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Preface

It is known that the number and diversity of exactly solvable models (i.e.,
models with explicitly diagonalizable hamiltonians) is quite small and by no
means meets the requirements of modern quantum physics. The methods
of their construction currently known are also almost exhausted. There is
no doubt about the need to look for new methods and new ideas, and in this
connection it seems to me that there is a very promising direction which
came to light several years ago and is associated with the discovery and
study of models that realize a fundamentally new type of exact solvability
in quantum theory. These models, which have been dubbed “quasi-exactly
solvable”, are characterized by the fact that their spectral problems can be
solved exactly only for certain limited parts of the spectrum, but not for
the whole spectrum.

There are three reasons for which the quasi-exactly solvable models
are interesting to us.

First of all, they possess all the advantages of ordinary exactly solvable
models, i.e., they enable one to model real physical situations and observe
non-pertubative phenomena; they can be used as “reference points” in
the realization of various approximate methods; and they reflect deep
symmetry properties of spectral equations. At the same time, their
number is appreciably greater than that of exactly solvable models and this
circumstance makes them especially important from the practical point of
view.

The second reason is the intimate connection between the quasi-
exactly solvable models of quantum mechanics and other rather distant
and seemingly unrelated branches of quantum and classical physics.
For example, these models are equivalent to quantum tops based on
finite-dimensional representations of Lie algebras; they are in one-to-
one correspondence with completely integrable models of magnetic chains
associated with solutions of Yang-Baxter equations; and they are connected
with systems of classical Coulomb particles moving in an external
electrostatic field. Note also that quasi-exactly solvable models naturally
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arise not only in the ordinary one- and multi-dimensional quantum
mechanics, but also in quantum mechanics on non-trivial curved manifolds.

The third reason is the elegance and simplicity of theories explaining
the phenomenon of quasi-exact solvability and making it possible to
construct large classes of quasi-exactly solvable models in non-relativistic
quantum mechanics. I hope that a critical analysis of these theories may
stimulate the creation of new more general schemes including the field
theoretical case.

Although the first examples of quasi-exactly solvable models were
described only a few years ago, the results in this field are rather numerous
and their flow grows from day to day. In this book I have made an attempt
to collect most of these results together and expound them in a unified and
accessible form. The material is discussed in sufficient detail to enable the
reader to follow every step and is supplemented by an exhaustive list of
references.

The book has the following structure.

Chapter 1 introduces the concept of quasi-exact solvability and
discusses an illustrative example (the one-dimensional sextic anharmonic
oscillator) that can be analysed by comparatively simple methods but, at
the same time, manifests many characteristic features of more complex
quasi-exactly solvable systems. This example refutes the common opinion
that all quantal models with polynomial anharmonicity are exactly non-
solvable. The phenomenon of quasi-exact solvability of the sextic oscillator
appears for certain discrete (quantized) values of parameters characterizing
the potential, and the reason for their quantization is explained in
the chapter from different points of view. Each of these explanations
enables one to formulate a certain method for constructing large classes
of quasi-exactly solvable systems, so that the reader can find here the
basic ideas of almost all the existing approaches to the problem. The
long list of key words which could characterize the subject of chapter 1
(hidden symmetries, finite- and infinite-dimensional representations of Lie
algebras, complete integrability, Bethe ansatz, Gaudin models, classical
multi-particle Coulomb problem, Gelfand-Levitan equation, Witten’s
supersymmetric quantum mechanics, strong-coupling problem, convergent
perturbation theory, Bender and Wu singularities, and so on) indicates both
the riches of the phenomenon of quasi-exactly solvability and the diversity
of its possible physical and mathematical applications.

Chapter 2 presents some new examples of quasi-exactly solvable
models of one- and multi-dimensional quantum mechanics and discusses
their properties and methods of construction. Here, by means of a very
elementary analytic technique, we step by step go over from the one-
dimensional case to the multi-dimensional one. The transition to the
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infinite-dimensional (field theoretical) case is also considered.

Chapter 3 is one of the most important from the methodological point
of view and, although it is not directly devoted to the phenomenon of
quasi-exact solvability, its results are essential for the subsequent chapters.
It introduces a new type of object of study, the multi-parameter spectral
equations, and shows that any such equation, after applying to it the so-
called inverse procedure of separation of variables, can be reduced to a
certain completely integrable quantum system. In this chapter the main
attention is devoted to the methods for constructing exactly (algebraically)
solvable multi-parameter spectral equations and to the classification of cases
in which the corresponding completely integrable (and, simultaneously,
exactly solvable) systems become physically meaningful.

Chapter 4 expounds the method for constructing quasi-exactly solvable
models with separable variables. The idea of this method immediately
follows from the results of chapter 3 and is based on the observation
that if the multi-parameter spectral equation admits a finite number
of exact (algebraic) solutions only, then the corresponding completely
integrable model becomes quasi-exactly solvable. A simple analytic
procedure for building partially solvable multi-parameter spectral equations
is proposed. The chapter starts with the detailed analysis of the simplest
one-dimensional case, presents a reference list of the most interesting one-
dimensional quasi-exactly solvable models, and ends with the discussion of
multi-dimensional models defined on, in general, curved manifolds.

Chapter 5 starts with noting a deep relationship between the quasi-
exactly solvable models with separable variables discussed in preceding
chapters and the well known completely integrable Gaudin models
associated with algebra si(2). It is noted that the former can be obtained
from the latter by means of a special reduction procedure (called in chapter
1 the projection method). It turns out (and this is the main subject of
the chapter) that the same reduction procedure being applied to other
Gaudin models (based on other simple Lie algebras) leads to new wide
classes of quasi-exactly solvable second-order differential equations with
non-separable variables. The classification problem for these equations is
solved and their group-theoretical properties are discussed in detail. It
is remarkable that, because the Gaudin models are solvable by means
of the Bethe ansatz method, all solutions of the corresponding quasi-
exactly solvable equations can be represented in the closed Bethe form.
This fact especially simplifies their analysis and classification and makes
it possible to establish an exact correspondence between these equations
and those of (2+1)-dimensional classical electrodynamics with a magnetic
monopole. The reduction of the obtained quasi-exactly solvable equations
to the Schrodinger form is also discussed.
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The book ends with four appendices containing some results lying
outside its general line but devoted to no less important and interesting
methods for constructing exactly and quasi-exactly solvable models.

Appendix A discusses the problem of constructing Schrodinger
equations having several a prior: given solutions.

Appendix B is devoted to the problem of constructing exactly solvable
models on non-trivial curved manifolds.

Appendix C presents a simple method for building second-order
differential operators having infinite number of polynomial solutions.

Appendix D deserves a special comment. When the work on the book
had already been completed I learnt of a series of remarkable results of A
Gonzalez-Lépez, N Kamran and P J Olver, concerning the classification of
quasi-exactly solvable models whose hamiltonians are treated as elements of
universal enveloping algebras associated with various Lie algebras of vector
fields. 1T enquired of these authors regarding the possibility of contributing
a summary of their results to my book and they kindly agreed to write
an article concerning the study of two-dimensional problems. I take this
opportunity to thank them for their kindness and hope that the reader
will be impressed by this very interesting article which is reproduced in
appendix D without editing.

I would like to stress that this book 1s not an exhaustive review and can
be considered only as a more or less detailed introduction to the theory of
quasi-exact solvability. At present, there are several new intriguing results
and observations manifesting that the theme is far from being exhausted,
namely such new aspects of the problem as the remarkable parallels between
quasi-exactly solvable models of quantum mechanics and two-dimensional
conformal field theories, the multi-channel quasi-exactly solvable problems
associated with graded Lie algebras, problems based on quantum groups,
and some others. Many of these aspects have been discussed 1n very recent
publications and it was practically impossible to cover all them in this book.

Nevertheless, T hope that the book (despite its incompleteness) will be
helpful for physicists and mathematicians interested in the problem of quasi-
exact solvability in quantum mechanics and | will be happy if it stimulates
the reader to make his own contribution to this very interesting field of
mathematical physics.

Alexander Ushveridze
7 November 1992
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Chapter 1

Quasi-exact solvability. What does
that mean?

1.1 Introduction

We have become accustomed to calling a quantum model exactly solvable
if for all its energy levels and corresponding wavefunctions convenient
(explicit) expressions can be obtained, or, more precisely, if the spectral
problem for this model can be reduced to a problem of algebra (in the case
of quantum mechanics) or classical analysis (in the field theoretical case).

It is well known that exactly solvable models play an extremely
important role in many fields of quantum physics.

First of all, they may be interesting in themselves as models of actual
physical situations. For example, the behaviour of many quantum systems
near their equilibrium can be described by the harmonic oscillator, the
spectrum of the hydrogen atom can be found from the Coulomb problem,
which is also exactly solvable, and one-dimensional completely integrable
non-relativistic field theoretical models (see e.g. Thacker 1981, Wiegmann
1981, Tsvelick and Wiegmann 1983) have proved to be good approximations
for the so-called quasi-one-dimensional systems (Bulayevsky 1975, Toombs
1978, Jerome and Schulz 1982).

Second, exactly solvable models can be successfully used as a training
ground for elaborating various approximate and qualitative methods
of studying exactly non-solvable systems, and for testing theoretical
hypotheses of a general nature (see e.g. Solyom 1979). Sometimes the
analysis of exact solutions allows one to reveal certain properties of the
system which do not change even after it has undergone considerable
deformation (universality). The study of such properties is very helpful
for a better understanding of the general structure of quantum models
(Luther 1976, 1977, Tsvelick and Wiegmann 1983, Japaridze et al

1
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1984). By analogy with the cases of the simple harmonic oscillator
and the Coulomb problem, the study of which led to comprehension
of many fundamental principles of quantum mechanics, the analysis of
such completely integrable systems as magnetic chains made a valuable
contribution to the understanding of the physical nature of excitations in
systems with many degrees of freedom (Bethe 1931, Bonner and Fischer
1964, Sutherland 1970, Baxter 1972, Takhtajan and Faddeev 1981, Gaudin
1983).

Third, exactly solvable models can be used as zeroth-order
approximations by constructing various perturbative schemes. For example,
the rapid progress of quantum field theory in the fifties was attained in the
framework of perturbation theory: the role of the unperturbed problem
was played in this case by the free field or, in other words, by the infinite-
dimensional harmonic oscillator. At present, there are some preconditions
for constructing perturbation theory near the completely integrable one-
dimensional field theoretical models and magnetic chains (see e.g. Gaudin
et al 1981, Korepin 1982, 1984).

Finally, exactly solvable models are also interesting from a purely
mathematical point of view, since the phenomenon of exact solvability can
often be explained as being a consequence of certain hidden symmetry
present in the model under consideration. It is remarkable that the group
describing this symmetry appears not only as a necessary attribute of exact
solvability, but as a unique language in which this phenomenon has simple
and transparent mathematical sense. As an example, it is sufficient to
recall the simple harmonic oscillator and the Heisenberg algebra associated
with it (Bargmann and Moshinsky 1961, Moshinsky 1962). In the same
sense, the various completely integrable systems obtained by means of the
inverse scattering method (Takhtajan and Faddeev 1979) turn out to be
connected with various finite- and infinite-dimensional Lie algebras (see
e.g. Zamolodchikov and Zamolodchikov 1978, Kulish et al 1981, Bazhanov
1985, Reshetikhin 1985, Gaudin 1983, Ogievetski et al 1987).

The last fifteen years have been marked by the discovery of a number of
remarkable methods of building and solving exactly solvable models. They
are: the quantum inverse scattering method (Takhtajan and Faddeev 1979),
various modifications of the Bethe ansatz (Gaudin 1983), the Leznov-
Savelyev approach (Leznov and Savelyev 1985), the projection method
(Olshanetsky and Perelomov 1983), the method of Gelfand-Levitan—
Marchenko equations (Zakhariev and Suzko 1985), the methods based on
the use of Witten’s supersymmetric quantum mechanics and the Darboux
theorem (Infeld and Hull 1951, Gendenshtein 1983, Andrianov et al 1984,
Gendenshtein and Krive 1985), and so on {(Bargmann 1949, Plekhanov et
al 1982, Leznov 1984, Rudyak and Zakhariev 1987).
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Unfortunately, in spite of the numerous merits of the methods listed
here, the number and the diversity of models which can be constructed
by means of them are relatively small, from the point of view of the
requirements of modern quantum physics. Brute-force attempts to find new
exactly solvable models and methods of their construction encounter serious
difficulties, connected probably with the fact that the usual requirement of
exact solvability, understood as the possibility of writing down the entire
spectrum of the hamiltonian in more or less closed form, is too strict.

A possible way out of this impasse might involve only an essentially
new approach to the problem, based on some constructive expansion of
the concept of exact solvability in quantum physics. One such approach
was proposed several years ago. It was based on the idea of relaxing the
standard requirements of exact solvability and seeking models for which
the spectral problem could be solved exactly only for certain limmted parts
of the spectrum but not for the whole spectrum. This idea has gradually
crystallized in the last decade. The critical impetus has been given in
the works of Zaslavsky and Ulyanov (1984), Bagrov and Vshivtsev (1986),
Turbiner and Ushveridze (1987) and, especially, Turbiner (1988a) and
Ushveridze (1988c¢,d). Following the terminology introduced by Turbiner
and Ushveridze, we shall call these models “quasi-exactly solvable” referring
to their “order” as the number of states for which exact results can be
obtained.

The essence of the phenomenon of quasi-exact solvability can be
explained as follows. It is known that any hamiltonian H can be represented
as an infinite-dimensional hermitian matrix

Hopo Hor -+ Hom
Hyo Hy - Hiy -
Ho= | (1.1.1)
Hyo Hmn -+ Hum -
whose elements Hy,, = (Yn|H|¥m) depend on the concrete choice of

orthogonal functions ¥, forming a basis in the Hilbert space.

In this language, the solution of the spectral problem for H is reduced
simply to a diagonalization of the matrix (1.1.1). Unfortunately, unlike
what is found in the cases of finite matrices, there are no general algebraic
rules which would allow one to diagonalize the infinite-dimensional matrix
(1.1.1) in a finite number of steps. In general case the spectral problem for
such matrices is non-algebraic. This is a typical situation for the so-called
exactly non-solvable models.

The famous exactly solvable problems are distinguished by the fact that
in these problems there is known a “natural” basis in the Hilbert space in



4 Quasi-exact solvability. What does that mean?

which the matrix (1.1.1) is very specific and can be reduced explicitly to
the diagonal form

Hypy O 0 0
0 Hun O o .-
0 0 0  Hag

with the aid of an algebraic procedure!. There are only few examples of the
models for which such a diagonalization is possible. In the one-dimensional
case they are: the simple harmonic oscillator, the harmonic oscillator with
centrifugal barrier, the Morse potential, the hyperbolic and trigonometric
Poschel-Teller potential wells, the Coulomb and Kratzer potentials, the
Natanzon potentials and some others (see e.g. Landau and Lifshitz 1977,
Fligge 1971, Natanson 1971, 1978).

Summarizing, the standard theory of the Schrédinger equation includes
two contrasting cases: the complete diagonalizability of the hamiltonian by
algebraic methods as in equation (1.1.2) (a very rare situation), and the
typical case presented in equation (1.1.1), with non-vanishing off-diagonal
elements. As a rule the diagonalization of such matrices cannot be carried
out algebraically.

A new direction in the spectral theory, an intermediate link between
(1.1.1) and (1.1.2), has become apparent recently. Assume that the
hamiltonian matrix has a block structure

- -

Hoo Hor --- Hom |0 0 0
Hyo Hy -+ Hipp (000 0
Hyo Hin Huym [0 0 0
H=|"0 0 0 . (1.13)
0 0 e 0 Non-vanishing
........................ elements
0 0 0

where M is some fixed integer. The block in the upper left corner is an M+1
by M + 1 matrix, while the second non-vanishing block (in the lower right
corner) is an infinite-dimensional matrix. Then, quite obviously, one can
immediately diagonalize the finite block without touching the infinite one.
The operation is performed in exactly the same way as for any finite matrix

1 As a rule, the existence of such a basis is a consequence of a certain hidden symmetry
present in the model under consideration.
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and is purely algebraic. This means that in the case of matrices (1.1.3) one
determines explicitly only a part of the spectrum, M + 1 eigenvalues and
the corresponding eigenfunctions of the hamiltonian H.

In other words we are led to models which occupy an intermediate
position between exactly solvable models and exactly non-solvable ones.
We call such models “quasi-exactly solvable”. We see that the term “quasi-
exact solvability” implies the situation where the infinite-dimensional
hamiltonian matrix can be reduced explicitly to block-diagonal form with
one of the blocks being finite. In this case the infinite-dimensional
matrix version of the Schrodinger problem breaks up into two completely
independent spectral problems, one of which is finite dimensional and can
be solved algebraically, while the other is infinite dimensional and nothing
about its solutions is known (partial algebraization).

It is absolutely obvious that the block diagonalization of a given
random infinite-dimensional matrix 1s, in principle, a much more simple
procedure than its total diagonalization. This gives us reason to assert
that the number of quasi-exactly solvable models must exceed the number
of ordinary exactly solvable ones (Ushveridze 1989c).

In order to make sure that making this assumption is justified, consider
the Schrodinger equation

[~ + V(@)}(E) = Bv(@), (11.4)
complemented by the condition of normalizability of the wavefunction ¥(Z)
/W(f)d”f: 1. (1.1.5)

Assume that p(Z) is an arbitrary regular sign-definite function, satisfying
the analogous normalization condition

/,ﬂ(f)d”f: L. (1.1.6)

It is not difficult to see that the Schrodinger equation (1.1.4) with the
potential

o _ Ap(E)
V(z) = = 1.1.7
6= (117)
has at least one explicit normalizable solution of the form:
Y(Z) =p(Z), E=0. (1.1.8)

From the condition of sign-definiteness of the function p(Z), it follows
that the wavefunction (&) has no nodes and therefore, according to
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the oscillator theorem, describes the ground state. In general, the other
solutions of this equation cannot be found exactly. Thus, we deal with the
set of quasi-exactly solvable models of order one.

Obviocusly, this set is functionally large. At the same time we know
of only a few examples of exactly solvable multi-dimensional Schrédinger
equations, and this circumstance proves our assertion.

Note that quasi-exactly solvable models of the type (1.1.7) are trivial
to construct not only for the ground state. Of course, when choosing the
function p(&) we must take care that the potential obtained is physically
sensible. However, all difficulties connected with construction of such
potentials are easily overcome (at least for the one-dimensional case). This
problem was solved by Gershenson and Turbiner (1982) (for the ground
state) and by Rampal and Datta (1984) (for excited states) in models with
polynomial potentials.

Much more non-trivial is the procedure for constructing quasi-exactly
solvable models of higher orders. Nevertheless, the first examples of these
models clearly demonstrated that their potentials are not necessarily exotic
“monsters”, but can be quite simple and ordinary looking. Many of these
models have been known for a long time as exactly non-solvable and the
proof of their quasi-exact solvability can be seen as a very intriguing result.

Note that the simplest quasi-exactly solvable models are described by
polynomial potentials. Their construction and analysis (especially in the
one-dimensional case) does not require any technical effort. At the same
time, they have rather interesting physical and mathematical properties and
this allows them to be used as very convenient objects for a preliminary
acquaintance with the phenomenon of quasi-exact solvability.

From the pedagogical point of view it is reasonable to start our
discussion with a brief review of the properties of models with the simplest
polynomial potentials. This will be done in sections 1.2 and 1.3 where
we consider the simple harmonic oscillator (which is exactly solvable) and
quartic anharmonic oscillator (the exact solutions of which are not known).
This consideration is helpful for achieving a better understanding of the
properties of quasi-exactly solvable models which will be discussed in detail
in the remaining sections of this chapter.

1.2 Completely algebraizable spectral problems. The simple
harmonic oscillator

The simplest quantum model with a polynomial potential — the harmonic
oscillator — is described by the hamiltonian

2

H=- az?, (1.2.1)

o2t



Completely algebraizable spectral problems 7

in which « is a positive parameter. This model is exactly solvable. The
simplest way to demonstrate this fact is to use the well known Heisenberg

method which is based on the introduction of operators a* = \/az — &
and a~ = Jazr + ‘—%, forming the Heisenberg algebra and generating

a basis in which the hamiltonian (1.2.1) takes an explicit diagonal form.
Unfortunately, the Heisenberg method is specific only for the harmonic
oscillator and cannot be easily extended to other exactly solvable models.

In this section we discuss a more general algebraic method which is
free from this demerit. Its main idea is to use more non-trivial differential
realizations of the generators of the Heisenberg algebra.

Following this method, note that the hamiltonian (1.2.1) can be
rewritten in the form

H = a(2ata™ +a°) — (a7)?, (1.2.2)

where at and a® are the operators defined as

at =z, d®=1, o =Voaz+ 9 (1.2.3)
Oz
and satisfying the following commutation relations
[a=,at]=a°% [a%,a"] =0. (1.2.4)

We see that these operators form again the Heisenberg algebra. Therefore,
it is reasonable to refer to at and a~ as the raising and lowering operators.

We know that the Heisenberg algebra allows representations with
lowest weight defined by the formulas

a”[0) =0, a°l0)=0), (1.2.5)

where [0} is the lowest (vacuum) vector. The corresponding representation
space @ is formed by the linear combinations of the vectors

[n) = (a)"]0), (1.2.6)
where n takes the values 0,1,2,.... This space 1s infinite dimensional and
therefore the spectral problem for H in @

Hp=FEp, ¢oc® (L.2.1)

is also infinite dimensional.
Note, however, that from the formulas

atlny =|n+1), a®ln)=|n), a|n)=nln-1) (1.2.8)
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and (1.2.2) it follows that any finite-dimensional subspace ®,, of the space
® formed by the linear combinations of the first n 4+ 1 basis vectors
[0),]1),...,|n) is an invariant subspace for H:

H®, C &,. (1.2.9)

This means that the infinite-dimensional spectral problem (1.2.7) is
equivalent to an infinite set of finite-dimensional spectral problems

Ho=Eyp, ¢€9%, n=012... (1.2.10)

each of which, evidently, can be solved algebraically. Therefore, according
to the definition given in the previous section, the model (1.2.1) is exactly
solvable.

In order to obtain explicit solutions of this problem, note that

H(n) = v/a(2n + 1)|n) — n(n — 1)|n — 2). (1.2.11)

From (1.2.11) it follows that the linear span of the vectors |n) of a given
parity is invariant under the action of the operator H. This gives us reason
to assert that the parity of the state is a conserved quantum number.
Therefore, instead of the subspaces ®,, introduced above, we can consider
two different sets of invariant subspaces

%, = linear span of{|p), |2+ p),...,|2M + p)}, (1.2.12)

characterized by the parities p = 0, 1.
Choosing the solution of the problem (1.2.7) in the form

® = no|2M + p) + Mm|2(M — 1)+ p) + ... + nm|p) (1.2.13)

and using the relation (1.2.11) we obtain the explicit expression for the
energy

E = \a(4M +2p+ 1) (1.2.14)
and, simultaneously, the recurrence relations for the coefficients 7, :
—4/anmi1 = [2(M — m) + p)[2(M —m) + p+ 1nm. (1.2.15)

From (1.2.15) we find

_(_ 1\" 2M + p]!
w=(-1z) @G- (1:216)
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and, thus, the solution of (1.2.7) corresponding to the eigenvalue (1.2.14)
is

|2m + p). (1.2.17)

i 4\/_)"' (2M + p)!

(2m + p)!

The last step is to reduce the obtained solution to a coordinate form.
To this end we must solve the equation (1.2.5) for [0). Using (1.2.3) we

obtain
2
|0) = exp (— \/iz ) (1.2.18)

and, consequently,

In) = 2" exp <— @ﬁ) . (1.2.19)

The substitution of (1.2.19) into (1.2.17) gives us the final result for ¢:

L (2M + p)Y(—4y/az?)™ az?
© ~ Z ((M _‘:)1)(!(2"\1/;1)))! z” exp (—\/; ) : (1.2.20)

m=0

which completes the diagonalization of the hamiltonian H of the simple
harmonic oscillator.

Let us now look at our derivation from more general point of view. We
denote by H the Heisenberg algebra and by U(H) its universal enveloping
algebra. Remember that U(H) consists of all linear combinations of
monomials (a*)”(a”)™ in which n and m are arbitrary non-negative
integers. Let Ug(H) be a subalgebra of the algebra U(H) defined as a
linear span of monomials (a*)™(a~)™ satisfying the constraints n < m. It
is clear that the elements of this subalgebra act as non-raising operators and
therefore, for any ug € Up(H) and n we have ug®,, C ®,,. In this language,
the fact of the exact solvability of the model (1.2.1) becomes especially
obvious. Indeed, this model is exactly solvable since its hamiltonian H is
an element of the subalgebra Up(H). Our reasonings result also in a more
general assertion: any element of the subalgebra Uy(H) can be viewed as
the “hamiltonian” of a certain exactly solvable model.

Thus, we have essentially formulated a method of constructing exactly
solvable models. Of course, this formulation is still rather abstract
and requires some comments concerning the problem of making the
resulting quantum “hamiltonians” physically meaningful. First of all, these
“hamiltonians” must be differential operators, and for this the generators
of the Heisenberg algebra also must have a differential form.
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The simplest differential realization of these generators is

0
0 _ + - —
=1 =1 = . 2.
a , a , a 3 (1.2.21)
It differs from the standard (Heisenberg) one by a canonical transformation.
Transforming homogeneously the operators (1.2.21) and changing the
variable ¢, we obtain a class of new more complex realizations

1 0
a®=1, at=A(z), o = @) (% - B(x)) : (1.2.22)
depending on two arbitrary functions A(z) and B(z).

Note that the form of these realizations makes them very convenient
for constructing differential operators of a priori given order. In particular,
for the “hamiltonians” belonging to the algebra Uy(H) to have the form
of second-order differential operators, it is sufficient to take various linear
combinations of monomials (at)®(a~)™ satisfying the constraint n < m <
2. The most general expression for such operators is

H=A1(a")?(a™)? + Azat(a™)? + A3(a™)? + Agata™ + Asa™ + As.
(1.2.23)

Substitution of (1.2.22) into (1.2.23) reduces H to an explicit differential
form:

52 o
H = P(z)5— + Qz)5_ + R(z). (1.2.24)

Here P(z), Q(z) and R(z) are functions depending on A(z) and B(=z).
For spectral equations for H to be Schrédinger type equations, we must
require

P(z)= -1, Q(z)=0, (1.2.25)

which gives us two equations for two unknown functions A(z) and B(z).
Solving these equations we can easily recover the form of the free term R(z),
which, obviously, plays the role of the potential. As a result, we obtain
a six-parameter family of one-dimensional quantum mechanical models
admitting a complete algebraization of the spectral problem.

It 1s not difficult to verify that many famous exactly solvable models
such as the Morse potential, the Poschel-Teller potential well, the harmonic
oscillator with centrifugal barrier (and some others), can be constructed in
the framework of this rather general method. It is remarkable that for all
these potentials, the corresponding hamiltonians can be written as special
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combinations of generators of the Heisenberg algebra (for more details see
chapter 3).

The method described above will be referred to below as the method of
raising and lowering operators. Its generalization to the multi-dimensional
case will be discussed in appendix C.

1.3 The quartic oscillator. The absence of exact solutions

In the twenties it became evident that, unlike the classical harmonic
oscillator, the quantum one is far from being always a good model for
describing the behaviour of various systems near their equilibrium. Recall
that in classical mechanics low-energy motion in any potential V(z) having
the minimum at the origin can be approximated by the motion in the
harmonic potential az? with @ = 1V"(0). In quantum mechanics the
situation is more complex. The reason is that, due to the vacuum
oscillations, the wavefunction is always diffused, even for the ground state,
and this blocks the possibility of the quantum particle moving always in
the vicinity of the minimum. In order to describe the quantum motion in
. this case, 1t is necessary to take into account the anharmonic corrections to
the harmonic term, which leads naturally to the problem of the anharmonic
oscillator. This is one of the ancient problems in quantum mechanics.

The most simple and, therefore, most popular model of this sort is the
quartic anharmonic oscillator with the hamiltonian

2
H= & + az? + 2. (1.3.1)
dz?
Its many facets have been discussed in countless publications (see e.g.
Bender and Wu 1969, Simon 1970, Hioe et al 1978, Bogomolny et al 1980,
Koudinov and Smondyrev 1983, Shaverdyan and Ushveridze 1983, Shanley
1986, Turbiner and Ushveridze 1988a, Ushveridze 1989b) and there is no
reason for their flow to stop because on the one hand, the model has
numerous important applications in many fields and on the other hand,
it is a perfect testing ground for any novel approximative methods.
In order to estimate the measure of proximity of the model (1.3.1) to
the model of the harmonic oscillator, note that the lowest energy level in
(1.2.1) is described by the wavefunction

2

¥(z) = exr {— */i” } . (1.3.2)

This means that the probability of finding the particle with coordinate z
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essentially differs from zero only in the domain

22 X

(1.3.3)

-

Comparing the harmonic term, az?, with the anharmonic one, 8z4, in this
domain we come to two essentially different cases

—ﬁa— <1 and —i— 21 (1.3.4)
a2 oz

which lead to two drastically different physical pictures.

In the first case the anharmonic term is small in comparison with the
harmonic one and, therefore, can be considered as a small correction. In
this case the model (1.3.1) is, generally, similar to the model (1.2.1) (at least
for low excitations), and the slight quantitative difference can be taken into
account by means of perturbation theory.

In the second case the anharmonic term is at least of the same order as
the harmonic one and we come to systems with strong anharmonicity. The
physics of this system strongly differs from the physics of the harmonic
oscillator and therefore it cannot be studied in the framework of the
perturbative approach.

Using field theoretical terminology we shall call the first and second
cases the weak- and strong-coupling regimes, respectively.

First of all, let us consider the model (1.3.1) in the weak-coupling
regime (when the effective coupling constant 3/ ot is small).

Since the creation of quantum mechanics, hundreds of physicists have
studied the model (1.3.1) in this limit, but only in the middle of the fifties
did it become evident that perturbation theory, having been for a long
time a basic tool in this study, is not free from essential deficiencies. The
substance of these deficiencies is the existence of effects which, at first sight,
belong to the range of applicability of perturbation theory but, nevertheless,
cannot be seen in any finite order of it (so called non-perturbative effects).

The origin of this phenomenon was studied in detail by Dyson (1952),
who argued that the perturbation series are asymptotic and diverge for any
values of the coupling parameter 3/ a? irrespective of how small it is.

This observation, which is now known under the generic name
of “Dyson’s instability argument”, can be clarified as follows. The
perturbation potential Bz* for large z becomes larger than the unperturbed
one, az?. Therefore, the change of sign of 3 transforms the stable system
(1.3.1) into an unstable one, and energy levels in it obtain an imaginary
part (see figure 1.1). Such a picture takes place for any arbitrarily small
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V(z)

() A S

a) ' T v v

Figure 1.1. The form of the potential (1.3.1) for a) # > 0 and b) § < 0.

B, and this means that the point # = 0 is singular and this singularity
is of the branch type. The complex S-plane with this singularity and the
corresponding cut is depicted in figure 1.2. The discontinuity on the cut

Im g

®

0+ IRE,B

Figure 1.2. Complex g plane for the function E(8) for —r < arg 8 < .

(the measure of a non-analyticity) is equal to a probability of penetration
through the barrier and is exponentially small if 5§ is small:

Dis E(8) ~ (fja-%)—é exp {—S (ﬁa—%)d}. (1.3.5)

(Here S is a classical action for a subbarrier trajectory.) Thus, in the
vicinity of the origin the function E(#) is “almost analytic” and, therefore,
its expansion in powers of §

E(B)= Eo+ BE1+ B°Es+ ... (1.3.6)

behaves as a convergent one. This is so until the values of the terms
E,.[B" in this expression exceed considerably the value of the discontinuity.
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However, when these terms become of the order of the discontinuity, it
cannot be considered as small any longer; the rest of the function F(3)
becomes essentially non-analytic and, starting with this point, the series
begins to diverge. This is a typical situation for the so-called asymptotic
series.

The large-order behaviour of this series has been studied in detail by
Vainshtein (1964). The resulting asymptotic expression

E, = (-1)"*nlA™nBC [1 +0 (%)] : (1.3.7)

in which A, B and C are certain computable parameters, shows that the
terms of the weak-coupling expansion grow factorially, in full accordance
with the fact that the series has zero radius of convergence.

The next step in understanding the structure of the model (1.3.1) was
done in the important work of Bender and Wu (1969), who showed that
the analytic properties of the function E(8) in the vicinity of the origin are
significantly more complex than might be seen from figure 1.2. Bender and
Wu demonstrated that the global Riemann surface for the function E(3)
(i.e. the Riemann surface at large () consists of three sheets. On the first
(physical) sheet, depicted in figure 1.2, the unique singularity is the branch
point 8 = 0. But it is not isolated: on the second and third sheets there
is an infinite number of branch-point singularities of the square root type
which accumulate at zero forming the so-called “horn structure” (see figure

1.3). Later, the Bender and Wu singularities were discovered also in
N O o
R R
] e > e 3
a) b)

Figure 1.3. Complex §-plane for the function E(f). The second and third
sheets of the Riemann surface. a) = < arg # < 3w, b} 3r < arg § < 5.

other models (see e.g. Blanch and Glemm 1969, Bender et al 1974, Avron

and Simon 1978, Hunter and Guerrieri 1981, 1982, Ushveridze 1988a).
The physical meaning of these singularities is that they are the double-

crossing (plaiting) points for energy levels as analytic functions of 3. Bender
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and Wu proved that all the energy levels with equal parities in the model
(1.3.1) are plaited, forming a common Riemann surface with an infinite
number of sheets. This means, for example, that starting with the ground
state Fo(8) (with 8 belonging to the positive half axis of the physical sheet)
and continuing it analytically along the closed contour which passes round
the Bender and Wu singularity and goes back to the initial point, we can
obtain the second energy level E5(3), the fourth level £4(8) and so on.

Note that these results were obtained by means of very refined methods
in the framework of semi-classical approximation. Therefore, the locations
of the plaiting points found by Bender and Wu are asymptotically true only
in the limit when 8 tends to zero.

The analytic properties of the energy levels E(f) listed above relate
to the typical non-perturbative effects which cannot be seen in any finite
order of perturbation theory. In fact, any partial sum of the perturbation
series i1s a polynomial in § and is therefore regular everywhere. If the
effective coupling ﬂ/a% is small (in other words, if we deal with the
weak-coupling regime) these effects are also exponentially small and, from
the quantitative point of view, are non-essential for us. But if ﬁ/cx’3
increases and becomes of the order of unity or larger, non-perturbative
effects also become appreciable and may, in principle, change considerably
the physics of the system. The problem of describing the behaviour
of quantum models in the strong-coupling regime (the so-called strong-
coupling problem) is an important one in both quantum mechanics and
quantum field theory, as almost all interesting phenomena belong to the
strong-coupling regime, beyond the applicability of perturbation theory
and semi-classical approximation. This problem is so involved that, until
recently, there have been very few attempts to formulate its general
solution. For example, only five years ago the constructive non-semiclassical
methods allowing the study of analytic properties of energy levels in
the quartic anharmonic oscillator (1.3.1) were proposed. The above is
practically all that we know about the analytic structure of the quartic
anharmonic oscillator (1.3.1).

Of course, during the long history of this problem there were
many attempts to find its exact solutions. However, all attempts were
unsuccessful. This led gradually to the opinion that the model (1.3.1) is
exactly non-solvable. This became especially clear after the work of Bender
and Wu who demonstrated an extraordinary complexity of the analytic
function describing the energy levels in the model. At present, it seems
absolutely unrealistic to find an exact solution for (1.3.1) ensuring, for
example, the “horn structure” shown in figure 1.3.
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1.4 The sextic oscillator. Exact solvability for low excitations

Apparently, all the efforts of physicists were spent in countless attempts
to understand the structure of the quartic anharmonic oscillator. Other
polynomial models such as, for example, the sextic anharmonic oscillator
with the hamiltonian

2
H= 86 > + az? + Bz + y2° (1.4.1)
were almost forgotten. A few publications on this topic (see e.g. Hioe
et al 1976) were devoted more to numerical computation of energy levels
in (1.4.1) than to study of their analytic properties as functions of the
parameters a,,7y. The position of physicists was clear: if the model
(1.3.1) has such terrible analytic properties, what can one expect from
more complex models with sextic anharmonicity? The conviction that all
models of such a sort are exactly non-solvable was unshakable.
Surprisingly enough, this assertion turned out to be wrong! This was
demonstrated in the paper of Turbiner and Ushveridze (1987}, where quasi-
exact solvability of the model (1.4.1) was proved. The result of this paper
can be formulated as follows: there are special cases when the model (1.4.1)
allows very simple analytic solutions. These cases are realized when the
parameters o, 8 and v entering into the potential satisfy the condition

\}’7 (% - a) =3+ 2n, (1.4.2)

where n is an arbitrary non-negative integer. If n is fixed, the model (1.4.1)
has [3]+1 exact solutions which can be found by means of a simple algebraic
procedure. At the same time, other solutions of the model remain unknown
to us, so that we deal with the infinite series of quasi-exactly solvable models
of the orders [3]+1, n =0,1,2,....

This fact can be proved in the same way as the fact of exact solvability
of the simple harmonic oscillator (1.2.1). We stress, however, that the
derivation given below differs from the one used in the original paper of
Turbiner and Ushveridze (1987).

This derivation is purely algebraic. We start with the observation that
the hamiltonian (1.4.1) can be rewritten in the form

H = (a+)2{2ﬁa+a_+(a—§+3ﬂ>ao}

+—— (2ata™ +a°%) — (a7)?, (1.4.3)

N
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where a* and a° are the operators defined as

0

+ = 01 — 3 L — 1.4.4
a r, a , a ﬂx+2ﬁz+ax (1.4.4)
It is evident, that, as in the case of the harmonic oscillator, they form
the Heisenberg algebra with commutation relations (1.2.4). Infinite-
dimensional representations of this algebra can be defined by formula
(1.2.5). Conserving all notations of section 1.2 we can write the relation

Hln) = {a—§+\/§(3+2n)}]n+2)

+%(2n+1)|n)+n(n— Din - 2) (1.4.5)

which, in some sense, is an analogue of the relation (1.2.11). We see that
the operator H transforms, as before, even vectors into even ones and odd
vectors into odd ones. Therefore, the parity of the vector is a conserved
quantum number. This gives us reason to introduce, instead of the vectors
|n),n =0,1,2,..., two separate sequences of the vectors:

Im,p) ={2m+p), m=0,1,2,... (1.4.6)

where p = 0,1 is the parity. In terms of the new vectors, formula (1.4.5)
takes the form:

2
Him,p) = {a -2t ilm s 3)} m +1,p)

+2~\ﬁ—/——’7(4m + 2p+ 1)|m, p)

+(@2m+p)(2m +p—1)|m—1,p). (1.4.7)

By analogy with the case of the harmonic oscillator, let us consider the set
of (m + 1)-dimensional subspaces ®2, of the representation space ® formed
by linear combinations of vectors |0,p), ..., |m,p). It is easy to understand
that, unlike the harmonic case, the spaces ®F are not invariant under the
action of the operator H. Indeed, from (1.4.7) we have

H®?, C & ., (1.4.8)

and, therefore, the reduction of the infinite-dimensional spectral problem
for H to a series of finite-dimensional problems is, generally speaking,
impossible.
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What does this mean? At first sight, the situation is unfavourable
since our hopes of obtaining the exact solutions for the model (1.4.1) in
the same way as in section 1.2 were not realized. However, more careful
analysis shows that this first impression is not quite right.

Let us assume that the parameters «a, f and v determining the form of
the hamiltonian (1.4.1) satisfy the condition

2
a—%+ﬁ(4M+2p+ 3)=0 (1.4.9)

with certain fixed M and p. Then for m = M the coefficient of the leading

vector |m + 1,p) in the right hand side of (1.4.7) vanishes and formula
(1.4.8) takes the form:

H®h, C o, (1.4.10)

We see that in this case the space ®, becomes invariant for the operator
H, and this makes the spectral problem for H in ®;, become algebraically
solvable. Since the space &, is (M + 1) dimensional, we can obtain M + 1
exact solutions of the Schrédinger equation

Hy=Ey, ped. (1.4.11)

At the same time, other solutions of this equation (lying outside the space
Qﬁ{) remain unknown. This is a trivial consequence of the fact that the
invariance of the space @2, for H takes place only for m = M but not
for m > M. This observation completes the proof of the assertion that
the model (1.4.1) is a quasi-exactly solvable model of order M + 1 if the
parameters «, 3,7 satisfy the constraint (1.4.9).

Note that the chosen parametrization of the potential (1.4.1) is far
from being most convenient for us. It seems more natural to introduce,
instead of the parameters «, 5,7, the new parameters a,b and M by the
formulas:

v=a% B=2ab, a=0b>—a(4M +2p+3). (1.4.12)

Then the hamiltonian (1.4.1) takes the form
52
T 9z?

which is more suitable from the practical point of view, since the non-
negative integer M, showing how many solutions of the corresponding
Schrodinger equation can be found exactly, enters into the potential (1.4.13)
explicitly.

H= + [b? — a(4M + 2p + 3)]2? + 2abz* + a%2® (1.4.13)
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Note now that there are two possible ways to construct these solutions.
On the one hand, we could try to complete the algebraic manipulations with
the hamiltonian (1.4.3), obtain the needed solutions in algebraic form and
then write down the coordinate representation for them. On the other hand,
we can construct the appropriate ansatz for the wavefunctions immediately
in the coordinate form and, substituting it into the Schrédinger equation
(1.4.13), obtain the needed solutions analytically. We choose the second
way which is more helpful from the pedagogical point of view than the first
one.

In order to construct the correct ansatz for the wavefunctions we need
the coordinate representation for the vectors |n). The lowest vector |0)
can be found from the condition that it is annihilated by the operator a™,
the differential form of which is given in (1.4.4). Solving the corresponding
first-order differential equation we obtain

|0) :exp{—~gz—4-— b—”—z} (1.4.14)

Then, using the coordinate representation (1.4.4) of the operator at and
definitions (1.4.6), (1.2.6) of the vectors |m, p), we find

4 b 2
|m,p) = zPz*™ exp {—— — —ic—} ) (1.4.15)

Finally, recalling the definition of the spaces ®%,, we come to the following
most general form of their elements:

Y(z) = zP Pyr(z?) exp {—5“”—4 - 95—2-} . (1.4.16)

Here, by Pps(t) we have denoted the polynomials of degree M.

Formula (1.4.16) determines a correct ansatz for wavefunctions in the
model (1.4.13). Substitution of (1.4.16) into the Schrédinger equation for
(1.4.13) reduces it to the form

6> 20 0

+ [m:aai - 4Maz2] } Pp(z?) = 0. (1.4.17)
z
Now we are ready to consider some simplest cases of this equation.

1. One explicit solution
Let M = 0. In this case the polynomial Py(z?) is a constant. Taking

Py(z?) =1 (1.4.18)
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and substituting (1.4.18) into (1.4.17) we obtain the equation for E:
2p+1)b—-E=0. (1.4.19)
Therefore, the Schrédinger equation for

62
H=-om+ [b* — a(2p + 3)]z% + 2abz? + a%2f (1.4.20)

has the following explicit solution:
E = (2p+1)}, (1.4.21a)

Y(z) = zPexp {—-Ex—‘i - 93._2_} . (1.4.21b)

We see that the obtained wavefunction has no nodes if p = 0, and has one
node at z = 0 if p = 1. According to the oscillator theorem, this means
that for p = 0 we deal with the ground state and for p = 1 with the first
excited state.

2. Two explicit solutions
Now let M = 1. In this case the polynomial P;(z?) can be written in the
form

Pi(z?) =2" 44, (1.4.22)

where ¢ is a certain unknown number. Substituting (1.4.22) into (1.4.17)

and equating the terms proportional to z? and 1 we obtain two equations
for ¢ and E:

(2p+ 50— E = dag,
94+4
Qp+1B—E = —3;—?, (1.4.23)

from which we find the single quadratic equation for E:
[E - (2p+ 1)b])[E - (2p+ 5)b] =8a(2p+ 1). (1.4.24)

This is simply the ordinary secular equation. It is of second degree since the
invariant subspace @) of the Hilbert space ® is two dimensional. In other
words, we diagonalize a 2 X 2 matrix in the block decomposition (1.1.3).
Solving equation (1.4.24) and finding the corresponding values of ¢, we
come to the assertion that the Schrodinger equation for the hamiltonian
52
H=-om [4* - a(2p + 7)]z? + 2abz* + o’z (1.4.25)
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has two explicit solutions:

Ey = (2p+3)b+2/b2+2a(2p+ 1), (1.4.26a)

Yi(z) = [(b£ /b2 +2a(2p+ 1))z - (2p+1)]
az?  bz?
xz"exp{——4— - 7} . (1.4.26b)

Using the oscillator theorem, it is very easy to see that for p = 0
formulas (1.4.26) describe the ground state and the second excitation, while
for p = 1 they describe the first and third exitations.

Similarly, explicit solutions involving radicals can also be written for
M = 2 and M = 3. Note, however, that for larger values of M this
is possible only after solving a certain algebraic equation for £ of order
M +1. The reason is that for given M, the solutions belong to the (M +1)-
dimensional invariant subspace ®4,, and this implies that the corresponding
secular equation is an algebraic equation of order M + 1.

It is not difficult«to understand that, in general, the procedure
described above gives us the energy levels with numbers 0,2,...,2M for
p=0and1,3,...,2M +1forp=1.

In order to prove this important assertion, consider the ansatz (1.4.16)
for given M and p. We see that the wavefunctions are proportional to
polynomials of order 2M + p and, therefore, they have exactly 2M + p
zeros in the complex z-plane. Due to the evenness of these polynomals,
the number of real zeros (playing the role of the wavefunction nodes) is
2K +p, where K depends on the sort of solution and satisfies the inequality
0 < K < M. We know that the different wavefunctions must have different
number of nodes. In our case the number of different wavefunctions is
M + 1 since all M + 1 exact solutions belonging to the class (1.4.16) are
normalizable and satisfy the needed boundary conditions. But this means
that the number K must take M + 1 different values, which is possible only
if K=0,1,...,M. Using the oscillator theorem, we can conclude that the
numbers of states are described by the formula 2K +p with K = 0,1,..., M,
and this proves the assertion.

Note that the algebraic equations, from which the exactly calculable
energy levels and corresponding wavefunctions can be obtained, take
an especially simple and compact form if we rewrite them in terms of
wavefunction zeros. Let £+/&1,...,%+/28r be the zeros of the polynomial
Par(z?). Then the ansatz (1.4.16) can be rewritten as

¥(z) = ﬁ (% —f.-) 2 exp {—%4 - %} (1.4.27)

i=1
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and the spectral problem is reduced to the determination of the numbers
&1,...,€nm (Ushveridze 1988d, 1989¢).

Substituting (1.4.27) into the Schrédinger equation for (1.4.13), we
obtain the condition

M 1 M 4¢;
Y = {}: : +2p+1—4b§,~—8a§,—2}
i=1 2 i k=1 Ei_fk
M
+E—(4M +2p+1)b—8a) & =0, (1.4.28)
i=1

which can be satisfied if and only if the coefficients of the singular terms
vanish and the free term is equal to zero. This gives us the following simple
expression for the energy:

M
E=(4M+2p+1)b+8a) &, (1.4.29)
i=1
in which &,i = 1,..., M are numbers satisfying the system of numerical

equations

M
1 2p+11
) +PEIL  y gag=0, i=1,...,M.  (1.430)
& 4 &

Formulas (1.4.27), (1.4.29) and (1.4.30), describing the solutions of the
quasi-exactly solvable model (1.4.13), will play a determining role in our
consideration (see, for example, sections 1.10 and 1.11).

Thus, we have completed the exposition of our approach to the problem
of quasi-exact solvability of the sextic anharmonic oscillator. An interesting
feature of this approach is that by its very essence it contains a possibility
of generalization: the method developed in it can be used for constructing
wide classes of other more complex quasi-exactly solvable models.

In order to demonstrate this fact we use the same language as in
section 1.2. Consider the Heisenberg algebra H and its universal enveloping
algebra U(H). Denote by Ux(H) the linear subspaces of U (H) formed by
all linear combinations of monomials (a*)!(a~)" satisfying the constraints
l < n+ k. The elements up of these subspaces are characterized by the
property ux @y C Pmtk.

Now, consider the class of operators

H=us+u(ata™ = M)+ uyata™ =M+ 1)(ata™ = M) +...
tur(ata™ - M +k—1)...(aTa™ — M),
(1.4.31)
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in which M and k are given non-negative integers, and ug, uq, ua,..., ug
are certain arbitrarily chosen elements of the spaces Uo(H), Ui(H),
Us(H), ..., Ur(H). Obviously, all these operators belong to the space
Ux(H). Atfirst glance, this gives us the possibility of writing H®,, C ®m4k.
However, this formula is true only if m # M. Taking m = M we see that
operators in brackets cancel the leading basis elements of the space @y
ensuring its invariance under the action of H:

H®p C By (1.4.32)

This enables us to treat the operators (1.4.31) as “hamiltonians” of abstract
quasi-exactly solvable models.

Of course, the condition for these models to be physically meaningful
restricts the class of admissible “hamiltonians” H. We know that they must
be second-order differential operators. Using differential realizations of the
generators of the Heisenberg algebra given in formula (1.2.22), one can see
that this condition can be satisfied if the degrees of the lowering operator
a~ in (1.4.31) do not exceed two. In this case the most general expression
for H is

H=uy+u(ata™ - M) +us(ata”™ = M +1)(ata™ — M), (1.4.33)
where
ug = Ao(a™)?(a™)? + Boat(a™)? + Co(a™)? 4 Doa*a™ + Epa™ + Fy,
uy = Al(a+)2a" -+ B1a+a_ + Cia~ + D1a+ + Eq,
Uy = Az(a+)2 + B2(1+ + Cs.
(1.4.34)
Substituting (1.2.22) into (1.4.33) and (1.4.34) we obtain second-
order differential operators of the type (1.2.24), which, after imposing the
necessary constraints on functions A(z) and B(z) (see formulas (1.2.22)
and (1.2.25)), are reduced to the Schrédinger form. This gives us a
rather wide class of one-dimensional quasi-exactly solvable models with
potentials expressed in terms of rational, trigonometric, hyperbolic and

elliptic functions (Ushveridze 1988¢). All these models will be discussed in
detail in chapter 4.

1.5 Non-perturbative effects in an explicit form and convergent
perturbation theory

In the preceding section we have demonstrated that the sextic anharmonic
oscillator with the potential

V(z) = b2z? 4 a[2bz* — 4(M + 2p + 3)z%] + a®z® (1.5.1)
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is quasi-exactly solvable, and has, for any given M and p, M + 1 exact
(algebraic) solutions with the numbers 2K + p where K =0,1,..., M.

Now we discuss some physical properties of the model (1.5.1). Tt is
easily seen that it can be viewed as a perturbed harmonic oscillator with
the potential

Vo(z) = b%z?, (1.5.2)

Here the role of perturbation parameter is played by a. Since the
perturbation theory in the parameter a is well defined and easy to construct,
we can compare the perturbative results with the exact ones. Such a
comparison reveals the presence of a number of non-perturbative effects
in the model (1.5.1), i.e., effects which do not appear in any finite order of
perturbation theory.

First of all, let us establish the rough boundary between the weak- and
strong-coupling regimes. For this we remember that the most essential
values of z in the model (1.5.2) are

z~ [b]7%. (1.5.3)

Comparing the perturbation terms in (1.5.1) with the unperturbed term
for these values of z, we find that the effective coupling constant is ab™2.
Therefore, for ab=? « 1 we shall have the weak-coupling regime, and for
ab=2 2 1 the strong-coupling regime.

The form of the potential (1.5.1) in the weak-coupling regime strongly
depends on the sign of parameter b. If b is positive, the potential (1.5.1)
has qualitatively the same form as the harmonic potential (1.5.2) (see
figure 1.4) but for negative values of b the form of the potential (1.5.1)
becomes more complicated (see figure 1.5). We see that it has now two
additional minima lying lower than the minimum at zero. This means that
the probability of finding the quantum particle near these minima is larger
than the probability of finding 1t in the vicinity of the origin. Therefore,
the physical situation described by the potential V(z) for b < 0 differs from
the situation described by the harmonic potential Vp(z), irrespective of how
weak the coupling is.

In order to see this more explicitly, let us consider the exact ground
state wavefunction for the model (1.5.1) found in the preceding section for
M=0

exp _az® _ [blz? b> 0

W(z) = e (1.5.4)
(=) exp ——%—+m;— b<0

)
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Figure 1.4. The form of the potential (1.5.1) when b > 0 and
ab™? < (4M +2p+3)"L.
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Figure 1.5. The form of the potential (1.5.1) when b < 0 and
ab™? < (4M +2p+3)~.

and compare it with the ground state wavefunction for the harmonic
oscillator

2
to(z) = exp <— |b|2:c ) . (1.5.5)
We see that in the first case (b > 0) the wavefunctions of both models
coincide qualitatively with each other: they have the maximum at the
origin. In the second case (b < 0), the difference between the wavefunctions
becomes large: the function ¥(z) has the minimum at the origin, but not
the maximum. At the same time it has two maxima lying at the points

Ty = L4/ %l It is evident that this cannot be seen in any finite order
of perturbation theory and, therefore, we have a typical non-perturbative
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effect.

In the strong-coupling regime the situation becomes more non-trivial.
The potential V(z) cannot be approximated any longer by the potential
Vo(z), even in a perturbative sense (see figure 1.6). Indeed, the first

\ v W) V)
\ //
3 /
\ /
\ /
A /
A /
N ’
\ /
N -
~ — > z
\/ \/

Figure 1.86. The form of the potential (1.5.1) for the case when
ab™? > (4M +2p + 3)7L.

correction already makes the stable unperturbed potential Vy(z) unstable,
which gives rise to the principal inapplicability of perturbation theory in
this case. At the same time, the presence of exact solutions, found in the
previous section, enables us to obtain full information about the system.

Unfortunately, there is one exception which relates to effects of splitting
the energy levels in the Z;-symmetric double-well potential depicted in
figure 1.6. This very important non-perturbative effect cannot be studied
by means of the exact solutions for the model (1.5.1). The fact is that the
levels to be split have opposite parities, while the exact solutions for the
model under consideration have the same parities by construction.

Let us now study the behaviour of large-order terms of the perturbation
series for the model (1.5.1). Remember that the problem of studying the
asymptotics of perturbation expansions was popular in the middle of the
seventies, when many people believed that knowledge of such asymptotics
could help in constructing the correct summation procedure for a diverging
series. At that time, many models with polynomial potentials were studied
from this point of view (see e.g. Graffi et al 1970, Turchetti 1971, Lipatov
1976, Popov et al 1977, 1978, Graffi and Grecchi 1978, Kazakov and Shirkov
1980). The results were one and the same: the perturbation series diverge
factorially. The simplest example of such a divergence was considered in
section 1.3 for the case of the quartic anharmonic oscillator.
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Now consider the situation with the sextic anharmonic oscillator with
the potential (1.5.1). This model is especially interesting for us since we
have an unique possibility of comparing the results obtained by means of
approximative (asymptotic) methods with exact results which follow from
the explicit solutions for the model (1.5.1).

First of all, note that Dyson’s instability argument does not work
for the model (1.5.1) since the change of sign of perturbation parameter
a does not change the behaviour of the potential V(z) at infinity: the
stable potential remains stable. To study the large-order behaviour of the
perturbation series we use other reasonings based on the representation of
the (ground state) energy level via a functional integral:

E(a) = -ﬁln {/Dz(r) exp [_ /H(a,r) dr] } . (156)

Here

H(a,7) = z*(7)+b%2%(7) + a[2bz*(1) — (4M + 2p + 3)z%(7)]
+a?z8(r) (1.5.7)

is a classical hamiltonian of the particle.
Expanding E(a) in powers of a:

E(a) = i aVEy, (1.5.8)
N=0

we see that the Nth term of this expansion can be written as

En= Y (-1)"""dnm (1.5.9)
n42m=N

where
Ay = };TITET / D () exp{— / [62(r) + b2(r)] dr
+nln /[2bz4(r) ~ (4M + 2p + 3)z*(7)] dr
+m ln/zs(r) dr}. (1.5.10)

For large n and m these functional integrals can be computed by means of
the saddle-point method. The details of such computation are weil known
(see e.g. Bogomolny et al 1980) and we shall not repeat them here. Note
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only that the classical saddle-point trajectory, on which the subintegral
expression has a maximum, exists and, therefore, the most relevant values
of z%(r) are of the order

(1) ~ 2n + 3m. (1.5.11)
This leads us to the following approximate expression for A, ,:

N (2n + 3m)!

Apm ~ NI (1.5.12)

nlm!
Substituting (1.5.12) into (1.5.9) we see that the Nth term of this expansion
is of order N!.

Of course, the presence of the factor (—1)"*™ with alternate sign may,
in principle, cancel the leading contributions of A,,, values to the sum
(1.5.9). However, the total cancellation seems to be absolutely unrealistic.
Miracles do not appear in physics without deep reasons. Therefore, we
have come to think that the perturbation series for the model (1.5.1) grows
factorially and has (as usual) zero radius of convergence.

Surprising though it is, this conclusion is wrong! As was demonstrated
by Ushveridze (1987b, 1988k), the sums (1.5.9) have a standard factorial
behaviour only if M #0,1,2,.... If M is an arbitrary non-negative integer,
the amazing cancellation of growing contributions occurs and the series
becomes convergent!

At first sight this fact (which is easily confirmed by direct numerical
calculation of the perturbation terms) is very paradoxical, since until now
there were no examples of models with polynomial potentials allowing a
convergent perturbation theory. However, the fact remains and the best
way to make sure that it reflects reality is to look at the explicit solutions
for the model (1.5.1).

Consider, for example, the solution (1.4.26) corresponding to the case
M = 1. We see that the energy level E_ (the ground state) considered as an
analytic function of the parameter a is regular at the origin and, therefore,
its expansion in powers of a must have a finite radius of convergence. The
complex a-plane for the level E_(a) is depicted in figure 1.7. We see that the
radius of convergence, defined in usual way as the distance to the nearest
singularity, is equal to 4;’12. An analogous result can also be obtained also
for other non-negative integer values of M for states belonging to exactly
calculable parts of the spectrum. At the same time, the energy levels
lying beyond these parts have absolutely standard factorially divergent
perturbative expansions (Ushveridze 1989c).

Now let us return to figure 1.7. What is the physical meaning of the
singular point ag lying on the left half axis Re a? From expression (1.4.26a)
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Im a

@

?s > Re a

Figure 1.7. Complex a-plane for the function E_(f) defined by the expression
(1.4.26). Here as = —(4p + 2) 7142,

it is clearly seen that at this point the levels E_ and E, (the ground
and the second excited states) coincide. At first glance, this coincidence
contradicts the familiar theorem about the non-degeneracy of spectra of
one-dimensional quantum mechanical systems (Landau and Lifshitz 1977).
However, from the second formula (1.4.26b) we can see that, at this crossing
point, the corresponding wavefunctions ¢_ (z) and ¢4 () also coincide and
therefore the geometrical multiplicity of the degenerate eigenvalue remains
equal to unity. Thus, there is no contradiction. Note also that the negative
values of a are unphysical ones since in this domain the wavefunctions ¥ (x)
are not normalizable. From (1.4.26a) it also follows that at the point ag
the functions E£_(a) and E, (a) have a branch-point singularity of square
root type. The corresponding cut is depicted in figure 1.7. This means that
by analytic continuation of the level E_ along the closed contour passing
round the point ag, it is possible to obtain the level E, and vice versa. In
other words, the levels E_ and F, are plaited and form a common two-
sheeted Riemann surface. Summarizing, we can conclude that the point ag
is none other than the ordinary Bender and Wu singularity (Turbiner and
Ushveridze 1987).

Thus, we have obtained an exact and very elegant result which for
other models of such a sort could be obtained only after serious technical
efforts and, even then, no more than approximately. As is well known, the
problem of studying the Bender and Wu singularities is one of the most
complex problems in quantum mechanics.

Note that the Bender and Wu singularity for the levels £ in the model
(1.5.1) lies outside the region where the perturbation theory is applicable.
Therefore, it is a typical strong-coupling non-perturbative effect.

Another non-perturbative effect which is also present in the exact
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solution (1.4.26a) is related to the behaviour of the energy levels E; as
functions of the parameter b when a is small. Here, if one looks at a poor-
resolution graph of the two functions F4(b), one receives the impression
that the levels intersect and, doing so, exchange quantum numbers. With
better resolution it becomes clear that there is no such intersection (see
figure 1.8). This effect is well known in nuclear physics, where it is referred

E__ E
_Z_—:E+ 1 E+

|
|
i,
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a) E b)

Figure 1.8. The graph of the function E4(b) with a) poor resolution and b)

good resolution.

to as the quasi-intersection of levels (see e.g. Solovyev 1981). It cannot
be seen in perturbation theory, since its characteristic scale is determined
by the relation b2 ~ a. The existence of exact solutions not only allows us
to see it, but also gives a simple explanation of it: the quasi-intersection
of levels is a manifestation of their actual intersection (plaiting) at a point
lying close to the real axis (in the complex plane of the parameter of the
problem) (Ushveridze 1988a, 1989c).

Quasi-exactly solvable models possess another rather curious feature.
They can be considered as good approximations to exactly non-solvable
models. As an example, we consider again the model (1.5.1) and recall that
M + 1 is the order of the secular equation which determines the algebraic
part of the spectrum. If M = oo, the problem of finding the spectrum ceases
to be algebraic, and the equation becomes exactly non-solvable. Therefore,
to obtain an exactly non-solvable model from (1.5.1), M must be taken to
infinity. For the potential to remain finite in this limit, parameters a and b
must be dependent on M. For example, if this dependence is determined

by the condition
b2 — a(4M + 2p + 3) = q, (1.5.13)

then, for M — oo, the coefficient of the sextic term in the potential (1.5.1)
vanishes as M~2/3 and we obtain the exactly non-solvable model of the
anharmonic oscillator with potential (1.3.1) (Ushveridze 1988g, 1989c).
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Finally, we note that model (1.5.1) can be considered also as a zeroth-
order approximation by constructing various perturbative schemes. This
assertion refutes the usual opinion that any perturbation theory requires
knowledge of the entire spectrum of the non-perturbed hamiltonian.
However, such a requirement is necessary only when we work in the energy
representation. In this case we must know all energy levels of a non-
perturbed Schrédinger equation to construct the needed Green function.
If we deal with the coordinate representation it is sufficient to know only
the energy level for which we seek the correction. Indeed, according to
the well known theorem of mathematical analysis, the knowledge of one
(normalizable) solution of the one-dimensional Schrédinger-type equation
allows us to build a second, linearly independent solution with the same
energy. Now, having two linearly independent solutions one can easily
restore the coordinate Green function, the knowledge of which is sufficient
to write down explicitly (in quadratures) any term of a perturbation theory
for the level under consideration. In case of model (1.5.1) we know explicitly
a certain limited part of the spectrum. This gives us the possibility of
constructing perturbation theory for all the levels belonging to this part.
From a practical point of view the most convenient way to realize such a
scheme is to use the so-called “Price—Zeldovich technique”, in which instead

of the Schrédinger equation, its delinearized Riccatian version is considered
(see e.g. Price 1954, Zeldovich 1956, Turbiner 1984).

In order to demonstrate how this (non-standard) perturbation theory
works, let us consider the model (1.5.1) for M = 0 and p = 0, perturbed
by the potential AV;(z) where A is a perturbation parameter and Vi(z) an
arbitrary fixed function. The corresponding Schrodinger equation has the
form:

{_5% + (b2 - 3a)a;2 + 2abz* 4 a?zf + /\Vl(z)} ¥(z) = EY(z).

(1.5.14)

In this case we know only one solution of the unperturbed problem,

which is the ground state with energy Eq = b and the wavefunction
Yo(z) = exp (—% - %3) Let us now show that this information is quite

sufficient to construct the perturbation theory for the ground state in the
model (1.5.1).
First of all, we introduce the logarithmic derivative of the wavefunction

_¥(e)
y(z) = o) (1.5.15)
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and rewrite equation (1.5.14) in the Riccati form:
Y (z) + y%(z) = (b* — 3a)2? + 2abz* + a%2® + AVi(z) - E. (1.5.16)
Taking
E=FEy+ AE; + MEy+ ... (1.5.17a)
and
y(z) = yo(z) + Ay1(z) + Nya(z) + ... (1.5.17b)

(where by yo(z) we have denoted the unperturbed logarithmic derivative
Yo(2)/vo(z)) and substituting the expressions (1.5.17) into (1.5.16), we
obtain the equations

% (¥5(2)n(2)) = (Val2) = Ex) ¥5(2), n=12,..., (L5.18)
in which
n-1
Valz) = ~ Zyi(z)yﬂ_i(z), for n > 2. (1.5.19)
i=1

The integration of (1.5.18) from —co to +00 and z gives

T $3(2)Va(z) dz
E, = == (1.5.20)
T v as

and
(@)= 70 [ [a(@) - B (&) o' (15.21)

Taking in formulas (1.5.20) and (1.5.21) N = 1,2,..., we obtain a simple
recurrence procedure for determination of all perturbative corrections for
Eo and ¢o(l‘).

Note that, according to formula (1.5.20), the first correction for the
energy in this non-standard perturbation scheme,

ofo Vi(z)yé(z) dz
Ep = 2= : (1.5.22)
_f ¥5(z) dz
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coincides with the analogous correction in the Rayleigh—Schrédinger
perturbation theory (Turbiner 1984).

Concluding this brief review of some properties of model (1.5.1), one
can say that it occupies an intermediate position between the exactly
solvable models and exactly non-solvable ones, having the features of both
the former and the latter simultaneously.

However, the theme is far from being exhausted. In the next sections
we show that model (1.5.1) has many other intriguing properties, the study
of which leads us to a better understanding of the nature of quasi-exact
solvability in quantum mechanics.

1.6 Partial algebraization of the spectral problem. Hidden
dynamical symmetries

Let us consider the quasi-exactly solvable model of the sextic anharmonic
oscillator discussed in the two previous sections. It is not difficult to verify
that its hamiltonian (1.4.13) can be rewritten in the form:

H = —48°8~ + 4aS* +468° — (2M + 4p+2)S™ + (2M + 2p + 1)b,

(1.6.1)
where S, 5% and St are the operators
- 1 0 3 p
= — | — br — <
5 2:c<5z+ax+z :c)’
o z [0 3 D M
- (9 bz — 2 ) — = 6.
S 2(6z+az+z x> 5 (1.6.2)
3
st = % i+a23+bz-£ - Mz?,
2 \ Oz T
satisfying the following commutation relations
[, =25° [8° §%) =4S¢, (1.6.3)

and, thus, forming the si(2)-algebra.

Since we have explicit expressions for the operators S* and S°
(generators of the algebra sl(2)) it is not difficult to construct the
representation space in which they act.

First of all, remember that representations of the algebra si(2) can be
defined by the formulas

5710y =0 (1.6.4)
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and
5°10) = —5]0), (1.6.5)

in which [0) is the so-called lowest-weight vector and (—j) is the
corresponding lowest weight. The representation space, which we denote
by @®;, is formed by the vectors

In) = (S*)*[0), n=0,1,2,.... (1.6.6)

It is known that the dimension of this representation is finite if and only if
the lowest weight is a non-positive semi-integer number:
1.3
i =0,-,1,=-,....
J ) 2 ) ) 2’
In this case there exists the highest-weight vector |27) which is annihilated
by the raising operator S*:

(1.6.7)

S*|25) = 0. (1.6.8)
The corresponding highest weight is (+7):
S°125) = +35125). (1.6.9)
Then we have
dim®; = 2j + 1. (1.6.10)

In all other cases the representation space ®; is infinite dimensional.

Now it 1s clear that to construct the representation space for the
operators (1.6.2) we must find the lowest-weight vector and then determine
the lowest weight.

Substituting the explicit expression (1.6.2) for the generator S~ into
(1.6.4) and solving this equation we obtain

4 2
|0) = 2P exp {—a—x— - bi} . (1.6.11)

i= 5 (1.6.12)

Since the number j is found to be semi-integer, the representation of the
algebra si(2) with the generators (1.6.2) is finite dimensional. Comparing
(1.6.10) with (1.6.12) we obtain:

dim®; = M + 1. (1.6.13)
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Acting by the operators (ST)*, n = 0,...,25 = M on the function (1.6.11)
we obtain the basis vectors

az?  bz?

]n):z2"+pexp {——Z——*—Q‘—}, 'IlZO,l,...,M. (1614)
We see that the highest-weight vector |M) is actually annihilated by the
raising operator S* defined by formula (1.6.2).

Thus, we have constructed the representation space for generators
(1.6.3), the most general element of which can be written as

¥(z) = 2P Ppr(z?) exp {—Efi - E} . (1.6.15)

We see that this representation space coincides with the space (1.4.16)
in which the Schrédinger equation for the hamiltonian (1.4.13) has exact
solutions.

This enables us to give a simple explanation of the phenomenon of
quasi-exact solvability of the model (1.4.13): this model is quasi-exactly
solvable, since its hamiltonian is expressed in terms of generators of a
certain finite-dimensional representation of the algebra si(2). In this case,
the corresponding representation space ® is automatically invariant under
the action of the hamiltonian H. Therefore the spectral problem for H in
® is formulated correctly and can be solved algebraically. The number of
algebraic solutions of the Schrodinger equation is equal to a dimension of
the representation, which in the case of the model (1.4.13) is M + 1. Since
the algebra sl(2) generates the spectrum of the hamiltonian, it plays the
role of a hidden dynamical symmetry for the model (1.4.13).

