g (125.9)

then (12.5.8) takes the form of the continuity equation with the probability density, p,
defined by (12.5.5) and the probability current, j, given by

j=cyay. (12.5.10)

Note that the matrices o*, k = 1,2,3 and B must be hermitian; this follows from the fact
that the (12.5.4) can be written as

81// N
=H, 12.5.11
8t DV, (12.5.11)

where the Dirac Hamiltonian Hp is given by

Ap = (—ihca-§+mc2ﬁ) - (ca-(ﬁ)+mc2ﬁ>. (12.5.12)
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Thus, for the Hamiltonian to be hermitian, the matrices & = {ak},k =1,2,3 and B have
to be hermitian.
It is quite obvious that we need to know more properties of the & and 8 matrices. They
follow by imposing the condition that y must also satisfy the Klein—Gordon equation.
Let us act on the equation (12.5.2) with the operator

19 & , @ imc
287_,;“ EN i 2 (12.5.13)

It is easy to check that the result is

lazllf 1 3 3 - P 821// m2(32 )
czatz:z;,;(“’“ ratal) ST B
.3
imc k k .
+=Y (a B+Ba )1,/_0. (12.5.14)

In deriving this result, we have used the fact that d/9x) and 9 /dxF commute and hence,
we can symmetrize the product (o/ d/dx/) (ak 9 /dx*). Now, for (12.5.14) to coincide
with the Klein—Gordon equation,

1%y -, m?c?

the following relations must hold good:

afak+akaf:25jk:2{ (1) ﬁjii , (12.5.16)

akB+Bak=0 (12.5.17)

B> =1, (12.5.18)
where [ is the unit matrix. It follows from (12.5.16) that

() =1, j=1,23. (12.5.19)

Theorem 12.5.1: The order (dimension) of Dirac matrices a,i = 1,2,3 and B must be even.

Proof: From (12.5.9) and the equations (12.5.16)—(12.5.18), it follows that all the 4-Dirac
matrices are hermitian, anti-commute with each other and their squares equal the unit
matrix. Now, from hermiticity, it follows that the eigenvalues of all the Dirac matrices are
real. Since (a/)> =1,j = 1,2,3, and $? = I, the eigenvalues of these matrices can be
either +1 or —1.



390 Fundamentals of Quantum Mechanics

Furthermore, since af and B anti-commute, we have
kB = (-I)Bat. (12.5.20)
Taking determinants on both sides of (12.5.20), we obtain
det(o) det(B) = det(—1I) det(B) det(a*) = (—1)" det(B) det(a*). (12.5.21)

Since none of the matrices is singular and all of them can have inverses, none of the
determinants in (12.6.2) vanishes. This leads to

(-D)V =1. (12.5.22)

The last equation shows that the order (dimension) of the Dirac matrices, o/, j=12,3,
and 3, must be even. Q.E.D.

Theorem 12.5.2: Dirac matrices, o/, j = 1,2,3, and B, are traceless.
Proof: Once more we have from (12.5.17),

—B=(a")"1Bak (12.5.23)
Taking the trace of both sides of (12.5.23) we obtain

—tr(B) = tr((®) ' B ak) = tr(a (aF) 71 B) = tr(B), (12.5.24)

where we have used the property of the trace of the product of matrices, according to which
tr(ABC) = tr(BAC) = tr(CAB) for any three matrices A, B and C. Therefore,

tr(B) =0. (12.5.25)
Similarly, we can show that

tr(af) =0, k=1,2,3. (12.5.26)
Thus, all Dirac matrices are traceless. Q.E.D.

A possible representation of Dirac matrices: We have shown that the dimension of Dirac
matrices must be even. The lowest even dimension is 2. Since we have four distinct
Dirac matrices, of,k = 1,2,3, and B, while for N = 2, we have only three 2 x 2 linearly
independent and anti-commuting matrices in the form of Pauli matrices 6%,k = 1,2,3,
N = 2 cannot be acceptable. Thus, we conclude that the minimum value of N for which
the Dirac matrices will satisfy the requirements given by the equations (12.5.16)—(12.5.18)
must be 4.
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Assuming N = 4, we can now construct one of the possible representations of Dirac
matrices. Thus, Dirac matrices must have at least four rows and four columns; we shall
restrict ourselves to 4 x 4 matrices. We have seen that the trace of a* and 8 must be
zero. In addition, since B is hermitian and can always be diagonalized, it is convenient
to represent 3 by a diagonal matrix. This, together with trf = 0 and B2 = I, leads to the
choice

p= ( f) _01 ) (12.5.27)

where [ is the 2 x 2 identity matrix.

The rest of the three matrices o,k = 1,2,3, must anti-commute with P and also be
hermitian. These requirements can be fulfilled if we make use of the three Pauli matrices,
67, j = 1,2,3 (which anti-commute among themselves) and put

~k
ok = < 0 g ) (12.5.28)

(e

12.6 Relativistically Covariant Form of Dirac Equation

In order to have a more symmetrical and covariant look of the Dirac equation, let us go
back to (12.5.2) and multiply it throughout by the matrix 8 from the left to obtain

l i 81// mc

B — v=0. (12.6.1)

where we have used B2 = I. Let us now introduce new matrices by

P=p= < f) _OI > (12.6.2)

7’=l306j=< 0. g] > (j=12,3). (12.6.3)

—o/

In the aforementioned formulae, / is a 2 x 2 unit matrix and O stands for a 2 x 2 null matrix.
Thus, the explicit forms of 4 x 4 Dirac matrices are

10 0 0 0 0 0 1

o1 0 o o 0o 1 o0

=100 -1 o |""=| 0o Z1 0 o] (12.6.4)
00 0 -1 10 0 0
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0 0 0 —i 0 0 1 O
0 0 i O 0 O -1

v= o i« 0 0 | r= -1 0 0 0 ’ (12.6:5)
—i 0 0 O 0 1 0 0

Usually these matrices are grouped together and written as

P ={".v}={".7} (12.6.6)

The indices on the ys are raised and lowered with the help of the metric tensor (g,v and
g

Yu=guw?, ™ =¢"n. (12.6.7)

even though they are not components of a 4-vector. With the help of these y matrices, we
can rewrite the Dirac equation (12.5.4) in the following covariant form

(i7" 9 —%) v =0, (12.6.8)

where summation from 0 to 3 over the repeated index u is understood. This is the
relativistically covariant form of the Dirac equation.

Using (12.6.6), we can also write the continuity equation in the following invariant
form

duj* =0, (12.6.9)
where the current density 4-vector j* is given by
JH=cuyty. (12.6.10)

Here, in the expression for j*, ¥ is the so-called Dirac conjugate wave function, which is
defined through

v=vy' () =y, (12.6.11)

where yT is the hermitian conjugate of .

