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Preface
The goal here is to provide an introduction to the physical and mathematical foun-
dations of quantum mechanics. It is addressed to those who have been trained in
modernmathematics andwhose background in physicsmay not extendmuch beyond
F = mA, but forwhom the following sorts of questions requiremore than aperfunctory
response. What are the physical phenomena that forced physicists into such a radical
re-evaluation of the very beautiful and quite successful ideas bequeathed to them by
the founding fathers of classical physics? Why did this re-evaluation culminate in a
view of the world that is probabilistic and formulated in terms of Hilbert spaces and
self-adjoint operators? Where did the Planck constant come from? What are the ba-
sic assumptions of quantum mechanics? Are they consistent? What motivated them?
What objections might be raised to them? Where did the Heisenberg algebra come
from? What motivated Feynman to introduce his path integral? Is it really an “inte-
gral”? Does it admit a rigorous mathematical definition? Why does one distinguish
two “types” of particles in quantummechanics (bosons and fermions)? Why and how
are they treated differently? In what sense does supersymmetry provide a more uni-
fied picture of the two types? One need not know the answers to all of these questions
in order to study the mathematical formalism of quantum mechanics, but for those
who would like to know we will try to provide some answers or, at least, some food
for thought. As to the mathematical formalism itself, we will provide careful, detailed
and rigorous treatments of just a few of the simplest and most fundamental systems
with which quantummechanics deals in the hope that this will lay the foundation for
a deeper study of the physical applications to be found in the literature.

In a sense, the harmonic oscillator is to physics what the set of natural numbers is
to mathematics. It is a simple, almost “trivial” system, but one which conceals much
subtlety and beauty and from which a great deal of what is of interest in the sub-
ject evolves. We will follow some of this evolution from the simple classical problem
through its canonical quantization and path integral to its fermionic and supersym-
metric versions and will pause along the way to consider the tools and thought pro-
cesses employed by physicists to construct their theoretical models. We will make a
concerted effort to rephrase,whenever possible, these tools and thought processes in a
formmore congenial to those trained in modern mathematics, for this is our intended
audience. However, we will also make a concerted effort to discourage the view that
physics can simply be translated into mathematics. We take seriously Einstein’s dic-
tum that “... as far as the propositions of mathematics refer to reality, they are not cer-
tain; and, as far as they are certain, they donot refer to reality.”Our verymodest goal is
to alleviate, in some small measure, the stress that generally accompanies the mathe-
matically inclinedwhen they stray into the very foreignworld of bosons and fermions,
Lagrangians andpath integrals, nonexistentmeasures on infinite-dimensional spaces
and supersymmetry. The best we can offer to the mathematician interested in dip-
ping his or her toes into the murky waters of physics is an honest attempt, at each
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VIII | Preface

stage, to clearly distinguish those items that are accessible to mathematical defini-
tion and proof from those that are not, and an honest admission that the rigor we so
earnestly strive for can do violence to the intentions of the physicists. Elegance and
brevity, while admirable traits, will play very little role here; the goal is communica-
tion and if we feel that this is best accomplished by an ugly argument in coordinates,
or a treatment that is perversely elementary, then so be it.

In broad strokes, here is the plan. We begin by briefly reviewing the part of the
classical story that we all learn as undergraduates (masses oscillating on springs and
simple harmonic motion) and then say a few words about why this rather special and
seeminglyuninterestingproblem is so important (Chapter 1).Wewill seehow theprob-
lem and its solution can be rephrased in both Lagrangian and Hamiltonian form and
argue that each of these has its advantages and that both provide a conceptually more
satisfactory framework for our problem and for physics in general (Chapter 2). This
last point is brought home with particular force when the length scale of the har-
monic oscillator is sufficiently small that classical mechanics fails entirely and one
must treat the problem quantummechanically. To see how this is done we begin with
somemotivation for the formalism of quantummechanics (Chapter 3). This formalism
is quite unlike anything in classical physics and evolved historically over many years
in a highly nonlinear fashion from the brilliant insights and inspired guesswork of its
creators. In the end we are forced to concede that the conceptual apparatus that has
evolved in our species over eons in response to themacroscopicworld inwhichwe live
is simply not adequate for the description of the microscopic, quantum world, which
operates according to entirely different rules. For example, the intuitively all too fa-
miliar distinction between a particle and a wave disappears and we are required to
regard these as simply dual aspects of the same underlying physical object. But if fa-
miliar, classical concepts fail us, there is stillmathematics,whichdoesnot require that
the objects with which it deals correspond to any ready-made, familiar concepts. The
formalism of quantum mechanics provides a mathematical, not a conceptual model
of what goes on in the world, but the model has proved to be remarkably successful.
In this world the states of a physical system are represented by elements of a Hilbert
space and the things we observe (measure) are represented by self-adjoint operators
on this Hilbert space. We will not pretend that this formalism can be “deduced” log-
ically from a few simple physical principles, for it cannot. However, by taking a very
general view of what constitutes a mathematical model for a physical system, it is
possible to argue that, in hindsight at least, the formalism has a certain element of
“naturalness” to it and we will attempt to make this argument.

Even so, to do justice to the formalism, both physically and mathematically, re-
quires considerable preparation. Section 3.2 presents a very general view of what con-
stitutes a mathematical model of a physical system in the hope that the model we will
eventually propose for quantummechanics might appear somewhat less outrageous.
Section 3.3 continues this theme by briefly describing a mathematical model of clas-
sical statistical mechanics due to Koopman [Koop] in which Hilbert spaces and self-
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adjoint operators arise naturally. We then examine some of the experimental facts of
life which suggest that mechanics at the atomic and subatomic levels is more akin to
classical statisticalmechanics than to classical particlemechanics. Specifically, a brief
tutorial on electromagnetic radiation (Section 4.2) is followed by discussions of black-
body radiation and thephotoelectric effect (Section 4.3) and two-slit experiments (Sec-
tion 4.4); in particular, we go to some lengths in Section 4.3 to track down the origin
of the ubiquitous “Planck constant.” Following this there is a rather lengthy synop-
sis (Chapter 5) of the required functional analysis (unbounded self-adjoint operators,
spectral theory and Stone’s theorem); here the definitions and theorems are all stated
precisely, but in lieu of proofs we generally offer only a few detailed examples rele-
vant to quantum mechanics and plentiful references. With this we are in a position
to describe the mathematical skeleton of quantum mechanics. In Chapter 6 we fol-
low the usual procedure of describing this skeleton in the form of a set of postulates,
but we devote considerably more time than is customary to discussions of what these
postulates are supposed to mean, where they came from and what one might find
questionable about them. Chapter 6 includes also a discussion of various uncertainty
relations (Section 6.3) and the so-called Heisenberg picture of quantum mechanics
(Section 6.4). The path that led Heisenberg to his formulation of quantum mechanics
is elaboratedmore fully in Section 7.1, not only because it is a fascinating story, but also
because it is here that one sees most clearly the emergence of the algebraic underpin-
nings of “canonical quantization.” Section 7.2 describes these algebraic structures in
more detail as well as the problem of representing them as self-adjoint operators on a
Hilbert space. The famous Groenewold–Van Hove theorem, which restricts the extent
to which this can be done, is also discussed.

With the formalism of quantummechanics in hand one can consider the problem
of “quantizing” a classical mechanical system such as the harmonic oscillator, that
is, constructing a quantum mechanical model that reflects the essential features of
the classical system. For instance, a diatomic molecule is very much like a mass on
a spring, but, because of its size, it behaves very differently and requires a quantum
mechanical treatment. Just what these essential features are, how they are to be de-
scribed classically and how they are to be reflected in the quantum model are issues
that we will have to discuss. Many schemes for arriving at such a quantum model for
a classical system have been proposed. Wewill consider only two and will apply them
only to the free particle and the harmonic oscillator. Canonical quantization (Chap-
ter 7) is based on the Hamiltonian picture of the classical system, while the Feynman
path integral (Chapter 8) evolves from the Lagrangian picture. We will work out both
of these in detail for the free particle (Sections 7.3 and 8.2) and the harmonic oscilla-
tor (Sections 7.4 and 8.3). Both of these approaches raise serious mathematical issues,
and in Chapter 9 we will survey a few of the rigorous theorems that have been proved
in order to address some of these. Included are some self-adjointness theorems for
quantum Hamiltonians (Section 9.2), Brownian motion and the Wiener measure (Sec-
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tion 9.3) and a rigorous approach to the Feynman integral via analytic continuation
(Section 9.4).

Canonical quantization leads to a rather algebraic view of the quantization pro-
cess and suggests certain variants of the quantum harmonic oscillator which, al-
though they are legitimate and meaningful quantum systems, cannot be regarded as
the quantization of any classical system. These are the so-called fermionic harmonic
oscillator and supersymmetric harmonic oscillator, and we will take a look at each in
Chapter 10, beginning with a discussion of the Stern–Gerlach experiment and the
quantum mechanical notion of spin in Section 10.1. In Section 10.2 we briefly discuss
the spin-statistics theorem and the Pauli exclusion principle in the hope of motivating
Pascual Jordan’s extraordinary idea of replacing commutation relations by anticom-
mutation relations for the description of fermionic systems. It is this idea that gives
rise to a fermionic analogue of the quantum harmonic oscillator and to the anticom-
muting or Grassmann variables with which one can build a “quasi-classical” system
corresponding to it. In Section 10.3 we make a few (very few) general remarks on the
notion of supersymmetry and then describe the simplest possible system inwhich this
symmetry is exhibited. This is the so-called supersymmetric harmonic oscillator. We
will then abstract the essential features of this example to define what is called N = 2
supersymmetry. We will see how the notion of a Lie superalgebra arises naturally in
this context and, in Section 10.4, how old and venerable parts of mathematics (such
as Hodge theory) offer additional examples.

At this point it would be best tomake some simple declarative statement about the
prerequisites required to read and understand thismaterial. That would be best, but it
is not going to happen. The reason is simply that these prerequisites vary widely from
section to section, ranging from almost nothing at all in Chapter 1 to various aspects
of analysis and functional analysis that one could reasonably expect only a special-
ist to know in Chapters 8, 9 and 10. Supplying all of this background here would not
only result in a manuscript with essentially unbounded pagination, but would also
be pointless since there are available many excellent sources for the material that we
could not hope to improve upon. We will try to handle this problem in the following
way. Beyond F = mA any basic physics that needs to be explained will be explained;
for the not-so-basic physics we will do our best to provide some intuition and some
readable references. On the mathematical side, we will make judgment calls concern-
ing what it is reasonable to assume that a graduate student inmathematics will know.
Basic measure theory certainly qualifies, but notWiener measure; functional analysis
through the spectral theorem for compact, self-adjoint operators, but perhaps not the
unbounded case of the spectral theorem; Banach and Hilbert spaces, but not Fréchet
spaces; differentiablemanifolds, basic Lie groups and Lie algebras, but not symplectic
manifolds; basic partial differential equations, but not heat kernels or elliptic regular-
ity. For those items we need that have been judged not to be in everyone’s cache we
will spend some time introducing them precisely and illustrating them with relevant
examples. Thenwewill go to some lengths to provide detailed, explicit and accessible
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references in which the specific material we require is treated in a similar spirit and
at a comparable level. The hope is that rigorous statements and carefully worked out
exampleswill clarify the concepts, but then pursuing the subject inmore depth can be
left to the reader’s discretion. All of this is entirely subjective, of course, andmay fail to
meet the needs of anyone except the author, but something had to be done. A number
of appendices are included either to establish notation and terminology, or because
we felt a particular need to have the material readily available. One can consult these
as the need arises. The 238 exercises interspersed throughout the text are generally
fairly routine opportunities for the reader to get involved and solidify the new ideas;
these are not collected at the end of each section, but are placed at precisely the point
at which they can be solved with optimal benefit.

It goes without saying that, beyond a few minor issues of expository style, there
is nothing original in anything that follows. The manuscript arose simply from an at-
tempt on the part of the author to organize some things for himself in a language he
could understand and the hope that what emergedmight be of use to someone else as
well. Except for those items that are, by now, completely standard, we have tried to be
clear on the sources from which the material was drawn. One of these sources, how-
ever, requires special attention at the outset. Atmany points along theway I foundmy-
self needing to understandmathematics that I either should have understood decades
ago or, perhaps, did understand decades ago, but forgot. At all of these points I was
patiently instructed by my son, Aaron, who always knew the mathematics and very
often grasped its significance for physics long before I did.
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1 The classical harmonic oscillator

The “trivial” side of the harmonic oscillator is known to every calculus student. One
considers a mass m attached to one end of a spring with the other end held fixed.
When set in motion the mass is free to oscillate along a straight line about its equi-
librium position (where it sat, at rest, when the spring was unstretched). Making our
first concession to the conventions of the physicists, we call the line along which the
oscillations take place the q-axis and fix the origin at the equilibrium position ofm. At
this point one borrows a few “laws” (that is, assumptions) from classical physics. The
first is calledHooke’s law and asserts that the spring exerts a force F onm that tends to
restore it to its equilibriumposition and has amagnitude that is (under a certain range
of conditions) proportional to the distance from the mass to the equilibrium position.
Thus, for some positive constant k (called the spring constant and determined by the
material the spring is made of and how tightly it is wound),

F = −kqi,

where we use i for the unit vector in the positive q-direction. Next, Newton’s second
law asserts that the total force F acting on amassm is proportional to the acceleration
A it will experience as a result of the force and that the constant of proportionality is
justm:

F = mA. (1.1)

Assuming that no force other than that exerted by the spring is acting onm (no friction
along the q-axis, no gravity, no one blowing on it), we conclude that at each instant t
of time,mq̈(t) = −kq(t) (q̈ is the second t-derivative of q). We will write this as

q̈(t) + ω2q(t) = 0, (1.2)

where ω = √k/m.

Remark 1.0.1. We should say at the outset that t is to be thought of as Newton thought
of it and as you have been thinking of it all of your life, as a universal time coordinate
with the property that everyone agrees on the time lapse t2 − t1 between two events.
There is no operational definition, for it does not exist, but this will not matter as long
as we choose not to take relativistic effects into account.

Equation (1.2) is called the harmonic oscillator equation. It is a simple homoge-
neous, second order, linear equation with constant coefficients, the general solution
to which can be written

q(t) = A cos (ωt + φ), (1.3)

https://doi.org/10.1515/9783110751949-001
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where A is the amplitude, ω is the natural frequency and φ is the phase of the motion.
One can spice the problemup a bit by including the effects of additional forces (damp-
ingor driving forces) and some interestingphenomenaemerge, but basically this is the
whole story. That being the case it would seem incumbent upon us to offer just a few
words on why we intend to make such a fuss about such a simple problem. In truth,
this is really the issuewewould like to address in the remainder of themanuscript, but
a brief prologue would not be amiss. We will begin by thinking about just a few more
simple problems and for this it is best to forget where the harmonic oscillator equa-
tion (1.2) came from and remember only that q is, in some sense, a position coordinate
and ω is a positive constant.

Let us consider first a pendulum consisting of a string of length l and negligible
mass with one end attached to the ceiling and a mass m attached to the other end.
Suppose the mass is displaced from its equilibrium position (hanging straight down)
and released, or perhaps given some initial velocity that lies in the plane of the string
and its original, vertical position. Then the pendulumwill move in this vertical plane.
Let ϕ(t) denote the angle between the string and the vertical at time t. The forces act-
ing on the mass are the vertical gravitational force with a magnitude of mg (g is the
acceleration due to gravity near the surface of the earth, which is about 9.8m/sec2)
and the tension in the string. The component of the gravitational force parallel to the
string cancels the tension, while the component perpendicular to the string provides
the tangential restoring force which causes the pendulum to oscillate. The magnitude
of the tangential force at time t is mg sin ϕ(t) and the magnitude of the velocity is
l ϕ̇(t), so Newton’s second law gives

ϕ̈(t) + ω2 sin ϕ(t) = 0, (1.4)

where ω = √g/l. Now, the pendulum equation (1.4) is, of course, not the harmonic
oscillator equation. However, if we assume the oscillations (that is, the values ofϕ) are
small, the Taylor series expansion for sin ϕ atϕ = 0gives the approximation sin ϕ ≈ ϕ
and we may consider instead

ϕ̈(t) + ω2ϕ(t) = 0, (1.5)

which is precisely equation (1.2). Of course, the solutions to (1.5) only approximate the
motion of the pendulum for small displacements.

There is something quite general going on in this last example that we would like
to discuss before moving on to a few more examples. This is most efficiently done if
we recall a bit of vector calculus.We consider a single particle ofmassmmoving inRn

under the influence of some time-independent force F(x) = F(x1, . . . , xn); generally, n
will be 1, 2 or 3. We assume that F is conservative in the sense that it is the gradient
of some smooth real-valued function −V onRn (the minus sign is conventional). Note
that V is determined only up to the addition of a real constant a since ∇(−V + a) =
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∇(−V). Then Newton’s second law asserts that the motion of the particle, represented
by the curve x(t) = (x1(t), . . . , xn(t)) inRn, is determined by

m d2x(t)
dt2
= −∇V(x(t)).

Here V(x(t)) (without the minus sign) is called the potential energy at time t. One also
defines the kinetic energy at time t to be

1
2
m


dx(t)
dt



2
=
1
2
mdx(t)

dt
⋅
dx(t)
dt
,

where the ⋅ indicates the usual inner product onRn. The total energy at time t is then

E(x(t)) = 1
2
m


dx(t)
dt



2
+ V(x(t)).

The rationale behind the word “conservative” is that, although the kinetic and poten-
tial energies change along the trajectory x(t), E does not because

dE(x(t))
dt
=

d
dt
(
1
2
mdx(t)

dt
⋅
dx(t)
dt
+ V(x(t)))

= mdx(t)
dt
⋅
d2x(t)
dt2
+ ∇V(x(t)) ⋅ dx(t)

dt

=
dx(t)
dt
⋅ (md2x(t)

dt2
+ ∇V(x(t)))

=
dx(t)
dt
⋅ 0 = 0.

For conservative forces the total energy E is conserved during themotion. The fact that
physical systems that evolve in time can nevertheless leave certain “observable quan-
tities” unchanged is of profound significance to physics andwill recur again and again
in the course of our discussions here.

Whenn = 1 it is customary to assumeeverything iswritten in terms of the standard
basis for R, drop all of the vectorial notation and write, for example, F(x) = − dVdx for
a conservative force, mẍ(t) = − dVdx (x(t)) for Newton’s second law, and so on. For the
mass on a spring example, x = q and the potential can be taken to be V(q) = 1

2kq
2

since F(q) = −kq = − ddq (
1
2kq

2). The total energy of the mass at time t is therefore
1
2mq̇(t)

2 + 1
2kq(t)

2. Note that, using primes to denote derivatives with respect to q,

V(0) = V (0) = 0 and V (0) > 0.
The potential has a relative minimum value of 0 at q = 0 and so the restoring force
F(q) = −V (q) vanishes at q = 0 with a negative derivative there and this accounts
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for the stable equilibrium point of the mass–spring system at q = 0. For the pendu-
lum, x = ϕ and one can take V(ϕ) = −mgl (cos ϕ − 1) since F(ϕ) = −

mg
l sin ϕ =

− d
dϕ (−

mg
l (cos ϕ − 1)); the −1 is not necessary, but ensures that the zero potential level

occurs at the equilibrium position. Once again using a prime for differentiation with
respect to ϕ we obtain

V(0) = V (0) = 0 and V (0) > 0
and, again, this is a reflection of the fact that the pendulum has a stable equilibrium
point at ϕ = 0. Moreover, this is precisely what gives rise to the fact that small oscil-
lations of the pendulum are modeled by the harmonic oscillator equation. We began
by claiming that there is something quite general going on and this is it, as we now
show.

Suppose we have a one-dimensional system onwhich a force F(x) = − dVdx acts and
that V(x) has a relative minimum value of 0 at x = 0 so that

V(0) = V (0) = 0 and V (0) > 0.
The Taylor series for V(x) at x = 0 then has the form

V(x) = 1
2
V (0)x2 + ⋅ ⋅ ⋅ .

Thus, for small x, V(x) ≈ 1
2kx

2, where k = V (0) > 0 and so the potential is approx-
imately that of a harmonic oscillator and the system behaves, for small x, like a har-
monic oscillator. Note that there is no reason for the equilibrium point to be at x = 0
since the same argument using the Taylor series at x = x0 yields the same result. More-
over, since the potential function is determined only up to an additive constant, it can
always be chosen to vanish at any given point. Thus, any x0 at which V (x0) = 0 and
V (x0) > 0 is a stable equilibrium point for the system and, near x0, the potential is
approximately that of a harmonic oscillator.

The essential reason for the significance of the harmonic oscillator is that any conservative one-
dimensional system with a stable point of equilibrium behaves like a harmonic oscillator near
the equilibrium point.

Remark 1.0.2. We have been rather cavalier in our use of the term energy and should
offer something in the way of an apology, or, at least, an explanation. There is nothing
at all ambiguous in our notions of kinetic energy or potential energy; these are defined
by the formulas we recorded above. One might ask, however, why they are defined by
these formulas.Why, for example, is kinetic energy 1

2m ‖
dx(t)
dt ‖

2 andnot, say,m ‖ dx(t)dt ‖
2?

The answer is quite simple; without the 1
2 in the definition of kinetic energy, the total

energy (kinetic plus potential) would not be conserved. Energy is arguably the most
fundamental concept in physics and it appears in many guises, but it is a subtle one
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and the unmodified word itself is never defined (except in high school where it is intu-
itively identified with “the ability to do work”). Various types of energy are defined in
various contexts, but alwayswith the sole objective of isolating a number that does not
change as the (isolated) physical system evolves. The existence of such numbers is an
extraordinarily powerful thing in physics. With them one can make statements about
how a system evolves without any real understanding of the detailed interactions that
occur during the evolution; we do not need to know what really goes on inside two
billiard balls when they collide in order to compute how they will move.

“It is important to realize that in physics today, we have no knowledge of what energy is.”

Richard Feynman (Section 4-1, Volume I, [FLS])

The last two examples we would like to look at are intended to give a brief sug-
gestion of a few of the things to come. For the first we will consider what are called
diatomic molecules. As the name suggests, these are molecules in which precisely two
atoms are bound together. The atoms may be the same, for example, oxygen in O2, or
nitrogen in N2, or they may be different, for example, carbon and oxygen in carbon
monoxide (CO). Such molecules are extremely common in nature. Indeed, O2 and N2
together comprise 99%of the earth’s atmosphere (fortunately, CO is not so prevalent).
The bond between the atoms in such a molecule is not rigid. Rather, the distance be-
tween the nuclei of the atoms (the internuclear distance) varies periodically around
some equilibrium value and the potential energy of the molecule is proportional to
the square of the displacement from equilibrium (at least for small displacements).
Because of this quadratic dependence, if we view the molecule from the perspective
of one of the atoms, the other appears to be very much like a mass on a spring (again,
for small displacements). It may seem then that we have not really described a new
example at all. The reason that the example is, in fact, new is that diatomic molecules
are small; indeed, they are so small that one cannot expect them to behave according
to the rules of classical Newtonian physics and they do not. The behavior of such a
system falls within the purview of quantummechanics.

Eventually, we will describe procedures for quantizing the classical harmonic os-
cillator and this quantum system does, in fact, accurately describe the small vibra-
tions of diatomicmolecules. For the present wewould simply like to point out that the
classical and quantum descriptions are very different. Here is one particularly strik-
ing instance. Note that the potential energy for the classical harmonic oscillator can
be written

V(q) = 1
2
kq2 = 1

2
m(√k/m)2q2 = 1

2
mω2q2, (1.6)

whereω is the natural frequency of vibration of the oscillator. Observe that, as q varies
over the interval [−A,A], where A is the amplitude, V(q) takes every value between 0
and 1

2mω
2A2 (twice, in fact). In particular, the energy can take on continuously many
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values. By contrast, we will find that, in the corresponding quantum system, the en-
ergy of the oscillator can assume only the values

1
2
ℏω, 3

2
ℏω, 5

2
ℏω, . . . ,(n + 1

2
)ℏω, . . . , (1.7)

where ℏ is a certain positive constant that wewill discuss later. In the quantum system
the energy is quantized so any transition fromone energy level to another cannot occur
continuously and must be the result of a quantum jump. Perhaps even more interest-
ing is the fact that 0 is not in this list. Unlike its classical counterpart, the quantum
harmonic oscillator cannot have zero energy. The smallest possible value of the energy
is 1

2ℏω, which is called the ground state energy.

Remark 1.0.3. Wewill eventually derive the energy spectrum (1.7) from the basic pos-
tulates of quantummechanics, but it is worth pointing out that, historically, the order
was reversed. The fundamental idea that underlies quantum mechanics was discov-
ered byMax Planck in his study of what is called blackbody radiation. Here the predic-
tions of classical physics do not correspond at all to what is actually observed in the
laboratory and Planck found that he could construct a model that yielded very accu-
rate predictions under the hypothesis that harmonic oscillators exist only at discrete
energy levels. This hypothesis was totally inconsistent with classical physics, but it
worked and, as we shall see, led to an entirely new way of thinking about the world.
In Section 4.3 we will describe all of this in much more detail.

Now we present our final example. Thinking of a complex system as being built
out of simple, well-understood systems can be quite useful and we would like to con-
clude this sectionwith a rather extreme example.We intend to reinterpret the classical
vibrating string problem in terms of a countably infinite family of harmonic oscillators.
This interpretation provided the physicists with a means of quantizing the vibrating
string and the result was essentially the first example of a quantum field. The same
ideas will be put to use in Section 4.3, where we study blackbody radiation.

In the vibrating string problem one is asked to describe the small transverse dis-
placements u(t, x) of an elastic string, tightly stretched along the x-axis between x = 0
and x = l assuming that no external forces act on it. A bit of physics, which one sees
in any elementary course on partial differential equations (for example, Section 25 of
[BC], or Chapter 8 of [Sp3]), shows that u(t, x) satisfies the one-dimensional wave equa-
tion

a2 𝜕
2u
𝜕x2
=
𝜕2u
𝜕t2
, 0 < x < l, t > 0, (1.8)

wherea is a positive constant determinedby thematerial the string ismadeof andhow
tightly it is stretched (more precisely, a = √τ/ρ, where ρ is the mass per unit length
and τ is the tension, both of which will be assumed constant). For the moment let us
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focus on solutions u(t, x) that are continuous on the boundary of [0, l] × [0,∞). Then,
since the string is fixed at x = 0 and x = l, u(t, x)must satisfy the boundary conditions

u(t,0) = u(t, l) = 0, t ≥ 0. (1.9)

Since we do not need them at the moment we will not be explicit about the initial
displacement u(0, x) and initial velocity 𝜕u𝜕t (0, x) that would be required to produce a
well-posed problem. The usual procedure (Section 32 of [BC]) is to separate variables
u(t, x) = T(t)X(x) and obtain a Sturm–Liouville problem

X(x) + λX(x) = 0, (1.10)
X(0) = X(l) = 0 (1.11)

for X(x) and an ordinary differential equation

T̈(t) + λa2T(t) = 0 (1.12)

for T(t). The Sturm–Liouville problem has eigenvalues λn =
n2π2
l2 , n = 1, 2, 3, . . . ,

and corresponding orthonormal eigenfunctions Xn(x) = √
2
l sin

nπx
l . We recall what

this means. Think of (1.10) as the eigenvalue equation ( d
2

dx2 + λ)X(x) = 0 for the one-
dimensional Laplacian d2

dx2 on [0, l] subject to the boundary conditionsX(0) = X(l) = 0.
Then λn are the only values of λ for which nontrivial solutions exist and Xn(x) are cor-
responding solutions, that is, ( d

2

dx2 +λn)Xn(x) = 0, n = 1, 2, 3, . . . . “Orthonormal”means
in the L2-sense, that is,

l

∫
0

Xn(x)Xm(x)dx = {
1, ifm = n,
0, ifm ̸= n.

(1.13)

Exercise 1.0.1. If you have never verified all of this before, do so now.

For each n = 1, 2, 3, . . . , we let

ωn =
nπa
l
,

so that (1.12) becomes

T̈(t) + ω2
n T(t) = 0, (1.14)

which is, for each n = 1, 2, 3, . . . , an instance of the harmonic oscillator equation. Stan-
dard operating procedurewouldnowhaveuswrite down the general solution to (1.14),
multiply by Xn(x) = √

2
l sin

nπx
l and then superimpose (sum over n = 1, 2, 3, . . .) to
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obtain a general expression for u(t, x). Instead, let us denote by qn(t) any nontrivial
solution to (1.14) and write

u(t, x) =
∞
∑
n=1 qn(t)√2l sin nπx

l
(1.15)

(since our purpose here is purely motivational we will skirt all of the obvious conver-
gence issues). Now look at some fixed term un(t, x) = qn(t)√

2
l sin

nπx
l in (1.15). Here

qn(t), being a solution to (1.14), represents a simple harmonic motion with natural fre-
quencyωn and someamplitude. But theharmonic oscillator equation is linear so, ifwe
fix some x0 ∈ (0, l) with sin

nπx0
l ̸= 0, un(t, x0) also represents a simple harmonic mo-

tion with natural frequency ωn, but with a different amplitude. Consequently, un(t, x)
represents amotion of the string inwhich eachnonstationary point along the length of
the string is executing simple harmonic motion with the same frequency. If a1, a2, . . .
are constants, then the solution u(t, x) = ∑∞n=1 anun(t, x) is a superposition of these
harmonics. What is essential from our point of view is that, since the eigenfunctions
Xn(x) = √

2
l sin

nπx
l are fixed, all of the information about a solution u(t, x) to the vi-

brating string problem is contained in a countable sequence of classical harmonic os-
cillators qn(t) as opposed to a continuum of oscillators, one for each point along the
length of the string. Here, briefly, is a simple, concrete illustration of this.

Exercise 1.0.2. Classical physics provides the following expression for the total en-
ergy (kinetic plus potential) of our vibrating string at time t:

E(t) =
l

∫
0

1
2
[ ρ(𝜕u
𝜕t
)
2
+ τ(𝜕u
𝜕x
)
2
] dx

(recall that ρ is the mass density and τ is the tension). Take this for granted. Then
substitute (1.15) and use the orthonormality relations (1.13) for the functions Xn(x) =
√ 2l sin

nπx
l to show that

E(t) =
∞
∑
n=1 ρ2 [ q̇n(t)2 + ω2

nqn(t)
2 ].

Note that this is just the sum of the energies of the harmonic oscillators {qn(t)}∞n=1 if
they are all taken to have mass ρ.

A vibrating string is therefore essentially a sequence of classical harmonic oscil-
lators. These same ideas can be applied inmuchmore significant contexts andwewill
see some of them later. In particular, we will see in Section 4.3 how they can be used
to study blackbody radiation and trace the ideas that led Max Planck to the quantum
hypothesis that eventually evolved into our topic here.



2 Lagrangian and Hamiltonian mechanics

2.1 Introduction

Our entire discussion of the classical harmonic oscillator in the previous section was
“Newtonian” (basically, just F = mA). While this Newtonian picture is perfectly ad-
equate for a great many purposes, there are certain aspects of the picture that limit
its usefulness to us. Fields such as the electromagnetic field do not fit into the picture
at all, for example. More significantly, there are no natural techniques for quantizing
a classical mechanical system described in Newtonian terms. In this section we will
introduce two alternative pictures, each of which encompasses both mechanics and
field theory and for each of which there are procedures for producing quantum ana-
logues of classical systems. Our objectives here are, as always, quite modest; we hope
only to introduce the fundamental ideas required to understand what is to come later
on. For a thorough grounding in Lagrangian and Hamiltonian mechanics we direct
the reader to [Arn2], [Sp3], [CM] [GS1], or the standard physics text [Gold].

2.2 State space and Lagrangians

Let us consider again a particle ofmassmmoving inRn. We denote its position at time
t by α(t) = (q1(t), . . . , qn(t)). We assume that the particle is moving under the influence
of a time-independent force F(q) = F(q1, . . . , qn) and that the force is conservative,
that is, F(q) = −∇V(q) for some smooth, real-valued function V(q) on Rn. The basic
assumption of Newtonian mechanics is that, along the trajectory α(t) of the particle,
Newton’s second lawm d2α(t)

dt2 = −∇V(α(t)) is satisfied. For the moment, all we want to
do is find an equivalent way of saying “Newton’s second law is satisfied.” We will do
this by introducing a few definitions and performing a little calculation. When this is
done we will describe the much more general context in which these ideas live and
that will eventually allow us to leave the confines of Newtonian mechanics.

Fix two points a, b ∈ Rn and an interval [t0, t1] in R. We consider the set
C∞a,b([t0, t1],R

n) of all smooth (infinitely differentiable) curves α(t) inRn from α(t0) = a
to α(t1) = b; this has the structure of an infinite-dimensional affine space. For each el-
ement α of C∞a,b([t0, t1],R

n)we define the kinetic energy function Kα(t) and the potential
energy function Vα(t) by

Kα(t) =
1
2
m  α̇(t)


2
,

where α̇(t) denotes the velocity (tangent) vector to α at t and ‖ ‖ is the usual norm on
Rn, and

Vα(t) = V(α(t)).

https://doi.org/10.1515/9783110751949-002
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The kinetic energy plus the potential energy is the total energy Eα(t) and we have seen
that Newton’s second law implies that this is constant along the actual trajectory of
the particle. Instead of the sum, we would now like to consider the difference of the
kinetic and potential energies (we will have a few words to say about the physical
interpretation of this a bit later). Specifically, we define

Lα(t) = Kα(t) − Vα(t) =
1
2
m  α̇(t)


2
− V(α(t)).

Next we define the action functional to be the real-valued function

S : C∞a,b([t0, t1],R
n)→ R (2.1)

given by

S(α) =
t1

∫
t0

Lα(t)dt =
t1

∫
t0

1
2
m α̇(t)

2
− V(α(t)) dt. (2.2)

We propose to characterize the trajectory α of a particle moving under the influ-
ence of F(q) = −∇V(q) from α(t0) = a to α(t1) = b as a “critical point” of this action
functional S, that is, a point where the “derivative” of S vanishes. First, of course, we
must isolate the appropriate notion of “derivative.” For any α ∈ C∞a,b([t0, t1],R

n) we
define a (fixed endpoint) variation of α to be a smooth map

Γ : [t0, t1] × (−ϵ, ϵ)→ R
n

for some ϵ > 0 such that

Γ(t,0) = α(t), t0 ≤ t ≤ t1,
Γ(t0, s) = α(t0) = a, −ϵ < s < ϵ,
Γ(t1, s) = α(t1) = b, −ϵ < s < ϵ.

For any fixed s ∈ (−ϵ, ϵ) the map

γs : [t0, t1]→ R
n

defined by

γs(t) = Γ(t, s)

is an element of C∞a,b([t0, t1],R
n) so the action S(γs) is defined. Moreover, γ0 = α so

S(γ0) = S(α). Intuitively, we think of Γ as giving rise to a one-parameter family of
curves γs in C∞a,b([t0, t1],R

n) near α and, for this family of curves, the action functional
becomes a real-valued function of the real variable s and so is something whose rate
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of change we can compute. Specifically, we will say that a curve α ∈ C∞a,b([t0, t1],R
n) is

a stationary, or critical point of the action functional S if

d
ds
S(γs)
s=0
= 0 (2.3)

for every variation Γ of α. In particular, this must be true for variations of the form

Γ(t, s) = α(t) + sh(t), (2.4)

where h : [t0, t1] → Rn is an arbitrary smooth function satisfying h(t0) = h(t1) = 0 ∈
Rn (physicists would be inclined to write h as δα). What we propose to prove now is
that Newton’s second law is satisfied along α(t) if and only if (2.3) is satisfied for all
variations of α of the form (2.4). The procedure will be to prove

d
ds
S(γs)
s=0
=

t1

∫
t0

[−mα̈(t) − ∇V(α(t))] ⋅ h(t) dt (2.5)

and then appeal to the following lemma.

Lemma 2.2.1 (Basic lemma of the calculus of variations). Let t0 < t1 be real numbers
and let f : [t0, t1]→ Rn be a continuous function that satisfies

t1

∫
t0

f (t) ⋅ h(t) dt = 0

for every smooth function h : [t0, t1] → Rn with h(t0) = h(t1) = 0 ∈ Rn. Then f (t) = 0 ∈
Rn for every t ∈ [t0, t1].

Proof. The general result follows easily from the n = 1 case so we will prove only this.
Thus, we assume f : [t0, t1]→ R is continuous and satisfies

t1

∫
t0

f (t)h(t) dt = 0

for all smooth functionsh : [t0, t1]→ Rwithh(t0) = h(t1) = 0.Assume that f is nonzero
at some point in [t0, t1] and, without loss of generality, that it is positive there. Then,
by continuity, f is positive on some relatively open interval in [t0, t1] and therefore on
some open interval (α, β) inR contained in [t0, t1]. Now one can select a smooth real-
valued function h onR that is positive on (α, β) and zero elsewhere (see, for example,
Exercise 2-26 of [Sp1]). But then ∫t1t0 f (t)h(t) dt = ∫

β
α f (t)h(t) dt > 0 and this is a contra-

diction. Consequently, f (t) = 0∀t ∈ [t0, t1].
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Now we turn to the proof of (2.5). For this we compute

d
ds
S(γs)
s=0
=

d
ds

t1

∫
t0

1
2
m γ̇s(t) ⋅ γ̇s(t) − V(γs(t)) dt

s=0

=

t1

∫
t0

d
ds
[
1
2
mγ̇s(t) ⋅ γ̇s(t) − V(γs(t))]

s=0
dt

=

t1

∫
t0

[m ̇γs(t) ⋅
d
ds
̇γs(t) − ∇V(γs(t)) ⋅

d
ds
γs(t)]
s=0

dt

=

t1

∫
t0

[m ̇γs(t) ⋅
d
ds
̇γs(t) − ∇V(γs(t)) ⋅ h(t)]

s=0
dt. (2.6)

Now, note that

d
ds
̇γs(t) =

d
ds

d
dt
γs(t) =

d
dt

d
ds
γs(t) =

d
dt
h(t),

so (2.6) becomes

d
ds
S(γs)
s=0
=

t1

∫
t0

[m ̇γs(t) ⋅
d
dt
h(t) − ∇V(γs(t)) ⋅ h(t)]

s=0
dt

=

t1

∫
t0

[mα̇(t) ⋅ d
dt
h(t) − ∇V(α(t)) ⋅ h(t)] dt

=

t1

∫
t0

[−mα̈(t) ⋅ h(t) − ∇V(α(t)) ⋅ h(t)] dt +mα̇(t) ⋅ h(t)


t1

t0

=

t1

∫
t0

[−mα̈(t) − ∇V(α(t))] ⋅ h(t) dt (since h(t0) = h(t1) = 0)

and this is (2.5). Nowwe apply Lemma 2.2.1 to conclude thatmα̈(t) = −∇V(α(t)) exactly
when α is a stationary point for the action S.

Generally, although not always (see Example 2.2.4), a stationary point α for an
action functional S will correspond to a relative minimum value of S. In this case one
can think of our result intuitively as saying that Newton’s second law dictates that the
trajectory of our particle is that particular curve that minimizes the average kinetic
minus the average potential energy, that is, the energy of motion minus the energy
available for motion; in some sense, nature wants to see as little energy expended on
motion as possible. For a much more illuminating discussion of this interpretation of
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our result, a few instances of how such ideas appear in other parts of physics, and just
a fun read, see Chapter 19, Volume II, of [FLS]. This, incidentally, is our first exposure
to what is often called in physics the principle of least action, although it would more
properly be called the principle of stationary action. We will see more before we are
through.

The point to this calculation is that Newton’s second law has been rephrased as a
variational principle and this suggests the possibility that other basic laws of physics
might be similarly rephrased (the actual evolution of the system is that which “mini-
mizes” something). If this is the case, then the calculus of variations might provide a
general perspective for viewing a wider swath of physics than does Newtonian me-
chanics. This is, in fact, true and we would now like to describe this perspective.

To ease the transition to our new abstract setting, let us first rephrase a bit of what
we have just done in order to see how the main player in the drama, the Lagrangian,
enters the picture. The particle we have been discussing moves in

M = Rn

and we will refer to this as the configuration space of the particle (space of possible
positions). We will let q1, . . . , qn denote standard coordinate functions on the man-
ifold M = Rn. The potential V can then be thought of as a function of q1, . . . , qn.
The coordinate velocity vector fields 𝜕q1 , . . . , 𝜕qn corresponding to q

1, . . . , qn (also often
written 𝜕𝜕q1 , . . . ,

𝜕
𝜕qn , or simply 𝜕1, . . . , 𝜕n) provide a basis 𝜕q1 |p, . . . , 𝜕qn |p for the tangent

space Tp(M) at each p ∈ M. Bowing once again to the conventions of the physicists
we will denote the corresponding component functions on Tp(M) by q̇1, . . . , q̇n so that
vp ∈ Tp(M) is written vp = ∑

n
i=1 q̇

i(vp)𝜕qi |p or, better yet, with the Einstein summation
convention, vp = q̇i(vp)𝜕qi |p. Thus, q

1, . . . , qn, q̇1, . . . , q̇n are coordinate functions for the
tangent bundle

TM = Rn ×Rn

ofRn.We refer toTM as the state space of the particle; it is the space of pairs consisting
of a possible position and a possible velocity.

Remark 2.2.1. The structure of the tangent and cotangent bundles of a manifold is
reviewed in Appendix D.

One must take care not to interpret the dot in q̇i as signifying a derivative with
respect to t. There is no t here; q̇i is simply a name for a coordinate in the tangent
bundle. The reason for this rather odd notational convention will become clear in a
moment when we lift curves in the configuration space to curves in the state space. In
terms of these coordinates we define a function,

L : TM → R,
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called the Lagrangian, by

L(q, q̇) = L(q1, . . . , qn, q̇1, . . . , q̇n) =
n
∑
i=1

1
2
m(q̇i)2 − V(q1, . . . , qn). (2.7)

For t0 < t1 in R and a, b ∈ M = Rn the path space C∞a,b([t0, t1],M) is the space of all
smooth curves α : [t0, t1] → M with α(t0) = a and α(t1) = b. Every α in C∞a,b([t0, t1],M)
has a unique lift to a smooth curve

α̃ : [t0, t1]→ TM

in the tangent bundle defined by

α̃(t) = (α(t), α̇(t)),

where α̇(t)denotes the velocity (tangent) vector toα at t. In coordinateswewill simplify
the notation a bit and write qi(α̃(t)) = qi(α(t)) as qi(t) and q̇i(α̃(t)) = q̇i(α̇(t)) as q̇i(t).
Thus,

α̃(t) = (q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)).

Remark 2.2.2. Now you can think of the dot in q̇i(t) as signifying the derivative with
respect to t of qi(α(t)).

Consequently, the functions Lα(t) representing the kinetic minus potential energy
along α(t) and whose t-integral is the action S(α) can be described as

Lα = L ∘ α̃,

where L is the Lagrangian defined on TM = Rn×Rn by (2.7). The essential information
is contained in the function L defined on the state space (tangent bundle) and, as we
move now to the general setting, our focus will shift to it.

We begin with a smooth (C∞) manifold M of dimension n which we will refer to
as the configuration space (space of positions). This might be, for example, Rn, n =
1, 2, 3, for a single particlemoving along a line, in a plane, or in 3-space. For k particles
moving in 3-space one would takeM = R3k (three position coordinates for each of the
k particles). For a particle constrained to move on the surface of the earth one might
takeM = S2. One can imagine many more exotic possibilities.

Exercise 2.2.1. Describe a physical system whose configuration space is the torus
S1 × S1.

The tangent bundle of M is denoted TM and called the state space. This is the
space of pairs consisting of a possible configuration and a possible rate of change.
The topology of the state space, however, need not be that of a product. This is the
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case, for example, when M = S2 (see Appendix D). Any smooth real-valued function
L : TM → R on the state space TM is called a Lagrangian onM. Such a function can be
described locally in natural coordinates. We adopt the usual custom of writing these
local coordinate representations as

L(q1, . . . , qn, q̇1, . . . , q̇n) = L(q, q̇).

For t0 < t1 in R and a, b ∈ M the path space C∞a,b([t0, t1],M) is the space of all
smooth curves α : [t0, t1] → M with α(t0) = a and α(t1) = b. Every α in C∞a,b([t0, t1],M)
has a unique lift to a smooth curve

α̃ : [t0, t1]→ TM

in the tangent bundle defined by

α̃(t) = (α(t), α̇(t)),

where α̇(t) denotes the velocity (tangent) vector to α at t. The action functional associ-
ated with the Lagrangian L is the real-valued function

SL : C
∞
a,b([t0, t1],M)→ R (2.8)

defined by

SL(α) =
t1

∫
t0

L(α̃(t))dt =
t1

∫
t0

L(α(t), α̇(t))dt. (2.9)

Since M is now an arbitrary smooth manifold rather than Rn, C∞a,b([t0, t1],M) no
longer has the algebraic structure of an affine space. It does, however, have the struc-
ture of an infinite-dimensional Fréchet manifold. This sort of structure is thoroughly
discussed in the first four sections of [Ham], but we will make no use of it just yet,
except to intuitively relate some of the following definitions to familiar objects in the
finite-dimensional situation. For example, thinking of the curves in C∞a,b([t0, t1],M) as
points in some sort of manifold, one can imagine smooth curves in this manifold (that
is, “curves of curves”), tangent vectors to such curves of curves, and so on. For in-
stance, a smooth curve in C∞a,b([t0, t1],M) through some point α ∈ C∞a,b([t0, t1],M) is
what we will now call a “variation” of α.

For anyα ∈ C∞a,b([t0, t1],M)wedefinea (fixed endpoint) variation of α to be a smooth
map

Γ : [t0, t1] × (−ϵ, ϵ)→ M

for some ϵ > 0 such that

Γ(t,0) = α(t), t0 ≤ t ≤ t1,
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Γ(t0, s) = α(t0) = a, −ϵ < s < ϵ,
Γ(t1, s) = α(t1) = b, −ϵ < s < ϵ.

For any fixed s ∈ (−ϵ, ϵ) the map

γs : [t0, t1]→ M

defined by

γs(t) = Γ(t, s)

is an element of C∞a,b([t0, t1],M); γs is a “point” along the “curve of curves” represented
by the variation Γ. Then SL(γs) is a real-valued function of the real variable s whose
value at s = 0 is SL(α). We say that α ∈ C∞a,b([t0, t1],M) is a stationary, or critical point
of the action functional SL if

d
ds
SL(γs)
s=0
= 0

for every variation Γ of α. Intuitively, the rate of change of SL along every curve in
C∞a,b([t0, t1],M) through the point α is zero at α or, better yet, if SL is thought of as a real-
valued function on themanifold C∞a,b([t0, t1],M), its derivative is zero in every direction
at α.

For curves α that lie in some coordinate neighborhood in M one can write down
explicit equations that are necessary conditions for α to be a stationary point of SL. We
will derive these now and then look at some examples. Thus, we suppose (U ,ϕ) is a
chart on M and denote its coordinate functions q1 . . . , qn. The corresponding natural
coordinates on Ũ ⊆ TM are denoted q1 . . . , qn, q̇1, . . . , q̇n. We consider a smooth curve
α : [t0, t1]→ U ⊆ M in C∞a,b([t0, t1],M)whose image lies inU . The lift of α to TU ⊆ TM is
written in these natural coordinates as α̃(t) = (q1(t) . . . , qn(t), q̇1(t), . . . , q̇n(t)), wherewe
recall that qi(t) is a notational shorthand for qi(α(t)) and similarly q̇i(t)means q̇i(α̇(t)).
Now we construct some specific variations of α.

Remark 2.2.3. We are looking for necessary conditions for stationary points so we are
free to select any particular variations we choose.

Let h : [t0, t1]→ Rn be any smooth map which satisfies h(t0) = h(t1) = 0 and write
the coordinate functions of h as h(t) = (h1(t), . . . , hn(t)). For ϵ > 0 sufficiently small and
−ϵ < s < ϵ, (q1(t) + sh1(t), . . . , qn(t) + shn(t))will be in the open set ϕ(U) and this gives
a variation of α whose lift is given in natural coordinates by (q1(t) + sh1(t), . . . , qn(t) +
shn(t), q̇1(t) + sḣ1(t), . . . , q̇n(t) + sḣn(t)). To ease the typography a bit we will write this
as (α(t) + sh(t), α̇(t) + sḣ(t)). Thus,

d
ds
SL(γs)
s=0
=

d
ds

t1

∫
t0

L(α(t) + sh(t), α̇(t) + sḣ(t)) dt
s=0
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=

t1

∫
t0

d
ds
L(α(t) + sh(t), α̇(t) + sḣ(t))

s=0
dt

=

t1

∫
t0

(
𝜕L
𝜕qk
(α(t), α̇(t))hk(t) + 𝜕L

𝜕q̇k
(α(t), α̇(t))ḣk(t)) dt

=

t1

∫
t0

[
𝜕L
𝜕qk
(α(t), α̇(t)) − d

dt
(
𝜕L
𝜕q̇k
(α(t), α̇(t)))] hk(t) dt,

so, appealing to Lemma 2.2.1, we conclude that if α is a stationary point of SL, then

𝜕L
𝜕qk
(α(t), α̇(t)) − d

dt
(
𝜕L
𝜕q̇k
(α(t), α̇(t))) = 0, 1 ≤ k ≤ n. (2.10)

These are the famous Euler–Lagrange equations, which one often sees written simply
as

𝜕L
𝜕qk
−

d
dt
(
𝜕L
𝜕q̇k
) = 0, 1 ≤ k ≤ n. (2.11)

These equations are necessarily satisfied along any stationary curve for SL whose im-
age lies in any local coordinate neighborhood U . By compactness, we can cover the
image of any stationary curve α(t), t0 ≤ t ≤ t1, by finitely many coordinate neighbor-
hoods and the Euler–Lagrange equations are satisfied on each so it is customary to
say simply that they are satisfied “on α.”

Note that the derivation of the Euler–Lagrange equations was carried out for an
arbitrary local coordinate system (q1, . . . , qn) on M so, unlike Newton’s second law,
these equations take exactly the same form in every coordinate system. This coordi-
nate independence is one of their great advantages. It is instructive to check this with
a direct computation.

Exercise 2.2.2. Let (Q1, . . . ,Qn)be another local coordinate systemonM defined on an
open set that intersects the domain of (q1, . . . , qn). On this intersection transform the
Euler–Lagrange equations (2.11) to the new local coordinates (Q1, . . . ,Qn) and show
that the resulting equations are equivalent to

𝜕L
𝜕Qk −

d
dt
(
𝜕L
𝜕Q̇k
) = 0, 1 ≤ k ≤ n.

Note that we have not asserted that stationary curves joining any two points inM
must exist, nor that they are unique even when they do exist and, indeed, neither of
these is true in general, as we will see in Example 2.2.4.

Remark 2.2.4. We have defined a Lagrangian to be a function on the tangent bundle
TM, but it is sometimes convenient to allow it to depend explicitly on t as well, that
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is, to define a Lagrangian to be a smooth map L : R × TM → R. Then, for any path in
the domain of a coordinate neighborhood onM, one would write L = L(t, α(t), α̇(t)) in
natural coordinates. The action associated with this path is defined in the same way
as the integral of L(t, α(t), α̇(t)) over [t0, t1]. Stationary points for the action are also
defined in precisely the same way and a glance back at the calculations leading to the
Euler–Lagrange equations shows that the additional t-dependence has no effect at all
on the end result, that is, stationary curves satisfy

𝜕L
𝜕qk
(t, α(t), α̇(t)) − d

dt
(
𝜕L
𝜕q̇k
(t, α(t), α̇(t))) = 0, 1 ≤ k ≤ n.

Note that one candrawa rather remarkable conclusion just from the form inwhich
the Euler–Lagrange equations (2.11) are written, namely, that if the Lagrangian L hap-
pens not to depend on one of the coordinates, say qk0 , then 𝜕L

𝜕qk0 = 0 everywhere
and (2.11) implies that, along any stationary curve, 𝜕L

𝜕q̇k0 is constant. Inmore colloquial
terms, 𝜕L

𝜕q̇k0 is conserved as the system evolves.

𝜕L
𝜕qk0
= 0 ⇒ 𝜕L

𝜕q̇k0
is conserved along any stationary path.

This is the simplest instance of one of the most important features of the La-
grangian formalism, that is, the deep connection between the symmetries of a La-
grangian (in this case, its invariance under translations of qk0 ) and the existence of
quantities that are conserved during the evolution of the system. This feature is en-
tirely absent from the Newtonian picture and we will have more to say about it shortly
when we discuss what is called “Noether’s theorem.” For the moment, however, we
would just like to look at a few examples.

Example 2.2.1. Let us have another look at the example that motivated all of this in
thefirst place. For our configuration spacewe takeM = Rn and choose global standard
coordinates onRn; to emphasize this special choice we will revert to x1, . . . , xn for the
coordinate functions. The state space is then TRn = Rn ×Rn and the corresponding
natural coordinates are x1, . . . , xn, ẋ1, . . . , ẋn. Letting V(x1, . . . , xn) denote an arbitrary
smooth, real-valued function onRn andm a positive constant,we take our Lagrangian
to be

L(x1, . . . , xn, ẋ1, . . . , ẋn) = 1
2
m

n
∑
i=1
(ẋi)2 − V(x1, . . . , xn).

To write down the Euler–Lagrange equations we note that

𝜕L
𝜕xi
= −
𝜕V
𝜕xi
, i = 1, . . . , n,
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and

𝜕L
𝜕ẋi
= mẋi, i = 1, . . . , n.

Thus, (2.11) becomes

−
𝜕V
𝜕xi
−

d
dt
(mẋi) = 0, i = 1, . . . , n,

that is,

md2xi

dt2
= −
𝜕V
𝜕xi
, i = 1, . . . , n,

and these are, as expected, Newton’s second law.

Remark 2.2.5. Although it is merely a very special case of what we have just done,
we will record, for future reference, what this looks like for the harmonic oscillator.
For this we take the configuration space to beM = Rwith standard coordinate q. The
state space is therefore TM = R × R with natural coordinates (q, q̇). The potential is
V(q) = 1

2kq
2, where k > 0 is a constant and the Lagrangian is

L(q, q̇) = 1
2
mq̇2 − 1

2
kq2.

The Euler–Lagrange equation is therefore

𝜕L
𝜕q
−

d
dt
(
𝜕L
𝜕q̇
) = 0,

−kq −mq̈ = 0,

q̈ + ω2q = 0 (ω = √k/m ),

and we are right back where we started in Chapter 1.

For future reference (Sections 7.3 and 7.4) we would like to write out the action for
the free particle and the harmonic oscillator along a solution curve.

Exercise 2.2.3. Write the solution to the one-dimensional free particle equationmq̈ =
0 as α(t) = at + b.
1. Suppose t0 < t1. Show that the solution α(t) to mq̈ = 0 satisfying the boundary

conditions α(t0) = q0 and α(t1) = q1 is

α(t) = q1 − q0
t1 − t0
(t − t0) + q0.

2. Show that the action S(α) is given by

S(α) = m
2(t1 − t0)

(q1 − q0)
2.
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3. Show that, with p = mα̇(t), the action can be written

S(α) = p(q1 − q0) −
t1 − t0
2m

p2.

Remark 2.2.6. The function p(q1 − q0)−
t−t0
2m p2 will put in another appearance in Sec-

tion 7.3 when we compute the propagator for a free quantum particle (see (7.44)).

Exercise 2.2.4. Write the solution to the harmonic oscillator equation q̈ + ω2q = 0 as
α(t) = A cos ωt + B sin ωt.
1. Suppose T > 0 and assume ωT is not an integer multiple of π. Show that for the

solution α(t) to q̈ + ω2q = 0 satisfying the boundary conditions α(0) = q0 and
α(T) = qT ,

A = q0

and

B = qT − q0 cos ωT
sin ωT

.

2. Show that the action S(α) can be written as

S(α) =
T

∫
0

[
1
2
mα̇(t)2 − 1

2
mω2α(t)2 ] dt

=
mω
2
[ (B2 − A2) sin ωT cos ωT − 2AB sin2 ωT]

=
mω

2 sin ωT
[ (q20 + q

2
T) cos ωT − 2q0qT ].

Remark 2.2.7. We will see the function mω
2 sin ωT [ (q

2
0 + q

2
T ) cos ωT − 2q0qT ] again in

Section 7.4 when we compute the propagator for the quantum harmonic oscillator
(see (7.61)).

Before leaving Example 2.2.1, let us suppose, for example, that the potential
V(x1, . . . , xn) happens not to depend on, say, the ith coordinate xi so that 𝜕L

𝜕xi = 0 every-
where. Since 𝜕L

𝜕ẋi = mẋ
i, we conclude that mẋi is constant along the trajectory of the

particle. Now, mẋi is what physicists call the ith component of the particle’s (linear)
momentum. Thus, if the potential V is independent of the ith coordinate, then the ith
component of momentum is conserved during the motion.

Spatial translation symmetry implies conservation of (linear) momentum

In particular, for a particle that is not subject to any forces (a free particle), all of
mẋ1, . . . ,mẋn remain unchanged during the motion. This, naturally enough, is called
the conservation of (linear) momentum.
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Motivated by the last example we introduce some terminology that will turn out
to be more significant than it might appear at first. Let M be any manifold and let
L : TM → R be a Lagrangian on it. If qi, i = 1, . . . , n, is a local coordinate system onM
and if we write L in natural coordinates as L(q1, . . . , qn, q̇1, . . . , q̇n), then

pi =
𝜕L
𝜕q̇i

is called the momentum conjugate to qi, even though it need not correspond to “mo-
mentum” in the usual sense at all.Wehave shown thatpi is conserved along stationary
paths if L is independent of qi and we will soon see that such pairs (qi, pi) of so-called
conjugate coordinates play an essential role in the Hamiltonian formulation of classi-
cal mechanics as well as in quantummechanics; we will also see why the superscript
was turned into a subscript (Remark 2.3.1).

Next we would like to write out at least one physically interesting example for
which the configuration space is a nontrivial manifold so that local coordinates are
actually required.

Example 2.2.2. We will describe what is called the spherical pendulum. This is basi-
cally the sameas thependulumwediscussed inSection 1 except that there is no ceiling
and the motion is not restricted to a plane. Specifically, we consider a pendulum with
a bob of mass m suspended from a fixed point by a massless string of length l that is
set in motion and free to move on a sphere of radius l about this fixed point under the
influence of the earth’s gravitational field (acceleration g). We will arrange Cartesian
coordinate axes x1, x2, x3 with x3 vertical and the pendulumbobmoving on the sphere
(x1)2 + (x2)2 + (x3)2 = l2, which is therefore the configuration space M; M is topologi-
cally the 2-sphere S2. The state space TM can be identified with the set of pairs (x, v)
in R3 × R3 with x ∈ M and x1v1 + x2v2 + x3v3 = 0 (the velocity vector of the mass is
tangent to the sphere). OnM we introduce spherical coordinates denoted

q1 = ϕ,

q2 = θ

and defined by

x1 = l sin ϕ cos θ,

x2 = l sin ϕ sin θ, (2.12)

x3 = −l cos ϕ

(soϕ ismeasuredup from thenegative x3-axis and θ ismeasured in the x1x2-plane from
the positive x1-axis). By restricting (ϕ, θ) to (0,π) × (0, 2π) and then to (0,π) × (−π,π)
one obtains two charts that cover all ofM except the north and south poles and these
points can be covered by defining analogous coordinates measured from some other
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coordinate axis. The associated natural coordinates on TM will be denoted (ϕ, θ, ϕ̇, θ̇).
The Lagrangian L is taken to be the kinetic minus the potential energy associatedwith
any state. In rectangular coordinates, the kinetic energy is just 12m ((ẋ

1)2+(ẋ2)2+(ẋ3)2).
The potential is taken to bemgx3 (keep inmind that the potential is defined only up to
an additive constant). Using (2.12) to convert the Lagrangian to spherical coordinates
gives

L = 1
2
m ((ẋ1)2 + (ẋ2)2 + (ẋ3)2) −mgx3

=
1
2
ml2 (ϕ̇2 + θ̇2 sin2 ϕ) +mgl cos ϕ.

Note that the Cartesian coordinate version is independent of x1 and x2 so we already
know that the x1- and x2-components of the linearmomentumare conserved. In spher-
ical coordinates we have

𝜕L
𝜕q1
=
𝜕L
𝜕ϕ
= ml2θ̇2 sin ϕ cos ϕ −mgl sin ϕ,

𝜕L
𝜕q2
=
𝜕L
𝜕θ
= 0,

𝜕L
𝜕q̇1
=
𝜕L
𝜕ϕ̇
= ml2ϕ̇,

𝜕L
𝜕q̇2
=
𝜕L
𝜕θ̇
= ml2θ̇ sin2 ϕ.

The k = 1 Euler–Lagrange equation (2.11) therefore becomes

ϕ̈ + ω2 sin ϕ = θ̇2 sin ϕ cos ϕ, (2.13)

where, as we did for the simple pendulum in Chapter 1, we have written ω2 for g/l.
Note, incidentally, that when θ̇ = 0, this reduces to the simple pendulum equa-
tion (1.4), as it should.

Since L is independent of θ and 𝜕L
𝜕θ̇
= ml2θ̇ sin2 ϕ we conclude that

ml2θ̇ sin2 ϕ

is conservedduring themotion and therefore so is θ̇ sin2 ϕ. Onemight (indeed, should)
wonder about the physical interpretation of any quantity that is conserved during the
evolution of a physical system. What exactly is ml2θ̇ sin2 ϕ and why should it remain
constant during themotion?Wewill answer this question soon (see (2.21)), but for the
moment we would like to simply record two remarks. First note that a bit of playing
around with (2.12) shows that

θ̇ sin2 ϕ = x1ẋ2 − x2ẋ1.
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Next observe that, since L is independent of θ, the Lagrangian is invariant under rota-
tions in the x1x2-plane. We will see soon that this “symmetry” of the Lagrangian and
the fact that x1ẋ2 − x2ẋ1 is conserved during the motion are intimately related by what
is called “Noether’s theorem.”

Particles moving in space that are constrained to remain on some surface (for ex-
ample, the spherical pendulum bob) are so constrained by various forces acting on
them (for example, string tension). Such constraints can be imposed in a variety of
ways and their precise physical nature can be quite complicated. One of the beauties
of the Lagrangian (and Hamiltonian) formalism is that, whatever their physical na-
ture, such constraints can often be incorporated directly by simply decreeing that the
configuration space is the surface to which the particles are constrained. This asser-
tion is generally known as d’Alembert’s principle and is assumed by physicists to hold
whenever the constraint forces are holonomic, which means that they do no work (for
example, when they are normal to the constraint surface, as in the case of string ten-
sion). As a reality check, one should perhaps compute the equations of motion for the
spherical pendulum the “old fashioned” way (F = mA) to see that two of the three
components reduce to our Euler–Lagrange equations and the third simply says what
the constraint force must be to keep the bob on the sphere (however this is accom-
plished physically). This is actually a pretty routine (albeit messy) exercise so we will
simply sketch the procedure in the next example and leave the calculus and algebra
to those who feel morally obligated to supply it.

Exercise 2.2.5. Fill in the details of the following example.

Example 2.2.3. Wewill not specify what the constraint force is, but only that it is nor-
mal to the sphere.Wewould like to keep this as close to a calculus experience as possi-
ble so, for this example,wewill write (x, y, z) for the Cartesian coordinates inR3, while
the usual spherical coordinates in space will be denoted (ρ,ϕ, θ); they are related by

x = ρ sin ϕ cos θ,
y = ρ sin ϕ sin θ,
z = ρ cos ϕ.

We will use êx, êy, êz and êρ, êϕ, êθ for the unit vector fields in the x-, y-, z- and ρ-, ϕ-
and θ directions, respectively, at each point. These are related at each point by

êρ = (sin ϕ cos θ) êx + (sin ϕ sin θ) êy + (cos ϕ) êz ,

êϕ = (cos ϕ cos θ) êx + (cos ϕ sin θ) êy − (sin ϕ) êz ,

êθ = (− sin θ) êx + (cos θ) êy

and

êx = (sin ϕ cos θ) êρ + (cos ϕ cos θ) êϕ − (sin θ) êθ ,
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êy = (sin ϕ sin θ) êρ + (cos ϕ sin θ) êϕ + (cos θ) êθ ,

êz = (cos ϕ) êρ − (sin ϕ) êϕ.

Write the Cartesian components of acceleration as A = ẍêx + ÿêy + ̈zêz . With ρ = l so
that ρ̇ = ρ̈ = 0 these components are given in spherical coordinates by

ẍ = −2l cos ϕ sin θ ϕ̇ θ̇ − l sin ϕ sin θ θ̈ + l cos ϕ cos θ ϕ̈ − l sin ϕ cos θ (ϕ̇2 + θ̇2),

ÿ = 2l cos ϕ cos θ ϕ̇ θ̇ + l sin ϕ cos θ θ̈ + l cos ϕ sin θ ϕ̈ − l sin ϕ sin θ (ϕ̇2 + θ̇2),

̈z = −l sin ϕ ϕ̈ − l cos ϕ ϕ̇2.

Now, for any force F acting onm, the ρ-, ϕ- and θ-components of F = mA are

F ⋅ êρ = mA ⋅ êρ = (m sin ϕ cos θ)ẍ + (m sin ϕ sin θ)ÿ + (m cos ϕ) ̈z,

F ⋅ êϕ = mA ⋅ êϕ = (m cos ϕ cos θ)ẍ + (m cos ϕ sin θ)ÿ − (m sin ϕ) ̈z,

F ⋅ êθ = mA ⋅ êθ = −(m sin θ)ẍ + (m cos θ)ÿ.

Now assume that F = Fρêρ −mgêz, where Fρêρ is the radial constraint force holdingm
on the sphere. Then

F = (Fρ −mg cos ϕ)êρ − (mg sin ϕ)êϕ.