From the physical point of view, formula (1.6.1) means that the
hamiltonian of the sextic anharmonic oscillator is equivalent to a spherically
non-symmetric quantum top in an external magnetic field.

Finally, note that the explanation of the phenomenon of quasi-exact
solvability given above enables us to formulate a rather general method of
constructing quasi-exactly solvable problems of quantum mechanics.

Indeed, remember that any (M + 1)-dimensional representation of the
algebra sl(2) can be realized in the space of Mth-order polynomials Pps(t)
(see e.g. Zhelobenko 1965). The corresponding generators S*, 5% S~ have
in this case the form of the first-order linear differential operators:

-9 = _ 2 =2 _ Mt. 6.
§T=o, S=te -4, S 5 — Mt (1.6.16)

Consider the set of arbitrary second-order polynomials in generators

(1.6.16):
H=0CStSt 4+ C,8tS° + C3StS~
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+C48°5% + C58°S~ + CsS™ S~
+C7S+ + CsSO -+ CgS—. (1617)

The substitution of (1.6.16) into (1.6.17) gives us a class of second-order
linear differential operators

82 0

H= P4(t)—-—2- + Qa(t)“ + Rz(t), (1618)

ot ot
in which P4(t), Qs(t) and Ry(t) are certain polynomials of orders four, three
and two, respectively. Since these operators act in an (M + 1)-dimensional
space, the spectral problem for them can be solved algebraically. This leads
us to a set of second-order linear differential equations of the spectral type
having a finite number of exact polynomial solutions.

Generally speaking, the equations obtained are not Schrédinger-type
equations and their polynomial solutions are not normalizable. Note
however that we always can introduce new variables and make homogeneous
transformations of the unknown function. These transformations conserve
the linearity and order of the differential equation, but change its concrete
form and the normalization properties of its solutions. Therefore they may,
in principle, reduce the obtained equations to Schrédinger form. In this
case we obtain a class of quasi-exactly solvable models.

In order to demonstrate how this scheme works, let us substitute the
generators (1.6.16) into the spectral equation for (1.6.1) and obtain the
quasi-exactly solvable model (1.4.13).

The substitution gives the equation:

92 2 0
{ t5t7 + (4at® + 4bt — 4p - 2) 5 daMt+ (2p+ 1)b} Pup(t)
= EPu()  (1.6.19)

which, after introducing a new variable z and a new function ¢(z) by the
formulas

z = z(t), (1.6.20a)
¥(z) 9(t) Pu(t), (1.6.20b)

I

takes the form:
{ 4t[z ’(t)]2 62 + { <8tg (( + 4at? 4 4bt — 4p—2) z'(t) —4t:c”(t)] 9

)

D)

/01 [0 ) g

g(t>] ‘”[y(w] ~ (dat? + bt — 4p — 2)'
+

~ 4aMt 2p+1)b}1/)(x):E'1/)(z). (1.6.21)

/

+ 4t[
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For equation (1.6.21) to have Schrédinger form, the coefficient of the second
derivative must be equal to —1 and the coefficient of the first derivative must
vanish. This gives us two equations:

4tz (t)]: =1 (1.6.22a)

and

(St%'g)) +4at? + bt — 4p — 2) z'(t) - 4tz"(t) =0 (1.6.22b)

with respect to z(t) and g(t). Solving these equations we obtain

z(t) = Vi, g(t) = t% exp {—%t2 - gt} . (1.6.23)
Substituting (1.6.23) into (1.6.21) we obtain the Schrodinger equation with
the potential described by formula (1.5.1) and with the solution having the
form (1.4.16). This completes the reduction procedure.

Analogously, starting with other bilinear combinations (1.6.17) of
the generators (1.6.16) and performing the reduction procedure, one can
obtain other one-dimensional quasi-exactly solvable models with potentials
expressed via the rational, trigonometric, hyperbolic and elliptic functions.

This method was proposed by Turbiner (1988a) for the one-dimensional
case and then generalized by Shifman and Turbiner (1989) to the multi-
dimensional case. It is known as the method of partial algebraization (see
e.g. Shifman 1989a, Morozov et al 1990). In sections 1.16 and 5.1 and
appendix A we discuss this method in more detail.

In conclusion, note that the method of partial algebraization leads
to the same quasi-exactly solvable models as the method of raising and
lowering operators discussed in section 1.4. This follows from the fact that
the generators of the algebra sl(2) are easily expressed via the generators
of the Heisenberg algebra:

S~ =a, S%°=a*a" -M/2, S*=(a*)’a” — Mat, (1.624)

and their substitution into (1.6.17) reduces the operators H to the form
(1.4.33)-(1.4.34).

1.7 The two-dimensional harmonic oscillator. The separation of
variables

In this section we discuss a striking connection between the one-dimensional
quasi-exactly solvable model of the sextic anharmonic oscillator, and the
exactly solvable model of a two-dimensional harmonic oscillator.
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In order to establish this connection, let us consider two identical
Schrodinger equations for (1.4.13), rewritten in terms of two different
variables z and y:

{-0—2 + a?z® + 2abz* + [b? — a(4M + 2p + 3)]:02} v(z) = Ey(z),

Oz2
(1.7.1a)

2
{-%+a2y6+2aby4+[bz—a(4M+2p+3)1y2}¢<y) )
(1.7.1b)

Remember that the eigenvalues £ and the corresponding eigenfunctions
¥(z) are determined by formulas (1.4.29) and (1.4.27).

Multiplying (1.7.1a) by ¥(y) and (1.7.1b) by ¥(z) and subtracting the
results from each other we obtain a single two-dimensional equation

62 82 27,6 6 4 4
—W_*_@_y"’ + a(:c —y)+2ab(x —y)

+ [ - a(4M + 2p + 3))(a” - y2>}¢(z)w<y> —0,
(1.7.2)

which does not contain the spectral parameter E any longer. Nevertheless,
we can interpret (1.7.2) as a spectral equation again, identifying the
quantity b2 — a(4M + 2p + 3) with a new spectral parameter I'. Dividing
(1.7.2) by z? — y* we obtain

8 _ 87
{—%Z‘ig_z +a*(z* + y* + 2%y%) + 2ab(z”y”) + bz} ¥(z,y) = TY(z,9).
(1.7.3)

Evidently, the equation (1.7.3) obtained is exactly solvable by construction.
It has an infinite number of exact eigenvalues

T =b*—a(4M +2p+3) (1.7.4)

and corresponding eigenfunctions
M 2,2 24,2
— (zu)? Y TRy e
sen = [T (- 5 e s

X exp {_a(z‘*:— ) _e ;_y2)} , (1.7.5)
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where §;, i = 1,..., M are numbers satisfying equation (1.4.30). We see
that the spectrum (1.7.4) is degenerate: for the Mth eigenvalue we have
M + 1 different linearly independent solutions ¥(z, y).

Equation (1.7.3) and its solutions (1.7.5) can be simplified if we
introduce new variables

b z2 4 o2 .
A= % + 5 u = lizy, (1.7.6)
and new functions
6(A, 1) = d(z,y). (1.7.7)
Then (1.7.3) takes the form
——a—z——ﬁ?—+a2(4,\2+ 2)}¢(A ) =Té(A, p) (1.7.8)
6A2 3/‘2 B yH) = s M) -

where T is defined by (1.7.4) and

,\—PM“Z,\i-2 YooY, a9
B0\ p) = Hl[f+( -5 )& - €] o (- - o). 119

We have obtained a surprising result: the infinite series of one-
dimensional quasi-exactly solvable sextic anharmonic oscillators has turned
out to be equivalent to a single two-dimensional exactly solvable model
of a harmonic oscillator with correct eigenvalues and eigenfunctions. The
last assertion follows from the fact that the function (1.7.9) can always be
rewritten in the form

M 2
¢ 1) = emHm—m(A)Hamp() exp (-aAZ - a—"‘2—> (1.7.10)

m=0

where ¢, m = 0,..., M are certain real numbers and H,()) are Hermite
polynomials.

In order to understand the reason for such amazing equivalence let
us look at our derivation from another point of view. Assume that the
model of a two-dimensional oscillator (1.7.8) is given and nothing about the
existence of quasi-exactly solvable models is known. Trying to separate the
variables in equation (1.7.8), we can make sure that this is possible in many
coordinate systems, and in particular, in the system defined by formulas
(1.7.6). After the separation, we obtain two identical one-dimensional
equations

(aﬁ; —a’z% — 2abs" + E) ¥(z) = T2%(2) (1.7.11)
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(with 2 = z or 2z = y) containing two spectral parameters of different
mathematical meaning. One of them, namely I', is a spectral parameter
of the initial two-dimensional problem (1.7.8), while the second one, E, is
an additional parameter — the so-called separation constant. It is known
that in the general case the values of a separation constant depend on
the sort of solution. According to formula (1.7.10), the spectrum of the
initial equation is degenerate and, therefore, for any admissible value of T
(T = b% — a(4M + 2p+ 3)) the separation constant E takes several (M + 1)
values. Due to the exact solvability of the initial problem, all these values
also can be found exactly. This enables us to treat (1.7.11) as an ordinary
spectral equation (with a single spectral parameter E), having M + 1 exact
solutions for any given M. ldentifying the parameter E with the energy,
and inserting I' in the potential, we obtain an infinite set of quasi-exactly
solvable Schrédinger-type equations of orders M +1=1,2,3,....

It is easy to understand that these reasonings have a quite general
character and are applicable to any two-dimensional exactly solvable model
allowing separation of variables and having a degenerate spectrum. Thus,
they can be considered as a method of constructing quasi-exact solvable
models. Hereafter we shall refer to this method as the method of separation
of variables. Its many aspects will be discussed in detail in chapter 5.

1.8 Completely integrable quantum systems and quasi-exact
solvability

The procedure of going from two identical one-dimensional quasi-exactly
solvable equations to a single two-dimensional exactly solvable equation
essentially solves the inverse problem of separation of variables. In the
preceding section we have identified the energy spectral parameter E with
the separation constant and eliminated it by means of this procedure.

However, it is absolutely evident that the same procedure enables us
to eliminate the second “potential” spectral parameter I'. In this case
we obtain a two-dimensional exactly solvable model with a non-degenerate
spectrum.

In order to obtain the explicit form of this equation, it is sufficient to
multiply (1.7.1a) by y?%(y) and (1.7.1b) by z%¢¥(z), and then to subtract
one result from the other. Dividing the resulting equation by y% — z? and
changing the variables by formula (1.7.6), we obtain

{-Z—( 6822+a/1>+2/\(6822+au> ( ai+1> 3}¢(,\u)

= Eé(\p). (1.8.1)
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Equation (1.8.1) is exactly solvable by construction. Its eigenvalues E and
eigenfunctions ¢(A,u) are determined by formulas (1.4.29) and (1.7.10),
respectively.

We shall not try to seek here the physical meaning of this equation.
This will be done later. Our aim is to consider equations (1.7.8) and (1.8.1)
together from a mathematical point of view.

First of all consider their “hamiltonians”

o 2,2 0 2

Hr = <_éﬁ+a”>+(_m+4 /\) (1.8.2)

and
b 6? 9 9 d?
= —-|-=— 2A | —— + a%u?
e a( o2 )T 0u2+a“>
8 0

2u— +1 1.8.3

- (g 1) 3 (183)

and note that they can be rewritten in a much simpler form if we use the

generators of the Heisenberg algebra H. Since we deal with two-dimensional

models we must introduce two groups of such generators A%, A=, A° and
B*, B~ BY which can be defined as follows:

_ 1 4 - 9 0o_
A_\/_(Qa,\ a,\) A 2\[(2“ ) A% =1,

(1.84a)
1 0 1 0
Bt = — - =], B’:———-(a ——), B =1.
7= (o) Vaa \"' " o
(1.8.4b)
These generators satisfy the usual commutation relations
[A=,AT]= A", [B~,B*]=B° (1.8.5)

and representation spaces for them are defined in the same way as in section
1.2.

In terms of these generators the “hamiltonians” (1.8.2) and (1.8.3) take
the form

Hr = a{4ATA~ +2B*B~ +3}, (1.8.6a)
Hg = b{2B*B~+1}+2/a{A~(B*)?* + A*(B7)?}.(1.8.6b)

It is not difficult to verify that they commute with each other:
[Hr, Hg] = 0. (1.8.7)
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But this means that we have obtained the exactly solvable and completely
integrable two-dimensional system! In other words, we have proved that
the one-dimensional quasi-exactly solvable model (1.4.13) is equivalent to
the completely integrable system with two commuting integrals of motion
Hr and Hg.

The physical meaning of these integrals is very simple. Their
eigenvalues in the representation space of algebra H @ M are the admissible
values of spectral parameters I' and E entering into the Schrédinger
equation (1.7.1). This observation enables us to give a simple group-
theoretical explanation of the fact that the model (1.4.13) is quasi-exactly
solvable.

Remember that the quasi-exact solvability of the model (1.7.1) follows
from the fact that the spectral parameter I' entering into the potential is
degenerate with respect to the energy parameter E. In the language of the
completely integrable system (1.8.6) this means that the spectrum of the
operator Hp is degenerate with respect to the spectrum of the operator
Hg. Since the operators Hr and Hg commute with each other and thus
have a common set of eigenvectors, this is possible if and only if there
exists a certain group of symmetry G, under which the operator Hr is
invariant, while the operator Hg is not. Evidently, the group G acts in
the eigenspaces of operator Hr, which play in this case the role of spaces
of irreducible representations of G. The dimension of each such irreducible
representation determines the multiplicity of degeneracy, which, in turn,
determines the order of the corresponding quasi-exactly solvable model.

Using explicit expressions (1.8.6) for operators Hr and Hg it is not
difficult to make sure that such a group actually exists. Its corresponding

Lie algebra is formed by the generators
Ji=AtA-, J,=B*B-,
' 2 (1.8.8)
Kt = A*(B™)}, K- =A(B%)?

and any possible commutators of them. Evidently, this algebra is infinite
dimensional, although it can be viewed as finite-dimensional non-linear
algebra specified by the commutation relations:

[/1,J2] = 0,
[Ji, K¥]=K*, [JLK ]=K",
[K+,J2]=2K+, [K~,Jo) = —2K—,
[1&’_,1{4—]:J22—4J1J2—J2—2J1.

(1.8.9)

The representation space for (1.8.9), defined as the linear span of the
vectors

In,m) = (A*)"(B*)™0,0), n,m=0,1,2,... (1.8.10)
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(where |0,0) is the vector annihilated by operators A~ and B~), is
reducible. In order to construct irreducible subspaces of this space, consider
the action of operators (1.8.8) on the basis (1.8.10). We have

Jiln,m) = n|n,m), Jz|n,m) = min,m),
K*n,m) =m(m —1)|n+1,m - 2), (1.8.11)
K~ n,m)=nln—-1,m+2),

from which it follows that the number
l=2n+m (1.8.12)

is invariant under such action. Therefore the space ®;, formed by vectors
|n,m) with given quantum number I, is an irreducible representation space
for the algebra (1.8.9), and it is finite dimensional. The dimension of this
space is equal to the number of solutions of equation (1.8.12) for non-
negative integers n and m. The general formula has the form:

dim ®; = [%] +1 (1.8.13)

Due to the commutativity of operators (1.8.8) with Hr, the spaces
®; play simultaneously the role of eigenspaces ®r corresponding to the
eigenvalue I'. Expressing the operator Hr in terms of generators J; and Ja:

Hr =a(4J1 +2J3+3) (1.8.14)
and using formulas (1.8.11) and (1.8.12) we obtain
Hpdp = I'dp (1.8.15)
where
T = a(2+3). (1.8.16)
Comparing (1.8.16) with the old expression (1.7.4) for I', we find that
1 =2M +p, (1.8.17)
which gives us finally
dim or = M + L. (1.8.18)

Thus, we have shown that the dimensions of irreducible representations of
the algebra (1.8.9) determine the orders of quasi-exactly solvable models
(1.4.13).
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Finally note that a connection between the quasi-exactly solvable
models and completely integrable quantum systems was discovered by
Ushveridze (1988d, i) and then studied in the series of papers by Ushveridze
(1988f, n, 1989c, e, 1990a, 1992) and Maglaperidze and Ushveridze (1989b,
1990). In sections 1.9 and 1.10 and, especially, in chapter 5 we discuss this
connection in more detail.

1.9 Deformation of completely integrable models. The
projection method

In the preceding sections we have shown that the one-dimensional quasi-
exactly solvable model (1.4.13) is associated with a completely integrable
system of two two-dimensional operators (1.8.6) (integrals of motion), one
of which has degenerate spectra.

In this section we will demonstrate that any completely integrable
system with similar properties can be considered as a starting point in
constructing quasi-exactly solvable models.

Indeed, let Hg and Hr be certain commuting operators constructed
from the generators of a certain Lie algebra and acting in the corresponding
(infinite-dimensional) representation space which we denote by ®. Assume
that the spectral problem for operators Hg and Hr in @ is exactly
solvable. Denote by ®r and ®r the eigenspaces of operators Hg and Hr
corresponding to the eigenvalues £ and I'. Suppose that the spectrum T 1s
degenerate with respect to E, so that dim ®r > 1 while dim ®g = 1.

Consider the operators

H = Hg + Q(Hr - 7), (19.1)

in which @ is an arbitrarily fixed operator acting in the space @, but not
commuting with Hg and Hr, and « is a parameter. It is quite obvious that
for arbitrary (generic) values of ¥ the spectral problem for H

{He+Q(Hr—7)}p=Ep, €@ (1.9.2)

cannot be solved exactly.

However, if ¥ coincides with the eigenvalue I' of the operator Hp,
the term proportional to ) vanishes for any ¢ € ®r and we come to the
equation allowing several, dim ®r, exact solutions. If the spectrum of the
operator Hr is infinite, we come to an infinite series of quasi-exactly solvable
equations.

Now note that generators of algebras forming the operators Hg, Hr
(and @) admit, as a rule, differential realizations. Using these realizations
we can reduce equation (1.9.2) to a differential form. In other words, we
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obtain an infinite series of differential quasi-exactly solvable equations. In
many cases the form of these equations can be considerably simplified by
means of the so-called projection method.

In order to explain the essence of this method we assume for
definiteness that Hr and Hg are two-dimensional operators of first and
second order, respectively.

We denote by ¥r the space of all functions ¢ satisfying the equation:

Hrp =To. (1.9.3)

Here we do not require that solutions of (1.9.3) belong necessarily to the
representation space ®. Therefore ¥r is wider than the eigenspace ®r:

dr C VYr. (1.9.4)

Since Hr is a first-order differential operator by assumption, the most
general solution of the equation (1.9.3) can be written as

¢ = ¢rf(po) (1.9.5)

where r is a certain solution of the inhomogeneous equation (1.9.3), ¢
is a partial solution of the homogeneous analogue of this equation, and f
is an arbitrary analytic function. (The set of such functions is denoted by
F).
Denote by Fr the space of all such functions f € F for which the
solutions (1.9.5) belong to the eigenspace ®r. Evidently, dim Fr = dim ®r.
Consider the equation

{Hg + Q(Hr - D)}p = Ep, ¢ € ¥, (1.9.6)

which as we already know has dim ®r exact solutions belonging to the space
®r C Ur. Using formulas (1.9.3) and (1.9.5) we can rewrite (1.9.6) in the
form:

Hg(D)f(po) = Ef(po), fEF, (1.9.7)
where
Hg(T) = pr ' Her. (1.9.8)

Obviously, equation (1.9.7) will also have dim Fr solutions belonging to the
space Fr C F. The operator Hg(T') defined by formula (1.9.8) is, evidently,
a second-order differential operator depending explicitly on T'.
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Now note that the functions ¢r and ¢y are functionally independent.
This gives us the possibility of introducing the new variables A and p by
the formulas

A= o, p=¢r (1.9.9)

Then, functions f(yo) forming spaces F' and Fy take the form of functions
of a single variable A, while the operator Hg(T') is, as before, a second-order
differential operator in two variables A and u. This is possible in one case
only, when the projection of Hg(T') on F is an operator in a single variable
A. Thus we come to the most general expression for Hg(T):

2

0 0
Hp(T) = (T, X) 535 + ha(T, 2) g5 + hg(T, A)
lij

] d
+91(F,>\,#)5#—2- + [gz(F,z\,u)a +gs(1“,/\,u)] o (1.9.10)

The substitution of (1.9.10) into (1.9.7) gives us a one-dimensional equation
of the form '

2

{hl(l‘, /\)——8—2— + hz(I‘,)\)—a-* + hs(T, )\)} = Ef(}),

ar? ax
f(A) e F, (1.9.11)

which allows dim Fr exact solutions belonging to the space Frr. Thus,
equation (1.9.11) is a quasi-exactly solvable equation of order dim Fr.
Obviously, any such equation can be reduced to the Schrédinger form, which
gives us a series of one-dimensional quasi-exactly solvable models.

The method described above we shall refer below to as the projection
method.

In order to demonstrate how this method works, let us consider again
the commuting operators Hg and Hr defined by parameters (1.8.6) and
forming a completely integrable system on the algebra H & H. According
to general prescriptions given above we must reduce the operators Hg and
Hr to differential form. The most simple way to do this is to use the
following differential realizations of generators of Heisenberg algebras:

0

At =z A" = 2 A =1, (1.9.12a)

Bt =t, B = ﬁ, BY=1. (1.9.12b)
ot

Then we obtain:

o] 5]
Hpr = a{4za+2ta+3}, (1.9.13a)
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i) )
= 22 “Z
Hg = 2va {t + zaﬁ} +b <2t3t + 1) . (1.9.13b)

We see that Hr and Hg are first- and second-order differential operators
acting in the space of polynomials in two variables z and f. (This is a
representation space for the algebra H ® H.)

Taking

Q=Q(z), (1.9.14)
we obtain the following expression for the operator (1.9.1):
0 0
442 —
_Qﬁ{zatz +t % }+b<2t8t+l>

9 3
+Q(z,t){a [4z5+2t(—9—t+3] —1‘}. (1.9.15)

The spectral problem for (1.9.15) is, in general, exactly non-solvable.
However, if

T = a(4M +2p+ 3), (1.9.16)

it has M + 1 exact solutions belonging to the (M + 1)-dimensional space
®r. This space is formed by the functions

In,m) = 2"t™, 2n+m=2M +p, (1.9.17)
the most general form of which is

o = t2M+P py, (t%> , (1.9.18)

where Pys are polynomials of degree M.
Now let us construct the space Wr formed by all solutions of equation
(1.9.3). In our case this equation takes the form:

0 9
4t _9M — = 0. 91
{226 + T p}so 0 (1.9.19)
Evidently, the role of ¢r and ¢y is played by the functions
er = t2M+p, Yo = t% (1920)

and, therefore, according to (1.9.5), the most general solution of (1.9.19) is

o= 12MHP g (tiz) , (1.9.21)
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where f is an arbitrary function. We see that the space ¥ is actually larger
than ®r.
The spectral equation for H in Wr can be written as follows:

0 8 z
{2\/_(2-5ﬁ+t2 >+b<2tb—t—+1)}t2M+Pf (ﬁ)

— peM+ z
— E?Mte g (t—2) . (1.9.22)
After dividing it by ¢?*? and changing variables
P
A= 7 K= t, (1.9.23)

it takes the form (1.9.10) with

Hg(T) {sz3

0
2 9
DY — [4Va(4M + 2p + 3)A? + 4bX — 2/a] 3

+2/a(2M + p)(2M + p — 1)A + b(4M + 2p + 1)}

o? 0 i}
Waru?}— ~ Mpu— - 4 - —.
+{2Vadp }6u2 {8\/5 Hay ~ 2Va(4M + 2p)hp 2bu} o
(1.9.24)
By projection of this operator onto the space F' of analytic functions of a

single variable A, terms proportional to % and 5% vanish and the resulting
equation for Hg(I') takes the form:

8
3 _ 2 _ -~
{sf,\ x5~ [4V/a(AM + 2p— 3)3% + 46X — 2v/a] =

+2/a(2M + p)(2M +p — 1)A + (4M +2p + l)b}f(/\) = Ef(}),
fFO)eF.  (1.9.25)

This equation allows M + 1 exact solutions in the space Fr of Mth-
order polynomials Par(A) by construction. Thus, we have obtained a one-
dimensional quasi-exactly solvable spectral equation of order M + 1.

After a simple change of the wvariable A and homogeneous
transformation of the function f(A)

1
2v/az?’

FO) = AWMHEE exp [ﬁ - 4\”[/1\] W(z), (1.9.26)

A=—
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this equation takes the Schrodinger form and we arrive again at the quasi-
exactly solvable model (1.4.13).

1.10 Quasi-exact solvabillity and the Gaudin model. Bethe
ansatz In quantum mechanics

In this section we will show that the completely integrable quantum system
defined by formulas (1.8.6) is none other than the well known Gaudin model
(Gaudin 1976, 1983).

The “hamiltonians” of the Gaudin model are constructed from the
generators of the so-called Gaudin algebra. This algebra is known as
the simplest infinite-dimensional generalization of the algebra si(2). Its
three generators S*(p), S~(p) and S°(p) depend continuously on a certain
complex parameter p and satisfy the following commutation relations

[S7(p), S*(0)] = —525(5°(p) — S%(0)),

[S%(p), $%(0)] = £515(5*(p) — 5*(o))- (1.10.1)

The representations of algebra (1.10.1) can be obtained by analogy with the
sl(2) case. We introduce the notion of the lowest-weight vector |0), which
is annihilated by all lowering operators S~ (p),

57(p)]0) =0, (1.10.2)

and define the lowest weight as the function F(p) whose values are the
eigenvalues of the operators S%(p) on [0):

S°(0)I0) = F(p)|0). (1.103)

Then the representation space ® is defined as the linear span of the vectors:

0), ST (p1)I0), S*(p1)ST(p2)I0),
8T p) ST (pan)|0), - (1.10.4)

where p1,p2,...,PuM,. .. are arbitrary numbers. Evidently, the space ® 1s,
in general, infinite dimensional.
Consider the operators

K(p) = $°(p)S%(p) - %S’+(p)5“(p) - %5—(p)s+(p), (1.10.5)

acting in the representation space ® and having the same structure as the
Casimir operator for the algebra si(2). It is easy to verify that K(p) is not
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the Casimir operator for the Gaudin algebra since the commutators of K(p)
with elements S*(p), S%p) differ, generally, from zero. Nevertheless, the
operators K (p) have another very interesting property which is especially
important for us: they form a commutative family

[K(p), K(c)] =0 (1.10.6)

which gives us the possibility of interpreting them as integrals of motion of
certain completely integrable system.

This system is known as the Gaudin model and has many intriguing
physical and mathematical properties.

First of all, note that the Gaudin spectral problem

K(p)¢ = A(p)o, ¢€® (1.10.7)

is exactly solvable in spite of the fact that the representation space ® in
which we seek the solutions is infinite dimensional.

The exact (algebraic) solutions of equation (1.10.7) can be obtained in
the framework of the Bethe ansatz method. The corresponding ansatz has
the form

¢ =St(&)ST(€2)... ST (Em)|0) (1.10.8)

where M is an arbitrary non-negative integer, and &1, ...,{p are certain
(unknown) complex numbers. Substituting (1.10.8) into the equation
(1.10.7), it is not difficult to show that it actually has solutions of the
form (1.10.8) if the numbers &;, i = 1,..., M satisfy the following system
of numerical equations:

M

Zé.ifkﬂLF(&):O, i=1...,M, (1.10.9)
k=1

which are known as the Bethe ansatz equations. Then, for eigenvalues A{p)
we have:

M
A(p) = F'(p) +F2<p>+2zj”—P/{:—&K—f'—). (1.10.10)

Now let us show that the Gaudin model is equivalent to model (1.8.6)
with two integrals of motion Hr and Hg.

For this purpose we consider the following differential realizations of
generators of the Gaudin algebra:

p b
Stp) = -G+ (% - A) +p, (1.10.11a)
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9 2 1
p+ap+p+i /o
S%p) = L % 24 (3)\ + 2aX — b) —2ap, (1.10.11Db)
2+ 2ap+p) 2 + % + 2apu +a
S (p) = -2 ( ) 5 - 4a% — 8a®).

(1.10.11c)

It is easy to verify that operators (1.10.11) satisfy the commutation
relations (1.10.1) and thus, actually form the Gaudin algebra. In order to
describe the representation in which these operators act, it is sufficient to
solve equations (1.10.2) and (1.10.3), determining the lowest-weight vector
and the lowest weight. This gives

{0) = exp (—a/\2 - %uz) (1.10.12)
and
%+ 1
F(p) = I:; —b—2ap. (1.10.13)

Substituting the explicit expressions for generators (1.10.11) into
(1.10.5), we obtain the following differential expression for K(p):

K(p) = 4a®p? + 4abp — { a)‘,———a—iz——}-az(ll/\z-}—pz)}

)
() o (54 ) - (o +1) )

4+ (e+1)(@2p=3) +i)ze=2 (1.10.14)

from which it follows that the Gaudin model has in this case two non-
trivial integrals of motion which are proportional to the expressions in
curly brackets. However, from the results of section 1.8 we know that
these integrals of motion are none other than operators Hr and Hg for the
model (1.8.6).

We have obtained an important result, stating that the completely
integrable system (1.8.6) coincides with the Gaudin model if the Gaudin
algebra acts in the representation with the lowest weight (1.10.13).

In order to make sure that this coincidence is full, let us examine the
Bethe ansatz solutions for the model (1.10.5) and compare them with the
solutions for model (1.8.6).

Using formulas (1.10.8), (1.10.11a) and (1.10.12) we obtain coordinate
expressions for the Bethe vectors

é=pP H [ (- - )\) £ — € ] exp (-—aAZ - g,ﬂ) . (1.10.15)
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which, evidently, coincide with the expressions (1.7.9) for wavefunctions in

model (1.8.6).

The numbers ¢; entering into (1.10.15) and determining the concrete
form of the Bethe vectors satisfy equation (1.10.9) in which the functlon
F(p) is specified by formula (1.10.13). Thus, we have

M
ro1 %+ 1
+ —b—9%¢& =0, i=1,... M. (11016
kzz:lfi—fk 4&; ( )

This system coincides with the system of spectral equations (1.4.30) for
model (1.8.6).

The last step is to make sure that we have correct expressions for the
eigenvalues of the operators Hr and Hg. For this purpose let us consider
expression (1.10.10). Substituting the function (1.10.13) in it, we obtain

A(p) = 4a%p? + habp ~ a(4M + 2p + 3)

QL " (2p+1)(2p = 3)

M
(4M +2p+1)b+8a ) & 17

i=1
(1.10.17)

Comparison of (1.10.17) and (1.10.14) shows that the eigenvalues of
operators Hr and H are actually described by formulas (1.7.4) and (1.4.29)
which completes our proof of the coincidence of models (1.10.5) and (1.8.6).

Thus, we have established a deep connection between the quasi-
exactly solvable models of the sextic anharmonic oscillator described by
the hamiltonian (1.4.13) and completely integrable Gaudin model (1.10.5)
based on the algebra sl(2). We see that the spectral equations (1.4.30)
for models (1.4.13) can be intrerpreted as Bethe ansatz equations for
the Gaudin model; the number M determining the order of quasi-exact
solvability is simply a number of elementary “spin” excitations in (1.10.5)
and the wavefunction zeros play the role of the “collective coordinates”
of these excitations. As was shown by Ushveridze (1988d, f, i, n, 1989c, e,
1990a, 1992) and Maglaperidze and Ushveridze (1989b, 1990), this amazing
relationship is not specific only for the model (1.4.13), but takes place for
many other quasi-exactly solvable models which will be discussed in detail
in chapters 4 and 5.
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1.11  The classical multi-particle Coulomb problem and the
Schrodinger equation

In preceding sections we have shown that solutions of the quasi-exactly
solvable Schrédinger equation with potential

V(z) = [b> — a(4M + 2p+ 3)] 2® + 2abz* + b%2° (1.11.1)

can be represented in the form

wo=f1(Z6)wen{-= 21 (g

j=1
and
M
E=b4M+2p+1)+8a) ¢, (1.11.3)
i=1

where the numbers {; satisfy the system of numerical equations

1 2p+1 .
—b—2a; =0, =1,..., M. 1.114
Z 6]_& 4£j & J ( )

Now let us discuss the properties of equations (1.11.4) in more detail. It
is not difficult to understand that system (1.11.4) is equivalent to a system
of algebraic equations and therefore its solutions are, generally, complex
numbers. Therefore, the numbers §; should also be taken to be complex:

& = &1y + 1825, (1.11.5)
Substitution of (1.11.5) into (1.11.4) leads to a system of real equations

flg"ﬁlk 41 &5 o
Z (61] - Elk (62] E?k)z + 4 6%] + é‘%] a‘&lj 0)

< €2~ € 2
j 2k p+1 621
+ +2afy; = 0,
; (&15 — &1x)? + (€25 — €2k)? 4 & +¢; &

(1.11.6b)
in which j = 1,..., M. The system (1.11.6) can be rewritten in a more
compact form if we introduce the two-dimensional vectors

&= <§”>. (1.11.7)
Eaj
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Then, instead of (1.11.6) we can write:

Z —& prl g — b~ 2a6€; = 0,
lfa &cl2 4 1g1?

ji=1,...,M, (1.11.8)

where by € and & we have denoted the vector and the matrix:

&= (3) &= ( o ) (1.11.9)

Equation (1.11.8) can be interpreted as the condition for an extremum
of the function:

W, &u) = Zq,qk In |

i<k

M —
’ -y aUE),  (1110)

where ¢; = 1 are unit numbers and

2p+1

UE) = - In [¢] + b¢ - €'+ af3€. (1.11.11)

It is not difficult to see that (1.11.11) is none other than the potential of
a two-dimensional (logarithmic) Coulomb system consisting of M particles
with coordinates f_; and unit charges ¢; = 1 moving in the potential U(f-;)
(Ushveridze 1988d, g, Maglaperidze and Ushveridze 1988). Recall that two-
dimensional classical electrodynamics is characterized by the logarithmic
Coulomb potential.

Potential (1.11.11) is generated by a particle with charge 224*—1 located
at the origin and by two particles with charges 3(A%a+ Ab) and coordinates
+A, where A tends to infinity. This gives the oscillator-type potential in
the limit A = oo.

We therefore see that the problem of finding solutions of the system
of algebraic equations (1.11.4) is equivalent to the problem of finding
equilibrium positions of a system of Coulomb particles in the potential
U(g) At first sight this problem does not have solutions since the potential
U(@ is unstable. However, the presence of the Zs-symmetry in the system
(§2 — —&2) leads to the existence of a straight line (coinciding in the
present case with the axis £;) on which all forces are longitudinal. The
problem of equilibrium of particles moving on this line becomes stable and
one dimensional. This gives us the possibility of seeking the solutions of
the system (1.11.4) in the real numbers.
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Let us now consider the structure of the real £;-axis in more detail.
On this axis the potential (1.11.11) essentially simplifies:

2p+1

U =-=2

In €] + b€ + ag”. (1.11.12)

Its form is depicted in figure 1.9. What did we gain by introducing the

U

/ Ue)
\ g
N

Figure 1.9. The form of the potential (1.11.12) for b > 0 and a > 0.

analogue system of classical Coulomb particles? The answer is obvious: the
rich intuition everybody has in classical mechanics. In particular, looking
at the function U(€), everybody will immediately say that the equilibrium
position does exist. Indeed, the potential wells depicted in figure 1.9 contain
M particles with unit charge. The interaction between these particles is
of Coulomb type and therefore they repel each other. Furthermore, they
interact also with the force centre at the origin which has Coulomb charge
gff—l. At short distances this centre also repels the particles. They cannot
run away to infinity because of the attraction term aé? which becomes
important at large distances. Hence, equilibrium is necessarily established
at some finite distances.

It is not difficult to understand that there are several equilibrium
positions, depending on the number of particles situated to the right of
the origin. More exactly, there are M + 1 possibilities, some of which are
depicted in figure 1.10. So we can conclude that the system of equations
(1.11.4) has M + 1 different solutions. Note that the same result was
obtained in preceding sections by different methods.

Now remember that the numbers §; determine the zeros of the
wavefunction. From formula (1.11.2) it follows that their positions are

z; = £/2%. (1.11.13)
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M M-1 2 1
% % % *—
0
M M-1 K+1 K 2 1
% % % % % %
0
1 2 M-1 M
. e %
0

Figure 1.10. Various equilibrium positions of Coulomb particles situated in the
external potential (1.11.12).

Remember also that only zeros which are real and lie inside the interval in
which the spectral problem is formulated have a physical meaning. They
play the role of wavefunction nodes. According to the oscillator theorem,
the number of nodes determines the excited state. From (1.11.13) it follows
that the wavefunction nodes correspond to the positive values of §;. If K
numbers of & are positive (0 < K < M) the number of nodes is 2K + p
and thus such a distribution of particles describes the (2K + p)th excited
state.

We see that in the first case all §; are negative and the wavefunction
has p nodes. In the last case, when all particles £; lie on the right semi-axis,
the number of states is maximal and equal to 2M + p.

It is easy to verify that this picture does not contradict formula (1.11.3)
in which the values of the energy levels are expressed in terms of the
centre of charges of the system of Coulomb particles. Indeed, the more
the particles are located in the right well, the more the centre of charges is
shifted to the right and the higher is the energy.

Note that all these reasonings are valid only when the number a,
determining the behaviour of the system at large distances, is positive.

What happens if a = 07 From section 1.5 we know that this case
corresponds to a simple harmonic oscillator, which for any given M has
only one solution with 2M +p nodes. The classical potential (1.11.12) takes
in this case the form depicted in figure 1.11. We see that this potential has
only one stable well, and therefore for any given M we actually have only
one possibility, when all particles are situated in this well and, thus, have
positive coordinates.

Now let us assume that the parameter a is small and negative. The
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o

Figure 1.11. The form of the potential (1.11.12) for ¥ > 0 and a = 0.
classical potential corresponding to this case is depicted in figure 1.12. We
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Figure 1.12. The form of the potential (1.11.12) for b > 0 and —74;":—3 <a<0.

have obtained a potential well of finite depth in which several particles
may lie. Consider the simplest case, when only one particle is situated in
this well. We see that, unlike the case with a > 0, we have an attractive
force at infinity which, however, does not destroy the existing equilibrium
of the particle, which may lie in the minimum of the potential U() at
the point £~ (the stable equilibrium) or in the maximum at the point £}
(the unstable equilibrium). If we now begin to increase the modulus of
the negative parameter a, at some instant the classical potential ceases
to have extrema, equilibrium of the particle in this potential becomes
impossible and it runs away to infinity (see figure 1.13). It is evident
that in this case two equilibrium positions — one stable (at the point
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5 > §
U(§)

Figure 1.13. The form of the potential (1.11.12) for 5 > 0 and a < —4:12.

- = [-b— /b2 + 2a(2p + 1)]/4a) and one unstable (at the point &, =

b2 + 2a(2p + 1)]/4a) — merge at the point when the instability
arises. This i1s the point a = "Z;%' But from the results of section 1.5
we know that this is none other than the position of the Bender and Wu
singularity! This enables us to assert that, in the language of the classical
Coulomb analogue system, Bender and Wu singularities can be interpreted
as the points at which the system of classical Coulomb particles becomes
classically unstable (Ushveridze 1988e, g).

1.12 Classical formulation of quantal problems

From the results of the preceding section it follows that the quasi-exactly
solvable model of the sextic anharmonic oscillator with hamiltonian (1.4.13)
is partially equivalent to a classical Coulomb system. Partially, because we
can describe in the classical language only a finite part of the spectrum
(consisting of M + 1 levels), but not the whole spectrum.

In this connection let us pose the question: what happens if M tends to
infinity? From the reasoning given above we know that the larger M is, the
larger is the number of states allowing classical interpretation. Therefore
taking M = oo we must obtain a model of which all the energy levels and
corresponding wavefunctions can be described in the language of classical
electrostatics. In this sense, the limiting quantum mechanical model will
be completely equivalent to a classical Coulomb system (Maglaperidze and
Ushveridze 1988, 1989b).

In section 1.5 we have already considered the limit M — oo for the
model (1.4.13). In this limit the system of equations (1.11.4) becomes
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infinitely complicated and ceases to be algebraic. Therefore, the limiting
model is exactly non-solvable. As we know, this is a quartic anharmonic
oscillator. It is emphasized that a correct passage to the limit M — oo
implies a simultaneous change of the parameters a and b determining the
form of the hamiltonian (1.4.13). Making, for example, the substitution

b=(28M)3A, a= g(ng)-%A-l (1.12.1)
in which A is a function behaving for large M as
1 «a
A=1+ -, 1.12.2
3 (28M)% (1122)

substituting formulas (1.12.1) and (1.12.2) into the potential (1.4.13) and
taking M — oo we obtain the limiting potential

V(z) = az? + B=z*. (1.12.3)

In order to construct the corresponding (limiting) classical analogue
system for (1.12.3), we must substitute expressions (1.12.1) and (1.12.2)
into the equations (1.11.4) and then take M — oco. As a result we obtain
the equilibrium conditions for a system consisting of an infinite number of
classical Coulomb particles. Remember, however, that equations of classical
mechanics are not very convenient for describing the behaviour of such
multi-particle systems. Much more suitable in this case are the solid state
equations in which the role of the unknown object is played by the particle
distribution density.

In order to reduce equations (1.11.4) to a continous form, let us
enumerate the coordinates &; of the particles in the following order:

< <. . <€y (1.12.4)

and assume that M — K particles are situated in the left hand well, while
the K remaining particles lie in the right hand well. In other words, we
consider the spectral equations for the (2K + p)th energy level.

Taking

6 = Losniak (X}) (1.12.5)

i ZB_
we obtain instead of (1.11.4):

M 1 1 2p+1 1 1 (i
i it bk )
D es A b e 3¢ (o
i=1,...,M. (1.12.6)
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Correspondingly, expression (1.11.3) for the energy E takes the form:

E=4MA(23M)%{1+2L+_1+225<> } (1.12.7)

If M is infinitely large, it is convenient to introduce (instead of the
discrete variable ¢ and discrete function 5(7:?)) the continuous variable
A= —A’; and continuous function £(A). Generally speaking, the function
&(A) is continuous (in the usual sense of this word) only in the intervals
A€[0,1-4¢]and A € [1 —¢q,1] where ¢ = % At the point A = 1 — ¢ it has
a discontinuity (a jump) caused by the fact that there are no particles in
the vicinity of the repelling centre.

Assuming that M tends to infinity, we can replace the sums in (1.12.6)
and (1.12.7) by integrals. This leads us to the integral equation for £():

1

du 1 2p+1 1
————— =1+ =£(}) - — 1.12.8
fs(x) R A 6) (1:128)
and to the following explicit expression for E:
2p+1
E= 4M(2,6M)3 1+ - /E ) dA + —— ar (1.12.9)

Equation (1.12.8) and expression (1.12.9) can be rewritten in more
convenient form if we introduce a new variable £ and a new function p(§)
by the formulas

E=E0) PO = 5
Owing to the monotonicity of the function £(A), the function p(}) is non-

negative. However, it differs from zero only in the intervals [A~, A*] and
[B~, B*], the ends A* and B of which are defined as follows:

E(l —q+ 0) BT =¢(1).
It is not difficult to see that p(¢) has the meaning of a particle distribution

density.
In terms of the function p(€) equation (1.12.8) takes the form

pimydn _ 1. 2p+11 L1919
FEET =14 ge - B (1.12.12)

(1.12.10)

(1.12.11)
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and for the energy E we have:

(1.12.13)

E = 4M(28M)} {1+ /5 @) d§+2p+1}.

Equation (1.12.12) must be supplemented by the requirement that the
function p(£) is non-zero in the intervals [A~, A*] and [B~, B*] only, and
in these intervals satisfies the normalization conditions

At Bt
[roa=1-0 [ne =0 (112.14)
A~ B-

which mean that charges of particles situated in the left and right hand
wells are equal to 1 — ¢ and ¢, respectively. In the chosen normalization the
total charge of the particles in both wells is equal to unity.

Note that for M = oo, equations (1.12.12) and (1.12.14) can be
interpreted as the equilibrium conditions for a charged liquid distributed
between two separate wells of the following form:

(+2)*
U(f):{ i gig (1.12.15)

The corresponding potential is depicted in figure 1.14. The charge
g= % of the liquid in the right hand well determines the number of the
excited state. According to formula (1.12.13), the energy of this state is
expressed in terms of the centre of charge

ffp
R / £p(€) dé (1.12.16)

of all liquid (in both wells). Note also that the behaviour of the
function p(¢) in the interval [A~, A*] determines the distribution of
complex wavefunction zeros, and its behaviour in the interval [B~, B*]
the distribution of wavefunction nodes.

We shall seek solutions of the equations (1.12.12) and (1.12.14) in the
form:

1
p(§) = 5—D1s R(8), (1.12.17)

1
where R({) is a certain real analytic function of the complex parameter £
having two cuts between the real points A=, A* and B~, B*. Obviously, for
any such function R(£) the corresponding function p(¢) defined by formula
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U

U(€)

Figure 1.14. The double-well classical potential in which the charged liquid is
situated.

(1.12.17) will differ from zero in the intervals [A~, A*] and [B~, B*] only.
This gives us the possibility of writing

7[p(n) dp _ 1 [ E(n) dn 41 R(m)dn _ 1 [ R(n)dn

E—n  2Jc, €-n  2Jc, £€-7 2Jc &€-n"
(1.12.18)

where C1,Cs and C are the contours shown in figure 1.15. Analogously,
one can write:

[ o) an = %/ClR(n) dn+%/czR(n) dn==3 [ Rw) dn
(1.12.19)

From (1.12.17) and (1.12.12) it follows that the function R(£) must
behave at infinity as R(£) ~ £, € — oo. The simplest function having an
analytic structure shown in figure 1.15 is

R(€) = éi;\/(f—A‘)(f—AJf)(ﬁ—B*) (1.12.20)

- B7) ’

where A* and B* must be considered as unknowns. Substituting (1.12.20)
and (1.12.17) into equation (1.12.12) and computing the resulting integrals,
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Figure 1.15. The complex 7-plane for the function R(n) and contours Ci, Cs,
and C for the integrals (1.12.18).

we obtain the following conditions

B =0, At4+ A +Bt=-4,

1.12.21
ATA- + (At +A7)Bt =0. ( )
From this it follows that
1 e —4€2 - €3
p(&) = 2wRe ¢ : (1.12.22)

where ¢ = At A~ B* is a certain unknown parameter. It can be determined
from one of the conditions (1.12.14).
Now, consider the case when

1K K<L M. (1.12.23)

In this case the charge ¢ is small. Therefore the effective values of coordinate
£ in the second integral (1.12.14) are also small. This enables us to write:

BY Vel2
_ 1 —d6 T 34
q-B[p(f) e~ o 0/ Vemag = g el (1122)

from which it follows that

e=(Cq)}, (1.12.25)
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where

_ 2v2er())
RGN
Now the function p(€) is completely determined. Substituting it into the

limiting expression for the energy (1.12.13) and taking into account that
Mg = K, we obtain in the himit M — oo the final result for E

o) (1.12.26)

E = 27128 3(CK)*3, (1.12.27)

which, as is easy to see, coincides with the known semi-classical result. Note
also that for small values of € the function p(£) has the form

_ VG 1
Tom VE

which gives us the possibility of restoring the correct semi-classical
distribution of wavefunction nodes:

p(€)

(1.12.28)

1

Ty ~n3, (1.12.29)

Strictly speaking, equations (1.12.12) and (1.12.13) from which the
results (1.12.27) and (1.12.29) were obtained are valid only in the quasi-
classical limit when the number K is large (see formula (1.12.23)). In
this limit the charge of the liquid situated in the right hand well is not
negligibly small; the expression in the curly brackets in (1.12.13) differs
from zero and is of order K*/3/M*/3, This gives us a true leading term of
the semi-classical expansion for E.

However, it is evident that equations (1.12.12) and (1.12.13) cannot
always be true since they do not contain any information about the second
parameter « entering into the potential (1.12.3). This parameter was simply
lost in the derivation of these equations! This happened when we made the
transition from the discrete formulas (1.12.6), (1.12.7) to their continuous
analogues (1.12.8) and (1.12.9). Indeed, considering the limit M — oo we
have taken A = 1 neglecting the correction which, according to (1.12.2),
depends explicitly on a. Besides, replacing the sums entering into (1.12.6)
and (1.12.7) by the integrals, we have neglected the corrections to the
FEuler-McLaurin summation formula. In principle, all these corrections are
essential for performing a correct passage to the limit M — oo. However,
if K > 1 they are relatively small (of order %), and therefore the leading
term of the semi-classical expansion found from equations (1.12.12) and
(1.12.13) turned out to be true. Of course, if we want to obtain the next
terms of the semi-classical expansion or describe the low excitations in the
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model (1.12.3) the corrections must be taken into account. In this case,
the improved equations (1.12.12) and (1.12.13) become more complicated;
however, they can be solved by means of a simple iteration procedure which
leads to correct results for the spectrum in the model (1.12.3) (Maglaperidze
and Ushveridze 1989b). An example of such a calculation will be considered
in detail in chapter 2.

1.13 The Infeld—Hull factorization method and quasi-exact
solvability

In this section we show that the model of the quasi-exactly solvable sextic
anharmonic oscillator (1.4.13) discussed in the preceding sections can be
used as a starting point by constructing new quasi-exactly solvable models,
the potentials of which are expressed in terms of rational functions (Shifman
1989b, Ushveridze 1989d, g).

This can be done by means of the so-called Infeld-Hull factorization
method (Infeld and Hull 1951), the basic idea of which can be formulated
as follows.

Let V(z) be a potential of the quasi-exactly solvable model (1.11.1)
for which M + 1 explicit solutions Esg4p and ¢og4p(z), k£ =0,1,..., M
are known. We can write:

2
{"3%7 + V(x)} = Eaktp¥aetp(2)- (1.13.1)
Taking & = 0 in (1.13.1) we obtain the relation
Yy (2) = [V(2) = Epldp(2), (1.13.2)
from which it follows that
V(z) — Bp = y,(2) + y5(2), (1.13.3)
where
¥p(2)
= 1.134
yp(z) wp(r) ( )

Substituting (1.13.3) into (1.13.1) and taking into account that

2
Oz?

we can rewrite the equation (1.13.1) in the following factorized form:

+yp(2) +yi(z) = [yp(z) + ;%} [y,,(z) - F%] ,  (L.135)

[yp(x) + ;%] [yp(x) - (%] Yartp(Z) = (Bagsp — Ep)¥artp(z). (1.13.6)
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Now let us act by the operator y,(z) — 2 on (1.13.6). This gives:

) - 32| [0+ 2] o) = 2] aernto)
~ (Basy - By) [(0) — | bmeanle). (1137)

Using the relation

[yp(z) - ;%] [yp(x) + %] = —% — yh(z) + ¥2(z), (1.138)

we can rewrite equation (1.13.7) in the following final form:

[ L ~ ~
[—8—1'5 + V(I)] Vok+p(T) = Eoktp¥orsp(2), (1.13.9)
where
Vo= B +3k) -y
= V(z)- Qy;,(x)
52
= Viz) - 255 Inyy(2) (1.13.10)
and
~ 3}
Yortp(z) = |yp(z) — 52 Yar+p(T)
_ i Y2k4p(2)
“[%m dplz) | V)
f ¢2k+p(z)¢p(z) dz
= (Eakyp — Ep)— 1.13.11
( 2k+p P) ¢p(3) ( )
From (1.13.11) it follows that ¥,(z) = 0. Therefore, the normalizable
functions vk 4p(z) correspond to the values £ = 1,..., M. Thus, we have

obtained a new quasi-exactly solvable model with the potential V(x) having
only M exact solutions Jzkﬂ,(x) corresponding to the old eigenvalues Eqj4p
withz=1,..., M.

The explicit form of this model and its solutions can be obtained by
substituting expressions (1.11.1) and (1.11.2) into (1.13.10) and (1.13.11).
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This gives:
V(z) = %%+ 2abac’ + [b? — a(4M + 2p + 3)] + 2b+ =4
- Z - - Z A60: (1.13.12)
2 TS0 i=l \ g7 — 601)
and
N M M M 1
Tucn(@) = T1(5 - { 3o }
i=1 i=1 2 EK’ i=1 2 501
4 2
o {22 -2 (113.13)

where by {g; and &y; we have denoted the number € corresponding to the
solutions ¥ox4p(z) and ¥,(x) of the initial quasi-exactly solvable model
(1.11.1).

Now let us study model (1.13.12) and the corresponding solution
(1.13.13) from a physical point of view.

First of all, remember that all numbers &;; are negative since they
correspond to the lowest energy level with parity p in model (1.11.1) (the
explanation of this fact was given in section 1.11). From the negativity of
the numbers £q; it follows that the potential (1.13.12) is regular for any
z # 0. If p=0, it is regular even at the point £ = 0 and has the form of
a smooth potential well of an infinite depth (see figure 1.16a). However, if

1% 1%

V(z) \ / V(z)
0 xr O X
L A4 AN

a) b)

Figure 1.16. The form of the potential (1.13.12) for a) p =0 and b) p =

p = 1, the potential is singular at the point z = 0 and has the form of two
separated potential wells as depicted in figure 1.16b. Since the potential
barrier at the origin is not penetrable for the particle, we come to two
mirror-like Schrodinger problems on the negative and positive half axes.
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Now let us discuss the wavefunction properties in the resulting models.
From (1.13.13) it follows that all wavefunctions 13k 4+p(2) have poles at
points = ++/2€p;. Since all points £p; are negative, the wavefunctions are
regular on all the real z-axis.

Note that for p = 0 the functions (1.13.13) are odd. Therefore they
describe only energy levels of odd parity. To obtain a correct numbering
of the levels in this case, let us consider the last formula (1.13.11) which
becomes in our case

Pox (x) ~ / Yok () ho(z) dz (1.13.14a)

From the sign-definiteness of the ground state wavefunction v¥4(z) and also
from the fact that the function 25 (z) has 2K nodes it follows immediately
that the function s k() has only 2K —1 nodes on the real z-axis and, thus,
describes the (2K — 1)th excitation in the model (1.13.12). This leads us to
the assertion that the quasi-exactly solvable sector in the model (1.13.12)
with p = 0 is formed by the levels with numbers 1,3,...,2M — 1.

When p = 1 the wavefunctions (1.13.13) are even, but this fact is not
important for us, since only the parts of the wavefunctions defined on the
negative (or positive) z-axes have a physical meaning. In this case formula

(1.13.11) has the form:
Yok 41(2) /¢2K+1( Y1(z) d (1.13.14b)

We know that the function ¥,(z) is sign-definite on the negative half axis
and that the function ¥2x4+1(z) has K nodes there. From this it follows
that the function 1Z2K+1(:c) has exactly K — 1 nodes on the negative half
axis and, thus, corresponds to the (K — 1)th excitation. This enables us
to assert that the quasi-exactly solvable sector in the model (1.13.12) with
p = 1 consists of levels with the numbers 0,1,..., M — 1.

The Infeld-Hull factorization procedure described above has a
very transparent interpretation within Witten’s supersymmetric quantum
mechanics (Witten 1982).

Indeed, due to the Z; symmetry (z — —=z) the quasi-exactly solvable
equation for (1.4.13) can be considered as an equation on the (positive) half
axis z € [0, 0] with the boundary conditions

¥'(0) =10, (c0) =0, (1.13.15a)
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for p = 0, and
$(0) =0, %(o0) =0, (1.13.15b)

for p = 1. In both these cases the Schrédinger problem is well defined
and the corresponding hamiltonians are hermitian. In terms of the new
boundary conditions the models (1.4.13) can be interpreted as the quasi-
exactly solvable models of orders M + 1 in which the energy levels with the
numbers 0,1,..., M are known exactly.

Following Shifman (1989b) note that the hamiltonian of each of these
models can be considered as “one half” of Witten’s hamiltonian

H= Q%= Q2 (1.13.16)
where (); and @)y are supercharges:
Q1 =0p+o.W(z), Q=o02p— 01 W(z). (1.13.17)

By reconstructing the missing “other half”, we obtain a fully supersymmet-
ric system with “bosonic” and “fermionic” sectors. The hamiltonian acting
in the “fermionic” sector — let us call it the daughter hamiltonian — has
the same energy eigenvalues as the original one. Moreover, the eigenfunc-
tions of the daughter hamiltonian are obtained from those of the original
hamiltonian by applying supercharge. Since M + 1 levels of the original
hamiltonian are exactly derivable, the same is valid for the daughter sys-
tem. More exactly, we get explicitly M levels, because the ground state is
annihilated by the supercharge, provided that supersymmetry is not bro-
ken spontaneously. Here we have considered only the case of the unbroken
supersymmetry, since only in this case does the whole construction yield
a normalizable wavefunction. As a result we obtain a new quasi-exactly
solvable system having M energy levels which can be constructed exactly.
As in the initial case there are the ground state, the first excitation, ...,
and the (M — 1)th excitation.

Obviously, this procedure can be repeated further. In fact, we know
the ground state for the daughter hamiltonian, and hence we can construct
a new supersymmetric pair of potentials. The potential V(z) will now play
the role of the original potential, and starting from this, we shall get the

“daughter-daughter” potential ‘7(1'), in which we shall know M — 1 energy
levels, and so on. For a given M this procedure will be exhausted on the
Mth step when we come to the model for which only one (the ground state)
energy level is known.
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1.14 The Gelfand-Levitan equation. Extensions of quasi-exactly
solvable problems

In the preceding section we have described the method of expanding the
class of quasi-exactly solvable models of type (1.4.13). Obviously, this
procedure has a quite general character and can be applied to any quasi-
exactly solvable model of one-dimensional quantum mechanics.

Note, however, that models obtained by means of this procedure are
“poorer” than the initial model. Indeed, as we have seen, starting with
the two-parameter class of quasi-exactly solvable models of order M + 1 we
obtained a new two-parameter class of models, the order of which is only
M . Therefore, on the Mth step this procedure is exhausted.

In this section we will discuss another procedure that gives the
possibility of obtaining richer classes of quasi-exactly solvable problems.
We show that starting with the L-parameter class of one-dimensional quasi-
exactly solvable models of order M + 1 it is possible to obtain a new
(L + M + 1)-parameter class of quasi-exactly solvable models of the same
order M +1. This gives us a convenient tool for constructing wide classes of
such models, parametrized by an arbitrarily large number of free parameters
(Ushveridze 1991a).

This procedure is based on the use of the so-called Gelfand-Levitan
equations (Gelfand and Levitan 1951), which until now have been used only
for expanding the classes of exactly solvable problems (see e.g. McKean and
Trubowitz 1981, Levitan 1987, Pdschl and Trubowitz 1987).

First of all, let us recall some statements of the standard Gelfand-
Levitan approach. For this purpose we consider again the model (1.4.13) in
which we know exactly M +1 wavefunctions ¥s;4,(z) and the corresponding

energy levels Eyryp, = =0,...,M. One can write as before
52
[_W + V(I)] Yokt (2) = Bk 4p¥ou4p(2)- (1.14.1)

The Gelfand-Levitan method allows us to construct a class of new
Schrédinger equations

[_aa_; + ‘7(13)] J2k+p(l‘) = E2k+p1;bv2k+p(1;) (1'14_2)

with the same spectrum. The daughter potential V(z) and the functions
Yar+4p () satisfying this equation can be determined from the following
simple relations:

V(z)=V(z)+ 25‘1;1{(1,31) (1.14.3)
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and
Baktp(2) = Yorsp(z) + ] K(z,y)¥2e+5(y) dy, (1.14.4)
where K(z,y) is a solution of the Gelfand-Levitan equation
K(z,y)+ Qz.y) + ] K(z,2)Q(z,y) dz =0 (1.14.5)

with the kernel
Qz,9) = Y ¥ntn(z)¥n(y), (1.14.6)
n=0

in which 7, are arbitrary constants. The summation in (1.14.6) is
performed over all eigenfunctions of the initial hamiltonian (1.4.13).

Now let us assume that the numbers +, differ from zero only for the
known levels. In our case these are levels with the numbers n = 2k + p,
where k = 0,..., M. This leads us to the following (degenerate) kernel
(1.14.6):

Q(z,y) = ch¢2k+p Ybor+p () (1.14.7)

with cx = Yor4p.
Substituting (1.14.7) into the Gelfand-Levitan equation (1.14.5) and
seeking the function K(z,y) in the form

M
V) =) fe(@)barsp(v), (1.14.8)

we come to the following system of equations for the coefficient functions

fr(z):

M T
$e(@)+ banin (@) + 61 3 fi(2) [ baren (@Danan(2) d,
1=0 o0

c=0,...,M (1.149)

y oo
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which, evidently, can be solved algebraically. The result has the form:

n,m=

M T
K@) = = 2 [ ten [ brmes(&amsp(e) dall ™

XmYam+p (T)Yan+p(Y).- (1.14.10)

Substituting (1.14.10) into formulas (1.14.3) and (1.14.4) we obtain

2

- P 7
Vi) = V(z)- QW Indet ||6pm + cn / Vantp(2)Vam4p(2) dz2||

-0

(1.14.11)

and

J2n+P(z) = Yantp(T)

M xr
=Y W+ n [ Vans(Wamen(2) el e bamsn(2)

Im=0
y / Bamtp (2)bansp(2) dz. (1.14.12)

Thus, we have obtained a class of daughter potentials and
corresponding solutions in explicit form. From (1.14.11) it follows that this
class is parametrized by M + 1 additional parameters cp,c1,...,cpm. The
largest ((M + l)-parameter) class arises when all these parameters differ
from zero. In the opposite case, when they are all equal to zero, it reduces
to the old (initial) model (1.4.13). In the simplest non-trivial case, when
only one parameter ¢q differs from zero, formulas (1.14.11) and (1.14.12)
take an especially simple form:

2

I7(x)=V(x)—2-a%ln 1+c0/¢§(z) dz] (1.14.13)

and

B co j Yo (2)V2k4p(z) d2
Yor+p(2) = Yor4p(2) — ¥p(2) = s . (1.14.14)
14c¢ [ 1,02(2) dz
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In this case we have a three-parameter class of quasi-exactly solvable models
and formula (1.14.13) describes a continuous deformation of the initial
model (1.4.13) into the other models of this class. We see that for any
co satisfying the constraint

v L ¢y < oo (11415)
J $2(2) dz

the wavefunctions (1.14.14) are normalizable and satisfy the needed
boundary conditions.

1.15 Summary

Let us now summarize the results obtained above for the sextic anharmonic
oscillator with the potential (1.11.1), in which a and b are real continuous
parameters, M is an arbitrary non-negative integer and p takes the values
0 and 1.

1. If a = 0 this model reduces to a simple harmonic oscillator with the
frequency b&.

2. If a # 0 potential (1.11.1) describes a quasi-exactly solvable model
of order M +1. For any given M it has M +1 exact solutions corresponding
to states with the numbers 2K +p, K = 0,1,..., M. The spectrum of this
model can be expressed in terms of the parameters §; which play the role
of the wavefunction zeros and satisfy the system of numerical equations
(1.11.4).

3. It is possible to observe explicitly many non-perturbative effects in
the model (1.11.1): the convergence of the perturbation series in a, the
quasi-crossing of the energy levels, the plaiting of the levels in the complex
a-plane, the Bender and Wu singularities, and so on.

4. Ifa~M"3,b~4M% and M — oo, the model (1.11.1) reduces to
the exactly non-solvable model of the quartic anharmonic oscillator.

5. Model (1.11.1) can be used as a zero-order approximation by
constructing perturbation theory. For any given perturbation, the terms
of the perturbative expansion can be obtained explicitly in quadratures.

6. Model (1.11.1) can be viewed as a spherically non-symmetric
quantum top in an external magnetic field. The parameters a, b, M and
p determine the strength of this field. Simultaneously, the parameter M
determines the spin of the top which is a semi-integer: s = % In this
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language the order of quasi-exact solvability is equal to the dimension of
spin space: M +1 =25+ 1.

7. Model (1.11.1) can be considered as a result of a separation
of variables in the spherically non-symmetric two-dimensional harmonic
oscillator with degenerate spectrum. The parameter a determines the
frequencies of this oscillator which are equal to @ and 2a. The second
parameter b describes the form of the oscillator wavefunction for which
separation of variables is possible, and the integer parameters M and p
determine the index of the corresponding energy level. The order of quasi-
exact solvability, M + 1, is equal to the degree of degeneracy of this energy
level.

8. Model (1.11.1) is also connected with the completely integrable
Gaudin model, which can be solved exactly in the framework of the Bethe
ansatz method. In this case, parameters a, b and p determine an infinite-
dimensional representation of the Gaudin algebra. The parameter M is
now the number of elementary excitations in the Gaudin model. The
wavefunction zeros §; play the role of the “rapidities” of these excitations
and their spectral equations (1.11.4) coincide with the Bethe ansatz
equations. The order of quasi-exact solvability, M + 1, is the dimension
of the irreducible representation of the hidden symmetry group for the
Gaudin model.

9. Model (1.11.1) is equivalent to a system of M two-dimensional
Coulomb particles moving in an external electrostatic field. The parameters
a, b and p determine the strength of this field. The non-negative integer M
coincides with the number of particles, the wavefunction zeros §; play the
role of the coordinates of these particles, and the spectral equations (1.11.4)
coincide with the equations for their equilibrium. The order of quasi-exact
solvability, M + 1, is the number of different equilibrium positions of the
particles.

10. The hamiltonian of the model (1.11.1) can be interpreted as a
hamiltonian of the bosonic sector in Witten’s supersymmetric quantum
mechanics. The construction of the fermionic sector is possible and leads
to a new quasi-exactly solvable model of order M, the potential of which is
expressed in terms of rational functions.

11. The model (1.11.1) can be viewed as a starting point for
constructing wide classes of other quasi-exactly solvable models of the same
order. This can be done by means of the Gelfand-Levitan equation method.

This list is schematically depicted in figure 1.17. The scheme
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Figure 1.17. The problems of theoretical physics appearing by the study of
quasi-exactly solvable models of anharmonic oscillators.

clearly demonstrates that model (1.11.1) has extremely rich physical and
mathematical properties, can be discussed from various points of view
and, beyond any doubt, is a very interesting object to study. Especially
important for us were various hidden group-theoretical (Lie-algebraic)
properties of mode] (1.11.1) discussed in sections 1.4, 1.6 and 1.8. The
analysis of these properties allowed us to give simple answers to the
question: “why is this model quasi-exactly solvable?” In turn, the answers
led us to the possibility of formulating simple group-theoretical methods
of constructing quasi-exactly solvable models. In the present chapter we
formulated only the basic ideas of these methods. In the next chapters we
will discuss these methods in more detail and show that they lead to wide
classes of various quasi-exactly solvable models, both one dimensional and
multi-dimensional.
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1.16 Historical comments

Let us make a few remarks about the history of the problem. Following the
work of Singh et al (1978) devoted to the explicit construction of the ground
state solution for the sextic anharmonic oscillator many people started
feeling happy even when a single solution of the Schrédinger equation with
a non-trivial potential acquired an elementary form. The construction of
such solutions was extended by Magyari (1981), Gershenson and Turbiner
(1982), Rampal and Datta (1984) and Leach et al (1989) to arbitrary
polynomials. In this connection we mention also an interesting work of
Taylor and Leach (1989) in which two-dimensional models with polynomial
potentials are discussed. During the later development the interest in
polynomial forces was complemented by studies of various non-polynomial
interactions (Flessas 1981, 1982, Znojil 1983, 1984, Blecher and Leach 1987,
Hislop et al 1990) and strongly singular potentials (Znojil 1982).

The first non-trivial model with two exactly calculable energy levels
and with a potential expressed in terms of hyperbolic functions was
obtained heuristically by Razavy (1981). A model with similar properties
but with a polynomial potential was found by Leach (1984, 1985).
Other examples of quantum models admitting several exact solutions
and characterized by non-polynomial potentials were discussed by Blecher
and Leach (1987), Gallas (1988), Vanden Berghe and De Meyer (1989),
Lakhtakia (1989) and Znojil (1990). For more details see the recent paper
of Znojil and Leach (1992).

The term “quasi-exact solvability” was introduced in the work of
Turbiner and Ushveridze (1986), where two-dimensional quasi-exactly
solvable models with degenerate spectra were considered and studied.

The first examples of infinite series of one-dimensional models with
arbitrary, arbitrarily large, exactly calculable segments of the spectrum
were given by Zaslavsky and Ulyanov (1984) (for the hyperbolic potentials),
Bagrov and Vshivtsev (1986) (for the exponential potentials) and Turbiner
and Ushveridze (1987) (for the polynomial potentials). Then individual
infinite series of models with potentials expressed as powers of exponential,
hyperbolic and trigonometric functions were found by Turbiner (1988b).
The list of one-dimensional quasi-exactly solvable models was further
extended significantly by Ushveridze (1988c¢, 1). In particular, this author
found new models with singular trigonometric and hyperbolic potentials,
and also a series of models with potentials involving elliptic functions. The
existence of a finite series of quasi-exactly solvable models was pointed out
in that study. In this connection it is also worth mentioning the papers
(Ushveridze 1988k, o, p, 1989d) in which the existence of an infinitely
(functionally) large number of quasi-exactly solvable models of not more
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than fourth order was proved.