12.7 Properties of y Matrices

1. Since B is hermitian, ° is hermitian. But, ¥/ is anti-hermitian:

(¥) = (Bo) = (o) BT =alp=-Bal =, (12.7.1)
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where we have made use of (12.5.17). These hermiticity relations can be summarized
compactly by

() =" (12.7.2)

. Using the commutation relations for the o and  matrices along with the equations
(12.5.18) and (12.5.19), it is easy to show that the y matrices satisfy the following
commutation relation

Py + oyt =21g"Y, (12.7.3)

where I is the unit matrix and g"V is the Minkowski metric tensor given by (12.1.24).

We may form new matrices from the four y* matrices by multiplying two or more
of them together. Since the square of each of the y* matrices equals +1, we need
to consider only products whose factors are different. The order of the factors in the
product is irrelevant since different y matrices either commute or anti-commute. Since
the number of ways in which one can make distinct combinations out of n objects is
(2" — 1), we shall have altogether 2% — 1 = 15 different products of y matrices. If we
also include the unit matrix /, we can enumerate 16 different matrices, which have been
tabulated as follows:

LY i iy,

Yr P P iy iy iy (12.7.4)
vy, YL Y Y

Y'Yy =i, (12.7.5)

where the factor i has been inserted so that the square of each element is +1.

Let us denote the elements in the aforementioned array by I',,m = 1,2,3,...,16. The
following properties can be verified (no summation over repeated Latin indices
implied):

I,.I', = a1y, where a,,, = 1 or+ti, (12.7.6)
I.T,=1 iff m=n, (12.7.7)

where I’y in (12.7.6) is one of the elements of the array, other than I', and I',,. It can
also be checked that 95 anti-commutes with all Y and that (y5)* = —I. Furthermore,
we have the following important theorems.
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Theorem 12.7.1: For each I';, except for I'y = I, we can always find a I'; such that
Irir;=-rI,. (12.7.8)

The proof consists in showing that there does exit a I'; for each I'; as required by (12.7.8).
For instance, it is easy to check that for i = 2,3,...,5, that is, for the last four elements in
the first line of (12.7.4), I'; = i7"y 9293, for the elements of the second line of (12.7.4),
I'; equals one of the last four elements of the first line, for the elements of the third line of
(12.7.4),T; = iY’Y'¥*y’ and for the last element = 7.

Theorem 12.7.2: Fori # 1, tt[; = 0.

Proof: Consider any I';. Then, using the property (12.7.8), we have I';,I';I'; = —I';. Using
now the property of the trace of the products of matrices, we obtain

tr(FjTiFj) = tr(I"ijF,-) = tr(I’?I",) = tr(I",-) = —tr(l"i). (12.7.9)

It thus follows that tr(T';) = 0.

Theorem 12.7.3: The matrices I'j,j = 1,2,3,...,16 are linearly independent, that is, the
equality 2}6:1 c¢;I'; = 0 holds only if the constants ¢; =0, j = 1,2,3,...,16.

Proof: Multiplying 2}6: 1¢;I'j = 0by I'y, with k # j, and using the properties (12.7.6) and
(12.7.7), we obtain
16
Zerkrj:CjI—FZCjajkrg:O. (12.7.10)
Jj=1 k#j

Taking the trace of (12.7.10), we get ¢; =0, j = 1,2,3,..., 16 because r(I'y) = 0, whereas
tr(I) # 0. QE.D.
Corollary: 1t follows from Theorem 12.7.3 that any 4 x 4 matrix M can be written uniquely
as a linear combination of the I';s:
16
M=) Ty (12.7.11)
k=1
Multiplying (12.7.11) by I'y and taking the trace, we obtain
16 16

l‘r(rgM) = Z thr(rgrk) =y l‘r(rgrg) -+ Z Ck tr(l"gl"k) = Cgl‘l’([) =4¢y. (12.7.12)
=1 )
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It thus follows that ¢, = ;tr(I'yM) and hence

16
2: r(CeM) T (12.7.13)

Theorem 12.7.4: Any matrix M that commutes with y*,u = 0,1,2,3, is a multiple of the
identity matrix /.

Proof: Assume M is not a multiple of the identity. If M commutes with all the y*, it
commutes with all the I';s and, therefore, we have M = I';MT;. From (12.7.10), we can
write

M=ciTj+) eIy (12.7.14)
k#j

Since, by assumption, M commutes with all the y*, it commutes with all T j- Hence, we
have M = I'yMT',. Therefore, if I'; is the element for which I',I';I'y = —I';, by multiplying
(12.7.16) by I'y from left and from the right, we obtain

M = rngg = ergrjrg—i— chl"gl”kl”g - —erj—|— ch (j:I"k), (12715)
k#j k#j

where we have used the fact that I'; and I'y either commute or anti-commute and hence,
ry,r,r,= il“fl"k ==+TI.

Multiplying (12.7.14) and (12.7.15) by I'; and taking the trace we get that ¢; = —c;
and, therefore, ¢; = 0. Since I'; is arbitrary except that it is not equal to /, it follows that
all ¢; in the expansion (12.7.11) are zero except c¢;. That is,

M:q 1"1 = (] 1. (12.7.16)

This means that M is a multiple of the unit matrix /. Q.E.D.

Theorem 12.7.5: Consider two sets of 4 x 4 matrices y* and y’*, which satisfy the
commutation relations

PV L pH = 20 ghY, (12.7.17)
,}//y,}//v +,)//v,}//u _ 2Ig,uV’ (12.7.18)

respectively. If I'; and F’j are sets of sixteen products matrices formed in exactly the same
manner from y*s and y#s, respectively, then there exists a non-singular matrix S such that

y'H = syHs!, (12.7.19)
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Proof: The proof lies in showing that we can indeed construct the required matrix S and
that this matrix is nonsingular®. If T jand F;- are sets of sixteen products matrices formed

in exactly the same manner from y*s and y'*s, respectively, then we set
16
S= . I";.FI"]-, (12.7.20)

j=1

where F is an arbitrary 4 x 4 matrix, and show that it can be chosen such that S is non-
singular.

We have from (12.7.6)
IT;TiT =a;T; = aj;. (12.7.21)
Multiplying (12.7.21) by I'; from the left and by I'; from the right we obtain
[T =a;,TiT;=a);T;. (12.7.22)

Since, in the primed system, the y’#’s are constructed in the same manner as in the
unprimed system, we also have

I F'j = a;;T}. (12.7.23)

Then, for any i,

16 16
IiSTi= Y I'I'FT;T; =Y a, T, FT;. (12.7.24)
j=1 J=1
Since a}; = 1, if we take into account that for fixed i the matrix I';T'; runs over all the

sixteen elements of the algebra, the summation over j can be replaced by a sum over k.
Then it follows from (12.7.24) that

16
IiSTi= Y I FT=S. (12.7.25)
k=1

By multiplying (12.7.25) by I'; from right and taking into account that I 12 =1, we get

[.S=ST;. (12.7.26)
From (12.7.26) we get
I=SI;5" (12.7.27)