Writing out the ϕ-component of F = mA and simplifying gives

ϕ̈ + ω2 sin ϕ = θ̇2 sin ϕ cos ϕ,

where ω2 = g/l and this is (2.13). Similarly, the θ-component of F = mA gives

(sin ϕ) θ̈ + (2 cos ϕ) ϕ̇ θ̇ = 0,

which is equivalent to our conservation law

d
dt
(ml2 θ̇ sin2 ϕ) = 0.

Finally, the ρ-component of F = mA is the only one that involves Fρ and can simply be
solved for Fρ and therefore regarded as a specification of what Fρêρ must be in order
form to remain on the sphere.

Since (holonomic) constraints are built into Lagrangian mechanics through the
choice of the configuration space, the notion of a “constraining force” (like string ten-
sion) essentially disappears from the picture. As a result, it makes sense to discuss
particlemotion that is “free” except for whatever is constraining the particle to remain
in the configuration space. The Lagrangian is simply the kinetic energy, that is, 1

2m
times the squared magnitude of the velocity vector. Note that the velocity vectors are
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now tangent vectors to the configurationmanifold so one can generalize this scenario
from constraint surfaces in space to any manifold in which each tangent space is pro-
vided with an inner product with which to compute these squared magnitudes, that
is, to Riemannian manifolds (see Remark 2.2.8 below). Although it is not our practice
here to strive for optimal generality, this particular example is worth doing generally
since it brings us face-to-face with a reinterpretation of a very fundamental notion in
differential geometry and provides insight into the nature of stationary curves.

Remark 2.2.8. A Riemannian metric on a manifold M is just an assignment to each
tangent spaceTp(M) of a positive definite inner product ⟨ , ⟩p that varies smoothlywith
p in the sense that if X is a smooth vector field on M, then ⟨X(p),X(p)⟩p is a smooth
real-valued function on M. This then gives rise to a smooth, real-valued function on
the tangent bundlewhich assigns to every (p, vp) the squaredmagnitude ⟨vp, vp⟩p of vp.
A manifold together with a fixed Riemannian metric is called a Riemannian manifold.
Riemannian metrics are introduced in Section 5.11 of [Nab3]. A much more detailed
introduction to Riemannian geometry can be found in [Lee1] or Chapter 9 of [Sp2]. In
the following example we will view Riemannian metrics simply as particular types
of Lagrangians and will require no information about them except that they exist on
every smooth manifold (Theorem 4, Chapter 9, of [Sp2]).

Example 2.2.4. Here we will discuss free motion on a Riemannian manifold, that
is, free motion with constraints. Specifically, our configuration space is an arbitrary
smooth, n-dimensional manifold M equipped with a Riemannian metric ⟨ , ⟩p. The
Lagrangian L : TM → R is defined by L(p, vp) =

1
2m⟨vp, vp⟩p for each (p, vp) ∈ TM,

wherem is some positive constant; this is often called the kinetic energy metric onM.
If q1, . . . , qn are local coordinates onM, then, in the corresponding natural coordinates
on TM,

L(q, q̇) = 1
2
mgij(q)q̇

iq̇j (summation convention) (2.14)

for some positive definite, symmetric matrix (gij(q)) of smooth functions on the open
subset ofM on which q1, . . . , qn are defined. From this we compute

𝜕L
𝜕q̇i
= mgij(q)q̇

j,

𝜕L
𝜕qi
=
1
2
m
𝜕gkj
𝜕qi

q̇k q̇j,

and, along any smooth curve inM,

d
dt
(
𝜕L
𝜕q̇i
) = mgijq̈

j +m
𝜕gij
𝜕qk

q̇k q̇j.

Thus, the Euler–Lagrange equations become

gijq̈
j +
𝜕gij
𝜕qk

q̇k q̇j − 1
2
𝜕gkj
𝜕qi

q̇k q̇j = 0, i = 1, . . . , n.
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We interchange k and j in this last equation to get

gijq̈
j +
𝜕gik
𝜕qj

q̇k q̇j − 1
2
𝜕gkj
𝜕qi

q̇k q̇j = 0, i = 1, . . . , n.

Now we add the last two equations and divide by 2 to get

gijq̈
j +

1
2
(
𝜕gik
𝜕qj
+
𝜕gij
𝜕qk
−
𝜕gkj
𝜕qi
) q̇k q̇j = 0, i = 1, . . . , n.

Thematrix (gij) is invertible andwewill denote its inverse by (gij). Thus, if wemultiply
the last equation by gli and sum over i = 1, . . . , n the result is

q̈l + 1
2
gli(𝜕gik
𝜕qj
+
𝜕gij
𝜕qk
−
𝜕gkj
𝜕qi
) q̇k q̇j = 0, l = 1, . . . , n.

The coefficient of q̇k q̇j is generally denoted Γlkj and called a Christoffel symbol for the
given Riemannian metric. With this the Euler–Lagrange equations assume the form

q̈l + Γlkjq̇
k q̇j = 0, l = 1, . . . , n. (2.15)

These are the familiar geodesic equations of Riemannian geometry. Their solutions,
that is, the stationary curves for the Lagrangian L, are called the geodesics of the Rie-
mannian manifoldM. For certain Riemannian manifolds the equations can be solved
explicitly. The geodesics ofRn with its standard Riemannian metric, for example, are
the arc length parametrizations of straight lines so, in particular, there is a unique
stationary curve joining any two points and, moreover, this curve has minimal length
among all curves joining these two points. For the sphere Sn with the metric it inher-
its fromRn+1 the geodesics are the arc length parametrizations of the great circles so
any two points are joined by two stationary curves and, unless the points are diamet-
rically opposite, only one of themminimizes length. On the other hand, the geodesics
of the punctured plane R2 − {(0,0)} with the metric inherited from R2 are still unit
speed straight lines so, for example, (−1,0) and (1,0) cannot be joined by any station-
ary curve.

All of the calculations in the preceding example are equally valid if ⟨ , ⟩p is only
assumed to be a nondegenerate, symmetric, bilinear form on Tp(M), but not neces-
sarily positive definite. A manifold equipped with such a ⟨ , ⟩p at each p ∈ M, varying
smoothly with p, is called a semi-Riemannian manifold and these are of fundamental
importance in many aspects of mathematical physics, particularly general relativity.
They also have geodesics, but the analysis and interpretation of these is much more
subtle (see [Nab1] for a brief encounter with this and [O’N] for a more thorough treat-
ment).
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Exercise 2.2.6. LetM be an arbitrary manifold. Another type of geometrical object on
M that can be thought of as a Lagrangian is a 1-form θ. These are simply smooth real-
valued functions on TM that are linear on each fiber π−1(p) ≅ {p} × Tp(M) so that, in
any local coordinate system, θ(q, q̇) = θi(q)q̇i for some smooth real-valued functions
θi(q) = θi(q1, . . . , qn), i = 1, . . . , n.
1. Show that the Euler–Lagrange equations for the Lagrangian θ can be written in

the form

ια̇(t) dθ = 0,

where dθ is the exterior derivative of θ and ια̇(t) dθ is the interior product (con-
traction) of the 2-form dθ with α̇(t), that is, (ια̇(t) dθ) (v(t)) = dθ (α̇(t), v(t)) for any
tangent vector v(t) toM at α(t).

2. Let L : TM → R be an arbitrary Lagrangian on M and let θ be a 1-form. Define a
new Lagrangian L : TM → R on M by L = L + θ + c, where c is a real constant.
Show that L and L have the same Euler–Lagrange equations if and only if θ is
a closed 1-form (that is, if and only if dθ = 0). In particular, if g : M → R is
any smooth, real-valued function on M, then L and L + dg have the same Euler–
Lagrange equations.

Next we would like to look at an example of a slightly different sort.

Example 2.2.5. We mentioned in Remark 2.2.4 that the Euler–Lagrange equations
are still satisfied even if one allows the Lagrangian to depend explicitly on time t.
We have chosen not to do this; our Lagrangians are all functions on TM. Thought of
somewhat differently, we are really considering only “time-dependent” Lagrangians
L(t, q1, . . . , qn, q̇1, . . . , q̇n) possessing the time translation symmetry 𝜕L𝜕t = 0. We show
now that this symmetry also gives rise to a quantity that is conserved along stationary
paths and, indeed, to one that we have already seen in a special case.

Remark 2.2.9. Note that there is no ̇t floating around so we cannot arrive at this con-
served quantity as we did in the previous examples by computing “𝜕L/𝜕 ̇t.”

Write the local coordinates of the stationary curve as q1(t), . . . , qn(t) and the La-
grangian evaluatedon (the lift of) this curve asL(t, q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)). Now
compute the rate of change of L along the curve. We have

dL
dt
=
𝜕L
𝜕qi

dqi

dt
+
𝜕L
𝜕q̇i

dq̇i

dt
+
𝜕L
𝜕t

=
d
dt
(
𝜕L
𝜕q̇i
)
dqi

dt
+
𝜕L
𝜕q̇i

d
dt
(
dqi

dt
) + 0

=
d
dt
(
𝜕L
𝜕q̇i

dqi

dt
)
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=
d
dt
(piq̇

i).

In other words,

d
dt
(piq̇

i − L) = 0,

so piq̇i − L is conserved along a stationary path for any time-independent Lagrangian.
To see how one should interpret this conserved quantity, let us write it out in the case
of the Lagrangian (2.7). For L(q1, . . . , qn, q̇1, . . . , q̇n) = ∑ni=1

1
2m(q̇

i)2 − V(q1, . . . , qn) we
have

piq̇
i − L = 𝜕L
𝜕q̇i

q̇i − L =
n
∑
i=1

m(q̇i)2 − L =
n
∑
i=1

1
2
m(q̇i)2 + V(q1, . . . , qn)

and this is just the total energy (kinetic plus potential). For any time-independent La-
grangian L we define the total energy EL by

EL = piq̇
i − L = 𝜕L
𝜕q̇i

q̇i − L (2.16)

and we summarize what we have just shown by saying the following.

Time translation symmetry implies conservation of energy.

The energy function EL is defined in terms of natural coordinates on TM, but one
can check that the definitions agree on the intersection of any two coordinate neigh-
borhoods so EL is a well-defined real-valued function on TM. Another way of seeing
the same thing is to check that the following invariant definition agrees with the coor-
dinate definition. Let R be the vector field on TM that is “radial” on each Tp(M). More
explicitly, for each (p, vp) ∈ T(M), let R(p, vp) =

d
dt (p, tvp)|t=0; in local coordinates,

R = q̇i𝜕q̇i . Then EL = dL(R) − L.
One could continue this list of examples indefinitely, but this is not really our busi-

ness here (manymore are available in, for example, [Arn2], [Sp3] and [Gold]). Next we
would like to look into the relation to which we alluded earlier between “symmetries”
and conserved quantities.Wewill definefirst a “symmetry” of a Lagrangian L and then
an “infinitesimal symmetry” of L; it is the latter notion that is related to conservation
laws by Noether’s theorem. To motivate the definitions we first consider a few simple
examples.

Example 2.2.6. We consider a free particle moving in Rn. Thus, the configuration
space isM = Rn, on which we choose standard coordinates x1, . . . , xn. The state space
is TRn = Rn ×Rn with natural coordinates x1, . . . , xn, ẋ1, . . . , ẋn, and the Lagrangian is
just L(x, ẋ) = 1

2m ((ẋ
1)2 + ⋅ ⋅ ⋅ + (ẋn)2) = 1

2m‖ẋ‖
2 because the particle is free. Now fix an

a = (a1, . . . , an) inRn and define a map

Fa : R
n → Rn
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by

Fa(x) = x + a

for every x ∈ Rn (translation by a). Then Fa is a diffeomorphism and its derivative
(Fa)∗x : Tx(Rn)→ Tx+a(Rn) at any x is just the identity mapwhen both tangent spaces
are canonically identified withRn. Thus, we have an induced map on the state space

TFa : TM = R
n ×Rn → TM = Rn ×Rn

given by

(TFa)(x, ẋ) = (Fa(x), (Fa)∗x(ẋ)) = (x + a, ẋ).

This is a diffeomorphism of TM onto TM that clearly satisfies

L ∘ TFa = L

and it is this property that will qualify Fa as a symmetry of L once we have formulated
the precise definition. One says simply that L is invariant under spatial translation.

Example 2.2.7. Next we will consider a particle moving in a spherically symmetric
potential inR3. More precisely, our configuration space isM = R3 on which we again
choose standard coordinates x1, x2, x3, the state space is TM = R3 ×R3 with natural
coordinates x1, x2, x3, ẋ1, ẋ2, ẋ3 and we take as our Lagrangian

L(x, ẋ) = 1
2
m‖ẋ‖2 − V(‖x‖), (2.17)

where V is a smooth function on R3 that depends only on ‖x‖. Now fix an element g
of the rotation group SO(3), that is, a 3 × 3 matrix that is orthogonal (gTg = id3×3) and
has det (g) = 1. Define a map

Fg : R
3 → R3

by

Fg(x) = g ⋅ x,

where g ⋅ x means matrix multiplication with x thought of as a column vector. Since
g is invertible, Fg is a diffeomorphism of M onto M. Moreover, since Fg is linear, its
derivative at each point is the same linear map (multiplication by g) once the tangent
spaces are canonically identified withR3. Thus, the induced map on state space

TFg : TM = R
3 ×R3 → TM = R3 ×R3
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is given by

(TFg)(x, ẋ) = (Fg(x), (Fg)∗x(ẋ)) = (g ⋅ x, g ⋅ ẋ).

This is again adiffeomorphismofTM ontoTM.Moreover, since g is orthogonal, ‖g ⋅x‖ =
‖x‖ and ‖g ⋅ ẋ‖ = ‖ẋ‖ so, once again,

L ∘ TFg = L

and we will say that L is invariant under rotation and that Fg is a symmetry of L for
every g ∈ SO(3).

The general definition is as follows. If L : TM → R is a Lagrangian on a smooth
manifoldM, then a symmetry of L is a diffeomorphism

F : M → M

ofM onto itself for which the induced map

TF : TM → TM

given by

TF(p, vp) = (F(p), F∗p(vp))

satisfies

L ∘ TF = L.

Symmetries often arise from the action of a Lie group G on the configuration
spaceM. Recall that a (left) action of G onM is a smooth map σ : G ×M → M, usually
written σ(g, p) = g ⋅ p, that satisfies e ⋅ p = p∀p ∈ M, where e is the identity element
of G, and g1 ⋅ (g2 ⋅ p) = (g1g2) ⋅ p for all g1, g2 ∈ G and all p ∈ M. Given such an action
one can define, for each g ∈ G, a diffeomorphism σg : M → M by σg(p) = g ⋅ p. If a
Lagrangian is given onM, then itmay be possible to find a Lie group G and an action
σ of G on M for which these diffeomorphisms are symmetries. This was the case for
both of the previous examples; in the first, G was the additive group R3, thought of
as the translation group ofR3, while in the second it was SO(3). Topological groups,
group actions and Lie groups are discussed in Sections 1.6 and 5.8 of [Nab3].

The theorem of Noether to which we have alluded several times refers not to sym-
metries of the Lagrangian, but rather to “infinitesimal” symmetries. Again,weprecede
the precise definition with a simple, but very important example.

Example 2.2.8. We will continue the discussion of a particle moving in a spherically
symmetric potential inR3 and will use the notation established in Example 2.2.7. We
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will also need a more explicit description of the elements of the rotation group SO(3).
The following result, which essentially says that the exponential map on the Lie al-
gebra of SO(3) is surjective, is proved on pages 393–395 of [Nab3]. We will denote by
so(3) the Lie algebra of SO(3), that is, the set of all 3×3, skew-symmetric, real matrices
with entrywise linear operations and matrix commutator as bracket (see Section 5.8
of [Nab3] for Lie algebras).

Theorem 2.2.2. Let A be an element of so(3). Then thematrix exponential eA is in SO(3).
Conversely, if g is any element of SO(3), then there is a unique t ∈ [0,π] and a unit
vector n̂ = (n1, n2, n3) inR3 for which

g = etN = id3×3 + (sin t)N + (1 − cos t)N2,

where N is the element of so(3) given by

N =(
0 −n3 n2

n3 0 −n1

−n2 n1 0
) .

Geometrically, one thinks of g = etN as the rotation ofR3 through t radians about
an axis along n̂ in a sense determined by the right-hand rule from the direction of n̂.
Now fix an n̂ and the corresponding N in so(3). For any x ∈ R3,

t → etN ⋅ x

is a curve inR3 passing through x at t = 0 with velocity vector

d
dt
(etN ⋅ x)

t=0
= N ⋅ x.

Doing this for each x ∈ R3 gives a smooth vector field XN onR3 defined by

XN (x) =
d
dt
(etN ⋅ x)

t=0
= N ⋅ x.

Like any (complete) vector field on R3, XN determines a one-parameter group of dif-
feomorphisms

φt : R
3 → R3, −∞ < t <∞,

where φt pushes each point of R3 t units along the integral curve of XN that starts
there (this one-parameter groupof diffeomorphisms is also called theflow of the vector
field). In this case,

φt(x) = e
tN ⋅ x.
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Remark 2.2.10. Integral curves and one-parameter groups of diffeomorphisms are
discussed on pages 270–275 of [Nab3].

Note that each φt, being multiplication by some element of SO(3), is a symmetry
of L by Example 2.2.7. This, according to the definition we will formulate in a mo-
ment, makes the vector field XN an “infinitesimal symmetry” of L. One can think of it
intuitively as an object that determines not a single symmetry of L, but rather a one-
parameter family of symmetries. We will conclude this example by writing a few of
these vector fields out explicitly. Choose, for example, n̂ = (0,0, 1) ∈ R3. Then

N =(
0 −1 0
1 0 0
0 0 0

) ,

so

XN (x) = N ⋅ x =(
−x2

x1

0
) .

We conclude then that the vector field XN is just

X12 = x
1𝜕x2 − x

2𝜕x1 ,

which is generally referred to as the infinitesimal generator for rotations in the x1x2-
plane. Taking n̂ to be (1,0,0) and (0, 1,0) one obtains, in the same way, vector fields

Xij = x
i𝜕xj − x

j𝜕xi , i, j = 1, 2, 3, i ̸= j,

which is called the infinitesimal generator for rotations in the xixj-plane.

The general definition of an infinitesimal symmetry is complicated just a bit by
the fact that, unlike the examples we have discussed thus far, not every vector field
on a smooth manifold is complete, that is, has integral curves defined for all t ∈ R.
For such vector fields one has only a local one-parameter group of diffeomorphisms
(see pages 272–273 of [Nab3]). In order not to cloud the essential issues wewill give the
definition twice, once for vector fields that are complete and once for those that need
not be complete (naturally, the first definition is a special case of the second).

Let L be a Lagrangian on a smooth manifold M. A complete vector field X on M
is said to be an infinitesimal symmetry of L if each φt in its one-parameter group of
diffeomorphisms is a symmetry of L. Now we drop the assumption that X is complete.
For each p ∈ M, let αp be the maximal integral curve of X through p (see Theorem 5.7.2
of [Nab3]). For each t ∈ R, let 𝒟t be the set of all p ∈ M for which αp is defined at t
and define φt : 𝒟t → M by φt(p) = αp(t). By Theorem 5.7.4 of [Nab3], each 𝒟t is an
open set (perhaps empty) and φt is a diffeomorphism of𝒟t onto𝒟−t with inverse φ−t .
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Now we will say that X is an infinitesimal symmetry of L if, for each t with 𝒟t ̸= 0, the
induced map Tφt : T𝒟t → T𝒟−t, defined by (Tφt)(p, vp) = (φt(p), (φt)∗p(vp)), satisfies
L ∘ Tφt = L on T𝒟t .

Our objective is to show that every infinitesimal symmetry X of L on M gives rise
to a “conserved quantity,” that is, a function that is constant along every stationary
curve. For this we need to write a bit more explicitly what it means for X to be an in-
finitesimal symmetry. Let q1, . . . , qn be local coordinates on the open set U ⊆ M and
q1, . . . , qn, q̇1, . . . , q̇n the corresponding natural coordinates on TU ⊆ TM. In these co-
ordinates we write the vector field X as

X = Xi𝜕qi ,

where Xi = Xi(q1, . . . , qn), i = 1, . . . , n, are the local component functions of X. Each
local diffeomorphismφt lifts to the tangent bundle by (Tφt)(p, vp) = (φt(p), (φt)∗p(vp)).
For each fixed (p, vp), the curve t → (Tφt)(p, vp) lifts the integral curves of X through p.
These curvesdeterminea vector field X̃ on the tangent bundlewhose value at anypoint
(p, vp) is the tangent vector to t → (Tφt)(p, vp) at (p, vp).

Exercise 2.2.7. Show that, in natural coordinates q1, . . . , qn, q̇1, . . . , q̇n, this vector field
is

X̃ = Xi𝜕qi + (
𝜕Xi

𝜕qj
q̇j) 𝜕q̇i .

Now, by definition, X is an infinitesimal symmetry of L if and only if the rate of
change of L along each integral curve of this lifted vector field is zero, that is,

X̃L = (Xi𝜕qi + (
𝜕Xi

𝜕qj
q̇j) 𝜕q̇i) L = 0,

or

Xi 𝜕L
𝜕qi
+
𝜕Xi

𝜕qj
q̇j 𝜕L
𝜕q̇i
= 0.

Now note that, along the lift of a solution t → (q1(t), . . . , qn(t)) to the Euler–Lagrange
equations ( 𝜕L

𝜕qi =
d
dt (
𝜕L
𝜕q̇i )), this can be written

Xi d
dt
(
𝜕L
𝜕q̇i
) +
𝜕L
𝜕q̇i
(
𝜕Xi

𝜕qj
q̇j) = 0

or, better yet,

d
dt
(Xi 𝜕L
𝜕q̇i
) = 0,

so Xi 𝜕L
𝜕q̇i = X

ipi is conserved. We summarize all of this as follows.
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Theorem 2.2.3. Let L : TM → R be a Lagrangian on a smoothmanifoldM and suppose
X is an infinitesimal symmetry of L. Let q1, . . . , qn be any local coordinate system for M
with corresponding natural coordinates q1, . . . , qn, q̇1, . . . , q̇n. Write X = Xi𝜕qi . Then

Xi 𝜕L
𝜕q̇i
= Xipi (2.18)

is constant along every stationary curve in the coordinate neighborhood on which
q1, . . . , qn are defined.

This is (the simplest version of)Noether’s theorem. In a nutshell, it says that every
infinitesimal symmetry gives rise to a conserved quantity. Let us see now how all of
this works out for a few examples.

Example 2.2.9. Suppose we have a Lagrangian L that is independent of one of the
coordinates in M, say, qi. Then certainly X = 𝜕qi is an infinitesimal symmetry. Since
the only component of X relative to 𝜕q1 , . . . , 𝜕qn is the ith and this is 1 we find that the
corresponding Noether conserved quantity is the same as the one we found earlier,
namely, the conjugate momentum pi =

𝜕L
𝜕q̇i .

Example 2.2.10. Here we will continue the discussion in Example 2.2.8 and we will
use the notation established there. Specifically, we will consider, for each i, j = 1, 2, 3,
i ̸= j, the vector field onR3 given by

Xij = x
i𝜕xj − x

j𝜕xi .

Each of these is an infinitesimal symmetry for the Lagrangian L(x, ẋ) = 1
2m‖ẋ‖

2−V(‖x‖)
onR3. To find the corresponding Noether conserved quantity in standard coordinates
we compute

Xk
ij
𝜕L
𝜕ẋk
= X1

ij
𝜕L
𝜕ẋ1
+ X2

ij
𝜕L
𝜕ẋ2
+ X3

ij
𝜕L
𝜕ẋ3
= −xj(mẋi) + xi(mẋj) = m(xiẋj − xjẋi).

Thus, on any stationary curve,

m[x1(t)ẋ2(t) − x2(t)ẋ1(t)],

m[x3(t)ẋ1(t) − x1(t)ẋ3(t)], (2.19)

m[x2(t)ẋ3(t) − x3(t)ẋ2(t)]

are all constant. Note that these are precisely the components of the cross-product

L(t) = r(t) × (mv(t)) = r(t) × p(t) (2.20)

of the position and momentum vectors of the particle and this is what physicists call
its angular momentum (with respect to the origin). Note also that the constancy of this
vector along the trajectory of the particle implies that the motion takes place entirely
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in a two-dimensional plane inR3, namely, the plane with this normal vector. The ex-
istence of these three conserved quantities arose from the infinitesimal symmetries of
the spherically symmetric Lagrangian corresponding to rotations about the various
coordinate axes so we may summarize all of this as follows.

Rotational symmetry implies conservation of angular momentum

It is important to understand what is really going on in this example. We have a
Lagrangian L : TM → R on a smooth manifold M and a (matrix) Lie group G which
acts onM in such a way that each diffeomorphism σg : M → M, g ∈ G, is a symmetry
of the Lagrangian; under such circumstances we refer to G as a symmetry group of
L; G has a Lie algebra g and each generator (basis element) Ni of g gives rise to an
infinitesimal symmetry XNi

defined by

XNi
(p) = d

dt
(etNi ⋅ p)

t=0

and each of these in turn gives rise, via Noether’s theorem, to a conserved quantity.
The Lie algebra of the symmetry group is where the conservation laws come from.

Note, incidentally, that it is entirely possible for a Lagrangian to have an infinites-
imal symmetry that requires the conservation of one of the components of angular
momentum, but not the others. Indeed, we can now see that this is precisely what oc-
curred in our discussion of the spherical pendulum in Example 2.2.2 where we found
that the θ-independence of the Lagrangian gave rise to the conserved quantity

mθ̇ sin2 ϕ = m[x1ẋ2 − x2ẋ1], (2.21)

which we now recognize as the x3-component of the angular momentum. The moral
of this example is that the proper choice of coordinates can uncover symmetries, and
therefore conservation laws, that are not otherwise apparent.

Linear and angular momentum conservation inR3 both arise from a certain sym-
metry group; in the first case this is the spatial translation groupR3 and in the second
it is the rotation group SO(3). We would now like to show these two can be combined
into a single group.

Example 2.2.11. Fix an element R of SO(3) and an a in R3. Define a mapping (a,R) :
R3 → R3 by

x ∈ R3 → (a,R)(x) = R ⋅ x + a ∈ R3.

Thus, (a,R) rotates by R and then translates by a so it is an isometry ofR3. The com-
position of two such mappings is given by

x → R1 ⋅ x + a1 → R2 ⋅ (R1 ⋅ x + a1) + a2 = (R2R1) ⋅ x + (R2 ⋅ a1 + a2).
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Since R2R1 ∈ SO(3) and R2 ⋅ a1 + a2 ∈ R3, this composition is just

(a2,R2) ∘ (a1,R1) = (R2 ⋅ a1 + a2,R2R1)

so this set of mappings is closed under composition. Moreover, (0, id3×3) is clearly an
identity element and every (a,R) has an inverse given by

(a,R)−1 = (−R−1a,R−1)

so this collection of maps forms a group under composition. This group is the semi-
direct product ofR3 and SO(3). We will denote it ISO(3) and refer to it as the inhomo-
geneous rotation group. Its elements are diffeomorphisms ofR3 onto itself and we can
think of it as defining a group action onR3. We have

(a,R) ⋅ x = R ⋅ x + a.

Note that the maps a → (a, id3×3) and R → (0,R) identify R3 and SO(3) with sub-
groups of ISO(3) and that R3 is a normal subgroup since it is the kernel of the pro-
jection (a,R) → (0,R) and this is a homomorphism (the projection onto R3 is not a
homomorphism).

We would like to find an explicit matrix model for ISO(3). For this we identifyR3

with the subset ofR4 consisting of (column) vectors of the form

(

x1

x2

x3

1

) = (
x
1
) ,

where x = (x1 x2 x3)T ∈ R3. Now consider the set G of 4 × 4 matrices of the form

(
R a
0 1
) =(

R1 1 R1 2 R1 3 a1

R2 1 R2 2 R2 3 a2

R3 1 R3 2 R3 3 a3

0 0 0 1

) ,

where R ∈ SO(3) and a ∈ R3. Note that

(
R a
0 1
)(

x
1
) = (

Rx + a
1
)

and

(
R2 a2
0 1
)(

R1 a1
0 1
) = (

R2R1 R2a1 + a2
0 1

)

so we can identify ISO(3) with G and its action onR3 with matrix multiplication.
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Here G is a matrix Lie group of dimension 6. Its Lie algebra can be identified with
the set of 4 × 4 real matrices that arise as velocity vectors to curves in G through the
identity withmatrix commutator as bracket (see Section 5.8 of [Nab3]). We find a basis
for this Lie algebra (otherwise called a set of generators) by noting that if

αa(t) = (
id3×3 ta
0 1

) ,

then

αa(0) = (
0 a
0 0
)

and if

αN (t) = (
etN 0
0 1
) ,

then

αN (0) = (
N 0
0 0
)

(see Theorem 2.2.2 for N). Taking a = (1,0,0), (0, 1,0), (0,0, 1) and n̂ = (1,0,0), (0, 1,0),
(0,0, 1) (again, see Theorem 2.2.2 for n̂) we obtain a set of six generators for the Lie
algebra iso(3) of ISO(3) that we will write as follows:

N1 =(

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

) ,

N2 =(

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

) ,

N3 =(

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

) ,

P1 =(

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

) ,
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P2 =(

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

) ,

P3 =(

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

) .

N1, N2 and N3 are called the generators of rotations, while P1, P2 and P3 are called the
generators of translations. Their significance for us is that ifM is a configuration space
on which a Lagrangian L : TM → R is defined and on which ISO(3) acts, then each Ni
and each Pi determines a vector field onM and, depending on the Lagrangian, these
may (or may not) be infinitesimal symmetries of L.

We will write [A,B]− = AB − BA for the matrix commutator (the reason for the ap-
parently unnecessary subscript is that later wewill need the anticommutator [A,B]+ =
AB + BA as well). Using ϵijk for the Levi-Civita symbol (1 if i j k is an even permutation
of 1 2 3, −1 if i j k is an odd permutation of 1 2 3 and 0 otherwise) we record, for future
reference, the following commutation relations for these generators, all of which can
be verified by simply computing the matrix products:

[Ni,Nj]− =
3
∑
k=1

ϵijkNk , i, j = 1, 2, 3, (2.22)

[Pi,Pj]− = 0, i, j = 1, 2, 3, (2.23)

[Ni,Pj]− =
3
∑
k=1

ϵijkPk , i, j = 1, 2, 3. (2.24)

Every element of ISO(3) can be written as e∑
3
i=1(αiNi+βiPi) for some real number αi

and βi, but one should keep in mind that for matrices A and B, eA+B = eAeB if and
only if A and B commute. When [A,B]− ̸= 0 the situation is not so simple. Indeed, the
Baker–Campbell–Hausdorff formula gives a series expansion of the form

eAeB = eA+B+
1
2 [A,B]+

1
12 [A,[A,B]]−

1
12 [B,[A,B]]+⋅⋅⋅ (2.25)

for eAeB (seeChapter 3 of [Hall1]). Ananalogous result for certain self-adjoint operators
on a Hilbert space, called the Lie–Trotter–Kato product formula, will play an essential
role in Chapter 8 when we introduce the Feynman path integral.

Next we will consider an important example that has ISO(3) as a symmetry group.

Example 2.2.12. We consider the classical two-body problem. Thus, we have two
masses m1 and m2 moving in space under a conservative force that depends only on
the distance between them and is directed along the line joining them (for example,
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two planets, each ofwhich exerts a gravitational force on the other). The configuration
space is taken to beM = R3×R3 = R6 so the state space isTM = (R3×R3)×(R3×R3) =
R12. Let x1 and x2 denote the position vectors of m1 and m2, respectively, and write
their Cartesian components xj = (x1j , x

2
j , x

3
j ), j = 1, 2. We take the Lagrangian L to be

L = 1
2
m1

3
∑
i=1
(ẋi1)

2
+
1
2
m2

3
∑
i=1
(ẋi2)

2
− V ((

3
∑
i=1
(xi1 − x

i
2)
2
)

1/2

)

=
1
2
m1‖ẋ1‖

2 +
1
2
m2‖ẋ2‖

2 − V( ‖x1 − x2‖ ), (2.26)

where V is any smooth function of the distance ‖x1 − x2‖ between m1 and m2. ISO(3)
acts onR3 ×R3 by acting on each factor separately and it is clear from (2.26) that L is
invariant under this action. In particular, this is true for the translation and rotation
subgroups so we expect some sort of “momentum” and “angular momentum” conser-
vation (the quotation marks are due to the fact that we are no longer talking about a
single particle moving in space so these terms are being used in some new sense that
we have not yet made explicit). We will begin with invariance under the SO(3) sub-
group. Specifically, for any g ∈ SO(3), L(g ⋅ x1, g ⋅ x2, g ⋅ ẋ1, g ⋅ ẋ2) = L(x1, x2, ẋ1, ẋ2) so, in
particular, for any N ∈ so(3),

XN (x1, x2) =
d
dt
(etN ⋅ (x1, x2))

t=0
= (Nx1,Nx2)

is an infinitesimal symmetry of L. Now, any vector field onR3 ×R3 is a linear combi-
nation of

𝜕x11 , 𝜕x21 , 𝜕x31 , 𝜕x12 , 𝜕x22 , 𝜕x32

and if we take N to be one of the infinitesimal generators of rotations (N = N1,N2,N3),
then, just as in Example 2.2.8 , we obtain the vector fields

(xi1𝜕xj1 − x
j
1𝜕xi1) + (x

i
2𝜕xj2
− xj2𝜕xi2),

from which we can read off the components of the infinitesimal symmetries. To write
down the corresponding Noether conserved quantities (2.18) we note that 𝜕L/𝜕ẋi1 =
m1ẋi1 and 𝜕L/𝜕ẋ

i
2 = m2ẋi2. Thus, (2.18) gives

m1(x
i
1ẋ

j
1 − x

j
1ẋ

i
1) +m2(x

i
2ẋ

j
2 − x

j
2ẋ

i
2)

for the conserved quantities. Consequently, rotational invariance for the two-body
problem implies conservation of the total angular momentum of the system.

One can deal with translational invariance in the same way, but for the sake of
variety and because we will need the ideas when we discuss the quantum two-body



40 | 2 Lagrangian and Hamiltonian mechanics

problem, that is, the hydrogen atom (Example 9.1.1), we will describe instead the tra-
ditional approach in physics. The idea is to replace the Cartesian coordinates with the
so-called center of mass coordinates. For this we replace x1 and x2 with the displace-
ment vector

x = x1 − x2

and the center of mass vector

R = m1x1 +m2x2
m1 +m2

.

Then

x1 = R +
m2x

m1 +m2

and

x2 = R −
m1x

m1 +m2
.

Computing derivatives and substituting into (2.26) gives

L = 1
2
(m1 +m2) ‖Ṙ‖

2 +
1
2

m1m2
m1 +m2

‖ẋ‖2 − V(‖x‖). (2.27)

Now note that this expression for L depends on x1, x2, x3, ẋ1, ẋ2, ẋ3, Ṙ1, Ṙ2, Ṙ3, but not
on R1, R2, R3. Since

𝜕L
𝜕Ṙi
= (m1 +m2) Ṙ

i = m1ẋ
i
1 +m2ẋ

i
2, i = 1, 2, 3,

and these must be constant along a stationary curve we conclude that the total mo-
mentum

P = (m1 +m2)Ṙ = m1ẋ1 +m2ẋ2

of the system is conserved.

Finally, we come to an example that is quite important to physicists and also to
us, but for rather different reasons. Rigid body dynamics is an old and venerable part
of physics.Wewill begin to set up the formalism for the subject, but will find ourselves
immediately distractedbya rather curiouspossibility that this formalismsuggests. Cu-
rious or not, we will find before we are through that this possibility is directly relevant
to the behavior of certain elementary particles called “fermions” (see Section 10.1).
The example (or, rather, the distraction) requires a bit of standard topology, specifi-
cally, fundamental groups. Everything we need is available in a great many sources
(for example, Sections 2.1–2.4 of [Nab3], or Part I of [Gre]).
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Example 2.2.13. Intuitively, a rigid body is a physical system consisting of a finite
number of point masses each one of which maintains a constant distance from all
of the rest as the system evolves in time, that is, as it moves in space. Such things can
exist only as idealizations, of course, and, indeed, special relativity prohibits their ex-
istence even as idealizations, but we are now ignoring relativistic effects and so we
will not worry about it. We will be interested in the motion of such a rigid body that
is constrained to pivot about some fixed point. Thus, we begin with n + 1 positive real
numbersm0,m1, . . . ,mn (the masses) and n + 1 distinct points x00 , x

0
1 , . . . , x

0
n inR

3 (the
positions of themassesm0,m1, . . . ,mn, respectively, at time t = 0).Wewill assume that
n > 3 and that not all of the masses lie in a single plane in R3. Furthermore, we will
take the fixed point about which the rigid body is to pivot to be x00 and choose coordi-
nate axes so that x00 = (0,0,0) ∈ R

3. For i, j = 0, 1, . . . , n, i ̸= j, we let ‖x0i − x
0
j ‖ = cij > 0.

We refer to { x00 = (0,0,0), x
0
1 , . . . , x

0
n } as the initial configuration of the rigid

body. By assumption, any other configuration {x0 = (0,0,0), x1, . . . , xn} of the masses
m0,m1, . . . ,mn must satisfy ‖xi − xj‖ = cij, i, j = 0, 1, . . . , n, i ̸= j. Although one could
define the configuration space of our rigid body in these terms, a much clearer picture
emerges in the following way. Since there are at least four masses and not all of them
lie in a single plane, some three of x01 , . . . , x

0
n must be linearly independent. We can as-

sume the masses are labeled so that x01 , x
0
2 , x

0
3 are linearly independent and therefore

form a basis forR3. Now let A be the unique linear transformation ofR3 that carries
x0i onto xi for i = 1, 2, 3.

Exercise 2.2.8. Show that A is an orthogonal transformation ofR3 and that Ax0i = xi
for i = 4, . . . , n.

Consequently, we can identify any configuration of the rigid body with an orthog-
onal transformation A of R3 that carries the initial configuration onto it. Every such
A is in the orthogonal group O(3) and therefore has determinant ±1. We would like to
conclude that detA = 1 so that, in fact, A is in the rotation group SO(3). This does not
follow mathematically from the assumptions we have made, but rests on additional
physical input. The reasoning by which we arrive at this additional physical input lies
at the heart of the point we wish to make in this example so we will try to explain
carefully. Pick up a rigid body (a Rubik’s cube, for example), hold it in some initial
configuration and then, keeping one of its points fixed, move it (in any way you like)
to a new configuration. This is, of course, a physical process. The rigid body proceeds
through a “continuous” sequence of physical configurations (parametrized by some
interval of time values, for example) beginning with the initial configuration and end-
ingwith the final one. At each instant t the configuration of the rigid body corresponds
to an element A(t) of O(3) that carries the initial configuration onto the configuration
at time t with, of course, A(0) = id3×3 ∈ O(3). Thus, we have a curve t → A(t) in O(3)
that models our physical process. Now, O(3) is a Lie group (see Section 5.8 of [Nab3])
and therefore a topological space and the curve t → A(t) is continuous with respect to
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this topology (and the usual topology on the real line) if and only if the entries in A(t)
relative to any basis are continuous real-valued functions of the real variable t. Let us
now assume that this is the appropriate interpretation of a “continuous” sequence of
physical configurations.

Remark 2.2.11. If you are saying to yourself that this is patently obvious and unwor-
thy of being singled out as a “physical assumption” we would ask that you reserve
judgment until you have seen some of the consequences.

Then t → detA(t) is a continuous real-valued function of a real variable, defined on an
interval and taking only the values 1 and −1. The intermediate value theorem implies
that detA(t)must take exactly one of these values for all t. Since detA(0) = 1, we find
that detA(t) = 1 for every t, that is, A(t) ∈ SO(3) for all t. Every configuration of the
rigid body can therefore be identified with an element of SO(3). Let us summarize the
conclusions to which this discussion has led us.

The configuration space of a rigid body constrained to pivot about some fixed point
is SO(3) and any such motion of the rigid body is represented by a continuous curve
t ∈ R→ A(t) ∈ SO(3) in SO(3).

Exercise 2.2.9. Describe the configuration space of a rigid body that is not con-
strained to pivot about some fixed point.

The state space for a rigid body with one point fixed is therefore the tangent bun-
dle T(SO(3)) which happens to be the product SO(3) × so(3) of SO(3) and its Lie al-
gebra so(3) because any Lie group is parallelizable (Exercise 5.8.17 of [Nab3]). If one
now wishes to understand the dynamics of rigid body motion one must specify a La-
grangian L : SO(3)× so(3)→ R and study the Euler–Lagrange equations. For free mo-
tion the Lagrangian is simply the total kinetic energy of the point masses and it can
be shown that one can reduce the problem of calculating trajectories and conserved
quantities to that of computing geodesics and symmetries of a kinetic energy metric
on SO(3) (compare Example 2.2.4). This is quite a beautiful story, but not the one we
wish to tell here (see Chapter 6 of [Arn2] or Chapter 13 of [CM]). Instead we would like
to focus our attention on what might appear to be a rather odd question that arises in
the following way.

We have seen that the physical process of rotating a rigid body from one config-
uration to another is modeled mathematically by a continuous curve in SO(3). Let us
consider the special case of a motion that begins and ends at the initial configuration.
The corresponding curve in SO(3) is then a loop in SO(3) at the identity element id3×3,
that is, a continuous curve A : [0, β] → SO(3) with A(0) = A(β) = id3×3. Here are two
examples. The loop A1 : [0, 2π]→ SO(3) defined by

A1(t) =(
cos t − sin t 0
sin t cos t 0
0 0 1

)
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corresponds to rotating our rigid body 360∘ about the z-axis, whereas A2 : [0, 4π] →
SO(3), defined by the same formula

A2(t) =(
cos t − sin t 0
sin t cos t 0
0 0 1

) ,

corresponds to a 720∘ rotation about the z-axis (“A1 traversed twice”). Both of these
motions leave the rigid body in precisely the same state since (A1(2π), Ȧ1(2π)) =
(A2(4π), Ȧ2(4π)).

Mathematically, however, the two loops A1 and A2 in SO(3) are not at all equiv-
alent. The fundamental group π1(SO(3)) of the topological space SO(3) classifies the
continuous loops at id3×3 according to (path) homotopy type. As it happens, π1(SO(3))
is isomorphic to the additive group Z2 = {[0], [1]} of integers mod 2 (there are two
proofs of this in Appendix A of [Nab3]). There are precisely two homotopy classes of
loops, [0] and [1], the first consisting of those that are homotopically trivial (they can
be “continuously deformed to a point” in SO(3)) and the second consisting of those
that are not. A1 is not homotopically trivial (Exercise 2.4.14 of [Nab3]) so A1 ∈ [1],
but, since [1] + [1] = [0] in Z2, A2 ∈ [0]. In particular, A1 and A2 are not homotopi-
cally equivalent; neither can be continuously deformed into the other in SO(3). From
a topological point of view, A1 and A2 are certainly not equivalent.

Now for the “rather odd” question we would like to pose. Is it possible that, when
thought of as physical motions of a rigid body, two nonhomotopic loops such as A1
and A2 exhibit different physical effects? Stated otherwise, is it possible that the rigid
body is somehow physically different at the end of the two motions despite the fact
that the “states” are the same? This may seem silly. Really, just look at it! At the end of
either motion the Rubik’s cube is in exactly the same configuration in space with the
same angular velocity so its state is the same; what could possibly be different?

Nevertheless, there are physical systems in nature that behave in just this sort of
bizarre way. Indeed, this is the case for any of the elementary particles classified by
the physicists as fermions. We will have more to say about this in Section 10.1 (for in-
formative, nontechnical previews by very authoritative sources one might have a look
at [AS] and/or [’t Ho1]). For the present we cannot resist the temptation to mention an
ingenious demonstration, devised by Paul Dirac, of a perfectlymundanemacroscopic
physical system in which “something” appears to be altered by a rotation through
360∘, but returned to its original status by a 720∘ rotation. It is called theDirac scissors.
The demonstration involves a pair of scissors, a piece of elastic string and a chair. Pass
the string throughonefinger hole of the scissors, then aroundone leg of the chair, then
through the other finger hole and around the other leg of the chair and then tie the two
ends of the string together (see Figure 2.11).

1 Reproduced from [Nab5] with the permission of Springer.
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Figure 2.1: Dirac scissors 1. [Nab5].

Now rotate the scissors about its axis of symmetry through one complete revolution
(360∘). The string becomes entangled and the problem is to disentangle it by moving
only the string, holding the scissors and chair fixed (the string needs to be elastic so it
can bemoved around the objects if desired). Try it! No amount ofmaneuvering, simple
or intricate, will return the string to its original, disentangled state. This, in itself, is
not particularly surprising perhaps, but now repeat the exercise, this time rotating
the scissors through two complete revolutions (720∘). The string now appears even
more hopelessly tangled, but looping the string just once over the pointed end of the
scissors will return it to its original condition. There is clearly “something different”
about the state of the systemwhen it has undergone a rotation of 360∘ andwhen it has
been rotated by 720∘. Note, however, that now the “system” is somehow more than
just an isolated rigid body, but includes, in some sense, the way in which the object is
“entangled” with its environment. We will return to this in Section 10.1, where we will
also see what it has to do with fermions.

Before leaving this behind for a while, we should reap one more dividend from
Dirac’s remarkable little game. As with any good magic trick, some of the parapher-
nalia is present only to divert the attention of the audience. Note that none of the es-
sential features are altered if we imagine the string glued (in an arbitrary manner) to
the surface of an elastic belt so that we may discard the string altogether in favor of a
belt connecting the scissors and the chair (see Figure 2.21). Rotate the scissors through
360∘ and thebelt acquires one twist that cannot beuntwistedbymoving the belt alone.
Rotate through 720∘ and the belt has two twists that can be removed by looping the
belt once around the scissors. In either case imagine the scissors free to slide along

Figure 2.2: Dirac scissors 2. [Nab5].
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the belt toward the chair and, at the end of the trip, translate the scissors (without
rotation) back to its original position. In the first case the scissors will have accom-
plished a 360∘ rotation, and in the second a 720∘ rotation. In both cases, the belt itself
is a physical model of the loop in SO(3) representing the rotation (with no twists the
belt represents the trivial loop). Now imagine yourself manipulating the belt (without
moving the scissors or chair), trying to undo the twists. At each instant the position
of the belt represents a loop in SO(3) so your manipulations represent a continuous
sequence of loops in SO(3) parametrized by time. In the second case you will succeed
in creating a continuous sequence of loops (that is, a homotopy) from the loop repre-
senting a 720∘ rotation to the trivial loop (no rotation, that is, no twists, at all). In the
first case you will not succeed in doing this because no such homotopy exists. Dirac
has given us a physical picture of the two homotopy classes of loops in SO(3). Need-
less to say, tireless manipulation of a belt does not constitute a proof. For those who
would like to see this discussion carried out rigorously we recommend [Bolker] and
then [Fadell].

We will leave the reader with an example to work out from scratch. It is still
a relatively simple physical system, but one that exhibits an extraordinary range
of motions, from the expected to the chaotic. Here we will ask you simply to write
out the Lagrangian and the Euler–Lagrange equations. In the next section you will
continue the analysis by writing out the Hamiltonian formulation of the same sys-
tem (Exercise 2.3.5) and then we will say a few words about the sort of motions
one can observe by supplying various initial conditions. Before doing any of this,
however, you should either visit an undergraduate physics lab and watch the sys-
tem in action or, better yet, you should build one yourself (instructions are avail-
able at http://makezine.com/projects/double-pendulum/). At the very least, have
a look at http://gizmodo.com/5869648/spend-the-next-22-minutes-mesmerized-by-
this-near+perpetual-motion-double-pendulum.

Exercise 2.2.10. The double pendulum consists of two pendulums (pendula, if you
prefer) with the first suspended from a point in space and the second suspended from
the end of the first. Wewill assume that the initial conditions are such that themotion
remains in a plane (see Figure 2.3).

Figure 2.3: Double pendulum.
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1. Show that the Lagrangian is given by

L(θ1, θ2, θ̇1, θ̇2) =
1
2
(m1 +m2)l

2
1 θ̇

2
1 +

1
2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2 cos (θ1 − θ2)

+ (m1 +m2)gl1 cos θ1 +m2gl2 cos θ2. (2.28)

2. Show that the Euler–Lagrange equations are

(m1 +m2)l
2
1 θ̈1 +m2l1l2θ̈2 cos (θ1 − θ2)

+m2l1l2θ̇
2
1 sin (θ1 − θ2) + l1(m1 +m2)g sin θ1 = 0 (2.29)

and

m2l
2
2θ̈2 +m2l1l2θ̈1 cos (θ1 − θ2) −m2l1l2θ̇

2
1 sin (θ1 − θ2) + l2m2g sin θ2 = 0. (2.30)

2.3 Phase space and Hamiltonians

The Lagrangian approach tomechanics clearly affords insights that are not readily un-
covered in theNewtonianpicture.Moreover, this approach generalizes to include clas-
sical field theory and forms the basis for Feynman’s path integral approach to quan-
tization (Chapter 8). Nevertheless, there is another approach that affords at least as
much insight intomechanics, also generalizes to classical field theory and is the basis
for canonical quantization (Chapter 7). It is to this Hamiltonian picture of mechanics
that we now turn (amore concise and no doubt more elegant synopsis of Hamiltonian
mechanics in geometrical terms is available in the classic paper [MacL]).

The view of classical mechanics that we would now like to describe evolves from
what would appear to be an innocuous attempt to change coordinates in the state
space. Suppose that we are given a Lagrangian L : TM → R and a local coordinate
system q1, . . . , qn onM with associated natural coordinates q1, . . . , qn, q̇1, . . . , q̇n on TM.
We have defined the corresponding conjugatemomenta p1 =

𝜕L
𝜕q̇1 , . . . , pn =

𝜕L
𝜕q̇n and now

ask if one can use q1, . . . , qn, p1, . . . , pn as local coordinates on TM. One might take as
motivation here the simple fact that some thingswould look nicer in such coordinates,
for example, the Noether conserved quantities would be Xipi rather than Xi 𝜕L

𝜕q̇i . As it
happens, the dividends are substantially greater than just this.

At least one condition must clearly be imposed on the Lagrangian if

(q1, . . . , qn, q̇1, . . . , q̇n)→ (q1, . . . , qn, p1, . . . , pn)

is to be a legitimate change of coordinates onTM. Specifically,wemust be able to solve
(at least locally) the system of equations

p1 =
𝜕L
𝜕q̇1
(q1, . . . , qn, q̇1, . . . , q̇n)
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... (2.31)

pn =
𝜕L
𝜕q̇n
(q1, . . . , qn, q̇1, . . . , q̇n)

for q̇i in terms of q1, . . . , qn, p1, . . . , pn. By the implicit function theorem, this will be
possible if the matrix

ℋL(q, q̇) = (
𝜕2L
𝜕q̇i𝜕q̇j
(q, q̇))

i,j=1,...,n

is nonsingular at each point in the domain of the natural coordinates. Wewill say that
a Lagrangian L is nondegenerate if, for every chart on an open set U ⊆ M with coordi-
nate functions q1, . . . , qn, the matrixℋL(q, q̇) is nonsingular at each point of TU ⊆ TM.

Example 2.3.1. ForM = Rn we have a global coordinate system q1, . . . , qn = x1, . . . , xn

so it clearly suffices to check the nondegeneracy condition for these. For example, if
L = 1

2m((ẋ
1)2 + ⋅ ⋅ ⋅ + (ẋn)2) − V(x1, . . . , xn) withm > 0, then

(
𝜕2L
𝜕ẋi𝜕ẋj
)
i,j=1,...,n
= m (id3×3),

so L is certainly nondegenerate. Note that, in this case, pi =
𝜕L
𝜕ẋi = mẋ

i, so inverting the
equations (2.31) is not so hard. We have

ẋi = 1
m
pi, i = 1, . . . , n. (2.32)

Consequently, for nondegenerate Lagrangians, we have the state space TM cov-
ered by coordinate systems (q1, . . . , qn, p1, . . . , pn) of the desired type. These are not nat-
ural coordinates on TM, of course. In fact, we would like to argue that it is somehow
wrongheaded to think of them as coordinates on TM at all. The key to understanding
what is behind this rather obscure comment is to look at two such coordinate systems
and see how they are related.

Suppose then that we have two charts on M with coordinate functions q1, . . . , qn

and Q1, . . . ,Qn, respectively, and suppose that their coordinate neighborhoods inter-
sect. On this intersection we will write the coordinate transformation functions as

Qi = Qi(q1, . . . , qn), i = 1, . . . , n,

and

qi = qi(Q1, . . . ,Qn), i = 1, . . . , n.

Each of these coordinate systems gives rise to natural coordinates

q1, . . . , qn, q̇1, . . . , q̇n
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and

Q1, . . . ,Qn, Q̇1, . . . , Q̇n

on TM. The chain rule implies that

q̇i = 𝜕q
i

𝜕Qj Q̇
j, i = 1, . . . , n, (2.33)

and

Q̇i =
𝜕Qi

𝜕qj
q̇j, i = 1, . . . , n. (2.34)

These are, of course, just the standard transformation laws for the components of tan-
gent vectors (contravariant vectors, as the physicistswould say). Now supposewehave
a nondegenerate Lagrangian L : TM → R. The relationship between the coordinate
expressions for L in our two natural coordinate systems can be written

L(Q1, . . . ,Qn, Q̇1, . . . , Q̇n)

= L(q1(Q1, . . . ,Qn), . . . , qn(Q1, . . . ,Qn),
𝜕q1

𝜕Qj Q̇
j, . . . ,
𝜕qn

𝜕Qj Q̇
j).

From this we compute the relationship between the conjugate momenta pi and Pi:

Pi =
𝜕L
𝜕Q̇i
=
𝜕L
𝜕qj
𝜕qj

𝜕Q̇i
+
𝜕L
𝜕q̇j
𝜕q̇j

𝜕Q̇i

=
𝜕L
𝜕qj
⋅ 0 + 𝜕L
𝜕q̇j
𝜕q̇j

𝜕Q̇i

=
𝜕qj

𝜕Qi
𝜕L
𝜕q̇j
(by (2.33))

=
𝜕qj

𝜕Qi pj.

Consequently, the conjugate momenta transform under the transposed inverse of the
(Jacobian) matrix that transforms Q̇i (see (2.34)). As a result, it is more natural to re-
gard them as components of not an element of the tangent space Tp(M), but rather
an element of its dual T∗p (M), the so-called cotangent space. The elements of T∗p (M)
are called covectors or covariant vectors. We intend to view (q1, . . . , qn, p1, . . . , pn) as
coordinate functions on the cotangent bundle T∗M (see Appendix D).

Since conjugate momenta transform under a change of coordinates in M in the
same way as cotangent vectors, it seems more natural to regard them as coordinates
on T∗M and we now describe how to do this. We assume that we are given a nonde-
generate Lagrangian L : TM → R onM and will use it to construct a map

ℒ = ℒL : TM → T∗M.
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For each p ∈ M, the fiber π−1TM(p) of TM above p is a submanifold of TM that is naturally
identified with Tp(M). Thus, we can restrict L to this submanifold and compute the
differential of this restriction at any point vp ∈ Tp(M). Furthermore, since Tp(M) is a
vector space, the tangent space to Tp(M) at any vp ∈ Tp(M) is also naturally identified
with Tp(M). Then d( L|Tp(M) )vp can be regarded as a real-valued, linear function on
Tp(M). In other words, it is an element of T∗p (M), whose value at any wp ∈ Tp(M) is
given by

d( L|Tp(M) )vp (wp) =
d
dt
L(p, vp + twp)

t=0
.

If q1, . . . , qn are local coordinates onM and L is expressed in terms of the corresponding
natural coordinates on TM, then this can be written

d( L|Tp(M) )vp (wp) =
d
dt
L(p, vp + twp)

t=0
=
𝜕L
𝜕q̇1
(p, vp) dq

1(wp) + ⋅ ⋅ ⋅

+
𝜕L
𝜕q̇n
(p, vp) dq

n(wp). (2.35)

We define the Legendre transformation ℒ = ℒL : TM → T∗M associated with L by

ℒ(p, vp) = ℒL(p, vp) = (p, d( L|Tp(M) )vp). (2.36)

We should note that the Legendre transformation can be introduced in a much more
general context. This is thoroughly discussed in Chapter 16 of [Sp3].

If q1, . . . , qn are local coordinates on M then, in terms of natural coordinates on
TM and T∗M, (2.35) implies that

ℒL(q, q̇) = ℒL(q
1, . . . , qn, q̇1, . . . , q̇n) = ( q1, . . . , qn, 𝜕L

𝜕q̇1
, . . . ,
𝜕L
𝜕q̇n
)

= (q1, . . . , qn, p1, . . . , pn). (2.37)

Thus, ℒL is defined by

πT∗M ∘ ℒL = πTM (2.38)

and

ξi ∘ ℒL = pi =
𝜕L
𝜕q̇i
, i = 1, . . . , n, (2.39)

where (q1, . . . , qn, ξ1, . . . , ξn) are the natural coordinates on T∗M (see (D.1)). Our non-
degeneracy assumption therefore implies that the derivative (ℒL)∗ of ℒL is nonsin-
gular at each point so ℒL is a local diffeomorphism. Consequently, (q, p) = (q1, . . . , qn,
p1, . . . , pn) are local coordinates on aneighborhoodof eachpoint in the image ofℒL.We
will refer to these as canonical coordinates on T∗M determined by the Lagrangian L.
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Remark 2.3.1. Note, incidentally, that thinking of the conjugate momenta as compo-
nents of a cotangent vector explainswhywe chose to label themwith subscripts rather
than superscripts when we first introduced them.

The Legendre transformation ℒL : TM → T∗M is generally not surjective. For a
nondegenerate Lagrangian it is a local diffeomorphism and so the image is an open
set 𝒪 in T∗M. If one assumes a bit more of the Lagrangian one can say a bit more. If,
for example, the matrices

(
𝜕2L
𝜕q̇i𝜕q̇j
(q, q̇))

i,j=1,...,n
(2.40)

are not only nonsingular, but are positive definite at each point, then one can prove
that ℒL is a diffeomorphism of TM onto𝒪. This is, in fact, the common state of affairs
so, in order to prune away some inessential technical issues in the development, we
will restrict our attention to Lagrangians for which the corresponding Legendre trans-
formation is a diffeomorphism. More precisely, let us say that a Lagrangian L : TM →
R is regular if the Legendre transformation ℒL : TM → T∗M is a diffeomorphism onto
its image𝒪 ⊆ T∗M.

Henceforth we assume that all Lagrangians are regular.

Of course, we will need to verify regularity for any particular example.

Example 2.3.2. We will compute the Legendre transformation corresponding to the
kinetic energy Lagrangian on a RiemannianmanifoldM (Example 2.2.4), takingm = 1
for convenience. Thus,

L(p, vp) =
1
2
⟨vp, vp⟩p ∀(p, vp) ∈ TM.

For any (p, vp) ∈ TM,

ℒ(p, vp) = ℒL(p, vp) = (p, d( L|Tp(M) )vp)

and, for any wp ∈ Tp(M),

d( L|Tp(M) )vp (wp) =
d
dt

L(p, vp + twp)
t=0

=
d
dt
(
1
2
⟨vp + twp, vp + twp⟩p )

t=0

=
d
dt
(
1
2
⟨vp, vp⟩p + t⟨vp,wp⟩p +

1
2
t2⟨wp,wp⟩p )

t=0
= ⟨vp,wp⟩p.
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We conclude that d( L|Tp(M) )vp = ⟨vp, ⋅ ⟩p so

ℒL(p, vp) = (p, ⟨vp, ⋅ ⟩p).

Thus, for each p ∈ M the Legendre transformation is just the canonical isomorphism
of Tp(M) onto T∗p (M) determined by the inner product ⟨ , ⟩p. In particular, ℒL is a bi-
jection from TM onto T∗M. Since it is also a local diffeomorphism, ℒL is a global dif-
feomorphism of TM onto T∗M.

Exercise 2.3.1. Show that any Lagrangian L : TRn → R of the form

L(q1, . . . , qn, q̇1, . . . , q̇n) =
n
∑
i=1

1
2
m(q̇i)2 − V(q1, . . . , qn),

where V is smooth, is regular.

Lagrangian mechanics takes place on the state space TM. The cotangent bun-
dle T∗M is called the phase space and this is where Hamiltonian mechanics takes
place. Our objective now is to move what we know about mechanics from state space
to phase space. “Why?” youmay ask. Themost compelling reasonwe can offer is that,
somewhat miraculously, T∗M has a more natural mathematical structure than TM
and this additional structure greatly clarifies the geometrical picture of mechanics
in particular and physics in general. Let us see how this additional structure comes
about.

If M is an n-dimensional smooth manifold, then its cotangent bundle T∗M is a
2n-dimensional smoothmanifold and the projection π : T∗M → M is a smooth surjec-
tion (in fact, a submersion). Consequently, onemay speak of 1-forms on T∗M. We now
define what is called the natural 1-form θ on T∗M. The idea is very simple. A 1-form
θ on T∗M should assign to each point (p, ηp) ∈ T∗M a real-valued linear function on
T(p,ηp)(T

∗M). But the derivative π∗(p,ηp) carries T(p,ηp)(T
∗M) linearly onto Tp(M) and ηp

is a real-valued, linear function on Tp(M) so we will just compose them, that is, we
define

θ(p,ηp) = ηp ∘ π∗(p,ηp).

This assigns to each (p, ηp) in T∗M a real-valued, linear function on T(p,ηp)(T
∗M) so

one need only check that it is smooth. The best way to do this is to write it in natural
coordinates (q1, . . . , qn, ξ1, . . . , ξn)onT∗M.We claim that, onanopen set onwhich these
coordinates are defined,

θ = ξ1dq
1 + ⋅ ⋅ ⋅ + ξndq

n = ξidq
i (2.41)



52 | 2 Lagrangian and Hamiltonian mechanics

and, from this, smoothness is clear. To prove (2.41) we note that, since π(q1, . . . , qn,
ξ1, . . . , ξn) = (q1, . . . , qn), the matrix of π∗(p,ηp) in these coordinates is

(

1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
...

...
...

...
0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0

) .

Thus, π∗(p,ηp)(𝜕qi |(p,ηp)) = 𝜕qi |p and π∗(p,ηp)(𝜕ξi |(p,ηp)) = 0. Consequently,

θ(p,ηp)(𝜕qi |(p,ηp)) = ηp ∘ π∗(p,ηp)(𝜕qi |(p,ηp))

= ηp(𝜕qi |p)

= ξi(p, ηp),

so θ(𝜕qi ) = ξi. Similarly, θ(p,ηp)(𝜕ξi |(p,ηp)) = 0, so θ(𝜕ξi ) = 0. This proves (2.41), so we
have a well-defined, smooth 1-form θ on T∗M which, in natural coordinates, is given
by (2.41).

The exterior derivative dθ of θ is a 2-form on T∗M given locally in natural coordi-
nates by

dθ = d(ξidq
i) = dξi ∧ dq

i.

The 2-form ω = −dθ is called the natural symplectic form on T∗M (see Remark 2.3.2
below)). In coordinates,

ω = −dθ = dqi ∧ dξi.

Since θ is invariantly defined, so is ω. In natural coordinates on T∗M, ω takes on the
particularly simple form dqi ∧dξi. In an arbitrary coordinate system (Qi,Pi) on T∗M,ω
will generally be some linear combination ofdQi∧dQj,dQi∧dPj anddPi∧dPj. However,
it may happen that for some particular coordinate systems,ω = dQi ∧dPi. In this case,
(Qi,Pi) are called canonical coordinates on T∗M. In particular, natural coordinates are
canonical coordinates.

Exercise 2.3.2. Show that if L is a regular Lagrangian, then the canonical coordinates
(qi, pi)defined from the correspondingLegendre transformationℒL bypi = ξi∘ℒL =

𝜕L
𝜕q̇i ,

deserve the name, that is,

ω = dqi ∧ dpi.

Remark 2.3.2. A symplectic form on a smooth manifold X is a 2-form ω on X that is
closed (dω = 0) and nondegenerate (ιVω = 0 ⇒ V = 0); the pair (X,ω) is then called
a symplectic manifold. Both of these conditions are clearly satisfied by the ω we have
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defined on T∗M so this is, indeed, a symplectic form. The formalism we will describe
for Hamiltonian mechanics is based almost entirely on the existence of this natural
symplectic form on T∗M together with the Legendre transform H : T∗M → R of the
energy functionEL : TM → RonTM (whichwewill introduce shortly). It turns out that
the entire formalismextends to an arbitrary symplecticmanifold (X,ω) togetherwith a
choice of somedistinguished real-valued functionH : X → R onX.Wewill not require
this much generality, but we will nevertheless endeavor to phrase our discussions in
terms that will ease the transition to symplectic geometry and Hamiltonian mechan-
ics (some standard references for this material are [Abra], [Arn2], [CM], [Gold], [GS1]
and [Sp3]).

Let us be explicit about the context in which we will make our move from state
space to phase space. We are given a smooth n-dimensional manifold M, called the
configuration space. The tangent bundle TM is called the state space and we assume
that we are given a regular Lagrangian L : TM → R on M. The cotangent bundle
T∗M is called the phase space and the corresponding Legendre transformation ℒL :
TM → T∗M is a diffeomorphism of TM onto an open subset 𝒪 of T∗M. The natural
1-form on T∗M is denoted θ and the natural symplectic form on T∗M is ω = −dθ.
Local coordinates on M are written q1, . . . , qn and these give rise to natural coordi-
nates q1, . . . , qn, q̇1, . . . , q̇n on TM and q1, . . . , qn, ξ1, . . . , ξn on T∗M. In such natural coor-
dinates, the energy function on TM is given by

EL(q, q̇) =
𝜕L
𝜕q̇i

q̇i − L(q, q̇)

(see (2.16)), the natural 1-form on T∗M is

θ = ξi dq
i

and the natural symplectic form on T∗M is

ω = dqi ∧ dξi.