The first examples of multi-dimensional quasi-exactly solvable models
have been considered by the same author (Ushveridze 1988¢, k, m). In
these papers, the example of an infinite-dimensional quasi-exactly solvable
model was also discussed in detail. Other methods of constructing multi-
dimensional quasi-exactly solvable models of limited order are given by
Ushveridze (1989c).

The next stage in the history of quasi-exact solvability is characterized
by attempts to understand this phenomenon and to formulate general
principles allowing the construction and investigation of all possible quasi-
exactly solvable models. These attempts led to the development of two
fundamentally different approaches, which we shall refer to as the algebraic
and analytic approaches.

The algebraic approach, formulated by Turbiner (1988a) for the one-
dimensional case and generalized by Shifman and Turbiner (1989) to the
case of an arbitrary dimension, is based on the observation that finite-
dimensional representations of Lie algebras can be used for generating
various quasi-exactly solvable models. Note that the same idea was
formulated independently in the paper of Kamran and Olver (1990) which
appeared a little later. The essence of this idea can be formulated as follows.

Let I; be generators of a certain finite-dimensional representation
of a Lie algebra £. Then the spectral equation for the operator H =
aix I'T* + b;I*, acting in the corresponding representation space, is finite
dimensional and can be solved algebraically for any numbers a;; and b;. It
is known that representations of Lie algebras can be realized in the space
of polynomial functions depending on D = 1(dim £ — rank £) variables
(Kirillov 1972, Kostant 1977, 1979, Hurt 1983). In this case, the generators
of the representations take the form of D-dimensional first-order differential
operators. For this reason the spectral equation for H can be interpreted as
a certain D-dimensional second-order differential equation. If its reduction
to Schrodinger form is possible, we obtain as a result the D-dimensional
quasi-exactly solvable model. The number of exactly calculable energy
levels in this model is equal to the dimension of the representation. Note
also that the spectral operator H can be treated as the hamiltonian of
a quantum top, based on the algebra £. Thus, the algebraic approach
establishes the connection between quantum tops and quasi-exactly solvable
models of quantum mechanics.

There exists only one algebra that leads to one-dimensional quantal
problems. This is the algebra si(2). Its representation with “spin” j
has dimension 25 + 1 and can be realized in the space of polynomials of
order 2j. The corresponding generators have the form (1.6.16). The one-
dimensional case was discussed in detail by Turbiner (1988a). (See also
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the recent paper of Gonzilez-Lopez et al (1993b) in which the problem
of normalizability of solutions of one-dimensional quasi-exactly solvable
models is discussed.) Later, in the papers of Shifman and Turbiner
(Shifman and Turbiner 1989, Shifman 1989a) a number of two-dimensional
quasi-exactly solvable models, corresponding to the algebras si(3), so(3)
and si(2) @ si(2) has been considered. In the same papers, the authors
discussed supersymmetric quasi-exactly solvable models, connected with
finite-dimensional representations of graded Lie algebras. The exhaustive
analysis of all two-dimensional quasi-exactly solvable models is given in the
series of papers by Gonzélez-Lopez et al (1991a, b, 1992a, b).

The algebraic approach is attractive primarily because of the simplicity
of the idea on which it is based. It is worth stressing that the final
formulation of this approach preceded studies by Zaslavsky and Ulyanov
(1984), Bagrov and Vshivtsev (1986), Zamolodchikov (1987), who discussed
similar ideas. Unfortunately, the algebraic approach is, apparently, not
universal, since it cannot be used to describe all quasi-exactly solvable
models (Shifman 1989b, ¢, Ushveridze 19880, 1992).

The analytic approach was formulated by the present author
(Ushveridze 1988c, d, h, 1989c). It is based on the observation that
quasi-exactly solvable equations can be viewed as equations with several
spectral parameters, some of which are involved in the potential (for
example, the parameter M in (1.11.1)), while one plays the role of the
“energy” parameter. If the spectra of the “potential” spectral parameters
are degenerate with respect to the spectrum of the “energy” parameter,
the model is quasi-exactly solvable and its order is equal to the degree of
degeneracy. Therefore, the construction of quasi-exactly solvable models
reduces to the problem of constructing multi-parameter spectral equations
and studying degeneracies in their spectra. This problem can be solved
by means of purely analytic methods. It turns out that the mathematical
techniques used in solving this problem are very similar to those used in
the quantum theory of completely integrable models of magnetic systems
based on Lie algebras, and also in the classical multi-particle Coulomb
problem, so that three seemingly unrelated branches of quantum and
classical physics are seen to be equivalent. The reason is that the allowed
values of the “potential” and “energy” spectral parameters of the multi-
parameter spectral equation under consideration can be interpreted as
the eigenvalues of certain commuting operators with exactly calculable
spectra. The degeneracy responsible for quasi-exact solvability is present
because of a hidden symmetry in the problem under which the “potential”
operators are invariant, while the “energy” operator is not. The full set
of “potential” and “energy” operators can be thought of as the integrals
of motion of some completely integrable system. In this sense, all the
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quasi-exactly solvable models arising in the framework of the analytic
approach turn out to be equivalent to completely integrable so-called “si(2)
Gaudin magnetic systems”, based on infinite-dimensional representations of
algebras sl(2) @ ... @ sl(2) and their contractions. These systems permit
exact solutions with the help of the algebraic Bethe ansatz method. The
Bethe equations coincide with the equations determining the spectra of
quasi-exactly solvable models. They also coincide with the equilibrium
equations for a system of classical two-dimensional Coulomb particles in
an external electrostatic field, so that the spectral problem for quasi-
exactly solvable models can be posed in purely classical language. If
the order of such a model tends to infinity, a non-exactly solvable model
arises. Therefore, the equivalence between the problems in non-relativistic
quantum mechanics, the theory of completely integrable quantum spin
models and classical multi-particle Coulomb systems, discussed for the
quasi-exactly solvable case, is also preserved in the non-exactly solvable
case.

Further development of the analytic approach led to a more thorough
understanding of the problem and stimulated the creation of a new algebraic
approach, based on the use of generalized Gaudin models connected with
arbitrary simple Lie algebras (Ushveridze 1988d, £, i, n, 1989c¢, 1990a, 1992,
Maglaperidze and Ushveridze 1989a, b, 1990). As in the simplest si(2) case,
these models are completely integrable and their spectral problems can be
solved exactly in the framework of the Bethe ansatz method.

The connection between the generalized Gaudin models and quasi-
exactly solvable ones is caused by the fact that the Hilbert space in
which the Gaudin operator acts can be represented as a direct sum
of invariant finite-dimensional subspaces. Therefore, the initial Gaudin
spectral equation having an infinite exactly calculable spectrum breaks up
into an infinite series of equations with a finite number of exactly calculable
eigenvectors and eigenvalues. Thus, we obtain an infinite set of quasi-
exactly solvable algebraic equations. The next step is to reduce each of these
equations to differential form. This can be done by substituting differential
realizations of generators of Lie algebras into the Gaudin operator and
projecting it on each of the finite-dimensional invariant subspaces of the
Hilbert space. It turns out that the projection procedure is equivalent to
the procedure of partial separation of variables in a differential version of
the Gaudin spectral problem. As a result, we obtain an infinite set of quasi-
exactly solvable differential equations, parametrized by multiplets of non-
negative integers, enumerating the invariant finite-dimensional subspaces
and, simultaneously, playing the role of separation constants. The final step
is to rewrite the obtained equations in Schrodinger form. We note that, as
in the case of the algebra sl(2), the spectral problems thus obtained allow



80 Quasi-exact solvability. What does that mean?

the reformulation in terms of a classical multi-particle Coulomb problem.
However, in contrast to the si(2) case, the quasi-exactly solvable models
connected with the higher Lie algebras turn out to be equivalent to the
systems of vector-charged particles.

It is worth stressing that in both the algebraic and analytic approaches,
multi-dimensional quasi-exactly solvable equations describe, as a rule, the
quantum mechanics on non-trivial curved manifolds. In special cases when
the curvature vanishes, we obtain an ordinary quantum mechanics in a
flat space. Note also that Lie algebras arise naturally, but in completely
different manners, in both approaches. Representations of these algebras
used in the author’s approach are not finite dimensional as in Turbiner’s
scheme, but infinite dimensional. The connection between these approaches
has been discussed by Maglaperidze and Ushveridze (1989a) and Ushveridze
(1990a, 1992).

Finally note that the recent progress in the theory of quasi-exact
solvability is associated with the discovery of intriguing parallels between
the quasi-exactly solvable problems of quantum mechanics and two-
dimensional conformal field theories. These parallels allow one to use
quantal methods in conformal field theories and vice versa. The observation
of a natural connection between quasi-exactly solvable models in quantum
mechanics and conformal field theories was first made in the paper by
Morozov et al (1990). A new impetus in this line of research is given by two
recent studies by Gorsky (1991) and Gorsky and Selivanov (1992). The first
paper explicitly demonstrates that the so-called decoupling equations for
the conformal blocks in a special class of conformal field theories identically
coincide with the quasi-exactly solvable equations for wavefunctions derived
by Ushveridze (1989c). Moreover, the computation of the conformal weights
is explicitly reduced to that of the corresponding eigenvalues. Finally,
probably the most remarkable observation concerns a quantal analogue of
the operator product expansion (fusion rules) of conformal field theories.
The fact that there should exist a relation between wavefunctions in
quasi-exactly solvable models playing the same role as the fusion rules in
conformal theories has been conjectured by Morozov et al (1990). The
issue, however, has not been traced in detail, and the conjectured form of
the relation turned out to be unrealistic. Gorsky (1991) has proved that
the quasi-exactly solvable analogue of the conformal fusion rules is a set
of fusion rules in the parameter space which gives a limiting expression for
the wavefunction in a given quasi-exactly solvable model in terms of the
corresponding wavefunction of a daughter exactly solvable system. A very
detailed review of the results concerning the relationship between quasi-
exactly solvable models and conformal field theories has been written by
Shifman (1992).
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Summarizing, one can conclude that the theory of quasi-exactly
solvable models is cross-disciplinary in the full sense of the word. Indeed,
in this theory are naturally entwined such branches of mathematical
physics as group theory, differential geometry, quantum mechanics, the
theory of quantum tops, two-dimensional classical electrostatics, two-
dimensional conformal field theory, and also the theory of completely
integrable magnetic systems with all its mathematical techniques. It is
worth noting that there exists a number of other methods of constructing
quasi-exactly solvable models (see e.g. Shifman 1989b, ¢, Ushveridze 1989c,
h, 1991a, b), which, probably, will be included in the coming more general
theory. The main aim of this book is to discuss all the methods known at
present.



Chapter 2

Simplest analytic methods for
constructing quasi-exactly solvable
models

2.1 The Lanczos tridiagonalization procedure

In this chapter we discuss some simplest analytic methods of constructing
one- and multi-dimensional quasi-exactly solvable models with rational
or, more precisely, with quasi-polynomial potentials. We shall call a D-
dimensional potential “quasi-polynomial” if it consists of two parts, one
of which is an ordinary polynomial in D coordinates z?, while the second
is a linear combination of D singular terms z; 2. Remember that these
potentials naturally arise in many problems of quantum mechanics as a
result of separation of variables in multi-dimensional toroidal coordinates.
In particular, in the one-dimensional case they describe so-called radial
Schrodinger equations appearing after the separation of variables in multi-
dimensional anharmonic oscillators with spherical symmetry.

We start our discussion with the one-dimensional case. We consider

the potential
a 2 6
V(z) = = +oz”+ 7z (2.1.1)
T
defined on the half-axis z € [0,00] and show that it describes a quasi-

exactly solvable model of order M + 1 if the parameters «,vy and o satisfy
the following condition

_4£+ lyo=M+1, M=01,2,.... (2.1.2)
"

82
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Below, for the sake of convenience, we shall use more suitable
parametrization

v=a’, a=—da(s+5+p), o=4(s~-3%)(s—-2), (2.1.3)
in which condition (2.1.2) becomes especially simple:
p=M, M=012.... (2.1.4)
In this case the hamiltonian for the model (2.1.1) can be written as

2 4(s — L)(s ~ 2
H:—8—+a2x6—4a(s+%+u) xz+£—~%s—~‘§2~ (2.1.5)

Jz?

The method to be discussed here (Ushveridze 1988k, 1989a) is based

on the observation that for any «,v and ¢ it is possible to build a basis in

the Hilbert space in which the squared hamiltonian (2.1.5), H?, takes an

explicit tridiagonal form. This gives us the possibility of finding conditions

for a,v and o when two given hermitian conjugated off-diagonal elements of

the hamiltonian matrix vanish, after which the matrix takes block-diagonal
form, and the model (2.1.1) becomes quasi-exactly solvable.

In order to construct the needed basis let us introduce the trial function

wo(z) = (z3)° ~ i exp (-%4) (2.1.6)

and consider the sequence
on() = (H)po(z), n=0,1,2,..., (2.1.7)

the terms of which can be represented in the form

4

4 1
on(z) = Py {%—] (z2)® " 2 exp (—gz—) , n=0,1,2,..., (2.1.8)

where P,(t) are certain polynomials of order n. Note that all functions
(2.1.8) reproduce the asymptotic properties of exact wavefunctions in both
large- and small-z limits.

Now, let us orthogonalize sequence (2.1.8) using the standard Gram-
Schmidt procedure. The nth orthonormalized function, which we denote
by én(z), is a linear combination of the first n functions ¢,(z). Hence,

4

6n(z) = Qun [91—4} (2%)° ™ T exp <-%) n=012..., (2.1.9)
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where Q,(t) are certain other polynomials of nth order. Substituting (2.1.9)
into the orthonormalization condition

[ #n@6n(a) dz = 60 (2.1.10)

and introducing the new variable

4

t=a%, (2.1.11)
one can see that the polynomials @,(t) are orthogonal with the weight
w(t) = t* " Texp (—t), (2.1.12)

and therefore they are the Laguerre polynomials (see e.g. Abramovitz and
Stegun 1965). After computing the normalization coefficients we obtain

n(2) 2 [g] : , /%(ﬂ)s-%%&—l) [‘%ﬁ} exp (—ﬁif) ,

n = 01,2,.... (2.1.13)

Our next step is to demonstrate that the squared hamiltonian H? has
tridiagonal form in the basis (2.1.13). In other words, we must prove that

oo

(H?)nm = /¢n(z)H2¢m(z) de=0, ifln—m|>1.  (2.1.14)
0

Indeed, from the obvious expansions

H2¢n(1') = Za"ksz(x):Z“nkSOkﬂ(x)
k=0 k=0
n k+1 n+1
= D) ankbimbm(z) = Y cambm(z), (2.1.15)
k=0m=0 m=0

in which a;i, b;; and ¢;; are certain coefficients, it follows that
(H?‘)nm =0 forany n>m+1. (2.1.16a)
Since H? is a hermitian operator, we have

(H2)nm =0 forany m>n+1 (2.1.16b)
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and, thus, assertion (2.1.14) is proved (Lanczos 1950, see also Wilkinson
1965 and Ushveridze 1987a).

The non-zero matrix elements of the operator H? can be calculated
without difficulties by using well known properties of the Laguerre
polynomials (see e.g. Abramowitz and Stegun 1965). The result

(H?)pm = 32a{(s + n)(2n — p)* + n(2n — 1 — p)?} (2.1.17a)
(H)nnt1 = (HDng1,n

= —32a\/(n+ 1)(n+s)(2n — p)(2n +1— p) (2.1.17b)

completes the reduction of the operator H? to explicit tridiagonal form.
Now note that if 4 is a non-negative integer: uy= M =0,1,2,..., then

the elements (H?), .41 and (H?)n41,, With n = [%] vanish, so that the

infinite-dimensional matrix (H?),,, takes block-diagonal form:
H? = (H)) g0 ® (H)ips- (2.1.18)

Here (H%)g, is a finite ([#] +1) x ([#] + 1) block which acts in the
([%] + 1)-dimensional Hilbert subspace formed by all linear combinations

of the basis functions ¢g(z),...,dn(z), n = [%] We denote by h and
n(z) the eigenvalues and eigenfunctions of the finite-dimensional matrix
(H 2)ﬁn' Then the corresponding eigenvalues and eigenfunctions of the
initial operator H can be determined by the formulas

E=4vh (2.1.19a)
and
¥(z) ~ [H + Vh]n(=), (2.1.19b)

which give us exact (algebraic) solutions of the initial Schrédinger equation
for model (2.1.5).
Now let us consider several concrete examples corresponding to the

cases M =0,1,2,3.
1. Let M = 0. In this case (H?)g, is a 1 x 1 matrix:
(H*)n = 0] (2.1.20)

and therefore formulas (2.1.19) determine one explicit solution of the
Schrodinger equation:

E

.=0, n=0, (2.1.21a)
1 4
Yn(z) = (z2)° 7 exp (—a—j}) . n=0. (2.1.21b)
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We see that the wavefunction obtained has no nodes and, hence, according
to the oscillator theorem, this solution corresponds to the ground state. It
is normalizable if @ > 0 and s > 0. The analytically continued eigenvalue
forms the univalent Riemann surface.

2. Let M = 1. As in the previous case, (H?)g, is a 1 x 1 matrix
(H®)gn = 132as|). (2.1.22)

Using formulas {2.1.19) we obtain two explicit solutions of the Schrodinger
equation:

E,=(-1)""V32as, n=0,1, (2.1.23a)
En L

a(e) = Jaa? = 22| (29~

4
exp (——‘I—Z—), n=0,1(2.1.23b)

According to the oscillator theorem, these solutions correspond to the
ground and first excited states, respectively. They are normalizable when
a > 0 and s > 0. The energy levels continued into the complex s-plane
are analytic everywhere except for the point s = 0 in which they have a
square-root-type branch-point singularity. At this point the levels (2.1.23a)
are plaited and, consequently, can be treated as two different sheets of a
Riemann surface. Wavefunctions (2.1.23b) coincide when s = 0.

3. Let M = 2. Now (H?)g,, is a 2 x 2 matrix of the form:

(Hz)ﬁn =

” 128as  —64a\/s (2.1.24)

—64a/s  32a

In this case we can construct three explicit solutions of the Schrodinger
equation:

E, = (n-1)\/32a(4c+1), n=0,1,2, (2.1.25a)

2
Yu(z) ~ [ar4 - —E4—"x2 + 52—'('1 — 25— 1]
1 4
x (28?7 dexp (—G—Z—) . n=012 (2.125b)

If a > 0 and s > 0, the obtained solutions are normalizable and describe
the ground, first and second excited states. We see that all levels (2.1.25a)
continued analytically into the complex s-plane coincide if s = ——%. But
only two of them, £y and E5, are singular at this point and can be continued
into each other. The third level E is regular everywhere. This means that
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we have two disconnected Riemann surfaces formed by the odd and even
levels, and consisting of one and two sheets, respectively. The wavefunctions

also coincide at the point s = —% in full accordance with the previous case.

4. Let M = 3. In this case (H?)g, is again the 2 x 2 matrix. It has the
form:

2 _ 288ac —192a+/s
()i = “ ~192a/5 32a(s+5) |’ (2.1.26)
which allows us to obtain four explicit solutions:
E. = (-pl3l+1y35,
X \/5 (s+3)+ (_—1)[22&]\/25 (s + %)2 —9s(s + 1),
n = 0,1,2,3 (2.1.27a)

azr

1 4
bn(a) ~ (@ Fe (-9

2 3
{azze B aE" o Ey—96a(s+1) , Ej

X

E,
1 32 == Tgag T 5]_15}
n o= 0,1,23, (2.1.27b)

corresponding to the zeroth, first, second and third energy levels if the
normalization conditions a > 0 and s > 0 hold. We see that energy levels
(2.1.27a) are singular at the points s =0,s = —1 and s = —% + gi, in which
the external and internal roots in (2.1.27a) vanish. As in the previous case,
the first two singularities lie on the real s-axis, and the second two are
located at the complex conjugated points of the complex s-plane. The four
functions E,, n = 0,1,2,3 form a common Riemann surface and hence all

the levels E, described by formula (2.1.27a) can be obtained from each
other by a simple analytic continuation.

An analogous analysis can be carried out for the next values of M.
It is not difficult to understand that for arbitrarily fixed M we have a
quasi-exactly solvable model of order M + 1, in which we can construct
algebraically M + 1 first energy levels. The wavefunctions of these levels
have the form:
azt

W(a) = Pule)e?) e (-5, (2.128)

where Pas(t) are certain polynomials of order M.
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In conclusion, note that the introduction of the auxiliary operator H?
is no more than a convenient trick that allows us to observe the appearance
of finite-dimensional blocks in the infinite-dimensional hamiltonian matrix.
Obviously, we could work immediately with the hamiltonian H.

2.2 The sextic oscillator with a centrifugal barrier

Now let us consider the class of models described by the hamiltonian

2 4(s -1 _ 3
H = __6_ + (S 4) (S 4) + b2 — 4q S+1+M 1,2
Oz z? 2
+2abz® + a’z°® (2.2.1)

and defined on the positive half-axis z € [0, 00]. These models (which were
found by Turbiner (1988b)) differ from those discussed in the preceding
section by the presence of an additional parameter b. If b = 0 then (2.2.1)
reduces to the old hamiltonian (2.1.5).

The model (2.2.1) is quasi-exactly solvable for any values of b. For any
given non-negative integer M, it has M + 1 solutions which can be found
algebraically.

Unfortunately, the method used above for demonstrating the quasi-
exact solvability of model (2.1.5) cannot be easily generalized to the case of
models (2.2.1). The problems arising are connected with the quartic term
in (2.2.1) that does not permit us to reduce this hamiltonian to an explicit
tridiagonal form. This assertion can be clarified as follows.

Let us consider the function

o(z) = (z2)* Lexp (Jﬁ - 5’32-> (2.2.2)

which reproduces the asymptotic properties of exact eigenfunctions of H in
both the small- and large-z limits and thus, is a most natural generalization
of trial function (2.1.6). Repeating the reasoning of the preceding section
and acting on ¢(z) by the operators H", n = 0,1,2,..., we obtain the
sequence

4 2
on(z) = Pa(z?) (%) exp (—91;— - éiﬂ—) , n=0,1,2,... (2.2.3)

the elements of which, after applying the orthonormalization procedure,
form a basis in which the hamiltonian H takes tridiagonal form. Obviously
this procedure implies a knowledge of the polynomials depending on z?

and being orthogonal with the weight (z*)*~!exp (—% - b:cz) on the
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positive half-axis ¢ € [0,00]. When b = 0, explicit expressions for
such polynomials are known. They coincide with the classical Laguerre
polynomials depending on z%. The eveness of these polynomials with
respect to z? makes the Lanczos procedure more sensible for the squared
hamiltonian H2. However, if & # 0, the orthogonal polynomials can
be constructed explicitly for the first several values of n only. General
expressions for them are not known. This means that, in this case, explicit
tridiagonalization of the hamiltonian matrix is impossible.

In order to prove that model (2.2.1) is quasi-exactly solvable, we use
another method (Ushveridze 1988k). Consider the Schrodinger equation

Hy(z) = E¢(x) (2.2.4)
for (2.2.1) and note that a linear combination of basis functions (2.2.3),
4 br?
¥(z) = P(a?) (22~} exp (—-"—Z— - —‘2”—) , (2.2.5)

can be viewed as an appropriate ansatz for this equation. Indeed,
subsituting (2.2.5) into (2.2.4) and eliminating the common factor (2.2.2)
in (2.2.4), we obtain a new equation for the function P(z?%).

QP(z?) = EP(z?). (2.2.6)
Here
92  4s-1 0 of 0
Q = - [é—z_?+__z2__] + 2b [xa—z-f-?s] + 2az [z—a—z——QM].
(2.2.7)
Now, let us assume that M is a non-negative integer: M = 0,1,2,.... In

this case the differential spectral equation (2.2.6) can easily be transformed
to an algebraic form. Indeed, if P(z?) is a polynomial in z? of order M,
then the action of the Q-operator (2.2.7) on P(z?) gives again a certain
polynomial in z? of the same order. Therefore, formula (2.2.6) expresses
the equality of two polynomials of order M. Considering the coefficients
of the polynomial P(z?) as components of an (M + 1)-dimensional vector,
one can treat (2.2.6) as an (M + 1)-dimensional spectral matrix equation.
In general, it has M 4+ 1 different solutions. This means that the initial
Schrodinger equation (2.2.4) has at least M +1 explicit solutions of the form
(2.2.5) and thus can be interpreted as a quasi-exactly solvable equation of
order M + 1.

From formula (2.2.5) it follows that normalization conditions for the
solutions hold when a > 0 and ¢ > 0. The parameter b can be chosen
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arbitrarily. Note also that these M + 1 solutions describe the ground state
and first M excitations, since the polynomial P(z?) cannot have more than
M zeros on the half-axis z € [0, c0].

Now let us consider three particular cases when M takes the values 0,
1 and 2.

1. M = 0. Ground state.
E = 4bs, (2.2.8a)

w(z) ~ 220 exp (~"T’”4 - %) . (2.2.8b)

2. M = 1. Ground state and first excitation.

E = dbs+ A, (2.2.92)
W(z) ~ [1 - é:ﬁ] 22~ exp <—5§ - b—?) . (2.2.9b)

The parameter A satisfies the following quadratic equation:

A(A — 4b) — 32as = 0. (2.2.10)

3. M = 1. Ground state and first two excitations.

E = 4bs+ A, (2.2.11a)
SO Y W S SUPY TR D A
v=) L 8™ " Ho—8)” ] i xp ( 12
(2.2.11b)

In this case, the parameter A satisfies the following cubic equation:
Al(A — 4b)(X — 8b) — 32a(2s + 1)] — 64as(A — 8b) = 0. (2.2.12)
Analogous explicit formulas can also be obtained for the next values of

M. Note that for any fixed M, energy levels belonging to the algebraized
part of the spectrum can be written in the form

E = 4bs + ), (2.2.13)
where A satisfies a certain algebraic (secular) equation of order M + 1:

Qrmi1(a, b, s;2) =0. (2.2.14)
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As in the case of the simpler model (2.1.5), these expressions can be used
for studying various spectral singularities in model (2.2.1). Remember
that these so-called Bender and Wu singularities appear when two or more
energy levels, analytically continued into the complex plane of parameters
a, b and s, coincide. The condition of coincidence of K + 1 energy levels
satisfying equation (2.2.14) can be written as

QM+1(a‘)bas;A) = 01
8
éj\“QM+1(a,b,S;)\) = 0,
9 K+1
(6—/\) Qumi1(a,b,554) = 0. (2.2.15)

Note that the energy levels in model (2.2.1) depend non-trivially on two
combinations of parameters a, b and s only. The third independent
combination can easily be eliminated by means of a scale transformation.
Therefore, the number K in (2.2.15) cannot exceed two. Solving the system
(2.2.15) for K = 1 and K = 2 we obtain surfaces in the three-dimensional
complex plane of parameters a, b and s, on which the double and triple
spectral points lie. For example, for M = 1, equation {2.2.14) has the form
(2.2.10). Taking K = 1 we obtain the double-point surface determined by
the equation

b? — 8as = 0. (2.2.16)
If M = 2, then equation (2.2.14) takes the form (2.2.12). In this case the

existence of both double- and triple-point surfaces are possible. Taking, for
instance, K = 2, we obtain two equations

(2.217)

determining the triple-point line (Ushveridze 1988k).
Spectral equations for model (2.2.1) can also be rewritten in terms of
wavefunction zeros. To this end we rewrite the ansatz (2.2.3) as:

¥(z) = ﬁ (”; - 5,~> (z?)*~% exp (J‘—:f - %) . (2.2.18)

i=1
Then substituting (2.2.18) into (2.2.4) we obtain the following expression
for the energy:

M
E=4b(M +s)+8a) &, (2.2.19)

i=1
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in which the numbers £ satisfy the system of numerical equations:

M 1 s

E——,—+——b—2a§,-=0, i=1,..., M. (2.2.20)
iz &

This system can be considered as an equilibrium condition for M Coulomb

particles with unit charges and coordinates £ moving in an external

electrostatic field with potential

U(€) = —sln €] + b€ + at?. (2.2.21)

Here parameters a and b determine the strength of the electrostatic field at
large distances and s is the charge of the repelling centre at the origin. This
potential consists of two potential wells separated by a potential barrier.
The number of particles in the right-hand well determines the number of
excitation.

Note that this electrostatic analogue makes it easy to construct
trajectories in a complex parameter space, along which energy levels
transform into other energy levels. To show this, let us assume that the
stability condition a > 0, s > 0 is satisfled and the initial position of the
particles corresponds to the Kth energy level. This means that K particles
are located in the right-hand well, and M — K in the left-hand one (see
figure 2.1a).

Consider the following trajectory in the (real) space of two parameters
¢ and b.

1. The charge s of the repelling centre decreases to zero (s — 0)
while parameter b remains constant. Of course this leads to a change of
equilibrium positions of the particles (see figure 2.1b).

2. The strength b of the electrostatic field increases or decreases
(b — ¥) in such a way that K’ particles have positive coordinates and
M — K’ particles have negative coordinates. Quite obviously, it is always
possible to guarantee that K’ # K (see figure 2.1c).

3. The charge of the repelling centre is restored (0 — s) while strength
b’ remains constant (see figure 2.1d).

4. The original strength of the electrostatic field is restored (6’ — b)
(see figure 2.1e).

The final configuration of the particles obviously corresponds to the
K'th energy level. Thus, we see that rather simple trajectories in the
two-dimensional space of parameters b and s shown in figure 2.2 realize
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Figure 2.1. The change of dispositions of Coulomb particles by changing the
external parameters b and s. Here M =5, K =1 and K' = 3.

\ Starting point.

> 8§

Figure 2.2. The trajectory in the space of parameters b and s realizing analytic
continuation of a given energy level into another energy level.
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the analytic continuation of the Kth energy level into the K’th level
(Ushveridze 1988g, 1989c).

In conclusion, we note that in particular cases, when s = % and s = %,
the singular term in potential (2.2.1) disappears and it becomes polynomial.
From formula (2.2.5) it follows that in these cases all wavefunctions turn out
to be regular at zero. This gives us the possibility of extending the spectral
problem on the whole z-axis and we regain the quasi-exactly solvable sextic

anharmonic oscillator discussed in detail in the preceding chapter.

2.3 The electrostatic analogue. The quartic oscillator

As noted in the preceding chapter, the spectral problem for the exactly
non-solvable model of the quartic anharmonic oscillator (1.3.1) (which can
be obtained from the quasi-exactly solvable model (1.4.15) in the limit
M — o), can be reformulated in a purely classical language as the
problem of finding the equilibrium of a charged liquid situated in an external
electrostatic fleld. We demonstrated this fact for high excitations, for which
the corresponding equations of classical electrostatics become especially
simple. The restriction to this (semi-classical) case allowed us to avoid
many difficulties connected with the correct passage to the limit M — oo.
However, in order to assert that the quantum anharmonic oscillator is really
equivalent to a classical charged liquid, we must convince ourselves that the
classical equations give correct quantum results for low excitations, too.

In this section we will discuss this question considering, as an example,
the problem of constructing the ground state in the following exactly non-
solvable model

I Gt

72

V(z) + az? + Bz’ (2.3.1)
Due to the presence of an additional (singular) term, this model can be
considered as a generalization of model (1.3.1). Therefore, any result
obtained for (2.3.1) will be automatically valid for the ordinary quartic
anharmonic oscillator (1.3.1).

In order to derive the classical equations for (2.3.1), we note that this
model can be interpreted as a limiting case of the quasi-exactly solvable
model (2.2.5) discussed in the preceding section. Indeed, substituting into
(2.2.5)

da=M"3(28)2A"Y(g), (2.3.2a)
b= M3(28)3Alg), (2.3.2b)
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where

[¢]

g= W (2.3.3)

and

Alg)=1+—2_ (2.3.4)

M2/3 !
and taking the limit M — oo we obtain model (2.3.1).

Construction of corresponding limiting analogues of the classical
equations (2.2.18)—(2.2.20) is a much more non-trivial procedure. Here we
reproduce the derivation given in the paper of Maglaperidze and Ushveridze
(1989c¢).

First of all, note that from the technical point of view it is more
convenient to deal with a system consisting of M + 1 particles. Of course,
the replacement of M by M +1 in formulas (2.2.18)-(2.2.20) cannot change
the limiting result appearing when M = oco. The equilibrium conditions for
the (M + 1)-particle Coulomb system are described by equations (2.2.20)
which, after using formulas (2.3.2), take the form

z e+ g~ MECO)RAG) - gM AR 9 =0,
i=0,...,M (2.3.5)
where the numbers ; are enumerated in increasing order:
Co<&1 <. .. <EMm-1<&Mm. (2.3.6)
Taking
& = M*12(26)" 3 8%0)E(3p), (23.7)
we rewrite system (2.3.5) as

il—iﬂ~——ﬁmp+aa}s Lo —o
g —eEm Y W T M) T
i=1,...,M. (23.8)

This system can be easily reduced to integral form. For this purpose we
introduce the continuous variable

A= (2.3.9)
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and the continuous function

£=¢(N). (2.3.10)

Using the Euler~-McLaurin summation formula for (2.3.8) we find:

/s(A +/E

A7
+L|: ! + = +
M LE(N) —€(0) €N - €O - 3p) () £(1)
TEN -0t ) (A+ ]
s 1 3
Mm-i—A (9) [1—{- 55(/\)] =0. (2.3.11)

We have retained only the first two terms in the Euler-McLaurin expansion.
The other terms, as we will see later, are non-essential in the limit M — oc.
Expanding (2.3.11) in inverse powers of M and neglecting terms of orders
M~-2 M~3 ..., which do not give any contribution to the final result, we
obtain

[ _dv s €
f{(,\) ) A(g)(1 + ¥52)
1 1 1 R0 2\ _
M {ﬁ(k) 0 e - e T E(A)} 0. (2312)

Introducing the new variable { and new function p(£) by the formulas

+

P 1
§=¢€), p&)= B " T’ (2.3.13)
and taking
A™ = £(0), AT =¢(1), (2.3.14)
we obtain equation
At
p(n) dn 3 €
AV A 142
A[ - g1+ )

SR N W)
+2M{£—A‘+£~A++E+p(€) -

€A, At], (2.3.15)
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which, obviously, must be supplemented by the normalization condition for
p(n):

At

/p({) dé = 1. (2.3.16)
a-
Thus, we have obtained the correct limiting analogue of the initial equation
(2.2.20).
Now, let us consider expressions (2.2.18) and (2.2.19) which, after

replacing M by M + 1 and using formulas (2.3.2) and (2.3.7) take the
form

E = 4(20)3A(9)M3

ba) = ()7 exp{—M%A(g)(wﬁ%
1 L. 11‘4
—MTAT(9)28)

M 22 .
+M > In ((25)% 5 - M§A2§(ﬁ)) } (2.3.18)

i=0

Replacing in (2.3.17) and (2.3.18) the sums by integrals by means of the
Euler-McLaurin formula, and rewriting the resulting integral expressions
in terms of the variable £ and function p(€), we obtain in the large-M limit
the expressions

At
1 s+1+ (AT +A7)/4
1+ [ el de+ - ,
g

ks

E = 4(28)3 Mg)M

(2.3.19)

and

L
le 2

Pz) = (2?)°% [(25)3_2_ _ MZ/SAZ(g)A“]

L
2

<0935 - aearg)ar]
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x exp { - oM a4+ M [1n [(w)é 7 - MW(g)f] p(€) de},

(2.3.20)

which are the correct limiting analogues of formulas (2.2.19) and (2.2.18).
Now, let us discuss the properties of the obtained expressions in which
the role of unknown objects is played by the particle distribution density
p(€) and by the numbers A* determining the ends of the interval in which
p(§) differs from zero.
Let us first take M = 0 in (2.3.15) and (2.3.16). This gives us the
system of equations

At
p(n) 3
E-nd =1+, (2.3.21)
i
At
/p(f) d¢ =1, (2.3.22)
e

which can be interpreted as the equilibrium condition for a charged liquid
with charge density p(¢) and with total charge 1. This liquid is situated
in an external electrostatic potential of oscillator type U(£) = i(f + 2)%.
Corresponding formulas (2.3.19) and (2.3.20) for £ and (=) take in this
case the form:

At
E = oo l+%/6p(f) a (2.3.23)
A-
2 At
1 1 d
1/)(1:) = (x2)3—4 exp { —oo (Qﬂ)s% 1+/?£p(€) + ...
A-
(2.3.24)

Multiplying (2.3.21) by p(€), integrating over { and using (2.3.22) we find:

A+
143 /gp(g) d¢ = 0. (2.3.25)
i
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Taking in (2.3.21) £ = 0 we obtain:

At
1+ / %p(f) = 0. (2.3.26)
-

Substituting (2.3.25) and (2.3.26) into formulas (2.3.23) and (2.3.24) we see
that the results for the energy E and wavefunction y(z) are expressed in
terms of “indefinitenesses” of the type “co-0”. In order to obtain finite and
mathematically sensible expressions for £ and 1(z), these indefinitenesses
should be removed. The most natural way to do this is to solve equations
(2.3.15) and (2.3.16) assuming that M is arbitrarily large but finite,
substitute the results into (2.3.19) and (2.3.20), and only then take the
limit M — oo. Of course, equations (2.3.15) and (2.3.16) cannot be solved
exactly, since the corresponding quantum mechanical problem (2.3.1) is
exactly non-solvable. However, we can solve these equations by means of
an iteration procedure, any step of which, as we will see below, leads to the
finite expression for the energy £ and wavefunction ().

As zeroth iteration we choose the function p()) and the numbers A*
satisfying equations (2.3.21) and (2.3.22). It is not difficult to verify that
this function has the form

3
pa(§) = A2—7E“;’)\/(£—A5)(£—Ag), (2.3.27)
where
Ay =—4, Af=0. (2.3.28)

The next iterations p,(€) and AX can be determined from the following
recurrence relations:

At

Coa(m)dn 4 ¢
e, — Aw+s3)
Ay
1 1 1 25 paa(é)
Y {5-/1;_1 Temar, et pn-l(f)}’
(2.3.29)
A
/p,.,(f) i = 1, (2.3.30)
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where n = 1,2,3,.... Substitution of p,(£) and A¥ obtained from
(2.3.29) and (2.3.30) into formulas (2.3.19) and (2.3.20) gives the
following expressions for the energy E and wavefunction ¢(z) in the nth
approximation:

E. = 4(28)5A(g)M?
A+
i 1+ 2(A7 + A7
x {1+%/€P(€)d€+s+ L ")}, (2.331)

5% \/émé - MiA2g)A7

\/(% 3—~—M SA2(g)AL

Yn(z)

X

xeXP{—(2ﬁM)3 (9) —+M/1n[2ﬁ37—M A(y)f]pn()df}-

(2.3.32)

Now, let us show that the function p,(€) can be represented in the following
two equivalent forms:

T €-ap-4b)
AS =n —on+1
pul® = S fe— amye - an)ii
[T (€-A40E-4])
k=n41~2"
(2.3.33a)
or
A3
pm®© = S fe- anye - ah)
n—1 - n—1 F+ }
X 1 + nk_ + nk .
{ k:n;—w‘ € - Ak k:ngl:—?" f - A_kt_
(2.3.33b)

Indeed, substituting (2.3.33a) into the right-hand side of (2.3.29) we obtain:

AT

n n—1 -

a(n) d . 1 B;
P (77) n — Aa(g) (1 + g_) _ _2_ _fkl__
A 6 -n k=n+41-2m 6 Tk
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1 & B
- Y =0 (2.3.34)
+ )
2 k=n+1-2" §— 4

where Bfk are certain numbers (see below). At the same time, substituting
(2.3.33b) into the left-hand side of (2.3.34) we see that it takes the same
functional structure as the right-hand side. This proves the validity of
both representations (2.3.33). Note that the equation appearing after
substitution of (2.3.33b) into (2.3.34) is equivalent to the system of
numerical equations

Ag)TEA(AF - A7)(AE - AF) = BE,,

=n+1-2" ..., n-1, (2.3.35a)

n-1

1
> (T +Th)-2=o(Af+47),  (2335b)
k=n+l1-2"
n—1
As(g){ Z [B;k + B:k - T Ay — F:IcA-I:
k=n+41-2"
| + - + L, + Lo, +)2
+§(Fnk + rnk)(An + An )] - —Q_An An + g(An + An) = 21

(2.3.35¢)

which, obviously, must be supplemented by the values of the numbers Bffk:

ﬁ, n+l1-2"<k<n-1-2""1

B, = -, n—2""1<k<n-2 (2.3.36a)
Esﬁ’ k=n-1,

B:’k = B, — 2sbo0, (2.3.36b)

and by the formulas determining the relation between the numbers Af and
I’fk:

1Ay — A TI(AE — A7)

r, = = Ly , (2.3.37a)
(4 —A?L)IIT (A — A7)
[T(AF — A% TTI(4F — A7)

o= o m : (2.3.37b)



102 Simplest analytic methods

(here I takes values from n +1— 2" to n — 1 and m from n + 2 — 2"*! to
n—2").

System (2.3.35)—(2.3.37) is rather cumbersome. For its simplification
note that the numbers B::k are of order ﬁ and, thus, can be represented

as

+
Brr

BE = 7

(2.3.38)
Moreover, the numbers AY almost coincide with Ag: for large M. This
gives us the possibility of seeking them in the form

Qn

M2/3’

an
YEIEN

A7 =—4+ A = (2.3.39)

Analogously, we can use the following appropriate representation for I‘fk:

1 4

I = 37373 Tk (2.3.40)
Substitution of (2.3.40) into (2.3.35a) gives:
+
v = i%i—. (2.341)
ok ot

Now, if we substitute formulas (2.3.4) and (2.3.38)—(2.3.40) into the system

(2.3.35)-(2.3.37), eliminate 7%, by means of (2.3.41) and take the limit

M — oo, we obtain immediately the system of algebraic equations for aki:

n—1 ﬁi
Y, == tar-g=0, (2.3.42a)
k=nii-an \[aif — a}f
n-2"
+ +
o —
1 g p:n+2_2"( ? — )
- n—1 ’
Pei—of T (af -ad)
g=n+l1-2"
k=n+1-2"...,n—1. (2.3.42b)

Here

1, n41-92"<k<n—1-2°"1

B = 1, n-2""1<k<n-2, (2.3.43a)
—%, k=n-1,

B = Bap—2sbk0. (2.3.43b)
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If the numbers a,c with £k = n + 1-2",...,n—1 are known, then the
equation (2 3.42a) determines ak , and the system (2.3.42Db) determmes the
numbers ai w1th E=n—-2-2"t1  n—2" Therefore, all the af with
k=n'+1-2% ... ,n -1 (n' __n+l) become known.

The energy level E and wavefunction ¢(z) corresponding to this
iteration can be obtained if we substitute (2.3.4) and (2.3.38)-(2.3.40) into
expressions (2.3.31) and (2.3.32). Taking M = 0 we find

n—1
3 2,3: o
En=(28) atGad —9)+ )] =

k=n+4l-2= ¢ 1) —-ak

n—1 - -
—(2p)3 ai(ga;—g)Jr > RN :

k=ntl-2" \/an — o

(2.344)
22 n-l 2 E’:‘L‘
s—4 1
o) =09 s var T [003% +af]
k=n41-2n
z2
2 n—1
1 B
X exp —/\/A-i—()z}f - Z n d/\}.
{ ) 2 k=nti-2n /ot —af (A +of)
(2.3.45)

Thus, we have obtained closed recursion formulas giving the possibility of
determining the nth iteration if the (n — 1)th one is known. Consider for
example the first two steps of this iteration procedure.

0. Zeroth iteration.

af =0, ap =0. (2.3.46)
1. First iteration. The numbers of and a] can be found from the
equations }

349 3
2t S:af—g, —2==o] ~yg. (2.3.47)

+
1 ay

=

Knowledge of the numbers af allows us to find the energy E; and
wavefunction #;(z) in the first approximation.

By = (283 {of (ol —g)—oi(Rei —9)},  (2348)
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hi(z) ~ (2°)74/@28)85

=2

X exp { / Adof |1- d/\}. (2.3.49)
0

al)\

The numbers afl necessary for constructing the next iteration are

determined by the formulas:

3 3
< __+_ 8 =2
of = -4 = al,= 2= (2.3.50)
of oy

2. Second iteration. The numbers ofzt can be found from the equations

1-2s

\/__fm i
ﬁfm““”'

Knowledge of these numbers allows us to compute the energy Fo and
wavefunction ¢,(z) in the second approximation:

(2.3.51a)

(2.3.51b)

Ey = {af (Saf —g) — a5 (33 —9)}
{ 20, 30} 227, 3a; }
\/az-a+1 \/oz;'—oz1 \/az———a 1 \/012 - o]
(2.3.52)
1 (26)3%5 +of

=2

p 1 L
X exp —/ /\+a§[l— 2 + -2

2 af —a=1¥(A+od)) ad A
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The subsequent iterations can be constructed analogously.

We see that even these two approximations properly reproduce the
asymptotic properties of wavefunctions in both the large- and small-z
limits. Moreover, they give correct answers for perturbation theory, which
is applicable if the constant g is large. Indeed, solving equations (2.3.47)
for large g, substituting the results into (2.3.48), and using (2.3.3) we find:

Ey =45o+ ... (2.3.54)

Analogously, solving equations (2.3.50) and (2.3.51) and using formula
(2.3.52) we obtain:

Ey = 45\/a + 25(2s + 1)5— + ... (2.3.55)

It is easy to see that expressions (2.3.54) and (2.3.55) reproduce correctly
the zeroth and first terms of perturbation theory for the ground state energy
level in model (2.3.1). Continuing this procedure we can also obtain correct
results for the next terms in perturbation theory.

Finally, let us consider the case when s is large. This is a typical semi-
classical situation, since the parameter s can be interpreted as an angular
momentum in the radial Schrodinger equation. Solving equations (2.3.47)
for large s and substituting the result into (2.3.48) we obtain the following
asymptotic expression for the energy

By~ 3(25)% +... (2.3.56)

which, evidently, coincides with the semi-classical results (Maglaperidze
and Ushveridze 1989c).

2.4 Higher oscillators with centrifugal barriers

It is well known (Landau and Lifshitz 1977) that the radial analogue of the
simple harmonic oscillator (with centrifugal barrier)

V(z) = w + az? (2.4.1)

has an infinite number of exact solutions belonging to the class of functions

P(z) = ﬁ (%2 - Ei) (2?)"" % exp (—g;—z> (2.4.2)
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(where a = \/a&). As it was shown in section 2.2, the radial analogue of the
sextic anharmonic oscillator (with centrifugal barrier)

4(s — Ly(s— 3
b)z(s—‘i) + az? + Bzt 4 y28 (2.4.3)
T

V(z) =
may have a finite number of exact solutions if the parameter o takes certain
discrete values. These solutions can be written in the form

o) = T1 (£ - &) b exp (-2-2) e

i=1

(where a = /7, b= %)

We see that in both these cases a correct ansatz for wavefunctions
consists of three factors. The first factor is a polynomial in z?, the second is
a power function, reproducing the behaviour of wavefunctions at the origin,
and the third factor is an exponential. The degrees of the polynomials in
this exponential are chosen in such a way as to guarantee correct behaviour
of the corresponding potentials at infinity. The fact that the general form
of the ansatz depends only on the degree of these polynomials suggests that
the series of models allowing exact solutions can be extended further. So,
it would be quite natural to assume that there exist models described by
potentials

s — G- 3)

V(z) = + az? + Bzt + yz® + 628 + ex1® (2.4.5)

and having exact solutions of the form

o az
w0 =T](5-6) @ tow (-2 - 2 -

=1

(2.4.6)

In order to verify this assumption, let us consider the “inverse”
Schrédinger equation

V() = E+[(n )] + [nyl" (24.7)

(in which the potential is expressed via the solution) and substitute ansatz
(2.4.6) into it. This gives:

M z QS—l ’
V(z) = E+ Zﬁ + 2 _az® — bz —cz
=1 7—£i z
M z 28—l I
+ Z . + 2 _az® — bz —cz| . (24.8)
,':1%'—62' z
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After trivial transformations, expression (2.4.8) takes the form

Viz) = {aleo + %2abz® + (b2 + 2ac):z:6 + [2bc + a(4M + 45 + 4)]z*
M 1 3
4(s—2)(s—=
+[c? = b(AM + 45+ 2) — 8a Y €la? + —(—;%8——4—)}

i=1

M M
+ {E — c(4M +45) - 86 & — 16a fo}
1=1 i=1

M M
+Zx21 45,-2/.1 + 4s — 2c€; — 4be? — 8ald } .
" 7—6 E—1 gt—gk

i=1 J

1

(2.4.9)

We see that it consists of two parts. The first part has the same structure

as (2.4.5), while the second part contains the constant term and the terms
-1

proportional to (5; - fi) . In order to guarantee the coincidence of the

potential given in (2.4.9) with that in (2.4.5), these (unwanted) terms must

vanish. This leads to the system of M equations

M 1 s c 9
3 + 5 - b6 — 28 = 0,
k=1

G—& & 2
i=1,...,M (2.4.10)
for M unknowns &, ¢ = 1,..., M, and to the following expression for the
energy:
M M
E =c(4M +4s)+8b) &+16a ) ¢F. (2.4.11)
i=1 i=1
Then, potential (2.4.9) takes the form
4s— 56— 3) 2 .- 2
Viz) = —T——-I- c ——b(4M+4s+2)—8a;§,~ T
+[2bc + a(4M + 4s + 4)]z* + (b7 + 2ac)z® + 2abz® + a0
(2.4.12)

This results in a new class of quasi-exactly solvable models with
corresponding exact solutions described by formulas (2.4.6) and (2.4.11).
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We emphasize that there is a principal difference between the quasi-
exactly solvable models (2.4.12) and the models (2.2.1) discussed above.
This difference lies in the fact that, in contrast to model (2.2.1) the potential
of which depends only on the number M, potential (2.4.12) depends also on
the numbers &, ¢ = 1,..., M satisfying the system of numerical equations
(2.4.10). In other words, the potential V(z) depends on the sort of solution
Y{(z), even when the number M is fixed. But this means that formula
(2.4.12) describes a set of quasi-exactly solvable models of unit order.

Fortunately, there are some special cases when the order of quasi-
exactly solvable models (2.4.12) may exceed one (Ushveridze 1989¢). To
show this, consider formula (2.4.12). Note that for an explicit construction

of a model of order K, it is necessary that for K solutions fgk), ceey J(V);)’
k=1,...,K of the system (2.4.10) the values of the first-order symmetric

polynomials

M
o= & (2.4.13)
i=1

entering into the potential (2.4.12) be made independent of k, and the entire
k-dependence be concentrated in the second-order symmetric polynomial

M

g = Z[Ei]Z (2.4.14)

i=1
defining the energy of system (2.4.11). To do this, we multiply system
(2.4.10) by &;, sum over i and use the relation

n

M, ETH'I n+1
L = — o+ % On, 2.4.15
.';1 & — & 2 2 ; ( )

where by o,, we have denoted the symmetric polynomial of order n:

M
ZEDY 3 (2.4.16)

=1
As a result we obtain a system of equations expressing o, with n > 2
in terms of o, with n < 2. A different system of conditions on the
symmetric polynomials o, can be obtained by noting that o, with n > M
are expressed in terms of o, with n < M. Assuming that M > 2, and
combining these two systems, we arrive at two algebraic equations of the

form

o + fioy N+t fyc1oa+ v = 0, (2.4.17a)

0'5‘+g1¢7£"1 +...4+gr-109+9gr = 0, (2.4.17b)
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where

(2.4.18)

we M), an [

2

The coefficients of these equations depend explicitly on five quantities: a, b,
¢, s and g;. For each equation (2.4.17) to have at least K different solutions
for a fixed set of these quantities, it is necessary that the inequalities

N>K, L>K (2.4.19)
be satisfled. This leads to the following restriction on M:
M >2K - 1. (2.4.20)
Note that if
M =2K -1, (2.4.21)
the degree of both the equations (2.4.17) is the same and equal to K:
N=K, L=K. (2.4.22)

For these equations to be compatible, it is necessary that the coeflicients
of identical powers coincide:

fi=g, fo=9, .., fx=9k. (2.4.23)

Wee see that K equations (2.4.23) are imposed on the functions depending
on five quantities, a, b, ¢, s and o;. For system (2.4.23) to be solvable we
must require that

K <5. (2.4.24)

But this means that we have found the maximal possible order of quasi-
exactly solvable models of the type (2.4.12).

As an example, let us construct a second-order (K = 2) model with
the potential (2.4.12). According to formula (2.4.21), in this case M = 3,
and therefore we have only three algebraically independent polynomials o,
oy and o3. Polynomials 04 and o5 can be expressed in terms of o1, 09 and
03 as

04 = Acy+Boy+ Boy+ CO’%O’Z + Do"l1

05 = A'oyos+ B'ool+C'ooq+ D'olos (2.4.25)
+E’0"'130'z + F'a?
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with certain computable coefficients A, B,... and A’, B’,.... To compute
the coefficients A and A’, take for example, & = +1, & = +1, & = 1,
which gives o1 = 0, 03 = 6, 03 = —6, 04 = 18, 05 = —30. Substituting
these values into (2.4.25) we find that

A= %, A= %. (2.4.26)
Analogously one can compute the other coefficients in (2.4.25).

Multiplying equation (2.4.10) by &, &? and &3, summing over i and
using formula (2.4.15) we obtain three equations:

3(s+1)— %01 —boy — 2a03 = 0,
(s +2)oy — %a’z — bog — 2a04 = 0, (2.4.27)

(s+ %)02 + %0% - %oa —boy — 2a05 = 0.

Thus, we have five equations (2.4.25) and (2.4.27) for nine quantities
oy, 09, 03, 04, 05, a, b, ¢ and s. We see that we have a sufficient number
of free parameters at our disposal. Therefore, for definiteness we can set

o1=0, a=3, (2.4.28)
reducing the system to the form
ok — (26% — ¢)op + 6b(s + 1) = 0, (2.4.29a)
9
ol + 2k 3510y~ 2—Z(s +1)=0. (2.4.29b)
Equating the coefficients of identical powers of o3, we find that
s=2b° -2 c=-3b (2.4.30)
The potential of the corresponding model has the form
16p3 1111163 17
V(z) = [27 61:2[27 6] +[%§,b4—33—4b] 22
b2
— [3%6° — 2] 2* 3306 + bz® + 10 (2.4.31)

and solutions are given by

E=-18p 4 852 4 \/b% — 2 (2.4.32)
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and

o = (5-6)(3-4)(3-5)
(—g - % + 2?2) . (2.433)

where €7, £; and &3 can be found from the equations

&L+ & +E =0,
& +6 +6=30" £ Vbt -2, (2.4.34)

Ere+e8=1-I3Fov/bt - 2.

Using the oscillator theorem, it is not difficult to see that the levels obtained

in such a way may describe the first and second excitations (Ushveridze
1989c).

Figure 2.3. The form of the classical potential (2.4.36).

In conclusion, note that the spectral equations for models of the type
(2.4.12) also allow a classical interpretation (Maglaperidze and Ushveridze
1988). Indeed, system (2.4.10) can be viewed as the condition for an
extremum of the following classical M-particle potential:

M M
W, ..., &) =— Y Il& — &+ > U&), (2.4.35)
k=1 i=1
where
U(€) = —snf¢| + —;—& + %&2 + %953 (2.4.36)
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1s an external potential of the form depicted in figure 2.3. It is evident that
there are such dispositions of M Coulomb particles in the potential (2.4.36)
when K of them (0 < K < M) lie in the right-hand well, but according
to the oscillator theorem this means that exact solutions for model (2.4.12)
may describe states with the numbers 0,1,..., M.

2.5 The electrostatic analogue. The general case

In the preceding section we have shown that the potential of model (2.4.12)
depends, in general, on the form of the solution. Nevertheless, the M-
dependence of parameters a, b and ¢ entering into the potential (2.4.12) can
be chosen in such a way that its dependence on the form of the solution
vanishes in the limit M — oo. This dependence can be found from the
equations

M
cz—b(4M+4s+2)—8aZEi:a,

i=1
2bc —a(dM +4s+4) = 3, (2.5.1)
b2 4 2ac = 7,

where a, # and v are certain fixed numbers, and from the conditions that the
expression for the energy (2.4.11) and the spectral equation (2.4.10) remain
meaningful in the imit M — oc. A simple analysis of these formulas shows
that the correct limiting procedure can be performed if we assume that
parameters a,b and ¢ and also the unknown numbers ¢; have the following
orders:

1 1 1
a~M—5’ le, CNME, €,~M§ (252)

Then, introducing new parameters A, B,C, and new unknowns £ (3) by
the formulas

1 1 1 .
a=M"2A, b=DB, c=M2C, E,’:Mff(fl—), (2.5.3)

and substituting (2.5.3) into conditions (2.5.2), we obtain

B4+ 2AC = 9,
29BC —4A = O(M™1%), (2.5.4)
M

O(M™1),

It

c2—4B—8AZ§(X})§,—

i=1
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and also

3 M .
E=M2 {40 +8BY €(d) FHI6AY (&) &+ O(M-l)}

i=1
(2.5.6)
and
Lyg_ 8
V(z) = ———————~4(S . 43)2( 1) + az? + fz* + y2©
1 25 1\ 10
+0 (\/A—d) +0 <M) zto. (2.5.7)

If M tends to infinity, the terms with the anharmonicities 8 and 10
disappear and the potential takes the form

4(s — Ly(s— 2
V(z) = —E———i)z(i——‘i—z + az? + Bzt + y2b. (2.5.8)
z
We know that, in general, it describes the exactly non-solvable “radial”
Schrédinger equation for the sextic anharmonic oscillator.

Introducing the particle distribution density p(€) and taking M — oo

in equations (2.5.4) and (2.5.5), we obtain for € # 0 the integral equation

p(n) c 2
——dp— —-—-BE—-2A" =0 2.5.9
e—n 173 3 (2.5.9)
supplemented by the normalization condition for p(¢):
/p(é) d¢ =1, (2.5.10)
and by the additional conditions following from the equations (2.5.4):
84 [ ep) de+an = C?
BC = 124, (2.5.11)

B?+24AC

.
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In the limit M — oo the expression for the energy becomes

E= M%{4C + 8B /fp(f) d¢ + 16A/§2p(5) d¢}. (2.5.12)

It is not difficult to see that the equations obtained describe a classical
charged liquid which is distributed between two wells in the potential

24¢3 , Bgea | C
— 3 2 2
U(¢) { o, £ 0 (2.5.13)
depicted in figure 2.4. Generally speaking, this potential is not fixed

U

U()

/N y
\_

Figure 2.4. The form of the classical potential (2.5.13).

but depends on the particle distribution density (more exactly, on the
charge centre [&p(¢) d€) as follows from formulas (2.5.11)). Nevertheless,
these equations can be solved exactly and this gives us the possibility
of describing the quantum model with the potential (2.5.8) in a purely
classical language. Of course, equations (2.5.9)-(2.5.12) correspond only
to the zeroth approximation in the iteration scheme described in section
2.3. However, even this rough approximation can be used to describe the
spectrum of model (2.5.8) in the semi-classical limit, when the number of
excitations K is large: 1 € K <« M. In this limit, the charge of the
liquid which is situated in the right-hand well is not negligibly small; the
expression in the curly brackets in (2.5.12) differs from zero, and is of order

K % /M % This gives us a semi-classically correct result for the Kth energy
level in model (2.5.8).

Finally, note that we have already two examples of exactly non-solvable
models allowing reformulation of the spectral problem in a purely classical
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language. Similarly, it can be shown that any one-dimensional quantum
mechanical model with polynomial potential of degree 2n can be obtained as
a limiting case of the quasi-exactly solvable model described by potentials of
degree 2n+2 and allowing a classical interpretation. Since any potential can
be approximated with arbitrarily high accuracy by polynomial potentials,
this means that any one-dimensional problem of quantum mechanics can
be formulated in terms of finding the equilibrium of an infinite number
of charged classical Coulomb particles in an external electrostatic field
(Maglaperidze and Ushveridze 1988).

2.6 The inverse method of separation of variables

From the results of section 2.4 it follows that second-order linear differential
equations of the type

2
{_66? + a?z'% 4 2abz® 4 (b% + 2ac)z® + [2bc + a(4M + 4s + 4)]z*

M
4 c2—b(4M+4s+2)—SGZ€i] z?
o i=1 .
+ | —~c(4M +4s) — 8b Zfz’ — 16a Zf{'{l
=1 i=1
s_1)s_3
+4( 4)2( 4)}¢(r) -0 (2.6.1)
z

may have exact solutions of the form (2.4.6) if the numbers &; entering
simultaneously into (2.6.1) and (2.4.6) satisfy the system of numerical
equations (2.4.10). It is not difficult to see that (2.6.1) can be considered as
a single exactly solvable spectral equation with three spectral parameters

' = 2bc—a(4M +4s+4),

M
A ¢ —b(AM +4s+2) - 8a ) &, (2.6.2)
i=1

M M
—c(4M +4s) — 8b) & —16a ) .

i=1 i=1

A

Il

One of these parameters, T', has a degenerate spectrum. The multiplicity
of this degeneracy is equal to a number of solutions of equation (2.4.10)
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for given M. The presence in (2.6.1) of two spectral parameters A and
A, depending explicitly on £ and, thus, having non-degenerate spectra,
prevents the possibility of interpreting (2.6.1) as a guasi-exactly solvable
Schrodinger-type equation of sufficiently large order. In fact, if we include
one of these parameters in the potential, the latter will depend explicitly
on the numbers ; (i.e. on the type of solution) and we arrive at a series of
quasi-exactly solvable models of unit order (see section 2.4). On the other
hand, we cannot remove both parameters A and A from the potential since
the Schrédinger equation with two “energies” is meaningless. Thus, we see
that one of the spectral parameters A and A is undesired and it would
be very temping to except it from the consideration. This can be done as
follows.

Let us treat (2.6.1) as a result of the separation of variables in a certain
two-dimensional spectral equation. In this case, the unwanted spectral
parameter can be identified with a separation constant which (by definition)
cannot enter into the initial two-dimensional equation. The latter can,
obviously, contain only two spectral parameters, one of which (having non-
degenerate spectrum) we identify with the energy, while the second one
(with degenerate spectrum) we include in the potential. Such a distribution
of remaining spectral parameters gives us a series of two-dimensional quasi-
exactly solvable models of an arbitrary, arbitrarily large order.

These models can be constructed by means of the inverse problem of
separation of variables (Ushveridze 1988¢c, d, 1989c¢, d, e), which has already
been discussed in sections 1.7 and 1.8. Following the prescriptions given
in these sections, we consider two identical equations (2.6.1) rewritten in
terms of two different variables z; and z,.

— 27 +a%2]% + 2abs} 4 (B + 2a0)2] + Tz + Azf + A+ ——J———Q‘*(’_?g(’_i }
x Y(z1) =0, (2.6.3a)

{ 27 T a?23% 4 2abz5 + (b% + 2ac)2s + T25 + Az2 + A+ (s‘l)(s_ }
X P(z9) = 0. (2.6.3b)
Multiplying (2.6.3a) by 9(z3), (2.6.3b) by ¥(2;) and subtracting one result
from the other we obtain a simple two-dimensional spectral equation with

two spectral parameters I' and A which after dividing by 2% — 22 and
changing variables

Y= izlzz, (264)
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takes the form

o2 8 4s—-1H(s-2)
{*a—ﬁ Tapt T g re st R ity

W [

+2ab(8z° + 4y°z) + (b + 2ac)(4z® + y?) + 2[‘17}1&(:3, )

= EY(z, ), (2.6.5)
where
&=-A, (2.6.6)
and
P(z,y) = v(21)(z2). (2.6.7)

At first sight, we have obtained a remarkable result: we have
constructed a quasi-exactly solvable model of the two-dimensional quartic
anharmonic oscillator! However, more careful analysis shows that this
assertion is not quite correct. Indeed, let us look at the wavefunction ¥(z,y)
describing exact solutions in the model (2.6.5). Substituting expressions
(2.4.6) for ¥(z1) and ¥(z2) into (2.6.7), and using formulas (2.6.4), we
obtain

Yy = Pl
x exp (—a [22% + 3y%] — b[2z% + y?] —cz), (2.6.8)

where P(z,y) is a certain polynomial. However, it is absolutely obvious
that function (2.6.8) is not normalizable!

What does this mean? On the one hand, we see that our idea of
using a one-dimensional exactly solvable three-parameter spectral equation
to construct a two-dimensional quasi-exactly solvable Schrodinger-type
equation was quite successful from a purely mathematical point of view:
we have actually obtained such an equation. On the other hand, the exact
solutions of this equation turned out to be non-physical ones. Does this
mean that the method of the inverse problem of separation of variables
cannot be used to construct physically sensible multi-dimensional quasi-
exactly solvable models? The answer is no! As we see below, the
construction of such models by means of the “inverse procedure” is possible,
but it implies the use of more appropriate exactly solvable multi-parameter
spectral equations. In order to find the needed form of these equations, we
choose the following strategy. First of all, we construct the most general
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form of two-dimensional Schrdodinger-type equations allowing separation of
variables. This gives us the possibility of describing simultaneously the
class of resulting one-dimensional equations arising after the separation.
It is not difficult to understand that it cannot be too large (at least for
the Schodinger equations with polynomial potentials) since the number of
quantum mechanical models allowing separation of variables is, generally,
very small. But this means that the problem of finding exactly solvable
multi-parameter spectral equations belonging to this class cannot be too
complex.

2.7 The Schriédinger equations with separable variables and
quasi-exact solvability

In this section we discuss a general method for building two-dimensional
Schrédinger-type equations with polynomial potentials allowing separation
of variables (Turbiner and Ushveridze 1988b). The method is based on
the observation that any coordinate system i which such a separation
is possible can be obtained from the Cartesian system by means of
conformal transformations described by a single analytic function. These
transformations have the form

§=1(z) (2.7.1)
where
z=z+1ly, €=n+ic (2.7.2)

are complex variables and f(z) is an arbitrary analytic function. Formulas
(2.7.1), (2.7.2) describe the transition from Cartesian coordinates (z,y) to
new coordinates (77, ¢). It is known that the new coordinate system is also
orthogonal. The Laplace operator

62 32
Ax’y = _6—:;}—2 5&3 (273)

in this system has the form

Apo=FAgy (2.7.4)
where

F=\f(2) (2.7.5)
Therefore, separation of variables (n, ) in the Laplace equation

Agyp =0 (2.7.6)
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is always possible.
Now let us consider the Schrodinger equation

{~Asy + VI = Ey. (2.7.7)

Clearly, the presence of two additional terms V and E in (2.7.7) restricts

the set of the coordinate systems (7,0) in which separation is possible.

Our aim is to describe the set of such systems and list the corresponding

potentials V. We consider two cases:

(i) The energy E in the Schrédinger equation is fixed (a specific point of
the spectrum is being sought),

(ii) The energy is random (a part of the spectrum is being sought).

First case. Without loss of generality, assume that £ = 0 which
corresponds to the choice of reference pomnt. The Schrodinger equation
in the varaibles (7, o) takes the form

{—Aw + %} % =0. (2.7.8)

The following requirement is a condition for the separation of the variables
(n,0) in (2.7.8)

V = F{A(n) + B(0)}. (2.7.9)
Here A(n) and B(o) are arbitrary functions. Then, after taking

¥ = pa(n)ps(o) (2.7.10)

the problem of solving the initial Schrodinger equation (2.7.7) is reduced
to solving two independent one-dimensional equations

62 32
(g}t =0, {480 ) =0 @
Formulas (2.7.9)—(2.7.11) give us the most general form of two-dimensional
Schrédinger equations allowing separation of variables for a certain fixed
state.

Second case. Let us now discuss the case when the energy E in (2.7.7)
may take arbitrary non-zero values. Using the conformal transformation
(2.7.1) we obtain the equation

(——Aw + % -~ %) % =0. (2.7.12)
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It is clear that condition (2.7.9) is not alone sufficient for the variables (7, o)
to be separable in (2.7.12), and it is necessary to require in addition that

% = a(n) + b(0), (2.7.13)

where a(n) and b(c) are certain arbitrary functions. As a result, we obtain
instead of (2.7.11) the following system of equations

[“3—6,,5 + A(ﬂ)] va(n) = [Ea(n) + Tpa(n), (2.7.14a)
[-Eaﬁ + B(”)] o(0) = [Eb(0) + T ps(0), (2.7.14b)

in which E is the spectral parameter of the intial Schrodinger equation,
while T’ is the separation constant which plays the role of an additional
spectral parameter in the joint system (2.7.14).

Now consider the additional condition (2.7.13) in more detail.
Obviously, it can be rewritten as

82 -1 B 82 62 1 B
On aUF - <5f_2 - 5f*2> f’(z)f"'(z) =0 (2.7.15)

or, equivalently, as

N N - L |
f (Z)—é—ﬁ?l(_‘z; =f (z)af*z m (2.7.16)
Substituting the identities
e _ 1 & M) 8
572 = [7(2)] 2 - [7(2)F 8z (2.7.17a)
¥ L o JE) 8 9.7.17h
8f*2 = [f'(z") 022 [f'(z") 6z~ (2.7.17b)
into (2.7.16) and introducing the new function
1
= 2.718
()= 7 (2718)

we obtain for (2.7.16)

t(2)t"(2) + [t'(2)]? = t(z*)"(z*) + [t' (™)) (2.7.19)
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Since the left- and right-hand sides of this equation have the same form but
depend on different variables z and 2*, equality (2.7.19) holds if and only
if both these sides are equal to the same constant:

() + ) =c (2.7.20)
This equation can be solved without difficulty. Indeed, taking
t(z)=1t, t'(z)=y(), t"(z)=y'(t)y?), (2.7.21)

we obtain an ordinary linear differential equation for y?(t)

2 2 —
TV O+ = ¢ (2.7.22)

the most general solution of which is

/

V2 (t) = ¢+ f; (2.7.23)

Using formulas (2.7.18) and (2.7.21) we find the following final expression
for f(z):
f(z) = craresh(coz + c3) +ca (2.7.24)

in which ¢y, ¢y, c3 and ¢4 are arbitrary constants. Thus, we have found the
most general form of the function f(z) for which the additional condition
of separation (2.7.13) can be satisfied.

