Franz Schwabl

Advanced
Quantum
Mechanics



Advanced Quantum Mechanics



Franz Schwabl

Advanced
Quantum Mechanics

Translated by Roginald Hilton and Angela Lahee

Fourth Edition
With 79 Figures, 4 Tables, and 104 Problems

@ Springer



Professor Dr. Franz Schwabl
Physik-Department

Technische Universitdt Miinchen
James-Franck-Str. 2

85748 Garching, Germany
schwabl@physik.tu-muenchen.de

Translators:
Dr. Roginald Hilton
Dr. Angela Lahee

Title of the original German edition: Quantenmechanik fiir Fortgeschrittene (QM II)
(Springer-Lehrbuch)

ISBN 978-3-540-85075-5

© Springer-Verlag Berlin Heidelberg 2008

ISBN 978-3-540-85061-8 e-ISBN 978-3-540-85062-5

DOI 10.1007/978-3-540-85062-5

Library of Congress Control Number: 2008933497

© 2008, 2005, 2004, 1999 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant

protective laws and regulations and therefore free for general use.

Typesetting and production: le-tex publishing services oHG, Leipzig, Germany
Cover design: eStudio Calamar, Girona/Spain

Printed on acid-free paper
987654321

springer.com



The true physics is that which will, one day,
achieve the inclusion of man in his wholeness
in a coherent picture of the world.

Pierre Teilhard de Chardin

To my daughter Birgitta



Preface to the Fourth Edition

In this latest edition new material has been added, which includes many
additional clarifying remarks and cross references. The design of all figures
has been reworked, the layout has been improved and unified to enhance the
didactic appeal of the book, however, in the course of these changes I have
attempted to keep intact its underlying compact nature. I am grateful to
many colleagues for their help with this substantial revision. Again, special
thanks go to Uwe Tauber and Roger Hilton for discussions, comments and
many constructive suggestions. I should like to thank Dr. Herbert Miiller
for his generous help in all computer problems. Concerning the graphics,
I am very grateful to Mr Wenzel Schiirmann for essential support and to Ms
Christina Di Stefano and Mr Benjamin Sanchez who undertook the graphical
design of the diagrams.

It is my pleasure to thank Dr. Thorsten Schneider and Mrs Jacqueline
Lenz of Springer for the excellent co-operation, as well as the le-tex setting
team for their careful incorporation of the amendments for this new edition.
Finally, I should like to thank all colleagues and students who, over the years,
have made suggestions to improve the usefulness of this book.

Munich, June 2008 F. Schwabl



Preface to the First Edition

This textbook deals with advanced topics in the field of quantum mechanics,
material which is usually encountered in a second university course on quan-
tum mechanics. The book, which comprises a total of 15 chapters, is divided
into three parts: I. Many-Body Systems, II. Relativistic Wave Equations, and
ITI. Relativistic Fields. The text is written in such a way as to attach impor-
tance to a rigorous presentation while, at the same time, requiring no prior
knowledge, except in the field of basic quantum mechanics. The inclusion
of all mathematical steps and full presentation of intermediate calculations
ensures ease of understanding. A number of problems are included at the
end of each chapter. Sections or parts thereof that can be omitted in a first
reading are marked with a star, and subsidiary calculations and remarks not
essential for comprehension are given in small print. It is not necessary to
have read Part I in order to understand Parts II and III. References to other
works in the literature are given whenever it is felt they serve a useful pur-
pose. These are by no means complete and are simply intended to encourage
further reading. A list of other textbooks is included at the end of each of
the three parts.

In contrast to Quantum Mechanics I, the present book treats relativistic
phenomena, and classical and relativistic quantum fields.

Part I introduces the formalism of second quantization and applies this
to the most important problems that can be described using simple methods.
These include the weakly interacting electron gas and excitations in weakly
interacting Bose gases. The basic properties of the correlation and response
functions of many-particle systems are also treated here.

The second part deals with the Klein—-Gordon and Dirac equations. Im-
portant aspects, such as motion in a Coulomb potential are discussed, and
particular attention is paid to symmetry properties.

The third part presents Noether’s theorem, the quantization of the Klein—
Gordon, Dirac, and radiation fields, and the spin-statistics theorem. The final
chapter treats interacting fields using the example of quantum electrodynam-
ics: S-matrix theory, Wick’s theorem, Feynman rules, a few simple processes
such as Mott scattering and electron—electron scattering, and basic aspects
of radiative corrections are discussed.



X Preface to the First Edition

The book is aimed at advanced students of physics and related disciplines,
and it is hoped that some sections will also serve to augment the teaching
material already available.

This book stems from lectures given regularly by the author at the Tech-
nical University Munich. Many colleagues and coworkers assisted in the pro-
duction and correction of the manuscript: Ms. I. Wefers, Ms. E. Jorg-Miiller,
Ms. C. Schwierz, A. Vilfan, S. Clar, K. Schenk, M. Hummel, E. Wefers,
B. Kaufmann, M. Bulenda, J. Wilhelm, K. Kroy, P. Maier, C. Feuchter,
A. Wonhas. The problems were conceived with the help of E. Frey and
W. Gasser. Dr. Gasser also read through the entire manuscript and made
many valuable suggestions. I am indebted to Dr. A. Lahee for supplying
the initial English version of this difficult text, and my special thanks go to
Dr. Roginald Hilton for his perceptive revision that has ensured the fidelity
of the final rendition.

To all those mentioned here, and to the numerous other colleagues who
gave their help so generously, as well as to Dr. Hans-Jirgen Kolsch of
Springer-Verlag, I wish to express my sincere gratitude.

Munich, March 1999 F. Schwabl
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Part I

Nonrelativistic Many-Particle Systems



1. Second Quantization

In this first chapter, we shall consider nonrelativistic systems consisting of
a large number of identical particles. In order to treat these, we will introduce
a particularly efficient formalism, namely, the method of second quantization.
Nature has given us two types of particle, bosons and fermions. These have
states that are, respectively, completely symmetric and completely antisym-
metric. Fermions possess half-integer spin values, whereas boson spins have
integer values. This connection between spin and symmetry (statistics) is
proved within relativistic quantum field theory (the spin-statistics theorem).
An important consequence in many-particle physics is the existence of Fermi—
Dirac statistics and Bose—Einstein statistics. We shall begin in Sect. 1.1 with
some preliminary remarks which follow on from Chap. 13 of Quantum Me-
chanics®. In the subsequent sections of this chapter, we shall develop the
formalism of second quantization, i.e. the quantum field theoretical represen-
tation of many-particle systems.

1.1 Identical Particles, Many-Particle States,
and Permutation Symmetry

1.1.1 States and Observables of Identical Particles
We consider N identical particles (e.g., electrons, 7 mesons). The Hamiltonian
H=H(1,2,...,N) (1.1.1)

is symmetric in the variables 1,2, ..., N. Here 1 = x1, 01 denotes the position
and spin degrees of freedom of particle 1 and correspondingly for the other
particles. Similarly, we write a wave function in the form

¢=¢(1a2a aN) (112)

The permutation operator P;;, which interchanges i and j, has the following
effect on an arbitrary N-particle wave function

L F. Schwabl, Quantum Mechanics, 4" ed., Springer, Berlin Heidelberg, 2007; in
subsequent citations this book will be referred to as QM 1.
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Putb(oo iy gy ) =( e i), (1.1.3)

We remind the reader of a few important properties of this operator. Since
Pfj = 1, the eigenvalues of P;; are +1. Due to the symmetry of the Hamilto-
nian, one has for every element P of the permutation group

PH = HP. (1.1.4)

The permutation group S which consists of all permutations of N objects
has N! elements. Every permutation P can be represented as a product of
transpositions P;;. An element is said to be even (odd) when the number of
P,;’s is even (odd).?

A few properties:

(i) If¢(1,...,N) is an eigenfunction of H with eigenvalue E, then the same
also holds true for Py(1,... ,N).
Proof. Hi = Etp = HPy = PHy = EP .

(ii) For every permutation one has

(pl) = (Po|PY) , (1.1.5)

as follows by renaming the integration variables.
(iii) The adjoint permutation operator P is defined as usual by

(p| Py = (Ploly) .
It follows from this that
(plPy) = (Pl P PY) = (P ply) = PT =P~

and thus P is unitary

P'P=PP=1. (1.1.6)
(iv) For every symmetric operator S(1,...,N) we have
[P,S]=0 (1.1.7)
and
(Pl S|Py;) = (Wil PTSP [5) = (| PTPS|05) = (i S|wj>(-1 5

This proves that the matrix elements of symmetric operators are the
same in the states 1; and in the permutated states Pi;.

2 Tt is well known that every permutation can be represented as a product of cycles
that have no element in common, e.g., (124)(35). Every cycle can be written as
a product of transpositions,

eg. (12) odd
Pios = (124) = (14)(12)  even

Each cycle is carried out from left to right (1 — 2,2 — 4,4 — 1), whereas the
products of cycles are applied from right to left.
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(v) The converse of (iv) is also true. The requirement that an exchange of
identical particles should not have any observable consequences implies
that all observables O must be symmetric, i.e., permutation invariant.
Proof. ()| O |) = (PO |Py) = (1| P'YOP |3)) holds for arbitrary .
Thus, PTOP = O and, hence, PO = OP.

Since identical particles are all influenced identically by any physical pro-
cess, all physical operators must be symmetric. Hence, the states ¥ and P
are experimentally indistinguishable. The question arises as to whether all
these N! states are realized in nature.

In fact, the totally symmetric and totally antisymmetric states s and 1,
do play a special role. These states are defined by

Pijthy (oo iy gy ) =5 (i o) (1.1.9)

for all Pz]

It is an experimental fact that there are two types of particle, bosons
and fermions, whose states are totally symmetric and totally antisymmetric,
respectively. As mentioned at the outset, bosons have integral, and fermions
half-integral spin.

Remarks:

(i) The symmetry character of a state does not change in the course of time:

t
—Lrdt'H({) i
0

¥(0) = P(t) =Te " )

¥(0),
(1.1.10)

o

P(t) =Te

where T is the time-ordering operator.?
(ii) For arbitrary permutations P, the states introduced in (1.1.9) satisfy

Pws = ws (1111)

. 1 for even permutations
Py, = (_1)Pw“ , with (_1)P - {1 for odd pperrnutations.
Thus, the states 15 and 1, form the basis of two one-dimensional repre-
sentations of the permutation group Sy. For v, every P is assigned the
number 1, and for 1, every even (odd) element is assigned the number
1(—1). Since, in the case of three or more particles, the P;; do not all com-
mute with one another, there are, in addition to ¥ and v,, also states
for which not all P;; are diagonal. Due to noncommutativity, a com-
plete set of common eigenfunctions of all P;; cannot exist. These states
are basis functions of higher-dimensional representations of the permu-
tation group. These states are not realized in nature; they are referred to

3 QM I, Chap. 16.
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as parasymmetric states.*. The fictitious particles that are described by
these states are known as paraparticles and are said to obey parastatis-
tics.

1.1.2 Examples

(i) Two particles
Let ¢(1,2) be an arbitrary wave function. The permutation Pj2 leads to Pi2t(1,2)

=(2,1).
From these two wave functions one can form
s = ¥(1,2) +9(2,1) symmetric

Yo =(1,2) —9(2,1) antisymmetric (1.1.12)

under the operation Pi2. For two particles, the symmetric and antisymmetric states
exhaust all possibilities.

(ii) Three particles
We consider the example of a wave function that is a function only of the spatial
coordinates

¥(1,2,3) = Y(x1, 2, 73).
Application of the permutation Pi23 yields
Pio3 p(x1, 2, x3) = (22, 3, 1),

i.e., particle 1 is replaced by particle 2, particle 2 by particle 3, and parti-
cle 3 by particle 1, e.g., ¥(1,2,3) = efx%(ngxg)i Pi2(1,2,3) = e*””g(””%*”ﬁ)z7
P23 (1,2,3) = e*@(m?*m?)Q. ‘We consider
PisPi2v(1,2,3) = Pi3¢(2,1,3) =4
P12P131/)(1 2,3) = P129(3,2,1) =4
(P123)?9(1,2,3) = Praa9(2,3,1) = ¢

Clearly, Pi3Pi2 # Pi2P13 .

S3, the permutation group for three objects, consists of the following 3! = 6 ele-
ments:
S3 = {1, P12, Pas, Ps1, P1a3, P32 = (Pi23)°}. (1.1.13)

We now consider the effect of a permutation P on a ket vector. Thus far we have
only allowed P to act on spatial wave functions or inside scalar products which lead
to integrals over products of spatial wave functions.

Let us assume that we have the state

direct product
—_———
[0) = D lan)y ), |23)s (1, w2, w3) (1.1.14)

z1,T2,T3

4 AM.L. Messiah and O.W. Creenberg, Phys. Rev. B 136, 248 (1964), B 138,
1155 (1965).



1.1 Identical Particles, Many-Particle States, and Permutation Symmetry 7

with 9 (z1, 22, ¥3) = (21| (T2], (T3[5]¥). In [2:); the particle is labeled by the num-
ber j and the spatial coordinate is z;. The effect of Pi23, for example, is defined as
follows:

Pus|p) = D 1), |w2)y|ws), (w1, w2, 23) .

T1,%2,%3

> lwa), [21), [w2), Y@, 32, 35)

T1,%2,%3

In the second line the basis vectors of the three particles in the direct product are
once more written in the usual order, 1,2,3. We can now rename the summation
variables according to (x1,x2,23) — Pi2s(z1,22,23) = (22,23,21). From this, it
follows that

Pus )= > |z1), |w2), [ws), ¥(@2, w3, 21) .

T1,22,23

If the state |1) has the wave function 1 (z1, 22, z3), then P |¢) has the wave function
Pi(x1,x2,x3). The particles are exchanged under the permutation. Finally, we
discuss the basis vectors for three particles: If we start from the state |«) |3) |y) and
apply the elements of the group Ss, we get the six states

o) 18) |v)

Pia |} B) Iy) = |8) la) Iy
Pay |} [B) 1y) = [7) 18) |ex
Pra3 |O‘>1 |ﬂ>2 |7>3 = |O‘>2 |
Piza|a) |8) |v) = 1B) |7) |ex

Except in the fourth line, the indices for the particle number are not written out,
but are determined by the position within the product (particle 1 is the first factor,
etc.). It is the particles that are permutated, not the arguments of the states.

If we assume that «, 3, and ~ are all different, then the same is true of the six
states given in (1.1.15). One can group and combine these in the following way to
yield invariant subspaces °:

» Pag ) |B) [v) = e} ) 16)

=

: (1.1.15)
3171 =17 ) 18)

=~ @

Invariant subspaces:

Basis 1 (symmetric basis):
1

=) 1B) 1) +18) o) [v) + 1) [V} 1B) + [} 1B) le) + [} | 16) + 15) [} |e))

(1.1.16a)

S

Basis 2 (antisymmetric basis):

%(IOO 18 1v) = 18) o) [v) = e} [7) 18) = |7) 1B) |ev) + |v) |} |B) + [B) 1) |av))
(1.1.16b)

5 An invariant subspace is a subspace of states which transforms into itself on
application of the group elements.
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Basis 3:

7521} 18) 1) +218) e [7) — la) [v) [B) — |7} [8) lar)
=) [B) = 18) ) |a)) (1.1.16¢)
3(0+0—a) [y [8) + 1) 18) o) + 1) e} [B) — 18) |7 |er))

Basis 4:

3(0+0—1[a) [7) 8) + |7) |B) la) = |7) |a) [B) + |B) ) |a))
5(21) [B) [v) = 218) |a) |v) + |e) [v) [8) + [7) 8) |e) (1.1.16d)
=) [B) = 1B) I7) ) -

In the bases 3 and 4, the first of the two functions in each case is even under
Pi2 and the second is odd under P2 (immediately below we shall call these two
functions |11) and [¢2)). Other operations give rise to a linear combination of the
two functions:

P2 Y1) = [{1) , Pizlh2) = —[42) , (1.1.17a)

Pi3 Y1) = au1 |91) + oz [¢h2) , Pis|he) = ao1 Y1) + o2 [1h2) (1.1.17b)

with coefficients «;;. In matrix form, (1.1.17b) can be written as

[¥1) | _ (011 a2 [1h1)
Fro <|¢2> T\ oo a2z [2) | - (1.1.17¢)
The elements P12 and Pi3 are thus represented by 2 X 2 matrices
_ (10 (o1 aa2
P = <0 *1) Fia = (Om Oézg) : (1.1.18)

This fact implies that the basis vectors [11) and [¢)2) span a two-dimensional repre-
sentation of the permutation group Ss. The explicit calculation will be carried out
in Problem 1.2.

1.2 Completely Symmetric and Antisymmetric States

We begin with the single-particle states [i): |1), |2), .... The single-particle
states of the particles 1, 2, ..., «, ..., N are denoted by [i),, [i),, ..., |i),,
.., i) - These enable us to write the basis states of the N-particle system

it oo yin) = i)y - Jia)y - [N )y (1.2.1)

where particle 1 is in state [i;); and particle a in state |is),, etc. (The
subscript outside the ket is the number labeling the particle, and the index
within the ket identifies the state of this particle.)

Provided that the {]i)} form a complete orthonormal set, the product
states defined above likewise represent a complete orthonormal system in the
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space of N-particle states. The symmetrized and antisymmetrized basis states
are then defined by

o . 1 o .
Sy i1, d2,... in) = WZ(:H)PPM,ZQ,... VAN - (1.2.2)
P

In other words, we apply all V! elements of the permutation group Sy of N
objects and, for fermions, we multiply by (—1) when P is an odd permutation.
The states defined in (1.2.2) are of two types: completely symmetric and
completely antisymmetric.

Remarks regarding the properties of S1 = \/;Ni‘ Y p(EDFP:

(i) Let Sy be the permutation group (or symmetric group) of N quantities.

Assertion: For every element P € Sy, one has PSy = Sn.

Proof. The set PSn contains exactly the same number of elements as Sy and these,
due to the group property, are all contained in Sn. Furthermore, the elements of
PSn are all different since, if one had PPy = PP», then, after multiplication by
P!, it would follow that Py = P».

Thus

PSy = SyP = Sy . (1.2.3)
(i) It follows from this that

PS, =S5.P=5; (1.2.4a)
and

PS =S P=(-1)"S_. (1.2.4b)

If P is even, then even elements remain even and odd ones remain odd. If
P is odd, then multiplication by P changes even into odd elements and vice
versa.

PS+|7;15"~ aZN> :S+ |i15"' 7ZN>
PS_i1,... yin) = (=1)7S_|ir,... ,in)

Special case P;;S_ |i1,...,in) = —S_|i1,... ,in) .
(iii) If |i1,... ,in) contains single-particle states occurring more than once,
then Sy |i1,...,in) is no longer normalized to unity. Let us assume that the
first state occurs m; times, the second no times, etc. Since Sy i1, ..., in)
contains a total of N! terms, of which # are different, each of these
terms occurs with a multiplicity of nilns!. ...

1 N!
. . T . . - ! ! 2— — | !
(i1,. .. in| SLSY it, ... ,iN) N!(nl.ng....) il nilnagl. ..
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Thus, the normalized Bose basis functions are

1 1
Viinal. . VNnlno! ..

S lits .- vin)

> Pliv,...in).  (1.2.5)
P
(iv) A further property of Sy is
S2 =VN!ISy (1.2.6a)

since S% = \/LNf!ZP(:tl)PPSi = \/LNf‘ > pS+ = VN!Si. We now consider
an arbitrary N-particle state, which we expand in the basis |é1) ... |in)

2) = D i) fin) (i in2)
D150 ,IN
C’il«---«iN

Application of Sy yields
Selzy= > Selin)...lin)eir v =D, lir)...lin) Sxciy . in
By 50N Q1,0 50N
and further application of \/LNf‘Si, with the identity (1.2.6a), results in

e |2 = J% S e i) e lin) (Saciin). (1.2.6b)

V1yee ,iN

Equation (1.2.6b) implies that every symmetrized state can be expanded in
terms of the symmetrized basis states (1.2.2).

1.3 Bosons

1.3.1 States, Fock Space, Creation and Annihilation Operators

The state (1.2.5) is fully characterized by specifying the occupation numbers
1

7’1,1!7’),2! N '

In1,ma,...) =S4 li1, 2, ... ,in) (1.3.1)

Here, ny is the number of times that the state 1 occurs, ny the number of
times that state 2 occurs, ... . Alternatively: n; is the number of particles in
state 1, no is the number of particles in state 2, ... . The sum of all occupation
numbers n; must be equal to the total number of particles:

ini =N. (1.3.2)
1=1
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Apart from this constraint, the n; can take any of the values 0,1,2,....
The factor (ni!ng!...)" /2, together with the factor 1/v/N! contained in
S4, has the effect of normalizing |n1,n2,...) (see point (iii)). These states
form a complete set of completely symmetric N-particle states. By linear
superposition, one can construct from these any desired symmetric N-particle
state.

We now combine the states for N = 0,1,2,... and obtain a complete
orthonormal system of states for arbitrary particle number, which satisfy the
orthogonality relation®

<n1, no, ... |n1', TLQ/, . > = 57111”1/5"27"2/ RPN (133&)

and the completeness relation

> nung,. ) (nng,. | =1 (1.3.3b)

ni,na,...

This extended space is the direct sum of the space with no particles (vacuum
state |0)), the space with one particle, the space with two particles, etc.; it is
known as Fock space.

The operators we have considered so far act only within a subspace of
fixed particle number. On applying p, X etc. to an N-particle state, we obtain
again an N-particle state. We now define creation and annihilation operators,
which lead from the space of N-particle states to the spaces of N + 1-particle
states:

all..oomiy . )=V F 1., mi+1,..). (1.3.4)
Taking the adjoint of this equation and relabeling n; — n;’, we have

(..oond, o Jag=+m +1(.. n/ +1,..]. (1.3.5)
Multiplying this equation by |... ,n;,...) yields

(ooomisoodag oo ynay ) = Vi Onyr 1, -

Expressed in words, the operator a; reduces the occupation number by 1.
Assertion:

ail...,ni,..)=+nil...,ny—1,...) form; >1 (1.3.6)

and

% In the states |ni,n2,...), the ni,n2 etc. are arbitrary natural numbers whose
sum is not constrained. The (vanishing) scalar product between states of differing
particle number is defined by (1.3.3a).
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Proof:

o0
ailomi )=y Lo (o a ] )

ni’:O
o0
- Z | ’ni/7"'>\/n_i5ni’+l,ni
ni’:O
[ ymil...o,ni—1,...) forn; > 1
-~ 0 forn; =0

+

%

increases the occupation number of the state |7) by 1, and the
operator a; reduces it by 1. The operators a;‘ and a; are thus called creation
and annihilation operators. The above relations and the completeness of the

states yield the Bose commutation relations

The operator a

[aiv aj] = 05 [a-irv a;] = 07 [aiv a

=06y (1.3.7a,b.c)

J

Proof. 1t is clear that (1.3.7a) holds for ¢ = j, since a; commutes with itself. For
1 # j, it follows from (1.3.6) that

aiaj | .. Mgy Ny = /nay/ng e ne— 1,000 ng — 1,000
= ajail... ,ni,...,nj,...)

which proves (1.3.7a) and, by taking the hermitian conjugate, also (1.3.7b).
For j # i we have

Ay |eee 3Ny NGy on) = Ni\/ M5 e,y — Lo,y I
5 ) = Virav/n; +1] 1 +1)

a;ai|... SNy e sy een)

and
(aiaz —a}ai) [oo My My ) =
(mm—\/n_l\/n_,) PP I (ST
hence also proving (1.3.7c).
Starting from the ground state = vacuum state
0) =10,0,...), (1.3.8)

which contains no particles at all, we can construct all states:
single-particle states

all0y,... ,

two-particle states

L (V100 atat
\/j(ai) 0),a;a;0),...
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and the general many-particle state

In1,ma, ..} = ;'(ai)"l (a})™ - 10). (1.3.9)

nl!ng.. ..

Normalization:

al|n —1) = /n|n) (1.3.10)
la¥In = D] = v

In) = %GT n—1) .

1.3.2 The Particle-Number Operator

The particle-number operator (occupation-number operator for the state |7))
is defined by

ni=ala; . (1.3.11)
The states introduced above are eigenfunctions of n;:

and the corresponding eigenvalue of 71; is the number of particles in the state
i.
The operator for the total number of particles is given by

N=> i, (1.3.13)

Applying this operator to the states |... 7y, ...) yields

N|n1,n2,...> = <an> |n1,n2,...>. (1314)

Assuming that the particles do not interact with one another and, further-
more, that the states |i) are the eigenstates of the single-particle Hamiltonian
with eigenvalues ¢;, the full Hamiltonian can be written as

Hy =Y fie; (1.3.15a)

Hg|ni,...) = (Z ne) Ing,...). (1.3.15b)

The commutation relations and the properties of the particle-number opera-
tor are analogous to those of the harmonic oscillator.
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1.3.3 General Single- and Many-Particle Operators

Let us consider an operator for the N-particle system which is a sum of
single-particle operators

T=ti+ta+...+tN = ta, (1.3.16)

e.g., for the kinetic energy t, = p2/2m, and for the potential V(x, ). For one
particle, the single-particle operator is ¢. Its matrix elements in the basis |i)
are

ty = (il 1), (1.3.17)
such that

t= Ztij i) (j] (1.3.18)

and for the full N-particle system

N
T=2% i3 10 lila- (1.3.19)
1,7 a=1

Our aim is to represent this operator in terms of creation and annihilation op-
erators. We begin by taking a pair of states 4, j from (1.3.19) and calculating
their effect on an arbitrary state (1.3.1). We assume initially that j # i

Z|i)a<j|a|... My My
[0

1
o nl'ng'
1
=5 7 121,12, ... yIN) —F——— -
+;|>a<j|a|1 2 N>W

EZ|i>a <j|a Sy |i1’i2a"' ’iN> (1.3.20)

It is possible, as was done in the third line, to bring the S5 to the front, since
it commutes with every symmetric operator. If the state j is n;-fold occupied,
it gives rise to m; terms in which |j) is replaced by |i). Hence, the effect of
Sy is to yield n; states |... ,n; +1,...,n; —1,...), where the change in the
normalization should be noted. Equation (1.3.20) thus leads on to

| ,Tli+1,... ,?’Lj*l,...>
> (1.3.20)

=n; 7’L1+1
nj

zﬂ/nj\/ni+1|...,ni—l—l,...,nj—l,...

:ajaj|...,ni,...,nj,...>.
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For j = i, the ¢ is replaced n; times by itself, thus yielding
Nilooo yMiy.on) :aiai|... STy o).

Thus, for any N, we have

> il =l
From this it follows that, for any single-particle operator,
T = Z tz] a;-faj 5
4,J
where

tiy = (il t]5) -
The special case t;; = €;0;; leads to
HO = Z eiazai s
i

ie., to (1.3.15a).

In a similar way one can show that two-particle operators
1 @)
= 5 Z f (XOH Xﬁ)
a#B

can be written in the form

1
F=5 37 (i3l f® km)alalamar,

,4,k,m

where

(i, ] @ [k, m) = /m/@@ )7 (@, 9)or(@)em(y) -

(1.3.21)

(1.3.22)

(1.3.23)

(1.3.24)

(1.3.25)

n (1.3.23), the condition o # § is required as, otherwise, we would have
only a single-particle operator. The factor % in (1.3.23) is to ensure that each
interaction is included only once since, for identical particles, symmetry im-

plies that f®) (x4, x5) = f®) (x5, %4).
Proof of (1.3.24). One first expresses F' in the form

=2 S (g £ ) i 1) (KL ]

a#Bi,j,k,m
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We now investigate the action of one term of the sum constituting F’:

Z|Z>a |j>ﬁ<k|a<m|ﬁ| My oo s My ee s Mgy e vy Tl o e )

a#p

- —  Vm i1 1

T e T IV
lLoooni+1,0.0 n+1, 0 ng—1,0.0 ny —1,..)
TT

TG |- My M Ty Ty )

Here, we have assumed that the states are different. If the states are identical,
the derivation has to be supplemented in a similar way to that for the single-
particle operators.

A somewhat shorter derivation, and one which also covers the case of
fermions, proceeds as follows: The commutator and anticommutator for
bosons and fermions, respectively, are combined in the form [ax, aj]+ = 0k;.

D i bidg Skl (mls = D 1), (Kl 1) 5 (ml g

a#B a#B

= |i)a (kly 15) 5 (mlg = (K13 D li)y (ml,

a,3 6;;] o
= aIaka;am - aI [ak, a}]x am
aka;Ia;ak
= :l:a a Ak = aTa;amak ,
(1.3.26)

bosons
fermions.

This completes the proof of the form (1.3.24).

1.4 Fermions

1.4.1 States, Fock Space, Creation and Annihilation Operators

For fermions, one needs to consider the states S_ |i1,i9,...,iy) defined in
(1.2.2), which can also be represented in the form of a determinant:

) lin); lit)g -+ lin)n

,|’L'1,Z.2,...,Z.N>:— : : . (141)
\/_ .

lin), |ZN> “lin)n
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The determinants of one-particle states are called Slater determinants. If any
of the single-particle states in (1.4.1) are the same, the result is zero. This
is a statement of the Pauli principle: two identical fermions must not occupy
the same state. On the other hand, when all the i, are different, then this
antisymmetrized state is normalized to 1. In addition, we have

S_ ligyin,...) = —S_|ir, iz, ...). (1.4.2)

This dependence on the order is a general property of determinants.

Here, too, we shall characterize the states by specifying their occupation
numbers, which can now take the values 0 and 1. The state with n; particles
in state 1 and no particles in state 2, etc., is

|n1,n2, .. > .
The state in which there are no particles is the vacuum state, represented by
[0y =10,0,...) .

This state must not be confused with the null vector!

We combine these states (vacuum state, single-particle states, two-particle
states, ... ) to give a state space. In other words, we form the direct sum
of the state spaces for the various fixed particle numbers. For fermions, this
space is once again known as Fock space. In this state space a scalar product
is defined as follows:

(ni,na, ... n’ s me’s o) = 0y Ongng’ -+ - ; (1.4.3a)

i.e., for states with equal particle number (from a single subspace), it is iden-
tical to the previous scalar product, and for states from different subspaces
it always vanishes. Furthermore, we have the completeness relation

1 1
SN e, ) (nayma, .| =1 (1.4.3b)

ni =0 no =0

Here, we wish to introduce creation operators al-L once again. These must

be defined such that the result of applying them twice is zero. Furthermore,
the order in which they are applied must play a role. We thus define the
creation operators aI by

S_ |i1;i23""iN>:aj1a/j2"'ajN |0> (144)
S* |7;2;7;17" . 7ZN> = a’jza'L o 'a/jN |O> '

Since these states are equal except in sign, the anticommutator is

{al,al} =0, (1.4.5a)

i g
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which also implies the impossibility of double occupation
2
(aj) =0. (1.4.5b)

The anticommutator encountered in (1.4.5a) and the commutator of two
operators A and B are defined by

{A,B} =[A,B], = AB + BA

[A,B] = [A,B]_ = AB - BA. (1.4.6)

Given these preliminaries, we can now address the precise formulation. If one
wants to characterize the states by means of occupation numbers, one has to
choose a particular ordering of the states. This is arbitrary but, once chosen,
must be adhered to. The states are then represented as

Iny, ng,...) = (a})m (a;)m ]0) . mi=0,1. (1.4.7)

The effect of the operator aI must be

a“..

Conis =1 —n) (D)2 | i+ 1) (1.4.8)

The number of particles is increased by 1, but for a state that is already

occupied, the factor (1 —n;) yields zero. The phase factor corresponds to the
T

number of anticommutations necessary to bring the a;

The adjoint relation reads:

to the position 1.

(ooomiyJai= (1 —ng)(=1)Zi<™ (o i+ 1, . (1.4.9)
This yields the matrix element
(ooongailoond ) = (1= n) (=1)Z0<i ™8, 41,0 (1.4.10)

We now calculate

a; | .. ,ni/, .. > = Z |7’LZ> <7’LZ| a; |nl'>
=30 (1= n) (1) Z5< 6, 1y (1.4.11)

=©2-n/)(=)Zi<" | nd —1,.. ) ng.
Here, we have introduced the factor n;’, since, for n;/ = 0, the Kronecker delta
On;+1,n, = 0 always gives zero. The factor n;” also ensures that the right-hand
side cannot become equal to the state |... ,n;// —1,..) = ..., —1,...).
To summarize, the effects of the creation and annihilation operators are
all..oomiy )= —n)(—D)Za<i™ | ng+1,...)

K2

1.4.12
@il oom, ) = ng(—D)Xa<i™ | ny— 1,0, ( )
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It follows from this that
aal | miy ) = (1 —ng)(=1)22<i™ (n; + 1) ... ,ni, ..

=1=n)l]...,ni...) (1.4.13a)
alai|...  ni, .. ) =ni(—1)?Xici™ (1 —n; +1)|... ,ng,...)

since for n; € {0,1} we have n? = n; and (—1)223<i™ = 1. On account
of the property (1.4.13b) one can regard a'irai as the occupation-number op-
erator for the state |i). By taking the sum of (1.4.13a,b), one obtains the

anticommutator
[aia aj]-i— =1

In the anticommutator [a;, a}]+ with ¢ # j, the phase factor of the two terms
is different:

[a;,al]4 o (1 —nj)ni(1—1)=0.

Likewise, [a;,a;]+ for i # j, also has different phase factors in the two sum-
mands and, since a;a; |... ,n;,...) < n;(n;—1) = 0, one obtains the following
anticommutation rules for fermions:

[ai,a;]+ =0, [aj,a;]Jr =0, [ai,a;]Jr = 0;;. (1.4.14)

1.4.2 Single- and Many-Particle Operators

For fermions, too, the operators can be expressed in terms of creation and
annihilation operators. The form is exactly the same as for bosons, (1.3.21)
and (1.3.24). Now, however, one has to pay special attention to the order of
the creation and annihilation operators.

The important relation

D i)y (il = ala; (1.4.15)
from which, according to (1.3.26), one also obtains two-particle (and many-particle)
operators, can be proved as follows: Given the state S_ |i1,1i2,... ,in), we assume,
without loss of generality, the arrangement to be i1 < i2 < ... < iny. Application

of the left-hand side of (1.4.15) gives
D 1i)a (Gla S linyiz,. o yin) = 8= |i), (la livs iz, in)

= nj(l — ni)S, |’L'177:27 . ,’iN> |j~>z‘ .

The symbol |;—.; implies that the state |j) is replaced by |é). In order to bring the
i into the right position, one has to carry out Z,Kj nk + Z,Ki nk permutations of
rows for i <jand }>, _;nk+ D0, mk — 1 permutations for i > j.
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This yields the same phase factor as does the right-hand side of (1.4.15):

a;raj | s Mgy ,nj,...> :n]‘(—l) k'<jnka;-r|... s My eos NG — 1,>

=n;(1— ni)(—l)zk<ink+zk<1 k0> | coumi Loy — 1,000 .

In summary, for bosons and fermions, the single- and two-particle operators
can be written, respectively, as

T =3 tjaa (1.4.16a)
,J
1
F=3 > (3l fP kym) alalamar, (1.4.16b)
i,5,k,m

where the operators a; obey the commutation relations (1.3.7) for bosons
and, for fermions, the anticommutation relations (1.4.14). The Hamiltonian
of a many-particle system with kinetic energy 7T, potential energy U and a
two-particle interaction f( has the form

1 .
H = Z(tij + Uij)a;faj + 5 Z <’L,_]| f(2) |k,m> a;fa;amak y (1416(3)

2% ,4,k,m

where the matrix elements are defined in (1.3.21, 1.3.22, 1.3.25) and, for
fermions, particular attention must be paid to the order of the two annihila-
tion operators in the two-particle operator.

From this point on, the development of the theory can be presented simulta-
neously for bosons and fermions.

1.5 Field Operators

1.5.1 Transformations Between Different Basis Systems

Consider two basis systems {|7)} and {|A)}. What is the relationship between
the operators a; and a)?
The state |A) can be expanded in the basis {|i)}:

A) = ZI@ (i[A) - (1.5.1)

The operator al-L creates particles in the state |¢). Hence, the superposition

> (@A) al yields one particle in the state |A). This leads to the relation

al = (il\)a] (1.5.2a)

K2
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with the adjoint

ax=Y_(Ali)a;. (1.5.2b)

i
The position eigenstates |x) represent an important special case
(x2) = pi(x), (1.5.3)

where @;(x) is the single-particle wave function in the coordinate representa-
tion. The creation and annihilation operators corresponding to the eigenstates
of position are called field operators.

1.5.2 Field Operators

The field operators are defined by
=> pix)a; (1.5.4a)

= Z ot (x)al . (1.5.4b)

The operator 1f(x) (¢(x)) creates (annihilates) a particle in the position
eigenstate |x), i.e., at the position x. The field operators obey the following
commutation relations:

[Y(x),9(x)]+ =0, (1.5.5a)
(W' (x), wT(X’)]i =0, (1.5.5b)
[¥(x), ¥ Z% x')[a;, al]+ (1.5.5¢)

—Z% )6y = 0P (x — ),

where the upper sign apphes to fermions and the lower one to bosons.
We shall now express a few important operators in terms of the field
operators.

Kinetic energy”

> alTja; = Z/d%a;’r% (x) <%V2> pj(x)a;
4,J 53

= ;; 3z VT (x)Vip(x) (1.5.6a)

" The second line in (1.5.6a) holds when the wave function on which the oper-
ator acts decreases sufficiently fast at infinity that one can neglect the surface
contribution to the partial integration.
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Single-particle potential

Seltie =¥ [ aler 00U e
0,

= /d3x U(x)yT (x)1(x) (1.5.6b)

Two-particle interaction or any two-particle operator

- Z /d3:cd3:c @7 (%)@ (X )V (%, %) o (%) om (x )aIa;amak

z]km

= %/d3xd3x’ V(x, Xl)wT(x)wT(Xl)w(Xl)w(x) (1.5.6¢)

Hamiltonian
= [aa ( Vol (x >vw<x>+U<x>w*<x>w<x>)+
5 [dda 0wt OV e x ) (1.5.6d)

Particle density (particle-number density)
The particle-density operator is given by

X) = 26(3)()( — Xq) - (1.5.7)

Hence its representation in terms of creation and annihilation operators is

Za aj /dgy%( )6@ (x — ¥)i;(y)
= Zaiaj(pi X) @, (%). (1.5.8)

This representation is valid in any basis and can also be expressed in terms
of the field operators

n(x) = ' (x)p(x). (1.5.9)

Total-particle-number operator

N = /d3xn(x) = /d3xz/ﬂ(x)z/1(x) . (1.5.10)

Formally, at least, the particle-density operator (1.5.9) of the many-
particle system looks like the probability density of a particle in the state
1(x). However, the analogy is no more than a formal one since the former is
an operator and the latter a complex function. This formal correspondence
has given rise to the term second quantization, since the operators, in the cre-
ation and annihilation operator formalism, can be obtained by replacing the
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wave function 1(x) in the single-particle densities by the operator ¢ (x). This
immediately enables one to write down, e.g., the current-density operator
(see Problem 1.6)

_h
T 2im

J(x) [ (x) VY (x) — (VoI (x)w(x)] . (1.5.11)

The kinetic energy (1.5.12) has a formal similarity to the expectation value
of the kinetic energy of a single particle, where, however, the wavefunction is

replaced by the field operator.

Remark. The representations of the operators in terms of field operators that we
found above could also have been obtained directly. For example, for the particle-
number density

/ d*ed’e' 1 (€) (€]6¥ (x — €) |€) ¥(€) = v (%) (x), (1.5.12)

where E is the position operator of a single particle and where we have made use of
the fact that the matrix element within the integral is equal to 5 (x—£)5(3) (e-¢).
In general, for a k-particle operator Vj:

/ Pe . Pade’ .. P v E) b (E)
(1€ &l Vi €165 . &) v(&L) - 0(&)). (1.5.13)

1.5.3 Field Equations

The equations of motion of the field operators ¢ (x,t) in the Heisenberg rep-
resentation

Y(x,t) = /Mo (x,0) e IH/R (1.5.14)

read, for the Hamiltonian (1.5.6d),
ihgz/J(x t) = —h—2V2 +U(x) ) p(x,t) +
ot 2m ’

+/d3:c’ PH( )V (%, X )(X, )(x, t). (1.5.15)

The structure is that of a nonlinear Schrodinger equation, another reason for
using the expression “second quantization”.
Proof: One starts from the Heisenberg equation of motion

ih%w@c,w = —[H,p(x,t)] = TP [H,p(x,0) e/ (15.16)

Using the relation

Fermi

[AB,C]- = A[B,Cl+ ¥ [A,CloB

; (1.5.17)
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one obtains for the commutators with the kinetic energy:
h’Q !/ / / /
[ 59 )9 ), v )
3,/ h? 1 5(3) (! / / h? 2

:/d 7 (VSO — ) V() = 5 V(x|
the potential energy:

/d%l U (x)e(x), v(x)]

= /d3:v' U (=0 (x —x)p(x') = —U)P(x),

and the interaction:

[ ), )

N =

- 1/ i / d*z" [ ()T (), Y ()IV (', X" ) (x ) (x')

/d3 //d3 " 5(3) X)?/)T (XI) - 1/)T(X//)5(3) (XI - X)}
x V(x',x" ) (x")(x")
-/ d3z’w<x’>v<x, Y () ().

In this last equation, (1.5.17) and (1.5.5¢) are used to proceed from the second
line. Also, after the third line, in addition to ¢¥(x" )¢ (x’) = Fu(x' ) (x"), the
symmetry V(x,x’) = V(x/,x) is exploited. Together, these expressions give
the equation of motion (1.5.15) of the field operator, which is also known as
the field equation.

The equation of motion for the adjoint field operator reads:

2
it (x,t) = — {j_mw + U(x)} i(x,t)

— /d?’x' DT (x, )T (X, )V (x, X' )b (x, 1), (1.5.18)

where it is assumed that V(x,x')* = V(x,x').
If (1.5.15) is multiplied from the left by (x,t) and (1.5.18) from the right
by 1(x,t), one obtains the equation of motion for the density operator

(1) = (1 +ty) = % (—f—m) {0V — (V2h) 1},
and thus
n(x) = —=Vj(x), (1.5.19)

where j(x) is the particle current density defined in (1.5.11). Equation (1.5.19)
is the continuity equation for the particle-number density.
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1.6 Momentum Representation

1.6.1 Momentum Eigenfunctions and the Hamiltonian

The momentum representation is particularly useful in translationally in-
variant systems. We base our considerations on a rectangular normalization
volume of dimensions L., L, and L,. The momentum eigenfunctions, which
are used in place of ¢;(x), are normalized to 1 and are given by

pr(x) = > /VV (1.6.1)
with the volume V = L,L,L,. By assuming periodic boundary conditions

olk(@+Le) _ % ote. (1.6.2a)

3

the allowed values of the wave vector k are restricted to

Ng Ny N

k:27T(L—I,L—y,L—Z),7’LI:0,:|:1,... ,ny:O,:Izl,... ,nz:O,:Izl,... .
(1.6.2b)

The eigenfunctions (1.6.1) obey the following orthonormality relation:

/dSCCgDi';(X)gOk/ (X) = 5k,k/- (163)

In order to represent the Hamiltonian in second-quantized form, we need
the matrix elements of the operators that it contains. The kinetic energy is
proportional to

/‘Pl*d (—V2) gokdgx = (Sk,k/kQ (1.6.4&)

and the matrix element of the single-particle potential is given by the Fourier
transform of the latter:

1

[ U ) = Ui (1.6.4b)

For two-particle potentials V' (x — x") that depend only on the relative coor-
dinates of the two particles, it is useful to introduce their Fourier transform

Vg = /d?’xe_iq"‘V(x), (1.6.5a)
and also its inverse

1 iq-x
Vix) = ijvqeq : (1.6.5b)
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For the matrix element of the two-particle potential, one then finds

<p/a k/| V(X - X/) |p7 k>
1
R

_ L E V. d3£17 de/efip’-xfik'~x'+iq~(xfx’)+ik-x'+ip~x
\%&: 4
q

1
=73 > VaVé priqipoVi w _qiko.
a

s/ 1/ ’ s A
dedSz/eflp ~xeflk X V(X o X/)elkx elP'x

(1.6.5¢)

Inserting (1.6.5a,b,c) into the general representation (1.4.16¢) of the Hamil-
tonian yields:

H— Z Wal;ak + V Z Uk,_kaL,ak + W Z anl,.:,_qaichakap-
m K’k a,p.k
(1.6.6)

The creation operators of a particle with wave vector k (i.e., in the state ¢k)

are denoted by aL and the annihilation operators by ax. Their commutation
relations are

[ak, ak/]:t = 0, [QI{, aL,]i =0 and [ak, CLI{,]:‘: = 5kk'- (167)

The interaction term allows a pictorial interpretation. It causes the annihila-
tion of two particles with wave vectors k and p and creates in their place two
particles with wave vectors k — q and p + q. This is represented in Fig. 1.1a.
The full lines denote the particles and the dotted lines the interaction po-
tential Vg. The amplitude for this transition is proportional to Vg. This dia-

k—q—q pP+ai+qs
k—q p+q Vas
S k—q P+ai
k P Va,
k p
a) b)

Fig. 1.1. a) Diagrammatic representation of the interaction term in the Hamilto-
nian (1.6.6) b) The diagrammatic representation of the double scattering of two
particles
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grammatic form is a useful way of representing the perturbation-theoretical
description of such processes. The double scattering of two particles can be
represented as shown in Fig. 1.1b, where one must sum over all intermediate
states.

1.6.2 Fourier Transformation of the Density

The other operators considered in the previous section can also be expressed
in the momentum representation. As an important example, we shall look
at the density operator. The Fourier transform of the density operator® is
defined by

fiq = / d3an(x)eia* = / BT (x)(x)e 9> (1.6.8)

From (1.5.4a,b) we insert
1 : 1 .
1/)()() - Zelp-xap, ’l/)T(X) _ Ze—lp.xal , (169)
VV 5 VV 45
which yields
1 . . .
Ng = /d3xv Z Z e_‘p'xal,e‘k'xake_‘q'x ,
P k
and thus, with (1.6.3), one finally obtains

fig =Y alapiq- (1.6.10)
p

We have thus found the Fourier transform of the density operator in the
momentum representation.

The occupation-number operator for the state |p) is also denoted by
Np = aI)ap. It will always be clear from the context which one of the two
meanings is meant. The operator for the total number of particles (1.3.13) in
the momentum representation reads

N=> alay. (1.6.11)
P

1.6.3 The Inclusion of Spin

Up until now, we have not explicitly considered the spin. One can think of
it as being included in the previous formulas as part of the spatial degree

8 The hat on the operator, as used here for 7iq and previously for the occupation-
number operator, will only be retained where it is needed to avoid confusion.
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of freedom x. If the spin is to be given explicitly, then one has to make the
replacements 9 (x) — 1¥,(x) and ap — ap, and, in addition, introduce the
sum over o, the z component of the spin. The particle-number density, for
example, then takes the form

n(x) =Y b x) e (x)

A — E T
Ng = Upolptqo -
p;o

(1.6.12)

The Hamiltonian for the case of a spin-independent interaction reads:

=3 [ @V Vi, + UGN 0 ()

43 30 [ sl WV X i), (1.6.13)

o0’

the corresponding form applying in the momentum representation.
For spin-% fermions, the two possible spin quantum numbers for the z

component of S are :I:%. The spin density operator

N
S(x) = > 6(x — Xa)Sa (1.6.14a)
a=1
is, in this case,

S(x) = g D L (X)0 o0t (%), (1.6.14D)

o0’

where o5, are the matrix elements of the Pauli matrices.
The commutation relations of the field operators and the operators in the
momentum representation read:

[Wo(x), %o (X )] =0,  [0i(x), 9] (x)]s =0

1.6.15
[Z/}G (X>a 1/12/ (X/)]:I: = 500/5()( - X/) ( )

and
[ake, ko ]+ =0, [GLJ,GLU/]i =0, [akaaal/g/]i = Okk/Ooo’ - (1.6.16)

The equations of motion are given by
. (9 h2 2
1haz/10(x, t) = (—%V + U(x)) Ve (x,1)

+Y / B bl (< OV (5, X Ybor ()b (3, 1) (1.6.17)
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and
hines (1) = (21122 o (1) + % ; U roaiero (1)
+% D" Va0 (D apor (t)arqo(t) - (1.6.18)
p,q,0’
Problems

1.1 Show that the fully symmetrized (antisymmetrized) basis functions

Sxpiy (21)pin (2) .. iy (TN)
are complete in the space of the symmetric (antisymmetric) wave functions
1/15/(1(:017%27 ,xN).

Hint: Assume that the product states @i, (z1)... piy (xn), composed of the
single-particle wave functions @;(x), form a complete basis set, and express 1/,
/a

in this basis. Show that the expansion coefficients cfl """

s/a _ s/a

property \/;sticil’wm = ¢, . iy The above assertion then follows directly by

iy POSsess the symmetry

utilizing the identity ﬁsws/a = 9;/q demonstrated in the main text.

1.2 Consider the three-particle state |a)|3)|7y), where the particle number is deter-
mined by its position in the product.

a) Apply the elements of the permutation group S3. One thereby finds six different
states, which can be combined into four invariant subspaces.

b) Consider the following basis, given in (1.1.16¢), of one of these subspaces, com-
prising two states:

l¢h1) = \/% (2 ) |8)17) +218)|a)[v) =) I)B) =) [B) )

—Ml)B) |ﬂ>|v>|a>> ,

) = §<o+o ~[a)IB) +IB)le) + 1) adl) —|ﬂ>|’y>la>>

and find the corresponding two-dimensional representation of S.

1.3 For a simple harmonic oscillator, [a, aT] =1, (or for the equivalent Bose opera-
tor) prove the following relations:

aaT] _ aal —aaf aat

[a,e ae®® |, e ae =a+a,

—aat T T —aal —
e aa eﬁa eaa — eﬁaeﬁa7 aa'a aa'a _ [e%

where o and (8 are complex numbers.
Hint:
a) First demonstrate the validity of the following relations

[o f@h] = o @), [ol f(@)] = 2 1),
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b) In some parts of the problem it is useful to consider the left-hand side of the
identity as a function of «, to derive a differential equation for these functions, and
then to solve the corresponding initial value problem.

¢) The Baker-Hausdorff identity

ABe = B+ [A,B]+ oA [A,B] + ..

can likewise be used to prove some of the above relations.

1.4 For independent harmonic oscillators (or noninteracting bosons) described by
the Hamiltonian

H = Z eialai
A

determine the equation of motion for the creation and annihilation operators in the
Heisenberg representation,

al(t) _ eth/fLaﬂL_efth/fL )
Give the solution of the equation of motion by (i) solving the corresponding initial

value problem and (ii) by explicitly carrying out the commutator operations in the

expression a;(t) = eHt/ R o —iHt/R

1.5 Consider a two-particle potential V (x’,x”) symmetric in x" and x”. Calculate
the commutator

! { / &P / o ()T (W (XY (), (%) |

for fermionic and bosonic field operators ¥ (x).

1.6 (a) Verify, for an N-particle system, the form of the current-density operator,

i) = %i {2, 50x — xa) }

in second quantization. Use a basis consisting of plane waves. Also give the form
of the operator in the momentum representation, i.e., evaluate the integral, j(q) =
[ dPze1%j(x).

(b) For spin—% particles, determine, in the momentum representation, the spin-
density operator,

S(x) = > d(x—xa)Sa,

in second quantization.
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1.7 Consider electrons on a lattice with the single-particle wave function localized
at the lattice point R; given by wis(X) = Xxopi(x) with p;(x) = ¢(x — R;). A
Hamiltonian, H = T + V, consisting of a spin-independent single-particle opera-
tor T = Y-V t, and a two-particle operator V = %Za#i V®(x4,x5) can be
represented in the basis {p;c } by

H= E E t,JawaJU + E E M]klazoajolala’ako' )
i,5,k,l 0,0’

where the matrix elements are given by t;; = (i | t | j) and Vijp = (ij | V® | kl). If
one assumes that the overlap of the wave functions p;(x) at different lattice points
is negligible, one can make the following approximations:

w fori=j,

t for ¢ and j adjacent sites ,
0 otherwise

Vijkr = Vijudjr  with  Vi; = /dsl’/d?’y | oi(x) PV (x,y) [ 0s(y) [°

(a) Determine the matrix elements V;; for a contact potential

25 7X5

25

between the electrons for the following cases: (i) “on-site” interaction ¢ = j, and
(ii) nearest-neighbor interaction, i.e., ¢ and j adjacent lattice points. Assume a
square lattice with lattice constant a and wave functions that are Gaussians,
P(x) = w5737z exp{—x"/24%}.

(b) In the limit A < a, the “on-site” interaction U = Vj; is the dominant con-
tribution. Determine for this limiting case the form of the Hamiltonian in second
quantization. The model thereby obtained is known as the Hubbard model.

1.8 Show, for bosons and fermions, that the particle-number operator N = > a;rai
commutes with the Hamiltonian

H:ZQZ i|T0j) aj + = Za (tj| V |kl) aray .

zykl

1.9 Determine, for bosons and fermions, the thermal expectation value of the
occupation-number operator 7i; for the state |7) in the grand canonical ensemble,
whose density matrix is given by

Lefﬁ(H —uk)

Za

with Zg = Tr (e*mH*W)) .

pG =
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1.10 (a) Show, by verifying the relation
n(x)|¢) = 6(x —x')|¢) .

that the state
|6) = ¢! (x') |0)

(|0) = vacuum state) describes a particle with the position x'.
(b) The operator for the total particle number reads:

N = /dS:cn(x) 4

Show that for spinless particles



2. Spin-1/2 Fermions

In this chapter, we shall apply the second quantization formalism to a number
of simple problems. To begin with, we consider a gas of noninteracting spin—%
fermions for which we will obtain correlation functions and, subsequently,
some properties of the electron gas that take into account the Coulomb in-
teraction. Finally, a compact derivation of the Hartree—Fock equations for
atoms will be presented.

2.1 Noninteracting Fermions

2.1.1 The Fermi Sphere, Excitations

In the ground state of N free fermions, |¢y), all single-particle states lie within
the Fermi sphere (Fig. 2.1), i.e., states with wave number up to kp, the Fermi
wave number, are occupied:

60) = TT TLaba10) - (2.1.1)

P
IpI<kp

Fig. 2.1. The Fermi sphere

The expectation value of the particle-number operator in momentum space is

1 |p|<kr

= (onlahoane o) = { o B SHE (212

For |p| > kp, we have ap, [¢o) = H Hal,g,aw |0) = 0. According to

P o’
[p/|<kp

(2.1.2), the total particle number is related to the Fermi momentum by*

S k) =3, ﬁgf(k) = (%)3 J d®kf(k). The volume of k-space per point

is A= (22)° c.f. Eq. (1.6.2b).
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ke g3 Vs
p F
N = an0_2 > 1_2V/ P = (2.1.3)
lpI<kr
whence it follows that
32N
K3 = ”V = 3n2n . (2.1.4)

Here, kp is the Fermi wave vector, pp = hkp the Fermi momentum?, and
n = % the mean particle density. The Fermi energy is defined by er =
(hkr)2/ (2m).