We begin by moving the energy function EL : TM → R to T∗M. Note that, since
ℒL is a diffeomorphism of TM onto its image 𝒪 ⊆ T∗M, there is clearly a function H :
𝒪 → R whose pullback to TM under ℒL is EL, that is, which satisfies

ℒ∗L (H) = H ∘ ℒL = EL =
𝜕L
𝜕q̇i

q̇i − L(q, q̇).

Wewill describe H in canonical coordinates (q1, . . . , qn, p1, . . . , pn) on T∗M. Since ℒL is
a diffeomorphism,

H = EL ∘ ℒ
−1
L = (ℒ

−1
L )
∗ EL = (ℒ

−1
L )
∗
(
𝜕L
𝜕q̇i

q̇i − L(q, q̇)) = pi (q̇
i ∘ ℒ−1L ) − L ∘ ℒ

−1
L . (2.42)
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One often sees H = pi (q̇i ∘ ℒ−1L ) − L ∘ ℒ
−1
L written as

H(q1, . . . , qn, p1, . . . , pn) = piq̇
i − L(q1, . . . , qn, q̇1, . . . , q̇n), (2.43)

where it is understood that, on the right-hand side, each q̇i is expressed as a function
of q1, . . . , qn, p1, . . . , pn (by solving the system (2.31)). The energy function H on T∗M is
called the Hamiltonian.

Every curve in M has a natural lift to the state space TM. If the local coordi-
nate functions of the curve are q1(t), . . . , qn(t), then the natural coordinates of the lift
are q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t) and, for a stationary curve, these satisfy the Euler–
Lagrange equations

𝜕L
𝜕qk
−

d
dt
(
𝜕L
𝜕q̇k
) = 0, 1 ≤ k ≤ n.

These stationary curves describe the evolution in state space of the physical system
whose Lagrangian is L. The Legendre transformation, being a diffeomorphism,moves
lifted curves in TM to curves in phase space T∗M by simply composing with ℒL. The
image of a stationary curve can be thought of as describing the evolution of the physi-
cal system in phase space rather than in state space.Wewould like to shownow that, in
terms of canonical coordinates on T∗M, the differential equations that describe such
curves assume a particularly simple and symmetrical form. Begin by computing the
differential dH. By definition,

dH = 𝜕H
𝜕qi

dqi + 𝜕H
𝜕pi

dpi. (2.44)

But also we compute from H = pi (q̇i ∘ ℒ−1L ) − L ∘ ℒ
−1
L that

dH = d (pi ( q̇
i ∘ ℒ−1L ) − L ∘ ℒ

−1
L )

= (q̇i ∘ ℒ−1L ) dpi + pi d(q̇
i ∘ ℒ−1L ) − d(L ∘ ℒ

−1
L )

= (q̇i ∘ ℒ−1L ) dpi + pi d((ℒ
−1
L )
∗
(q̇i)) − d ((ℒ−1L )

∗
(L))

= (q̇i ∘ ℒ−1L ) dpi + pi (ℒ
−1
L )
∗
(dq̇i) − (ℒ−1L )

∗
(dL)

= (q̇i ∘ ℒ−1L ) dpi + pi (ℒ
−1
L )
∗
(dq̇i) − (ℒ−1L )

∗
(
𝜕L
𝜕qi

dqi + 𝜕L
𝜕q̇i

dq̇i)

= (q̇i ∘ ℒ−1L ) dpi + pi (ℒ
−1
L )
∗
(dq̇i) − ( 𝜕L

𝜕qi
∘ ℒ−1L ) dq

i − pi (ℒ
−1
L )
∗
(dq̇i)

= (q̇i ∘ ℒ−1L ) dpi − (
𝜕L
𝜕qi
∘ ℒ−1L ) dq

i. (2.45)

Comparing (2.44) and (2.45) we find that

𝜕H
𝜕qi
= −
𝜕L
𝜕qi
∘ ℒ−1L and 𝜕H

𝜕pi
= q̇i ∘ ℒ−1L , i = 1, . . . , n. (2.46)
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Now, suppose α(t) = (q1(t), . . . , qn(t)) is a stationary curve in M. Then the lift α̃(t) =
(q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)) of α to TM satisfies the Euler–Lagrange equations. Its
image ℒL ∘ α̃ in T∗M under the Legendre transformation is written

ℒL ∘ α̃(t) = (q
1(t), . . . , qn(t), p1(t), . . . , pn(t)).

From (2.46) we find that 𝜕H𝜕pi (ℒL ∘ α̃(t)) = q̇i(t) and

−
𝜕H
𝜕qi
(ℒL ∘ α̃(t)) =

𝜕L
𝜕qi
(α̃(t))

=
d
dt
(
𝜕L
𝜕q̇i
(α̃(t))) (Euler–Lagrange)

=
d
dt
(pi(t))

= ṗi(t). (2.47)

We conclude that the differential equations that determine the evolution of the system
in phase space are

dqi

dt
=
𝜕H
𝜕pi

and dpi
dt
= −
𝜕H
𝜕qi
, i = 1, . . . , n. (2.48)

These are called Hamilton’s equations. We will write out a few examples momen-
tarily, but first wewould like to observe that, even thoughHamilton’s equations do the
same job as the Euler–Lagrange equations, they are geometrically much nicer, even
aside from their obvious symmetry. Euler–Lagrange is a system of second order or-
dinary differential equations with no really apparent geometrical interpretation. On
the other hand, Hamilton’s equations form a system of first order ordinary differential
equations in the coordinates on phase space and so the solutions can be viewed as
integral curves of a vector field on T∗M, specifically, the so-called Hamiltonian vector
field

XH =
𝜕H
𝜕pi
𝜕qi −
𝜕H
𝜕qi
𝜕pi . (2.49)

The time evolution of the system can be viewed as the flow of this vector field on phase
space; this is very pretty and, as we will see, very useful.

Example 2.3.3. As a consistency check, let us look oncemore at a single particlemov-
ing inRn. As usual, we choose standard coordinates x1, . . . , xn onRn and take the La-
grangian to be

L(x, ẋ) = L(x1, . . . , xn, ẋ1, . . . , ẋn) = 1
2
m

n
∑
i=1
(ẋi)2 − V(x1, . . . , xn),
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where V is an arbitrary smooth function on Rn. Then pi =
𝜕L
𝜕ẋi = mẋ

i so ẋi = pi
m . The

energy function on the tangent bundle is therefore

EL(x, ẋ) =
1
2
m‖ẋ‖2 + V(x)

=
1
2
m((ẋ1)2 + ⋅ ⋅ ⋅ (ẋn)2) + V(x1, . . . , xn)

and so the Hamiltonian on phase space is

H(x, p) = 1
2
m((p1

m
)
2
+ ⋅ ⋅ ⋅ + (

pn
m
)
2
) + V(x1, . . . , xn)

=
1
2m
‖p‖2 + V(x).

Hamilton’s equations therefore give ẋi = 𝜕H𝜕pi =
pi
m and ṗi = −

𝜕H
𝜕xi = −

𝜕V
𝜕xi . Combining

these two gives

mẍi = −𝜕V
𝜕xi
, i = 1, . . . , n,

and, as expected, this is just Newton’s second law in components.

Let us also write out a special case of interest to us and have a look at its Hamilto-
nian vector field.

Example 2.3.4. For the harmonic oscillator the Hamiltonian on T∗R is given by

H(q, p) = 1
2m

p2 + mω
2

2
q2, (2.50)

where we have used q as the standard coordinate onR and ω = √k/m. Thus, 𝜕H𝜕p =
p
m

and 𝜕H𝜕q = mω
2q so the Hamiltonian vector field is

XH =
p
m
𝜕q −mω

2q 𝜕p. (2.51)

In this case, of course,Hamilton’s equations are easy to solve explicitly (they are equiv-
alent to Newton’s second law q̈(t) +ω2q(t) = 0 and we solved this long ago). However,
this is generally not the case and one would like to retrieve at least some of the quali-
tative behavior of the system fromXH itself, that is, from qualitative information about
the integral curves of XH in the qp-phase plane. This is an old and venerable part of
mathematics, but one that we will not make use of here (a nice introduction is avail-
able in [Arn1]). Suffice it to say that one can read off directly from p

m 𝜕q − mω
2q 𝜕p the

existence of one stable point of equilibrium (at (q, p) = (0,0)) and the fact that the
integral curves are ellipses about the equilibrium point so that, in particular, they do
not approach equilibrium and the periodicity of the system’s behavior is manifest.
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Exercise 2.3.3. The Lagrangian for the spherical pendulum (Example 2.2.2) is

L(ϕ, θ, ϕ̇, θ̇) = 1
2
ml2( ϕ̇2 + θ̇2 sin2 ϕ ) +mgl cos ϕ.

Denote by pϕ and pθ the conjugate momenta of ϕ and θ, respectively. Show that the
Hamiltonian is given by

H(ϕ, θ, pϕ, pθ) =
1

2ml2
( p2ϕ + p

2
θ csc

2 ϕ ) −mgl cos ϕ

and that Hamilton’s equations are

ϕ̇ = 1
ml2

pϕ,

θ̇ = 1
ml2
(csc2 ϕ) pθ ,

ṗϕ =
1
ml2
(cos ϕ) (csc2 ϕ) p2θ −mgl sin ϕ and

ṗθ = 0.

Our objective in the remainder of this section is to describe what has proved to be
the essential mathematical structure of classical Hamiltonian mechanics. This struc-
ture is much more general than the context in which we currently find ourselves (see
Remark 2.3.2) and it is the structure that is generalized to produce the standard formal-
ism of quantum mechanics in Chapters 3 and 7. We will, whenever feasible, provide
arguments that exhibit this generality, even if they are not the most elementary possi-
ble.

An inner product ⟨ , ⟩ on a vector space 𝒱 determines a natural isomorphism of 𝒱
onto its dual 𝒱∗ given by v ∈ 𝒱 → ⟨v, ⋅⟩ ∈ 𝒱∗ and this depends only on the bilinearity
and nondegeneracy of ⟨ , ⟩. At each point (p, ηp) of T∗M the canonical symplectic form
ω on T∗M is a nondegenerate, bilinear form ω(p,ηp) : T(p,ηp)(T

∗M) × T(p,ηp)(T
∗M) → R

on T(p,ηp)(T
∗M) so it induces an isomorphism

x ∈ T(p,ηp)(T
∗M)→ ω(p,ηp)(x, ⋅) ∈ T

∗
(p,ηp)(T

∗M)

of T(p,ηp)(T
∗M) onto T∗(p,ηp)(T

∗M). This then extends to an isomorphism of the infinite-
dimensional vector space of smooth vector fields on T∗M onto the space of 1-forms on
T∗M given by

X → ιXω,

where ιXω is the contraction of ω with X, that is, (ιXω)(V) = ω(X,V) for any smooth
vector field V .
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Example 2.3.5. Let us compute the image of the Hamiltonian vector field XH under
this isomorphism. In canonical coordinates, ω = dqi ∧ dpi and XH =

𝜕H
𝜕pi
𝜕qi −
𝜕H
𝜕qi 𝜕pi , so

ιXHω = ιXH (dq
i ∧ dpi)

= ιXH (dq
i ⊗ dpi − dpi ⊗ dq

i)

= dqi(XH )dpi − dpi(XH )dq
i

= −XH [pi]dq
i + XH[q

i]dpi

=
𝜕H
𝜕qi

dqi + 𝜕H
𝜕pi

dpi

and therefore

ιXHω = dH .

We generalize this last example in the following way. The Hamiltonian H is, in
particular, a smooth real-valued function on T∗M. For any f ∈ C∞(T∗M), df is a 1-form
on T∗M so there exists a smooth vector field Xf on T∗M satisfying

ιXfω = df .

Exercise 2.3.4. Show that

Xf =
𝜕f
𝜕pi
𝜕qi −
𝜕f
𝜕qi
𝜕pi . (2.52)

We will refer to the vector field Xf in (2.52) as the symplectic gradient of f ; Xf is often
called the Hamiltonian vector field of f , but we will reserve this terminology for the
symplectic gradient XH of the Hamiltonian. Now note that if g is another smooth, real-
valued function on T∗M, then

Xf [g] =
𝜕f
𝜕pi
𝜕g
𝜕qi
−
𝜕f
𝜕qi
𝜕g
𝜕pi
= −Xg[f ].

Moreover,

ω(Xf ,Xg) = ιXg ∘ ιXfω

= −ιXf ∘ ιXgω

= −ιXf (dg) = −dg(Xf ) = −Xf [g]

=
𝜕f
𝜕qi
𝜕g
𝜕pi
−
𝜕f
𝜕pi
𝜕g
𝜕qi
.

Nowwewill consolidate this information by defining, for all f , g ∈ C∞(T∗M), the Pois-
son bracket {f , g} of f and g by

{f , g} = ω(Xf ,Xg) = −Xf [g] = Xg[f ] =
𝜕f
𝜕qi
𝜕g
𝜕pi
−
𝜕f
𝜕pi
𝜕g
𝜕qi
. (2.53)
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The Poisson bracket { , } : C∞(T∗M) × C∞(T∗M) → C∞(T∗M) provides C∞(T∗M)
with a certain mathematical structure that is central to everything we will say about
Hamiltonian mechanics as well as to the formulation of quantum mechanics that we
will describe in Chapters 3 and 7 so we would now like to spell out this structure in
detail. We will refer to the elements of C∞(T∗M) as classical observables.

Here is the idea behind this last definition. Intuitively, an observable is something
we can measure and the value we actually do measure depends on the state of the
system at the time we do the measuring. The result of the measurement is a real num-
ber such as an energy, a component of linear or angular momentum, a coordinate of
the position of some particle, etc. If we represent the states of the system as points in
phase space, each of these observables is a real-valued function on T∗M. One can as-
sume, at least provisionally, that these functions vary smoothly with the state and are
therefore elements of C∞(T∗M). Now, it is certainly not the case that every element
of C∞(T∗M) can be naturally identified with something we might actually set up an
experiment to measure. Nevertheless, every such function in C∞(T∗M) is, locally at
least, expressible in terms of position coordinates qi and momentum coordinates pi,
which certainly should qualify as physical observables; measuring these, in effect,
measures everything in C∞(T∗M).

Note that C∞(T∗M) has the structure of a unital algebra over R with pointwise
addition ((f + g)(x) = f (x) + g(x)), scalar multiplication ((αf )(x) = αf (x)) and multipli-
cation ((fg)(x) = f (x)g(x)) and forwhich themultiplicative unit element is the constant
function on T∗M whose value is 1 ∈ R. The following three properties of the Poisson
bracket show that it provides C∞(T∗M) with the structure of a Lie algebra:

{ , } : C∞(T∗M) × C∞(T∗M)→ C∞(T∗M) isR-bilinear, (2.54)
{g, f } = −{f , g} ∀f , g ∈ C∞(T∗M), (2.55)
{f , {g, h}} + {h, {f , g}} + {g, {h, f }} = 0 ∀f , g, h ∈ C∞(T∗M). (2.56)

The first two of these are obvious from the fact that {f , g} = ω(Xf ,Xg) andω is a 2-form
and therefore bilinear and skew-symmetric. Theproof of the Jacobi identity (2.56) takes
a bit more work. One could, of course, compute everything in local coordinates to pro-
duce a great mass of partial derivatives and then watch everything cancel, but this is
not particularly enlightening. We prefer to give an argument that involves a bit more
machinery, but indicates clearly that the result depends only on the fact that ω is a
nondegenerate, closed 2-form and the definition of the symplectic gradient.

Since ω is closed, the 3-form dω is identically zero so, in particular, dω(Xf ,Xg ,
Xh) = 0. We begin by writing this out in coordinate free fashion in terms of the Lie
bracket (see Exercise 4.4.1 of [Nab4]):

0 = Xf [ω(Xg ,Xh)] − Xg[ω(Xf ,Xh)] + Xh[ω(Xf ,Xg)]
− ω([Xf ,Xg],Xh) + ω([Xf ,Xh],Xg) − ω([Xg ,Xh],Xf ). (2.57)
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Next note that

Xf [ω(Xg ,Xh)] = Xf ({g, h}) = −{f , {g, h}}

and similarly for the second and third terms in (2.57). From this we conclude that

Xf [ω(Xg ,Xh)] − Xg[ω(Xf ,Xh)] + Xh[ω(Xf ,Xg)]
= −{f , {g, h}} + {g, {f , h}} − {h, {f , g}}
= −{f , {g, h}} − {h, {f , g}} − {g, {h, f }}. (2.58)

In order to handle the remaining three terms in (2.57) we require a preliminary result
that we will see is of independent interest. Specifically, we will show that

[Xf ,Xg] = X{g,f }. (2.59)

Remark 2.3.3. The next few arguments will require some basic facts about the Lie
derivative. Recall that if X is a vector field, then the Lie derivative ℒX computes rates
of change along the integral curves of X. If f is a smooth real-valued function, then
ℒX f = X[f ]; if Y is a vector field, then ℒXY = [X,Y], the Lie bracket of X and Y ; if
η is a differential form, then ℒX η can be computed from the Cartan formula ℒX η =
(ιX ∘ d) η + (d ∘ ιX) η. All of this can be found in Volume I of [Sp2]; most of it is in Chap-
ter 5, but the Cartan formula is Exercise 18(e).

We begin by noting that

ℒXfω = 0

because ℒXfω = ιXf (dω)+d(ιXfω) = ιXf (0)+d(df ) = 0+d
2f = 0. This, together with the

identity

ℒX(ιY η) − ιY (ℒX η) = ι[X,Y] η,

which is satisfied by all vector fields X and Y and all differential forms η, gives

ι[Xf ,Xg]ω = ℒXf (ιXgω) = (d ∘ ιXf + ιXf ∘ d)(ιXgω)

= d(ιXf ∘ ιXgω) + ιXf (d(ιXgω))

= d(ω(Xg ,Xf )) + ιXf (d
2g)

= d(ω(Xg ,Xf )) + 0,

so that

ι[Xf ,Xg]ω = d({g, f }),
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and this is precisely the statement (2.59).With thiswe can finish the proof of the Jacobi
identity (2.56). Note that we can now write

−ω([Xf ,Xg],Xh) = −ω(X{g,f },Xh) = −{{g, f }, h} = {h, {g, f }} = −{h, {f , g}} (2.60)

and similarly for the fifth and sixth terms in (2.57). Thus, we find that

−ω([Xf ,Xg],Xh) + ω([Xf ,Xh],Xg) − ω([Xg ,Xh],Xf )
= −{f , {g, h}} − {h, {f , g}} − {g, {h, f }}. (2.61)

Inserting (2.58) and (2.61) into (2.57) gives (2.56).
Wehave proved (2.54), (2.55) and (2.56) and therefore that the Poisson bracket pro-

vides the algebra C∞(T∗M) of classical observables with the structure of a Lie algebra.
It does even more, however. In general, a Lie algebra is a vector space, but it has no
multiplicative structure other than that provided by the bracket. However, C∞(T∗M)
is itself an algebra under pointwise multiplication and we now show that this algebra
structure is consistent with the Lie algebra structure in that they are related by the
following Leibniz rule:

{f , gh} = {f , g}h + g{f , h} ∀f , g, h ∈ C∞(T∗M). (2.62)

The proof of this is easy:

{f , gh} = ιXgh ∘ ιXfω = −ιXf (ιXghω) = −ιXf (d(gh))

= −ιXf ((dg)h + gdh) = −ιXf ((dg)h) − ιXf (gdh)

= −(ιXf (dg))h − g(ιXf (dh)) = −(dg(Xf ))h − g(dh(Xf ))

= −Xf [g]h − gXf [h]
= {f , g}h + g{f , h}.

This provides C∞(T∗M)with the structure of what is called a Poisson algebra and this
makes T∗M itself a Poisson manifold.

Before returning tomechanics to see what all of this is good for, we pause tomake
a few observations and introduce a little terminology. We have shown that for any
classical observable f ∈ C∞(T∗M), the vector field Xf satisfies ℒXfω = 0. In general,
a vector field X on T∗M is said to be symplectic if the Lie derivative of the canoni-
cal symplectic form ω with respect to X is zero (ℒXω = 0) and this is equivalent to
φ∗t ω = ω for everyφt in the (local) one-parameter groupof diffeomorphismsofX. A dif-
feomorphism φ of T∗M onto itself satisfying φ∗ω = ω is called a symplectomorphism
(by mathematicians) or a canonical transformation (by physicists). Consequently, any
symplectic gradient is a symplectic vector field. In particular, the Hamiltonian vector
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field XH is symplectic and in this case we think of φ∗t ω = ω as saying that ω is con-
stant along the integral curves of the Hamiltonian, that is, along the trajectories of the
system. Finally, we note that, since

ℒXω = d(ιXω) + ιX(dω) = d(ιXω),

the vector field X is symplectic if and only if the 1-form ιXω is closed.
To get back to the physics, let us note first that, even if they served no other useful

purpose, Poisson brackets make Hamilton’s equations (2.48) very pretty. We have

dqi

dt
= {qi,H} and dpi

dt
= {pi,H}, i = 1, . . . , n. (2.63)

There is more, however. In the Hamiltonian picture the state of a physical system is
described by a point in phase space T∗M and the system evolves along the integral
curves of the Hamiltonian vector fieldXH . Wewill say that an observable f ∈ C∞(T∗M)
is conserved if it is constant along each of these integral curves, that is, if XH [f ] = 0,
which we now know is equivalent to

{f ,H} = 0. (2.64)

Consequently, conserved quantities are precisely those observables that (Poisson) com-
mute with the Hamiltonian. In particular, the Hamiltonian itself (that is, the total en-
ergy) is clearly conserved since {H ,H} = 0 follows from the skew-symmetry (2.55) of
the Poisson bracket. Moreover, it follows from the Jacobi identity (2.56) that the Pois-
son bracket of two conserved quantities is also conserved. Indeed,

{f ,H} = {g,H} = 0 ⇒ {{f , g},H} = {g, {H , f }} + {f , {g,H}} = {g,0} + {f ,0} = 0.

More generally, even if f is not conserved, the Poisson bracket keeps track of how it
evolves with the system in the sense that, along an integral curve of XH ,

df
dt
= {f ,H} (2.65)

(because XH [f ] = −{H , f } = {f ,H}). Still more generally, if f and g are two observables,
then the rates of change of f along the integral curves of Xg and of g along the integral
curves of Xf are, according to (2.53), both encoded in the bracket {f , g}. The point here
is that the Poisson structure of the algebra of classical observables contains a great
deal of information about the dynamics of the system. As we will see in Chapter 7, it
also provides the key to a process known as “canonical quantization.”

If youwill grant the importance of thePoissonbracket {f , g} and recall that, locally
at least, any observable can be written as a function of canonical coordinates, then it
may come as no great surprise that a particular significance attaches to the brackets
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of the observables q1, . . . , qn, p1, . . . , pn : T∗M → R. These are called the canonical
commutation relations (for classical mechanics) and are simply

{qi, qj} = {pi, pj} = 0 and {q
i, pj} = δ

i
j, i, j = 1, . . . , n, (2.66)

where δi j is the Kronecker delta. We will have much more to say about these later.

Exercise 2.3.5. In Exercise 2.2.10 you derived the Lagrangian and Euler–Lagrange
equations for the double pendulum. The objective now is to write out the Hamiltonian
formulation. We will denote the conjugate momenta by p1 = 𝜕L/𝜕θ̇1 and p2 = 𝜕L/𝜕θ̇2.
1. Show that

p1 = (m1 +m2)l
2
1 θ̇1 +m2l1l2θ̇2 cos (θ1 − θ2)

and

p2 = m2l
2
2θ̇2 +m2l1l2θ̇1 cos (θ1 − θ2).

2. Compute the Hamiltonian and show that

H(θ1, θ2, p1, p2) =
l22m2p22 + l

2
1(m1 +m2)p22 − 2m2l1l2p1p2 cos (θ1 − θ2)
2l21 l22m2[m1 +m2 sin2 (θ1 − θ2)]

− (m1 +m2)gl1 cos θ1 −m2gl2 cos θ2.

3. Show that Hamilton’s equations are as follows:

θ̇1 =
l2p1 − l1p2 cos (θ1 − θ2)

l21 l2[m1 +m2 sin2(θ1 − θ2)]
,

θ̇2 =
l1(m1 +m2)p2 − l2m2p1 cos (θ1 − θ2)

l1l22m2[m1 +m2 sin2(θ1 − θ2)]
,

ṗ1 = −(m1 +m2)gl1 sin θ1 −
p1p2 sin (θ1 − θ2)

l1l2[m1 +m2 sin2(θ1 − θ2)]

+
l22m2p21 + l

2
1(m1 +m2)p22 − l1l2m2p1p2 cos (θ1 − θ2)
2l21 l22[m1 +m2 sin2(θ1 − θ2)]2

sin 2(θ1 − θ2),

ṗ2 = −m2gl2 sin θ2 +
p1p2 sin (θ1 − θ2)

l1l2[m1 +m2 sin2(θ1 − θ2)]

−
l22m2p21 + l

2
1(m1 +m2)p22 − l1l2m2p1p2 cos (θ1 − θ2)
2l21 l22[m1 +m2 sin2(θ1 − θ2)]2

sin 2(θ1 − θ2).

Needless to say, Hamilton’s equations are generally solvable only numerically. When
this is done one discovers a great variety of possible motions depending on the initial
conditions. This motion might be periodic, nearly periodic or even chaotic.
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Remark 2.3.4. There is an important aspect of Hamiltonian mechanics, called
Hamilton–Jacobi theory, that we will not discuss here. There is a brief introduction
to the idea in Section 11 of [MacL] and an elementary, but more detailed treatment
in Chapter 18 of [Sp3]; the latter also contains a few remarks on the relevance of
Hamilton–Jacobi theory to Schrödinger’s derivation of his wave equation for quan-
tum mechanics. For a more sophisticated, mathematically rigorous treatment one
might consult, for example, [Abra].

2.4 Segue

Before leaving classical particle mechanics behind we would like describe one more
example that may ease the transition into our next topic in Chapter 3.

Example 2.4.1. One liter of the earth’s atmosphere at standard temperature (0∘C) and
standard pressure (approximately the average atmospheric pressure at sea level) con-
tains about k = 2.68 × 1022 molecules. Suppose the system that interests us consists
of these molecules and that they are free to roam without interference wherever they
please in space. Then we have k particles with massesm1, . . . ,mk and positions spec-
ified by q1 = (q1, q2, q3), q2 = (q4, q5, q6), . . . , qk = (q3k−2, q3k−1, q3k). The configuration
space isM = R3k and the phase space is T∗M = R3k ×R3k . Canonical coordinates on
T∗M are q1, . . . , q3k , p1, . . . , p3k and the interaction among the molecules is specified
by some Hamiltonian H(q1, . . . , q3k , p1, . . . , p3k). The evolution of the system in phase
space is then determined by Hamilton’s equations (2.48). All we need to do is sup-
ply this system of first order equations with some initial conditions and it will tell us
how the system evolves. That is all! We simply need to determine the positions and
momenta for 2.68 × 1022 molecules at some instant.

This is absurd, of course. While everything we said in the last example is quite
true, it simply provides no effective means of actually studying such large systems.
Here we get a glimpse into the subject of statistical mechanicswhich, as the name sug-
gests, concedes that wemay have access to only statistical information about the state
of such a system and therefore can reasonably expect to make only statistical state-
ments about the observables we measure. Such a scenario must be modeled mathe-
matically in a rather different way. The “state” of such a system is no longer identi-
fied with an experimentally meaningless point in phase space, but rather with a Borel
probability measure ν on T∗M.

Remark 2.4.1. Recall that, in any topological space X, a Borel set is an element of the
σ-algebra generated by the open sets in X. A Borel probability measure on X is a mea-
sure ν on the σ-algebra of Borel sets for which ν(X) = 1.

The ν-measure of a subset of phase space is thought of as the probability that the
“actual state” is in that subset. Note, however, that the “actual state” of such a system
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is something of a Platonic ideal. One imagines, for example, that eachmolecule in our
sample of the atmosphere really does have a well-defined position and momentum at
each instant so that “in principle” the state of the system really is described by a point
inR5.36×1022 , even thoughwe have no chance at all of determiningwhat it actually is. It
is easy to be persuaded by such “in principle” arguments, but it is wise to exercise just
a bit of caution. If two firecrackers explode nearby one might reasonably ask whether
or not the explosions were simultaneous. If two supernovae occur at distant points in
the galaxy, special relativity asserts that it makes no sense at all, even “in principle,”
to ask if the explosionswere orwere not simultaneous (see Section 1.3 of [Nab5]). More
to the point, we shall see that, when the rules of quantum mechanics take effect, the
assertion that even a single particle has a well-defined position and momentum at
each instant has no meaning and so its classical phase space has no meaning. The
moral here is that extrapolation beyond our immediate range of experience can be
dangerous; one should be aware of the assumptions one is making and open to the
possibility that they may eventually need to be abandoned.

Given such a state/measure ν and an observable f (like the total energy, for exam-
ple) one obtains a Borel probability measure μν,f onR by defining

μν,f (S) = ν(f
−1(S))

for any Borel set S ⊆ R. One then interprets μν,f (S) as the probability that we will mea-
sure the value of f to lie in the set S if the system is known to be in the state ν. Such
probabilistic statements are generally the best one can hope for in statistical mechan-
ics. For example, one can compute the expectation value of a given observable in a
given state, but one has no information about the precise value of any givenmeasure-
ment of the observable.

At first glance this scheme may strike one as excessively abstract and rather ex-
otic, but we will argue in Chapter 3 that, in fact, it presents a rather natural way of
viewing the general problem of describing physical systemsmathematically. Even the
classical particle mechanics that we have been discussing can be phrased in these
terms, although in this case there is no particular reason to do so. Such probabilis-
tic models are appropriate for statistical mechanics and, more significantly for us, for
quantummechanics aswell, since, in the quantumworld,wewill see that phenomena
are inherently statistical and probabilistic and not simply because of our technological
inability to deal with 2.68 × 1022 particles. We will see, for example, that the more you
know about an electron’s position, the less it is possible to know about its momentum
so it is, in principle, impossible to represent the state of an electron by a point in T∗M.

In anticipation of our move toward probabilistic models in Chapter 3 we will con-
clude by noting that the structure of phase space determines a naturally associated
volume form and therefore ameasure. Indeed, the natural symplectic formω is a non-
degenerate 2-form on the 2n-dimensional manifold T∗M, so 1

n!ω
n = 1

n!ω∧
n⋅ ⋅ ⋅ ∧ω is a

2n-form on T∗M. Nondegeneracy ofω implies that 1
n!ω

n is nonvanishing and therefore
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is a volume form on T∗M. In particular, T∗M is orientable (Theorem 4.3.1 of [Nab4]).
Note that, since pullback commutes with the wedge product and φ∗t ω = ω for every
φt in the (local) one-parameter group of diffeomorphisms of the Hamiltonian vector
field XH , φ∗t (

1
n!ω

n) = 1
n!ω

n as well, so ℒXH (
1
n!ω

n) = 0, and this volume form is, like ω,
invariant under the flow of XH . On the space of continuous functions with compact
support on T∗M the integral

f → ∫
T∗M

f ( 1
n!
ωn)

defines a positive linear functional and so there is a Borelmeasure μ on T∗M such that
for every such function f ,

∫
T∗M

f dμ = ∫
T∗M

f ( 1
n!
ωn) (2.67)

(see Theorem D, Section 56, of [Hal1]); μ is called the Liouville measure on T∗M. In
canonical coordinates on T∗M, 1

n!ω
n = dq1 ∧ dp1 ∧ dq2 ∧ dp2 ∧ ⋅ ⋅ ⋅ ∧ dqn ∧ dpn and

dμ = dq1dp1 ⋅ ⋅ ⋅ dq
ndpn,

by which we mean simply Lebesgue measure on the image in R2n of the canonical
coordinate neighborhood in T∗M. Liouville’s theorem asserts that this measure is also
invariant under the Hamiltonian flow in the sense that for any Borel set B in T∗M,
μ(φt(B)) = μ(B) for every φt in the one-parameter group of diffeomorphisms of XH (for
a proof of Liouville’s theorem forM = R2n see pages 69–70 of [Arn2]).

We will have more to say about this measure shortly, but we should point out
that the objects of particular interest in statistical mechanics are certainmeasures ob-
tained from it.Wewill simply sketch the idea. TheHamiltonian is a smooth real-valued
function H : T∗M → R on phase space thought of as the total energy function. Let
E ∈ R be a regular value of H (see Section 5.6 of [Nab3]). Then ΩE = H−1(E) is (either
empty or) a smooth submanifold of T∗M of dimension 2n−1 (Corollary 5.6.7 of [Nab3]).
SinceH is conserved, the evolution of the system always takes place in such a constant
energy hypersurfaceΩE in phase space. Since E is a regular value ofH, dH is a nonzero
1-form on a neighborhood of ΩE and it can be shown that locally one can write

1
n!
ωn = η ∧ dH

for some (nonunique) (2n − 1)-form η on T∗M. Moreover, the restriction of η to ΩE is
independent of the choice of η and is a volume form on ΩE . This volume form on ΩE
defines a measure on ΩE called the Liouville measure on ΩE . Since the Hamiltonian
flow preserves ω, dH and ΩE, it preserves the Liouville measure on ΩE as well.
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3.1 Introduction

Classical mechanics is remarkably successful in describing a certain limited range of
phenomena, but there is no doubt that this range is limited. We have spoken often
about “particles,” but a precise, or even imprecise definition of just what the word
means was conspicuously absent. Depending on the circumstances, a particle might
be a planet, or a baseball, or a grain of sand. One cannot, however, continue to di-
minish the size of these objects indefinitely for it has been found (experimentally)
that one reaches a point where the rules change and the predictions of classical me-
chanics do not even remotely resemble what actually happens. In the late years of the
nineteenth and early years of the twentieth centuries the technology available to ex-
perimental physicists led to the discovery that matter is composed of atoms and that
these atoms, in turn, are composed of still smaller, electrically charged objects that
came to be known as protons and electrons. The experiments strongly suggested a
picture of the atom that resembled the solar system with a positively charged nucleus
playing the role of the sun and the negatively charged electrons orbiting like planets.
Unfortunately, this picture is completely incompatible with classical physics, which
predicts that the charged, orbiting electrons must radiate energy and, as a result, spi-
ral into the nucleus in short order. According to the rules of classical physics, such
atoms could not be stable and the world as we perceive it could not exist. Clinging to
the presumption that the world as we perceive it does exist, some adjustments to the
classical picture would appear to be in order. It is to these adjustments that we now
turn our attention.

Remark 3.1.1. Still other adjustments are necessitated by quite different experimen-
tal discoveries of the late nineteenth century. These two independent adjustments to
classical physics are known as quantummechanics and the special theory of relativity.
Attempts to reconcile these to produce amore unified picture of the physical world led
to what is called quantum field theory. Incidentally, we say “more unified” rather than
simply “unified” because all of this fails to take any account of gravitational fields,
which are described by the general theory of relativity (for a brief glimpse into what
general relativity looks like we might suggest [Nab1] or Chapter 4 of [Nab5], but for a
serious study of the subject one should proceed to [Wald]). Attempts to include gen-
eral relativity in the picture, that is, to build a quantum theory of gravity, are ongoing,
but concerning these we will maintain a discreet and humble silence.

Quantum mechanics is not a modest tweaking of classical mechanics, but a sub-
tle and profoundly new view of how the physical universe works. It did not spring full
blown into the world, but evolved over many years in fits and starts. Eventually, how-
ever, the underlying structure emerged and crystallized into a set of “postulates” that
capture at least the formal aspects of the subject. It is entirely possible to simply write

https://doi.org/10.1515/9783110751949-003
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down the axioms and start proving theorems, but here we will operate under the as-
sumption that manipulating axioms for their own sake without any appreciation of
where they came from or what they mean is rather sterile. We will therefore spend a
bit of time discussing some of the experimental background in the hope of motivat-
ing certain aspects of the model which might otherwise give the impression of being
something of a deus ex machina. We will not discuss these experiments in anything
like historical order, nor will we try to provide the sort of detailed analysis one would
expect to find in a physics text. Most importantly, it must be understood that one can-
not derive the axioms of quantummechanics anymore than one can derive the axioms
of group theory. One can only hope to provide something in the way of motivation.

Finally, we would like to have some mathematical context in which to carry out
these discussions. Ideally, this would be a mathematical structure general enough to
encompass anything thatmight reasonably be viewed as amodel of somephysical sys-
tem, or at least those physical systems of interest to us at the moment. The choice we
have made, which was briefly suggested at the end of Section 2.3, was introduced and
studiedbyMackey in [Mack2],which, togetherwith [ChM2], or Lecture 7 in [Mar2], con-
tains everything we will say here and muchmore. A more concise outline of Mackey’s
view of quantummechanics is available in [Mack1].

3.2 States, observables and dynamics

We take the point of view that a mathematical model of a physical system consists of
(at least) the following items:
1. a set 𝒮, the elements of which are called states;
2. a set𝒪, the elements of which are called observables;
3. a mapping from 𝒮 ×𝒪 to the set of Borel probability measures onR

(ψ,A)→ μψ,A
with the following physical interpretation: for any Borel set S inR, μψ,A(S) is the
probability that we will measure the value of A to lie in the set S if the system is
known to be in the state ψ;

4. a one-parameter family {Ut}t∈R of mappings

Ut : 𝒮 → 𝒮 ,

called evolution operators, satisfying

U0 = id𝒮 ,
Ut+s = Ut ∘ Us

and having the following physical interpretation: for any state ψ and any t ∈ R,
Ut(ψ) is the state of the system at time t if its state at time 0 isψ. Note that each Ut
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is necessarily a bijection of 𝒮 with inverse U−t; {Ut}t∈R is called a one-parameter
group of transformations of 𝒮 and it describes the dynamics of the system (how
the states change with time). The physical meaning of U0 = id𝒮 is clear, whereas
Ut+s = Ut ∘Us is a causality statement (the state of the systemat any time suniquely
determines its state at any other time t since Ut(ψ) = Ut−s(Us(ψ))).

Remark 3.2.1. The term “causality” often carries with it a great deal of metaphys-
ical baggage, none of which is intended here. We have assumed only that the
states of the system evolve deterministically and this need not imply anything at
all about events occurring within the system. Soon we will see that the state of an
atom of uranium 235U is described in quantum mechanics at any time by a unit
vector in a Hilbert space and that this state evolves deterministically according
to the Schrödinger equation. Nevertheless, the emission of an alpha particle by
the atom in radioactive decay is entirely random and spontaneous and one can
attribute to it no “cause.”

One can also formulate local versions of 4. in which t is restricted to some interval
about 0 inR, but for the sake of clarity we will, at least for the time being, restrict our
attention to systems for which an evolution operator is defined for every t ∈ R.

This model is extremely general, of course, and one cannot expect that a random
specification of items 1.–4. will represent a physically reasonable system. It is possi-
ble to formulate a rigorous set of axioms that the states, observables and measures
should satisfy in order to be deemed “reasonable” (see [Mack2]) and this is a useful
thing to do, but may give the wrong impression of our objective here, which is to mo-
tivate, not axiomatize. For this reason we will be a bit more lighthearted about the
additional assumptions we make, introducing them as needed. Here, for example, is
one. We will assume that two states that have the same probability distributions for all
observables are, in fact, the same state. More precisely, if ψ1,ψ2 ∈ 𝒮 have the property
that μψ1 ,A(S) = μψ2 ,A(S) for all A ∈ 𝒪 and all Borel sets S ⊆ R, then ψ1 = ψ2. Similarly,
two observables that have the same probability distributions for all states are the same
observable, that is, if A1,A2 ∈ 𝒪 have the property that μψ,A1

(S) = μψ,A2
(S) for all ψ ∈ 𝒮

and all Borel sets S ⊆ R, then A1 = A2. Having made these assumptions we can now
think of a state as an injectivemapping from the set𝒪 of observables to the probability
measures onR. From this point of view one could even suppress theψ altogether and
think of a state as a family of probability measures

μA, A ∈ 𝒪,

onR parametrized by the set𝒪 of observables. Alternatively, one can think of an ob-
servable as an injective mapping from states to probability measures, or as a family
μψ, ψ ∈ 𝒮, of probability measures onR parametrized by the set 𝒮 of states.
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Example 3.2.1. Regardless of the number of classical particles in the system of inter-
est one begins the construction of a statistical model with a configuration space M,
which is a smooth manifold of (potentially huge) dimension n, its phase space T∗M,
a Hamiltonian H : T∗M → R and the corresponding flow {φt}t∈R of the Hamiltonian
vector field XH . We persist in the notion that the “actual state” of the system at any
instant has some meaning and can be identified with a point in T∗M, despite the fact
that all we can say about it is that it has a certain probability of lying in any given Borel
subset of T∗M. Thus, we take 𝒮 to be the set of all Borel probability measures on T∗M.

The set 𝒪 of observables consists of all real-valued, Borel measurable functions
on T∗M. If ν ∈ 𝒮 and f ∈ 𝒪, then we define a Borel probability measure μν,f onR by

μν,f (S) = ν(f −1(S))
for every Borel set S ⊆ R. The interpretation is that μν,f (S) is the probability that a
measurement of the observable f when the system is in state ν will yield a value in S.

Remark 3.2.2. IfB ⊆ T∗M is a Borel set, then its characteristic function χB : T∗M → R
is Borel measurable and is therefore an observable; Mackey [Mack2] refers to these
observables as questions. Since any observable f : T∗M → R is uniquely determined
by its level sets f −1(a), a ∈ R, and these, in turn, are uniquely determined by their
characteristic functions, there is a sense inwhich questions are themost fundamental
observables. Questions will re-emerge in quantummechanics as projection operators
and describing arbitrary observables in terms of them is what the spectral theorem
does.

Nextwemust specify, for each t ∈ R, an evolution operatorUt : 𝒮 → 𝒮 that carries
an initial state ν0 ∈ 𝒮 to the corresponding state νt = Ut(ν0) at time t. The reasoning
is as follows. For any Borel set B in T∗M, the probability that the actual state of the
system at time t lies in B is exactly the same as the probability that the actual state of
the system at time 0 lies in φ−1t (B) = φ−t(B) and this is ν0(φ−t(B)). Thus, we define

Ut(ν0) = (ϕt)∗ν0,
where (ϕt)∗ν0 is the pushforward measure ((ϕt)∗ν0)(B) = ν0(ϕ−t(B)). This clearly de-
fines a one-parameter group {Ut}t∈R of transformations of 𝒮 and therefore completes
Example 3.2.1.

Exercise 3.2.1. Show that Hamiltonian mechanics, as we described it in Section 2.3,
can be viewed in these same terms, although perhaps a bit artificially. Begin with a
smooth, n-dimensional manifoldM (configuration space), its cotangent bundle T∗M
(phase space) and a Hamiltonian H : T∗M → R. Previously, we identified a state of
the corresponding classicalmechanical systemwith a point x ∈ T∗M, but nowobserve
that the points of T∗M are in one-to-one correspondence with the point measures νx
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on T∗M defined, for every Borel set B ⊆ T∗M, by

νx(B) = {
1 if x ∈ B,
0 if x ∉ B.

Take 𝒮 to be the set of all such point measures and transfer the structure of T∗M to
it. Take the set 𝒪 of observables to consist of all real-valued, smooth (or simply Borel
measurable) functions A on 𝒮. Define Ut : 𝒮 → 𝒮, t ∈ R, by

Ut(νx) = νφt(x), t ∈ R, x ∈ T∗M,
where {φt}t∈R is the one-parameter family of diffeomorphisms for the Hamiltonian
vector field XH and convince yourself that the properties required of Ut in 4. are just
restatements of known properties of the flow.

Except for one more brief encounter, we do not intend to pursue statistical me-
chanics beyond the description of the model in Example 3.2.1. Nevertheless, there are
things that remain to be said about the model itself (Section 1-5 of [Mack2] contains a
bit more information on how statistical mechanics works). First, however, we recall a
few basic notions from probability theory (see Chapter 9 of [Hal1] for the details).

Let X be a topological space and ν a Borel probability measure on X (see Re-
mark 2.4.1). A real-valued Borel measurable function f : X → R on X is called a
random variable (so the observables in Example 3.2.1 are random variables). If f is in-
tegrable, then the expectation value (or expected value, ormean value) of f is defined
by

E(f ) = ∫
X

fdν.

The variance (or dispersion) of f is defined by

σ2(f ) = E( [f − E(f ) ]2 ) = E(f 2) − E(f )2

and is regarded as a measure of the extent to which the values of f cluster around its
expected value (the smaller it is, themore clustered they are). The same interpretation
is ascribed to the nonnegative square root of the dispersion, denoted σ(f ) and called
the standard deviation of f . The distribution function of f is the real-valued function F
of a real variable λ defined by

F(λ) = ν ( f −1(−∞, λ] ).
Note that F is of bounded variation and both E(f ) and σ2(f ) can be computed as
Riemann–Stieltjes integrals with respect to F (see Appendix H.2). Specifically,

E(f ) = ∫
R

λ dF(λ) (3.1)
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and

σ2(f ) = ∫
R

(λ − E(f ))2dF(λ). (3.2)

Finally, if μ is an arbitrary Borel measure on X, then a probability density function for
μ is an integrable, real-valued function ρ that is nonnegative and satisfies

∫
X

ρ dμ = 1.

Given a probability density function ρ for μ one defines, for any Borel set B ⊆ X,

νρ(B) = ∫
B

ρ dμ.

Then νρ is a probability measure on X and

∫
X

g dνρ = ∫
X

gρ dμ

for every nonnegative measurable function g.
Now let us return to Example 3.2.1. Suppose ν0 is the initial state of our statistical

mechanical system. Then ν0 is intended to be a probability measure representing the
extent of our knowledge of the “actual initial state” inT∗M. Physically, this knowledge
would generally be expressed in terms of some sort of density function. Here, and
on occasion in the future, we will rely on various analogies with fluid flow. Fluids
consist of a huge (but finite) number of particles of various masses. Nevertheless, one
generally idealizes and describes the density of a fluid with a continuous real-valued
function ρ whose integral over any region B contained in the fluid is taken to be the
mass of fluid in B. This leads us to assume that the initial states of physical interest
are of a particular form. Specifically, we let μ denote the Liouville measure on T∗M
(see (2.67)). Then, for any probability density function ρ0 for μwe obtain a probability
measure νρ0 on T

∗M, that is,

νρ0 (B) = ∫
B

ρ0 dμ,

for every Borel set B in T∗M. Aside from the fact that it is the most natural measure on
T∗M, the reason for choosing the Liouville measure μ is that if the initial state has a
probability density function for μ, then the same is true of every state throughout the
evolution of the system. Specifically, if

ν0 = νρ0 ,
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then we claim that

Ut(ν0) = Ut(νρ0 ) = νρt , (3.3)

where

ρt = ρ0 ∘ φ−t . (3.4)

To see this we recall that for any Borel set B ⊆ T∗M,

Ut(νρ0 )(B) = ((ϕt)∗ν0)(B) = νρ0 (φ−t(B)) = ∫
φ−t(B) ρ0 dμ = ∫B (ρ0 ∘ φ−t) dμ,

where the last equality follows from the change of variables formula and the fact that
φ−t preserves the Liouville measure. Since

∫
B

(ρ0 ∘ φ−t) dμ = ∫
B

ρt dμ = νρt (B),

the proof of (3.3) is complete. We conclude from this that probability measures of the
form

νρ(B) = ∫
B

ρ dμ, (3.5)

where ρ is a probability density function for the Liouville measure μ, are preserved
by the Hamiltonian flow. According to the Radon–Nikodym theorem (Theorem B, Sec-
tion 31, page 128, of [Hal1]), these are just the probability measures that are absolutely
continuouswith respect to the Liouvillemeasure. Of course, there are probabilitymea-
sures, such as the point measures associated with Dirac deltas and convex combina-
tions of them, that arenot includedamong these.Nevertheless,wewill, from this point
on, focus our attention onmeasures of the form (3.5). We have several reasons for this,
most of which are essentially physical. Pointmeasures on T∗M represent absolute cer-
tainty regarding the actual state of the system and this is unattainable for systems that
are “genuinely statistical,” that is, very large. More significantly, wewill soon describe
some of the experimental evidence that led physicists to the conclusion that, in the
quantum world, all systems, even those containing a single particle, are “genuinely
statistical.” Furthermore, from a practical point of view restricting attention to mea-
sures of the form (3.5) will permit us to shift the focus from probability measures (νρ)
to probability densities (ρ) and these are much simpler objects, that is, just functions.

The model of statistical mechanics we have described has the advantage of being
quite intuitive, but also the disadvantages of being technically rather difficult to deal
with and still seemingly far removed from the generally accepted formalism of quan-
tum mechanics that we are trying to motivate (Hilbert spaces and self-adjoint oper-
ators). We propose now to overcome both of these disadvantages by rephrasing the
model in the more familiar and much more powerful language of functional analysis.
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3.3 Mechanics and Hilbert spaces

The theory of Hilbert spaces has its roots deep in classical analysis and mathemati-
cal physics, but its birth as an independent discipline is to be found in the work of
Hilbert on integral equations and von Neumann on quantummechanics. By 1930, the
theory was highly evolved and making its presence felt throughout analysis and the-
oretical physics. We will have a great deal more to say about its impact on quantum
mechanics as we proceed, but for the moment we would like to focus our attention
on the rather brief and not altogether well-known paper [Koop] of Koopman in 1931,
where our probabilistic model of statistical mechanics is rephrased in functional an-
alytic terms. This done we will try to show in the next chapter that at the quantum
level, even the mechanics of a single particle is more akin to classical statistical me-
chanics than to classical particle mechanics and so, we hope, minimize the shock of
introducing massive amounts of functional analysis to describe it.

Wemust assume a basic familiarity with Banach and Hilbert spaces and bounded
operators on them. This information is readily available in essentially any functional
analysis text such as, for example, [Fried], [RiSz.N], [TaylA] or [Rud1]; other good
sources are [Prug], [RS1] or [vonNeu], which are specifically focused on the needs of
quantum theory. For this material we will provide only a synopsis of the notation and
terminology we intend to employ. We will, however, also require some rather detailed
information about unbounded operators on Hilbert spaces and, on occasion, certain
results that one cannot expect to find just anywhere. For this material we will provide
some background, a few illustrative examples, precise statements of the results and
either an accessible reference to a proof of what we need or, if such a reference does
not seem to be readily available, a proof. To avoid sensory overload, we will try to in-
troduce all of this material only as needed, although our initial foray into unbounded
operators in Chapter 5 is necessarily rather lengthy.

Remember thatℋ will always denote a separable Hilbert space and we will write
its innerproduct as ⟨ , ⟩ℋ or simply ⟨ , ⟩ if there is no likelihoodof confusion.Generally,
ℋ will be complex. Lest there be any confusion, we point out that we intend to adopt
the physicist’s convention of taking ⟨ , ⟩ to be complex linear in the second slot and
conjugate linear in the first rather than the other way around. Specifically, if ϕ,ψ ∈ ℋ
and a, b ∈ C, then

⟨aϕ,ψ⟩ = ā⟨ϕ,ψ⟩

and

⟨ϕ, bψ⟩ = b⟨ϕ,ψ⟩.

The norm of ψ ∈ ℋ is denoted ‖ψ‖ℋ or simply ‖ψ‖ and defined by ‖ψ‖ = √⟨ψ,ψ⟩.
The algebra of bounded linear operators onℋ will be denoted ℬ(ℋ). This is a Banach
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space (in fact, a Banach algebra) if the norm of any T ∈ ℬ(ℋ) is defined by

‖T‖ = sup
ψ ̸=0 ‖Tψ‖‖ψ‖ = sup‖ψ‖=1 ‖Tψ‖.

The topology induced on ℬ(ℋ) by this norm is called the uniform operator topology, or
the norm topology, and convergence in this topology is called uniform convergence, or
norm convergence. Wewill have occasion to consider various other notions of operator
convergence as we proceed.

If ℋ1 and ℋ2 are two complex Hilbert spaces with inner products ⟨ , ⟩1 and ⟨ , ⟩2,
respectively, then a linear map T : ℋ1 → ℋ2 that satisfies ⟨Tϕ,Tψ⟩2 = ⟨ϕ,ψ⟩1 for all
ϕ,ψ ∈ ℋ1 is said to be an isometry. If T maps into ℋ2, then it is called an isometric
embedding ofℋ1 intoℋ2; if T maps ontoℋ2, then it is called a unitary equivalence, or
an isometric isomorphism betweenℋ1 andℋ2. In particular, an operatorU ∈ ℬ(ℋ) that
is a unitary equivalence ofℋ onto itself is called a unitary operator. Unitary operators
have norm 1 and are characterized by the fact that UU∗ = U∗U = idℋ, that is, their
inverses are the same as their adjoints so ⟨Uϕ,ψ⟩ = ⟨ϕ,U−1ψ⟩ for all ϕ,ψ ∈ ℋ (recall
that for any bounded operatorT : ℋ→ ℋ, there exists a unique bounded operatorT∗ :
ℋ→ ℋ, called the adjoint of T, satisfying ⟨Tϕ,ψ⟩ = ⟨ϕ,T∗ψ⟩ for all ϕ,ψ ∈ ℋ).

Now let us begin Koopman’s translation. Here are the essential features of the
model thatwewish to translate.Wehave amanifold thatwe choose to denoteΩ since it
might be eitherT∗M or one of the constant energy hypersurfacesΩE introduced earlier
(see Section 2.4). OnΩwe have a Liouvillemeasure that wewill denote by μ and a one-
parameter group {φt}t∈R of diffeomorphisms of Ω that leave μ invariant. The states of
the system are probability measures on Ω of the form (3.5) and the observables are the
real-valued, Borel measurable functions on Ω.

Let L2(Ω, μ) denote the Hilbert space of (equivalence classes of) complex-valued,
Borelmeasurable functions onΩ that are square integrablewith respect toμ. The inner
product on L2(Ω, μ) is given by

⟨ϕ,ψ⟩ = ∫
Ω

ϕ̄ψ dμ,

so

‖ψ‖2 = ∫
Ω

|ψ|2 dμ.

Note that any element ψ ∈ L2(Ω, μ) with ‖ψ‖ = 1 gives rise to a probability measure νψ
on Ω by taking ρ = |ψ|2 as the probability density in (3.5). Conversely, for any measure
of the form (3.5), one can find aψ ∈ L2(Ω, μ) for which ρ = |ψ|2. Note, however, that the
ψ corresponding to a given ρ is not unique since, for any θ ∈ R, |eiθψ|2 = |ψ|2. Thus,
we can identify a state with what is called a “unit ray” in L2(Ω, μ), that is, a set of unit
vectors of the form {eiθψ : θ ∈ R and ‖ψ‖ = 1}.
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Remark 3.3.1. This identification of probability density functions with unit vectors in
L2(Ω, μ) clearly does not depend onhaving chosen complex, as opposed to real, square
integrable functions on Ω. The choice of the complex Hilbert space L2(Ω, μ) is moti-
vated primarily by things that are yet to come. On themathematical side, wewill make
heavy use of certain results such as the spectral theorem and Stone’s theorem that live
much more naturally in the complex world. Physically, we will find that, in quantum
mechanics, interference effects such as one encounters in wave motion in fluids are
fundamental and that such effects are much more conveniently described in terms of
complex numbers. One should also consult Lecture 2 of [Mar2] for additional motiva-
tion.

Next we observe that the dynamics φt : Ω → Ω, t ∈ R, on Ω induces a dynamics Ut :
L2(Ω, μ)→ L2(Ω, μ), t ∈ R, on L2(Ω, μ). Indeed, according to (3.4) we should define

Ut(ψ) = ψ ∘ φ−t .
We will discuss the observables shortly, but would like to pause for a moment to

point out that our new perspective already promises to yield some dividends. Each Ut
in the one-parameter group {Ut}t∈R is, of course, a bijection of L2(Ω, μ) onto itself, but
it is, in fact, much more. Clearly, Ut is a linear map on L2(Ω, μ) since

Ut(a1ψ1 + a2ψ2) = (a1ψ1 + a2ψ2) ∘ φ−t = a1(ψ1 ∘ φ−t) + a2(ψ2 ∘ φ−t)
= a1Ut(ψ1) + a2Ut(ψ2).

But, in fact, each Ut is actually a unitary operator on L2(Ω, μ). To see this we let ϕ,ψ ∈
L2(Ω, μ) and compute

⟨Utϕ,Utψ⟩ = ⟨ϕ ∘ φ−t ,ψ ∘ φ−t⟩
= ∫

Ω

ϕ(φ−t(x))ψ(φ−t(x)) dμ(x)
= ∫
φt(Ω) ϕ(y)ψ(y) dμ(φt(y))

= ∫
Ω

ϕ(y)ψ(y) dμ(y)

= ⟨ϕ,ψ⟩,

where we have used the change of variables formula and the invariance of Ω and μ
under φt . We have then what is called a one-parameter group of unitary operators on
L2(Ω, μ) (see Remark 3.3.2 below).

Remark 3.3.2. Let us recall a few more notions from functional analysis. Let ℋ be a
complex, separable Hilbert space and suppose that {Ut}t∈R is a family of unitary op-
erators Ut : ℋ → ℋ on ℋ satisfying Ut+s = UtUs for all t, s ∈ R and U0 = idℋ. Then
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{Ut}t∈R is called a one-parameter group of unitary operators onℋ. {Ut}t∈R is said to be
strongly continuous if, for every ψ ∈ ℋ, t → t0 inR⇒ Utψ→ Ut0ψ inℋ. By the group
property of {Ut}t∈R, this is equivalent to t → 0 inR ⇒ Utψ → ψ inℋ. {Ut}t∈R is said
to be weakly continuous if, for all ϕ,ψ ∈ ℋ, t → t0 inR ⇒ ⟨ϕ,Utψ⟩ → ⟨ϕ,Ut0ψ⟩ in C.
Again, this is equivalent to t → 0 in R ⇒ ⟨ϕ,Utψ⟩ → ⟨ϕ,ψ⟩ in C. Certainly, strong
continuity implies weak continuity, but, despite the terminology, the converse is also
true (this depends heavily on the fact that each Ut is unitary). To see this, suppose
{Ut}t∈R is weakly continuous and t → 0 inR. Then

‖Utψ − ψ‖
2 = ⟨Utψ − ψ,Utψ − ψ⟩ = ‖Utψ‖

2 − ⟨Utψ,ψ⟩ − ⟨ψ,Utψ⟩ + ‖ψ‖
2

= ‖ψ‖2 − 2 Re⟨ψ,Utψ⟩ + ‖ψ‖
2

→ 2‖ψ‖2 − 2‖ψ‖2 = 0,

as t → 0. There is also a much stronger result due to von Neumann. Let us say that
{Ut}t∈R is weakly measurable if, for all ϕ,ψ ∈ ℋ, the complex-valued function of the
real variable t given by t → ⟨ϕ,Utψ⟩ is Lebesgue measurable. Von Neumann showed
that a weakly measurable one-parameter group of unitary operators on a separable,
complex Hilbert space is strongly continuous. We will not prove this here, but will
simply refer to TheoremVIII.9 of [RS1]. Finally, we should also point out that, because
of the polarization identity

⟨α, β⟩ = 1
4
[⟨α + β, α + β⟩ − ⟨α − β, α − β⟩

− i⟨α + iβ, α + iβ⟩ + i⟨α − iβ, α − iβ⟩], (3.6)

it is enough to prove weak continuity and weak measurability in the case ϕ = ψ. As
it turns out, one can explicitly describe all of the strongly continuous one-parameter
groups of unitary operators on ℋ. This is Stone’s theorem, which we will discuss in
Section 5.5.

Example 3.3.1. We will show that the one-parameter group we have defined on
L2(Ω, μ) by Ut(ψ) = ψ ∘φ−t is strongly continuous. To see this we fix a ψ ∈ L2(Ω, μ) and
suppose t → 0 in R. We must show that Utψ → ψ in L2(Ω, μ). The proof is based on
two observations. First, L2(Ω, μ) contains a dense set of continuous functions (those
with compact support, for example). Thus, given an ϵ > 0 we can select a continuous
ψϵ ∈ L2(Ω, μ) with ‖ψϵ − ψ‖ < ϵ/3. Next, we appeal to a standard result from the
theory of ordinary differential equations on continuous dependence on initial con-
ditions (Theorem 4.26 of [CM]) which implies that for any continuous ϕ ∈ L2(Ω, μ),
t → U−tϕ = ϕ ∘ φ−t is a continuous map ofR into L2(Ω, μ). Thus, we can select δ > 0
such that |t| < δ implies ‖Utψϵ − ψϵ‖ < ϵ/3. Now write

Utψ − ψ = Ut(ψ − ψϵ) + (Utψϵ − ψϵ) + (ψϵ − ψ).

Since each Ut is unitary, ‖Ut(ψ − ψϵ)‖ = ‖ψ − ψϵ‖, so the triangle inequality gives
‖Utψ − ψ‖ < ϵ, as required.
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Finally, let us see how the observables fit into our new picture. Let A be a real-
valued, Borel measurable function on Ω, that is, an observable in the old picture. For
any state, thought of now as a unit vector ψ in L2(Ω, μ), A is just a random variable for
the probability measure νψ and, assuming it is integrable, its expected value is

E(A) = ∫
Ω

Adνψ = ∫
Ω

A |ψ|2dμ = ∫
Ω

Aψψdμ = ∫
Ω

ψAψdμ

= ⟨Aψ,ψ⟩ = ⟨ψ,Aψ⟩.

This suggests thinking of A as amultiplication operator on L2(Ω, μ). Thought of in this
way the operator would appear to be self-adjoint ( ⟨Aψ,ψ⟩ = ⟨ψ,Aψ⟩ ). There is an is-
sue, however. As amultiplicationoperator,Awill be definedonly for thoseψ ∈ L2(Ω, μ)
for whichAψ is also in L2(Ω, μ), that is, for whichAψ is square integrable on Ω. As a re-
sult, A is not defined everywhere and therefore is not a bounded operator on L2(Ω, μ),
even though it is clearly linear on its domain. It is, in fact, what is known as an “un-
bounded, self-adjoint operator on L2(Ω, μ).” We will provide a synopsis of what we
need to know about such unbounded operators in Chapter 5. The bottom line of this
section, however, is that Koopman has rephrased classical statistical mechanics in
such a way that the states are represented by unit vectors in a complex Hilbert space
and the observables are unbounded, self-adjoint operators on that Hilbert space. As
it happens, this is precisely how quantummechanics is generally formulated. We will
spend quite a bit of time describing this formalism, but first we should try to come
to some understanding of why quantum mechanics is like this. Why, in other words,
is the quantum mechanics of even a single particle more akin to classical statistical
mechanics, where we can follow Koopman’s lead to construct a mathematical model,
than to classical particle mechanics? This is the subject of the next chapter.
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4.1 Introduction

By the end of the nineteenth century classical particle mechanics, statistical mechan-
ics and electromagnetic theory were very finely tuned instruments capable of treating
an enormous variety of physical problems with remarkable success. Some even be-
lieved that there was little left to do.

“The more important fundamental laws and facts of physical science have all been discovered,
and these are now so firmly established that the possibility of their ever being supplanted in
consequence of new discoveries is exceedingly remote ... Our future discoveries must be looked
for in the sixth place of decimals.”

Albert. A. Michelson, speech at the dedication of Ryerson Physics Lab, University of Chicago,
1894

“When I began my physical studies [in Munich in 1874] and sought advice from my venerable
teacher Philipp von Jolly ... he portrayed to me physics as a highly developed, almost fully ma-
tured science ... Possibly in one or another nook there would perhaps be a dust particle or a small
bubble to be examined and classified, but the system as a whole stood there fairly secured, and
theoretical physics approached visibly that degree of perfection which, for example, geometry
has had already for centuries.”

from a 1924 lecture by Max Planck

Needless to say, this optimism regarding the then current state of physics was some-
what premature. Michelson himself had, in 1887, unearthed something of a conun-
drum for classical physics that was only resolved 18 years later by Einstein, who
pointed out that classical physics had the concepts of space and time entirely wrong.
Planck struggled for many years with the problem of the equilibrium distribution of
electromagnetic radiation for which classical physics provided a perfectly explicit,
and quite incorrect, solution. In the end he obtained a solution that was in complete
accord with the experimental data, but only at the expense of what he himself called
an “act of desperation.” He postulated, in flat contradiction to the requirements of
classical physics, that harmonic oscillators can exist only at certain discrete energy
levels determined by their frequency (see Remark 1.0.3). Planck did not use the term,
but today we would credit this as the birth of the quantum hypothesis, although one
can argue that there are precursors in the work of Boltzmann on statistical mechanics
(for some references, see [Flamm]). It was left to Einstein, however, in his analysis of
what is called the “photoelectric effect,” to transform this provisional hypothesis into
a revolutionary new view of physics.

One can find this story, both its history and the physics behind it, told concisely
and elegantly in Chapters II and VI of [Pais] and we will not offer a pale imitation

https://doi.org/10.1515/9783110751949-004
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here.Nevertheless, it seemsdisingenuous to introduce theubiquitousPlanck constant
without providing some sense of what it is and where it came from, or to simply insist
that atoms are so unlike baseballs that one must abandon long cherished notions of
causality just to say something reliable about how they behave. We will therefore de-
vote this chapter to an attempt to come to a rudimentary understanding of some of the
physical facts of life that necessitate this profound revision of the physicist’sWeltan-
schauung. We will begin at the historical beginning with Planck and Einstein, but will
then abandon chronology to describe a number of experimental facts that may not
have been available to the founding fathers of the subject, but seem to express most
clearly the essential nature of the quantumworld. Our discussions will necessarily be
rather brief and certainly not at the level onewould expect to find in a physics text, but
we will try to provide sufficient references for those who wish to pursue these matters
more seriously.