Let us now consider the two most important limiting cases of formula
(2.7.14):

fz)=+V= (2.7.25)
and
f(z) = arcsh 2, {2.7.26)

and note that all other possible cases can be derived from (2.7.25) and
(2.7.26) by means of arbitrary translations, dilatations and rotations in the
spaces of variables z = (z,y) and § = (n,0).

1. Let f(z) = v/z. Then, obviously,

n=+V(r+z)/2, oc=+\/(r—2)/2, (2.7.27)
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where r = /22 + y? is the radius in the (z, y)-plane, and
1 1

F=—=—n—o.
rril (2.7.28)
Thus, from (2.7.13) it follows that
a(n) = 4%, b(o) = 40?. (2.7.29)

The explicit form of the functions A(7) and B(c) can be found from the
condition of quasi-polynomiality of the original potential V in the variables
z and y (see formula (2.7.9)). It is clear that the most general form of the
functions in this case is

N N

A= > an™, B(e)== > (-Dreo™, (2.7.30)

k=-1 k=-1

where the ¢; in both formulas (2.7.30) are the same coefficients which may
be chosen arbitrarily. Substituting (2.7.30) into equations (2.7.14) it is not
difficult to see that after replacing ¢? by —7? in the second equation, it
takes the same form as the first one:

2 N
{_387 + ) art - Eﬂz} o(n) = Te(n). (2.7.31)

k=-1

(Here we have taken @q(n) = @u(in) = ¢(n).) However, (2.7.31) is simply
the Schrodinger equation for quasi-exactly solvable models with even quasi-
polynomial potentials of orders 2N. Such models have been discussed in
the preceding sections of this chapter. Consider two particular cases:

1. N = 3. From the results of section 2.2 we know that in this case
equation (2.7.31) may have several exact solutions if parameter E takes
specific values. Thus, (2.7.31) can be viewed as an equation with two
spectral parameters E and I'. By transition to the two-dimensional case,
the second spectral parameter I', which plays the role of the separation
constant, disappears and we arrive at the Schrédinger equation with a
single spectral parameter E. Obviously, this equation is exactly solvable
by construction. Its potential can be recovered from formula (2.7.9).
Computing it, we see that the obtained exactly solvable model is a two-
dimensional spherically non-symmetric harmonic oscillator with centrifugal
barrier.

il. N =5. According to the results of section 2.4, equation (2.7.31)
with N = 5 also allows exact solutions, but now it can be viewed as an
equation with three spectral parameters: E, I' and ¢;. We know that the
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spectrum of parameter cy is degenerate and therefore, after transition to a
two-dimensional case, we obtain the quasi-exactly solvable equation with
two spectral parameters: E, which plays the role of the energy, and cs,
which is included in the potential. The potential of this model is described
by a quasi-polynomial of order four. Unfortunately, as noted in section 2.6,
the wavefunctions corresponding to admissible values of these parameters
are not normalizable, and therefore the obtained quasi-exactly solvable
model! is not of any physical interest.

Note that the next values of N (N = 7,9,...) also lead to equations
(2.7.31) allowing exact solutions. However, in these cases equations
(2.7.31) contain more than three spectral parameters and consequently, the
elimination of one of them by transitions to a two-dimensional case cannot
give any interesting quasi-exactly solvable model of sufficiently high order.

Now let us turn to the second limiting case described by formula
(2.7.26).

2. Let f(z) = arcsh z. Then we have:

n = arcsh H——;—E, o = arcsin —* ; - , (2.7.32)

where by r4 we denoted the expressions

r+ =V (z£1)2 4+ y2 (2.7.33)

We also have

1 1

F= - , 9.7.34
1+22]  ch?np—sin’e ( )

from which it follows that
a(n) = ch’n, b(o) = —sin?o. (2.7.35)

Obviously, the unique form of functions A(n) and B(s) guaranteeing
quasi-polynomiality of the potential V is

2N

dl d2 2n
Aln) = - + nch™n, 2.7.36
() K + K Ze ch*’ p ( a)

n=2

sin? i cos?

d dy &
B(o) = —— + ——2—” — Y ensin™o, (2.7.36b)
n=2
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where dy, dy and e, are arbitrary constants. Substitution of (2.7.36) into
system (2.7.14) gives

52 d d 2N
1 2 2 : 2 2
{—W—ch2n+sh2n+ e e = Beh n—r}%(n)zo’

n=1

(2.7.37a)

0? dy da <
—— —2+_‘_—Zensin2"a+ESin20—r ¢o(0) = 0.

802  sin‘c  coslo

n=1
(2.7.37b)
Taking
A=ch’n, @a(n) = MA - D]¥p(N), (2.7.38a)
A=sin’o, @5(0) = [A(A = D]ie(R), (2.7.38b)

we can see that (2.7.37a) and (2.7.37b) are simply two different forms of a
single one-dimensional equation which, after introducing the notations

€1 = —-E‘7 €g = I - dl - d2 + %, (2739)
can be written as

0?2  di — g dy — % 2’211!0 en A"
{_8_)\_2 + 42 + 4A —1)? + SYO ) p(A) =0. (2.7.40)

Evidently, (2.7.40) is equivalent to (2.7.37a) if 1 < A < oo, and to (2.7.37b)
if0<AL1.

Thus, we see that the problem of constructing two-dimensional quasi-
exactly solvable Schrédinger problems with quasi-polynomial potentials is
reduced to the problem of finding equations belonging to the class (2.7.40)
and admitting the interpretation as exactly solvable equations with three
spectral parameters.

In order to find such equations note that (2.7.40) is an equation with
three singular points located at 0, 1 and co. Consequently, the behaviour
of the function () in the vicinities of these points cannot be arbitrary. It
is determined by the formulas

At A—0
o(A) ~ (A—1)2, A1 (2.7.41)
exp{—Q@n(})}, A — o0

in which the numbers s; and sy satisfy the equations

ds1 -1 =2 =di, A(s2— (52— ) =dy, (2.742)

4 4
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and coefficients of the polynomial Qn{)) are expressed via parameters
EN+1,--.,€an. For example, if

in aN-1
A=y ANy 7.
Ov(A) =55 TN oD T (2.7.43)
then
gv =en, N2>1, (2.7.44a)
2qvgN-1— g% =en-1, N >2, (2.7.44b)

The simplest expression reproducing all the asymptotic properties
(2.7.41) can be written as

p(A) = PN (A = 1) exp{~Q(N)} (2.7.45)

where P()) is a certain (arbitrary) polynomial. Surprisingly enough,
(2.7.45) turns out to be a correct ansatz for equation (2.7.40). Substituting
(2.7.45) into (2.7.40) we can make sure that this equation can actually be
satisfied if the numbers ey, eq,...,en, playing here the role of the spectral
parameters, take certain discrete values. The number of these parameters is
N +1 and, therefore, in order to obtain the needed three-parameter spectral
equation we must take N = 2. Later we discuss the case N = 2 in detail
and show that it actually leads to physically sensible two-dimensional quasi-
exactly solvable models with quasi-polynomial potentials. However, first it
is very helpful to consider the case N = 1, which is especially interesting
from the point of view of one-dimensional quantum mechanics.

1. N = 1. In this case ansatz (2.7.45) can be written in the form

M
41
2 =TT = )A (A = 1)°2 (——A), 9.74
o) = 1[0 - €032 = 12 exp (- (2.746)
where &1,...,€p are certain unknown parameters determining the zeros

of the polynomial P(A}). Substituting (2.7.46) into (2.7.40) and equating
similar terms we find explicit expressions for the two spectral parameters
ep and e;

€0

M
1
85155 + 85, (% + Z; 5) , (2.7.47a)

—qi — 4q1(s1 + s2 + M), (2.7.47b)

€1
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in which the &; satify the system of equations:

i' LB By oM (2748)
—+——-==0, 1=1,..., M. 7.
G- & G102

We see that the spectrum of the parameter e; is degenerate with respect to
the spectrum of eg, and therefore, equation (2.7.40) can be interpreted as
a quasi-exactly solvable equation with a single spectral parameter eq. To
reduce the obtained equation to Schrodinger form, we must identify the non-
degenerate spectral parameter eg with the energy and include the second
degenerate one, e;, in the potential. Remembering that ey is connected
with T' and e; with £ and making transformations (2.7.38a) and (2.7.38b),
we obtain two new one-dimensional quasi-exactly solvable models with
hyperbolic and trigonometric potentials (Ushveridze 1988c):

_4(81 et %)(82 - %) 4(32 — 4l (Sl — %

Va =
(m) rEh 4
—[a} + 4q1(s1 + 52 + M) ch” 4 gl ch®n,  (2.7.492)
3
Vi(o) = _4(81 — %)2(82 -3 + 4(sq — %)(31 _ %

sin® o cos? o

_[q% +4q1(s1 + 52 + M)) sinfo + qf sinto. (2.7.49b)

The (exact) wavefunctions for these models have the form:

M
9 2
@a(n) = (ch?n) ¥ (sh®n)2%e™ 3 M T(ch? - &), (2.7.50a)

i=1

M
_ 4 gin? .
@3(0) = (sin’ 0')“‘1"’14'(cos2 U)”‘}e 2 S UH(smza — &) (2.7.50Db)

i=1

and the corresponding energy levels are described by the formula

M
q 1
T=—4(s1y +s3 — %)2 — 8sq (-2— + i_é l f_,) (2.751)

in which the numbers &;,. .., & satisfy equation (2.7.48).

We see that model (2.7.49a) is defined on the positive half-axis n €
[0,00], and the model (2.7.49b) on the finite interval ¢ € [0,7]. The
potentials of these models are depicted in figure 2.5.

The wavefunctions of the first model are normalizable in the interval
n € [0,00] if s > 2 and ¢; > 0, and the wavefunctions of the second
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v

Va(n)

=

3_’<
\
3

Vo(m)

WA — — = - - - - — —

TNV

Figure 2.5. The form of the potentials a) (2.7.49a) and b) (2.7.49b).

=3
N

model satisfy the normalization condition in the interval o € [0, 5] when
s1 > 0 and sy > 0. It is remarkable that the spectra of both these models
coincide, which is a trivial consequence of the fact that they were obtained
from the single two-parameter spectral equation (2.7.40). Note also that
the models (2.7.49a) and (2.7.49b) can be interpreted as generalizations of
the well known hyperbolic and trigonometric Poschel-Teller potential wells

(see, e.g., Fligge 1971).

Concluding the discussion of the case N = 1, we emphasize that the
two-dimensional model, from which models (2.7.49a) and (2.7.49b) were
obtained after the separation, is simply the ordinary harmonic oscillator
with potential barriers along the z- and y-axes. Indeed, using formulas
(2.7.9), (2.7.13), (2.7.35), (2.7.36), (2.7.32) and (2.7.33), we can reconstruct
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the corresponding two-dimensional potential which has the form

451 — $)(s2— 2) + 4s9 — (s1 = D)

V(z,y)= - . /2 +a (=2 +y*+ 1)
(2.7.52)
and leads to a degenerate system described by the formulas
E = ¢ 4+ 4q1(s1 + s1 + M) (2.7.53)

and
M
v(z,y) = [[lEf-€E"+y*+1)+27
i=l

x (2T (y?) e exp (—%(x2+y2)>. (2.7.54)

The multiplicity of degeneracy is M + 1, and therefore, the order of the one-
dimensional quasi-exactly solvable models obtained (2.7.49a) and (2.7.49b)
is also equal to M + 1.

The transition from the two-dimensional exactly solvable model
(2.7.52) with degenerate spectrum to two one-dimensional quasi-exactly
solvable models of finite order gives us one more example demonstrating
how the (direct) method of separation of variables described in section 1.7
works.

Now, let us return to the inverse method of separation of variables
and, starting with the three-parameter spectral equation (2.7.40) appearing
when N = 2, try to construct a non-trivial two-dimensional quasi-exactly
solvable model.

2. N = 2. In this case, ansatz (2.7.45) becomes

M
— 31 S2 q_2 2 21_
o(\) = E(A —E)A (A= D) exp (- 2y -4 N, (2755)

Substituting (2.7.55) into (2.7.50) and equating similar terms, we find the
following expressions for the three spectral parameters eg, e; and ey:

M
1
85159 + 851 (q2_1 + Z E—) , (2.7.56a)
iz1 >

M
e = Aq(si+M+3) —Aq(si+s2+M)— gl — 402 &,
=1
(2.7.56b)
es = @ —2q1q2 — 2q9(251 + 2892 + 2M + 1), (2.7.56¢)

i

€o
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in which the §; satisfy the system of M numerical equations

I
Z teo1 2 =0

k= 1 &

i=1,...,M. (2.7.57)

The remaining parameters es, e4 and di, dp are determined by formulas
(2.7.42) and (2.7.44). Since all parameters entering into the expressions
for A(n) and B(og) are known, we can easily recover the form of the
corresponding two-dimensional potential. Using formulas (2.7.9), (2.7.13),
(2.7.35), (2.7.36), (2.7.32) and (2.7.33) we find

4s1— 5)(s1—2)  Als2— 3)(s2— 2)
Viz,y) = S+ 4yz 4
+{q? — 2¢2(2s1 + 252 + 2M + 1)}
+{[¢? — 2¢2(2s1 + 252 + 2M + 1)]r* + [2q192 + ¢3]¥° }

+{2q1027% + 259%}r” + 5r°. (2.7.58)

Analogously, we can obtain the explicit form of wavefunctions satisfying
the Schrodinger equation for (2.7.58). Substituting (2.7.55) and (2.7.38)
into (2.7.10) and using (2.7.32), (2.7.33) we get

M
Wa,y) = JJIE - &(r? + 1)+ 22?2t

i=1
X exp {~%(7‘2 + 1)~ %[(TZ +1)? - 21?2]} - (2.7.59)

The corresponding energy levels can be obtained from (2.7.39) and
(2.7.56b):

E:q§+4q1(SI+SQ+M)—4qz(52 +M+ +4QQZ€, 2760

(Remember that the numbers &; can be found from (2.7.57).)

Is is easy to see that model (2.7.58) is defined in the domain z > 0,
y > 0, and the wavefunctions in (2.7.59) are normalizable in this domain if
s1 > 0, 55 > 0 and q3 > 0. Thus, we have constructed a physically sensible
two-dimensional quasi-exartly solvable model, the potential of which is
described by a spherically non-symmetric quasi-polynomial of order six.
The non-negative integer M entering into the potential determines the order
of this model, which is equal to the number of solutions of system (2.7.57).
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The simplest way to compute this number is to use the classical electrostatic
analogue of equations (2.7.57).

Indeed, it is not difficult to understand that system (2.7.57) describes
the equilibrium condition for M classical Coulomb particles with unit
charges and coordinates &; situated in an external electrostatic field with
the potential

U€)=-s1lnf¢| — sy Inf¢ — 1|+ %5 + %—52. (2.7.61)

This potential, consisting of three wells separated by singular potential
barriers at the points £ = 0 and £ = 1, has the form depicted in figure 2.6.

U

U(e)
11

Figure 2.6. The form of the potential (2.7.61).

It is quite obvious that there are @ﬁ-_l)i(ﬂﬁ) different ways to
distribute M Coulomb particles between these three wells and for any such
distribution a classical stable equilibrium is possible. But this means that
the number of solutions for equation (2.7.57) is M)Q(M and this is also
the order of the constructed quasi-exactly solvable model (2.7.58).

Note that, as in the one-dimensional case, the numbers £; determine
the wavefunction zeros. This follows from expression (2.7.55) and formulas
(2.7.38) and (2.7.10). The equations for these zeros, which in the two-
dimensional case are located along the lines, can be obtained from the
condition A = £; and formulas (2.7.38), (2.7.32) and (2.7.33):

3 (\/(r +12+ 97+ V(2 - 1)2 + yz) =§j, (2.7.62a)

(Ve DT+ - V- 17+ =6 (2.7.62b)

Obviously, these equations allow real solutions if and only i the numbers
& in (2.7.62a) exceed one: & € [1,00], while the numbers & in (2.7.62b)
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are less than one but positive: £ € [0,1]. In this case we can speak
of wavefunction nodal lines which may have the form of confocal ellipses
(2.7.62a) or hyperbolas (2.7.62b), see figure 2.7.

My

Figure 2.7. The nodal structure of wavefunctions in the model (2.7.58).

The number of elliptic nodal lines is equal to the number of particles
situated in the third well (see figure 2.7), and the number of hyperbolic
nodal lines is determined by the number of particles situated in the second
well. The particles situated in the first well determine the complex zeros of
the wavefunction. The case in which all particles are concentrated in the
first well corresponds to the ground state.

2.8 Multi-dimensional quasi-exactly solvable models

The method of constructing two-dimensional quasi-exactly solvable models
discussed in the previous section can be generalized easily to the multi-
dimensional case (Ushveridze 1988b). As stated before the procedure
includes three stages. First of all, we choose the coordinate system;
then construct a most general class of Schrodinger equations (with quasi-
polynomial potentials) allowing separation of variables in this system; and
finally, we find the conditions for which the one-dimensional equations
appearing after the separation can be interpreted as multi-parameter
exactly solvable spectral equations. Note that in the D-dimensional case,
these equations must contain D + 1 spectral parameters: D + 1 of them
must be identified with the separation constants, one must play the role
of the energy in the initial D-dimensional Schrodinger problem, and one
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additional parameter with degenerate spectrum must be included in the
potential.

In order to choose the most suitable coordinates in which the separation
of variables in the multi-dimensional Schrodinger equation

D 82
(— 57 TV - E) W(F) =0 (2.8.1)

is possible, remember that in the two-dimensional case, the role of such
coordinates was played by the elliptic ones (see formmlas (2.7.32) and
(2.7.33)). Therefore, it would be quite natural to assume that in the
multi-dimensional case an analogous role is played by the multi-dimensional
generalizations of these coordinates, which for D = 3 and D > 3 are known
as ellipsoidal and generalized ellipsoidal coordinates, respectively.

The connection between Cartesian, {z,}, and generalized ellipsoidal
coordinates, which we denote by {};}, can be expressed as follows:

li) (A — aq)

22 = ——l———. (2.8.2)

D
I:I ag — aqy)

.

Here a, are constants determining the intervals in which the A;-coordinates
change,

a1 <A <ay<...<ap < Ap < o0o. (2.8.3)

In the new variables the Schrodinger equation (2.8.1) takes the form

{ Z D/ a—i;{(@(z\,-))%aii]—kV—E}wzo, (2.8.4)
i=1 H (A = Ax)

where
D

QM) =[] - aa)- (2.8.5)

a=1

Many formulas of this section can be considerably simplified if we
introduce the following notation:

D
(FON =3 ) (2.8.6)
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in which F();) is an arbitrary expression containing A;. For example,
equation (2.8.4) can be rewritten as follows:

{—4(\/Q(A)8—6X\/Q(A)—a—%) +V—E}¢ =0. (2.8.7)

Now, let us formulate and prove some assertions which allow us to
investigate the possibility of separation of variables in equation (2.8.7).

Statement 2.1. Let
fr(d) = (AP-1+Ly, (2.8.8)

Then for any —(D — 1) < L < 0 the function fr(A) is identically zero, and
for L > 0 1t 1s an Lth-order polynomial of the form
)= Y fdt () O), (2.8.9)
1+, +Lip=L

Here fi, 1, are certain computable constants and

M,.. A, 1<n<D
k1<--~<kn
on(A) = ) h—0 (2.8.10)
0 n>7D

are elementary symmetric polynomials.

Proof. Let I and J be arbitrary fixed numbers, [ # J. Introducing the
function

i1 iAd

D -1
Ury = AP-1+L { II - )\i)} , (2.8.11)

we can rewrite formula (2.8.8) in the following form:

Uri(Ar) = Urs (A1)
Ar—As

D D, -1
+Z)\?“1+L{H (A,-—Ak)} i£ 104
i=1 k=1
(2.8.12)

fL(d) =

From the representation (2.8.12) it follows that the function fr(A) remains
finite if Ay tends to Ay. The fact that the finiteness of fr(A) takes place
for any I and J implies that this function is regular everywhere.
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On the other hand, from definition (2.8.8) it follows that the function
fr()) can be represented as a fraction whose numerator is a homogenous
polynomial of [D(D — 1) + L]th order. The denominator of this fraction
is also a homogenous polynomoial of [D(D - 1)]th order and has the form
[T(A — Xe)?. We can see that it vanishes if A; = M;. The fact that
i<k
function fr(A) has no poles means that the numerator in the fraction can
be divided by the denominator without remainder. Hence, fr(A) = 0 if
—(D~1) < L < 0,and fr(A)is the Lth-order polynomial when L > 0. Since
fr(}) is invariant under all transformations of the permutation group, it
can be expressed in terms of the elementary symmetric polynomials defined
by (2.8.10). Thus, the statement is proved.

It is not difficult to calculate the first four functions fr(A). They are

fo(d) = 1,

HQ) = a1(A),

£0) = oi(d) = o),

f3(0) = 3(A) =201(N)o2(2) + o3(R). (2.8.13)

Statement 2.2. The identily

1 1 1
e =737 = (2.8.14)

D
[ -an

holds for any a, and any z, given by formula (2.8.2).

Proof. Consider the identity

- = : ! +< 1 >

1=

(2.8.15)

Multiplying both sides of (2.8.15) by p and taking 4 — oo, we obtain the
equality

(=)= SN (2.8.16)
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which, after taking into account definition (2.8.2), reduces to (2.8.14). The
‘statement is proved.

Statement 2.3. Let us assume that the potential V in A-coordinates has
the form

D
V= < >3 f"aa> + <,\7’P2N(A)>, (2.8.17)

where
Pn(A) = ZP A" (2.8.18)

Then, in the initial z-coordinates it is a quasi-polynomial.

Proof. From definition (2.8.2) it follows that

D D
Y (=D akon(d) = 2 [[ (ap — aa)- (2.8.19)
n=1

=1

These relations can be considered as the linear equations for o, (A). Solving
the linear system (2.8.19) we obtain

D

0u(A) = onla) + Y 0\ (a)2? (2.8.20)

a=1

where a,(.a)(a) are defined as nth-order symmetric polynomials of

@1,d2,...,0q-1,8%x+1,---,ap. According to statement 1 the second term
in (2.8.17) depends polynomially on o,()) and, hence, it is the (2N +1)th-
order polynomial of z2,...,2%. At the same time, from statement 2 it

follows that the first term in (2.8.17) is a linear combination of the terms

xl—,, Cee —,. Thus, the statement is proved.
1 'D

Statement 2.4. If the potential V in A-coordinates has the form (2.8.17),
the Schrédinger equation (2.8.7) allows separation of variables.

Proof. According to statement 1, the constant E (the energy) can be
represented as

D~-2

B=(EXPT 43 T, (2.8.21)

n=0
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Substituting (2.8.17) and (2.8.21) into (2.8.7) and taking
Y =1(M) ... ¥p(Ap), (2.8.22)

we obtain the system of one-dimensional spectral equations

d | pa
{- 4Q(A)W— D)5+ 3 2 0P Pa(A) b (3
* a=1"" «

D-2
= (E,\?-l +y r,,w) vi(N), i=1,....D. (2.8.23)
n:O

Here the energy FE is the spectral parameter of the initial problem, and
T, are the separation constants playing the role of the auxiliary spectral
parameters of system (2.8.23). Thus, the statement is proved.

Taking into account formula (2.8.18) and using (2.8.8) and (2.8.17) we
find

D
V:z:lp“<,\

Substituting (2.8.13), (2.8.20) and (2.8.14) into (2.8.24), we obtain the
explicit form of the potentials in the z-representation, allowing the
separation of variables in generalized ellipsoidal coordinates.

The next step in our program is to study equations (2.8.23) from the
point of view of their exact solvability.

First of all, note that all equations (2.8.23) essentially coincide and
the only difference between them is that variables A; belong to different
intervals (see formula (2.8.3)). This gives us the possibility of identifying
the variables A; and functions ¢;(A;) by taking

A=A i) = v (2.8.25)

1 2N
—a > + ZPnfn-H(’\)- (2.8.24)
@ n=0

and consider, instead of system (2.8.23), a single equation of the following

form:
{ 17—:1 [axz (Zx—a) ax}

Pa
+ Z ;"_";; + /\DPZN()‘)}
a=1

= (E,\D*l + Dfr,m) (). (2.8.26)

n=0
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It is not difficult to see that (2.8.26) is an equation with D + 1 singular
points located at a,, o = 1,...,D and co. Therefore, the behaviour of
the function ¥(A) in the vicinities of these points cannot be arbitrary. We
can express 1t by the formula

(A —ag)*="%, A = ag

v = exp { -2 JAN() dz\}, A — 00 (2.8.27)
in which s, are certain computable parameters (which can be expressed
via the numbers p,), and An(}) is an Nth-order polynomial whose
N + 1 coefficients are connected with the leading N + 1 coefficients of
the polynomial Pyp(A).

The simplest functions ¥(z) reproducing all the asymptotic properties
(2.8.27) can be written as follows:

M D
Y(A) = H()\ - &) H()\ — ag)** % exp {—%/AN(/\) d)\} . (2.8.28)

i=1 a=1

Substituting (2.8.28) into equation (2.8.26), we see that (2.8.28) is a correct
ansalz for this equation! More precisely, for (2.8.26) to be satisfied, the
numbers §; entering into the expression (2.8.28) must satisfy the constraints

M 1 D s 1
+ X — CAN(E) =0, i=1,..., M. 2.8.29
I D L (2.8.29)

At the same time, parameters F and I',, entering into the right-hand side of
(2.8.26), as well as the first N coefficients of the polynomial Py (), depend
on the numbers §;. Thus, we can assert that (2.8.26) takes the form of an
exactly solvable multi-parameter spectral equation. For given N and D,
the total number of spectral parameters is D + N.

Note that for N = 0 we have only D spectral parameters £ and
Ty, n=0,...,D—2. We know that after transition to the D-dimensional
case, the parameters I, (the separation constants) disappear, and we come
to an equation with a single spectral parameter E. Obviously, this equation
is exactly solvable by construction. Using formula (2.8.24) it is not difficult
to show that it is the Schrodinger equation for the D-dimensional harmonic
oscillator with potential barriers along the z,-axes.

Now, let us consider the case with N = 1. This case is especially
interesting for us since, as we will see below, it leads to multi-dimensional
quasi-exactly solvable models of arbitrarily large order.

The polynomial P, () entering into (2.8.26) takes for N = 1 the form

Py(A) = PoA% + PLA + Py, (2.8.30)
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and for Ay () in (2.8.28) we have
Ai1(A) = A)+ B. (2.8.31)

Substituting (2.8.28) into (2.8.26) and equating similar terms, we obtain
the following expressions for the coefficients of equation (2.8.26):

D
Pa = 4(s5a—3)(50 — %)pﬂ (aa —ag), a=1,...,D, (2.8.32)
=1

P, = A% (2.8.33a)

P, = 24B - A%04(a), (2.8.33b)
D

Py, = B?-2ABoi(a)+ A%03(a) — 44 (M +34+ 3 aa) ,

a=1

(2.8.33¢)

D
E = B%(a)—2A4Boy(a) + A%a3(a) + 4B (M + Z sa)

a=1
D D M

+4A Zaasa - o1(a) (M+ T+ Sa) + Zfi] .
a=1 a=1 i=1

(2.8.34)

The values of the separation constants I', are not of interest to us and,
therefore, we shall not write here the explicit expression for them. Note,
however, that these constants, as well as the energy F, depend explicitly
on &;.

Thus, we see that equation (2.8.26) contains D+ 1 spectral parameters.
They are D — 1 separation constants I'y,, the energy E of the multi-
dimensional Schrédinger equation, and an additional parameter Py which
plays the role of a free term in the polynomial (2.8.30) and, therefore, must
be included in the potential. From formula (2.8.33¢c) it follows that this
parameter depends on the number M, but not on the numbers ;. This
means that the spectrum of Py is degenerate with respect to the spectra of
other parameters F and I',,. The multiplicity of this degeneracy is equal to
the number of various non-equivalent solutions of the system (2.8.29)

i=1,.. M, (2.8.35)
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which, as before, can be interpreted as the equilibrium condition for M
Coulomb particles moving in an external electrostatic field. In this case
the corresponding classical potential has the form of D + 2 potential
wells separated by impenetrable barriers. Therefore, the number of
non-equivalent distributions for M particles between these D + 2 wells
determines the number of solutions of the system (2.8.35), which, obviously,
is equal to L%)-!. Summarizing, we can conclude that the D-dimensional
Schrédinger equation corresponding to equation (2.8.26) is quasi-exactly
solvable and its order for any given M is WMT—;X (Ushveridze 1988d, k).
Thus, we have obtained a new infinite series of multi-dimensional quasi-
exactly solvable models. The form of their potentials in z-coordinates can
easily be recovered from (2.8.24) by means of formulas (2.8.13), (2.8.14)

and (2.8.20). Introducing the notation
By=Aa,+B8, a=1,..D, (2.8.36)

we can write

D 1 3
NS 4(sa — 5)(sa = 5) (2.8.37)

Here we have neglected the constant term equal to B%o1(a) — 2ABoy(a) +
D
A2a3(a)—4Ar71(a) (M + % + ) sa) . Therefore, in order to obtain correct
a=1

expressions for the energies we must subtract the same term from (2.8.34).
This gives:

D M
E=4) Bysa+4BM +44) &. (2.8.38)
a=1 i=1

The z-coordinate form of wavefunctions corresponding to (2.8.38) can be
found from (2.8.28), (2.8.25) and (2.8.22) by means of formulas (2.8.2) and
(2.8.20). It is

{nv (~1)reP-" [an(a) + é af.‘i)l(a)x?,] }

=0

R

w(xl,...,mp) =

1
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D

D 2 D
X (xz)’“’iexp _4 sz _1 ZBaz2

a=1 a=1
(2.8.39)

The condition of normalizability of these wavefunctions in the domain
24 2>0, a=1,...,D has the form

A>0, $,>0, a=1,...,D. (2.8.40)

Note that the fact of quasi-exact solvability of model (2.8.37) can be
proved immediately in the z-representation (Ushveridze 1988k). Indeed,
denoting the first (polynomial) factor in (2.8.39) by Pa(z%,...,z%) and
substituting the expression (2.8.37) into the Schrédinger equation for
(2.8.37), we obtain a new equation

QP(z},...,2p) = EPu(z}, ..., 23), (2.841)
in which
L D
) 0  4sa—1 8
Q - -;(azi+ Ty aza>+2a§lBa (Iaa a+280’>
D D 5
2
e (:‘2 z") ; (’”“ 5z, M ) : (2.8.42)

If M is a non-negative integer, the operator @ acts in the finite-dimensional
space of polynomials Pyr(z?,...,2%) of order M (the order is defined with
respect to the variables z7,... ,2%). Therefore, the spectral differential
equation (2.8.42) can be treated as a finite-dimensional matrix equation,
in which the role of the eigenvalues and eigenvectors is played by the
energy E and coefficients of the polynomials Pyr(z?,...,z%). This proves
the quasi-exact solvability of the model (2.8.37). A dimensionality of
the corresponding matrix equation is determined by the number of non-
equivalent terms in the polynomial Pp(z?,...,2%). It is not difficult to
verify that this number is L%'—t',l—?—!)—!. Hence, the order of the quasi-exactly
solvable model under consideration must also be equal to %.

Now, let us consider two concrete examples corresponding to the
simplest cases M = 0 and M = 1.

1. M = 0. The Schrédinger equation has one explicit solution

D
E = 4 Basa, (2.8.43)
a=1
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D
Y(z1,...,zp) ~ [[(z2)*"4
a=1
A 2 A
_ 2 _ 2
X exp 4((;%) 2((;3&%), (2.8.44)

describing the ground state because of the absence of nodes.

2. M = 1. In this case the Schrddinger equation has D+ 1 explicit solutions
which can be represented in the form

D
E = 4) Basa+n, (2.8.45)
a=1
D D
4AI?X 2vs, — L
1/)(131,...,1:@)'\' 1+;4BQ—TI g(xa) 4
A(S L\ 18
2 2
Xexpq =7 <az::1 xa) -3 (az::l Ba:ca) (2.8.46)

where by n we denote the parameter 4B + 4A4¢; satisfying the algebraic
equation of order D + 1:

D
Sa
3245 2 _ . 284
7+ ;430_77 (2.8.47)

Let us assume, for definiteness, that all parameters B, are real
numbers, differing from each other and ordered as

By < By<...<Bp_; < Bp. (2.8.48)

Analysing equation (2.8.47) graphically, we obtain the result that all its
roots 7; are real and lie in the intervals

N <4B; <1y <4B; < ... < 4Bp_1 < np-1 < 4Bp < np. (2849)

We see that the root 7 corresponds to the ground state, since the
wavefunction (2.8.46) has no nodes for 7 = 79. The other functions (2.8.4)
corresponding to the roots 7y,...,7p have nodes and, therefore, describe
excited states. From formulas (2.8.46) and (2.8.42) it follows that the nodal
surfaces of these wavefunctions have the form of various confocal quadriques
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with signatures from (— — ... —+) up to (+ + ...+ +), in full accordance
with the fact that the Schrodinger equation for the model (2.8.37) admits
total separation of variables in D-dimensional ellipsoidal coordinates. This
means, in particular, that nodal surfaces for any wavefunction in model}
(2.8.37) must have the form of certain confocal quadriques.

To conclude this section, we note that whereas the problem of finding
the wavefunction nodes for one-dimensional quantum systems is related to
solving the problem of the equilibrium of charged particles in an external
field, the problem of finding the nodal lines or surfaces for systems of
dimension D > 2 turns out to be related to the problem of the equilibrium
of classical charged strings or membranes in an external field (Ushveridze
1989c¢). For model (2.8.37) this fact is obvious. It follows immediately from
equations (2.8.35) which can be interpreted as conditions of equilibrium
of M charged direct nodal lines (D = 2) or flat nodal surfaces (D > 3)
interacting according to the laws of (D + 1)-dimensional subspace. In z-
coordinates we have a similar picture, but the nodal lines and surfaces
become curved taking the form of confocal quadriques. Note that such a
classical interpretation of wavefunction nodes is possible even in the case
when separation of variables in the multi-dimensional Schrédinger equation
is not possible. In fact, let us consider the problem of constructing a D-
dimensional Schrodinger equation

[-A + V(D)]¥(Z) = Ey(%), (2.8.50)

which is exactly solvable for any one state. It is easily seen that for the
choice

V(%) = E + AY(Z) /() (2.8.51)

where 9(&) is a smooth function, the Schrodinger equation has the function
¥(Z) itself as a formal solution. The requirement that the potential V() be
smooth imposes a number of constraints on the admissible form of the nodal
surfaces of ¥(&). To derive these we assume that the M nodal surfaces of
¥(Z) are described by the equations

=&(), Zi€Rp, t€Rp_, i=1,...,M. (2.8.52)

Then, the wavefunction ¥(Z) (up to a sign) can be written as

D-1
P(Z) = exp { / 7 tj "t }exp é(Z) (2.8.53)

— mv 1
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where o{Z;(£)] d°~'{'is an element of the nodal surface and F() is a smooth
function. The substitution of (2.8.53) into (2.8.51) and the requirement that
V(£) be smooth lead to the following system of integral equations in Z;(£):

Z —z,—'ax._’ D-1j
,[,(t-){f[ (&) = (@]ol#: ()] 4P

|2:() — &:(#) [P+

+Z /[x, @) - :r:k t7 No[£k(?)] dP-1¢ + Sola ()] }

— Z (£)|P+

i=1,...,M (2.854)

where 7[Z(t)] is a normal to the surface Z(f). It is easy to see that
for D = 1 the first term in (2.8.54) vanishes, while the remainder of
the equation degenerates into an equation describing the equilibrium of
Coulomb particles with coordinates z; in an external electrostatic field
E(z). For D > 1 the resulting system can be interpreted as the equilibrium
condition for M absolutely inelastic massless charged strings (D = 2) or
membranes (D > 3) interacting according to the laws of (D-+1)-dimensional
electrostatics in a D-dimensional subspace. The charge is distributed
uniformly along the strings (surfaces of the membranes) with unit density.
Equation (2.8.54) expresses the condition that the normal component of
the force acting on each element of a string (membrane) due to the other
strings (membranes) and also the external potential ¢(Z), vanish. This
electrostatic analogue allows us to understand the features of the nodal
surfaces and the singularities associated with their relative location, and
also to follow the variation in the model-surface shape as the potential is
varied.

2.9 The “field-theoretical” case

When all parameters s; are equal to %, the potential barriers along

the z,-axes disappear and the potential (2.8.37) becomes polynomial.
Correspondingly, the wavefunctions (2.8.39) become regular everywhere.
This gives us the possibility of defining model (2.8.37) in the entire D-
dimensional space. If M = 1 the hamiltonian of this model takes the form

D 2 D D D

B SENuY SRl FEYY D or [Z]

; a=1 a=1 a=1

Z ~ A(D + 6)]z2 (2.9.1)
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and the corresponding Schrodinger equation for (2.9.1) has D + 1 exact
solutions

E = Y Ba+n, (2.9.2)

D
4Azx?
ceey = 1 &
w(xli x'D) + Z 4Ba 7
a=1
D 2 D
X exp - (in) —%ZBaxi ,
a=1 a=1

(2.9.3)

expressed via the auxilary spectral parameter 7 satisfying the algebraic
equation

8A
,,+;____4Ba_n =0 (2.9.4)

of order D 4 1.

The model (2.9.1) is interesting because in the limit D — oo it can be
transformed into a non-local, non-relativistic quasi-exactly solvable model
of field theory with gapless excitations (Ushveridze 1988d, k).

in order to perform this transformation we introduce new parameters

Ba
A:\/Z, ba:ﬁ, a:l,...,’D,

e=L -1 L:D—‘/—Z, (2.9.5)
VA 4/A 2

and rewrite the Schrddinger equation (2.9.1) in the form

(Bl o (o) (o) (£

a=1 a=1

8

D
Z [ - = 6] iA}Ib(zl,...,fo) = EY(zy,..., Tp).
) (2.9.6)
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Making the replacement (2.9.5) in formulas (2.9.3) and (2.9.3) we obtain:

D
1
£ = 3 a;baA +o (2.9.7)
D 32
= |1 A
¢(217 axD) +GZ=:1 ba _
D 2 D
X exp —% [Z Al — % [Z ba2 Al 3,
a=1 a=1
(2.9.8)
where ¢ satisfies the equation
D
A
= . 2.9.
2eA ;c—ba (2.9.9)
Now, taking D — 00, A — 0, AD = 2L = constant, and
D
- — A = t
(a-3)2 -
ATl = 50,
To — z(t), by = b(t),
. L
1 4 )
o= .
Y(zy,...,zp) — ¥[(z(D)], (2.9.10)

we obtain, instead of (2.9.6), the Schrédinger equation in functional
derivatives

L L 3 L L
{_/ [5_;5(7)] 2 dt + [/ z%(t) dt] +2 |:/b(t)xz(t) dt} {/ z(t) dtjl

-L —~L —~L —~L
L L
+ [ [b%(t) — 6]z%(t) dt — 2L8(0) [ z*(t) dt}\Il[z(t)] = EV[z(t)]
/ /

(2.9.11)

which describes a certain non-local, non-relativistic and inhomogeneous
“field theory” of rather exotic form. The last term in (2.9.11), which is
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proportional to 6(0), can be treated as a counterterm cancelling ultraviolet
divergencies in the model. Solutions of equation (2.9.11) have the form

L
£=50) [ b(t) dt +e, (2.9.12)
/
Yo(t)] = |1~ /L 2O dt) oot /L 22(8) dt | -1 / b(t)=(t) dt
S € —b(t) 4 a 2

(2.9.13)

where € must be considered as an arbitrary real number belonging to the
interval [minb(t), maxb(t)]. Note that, owing to condition (2.8.49), the
function b(t) is monotonic and, therefore, the density of states can be
determined as

ple) = m (2.9.14)

where by b_l(c) we denote the solution of equation b(t) = € with respect
to t.

Formula (2.9.13) requires some comments, since the subintegral
expression in the first factor in (2.9.13) is singular. A most natural way
to define the “dangerous” integral is to treat it in the sense of the Cauchy
principal value

7 2(t) dt / 2(t) dt
/e—b(t) - fe—b(t)

-L -L
b= (e)-6" L
- im / z2(t) dt + lim / z?(t) dt
T 60 €—b(t)  s+-0 €—b(t)
-L b=1(e)+6+

(2.9.15)

From this definition it follows that the singularity at ¢ = b_l(c) is
integrable, but the result depends essentially on the ratio 67/~ in the
limit when both the regularization parameters 6 and 6~ tend to zero.
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In order to eliminate this ambiguity it is sufficient to take into account
equation (2.9.9) which in the limit takes the form

[
/ 5 = (2.9.16)

We see that the singular factors in the subintegral expressions in (2.9.15)
and (2.9.16) coincide, which allows us to define the integral (2.9.16) by
analogy with (2.9.15) as

T dt 7 dt
/e—bu) = fe~b(t>

b_l(e)—é_ L
-k / d m / dt
T =0 € — b(t) 540 €—b(t)
-L b—1(e)46t

(2.9.17)

Relation (2.9.17) can be interpreted as an equation for the ratio §+/6~.
For example, if b(t) is the linear function b(t) = t, equation (2.9.17) gives
6% /6~ = (L + €)/(L — €). Substituting the resulting value of §+ /6~ into
(2.9.15) we complete the definition of expression (2.9.13).

The model described by the Schrédinger equation (2.9.11) is quasi-
exactly solvable, since only one branch of excitations can explicitly be found
in this model. This branch, parametrized by the number ¢, describes a
part of the continuous spectrum ¢ € [minb(¢), maxb(t)] and includes the
ground state, e = min b(¢). Therefore, we deal with the model with gapless
excitations. The infinite additive term in (2.9.11) is irrelevant. It plays the
role of an additive vacuum energy.

Concluding this section we note that the analogous quasi-exactly
solvable “field theoretical” models resulting in more complicated
expressions for wavefunctionals and spectral densities can be obtained if
we start with the multi-dimensional quasi-exactly solvable models (2.8.37)
with M > 1.

2.10 Other examples of multi-dimensional quasi-exactly solvable
models

Concluding our discussion of methods of constructing multi-dimensional
quasi-exactly solvable Schrodinger equations, we will mention here another
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simple method (Ushveridze 1991b) which differs essentially from those
already described in the preceding sections.

The idea of this method can be formulated as follows. Let us consider
the following simultaneous ansatz for the potential

LA
V(z‘l,...,.’L"D) = 26(6—- 1)Zm
ick T T Tk
DD~ 1)(D6 +1) - (D — 1)(D6 +1) - 3] 1

4

oW (

and corresponding wavefunctions

> 5 p _!’D—-l)g‘g&+1!—1
1/)(1‘1, ey Z'D) = [H(Z,’ - :L‘k):l [Z(I, - .’I)k)zjl
i<z i<k
(2.10.2)

Here, 6 is an arbitrary numerical parameter, and W and ¢ are
unknown functions. Substituting expressions (2.10.1) and (2.10.2) into the
Schrodinger equation (2.8.1) and introducing a new variable

(2.10.3)

we obtain

|5+ W00)| o(0) = e6t0), (2.104)

where e = E/D.

Therefore, if equation (2.10.4) is exactly or quasi-exactly solvable,
the initial D-dimensional Schrédinger equation with potential (2.10.1) will
also be exactly or quasi-exactly solvable. This observation completes the
formulation of the method.

Now, let us consider a concrete example. Let

so=Ds=2)

W(p) = a’p® —da(s + M + §)p* + 2

(2.10.5)
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From the results of section 2.1 we know that model (2.10.5) is quasi-exactly
solvable and has M + 1 exact solutions belonging to the class of functions

o(9) = Pul) ")~ exp (-2 (2.106)

where Ppr(t) are Mth-order polynomials. Using formulas (2.10.1) and
(2.10.2) and taking for definiteness

1 4s
6—2—)[1)_1—1}, (2.10.7)

we obtain a D-dimensional quasi-exactly solvable model with potential

D

2(4s+1—-D)(4s + 1 - D?) 1
V(zi, ...,z
(@, 20) DD — 1)2 z(; (z; — z1)?
D D 3
~4a(s+ M +3) E(z, —z) 4+ a° Z(x, - zk)z}
ik i<k
(2.10.8)
having M + 1 exact solutions of the form
D
’lﬁ(:ﬂl, A ,:L"D) — PM Z(x, et z‘k)z]
i<k
> 5 [p -1
X I:H(:c, - mk)}
i<k
D 2
a 2
X exp {—Z {;(z, — ) ] } . (2.10.9)

Quite obviously, starting with the other one-dimensional quasi-exactly
solvable models discussed in this chapter (for example, with models
(2.7.49a) and (2.7.49b)) one can obtain more complicated multi-dimensional
quasi-exactly solvable Schrodinger equations with potentials expressed in
terms of rational, hyperbolic or trigonometric functions. Note also that
models of such a sort can be viewed as evident generalizations of the multi-
particle exactly solvable models discussed by Olshanetsky and Perelomov
(1983).



Chapter 3

The inverse method of separation of
variables

3.1 Multi-parameter spectral equations and their properties

In this chapter we discuss a regular analytic method of constructing
exactly solvable models of quantum mechanics. This method, proposed
by Ushveridze (1988c, d) and then generalized by Ushveridze (1989c),
is based on the use of one-dimensional exactly solvable equations with
several spectral parameters. We will demonstrate that any such equation
can be reduced to an exactly solvable Schrodinger-type equation on a
multi-dimensional, in general, curved manifold. The transition to the
multi-dimensional case can be realized by means of the inverse method of
separation of variables which we discussed briefly in the preceding chapters.
Here we will give the most general formulation of this method and describe
a convenient procedure of constructing wide classes of exactly solvable
multi-parameter spectral equations (MPs equations). The corresponding
classes of exactly solvable Schrodinger-type equations will be discussed in
the concluding sections of this chapter.

Let V be an infinite-dimensional complex linear vector space and W be
a certain Hilbert subspace of V. Denote by X2 and X*, o =1,...,D, i =

1,...,D linear operators acting from ¥V to V. Consider the system of
equations
D
Xl = (Z X,-“ea) ¢, d€W, i=1,...,D, (3.1.1)
a=1

which we shall refer to as “multi-parameter spectral equations” or MPs
equations. The role of spectral parameters in (3.1.1) is played by the
numbers €4, a = 1,...,D. The problem is to find all the vectors

150
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€ = (é1,...,€p) for which the system (3.1.1) has non-zero solutions in W.
The set of all such vectors we shall call the spectrum of equation (3.1.1).
Depending on the concrete choice of the space W and the operators X and
X this spectrum may be continuous, discrete (infinite or finite) or empty.
Below, we will concentrate on the cases in which the spectrum is infinite
and discrete.

The system (3.1.1) can be considered as an evident generalization of
the ordinary spectral equations arising when D = 1. Here we shall discuss
the general case when D > 1.

Statement 3.1. Let the matriz operator

X ={x2)? (3.1.2)

=1

entering into the system (3.1.1) be invertible. Then it is possible to
construct the one-parameter family of operators

L) ="MW+ Y o)X LAY (3.1.3)

f,a=1

in which a®(A) and 0% () are arbitrary functions of \. These operators act
in the space W and the spectral problem for them

LA)p=EX)p, ¢€eEW, (3.1.4)

has the following solutions

D
EQ) ="M+ D 0*(Nea, ¢=¢, (3.1.5)

a=1

where €4, o = 1...D and ¢ are solutions of the initial system (3.1.1).

Proof. Let us introduce the operators L,, o = 1,...,D satisfying the
system of equations

D
X0 =) XLa, i=1,...,D. (3.1.6)
a=1
The invertibility of (3.1.2) enables us to solve system (3.1.6) for Lq:

D
Loy=) (X7HiXx?, a=1,...,D, (3.1.7)
i=1
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Applying the inverse operator X ! to both sides of (3.1.1) and using (3.1.7),
we obtain D independent one-parameter spectral equations

Lot =€ad, a=1,...,D. (3.1.8)

We see that the admissible values of spectral parameters ¢, and
corresponding solutions ¢ of the initial MPs equations (3.1.1) are the
eigenvalues and eigenvectors of the operators L,. Therefore, the eigenvalues
and eigenvectors of the operators

D
L) ="\ + D o*(A)La (3.1.9)

a=1

are described by formulas (3.1.5). This proves the statement.

We note that the eigenvectors of the operators L(A) do not depend
on A. This is a typical situation for the commuting operators L(\).
However, from the explicit expression (3.1.3) it is not evident that L(A)
really form a commuting family. The necessary constraints on X? and X?
guaranteeing the commutativity of operators L(A) are formulated in the
following statement.

Statement 3.2. Let

[X2, X)) = 0, foranyi andk, (3.1.10)

[ ,Xk] = 0, foranyik and a,f, (3.1.11)
and

[, x2] = 0, foranya andi#k. (3.1.12)

Then the operators L(A) commute with each other:
[L(A), L(w)] =0, (3.113)
for any X and p.

Proof. Taking into account equations (3.1.6), we consider the following
chain of equalities:

D
0 = [X2x0 = [X*La, XLy
a,Bf=1
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D
= > X[La, X)L+ Z xP (X8, L)L
a,f=1 a,f=1
D

D
+ Y [ X LaLs + ; XeX Lo, Lg].  (3.1.14)
a,f=1 a,f=1

We see that the first two terms on the right-hand side of (3.1.14) cancel and

the third term vanishes because of the commutation relation [X, Xf ]=0
which follows from (3.1.11). Thus, we obtain

D
> x2& Lo, L] = 0. (3.1.15)
a,f=1

Now, using the conditions (3.1.10) and (3.1.12), we can consider an
analogous chain for 1 # &:

D
0 = [2,x0] =) [A7La, &)
a=]1

D
X2 [Lo, X0) + ) [X
a=1

NE

Q
i
it

X& Lo, X{ L)

13

R
M@ EM@

D
X0 X [La,Lp) + Y X% [La, Xf]L

a,f=1 a,f=1
D D
= Y XX [LaLg] + D [X Lo, X{]L
a,f=1 a,f=1
D D
= 3 XPX][La, L] + ) [X0, 2] Ls
a,f=1 =1
D
= Y X2 [La, Lg|. (3.1.16)
a,f=1

Combining (3.1.15) and (3.1.16), we obtain

D
> Xfx][La,Lg) =0, foranyiand k. (3.1.17)
a,f=1
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Taking into account the invertibility of the operator (3.1.2) we obtain the
relations

[La,Lg] =0, forany a and 3, (3.1.18)

guaranteeing the commutativity of the operators L(A). This proves the
statement.

Let us now introduce more general operators
HA)=UL\U™! (3.1.19)

connected with the operators L{\) by a simple homogenous transformation.
Since these operators commute with each other:

[H(A), H(w)] =0, (3.1.20)

it would be very temping to try to interpret H(J) as the “hamiltonians”
or, more accurately, as the “integrals of motion” of a certain completely
integrable quantum system. For this, they must be hermitian operators in
the Hilbert space W. Requiring that

HY(\) = HO) (3.1.21)

and substituting the expression (3.1.19) into (3.1.21), we obtain the
equation

LYNUTU = UTUL(N) (3.1.22)

for U which, after using the expression (3.1.9) for L(}), can be rewritten
in the form

LIUTU =UYUL,, a=1,...,D. (3.1.23)

Obviously, the system (3.1.23) is overdetermined and therefore, in general,
it is not solvable.

Fortunately, there exists a special case when construction of solutions
of the system (3.1.23) becomes possible. This case is realized when the
operators X and X are hermitian operators in W.

Statement 3.3. Let X0 and X% i,a = 1,...,D, be hermitian operators
in W and let all the conditions of statement 3.2 be satisfied. Then system
(3.1.23) is solvable and its solution has the form

U = (det X)%. (3.1.24)
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Proof. First of all, remember that the components X? of the matrix
operator X are assumed to be commuting with each other and thus can
be considered as “c-numbers” by performing various algebraic operations
with the matrix X. In particular, one can assert that the components of
the inverse operator X ~! have the form
o 1ni zi

X7 = —%, 3.1.25

(X, = 2= (3.129)
where the determinant in the denominator is understood in a usual matrix
sense

D
det X = > o, apdi. AP, (3.1.26)

ay...ap=1
and z}, are cofactors of elements A;*:

C_ 0 s
T, = 6—X;detX. (3127)

E3

Using the fact that operator X commutes with all operators X* with k # i
and observing the absence of X in expression (3.1.27), we can write

[z5, 2] =0, for any & and i. (3.1.28)

Note also that, due to the commutativity of the operators A and their
hermiticity in W, operators (3.1.26) and (3.1.27) are hermitian in W:

(det X)* = det X, (3.1.29)
()t = 2. (3.1.30)
Assuming that ¢°(X) and 0*(A), @ = 1,...,D, are real functions and using

(3.1.3) and (3.1.25), we can rewrite the system (3.1.23) in the form

D +
[det_lf(z:cfl/\f,-o} Utu =U*U

=1

D
derlexgxf] . (3.1.31)
i=1

Taking into account formulas (3.1.28), (3.1.29) and (3.1.30), and
remembering that X0 are hermitian operators by asumption, we obtain

D
[Z zixxio

i=1

{der XUtU} = {Utv dev= X} [ixgxf] . (3.132)

=1
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In order to satisfy this equation it is sufficient to take
UtU =det X, (3.1.33)

and this gives us the final expression for U which coincides with (3.1.24)
provided that U is a hermitian operator. This proves the statement.

Thus, we have constructed the operators
H()) = (det X)3L(A\)(det X)~3 (3.1.34)
acting in the space
W = (det X)3W, (3.1.35)

being hermitian with respect to the scalar product in W and commuting
with each other for any values of A.
The solutions of the spectral problem for these operators

HMy = EQA)y, veW (3.1.36)
have the form
D
EQ) = () + ) o%(Mea, (3.1.37a)
a=1
Y = (det X)3g, (3.1.37b)

where €, and ¢ are solutions of the initial system of D MPs equations (3.1.1).

Of course, we can consider a more general class of equations of the
type (3.1.36) having the same spectrum and the same properties of the
corresponding “hamiltonians”: the hermiticity and commutativity. These
equations are connected with (3.1.36) by the homogenous transformations
and have the form

Hr(A\)yr = EQA)Yr, ¥r € Wr, (3.1.38)

where
Hr()) = THM\T™ (3.1.39)

and
Wr = TW. (3.1.40)

Here T is an arbitrary non-singular operator from V to V. We denote by
(, ) the scalar product in the initial Hilbert space W. It is not difficult to
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show that the operators Hp()) are hermitian with respect to a new scalar
product (, )r defined as

(o =T T ), (3.1.41)

This follows from the chain

(T~ 4o, T~ Hr (\)¢1)
(H(A)T™ by, T~ ohy)
(Ho(M)o, ¥1)7, (3.1.42)

which holds for any 1,9, € Wr. Solutions of (3.1.38) are connected with
solutions of (3.1.36) by the formula

(Y2, H(N)¥1)r
= (T Yoy, HN) T ey)
= (T Hp(A\)¥2, T ')

vr =T (3.1.43)

Note that the normalization properties of these solutions do not depend on
a concrete choice of 7"

lerllr = V¥, dr)r = V(T 20, T-Tgp) = V¥, 4) = [[¥]|. (3.1.44)

We note also that the spectra of equations (3.1.36) and (3.1.38) coincide.

Thus, we see that, starting with the system of D MPs equations (3.1.1)
satisfying the conditions listed in statements 3.1-3.3, it is possible to
construct a family of one-parameter spectral problems for the operators
Hp(A) having hermitian symmetry and commuting with each other.
Solutions of these spectral problems are expressed in terms of solutions of
the initial system (3.1.1). However, if we actually want to interpret these
operators as the hamiltonians of certain quantum mechanical systems, we
must require that their spectra be bounded from below. In other words,
the existence of the ground state is needed.

In order to derive the necessary conditions for this, we consider the
initial systemn (3.1.1} from which it follows that

D
(6, X08) = > (6, X*¢)ea, i=1,...,D. (3.1.45)
a=1

Solving system (3.1.45) with respect to €4, We obtain

D
ta =) _ (8, XM}, X09). (3.1.46)

=1
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Substitution of (3.1.46) into formula (3.1.37) for E()) gives

D

EM) =a"A)+ Y a*(W)ll(g, X7 (8, X09). (3.147)

f,a=1

Let us now assume that the operators X are positive definite in W, and
the inverse matrix ||(¢, X*@)||™ contains a certain number of rows (or
their linear combinations) which are positive definite in Y. In this case it
is always possible to choose the functions ¢*(A), @ = 1,...,D in such a
way as to guarantee the positive definiteness of the second term in (3.1.47).
Then, the needed inequality for E{)) takes the form

E(\) > a%(}). (3.1.48)

Collecting the results obtained above we can formulate the following
important statement.

Statement 3.4. Lel V be an infinite-dimensional complez linear vector
space and W be its Hilbert subspace with scalar product { , ). Let X and
X2, a=1,...,D, i = 1,...,D be linear operators in V satisfying the
following conditions:

1. Operators X?, i =1,...,D commute with each other.
2. Operators X2, i,a =1,...,D commute with each other.

3. Operators X and X2, i,k,a = 1,...,D commute with each other
if and only if i # k.

4. Operator matriz X = {X*}Py=y is invertible.

5. Operators X2 and X?, i,a = 1,...,D are hermitian in the space

W with respect to the scalar product (, ).

Let T be an arbitrary non-singular operator in V and ¢°()) and
o*(A), a=1,...,D be certain real functions.
Then the operators Hp()\) acting in V and defined by the formula

D
+T(det £)} 37 (WX LA (det X) 5T (3.1.49)

i,a=1
commaute with each other for any A and p:

[HT()\),HT(;I.)] =0. (3150)
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They are hermitian operators in the Hilbert space

Wr = T(det X)W (3.151)

with the scalar product
(o= (T, 7710 (3.1.52)

Their spectral problem
Hp(My: = E(\yr, o7 € Wr, (3.1.53)

has the following solutions

D
EQ) =0"(N) + Y 0*(Nea, ¥r=T(det X)g, (3.1.54)
a=1
where €4, a =1,...,D and ¢ salisfy the system of D MPs equations
D
X0 = (Z x;%,,) ¢, dEW, i=1,..,D. (3.1.55)
a=1

Assume also that the operators X? and X* satisfy the following
additional conditions:

6. Operators X2, i = 1,...,D are positive definite in W.

7. The inverse matriz ||(p, X¥@)||~! contains a non-zero number of
rows (or their linear combinations) which are positive definite in W.

Then, the functions o®(}A), @ =1,...,D can be chosen in such a way
as to guarantee the boundedness of the spectrum of equation (3.1.53) from
below

E(X) > og(X). (3.1.56)
(This is the end of the statement).

This statement gives us a method of reducing the systems of mMps
equations of the type (3.1.55) (with the operators satisfying the conditions
1-7 of the statement) to the class of one-parameter spectral equations
(3.1.53) admitting a physical interpretation: they can be considered as
Schrédinger-type equations for a certain completely integrable and stable
quantum system.

Let us now discuss the case when the initial MPs equations differ from
(3.1.55) by a certain equivalence transformation.
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Statement 3.5. Let operators X and X%, o = 1,...,D,i = 1,...,D

entering into the system (3.1.55) be replaced by operators X’? and X’i", a =
1,...,D,:=1,...,D of the form

it

x'? B A;XPB, (3.1.57a)
X' B; A; X Bt (3.1.57b)

where A; and B; are arbitrary fized non-singular operators acting in the
space V and satisfying the following conditions:

1. Operators A; commute with any operators Ax, By, X0 and X having
different indices k # 1.

2. Operators B; commute with any operators Ay, Bk, Xy and X having
different indices k # 1.

Then, the resulting class of one-parameter spectral equations connected
with the transformed MPs equations (8.1.55) is the same as in the
untransformed case.

Proof. First of all, note that the components of transformed vector and
matrix operators X;° and X* can be represented in the form

D
¢ B (ZA{FX,S) B (3.1.58a)
k=1

D
X' B (ZA?X,;’) B, (3.1.58b)

k=1

k\
I

where
B=DB.B;...Bp, (3.1.59)
and A is a diagonal matrix operator with the components
AF = A8k (3.1.60)
Introducing the notation
A={ARYD .y, (3.1.61)

one can write

D
(X'"Yi =B (Z(X‘l)’;(fi—l);;) Bt (3.1.62)
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Substituting formulas (3.1.62) and (3.1.58) into (3.1.49), we obtain the
following expression for transformed “hamiltonians”:

Hp(A) = o°(3)

+T(det X')3B i e (A)X T i,x,.o}s-l(det XN ir-t
i, a=1
(3.1.63)
Taking
T' = T(det X')3 B(det X)~% (3.1.64)
we find that
Hy () = Hpi(A), (3.1.65)
where

D

Hpi(A) = 6°()) + T (det X)? { M oa(A)(f(-l)i,} (det X)~37"-1,

t,a=1

(3.1.66)

Comparing (3.1.66) with (3.1.49) we see that the classes of the two one-
parameter spectral problems coincide. This proves the statement.

3.2 The method. General formulation

At first sight, the problem of constructing D different MPs equations
entering into the system (3.1.55) and having identical sets of solutions seems
to be extremely complicated. Indeed, on the one hand, these equations
cannot coincide, since such a coincidence would contradict the condition
of invertability of the matrix operator X. On the other hand, if equations
(3.1.55) differ from each other, it is absolutely unclear how the coincidence
of their solutions can be attained.

Fortunately, this is only an apparent difficulty. Its origin lies in the fact
that we have not taken into account the internal symmetry of the system
(3.1.55). In order to reveal this symmetry, remember that operators X?
and X7 entering into the ith equation (3.1.55) commute with analogous
operators X and X entering into the kth equation. This means that
all Mps equations forming the system (3.1.55) are completely disconnected
from each other and the problems of finding their solutions can be solved
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separately. This gives us the possibility of realizing one elegant trick
simplifying the problem of constructing solutions of system (3.1.55).

The basic idea of this trick can be formulated as follows. Let us assume
that the Hilbert space W is a direct product of D different Hilbert spaces
Wi, 1 =1,...,D. Assume also that operators X? and X for any given i
act non-trivially in the ith space W; only, while in all other spaces W; with
k # i they act as unit operators.

Consider the system of D different Mps equations in D different Hilbert
spaces W;:

D
Xz-ogo,- = <Z Xia€a> wi, wi€W;, 1i=1,...,D. (3.2.1)

a=1

It is obvious that, in general, solutions ¢ of this system will differ from
each other. On the other hand, we can multiply the solution ¢ € W;

of the ith equation (3.2.1) by the direct product ®kD¢i Igak € ®f¢i or of
solutions of all remaining equations. Due to the triviality of operators
X0 and X2 in the spaces Wj with k # i and homogeneity of equations
(3.2.1) we obtain again a solution of the same ith equation. But now
it will have the form ¢ = ®;ch1 p; € ®E:1 Wi = W, which does not
depend explicitly on the number i! This gives us a reason to replace the
vectors ¢; € W; in (3.2.1) by ¢ € W, which leads us immediately to system
(8.1.55). Thus, we see that the system of different MPs equations having
different solutions in different Hilbert spaces W;, i = 1,...,D can easily be
reduced to the system of different MPs equations with identical solutions in
the space W =W, ® ... ® Wp.

Obviously, the system (3.2.1) is mathematically simpler than system
(3.1.55), since it is free from the requirements of coincidence of its
solutions. This enables us to consider this system as a starting point in
constructing Schrodinger-type equations for stable completely integrable
quantum models.

In order to reformulate the assertions of statements 3.4 and 3.5 in terms
of the system (3.2.1) we must describe the properties of operators X and
A2 in the Hilbert spaces W;. But for this we need to know the connection
between the scalar products in the spaces W; and W. There are many ways
to establish such a connection. We choose the simplest way, which can be
formulated as follows.

Let () and ¢(?) be two arbitrary elements of the space W which,
evidently, admit the expansions:

6O = Y Ve...euY), (3.2.2a)
(1) &p.(;)
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D = Y oPe...e6 (3.2.2b)
0,0
The summation in (3.2.2) is performed over certain bases {y1},...,{¢p}

in the spaces Wy,...,Wp. Denote the scalar products in W; by (, )i,
i=1,...,D. Then, the scalar product (, ) in W=W; ®...® Wp can be

defined as
1 2 1 2

<¢(1),¢<z)> Z S 66y (0, 6D,

(1) (1) (2) (2)

wy el

i

(3.2.3)

or, in brief, as

D
(=TI (3.2.4)
=1

Now we can formulate the analogues of statements 3.4 and 3.5 in conformity
to the system (3.2.1).

Statement 3.6 (analogue of statment 3.4). Let V; be infinite-dimensional
complez vector spaces and W; be their Hilbert subspaces with the scalar
products (, )i, i = 1,...,D. Let X; and X&, a = 1,...,D be linear

operators in the spaces V, satzsfymg the following conditions:

1. For any fized indez 1 the operators X&, a =1,...,D commute with
each other.

2. The columns of the matriz X7 are linearly independent.

3. For any fized i the operators X and X, a = 1,...,D are hermitian
in the corresponding space W;.

4. Operators X2 are positive definite in W;: (p;, X?,¢;); > 0 for any
non-zero ; € W;.

5. The matriz ||(pi, X&, ¢:)il| ™} contains a non-zero number of rows
(or their linear combinations) which are positive definite for any p; € Wi.

Also let

||I

D D
® ® =V (3.2.5)

be o Hilbert space with scalar product defined by formula (3.2.4).



164 The inverse method of separation of variables

Then, the operators

X = ®..9L 19X ®L1®...Q0Ip (3.2.6a)
X = L®.. L 19X L11®...01p (3.2.6b)

(in which I; are the unit operators in W;) satisfy all conditions 1-7 of
statement 3.4 and thus describe the classes of completely integrable quantum
systems, the properties of which are listed in formulas (3.1.49)-(3.1.55).
We only note that solutions of the system (3.1.54) now have the form

D
¢=Q e, | (3.2.7)
i=1
where ¢; € Wi, 1 =1,...,D are solutions of the simplified system
D
X0, = (Zx,-aea) g €W, i=1..D.  (328)
a=1

(This is the end of the statement.)

Proof. Properties 1-3 of operators X and X listed in statement 3.4
follow immediately from the definitions (3.2.6) of these operators, and also
from condition 1 of the present statement. Analogously, property 4 of the
matrix operator X follows from formula (3.2.6) and condition 2. In order to
prove property 5 (hermitian symmetry of operators X%, « = 0,1,...,D),
we consider two arbitrarily chosen elements of the space W written in the
form

D D
¢ =Rel, ¢ =R e (3.2.9)
k=1 k=1

where <p551) and piz) are arbitrary elements of the spaces Wi, k= 1,...,D.
Then, using formulas (3.2.3) and (3.2.6) and condition 3 of the present

statement, we obtain:

(40, 229) = <<§) o X é)soi”>
k=1 k=1
D
= <®so§cl), Rt @ XreP 0 Q sogf)>
k=1

k<t k>1

D

=TTl o ¢ (), X262
ki
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{H(wi”,sof’ }(Xf’ )

k#i

_ <®¢g) o XV o R, ®¢<2)>

k<t k>t
<Xa ®¢(1) ®¢(2)> = <Xia¢(1), ¢(2)> . (3.2.10)

Since any two elements ¢(1) and ¢(*) of the space W admit the expansion
(3.2.2), the equality

<¢(1),Xia¢(2)> - <Xia¢(l)!¢(2)> (3.2.11)

holds for any ¢}, ¢ ¢ W,
The additional properties 6 and 7 of the operators & and X follow
from conditions 4 and 5 of the present statement and also from the chain

D
(8.2.10). Indeed, for any ¢ = @ @i we obtain
i=1

(¢, 49) = é%(wi,Xi°¢i)i > 0. (3.2.12)
From the analogous formula
(¢, X7¢) = (S qi)) (pi, X pi)i (3.2.13)

it follows that the rows of the matrix ||[(¢, X*@)||~* have the same signs as
the rows of the matrix ||(¢;, XZi)i||~!. This proves the statement.

Statement 3.7 (analogue of statement 3.5). Let operators X! and
X, a=1,...,D,i=1,...,D be replaced by operatorsX'? and X’?, o=
1,...,D, i=1,...,D of the form

X9 =B AXBY, X' =B AXB! (3.2.14)

where A; and B; are arbitrary non-singular operators acting in the spaces
Vi, i=1,...,D.

Then the resulting class of one-parameter spectral equations connected
with the transformed MPs equations (3.2.8) is the same as in the
untransformed case.
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Proof. Introducing the operators

A = L. 0L 1®A®LL®..9Ip  (3.2.15a)
and

B, = L®..L.18®B;®11®...8 Ip, (3.2.15b)

acting in the space V = V; ® ... ® Vp, it is easy to verify that they satisfy
both conditions 1 and 2 of statement 3.5. This proves the statement.