OH. Bethe and R. Jackiw, Intermediate Quantum Mechanics, Westview Press, 1997
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Now two things must be noted. Firstly, the matrix F can be chosen so that S is not zero. In
the opposite case, by assuming S to be zero for all F, one can prove that all the matrices
I';,j=1,2,3,...,16 are linearly dependent which is a contradiction. Secondly, the matrix
F can be chosen so that S is nonsingular. To prove this statement let us introduce a matrix
S’ defined by

16
§'=Y I.Gr;. (12.7.28)
j=1

where G is a 4 x 4 matrix to be chosen. For the moment, the matrix F in the definition
of S,

16
§=YT.FT;, (12.7.29)
=1

is also assumed to be arbitrary. By symmetry, with the primed and unprimed matrices
interchanged, we can write

r;s=¢ 1“;-, (12.7.30)
for any j. From (12.7.27) and (12.7.30), we obtain

[;88=T;8T.S=T;8T,(I'ST;) =T,;5'ST; =S ST}. (12.7.31)
Then according to Theorem 12.7.4,

S'S=al, (12.7.32)

that is, S'S is a multiple of the unit matrix. Since F and G occurring (12.7.20) and
(12.7.28)are arbitrary, they can be chosen so that a is not zero. Hence, S is nonsingular.
Therefore, from (12.7.27), it follows that

yH =gyt st (12.7.33)

The above assertion is due to the fact that (12.7.27) holds for all I';, j = 1,2,3,...,16,
including I'y = y°,T, = iy!,I's = iy?,T4 = iy>. QE.D.

Note that S is unique up to a constant, for suppose y’* = S y* S, ! = y* = S y* S, .
Then S5 ISy = yH Sy 1'S,. Since Sy 1'S1 commutes with all y*, it follows from Theorem
12.7.4 that S, s 1 = al. whence S| = ¢S, where c is a constant. Further, suppose that we
are given four y’* that satisfy (12.7.17). If we now define y'* = Sy*S~!, it is clear that
the y* will also satisfy (12.7.17).
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12.8 Form Invariance of Dirac Equation under Lorentz
Transformations

Before we discuss the physical consequences of Dirac theory, we must be convinced that
the Dirac equation (12.6.8) is consistent with STR in the sense that it is indeed covariant
under Lorentz transformations. That is, it is form invariant under Lorentz transformations.

Consider the standard configuration of two inertial frames K and K’ of section 12.1. In
that context, the covariance of the Dirac equation requires two things:

(i) There must exist concrete rules to enable the observer in K’ to construct his wave
function ¥’ (x",¥') on the basis of the information about the wave function y(x°,%),
provided to him by the observer in K, so that both the Dirac wave functions, (y/(x°,x) €
K and v/ (x",¥') € K"), describe the same quantum state of a given system.

(ii) To be consistent with the principle of special relativity, the wave function y'(x",¥)

must also satisfy the Dirac equation

(ih yY aj/v —mc> v =0, (12.8.1)

written in the reference frame K’.

The transformation of the Dirac wave function under transition from K to K’, via Lorentz
transformations, must be linear because of the simple fact that both the Dirac equation and
the Lorentz transformations are linear:

W () = v'(Ax) = S(A)y(x) = S(A)y(ATY), (12.8.2)

where A is the Lorentz matrix and S(A) is a 4 x 4 matrix that depends on the parameters
of Lorentz transformations and acts on the original Dirac wave function y to yield the
transformed Dirac wave function y’. Note that through A, S depends on the relative
velocity and the orientation of the two observers in K and K'.

According to the principle of relativity, the inverse transformation, represented by the
matrix S~ (A) must exist so that the observer in K could also construct his wave function
y(x) on the basis of the knowledge of y'(x"). Now, this can be accomplished in two ways:
(a) By acting on y’(x’) with the inverse of the matrix S(A)

y(x) =S (AW (¥) =5 (A)y(Ax), (12.8.3)
y(x) =S(A Y () = S(A™) v/ (Ax). (12.8.4)

S(AH =571(A). (12.8.5)
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Thus, if we construct S(A), we are through. Let us proceed to achieve that.

For the observer in K, the Dirac equation reads
(ihy" Oy —mc) y =0. (12.8.6)

Inserting here y(x) = S(A~)y/ ('), we get

<ihy“ aiuS(A_l) —mcS(A—1)> v (x)=0. (12.8.7)

Let us multiply (12.8.6) by S(A) from the left, take into account (12.8.5) and the fact that
§S~! =1I. Then we obtain

<ih [S(A) AL SsTH(A)] ai'v —mc> v/ (¥) =0. (12.8.8)

Note that in the above equation (12.8.8), we have taken into account that

d ax'"v d d
o~ i 9V :Alvl T (12.8.9)

Let us define A y* = y"". Using the relation (12.1.31), it is easy to check that y'V satisfy
the commutation relation (12.7.18). Then, according Theorem 12.7.5, Which is also known
as Pauli’s fundamental theorem, there exists a (unique up to multiplicative constant) matrix
S such that

ApYt =S"1"S. (12.8.10)

In the given case, it is S(A) which must satisfy the constraint (12.8.10). If we use the
above relation (12.8.10) in (12.8.9), we obtain

<ih}/v

The equation (12.8.11) shows that the Dirac equation will be form invariant under Lorentz
transformations, if we succeed in constructing the required matrix S(A).

ai'v —mc) v (x')=0. (12.8.11)

It is clear from this analysis that constructing S(A) is equivalent to solving (12.8.10),
which holds good for both the proper and improper Lorentz transformations. In what
follows, we shall discuss covariance of the Dirac equation only under proper Lorentz
transformations. Also, time reversal will not be discussed here, nor will the related
transformation of charge conjugation, which interchanges particles with anti-particles.
While both of these operations are symmetries of the Dirac theory, they are discussed
most easily in the field theoretical context, which, unfortunately, we do not have here. So
far as parity transformation is concerned, the correct choice for S is 7.
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Let us start with the proper Lorentz transformations, which are continuous, that is, they
are parametrized by a continuously varying parameter. For instance, the relative velocity
between two inertial frames is one of such parameters. It turns out that proper Lorentz
transformations corresponding to a parameter form a Lie group. Therefore, any finite
Lorentz transformation can be achieved from the identity transformation by repeatedly
applying the corresponding infinitesimal transformation. As a consequence, it is sufficient
to deal only with infinitesimal transformations.