For the x-dependence of the ground-state expectation value of the particle
density, one obtains

(n(x)) = Z (b0l ] (%)t (%) [ b0)

1pxep
=3 Z {bo] abyapro |d0)
o pp
i(p—p')-x
:ZZ Opp' Mpo
o pp

= e =n.
pP,o0

As was to be expected, the density is homogeneous.

The simplest excitation of a degenerate electron gas is obtained by pro-
moting an electron from a state within the Fermi sphere to a state outside this
sphere (see Fig. 2.2). One also describes this as the creation of an electron—
hole pair; its state is written as

|¢> ak2g2ak101 |¢0> (215)

szz

Fig. 2.2. Excited state of a degenerate electron gas; electron—
hole pair

The absence of an electron in the state |ki,01) has an effect similar to
that of a positively charged particle (hole). If one defines by, = aT_k _, and

b;rm = a_x,—s, then the hole annihilation and creation operators b and bt
likewise satisfy anticommutation relations.

2 We denote wave vectors by p, q, k etc. Solely pr has the dimension of “momen-
tum”.
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2.1.2 Single-Particle Correlation Function

The correlation function of the field operators in the ground state

Go(x = x') = (¢o] ¥] (x)s (x') |60) (2.1.6)

signifies the probability amplitude that the annihilation of a particle at x” and
the creation of a particle at x once more yields the initial state. The function
Gy (x—x') can also be viewed as the probability amplitude for the transition
of the state ¥, (x’) |¢o) (in which one particle at x’ has been removed) into
¥y (x) |¢o) (in which one particle at x has been removed).

1 —ip-x+ip’-x’
Golx = x) = (00l 3 3707 afsaprs |0)
p,p’

1 2 : —ip-(x—x") d3p —ip-(x—x")
= V € Np,oc = (27T)Se @(kF 7p)
P

1 kp ) 1 'p| ’|,,7
= dpp / dneP1*7x 11,
<27r>2/o S

where we have used polar coordinates and introduced the abbreviation n =
ipr _o—ipr I|.

cosf. The integration over n yields & -
pr
have

(2.1.7)

with » = |x — x’|. Thus, we

kr 1
Go(x—x') = m/ dp psinpr = W(Sin kpr — kprcoskpr)
0

_ 3_nsin krpr — kprcoskpr
T2 (kpr)3

The single-particle correlation function oscillates with a characteristic period
of 1/kr under an envelope which falls off to zero (see Fig. 2.3). The values
at 7 = 0 and for r — oo are G, (r = 0) = §, lim, .o G, (r) = 0; the zeros
are determined by tan z = z, i.e., for large x they are at *.

Go(x—x')

|

kFT’

T N9 3¢  4r

Fig. 2.3. Correlation function
Go(x —x') as a function of kpr
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Remark. In relation to the first interpretation of G (x) given above, it should be
noted that the state ¥, (x’) |¢o) is not normalized,

(ol ] (x' N (x') é0) = % (2.1.8)

The probability amplitude is obtained from the single-particle correlation function
by multiplying the latter by the factor (%)71. Now

n T(x - (x!
G (x — ) = (o] 0} (0 () ) = <“”%% ). o) /'j°> L @19)

The probability amplitude for a transition from the (normalized) state M\}‘;‘)—m

n/2
to the (normalized) state %))Z“) is equal to the overlap of the two states.

2.1.3 Pair Distribution Function

As a result of the Pauli principle, even noninteracting fermions are corre-
lated with one another when they have the same spin. The Pauli principle
forbids two fermions with the same spin from possessing the same spatial
wave function. Hence, such fermions have a tendency to avoid one another
and the probability of their being found close together is relatively small. The
Coulomb repulsion enhances this tendency. In the following, however, we will
consider only noninteracting fermions.

A measure of the correlations just descibed is the pair distribution func-
tion, which can be introduced as follows: Suppose that at point x a particle
is removed from the state |¢g) so as to yield the (N — 1)-particle state

|6/ (x,0)) = Vo (x) [do) - (2.1.10)
The density distribution for this state is
(¢ (x,0)| 0}, (X )or (') |6 (x, )
= (ol DL ()L, (X Vb (x )10 (x) [ h0)

= (g)2gggl(x—x/) . (2.1.11)

This expression also defines the pair distribution function ¢y.(x —x').
Note:

n

(22 g o= ) = (ol 5 0 ()00, (o () )

2
~0oqr8(x = x') (0| ¥} (%) (X) [0)
= (bo| n(x)n(x") [¢0) — 6500 (x — x') (Po| n(x) |0 -
For the sake of convenience, the pair distribution function is calculated in
Fourier space:
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n\?2 1 —i(k—k’)-x—i(q—q’)-x’
(5) gaa’(X*XU:WZZe ( ) (a—a’)
kk q,q’ (2.1.12)

x (ol aLgaLglaq’U’ak’a |po) -
We will distinguish two cases:

(i) o # 0o
For o # o/, we must have k = k’ and q = ¢/, otherwise the states would be
orthogonal to one another:

n\ 2 1 o
(5) Goo! (X - XI) = W Z <¢O| NkoNqgo’ |¢O>
k,q
1
= V2 ananqa’
k,q
1 1 N N n\ 2
= — NNy = = — = (_)
V2 vzZ2 2 2
Thus, for o # o/,
Joor(x—x') =1 (2.1.13)

independent of the separation. Particles with opposite spin are not affected
by the Pauli principle.

(ii) o =0o":
For o = ¢’ there are two possibilities: either k = k', q=q ork =q',q = k’:
<¢O| aLgaLaaq’aak’U |¢0> = 6kk’5qq’ <¢O| aLgaLgaqaakU |¢O>
+ 5kq’ 5qk/ <¢0| G‘Lgaggakaaqa |¢0>
= (6kk’5qq’ - 6kq’5qk’) <¢0| a;fcaakaajlaaqa |¢0>
= (5kk/5qq’ - 5kq/5qk’)nkanqa .

(2.1.14)

Since (axs)? = 0, we must have k # q and thus, by anticommutating — see
(1.6.16) — we obtain the expression (2.1.14), and from (2.1.12) one gains:

n\ 2 1 . ’
(5) o) = g3 3 (17007 e
k,q

n 2

= (5) —(Go(x— X'))2 . (2.1.15)

With the single-particle correlation function G, (x — x’) from (2.1.8) and the
abbreviation z = kp |x — x’|, we finally obtain

9
' . 2
goo(x—x') =1 G (sinx — x cosz)” . (2.1.16)
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oo (X — x')
10
1.00
05
099 E
098 1 1 1 1
T 2m 3T 47
00 , . . .
s 2w 3 4

kr|x —x'|

Fig. 2.4. The pair distribution function gos(x — x'). The correlation hole and the
weak oscillations with wave number kg should be noted

Let us give a physical interpretation of the pair distribution function
(2.1.16) plotted in Fig. 2.4. If a fermion is removed at x, the particle density
in the vicinity of this point is strongly reduced. In other words, the probability
of finding two fermions with the same spin at separations < k;l is small. The
reduction of ¢g,,(x — x’) at such separations is referred to as an exchange,
or correlation hole. It should be emphasized once again that this effective
repulsion stems solely from the antisymmetric nature of the state and not
from any genuine interaction.

For the noninteracting electron gas at T' = 0, one has

iZggg/ =271 4 goo(x)) (2.1.17a)

o0’

> (ol B5 0L (0)60 (005 (%) |é0) = - ng

o,0’!

2

= 5 (14 gou(x)

— n? for x — oo (2.1.17b)
n2
iy forx — 0.

The next section provides a compilation of the definitions of the pair dis-
tribution function and other correlation functions. According to this, the
spin-dependent pair distribution function
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n

Goor () = (3)2<w; (x)0L, (0)0: (0)0s (x) )

is proportional to the probability of finding a particle with spin ¢ at position
x when it is known with certainty that a particle with spin ¢’ is located at
0. It is equal to the probability that two particles with spins o and ¢’ are to
be found at a separation x.

*2.1.4 Pair Distribution Function, Density Correlation Functions,
and Structure Factor

The definitions and relationships given in this section hold for arbitrary many-
body systems and for fermions as well as bosons®. The standard definition of
the pair distribution function of N particles reads:

N
g(x)—ﬁ< > 5(xxa+x6)>. (2.1.18)

a#[=1

Here, g(x) is the probability density that a pair of particles has the separation
X; in other words, the probability density that a particle is located at x when
with certainty there is a particle at the position 0. As a probability density,
g(x) is normalized to 1:

/d‘i—xg(x) =1. (2.1.19)
The density—density correlation function G(x) for translationally invariant
systems is given by

G(x) = (n(x)n(0)) = (n(x +x")n(x’))

= Z(é(anx’fxa)é(x’ —x3)). (2.1.20)
a,B

Due to translational invariance, this is independent of x” and we may integrate
over x’, whence (with & [ d®2’ = 1) it follows that

G) = 5 37 (00x — xa +%5))
a,B

This leads to the relationship

) = 3 (Z 5(x) + wgo«))

=nd(x) + N(]‘\E—Q_l)g(x) .

(2.1.21)

3 The brackets signify an arbitrary expectation value, e.g., a quantum-mechanical
expectation value in a particular state or a thermal expectation value.
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For interactions of finite range, the densities become independent of each

other at large separations:

lim G(x) = (n(x))(n(0)) = n?

X—00

From this it follows that, for large N,

V2
lim g(x) = 2=1.

The static structure factor S(q) is defined by

1 —iq- (Xa—x
S(q) = N<Z[;e a(xa ﬁ>> — Négo - (2.1.22)

One may also write

1 .
S(a) = 3 <e—lqv<xa—xﬁ>> +1— Ndgo (2.1.23)
a#p
or
1,
S(q) = N<nqn—q> — Néqo ,
where

g = /d?’:ce_iq‘xn(x) = Ze_iq‘x“ .
(e

Since N(N — 1) — N2 for large N

/dg:zr eI g (x) = % /dgsceiq'x<z 5(x — Xq +Xﬁ)>

o

_ % < Z eiq-(xax5>>7

B

and it follows that
N 3,,.,—ig-x
S(q)zv d’ze g(x) + 1 — Néqgo-
With
N .
N5q0 = V/dee—lq‘x 7

one obtains
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S(q)—1= n/dgxefiq'x(g(x) -1) (2.1.24a)
and the inverse
_ 1 ﬁeiqx —
ox) 1= / S 1) (2.1.24D)

In the classical case,

lim S(q) = nkTkr , (2.1.25)

q—0

where k7 is the isothermal compressibility.
The above definitions yield the following second-quantized representations
of the density—density correlation function and the pair-distribution function:

Gx—x) = (W 0 (Ip()) (21.260)
2
9(x) = 13 (81 60! (0)(0)(x). (21.26)

The first formula, (2.1.26a), is self-evident; the second follows from the former

and (2.1.21) and a permutation of the field operators.
Proof of the last formula based on the definition (2.1.18) and on (1.5.6c):

D 0(x—xa+x5) = [ d2'd* 2" YT (x )T (") (x — X'+ x")h(x")h(x)
a#B

B / d*z' T (x0T (x' — x)(x’ — x)(x')

<Z 5~ Xa + xﬁ>> = V() (o = x)b (X)) |

ap

2.2 Ground State Energy
and Elementary Theory of the Electron Gas

2.2.1 Hamiltonian

The Hamiltonian, including the Coulomb repulsion, reads:

K2k e? 47

_ T T T

H= g 5 ., 0ko + 5 7 Ut .0 O/ —q,00 UKo Oko - (2.2.1)
k,o k

K q,0,07
a#0
The q = 0 contribution, which, because of the long-range nature of the
Coulomb interaction, would diverge, is excluded here since it is canceled by
the interaction of the electrons with the positive background of ions and by

the interaction between the ions. This can be seen from the following.
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The interaction energy of the background of positive ions is

1 / ,
Hion = —62/d3xd3x'—n(x)n(x )e_”|"_x B (2.2.2a)
2 |x — x/|

Here, n(x) = £ and we have introduced a cutoff at 1. At the end of the
calculation we will take u — 0

1,(N\?. [ 1 ,N%4
Hion = 5¢° <7> V47r/drre*W T f . (2.2.2a')

The interaction of the electrons with the positive background reads:

N e~ HIx—x] N2 47
2 3 _ 2
lon el = —€ E / |X — X1| —€ _V _‘LLQ . (222b)

Finally, we consider the q = 0 contribution to the electron—electron interac-

4 dre?
tion, where “e — q27fu2 ,
e? Ar
W Z aLaaL/a/ak/a/akG
H k. k’ 0,0/
2
e 4w
=5 2 [ohetko (s — et )
k,k’,0,0' (2.2.2(3)
2
e 4w . R
) Z ko (ko' — Ok’ 00" )
2VM k.k/ 0,0’
2 2
e” 4r , - e” 4w
= ——Z(N?*-N)=——(N?>-N).

The leading terms, proportional to N2, in the three evaluated energy contri-
2
butions cancel one another. The term —6— 7 N yields an energy contribution

2V 1
per particle of = % % and vanishes in the thermodynamic limit. The limits

are taken in the order N,V — oo and then p — 0.

2.2.2 Ground State Energy in the Hartree—Fock Approximation

The ground state energy is calculated in perturbation theory by assuming a
ground state |¢p), in which all single-particle states up to kp are occupied:

00) = T Tlabo10) = <H am> <1_F[ aLl> 0). (2.2.3)

p<kr o



2.2 Ground State Energy and Elementary Theory of the Electron Gas 43

The kinetic energy in this state is diagonal:

h?
E© = (¢o| Hyin |¢0) = o ZkQQ(kF —k)
k,o

RV
=—2 A kk?O(kr — k
2m (271')3/ (ke = k)
Vo 1. 3h%% . 3 €2 13/9r\**
m(2m)E 5 F T 1om 5T T 24012 5( 4 )
2 9291
EO = £ 222N 2.2.4
2a9 12 ( )

Here, according to (2.1.4), we have used
k3 3
372 4wl dward

(2.2.5)

and introduced rg, the radius of a sphere of volume equal to the volume per

particle. The quantity ag = n’?; is the Bohr radius and r, = fg

The potential energy in first-order perturbation theory* reads:

q2

’ ’
k' q,0,0

e? " A4rw
E(l) — W Z _ <¢0| a’L-‘,—q,o'a'L’—q,o”aklgla'kg |¢0> . (226)
k

The prime on the summation sign indicates that the term q = 0 is excluded.
The only contribution for which every annihilation operator is compensated
by a creation operator is proportional to 500/5k/1k+qal " qaa;fw,akJrqg/ (ko
thus:

e? " Arx
ED — _ % > S ktaenke
k,q,0 q
e? 147
=5 > q—2(9(kp —lq+k|)O(kr — k)
o k,q

Awe?V 1
- _(7;7)6 /d3k9(kF - k)/dgk/m@/ﬂ? — k). (22.6)

One then finds

4me? 31 1 , 2¢2 k
_(271')3 /d k —|k — kl|2@(kF -k = —7/€FF E )

where

2.2.6"
i (2.2.6")

4 This first-order perturbation theory can also be considered as the Hartree-Fock
theory with the variational state (2.2.3); see also Problem 2.5.
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Fig. 2.5. Integration region for E*) consisting of the
region of overlap of two Fermi spheres with relative
displacement q; see Eq. (2.2.6")

and
2 3 2 2
E(l):7ekFV / d°k 1+kF—k10g krp+k
™ (27T)3 2kkp kF —k
k<kp
3 €2kF
= 7N—
4 7
e2 [9r\'/*3N €2 0.916
= — — —_— = —— N. 2.2.7
2a07 ( 4 ) 27 2a9 7Ty ( )
Taking E(® and E(M) together yields:
E 2 12.21 0.916
= - . . (2.2.8)
N  2a9| r2 Ty (rac1)

The first term is the kinetic energy, and the second the exchange term.
The pressure and the bulk modulus are given by

P _<6E) _ dEdr, Nezr_s [4.42 B 0.916}
N

v )y dredV  2a 3V | 13 r2
and
1 oP Ne? [11.05 1.832
b= K -V (W) ~ 9Vag { r2 D } ' (22.9)

For r; = 4.83 the energy takes on its minimum value corresponding to % =
—1.29 eV. This is of the same order of magnitude as in simple metals, e.g., Na
(rs = 3.96, % = —1.13eV). However, these values of r, lie outside the range
of validity of the present theory.

Higher order corrections to the energy can be obtained in the random
phase approzimation (RPA):

E _ 2.21 0.916
NRy r2 T

+0.062Inrs —0.096 + Ary + Brylnr, + ...

correlation energy
(2.2.10)

2R?
The RPA yields an energy that contains, in addition to the Hartree—Fock

where we have made use of the Rydberg, 1 Ry = % = <m — 136 eV.
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energy, the summation of an infinite series arising from perturbation theory.
It is the latter that yields the logarithmic contributions. That perturbation
theory should lead to a series in powers of r,, can be seen from the rescaling
in (2.2.23).

Remarks
For ry — 00, one expects the electrons to form a Wigner crystal °, i.e., to
crystallize. For large r, one finds the expansion®

. FE €2 1.79 2.64
lim —=—|—

N T T Tt (2.2.11)

which, for r; > 10, is quantitatively reliable (see Problem 2.7). The Wigner
crystal has a lower energy than the fluid. Corrections arising from correlation
effects are discussed in other advanced texts’.

0.10 . . .
=
o
£
< oos|
mo
>
2 o000t
9]
&
[ Electron gas (HF)
© -0.05 ¢
?
e Fig. 2.6. Energies of
§ =0.10 the electron gas in the
o Wigner crystal Hartree-Fock  approx-
015 ) ) ) imation and of the
70,0 5.0 10.0 15.0 20.0 Wigner crystal, in each

T, case as a function of rg

To date, Wigner crystallization® in three dimensions has not been de-
tected experimentally. It is possible that this is due to quantum fluctuations,
which destroy (melt) the lattice®. On the basis of a Lindemann criterion®,
one finds that the Wigner lattice is stable for 7, > r¢ = 0.41 6%, where &
(0.15 < 6 < 0.5) is the Lindemann parameter. Even for § = 0.5, the value of
r¢ = 6.49 is already larger than the minimum value of (2.2.11), r, = 4.88.

In two dimensions, a triangular lattice structure has been theoretically pre-

® E.P. Wigner, Phys. Rev. 46, 1002 (1934) , Trans. Faraday Soc. 34, 678 (1938)

5 R.A. Coldwell-Horsfall and A.A. Maradudin, J. Math. Phys. 1, 395 (1960)

7 G.D. Mahan, Many Particle Physics, Plenum Press, New York, 1990, 2nd edn,
Sect. 5.2

8 See, e.g., J. M. Ziman, Principles of the Theory of Solids, 2nd edn, Cambridge
University Press, Cambridge, 1972, p.65.
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dicted? and experimentally observed for electrons on the surface of helium.'®

Its melting curve has also been determined. Figure 2.6 compares the Hartree—
Fock energy (2.2.8) with the energy of the Wigner crystal (2.2.11). The min-
imum of the Hartree—Fock energy as a function of ry lies at ry = 4.83 and
has the value E/N = —0.095¢2/2aq.

To summarize, the range of validity of the RPA, equation(2.2.10), is re-
stricted to ry < 1, whereas (2.2.11) for the Wigner crystal is valid for r; > 10;
real metals lie between these two regimes: 1.8 < ry < 5.6.

2.2.3 Modification of Electron Energy Levels
due to the Coulomb Interaction

(hk)*
H =Hy+ Hcou , Ho = Z oy ko lko
k,o
1 47T€2 T 1
HCOul = W Z q_2ap+qd akliq o Ok’c'Opo -
q;éo,g,k/
2
The Coulomb interaction modifies the electron energy levels ep(k) = —(212 .

We can calculate this effect approximately by considering the equation of
motion of the operator ay,(t). Let us start with free particles:

) i
ko (t) = 7 Z co(K)al, awor, axo

/ /
k’,o

i
= - A Z EO(k/) |:air(’a’ ) ak0:| N ax’ o’
————

K o
611 O
ako (t) = fiheo(k)akg(t) . (2.2.12)
We now define the correlation function
Greo (1) = (d0] axo (t)af,(0) [¢o) - (2.2.13)

Multiplying the equation of motion by aLU (0) yields an equation of motion
for Gyo(t):

d i
—Gxo(t) = ——€9(k)Gio (1). (2.2.14)
dt h
9 G. Meissner, H. Namaizawa, and M. Voss, Phys. Rev. B13, 1360 (1976);
L. Bonsall, and A.A. Maradudin, Phys. Rev. B15, 1959 (1977)
10 C.C. Grimes, and G. Adams, Phys. Rev. Lett. 42, 795 (1979)
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Its solution is

Gio(t) = e m0M (_py 4 1), (2.2.15)

since (¢o| axe (0)al, (0) |¢o) = —nie + 1.
When the Coulomb repulsion is included, the equation of motion for the
annihilation operator ay, reads:

. i 1 4me?
Uko = *ﬁ €0 (k)aka TV Z ?alﬁq o Ak+q o Apo’ | » (2216)
p,a7#0

o

as can be immediately seen from the field equation. From this it follows that

%Gkg(t) = - : €0(k)Gko (1)

i
h

7T€2
=3 %@Lm o (Darcra o (aper ()l (0))

(2.2.17)

On the right-hand side there now appears not only Gk, (t), but also a higher-
order correlation function. In a systematic treatment we could derive an
equation of motion for this, too. We introduce the following factorization
approximation for the expectation value'!:

(0l q o (Darciq o (apo (tal, (0))
= (af1q 0 (Oaxrao(t) ) aprr (t)al, (0)) (2.2.18)
= 0o Gpic{al 1 o (Dap a0 (1)) (a1 (Dl (0) ).

The equation of motion thus reads:

d i 1 4re?
ach,(t) =-z co(k) — % (;)q—2nk+qg Gio(t) . (2.2.19)

From this, we can read off the energy levels e(k) as

' The other possible factorization <aL+q o (t)ap Ur(t)><a;r(+q U(t)akg(0)> requires
q = 0, which is excluded in the summation of Eq. (2.2.17).
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h2k2 1 drre?
v (2.2.20)

e(k) =

The second term leads to a change in e(k),
d*K' 4me?
Aek) = — | —=———50(kp — K
) m/@m3mkﬁ e = 1)
kr

1
2
— _e_/dklkl2/dn+
m k2 + k% — 2kk'n
0

2 ke k-i—k/
__e_ 1./
= ﬁk/dkkbg’kk’

2 4x Oglf:c

s

2 1 2 1
:_2ekp< +1 22 ‘ +z

) r= 2 (2221

Here again the function F(z) of Eq. (2.2.6”) appears. The Hartree—Fock
energy levels are reduced in comparison to those of the free electron gas.
However, the estimated reduction turns out to be greater than that actually
observed. Figure 2.7 shows F(z) and (k) in comparison to eg(k) = hzkz
ry = 4.

Notes:

for

(i) A shorter derivation of the Hartree—Fock energy is obtained by introducing the
following approximation in the Hamiltonian

€/er

Fixl

025 05 075

/Bar]'d width

Fig. 2.7. (a) The function F(z), Eq. (2.2.6"”), and (b) the Hartree-Fock energy
levels e(k) as a function of the wave number for rs = 4, compared with the energy
of the free-electron gas eo(k) (dashed).
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471'62 1 1
W E q2 ak+q0 akliq o k'’ Ak —
kk/.q
o0’

471'6 n i
2V Z (<ak+q o Ok/o ,>a’k’ qo’ axes + ak+q o Ok'c /<a’k’ o! ako’>)

k,k/,q#0
o,

2 dre® / 4 i
= q_2<“k+q o akia )aly o
k.q

o

This yields:
H = Z a’ko‘ ko

with

h2k? 1 4re?

e(k) = Py V —O(kr — |k +d]) .

(ii) The perturbation-theoretical expansion in terms of the Coulomb interaction
leads to a power series (with logarithmic corrections) in rs. This structure can be
seen from the following scaling of the Hamiltonian:

+3 Z (2.2.22)

Tij

To this end, we carry out a canonlcal transformation ' = r/ro p’ = pro. The
Characterlstlc length 7o is defined by AN =V, ie.,

3V \/?
o= <47rN)

In the new variables the Hamiltonian reads:

7\ 2 2m

The Coulomb interaction becomes less and less important in comparison to the
kinetic energy as ro (or 7s) becomes smaller, i.e., as the density of the gas increases.

p 2
= 1o Z . (2.2.23)
2 i

2.3 Hartree—Fock Equations for Atoms

In this section, we consider atoms (possibly ionized) with N electrons and
the nuclear charge number Z. The nucleus is assumed to be fixed and thus
the Hamiltonian written in second quantized form is
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H=> al (i|T|j) aﬂrZG ilUj)a
%]

1 ‘o (2.3.1)
+ 5 Z <Za]|V|kam>a a iAmag
i,7,k,m
where
p2
T=— 2.3.2
o (2.3.2a)
Z 2
U=-25 r=|x (2.3.2b)
r
and
yo_ (2.3.2)
o x—x| e

represent the kinetic energy of an electron, the potential felt by an electron
due to the nucleus, and the Coulomb repulsion between two electrons, re-
spectively. Although the Hartree and the Hartree—Fock approximations have
already been discussed in Sect. 13.3 of QM I'2, we will present here a deriva-
tion of the Hartree—Fock equations within the second quantization formalism.
This method is easier to follow than that using Slater determinants.

We write the state of the N electrons as

) =al ...l [0). (2.3.3)

Here, |0) is the vacuum state containing no electrons and al-L is the creation
operator for the state |i) = |¢;,ms,) , ms, = +3. The states |i) are mutually
orthogonal and the @;(x) are single-particle wave functions which are yet to
be determined. We begin by calculating the expectation value for the general
Hamiltonian (2.3.1) (3| H |3) without particular reference to the atom. For
the single-particle contributions, one immediately finds

N

> IT ) Wlalaj[w) = (T i) (2.3.4a)

] i=1

> U ) ($laja; |4) =

1,7 3

(@Uli) , (2.3.4D)

Mz

1
whilst the two—particle contributions are found as
(] a a Lamag V) = (Y| (5im5jkajnaL + 5ik5jma;2a:fn)amak [¥)  (2.3.4¢)
= (5ik6jm — 5im6jk:) @(m, kel,... ,N) .

The first factor implies that the expectation value vanishes whenever the cre-
ation and annihilation operators fail to compensate one another. The second

2. QM I op. cit.
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implies that both the operators a,, and a; must be present in the set a; ...an
occurring in the state (2.3.3), otherwise their application to the right on the
vacuum state |0) would give zero. Therefore, the total expectation value of
H reads:

(] H ) = Z/d%lw +Z/d3xU )i ()]

+3 Z/fd%v ) {l eI (239

,j=1
= G, 21 ()95 (K )i (K )5 (x) |

In the spirit of the Ritz variational principle, the single-particle wave func-
tions ¢;(x) are now determined so as to minimize the expectation value of
H. As subsidiary conditions, one must take account of the normalizations
[ lil?d®z = 1; this leads to the additional terms —¢;( [ dz|e;(x)|” — 1) with
Lagrange parameters ¢;. In all, one thus has to take the functional derivative

f (Y| H ) — Zﬁl € (f d3:v|<pi(x)|2 - 1) with respect to @;(x) and ¢} (x)
and set this equal to zero, where one uses

Soix)
5o 8i;6( . (2.3.6)

The following equations refer once again to atoms, i.e., they take into account
(2.3.2a—c). Taking the variational derivative with respect to ¢} yields:

<Qﬁ_mvzz_e)% +Z / A2 e i)

2

€ *
*Z%ms / & Y F KR ) 95 (%)

- 61'(;01'( ). (2.3.7)
12,

These are the Hartree—Fock equations. Compared to the Hartree equations
they contain the additional term

3, e (V2
d’z mhﬁz(xﬂ pi(x)
3 e
=Y b, [ e K )
J

62
== dm.m, /d3 P9 X )ei s (x) (2.3.8)

JFi
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The second term of the interaction on the left-hand side is known as the
exchange integral, since it derives from the antisymmetry of the fermion state.
The interaction term can also be written in the form

62
/dgwlm Z 5 (x') [Sﬂj (x) i (%) = 05 ()i ()., m

55

The exchange term is a nonlocal term which only occurs for mg, = msy;.
The term in square brackets is equal to the probability amplitude that i and
j are at the positions x and x’. For further discussion of the Hartree—Fock
equations and their physical implications we refer to Sect. 13.3.2 of QM 1.

Problems

2.1 Calculate the static structure function for noninteracting fermions
PR | -
S (a) = ﬁ(ﬁﬁo | iqfi—q | o),

where fiq = >, Ja;rwakJrqg is the particle density operator in the momentum
representation and |¢o) is the ground state. Take the continuum limit }°, =~ =

2V [ d®k/(27)® and calculate S°(q) explicitly.
Hint: Consider the cases q = 0 and q # 0 separately.

2.2 Prove the validity of the following relations, which have been used in the eval-
uation of the energy shift Ae(k) of the electron gas, Eq. (2.2.21):

a3k 1 2¢?
2 n_ 2%
a) 4e /(27r)3|k—k’ |2@(kF k) = - krF(k/kr),
with
1 1-22 |14z
Flz)==+—1
() 2+ 4z n‘l—x
2 3 2 2
(1 _ ¢ kr d°k kF—k kr +k _
b) EV = - V/(27r)3 1+ Shr In p— O(kr — k)
_ _3ke, ¢ (9m)3N
T4 r T 2a0rs \ 4 or

where 7, is a dimensionless number which characterizes the mean particle separation
in units of the Bohr radius ap = h*/me?. Furthermore, k3 = 372n = 1/(aaors)?

with a = (4/97)/3.

2.3 Apply the atomic Hartree-Fock equations to the electron gas.

a) Show that the Hartree—Fock equations are solved by plane waves.

b) Replace the nuclei by a uniform positive background charge of the same total
charge and show that the Hartree term is canceled by the Coulomb attraction of
the positive background and the electrons.
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The electronic energy levels are then given by

(hk)? 1 4re? _
2m qu:|qu|2@(kF @

e(k) =

According to Problem 2.2, this can also be written as e(k) = @? gka(k/kF)

2m

2.4 Show that the Hartree—Fock states |i) = |¢i,ms,) following from (2.3.7) are
orthogonal and that the ¢; are real.

2.5 Show that, for noninteracting fermions,

+oo .
Saw)= 5 [ d Goligt)i-a(0)l6n)

_ WV [
= 5y | €kOWkr —k) Ok +al — kr)

Also, prove the relationship

/+°Od_UJSO( ) = N forq=0 |,
oo 2T % 1*%Zk,gnkonk+qo forq #0

~ _ T
where ik, = a,_ Gk o-

2.6 Derive the following relations for Fermi operators:

a)

e e’ = ¢ — alal + afaa’ —a'a)
e *afe™ = a' — a’a— alaa’ —a'a)
b)
e agemaala — oo
aaTaaTefaaTa efa T

2.7 According to a prediction made by Wigner'?, at low temperatures and suffi-
ciently low densities, an electron gas should undergo a phase transition to a crys-
talline structure (bcc). For a qualitative analysis'®, consider the energy of a lattice
of electrons embedded in a homogeneous, positively charged background. Assume
that the potential in which each electron moves can be approximated by the poten-
tial of a uniformly charged sphere of radius ro = rsap surrounding each electron.

13 E.P. Wigner, Phys. Rev. 46, 1002 (1934)
4 E.P. Wigner, Trans. Faraday Soc. 34, 678 (1938)
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Here, 7o is the mean particle separation in the Wigner crystal with electron den-

sity n, i.e., %"TS = 1/n. This leads to a model of independent electrons (Einstein
approximation) in an oscillator potential
2 2 2
p e’ o 3e
H=—+—r"— —.
om * 2r3 2rg

Determine the zero-point energy Eo of this three-dimensional harmonic oscillator

and compare this with the result found in the literature!®:

g €[ L1792 | 2638
0 — 2CL() s r§/2 .

By minimizing the zero-point energy, determine the mean separation of the elec-
trons.

5 R.A. Coldwell-Horsfall and A.A. Maradudin, J. Math. Phys. 1, 395 (1960)



3. Bosons

In this chapter we study the characteristic properties of bosonic many-particle
systems. To start with the pair distribution function of noninteracting bosons
will be computed in order to investigate correlation effects. Subsequently,
the excitations of the weakly interacting Bose gas will be determined and
properties of the superfluid phase will be discussed.

3.1 Free Bosons

3.1.1 Pair Distribution Function for Free Bosons

We shall assume that the bosons are noninteracting and that they carry zero
spin. Hence, their only quantum number is their momentum. We consider a
given state of an IN-particle system

|¢> = |npovnp17"'>a (311>

where the occupation numbers can take the values 0, 1,2, ... etc. The expec-
tation value of the particle density is

(691 () 6) = > D e X (6] af e 1)

k.k/

3.1.2
NS PR o
vty T
Kk
The density in the state (3.1.1) is independent of position.
The pair distribution function is given by
n?g(x —x') = (o] T (X9 (x ) (x ) (x) [4)
1 —ik-x—iq-x'+iq’-x'+ik’-x
=g D, e MO glalalagaw |6) -
k.,k’,q,q9’
(3.1.3)

The expectation value (9| aLa};aq/ak/ |¢) differs from zero only if k = k’ and
q=d,ork=q and q = k’. The case k = q, which, in contrast to fermions,
is possible for bosons, has to be treated separately. Hence, it follows that
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(| afaliagai |¢)
= (1= dcq) (SO (6] alalaqauc |6) + eqrSae (9] afalianaq ) )

+ OkqOkk/ Oqq (] aLaLakak |¢)
= (1 — 0kq) (ki Oqq’ + Okq’ Iqk’ )NKkNg + Okqdkk dqq ik (nk — 1)

(3.1.4)
and
(0| T ()" () (x ) (x) |9) (3.1.5)
- % Z(l — i) (1 + e D CD )y Z ni(nk — 1)

k,q k

2
:% ananZniJr *Z”i
k,q k k

. ’
E eflk-(xfx )nk
k

Jani—an
k k
2

1 —ik-(x—x") 1
V;e Nk 7V2;nk(nk+1).

In contrast to fermions, the second term here is positive due to the permu-
tation symmetry of the wave function. For fermions, there is no multiple
occupancy so the last term does not arise.

We now consider two examples. When all the bosons occupy the same
state po, then (3.1.5) yields:

:n2+

N(N -1)

1
ngx—x)=n?’4+n - —=NN+1)= V2

3 (3.1.6)

In this case, the pair distribution function is position independent; there are
no correlations. The right-hand side signifies that the probability of detecting
the first particle is N/V, and that of the second particle (N —1)/V.
If, on the other hand, the particles are distributed over many different
momentum values and the distribution is described, e.g., by a Gaussian
Rr)n —ekoy?/ a7 (3.1.7)

nk = ——FV— =

(VmA)3

with the normalization

d3p
e
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it then follows that

3
/ d°k e—ik-(x—x')nk — ne—AT2(x—x')2e—iko»(x—x/)

(2m)?
and
1/ Bk, 1] (2n)3n 2/ Sk sperpar | 1
J— —_—n = — ~ .
V] @2n)3 % V| (VrA)? (2m)3 VA3

If the density and the width A of the momentum distribution are held fixed,
then, in the limit of large volume V', the third term in (3.1.5) disappears.
The pair distribution function is then given by

2 !
n2g(x — x') = n? (1+e—“7<x—x >2) . (3.1.8)

As can be seen from Fig. 3.1, for bosons the probability density of finding
two particles at a small separation, i.e., 7 < A~!, is increased. Due to the
symmetry of the wave function, bosons have a tendency to “cluster together”.
From Fig. 3.1, one sees that the probability density of finding two bosons at
exactly the same place is twice that at large separations.

0 Alx — x| Fig. 3.1. Pair distribution
function for bosons

*3.1.2 Two-Particle States of Bosons

In order to investigate the consequences of Bose—Einstein statistics further,
we now turn to boson interference and fluctuation processes. Such interference
can already be found in two-particle states. The general two-particle state is

2 = [ dadampbe, ) (x)0! (x2)|0) (3.1.9)

with the normalization (2]2) = 1 leading to
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(2|12) = /dgxldgwggo*(xl,xz)(go(xl,xQ) + o(x2,%x1)) = 1. (3.1.10)

We could have restricted ourselves from the outset to symmetric ¢(xy,X2)
since [t (x1),1(x2)] = 0 and thus the odd part of ¢(x;,x2) makes no con-
tribution.

In the following, we shall consider functions p(z1,z2) of the form

©(x1,X2) X ©1(X1)p2(x2) . (3.1.11)

Had the particles been distinguishable, for such a wave function, they would
have been completely independent. Furthermore, we assume

/d3:1:|<p1-(x)|2 =1, (3.1.12)
and then the normalization condition (3.1.10) yields:

@1(x1)p2(x2)
L+ [(p1,2)|2)1/2

with (s, ;) = [d>zp;(x)p;(x). For the two-particle state (3.1.9) with
(3.1.13)%, the expectation value of the density is

p(x1,%2) = ( (3.1.13)

(2] n(x) |2) = / Py d3aad® e P (x1) 05 (x2) 01 (X))o (x5)
X [+ (01, 02) 2] (0] (3a)b (1 )T () ()t (<)oot (3c4) [0)
= [l1 (O + 2 ()2 + (1, 02)3 (X1 () + c.c.]
< [1+|(p1,02)
(3.1.14)

In (3.1.14), in addition to |1 (x)|* + |¢2(x)|?, an interference term occurs.
When the two single-particle wave functions are orthogonal, i.e., (¢1, 2) = 0,
the density

2l n(x) |2) = [p1 ()| + |2 (x)|” (3.1.15)

equals the sum of the single-particle densities, as would be the case for in-
dependent particles. For two overlapping Gaussians, with separation 2a, it is
easy to calculate the clustering effect for bosons. Let

1 1
p1(z) = —7e 30T o (a) = e Flra) (3.1.16)
™

! The Schridinger two-particle wave function in the coordinate representation cor-

; ; p1(z)e2(z2)+p2(z1)e1(z2)
responding to (3.1.9) with (3.1.13) reads N T ENTOSNS AT Ve




3.1 Free Bosons 59

2

with the properties (¢;, ;) =1 and (1, ¢2) = \/LE fcl:zce’f’jzf"2 =e @ ; for
these states the density expectation value (3.1.14) is
1 2 2 2 2
_ —(z—a) —(z+a) —2a° —x
21n(12) = —= {e te t 20 2% }.
(3.1.17)

The integrated density

/fx@mgﬂm=2

is equal to the number of particles. Figure 3.2 shows (2| n(x) |2) for the sep-
arations @ = 3 and a = 1. For the smaller separation the wave functions
overlap and, for small z, the particle density is greater than it would be for
independent particles.

0.8

0.6 r

0.4

0.2

Fig. 3.2. Densities for two-boson states. The full line is the case a = 3. Since
there is no overlap here, |p1|> 4 |@2|® and (n(x)) are indistinguishable from one
another. The dashed lines are for ¢ = 1: in this case (2| n(x)|2) is increased at
small separations in comparison to |¢1]? + |p2|?

Photon Correlations

Photons represent the ideal example of noninteracting particles. In photon
correlation experiments it has actually been possible to observe the predicted
tendency of bosons to cluster together.? These correlation effects can be un-
derstood theoretically with the help of pair correlations of the form (3.1.8).3
Since the classical electromagnetic waves of Maxwell’s theory are coherent

2 R. Hanbury Brown and R.C. Twiss, Nature 177, 27 (1956); 178, 1447 (1956)
3 E.M. Purcell, Nature 178, 1449 (1956)
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40 v 7 v " v
hcp
30
B
2. 20
A
He Il He |
superfluid normal fluid Fig. 3.3. The phase di-
10 agram of He?. The solid
phases are: hcp (hexag-
onal close packed) and
bee (body centered cu-
0 - Gaseous bic). The fluid region is
' : : ‘ : divided into a normal
0 1 2 3 4 S 6 (He I) and a superfluid
T K] (He II) phase

states of photons in quantum mechanics, it is not surprising that these cor-
relation effects also follow from classical electrodynamics.*

3.2 Weakly Interacting, Dilute Bose Gas
3.2.1 Quantum Fluids and Bose—Einstein Condensation

The most important Bose fluid is He?, which has spin S = 0. Another ex-
ample is spin-polarized atomic hydrogen; this, however, is extremely difficult
to produce for long enough periods at sufficient density. All other atomic
bosons are heavier and more strongly interacting, causing them to crystallize
at temperatures far above any possible superfluid transition. At normal pres-
sures, He? remains fluid down to 7' = 0 and at the lambda point Ty = 2.18 K
it enters the superfluid state (Fig. 3.3). The normal and the superfluid phases
are also known as He I and He II. In order for He* to crystallize, it must be
subjected to a pressure of at least 25 bar. Although they are rare in com-
parison to Fermi fluids, which are realized in He® and by every metal, Bose
fluids are a rewarding topic of study due to their fascinating properties. Cor-
responding to superfluidity there is the superconducting phase in fermion
systems. He?, electrons in metals, and electrons in a number of oxidic high-T}
perovskites can form pairs of fermions that obey Bose statistics. Real helium
is only mimicked by an ideal Bose gas since, in additions to quantum effects,

4 Discussions of the Hanbury-Brown and Twiss experiments can be found in C.
Kittel, Elementary Statistical Physics, p. 123, J. Wiley, New York, 1958 and G.
Baym, Lectures on Quantum Mechanics, p. 431, W.A. Benjamin, London, 1973
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it is also plagued by the difficulties associated with a dense fluid. In an ideal
27h?/m f
[0-2.61)2/3 (for

the mass and density of He* this gives 3.14 K) Bose Einstein condensation
occurs®. The single-particle ground state becomes macroscopically occupied
in conjunction with the disappearance of the chemical potential u — 0.

In reality, He* atoms have approximately a Lennard—Jones potential,

o[- (&) 521

€ =1.411 x 10~ Perg
o = 2.556A .

(i.e., noninteracting) Bose gas at temperatures below T,(v) =

It consists of a repulsive (hard-core) part and an attractive component. At
small separations the potential (3.2.1) is equivalent to the potential of an
almost ideal hard sphere of diameter 2 A. For fce close packing of spheres, this
would correspond to a molar volume of 12 cm?, whereas the actually observed
molar volume at P = 30bar is 26 cm?®. The reason for this higher value lies
in the large amplitude of the quantum-mechanical zero-point oscillations. In
the fluid phase Vir = 27 cm?. The various phases of He? and He® are also
known as quantum fluids or quantum crystals.

Note: Recently, Bose-Einstein condensation has been observed, in a gas of about
2000 spin-polarized 8"Rb atoms confined in a quadrupole trap® 7, some 70 years
after its original prediction by Einstein®, on the basis of statistical considerations
of Bose. The transition temperature is 170 x 10~°K. One might expect that at low
temperatures alkali atoms would form a solid; however, even at temperatures in the
nano-Kelvin regime, it is possible to maintain a metastable gaseous state.

A similar experiment has been carried out with a gas of 2 x 10° spin-polarized
"Li atoms.® In this case, the condensation temperature is T &~ 400 x 10 °K. In *Rb
the s-wave scattering length is positive, whereas in “Li it is negative. Despite this,
the gaseous phase of Li does not collapse into the fluid or the solid phase, not, at
least, in the spatially inhomogeneous case.” Bose-Einstein condensation has also
been observed in sodium in a sample of 5 x 10° atoms at a density of 10**cm™3
and temperatures below 2uK.'° Finally, also in atomic hydrogen, a condensate of
more than 10% atoms, with a transition temperature of roughly 50pK, could be
maintained for up to 5 seconds.!!

5 See for instance F. Schwabl, Statistical Mechanics, Springer, 2nd ed., Berlin Hei-
delberg, 2006, Sect. 4.4; in subsequent citations this book will be referred to as
SM.

5 M.H. Andersen, J.R. Enscher, M.R. Matthews, C.E. Wieman, and E. A. Cornell,
Science 269, 198 (1995)

7 See also G.P. Collins, Physics Today, August 1995, 17

8 A. Einstein, Sitzber. Kgl. Preuss. Akad. Wiss. 1924, 261 (1924), ibid. 1925, 3
(1925); S. Bose, Z. Phys. 26, 178 (1924)

9 C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Phys. Rev. Lett. 75,
1687 (1995)

10 K. B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M.
Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 2969 (1995)
'D. Kleppner, Th. Greytak et al., Phys. Rev. Lett. 81, 3811 (1998)
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These experimental discoveries triggered an avalanche of new physics. See lit-
erature on Bose—FEinstein condensation, in the bibliography at the end of Part I.

3.2.2 Bogoliubov Theory of the Weakly Interacting Bose Gas

In the momentum representation, the Hamiltonian reads:

H= Z akak—i— Z VakJrq L q@pak; (3.2.2)
kpq

where we have set A = 1. This Hamiltonian is still completely general, but in
the following we will introduce approximations which restrict the validity of
the theory to dilute, weakly interacting Bose gases. The creation and anni-
hilation operators aL and ay satisfy the Bose commutation relations and Vg
is the Fourier transform of the two-particle interaction

v, = / B oY (). (3.2.3)

At low temperatures, a Bose—Einstein condensation takes place in the k = 0
mode, i.e., in analogy to the ideal Bose gas it is expected that in the ground
state!? |0) the single-particle state with k = 0 is macroscopically occupied,

No = (0] afao |0) S N, (3.2.4a)
and thus the number of excited particles is
N—-Ny< Ny <N. (3.2.4b)

Hence, we can neglect the interaction of the excited particles with one another
and restrict ourselves to the interaction of the excited particles with the
condensed particles:

/€2
H = Z %alak + 2VV0a0aOa0a0 + Z Vo + Vk)aoaoaLak
k

1 l
PTa g Vk(a;f(a:f_kaoao + afabara_y) + O(a}) . (3.2.5)
k

The prime on the sum indicates that the value k = 0 is excluded. Due to mo-
mentum conservation, there is no term containing ax.g and three operators
with k = 0.

The effect of ag and ag on the state with Ny particles in the condensate is

a0|N0,...):\/N0|N0—1,...>

al |No,...) = /No+1|No+1,...)

2 Here, |0) is the ground state of the N bosons and not the vacuum state with
respect to the ax, which would contain no bosons at all. It will emerge that |0)
is the vacuum state for the operators ax to be introduced below.

(3.2.6)
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Since Ny is such a huge number, Ny ~ 1023, both of these correspond to
multiplication by v/Ny. Furthermore, it is physically obvious that the removal
or addition of one particle from or to the condensate will make no difference
to the physical properties of the system. In comparison to Ny, the effect of
the commutator

aoag — agao =1
is negligible, i.e., the operators
apg = ao =V NO (327)

can be approximated by a c-number. The Hamiltonian then becomes

H Z akak + 2VN§VO
(3.2.8)
: 1
+ VOZ (Vo + Vid)aj ax + éVk(aLaT_k +axa_x)] + ... .
K

The value of Ny is unknown at the present stage. It is determined by the
density (or the particle number for a given volume) and by the interaction.
We express Ny in terms of the total particle number N and the number of
particles in the excited state

/
N=No+ ) afax. (3.2.9)
k
We then have, for example,
Vo 1o . Vo .o NW "y Vo "t T
WNO = WN - 7; ay ax + W}; ) Ok Oy, QY - (3.2.10)

The Hamﬂtonian follows as
2

/ N
H Z —akak + Z Vka;f(ak + WVO
k

. L / (3.2.11)
—VZ Vk (aka_k + aka,k) + H' .
k

The operator H' contains terms with four creation or annihilation operators,
and these are of order n’?, where n/ = w is the density of the particles
that are not part of the condensate. The Bogoliubov approximation, which
amounts to neglecting these anharmonic terms, is a good approximation when
n' < n. We shall see later, when we calculate n’, that exactly this condition
is fulfilled by the dilute, weakly interacting Bose gas.

If H' is neglected, we have a quadratic form, which still has to be diag-
onalized. The transformation proceeds in analogy to the theory of antiferro-

)
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magnetic magnons. We introduce the ansatz'?

ax = uxOox + UkOéT,k

T

; (3.2.12)
Q) = UkOy + VkQ_k

with real symmetric coefficients, and demand that the operators « also satisfy
Bose commutation relations

[, aner] = [al, al,] = 0, [ax, o] = S - (3.2.13)
This is the case when
up — v = 1. (3.2.14)
Proof:
[ak, ax/] = UKV Ok, — Kk + Ukl (—0k,—k) = 0
{ak, al,} = Ui Sk + ViV (— Ok ) = (Ui — v2)draxer -
The inverse of the transformation (3.2.12) reads (see Problem 3.3):

akx — Ukak — Ukaik

T T
Q) = UGy — VG- -

(3.2.15)

With the additional calculational step

2 2 T
alak = ukalak + Uka_kaik + ukvk(aiaik + aka_k)

aLaT_k = uiaLaT_k + viozkoz,k + ukvk(alak + oz,kozT_k)
axt_x = uiaka,k + vﬁaLaT_k + ukvk(oelf_ka,k + ozkozb ,
one obtains for the Hamiltonian

1
H = —N?V
gy ot

1 [ k2
+ Z <% + nd) [uialak + viakoz;f( + Uk (aLozT_k + aka,k)}
k

N I
+ —Z Vi [(ui +v3) (aLatk + aka_k) + 2uivk (aLak + akaL)] )
2V -

(3.2.16)
In order for the nondiagonal terms to disappear, we require
k2 n 9 9
om + nVk | ukvk + §Vk(uk +v;)=0. (3.2.17)

13 The transformation is known as the Bogoliubov transformation. This diagonal-
ization method was originally introduced by T. Holstein and H. Primakoff (Phys.
Rev. 58, 1098 (1940)) for complicated spin-wave Hamiltonians and was rediscov-
ered by N.N. Bogoliubov (J. Phys. (U.S.S.R.) 11, 23 (1947)).
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Together with ui —vZ = 1 from (3.2.14), one now has a system of equations
that allow the calculation of ui and vg. It is convenient to introduce the

definition
l( k2 >2 nk? Vi
={—) +
2m m

12 9 . 1/2
Wi = <— + nd> — (nVk)
From (3.2.14) and (3.2.17), one finds uj and vZ to be (Problem 3.4)

1/2
. (3.2.18)

2m

wic + ( + nd)

2
uk == B
2wic (3.2.19)
—wic+ (2 + k)
2 = |
ka
nd 2 (nd)2
UkVk = —5— Vy =
2wy 2wk(wk + + nd)
Inserting (3.2.19) into the Hamiltonian yields:
N? I~ [ K2 '
— i)
H =5V~ 221(: <% +nVi — wk> + zk: wiea) e (3.2.20)
~————
ground-state energy Ejy sum of oscillators
~ quasiparticles

The Hamiltonian consists of the ground-state energy and a sum of oscillators
of energy wy. The excitations that are created by the al are called quasipar-
ticles.

The ground state of the system |0) is fixed by the condition that no quasi-
particles are excited,

ag [0y =0 for all k. (3.2.21)

We can now calculate the number of particles (not quasiparticles) outside the
condensate

O|Zakak|0 0|kaakak|o Z (3.2.22)

k

For a contact potential V(x) = Ad(x), it follows by using (3.2.18) and (3.2.19)
that
N’ m3/2 3/2

r=2 _ A ) 3.2.23
The expansion parameter is An, i.e., the strength of the potential times the
density. If this expansion parameter is small, consistent with the assumptions
made, the density of particles outside the condensate is low. The dependence
on An is nonanalytic and thus cannot be expanded about An = 0. Hence,
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these results for condensed Bose systems cannot be obtained using straight-
forward perturbation theory for the initial Hamiltonian (3.2.2). The number
of particles in the condensate is Ng = N — n’V. Its temperature dependence
No(T) is studied in Problem 3.5.

The ground-state energy (3.2.20) is composed of a term that would be
the interaction energy if all particles were in the condensate, and a further
negative term. Through the occupation of k # 0 Bose states in the ground
state (see (3.2.22)), the kinetic energy is increased, whereas the potential
energy is reduced.

Excited states of the system are obtained by applying aL to the ground
state |0). Their energy is wy. For small k one finds from (3.2.18)

wyg =ck with c=4/ n_VO. (3.2.24)
m

Thus, the long wavelength excitations are phonons with linear dispersion.
This value for the sound velocity also follows from the compressibility
10V.

k==vop:

or (3.2.25)

p— 1 j—
e\ dp
Here, p = mn is the mass density and the pressure at zero temperature is
given by

c

O0Ey
P=-=7. (3.2.26)
For large k, one obtains from (3.2.18)
12
Wk = +nlk . (3.2.27)

This corresponds to the dispersion relation for free particles whose energy
is shifted by a mean potential of nVx (see Fig. 3.4). A comparison with the
experimental excitation spectrum of He? is not justified on account of the
restriction to weak interaction and low density; in particular, one cannot
attempt to explain the roton minimum (see Sect. 3.2.3) in terms of the k de-
pendence of the potential, since this would require potential strengths outside
the domain of validity of this theory (see Problem 3.6).

When aL is applied to a state, one speaks of the creation of a quasiparticle
with the wave vector k. We shall show furthermore that, for small k, the
excitation of a quasiparticle corresponds to a density wave. To this end, we
consider the operator for the particle number density

me =Y afapi ~ V/Nolal, + ax) (3.2.28)
P

under the assumption of a macroscopic occupation of the k = 0 state.
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- Fig. 3.4. Excitations of the
weakly interacting Bose gas

From Eq. (3.2.12) it follows that

a +a' = (u + o) (ax +al )

and therefore
me = Aic (ac+aly) (3.2.29)
From Eq. (3.2.19) the amplitude Ak takes the form
Ay = /No(ux + vi) = k No .
2mwy
From Eq. (3.2.29) one obtains the density operator
(3.2.30a)

p(x) = p(x) + 7 ()
in which p(x) = 3, Axe®*ay , from which it follows that
(3.2.30b)

569 (0L 10)) = S * A oo, 0) = ey o)
k/

For a coherent state |ck) built out of quasi-particle excitations with wave

vector k
o (k)
|ex) = e~ lexl™/2 2) ~—10) (3.2.31a)
and in which ¢ = |ci|e71% one gains (%) |cx) = Arcrxe™*|c) . From this
it follows that the expectation value of the density
(3.2.31b)

(cx|n(x) |ex) = 2Ax |cx| cos(kx — d) ,
so that a coherent state of this type represents a density wave.
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Notes:

(i) Second-order phase transitions are associated with a broken symmetry.
In the well known case of a Heisenberg ferromagnet, this symmetry is the
invariance of the Hamiltonian with respect to the rotation of all spins. In
the ferromagnetic phase, where a finite magnetization is present, oriented,
e.g., in the z direction, the rotational invariance is broken. In the case of the
Bose-Einstein condensate the gauge invariance is broken, i.e., the invariance
of the Hamiltonian with respect to transformation of the field operator

P(x) = ¢ (x) = P(x)el® (3.2.32)

with a phase a. In the ground state |0), one has (0](x)]0) # 0 and the
phase is fixed arbitrarily at o = 0.