Thus, we see that in order to construct the family of commuting
integrals of motion for a certain stable and completely integrable quantum
model, it is sufficient to have the system (3.2.8) of MPs equations satisfying
the conditions of statement 3.6. According to statement 3.7, the form of
the resulting Schrodinger equations depends on the concrete choice of the
system only up to an equivalence transformation of the type (3.2.14).

Because of the importance of the system (3.2.8) it is reasonable to
discuss it in more detail.

First of all note that this system can be interpreted as a generalization
of ordinary one-parameter spectral equations in the Hilbert space. In order
to show this, let us consider some properties of system (3.2.8) and compare
them with analogous properties of one-parameter equations.

a. Orthogonality of solutions. Let goS") and gogm), i=1,...,D be two

different solutions of system (3.2.8) with the corresponding sets of spectral

parameters €5 and &™), a = 1,...,D. Then one can write

NON (ZX"A") ™ SMew, i=1,..D
(3.2.16a)

and

D
XPp™ = (ZX;%&'"))SOS'"), G™ew;, i=1,..D.
(3.2.16b)

Multiplying (3.2.16a) by gp(m) and (3.2.16b) by gogn) (in a scalar sense) we
obtain

( (m) %9, (n)) i( m) xeop ))ieg"), i=1,...,D

a=1
(3.2.17a)
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and

(Sol(.n)’X‘_o(p’(_m)>. — & ((,D‘(,m)’X‘f’<P'(.m))i5£lm), i=1,...,D.

i
a=1

(3.2.17b)

Due to the hermiticity of X and X in the spaces W;, the left-hand sides
of both these equations coincide. The kernels in the right-hand sides also
coincide. Therefore, subtracting (3.2.17a) from (3.2.17b) we get

D
@M, X2 oM)W — ey =0, i=1,...,D. (3.2.18)

a=1

Let us first assume that the sets of spectral parameters 5(0,") and E(am)
do not coincide (n # m). Then equation (3.2.18) can be satisfied if and

only if
det || (go,(."),X,-"goSm)> NPaz1 =0, n#m. (3.2.19a)

Now suppose that the sets of spectral parameters coincide (m = n).
Remember that, according to condition 5 of statement 3.6, the matrix
(8™, X p{™)il|P,o is assumed to be invertible. This means that its
determinant must differ from zero. But then we can renormalize the
solutions wgn) in such a way that

det || (¢$"),X{’<p5"))i Paz1 = 1. (3.2.19b)

Combining the conditions (3.2.19a) and (3.2.19b) we obtain the generalized
orthonormalization condition

det || (Sosn)’XlasoEm))z I(i?a:l = 6ﬂmr (3220)

which in the one-parameter case (D = 1) is reduced to the standard
orthonormalization condition for solutions of an ordinary spectral equation
with a weight operator.

b. Variation principle. Multiplying system (3.2.8) by ¢; we obtain the
equalities

D
(pi, X20:) = Y (00, X{piJea, i=1,...,D, (3.2.21)

a=1
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which can be viewed as equations for spectral parameters e,, a = 1,. ,D.
Solving system (3.2.21) we obtain

D
o= 3 (00, XFo)I Y0, X0i), a=1,...,D.  (3.2.22)

i=1

Substitution of (3.2.22) into formula (3.1.60) for the spectrum gives

D
E(M) =0"(N) + Z M (ei, XF@i )il i, XDpi)i.  (3.2.23)

i,a=1

Let us now disregard the fact that the elements ;, i =1,...,D in (3.2.23)
are solutions of system (3.2.8). Consider the right-hand side of (3.2.23) as

a functional in the spaces Wy, ..., Wp.
D
E(X¢)=0°(A\) + Z a®(M(es, XZpa)ill (i, X 04 )i,
1,a=1
ei €W, i=1,...D. (3.2.24)

According to statement 3.6, this functional is bounded from below and this
gives us the possibility of stating the problem of finding its minimum. For
this purpose we can use a variation principle.

Let <p(0) € W; be the elements minimizing the functional (3.2.24), and
let E(®)(}) be its minimum value. Consider small variations

o=\ + bn;, (3.2.25)

in which 87; € W; and ||én;]]; — 0. Then, substituting (3.2.25) into (3.2.24)
we obtain the variation equation

D
S P, XS i, X0
1,=1
D
= 5 PN, XNl (6ms, X207
i,k,a,f=1
XH(S"kO),Xf:goiO) |]~1(99§50),X2<p(0))k =0, (3-2.26)

from which it follows that

o0 = (ZX“ <°>> i=0,...,D, (3.2.27)

a=]1
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where
e = Zw(‘” Xgo Nl e, XV 0”). (3.2.28)
But then the minimum of the functional (3.2.24) can be represented as
D
EQM)=a"(N) + Y o (Vel?. (3.2.29)

We see that system (3.2.28) coincides with the system of MPs equations
(3.2.8), and expression (3.2.29) with expression (3.1.60)! The solution

ta=e®, a=1,...D; @i=¢%, i=1,...D (3.230)

is an obvious analogue of the ground state for the ordinary one-parameter
spectral equation.

Let us now show that the analogues of excited states can also be
obtained in the framework of the variation method. For this we assume that
the first N states <p$°),<p,(-l), ooy i =1,...,D are already known.
Consider the problem of finding the minimum of the functional (3.2.24)

under N additional conditions
det||(ga,,X°‘ ) =0, n=0,1,...,N -1, (3.2.31)

whlch express the orthogonality of the minimizing elements <p( ),z =

, D to the elements <,o( ), 9051) e ,gofN D ,i=1,...,D (in a generalized

sense) We denote the corresponding mmlmal value of (3 2.24) by EM ().
In this case, the variation equation takes the form

D

(N - N
3 AN, X8 oMl B, X2 oM
i,8=1

D
— 3 N XN s, X2
i,k,a,f=1
a - N
x| (8, XE oMl 1), X2

N-1

N a {(n
Z (A) det || (o™, X2l

X Z (™, X2yl 2 6me, X204, (3.2.32)
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where A,(A),n =0,...,N —1 are Lagrange multipliers. Taking in (3.2.22)
=60, n=0,1,... N-1, (3.2.33)

we find that
An(A)=0, n=0,1,...,N-1. (3.2.34)

This leads us to the following system of equations for gogN):

D
XM = (Z Xf'ag,N)) e™M i=o0,...,D, (3.2.35)
a=1
in which
L N N
a (N - N
e = 1@, XeelM el @, XRe™). (3.2.36)
k=1

For the conditional minimum of the functional (3.2.24) we obtain

D
EMQ) =)+ ) o* (Ve (3.2.37)

a=1

Thus, we have again obtained both the system of MPs equations (3.2.8) and
correct expressions for the spectral function E(A).

Taking successively N = 1,2,3,..., we can list all solutions of this
system. The values of the corresponding spectral functions EV)(}) form
in this case the non-decreasing sequence

BN <EWMN <. < EMNy <. .. (3.2.38)

The variation principle described above is, obviously, a most natural
generalization of the well known minimal principle for the ordinary one-
parameter spectral equations.

The above-mentioned facts clearly demonstrate that there is no
essential difference between ordinary one-parameter spectral equations and
systems of MPs equations of the type (3.2.8). The latter can obviously be
viewed as rather natural generalizations of the former and can be studied by
means of the same mathematical methods. At present we are not ready to
discuss the properties of systems (3.2.8) in the most general case (when the
operators X! and X¢ are chosen arbitrarily and satisfy only the conditions
of statement 3.6) since many aspects are not yet clear for us. However,
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there is one particular case the study of which does not encounter serious
difficulties. Below we consider this case in detail and show that, in spite of
its comparative simplicity, it is rather rich and has many interesting and
important physical and mathematical applications. This case appears when
operators X? and X, forming the system (3.2.8) and differing, in general,
from each other (for different values of 1), turn out to coincide if we identify
the spaces V; in which they act. Such a coincidence means that the system
(3.2.8) of D MPs equations becomes equivalent to a single MPs equation
and, therefore, its study simplifies considerably.

Summarizing the results listed in statements 3.4-3.7, we can formulate
the final theorem establishing the relationship between the single mps
equation and completely integrable quantum models.

Theorem 3.1. Let V be an infintte-dimensional linear vector space and W;
be certain Hilbert subspaces of V' characterized by different scalar products
(, )i, i=1,...,D.

Also let X and X*, a = 1,...,D be linear operators in V satisfying
the following conditions:

1. Operators X%, a = 1,...,D commute with each other and are
linearly independent.

2. Operators X° and X* oo =1,...,D are hermitian in the spaces W;
with respect to the corresponding scalar products ( , );, i=1,...,D.

3. Operator X° s positive definite (p;, X°pi)i > 0 for any ¢; €
w;, i=1,...,D.

4. The matriz ||(vi, X%p;)il|" i, = 1,...,D conlains a non-zero
number of rows (or their linear combinations) which are positive definite
foranyp;eW;, i=1,...,D.

5. The D-parameter spectral equation
D
X0 = (ZX“SQ) p, pEWIN...NWp (3.2.39)
a=1
has only a discrete set of solutions.

Denote by o°(A) and

F(A) = {o*(N)} =1 (3.2.40)
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the scalar and vector functions of the single variable A, and introduce the
scalar, vector and matriz operators T,

D—i limes

x° = {{®.. .01 X2 ®1®...9N)2;, (3241a)
i-1 times  ith place
D-i times
X = {M® ﬁ; ®I®"'®I}Ea=1) (3.241b)

i-1 times  ith place

acting in the space

V=E=Ve®...0V. (3.242)
N
D times
Denote also by
Wr = T(det X)3 (W1 ® ... Wp) (3.2.43)

a Hilbert subspace of the space V characterized by the scalar product { , )r
which, for the basis elements Yp € Wy given by formula

Yr =T(det X)3p1 ® ... @ 9p, @1 €Wi,...,0p € Wp (3.2.44)
we define as
(¥r, ¥r)r = det ||(#i, X *@i)il[Paz- (3.2.45)
Then, the operators
Hp(A) = 6%(A) + T(det X)3 {5(A) - X1 X°}(det X)" 3T~ (3.246)

form a commuting family and are hermitian in the space Wp. Their spectral
problem

Hr(A\)yr = EQA)¥r, o1 € Wr (3.2.47)

has a discrete set of solutions

EQ) = Q) +F0) -7 (3.2.48a)
pr = TdetX)3(0®...0¢), (3.2.48b)
Ny e’

D times
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which are expressed in terms of solutions €= {€,}P_, and ¢ of the initial
MPS equation (9.2.39). The spectral function E()) is bounded from below:

E(\) > o°()). (3.2.49)

The homogenous change of operators X° and X% o = 1,...,D by the
transformations

X% = BAX°B7Y,
X'® = BAX°B™', a=1,...,D (3.2.50)

in which A and B are arbitrary non-singular operators in V affects only the
form of the operator T, and not the general form of ezxpressions (3.2.46)
and (3.2.48) for Hr(A) and ¢p. (This is the end of the theorem).

Proof. Denote by X and X#,a =1,...,D,i=1,...,D the copies of the
operators X% and X%,a = 1,...,D in the spaces V;. It is easy to verify
that these copies satisfy all conditions of statement 3.6. This gives us the
possibility of constructing operators Hr(A) with the properties listed in the
present theorem. Note that formula (3.2.45) for the scalar product in the
space Wr is a trivial consequence of formulas (3.1.52) and (3.2.3). Note
also that the copies A; and B; of operators A and B in the spaces V; satisfy
the conditions of statement 3.7. This completes the proof of the theorem.

From this very important theorem it follows that any MPs equation of
the form (3.2.39) satisfying conditions 1-5 can be used as a starting point in
constructing completely integrable and stable quantum mechanical models
with discrete spectra.

3.3 The case of differential equations

A most interesting type of completely integrable quantum model, which can
be obtained by means of the method described in the preceding section,
arises when the hamiltonians Hrp()) are second-order linear differential
operators and describe systems of quantum particles moving in a certain
coordinate space. Obviously, to obtain such a form of resulting operators
Hp()) we must start with second-order differential Mps equations of the
type (3.2.29). Below we consider in detail the case when the initial MPs
equation (3.2.29) is one dimensional.

Let V be the space of functions of a single variable A. The most general
form of second-order linear differential operators X and X%, a = 1,...,D
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acting in this space is

X% = %) )88A2 +3° (A )68/\ + z°(X) (3.3.1a)
X = za(A)m2 +9" (N ay 9 5+ (3.3.1b)

We define the Hilbert subspaces W; of the space V as the sets of
sufficiently slow functions vanishing at the ends of certain intervals [A7, Af].
We assume that these intervals do not intersect, but may have common end
points. We define the scalar products in the spaces W; as

+
A:

(#W,6®) = [eMeD0) d. (33.2)
AL
Let us now try to satisfy the conditions of theorem 3.1. The necessary
constraints on operator X° guaranteeing its hermitian symmetry with
respect to the scalar product (3.2.2) can be written as

22N =-1, () =0 (3.3.3)

Such a choice does not lead to any loss of generality, since the most general
case when z%()) = 2z° = constant can be reduced to our case z0(}) = ~1
by the transformation (3.2.50) with B = 1 and A = _Z%,' Furthermore,

the free term z°()) must be regular within the intervals [A],A¥] and its
possible singularities at the endpoints /\i must be integrable.

The positive definiteness of X in W also imposes some constraints on
the admissible form of the function z°()). For our purposes it is sufficient
to assume that it is non-negative in all intervals [A7, A}].

In order to guarantee the commutativity of the operators (3.3.1b) and,

simultaneously, their hermiticity, we must take
2(A)=0, y*(\)=0, a=1,...,D, (3.3.4)

assummg, as before, that the terms 2z%(A) are regular in the intervals
[A7,A}] and their possible singularities at the end points /\i are integrable.
Note also that functions () must be linearly mdependent

For the fourth condition of theorem 3.1 to be satisfied, the matrix
lz%(A;)|| must be invertible for any A; € [A;,Af]. The inverse matrix
[lz*(A:)||7! must contain a non-zero number of rows (or their linear
combinations) with the elements being positive for any ); € [A[, Af].

1%
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Substituting the resulting expressions for X% and X%, o = 1,...,D
into the MPs equation (3.2.29), we reduce it to the form

{-Z5+20}ole) = {Zx“(x)ea}so(x)
e(A)EWLN...N Wp. (3.3.5)

Our aim is now to use the prescriptions given in theorem 3.1 and
to construct the class of Schrodinger-type equations describing a certain
completely integrable quantum system.

First of all, note that, according to definition (3.2.42), the space V is
formed by all functions of D variables X = (A1, .., AD).

The Hilbert subspace Wr is formed by functions that are regular within
the parallelogram

® A7, A (3.3.6)

and vanishing at its boundaries. The scalar product (, )7 for w(Tl ) C Wrp
and 1/)5,2) C Wy can be defined as

@), = [TOuERm e )

P

where T is a certain function of A:
T = T(X). (3.3.8)

For the vector and matrix operators X%and X acting in the space Wr
we have:

D

X = {—(96_;,2 +x0(/\,-)}i=1 (3.3.9a)
and

X = {20} et - (3.3.9b)
Introducing the notation

A(X) = det [|2%(X)||Paz1, (3.3.10)
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we can rewrite the expression for the inverse operator (3.3.9b) as

=AM {am} (3.3.11)

D
i,a=1

where 2! () is the cofactor of the element z%();) in the matrix X. It is
easy to see that the functions 2, (1), @ = 1,...,D do not depend on ;.

Now we are ready to write down the explicit expression for the
operators Hp(A):

Hp()) = a%())

D 2 - -
T AW Y a0 |5 +2°00| AT ),

t,a=1
(3.3.12)

which are hermitian in the space Wr and commute with each other for
different values of A. We see that they are D-dimensional second-order
differential operators. If the matrix (3.3.9b) satisfies the fourth condition
of theorem 3.1, it is always possible to choose the functions ¢*(}) in suck
a way that the relations

D
Y o (Neh(X) 20, i=1,...,D (3.3.13)
a=1

hold for any X € P. In this case (3.3.12) are elliptic operators. According
to the positivity of z°(};), the second term in (3.3.12) is positive definite
in Wr and, therefore, the spectra of the operators Hr()) are bounded
from below by the function ¢®()). All this means that Hr(A) can be
interpreted as hamiltonians of a certain completely integrable and stable
quantum mechanical system.

A most interesting case of these hamiltonians arises when the operator
T entering into formula (3.3.12) takes the form

i
4

D D
T=T( ) = {—Avm 11 (Zaamzi,(x))} . (3314)

in which p is a certain additional parameter. At first sight, this case is
not more remarkable than the general one. However, if A is equal to u the
situation changes.
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Indeed, let A = p. Then, introducing the matrix function
1y 2 i ()
- - a i —
gik(,u, A) juses A (A) az:::l o (/‘)za(A)) k - 11 (3315)
0, k#1,
and using the notations

det||gix ()| k=1

D D
“P(X) H (Zaa(ﬂ)z;(,?)> (3.3.16)

g(/l,X)

I

and

D
Vs, X) o®(u) + Zgﬁ(#, Nz(A)

+ ZA b {g,, m A}

. % NWAZ(Y
+ ;y,.(#, A) {g(u, A (/\)} ax {g (1, )A%( /\)}
(3.3.17)
we can rewrite the spectral equations for the operators Hp(y) in the form

D
{—\/g(#, kZ. 56— [g'k () (,f\ } +V(u,X)}¢(u,X)

(1, X)
= E(u)v(p, X). (3.3.18)

The solutions of these equations can be represented as

D
E(u) = o® (1) + Y 0*(1)ea (3.3.19a)

a=1

and

1 D
9, %) = o, HAZD)] * [T o) (3.3.19b)
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where €4, @ = 1,...,D and ¢(A) are solutions of the Mps equation (3.3.5).
The eigenvalues (3.3.19b) satisfy the following normalization conditions:

5,
A
/—’/’—(—”—] dP) < co. (3.3.20)
V(s A)
It 1is not difficult to see that the expression

— ik /“7 a
=\/g(p 1;1 i \/_3/\’6 (3.3.21)

entering into equation (3.3.18) is none other than the ordinary Laplace—
Beltrami operator for the (curved) space specified by the covariant metric
tensor g;x(u, X) (Remember that the inverse, contravariant metric tensor
¥ (u, )T) determines the form of the interval in curved space.)

We have obtained a very interesting result: starting with the single one-
dimensional differential MPs equation (3.3.5) we have obtained the class of
Schrodinger equations (3.3.18) describing a certain completely integrable
and stable quantum mechanical model on a D-dimensional, in general,
curved manifold!

We see that the procedure of going over from the Mps equation (3.3.5)
to the Schrodinger equations (3.3.18) essentially solves the inverse problem
of separation of variables in the most general form. Here (3.3.5) can be
viewed as a one-dimensional equation arising as a result of separation of
variables in the D-dimensional Schrodinger equation (3.3.18). The spectral
parameters €4, @ = 1,...,D play the role of separation constants, while
the operators

N Lo~ -
H, = T(/\)A"z(/\)Zx:,()\) [—m+z°()\i)] AT2(A)THN)
" (3.3.22)

(whose eigenvalues they are) can be considered as symmetry operators, i.e.,
operators commuting with the hamiltonians Hp(A).

Let us now consider transformations conserving the general form of Mps
equation (3.3.5) and elucidate how they influence the form of the resulting
Schrodinger equations (3.3.18). These transformations can be described by
the formulas

%)) — 20N = 642)\) {IL‘O()\) + [%;‘\—))] -~ [I:(()‘)\))] }, (3.3.23a)
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220 — 5%(3) = b42/\)z°‘()\), a=1,.. D (3.3.23b)
and
Ao A= /bz(,\) d), (3.3.24)
provided that
(X)) = B(3) = bA)e(N). (3.3.25)

It is not difficult to verify that the transformed MPs equation (3.3.5)
satisfies the same conditions as the untransformed one, and, therefore,
application of the inverse procedure of separation of variables to it gives
us again a certain completely integrable D-dimensional quantum model.
Surprising though it is, the Schrodinger equations for this model turn out
to coincide with equations (3.3.18) describing the untransformed case. To
elucidate the reason for such a coincidence, note that formulas (3.3.23)
and (3.3.24) describe two different transformations, one of which is the
ordinary equivalence transformation (3.2.50) with B = b(}) and A =
5=%(1), while the other is a change of the variable A. We know from
theorem 3.1 that transformation (3.2.50) does not change the form of the
resulting Schrédinger equations. The change of variable A (which implies
an analogous change of variable J;), being a particular case of general
coordinate transformations, can only affect the form of the metric tensor
gik (1, X), and not the potential V(x, A) and corresponding solutions ¥ (u, X)

As noted in the preceding sections, we shall be interested mainly in
the case when the quantum mechanical models obtained by the inverse
method of separation of variables have discrete spectra. It is clear that for
this to happen, the spectrum of the initial MPs equation (3.3.5) must also
be discrete. In order to convince ourselves that the existence of such mps
equations is possible, let us consider the case when the intervals [A]", A}],
i =1,...,D describing the structure of the spaces W;, ¢ = 1,...,D have
common end points, as is shown in figure 3.1. Now note that equation

Az Af Ap_y 2,
— N
N e’ S—— - .,—_{ Nt
A AF A3 A, A p%

Figure 3.1. The disposition of intervals [A7,A}], 1= 1,..., D on the real A-axis.

(3.3.5) is a second-order linear differential equation and, therefore, for any
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values of spectral parameters €;,...,ep it has two linearly independent
solutions which we denote by ¢1(A;e1,...,ep) and p3(A;€1,...,ep). The
general solution of (3.3.5) can be written in the form

‘P()‘§51;---,5D,9) = COS&SOl(A;El,...,E'D,e)
+ sinfpa(A;er,...,ep,8), (3.3.26)

where 8 is an additional arbitrary parameter. Remember that functions
belonging to the spaces W; must vanish at the ends of the intervals [A”, )\;”],
i = 1,...,D. However, the functions (3.3.26) belong simultaneously to
all Hilbert spaces Wq,..., Wp (to their intersection Wy U ... U Wp), and,
therefore, they must vanish at all D+1 points Ay, ..., ’\0‘D+1’ where A = A7,
fori=1,...,D, and /\%+1 = /\;;. Writing this condition in the form

p(\se1,...,6p,0)=0, i=1,...,D+1, (3.3.27)

we obtain a system of D + 1 numerical equations for D + 1 unknown
quantities £1,...,ep and . Evidently, the set of solutions of this system
is discrete. This means that the MPs equation (3.3.5) also has a discrete
spectrum. Of course, this reasoning has only a theoretical meaning, since,
in general, the explicit expression for the function (3.3.26) is not known.
However, there are many special cases when the construction of explicit
solutions of MPs equations (3.3.5) becomes possible. These cases, which
will be discussed in detail in the next sections of this chapter, are especially
interesting for us since they lead to completely integrable quantum models
of the type (3.3.18) with discrete and exactly calculable spectra.

3.4 Algebraically solvable multi-parameter spectral equations

In this section we discuss the problem of constructing one-dimensional
differential MPs equations which can be solved exactly by means of algebraic
methods. For the sake of convenience we formulate the basic ideas in a most
general and abstract form. This gives us the possibility of simplifying much
of the reasoning and avoiding various particularities which might appear on
considering the specific cases of concrete MPs equations.

a. Generalized MPS equations. Denote by ¢ the vectors belonging to
a D-dimensional vector space £. Denote by X(¢) the function on £ with
values being linear operators in a certain infinite-dimensional vector space
V. Denote also by ® a certain subset of V which does not necessarily form
a linear space.

Consider the equation

X(e)p=0, ¢€d, (3.4.1)
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which we call the “generalized” MPs equation, stressing the fact that the
function X (¢) may be arbitrary (not necessarily linear). The vector ¢ plays
in (3.4.1) the role of a spectral parameter. We shall call the set of all vectors
e for which (3.4.1) has non-zero solutions in ® the spectrum of equation
(3.4.1).

Below we shall distinguish between two types of linear transformation
in the space V conserving the form of equation (3.4.1). They are
left multiplications X'(¢) = A(e)X(¢) and ordinary homogeneous
transformations X’(¢) = B(e)X(e)B~1(¢) which can be realized by
non-singular operators A(e) and B(e) depending, generally, on ¢. The
transformed equation (3.4.1) can be written in the form

X'(e)p' =0, ¢ €, (3.4.2)
where
X'(e) = B(e)A(e) X (€)B~(e), (3.4.3)
o' = B(£)®, (3.4.4)
and
¢ = B(e)e. (3.4.5)

Two operators X (¢) and X’(¢) which are related as in formula (3.4.3) will
be called equivalent.
Introducing a basis in the space V and taking

¢ ={prti=o, 0o X(e) = (XL}, (3.4.6)
we can rewrite (3.4.1) in the form

o

Yo XEEpe =0, m=0,1,...,00; {9k} € 2. (3.4.7)
k=0

This is an infinite-dimensional matrix version of the generalized MPs
equation (3.4.1).

b. Finite-dimensional matrix MPs equations. As noted in preceding
sections, in our approach a central role is played by the Mps equations with
discrete spectra. To demonstrate how such equations appear, it is sensible
to consider first the simplest particular case, when vectors ¢ and matrices
X(g) are finite dimensional,

o= {prti=o..x, X(€) = {XEEW Ay (3.4.8)
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and ® = ®r is a linear space. Then (3.4.7) takes the form of a finite-
dimensional rectangular matrix equation

M
> XP(er,. - ep)om =0, k=0,1,...,K. (3.4.9)
m=0

Due to the homogeneity of (3.4.9), we can impose some normalization
conditions on ¢, for example

M
Yook =1 (3.4.10)
m=0

Then the number of unknown quantities entering into system (3.4.9)
becomes M + D. Consider three cases:

(1) K+1> M+7D. The number of equations (3.4.9) exceeds the number
of unknown quantities. The spectrum is empty.

(i) K+ 1< M +D. The number of equations (3.4.9) is less than the
number of unknown quantities. The spectrum is continuous.

(iii) K + 1 = M + D. The number of equations and unknown quantities
coincide, and, therefore, the spectrum is discrete.

The last case is especially interesting for us. We see that in order to
obtain a finite-dimensional D-parameter spectral equation with a discrete
spectrum, the operator X (¢) must have the form of a rectangular matrix of
size (M + D) x (M + 1) where M can be chosen arbitrarily. In particular,
when D = 1, we come to the square (M + 1) x (M + 1) matrices which lead
us to the standard one-parameter spectral matrix equations.

Using (3.4.9) it is not diffcult to obtain the equation immediately for
the spectrum. To this end consider D square matrices:

Xu(er, ..., 60) = | XThiler, - ep)|lim=1, n=0,...,D~1,

and rewrite the system (3.4.9) in the form:
Xn(er,..-1ep)p =0, @€®y, n=0,...,D-1. (3.4.12)

We know that these (ordinary) linear matrix equations admit non-zero
solutions if and only if

det X,(e1,...,6p) =0, n=0,...,D-1. (3.4.13)

Thus, we have obtained the system of D secular equations from which the
admissible values of D spectral parameters £;,...,¢p can be found. Note
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that in the one-parameter case (D = 1) system (3.4.13) is reduced to a
single secular equation.

c¢. Infinite-dimensional matrix MPs equations. Much more interesting
cases appear when the space ® in which we seek solutions of equations
(3.4.1) is infinite dimensional. The construction of MpPs equations with
discrete spectra remains possible in this case too, although it is difficult to
speak about “rectangular” matrices of size (00 + D) X (co++ 1): the notion
of rectangularity in the infinite-dimensional case is not defined.

Nevertheless, we can consider a special class of infinite-dimensional
matrices for which the use of the term “rectangularity” is more or less
justified. These matrices are distinguished by the fact that they act as
finite-dimensional rectangular matrices in the finite-dimensional subspaces
of the space ®. Such a property guarantees discreteness of the spectra of
corresponding Mps equations and gives the possibility of algebraizing the
problem of finding their solutions.

First of all, let us construct an appropriate infinite-dimensional space
®. We denote by ®s the linear span of the first M + 1 basis elements
of V. Thus, ®pr is an (M + 1)-dimensional space. Let us define @ as a
space, any element of which is an element of a certain space ®p (with a
finite M). This means that ® consists of vectors having a finite number of
components only. This number may be arbitrarily large and, therefore, the
space ® is infinite dimensional. Note however, that ® does not necessarily
coincide with the initial space V since the latter may contain vectors with
an infinite number of components.

Now, let us assume that the operator X (¢), having, in general, the form
of an infinite-dimensional matrix, admits for any ¢ and M = 0,1,2,...
the block-decomposition shown in figure 3.2. in which Xjs(g) are finite
rectangular matrices of size (M + D) x (M + 1), and X},(e) and X}, (e)
are infinite blocks, the concrete form of which is non-essential for us. Using
this block structure we come to the following chain of embeddings:

X(E)Py C Opryp-1, M=0,1,2,..., (3.4.14)

from which it follows that the infinite-dimensional matrix X(¢) acts in any
subspace ®ps of the space ® as a finite-dimensional rectangular matrix
Xum(e) of size (M + D) x (M + 1). In turn, this means that the infinite-
dimensional spectral problem for the operator X (¢)

X(E)p=0, € (3.4.15)
breaks up into an infinite number of finite-dimensional spectral problems

Xu(e)p=0, ¢ € Py, (3.4.16)
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M+1
1
f l
|
|
4D Xne(e) Xi(e) |
z
X(e) = P, M=0,1,2,...
|
\ |
|
|
0] X (e) |
|

Figure 3.2. The block structure of the matrix X(e).

each of which has a discrete spectrum. This gives us reason to assert that
the initial equation (3.4.15) also has a discrete spectrum in ®.

Note that for the block decomposition of X(g) depicted in figure 3.2
to be possible for any M =0,1,2,.. ., it is necessary that

X*(e)=0, foranyk—m>D. (3.4.17)

Matrices of such a type can be depicted as shown in figure 3.3. They have
D—1 lower diagonals only. In particular, when D = 1 these matrices become
upper triangular and, thus, the spaces ®3r become invariant subspaces of
3.

X(e)®y C By, M=0,12.... (3.4.18)

d. Algebraically solvable MPs equations. It is natural to call the
MPs equation algebraically solvable if all its solutions can be obtained
by means of a finite algebraic procedure. Any finite-dimensional MPs
matrix equation is algebraically solvable according to this definition. The
infinite-dimensional MPs equations discussed in the preceding subsection
are also algebraically solvable, since they allow reduction to sets of finite-
dimensional spectral problems. Note also that starting with the known
algebraically solvable MPs equation and applying to it various explicit
equivalence transformations of the type (3.4.3) we obtain a new class of
MPs equations all of which will be algebraically solvable by construction.
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Figure 3.3. The diagonal structure of the matrix X(e).

e. Construction of algebraically solvable Mps equations. Consider
the Heisenberg algebra, whose elements, a, a* and I, satisfy the following
commutation relations:

[a,a*) =1, [a,]}=[a*,I}]=0. (3.4.19)

It is known that this algebra admits an infinite-dimensional representation
with lowest weight. In this case I acts as the unit operator, and
the elements at and a take the meaning of creation and annihilation
operators, respectively. The lowest-weight vector |0) is defined as the vector
annthilated by the operator a:

al0) = 0. (3.4.20)
The corresponding representation space is formed by the vectors
|n) = (a*)"10), (3.4.21)

playing the role of the basis vectors in the representation space. From the
known relations

at|n) = |n+1), a|n)=nln-1), (3.4.22)
it follows that

k+n—m), k+n—m>0,
k4 —m) mome } (3.4.23)

k_m
(a+)"a™[n) { 0, k+n—m<0.
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This formula allows us to express the operators X(¢) satisfying condition
(3.4.17) in terms of the generators a, at. Indeed, taking

X()= Y. Xp(e)at)am, (3.4.24)
k<D+m

and recalling that the spaces ®ps are defined as linear spans of the vectors
10),]1),...,|M), it is not difficult to see that condition (3.4.17) is really
satisfied. But this means that the MPs equation with the generator X (¢) is
algebraically solvable.

Now, remember that the generators of the Heisenberg algebra allow a
differential realization

at =X, a=—=—, I=1. (3.4.25)

In this case the role of the lowest-weight vector is played by the constant
function

0y =1 (3.4.26)
and the basis elements |n) have the form
In) = A", n=0,12,.... (3.4.27)

Therefore, the space ® takes the form of the space of all polynomials in A
and ®ps becomes the space of the polynomials of a given order M.
The operators X () acting in ® can be rewritten as

X(e)= > XPEXN (&))" (3.4.28)
k<D+m

and, thus, we come to the differential MPs equations having algebraic
solutions within the class of polynomials.

Of course, the case when operators (3.4.28) are second-order differential
operators i1s most interesting for us. This case is realized when the
coefficients XJ*(¢) entering into formula (3.4.28) vanish if m exceeds two.
Then we obtain

2

i 8
X(e) = Pos1(X;e) gz + Po(Xi€) 53 + Po-a(Xie), (3.4.29)

where P, (e, A) are arbitrarily fixed polynomials of orders n =D —-1,D, D+
1, with the coefficients being given functions of D spectral parameters
€1,..-,€ED.
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The corresponding second-order differential Mps equation has the form

2

{PD+1(/\;5) 4

533 + Po(hie) gy +PD,1(A;5)} e(A) =0, (3.4.30)

and for any M = 0,1, 2,... admits exact solutions belonging to the class of
Mth-order polynomials

M
P(A) =D pnd™. (3.4.31)

According to the remark given in the previous subsection, the
algebraically solvable MPs equations (3.4.30) can be used as a starting
point for constructing more complex algebraically solvable Mps equations.
For this it is sufficient to apply to (3.4.29) some kind of equivalence
transformation (3.4.3). Consider, for example, transformation (3.4.3) in
which

1

Ale) = *m, (3.4.32a)

_ 1 Pp(€, A)
B(e) = exp {2 / Pors (e, ) d)\} . (3.4.32Db)
Then, for the transformed operator X(¢) we obtain:

92 L L[ Po(ie) "1 Po(Ne) 1P Ppoa(he)
XO= 3545 s il g
(3.4.33)

Note that, instead of the three polynomials Ppii(A;€), Pp(X;e) and
Pp_1(A;€), it is convenient to introduce two polynomials Ppy1(A;¢) and

1 / /
Pyp(Xie) = 1 {2PD(A; €)Ppy1(A;€) — 2Pp(X;€)Ppy (X e)
+P3(X;€) — 4Pp_1(X;€) Ppyi(X; 5)} (3.4.34)

of orders D + 1 and 2D, respectively. If these polynomials are given, the
form of the remaining polynomials Pp(A;e) and Pp_1(A;¢) can easily be
recovered from equation (3.4.34). In the new notation operator X (¢) takes
the form

o? Pyp(A;e)

X(e) = +

3.4.35
T oaz P3.,(Xe) ( )
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and this gives us the following new MPs equation:

{ 0% Pp(Xe)

5t O } ©(A) = 0. (3.4.36)

As follows from our derivation, equation (3.4.36) is again algebraically
solvable, and for any given M = 0,1,2,... has solutions belonging to the
class of functions

1 PD )\ 6
A) = " 4.
e(A) = exp{ Pon (0 6) dA}Zcpn/\ (3.4.37)

We emphasize that the coefficients in the polynomial Ppyi(A;e) are
certain given functions of ¢, the coefficients in the polynomial Pp(X;e)
can be obtained from equation (3.4.34) and ¢;,...,ep and pq,...,pp are
unknown numbers.

f. Algebraically solvable Mps equations with linear dependence
on spectral parameters. Consider the case when the operator X(¢)
entering into the MPs equation (3.4.1) depends on the parameter ¢ linearly.
The most general form of such an operator is

D
- X%, (3.4.38)
a=1
where X° and X% a = 1,...,D are certain given operators in V.

Substituting (3.4.38) into (3.4.1), we obtain the MPs equation

D
X% = (Z X“sa> e, p€Q, (3.4.39)
a=1

the form of which almost coincides with (3.2.39). The only difference is that
the set @ in which solutions of (3.4.39) are being sought does not necessarily
coincide with the space W = Wi N...NWp appearing in equation (3.2.39).
Here ® is chosen in such a way as to guarantee only an algebraic solvability
of the equation (3.4.39), and not its physical sensibility.

The simplest way to construct algebraically solvable linearized mps
equations is to construct a class (as wide as possible) of algebraically
solvable generalized MPs equations, and then extract the cases when the
dependence of the operators X(g) on the spectral parameter € becomes
linear. As a starting point we can use the classes of algebraically solvable
second-order differential MPs equations (3.4.30) and (3.4.36) constructed in
the preceding subsection.
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Let us start with equation (3.4.30). It is evident that its linearized
version arises when the coefficients P,(A;¢),n = D—1,D,D+ 1 depend on
¢ linearly:

D
P,(\e) =PI\ =) P¥(Nea, n=D-1,D,D+1. (3.440)

Here P2(A) and P%(\),a = 1,...,D are certain fixed polynomials.
Substitution of (3.4.40) into equation (3.4.30) gives:

2
[PBoa()555 + PO 35 + PR o)

D 52 3
= {E [Pgﬂ(,\)-éj\; + P{,’(/\)EX + P{;_l()\)] 6(,} e(d).  (3.4.41)

a=1

This equation is algebraically solvable by construction and its solutions
belong to the class of polynomials

e(\) = Qu()), M=012,. ... (3.4.42)

Now consider another type of MPS equation described by formula
(3.4.36). It is easy to see that for (3.4.36) to be a linear MPs equation, the
denominator of the free term must be independent of £, while the numerator
must depend on ¢ linearly:

P‘D+1(A‘,€) = P’D+1(’\) (34438)

Pyp(he) = P&H(A) - Z 2 (AN (3.4.43b)

Substituting (3.4.43) into (3.4.36), we obtain the needed MPs equation
0 P } o Pio()
——— A) = €a A), (3444
{357 * o 07 70 = {05 e 00 (8440
which is also algebraically solvable and has solutions of the form

o(A) = exp {/ Fp(N) dA} Qm(Y), M=0,12 ., (3.445)
Ppii(d)
where Rp()) and Qa()) are unknown polynomials of orders D and M,
respectively.
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3.5 An analytic method of constructing algebraically solvable
multi-parameter spectral equations

In this section we discuss another (analytic) method of constructing one-
dimensional second-order differential MPs equations with linear dependence
on spectral parameters €,. We find this method more attractive than the
algebraic one discussed in the previous section, since it leads immediately
to the most general form of such equations. Besides, this method is direct,
since it does not require preliminary construction of MPs equations with
an arbitrary dependence on spectral parameters. Finally, it gives the
possibility of obtaining rather compact explicit expressions for both the
MPs equations and their solutions, which is especially important for their
analysis and classification.

The idea of this method is very simple. In order to formulate it, let us
first consider an arbitrary differential Mps equation of the form

52
{"5)?5“”( }‘o(’\ {ZI f\)fa} V), e e, (351

and note that it can be interpreted as a particular case of the more general
equation for two functions p(A) and w(A)

62
{_W + w(A)} p(A) =0, w(A)ER, p())E?, (3.5.2)

provided that € is a finite-dimensional functional space with basis
z%(2),z%()),a = 1,...,D. In fact, any function w(A) satisfying equation
(3.5.2) is a linear combination of D +1 functions z°(}), z*(A),a = 1,...,D,

D
w(d) =2N)eo — Y 2%(Mea, (3.5.3)
a=1
and, therefore, any particular solution of (3.5.2) with ¢¢ = 1 is

automatically a solution of equation (3.5.1).

Now note that equation (3.5.2) admits one more generalization. In
order to construct it, note that all dependence of the function w(A) on the
sort of solution is concentrated in the coefficients €5, €4, @ = 1,...,D of its
expansion (3.5.3). The basis functions z°(A) and z*(A), & =1,...,D are
assumed to be fixed and, therefore, the location of all singular points of the
function w() is also fixed for all solutions. Thus, we can treat (3.5.2) as a
particular case of the more general equation
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supplemented by the following additional condition: the location of
singularities of w(A) does not depend on the sort of solution.

Now let us formulate the method of constructing algebraically solvable
MPs equations of the type (3.5.4). This method is naturally divided into two
stages. First, we construct the most general solution of equation {3.5.4) and
then find the conditions when the functions w(X) satisfying this equation
can be treated as elements of a certain (D + 1)-dimensional functional space
and represented in the form (3.5.3) with ¢y = 1. In this case we obtain
the most general expressions for both the one-dimensional second-order
differential MPs equation (3.5.1) and its solutions.

In order to realize this program let us first study the behaviour
of the second unknown function () in the vicinity of singular points.
Introducing the logarithmic derivative of ()

¢'(%)
A) ==, 3.5.5
v =20 (3.5.5)
we can rewrite equation (3.5.4) in the Riccati form:
y'(A) +2()) = w(A). (3.5.6)

We shall distinguish between two different types of singularity of function
y(X). Singularities of the first type are those for which the corresponding
function w(A) is regular. All other singularities are of the second type. It is
quite obvious that the former can be located more or less arbitrarily, while
the location of the latter is fixed and cannot depend on the sort of solution.

Assume that the function y(A) has at the point A = ¢ the first type of
singularity. This means that the corresponding function w(A) must behave

at this point as
wd) =wo+ (A =ui+ (A= +..., A= (3.5.7)

Substituting expansion (3.5.7) into equation (3.5.6) and solving this
equation we find
1 wo
=—+ (- sy A& 3.5.8
V) =y RO A (35.8)

From (3.5.8) it follows that the role of the first-type singularities of y(A)
can be played by the simple poles with unit residues only. Therefore, the
most general form of functions y(A) having singularities of both types is

M
y(/\):F(/\)+Z:\——_%, M=0,12.... (3.5.9)
i=1 !
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Here F()) are arbitrary functions with a fixed location of singular points,
and &;,...,&u are the coordinates of simple poles, the location of which
can, in principle, depend on the sort of solution. The number M of these
poles can be chosen arbitrarily.

In order to find the admissible values of the numbers £1,...,&3r, we
substitute (3.5.9) into (3.5.6). The resulting expression for w(\) takes the
form

Mo ! Mo 2
w(d) = Fm+zrjf+Fm+ZA%]
i=1 : i=1 !
M
= F%M+Jﬂu)+2z:ff2
i=1 *
M

= P 423 PR

1 11
+2§ A =& {kz::l -t *F(ff’)} (3.5.10)

We see that the first two terms in (3.5.10) are singular at the same points
as the function F(A). These are second-type singularities, the location of
which is assumed to be fixed. The third term in (3.5.10) is obviously regular
at the points £1,...,€p. These singularities have the form of simple poles
with the residues

M,
ry = L F(E), i=1,....M. 3.5.11
> g e (3.5.11)
According to the condition of regularity of w(A) at these points, we must
take
ri=0, i=1... M. (3.5.12)

This leads us to a system of numerical equations for &y, ...,&y and a rather
compact expression for the function w(A). Note that the corresponding form
of the second function ¢(A) can be obtained from

o(A) = exp {/y(A) d/\} . (3.5.13)
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Collecting these results we come to the following important statement.

Statement 3.8. The most general solution of equation (9.5.4) is

W) = PO+ () 42 ) T =) (3.5.14)
M
o)) = exp {/F(A) d,\} H(A - &), (3.5.15)

where F(X) is an arbitrary function with fized positions of singular points,
M 15 an arbitrary non-negative integer, and the numbers &1,...,Ep satisfy
the system of M numerical equations

M,
> +FE)=0, i=1,...,M. (3.5.16)
=G

This statement completes the first stage of our programme. Indeed, the
most general solution of the equation (3.5.4) is constructed. Now we must
find the conditions under which w(A), having the form (3.5.14), belongs to
a finite-dimensional functional space. We show that this is always possible
when F'(}) is a rational function.

First of all, remember that the unique singularities of rational functions
are the poles which may be located at finite points or at infinity. Any
rational function has only a finite number of poles in the complex plane.

Let @ = (aj,...,ax) be the points in which the given rational function
r()) has poles of orders @ = (n1,...,nk), respectively. Assume also that
r(A) behaves at infinity as A”. This means that there it has the pole of
order n + 2 (if n > —1). Any function of such sort can be represented as a
fraction

_ Qp(A)
)= (A =a))™ ... (A —ag)"x’ (3.5.17)

in which @p()) is a polynomial of order

K
D= ng+n. (3.5.18)
a=1
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Denote by R, (g) = R, (2 “’;) the space of all linear combinations of

rational functions having the form (3.5.17). From (3.5.17) and (3.5.18) it
follows that

—» K
. a
dlmR,,(ﬁ) =D+1= Zlaa-f-n-i—l. (3.5.19)

Now, let us formulate two important statements.

Statement 3.9. Let F(A) € Ra(3). Then

E A g(‘f')eRn_l(g), (3.5.20)

a=1

if the numbers §; satisfy the system (3.5.16).

Proof. First of all note that the function in (3.5.20) is regular at the points
A=¢§,1=1,..., M, and therefore in any finite part of the complex A-plane
it has the same singularities as the function F(X).

If A — oo, one can write

1

i=1
Y F(&) o) (ﬁ) } . (3.5.21)

{ M
i=1

|

Using the equality

M
S FE) =0 (3.5.22)
i=1
which follows from the system (3.5.16), we can see that, if F(A) ~ A", then
M
FQ)~F&) _ yn1
; L An-1 (3.5.23)

for any n > —1 and A — oco. This proves the statement.

Statement 3.10. Let F()) € Ra(Z). Then

w(A) = F(A)+F2(A)+2ZEQ‘)—5—£§) 2,,(2:), (3.5.24)
i=1
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if the numbers §; satisfy the system (3.5.16).

Proof. The assertion of this statement follows immediately from the

-

definition of the spaces R,(3) and from formula (3.5.20).

Thus, we have shown that all the functions w(A) satisfying equation
(3.5.4) belong to the space Rzn(g), which is finite dimensional. Its
dimension is given by the formula

-

dim Ry, (;) =9D +1, (3.5.25)

where D is defined by (3.5.18).

The last step is to reduce this equation to the form (3.5.1). This can
be done as follows. Denote by rﬂ(/\), B =0,1,...,D the basis in the space
R, (g) Then, for any function F(A) belonging to this space, one can write
the expansion

D
P\ =) Fpr’(h). (3.5.26)
B=0

Denoting by r?()), 8=0,1,...,2D the basis of the space Ra, (Z‘Iﬁ) we can
write an analogous expansion for w(X)

2D
W)= ws(F, O (N, (3.5.27)

B=0

where wp(f,{), B = 0,1,...,2D are the coefficients depending on both
the (D + 1)-dimensional vector F = (Fo,..., Fp) and the M-dimensional

vector £ = (&1,---Enn)-
Now let z%(A) and z*(A), a = 1,...,D be arbitrarily fixed functions

belonging to the space Rz,l(g.].). Then we represent them in the form:

2D

() = zpr? (), (3.5.28a)
f=0
D

*(N) = Y zgrf(A), a=1,...,D, (3.5.28b)
B=0

where :cg and zg, a = 1,...,D, B=1,...,D are certain given coefficients.
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Consider the equation

D
w(d) =2°(0) = D 2*(Vea, (3.5.29)
a=1
in which €,, @ = 1,...,D are certain unknown numbers. Substituting

expansions (3.5.27) and (3.5.28) into (3.5.29), we obtain the system of
numerical equations

D
s(F €)= Z r3eq, 2D +1, (3.5.30)

while the substitution of (3.5.26) into (3.5.15) gives

M

D
1ol
}: +2Fﬁrﬂ(,\):o, i=1,...,M. (3.5.31)
pri TRl =0

We see that equations (3.5.30) and (3.5.31) together form the system of M +
2D +1 equations for M +2D + 1 unknown quantities &, ...,&um, Fo,..., Fp
and €;,...,6p. Evidently, for any set of fixed numbers z$ and z% this
system has algebraic solutions. This gives us the possibility of asserting that
equation (3.5.4) takes the form of an algebraically solvable mPs equation.
Summarizing these results we can formulate the following basic theorem.

Theorem 3.2. Let z°(A) and z°(A), a = 1,...,D be the arbitrarily fized
rational functions belonging to the space Ry, (;) Then the MPs equation

{—%wz( }cp()\ {Zz }(p(/\) (3.5.32)

is algebraically solvable. Its solutions have the form

M
p(A) = [[(A — &) exp {/F(A) dA} , (3.5.33)
i=]
where M is an arbitrary non-negative integer, £1,...,&p are certain

unknown parameters and F(A) is an unknown function belonging to the
space Rn(g). A concrete form of function F()), the values of &1, ...,&p and
the corresponding admissible values of the spectral parametersey,...,ep can
be obtained from the following system of algebraic equations:

M

11
FFE)=0, i=1,...M, (3.5.34)
;fi—fk
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F'(A) + F()) +22+{(&— 2% Zxa(,\ (3.5.35)

(This is the end of the theorem.)

This theorem completes the construction of the most general classes
of algebraically solvable one-dimensional second-order differential mps
equations with a linear dependence on spectral parameters.

Now let us try to elucidate how many solutions the obtained mps
equations have. Quite obviously, this number i1s equal to the number of
solutions of the system of algebraic equations (3.5.34) and (3.5.35).

First of all, consider the first equation (3.5.34) and treat it as a system
of M numerical equations for M unknown numbers &1,..., &y, assuming
that the function F()) determining the form of this system is given. Since
the function belongs to the space R, ( ), it can be represented as the
fraction

Qp(})
QD—H(A) ’
in which @p(A) and Qp-n(]) are certain given polynomials of degrees D

and D — n, respectively.
Substituting (3.5.36) into (3.5.34) we obtain

F()) = (3.5.36)

M
1 Qp(&) .
+ =0, i=1,..., M. 3.5.37
Z =&  Qo-al&) ( )
Multiplying (3.5.37) by the denominator of the second term gives:
M, .
Qo-n(&) D +Qp(&) =0, i=1,..., M. (3.5.38)
= &
Note that this system is equivalent to the system of M equations
,Q’D n 61
+ Qo) =0, m=0,...,.M -1, 3.5.39
,El s Z ( ( )

which can be obtained from (3.5.38) by multiplying it by &, m
0,...,M —1 and summing over i = 1,..., M.

The first term in (3.5.39) is a polynomial in §; of degree D —n+4m—1.
This follows from the evident identity

M IQp-n(&i) 1 M 1Qp—n (&)™ — Qp-n (€ )ET
2 GG 52; &t . (3.5.40)

i,k=1
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At the same time, the second term in (3.5.39) is a polynomial of degree
D+m. Since n > 1 by assumption, the mth equation (3.5.39) is an algebraic
equation of degree m + D.

Thus, we have M different algebraic equations (3.5.39) of degrees
D,D+1,...,D+ M — 1, and therefore this system has, generally, D x
@P-1D..P+M-1)= U—'({%!D—! solutions. However, many of these
solutions are equivalent. In fact, the numbers §;,...,£y enter into the
second system (3.5.35) symmetrically. This means that all the solutions
of the first system (3.5.34), which can be transformed into each other by
means of a permutation of the numbers §;,...,£p, must be considered
as equivalent solutions. Thus, in order to obtain the number of non-
equivalent solutions of the system (3.5.34), we must divide the total number
of solutions, &(I,gv—l),ll- by the total number of all permutations, M!. This
results in the following statement.

Statement 3.11. Let F()) be a given rational function, belonging to the
space R, (ﬁ) of dimension D+ 1. Then the total number of non-equivalent

solutions of the system (3.5.34) is %12_—113),—'.

Now, let us consider the second equation (3.5.35), and interpret it as
a system of 2D + 1 algebraic equations for 2D + 1 numbers €q,...,ep and
Fy, ..., Fp, assuming that the parameters £1,...,€a are fixed. Remember
that the right-hand side of (3.5. 35) as well as the two first terms in the left-
hand side belong to the space R, (3 ) while the third term in the left-hand

side belongs to the subspace R,,_l("). Denoting the projection operator

from Ry, (2571) to Rn-l(g) by P, we can rewrite (3.5.35) in the form of two
independent equations:

{F(,\)+F2 /\)+2Z————-———F('\) f(f')}
i=1 ¢

D
=P {x"(x) -3 x"‘(/\)ea} (3.5.41a)
a=]
and

(1-P) {F'(X) + F*(N)}

D
=(1-7) {r"(f\) - Zx"(z\)ea}. (3.5.41b)

Due to the fact that dim R,—1(%) = D and dim Raa () — dimRa_1(3) =
D + 1, equations (3.5.41a) and (3.5.41b) are equivalent to systems of D and
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D +1 algebraic equations. Considering (3.5.41a) as a system of D algebraic
equations for D unknown numbers €1, ...,ep, we can express these numbers
via the parameters Fy,..., Fp. Substituting the obtained expressions for
€1,.-.,€p into (3.5.41b), we obtain a system of D + 1 equations for D + 1
unknown parameters Fy, . .., Fp determining the form of the function F(X).
Assume now that the total number of singularities of functions z°()) and
z%(A), a = 1,...,D is K 4+ 1. Obviously, the function F(}) is singular
at the same points as the functions z%°(}) and z*(}\), o = 1,...,D.
Denoting the coefficients of these singularities by Fy, # = 0,...,D and
equating the leading (most singular) terms in both sides of (3.5.41b), we
get K + 1 separate quadratic equations for Fy,...,Fx. Each of these
equations has two solutions, which gives us 2X+1 different sets of coefficients
Fi, k=1,...,K. As soon as one such set is chosen, the other coefficients
Fp, k=K +1,...,D of the function F(A) can be determined uniquely by
equating the non-leading terms in equation (3.5.41b}. This means that the
total number of solutions of this equation is 2¥+!. Summarizing, we come
to the following statement.

Statement 3.12. Let the total number of singularities of rational functions
belonging to the space Ry (2%1) be K + 1. Then for any given &1,...,&nm

equation (3.5.35) has 2K+ different solutions for F()) € Rﬂ(g) and
€1,...,ED.

Thus, on the one hand, we have shown that equation (3.5.34) has

%%1—1))!-! solutions for &;,...,&n if the function F(A) is fixed. On the

other hand, we see that equation (3.5.35) has 2X+1 solutions for F()
if the numbers &;,...,&p are fixed. Combining these two assertions, we
can conclude that, in general case, the system of equations (3.5.34) and
(3.5.35) must have 2K+1%‘9}11% different solutions for any given M. Of
course, this result is not rigorous from the mathematical point of view.
However, it is very reliable and, at least at the present time, we do not know
any counter-example. This gives us a reason to conjecture the following

theorem.

Theorem 3.3. Let the functions z°()) and z%(}), a =1,...,D, entering
into the MPs equation (3.5.32), belong to a (2D + 1)-dimensional space
Rg,.(zqn) of functions having K + 1 poles at the points ay,...,ax and at
infinity. Then for any M = 0,1,2,... the number of algebraic solutions of
this equation, given by formulas (8.5.383)-(3.5.35), is equal to

:2K+1(M+D—1)!

N MY(D — 1)!

M=0,12,.... (3.5.42)
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The total number of such solutions is infinite, and thus, (3.5.32) is an MPs
equation with an infinite and discrete spectrum.

Let us now discuss the classification problem for algebraically solvable
MPs equations of the type (3.5.32). From theorems 3.2 and 3.3 it follows
that in order to solve this problem it is sufficient to classify the spaces
of rational functions Ra, (fﬁ) For this we can use a graphical method.
Before formulating the essence of this method, let us first give an alternative
definition of the spaces RZH(Q‘;) in terms of so-called “double poles”. We
shall say that a rational function has at the point a the double pole of order
n if it behaves near this point as (_AT%F'T when a is finite, and as A?"~* when

a is infinite. In this language Ra, (fﬁ) can be interpreted as the space of
all rational functions having at the points a1,...,ax and ag = oo double
poles of orders ni,...,ng and ny = n + 2, respectively. Depicting the
points a4 by n, small concentric circles we come to a diagram describing
the space Rz,,(zaﬁ). The technical difficulties connected with depicting the
infinite point ag can easily be overcome if we map the complex A-plane
onto the sphere of a finite radius (by means of a stereographic projection)
and then look at this sphere from the point —ico. Then we see a disc
with the boundary being the image of the real A-axis with i1dentified plus
and minus infinity, and with the interior formed by identified complex
conjugate points. In order to distinguish between the points with positive
and negative imaginary parts, we depict the former by the upper half-
circles, and the latter by the lower half-circles. We shall also depict the
complex conjugate pairs as well as the real points by whole circles.

Thus, we come to a disc-like diagram consisting of several small
circles (or half-circles) describing the position and orders of double poles
determining the structure of the space Rgn(z‘i.). We shall call such
diagrams simple. When listing simple diagrams, one can list the types of

©8

© 1

°©@ © -

Figure 3.4. An example of a simple diagram.

spaces Rap (fﬁ) and, consequently, the corresponding classes of algebraically
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solvable MPs equations (3.5.32).

For example, the simple diagram depicted in figure 3.4 describes the
space Ron(y;) which consists of rational functions having double poles of
orders 1, 3, 2, 2 and 2 at the points 0, 1, i, —1 and oo. Thus, in this
case, @ = (0,1,1,~1), 24 = (2,6,4,4), 2n = 0 and D = 9. The class of
corresponding MPs equations (3.5.32) is determined by the functions z°())
and z%(A),a = 1,...,9 belonging to this space.

We call two simple diagrams equivalent if they describe the rational
functions with equal numbers of double poles and identical sets of orders.
For example, the diagrams depicted in figure 3.5 are equivalent since both
describe the rational functions having double poles of orders 1, 2, 2 and 3.

Figure 3.5. An example of equivalent simple diagrams.

The MPs equations connected with two equivalent (simple) diagrams
can be obtained from each other by means of a certain continuous
deformation. Note that in an important particular case these deformations
are reduced to the ordinary equivalence transformations described by
formulas (3.3.21) and (3.3.22). This case appears when the function b(})
entering into the above-mentioned formulas takes the form of an inverse
linear function. In this case these formulas can be rewritten as

ax—}-ﬂ

A= oy (3.5.43)
and
20) = (a6 = B7)% o ad+ 8 (3.5.44a)
(YA + 6)* YA+6)
Fo(ty = &80 . (“1”'3), a=1,...,D. (3.544b)
(X6t \yh+6

It is not difficult to understand that formulas (3.5.43) and (3.5.44) describe
the most general transformations conserving the rationality of functions
z9()) and z%()) and the orders of their double poles. Therefore, they
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conserve not only the form of the Mps equation

{_:TZ-;-EO( } {Zx ()\)ea} ), (3.5.45)

but also the general form of its solutions

F(A) = exp { / F() di} ﬁ(i —&) (3.5.46)

complemented by spectral conditions

Z

+F(£,)_ , 1i=1,....M (3.547)
and

o n
P+ FPP(X EF (4) - (5' =303 - EE“(/\ (3.5.48)

Here we have taken

Q’Et + ﬂ
= 3.5.49
“= vEi + 6 ( )
and also
Foy= UMy ad=fy p(ad+f) (3.5.50)
7,\+6 (yA + 8)? YA+ 6

We see that transformation properties of functions F(A) depend on a
concrete choice of values of the non-negative integer parameter M. This is
a trivial consequence of the fact that both the parameter M and functions
F()) determine the form of solutions of equation (3.5.1), and this form,
obviously, is not invariant under transformations (3.5.43)-(3.5.44).

In conclusion, note that linear-fractional transformations (3.5.43)-
(3.5.44) are determined by three independent parameters and describe
certain representation of the SL(2) group. This makes us able to assert
that the most general equivalence transformations for algebraically solvable
differential MPs equations discussed in this section form the SL(2) group,
provided that the type of the corresponding simple diagram is fixed.
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3.6 Reduction to exactly solvable models

In the preceding section we have constructed the class of one-dimensional
second-order differential Mps equations (3.5.32) having infinite and discrete
sets of algebraic solutions (3.5.33). However, we have not discussed the
question of whether or not these equations are physically meaningful. In
this section we will attempt to remedy this deficiency and list the cases when
a physical interpretation of constructed MPs equations becomes possible.

First of all, let us rewrite formulas (3.5.32)-(3.5.35) in a more
convenient form. Consider for example the simplest solution of equation
(3.5.32), arising when M = 0:

po(A) = exp {/FO(A) dA} : (3.6.1)

Here Fy(A) is a rational function, satisfying the system (3.5.34)-(3.5.35),
which, due to the absence of the numbers &;, is reduced to the single Riccati
equation

D
Fy(0) + FE(X) = 2°00) = Y 2%(Meva. (3.6.2)
a=1

This equation can always be interpreted as a system of 2D + 1 algebraic
equations for D unknown spectral parameters €go, a =1,...,D and D +1
unknown parameters characterizing the function Fo(A).

Now note that the function z°(}), entering into equation (3.6.2) and
belonging by assumption to a (2D + 1)-dimensional space of rational
functions, is also characterized by 2D + 1 numerical parameters which are
assumed to be fixed for a given MPs equation. The fact that the number of
these parameters and the number of equations forming the system (3.6.2)
coincide allows us to invert this system and interpret it as an equation
for z°(A). In this case, instead of fixing the function z°(A) and solving
(3.6.2) for F4(A) and egq, we can fix the function Fg()A) and the numbers
€0o and then recover from (3.6.2) the function z°()) for which Fy(A) and
€pa are solutions. In other words, instead of 2D + 1 independent external
parameters characterizing the function z%()), we can introduce 2D + 1 new
independent parameters, characterizing the simplest solution of equation
(3.5.32). Substituting z°A) obtained from (3.6.2) into (3.5.32), we come
to the following form of this equation:

D
{6§2+F0(A + RO = 3O —eOa)}so(A)zo, (3.6.32)
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or, equivalently,

D
= {ZZ‘G(A)(EQ —500()}4P(A). (363b)

According to (3.6.1), the simplest solution of (3.6.3) is

It

wo(A) exp {/FO(/\) d/\}, (3.6.4a)
€a = €0a, a=1,...,D, (3.6.4b)

and other solutions must be sought in the form

M

(X)) = H(A —&i)exp {/F(A) d/\}, (3.6.5a)
Eq = 5:](, +é€q, a=1,...,D, (3.6.5b)

where M =1,2,3,.... The numbers ¢4, a=1,...,Dand §,1=1,... .M
and functions F'(A) entering into (3.6.5) can be found from the system

M 1 o
,;&—&+F(&)_O’ i=1,...,M, (3.6.6)
M
F'(A) + F2(A) + 2 Z F(’\; :g(&)
> i=1
+ > 2%(N)ea = F3(A) + FR(N), (3.6.7)
a=1

if the functions Fy(A) and z%(A), @ = 1,...,D are given.

Thus, we have reduced the algebraically solvable MPs equation (3.5.32)
to the form (3.6.3) when at least one of its solutions, namely (3.6.4), is
explicitly known. In fact, it plays the role of an external parameter in this
equation and can be chosen arbitrarily.

We call the D-parameter spectral equation (3.6.3) physically sensible
if one can choose D different Hilbert spaces Wy, ..., Wp in such a way that
all conditions of theorem 3.1 for both the equations (3.6.3) and its simplest
solution (3.6.4) are satisfied.
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Applying to the physically sensible MPs equation the inverse method of
separation of variables described in sections 3.2 and 3.3, we obtain a class
of completely integrable and stable quantum mechanical models having at
least one bound state for which the spectral problem can be solved exactly.

To classify such models, it is sufficient to solve the classification
problem for the physically sensible MPs equations of the type (3.6.3). In
turn, the problem is reduced to constructing the systems of Hilbert spaces
W =1,...,Wp satisfying the conditions of theorem 3.1.

A very important condition, which must be satisfied, is the condition
of the hermiticity of operators

X0 = {FO(A) + %} {FO(A) - a%} (3.6.8)

and
X* = z°()), a=1,...,D (3.6.9)

in all spaces W,..., Wp. To guarantee their hermiticity it is necessary to
require that the functions Fy(A) and £*(A), @ = 1,...,D are real. For this
to happen, the points a,, @ = 1,..., K, in which they have poles, must
lie on the real A-axis or form complex conjugate pairs. The real points
a, divide the real axis into a set of intervals which we shall refer to as
fundamental intervals and which can be finite, semi-finite or infinite. The
number of fundamental intervals is K’ + 1 where K’ is the number of real

points ag,.
Let us now assume that K'+1 > D and consider the set of D arbitrarily
chosen fundamental intervals [)\;, /\ﬂ , 1 =1,...,D, which we call the

physical intervals.

We know that the functions Fy()) and z%(}), ¢ = 1,...,D are
regular within the physical intervals, and singular at their ends A;t =
ai,...,agr,00. Their behaviour near the points /\ii is seen from the
following formulas

¥ (A—a)™™, A—a, k=1, K
z%(\) ~

a)2n
zI AT A — 00,

(3.6.10)

and

Fokng(A—ap)™™, X—ag, k=1,... K
Fo(d) ~ o \ (3.6.11)
0o,n 3 — O,

Now let us denote by
Wi =W [A\7,AF], i=1,...,D (3.6.12)

LI |
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1
vanishing at their ends more rapidly than () — ak)""‘é if /\ft = a; and

more rapidly than A="~3 if )\f‘ = co. Introducing the scalar products

the spaces of functions being regular within the intervals [A7,A}] and

)\+
(e = [ () dh, i=1,.,D (3.6.13)
AT

in W;, one can easily see that for any ¢, 3 € W; the integrals

At
o1, X% = [0 {Fo) + 5} { A0 - 7 b ) 0
%
(3.6.14)
and
ar

(1, X%p2)i = /301(/\)1“(/\%02()\) dA, a=1,...,D (3.6.15)

A_

exist and, therefore, the operators X° and X are hermitian in W;. But
this means that we can identify the spaces Wy,..., Wp with the Hilbert
spaces appearing in equation (3.3.5). In this case condition 2 of theorem
3.1 will be satisfied automatically.

The other conditions of this theorem can also be satisfied without
difficulty. Indeed, the positive definiteness of the operator X° follows
immediately from its representation (3.6.8). The linear independence of
D functions £*()) can always be guaranteed since the space Ry, (Zaﬁ), to
which they belong, is (2D + 1) dimensional. Besides, we can always choose
the functions z%(A) in such a way as to gurantee the invertibility of the
matrix {[z%(A)|}i e=1,..,p With A; € [)\:,A?’] and ensure the existence of
positive-definite rows {or their linear combinations) in the inverse matrix
2", -

To satisfy the last condition of theorem 3.1 we must elucidate when
the function (3.6.4) satisfying equation (3.6.3) belongs simultaneously to all
the spaces W1,...,Wp. To this end it is sufficient to look at the behaviour
of this function near the points /\f.

Using formulas (3.6.11) and (3.6.4) we obtain

exp{%:f"l‘“(/\—ak)l'"*}, ng > 1, A — ag,
wo(A) ~ (3.6.16a)
(,\_ak)Fc”‘)"k’ nk:1) A—*ak,
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for finite end points, and

exp %%/\"“}, n>—1, A — oo,
00(A) ~ (3.6.16b)
Ao n=-1, - oo,

for infinite end points. From these asymptotic formulas it follows that for
the function ¢g(A) to belong to the spaces W;, i = 1,...,D, the numbers
Fot 5, and Fy , determining its behaviour near the points A:.h, i=1,...,D
must satisfy the following constraints:

Fogn, >0, A =arandng>1
{ Fokn, > %, if A7 =a and ng = 1 (3.6.172)
Fogn, <0, if A?’ = a; and n; > 1is even
Fokn, >0, if /\,-+ = a; and n; > 11s odd (3.6.17b)
Fogny > %, if /\,'-F =a; and ny =1

Fon >0, ifA] =—oco0andn>—11iseven
Fon <0, ifA] =—coandn>-—-lisodd (3.6.17c)
FO,n<%, A =—-occandn=-1

1 + = —
{ Fon<0, ifAf=+occandn>-1 (3.617d)

Fon < %, if )\j' =+4+oc0o and n = —1.

We call a system of physical intervals [A;7,A}],i=1,...,D, for which
all the conditions (3.6.17) can be simultaneously satisfied, an admissible
system.

To lhist all such systems let us at first consider the case of two
neighbouring intervals [A;7, A}] and [A7;, Af},] having a common finite
end point a;. We see that aj is the right end point (ax = A]) for the left
interval and, simultaneously, it is the left end point {a; = )‘i—-f-l) for the
right interval. Using formulas (3.6.17a) and (3.6.17b) it is not difficult to
understand that for even values of n; these formulas contradict each other,

Fogpn, >0, Fogn, <0, (3.6.18)

which leads us to the following exclusion principle.
(i) Two admissible physical intervals cannot have a common finite end
point ag if the corresponding number ny is even.

Analogously, we can consider the case of two semi-infinite physical intervals
(or a single infinite physical interval) having end points at plus or minus
infinity. Using formulas (3.6.17¢) and (3.6.17d), it is easy to see that for
even values of N they also contradict each other:

Fon>0, Fon<O0. (3.6.19)
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This gives us two new exclusion principles:

(ii) The existence of two admissible semi-infinite physical intervals is
impossible when the number n is even.

(iii) The existence of a single admissible infinite interval is impossible if the
number 7 is even.

Taking into account these exclusion principles, we can list all admissible
systems of physical intervals. Quite obviously, any such system will describe
a certain class of algebraically solvable MPs equations (3.6.3) and their
simplest solutions (3.6.4) satisfying all conditions of theorem 3.1.

The above description makes us able to solve the classification problem
for physically sensible Mps equations. For this purpose 1t is convenient
to use the graphical method described in the preceeding section. We
consider here an extended version of this method. Namely, starting with
“simple diagrams” determining the “double-pole structure” of functions
¢%(A), « =1,...,D we supplement them by admissible systems of physical
intervals, which we depict by thick lines between the real double poles. We
call such extended diagrams physical diagrams.