The phenomena we would like to discuss first are those of blackbody radiation
and the photoelectric effect. Both of these deal with the interaction of electromagnetic
radiation with matter (what really goes on when the rays of the summer sun burn
your skin). A necessary prerequisite then is to come to terms with electromagnetic
radiation.

4.2 Electromagnetic radiation

We will accept the view that matter, at least all matter within the current range of
our experience, is composed of atoms and that these atoms can be visualized, some-
what naively perhaps, as something of a mini-solar system with a nucleus composed
of objects called protons and neutrons playing the role of the sun and a collection of
electrons orbiting the nucleus like planets. The essential difference is that, whereas
we think we know what holds the solar system together (gravity does that), we will
not pretend, at this stage, to have any idea of what holds an atom together. This has
something to do with the fact that protons and electrons possess a physical charac-
teristic called electric charge, which comes in two flavors, positive and negative. Two
positive charges, or two negative charges, brought near each other will exert a force,
each on the other, that pushes the charges apart, whereas a positive and a negative
charge will attract each other. Physics offers no explanation for this behavior in terms
of some more fundamental phenomenon. Some things are charged and some things
are not (like the neutron); just deal with it. What physics does offer is a very detailed
understanding of how these electric forces act and how they can be used. In the course
of acquiring this understanding it was discovered that electric force is very closely re-
lated to the analogous, but seemingly distinct phenomenon of magnetic force. Every
child knows that if you bring amagnet near a compass, the arrow on the compass will
spin, but may not know that the same thing happens if the compass is brought near
a stream of electrons flowing through a wire. On the other hand, a charged particle
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placed at rest between the poles of a horseshoe magnet will just sit there unaware of
themagnet’s presence, but, if it is thrown between the poles, its pathwill be deflected.
Indeed, electric andmagnetic forces are more than just analogous; there is a very real
sense in which they are the same thing, but viewed from different perspectives. The
appropriate context within which to understand this is the special theory of relativity
(see, for example, [Nab5]).

The part of classical physics that deals with all of this is called electrodynamics
and the best place to go to understand it is Volume II of [FLS]. It is fortunate for us
that physicists understand this subject so well that they were able, or rather one of
them, named James Clerk Maxwell, was able, to encode essentially all of the relevant
information in just a few equations and that for our purposes, only a very special case
of these equationswill be required. One should keep the following picture inmind.We
have a collection of charges, some being stationary, some moving willy-nilly through
space. We are interested in the cumulative effect these will have on some other “test
charge” moving around in a “charge-free” region of space.

Remark 4.2.1. A few remarks are in order. Physicists will choose some favored system
of units in which to describe all of the relevant quantities, but which system is favored
depends heavily on the context. On rare occasions we will be forced to be explicit
about the choice of units (for example, when trying to make sense of statements like
“Planck’s constant is small,” or “the speed of light is large”). Generally, we will be
inclined to use what are called SI units (Le Système international d’unités), in which
length is in meters (m), time is in seconds (s), mass is in kilograms (kg), force is in
Newtons (N = (kg)ms−2), frequency is in hertz (Hz = s−1), energy is in Joules (J =
Nm = m2(kg)s−2), current is in amperes (A), charge is in coulombs (C = sA), und so
weiter und so fort. Whatever system of units is chosen, a “test charge” is, by definition,
one that is sufficiently small that it has a negligible effect on the other charges. The
seemingly contradictory assertion that the test chargemoves in a “charge-free” region
simply means that it is, at each instant, in the complement of the region occupied by
the original distribution of charges at that instant; such a region is generally assumed
to have nothing at all in it except the test charge and is then referred to as a charge-free
vacuum.

Physicists describe the effect we are after with two (generally time-dependent)
vector fields on some region in R3. The electric field E and the magnetic field B are
both functions of (t, x, y, z), where t is time and (x, y, z) are Cartesian coordinates in
space. Denoting the spatial gradient operator by ∇, the spatial divergence operator by
∇⋅ and the spatial curl by∇× andwriting 𝜕B𝜕t and

𝜕E
𝜕t for the componentwise derivatives

of B and E with respect to t,Maxwell’s equations in a charge-free vacuum are

∇ ⋅ E = 0, (4.1)

∇ × E = −𝜕B
𝜕t
, (4.2)
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∇ ⋅ B = 0, (4.3)

∇ × B = μ0ϵ0
𝜕E
𝜕t
, (4.4)

where μ0 and ϵ0 are two universal constants called, respectively, the vacuum perme-
ability and vacuum permittivity. We will not go into the rather convoluted story of how
these two constants are defined (see Volume II of [FLS]), but will point out only that
their product in SI units is approximately

μ0ϵ0 ≈ 1.1126499 × 10
−17 s2/m2. (4.5)

Onemore equation, called the Lorentz force law, gives the forceF experienced by a test
charge q moving with velocity V in the presence of the electric field E and magnetic
field B. Using × to denote the vector (cross) product inR3, this can be written

F = q [E + (V × B) ]. (4.6)

There are a great many things to be said about this set of equations, but we will
mention only the few items we specifically need later on. We begin with a few simple
observations. Equation (4.1) says that our region contains no sources for the electric
field and this simply reflects our decision towork in a charge-free region. In the general
form of Maxwell’s equations the zero on the right-hand side of (4.1) is replaced by
a function describing the charge density of the region. Equation (4.3) says the same
thing about themagnetic field, but this equation remains the same in the general form
of Maxwell’s equations; there are no magnetic charges in the electromagnetic theory
of Maxwell. That is not to say that magnetic charges (more commonly calledmagnetic
monopoles) cannot exist. Dirac considered the possibility that they might and drew
some rather remarkable conclusions from the assumption that they do (see Chapter 0
of [Nab3]).

Equations (4.2) and (4.4) imply, among other things, that a time-varyingmagnetic
field is always accompanied by a nonzero electric field and a time-varying electric field
is always accompanied by a nonzero magnetic field. One can therefore envision the
following scenario. An electric charge setting at rest in space gives rise to a static (that
is, time-independent) electric field in its vicinity (this is described by Coulomb’s law,
which is no doubt familiar from calculus). But suppose wewiggle the charge. Now the
electric field nearby is varying with time and so must give rise to a magnetic field. The
magnetic field also varies with time so it, in turn, must give rise to an electric field,
which varies in time giving rise to a magnetic field, and so on and so on. Intuitively, at
least, one sees the effects of wiggling (that is, accelerating) the charge as propagating
away from the charge through space in some sort of wave disturbance. We will make
this more precise momentarily by showing that any solutions E and B to (4.1)–(4.4)
have components that satisfy a wave equation.

Next we mention that the Lorentz force law (4.6) has, as the equations of physics
often do, a dual character. If you knowwhat E and B are, you can calculate the force F
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on a charge. On the other hand, if youmeasure forces you can determine E andB. This
latter point of view provides an operational definition of the electric and magnetic
fields. For example, E(t, x, y, z) is the force experienced by a unit charge setting at rest
at (x, y, z) at the instant t. If this dual character seems circular to you, that is because
it is; definitions in physics are generally not at all like definitions in mathematics.

Now we will show that the components of any solutions E and B to Maxwell’s
equations (4.1)–(4.4) in a charge-free vacuumsatisfy the samewave equation. Since all
of the components are treated in exactly the same way we will lump them all together
and write 𝜕E𝜕t and

𝜕B
𝜕t for the componentwise partial derivatives of E and Bwith respect

to t, ∇E and ∇B for the componentwise spatial gradients of E and B and ∇2E = ∇ ⋅ ∇E
and ∇2B = ∇ ⋅ ∇B for the componentwise spatial Laplacians. For example, if E =
(Ex ,Ey ,Ez), then

∇2E = ∇ ⋅ ∇E = (∇2Ex , ∇
2Ey , ∇

2Ez) = (∇ ⋅ ∇Ex , ∇ ⋅ ∇Ey , ∇ ⋅ ∇Ez).

Begin by taking the curl of ∇ × E = − 𝜕B𝜕t to obtain

∇ × (∇ × E) = −∇ × (𝜕B
𝜕t
) = −
𝜕
𝜕t
(∇ × B) = − 𝜕

𝜕t
(μ0ϵ0
𝜕E
𝜕t
) = −μ0ϵ0

𝜕2E
𝜕t2
.

Now use the vector identity ∇ × (∇ × A) = ∇(∇ ⋅ A) − ∇2A and the fact that ∇ ⋅ E = 0 to
write this as

∇2E = μ0ϵ0
𝜕2E
𝜕t2
. (4.7)

The same argument, starting with (4.4) rather than (4.2) shows that

∇2B = μ0ϵ0
𝜕2B
𝜕t2
. (4.8)

What we have then are six copies of the same wave equation, one for each component
of E and B, all of which describe a wave propagating with speed

1
√μ0ϵ0
.

Note that, from (4.5),

1
√μ0ϵ0
≈ 2.99792 × 108 m/s.

Now for the really good part. Maxwell published his famous paper A Dynamical The-
ory of the Electromagnetic Field in 1865. At that time, physicists had no reason to sus-
pect that electromagnetic effects might propagate as waves, but, as we have just seen,
Maxwell’s equations seemed to suggest that they can. It was not until 1886 that Hertz
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verified this prediction of Maxwell by detecting what wewould today call radio waves.
But there is much more. Three years prior to the appearance of Maxwell’s paper, in
1862, Foucault had made the most accurate measurement to date of the speed of light
in vacuo. His value was 2.99796 × 108m/s, and it did not escape Maxwell’s attention
that, modulo experimental errors, this is precisely the predicted propagation speed
of his electromagnetic waves. This raised the possibility, never before imagined, that
light itself is an electromagnetic phenomenon. Because of the way light behaves, it
was generally accepted at the time that light represents some sort of wave propaga-
tion (we will have a bit more to say about this in Section 4.4), but it was certainly
not viewed as the sort of electromagnetic wave that we have just seen emerge from
Maxwell’s equations.

But, of course, not all light is the same. It comes in different colors that can be sep-
arated out of the “white light” we generally encounter by sending it through a prism;
this, of course, was known long before Maxwell. But if all of these colors are really
electromagneticwaves, then they candiffer fromeach other only in variouswave char-
acteristics, such as wavelength λ (or, equivalently, frequency ν). Carrying this specu-
lation just a bit further, it is not difficult to imagine that the ocular sense that has
evolved in our species is sensitive only to those wavelengths that we must be sensi-
tive to in order to survive (and so Hertz could not “see” his radio waves). One would
then imagine electromagnetic waves of every possible frequency, some of which our
eyes can see and some of which we can perceive only by doing more than just look-
ing, despite the fact that they are all really the same phenomenon. All of this is, in fact,
true and physicists now display the range of possibilities for electromagnetic waves in
a continuous electromagnetic spectrum labeled by wavelength and/or frequency (see
Figure 4.1). The visible (to humans) part of this spectrum is quite small, but it had been
the object of study by physicists ever since Newton.

Remark 4.2.2. Newton, however, believed that light was composed of particles of dif-
ferent colors and that different colored particles moved at different speeds through
the glass of the prism, resulting in different angles of refraction, thus creating the
spectrum of colors. Classically, the wave and particle pictures of light are quite in-
consistent, but in 1905 Einstein [Ein1] proposed that for a proper understanding of
the properties of light, both were necessary (see Section 4.3). This was the birth of the
wave/particle duality that became the hallmark of modern quantum theory.

In 1814, Fraunhofermade a particularly interesting discovery when he noted that,
in the spectrum of light coming from the sun, certain frequencies were missing (there
were dark lines where onewould expect to see a color); see Figure 4.2. Somewhat later
it was observed that, in a sense, the opposite can occur. For example, when hydrogen
gas is heated it gives off light which, when sent through a prism, exhibits just a few
bright lines on an otherwise dark background (see Figure 4.3). Other elements behave
in the same way, but the visible lines are different; each has a characteristic emission
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Figure 4.1: Electromagnetic spectrum. https://commons.wikimedia.org/wiki/File:Electromagnetic-
Spectrum.svg (last access date: 21.05.2021).

Figure 4.2: Fraunhofer lines. https://commons.wikimedia.org/wiki/File:Fraunhofer_lines.svg (last
access date: 21.05.2021).
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Figure 4.3: Hydrogen emission spectrum. https://commons.wikimedia.org/wiki/File:Emission_
spectrum-H.svg (last access date: 21.05.2021).

spectrum. Furthermore, certain elements (such as sodium) were found to have emis-
sion spectra that exactly matched certain of the dark Fraunhofer lines in the solar
spectrum. The conclusion drawnwas that every element both emits and absorbs light
(electromagnetic waves) of certain characteristic frequencies and that, for example,
sodium is either entirely absent from the sun (unlikely), or whatever sodium is present
in thehot interior regions is emitting its frequencies only tohave themreabsorbed (and
probably emitted again, but in different directions, that is, scattered) by sodium in the
cooler exterior regions so that they never reach us and appear as Fraunhofer lines. The
question thatwas left unanswered and had to await the advent of quantum theorywas
why atoms can emit and absorb only a discrete set of frequencies.

We will take all of these experimental facts for granted without further comment,
but there are still issuesweneed to address.We begin by introducing the usual symbol

c ≈ 2.99792 × 108 m/s (4.9)

for the speed of light in vacuo and rewriting our wave equations as

∇2E = 1
c2
𝜕2E
𝜕t2

(4.10)

and

∇2B = 1
c2
𝜕2B
𝜕t2
. (4.11)

Now, (4.10) and (4.11) are really six independent copies of the wave equation, so pro-
ducing solutions to them is easy; just select your six favorite solutions to the wave
equation and make them the components in anyway you like. It is unlikely that you
will produce solutions to Maxwell’s equations this way, however. We need to see what
additional constraints are imposed by the full set of Maxwell’s equations and the best
way to do this is to look at some very simple solutions from which the rest can be ob-
tained by superposition.

Just to establish somenotation, let us reviewabit of theone-dimensional situation
from calculus. The one-dimensional wave equation for u(t, x) is 1

a2
𝜕2u
𝜕t2 =

𝜕2u
𝜕x2 , where a

is a positive constant. Looking for some simple solutions one considers the family of
sinusoidal waves of the form

u(t, x) = A0 cos (kx − ωt + φ) = Re (A0e
i(kx−ωt+φ) ),
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where A0, k,ω are positive real constants and φ is an arbitrary real constant: A0 is the
amplitude of the wave and φ is the phase; ω and k are related to the period T, wave-
length λ and frequency ν = 1

T of the wave by ω = 2πν = 2π
T and k = 2π

λ ; ω is called the
(angular) frequency and k is the (angular) wavenumber (the adjective angular simply
means thatweare counting thenumber of cycles/wavelengthsper 2π units of time/dis-
tance and it is very often dropped). The speed of propagation of the wave is ω

k =
λ
T .

Substituting into the wave equation, one finds that u(t, x) is a solution if and only if
ω
k = a, soa is the speedof propagationof thewave.One could, of course, replace cosby
sin, but this simply amounts to shifting the phase by π

2 . Since it is easier, algebraically
and analytically, to deal with exponentials, one generally focuses on the complex so-
lution A0ei(kx−ωt+φ), keeping in mind that it is the real (or imaginary) part that is of
interest. Going a step further, one can split off the phase A0ei(kx−ωt+φ) = A0eiφei(kx−ωt),
absorb it into the coefficient and deal with the complex solution

U(t, x) = U0 e
i (kx−ωt),

where the constant U0 = A0eiφ is also complex. To keep track of the direction of prop-
agation and the direction in which the oscillations take place one can introduce the
standard Euclidean basis vectors in the plane and define vectors k = (k,0), x = (x,0),
U0 = (0,U0) and U(t,x) = (0,U(t, x)) and write

U(t,x) = U0 e
i (k⋅x−ωt),

where k ⋅ x is the usual Euclidean inner product of k and x.
The appropriate generalization to the three-dimensional wave equation is now

clear.Wefixanarbitrarynonzero vectork = (k1, k2, k3) inR3 andapositive real number
ω and write k = ‖k‖. Let x = (x, y, z) denote an arbitrary vector in R3. For any U0 =
(A1eiφ1 ,A2eiφ2 ,A3eiφ3 ), where A1, A2, A3 are fixed positive real numbers and φ1, φ2, φ3
are fixed real numbers, define

U(t,x) = U0 e
i (k⋅x−ωt).

A little calculus proves the divergence and curl formulas

∇ ⋅ U(t,x) = i k ⋅ U(t,x) (4.12)

and

∇ × U(t,x) = i k × U(t,x). (4.13)

Althoughwe have takenU to be complex it will do no harm, and will aid the intuition,
if we treat it formally as if it were a vector inR3. Thus, the ⋅ and × in k ⋅U(t,x) and k ×
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U(t,x) here are the usualR3-dot and cross-products, but with complex components.
Substituting into the three-dimensional wave equation

∇2U = 1
a2
𝜕2U
𝜕t2

one finds that U is a solution if and only if

ω
k
= a.

For such a solution, k is called the wavevector and k is the wavenumber. Choosing
ω
k = c we can therefore write down lots of solutions

E(t,x) = E0 e
i (k⋅x−ωt)

and

B(t,x) = B0 e
i (k⋅x−ωt)

to (4.10) and (4.11). We will now see what additional constraints are imposed by the
full set of Maxwell equations (4.1)–(4.4) which, for these particular functions E and B,
become

k ⋅ E = 0, (4.14)
k × E = ωB, (4.15)
k ⋅ B = 0, (4.16)

k × B = −ω
c2
E. (4.17)

Exercise 4.2.1. Note that a priori the phase factors in E0 = (E1eiφ
E
1 ,E2eiφ

E
2 ,E3eiφ

E
3 ) and

B0 = (B1eiφ
B
1 ,B2eiφ

B
2 ,B3eiφ

B
3 ) could be different. Show that (4.17) and the fact that k is

real imply φE
j ≡ φ

B
j mod 2π, j = 1, 2, 3.

By (4.14) and (4.16), both E and B are orthogonal to k for each (t,x) and, by (4.15),
they are orthogonal to each other. Looking just at the real part of (4.15) we conclude
from this that ‖k‖ ‖E‖ = ω‖B‖, or

‖E‖ = c ‖B‖.

Note also that, by (4.15), B ⋅ (k × E) = ω‖B‖2 > 0, so k × E is in the direction of B and
we can visualize {k,E,B} as a right-handed orthogonal basis at each point. Next let ϕ
be some real constant and consider all of the (t,x) for which the phase k ⋅ x −ωt takes
this constant value, that is,

k1x + k2y + k3z = ωt + ϕ.
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For each fixed t this is a plane orthogonal to k onwhichE andB are both constant. As t
varies over −∞ < t <∞ these planes move in the direction of kwith speed ω

k = c. The
planes of constant phase are called wavefronts and the electromagnetic wave itself
is called a plane electromagnetic wave or a linearly polarized electromagnetic wave.
The term linearly polarized refers to the fact that the electric field vector oscillates in a
single direction (that is, along a single line). If one imagines oneself situated at some
fixed point along a line on which the wave is propagating and if one could see the
tip of the electric field vector, then, as the wavefronts pass through this point, the
tip would look just like a mass on a spring. This is true of the magnetic field vector as
well, but, sinceE andB are always orthogonal tok and to each other, it is conventional
to mention only the electric component. The direction of the electric field vector E is
called the direction of polarization.

These are, of course, very special electromagnetic waves and much more compli-
cated behavior results when the wave is a superposition (sum) of two or more plane
waves. For example, the superposition of two orthogonal plane waves propagating in
the same direction, of equal magnitude, but differing in phase by π/2 is circularly po-
larized. For these the tip of the electric vector approaching you along the direction of
propagation would appear to rotate (either clockwise or counterclockwise) around a
circle. Similarly, the sum of two orthogonal plane waves propagating in the same di-
rection of differentmagnitude andwhich differ in phase by π/2 is elliptically polarized.
More complicated superpositions of plane waves need not have any of these charac-
teristics. Indeed, the electric vectors approaching you along the direction of propaga-
tion can be randomly distributed and, in this case, the light is said to be unpolarized.
This is true, for example, of the light coming from the sun or from a light bulb. How-
ever, Fourier analysis guarantees that any electromagnetic wave can be viewed as a
superposition of (perhaps infinitely many) plane waves, each with its own polariza-
tion direction. We will write out a concrete example in Section 4.3 when we attempt to
track down what was behind Max Planck’s quantum hypothesis.

Next we introduce a notion that simplifies many computations and, moreover,
provides the prototypical example of what is called a gauge field. We begin by return-
ing to Maxwell’s equations

∇ ⋅ E = 0, (4.18)

∇ × E = −𝜕B
𝜕t
, (4.19)

∇ ⋅ B = 0, (4.20)

∇ × B = 1
c2
𝜕E
𝜕t

(4.21)

and considering solutions defined and smooth for all (t, x, y, z) ∈ R×R3. Suppose that
there exists a smooth, time-dependent vector fieldA(t, x, y, z) onR3 and a smooth real-



90 | 4 Physical background

valued function ϕ(t, x, y, z) for which

B = ∇ × A (4.22)

and

E = −∇ϕ − 𝜕A
𝜕t

(4.23)

(keep in mind that ∇ denotes the spatial gradient operator). Then, since the curl of a
gradient is zero and the divergence of a curl is zero, (4.19) and (4.20) are satisfied au-
tomatically. In this case, A and ϕ are called, respectively, vector and scalar potentials
for B and E. Furthermore, (4.18) and (4.21) become

∇2ϕ + 𝜕
𝜕t
(∇ ⋅ A) = 0 (4.24)

and

∇(∇ ⋅ A + 1
c2
𝜕ϕ
𝜕t
) − (∇2A − 1

c2
𝜕2A
𝜕t2
) = 0, (4.25)

respectively (for (4.25) we have used ∇ × (∇ × A) = ∇(∇ ⋅ A) − ∇2A).
The existence of A and ϕ is not at all obvious and depends crucially on the topol-

ogyof the regiononwhich the solutions are assumed to exist (whichwearehere taking
to be all ofR ×R3). This is best viewed from the relativistic point of view, where one
can prove the existence of A and ϕ at the same time. Here we will offer a less elegant
argument based on the relationship between the usual vector calculus onR3 and the
exterior calculus of differential forms onR3; this relationship is spelled out in detail
in Exercise 4.4.8 of [Nab4]. Thus, we fix a t ∈ R and let β denote the 1-form onR3 cor-
responding to the vector field B at time t. Then ∇ ⋅ B = 0 implies ∗d∗β = 0, where ∗

is the Hodge star operator on R3 determined by the standard metric and orientation
of R3. Thus, d∗β = 0, so ∗β is a closed 2-form on R3. By the Poincaré lemma, ∗β is
exact onR3, that is, there exists a smooth 1-form α onR3 with ∗β = dα. Consequently,
β = ∗∗β = ∗dα and, if A is the vector field on R3 corresponding to the 1-form α, we
have B = ∇ × A, as required. Now, to obtain ϕ we note that

∇ × (−E − 𝜕A
𝜕t
) = −∇ × E − 𝜕

𝜕t
(∇ × A) = 𝜕B

𝜕t
−
𝜕B
𝜕t
= 0.

Thus, if ϵ is the 1-formonR3 corresponding to the vector field−E− 𝜕A𝜕t , then
∗dϵ = 0and

so dϵ = 0. The Poincaré lemma then implies that ϵ = dϕ for some 0-form (real-valued
function) onR3 and this translates into −E − 𝜕A𝜕t = ∇ϕ, which is what we wanted. We
should also point out that there are physically interesting magnetic fields B on open
regions U ⊆ R3 to which the Poincaré lemma does not apply and for which there is no
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vector potential A defined on all of U . As it turns out, this leads to interesting things
(see pages 2–3 of [Nab3]).

We now know that A and ϕ exist, but they are certainly not unique, since if
λ(t, x, y, z) is any smooth function onR ×R3, then, for each t,

A = A − ∇λ and ϕ = ϕ + 𝜕λ
𝜕t

(4.26)

also satisfy

∇ × A = ∇ × A − ∇ × (∇λ) = ∇ × A = B

because the curl of a gradient is zero, and

−∇ϕ − 𝜕A


𝜕t
= −∇ϕ + 𝜕

𝜕t
(∇λ) − 𝜕A
𝜕t
−
𝜕
𝜕t
(∇λ) = −∇ϕ − 𝜕A

𝜕t
= E.

A transformation (A,ϕ) → (A,ϕ) of the form (4.26) is called a gauge transfor-
mation and the freedom to make such a transformation of potentials is called gauge
freedom. Note, in particular, that one can add an arbitrary constant vector to any vec-
tor potential and an arbitrary real constant to any scalar potential and the results will
still be potentials forE andB.Wewouldnow like to show that one canuse this freedom
tomake some particularly convenient choices for the potentials. In the process wewill
need to be sure that certain partial differential equations have smooth solutions, but
wewill save the discussion of the theorems that ensure the existence of these solutions
for Appendix E.

Wewill begin by selecting arbitrary potentialsA andϕ. For any smooth function λ,
the gauge transformation (4.26) yields new potentials (A,ϕ) that satisfy

∇ ⋅ A + 1
c2
𝜕ϕ

𝜕t
= (∇ ⋅ A + 1

c2
𝜕ϕ
𝜕t
) − (∇2λ − 1

c2
𝜕2λ
𝜕t2
)

which will be zero if λ satisfies

∇2λ − 1
c2
𝜕2λ
𝜕t2
= ∇ ⋅ A + 1

c2
𝜕ϕ
𝜕t
. (4.27)

The right-hand side of (4.27) is a known, smooth function so (4.27) is just the in-
homogeneous wave equation and the existence of a smooth solution λ is ensured (see
Appendix E). With such a choice of λ we have potentials that satisfy the so-called
Lorenz condition

∇ ⋅ A + 1
c2
𝜕ϕ

𝜕t
= 0. (4.28)

Physicists refer to a set of potentials (A,ϕ) satisfying (4.28) as a Lorenz gauge.
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Remark 4.2.3. Onemight also see this called a Lorentz gauge, but these are two differ-
ent guys. The gauge condition is named for Ludwig Lorenz, who introduced it, but its
most important property is that it happens to be “Lorentz invariant” and this is named
for Hendrik Lorentz. Take your pick.

Note that if we add on to λ any solution λ to the homogeneous wave equation

Δλ − 1
c2
𝜕2λ

𝜕t2
= 0,

of which there are many (see Appendix E), then the resulting potentials clearly still
satisfy the Lorenz condition. Consequently, there is a great deal of freedom in choosing
a Lorenz gauge. Also note that, in a Lorenz gauge, both the vector and scalar potentials
satisfy homogeneous wave equations. Indeed, the coupled equations (4.24) and (4.25)
decouple in a Lorenz gauge and become

∇2ϕ − 1
c2
𝜕2ϕ

𝜕t2
= 0

and

∇2A − 1
c2
𝜕2A

𝜕t2
= 0.

Now, let us begin again with some arbitrary potentials A and ϕ. For any gauge
transformation (4.26) we have, from A = A − ∇λ,

∇ ⋅ A = ∇ ⋅ A − ∇2λ.

Since ∇ ⋅ A is known, we can ensure that

∇ ⋅ A = 0 (4.29)

by taking λ to be any smooth solution to the Poisson equation

∇2λ = ∇ ⋅ A,

and, again, there are many of these (see Appendix E). Potentials satisfying (4.29) are
said to be a Coulomb gauge and, for these, (4.24) and (4.25) become

∇2ϕ = 0

and

∇2A − 1
c2
𝜕2A

𝜕t2
=

1
c2
∇(
𝜕ϕ

𝜕t
).
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In particular, in a Coulomb gauge, the scalar potential must be a solution to the
Laplace equation, that is, it must be harmonic onR3 for each t.

In the physics literature one might find the Coulomb gauge defined by ∇ ⋅ A = 0
and ϕ = 0. Now, it does not follow from what we have said that the scalar poten-
tial ϕ must be zero. It is, however, harmonic onR3 for each t and if one imposes the
additional physical assumption that it should be bounded on R3 for each t, then, in
fact, it must be constant. This follows from Liouville’s theorem, which says that any
bounded, harmonic function on anyRn is constant (if this version of Liouville’s the-
orem is unfamiliar to you, consult [Nel2] for the shortest paper you are ever likely to
see). Since potentials are determined only up to additive constants, one can take it to
be zero. This physical assumption is satisfied in the case of particular interest to us
in Section 4.3 (electromagnetic radiation in a black box) so we will say that a pair of
potentials A and ϕ satisfying

∇ ⋅ A = 0 and ϕ = 0 (4.30)

is a radiation gauge. In such a gauge,

B = ∇ × A and E = −𝜕A
𝜕t
, (4.31)

and A is determined by

∇2A − 1
c2
𝜕2A
𝜕t2
= 0 and ∇ ⋅ A = 0. (4.32)

Such an A is simply a divergence-free solution to the wave equation.

Remark 4.2.4. The electric and magnetic fields can be computed directly from any
pair of potentials and, as we have seen, a clever choice of potentials can significantly
simplify Maxwell’s equations. Classical electrodynamics makes considerable use of
these potentials as computational tools, but no physical significance was ascribed to
A and ϕ themselves (essentially because they are highly nonunique). The situation
is dramatically different in quantum mechanics. We will see some of the reasons for
this as we proceed, but a more complete picture, described in elementary terms, is
available in Chapter 0 of [Nab3].

The final topic we need to address in this section is, physically at least, rather
subtle because it deals with the rather elusive notion of energy (see Remark 1.0.2). In-
tuitively, it seems clear that electromagnetic radiation must, in some sense, contain
energy since it canwarmyouona sunnyday, give life to plants throughphotosynthesis
and even air condition your home. How is the energy associated with an electromag-
netic field to be defined? The objective of any definition of energy is a conservation
law (see Remark 1.0.2). In classical mechanics this conservation law takes the form
of an assertion that a certain number (the sum of the kinetic and potential energies)
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remains constant along the trajectory of the particle. In other contexts, conservation
laws take the form of what are called continuity equations. A familiar example from
calculus concerns the flow of a fluid. If the mass density of the fluid is ρ and its veloc-
ity vector field is V, then the continuity equation is

𝜕ρ
𝜕t
+ ∇ ⋅ ( ρV) = 0. (4.33)

To understand why this qualifies as a conservation law, suppose U is any bounded,
open region inR3 with smooth boundary 𝜕U . Integrating (4.33) over the closure clR3 U
of U inR3 and using the divergence theorem gives

𝜕
𝜕t
∫∫∫
cl
R3 U

ρ dV = −∫∫
𝜕U

ρV ⋅ dS,

which says that the rate at which mass enters or leaves clR3 U is equal to the flux of
mass through the boundary of U and so, since U is arbitrary, mass is conserved (nei-
ther created nor destroyed anywhere).

To find an analogue of (4.33) for electromagnetic radiation we return to the vac-
uum Maxwell equations (4.18)–(4.21), but now we will write 1

c2 = μ0ϵ0, where μ0 is
the vacuum permeability and ϵ0 is the vacuum permittivity (see (4.4)). Dot both sides
of (4.19) with B and both sides of (4.21) with E and add to obtain

E ⋅ (∇ × B) + B ⋅ (∇ × E) = −( μ0ϵ0 E ⋅
𝜕E
𝜕t
+ B ⋅ 𝜕B
𝜕t
).

The identities V ⋅ (∇ ×W) +W ⋅ (∇ × V) = ∇ ⋅ (V ×W) and 𝜕𝜕t ‖V‖
2 = 2V ⋅ 𝜕V𝜕t and a little

algebra reduce this to

∇ ⋅ (
1
μ0

E × B) = − 𝜕
𝜕t
(
ϵ0
2
‖E‖2 + 1

2μ0
‖B‖2).

Now, defining

S = 1
μ0

E × B

and

ℰ =
ϵ0
2
‖E‖2 + 1

2μ0
‖B‖2, (4.34)

this becomes

𝜕ℰ
𝜕t
+ ∇ ⋅ S = 0. (4.35)
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We find then that Maxwell’s equations determine a very natural continuity equation
and therefore a conservation law. By analogy with (4.33), one would be inclined to
identify ℰ with the thing being conserved and Swith a vector describing the direction
and rate at which this thing is being transported by the field. In physics, ℰ is called
the energy density of the electromagnetic field and S is the Poynting vector; (4.35) is a
special case of what is called Poynting’s theorem.

Remark 4.2.5. Not every “thing” that is conserved can reasonably be interpreted as
an energy (one has, for example, momentum, angular momentum, etc.) and simply
calling ℰ the energy density of the field does not justify the use of the term. The intu-
ition we were asked to accept in high school is at least morally correct; energy should
somehow be associated with the ability to do work. That the terminology we have in-
troduced really is appropriate should be checked by relating ℰ and S to the work the
field is capable of doing. The full Maxwell equations contain the electric charge ρ and
current J densities responsible for creating the field and with these and the Lorentz
force law (4.6) one can compute the work done by the field on the charges and in this
waymotivate our interpretations of ℰ and S. Since this is all done carefully and clearly
in Sections 27-1 through 27-3, Volume II, of [FLS] we will simply refer those interested
in the details to the exposition by one of the great physicists of the twentieth century.

In addition to carrying energy, electromagnetic radiation exerts pressure on any
surface it falls upon and therefore should also carry momentum. This is rather con-
vincingly demonstrated by a device called a Nichols radiometer, which you can now
buy in almost any toy store. It is simply a very delicate pinwheel in a vacuum that will
spin if you shine light on it.

The momentum density of an electromagnetic field is, of course, a vector at each
point in space and at each instant of time and is identified by the physicists with a
multiple of the Poynting vector

1
c2

S = ϵ0E × B

(the rationale for this is discussed in Section 27-6, Volume II, of [FLS]). By analogy
with classical particle mechanics (see (2.20)) one then defines the angular momentum
density (with respect to the origin) of the electromagnetic field by

r × (ϵ0E × B),

where r is the position vector inR3.

Exercise 4.2.2. Write out the energy density, Poynting vector,momentumdensity and
angular momentum density for a plane electromagnetic wave.

We should conclude this section by saying that quite soon we will be forced by
circumstances (in Section 4.3) to adopt quite a different view of electromagnetic radi-
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ation and the energy and momentum it contains and that this different view of elec-
tromagnetic radiation will lead us inexorably to a different view of everything.

4.3 Blackbody radiation and the photoelectric effect

Place a bar of iron in the summer sun for a few hours. When you return to retrieve
your iron bar and reach to pick it up you find to your chagrin that it is emitting thermal
energy (it is hot). The electromagnetic radiation coming from the sun, which contains
energy, has communicated some of this energy to the iron and “heated” it. But what is
this “heat” thatwe perceive?Here is a hint. Supposewe couldmove the iron bar off the
surface of the earth and closer and closer to the sun. Of course, it would get hotter and
hotter, but it would do something else as well; it would change color. Close enough to
the sun it would glow red hot, closer still, orange, then yellow and finally blue. But
what our eyes perceive as color is simply a particular frequency of light so it would
seem that the heat we sense coming from the iron bar is again just electromagnetic
radiation. The rays from the sun supply energy to the molecules and atoms of the iron
which vibrate in response, thus causing the electrons in the atoms near the surface to
vibrate and these, as all accelerating charges do, generate electromagnetic radiation.
This, in turn, supplies energy to the molecules and atoms of our skin which we sense
as thermal energy, that is, heat. It is important to note that we sense this heat long
before the iron has started to glow red hot. For these more moderate temperatures the
frequency of the electromagnetic radiation being emitted by the bar is not in the (to us)
visible range, but rather in the infrared (see Figure 4.1). It is a fact of nature that every
body at a temperature above absolute zero emits electromagnetic radiation. Mercifully,
the human eye perceives only a minute portion of this radiation.

Remark 4.3.1. A precise physical definition of absolute zero or, indeed, even of tem-
perature, would involve a rather lengthy digression into thermodynamics andwehave
neither the time nor the competence to do this properly here (there are many intro-
ductory texts available if this interests you, or you may prefer the concise exposi-
tion [Fermi] by aNobel Laureate). Fortunately, the physicists have relieved someof this
burden by agreeing to define absolute zero to be −273.15∘C (or, equivalently, −459.67∘F)
and we will take this as our definition as well (of course, this presumes that you know
what temperature means when measured on the Celsius or Fahrenheit scales and
it completely evades the issue of the physical significance of this particular value).
This value is also taken to be zero on the Kelvin scale so that absolute zero is 0 K
(physicists have apparently also agreed that writing 0∘ K is not to be tolerated (see
http://en.wikipedia.org/wiki/Kelvin).

Wewill oftenbe confronted in this sectionwithphysical statements the theoretical
justification of which requires sophisticated ideas and techniques from not only ther-
modynamics, but statistical mechanics and electromagnetic theory as well. In these
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caseswewill not presume to offer sound bites that pretend to be explanations, butwill
try to provide ample references for those who would like to really understand. A good
place to begin is Chapter 1 of [Bohm], which contains a detailed and very readable ac-
count of everything we will have to say in this section and much more together with
a number of (admittedly rather old) references to discussions of the thermodynamics
and statistical mechanics.

All objects absorb and emit electromagnetic radiation, but they do not all do it
in the same way or at the same rate. A red fire truck is red because the paint on its
surface absorbs every frequency of light except those that we perceive as red (around
4.3 × 1014 Hz), which it reflects back to our eyes. A substance that is very black, like
graphite or soot, absorbs essentially all of the electromagnetic radiation falling on it.
On the other hand, it is the case that at a given temperature, a body always emits radi-
ation of a given frequency exactly aswell as it absorbs radiation of that frequency (this
is an experimental fact, but also a consequence of the second law of thermodynam-
ics). Consequently, graphite is not only a nearly perfect absorber of electromagnetic
radiation, but a nearly perfect emitter as well. A blackbody is an (idealized) physical
object that absorbs all incident electromagnetic radiation. In this section we are inter-
ested in the spectrum of radiation emitted by such a blackbody (we will define more
precisely what this means in just a moment).

An object with very special and interesting thermodynamic properties that has
been investigated since the nineteenth century is what we will call a black box. This
is essentially an oven with black walls and with a tiny hole drilled in one of the walls.
Turn the oven on. The temperature of the walls increases and so they emit radiation of
every possible frequency at a rate that depends on the temperature. These samewalls,
in turn, absorb this radiation at a rate that depends on the intensity of the radiation in
the interior of the oven. Eventually the emission and absorption balance and a state of
thermal equilibrium is achieved inwhich the temperatureT is constant (in this section
T will always be measured in Kelvin). The object we are interested in is the function
ρT (λ) or, equivalently, ρT (ν), that gives the energy density of the equilibrium radiation
of wavelength λ, or of frequency ν = c/λ.

Physicists often consider instead the intensity IT of the radiation as a function of
λ or ν. The intensity is defined to be the energy which the radiation carries per second
across a 1m2 area normal to the direction of propagation. As it happens, the intensity
and energy density are proportional with a constant of proportionality that does not
depend on the wavelength/frequency or T. The function IT (λ) can bemeasured exper-
imentally. The radiation escaping from the small hole is passed through a diffraction
grating (high tech prism) sending the different wavelengths in different directions,
all toward a screen. A detector is moved along the screen to determine the intensity
emitted at each wavelength. It has been found that for a given wavelength, the inten-
sity depends only on T and not on the details of the oven’s construction (size, shape,
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Figure 4.4: Blackbody radiation curves. http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html
(last access date: 21.05.2021).

material, etc.). Figure 4.41 shows the graphs of IT (λ) for T = 3000K, 4000K, 5000K
and 6000K. At any given temperature T the intensity of the radiation increases rather
rapidly with the wavelength λ until it reaches a maximum value at some wavelength
λmax that depends on T and at this point it begins to decrease with λ. The integral

IT =
∞

∫
0

IT (λ) dλ

represents the total intensity of the radiation emitted over all wavelengths at temper-
ature T. In 1879, Jožef Stefan deduced from the empirical data that IT is proportional
to the fourth power of T:

IT = σT
4,

where σ = 5.670400 × 10−8 Jm−2s−1K−4 is the so-called Stefan–Boltzmann constant;
this was later derived on theoretical grounds by Ludwig Boltzmann.

In 1893, Wilhelm Wien showed using thermodynamic arguments that there is a
universal function f for which

ρT (λ) =
f (λT)
λ5
. (4.36)

Thermodynamics alone, however, cannot determine the function f . This is essentially
because thermodynamic arguments are based on very general principles that apply

1 Reproduced by permission of Professor Carl R. Nave of the HyperPhysics Project, Georgia State Uni-
versity. See http://hyperphysics.phy-astr.gsu.edu/hbase/index.html
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to all physical systems and often do not take into account the specific details of any
particular system. Nevertheless, plotting λ5ρT (λ) versus λT for the empirical data one
finds that the points lie on the same curve for any T so there is solid experimental
evidence to supportWien’s law (4.36).

Although thermodynamics cannot identify the function f , electrodynamics and
classical statistical mechanics combine to give the completely explicit prediction

f (λT) = 8πκB (λT), (Rayleigh–Jeans) (4.37)

where κB = 1.3806488 × 10−23 JK−1 is the Boltzmann constant. Thus,

ρT (λ) =
8πκBT
λ4
. (Rayleigh–Jeans) (4.38)

This result was derived by Lord Rayleigh and Sir James Jeans in 1905 (except for the
precise value of the constant of proportionality [8πκB] the result was actually estab-
lishedbyRayleigh in 1900). Theargument involvedquitenontrivial aspects of classical
physics and we will briefly describe how it was done later in this section (see (4.55)).

The only issue one might want to take with the Rayleigh–Jeans argument is that
its conclusion is totally incorrect. One can see this by simply comparing its predictions
with the empirical data (see Figure 4.52). Evenwithout any delicate experimental data,
however, one can see that the result cannot be correct since it implies that the total
energy contained in the black box is, by Wien’s law (4.36),

∞

∫
0

ρT (λ) dλ = 8πκBT
∞

∫
0

dλ
λ4
=
8π
3
κBT lim

λ→0+
1
λ3
,

and this is infinite unless T = 0 (Paul Ehrenfest referred to this as the ultraviolet catas-
trophe). Since the logic of the Rayleigh–Jeans argument was considered unassailable,
one is forced to question the premises on which the argument is based. But these
premises were believed to be among themost firmly established principles of classical
physics. One can see a storm on the horizon.

Max Planck set himself the task of deriving a formula for the energy spectrum that
agreed with the experimental data. Eventually, he succeeded, but only by straying
outside the confines of classical physics with an ad hoc assumption that he himself
regarded as an “act of desperation.” We would like to have a look, admittedly a rather
cursory and informal one, at a path one can follow that leads to Planck’s formula since
it is along such a path that one finds for the first time the ubiquitous “Planck constant”
and we really should have some idea of where this comes from. First, however, let us
simply record the formula to see where we are headed. Planck determined that the

2 Reproduced by permission of Professor Carl R. Nave of the HyperPhysics Project, Georgia State Uni-
versity. See http://hyperphysics.phy-astr.gsu.edu/hbase/index.html
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Figure 4.5: Rayleigh–Jeans. http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html (last access
date: 21.05.2021).

function f (λT) in Wien’s law (4.36) is given not by the Rayleigh–Jeans law (4.37), but
rather by

f (λT) = 8πhc
ehc/κBλT − 1

, (4.39)

where c is the speed of light and h is a positive constant that must be determined to fit
the data. Thus,

ρT (λ) =
8πhc
λ5

1
ehc/κBλT − 1

, (4.40)

or, in terms of the frequency ν,

ρT (ν) =
8πhν3

c3
1

ehν/κBT − 1
. (4.41)

This is known as Planck’s law, whichwewill derive later in this section (see (4.56)).We
will see that these are to be regarded as density functions. For example, the amount of
electromagnetic energy per unit volume accounted for by radiation with wavelengths
in [λ0, λ1] is

λ1

∫
λ0

ρT (λ)dλ =
λ1

∫
λ0

8πhc
λ5

1
ehc/κBλT − 1

dλ. (4.42)

Exercise 4.3.1. Show that, when λT is large, Planck’s formula (4.40) is approximately
given by the Rayleigh–Jeans formula (4.37).
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Note that h is, of course, the famous Planck constant. Its currently accepted value
is 6.62606957 × 10−34m2(kg)/s. Because it occurs so frequently, one also defines the
normalized Planck constant ℏ = h/2π. Note that h has the same units as the action in
classical mechanics (see (2.1)) so one often sees Planck’s constant referred to as the
quantum of action. What we would like to do now is try to understand where h comes
from.

The physics behind Planck’s formula is deep andwewill not pretend to offermore
than a rather pedestrian synopsis. We begin by setting up the problem we need to
solve. The basic object of interest is a black box (oven) filled with electromagnetic
radiation in thermal equilibrium (that is, at some constant temperature T). We have
already mentioned that it has been shown both experimentally and theoretically that
the energy spectrum is independent of the shape andmaterial construction of the box
so we are free to choose this as we please. For the black box we will choose a cube
R = [0, L]3 = [0, L] × [0, L] × [0, L] ⊆ R3 of side length L > 0 in R3. Here is what we
must do.
1. Prescribe appropriate boundary conditions and solve Maxwell’s equations for

fields E and B that represent electromagnetic waves in thermal equilibrium with
the boundary at temperature T. We will be assuming that the black box contains
nothing but electromagnetic radiation so by “Maxwell’s equations” we mean the
empty space version (4.1)–(4.4).

2. Compute the total electromagnetic energy (see (4.34))

E = ∫
R

ℰ dV = ∫
R

(
ϵ0
2
‖E‖2 + 1

2μ0
‖B‖2) dV (4.43)

contained inR. Assuming, aswe shall, that the system is isolated, this total energy
is constant.

3. Determine how this total electromagnetic energy is distributed among the various
frequencies of radiation present in R.

The question of appropriate boundary conditions can be a subtle one, depending on
the specific physical circumstances of the problem. However, if we once again appeal
the fact that the energy spectrum at thermal equilibrium is generally independent of
these specifics we are able to choose boundary conditions that will confine the ra-
diation within the box and simplify the calculations. To this end physicists generally
adopt “periodic boundary conditions” according towhich the unknownfields take the
same values at corresponding points on opposite faces of the cube (we will describe
this a bit more precisely in a moment).

By translation in the directions of the coordinate axes we can partition all of R3

into a countable family of copies of R intersecting only along their common bound-
aries. Because the boundary conditions are periodic, the sought-after fields can then
be thought of as defined on all ofR3, and onR3 we have shown that we can work in
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a Coulomb gauge (see (4.29)) with potentials A and ϕ. Moreover, ϕ is harmonic and,
in particular, continuous and therefore bounded on R. As a result, it is bounded ev-
erywhere onR3, so we can actually work in a radiation gauge (see (4.30)) with ϕ = 0.
Thus, the only field we need to find is the vector potential A and this is determined
by (4.32). The electric andmagnetic fields are then given by (4.31) and the total energy
by (4.43). However, to carry out Step 3. in the programdescribed abovewewill need all
of this expressed in terms of the radiation frequencies, and this means Fourier analy-
sis. Because of the periodic boundary conditions, however, the proper context for this
Fourier analysis is not really R3, but rather a certain three-dimensional “flat torus.”
We will therefore need to digress and sketch some of the background.

Remark 4.3.2. Let {v1, . . . , vN }be abasis forRN . Associatedwith this basis is a lattice Γ
consisting of all of the integer linear combinations of the basis vectors:

Γ = { v =
N
∑
i=1

nivi : n
i ∈ Z, i = 1, . . . ,N }.

Identify Γ with a (discrete, Abelian) subgroup ofRN . One can show that the quotient
spaceRN/Γ admits a unique differentiablemanifold structure for which the canonical
projection π : RN → RN/Γ is a smooth submersion; this follows, for example, from
Theorem 7.10 of [Lee2]. Indeed, if we let TN = S1× N⋅ ⋅ ⋅ × S1 denote the N-dimensional
torus, then the map φ : RN → TN defined by

φ(x) = φ(
N
∑
i=1

xivi ) = ( e
2πix1 , . . . , e2πix

N
)

is constant on each fiber π−1([x]) = x + Γ, [x] ∈ RN/Γ, so it descends to a map φ̃ :
RN/Γ→ TN and one can show that this is a diffeomorphism.

R
N/Γ ≅ TN .

Furthermore, since Γ is discrete, π : RN → RN/Γ is a smooth covering map (see Theo-
rem 7.13 of [Lee2]). In particular, its derivative π∗ : TRN → TTN is an isomorphism on
each fiber and therefore induces, from the standard Riemannianmetric g ofRN , a Rie-
mannian metric gΓ on TN ≅ RN/Γ. These are locally isometric so that, since g is flat,
that is, has zero Riemannian curvature, the same is true of gΓ. With this Riemannian
metricRN/Γ is called the flat torus determined by Γ.

The convex hull D(Γ) of {v1, . . . , vN } in RN is the set of all convex linear combi-
nations of v1, . . . , vN and is called the fundamental domain of RN/Γ. This is a closed
interval when N = 1, a closed parallelogram when N = 2, a closed parallelepiped
when N = 3, and so on. Translates by elements of Γ of the interior of D(Γ) are pairwise
disjoint inRN , but the translates ofD(Γ) itself coverRN . The torusRN/Γ can be viewed
as the fundamental domain D(Γ) with points on its boundary identified if they differ
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by an element of Γ. The standard Lebesgue measure μ on D(Γ) induces a pushforward
measure μ̃ = π∗(μ) on the torusRN/Γ.

Remark 4.3.3. Recall that if (X,𝒜, μ) is a measure space, (Y , 𝒞) is a measurable space
and f : (X,𝒜) → (Y , 𝒞) is a measurable function, then the pushforward measure f∗(μ)
on (Y , 𝒞) is defined by

(f∗(μ))(C) = μ(f
−1(C)) ∀C ∈ 𝒞.

There is an abstract change of variables formula (TheoremC, Section 39, of [Hal1]) that
asserts the following. If F is any extended real- or complex-valued measurable func-
tion on (Y , 𝒞), then F is integrablewith respect to f∗(μ) if and only if F ∘f is μ-integrable
and, in this case,

∫
Y

F(y) d(f∗(μ))(y) = ∫
X

(F ∘ f )(x) dμ(x). (4.44)

Furthermore, (4.44) holds in the stronger sense that if either side is defined (even if it
is not finite), then the other side is defined and they agree.

Themeasure μ̃ has the following property. Any real- or complex-valued integrable
function ϕ on RN that is Γ-periodic (ϕ(x + v) = ϕ(x) ∀v ∈ Γ) descends to a unique
integrable function ϕ̃ onRN/Γ and

∫
D(Γ)

ϕdμ = ∫
RN /Γ

ϕ̃ dμ̃. (4.45)

Conversely, any real- or complex-valued function ϕ̃ on RN/Γ lifts uniquely to a
Γ-periodic function ϕ on RN and (4.45) is satisfied. As long as the lattice Γ is fixed
it does no real harm to adopt the usual custom and blur the distinction between the
Γ-periodic functions on RN and the functions to which they descend on RN/Γ and
even to identify μ̃with μ and write simplyTN forRN/Γ. We will therefore tend to drop
the tildes andwrite such things as ∫

RN /Γ ϕdμ, ∫
TN ϕdμ and ∫D(Γ) ϕdμ interchangeably.

Finally, note that, since the faces of D(Γ) have measure zero in RN , we can identify
Lp(TN ) with Lp(D(Γ)) for any 1 ≤ p ≤∞.

Now let us adapt this last remark to our black box [0, L]3. Let {e1, e2, e3}be the stan-
dard basis forR3 and define a new (orthogonal, but not orthonormal) basis {v1, v2, v3}
by vi = Lei for i = 1, 2, 3. The corresponding lattice

Γ = {v = n1v1 + n
2v2 + n

3v3 = (n
1L, n2L, n3L) : n1, n2, n3 ∈ Z}

determines a flat torus T3 = R3/Γ and the fundamental domain D(Γ) is just the cube
[0, L]3. A function ϕ on T3 is identified with a function onR3 that is Γ-periodic, that
is, one that satisfies

ϕ(x + v) = ϕ(x)
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for all v ∈ Γ. In more detail,

ϕ(x1 + n1L, x2 + n2L, x3 + n3L) = ϕ(x1, x2, x3)

for all (x1, x2, x3) ∈ R3 and all (n1, n2, n3) ∈ Z3. We will write out some particularly
important examples. For this we consider another lattice [ 2πL Z]

3 in R3 that we will
use to index the functions. Each k ∈ [ 2πL Z]

3 is of the form

k = (k1, k2, k3) = 2π
L
(m1,m2,m3),

where (m1,m2,m3) ∈ Z3. For each such k we define

ϕk(x) = L
−3/2ei k⋅x = L−3/2ei (k

1x1+k2x2+k3x3).

Exercise 4.3.2. Show that for each k ∈ [ 2πL Z]
3,

1. ϕk is Γ-periodic,
2. ϕk is in L2(T3) and, in fact, ‖ϕk ‖

2
L2 = 1,

3. ϕk1 and ϕk2 are orthogonal in L
2(T3) if k1 ̸= k2, and

4. −Δϕk(x) = ‖k‖2ϕk(x).
Note: In 4., Δ is the Laplacian on T3 which, locally, is the same as the Laplacian
onR3 becauseT3 is locally isometric toR3.

Thus, each ϕk is an eigenfunction for −Δ on L2(T3) with eigenvalue ‖k‖2. According
to 2. and 3., {ϕk : k ∈ [ 2πL Z]

3} is an orthonormal set in L2(T3), but one can show that
it is, in fact, an orthonormal basis for L2(T3); this follows from the Stone–Weierstrass
theorem (see Proposition 3.1.16 of [Graf]). It follows from this that {‖k‖2 : k ∈ [ 2πL Z]

3}
contains all of the eigenvalues of −Δ on L2(T3). We will explain this in more detail in
Section 5.2, but briefly the reason is that−Δdefines a self-adjoint operator on L2(T3) so
that eigenfunctions corresponding to distinct eigenvalues are orthogonal. Thus, any
eigenfunction corresponding to some other eigenvalue would have to be orthogonal
to everything in an orthonormal basis for L2(T3) and this would force it to be zero.

We find then that any f ∈ L2(T3) can be written as

f (x) = ∑
k∈[ 2πL Z]

3

ak e
i k⋅x, (4.46)

where

ak = L
−3 ∫

T3

f (x)e−i k⋅xdμ(x) = L−3 ∫
[0,L]3

f (x)e−i k⋅xd3x (4.47)

and the convergence of the series is in L2(T3). The series (4.46) is called the Fourier
series for f (x) in L2(T3) and ak are the Fourier coefficients of f (x) (note that ak =
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L−3/2⟨ϕk, f ⟩L2 ). One might wonder about the definition of the partial sums of the
Fourier series since there is no unique natural ordering of the elements of [ 2πL Z]

3.
In the general theory of Fourier series this is, indeed, an issue with which one must
deal (see Definition 3.1.12 of [Graf] for some of the options). However, for an L2 func-
tion f , Parseval’s theorem (see, for example, Theorem 6.4.5 of [Fried]) asserts that
the sum of the squares of the Fourier coefficients converges to (L−3 times) the square
of the L2 norm of f . Absolute convergence then implies that the same is true of any
rearrangement, so the order in which one defines the partial sums is irrelevant.

The rate at which the Fourier coefficients of f converge to zero with ‖k‖ is directly
related to the degree of regularity of f (see Section 3.2 of [Graf]). The only result of this
sort that we will appeal to states that if f is smooth (C∞), then the Fourier coefficients
ak decay at a rate sufficient to ensure that the convergence of the Fourier series is uni-
form and that the same is true after differentiating any number of times with respect
to x1, x2 and x3. In our discussion of blackbody radiation (to which we now return) we
will restrict our attention to smooth functions so that we can perform all of the calcu-
lations one generally sees in the physics literature (for example, Chapter 1 of [Bohm])
with impunity.

Example 4.3.1. Let us try to get some orientation for what is to come next by using
these ideas to search for smooth solutions A(t,x) to the wave equation

ΔA − 1
c2
𝜕2A
𝜕t2
= 0

onT3. Separating variablesA(t,x) = T(t)X(x) in the usualway leads to two eigenvalue
problems ΔX = λX and T̈ = λc2T. For the first of these we now know the eigenvalues.
For each

k = 2π
L
(m1,m2,m3) ∈ [

2π
L
Z]

3

we have the eigenvalue

λk = −‖k‖
2 = −

4π2

L2
( (m1)

2
+ (m2)

2
+ (m3)

2
)

and a corresponding eigenfunction

Xk(x) = e
i k⋅x.

Letting

ω2
k = ‖k‖

2c2

the T-equation is therefore T̈ = −ω2
kT, for which we have the solution

Tk(t) = e
−iωkt .
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The corresponding (complex) solution to the wave equation is therefore

Ak(t,x) = Tk(t)Xk(x) = e
i(k⋅x−ωkt).

Superimposing these gives

A(t,x) = ∑
k∈[ 2πL Z]

3

ake
i(k⋅x−ωkt),

where ak must be the kth Fourier coefficient of the initial wave A(0,x). We find then
that our solution to the wave equation is a superposition of plane waves; it might be
useful at this point to review our earlier discussion of plane electromagnetic waves
(see Section 4.2).

Now we would like to apply these same ideas to the vector potential A for the
electromagnetic radiation in our black box [0, L]3, which we recall is determined by

ΔA − 1
c2
𝜕2A
𝜕t2
= 0 and ∇ ⋅ A = 0.

There are two minor complications. The wave equation is, in this case, a vector equa-
tion and the physical interpretation requires that the solutions be real. We handle
these issues in the following way. Motivated by our experience in the previous exam-
ple, we will begin by looking for complex solutions that are superpositions of plane
waves, that is, of the form

Ac(t,x) = ∑
k∈[ 2πL Z]

3

Ake
i(k⋅x−ωkt),

whereAk is some constant vector with three complex components for each k andωk =
‖k‖ c. Generally it will be more convenient to write this as

Ac(t,x) = ∑
k∈[ 2πL Z]

3

Ak(t)e
i k⋅x,

where

Ak(t) = Ake
−iωkt .

We are not aiming for rigorous theorems in this section, but only for some appre-
ciation of what led Planck to his “quantum hypothesis.” As a result we will be some-
what cavalier in the following computations, basically doing everything we need to
do term-by-term in the series. Computing the divergence term-by-term we find that
the condition ∇ ⋅ Ac = 0 becomes

0 = ∇ ⋅ Ac(t,x) = ∑
k∈[ 2πL Z]

3

i k ⋅ Ak e
i(k⋅x−ωkt) = ∑

k∈[ 2πL Z]
3

i k ⋅ Ak(t) e
i k⋅x,
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so the uniqueness of Fourier expansions implies that

k ⋅ Ak(t) = 0

for every k ∈ [ 2πL Z]
3 and every t ∈ R. Thus, each of the coefficients Ak(t) is ortho-

gonal to the correspondingwavevector k, that is, to the direction of propagation of the
correspondingplanewave, for every t.We therefore choose, for eachk, twoorthogonal
unit vectors ϵ1k and ϵ

2
k in the plane perpendicular to k inR

3 such that {ϵ1k, ϵ
2
k,k} is an

orthogonal basis forR3 consistentwith the usual orientation forR3. Nowwe canwrite

Ak(t) = ak1(t)ϵ
1
k + ak2(t)ϵ

2
k =

2
∑
α=1

akα(t)ϵ
α
k,

where akα(t) are generally complex. Recall from Section 4.2 that the electric and mag-
netic field vectors of an electromagnetic plane wave are also orthogonal to each other
and to the wavevector and that the direction of the electric field is called the direction
of polarization. For this reason ϵ1k and ϵ

2
k are also called polarization directions. Note

that

Ȧk(t) = −iωkAk(t),

so

Äk(t) = −ω
2
k Ak(t).

Consequently,

äkα(t) + ω
2
k akα(t) = 0

for every k and each α = 1, 2. Thus, each akα(t) satisfies the harmonic oscillator equa-
tion with angular frequency ωk = ‖k‖c.

With this the complex solution becomes

Ac(t,x) = ∑
k∈[ 2πL Z]

3

2
∑
α=1

ϵαk akα(t)e
i k⋅x.

Finally, to get a real solution we take the real parts:

A(t,x) = 1
2
∑

k∈[ 2πL Z]
3

[Ak(t)e
ik⋅x + Ak(t)e

−ik⋅x]

=
1
2
∑

k∈[ 2πL Z]
3

2
∑
α=1

ϵαk [akα(t)e
i k⋅x + akα(t)e

−i k⋅x].
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From (4.31) we obtain the electric field

E(t,x) = −𝜕A
𝜕t
= −

1
2
∑

k∈[ 2πL Z]
3

[Ȧk(t)e
ik⋅x + Ȧk(t)e

−ik⋅x]

=
i
2
∑

k∈[ 2πL Z]
3

ωk [Ak(t)e
ik⋅x − Ak(t)e

−ik⋅x]

=
i
2
∑

k∈[ 2πL Z]
3

2
∑
α=1

ωk ϵ
α
k [akα(t)e

i k⋅x − akα(t)e
−i k⋅x].

For the total electromagnetic energy contained in the black box (see (4.43)) we need
to compute

∫
R

ϵ0
2
E(t,x)

2 d3x

=
ϵ0
2
∫
R

E(t,x) ⋅ E(t,x) d3x

−
ϵ0
8
∫
R

(∑
k
ωk [Ak(t)e

ik⋅x − Ak(t)e
−ik⋅x])

⋅ (∑
k
ωk [Ak (t)e

ik ⋅x − Ak (t)e
−ik ⋅x]) d3x

= −
ϵ0
8
∑
k
∑
k
ωkωk ∫

R

[Ak(t)e
ik⋅x − Ak(t)e

−ik⋅x] ⋅ [Ak (t)e
ik ⋅x − Ak (t)e

−ik ⋅x] d3x.

Now, fix a k ∈ [ 2πL Z]
3. By the L2 orthogonality of the exponentials eik⋅x, all of these

integrals will be zero except when either k = k or k = −k. Consider k = k. Then

−
ϵ0
8
ω2
k ∫
R

[Ak(t)e
ik⋅x − Ak(t)e

−ik⋅x] ⋅ [Ak(t)e
ik⋅x − Ak(t)e

−ik⋅x] d3x

= −
ϵ0
8
ω2
k [Ak(t) ⋅ Ak(t)∫

R

e2ik⋅xd3x

− 2Ak(t) ⋅ Ak(t)∫
R

1 d3x + Ak(t) ⋅ Ak(t)∫
R

e−2ik⋅xd3x].

The first integral on the right-hand side is zero since it is the L2 inner product of ei(3k)⋅x

and eik⋅x and similarly for the third integral. The second integral is just the volume of
R, that is, L3. Furthermore, Ak(t) ⋅ Ak(t) = ‖Ak(t)‖2 = |ak1(t)|2 + |ak2(t)|2, so we obtain

−
ϵ0
8
ω2
k ∫
R

[Ak(t)e
ik⋅x − Ak(t)e

−ik⋅x] ⋅ [Ak(t)e
ik⋅x − Ak(t)e

−ik⋅x] d3x

=
ϵ0L3ω2

k
4
Ak(t)

2
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=
ϵ0L3ω2

k
4
(  ak1(t)


2
+  ak2(t)


2
).

The same term arises from k = −k, so adding them and summing over k, we obtain

∫
R

ϵ0
2
E(t,x)

2d3x = L

3

2
∑

k∈[ 2πL Z]
3

ϵ0 ω
2
k
Ak(t)

2
.

Similar, but algebraically a bit more labor intensive computations give

∫
R

1
2μ0
B(t,x)

2d3x = L

3

2
∑

k∈[ 2πL Z]
3

‖k‖2

μ0
Ak(t)

2
.

However,

‖k‖2

μ0
=

ω2
k

c2μ0

=
ϵ0μ0ω2

k
μ0
= ϵ0 ω

2
k,

so

∫
R

1
2μ0
B(t,x)

2d3x = L

3

2
∑

k∈[ 2πL Z]
3

ϵ0 ω
2
k
Ak(t)

2
.

The energies contributed by the electric and magnetic fields are therefore the same.
From (4.43) we then obtain the total electromagnetic energy within the black box:

E = ∫
R

(
ϵ0
2
E(t,x)

2
+

1
2μ0
B(t,x)

2
) d3x = ∑

k∈[ 2πL Z]
3

L3ϵ0 ω
2
k
Ak(t)

2

= ∑
k∈[ 2πL Z]

3

2
∑
α=1

L3ϵ0 ω
2
k
 akα(t)

2
.

Now recall that each akα satisfies the harmonic oscillator equation äkα+ω2
kakα = 0

and therefore the same is true of their real parts.Wewill nowmakea changeof variable
to exhibit these real parts more explicitly. Specifically, for each k ∈ [ 2πL Z]

3 and each
α = 1, 2, we let

Qkα = akα + akα and Pkα =
L3ϵ0ωk

2i
(akα − akα).

Then

akα =
1
2
Qkα +

i
L3ϵ0ωk

Pkα and akα =
1
2
Qkα −

i
L3ϵ0ωk

Pkα,
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so

L3ϵ0 ω
2
k | akα |

2 = L3ϵ0 ω
2
k akα akα =

L3ϵ0ω2
k

4
Q2
kα +

1
L3ϵ0

P2kα.

Now let

M = L
3ϵ0
2
.