Consider an infinitesimal proper Lorentz transformation by representing the Lorentz
parameter Al as

A =8+ Ao, (12.8.12)

where |Aw| < 1. From (12.1.31), we get

Saf = AgguvAE = (55 +Aw5)guv<5/¥ +Aw;‘3/> =8ap T (Awaﬁ +Awﬁa) +0(Aw>2~
(12.8.13)

As a consequence, we get
A(Da[; —|—A0)Ba =0. = Aa)aﬁ = _Awﬁ(x' (12.8.14)
Consequently, there are six non-vanishing parameters each of which generates an

infinitesimal Lorentz transformation. Let now consider S(A) = S(I + Aow"") and expand
it in Taylor series around the identity transformation /:

S(A) = S+ dot) = s(1) + (| 22 Ao +0(A0)? ~ 1 — LouAat,
(12.8.15)

where we have taken into account that S(7) = I and introduced the notation

as i
( [a/\} A1> W Ouv- (12.8.16)

Here, 0,y is a 4 x 4 matrix and the factor —(i/4) has been introduced for convenience.
Using SS—! = I, it is easy to prove that Oy v 1S anti-symmetric

Ouv = —Ovyy. (12.8.17)

Let us now go back to (12.8.10). Up to the first order in Aw, we get

(gn + Aoy y" = (1— ﬁ Oup Aa)“ﬁ> 7Y <1+ % Oup Aw“ﬁ) . (12.8.18)
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Or,

i

YA Aoy Y = yv—iyv o Aa)“ﬁ+4Aa)°‘B Cap V- (12.8.19)

Cancelling 7V, we obtain

i

7 (Oap 7’ = 7" 0up) Aw®P (12.8.20)

Aoy ' =
Changing the dummy index u to 3, the left hand-side of (12.8.20) can be written as
Aoy 7P = gb 1P Ao = gl 257" DO = gy A0 Y5 = gy A™P 5. (12.8.21)
Using now the anti-symmetry of Aw®? we get
1 1
Aoy Y =3 (g; A0 5+ g AP ya) =2 (gg, T ya) Ao, (12.8.22)

From (12.8.20)—(12.8.22), we get

i 1
7 (g7 =7 0up) B0 = = (g 75— g} Ya) A0, (12.8.23)

Or,
2i (g[; Yo — &y Vﬁ) = [0gp.7"]. (12.8.24)

Thus, the problem of finding S(A) has now reduced to finding the solution of the above
equation (12.8.24) for 6. The required o, is given by

i
Oap = 5 (Yo V8] (12.8.25)
Let us check whether it satisfies the aforementioned equation or not. We have

[Gap.7"] = % (Yo v8].7"] = % {[va¥s — 18727’} = % {2%a¥8.7"] - 2lgap. 7]}

=i[Yay. 7] =i (YaWY — 7V Ya¥p) =2i (gE Yo — géyﬁ) . (12.8.26)

where we have used the anti-commutation relation for the ¥ matrices. Hence, the ansatz
(12.8.25) does fulfill the condition (12.8.24). As a result, we finally have

' 1
S(A) :I—icvaa)“" =1+ g [ ] Do, (12.8.27)
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Thus, we have shown that if Y, u =0, 1,2, 3 do not change during Lorentz transformations
and the Dirac wave function y(x) transforms with S(A), given by (12.8.27), the Dirac
equation is covariant (that is, form invariant) under Lorentz transformations.

12.9 Free-Particle Solutions of Dirac Equation

The Dirac equation for a free particle is given by

,81//_ A 2
it = (ca-p+mc ﬁ) V. (12.9.1)

‘We look for the solution in the form

w(i1) = w(F) e it (12.9.2)

which, when substituted into the Dirac equation (12.9.1) yields the eigenvalue equation for
the Dirac Hamiltonian Hp:

(ca-p+meB) wir) = Ew(@), (12.9.3)

where E is the energy eigenvalue. Since the operator on the left-hand side is a 4 x 4 matrix,
the wave function y(7,7) must have four components that are usually written as a four-
component column vector and it is called a Dirac bi-spinor. Note that, since Hp is only a
function of 1’3’, then [f;’, FID] = (0, so that the eigenvalues of f;’ can be used to characterize the
states. In particular, we look for free-particle (plane-wave) solutions of the form

y(7) = u(p) et 7, (12.9.4)
where
ur(p)
u(p) = ng; : (12.9.5)
us(p)

is a Dirac bi-spinor that satisfies, according to (12.9.3),

( & ptrm 2ﬁ> u(p) = Eu(p). (12.9.6)
For convenience, we rewrite the Dirac bi-spinor in the following form

u(p) = ( ig% > (12.9.7)
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so that (12.9.6) can be rewritten as

(&5 Sl )-8 )60

This matrix equation gives a system of two algebraic equations

D

Qb

(E —mc2)¢p —(c ']%)Xp =0,
(8 Pyt (B m) gy =0

Taking into account that

o (i )= (G ) 9=

we get from these equations

_ (c6:p)
P (E+me?) ™

From the aforementioned two equations, we obtain a single equation for ¢,,:

[(E —mc®)(E +me?) — (5 - ,3)2] 0, =0
Using the formula,

(

we obtain

Qb

.@)(6-b)=(a-b)I+ic-(@xDb)l,

(E* = 2p* —m*c*) ¢, = 0.

(12.9.8)

(12.9.9)

(12.9.10)

(12.9.11)

(12.9.12)

(12.9.13)

(12.9.14)

(12.9.15)

(12.9.16)

Note that the same result is obtained by equating the determinant of the aforementioned
homogeneous system of algebraic equations to zero. It is worth noting here that (12.9.16)
represents the relativistic relation between energy and momentum of a free particle, which
must be satisfied in any relativistic generalization of quantum mechanics. The Dirac

equation, as we see, does preserve it.
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For non-trivial solutions, we must have
(E* =P —m*c) =0. (12.9.17)
For a given value of the momentum, there are two solutions for the equation (12.9.17):
2p* 4+ m2ct, (12.9.18)
and

E_ = —\/c2p? +m3c4, (12.9.19)

which are nothing but the energy eigenvalues of the Hamiltonian. Thus, we see that, just
like the Klein—Gordon equation, the Dirac equation too have solutions with positive as well
as negative total energy.

For the positive energy eigenvalue, £, an appropriate solution is to take

op = ( (1) > or < (1) ) (12.9.20)

Then,
(co-p) (1 (c6-p) (0
= & = ) 12.9.21
= Erm) o ) " Erme) \ 1 ( )
But,
5L Pz Px— Dy
o-p= . , 12.9.22
P ( pxtipy  —p; > ( )

and, therefore, we have

_ P c(px— ipy)
1 = Ev +me? or | Ertme (12.9.23)
! c(px+ipy) —cp; ' o
E.+ +mc? E; +mc?

So, the full positive energy solutions are

1 0
0 1
-mc? i(77 . -mc? i(5.7
v (7)) = # e EPT) or c(pr—ipy) | e " t+a(P7),
E+ —+mc E+ + mc2
c(px+ipy) —cp;
E; +mc? E +mc?