(ii) For finite-ranged potentials, e.g., the spherical well of Problem 3.6, the
Fourier transform falls off with increasing wave vector k, leading to a fi-
nite ground-state energy in (3.2.20). For the d-function potential the Fourier
transform is a constant, which leads to a divergence at the upper integration
limit. To ensure that the ground-state energy Ej also remains finite for an
effective contact potential, the potential strength A must be replaced by the
(finite) scattering length a. In second-order Born approximation, the scatter-
ing length is given in terms of A by

m Ag/m 9
or, inversely,

dmh%a dmh%a 1
A= 1 — +0(d? 3.2.33

(see Problem 3.8). Inserting this into (3.2.16) shows that V5 and Vi must be
replaced, here and in all subsequent formulas, by

Arh2a Arhla~—' 1
1 = 2.34
Vo — = { + =5 ] kQ} (3.2.34a)
and
Amh?
Vi —» —2 (3.2.34b)

For the interaction of the excited particles it is sufficient to retain only terms
up to first order in a. The value of the ground-state energy is then

97h2 aN2 128 [a®N\ 2
o S I B (Rl . 3.2.35
T Tm Vv { +15\/7‘r( V) ( )
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*3.2.3 Superfluidity

Superfluidity refers to a state in which the fluid can flow past objects without
exerting a drag and where objects can move through the fluid without slowing
down. This property holds only up to a certain critical velocity which we will
now relate to the quasiparticle spectrum. The excitation spectrum of real
helium, as derived from neutron scattering measurements, displays, according
to Fig. 3.5, the following characteristics. For small p, the excitation energy
varies linearly with the momentum

€p =CD . (3.2.36a)
T I T -
20 ; 1
| wily e
RS
éw— / f
o ! i ]
w v [
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S i |
S ! '
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= f
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= '
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t
! Fig. 3.5. The quasiparticle exci-

0 , L 1 tations in superfluid He*. Phonons

0 1 2 3 4 .
1 and rotons according to Henshaw
Wave vector p/h[A™] and Woods'4

The excitations in this region are called phonons; their velocity — the sound
velocity — is ¢ = 238 m/s. The second characteristic feature of the excita-
tion spectrum is the minimum at po = 1.91 A=A, Here, the excitations are
referred to as rotons and can be described by the dispersion relation

(Ip| — po)?
ep=A+ o (3.2.36D)
with the effective mass yu = 0.16 mpe and the energy gap A/k = 8.6 K. The
condensation of helium and the resulting quasiparticle dispersion relation
((3.2.36a,b), Fig. 3.5) has essential consequences for the dynamical behavior
of He* in the He-II phase. It leads to superfluidity and to the two-fluid model.
To see this, we consider the flow of helium through a tube in two different
inertial frames. In frame K, the tube is at rest and the fluid moves with a
velocity —v. In frame K, the helium is at rest and the tube moves with a

velocity v (see Fig. 3.6).

' D.G. Henshaw and A.D. Woods, Phys. Rev. 121, 1266 (1961)
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frame K e -
(laboratory)

-V

v

frame K, He
(He rest frame) :

Fig. 3.6. Superfluid helium in the rest frame of the tube (laboratory frame, K)
and in the rest frame of the fluid, Ko

The total energies (E, Fy) and the total momenta (P,Pg) in the two
frames (K, Kp) are related to one another through a Galilei transformation:
P=Py—Mv (3.2.37a)

M 2
E=Ey-Py-v+ 2V , (3.2.37h)

where we have introduced

ZPiZP, ZpiOZPOa Zsz-

One can derive (3.2.37a,b) by using the Galilei transformation of the individual
particles

Xi = Xi0 — vt

Pi = Pio —MmVv .
Thus,

P:Zpi:Z(piO_mv):PO_MV-
The energy transforms as follows:

1 o
E:Z%Pz' +<Z>V(Xi—xj)
T 1,7

ST (B ) v s

(i,9)

2
O L T

M
:Eo—P0~V+7V2.

In a normal fluid, any flow that might initially be present will be degraded
by frictional losses. When viewed in the frame Ky, this means that, in the
fluid, excitations are created which move with the wall of the tube, such that
more and more fluid is pulled along with the moving tube. Seen from the
tube frame K, the same process can be interpreted as a deceleration of the
fluid flow. In order that such excitations actually occur, the energy of the
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fluid must simultaneously decrease. We now have to examine whether, for
the particular excitation spectrum of He-II, Fig. 3.5, the moving fluid can
reduce its energy through the creation of excitations.

Is it energetically favorable for quasiparticles to be excited? We first con-
sider helium at the temperature T' = 0, i.e., in the ground state. In the ground
state the energy and momentum in the frame K are given by

E{ and Py=0. (3.2.38a)

Thus, in K, these quantities are
2

M
B9 =E)+— and P=-Mv. (3.2.38h)

If a quasiparticle with momentum p = fik and energy e(p) = hwy is created,
the energy and momentum in the frame Ky have the values

Ey=E§+¢e(p) and Py=p, (3.2.38c¢)
whence, from (3.2.37a,b), the energy in K follows as
2

M
E=Ej+ep)—p-v+ Y and P=p—Mv. (3.2.38d)

The excitation energy in K (the tube frame) is thus
AE =¢(p)—p-v. (3.2.39)

Here, AFE is the energy change in the fluid due to the creation of an excitation
in the tube frame K. Only when AE < 0 does the flowing fluid lose energy.
Since € — pv has its smallest value when p is parallel to v, the inequality

v> < (3.2.40a)
P

must be satisfied in order for an excitation to occur. From (3.2.40a) and the
experimental excitation spectrum, one obtains the critical velocity (Fig. 3.7)

Ve = (5) ~60m/s . (3.2.40b)

U(,*:(e/p)min = g/ﬁ

Fig. 3.7. Quasiparticles and

P p critical velocity
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If the flow velocity is smaller than v., no quasiparticles are excited and the
fluid flows unimpeded and loss-free through the tube. This is the phenomenon
of superfluidity. The existence of a finite critical velocity is closely related to
the form of the excitation spectrum, which has a finite group velocity at
p = 0 and is everywhere greater than zero (Fig. 3.7).

The value (3.2.40b) of the critical velocity is observed experimentally for
the motion of ions in He-II. The critical velocity for flows in capillaries is
much smaller than v., since vortices already occur at lower velocities. Such
excitations have not been considered here.

Problems

3.1 Consider the following two-particle boson state

|@:/fm/fmﬂmmﬂW@ﬂW@ﬁm-

a) Confirm the normalization condition (3.1.10).
b) Verify the result (3.1.14) for the expectation value (2| n(x) |2) on the assumption
that p(x1,x2) oc 1(x1)pa(x2).

3.2 The Heisenberg model of a ferromagnet is defined by the Hamiltonian

1 /
H:*§;J(|1*1|)Sl'slu

where 1 and 1 are nearest neighbor sites on a cubic lattice. By means of the Holstein—
Primakoff transformation

Sj = v25<p(ﬁ,-)a,-,

S; = V2Sale(hi),
Si=S8—ni,

with SF =S¢ + 5Y, p(7i) = /T — 14/25 , 71 = ala; and [a,—gzj-] = b5, [ai,a;] =0
one can express the Hamiltonian in terms of Bose operators a;.

a) Show that the commutation relations for the spin operators are satisfied.

b) Write down the Hamiltonian to second order (harmonic approximation) in terms
of the Bose operators a; by regarding the square-roots in the above transformation
as a shorthand for the series expansion.

c) Diagonalize H (by means of a Fourier transformation) and determine the dis-
persion relation of the spin waves (magnons).

3.3 Confirm the inverse (3.2.15) of the Bogoliubov transformation.

3.4 By means of the Bogoliubov transformation, the Hamiltonian of the weakly
interacting Bose gas can be brought into diagonal form. One thereby finds the
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condition (3.2.17):
k2 n
(% =+ nd> UKV + §Vk (ui + ’Ui) =0.

Confirm the results (3.2.18) and (3.2.19).

3.5 Determine the temperature dependence of the number of particles in the con-
densate, No(T), for a contact potential Vi = A.
a) Proceed by first calculating the thermodynamic expectation value of the par-

ticle number operator N = >k akak by rewriting it in terms of the quasiparticle

operators ax. One finds (in the continuum limit: & >, — [ (%)3)
N2 (1
N = No(T) + o (mnA)™~ <_ + U1(’7)) 7

2 6

where v = BJ- k2 = 4mn\, g = 1/kT, k the Boltzmann constant, and

2m’

Un(’y):/ dy x with y = 222+ 1.
0

ew —1"

b) Show that, for low temperatures, the depletion of the condensate increases
quadratically with temperature

No(T) o No(O) m 2
v v T

where ¢ = ,/%. Also, discuss the limiting case of high temperatures and compare

the result obtained with the results from the theory of the Bose-Einstein conden-
sation of noninteracting bosons below the transition temperature.

Lit.: R.A. Ferrell, N. Menyhédrd, H. Schmidt, F. Schwabl and P. Szépfalusy,
Ann. Phys. (N.Y.) 47, 565 (1968); Phys. Rev. Lett. 18, 891 (1967); Phys. Letters
24A, 493 (1967); K. Kehr, Z. Phys. 221, 291 (1969).

3.6 a) Determine the excitation spectrum wy of the weakly interacting Bose gas
for the spherical well potential V(x) = NO(R — |x|). Analyze the limiting case
R — 0 and compare the result with the excitation spectrum for the contact potential
Vk = A. The comparison yields A\ = 4%XRS.
b) Determine the range of the parameter koR, where k2 = 4mn), in which the
excitation spectrum displays a “roton minimum?”. Discuss the extent to which this
parameter range lies within or outside the range of validity of the Bogoliubov theory
of weakly interacting bosons.

Hints: Rewrite the spectrum in terms of the dimensionless quantities z = k/ko
and y = koR and consider the derivative of the spectrum with respect to . The
condition for the derivative to vanish should be investigated graphically.

3.7 Show that (3.2.11) yields the Hamiltonian (3.2.16), which in turn leads to
(3.2.20).
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3.8 Ground-state energy for bosons with contact interaction

Consider a system of N identical bosons of mass m interacting with one another
via a two-particle contact potential,

N 2
— DPi _xs
a=1 1<J
In the limit of weak interaction, the Bogoliubov transformation can be used to
express the Hamiltonian in the form

H—N—z)\—lZ, k—2+n)\—w —|—le ala
T2vT 24« 2m k . Tk
The ground-state energy
N2\ s
EO— oV —zk: <%+n)\—wk)

diverges at the upper integration limit (ultraviolet divergence). The reason for this
is the unphysical form of the contact potential. The divergence is removed by
introducing the physical scattering length, which describes the s-wave scattering
by a short-range potential (L.D. Landau and E.M. Lifshitz, Course of Theoretical
Physics, Vol. 9, E.M. Lifshitz and E.P. Pitaevskii, Statistical Physics 2, Pergamon
Press, New York, 1981, §6). Show that the scattering amplitude f of particles in
the condensate is given, in first-order perturbation theory, by

" 4rnh?
k

a::—f(k1:k2:k3:k4=0)— m )\{1—i /m+0()\2)}

Eliminate A from the expression for the ground-state energy by introducing a. For
small values of a/ro, where ro = (N/V)~/3 is the mean separation of particles,
show that the ground-state energy is given by

2 3/2
Ey = N27rh an 14 128 a .
m 15/ \ o

Calculate from this the chemical potential p = 9Z0 and the sound velocity ¢

ON
c= ol 0= mn P = C(EO
8/)7 ’ 8[/ ’




4. Correlation Functions,
Scattering, and Response

In the following, we investigate the dynamical properties of many-particle
systems on a microscopic, quantum-mechanical basis. We begin by express-
ing experimentally relevant quantities such as the inelastic scattering cross-
section and the dynamical susceptibility (which describes the response of the
system to time-dependent fields) in terms of microscopic entities such as the
dynamical correlation functions. To this end the time-evolution operator will
be determined perturbatively using the interaction representation. General
properties of these correlation functions and their interrelations are then de-
rived using the symmetry properties of the system, causality, and the specific
definitions in terms of equilibrium expectation values. Finally, we calculate
correlation functions for a few physically relevant models.

4.1 Scattering and Response

Before entering into the details, let us make some remarks about the physi-
cal motivation behind the subject of this chapter. If a time-dependent field
Eeilkx—wt) ig applied to a many-particle system (solid, liquid, or gas), this
induces a “polarization” (Fig. 4.1)

P(k,w)el®*=wt) 4 p(2k, 2w)el2kx—wt) L (4.1.1)

The first term has the same periodicity as the applied field; in addition,
nonlinear effects give rise to higher harmonics. The linear susceptibility is

E(x,1)

P(x,1)
Fig. 4.1. An external field E(x,t) in-
duces a polarization P(x,t)
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defined by

x(k,w) = lim Plk,w)

(4.1.2)
which is a property of the unperturbed sample and must be expressible solely
in terms of quantities that characterize the many-particle system. In this
chapter we will derive general microscopic expressions for this type of sus-
ceptibility.

Another possibility for obtaining information about a many-particle sys-
tem is to carry out scattering experiments with particles, e.g., neutrons, elec-
trons, or photons. The wavelength of these particles must be comparable
with the scale of the structures that one wants to resolve, and their energy
must be of the same order of magnitude as the excitation energies of the
quasiparticles that are to be measured. An important tool is neutron scatter-
ing, since thermal neutrons, as available from nuclear reactors, ideally satisfy
these conditions for experiments on solids.! Since neutrons are neutral, their
interaction with the nuclei is short-ranged; in contrast to electrons, they pene-
trate deep into the solid. Furthermore, due to their magnetic moment and the
associated dipole interaction with magnetic moments of the solid, neutrons
can also be used to investigate magnetic properties.

We begin by considering a completely general scattering process and will
specialize later to the case of neutron scattering. The calculation of the inelas-
tic scattering cross-section proceeds as follows. We consider a many-particle
system, such as a solid or a liquid, that is described by the Hamiltonian Hy.
The constituents (atoms, ions) of this substance are described by coordinates
X, which, in addition to the spatial coordinates, may also represent other
degrees of freedom. The incident particles, e.g., neutrons or electrons, which
are scattered by this sample, have mass m, spatial coordinate x, and spin
M.

The total Hamiltonian then reads:

p2
H=Hy+ ot W({xa},x) . (4.1.3)

This comprises the Hamiltonian of the target, Hy, the kinetic energy of the
incident particle, and the interaction between this projectile particle and
the target, W({xq},x). In second quantization with respect to the incident
particle, the Hamiltonian reads:

1 : 0.0286
The neutron wavelength depends on the energy according to A(nm) = ——===
Vi g P gy g (nm) /B(ev)

and thus A = 0.18nm for E = 25meV = 290K.
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2
p § : T
H=Hy+—+ a ax’ o
| o
2m k/k//a-/o-//

1 : ’ " 1
~ V /d3CC e—l(k -k )»xWU o ({Xa},X)

2
—Ho+ 2 4 Sl Wi T ({%a}) | (4.1.4)

2m
k/k//a./a.//

where al,g, (ax o) creates (annihilates) a projectile particle. We write the
eigenstates of Hy as |n), i.e.,

Hy|n) = E,|n) . (4.1.5)

X //

Fig. 4.2. Inelastic scattering with momentum transfer k = ki — ko and energy
transfer fiw = %(k% —k3)

In the scattering setup sketched in Fig. 4.2, a particle with wave vector k; and
spin mg; is incident on a substance initially in the state |n;). Thus, the initial
state of the system as a whole is |ky,ms1,n1). The corresponding final state
is |ko, mgs2,n2). Due to its interaction with the target, the incident particle
is deflected, i.e., the direction of its momentum is changed and, for inelastic
scattering, so is the length of its wave vector (momentum). If the interaction
is spin dependent, the spin quantum number may also be changed.

The transition probability per unit time can be obtained from Fermi’s
golden rule?

I'(ki,mge1,n1 — ko, msa,n2)

27 (4.1.6)
- E |<k2’m82’ n2| w |k1’m51’n1>|2 5(En1 - Eng + hw) .
Here,
h2 2 2
o = o ki = k2) (4.1.7a)

2 See, e.g., QM I, Eq. (16.40)



78 4. Correlation Functions, Scattering, and Response

and

k=k — ko (4.1.7b)
are the energy and momentum transfer of the projectile to the target, and

P23

2m

(4.1.7¢)

the final energy of the particle. The matrix element in the golden rule becomes

/ot

<k2,m52,’n2| W|k1,m51,n1> Wk2 k; ({Xa}) (418)

We take the distribution of initial states to be p(n1) with > p(ni) = 1
and the distribution of the spin states of the particle to be ps(ms1) with
> om., Ps(ms1) = 1. If only ko is measured, and the spin is not analyzed, the
transition probability of interest is

I(ki — ko)=Y Y p(ny)ps(ma)l(ky,ma,m — ko, maa, na) .

n2m1 Ms1Ms2

(4.1.9)

The differential scattering cross-section (effective target area) per atom is
defined by

d’c J0d probablility of transition into df2de/s
€ =

df2de number of scatterers x flux of incident particles
(4.1.10)

Here, df?2 is an element of solid angle and the flux of incident particles is equal
to the magnitude of their current density. The number of scatterers is IV and
the normalization volume is L3. The states of the incident particles are

1 iky-x
wkl(x):L3/2ek1 . (4.1.11)

The current density follows as:

—ih hky
j(x) = * * = — 4.1.12
J0) = S (U VY — (V9T)g) = oL (1112)
and for the differential scattering cross-section one obtains
d%o 1 mL? L\® ,
— — 1.1
d0de de = N ﬁkl F(kl — kg) (27‘() d kg y (4 1 3)

since the number of final states, i.e., the number of ks values in the interval
212

By is (L) d3ko. With € = 252 it follows that de = h2ks dks/m and

Py = ko de df2.



4.1 Scattering and Response 79

We thus find
o m \2 ky LS
— =) == 4.1.14
df2de (27Th2) ki N ( )
X Z 7’L1 ps msl) |<k17mslan1| w |k27ms27n2>|2 5(En1 - Eng + hw) .
ni,n2
Ms1,Ms2

We now consider the particular case of neutron scattering and investigate
the scattering of neutrons by nuclei. The range of the nuclear force is R =
10~"2cm and thus k1 R ~ 104 <« 1 and, therefore, for thermal neutrons one
has only s-wave scattering. In this case, the interaction can be represented
by an effective pseudopotential

2mh? N

W({xa},x) =

00 (Xo — X) , (4.1.15)

a=1

to be used within the Born approximation, where a,, are the scattering lengths
of the nuclei. This yields:

d20' kg 1
dQde ki N > pln

N 2

Z (n1| e % [ng)| §(En, — By + ).

ning a=1
(4.1.16)
Here, we have used
2 h? . .
(k1| W ko) = WLS /d3xe_‘k1‘x Z Uald(X — Xq )elk2 ™
m
¢ (4.1.17)

2
27Th3 aae—i(kl—kz)‘xa
mL

and the fact that the interaction is independent of spin. Written out explicitly,
the expression (4.1.16) assumes the form

> agap(...e7 X N &*¥ V(B — En, + hw) (4.1.16")

and still has to be averaged over the various isotopes with different scat-
tering lengths. One assumes that their distribution is random, i.e., spatially
uncorrelated:

=1 a=1 (4.1.18)
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This gives rise to a decomposition of the scattering cross-section into a co-
herent and an incoherent part3:

d?c
d0de ACOhSCOh(k,w) =+ AinCSinC(k7w) . (4.1.19&)
Here, the various terms signify
k — k
Acon = 62_2 y  Ajpe = (a2 ) 2 (4119b)
kl kl
and
Scoh k W = Z Z 7’L1 n1| € ikexa |n2> <7’L2| e kexs |n1>
aff ninz
X 6 E,, —E,, +w),
( : ) (4.1.20)

Sine(k, w) Z Z p(na) [(ny| e 5% |ny)|”
a ning

Xé( n1_En2+h/'U)’

the suffices standing for coherent and incoherent.

In the coherent part, the amplitudes stemming from the different atoms are
superposed. This gives rise to interference terms which contain information
about the correlation between different atoms. In the incoherent scattering
cross-section, it is the intensities rather than the amplitudes of the scattering
from different atoms that are added. It contains no interference terms and the
information which it yields relates to the autocorrelation, i.e., the correlation
of each atom with itself. For later use we note here that, for systems in
equilibrium,

o= BEn,
p(ny) = 7 (4.1.21a)
which corresponds to the density matrix of the canonical ensemble*
p=e Ptz 7 =Tre PHo (4.1.21b)
We shall also make use of the following representation of the delta function
dt
S(w) = 3¢ et (4.1.22)

The coherent scattering cross-section contains the factor

_/ dt oi(Bny —Eny+hw)t/h <n1|efik~xa ng)

h 27T

1 . . . .
= o7 [ dtel (m| 0 Moo T R ) (4.1.23)
=5 dtelt (ny] e kxa® |p,) (4.1.24)

3 See, e.g., L. van Hove, Phys. Rev. 95, 249 (1954)

4 See, e.g., SM, sect. 2.6. 3 = 1/kT in terms of Boltzmann’s constant k and the
temperature T'.
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Hence, by making use of the completeness relation
> Ing) (ng| =1,
na

one finds

dt lw —1K-X 1K' X 1
Seon (K, w) = /%h tNZ< e (8) ik 5<o>> (5 > . (4.1.25)

inc af

The correlation functions in (4.1.25) are evaluated using the density matrix
of the many-particle system (4.1.21), the thermal average of an operator O
being defined by

e—ﬁHo
©0)y=>" — (n[On) = Tr (pO) . (4.1.26)

n

One refers to Seon(inc) (K, w) as the coherent (incoherent) dynamical structure
function. Both contain an elastic (w = 0) and an inelastic (w # 0) component.
Using the density operator

N
Z X — Xq(t (4.1.27)

and its Fourier transform

N
1 —ik-x 1 § —ik-x
pk(t) = W/dgl'e k p(X, lf) = W (§ k D‘(t), (4128)
a=1

it follows from (4.1.25) that

Seanll) = [ e S alt)p-1l0)) (4.1.20)

Thus, the coherent scattering cross-section can be represented by the Fourier
transform of the density—density correlation function, where hk is the mo-
mentum transfer and fw the energy transfer from the neutron to the target
system. An important application is the scattering from solids to determine
the lattice dynamics. The one-phonon scattering yields, as a function of fre-
quency w, resonances at the values twy, (k), +wy,(k), and +w;(k), the fre-
quencies of the two transverse, and the longitudinal phonons. The width of
the resonances is determined by the lifetime of the phonons. The background
intensity is due to multiphonon scattering (see Sect. 4.7(i) and Problem 4.5).
The intensity of the single-phonon lines also depends on the scattering geom-
etry via the scalar product of k with the polarization vector of the phonons
and via the Debye-Waller factor. As a schematic example of the shape of
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S(:oh (k, w)

—W;  —w 0 Wi wy

Fig. 4.3. Coherent scattering cross-section as a function of w for fixed momentum
transfer k. Resonances (peaks) are seen at the transverse (+wy(k)) and longitudinal
(£wi(k)) phonon frequencies, as well as at w =0

the scattering cross section, we show in Fig. 4.3 S¢on for fixed k as a func-
tion of the frequency w. The resonances at finite frequencies are due to a
transverse and a longitudinal acoustic phonon, and, furthermore, one sees a
quasi-elastic peak at w = 0. Quasi-elastic peaks may result from disorder and
from relaxation and diffusion processes (Sect. 4.7(ii)).

The coherent scattering cross-section is a source of direct information
about density excitations, such as phonons in solids and fluids. The incoherent
component is a sum of the scattering intensities of the individual scatterers.
It contains information about the autocorrelations.

For other scattering experiments (e.g., with photons, electrons, or atoms)
one can likewise represent the scattering cross-section in terms of correlation
functions of the many-particle system. We shall pursue the detailed proper-
ties of the differential scattering cross-section here no further. These prelim-
inary remarks are intended mainly as additional motivation for the sections
that are to follow, where we will see that the correlation functions and the
susceptibility are related to one another. Causality will allow us to derive dis-
persion relations. Time-reversal invariance and translational invariance will
yield symmetry relations, and from the static limit and the commutation
relations we will derive sum rules.

4.2 Density Matrix, Correlation Functions

The Hamiltonian of the many-particle system will be denoted by Hy and
is assumed to be time independent. The formal solution of the Schrodinger
equation

0O, ) = Ho li 1) (1.2.1)
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is then

[, t) = Uo(t, to) [¥,t0) - (4.2.2)

Due to the time independence of Hj, the unitary operator Uy(t,to) (with
Uo(to, to) = 1) is given by

Uo(t, tg) = e iHolt=to)/n (4.2.3)
The Heisenberg state
[$u) = Ud(t,to) [v,t) = ¢, to) (4.2.4)

is time independent and the Heisenberg operators
A(t) — U(’)f (t,ﬁo)AUo(ﬁ, tO) — eiHo(t—to)/hAe—iHo(t—to)/h , (4.2.5)

corresponding to the Schrodinger operators A, B, .., satisfy the equation of
motion (Heisenberg equation of motion)

i

= [Ho, A(t)] (4.2.6)

d
—A(t
A1)
The density matrix of the canonical ensemble is
e—BHo

p=—

with the canonical partition function

Z = Tre PHo (4.2.7)
and for the grand canonical ensemble
e B(Ho—pN)
= 4.2.8
p Za (4.2.8)

with the grand canonical partition function

Zg = Tre AlHo—nN)

= 3% e BB =) [E 3 e—@(En—Nnm]
N m n

Since Hj is a constant of motion, these density matrices are time independent,
as indeed must be the case for equilibrium density matrices. The mean values
in these ensembles are defined by

(0) = Tx(p0) . (4.2.9)

In particular, we now wish to investigate the correlation functions
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C(t,t") = (A[t)B(t))
= Tr(p eiHUt/hAe—iHUt/heiHot//hBe—iHOt//h)

_ Tr(p eiHo(t—t')/hAe—iHo(t—t')/hB)

=Ct—-t,0) . (4.2.10)
Without loss of generality, we have set tg = 0 and used the cyclic invariance of
the trace and also [p, Hp] = 0. The correlation functions depend only on the
time difference; equation (4.2.10) expresses temporal translational invariance.

The following definitions will prove to be useful:

Gap(t) = (A()B(0)) (4.2.11a)

Gip(t) = (B(0)A()) - (4.2.11D)
Their Fourier transforms are defined by
> . >
Gipw) = /dt e“'Gp(t) . (4.2.12)

By inserting (4.2.5) into (4.2.12), taking energy eigenstates as a basis,
and introducing intermediate states by means of the closure relation 1 =

>
> m |m) (m|, we obtain the following spectral representation for G5 g(w):

2
Gaplw) = 7 e PEt) (n] Alm) (m| B n)
) (@ + w) (4.2.13a)
< 2 —B(En—pNy)
Gap(w) = — > e 7 i8I {n| Blm) (m| A|n)
) <@ + w) : (4.2.13b)
From this, it is immediately obvious that
Gp(—w) =G54(w) (4.2.14a)
Gipw) = Gz (w)e P (4.2.14b)

To derive the first relation, one compares G 5(—w) with (4.2.13a). The sec-
ond follows if one exchanges n with m in (4.2.13b) and uses the d-function.
The latter relation is always applicable in the canonical ensemble and is valid
in the grand canonical ensemble when the operators A and B do not change
the number of particles. If, however, B increases the particle number by Anpg,
then N, — N,, = Anpg and (4.2.14b) must be replaced by
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Gip(w) = GG p(w)e/hemnans) (4.2.141/)

Inserting A = px and B = p_y into (4.2.14a,b) yields the following rela-
tionship for the density—density correlation function:

Seon(k, —w) = e P8 1 (—k,w) . (4.2.15)
For systems possessing inversion symmetry S(k,w) = S(—k,w), and hence
Secon(k, —w) = e PS8 (k,w) . (4.2.16)

This relation implies that, apart from a factor Z—f in (4.1.19), the anti-Stokes
lines (energy loss by the sample) are weaker by a factor e™#" than the Stokes
lines (energy gain)®. For T — 0 we have Scon(k,w < 0) — 0, since the system
is then in the ground state and cannot transfer any energy to the scattered
particle. The above relationship expresses what is known as detailed balance
(Fig. 4.4):
Wi P = Wy 0 P or
Wnﬁn’ = Wn/ﬁneiﬁ(EnliEn) . (4217)

|

VVan’ VVn/Hn

Fig. 4.4. lllustration concern-
ing detailed balance

Here, W,,_.,,; and W,,/_,,, are the transition probabilities from the level n to
the level n' and vice versa, and P¢ and P¢, are the equilibrium occupation
probabilities. Detailed balance implies that these quantities are related to
one another in such a way that the occupation probabilities do not change
as a result of the transition processes.

4.3 Dynamical Susceptibility
We now wish to derive a microscopic expression for the dynamical suscepti-
bility. To this end, we assume that the system is influenced by an external

5 From the measurement of the ratio of the Stokes and anti-Stokes lines in Raman
scattering the temperature of a system may be determined.
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force F(t) which couples to the operator B.® The Hamiltonian then has the
form

H=Hy,+ H'(t) (4.3.1a)

H'(t)=-F(t)B . (4.3.1b)

For t < tg, we assume that F(¢t) = 0, and that the system is in equilibrium.
We are interested in the response to the perturbation (4.3.1b). The mean
value of A at time t is given by

(@) = Tr (ps(H)A) = Tr (U(t,to) ps(te) U' (1, t0) A) (43.2)
= Tr(ps(to) UT(t,t0) AU(t,to))

e—BHo

= Tr ( Ut(t.to) AUt t0))

where the notation (A(t)) is to be understood as the mean value of the Heisen-
berg operator (4.2.5). Here we have introduced the time-evolution operator
U(t, to) for the entire Hamiltonian H and inserted the solution

ps(t) = U(t, to)ps (to) U (t, t0)
of the von Neumann equation

i

ps = —[H.ps].

Then, using the cyclic invariance of the trace and assuming a canonical equi-
librium density matrix at time tg, we end up with the mean value of the
operator A in the Heisenberg representation.

The time-evolution operator U(t,tg) can be determined perturbation
theoretically in the interaction representation. For this, we need the equa-
tion of motion for U(¢, o). From

i 1,1) = 1,
it follows that J
ihEU(tato) o) = HU(t, to) [o)
and, thus,

(ih%U(Tf, to) — HU(t, to)) |tho) =0

S Physical forces are real and observables, e.g., the density p(x), are represented by
hermitian operators. Nonetheless, we shall also consider the correlation functions
for nonhermitian operators such as px (p;r( = p—xk), since we may also be interested
in the properties of individual Fourier components. F'(t) is a c-number.
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for every |1g), which yields the equation of motion

d
ihEU(t, to) = HU(t,to) . (4.3.3)
‘We now make the ansatz
Ut to) = e Hot=t)/hyr (¢ ) (4.3.4)

This gives

o Ao i (t—to) /R

1haU =e (—Ho+ H)U ,
and thus

1hth'(t to) = Hi(OU (1. 15) | (4.3.5)

where the interaction representation of H’
Hi(t) = eHlolt=to) /i f! (¢)e=iHoli=to) /B (4.3.6)

has been introduced. The integration of (4.3.5) yields for the time evolution
operator in the interaction representation U’ (¢, o) the integral equation

1 t
U'(t,tg) = 1+ E/t dt' Hy (U’ (t', to) (4.3.7)
0

and its iteration

U'(t, to)_1+—/ dt' H)(t')

/dt’/ dt"Hy(t")Hy (") + (4.3.8)
1h to to

=T exp (—%/t dt' H)(t )) .

Here, T is the time-ordering operator. The second representation of (4.3.8)
is not required at present, but will be discussed in more detail in Part III.

For the linear response, we need only the first two terms in (4.3.8). In-
serting these into (4.3.2), we obtain, to first order in F'(t),

(A1) = (A)y + = / ap' ([t to) /M Ao =)/ (1))

ih 0

= ()~ [ dAOBODFE) (43.9)
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The subscript 0 indicates that the expectation value is calculated with the
density matrix e=#H0 /Z of the unperturbed system. In the first term we have
exploited the cyclic invariance of the trace

e M - iHo (t—
<A(t)>o_Tr< et gt to>/h> = (), .

We now assume that the initial time at which the system is in equilibrium,
with density matrix e~#Ho /Z, lies in the distant past. In other words, we
take the limit ¢ty — —oo, which, however, does not prevent us from switching
on the force F(t') at a later instant. For the change in the expectation value
due to the perturbation, we obtain

A(A(t)) = (A(t)) — (A)y = /Oo dt' xap(t —t"F({t') . (4.3.10)

— 00

Here we have introduced the dynamical susceptibility, or linear response func-
tion

xan(t — 1) = 16t ~ ){[A®), BE), (13.11)

which is given by the expectation value of the commutator of the two Heisen-
berg operators A(t) and B(t') (with respect to the Hamiltonian Hy). The
step function arises from the upper integration boundary in Eq. (4.3.9) and
expresses causality. Within the equilibrium expectation value we can make
the replacements

At) — oiHot/h go—iHot/h o1 q B(t) — oiHot/h go—iHot/h

Equation (4.3.10) determines, to first order, the effect on the observable A of
a force that couples to B.
We also define the Fourier transform of the dynamical susceptibility

XAB(Z):/OO dt e*'xap(t) (4.3.12)

— 00

where z may be complex (see Sect. 4.4). In order to find its physical signifi-
cance, we consider a periodic perturbation which is switched on very slowly
(e = 0,e>0):

H' == (BF.e ™" + BT ) o' (4.3.13)

For this perturbation, it follows from (4.3.10) and (4.3.12) that

A(A(L)) = / dt’ (XAB(t — t')Fwe_i‘”t/ + xapi(t — t')Fw*)ei‘”t/) et

— 00

= xap(W)F e 4 x4t (—w)Erelwt . (4.3.14)
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The factor e that appears in the intermediate step can be put equal to 1
since € — 0. The effect of the periodic perturbation (4.3.13) on A(A(t))
is thus proportional to the force (including its periodicity) and to the
Fourier transform of the susceptibility. Resonances in the susceptibility ex-
press themselves as a strong reaction to forces of the corresponding fre-
quency.

4.4 Dispersion Relations

The causality principle demands that the response of a system can only be
induced by a perturbation occurring at an earlier time. This is the source of
the step function in (4.3.11), i.e.,

xap(t)=0 fort<0 . (4.4.1)

This leads to the theorem: x ap(z) is analytical in the upper half plane.
Proof. xap is only nonzero for ¢ > 0, where it is finite. Thus, the factor
e~Im 2 gyarantees the convergence of the Fourier integral (4.3.12).

For z in the upper half plane, the analyticity of x ap(z) allows us to use

Cauchy’s integral theorem to write

1 xaB(z')
=— [ d/>=—="—"~ . 4.4.2
Xap(2) = o~ /C S . (4.4.2)
Here, C' is a closed loop in the analytic region. We choose the path shown in
Fig. 4.5; along the real axis, and around a semicircle in the upper half plane,
with both parts allowed to expand to infinity.

Imz
oz
Rez . .
Fig. 4.5. Integration path C for
c deriving the dispersion relation

We now assume that xap(z) becomes sufficiently small at infinity that
the semicircular part of the integration path contributes nothing. We then
have

xap(z) = L /_ " g Xae@) (4.4.3)

2mi ' —z
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For real z it follows from (4.4.3) that

, . . dx’ xap(x')
Xap(@) = limyxap(@ +ic) = I [ o= 2=

_ /dw’ {p 1 m(s(x'_x)} xas(@)

2mi T —x

i.e.

xag(x) = %P / d:c’XA,B—(w/) : (4.4.4)

r — X

We encounter here the Cauchy principal value

/ Tr—€ oo !
P/dx’ﬂzlim (/ d:z:/Jr/ dx’)M.
-z =0\ J_o cte ' —x

We then arrive at the dispersion relations (also known as Kramers—Kronig
relations)

1 I !
Re xap(w) = 2P / du T XAE () (4.4.50)
™ w — W
and
1 ,Re xap(W’)
Im xap(w) = —=P [ d'—F—"——= . (4.4.5b)
™ w —w

These relationships between the real and imaginary parts of the susceptibility
are a consequence of causality.

4.5 Spectral Representation

We define” the dissipative response

1

Xin(t) = 5= (A, BO)) (45.12)
and
) = [ s (45.1b)

Given the Fourier representation of the step function

" Here, and below we omit the index 0 from the expectation value. The notation
() represents the expectation value with respect to the Hamiltonian Hy of the
entire system without external perturbation.
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< dw i
—e

o) = el—i>r(IJ1+ oo 2m _Mtw +ie’ (452)
we find
xanw) = [ de et o) 2 (0
= l/oo dw’ Xap(W')
T J oo w —w —ie
" /
- %P/dw’% +ixagw) (4.5.3)

where, in expressions such as the second line of (4.5.3), it should always
be understood that the limit ¢ — 0% is taken. This yields the following
decomposition of xap(w):

XaBWw) = X4pW) +iXipW) (4.5.4)
with
1 XI/ wl
(o) = 2P [arXast). (4.55)

When x/jp(w) is real, then, according to (4.5.5), so is x’yz(w) and (4.5.4)
represents the separation into real and imaginary parts. The relation (4.5.5)
is then identical to the dispersion relation (4.4.5a). The question as to the
reality of x’j 5(w) will be dealt with in Sect. 4.8.

4.6 Fluctuation—Dissipation Theorem

With the definitions (4.5.1b) and (4.2.11) we find

Xis®) = 5= (Gipw) - Gip@)) (16.1a)

which, together with (4.2.14b), yields

Xip() = 5:G7p() (1) . (16.1b)

These relations between G~ and x” are known as the fluctuation—dissipation
theorem. Together with the relation (4.5.3), one obtains for the dynamical
susceptibility

L[ GRa) = e
2rh J_ o w —w —ie

xap(w) (4.6.2)
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Classical limit Bhw < 1 : The classical limit refers to the frequency and
temperature region for which fhw < 1. The fluctuation—dissipation theorem
(4.6.1) then simplifies to

ﬁwG W) (4.6.3)

Xap(w) =
In the classical limit (i.e. G 5(w') # 0 only for Sh|w’| < 1) one obtains from
(4.6.2)

Xa5(0 B/dw Gop(W) = BGE5t=0) . (4.6.4)

Hence the static susceptibility (w = 0) is given in the classical limit by the
equal-time correlation function of A and B divided by kT

The name fluctuation—dissipation theorem for (4.6.1) is appropriate since
Gap(w) is a measure of the correlation between fluctuations of A and B,
whilst x’} 5 describes the dissipation.

That x” has to do with dissipation can be seen as follows: For a pertur-
bation of the form

H' =0(t) (ATFe ! + AF*e“') | (4.6.5)

where F' is a complex number, the golden rule gives a transition rate per unit
time from the state n into the state m of

+6(Em — By, + hw)| (m| AF* |n) |*} .

(4.6.6)

The power of the external force ( = the energy absorbed per unit time), with
the help of (4.6.1a) and (4.2.13a), is found to be

—_— Z —ﬁEn

= ﬁ h/.u (GiAt( ) — Gfmt(w)) |F|2
= 2WXAAT( w)|F[* (4.6.7)

where a canonical distribution has been assumed for the initial states. We
have thus shown that x’} ,; (w) determines the energy absorption and, there-
fore, the strength of the dissipation. For frequencies at which X'} 4;(w) is
large, i.e., in the vicinity of resonances, the absorption per unit time is large
as well.

Remark. If the expectation values of the operators A and B are finite, in some of
the relations of Chap. 4, it can be expedient to use the operators A(t)=A(t) — (A)
and B(t) = B(t) — (B), in order to avoid contributions proportional to §(w), e. g.
o(x,t) or gk—o(t). Since the commutator remains unchanged xas(t) = x415(t),
X'ap () = x 15(t) etc. hold.
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4.7 Examples of Applications

To gain familiarity with some characteristic forms of response and correlation
functions, we will give these for three typical examples: for a harmonic crystal,
for diffusive dynamics, and for a damped harmonic oscillator.

(i) Harmonic crystal. As a first, quantum-mechanical example, we calcu-
late the susceptibility for the displacements in a harmonic crystal. For the
sake of simplicity we consider a Bravais lattice, i.e., a lattice with one atom
per unit cell. We first recall a few basic facts from solid state physics concern-
ing lattice dynamics®. The atoms and lattice points are labeled by vectors
n = (ni,ng,n3) of natural numbers n; = 1,... ,N;, where N = N1 NaNj
is the number of lattice points. The cartesian coordinates are characterized
by the indices i = 1,2,3. We denote the equilibrium positions of the atoms
(i.e., the lattice points) by a,, so that the actual position of the atom n is
Xp = an + un, where uy, is the displacement from the equilibrium position.
The latter can be represented by normal coordinates Qx,

7 o 1 eik»anei
un(t) = =7 1; (k, \) Qi (t) (4.7.1)

where M the mass of an atom, k the wave vector, and €‘(k, \) the components
of the three polarization vectors, A = 1,2, 3. The normal coordinates can be
expressed in terms of creation and annihilation operators aL 5 and ay,» for
phonons with wave vector k and polarization A

Quer(®) = 15— (ara) + al 1 (0)) (172)

with the three acoustic phonon frequencies wy . Here, we use the Heisenberg
representation

ak,,\(t) = e_iwk’)‘tak,k(O) . (4.7.3)
After this transformation, the Hamiltonian takes the form
1
— T
H = ; hwy (ak,/\ak7>\ + 5) (4.7.4)

(ak,x = ak,A(0)). From the commutation relations of the x, and their adjoint
momenta one obtains for the creation and annihilation operators the standard
commutator form,

8 See, e.g., C. Kittel, Quantum Theory of Solids, 2nd revised printing, J. Wiley,
New York, 1987
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T —
[ak,,\, aklﬂx} = 6)\>\16kk/

(4.7.5)
[ax,x, awr x] = {GL,»CLL,»} =0.

The dynamical susceptibility for the displacements is defined by

X7 (n—n',t) = %(9(t)< [u;(t), u?, (0)] > (4.7.6)
and can be expressed in terms of

Y (n -, t) = %< [ (0). 2, (0)]) (4.7.7)
as

X9 (m—n't) =2i0@)x"7(n —1',t). (4.7.8)
The phonon correlation function is defined by

Dii(n—n',t) = <u;(t)uil, (0)> . (4.7.9)

For all of these quantities it has been assumed that the system is transla-
tionally invariant, i.e., one considers either an infinitely large crystal or a
finite crystal with periodic boundary conditions. For the physical quantities
of interest, this idealization is of no consequence. The translational invari-
ance means that (4.7.6) and (4.7.7) depend only on the difference n — n’.
The calculation of ¥/ (n—n’, t) leads, with the utilization of (4.7.1), (4.7.2),
(4.7.3), and (4.7.5), to

y 1 1 ; - ) )
135 o 1) = — ik-an+ik"-a,/ i k. \)ed k/ /\/
) = g D €l ) (€, X)
k/:)\’
h ' .
X —< [(ak,ke_lwk’/\t + atk )\elwk’/\t) 5 (ak’,)\’ + atk' )\/):|>
\/ 4Wk7)\wk/7)\/ ’ )

1 ik-(an—a,/) i j 1 et et
- 1 an an/ 1 k A *j k _ lu.)k»\ o IWkV)\ .
4NMZHe €k e (kA= (e o)
(4.7.10)

In the following, we shall make use of the fact that the polarization vectors
for Bravais lattices are real.” For (4.7.6), this yields:

% In non-Bravais lattices the unit cell contains r > 2 atoms (ions). The number of
phonon branches is 37, i.e., A = 1,... ,3r. Furthermore, the polarization vectors
e(k, \) are in general complex and in the results (4.7.11) to (4.7.18) the second
factor €/ (... ,\) must be replaced by ¢/*(..., \).
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. i J
: Zelk'(a“fa"’)—e (k, el (k, ) sinwi,at O(t)

- NM Y Wk,
(4.7.11)
and for the temporal Fourier transform
’ 1 (k, \)e o
Xz] (1’1 _ 1’1/, w) — W 1k (an—ay/) = \™ AV A A ¢ o /dt elwt SiIlLUk)\t )
Kk, b
(4.7.12)
Using the equations (A.22), (A.23), and (A.24) from QM I,
7d 82 = 2164 (2) = |md(2) +1P DV =it
se™" = 2mdy(z) = |mo(z) +1P | ~ —165%21Lie
° (4.7.13)
/de*isz 216 _(z) 5(2) ip (1 ili !
S =210_(2) = |w —iP| = ]| =—ilim
z e—0 2z — i€’
0
one obtains, for real z,
ij o 1k (an—ay/) Z(kv )\)Ej(k, /\)
X (n n,w ll—I%QNMZ Wk, A
(4.7.14a)
" 1 1
W+ wr i€ w—wky+ie
and for the spatial Fourier transform
A
)= S ) = 5y 3 S0
X “a
(4.7.14b)
o 1 1
Wt wgat+ie  w—wg+ie '
For the decompositions
X9 (m—n',w)=xY(n-n",w)+ix"7(n —n’,w) (4.7.15a)
and
X7 (q,w) = x"(q,w) +ix" (q,w) (4.7.15b)

this leads to
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1ij 1k (an—a /)6 k>‘) ( )
X (n n7w 2]\7]\4Z Wk,

X {p () (L)) e

/1] Ze ig-an z] Il w)
€(a,Nel(a,A)
“mr L

«{p <ﬁ> —p <w—;¢”>} (47.16D)

1"ij o ik-(an—a, NE (k )‘) (k )‘)
X —nw) = 2NMH Wi
X [0(w — wix) — 0w + wi 2] (4.7.17a)
//z] Ze ig-an 1] Il w)
TN (a,N)
N 2M ; Wq, A
X [0(w — wq,x) — 0w + wq,2)] - (4.7.17b)

The phonon correlation function (4.7.9) can be either calculated directly,
or determined with the help of the fluctuation—dissipation theorem from
X" (n —n',w):

DY (1’1 —n’ w) — 2h£ 1"ij (1’1 ' w)
’ ePhw _ 1X )
=2h[1 +nW)]x"“(n—n',w)
TN ik (anag) € (K Al (K, A) (4.7.182)

NM w
o k,\

X {1+ i) d(w — wien) = maead(w + wien)} s

analogously, it also follows that

DY (q,w) = 2k [1 + n(w)] X" (q,w)

_ mh~e(a M) (g,

4.7.18b
M N Wq, A ( )

X {14 nga)0(w — wg,n) = NgA0(w +wq )} -
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Here,

1
Ngx = <aL,Aaq,A> = S 1 (4.7.19)

is the average thermal occupation number for phonons of wave vector q and
polarization \. The phonon resonances in D% (q,w) for a particular q are
sharp J-function-like peaks at the positions fwq,x. The expansion of the
density—density correlation function, which determines the inelastic neutron
scattering cross-section, has as one of its contributions the phonon correla-
tion function (4.7.18b). The excitations of the many-particle system (in this
case the phonons) express themselves as resonances in the scattering cross-
section. In reality, the phonons interact with one another and also with other
excitations of the system, e.g, with the electrons in a metal. This leads to
damping of the phonons. The essential effect of this is captured by replacing
the quantity € by a finite damping constant (g, A). The phonon resonances
in (4.7.18) then acquire a finite width. See Fig. 4.3 and Problem 4.5.

(ii) Diffusion. The diffusion equation for M (x,t) reads:
M(x,t) = DV2M(x,t) (4.7.20)

where D is the diffusion constant and M (x,t) can represent, for example, the

magnetization density of a paramagnet. From (4.7.20) one readily finds!'®-1!
x(q,w) = x(q)%
X' (q,w) = x(q)WQ(f(#;);)2
X' (q,w) = x(q)$j§;g)2 (4.7.21)
2hw Dq?

> _

G (q; w) - X(q)l —e—Bhw 2 | (Dq2)2

Figure 4.6 shows x'(q,w), x”(q,w), and G~ (q,w). One sees that x'(q,w) is
symmetric in w, whereas x”’(q, w) is antisymmetric. The form of G~ (q,w) also
depends on the value of 3hDg?, which in Fig. 4.6¢ is taken to be 3ADg? = 0.1.
In order to emphasize the different weights of the Stokes and anti-Stokes com-
ponents, Fig. 4.6d is drawn for the value BhDg? = 1. However, it should be
stressed that, for diffusive dynamics, this is unrealistic since, in the hydrody-
namic regime, the frequencies are always smaller than k7.

10 M(x,t) is a macroscopic quantity; from the knowledge of its dynamics the
dynamical susceptibility can be deduced (Problem 4.1). The same is true for the
oscillator @ (see Problem 4.2).

1 Here, we have also used ¥’ = Re x, x”” = Im ¥, which, according to Sect. 4.8,
holds for Qf = @ and M_q = MJ.



98 4. Correlation Functions, Scattering, and Response

06
03
0
x'(g,w) X" (g,w)
x(q) x(q) 0.0
0.3
-0.6 . . .
2 0o 2
w/Dq
(a) (b)
1.0
GZ (g,w) G> (q.w)
2hx(q) 2hix(q) 08
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0 2 o 2 4 4 2 o o
w/Dq w/Dq
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Fig. 4.6. Diffusive dynamics: (a) Real part and (b) imaginary part of the dynamical
susceptibility (4.7.21). The curves in (c) and (d) show G~ divided by the static
susceptibility as a function of 5% (c) for BhDg* = 0.1 and (d) for BhDg* =1

(iii) Damped oscillator. We now consider a damped harmonic oscillator

d d 2 _
m [ﬁ + ’75 + wo] Q=0 (4.7.22)
with mass m, frequency wy, and damping constant . If, on the right-hand
side of the equation of motion (4.7.22), one adds an external force F', then, in
the static limit, one obtains % = 1/mw3. Since this relationship defines the
static susceptibility, the eigenfrequency of the oscillator depends on its mass
and the static susceptibility x, according to wg = mix From the equation of
motion (4.7.22) with a periodic frequency-dependent external force one finds

for the dynamical susceptibility '®!! y(w) and for G (w)
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1/m
X(W)_ —w2+w8—iw7
1 —w? +w?
X' (w) = — 2 2\2 > 242
m (o wB)? + Wy
1 wy
" _ -
X (W)_ m(—w2+w§)2+w272
2hw
G” (w) = i

m(l — e Bh) (—w? + w2)2 4 w22

(4.7.23)

These quantities, each divided by x = 1/mw?, are shown in Fig. 4.7 as
functions of w/wg. Here, the ratio of the damping constant to the oscillator
frequency has been taken as v/wy = 0.4. One sees that ' and x” are symmet-
ric and antisymmetric, respectively. Figure 4.7¢ shows G~ (w) at Shwy = 0.1,
whereas Fig. 4.7d is for Shwy = 1. As in Fig. 4.6¢,d, the asymmetry be-
comes apparent when the temperature is lowered. The differences between
the intensities of the Stokes and anti-Stokes lines can be used, for example,

to determine the temperature of a sample by Raman scattering.

20

20

G (w)
2hx

-2 O 2
w/wo

(c)

G~ (w)
2hx

0

w/wo

{d)

Fig. 4.7. X' (w), X" (w) and G~ (w) for the harmonic oscillator -~ = 0.4. The two
plots of G~ (w) are for different values of Bhwo, namely in (c¢) Shwo = 0.1 and in

(d) ﬂth =1.0
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*4.8 Symmetry Properties

4.8.1 General Symmetry Relations

In the two previous figures we have seen that x'(w) is symmetric and x”(w)
antisymmetric, and that in G~ (w) the Stokes line is stronger than the anti-
Stokes line. We will now undertake a general investigation of the conditions
under which these symmetry properties hold. The symmetry properties that
will be discussed here are either of a purely mathematical nature and a direct
consequence of the definitions and of the usual properties of commutators
together with the dispersion relations and the relationships (4.2.14a,b), or
they are of a physical nature and follow from the symmetry properties of the
Hamiltonian, such as translational invariance, rotational invariance, inversion
symmetry, or time-reversal invariance. It follows from (4.6.1b) and (4.2.14b)
that

1 " 1 sre "
Xap(—w) = %GEB(*W) [1 — e ] = %e AR Gia(w) [1 — efn }
(4.8.1a)
and a further comparison with (4.6.1b) yields:
Xap(—w) = —xBaW) - (4.8.1Db)

This relation also follows from the antisymmetry of the commutator; see
(4.8.12D).

>
When B = Af, the correlation functions G54t (w) are real.

Proof:

*

G (W) = / dte ' (At)AT(0))| = / dte I A(0)AT (1))
_ / dt et (A1) AT(0)) = / dt o (A1) AT (0))
=G (w) .