Then

L3ϵ0 ω
2
k | akα |

2 =
1
2M

P2kα +
Mω2

k
2

Q2
kα

and we can write the total electromagnetic energy in the box as

E = ∑
k∈[ 2πL Z]

3

2
∑
α=1
(

1
2M

P2kα +
Mω2

k
2

Q2
kα ). (4.48)

From Example 2.3.4 we recall that the total energy of the classical harmonic os-
cillator of mass m and angular frequency ω is given in canonical coordinates (q, p)
by 1

2mp
2 + mω2

2 q2. This leads us to the following interpretation of (4.48). For each k ∈
[ 2πL Z]

3 and each α = 1, 2 we have a real-valued function Qkα of t satisfying the har-
monic oscillator equation. If we interpret this as a classical harmonic oscillator with
massM = L3ϵ0/2 and angular frequencyωk and interpretPkα as themomentumconju-
gate toQkα, then the energyof the oscillator is

1
2MP

2
kα+

Mω2
k

2 Q2
kα. The sumof the energies

of this countable family of harmonic oscillators is precisely the total electromagnetic
energy contained in the box. Since akα completely determine the electromagnetic po-
tential A and therefore also the electric and magnetic fields E and B, one can, at least
for our purposes at the moment, identify the electromagnetic field with a countable
family of harmonic oscillators; this is what Fourier analysis does for you. These har-
monic oscillators are generally called radiation oscillators and it is important to ob-
serve that they are independent in the sense that the potential energy Mω2

k
2 Q2

kα of each
contains no “interaction term” coupling it to any of the others. Soon we will see that
these oscillators can profitably be viewed as analogous to the molecules of an ideal
gas in thermal equilibrium.

Aside from the physical input provided by Maxwell’s equations the development
to this point has been entirely mathematical. We have resolved the relevant fields into
superpositions of plane waves ei(k⋅x−ωkt), calculated the total electromagnetic energy
in R and expressed it as the sum of the energies of a countable family of radiation
oscillators. What remains is to determine how the total energy is distributed among
the various frequencies of radiation present in R, and for this the physics becomes
rather more serious and dominates the discussion.
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We will begin with a few remarks on the sort of radiation one would typically ex-
pect to find in a black box. When you turn on your oven and set it at the desired tem-
perature it will heat up and eventually reach thermal equilibrium and maintain that
temperature. What it will generally not do, however, is visibly glow. At the relatively
moderate temperatures the oven can produce, the electromagnetic radiation within
the box is in the infrared and not in the visible range of the spectrum (see Figure 4.1).
Infrared radiation has wavelengths on the order of 10−6 to 10−4m. For an oven of typ-
ical size, L is a great deal larger than this so the number of waves one can “fit in the
box” is correspondingly very large. This suggests adopting a procedure analogous to
the usual one in the study of fluids by regarding the number of oscillators as “virtu-
ally continuous” (as a function of the wavelength or frequency) and representing it in
terms of a density function. The next step in our program is to determine this density
function.

Each plane wave ei(k⋅x−ωkt) is uniquely determined by its wavevector k ∈ [ 2πL Z]
3.

Its angular frequency ωk is uniquely determined by k = ‖k‖ (ωk = kc). The frequency,
however, does not uniquely determine the wavevector since distinct elements of
[ 2πL Z]

3 can have the same k. Consequently, there are, in general, many plane waves
with the same frequency (but different directions of propagation). We construct a ge-
ometrical picture of this in the following way. View [ 2πL Z]

3 as a lattice in a copy ofR3

(generally referred to as k space in the physics literature). Any point in the lattice then
corresponds to a plane wave whose angular frequency is just (c times) its distance to
the origin. Consequently, the problem of counting all of the plane waves of a given
frequency amounts to counting the number of lattice points on a sphere of some ra-
dius about the origin. Generically, the answer is zero since any radius k for which the
sphere contains a lattice point must have a square k2 for which L2k2/4π2 is an integer
that is expressible as a sum of three squares. Even in this case one must then know
the number of ways in which L2k2/4π2 can be represented as a sum of three squares
in order to count lattice points. For the purpose of finding our density function we
are more interested in the counting the number S(k) of lattice points in a solid ball of
radius k about the origin. Needless to say, one cannot simply write down an explicit
formula, but there are asymptotic results for large k of the form

S(k) = 4
3
πk3 + O(kθ),

where θ is a positive real number. For example, this is known when θ = 29
22 and it is

conjectured to be true when θ = 1. These are deep number theoretic results and we
will have to content ourselves with a reference to [CI] for those who are interested in
learning more about them. For our purposes we will need only a very crude estimate.
Note that one can establish a one-to-one correspondence between the plane waves
and the cubes in the partition of R3 determined by the lattice points (for example,
each such cube is uniquely determined by the vertex (2π/L)(m1,m2,m3)with smallest
m1, m2 and m3). Consequently, we can count cubes instead of lattice points and the
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number of cubes can bemeasured by the volume they take up. Now, let k be the radius
of some ball centered at the origin. Since the side length of each cube is 2π/L we will
define

N(k) =
4
3πk

3

( 2πL )
3
=

L3

6π2
k3

and regard this as anapproximatemeasureof thenumber of lattice cubes that fit inside
the ball (it is generally not an integer, of course).

Exercise 4.3.3. Show that N(k) = 4
3πk

3 + O(k2). Hint: Note that

N(k − ϵ) < 4
3
πk3 < N(k + ϵ)

for any ϵ > 0 and consider N(k + ϵ) − N(k − ϵ).

Regarding N(k) as the integral of a continuous density function we find that this
density function is given by

V
2π2

k2,

where we now write V for the volume L3 of the box. One often sees this density ex-
pressed as a measure

V
2π2

k2dk

and, still more often, as a measure expressed in terms of ν = ω
2π =

kc
2π , that is,

4πV
c3

ν2dν.

Finally, we note that each of the plane waves, determined by k, actually determines
two radiation oscillators corresponding to the two independent polarization states
(α = 1, 2) so the number of oscillators in a given frequency range is determined by

8πV
c3

ν2dν. (4.49)

If you are keeping track, this is (29) in Chapter 1 of [Bohm], where it is described, in
the fashion of the physicists, as “the total number of oscillators [in the box] between
ν and ν + dν.” A given choice of k ∈ [ 2πL Z]

3 and of α ∈ {1, 2} corresponds to what is
called amode of oscillation so the processwe have just gone through is called counting
modes.

It will not have escaped your attention that, although we have had quite a bit to
say about electromagnetic radiation confined to a box, we have yet to mention the
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characteristic feature of the radiation we are particularly interested in, that is, the fact
that it is in thermal equilibrium at some constant temperature T. This is what wemust
contendwith now aswe try to understand how the total energy of the electromagnetic
radiation contained in the box is distributed among the various radiation oscillators
(that is, among the variousmodes). It would be disingenuous to pretend that the tools
we require for this are as elementary as those we have needed so far. The main player
in the remainder of the story is a result from classical statistical mechanics due to
Ludwig Boltzmann. This is not a mathematical theorem so we can offer no proof, nor
is it a consequence of anything we have said to this point. It is the result of a deep
analysis of the statistical behavior of certain very special types of physical systems.
We will try to explain where this result (called the Boltzmann distribution) came from,
what it is intended to describe, how it can be used to get the wrong answer (4.37) and
how it, together with Planck’s “act of desperation,” can be used to get the right an-
swer (4.41).

To get some idea of where the Boltzmann distribution comes from and what it
means, it is probably best to put aside electromagnetic radiation for a moment and
consider instead the somewhat more familiar system that Boltzmann himself studied.
Let us suppose then that our box R = [0, L]3 contains not radiation, but a gas consist-
ing of N particles (molecules of oxygen, for example); N will generally be huge (on
the order of 1023). The so-called macrostate of this system is specified by such quan-
tities as the number N of molecules, the volume V , pressure P, temperature T and
total energy E of the gas. These are not all independent, of course (you may remem-
ber, for example, the ideal gas law from chemistry). This macrostate is determined by
the states of the individual molecules (their positions andmomenta), but the size ofN
makes these inaccessible to us. Moreover, many different configurations of the parti-
cle states (many differentmicrostates) can give rise to the same macrostate. The basic
operating principle of statistical mechanics is that, even though one cannot know the
microstates, one can sometimes know their statistical distribution (their probabilities)
and this is often enough to compute useful information. We will try to illustrate how
this comes about.

Example 4.3.2. We begin with an oversimplified, but nevertheless instructive exam-
ple. Consider a container of volume V in which there is a gas consisting of N inde-
pendent, noninteracting point particles. We assume that the system is isolated so that
the total energy E is constant and that it has settled down into thermal equilibrium at
temperatureT. Although the amount of energy associated to a givenparticle cannot be
determined, we will investigate how the energy is distributed among the particles on
average. Now let us oversimplify. We will, for the moment, assume that each particle
can assume only one of finitely many, evenly spaced energy levels

ε0 = 0, ε1 = ε0 + Δε, ε2 = ε1 + Δε, . . . , εK = εK−1 + Δε.
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A typical microstate will have n0 particles of energy ε0, n1 particles of energy ε1, . . . ,
and nK particles of energy εK , where

K
∑
i=0

ni = N (4.50)

and
K
∑
i=0

niεi = E. (4.51)

Collisions between the particles will generally change the so-called occupation num-
bers n0, n1, . . . , nK (or they could remain the same, but with different particles occupy-
ing the energy levels ε0, ε2 . . . , εK ). We assume that all possible divisions of the total
energy among the particles occur with the same probability and we seek the config-
uration of particle energies that is most likely to occur, that is, the configuration that
can be achieved in the largest number of ways. Here is an example that you can work
out by hand.

Exercise 4.3.4. Suppose N = 3 and K = 4 so that there are three particles P1, P2 and
P3 and five possible energy states

ε0 = 0, ε1 = ε0 + Δε, ε2 = ε1 + Δε, ε3 = ε2 + Δε, ε4 = ε3 + Δε

for the particles. Assume, however, that the total energy E of the system is 3Δε. Find
all possible configurations of the particle energies and the number of ways in which
each can occur. What configuration is most likely and what is the probability that it
will occur? Hint: The columns below represent three possible configurations of the
particle energies. Find the other possible energy configurations.

ε4 : 0 0 0
ε3 : 0 0 P2
ε2 : P1 P2 0
ε1 : P2 P3 0
ε0 : P3 P1 {P1,P3}

Answer: The most likely configuration has one particle of energy ε0, one particle of
energy ε1 and one particle of energy ε2; its probability is 0.6.

The number of ways to take N particles and choose n0 of them to assign to the
energy level ε0 (without regard to the order in which they are chosen) is given by the
binomial coefficient ( Nn0 ) =

N!
n0!(N−n0)!

. Then the number of ways to take the remaining
N − n0 particles and choose n1 of them to assign to the energy level ε1 is ( N−n0n1 ) =
(N−n0)!

n1!(N−(n0+n1))!
. Thus, the number of ways to do both of these is

(
N
n0
)(

N − n0
n1
) =

N!
n0!n1!(N − (n0 + n1))!

.
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Continuing inductively one finds that the number of configurations of the particle en-
ergies that give rise to amicrostate with n0 particles of energy ε0, n1 particles of energy
ε1, . . . , and nK particles of energy εK is

N!
n0!n1! ⋅ ⋅ ⋅ nK !

(4.52)

and this is called the weight of the configuration and denotedW = W(n0, n1, . . . , nK).
The most probable configuration is the one with maximal weight, so we want to de-
termine the values of n0, n1, . . . , nK for which (4.52) is as large as possible, subject to
the constraints (4.50) and (4.51). Needless to say, with integers on the order of 1023 the
explicit expression (4.52) forW is hopeless so we will need to approximate. The usual
procedure is to take logarithms and apply Sterling’s formula

ln(n!) = n ln n − n + O(ln n) as n→∞.

Crudely put, ln(n!) ≈ n ln n − n. From this we obtain

lnW = ln(N!) −
K
∑
i=0

ln(ni!)

≈ N lnN − N −
K
∑
i=0
(ni ln ni − ni) = N lnN −

K
∑
i=0

ni ln ni.

The bottom line then is that themost probable configuration of particle energies is the
one for which the occupation numbers n0, n1, . . . , nK maximize

lnW ≈ N lnN −
K
∑
i=0

ni ln ni

subject to the constraints

K
∑
i=0

ni = N

and

K
∑
i=0

niεi = E.

This has all the earmarks of a problem in Lagrange multipliers except, of course, for
the fact that the variables take only integer values. One possibility is simply to proceed
formally, regarding n0, n1, . . . , nK as real variables, and applying the usual Lagrange
multiplier procedure; this is fairly straightforward and is done in considerable detail
on pages 582–583 of [AdeP] (although certainly not written for mathematicians, Chap-
ter 16 of this book contains a lot of interesting and easy reading on the topics that we
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are breezing through rather quickly). In this way one obtains the following (approxi-
mate) formulas for the occupation numbers of the most probable configuration:

ni = N
e−βεi

∑Kj=0 e−βεj
, i = 1, 2, . . . ,K,

where β is a constant. For systems in thermal equilibrium at temperature T (measured
in Kelvin), thermodynamic considerations (Section 16.3(b) of [AdeP]) identify β as

β = 1
κBT
,

where κB is the Boltzmann constant. The probability that a particle has energy εi is
therefore

pi =
ni
N
=

e−εi/κBT

∑Kj=0 e−εj/κBT
=
e−εi/κBT

Z
, i = 1, 2, . . . ,K, (4.53)

where Z is the so-called partition function

Z =
K
∑
j=0

e−εj/κBT .

The utility of these computations resides in the fact that for the extremely large values
of N that typically occur, this most probable configuration is much more than most
probable; statistically, it is essentially inevitable so that one can study an equilibrium
gas by studying this configuration.

The objection that classical physics would make to our last example is that the
particle energies are not restricted to finitely many evenly spaced values ε0, ε1, . . . , εK ,
but rather can take on continuously many values so ε should be regarded as a real
variable in [0,∞). In this view the probabilities pi, i = 1, . . . ,K, would be replaced by a
probability distribution p = p(ε) given by the continuous analogue of (4.53), that is,

p = p(ε) = e−ε/κBT

∫
∞
0 e−ε/κBTdε

=
1

κBT
e−ε/κBT . (4.54)

This is the so-called Boltzmann distribution. From it one can compute themean energy
E of the particles by weighting each energy ε with its probability p(ε) and integrating
over [0,∞). The resulting integral is completely elementary and one obtains

E = 1
κBT

∞

∫
0

εe−ε/κBTdε = (κBT)
2

κBT
= κBT .
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Now it is time to get back to the task at hand. We have been discussing gases in
thermal equilibrium, but only because they are rather familiar and intuitively accessi-
ble. The argumentswe have sketched are quite general and apply to any isolated phys-
ical system in thermal equilibriumwhich canbe thought of as consisting of a very large
number of independent subsystems. The system we have in mind is the electromag-
netic radiation in a black box in thermal equilibrium at temperature T. We have seen
that this can be regarded as a family of independent harmonic oscillators with total
energy given by (4.48). If we assume that these radiation oscillators behave in the way
we would expect from our experience with masses on springs and pendulums, that
is, that their energies can take on continuously many values, then the mean energy
of the radiation is determined entirely by the temperature according to E = κBT. Now
recall the density function (4.49) for the number of radiation oscillators in the box in a
given frequency range. Dividing out the volume V we obtain the density of oscillators
per unit volume

8π
c3

ν2.

Approximating the energy of each oscillator by the mean energy E = κBT we arrive at
the density function

8πκBT
c3

ν2

for the energy per unit volume contained in a given frequency range. In terms of the
wavelength this becomes

8πκBT
λ4
, (4.55)

which is precisely the Rayleigh–Jeans law (4.38).
Well, this is lovely. We now know exactly how to get the wrong answer (see Fig-

ure 4.5). This is basically the conundrum that facedMax Planck in the last years of the
nineteenth century. The argument leading to the Rayleigh–Jeans law seemed water-
tight and yet the formula to which it led was quite wrong. What to do?

Remark 4.3.4. We should preface the remainder of our discussion by saying that the
path we will follow is not precisely the same as the path followed by Planck, who fo-
cused his attention not on radiation oscillators, but rather on material oscillators in
the walls of the box and how they interact with the radiation. Those whowould prefer
to see Planck’s arguments are referred to his paper [Planck] of 1900 (there is an English
translation available at http://web.ihep.su/dbserv/compas/src/planck00b/eng.pdf).
Alsohighly recommendedareChapters 18 and 19 of thewonderful book [Pais] byAbra-
ham Pais.
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The argument we have given leads directly to the Rayleigh–Jeans formula, which
works quite nicely for largewavelengths/low frequencies, but failsmiserably for small
wavelengths/high frequencies, where it seriously overestimates the energy contribu-
tion of the modes. One needs to modify the argument in such a way so as to reduce
this contribution at high frequencies. Planck’s idea (or rather, his “act of despera-
tion”) was to assume that the oscillator energies did not vary continuously as classical
physics would demand, but were restricted to be integral multiples of some basic unit
of energy that is proportional to their frequencies. The constant of proportionality is
denoted h and its value would need to be determined by comparison with the exper-
imental results (Figure 4.4). Thus, we formulate Planck’s hypothesis in the following
way.

The energy of a radiation oscillator of frequency ν can assume only one of the following values:

εn = nhν, n = 0, 1, 2, . . .

Planck’s hypothesis places us in a situation not unlike that of Example 4.3.2.Wehave a
discrete, albeit infinite, set of equally spaced (Δε = hν) allowed energy levels. A count-
able version of the Boltzmann distribution gives the probability that an oscillator is in
the energy level εn as

pn =
e−εn/κBT

∑∞j=0 e−εj/κBT
=

e−nhν/κBT

∑∞j=0 e−jhν/κBT
= e−nhν/κBT (1 − e−hν/κBT),

where the last equality follows from the fact that the sum in the denominator is ge-
ometric. As before, the mean energy E is obtained by weighting each energy level εn
with its probability pn and summing over all of the allowed energy levels. We have

E =
∞
∑
n=0

εnpn = hν(1 − e
−hν/κBT)

∞
∑
n=0

ne−nhν/κBT .

We sum this series as follows. The function
∞
∑
n=0

e−nx =
∞
∑
n=0
(e−x)n = 1

1 − e−x

is real analytic for x > 0, so

d
dx

∞
∑
n=0

e−nx = −
∞
∑
n=0

ne−nx = − e−x

(1 − e−x)2

for x > 0. In particular,

∞
∑
n=0

ne−nhν/κBT = e−hν/κBT

(1 − e−hν/κBT )2
.
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From this we obtain

E = hνe−hν/κBT

1 − e−hν/κBT
=

hν
ehν/κBT − 1

.

Approximating, as we did before, the energy of each radiation oscillator by the mean
energy E we obtain the density function

ρT (ν) = (
8π
c3

ν2 )( hν
ehν/κBT − 1

) =
8πhν3

c3
1

ehν/κBT − 1
(4.56)

for the energy per unit volume at frequency ν, and this is precisely Planck’s law (4.41).
Note that the mean energy is no longer constant, but decreases with increasing fre-
quency, thus reducing the contribution at high frequencies as we hoped to do. Com-
paring this ρT (ν)with the experimental results one finds that, by taking the value of h
to be 6.62606957× 10−34m2(kg)/s, the fit is, within the limits of experimental error, ex-
tremely precise for all T. So, now we understand where Planck’s constant came from.

When Planck presented his formula in 1900 no one doubted that it was correct.
His derivation of the formula, however, was regarded by the community of physicists
(and by Planck himself) as nothing more than a mathematical artifice for arriving at
the correct relation and, so everyone thought, would inevitably be superseded by an
argument consistent with the cherished principles of classical physics.

“The general attitude toward Planck’s theory was to state that ‘everything behaves as if’ the en-
ergy exchanges between radiation and the black body occur by quanta, and to try to reconcile
this ad hoc hypothesis with the wave theory [of light].”

Albert Messiah [Mess1]

With one exception, no one took Planck’s hypothesis to be the harbinger of a new
perspective on physics. The exception, of course, was Einstein.

In 1905, Albert Einstein published four extraordinary papers in the Annalen der
Physik. All of these papers were revolutionary, but one of them [Ein1], entitled On a
Heuristic Point of View about the Creation and Conversion of Light, bordered on the
heretical (there is anEnglish translation available in [ter H]). At a timewhenMaxwell’s
theory of electromagnetic radiation (and therefore of light) was virtually sacrosanct
one reads the following proposal that is in flat contradiction to Maxwell’s equations
and the myriad phenomena (diffraction, reflection, dispersion, …) that they so beau-
tifully describe.

“According to the assumption considered here, when a light ray starting from a point is propa-
gated, the energy is not continuously distributed over an ever increasing volume, but it consists
of a finite number of energy quanta, localized in space, which move without being divided and
which can be absorbed or emitted only as a whole.”

Albert Einstein [Ein1]
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Einstein postulated that a beam of monochromatic light could be treated as a stream
of particles (todaywe call them photons) movingwith speed c in vacuo andwith an en-
ergy that depended only on the frequency andwas given by the Planck relationE = hν.
In hindsight, it is perhaps a little surprising that Einstein who, in that same year, also
introduced the special theory of relativity, did not at that time also associate amomen-
tum to the photon since relativity specifies an essentially unique way to define this.
Nevertheless, Einstein did eventually do this (in 1916). Specifically, themomentum of
a photon is a vector p in the direction of its motion with magnitude

p = ‖p‖ = hν/c.

The reaction to Einstein’s proposal was immediate, universal and decidedly neg-
ative and the reason for this is not at all difficult to discern. Then, as now, the concepts
of “particle” and “wave” seemed irreconcilably distinct. One “thing” cannot be both
and, considering the success of Maxwell’s theory, light is a wave; end of story. But, of
course, that is not the end of the story. If there is a single, underlying, philosophical
lesson that quantum theory requires us to learn it is that the conceptual apparatus
that has evolved in our species over eons of experience with the macroscopic world
around us is simply not up to the task of describing what goes on at the atomic and
subatomic levels. Among the concepts that we come to the game equipped with are
“particle” and “wave” and, as we shall see, they just will not do.

None of this was clear yet in 1905. It was clear, however, that certain electro-
magnetic phenomena seemed to resist inclusion into Maxwell’s theory. Einstein ap-
plied his “heuristic point of view” to a number of these andwewill briefly describe the
one that is best known. This is the so-calledphotoelectric effect. This phenomenonwas
first observed by Hertz in 1887 and was subsequently studied by Hallwachs, Thomson
and Lenard (brief descriptions of these experiments can be found on pages 379–380
of [Pais]). The experiments themselves are delicate, but the conclusions to which they
led are easy to describe. A metal surface is illuminated by visible light or ultraviolet
radiation. The radiation communicates energy to electrons in the atoms of the metal
and, if the amount of energy is sufficient, the electrons are ejected and can be detected
outside the metal. This, in itself, is easy to understand on the basis of the wave the-
ory of electromagnetic radiation, but there is more. It was found that the speed of the
ejected electrons (that is, their kinetic energy) did not depend at all on the intensity
of the radiation, but only on its frequency. Moving the light source far from the metal
(that is, decreasing the intensity of the radiation) decreased only the number of elec-
trons detected per second, but not their energies. This would suggest that an electron
must absorb a certain critical amount of energy in order to be freed from themetal sur-
face. Viewing the radiation as a wave, which conveys energy continuously, one would
be forced to conclude that for a very low intensity beam, the electrons would not be
observed immediately since it would take some time to store the necessary energy.
However, this simply did not occur. An extremely low intensity beam of the proper
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frequency produced the so-called photoelectrons instantaneously. Despite many inge-
nious attempts, no one has ever succeeded in reconciling this behavior with a wave
theory of light. From Einstein’s heuristic point of view, however, the explanation is
simple. When a photon of energy hν collides with an electron in themetal it is entirely
absorbed and the electron acquires the energy hν regardless of how far the photon
traveled. If the frequency ν is sufficiently high (how high depends on the metal) the
collision will eject the electron.

Einstein, of course, didmuchmore thanoffer this sort of qualitative explanationof
the photoelectric effect. His assumptionsmade very strong, testable predictions about
the behavior of the photoelectrons. Robert A. Millikan, one of the greatest experimen-
tal physicists of the twentieth century, devoted a decade of his life to testing these pre-
dictions and, in the end and despite his firm conviction that Einstein must be wrong,
validated them all.

What emerges from all of this is rather disconcerting. Light would appear to resist
classification as either “wave” or “particle.” Rather, it seems to have a dual character,
behaving in some circumstances as though it fit very nicely into our classical concep-
tion of a wave and yet, in other circumstances, looking for all the world like a particle.

4.4 Two-slit experiments

In the previous section we saw how, in 1900, Max Planck, confronted with the exper-
imental data on the spectrum of electromagnetic energy in thermal equilibrium, was
forced into what he regarded as the ad hoc assumption that harmonic oscillators can
emit and absorb energy only in discrete amounts nhν determined by their frequency
of oscillation.We saw also how Einstein, in 1905, elevated this hypothesis to a general
principle to account for the dual nature of electromagnetic radiation, which behaves
sometimes like a wave and sometimes like a particle. Then, in his 1924 PhD thesis,
Louis de Broglie suggested that this duality may be a characteristic feature of nature
at the quantum level so that even a presumed “particle” like an electronwould, under
certain circumstances, exhibit “wave-like” behavior. He postulated that the energy E
of such a particle would be related to the frequency ν of an “associated” wave (now
called its de Broglie wave) by the Planck–Einstein relation E = hν and that the wave-
length λ of the wave was related to the magnitude p of the linear momentum of the
particle by p = h/λ. Shortly thereafter this wave-like behavior of electrons was con-
firmed in experiments performed by Davisson and Germer, who found that a beam of
electrons fired at a crystalline target experienced the same sort of diffraction as would
a beam of X-rays scattered from a crystal. It may not, indeed, should not be clear at
the moment what sort of “thing” this de Broglie wave is, that is, what exactly is “wav-
ing.” We hope that this will appear somewhat less obscure soon and then quite clear
in Section 6.2, but for the present we would like to examine another very beautiful
experiment that not only exhibits this wave-like behavior, but
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“... has in it the heart of quantummechanics. In reality, it contains the only mystery.”

Richard Feynman (Volume III, page 1-1, of [FLS])

Let us begin with something familiar. Imagine plane water waves approaching a bar-
rier in which there is a small gap. Emerging on the other side of the gap one sees not
plane, but rather circular waves (this is the phenomenon known as diffraction). Now
imagine that the barrier has two small gaps. Circular waves of the same amplitude
emerge from each and, when they meet, they do what waves do, that is, they interfere
with each other, constructively when they meet in phase and destructively when they
meet out of phase. In particular, one sees radial lines where the two circular waves
meet with the same amplitude, but with a phase difference of π and therefore cancel
(a cork placed anywhere else would bob up and down, but not here).

Remark 4.4.1. There are somenice pictures available at https://wiki.anton-paar.com/
en/double-slit-experiment/.

Now let us station a team of graduate students along a straight line parallel to
the barrier and instruct them to measure the intensity of the wave that arrives at their
location. The intensity of a wave can be defined as the energy per unit volume times
the speed of the wave. Now, in general, a water wave is a very complicated thing, in
which the combination of both longitudinal and transverse waves can produce quite
complicated motions of the water molecules (circles, for example). Things are a bit
simpler if the waves occur in a shallow body of water where, as a first approximation,
one can assume that the molecules exhibit the same simple harmonic vertical motion
as a cork placed nearby. In this case the energy is proportional to the square of the
maximum displacement, that is, to the square of the height of the wave. The intensity
is therefore also proportional to the square of thewave’s amplitude and, for simplicity,
we will make this assumption.

What sort of data would we expect our graduate students to collect? For a single
gap one would probably expect to get essentially a bell curve with a maximum di-
rectly opposite the gap. Now, this is not entirely accurate. Even in the case of a sin-
gle slit (gap) there may be some interference effects present. These depend on the
width of the slit. One can understand this in the following way. As the wave enters
the slit we can regard each point within the slit as the source of a circular wave leav-
ing from there (this is essentially a consequence of what is called Huygens’ principle).
Such waves leaving from different points within the slit travel different distances to
arrive at the same point and somaymeet in phase or out of phase and this is just what
interference means. One can compute the first points at which the waves cancel to
give zero intensity and push these off to infinity by taking the width of the slit equal to
the wavelength of the impinging plane waves and then one really does see something
like a bell curve. To keep our discussion as simple as possible we will assume this has
been done. Figure 4.6 shows such a (light) bell-shaped intensity curve for each of the
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Figure 4.6: Sum of one-slit intensities.

Figure 4.7: Two-slit intensity.

two gaps individually, assuming that the other is covered up, as well as their (dark)
pointwise sum.

With both gaps uncovered the circularwaves leaving them interfere and as a result
the intensities certainly do not add. That is to say, the dark curve in Figure 4.6 does
not represent the data our students would record in this case.What wewould actually
get is a curve of the sort shown in Figure 4.7 with a maximum opposite the midpoint
between the two gaps and local maxima decreasing as we recede from this point and
alternating with points of zero intensity corresponding to the radial lines where the
circular waves cancel. Since the intensities for the two gaps individually do not simply
add to give the intensity corresponding to the situation in which both gaps are open,
one wonders if there is some other mathematical device that takes the interference
into account and “predicts” Figure 4.7. Indeed, there is, but we will save this until we
have looked at a few variants of this experiment with water waves.

Now let us replace the water waves rushing toward a barrier with a light source
aimed at a wall with two small slits. The best choice for the light source is a laser since
it can produce light that ismonochromatic (of essentially one frequency) and coherent
(constant phase difference over long intervals of space and time). We can also replace
our conscripted students measuring intensities with a screen that registers the arrival
of the light (a high resolution camera, for example). We will gauge the intensity of the
light at the screen by its brightness.

Remark 4.4.2. We have already mentioned that the intensity of a wave is a well-
defined, physically measurable quantity. Brightness, however, is not since it is really
a function of how the light is perceived (by you, or by me or by an owl). Nevertheless,
for the sort of qualitative considerations you will find in this section we only need to
“gauge” the intensity, notmeasure it, and brightness is a reasonable and very intuitive
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way of doing this. In particular, we do not need to graph a brightness function; we
only need to look at the screen.

What you actually see on the screen is precisely the same as for water waves:
a region of maximal intensity/brightness in the center with regions of decreasing
brightness as one recedes from the center separated by dark regions where the in-
tensity/brightness is zero. This should not come as a surprise if you are thinking of
the light as electromagnetic waves; waves are waves, after all, whether water or light.
However, in Section 4.3 we saw that the light source can equally well be regarded as
emitting a stream of particles (photons) and this would seem to present us with a
problem. To our classically conditioned minds, a particle approaching the wall will
either hit the wall or go through one of the two slits so that one would expect to see
quite a different image on the screen. How does one reconcile this classical picture
with what actually happens without giving up photons altogether (an unacceptable
option in view of the success of Einstein’s analysis of the photoelectric effect)? One
can speculate and philosophize or one can take the view that the only honest way
through this impasse (if there is one) is more careful observation, that is, more refined
experiments. Fortunately, experimental physicists are very clever and they have given
us a few remarkable experiments to think about.

We would now like to describe the results of two experiments, both of which were
envisioned by Feynman, but neither of which was performed exactly as Feynman saw
it until much later. We describe them at the same time because, although the specifics
of the experimental apparatus in the two experiments are quite different, the results
are precisely the same. In one of the experiments the “particles” are photons while
in the other they are electrons. In particular, electrons will be seen to behave in ex-
actly the same way as photons, thus confirming de Broglie’s hypothesis concerning
the wave/particle duality of even massive particles at the quantum level. We will not
be concerned with the details of the experimental apparatus or procedure, but only
with the results. For those who would like to learn more about the hardware and the
techniques involved, the photon experiment is described at http://www.sps.ch/en/ar-
ticles/progresses/wave particle duality of light for the classroom 13/ and, for the elec-
tron experiment, one can consult [BPLB].

In each of the experiments the source (of photons or electrons) is attenuated
(weakened) to such an extent that the particles leave the source, and therefore arrive
at the wall, essentially one at a time. Such a particle might well run into the wall
and disappear, of course, but if it does not then what is observed in the experiment
is the appearance of a dot on the screen (just the sort of thing one would expect of
a classical particle). However, the dot is not necessarily where we would expect it to
be classically (near a point directly opposite some point in a slit). Indeed, allowing
another, and then another, and then another particle to emerge from the source one
obtains dots on the screen that, at first, appear to be almost randomly distributed on
the screen. But if we continue, allowingmore andmore particles to emerge over longer
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Figure 4.8: Single-particle two-slit experiment. https://commons.wikimedia.org/wiki/File:Double-
slit_experiment_results_Tanamura_2.jpg (last access date: 21.05.2021).

and longer periods of time, a remarkable pattern begins to appear on the screen (see
Figure 4.8).

What we witness is the gradual build-up, point by point, of the same pattern of
light and dark strips that we would have obtained had we not bothered to send the
particles one at a time. Certainly, some sort of interference is taking place, but how
does one account for it? This is quite mysterious, and it gets worse. Suppose we place
some sort of detector near each slit that will flash, or beep, or something when a par-
ticle passes through that slit. Then we can keep track of where the corresponding dot
appears on the screen and maybe figure out how this strange interference pattern is
coming about; wewill just watch the particles. This sounds like a great idea, but if you
actually do it youmay walk away from your experiment with the feeling that nature is
thumbing her nose at you because the interference pattern disappears altogether and
the image on the screen is exactly what classical mechanics would predict (this is de-
scribed by Feynman in Section 1-6, Volume III, of [FLS], which is so much fun that it
should be on everyone’s “must read” list).

So, how do you explain all of this rather bizarre behavior? If by “explain” you
mean string together some elegant and imaginative combination of classical concepts
like “particle” and “wave,” then the answer is quite simple: You do not! Everyone has
given up trying.

“It is all quite mysterious. And the more you look at it the more mysterious it seems.”

Richard Feynman (Volume III, page 1-6, of [FLS])



126 | 4 Physical background

An electron is not a particle and it is not a wave. To say that it behaves sometimes like
a particle (for example, when you detect it) and sometimes like a wave (when you do
not) is a little better, but rather difficult to take seriously as an “explanation.”

“It’s the way nature works. If you wanna know the way nature works, we looked at it carefully,
that is the way it looks. If you don’t like it, go somewhere else.”

Richard Feynman, Lectures on Quantum Electrodynamics, University of Auckland (available at
http://vega.org.uk/video/subseries/8)

Like it or not, the rules that govern the quantumworld are entirely different than those
that govern the world in which our conceptual apparatus and our languages evolved.
We have no built-in concepts (“wavicle”?) that will come to our aid since we are en-
countering these behaviors for the first time in our long, and not altogether illustrious,
evolutionary history. In lieu of a conceptual model that “explains” these behaviors in
terms of some more fundamental physical principles we will have to be content with
a mathematical model that accounts for the behaviors we have seen and predicts an
enormous number that we have not yet seen. This mathematical model is really the
subject of the rest of this manuscript, but we will take the first baby steps toward its
construction now.

Since it carries along with it so much classical baggage we would like to avoid
using the term “particle” as much as possible. The following discussion is based on
our rather limited experience with photons and electrons and everything we say is
equally true of either, but for the sake of having a single word to use we will focus
on electrons. A word of caution is in order, however. A proper discussion of electrons
must take into account another very important quantum mechanical property they
possess and that we have not seen and will not see until Section 10.1. This is called
“spin” and one cannot fully understand the behavior of electrons without it. Even so,
a detour at this point to introduce the notion of spin would only serve to muddy the
already rathermurkywaters so until further notice wewill ignore the effects of spin, and
in Section 10.1 we will make any adjustments required to include these effects.

What havewe learned from the two-slit experiment with electrons? Sending a sin-
gle electron from the source and assuming it makes it past the wall we obtain a dot at
the point where it is detected on the screen. Ideally, we would like to be able to predict
where this dot will appear. As we have seen, however, this does not seem to be in the
cards. Sending a few more electrons from the source we obtain dots that seem almost
randomlydistributed on the screen. But ifwe let the experiment run full coursewefind
that the distribution of dots is not entirely random (Figure 4.8). The electrons seem
most likely to land in the vertical strip in the center, not at all likely to land in the dark
vertical strips and progressively less likely to land in the bright strips receding from
the center. This suggests that we might want to lower our expectations somewhat and
try to predict only the probability that an electron will be detected at some given point
on the screen. The usual procedure in classical probability theorywould go something
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like this. Fix some point X on the screen. An electron leaving the source can arrive at
X either by passing through the first slit S1 or by passing through the second slit S2. If
P1 is the probability that it arrives at X via S1 and P2 is the probability that it arrives at
X via S2, then the probability P12 that it arrives at X at all is P12 = P1 + P2. But we know
already that this cannot be the case (identify the intensity graphs in Figure 4.6 and
Figure 4.7 with probability distributions). The problem, of course, is that these classi-
cal probabilities take no account of the very interference effects that we are trying to
describe. How can we do this? For a hint let us return for a moment to water waves
where the interference is simple and clear. This interference comes about because of
the phase difference of the twowavesmeeting at a point. If the phase difference is zero
(that is, if they are in phase), then the resulting intensity is a maximum. If the phase
difference is π, then the resulting intensity is a minimum. For any other phase differ-
ence there will be some, but not complete canceling and the resultant intensity will be
something between the minimum and the maximum intensities. Now, complex num-
bers z = |z| eiφ have an amplitude/modulus |z| and a phase φ and have the property
that

| z1 + z2 |
2 = |z1|

2 + |z2|
2 + 2|z1| |z2| cos (φ1 − φ2).

Consequently, | z1 + z2 |2 achieves a maximum when φ1 − φ2 = 0, a minimum when
φ1−φ2 = π and is otherwise something between theminimumand themaximum. The
idea then is to represent the probabilities P1 and P2 as the squared moduli of complex
numbers ψ1 = |ψ1| eiφ1 and ψ2 = |ψ2| eiφ2 , that is,

P1 = |ψ1|
2 and P2 = |ψ2|

2.

Hereψi, i = 1, 2, is called theprobability amplitude for the electron to reachP via Si. One
then assumes that, unlike the probabilities themselves, the probability amplitudes
add so that the probability amplitude that the electron arrives at P at all isψ1 +ψ2 and
so the probability is

|ψ1 + ψ2|
2 = |ψ1|

2 + |ψ2|
2 + 2 |ψ1| |ψ2| cos (φ1 − φ2).

How one assigns probability amplitudes to events is, of course, what quantum me-
chanics is all about, so thiswill have towait for awhile, butwe are at least in a position
to record what Feynman calls the first principles of quantummechanics.

First principles of quantummechanics

Richard Feynman (Volume III, page 1–10, of [FLS])

1. Because of the wave-like attributes of particles in quantummechanics (de Broglie
waves) and the resultant interference effects, the probability P that a particular
event (such as the arrival of an electron at some location on a screen) will occur
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is represented as the squared modulus P = |ψ|2 of a complex number ψ called the
probability amplitude of the event.

2. When there are several classical alternatives for the way in which the event can
occur and nomeasurements aremade on the system, the probability amplitude of
the event is the sum of the probability amplitudes for each alternative considered
separately. In particular, if there are two possibilities with amplitudes ψ1 and ψ2
and probabilities P1 = |ψ1|

2 and P2 = |ψ2|
2, then the probability amplitude of the

event is ψ1 + ψ2 and the probability of the event is

P12 = |ψ1 + ψ2|
2 = |ψ1|

2 + |ψ2|
2 + 2 Re(ψ1ψ2).

The last term represents the effect of interference.
3. Whenameasurement ismade todeterminewhether oneor another of the classical

alternatives in 2. is actually taken, the interference is lost and the probability P of
the event is the sum of the probabilities for each alternative taken separately. In
particular, when there are just two alternatives, P12 = P1 + P2.

We begin to see then that what is “waving” in the case of an electron is a probability
amplitude. Thiswill bemadeprecise inChapter 6with Schrödinger’s notionof a “wave
function.” We will see in Section 8.1 how Feynman envisioned a generalization of the
two-slit experiment in which there are many walls, each with many slits, and applied
these first principles to arrive at his notion of a path integral.



5 Synopsis of self-adjoint operators, spectral theory
and Stone’s theorem

5.1 Introduction

Now that we have some modest appreciation of the sort of physical phenomena with
which quantum mechanics deals and why these necessitate a shift away from the
paradigm of classical particle mechanics, it is time to confront the rather substantial
mathematical background required for this paradigm shift. In this admittedly rather
lengthy sectionwewill begin the process by providing a synopsis of the three pillars of
this mathematical structure: unbounded self-adjoint operators, the spectral theorem
and Stone’s theorem. Despite its length, however, it is only a synopsis. The definitions
are given precisely and the theorems are stated precisely, but in lieu of proofs we gen-
erally offer only a few detailed examples relevant to quantum mechanics and plenti-
ful references. Those who are comfortable with these topics might do well to proceed
directly to Chapter 6 and refer back as the need arises.

Throughout Chapter 5 all Hilbert spaces are complex and separable.

Everyone is familiar with the spectral theorem for self-adjoint operators on a finite-
dimensional, complex inner product space ℋ (a particularly nice treatment, with
an eye on the infinite-dimensional generalizations, is available in Chapter Eleven
of [Simm1]). In a nutshell, the theorem says simply that any such operator A is a finite
linear combination

A =
n
∑
i=1

λiPi

of orthogonal projections P1,P2, . . . ,Pn, where the coefficients λ1, λ2, . . . , λn are just the
(necessarily real) eigenvalues ofA. There is a relatively straightforward generalization
of the finite-dimensional theorem to operators A on a complex, separable, infinite-
dimensional Hilbert space ℋ that are self-adjoint and compact (see Remark 5.5.2 for
the definitions). Here one simply replaces the finite sum with an infinite series

A =
∞

∑
i=1

λiPi, (5.1)

where P1,P2, . . . are still orthogonal projections, λ1, λ2, . . . are still the (necessarily real)
eigenvalues of A and the convergence is understood to be strong convergence in ℋ,
that is,



n
∑
i=1

λiPiψ − Aψ

→ 0 as n→∞ ∀ψ ∈ ℋ.

https://doi.org/10.1515/9783110751949-005
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We will go through this version of the theorem a bit more carefully soon (a direct
proof is available in Section 93 of [RiSz.N]). There is also a generalization to arbi-
trary bounded, self-adjoint operators on ℋ, but this is less straightforward. In this
case there need not be any eigenvalues at all and the sum is replaced by an integral
over the spectrum of the operator, but the integration is with respect to a “measure”
taking values in the set of projection operators onℋ. One can get some rough sense of
how these funny integrals arise by rewriting (5.1). Introduce projections

Eλ0 = 0,

Eλ1 = P1,
Eλ2 = P1 + P2,

...
Eλn = P1 + P2 + ⋅ ⋅ ⋅ + Pn.

...

Then (5.1) becomes

A =
∞

∑
i=1

λi(Eλi − Eλi−1 ) = lim
n→∞

n
∑
i=1

λi ΔEλi

and one obtains something that at least looks like a Riemann–Stieltjes integral (see
Appendix H). One might be tempted to write this as

A = ∫ λ dEλ.

As it happens, one can make rigorous sense of such Stieltjes integrals with respect
to “projection-valued measures” and thereby justify this sort of integral represen-
tation for bounded, self-adjoint operators. The details are available in Section 6.7
of [Fried], Section 107 of [RiSz.N], Chapters 5–6 of [TaylA], Chapter VII of [RS1], Chap-
ter 12 of [Rud1], Section 3, Chapter XI, of [Yosida] and a great many other places as
well.

Regrettably, even this result is not adequate for our purposes since, as we in-
dicated at the close of Section 3.3, identifying observables in statistical mechanics
with operators on L2(Ω, μ) requires us to consider maps that are linear only on cer-
tain subspaces of L2(Ω, μ) and none of the results described above apply to these. Von
Neumann faced the same problem in his study of the mathematical foundations of
quantummechanics where essentially all of the relevant operators are of this type. He
solved the problem by developing yet another generalization of the spectral theorem
that very closely resembled the result for bounded, self-adjoint operators, but applied
also to just the sort of operator we now have in mind. Von Neumann’s “Spectral The-
orem for Unbounded Self-Adjoint Operators” is a bit technical, but it also lies at the
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heart of quantum mechanics and we must try to provide some sense of what it says
and what it means. In the following synopsis we will try to provide enough narrative
to instill a reasonable level of comfort with the ideas, a number of examples relevant
to quantummechanics to illustrate these ideas and enough references to facilitate ac-
cess to the proofswedonot supply. Here are the sources fromwhichwewill draw these
references. Chapter III of [Prug] is very detailed and readable and contains everything
we will need. The work [RiSz.N] is a classic, also very readable, and contains a great
deal more than we will need. Chapter 13 of [Rud1] contains an elegant and very clear
discussion, but one that will require a bit of backtracking that ultimately leads to the
Gelfand–Naimark theorem from the theory of Banach algebras (a detour well worth
taking, by the way). Chapter VIII, Sections 1–3, of [RS1] contains a number of different
formulations of the spectral theorem and many interesting examples and is specifi-
cally geared to the needs of quantum field theory (which is discussed in [RS2]), but
is also a bit more condensed. Also rather condensed is the treatment in Sections 5–6,
Chapter XI, of [Yosida], but the book itself is very authoritative and contains a wealth
of important material.

5.2 Unbounded self-adjoint operators

As always,ℋwill denote a separable, complexHilbert space andwewill write its inner
product as ⟨ , ⟩, assumed to be complex linear in the second slot and conjugate linear
in the first. The corresponding norm is defined by ‖ψ‖ = √⟨ψ,ψ⟩ for every ψ ∈ ℋ.
Recall that a bounded operator on ℋ is a linear map T : ℋ → ℋ for which there is a
constant K such that ‖Tψ‖ ≤ K‖ψ‖∀ψ ∈ ℋ and that these are precisely the linear maps
fromℋ toℋ that are continuous in the norm topology ofℋ.Wewill use the unmodified
term operator to stand for a map

A : 𝒟(A)→ ℋ,

where𝒟(A) is adense, linear subspaceofℋ andA is linear on𝒟(A). Two suchoperators
A andB are considered equal only if𝒟(B) = 𝒟(A) andBψ = Aψ for allψ in this common
domain.

Example 5.2.1. For any bounded operator T : ℋ→ ℋ and any dense, linear subspace
𝒟 ofℋ, the restriction A = T|𝒟 of T to𝒟 is an operator in this sense. These, of course,
have bounded extensions to all ofℋ, but this is generally not the case, as we will now
see.

Example 5.2.2. Letℋ = L2(R)be the space of (equivalence classes of) complex-valued
functions onR that are square integrable with respect to Lebesgue measure. Let 𝒟 =
C∞0 (R)be thedense linear subspaceofL

2(R) consistingof smooth functionswith com-
pact support (if density is not clear to you, this is proved in Theorem 5.6, Chapter II,
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of [Prug]). Define X : C∞0 (R)→ L2(R) by

(Xψ)(x) = xψ(x) ∀x ∈ R.

Then X is clearly linear and therefore an operator on C∞0 (R). To see that it does not
have a bounded extension to L2(R) we will exhibit a sequence ψn, n = 0, 1, . . . , in
C∞0 (R) for which ‖ψn‖ = 1, but ‖Xψn‖ → ∞ as n → ∞. Let ψ0 be any smooth, real-
valued, nonnegative function onR that has support contained in [0, 1] and ‖ψ0‖ = 1.

Exercise 5.2.1. If you have not constructed such a function before, do so now. Hint:
Use Exercise 2-26 of [Sp1].

For any n = 1, 2, . . . , define ψn by ψn(x) = ψ0(x − n). Then ψn is in C∞0 (R) and has
its support in [n, n + 1]. Moreover, in L2(R), ‖ψn‖ = ‖ψ0‖ = 1 ∀n ≥ 1 and

‖Xψn‖
2 = ∫

R

x2ψ2
0(x − n)dx = ∫

[n,n+1]

x2ψ2
0(x − n)dx

≥ n2 ∫
R

ψ2
n(x)dx = n

2‖ψn‖
2 = n2 →∞

as n→∞.

Example 5.2.3. Note that there was no particularly compelling reason to choose
C∞0 (R) as the domain in Example 5.2.2. Indeed, it might have been more natural
to take the domain to be the set of all ψ in L2(R) for which the function x → xψ(x)
is also in L2(R). This is certainly a linear subspace and, since it contains C∞0 (R), it
is also dense. With this domain the operator will play a particularly important role
in our discussion of quantum mechanics so we will introduce a special name for it
and will revert to the custom in physics of using q rather than x for the independent
variable inR. Thus, we define an operator Q on

𝒟(Q) = {ψ ∈ L2(R) : ∫
R

q2ψ(q)

2dq <∞}

by (Qψ)(q) = qψ(q). The argument given in Example 5.2.2 again shows that Q has no
bounded extension to L2(R).

Although the reason may not be clear just yet we will refer to the operator in Ex-
ample 5.2.3 as the position operator onR. We will try to clarify the origin of the name
as we gain some understanding of quantummechanics.

It turns out that many issues that need to be resolved concerning an operator A
are very sensitive to the choice of domain and that the proper choice is very often
dictated by the problem (or the physics) with which one is coping at the moment. We
will write out some simple examples, all of whichwill figure heavily in our subsequent
discussion of quantummechanics.
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Example 5.2.4. Letℋ = L2(R). The operator P that we wish to consider is given by

(Pψ)(q) = −i ℏ dψ
dq
∀q ∈ R

(the reason for the factor−iwill become clear shortly [see Remark 5.2.2] and the reason
for introducing the normalized Planck constant ℏwill emerge in Chapter 7). Of course,
the derivative is not defined for all ψ in L2(R). Before specifying the domain we have
in mind for P we will review a few facts from real analysis.

Remark 5.2.1. A good reference for the material we are about to review is [RiSz.N],
Sections 25 and 26. Let a < b be real numbers and consider a complex-valued func-
tion f : [a, b] → C on [a, b]. Then f is said to be absolutely continuous on [a, b] if
∀ϵ > 0∃ δ > 0 such that for any finite family {[a1, b1], . . . , [an, bn]} of nonoverlapping
intervals in [a, b],∑ni=1(bi−ai) < δ implies∑ni=1 |f (bi)−f (ai)| < ϵ (nonoverlappingmeans
that the open intervals (ai, bi) are pairwise disjoint). Any such function is uniformly
continuous and of bounded variation on [a, b]. The set of all absolutely continuous
functions on [a, b] is denoted AC[a, b] and it is a complex vector space. For our pur-
poses the two most important facts about AC[a, b] are the following:
1. f ∈ AC[a, b]⇔ f is differentiable almost everywhere, f  ∈ L1[a, b] and f (q)− f (a) =
∫qa f
(t)dt for all q ∈ [a, b];

2. for all f , g ∈ AC[a, b],

b

∫
a

f (q)dg
dq

dq = f (b)g(b) − f (a)g(a) −
b

∫
a

df
dq

g(q)dq (integration by parts).

Now, as our domain for P we take

𝒟(P) = {ψ ∈ L2(R) : ψ ∈ AC[a, b]∀a < b inR and dψ
dq
∈ L2(R)}

(motivation for this choice is to be found in Example 5.2.7). Clearly, 𝒟(P) is a linear
subspace of L2(R) and it is dense because it contains C∞0 (R). To see that P does not
have a bounded extension to L2(R)we will exhibit a sequenceψn, n = 1, 2, . . . , in𝒟(P)
for which ‖ψn‖

2 = √π and ‖Pψn‖
2 → ∞ as n → ∞. One possible choice is as follows.

Let

ψn(q) = e
inqe−q

2/2, n = 1, 2, . . . .

Then, from the Gaussian integral (A.1) in Appendix A,

‖ψn‖
2 = ∫

R

ψn(q)ψn(q)dq = ∫
R

e−q
2
dq = √π,

so each ψn is a smooth element of L2(R).
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Exercise 5.2.2. Show that ψn ∈ 𝒟(P) for each n = 1, 2, . . . .

Moreover,

(Pψn)(q) = ℏ nψn(q) + iℏ qψn(q) = ℏ(n + qi)ψn(q).

By Exercise A.0.3.2 in Appendix A,

∫
R

q2e−q
2
dq =
√π
2
,

so

‖Pψn‖
2 = ℏ2√π (n2 + 1

2
)

and therefore Pψn is in L2(R), but ‖Pψn‖
2 →∞ as n→∞.

The operator in Example 5.2.4 is called the momentum operator on R. As for the
position operator Qwewill try to explain the reason for the name as we develop some
understanding of quantummechanics.

An operator A : 𝒟(A) → ℋ, such as X, Q or P in the last three examples, defined
on a dense linear subspace of ℋ that does not have a bounded extension to all of ℋ
is called an unbounded operator. Next we must try to make sense of “self-adjoint” for
such operators.

Recall that for any bounded operator T : ℋ → ℋ, there exists a unique bounded
operator T∗ : ℋ → ℋ, called the adjoint of T, satisfying ⟨Tϕ,ψ⟩ = ⟨ϕ,T∗ψ⟩ for all
ϕ,ψ ∈ ℋ. For unbounded operators the situation is a bit more delicate. We will define
the adjoint for an unbounded operator A : 𝒟(A) → ℋ by first specifying its domain.
Specifically, we let 𝒟(A∗) be the set of all ϕ ∈ ℋ for which there exists an η ∈ ℋ such
that ⟨Aψ,ϕ⟩ = ⟨ψ, η⟩ for every ψ ∈ 𝒟(A). Note that 𝒟(A∗) contains at least 0 and is a
linear subspace. For eachϕ ∈ 𝒟(A∗), η is uniquely determined because𝒟(A) is dense.
Thus, we can define the adjoint A∗ of A by

A∗ϕ = η ∀ϕ ∈ 𝒟(A∗)

so that

⟨Aψ,ϕ⟩ = ⟨ψ,A∗ϕ⟩ ∀ψ ∈ 𝒟(A) ∀ϕ ∈ 𝒟(A∗),

where A∗ is linear on 𝒟(A∗), but 𝒟(A∗) need not be dense in ℋ so A∗ need not be
densely defined. Next we introduce a condition onA that ensures the density of𝒟(A∗)
and therefore ensures that A∗ is an “operator” in our sense of the term.

An operator A : 𝒟(A) → ℋ is said to be closed if, whenever ψ1,ψ2, . . . ∈ 𝒟(A)
converges to a vector ψ in ℋ and Aψ1,Aψ2, . . . converges to some vector ϕ in ℋ, then
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ψ is in 𝒟(A) and ϕ = Aψ. This can be phrased more picturesquely in the following
way. Recall that the algebraic direct sumℋ ⊕ℋ of the vector spaceℋ with itself has a
natural Hilbert space structure with the inner product defined by

⟨ (ϕ1,ψ1), (ϕ2,ψ2) ⟩ = ⟨ϕ1,ϕ2⟩ + ⟨ψ1,ψ2⟩.

The graph Gr(A) of the operator A : 𝒟(A)→ ℋ is the linear subspace ofℋ ⊕ℋ defined
by

Gr(A) = {(ϕ,Aϕ) : ϕ ∈ 𝒟(A)}.

Then A is a closed operator if and only if Gr(A) is a closed linear subspace of ℋ ⊕ ℋ.
The closed graph theorem from functional analysis (see, for example, Theorem 4.64
of [Fried]) implies the following.

Theorem 5.2.1. A closed operator A : ℋ → ℋ defined on the entire Hilbert space ℋ is
bounded.

An operator A : 𝒟(A) → ℋ that is not closed may nevertheless have a closed
extension, that is, theremay be a closed operator Ã : 𝒟(Ã)→ ℋwith𝒟(A) ⊆ 𝒟(Ã) and
Ã |𝒟(A) = A. In this case we say thatA is closable. Any closable operator has aminimal
closed extension A : 𝒟(A) → ℋ, that is, one for which any other closed extension
Ã : 𝒟(Ã) → ℋ of A is also an extension of A; A is called the closure of A and, in fact,
the graph of A is just the closure inℋ ⊕ℋ of the graph of A

Gr(A ) = Gr(A)

(this is the proposition on page 250 of [RS1]). The following is Theorem VIII.1 of [RS1].

Theorem 5.2.2. Let A : 𝒟(A)→ ℋ be an operator on a Hilbert spaceℋ. Then:
1. A∗ is closed;
2. A is closable if and only if𝒟(A∗) is dense inℋ and, in this case, A = A∗∗;
3. if A is closable, then (A )∗ = A∗.

In particular, it is precisely for closable operators A that the adjoint A∗ qualifies as an
“operator” according to our definition. An operator A : 𝒟(A) → ℋ is said to be self-
adjoint if it equals its adjoint in the sense that𝒟(A∗) = 𝒟(A) andA∗ψ = Aψ∀ψ ∈ 𝒟(A).
In the formalismof quantummechanics (Chapter 6) self-adjoint operatorswill play the
role of the observables. We will write out some important examples shortly.

A self-adjoint operator A is a closed operator and it satisfies

⟨Aψ,ϕ⟩ = ⟨ψ,Aϕ⟩ ∀ψ,ϕ ∈ 𝒟(A). (5.2)

Note, however, that (5.2) is not equivalent to self-adjointness. An operatorA that satis-
fies (5.2) is said to be symmetric (or formally self-adjoint). For any symmetric operatorA
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it is clear that𝒟(A) ⊆ 𝒟(A∗). However, it is possible for the containment to be proper,
in which case A is not self-adjoint. We will sketch one example; the details can be
found on pages 257–259 of [RS1].

Example 5.2.5. We letℋ = L2[0, 1] and consider the operator A = −iℏ ddx on the follow-
ing subspace of the spaceAC[0, 1] of complex-valued, absolutely continuous functions
on [0, 1]:

𝒟(A) = {ψ ∈ AC[0, 1] : dψ
dx
∈ L2[0, 1], ψ(0) = ψ(1) = 0}.

Now, forϕ,ψ ∈ 𝒟(A)wecompute, from the integrationbyparts formula (Remark 5.2.1),

⟨Aψ,ϕ⟩ =
1

∫
0

(−iℏdψ
dx
)ϕ(x)dx = iℏ

1

∫
0

ϕ(x)dψ
dx

dx

= iℏ [ϕ(1)ψ(1) − ϕ(0)ψ(0)] − iℏ
1

∫
0

dϕ
dx

ψ(x)dx

=
1

∫
0

ψ(x)(−iℏdϕ
dx
)dx

= ⟨ψ,Aϕ⟩

and conclude that A : 𝒟(A)→ L2[0, 1] is symmetric.

Remark 5.2.2. Note that we needed the factor of i in A for this to work; the minus sign
is conventional.

In [RS1] it is shown that the adjoint A∗ of A is the operator A∗ = −iℏ ddx on 𝒟(A∗) =
{ψ ∈ AC[0, 1] : dψdx ∈ L

2[0, 1]}. Since𝒟(A∗) properly contains𝒟(A), A is not self-adjoint
despite the fact that A and A∗ agree where they are both defined. It is also shown
in [RS1] that A is closed and has (lots of) self-adjoint extensions. By way of contrast,
Problem 5, Chapter VIII, of [RS1] gives a densely defined, symmetric operator with no
self-adjoint extensions.

There are some useful criteria for determining when a symmetric operator is self-
adjoint. The following is Theorem VIII.3 of [RS1]; here, and henceforth, we will use
Kernel (A) to denote the kernel of an operator A, we will use Image (A) to denote its
image (range) and will write simply “k” for the operator that is multiplication by the
constant k ∈ C.

Theorem 5.2.3. Let A : 𝒟(A) → ℋ be a symmetric operator. Then the following are
equivalent:
1. A is self-adjoint;
2. A is closed and Kernel (A∗ ± i) = {0};
3. Image (A ± i) = ℋ.
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Since the proof uses only ideas that we have already described, you may like to try it
yourself with a few hints.

Exercise 5.2.3. Prove Theorem 5.2.3. Hints:
1. For 1. ⇒ 2., assume A is self-adjoint and show that A∗ψ = iψ implies −i⟨ψ,ψ⟩ =

i⟨ψ,ψ⟩. Similarly for A∗ψ = −iψ.
2. For 2. ⇒ 3., show, for example, that if A∗ψ = −iψ has no nonzero solutions, then

Image (A− i)⊥ = 0, so Image (A− i) is dense. Then show that since A is closed and
‖(A − i)ψ‖2 = ‖Aψ‖2 + ‖ψ‖2, Image (A − i) is closed so that Image (A − i) = ℋ.

3. For 3.⇒ 1., let ϕ ∈ 𝒟(A∗). Select η ∈ 𝒟(A) such that (A − i)η = (A∗ − i)ϕ and show
that (A∗ − i)(ϕ − η) = 0, so ϕ = η and therefore𝒟(A∗) = 𝒟(A).

For a symmetric operator A : 𝒟(A) → ℋ, 𝒟(A) ⊆ 𝒟(A∗) and 𝒟(A) is dense so 𝒟(A∗) is
also dense. Consequently, a symmetric operator is always closable since A∗ is always
closed. If the closure A : 𝒟(A)→ ℋ of A is self-adjoint, then A is said to be essentially
self-adjoint. In this case, A is the unique self-adjoint extension of A and, in fact, the
converse is also true, that is,a symmetric operator is essentially self-adjoint if andonly if
it has a unique self-adjoint extension (see page 256 of [RS1]). From the previous theorem
one obtains the following criteria for essential self-adjointness.

Corollary 5.2.4. Let A : 𝒟(A) → ℋ be a symmetric operator. Then the following are
equivalent:
1. A is essentially self-adjoint;
2. Kernel (A∗ ± i) = {0};
3. Image (A ± i) are both dense inℋ.

Exercise 5.2.4. Prove Corollary 5.2.4 from Theorem 5.2.3.

Exercise 5.2.5. Show that a self-adjoint operator is maximally symmetric, that is, has
no proper symmetric extensions.

Example 5.2.6. We consider the operator Q : 𝒟(Q) → L2(R) of Example 5.2.3. Note
that Q is symmetric since ψ,ϕ ∈ 𝒟(Q) implies

⟨Qψ,ϕ⟩ = ∫
R

Qψ(q)ϕ(q)dq = ∫
R

qψ(q)ϕ(q)dq

= ∫
R

ψ(q)(qϕ(q))dq = ⟨ψ,Qϕ⟩.

We will give two proofs that Q is self-adjoint. For the first we will appeal directly to
the definition and for the second we will show that Image (Q ± i) = L2(R) and use
Theorem 5.2.3.3. For the first proof we note that, by symmetry,𝒟(Q) ⊆ 𝒟(Q∗), so it will
suffice to show that 𝒟(Q∗) ⊆ 𝒟(Q). By definition, 𝒟(Q∗) consists of all ϕ ∈ L2(R) for
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which there is an η ∈ L2(R) with

∫
R

( qψ(q) )ϕ(q)dq = ∫
R

ψ(q)η(q)dq ∀ψ ∈ 𝒟(Q),

that is,

∫
R

ψ(q) [qϕ(q) − η(q)] dq = 0 ∀ψ ∈ 𝒟(Q).

Since this last equationmust be satisfied for all ψ in the dense set𝒟(Q), wemust have
η(q) = q ϕ(q) almost everywhere. In particular, q ϕ(q) is in L2(R) and this puts ϕ in
𝒟(Q), so 𝒟(Q∗) ⊆ 𝒟(Q), as required.

Now for the second proof we note that

(Q ± i)ψ(q) = (q ± i)ψ(q)

and that q ± i ̸= 0 since q ∈ R. Now, for any φ ∈ L2(R), 1
q±i φ(q) is in𝒟(Q) since

q2


1
q ± i

φ(q)


2
= q2

q2 + 1
φ(q)

2 ≤ φ(q)


2.

Since (Q ± i)( 1q±i φ(q)) = φ(q), Image (Q ± i) = L2(R), as required.

Exercise 5.2.6. Show similarly that if g : R→ R is a real-valuedmeasurable function,
then the multiplication operator Qg : 𝒟(Qg) → L2(R) defined by (Qgψ)(q) = g(q)ψ(q)
on𝒟(Qg) = {ψ ∈ L2(R) : ∫R g(q)

2|ψ(q)|2dq <∞} is self-adjoint.

Exercise 5.2.7. Show thatQ is essentially self-adjoint on the Schwartz space𝒮(R) (see
Section G.2).

Somewhat later (Theorem 5.3.1) we will also need the following analogous result.

Exercise 5.2.8. LetN = {1, 2, . . .} denote the set of natural numbers and consider the
Hilbert space ℓ2(N) of square summable sequences of complex numbers, that is,

ℓ2(N) = {x = (x1, x2, . . .) : xi ∈ C, i = 1, 2, . . . , and
∞

∑
i=1
|xi|

2 <∞},

with coordinatewise algebraic operations and ⟨x, y⟩ = ∑∞i=1 xiyi. Note that this is just
L2(N, μ), where μ is the point measure (also called the counting measure) on N. Let
λ = (λ1, λ2, . . .) be a sequence of real numbers and define a multiplication operator Qλ
on 𝒟(Qλ) = {x = (x1, x2, . . .) ∈ ℓ2(N) : ∑

∞
i=1 λ

2
i |xi|

2 < ∞} by Qλ(x) = Q(λ1 ,λ2 ,...)(x1, x2, . . .) =
(λ1x1, λ2x2, . . .). Show that Qλ is self-adjoint.
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Example 5.2.7. Nowwewish to consider the operator P in Example 5.2.4. One can find
a direct proof that P is self-adjoint on𝒟(P) in Example 3, page 198, of [Yosida], but we
would like to follow a different route. Essentially, we would like to turn Example 5.2.4
into Example 5.2.3 by applying the Fourier transform (see Section G.2). Before long we
will see that this is standard operating procedure in quantummechanics for switching
back and forth between “position space” and “momentum space” so it will be nice
to get a taste of it early on. A review of the Schwartz space, Fourier transform and
tempered distributions onR is available in Appendix G.

Now we will consider again the position Q and momentum P operators onR. Fix
some ϕ ∈ 𝒮(R). Then ℱϕ = ϕ̂ is in 𝒮(R) and so it is in 𝒟(Q). Moreover, (Qϕ̂)(p) =
pϕ̂(p) = −iℱ(dϕ/dq). Applying ℱ−1 we find that [ (ℱ−1Qℱ)ϕ ](q) = −idϕ/dq. We con-
clude that

ϕ ∈ 𝒮(R) ⇒ (ℱ−1(ℏQ)ℱ )ϕ = Pϕ,

so P agrees with ℱ−1(ℏQ)ℱ on 𝒮(R). Now, ℱ and ℱ−1 are unitary operators on
L2(R) and ℏQ is a self-adjoint operator on 𝒟(Q) so the following lemma implies that
ℱ−1(ℏQ)ℱ is self-adjoint on ℱ−1(𝒟(Q)). Consequently, ℱ−1(ℏQ)ℱ is a self-adjoint ex-
tension of P | 𝒮(R).