(12.9.24)
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both of which represent forward propagating solutions. These correspond to particles
propagating forward in time with an energy £ = E ..
For the negative energy eigenvalue, E_, an appropriate solution is to take

Xp= ( (1) ) or ( (1) > (12.9.25)
so that the full negative energy solutions are given by
—Cp: —c(px— ipy)
|E_| + mc? |E_| 4+ mc?
_C<px + lpy) me2 | Q= & ") o
=| TEEme | €T o | Eame | R,
1 0
0 1
(12.9.26)

These correspond to particles propagating backwards in time with an energy E = |E_|.
Note that to have the normalized solution satisfying

(0p) 0+ ()" 2xp = L (12.9.27)
we must multiply each of the components, ¢, and x,, by
E 2
N= B (12.9.28)
2E

If we consider the non-relativistic limit in which E = mc?, we notice that each of the

aforementioned solutions have one of the two spinor components, ¢, and ¥, of the order
of (v/c¢) < 1. These components are called small components, while the other two are
called large components. For instance, for the positive energy solutions, we have

l—)*Z
E ~mc® + —, (12.9.29)
2m
so that
= 0P (12.9.30)

= -
2, P
2me* + om
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=2
Since mc? > (2m, we conclude that ), < ¢,. Hence, for the positive energy solutions,

m

¢ is the large component, while Y, is the small component. In the non-relativistic limit,
we expect the large components to correspond to solutions of the Schrodinger equation for
a free-particle.

12.10 Spin. Interpretation of the Negative Energy Solutions

It turns out that the Dirac equation describes a particle with spin equal to 72/2. This was one
of the important features of Dirac’s theory. To show this, let us consider the orbital angular

momentum operator, L, and check whether it commutes with the Dirac’s Hamiltonian given
by (12.5.12). We have

A A

(L Ap] = [yp-— 2y (65.<l‘;‘)—|—m02ﬁ>]. (12.10.1)
Using the distributive property and the fundamental commutation relations (2.4.20), we get
(L, Hp) = ifhic (ot p. — @ py). (12.10.2)

Similarly, we obtain

Ly Hp) = ific (0 px— 04 p2) (12.10.3)
L. Hp) = ihe (0 py — 0ty ). (12.10.4)

Combining the aforementioned three equations together, we arrive at
L, Ap) = ihc (a X ﬁ) . (12.10.5)

Hence, the orbital angular momentum operator does not commute with the Hamiltonian,
and therefore, it is no longer a constant of motion. On the other hand, the existence of two
linearly independent solutions corresponding to a given value of the energy indicates that
there is some inherent symmetry in the Dirac Hamiltonian because of which this
degeneracy occurs. This in turn means that there must exist an operator that commutes
with the Hamiltonian.

If we go back to Section 8.2, we recognize that in the 4 x 4 representation, the spin
operator takes the form

G 0
. (12.10.6)
0



Relativistic Generalization 407

Now, we consider the operator of total angular momentum

Al

T=1+ (12.10.7)

and calculate its commutator with the Dirac Hamiltonian.
Using the commutation relations for the Pauli matrices, we obtain

Sy, Ap| = —ihic(ay p, — o py). (12.10.8)

[Sy. Hp] = —ihc (o py— 0 p). (12.10.9)

S, Hp] = —ific (ot py — 0ty py) . (12.10.10)
Therefore,

[/, Hp] = Ly, Ap] + [S., Hp] = 0, (12.10.11)

[/,,Hp] = [Ly,Hp)] + [Sy,Hp] = 0, (12.10.12)

[J.,Hp) = [L,,Hp] + [S..Hp] = 0. (12.10.13)
Or,

7. Ap] = 0. (12.10.14)

On the basis of these results, we conclude that it is the the total angular momentum, f,
which is the integral of motion for the Dirac Hamiltonian and not the orbital angular
momentum L or the spin angular momentum S individually.

Furthermore, for the positive energy Dirac particle at rest (that is, when p = 0 and
Eo = mc?), the small component, Xp» vanishes and the full time-dependent wave function
becomes

1
0 jmc?

vi=1 4 el (12.10.15)
0

or,

0
1 ~mc2

=1 el (12.10.16)
0
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For the negative energy Dirac particle at rest (that is, when p = 0 and Eq = mc?), the small
component, ¢,, vanishes and the full time-dependent wave function becomes

0
0 'mcz
yo=| | | (12.10.17)
0
or,
0
O ~m62
ve=1|, [T (12.10.18)
1

It is easy to check that the positive energy solution (12.9.15) and the negative energy
solution (12.9.17) are eigenfunctions of the operator S, with eigenvalue g while the
positive energy solution (12.9.16) and the negative energy solution (12.9.18) are the
eigenfunctions of S, with eigenvalue —%. Thus, the particles that obey Dirac equation
have half-integer spin in the units of h.

Interpretation of the negative energy solution: We have seen that the Dirac equation has
free-particle solutions for positive as well as negative energies. A plot of the energy levels
is shown in Figure 12.1. As depicted, there is a continuum of energy levels for both £ > 0
and E < 0. The gap between the edges of these regions is AE = 2mc?.

The existence of negative energy continuum of states for the Dirac electron, raises
doubts about the stability of matter in Dirac’s theory. Since particles can jump to lower
energy states by emitting photons, an electron in the lowest positive energy state could emit
a photon with energy equal to 2mc* and jump to the highest negative energy state! Since it
has lost energy, it would speed up, lose more energy by emitting photons and continue to
fall deeper and deeper into the negative energy continuum states. Thus, the entire matter
will be annihilated within a fraction of a second. As we know, it does not happen in reality.
So, how do we understand the existence of these negative energy continuum states for the
electron?

Note that in classical theory also negative energy solutions do exist. They are, however,
excluded by imposing the initial condition that, in the beginning, all particles had positive
energy. This initial condition is based on the requirement that a classical particle cannot
make a transition from a positive energy state to the negative energy state without going
through the intermediate energy levels’

A completely free, single quantum mechanical particle will not make transitions to
negative energy states by itself. However, no particle is completely free and transitions
can always be induced by external perturbations, for example, by radiation, if not by any

7H. Bethe and R. Jackiw, Intermediate Quantum Mechanics, Westview Press, 1997.
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E>0

y E =mc?

AE =2mc?

A E = —mc?
E<O

Figure 12.2 Schematic plot of the energy levels for free particles described by the Dirac equation.

other means. Therefore, to get rid of the instability of matter predicted by his theory, Dirac
proposed the existence of the so-called ‘Dirac sea’ by assuming that all negative energy
states are already filled with negative energy electrons. Since the negative energy electrons
uniformly fill the Dirac sea, they cannot be directly observed. Each of these negative energy
electrons have the following properties: negative mass, negative energy, negative charge.
Because electrons are fermions and obey the Pauli exclusion principle, the transition of
positive energy electrons to any of the negative energy state in the Dirac sea is not possible
because that state is already occupied by an electron.

It is, however, possible that a negative energy electron, in one of the negative energy
states in the Dirac sea, is excited to one of the positive energy states by an extremely high
energy photon (such as gamma rays) with energy greater than or equal to 2mc>. That
electron would now exist as a normal, positive energy electron. There will now be a hole
(created by the absence of the negative energy electron) in the Dirac sea. This hole would
behave as a particle as well. Since the hole is the absence of negative energy electron, it
would have exactly the opposite properties of a negative energy electron. It would have
positive mass, positive energy and positive charge. These particles would be anti-electrons
(or positrons). Furthermore, if a normal electron ever encountered a positron (which was
actually a hole in the Dirac sea), the electron would emit 2mc? energy, and fall into the
place of the positron in the Dirac sea.