(4.8.2)

For B = AT, then x/;,:(w) and x4 ,;(w) are also real and thus yield the
decomposition of x 44+ into real and imaginary parts:

Im XAAt = X/AAT 3 Re XAAT = X,/AAT . (483)

These properties are satisfied by the density—density correlation function.
The definitions of density correlation and density-response functions read:
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o0

S(k,w) = / dte“S(k,t) = / dt 3z e i kx=wDg(x 1) (4.8.4a)
where
S(x,t) = (p(x,t)p(0,0)) (4.8.4b)

denotes the correlation of the density operator (4.1.27). It follows with
(4.1.28) that

Sk, 1) = (ot pi(0) (4.8.40)
The susceptibility or response function is defined correspondingly through
x(k,w) or

oo

¥k, w) = / t e ([pult), - 0)]) (4.8.5)

The relationship between the density correlation function and Scon(k,w)
reads:
N
Sk,w) = V27Th$’coh(k,w) . (4.8.6)

Further symmetry properties result in the presence of space inversion sym-
metry. Since we then have x”(—k,w) = x”(k,w), it follows from (4.8.1b)
that

X'k, —w) = —x"(k,w) . (4.8.7a)

Thus x” is an odd function of w and, due to (4.8.3), is also real. Correspond-
ingly, x’(k,w) is even:

X (k, —w) = x'(k,w) . (4.8.7b)

This can be seen by means of the dispersion relation, since

oo oo

V(k —w) = P / dw' X"kW) / dw' ¥ (k, —w')

T WwHw T W+ w
Ood ! //k i
—Pp / iwzx’(k,w). (4.8.8)
T w—w

For systems with inversion symmetry the density susceptibility can, according
to (4.6.1a) and (4.2.14a), be represented in the form
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1
X' (k,w) = o (S(k,w) — S(k,—w)) . (4.8.9)

Inserting this into the dispersion relation, one finds

o0

1 1 1
/ - / / B
X(k,w)—2hﬂ_P/dw S(k’w)[w’w E—
- (4.8.10)
1 w'S(k,w')
= aP / dw/—w/Q _w2 .
From this one obtains the asymptotic behavior
1Sk
. / _ - ' s
EJIL%X k,w) = h7TP / dw — (4.8.11a)
1 o0
lim w?x/(k,w) = - / dw'w’'S(k,w') . (4.8.11b)
w—00 us

4.8.2 Symmetry Properties of the Response Function
for Hermitian Operators

4.8.2.1 Hermitian Operators

Examples of hermitian operators are the density p(x,t) and the momentum
density P(x,t). For arbitrary, and in particular also for hermitian, operators
A and B, one has the following symmetry relations:

Xap(t—t) = —Xpalt' — 1) (4.8.12a)

XapWw) = —xpal-w) . (4.8.12b)

This follows from the antisymmetry of the commutator. The relation for
the Fourier transform is identical to (4.8.1b). Likewise, from the definition
(4.5.1a), one can conclude directly

Xap(t =) = —xap(t—1t) (4.8.13a)

ie., x4p(t —t') is imaginary (the commutator of two hermitian operators is
antihermitian) and

XapW)" = —Xhp(-w) . (4.8.13D)
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Taken together, (4.8.12) and (4.8.13) yield:

Xap(t —t)" = +xpalt’ — 1) (4.8.14a)
and

XapWw)" = xpalw) - (4.8.14b)

Remark: For both the correlation function and the susceptibility, the trans-
lational invariance implies

Gi(x)B(x’) = G§B(X -x',...) (4.8.15a)
and the rotational invariance
> >
Ghx)B(x) = Gip(lx—x1,...) . (4.8.15Db)

It thus follows from (4.8.14b) for systems with spatial translational and ro-
tational invariance that

XZx(x)A(xf)(w) = X4a(lx — x|, w) (4.8.16)

is real and antisymmetric in w.
For different operators, it is the behavior under the time-reversal transfor-
mation that determines whether or not x” is real.

4.8.2.2 Time Reversal, Spatial and Temporal Translations

Time-reversal invariance

Under the time-reversal operation (Sect. 11.4.2.3), an operator A(x,t) trans-
forms as follows:

A(x,t) — A'(x,t) = TA(x, )T ' = eaA(x, —t) . (4.8.17)
€4 is known as the signature and can take the following values:
ea = 1 (e.g., for position and for electric field)
ea = —1 (e.g., for velocity, angular momentum, and magnetic field).

For the expectation value of an operator B one finds
(a| Bla) = (TBa|Ta) = (TBT 'Ta|Ta)
= (Tal(TBT Y |Ta) . (4.8.18a)
Making use of (4.8.17), one obtains
(T[A(x, 1), B(x',t")]T )T = eaep[A(x, —t), B(X', —t)]

= —exep|A(x, —t), B(x',—t")] . (4.8.18Db)
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For time-reversal-invariant Hamiltonians, this yields:

Xap(t —t') = —eaepXap(t’ —1t) (4.8.19a)
and

Xap(w) = —eaepXap(—w) = eaepxpalw) - (4.8.19b)

When €4 = €p, then x’j 5(w) is symmetric under exchange of A and B, odd
in w, and real. When €4 = —ep, then x/j5(w) is antisymmetric under the
exchange of A and B, even in w, and imaginary. If a magnetic field is present,
then its direction is reversed under a time-reversal transformation

Xap(w;B) = eaepxpa(w; —B)
= —eaepXip(—w; —B). (4.8.20)
Finally, we remark that, from (4.8.13b) and (4.5.3),
XapWw) = xap(-w) . (4.8.21)

This relation guarantees that the response (4.3.14) is real.

Translational invariance of the correlation function

(A(x,t)B(x', 1))
(T ' TaA(x, )Ty ' T B(X' , t) Ty ' Ta)

f(x, 6%, 1)

(T;'A(x+a,t)B(x' +a,t')T,) .

If the density matrix p commutes with T, i.e., [Ta, p] = 0, then, due to the
cyclic invariance of the trace, it follows that

(A(x,t)B(x',t")) = (A(x + a,t)B(x' +a,t)) (4.8.22)
= f(x—x,t0,t) |

where in the last step we have set a = —x’. Thus, spatial and temporal
translational invariance together yield:

fxtx )= fx—x,t—t). (4.8.23)

Rotational invariance

A system can be translationally invariant without being rotationally invari-
ant. When rotational invariance holds, then (for any rotation matrix R)

fx—xt—t)=f(Rx—x),t—t)=f(lx—x|,t—=t'), (4.8.24)

independent of the direction.



*4.8 Symmetry Properties 105

Fourier transformation for translationally invariant systems yields:
flk, ;X 1) = / da P’ e RxTIN f(x 1)
= /d3:1: d3:c’e_ik‘x_ik/‘x/f(x -x't—t).
Substituting y = x — x’ leads to

fktkl / /d3 I/d3ye—1k(y+x)1k’Xf( t_t)
= (21)%0®) (k + K') f(k,t —t')
If rotational invariance holds, then

flk,t —t') = f(lk|,t —t) . (4.8.25)

4.8.2.3 The Classical Limit

We have already seen (Eqgs. (4.6.3),(4.6.4)) that, in the classical limit (hw <
kT):

XapWw) = ﬁ —Gip(w) and (4.8.26a)

xap(0) = BGAB(t =0) . (4.8.26D)
From the time-reversal relation for x’j 5(w), Eq. (4.8.19b), it follows that

Gap(—w) = eaepGipw) . (4.8.27)

When €4 = ep, then G 5(w) is symmetric in w, real, and symmetric upon
interchange of A and B. (The latter follows from the fluctuation—dissipation
theorem and from the symmetry of x4 5(w)). When €4 = —ep, then G55 is
odd in w, antisymmetric upon interchange of A and B, and imaginary.

For €4 = ep, equation (4.8.26a) is equivalent to

Bw

Im xap(w) = —G55w) . (4.8.28)

The half-range Fourier transform of G7(t), i.e. the Fourier transform of
O(t)G7 5(t) satisfies in the classical limit
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oo

Glipw) dte'GZp(1)

° : > dw’ I
— dtelwt/ _eflw tGiB(w/>

oo 2m

e’} . Ood”'—iw”t ood/ o, ,
:/ dt elwt/ ;_71'(14)6”—4»16/ %e_w tGiB(w)

o W —w —ie
L2 % )
21 B J_ oo W(W —w —ie)

o0 1 1 1
dw'leB(w/) <_, - )

0 J oo W Ww—w—ie) —w —ie

= BLNAB(O) ~ xaBW)) . (4.8.29)

4.8.2.4 Kubo Relaxation Function

The Kubo relaxation function is particularly useful for the description of the
relaxation of the deviation §(A(t)) after the external force has been switched
off (see SM, Appendix H).

The Kubo relaxation function of two operators A and B is defined by

oan(t) =3 [t (1A@). BONe (4:8.30)
and its half-range Fourier transform is given by

ban(w) = /0 Tt g an(t) (1.831)
It is related to the dynamical susceptibility via

¢a(t=0) = xap(w=0) (4.8.32a)
and

6an(©) = = (Xan() ~ Xa5(0) (4.832b)

The first relation follows from a comparison of (4.3.12) with (4.8.31) and the
second from a short calculation (Problem 4.6). Equation (4.8.29) thus implies
that, in the classical limit,

$ap(w) = BGHE(W) . (4.8.33)
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4.9 Sum Rules

4.9.1 General Structure of Sum Rules

We start from the definitions (4.5.1a,b)

1 dw _;,

H (40, BO) = [ Fetryw) (19.1)
and differentiate this n times with respect to time:

%<[$—1A(f),3(0)]> = / d?w(—iw)"e‘i“tx’lm(w) :

Repeated substitution of the Heisenberg equation yields, for ¢ = 0,

d?ww"xl’w(w) = %< {%A(t”t—o’ B(O)} >

1
= ([ (A Hol ... Ho] B]).

(4.9.2)

The right-hand side contains an n-fold commutator of A with Hy. If these
commutators lead to simple expressions, then (4.9.2) provides information
about moments of the dissipative part of the susceptibility. Such relations
are known as sum rules.

The f-sum rule: An important example is the fsum rule for the density—
density susceptibility, which, with the help of (4.8.9), can be represented
as a sum rule for the correlation function

dw _ dw I T
Sowx(kw) = [ 3508(0cw) = gt o)
The commutator on the right-hand side can be calculated with px = ik - jx,
which yields, for purely coordinate-dependent potentials, the standard form
of the fsum rule

dw w k2

where n = % is the particle number density.

There are also sum rules that result from the fact that, in many cases,
in the limit k — 0 and w — 0 the dynamical susceptibility must transform
into a susceptibility known from equilibrium statistical mechanics.
Compressibility sum rule: As an example, we will use (4.8.11a) to give the
compressibility sum rule for the density response function:

12

12 p.C. Kwok and T.D. Schultz, J. Phys. C2, 1196 (1969)
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) dwlS(k,w) on\

Here we have made use of the relationship

, _ 1 (oN _ N oV
“O’O)‘V(au)m‘ Vi \aP ),y

(5h),.,~ (5)

= —N —_— =N R ,

OP ) n OP )y

which derives from (4.8.26b) and from thermodynamics®®.
The static form factor is defined by

S(k) = (pxp—x) - (4.9.5)

This determines the elastic scattering and is related to S(k,w) via

/d—wS(k,w) =5(k) . (4.9.6)
27
The static form factor S(k) can be deduced from x-ray scattering.
Equations (4.9.3), (4.9.4), and (4.9.6) provide us with three sum rules
for the density correlation function. The sum rules give precise relationships
between S(k,w) and static quantities. When these static quantities are known
from theory or experiment and one has some idea of the form of S(k,w), it
is then possible to use the sum rules to determine the parameters involved in
S(k,w). We shall elucidate this for the example of excitations in superfluid
helium, discussed in Sect. 3.2.3.

4.9.2 Application to the Excitations in He II

Let us return to the excitations in superfluid helium of Sect. 3.2.3. We ap-
proximate S(q,w) by an infinitely sharp density resonance (phonon, roton)
and assume T = 0 so that only the Stokes component is present:

S(q,w) = Zgd(w —eq/h) . (4.9.7)
Inserting this into the fsum rule (4.9.3) and the form factor (4.9.6) yields:

ng?
= — . 4. .
‘a 2mS(q) (4.9.8)

13 See, e.g., L.D. Landau and E.M. Lifschitz, Course of Theoretical Physics, Vol.
5. Statistical Physics 3rd edn. Part 1, E.M. Lifshitz, L.P. Pitajevski, Pergamon,
Oxford, 1980; F. Schwabl, Statistical Mechanics, 2nd ed., Springer, Berlin Hei-
delberg, 2006, Eq. (3.2.10)
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The fsum rule (4.9.3) and compressibility sum rule (4.9.4) give, in the limit
q—0,

1 /0P whng hing
=h =/ — = Lg=—— = 4.9.
‘a 514 m <6n)Tq TN sy S(a) 2msyp (4.9.9)

where we have introduced the isothermal sound velocity sr = 4/ (g—i)T /m.

The relationship (4.9.8) between the energy of the excitations and the static
form factor was first derived by Feynman'“. Figure 4.8 shows experimental
results for these two quantities. For small ¢, it is seen that S(q) increases
linearly with ¢, yielding the linear dispersion relation in the phonon regime.

The maximum of S(q) at g ~ 24" leads to the roton minimum.

€q [K] S(a)
15 1.5T
10 1.01
5 0.5T
0 1 2 qAl 0 | 12 | 14 | q[A™']
(a) (b)

Fig. 4.8. (a) The excitations of He IT at low temperatures: (i) under vapor pressure,
(i) at 25.3 atm. (b) The static form factor *°

Problems

4.1 Confirm the validity of Eq. (4.7.21) by adding an external magnetic field H (x,t)
to the diffusion equation (4.7.20).

4.2 For the classical damped harmonic oscillator
d? d =
(@ g +w0) Q) = F(t)/m

1"

determine the following functions: x(w), x'(w) x”(w), and G~ (w).

!4 R. Feynman, Phys. Rev. B 94, 262 (1954)
5 D.G. Henshaw, Phys. Rev. 119, 9 (1960); D.G. Henshaw and A.D.B. Woods,
Phys. Rev. 121, 1266 (1961)
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Hint: Solve the equation of motion in Fourier space and determine the dynamical

susceptibility from y(w) = %i—;.

4.3 Prove the f~sum rule,

dw dw k2
it - | 2 LS(k.w) =
/ o X (k,w) / 27Thws( w) 2m"
for the density—density correlation function.
Hint: Calculate 5z ([fx, p—k]).

4.4 Show, for B = AT, that G35 (w), G55(w), Xas(w), and X4z (w) are real.

4.5 Show that the coherent neutron scattering cross-section for harmonic phonons,
Eqgs. (4.1.29) and (4.7.1) ff., can be written as

_ow 1 “i(an—am)k [ At iwt (keun()k-um(0))
Scon(k,w) =e ~ e nTHm / 5 @ » m (4.9.10)
— 00

with the Debye—Waller factor

2
eV = o= ((kun(0)?) (4.9.11)
Expand the last exponential function in S, (k,w) as a Taylor series. The zeroth-
order term corresponds to elastic scattering, the first-order term to one-phonon
scattering, and the higher-order terms to multiphonon scattering.

4.6 Derive the relation (4.8.32b) by suitable partial integration, and using ¢ag(t =
oo0) = 0.
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Relativistic Wave Equations



5. Relativistic Wave Equations
and their Derivation

In this chapter, the relativistic wave equations for particles with spin 0 and
1/2 will be determined on the basis of the correspondence principle and fur-
ther general considerations.

5.1 Introduction

Quantum theory is based on the following axioms':

1. The state of a system is described by a state vector |¢) in a linear space.
2. The observables are represented by hermitian operators A..., and func-
tions of observables by the corresponding functions of the operators.

3. The mean (expectation) value of an observable in the state |¢) is given

by (4) = (¥ Aly).
4. The time evolution is determined by the Schrédinger equation involving
the Hamiltonian H

i a|¢> = Hp) . (5.1.1)

5. If, in a measurement of the observable A, the value a,, is found, then the
original state changes to the corresponding eigenstate |n) of A.

We consider the Schrédinger equation for a free particle in the coordinate
representation

Lov K

A v 2
W = =5V, (5.1.2)

It is evident from the differing orders of the time and the space derivatives
that this equation is not Lorentz covariant, i.e., that it changes its structure
under a transition from one inertial system to another.

Efforts to formulate a relativistic quantum mechanics began with at-
tempts to use the correspondence principle in order to derive a relativis-
tic wave equation intended to replace the Schrodinger equation. The first
such equation was due to Schrodinger (1926)%, Gordon (1926)3, and Klein

1 See QM I, Sect. 8.3.
2 E. Schrodinger, Ann. Physik 81, 109 (1926)
3 W. Gordon, Z. Physik 40, 117 (1926)
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(1927)%. This scalar wave equation of second order, which is now known as
the Klein—Gordon equation, was initially dismissed, since it led to negative
probability densities. The year 1928 saw the publication of the Dirac equa-
tion®. This equation pertains to particles with spin 1/2 and is able to de-
scribe many of the single-particle properties of fermions. The Dirac equation,
like the Klein—Gordon equation, possesses solutions with negative energy,
which, in the framework of wave mechanics, leads to difficulties (see below).
To prevent transitions of an electron into lower lying states of negative en-
ergy, in 1930 Dirac postulated that the states of negative energy should
all be occupied. Missing particles in these otherwise occupied states repre-
sent particles with opposite charge (antiparticles). This necessarily leads to
a many-particle theory, or to a quantum field theory. By reinterpreting the
Klein-Gordon equation as the basis of a field theory, Pauli and Weisskopf”
showed that this could describe mesons with spin zero, e.g., m mesons. The
field theories based upon the Dirac and Klein—Gordon equations correspond
to the Maxwell equations for the electromagnetic field, and the d’Alembert
equation for the four-potential.

The Schrédinger equation, as well as the other axioms of quantum theory,
remain unchanged. Only the Hamiltonian is changed and now represents a
quantized field. The elementary particles are excitations of the fields (mesons,
electrons, photons, etc.).

It will be instructive to now follow the historical development rather than
begin immediately with quantum field theory. For one thing, it is concep-
tually easier to investigate the properties of the Dirac equation in its inter-
pretation as a single-particle wave equation. Furthermore, it is exactly these
single-particle solutions that are needed as basis states for expanding the field
operators. At low energies one can neglect decay processes and thus, here, the
quantum field theory gives the same physical predictions as the elementary
single-particle theory.

5.2 The Klein—Gordon Equation

5.2.1 Derivation by Means of the Correspondence Principle

In order to derive relativistic wave equations, we first recall the correspon-
dence principle®. When classical quantities were replaced by the operators

0
ener E —ih—
& ot
% 0. Klein, Z. Physik 41, 407 (1927)
5 P.A.M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928); ibid. A118, 351
(1928)
6 P.A.M. Dirac, Proc. Roy. Soc. (London) A126, 360 (1930)
" W. Pauli and V. Weisskopf, Helv. Phys. Acta 7, 709 (1934)
8 See, e.g., QM I, Sect. 2.5.1
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and
h
momentum p— -V, (5.2.1)
i

we obtained from the nonrelativistic energy of a free particle

2
p

E=— 5.2.2
om’ ( )

the free time-dependent Schriodinger equation

h2v?

2m

.0
1hatz/1 = Y. (5.2.3)
This equation is obviously not Lorentz covariant due to the different orders
of the time and space derivatives.

We now recall some relevant features of the special theory of relativity.”
We will use the following conventions: The components of the space-time
four-vectors will be denoted by Greek indices, and the components of spa-
tial three-vectors by Latin indices or the cartesian coordinates x, y, z. In
addition, we will use Einstein’s summation convention: Greek indices that
appear twice, one contravariant and one covariant, are summed over, the
same applying to corresponding Latin indices.

Starting from z#(s) = (ct, x), the contravariant four-vector representation
of the world line as a function of the proper time s, one obtains the four-
velocity @#(s). The differential of the proper time is related to da° via ds =
V1= (v/c)?2dz®, where

v = c(dx/dz") (5.2.4a)

is the velocity. For the four-momentum this yields:

pH = meit(s) = L (mc) = four-momentum = (E/C) .
1—(v/c)2 \mv p

(5.2.4b)

In the last expression we have used the fact that, according to relativistic
dynamics, p° = mc/+/1 — (v/c)? represents the kinetic energy of the particle.
Therefore, according to the special theory of relativity, the energy £ and the
momentum p,, py, p. transform as the components of a contravariant four-
vector

E
pﬂ = (poﬂplapzapg) = (z;pwapyapz> . (5253.)

9 The most important properties of the Lorentz group will be summarized in Sect.
6.1.
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The metric tensor

10 0 O
0-10 0
00 0 —1
yields the covariant components
u E
Pp=9gwp = (?a _P> . (5.2.5b)

According to Eq. (5.2.4b), the invariant scalar product of the four-
momentum is given by

E2 2 2 2
pupt = — ~p=mic, (5.2.7)

with the rest mass m and the velocity of light c.
From the energy—momentum relation following from (5.2.7),

E = /p%c® + m3c* (5.2.8)

one would, according to the correspondence principle (5.2.1), initially arrive
at the following wave equation:

ih%z/z — V122V + m2ct o) . (5.2.9)

An obvious difficulty with this equation lies in the square root of the spatial
derivative; its Taylor expansion leads to infinitely high derivatives. Time and
space do not occur symmetrically.

Instead, we start from the squared relation:

E? = p?c® + m*c? (5.2.10)
and obtain
82

412@ = (—h2AV? 4 m2chyy . (5.2.11)

This equation can be written in the even more compact and clearly Lorentz-
covariant form

mc

(aﬂaﬂ + (7)2> b =0. (5.2.11)

Here z* is the space—time position vector

' = (2 = ct,x)
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and the covariant vector
9]
" Oan

is the four-dimensional generalization of the gradient vector. As is known
from electrodynamics, the d’Alembert operator O = J,,0* is invariant under
Lorentz transformations. Also appearing here is the Compton wavelength
h/me of a particle with mass m. Equation (5.2.11’) is known as the Klein—
Gordon equation. It was originally introduced and studied by Schrédinger,
and by Gordon and Klein.

We will now investigate the most important properties of the Klein—
Gordon equation.

5.2.2 The Continuity Equation

To derive a continuity equation one takes ¢* times (5.2.11")

o (a3 )=

and subtracts the complex conjugate of this equation

¢<aaﬂ+( ))w ~0.

This yields

Y*0,0M) — 0, 0" =0

(0t — 0" y*) =0
Multiplying by %, so that the current density is equal to that in the non-
relativistic case, one obtains

5 (g (05 050 )) + V- g 070 = W] =

ot \ 2mc?
(5.2.12)

This has the form of a continuity equation

p+divi=0, (5.2.12")
with density

p= 2;112 (z/z*%—lf — 1/16(;/];) (5.2.13a)
and current density

. h

j= o (VY — VYT (5.2.13b)

2mi
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Here, p is not positive definite and thus cannot be directly interpreted as a
probability density, although ep(x,t) can possibly be conceived as the corre-
sponding charge density. The Klein—Gordon equation is a second-order dif-
ferential equation in ¢ and thus the initial values of ¢ and %it can be chosen
independently, so that p as a function of x can be both positive and negative.

5.2.3 Free Solutions of the Klein—Gordon Equation

Equation (5.2.11) is known as the free Klein—-Gordon equation in order to
distinguish it from generalizations that additionally contain external poten-
tials or electromagnetic fields (see Sect. 5.3.5). There are two free solutions
in the form of plane waves:

Y(x,t) = elBt-px)/h (5.2.14)
with
E = 4+/p2c2 + m3c4 .

Both positive and negative energies occur here and the energy is not bounded
from below. This scalar theory does not contain spin and could only describe
particles with zero spin.

Hence, the Klein-Gordon equation was rejected initially because the pri-
mary aim was a theory for the electron. Dirac®had instead introduced a first-
order differential equation with positive density, as already mentioned at the
beginning of this chapter. It will later emerge that this, too, has solutions
with negative energies. The unoccupied states of negative energy describe an-
tiparticles. As a quantized field theory, the Klein-Gordon equation describes
mesons’. The hermitian scalar Klein-Gordon field describes neutral mesons
with spin 0. The nonhermitian pseudoscalar Klein—Gordon field describes
charged mesons with spin 0 and their antiparticles.

We shall therefore proceed by constructing a wave equation for spin-1,/2
fermions and only return to the Klein—-Gordon equation in connection with
motion in a Coulomb potential (7~ -mesons).

5.3 Dirac Equation

5.3.1 Derivation of the Dirac Equation

We will now attempt to find a wave equation of the form

ih%—f = (tho/“ak + 6mc2) v =Hi. (5.3.1)

Spatial components will be denoted by Latin indices, where repeated indices

. . 2 . .
are to be summed over. The second derivative % in the Klein—-Gordon equa-
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tion leads to a density p = (w*% — c.c.). In order that the density be
positive, we postulate a differential equation of first order. The requirement
of relativistic covariance demands that the spatial derivatives may only be of
first order, too. The Dirac Hamiltonian H is linear in the momentum operator
and in the rest energy. The coefficients in (5.3.1) cannot simply be numbers:
if they were, the equation would not even be form invariant (having the same
coefficients) with respect to spatial rotations. a* and 3 must be hermitian
matrices in order for H to be hermitian, which is in turn necessary for a
positive, conserved probability density to exist. Thus o and § are N x N
matrices and

U1

P = : an N-component column vector .
YN
We shall impose the following requirements on equation (5.3.1):

(i) The components of 1 must satisfy the Klein—-Gordon equation so that
plane waves fulfil the relativistic energy-momentum relation E? = p?c?+
m2ct.

(ii) There exists a conserved four-current whose zeroth component is a pos-
itive density.

(iii) The equation must be Lorentz covariant. This means that it has the
same form in all reference frames that are connencted by a Poincaré
transformation.

The resulting equation (5.3.1) is named, after its discoverer, the Dirac equa-
tion. We must now look at the consequences that arise from the conditions
(i)—(iii). Let us first consider condition (i). The two-fold application of H
yields

02
_#Eﬁ :—#223 (alad + alal) 8,0,
hme® & i i 22 4
> (a8 + pBat) 0 + BPmicty . (5.3.2)
=1

Here, we have made use of 0;0; = 0;0; to symmetrize the first term on the
right-hand side. Comparison with the Klein-Gordon equation (5.2.11") leads
to the three conditions

o' +alat =267 1, (5.3.3a)

a'f+pat =0, (5.3.3b)

2 _ 62 =1. (533C)
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5.3.2 The Continuity Equation

The row vectors adjoint to v are defined by

O = (W1, PR -
Multiplying the Dirac equation from the left by v, we obtain
it 20 = Cytaip 4 meutoy (5.3.40)
The complex conjugate relation reads:
ﬂhaw )= ff ( o) o'ty + meT gy (5.3.4b)

The difference of these two equations yields:
0
D (1) = —e ((00") 0¥ + vioous) + 1 (s — w15
(5.3.5)

In order for this to take the form of a continuity equation, the matrices a
and 8 must be hermitian, i.e.,

ol =at, BI=23. (5.3.6)
Then the density

N
p=iy = Z Viba (5.3.7a)

a=1

and the current density

Gk = ceytaby (5.3.7b)
satisfy the continuity equation
0
5" +divj=0. (5.3.8)
With the zeroth component of j#,
V=cp, (5.3.9)
we may define a four-current-density
i* = (%4 (5.3.9')
and write the continuity equation in the form
10 0
Ot ===+ =7 =0. 5.3.10
:U'j c 6t + 6$kj ( )

The density defined in (5.3.7a) is positive definite and, within the framework
of the single particle theory, can be given the preliminary interpretation of a
probability density.
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5.3.3 Properties of the Dirac Matrices

The matrices o, 3 anticommute and their square is equal to 1; see Eq.
(5.3.3a-—c). From (af)? = §% = 1, it follows that the matrices o and 3
possess only the eigenvalues £1.

We may now write (5.3.3b) in the form

ok = —pakp .
Using the cyclic invariance of the trace, we obtain
Traf = —Tr ¥ B3 = —Tra*fB% = —Tra .
From this, and from an equivalent calculation for 3, one obtains

Trak =Tr3=0. (5.3.11)

Hence, the number of positive and negative eigenvalues must be equal and,
therefore, N is even. N = 2 is not sufficient since the 2 x 2 matrices
1, 0., oy, 0, contain only 3 mutually anticommuting matrices. N = 4 is the
smallest dimension in which it is possible to realize the algebraic structure
(5.3.3a—c).

A particular representation of the matrices is

of = <£i UO> . B= (1(1)_](1)) , (5.3.12)

where the 4 x 4 matrices are constructed from the Pauli matrices

L (01 s (0—i ., (10
U—(lo), U—(i O)’ U—(Ol) (5.3.13)

and the two-dimensional unit matrix. It is easy to see that the matrices
(5.3.12) satisfy the conditions (5.3.3a—c):

i i O—O'i 0 O'i o
e.g., aﬁ—i—ﬁa—(ai 0 )+(Ui0)_0.

The Dirac equation (5.3.1), in combination with the matrices (5.3.12), is re-
ferred to as the “standard representation” of the Dirac equation. One calls 1)
a four-spinor or spinor for short (or sometimes a bispinor, in particular when
1 is represented by two two-component spinors). ¥ is called the hermitian
adjoint spinor. It will be shown in Sect. 6.2.1 that under Lorentz transfor-
mations spinors possess specific transformation properties.

5.3.4 The Dirac Equation in Covariant Form

In order to ensure that time and space derivatives are multiplied by matrices
with similar algebraic properties, we multiply the Dirac equation (5.3.1) by
B/c to obtain
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—ihBOY — ihBa dit) + meh =0 . (5.3.14)
We now define new Dirac matrices

V=8

~i = Bal .

These possess the following properties:

(5.3.15)

k

4 is hermitian and (7°)? = 1. However, v* is antihermitian.

(v¥)' = —9* and (v%)? = —1.
Proof:
t
(vF) = "8 = —par = 4~

2
(vk) = Ba* Bk = -1 .
These relations, together with
7* +7%4" = BBa + B3 =0 and
Vit 4 AR = BaF ol + BalBaf =0 for k #1
lead to the fundamental algebraic structure of the Dirac matrices
AT 4 AP = 2gHV T . (5.3.16)

The Dirac equation (5.3.14) now assumes the form
(fm#a# + %) $b=0. (5.3.17)

It will be convenient to use the shorthand notation originally introduced by
Feynman:

=~.v=~"0, =y, 0" =40 — yv . 5.3.18
P=n Yo, =y, y vy

Here, v* stands for any vector. The Feynman slash implies scalar multiplica-
tion by 7y,. In the fourth term we have introduced the covariant components
of the v matrices

Vi = G - (5.3.19)
In this notation the Dirac equation may be written in the compact form
(fi(;pr %C) W=0. (5.3.20)

Finally, we also give the v matrices in the particular representation (5.3.12).
From (5.3.12) and (5.3.15) it follows that
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v —<0_]1 =i o) (5.3.21)

Remark. A representation of the v matrices that is equivalent to (5.3.21) and
which also satisfies the algebraic relations (5.3.16) is obtained by replacing

v — MyM™",

where M is an arbitrary nonsingular matrix. Other frequently encountered repre-
sentations are the Majorana representation and the chiral representation (see Sect.
11.3, Remark (ii) and Eq. (11.6.12a—)).

5.3.5 Nonrelativistic Limit
and Coupling to the Electromagnetic Field

5.3.5.1 Particles at Rest

The form (5.3.1) is a particularly suitable starting point when dealing with
the nonrelativistic limit. We first consider a free particle at rest, i.e., with
wave vector k = 0. The spatial derivatives in the Dirac equation then vanish
and the equation then simplifies to

ih%—f = Bmc*e) . (5.3.17")
This equation possesses the following four solutions
1 0
) _ ot 8 Ll = o imelt (1) ’
0 0
(5.3.22)
0 0
i e [0 g o1
0 1

The 7,/1§+), 1/1§+) and 1/)5_), 1/1§_) correspond to positive- and negative-energy
solutions, respectively. The interpretation of the negative-energy solutions
must be postponed until later. For the moment we will confine ourselves to
the positive-energy solutions.

5.3.5.2 Coupling to the Electromagnetic Field

We shall immediately proceed one step further and consider the coupling to
an electromagnetic field, which will allow us to derive the Pauli equation.
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In analogy with the nonrelativistic theory, the canonical momentum p is
replaced by the kinetic momentum (p — %A), and the rest energy in the
Dirac Hamiltonian is augmented by the scalar electrical potential e®,

ih%—i} = (ca . (p — SA) + Bmc® + e@) P . (5.3.23)
c
Here, e is the charge of the particle, i.e., e = —eq for the electron. At the end

of this section we will arrive at (5.3.23), starting from (5.3.17).

5.3.5.3 Nonrelativistic Limit. The Pauli Equation

In order to discuss the nonrelativistic limit, we use the explicit representation
(5.3.12) of the Dirac matrices and decompose the four-spinors into two two-
component column vectors ¢ and x

w= (f) , (5.3.24)

X
with

m% (i) - C(Z :Z) +ed (i) + me? (‘2) , (5.3.25)
where

T=p-— ZA (5.3.26)

is the operator of the kinetic momentum.
In the nonrelativistic limit, the rest energy mc? is the largest energy
involved. Thus, to find solutions with positive energy, we write

(i) - e—”’?2t<i> , (5.3.27)

where (;‘z) are considered to vary slowly with time and satisfy the equation

ind (‘p> = c(” ' ”X) +ed (‘p) — 9me? <0> . (5.3.25')
at \ x o-Tp X X

In the second equation, hy and e®y may be neglected in comparison to
2mc?y, and the latter then solved approximately as

g- T

= ) 5.3.28
X=5— ( )
From this one sees that, in the nonrelativistic limit, x is a factor of order
~ v/c smaller than . One thus refers to ¢ as the large, and x as the small,

component of the spinor.
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Inserting (5.3.28) into the first of the two equations (5.3.25") yields

ih?‘)_f = (ﬁ(a -m)(o ) + e@) ©. (5.3.29)

To proceed further we use the identity
oc-ac-b=a-b+ioc-(axb),

which follows from!'®!1 god = §;; + i€”/*o*, which in turn yields:

2 e—ha ‘B.

c

o-mo -T=n’4ic-TXT="

Here, we have used!?

(m x w)'p = —ih (_e> ik (8jAk - Akaj) ®

c
he .. he

— (Ciik (ajAk) p= i—eBQp
c c

with B! = ¢k 8jAk. This rearrangement can also be very easily carried out by
application of the expression

VxAp+AXxVp=VxAp—VexA=(VxA)p.
We thus finally obtain

dp 1 e \2 eh
ih— = |— (p— -A) - —o0o- ) .3.29'
in ot [Qm (p c ) 2me’ Bted) v (5:3.29')

This result is identical to the Pauli equation for the Pauli spinor ¢, as is known
from nonrelativistic quantum mechanics'3. The two components of ¢ describe
the spin of the electron. In addition, one automatically obtains the correct
gyromagnetic ratio g = 2 for the electron. In order to see this, we simply
need to repeat the steps familiar to us from nonrelativistic wave mechanics.
We assume a homogeneous magnetic field B that can be represented by the
vector potential A:

10 Here, €% is the totally antisymmetric tensor of third rank

- 1 for even permutations of (123)
g% — { —1 for odd permutations of (123)
0 otherwise

QM I, Eq.(9.18a)

12 Vectors such as E, B and vector products that are only defined as three-vectors
are always written in component form with upper indices; likewise the € tensor.
Here, too, we sum over repeated indices.

13 See, e.g., QM I, Chap. 9.
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1
B=culA, A= §B X X . (5.3.30a)
Introducing the orbital angular momentum L and the spin S as
1
L=xxp, S= 5710' , (5.3.30b)

then, for (5.3.30a), it follows!%1® that

e2

2
i %<p—L(L+ZS)-B+2

= A’ +ed ). 3.31
ot 2m  2mc +e>gp (5:331)

mc?
The eigenvalues of the projection of the spin operator Sé onto an arbitrary

unit vector € are £h/2. According to (5.3.31), the interaction with the elec-
tromagnetic field is of the form

e2

2mc?

Hing = —p-B + A’ +ed, (5.3.32)

in which the magnetic moment

(&
= Hornit + Hapin = 5 — (L +25) (5.3.33)

is a combination of orbital and spin contributions. The spin moment is of
magnitude

e
in=9=—9S 5.3.34
ll’spm g 29me ] ( )

with the gyromagnetic ratio (or Landé factor)

g=2. (5.3.35)
For the electron, 55— = —£E can be expressed in terms of the Bohr magneton
pp = £ =0.927 x 10~ erg/G.

We are now in a position to justify the approximations made in this
section. The solution ¢ of (5.3.31) has a time behavior that is character-

ized by the Larmor frequency or, for e = #, by the Rydberg energy
(Ry oc mc?a?, with the fine structure constant a = e2/he). For the hydrogen
and other nonrelativistic atoms (small atomic numbers Z), mc? is very much
larger than either of these two energies, thus justifying for such atoms the
approximation introduced previously in the equation of motion for y.

14 Qee, e.g., QM I, Chap. 9.
5 One finds —p~A—A~p:—2A-p:—2§ Bxx)-p=—(xxp)-B=-L-B,
since (p-A)=2(V-A)=0.
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5.3.5.4 Supplement Concerning Coupling
to an Electromagnetic Field

We wish now to use a different approach to derive the Dirac equation in
an external field and, to facilitate this, we begin with a few remarks on
relativistic notation. The momentum operator in covariant and contravariant
form reads:

pp =1h0, and p* =iko* . (5.3.36)
Here, 0, = 8% and O = %. For the time and space components, this
implies

0 0 h 0
0 : 1 .
=g = ih— =—p =ih— = ——— . 5.3.37
pm=ro=1 Oct’ p pr=1 o1 i ozt ( )

The coupling to the electromagnetic field is achieved by making the replace-
ment

(&
Pu = Pp = Au (5.3.38)

where A* = (@, A) is the four-potential. The structure which arises here is
well known from electrodynamics and, since its generalization to other gauge
theories, is termed minimal coupling.

This implies

0
ih—H —ih— —-A, (5.3.39)
which explicitly written in components reads:

0 0
1h&—>1ha—e¢

hd hd e, ho

(5.3.39)
i

- A 3 P = T 7
10z 10z c 10z c

For the spatial components this is identical to the replacement ?V — %V -
2A or p — p— ¢ A. In the noncovariant representation of the Dirac equation,
the substitution (5.3.39") immediately leads once again to (5.3.23).

If one inserts (5.3.39) into the Dirac equation (5.3.17), one obtains

(—'y“ (ih(?# — SA#) + mc) =0, (5.3.40)

which is the Dirac equation in relativistic covariant form in the presence of
an electromagnetic field.
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Remarks:
(i) Equation (5.3.23) follows directly when one multiplies (5.3.40), i.e.

A0 (mao - EAO) b= — (ma - EAi) b+ mey
c c
by 7
hBot) = o (fihai - EAf) o+ EAmp T meBy
.. 0 e 2
it = ca (psz)w+ed51/1+mc 8 .
(ii) The minimal coupling, i.e., the replacement of derivatives by derivatives mi-

nus four-potentials, has as a consequence the invariance of the Dirac equation
(5.3.40) with respect to gauge transformations (of the first kind):

V) — e B Oy@) . Auw) = Au(e) + dualz) .

(iii) For electrons, m = me, and the characteristic length in the Dirac equation
equals the Compton wavelength of the electron

e = =38x10"Mem .

MeC

Problems

5.1 Show that the matrices (5.3.12) obey the algebraic relations (5.3.3a—c).

5.2 Show that the representation (5.3.21) follows from (5.3.12).

5.3 Particles in a homogeneous magnetic field.

Determine the energy levels that result from the Dirac equation for a (relativistic)
particle of mass m and charge e in a homogeneous magnetic field B. Use the gauge
A% = Al = 43 =0, A% = Ba.



6. Lorentz Transformations
and Covariance of the Dirac Equation

In this chapter, we shall investigate how the Lorentz covariance of the Dirac
equation determines the transformation properties of spinors under Lorentz
transformations. We begin by summarizing a few properties of Lorentz trans-
formations, with which the reader is assumed to be familiar. The reader who
is principally interested in the solution of specific problems may wish to omit
the next sections and proceed directly to Sect. 6.3 and the subsequent chap-
ters.

6.1 Lorentz Transformations

The contravariant and covariant components of the position vector read:

a2t . aV=ct, 2l=2, 22=y, 3=z contravariant

T, : x=ct, ®=-T, Xp=-Y, T3=—z covariant.
(6.1.1)

The metric tensor is defined by

1 0 0 0
9= (9w) = (9") = 8 7(1) _(1) 8 (6.1.2a)
0 0 0-1
and relates covariant and contravariant components
Ty =g’ , z'=g"x, . (6.1.3)
Furthermore, we note that
g, = 9" 9o = 0%, , (6.1.2b)

1000

0100
Y — (SH ) —
(gu)_((su)_ 0010

0001
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The d’Alembert operator is defined by

192 &K o2 )
0= ek T 0,0" = g, 0"0" . (6.1.4)
1

1=

Inertial frames are frames of reference in which, in the absence of forces,
particles move uniformly. Lorentz transformations tell us how the coordinates
of two inertial frames transform into one another.

The coordinates of two reference systems in uniform motion must be
related to one another by a linear transformation. Thus, the inhomogeneous
Lorentz transformations (also known as Poincaré transformations) possess
the form

't = A"z +at (6.1.5)

where A*, and a* are real.
Remarks:

(i) On the linearity of the Lorentz transformation:
Suppose that ' and z are the coordinates of an event in the inertial
frames I’ and I, respectively. For the transformation one could write

¥ = f(z).

In the absence of forces, particles in I and I’ move uniformly, i.e., their
world lines are straight lines (this is actually the definition of an iner-
tial frame). Transformations under which straight lines are mapped onto
straight lines are affinities, and thus of the form (6.1.5). The parametric
representation of the equation of a straight line z# = e*s+ d" is mapped
by such an affine transformation onto another equation for a straight line.
(ii) Principle of relativity: The laws of nature are the same in all inertial
frames. There is no such thing as an “absolute” frame of reference. The
requirement that the d’Alembert operator be invariant (6.1.4) yields

A v A
AN g AP, =g, (6.1.6a)
or, in matrix form,
AgAT =g (6.1.6b)

9 a9

Ozt Oxk Oz’

auguyau = Ak#ag\guu/lpyal’) ; ag\gkpa;)
= A, g A", =g

Proof: 0, = = AAMBi\
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The relations (6.1.6a,b) define the Lorentz transformations.

Definition: Poincaré group = {inhomogeneous Lorentz transformation,
at # 0}
The group of homogeneous Lorentz transformations contains all elements
with a* = 0.
A homogeneous Lorentz transformation can be denoted by the shorthand
form (A, a), e.g.,

translation group (1,a)

rotation group (D,0)

From the defining equation (6.1.6a,b) follow two important characteristics of
Lorentz transformations:
(i) From the definition (6.1.6a), it follows that (det A)? = 1, thus

det A = +1 . (6.1.7)

(ii) Consider now the matrix element A = 0, p = 0 of the defining equation
(6.1.6a)

A0, A0, =1 = (A00) = (4%) =1
k

This leads to
A% >1  or  A%p< 1. (6.1.8)

The sign of the determinant of A and the sign of A% can be used to classify
the elements of the Lorentz group (Table 6.1). The Lorentz transformations
can be combined as follows into the Lorentz group £, and its subgroups or
subsets (e.g., Ei means the set of all elements Li):

Table 6.1. Classification of the elements of the Lorentz group

sgn A% det A
proper orthochronous LIL 1 1
improper orthochronous™ Lt 1 -1
time-reflection type™™ L£ —1 -1
space—time inversion type*™* Li -1 1
* spatial reflection ** time reflection  *** space—time inversion
1 0 0 0 -1000 -1 0 0 O
0-1 0 O 0100 0-1 0 O
P=lo 0-1 0] T=| ooto| = 0 0-1 o] 19
0 0 0-1 0001 0 0 0-1
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L Lorentz group (L.G.)

Ll restricted L.G. (is an invariant subgroup)
L= EL uclh orthochronous L.G.

Ly = El U Ei proper L.G.

Lo = El uch orthochronous L.G.

cl=pP. L
ct=1.cl
cl=pP.T-£!

The last three subsets of £ do not constitute subgroups.
— —rt T T T
c=clurc'=clupclurch uprch (6.1.10)

L1 is an invariant subgroup of £; TL! is a coset to L.

E_T‘_ is an invariant subgroup of L; PEE_, TEE_, PTLL are cosets of £ with
respect to EL_. Furthermore, £', £, and £y are invariant subgroups of £
with the factor groups (E, P), (E,P,T,PT), and (E,T).

Every Lorentz transformation is either proper and orthochronous or can be
written as the product of an element of the proper-orthochronous Lorentz
group with one of the discrete transformations P, T, or PT.

EL, the restricted Lorentz group = the proper orthochronous L.G. consists of
all elements with det A = 1 and /100 > 1; this includes:

(a) Rotations

(b) Pure Lorentz transformations (= transformations under which space and
time are transformed). The prototype is a Lorentz transformation in the
2! direction

L% L° 00 coshn —sinhn 00
| L'y Lty 00| [ —sinhp coshn 00
Lim=1"9" 010" 0 010
0 001 0 001
L_ L2 _00
1,ﬁ2 1,ﬁ2
B _ _1 090
= 152 12 ) (6.1.11)
0 010
0 001

with tanhn = (. For this Lorentz transformation the inertial frame I’
moves with respect to I with a velocity v = ¢ in the 2! direction.
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6.2 Lorentz Covariance of the Dirac Equation

6.2.1 Lorentz Covariance and Transformation of Spinors

The principle of relativity states that the laws of nature are identical in every
inertial reference frame.

We consider two inertial frames I and I’ with the space—time coordinates
z and z’. Let the wave function of a particle in these two frames be ¢ and
', respectively. We write the Poincaré transformation between I and I’ as

¥ =Ar+a. (6.2.1)

It must be possible to construct the wave function 1’ from 1. This means
that there must be a local relationship between 1)’ and :

V'(a') = F(¥(x)) = F(p(A7 (2" —a)) . (6.2.2)

The principle of relativity together with the functional relation (6.2.2) neces-
sarily leads to the requirement of Lorentz covariance: The Dirac equation in
I is transformed by (6.2.1) and (6.2.2) into a Dirac equation in I’. (The Dirac
equation is form invariant with respect to Poincaré transformations.) In order
that both ¥ and v’ may satisfy the linear Dirac equation, their functional
relationship must be linear, i.e.,

V' (2') = S(A)(x) = S(A)p(A™ (2" —a)) . (6.2.3)

Here, S(A) is a 4 x 4 matrix, with which the spinor % is to be multiplied. We
will determine S(A) below. In components, the transformation reads:

4
Yo(a') =Y Sap(A)s(A7 (2’ — a)) . (6.2.3)
p=1

The Lorentz covariance of the Dirac equation requires that 1)’ obey the equa-
tion

(=in"d,, + m)y'(2") =0, (c=1, h=1) (6.2.4)
where
9]
;o
O = dx'm

The v matrices are unchanged under the Lorentz transformation. In order
to determine S, we need to convert the Dirac equation in the primed and
unprimed coordinate systems into one another. The Dirac equation in the
unprimed coordinate system

(—=iv*0, + m)y(z) =0 (6.2.5)
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can, by means of the relation

0 oz’ 0

. _ v /
dxk  Oxt Oz A “a”

and

S (a") = Y(a)
be brought into the form

(—iy*A” 0, +m)S~ (A (') = 0. (6.2.6)
After multiplying from the left by S, one obtains®

—1SAY A ST O (&) + my (') = 0. (6.2.6")

From a comparison of (6.2.6") with (6.2.4), it follows that the Dirac equation
is form invariant under Lorentz transformations, provided S(A) satisfies the
following condition:

S(A)TIS(A) =AY A (6.2.7)

It is possible to show (see next section) that this equation has nonsingu-
lar solutions for S(A).2 A wave function that transforms under a Lorentz
transformation according to ¢’ = S is known as a four-component Lorentz
spinor.

6.2.2 Determination of the Representation S(A)
6.2.2.1 Infinitesimal Lorentz Transformations

We first consider infinitesimal (proper, orthochronous) Lorentz transforma-
tions

A, =g", + A, (6.2.8a)
with infinitesimal and antisymmetric Aw”*
Aw't = —Awh? . (6.2.8b)

This equation implies that Aw”? can have only 6 independent nonvanishing
elements.

1 'We recall here that the A” . are matrix elements that, of course, commute with
the v matrices.

2 The existence of such an S(A) follows from the fact that the matrices A%~" obey
the same anticommutation rules (5.3.16) as the v by virtue of (6.1.6a), and from
Pauli’s fundamental theorem (property 7 on page 146). These transformations
will be determined explicitly below.
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These transformations satisfy the defining relation for Lorentz transforma-
tions

A v A
A% g AP, = g7 (6.1.6a)
as can be seen by inserting (6.2.8) into this equation:
9 ,9" 9", + Aw™ + AwP* + 0 ((Aw)?) = g™ . (6.2.9)

Each of the 6 independent elements of Aw*” generates an infinitesimal
Lorentz transformation. We consider some typical special cases:

AW’ = —AW®t = —AB: Transformation onto a coordinate (6.2.10)
system moving with velocity cAS
in the x direction

Awly = —Aw'? = Ap: Transformation onto a coordinate (6.2.11)
system that is rotated by an angle
Ay about the z axis. (See Fig. 6.1)

The spatial components are transformed under this passive transformation as fol-
lows:

2 =+ Apz? 0 er ez €3
m'2:—Aapml+x2 or x' =x+ 0 xx=x+[0 0 —Ap
3 =3 —Ap azt z? 2®
(6.2.12)
12 IEQ
X
.lv":v m/1
/@ ) Fig. 6.1. Infinitesimal rotation, passive trans-

T formation

It must be possible to expand S as a power series in Aw”*. We write
S=1+7, St=1-1, (6.2.13)

where 7 is likewise infinitesimal i.e. of order O(Aw"#*). We insert (6.2.13) into
the equation for S, namely S~1y#S = A* ~¥, and get

(L= 7)Y (L +7) = 9" 917 =79 = 9" + Awl 5", (6.2.14)

from which the equation determining 7 follows as
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T — 7y = Ak 4. (6.2.14")

To within an additive multiple of 1, this unambiguously determines 7. Given
two solutions of (6.2.14"), the difference between them has to commute with
all v* and thus is proportional to 1 (see Sect. 6.2.5, Property 6). The nor-
malization condition det.S = 1 removes this ambiquity, since it implies to
first order in Aw*” that

detS=det(l+7)=detl+Trr=14+Tr7=1. (6.2.15)
It thus follows that

Trr=0. (6.2.16)
Equations (6.2.14’) and (6.2.16) have the solution

1 v i v

T= gAWM (VY = W) = *ZAWM Ouv (6.2.17)

where we have introduced the definition
i

O =5 > W] - (6.2.18)

Equation (6.2.17) can be derived by calculating the commutator of 7 with

~#: the vanishing of the trace is guaranteed by the general properties of the
~ matrices (Property 3, Sect. 6.2.5).

6.2.2.2 Rotation About the z Axis

We first consider the rotation R3 about the z axis as given by (6.2.11). Ac-
cording to (6.2.11) and (6.2.17),

i
T(R3) = 5490012 )

and with
12 71[ = . 0 o 0 o2\ (o030
o =012 = 2 Y1, Y2] = 1172 =1 ol 020 )"\ o3
(6.2.19)
it follows that
. . 3
- i 12 i c° 0
S—1+2A<pa —1+2Agp<0 03> . (6.2.20)

By a succession of infinitestimal rotations we can construct the transfor-
mation matrix S for a finite rotation through an angle 1J. This is achieved by
decomposing the finite rotation into a sequence of N steps /N
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. N
W) = sute) = Jim (14 5002 vte)
=397y
:<mm§+hﬂ%mg)¢@). (6.2.21)

For the coordinates and other four-vectors, this succession of transformations
implies that

0 000 0 000
odim (a2 {0 010l (20 010
TN ~Nlo=100 ~N|lo=100] )"

0 000 0 000
0 000 1 0 00
0 010 0 cos?d sind 0

=P 300 | (T 0—singcosvo [T (6.2.22)

0 000 0 0 01

and is thus identical to the usual rotation matrix for rotation through an
angle 9. The transformation S for rotations (6.2.21) is unitary (S~! = ST).
From (6.2.21), one sees that

S(2r) = -1 (6.2.23a)
S(m) =1 . (6.2.23b)

This means that spinors do not regain their initial value after a rotation
through 27, but only after a rotation through 47, a fact that is also confirmed
by neutron scattering experiments®. We draw attention here to the analogy
with the transformation of Pauli spinors with respect to rotations:

29 %0(x) . (6.2.24)

6.2.2.3 Lorentz Transformation Along the x! Direction
According to (6.2.10),
At = AB (6.2.25)

and (6.2.17) becomes
1 1
7(L1) = 5ABYmN = 5ABa - (6.2.26)
We may now determine S for a finite Lorentz transformation along the z'
axis. For the velocity 2, we have tanhn = %.
3 H. Rauch et al., Phys. Lett. 54A, 425 (1975); S.A. Werner et al., Phys. Rev. Lett.

35, 1053 (1975); also described in J.J. Sakurai, Modern Quantum Mechanics,
p.162, Addison-Wesley, Red Wood City (1985).
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The decomposition of 1 into N steps of + leads to the following transforma-
tion of the coordinates and other four-vectors:

oy DY (g L) g )
v Nlﬂnoo(“NI LT et t) e
g, =o', ,

0 —100 1000
, | -1000 , o100 .
Pu=10000|l "=loooo| I=1

0 000 0000

1 1 1
Y S 272 3 2
' =e :c—<1+77]+2!77[ +3!77]+4!I...>:1:

= (1-17 +12(:osh77+Isinh77)”U:1:”

coshn —sinhn 00 20
—sinhn coshn 00 x!

— ) K 0 " Lol oe (6.2.27)
0 0 01 3

The N-fold application of the infinitesimal Lorentz transformation

B n

then leads, in the limit of large N, to the Lorentz transformation (6.1.11)

coshn —sinhn 00
—sinhn coshn 00
0 0 10
0 0 01

Li(n) =" = (6.2.27")

We note that the N infinitesimal steps of § add up to 7. However, this does
not imply a simple addition of velocities.
We now calculate the corresponding spinor transformation

1 N
Jm (14 g ) et

S(h) (6.2.28)

= ﬂcoshg + aq sinhg

For homogenous restricted Lorentz transformations, S is hermitian (S(L1)T =
S(L1)).

For general infinitesimal transformations, characterized by infinitesimal
antisymmetric Awh”, equation (6.2.17) implies that

S(A) =1 — iUWAw’“’ . (6.2.292)
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This yields the finite transformation
S(A) = e o (6.2.29b)

with w*¥ = —w"* and the Lorentz transformation reads A = e, where the
matrix elements of w are equal to w#,. For example, one can represent a
rotation through an angle ¥ about an arbitrary axis n as

S = ezt (6.2.29¢)
where
o0
¥ = <o a> . (6.2.29d)

6.2.2.4 Spatial Reflection, Parity

The Lorentz transformation corresponding to a spatial reflection is repre-
sented by

10 0 O
0-10 O
oo

AR, = 00 -1 0 (6.2.30)

00 0 -1
The associated S is determined, according to (6.2.7), from
4
STIMS = A" =N gy = gttt (6.2.31)
v=1

where no summation over p is implied. One immediately sees that the solution
of (6.2.31), which we shall denote in this case by P, is given by
S=P=c¥vy0. (6.2.32)

Here, €% is an unobservable phase factor. This is conventionally taken to
have one of the four values 1, +i; four reflections then yield the identity 1.
The spinors transform under a spatial reflection according to

(@) = 0/ (%, 1) = ¥ (—x,1) = @900(x) = 9 0p(—x 1) . (6.2.33)
The complete spatial reflection (parity) transformation for spinors is denoted
by

P =P (6.2.33)
where PO causes the spatial reflection x — —x.