Lemma 5.2.5. Letℋ be a complex, separableHilbert space, A : 𝒟(A)→ ℋ a self-adjoint
operator and U : ℋ → ℋ a unitary operator on ℋ. Then B = UAU−1 is a self-adjoint
operator on𝒟(B) = U(𝒟(A)).

Proof. Since𝒟(A) is dense inℋ by assumption andU is unitary (and therefore a home-
omorphism of ℋ onto itself), 𝒟(B) is also dense. Since A is self-adjoint on 𝒟(A), B =
UAU−1 = UA∗U−1 on𝒟(B). Now, let ϕ,ψ ∈ 𝒟(B). Then

⟨ϕ,Bψ⟩ = ⟨ϕ,UA∗U−1ψ⟩ = ⟨U−1ϕ,A∗U−1ψ⟩

= ⟨AU−1ϕ,U−1ψ⟩ = ⟨UAU−1ϕ,ψ⟩ = ⟨Bϕ,ψ⟩,

so B is symmetric. Consequently, 𝒟(B) ⊆ 𝒟(B∗) and B∗ |𝒟(B) = B. Thus, it will suffice
to show that𝒟(B∗) ⊆ 𝒟(B).

Note that ψ ∈ 𝒟(A) ⇒ Uψ ∈ 𝒟(B) ⇒ BUψ = UAU−1(Uψ) = UAψ so, on 𝒟(A),
BU = UA. Now, let ϕ,ψ ∈ 𝒟(A). Then

⟨ϕ,U−1B∗Uψ⟩ = ⟨ϕ,U−1BUψ⟩ = ⟨Uϕ,BUψ⟩ = ⟨Uϕ,UAψ⟩ = ⟨ϕ,Aψ⟩ = ⟨Aϕ,ψ⟩

and therefore,A∗ is an extension ofU−1B∗U . Consequently,UA∗U−1 is an extension of
B∗. But, on 𝒟(B), UA∗U−1 = UAU−1 = B, so B is an extension of B∗ and, in particular,
𝒟(B∗) ⊆ 𝒟(B), as required.

Exercise 5.2.9. Show that the same argument establishes the following seemingly
more general result. Let U : ℋ1 → ℋ2 be a unitary equivalence and A : 𝒟(A) → ℋ1 a
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self-adjoint operator on the dense linear subspace 𝒟(A) of ℋ1. Then 𝒟(B) = U(𝒟(A))
is dense in ℋ2 and B = UAU−1 is self-adjoint on 𝒟(B). Two operators A and B re-
lated in this way by a unitary equivalence U are said to be unitarily equivalent. Thus,
self-adjointness is preserved by unitary equivalence.

As mentioned above, we now have that ℱ−1(ℏQ)ℱ is a self-adjoint extension
of P | 𝒮(R). However, we claim that P | 𝒮(R) is essentially self-adjoint and therefore
has a unique self-adjoint extension, namely, its closure. Having already noted the
direct proof in [Yosida] that P : 𝒟(P) → ℋ is self-adjoint, we find ourselves with
two self-adjoint extensions of P | 𝒮(R) and conclude that these must be the same, so
ℱ−1(ℏQ)ℱ = P.

To prove essential self-adjointness of P | 𝒮(R) we will apply Corollary 5.2.4.3, that
is, we show that P | 𝒮(R) is symmetric and that the images of P | 𝒮(R) + i and P | 𝒮(R) − i
are both dense in L2(R).

Exercise 5.2.10. Prove that P | 𝒮(R) is symmetric.

For the rest it is enough to show that the images ofP | 𝒮(R)+i andP | 𝒮(R)−i contain𝒮(R)
since this is dense. But this simply amounts to the statement that for any ψ0 ∈ 𝒮(R),
the first order linear differential equations

−iℏ dψ
dq
± i ψ = ψ0

have solutions in 𝒮(R).

Exercise 5.2.11. Prove this.

One often sees the momentum operator P defined by P = ℱ−1(ℏQ)ℱ , in which case its
self-adjointness follows immediately from that of Q and Lemma 5.2.5.

We will work through another example that is quite analogous to what we have
just done, but is worth doing carefully not only because it plays an important role in
quantum mechanics, but also because it presents us with the opportunity to make a
few observations that are important in the general scheme of things.

Example 5.2.8. Introduce another positive constant m and define an operator H0 on
L2(R) by specifying that, on 𝒮(R), it is given by

H0 = −
ℏ2

2m
d2

dq2
= − ℏ

2

2m
Δ,

where we use Δ for the one-dimensional Laplacian d2
dq2 . We begin with a few general

remarks on H0. First note that two integrations by parts together with the fact that
elements of 𝒮(R) approach zero as q → ±∞ show that H0 is symmetric on 𝒮(R).
Specifically, since it clearly suffices to prove that Δ is symmetric on 𝒮(R), we letψ,ϕ ∈
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𝒮(R) and compute

⟨Δψ,ϕ⟩ = ⟨ψ,ϕ⟩ = ∫
R

ψ

(q)ϕ(q)dq

= −∫
R

ψ

(q)ϕ(q)dq = ∫

R

ψ(q)ϕ(q)dq = ⟨ψ,Δϕ⟩.

On the other hand, a single integration by parts shows that H0 is a positive operator
on 𝒮(R), that is, ⟨H0ψ,ψ⟩ ≥ 0 for any ψ ∈ 𝒮(R). Indeed, it is enough to prove this for
−Δ and

⟨−Δψ,ψ⟩ = ⟨−ψ ,ψ⟩ = ∫
R

−ψ

(q)ψ(q)dq = −∫

R

−ψ

(q)ψ (q)dq = ψ


2 ≥ 0.

We point out these two properties of H0 because they provide an excuse to men-
tion a theorem of Friedrichs according to which any densely defined, positive, sym-
metric operator on a Hilbert space has a positive, self-adjoint extension, called the
Friedrichs extension (this is Theorem X.23 of [RS2]). This is not quite enough for our
purposes since we need to know that H0 has a unique self-adjoint extension and
Friedrichs’ theorem does not guarantee uniqueness. However, once we have proved
that H0 has a unique self-adjoint extension we will be assured that this extension is a
positive operator and this is important for the roleH0 will play in quantummechanics.

We begin with the fact that the Fourier transformℱ is a unitary operator on L2(R)
(see Section G.2) and compute, for any ψ ∈ 𝒮(R),

(ℱH0ℱ
−1)(ψ)(p) = (ℱH0)(ψ̌)(p) = ℱ(−

ℏ2

2m
ψ̌ )(p)

= ℏ
2

2m
ℱ(−ψ̌ )(p) = ℏ

2

2m
p2ψ(p). (5.3)

We conclude that, on𝒮(R),ℱH0ℱ
−1 agreeswith themultiplication operatorQg , where

g(p) = ℏ
2

2m p2. We know, by Exercise 5.2.6, that this multiplication operator is self-
adjoint on

𝒟(Qg) = {ψ ∈ L
2(R) : g ψ ∈ L2(R)} = {ψ ∈ L2(R) : ∫

R

p4ψ(p)

2dp <∞}.

Consequently, ℱ−1Qgℱ is a self-adjoint extension of H0 defined on

ℱ−1(𝒟(Qg)) = {ψ ∈ L
2(R) : Δψ ∈ L2(R)},

where Δψ means the second derivative of ψ thought of as a tempered distribution in
L2(R) (see Section G.2). Thus, H0 does, indeed, have a self-adjoint extension and we
will nowprove that it has only one (whichmust therefore be the Friedrichs extension).
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For this it will suffice to show that Δ is essentially self-adjoint on 𝒮(R) and we will do
this by showing that Image (Δ|𝒮(R) ± i) are both dense in L2(R) (Corollary 5.2.4.3), that
is, that the orthogonal complements Image (Δ|𝒮(R) ± i)⊥ are both zero. Let z denote
either i or −i and suppose ϕ ∈ Image (Δ|𝒮(R) + z)⊥. Then, for every ψ ∈ 𝒮(R),

0 = ⟨ϕ, (Δ + z)ψ⟩ = ⟨ℱ(ϕ),ℱ((Δ + z)ψ)⟩ = ⟨ϕ̌, (−p2 + z)ψ̌⟩

= (−p2 + z)⟨ϕ̌, ψ̌⟩ = (−p2 + z)⟨ϕ,ψ⟩.

But p2 is real-valued so −p2 + z is never zero and we conclude that ⟨ϕ,ψ⟩ = 0 for every
ψ ∈ 𝒮(R). Since 𝒮(R) is dense in L2(R), ⟨ϕ,ψ⟩ = 0 for every ψ in L2(R) and therefore
ϕ = 0 ∈ L2(R), as required.

We conclude that H0 is essentially self-adjoint on 𝒮(R) and so has a unique self-
adjoint extension to {ψ ∈ L2(R) : Δψ ∈ L2(R)}. This self-adjoint extension is also
denotedH0 and, for reasons that are yet to come, is called the free particleHamiltonian.

5.3 HB = 1
2mP

2 + mω2

2 Q2

The operators we have considered thus far all play a particularly prominent role in
quantum mechanics, as we will soon see. We would like to include another such ex-
ample that will eventually bring us back to the harmonic oscillator. In this case the
idea we employ to prove self-adjointness is different, but it is an idea that will lead
us naturally into our next topic (spectral theory). We begin with a few definitions. An
eigenvalue of an operatorA : 𝒟(A)→ ℋ is a complex number λ for which there exists a
nonzero vectorψ ∈ 𝒟(A)which satisfiesAψ = λψ; such a nonzero vectorψ is called an
eigenvector corresponding to the eigenvalue λ. Operators need not have eigenvalues at
all, of course. Consider, for example, the operator Q : 𝒟(Q)→ L2(R) of Example 5.2.3.
For any fixed λ ∈ C, the equation Qψ = λψ would imply that (q − λ)ψ(q) = 0 almost
everywhere and thereforeψ(q) = 0 almost everywhere, soψ = 0 in L2(R). For the oper-
ator P : 𝒟(P)→ L2(R) of Example 5.2.5 the equation −i ℏ dψdq = λψ does have solutions,
even nice smooth solutions such as ψ(q) = eiλq/ℏ, but, alas, they are not in L2(R) and
therefore certainly not in𝒟(P), so they do not count as eigenvectors. If it should hap-
pen that A : 𝒟(A)→ ℋ does have an eigenvalue λ, then the corresponding eigenspace
is Kernel (λ−A) = {ψ ∈ 𝒟(A) : Aψ = λψ}, which is clearly a linear subspace of𝒟(A). IfA
is a symmetric (in particular, self-adjoint) operator, then any eigenvalue is necessarily
real and eigenvectors corresponding to distinct eigenvalues are orthogonal inℋ. The
proofs are exactly as in the finite-dimensional case. To wit, if Aψ = λψ with ψ ̸= 0,
then ⟨ψ,Aψ⟩ = ⟨ψ, λψ⟩ = λ⟨ψ,ψ⟩, but also ⟨ψ,Aψ⟩ = ⟨Aψ,ψ⟩ = ⟨λψ,ψ⟩ = λ⟨ψ,ψ⟩,
so λ = λ. Next, if Aψ1 = λ1ψ1 and Aψ2 = λ2ψ2 with λ2 ̸= λ1 and neither ψ1 nor ψ2 is
zero, then, since λ1 and λ2 are real, ⟨Aψ1,ψ2⟩ = ⟨ψ1,Aψ2⟩⇒ λ1⟨ψ1,ψ2⟩ = λ2⟨ψ1,ψ2⟩⇒
(λ2 −λ1)⟨ψ1,ψ2⟩ = 0⇒ ⟨ψ1,ψ2⟩ = 0. Now, here is the point. A symmetric operator with
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a large enough supply of eigenvectors must be essentially self-adjoint. More precisely,
we have the following theorem.

Theorem 5.3.1. Let ℋ be a separable, complex Hilbert space and A : 𝒟(A) → ℋ a
symmetric, unbounded operator on ℋ. Assume that there exists an orthonormal basis
{e1, e2, . . .} forℋ consisting of eigenvectors for A, that is, such that each ei is in𝒟(A) and
Aei = λiei for some λi ∈ R and for each i = 1, 2, . . . . Then A is essentially self-adjoint on
𝒟(A).

Proof. Let N = {1, 2, . . .} denote the set of natural numbers and consider the Hilbert
space ℓ2(N) of square summable sequences of complex numbers, that is,

ℓ2(N) = {x = (x1, x2, . . .) : xi ∈ C, i = 1, 2, . . . , and
∞

∑
i=1
|xi|

2 <∞},

with coordinatewise algebraic operations and ⟨x, y⟩ = ∑∞i=1 xiyi. The orthonormal basis
{e1, e2, . . .} forℋ consisting of eigenvectors for A determines a unitary equivalence T :
ℓ2(N)→ ℋ given by

T(x) = T((x1, x2, . . .)) =
∞

∑
i=1

xiei,

where convergence of the series is inℋ. The eigenvalues ofA determine a (real-valued)
function λ : N→ C defined by

λ(i) = λi, i = 1, 2, . . . ,

that is,

λ = (λ1, λ2, . . .).

Thus, the multiplication operator Qλ defined by Qλ(x) = Qλ(x1, x2, . . .) = (λ1x1, λ2x2, . . .)
on 𝒟(Qλ) = {x = (x1, x2, . . .) ∈ ℓ2(N) : ∑

∞
i=1 λ

2
i |xi|

2 < ∞} is self-adjoint (see Exer-
cise 5.2.8). According to Exercise 5.2.9, TQλT−1 is self-adjoint on T(𝒟(Qλ)) ⊆ ℋ. To
prove thatA is essentially self-adjoint it will suffice to show that its closureA is TQλT−1

(see Exercise 5.2.5).
Let (v,w) = (v,Av) be a point in the graph Gr(A) of A. Since A is symmetric (in

particular,𝒟(A) ⊆ 𝒟(A∗)) and each ei is in𝒟(A),

⟨ei,w⟩ = ⟨ei,Av⟩ = ⟨Aei, v⟩ = λi ⟨ei, v⟩, i = 1, 2, . . . .

Since {ei} is an orthonormal basis forℋ,

w =
∞

∑
i=1
⟨ei,w⟩ ei =

∞

∑
i=1

λi⟨ei, v⟩ ei,



144 | 5 Synopsis of self-adjoint operators, spectral theory and Stone’s theorem

and, in particular,

∞

∑
i=1

λ2i
⟨ei, v⟩

2 = ‖w‖2 <∞.

Thus, for any v = ∑∞i=1⟨ei, v⟩ ei in 𝒟(A), T−1v = (⟨e1, v⟩, ⟨e2, v⟩, . . .) is in 𝒟(Qλ) and
TQλT−1v = w = Av. In other words, TQλT−1 is a self-adjoint extension of A.

All that remains is to show that Gr(A) is dense in Gr(TQλT−1). For this we let (V ,W)
be a point in Gr(TQλT−1). Then

V =
∞

∑
i=1
⟨ei,V⟩ ei

and

W =
∞

∑
i=1

λi ⟨ei,V⟩ ei.

Now, define, for each n = 1, 2, . . . ,

vn =
n
∑
i=1
⟨ei,V⟩ ei.

Then each vn is in𝒟(A) and, since the sum is finite and A is linear,

Avn =
n
∑
i=1
⟨ei,V⟩Aei =

n
∑
i=1

λi⟨ei,V⟩ ei.

Now, in the norm onℋ ×ℋ,

(V ,W) − (vn,Avn)

2 = ‖V − vn‖

2 + ‖W − Avn‖
2

and, as n→∞, both terms approach zero so (vn,Avn)→ (V ,W) inℋ×ℋ, as required.

Now we will begin our application of Theorem 5.3.1 to an operator that will soon
emerge as one of the central characters in our drama. Its significance may not yet be
apparent, but it is real and for this reason we intend to carry out this discussion in
excruciating detail.

Example 5.3.1. The operator of interest contains three positive constantsm, ω and ℏ.
Each of these has some physical significance, but we will worry about that later. We
define an unbounded operator HB : 𝒟(HB) → L2(R) by first specifying that, on the
Schwartz space 𝒮(R), it is given by

HB =
1
2m

P2 + mω
2

2
Q2 = − ℏ

2

2m
d2

dq2
+ mω

2

2
q2. (5.4)
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The subscriptB is there for a reason, but this reasonwill not be apparent for some time
(if you must know, it stands for “bosonic”). Before moving on you may also want to
glance back at Example 2.3.4. The objective now is to show that HB is essentially self-
adjoint on 𝒮(R) (then 𝒟(HB) will be the domain of its unique self-adjoint extension).
To apply Theorem 5.3.1 we must show that HB is symmetric on 𝒮(R) and then exhibit
an orthonormal basis for L2(R) consisting of eigenvectors for HB living in 𝒮(R). For
symmetry it is clear that we can consider each of the summands individually since
⟨HBψ,ϕ⟩ = ⟨−

ℏ2

2m
d2ψ
dq2 ,ϕ⟩ + ⟨

mω2

2 q2ψ,ϕ⟩. The first operator is just H0, which we already

know is symmetric, and the second is clearly symmetric since mω2

2 q2 is just a real-
valued multiplication operator (see Exercise 5.2.6).

Theorem5.3.1 now requires thatwefindanorthonormal basis {ψ0,ψ1, . . .} forL2(R)
with each ψi an eigenvector for HB in 𝒮(R). A priori there is no reason to suppose that
such an orthonormal basis exists, but it does and we now set about finding it. There
are two ways to do this. We are looking for nonzero elements ψ of 𝒮(R) that satisfy

HB ψ = −
ℏ2

2m
d2ψ
dq2
+ mω

2

2
q2ψ = ℰψ (5.5)

for some real constant ℰ (I know, youwere expecting a λ, but the eigenvalueswill even-
tually turn out to be energy levels so ℰ seemed a better choice). The obvious thing
to do is simply try to solve the differential equation. As it happens, this is relatively
straightforward, albeit rather tedious. It is, however, not particularly informative in
that it sheds no real light on the general structure of this sort of eigenvalue problem.
We will see that every application of quantum mechanics begins with a problem of
this sort (Hψ = ℰψ) so we would like to do better than this. There is a much more
enlightening “algebraic” approach, due to Dirac, that we will work out in consider-
able generality and detail. First, however, we will sketch the straightforward solution
to (5.5) in enough detail that anyone interested in doing so should be able to fill in the
gaps; if youwould prefer to read it rather than do it, Appendix B, Chapter 5, of [Simm2]
contains most of the details.

Rather than carry around all of the constants in (5.5) we begin by making the
change of variable

x = √mω
ℏ

q,

which converts (5.5) into

d2ψ
dx2
+ ( 2ℰ
ℏω
− x2)ψ = 0. (5.6)

To simplify just a bit more we will let p + 1 = 2ℰ
ℏω and write (5.6) as

d2ψ
dx2
+ (p + 1 − x2)ψ = 0. (5.7)
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Motivated by the fact that we need solutions in the Schwartz space 𝒮(R) we will seek
ψ(x) of the form

ψ(x) = ϕ(x)e−x
2/2, (5.8)

where ϕ(x) is to be determined. Substituting this into (5.7) gives

d2ϕ
dx2
− 2x dϕ

dx
+ pϕ = 0, (5.9)

which is the famous Hermite equation. One notices that x = 0 is an ordinary point for
the equation and so we seek analytic solutions of the form ϕ(x) = ∑∞n=0 anx

n. Substi-
tuting this into (5.9) and equating the coefficients of the resulting power series to zero
gives the recurrence relation

an+2 =
2n − p
(n + 2)(n + 1)

an, n ≥ 0.

One solves for the coefficients in the usual way and arrives at the following formal
solution:

ϕ(x) = a0[1 −
p
2!
x2 − (4 − p)p

4!
x4 − (8 − p)(4 − p)p

6!
x6 − ⋅ ⋅ ⋅]

+ a1[x +
2 − p
3!

x3 + (6 − p)(2 − p)
5!

x5 + (10 − p)(6 − p)(2 − p)
7!

x7 + ⋅ ⋅ ⋅]

= a0 ϕ0(x) + a1 ϕ1(x).

These series, in fact, are easily seen to converge for all x (ratio test) and, since the
Wronskian of ϕ0 and ϕ1 is clearly nonzero (evaluate it at x = 0), we have found the
general solution to the Hermite equation on (−∞,∞). By comparing the series ex-
pansions of ϕ0(x) and ϕ1(x) with ex

2/2 = ∑∞n=0
1

2nn!x
2n one finds that ϕ0(x)e−x

2/2 and
ϕ1(x)e−x

2/2 do not approach zero as |x| → ±∞ and so cannot be in 𝒮(R) unless the
series for ϕ0(x) and ϕ1(x) terminate and are therefore polynomials. Since we seek two
independent solutions in 𝒮(R)wemust take either a1 = 0 and p = 0, 4, 8, . . . , or a0 = 0
and p = 2, 6, 10 . . . . In each case, one chooses the nonzero coefficient ai in such a way
so as to ensure that the resulting polynomials H0(x),H1(x),H2(x), . . . ,Hn(x), . . . satisfy

∫
R

[Hm(x)e
−x2/2][Hn(x)e

−x2/2] dx = ∫
R

Hm(x)Hn(x)e
−x2dx = √π 2n n! δmn

(here the subscript indicates the degree of the polynomial). The reason for this rather
strange normalization will emerge soon. These Hn(x), n = 0, 1, 2, . . . , are called the
Hermite polynomials. These have all sorts of wonderful properties of which we will
need just a few (these are all proved in, for example, [AAR]). One can show that every
polynomial is a linear combination of Hermite polynomials, that each Hn is given by

Hn(x) = (−1)
nex

2 dn

dxn
(e−x

2
)
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and that e2xz−z
2/2 is a generating function for the sequenceH0(x),H1(x),H2(x), . . . , that

is,

e2xz−z
2/2 =

∞

∑
n=0

Hn(x)
zn

n!
. (5.10)

More to the point for us is that we can nowbuild solutions to (5.5) fromHn(x)e−x
2/2 that

are in 𝒮(R). We revert to the original variable q, related to x by x = √mωℏ q, and again
renormalize to obtain the solutions ψn(q) to (5.5) we were after. Specifically, we have
one solution for each pn = 2n, n = 0, 1, 2, . . . , that is, for each eigenvalue

ℰn = (n +
1
2
)ℏω, n = 0, 1, 2, . . .

(recall that p + 1 = 2ℰ
ℏω and have another look at (1.7)). These solutions are given by

ψn(q) =
1
√2n n!
(mω
ℏπ
)
1/4
e−mωq

2/2ℏ Hn(√
mω
ℏ

q) (5.11)

and they satisfy

HBψn = ℰnψn = (n +
1
2
)ℏωψn, n = 0, 1, 2, . . . . (5.12)

Being eigenvectors of a symmetric operator corresponding to distinct eigenvalues,ψm
and ψn are orthogonal in L2(R) whenever n ̸= m. The odd looking normalizations are
intended to ensure that each ψn is a unit vector in L2(R) so that

⟨ψm,ψn⟩ = ∫
R

ψm(q)ψn(q) dq = δmn.

One must still show that the orthonormal set {ψn}
∞
n=0 in L

2(R) is a basis and for this it
is enough to show that the orthogonal complement of its closed span in L2(R) consists
of the zero element alone. The argument is not so difficult, but we will save it until we
have given a complete and very different derivation of the eigenfunctions ψn.

This concludes our sketch of the traditional solution to the eigenvalue prob-
lem (5.5) in 𝒮(R). It produces an orthonormal basis for L2(R) consisting of eigen-
vectors for HB in 𝒮(R) and so allows one to conclude from Theorem 5.3.1 that HB is
essentially self-adjoint on 𝒮(R). It does not, however, uncover the underlying alge-
braic structure that lies hidden here and it is precisely this algebraic structure that we
need to understand since it plays a fundamental role in quantum mechanics. Before
getting under waywemust sound a cautionary note, not only for this example, but for
the remainder of our work. The algebraic structure we have in mind is determined by
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commutation relations for the operators of interest and these, as the name suggests,
involve the commutator and, later on, the anticommutator of a pair of operators. These
are defined by [A,B]− = AB − BA and [A,B]+ = AB + BA, respectively; here AB and BA
stand for the compositions A ∘B and B ∘A, respectively. For bounded operators, which
are defined on all ofℋ, these definitions present no problem, but for unbounded op-
erators defined only on dense subspaces of ℋ the sum or difference of two operators
is defined only on the intersection of their domains and the product (composition) AB
is defined only on the subset of 𝒟(B) that B maps into 𝒟(A). All of these might very
well consist only of the zero element inℋ. These and many other such domain issues
cannot be regarded as simply a minor technical inconvenience, but are often crucial
to the mathematics and even to the physics (see Section X.1 of [RS2]). The moral is
that we must be careful about domains.

For the remainder of this example, all of our calculations will be carried out
in the Schwartz space 𝒮(R).

Nowwe begin our new derivation of the eigenvalues and eigenvectors for the operator

HB =
1
2m

P2 + mω
2

2
Q2 = − ℏ

2

2m
d2

dq2
+ mω

2

2
q2

of (5.4). First note that Q : 𝒮(R) → 𝒮(R) and P : 𝒮(R) → 𝒮(R), so their commutators
are well-defined on 𝒮(R) and, moreover,

[Q,Q]− = 0,
[P,P]− = 0, (5.13)
[P,Q]− = −iℏ.

The first two are obvious and the third follows by computing, for any ψ ∈ 𝒮(R),

([P,Q]−ψ)(q) = (P(Qψ) − Q(Pψ))(q) = −iℏ
d
dq
(qψ(q)) − q(−iℏdψ

dq
)

= −iℏ q dψ
dq
− iℏψ(q) + iℏ q dψ

dq
= −iℏψ(q),

so

[P,Q]−ψ = −iℏψ.

It might be worthwhile at this point to compare (5.13) and (2.66).
For the remainder of this discussion it will be very important to notice that, with

one exception that we will point out explicitly, the analysis depends only on the fact
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that the operators Q and P are symmetric on 𝒮(R) and satisfy the commutation rela-
tions (5.13) there and not on their definitions as multiplication by q and −iℏ ddq , respec-
tively. In Chapter 7 we will describe the abstract algebraic setting in which all of this
lives most naturally.

Now we define two new operators b and b† on 𝒮(R) by

b = 1
√2mωℏ

(mωQ + iP) (5.14)

and

b† = 1
√2mωℏ

(mωQ − iP). (5.15)

Many sources use a and a†, or a− and a+, respectively, rather than our b and b†, but
our choice is intended to distinguish this “bosonic” example from the “fermionic” and
“supersymmetric” generalizations that are yet to come. Thedagger † is used to indicate
that b and b† are formal adjoints of each other in the sense that, on 𝒮(R), they satisfy

⟨b†ψ,ϕ⟩ = 1
√2mωℏ

⟨mωQψ − iPψ,ϕ⟩

= 1
√2mωℏ

[⟨mωQψ,ϕ⟩ − ⟨iPψ,ϕ⟩]

= 1
√2mωℏ

[mω⟨ψ,Qϕ⟩ + i⟨ψ,Pϕ⟩]

= ⟨ψ, bϕ⟩

and ⟨bϕ,ψ⟩ = ⟨ϕ, b†ψ⟩, which follows by taking conjugates. Now, let us compute bb†

on 𝒮(R). We have

bb† = 1
2mωℏ
[m2ω2Q2 + imω[PQ − QP] + P2]

= mω
2ℏ

Q2 + 1
2
+ 1
2mωℏ

P2

since [P,Q]− = −iℏ. Similarly,

b†b = mω
2ℏ

Q2 − 1
2
+ 1
2mωℏ

P2

so that [b, b†]− = bb† − b†b = 1. Adding to this a few more relations that are obvious
we have

[b, b]− = 0,

[b†, b†]− = 0, (5.16)

[b, b†]− = 1.
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Now, note that if we define an operator NB on 𝒮(R) by

NB = b
†b,

then

HB =
1
2
ℏω[b†, b]+ = ℏω(NB +

1
2
).

For reasons that will emerge quite soon NB is called the (bosonic) number operator.
Furthermore, [NB, b†]− = NBb† − b†NB = b†bb† − b†b†b = b†[b, b†]− = b†, so

[NB, b
†]− = b

†

and, similarly,

[NB, b]− = −b.

What, you may ask, is the point of all this arithmetic? Recall that the objective
here is to derive (again) all of the eigenvalues and eigenvectors for HB on 𝒮(R). From
HB = ℏω(NB +

1
2 ) it is clear that, on 𝒮(R),

NBψ = λψ ⇔ HBψ = (λ +
1
2
)ℏωψ,

so this is equivalent to finding the eigenvalues and eigenvectors of NB on 𝒮(R) and
this we can now do with ease. First note that any nonzero ψ ∈ 𝒮(R) satisfying bψ = 0
also satisfies NBψ = 0 and so is an eigenvector of NB with eigenvalue λ = 0 and conse-
quently an eigenvector of HB with eigenvalue

1
2ℏω. But how do we know that there is

such a ψ in 𝒮(R)? This is the only point at which we require some information about
the operatorsQ and P beyond their commutation relationswhich, by themselves, can-
not answer the question. However, if we write bψ = 0 as

1
√2mωℏ

(mωQψ + iPψ) = 0

and then recall that (Qψ)(q) = qψ(q) and (Pψ)(q) = −iℏ dψdq , we obtain

dψ
dq
+ (mω
ℏ
)qψ(q) = 0.

This is a simplefirst order, linear equationwhosegeneral solution isψ(q) = Ce−mωq
2/2ℏ,

where C is an arbitrary constant. Computing the L2(R) norm of ψ(q) = Ce−mωq
2/2ℏ we

can choose C in such a way so as to ensure that the solution has norm 1. Specifically,
one obtains

ψ0(q) = (
mω
ℏπ
)
1/4
e−mωq

2/2ℏ, (5.17)
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which is clearly in 𝒮(R) and is the unique L2-normalized eigenvector ofHB with eigen-
value 1

2ℏω:

HBψ0 =
1
2
ℏωψ0.

We will see now that all the rest follows from the commutation relations alone.
First note that 1

2ℏω is the smallest eigenvalue of HB on 𝒮(R). Indeed, suppose
HBψ = λψ with ψ ̸= 0. Then

λ ‖ψ‖2 = λ⟨ψ,ψ⟩ = ⟨ψ, λψ⟩ = ⟨ψ,HBψ⟩ = ⟨ψ, ℏωNBψ +
1
2
ℏωψ⟩

= ℏω⟨ψ,NBψ⟩ +
1
2
ℏω⟨ψ,ψ⟩ = ℏω⟨ψ, b†bψ⟩ + 1

2
ℏω‖ψ‖2

= ℏω⟨bψ, bψ⟩ + 1
2
ℏω‖ψ‖2

= ℏω‖bψ‖2 + 1
2
ℏω‖ψ‖2.

Consequently,

λ = 1
2
ℏω + ℏω( ‖bψ‖2/‖ψ‖2) ≥ 1

2
ℏω,

with equality holding if and only if bψ = 0.
Next, let us consider the vector

ψ1 = b
†ψ0.

Then

NBψ1 = NB(b
†ψ0) = (NBb

†ψ0 − b
†NBψ0) + b

†NBψ0

= ([NB, b
†]− + b

†NB)ψ0 = (b
† + b†NB)ψ0 = b

†ψ0 + 0
= ψ1,

so ψ1 is an eigenvector of NB in 𝒮(R)with eigenvalue λ = 1. As a result, ψ1 is an eigen-
vector of HB in 𝒮(R) with eigenvalue (1 + 1

2 )ℏω:

HBψ1 =
3
2
ℏωψ1.

The operator b† carries a λ = 0 eigenvector ofNB to a λ = 1 eigenvector ofNB. Also note
that ψ1 has norm 1 since

‖ψ1‖
2 = ⟨ψ1,ψ1⟩ = ⟨b

†ψ0, b
†ψ0⟩ = ⟨bb

†ψ0,ψ0⟩

= ⟨[b, b†]−ψ0 + b
†bψ0,ψ0⟩ = ⟨ψ0 + 0,ψ0⟩ = ‖ψ0‖

2

= 1.
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Let us try this again. Let

ϕ2 = b
†ψ1 = (b

†)2ψ0.

Then

NBϕ2 = NB(b
†ψ1) = ([NB, b

†]− + b
†NB)ψ1 = (b

† + b†NB)ψ1

= b†ψ1 + b
†NBψ1 = b

†ψ1 + b
†ψ1

= 2ϕ2,

soϕ2 is an eigenvector ofNB with eigenvalue λ = 2 and therefore it is an eigenvector of
HB with eigenvalue (2+

1
2 )ℏω. Unfortunately, we lose the normalization this time since

‖ϕ2‖
2 = ⟨ϕ2,ϕ2⟩ = ⟨b

†ψ1, b
†ψ1⟩ = ⟨bb

†ψ1,ψ1⟩ = ⟨[b, b
†]−ψ1 + b

†bψ1,ψ1⟩

= ⟨ψ1 + ψ1,ψ1⟩ = 2‖ψ1‖
2 = 2.

Consequently,

ψ2 =
1
√2

b†ψ1 =
1
√2
(b†)2ψ0

is a normalized eigenvector of HB with eigenvalue (2 +
1
2 )ℏω:

HBψ2 =
5
2
ℏωψ2.

Exercise 5.3.1. Show in the same way that if NBϕ = λϕ, then NB(b†ϕ) = (λ + 1)b†ϕ
for any λ. Thus, b† carries eigenvectors of NB to eigenvectors of NB, increasing the
eigenvalue by one. Equivalently, b† carries eigenvectors of HB to eigenvectors of HB,
increasing the eigenvalue by ℏω. Replace b† by b and show that if NBϕ = λϕ, then
NB(bϕ) = (λ − 1)bϕ.

For this reason,b† andb are called raising and lowering operators, respectively; to-
gether they are called ladder operators. Wewill find that, in quantummechanics, they
are viewed as raising and lowering the energy level of a harmonic oscillator. Analo-
gous operators exist in quantum field theory, where they are called creation and anni-
hilation operators because there they are viewed as creating and annihilating particles
(more precisely, quanta) of a specific energy. The eigenvalues of the number opera-
tor NB count the number of such quanta; hence the name.

Continuing inductively we find that for each n = 0, 1, 2, . . . ,

ψn =
1
√n!
(b†)nψ0 (5.18)
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is a normalized eigenvector of NB with eigenvalue λ = n and so is also a normalized
eigenvector of HB with eigenvalues (n +

1
2 )ℏω:

HBψn = (n +
1
2
)ℏωψn, n = 0, 1, 2, . . . . (5.19)

Note that (n + 1
2 )ℏω, n = 0, 1, 2, . . . , are the only eigenvalues of HB on 𝒮(R). Indeed, we

have already seen that 1
2ℏω is the smallest eigenvalue so, in particular, all eigenvalues

are positive. But if λ were some positive eigenvalue that was not of the form (n+ 12 )ℏω,
n = 0, 1, 2, . . . , then repeated application of b would eventually produce a negative
eigenvalue (see Exercise 5.3.1) so such a λ cannot exist.

The rather remarkable conclusion is that if we happen to know just one eigenvec-
tor forHB in 𝒮(R), then we can produce all of the rest simply by successively applying
the ladder operators. For instance, if we identify Q and P with multiplication by q and
−iℏ ddq , then ψ0 is given by (5.17) and we can proceed to grind out all of the remain-
ing eigenvectors by repeatedly applying 1

√2mωℏ
(mωq − ℏ ddq ). The result, of course, will

be (5.11), which can be proved using induction and the properties of the Hermite poly-
nomials.

It is useful to observe that, since ψn =
1
√n! (b
†)nψ0,

b†ψn = √n + 1ψn+1, n = 0, 1, 2, . . . ,

and similarly,

bψn = √nψn−1, n = 1, 2, . . . .

Exercise 5.3.2. Prove these.

With this we can show that all of the eigenspaces of HB are one-dimensional, that
is, all of the eigenvalues are simple. Suppose this is not the case. Then there is a least
nonnegative integer nwith two independent normalized eigenvectorsψn andψn. Then
n ≥ 1, since we have seen that ψ0 is the unique normalized eigenvector of HB with
eigenvalue 1

2ℏω. Now,

nψn = NBψ

n = b
†bψn,

so

n(bψn) = bb
†(bψn) = (1 + NB)(bψ


n)

and bψn is an eigenvector ofNB with eigenvalue n− 1. Since n is minimal, bψn must be
a nonzero multiple of ψn−1, say, bψn = kψn−1. Then

nψn = b
†(bψn) = kb

†ψn−1 = k√nψn,
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so

ψn =
k
√n

ψn

and this is a contradiction so the proof is complete. These one-dimensional eigen-
spaces are, of course, orthogonal.

There is just one loose end that remains to be tied up. We must show that
our orthonormal sequence of eigenfunctions for HB is actually complete, that is,
forms a basis for L2(R). To ease the typography a bit we will temporarily revert
to our original variable x = √mωℏ q and consider the so-called Hermite functions

ϕn(x) =
1

√2nn!√π
e−x

2/2Hn(x), n = 0, 1, 2, . . . . Note that these are all in 𝒮(R). We will

show that they form a basis for L2(R). To prove this it is clearly sufficient to show
that the orthogonal complement of the closed linear span of {ϕn}

∞
n=0 consists of the

zero vector in L2(R) alone. This, in turn, will follow if we show that any f ∈ L2(R)
satisfying ⟨ϕn, f ⟩ = 0∀n = 0, 1, 2, . . .must be the zero element of L2(R). Suppose then
that ⟨ϕn, f ⟩ = 0∀n = 0, 1, 2, . . . . Since every polynomial is a (finite) linear combination
of Hermite polynomials, it follows that f is orthogonal to every function of the form
P(x)e−x

2/2, where P(x) is a polynomial. Consequently,

∫
R

[f (x)e−x
2/2] e−iξxdx =

∞

∑
k=0
∫
R

f (x) [ (−iξx)
k

k!
e−x

2/2] dx = 0,

where the interchange of summation and integration is justified because the product
of two L2 functions is an L1 function (Theorem 3.2.1 of [Fried]). But this shows that the
Fourier transform of f (x)e−x

2/2 is zero. Since the Fourier transform ℱ : L2(R)→ L2(R)
is an isometry, f (x)e−x

2/2 = 0 almost everywhere and it follows that f (x) = 0 almost
everywhere, that is, f = 0 in L2(R), as required.

Exercise 5.3.3. Show that the Hermite function ϕn(x) =
1

√2nn!√π
e−x

2/2Hn(x) is an

eigenvector of the Fourier transform operator ℱ : L2(R) → L2(R) with eigen-
value (−i)n, that is,

ℱ (e−x
2/2Hn(x)) = (−i)

ne−ξ
2/2Hn(ξ ).

Hint: Begin with the generating function (5.10) for the Hermite polynomials, multiply
through by e−x

2/2, compute the Fourier transform of both sides, use the generating
function again and equate the coefficients of zn in the two series.

Finally, it is instructive to use the orthonormal basis {ψ0,ψ1, . . .} for L2(R) to
write out matrix representations for the operators b, b†, NB andHB. Somewhat more
precisely, we use the basis to establish an isometric isomorphism ψ = ∑∞n=0 cnψn ∈
L2(R) → (cn)∞n=0 ∈ ℓ

2(N) of L2(R) onto ℓ2(N) and regard them as operators on ℓ2(N).
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One need only read off the coefficients in the expressions we have derived above to
obtain

b† =((

(

0 0 0 0 ⋅ ⋅ ⋅
√1 0 0 0 ⋅ ⋅ ⋅
0 √2 0 0 ⋅ ⋅ ⋅
0 0 √3 0 ⋅ ⋅ ⋅
...

...
...

...

))

)

,

b =(

0 √1 0 0 ⋅ ⋅ ⋅
0 0 √2 0 ⋅ ⋅ ⋅
0 0 0 √3 ⋅ ⋅ ⋅
...

...
...

...

) ,

NB =
((

(

0 0 0 0 ⋅ ⋅ ⋅
0 1 0 0 ⋅ ⋅ ⋅
0 0 2 0 ⋅ ⋅ ⋅
0 0 0 3 ⋅ ⋅ ⋅
...

...
...

...

))

)

,

HB =
((

(

1
2ℏω 0 0 0 ⋅ ⋅ ⋅
0 3

2ℏω 0 0 ⋅ ⋅ ⋅
0 0 5

2ℏω 0 ⋅ ⋅ ⋅
0 0 0 7

2ℏω ⋅ ⋅ ⋅
...

...
...

...

))

)

.

This brings to a close our rather extended introduction of the operatorHB =
1
2mP

2+
mω2

2 Q2, but do not despair; we will have a great deal more to say about HB in Exam-
ples 5.4.5 and 5.5.4, and then again in Chapters 7 and 8, where its unique self-adjoint
extension, also denotedHB : 𝒟(HB)→ L2(R), will be knownas theHamiltonian for the
(bosonic) quantum harmonic oscillator. For a description of𝒟(HB), see Example 5.4.5.

5.4 The spectrum

Although our interest at themoment is in operators on aHilbert spacewe should point
out that all of the basic definitions in this section apply equally well to operators on a
Banach space, or even a linear topological space (see Section VIII.1 of [Yosida]). Now
note that if λ is an eigenvalue of the operatorA : 𝒟(A)→ ℋ, then λ−A has a nontrivial
kernel and so λ−A is not injective and therefore not invertible. As it happens, λ−A can
fail to have a bounded inverse for a variety of reasons even if λ is not an eigenvalue of
A and this is what we need to discuss now. For this we need a few definitions. We will
say that a λ ∈ C is in the resolvent set ρ(A) of A if λ − A is injective on 𝒟(A), its range
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Image (λ − A) is dense inℋ and Rλ(A) = (λ − A)−1 is continuous on Image (λ − A). The
operator Rλ(A) = (λ − A)−1 is called the resolvent of A at λ. If A happens to be closed
(in particular, self-adjoint), then, for any λ ∈ ρ(A), Rλ(A) = (λ−A)−1 is actually defined
on all ofℋ (Theorem, Section VIII.1, of [Yosida]) and so is necessarily bounded by the
closed graph theorem (Theorem 4.6.4 of [Fried]). Conversely, if (λ − A)−1 is bounded
and defined on all of ℋ, then (λ − A)−1 is closed and it follows that λ − A is closed
(Proposition 3, Section II.6, of [Yosida]) and therefore A is closed.

The complement σ(A) = C − ρ(A) of the resolvent set of A is called the spectrum
of A. The spectrum certainly contains any eigenvalues that Amight have, but, in gen-
eral, it contains more. Indeed, we will decompose σ(A) into three disjoint sets

σ(A) = Pσ(A) ⊔ Cσ(A) ⊔ Rσ(A)

defined as follows. First, Pσ(A) is called the point spectrum of A and consists of all
λ ∈ C for which λ −A is not injective on𝒟(A) and therefore has no inverse at all; thus,
Pσ(A) consists precisely of the eigenvalues ofA. Second, Cσ(A) is called the continuous
spectrumofAandconsists of all λ ∈ C forwhich (λ−A)−1 exists andhas adensedomain
Image (λ−A), but is not continuous on Image (λ−A). Finally,Rσ(A) is called the residual
spectrum of A and consists of all λ ∈ C for which (λ − A)−1 exists, but whose domain
Image (λ − A) is not dense in ℋ. For self-adjoint operators, Rσ(A) = 0 (Theorem 1,
part (iv), Section XI.8, of [Yosida]). According to Theorem 1, Section VIII.2, of [Yosida],
the resolvent set ρ(A) of a closed operator A is an open subset of the complex plane
C and, consequently, the spectrum σ(A) is closed. For self-adjoint operators one can
say even more. In this case, the spectrum is a (closed) subset of the real line R; this
is Example 4, Chapter VIII, Section 1 of [Yosida], but this fact is of such fundamental
importance to quantummechanics that we will include a proof.

Remark 5.4.1. In quantummechanics, a self-adjoint operator A represents an observ-
able and the possible measured values of the observable are the points in the opera-
tor’s spectrum. Since the result of ameasurement is always a real number it is essential
that σ(A) ⊆ R.

Theorem 5.4.1. Let A : 𝒟(A) → ℋ be a self-adjoint operator on a separable, com-
plex Hilbert space ℋ. Then the resolvent set ρ(A) contains all complex numbers λ with
nonzero imaginary part so the spectrum σ(A) is a subset of the real lineR.

Proof. Note first that for ψ ∈ 𝒟(A), ⟨Aψ,ψ⟩ is real since ⟨Aψ,ψ⟩ = ⟨ψ,Aψ⟩ = ⟨Aψ,ψ⟩;
indeed, this is clearly true for any symmetric operator. Consequently,

Im ⟨(λ − A)ψ,ψ⟩ = Im ⟨λψ,ψ⟩ − Im ⟨Aψ,ψ⟩ = Im (λ) ‖ψ‖2 = − Im (λ) ‖ψ‖2.

From this and the Schwarz inequality we obtain

(λ − A)ψ
 ‖ψ‖ ≥

 ⟨(λ − A)ψ,ψ⟩
 ≥
Im(λ)
 ‖ψ‖

2,
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so

(λ − A)ψ
 ≥
Im(λ)
 ‖ψ‖. (5.20)

From this we conclude that λ−A is injective and therefore invertible if Im(λ) ̸= 0.More-
over, we claim that, in this case,𝒟((λ−A)−1) = Image (λ−A)must be dense inℋ. To see
this we suppose not. Then Image (λ − A) would have a nontrivial orthogonal comple-
ment so we could select aϕ ̸= 0 inℋwith ⟨(λ−A)ψ,ϕ⟩ = 0 for allψ ∈ 𝒟(A) = 𝒟(λ−A).
This, by definition, forces ϕ into the domain of the adjoint (λ − A)∗ of λ − A. Since the
adjoint of λ −A is λ −A on𝒟(A∗) = 𝒟(A)we find that ⟨ψ, (λ −A)ϕ⟩ = 0∀ψ ∈ 𝒟(A). But
𝒟(A) is assumed dense in ℋ, so ⟨ψ, (λ − A)ϕ⟩ = 0∀ψ ∈ ℋ and the nondegeneracy of
⟨ , ⟩ implies that (λ − A)ϕ = 0, that is, Aϕ = λϕ. But then ⟨Aϕ,ϕ⟩ = ⟨λϕ,ϕ⟩ = λ‖ϕ‖2,
which is not real since Im(λ) ̸= 0 andϕ ̸= 0, and this is a contradiction. Thus, we have
shown that if Im(λ) ̸= 0, then (λ − A)−1 exists and is densely defined on Image (λ − A).
To conclude the proof that λ ∈ ρ(A) we need only show that (λ − A)−1 is bounded on
Image (λ − A). But, for any ξ ∈ Image (λ − A), (5.20) gives

‖ξ ‖ = (λ − A)(λ − A)
−1ξ  ≥
Im(λ)

(λ − A)

−1ξ ,

so

(λ − A)
−1ξ  ≤

1
| Im(λ)|
‖ξ ‖,

as required.

Theorem X.1 in [RS2] is a much more general result of von Neumann who showed
that if A is a closed, symmetric operator, then the spectrum σ(A) must be one of the
following:
1. the closed upper half-plane {z ∈ C : Im z ≥ 0},
2. the closed lower half-plane {z ∈ C : Im z ≤ 0},
3. the entire complex planeC or
4. a closed subset of the real lineR (in which case A is self-adjoint).

Having just noted at the beginning of the proof of Theorem 5.4.1 that ⟨ψ,Aψ⟩ is real for
any symmetric operator, this would seem an appropriate moment to introduce a little
notation that will play a role in our discussion of the spectral theorem. We define, for
any symmetric operator A,

m(A) = inf ⟨ψ,Aψ⟩ (5.21)

and

M(A) = sup ⟨ψ,Aψ⟩, (5.22)
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where the infimum and supremum are taken over all ψ ∈ 𝒟(A) with ‖ψ‖ = 1. If A is
defined on all ofℋ, then these are both finite if and only if A is bounded and, in this
case, ‖A‖ = max ( |m(A)|, |M(A)| ); this is Theorem 6.11-C of [TaylA].

We will see in just a moment that the spectrum of an unbounded operator might
well be empty, but this cannot happen for a bounded operator; this is the first corollary
in Section VIII.2 of [Yosida] and also the corollary in Section VI.3 of [RS1], but one
should also look at Theorem A, Section 67, of [Simm1], which proves the same result
for the spectrumof an element in anyBanach algebra. The essential ingredient in all of
the proofs is Liouville’s theorem from complex analysis and a byproduct of the proof is
that the spectrum of a bounded operator is a bounded subset ofC. Finally, we remark
that unitarily equivalent operators (Remark 5.2.9) have the same point, continuous
and residual spectra.

Wewill now look at a few examples. The first is Example 5, Section VIII.1, of [RS1].
Its moral is that the spectrum (and almost everything else) is very sensitive to the
choice of domain.

Example 5.4.1. We define two operators A1 and A2 on L2[0, 1]. Their domains are

𝒟(A1) = {ψ ∈ L
2[0, 1] : ψ ∈ AC[0, 1] and dψ

dq
∈ L2[0, 1]}

and

𝒟(A2) = {ψ ∈ 𝒟(A1) : ψ(0) = 0}.

Each of these contains the smooth functions with compact support contained in (0, 1]
and so each is dense in L2[0, 1];A1 andA2 are both defined on their respective domains
by Aj = −iℏ

d
dq , j = 1, 2. We claim that

σ(A1) = C, (5.23)

but

σ(A2) = 0. (5.24)

To prove (5.23) we need only observe that for any λ ∈ C, eiλq/ℏ ∈ 𝒟(A1) and (λ −
A1)eiλq/ℏ = 0, so λ − A1 fails to be invertible and λ ∈ σ(A1). For the proof of (5.24),
wemust show that for every λ ∈ C, λ−A2 is invertible with a bounded inverse. We will
do this by exhibiting the inverse explicitly and then showing that it is bounded. For
this we define Sλ : L2[0, 1]→ 𝒟(A2) by

(Sλg)(q) =
−i
ℏ

q

∫
0

eiλ(q−s)/ℏg(s)ds
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for every g ∈ L2[0, 1] and every q ∈ [0, 1]. Now we compute (λ − A2)Sλ and Sλ(λ − A2).
For the record, wewill use the following formula from calculus for differentiating inte-
grals. If f (q, s) and its q-derivative are continuous and u(q) and v(q) are continuously
differentiable, then

d
dq

v(q)

∫
u(q)

f (q, s)ds = f (q, v(q))dv
dq
− f (q, u(q))du

dq
+

v(q)

∫
u(q)

𝜕f
𝜕q
(q, s)ds.

Since both L2[0, 1] and 𝒟(A2) contain a dense set of smooth functions, it will suffice
to show (λ − A2)Sλg = g and Sλ(λ − A2)g = g for any smooth function g in L2[0, 1] and
𝒟(A2), respectively. For (λ − A2)Sλ we note that

(λSλg)(q) = −
iλ
ℏ

q

∫
0

eiλ(q−s)/ℏg(s)ds

and

(A2Sλg)(q) = (−iℏ)(
−i
ℏ
) d
dq
(

q

∫
0

eiλ(q−s)/ℏg(s)ds)

= −[g(q) − 0 + iλ
ℏ

q

∫
0

eiλ(q−s)/ℏg(s)ds]

= −g(q) − iλ
ℏ

q

∫
0

eiλ(q−s)/ℏg(s)ds,

so (λ−A2)Sλ is the identity on L2[0, 1], as required. To show that Sλ(λ−A2) is the identity
on𝒟(A2)we will need the fact that g ∈ 𝒟(A2) satisfies g(0) = 0. Of course, (Sλλg)(q) is
the same as (λSλg)(q), but integrating by parts gives

(SλA2g)(q) = (
−i
ℏ
)(−iℏ)

q

∫
0

eiλ(q−s)/ℏ dg
ds

ds

= −[ eiλ(q−s)/ℏg(s)|q0 −
−iλ
ℏ

q

∫
0

eiλ(q−s)/ℏg(s)ds]

= −g(q) + 0 − iλ
ℏ

q

∫
0

eiλ(q−s)/ℏg(s)ds.

Thus, we find that Sλ(λ − A2) is the identity on𝒟(A2), as required.
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Having shown that Sλ is the inverse of λ − A2 we can finish the proof by showing
that Sλ is bounded for any fixed λ ∈ C. But, for any g ∈ L2[0, 1],

‖Sλg‖
2
L2 =

1

∫
0

 ( Sλg)(q)

2dq

≤ ( sup
0≤q≤1

 (Sλg)(q)
)
2

≤ ( sup
0≤q≤1

q

∫
0

 e
iλ(q−s)/ℏg(s)  ds)

2

≤ ( sup
0≤q≤1

q

∫
0

 e
iλ(q−s)/ℏ 

2ds)( sup
0≤q≤1

q

∫
0

 g(s)

2ds)

≤ C(λ) ‖g‖2L2 ,

where C(λ) is a constant that depends only on λ. Consequently, Sλ is bounded.

Example 5.4.2. Next we will consider the operator Q defined on 𝒟(Q) = {ψ ∈ L2(R) :
∫
R
q2|ψ(q)|2dq < ∞} by (Qψ)(q) = qψ(q). Here is what we know so far (see Exam-

ple 5.2.6). The operator Q is unbounded and self-adjoint (and therefore closed). More-
over, for any λ ∈ C, (λ − Q)ψ = 0⇒ ψ = 0 ∈ L2(R), so λ − Q is invertible. In particular,
the point spectrum Pσ(Q) is empty. Moreover, sinceQ is self-adjoint, the residual spec-
trum Rσ(Q) is also empty (we will prove this directly in a moment). All that remains
is the continuous spectrum Cσ(Q) and, since Q is self-adjoint, this must be a closed
(possibly empty) subset ofR (Theorem 5.4.1). What we will now show is that, in fact,
Cσ(Q) is all ofR, that is, for every λ ∈ R, (λ − Q)−1, which we know exists (Pσ(Q) = 0)
and will show is densely defined, is an unbounded operator on Image (λ − Q).

Note that, with λ ∈ R fixed, any ψ ∈ L2(R) that vanishes on some interval Uψ(λ)
about λ is in Image (λ − Q) because we can solve the equation (λ − q)ϕ(q) = ψ(q) by
taking ϕ(q) = 0 on Uψ(λ) and ϕ(q) = ψ(q)/(λ − q) outside of Uψ(λ). The resulting
function ϕ is in 𝒟(Q) since ψ is in L2(R). In particular, for each n = 1, 2, . . . and each
ψ ∈ L2(R), Image (λ − Q) contains χ(Jn)ψ, where χ(Jn) is the characteristic function of
the set Jn = (−∞,−

1
n ] ∪ [

1
n ,∞). But χ(Jn)ψ converge pointwise almost everywhere to ψ

as n → ∞ and so, by the dominated convergence theorem (Theorem 2.9.1 of [Fried]),
χ(Jn)ψ→ ψ in L2(R). Consequently, Image (λ − Q) is dense in L2(R). In particular, the
residual spectrum Rσ(A) is empty.

Finally, we show that (λ − Q)−1 is unbounded on Image (λ − Q). Suppose to the
contrary that (λ − Q)−1 is bounded. Then there exists a positive constantM such that
‖(λ−Q)−1ψ‖ ≤ M‖ψ‖ for allψ ∈ Image (λ−Q). In particular, for anyϕ in𝒟(λ−Q) = 𝒟(Q)
we have

‖ϕ‖ = (λ − Q)
−1(λ − Q)ϕ ≤ M

(λ − Q)ϕ
. (5.25)
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We arrive at a contradiction by constructing, for each n = 1, 2, . . . , an element ϕn of
𝒟(λ −Q) = 𝒟(Q) satisfying ‖ϕn‖ = 1 and ‖(λ −Q)ϕn‖ <

1
n so that for sufficiently large n,

(5.25) cannot be satisfied. For this we let In = [λ −
1
2n , λ +

1
2n ] and take ϕn = √n χ(In) so

thatϕn takes the constant value√n on [λ−
1
2n , λ+

1
2n ] and is zero outside [λ−

1
2n , λ+

1
2n ].

Then ϕn is clearly in 𝒟(Q) and satisfies ‖ϕn‖ = 1. Furthermore, [(λ − Q)ϕn](q) is the
linear function (λ − q)√n on [λ − 1

2n , λ +
1
2n ] and is zero outside [λ − 1

2n , λ +
1
2n ]. The

maximum value of | (λ − q)√n | on [λ − 1
2n , λ +

1
2n ] is

√n
2n =

1
2√n , so

(λ − Q)ϕn

2 = ∫

R

[(λ − q)ϕn](q)

2dq ≤

λ+ 1
2n

∫
λ− 1

2n

( 1
2√n
)
2
dq = 1

4n
( 1
n
) < 1

n2
,

as required. The conclusion is that

σ(Q) = Cσ(Q) = R.

Remark 5.4.2. The ideas in this last example can be employed to yield amore general
result. Let g : R→ R be a real-valued, measurable function onR that is finite almost
everywhere with respect to Lebesgue measure μ and consider the self-adjoint multi-
plication operator Qg : 𝒟(Qg) → L2(R) defined on 𝒟(Qg) = {ψ ∈ L2(R) : gψ ∈ L2(R)}
by (Qgψ)(q) = g(q)ψ(q)∀ψ ∈ 𝒟(Qg)∀q ∈ R. By self-adjointness (Exercise 5.2.6), the
residual spectrum Rσ(Qg) is always empty. The point spectrum Pσ(Qg) is nonempty if
and only if g differs from a constant function only on a set of measure zero, in which
case σ(Qg) consists of this constant value alone. In general, the spectrum σ(Qg) is just
the essential range of g (recall that a real number λ is in the essential range of g if and
only if μ {q ∈ R : λ − ϵ < g(q) < λ + ϵ} is positive for every ϵ > 0; in particular, if g is
continuous, this is just the range of g).

Example 5.4.3. We consider the momentum operator P defined on

𝒟(P) = {ψ ∈ L2(R) : ψ ∈ AC[a, b]∀a < b inR and dψ
dq
∈ L2(R)}

by

P = −iℏ d
dq
.

We have seen (Example 5.2.7) that P is unitarily equivalent, via the Fourier transform
ℱ , to the operator Q in the previous example so its spectrum is precisely the same.
Specifically, the point spectrum Pσ(P) and the residual spectrumRσ(P) are both empty
and the continuous spectrum Cσ(P) is all ofR. We have

σ(P) = Cσ(P) = R.
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Example 5.4.4. The free particle Hamiltonian H0 (Example 5.2.8) defined on 𝒟(H0) =
{ψ ∈ L2(R) : Δψ ∈ L2(R)} is unitarily equivalent to the self-adjoint multiplication
operator Qg , where g(p) =

ℏ2

2m p2, and so they both have the same spectrum. From
Remark 5.4.2 we conclude that the point and residual spectra of H0 are both empty
and the continuous spectrum is the range of g, that is, Cσ(H0) = [0,∞), so

σ(H0) = Cσ(H0) = [0,∞).

For the record we note that this implies, in particular, that

σ(−Δ) = Cσ(−Δ) = [0,∞).

We showed earlier (Example 5.2.8) that ⟨ψ,−Δψ⟩ ≥ 0 for all ψ ∈ 𝒮(R). In fact, this
is true for allψ ∈ 𝒟(Δ) and this is related to the result we have just proved. A symmetric
operator A on a Hilbert space ℋ is said to be positive if ⟨ψ,Aψ⟩ ≥ 0 for all ψ ∈ 𝒟(A).
The following is Lemma 2, Section XII.7.2, of [DSII].

Theorem 5.4.2. Let A : 𝒟(A) → ℋ be a self-adjoint operator on a complex, separable
Hilbert spaceℋ. Then A is positive if and only if σ(A) ⊆ [0,∞).

Example 5.4.5. Finally, we return to the operator HB defined on 𝒮(R) by

HB =
1
2m

P2 + mω
2

2
Q2 = − ℏ

2

2m
d2

dq2
+ mω

2

2
q2.

We have seen (Example 5.3.1) that HB is essentially self-adjoint on the Schwartz space
𝒮(R), so it has a unique self-adjoint extension which we will also denoteHB. This was
proved by finding an orthonormal basis {ψ0,ψ1, . . .} for L2(R) consisting of eigenvec-
tors forHB in 𝒮(R) and appealing to Theorem 5.3.1. In particular, all of the correspond-
ing eigenvalues

ℰn = (n +
1
2
)ℏω, n = 0, 1, 2, . . . ,

are elements of the point spectrum Pσ(HB). We claim that, because the eigenvectors of
HB are complete in L2(R), this is the entire spectrum of HB, that is, for any λ not equal
to one of these ℰn, the operator (λ−HB)

−1 exists and is densely defined and bounded on
its domain. By Theorem 5.4.1 we know this already for any λ with nonzero imaginary
part so we can restrict our attention to real λ.

Webeginwith a few remarks onHB itself. Since {ψn}
∞
n=0 is an orthonormal basis for

L2(R)we can write anyψ in𝒟(HB) asψ = ∑
∞
n=0⟨ψn,ψ⟩ψn and, sinceHB is self-adjoint,

HBψ =
∞

∑
n=0
⟨ψn,HBψ⟩ψn =

∞

∑
n=0
⟨HBψn,ψ⟩ψn =

∞

∑
n=0
⟨ℰnψn,ψ⟩ψn =

∞

∑
n=0

ℰn⟨ψn,ψ⟩ψn.
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Thus, the domain𝒟(HB) of HB consists precisely of those ψ ∈ L2(R) for which the series
∑∞n=0 ℰn⟨ψn,ψ⟩ψn converges in L2(R). Moreover, by Parseval’s theorem (Theorem 6.4.5
of [Fried]),

‖HBψ‖
2 =
∞

∑
n=0

ℰ2n
⟨ψn,ψ⟩


2

for any such ψ.
Note thatHB is injective and therefore invertible on its domain because 0 is not an

eigenvalue. We will find an explicit series representation for H−1B . Let ϕ ∈ Image (HB)
and write ϕ = ∑∞n=0⟨ψn,ϕ⟩ψn. Then

H−1B ϕ = ψ ⇔ ϕ = HBψ ⇔ ⟨ψn,ϕ⟩ = ℰn⟨ψn,ψ⟩ ⇔ ⟨ψn,ψ⟩ =
1
ℰn
⟨ψn,ϕ⟩

for every n = 0, 1, 2, . . . . Thus,

H−1B ϕ =
∞

∑
n=0

1
ℰn
⟨ψn,ϕ⟩ψn. (5.26)

This series also converges in L2(R) since ϕ = ∑∞n=0⟨ψn,ϕ⟩ψn converges and 0 < ℰ0 <
ℰ1 < ℰ2 ⋅ ⋅ ⋅ → ∞. Indeed, this series converges for any ϕ in L2(R) and the element of
L2(R) it represents satisfies

HB(
∞

∑
n=0

1
ℰn
⟨ψn,ϕ⟩ψn) =

∞

∑
n=0

ℰn
1
ℰn
⟨ψn,ϕ⟩ψn =

∞

∑
n=0
⟨ψn,ϕ⟩ψn = ϕ.

Weconclude that the image ofHB is not only dense in L2(R), but is, in fact, all of L2(R).
Moreover, H−1B is bounded on L2(R) since, for any ϕ ∈ L2(R),

H
−1
B ϕ

2 =
∞

∑
n=0

1
ℰ2n
 ⟨ψn,ϕ⟩


2 ≤ 1

ℰ20
‖ϕ‖2.

Let us summarize all of this. We have shown that HB is an unbounded, self-adjoint,
invertible operator whose inverse H−1B is a bounded operator defined everywhere
on L2(R); we will show in Example 5.5.4 that it is also a compact operator (see Re-
mark 5.5.2 for the definition). Since all of this is equally true of −HB, what we have just
shown is that (0−HB)

−1 is a bounded operator defined on all of L2(R). In other words,
λ = 0 is in the resolvent set ρ(HB) of HB. Now, let us deal with all of the remaining
λ ̸= ℰn, n = 0, 1, 2, . . . inR.

Thus, we assume λ ∈ R, λ ̸= 0 and λ ̸= ℰn, n = 0, 1, 2, . . . , and we must show that
(λ − HB)

−1 exists, is densely defined and is bounded on its domain. We will begin by
just computing (λ−HB)

−1 formally to get a putative formula to workwith and then deal
with convergence issues and proving what needs to be proved. Thus, we observe that

(λ − HB)
−1ϕ = ψ ⇔ ϕ = (λ − HB)ψ
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⇔ λψ − HBψ = ϕ
⇔ ⟨ψn, λψ⟩ − ℰn⟨ψn,ψ⟩ = ⟨ψn,ϕ⟩ ∀n = 0, 1, 2, . . .

⇔ ⟨ψn,ψ⟩ =
⟨ψn,ϕ⟩
λ − ℰn

∀n = 0, 1, 2, . . . .

Thus, assuming for the moment that the series converges, we have

HBψ =
∞

∑
n=0

ℰn
⟨ψn,ϕ⟩
λ − ℰn

ψn.

From this and λψ = ϕ+HBψwe arrive at the following potential formula for (λ−HB)
−1:

ψ = (λ − HB)
−1ϕ = 1

λ
ϕ + 1

λ

∞

∑
n=0

ℰn
⟨ψn,ϕ⟩
λ − ℰn

ψn. (5.27)

To clean this business up we first show that the series in (5.27) does, indeed, converge
in L2(R) for any ϕ. For this we note first that, since ℰn → ∞ as n → ∞, | ℰnλ−ℰn

| is
bounded and we can let

α = sup
n≥0


ℰn

λ − ℰn


.