We define two physical diagrams as equivalent if they can be
obtained from each other by means of reflections or arbitrary continuous
deformations conserving the relative desposition of real double poles and
physical intervals. Note that, according to this definition, all the diagrams
connected by the linear-fractional transfomations of the (real) SL(2) group
are equivalent. Note also that the SL(2) transformations do not change
conditions (3.6.17).

Below we write down all admissible non-equivalent physical diagrams
obtained by taking into account the exclusion principles 1, 2 and 3. We start
with the simplest particular cases when the number of spectral parameters
is 1 or 2.

D = 1. In this case the function z%(}A), @ = 1 has double poles of total
order three. The number of stable intervals is unity. This gives us four
non-equivalent diagrams depicted in figure 3.6.

D = 2. In this case the function z%(A), « = 1,2 must have double
poles of total order four. The number of physical intervals is two. Using
the exclusion principles, we come again to four non-equivalent diagrams
depicted in figure 3.7.

D > 3. It is not difficult to see that in the general case the function z%(A),
o = 1,...,D will have double poles of total order D + 2. The number
of physical intervals becomes D. Therefore, we shall have again only four
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o0 o0 e} ee}
O o
a1©a2 ‘ C)
ay
A) B) C) D)

Figure 3.6. Non-equivalent physical diagrams for the one-dimensional case.

00 o) o0 00
o}
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o
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A) B) c) D)
Figure 3.7. Non-equivalent physical diagrams for the two-dimensional case.

admissible types of non-equivalent physical diagram for any given D (see
figure 3.8).

The diagrams depicted in figure 3.8 describe the following systems of
physical intervals:

A) N € ai,aiq), i=1,...,D (3.6.20a)
B) A € [—o0,a];

N o€ [aap), i=2...,D; (3.6.20b)
C) A € [aiaip1], 1=1,...,D-1;

Ap € [ap,0); (3.6.20¢)
D) A € [~o0,a3);

Xi € ai,aip], t=2,...,D—1;

Ap € [ap, o). (3.6.20d)
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o) 00
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A) B)
)
ay \av
az>. .-()G’D——l
<) D)
Figure 3.8. Non-equivalent physical diagrams for the general
(multi-dimensional) case.
The functions £*(A), o = 1,...,D corresponding to these diagrams have
the form
25(A
A) z%()) = ——DTQf—Q(—l—- (3.6.21a)
k=1 (/\ - ak)2
(A
B) z%(}) = —3 Qip(4) ., (3.6.21b)
[lk=2(A = ai)? - (A — a)*(A — a*)?
2s(A
C) z%()) = —-DQZ—’*)— (3.6.21c)
I-Ikzl(A - ak)2
25(A
D) z()) = —p2) (3.6.21d)
I_Ik=2(A - ak)2
where Q9p(A), a = 1,...,D are arbitrary linearly independent poiynomials

of order 2D chosen such that they guarantee the invertibility of the matrix
1Q3p(Ai)lli,a=1,.,p and the existence of positive-definite rows (or their
linear combinations) in the inverse matrix {|Q5,(Ai)|li oy . p for any A;

belonging to the physical intervals (3.6.20). The corresponding functions
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Fy(A) are described by the formulas

D+1 F
A) F()) = % (3.6.22a)
k=1 A= Ok
2R F, F,
B) Fo(}) = Ok 0 0 6.
) Fo(}) ;/\_ak+/\~a+A —.  (3.6:22b)
LA
0
C) F(}) = ; et Fopi, (3.6.22¢)
LA .
D) Fo(\) = ® 4+ R 6.
) Fo()) }; T ot Fort Aoy, (3.6.22d)
which must be supplemented by the conditions
1
A) Fye > 5 o= 1,...,D+1, (3.6.23a)
1 1
B) Fu > 3 o= 2,...,D;, k< 3 (3.6.23b)
1
C) For > 5, a=1,...,D; F0,13+1 <0, (3623C)
1
D) For > 5, a=2,...,D; FO"D.*_I <0, (3623d)
in which
D
Fo=) For+Fo+F5. (3.6.24)
k=2

The diagrams given in figure 3.8 and formulas (3.6.20)-(3.6.23) give
us the final solution of the classification problem for physically sensible
MPS equations of the type (3.6.3). Remember that all these equations can
be considered as starting points in constructing completely integrable and
stable quantum mechanical models having at least one explicit solution of
the spectral problem. Thus, we have given a classification of such models.

Now let us discuss the spectral properties of the resulting completely
integrable models in more detail. First of all note that the explicit solution
in question, whose normalizability is guaranteed by conditions (3.6.23),
is simply the ground state solution. This follows immediately from the
fact that the function (3.6.1) from which it is constructed has no zeros
within the physical intervals forming the domain in D-dimensional space (a
parallelogram) in which the resulting Schrédinger problem is formulated.
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In order to elucidate whether the models under consideration have
other explicit and normalizable solutions, it is necessary to return to the
initial MPs equations and study their spectral properties in the space
W=Wn...nWp.

We denote by Sy the set of all solutions of equation (3.6.3) in W, and
by Sg the set of all its exact (algebraic) solutions described by formulas
(3.6.4)—(3.6.7). Consider three possible cases:

1. The set Sw has no intersection with Sg (see figure 3.9).
2. The set Sw has partial intersection with Sg (see figure 3.10).
3. The set Sy belongs to the set Sy (see figure 3.11).

Figure 3.9. Exactly non-solvable equations.

SW;éSWnS@;é(b

Figure 3.10. Quasi-exactly solvable equations.

In the first case the physical solutions of equation (3.6.3) are unknown.
We shall call such MPs equations exactly non-solvable (in W). In the second
case we know a certain number of physical sclutions, but not all solutions.
We call such MPs equations quasi-exactly solvable (in W). In the third
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Figure 3.11. Exactly solvable equations.

case all physical solutions are known. We call such MPs equations exactly
solvable (in W).

‘We can omit consideration of the first case, since we know that equation
(3.6.3) has at least one solution in W, so that the set Sy has non-empty
intersection with Sg. Thus, our aim is to ascertain which of the remaining
two cases is realized.

To answer this question, let us try to construct the most general form
of functions belonging to the space W and satisfying equation (3.6.3). This
can be done as follows.

First of all, note that (3.6.3) is a second-order linear differential
equation and, therefore, the most general form of its solutions is

e(A) ~ (cosB@)p1(Aer,...,ep)
+ (sin@)pa(A;e1,...,€p), (3.6.25)

where 1 and @9 are two linearly independent partial solutions and # is an
arbitrary parameter.

Let us now consider a certain concrete physically sensible MPs equation,
assuming for definiteness that it is specified by the diagram A (see figure
3.8).

Equation (3.6.3) has in this case D + 2 singularities located at the
points aj,...,aps1 and co. Therefore, the solution (3.6.25) must also be
singular at the same points. The character of these singularities can easily
be derived from equation (3.6.3). Using formulas (3.6.21) and (3.6.22) we
obtain

p(A) = fEbier,...ep)(h— @)
+ fi(M8er, . ep)(A—ar)T, X o ay, (3.6.26)
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fork=1,...,D+1, and

e(N) = Ft(Nben,...ep)A T
+ (M0, ... ep)AFT ) A= o0, (3.6.27)
where f,?(/\;ﬁ,el,...,sp) and f*(X;0,e1,...,ep) are certain functions

that are regular at the points a; and oo, and Fki and F* are constants
determined by the formulas

D
1
+ a
Ff =5+ (Fox— 2 _ a};lxk(e,, — €0a) (3.6.28)
and
1 D+1 D

+ _ 2 _ iyz _ a

F* =+ (kz_; For 2)2. ;x (a = €0a)- (3.6.29)

Here we have denoted by z§f and z the “double-pole residues” of functions
z*(A) at the points a; and oco:
¥ = lim (A —a;)%z%(}), z%= lim A%z%()). (3.6.30)
A—ag A—00
From expressions (3.6.26) and (3.6.28), and conditions (3.6.23), it follows
that for the functions ¢(A) to be elements of the space W, all the terms in
(3.6.26) proportional to the leading singularities (A — ax)f* must vanish.

This gives us a system of D + 1 numerical equations for D + 1 unknown
quantities § and €y,...,¢ep:

Fl(ag;0,€1,...,6p) =0, k=1,...,D+1. (3.6.31)

Solving this system and substituting the obtained values of § and €;,...,ep
into (3.6.25), we obtain a set of functions ¢(A) satisfying the equation
(3.6.3) and belonging to the space W by construction. Due to the absence
of the leading singularities (A — ax)** in ¢()), the most general form of
these solutions is

D+1

o) = TTO = ae)™ 7, (3.6:32)

k=1

where f(A) is a certain function behaving at infinity as a power function and
being regular at all other points. But this means that f(}) is a polynomial.
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Representing f(A) in the form

M
=[Ix - &) (3.6.33)
i=1

and using the identity

D41 D4l gy
F,

Tt —ond [ [0

k=1 = A= %k

we can rewrite (3.6.32) as

©(A) = exp {/ (A) d,\} ]:[ (A—¢&) (3.6.35)

where F'(A) is a certain rational function having simple poles at the points
ai,...,apy1 and oo. But this is simply the correct ansatz (3.6.5) for
the equations (3.6.3) described by the diagram A! Other Mps equations
described by the diagrams B, C and D can be considered analogously.

We have obtained a remarkable result: functions p(A) belonging to
the space W and satisfying the physically sensible MPs equation have the
form (3.6.35) and therefore, can be found algebraically. But this means
that the set Sw defined above belongs to the set Sp and thus, according
to our definition, we deal with exactly solvable MPs equations. Hence, we
can formulate the following important theorem.

d/\} (3.6.34)

Theorem 3.4. All physically sensible MPs equations (3.6.3) described by
diagrams listed in figure 3.8 and formulas (3.6.20)-(3.6.23) are ezactly
solvable in the corresponding spaces W = Wi N ...NWp. Therefore, all
completely integrable and stable quantum mechanical models obtained from
(3.6.3), by means of the inverse method of separation of variables, are also
ezactly solvable in the standard sense of this word.

This is the main result of this chapter, completing the procedure of
constructing and classifying exactly solvable models of quantum mechanics
obtained by means of the inverse procedure of separation of variables.

In conclusion of this section, we note that the fact that the models
constructed in such a way are exactly solvable does not necessarily mean
that the number of their exact solutions is infinite. In fact, the term
“exact solvability” only means that all bound states in the model (i.e.
states described by the normalizable wavefunctions) can be found exactly
by means of an algebraic procedure. However, we know that the number of
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such states may be finite if the potential describing the model has the form
of a well of finite depth. In terms of the initial MPs equation (3.6.3) this
means that the number of its physically sensible solutions (3.6.5) is finite.

Note that conditions for solutions (3.6.5) to be physically sensible (to
belong to the space W) can be expressed in terms of functions F(X). The
latter evidently have the same functional structure as the functions F(®)())
and thus can be sought in the form

]
¥

1

F
A) F(Y) = Py (3.6.362)
k=1
FQ) = o~ F F* b
B) F()) = ’;A—ak+/\—a+/\—a*’ (3.6.36b)
D P
C) F(») = Zx\—ak + Fpya, (3.6.36¢)
k=1
D F,
D) F()) = }:A_ak +Fy 4+ AFpyy. (3.6.36d)

x
i
[\

Substituting these formulas into (3.6.5) and recalling the definition of the

spaces Wy, ..., Wp, we find the needed conditions
A) Fr > %, a=1...,D+1, (3.6.37a)
B) Fk>:‘21-, a=2,...,D; F< %, (3.6.37Db)
C) Fy > %, a=1,...,D; Fpy <0, (3.6.37¢)
D) Fr > %, a=2,...,D; Fpy1 <0, (3.6.37d)
with
D
F=Y F+F+F +M, (3.6.38)
k=2

which allow us to formulate the following theorem.

Theorem 3.5. The total number of bound states in ezactly solvable models
connected with the physically sensible Mps equation (3.6.3) is equal to
the total number of solutions of the system (3.6.6)-(3.6.7) satisfying the
conditions (3.6.37).
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Unfortunately, in the general case we do not know any more explicit
criterion which would allow us to compute this number before solving the
spectral equations (3.6.6)—(3.6.7). However, there exists one special case
when such a criterion can be given.

To show how this case arises, let us consider in detail the system
(3.6.6)—(3.6.7).

First of all, let us look at equation (3.6.7). Remember that the
functions z%(A), @ = 1,...,D entering are elements of a (2D + 1)-
dimensional space of rational functions Ra, (;ﬂ) Therefore, equation
(3.6.7) is equivalent to a system of 2D + 1 algebraic equations. In general,
this system is rather complicated and its analysis is far from being trivial.
However, the situation changes if the functions z*(A), « = 1,...,D belong
to a D-dimensional subspace R, _ 1( ) of the space R2n( 1)

Indeed, in this case the last (fourth) term in the left- hand side of (3.6.7)
is an element of the space Rn_l(g). This enables us to rewrite equation
(3.6.7) in the form

F'(A) + FX(A) — Fi(A) — F2(A) € Rn_1 (;) (3.6.39)

It is absolutely obvious that this condition can be satisfied only if the
functions F(A) and Fy(A) coincide:

F(X) = Fy(A). (3.6.40)

This means that we have partially solved system (3.6.6)-(3.6.7), since a
solution for F(A) is already known.

Substitution of (3.6.40) into the remaining equations of this system
gives

M
Fo(&)=0, i=1,...,.M 3.6.41
Z:l& + Fo(&) = g ( )
and
M Fo(A) = Fol&) =
22} oA A E,O :;x (Mea- (3.6.42)

The second equation (3.6.42) for ¢,, @ = 1,...,D can easily be solved if we
fix D arbitrary numbers Ag, 8 = 1,...,D and substitute them into (3.6.42)
in place of A. Then, we obtain a system of D algebraic equations

D
Y 2% (Ap)e _QZF" ’\fﬁ_g"é’), B=1,...,D, (3.6.43)

a=1 1=l
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for D unknown quantities €,, which has the following simple solution:

D M
=2 [®Ap)II™ D] FL(’X‘%EE&(Q a=1,...,D. (3.6.44)
=1 i=1 $

Thus, we see that, in order to construct the solution of a D-parameter
spectral equation (3.6.3) when the functions z%(A), & = 1,...,D forming
this equation belong to the space R,.._l(zaﬁ) , 1t is sufficient to solve only one
non-trivial system of algebraic equations (3.7.3) for the numbers £y, ..., &p,
and then, substituting the obtained values of £;,...,€y into the explicit
expressions (3.6.44), find the corresponding values of spectral parameters
€1,---,6p. According to statement 3.11, equation (3.6.3) has in this case

%{%{l solutions of the form (3.6.5) for any given M.

In order to find the total number of solutions of equation (3.6.3)
satisfying conditions (3.6.37), we must replace the coeflicients of the
functions F'(A) entering into (3.6.37) by the coefficients of the function
Fy(A). Then conditions (3.6.37a), (3.6.37c) and (3.6.37d) take the form
of the analogous conditions (3.6.23a), (3.6.23¢c) and (3.6.23d), which are
assumed to be satisfied. However, this means that equation (3.6.3) has an
infinite number of physically sensible solutions and, therefore, the exactly
solvable and completely integrable quantum models associated with it have
also infinite and discrete spectra. One can say that they describe the
quantum motion in potential wells of an infinite depth. Another situation
arises if we make such a replacement in condition (3.6.37b). It is not difficult
to verify that after this it takes the form

D
1 1
For > -, k=1,...,D; E Fo +F0+F(; +M< -2- (3645)

2 k=2

We see that (3.6.45) does not coincide with the analogous condition
(3.6.23b): the number M enters explicitly into (3.6.45), and it is quite
obvious that for sufficiently large M the condition (3.6.45) will be violated.
This means that in this case equation (3.6.3) has a finite number of
physically sensible solutions only, and thus, the quantum mechanical models
associated with it have finite spectra. This is a typical situation for wells
of finite depth. The number of bound states in these wells can easily be
obtained from (3.6.45) and the results of statement 3.11. It is

Mmax
(M +D-1)!
Nt = ICE (3.6.46)
M=0
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where

D
Mmax = integer part of (% — ZFOk — Fy — FJ) . (3.6.47)
k=2

Concrete examples of exactly solvable models with finite and infinite spectra
will be considered in detail in sections 3.7 and 3.8.

3.7 The one-dimensional case. Classification

In the preceding section we have described the classes of D-parameter
algebraically solvable spectral equations which, after applying the inverse
method of separation of variables, can be reduced to D-dimensional exactly
solvable models of quantum mechanics.

The simplest case of this reduction procedure is realized when D = 1.
Then the initial MPS equations take the form of ordinary one-parameter
spectral equations and the resulting exactly solvable models become one
dimensional.

Below we consider this case in detail and show that in spite of its
comparative simplicity it is rather interesting and leads to wide classes of
one-particle problems with exactly calculable spectra.

We start with equation (3.6.3) which, for D = 1, takes an especially
simple form:

2
{“56:\_2 + Fo(d) + Fg(’\)} p() = (B — Eo)p(Me(V).  (3.7.1)

Here p(A) and Fy(A) are given rational functions belonging to the spaces
Rop, (2&ﬁ.) and R, (;) of dimensions three and two, respectively, and Fy is
a given number. According to formulas (3.6.4)-(3.6.7), solutions of this

equation can be represented as

M

p(A) = exp {/F()\) d)\} (A=&), (3.7.2a)
i=1
E = Eo+¢ (3.7.2b)
where the numbers &, i = 1,..., M and ¢, as well as the functions F(X)

i
belonging to the space R, (g), can be found from the following system of
equations:

M

Z/E._lgk“*FO(&):O, i=1...,M, (3.7.3)

k=1
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M
F'(O)+F* A\ +2)

=1

F(A) - F(§)

- +ep(A) = Fo(A) + F§(A).  (3.7.4)

We define the Hilbert space W, in which the solutions of equation
(3.7.1) must be sought, as the space of functions regular in a certain physical
interval (i.e. the interval between the neighbouring singular points of
function p(A)), and vanishing at its ends in such a way that the integrability
of functions ¢?(A) with the weight p(}) is guaranteed.

The function p(A) plays the role of the weight function for the spectral
equation (3.7.1). Therefore, it must be positive in the physical interval
in which the spectral problem is formulated. As to function Fy(A), also
entering into (3.7.1), it must satisfy the appropriate conditions of the type
(3.6.23). Then reduction of (3.7.1) to Schrédinger form becomes possible.

Introducing a new variable z and a new function ¥(z) by the formulas

z = z(X), (3.7.5a)
v(z) = g(N)e(r), (3.7.5b)
and substituting them into (3.7.1) we obtain
Iz’ 2821/)(1')_ 2"(}) — gl(}‘)xl 9y(z)
o ) - e - 28] 248
+{[gm] For +F0(A)+F0(A)+p<A)Eo}w<)
= p(A)EyY(z). (3.7.6)
Requiring that
vy g8 o .
2~ 205y = 0 (3.7.7a)
and
[='(N))° = () (3.7.7b)

and solving the system (3.7.1) we obtain instead of (3.7.6) the Schrédinger
equation

82
{~35 + V@) | vlo) = Bt (378)

with potential
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+FH(A) + FOZ(,\)} (3.7.9)

A=A(z)

and solutions

M
bz) = :/p(A)exp{ / FO dA}H A6 ey (37102
E = Ey + ¢, ) (3.7.10b)

in which A = A(z) is a function determined from the equation

A(z)
- / NZDES (3.7.11)
Ao

Here Ag is a number belonging to a chosen physical interval.

The concrete form of the Schrodinger equation (3.7.8) depends on the
concrete choice of the functions p(A) and Fp(A) and the physical interval.
According to the results of the preceding section, there are four non-
equivalent possibilities for such a choice:

po(A = p1)(A = p2)

A) P = TR0 - e

R\ = %+£‘—’%§ Melanas);  (3.7.12a)
B = B

Fo(d) = Eﬁxiw A€ [~oo,400]; (3.7.12b)
0 oy = BOls)

Fo(A) = AF‘” + Fo, A€ [a,00); (3.7.12c)
D) p(A) = po(d=p1)(A - p2),

Fo(A) = Foi+AFos, A€ [~o00,+00]. (3.7.12d)

All these possibilities can be described by diagrams listed in figure 3.6. In
order to make these diagrams more informative, we can depict on them
the points p; and p; which, obviously, must lie outside the chosen physical



222 The inverse method of separation of variables

interval (due to the condition of positivity of function p(A) in it). Depicting
these points by small crosses x or by double crosses # (in case of their
coincidence) we can list all possible cases of their positions. Of course, we
must take into account the fact that these points can merge with other
singular points of the function p(A) or move out to infinity. Then we arrive
at four series of non-equivalent extended physical diagrams depicted in
figures 3.12, 3.13, 3.14 and 3.15, each of which describes a certain exactly
solvable model of quantum mechanics.

O
1) 2) 3)
>< %Y 9,

11)

Figure 3.13. The non-equivalent extended physical diagrams. Series B.

As an example demonstrating this correspondence, let us consider the
first diagram in figure 3.12 and obtain the concrete model associated with
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©
1) 2) 3) 4)
>< X2
© ©
5)> 6)> X 7)> 8)
& O

Figure 3.14. The non-equivalent extended physical diagrams. Series C.

B
1) 2)
) O

Figure 3.15. The non-equivalent extended physical diagrams. Series D.

it.

Using SL(2) transformations which do not influence the form of the
resulting model, we can assume that the double poles depicted on this
diagram are located at +1 and —1. In this case the model is completely
characterized by the number Ey and two functions

Fo(A) = AF1‘1+/\F3+1, (3.7.13a)
py) = £ ‘Efé:{;;?f@;ﬁ’?, (3.7.13b)

in which Fo1 and p; are external (real) parameters satisfying the following
constraints:

1 1
5, Fop > 5, po>0, p1<py<—1. (3.7.14)

The role of the physical interval is played by the interval
Ae[-1,1] (8.7.15)

Fo_ >
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Substituting (3.7.13) into (3.7.9) and (3.7.10) we find an explicit
expression for the potential

. (=1 (R =3 (o= by
V)=t o<A-p1>(A—p2){ ornr Py

oy Fo -} & & 1
A-1 (A=p)2 (A=p2)2 (A=p1)(A=p2)
+1[ - ] } (3.7.16)
2{A=p1 A-p2 A=A(2)
and corresponding solutions
() = A—p)iA-p)iA+ 13- 1)+
M
x [T - &) , (3.7.17a)
i=1 A=A(z)
E = Eg+e (3.7.17b)

Evaluating the integral in (3.7.11) we obtain the following implicit
expression for A(z):
22X—p2—py

P2 —P1

r = —\/poarcch

(p2+ 1)(A = p1
(o1 4+ 1)(A = po

)

)

=00 -p)
+Vpolpr — D(p2 — 1) th\/(pz—l)()\ ) (3.7.18)

From (3.7.18) it follows that the Schrodinger problem is formulated on the
whole z-axis:

—v/po(pr + 1)(p2 + 1) arcth

z € [—00, +0d] (3.7.19)

and

.7.20
2Fp4—1)2 (37 )

2oL ity oo

(2) - E +{ pa(pr+1)(p2+1)’ ’
— L

pa(pr=1)(p2-1)"

fz — 4o0.

This means that the potential (3.7.16) has the form of a well of finite depth,
so that the quantum system corresponding to this potential may only have
a finite number of bound states.
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In order to find these states, let us consider equations (3.7.3)—(3.7.4)
for &1, ...,€m, € and

F_

FQ) =577+ Fed - (3.7.21)

and supplement them by the constraints

F_> %, Fy> %, (3.7.22)
guaranteeing the normalizability of wavefunctions (3.7.17). It is not difficult
to show that the admissible values of numbers Fy. and ¢ can be obtained
from the second equation (3.7.4). In order to reduce it to a more convenient
form, let us first simplify the third term in the left-hand side of (3.7.4).
Using (3.7.21) we obtain

o~ PN - (&)
LT

i=1
1 i Fo 1 f: Fi
/\+1i__1§,'+1 /\—11,:1{,'—1
M M
_ A F_ Fy 1 F Fy
- ’\2_1;<€i+1+5i_1>+)‘2_1;(51+1+£i—1>.
(3.7.23)
Taking into account the first equation (3.7.3) we obtain
M M
F. Fy ) |
= - =0, 3.724
;(&-H &)= X is (3.7.24)
and
M M M
F_ Fy )
——+ =) = D (Fo+F)+
§<€i+1 G-1 i=1 ik=
M(M-1
= M(F__ + F+) + —-L—Q——), (3725)
which gives
M
- ; M M~-1)+2M(F_+ F

X - & Az -1
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Substituting expressions (3.7.21), (3.7.26) and (3.7.13) into (3.7.4) and
taking in the equations obtained A — %1 and A — oo, we find three
algebraic equations for the numbers Fy and ¢,

112 1]? 1
[Fi _ 5] _ I:FO:h _ _2_] + pO(pl + 4)(.02 + 1)6 — 0’ (3727)

1]° 11?2
|:F_+F++M—§:I - [F0_+F0+-§] +p06:0. (3728)

Solving these equations for Fy — 5 and F_ 4+ F + M — 1 and chosing the
true branches of solutions by means of (3.7.22) we obtain

2
P % _ J[F% B %J _ polpr £ 1)(;02 + l)f’ (3.7.29)
(Fo = )+ (P = 5)+ (M +3)
= \/[Fo__ + FO-_,, - %] — pge. (3.7.30)

Substitution of (3.7.29) into (3.7.30) gives us immediately the equation for
the spectrum E = Eg + €

\/[F j 1]2 _polp 4 Dipa 1)

2 4
112 po(pr — 1)(p2 — 1
+\/[F0+_§] o= Den D),
1 117
+M+§: [F__+F+—§j| - po€. (3731)

Thus, we see that the solution of the spectral problem for the model
(8.7.16) includes three stages. First, we solve equation (3.7.31) and find
the spectrum E. Then, we restore the admissible values of parameters Fy
by formulas (3.7.29), and substitute them into the system

Moo F F

— + .
> + + =0, i=1,...,M. 3.7.32
AT (3.7.32)

Finally, we solve this system and construct the wavefunctions ¢(A).
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From (3.7.31) it follows that

(2Fo4 - 1)°
po(pr —1)(p2 — 1)’
(2Fo_ — 1) (2Foq + 2Fo_ — 1)?
po(pr + 1)(p2 + 1)’ 4po }

which gives an upper bound for the spectrum in model (3.7.16). The
number M of the highest level can be obtained from the other inequality

ML Fo_+Foyp —1 (8.7.34)

E<E, +min{

(3.7.33)

which also follows from (3.7.31). These formulas complete the construction
of exactly solvable models associated with diagram 1 in figure 3.12.

Other models described by the diagrams depicted in figures 3.12, 3.13,
3.14 and 3.15 can be considered analogously. For more details see section
3.8.

3.8 Reference list of elementary exactly solvable models

In this section we consider one-dimensional exactly solvable models
associated with the diagrams depicted in figures 3.12, 3.13, 3.14 and 3.15.
Since the list of these diagrams is rather long, it is reasonable to restrict
ourselves by discussing only those cases in which the resulting models and
their solutions can be expressed in terms of elementary functions. Below
we give (without explicit derivation) a complete list of all such models and
their solutions.

Series A. First of all, let us consider series A, for which

Fr Ft
Fo()\) = )‘—0 + 9

1
T Ff>Z, de[-1,+1). (3.8.1)

2

Model 1. The extended physical diagram is depicted in figure 3.186.
Weight function:

po(A + 2t1)?

p()\) = —(A—g—:-i‘)—é—', po >0, n=2734. (382)
Potential:
_ N -1 [[F -3 /-1
””‘%+mwm+gw{ww+m+um—m
2F Ff -3 :

+ Az) } (3.8.3)

A2z)—1  [Mz)+ 22 T [A2(z) - 1][M(z) + 2]
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-1 1

Figure 3.16. Diagram A7T.

Solutions:

n+1]%

M
[Ine) -&l [A(z) s
R

+_1 —E-Eq
x  [Mz)+ 1]\/[ AR (3.8.4)
Function A(z) satisfies the equation
N v L (385)
—Mz)]" =exp | — T z 8.
7
which for n = 2, 3,4 can be solved in radicals.
Spectral equations:
[ 1) Po
\/.FO S
[ 2 pon? 1
FF—=| - —=[F—-F M+ -
- 1 2
= Fg +Ff -~ 5] - polE — Exq], (3.8.6)
Moo 2+\/F_"_ _n12[b 2
Sl L
k=1 61 - &k ) +
2 _pan?
‘+\/F0+ 3l — iplE - Bl
+ &1 =0,
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Spectral inequalities:

. (n — 1)2 + 1 2
E < Ey+ mm{ niE, FF — 2 , (3.8.8)
M < Fy+Ff-1 (3.8.9)
Physical interval:
z € [—00,+0]. (3.8.10)
Asymptotic properties:
(n-1)?[ y 1]°
V(:i:oo) = Eo + Tllilpo FO - 5 . (3811)

The model describes a potential well of finite depth.

Model 2. The extended physical diagram is depicted in figure 3.17.

-1 +1
Figure 3.17. Diagram AS8.

Weight function:

Po

p(A) = m, po > 0. (3.8.12)
Potential:
Ve = me 2 {{Fo-—% (7 - 3]
- 2 _« 2 _¢
poch” 755 sh” 75
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Solutions:
,w(x) - [th \/fp_o] ﬁ [thz z 1+¢&;
e ]
VZpo
(3.8.14)
2M
E = E0+p—[2Fg—1—M]. (3.8.15)
0
Spectral equations:
VNS Fy Ff-M
4 -0 4 -0 =0, i=1,...,M. 3.8.16
kz;fi—fk L+l &-1 ( )
Spectral inequalities:
2[FF - 1)’
E < Eo+ —[—1—2—]—, (3.8.17)
Po
1
M < Ff- 3 (3.8.18)
Physical interval:
z € [0,00]. (3.8.19)
Asymptotic properties:
2 [ . 177
V(—OO) = +o00, V(+OO) = ;‘ FO — 5 . (3820)
0

This model describes a potential well of finite depth which is known
as the hyperbolic Péschel-Teller potential well.

Model 3. The extended physical diagram is depicted in figure 3.18.
Weight function:

p(A) = Tgo_,\_?’ po > 0. (3.8.21)
Potential:
1 B _ 1—sin ——’—u
v = bt s -4 5 - 3l
Po \/P_D

xr

1+ sin £
iR 4] 3 P - e -
N/

(3.8.22)
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-1 +1

Figure 3.18. Diagram A9.

Solutions:
FF-1

z
14 sin—
VPa

wor = (min =) (1)

M
X H [sm Z E,] (3.8.23)
i=1
E = Bo+%[Fy+Ff+M-1]. (3.8.24)

Spectral equations:

Fy Fj
9 b =0, i=1,...,M. (3.8.25)

M,
2 a e iteo1

Spectral inequalities:
E<oo, M< . (3.8.26)

Physical interval:
(3.8.27)

s e
ce [ v

Asymptotic properties:
w
v (i\/p—og) - (3.8.28)
This model describes a potential well of infinite depth, which is known as
the trigonometric Poschel-Teller potential well

Model 4. The extended physical diagram is depicted in figure 3.19
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-1 +1
Figure 3.19. Diagram A10.

Weight function:

p(A) = (—A%—, po > 0. (3.8.29)

Potential:
V(z) = Eg+ Pio{ [e$~(g)—_11]2

+ —eXPZ@J_lj_ - [F - 5]2}. (3.8.30)

Solutions:
s \15 2 \1VIES -]~ polB-Eo]
= o))" ()]
ud T 1+&
X 1;11{1 — exp <_ﬁ) - } (3.8.31)

Spectral equations:

Fr+M + y[F 3" - mlE- B

= [Fr +Ff -3~ po[E- Ed),

(3.8.32)

1B L3 IR -4 - poim - B
é._

& a1 &1 =0

k=1
i=1,... .M. (3.833)
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Spectral inequalities:

2
E < Eg+ [—F%i, (3.8.34)
< Ff -3 (3.8.35)
Physical interval:
z € [0, 00]. (3.8.36)
Asymptotic properties:
V(0) = oo, V(o) = +[Ff—13]. (3.8.37)

This model describes a potential well of finite depth. It is known as the
Eckart potential.

Model 5. The extended physical diagram is depicted in figure 3.20.

-1 +1

Figure 3.20. Diagram All.

Weight function:

p(A):(-AEi_"—lF, po > 0. (3.8.38)
Potential:
o) = e Al k)
e () +1]
+_ 1 1
+ [F -3l [exp(\%—o)-%l]z
—- [2F5 B¢ - 3] exp(j’f_”> 2}. (3.8.39)
on () +1
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Solutions:
v = | T ee() 1
exp(%;)le exp(;;;)+1

TR

Spectral equations:

N

4 \/[FJ—%]Z—Z—O[E—EO]+M

= Fy +Ff -1, (3.841)

S WiF -3 -2 BBy
E=1 E:“Ek €i+1

WIF -3 - (B - El

+ & 1 =0,
i=1,...,.M. (3.842)
Spectral inequalities:
. 4 . _ 2 4 2
E < Eo+mm{;);[Fo -1 ,;};[Fg‘—%] } (3.8.43)
M < Fy+Ff-1 (3.8.44)
Physical interval:
z € [~00,+00]. (3.8.45)
Asymptotic properties:
4 3 172
V(too) = - [FF 1], (3.8.46)
0

This model describes a potential well of finite depth. It also is known as
the Eckart potential.
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Series B. Now let us consider series B, for which

R R
B =15+
Fo+F;+M< %, X€[-o00,+00]. (3.847)

Model 6. The extended physical diagram is depicted in figure 3.21.
o)
9
X

Figure 3.21. Diagram B2.

Weight function:

Po
A = 0. 3.84
Potential:
2 Fll® - §
Vie) = Bo+ D3
Po
2 _z
2Re {[Fo — 3] [Fo — 4]} [sh? &= - 1]
+ 2
poch” 2=
4Tm {[Fy — 1| [Fy — 2]} sh &
R L DU SN
Po ch VPo
Solutions:
Fo-412 M
T z
= ||sh == +i sh — — ] 3.8.50
¥(=) [ VPo ] ,I;Il[ VPo ¢ ( )
E = E0~A—J-(4ReFo—l—M). (3.8.51)
Po
Spectral equations:
SV Fy Fy
+ -+ —2-=0, j=1,....,.M. 3.8.52
Efj—fk §—i &+ ( )

k=1
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Spectral inequalities:

[2Re Fo — 1]°

E < Ey+ T (3.8.53)
M < 2ReF,. (3.8.54)

Physical interval:
z € [—o0,+0]. (3.8.55)

Asymptotic properties:

1 1 1 3
V(oo) = — {2|F012 — =4 2Re {[Fo — —} [FO - —] } . (3.8.56)
Po 8 4
This model describes a potential well of finite depth.

Model 7. The extended physical diagram is depicted in figure 3.22.

Figure 3.22. Diagram B3.

Weight function:

Po
= ) 85
P(/\) ()‘2 + 1)2’ po >0 (3 8 7)
Potential:
P2 -1 1 2 11?
V(z) = Eo+t ol ~ 7 — +——Re[F0——]
Po cos? 7= po 2
z 4 11 ¢
X N————1>——~Im[F——] tg —. 3.8.58
( & Po po °Tg] ® VPo ( )
Solutions:

L-r

V]Fa- 3]+ 22 [E- Eo] 2
- o]
X ﬁ[ ] (3.8.59)

i=1
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Spectral equations:

2
2Re\/[Fo—%J +2(E-Fol+ M=2ReFy—1,  (3.860)
3
i/ 1 N %+\/[Fo—%] + 8[E — E]
& — &k & —1

ARV i R (2

& +1 !
Ji=1,...,M. (3.8.61)
Spectral inequalities:
E<oo, M<oo. (3.8.62)
Physical interval:
ze [—m%, +\/%g] . (3.8.63)
Asymptotic properties:
14 (img—) = . (3.8.64)

This model describes a potential well of infinite depth.
Series C. For series C we have

F
Fo= -7\0—1- + Foa, Fo1 >3, Fo2<0, Ae[0,00]. (3.8.65)

Model 8. The extended physical diagram is depicted in figure 3.23.
Weight function:

p(A) = po, po>0. (3.8.66)
Potential:

Fo1[Fop = 1] 2Fo.F, Fys)?
V(:L‘) - EO+ 01[ 021 ]+ 01402 +[ 02] )
z \/Poz po

(3.8.67)
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©

Ny
K

o

Figure 3.23. Diagram C5.

Solutions:
¥(z) = zFrexp ( Aj‘of}; jﬁ&) ﬁl [\/% —5.] ., (3.8.68)
E = Ey+ [F:f {1 - [Mi’}mr} . (3.8.69)
Spectral equations:
;EII&_{&+Z‘:1+—A§%%=O, i=1,...,M. (3.8.70)

Spectral inequalities:

&=
In
5
+
'5

; (3.8.71)
Po
M < oo. (3.8.72)
Physical interval:

z € [0, 00]. (3.8.73)

Asymptotic properties:

Foo)?
V(0) =00, V()= L—;!i (3.8.74)
0

This is the well known Kratzer potential.

Model 9. The extended physical diagram is depicted in figure 3.24.
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Figure 3.24. Diagram C6.

Weight function:

p(N) = g’%, po > 0. (3.8.75)
Potential:
[Fm‘“%]z 2Fp Foy ( z )
V(iz)=Ey, + + exp
(=) ° Po Po Vpo
[F02]2 ( 2z )
R R 3.8.76
Solutions:
Foi-4%
z z
z) = |exp|—= exp |Fooexp | ——
wa = | p(ﬁ&)] » | p(m)]
M
x I] [exp (7”_/;) —5,-] , (3.8.77)
i=1
M
E = ED—FO—[QFM—I——M]. (3.8.78)

Spectral equations:

iy For— M
Zf'_l_f + 015' + Fp2 = 0, i=1,..., M. (3.8.79)
k=1 SOk i
Spectral inequalities:
Fo — 3]
E < Bo+ | °1p 2 (3.8.80)
0

< Fn-1i (3.8.81)
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Physical interval:
z € [—o0,+00]. (3.8.82)
Asymptotic properties:

[For - 3]
V(—0) = Ey + ——p———, V{(o0) = co. (3.8.83)
0
This 1s the well known Morse potential.

Model 10. The extended physical diagram is depicted in figure 3.25.

Figure 3.25. Diagram C8.

Weight function:

p(}) = %", po > 0. (3.8.84)
Potential:
4[Foy — Y] [Foy - 8
V(l‘):E0+ [ 01 4;32[ 01 4]
2Fo, F, Foa)?
yHoFo | [Fol (3.8.85)
Po 4po
Solutions:

<”—2 —&) . (3.8.86)

M. (3.8.87)

&
(l

&
+




Elementary exactly solvable models

Spectral inequalities:
E<oo, M<o.
Physical interval:
z € [0, 00].
Asymptotic properties:
V(0) = 0o, V(o0)=o0.
This is a harmonic oscillator with a centrifugal barrier.
Series D. The last series D is characterized by

FQ(/\):F01+F02/\, F02<0, /\E [*—OO,-{-OO].

241

(3.8.88)

(3.8.89)

(3.8.90)

(3.8.91)

Model 11. The extended physical diagram is depicted in figure 3.26.

Weight function:

Figure 3.26. Diagram D2.

p(A) = po, po > 0.

Potential:
Fo1]> + Foa  2Fo. F, Foo)?
(m) Eo+[ 01]p+ 02 %1/2°2z+ { ;));] 22
0 Po 0
Solutions:
> M
z) = exp| F ——+ ) [ ]
1/)( ) p( 01\//36 2Po E
2M
E = Eq— —Fp.

Po

(3.8.92)

(3.8.93)

(3.8.94)

(3.8.95)
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Spectral equations:

M, _
Z + For + Fo2éi =0, i=1,..., M. (3.8.96)
==&

Spectral inequalities:

E<oo, M<oo. (3.8.97)
Physical interval:
z € [—00,+o0]. (3.8.98)
Asymptotic properties:
V{too) = co. (3.8.99)

This is the model of a simple harmonic oscillator.

3.9 The multi-dimensional case. Classification

In this section we discuss multi-dimensional exactly solvable models
connected with MPs equations (3.6.3). We know that the metric tensor,
characterizing the space in which these models are formulated, is expressed
via the functions *(X) and 6*(u), @ = 1,...,D (see formula (3.3.15)). This
expression, which is rather complicated in the general case, 1s considerably
simplified if the functions z*(A), o = 1,...,D take the form

*A) =z =), a=1,...,D, (3.9.1)

3

where z(A) is a certain rational function, the form of which will be
determined below, and c is a parameter. Then the matrix ||z*(Xi)i,a=1,..,D
becomes explicitly invertible and we find the following simple expressions
for non-zero (diagonal) components of the metric tensor (3.3.15):

D
i d) = {0 Y (=0 (g, — )

‘1<"'<"’D—a

D -1
X {:c()\,-) II /(A,- - ,\k)} : (3.9.2)
k=1

For the Schrédinger equation to be an elliptic equation, all these
components must be positive. Since (3.9.2) has the form of a fraction,
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it is sufficient to require that both the numerator and denominator are
positive for any i = 1,...,D.

First of all, note that positive definiteness of the numerator can be
ensured by choosing the signs of functions ¢®(A), @ = 1,...,D. Indeed,
consider three possible cases:

a) the number c lies to the left of any physical interval,

b) the number ¢ lies to the right of any physical interval, and

c¢) the number ¢ is contained in the system of physical intervals.

In the first case all factors A; — ¢ are positive and therefore the positive
definiteness of the numerator can be obtained by taking

sign o®(u) = (—1)°. (3.9.3a)

In the second case all factors A; — ¢ are negative, and therefore, the
corresponding condition becomes

signo®(p) = (-1)P. (3.9.3b)

In the third case, the sign of the product (Ai; —c¢)...(i,_, —¢) is indefinite
and therefore the only possibility to make the numerator positive is to take

c*(p) =0, a=,1...,D—1; signo?(u)=(-1)%. (3.9.3¢)

Now consider the positivity condition for the denominator in the
fraction (3.9.2). Quite obviously, for it to be positive the function z(X)
must have the form

A
2(\) = —D—l’i—)———, (3.9.4)
Hk:Z()‘ - ak)
where a3 < a3 < ... < ap-1 < ap are the common end points of D

physical intervals, and p()) is a certain positive function. Its form can
easily be recovered if we remember that the functions z%(A) are elements
of (2D + 1)-dimensional rational spaces Ran (2‘;) described by diagrams A,
B, C and D (see figure 3.8 in section 3.6). Then we obtain the following
expressions for p(A):

po(A = p1)(A = p2)

A) p(A) D= e 200 —apgr)?” (3.9.5a)
B) () = ”("A(’\_ ;)’;1()/\({ ;”)22) (3.9.5b)
C) o)) = Po(/\(—/\;il)a(lA)z— Pz)’ (3.9.5¢)

D) p(A) = po(A—p1)(A = p2). (3.9.5d)
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For p(}) to be positive, the points p; and p, must either lie outside the
system of physical intervals or coincide with one of the internal points a:
p1 = p2 = ax; 2 < k < D. Depicting these points by crosses we obtain
the series of extended diagrams expressing the positivity conditions for the

denominators in a most compact and visual form. These series are depicted
in figures 3.27, 3.28, 3.29 and 3.30.

Figure 3.27. Extended physical diagrams for multi-dimensional exactly solvable
models. Series A.

Note that the diagrams of series A are compatible with conditions
(3.9.3a), (3.9.3b) and (3.9.3c), the diagrams of series C with conditions
(3.9.3a) and (3.9.3c), and the diagrams of series B and D with condition
(3.9.3¢).

It is not difficult to see that the list of these diagrams completely
solves the classification problem for multi-dimensional exactly solvable
models associated with MPs equations (3.6.3). Indeed, let us assume that a
diagram belonging to this list is given. This means that function p(})
is known. Using formulas (3.9.4), (3.9.1), (3.9.2) and (3.3.10), we can
easily restore the form of functions A(X), % and g(u, ) entering into
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B . B
---------------

Figure 3.28. Extended physical diagrams for multi-dimensional exactly solvable
models. Series B.

.
''''''

Figure 3.29. Extended physical diagrams for multi-dimensional exactly solvable
models. Series C.

the expression (3.3.17) for the potential V (4, X), and determining the form
of the corresponding Schrédinger equation (3.3.18) and the curvature of the
space in which it is formulated. The remaining function z%(}), also entering
into the expression (3.3.17), can be found from equation (3.6.2) after fixing
the function Fp(A), whose general structure is completely determined by
the extended physical diagram (see formulas (3.6.5) and conditions (3.6.6)).
This completes the construction procedure. The solutions of the obtained
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Figure 3.30. Extended physical diagrams for multi-dimensional exactly solvable
models. Series D.

model can be determined by formulas (3.3.19) and equations (3.6.4)-(3.6.7).

We shall not consider here any concrete examples of models associated
with diagrams depicted in figures 3.27, 3.28, 3.29 and 3.30. Their potentials
are rather cumbersome and the fact that most of them describe quantum
motion in a curved space makes their analysis very non-trivial. True,
there is at least one exception relating to the second (most degenerate)
diagram belonging to the series D (see figure 3.30). It is not difficult to
verify that the space corresponding to this diagram is flat. Computing the
potential (3.3.17), we can see that it describes the class of multi-dimensional
spherically asymmetric harmonic oscillators with centrifugal barriers along
the coordinate axes.



Chapter 4

Classification of quasi-exactly
solvable models with separable
variables

4.1 Preliminary comments

According to the inverse method of separation of variables, the problem
of constructing D-dimensional exactly or quasi-exactly solvable models of
quantum mechanics is reduced to the problem of constructing exactly or
quasi-exactly solvable one-dimensional D-parameter spectral equations of
the form

32 D
{—5;\;+x0(/\)}so(A) = {Zza()\)ea}go()\). (4.1.1)

The cases when equations (4.1.1) become exactly solvable were discussed
in detail in section 3.6. Omitting details, one can say that they are realized
when the functions z°(A) and z%(A), a =1,...,D forming equation (4.1.1)
belong to (2D + 1)-dimensional spaces of rational functions and satisfy all
conditions of theorem 3.1. In this chapter we show that for equations (4.1.1)
to be quasi-exactly solvable, the spaces to which the functions z%()\) and
z*()), a =1,...,D belong, must be (2D + 3)-dimensional. We describe a
regular method of constructing such equations and demonstrate that they
actually lead to wide classes of quasi-exactly solvable problems of quantum
mechanics, both one dimensional and multi-dimensional.

Before formulating the basic idea of this method, let us first reduce
equation (4.1.1) to a more convenient form. For sake of generality,
assume that the weight functions z%(A), o = 1,...,D are elements of a

[2(D + K)+ 1}-dimensional space RQH(;E) and denote by Fy(A) an arbitrary

247
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function belonging to the corresponding [(D + K) + 1}-dimensional space
R, (';.) Denote also by €g;, ¢ = 1,..., Mp the numbers satisfying the system
of equations

- 1
E Eoi — &or +Fo(6) =0, i=1..., Mo (4.1.2)
k=1 ¢

It is not difficult to see that the function
D

Fo(A) = Fo(oi)
A F2())+2 - « o (4.1,
20() = Fy(A) + F2() + }j e L W, (413)
in which €9, & = 1,...,D are arbitrarily chosen real numbers, belongs to

the space Ryp, (25) Substltutmg (4.1.3) into equation (4.1.1) we can rewrite
it as

82 Fo(X) = Fol(éoi
{ 73z + FoV) + F2() +2Z o A 60‘150)}90(,\)

or, after using conditions (4.1.

F(,\)+§f 1 .9
’ i=1,\—€0i A

The form (4.1.5) of equation (4.1.1) allows us to write down its explicit
solution

Mo
o(A) = exp [ / Fo(X) d,\] H(A—go,-) (4.1.5a)
Ea = E0as a:l,...,’D.— (4.1.5b)

According to the results of the preceding chapter, other solutions of (4.1.4)
must be sought in an analogous form:

p(A) = exp [/ ]gA &), (4.1.6a)

oo+ €a, a=1,...,D. (4.1.6b)

R

€a
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Substitution of (4.1.6) into (4.1.4) leads to the system of equations for
F(A), &, i=1,....Mand €4, «=1,...,D

D

o _ , Fo(A) — Fo(bui)
O;l‘ ()\)fa - {FO( )+F0 )\)‘*'QZ_/\—&)’—*—}

|

{F (A) + F2()) +22——~;——¢;—(5’—)}, (4.1.7)

i=1

M,
Yo +FE)=0, i=1,...,M, (4.1.8)

which will be studied in detail in subsequent sections in this chapter.

Thus, we see that for any Fo(A) € Ry (f;) (dim R, (g) =D+ K+1)
and z%()) € Ran (%), @ =1,...,D (dim Ry, () = 2(D+K)+1) equation
(4.1.4) has at least one explicit solution described by formula (4.1.6). The
functions Fo(A) and z*(A), @ = 1,...,D can always be chosen in such
a way that all conditions of theorem 3.1 are satisfied and both equation
(4.1.4) and its solutions (4.1.6) are physically sensible. This means that
exact or quasi-exact solvability of equation (4.1.4) is guaranteed for any
K >0

The case when K = 0 was discussed in detail in the preceding chapter.
We demonstrated that in this case equation (4.1.4) can be interpreted only
as an exactly solvable equation, since the condition for its solution ¢(A) to
belong to the space W, N...N Wp automatically determines the functional
structure (4.1.6a) of p(A).

Now let us consider the case when K = 1. Suppose for definiteness
that all double poles of the functions z%(A) are simple and real. Then their
number is D + 3 and they all lie on the circle forming the simple diagram
depicted in figure 4.1.

D+3

D+ 2

D +1

Figure 4.1. The diagram describing D + 3 simple and real double poles.
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In order to construct the spaces Wy,...,Wp we need D physical
intervals which must be located between the D + 3 singular points on
this diagram. There exist two essentially different possibilities. The first
possibility is realized when the system of physical intervals is connected
(see figure 4.2), while the second one corresponds to the systems consisting

D+3
1 D+2

2 D+1

Figure 4.2. The diagram describing a connected system of physical intervals.

of two disconnected parts (see figure 4.3).

D43
1 D42
2 Vo1
k10 j k+2
k\k’o k+1
Figure 4.3. The diagram describing a disconnected system of physical intervals.

At first sight there i1s one more possibility, when the system of physical
intervals consists of three disconnected parts. However, diagrams of such a
sort contradict the normalization conditions (3.6.20) and cannot describe
any physically sensible model.

Let us first consider the diagram in figure 4.2. We see that the number
of singular points belonging to the system of physical intervals is here
D + 2. Therefore, in order to construct the solutions of equation (4.1.1)
belonging to the system of D Hilbert spaces Wi, ..., Wp, we must impose
D + 2 normalization conditions on the general solution of this equation,
depending on D + 1 unknown parameters: D spectral parameters ¢, and
one mixing parameter §. In the general case the system of such conditions
is overdetermined and has no solutions. However, it is always possible to
choose the functions z%(A) and z%(}), a = 1,...,D in such a way that
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they make this system degenerate and solvable. In this case, we obtain the
MPs equation (4.1.4) having a non-zero number of solutions in the space
Win...NnWp. The functional structure (4.1.6a) of these solutions can
easily be recovered if we repeat the reasonings of section 3.6, and note
that there is only one singular point lying beyond the system of physical
intervals. But this means that the problem of solving equation (4.1.4) in
WiN...NWp is purely algebraic, so that this equation is exactly solvable.

ap43 ap4i
ap42 \ ap
a .
ap4i 0/ as
a
A) B) <)

D) E) F)
Figure 4.4. Non-equivalent diagrams for quasi-exactly solvable models.

Let us now consider the diagram in figure 4.3. The situation for this
diagram differs drastically from the situation described above. Indeed, the
number of double poles belonging to the system of physical intervals is
now D + 1, and, therefore, the number of normalization conditions and
the number of unknown parameters characterizing the general solution of
equation (4.1.4) coincide. The system is well defined and has a discrete set
of solutions determining the spectrum of equation (4.1.4) in Win...NnWp.
However the functional structure of these solutions is now unknown. Now,
we cannot restore it by the help of the reasonings of section 3.6, since the
number of singular points lying outside the system of physical intervals
is two. This means that physical solutions of equations (4.1.1) cannot be
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characterized in this case by a finite number of parameters and, therefore,
the problem of finding these solutions is not an algebraic problem. A
simple analysis shows that the same is true for equations (4.1.4) associated
with other non-degenerate diagrams, in which the simple double poles lying
outside the physical intervals are complex conjugated. Moreover, this is also
true for the equations connected with degenerate diagrams arising when the
simple double poles merge or go off to infinity. For any D the number of
such (non-equivalent) diagrams is six. They are depicted in figure 4.4. The
fact that MPs equations associated with these diagrams cannot be solved
algebraically for the entire spectrum means only that the number N of
its algebraic solutions belonging to the space Wy N ... N Wp is less than
the number of all its solutions in Wi N ... N Wp. However this is simply
the definition of quasi-exactly solvable MPs equations, provided that the
number N is non-zero. From previous arguments we know that N > 1.
Hence, we can assert that any diagram in figure 4.4 describes a certain
quasi-exactly solvable D-parameter spectral equation which, after applying
the inverse method of separation of variables, is easily reduced to a class of
D-dimensional quasi-exactly solvable models of quantum mechanics.

4.2 The one-dimensional non-degenerate case

In the preceding section we demonstrated that any diagram depicted in
figure 4.4 and containing D physical intervals describes a certain class of
D-dimensional quasi-exactly solvable models of quantum mechanics. If
D = 1, these diagrams take an especially simple form (see figure 4.5).
and the quasi-exactly solvable models associated with them become one
dimensional. The Schrédinger equation for these models

2
{-6%5 V(@) ¥le) = Bl (1.2.1)

coincides essentially with equation (4.1.4) which, after introducing more
convenient notations p(A) = z!(A), €9 = €o; and € = &; — £y, can be
rewritten as

Moo 8 Ao .,
FD(A)+Z/\_&H 5 FO(/\)+Z_A—£01' ~ ey
i=1 i=1

= ep(A)p(A). (4.2.2)

The only difference is that (4.2.1) is formulated in terms of other
independent variables z and unknown functions ¢(z). The connection
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CHONG
o

Figure 4.5. Non-equivalent diagrams for one-dimensional quasi-exactly solvable
models.

between (4.2.1) and (4.2.2) is given by

/\/p()\) dA (4.2.3)
and

v(z) = Vp(A)p(d). (4.2.4)

Denoting by A(z) the inverse function (4.2.3) one can write down the
potential

) L [1[p0@)]) 1 [FOED]
V@ =t 5w { i 5o ~ 1 [5ae]

+F5(Mz2)) + FF(A(z)) +2ZF°(’\A(ZCZ g)‘i(f"")}, (4.2.5)

which, as we see, is completely characterized by the functions p(A) and
Fy(A), the numbers My and &; and the parameters &y;, ¢ = 1,..., My
satisfying the system of constraints

Z'—i-—JrFo(go,-):o, i=1,..., M. (4.2.6)
Eoi — &ox
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According to the results of the preceding section, algebraic solutions
for model (4.2.5) must be sought in the form

Az)

M
Y(z) = /p(A(z))exp / F(A) dA H[)\(z) - &, (4.2.7a)
e = eote (4.2.7b)

with M, &, ..., épm, ¢ and the functions F(A) satisfying the system of
equations

{ ‘(A + F*( /\)+2Z-—’\-;%}

i=1

- {F( )+ FZ(X +2ZF" - i‘i&')}:—cp(/\) (4.2.8)

and

ZE +F§,)_ . i=1,..., M. (4.2.9)

Now note that the functions p(A) and Fy()) are fixed only up to
conformal transformations

ab—p7)? [«
() — B(A) ( (i\ f 6'31 ( .:\ : ? ) , (4.2.10a)
Fo(A) = Fo(A) = ((17; fg));’ Fy <‘;:\\ j: ?) (4.2.10b)

which, according to the results of section 3.5, do not influence the final form
of the potential (4.2.5) and corresponding solutions (4.2.7). This means
that by using these transformations we can simplify the specific form of
functions p(A) and Fy(A). In particular, it is always possible to ensure the
following asymptotic behaviour of these functions at infinity:

p()) =~ f\’—j, A — o0, (4.2.11)
1-M
Fo(\) = —7—" A — oo. (4.2.12)

We know that for equation (4.2.1) to be quasi-exactly solvable, the function
p(A) must have double poles of total order four. The condition (4.2.11)
means that all the points at which p(A) has double poles are finite.
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In the most general case, when all the double poles are simple, p(A)
takes the form
4

(A= pa
= po H P ) (4.2.13)
and the corresponding function Fg(A) can be represented as
4 1
+ E3
Ry =y ats (4.2.14)
A —ag
a=1
where Sy, @ = 1,...,4 are certain given numbers satisfying the constraints
4
Z —(Mo +1). (4.2.15)
The unknown functions F(A) must have an analogous form
4
+
F(A) = Z '6" 2, (4.2.16)
where 84,0 = 1,...,4 are unknown numbers satisfying also a constraint of
the type (4.2.15):
4
> Ba=—(M+1). (4.2.17)
a=1

In this non-degenerate case the integral (4.2.3) can be evaluated
explicitly. Indeed, using (4.2.13) and rewriting (4.2.3) in the form

[ (52)

dA

3]
]

X
VO =)A= )X = p3)(A = pa)
dAa
\//—’5/ ‘m = P)(A = p2)(A = p3)(A = pa)
1 U( = pp)
t VR
o=t 1;1( o« = ag)
dA
X / A—ag) \/()\ p1)(A — p2)(A — p3)(h — P4)) (4.2.18)
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we see that the first term in (4.2.18) is an elliptic integral of the first type,
while the four remaining terms are expressed in terms of elliptic integrals
of the third type.

Unfortunately, in the general case, the function z(A) defined by formula
(4.2.18) is explicitly non-invertible. This means that we cannot write a
general expression for the function A(z) in a more or less closed form.
However, there are some exceptions when an explicit inversion of the
function z(A) becomes possible. All these cases will be discussed in detail
in the next sections.

Now let us discuss the spectral equations (4.2.8), (4.2.9). In order
to reduce them to a more convenient form we use another, absolutely
equivalent representation of the weight function p(A):

1 4 ﬁ[ —ag)
p(N) = — Z — =Rt R (4.2.19)
L

in which

4
po [ (aa — pg)
Ry = po, Ra=—"r——— a=1..4  (4220)
H (aa_aﬂ)z
A=1

Substituting expressions (4.2.14), (4.2.16) and (4.2.19) into the system
(4.2.8), (4.2.9) we obtain the following constraints for the parameters
Bo,a=1,...,4 M, &, t=1,...,M and e

B2, — Rae, oo =%1, a=1,...,4, (4.2.21)
4
> 0ay/ By — Rat = —(M +1), (4.2.22)
a=1
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Uz

2
4 M, 2
[Z ao (5 + Boa) + Efm'] } = Rae, (4.2.23)

a=1 i=1

My
(54 foa) + zsg,]
=1

M 4 1 2

4 1 5 T a_Ra .
) +Zz+ VA =0, i=1,...,M (4.2.24)
o o §i — Ga

The signs of the roots / ,330, — R,e are chosen such that

Re /B2, — Rae > 0. (4.2.25)

The constraints (4.2.22)—(4.2.24) determine the system of M + 2
equations for M + 1 unknown quantities ¢ and &;,...,&a. This system
is overdetermined and in general has no solutions, except the trivial one

,Ba:,BOa, a=1,...,4; M = My;
Ei - EOi) 1= 17 .. 7M0; e=0. (4226)

However, there are some special cases when the first equation (4.2.22) of
this system trivializes (becomes an identity). In this case it can be excluded
from consideration, and we arrive at a system in which the numbers of
equations and unknown quantities coincide. The number of solutions of
such systems may exceed one and we obtain quasi-exactly solvable models
of a certain finite order.

The cases when trivialization of equation (4.2.22) becomes possible
arise when:

(1) All roots in (4.2.22) do not depend on e.

(i1) Two roots in (4.2.22) depend on ¢ but cancel, while the remaining two
roots do not depend on e.

(1ii) Three roots in (4.2.22) depend on ¢ but cancel, while the fourth
remaining root does not depend on .

In the next three sections we will discuss these three cases in detail
and describe the sets of one-dimensional quasi-exactly solvable models
associated with them.
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4.3 The non-degenerate case. The first type

Let us assume that all four roots in (4.2.22) do not depend on e. This is
possible if and only if

R1 ‘—‘Rz :Rs—‘: R4:0, Ro :S, (4.3.1)

where the sign of S is chosen from the condition of positivity of the weight
function p(A). Then equation (4.2.22) is reduced to the form

B3+ 021/ B3y + 03 ﬂ§3+”4\/ Bia=—(M+1), (43.2)

and can be interpreted as an additional constraint for the free parameters
Boa, @ = 1,...,4 determining the form of potential (4.2.5). It can also
be interpreted as an equation for the signs o4, @ = 1,...,4 and M, if the
parameters Bpq, @ = 1,...,4 and M, satisfying condition (4.2.15) are given.

In any event, equation (4.3.2) is absolutely independent of the
remaining equations (4.2.23) and (4.2.24) which, after imposing the
constraints (4.3.1), take an especially simple form:

o= H[Sa (g o)+ e
Z (+aa\/a)+;&r}

_ %Hi Z( +ﬂ0a> Zso,]
- [i o G +ﬂ0a> + ifoi]z}, (4.3.3)

i=1

iy S+ oa/B
2 Oa_ o
; & +Z . =0, i=1,...,M. (4.3.4)

Here only the system (4.3.4) is non-trivial. Solving it and substituting the
obtained values of &, i = 1,..., M into (4.3.3) we find the admissible values

of e.
According to (4.3.1), the weight function p(}) is in this case

S
7 S e e A

(4.3.5)
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Substituting (4.3.5) into (4.2.5) and (4.2.7) and taking for definiteness

1 4 Mo
= §{ [Z ai +,30a> +Zf§;]
i=1

a=1

- ri Qo ( + ﬁoa) + gfo;'r}, (4.3.6)

we obtain the following simple expressions for the potential

V(z) = Z 52, - ] ]:[ W)—l——aa (4.3.7)

and the corresponding solutions

4
) = [[M=) - ad’ V"M**H z)-&),  (4.38a)
a=1

i=1

E = é{[i (1+aa\/ﬁova>+§5?}

a=1

[iaa (% + ”a\/ﬁoTa) + f:&} 2}. (4.3.8b)
a=1 i=1

!

Here

4 2 4
1 2
= 565 [(Z ) *42%] , (4.3.9)
a=1
the numbers §; satisfy system (4.3.4) and the signs 0, and M can be found
from (4.3.2) provided that the parameters fos, @ = 1,...,4 are given.
In order to obtain a concrete form of functions V(z) and ¥(z) in the
z-representation, we must choose the numbers a, and the physical interval,
establish the stability conditions and evaluate the integral

= / Jos ;{_ dA(/\ = (4.3.10)

determining the function A{z).

It is not difficult to see that there are two different (non-equivalent)
possibilities which lead to two different classes of quasi-exactly solvable
models. Below we consider these possibilities separately.
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1. The first possibility. This is realized when all four points ag,
a = 1,...,4 are real. Taking into account the conformal covariance of
the functions p(A) and Fy(A) we can take (without loss of generality)

ap=-1, ay=+1, az3=—a, aq=+a, (4.3.11)
where

a> 1. (4.3.12)

The role of physical intervals can be played in this case by the intervals
[-1,41],[1,q], [, —a], [-a, —1]. Owing to the same conformal covariance,
all these intervals are absolutely equivalent. For definiteness we choose the
first interval:

Ae[-1,1). (4.3.13)

In this case the weight function p()A) takes the form

S
PN = ey

(4.3.14)

Obviously, it is positive definite if
S>0. (4.3.15)

This case can be described by the diagram in figure 4.6 from which it is

- +o

-1 +1

Figure 4.6. The diagram for the weight function (4.3.14).

clear that the zeros of function p()A) coincide with the double poles at the
points a,.
Now integral (4.3.10) takes the form

A(z)

dA
C ﬁ/ V=39 =3

l/;p (arcsin)\(r), %) , (4.3.16)

il
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where F (¢, m) is an elliptic integral of the first type with amplitude ¢ and
modulus m. The function £(A) defined by (4.3.16) is invertible. We can

write

= (4.3.17)
—=, m=—. 3.
e "t e

The normalization conditions for the chosen interval (4.3.13) have the
form

AMz) =sn(wz,m), w=

o1 =41, op=+L1. (4.3.18)

Substituting formulas (4.3.1), (4.3.17) and (4.3.18) into (4.3.7) and
(4.3.8), and taking into account the fact that the reality of the a, implies

the reality of the Gyq:
VB = |Boal, (4.3.19)

we obtain the final expression for the potential

I m G- & G -
2 207 _ 01~ 16 02 ~ 16
Vi) = —w 2 +27(1 m){ 1+ sn{wz,m) 1-sn(wz,m)
_ ﬂg(i_ll—(i _ /334_1%5 (4320)
1+ /msn(wz,m) 1-/msn(wz,m) e

and the corresponding solutions
P(z) = [14sn(wz,m)]Pel[1 - sn(wz, m)]lkes!
x [1 4 vmsn(wz,m)]?lPel[1 — /msn(we, m)]741Podl

M
X H[sn(wz, m) — &, (4.3.21a)
=1

M
|Boz| + 1B02| + fi@%ﬂﬂ@ + Zf?]

i=1

1
E = wzm{l-}———}-
m

2
{lﬂ |- 16 I+M‘ﬂ+ié] } (4.3.21b)
02 01 T i , 3.

=1
where £1,...,£p are numbers satisfying the equation
i 1 n 1Borl + 3 " 1Boz| + 3
Zeg—g T Ert g1

+‘73|ﬁ03| +L% N o4lBoal + 3

=0, i=1,...,M (4.3.22)
€+m

£-m™3
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and the integers o3 = +1, 04 = +1 and M can be found from the equation

|Bo1| + |Bozl + 031603 + 04|Bor] = —(M + 1), (4.3.23)

provided that the numbers 5y, satisfy the condition

Bor + Boz + Boz + Boa = —(Mo + 1). (4.3.24)
The potential (4.3.20) is defined on the interval

e [Km Kl 325

w

where K (m) is a complete elliptic integral. We see that it is singular at the
points z = :t%ﬂl, and, thus, has the form of a potential well of infinite
depth (see figure 4.7). This means that the spectrum of the model (4.3.20) is

. \

{ 4 i

| |

i i

| |

1\ V() |

| |

i |

1 |

| |

1 I

| t

| } T
— K(m) 0 4 K(m)

Figure 4.7. The form of the potential (4.3.20).

infinite and discrete. At the same time, the number of algebraic solutions
in the model (4.3.20) is finite. It is equal to the number of solutions of
system (4.3.22) which, according to statement 3.11, is M + 1. Thus, we see
that model (4.3.20) is a quasi-exactly solvable model of order M + 1.

Strictly speaking the above is true only if equations (4.3.23) and
(4.3.24) are satisfied. In order to elucidate when this is possible, assame
for definiteness that

|Bos| < |Boal- (4.3.26)
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Then we have two possibilities

o3=-—1, o4=-1 (4.3.27a)
and

o3 =+1, o4=-1 (4.3.27b)

We shall distinguish between the following three cases:

(i) The expression |Bo1| + |Boz2| — |Bos| — |Boal 1s positive. Then the model
(4.3.20) has no algebraic solutions.

(i1) The expression |Bp1]+ |Bo2| — |Bos| — |Bo4| is negative and integer while
the expression |fo1| + |Boz2| + |Bos| — |Boa| is either negative and non-
integer, or positive. Then (4.3.20) is a quasi-exactly solvable model of
order

M +1 = |Bos| + | Boa| — |Bo1] — |Boal- (4.3.28)

(1ii) Both the expressions |Bo1|+|Bo2| £ |Bos|+1804| are negative and integer.
Then the potential (4.3.20) describes two quasi-exactly solvable models
of orders

M; + 1= —|Bos| + |Boal — |Bo1] — |Boz| (4.3.29a)

and

M +1 = |Boal + |Boal — |Bo1] — |Bozl- (4.3.29b)

This means that the infinite-dimensional hamiltonian matrix admits two
different block decompositions depicted in figure 4.8. In other words, we
know two different invariant subspaces for the hamiltonian of the model
(4.3.20). Solutions belonging to these subspaces are described by formulas
(4.3.21) with 03 = +1, 04y = =1 and M = M; of 03 = —1, 04 = —1
and M = M,. These solutions describe the levels with the numbers
0,1,...,M; in the first case, and the levels with the numbers 0,1,..., M,
in the second case. But since the spectra of one-dimensional quantum
models are always non-degenerate, the first M; + 1 solutions of both these
series must coincide. This is possible only if the large block in figure 4.8
has itself a block structure depicted in figure 4.9. In this case the energy
levels corresponding to the numbers 0,1,...,M; and My + 1,..., M3 are
described by two absolutely disconnected analytic functions and form two
disconnected Riemann surfaces consisting of M7 + 1 and My — M; sheets,
respectively. The energy levels belonging to these two sheets cannot be
obtained from each other by analytic continuation.
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My+1 M,+1

M, 4+1
Ma+1

Figure 4.8. Two different block decompositions for the hamiltonian in the model
(4.3.20).