From the relationship v° = 8 = (](1) ](1)) one sees in the rest frame of

the particle, spinors of positive and negative energy (Eq. (5.3.22)) that are
eigenstates of P — with opposite eigenvalues, i.e., opposite parity. This means
that the intrinsic parities of particles and antiparticles are opposite.
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6.2.3 Further Properties of S

For the calculation of the transformation of bilinear forms such as j*(z), we
need to establish a relationship between the adjoint transformations ST and
S

Assertion:

S§t0 =051 | (6.2.34a)
where

b—+1 for A% {i o (6.2.34b)
Proof: We take as our starting point Eq. (6.2.7)

SIS = A ¥ A* real, (6.2.35)
and write down the adjoint relation

(A# AT = ghyrtgf=1 (6.2.36)
The hermitian adjoint matrix can be expressed most concisely as

P =40%9#40. (6.2.37)

By means of the anticommutation relations, one easily checks that (6.2.37)
is in accord with AT = 40 4*t = —~k We insert this into the left- and
the right-hand sides of (6.2.36) and then multiply by 7 from the left- and
right-hand side to gain

YA 0900 = 4081 yty 08110
A Y = STIAS = 40814 0yk (05T 0) 7T

since (7°)" = ~°. Furthermore, on the left-hand side we have made the
substitution A#,y” = S71y*S. We now multiply by S and S~

v = 87081709 (708170) LS = (570814 0)y# (840 8Ty0) T .

Thus, Sv°ST1° commutes with all ¥# and is therefore a multiple of the unit
matrix

508140 =p1 (6.2.38)
which also implies that

S~°8T = by (6.2.39)
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and yields the relation we are seeking?
ST0 =b(57°) "t =by05 1. (6.2.34a)

Since (v°)T = 4° and S7°ST are hermitian, by taking the adjoint of (6.2.39)
one obtains S7°ST = bv*4°, from which it follows that

b =b (6.2.40)

and thus b is real. Making use of the fact that the normalization of S is fixed
by det S = 1, on calculating the determinant of (6.2.39), one obtains b* = 1.
This, together with (6.2.40), yields:

b==1. (6.2.41)
The significance of the sign in (6.2.41) becomes apparent when one considers
STS = 8149498 = 170571708 = by 0 A0 ¥
(6.2.42)

3
=A% 14+ A%, 404 .
0 Z EYY

k=1 Y

STS has positive definite eigenvalues, as can be seen from the following.
Firstly, det STS = 1 is equal to the product of all the eigenvalues, and these
must therefore all be nonzero. Furthermore, STS is hermitian and its eigen-
functions satisfy STS, = at),, whence

ative = ¥ STSY, = (S1ha) Stha > 0

and thus @ > 0. Since the trace of STS is equal to the sum of all the eigen-
values, we have, in view of (6.2.42) and using Tra* = 0,

0 < Tr(STS) =4b4°, .

Thus, bA%, > 0. Hence, we have the following relationship between the signs
of A% and b:

A0 > 1 for =1

6.2.34b
A< -1 for b=-1. ( )
For Lorentz transformations that do not change the direction of time, we
have b = 1; while those that do cause time reversal have b = —1.

* Note: For the Lorentz transformation Ll (restricted L.T. and rotations) and
for spatial reflections, one can derive this relation with b = 1 from the explicit
representations.
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6.2.4 Transformation of Bilinear Forms

The adjoint spinor is defined by
P =1Ty0. (6.2.43)

We recall that v is referred to as a hermitian adjoint spinor. The additional
introduction of 1 is useful because it allows quantities such as the current
density to be written in a concise form. We obtain the following transforma-
tion behavior under a Lorentz transformation:

V' =8p = T =TSt = ¢ = ¢T5T0 = byly 0571,
thus,

P =byST. (6.2.44)
Given the above definition, the current density (5.3.7) reads:

3" = cpiy Oyt = capytep (6.2.45)
and thus transforms as

G = cbpSTINtSp = AM cbapy p = bAF G . (6.2.46)

Hence, j* transforms in the same way as a vector for Lorentz transformations
without time reflection. In the same way one immediately sees, using (6.2.3)
and (6.2.44), that ¢ (z)y(x) transforms as a scalar:

V(@) (@) = 1{( 2)S7 Sy(’) (6.2.47a)

= byp(a)y(z) .

We now summarize the transformation behavior of the most important bi-
linear quantities under orthochronous Lorentz transformations , i.e., transfor-
mations that do not reverse the direction of time:

) = B0t scalar (6:2.473)
P (2 )y (2) = AP (x)yY P (z) vector (6.2.47b)
P ()oY (2)) = /1“ A p(z)oP7)(x) antisymmetric tensor
(6.2.47¢)
P (2 )y (2') = (det A)A* p(x)ysy7(z) pseudovector  (6.2.47d)
(2 )ys (2') = (det A)p(x)ys51 () pseudoscalar,  (6.2.47¢)

where 75 = i7%9y1y2~3. We recall that det A = £1; for spatial reflections the
sign is —1.
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6.2.5 Properties of the v Matrices

We remind the reader of the definition of v° from the previous section:

v =7° =iy"r'y?y° (6.2.48)

and draw the reader’s attention to the fact that somewhat different definitions
may also be encountered in the literature. In the standard representation
(5.3.21) of the Dirac matrices, v° has the form

= (101 g) _ (6.2.48")

The matrix ° satisfies the relations

{+*7"} =0 (6.2.49a)
and

(V") =1. (6.2.49b)

By forming products of v*, one can construct 16 linearly independent 4 x 4
matrices. These are

rf=1 (6.2.50a)

ry =, (6.2.50b)
i

Ty = O = 510w W] (6.2.50¢)

It = s (6.2.50d)

rf=rs. (6.2.50¢)

The upper indices indicate scalar, vector, tensor, axial vector (= pseudovec-
tor), and pseudoscalar. These matrices have the following properties®:

1. (I')* = +1 (6.2.51a)
2. For every I'® except I'® = 1, there exists a I'’, such that
rert=—rere, (6.2.51b)
3. For a # S we have TrI'* = 0. (6.2.51c)
Proof: Tr I'*(I'*)? = —Tr I'°1°Ir* = —Tr I'*(I'*)?

Since (I'*)? = +1, it follows that TrI™® = —TrI®, thus proving the
assertion.

5 Only some of these properties will be proved here; other proofs are included as
problems.
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For every pair I'*, I'® a # b there is a I'® # 1, such that I',I}, = 31,
0 ==+£1, +i.

Proof follows by considering the I'.

The matrices I'* are linearly independent.

Suppose that > z,'* = 0 with complex coeflicients z,. From property 3 above

one then has
TrZ:caF“:xs:O.
a

Multiplication by I, and use of the properties 1 and 4 shows that subsequent
formation of the trace leads to x, = 0.

. If a 4 X 4 matrix X commutes with every v*, then X o 1.
. Given two sets of v matrices, v and 7/, both of which satisfy

{7} =29",
there must exist a nonsingular M
M= MyPMT (6.2.51d)

This M is unique to within a constant factor (Pauli’s fundamental theo-
rem).

6.3 Solutions of the Dirac Equation for Free Particles

6.3.1 Spinors with Finite Momentum

We now seek solutions of the free Dirac equation (5.3.1) or (5.3.17)

(=i@ + m)yp(z) = 0. (6.3.1)

Here, and below, we will set h=c=1.

For particles at rest, these solutions [see (5.3.22)] read:

(+) x) = u, m,O efimt r—= 1’2
V) ( ) . (6.3.2)
() = v,(m,0) ™t

for the positive and negative energy solutions respectively, with

1 0
0 1

U1 (ma O) = 0 ) Ug(m, 0) - 0 )
0 / (6.3.3)
0 0 o
0 0

U1 (m7 0) = 1 ) U2(ma O) - 0 )
0 1
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and are normalized to unity. These solutions of the Dirac equation are eigen-
functions of the Dirac Hamiltonian H with eigenvalues +m, and also of the
operator (the matrix already introduced in (6.2.19))

3

i g 0
o' =3y = < 0 03) (6.3.4)

with eigenvalues +1 (for r = 1) and —1 (for r = 2). Later we will show that
012 is related to the spin.

We now seek solutions of the Dirac equation for finite momentum in the
form®

Y (x) = up(k)e ke positive energy (6.3.5a)
Y (z) = v(k)ek negative energy (6.3.5Db)

with k% > 0. Since (6.3.5a,b) must also satisfy the Klein—-Gordon equation,
we know from (5.2.14) that

ky k" =m? (6.3.6)

or

E=k =K +m?)"?, (6.3.7)
where k° is also written as E; i.e., k is the four-momentum of a particle with
mass m.

The spinors u, (k) and v,.(k) can be found by Lorentz transformation of
the spinors (6.3.3) for particles at rest: We transform into a coordinate system
that is moving with velocity —v with respect to the rest frame and then, from
the rest-state solutions, we obtain the free wave functions for electrons with
velocity v. However, a more straightforward approach is to determine the
solutions directly from the Dirac equation. Inserting (6.3.5a,b) into the Dirac
equation (6.3.1) yields:

(k—m)u,(k)=0 and (F+m)v.(k)=0. (6.3.8)

Furthermore, we have

v 1 v 17
Kk = kuy"ky” = kukui{'}’#a'}/ b= kuko g (6.3.9)
Thus, from (6.3.6), one obtains
F—m)F+m)=k*—m?=0. (6.3.10)

Hence one simply needs to apply (¥ + m) to the u,(m,0) and (} —m) to
the v,(m, 0) in order to obtain the solutions u,(k) and v, (k) of (6.3.8). The

6 We write the four-momentum as k, the four-coordinates as z, and their scalar
product as k - x.
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normalization remains as yet unspecified; it must be chosen such that it is
compatible with the solution (6.3.3), and such that ¢ transforms as a scalar
(Eq. (6.2.47a)). As we will see below, this is achieved by means of the factor
1/4/2m(m + E):

Eer 1/2
() = —EET (. 0) = ( o > N (6.3.11a)
' V2mm+E) ok
@m(m + B)172 X"
o-k
ftm @m(m 1 B)72 X
v (k) = ————=v,(Mm,0) = . (6.3.11b
©= Fontmr " (o)™ o
2m "

Here, the solutions are represented by u,.(m,0) = (’g) and v,.(m,0) = ()?T)
with y; = ((1)) and yg = (2)

In this calculculation we have made use of
xr\ _[of(L 0\ _if 0 o Xr
f(0) =P (b)) ()] (%)
_ k9% n 0 [ Ex»r
o 0 kioixy, k- oTXr

0y (o0 k'o'x, B
k<Xr><k0Xr>+< 0 >7T172.

From (6.3.11a,b) one finds for the adjoint spinors defined in (6.2.43)

and

Tl = u,(m —k+m a
(k) = u(m,0) 2mm T B) (6.3.12a)
3 (K) = 5, (m, 0)——E T (6.3.12b)

0 V2m(m+E)

T m 0 0 m
Proof: iy (k) = uf (k)7° = u} (m, 0) Lt — y/f (m, 0) - tutm)

\/2m(m+E) \/2m(m+E) ’

since y*T = 1%4#4% and (4°)2 =1
Furthermore, the adjoint spinors satisfy the equations

(k) (F —m) = 0 (6.3.13a)



6.3 Solutions of the Dirac Equation for Free Particles 149

and
(k) (E+m)=0, (6.3.13Db)

as can be seen from (6.3.10) and (6.3.12a,b) or (6.3.8).

6.3.2 Orthogonality Relations and Density

We shall need to know a number of formal properties of the solutions found
above for later use. From (6.3.11) and (6.2.37) it follows that:

2
0y (B)s (k) = @ (m, 0)%%(% 0). (6.3.14a)
With
@r (m, 0)(k + m)us(m, 0) = @ (m, 0) (> + 2ml + m?)us(m, 0)
= @, (m, 0)(2m” + 2m§)us(m, 0)
(m,0)

= @, (m, 0)(2m* + 2mk°~°)us(m, 0) (6.3.14b)
=2m(m + E)ur(m, 0)us(m, 0)
=2m(m+ E)drs ,
~ B k2 _ m2
(k)s (k) = @r(m, 0)———"" 4 (m, 0
ar(R)os (k) = @-(m, 0) gy v (. 0) (6.3.14c)
= t,(m,0) 0 vs(m,0) =0
and a similar calculation for v.(k), equations (6.3.14a,b) yield the
orthogonality relations
(k) us(k) = O ur(k)vs(k) = 0
(k) s () (1) v (8) 619

5o (k) vs(k) = —0,s T (k) us(k) = 0.

Remarks:

(i) This normalization remains invariant under orthochronous Lorentz trans-
formations:

v, =ul ST Suy, =ul4° S Suy =y us = by . (6.3.16)
(ii) For these spinors, 1 (x)(z) is a scalar,
O () (2) = *Ta, (k)u, (k)e ™ ** =1, (6.3.17)

is independent of k, and thus independent of the reference frame.
In general, for a superposition of positive energy solutions, i.e., for
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P (z) ZCTUT , with Z ler|? = (6.3.18a)

one has the relation

P (@) (@) = ap(k)us(k)c) s = Z len|? = (6.3.18b)

T8

Analogous relationships hold for (=),

(iii) If one determines wu, (k) through a Lorentz transformation corresponding
to —v, this yields exactly the above spinors. Viewed as an active trans-
formation, this amounts to transforming w,(m, 0) to the velocity v. Such
a transformation is known as a “boost”.

The density for a plane wave (c = 1) is p = j° = 1% . This is not a
Lorentz-invariant quantity since it is the zero-component of a four-vector:

D @)y i () = @y (k)Y us (k)
(k) = — Ors (6.3.19a)
D @) {7 () = B (k)7 s (k)

= —0,(k)

In the intermediate steps here, we have used us(k) = (¥/m)us(k), ts(k) =
us(k)(K/m) (Egs. (6.3.8) and (6.3.13)) etc.

[
|
5
~
=
=

0 E
= — . 3.1
0y (k) =~ s (6.3.19b)

Note. The spinors are normalized such that the density in the rest frame is unity.
Under a Lorentz transformation, the density times the volume must remain con-

stant. The volume is reduced by a factor /1 — 32 and thus the density must increase

by the reciprocal factor 1 = £

Vim m

We now extend the sequence of equations (6.3.19).

For ¢7(«+)(55) _ e_i(k%o—k'x)ur(k)

_ RO2O o) 7 (6.3.20)
and {7 (z) = *F T kX ()

with the four-momentum & = (k°, —k), one obtains
P @) 9P (@) = e 5, () uy (k)
L ] ~
- 5e*M" "o, (k) < %VO + 70%> us(k) (6.3.19¢)

=0

since the terms proportional to kg cancel and since {kmi,wo} = 0. In this
sense, positive and negative energy states are orthogonal for opposite energies
and equal momenta.
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6.3.3 Projection Operators

The operators

_Ek+m
T 2m

Ax (k) (6.3.21)

project onto the spinors of positive and negative energy, respectively:

Ay (k) = up (k) A_v.(k) = v (k)

Ayvp(k) =0 A_up(k) =0 (6.3.22)

Thus, the projection operators A4 (k) can also be represented in the form

As(k) =Y un(k) @ ar(k)

i (6.3.23)
A (k) == vp(k) @0.(k) .
r=1,2
The tensor product ® is defined by
(a®b)as = anbp - (6.3.24)

In matrix form, the tensor product of a spinor a and an adjoint spinor b reads:

ar a1br arbs aibs aibs
a2 7 7 7 7y _ | a2bi axba azbs azbs
as (617627637174) ~ | asbi azbz azbz azbs
o aab1 asbs asbs asbs

The projection operators have the following properties:
AL (k) = Ax (k) (6.3.25a)
TrAy(k) =2 (6.3.25Db)
Ap(B)y+A_(k)=1. (6.3.25¢)
Proof:
(FE+m)® P E£2km+m®  m® £ 2km+m?
4m? B 4m? B 4m?
_2m(+k+m) A (k)

4m?2

As (k) =

im
Tr A+ (k) = o = 2
The validity of the assertion that A+ projects onto positive and negative energy
states can be seen in both of the representations, (6.3.21) and (6.3.22), by applying
them to the states ur(k) and v,(k). A further important projection operator, P(n),
which, in the rest frame projects onto the spin orientation n, will be discussed in

Problem 6.15.
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Problems

6.1 Prove the group property of the Poincaré group.

6.2 Show, by using the transformation properties of z,, that 0% = 9/9z, (9, =
0/0x") transforms as a contravariant (covariant) vector.

6.3 Show that the N-fold application of the infinitesimal rotation in Minkowski
space (Eq. (6.2.22))

0 000
9 [0 010
A=1+5 10100
0 000

leads, in the limit N — oo, to a rotation about the z axis through an angle ¥ (the
last step in (6.2.22)).

6.4 Derive the quadratic form of the Dirac equation
0
[(iha - EA) - lhTe (aE +iXB) — m>| ¢ =0

for the case of external electromagnetic fields. Write the result using the electro-
magnetic field tensor F,, = A, ., — A, ,, and also in a form explicitly dependent
on F and B.

Hint: Multiply the Dirac equation from the left by v (ih@,, - %Ay) + mec and, by
using the commutation relations for the v matrices, bring the expression obtained
into quadratic form in terms of the field tensor

2
[(iha — EA) — %JWFW — m?2c? P =0.

The assertion follows by evaluating the expression o*” F},,, using the explicit form
of the field tensor as a function of the fields E and B.

6.5 Consider the quadratic form of the Dirac equation from Problem 6.4 with the
fields E = Ey (1,0,0) and B = B (0,0, 1), where it is assumed that Eo/Bc < 1.
Choose the gauge A = B (0,z,0) and solve the equation with the ansatz

¢(x) — efiEt/ﬁei(kyy+kzz)g0(x)¢ ,

where @ is a four-spinor that is independent of time and space coordinates. Cal-
culate the energy eigenvalues for an electron. Show that the solution agrees with
that obtained from Problem 5.3 when one considers the nonrelativistic limit, i.e.,
Eo / Be <« 1.

Hint: Given the above ansatz for 1, one obtains the following form for the quadratic
Dirac equation:

[K(z,0:)1 + M]p(z)® =0,
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where K (z,0,) is an operator that contains constant contributions, d, and x. The
matrix M is independent of 8, and x; it has the property M? o 1. This suggests
that the bispinor @ has the form @ = (1 + AM)®Po. Determine A and the eigenval-
ues of M. With these eigenvalues, the matrix differential equation reverts into an
ordinary differential equation of the oscillator type.

6.6 Show that equation (6.2.14")
[v", 7] = Aw""y,
is satisfied by

1 v
7= A" (e = W) -

6.7 Prove that y#1 = 0440,

6.8 Show that the relation
540 = py05~1
is satisfied with b = 1 by the explicit representations of the elements of the Poincaré

group found in the main text (rotation, pure Lorentz transformation, spatial reflec-
tion).

6.9 Show that t(z)vys(x) is a pseudoscalar, 9 (z)ysy“1(z) a pseudovector, and
Y(x)at(z) a tensor.

6.10 Properties of the matrices I'®.

Taking as your starting point the definitions (6.2.50a—e), derive the following prop-

erties of these matrices:

(i) For every I'* (except I'®) there exists a I"® such that I'*I"* = -1,

(ii) For every pair I'*, I'®, (a # b) there exists a I'° # 1 such that I'*I"* = gI'°
with 8 = £1, +i.

6.11 Show that if a 4 X 4 matrix X commutes with all v*, then this matrix X is
proportional to the unit matrix.

Hint: Every 4 x 4 matrix can, according to Problem 6.1, be written as a linear
combination of the 16 matrices I'® (basis!).

6.12 Prove Pauli’s fundamental theorem for Dirac matrices: For any two four-
dimensional representations -y, and 7, of the Dirac algebra both of which satisfy
the relation

{’Y;u ’YV} = 29w
there exists a nonsingular transformation M such that
-1
Yo =My M~

M 1is uniquely determined to within a constant prefactor.
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6.13 From the solution of the field-free Dirac equation in the rest frame, determine
the four-spinors Q/)i(m) of a particle moving with the velocity v. Do this by applying
a Lorentz transformation (into a coordinate system moving with the velocity —v)
to the solutions in the rest frame.

6.14 Starting from

Ar(k)= Y wk)@ark),  A-(k)=— Y v (k) @0, (k),

r=1,2 r=1,2

prove the validity of the representations for A+ (k) given in (6.3.22).

6.15 (i) Given the definition P(n) = (14 7s1t), show that, under the assumptions

n? = —1 and n,k" = 0, the following relations are satisfied

[As(k), P(n)] =0 ,

Ay (B)P(n) + A_(k)P(n) + Ay (k)P(—n) + A_(k)P(—n) =1 ,
Tr[A+ (k)P(£n)] =1

P(n)* = P(n)

a
b

C

o,

3
(ii) Consider the special case n = (0, é.) where P(n) = % (1 —BU 1 303 )



7. Orbital Angular Momentum and Spin

We have seen that, in nonrelativistic quantum mechanics, the angular mo-
mentum operator is the generator of rotations and commutes with the Hamil-
tonians of rotationally invariant (i.e., spherically symmetric) systems®. It thus
plays a special role for such systems. For this reason, as a preliminary to the
next topic — the Coulomb potential — we present here a detailed investigation
of angular momentum in relativistic quantum mechanics.

7.1 Passive and Active Transformations

For positive energy states, in the non-relativistic limit we derived the Pauli
equation with the Landé factor g = 2 (Sect. 5.3.5). From this, we concluded
that the Dirac equation describes particles with spin S = 1/2. Following on
from the transformation behavior of spinors, we shall now investigate angular
momentum in general.

In order to give the reader useful background information, we will start
with some remarks concerning active and passive transformations. Consider a
given state Z, which in the reference frame I is described by the spinor ¢ (x).
When regarded from the reference frame I’, which results from I through the
Lorentz transformation

¥ = Az, (7.1.1)
the spinor takes the form,
Y (x) = Sy(A~tal) passive with A . (7.1.2a)

A transformation of this type is known as a passive transformation. One
and the same state is viewed from two different coordinate systems, which is
indicated in Fig. 7.1 by ¢(z) = ¢'(2').

On the other hand, one can also transform the state and then view the
resulting state Z’ exactly as the starting state Z from one and the same
reference frame I. In this case one speaks of an active transformation. For
vectors and scalars, it is clear what is meant by their active transformation

L See QM I, Sect. 5.1
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(rotation, Lorentz transformation). The active transformation of a vector
by the transformation A corresponds to the passive transformation of the
coordinate system by A~!. For spinors, the active transformation is defined
in exactly this way (see Fig. 7.1).

The state Z’, which arises through the transformation A~!, appears in I
exactly as Z in I, i.e.,

Y (x) = S(A ) active with A~! (7.1.2b)

Fig. 7.1. Schematic representa-
tion of the passive and active
transformation of a spinor; the en-
closed area is intended to indicate
A the region in which the spinor is
I finite

The state Z”, which results from Z through the active transformation A,
by definition appears the same in I’ as does Z in I, i.e., it takes the form
(). Since I is obtained from I’ by the Lorentz transformation A=!, in I
the spinor Z” has the form

Y’ (x) = ST M(Az) , active with A . (7.1.2¢)

7.2 Rotations and Angular Momentum

Under the infinitesimal Lorentz transformation

A, =gt + Awt, , (ATHE, = g%, — Awt, (7.2.1)
a spinor ¢ (z) transforms as

Y (2)) = Sy(A~a) passive with A (7.2.2a)

or

Y () = S(A~tr)  active with A~ . (7.2.2b)



7.2 Rotations and Angular Momentum 157

We now use the results gained in Sect. 6.2.2.1 (Egs. (6.2.8) and (6.2.13)) to
obtain

W (z) = (1 — iAw‘“’UW)z/J(x” — Awfz") . (7.2.3)
Taylor expansion of the spinor yields (1 — Aw*,z¥0,) ¥ (z) , so that

P(z)=(1+ Aw‘“’(—i ou +2,00)) Y(z) (7.2.3)

We now consider the special case of rotations through A, which are repre-
sented by

Aw'l = —€F ApF (7.2.4)

(the direction of A¢ specifies the rotation axis and |A¢| the angle of rota-
tion). If one also uses

. . k
o =gy =eUREk | Xk = ("O Uok> , (7.2.5)

(see Eq. (6.2.19)) one obtains for (7.2.3")
V(@) = (1 o (4 S, )) e

= (1—&%@’@( FeEr o, )z/z

- (1 — A (——25kk2 ki, ) W(z (7.2.6)
Ak (L vk ki
= <1+1A<p <2E +€ J:c - >) x)
= (1+1A0"T%) ¥(2) .
Here, we have defined the total angular momentum
k kij il |
J — € j(ETaj—l—EE . (727)
i
With the inclusion of £, this operator reads:
h h
J:XXTVH+§Z, (727’)
i

and 1s thus the sum of the orbital angular momentum L = x X p and the
spin 3 555

The total angular momentum (= orbital angular momentum -+ spin) is
the generator of rotations: For a finite angle ¢* one obtains, by combining a
succession of infinitesimal rotations,
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Y (x) =" y(a). (7.2.8)

The operator J¥ commutes with the Hamiltonian of the Dirac equation con-
taining a spherically symmetric potential @(x) = &(|x|)

[H,J]=0. (7.2.9)

A straightforward way to verify (7.2.9) is by an explicit calculation of the
commutator (see Problem 7.1). Here, we consider general consequences re-
sulting from the behavior, under rotation, of the structure of commutators of
the angular momentum with other operators; Eq. (7.2.9) results as a special
case. We consider an operator A, and let the result of its action on 1, be the

spinor s:
Aipy () = () -
It follows that
LN AP AN (eig;ka 1/11(96)) _ (eit,aka %(x))
or, alternatively,
e " Ae Nl (2) = gh(a) .
Thus, in the rotated frame of reference the operator is
Al = i@t gttt (7.2.10)
Expanding this for infinitesimal rotations (¢ — Ap*) yields:
A=A —iApF[A Y. (7.2.11)

The following special cases are of particular interest:

(i) A is a scalar (rotationally invariant) operator. Then, A’ = A and from
(7.2.11) it follows that

[A,JF]=0. (7.2.12)

The Hamiltonian of a rotationally invariant system (including a spheri-
cally symmetric &(x) = &(|x|)) is a scalar; this leads to (7.2.9). Hence,
in spherically symmetric problems the angular momentum is conserved.

(ii) For the operator A we take the components of a three-vector v . As
a vector, v transforms according to v"* = v’ + €9¥ Apl v*. Equating
this, component by component, with (7.2.11), v* + ek Apivk = o' +
%Acpj [Jj,vi] which shows that

[T 0] = ih ek o (7.2.13)



Problems 159

The commutation relation (7.2.13) implies, among other things,
[J?, J7] = ihe'i* J* (7.2.14a)
[J%, L7] = iheFLF . (7.2.14b)

k
It is clear from the explicit representation ¥ = o 0 that the eigen-
0 oF

values of the 4 x 4 matrices % are doubly degenerate and take the values
+1. The angular momentum J is the sum of the orbital angular momentum
L and the intrinsic angular momentum or spin S, the components of which
have the eigenvalues :l:%. Thus, particles that obey the Dirac equation have
spin S = 1/2. The operator (%2)2 = %hQ]l has the eigenvalue %. The
eigenvalues of L? and L? are h%l(l + 1) and hm,;, where [ = 0,1,2,... and
m; takes the values —I,—I+1,...,1 — 1,1. The eigenvalues of J? are thus
h?j(j + 1), where j =+ § for I # 0 and j = £ for [ = 0. The eigenvalues
of J3 are hmj, where m; ranges in integer steps between —j and j. The op-
erators J2, L2, X2, and J? can be simultaneously diagonalized. The orbital
angular momentum operators L’ and the spin operators X* themselves fulfill
the angular momentum commutation relations.

Note: One is tempted to ask how it is that the Dirac Hamiltonian, a 4 X 4 matrix,
can be a scalar. In order to see this, one has to return to the transformation (6.2.6").
The transformed Hamiltonian including a central potential ®(|x|)

(=" 8, + m + ed(|x'])) = S(—iv" 8, + m + ed(|x))S ™"

has, under rotations, the same form in both systems. The property “scalar” means
invariance under rotations, but is not necessarily limited to one-component spher-
ically symmetric functions.

Problems

7.1 Show, by explicit calculation of the commutator, that the total angular mo-
mentum

J:x><p]1—&—§21

commutes with the Dirac Hamiltonian for a central potential

3
H=c <Z oFp* 4 ﬂmc) + ed([x]) .
k=1



8. The Coulomb Potential

In this chapter, we shall determine the energy levels in a Coulomb potential.
To begin with, we will study the relatively simple case of the Klein—Gordon
equation. In the second section, the even more important Dirac equation will
be solved exactly for the hydrogen atom.

8.1 Klein—Gordon Equation with Electromagnetic Field

8.1.1 Coupling to the Electromagnetic Field
The coupling to the electromagnetic field in the Klein—-Gordon equation
— = AV +micty
i.e., the substitution

iﬁ% — iﬁ% —ed ,
leads to the Klein—Gordon equation in an electromagnetic field

ZV—>§V75A,
1 1 C

o0 ’ 2 (I e\’ 2 4
ih——e®) v=c"{=V—-=-A) p+m°c. (8.1.1)
ot i c
We note that the four-current-density now reads:
. ihe , . e? N
Jo = 5 (O = O") — A (8.1.2)
m me

with the continuity equation
0,7 =0. (8.1.3)

One thus finds, in j° for example, that the scalar potential A? = ¢® appears.
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8.1.2 Klein—Gordon Equation in a Coulomb Field

We assume that A and @ are time independent and now seek stationary
solutions with positive energy

Y(x,t) = e BV (x)  with  E>0. (8.1.4)
From (8.1.1), one then obtains the time-independent Klein—-Gordon equation

(E — ed)*p = (?V - §A>2 Y +micty . (8.1.5)
For a spherically symmetric potential (x) — P(r) (r = |x|) and A =0, it
follows that

(=R?AV? + mPct) Y(x) = (E — ed(r))* ¥ (x). (8.1.6)
The separation of variables in spherical polar coordinates

V(1 9, 0) = R(r)Yem (9, ¢) , (8.1.7)

where Yy, (9, ¢) are the spherical harmonic functions, already known to us
from nonrelativistic quantum mechanics,! leads, analogously to the nonrela-
tivistic theory, to the differential equation

( 1d d _}_E(f—i—l))R:(E—e@(r))Q—mQC‘1

R. 8.1.8
rdrdr T 2 h2 2 (8.1.8)

Let us first consider the nonrelativistic limit. If we set £ = mc? + E’ and
assume that E' — e® can be neglected in comparison to mc?, then (8.1.8)
yields the nonrelativistic radial Schrodinger equation, since the right-hand
side of (8.1.8) becomes

o] ((mc?)? 4 2mc*(E' — e®(r)) + (E' — ed(r))* — m?*c*) R(r)

9m (8.1.9)
F(E/ —e®(r))R(r)
For a 7~ meson in the Coulomb field of a nucleus with charge Z,
VA 2
ed(r) = — =0 . (8.1.10a)
r

2
Inserting the fine-structure constant o = 52, it follows from (8.1.8) that

1d d l+1)— Z2%a? _ 2ZakE E? —m?2c

R=0.
r dr dr " 72 her h2c?

(8.1.10Db)

L QM I, Chap. 5
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Remark: The mass of the 7 meson is m,- = 273m. and its half-life 7, = 2.55 x

10% s. Since the classical orbital period! estimated by means of the uncertainty
2 2

principle is approximately T =~ ZA’-'% ~ m”—fhaf-‘; = e % ~ 107%'s, one can

think of well-defined stationary states, despite the finite half-life of the #~. Even

the lifetime of an excited state (see QM I, Sect. 16.4.3) AT ~ Ta™ 3 ~ 10717 is still

much shorter than 7. .

By substituting

4(m2c* — E?) 2E~
2 = _— = — —
7= 722 sy =Za, A= heg ) P TOT (8.1.11a-d)
into (8.1.10b), we obtain
d? 2 L0+1)—~?
T b pR(p) = 0. (8.1.12)

(/2 " o2 (0/2)°

This equation has exactly the form of the nonrelativistic Schrédinger equation
for the function u = pR, provided we substitute in the latter

po — 2X (8.1.13a)
(l+1) — L+ =2 =0 +1). (8.1.13b)

Here it should be noted that ¢’ is generally not an integer.

Remark: A similar modification of the centrifugal term is also found in classical
relativistic mechanics, where it has as a consequence that the Kepler orbits are no
longer closed. Instead of ellipses, one has rosette-like orbits.

The radial Schrédinger equation (8.1.12) can now be solved in the same
way as is familiar from the nonrelativistic case: From (8.1.12) one finds for
R(p) in the limits p — 0 and p — oo the behavior pé/ and e~*/2 respectively.
This suggests the following ansatz for the solution:

p\EHL /2
pR(p) = (5) e P2 w(p/2). (8.1.14)
The resulting differential equation for w(p) (Eq. (6.19) in QM I) is solved in
terms of a power series. The recursion relation resulting from the differential
equation is such that it leads to a function ~ e”. Taken together with (8.1.14),
this means that the function R(p) would not be normalizable unless the power
series terminated. The condition that the power series for w(p) terminates
yields?:
po=2(N+0+1),
ie.

)

2 Cf. QM 1, Eq. (6.23).
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A=N+0+1, (8.1.15)

where N is the radial quantum number, N = 0,1, 2, .... In order to determine
the energy eigenvalues from this, one first needs to use equations (8.1.11a
and d) to eliminate the auxiliary quantity o

4E%y?  4(mPc* — E?)

h2c2\2 h2c2 ’

which then yields the energy levels as

2 7 =
E =mc (1 + ﬁ) . (8.1.16)
Here, one must take the positive root since the rescaling factor is ¢ > 0 and,
as A > 0, it follows from (8.1.11c) that E > 0. Thus, for a vanishing attractive
potential (y — 0), the energy of these solutions approaches the rest energy
E = mc?. For the discussion that follows, we need to calculate ¢, defined by
the quadratic equation (8.1.13b)

, 1 1\*
C=—ga&/(t+y) -2 (8.1.17)

We may convince ourselves that only the positive sign is allowed, i.e.,

A—N+1+ £+12—2
- 2 D v
and thus

mc2

E= : (8.1.18)

1+ ok > P
[N+%+ (e+1) ,72}

To pursue the parallel with the nonrelativistic case, we introduce the principal
quantum number

n=N+/0{+1,
whereby (8.1.18) becomes

mc2

E= - : (8.1.18)
1+ = 5
\/ [ () /(37

The principal quantum number has the possible values n = 1,2, ...; for a
given value of n, the possible values of the orbital angular momentum quan-
tum numbers are ¢ = 0,1,...n — 1. The degeneracy that is present in the
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nonrelativistic theory with respect to the angular momentum is lifted here.
The expansion of (8.1.18") in a power series in 72 yields:

E—mc2{ 7—274< i 2)] 0(°%)

2n2  2nd \/l+ %
Ry Ryy? 1 3
2 4
= - — — - — O(R; 8.1.19
me' = r -~ (1 @) OB (8.1.19)
with
Ry — mc?(Za)? _ mZ2et

The first term is the rest energy, the second the nonrelativistic Rydberg
formula, and the third term is the relativistic correction. It is identical to
the perturbation-theoretical correction due to the relativistic kinetic energy,

2\2
giving rise to the perturbation Hamiltonian H; = —é%% (see QM 1, Eq.
(12.5))3. Tt is this correction that lifts the degeneracy in ¢:
4Ryy? n—1
Ei—o— Epepp_1 = — . 8.1.20
=0 f=n-1 nd 2n-—1 ( )

The binding energy Ej is obtained from (8.1.18") or (8.1.19) by subtracting
the rest energy

E,=FE —md.

Further aspects:

(i) We now wish to justify the exclusion of solutions ¢’, for which the negative
root was taken in (8.1.17). Firstly, it is to be expected that the solutions
should go over continuously into the nonrelativistic solutions and thus that
to each ¢ should correspond only one eigenvalue. For the time being we will
denote the two roots in (8.1.17) by ¢/,. There are a number of arguments for
excluding the negative root. The solution ¢/ can be excluded on account of
the requirement that the kinetic energy be finite. (Here only the lower limit
is relevant since the factor e~?/2 guarantees the convergence at the upper
limit):

O*R OR\?

T 2 2
Nf/d” 92r 'RN/dM <W>

/ 2 ’

N/drr2 (ré _1> N/dTT% .

This implies that ¢ > f% and, hence, only ¢/, is allowed. Instead of the
kinetic energy, one can also consider the current density. If solutions with

3 See also Remark (ii) in Sect. 10.1.2



166 8. The Coulomb Potential

both ¢/, and ¢’_ were possible, then one would also have linear superpositions
of the type ¥ = 1/)g/+ +1ite . The radial current density for this wave function

is
. h L0 o .
JT—%<¢ ar (Elb)lb)
h (9 (9 2/ e/ 1
= —2i ’ — r - ;) — ’ N’r++*71:—.
Sl (w@ o~ Ve o W+> 2
The current density would diverge as T% for 7 — 0. The current through
the surface of an arbitrarily small sphere around the origin would then be
J df2r%j, = constant, independent of r. There would have to be a source or
a sink for particle current at the origin. The solution ¢/, must certainly be
retained as it is the one that transforms into the nonrelativistic solution and,
hence, it is the solution with ¢ which must be rejected.
One can confirm this conclusion by solving the problem for a nucleus of finite
size, for which the electrostatic potential at » = 0 is finite. The solution that
is finite at r = 0 goes over into the solution of the % problem corresponding
to the positive sign.

(ii) In order that ¢’ and the energy eigenvalues be real, according to (8.1.17)
we must have

1
l+5>Za (8.1.21a)

(see Fig. 8.1). This condition is most restrictive for s states, i.e., £ =0:

1 137
«
For v > 1, we would have a complex value ¢/ = —1 +1is’ with s’ = /72 — 1.

This would result in complex energy eigenvalues and furthermore, we would
have R(r) ~ rzedis’log” e the solution would oscillate infinitely many
times as r — 0 and the matrix element of the kinetic energy would be diver-
gent.

The modification of the centrifugal term into (£(¢ + 1) — (Za)?)-5 arises
from the relativistic mass increase. Qualitatively speaking, the velocity does
not increase so rapidly on approaching the center as in the nonrelativis-
tic case, and thus the centrifugal repulsion is reduced. For the attractive

(—L) potential, classical mechanics predicts that the particles spiral into

r2
the center. When Za > £+ % > +/£(¢ 4+ 1), the quantum-mechanical system
1

becomes unstable. The condition Za < 5 can also be written in the form

2
Zﬁﬁ < %mrcz, i.e., the Coulomb energy at a distance of a Compton

wavelength —f— = 1.4 x 1073 ¢m from the origin should be smaller than
1 2 "

§m7rfc .
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Fig. 8.1. Plot of FEis
and FEi, for a point-like
nucleus according to Eq.
(8.1.18) as a function of Z.
The curves end at the Z
0 ; : value given by (8.1.21a).

100 200 For larger Z, the energies

7 become complex

2
The solutions for the (—Zfel) potential become meaningless for Z > 68. Yet,

since there exist nuclei with higher atomic number, it must be possible to
describe the motion of a 7~ meson by means of the Klein—-Gordon equation.
However, one must be aware of the fact that real nuclei have a finite radius
which means that also for large Z, bound states exist.

The Bohr radius for 7~ is a,- = %5 = e 2N % cm, where
a = 0.5 x 1078 cm, the Bohr radius of the electron, and m,- = 270m, have

been used. Comparison with the nuclear radius Ry = 1.5 x 1071343 cm
reveals that the size of the nucleus is not negligible?.

For a quantitative comparison of the theory with experiments on m-mesonic atoms,
one also has to take the following corrections into account:

. _ M
(i) The mass mx must be replaced by the reduced mass p = %= .

(ii) As already emphasized, one must allow for the finite size of the nucleus.
(iii) The vacuum polarization must be included. This refers to the fact that the
photon exchanged between the nucleus and the m-meson transforms virtually into

an electron—positron pair, which subsequently recombines into a photon (see Fig.
8.2).

N (a) T

Fig. 8.2. The electromagnetic interaction arises from the exchange of a photon
() between the nucleus (N) and the m-meson (7~). (a) Direct exchange; (b) with
vacuum polarization in which a virtual electron—positron pair (e~ —e™) occurs

4 The experimental transition energies for m-mesonic atoms, which lie in the x-
ray range, are presented in D.A. Jenkins and R. Kunselman, Phys. Rev. Lett.
17, 1148 (1966), where they are compared with the result obtained from the
Klein—-Gordon equation.
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(iv) Since the Bohr radius for the 7, as estimated above, is smaller by approxi-
mately a factor 1/300 than that of the electron, and thus the probability of finding
the 7~ in the vicinity of the nucleus is appreciable, one must also include a correc-
tion for the strong interaction between the nucleus and the 7.

8.2 Dirac Equation for the Coulomb Potential

In this section, we shall determine the ezxact solution of the Dirac equation
for an electron in a Coulomb potential

VA 2
Vir)=-2% (8.2.1)
r

From

L 0Y(x,t) e 5

i = (ca : (p - EA) + Bmc® + e@) b(x, 1) (8.2.2)
one finds, for A =0 and e® = —ZTB‘Z’ = V(r), the Dirac Hamiltonian

H=ca- p+pmc+V(r) (8.2.3)

and, with 1(x,t) = e "F*/M)(x), the time-independent Dirac equation
(co-p + Bmc® + V(r)y(x) = Ey(x). (8.2.4)

Here too, it will turn out to be useful to represent H in spherical polar

coordinates. To achieve this end, we first exploit all symmetry properties of
H.
The total angular momentum J from (7.2.7")

h
J=L1+;% (8.2.5)

commutes with H. This implies that H, J2, and J, have common eigenstates.

Remarks:
(i) The operators L., Y., and L? do not commute with H.

(ii) For X' = <g 3) it follows that (23)% = 329 = L (14 )21 is

diagonal.

(iii) L2, X2, and L - X, like H ,are scalars and thus commute with J.
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As a necessary prerequisite for an exact solution of the Dirac equation, we
first discuss the Pauli spinors. As we know from nonrelativistic quantum
mechanics®, the Pauli spinors are common eigenstates of J2, J, and L? with
the correspondlng quantum numbers j, m, and £, where J = L + —0' is now
the operator of the total angular momentum in the space of two- component
spinors. From the product states

6,my +1/2) | 1) Yo, +1 (9)
or 1
6,m; —1/2) 1) Yorm,—1 (3)

(in Dirac ket space or in the coordinate representation), one forms linear
combinations that are eigenstates of J2,.J,, and L?. For a particular value of

£, one obtains
l+m;+1/2
LI B e e
VT 2041 Yom;—1/2 1

(8.2.6)

QDS:;)] = for j:£+§
£—m;
\/ —ze# Yom;+1/2
and
L—m;+1/2
-) V _QZ‘T }/Z.,mjfl/Q 1
Pim, = for j=0—=. (8.2.7)

2
[l+m;+1/2
— LI B et
2011 }/Z,mj+1/2

The coefficients that appear here are the Clebsch—Gordan coeflicients. Com-
pared to the convention used in QM I, the spinors <p( ) now contain an
additional factor —1. The quantum number ¢ takes the valﬁes (=0,1,2,...,
whilst j and m; have half-integer values. For £ = 0, the only states are

@SIL)] = gp(+) The states gp( )] only exist for ¢ > 0, since | = 0 would imply

a negatlve 7. The spherical harmonics satisfy

Yim = (1" Ve (8.28)
The eigenvalue equations for gagitn)] are (henceforth we set A =1):
+ . + .1 3
P =i+l = 3150
1
L, = L+ 1)g,) . =jF 5 (8.2.9)
+ . .
szﬁm) = me§m1 s MG =—J5ee 5]

5 QM I, Chap. 10, Addition of Angular Momenta
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Furthermore, we have

+ +
L. agog.m)j = (J2 L? - 4) gogm)]

<] JH+1) = +1) — 4) o) (8.2.10)
_ (i)
-1+ G+1/2) 1 = . 1
_{ 1= (j+1/2) [ ¥ims forj=04+—.
The following definition will prove useful
K=(1+L- o) (8.2.11)

whereby, according to (8.2.10), the following eigenvalue equation holds:
1
Ko =1 (j ; ) o) = ) (3.2.12)
J 2 Jm; Jmj
The parity of Yy, can be seen from

Yim (—%) = (_1)éY€m(X) . (8.2.13)

For each value of j (2 , g . ) there are two Pauli spinors, gagﬂj and <p§m) ,
whose orbital angular momenta ¢ differ by 1, and which therefore have op-
posite parities. We introduce the notation
+ .
S =33
= (8.2.14)

SD_]’ITLJ

In place of the index (£), one gives the value of ¢, which yields the quantum
number j by the addition (subtraction) of % According to (8.2.13), goﬁmj has

parity (1), i.e.,

Plom, (—%) = (=1)" @}, (%) (8.2.15)

Remark: One may also write

+ _9X )
Pim; = 7 Pim, - (8.2.16)

This relation can be justified as follows: The operator that generates gagﬂ
from gp;m)j must be a scalar operator of odd parity. Furthermore, due to the
difference A¢ = 1, the position dependence is of the form Y7 ,,, (9, ¢), and
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thus proportional to x. Therefore, x must be multiplied by a pseudovector.
The only position-independent pseudovector is o. A formal proof of (8.2.16)
is left as an exercise in Problem 8.2.

The Dirac Hamiltonian for the Coulomb potential is also invariant under
spatial reflections, i.e., with respect to the operation (Eq. (6.2.33"))

P=pP0

where P©) effects the spatial reflection® x — —x. One may see this directly
by calculating P H and making use of fa = —a:

P Ea Y+ B - @} (x)
_ 5 Ha(v) + Bm - @] b(—x) (8.2.17)

:[%a-v+¢%m—%?]ﬁPwMMﬂ.

Therefore, BP©) commutes with H such that
BPO H]=0. (8.2.17)

Since (BP()2 = 1, it is clear that 3P possesses the eigenvalues #1. Hence,
one can construct even and odd eigenstates of fP(®) and H

BPOW (x) = Bug) (—x) = v (). (8.2.18)

Let us remark in passing that the pseudovector J commutes with SP(©).

In order to solve (8.2.4), we attempt to construct the four-spinors from
Pauli spinors. When wgmj appears in the two upper components, then, on
account of 3, one must also in the lower components take the other ¢ belonging
to 7, and hence, according to (8.2.16), 0'-§C<p§mj. This gives as solution ansatz

the four-spinors”

iGZi(T)SDé*
Wim, = v Tami ) (8.2.19)

Fez;(r) (o - g)(pgmj

These spinors have the parity (—1)¢, since

1)t
8PV, 0 = b, (0 =5 (il )
(1)l ().

6 This can also be concluded from the covariance of the Dirac equation and the
invariance of 2 under spatial reflections (Sect. 6.2.2.4).

7 i Tyl ¢
Since [J, o - x] = 0, it is clear that 73 Yjm; = j(jril)qumj'

(8.2.20)
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The factors % and i included in (8.2.19) will turn out to be useful later.
In matrix notation the Dirac Hamiltonian reads

_Za 4.
H= (m 7 pZa) . (8.2.21)

- p —-m — %

In order to calculate H)*

im» We require the following quantities®:

o-p f(r) P, = 0% 0% 0P f(r)¢),,

X

—— (x:p +i0L) f(r) jum,

10:{ Bfi) N (H (ﬁ%)) f(T)}@fmj

forj=0+1/2

(8.2.22a)

and
(-p)(0%) f(r) " i{fg“i(*lﬂ fe) e}
p Cim, ==~ T It3 Yimi - (8.2.22D)
for j=04+1/2.

By means of (8.2.22a,b), the angle-dependent part of the momentum op-
erator is eliminated, in analogy to the kinetic energy in nonrelativistic quan-
tum mechanics. If one now substitutes (8.2.19), (8.2.21), and (8.2.22) into
the time-independent Dirac equation (8.2.4), the radial components reduce

to
(B-m+22) Gyl = - 5 (4 5 ) Pl

forj=£0+1/2 (8.2.23)
Za dGy;(r 1N Gyj(r o
(E—i—m—i——)Fzg()— #()IF(j—f—i) Z]T()
forj=0+1/2.

This system of equations can be solved by making the substitutions

=m+FE , aa=m-—-F , o=vm?—FE2=/ajas
p=ro , kz:l:(j—i—%) , Y=Z«
(8.2.24)

with the condition ' < m for bound states. One obtains

8 o - ‘b+ic-axb,=>0 -x0-x=1
= —1(3_x. %)= 2

T T

_|,_.c..

a =a
X X
r T

o-
| o
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(8.2.25)

Differentiating the first equation and inserting it into the second, one sees
that, for large p, F' and G are normalizable solutions that behave like e™”.
Thus, in (8.2.25) we make the ansatz

F(p) = f(p)e™”,G(p) = g(p)e™", (8.2.26)

which leads to

r P (8.2.27)

In order to solve the system (8.2.27), one introduces the power series:

g=plao+arp+...), a0 #0
f:ps(b0+b1p+...), bo#O

Here, the same power s is assumed for g and f since different values would
imply vanishing ag and by, as can be seen by substitution into (8.2.27) in
the limit p — 0. For the solution to be finite at p = 0, s would have to be
greater than, or equal to, 1. Our experience with the Klein-Gordon equation,
however, prepares us to admit s values that are somewhat smaller than 1.
Substituting the power series into (8.2.27) and comparing the coefficients of
p*t¥~1 yields for v > 0:

(8.2.28)

(s+v+k)b, —b,—1+va, — %a,,_l =0 (8.2.29a)
o
(s+v—Fk)a, —ay—1 —vb, — ﬂb,,_l =0. (8.2.29b)
o
For v = 0 one finds

(s +k)bo +yap =0

8.2.30
(s —k)ag —vbo =0 . ( )

This is a system of recursion relations. The coefficients ag and by differ from
zero, provided the determinant of their coefficients in (8.2.30) disappears, i.e.

vz (8.2.31)

5= (kQ - 72)
The behavior of the wave function at the origin leads us to take the positive
sign. Now, s depends only on k2, i.e., only on j. Thus, the two states of oppo-
site parity that belong to j turn out to have the same energy. A relationship
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between a, and b, is obtained by multiplying the first recursion relation by
o, the second by as, and then subtracting

bylo(s+v+k)+ay] =afa(s+v—k)—o9], (8.2.32)

where we have used ajas = 02.

In the following we may convince ourselves that the power series obtained,
which do not terminate, lead to divergent solutions. To this end, we investi-
gate the asymptotic behavior of the solution. For large v (and this is also de-
cisive for the behavior at large r) it follows from (8.2.32) that ovb, = asva, ,
thus

Qg
bu:_au;
g

and from the first recursion relation (8.2.29a)
Vbl/ - b,/,1 +"Yau - %a,/,1 =0 5
o

whence we finally find

2
bl/ = - bl/—l , Oy = —ay—1
14 14

and thus, for the series,

Za,,p”wa,,p”Nz% ~ %P

v

The two series would approach the asymptotic form e2?. In order for the
solution (8.2.26) to remain well-behaved for large p, the series must terminate.
Due to the relation (8.2.32), when a,, = 0 we also have b, = 0 and, according
to the recursion relations (8.2.29), all subsequent coefficients are also zero,
since the determinant of this system of equations does not vanish for v > 0.
Let us assume that the first two vanishing coefficients are ay 1 = byy1 = 0.
The two recursion relations (8.2.29a,b) then yield the termination condition

asan = —oby , N=0,1,2,... . (8.2.33)

N is termed the “radial quantum number”. We now set v = N in (8.2.32)
and apply the termination condition (8.2.33)

2
by U(S+N+k)+ag'y+a(s+N—k)—Z—~y =0,
2

i.e., with (8.2.24)

20(s+ N) =v(a1 —az) =2E7. (8.2.34)
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We obtain E from this and also see that E > 0. According to (8.2.24), the
quantity o also contains the energy E. In the following we reintroduce ¢ and,
from (8.2.34), obtain

2(m2c* — E*)Y2? (s + N) = 2E~.

Solving this equation for E yields the energy levels:

42 ]é

GINT (8.2.35)

E =md? [14—

It still remains to determine which values of k (according to (8.2.12) they are
integers) are allowed for a particular value of N. For N = 0, the recursion
relation (8.2.30) implies:

bo gl

ag T stk

and from the termination condition (8.2.33), we have

b

029,

an g
Since, as implied by(8.2.31), s < |k|, it follows from the first of these relations
that

by [<Ofork>0

ao { >0for k<0 ’

whilst from the second relation it always follows that Z—Z <0, ie., for k<0
we arrive at a contradiction. Thus, for N = 0, the quantum number k£ can
only take positive integer values. For N > 0, all positive and negative integer
values are allowed for k. With the definition of the principal quantum number

1
n=N+lkl=N+j+3 (8.2.36)

and the value s = /k? — 42 from (8.2.31), equation (8.2.35) yields the energy
levels

274
A
E,;=mc |1+ <
n— k| + k% — (Za)?

[
N|=

Z
—me |1+ a . (8.2.37)

() D) - (a2
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Before we discuss the general result, let us look briefly at the nonrelativistic
limit together with the leading corrections. This follows from (8.2.37) by
expanding as a power series in Za:

Bo—medl Z%a? B (Za)* 1 3
™) 2n? 2n3 i+s 4n

(8.2.38)

This expression agrees with the result obtained from the perturbation-
theoretic calculation of the relativistic corrections (QM I, Eq. (12.5)).

We now discuss the energy levels given by (8.2.37) and their degeneracies.
For the classification of the levels, we note that the quantum number k =

+(j+ ) introduced in (8.2.12) belongs to the Pauli spinors gp(m) = gpf;lﬂz
Instead of k, one traditionally uses the quantum number ¢. Positive k is thus
associated with the smaller of the two values of ¢ belonging to the particular
7 considered. The quantum number £ takes the values k = £1,42,..., and
the principal quantum number n the values n =1,2,... . We recall that for
N = 0 the quantum number k& must be positive and thus from (8.2.36), we
have k = n and, consequently, { =n—1and j =n— % Table 8.1 summarizes
the values of the quantum numbers k, j, j + % and / for a given value of the
principal quantum number n.

Table 8.2 gives the quantum numbers for n = 1,2, and 3 and the spectro-
scopic notation for the energy levels n L;. It should be emphasized that the
orbital angular momentum L is not conserved and that the quantum number
{ is really only a substitute for &, introduced to characterize parity.