Also let

φk =
k
∑
n=0

ℰn
⟨ψn,ϕ⟩
λ − ℰn

ψn

for each k ≥ 0. Then for k1 < k2,

‖φk2 − φk1‖
2 =

k2
∑

n=k1+1


ℰn

λ − ℰn



2
⟨ψn,ϕ⟩


2 ≤ α2

k2
∑

n=k1+1

⟨ψn,ϕ⟩

2.

Since∑∞n=0 |⟨ψn,ϕ⟩|2 = ‖ϕ‖2, the sequence {φk}
∞
k=0 of partial sums is Cauchy and there-

fore convergent in L2(R). Thus, the series in (5.27) converges in L2(R). Consequently,

ψ = 1
λ
ϕ + 1

λ

∞

∑
n=0

ℰn
⟨ψn,ϕ⟩
λ − ℰn

ψn

is a well-defined element of L2(R) and it certainly satisfies (λ − HB)ψ = ϕ. We have
therefore shown that (λ − HB)

−1 is defined for every ϕ in L2(R) and is given by (5.27).
All that remains is to show that (λ − HB)

−1 is bounded on L2(R). But, from (5.27) we
find that

(λ − HB)
−1ϕ ≤

1
|λ|
‖ϕ‖ + 1
|λ|

α‖ϕ‖ = 1
|λ|
(1 + α)‖ϕ‖,

so the result follows. Thus,

σ(HB) = Pσ(HB) = {ℰn = (n +
1
2
)ℏω, n = 0, 1, 2, . . .}.

In Example 5.5.1 we will show that (λ − HB)
−1 is, in fact, a compact operator.



5.5 The spectral theorem | 165

5.5 The spectral theorem

Now we turn to the spectral theorem. We have shown that multiplication by q defines
a self-adjoint operator Q : 𝒟(Q) → L2(R) on 𝒟(Q) = {ψ ∈ L2(R) : ∫

R
q2|ψ(q)|2dq <∞}

and we noted that an analogous statement is true if q is replaced by any measur-
able, real-valued function g(q) (Exercise 5.2.6). We have also shown that the opera-
tor P : 𝒟(P) = {ψ ∈ L2(R) : ψ ∈ AC[a, b]∀a < b inR and dψ

dq ∈ L
2(R)}→ L2(R)} defined

by P = −i ℏ d
dq is self-adjoint because it is unitarily equivalent to Q. There is a sense in

which these examples are generic. One version of the spectral theorem says roughly
that real-valued multiplication operators on an L2 space are always self-adjoint and
that, conversely, any self-adjoint operator is unitarily equivalent to a real-valued mul-
tiplication operator on some L2 space. The following more precise statements are, re-
spectively, Proposition 1, Section VIII.3, and Theorem VIII.4 of [RS1].

Remark 5.5.1. Recall that if g is a real-valued function on ameasure space (M, μ), then
g is essentially bounded if there is a positive constant C for which |g(m)| ≤ C almost
everywhere and a real number λ is in the essential range of g if and only if μ {m ∈ M :
λ − ϵ < g(m) < λ + ϵ} is positive for every ϵ > 0.

Theorem 5.5.1. Let (M, μ) be a σ-finite measure space and g : M → R a measurable,
real-valued function on M that is finite almost everywhere. Define the multiplication
operator Qg : 𝒟(Qg) → L2(M, μ) on 𝒟(Qg) = {ψ ∈ L2(M, μ) : gψ ∈ L2(M, μ)} by
(Qgψ)(m) = g(m)ψ(m)∀m ∈ M. Then Qg is self-adjoint and its spectrum σ(Qg) is the
essential range of g; Qg is a bounded operator if and only if g is essentially bounded.

Theorem 5.5.2. Let A : 𝒟(A) → ℋ be a self-adjoint operator on a separable, complex
Hilbert spaceℋ. Then there exist a σ-finitemeasure space (M, μ) and a real-valuedmea-
surable function g : M → R onM that is finite almost everywhere such that A is unitarily
equivalent to the multiplication operator Qg : 𝒟(Qg) → L2(M, μ); that is, there exists a
unitary equivalence U : ℋ→ L2(M, μ) for which:
1. φ ∈ 𝒟(A)⇔ Uφ ∈ 𝒟(Qg) and
2. ψ ∈ U[𝒟(A)]⇒ [(UAU−1)ψ](m) = g(m)ψ(m)∀m ∈ M.

Dropping the requirement that g be real-valued one obtains the spectral theorem for
normal operators, that is, operators that commute with their adjoints. Since unitary
operators are certainly normal (U∗U = UU∗ = id) one obtains such a representation
for any unitary operator, but in this case UU∗ = id implies that |g(m)| = 1 almost
everywhere. Consequently, the essential range of g is contained in the unit circle {z ∈
C : |z| = 1} and therefore so is the spectrum.

Theorem 5.5.2 is an elegant way of viewing the essential content of the spectral
theorem (see [Hal3] formore on this point of view), but it is not particularlywell suited
to the physical interpretation of observables in quantum mechanics and this is really
our principal objective here. What we need is something more akin to the version of
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the finite-dimensional spectral theorem that we described in Section 5.1, that is, an
explicit representation of any self-adjoint operator in terms of projection operators.
What this representation looks like depends on the type of self-adjoint operator at
hand. The simplest such result deals with self-adjoint operators that are also com-
pact.

Remark 5.5.2. Recall that a bounded operator T : ℋ → ℋ on a separable, complex
Hilbert spaceℋ is said to be compact (or completely continuous) if, for each bounded
sequence {φn}

∞
n=1 inℋ, the sequence {Tφn}

∞
n=1 has a subsequence that converges inℋ

(in otherwords,Tmaps bounded sets inℋ onto setswith compact closure inℋ). Finite
linear combinations of compact operators are compact, as are products and adjoints
of compact operators. Recall also that a bounded operator P : ℋ→ ℋ on a separable,
complex Hilbert spaceℋ is called a projection (more accurately, an orthogonal projec-
tion) ifP is self-adjoint and satisfiesP2 = P. ThenM = Image (P) is a closed subspace of
ℋ, soℋ is the orthogonal direct sumM⊕M⊥ ofM and its orthogonal complementM⊥;
P is the orthogonal projection ofℋ ontoM in the sense that everyψ ∈ ℋ can bewritten
uniquely as ψ = ϕ + ϕ⊥, withϕ = Pψ ∈ M andϕ⊥ ∈ M⊥. One often writes P = PM for
emphasis. If P ̸= 0, then ‖P‖ = 1. All of this is discussed in any functional analysis
text but, in particular, in Sections 5.1–5.3 and 6.2–6.3 of [Fried]; also see Chapter VI
of [RiSz.N] for some nice applications.

The spectral theorem for compact self-adjoint operators is particularly simple and
easy to relate to, so, although it is probably already familiar,we intend to linger over it a
bit longer than is absolutely necessary for our purposes because it also provides some
nice motivation for the more general result that is, perhaps, not so easy to relate to.
Probably the best places to find the details that we omit here are Chapter 6 of [TaylA],
or Chapter VI of [RiSz.N]; see (5.21) and (5.22) for the notation used in part 2. of the
following theorem.

Theorem 5.5.3. Let T be a nonzero, compact, self-adjoint operator on the separable,
complex Hilbert spaceℋ. Then:
1. T has at least one nonzero (necessarily real) eigenvalue λ with |λ| = ‖T‖.
2. The spectrum σ(T) is contained in the interval [m(T),M(T)] ⊆ R and is at most

countably infinite.
3. Every nonzero element λ of the spectrum σ(T) is an eigenvalue of T with a finite-

dimensional eigenspace Mλ.
4. The eigenvalues of T can accumulate only at0, and ifℋ is infinite-dimensional, then

0must be in σ(T), but it need not be an eigenvalue of T.
5. If λ1, λ2, . . . is the (possibly finite) sequence of distinct nonzero eigenvalues of T, then

ℋ ≅ Kernel (T) ⊕Mλ1 ⊕Mλ2 ⊕ ⋅ ⋅ ⋅ .
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6. If Pλn : ℋ→ Mλn is the orthogonal projection ofℋ onto Mλn , then

Tψ = ∑
n≥1

λn Pλnψ

for all ψ ∈ ℋ; if the sum is infinite, then the convergence is in the norm topology
ofℋ.

It is sometimes convenient to arrange the distinct nonzero eigenvalues λ1, λ2, . . . in a
sequence in which their absolute values are nonincreasing and each eigenvalue is re-
peated a number of times equal to itsmultiplicity. If this is thewaywewant them listed
we will use μ rather than λ to label the eigenvalues. Thus,

| μ1 | ≥ | μ2 | ≥ ⋅ ⋅ ⋅ ,

where each μk is equal to some λn(k) and appears in the sequence dim (Mλn(k) ) times.
Once this is done one can clearly choose an orthonormal basis for each Mλn and ar-
range the elements of these bases in a sequence ψ1,ψ2, . . . . Then

Tψ = ∑
k≥1
⟨ψk ,Tψ⟩ψk = ∑

k≥1
⟨Tψk ,ψ⟩ψk = ∑

k≥1
μk⟨ψk ,ψ⟩ψk

for any ψ ∈ ℋ (see the theorem on page 233 of [RiSz.N]). Note, however, that, unless
Kernel (T) = {0}, ψ1,ψ2, . . . will only be an orthonormal sequence in ℋ and not an
orthonormal basis. Even so, when phrased in these terms one can formulate a useful
converse of Theorem 5.5.3. The following result is proved on pages 234–235 of [RiSz.N].

Theorem 5.5.4. Let T : ℋ → ℋ be a linear map on a separable, complex Hilbert
space ℋ. Suppose there exists an orthonormal sequence {ψk}

∞
k=1 in ℋ and a sequence

{μk}∞k=1 of real numbers converging to 0 for which

Tψ = ∑
k≥1

μk⟨ψk ,ψ⟩ψk

for every ψ ∈ ℋ. Then T is a compact, self-adjoint operator onℋ.

Example 5.5.1. Let us returnonceagain to theoperatorHB of Example 5.4.5.HereHB is,
of course, not compact (in fact, not even bounded), but it is invertible with a globally
defined, bounded inverse H−1B and we claim that this is compact. Indeed, this follows
directly from the previous theorem if we recall the expression (5.26) for H−1B and the
fact that the eigenvalues ℰn of HB are nonzero and satisfy ℰn →∞ as n →∞. In fact,
if λ is any point in the resolvent set ρ(HB), then the resolvent operator (λ − HB)

−1 is
compact. This follows in exactly the same way from the fact that (5.27) can be written

(λ − HB)
−1ϕ = 1

λ

∞

∑
n=0
(1 + ℰn

λ − ℰn
) ⟨ψn,ϕ⟩ψn.
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Compact, self-adjoint operators have important applications, for example, to the
Hilbert–Schmidt theory of linear integral equations (where they first arose), but they
do not play a major role in the foundations of quantum mechanics. Nevertheless, we
would like to spend a little more time with the compact case in order to see how it
can be rephrased in a way that admits a generalization to arbitrary bounded and even
unbounded self-adjoint operators. Specifically, we would like to turn the sum in The-
orem 5.5.3.6 into an integral.

Thus, we consider a nonzero, compact, self-adjoint operator T on a separable,
complex Hilbert spaceℋ, and we denote by λ1, λ2, . . . the distinct nonzero (necessarily
real) eigenvalues of T and by μ1, μ2, . . . these same nonzero eigenvalues arranged in
such a way that each λn appears dim (Mλn ) times and | μ1 | ≥ | μ2 | ≥ ⋅ ⋅ ⋅. As above,
we denote by {ψ1,ψ2, . . .} the orthonormal sequence of eigenvectors of T satisfying
Tψ = ∑∞k=1 μk⟨ψk ,ψ⟩ψk for every ψ ∈ ℋ. Now we will define a one-parameter family of
operators Eλ, λ ∈ R, as follows.
1. For λ < 0 and any ψ ∈ ℋ,

Eλψ = ∑
μk≤λ
⟨ψk ,ψ⟩ψk ,

where the sum is taken to be 0 if there are no μk ≤ λ. Note that this is a finite sum
since λk → 0 as k →∞.

2. For λ = 0 and any ψ ∈ ℋ,

E0ψ = ψ − ∑
μk>0
⟨ψk ,ψ⟩ψk ,

where the sum is taken to be 0 if there are no μk > 0. Here the sum need not be
finite, but converges inℋ by Bessel’s inequality.

3. For λ > 0 and any ψ ∈ ℋ,

Eλψ = ψ − ∑
μk>λ
⟨ψk ,ψ⟩ψk ,

where the sum is taken to be 0 if there are no μk > λ. Again, the sum is finite since
λk → 0 as k →∞.

Now one must check a few things. Specifically, one can show that each Eλ, λ ∈ R, is a
projection and, moreover, the family {Eλ}λ∈R of projections satisfies:
1. EλEκ = Emin(λ,κ),
2. Eλ = 0 if λ < m(T) and Eλ = idℋ if λ ≥ M(T) and
3. limκ→λ+ Eκψ = Eλψ∀ψ ∈ ℋ.

Part 2. is clear from the definition since σ(T) ⊆ [m(T),M(T)]. Since, as a function of λ,
Eλ is constant between any two consecutive eigenvalues of T, Part 3. is clear for λ < 0
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and for λ > 0, while, for λ = 0, it is simply a restatement of the definition of E0. Part 1.
is proved by considering the various possibilities for the relative ordering of λ, κ and 0
inR. If you would like to see how this goes you might write out at least the following
case.

Exercise 5.5.1. Suppose λ ≤ κ < 0 and show that EλEκ = Eλ.

It is customary to write limκ→λ+ Eκψ as Eλ+0ψ so that 3. simply says Eλ+0ψ = Eλψ;
this is often abbreviated as Eλ+0 = Eλ. Similarly, one writes limκ→λ− Eκψ = Eλ−0ψ,
but this, in general, is not equal to Eλψ. The family {Eλ}λ∈R of projections is called a
resolution of the identity for the operator T. With it one can produce the integral repre-
sentation of T to which we have alluded several times.

Now let us return to our compact, self-adjoint operator T. We begin by noting that
T is completely determined by the values of ⟨ψ,Tϕ⟩ = ⟨Tψ,ϕ⟩ for ψ,ϕ ∈ ℋ. Next we
appeal to Proposition 1, Section XI.5, of [Yosida], according to which the properties of
the resolution of the identity {Eλ}λ∈R we listed above as 1., 2. and 3. imply that for any
fixed ψ,ϕ ∈ ℋ,

⟨ψ,Eλϕ⟩

is, as a complex-valued function of λ, of bounded variation. Now choose real numbers
a < m(T) and b ≥ M(T). Then, for any complex-valued, continuous function f (λ) on
[a, b], the Riemann–Stieltjes integral (see Appendix H.2)

b

∫
a

f (λ)d⟨ψ,Eλϕ⟩

exists and assigns to the pair (ψ,ϕ) of elements of ℋ a complex number. This is, in
particular, true for the identity function f (λ) = λ on [a, b] and in this case one finds
that

b

∫
a

λ d⟨ψ,Eλϕ⟩ = ⟨ψ,Tϕ⟩. (5.28)

Consequently,T is completely determinedby the values of these integrals forψ,ϕ ∈ ℋ.
In fact, because of the following version of the polarization identity, satisfied by any
operator A on its domain𝒟(A),

⟨ψ,Aϕ⟩ = 1
2i
⟨ψ + iϕ,A(ψ + iϕ)⟩ + 1

2
⟨ψ + ϕ,A(ψ + ϕ)⟩

− 1 − i
2
[⟨ψ,Aψ⟩ + ⟨ϕ,Aϕ⟩], (5.29)

T is actually determined by the integrals
b

∫
a

λ d⟨ψ,Eλψ⟩ = ⟨ψ,Tψ⟩, ψ ∈ ℋ. (5.30)
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The integral in (5.28) is a limit of Riemann–Stieltjes sums of the form

n
∑
k=1

τ∗k [⟨ψ,Eτkϕ⟩ − ⟨ψ,Eτk−1ϕ⟩] =⟨ψ,
n
∑
k=1

τ∗k (Eτk − Eτk−1 )ϕ⟩

so the proof of (5.28) amounts to showing that the operators ∑nk=1 τ
∗
k (Eτk − Eτk−1 ) =

∑nk=1 τ
∗
kΔEλk converge weakly to T as max(τk − τk−1) → 0 and independently of the

choice of τ∗k .

Remark 5.5.3. For the record we recall that:
1. ∑nk=1 τ

∗
kΔEλk converges weakly to T if ⟨ψ, ∑nk=1 τ

∗
kΔEλkϕ⟩ → ⟨ψ,Tϕ⟩ in C for all

ψ,ϕ ∈ ℋ;
2. ∑nk=1 τ

∗
kΔEλk converges strongly to T if ∑nk=1 τ

∗
kΔEλkψ→ Tψ inℋ for all ψ ∈ ℋ;

3. ∑nk=1 τ
∗
kΔEλk converges uniformly to T if ∑nk=1 τ

∗
kΔEλk → T in the operator norm

topology of ℬ(ℋ).

Each of these implies the preceding one in the list.

This is true andnot so hard to showbecauseEλ are relatively simple for a compact,
self-adjoint operator.However,muchmore is true. It canbe shown that these operators
actually converge uniformly to T and therefore also converge strongly to T. For this
reason one often writes

T =
b

∫
a

λ dEλ, (5.31)

where the integral is the limit in the operator norm of the Riemann–Stieltjes-like sums
∑nk=1 τ

∗
kΔEλk (Riemann–Stieltjes-like because ΔEλk are now projection operators rather

than real or complex numbers).
The spectral theorem for compact, self-adjoint operators, when written in the in-

tegral forms (5.28) or (5.30), is virtually identical in appearance to the spectral theorem
for arbitrary bounded, self-adjoint operators; one need only determine how to asso-
ciate with such an operator something like {Eλ}λ∈R with which to define the integrals
(however, in the bounded case the convergence in (5.30)will generally not be uniform,
but only strong convergence). The same is true of the spectral theorem for unbounded,
self-adjoint operators except that the integral is over all of R rather than a compact
interval containing the spectrum since the spectrum of an unbounded operator is not
a bounded set.

We trust that this digression on the compact case will make the general form of
the spectral theorem that we now record somewhat more palatable. A detailed treat-
ment of the following material is available in Chapter XI of [Yosida] and Chapter III,
Section 5, of [Prug].

Let (ℳ,𝒜)denote ameasurable space, that is, a pair consistingof a setℳ together
with a σ-algebra𝒜 of subsets ofℳ. A spectral measure, or projection-valued measure
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on (ℳ,𝒜) is a function E : 𝒜 → ℬ(ℋ) assigning to each measurable set S ∈ 𝒜 a
bounded operator E(S) ∈ ℬ(ℋ) and satisfying each of the following:
1. for each measurable set S ∈ 𝒜,E(S) is an orthogonal projection, that is, it is idem-

potent E(S)2 = E(S) and self-adjoint E(S)∗ = E(S);
2. E(0) = 0 and E(ℳ) = idℋ;
3. if S1, S2, . . . is a countable family of pairwise disjoint measurable sets in 𝒜 and

S = ⨆∞n=1 Sn is their union, then

E(S) =
∞

∑
n=1

E(Sn),

where the infinite series converges in the strong sense, that is,

E(S)ψ = lim
N→∞

N
∑
n=1

E(Sn)ψ,

for each ψ ∈ ℋ.

Exercise 5.5.2. Show that if S1 ∩ S2 = 0, then E(S1) and E(S2) project onto orthogonal
subspaces ofℋ and that it follows that

S1, S2 ∈ 𝒜 ⇒ E(S1 ∩ S2) = E(S1)E(S2).

Wewill be interested primarily in the special case in which the measurable space
consists of ℳ = R and its σ-algebra 𝒜 of Borel sets; spectral measures on this mea-
surable space will be called simply spectral measures onR.

Now suppose E is a spectral measure on themeasurable space (ℳ,𝒜) andψ is an
element inℋ. Since each E(S) is idempotent and self-adjoint,

⟨ψ,E(S)ψ⟩ = ⟨ψ,E(S)2ψ⟩ = ⟨E(S)ψ,E(S)ψ⟩ = E(S)ψ

2.

As a function of S ∈ 𝒜, ⟨ψ,E(S)ψ⟩ is therefore a finitemeasure on (ℳ,𝒜) for each fixed
ψ ∈ ℋ which we will denote

⟨ψ,Eψ⟩,

that is,

⟨ψ,Eψ⟩(S) = ⟨ψ,E(S)ψ⟩ = E(S)ψ

2.

Note that if ψ is a unit vector in ℋ, then ⟨ψ,Eψ⟩ is a probability measure onℳ since
⟨ψ,E(ℳ)ψ⟩ = ⟨ψ,ψ⟩ = 1. It follows from the polarization identity (5.29) that for any
two elementsψ andϕ inℋ, S → ⟨ψ,E(S)ϕ⟩ is a complexmeasure onℳwhich wewill
denote

⟨ψ,Eϕ⟩.
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If E is a spectral measure on R and λ is any real number, then (−∞, λ] is a Borel
set, so E(−∞, λ] is a projection onℋ. We can therefore define a one-parameter family
{Eλ}λ∈R of projections by

Eλ = E(−∞, λ]

for every λ ∈ R. The defining properties of a spectral measure translate into the fol-
lowing properties of {Eλ}λ∈R, where all of the limits are in the strong sense:
1. EλEκ = Emin(λ,κ) ∀λ, κ ∈ R,
2. limλ→−∞ Eλ = 0 and limλ→∞ Eλ = idℋ,
3. limκ→λ+ Eκ = Eλ ∀λ ∈ R.

Any one-parameter family {Eλ}λ∈R of projections onℋ satisfying these three properties
is called a resolution of the identity, or spectral family forℋ. Thus, any spectralmeasure
on R gives rise to a resolution of the identity. Conversely, since intervals of the form
(−∞, λ] generate theσ-algebra of Borel sets inR, any resolution of the identity extends
to a unique spectral measure onR. Properties 1.–3. in the definition of a resolution of
the identity imply (by Proposition 1, Section XI.5, of [Yosida]) that for any fixed ψ,ϕ ∈
ℋ, ⟨ψ,Eλϕ⟩ is, as a function of λ, of bounded variation, so it can be used to define a
Stieltjes integral (see Appendix H). One can also check that

λi < λj ⇒ Eλj − Eλi = E(λi, λj],

whereE(λi, λj] is the projection associated to (λi, λj]by the corresponding spectralmea-
sure onR; in particular, Eλj − Eλi is a projection.

Now, let [a, b] be a nondegenerate, closed, bounded interval in R and suppose
f : R → C is a continuous, complex-valued function onR. For any partition a = λ0 <
λ1 < ⋅ ⋅ ⋅ < λn = b of [a, b] and any choice of λ∗k ∈ (λk−1, λk], k = 1, 2, . . . , n, we consider
the operator

n
∑
k=1

f (λ∗k )(Eλk − Eλk−1 ) =
n
∑
k=1

f (λ∗k )ΔEλk .

By Proposition 2, Section XI.5, of [Yosida], these Riemann–Stieltjes sums have a strong
limit as max(λk − λk−1) → 0, independent of the choice of λ∗k . Thus, we can define an
operator, denoted

b

∫
a

f (λ)dEλ,

whose value at any ψ ∈ ℋ is

(
b

∫
a

f (λ)dEλ)ψ = lim
n
∑
k=1

f (λ∗k )(ΔEλkψ),
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where the limit is taken over finer and finer partitions of [a, b] just as for the Riemann
integral. We would also like to define the corresponding improper integral over all of
R in the usual way as

(∫
R

f (λ)dEλ)ψ = (
∞

∫
−∞

f (λ)dEλ)ψ

= (
0

∫
−∞

f (λ)dEλ)ψ + (
∞

∫
0

f (λ)dEλ)ψ

= lim
a→−∞
(

0

∫
a

f (λ)dEλ)ψ + limb→∞
(

b

∫
0

f (λ)dEλ)ψ,

but, of course, this will only make sense if both of these limits in ℋ exist. According
to Theorem 1, Section XI.5, of [Yosida], this is the case if and only if

∫
R

f (λ)

2d⟨ψ,Eλψ⟩ =

∞

∫
−∞

f (λ)

2d⟨ψ,Eλψ⟩ =

∞

∫
−∞

f (λ)

2d ‖Eλψ‖

2 <∞. (5.32)

Consequently, ∫
R
f (λ)dEλ defines an operator on the set of all ψ ∈ ℋ satisfying (5.32).

We will put all of the information, and a bit more, together in the following theorem.

Theorem 5.5.5. Let ℋ be a separable, complex Hilbert space and E : 𝒜 → ℬ(ℋ) a
spectral measure onR with associated resolution of the identity {Eλ}λ∈R. Let f : R→ C
be a continuous, complex-valued function onR. Then ∫

R
f (λ)dEλ defines an operator Af

on

𝒟(Af ) = {ψ ∈ ℋ : ∫
R

f (λ)

2d⟨ψ,Eλψ⟩ <∞}

whose value at any ψ ∈ 𝒟(Af ) is

Afψ = (∫
R

f (λ)dEλ)ψ.

The operator Af is uniquely determined by the condition that

⟨ϕ,Afψ⟩ = ∫
R

f (λ) d⟨ϕ,Eλψ⟩

for all ψ ∈ 𝒟(Af ) and all ϕ ∈ ℋ. Furthermore, if ̄f (λ) = f (λ) is the conjugate function of
f , then

A ̄f = A
∗
f ,

so, in particular, if f is real-valued, then Af is self-adjoint.



174 | 5 Synopsis of self-adjoint operators, spectral theory and Stone’s theorem

Whatwe conclude from Theorem 5.5.5 is that if we are given a spectral measure on
Rwith values inℬ(ℋ) and a real-valued function onR, thenwe canmanufacture self-
adjoint operators onℋ. Remarkably, every self-adjoint operator on a separable, com-
plex Hilbert spaceℋ can be manufactured this way. This is the content of the spectral
theorem for self-adjoint operators which we will now record.

Theorem 5.5.6. Letℋ be a separable, complexHilbert space andAa self-adjoint opera-
tor onℋwith domain𝒟(ℋ). Then there exists a unique spectral measure EA : 𝒜→ ℬ(ℋ)
onR with associated resolution of the identity {EAλ }λ∈R satisfying each of the following:

𝒟(A) = {ψ ∈ ℋ : ∫
R

λ2d⟨ψ,EAλ ψ⟩ <∞},

Aψ = (∫
R

λ dEAλ )ψ.

Furthermore, the support of EA coincides with the spectrum σ(A) of A, that is,

λ ∈ σ(A) ⇔ EA(λ − ϵ, λ + ϵ) ̸= 0 ∀ϵ > 0.

Remark 5.5.4. There are various approaches to the proof of Theorem 5.5.6. One proof
proceeds along the following lines. One first proves an analogous spectral decompo-
sition for unitary operators and then appeals to a correspondence between unitary
and self-adjoint operators called the Cayley transform. This is carried out in great de-
tail in Chapter III, Section 6, of [Prug]. One can also consult Chapter XI, Sections 4–6,
of [Yosida], Chapter VIII of [RiSz.N], Chapter 13 of [Rud1] or Chapter VIII of [RS1].

Note that, given the spectral measure EA : 𝒜 → ℬ(ℋ) on R with associated res-
olution of the identity {EAλ }λ∈R, the operator A is Af , where f : R → R is the identity
map f (λ) = λ (Theorem 5.5.5). For an arbitrary continuous f : R → C and the spe-
cific spectral measure EA corresponding to the self-adjoint operator A we will write
the operator Af of Theorem 5.5.5 as

f (A).

Wewill return to such functions of A shortly, but first we will write out concrete exam-
ples for the quantummechanical position operator Q, the momentum operator P and
the harmonic oscillator Hamiltonian HB.

Example 5.5.2. Wewill define a resolution of the identity {Eλ}λ∈R on the Hilbert space
ℋ = L2(R) and then determine the operator ∫

R
λ dEλ to which it gives rise. For each

λ ∈ RwedefineEλ : L2(R)→ L2(R) to be themap that carriesψ ∈ L2(R) toEλψ ∈ L2(R)
given by

(Eλψ)(q) = {
ψ(q), if q ≤ λ,
0, if q > λ.

(5.33)
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Each Eλ is a projection since boundedness and E2λ = Eλ are clear and self-adjointness
follows from

⟨Eλψ,ϕ⟩ =
∞

∫
−∞

Eλψ(q)ϕ(q)dq =
λ

∫
−∞

ψ(q)ϕ(q)dq =
∞

∫
−∞

ψ(q)Eλϕ(q)dq = ⟨ψ,Eλϕ⟩.

Exercise 5.5.3. Verify properties 1., 2. and 3. in the definition of a resolution of the
identity for {Eλ}λ∈R.

To compute the relevant integrals, we fix ψ ∈ ℋ and consider the bounded varia-
tion function

α(λ) = ⟨ψ,Eλψ⟩ =
λ

∫
−∞

ψ(q)ψ(q)dq =
λ

∫
−∞

ψ(q)

2dq.

Then, using (H.2),

∫
R

λ2 d⟨ψ,Eλψ⟩ =
∞

∫
−∞

λ2 dα(λ) =
∞

∫
−∞

λ2α(λ)dλ

=
∞

∫
−∞

λ2 ψ(λ)

2dλ =

∞

∫
−∞

λψ(λ)

2dλ,

which is finite precisely when ψ is in the domain of the position operator (Qψ)(q) =
qψ(q) of Example 5.2.3. Moreover, for these ψ we have

∫
R

λ d⟨ψ,Eλψ⟩ =
∞

∫
−∞

λ dα(λ) =
∞

∫
−∞

λα(λ)dλ

=
∞

∫
−∞

λ ψ(λ)

2dλ =

∞

∫
−∞

ψ(λ) [λψ(λ)] dλ

= ⟨ψ,Qψ⟩.

Polarization in 𝒟(Q) and the density of 𝒟(Q) in ℋ then imply that for every ψ in its
domain, the operator ∫

R
λ dEλ agrees with the position operator. But their domains

are the same as well so

Q = ∫
R

λ dEλ.

We have therefore found a spectral decomposition of the position operatorQ on L2(R).

Exercise 5.5.4. Suppose U : ℋ1 → ℋ2 is a unitary equivalence. If A : 𝒟(A) → ℋ1 is
a self-adjoint operator on ℋ1, then UAU−1 : U(𝒟(A)) → ℋ2 is a self-adjoint operator
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on ℋ2 (Exercise 5.2.9). Show that if {Eλ}λ∈R is a resolution of the identity on ℋ1, then
{UEλU−1}λ∈R is a resolution of the identity onℋ2. It can be shown that if {Eλ}λ∈R gives
rise to the operatorA = ∫

R
λ dEλ, then {UEλU−1}λ∈R gives rise toUAU−1 (see pages 315–

316 of [Yosida]).

Example 5.5.3. The Fourier transformℱ : L2(R)→ L2(R) is a unitary equivalence (see
Appendix G.2), so if we let {EQλ }λ∈R denote the resolution of the identity constructed
in Example 5.5.2, then {ℱ EQλ ℱ−1}λ∈R is also a resolution of the identity on L2(R). The
corresponding operator is ℱ Qℱ−1 and this we know to be the operator 1

ℏP from Ex-
ample 5.2.7.

Example 5.5.4. For this examplewewill beginwith a self-adjoint operator andfind the
resolution of the identity that gives rise to it as ∫

R
λdEλ. Specifically, we will consider

the operatorHB of Example 5.4.5 for which we know there exists an orthonormal basis
{ψn}
∞
n=0 for L

2(R) consisting of eigenfunctions of HB with eigenvalues ℰn = (n +
1
2 )ℏω,

n = 0, 1, 2, . . .:

HBψn = ℰnψn = (n +
1
2
)ℏωψn.

Note that for ψ ∈ 𝒟(HB),

HBψ =
∞

∑
n=0
⟨ψn,HBψ⟩ψn =

∞

∑
n=0
⟨HBψn,ψ⟩ψn =

∞

∑
n=0
⟨ℰnψn,ψ⟩ψn =

∞

∑
n=0

ℰn⟨ψn,ψ⟩ψn,

and so

⟨ψ,HBψ⟩ =
∞

∑
n=0

ℰn
⟨ψn,ψ⟩


2.

What we need then is a resolution of the identity {Eλ}λ∈R for which the value of
∫
R
λ d⟨ψ,Eλψ⟩ is ∑

∞
n=0 ℰn |⟨ψn,ψ⟩|2. For each λ inR we define Eλ : L2(R)→ L2(R) by

Eλψ = ∑
ℰn≤λ
⟨ψn,ψ⟩ψn,

where the sum is taken to be zero if there are no ℰn ≤ λ. Thus, Eλ = 0 for λ < ℰ0 and,
for λ ≥ ℰ0, Eλ is the projection onto the subspace spanned by the finite number of ψn
for which ℰn ≤ λ.

Exercise 5.5.5. Show that the projections Eλ, λ ∈ R, satisfy the conditions required of
a resolution of the identity.

For any fixed ψ ∈ L2(R),

⟨ψ,Eλψ⟩ = ∑
ℰn≤λ

 ⟨ψn,ψ⟩

2,
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which is zero for λ < ℰ0 and a nondecreasing step function for λ ≥ ℰ0, stepping up
at each eigenvalue ℰn; these occur at intervals of length ℏω. Fix ψ ∈ 𝒟(HB). Since
⟨ψ,Eλψ⟩ = 0 for λ < ℰ0 =

1
2ℏω,

∫
R

λ d⟨ψ,Eλψ⟩ =
∞

∫
0

λ d⟨ψ,Eλψ⟩ = lim
b→∞

b

∫
0

λ d⟨ψ,Eλψ⟩.

For the Riemann–Stieltjes sums defining ∫b0 λ d⟨ψ,Eλψ⟩ we may consider only parti-
tions 0 = λ0 < λ1 < ⋅ ⋅ ⋅ < λk = b with max |λi − λi−1| < ℏω so that each interval (λi−1, λi]
contains at most one eigenvalue ℰn. For those that contain no eigenvalue, ΔEλ = 0,
so ⟨ψ,ΔEλψ⟩ = 0 and there is no contribution to the integral. If (λi−1, λi] contains an
eigenvalue, say, ℰn, then ΔEλ is the projection onto the subspace spanned by ψn and
we may select λ∗i = ℰn for the corresponding term in the Riemann–Stieltjes sum (the
integral is independent of this choice). This term in the sum is therefore ℰn|⟨ψn,ψ⟩|2

and the Riemann–Stieltjes approximation to ∫b0 λ d⟨ψ,Eλψ⟩ is

∑
ℰn≤b

ℰn
⟨ψn,ψ⟩


2.

Since this is true for any sufficiently fine partition,

b

∫
0

λ d⟨ψ,Eλψ⟩ = ∑
ℰn≤b

ℰn
⟨ψn,ψ⟩


2.

Taking the limit as b→∞ gives

∫
R

λ d⟨ψ,Eλψ⟩ =
∞

∑
n=0

ℰn
⟨ψn,ψ⟩


2,

as required.

Recall from Theorem 5.5.6 that the support of EA coincides with the spectrum σ(A)
of A, that is,

λ ∈ σ(A) ⇔ EA(λ − ϵ, λ + ϵ) ̸= 0 ∀ϵ > 0

(see Section 132 of [RiSz.N]). Consequently, if S ⊆ R is a Borel set, then

S ∩ σ(A) = 0 ⇒ EA(S) = 0. (5.34)

It follows that the integrals overR in Theorem5.5.6 can be replaced by the correspond-
ing integrals over σ(A). Consequently, one can regard f → f (A) as an assignment of an
operator f (A) to each element f of the algebra C0(σ(A)) of continuous, complex-valued
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functions on the spectrum σ(A) of A. We include in the statement of the next result
some basic properties of the assignment f → f (A)which collectively are referred to as
the (continuous) functional calculus (see Sections XI.5 and XI.12 of [Yosida] or Chap-
ter IX of [RiSz.N]).

Theorem 5.5.7. Let ℋ be a separable, complex Hilbert space and A a self-adjoint op-
erator on ℋ with dense domain 𝒟(A), perhaps all of ℋ. Let EA be the unique spectral
measure onR associated with A and {EAλ }λ∈R the corresponding resolution of the iden-
tity. For every continuous, complex-valued function f onR, an operator f (A) is densely
defined on

𝒟(f (A)) = {ψ ∈ ℋ : ∫
R

 f (λ)

2d⟨ψ,EAλ ψ⟩ <∞}

by

f (A)ψ = (∫
R

f (λ)dEAλ )ψ

for every ψ ∈ 𝒟(f (A)). Moreover, f (A) is characterized by

⟨ϕ, f (A)ψ⟩ = ∫
R

f (λ) d⟨ϕ,EAλ ψ⟩ ∀ψ ∈ 𝒟(f (A)) ∀ϕ ∈ ℋ.

If FA is the map from continuous, complex-valued functions on σ(A) to operators on
ℋ given by FA(f ) = f (A), then FA has the following properties:
1. FA is an algebraic *-homomorphism, that is, for α ∈ C and f and g continuous,

complex-valued functions on σ(A),
a. FA(αf ) = αFA(f ), that is, (αf )(A)ψ = αf (A)ψ for ψ ∈ 𝒟(f (A)) = 𝒟((αf )(A)),
b. FA(f + g) = FA(f )+FA(g), that is, (f + g)(A)ψ = f (A)ψ+ g(A)ψ for ψ ∈ 𝒟(f (A))∩

𝒟(g(A)),
c. FA(fg) = FA(f )FA(g), that is, for ψ ∈ 𝒟(g(A)), g(A)ψ ∈ 𝒟(f (A)) is equivalent to

ψ ∈ 𝒟((fg)(A)) and, in this case, (fg)(A)ψ = f (A)g(A)ψ (note that the product
of two operators is their composition),

d. FA(1) = idℋ, that is, 1(A)ψ = ψ∀ψ ∈ ℋ, where 1 is the constant function on σ(A)
whose value is 1 ∈ R,

e. FA(f ) = FA(f )∗, that is, for ψ,ϕ ∈ 𝒟(f (A)) = 𝒟(f (A)), ⟨f (A)ψ,ϕ⟩ = ⟨ψ, f (A)ϕ⟩;
in particular, f (A) is self-adjoint if and only if f is real-valued;

2. f (A) is a bounded operator onℋ if and only if f is a bounded function on σ(A);
3. σ(f (A)) = f (σ(A)) and Aψ = λψ ⇒ f (A)ψ = f (λ)ψ; here f (σ(A)) means the closure

of f (σ(A)) inC;
4. f ≥ 0 on σ(A)⇒ ⟨ψ, f (A)ψ⟩ ≥ 0 for all ψ ∈ 𝒟(f (A));
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5. if we let {fn}∞n=1 be a sequence of continuous, complex-valued functions on σ(A)
that converges pointwise on σ(A) to the continuous function f and suppose that
{ ‖fn‖∞ }∞n=1 is bounded, where ‖fn‖∞ = supq∈σ(A) |fn(q)|, then { fn(A) }

∞
n=1 converges

strongly to f (A), that is, for every ψ ∈ ℋ, fn(A)ψ→ f (A)ψ inℋ as n→∞;
6. if we let B be a bounded operator onℋ, then the following are equivalent:

a. B commutes with A in the sense that B(𝒟(A)) ⊆ 𝒟(A) and ABψ = BAψ∀ψ ∈
𝒟(A),

b. B commutes with every projection EAλ in the resolution of the identity associated
with A,

c. B commutes with f (A) for every continuous, complex-valued function f on σ(A);
7. for every ψ ∈ 𝒟(f (A)),

 f (A)ψ

2 = ∫

R

 f (λ)

2d⟨ψ,EAλ ψ⟩.

For a bounded self-adjoint operator A there is a more direct approach to the defi-
nition of f (A) for continuous functions f . This is discussed in detail on pages 222–224
of [RS1], but the basic idea is simple. For bounded A, the spectrum σ(A) is a compact
subset ofR and, since there are no domain issues, one can define p(A) for any polyno-
mial p(λ) = ∑Nn=0 anλ

n to be simply p(A) = ∑Nn=0 anA
n. One shows then that σ(p(A)) =

p(σ(A)) and ‖p(A)‖ = supλ∈σ(A) |p(λ)| (Lemmas 1 and 2, Section VII.1, of [RS1]). From
this it follows that the function that carries the polynomial p to p(A) ∈ ℬ(ℋ) has a
unique linear extension to the closure in C0(σ(A)) (with the sup norm) of the polyno-
mials which, by the Stone–Weierstrass theorem (Theorem B, Section 36, of [Simm1])
is all of C0(σ(A)). In particular, if f is real analytic and given by f (λ) = ∑∞n=0 anλ

n for
|λ| < R, then f (A) = ∑∞n=0 anA

n for thoseAwith ‖A‖ < R and the convergence is uniform.
As long as A is bounded, this definition of f (A) for continuous functions f agrees with
the definition in Theorem 5.5.7. This approach fails for unbounded A not only because
of the usual domain issues, but also because σ(A) is not compact.

We point out also that much of the functional calculus described in Theorem 5.5.7
can be extended from continuous to bounded Borel measurable functions on R (see
Section XI.12 of [Yosida] or Theorem VIII.5 of [RS1]). This is a useful and instructive
thing to do. For example, it provides a direct link between the functional calculus and
the representation of A in terms of spectral measures. Specifically, for any Borel set S
in R, one finds that the projection EA(S) is just the operator χS(A), where χS is the
characteristic function of S. With a bit more work the functional calculus for A can be
extended to Borel measurable functions onR that are finite and defined almost every-
where with respect to {EAλ }λ∈R, that is, with respect to all of the measures ⟨EAλ ψ,ψ⟩ for
ψ ∈ ℋ (see Sections 127–128 of [RiSz.N]). If f is such a function, then the operator f (A)
is bounded if and only if f is bounded almost everywhere with respect to {EAλ }λ∈R (see
page 349 of [RiSz.N]). We will make use of this extension to Borel functions only for
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the statement of a theorem of von Neumann on commuting families of self-adjoint op-
erators (Theorem 5.6.4) so we will say no more about it here. The continuous case will
provide ourmost important application of the functional calculus; in Example 5.5.5we
will define the operator exponentials that will describe the time evolution of quantum
states.

Example 5.5.5. Fix an arbitrary real number t and consider the complex-valued, con-
tinuous function ft(λ) = eitλ. For any self-adjoint operator A : 𝒟(A) → ℋ on ℋ, the
functional calculus in Theorem 5.5.7 provides an operator UA

t = e
itA onℋ. Since eitλ is

bounded (by 1), eitA is a bounded operator by Theorem 5.5.7.2 and its domain is all of
ℋ because, for any ψ ∈ ℋ,

∫
R

e
itλ

2d⟨ψ,EAλ ψ⟩ =
∞

∫
−∞

d⟨ψ,EAλ ψ⟩ = ⟨ψ,ψ⟩.

Exercise 5.5.6. Show that the last equality follows from the fact that the Riemann–
Stieltjes sums for ∫∞−∞ d⟨ψ,E

A
λ ψ⟩ telescope.

5.6 Stone’s theorem

Example 5.5.5 is just the beginning of a very important story. We claim the {UA
t }t∈R

defined there is a strongly continuous one-parameter group of unitary operators onℋ
(see Remark 3.3.2). Specifically, we record the following four properties:
1. UA

0 = idℋ,
2. UA

t is a unitary operator onℋ for every t ∈ R,
3. UA

t U
A
s = U

A
t+s for all t, s ∈ R,

4. if t → 0 inR, then, for each ψ ∈ ℋ, UA
t ψ→ ψ inℋ.

Although these are all proved in each of our basic references (for example, pages 288–
289 of [Prug]), they are so fundamental to the mathematical model of quantum me-
chanics toward which we are headed that we will pause to give the simple arguments.
Note first that UA

t is uniquely determined by the condition that

⟨ϕ,UA
t ψ⟩ = ∫

R

eitλ d⟨ϕ,EAλ ψ⟩ ∀ϕ,ψ ∈ ℋ.

Setting t = 0 gives

⟨ϕ,UA
0ψ⟩ = ∫

R

d⟨ϕ,EAλ ψ⟩ = ⟨ϕ,ψ⟩

for all ϕ,ψ ∈ ℋ, which proves UA
0 = idℋ.
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To prove that each UA
t is unitary we must show that UA

t (U
A
t )
∗ = (UA

t )
∗UA

t = idℋ.
But this follows immediately from eitλeitλ = eitλeitλ = 1 and Theorem 5.5.7, parts 1.c–e.

To prove UA
t U

A
s = U

A
t+s we use Theorem 5.5.7, part 1.c, to compute

⟨ϕ,UA
t U

A
s ψ⟩ = ∫

R

eitλeisλd⟨ϕ,EAλ ψ⟩ = ∫
R

ei(t+s)λd⟨ϕ,EAλ ψ⟩ = ⟨ϕ,U
A
t+sψ⟩

for all ϕ,ψ ∈ ℋ, which proves UA
t U

A
s = U

A
t+s.

We claim next that the one-parameter group {UA
t }t∈R = {e

itA}t∈R of unitary opera-
tors on ℋ is strongly continuous (Remark 3.3.2). For this we must show that if t → 0
inR, then, for each ψ ∈ ℋ, UA

t ψ→ ψ inℋ. Thus, we consider

e
itAψ − ψ

2 = (e
itA − idℋ)ψ


2 = (e

itλ − 1)(A)ψ
2.

Now, let g(t) = eitλ − 1 and note that
g(A)ψ

2 = ⟨g(A)ψ, g(A)ψ⟩ = ⟨ψ, g(A)∗g(A)ψ⟩ = ⟨ψ, g(A)g(A)ψ⟩ = ⟨ψ, |g|2(A)ψ⟩

= ∫
R

|g|2(λ)d⟨ψ,EAλ ψ⟩,

so
e

itAψ − ψ
2 = ∫

R

e
itλ − 1

2d⟨ψ,EAλ ψ⟩.

Now, |eitλ − 1|2 ≤ 4∀t, λ ∈ R, and the constant function 4 is integrable since

∫
R

4 d⟨ψ,EAλ ψ⟩ = 4⟨ψ,ψ⟩.

Moreover,
e
itλ − 1

2 → 0

pointwise for each λ ∈ R as t → 0, so the Lebesgue dominated convergence theorem
(Theorem 2.9.1 of [Fried]) implies that ‖eitAψ − ψ‖2 → 0 as t → 0, as required.

Wewill recordonemore important property of {eitA}t∈R that canbeproved inmuch
the same way (details are available on pages 289–290 of [Prug]).

Lemma 5.6.1. Let A : 𝒟(A) → ℋ be a self-adjoint operator on the separable, com-
plex Hilbert spaceℋ and UA

t = e
itA, t ∈ R, the corresponding strongly continuous one-

parameter group of unitary operators onℋ. Then ψ is in𝒟(A) if and only if the limit

lim
t→0

UA
t ψ − ψ
t

exists and, in this case,

lim
t→0

UA
t ψ − ψ
t
= iAψ.
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One can think of this geometrically in the followingway. The one-parameter group
defines a curve t → eitA inℬ(ℋ) starting at idℋ at t = 0. For anyψ ∈ 𝒟(A), t → eitAψ is a
curve inℋ starting atψ at t = 0;ℋ is a Hilbert space (in particular, a vector space) and
hence can be regarded as an (infinite-dimensional) manifold in which every tangent
space can be identified with ℋ. The limit limt→0

UA
t ψ−ψ
t is the tangent vector to the

curve t → eitAψ at t = 0 which, as an element ofℋ, is iAψ. One might write this more
succinctly as

d
dt
(eitAψ)
 t=0
= iAψ. (5.35)

Note that if it were permitted to expand eitA in a power series (which, when A is un-
bounded, it is not) this is just what we would get by differentiating term-by-term with
respect to t. One can check that eitA(𝒟(A)) ⊆ 𝒟(A) and then use the group property of
{eitA}t∈R to show more generally that for any ψ ∈ 𝒟(A),

d
dt
(eitAψ) = iA(eitAψ) (5.36)

for any t, so iA gives the tangent vector at each point along the curve t → eitAψ. In
this way one can think of iA as a vector field on 𝒟(A) ⊆ ℋ whose integral curves are
t → eitAψ.

We have shown that any self-adjoint operatorA gives rise to a strongly continuous
one-parameter group {eitA}t∈R of unitary operators. The much deeper converse is due
to Marshall Stone.

Theorem 5.6.2 (Stone’s theorem). Let {Ut}t∈R be a strongly continuous one-parameter
group of unitary operators on the separable, complex Hilbert spaceℋ. Then there exists
a unique self-adjoint operator A : 𝒟(A) → ℋ on ℋ such that Ut = eitA for every t ∈ R.
Moreover, Ut(𝒟(A)) ⊆ 𝒟(A) and AUt = UtA on𝒟(A) for all t ∈ R.

Recall (Remark 3.3.2) that for one-parameter groups of unitary operators, strong
continuity is equivalent toweak continuity andeven toweakmeasurability. For aproof
of Theorem 5.6.2 one can consult Theorem 6.1, Chapter IV, of [Prug], Theorem 1, Sec-
tion XI.13, of [Yosida], Sections 137–138 of [RiSz.N] or Theorem VIII.8 of [RS1]. We will
write out some concrete examples shortly.

The self-adjoint operator A whose existence is asserted by Stone’s theorem will
play a prominent role in the mathematical formalism of quantum mechanics. The
(skew-adjoint) operator iA is called the infinitesimal generator of {Ut}t∈R (some sources
refer to A itself as the infinitesimal generator). Next we will try to illustrate these ideas
by finding the infinitesimal generator for a particularly important strongly continuous
one-parameter group of unitary operators.



5.6 Stone’s theorem | 183

Example 5.6.1. For this example our Hilbert space is ℋ = L2(R) and we define, for
every t ∈ R, the translation operator

Ut : L
2(R)→ L2(R)

by

(Utψ)(q) = ψ(q + t) ∀ψ ∈ L
2(R)∀q ∈ R.

Each Ut is clearly linear and invertible (U−1t = U−t) and is an isometry because the
Lebesguemeasure onR is translation invariant. Also clear is the fact thatUtUs = Ut+s,
so {Ut}t∈R is a one-parameter group of unitary operators on L2(R). Strong continuity
maynot be quite so clear, sowewill prove it.We show that if t → 0 inR, thenUtψ→ ψ
in L2(R) for any ψ ∈ L2(R). Note that, since each Ut is unitary,

‖Utψ − ψ‖ ≤
Ut(ψ − ϕ)

 + ‖Utϕ − ϕ‖ + ‖ϕ − ψ‖ = ‖Utϕ − ϕ‖ + 2 ‖ψ − ϕ‖ (5.37)

for any ψ,ϕ ∈ L2(R). From this it follows that it will suffice to prove strong continuity
for ϕ in any dense subset of L2(R). Let us suppose then that ϕ ∈ C∞0 (R). Let ϵ > 0
be given. We can find a compact set K in R for which the support of each Utϕ with
|t| ≤ 1 is contained in K. Let d(K) denote the diameter of K inR. Since ϕ is uniformly
continuous, there is a δ satisfying 0 < δ ≤ 1 such that |t| < δ implies ‖Utϕ − ϕ‖∞ <
ϵ/d(K)1/2 (here ‖ ‖∞ is just the sup norm). Since the support of Utϕ − ϕ is contained
in K,

‖Utϕ − ϕ‖ ≤ d(K)
1/2‖Utϕ − ϕ‖∞ < ϵ.

Thus, {Ut}t∈R is strongly continuous at any ϕ ∈ C∞0 (R) and therefore strongly contin-
uous at any ψ ∈ L2(R) by (5.37) and the fact that C∞0 (R) is dense in L

2(R).
To find the infinitesimal generator iA of {Ut}t∈R we will use Lemma 5.6.1, accord-

ing to which the domain of A is precisely the set of ψ ∈ L2(R) for which the limit
limt→0

UA
t ψ−ψ
t exists and, for these, iA is given by

iAψ = lim
t→0

Utψ − ψ
t
,

where the limit is in L2(R). Note that the domain of A certainly includes all ψ in the
Schwartz space 𝒮(R) (see Section G.2) and for these the right-hand side converges
pointwise to

lim
t→0

ψ(q + t) − ψ(q)
t

=
dψ
dq
.

Now, recall that if a sequence converges in L2(R), then a subsequence converges point-
wise almost everywhere. Thus, on 𝒮(R), A agrees with −i d

dq . But we have already
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shown that −iℏ ddq is essentially self-adjoint on 𝒮(R) and so it has a unique self-adjoint
extension which we have denoted P (Example 5.5.3). Thus, −i d

dq is essentially self-
adjoint on 𝒮(R) and its unique self-adjoint extension is 1

ℏP. But A is also self-adjoint
by Theorem 5.6.2 and extends −i d

dq , so we conclude that A =
1
ℏP, that is,

(Utψ)(q) = ψ(q + t) ∀ψ ∈ L
2(R)∀q ∈ R ⇒ Ut = e

itP/ℏ,

where P is the momentum operator onR. We will say simply that the momentum op-
erator generates spatial translations.

Example 5.6.2. For every t ∈ R define Vt : L2(R)→ L2(R) by

(Vtψ)(q) = e
itqψ(q) ∀ψ ∈ L2(R) ∀q ∈ R.

Arguments similar to those in the previous example show that {Vt}t∈R is a strongly
continuous one-parameter group of unitary operators on L2(R) and that

Vt = e
itQ,

where Q is the position operator onR.

Proceeding in the other direction, that is, finding Ut = eitA for a given self-adjoint
operator A, generally requires information about the spectrum of A. In at least one
case it is easy to do.

Example 5.6.3. For an operator A, such asHB of Example 5.5.4, with the property that
ℋ has an orthonormal basis ψ0,ψ1, . . . of eigenvectors for A (Aψn = λnψn, n = 0, 1, . . .)
one can proceed as follows. For any ψ ∈ 𝒟(A), write ψ = ∑∞n=0⟨ψn,ψ⟩ψn, where the
convergence is in ℋ (L2(R) for HB). By the second part of Theorem 5.5.7.3, Utψn =
eitAψn = eitλnψn and, since Ut = eitA is unitary and therefore bounded (continuous),

Utψ = e
itAψ =

∞

∑
n=0
⟨ψn,ψ⟩e

itλnψn. (5.38)

This handles eitHB :

eitHBψ =
∞

∑
n=0
⟨ψn,ψ⟩e

itℰnψn. (5.39)

Wewill also need eitH0 , whereH0 is the free particle Hamiltonian in Example 5.2.8.
This is most easily done by recalling that H0 is unitarily equivalent, via the Fourier
transform ℱ , to the multiplication operator Q(ℏ2/2m)p2 (see (5.3)).

Exercise 5.6.1. Use the functional calculus to show that

eitH0 = ℱ−1 Qg(p) ℱ , (5.40)

where g(p) = ei (ℏ
2/2m) t p2 .
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Aswehavementionedbefore, in the formalismof quantummechanics (Chapter 6)
a self-adjoint operator A will represent an observable, a unit vector ψ will represent
a state and the probability measure μψ,A = ⟨ψ,EAψ⟩ onR is interpreted as assigning
to each Borel set S in R the probability that a measurement of A in the state ψ will
yield a value in S. The nonnegative real number ⟨ψ,Aψ⟩ will be interpreted as the
expected value of the observable A in the state ψ. One more of the basic postulates of
quantummechanics is that the time evolution of the stateψ(t) of an isolated quantum
system from some initial state ψ(0) is described by a one-parameter group {Ut}t∈R of
unitary operators (ψ(t) = Utψ(0)). Stone’s theorem thenprovides uswith a self-adjoint
operator (that is, observable) H that generates this time evolution in the sense that

ψ(t) = eitH/ℏψ(0).

With A = 1
ℏH, (5.36) becomes

iℏdψ(t)
dt
= H(ψ(t)), (5.41)

which will be the fundamental equation of nonrelativistic quantum mechanics (the
abstract Schrödinger equation). We will explain the reason for the 1/ℏ in Section 6.2.

We consider next another application of the spectral theorem that will play a
prominent role in our discussion of “compatible observables” in quantummechanics
(Section 6.2). Recall that if A and B are two bounded operators on ℋ, then both are
defined on all ofℋ and therefore so are the products (compositions) AB and BA. One
then says that A and B commute if AB = BA, that is, if A(Bψ) = B(Aψ) for all ψ ∈ ℋ.
The same definition for unbounded operators does not lead to a useful notion since
these are only densely defined and therefore 𝒟(AB) = {ψ ∈ 𝒟(B) : Bψ ∈ 𝒟(A)} and
𝒟(BA) = {ψ ∈ 𝒟(A) : Aψ ∈ 𝒟(B)} may intersect in nothing more than the zero vector
in ℋ. For self-adjoint operators, however, one can formulate a useful notion in the
following way. Note that if A and B are bounded and self-adjoint, then it follows from
Theorem 5.5.7.5 that they commute if and only if their spectral resolutions pairwise
commute, that is, if and only if EAλ E

B
μ = E

B
μE

A
λ for all λ, μ ∈ R. Since this latter condition

makes sense even for unbounded, self-adjoint operators (because the spectral projec-
tions are bounded) we shall adopt the following definition. Let A and B be self-adjoint
operators (either bounded or unbounded) on the separable, complex Hilbert space
ℋ and denote by EAλ and EBμ , λ, μ ∈ R, their corresponding resolutions of the identity.
We will say that A and B commute if EAλ E

B
μ = E

B
μE

A
λ for all λ, μ ∈ R. One reason for the

usefulness of this definition is to be found in the fact that two self-adjoint operators
commute in this sense if and only if their corresponding one-parameter groups of
unitary operators commute (in the usual sense of bounded operators); the following
is Theorem VIII.13 of [RS1] and Theorem 6.2, Chapter IV, of [Prug].

Theorem 5.6.3. Let A and B be self-adjoint operators on the separable, complex Hilbert
spaceℋ. Then A and B commute if and only if eitAeisB = eisBeitA for all s, t ∈ R.
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This definition is natural enough and is, as we shall see, the appropriate one for
our applications to quantummechanics, but its intuitivemeaning ismore elusive than
it might seem. For example, one might suppose that if A and B are self-adjoint, 𝒟 is
a dense subspace in the intersection of their domains, A : 𝒟 → 𝒟, B : 𝒟 → 𝒟 and
A(Bψ) = B(Aψ) for all ψ ∈ 𝒟, then A and B should commute in the sense we have
defined. However, this is not the case (see Example 1, Section VIII.5, of [RS1]). The
converse, however, is true, that is, if A and B commute, then A(Bψ) = B(Aψ) for all ψ
in any dense subspace contained in the intersection of their domains that is invariant
under both A and B. This follows from the spectral theorem and can provide a useful
means of showing that two unbounded, self-adjoint operators do not commute.

Example 5.6.4. We will consider the position Q : 𝒟(Q) → L2(R) and momentum
P : 𝒟(P)→ L2(R) operators onR. We have seen that both are unbounded, self-adjoint
operators on L2(R) and that the Schwartz space 𝒮(R) is a dense, invariant, linear sub-
space of both𝒟(Q) and𝒟(P). Letψ ∈ 𝒮(R). Then (P(Qψ))(q) = −iℏ[qψ(q)+ψ(q)] and
(Q(Pψ))(q) = −iℏqψ(q), and these are generally not the same, so Q and P do not com-
mute.

Example 5.6.5. It follows from the functional calculus that if B is a self-adjoint oper-
ator on ℋ and f and g are two real-valued continuous, or merely Borel functions on
σ(B), then f (B) and g(B) are self-adjoint and commute. Consequently, one can build
arbitrarily large families of self-adjoint operators that commute in pairs by selecting a
family {fα}α∈𝒜 of such real-valued functions on σ(B) and building the operators fα(B).

The principal application of these ideas to quantummechanics rests on a theorem
of von Neumann to the effect that every commuting family of self-adjoint operators
is of the type described in the previous example. The following result is proved in
Sections 130–131 of [RiSz.N].

Theorem 5.6.4. Let ℋ be a separable, complex Hilbert space and {Aα}α∈𝒜 a family of
pairwise commuting self-adjoint operators on ℋ (Aα1 and Aα2 commute for all α1, α2 ∈
𝒜). Then there exists a self-adjoint operator B onℋ and real-valued Borel functions fα,
α ∈ 𝒜, such that Aα = fα(B) for every α ∈ 𝒜.

We will conclude with a result that will be essential when we discuss canonical
quantization in Chapter 7. Recall that ifA and B are bounded operators onℋ, then one
defines their commutator by [A,B]− = AB−BA and this is a bounded operator defined
on all of ℋ that is the zero operator if and only if A and B commute. If A and B are
unbounded operators,wehave alreadynoted that one can still define [A,B]− = AB−BA,
but only on𝒟([A,B]−) = 𝒟(AB)∩𝒟(BA), and this might well consist of the zero vector
alone. However, this generally does not occur for the operators of interest in quantum
mechanics. Here is an example.
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Example 5.6.6. For the position Q and momentum P operators on R, the domain of
[Q,P]− contains at least 𝒮(R). The computations in Example 5.6.4 show that, on 𝒮(R),

[Q,P]− = iℏ,

where, as usual, iℏmeans (iℏ) id𝒮(R).

If A and B are unbounded operators that commute, then their commutator is zero
wherever it is defined, but the converse is certainly not true, that is, [A,B]− = 0 on
𝒟([A,B]) does not imply that A and B commute. The following result (which is Theo-
rem 6.3, Chapter IV, of [Prug]) will allow us to circumvent many such domain issues
associated with commutators when discussing the canonical commutation relations
in quantummechanics (Chapter 7).

Theorem 5.6.5. Let A and B be self-adjoint operators on the separable, complex Hilbert
spaceℋ that satisfy

eitAeisB = e−isteisBeitA

for all s, t ∈ R. Then

[A,B]−ψ = iψ

for all ψ ∈ 𝒟([A,B]−).





6 The postulates of quantum mechanics

6.1 Introduction

Physical theories are expressed in the language of mathematics, but these mathemat-
ical models are not the same as the physical theories and they are not unique. Here we
will build on the physical and mathematical background assembled in the previous
chapters to construct one possible mathematical framework in which to do quantum
mechanics. The particular model we formulate goes back to von Neumann [vonNeu],
but there are others and we will have a look at quite a different idea due to Feyn-
man [Brown] in Chapter 8. We will describe the basic ingredients of the model in a
sequence of postulates, each of which will be accompanied by a brief commentary on
where it came from, what it means and what issues it raises. You will notice that the
term quantum system is used repeatedly, but never defined; the same is true of the
term measurement. We will attempt some clarification of these terms as we proceed,
but it is not possible, nor would it be profitable, to try to define them precisely; they
are defined by the assumptionswemake about them in the postulates.With the postu-
lates in placewewill derive some consequenceswith important physical implications.
Concrete examples of such quantum theories are obtained bymaking specific choices
for the items described in the postulates. Some of these are obtained by “quantizing”
classical physical systems; our principal examples are the canonical quantizations of
the free particle and the harmonic oscillator, both discussed in Chapter 7. Some, on
the other hand, have no classical counterpart; the fermionic and supersymmetric har-
monic oscillators are of this type and will be described in Chapter 10.

6.2 The postulates

Postulate QM1. To every quantum system is associated a separable, complex Hilbert
spaceℋ. The (pure) states of the system are represented by vectors ψ ∈ ℋ with ‖ψ‖ = 1
and, for any c ∈ C with |c| = 1, ψ and cψ represent the same state.

We have already spent a fair amount of time trying to prepare the way for this first
postulate. We have seen in Chapter 4 that the physical systems for which classical me-
chanics fails to provide an accurate model are fundamentally probabilistic in nature
and so should be regarded asmore analogous to the systems treated in classical statis-
tical mechanics. Here states of the system are identified with probability distributions
andKoopman showed how to identify thesewith unit vectors in aHilbert space;more-
over, two such unit vectors that differ only in phase (that is, by a complex multiple of
modulus one) give rise to the same probability distribution and therefore the same
state. There is, however, a bit more to say about Postulate QM1.

All n-dimensional complex Hilbert spaces are isometrically isomorphic, as are all
separable, complex, infinite-dimensional Hilbert spaces (Theorem 6.4.8 of [Fried]), so

https://doi.org/10.1515/9783110751949-006
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the choice of ℋ is very often a matter of convenience. Often ℋ will be L2 of some ap-
propriate measure space (such as a classical configuration space), in which case a
unit vector ψ representing a state is called a wave function for that state. In Koop-
man’s translation of statistical mechanics, the wave functions ψ were auxiliary de-
vices for producing probability distributions |ψ|2, but in quantum theory they play
the much more fundamental role of what are called probability amplitudes. Being
complex-valued, one can incorporate the wave-like interference effects of quantum
systems pointed out in Section 4.4 directly into the algebraic operations on the wave
functions via

|ψ1 + ψ2|
2 = |ψ1|

2 + |ψ2|
2 + 2 Re⟨ψ1,ψ2⟩. (6.1)

Here the final term 2 Re⟨ψ1,ψ2⟩ can be viewed as an interference term that appears
when ψ1 and ψ2 interact (like the waves emerging from two slits in Section 4.4).

We should also say something about the parenthetical adjective pure in Postu-
late QM1. In certain contexts, notably quantum statistical mechanics, there is an ad-
ditional probabilistic element that we have not yet encountered; onemight know only
that the state of the system isψwith a certain probability 0 ≤ t ≤ 1. Ifψ1,ψ2, . . . are unit
vectors in the Hilbert spaceℋ of some quantum system, then a convex combination

t1ψ1 + t2ψ2 + ⋅ ⋅ ⋅ ,

with

tn ≥ 0 ∀n ≥ 1 and t1 + t2 ⋅ ⋅ ⋅ = 1,

is called a mixed state for the system and is interpreted as describing a situation in
which it is known only that the state of the system is ψn with probability tn for n =
1, 2, . . . . The unmodified term state will, for us, always mean pure state.