Using the concept of the ‘Dirac sea’ of negative energy electrons, one can calculate the
probability of pair production in the electric field of a nucleus by considering the
probability of raising an electron from a negative to a positive state. Concluding this
section, let us mention that similar techniques cannot be applied to the Klein—Gordon
equation, because particles with integer spin do not obey any exclusion principle.

Homework Problems

1. Determine the infinitesimal Lorentz transformation when Aw'® = —Aw®' = Af and
all other Aw"Y = 0. Here B =V /cand AB = AV /c.
2. Determine the infinitesimal Lorentz transformation when Aw!? = —Aw?! = AG =

constant and all other A" = 0.
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Show that the charge density p and the current density J for the charged Klein—Gordon
particle are given by (12.4.4) and (12.4.5), respectively.

Derive the expression for the 4-current density given by (12.6.10) for the Dirac
equation.

5. Show that the y* matrices satisfy the commutation relation (12.7.3).

6. Show that the gauge transformations on the electromagnetic potentials, occurring in

10.

the Klein—Gordon equation in the presence of external fields, induce a phase
transformation of the Klein—-Gordon wave function .

Find the solutions of the Klein—Gordon for the case when the external field is a static
Coulomb field for which

Zer 1 -

D= — , A(F)=0.
¢ drey r (r)

. Consider the Dirac equation in 1+ 1 dimensions (that is, one space and one time

dimension):
0 J mc
(Yoaxo E h) Vi) =0

(a) Find a 2 x 2 matrix representation of ° and y' that satisfies {y*,y"} = 2g"" and
has correct hermiticity. What is the physical reason that ¥ can have only two
components in 1 + 1 dimensions?

(b) Find the representation of ¥ = Y’y!, yy* and "V = L [y*,7']. Are they
independent? Define a minimal set of matrices that form a complete basis.

. Consider the following matrices in the so-called Weyl representation

(" 5) s=(7 )

They are called Weyl matrices. Show that the Weyl matrices satisfy all the properties
of the Dirac matrices !, @?,a® and B. Show that the Dirac matrices in the Weyl
representation are

(%) s=(5h)

Solve the Dirac equation for an electron in a constant external magnetic field directed
along the positive z-axis.
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11. Derive the relativistic relation between the total energy, E, and momentum, p, of a
Dirac particle of mass m by computing the necessary and sufficient condition for the
non-trivial solutions of the coupled system of algebraic equations (12.9.9) and
(12.9.10).

12. Derive the normalization coefficient N given by (12.9.28).






Appendix A: Fundamental Constants

Quantity Symbol/Equation Value

Planck’s constant 7 1.05457 x 1073 J s
Speed of light c 2.9979 x 108 ms~!
Charge of proton e 1.602 x 10712 C
Charge of electron —e —1.602x 107 C
Mass of electron Me 9.109 x 1073! kg
Mass of proton mp 1.673 x 1077 kg
Permittivity of free space & 8.854x 10712 Fm~!
Permeability of free space Uo 4 x 1077 NA~?
Bohr radius a = 4negh® /mec®  0.529x 10710 m
Boltzmann constant k 1.381 x 1072 JK !
Fine structure constant e%/he 1/137.036

Electron Compton wavelength A =2mh/mec 2426 x 1072 m
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Appendix B: Useful Integrals

e The integral
I, = / Xte *dx
0

is computed by differentiating the integral

o 1
I, = / e Ydx = —
0 o

with respect to o. Straightforward calculations yield

_1-2:3.---n _ n!

Iy

e Consider the integral
L, = / e g,
0
The value of such an integral is calculated by differentiating the integral

> 1
Ip = / e,axz dx = — r
0 2V o

with respect to the parameter «. The result is

(1) 1x3x5x...x(2n—1) T
Izn - on+t1 a2nt+l’
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Similarly,
oo 2n)! 2n+1
12(2) :/ x2nefx2/x(%dx: \/E( n) (@) )
" 0 n! 2
(2) _ oo 2nt+1  —x%/x? _ n! 2n+2
by —/0 e Mdr= o (x0)™
The Gaussian integral:
/°° e 0P gy — W/Eeﬁz/“_
—o (04
For a # b,
_ _cos[(a—b)x] cos[(a+Db)x]
/cos(ax) sin(bx) dx = 2(a=D) 2(a+h)

Using integration by parts for the functions U (x) and V (x)
/UdV = UV—/VdU,
one computes the following integrals:

1 X
: g L X ’
/x sin(ax) dx " sin(ax) ; cos(ax)

1 X
dx = — * .
/x cos(ax) dx = cos(ax) + . cos(ax)

x*>  xsin(2ax) cos(2ax)

/ x sin® (ax) dx = e Py

2

1 2
/x2 sinz(ax) dx = Sl <za — 8a3> sin(2ax) — xc04sa(2ax).



Appendix C: Dirac Delta Function

If f(x) is defined at the point x = xo, then

/ ) 8 (x—x0) dx = f(x0).

—o0

Thus, Dirac delta function can formally be defined as

0 if x#0,
S(X_XO):{ +oo if x?—_éxo,

and

—+oo
/ O(x—xp)dx=1.

—o0

Note that the delta function can also be defined as the limiting form of a function, F(x),
which is non-zero only in an infinitesimal interval in the vicinity of the point xo where it
abruptly attains its positive maximal value such that

/+wF(x)dx: 1.

—o0

For instance,

s =3 i B =4 am
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1 . € . O(x—xp+K)—O(x—xp)
— lim——— = lim ,
T e—=0 (x—x0)2—|—82 Kk—0 K

d(x—xp) =

where ©(x) is the Heaviside function

1 i x>0,
®<’C)—{ 0 if x<0, -

Properties of delta function
e 5(x) =06(—x).
e §(ax) = ﬁﬁ(—x}, a#0.

e §[(x—a)(x—0b)] = \alb| [6(x—a)+6(x—D)],a#b.

e 5(x*—a%) = ﬁ[S(x—l—a) +06(x—a)l,a#0.

e x5(x)=0.

e f(x)6(x—a)=f(a)d(x—a).

o [[Z8(x—y)8(y—a)dy=38(x—a).

e §'(x) =—-0'(x).

o 2O S () dv =~ (0) = —£'(0).

e Repeated integrations by parts lead to the following general relation:
o [T () dx= (21 EL(0) = (1) - 7(0).
e x8'(x) =—6(x).

e ?8'(x) =0.

o 8(g(x) = X, G where g(x) = 0 and ¢/ (x) #0.

lg
e The Fourier transform of & (x) is

oo
4 (x) ! / e* dk.