Table 8.1. Values of the

k 1 2 ... En-D) on quantum numbers k,j,j + 3,
J 1/2  3/2 n—1/2 and ¢ for a given principal
quantum number n
j4+1/2 1 2 n
) 0 1 n—2 n—1
1 2 n—1

Table 8.2. The values of the quantum

n N |k kE j 1 R
numbers; principal quantum number n,
1 0 1 1 1/2 0 1Sy radial quantum number N, k, angular
momentum j and £
2 1 1 +1 1/2 0 25y
1 1 -1 1/2 1 2Py
0 2 2 3/2 1 2P,
3 2 1 1 1/2 0 38y
2 1 -1 1/2 1 3Py
1 2 2 3/2 1 3P
1 2 -2 3/2 2 3Dy
0 3 3 5/2 2 3Dsp
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k=3
Dy /o
_ k=2 k=-2
n=3 V2 — D30
k=1 k=-1
S1/2 —Pip2
k=2
Py
=290 k=1 k=1
51/2 —P1/2

k=1

Fig. 8.3. The energy levels of the hydrogen atom according to the Dirac equation
for values of the principal quantum number n = 1,2, and 3

Figure 8.3 shows the relativistic energy levels of the hydrogen atom ac-
cording to (8.2.37) for the values n = 1,2, and 3 of the principal quantum
number. The levels 25; /5 and 2P, /5, the levels 3S5;,, and 3Py /o, the levels
3P3/5 and 3D3,, etc. are degenerate. These pairs of degenerate levels corre-
spond to opposite eigenvalues of the operator K = 1+ L-o, e.g., 2P5/5 has
the value k = 2, whereas 2D3/5 possesses k = —2. The only nondegenerate
levels are 15 2, 2P3/3, 3D5 2, etc. These are just the lowest levels for a fixed
7, or the levels with radial quantum number N = 0, for which it was shown in
the paragraph following (8.2.35) that the associated k can only be positive.
The lowest energy levels are given in Table 8.3. The energy eigenvalues for
N = 0 are, according to (8.2.37) and (8.2.36),

1
2 -3
= mc? [1—1—27—] zm02\/1—72/n2.

n2 —~2
(8.2.39)

[N

) _
E =md? {1—}—7—]
k2 —~2

Table 8.3. The lowest energy levels

n ¢ E,. j/mc?
18, 1 0 1 1— (Za)?
281, 2 0 % IHyi1-(Ze)” Vlg(z‘l)z
2p1/2 2 1 % ﬁ@

2Py, 2 1

[NI[e

VA - (Za)?
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n=2, I=0,1 fine structure + Lamb shift + hyperfine structure
1‘\\\ 9
v 2P
| 3/2 -.—=::::¢ 23.6
‘. f t
10950 S —
: peessl 177
I“ 1077 T
V251 /o Pl/zl o 2Py ’ — o 59
I

Fig. 8.4. Splitting of the energy levels of the hydrogen atom (MHz) due to the rela-
tivistic terms (fine structure, (Fig. 8.3)), the Lamb shift and the hyperfine structure

Figure 8.4 shows how the level n = 2, [ = 1 (a single level according to
the Schrodinger equation) splits according to Dirac theory (8.2.37) to yield
the fine structure. Further weaker splitting, due to the Lamb shift and the
hyperfine structure?, is also shown. It should be noted that all levels are still
(24 + 1)-fold degenerate since they do not depend on the quantum number
m;. This degeneracy is a general consequence of the spherical symmetry
of the Hamiltonian (see the analogous discussion in QM I, Sect. 6.3). The
fine-structure splitting between the 2P; /5 and the 2P; /5 and 25/ levels is
10950 MHz = 0.45 x 10~ eV.

As has already been mentioned, it is usual to make use of the nonrela-
tivistic notation to classify the levels. One specifies n,j, and ¢, where £ is
the index of the Pauli spinor, which really only serves to characterize the
parity.

The 2 51/ and 2 P, 5 states are degenerate, as in first-order perturbation
theory. This is not surprising since they are the two eigenstates of opposite
parity for the same N and j. The 2 P3/, state has a higher energy than
the 2 P/, state. The energy difference arises from the fine-structure splitting
caused by the spin—orbit interaction. In general, for a given n, the states with
larger j have a higher energy. The ground-state energy

S 2.4
5 3 (8.2.40)

9 Section 9.2.2 and QM I, Chap. 12
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is doubly degenerate, with the two normalized spinors

Z/Jn:u:%,mj:% (Ta 195 90)
(2mZa)3/? 1+7

= o2mZar)’ 1
V4T 2I'(1+2%) ( )
1 (8.2.41a)
p 0
—mZar i(1-73)
x e o cost)
(12 1) gin o el?
and
wn:l,j:%,mj:—%(rvﬁvw)
(2mZa)3/? 1+% _—
= 2mZar)”
V4T 2I'(1+2%) ( )
0 (8.2.41b)
p 1
x e meer (1Z 7 gin g e—i®
% cos v

with ¥ = /1 — Z202 and the gamma function I'(xz). The normalization
is given by fd3:mpn Li=tm, il(ﬁﬂ(p)wnzl,j:%,mj::t%(ﬁ’ ¢) = 1. The two
spinors possess the quantum numbers m; = +1/2 and m; = —1/2. They
are constructed from eigenfunctions of the orbital angular momentum: Yy
in the components 1 and 2 and Yj = 0 +1 in the components 3 and 4. In
the nonrelativistic limit o« — 0,57 — 1, —Y — 0 these solutions reduce to
the Schrédinger wave functions multlphed by Pauli spinors in the upper two
components.

The solution (8.2.41) displays a weak singularity r7=1 = rV 1=Z%a%—1
p=Za?/2, However, this only has a noticeable effect in a very tiny region:

1 ) 10—16300/22

< 2mZ o 2mZ o

Furthermore, for real nuclei with a finite radius, this singularity no longer
occurs. For Za > 1, 4 becomes imaginary and the solutions are therefore
oscillatory. However, all real nuclei have Za < 1 and, furthermore, this limit
is shifted for finite-sized nuclei.
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Problems

8.1 Demonstrate the validity of the relation

(@ D)@ RS0, =1 | 12 (543 )| £00eh,

8.2 Prove the relation (8.2.16)

() _ T X ()

Pim, r jm
that was given in connection with the solution of the Dirac equation for the hydro-
gen atom.
Hint: Make use of the fact that 4,0;:”)] is an eigenfunction of o - L and calculate

the commutator [o L, ZX] (result: 2 (r* ¢ -V — (o -x)(x- V) —0-x)) or the
anticommutator.

8.3 Derive the recursion relations (8.2.29a,b) for the coefficients a, and b,.

8.4 Calculate the ground-state spinors of the hydrogen atom from the Dirac equa-
tion.

8.5 A charged particle is moving in a homogeneous electromagnetic field B =
(0,0,B) and E = (Ep,0,0). Choose the gauge A = (0, Bx,0) and, taking as your
starting point the Klein—-Gordon equation, determine the energy levels.



9. The Foldy—Wouthuysen Transformation
and Relativistic Corrections

In this chapter we present the Foldy—Wouthuysen transformation, by means
of which the relativistic corrections may be computed for potentials which
are more complex than }_ After their evaluation higher order corrections will
be discussed and a simple estimate of the Lamb-shift will be given.

9.1 The Foldy—Wouthuysen Transformation

9.1.1 Description of the Problem

Beyond the Coulomb potential, there are other potentials for which it is also
important to be able to calculate the relativistic corrections. Relativistic cor-
rections become increasingly important for nuclei of high atomic number,
and it is exactly these, for which the nuclear diameter is no longer negligible,
in which the potential deviates from the 1/r form. The canonical transfor-
mation of Foldy und Wouthuysen! transforms the Dirac equation into two
decoupled two-component equations. The equation for the components 1 and
2 becomes identical to the Pauli equation in the nonrelativistic limit; it also
contains additional terms that give rise to relativistic corrections. The ener-
gies for these components are positive. The equation for the components 3
and 4 describes negative energy states.

From the explicit solutions given in previous sections, it is evident that
for positive energies the spinor components 1 and 2 are large, and the compo-
nents 3 and 4 small. We seek a transformation that decouples the small and
large components of the spinor from one another. In our treatment of the non-
relativistic limit (Sect. 5.3.5), we achieved this decoupling by eliminating the
small components. We now wish to investigate this limit systematically and
thereby derive the relativistic corrections. According to a classification that
is now established in the literature, the Dirac Hamiltonian contains terms of
two types: “odd” operators which couple large and small components (af, v¢,
~5) and “even” operators which do not couple the large and small components
(1, 8, X).

The canonical (unitary) transformation that achieves the required decou-
pling may be written in the form

! L.L. Foldy and S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)
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¢ =e5y, (9.1.1)

where, in general, S can be time dependent. From the Dirac equation, it then
follows that

10p) = i0e 7Y =ie 799 +1(0he9) )’ = Hyp = He 9y (9.1.2a)
and, thus, we have the equation of motion for 7':

10, = ('S (H —10,)e ) ¢/ = H'Y/ (9.1.2b)
with the Foldy—Wouthuysen-transformed Hamiltonian

H' = (H —10;)e 5 . (9.1.2¢)
The time derivative on the right-hand side of this equation only acts on e~'%.
One endeavors to construct S such that H’ contains no odd operators. For
free particles, one can find an exact transformation, but otherwise one has to
rely on a series expansion in powers of % and, by successive transformations,
satisfy this condition to each order of % In fact, each power of % corresponds
to a factor £~ ~ % in the atomic domain this is approximately equal to

Sommerfeld’s fine-structure constant «, since, from Heisenberg’s uncertainty

relation, we have ¥ ~ —_ ~ I
c cmAx cma

9.1.2 Transformation for Free Particles
For free particles, the Dirac Hamiltonian simplifies to
H=a p+8m (9.1.3)

with the momentum operator p = —iV. Since {a, 8} = 0, the problem is
analogous to that of finding a unitary operator that diagonalizes the Pauli
Hamiltonian

H=0,B,+0.B,, (9.1.4a)

so that, after transformation, H contains only 1 and o,. This is achieved by
a rotation about the y axis through an angle ¥y determined by (B, By,0):

e%ayﬂo — e%Uzamﬂo . (914b)

This equation suggests the ansatz

eHiS — oEATEIP) — o599 4 fa-p sin® . (9.1.5)

p

Here, S is time independent. The last relation results from the Taylor expan-
sion of the exponential function and from
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(- p)* = a'e? p'p) = S{a’, 0’} p'p? = 8p'p! = p’ (9.1.6a)
(Ba-p)=pa-pfa-p=-F(a-p)?=-p°. (9.1.6b)
Inserting (9.1.5) into (9.1.2c), one obtains H' as

H = eﬁ%ﬁ(a -p+ Om) <cosz9 6? P sin19>
p

= T ? <cos19—|— ﬂ(l);ipsinﬂ) (a-p+pm)

= e%%ﬂ(opp—&—ﬂm) = ((:05219—1— ﬁﬁ)ipsinh?) (o-p+pPm)

=a-p <cos 29 — % sin 219) + fBm <cos 29 + Ip] sin 219) . (9.1.7)
p m

The requirement that the odd terms disappear yields the condition tan 29 =
‘mﬂ , from whence it follows that

sin 219 tan 20 p cos 29 __m
111 = e — .
(1+tan?29)1/2  (m2 + p2)l/2 "’ (m2 + p?)1/2

Substituting this into (9.1.7) finally yields:
H' = pm (%—i—%) = [Bv/p2+m?. (9.1.8)
m

Thus, H' has now been diagonalized. The diagonal components are nonlocal?
Hamiltonians ++/p? + m?2. In our first attempt (Sect. 5.2.1) to construct
a nonrelativistic theory with a first order time derivative, we encountered
the operator \/p? + m2. The replacement of \/p2? + m?2 by linear operators
necessarily leads to a four-component theory with negative as well as positive
energies. Even now, H' still contains the character of the four-component
theory due to its dependence on the matrix (3, which is different for the
upper and lower components. Such an exact transformation is only feasible
for free particles.

9.1.3 Interaction with the Electromagnetic Field

Of primary interest, of course, is the case of non-vanishing electromagnetic
fields. We assume that the potentials A and @ are given, such that the Dirac
Hamiltonian reads:

H=a (p—eA)+pPm+ed (9.1.9a)
=pfm+E+O. (9.1.9)
2 They are nonlocal because they contain derivatives of all orders. In a discrete

theory, the nth derivative signifies an interation between lattice sites that are n
units apart.
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Here, we have introduced a decomposition into a term proportional to 3, an
even term £, and an odd term O:

E=ep and O=a(p-—-ecA). (9.1.10)
These have different commutation properties with respect to 3:
pE=E3, pO=-003. (9.1.11)
The solution in the field-free case (9.1.5) implies that, for small ¢, i.e., in the
nonrelativistic limit,
a-p
p|

We can thus expect that successive transformations of this type will lead to an
expansion in % In the evaluation of H', we make use of the Baker—Hausdorff
identity?

iS =2 ﬁwﬂa%.

32 3

H' = H 1S, H] + (S, [S, H] + - [S,[S, S, H]]] +
+ ﬂ[sa [Sa [S’ [Sa Hm] -5 - 5[5, S] - E[S’ [Sa S]] ’

given here only to the order required. The odd terms are eliminated up to
order m™2, whereas the even ones are calculated up to order m=3.
In analogy to the procedure for free particles, and according to the remark

following Eq. (9.1.11), we write for S:

S = —iB0/2m . (9.1.13)
For the second term in (9.1.12), we find
: g L 2
—_ oL P L 1.1
iS, 1] = 0+ L_[0,€] + 0, (9.1.14)

obtained using the straightforward intermediate steps

(8O, ] = BOB — O = —20
(80, €] = BlO, €] (9.1.15)
[30,0] = pO* — OBO = 20O .

Before calculating the higher commutators, let us immediately draw attention
to the fact that the first term in (9.1.14) cancels out the term O in H.
Hence, the aim of eliminating the odd operator O by transformation has
been attained; although new odd terms have been generated, e.g., the second
term in (9.1.14), these have an additional factor m~!. We now address the
other terms in (9.1.12).

The additional commutator with iS can be written immediately by using
(9.1.14), (9.1.15), and (9.1.11):

 e'Be*=B+[AB]+...+ L[A[A,...,[AB]...]]+
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i2 BO? 1 1

—_ [ J P 3
2 [S’ [S’ H]] 2m 8m2 [O’ [O’ g]] 2m2 O )
and likewise,
i3 o 1 . B
5[87 [Sa [Sv H]]] T 6m2 - 6m3 BO - 48m3 [Ov [Ov [075]“ :

For the odd operators, it is sufficient to include terms up to order m~2 and

hence the third term on the right-hand side may be neglected. The next
contributions to (9.1.12), written only up to the necessary order in 1/m, are:

i BO*
. iBo
== o
2188 = ——5[0.0]
2V gm2t T
All in all, one obtains for H':
02 o4 1 i .
! - = o o
H'=pm+ ( = 8m3) —10,0.€]) - = 10.0]
B 0% g0 Loy
= SR . 1.
t5 06— g5+ 5= fm A€+ 0 (9.1.16)

Here, £ and all even powers of O have been combined into a new even
term &’, and the odd powers into a new odd term O'. The odd terms now
occur only to orders of at least % To reduce them further, we apply another
Foldy—Wouthuysen transformation

,_—iB,, _—iB (8 0* B0
_ Wy WL _ PP 1.
s 2m0 2m (2771[0’5] 3m? * 2m (9-1.17)
This transformation yields:
. ./
H" = (H' —id)e™™ = pm + & + %[O’,S’] + % (9.1.18)

=fm+E+0".

Since O’ is of order 1/m, in O” there are now only terms of order 1/m?. This
transformation also generates further even terms, which, however, are all of
higher order. For example, 60'2/2m = Be?E?/8m3 ~ Bet/m3r* ~ Ry ot .
By means of the transformation
—igo"
g = P97 (9.1.19)

2m
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1
m

the odd term O” ~ O ( —2) is also eliminated. The result is the operator
H" — eiS” (H// o iat)efis” = Bm + &
0? o4 1 ) (9.1.20)
- (m+———) +E— —; 0,[0,5]+i@} :
m m 8m

which now only consists of even terms.
In order to bring the Hamiltonian H”' into its final form, we have to
substitute (9.1.10) and rewrite the individual terms as follows:

2nd term of H'”:

o _ 1 (a-(p—cA)?= ——(p—cA)? - -*5.B (9.1.21a)
= . — € - — € - : t
2m  2m P om P 2m ’

since

a'ed =o'l = —y'y = =2 ({77} + [V 07]) = —g¥ +ieVP DT
= §U 4+ ik b

and the mixed term with ¢¥* yields:
—e (PP AT+ A'p) iR I8 = —ie ((p' A7) + Alp' 4 A'pT) ek SF
= —e (&Aj)sijkzk = —eB.-X.

5th term of H"':
Evaluation of the second argument of the commutator gives

([(9,5] + 1(9) = [a'(p' — eA"), e®] — iea’ A’
= —jea’ (81-45 + Al) =ied’E" .
It then remains to compute
[O0,a-E] = a'ad(p — eA)EI — o/ E7a’ (p* — eAY)
= (p' —eA)E' -~ E'(p' — eA’)
+izsijk2k(pi — eAi)Ej — iglk ok i (pi — eAi)
=(p'E)+ X -VXxE-2Y-Ex (p—ecA).
Hence, the 5th term in H"” reads:

ie e ie
— [O,a-E]=——divE—-—X -V XxE
8m? sm? 8m? (9.1.21b)

Inserting (9.1.10) and (9.1.21a,b) into (9.1.20), one obtains the final expres-
sion for H":
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"no__ (p — eA)2 _ 1 _ 2 _ . 2
H"=p (m—i— 5 e [(p—eA)*—eX -B]° | +ed
—LBZ-B—iE-curlE (9.1.22)
2m 8m?2
e e
_ ‘5. _eA) - divE.
4m22 Ex (p—eA) ey divE

The Hamiltonian H"” no longer contains any odd operators. Hence, the com-
ponents 1 and 2 are no longer coupled to the components 3 and 4. The
eigenfunctions of H"” can be represented by two-component spinors in the
upper and lower components of v’, which correspond to positive and neg-
ative energies. For ¢/ = (“6’), the Dirac equation in the Foldy—Wouthuysen
representation acquires the following form:

0 1 4
22 = m—i—e@—f——(p—eA)Q—ia-B—p—
ot 2m 2m 8m3
(9.1.23)
e € .
WtrEx(peA)stdlvE}go.

Here, ¢ is a two-component spinor and the equation is identical to the Pauli
equation plus relativistic corrections. The first four terms on the right-hand
side of (9.1.23) are: rest energy, potential, kinetic energy, and coupling of
the magnetic moment p = 5=0 = 25=8 to the magnetic field B. As was
discussed in detail in Sect. 5.3.5.2, the gyromagnetic ratio (Landé factor) is
obtained from the Dirac equation as g = 2. The three subsequent terms are
the relativistic corrections, which will be discussed in the next section.

Remark. Equation (9.1.23) gives only the leading term that follows from ©?, which
is still contained in full in (9.1.22), namely p*. The full expression is

ﬂ 4 ﬂ 2 2 5 4 22
—5,30" = 5 5((P—eA)? —eXB)’ = ——[(p—cA)" + "B’ +
+eX - AB —2¢X -B(p — eA)? — 2ieq; VB;(p — eA)] .

It should also be noted that, in going from (9.1.22) to (9.1.23), it has been assumed
that curl E = 0.

9.2 Relativistic Corrections and the Lamb Shift

9.2.1 Relativistic Corrections
We now discuss the relativistic corrections that emerge from (9.1.22) and

(9.1.23). We take E = —V&(r) = —222x and A = 0. Hence, curlE =0
and

D
E-Exp:—;g—rx-xxp:—;—Z-L. (9.2.1)
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Equation (9.1.23) contains three correction terms:

212
H =—- () relativistic mass corrrection (9.2.2a)
8m3
109
Hy = #;E o-L spin-orbit coupling (9.2.2b)
e . e 2 .
Hs = oz divE = WV &(x)  Darwin term. (9.2.2¢)

Taken together, these terms lead to the perturbation Hamiltonian

2)2 1 19V 2
(p?) 1oV L D
8m3c2  4dm2c2 r Or 8m?2c¢?

ViV (x);
(9.2.2d)

(V = e®). The order of magnitude of each of these corrections can be obtained
from the Heisenberg uncertainty relation

P\ _ LA 2 _ .2 4
Ryx(—) =Ry(—-) =Rya”=mc*a™,
me c

where a = €3 (= e3/hc) is the fine-structure constant. The Hamiltonian
(9.2.2d) gives rise to the fine structure in the atomic energy levels. The per-
turbation calculation of the energy shift for hydrogen-like atoms of nuclear
charge Z was presented in Chap. 12 of QM I; the result in first-order pertur-
bation theory is

Ry Z° (Za)® {3 n } _ (9.2.3)

n?2 n?2 Z_j+%

AEn,j:éi%,é =
The energy eigenvalues depend, apart from on n, only on j. Accordingly, the
(n = 2) levels 25, /2 and 2p, /2 are degenerate. This degeneracy is also present
in the exact solution of the Dirac equation (see (8.2.37) and Fig. 8.3). The
determination of the relativistic perturbation terms Hy, Hs, and Hj3 from
the Dirac theory thus also provides a unified basis for the calculation of the
fine-structure corrections O(a?).

Remarks:

(i) An heuristic interpretation of the relativistic corrections was given in QM I,
Chap. 12. The term H; follows from the Taylor expansion of the relativistic kinetic
energy /p? + m?2. The term Hs can be explained by transforming into the rest
frame of the electron. Its spin experiences the magnetic field that is generated by
the nucleus, which, in this frame, orbits around the electron. The term Hj3 can
be interpreted in terms of the “Zitterbewegung”, literally “trembling motion”, a
fluctuation in the position of the electron with an amplitude dz = he/m.

(ii) The occurrence of additional interaction terms in the Foldy—Wouthuysen rep-
resentation can be understood as follows: An analysis of the transformation from
the Dirac representation ¢ to ¢’ shows that the relationship is nonlocal?

4 L.L. Foldy and S.A. Wouthuysen, Phys. Rev. 78, 29 (1950)
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¥ (x) = / 2’ K (x, 5 () |

where the kernel of the integral K (x,x’) is of a form such that, at the position
x, 9’ (x) consists of 1 contributions stemming from a region of size ~ A around
the point x; here, A. is the Compton wavelength of the particle. Thus, the original
sharply localized Dirac spinor transforms in the Foldy—Wouthuysen representation
into a spinor which seems to correspond to a particle that extends over a finite
region. The reverse is also true: The effective potential that acts on a spinor in
the Foldy—Wouthuysen representation at point x consists of contributions from the
original potential A(x), #(x) averaged over a region around x. The full potential
thus has the form of a multipole expansion of the original potential. This viewpoint
enables one to understand the interaction of the magnetic moment, the spin—orbit
coupling, and the Darwin term.

(iii) Since the Foldy—Wouthuysen transformation is, in general, time dependent,
the expectation value of H'” is generally different to the expectation value of H. In
the event that A (x) and @(x) are time independent, i.e., time-independent electro-
magnetic fields, then S is likewise time independent. This means that the matrix
elements of the Dirac Hamiltonian, and in particular its expectation value, are the
same in both representations.

(iv) An alternative method® of deriving the relativistic corrections takes as its

starting point the resolvent R = m of the Dirac Hamiltonian H. This is
analytic in % at ¢ = oo and can be expanded in % In zeroth order one obtains the

Pauli Hamiltonian, and in (’)(C%) the relativistic corrections.

9.2.2 Estimate of the Lamb Shift

There are two further effects that also lead to shifts and splitting of the
electronic energy levels in atoms. The first is the hyperfine interaction that
stems from the magnetic field of the nucleus (see QM I, Chap. 12), and the
second is the Lamb shift, for which we shall now present a simplified theory.5

The zero-point fluctuations of the quantized radiation field couple to the
electron in the atom, causing its position to fluctuate such that it experiences
a smeared-out Coulomb potential from the nucleus. This effect is qualitatively
similar to the Darwin term, except that the mean square fluctuation in the
electron position is now smaller: We consider the change in the potential due
to a small displacement §x:

V(x+x)=V(x)+xVV(x)+ %&CiéijiVjV(x) +... . (924

Assuming that the mean value of the fluctuation is (dx) = 0, we obtain
an additional potential

5 F. Gesztesy, B. Thaller, and H. Grosse, Phys. Rev. Lett. 50, 625 (1983)
5 Our simple estimate of the Lamb shift follows that of T.A. Welton, Phys. Rev.
74, 1157 (1948).
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AHpam, = (V(x +6x) — V(x)) = %((6x)2>V2V(x)
= %<(6x)2> dr Zahe 6P (x) . (9.2.5)

The brackets () denote the quantum-mechanical expectation value in the
vacuum state of the radiation field. In first order perturbation theory, the
additional potential (9.2.5) only influences s waves. These experience an en-
ergy shift of

2w Zahe

AEramp = T<(5X)2> |¢n.0=0(0)]°
~ (2meZa)? Zac
= "o —((6%)*)é00 , (9.2.6)
where we have used ¥y, ¢=0(0) = \/%? (%)3/2. The energy shift for the
p,d, ... electrons is much smaller than that of the s waves due to the fact

that they have ¢(0) = 0, even when one allows for the finite extent of the
nucleus. A more exact theory of the Lamb shift would include, not only the
finite size of the nucleus, but also the fact that not all contributing effects
can be expressed in the form AV, as is assumed in this simplified theory.

We now need to estimate ((6x)?), i.e., find a connection between dx and
the fluctuations of the radiation field. To this end, we begin with the nonrel-
ativistic Heisenberg equation for the electron:

mix =eE. (9.2.7)

The Fourier transformation

6x(t) = / ;l—:e_i‘”téxw (9.2.8)

— 00

yields

/ / o i ox) (9.2.9)

Due to the invariance with respect to translation in time, this mean square
fluctuation is time independent, and can thus be calculated at ¢ = 0. From
(9.2.7) it follows that

e E,
For the radiation field we use the Coulomb gauge, also transverse gauge,
div A = 0. Then, due to the absence of sources, we have
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1.
E(t) = ——A(0,?) . (9.2.11)
c
The vector potential of the radiation field can be represented in terms of the

creation and annihilation operators al y(ak,») for photons with wave vector
k, polarization A, and polarization vector ex y(A = 1, 2)":

[h2 : .
A(x’ t) = Z VZC (ak)\sk)\el(kx—ckt) + aI{,)\Eik(,)\e_l(kx_th)> )
kA

(9.2.12)

The polarization vectors are orthogonal to one another and to k. From
(9.2.12), one obtains the time derivative

h27rc
f—A 0,t) Z \/ 1ck ak AEK,\E —iekt _ aL Aek ,\61th>

and the Fourier-transformed electric field

oo

E, = / dt 1B (t)
. h(2m)3ke .
—iy /M V) ~ (e r8120(w = ch) — af, e 10w + ch))
kA

Now, by making use of (9.2.9), (9.2.10), and (9.2.13), we can calculate the
mean square fluctuation of the position of the electron

((Ex(t))?) = / Cﬁ‘;’f;"’e— B

m? 2w

h27T ck + «
Z Z 2(ck’)2 (ak,xsk,x - ak,)\ek,)\>

kA k)

X (akr,,\,sk/7,\, - aL,M\,ef(,,/\,)> :

The expectation value is finite only when the photon that is annihilated is
the same as that created. We also assume that the radiation field is in its
ground state, i.e., the vacuum state |0). Then, with ak,,\aLA =1+ aLAak7)\
and ay » [0) = 0, it follows that

(9.2.13)

T QM I, Sect. 16.4.2
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2

e Bk R
<(5X(t))2> = _/WW Z <ak,AaLA +aL,A“k,A>

m2
A=1,2

2¢ ig/%
m he \ mc k'’

where we have also made the replacement % Sk — %. The integral

(9.2.14)

Jo° dk  is ultraviolet (k — oo) and infrared (k — 0) divergent.

In fact, there are good physical reasons for imposing both an upper and a
lower cutoff on this integral. The upper limit genuinely remains finite when
one takes relativistic effects into account. The divergence at the lower limit
is automatically avoided when the electron is treated, not with the free equa-
tion of motion (9.2.7), but quantum mechanically, allowing for the discrete
atomic structure. In the following, we give a qualitative estimate of both lim-
its, beginning with the upper one. As a result of the “Zitterbewegung” (the
fluctuation in the position of the electron), the electron is spread out over a
region the size of the Compton wavelength. Light, because its wavelength is
smaller than the Compton wavelength, causes, on average, no displacement
of the electron, since the light wave has as many peaks as troughs within
one Compton wavelength. Thus, the upper cutoff is given by the Compton
wavelength %, or by the corresponding energy m. For the lower limit, an
obvious choice is the Bohr radius (Zam) ™!, or the corresponding wave num-
ber Zam. The bound electron is not influenced by wavelengths greater than
a = (Zam)~L. The lowest frequency of induced oscillations is then Zam.
Another plausible choice is the Rydberg energy Z2a?m with the associated
length (Z2a2m)~!, corresponding to the typical wavelength of the light emit-
ted in an optical transition. Light oscillations at longer wavelengths will not
influence the bound electron. In a complete quantum-electrodynamical the-
ory, of course, there are no such heuristic arguments. If we take the first of
the above estimates for the lower limit, it follows that

Wmax 1 m 1 1
dw— = dw— =log —
/ Yo / Yo T %z
Wmin Zam

and thus, from (9.2.6) and (9.2.14),
(2me Za)® Zac2 e® [ h\? 1
ABp = 024 2AC2E (D) g = §
Lamb 12h2 n3 mhe \me) % Za °°
8743 1

1
= —371-”3 og % ECYQmCQ(S[,O .

(9.2.15)

This corresponds to a frequency shift®

8 T.A. Welton, Phys. Rev. 74, 1157 (1948)
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Avpamp = 667MHz for n=2, Z=1,(=0.

The experimentally observed shift? is 1057.8624-0.020 MHz. The complete
quantum-electrodynamical theory of radiative corrections yields 1057.864 +
0.014 MHz.'° In comparison with the Darwin term, the radiative corrections
are smaller by a factor alogé. The full radiative corrections also contain
a(Za)* terms, which are numerically somewhat smaller. Levels with ¢ # 0
also display shifts, albeit weaker ones than the s levels.

Quantum electrodynamics allows radiative corrections to be calculated
with remarkable precision'®!!. This theory, too, initially encounters diver-
gences: The coupling to the quantized radiation field causes a shift in the
energy of the electron that is proportional (in the nonrelativistic case) to p2,
i.e., the radiation field increases the mass of the electron. What one measures,
however, is not the bare mass, but the physical (renormalized) mass which
contains this coupling effect. Such mass shifts are relevant to both free and
bound electrons and are, in both cases, divergent. One now has to reformulate
the theory in such a way that it contains only the renormalized mass. For the
bound electron, one then finds only a finite energy shift, namely, the Lamb
shift'!. In the calculation by Bethe, which is nonrelativistic and only contains
the self-energy effect described above, one finds a lower cutoff of 16.6 Ry and
a Lamb shift of 1040 MHz. Simply out of curiosity, we recall the two estimates
preceding Eq. (9.2.15) for the lower cutoff wave vector: If one takes the geo-
metrical mean of these two values, for Z = 1 one obtains a logarithmic factor
in (9.2.15) of log 72—z, which in turn yields AE = 1040 MHz.

In conclusion, it is fair to say that the precise theoretical explanation of
the Lamb shift represents one of the triumphs of quantum field theory.

Problems

9.1 Verify the expressions given in the text for
i i? 1

with H = a(p —eA) + pfm+eP and S = —ﬁﬂ(% where O = a(p — eA).

9 The first experimental observation was made by W.E. Lamb, Jr. and R.C.
Retherford, Phys. Rev. 72, 241 (1947), and was refined by S. Triebwasser, E.S.
Dayhoff, and W.E. Lamb, Phys. Rev. 89, 98 (1953)

10 N.M. Kroll and W.E. Lamb, Phys. Rev. 75, 388 (1949); J.B. French and V.F.
Weisskopf, Phys. Rev. 75, 1240 (1949); G.W. Erickson, Phys. Rev. Lett. 27, 780
(1972); P.J. Mohr, Phys. Rev. Lett. 34, 1050 (1975); see also Itzykson and Zuber,
op. cit p. 358

' The first theoretical (nonrelativistic) calculation of the Lamb shift is due to H.A.
Bethe, Phys. Rev. 72, 339 (1947). See also S.S. Schweber, An Introduction to
Relativistic Quantum Field Theory, Harper & Row, New York 1961, p. 524.; V.F.
Weisskopf, Rev. Mod. Phys. 21, 305 (1949)
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9.2 Here we introduce, for the Klein—Gordon equation, a transformation analogous
to Foldy—Wouthuysen’s, which leads to the relativistic corrections.

(a) Show that the substitutions

1 i Op 1 i Op
9_2<<'0+m8t) and X—2<§0 m@t)

allow the Klein—Gordon equation

3290 2 2

gz = (V —m)e
to be written as a matrix equation

oP

i— = Ho®

Yor — 10

_ (6 _ 1 1) ¢2 1 0

where @ = (x) and Hop= — (_1 _1) o T <0 _q1)m

(b) Show that in the two-component formulation, the Klein-Gordon equation for
particles in an electromagnetic field, using the minimal coupling (p — © = p—eA),

reads:
0P 11\ = 10
o T {— <71 71) o + <0 1 m+eV(x) p P(x) .
(c) Discuss the nonrelativistic limit of this equation and compare it with the cor-

responding result for the Dirac equation.
Hint: The Hamiltonian of the Klein—-Gordon equation in (b) can be brought

into the form H = O+ &+ nm with n = (é _(1)) , (’):p% = <_(1) (1)> % , and
E=eV+ n% . Show, in analogy to the procedure for the Dirac equation, that, in

the case of static external fields, the Foldy—Wouthuysen transformation ¢’ = ¢"°®
yields the approximate Schrédinger equation 122~ = H'®’, with

’ w2 wt 1 2+ 2
H = <m+—m——+.4.>+eV+32m4[7r Jrt eV 4+ ...

The third and the fifth term represent the leading relativistic corrections. In respect
to their magnitudes see Eq. (8.1.19) and the remark (ii) in Sect. 10.1.2.



10. Physical Interpretation
of the Solutions to the Dirac Equation

In interpreting the Dirac equation as a wave equation, as has been our practice
up to now, we have ignored a number of fundamental difficulties. The equa-
tion possesses negative energy solutions and, for particles at rest, solutions
with negative rest mass. The kinetic energy in these states is negative; the
particle moves in the opposite direction to one occupying the usual state of
positive energy. Thus, a particle carrying the charge of an electron is repelled
by the field of a proton. (The matrix § with the negative matrix elements
B33 and (44 multiplies m and the kinetic energy, but not the potential term
e® in Eq. (9.1.9).) States such as these are not realized in nature. The main
problem, of course, is their negative energy, which lies below the smallest
energy for states with positive rest energy. Thus, one would expect radia-
tive transitions, accompanied by the emission of light quanta, from positive
energy into negative energy states. Positive energy states would be unstable
due to the infinite number of negative-energy states into which they could
fall by emitting light — unless, that is, all of these latter states were occupied.

It is not possible to exclude these states simply by arguing that they are
not realized in nature. The positive energy states alone do not represent a
complete set of solutions. The physical consequence of this is the following:
When an external perturbation, e.g., due to a measurement, causes an elec-
tron to enter a certain state, this will in general be a combination of positive
and negative energy states. In particular, when the electron is confined to
a region that is smaller than its Compton wavelength, the negative energy
states will contribute significantly.

10.1 Wave Packets and “Zitterbewegung”

In the previous sections, we for the most part investigated eigenstates of
the Dirac Hamiltonian, i.e., stationary states. We now wish to study general
solutions of the time-dependent Dirac equation. We proceed analogously to
the nonrelativistic theory and consider superpositions of stationary states
for free particles. It will emerge that these wave packets have some unusual
properties as compared to the nonrelativistic theory (see Sect. 10.1.2).
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10.1.1 Superposition of Positive Energy States

We shall first superpose only positive energy states

P (z) = /dp o pr, ) (p)e™ P (10.1.1)

o3 E

and investigate the properties of the resulting wave packets. Here, u,(p) are
the free spinors of positive energy and b(p,r) are complex amplitudes. The

factor is included so as to satisfy a simple normalization condition.

__m__
(2m)3E
3
We note in passing that d—Ep is a Lorentz-invariant measure where, as always,
E = /p? + m2. We show this by the following rearrangement:

/d3 = /d3 /dp /d3 /dpo25pOfE2)

:/d3p/ dpo 5(p37E2):/d4p5(p27m2)-

Both d*p and the §-function are Lorentz covariant. The d*p = det A d*p’ = £ d*p’
transforms as a pseudoscalar, where the Jacobi determinant det A would equal 1

(10.1.2)

for proper Lorentz transformations.

The density corresponding to (10.1.1) is given by
F 0 x) = DT, x) P (8, %) . (10.1.3a)
Integrated over all of space

d3pd3p/ m2 .
/dng 0 (¢, x) /d3 / 5 BE Zb (p,r)b(p’, ")

r,r!

x ul (p)uy (p)el(E—F)-ip—p)x (10.1.3b)
d3
*Zl/ g bl =1,

the density in the sense of a probablity density is normalized to unity. Here, we
have used [ d3ze!®—P)x = (27)3 §3) (p — p’) and the orthogonality relation
(6.3.19a). The time dependence disappears and the total density is time
independent. This equation determines the normalization of the amplitudes
b(p, ).

We next calculate the total current, which is defined by

JH = /d%j(ﬂ(t,x) :/d?’gcz/J(+)T(t,x)aw(+)(t,x). (10.1.4)

Y ul (p) upr (p) = @ (p)7° upr (p) = £ 6,0
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In analogy to the zero component, one obtains

J(+) _ d3CC d3 d3 /Tn2 b* b /!
@nyp pd°p EE,Z (p, )b, 7")

X ’UJT(p)au /(p/) i(E*E,)t*i(p*p,)x (1014/)

/ 32E2 P )ul (D)evuy (p) -

For further evaluation, we need the Gordon identity (see Problem 10.1)

_ 1 o

W (p)r" (@) = 5 -0 (p) (0 + 0" +i0" (= @) ur(@) . (10.15)
Taken in conjunction with the orthonormality relations for the w, given in
(6.3.15), a,(k)us(k) = by, equation (10.1.4") yields:

dp m )|2p <B>. (10.1.6)

JH) =
E

This implies that the total current equals the mean value of the group velocity

OFE 0vp2+m? p
Jp Jp E
So far, seen from the perspective of nonrelativistic quantum mechanics, noth-
ing appears unusual.

10.1.2 The General Wave Packet

However, on starting with a general wave packet and expanding this using
the complete set of solutions of the free Dirac equation, the result contains
negative energy states. Let us take as the initial spinor the Gaussian

1 ixpo—x2 2
w(o,x):We Po—x"/4d™ ) (10.1.8)

where, for example, w = (‘g), i.e., at time zero there are only components
with positive energy, and where d characterizes the linear dimension of the
wave packet. The most general spinor can be represented by the following
superposition:

3 m ) _
0t = [ 5 X by o)™ 4 ) ()e)
' (10.1.9)
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We also need the Fourier transform of the Gaussian appearing in the initial
spinor (10.1.8)

/d% iXPo—x"/4d% —ipx — (412)3/2(P=po)*d” (10.1.10)

In order to determine the expansion coefficients b(p, r) and d(p, r), we take the
Fourier transform at time ¢ = 0 of ¢(0,x) and insert (10.1.8) and (10.1.10)
on the left-hand side of (10.1.9)

(8md?)3/ 4= (P—P0)d*y, — % > (b, r)ue(p) + d* (B, r)v(B) , (10.1.11)

where p = (p°, —p). After multiplying (10.1.11) by u/(p) and v} (p), the or-
thogonality relations (6.3.19a—c)

e (B0 (k) = = 6y = ul () us (k)

e (K1%us (k) = = 6y = vl () (k)

ﬁr(];)'YOUS(k) = 0 = Ui(k) us (k)
yield the Fourier amplitudes

b(p,r) = (8md?)3/* e~ PP L 4 f (1)

22 (10.1.12)
d*(p,r) = (8md?)3/* e=(P=Po)"d" T 5y |
both of which are finite.

We have thus demonstrated the claim made at the outset that a general
wave packet contains both positive and negative energy components. We now
wish to study the consequences of this type of wave packet. For the sake of
simplicity, we begin with a nonpropagating wave packet, i.e., pop = 0. Some of
the modifications arising when py # 0 will be discussed after Eq. (10.1.14b).

Since we have assumed w = (96’), the representation (6.3.11a,b) implies,

for the spinors u, and v, of free particles, the relation d*(p, r)/b(p,r) ~ ﬁlﬁ .

If the wave packet is large, d > L, then |p| < d~! < m and thus d*(p) <
b(p). In this case, the negative energy components are negligible. However,
when we wish to confine the particle to a region of dimensions less than a
Compton wavelength, d < % , then the negative energy solutions play an
important role:

pl~dt>m,

ie., d*/b~ 1.
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The normalization

3 m
Jeuiesuta = [ GEE S (bR + ) <1

™

is time independent as a result of the continuity equation.
The total current for the spinor (10.1.9) reads:

3 m i
70)= [ s B 5 X e + )

+i) [b* (B, r)d* (p,r")e* ' u, (p) v, (p) (10.1.13)

r,r!

— b(p, r)d(p, r/)emetﬁrr (p)oiOuT (]5)} } .

The first term is a time-independent contribution to the current. The second
2

term contains oscillations at frequencies greater than MTC =2 x 102571

This oscillatory motion is known as “Zitterbewegung”.

In this derivation, in addition to (10.1.5), we have used

B (D) (2) = 50 (5) (5~ 0)" + 0™ (5 -+ @)u] v, (a) (10.1.142)

from which it follows that

ul(p)a' vy (p) = r(5)y vr (p)

v

(p+ p)uvw(p)]
(10.1.14b)

= ﬁ [(13" —p")ar(p)vr(p) + @r(p) o

For the initial spinor (10.1.8) with w = (¥) and po = 0, the first term of (10.1.14b)

contributes nothing to J(t) in (10.1.13). If the spinor w also contains components
3 and 4, or if po # 0, there are also contributions from Zitterbewegung to the first
term of (10.1.14b). One obtains an additional term (see Problem 10.2) to (10.1.13)

i d3p m —2(p—pg)2d2 2i i 1
AJ(t) = / (2r)? E(Sﬁdz)a/2e 2pmpol T B, Uﬁm(f — mpYy)yow .
(10.1.13")

The amplitude of the Zitterbewegung is obtained as the mean value of x:

(x) = / A (£,%) x 6 (t, %)
(10.1.15a)
_ / d®z yT(0,x)e" xe (0, x) .

In order to calculate (x), we first determine the temporal variation of (x),
since this can be related to the current, which we have already calculated:
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G600 =5 [ vt 0xe i xe 1 (0.%)
= /d%W(t,x)i[H, x| (t, x) (10.1.15b)

_ /d%wt,x) ad(t,x) = I(1) .

In evaluating the commutator we have used H = a- %V+ Bm. The integration
of this relation over the time from 0 to ¢ yields, without (10.1.13'),

)

+Z d3p m b* (B, r)d* (p, )2 B, (5)o v, (p)  (10.1.16)
3 2E2 D, b, r\P P

3 m 7
(21} = <$i>t:o + / (;lTp3E_€ [[b(p,7)I* + |d(p,7)|?] t

bGP e, () un(p)] -

The mean value of % contains oscillations with amplitude ~ % ~ % ~ i =
3.9 x 10~ em. The Zitterbewegung stems from the interference between

components with positive and negative energy.

Remarks:

(i) If a spinor consists not only of positive-energy, but also of negative energy
states, Zitterbewegung follows as a consequence. If one expands bound
states in terms of free solutions, these also contain components with
negative energy. An example is the ground state of the hydrogen atom
(8.2.41).

(ii) A Zitterbewegung also arises from the Klein—Gordon equation. Here too,
wave packets with linear dimension less than the Compton wavelength
Aenm = hc , contain contributions from negative energy solutions, which

ﬂuctuate over a region of size A, -. The energy shift in a Coulomb po-
tential (Darwin term), however, is a factor « smaller than for spin—%

particles. (See Problem 9.2)2.

*10.1.3 General Solution of the Free Dirac Equation
in the Heisenberg Representation

The existence of Zitterbewegung can also be seen by solving the Dirac equa-
tion in the Heisenberg representation. The Heisenberg operators are defined
by

2 An instructive discussion of these phenomena can be found in H. Feshbach and
F. Villars, Rev. Mod. Phys. 30, 24 (1958)
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O(t) = e*/hOe 11/ (10.1.17)
which yields the equation of motion

dO(t) 1

——=—[0(),H] . 10.1.18

We assume that the particle is free, i.e., that A =0 and ¢ = 0. In this case,
the momentum commutes with

H=ca-p+pmc?, (10.1.19)
that is,

dp(t)

aplt) _ 10.1.20

dt ’ ( )
which implies that p(t) = p = const. In addition, we see that
Cdx(t) 1 B

and

da 1 2

P E[a(t),H] = E(cp — Ha(t)) . (10.1.21b)

Since H = const (time independent), the above equation has the solution

2iHt

v(t)=ca(t)=cH 'p+e* (a(0)—cH 'p) . (10.1.22)

Integration of (10.1.22) yields:

x(t) = x(0) + C%pt + 2?—;{ (ez‘é“ - 1) (a(()) - 2) . (10.1.23)

For free particles, we have
aH+ Ha =2cp,

and hence

(af%)HJrH(af%) ~0. (10.1.24)

In addition to the initial value x(0), the solution (10.1.23) also contains a
term linear in ¢t which corresponds to the group velocity motion, and an
oscillating term that represents the Zitterbewegung. To calculate the mean
value [97(0,x)x(t)(0,x)d3z, one needs the matrix elements of the operator
a(0) — . This operator has nonvanishing matrix elements only between
states of identical momentum. The vanishing of the anticommutator (10.1.24)
implies, furthermore, that the energies must be of opposite sign. Hence, we
find that the Zitterbewegung is the result of interference between positive
and negative energy states.
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*10.1.4 Potential Steps and the Klein Paradox

One of the simplest exactly solvable problems in nonrelativistic quantum
mechanics is that of motion in the region of a potential step (Fig. 10.1). If the
energy F of the plane wave incident from the left is smaller than the height V{
of the potential step, i.e., F < Vj, then the wave is reflected and penetrates
into the classically forbidden region only as a decaying exponential e—ra’
with k = \/2m(Vy — E). Hence, the larger the energy difference Vj — E, the
smaller the penetration. The solution of the Dirac equation is also relatively
easy to find, but is not without some surprises.

We assume that a plane wave with positive energy is incident from the
left. After separating out the common time dependence e 'F*, the solution
in region I (cf. Fig.10.1) comprises the incident wave

1
3 ika® 0
Yin(2”) = e K (10.1.25)
E+m
0

and the reflected wave

1 0
. 0 . 1
Ure(2®) =ae™® | 5 fppe [ ) (10.1.26)
E+m
k
0 E+m

i.e., ¥1(23) = in(23) + Yren(2?®). The second term in (10.1.26) represents a
reflected wave with opposite spin and will turn out to be zero. In region II,
we make a similar ansatz for the transmitted wave

1 0
oz 0 s 3 1
wH(lB) = wtrans(x3) =ce?” q + de'd” 0
E—Vo+m
0 -9
E—Vo+m
(10.1.27)
V(z®)
Vo
Bt

a’ Fig. 10.1. A potential step of
I I height Vo
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The wave vector (momentum) in this region is given by

a=\/(E-Vy)> —m2, (10.1.28)

and the coeflicients a, b, ¢, d are determined from the requirement that 1 be
continuous at the step. If the solution were not continuous, then, upon insert-
ing it into the Dirac equation, one would obtain a contribution proportional
to §(x3). From this continuity condition, 11(0) = t11(0), it follows that

l+a=c, (10.1.29a)
E
l—a=rc, with r = %% , (10129b)
and
b=d=0. (10.1.29¢)

The latter relation, which stems from components 2 and 4, implies that the
spin is not reversed.

As long as |E — Vp| < m, i.e. —m + Vo < E < m + Vjp, the wave vector
q to the right of the step is imaginary and the solution in that case decays
exponentially. In particular, when FE,Vy < m, then the solution rans ~
e~lale®  e=me® g Jocalized to within a few Compton wavelengths.

However, when the height of the step Vj becomes larger, so that finally
Vo > E + m, then, according to (10.1.28), ¢ becomes real and one obtains an
oscillating transmitted plane wave. This is an example of the Klein paradox.

The source of this initially surprising result can be explained as follows:
In region I, the positive energy solutions lie in the range £ > m, and those
with negative energy in the range £ < —m. In region II, the positive energy
solutions lie in the range F > m + Vj, and those with negative energy in
the range E < —m + V4. This means that for V5 > m the solutions hitherto
referred to as “negative energy solutions” actually also possess positive energy.
When Vj becomes so large that V > 2m (see Fig. 10.2), the energy of these
“negative energy solutions”in region II eventually becomes larger than m,
and thus lies in the same energy range as the solutions of positive energy in
region I. The condition for the occurrence of oscillatory solutions given after
Eq. (10.1.29¢) was Vy > E +m, where the energy in region I satisfies £ > m.
This coincides with the considerations above. Instead of complete reflection
with exponential penetration into the classically forbidden region, one has a
transition into negative energy states for £ > 2m.

For the transmitted and reflected current density one finds,

jtrans 4 i 1- ? jtrans
Jorans 4T J_eﬂ:( 7") —q — Juans (10.1.30)

jin N (1 + T>2 ’ jin 1 +r Jin
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However, according to Eq. (10.1.29b), » < 0 for positive ¢ and thus the
reflected current is greater than the incident current.

If one takes the positive square root for ¢ in (10.1.28), according to
(10.1.29b), r < 0, and consequently the flux going out to the left exceeds
the (from the left) incoming flux. This comes about because, for Vj > E+m,
the group velocity

1

W=

has the opposite sense to the direction of ¢q. That is, wave-packet solutions
of this type also contain incident wave packets coming form the right of the
step.

If one chooses for ¢ in (10.1.28) the negative square root, r > 0, one

obtains the regular reflection behavior3.

N\ I\ II\

Fig. 10.2. Potential step and energy ranges for Vo > 2m. Potential step (thick
line) and energy ranges with positive and negative energy (right- and left-inclined
hatching). To the left of the step, the energies F and E’ lie in the range of positive
energies. To the right of the step, E’ lies in the forbidden region, and hence the
solution is exponentially decaying. FE lies in the region of solutions with negative
energy. The energy E” lies in the positive energy region, both on the right and on
the left.

10.2 The Hole Theory

In this section, we will give a preliminary interpretation of the states with
negative energy. The properties of positive energy states show remarkable

3 H.G. Dosch, J.H.D. Jensen and V.L. Miiller, Physica Norvegica 5, 151 (1971);
B. Thaller, The Dirac Equation, Springer, Berlin, Heidelberg, 1992, pp. 120, 307;
W. Greiner, Theoretical Physics, Vol. 3, Relativistic Quantum Mechanics, Wave
Equations, 2nd edn., Springer, Berlin, Heidelberg, 1997
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agreement with experiment. Can we simply ignore the negative energy states?
The answer is: No. This is because an arbitrary wave packet will also contain
components of negative energy v,.. Even if we have spinors of positive energy,
u,, to start with, the interaction with the radiation field can cause transi-
tions into negative energy states (see Fig. 10.3). Atoms, and thus all matter
surrounding us, would be unstable.

photon

o/
\\

-m¢
Fig. 10.3. Energy eigenvalues of the Dirac
equation and conceivable transitions

M

A way out of this dilemma was suggested by Dirac in 1930. He postulated
that all negative energy states be considered as occupied. Thus, particles
with positive energy cannot make transitions into these states because the
Pauli principle forbids multiple occupation. In this picture, the vacuum state
consists of an infinite sea of particles, all of which are in negative energy
states (Fig. 10.4).

Fig. 10.4. Filled negative energy
states (thick line): (a) vacuum
state, (b) excited state

N N
7~ N\

An excited state of this vacuum arises as follows: An electron of negative
energy is promoted to a state of positive energy, leaving behind a hole with
charge —(—eg) = eg! (Fig. 10.4 b). This immediately has an interesting
consequence. Suppose that we remove a particle of negative energy from the
vacuum state. This leaves behind a hole. In comparison to the vacuum state,
this state has positive charge and positive energy. The absence of a negative
energy state represents an antiparticle. For the electron, this is the positron.
Let us consider, for example, the spinor with negative energy

vrmt (p)e” = vy (p)e! Pt 7P
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This is an eigenstate with energy eigenvalue —Eyp/, momentum —p’ and spin
in the rest frame %23 1/2. When this state is unoccupied, a positron is present
with energy Ep/, momentum p’, and spin %E3 —1/2. (An analogous situation
occurs for the excitation of a degenerate ideal electron gas, as discussed at
the end of Sect. 2.1.1.)

The situation described here can be further elucidated by considering the
excitation of an electron state by a photon: The v quantum of the photon
with its energy Aw and momentum fk excites an electron of negative energy
into a positive energy state (Fig. 10.5). In reality, due to the requirements of
energy and momentum conservation, this process of pair creation can only
take place in the presence of a potential. Let us look at the energy and
momentum balance of the process.

p
Y
N
Fig. 10.5. The photon v excites an electron
P’ from a negative energy state into a positive en-
ergy state, i.e., y — e" +e”

The energy balance for pair creation reads:

hw = Ecl. pos. energy — Ecl. neg. energy

10.2.1
=Ep — (=Ep) = Eal. + Epos. ( )

The energy of the electron is F.. = y/p2c2 +m2c?, and the energy of the

positron Epes, = p'?c? +m2ct. The momentum balance reads:
k—p' =p or hk=p-+p, (10.2.2)

i.e., (photon momentum) = (electron momentum) + (positron momentum).
It turns out, however, that this preliminary interpretation of the Dirac theory
still conceals a number of problems: The ground state (vacuum state) has an
infinitely large (negative) energy. One must also inquire as to the role played
by the interaction of the particles in the occupied negative energy states. Fur-
thermore, in the above treatment, there is an asymmetry between electron
and positron. If one were to begin with the Dirac equation of the positron,
one would have to occupy its negative energy states and the electrons would
be holes in the positron sea. In any case one is led to a many-body sys-
tem.* A genuinely adequate description only becomes possible through the
quantization of the Dirac field.

4 The simple picture of the hole theory may be used only with care. See, e.g., the
article by Gary Taubes, Science 275, 148 (1997) about spontaneous positron
emission.
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The original intention was to view the Dirac equation as a generalization
of the Schrédinger equation and to interpret the spinor ¢ as a sort of wave
function. However, this leads to insurmountable difficulties. For example, even
the concept of a probability distribution for the localization of a particle at
a particular point in space becomes problematic in the relativistic theory.
Also connected to this is the fact that the problematic features of the Dirac
single-particle theory manifest themselves, in particular, when a particle is
highly localized in space (in a region comparable to the Compton wavelength).
The appearance of these problems can be made plausible with the help of
the uncertainty relation. When a particle is confined to a region of size Ax,
it has, according to Heisenberg’s uncertainty relation, a momentum spread
Ap > Az~ L If Az < %, then the particle’s momentum, and thus energy,
uncertainty becomes

AE ~ cAp > mc? .

Thus, in this situation, the energy of a single particle is sufficient to create
several other particles. This, too, is an indication that the single-particle the-
ory must be replaced by a many-particle theory, i.e. a quantum field theory.