Figure 4.9. The block structure of the hamiltonian in the model (4.3.20).

This concludes the discussion of the case when the points a,, o =
1,...,4, in which the function p{}A) has its poles, are real.

2. The second possibility. This is realized when two points, for example,
a; and ag, are real, while the remaining points as and as form a complex
conjugate pair.

Due to conformal covariance we can take

a; = '—1, an = +1, az = —ia, ag = +1C¥ (4330)
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with
a > 0. (4.3.31)

Now we have only two possibilities of choosing the physical interval [—1, +1]
and [+1, —1], which, obviously, are equivalent. We choose the first interval

Ae[—1,+1]. (4.3.32)

In this case the weight function can be written as

-5

p(A) = TESEIETSR (4.3.33)
This is positive definite in (4.3.32) when
S <0. (4.3.34)

The corresponding physical diagram is depicted in figure 4.10. In this case

Figure 4.10. The diagram for the weight function (4.3.33).

integral (4.3.10) takes the form

3
)

dAa
I+ a?)

A
i/
Vis] I
- \/%F arcsin (A\/;ifz) , 1+1aZ (4.3.35)
Inverting (4.3.35) we obtain
A =V1-msd(wz,m), w= %, m = ﬁ, (4.3.36)
where sd is the elliptic function defined as
sd= = =sn-nd. (4.3.37)

~ dn
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The stability condition for this diagram is again
oy =+1, o9 =+1. (4.3.38)

The choice (4.3.30) implies that Bp; and By are real while B3 and Sy4 are
complex conjugated. Thus, the signs o3 and o4 must be negative:

o3 =1, o04=-1. (4.3.39)

Substituting formulas (4.3.30), (4.3.36), (4.3.38) and (4.3.39) into
expressions (4.3.7) and (4.3.8), we obtain

Bs1 — Bea —

174 - 9w 2 16
(=) {1—{-\/1— sd (wz,m) +1—\/1—msd(wr,m)
Im §Z3)/msd(wz, m) — (Re % — 7%) } +o? 2m — 1

nd?(wz, m)

+ 9

and

Y(z) = [1+V1—msd(we, m)]Polti
x  [1— V1= msd(wz, m))Pealts
X [ndz(wx,m)]"Re\/ﬁ—g‘*‘}

X exp {—2 Im /825 arctg [Vmsd(wz, m)]}

M

X (V1 -msdwz,m) - &], (4.3.41a)

1

-
1

&
I
t\::;o:

w?(1 - 2m)

i

[|ﬁozi — [Boa| — 21—Tm1m B3 + Zei
i=1

|

ﬁ03+262]

2

}, (4.3.41b)

where the numbers &1, ..., satisfy the equations

M 1 1 7, 1
/ 1 1 _ 1
z : 15 +]ﬂ01|+2+|ﬂozl+2+2R V Bz + 5 ~0,
1 k

e
&+1 &1 €i+i/1_:nﬂ

i=1,..., M, (4.3.42)
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and M can be found from the condition

|Bo1] + 1802l — 2Re /B33 = —(M + 1), (4.3.43)
provided that

Bo1 + Boz + 2Re fog = —(Mo + 1). (4.3.44)

The potential is defined on the interval

z€ __é’_(w_m_),_*_é"(_m_) . (4.3.45)

w

It is singular at the points z = iﬁgfl and has the form depicted in
figure 4.7. Thus, its spectrum is again infinite and discrete. If conditions
(4.3.43) and (4.3.44) are satisfied, potential (4.3.40) describes a quasi-
exactly solvable model of order M + 1.

4.4 The non-degenerate case. The second type

As noted in section 4.2, the second case of trivialization of equation (4.2.22)
is realized when two roots in (4.2.22), for example, the first and second
roots, depend on e explicitly but cancel, while the third and fourth roots
do not depend on €.

This is possible when

Ro=S, Ri=Ry=R, R3=R4=0, (4.4.1)

where R and S are certain numbers, the signs of which are chosen from
the condition of positivity of the weight function p(A). The additional
conditions of cancellation of these roots have the form

Por = mPo, Boz = w2, (4.4.2)
0oy =0, 09=—0, (443)

where B is a certain number and 7, 73 and o take the values +1. If all
these conditions are satisfied, equation (4.2.22) takes the form

o3/ B2 + oar/ B2y = —(M + 1). (4.4.4)

Taking into account the conformal covariance and letting

a, =a, as=—a, (4.4.5)
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we can rewrite the remaining equations (4.2.23), (4.2.24) as

1 e 1 &
Scz{a+a3<2+0'3 503>+a4<2+04 ﬁo +;E]
- [Qam/ﬁg — Re+ a3 (% + 03\/653> + a4 <1 + 04 504> Zfz:] }
- [aﬁo(ﬁ — ) + a3 (% +[>’03> + a4 <% +504> + ;foi} } (4.4.6)

and

1
a® 4+ a?Bo(my + m2) + a3 <§ + 503) + a3 ( + 504 + me

i/ 1 z+‘7‘/ﬁ0 Re ——:7\/50 Re
-6

= §—a £1+(1
1 2 1 /32
+2-+§-U:3\a/503+ 22‘0’4(1604 =0, i=1,...,M. (4.4.7)
i —as 1T 0

From this system of M + 1 equations it is possible to find M 4 1 unknown
quantities € and &1,...,&nm-

The most general form of weight functions satisfying conditions (4.4.1)
18

1 1\’ S — 4Ra?
(%) :R<)\—a - /\+a> t OO0 T a0 — a0 —agy (Y

It is convenient to rewrite (4.4.8) in the form

B S (A = p)(A = p2)
) = a0 0 (0= a)(h = as)’

(4.4.9)

where p1 and ps are the roots of the quadratic equation

()\ — ag)()\ - (14) + <4Q§R — 1> ()\ — al)(/\ - az) = 0. (4410)

In this case the potential V() takes the form:

_ 1 (A=—a)A+a)
V) = et 50 )
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1/2 1/2 1/4
* {[(A—@”(Ha)”(x—asw

1/4 1/4
(/\—a4> A =p)? (D= p)?
1/2 1/2 1/4 1/4 1/4 1/4 \?
- Gz +/\+a+/\—a3+/\—-a4—/\—p1_/\—p2>]
x (A—a)(A+a)(d—a3)(A— as)

N (ﬁ i [Qa a —)\ag—)(aa —aq)  2a(a _/\ai)(aa — a4)]
n ( i) ag —~ a)(isj;lz(as ~ aq)
+ ( ﬁ) o4 o)es+ 0)as — o)

1 1 oo
- [a2 + a?(my 4 72) B + a3 <§ + 503) + aj <‘2' + ﬁ04> + Zféi]
.:1

1
+ [a(m — m2)Bo + as <§ + ﬁos) + a4 < + 504) me] } (4.411)
A=A(e)
and for the corresponding solutions we have
oo ~ G-t (Aze)
T ~ — 3 — Py
P1 P1 31«
X (A= az)? VIt (N — ay) 7Vt
M
x J[-€) , (4.4.12a)
i=1 A=A(z)
E = g +¢, (4.4.12b)

where the numbers ¢ and &; satisfy equations (4.4.6) and (4.4.7), and o3,
o4 and M can be found from condition (4.4.4).

As in the previous case, in order to obtain the concrete form of V{x)
and ¥(x) it is necessary to choose the numbers a, a3 and a4, the physical
interval and establish the stability conditions. Besides, we must evaluate
integral (4.2.3) determining the form of the functions A(z).

Let us consider again two non-equivalent possibilities leading to
different types of quasi-exactly solvable model.

1. The first possibility. This is realized when all points a, az and a4 are
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real. We can take (without loss of generality)
a=-1, az3=10, a4=-qc, (4.4.13)
where

a>0. (4.4.14)

At first sight, we have four possibilities in choosing the physical interval.
However, some of these possibilities are forbidden. For example, we cannot
take A € [1,~1] or A € [~a,0]. Indeed, the first choice implies the stability
condition o1 = 03 = 1 which contradicts the requirement (4.4.3). The
second choice leads to another stability condition o3 = o4 = 1 which also
cannot be satisfied since the left-hand side of (4.4.4) must be negative.
The remaining two possibilities are equivalent to the following choice of the
physical interval

Xelo,1], (4.4.15)

provided that 0 < & < 1 or 1 < @ < oo. These cases can be described by
the diagrams depicted in figure 4.11 and can be considered simultaneously.

Figure 4.11. Two non-equivalent diagrams corresponding to the weight function
(4.4.19).

The stability condition for this diagram is
oo =+1, o3=+1 (4.4.16)
Using (4.4.3) and the condition of negativity of the left-hand side of (4.4.4)

we obtain
01 = —1, 04 = -1. (4417)
The weight function p(A) is described by the formula

4R S—4R
PN = ot P AT a)

(4.4.18)
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This function is positive in the physical interval (4.4.15) when
R>0, S<A4R. (4.4.19)

Let us now list the extended diagrams associated with the function
(4.4.18) and describing different types of quasi-exactly solvable model.

In the case when 0 < « < 1 we have six non-equivalent diagrams
depicted in figures 4.12-4.17. Here we have used the notation Ry =
;(1£+v1—a?). In the case when 1 < a < co we have only two non-
equivalent diagrams depicted in figures 4.18 and 4.19.

-1 +1

Figure 4.12. Diagram 1. 0 < a <1, S =4R.

Figure 4.13. Diagram 2. 0 < a < 1,4R; < S < 4R.

-1 +1
—

o /
T+v/1-o2 0

Figure 4.14. Diagram 3. 0 < o < 1, S = 4Ry.

The integrals (4.2.3) for diagrams 2, 4, 6 and 8 are expressed via elliptic
integrals of the first and third type. The integrals for diagrams 1, 3, 5 and
7 are simpler and can be expressed in terms of inverse hyperbolic functions.
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Figure 4.15. Diagram 4. 0 < a < 1,4R_- < S < 4R,.

Figure 4.16. Diagram 5. 0 < o <1, S =4R_.

-1 +1
—
0
—
-1 +1
0

Figure 4.18. Diagram 7. 1 < o < 00, § = 4R.
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Figure 4.19. Diagram 8. 1 < @ < o0, S < 4R.

273

The integrals for diagrams 1 and 7 have the simplest form. They describe
rather interesting quasi-exactly solvable models which will be discussed

below.
Using the weight function

4R
p(A) = RESTY

and evaluating the integral (4.2.3)

:L‘—Q\/_/l /\2—2\/}—2arcth)\,

we obtain

1
i
Substituting (4.4.22) into (4.4.11) and taking for definiteness

€ = —L‘)?)

AMz) = thwe, w=

we obtain the potential

Viz) = shwe chwx (thww+a)

(1) [ned , e
* (ﬁ“ )th (ﬂ“ *> o)

2 M
o
(m1 + 79)Bo + a?Boa + 1 + 74' E 631]
i=1

X

-+

(4.4.20)

(4.4.21)

(4.4.22)

(4.4.23)
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Mo 2
~ |(ma —m1)Bo — afoa — % + ;&n] }, (4.4.24)

in which the numbers &g;, ¢ = 1,..., M satisfy the system of equations

fV_D:I W150+%+W250+%
£oi — EOk §oi + 1 Eoi — 1

+3  Boats
A

Substitution of (4.4.22) into (4.4.12) gives us the solution of the
corresponding Schrodinger equation:

w( ) 1- thwx ﬁg~R€ (th )IﬁDBH‘l
z) = |——— 2
1+ thwz weE
: M
x  (thwz +a)™ Pl +2 TT(thws — &), (4.4.26a)
=1
E = —w+e (4.4.26b)
The values of parameters ¢ and &1, ...,&u can be found from the system:

1+ —“WMI +Z§

oo

|
oA Rl -3 zsz] }
|

(w1 +m2)B0 + o ﬁo4+1+—+2501

1

- {(Wz —m1)Bo — afos — 7 + ZEOZ] }, (4.4.27)

M,

z - ﬂg—Re+%+\/ﬂ§—Re

—§k+ & +1 &—1

|Boaf + % + —|Boa| + %
&i &+ a

k=1

4 =0, i=1,..., M. (4.4.28)
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Here the number M is determined by the formula

M = |Boa] = 18asl — 1, (4.4.29)

which means that the difference |Bo4| — |Bo3| must be a natural number.
Note also that the numbers 8y, and M; entering into the formulas (4.4.24)-
(4.4.29) must satisfy the condition

(w1 + m2)B0 + Bos + Boa = —(Mo + 1). (4.4.30)

If both the conditions (4.4.29) and (4.4.30) are satisfied, the Schrédinger
equation for the potential (4.4.24) has M + 1 algebraic solutions and, thus,
describes a quasi-exactly solvable model of order M + 1.

v

V(z)
O \/

Figure 4.20. The form of the potential (4.4.24).

This model 1s defined on the semi-infinite mterval
z € [0, 00]. (4.4.31)

From the explicit expression (4.4.24) it follows that the potential V(z) is
singular at z = 0 and vanishes if £ — oo. Thus, it has the form of a
potential well of finite depth (see figure 4.20).

2. The second possibility. Let us now discuss the case when two of the
points a, are complex conjugated. Since both the potential (4.4.11) and
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the solutions (4.4.12) must be real, it is sufficient to examine two cases: 1)
when a is imaginary and az and a4 are real and 2) when a is real and ag
and a4 are complex conjugated.

In the first case the real points a3 and a4 play the role of the ends of
the physical interval. Therefore, the normalization condition implies that
03 = 04 = 1. However, this contradicts the condition of negativity of the
left-hand side of (4.4.4).

In the second case the physical interval must have its ends at the points
a and —a. Therefore the normalization condition results in oy = o9 = 1.
However, this contradicts the condition of cancellation of roots in (4.2.22).

Thus, we can conclude that the second possibility of trivialization of
equation (4.2.22) cannot be realized.

4.5 The non-degenerate case. The third type

In this section we discuss the last possibility of trivializing equation (4.2.22).
For this possibility to be realized the first three roots in (4.2.22) (depending
on €} must cancel, while the fourth root must be independent of €. The
necessary conditions for this are

Ro=S, Ri=A’R, Ry;=A%R, Rz3=R, R4=0, (4.5.1)
where A; and A, are certain positive numbers such that
A+ Ay =1 (4.5.2)
Simultaneously, we must take
Bor = A1miBo,  Boz = Aemafo,  Bos = Po, (4.5.3)
and
01 =09=0, 03=—0. (4.5.4)

Then the equation (4.2.22) becomes

oar[ By = —(M +1), (4.5.5)
which gives us immediately
oq = —1. (4.5.6)
Taking for definiteness

ay=a, ay=-—a, az3=0 (4.5.7)
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(and remembering that such a choice does not lead to loss of generality),
we obtain for the remaining equations (4.2.23) and (4.2.24):

{az(l-{-m/ﬁg—Re)—% M+ +Z€,]
— a(Al—Ag)a\/BO Re—a4 M+ +ZE{{ }

Al

[ (Bo1 = Boz) + aa ( 5o4+ +Z§o:

2(1+ Bor + Boz) + a5 (Boa + 3) + me]

}_ (4.5.8)

i/ 1 %+A10\/ﬂg—R€

+
Zig -G & a
n —+A20\/60 Re ——m/ﬂo Re
& +a
M-3
- =0, =1,..., M. 4.5.9
&~ aq ! ( )

The most general form of the weight function satisfying conditions (4.5.1)
is

A Ay 1)?
)= R(A—a+A+a_A)
S — Ra*(A; — A)?

) 4.5.10
T S0+ M- a0 (4.5.10)
It is convenient to rewrite it in the form
S (A= p1)(A = p2)(A - p3)
— 4511
PN = BT T o (X — az) (481D

where p1, pa and p3 are zeros of p(A), which can be found from the cubic
equation

</\+ AliA2> (A —ag) + [m—l (/\2—a2))\:0.
(4.5.12)
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The potential V(x) takes the form

1 (A=a)(A+a)i
S (A= p1)(A = p2)(A = p3)

V{z)

Il

€0+

1/2 1/2 1/2 1/4 1/4
§ { A—a " BHar "N TO—ar  (-p)
1/4 1/4 12 172 1/2
- (/\—pg)Z-(x\—-pg)Q——(x\—-a+)\+a+T

2
1/4 /4 1/4 1/4
A—as A—p1 A—py A-yps

X (A—a)(A+a)A(X ~aq)

RCLREES S S ADES Soe

)(a4—a)(a4+a)a4
A—aq

) a2a4

+ (ﬁg“% (ﬂo4 %

- {az+(7r1A1+ﬂ'2A2) 2By + a3 (Boa + 3 +Z€0,j|

+  fa(mAr —WzAz)ﬂo+a4 ﬂ04+ +mej| } )
2 A=X(z)
(4.5.13)
and for the corresponding solutions we have
b(z) = (=) =) 0 - ps)*
[(A —a)A (A + a)Az]”Vﬁg‘Rf
X
A
M
x (A—ag) ™M i[0 - &) (4.5.14a)
i=1 A=X(z)
and
E = g +¢ (4.5.14b)

where € and &; satisfy equations (4.5.8) and (4.5.9), and the sign o can be
found from the normalization condition. There are several ways to make

the models described by formulas (4.5.13), (4.5.14) physically sensible.
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1. The first possibility. The parameters a and a4 are real. We can take:
a1 =~1, az=+1, az3=0, a4=—q, (4.5.15)

with
a > 0. (4.5.16)

As 1n the previous case, the physical interval can be chosen in many ways.
However, the unique way which does not contradict the normalization
conditions is

refl,-1]. (4.5.17)

The corresponding diagram is depicted in figure 4.21 and the normalization

-1 +1

Figure 4.21. The diagram describing the weight function (4.5.19).
condition for this diagram is
01 =09=—03=0=1. (4.5.18)

For the function p(A) we have

A1 Az 1 ? S — R(Al _ A2)2
A) = S S S S . 4.5.1
PN R<A+1+)\—1 A) - Daga)  (A519)
This is positive in (4.5.17) if
S > R(A; — 45)%, R>0. (4.5.20)

Let us now list the extended diagrams associated with the function
(4.5.19) and describing different types of quasi-exactly solvable model.
Denote by S a positive root of the system of two equations

o~ )2 (ho + @) = [1 - S(gz] (A2 = 1)), (4.5.21a)
o= @+2a-y=[1-2T] @3- @)
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in which v = (4; — A)~ 1. (It is not difficult to verify that this system may
have only one positive root.) Then we have three inequivalent cases:

1. R(A; — 43)? < S < Sp. Then

_ S A=p)A=p)(A-p")
PN = ey At a

, (4.5.22)

where p1, p and p* are real and complex conjugated roots of the first (cubic)
equation (4.5.21a). We have

~1<p < —a. (4.5.23)

The diagram describing this case is depicted in figure 4.22.

-1 +1

Figure 4.22. Diagram 1. o > 0, R(A1 — A2)*> < § < So.

2. S=5y. Then

S A= A —p)?
P(A) = (A2 _3)2/\2 ( (p)\l?:a) p) 3

(4.5.24)

where p; and p are single and double roots of (4.5.21). We have the
inequalities

~-l<pp<—a, O0<p<l, (4.5.25)
and the diagram describing this case is depicted in figure 4.23.
3. 5> Sy. Then

- S (A= p1)(A = p2)(A — p3)
PN = ey Mt ’

(4.5.26)

where p1, p2 and ps are three different real roots of (4.5.21), such that
—l<p<—a, 0<pr#ps<l. (4.5.27)

The corresponding diagram has the form shown in figure 4.24.
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Q

Figure 4.23. Diagram 2. o > 0, S = S;.

-1 +1

Figure 4.24. Diagram 3. @ > 0, S > 5.

Note that integrals (4.2.3) for diagrams 1 and 3 are expressed in terms
of elliptic integrals, while the integral for diagram 2 is expressed in terms
of inverse hyperbolic functions. Unfortunately, the resulting solutions are
too cumbersome and therefore we shall not write down explicit expressions
for them. We only note that the potentials corresponding to all these cases
are defined on the whole z-axis

T € [—00,+o0]. (4.5.28)

They are regular at infinity and tend to constants if ¢ tends to +oo.
Therefore, they describe potential wells of finite depth (see figure 4.25).

5\ V(l' .

o )

Figure 4.25. The form of the potentials associated with diagrams 1, 2 and 3.

2. The second possibility. This can be realized when the point a is
complex while the points az and a4 are real. Without loss of generality, we
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can take
a1 =—1, ay=-+H, az=0, a4=q, (4.5.29)
with
a < 0. (4.5.30)
Choosing the physical interval as
A €[0,ql, (4.5.31)

we get the diagram depicted in figure 4.26 and the normalization conditions

e

Figure 4.26. The diagram describing the weight function (4.5.35).

03 = 04 = 1. (4532)
From (4.5.4) it also follows that
0]y =09 = —1. (4533)

Note that the condition of cancellation of the roots with the indices 1, 2
and 3 implies that the parameters 3y and R are real and

A=Ay =1 (4.5.34)
In this case the weight function p(}) takes the form

1 1 1\’ S
p(/\):R(g(,\+i)+2(/\—i)*X> +(,\2+1))\()\—0)‘

(4.5.35)

The condition of its positivity in (4.5.31) is

R>0, S5<0. (4.5.36)
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In order to classify the types of quasi-exactly solvable model associated
with function (4.5.35), let us introduce the number Sy defined as a negative
solution of the system

(A2 4+ 1D)Xo + 3{3(,\0 —a) = 0, (4.5.37a)
0
2 R
o+l = 0 (4.5.37b)
0

Then we arrive at the diagrams given as figures 4.27-4.30. The integrals

Figure 4.27. Diagram 4. o < 0, S = 0.

Figure 4.28. Diagram 5. <0, Sp < § < 0.

for diagrams 5, 6 and 7 are expressed in terms of inverse elliptic and
hyperbolic functions. The integral for diagram 4 has the simplest form.
Indeed, substituting the corresponding function

R

o0 = s (4.5.38)

into (4.2.3) we obtain

¢ = ’\/R/WA%T) = ‘/TEm <1+ :\13) . (4.5.39)
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Figure 4.29. Diagram 6. @ < 0, 5§ = Sp.

Figure 4.30. Diagram 7. o < 0, S < Sp.

This gives us the following explicit expression for the function A(z):

1 2
Mz) = T YT T (4.5.40)

Substituting (4.5.40) and (4.5.29) into (4.5.13) and (4.5.14) and taking for
definiteness

(4.541)
and
T = Wy = T, (4.5.42)

we obtain the potential

2
3 eXp we 1 w?exp wz
v — =T
(=) 16" <exp wa — 1> 3 4 (exp wz — 1) [1 — ar/exp wz ~ 1]

|

x

[
we — 1
{(ﬁg””exﬁxp e (m“> (%= 3)

Joxp wz =1
ay/exp wr — 1+ (83, — ) a<a2+1>1_a¢m

X

+ 1478 ~a? ,304+ ZEOZ
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-+

a (Boa + 3 +Z£ol} } (4.5.43)

and the corresponding solutions

1. /3 _FRe 1 —M-3
We) = (exp wa) 2V [m‘“}

1
X E [m — fz] s (4544&)
w2
E = -7 + €. (4.5.44b)
The numbers € and &3, ...,&ar can be found from the system of equations

M M 2
{\/ﬁ§~Re—a2(M+%)+Z£f— [—a(M+§)+Zfi] }
= » 1:12
= {—WﬂoJra (Boa + 3 +Z€m [ (Boa + 3 +Z€o{, },
i=1

(4.5.45)
i/ L 1-vB-Re 1- /B~ R
= G- 2(& +1) 2(& — 1)
14 /B2 - Re 1
2t 5‘3 R ~]§Wf;:o, i=1,...,M (4.5.46)

which have M + 1 different solutions provided that parameters Gy and Fo4
satisfy the following additional conditions

|Boa] = M+1, (4.5.47)
This gives us a quasi-exactly solvable model of order M + 1 defined on the
semi-1nfinite interval
1 1
r € [—-ln (1 + —2~> ,oo] . (4.5.49)
o

The potential of this model is singular at the point zq = %ln(l + %), and
tends to a constant if z — oo. Therefore, we have a singular potential well
of finite depth (see figure 4.31).
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14

Lo

Figure 4.31. The form of the potential (4.5.43).

4.6 The one-dimensional simplest degenerate case

In the preceding threc scctions we discussed quasi-exactly solvable models
connected with a non-degenerate weight function p(A) having the form
(4.2.13). This function had only simple double poles at the points a4, a =
1,...,4. Let us now consider the degenerate cases which appear when the
double poles of the function p(A) merge, and show that they also lead to
wide classes of one-dimensional quasi-exactly solvable models.

The simplest degenerate case arises when any two double poles, for
example, az and a4, merge. Due to conformal covariance we can assume
(without loss of generality) that they merge at infinity. In order to obtain
the resulting (degenerate) form of the weight function p(}) it is sufficient to
replace py by ppala? in (4.2.13) and then take the limit a3 — o0, a4 — .
This gives

(A= p)(A = p2)(A = p3)(A — pa)
p(A) = po 1(/\__(11)2()\_‘12)2

, (4.6.1)

or, equivalently,

p(A)

i
e
K
| —
—~—~
>
'»—-ﬂ
e
S
e
(3~
—_~
>
!
8
S
=+
>
!
e
B
S—
e d
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A—ay— day 1
+ 2R + R ,
fD—a)(A—a) T PO —a)(h—ay)
where Ry, ..., Rs are certain given parameters.
To obtain the degenerate form of the corresponding function Fp(A)
(defined in the non-degenerate case by (4.2.14)), we must replace the
numbers Bo3 and fos by —%(Bos — Bosa) and Bos by —52(Bos + Boa) and

then take the same limit ag — oo, a4 — co. Then we obtain

(4.6.2)

Bor+ 3%  Boats
= D (4.6.3)

Fo(A)

Substitution of (4.6.1) into (4.2.5) gives us the potentials of the
corresponding quasi-exactly solvable models. Solutions of these models
must be sought in the form (4.2.7). Here the role of the function Fas(}) is
played by

B+ 3 B2 - 4_-_%
A - ai A— a9

Fre(A) = + fs, (4.6.4)

where f1, f2 and B3 are certain unknown numbers.
The spectral equations for i, Ps,8s and also for ¢ and &;1,... &

can be obtained after substituting formulas (4.6.2)—(4.6.4) into the general
equations (4.2.8) and (4.2.9). This gives

Bo = 0ar/BE, — Rae, a=1,23, (4.6.5)

Boa(Bor + Boz + Mo + 1) — Rae

034/ ,633 - R3€

— o1\ [B — Ric—ou\ /8% — Roc = M 41, (4.6.6)

(Ulwﬂgl —R1€+62\/,3022 ~ Roe + M + 1)

X (61\/ﬁ§1 - R1€+02\/ﬁg2 — Hae +M>

2 M
+ 203v/Boz — Rae Z aaaa\/ﬂga — Roe + a1 tay + Z&
a=l 2 i=1

= (Bor + Boz + Mo + 1)(Bo1 + Bo2 + Mo) + 2003

Mo
a;+a
X (ﬁoﬂh + Bosag + ——— + me’) — Rse, (4.6.7)

2

i=1
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M 2
_l_._ Uam-{-% - ~
;fi—§k+z 3 +03\/E3_—R—36_0,

a=1 i = Oa

i=1,...,M. (4.6.8)

As in the non-degenerate case, we have the system (4.6.6)—(4.6.8) of
M + 2 equations for M + 1 quantities ¢ and &q,...,€p. This system is
overdetermined and, in the general case, does not have solutions. The
coincidence of the number of equations and the number of unknown
quantities becomes possible only if one of these equations is trivialized
(becomes an identity). The equation (4.6.6) admits a most natural
trivialization. It can be trivialized when

(1) all roots in (4.6.6) and the numerator of the first term do not depend
on €,

(ii) the roots with the indices 1 and 2 depend on ¢ but cancel, while the
first term in {4.6.6) does not depend on ¢, or

(i11) the first term in (4.6.6) cancels with one of the roots 1 or 2, while the
remaining root does not depend on e.

These cases will be discussed in the next three sections.

Concluding this short section, we note that the points a; and a; must
be real. They cannot be made complex conjugated as in the non-degenerate
case. Indeed if these points were complex, the physical interval would
coincide with the whole real A-axis. But this is impossible according to the
exclusion principle 3 given in section 3.6.

The reality of the points a; and ay enables us to take (without loss of
generality)

a; = ——1, ag = +1. (469)

In this case the numbers By1, Bo2 and Bg3 must also be real.

4.7 The simplest degenerate case. The first type

Let us assume that all roots in (4.6.6) as well as the numerator of the first
term do not depend on e. This is possible when

R1 = Rz = R3 = R4 = 0, R5 = S (4.7.1)
Then equation (4.6.6) is reduced to the form

Bos(Bo1 + Poz + My + 1)
o3| Bo3]

— 01|Bo1| = o2|Boa| = M + 1 (4.7.2)
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and can be interpreted as an equation for the integers o4, 09, 03 = £1 and
M =0,1,2,..., provided that the numbers By, Bg2 and Bg3 are given. In
this case the remaining equations (4.6.7) and (4.6.8) become

{ (o11Bo1| + o2)Bo2| + M + 1) (01| Bo1] + 02)Bo2] + M)

M
+203| o3| (02]5021 — o1|Bo1] + Zfi) }

i=1

—{(501 + Boo + Mo 4+ 1)(Bor + Bo2 + Mo)

My
12003 (ﬁoz — Bor + Z&n’) } = —S¢, (4.7.3)

i=1

i 1 oilBorl + 5 02|Bo2l + 3
=G &i+1 & —1

+ 03lBes| =0, i=1,...,M. (4.7.4)

Here only the system (4.7.4) is non-trivial. Solving it and substituting
the result into (4.7.3) we can obtain an explicit expression for the spectral
parameter e.

The choice (4.7.1) implies that

S
PN = 175 (4.7.5)
and
Bor+ 3% Boat3
Fo(X) i1 T oot T P (4.7.6a)
fi + % Ba + %
F()) Tt (4.7.6b)

Substituting these expressions into (4.2.5) and (4.2.7) and taking for
definiteness

1

gg = _-;—‘{Z + (Bo1 + Boz + Mo + 1)(Bor + Boz + Mo)

Mo
+2003 <502 — Bo1 + me‘) }, (4.7.7)

i=1
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we obtain the following expressions for the potential

1 2

Viz) =

_—_5((%1_1_16)1+A(x) 5(82——11_6')1_A(x)
+%ﬁ03(ﬂ01 + Boz + Mo + 1)A(x)
L AORE (4.7.8)

and corresponding solutions

1/)(2) - [/\(x) + 1]01|ﬁ01|+% [)\(z) _ 1]02l[302|+i‘
M
x  explos|Bos| ()] [ [ M=) - &1, (4.7.9a)
i=1
E = —é—{i + (o1]Bo1| + 02|Fo2| + Mo + 1)

X (01]|Bo1] + o2|Bo2| + My)

M
+  203|803] (Uzlﬂozl — o1)fo1| + Z&) }, (4.7.9b)

i=1

in which &, i = 1,..., M satisfy the system (4.7.4), while the signs
o1, 09,03 and M satisfy the constraint (4.7.2).

Now it is not difficult to obtain the concrete form of the potential
V(z) and solutions ¥ (z) in the z-representation. For this we must choose
the physical interval, establish normalization conditions and construct the
function A(x) evaluating the integral (4.2.3).

Note that we have only two possibilities in choosing the physical
interval. The first possibility is

Ae-1,+1]. (4.7.10)

This case is described by the extended physical diagram depicted in figure
4.32 and the positivity condition for the weight function (4.7.5) is

S<0. (4.7.11)

Evaluating integral (4.2.3) we get

A=)

z = +/|5| / \/% = arcsin A(z) (4.7.12)
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-1 +1
Figure 4.32. Diagram 1. S < 0.

and, consequently,

Az) =sihwe, w= —E (4.7.13)

The normalization condition imples that
op =41, o9 =+1. (4714)

Then, substituting (4.7.13) and (4.7.14) into (4.7.8) and (4.7.9), we arrive
at the following final expressions for the potential

ﬁOl + ﬂOZ

1—+—smwx l—smwz

V(z)

—B03(Bo1 + Boa + Mo + 1) sinwz | + w?f2; cos® wz

(4.7.15)
and solutions
v(z) = (1+ Sinw-’ﬂ)wm“%(l - sinwx)|ﬁ°2l+§
x  exp(o3|Pos}sinwz) H sinwz — &), (4.7.16a)
Eo= Wz{([ﬁoﬂ + [Boal + M + 1)*
M
+  203|Bos] (lﬁozl — |Bo1] +Efz‘> } (4.7.16b)
i=1
in which the numbers §;, i = 1,..., M satisfy the system of equations

M

Il 1Bo1| + 3 |Bozl + 2
+ + =0,
,; Gt a1 g-1 ol




292 Classification of quasi-exactly solvable models

1=1,..., M, (4.7.17)
and the integers o3 and M can be determined from the equation

Boa

aﬁﬁawm+ﬂm+hh+1y4%ﬂ_wwp;M+1. (4.7.18)

If equation (4.7.18) is satisfied, we obtain a quasi-exactly solvable
model of order M + 1, defined on the interval

il ”y (4.7.19)

T cC [—g,—%g‘;

The potential (4.7.15) is singular at the points &3~ and, thus, describes a
potential well of infinite depth.
The second possibility is realized when

A el 00 (4.7.20)

In this case the extended physical diagram takes the form depicted in figure
4.33 and the corresponding normalization condition is

-1 +1

Figure 4.33. Diagram 2. S > 0.

S>0. (4.7.21)
Now we have
, dA
r = \/5/ -—/\\/ﬁ‘l— = Sarcch)\ (4.7.22)

and, thus,

(4.7.23)
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Besides, we have the normalization conditions
oy =+1, o3=-1. (4724)

In this case the potential becomes

2
/601 16 ﬁOQ

14 = 92u°
(=) t chwe+1  chwz — 1

+  Bos(Bor + Boa + Mo + 1) chwe | + w? B2 sh we.

(4.7.25)
The corresponding solutions take the form
V
V(z)
z
0
Figure 4.34. The form of the potential (4.7.25).
W(z) = [chwz + 17 Polti[chwg — 1]1F2l+3
M
x  exp(—|fos|chwz) H [chwz — &], (4.7.26a)
i=1
E = —wz{(ﬂlwml +|Boz| + M + 1)?

M
~ 2|Bos] (Woﬂ = o1]Bo1| + Eél) } (4.7.26b)

i=1
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where the numbers §;, i = 1,..., M now satisfy the system of equations
M 1 1
U | o + 3 + 5
& — &k &+ 1 &i—1
i=1,..., M, (4.7.27)

and the integers o1 and M are found from the condition

Pos
"~ 1Bosl

Thus, we have obtained a new quasi-exactly solvable model of order
M + 1, defined on the positive half-axis

z € [0,00]. (4.7.29)

The potential of this model is singular at the points 0 and oo and, thus,
has the form depicted in figure 4.34.

—==(Bo1 + Bo2 + Mo + 1) — 01|Bo1| — |Bozl = M + 1. (4.7.28)

4.8 The simplest degenerate case. The second type

In this section we discuss the case when the roots with indices 1 and 2
depend on € but cancel, while the fraction in (4.6.6) does not depend on e.
This case is realized when

Ri=Ry=R, R3=R4=0, Rs=0S5, (4.8.1)
Bo1 = m1Bo, Boz = mfo (4.8.2)

and
oy =0, 03=-—0, (4.8.3)

where w1, 79 and o take the values +1.
In this case the equation (4.6.6) takes the form

|ﬂ I(Bm + Boz + Mo+ 1) = M +1, (4.8.4)

and for the other equations we have

M
M(M + 1) + 203|os| > &

i=1

- { [(m1 4+ 72)B80 + Mo + 1] [(m1 + 72) B0 + M)

+2803

Mo
(m2—m1)Bo + me] } = -5, (4.8.5)

=1
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i/ 1 +%+U\/ﬁ§—,RE
&z fk

= &+1
1 _ /32 _ R
+ Z—Jg—ﬁ—ol——f Y oalBosl =0, i=1,...,M. (4.8.6)
The weight function p(A) is in this case
1 1 \* s \
M=R|——— —— —-— 4.8.7
PN <,\—1 A+1> T (487)
or, equivalently,
A2 4 (3R 1)
A)=S—>nt 2 4.8.8
o) = S (488)
This gives us the following expression for the potential:
- (A2 -1)?
V) = ot e rar—s

{ b1 1 A2-2Eg
(A2 —1)?  2(2 4 4B _1)°

2
(L
A2—1 2x244R_
4
+

| =

A2 -1
S/\2+4R—S{(ﬁ° —3) A2 1
[(m1 + 72) B0 + Mg + 1] [(71 + 72) 8o + My]

Mo
(g —m1)Bo + me]
i=1

+ 2803 (71 + 72)Bo + Mo + 1] A

+ 2803

Boa(X* — 1)} (4.8.9)
A=X(z)
and the corresponding solutions
. A1)\ VR
Uz) = \/SA2+4R—5<L>
x exp(os|foz|A) H A—=§&) NIV (4.8.10a)

E = eo+4e (4.8.10b)
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in which the numbers §;, i = 1,..., M and ¢ can be found from equations
(4.8.5) and (4.8.6), and the integers o3 and M satisfy conditions (4.8.4).

Let us now classify the quasi-exactly solvable models corresponding to
the choice (4.8.1).

First of all, note that the physical interval A € [-1,+1] is forbidden. In
fact, such an interval implies the normalization condition ¢; = +1,05 = +1
which, obviously, contradicts condition (4.8.3). The only possibility is to
take

A€l 00]. (4.8.11)
In this case the stability condition
oy =+1, o3=-1 (4.8.12)
implies that
oy = —1. (4.8.13)
The condition of positivity of the function p(A) in (4.8.11) is
R>0, S>0. (4.8.14)

Now it is not difficult to write down all admissible weight functions
p(A) and corresponding physical diagrams.

1. S=0.
4R
2.0<S<A4R.
\ A2 4 p? _ [4R
p( ) = Sm, pP= —-S— -1 (4816)
3. S=4R.
by
p(N) = 4R(A2 —y (4.8.17)
4. S>4R.
2 2
s =S P 1 AR (4.8.18)
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-1 +1

@w

Figure 4.35. Diagram 1. S = 0.

-1 +1

®8

Figure 4.36. Diagram 2. 0 < S < 4R.

+1

)

Figure 4.37. Diagram 3. 5 = 4R.

+1

Ty

Figure 4.38. Diagram 4. S > 4R.

297
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The corresponding extended physical diagrams are depicted in figures
4.35,4.36, 4.37 and 4.38. Note that the integrals (4.2.3) for these diagrams
are expressed in terms of inverse hyperbolic functions. They have the
simplest form for diagrams 1 and 3.

Consider, for example, diagram 1. We have

z=2VR / %—1 = 2v/Rarcth A(z) (4.8.19)
Ae)
and, therefore,
1
Az) = cthwz, w= A (4.8.20)
Taking
g = *"‘g‘, (4.8.21)
R
we obtain

Viz) = wz{[(m + m2)Bo + Mo + 1] {(m1 + 72) B0 + Mo]

1
sh? wz

Mg
+ 2003 [(7?2 ~m)Bo + D _ o
i=1

chwz
+ 2w Bos [(my + m2)B0 + Mo + 1] 3w
sh” wz
1
282 . 4.8.22
+ w '603sh4w:c ( )

The solutions for this potential are:

Y(z) = exp (—‘—‘2’—\/[33 ~ Rez — |Boal cthwz)

M
x  [[(cthwe - &), (4.8.23a)
i=1
E = —4ufi+e (4.8.23b)
Here ¢ and &;, : =1,..., M can be found from the system

M
M(M +1) - 2|03 Y &

i=1
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= [(m1+ 72)fo + Mo + 1] [(71 + 72) B0 + M)

Mo
+ 2B0s |(m2—71)Bo+ Y oi (4.8.24)

i=1

i/ 1, %——\/ﬁg—Re+%+\/ﬂg—Re
= 6= & &+1 &1

~|Bosl =0, i=1,...,M. (4.8.25)
Besides, we have the condition
Bos ~
1A |(601+602+Mo+1)—M+1 (4.8.26)
03

determining the order of the corresponding quasi-exactly solvable model.
This model is defined on the half-axis

z € [0,00] (4.8.27)

and 1ts potential has the same form as the potential depicted in figure 4.20.
Let us now consider diagram 3. We have

Az
Adi
T = 2\/f—% / SV = \/ﬁln()\z(x) -1 (4.8.28)
and
1
AMz) =1+ exp we, w=-—. (4.8.29)
VR
Taking
= 1 4.8.30)
T 4R (438.
we obtain the potential
3w?  exp 2wz 979 1
Vig) = —Sr—— 4 - T
) 16 (1+exp wz‘)z < (G 4) 1+exp wz

wZ

+ —{ [(m1 + m2) Bo + Mo + 1] [(71 + 72) B0 + Mo)

4
exp we
2 i Sihada il
20 } 1+ exp wz

My
(w1 + 73) B0 + wa
i=1
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2 Moy
+ %ﬂos [(ﬂ'z —m1)Bo + ;EM] il

V14 exp wz
2
w® o exp 2wz
—BygaT————— 4.8.
+ 4ﬂ031+exp wx (4.8.31)
and the corresponding solutions
V
’ v(z)
Figure 4.39. The form of the potential (4.8.31).
¥(z) \4/1—+—;———(«/1+exp w:c—+—l>~"ﬁg_ﬂ6
z) = exp Wz
P V1+exp wz —1
X  exp (—Iﬁo:;l\/l + exp wz)
M
X (\/1 +exp wz ~£,~> , (4.8.32a)
i=1
w2
E = ——+e (4.8.32b)

4

The numbers € and §;, 1 = 1,..., M satisfy the system of equations
wul 4
M(M + 1) — 2|Bos] ;& + e
= [(m1+m2)Bo + Mo + 1} [(71 + 72) Bo + Mo)

My
(72 — m1)Bo + Zfo{i (4.8.33)

i=1

+ 2003

and

SURINE YV e V.. 2.
6.__

+
o i §i+1 £i—1
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~|Bos| =0, i=1,...,.M (4.8.34)

which must be supplemented by condition (4.8.26) determining the order
of the obtained quasi-exactly solvable model. This model is defined on the
whole z-axis

z € [~00,+00] (4.8.35)

and its potential has the form depicted in figure 4.39.

4.9 The simplest degenerate case. The third type

Now we consider the last case when a trivialization of equation (4.6.6) is
possible. This case is realized when the first term in (4.6.6) depends on
€ explicitly but cancels with the third term, while the second (remaining)
term does not depend on €.

In this case we have

Ri=0 (4.9.1)

and equation (4.6.6) takes the form

—01|Bn| =M +1, (4.9.2)
from which it follows that
o= -1 (4.9.3)
and
|Bor| = M + 1. (4.9.4)

From condition (4.9.3) it also follows that the interval A € [-1,+1] is
forbidden and, therefore, we have only one possibility, to choose the physical
interval as

A€ [l,00]. (4.9.5)
Then the stability conditions have the form
oy =1, o3=-1. (4.9.6)
The condition of cancellation can be rewritten as follows:
—  Bos(Bo1r + Boz + Mg + 1) + Rue
= /B2 — Raey/B% — Rac. (4.9.7)
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For (4.9.7) to be satisfied for any €, we must take
Ry=A’R, Rs3=R, R,=—AR, (4.9.8)

where A 1s a positive number. Simultaneously we must require that

Poz = wABo, Pos = Bo (4.9.9)
and
—Bos(Bor + Poz + Mo + 1) = AB} (4.9.10)
or, equivalently,
Bor + (7 + 1)ABo + Mg +1=0. (4.9.11)

In this case the remaining spectral equations take the form

A\/ﬁg — Re (A\/ﬂg — Re— 1>
~ 9B~ Re |M+1+ A/ —Re+§5i]

i=1
M,
= ABy(ABo + 1)+ 260 <7rfwo - Bo1 + me‘) ~ Se

i=1
(4.9.12)
and
i 1 M+ AVB - Rety
kzlfz"“fk €i+1 -f,'—l
—/B2—Re=0, i=1,....,M. (4.9.13)
The weight function is
1 1
— A2 _
A = AR | - ) 8
A
9RA al (4.9.14)

G-Do+D) TO-DO+D

or, equivalently,

B A ? S—AA-2R
p(A) =R ()‘—_—1' - 1) + m (4.9.15)
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It can also be written in the form

p(N) = EQA "(/(’1_)(1));(/(’2_3(;)_ ”3), (4.9.16)

where p1, pp and pg are the roots of the cubic equation
RIA-O=DPO+1D)+[S—AA-DRI(A-1)=0. (4.9.17)

Then we obtain

V(z) = €o+%{‘ EE/\Z_I)Z
B
1 1 3 1
~ {(A PSR S Dy un:
1 1 3. 1 \?
- (AilJ“Ail_;Afpa)

L A
T+ X2(1-N

+ 62+ 2482

+ M+LHM+2

222 1 2
+ W=D Ty [T FES))

M,
ABo(ABo + 1) + 260 (WAﬁo — Bo1 + Z&n’) ]

+
i=1
X '—1——} (4.9.18)
(A+1)(A-1) ,\:A(z)’ 9.
and also
3
Y(z) = H(A — pa)%(/\ + 1)~M-%()‘ — 1)A«/ﬂ§-Re
a=1
M
X oxp (‘\/ Bs ~ Rd) [I0-¢) ,  (4.9.19a)
i=1 A=A(z)
E = &+q (4.9.19b)

where the numbers € and &1, ..., &y satisfy system (4.9.12) and (4.9.13).
Let us now try to classify the types of quasi-exactly solvable model
described by the potential in (4.9.18) and having solutions (4.9.19). For
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this purpose it is sufficient to classify the weight functions p()) defined by
formulas (4.9.14)-(4.9.16).
The condition of positivity of p(A) in the interval (4.9.5) is

R>0, S<A(2-AR. (4.9.20)

When this condition is satisfied, equation (4.9.17) has only one real root
belonging to the interval A € [-1,+1]. The other two roots are complex
conjugate. Then we have

_RA=-p)A=p)(A=p7)
= =50

(4.9.21)

The corresponding extended physical diagram describing this case is
depicted in figure 4.40. This gives us an unique type of quasi-exactly

Figure 4.40. The diagram describing the weight function (4.9.22).

solvable model. The potentials of these models are defined on the whole
z-axis. They are regular at infinity and, therefore, describe a potential well
of finite depth.

The integrals (4.2.3) for this diagram are expressed in terms of
inverse elliptic functions. The explicit expressions for the potentials are
cumbersome and we shall not present them here.

4.10 The one-dimensional twice-degenerate case

Another type of degeneration arises when the simple double poles of the
function (4.6.1) also merge. Without loss of generality we can assume that
they merge at zero. As a result, we obtain the twice-degenerate weight
function

p(X) = po A= p)A- pg;ﬁ'\ — pa)(A = pa) (4.10.1)
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which can also be rewritten in the form
_ R1 Rz RS R4
p(A) = Ro + 3 + 3z + 13 + 3T (4.10.2)

In order to obtain the corresponding degenerate form of the function Fy(A),
g1803=fo1 5n4

we must replace in (4.6.3) the numbers By and By2 by a‘al_az
g2for=boz2 ang take the limit a; — 0,as — 0. The result is
Fo(A) = Boo + Eﬁ—l + %9} (4.10.3)
The function Far(A) must have an analogous form
b b (4.10.4)

FM(/\):50+T+:\‘2‘
where By, 51 and 32 are unknowns. If we choose the physical interval as
(4.10.5)

A € [0, 00],

then B must be positive and [y negative.
Equations for the numbers # and also for ¢ and &;, i = 1,..., M can
easily be obtained by substituting (4.10.1), (4.10.3) and (4.10.4) into (4.2.8)

and (4.2.9). They have the form:

/60 = —\/ ﬁgo —'R[)C,
(4.10.6)

- 2802(Bo1 — 1) — Rse

B = W/
ﬂ? - —\/ ﬂgz - R‘lf:

2 —-1)—
ﬁw(ﬂm ) Rae =M+1,

_ 2800(Bo1 + Mo) — Rie _
2/B%, — Roe 2/B%, — Rac
<2ﬁ02(ﬁ01 —1) — Rge n 1) 2602(Bo1 — 1) — Rae
2v/Bos — Rae 2v/Boa — Rae
M1
-—.2\/,@32 - R4€ (\/ﬁgo - R0€ + Z E‘)
i=1 >t

o1
- [501(%1 ~ 1) + 2802 (ﬁoo - Z —)] = —Rge, (4.10.8)

(4.10.7)

i=1 EOi
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1 /
E__gk“ 530“&)6

1

M=

k=1
+ s 2802(Bor — 1) — Rae 1
24/B%, — Rae €i

1 .
+ \/ﬁgo—R:;ng:O, i=1,...,M (4.10.9)

We have again a system of M + 2 equations for M + 1 quantities € and
£1,..-,&m- The coincidence of the number of equations and the number
of unknown quantities is possible when equation (4.10.7) trivializes. Note
that all parameters Boo, Bo1 and Boz in (4.10.7) are real. Therefore, we come
to the following two cases:

(1) both terms in (4.10.7) do not depend on ¢, or

(i1) one of the terms in (4.10.7) vanishes, while the second one does not
depend on €.

In the next two sections we will consider these cases in detail.

4.11 The twice-degenerate case. The first type

Assume that both the terms in (4.10.7) do not depend on ¢. This is possible
if

Ry=Ri=R3=Ry4=0, Ry=S. (4.11.1)
Then the equation (4.10.7) is reduced to the form

_ Boo(Bor + Mo)  Bo2(Bo1 — 1)
Bool B0

and for the other equations we have

=M +1, (4.11.2)

Bo2(for — 1) Boa(Bor — 1)
{( Borl 1) 1Gos]

21
= 2|Bool (500-%25)]
iz=1 >t

Mo
- [ﬂm(ﬁm — 1)+ 26p2 <ﬂoo - Z f%)] =-Se¢ (4.113)
i=1 >t
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and

Lo Bo2(foar—1) 1
; &—& ool + [Bo2l &

1 .
+ |ﬂ02IE_2‘ = Oa 1= 1;"'7M~ (4114)
The weight function
S
p(A) = 3 (4.11.5)
1s positive when
S > 0. (4.11.6)

It can be described by the diagram depicted in figure 4.41.

Figure 4.41. The diagram describing the weight function (4.11.5).

The integral (4.2.3) for (4.11.5) is equal to

Az)

z=VS / %\ﬁ = VSIn \z) (4.11.7)

and, therefore,

i

5i-

Az) =exp wz, w (4.11.8)

Taking for definiteness

Mo
€g = "“‘;‘ [(501 - %)2 + 2B02 (ﬁoo - Z E(l)—)] ; (4.11.9)
i=1 >
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we obtain the potential
Viz) = w2{ﬁ§2 exp(—2wz) + 28p2(Bor — 1) exp(~wx)
4+ 2B00{Bo1 + Mo) exp wz + B2, exp 2w:c} (4.11.10)

and the corresponding solutions

|4
V(z)
z
0
Figure 4.42. The form of the potential (4.11.10).
B 1
$(@) = (exp wa)lmt Pt
X exp {——I,Bogl exp(—wz) — |foolexp wz}, (4.11.11a)
Poz_
E = -1 +1] -1
1
—  2|Boal (lﬁool + E E) } (4.11.11b)
i=1 >
in which the numbers §;, i = 1,..., M satisfy the system of equations

(4.11.4).
Thus, we have obtained a simple quasi-exactly solvable model of order
M + 1, the potential of which is defined on the whole z-axis

z € [~00, +00] (4.11.12)

and has the form depicted in figure 4.42.

4.12 The twice-degenerate case. The second type

Let us now consider the second case of trivialization of equation (4.10.7)
which is realized when the first term in the lefi-hand side of (4.10.7)
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vanishes, while the second one is a constant which does not depend on
€. This is possible when

RO = 0, Rl = 0, R2 = S, R3 = O, R4 =R (4121)

and, simultaneously,

Bor = 1. (4.12.2)
Then equation (4.10.7) takes the form
_ Poo (Mo+1)=M+1, (4.12.3)
|Bool
from which it follows that
Boo = —|Boo] (4.12.4)
and
M = M. (4.12.5)

The remaining system becomes
Mo M,
1 1
21/ B3, — Re (WOO| + ;:1 a) ~ 2002 (Wool + ;:1 E(;) = Se, (4.12.6)

j{j L o 1 /B%, - Re

4 oMo,
=& =&

& &
i=1,..., M. (4.12.7)
The weight function corresponding to this case is

p(A) = i + /\% (4.12.8)

and, therefore, we have the followmg potential
1 X (A +6%)

3
52+ )

1
+ 1S e {502 2002 (Iﬂool +Z€ )

— 2|Bool(Mo + 1)A° + 530/\4} (4.12.9)

Vi) = e+ -3
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and solutions

2 _
v = (Rt exp (———V["’ZARE - woolA)

M,

x [J(r-&), (4.12.10a)
i=1

E = e +e. (4.12.10b)

The function p(A) is positive when
$>0, R>O0. (4.12.11)

Consider two cases.

1. §=0, R> 0. Then

R
P = 33 (4.12.12)
2. 5>0, R>0. Then
A2 4 p? R
p(A)=S i P (4.12.13)

The corresponding diagrams are depicted in figures 4.43 and 4.44.

Figure 4.43. Diagram 1. S=10, R > 0.

The quasi-exactly solvable model described by diagram 1 and weight
function (4.12.12) has the simplest form. Substituting it into (4.2.3) we
obtain

Aw)

z=+VR / i—i = % (4.12.14)
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©
0

Figure 4.44. Diagram 2. S >0, R > 0.

and, hence,
A=) = ;1; w= 717_2. (4.12.15)
Taking
e =10 (4.12.16)
we obtain the potential of the model in question
My
V(z) = %z{ﬁéz — 2B02 (lﬂool + ; f%) w21x2
— 2|Bool(M +1) 31 5 + B 41 4} (4.12.17)
w3z wiz
and its solutions
1
Wo) = oxp {58~ Rawe 6l }
X ﬁ (—L - f,) , (4.12.18a)
g \wz
E = ¢ (4.12.18b)
where € and §;, i = 1,..., My can be found from the equations

M, 1 M, 1
\/B3, ~ Re (lﬂool +y E) = Boz (Iﬁool +3° 5) (4.12.19)
i=1* i=1 >0

and (4.12.7). The order of this quasi-exactly solvable model is M + 1. Its
potential is defined on the half-axis

z € [0,00] (4.12.20)
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and has the same form as the potential depicted in figure 4.20.

4.13 The one-dimensional most degenerate case

This case arises when three double poles in (4.2.13) merge. We can assume
that they merge at infinity and the remaining simple double pole is located
at zero. This gives

(A= p1)(A = p2)(A ~ p3)(A = p4)

P(A) = po 5 (4.13.1)
or, equivalently,
R_ R_
(V) = S5+ 50+ Ro+ Rid+ RaX’. (4.13.2)
We also have
41
Fo()) = ﬁ“A 2+ Boa + Bos. (4.13.3)
Taking
4+ 1
F(X) ﬁlA 2+ By + BsA (4.13.4)

and substituting formulas {4.13.2) and (4.13.3) into the system (4.2.8),
(4.2.9) we can rewrite it in the algebraic form

Bf — B51 = —R-z¢, (4.13.5)
M 1 Mg 1
(26:+1) (ﬁz -3 E‘) ~ (2801 + 1) (502 -3 5—) = —R_1¢,
=1 im1 0i
(4.13.6)

B3+ (Br— 3) Bz — Baz — (Bor — ) Bos = —Rpe, (4.13.7)

283(B2 + M) — 2B03(Bo2 + Mo) = —Rie, (4.13.8)
B2-B% = —Rse, (4139)
1 pitd
1; & — &k * & P2+ Badi =0,

i=1,...,M. (4.13.10)
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For this system to have solutions it is necessary to take
R_.z - 0, R_1 = R, Ro = R1 = Rz =0 (41311)

and, simultaneously,

M = M,. (4.13.12)
This gives
Br = Bor, B2 = Loz, Bs = Pos, (4.13.13)
and also
25‘“ 1 2 (T - 5—(;) (4.13.14)
and
Mo
i=1,..., M, (4.13.15)
In this case the function
p(A) = ? (4.13.16)
is positive in the interval
z € [0,00] (4.13.17)
if
R > 0, (4.13.18)

and is described by the diagram depicted in figure 4.45.
The normalization conditions for this diagram have the form

Bo1 >0, oz < 0. (4.13.19)

Computing the integral (4.2.3)

dA
z=VR / 5 2VR\/A(z), (4.13.20)
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Figure 4.45. The diagram describing the weight function (4.13.16).

we obtain
Mz)=we?, w= L (4.13.21)
- ) - 4R‘ . .
Taking for definiteness
M
11
E0==) —, 4.13.22
=Rl (1.13.22)

we obtain the final expression for the potential

V() = (465, - §)=7?
+ 4261+ Dw +4 83, + (Bo1 — }) Bos] w’?
+  8603(Boz + Mo)w?z? + 4820w z® (4.13.23)

and the corresponding solutions

Y(z) = o¥Potiexp {60301221:4 + 502‘0332}
My
x JJwe? - &), (4.13.24a)
i=1
My 1
E = 4(28+1w) 5—_. (4.13.24b)
i=1 **

This model (which has already been discussed in chapter 2) completes
the classification of one-dimensional quasi-exactly solvable models described
by formulas (4.2.5)(4.2.9) and characterized by the functions p(}A) having
double poles of total order four.
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4.14 The multi-dimensional case

In this section we discuss multi-dimensional quasi-exactly solvable models
connected with equation (4.1.4). The construction of these models consists
of three stages. First, we choose the functions ¢®(x) and z*(A) in such a
way as to ensure the positive definiteness of the metric gix (g, X) defined by
the formula (3.3.15). Remember that this is a condition for the resulting
Schrodinger equation to be an elliptic equation. Second, we satisfy the
normalization condition for solutions of this equation by imposing necessary
constraints on the function Fy()). Finally, we find the conditions under
which the order of the quasi-exactly solvable model obtained is more than
one.
By analogy with the exactly solvable case we can take

signo®(p) = (-1)%, a=1,...,D, (4.14.1)
representing the corresponding weight functions in the form

A=)t
sy = 29
ch=2 ()‘ - a'a)
Then, for the metric tensor to be positive definite, the number ¢ must satisfy
the constraint

p(A), a=1,...,D. (4.14.2)

¢ < ay, (4.14.3)

and the function p(A) must be positive. We stress that the form of this
function depends on the sort of physical diagram. So, for the diagrams
listed in figure 4.4 we have:

po(A — p1)(A = p2)(A — p3)(A — p4)
(A= a1)*>(A = ap41)*(A — ap42)?(A ~ apys)?
— po(A ~ p1)(A — p2)(A — p3)(A — pa)
DAY = GTa 0 - a0 G- o
po(A = p1)(A = pa)(X = p3) (A — p4)

A) () =

©) pN) = BTa0 —am B0 anra)t
DA = R e e
B = BERIR e
P o = Blopllopoplop)
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The positivity condition for p(A) is ensured if the points py, p2, p3, p4 satisfy
one of the following three constraints

() p1,p2,p3,p4 € (a1,ap41),
(i) p1,p2 ¢ (a1,ap11); P3=pa=a, a=2,...,D
(lll) pl:p2:a(¥? PS:P4:aﬁ7 aaﬂ'_:?)"')D' (4145)

The functions Fy(A) associated with (4.14.4) have the form

D+3

FOa
A) Fo(A) = Z )\ —
a=1
D41
FOa Fy
B) Fy(\) = ZA_a +)\—0a*’
D
c 7 (A f F()a 0,D+2
) o(A) = A —ag (/\—GD+2)2,
D+2 /
FOa F
D) R)= 3 5Tt T
a=1
D+1 !
FOa F Fo,p41
E) Fo(A) = Z N — (A —~ay)? + (A —ap41)?’
D+1 , 1"
Fou F01D+1 Fo,D+1
F)  Fo(A)= Z ) — aa —ap41)? + (A —apy1)®’ (4.149)

and their corresponding normalization conditions are

D+3

1
A) D> Foa=—(My—1); Foo >3, a=1,..,D+1,
D41
. 1
B) Y FoatFo+Fi=-(My—1); Foa>z, a=1,...,D+1,
a=1 2
D+2 1
C) Y Foa=—(Mo—1); Foo>3, a«=1,..,D+1,
D+1 1
D) ;Fm, (Mo~1); Fjy >0, Foa>3, a=2..,D+1,
D41

E) ZFQ(,._ (Mo—1); Fyy >0, Fjpyy <0, a=1,...,D,
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D+1
F) > Foa=—(My—1); Fpy; >0, a=1,..,D. (4.14.7)

If conditions (4.14.5) and (4.14.7) are satisfied, we can apply the inverse
method of separation of variables to equation (4.1.4) and transform it to
the class of D-dimensional quasi-exactly solvable Schrodinger equations

{ Vo 3 2 (g”‘ i) 8 )+V(u,x)} w( )

k=1 (/1', )
= E(u)i(p, X). (4.148)
The metric tensor gik(u,X), describing the manifold on which the

Schrodinger problem is formulated, is diagonal and is defined by the
formulas

D D
Y - T H = (Al - aO’)
gii(p, A) = Z(—l)ava(u)Sf (A a=2 . (4.149)
o) T2 (i = M)

Here we have used the notation

siD—a(X) — E (’\i1 - (:) R (AiD—a — c), (41410)

‘1< <lD a

The potential in (4.14.8) has the form

D
V(X)) = 0%+ 0" (n)eoa

a=1

D ay
(_l)ao'a(/l)slp'a(,i‘) [Tazn(Xi )

n
™
E

i=1 a=1 'Hfll i_’\k)
, Fo(As) — Fol€
X {Fo(/\ +Fo +QZ - )\)_on o)
D D . A) :
4 108 (u)sP =0 () —p L2 p(A
krzll[ﬁzz::l Ha Z(Ak—aa)

S s D SN e N . K
24 k=1 | =1 e HaD:z(Ak‘“a) ’
(4.14.11)
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where &o;,7 = 1,..., My satisfy equation (4.1.2), and solutions of (4.14.8)
related to this potential,

W = 11 fl—l)f’af’( )sP=0 () 522 i
. - k=1 L_,8:1 g * H£=2(Ak—-aa)
DI M
ex F(\) dX -6, (414.12a
ka(/ . )Hu )|, (414120)
D
E(w) = o)+ Y o*(uea, (4.14.12b)
a=1

are expressed via the functions F(A), having the same functional structure
as Fy(X), and the numbers M,&1,...,8n, €1, .., €D, satisfying the system
of equations (4.1.7), (4.1.8). The Schrodinger equation (4.14.8) has at least
one explicit normalizable solution corresponding to the choice

M =M, F(Q)=F), &=Z¢o
i=1,...,My, €o=¢oa, a=1,...,D, (4.14.13)

and, thus, it is actually a quasi-exactly solvable equation.

In order to answer the question of whether or not this equation has
other normalizable solutions, let us look at the system (4.1.7), (4.1.8). At
first sight, it is not solvable, since, due to the condition

lim AF(X) = (M — 1), (4.14.14)

the number of equations entering into it exceeds the number of unknown
quantities. However, a closer look reveals that this is not true.

To demonstrate this fact, we restrict ourselves to the simplest (non-
degenerate) case described by diagram A in figure 4.4. In this case the
function F(A) has the form

D+3 F
F(A) = = 14
(A) (;/\_aa (4.14.15)
and condition (4.14.14) for it becomes
D+3
D Fo=—(M-1). (4.14.16)

a=1
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For the corresponding wavefunction to be normalizable, the numbers F,
must satisfy the constraints

Fa>%, a=1,...,D+1. (4.14.17)
Substitution of (4.14.2), (4.14.4), (4.14.6) and (4.14.15) into (4.1.7) gives a
system of 2D + 3 algebraic equations, D + 3 of which can be obtained by
equating the “residues” in simple double poles in the similar terms. These

D + 3 equations have the form
1 1

(Fa_i)k(Fo(,—-i)z:o, a=2,...,D (4.14.18a)
and
(Fy— %)2 — (Foo — %)2 =— iRg(g,, —eop), @ €A, (4.14.18b)
B=1
where
A={1,D+1,D+2,D+3} (4.14.19)
and

g9 = Polta = p1)(aa pz)(aa — £5)(%0 = pa)(@a = )° T (4.14.20)
HD+3 (aa — ag)

The other D equations having a more complicated form are, fortunately,
not so important to us and we shall not write them down here.

Taking into account the constraints (4.14.17) and solving the system
(4.14.18) we obtain

Fy = Foa, a=2,...,D, (4.14.21a)
1 1, <

Fo = 5+0ay|(Foa=5)~ ;Rﬁ(eg — €0g),
a €A, (4.14.21b)

where 04, € A are the “signs” taking the values +1. Substituting
(4.14.21) into (4.14.16) we obtain the equation

D

2F0a+zaa (Foa — 50 = 3 Rilep = cop) = (M +1)

a€A =1
(4.14.22)
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which plays a central role in our consideration. Indeed, this additional
equation, the presence of which makes the system (4.1.7), (4.1.8) non-
solvable, is, fortunately, not so strict as other equations of this system
and, in some special cases, can be transformed into an identity. Then the
number of equations and the number of unknown quantities become equal
and this allows the system to have several algebraic solutions.

The cases when this is possible can easily be found from the condition of
the cancellation of £,-dependent terms in the left-hand side of (4.14.22). As
in the one-dimensional case (see section 4.2), these possibilities are realized
when

(1) all the four roots in (4.14.22) do not depend on g,

(i1) two roots in (4.14.22) depend on ez but cancel, while the remaining
two roots do not depend on eg,

(iii) three roots in (4.14.22) depend on e4 but cancel, while the fourth root
does not depend on €3.

The first possibility implies that all the coefficients (4.14.20) are zero:
RE=0, acA, B=1,...,D. (4.14.23)

The second possibility occurs when
R, =RP,=0, RE,=RP,=RP, B=1,...,D (4.14.24a)

and, simultaneously,

1 1
Fou, — 51 = |Fou, — il (4.14.24b)
and
oy = —0u,, (4.14.24¢)

where the indices oy, @y, a3, ag € A differ from each other.
For the third possibility to be realized, we must take
Rf = A}RP, RE =AIRP, RS =RP, RS =0,
B8=1,...,D, (4.14.25a)
where A; and As are certain positive numbers such that
A+ Ay = 1. (4.14.25D)
Simultaneously, we must require that

1 1 1
-|=

Foa, —
A |0 A;

Foa, — (4.14.25¢)

1'_
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and
oy = gy = —COs- (4.14.25d)

Here the indices i, ag, a3, ag € A also differ from each other.

Imposing the constraints (4.14.23), (4.14.24) or (4.14.25) on the system
(4.1.7), (4.1.8) and repeating the reasonings of sections 4.3, 4.4 and 4.5 we
can list all solutions satisfying the normalization condition (4.14.17). Using
the results of statement 3.11 it is not difficult to show that for any admissible
set of integers oo, @ € A and M entering into equation (4.14.22) the number

DT ! and, therefore, the order of the corresponding
quasi-exactly solvable models described by formulas (4.14.8)-(4.14.11) is
also (MDD}

MDi -
The systems associated with other diagrams in figure 4.4 can be studied

quite analogously. It can be shown that an appropriate choice of functions
p(A) and Fy(A) leads to quasi-exactly solvable models of an arbitrary,
arbitrarily large order.

. . (M+D
of such solutions is +



Chapter 5

Completely integrable Gaudin
models and quasi-exact solvability

5.1 Hidden symmetries in quasi-exactly solvable models

Summarizing the results of chapter 4, we can conclude that for the
D-dimensional quantum mechanical model constructed by means of the
inverse procedure of separation of variables to be quasi-exactly solvable,
the initial D-parameter spectral equation

32 D
{‘572 * ”"(A)} #() = {Z r“(A)ea} e() (5.1.1)
a=1

must have a finite number of algebraic solutions. We demonstrated that this
is possible when the functions z()) and z*, @ = 1,...,D belong to (2D+3)-

2(1_1. and satisfy some specific conditions which
make the system of spectral equations for (5.1.1) compatible and solvable.
In this section we show that these conditions admit very natural group-
theoretical interpretation allowing us to explain the phenomenon of quasi-
exact solvability as a consequence of a certain hidden symmetry present in
equation (5.1.1).

In order to reveal this symmetry, let us consider an auxiliary (D + 1)-
parameter spectral equation of the form

62 D+1
{_W +:c0(/\)}80(/\) = {Zza(,\)ea}tp()\) (5.1.2)

a=1

dimensional spaces Ry,

d a

in which z%(X) € Ry, ( 97 ) and z%()) € Ra, ( 97 ) ,a=1,...,D are

322
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a
27
chosen additional function and ep,4; is an additional spectral parameter.
According to the results of section 3.5, this equation is algebraically solvable
and has an infinite number of solutions of the form (3.5.33). In the
general case, when z%)) and z%*(A),a = 1,...,D + 1 are arbitrarily

the same functions as in (5.1.1), zP*+}(X) € Ra, ( is an arbitraily

-

chosen (random) elements of the space Rap, 2aﬁ , the spectral parameter

ep+1 (as well as the other parameters €1,...,ep) takes different values
for different solutions of equation (5.1.2). However, when the condition
of compatibility imposed on z%A) and z*(A),e = 1,...,D is satisfied,
the situation changes. Indeed, the fact that in this case equation (5.1.1)
has several algebraic solutions means that there exist several solutions of
equation (5.1.2), for which the parameter ep;; takes one and the same
value ep;1 = 0. But this means that the spectrum of the parameter ep4q
is degenerate relative to the spectra of other parameters ¢1,...,¢ep.