:E —00

e For the derivative of &(x), we have

8 (x) = R / T ke
27 ) ’
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e The three-dimensional form of the delta function is given in Cartesian coordinates by
S(X¥—X") =08(x—x)8(y—y)8(z—2).
e The Fourier transform of the three-dimensional delta function is

too o,
5()—5_)—5/) — (2711:)3 /700 elk-(xfx )d3k



Appendix D: Important Formulae and Equations

The wave function: y(7,1).
The position operator: 7= {£,9,2} = {x,y,2}.
The momentum operator: [;’ = —inV.

Time-dependent Schrodinger Equation:

IY(Ft) _po s p B
5 =Hy(#t),H= %—FV(r).

ih

Stationary state wave function: y(7,1) = ¢ (#) e 7 .

Time-independent Schrédinger Equation:

-

2
AYM=E0(). O —0 Vo) +V(PO(F) =E9().

Canonical commutator:  [#;, p;] = il §;j, where i, j = 1,2,3.

Generalized uncertainty relation for two Hermitian but non-commuting operators A and B:

AAAB > %|<[A,B]>|, where  AA = /(A2) — (A)2.

Heisenberg uncertainty relations: AxAp >~ AEAt > %
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Measurement of an observable, A, in a state |y) and probability:

2
A160) = an|0n). Plan) = W

The expectation value of an operator, A, in a given state | y):

A _<W|A|W> r A\ e *7 A 7; X e *7;
A =Tost on A= v @ERvEle [ v @

Time evolution of expectation values (Ehrenfest’s theorem):

dA) o) 1, .
= o TawAAD

Probability density: p(7,t) = y* (7. 1)y (71).
Probability current density:

h -

JE0) = 5 (v E) VY =Yy (B y(E)).

"~ 2im

Local conservation of probability (continuity equation):

L20,m) = 1200+ 1)|6,m),  L.|t,m) = hm|t,m).

Spin angular momentum:
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Pauli Matrices:

(01 o (0 —i
=10 ) 7L o

Relativistic relation between energy and momentum:

= E==./c2p*+mdc*

The Klein-Gordon equation:

2.4

E*—p*c? = myc.

2.2
<D+m§
P

)WﬂZQ
Dirac Equation:

_dy
lhﬁ

p=(o 5 ) o=

Relativistically invariant form of Dirac equation:

(i7" 9 -

:HD v,

mc

h)W:Q

where m = my is the rest mass of the particle.
Gamma Matrices: Y = 8,7/ = Bo/.

PP =2 g

10 0 0 0 0 0 1
o1 0 o o 0o 1 o0
=100 -1 o |""=| 0o Z1i 0 o]

00 0 -1 10 00
0 0 0 —i 0 0 1 0
0 0 i 0 0 0 0 -1
=l o i o0 ol 7= 21 00 o
i 00 0 0 1 0 0
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Addition
of orbital and spin angular momenta
315
of two angular momenta 298, 301
Adjoint of an operator 19
Aharonov—Bohm effect 266, 273, 277
Algebra of operators 27
algebraic method 179
Angular momentum operators 239-240,
243, 246, 258, 293, 327, 328, 406
commutation relations of 299, 300
eigenfunctions of 31, 35, 65, 152, 183,
248
matrix representation of 258
raising and lowering operators 283, 300
annihilation operator 181
anti-hermitian operator 25, 172
anticommutator 28, 140
associated Laguerre polynomials 223
associated Legendre functions 251
Average value 38, 110, 171
of dynamical variables 170
of a random variable 39, 101

barrier penetration 88, 92
basis
complete 130
continuous 131, 142-143, 161

discrete 143
orthonormal 22, 128, 130-132, 141,
144, 146, 153, 160-161, 169, 300,
351, 366
Bessel functions, spherical 200-201
Blackbody radiation 2—4
Rayleigh—Jeans formula 4-5
Wien’s formula 3-5
Bloch’s theorem 113, 116
Bohr model 7
Bohr radius 211, 218, 229, 269
Boltzmann constant 3, 4
Bose-Einstein condensation 331
bosons 283, 326, 330-332
bound states 57, 71, 81, 83-86, 120, 121,
198, 203, 206, 209
boundary conditions 24, 35, 58-59, 6263,
68, 89, 185, 191, 204, 214, 248, 283,
339, 351
bra-ket 161, 298
bra vector 128, 140

Calculation of Clebsch—Gordan
coefficients, 304

Centre of mass 206, 208
frame 208
system 206-207

Central potential 208, 270
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Centrifugal potential 198
change of basis 155
characteristic 2, 6, 43, 138, 385
equation 148
length scale 278
number 248
Classical 2, 6-8, 13, 35, 37
physics 1-2, 5-6, 33, 37
classical turning points 57
classically forbidden region 87, 93
Clebsch-Gordan coefficients 302
recursion relations of 304-305
calculation of 304
constraints on 302
closure relation of 130-131, 141, 144, 159
common set of eigenfunctions 4445, 78,
243,258, 277
commutation relation 162, 240, 243, 282,
285-286, 321
commutator 139, 240
Jacobi Identity 29
compatible operators 36, 43-44
compatible observables 44-45
complete set of commuting operators 44
composite particles 326
Compton effect 8-9
wavelength 9
configuration 7, 365, 372-373, 398
conservation laws 347, 348, 351, 353-354
conservation of 72, 355-356
angular momentum 356
energy and momentum 355
probability 72
continuity condition 80
continuity equation 72—74, 384, 385, 388,
392
constraints on Clebsch-Gordan
coefficients 302, 304
correspondence principle 267, 381, 387
Coulomb gauge 268, 272-273
Coulomb potential 207, 209, 231, 386
coordinate representation 161, 164
of Schrodinger equation 161, 164

creation operator 181, 182, 184
current density 73, 74, 320, 382-384,
388, 392

Davisson—Germer experiment 10
de Broglie’s hypothesis 10
degeneracy
accidental 359
exchange degeneracy 326327
for cubical suare well potential
for hydrogen atom 206, 208-210, 212,
222,228, 358
for isotropic oscillator 233
Kramers 370
delta function 142, 163
Dirac delta function 142, 163
Dirac equation 372, 381, 386, 391-392,
398-399, 402-404, 406, 408
form invariance 398
free particle solution 58-59, 61, 402
negative energy solutions 385-386,
405-406, 408
positive energy solutions 386, 404—406
relativistically covariant
form of 391-392
Dirac matrices 390, 391
commutation relation for 393
possible representation of 390
properties of 392
Dirac Hamiltonian 388, 402, 406—407
Dirac notation 128, 149, 291
discontinuous potentials 67
divergence theorem 74
dual vector 128
duality 7, 33

effective potential 198

Ehrenfest’s theorem 109, 111

eigenstates 36-37, 79, 101, 147, 244, 327
eigenfunctions of > and L, 248
eigenvalue problems 161, 243, 327
eigenvalues and eigenvectors 147148
energy Bands 113, 118
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energy conservation 9, 11
equation
Dirac 372, 381, 386, 391-392,
398-399, 402-404, 406, 408
Heisenberg 177-178
Klein—Gordon 381-389, 404, 409
Schrodinger 32-34, 60, 68, 72, 78, 94,
161, 164, 166, 170, 192, 195, 197,
266, 351
equation of motion
for an observable 177, 179
Newton’s 111, 113, 379, 380
equivalence of energy and mass 380
exchange degeneracy 326-327
exclusion Principle 327, 331, 409
expectation value
of an operator 109

finite square well potential 81
fermions 283, 326, 330-333, 409
flux 74, 91, 275-276
Fourier transform 60, 417, 418
free particle solution
in Cartesian coordinates 189, 200
in spherical coordinates 199
of Dirac equation 402, 408

geometry of spacetime 374
group velocity 61, 191
gyromagnetic ratio, 294
group
of rotations 357
of space translations 356
of time translations 355, 358
group of symmetry
of the Schrodinger equation 353, 355

harmonic oscillator 94, 97, 100-101
stationary state energy of 271
stationary state solutions of 101
isotropic 230