Before finally turning to a representation by means of a quantized field,
in the next chapter, we shall first investigate further symmetry properties of
the Dirac equation in connection with the relationship of solutions of positive
and negative energy to particles and antiparticles.

Problems

10.1 Prove the Gordon identity (10.1.5), which states that, for two positive energy
solutions of the free Dirac equation, u,(p) and u,(p),

80 ()70 (@) = 5= (P[0 + )" + 10" (p — @) (0)

10.2 Derive Eq. (10.1.13) and the additional term (10.1.13").

10.3 Verify the solution for the potential step considered in conjunction with the
Klein paradox. Discuss the type of solutions obtained for the energy values E’ and
E" indicated in Fig. 10.2. Draw a diagram similar to Fig. 10.2 for a potential step
of height 0 < Vo < m.



11. Symmetries and Further Properties
of the Dirac Equation

Starting from invariance properties and conservation laws, further symmetries
of the Dirac equation are presented: the behavior under charge conjugation
and time reversal. Finally, the massless Dirac equation is investigated.

*11.1 Active and Passive Transformations,
Transformations of Vectors

In this and the following sections we shall investigate the symmetry properties
of the Dirac equation in the presence of an electromagnetic potential. We
begin by recalling the transformation behavior of spinors under passive and
active transformations, as was described in Sect. 7.1. We will then address the
transformation of the four-potential, and also investigate the transformation
of the Dirac Hamiltonian.

Consider the Lorentz transformation

¥ =Azx+a (11.1.1)

from the coordinate system I into the coordinate system I’. According to Eq.
(7.1.2a), a spinor ¢ (z) transforms under a passive transformation as

P (') = Sp(Ata") (11.1.2a)

where we have written down only the homogeneous transformation.
An active transformation with A~1 gives rise to the spinor (Eq. (7.1.2b))

V() = Sy(A~ ) . (11.1.2b)

The state Z”, which is obtained from Z through the active transformation A,
appears by definition in I” as the state Z in I, i.e., ¥ (z’). Since I is obtained
from I’ by the Lorentz transformation A~1, we have (Eq. (7.1.2c))

P (x) = ST 1y(Ax) . (11.1.2¢)

For a passive transformation A, the spinor transforms according to (11.1.2a).
For an active transformation A, the state is transformed according to (11.1.2¢)*.

! For inhomogeneous transformations (A, a), one has (4,a) ™! = (A™!, —A47'a) and
in the arguments of Eq. (11.1.2a—c) one must make the replacements Az — Az+a
and A7 'z — A7 (z — a).
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We now consider the transformation of wvector fields such as the four-
potential of the electromagnetic field:
The passive transformation of the components of a vector A*(x) under a
Lorentz transformation z/* = A" x” takes the form

A2y = A" A (2) = A AV (A ) . (11.1.3a)
The inverse of the Lorentz transformation may be established as follows:

N g™ AP, = g = ANy, =6, = AV A, =5,
Since the right inverse of a matrix is equal to its left inverse, together with
Eq. (11.1.1), this implies

AR AT =6 = A#":z:'” =AJA 2" = 2%,
and so, finally, the inverse of the Lorentz transformation

7= A" (11.1.4)

For an active transformation, the entire space, along with its vector fields,
is transformed and then viewed from the original coordinate system I. For a
transformation with A, the resulting vector field, when viewed from I’, is of

the form A*(z') (see Fig. 11.1). The field transformed actively with A, which
we denote by A”F(x), therefore takes the form

A (z) = A7 AY(Az) = AJAY(Az)  in 1. (11.1.3¢c)

1 Fig. 11.1. Active transformation of a vector
with the Lorentz transformation A

For the sake of completeness, we also give the active transformation with
respect to the Lorentz transformation A~!, which leads to the form

A (z) = A" AY (x) . (11.1.3b)
We now investigate the transformation of the Dirac equation in the presence

of an electromagnetic field A,, with respect to a passive Lorentz transforma-
tion: Starting from the Dirac equation in the system I
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(v*(10, — eA,(z)) —m) P(z) =0, (11.1.5a)
one obtains the transformed equation in the system I’:

('y“(i(% — el (2') - m) ' (z') =0. (11.1.5b)
Equation (11.1.5b) is derived by inserting into (11.1.5a) the transformations
0 y » _

O =g =05 Auz) = A7) and ¢(z) =5 ' (')

which yields
(4%, i, — A (a')) —m) S~/ (') = 0.

Multiplying by S,
($9#0%,571(i6), — e Al (a')) — m)¥/ (') = 0.,

and making use of v#/A", =S —14¥ 8 finally yields the desired result
(7" (60}, — eAl (') — m)¥/ () = 0.

Transformation of the Dirac equation with respect to an active Lorentz trans-
formation, viz:

Y (x) = S™H(Ax) (11.1.2c)
with

A" (x) = AP AY (Ax) | (11.1.3c)
Starting from

(v*(10, — €Ay (x)) —m)(z) =0, (11.1.5a)
we take this equation at the point 2’ = Az, and taking note of the fact that
g = %% = 4,70,

(v (iA,0 8, — eAu(Az)) —m)ip(Az) =0 .

Multiplying by S~1(A),
(5_17“5’(1/1#”&, —eA,(Az)) —m)S™p(Az) =0,

and using Sfl'y“S/lH” = M, y7 A} =70, together with Eq. (11.1.4) yields:
(v (10, — eA)(x)) —m)y" (z) = 0. (11.1.6)

If ¥(x) satisfies the Dirac equation for the potential A, (z), then the trans-
formed spinor ¢ (x) satisfies the Dirac equation with the transformed po-
tential A} (x).

In general, the transformed equation is different to the original one. The
two equations are the same only when Af/(z) = A, (z). Then, () and ¢" (z)
obey the same equation of motion. The equation of motion remains invari-
ant under any Lorentz transformation L that leaves the external potential
unchanged. For example, a radially symmetric potential is invariant under
rotations.
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11.2 Invariance and Conservation Laws

11.2.1 The General Transformation
We write the transformation ¢”(z) = S~ (Ax) in the form
w/l — T'l/J , (1121)

where the operator T contains both the effect of the matrix S and the trans-
formation of the coordinates. The statement that the Dirac equation trans-
forms under an active Lorentz transformation as above (Eq. (11.1.6)) implies
for the operator

D(A) =" (10, — eAy) (11.2.2)
that

TDAT ' =D(A"), (11.2.3)
since

(D(A) — m) = 0 = T(D(A) —m) = T(D(A) —m)T~'T4)
= (D(A") —m)T4 =0 .

As the transformed spinor T obeys the Dirac equation (D(A”)—m)Ty = 0,
and this holds for every spinor, equation (11.2.3) follows.
If A remains unchanged under the Lorentz transformation in question (A” =
A), it follows from (11.2.3) that T commutes with D(A):

[T, D(A)]=0. (11.2.4)

One can construct the operator T for each of the individual transformations,
to which we shall now turn our attention.

11.2.2 Rotations
We have already found in Chap. 7 that? for rotations

T =e ie" " (11.2.5)
with

J:EEanxZV.
2 i

2 The difference in sign compared to Chap. 7 arises because there the active trans-
formation A~! was considered.
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The total angular momentum J is the generator of rotations.

If one takes an infinitesimal ¢¥, then, from (11.2.2) and (11.2.4) and
after expansion of the exponential function, it follows that for a rotationally
invariant potential A,

[D(A),J] = 0. (11.2.6)
Since [i7°9;, v9*] = 0 and [i7°9;,x x V] = 0, equation (11.2.6) also implies
that

[3,H]=0, (11.2.7)

where H is the Dirac Hamiltonian.

11.2.3 Translations

For translations we have S = 1 and

V() = P + a) = e Pip(x) (11.2.8)
and thus the translation operator is
T = efia"i6“ — efia“pu

(11.2.9)

)

where p,, =10, is the momentum operator. The momentum is the generator
of translations. The translational invariance of a problem means that

[D(A),pu] =0 (11.2.10)
and since [i7°0;, p,] = 0, this also implies that
[y, H] =0 (11.2.11)

11.2.4 Spatial Reflection (Parity Transformation)

We now turn to the parity transformation. The parity operation P, repre-
sented by the parity operator P, is associated with a spatial reflection. We
use PO to denote the orbital parity operator, which causes a spatial reflec-
tion

POY(t,x) = (t, —x) . (11.2.12)
For the total parity operator in Sect. 6.2.2.4, we found, to within an arbitrary
phase factor,

P = ~0pO) (11.2.13)

We also have P! = P and P? = 1.
If A*(z) is invariant under inversion, then the Dirac Hamiltonian H sat-
isfies

[P,H]=0. (11.2.14)

There remain two more discrete symmetries of the Dirac equation, charge
conjugation and time-reversal invariance.
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11.3 Charge Conjugation

The Hole theory suggests that the electron possesses an antiparticle, the
positron. This particle was actually discovered experimentally in 1933 by
C.D. Anderson. The positron is also a fermion with spin 1/2 and should itself
satisfy the Dirac equation with e — —e. There must thus be a connection
between negative energy solutions for negative charge and positive energy
solutions carrying positive charge. This additional symmetry transformation
of the Dirac equation is referred to as “charge conjugation”, C.

The Dirac equation of the electron reads:

(i@ —ed—m)p =0, e=—ey, eg=4.8x10""%su (11.3.1)
and the Dirac equation for an oppositely charged particle is
(i +ed —m)p.=0. (11.3.2)

We seek a transformation that converts ¢ into 1.. We begin by establishing
the effects of complex conjugation on the first two terms of (11.3.1):

(i0,)* = —id, (11.3.3a)
(A" = A, (11.3.3b)

as the electromagnetic field is real. In the next section, in particular, it will
turn out to be useful to define an operator K that has the effect of complex
conjugating the operators and spinors upon which it acts. Using this notation,
(11.3.3a,b) reads:

K018 = 7ia#K0 and K()A# = A#KO . (1133/)

Thus, when one takes the complex conjugate of the Dirac equation, one ob-
tains

(— (10, + €A )™ —m)P*(x) = 0. (11.3.4)

In comparison with Eq. (11.3.1), not only is the sign of the charge oppo-
site, but also that of the mass term. We seek a nonsingular matrix Cy° with
the property

CAOP*H(CAY) ™ = —1 . (11.3.5)
With the help of this matrix, we obtain from (11.3.4)

C? (—(i0, + eA )y —m) (C7°)~1CH %"
= (i + ed —m)(Cy°¢*) = 0.

Comparison with (11.3.2) shows that

(11.3.6)
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Ve = O = CyPT (11.3.7)
since

T ot oNT 0T +T 0%

P =@N) =yt =T (11.3.8)
Equation (11.3.5) can also be written in the form

C Iyl =~y (11.3.5')
In the standard representation, we have WOT =AY, 72T =2, WlT = —9!,
73T = —~3, and, hence, C' commutes with 7' and +* and anticommutes with
~Y and 2. From this, it follows that

C=iy’y'=-Cc'l=-Cl=-CT, (11.3.9)
so that

Ve = iv20" . (11.3.7)
The full charge conjugation operation

C = CyKy = iy’K (11.3.7")

consists in complex conjugation Ky and multiplication by C~y.

If ¢(x) describes the motion of a Dirac particle with charge e in the
potential A, (z), then 9. describes the motion of a particle with charge —e
in the same potential A, (z).

Example: For a free particle, for which A4, =0,

0
- _ 1 0| ime
V= |1 e (11.3.10)
0
and therefore,
0
(Y 0 (N (Y 1 Ll o ()
(vt >c_07 (o17) =2 (v7) =m0 ¢ T T
0

(11.3.10)

The charge conjugated state has opposite spin.
We now consider a more general state with momentum k and polarization
along n. With respect to the projection operators, this has the property?3

3 9t = v*n, , n, space-like unit vector n®> = n*n, = —1 and n,k* = 0.

P(n) = 3(1 + 7s1t) projects onto the positive energy spinor u(k,n), which is
polarized along 7 in the rest frame, and onto the negative energy spinor v(k, n),
which is polarized along —.

k=Ak, n=An, k= (m,0,0,0), 7 = (0,n) (see Appendix C). The projection
operators At (k) = (£ + m)/2m were introduced in Eq. (6.3.21).
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e m 1+ st

S 5V k>0 (11.3.11)

(G

with € = £1 indicating the sign of the energy. Applying charge conjugation
to this relation, one obtains

be = CHT = CH° (Ek+m)* (H%T/i)*w* (11.3.11")
2m 2
- el +m . 1+ ys9t* -1 .
=Cn | =5 — (Cv) " Cv — (Cy0) " Cyoyp

_ <—€k+m) (1 +75¢> "

B 2m 2 <
where we have used v = 5 and {C9,v5} = 0. The state 1), is characterized
by the same four-vectors, k and n, as 1, but the energy has reversed its
sign. Since the projection operator %(1 + v57) projects onto spin :l:% along
n, depending on the sign of the energy, the spin is reversed under charge
conjugation. With regard to the momentum, we should like to point out that,
for free spinors, complex conjugation yields e ** — e'¥* i e the momentum
k is transformed into —k. Thus far, we have discussed the transformation of
the spinors. In the qualitative description provided by the Hole theory, which
finds its ultimate mathematical representation in quantum field theory, the
non-occupation of a spinor of negative energy corresponds to an antiparticle
with positive energy and exactly the opposite quantum numbers to those of
the spinor (Sect. 10.2). Therefore, under charge conjugation, the particles
and antiparticles are transformed into one another, having the same energy
and spin, but opposite charge.

Remarks:

(i) The Dirac equation is obviously invariant under simultaneous transformation
of ¢ and A,

Y — e = 0"
Ay — AL = A,

With respect to charge conjugation, the four-current density j,, transforms accord-
ing to

Ju= 'J}'VMZ’ I .7; = 'JJC'YM/}C = ﬁ*CT'YO'YuOQZJT
=P (O 1. CPT = T Cy O = Ty T
= Ya (V) BaVBo¥s = Yivo5(Vu) Batba = VYu .

For the c-number Dirac field one thus obtains j; = j.. In the quantized form, 1
and v become anticommuting fields, which leads to an extra minus sign:

Ji = —Ju - (11.3.12)

Then, under charge conjugation, the combination ej - A remains invariant. As we
shall see explicitly in the case of the Majorana representation, the form of the charge
conjugation transformation depends on the representation.
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(i1) A Magjorana representation is a representation of the v matrices with the prop-
erty that 4° is imaginary and antisymmetric, whilst the * are imaginary and
symmetric. In a Majorana representation, the Dirac equation

(i7" 0 —m)yp =0
is a real equation. If ¢ is a solution of this equation, then so is
e =P* . (11.3.13)

In the Majorana representation, the solution related to ¢ by charge conjugation is,
to within an arbitrary phase factor, given by (11.3.13), since the Dirac equation for
the field 1,

(" (10u — eAy) —m)Y =, (11.3.14)
also leads to
(v (10, + €Ayn) —m)p. =0 . (11.3.14)

The spinor v is the solution of the Dirac equation with a field corresponding to
charge e and the spinor 9. is the solution for charge —e. A spinor that is real, i.e.,

Pr=9,

is known as a Majorana spinor. A Dirac spinor consists of two Majorana spinors.
An example of a Majorana representation is the set of matrices

(0o —; 0 o'
Yo = 0_20 y Y1 = 0_10 ’
(1 0 _.{04?
Y2 =1 0—-1 y Y3 =1 0_30 .

Another example is given in Problem 11.2.

(11.3.15)

11.4 Time Reversal (Motion Reversal)

Although the more appropriate name for this discrete symmetry transforma-
tion would be “motion reversal”, the term “time reversal transformation” is
so well established that we shall adopt this practice. It should be emphasized
from the outset that the time-reversal transformation does not cause a sys-
tem to evolve backwards in time, despite the fact that it includes a change
in the time argument of a state t — —t. One does not need clocks that run
backwards in order to study time reversal and the invariance of a theory
under this transformation. What one is really dealing with is a reversal of
the motion. In quantum mechanics the situation is further complicated by
a formal difficulty: In order to describe time reversal, one needs antiunitary
operators. In this section we first study the time-reversal transformation in
classical mechanics and nonrelativistic quantum mechanics, and then turn
our attention to the Dirac equation.
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11.4.1 Reversal of Motion in Classical Physics

Let us consider a classical system invariant under time translation, which
is described by the generalized coordinates ¢ and momenta p. The time-
independent Hamiltonian function is H (g, p). Hamilton’s equations of motion
are then

._ 9H(q,p)
q o
9H (q,p)

= 94

(11.4.1)

At t = 0, we assume the initial values (go, po) for the generalized coordinates
and momenta. Hence, the solution ¢(¢), p(t) of Hamilton’s equations of motion
must satisfy the initial conditions

10 = (11.4.2)
p(0) = po -
Let the solution at a later time t = t; > 0 assume the values
q(t)=aq, p(t1)=p1. (11.4.3a)
The motion-reversed state at time t; is defined by
q(t)=aq, p(t)=-p1. (11.4.3b)

If, after this motion reversal, the system retraces its path, and after a further
time ¢, returns to its time reversed initial state, the system is said to be time-
reversal or motion-reversal invariant (see Fig. 11.2). To test time-reversal
invariance there is no need for running backwards in time. In the definition
which one encounters above, only motion for the positive time direction arises.
As a result, it is possible to test experimentally whether a system is time-
reversal invariant.

t1
q2

0/ 21 Fig. 11.2. Motion reversal: Shown (displaced
for clarity) are the trajectories in real space:
(0,¢1) prior to reversal of the motion, and
a (t1,2t1) after reversal
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Let us now investigate the conditions for time-reversal invariance and find
the solution for the motion-reversed initial state. We define the functions

q'(t) =q(2t, — 1)

() = —p(2t1 1) (11.4.4)
These functions obviously satisfy the initial conditions

¢ () =qt1) =a (11.4.5)

p'(t1) = —p(t) = —p1 . (11.4.6)
At time 2t; they have the values

q'(2t1) = q(0) = qo (11.47)

p'(2t1) = —p(0) = —po ,

i.e., the motion-reversed initial values. Finally, they satisfy the equation of
motion*

: . OH (q(2t, — ), p(2t1 — 1))

"(t) = —q(2t1 — t) = — :
q ( ) Q( 1 ) 5p(2t1 — t)

OH(q'(t), —p'(t))

R (11.4.8a)
P(t) = p(2t, —t) = _aH(q(221q(—2ttl),pgt1 — 1)
- (11.4.8b)

aq'(t)

The equations of motion of the functions ¢'(t),p’(t) are described, ac-

cording to (11.4.8a,b), by a Hamiltonian function H, which is related to the
original Hamiltonian by making the replacement p — —p:

H=H(q,—p). (11.4.9)

Most Hamiltonians are quadratic in p (e.g., that of particles in an external
potential interacting via potentials), and are thus invariant under motion
reversal. For these, H = H(q, p), and ¢(t),p'(t) satisfy the original equation
of motion evolving from the motion-reversed starting value (g1, —p1) to the
motion-reversed initial value (go, —po) of the original solution (¢(¢), p(t)). This
implies that such classical systems are time-reversal invariant.
Motion-reversal invariance in this straightforward fashion does not apply
to the motion of particles in a magnetic field, or to any other force that
varies linearly with velocity. This is readily seen if one considers Fig. 11.3:
In a homogeneous magnetic field, charged particles move along circles, the

4 The dot implies differentiation with respect to the whole argument, e.g.,

. _ 0q(2t;—t
(2t —t) = Fo0=d.
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2t
- ®
L1 B
Fig. 11.3. Motion reversal in the presence of a mag-
0 netic field B perpendicular to the plane of the page.
The motion is reversed at an instant when the particle
—z is moving in exactly the z-direction

sense of motion depending on the sign of the charge. Thus, when the motion
is reversed, the particle does not return along the same circle, but instead
moves along the upper arc shown in Fig. 11.3. In the presence of a magnetic
field, one can only achieve motion-reversal invariance if the direction of the
magnetic field is also reversed:

B -B, (11.4.10)

as can be seen from the sketch, or from the following calculation. Let the
Hamiltonian in cartesian coordinates with no field be written H = H(x, p),
which will be assumed to be invariant with respect to time reversal. The
Hamiltonian in the presence of an electromagnetic field is then

H=Hxp— SA(X)) +ed(x) (11.4.11)

where A is the vector potential and @ the scalar potential. This Hamilto-
nian is no longer invariant under the transformation (11.4.4). However, it is
invariant under the general transformation

x'(t) = x(2t; — t) (11.4.12a)
p'(t) = —-p(2t; — t) (11.4.12b)
Al(x,t) = —A(x,2t, — 1) (11.4.12¢)
D' (x,t) = P(x,2t1 —t) . (11.4.12d)

Equations (11.4.12¢) and (11.4.12d) imply a change in the sign of the mag-
netic field, but not of the electric field, as can be seen from

B=curlA — curlA’ = -B

B 10 L 10,
E= Vot = A(xt) =~V -2 Ax 1)

= Vo + —LA(X, 2t —t) =E.
(11.4.13a)
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We note in passing that when the Lorentz condition

190
=9 A= 11.4.13b
sy +V 0 ( 3b)

holds, it also holds for the motion-reversed potentials.

Remark: In the above description we considered motion in the time interval
[0, 1], and then allowed the motion-reversed process to occur in the adjoining
time interval [t1,2t;]. We could equally well have considered the original
motion in the time interval [—t1,¢;] and, as counterpart, the motion-reversed
process also lying in the time interval between —t; and ¢;:

¢"(t) = q(-1)

(11.4.14)
p'(t) = —p(~t)
with the initial conditions
"(—t1) = q(t1) ,
q”( 1) = q(t1) (11.4.15)
p'(=t1) = —p(tr)
and final values,
" ) = g(—+ ’
() = a(=t) (11.4.16)

p(t1) = —p(—t1) .

(q"(t),p" (t)) differs from (¢’ (¢), p’(t) in Eq. (11.4.4) only by a time translation
of 2t1; in both cases, time runs in the positive sense —t1 to t.

11.4.2 Time Reversal in Quantum Mechanics
11.4.2.1 Time Reversal in the Coordinate Representation

Following these classical mechanical preparatory remarks, we now turn to
nonrelativistic quantum mechanics (in the coordinate representation). The
system is described by the wave function ¢ (x, t), which obeys the Schrédinger
equation

O (x,1)

Let us take the wave function at time ¢ = 0 to be given by vy (x), i.e.,
P(x,0) = Yo(x) . (11.4.18)

This initial condition determines i (x,t) at all later times ¢t. Although the
Schrodinger equation enables one to calculate ¥(x,t) at earlier times, this
is usually not of interest. The statement that the wave function at ¢ = 0 is
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1o(x) implies that a measurement that has been made will, in general, have
changed the state of the system discontinuously. At the time ¢; > 0 we let
the wave function be

P(x,t1) = Pi(x) (11.4.19)

What is the motion reversed system for which an initial state ¢ (x) evolves
into the state ¥y(x) after a time ¢;? Due to the presence of the first order
time derivative, the function ¥ (x,2t; — t) does not satisfy the Schrodinger
equation. However, if, in addition, we take the complex conjugate of the wave
function

W (x,t) = *(x,2t; —t) = Kop(x,2t1 — t) , (11.4.20)

this satisfies the differential equation

iw = H*Y'(x,t) (11.4.21)
and the boundary conditions
P (x,t1) = P7(x) (11.4.22a)
P'(x,2t1) = P§(x) . (11.4.22Db)
Proof. Omitting the argument x, we have®
iaz/é’ft) _ ia¢*(2815t1 —1) _ 7K018¢(2; 1) _ Koiwg(t_lt; t)

= KoHyp(2t1 —t) = H™ " (2t1 —t) = H™Y'(t) .

Here, H* is the complex conjugate of the Hamiltonian, which is not neces-
sarily identical to H'. For the momentum operator, for example, we have

T *
(EV) 9 but (flv) S (11.4.23)
1 1 1

1

When the Hamiltonian is quadratic in p, then H* = H and thus the system
is time-reversal invariant.

We now calculate the expectation values of momentum, position, and
angular momentum (the upper index gives the time and the lower index the
wave function):

O R R (11.4.24a)
(x)y = (¥, x1)p) = /d3xz/1*(x, t)xep(x, 1) (11.4.24D)

® The operator Ko has the effect of complex conjugation.
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h
B = " pu) = [@ruive

=- </d3zw*?V¢)) =)y (11.4.24c)
(x)y = (x)5 " (11.4.24d)

(L)}, /d?’;mpx X ?Vw*

- </d3:1:1/)*x X ?w;)* =Ly (11.4.24e)

These results are in exact correspondence to the classical results. The mean

value of the position of the motion-reversed state follows the same trajectory

backwards, the mean value of the momentum having the opposite sign.
Here, too, we can take 1 (x,t) in the interval [—¢1, t1] and likewise,

P (x,t) = Kot (x, —t) (11.4.25)

in the interval [—t1, 1], corresponding to the classical case (11.4.14). In the
following, we will represent the time-reversal transformation in this more
compact form. The direction of time is always positive.

Since K2 = 1, we have K(;l = Kj. Due to the property (11.4.23), and since
the spatial coordinates are real, we find the following transformation behavior
for x, p, and L:

KoxK;!' =x (11.4.25'c)
KopK;' = —p (11.4.25'd)
KoLK;'=-L. (11.4.25%)

11.4.2.2 Antilinear and Antiunitary Operators

The transformation ¢ — ¢'(t) = Kow(—t) is not unitary.
Definition: An operator A is antilinear if

A(Oq’lﬁl + aothe) = af AYr + ai Ao . (11.4.26)

Definition: An operator A is antiunitary if it is antilinear and obeys

(AY, Ap) = (¢, ) . (11.4.27)

K is evidently antilinear,
Ko(or + agthe) = aj Koy + a5 Kopa

and, furthermore,

(Ko, Kop) = (¥*,¢") = /d%w* = (p,?) . (11.4.28)
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Hence, Ky is antiunitary.
If U is unitary, UUT = UTU = 1, then UK is antiunitary, which can be seen
as follows:
UKo(a191 + agths) = U(a] Koyr + a5 Koa) = i UKo + asU Koihe
(UKo, UKop) = (Koo, U'UKop) = (Ko, Kop) = (¢,1) -
The converse is also true: Every antiunitary operator can be represented in
the form A = UK.

Proof: We have K2 = 1. Let A be a given antiunitary operator; we define
U = AKy. The operator U satisfies

U(oatr + aothe) = AKo(a1th1 + aoths) = A(a] Koyn + a5 Kotha)
= (1 AKo1 + a2 AKotp2) = (o Utpr + a2Us)

and, hence, U is linear. Furthermore,

(Up,Utp) = (AKop, AKoy) = (Ap™, AY™) = (", ¢") = /d3w Y™
= (%),

and thus U is also unitary. From U = AKj it follows that A = UK}, thus
proving the assertion.

Notes:

(i) For antilinear operators such as Ko, it is advantageous to work in the coordinate
representation. If the Dirac bra and ket notation is used, one must bear in mind
that its effect is dependent on the basis employed. If |a) = [ d3¢ |€ (&la), then
in the coordinate representation, and insisting that Ko |€) =

Ko la) = / 06 (Ko |€)) (€la)* = / 0€ [€) (€la)” (11.4.29)

For the momentum eigenstates this implies that
Kolp) = /d3§ 1€) €lp)" = |-p) ,

since (¢|p) = e'P¢ and (£|p)* = e~™P¢. If one chooses a different basis, e.g., |n)
and postulates Ko |n) = |n), then Ko |a) will not be the same as in the basis of
position eigenfunctions. When we have cause to use the Dirac notation in the
context of time reversal, a basis of position eigenfunctions will be employed.

(ii) In addition, the effect of antiunitary operators is only defined for ket vectors.
The relation

(al (L]6)) = ((al L) b) = (al L|b) ,

valid for linear operators, does not hold in the antiunitary case. This stems
from the fact that a bra vector is defined as a linear functional on the ket
vectors.®

6 See, e.g., QM I, Sect. 8.2, footnote 2.
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11.4.2.3 The Time-Reversal Operator 7 in Linear State Space
A. General properties, spin 0

Here, and in the next section, we describe the time-reversal transformation in
the linear space of the ket and bra vectors, since this is frequently employed
in quantum statistics. We give a general analysis of the condition of time
reversal and also consider particles with spin. It will emerge anew that time
reversal (motion reversal) cannot be represented by a unitary transformation.
We denote the time-reversal operator by 7. The requirement of time-reversal
invariance implies

e HIT |y(t)) = T |[4(0)) (11.4.30)
e e [4(0)) = T [4(0)) -

Hence, if one carries out a motion reversal after time ¢ and allows the system
to evolve for a further period ¢, the resulting state is identical to the motion-
reversed state at time ¢ = 0. Since Eq. (11.4.30) is valid for arbitrary [1(0)),
it follows that

o—iHt o —iHt _ T
whence
e T = Tt (11.4.31)
Differentiating (11.4.31) with respect to time and setting ¢ = 0, one obtains
TiH = —iHT . (11.4.32)

One might ask whether there could also be a unitary operator 7 that satisfies
(11.4.32). If 7 were unitary and thus also linear, one could then move the i
occurring on the left-hand side in front of the 7 and cancel it to obtain

TH+HT =0.

Then, for every eigenfunction g with
Hyp = EYgp

we would also have
HTYgp =—-ET¢g .

For every positive energy E there would be a corresponding solution 79 g
with eigenvalue (—F). There would be no lower limit to the energy since
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there are certainly states with arbitrarily large positive energy. Therefore, we
can rule out the possibility that there exists a unitary operator 7 satisfying
(11.4.31). According to a theorem due to Wigner”, symmetry transforma-
tions are either unitary or antiunitary, and hence 7 can only be antiunitary.
Therefore, 7TiH = —i7 H and

TH-HT =0. (11.4.33)
Let us now consider a matrix element of a linear operator B:
(o] BIB) = (B'a|f) = (TB|TB'a)
=(TB|ITB'T 'Ta) = (TR TB'T " |Ta)
or
= (a|BB) = (TBB|Ta) = (TBT 'TH|Ta)
= (TP TBT ' |Ta) (11.4.34)

If we assume that B is hermitian and
TBT ' =¢cgB, whereep +1, (11.4.35)

which is suggested by the results of wave mechanics (Eq. (11.4.24a-¢)), it
then follows that

(a|B|B) =ep(TB|B|Ta) .

The quantity ep is known as the “signature” of the operator B. Let us take
the diagonal element

(a| Bla) =ep{Ta| B|Ta) .

Comparing this with (11.4.24c—e) and (11.4.25'c—e) yields the transformation
of the operators

TxT '=x (11.4.36a)
Tp7T '=-p (11.4.36b)
TLT '=-L, (11.4.36¢)
ie., ex =1, ep = —1, and e, = —1. The last relation is also a consequence

of the first two.

" E.P. Wigner, Group Theory and its Applications to Quantum Mechanics, Aca-
demic Press, p. 233; V. Bargmann, J. Math. Phys. 5, 862 (1964)
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Remark: If the relations (11.4.36) are considered as the primary defining conditions
on the operator 7, then, by transforming the commutator [z, p] = i, one obtains
TiT ' =Ta,p|T " =[x, —p|=—i.
This yields
TiT ' =-i,

which means that 7 is antilinear.
We now investigate the effect of 7 on coordinate eigenstates |£), defined by

x|§) =£18) ,

where £ is real. Applying 7 to this equation and using (11.4.36a), one obtains
xT [§) = €T [§) .

Hence, with unchanged normalization, 7 |&) equals |£) to within a phase
factor. The latter is set to 1:

TIE) =18 - (11.4.37)

Then, for an arbitrary state |¢), the antiunitarity implies

TW) =T / Pe(E) |€) = / e (€T |6)

(11.4.38)
- [ @l .
Hence, the operator 7 is equivalent to K¢ (cf. Eq. (11.4.29)):
T =K, . (11.4.39)
For the momentum eigenstates, it follows from (11.4.38) that
p) = [ dcerle)
(11.4.40)

Tlp) = [ e €16 = |-p) .

B. Nonrelativistic spin-% particles

Up to now we have considered only particles without spin. Here, we will,
in analogy to the orbital angular momentum, extend the theory to spin—%
particles. We demand for the spin operator that

T7ST'=-S. (11.4.41)
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The total angular momentum

J=L+S8S (11.4.42)
then also transforms as

TIT '=-J. (11.4.43)
For spin—% we assert that the operator 7 is given by

T = e—iTrSy/hKO

—imo. i isin &
= e /2, = (cos 5 —isin an) Ko (11.4.44)
25,
= _._K .
== Ko

The validity of this assertion is demonstrated by the fact that the proposed form
satisfies Eq. (11.4.41) in the form 7S = —S7: for the z and z components

—loyKo0z,» = —ioy0z,. Ko = 104,20y Ko = —04,.(—ioy Ko)
and for the y component

—ioy Kooy = +ioyoy Ko = —oy(—ioy Ko) .
For the square of 7, from (11.4.44) one gets

T? = —io, Ko(—io,Ko) = —ioyi(—0,) K3 = —1—1205

(11.4.45)
=-1.
For particles with no spin, 72 = K2 = 1.
For N particles, the time-reversal transformation is given by the direct
product

T = e iS00 omimS M In g ) (11.4.46)

where Sén) is the y component of the spin operator of the nth particle. The
square of 7 is now given by

T2 =(-1)V. (11.4.45")

In this context, it is worth mentioning Kramers theorem.® This states that
the energy levels of a system with an odd number of electrons must be at
least doubly degenerate whenever time-reversal invariance holds, i.e., when
no magnetic field is present.

Proof: From (T, T¢) = (p, 1) it follows that

8 H.A. Kramers, Koninkl. Ned. Wetenschap. Proc. 33, 959 (1930)
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Thus, (7¢,1) =0, i.e., T¢ and v are orthogonal to one another. In addition,
from

Hy = Ey
and (11.4.33), it follows that
H(Ty) = E(TY) .

The states ¥ and 71 have the same energy. However, the two states are
also distinct: If it were the case that 7v¢ = ), this would imply 72¢ =
Ty = |a|21/1, which would contradict the fact that 72 = —1. However
complicated the electric fields acting on the electrons may be, for an odd
number of electrons this degeneracy, at least, always remains. It is referred
to as “Kramers degeneracy”. For an even number of electrons, 72 = 1, and
in this case no degeneracy need exist unless there is some spatial symmetry.

11.4.3 Time-Reversal Invariance of the Dirac Equation

We now turn our attention to the main topic of interest, the time-reversal in-
variance of the Dirac equation. The time-reversal transformation 7 = 77,
where 7(© stands for the operation t — —t and T is a transformation still
to be determined, associates to the spinor ¥(x,t) another spinor

V'(x,t) = TTOP(x,t) = Ty(x, —t) , (11.4.47)

which also satisfies the Dirac equation. If, at a time —t;, the spinor is of the
form ¢ (x, —t1) and evolves, according to the Dirac equation, into the spinor
¥(x, t1) at time t1, then the spinor ¢/ (x, —t1) = T(x, t1) at time —t; evolves
into ¢/ (x,t1) = TW(x, —t1) at time ¢; (see Fig. 11.4).

P(t1)

P(—t1)
_tl

W (—t1) = To(t1)

Fig. 11.4. Hlustration of time reversal for the spinors ¥ and 1’ (space coordinates
are suppressed)
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Applying 7 to the Dirac equation

i.e., making the replacement ¢ — —t, yields:

i—aw(x’ ) _ (o (—1V —eA(x, —t)) + fm + eAo(x, —1)) ¥(x, —1) .

o(—t)
(11.4.49)

Since, in wave mechanics, the time-reversal transformation is achieved by
complex conjugation, we set

T = Ty Ko
where T is to be determined. We now apply 7' to Eq. (11.4.3). The effect of

K is to replace i by —i, and one obtains

e t) T(a- (—iV — eA(x, —t)) + Bm + eAo(x, —t)) T~ (x,1) .

ot
(11.4.49)

The motion-reversed vector potential appearing in this equation is generated
by current densities, the direction of which is now reversed with respect to
the original unprimed current densities. This implies that the vector potential
changes its sign, whereas the zero component remains unchanged with respect
to motion reversal

A(x,t) = —A(x,—t), A°xt)=A%x,—t). (11.4.50)

Hence, the Dirac equation for ¢’ (x, t)

!
iw = (- (=iV — eA/(x,1)) + Bm + eAj(x, 1)) (x,1)
(11.4.51)
is obtained when T satisfies the condition
TaT '=—a and TRT ' =43, (11.4.52)

where the effect of Ky on i in the momentum operator has been taken into
account. With T' = Ty Ky, the last equation implies

Toa* Ty ' = —a and ToBT5 ' =43, (11.4.52")

where we have chosen the standard representation for the Dirac matrices in
which ( is real. Since a1 and a3 are real, and as imaginary, we have
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T()OQTO_I = —Q

. Sy

ToaaTy ™ = ao (11.4.52")
T()OégTOil = —Q3

ToBTy ' =8,

which can also be written in the form
{TOaal} = {T07043} =0
. . (11.4.52"")
{To,oéz} = {To,ﬁ} =0.

From (11.4.52”) one finds the representation

Ty = —iaras (11.4.53)
and hence,
T = —ia1a3K0 = i’}/l’ngo . (11.4.53/)

The factor i in (11.4.53) and (11.4.53') is arbitrary.
Proof: Ty satisfies (11.4.52'"), since, e.g., {Tv, 1} = cnaza; + craras = 0.

The total time-reversal transformation,

T =TK,7

can be written in the form
U (x, 1) = iy Koo (x, —t) = iy y° 9" (x, —t) = iv'74 %97 (x, )
= iy2y5 T (x, —t) (11.4.47")
and, as required, ¢’(x,t) satisfies the Dirac equation
iw = (a- (-iV —eA'(x,1)) + Bm + eAy(x, 1)) (x, ) .
(11.4.51)

The transformation of the current density under time reversal follows from
(11.4.47") as

7= (2, Dy (2, t) = D, —t) (@, —t) . (11.4.54)

The spatial components of the current density change their signs. Equations
(11.4.54) and (11.4.50) show that the d’Alembert equation for the electro-
magnetic potential 0”0, A, = j, is invariant under time reversal.

In order to investigate the physical properties of a time-reversed spinor,
we consider a free spinor
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= (6752;”1) (ﬂ *275’7‘) W (11.4.55)

with momentum p and spin orientation n (in the rest frame). The time-
reversal operation yields:

roen (5 ().

om 2
— Ty (eﬁ;;m) (HJF;"’%*) 7 (x, —t) (11.4.56)

N AVEERY
() ()

where p = (p°, —p) and # = (ng, —n). Here, we have used (11.4.52"). The
spinor 7 v has opposite momentum —p and opposite spin —n.

We have thus far discussed all discrete symmetry transformations of the
Dirac equation. We will next investigate the combined action of the parity
transformation P, charge conjugation C, and time reversal 7. The successive
application of these operations to a spinor ¢(z) yields:

Yper(a’) = PCyoKoTo Kot (2!, —t')
= 0120 Koy v Ko (—2') (11.4.57)
=iy"y(-2') .
If one recalls the structure of 4% (Eq. (6.2.48")), it is apparent that the conse-
quence of the C part of the transformation is to transform a negative-energy
electron spinor into a positive-energy positron spinor. This becomes obvi-

ous when one begins with a spinor of negative energy and a particular spin
orientation (—n), which hence satisfies the projection relation

b(x) = (é;m> <]1 *27577‘> W(x) . (11.4.58)

Since {y°,7*} = 0, it follows from (11.4.57) and (11.4.58) that

Ypor(r) = iySp(—2) =i (p;mm) (ﬂ _275¢

= (ﬁ;mm) (ﬂ 27577‘) Yror(2') .

If ¢p(x) is an electron spinor with negative energy, then ¢¥pcr(2) is a positron
spinor of positive energy. The spin orientation remains unchanged.® With

) Ys¥per(—a')
(11.4.59)

% To determine the transformation behavior of the quanta from this, one must
think of positrons in the context of Hole theory as unoccupied electron states of
negative energy. Therefore, under PCT, electrons are transformed into positrons
with unchanged momentum and opposite spin.
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regard to the first line of (11.4.59), one can interpret a positron spinor with
positive energy as an electron spinor with negative energy that is multiplied
by iv5 and moves backwards in space and time. This has an equivalent in the
Feynman diagrams of perturbation theory (see Fig. 11.5).

Fig. 11.5. Feynman propagators for electrons
(arrow pointing upwards, i.e., in positive time
direction) and positrons (arrow in negative

Electron Positron

P

6/ %+

a) | b)
T

37

Y

time direction)

Fig. 11.6. The effect of (a) the par-
ity transformation P, (b) charge con-
jugation C, and (c) the time-reversal
transformation 7" on an electron and
a positron state. The long arrows rep-
resent the momentum, and the short
arrows the spin orientation. These di-
agrams represent the transformations
not of the spinors, but of the particles
and antiparticles, in the sense of Hole
theory or in quantum field theory

Figure 11.6a—c illustrates the effect of the transformations P, C, and
T on an electron and a positron. According to the Dirac theory, electrons
and positrons possess opposite parity. The effect of a parity transformation
on a state containing free electrons and positrons is to reverse all momenta
while leaving the spins unchanged, and additionally multiplying by a factor
(—1) for every positron (Fig. 11.6a). Up until 1956 it was believed that a
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spatial reflection on the fundamental microscopic level, i.e., a transformation
of right-handed coordinate systems into left-handed systems, would lead to an
identical physical world with identical physical laws. In 1956 Lee and Yang'®
found convincing arguments indicating the violation of parity conservation in
nuclear decay processes involving the weak interaction. The experiments they
proposed!! showed unambiguously that parity is neither conserved in the 3
decay of nuclei nor in the decay of m mesons. Therefore the Hamiltonian of the
weak interaction must, in addition to the usual scalar terms, contain further
pseudoscalar terms which change sign under the inversion of all coordinates.
This is illustrated in Fig. 11.7 for the experiment of Wu et al. on the § decay
of radioactive °Co nuclei into ®°Ni. In this process a neutron within the
nucleus decays into a proton, an electron, and a neutrino. Only the electron
(8 particle) can be readily observed. The nuclei possess a finite spin and a
magnetic moment which can be oriented by means of a magnetic field. It is
found that the electrons are emitted preferentially in the direction opposite
to that of the spin of the nucleus. The essential experimental fact is that the
direction of the velocity of the § particle vz (a polar vector) is determined
by the direction of the magnetic field B (an axial vector), which orients the
nuclear spins. Since the inversion P leaves the magnetic field B unchanged,
while reversing vg, the above observation is incompatible with a universal
inversion symmetry. Parity is not conserved by the weak interaction. However,
in all processes involving only the strong and the electromagnetic interactions,
parity is conserved.!?

Under charge conjugation, electrons and positrons are interchanged,
whilst the momenta and spins remain unchanged (Fig. 11.6b). This is because
charge conjugation, according to Eqs. (11.3.7") and (11.3.11"), transforms the
spinor into a spinor with opposite momentum and spin. Since the antiparticle
(hole) corresponds to the nonoccupation of such a state, it again has opposite
values and hence, in total, the same values as the original particle. Even the
charge-conjugation invariance present in the free Dirac theory is not strictly
valid in nature: it is violated by the weak interaction.'?

The time-reversal transformation reverses momenta and spins (Fig. 11.6¢).
The free Dirac theory is invariant under this transformation. In nature, time
reversal invariance holds for almost all processes, whereby one should note
that time reversal interchanges the initial and final states. It was in the decay
processes of neutral K mesons that effects violating T invariance were first
observed experimentally.

10 T.D. Lee and C.N. Yang Phys. Rev. 104, 254 (1956)

1 C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, and R.P. Hudson, Phys.
Rev. 105, 1413 (1957); R.L. Garwin, L.M. Ledermann, and M. Weinrich, Phys.
Rev. 105, 1415 (1957)

12°A more detailed discussion of experiments testing the invariance of the electro-
magnetic and strong interactions under C, P, and CP, and their violation by

the weak interaction, can be found in D.H. Perkins, Introduction to High Energy
Physics, 2nd ed., Addison-Wesley, London, 1982.
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B B
m m
B

e —— &

(a) v (b)

Fig. 11.7. Schematic representation of the parity violation observed in the $-decay
experiment of Wu et al. The figure shows the current circulating in a toroidal coil
generating the magnetic field B, which in turn orients the magnetic moment p
of the cobalt nucleus and the associated angular momentum I, together with the
velocity v of the 3 particle (electron). The 3 particles are emitted preferentially
in the direction opposite to that of p. Thus configuration (a) corresponds to the
experimental result, whereas configuration (b) is not observed

The invariances C, P, and T are all violated individually in nature.'?

In relativistic field theory with an arbitrary local interaction, however, the
product @ = PCT must be an invariance transformation. This theorem,
which is known as the PCT theorem!3:'*, can be derived from the general
axioms of quantum field theory'®. The PCT theorem implies that particles
and antiparticles have the same mass and, if unstable, the same lifetime,
although the decay rates for particular channels are not necessarily the same
for particles and antiparticles.

*11.4.4 Racah Time Reflection

Here, we determine the spinor transformation corresponding to a pure time
reflection. According to Eq. (6.1.9), this is described by the Lorentz transfor-
mation

-1000
0100
0010
0001

AP = (11.4.60)

One readily sees that the condition for the spinor transformation (6.2.7)
Sk = A, SrY”

13 G. Liiders, Dan. Mat. Fys. Medd. 28, 5 (1954); Ann. Phys. (N.Y.) 2, 1 (1957);
W. Pauli, in Niels Bohr and the development of physics, ed. by W. Pauli, L.
Rosenfeld, and V. Weisskopf, McGraw Hill, New York, 1955

14 The Lagrangian of a quantum field theory with the properties given in Sect. 12.2
transforms under © as L(z) — L(—x), so that the action S is invariant.

15 R.F. Streater and A.S. Wightman PCT, Spin Statistics and all that, W.A. Ben-
jamin, New York, 1964; see also Itzykson, Zuber, op. cit., p. 158.
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is satisfied by'®

Sr =773 - (11.4.61)

Hence, the transformation for the spinor and its adjoint has the form

V' = Spy

_ 3 - (11.4.62)
P =TS} = —uly Sp! = —9sE!
in agreement with the general result, Eq. (6.2.34b), b = —1 for time reversal,
where Slgl = —73y271. The current density thus transforms according to
() = — Ay (11.4.63)

Hence, j* transforms as a pseudovector under Racah time reflection. The
vector potential A¥(x), on the other hand, transforms as

AM(z") = A" AV (A ) . (11.4.64)
Thus, the field equation for the radiation field
0,0V A¥ = 4mejt (11.4.65)

is mot invariant under this time reflection
One can combine the Racah transformation with charge conjugation:

Y (x,t) = Spipe(x, —t) = S(T)T (x, —t) . (11.4.66)
Here, the transformation matrix S(7T') is related to Sg and C = iy?4°
S(T) = SrC = 11727317°7" = iv°7s -

This is the motion-reversal transformation (= time-reversal transformation),
Eq. (11.4.47"). The Dirac equation is invariant under this transformation.

*11.5 Helicity

The helicity operator is defined by

hk)=X -k, (11.5.1)

where k = k/|[k] is the unit vector in the direction of the spinor’s momentum.

16 Sr is known as the Racah time reflection operator, see J.M. Jauch and F.
Rohrlich, The Theory of Photons and Electrons, p. 88, Springer, New York, 1980
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Since X - k commutes with the Dirac Hamiltonian, there exist common
eigenstates!” of X - k and H. The helicity operator h(R) has the property
h? (l;) = 1, and thus possesses the eigenvalues 1. The helicity eigenstates
with eigenvalue +1 (spin parallel to k) are called right-handed, and those
with eigenvalue —1 (spin antiparallel to k) are termed left-handed. One can
visualize the states of positive and negative helicity as analogous to right-
and left-handed screws.

From Eq. (6.3.11a), the effect of the helicity operator on the free spinor
ur(k) is:

(11.5.2)

[2m(m + E)]

with ¢ = (é) and py = ((1)), and an analogous expression for the spinors
vp(k). The Pauli spinors ¢, are eigenstates of o, and thus the u,(k) and
vr(k) in the rest frame are eigenstates of X, (see Eq. (6.3.4)).

As an example of a simple special case, we now consider free spinors with
wave vector along the z axis. Thus k = (0,0, k), and the helicity operator is

Y k=Y, and o-k=o0.. (11.5.3)

Furthermore, from Eq. (11.5.2) one sees that the spinors u, (k) and v, (k) are
eigenstates of the helicity operator. According to Egs. (6.3.11a) and (6.3.11Db),
the spinors for k = (0,0, k), i.e., for ¥ = (vVk2 +m?2,0,0,k) (to distinguish
it from the z component, the four-vector is denoted by k'), are

1 0
U(R)(k/)zul(k/):./\/' 2 ,u(L)(k/)ZUQ(k/):N (1) 7
E+m !
0 Trm
—k
Etm 2
W) =) =N |0 | P = e =N | B |
0 1

(11.5.4)

17 In contrast to the nonrelativistic Pauli equation, however, the Dirac equation
has no free solutions that are eigenfunctions of X' -n with an arbitrarily oriented
unit vector n. This is because, except for n = +k, the product X' - i does not
commute with the free Dirac Hamiltonian.
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with N = (E+m)1/2, and satisfy

2m

1 R
Xour (k) = tu, (k') f =
ur (k') ur (k") for r {2 I
(11.5.5)
1 R
YooK = o (k) f = .
vp (k") v (k") for r {2 I

The letter R indicates right-handed polarization (positive helicity) and L
left-handed polarization (negative helicity).

For k in an arbitrary direction, the eigenstates u(") u(X) with eigenvalues
+1, —1 are obtained by rotating the spinors (11.5.4). The rotation is through
an angle ¥ = arccos ‘% about the axis defined by the vector (—ky, kg, 0). It
causes the z axis to rotate into the k direction. According to (6.2.21) and
(6.2.29¢), the corresponding spinor transformation reads:

)
S =exp (—15(—/{1,2;5 + ks Xy) /A /K2 + k;)
kg Xy — kX, 0 (11.5.6)
l1——— 91

n .
k2 1 2 2
k2 + k3

Therefore, the helicity eigenstates of positive energy for a wave vector k are

=1 v
€os 3 +

o ~
(¢0)] 2

, ke +1
sin ¥ > 7
/K2 _ |2 2 kx —+ lk
u (k) =N K g ? N
cos - (k. +1)
. 2 Q(kz + 1) E+m ) )
el ke diky G 9 2L (ky + iky)

(11.5.7)

and

—ky + ik,
b1
= —_— 7& 7" .7
2k, + 1) E*T(( ]fxﬂky)
— (k. +1)

Corresponding expressions are obtained for spinors with negative energy
(Problem 11.4).
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*11.6 Zero-Mass Fermions (Neutrinos)

Neutrinos are spin—% particles and were originally thought to be massless.
There is now increasing experimental evidence that they possess a finite albeit
very small mass. On neglecting this mass, which is valid for sufficiently high
momenta, we may present the standard description by the Dirac equation
having a zero mass term

P =0, (11.6.1)

where p, = i0, is the momentum operator. In principle, one could obtain
the solutions from the plane waves (6.3.11a,b) or the helicity eigenstates by
taking the limit m — 0 in the Dirac equation containing a mass term. One
merely needs to split off the factor 1/y/m and introduce a normalization
different to (6.3.19a) and (6.3.19b), for example

Uy (B)Yus (k) = 2E6,,

(k) vs (k) = 2E5, . (11.6.2)

However, it is also interesting to solve the massless Dirac equation directly
and study its special properties. We note at the outset that in the representa-
tion based on the matrices o and 8 (5.3.1), for the case of zero mass, 3 does
not appear. However, one could also realize three anticommuting matrices
using the two-dimensional representation of the Pauli matrices, a fact that is
also reflected in the structure of (11.6.1).

In order to solve (11.6.1), we multiply the Dirac equation by

5.0 < 1.2.3
Yy =iyt
With the supplementary calculation
501 _ .1231_ .1123 .23 23 l
Yy =y vy Yy =iy vy vy =4y =0 =2,
503 .1233 .12 12 3 500_ 5
VY =y vy =iy y =0T =2 vy y =7,
(' +poy” )y =0
one obtains

X pip =S . (11.6.3)

Inserting into (11.6.3) plane waves with positive (negative) energy

(@) = T o (k) = eFIH "Ry gy (11.6.4)
this yields
- kyp(k) = kO9%(k) . (11.6.5)

From (11.6.1) it follows that p?u(z) = 0 and hence, k* = 0 or k¥ = E = |K|
for solutions of positive (negative) energy. With the unit vector k = k/|k|,
Eq. (11.6.5) takes the form
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X ko(k) = £4°9(k) . (11.6.6)

The matrix v°, which anticommutes with all v*, commutes with X' and thus
has joint eigenfunctions with the helicity operator X - k. The matrix ~° is
also termed the chirality operator. Since (7°)? = 1, the eigenvalues of > are
+1, and since Try® = 0, they are doubly degenerate. The solutions of Eq.
(11.6.6) can thus be written in the form

—ikzx

P(x) = {2,” ZI((:)) with k% = 0,k = |k| > 0, (11.6.7)

where the ug (vy) are eigenstates of the chirality operator
Yous(k) = +us(k) und ~APve(k) = va(k) . (11.6.8)

The spinors u4 and vy are said to have positive chirality (right-handed), and
the spinors u_ and v_ to have negative chirality (left handed). Using the

01 > Eq. (11.6.8) yields

standard representation 5 = < 10

1 [ as(k) 1 be(k)
wat =75 (L) =75 (L) (11.69)

Inserting(11.6.9) into the Dirac equation (11.6.6), one obtains equations de-
termining a4 (k):

ax(k) = o - kay (k) . (11.6.10)
Their solutions are (cf. Problem 11.7)
9
cos £
k) = > 11.6.11
a+( ) <sin %e“") ( a)
—gin Ye—ip
a_(k) = < "zl ) : (11.6.11b)
cos 5

where ¥ and ¢ are the polar angles of k. These solutions are consistent with
the m — 0 limit of the helicity eigenstates found in (11.5.7). The negative
energy solutions vy (k) can be obtained from the u4 (k) by charge conjugation
(Egs. (11.3.7) and (11.3.8)):

vy (k) = Car (k) = iv?u* (k) = —uy (k) (11.6.11c)
v_(k) = Cul (k) = iv*u’ (k) = —u_(k) (11.6.11d)

ie., in (11.6.9), by (k) = —ay (k).
It is interesting in this context to go from the standard representation

of the Dirac matrices to the chiral representation, which is obtained by the
transformation
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Y = Uty (11.6.12a)

yheh = gtany (11.6.12b)
1

U=—(1+7. (11.6.12¢)

V2

The result is (Problem 11.8):

YO = gt = P = <_(])1 _3) (11.6.13a)
yEt =k = (_gk gk) (11.6.13b)
PPt =0 = (g _3) (11.6.13¢)
o = (gk gk) (11.6.13d)
oG = % (6", 7" = % (g 2) (11.6.13¢)
o = % [veh, y5"] = €* (gk gk) (11.6.13f)

In the chiral representation, (11.6.13e,f) are diagonal in the space of bispinors,
i.e., the upper components (1,2) and the lower components (3,4) of the spinor
transform independently of one another under pure Lorentz transformations
and under rotations (see (6.2.29b)). This means that the four-dimensional
representation of the restricted Lorentz group EL is reducible to two two-
dimensional representations. More precisely, the representation'® of the group
SL(2,C) can be reduced to the two nonequivalent representations D9 and
D©:2). When the parity transformation P, which is given by P = ei“’vOChPO
(see (6.2.32)), is present as a symmetry element, then the four-dimensional
representation is no longer reducible, i.e., it is irreducible.