What is the reason for this degeneracy? To answer this question
remember that, according to the inverse method of separation of variables,
the admissible values of spectral parameters €4, = 1,...,D + 1 can
be interpreted as eigenvalues of certain commuting (D + 1)-dimensional
differential operators Ly, a =1,..., D+ 1,

Lod=¢€od , a=1,...,D+1. (5.1.3)

In this language, the spectrum of operator Lp,; is degenerate relative to
the spectra of other operators Li,...,Lp. But this suggests that there
exists a certain group of symmetry G, under which the operator Lp,; is
invariant:

G_1L13+1G = Lpy1, (5.1.4&)
while the other operators Lq,...,Lp are not:
G 'L,G#L, , a=1,...,D. (5.1.4b)

Moreover, the group G has finite-dimensional representations determining
the multiplicities of the degenerate eigenvalues ep4.

Below we demonstrate that such a group really exists. We
construct this group for equations (5.1.2) and describe its finite-dimensional
representations, determining the multiplicities of the degenerate eigenvalues
epy1 and, consequently, the order of the corresponding quasi-exactly
solvable models. This programme will be realized in the following five
subsections.
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1. Spectral degeneration in the generalized Mps equation. First of
all, remember that any MPs equation discussed in this book can be viewed
as a particular case of a more general equation

50(}) = w(Ve() (5.1.5)

for two functions ¢(A) and w(}), provided that w(X) belongs to a finite-
dimensional functional space and, thus, can be interpreted as a linear
combination of a finite number of given basis functions. We identify the
coefficients of functions depending on the sort of solution with the spectral
parameters.

According to the results of section 3.5, the most general solution of the
equation (5.1.5) has the form

M
w(d) = F'(A) + F2(A Z A Z(é'), (5.1.6)
M
p(X) = H(x\ —&;)exp (/ F(X) d).) , (5.1.7)

where F()) is a certain rational function, M is an arbitrary non-negative
integer, and &1, ..., &y are the numbers satisfying the system of equations

E F(El) —0 = 1 . .,M (5.1 8)
+ ;) — U, 1= y o . .
k=1 61. 6’0

For the sake of simplicity we restrict ourselves to discussion of the case
when the function F(}) is fixed and satisfies the following condition:

lim AF(A) = F, (5.1.9)
A— 00

where F is a finite number. This condition gives us the possibility of
revealing the presence of spectral degenerations in equation (5.1.6).
Indeed, using formulas (5.1.6) and (5.1.8) we can write

M ! Mo 2
w(d) = ( Z >+<F(A)+Zm>. (5.1.10)

Taking into account (5.1.9), we find the relation

lim Mw(A) = (F+ M)(F+M -1), (5.1.11)

A—00
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which shows that there exists a certain linear combination of spectral
parameters

e = lim Mw(}) (5.1.12)
A—o00
depending only on the number M and not on the numbers &;,i =1,..., M.
We can consider this linear combination as a new spectral parameter,
choosing an appropiate basis in the functional space.
According to statement 3.11, the number of solutions of system (5.1.8)

is %]!__—11)).—', where N is the dimension of the space to which the rational

function F(A) belongs. But this means that for any given M the spectrum of

the parameter ¢ is %—fold degenerate relative to the spectra of other

spectral parameters entering into the function w(X). This allows us to assert
that equation (5.1.5) is an equation with a partially degenerate spectrum
and, thus; it can always be transformed to a quasi-exactly solvable model
of quantum mechanics. The next step in our procedure is to construct the
completely integrable model associated with the generalized MPs equation
(5.1.5). We show that this is simply the Gaudin model discussed in section
1.10. We give here a general definition of this model and discuss in detail
the properties of its solutions.

2. Generalized Gaudin model. Let S¥(}) and S°(\) be generators of
the Gaudin algebra satisfying the commutation relations

57 (3), 5% ()] = 25 = %)

Py (5.1.13a)
[S°(0), $*(w)] = :Ff_()‘;—:if(i)' (5.1.13b)

Consider the representation of this algebra, defined by the formulas
SPN0) = F(MN)]0), (5.1.14a)
STy = 0, (5.1.14b)

in which |0) is the lowest-weight vector and F(}) is the corresponding lowest
weight. Define the representation space W as the linear span of all vectors
of the type

[0), S (€1)10), S* (£2)S* (§2)10), .. -,
St(&1)...ST(Em)0Y,. .., (5.1.15)

where £1,&, ... are arbitrary numbers.
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The Gaudin operators are defined by the formula
1 1
KE()\) =8°(0)S* () — §5+(A)5*(A) - 55”(,\)5‘*(/\). (5.1.16)

Using relations (5.1.14) it is easy to show that they commute with each
other

[K(A), K(p)] =0 (5.1.17)

for any A and p, and, thus, have a common set of eigenfunctions in the
space W.

In spite of the fact that the space W is infinite dimensional, the
generalized Gaudin spectral problem in W

K\é=w(Né, W (5.1.18)

is exactly solvable.! Its Bethe solutions have the form

M
FQA) - F(&)
A) = ")+ F2(A ALl 1.
w(d) = P+ ()+2; e (6119)
M
¢ = []SHEio), (5.1.20)
1=1
where M is an arbitrary non-negative integer, and &;,...,6p are the
numbers satisfying the system of numerical equations
M,
> +F(&)=0 , i=1,...,M. (5.1.21)
P 4

This can be demonstrated as follows. Using the commutation relations
(5.1.14), and taking there u = A, we obtain

[ST(N), S~ (V)] = 26%50()\). (5.1.22)
From conditions (5.1.19) and (5.1.22) and definition (5.1.16) it follows that
K(M)]0) = {F'(A) + F2(2)}{0). (5.1.23)

1 We use the adjective “generalized” here because Gaudin himself and other authors
(Gaudin 1983, Sklyanin 1987, Jurco 1989) considered only the case corresponding to a
non-degenerate rational function F'(A). A special form of the operators §¢()),a = %,0,
was also considered. Here, no restrictions are imposed on the form of the function F())
and operators S%()).
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Besides, we have

2
[KQ), S* ()] = —[ST(NS°(w) = S*(w)S°(N)]- (5.1.24)
Let us now act by the operator K(A) on the vector (5.1.20). Transferring
this operator to the right and using formulas (5.1.22)—(5.1.24) we obtain

KE(\)¢ = [F'(0) + F* (V)¢
M

+Z; 3 EE.S-'-(&)"~S+(£i)so()\)5+(&+1) ... 8 (ear)]0)

M

Z

S*(& . SH(&-1)SH(A)S%(€)ST (€it) - - ST (En)]0).
(5.1.25)

The operators S%()) and S°(¢&;) appearing in the second and third groups
of terms can also be transferred to the right by means of the commutation
conditions (5.1.13b). Taking into account formula (5.1.14a) we obtain

F(3) - F(&)

A&
Mo M,
2 F(&
+ ;)\—&' [?:; €i—€k+ (&) ¢}

Mo M,
_QZ;A—& [Z i_fk+F(€i)

k=1

xS*(€1) .. S (6i-1)ST(N)SH(Eiv1) - - ST (Em)I0).

K(A\)¢ = {F’(A) + F?()\) +2 Z

(5.1.26)

Equating to zero the coefficients for the terms not proportional to ¢
we arrive at the system (5.1.21). The remaining terms determine the
eigenvalues of the operators K(A), which, obviously, have the form (5.1.19).
This completes the derivation.

3. Transition from the generalized MPs equation to the generalized
Gaudin model. It is not difficult to see that solutions of the generalized
Gaudin model have the same functional structure as solutions of the
generalized MPs equation. Indeed, we see that expressions (5.1.6) and
(5.1.19) for w(A) coincide. Equations (5.1.8) and (5.1.21) for the numbers
&,1 = 1,..., M also coincide, and the solutions (5.1.7) and (5.1.20) are
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described by formulas having similar (factorized) form. Such a coincidence
cannot be casual. It indicates that there is a deep connection between
equations (5.1.5) and (5.1.18). Below we demonstrate that this is really so
and show that equation (5.1.18) can actually be obtained from (5.1.5) by
means of the inverse method of separation of variables.

First of all, note that any rational function F(}A) can be interpreted as
a limiting case of a certain non-degenerate rational function of the form

F(\) = Z fa (5.1.27)

._aa

This makes it possible to restrict ourselves by discussing here only the non-
degenerate case which, on the one hand, is rather simple and, on the other
hand, does not lead to loss of generality.

Substituting (5.1.27) into expressions (5.1.5)-(5.1.8) we reduce
equation (5.1.5) to the form

62 N . ’ N 3 2
(e (Br2e) + (£55)
N
Z }30(/\) =0 (5.1.28)

and obtain the following expressions for its solutions

N M
e = J[A-aY=T[A-&), (5.1.29)
a=1 i=1
€a = 2% fo (5.1.30)
o1 & —aq
in which the numbers &;,7 = 1,..., M satisfy the constraints

— Qq

Z& Ek+z& =0, i=1,...,M. (5.1.31)

According to the general prescriptions given in section 3.3, let us
reproduce equation (5.1.28) N times, rewriting it as the system

{ ”+<ZA —aa> (ix,_aC,):éAf_"aa}qﬁ:o,

i=1,...,N (5.1.32)
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in which A;,7=1,..., N are independent variables, and
N N N M
¢ = HQO(A,-): H{H(A,- — an)fe H(A,- _gk)}. (5.1.33)
i=1 izl \a=1 k=1
Now, we introduce N differential operators Ly, = 1,..., N determined as

solutions of the system of N linear equations
N

] 2
)PILENDL Y | o U I B o
Ai—ag ¥ 6A2 Ai — g Ai—ao )’
a=1 ¢ a=1

a=1

i=1,...,N. (5.1.34)

Substituting (5.1.34) into (5.1.32) we obtain

/\,-—aa

S|
> (Lo —eo)d =0, i=1,...,N (5.1.35)
a=1

which, due to the non-degeneracy of the matrix (A; — a,) ™}, gives

Lod = end, a=1,...,N. (5.1.36)
Let us now construct a new operator L(A), depending on the parameter
A
N ! N N I
L) = (az::l S aa) - (; S aa) + azzl e (5.1.37)

From formula (5.1.36) it follows that

3) — a fa ’__ J Jo 2__N € _
L() ZIA'—G& ZIA'“aa Zl/\—aa ¢-0

(5.1.38)

or, equivalently,
L(A)¢ = w(A)é. (5.1.39)

Thus, we have shown that the operator L(A) has the same spectral
properties as the Gaudin operator K(X).

Now it remains to show that L(A) coincides with K()A) and that the
function (5.1.33) admits the representation (5.1.20). For this it is sufficient
to find an explicit form of L(A) by solving equation (5.1.34).
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Acting on (5.1.34) by the operator

ul H7N=1(’\i — ay)

7 (5.1.40)
£ N
i=1 [Tk=y (A = Ae)(Xi — ap)
and using the identity
N
J [[=1(% —ay) _ { 0, f#a (5.1.41)
: ! Tl B=a o
=1 [Tioy (4 = M) — ap)(A = aa)
in which

N N, -
to =7H()\,--—aa) H (aﬁ — ag) , e=1,...,N, (5142)
i=1 f=1

we obtain explicit expressions for L, which, in terms of the new variables
to, have the form

_ _6_2_ fa(fa‘l) N’ 6 8
te = [ - 20 e { () (o)

1 0? -1
Sl e (tﬁ&%‘ﬂ%“))

1 02 fa(fa—1) 1
_.5 (ta—a?g" T )tﬂ}aa—ap'

(5.1.43)

The last step is to substitute these expressions into (5.1.37). Making
elementary transformations we find that the operator L()A) can be
represented in the same form as K(A):

L(A) = S°(A)S°(A) — %S+(A)S‘(/\) —~ %S‘(/\)S*‘(,\) (5.1.44)

where
N
la

st = Z/\_a 7, (5.1.45a)
a=1 o
N ¢ 2

S°(N) = ZA_"”G , (5.1.45b)
a=1 o
N ta'i.;"'— alfe-l

S~ = > "”a/\_a“ (5.1.45¢)

R
1l
—
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It is not difficult to verify that the operators (5.1.45) satisfy the
commutation relations (5.1.14), i.e., form the Gaudin algebra. Therefore,
L(A) = K(}). Rewriting (5.1.45a) in terms of the initial variables );,i =
1,...,N:

SH() = _ﬁy%l(:" _/\?), (5.1.46)
p=11%0 —

we see that the function (5.1.33) can be rewritten in the form

H5+ (&) H M — aa) " ~ HS+ (&) H tle.  (5.147)

a,k=1

Comparing (5.1.47) with (5.1.20), we see that these formulas coincide if

N
=[] ¢ (5.1.48)
a=1

In order to make sure that (5.1.48) is actually the lowest-weight vector, we
must verify formulas (5.1.15). Acting on (5.1.48) by the operators (5.1.45b)
and (5.1.45¢) and using (5.1.27) we obtain:

N
SO0y = ( :“_"”a >Htf«—F(A)|0) (5.1.49a)
- N ta;ﬁ — falferl) ,
Mo = > —5— Ht; =0. (5.1.49b)
a=1 & a=1

This completes the proof of the equivalence of the generalized MPs equation
(5.1.5) and the generalized Gaudin equation (5.1.18).

Before continuing our discussion, note that v is an arbitrary parameter
and, without loss of generality, we can take

¥ = 0. (5.1.50)

Note also that from a practical point of view it is more convenient to
deal with the homogeneously transformed Gaudin operators, defined by
the formula

KM\ =ULMNUY, (5.1.51)

where U is a A-independent operator of the form

N
U= ][t (5.1.52)
a=1
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These operators have the same spectral properties as the untransformed
ones, and can be represented in the form (5.1.16) with

N
t
St = Yoy (5.1.53a)
a=1 @
N el
ta_+ o1
s°(0) = Z———;’iaf, (5.1.53b)
a=1 @
N todr +2faz
S=()) = Z—%——_T-""— (5.1.53¢)

0) = 1, (5.1.54)
and the solutions defined by formula (5.1.20) become polynomial in ¢,.

4. Gaudin models as magnetic chains. It is not difficult to see that
the operators

St =t,, SY = ta—a— + four Sy = t(,—az— + 2fa—a~, (5.1.55)
Ota ot2 Oty
entering into (5.1.54) satisfy the following commutation relations:
[S2.551 = 26455,
[S2,55]1 = +6asS3, (5.1.56)
and form the algebra
L=sl2)®...0sl(2) (N times). (5.1.57)
Rewriting expressions (5.1.54) as
- NoSg,
S(A) = ;;1 o (5.1.58)
and substituting them into (5.1.16) we obtain for K(A):
N N
K(A):;(:f(ﬂl\%&)j_l)ﬁ(;/\iﬁa (5.1.59)



Hidden symmetries 333

where
N - — N —_ —_
0o }:/ SaSs E/S;Sg - 55885 —3S2S%
« Qg — ag Ay —a
p=1 p B8=1 « g

(5.1.60)

are the operators acting in the direct product W = W, ® ... @ Wy of
representation spaces of the algebra sl(2). They obviously commute with
each other, [Hq, Hg] = 0, and, thus, can be interpreted as hamiltonians of
a completely integrable non-local spin system on a finite one-dimensional
lattice.

As we see, the parameters a, enter explicitly into the hamiltonian
and play the role of coupling constants characterizing the strength of the
interaction between spins located at different sites. The parameters fq
do not appear explicitly in the hamiltonian. They are included in the
definition of the generators, characterizing the representations in which
they act. They are related to the “spins” of infinite-dimensional irreducible
representations of the algebra sl(2) which can be realized in the spaces of
all analytic functions regular near the origin. In these spaces there exist the
vectors of lowest weight |0), = 1 such that S;|0), = 0. The eigenvalues of
the operator for the z-projection of the spin S2 on |0) is ~f,, so that f, is
the spin of the irreducible representation of the algebra s1(2) with opposite
sign. This is confirmed by the fact that the eigenvalues of the Casimir
operator S2 on |0}, are (—fa)(—fa + 1). The representations (5.1.55) are
infinite dimensional, owing to the absence of a vector of highest weight,
i.e., an analytic function, regular near the origin, on which the operator S}
would give zero.

The models of magnetic systems of the type (5.1.60) are not local spin
systems. In the hamiltonians of these systems each spin interacts with all
other spins, L.e., there is a long-range force and the situation is apparently
a typical semi-classical one. This is also confirmed by the fact that the
complete integrability of these models is related to the solutions of not
the usual quantum Yang-Baxter equation (the triangle equation), but the
so-called classical triangle equation arising in the limit A — 0. Remember
that the quantum scattering matrix S,5(A) is related to the classical matrix
Xaﬁ(/\) as

Sup & 1+ hXap(A). (5.1.61)
The classical triangle equation for the matrix X,g()) has the form

(Xap(A1), Xgy(A2)] + [Xpy(A2), Xya(As)]
+[X70()\3),Xaﬂ()\1)] =0, MAM+A+2r3=0. (5162)
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It is known that the operators related to the solutions of this equation as

N
!
ha =Y Xap(as —ap) (5.1.63)
=1
commute with each other and can be interpreted as hamiltonians of a

certain completely integrable model. It is easily seen that the operators

SaSp
)

Xap(A) = (5.1.64)
satisfy the equation (5.1.62). The substitution of (5.1.64) into (5.1.63) gives
us the hamiltonians (5.1.60) obtained above by other methods.

We have therefore succeeded in relating the non-degenerate generalized
MPS equations (5.1.5) to magnetic systems based on algebras of the form
sl(2)® ... P sl(2). We see that, by solving the spectral problem for these
systems, we can obtain an exhaustive amount of information on the spectra
of the associated exactly and quasi-exactly solvable systems.

So far we have considered only the non-degenerate case. It can
be shown that an analogous correspondence holds also when degeneracy
is present, but in this case the magnetic systems are based on other
(contracted) Lie algebras. As before, the hamiltonians of degenerate
magnetic systems can be obtained from the Gaudin operator K(A) defined
by (5.1.16). The operators S*(A) and S°()) entering into (5.1.16) satisfy
the same commutation relations as in (5.1.14). However, in the degenerate
case the form of these operators is different from (5.1.54) and is determined
by the form of the function F(A).

We know that any rational function F(A) can be represented as the
sum

N
F) =Y far*(X) (5.1.65)

in which 7*(A) are certain elementary rational functions. According to
(5.1.54) the generators of the Gaudin algebra must have the same functional
structure as F(A) and therefore can be sought in the form

N
SO =) 8ar* (V) (5.1.66)

a=1

where S, are certain unknown operators.
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Now note that elementary rational functions satisfy the following
conditions

o N
r(A) = rf () _ S g P () () (5.1.67)
A=p By=1

where Cg. = CFj are certain structure constants. Substituting (5.1.66)
into the commutation relations (5.1.14) and using (5.1.67) we find the
commutation relations immediately for operators S,:

N
[S2.551 = —2) Cl,S5,
y=1
N
(S5, S%] = F)_Cl,8%, (5.1.68)
y=1

from which it follows that they form a finite-dimensional Lie algebra L’
being a contraction of the algebra L (5.1.57). Substitution of (5.1.66) into
the Gaudin operator K () leads to the expression

N
KM= ) {55 - %SISE - %S;S;}r“(/\)rﬁ(,\) (5.1.69)

a,f=1

which is bilinear in generators S, and can again be interpreted as a
generating function for the hamiltonians of a certain magnetic system.

5. Hidden symmetry of Gaudin models. We have already mentioned
that the phenomenon of quasi-exact solvability is a consequence of the
presence of a degeneracy in the system of spectral parameters. For example,
the degeneracy of the spectral parameter ¢, defined by (5.1.12), relative to
the other spectral parameters entering into the function w(X) leads to the
existence of quasi-exactly solvable models of order equal to the degree of
degeneracy. The parameter ¢ is the eigenvalue of the operator

K = lim MK ()) (5.1.70)

and, therefore, in order to find the symmetry related to this degeneracy
we should consider operators which commute with K, but not with each of
K () separately. To find such operators, note that K can be represented
in the form

K=5§.8 (5.1.71)
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where

§::PU1XQA) (5.1.72)

Using (5.1.14) it is easy to demonstrate that the operators S form the
algebra sl(2):

[S—,5%] 259,
(80, 8%] = +5%, (5.1.73)

and thus, K in (5.1.71) is the Casimir operator for this algebra. From the
same commutation relations (5.1.14) it follows that K commutes with all
operators of the form

K(v,p) = S(v)5(u) (5.1.74)

where v and p are arbitrary parameters. At the same time, the operators
(5.1.74) do not commute with the Gaudin operator K(}A), if v # pu.
Therefore, the operators K(v,u) can be viewed as generating functions
for the generators of the algebra associated with the hidden symmetry
responsible for the degeneracy. Attempts to make this algebra closed
convince us that it is infinite dimensional. This suggests that we have
constructed not the symmetry algebra Lsym, but its universal enveloping
algebra U(Lsym). The transition from U(Lgym) to Lsym can easily be
realized if we use differential representations of the generators of the Gaudin
algebra given for the non-degenerate case by (5.1.54). Substituting them
into (5.1.16) we obtain

N tatﬁ(a—?: - 5%;)2 + Q(fatﬁ - fﬂta)('a_?: - %)
KW= 2, O~ 2~ ) ‘

a,f=1

(5.1.75)
Taking
to=—-24, a=1,...,N—1,
InN=z1+...+TN_1+cTy, (5.1.76)

where c is an arbitrary parameter, it is not difficult to see that the operators
K () rewritten in terms of new variables z, do not contain derivatives in
zp. Therefore, zx can be considered as an external parameter which can
be excluded from consideration by taking ¢ = 0. This does not lead to loss
of generality. Using (5.1.76),(5.1.75) and (5.1.70) we find

N-1 2 N N-1
. 0 0
K = E Iub;— +2 E fa E (E/‘aT, (5177)
K a=1 u=1 H

p=1
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while the expression for K()) becomes

=32 5 o () (o).

a,f=1 p,v,A,p=1

(5.1.78)

Obviously, the operator K commutes with all operators z, a which form
the algebra gi(N — 1). We know that gI(N — 1) can be represented as a
direct sum of the algebra gl(1), with the generator

N-—

sy

e}
xué-x_;) (5179)

u=1

and the algebra sl(N — 1), with generators

4} 0 0
{I} = {zu%, p#E v 3#5;—; —Zu4 ——ax“+1} . (5.1.80)
Therefore, we can write
N
K=J%+2 (Z fa> J,  Jegl(l) (5.1.81)
a=1
and
il 1
K =
O = 2 Gt

N(N-2) N(N-2)
x4 S ARLL+ ) AlgLJ+ Aawgl?y,

i,k=1 i=1
Jeg(l), Les(N-1). (5.1.82)

From (5.1.81) and (5.1.82) it follows that the role of the symmetry
algebra Lsym for the operator K is played by the algebra sl(N — 1),
the irreducible representations of which are realized in the spaces of
homogeneous polynomials in zi,...,zny-1. These representations are
characterized by the signatures (M,0,...,0) and their dimensions are
equal to %%5),—', where M = 0,1,2,... are the orders of homogenous
polynomials. The same obviously remains valid for the degenerate case,
since the generators I; of the algebra si(N — 1) do not depend on the
parameters of the system a, and f, entering into the function F(A).
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This completes the procedure of finding the symmetry algebra Lgym
responsible for the phenomenon of quasi-exact solvability of models
associated with the generalized MPs equation (5.1.5).

6. The classical electrostatic analogue and the magnetic
monopole. In the preceding subsection we discussed group-theoretical
properties of quasi-exactly solvable models associated with the degenerate
function

FQ) = Z Py (5.1.83)

Here we consider the same models from the point of view of their classical
interpretation.

Following the general prescriptions given in chapters 1 and 2, we
start with the system of numerical equations describing a distribution of
wavefunction nodes §;. According to formula (5.1.31), these equations have
the form

f:' ! +§: fa _g i=1,....M (5.1.84)
k::lgj_ék a:lgj_aa ’ T - o

where a, and f, are, in general, complex numbers:
Gy = A1o +i82a, fo = fia +1if2a- (5.1.85)
Therefore, £; should also be taken to be complex:
& =&y +16o;. (5.1.86)

Substitution of (5.1.85) and (5.1.86) into (5.1.84) leads to a system of real
equations, which can be written as

ZI f] fk

k=1 |f] flcl2
_aa
+}:f1w 2 £ 3 éf Limda g,
IgJ al a=1 .—a‘ai
j=1,...,M, (5.1.87)

where & = (€15,€2;) and aq = (a1q4,d24) are real two-dimensional vectors,
and £ is the matrix rotating the vectors by 90° counterclockwise. Equation
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(5.1.87) can be interpreted as the condition for an extremum of the function
M M

WE, ) == saln|§ - &| - Y aUE),  (5.189)
i<k i=1

where ¢; = 1 are unit numbers and

N N
UE) == fraln|f = da| = 3 frap(€ - @), (5.1.89)
a=1 a=1

Here go(g) is the angular coordinate of the vector £ Tt is not difficult
to see that (5.1.89) is none other than the potential of a two-dimensional
(logarithmic) Coulomb system consisting of M particles with coordinates
E_; and unit charges ¢; = 1 moving in the potential U (6:) The latter 1s
generated by N stationary particles with coordinates ag and two types of
charge: ordinary electric charges f1,, and magnetic charges fo, creating a
vortex electrostatic field. It can be verified that f;, and fo, do actually
correspond to electric and magnetic charges by writing down the potential
produced by a single particle located at the origin,

-

U= s fé] + 200, (5.1.90)

and noting that this potential can be obtained from the equations of (2+1)-
dimensional magnetoelectrodynamics

al‘Fw, = jy7 al‘Fl’: =g, (5191)
with
1
Fuy =044, —8,A,, Fi= §EMF"* (5.1.92)

in the static limit. In fact, taking

g~ f26(€]), o~ F6(E]), Jr12=0, (5.1.93)

and finding the static solution of (5.1.91) in the class of functions of the
form

Ag=U, Apz=0, (5.1.94)

we obtain (5.1.90).
We therefore see that the problem of finding a solution to the system
of algebraic equations (5.1.84) is equivalent to the problem of finding the
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equilibrium positions of a system of Coulomb particles moving in the field
of stationary dyons (i.e., particles having both an electric and magnetic
charge). In general, this problem is quite complicated. However, in the
special case in which the parameters a, and f, either are real or are
complex conjugate pairs (we recall that this is the condition for the quantum
mechanical potential to be real) it simplifies considerably. In fact, the
presence of a Zy-symmetry in the system leads to the existence of a straight
line (coinciding in the present case with the real A-axis) on which all the
Coulomb forces (from the stationary dyons) are longitudinal. The problem
of the equilibrium of the particles moving on this line therefore becomes
one dimensional, which allows us to seek solutions for (5.1.84) in the class
of real numbers.

5.2 Partial separation of variables

In this section we formulate a simple Lie-algebraic method for constructing
quasi-exactly solvable models. This method, which we shall refer below
to as “the method of partial separation of variables”, i1s based on the
observation that any completely integrable quantum system satisfying some
special symmetry conditions can be reduced to a class of quasi-exactly
solvable equations of one- or multi-dimensional quantum mechanics.

In order to understand the essence of this method, it i1s reasonable
to start our discussion with the quasi-exactly solvable models described in
chapter 4. These models are distinguished by the fact that they admit total
separation of variables and occupy an intermediate position between one-
dimensional multi-parameter spectral equations and multi-dimensional one-
parameter spectral equations describing some completely integrable system.

Let us denote by E(n,m) a spectral linear differential equation of
dimension m involving n spectral parameters. From the results of chapter
3 we know that any multi-parameter spectral equation of the type E(N,1)
is related to some completely integrable system of one-parameter spectral
equations of the type E(1,N).

This relationship has been discussed in section 5.1, where we
constructed the completely integrable model associated with the multi-
parameter spectral equation (5.1.28). Remember that this equation being
of the type E(N,1) involves N spectral parameters ey, ..., exn, admitting
two kinds of degeneracy: 1) the infinite degeneracy of the combination Fy =
e1+...+en, which is equal to zero for all solutions of equation (5.1.28), and
2) the finite degeneracy of the other combination Fy = aje; + ...+ anen,
which only depends on M and thus takes the same values for solutions
having equal quantum number M. The remaining N — 2 parameters are
non-degenerate and take different values for different solutions.
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We demonstrated that the system of completely integrable equations
E(1, N) associated with equation (5.1.28) is nothing else than the Gaudin
model based on the Lie algebra s{(2)&. . .@s(2) (N times) and characterized
by N commuting integrals of motion h1,...,Axy which are the coefficients
for the pole terms (A — a;)71,...,(A — an)™! in the expansion of the
generating function K (X). The eigenvalues of these operators coincide with
the admissible values of spectral parameters £1,...,e5. Therefore, the
spectrum of the operator Hy = hy + ... + hy consists of a single infinitely
degenerate zero eigenvalue Fo.2 The spectrum of the operator H; = ajh; +
...+anhy has a finite degree of degeneracy. We explained this degeneracy
as the consequence of the hidden sl(N — 1) symmetry presenting in the
Gaudin model and realized in the form of finite-dimensional representations.

In this language the gquasi-exactly solvable models studied in chapter 4
can be considered as equations of the type E(3, D — 2} with three spectral
parameters, one of which is identically zero and can be excluded from the
consideration; another has a degenerate spectrum and should be included in
the potential, while the last one having a non-degenerate spectrum plays the
role of the energy. One can say that quasi-exactly solvable equations occupy
an intermediate position between equation (5.1.28) and the corresponding
Gaudin model.

Indeed, on the one hand, they can be obtained from (5.1.28) by
means of an incomplete inverse procedure of separation of variables which
only eliminates D — 3 of D — 1 superfluous spectral parameters. Such
a method for conctructing quasi-exactly solvable models we discussed in
detail in chapter 4. On the other hand, we see that quasi-exactly solvable
models can be obtained immediately from the Gaudin model by means of
an incomplete but direct procedure of separation of variables in it. This
procedure eliminates two degrees of freedom in the Gaudin model and leads
to the appearance of two additional spectral parameters playing the role
of separation constants. It is not difficult to see that the reducibility of
the Gaudin model to quasi-exactly solvable models can be explained as
a consequence of a global sl(2) symmetry in the Gaudin model which is
responsible for the partial separation of variables.

In order to demonstrate this fact, let us consider again the

2 Note that for v # O the operators hj,...,hy are linearly independent and their
sum is a non-zero operator having zero eigenvalue. If v = 0 the operators hy,..., hx
become linearly dependent and their sum is identically zero. This does not mean that
the model ceases to be completely integrable, because for zero value of « there exists the
large- limit of expressions AS(}), so that the model acquires an additional global si(2)
symmetry with generators § = Lim AS{)) (see section 5.1). In this case, the role of the
Nth integral of motion can be played by any element 5 of this algebra.
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representation of the Gaudin algebra given by the generators

SO = /\ S (5.2.1)
and characterized by the lowest-weight function
FO) = ‘Z: o (5.2.2)
a=1 A= aq
Remember that the operators
K(\) =S50S0 = Z (5.2.3)

o f= 1()\—aa (/\—-ap)

possess global s1(2) symmetry whose generators are

N
=Y 5, (5.2.4)

a=1

and the lowest weight of the corresponding representation is

N
F= Zfa. (5.2.5)
a=1

Obviously, in the general case, this representation is infinite dimensional.

Using commutation relations (5.1.14) of the Gaudin algebra, it is not
difficult to prove that the Bethe solutions (5.1.20) of the Gaudin spectral
equation

K(A)¢ =w(A)g, ¢ € W{F(N)} (5.2.6)
have the following remarkable property:
STém=0, S%m=(F+M)u, (5.2.7)

which enables us to regard the Bethe solutions as the lowest vectors of
representations of the symmetry algebra with lowest weights F+ M, M =
0,1,2,....

Let us now denote by ®ar{F} the spaces that consist of all vectors
¢ € W{F(A)} that satisfy the conditions

S"¢=0, 5% =(F+ M)é. (5.2.8)
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It follows from the commutativity of the operators K(A) and S that if
¢ € ®p{F}, then also K(A\)¢ € @y {F}. Therefore, the spaces ®p{F}
are invariant with respect to the action of the operators K (). Accordingly,
the spectral problems

KE(\)¢ = w(N)g, ¢ € Py {F}, (5.2.9)

are defined for all M =0,1,2,....

It is readily seen that the spaces ®pr{F} are finite dimensional. To
prove this, we consider the auxiliary spaces ®4,{F}, which are formed from
vectors that satisfy only the second equation (5.2.8). It is obvious that the
basis in ® 7 {F} is supplied by vectors of the form

St ...SE.10), o1,...,am=1,...,N. (5.2.10)
The number of such vectors determines the dimension of ®%,{F}, which is
. M+ N-1)
Since
Sy {F} C Oy {F}, (5.2.12)
it follows that
dim @3 {F} < dim 4, {F}. (5.2.13)
Using the first condition in (5.2.8), we find that
. . . M+ N -2)!

It follows from this formula that for each M the spectral equations (5.2.9)
have precisely (M + N — 2)![(N — 2)!M!]~! solutions.

In accordance with equations (5.2.7), the Bethe solutions of the
Gaudin equation (5.2.6) belong to the spaces ®{F} and are therefore
simultaneously solutions of the finite-dimensional spectral problems (5.2.9).
To resolve the question of the completeness of these solutions, it is sufficient
to count the number of admissible sets of numbers &, that satisfy the
equation (5.1.31). It follows from analysis of (5.1.31) by the Coulomb
analogy method that for given M the required number is also equal to
(M + N - 2)!(N - 2)!M!]"'. From this we conclude that for all M
all solutions of equations (5.2.9) are completely described by the Bethe
formulas (5.1.19) and (5.1.20) or, equivalently, by formulas

M N S+
¢=om()=]] (}: E——_"—a:) [0) (5.2.15)

=1
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and

w(Ad) =wy(A) =
N fa M . N fo M 1,
a=1 a i=1 : a=1 @ i=1 ¢

with &; satisfying the system (5.1.31).

Now our aim is to show that equations (5.2.9) can be reduced to the
form of quasi-exactly solvable second-order differential equations. This can
be done by means of the projection method described in chapter 1 or, in
other words, by means of a partial separation of variables in these equations.
The first step which should be made is to rewrite all generators entering into
the definition of the operators K () and spaces ®,r{F} in the differential
form.

In previous section we have considered a differential realization of the
generators of the algebra sl(2) given by formulas (5.1.55). Here we consider
another, more convenient differential realization of these generators. It can
be obtained from (5.1.55) by means of the Fourier transformation and is
given by the formulas

8 . 8 3
T = — =ty o ot — afa- 2.1
Sa B, Sa 5. + fa, ST 3L + 2t fo. (5.2.17)

It is worth stressing that all generators in (5.2.17) are first-order differential
operators, which is especially important for the applicability of the
projection method described in section 1.9. As before, generators (5.2.16)
realize representations with lowest weights f,. The unit function plays the
part of the lowest vector: |0) = 1.

Substituting (5.2.16) into (5.2.3), we see that K(A) take the form of
N-dimensional differential operators of second order:

2
N (e 1) 5i25n, + Ata — ta)(farey — fomes)

IOERY

2 (N = a2)(A — ag)

(5.2.18)

Accordingly, equations (5.2.9) become differential equations. 1In the
considered non-degenerate case, their solutions given by formulas (5.2.15)
take the form

M N
¢ = H (Z ta(0/0t) +2f“t“> 1, (5.2.19)

m=1 o gm ~ Oa

i.e., they are homogeneous polynomials in ¢1,...,tx of degree M.
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The simplest way to describe the spaces ®pr{F} to which these
polynomials belong is to solve explicitly equations (5.2.8). Using formulas
(5.2.4), (5.2.5) and (5.2.17), we can rewrite equations (5.2.8) in the
differential form:

<§1 55) #=0 (;z:ltag‘t:) ¢ =M. (5.2.20)

The general solution of this system can be represented in the factorized
form

¢ =om¥, (5.2.21)
where
ou = (ty-1 —ty)M (5.2.22)
is a particular solution of the system (5.2.20), and
ty —In tN-z—tN>
= e 5.2.23
v=v (tN—-l —ty tny-1—tN ( )

is the general solution of the homogeneous system. As we see, this solution
depends effectively on only N — 2 variables:

to —tN

= TN -1, N-2 (5.2.24)
tN-1— 1IN

xa
The fact that (5.2.21) belongs to ® s {F'} restricts the arbitrariness in choice
of the functions ). These functions must be polynomials of degree M in
the variables z,. We denote the space of such polynomials by ¥, Since
®pr{F} is invariant with respect to the action of the operators K (), the

result of applying K(A) to ¢aryy (where ¢ € Wyr) must again have the form
émy (where ¥ € Upy). Therefore

KE(Momy] = omEn(A)¢, (5.2.25)

where Kpr(A) is some (N — 2)-dimensional differential operator of second
order that acts only on the variables z, and can be viewed as a projection
of K(A) onto ®r{F}. This operator can be represented in the form

N-2 52
Km()) = Z Pas()\, M, f)m
a,f=1 @

N-2
. 0 .
+ ; Qa(M, M, z)%: + Ras(A\, M, &), (5.2.26)
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where P, (@ and R are polynomials in zy,...,zx5_5 of degrees 3, 2, and 1,
respectively. Substituting (5.2.21) into (5.2.9) and using (5.2.25), we find
that the spectral problems (5.2.26) are equivalent to differential spectral
equations

KuyNy =wu(N)p, ¢ €¥y. (5.2.27)

Now denote by W the set of all analytic functions of the variables
z1,...,2N-2. Then it is obvious that the equations

KuNY =wn(N)y, +e¥ (5.2.28)

with Kpr(A) defined by formula (5.2.26) can be regarded as quasi-exactly
solvable second-order differential equations. Foreach M =0, 1, 2,..., they
have (M + N — 2)![(N — 2)!M!]~! exact solutions, which lie in the class of
polynomials of degree M and are described by Bethe formulas.

Thus we have essentially formulated a new method for constructing
quasi-exactly solvable spectral differential equations. We see that the
operators Kps(A) commute with each other,

(Kar(N), Kar ()] = 0, (5.2.29)

and the number of independent “hamiltonians” associated with Kpr(A)
is N — 2. The coincidence of the number of commuting “hamiltonians”
with the number of variables in second-order differential equations (5.2.28)
means that each of these equations admits a total separation of variables,
and thus, the constructed quasi-exactly solvable equations coincide with
those that have already been discussed in detail in chapter 4. In other
words, in the case of the Gaudin models associated with algebra sl(2), the
method does not give new quasi-exactly solvable equations.

Fortunately, the class of completely integrable Gaudin models is not
exhausted by the s{(2) case. It is known that any simple (or semi-simple)
Lie algebra L generates a set of Gaudin models that can be solved exactly
within the Bethe ansatz. The integrals of motion for these models (the
hamiltonians) can be represented as certain multi-dimensional second-order
differential operators. Each such hamiltonian admits a global symmetry
algebra which coincides with the generating algebra £. The generators of
this algebra can be realized as the first-order differential operators acting
in the same functional space as the corresponding hamiltonians. Collecting
all these facts, we can easily see that they together form the condition of
the partial separability of variables in the generalized Gaudin model. This
allows one to assert that the reasonings given above for the si(2) case can
be extended to the general one, so that starting with the general Gaudin



Some properties of simple Lie algebras 347

models and performing in them the procedure of partial separation of
variables we can obtain wide classes of new quasi-exactly solvable models of
quantum mechanics. The detailed description of this generalized reduction
procedure will be given in the following sections.

The discussion is organized as follows. Sections 5.3 and 5.4 are devoted
to the discussion of some properties of simple Lie algebras that are needed
for the formulation of the approach in the general case. In these sections,
much attention is devoted to the algorithms for constructing differential
realizations of representations of Lie algebras and the choice of a special
basis convenient for exact solution of the generalized Gaudin models. In
section 5.5 we give the solutions for the models of Gaudin magnets in the
framework of the algebraic Bethe anzatz. In section 5.6 we formulate the
method of reduction of the Gaudin problems to multi-dimensional quasi-
exactly solvable differential equations, and in section 5.7 propose a simple
method for reduction of obtained equations to the Schrodinger form. In
the final section 5.8 we discuss the possibility of dealgebraization of the
reduction procedure.

5.3 Some properties of simple Lie algebras

1. Cartan-Weyl basis. Let L, be a simple Lie algebra of rank r
and dimension d, and I,,¢ € ., be basis elements of it satisfying the
commutation relations

[, I] = Y T%1e a,beQ,. (5.3.1)
c€l,

From the practical point of view, it is most convenient to take the Cartan—
Weyl basis, which is based on the decomposition

Lr=LrdLlDL]. (5.3.2)

We denote the elements of the ((d, — r)/2)-dimensional subalgebras £*
by I, a € A%, where A¥ are the sets of positive and negative roots o
of the algebra £, . We denote the elements of the r-dimensional Cartan
subalgebra L8 by I;, i € N, , where N, is the set of numbers 1,...,r. Thus,
the d,-element set of indices that label the basis elements of the algebra £,
can be represented in the form Q, = A7 UN, UA}.

The most important commutation relations in the chosen basis are

[I;, I} = (o, m)]s, i€ N, a € AL (5.3.3)

Here, 7;, ¢ € N, are simple roots.
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In the algebra £, we introduce the bilinear form {I,, I;), which satisfies
the subsidiary condition

([Ia,Ib]aIc) = (Ia,[Ib;IcD- (534)

Such a definition fixes the form only up to a factor. We choose this factor
in such a way as to satisfy the requirements

(Ii, I) = ik, {LasIp) = €ap, (5.3.5)

where v;x = (m;, 7 ) is the matrix of scalar products of the simple roots (it
is non-degenerate by virtue of the linear independence of the set =;), and
€qp is the matrix whose elements are unity for o + 8 = 0 and zero in all
the remaining cases. In what follows, the matrix

9ab = (Lo, 1) (5.3.6)

will play the part of a metric tensor (obviously, non-degenerate), which will
be used to raise and lower the indices that label the elements of the algebra
L,. For example,

L= gal. (5.3.7)

e,

If equation (5.3.7) is written out in terms of its components, it takes the
form

I; = Z 'yika, Iyio =172, (5.3.8)
keN,

The metric tensor (5.3.6) (which differs from the Killing—Cartan tensor
only by a factor) is convenient in that its components g4 do not depend on
whether the generators I, and I are regarded as elements of the algebra
L, or some subalgebra of it. It is obvious that this does not apply to the
inverse tensor and to entities with superscripts. Bearing this in mind, but
not wishing to burden the text with redundant notation, we shall retain
for the elements conjugate to I, the same notation I? irrespective of the
method of conjugation that is used — with respect to the algebra or a
subalgebra of it. Of course, we shall attempt to make it clear from the
context which particular case we have.

Equations (5.3.3)-(5.3.5) make it possible to recover uniquely all the
commutation relations in the algebra £, not yet given. They have the form

[Ii) Ik] = Ov Z5k € Nr 3 (539)
IayI-a] = Yien.(a,m)z’, a€ A%, (5.3.10)
Ia,Is] = Toaplazs, o,BE€AE, a+8c A (5.3.11)
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where I' g are calculable structure constants.
We define the quadratic Casimir operator as follows:

K=Y I°L, (5.3.12)
a€fl,

or, with allowance for the commutation relations (5.3.10),
K= Y Flhi+ 3 (m)]+2 3 17 (5.3.13)
‘€N, aeat agat

Since

dYoa=)Y vim (5.3.14)

(where v' is a certain set of non-negative integers that characterize the
algebra £,), we have

Er=Y ('+W)L+2 ) I°L. (5.3.15)

iEN; acat

The representations of the algebras £, with highest weight are determined
as follows:

L]0) = Agi|0), i€ N, ; (5.3.16)
L0y =0, a€ A} (5.3.17)

The set Ag; is called the highest weight, and |0) is called the highest vector.
Let M?, i € N,, be a set of non-negative integers. We denote by |M) the
linear hull of vectors of the form

Ioy . I l0), au,...,ax € AT, (5.3.18)

in which ey + ...+ ax = =) iy, Mim;. Obviously, the spaces |M) are
eigenspaces with respect to the elements of the Cartan subalgebra:

LMY = (Agi — Mp)|M). (5.3.19)
The linear hull of all such spaces,
W{Ao} = ®umolM), (5.3.20)

forms the representation space of the algebra £, with highest weight Ag.
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2. Realization of representations of Lie algebras in the form of
differential operators. We have already mentioned that in our scheme
a decisive role is played by the possibility of realizing representations
of Lie algebras in the form of first-order differential operators. There
exists an opinion that the construction of such realizations is a rather
complicated matter. This is not all so. The general principles of the
construction are rather simple, although the algorithms described in the
literature are not always carried through to explicit formulas, especially for
the higher algebras. We shall attempt to fill this gap by constructing explicit
expressions for differential operators which realize arbitrary representations
of arbitrary simple Lie algebras.
Let G, be the Lie group of the Lie algebra £, and let

9(z) €G,, z € Ry, (5.3.21)

be the elements of the group, parametrized by the vectors z = {z°},a € .,
of the d.-dimensional space R4 . We choose the parametrization in such a
way that the following equations hold:

9(0) =1, (5.3.22)
99(z)

o =1, (5.3.23)

r=0
where I = {I,},a € Q,, are the generators for the algebra £, that we

introduced earlier. One of the possible methods of parametrization consists
of the choice

9(z) = exp(zI), (5.3.24)

but this method is not unique and, as we shall see later, not the most
convenient. Actually, the general scheme that will be presented in this
section does not depend on the particular method of parametrization.

For the elements x,y of the space R; we define the binary operation
z+y in accordance with the formula

9(z)g(y) = g(z+y). (5.3.25)

This operation, for which we have choosen the symbol + (not to be confused
with the direct sum, for which the symbol & is reserved), possesses the
following properties:

(a) for all z,y,z € Ry,

z+(y+2) = (z+y)+z; (5.3.26)
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(b) for all z € R, there exists a zero element 0 € R4, such that
40 =04z =1z (5.3.27)

(c) for all z € R4, there exists a unique inverse element (—z) € Rq, such
that

zi(~z) = (“z)dz = 0. (5.3.28)

In what follows, in place of z4(—y) we shall simply write z—y. It is
readily verified that

~(z+y) = —y—=z. (5.3.29)

If the conditions (5.3.22) and (5.3.23) are satisfied, the point 0
corresponds to the usual zero of the space Ry.. In the general case,
—~z # —z, although for some parametrizations (see, for example, (5.3.24))
the equation —¢ = —z can hold. For commutative groups, we have
z+4+y = &4y, i.e., in this case the binary operation that we have introduced
can be identified with ordinary addition of vectors in Ry, .

Let ®, be the space of functions on the group G, and let

é(z) € @, z € Ry, (5.3.30)

be the elements of this space. We define the operators §(g),e € Rg,, which
are linear on ®,, by means of the formulas

i(€)d(z) = g(z+e). (5.3.31)
It follows from this definition that
g(e2)gler) = §lerter), (5.3.32)

i.e., the operators §(¢),e € R4, , form a representation of the group G,. In
accordance with the formulas (5.3.22) and (5.3.23), we have

§(0) = 1; (5.3.33)
04(z) :
=1, 5.3.34
BZ‘ =0 ( 3 )
where [ = {I.},a € Q,, are the generators of the corresponding

representations of the algebra £,. Differentiating (5.3.31) with respect to
¢ and setting € = 0, we find
0

I= T(x)éz, (5.3.35)
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where

T(z) = ge ® (z+€)|e=o- (5.3.36)

For further simplification of equations (5.3.35) and (5.3.36), we note that
any vector of the space R4, can be represented in the form of the expansion
¢ =z 424zt (5.3.37)

where z* = {2*},a € A%, and 2° = {z'},i € N,, are the vectors of

dlmensmns (dr — 7)/2 and r associated with the generators Iy = {[,},a €
A% and Iy = {;},i € N,, of the algebra £, in the Cartan-Weyl basis.

Equations (5.3.35) and (5.3.36) can now be rewritten in the form

0 0

s oy 0 N R
=T (:c)(,):C +T (:c) +T (z)ax+, (5.3.38)
where
T*(z) = —®(x+€) le=0; T”(z)z—(.f—g@(x+s)°|5:o. (5.3.39)
It follows from the obvious equation
zte = {27 +H[z"+(zt ) 7]}
+{e (e 4+e)°) + {(zt +e)T) (5.3.40)
that
(z+e)* = (zF+e)F;
(z+€)° = =24 (zt+e)% (5.3.41)
(z+e)” = z74+[z%(zT4¢)7]".
Therefore
g .
T*(z) = 5;‘33( t4e)te=o;
T(z) = %@(rﬂs)"k;m (5.3.42)
~ 0
() = 5@ (e et )T Hem

We see that the matrices 7% (z) and T%z) depend only on the variables
zt. Therefore, considering the action of the operators (5.3.38) on the class
of functions of the form

¢(z) = exp(z°Ag)y(zt), (5.3.43)
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we obtain
Texp(z®Ag)wb(zt) = exp(2®Ao)I(Ag)y(z). (5.3.44)
The operators
I(Ao) = E*(a? ) 5.7 0 — +1(z+) Ao, (5.3.45)
in which
N I3} .
") = 3% ® (2 4¢)°)c=0 (5.3.46)

act on the space of functions of the (d, — r)/2 variables zt, are
inhomogeneous first-order differential operators, and realize a certain
representation of the algebra L£,.. To identify this representation, we note
that by virtue of the obvious formulas

+H\0 _
Bet ® (=7 +e ) . =0,
S o@r ey =1, (5.347)
8 O e0=0
we have
- P a
o (at )
L (Ao) = 5(27) 5 (5.3.48)
P . 0
Io(Ao) = &5 (=) 5 + Ao (5.3.49)
- . a .
— ft(pt 0 +
I_ (Ao) = t_ (IIZ )ax+ +t_(I )Ao (5350)

Therefore, the operators (5.3.48)—(5.3.50) describe a representation of the
algebra £,, with highest weight Ag. The unit function |0) = 1 here plays
the part of the highest vector. It is readily seen that the operators (5.3.48)-
(5.3.50) can also be obtained as infinitesimal operators of the representation
Gr(Ag) of the group G, determined by the formula

dle, Aoy () = exp[(z+e)° Aoy [(zTHe) ). (5.3.51)
In what follows, we shall frequently need to work with the operators
N

I(AL,.. AY) = Ef(AA)

= i;{ a++t°(:cA)AA}, (5.3.52)
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which realize a representation of the algebra £, on the class of functions that
depend on N vector variables. By analogy with (5.3.51), these operators
can be interpreted as the infinitesimal operators of the following group
transformations:

i(e, Ay, ... AT, 2h)
N
= exp{Z(zj{—i—a)OA‘g}
A=1
x  PlzT+e)t, .., (h4e)T) (5.3.53)

If we choose as the highest vector the unit function [0) = 1, then the highest
weight will be A} + ... + AY. However, in what follows we shall need to
consider representations of the algebra of operators (5.3.52) with arbitrary
higher weights, which can be written in the form Aj+...4+AY — M. In this
case, which form can the highest vector |0) have? To answer this question,
we must solve the system of equations

L (AS, .. A )Y =0

N
LA, ..., AN Yy = (Z AL — Mo) " (5.3.54)
A=1

for the functions 1. Essentially, we must find functions ¢ invariant with
respect to transformations of the subgroup g(e*,0,...,0) and transforming
homogeneously (with the addition of the factor exp(—£°M;)) under
transformation the subgroup §(¢°,0...,0):

wlaef+et)t, o (ef+et) ) =t 2h); (5.3.55)
l(ef + €9t (k4T = e Moy, ..., zt).  (5.3.56)
To solve (5.3.55), we use the equation
(zh+et)yt = 2t tet, (5.3.57)
from which it follows that
(shdet)o(ahtet) = sbdet Setlah =2t lab.  (5.358)
Thus, the functions 2} —z}; are invariant with respect to the transformation

g(et,0,...,0). The following combinations of them are functionally
independent:

CGa=zi-z}, A=1,...,N-1L (5.3.59)
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Therefore, the most general solution of equations (5.3.55) and (5.3.56) has
the form

¢ = ¢(C1a---,<N—1)- (5360)
We now consider how the components of the vectors (4 = {¢§}, @ € A},
change under a transformation of the subgroup g¢(,0,...,0). For the

components 4 = {3}, we have
(2342 = <% 425 +£0 = exp{—®(mo, @)}z5, (5.3.61)

where my = {m;}, i € N,. The components of the vectors (4 = z4—2zn
also transform homogeneously:

(3 — exp{—€’(mo, ) }(5. (5.3.62)

This means that all quantities of the form [(3*... (5] x [¢B! ... 557,
where a1+. . .+ax = f1+... 8L, ag, Bi € AF , are invariant with respect to
the transformations g(¢°,0,...,0). As functionally independent variables,
we can choose the following (N — 2)(d, — r)/2 variables:

Ca

"= { Tiew, (G

and also (d, — r)/2 variables of the form

(”,.)} a€AF, A=1,...,N-2, (5.363)

v= {Hiem({?f;—lﬂ(“’"‘) } a €A}, a#m, i€ N,  (5.3.64)
Introducing the notation
¢=CRy, P€EN,, (5.3.65)
we find that the functions
v=[[ (" ¥(n,v) (5.3.66)
1EN,

realize the most general solution of the system (5.3.55), (5.3.56). Any of
these functions can play the part of the highest vector for representation of
the algebra of operators (5.3.52) with highest weight A} + ...+ AY — M.

We now obtain explicit expressions for the matrices *(z+) and i°(zt)
under the assumption that the parametrization is gaussian:

g(z) = exp { Z %, } exp { Z in,-} exp { Z z"‘Ia} . (5.3.67)

a€Ay teN, aca?
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In this case, the equation for the matrices it (z*) and #°(2+) takes the form

exp { Z xili} exp { Z ¥y p exp{e®l,}

iEN, acat

= exp { Z ('L; + eatfz(:ﬁ')fi} exp Z (%4 + %% () I,

i€EN, acat
(5.3.68)
Applying the well known formula
1
exp(A+ B) = expA[Texp / drexp(—TA)B exp(TA)]
0
(5.3.69)

to the right-hand side of (5.3.68), expanding both sides in series in powers
of £%, and retaining only the first powers in £, we obtain after trivial
manipulations

ti(zt) = <exp (ad Z :L'O‘Ia> 1, Ii>, 1€ N,. (5.3.70)

aEA',"

With regard to the matrix ¢%(z%), it can be found from the system of
algebraic equations

t;‘(:c‘*)/(;1 d7'< exp (ad Z zﬁlg> Ia,17>

geat
= <exp ad > 2Ig L,,ﬂ>, a€Q,, veAT (5.3.71)
geat

We now note that the matrix

1
/ d7'<exp ad 7 Zxﬂlg IO,,I"'>, (5.3.72)
0

peat

which occurs in equation (5.3.71), will have triangular form if the roots
a and v are arranged in non-descending order of their heights. On the
principal diagonal of (5.3.72) there will be units. The determinant of such
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a matrix is equal to unity, and therefore its inverse matrix consists of the
minors. Since each minor is a finite polynomial in z® (this also applies to
the right-hand side of (5.3.71)), the matrices t*(z*) and t°(z*) will also
be polynomial in z¢.

The differential realizations of the representations of the algebra L,
that we have obtained are not particulary convenient from the practical
point of view, since some work is needed to reduce them to explicit form.
This is because the gaussian decomposition that we have used (and that
is also mainly discussed in the literature) is not completely suitable for
this purpose. In the following sections, we shall consider more convenient
decompositions, and on their basis we shall derive explicit expressions
suitable for any simple Lie algebra.

To conclude this section, we consider how the matrices {¥(z%) and
£9(z*) transform under homogeneous transformations of the components
of the parameter z7:

2% — exp{—€°(mp, @) }z*. (5.3.73)

Since each component z acquires a factor exp[—&®(mo, @)], the only non-
vanishing terms in the decomposition (5.3.72) will be the terms that acquire
the factor exp{~¢°[mg, (v — @)]}. This means that the components of the
considered matrices will transform as

t5(2*) — exp{~€*(mo, (o ~ O))}5(2*);
t?(l‘+) — eXp{—ao(er,a)}tg(;vi)’ﬁ } (5.3.74)

Similary, we can show that
t (z7) — exp{e®(mo, @)} (z). (5.3.75)

It follows from this that the differential operators Io(Ao),0 € A% and
I;(Tp),7 € N,, which realize representations of the algebra £, with the

highest weight Ay, transform in accordance with the rules

ta(Ao) — exp{e®(m, a)}fa(AO)) a € AF,
fi(AO) — ji(AO), i€ N,. } (5376)

5.4 Special decomposition in simple Lie algebras

We shall say that a simple root of the algebra £, is singular if it occurs in
the decomposition of any root with a coefficient whose modulus does not
exceed unity.

In figure 5.1 we give the Dynkin diagrams of the simple Lie algebras
and identify with black circles the vertices associated with singular simple
roots.
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1 1 1 1 1 1
Ar —0—@— ——0—@
2 2 2 2 2 2
B, &—O—0O— —O—-C—10
2 1 1 1 1 1
C, o—0O0—0— —O0—O0—=0

EGQ—O——E———O——O
1

11 1 1 1 1
E; @—0—0 I\ o—0
3

1 1 1
Es O O O
Fy, O—CT——0O—-©0

G, =0

Figure 5.1. The Dynkin diagrams with singular simple roots (black circles).

We see that for the algebras A, all the simple roots are singular, while
for the algebras Ez, Fy and G2 there are no such roots. In what follows,
we shall consider only algebras that have at least one singular root. These
are the algebras A.(r > 1), B,(r > 2),Cr(r > 3),D,(r > 4), Es, and E.
We shall call them the singular algebras.

The removal from the algebra £, of the extreme singular root (together
with all non-simple roots containing it) transforms the algebra into the
simple subalgebra £,_1. For example,

Ay — Ar_1, By — By, Cr — Ar_q,

/' Doy (5.4.1)
’ E; - E 3 E¢ — Ds.

\ A'r——l 7 6 6 5

In what follows, we shall ascribe the number r to the eliminated singular
root. We denote the sets of roots containing in the decomposition a root

D,
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with coefficients £1 by TF.

Singular roots are remarkable in that the elements I, associated with
the Toots @ € £F form commutative subalgebras, which we shall denote
by £4r. The commutativity of £, follows directly from the definition of a
simple root. It is obvious that

dim &y, = %(d, —dey —1). (5.4.2)

The algebras £4, are conjugate with respect to the bilinear form (5.3.6). For
the elements Ey, = {E4ra}, o € % of these subalgebras the following
normalization conditions are satlsﬁed

(Etr ® Exr) = 1, (5.4.3)

where I, is the unit matrix of dimension dim &,. Since the dimensions of
the Cartan subalgebras £0 and £2_, differ by unity,

£e=cL0 0H,, (5.4.4)

where H, is an element of £ that does not belong to £2_;. For unique
determination of this element, we require it to be self-adjoint with respect
to the form (5.3.6), and this is equivalent to the conditions

(H,,I,) = 0, i€ N,_q; (5.4.5)
(H, H) = 1. (5.4.6)

It is obvious that the element H, must commute with all elements of the
subalgebra £, .

Summarizing what was said above, we can conclude that for all singular
Lie algebras the following decomposition holds:

Lr= (6 ®H, ®E)® Looi, (5.4.7)

where €4, are commutative conjugate subalgebras of dimensions (d, —
dr_1 — 1)/2,H, is a self-adjoint element of the Cartan subalgebra, and
L,_1 is a simple Lie algebra.

The non-vanishing commutation relations in (5.4.7) have the form

[Lr1,Lrn] = Lroy, (5.4.8)
(L, 1,&,] = Eir, (5.4.9)
[Hy Exr] = Eir, (5.4.10)
[Eir, 6] = He®Lroy. (5.4.11)
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We now can write out these relations in more detail. For (5.4.8), we have

I, L)= > T4l abe Q. (5.4.12)
€1

The relations (5.4.9) can be rewritten in the form
(Lo, Ex,] = —1,(E4.)Esr, a € Qp_y, (5.4.13)

where 1, (£4r) are matrices that play the part of structure constants. Using
the Jacobi identity

(a, Exr], ) + ([Exr, L], L] + (I, La], E+r] = 0 (5.4.14)
and equations (5.4.12) and (5.4.13), we find

LaErr), H(Ex) = Y TL(Exr), abe Qs (5.4.15)
cENlr

Thus, the matrices fa(Sir), a € Q..1 , form representations of the
algebra L,_1 of dimension dim &4, and are realized in the spaces of the

commutative subalgebras &4, . It follows from the simplicity of the algebra
ﬁ:,-_l that

Spla(Exr) = 0. (5.4.16)

In addition, it is readily seen that

I(Esr) + i(s_,) =0, (5.4.17)

where the tilde denotes the transpose.

In what follows, we shall need only representations realized by the
matrices I,(€4,) in the subalgebra £, .. For their identification, we consider
equation (5.4.13) with the plus sign. Labelling the roots « € A} in
order of non-decrease of their heights, we see that in this case the matrices
fa(8+r), a € A7, have an upper triangular form, while the matrices
I (E4r), 1 € Ny_4, are diagonal. Therefore the role of highest vector will be
played by a vector of dimension dim &, for which only the first component
is non-zero. This means that the corresponding highest weight must be
determined by the result of commutation of the elements I;,7 € N,_q, with
the element &, corresponding to the positive root of the lowest possible
height. This is the root m,. From this we conclude that the highest
vector of the representation (5.4.15) will be an (r — 1)-dimensional vector
Yir, 1 € Np_1.
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Further, using equations (5.4.5) and (5.4.6), we find for the
commutation relations (5.4.10)

[Hr, Exr] = £Qr Eyr, (5.4.18)
where
Q- = (H,, I;). (5.4.19)
With regard to the relations (5.4.11), they can be written in the form
(Bir ® Bzl = 2Q - H, D — ) Ila(Esr). (5.4.20)
a€Q, .y

Here, I* is understood as the element that is the adjoint of the element
I, with respect to the bilinear form of the subalgebra £,.;. Applying to
(5.4.20) the relation (5.4.16), we obtain

[EtrEgr] = £R - H,, (5.4.21)
where
R, =Q, dim&,. (5.4.22)

We also introduce the important formula

QP+ >0 LEE) e I*(er)

GEQr—1
=P el + 3 LED oIl (5.4.23)
gEN 1

Here, the indices (1) and (2) identify the numbers of the spaces in which
the operators I, and [;(£4,) act. Finally, we write out the form of the
Casimir operator in the decomposition (5.4.7):

K, =H!+R.H. +E_ Ey. +K,_1. (5.4.24)

We now turn to the procedure for eliminating the singular simple roots that
separates from the algebra £, the simple subalgebra £,_; in accordance
with the scheme (5.4.1). Each resulting subalgebra contains its own singular
root, and therefore the elimination procedure can be continued. As a result,
we arrive at the possible chains depicted in figure 5.2.

We agree to label the simple roots of the algebra in such a way that
in each successive subalgebra along the chain the singular root has the
maximal number. As a result, we arrive at the decomposition

Ly =@;-1(6-: © H, © &4). (5.4.25)



362 Completely integrable Gaudin models

Ay — Ar1— Arp— - —> Az— Ay— Ay
B, — B,_1— By g— -+ — B3— By— Aj;
Cr - Ar—l—’ Ar-—2 — o~ A3—» A2—> Al;
Dy — Ari— Arg— o —  Az— Ay— Ay

L D o Dy
Ey — E¢— Ds— Ay— Az— Ay— Ay
D,
Es —_ D5—'> A4‘—’ A3——" Az"" Al.
D,

Figure 5.2. The chains of subalgebras corresponding to various schemes of
elimination of the singular simple roots.

Introducing the notation

& =D Hy, (5.4.26)
we can write equation (5.4.25) in a different way:
L, =8,__,&. (5.4.27)
The commutation relations in £, can now be represented in the form
£, &) =&, 0<]q < pl; (5.4.28)
Epé-l=®i__ &, 0<|q| (5.4.29)

To write out fully these commutation relations, we denote the generators
of the subalgebra £4, by E1,. Then we have

[th E:EQ] = quEiq§ (5.4.31)
~ p—-l ~
[Eip ® Egpl = 2QpHplp — ZHqu(gip)
-1
r—1 A p—lq .
~ D B Eyg(Exp) = Y ErgE_y(Esy). (5.4.32)

¢=1 ¢=1
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The elements Ey, and H, satisfy the normalization conditions
(Hyq, Hp) = bgp, (5.4.33)
(E,@E_p) =1, (5.4.34)

The set of matrices I:Iq(é’p), Eiq(é'p), g = 1,...,p — 1, realizes the
representation of the algebra £,_; of dimension dim £, with highest weights
Aos = Ysp» SENp_l. )

We introduce the matrix S;, which relates H, to the basis elements I;:

Hy =) SiL. (5.4.35)
i=1

It is readily seen that by virtue of (5.4.5) the matrix Sé is triangular:
S;=0, i>q (5.4.36)
Substituting (5.4.35) in (5.4.33), we obtain the helpful formula
D SiSEyik = bp (5.4.37)
i, k€N,

which in conjunction with the condition (5.4.36) enables us to determine
the matrix S; uniquely (by means of the standard Gram-Schmidt
orthogonalization procedure). Many properties of the considered basis can
be expressed in terms of the matrix Sé. For example, we have

Ey(&)10) =0, g € Np_y; (5.4.38a)
ﬁQ(gp”O) = Sgpl0), ¢ € Np_1. (5.4.38b)

It is also easy to show that

Qg = Sgq (5.4.39)
and
Y SiR =V, (5.4.40)
q=1

The last formula can be deducted by comparing (5.3.15) with the other
expression for the Casimir operator

K, =Y HX+Y RH,+2) E_,Ey, (5.441)
g=1 q=1 g=1
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which follows from (5.4.24).

We now turn to the construction of differential realizations of the
singular simple Lie algebras based on the decomposition (5.4.26). In
accordance with this decomposition, any element of the group can be
parametrized as follows:

r

g(z) = H exp(zq Ey). (5.4.42)

g=r—1

We shall read the product in (5.4.42) from the left to the right. Note that
any partial product exp(z,E,)...exp(z,E,) forms a subgroup. For this
reason, equation (5.4.42) can be split into 2r + 1 formulas of the form

r r

H exp(z,E,) exp(e, Ey) = Zexp[quq +€,(E|zq)E,].

g=s g=3

(5.4.43)

After simple manipulations, each of these formulas can be rewritten in one
of the following forms:

(H eXP(IqEq)> B, (H eXP(IqEq)> = (Eslzp)Ep

q=p

+ Z (Es|zn) (I_I exp(:chq)) E, <l:[ exp(;chq))

n=p+1l

p-1 p—1 -1 p—1
+ Z(E,[z") <H exp(quq)) E, < exp(:chq)> ,
n=s g=n g=n

s=-—r,...,+r. (5.444)

Multiplying both sides of (5.4.44) by E_, , we find
(B, |z,) = <E ® (Hexp(——ad quq)) E_p>. (5.4.45)
7=p
From this 1t is easy to obtain differential representations for the operators

E, = Zr: <E, ) (ﬁ exp(—ad quq)) E_p> ;3%; (5.4.46)

p=1 q=p
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To simplify these expressions, we project the operators (5.4.46) onto the
class of functions

¥ = exp(zgho)¥(2z1,...,2,), (5.4.47)

as a result of which they take the form

B4y = az, - a:;l(E, ® ad (xaEa)E_,,);Ta, (5.4.48a)
Hy=hy - i:(H, ® ad (xaEa)E_a>5%, (5.4.48b)
E_, = Z<E_ ® HeXp —ad 2,,)Ha )b,
pres s
+ E (E_,® H exp(—ad quq)E,a>53—
a=1 4=a a
+ 2 (E_, ® exp(-ad zaEa)E_,,>5‘z—a. (5.4.48¢)

a=s+1

These are the required differentials of the representations of the Lie algebras
with highest weights Ag. Here, h, are the eigenvalues of the operators Hg
associated with the highest weights by means of the matrix S:

ha= Y Siho. (5.4.49)

tEN,

5.5 The generalized Gaudin model and its solutions

1. Definition of the Gaudin model in the general case. With the
simple Lie algebra £, we associate the infinite-dimensional Gaudin algebra
G(L,), whose generators 1,(}), a € Q. depend on the complex parameter
A and satisfy the commutation relations

(L(A =y L (’\ i(“) (5.5.1)
cEN,

Using (5.5.1), we associate the Cartan-Weyl decomposition (5.3.2) in the
algebra £, with the analogous decomposition in the algebra G(L,):

G(L) =G(L7) D G(LY) @ G(LT). (5.5.2)
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We denote the elements of the subalgebras G(L£¥) and G(£2) by I,(}), a €
A* and I;()), i € N,, respectively. We define a representation of the
Gaudin algebra by means of the formulas

I,(A)]0) =0, a€ Aj';
Ii((/\)|0)>:Fi(/\)|O), i€ N,. } (5.5.3)

Here, |0) is the highest vector of the representation, and the functions
F;(X), i € N, play the part of the components of 