Heaviside function 417

Heisenberg picture 176

Heisenberg’s
equation of motion 177-178
uncertainty principle 59, 93, 101, 103
uncertainty relation 34, 174, 241
Hermite polynomials 98-99, 279
hermitian conjugate 19, 26, 31, 146147
hermitian operator 18-20, 22, 28, 38, 146,
151-152, 172, 243, 300, 352
Hilbert space 124, 135-136, 143, 147, 153,
155, 159, 169
homogeneity
of space 355, 358, 387
of time 355, 358, 387
hydrogen atom 206, 208-210, 212, 225, 358
the general solution of 212
the ground state of 209, 211
the spectrum of 225
radial equation for 226
radial wave functions of 209, 213

identical particles 55
indistinguishability of 325-330, 346,
348
systems of 325-227
infinite potential well 87
infinite rectangular well potential 359
infinitesimal
rotation 356
spatial translations 356
interaction picture 178, 179
interchange symmetry 326
interval 376-378, 386
inverse of the matrix 398
isotropy of space 242, 257, 286, 356,
358, 372
inverse of an operator 25

ket vector 128, 140

Klein—Gordon Equation 381-389, 404, 409
Kramers’ Degeneracy 370

Kramers’ Theorem 370
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Kronecker delta 21, 65, 130, 290

ladder operators 181
ladder operator method 304, 311
Laguerre polynomials 222-224
Landau levels 266, 277-279
Laplacian operator 32, 188, 194
Larmor frequency 271, 295
Legendre

associated functions 251

differential equation 250

polynomials 196, 201, 219, 222-224,

236, 250-251

Levi-Civita tensor density 290, 357
linear vector space

basis in 125

defining a 124

examples of 126
Lorentz transformations

Proper and improper 377, 399
Lorentz gauge 268

many-particle systems
identical particles 55, 325-330
magnetic field effects 266
Aharonov—Bohm effect 266, 273, 277
Landau levels 266, 277-279
Zeeman effect 266, 269-271, 281
matrix 10, 124, 138
matrix mechanics 10, 124
momentum representation 161-162,
166-167

Neumann functions, spherical 200
normalization
condition 248, 250, 254
of a wave function 43, 72
of radial function 202, 205, 216, 219
of spherical harmonics 197
number operator 183—184

observables 18, 29, 101, 111, 138, 169,
176, 325

occupation number 183
operators
angular momentum 239, 241, 243, 246,
254, 258, 300, 315, 357, 363,
367-368, 406
complete set of commuting 44
eigenvalues of 19-20, 171, 242, 245,
302
even 31
function of 162, 176
hermitian conjugate 19, 26, 31,
146-147
linear 19
matrix representation of
odd 31
parity 30-31, 78, 360-364
permutation 325
products of 139
projection 158-159
quotient of 26
trace of 144
unitary 26, 31, 146, 153, 175, 350, 366
of orbital angular momentum 201, 255,
270, 281-284, 300, 310, 315,
orthonormal and complete basis 130-131,
141, 184, 301
orthonormality condition 22, 142, 151, 190,
259, 300, 305

parity operator 30, 78, 360-364
Paschen—Back effect 270
Pauli exclusion principle 327, 331
Pauli matrices 283, 287-289, 390-391, 407
periodic potentials 113
phase velocity 119
photoelectric effect
Einstein’s fundamental equation 6
Pictures of quantum mechanics
Heisenberg picture 175
interaction picture 178
Schrédinger picture 175, 177-179
Planck’s formula 5
constant 6-7, 10, 225
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hypothesis 5-7
quantum mechanics 175, 177-179
polynomials
associated Laguerre 223
Hermite 98-99, 279
Laguerre 222-224
Legendre 196, 201, 219, 250-251
postulates of quantum mechanics 13, 36,
133, 168
potential
barrier 6, 70, 88, 93
central 208, 270
centrifugal 198
Coulomb 207, 209, 231, 386
delta 122
effective 198
finite square well 81
harmonic oscillator 94, 97, 100-101,
230
infinite square well 62, 64
periodic 113
spherical square well
step 121
well 42, 61, 64, 81, 85, 87, 191, 359
probabilistic interpretation 381-382, 384
probability
current 73, 320, 382, 384, 388
density 14, 33, 35, 61, 73, 170, 273,
320, 325
principle of superposition 37, 170
proper time 377, 378

Quantum—Classical Correspondence 109

Rayleigh—Jeans formula 4-5
relativistic
equivalence of energy and mass 380
mass 380
relation between energy and
momentum 381-382, 387, 403

space inversion symmetry 360

Schrédinger Equation 197, 266
in coordinate representation 161, 164
in momentum representation 161, 166
Schwartz inequality 134, 172-173
scattering states 57
separation of variables 34, 188, 194,
249, 322
skew-hermitian operator 152—-153
Slater determinant 329-331, 341
spin
functions 288, 291, 333, 335-336,
338
precession 294
matrices 283
standard conditions 15, 34, 63, 71, 73, 89,
214, 249
stationary states 8, 34-35, 62, 64, 218, 225,
320, 358
statistical interpretation 14, 72
symmetric potential 78-80, 194, 199
symmetry group 354, 356-358
symmetry operator 352, 364
system of identical particles 325, 327
Pauli exclusion principle 327, 331
Slater determinant 329-331, 341

time translation 175, 355, 358
time-energy uncertainty relation 173-174
time reversal symmetry 364—-365

trace of an operator 144

triangular inequality 135

tunneling 88, 92

unitary operator 26, 31, 146, 153, 175,
350, 366
unitary transformation
properties of 156

vectors
linearly dependent 125, 127
linearly independent 19, 21-22, 37, 58,
79, 125-126
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velocity
group 61, 191
phase 119
vectorial addition of orbital and spin
angular momenta 315

wave function
antisymmetric 315
nodes of 58, 65
symmetric 79 326 328-330

wave mechanics 10, 124
wave packet 60, 61, 71
wave—particle 2

duality 7
Wien'’s formula 3-5
work function 6-7, 10, 12

Zeeman effect 266, 269-271, 281
zero-point energy 65, 98
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