In the chiral representation, the Dirac equation takes the form

(=i + 10" )ps" — maps" =0

11.6.14
(—i0y — i o)t — mysh =0, ( )

where we have set ¢ = (251:) Equations (11.6.14) are identical to the
2

equations (A.7), but have been obtained in a different way. For m = 0 the
two equations decouple and one obtains

18 The group SL(2,C) is homomorphic to the group Cl corresponding to the two-
valued nature of the spinor representations. For useful group theoretical back-
ground we recommend V. Heine, Group Theory in Quantum Mechanics, Perg-
amon Press, Oxford (1960), and R.F. Streater and A.S. Wightman, PCT, Spin
Statistics and all that, Benjamin, Reading (1964).
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(10 — 16" )S" = (po + o - p)YE =0 (11.6.15a)
and
(100 +ic*dp )yt = 0. (11.6.15b)

These are the two Weyl equations. A comparison of these with (5.3.1) shows
that (11.6.15) contains a two-dimensional representation of the o matrices.
As mentioned at the beginning of this section, when [ is absent, the algebra
of the Dirac o matrices

{ai, Oéj} = 261']‘

can be realized by the three Pauli o matrices. The two equations (11.6.15a,b)
are not individually parity invariant and in the historical development were
initially heeded no further. In fact, it has been known since the experiments
of Wu et al.'® that the weak interaction does not conserve parity. Since the

chirality operator in the chiral representation is of the form Xgh = (1(1) 7](1) ),

spinors of the form ¢ = (wgh') have positive chirality, whilst those of the form
P = ( 1/féh) have negative chirality.

Experimentally, it is found that only neutrinos of negative chirality exist.
This means that the first of the two equations (11.6.15) is the one relevant to
nature. The solutions of this equation are of the form z/J;h(Jr)(x) =e F2y (k)
and wgh(_)(x) = e*y(k) with ko > 0, where u and v are now two-component
spinors The first state has positive energy and, as directly evident from
(11.6.15a), negative helicity since the spin is antiparallel to k. We call this
state the neutrino state and represent it pictorially by means of a left-handed
screw (Fig. 11.8a). Of the solutions shown in (11.6.9), this is u_ (k). The mo-
mentum is represented by the straight arrow.

E =k = [k| E =~k = —|k| E =k = k|

a) b) c)

Fig. 11.8. (a) Neutrino state with negative helicity, (b) neutrino state with negative
energy and positive helicity, (c¢) antineutrino with positive helicity

The solution with negative energy wgh(f) has momentum —k, and hence
positive helicity; it is represented by a right-handed screw (Fig. 11.8b). This

19 See references on p. 234.
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solution corresponds to v_(k) in Eq. (11.6.9). In a hole-theoretical interpre-
tation, the antineutrino is represented by an unoccupied state v_ (k). It thus
has opposite momentum (+k) and opposite spin, hence the helicity remains
positive (Fig. 11.8¢c). Neutrinos have negative helicity, and their antiparti-
cles, the antineutrinos, have positive helicity. For electrons and other massive
particles, it would not be possible for only one particular helicity to occur.
Even if only one helicity were initially present, one can reverse the spin in the
rest frame of the electron, or, for unchanged spin, accelerate the electron in
the opposite direction, in either case generating the opposite helicity. Since
massless particles move with the velocity of light, they have no rest frame;
for them the momentum k distinguishes a particular direction.

Fig. 11.9. The effect of a parity
transformation on a neutrino state

Figure 11.9 illustrates the effect of a parity transformation on a neutrino
state. Since this transformation reverses the momentum whilst leaving the
spin unchanged, it generates a state of positive energy with positive helicity.
As has already been stated, these do not exist in nature.

Although neutrinos have no charge, one can still subject them to charge
conjugation. The charge conjugation operation C' connects states of positive
and negative chirality and changes the sign of the energy. Since only left-
handed neutrinos exist in nature, there is no invariance with respect to C.
However, since the parity transformation P also connects the two types of
solution

wCh(tv X) - FyowCh(ta 7X) )

(in the chiral representation 7" is nondiagonal), the Weyl equation is invariant
under C'P. In the chiral representation, C' reads

~100 0
O<—w2 o> 010 0
0 oy 001 0

000 —1

Hence, the effect of CP is

chCP

Tt x) = nCYe (t, —x) = Finooy (t, —x)

for chirality v° = +1.
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Problems

11.1 Show that equation (11.3.5) implies (11.3.5").

11.2 In a Majorana representation of the Dirac equation, the v matrices — indicated
here by the subscript M for Majorana — are purely imaginary,

75\1‘/1* = 7’}/1’(‘4 s M :()717273'

A special Majorana representation is given by the unitary transformation
Yhe = Uy*U"

with U =U" =U"" = 559° (L ++7).

(a) Show that

o _02_ (00" 1_21_1030'
TMETYT F 2 T™M=TYT = g ipd
2 _ 2 0 —0o® s 23 (—ic" 0
™ =—7 = o2 0 ™M =77 = 0 —io') -

(b) In Eq. (11.3.14") it was shown that, in a Majorana representation, the charge
conjugation transformation (apart from an arbitrary phase factor) has the form
¥ = ¢};. Show that application of the transformation U to Eq. (11.3.7")

L
leads to
Y = —ithwr

11.3 Show that, under a time-reversal operation 7, the four-current-density 7" in
the Dirac theory satisfies

jlu(xvt) = j#(xv 7t) .

11.4 Determine the eigenstates of helicity with negative energy:
(a) as in (11.5.7) by applying a Lorentz transformation to (11.5.4);

(b) by solving the eigenvalue equation for the helicity operator X - k and taking
the appropriate linear combination of the energy eigenstates (6.3.11b).

11.5 Show that X - k commutes with (y*k, & m).
11.6 Prove the validity of Eq. (11.5.7).

11.7 Show that (11.6.11) satisfies the equation (11.6.10).

11.8 Prove the validity of (11.6.13).



Part III

Relativistic Fields



12. Quantization of Relativistic Fields

This chapter is dedicated to relativistic quantum fields. We shall begin by
investigating a system of coupled oscillators for which the quantization prop-
erties are known. The continuum limit of this oscillator system yields the
equation of motion for a vibrating string in a harmonic potential. This is
identical in form to the Klein—Gordon equation. The quantized equation of
motion of the string and its generalization to three dimensions provides us
with an example of a quantized field theory. The quantization rules that
emerge here can also be applied to non-material fields. The fields and their
conjugate momentum fields are subject to canonical commutation relations.
One thus speaks of “canonical quantization”. In order to generalize to arbi-
trary fields, we shall then study the properties of general classical relativistic
fields. In particular, we will derive the conservation laws that follow from the
symmetry properties (Noether’s theorem).

12.1 Coupled Oscillators, the Linear Chain,
Lattice Vibrations

12.1.1 Linear Chain of Coupled Oscillators
12.1.1.1 Diagonalization of the Hamiltonian

We consider N particles of mass m with equilibrium positions that lie on a
periodic linear chain separated by the lattice constant a. The displacements
along the direction of the chain from the equilibrium positions a,, are denoted

“ E “ n—1 n n+1

(a) (b)

Fig. 12.1. Linear chain: (a) displacement of the point masses (large dots) from
their equilibrium positions (small dots); (b) potentials and interactions (represented
schematically by springs)
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by q1,...,qn (Fig.12.1a), and the momenta by p1, ... ,py . It is assumed that
each particle is in a harmonic potential and, additionally, is harmonically
coupled to its nearest neighbors (Fig.12.1b). The Hamiltonian then reads:

N 2 2

Z Lm 721 mQ (qn — qn71)2 mfo .. (12.1.1)
Here, £2? characterizes the strength of the harmonic coupling between nearest
neighbors, and 22 the harmonic potential of the individual particles (see
Fig.12.1b). Since we will eventually be interested in the limiting case of an
infinitely large system in which the boundary conditions play no part, we will
choose periodic boundary conditions, i.e., gqg = qn . The x coordinates z,, are
represented as x,, = a,, + ¢, = na + ¢, and, from the commutation relations
[Zn, Pm] = ©0pm, etc. (A = 1), we have for the canonical commutation relations
of the ¢, and p,

[qnvpm] = i0pm ) [Qn,Qm] =0, [pnvpm] =0. (1212)

The Heisenberg representation,

gn(t) = &M g e (12.1.3a)
pu(t) = &M py o0, (12.1.3b)
yields the two equations of motion
1
inl0) = — pal) (12.1.40)
and
Pn(t) = min () (12.1.4b)

= Mm% (qnr1(t) + dn-1(t) — 24 (t)) — M2 4u(t) -

On account of the periodic boundary conditions, we are dealing with a trans-
lationally invariant problem (invariant with respect to translations by a). The
Hamiltonian can therefore be diagonalized by means of the transformation
(Fourier sum)

1 ika
R P OE > ety (12.1.5a)
k

Pn ( )I/QZe“’““"P (12.1.5b)

The variables Qf and Py are termed the normal coordinates and mormal
momenta, respectively. We now have to determine the possible values of k.
To this end, we exploit the periodic boundary conditions which demand that
go = qn, i.e., 1 = e**V : hence, we have kaN = 27¢ and thus
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2l
| — 12.1.6
Na'’ ( )

where ¢ is an integer. The values k = w = ?\’,Tf + 2” are equivalent to

since, for these k values, the phase factors e‘k‘m are equal and, thus,
SO are the gn and p,. The possible k values are therefore reduced to those
given by:

k= 27r€

for even N —

forodd N  : —

In solid state physics, this reduced interval of k values is also known as the
first Brillouin zone. The Fourier coefficients in (12.1.5) satisfy the following
orthogonality and completeness relations:

Orthogonality relation :

N
Z ikan 71k an _ A(k _ k/) (1217&)

2

S ifork—# =T h, hinteger

- a
0 otherwise.

In this form, the orthogonality relation is valid for any value of k = ?V—”é .
a

When £ is restricted to values in the first Brillouin zone, the generalized
Kronecker delta A(k — k') becomes Oy .
Completeness relation:

1 . . ’
Nzeflkanelkan — 57m’ ) (1217b)
k

Here, the summation variable k is restricted to the first Brillouin zone. (For
a proof, see Problem 12.1). The inverse of (12.1.5) reads:

m .
Qr = /N Ze_lk‘mqn (12.1.8a)

P, = ikan, (12.1.8b)

er
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Since the operators ¢, and p,, are hermitian, it follows that

P=Q.,, Pl=P,. (12.1.9)
Remark. When N is even, ¢ = % and f% are equivalent and hence only %
appears. For k = % . % = ~, we have Q) = QL and P, = P,I, since ¢'a " =
eiwn — (_1)n .

The commutation relations for the normal coordinates and momenta are
obtained from (12.1.2) with the result

[Qr, Pr] = 0k [Qr, Qr] =0, [Py, Pw] =0. (12.1.10)

Transforming (12.1.1) into normal coordinates according to (12.1.5a,b) yields
the Hamiltonian in the form

H= %Z (P Pl +etQu@l) (12.1.11)
k

where the square of the vibration frequency as a function of k reads:
2 2 ka\? 2
wj, = §27 | 2sin > + £2; (12.1.12)

(Problem 12.3). The quantity (Qa)2 is known as the stiffness constant.
Thus, in Fourier space, one obtains uncoupled oscillators with the frequency
wi, = y/w?. [It should be noted, however, that the terms in (12.1.11) are of
the form Q@ _ etc., so that the oscillators with wave numbers k and —k are
still interdependent.] The frequency is depicted as a function of & (dispersion
relation) in Fig.12.2. In the language of lattice vibrations, 290 = 0 leads
to acoustic, and finite {2y to optical, phonons. In order to diagonalize H in
Eq.(12.1.11), one introduces creation and annihilation operators:

Wi
29 #0
290=0
— 1 3 Eig. 12.2. The phonon frequen-
a a cies for 20 # 0 and 20 =0
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1
a4 = = (wk Q —l—iP,I) (12.1.13a)
k
1
al = — (weQf-ip ) - (12.1.13b)
Wi,

The inverse of this transformation is given by

t
a, +a

Qr = % (12.1.14a)
W,

. Wk
Pe= =i\ /5 (a_x—al) - (12.1.14b)

The commutation relations for the normal coordinates (12.1.10) lead to
(Problem 12.5)

and

la, ,al] = 0k, lan,aw] =lal,al,]=0. (12.1.15)

By inserting (12.1.14a,b) into (12.1.11), one obtains

1
H=> w <a,1ak + 5) , (12.1.16)
k

a Hamiltonian for N uncoupled oscillators. The summation extends over all
N wave numbers in the first Brillouin zone, since

1 W w2
H =33 oo - alali - o)+ gh (ot al el + o)

1
=12 d “wi(a—ral, +alar + aral +al oy
k

—a_rap — alaik +ara_p + aikaz)
1 1
=3 Zk:wk(azak + akaz) = Zk:wk <a£ak + 5) . (12.1.17)

The energy eigenstates and eigenvalues for the individual oscillators are
known. The ground-state energy of the oscillator with the wave vector k is

%wk. The nth excited state of the oscillator with wave vector k is obtained

by the n-fold application of the operator aL, having energy (ny + %) wi - The
fact that the eigenvalues of the Hamiltonian are, up to the zero-point energy,
integer multiples of the eigenfrequencies leads quite naturally to a particle
interpretation, although we are dealing here not with material particles but
rather with excited states (quasiparticles). In the case of the elastic chain
considered here, these quanta are known as phonons. The occupation numbers
are0,1,2,..., hence the quanta are bosons. The operator aL creates a phonon
with wave vector k and frequency (energy) wy, whilst ax annihilates a phonon
with wave vector k and frequency (energy) wy.
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Hence, the eigenstates of the Hamiltonian (12.1.17) are of the following
form: In the ground state |0), which is determined by the equation

ar |0) =0, for allk , (12.1.18a)

no phonons are present. Its energy represents the zero-point energy

1
Eo=> 5k - (12.1.18b)
k

A general multiphonon state has the form
1

nkl!nkz! . ..nkN!

x (azl) " (aL) kQ...(aLN) 0y (12.1.19a)

|nk17nk27'- . 7nkN> =

with energy
E=> nywi+ Eo . (12.1.19b)
k

The occupation numbers take the values ny = 0,1,2,... and k runs through
the IV values of the first Brillouin zone; the nj are not bounded from above.
The operator ng = aLak is the occupation number operator for phonons with
the wave vector k.

From

[fig, ax] = —ar  und [ﬁk,al] = aL (12.1.19¢)
it follows that

aki|...,nki,...>: nki|...,nki—1,...>,

(12.1.19d)

a,ii|...,nki,...>:\/nki+1|...,nki+1,...> )

Remark. Let us emphasize that the commutation relations (12.1.2) and
(12.1.15) are valid even when nonlinear terms are present in the Hamiltonian,
since they are a consequence of the general canonical commutation relations
of position and momentum operators.

12.1.1.2 Dynamics

Equation (12.1.16) expresses the Hamiltonian of the linear chain in diago-
nal form. In fact, H is time independent, so that its various representations
(12.1.1), (12.1.11), and (12.1.16) are valid at all times. The essential features
of the dynamics are most readily described in the Heisenberg picture. Starting
from



12.1 Coupled Oscillators, the Linear Chain, Lattice Vibrations 255

1 ikan 1 1 ika T
n = —— e P —e "la + a_
q N ; Q N ; Peor (ay )
1 (12.1.20)
_ ika —ikan T
= — (€e""a, +e g ) ,
; vV 2wimN ( k k
we define the Heisenberg operator
qn(t) = et g, (0) e 1T = it g ~1HE (12.1.21)
By solving the equation of motion, or by using
. . 1
et gy e H = gy + [iHt, ag] + 5[th, [iHt, ag]] + ...
1
= ay + [iwgt azak, ax) + i[th, [iHt, ar]] + ...
1
= ap — iwgtar + E[iwkm;&ak, fiwktak] + ... (12122)
. 1, 2
=ar (1 —iwgt + 5(—1&];@15) +...
— akefiwkt ,
one obtains for the time dependence of the displacements
1 . .
nlt) = 30— (elben g, g oTilkenmentgf) 12.1.23
qn(t) ; W k k ( )

Concerning its structure, this solution is identical to the classical solution,
although the amplitudes are now the annihilation and creation operators.
We will discuss the significance of this solution only in the context of the
continuum limit, which we shall now proceed to introduce.

12.1.2 Continuum Limit, Vibrating String

Here, we shall treat the continuum limit for the vibrating string. In this limit
the lattice constant becomes a — 0 and the number of oscillators N — oo,
whilst the length of the string L = aN remains finite (Fig. 12.3).

m
Y Fig. 12.3. Concerning the continuum limit of the linear
a chain (see text)
The density p = 2 and stiffness constant v* = (£2a)® must also remain

constant. The positions of the lattice points x = na are then continuously
distributed. We also introduce the definitions
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q(z) = qn (%)1/2 (12.1.24a)

p(x) = pp(ma)~*/?. (12.1.24b)
The equation of motion (12.1.4b)

Gn = 12%(qni1 + Q-1 — 2qn) — 25 @

becomes
- _ 02,2 (q(x—l—a,t)—q(w,t)) — (Q(‘Tat) _Q(x_a’t))
dl,1) = 2a a2 (12.1.25)
- ng(l', t)
and, in the limit a — 0, one has
82
Gz, t) — UQ@q(x, t)+ 23 q(x,t) =0. (12.1.26)

The form of this equation is identical to that of the one-dimensional Klein—
Gordon equation. For 2y = 0, i.e., in the absence of a harmonic potential,
Eq. (12.1.26) is the equation of motion for a vibrating string, as is known
from classical mechanics.

In the continuum limit, the Hamiltonian (12.1.1) takes the form

1 my? mi3
H= &k L2 = qn_1)? 0.2
aﬁo,%iooz <2mpn + ot — 1)+
1 mi2? n — Qn-1 2 02
— li 2 2 n n 0 2
aﬂo,lzl\lrlaoo;a <2map" + 2 ¢ < a * 2¢
[ 9q\°
= /dw = |p(2)* +v? S/ 22 q(x)?| (12.1.27)
2 Ox
0
L
where >° a...— [dz.... The commutators of the displacements and the
0

momenta are obtained from (12.1.2) and (12.1.24a,b):

ma 1/2
lq(2),p(a)] =  lim (=) (ma)"""*[gn, pw]
a0 Nes (5& ) (12.1.28a)
= il T
and
[a(2), q(z")] = [p(z),p(z")] = 0. (12.1.28b)

Next, we will derive the representation in terms of normal coordinates. From
(12.1.6), it follows that
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2ml
k= % , where £ is an integer with — oo < /¢ < 0o . (12.1.29)

For a string of finite length, the Fourier space remains discrete in the contin-
uum limit, although the number of wave vectors and thus normal coordinates
is now infinite. From (12.1.5a,b) we have

1

q(z) = T > ety (12.1.30a)
k
1 —ikx
p(®) = 2175 > eTkepy (12.1.30D)
k

and from (12.1.11)
1
H = ; 3 (Pk Pl +wiQ, QL) ; (12.1.31)

whereby, in the limit a — 0, equation (12.1.12) reduces to
wi=v2k?+ 022 . (12.1.32)

The commutation relations for the normal coordinates (12.1.10) remain un-
changed:

[Qr, Pl = 0k, [Qr, Q] =0, [Px,Pw]=0. (12.1.33)

The transformation to creation and annihilation operators (12.1.14a,b), and
also the expression for the Hamiltonian in terms of these quantities (12.1.16)
remain correspondingly unchanged. The representation of the displacement
field in terms of creation and annihilation operators now takes the form

T
_ 1 ke G T Oy
1) = o 2 =
1 ik —ik T) 1
= — W 1 — 12.1.34
L1/2zk:(e a e ) o (12.1.34)

and, from (12.1.23), its time dependence is given by

1 : : 1
_ i(kx—wit) —i(kzx—wit) .1
a(z.t) = 77 Ek (e a, +e : ak) N (12.1.35)

We finally obtain for the Hamiltonian
1
H= zk:wk <a£ak + 5) : (12.1.36)

which is positive definite. The functions e!**=«rt) and e~ 1(k*=wkt) appearing
in (12.1.35) are solutions of the free field equation (12.1.26), which, in connec-
tion with the Klein-Gordon equation, we had interpreted as solutions with
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positive and negative energy. In the quantized theory, these solutions appear
as amplitude functions, prefactors of the annihilation and creation operators
in the expansion of the field operators. The sign of the frequency dependence
is of no significance for the value of the energy. This is determined by the
Hamiltonian (12.1.36), which is positive definite: there are no states of neg-
ative energy. The direct analogy to the vibrating string relates to the real
Klein—Gordon field. The complex field will be treated in Eq. (12.1.47a,b) and
Sect. 13.2.

12.1.3 Generalization to Three Dimensions,
Relationship to the Klein—Gordon Field

12.1.3.1 Generalization to three dimensions

It is now straightforward to generalize the above results to three dimensions.
We consider a discrete three-dimensional cubic lattice. Rather than taking
an elastic lattice, which would have three-dimensional displacement vectors,
we shall assume instead that the displacements are only along one dimension
(scalar). In the continuum limit, the one-dimensional coordinate x must be
replaced by the three-dimensional vector x

r—Xx,

and the field equation for the displacement ¢(x,t) reads:
G(x,t) —v2Aq(x,t) + 25 q(x,t) = 0. (12.1.37)

Introducing the substitutions

2
v—c, Q—g —m?, (x,t)=x, and q(x,t)— ¢(z), (12.1.38)
v
we obtain
00" p(x) +mp(z) =0, (12.1.39)

which is precisely the Klein—-Gordon equation (5.2.11’). The representation
of the solution of the Klein—Gordon equation in terms of annihilation and
creation operators (12.1.35), the commutation relations (12.1.15), (12.1.28),
and the Hamiltonian (12.1.36) can all be directly translated into three di-
mensions:

1 1
ot) = T3 zk: V20K

=¢"(z) +9¢ (z),

(ei(kxfwkt)ak n efi(kxfwkt)a;f() (12.1.40)

[ ab] = kwr oy, a] = laf, al,] =0, (12.1.41a)



12.1 Coupled Oscillators, the Linear Chain, Lattice Vibrations 259

%, 1), (', )] =10 (x — %/
[6x,0), 6(x', )] = 16® (x = x), (12.1.41b)

[6(x, 1), 6(x',1)] = [d(x, 1), 6(x',1)] = O,

and
1
H= zk:wk <aLak + 5) : (12.1.42)

Inspired by these mechanical analogies, we arrive at a completely new inter-
pretation of the Klein—-Gordon equation. Previously, in Sect. 5.2, an attempt
was made to use the Klein—-Gordon equation as a relativistic replacement for
the Schrodinger equation and to interpret its solutions as probability ampli-
tudes in the same way as for the Schrédinger wave functions in coordinate
space. However, ¢(x,t) is not a wave function but an operator in Fock space.
This field operator is represented as a superposition of single-particle so-
lutions of the Klein—-Gordon equation with amplitudes that are themselves
operators. The effect of these operators is to create and annihilate the quanta
(elementary particles) that are described by the field. The term Fock space
describes the state space spanned by the multi-boson states

(ajq)"kl (aL)"kz ...|0) (12.1.43a)

where |0) is the ground state (= vacuum state) of the field. The energy of
this state is

E=) huw (nk + %) . (12.1.43b)
k

In equation (12.1.40) the field operator was split into positive and negative
frequency parts, ¢ (x) and ¢~ (x). This notation originates from the positive
and negative energy solutions. Due to the hermiticity of the field operator
¢(x), we have ¢+T = ¢, and in the expansion (12.1.40) we encounter the
sum of ax and aL. This hermitian (real) Klein—Gordon field describes un-

charged mesons, as our subsequent investigations will reveal.

12.1.3.2 The infinite-volume limit

Until now, we have based our studies on a finite volume with linear extension
L. In order to formulate relativistically invariant theories, it is necessary
to include all of space. We thus take the limit L — oo. In this limit, the
previously discrete values of k move arbitrarily close together, such that k
too becomes a continuous variable. The sums over k are replaced by integrals
according to

S

k
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Using the definition

2

a(k) = ( L )g ax (12.1.44)

one obtains the field operator from (12.1.39) as

r &’k 1 i(kx—wit) —i(kx—wkt) T
st = [ Grim \/m(e a(k) + e a(k)),

— 00

(12.1.45)

where the k integration extends in all three spatial dimensions from —oco to
400. The commutation relations for the creation and annihilation operators
now read:

3
1.0 () = b (5 ) = 1)

[a(k),a(k")] =0 [aT(k),aT(k/)] =0.

(12.1.46)

Proof:

-2 (3) () o)

:/dsk’ <(%)36kk,> = /dSk’é(k—k’).

The complex Klein—-Gordon field is not hermitian and therefore the ex-
pansion coefficients (operators) of the solutions with positive and negative
frequency are independent of one another

1 1
d(x,t) = 372 Zk: o

(e—ik»mak +eitopf ) : (12.1.47a)

Here, k- x = wit — k - x is the scalar product of four-vectors. The operators
ax and by have the following significance:

ay (ab annihilates (creates) a particle with momentum k and
b (bL) annihilates (creates) an antiparticle with momentum k
and opposite charge,

as will be discussed more fully in subsequent sections. From (12.1.47a), one
obtains the hermitian conjugate of the field operator as

- Ly
o7 (%) Lg/zzk:m

(e_imbk _i_eik‘wal) . (12.1.47b)
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12.2 Classical Field Theory

12.2.1 Lagrangian and Euler—Lagrange Equations of Motion
12.2.1.1 Definitions

In this section we shall study the basic properties of classical (and, in the
main, relativistic) field theories. We consider a system described by fields
¢r(x), where the index r is a number which labels the fields. It can refer to
the components of a single field, e.g., the radiation field A*(z) or the four-
spinor ¢ (z), but it can also serve to enumerate the different fields. To begin
with, we define a number of terms and concepts.

We assume the existence of a Lagrangian density that depends on the
fields ¢, and their derivatives ¢, , = 0,¢, = a%qﬁr. The Lagrangian density
is denoted by

L=L(¢r,br) - (12.2.1)

The Lagrangian is then defined as

L(z°) = /d3:v L(br, brp) - (12.2.2)

The significance of the Lagrangian in field theory is completely analogous to
that in point mechanics. The form of the Lagrangian for various fields will
be elucidated in the following sections. We also define the action

S(92) :/d‘*:cz(@,@,u) = /d:z:OL(:vo), (12.2.3)

2

where d*z = d2d®z = da®dz! dz? dx®. The integration extends over a
region {2 in the four-dimensional space-time, which will usually be infinite.
We shall use the same notation as in Part II on relativistic wave equations,
where we set the speed of light ¢ = 1 and, thus, z° = t.

12.2.1.2 Hamilton’s principle in point mechanics

As has already been mentioned, the definitions and the procedure needed
here are analogous to those of point mechanics with n degrees of freedom.
We briefly remind the reader of the latter'>2. The Lagrangian of a system
of particles with n degrees of freedom with generalized coordinates ¢;,7 =
1,...,n has the form:

L H. Goldstein, Classical Mechanics, 2nd ed., Addison-Wesley, Reading, Mass.,
1980

2 L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 1, Pergamon,
Oxford, 1960
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L(t) =) % mid; —V(a) - (12.2.4)

i=1

The first term is the kinetic energy, and the second the negative potential
energy due to the interactions between the particles and any external con-
servative forces. The action is defined by

S— /t2 dtL(t) . (12.2.5)

1

The equations of motion of such a classical system follow from Hamilton’s
action principle. This states that the actual trajectory ¢;(¢) of the system is
such that the action (12.2.5) is stationary, i.e.,

55=0, (12.2.6)

where variations in the trajectory ¢;(t) + dq;(t) between the initial and final
times t; and o are restricted by (see Fig.12.4)

(Sqi(tl) = 6qi(f2) = O, L= 1, oo, n. (1227)

q(t) + 0q(t)

q(1) 2
Fig. 12.4. Variation of the solution in the time
tl interval between t1 and t2. Here, ¢(t) stands for

{a:(t)}

The condition that the action is stationary for the actual trajectory implies

2 oL oL .
5S = /dt (méqi(t) + mé%(t))

- / (G ~ o) 0+ @ (gg0a®)] 4229

t1

- (- ] ()

1

ta

=0.

t1

The second term on the last line vanishes since, according to (12.2.7), the
variation d¢(t) must be zero at the endpoints. In order for 4.5 to vanish for
all d¢;(t), we have the condition
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oL d 0L
—— ——— =0, i=1,...,n. (12.2.9)
0q;(t)  dt 9¢;(t)
These are the Fuler—Lagrange equations of motion, which are equivalent to

Hamilton’s equations of motion. We now proceed to extend these concepts
to fields.

12.2.1.3 Hamilton’s principle in field theory

In field theory the index i is replaced by the continuous variable x. The
equations of motion (= field equations) are obtained from the variational
principle

05 =0. (12.2.10)
To this end, we consider variations of the fields

or(x) = ¢p(2) + 0, (2) (12.2.11)

which are required to vanish on the surface I'({2) of the space—time region
0.

0¢-(x) =0 on I'(N). (12.2.12)

In analogy to (12.2.9), we now calculate the change in the action (12.2.3)
08 = /d4:17 0pr + oL —00
a ¢ " Oy
Q

oL 0 0L 0 oL
_ 4 4
_/dx{ad)r 3$“8¢T#}5¢T /d x_({):c“ (—a@m&br) .
2

2
(12.2.13)

Here, we employ the summatmn convention for the repeated indices r and
and have also used® d¢,.,, = 61“ +2-0¢,. The last term in Eq.(12.2.13) can be
re-expressed using Gauss’s theorem as the surface integral

/ do,, a‘Z—f&qsr =0, (12.2.14)

where do, is the © component of the element of surface area. The condition
that 6S in Eq.(12.1.13) vanishes for arbitrary {2 and d¢, yields the Fuler—
Lagrange equations of field theory
oc i oL
0¢, Ozt 0y,

? 3¢r(x) = ¢r(2) — ¢r(2) and thus 5706, (2) = 61, (2) — Prou(@) = d¢rpu() -

=0, r=12.... (12.2.15)
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Remark. So far we have considered the case of real fields. Complex fields
can be treated as two real fields, for the real and imaginary parts. It is easy
to see that this is equivalent to viewing ¢(z) and ¢*(x) as independent fields.
In this sense, the variational principle and the Euler—Lagrange equations also
hold for complex fields.

We now introduce two further definitions in analogy to point particles in
mechanics. The momentum field conjugate to ¢, (x) is defined by

ma) = L - 9% (12.2.16)
0 (x)  O¢p(x)
The definition of the Hamiltonian reads:
H = [# (1) (@) = £(0r:60)) = Hlnm). (12.2.17)

where the ¢.T have to be expressed in terms of the 7.
The Hamiltonian density is defined by

H(x) = 7 (2)ér (@) — L(Dr, brp) - (12.2.18)
The Hamiltonian can be expressed in terms of the Hamiltonian density as
H= /d3:cH(:c) : (12.2.19)

The integral extends over all space. H is time independent since £ does not
depend explicitly on time.

12.2.1.4 Example: A real scalar field

To illustrate the concepts introduced above, we consider the example of a real
scalar field ¢(z). For the Lagrangian density we take the lowest powers of the
field and its derivatives that are invariant under Lorentz transformations

1
L=3 (¢ u" —m®¢?) | (12.2.20)
where m is a constant. The derivatives of £ with respect to ¢ and ¢ , are
oL 9 oL
SFL. - —m ¢ ; = ¢7M )
99 ¢ 4

from which one obtains for the Euler-Lagrange equation (12.2.15)
ot +mPp=0, (12.2.21)

or, in the form previously employed,
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(070, +m*)¢ =0. (12.2.21")

Thus, Eq. (12.2.20) is the Lagrangian density for the Klein-Gordon equation.
The conjugate momentum for this field theory is, according to (12.2.16),

() = é(z) , (12.2.22)
and, from (12.2.18), the Hamiltonian density reads:
H(z) = % [72(x) + (V§)* + m?¢*(x)] . (12.2.23)

If we had included higher powers of ¢? in (12.2.20), for example ¢*, the equa-
tion of motion (12.2.21’) would have contained additional nonlinear terms.

Remarks on the structure of the Lagrangian density

(i) The Lagrangian density may only depend on ¢,(z) and ¢y ,(x); higher
derivatives would lead to differential equations of higher than second order.
The Lagrangian density can depend on x only via the fields. An additional
explicit dependence on x would violate the relativistic invariance.

(ii) The theory must be local, i.e., L(x) is determined by ¢,(x) and ¢, ,.(z)
at the position z. Integrals over £(x) would imply nonlocal terms and could
lead to acausal behavior.

(iii) The Lagrangian density £ is not uniquely determined by the action, nor
even by the equations of motion. Lagrangian densities that differ from one
another by a four-divergence are physically equivalent

L'(z) = L(z) + 0, F"(x) . (12.2.24)

The additional term here leads in the action to a surface integral over the
three-dimensional boundary of the four-dimensional integration region. Since
the variation of the field vanishes on the surface, this can make no contribu-
tion to the equation of motion.

(iv) L should be real (in quantum mechanics, hermitian) or, in view of re-
mark (iii), equivalent to a real £. This ensures that the equations of mo-
tion and the Hamiltonian, when expressed in terms of real fields, are them-
selves real. £ must be relativistically invariant, i.e., under an inhomogeneous
Lorentz transformation

x—a = Ax+a

12.2.25
80(2) — () (12:225)

L must behave as a scalar:
L(¢(2"), ¢y, (2") = L(¢r(2), rpu(2)) - (12.2.26)

Since d*z = dx°dz'dz?dz? is also invariant, the action is unchanged under
the Lorentz transformation (12.2.25) and the equations of motion have the
same form in both coordinate systems and are thus covariant.
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12.3 Canonical Quantization

Our next task is to quantize the field theory introduced in the previous sec-
tion. We will allow ourselves to be guided in this by the results of the me-
chanical elastic continuum model (Sect. 12.1.3) and postulate the following
commutation relations for the fields ¢, and the momentum fields m,.:

[¢r (Xa t)a Ts (X/a t)] = iéTS(S(X - XI) )
[6r(x,1), 65 (X', 8)] = [mr(x,1), s (X', 8)] = 0.
These are known as the canonical commutation relations and one speaks of

canonical quantization. For the real Klein-Gordon field, where according to
(12.2.22) 7(x) = ¢(x), this also implies
x,t), d(x', 1) =i6(x — x') ,
6(x.1). 66,0 = 80 =) aso)
[¢(X’t)’¢(x ’t)] [¢(X’t)’¢(x at)] =0.

In view of the general validity of (12.1.28) and (12.1.41b), one postulates also
the canonical commutation relations for interacting fields.

(12.3.1)

12.4 Symmetries and Conservation Laws,
Noether’s Theorem

12.4.1 The Energy—Momentum Tensor, Continuity Equations,
and Conservation Laws

The invariance of a system under continuous symmetry transformations leads
to continuity equations and conservation laws. The derivation of these con-
servation laws from the invariance of the Lagrangian density is known as
Noether’s theorem (see below).

Continuity equations can also be derived in an elementary fashion from
the equations of motion. This will be illustrated for the case of the energy—
momentum tensor, which is defined by

oL
ad)r”u

The energy—momentum tensor obeys the continuity equation®

T

0" — Lg" . (12.4.1)

T =0. (12.4.2)

Proof: Differentiation of TH" yields:

4 In the next section, we shall derive this continuity equation from space-time
translational invariance, whence, in analogy to classical mechanics, the term
energy-momentum tensor will find its justification.
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0 0L oL
Qv -2
T = <6:v“(9¢r“>¢ +a¢ru¢ o’'L (12.4.3)
oL
+ oL =0,
aqsfj GYS’

Where we have used the Euler-Lagrange equation (12.2.15) and 9L =
8”@ + a 81’@ u to obtain the second identity.

If a four-vector gM satisfies a continuity equation
", =0, (12.4.4)

then, assuming that the fields on which ¢g* depends vanish rapidly enough
at infinity, this leads to the conservation of the space integral of its zero
component

GO(t) = /d?’xgo(x, t). (12.4.5)

Proof: The continuity equation, together with the generalized Gauss diver-
gence theorem, leads to

0
/d4:c %g“ = :/da# gt . (12.4.6)

2 o

This holds for every four-dimensional region {2 with surface 0. One now
chooses an integration region whose boundary in the spatial directions ex-
tends to infinity. In the time direction, it is bounded by two three-dimensional
surfaces o1 (2" = t1) and 02(2° = t5) (Fig.12.5). In the spatial directions, ¢,
and ¢, are zero at infinity:

= /d3x90 —/d3x90 = /dgsvgo(x,tl) —/dgxgo(x,tg)

o1 o2

thus,

02

Fig. 12.5. Diagram relating to the
derivation of the conservation law
(see text)
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Go(tl) = Go(tg) (1247&)
or, alternatively,

0
% =0. (12.4.7b)

Applying this result to the continuity equation for the energy—momentum
tensor (12.4.1) leads to the conservation of the energy—momentum four-vector

PY = /d% T%(x,t) . (12.4.8)
The components of the energy—momentum vector are
P? = / B {7, () r () — L(Dry Do)} (12.4.9)
= / d*xH = H

and

P = /d?’gmn(iv) g¢r
Ty

J=123. (12.4.10)

The zero component is equal to the Hamiltonian (operator), and the spatial
components represent the momentum operator of the field.

12.4.2 Derivation from Noether’s Theorem of the Conservation
Laws for Four-Momentum, Angular Momentum, and Charge

12.4.2.1 Noether’s theorem

Noether’s theorem states that every continuous transformation that leaves
the action unchanged leads to a conservation law. For instance, the conserva-
tion of four-momentum and of angular momentum follows from the invariance
of the Lagrangian density £ under translations and rotations, respectively.
Since these form continuous symmetry groups, it is sufficient to consider in-
finitesimal transformations. We therefore consider the infinitesimal Lorentz
transformation

T, — &, =z, 4 0x, = x4 Awpy ¥ 40, (12.4.11a)
1
or(z) — ¢L.(2) = ¢p(x) + 3 Aw,yy, SE ¢5(z) . (12.4.11b)

Here x and 2’ represent the same point in space time referred to the two
frames of reference, and ¢, and ¢/, are the field components referred to these
coordinate systems. The quantities which appear in these equations should
be understood as follows: The constant J,, causes an infinitesimal displace-
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ment. The homogeneous part of the Lorentz transformation is given by the
infinitesimal antisymmetric tensor Aw,, = —Aw,,. The coefficients S in
the transformation (12.4.11b) of the fields are antisymmetric in g and v and
are determined by the transformation properties of the fields. For example,
in the case of spinors (Egs.(6.2.13) and (6.2.17)), we have

1 .
5 A SE 6y = = D ok 6 (12.4.12a)
ie.,
SHy — 7% o (12.4.12b)
where r and s(=1,...,4) label the four components of the spinor field.

Vector fields transform under a Lorentz transformation according to Eq.
(11.1.3a) and thus we have

Si =ghgs— 995, (12.4.12¢)

where the indices 7, s take the values 0,1, 2, 3. In Egs. (12.4.12a,b) summation
over the repeated indices u, v, and s is implied.

As has already been emphasized, the invariance under the transformation
(12.4.11a,b) means that the Lagrangian density has the same functional form
in the new coordinates and fields as it did in the original ones:

L($.(2'), ¢y u(2")) = L(6r(2), rp(@)) - (12.4.13)

From Eq. (12.4.13), the covariance of the equations of motion follows.
The variation of ¢, (z), for unchanged argument, is defined by

6¢r(‘r) = (b;(l') - ¢r(w) : (12'4'14)
Furthermore, we define the total variation
Agy(z) = ¢.(2") — ¢ (2) , (12.4.15)

which represents the change due to the form and the argument of the function.
These two quantities are related by

Adr(z) = (¢.(2)) = ¢r(2))) + (¢r(2') — r(2))
9¢r

= 6, (z') + o 0Tr + 0(5%) (12.4.16)

Ior

_ oPr 2
= d¢(x) + 0z, oz, + O(67) ,

where O(§2) stands for terms of second order, which we neglect. In correspon-
dence with Eq.(12.4.16), the difference between the Lagrangian densities in
the coordinate systems I and I’, i.e., the total variation of the Lagrangian
density — which vanishes according to (12.4.13) — can be rewritten as
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0= L(¢.(2'), 8., (2")) = L(¢r (), br.u(2))
= L(¢p(2"),...) = L(r(2),...) + (L (2"),...) = L(dr(2),...))

=0L+ g—céx“ +0(8?) . (12.4.17)
The first term on the right-hand side of (12.4.17) is obtained as
oL oL
0L = ——0¢, + —0¢,
900 ¥ 8o,
oL 0 0L 0 oL
= 5.0~ (5o am) 20 (—a@,f@)

9 (oL 00,
~ 5 3oy 2300}

where the Euler-Lagrange equation was used to obtain the second line and

Eq.(12.4.16) to perform the last step. Together with %5:1:“ = %(Cém”) =
Fym (Lg""ox,), Eq. (12.4.17) leads to the continuity equation
x

9", =0 (12.4.18a)

for the four-vector
oL
gt = Ay — T 5z, . (12.4.18b)
ad)r”u

Here, g* depends on the variations A¢, and dx,, and, according to the choice
made, results in different conservation laws.

Equations (12.4.18a) and (12.4.18b), which lead to the conserved quan-
tities (12.4.5), amongst others, represent the general statement of Noether’s
theorem.

12.4.2.2 Application to Translational, Rotational,
and Gauge Invariance

We now analyze the result of the previous section for three important special
cases.

(i) Pure translations:
For translations we have

Aw, =0

12.4.19
5z, = 6, ( 2)

and, hence, (12.4.11b) gives ¢/.(z') = ¢,(z); therefore,
Ag, =0. (12.4.19b)
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Noether’s theorem then reduces to the statement g#* = —T#"§, , and since
the four displacements §, are independent of one another, one obtains the
four continuity equations

T =0 (12.2.31)

for the energy—momentum tensor T*” v = 0,1,2,3, defined in (12.4.3). For
v = 0, one obtains the continuity equation for the four-momentum-density
PH = TO“ and for v = 4 that for the quantities T%. The conservation laws

T . = 0 contain as zero components, the spatial momentum densities Pt

and as current densities, the components of the so-called stress tensor T4,
(See also the discussion that follows Eq.(12.4.7b).)

(ii) For rotations we have, according to (12.4.11a,b),
0, =0, 6z, = Awyez’ (12.4.20a)
and
A, = AwwS””;bs : (12.4.20D)
From (12.4.18b)7 it then follows that
1 oL

b= - ——— Awye S5 s — TH Awpex? . 12.4.21
"= G A SET b = T A (12.4.21)
Using the definition
vo aL vo v o o v
M = SyZ¢s(x) + (x¥THT — 2°TH) | (12.4.22)
a(bru
equation (12.4.21) can be re-expressed in the form
1 oL 1 1
= —-——5/7 SA VO'__T#UA vo T—THA ov v
g > 8¢”L v Ps Aw > Wyl 5 Woy T
aﬁ vo v g g 17 /
= 577 s + " TH —aTH | Awye (12.4.20")
a¢ry
1
= -M"7 Aw,, .
2

Since the six nonvanishing elements of the antisymmetric matrix Aw,, are
independent of one another, it follows that the quantities M**? satisfy the
six continuity equations

OuM"? =0. (12.4.23)
This yields the six quantities
MVe = /d3$ MOI/G’
(12.4.24)
= /dgx (mr(2)SES ps () + 27T — 27TY) .
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For the spatial components, one obtains the angular-momentum operator
MY = /d% (mr S s + 2" TV — 29T . (12.4.25)

Here, the angular-momentum vector (11,12, I3) = (M?3, M3, M'?) is con-
served. The sum of the second and third terms in the integral represents the
vector product of the coordinate vector with the spatial momentum density
and can thus be considered as the angular momentum of the field. The first

term can be interpreted as intrinsic angular momentum or spin (see below
(13.3.13') and (E.31c)). The space-time components (01)

MO — /d3$ 2 f00é
can be combined into the three-component boost vector (boost generator)

K = (M, M2 M%) . (12.4.26)

(iil) Gauge transformations (gauge transformation of the first kind).

As a final application of Noether’s theorem we consider the consequences of
gauge invariance .

Assuming that the Lagrangian density contains a subset of fields ¢, and ¢!
only in combinations of the type ¢l (x)¢,(x) and gbi,u(:c)gb;“(:r), then it is
invariant with respect to gauge transformations of the first kind. These are
defined by

br(@) = PL(z) = op(x) = (1+ie),(x)
ol(x) — ol'(z) = e gl(x) = (1 -ie)gl(z),

where € is an arbitrary real number. The coordinates are not transformed
and hence, according to Eq. (12.4.14),

dor(x) = ie ¢ ()

(12.4.27)

12.4.28
06} (x) = —ie ¢} (x) e
and [cf. (12.4.16)]
Agp(z) = 6o (x), Apl(z) = dpl(x) . (12.4.29)
The four-current-density follows from Noether’s theorem (12.4.18b) as
oL
"o ic ¢ + —— (—ie)g]
9= o ¢ 5¢1,u( )¢
ie.,
oL oL
w) =i | 25 g - i
9(@) <8¢w¢ a¢lyﬂ¢> (12.4.30)

9°(x) =1 (m(2)¢r () — 7l (2)9] (x))

satisfies a continuity equation. This implies that
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Q= —iq/dgx (7 (2)¢r () — 7} (2)B) (7)) (12.4.31)
is conserved. Thus, in quantized form,

d

d—? =0, [Q,H]=0. (12.4.32)

The quantity ¢ will turn out to be the charge. We can already see this by
calculating the commutator of @ and ¢, with the commutation relations
(12.3.1):

[Qa ¢r(x)] = _iq/d3xl [Ws(xl)a¢r(‘r)] (bs(xl) = —qur(x) . (12433)
—_—
—105r0(x" — x)
If |@Q') is an eigenstate of @,
Q) =Q'|Q) . (12.4.34)

then ¢,.(z)|Q") is an eigenstate with the eigenvalue Q' — ¢ and
#(z)|Q') is an eigenstate with the eigenvalue Q' + g,
as follows from (12.4.33):

(Q¢r(‘r) - (ZST‘(‘T)Q) |QI> = _q(br(x) |Ql>
Qér(2) Q") — ¢ (2)Q' Q") = —q¢r(2) Q") (12.4.35)
Qér(2) Q") = (Q' = )¢ (2) Q')

Hence, by using complex, i.e., nonhermitian, fields, one can represent charged
particles. The conservation of charge is a consequence of the invariance under
gauge transformations of the first kind (i.e., ones in which the phase is inde-
pendent of x). In theories in which the field is coupled to a gauge field, one
can also have gauge transformations of the second kind ¢ — ¢/ = yel®(®)
AP — A = A+ Lora(z).

- —

12.4.2.3 Generators of Symmetry Transformations
in Quantum Mechanics

We assume that the Hamiltonian H is time independent and consider con-
stants of the motion that do not depend explicitly on time. The Heisenberg
equations of motion
dA(t
A =i[H, A(t)] (12.4.36)
dt
imply that such constants of the motion commute with H

[H,A]=0. (12.4.37)
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Symmetry transformations can in general be represented by unitary, or, in
the case of time reversal, by antiunitary, transformations'. In the case of
a continuous symmetry group, every element of which is continuously con-
nected with the identity, e.g., rotations, the transformations are represented
by unitary operators. This means that the states and operators transform as

) — [¥) = U ) (12.4.38a)

and
A— A =UAU". (12.4.38b)

The unitarity guarantees that transition amplitudes and matrix elements of
operators remain invariant, and that operator equations are covariant, i.e.,
the equations of motion and the commutation relations have the same form,
regardless of whether they are expressed in the original or in the transformed
operators.

For a continuous transformation, we can represent the unitary operator
in the form

U =e¢oT (12.4.39)

where Tt = T and « is a real continuous parameter. The hermitian operator
T is called the generator of the transformation. For o = 0, we have U(a =
0) = 1. For an infinitesimal transformation (o« — da), it is possible to expand
U as

U=1+idaT+0(0a?), (12.4.39")

and the transformation rule for an operator A has the form

A = A+0A=(1+idaT)A(l —idaT)+ O(sa?)
and thus J0A =ida [T, A]. (12.4.371")

When the physical system remains invariant under the transformation con-
sidered, then the Hamiltonian must remain invariant, 6H = 0, and from

(12.4.37b’) it follows that
[T,H]=0. (12.4.40)

Since T' commutes with H, the generator of the symmetry transformation is
a constant of the motion. Conversely, every conserved quantity G° generates
a symmetry transformation through the unitary operator

U = eo¢’ (12.4.41)

)

L E.P. Wigner, Group Theory and its Application to the Quantum Mechanics of
Atomic Spectra, Academic Press, New York, 1959, Appendix to Chap. 20, p. 233;
V. Bargmann, J. Math. Phys. 5, 862 (1964)
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since G° commutes with H on account of [H,G°] = %GO = 0, and hence
UHU' = H, signifying that H is invariant. Not unnaturally, this is exactly
the same transformation from which one derives the corresponding conserved
four-current-density, which satisfies a continuity equation. This can be con-
firmed explicitly for P#, @, and M*¥. See Problem 13.2(b) for the Klein—
Gordon field and 13.10 for the Dirac field. See also Problems 13.5 and 13.12
referring to the charge conjugation operator.

The boost vector, K* = M, (12.4.26)
K'=tP' — /d% (2'T%(x,t) — 7, () Seigs(2)) (12.4.42)

is a constant, but it depends explicitly on time. From the Heisenberg equation
of motion K = 0 = i[H, K] + P, it follows that K does not commute with H

[H,K]=iP. (12.4.43)
For the Dirac-field one finds

Ki=tP' — /dgzzr (:1717'{(:1:) -

Lo

1/7(1?)71'1/)(:1?)> : (12.4.44)

Problems

12.1 Prove the completeness relation (12.1.7b) and the orthogonality relation
(12.1.7b).

12.2 Demonstrate the validity of the commutation relation (12.1.10).

12.3 Show that the Hamiltonian (12.1.1) for the coupled oscillators can be trans-
formed into (12.1.11) and gives the dispersion relation (12.1.12).

12.4 Prove the inverse transformations given in (12.1.14a,b).

12.5 Prove the commutation relations for the creation and annihilation operators
(12.1.15).

12.6 Prove the conservation law (12.4.7b) by calculating % using the three-

dimensional Gauss’s law and by using in the definition of G° the integral over
all space.
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12.7 The coherent states for the linear chain are defined as eigenstates of the
annihilation operators aj. Calculate the expectation value of the operator

i(k:'rwufwkt)al‘c (0) + efi(knafwkt)al(o)}

1
w0 =3 o |

for coherent states.

12.8 Show for vector fields As, s = 0,1, 2,3, the validity of Eq. (12.4.12¢).



13. Free Fields

We shall now apply the results of the previous chapter to the free real and
complex Klein—Gordon fields, as well as to the Dirac and radiation fields. We
shall thereby derive the fundamental properties of these free field theories.
The spin-statistics theorem will also be proved.

13.1 The Real Klein—Gordon Field

Since the Klein—Gordon field was found as the continuum limit of coupled
oscillators, the most important properties of this quantized field theory have
already been encountered in Sects. 12.1 and 12.2.1.4. Nevertheless, here we
shall once more present the essential relations in a closed, deductive manner.

13.1.1 The Lagrangian Density, Commutation Relations,
and the Hamiltonian

The Lagrangian density of the free real Klein—Gordon field is of the form

L= % (D™ —m>¢?) . (13.1.1)
The equation of motion (12.2.21) reads:

(0,0" +m*) ¢ =0. (13.1.2)
The conjugate momentum field follows from (13.1.1) as

=% = d(x) . (13.1.3)

()

The quantized real Klein—Gordon field is represented by the hermitian oper-
ators

(@)= o) and i) =n(a).

The canonical quantization prescription (12.3.1) yields for the Klein—-Gordon
field
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[¢(x,t),q.5(x’,t)} =id(x—x)
[gb(x,t),qb(x’,t)} - [gz')(x,t),gé(x',t)} - 0. (13.1.4)

Remarks:

(i) Since ¢(x) transforms as a scalar under Lorentz transformations and
possesses no intrinsic degrees of freedom, the coefficients S in (12.4.11b)
and (12.4.25) are zero. The spin of the Klein-Gordon field is therefore
ZEro.

(ii) Since the field operator ¢ is hermitian, the £ of Eq. (13.1.1) is not gauge
invariant. Thus the particles described by ¢ carry no charge.

(iii) Not all electrically neutral mesons with spin 0 are described by a real
Klein—-Gordon field. For example, the Ky meson has an additional prop-
erty known as the hypercharge Y. At the end of the next section we will
see that the Ky, together with its antiparticle Ko, can be described by a
complex Klein—Gordon field.

(iv) For the case of quantized fields, too, it is still common practice to speak
of real and complex fields.

The expansion of ¢(z) in terms of a complete set of solutions of the Klein—
Gordon equation is of the form

¢(z) = o7 (x) + ¢ (z) (13.1.5)
1 —ikx ikx
_;m(e kakJrekaL)

with
K = we = (m? + k)12, (13.1.6)

where ¢ and ¢~ represent the contributions of positive (e~**) and negative
frequency (e**), respectively. Inverting (13.1.5) yields:

o =gy [ e (eox,0) +i6(x,0))
1 . :
aL =4/ Vo /d3x e ke (wk(b(X, 0) — ig(x, 0)) . (13.1.5")

From the canonical commutation relations of the fields (13.1.4), one obtains

the commutation relations for the ax and aL:

[ak,a;f(,} = Ok’ » {ak,ak,} = {aL,aL,} =0. (13.1.7)

These are the typical commutation relations for uncoupled oscillators, i.e.,
for bosons. The operators

iy, = ajay (13.1.8)
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have the eigenvalues
nk=0,1,2,...

and can thus be interpreted as occupation-number, or particle-number, opera-
tors. The operators ay and aL annihilate and create particles with momentum
k.

From t