Note that Postulate QM1 does not assert that every unit vector in ℋ represents a
possible state of the system, but only that every state is represented by some unit vec-
tor. This has to do with what are known in physics as superselection rules. Section 1-1
of [SW] contains a brief discussion of this, but roughly the idea is as follows. There
are certain conservation laws in physics (of charge, for example) that appear to pro-
hibit the mingling of states for which the value of the conserved quantity is different.
For instance, a superposition (sum) of states with different charges is believed not to
be physically realizable. This has the consequence of splittingℋ up into a direct sum
of so-called coherent subspaces with the property that only unit vectors in these sub-
spaces represent physically realizable states. However, these superselection rules are
generally significant only when the number and type of particles in the system can
vary. This is a fundamental feature of quantum field theory (particle creation and an-
nihilation), but will play no role in our lives here. As a result, we will allow ourselves
to assume that any unit vector inℋ is a possible state of our system.
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Finally, we point out that, because unit vectors in ℋ that differ only by a phase
factor describe the same state, one can identify the state space 𝒮 of a quantum system
with the complex projective spaceCP(ℋ) ofℋ, that is, the quotient of the unit sphere
inℋ by the equivalence relation that identifies two points if they differ by a complex
factor ofmodulusone (equivalently, thequotient of the set of nonzero elements ofℋby
the equivalence relation that identifies two points if they differ by a nonzero complex
factor). When we have occasion to do this we will write Ψ for the equivalence class
containing ψ and refer to it as a unit ray inℋ. It will sometimes also be convenient to
identify the state represented by the unit vectorψwith the operator Pψ that projectsℋ
onto the one-dimensional subspace of ℋ spanned by ψ (which clearly depends only
on the state and not on the unit vector representing it). In all candor, however, it is
customary to be somewhat loosewith the terminology and speak of “the stateψ”when
one reallymeans “the stateΨ,” or “the state Pψ.” Since this is almost always harmless,
we will generally adhere to the custom.

Although we will make no use of it, we should mention that there is one other
way to view the states (both pure andmixed). Each Pψ is a projection operator and so,
in particular, it is a positive, self-adjoint, trace class operator with trace one. A mixed
state, as defined above, can be identifiedwith∑∞n=1 tnPψn

, where tn ≥ 0∀n = 1, 2, . . . and
∑∞n=1 tn = 1, and this is also a positive, self-adjoint, trace class operator with trace one;
the spectrum consists precisely of the eigenvalues t1, t2, . . . . Conversely, every positive,
self-adjoint, trace class operator with trace one is a pure or mixed state because it is
compact, so the spectral theorem gives a decomposition of this form. One can there-
fore identify the collection of all pure and mixed states with the positive, self-adjoint,
trace class operatorswith trace one (this is the approach taken in [Takh], for example).

We have seen that in Koopman’s model of classical statistical mechanics the
observables are identified with unbounded, real multiplication operators on some
L2 (Section 3.3). We take this, together with the fact that self-adjoint operators on
a Hilbert space can all be identified with real multiplication operators on some L2

(Theorems 5.5.1 and 5.5.2), as motivation for the first half of our next postulate.

Postulate QM2. For a quantum system with Hilbert spaceℋ, every observable is iden-
tified with a self-adjoint operator A : 𝒟(A) → ℋ on ℋ and any possible outcome of a
measurement of the observable is a real number that lies in the spectrum σ(A) of A.

Wewill use the same symbol for the self-adjoint operator and the physical observ-
able it represents. If A is such an observable and f is a real-valued Borel function on
σ(A), then f (A) is self-adjoint and we will identify it with the physical observable de-
fined in the following way. A measurement of f (A) is accomplished by first measuring
A. If the measured value of A is a ∈ σ(A), then the measured value of f (A) is defined
to be f (a) (note that f (a) ∈ σ(f (A)) by Theorem 5.5.7.3).

The problem of measurement in quantum mechanics is very subtle and, after
nearly a century, still controversial. One generally knows what should qualify, physi-
cally, as an “observable.” For a single particle, for example, the total energy, a coordi-
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nate of the position or a component of the momentum should be things that one can
measure. The result of a measurement is a real number. Whatever the specifics of the
measurement process, it must involve allowing the quantum system to interact with
some external and generally macroscopic system (the “measuring device”). We have
seen (Section 4.4) that such an interaction has inevitable and unpredictable effects on
the quantum system so that repeatedmeasurements on identical systems generally do
not give the same results. One can only hope to know the probability that some spe-
cific measurement on a system in some specific state will yield a value in some given
interval of the real line.

The most significant aspect of Postulate QM2 is its assertion that these measured
values, although they appear random in the measurement process, are generally not
arbitrary, but are constrained to lie in some fixed subset of the real line. This subset
was described as the spectrum of some self-adjoint operator A onℋ. One might think
of A as a convenient bookkeeping device. It is the possible measured values of an ob-
servable and their probability distributions that are physically significant and not the
particular way we choose to keep track of them. Heisenberg’s matrix mechanics and
Schrödinger’swave mechanics, which were the original formulations of quantumme-
chanics, accomplished the same purpose with infinite matrices and differential oper-
ators, respectively, and von Neumann’s choice of self-adjoint operators on ℋ was es-
sentially a general, mathematically rigorous way of doing both at once (the first when
ℋ = ℓ2 and the second when ℋ = L2). We should also point out that the assertion
about the spectrum of A in Postulate QM2 is, in some statistical sense, redundant. It
follows from our next Postulate QM3 and the fact that the spectral measure of A is
concentrated on σ(A) that the probability of measuring a value outside the spectrum
is zero.

We should also emphasize that Postulate QM2 asserts that every physical observ-
able corresponds to some self-adjoint operator, but not that every self-adjoint operator
corresponds to some physical observable. This is again related to the existence of su-
perselection rules and so, for the reasons we have already discussed, we will, for the
time being at least, allow ourselves to regard any self-adjoint operator as correspond-
ing to some physical observable. Also note that the procedures by which one chooses
operators to represent specific observables are not addressed by Postulate QM2. These
procedures are collectively referred to as quantization and physicists have laid down
certain rules of the game. We will discuss some of the generally agreed upon princi-
ples of the quantization procedure in Chapter 7, but any real understanding of what
is involved and how it is done must come from the physicists (see [SN]).

Example 6.2.1. In order to ground this discussion in something a bit more concrete,
let us get ahead of ourselves just a bit and anticipate something we will discover in
Chapter 7. We will consider a quantum system, such as a diatomic molecule (Chap-
ter 1), whose behavior would classically be approximated by a harmonic oscillator.
Assuming that any translational or rotational energy is negligible, the total energy of
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the system is just the vibrational part that we described classically by the Hamilto-
nian (2.50). Applying the “generally agreed upon principles” of quantization to the
total energy observable of this harmonic oscillator leads one to the operator HB on
L2(R) that we have discussed in some considerable detail in Chapter 5 (see Exam-
ples 5.3.1, 5.4.5, 5.5.1 and 5.5.4). We know, in particular, that the spectrum of HB con-
sists precisely of the eigenvalues ℰn = (n +

1
2 )ℏω, n = 0, 1, 2, . . . , where ω is the natural

frequency of the classical oscillator. These then should be (approximately) the possi-
ble measured energy levels of the molecule. Whether or not this is true, of course, is
something that must be determined in the laboratory. The fact that it actually is true
is one of the many circumstances that encourage confidence in this seemingly exotic
structure we are building.

Postulate QM3. Let ℋ be the Hilbert space of a quantum system, ψ ∈ ℋ a unit vector
representing a state of the system and A : 𝒟(A) → ℋ a self-adjoint operator on ℋ
representing an observable. Let EA be the unique spectral measure onR associatedwith
Aand {EAλ }λ∈R the corresponding resolution of the identity. Denote byμψ,A the probability
measure onR that assigns to every Borel set S ⊆ R the probability that a measurement
of Awhen the state is ψwill yield a value in S. Then, for every Borel set S inR, we assume
that μψ,A(S) is given by the Born–von Neumann formula

μψ,A(S) = ⟨ψ,EA(S)ψ⟩ = EA(S)ψ2. (6.2)

If the state ψ is in the domain of A, then the expected value of A in state ψ is

⟨A⟩ψ = ∫
R

λ d⟨ψ,EAλ ψ⟩ = ⟨ψ,Aψ⟩ (6.3)

and its dispersion (variance) is

σ2ψ(A) = ∫
R

(λ − ⟨A⟩ψ)
2 d⟨ψ,EAλ ψ⟩ =

 (A − ⟨A⟩ψ)ψ

2
= ‖Aψ‖2 − ⟨A⟩2ψ. (6.4)

It is not an exaggeration to say that Postulate QM3 is the heart and soul of quan-
tum mechanics, so we will linger over it for a while. We should first be clear on how
we will interpret the sort of probabilistic statement made in Postulate QM3. Given a
quantum system in state ψ and an observable A, quantum mechanics generally makes
no predictions about the result of a single measurement of A. For example, one cannot
predict the location of the dot on the screen when a single electron is sent toward it
in the two-slit experiment (Section 4.4). Rather, it is assumed that the state ψ can be
replicated over and over again and the measurement performed many times on these
identical systems. The probability of a given outcome might then be thought of intu-
itively as the relative frequency of the outcome for a “large” number of repetitions.
More precisely, the probability of a given outcome for a measurement of some observ-
able in some state is the limit of the relative frequencies of this outcome as the number
of repetitions of the measurement in this state approaches infinity.
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Remark 6.2.1. Precisely how one replicates (prepares) the stateψ over and over again
is a delicate issue that depends a great deal on the particular system under consid-
eration. The preparation of a state is really a particular type of measurement; these
are called preparatory measurements in [Prug], where one can find a more detailed
discussion in Chapter IV, Section 1.4.

Next we point out that if one accepts the interpretation of the probability measure
⟨ψ,EAψ⟩ in Postulate QM3, then ⟨ψ,EAλ ψ⟩ is the distribution function for the random
variable represented by the measurement process. Thus, (6.3) is just the Stieltjes in-
tegral formula (3.1) for the expected value of a random variable and the first equality
in (6.4) is the analogous formula (3.2) for the variance.

Remark 6.2.2. The second equality is proved below and the third follows from

 (A − ⟨A⟩ψ)ψ

2
= ‖Aψ‖2 − ⟨Aψ, ⟨A⟩ψψ⟩ − ⟨⟨A⟩ψψ,Aψ⟩ +

⟨A⟩ψψ

2

= ‖Aψ‖2 − 2⟨A⟩ψ⟨ψ,Aψ⟩ + ⟨A⟩
2
ψ‖ψ‖

2

= ‖Aψ‖2 − 2⟨A⟩2ψ + ⟨A⟩
2
ψ

= ‖Aψ‖2 − ⟨A⟩2ψ.

As usual, σ2ψ(A)measures the dispersion (spread) of the measured values around
⟨A⟩ψ. The dispersion is often identified with a measure of the limitations on the ac-
curacy of the measurements. Note, however, that Postulate QM3 makes no reference
to any specific procedure for making the measurements, so σ2ψ(A) does not in any
sense describe the frailties of our instrumentation. Rather, it represents an intrinsic
limitation on our knowledge of A even when the state ψ of the system is known. It is
zero precisely when the probability that the measurement will result in the expected
value is 1 (meaning that the relative frequency of the outcome ⟨A⟩ψ can be made ar-
bitrarily close to 1 with a sufficient number of repetitions of the measurement of A in
state ψ). We claim that σ2ψ(A) = 0 if and only if ψ is an eigenvector of A with eigen-
value ⟨A⟩ψ. To see this one simply applies part 7. of Theorem 5.5.7 to the continuous
function f (λ) = λ − ⟨A⟩ψ, thereby obtaining

(A − ⟨A⟩ψ)ψ

2
= ∫
R

(λ − ⟨A⟩ψ)
2d⟨ψ,EAλ ψ⟩ = σ

2
ψ(A)

(which, incidentally, gives the second equality in (6.4)), so that

σ2ψ(A) = 0 ⇔ Aψ = ⟨A⟩ψψ.

For a fixed observable A we think of the measurement process itself as defining a
random variable on the state space; in each state ψ a measurement of A results in a
real number. The probability measure μψ,A that assigns to a Borel set S inR the prob-
ability that a measurement of A in the state ψ will be in S depends, of course, on the
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specifics of the quantum system, the observable and the state. The assertion of Postu-
late QM3 that μψ,A(S) = ⟨ψ,EA(S)ψ⟩ is the presumed link between the physics and the
mathematical formalism.

We have made a point of stressing that conceptually quantum mechanics should
be more akin to classical statistical mechanics than to classical particle mechanics so
that one is not surprised to see the measurement process described in terms of prob-
ability measures. Postulate QM3, however, is quite explicit about how these proba-
bility measures are determined by A and ψ. The idea is due to Max Born, and von
Neumann phrased the idea in the functional analytic terms we have used. To properly
understandwhat led Born to Postulate QM3 onemust really follow the struggles of the
physicists in 1925, 1926 and 1927 who sought some conceptual basis for the new and
very successful, but rather mysterious mechanics of Heisenberg and Schrödinger. In
these early years physics was in a rather odd position. Heisenberg formulated his ma-
trix mechanics without knowing what a matrix is and without having a precise idea
of what the entries in his rectangular arrays of numbers should mean physically (see
Section 7.1 for a bit more on this). Nevertheless, the rules of the game as he laid them
down predicted precisely the spectrum of the hydrogen atom. Schrödinger formulated
a differential equation for his wave function that yielded the same predictions, but no
one had any real ideawhat thewave functionwas supposed to represent (Schrödinger
himself initially viewed it as a sort of “charge distribution”). It was left to Born, and
then Niels Bohr and his school in Copenhagen, to supply the missing conceptual ba-
sis for quantummechanics. It is our good fortune that Born himself, in his Nobel Prize
Lecture in 1954, has provided us with a brief and very lucid account of the evolution of
his idea and we will simply refer those interested in pursuing this to [Born1]. Interest-
ingly, Born attributes to Einstein the inspiration for the idea, although Einstein never
acquiesced to its implications.

Remark 6.2.3. We have already mentioned that there are various approaches to the
foundations of quantum mechanics other than the one we are describing here. One
such approach, which has amuchmore algebraic flavor, is formulated in the language
of Banach algebras or, more specifically, C∗-algebras and von Neumann algebras (we
will not provide the definitions, but if these ideas are unfamiliar we can refer to a very
nice introduction in Part Three of [Simm1]). Here each quantum system has an asso-
ciated C∗-algebra𝒜 and the self-adjoint elements of𝒜 (those satisfying a∗ = a) repre-
sent the observables. Now, there is a very famous result of Gelfand and Naimark [GN]
which asserts that anyC∗-algebra is isomorphic to a norm closed, self-adjoint subalge-
bra of the algebraℬ(ℋ) of bounded operators on someHilbert spaceℋ. Consequently,
one of the advantages to this approach is that unbounded, self-adjoint operators do
not arise. Physically, this is possible because all of the relevant physical information
is contained in the probability measures μψ,A(S) which, according to Postulate QM3,
are given by ⟨ψ,EA(S)ψ⟩ and these are determined by the (bounded) projections EA(S)
corresponding to our unbounded, self-adjoint operatorsA. However, the bounded op-
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erators associatedwith the elements of the C∗-algebra𝒜 by the Gelfand–Naimark the-
orem are not canonically determined and hence one loses the direct relations to the
physics that we will be exploring.

We have offered nothing in the way of motivation for the Born–von Neumann for-
mula except a reference to [Born1]. By way of compensation, we will write out a num-
ber of concrete examples.

Example 6.2.2. Let us once again anticipate one simple, but particularly important
special case that we will discuss in more detail in Chapter 7 and that may already be
familiar to those who have read anything at all about quantummechanics elsewhere.
We consider the Hilbert spaceℋ = L2(R) and the operator Q : 𝒟(Q) → L2(R) defined
by (Qψ)(q) = qψ(q) for all ψ ∈ 𝒟(Q) (see Example 5.2.3). We have referred to Q as
the position operator on R. We found the spectral resolution of Q in Example 5.5.2
and conclude from this that EQ(S)ψ = χS ⋅ ψ for any Borel set S ⊆ R, where χS is the
characteristic function of S. Thus,

(EQ(S)ψ)(q) = {
ψ(q), if q ∈ S,
0, if q ∉ S.

Consequently, if ψ is a state, then Postulate QM3 gives

μψ,Q(S) = ⟨ψ,EQ(S)ψ⟩ = EQ(S)ψ2
= ∫
R

( χ(S) ⋅ ψ)(q)( χ(S) ⋅ ψ)(q) dq

= ∫
S

ψ(q)ψ(q) dq,

so

μψ,Q(S) = ∫
S

ψ(q)

2 dq.

With this we arrive at the oft-repeated interpretation of the wave functionψ of a single
particle moving in one dimension as the probability amplitude for position, meaning
that the probability of finding the particle in some Borel subset S ofR is ∫S |ψ(q)|

2 dq.
Stated differently, |ψ(q)|2 is the probability density for positionmeasurements. In par-
ticular, the probability of finding the particle somewhere inR is ‖ψ‖L2 = 1.

In a sense we have reversed the historical logic here. The wave function ψ of a
particle is often thought to be defined as the probability amplitude for the particle’s
position. Thought of in these terms, our example demonstrates that (Qψ)(q) = qψ(q)
is the “right” choice for an operator to represent position in quantummechanics.
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Example 6.2.3. For any real constant α we define a unit vector in L2(R) representing
a state by

ϕ(q) = 1
π1/4 e−q2/2eiαq.

Note that ϕ is in the domain of Q since ∫
R
q2|ϕ(q)|2dq = 1

π1/2 ∫∞−∞ q2e−q2dq = 1
2 < ∞

(see Example 5.2.3 and Exercise A.0.3.2). Consequently,

⟨Q⟩ϕ = ⟨ϕ,Qϕ⟩ = ∫
R

ϕ(q)(qϕ(q)) dq = 1
π1/2 0

∫−∞ qe−q2dq + 1
π1/2 ∞∫

0

qe−q2dq = 0.
In the state ϕ, the expected value of a position measurement is 0. Nevertheless, by
Example 6.2.2, the probability that a measurement of position will yield a value in
some Borel set S ⊆ R is

μϕ,Q(S) = ∫
S

ϕ(q)

2 dq = 1

π1/2 ∫
S

e−q2 dq,
which, if S does not have measure zero, is nonzero, although small if S is far from 0.
The dispersion is

σ2ϕ(Q) = ∫
R

(λ − ⟨Q⟩ϕ)
2 d⟨ϕ,EQλ ϕ⟩ = ∫

R

λ2 d⟨ϕ,EQλ ϕ⟩ = ‖Qϕ‖
2 (see (6.4))

= ∫
R

qϕ(q) qϕ(q) dq = 1
π1/2 ∞∫−∞ q2e−q2dq = 1

2
(see Exercise A.0.3.2).

Note, by theway, that, sinceQhasno eigenvalues, the dispersion cannot be zero inany
state; wewill see this again in our discussion of the uncertainty relation in Section 6.3.

Example 6.2.4. Note that the state ϕ in the previous example is, except for a few con-
stants, the ground state ψ0 of the Hamiltonian HB for the bosonic harmonic oscillator
(Example 5.3.1). We would now like to compute the expected value and dispersion of
Q in all of the eigenstatesψn, n = 0, 1, 2, . . . , ofHB. Our approach this time will be quite
different, however. In particular, wewill avoid doing any integrals by exploiting prop-
erties of the raising and lowering operators introduced in Example 5.3.1. Recall that
these are defined by

b = 1
√2mωℏ

(mωQ + iP)

and

b† = 1
√2mωℏ

(mωQ − iP).
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Solving for Q and P gives

Q = √ ℏ
2mω
(b + b†)

and

P = −i√mωℏ
2
(b − b†).

Thus, for any n = 0, 1, . . . ,

⟨Q⟩ψn
= ⟨ψn,Qψn⟩ = √

ℏ
2mω
⟨ψn, (b + b

†)ψn⟩ = √
ℏ

2mω
[⟨ψn, bψn⟩ + ⟨ψn, b

†ψn⟩].

For n ≥ 1 this becomes

⟨Q⟩ψn
= √
ℏ

2mω
[⟨ψn,√nψn−1⟩ + ⟨ψn,√n + 1ψn+1⟩],

which is zero because {ψn}
∞
n=0 is an orthonormal basis for L2(R), whereas, for n = 0,

we obtain

⟨Q⟩ψ0
= √
ℏ

2mω
[⟨ψ0,0⟩ + ⟨ψ0,ψ1⟩],

which is again zero. Consequently, the expected value of the position operator is zero
in every eigenstate:

⟨Q⟩ψn
= 0, n = 0, 1, . . . .

For the dispersion we have

σ2ψn
(Q) = ‖Qψn‖

2 − ⟨Q⟩ψn
= ‖Qψn‖

2 = ⟨Qψn,Qψn⟩ = ⟨ψn,Q
2ψn⟩

=
ℏ

2mω
⟨ψn, (b + b

†)2ψn⟩

=
ℏ

2mω
[⟨ψn, b

2ψn⟩ + ⟨ψn, (b
†)2ψn⟩ + ⟨ψn, bb

†ψn⟩ + ⟨ψn, b
†bψn⟩].

The first and second terms are zero for exactly the same reason as in the argument for
⟨Q⟩ψn

above. For the third and fourth terms we note that, on 𝒮(R),

b†b + bb† = 2b†b + (bb† − b†b) = 2b†b + [b, b†]− = 2b†b + 1 = 2(NB +
1
2
) =

2
ℏω

HB.

Consequently,

σ2ψn
(Q) = ℏ

2mω
2
ℏω
[⟨ψn,HBψn⟩] =

ℏ
mω

ℰn
ℏω
⟨ψn,ψn⟩,
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so

σ2ψn
(Q) = ℏ

mω
(n + 1

2
), (6.5)

which becomes arbitrarily large as n increases, that is, as the energy increases.

Example 6.2.5. Note that everything is much easier for the energy HB itself:

⟨HB⟩ψn
= ⟨ψn,HBψn⟩ = ℰn⟨ψn,ψn⟩ = ℰn = (n +

1
2
)ℏω,

σ2ψn
(HB) = ‖HBψn‖

2 − ⟨HB⟩
2
ψn
= ℰ2n − ℰ

2
n = 0.

Example 6.2.6. Having interpreted |ψ(q)|2 as the probability density for positionmea-
surements inRwe would like to do something similar for momentum. For this we re-
call that we have already shown that Q and P are unitarily equivalent via the Fourier
transform (Example 5.2.7). The idea is to use the Fourier transform ℱ to move our en-
tire picture from one copy of L2(R), which physicists call the position representation,
to another, called the momentum representation. The process will perhaps be a bit
clearer if we distinguish these two copies of L2(R) by writing L2(R, dq) for the copy in
which ψ lives (position representation) and L2(R, dp) for the copy in which ℱψ = ψ̂
lives (momentum representation). Note that the word representation is actually used
here in a technical, mathematical sense. When we turn to quantization in Chapter 7
we will see that each of these pictures arises from an “irreducible, unitary, integrable
representation of the Heisenberg algebra.”

The Fourier transform is therefore regarded as an isometric isomorphism

ℱ : L2(R, dq)→ L2(R, dp)

of L2 of position space onto L2 of momentum space. Any state ψ ∈ L2(R, dq) can then
be identified with its image ℱψ = ψ̂ ∈ L2(R, dp) and any self-adjoint operator A :
𝒟(A) → L2(R, dq) on L2(R, dq) can be identified with a self-adjoint operator Â =
ℱAℱ−1 : ℱ(𝒟(A)) → L2(R, dp) on L2(R, dp). In particular, the momentum operator P
on L2(R, dq) is identified with the operator P̂ on L2(R, dp) defined by

(P̂ψ̂)(p) = [ (ℱPℱ−1)ψ̂ ](p) = ℱ(−iℏdψ
dq
) = ℏpψ̂(p),

which is just ℏ times multiplication by the coordinate inR for L2(R, dp). From Exam-
ple 5.5.2 we know the spectral measure of this operator and we conclude, just as we
did there, that

μψ̂,P̂(S) = EP̂(S)ψ̂2 = ∫
S

ℏψ̂(p)

2dp
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for any Borel set S ⊆ R. But note also that

P̂ = ℱPℱ−1 ⇒ EP̂(S) = ℱEP(S)ℱ−1
⇒ E

P̂(S)ψ̂
2
= ℱE

P(S)ψ
2
= E

P(S)ψ
2
= μψ,P(S),

so

μψ,P(S) = ∫
S

 ℏψ̂(p)

2dp.

Thus, | ℏψ̂(p) |2 is the probability density for momentummeasurements inR and ℏψ̂ is
the probability amplitude for momentum.

Example 6.2.7. The arguments from Example 6.2.4 can be repeated essentially verba-
tim to compute the expected value and dispersion of the momentum operator P in all
of the eigenstates ψn, n = 0, 1, . . . , of HB, so we will simply record the results. For each
n = 0, 1, . . . ,

⟨P⟩ψn
= 0

and

σ2ψn
(P) = mωℏ(n + 1

2
).

For future reference (in Section 6.3) we record a few formulas for the dispersions
of the position and momentum observables on R. For Q it follows directly from the
second equality in (6.4) that

σ2ψ(Q) =
(Q − ⟨Q⟩ψ)ψ


2
= ∫
R

(Qψ)(q) − ⟨Q⟩ψψ(q)

2dq = ∫

R

(q − ⟨Q⟩ψ)
2ψ(q)

2dq. (6.6)

For P we claim that

σ2ψ(P) = σ
2
ψ̂(P̂) = ℏ

2 ∫
R

( p −
⟨P̂⟩ψ̂
ℏ
)
2
ψ̂(p)

2dp. (6.7)

The first equality in (6.7) follows from

σ2ψ̂(P̂) = ‖P̂ψ̂‖
2 − ⟨P̂⟩2ψ =

ℱPℱ
−1ψ̂2 − ⟨ψ̂, P̂ψ̂⟩2

= ℱ(Pψ)

2
− ⟨ℱψ,ℱ(Pψ)⟩2 = ‖Pψ‖2 − ⟨ψ,Pψ⟩2

= σ2ψ(P).
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The second equality in (6.7) then follows from

σ2ψ̂(P̂) = ∫
R

 (P̂ψ̂)(p) − ⟨P̂⟩ψ̂ψ̂(p)

2dp

= ∫
R

 ℏpψ̂(p) − ⟨P̂⟩ψ̂ψ̂(p)

2dp

= ℏ2 ∫
R

( p −
⟨P̂⟩ψ̂
ℏ
)
2
ψ̂(p)

2dp.

We will conclude our initial remarks on Postulate QM3 with a particularly signif-
icant special case. Again, we will let ψ denote a unit vector in ℋ representing some
state. Now, let ϕ be another unit vector in ℋ representing another state. We have al-
ready observed that this second state can be identifiedwith the projection operator Pϕ
that carries ℋ onto the one-dimensional subspace of ℋ spanned by ϕ. But Pϕ is, in
particular, a self-adjoint operator and wewill identify it with an observable. Since it is
not just a self-adjoint operator, but a projection, it corresponds to an observable with
exactly two possible (eigen)values (1 if a measurement determines the system to be in
state ϕ and 0 otherwise). Since Pϕ is its own spectral decomposition, the probability
that a measurement to determine if the state is ϕ when it is known that the state is ψ
before the measurement is the same as the expected value of the observable and this
is

⟨ψ,Pϕψ⟩ = ⟨ψ, ⟨ϕ,ψ⟩ϕ⟩ = ⟨ϕ,ψ⟩ ⟨ψ,ϕ⟩ = ⟨ψ,ϕ⟩ ⟨ψ,ϕ⟩ =
 ⟨ψ,ϕ⟩

2
.

Thus, | ⟨ψ,ϕ⟩ |2 is the probability of finding the system in state ϕ if it is known to be
in state ψ before the measurement; it is called the transition probability from state ψ
to state ϕ. The complex number ⟨ψ,ϕ⟩ is called the transition amplitude from ψ to ϕ.
A case of particular importance to us arises in the following way. Suppose A is an ob-
servablewith the property thatℋhas an orthonormal basis {ψ0,ψ1, . . .} of eigenvectors
for A (Aψn = λnψn, n = 0, 1, . . .); for example, this is true for the operator HB of Exam-
ple 5.3.1. Letψ be some state and write itψ = ∑∞n=0⟨ψn,ψ⟩ψn in terms of the eigenbasis
forA. Then the transition probability fromψ to one of the eigenstatesψn ofA is just the
squared modulus |⟨ψn,ψ⟩|2 of theψn-component ofψ. Soon we will phrase this in the
following way: |⟨ψn,ψ⟩|2 is the probability that the state ψ will “collapse” to the eigen-
state ψn of A when a measurement of A is made. Note that∑∞n=0 |⟨ψn,ψ⟩|2 = ‖ψ‖2 = 1.

Our next two postulates deal with the dynamics of a quantum system, that is,
the time evolution of the state. There are two of them (actually, three since we give
two versions of Postulate QM5) because there appear to be two quite different ways
in which the state of the system can change. If you leave the system alone, in par-
ticular do not make measurements on it, the state will evolve smoothly in a manner
entirely analogous to the state of a classical system. The first of our two postulates
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(Postulate QM4) deals with this scenario. It is probably just what you expect and is, if
anything in physics is, universally accepted. The second postulate (Postulate QM5) is
quite a different matter. It purports to describe the response of the state to a measure-
ment, that is, to an encounter with an external system. It has been colorfully desig-
nated the collapse of the wave function and has been a source of controversy since the
very early days of quantum mechanics. For this reason we will preface the statement
of Postulate QM5 with somewhat more extensive remarks on what motivated it, what
it is supposed to mean, some of the attitudes that have been taken toward it and how
we will interpret it here.

For the statement of the first of these two postulates we will introduce, somewhat
reluctantly, a bit of terminology that is not entirely standard (the reason for our re-
luctance will be explained shortly). A classical physical system is generally said to be
isolated if it is not influenced by anything outside itself in the sense that neither mat-
ter nor energy can either enter or leave the system. These exist only as idealizations,
of course, but the ideal can be achieved to a very high degree of approximation by real
physical systems such as, for example, the solar system. It is implicit in this classical
notion that the effect ofmeasurementsmade on the system can be assumed negligible
(bouncing a laser beam off of the moon to ascertain its position has negligible effect
on the state of the solar system). This is, of course, precisely what one cannot assume
of a quantum system. We will use the term isolated quantum system for a quantum
system that is isolated in the classical sense and on which no measurements are made.
Naturally, this raises the question of just what counts as a measurement and, as we
havepointed out already, this is not a question that, even to this day, has been resolved
to everyone’s satisfaction. Rather than attempting to describe what a measurement is
we will adopt our Postulate QM4 below as a definition of what it means to say that
measurements are not being performed.

We shouldmake just one technical comment before recording Postulate QM4. The
stateψ of the systemwill evolvewith time t andwewillwrite the evolving states asψ(t)
or sometimes ψt . When the Hilbert space is L2(R), the wave function ψ is a function
of the spatial coordinate q and one writes it as ψ(q). It is common then to write the
evolving states as ψ(q, t). This done, it seems natural to write t-derivatives as partial
derivatives, but we will see that this requires some care. One must also take care not
to get the wrong impression; q and t are not at all on an equal footing here. The time
coordinate t enters only as a parameter labeling the states, not as an observable like q.
In particular, there is no operator representing t in the formalismof quantummechanics.
This is not consistent with the spirit of special relativity, which requires that space and
time coordinates be treated on an essentially equal footing. This creates some issues
for quantum field theory, which is an attempt to reconcile quantum mechanics and
special relativity, but this is not our concern at the moment.

Postulate QM4. Letℋ be the Hilbert space of an isolated quantum system. Then there
exists a strongly continuous one-parameter group {Ut}t∈R of unitary operators on ℋ,
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called evolution operators, with the property that if the state of the system at time t = 0
is ψ(0), then the state at time t is given by

ψ(t) = Ut(ψ(0))

for every t ∈ R. By Stone’s theorem, Theorem 5.6.2, there is a unique self-adjoint oper-
ator H : 𝒟(H) → ℋ, called the Hamiltonian of the system, such that Ut = e−itH/ℏ and
therefore

ψ(t) = e−itH/ℏ(ψ(0)).
Physically, the Hamiltonian H is identified with the operator representing the total en-
ergy of the system.

Note that ℏ is introduced to keep the units consistent with the physical interpre-
tation. Wave functions carry no units (because they are not measurable), so the same
must be true of the evolution operators. If H is to represent the energy of the system,
then, in our SI units, it would be measured in Joules (J = m2(kg)s−2). The Planck con-
stant has the units of m2(kg)s−1, so H/ℏ has units s−1 and, since t is measured in sec-
onds (s), all is well. The minus sign is conventional.

The one-parameter group {Ut}t∈R of unitary operators is the analogue for an
isolated quantum system of the classical one-parameter group {ϕt}t∈R of diffeo-
morphisms describing the flow of the Hamiltonian vector field in classical mechanics
(see (2.49)). That the appropriate analogue of the diffeomorphism ϕt is a unitary op-
erator Ut deserves some comment. On the surface, the motivation seems clear. A state
of the system is represented by a ψ ∈ ℋ with ‖ψ‖2 = 1, so the same must be true of
the evolved states ψ(t), that is, we must have ⟨ψ(t),ψ(t)⟩ = 1 for all t ∈ R. Certainly,
this will be the case if ψ(t) is obtained from ψ(0) by applying a unitary operator U
since ⟨U(ψ(0)),U(ψ(0)) ⟩ = ⟨ψ(0),ψ(0) ⟩ = 1. Note, however, that this is also true if
U is anti-unitary since then ⟨U(ψ(0)),U(ψ(0)) ⟩ = ⟨ψ(0),ψ(0) ⟩ = 1. Physically, one
would probably also wish to assume that the time evolution preserves all transition
probabilities | ⟨ψ,ϕ⟩ |2, but this is also the case for both unitary and anti-unitary op-
erators. Since unitary and anti-unitary operators differ only by composition with the
bijection K : ℋ → ℋ that sends ψ to Kψ = ψ, one might be tempted to conclude
that one choice is as good as the other. Physically, however, matters are not quite
so simple (see [Wig3]). Furthermore, it is not so clear that there might not be other
possibilities as well. That, in fact, there are no other possibilities is a consequence
of a nontrivial result of Wigner [Wig2] that we will describe briefly now. For this we
consider the state space CP(ℋ) of unit rays in ℋ. Note that if Ψ,Φ ∈ CP(ℋ), then
one can define | ⟨Ψ,Φ⟩ |2 = | ⟨ψ,ϕ⟩ |2 for any ψ ∈ Ψ and any ϕ ∈ Φ. Then | ⟨Ψ,Φ⟩ |2

is the transition probability from state Ψ to state Φ. Wigner defined a symmetry of
the quantum system whose Hilbert space isℋ to be a bijection T : CP(ℋ) → CP(ℋ)
that preserves transition probabilities in the sense that | ⟨T(Ψ),T(Φ)⟩ |2 = | ⟨Ψ,Φ⟩ |2
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for all Ψ,Φ ∈ CP(ℋ); note that no linearity or continuity assumptions are made.
Any unitary or anti-unitary operator U on ℋ induces a symmetry TU that carries any
representativeψ ofΨ to the representativeUψ of TU (Ψ). WhatWigner provedwas that
every symmetry is induced in this way by a unitary or anti-unitary operator and that
anti-unitary operators correspond to discrete symmetries such as time reversal (they
are the analogue of reflections in Euclidean geometry). Now we can argue as follows.
Suppose that the time evolution is described by an assignment to each t ∈ R of a
symmetry αt : CP(ℋ) → CP(ℋ) and suppose that t → αt satisfies αt+s = αt ∘ αs for
all t, s ∈ R. Then, for any t ∈ R, αt = α2t/2. By Wigner’s theorem, αt/2 is represented by
an operator Ut/2 that is either unitary or anti-unitary. Since the square of an operator
that is either unitary or anti-unitary is necessarily unitary, every Ut must be unitary.

In the physics literature Wigner’s definition of a symmetry is generally supple-
mented with the requirement that the operator must commute with the Hamiltonian
of the system so that, in particular, it preserves energy levels. There is quite a thorough
discussion, from the physicist’s point of view, of the applications of such symmetries
to concrete quantummechanical problems in Chapter 4 of [SN].

Note that there is nothing special about t = 0 in Postulate QM4. If t0 is any real
number, then ψ(t0) = Ut0 (ψ(0)) so ψ(t + t0) = Ut+t0 (ψ(0)) = Ut(Ut0 (ψ(0))) = Ut(ψ(t0))
and therefore

ψ(t) = ψ((t − t0) + t0) = Ut−t0(ψ(t0)) = e−i(t−t0)H/ℏ(ψ(t0)).
Thus,

Ut−t0 = e−i(t−t0)H/ℏ
propagates the state at time t0 to the state at time t for any t0, t ∈ R.

Next let us apply Lemma 5.6.1 to ψ(t0), which we assume is in the domain of the
Hamiltonian H. Then, for any t ∈ R, ψ(t) = Ut−t0 (ψ(t0)) is also in the domain of H by
Theorem 5.6.2. Consequently,

−(i/ℏ)H(ψ(t0)) = limt→0 Ut(ψ(t0)) − ψ(t0)
t

= lim
t→t0 Ut−t0 (ψ(t0)) − ψ(t0)

t − t0

= lim
t→t0 ψ(t) − ψ(t0)

t − t0
,

where the limit is in ℋ. We will write this as dψ(t)
dt |t=t0 = −(i/ℏ)H(ψ(t0)) or, since t0 is

arbitrary, simply as

iℏ dψ(t)
dt
= H(ψ(t)). (6.8)
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Equation (6.8) is called the abstract Schrödinger equation. We will find that the Hamil-
tonian operator of a system is generally a differential operator (such as HB for the
harmonic oscillator, or H0 for the free particle) so that (6.8) is a differential equation
that describes the time evolution ψ(t) of the state of an isolated quantum system with
Hamiltonian H.

Just to have a few examples to look at, let us once again anticipate the physical
interpretations to come inChapter 7 andhavea lookat the Schrödinger equation forHB
andH0. Thiswill also give us the opportunity to introduce the all-important notion of a
propagator, about whichwewill have a great dealmore to say in Chapter 8. Since both
examples are of the same type and this type recurs repeatedly in quantummechanics
we will begin by setting a more general stage.

Our Hilbert space will be ℋ = L2(R), so ψ(q, t) is a map from R2 to C. We will
be given a Hamiltonian H that is self-adjoint on some dense linear subspace 𝒟(H) of
L2(R) andwewill assume that𝒟(H) contains 𝒮(R) and that, on 𝒮(R),H is of the form

H = H0 + V(q) = −
ℏ2

2m
Δ + V(q) = − ℏ

2

2m
𝜕2

𝜕q2
+ V(q), (6.9)

where V(q) is a real-valued function on R which acts on L2(R) as a multiplication
operator (thus, for H0, V(q) = 0, and for HB, V(q) = (mω2/2)q2). Note that we have
chosen to write Δ as 𝜕2/𝜕q2 rather than d2/dq2 because we are now viewing ψ as a
function of (q, t) rather than as a function of q alone.

Remark 6.2.4. The sum of two unbounded, self-adjoint operators need not be self-
adjoint and it is quite a difficult matter to decide what sort of potentials V(q)will give
rise to an H = H0 + V(q) that is self-adjoint. We will have a bit more to say about this
in Section 9.2, but for the time being we will simply assume that V(q) is one of them.

Denoting the initial value ψ(q,0) of the wave function simply ψ(q), the Cauchy
problem for the Schrödinger equation (6.9) as it generally appears in treatments of
quantummechanics is

iℏ𝜕ψ(q, t)
𝜕t
= −
ℏ2

2m
𝜕2ψ(q, t)
𝜕q2
+ V(q)ψ(q, t),

ψ(q,0) = ψ(q).
(6.10)

But something just went by a bit too quickly. The abstract Schrödinger equation (6.9)
contains in it the t-derivative dψ(t)/dt, which is defined as the limit in ℋ = L2(R) of
the familiar difference quotient. The partial derivative 𝜕ψ(q, t)/𝜕t that appears in the
traditional physicist’s form (6.10) of the Schrödinger equation is, on the other hand,
defined as a limit inC of an equally familiar difference quotient. It is not so clear that
these should be the same. Indeed, as a classical partial differential equation (6.10)
generally does not make sense in L2(R) since the elements of L2(R) need not be differ-
entiable. The best we can hope for is that, in the context of classical solutions to (6.10),
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the two derivatives coincide so that, in this restricted context, the two versions of the
Schrödinger equationdescribe the same evolution. The following is Exercise 3.1, Chap-
ter IV, of [Prug].

Exercise 6.2.1. Assume thatψ(q, t) is continuously differentiablewith respect to t and
square integrable with respect to q for every t and that the L2(R)-limit

lim
Δt→0 ψ(q, t + Δt) − ψ(q, t)

Δt

exists. Show that the partial derivative 𝜕ψ(q, t)/𝜕t is in L2(R) for every t and

lim
Δt→0 ψ(q, t + Δt) − ψ(q, t)

Δt
=
𝜕ψ(q, t)
𝜕t
.

Hints: Temporarily denote by φ(q, t) the L2-limit on the left-hand side. Choose a se-
quence Δt1,Δt2, . . . converging to zero. Then, as n→∞, the sequence

ψ(q, t + Δtn) − ψ(q, t)
Δtn

converges in L2(R) to φ(q, t). Consequently, some subsequence converges pointwise
almost everywhere to φ(q, t). Conclude from the assumed t-continuity of 𝜕ψ(q, t)/𝜕t
that, as elements of L2(R), φ(q, t) = 𝜕ψ(q, t)/𝜕t.

At this pointwe have assembled enough information to offer something in theway
of motivation for calling P = −iℏ ddq the “momentum operator” on R. Classically, the
momentum of a particle moving in one dimension is the product of its massm and its
velocity. Since a quantum particle has no trajectory in the classical sense one cannot
attach any meaning to its classical position or classical velocity at each instant. What
one can attach a meaning to are the expected values of position and velocity. We have
already argued that (Qψ)(q) = qψ(q) is the “right” choice for the position operator. Its
expected value in any state ψ is given by

⟨Q ⟩ψ = ⟨ψ,Qψ⟩ = ∫
R

ψ(q)qψ(q) dq.

Nowweallow the stateψ = ψ0 to evolve in timeaccording to the Schrödinger equation.
Writing the state at time t as ψt so that ψt(q) = ψ(q, t)we inquire as to the time rate of
change of the expected value

⟨Q ⟩ψt
= ⟨ψt ,Qψt⟩ = ∫

R

ψ(q, t)qψ(q, t)dq

of position at t = 0. Then d
dt ⟨Q ⟩ψt

|t=0 is taken to be the expected value of the particle’s
velocity in state ψ and

m d
dt
⟨Q ⟩ψt

t=0 = m d
dt
∫
R

ψ(q, t)qψ(q, t) dq
t=0
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is taken to be the expected value of the particle’s momentum in state ψ. The idea is to
show that this is precisely ⟨ψ,Pψ⟩ and thereby conclude that P = −iℏ ddq is the “right”
choice for the momentum operator in quantummechanics. Since our purpose here is
motivation we will sweep some technical issues under the rug and assume thatψ(q, t)
is continuously differentiable with respect to t and a Schwartz function of q for each
t and that we can replace dψt/dt with 𝜕ψ(q, t)/𝜕t in the Schrödinger equation (see
Exercise 6.2.1). Now we just compute

d
dt
⟨Q ⟩ψt
=

d
dt
∫
R

ψ(q, t)qψ(q, t) dq

= ∫
R

q 𝜕
𝜕t
[ψ(q, t)ψ(q, t)] dq

= ∫
R

q [𝜕ψ(q, t)
𝜕t

ψ(q, t) + ψ(q, t)𝜕ψ(q, t)
𝜕t
] dq

=
iℏ
2m
∫
R

q [−𝜕
2ψ(q, t)
𝜕q2

ψ(q, t) + ψ(q, t)𝜕
2ψ(q, t)
𝜕q2
] dq,

where the last equality follows from the Schrödinger equation and its conjugate; note
that the potential terms cancel.

Exercise 6.2.2. Integrate by parts to show that this can be written

d
dt
⟨Q ⟩ψt
=
−iℏ
2m
∫
R

[−
𝜕ψ(q, t)
𝜕q

ψ(q, t) + ψ(q, t)𝜕ψ(q, t)
𝜕q
] dq.

Another integration by parts on the first term gives

d
dt
⟨Q ⟩ψt
=
−iℏ
2m
∫
R

2ψ(q, t)𝜕ψ(q, t)
𝜕q

dq

=
1
m
∫
R

ψ(q, t) [−iℏ 𝜕
𝜕q

ψ(q, t)] dq.

At t = 0 this gives

m d
dt
⟨Q ⟩ψt

t=0 = ⟨ψ,Pψ⟩ = ⟨P⟩ψ
and this is what we wanted to show. The general problem of deciding which opera-
tors are to represent which observables is a nontrivial one and we will return to it in
Chapter 7.
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Example 6.2.8. We consider HB : 𝒟(HB)→ L2(R) as in Example 5.4.5 and the Cauchy
problem (6.10) for HB

iℏ𝜕ψ(q, t)
𝜕t
= −
ℏ2

2m
𝜕2ψ(q, t)
𝜕q2
+ (mω2/2)q2ψ(q, t),

ψ(q,0) = ψ(q),
(6.11)

where ψ(q) is assumed to be in𝒟(HB). We know that the solution can be described in
terms of the evolution operators by

ψ(q, t) = Ut(ψ(q)) = e
−itHB/ℏ(ψ(q)).

But L2(R) has an orthonormal basis {ψn(q)}∞n=0 consisting of eigenfunctions ofHB with
simple eigenvalues ℰn (HBψn = ℰnψn), so we conclude from (5.39) that this can be
written

ψ(q, t) =
∞
∑
n=0⟨ψn,ψ⟩e

−itℰn/ℏψn(q) =
∞
∑
n=0(∫

R

ψn(x)ψ(x)dx) e
−itℰn/ℏψn(q), (6.12)

where the convergence is in L2(R) for each t.
Note that we could omit the conjugation symbol here since, for HB, the eigen-

functionsψn(x) are real-valued. We leave it there because the only property ofHB that
played a role in any of this was the fact that L2(R) has an orthonormal basis consist-
ing of eigenfunctions with simple eigenvalues. This is not as uncommon as one might
suppose, but generally the eigenfunctions will be complex-valued. There are various
theorems that assert the existence of such an eigenbasis for Hamiltonians of the form
H = H0 + V(q) under various conditions on V(q). This is the case, for example, if
V ∈ L∞loc(R) and limq→∞ V(q) = ∞; this can be found, for example, in Theorems 7.3
and 7.6 of [Pankov].

The evolution of the wave function for HB with initial data ψ(q) is completely and
explicitly described by (6.12), but even sowewould like to playwith this just a bitmore
tomotivate an important idea. First let usmake the initial timemore visible by writing
ψ(x) explicitly as ψ(x,0), so that

ψ(q, t) =
∞
∑
n=0(∫

R

ψn(x)ψ(x,0)dx) e
−itℰn/ℏψn(q).

Because of the group property of Ut we can replace t = 0 by any t = t0 to obtain

ψ(q, t) =
∞
∑
n=0(∫

R

ψn(x)ψ(x, t0)dx) e
−i(t−t0)ℰn/ℏψn(q).
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For motivational purposes, let us be a bit sloppy here and just assume that we can
interchange the summation and integration so that this can be written

ψ(q, t) = ∫
R

K(q, t; x, t0)ψ(x, t0)dx, (6.13)

where

K(q, t; x, t0) =
∞
∑
n=0 e−iℰn(t−t0)/ℏψn(q)ψn(x) =

∞
∑
n=0 e−i(n+ 12 )ω(t−t0)ψn(q)ψn(x), (6.14)

which is called the propagator for HB, or the integral kernel for HB, or simply the
Schrödinger kernel for HB; we will have a great deal more to say about it in Sec-
tion 7.4 and Chapter 8; in particular, we will exhibit a closed form expression for
K(q, t; x, t0). Moreover, in Chapter 8 we will introduce a precise definition of the prop-
agator for any Hamiltonian and describe Feynman’s remarkable representation of it
as a path integral. For the moment we will content ourselves with a few, admittedly
rather vague and unproved hints as to how one should think about it. Let us regard
|ψ(q, t) |2 as the probability of locating some particle at position q at time t; in re-
ality, |ψ(q, t) |2 is just a probability density, of course (Example 6.2.2); ψ(q, t) itself
will be thought of as the probability amplitude for detecting the particle at location
q at time t; similarly for ψ(x, t0) for any x in R. For q, t and t0 held fixed, the inte-
gral ∫

R
K(q, t; x, t0)ψ(x, t0)dx expresses the amplitudeψ(q, t) as a “sum” over all x ∈ R

of the products K(q, t; x, t0)ψ(x, t0). One thinks of |K(q, t; x, t0) |2 as the conditional
probability that the particle will be detected at q at time t given that it is detected at x
at time t0, so K(q, t; x, t0) itself is the amplitude for getting from (x, t0) to (q, t).

We would like to do the same sort of thing for the free particle HamiltonianH0. In
this case we do not have access to an orthonormal eigenbasis for L2(R) (there are no
eigenfunctions of H0 in L2(R)) so the procedure is not as straightforward as in Exam-
ple 6.2.8. Indeed, it seems best to save this for Section 7.3, where we focus entirely on
the free particle (see Example 7.3.2).

Moving on to our next “dynamical” postulate, we need to consider the effect of an
encounter with some external system. A measurement performed on a classical me-
chanical system is a relatively unambiguous notion. It is an interaction between the
system on which the measurement is to be made and some external system (“mea-
suring device”) that yields, in one way or another, a value of some classical observ-
able, but has negligible effect on the state of the measured system. The distinguishing
feature of quantum mechanics is the impossibility of satisfying this last condition.
Indeed, it has been argued, particularly in recent years with the increasing promi-
nence of such notions as entanglement and decoherence, that the very notion of an
isolated quantum system upon which measurements are to be made is not meaning-
ful; every physical system is inextricably entangled with and cannot be disentangled
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from its physical environment (hence our reluctance to introduce the notion of an iso-
lated quantum system in the first place). Taking this notion seriously has led to a new
perspective on the foundations of quantum mechanics and could potentially resolve
many of the conceptual issues associated with the measurement problem that we will
soon discuss. For those interested in pursuing these matters further we will only of-
fer the following suggestions. The seminal papers on entanglement are by Einstein,
Podolsky and Rosen [EPR], Bell [Bell] and Aspect, Dalibard and Roger [ADR]. For de-
coherence onemight consult the survey article [Schl] and then proceed to the web site
http://www.decoherence.de/.

Much of what we need to discuss now is rather problematic, but one thing at
least is clear.Whatever reasonable notion ofmeasurement one adopts, there are some
things that surely should count as measurements and these have rather startling ef-
fects on the state of the systembeingmeasured. In our discussion of the two-slit exper-
iments in Section 4.4 we found that any attempt to detect an electron coming through
one of the slits obliterates the interference pattern altogether, transforming a state
characterized by interference into one in which there is no interference at all. This
change in the state is abrupt and discontinuous, occurring at the instant the mea-
surement is made, and cannot be accounted for by the smooth evolution of states de-
scribed in Postulate QM4. Something new is required and von Neumann formulated
what is often called the projection postulate or reduction postulate or collapse postu-
late to account for this sort of collapse of the state vector. In order to emphasize some
of the issues involved we will actually formulate two versions of this collapse hypoth-
esis. The first (Postulate QM5) is the version proposed by von Neumann in [vonNeu].
The second (Postulate QM5) is an extension of this due to Lüder that includes the first
as a special case, but does not follow from the arguments of von Neumann that we
will now describe.

Consider first an observable A whose spectrum consists of a discrete set σ(A) =
{λ0, λ1, . . .} of simple eigenvalues (recall that discrete means in the topological sense
that each point of the spectrum is isolated in the subspace σ(A) ofR and simplemeans
that the dimension of each eigenspace is one). A good example to keep in mind is the
operator HB of Example 5.5.4. Assume that ℋ has an orthonormal basis {ψ0,ψ1, . . .}
consisting of eigenvectors of A with, say, Aψn = λnψn, n = 0, 1, . . . Let us suppose
that the system is in some state ψ and write ψ in terms of the eigenbasis for A as
ψ = ∑∞n=0⟨ψn,ψ⟩ψn. Now suppose that a measurement of A is made on the system.
According to Postulate QM2, the only possible outcome of the measurement is one
of the eigenvalues λk and this will occur with transition probability |⟨ψk ,ψ⟩|2. At this
point, von Neumann (page 215 of [vonNeu]) makes a physical assumption that is the
source of much of the controversy surrounding our upcoming Postulate QM5. The as-
sumption is that if this measurement of A on the system yields the value λk and is fol-
lowed “immediately” by another measurement of A on the same system, then the result
of the second measurement of A must give the same result λk “with certainty.” Since the
eigenvalues are simple, the only state for which the outcome of a measurement of A
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is λk with probability one is ψk . Consequently, the effect of the measurement must be
to change the state of the system from ∑∞n=0⟨ψn,ψ⟩ψn to ψk . Prior to the measurement
the state of the system is some superposition of eigenstates of Awhich then collapses
to a single eigenstate when the measurement is performed. It is not altogether clear
whether this collapse of the state vector, should you choose to accept it, is to be re-
garded as a statement about physics or epistemology. Does the measurement result in
a physical change in the quantum system, and therefore in its state, or simply in our
knowledge of the system? Each position has its advocates and we are certainly not so
presumptuous as to take a stand, but offer the question only as food for thought.

Before opting to accept somevariant of this collapse scenario as ourPostulateQM5
we need to discuss some of the issues it raises. The most obvious, of course, is that
making a measurement on a quantum system is very likely to destroy the system, in
which case there is no sense trying to discuss its subsequent state. This is what hap-
pens, for example, when we measure the position of an electron in the two-slit ex-
periment by letting it collide with a screen (see Remark 6.2.5 for a bit more on this).
Henceforth we will bar such destructive measurements from consideration and try to
unearth some of the more subtle issues posed by von Neumann’s argument.

It is, for example, not entirely clear what is meant by the word “immediately”
for the second measurement. Assuming that the measurement is made at time t0
and the state really does collapse to ψk at that instant, then, until another mea-
surement is made, Postulate QM4 requires that the new state evolve according to
ψ(t) = e−i(t−t0)H/ℏ(ψk). In particular, there is generally no time interval following t0
during which the state remainsψk, so it would seem that a secondmeasurement need
not result in λk “with certainty.” A physicist would respond that what is intended
here is a second measurement made after an “infinitesimal” time interval. We will try
to make sense of this as a limit statement. We will assume that by “with certainty”
von Neumann meant “with probability one” and, as a result, his assumption is that
repeated second measurements of A when the system is initially in state ψ and the
first measurement gives λk will yield λk with a relative frequency that approaches 1
as the number of repetitions approaches infinity. Now, as the collapsed state evolves
smoothly away from ψk for t > t0, the probability that the second measurement of A
will yield λk is, by Postulate QM3, μψ(t),A( {λk} ) = ‖EA( {λk} )ψ(t) ‖2, which varies con-
tinuously with t and therefore approaches 1 as t → t0. Consequently, the probability
that the secondmeasurement of A results in the value λk can bemade arbitrarily close
to 1 bymaking themeasurement sufficiently soon after the collapse. Taking thematter
one step further, repeating the second measurement of A sufficiently often and suffi-
ciently soon after the collapse, the relative frequency of the outcome λk can be made as
close to 1 as desired. If we are willing to concede, as we must, that nothing in physics
is ever measured exactly, then this would seem to be a reasonable interpretation of
von Neumann’s assumption.

Note that there is one case in which this difficulty associated with the evolution of
the collapsed state does not arise. Suppose the observableAwehave been considering
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happens to be the HamiltonianH itself, that is, the total energy. ThenHψk = λkψk, so,
by Theorem 5.5.7.3,

e−i(t−t0)H/ℏ(ψk) = e
−i(t−t0)λk/ℏψk ,

which differs from ψk only in the phase factor e−i(t−t0)λk/ℏ and so represents the same
state. Normalized eigenvectors for the Hamiltonian are called stationary states be-
cause they represent states of the system that do not change with time. For these, a
secondmeasurement ofH on the system should, indeed, yield the same energy as the
first with probability one. Of course, for a general Hamiltonian such stationary states
(eigenstates) need not exist because, unlike HB, there need not be any eigenvalues at
all.

For observables other than the Hamiltonian, however, there is at least the hint of
some tension between the underlying rationale for the collapse hypothesis and the
smooth evolution of the state governed by the Schrödinger equation. As evidence that
the debate over the collapse of the wave function is still alive and well we offer [CL],
the paper [’t Ho2] by a Nobel laureate and the following quote.

“The dynamics and the postulate of collapse are flatly in contradiction with one another ... the
postulate of collapse seems to be right about what happens when we make measurements, and
the dynamics seems to be bizarrely wrong about what happens when we make measurements,
and yet the dynamics seems to be right about what happens whenever we aren’t making mea-
surements.”

D. Albert [Albert]

Having sounded the appropriate cautionary notes we now throw caution to the winds
and record our first version of the collapse postulate.

Postulate QM5. Let ℋ be the Hilbert space of a quantum system with Hamiltonian H
and A an observable with a discrete spectrum σ(A) = {λ0, λ1, . . .} consisting entirely of
simple eigenvalues. Let ψ0,ψ1, . . . be an orthonormal basis forℋ with Aψn = λnψn, n =
0, 1, . . . . Suppose the system is isolated for 0 ≤ t < t0 so that its state evolves from some
initial state ψ(0) according to ψ(t) = e−itH/ℏ(ψ(0)). At t = t0 a measurement of A on
the system is made. If the result of the measurement is the eigenvalue λk , then the state
of the system at time t0 is ψk . For t > t0 the state of the now isolated system evolves
according to ψ(t) = e−i(t−t0)H/ℏ(ψk).

Had themeasurement not beenmade, the state of the systemat time t0wouldhave
been represented by e−it0H/ℏ(ψ(0)). The act of measuring results in a discontinuous
jump in the state and the result of the measurement determines what the state jumps
to.

Remark 6.2.5. One might also wonder about the physical, that is, experimental
evidence that supports the collapse hypothesis. Needless to say, making measure-
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ments on a quantum system is a delicate business and making measurements that do
not destroy the system in the process is considerably more delicate. Von Neumann
(pages 212–214 of [vonNeu]) deduces his hypothesis from a discussion of experiments
performed by Compton and Simons on the scattering of photons by electrons. It was
not until the 1980s, however, that the technology began to evolve for making succes-
sive measurements on a single quantum system. A thorough discussion of the experi-
mental situation through 1992 is available in [BK]. Indicative of the level towhich these
experimental techniques have evolved is the fact that the 2012 Nobel Prize in Physics
was awarded “for ground-breaking experimental methods that enablemeasuring and
manipulation of individual quantum systems” (see http://www.nobelprize.org). At
present one can say only that the experimental evidence appears to weigh in on the
side of the collapse hypothesis, at least for observables of the type we have been con-
sidering. In the end, however, one cannot say that the issue of the collapse of thewave
function has been resolved to everyone’s satisfaction.

Naturally, not all observables have a discrete spectrum consisting of simple eigen-
values and for these the situation ismore tenuous. Begin by considering an observable
A that has a discrete spectrum σ(A) = {λ0, λ1, . . .} consisting entirely of eigenvalues, but
for which the eigenvalues need not be simple. Thus, each λn has an eigenspace Mλn
of dimension greater than or equal to one (perhaps countably infinite). Assume that
one can still find an orthonormal basis {ψ0,ψ1, . . .} for ℋ consisting of eigenvectors
of A. Thus, any state ψ can be written as ψ = ∑∞n=0⟨ψn,ψ⟩ψn. It is still true (by Pos-
tulate QM2) that a measurement of A in state ψ can only result in one of the eigen-
values of A. Suppose that a measurement is made and the result is λk . Invoking von
Neumann’s argument that a secondmeasurement ofA performed “immediately” after
the first must also result in λk “with certainty,” we conclude again that the measure-
ment must collapse the state ψ to a unit eigenvector of A with eigenvalue λk . But, if
dim Mλk > 1, this does not uniquely determine the collapsed state and von Neumann
leaves the matter at this.

“... if the eigenvalue ... is multiple, then the state ... after the measurement is not uniquely deter-
mined by the knowledge of the result of the measurement.”

von Neumann ([vonNeu], page 218)

Von Neumann did, in fact, havemore to say about the case of degenerate eigenvalues,
but the end result was not a uniquely determined post-measurement collapsed state.

One can, of course, make a choice of some element in the eigenspaceMλk to serve
as the collapsed state, but no such choicewould follow fromvonNeumann’smeasure-
ment repeatability assumption alone. Since there appears to be a generally accepted
choice in the literature (at least among those who accept the collapse hypothesis at
all) we will record a version of this as our Postulate QM5; it is generally called Lüder’s
postulate.
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Postulate QM5. Let ℋ be the Hilbert space of a quantum system with Hamiltonian H
and A an observable with a discrete spectrum σ(A) = {λ0, λ1, . . .} consisting entirely of
(not necessarily simple) eigenvalues. Let ψ0,ψ1, . . . be an orthonormal basis forℋ with
Aψn = λnψn, n = 0, 1, . . . . Suppose the system is isolated for 0 ≤ t < t0 so that its
state evolves from some initial state ψ(0) according to ψ(t) = e−itH/ℏ(ψ(0)). Let ϕ =
e−it0H/ℏ(ψ(0)). At t = t0 a measurement of A on the system is made. If the result of the
measurement is the eigenvalue λk , then the projection Pλkϕ = E

A({λk})ϕ of ϕ into the
eigenspace Mλk of λk is nonzero and the state of the system at time t0 is represented by
the normalized projection of ϕ into Mλk , that is, by

ψ(t0) =
Pλkϕ
‖Pλkϕ‖
.

For t > t0 the state of the now isolated system evolves according to

ψ(t) = e−i(t−t0)H/ℏ(ψ(t0)).
A translation of Lüder’s paper is available at http://arxiv.org/pdf/quant-ph/

0403007v2.pdf, where the rationale behind this choice is described in detail. We
will content ourselves with two simple remarks. If Pλkϕ were zero, then ϕ would be
orthogonal to the eigenspaceMλk and so the transition probability from ϕ to any state
in Mλk is zero and collapse to an eigenstate in Mλk would have probability zero. On
the other hand, if Pλkϕ ̸= 0, collapse onto the normalized projection of ϕ into Mλk
guarantees that Lüder’s Postulate QM5, agrees with von Neumann’s Postulate QM5
when the eigenvalues are simple.

For observables with continuous spectrum the situation is even less clear since
there need not be any eigenvalues at all and therefore no eigenstates onto which to
collapse. Various proposals have been put forth for reasonable versions of the collapse
postulate in the presence of a continuous spectrum, but none appears to have been
awarded a consensus and so we will content ourselves with a reference to [Srin] for
those interested in pursuing the matter.

To introduce our next postulate, let us consider two observables and their corre-
sponding self-adjoint operatorsA1 andA2. Suppose also thatA1 andA2 happen to com-
mute in the sense that their corresponding spectral measures commute. According to
vonNeumann’s Theorem 5.6.4, bothA1 andA2 are functions of a single self-adjoint op-
erator, that is, there exists a self-adjoint operatorB and two real-valuedBorel functions
f1 and f2 on R such that Ai = fi(B), i = 1, 2. Assume also that B corresponds to some
observable (recall that Postulate QM2 does not ensure this in general, but, barring su-
perselection rules, one usually assumes that every self-adjoint operator corresponds
to an observable). Then a measurement of B in any state is, by definition, also a mea-
surement of both f1(B) and f2(B) and consequently a measurement of both A1 and A2.
In this sense one can say that A1 and A2 are simultaneously measurable in any state.
Moreover, since Theorem 5.6.4 applies to arbitrary families of commuting self-adjoint
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operators we conclude that any family of observables whose corresponding self-adjoint
operators commute can be simultaneously measured in any state (assuming again that
the operator B guaranteed by Theorem 5.6.4 corresponds to some observable).

Now, what about observables that do not commute? Can they also be simultane-
ously measured in any state? One should take some care with the terminology here.
For commuting observables we need only make one measurement of one observable
(B) and thenweget themeasured values of the commuting observables simultaneously
and for free simply by virtue of the way observables of the form f (B) are defined; there
is no question of physically coordinating two different measurements. On the other
hand, if A1 and A2 do not commute, then there is no a priori reason to suppose that we
can measure both by simply measuring some third observable and doing a computa-
tion. Taken literally, the “simultaneousmeasurement” of A1 and A2 in this case would
mean that we must perform two different measurements on the system at the same
time and this, we claim, raises some issues. How does one ensure that apparatus 𝒜1
for measuring A1 and apparatus 𝒜2 for measuring A2 do their measuring at precisely
the same instant?Wemaintain that, since nothing in the laboratory is ever determined
exactly, one generally cannot ensure this and for this reason a strict adherence to the
literal definition of “simultaneous” is ill-advised.

Remark 6.2.6. We are ignoring relativistic effects here, but one cannot ignore relativ-
ity forever and eventually will need to contend also with the relativity of simultaneity
(see page 23 of [Nab5]).

Once again a physicist will argue that this is no problem provided the two mea-
surements are separated by a time interval that is “infinitesimal” and once again we
will interpret this as a statement about sufficiently small time intervals. Unlike our dis-
cussion of von Neumann’s repeatedmeasurements, however, even if the time interval
separating them is very small, there is now the additional issue ofwhichmeasurement
is performedfirst. Certainly, any interpretation of the “simultaneousmeasurability” of
A1 and A2 along these lines must at least require that if the time lapse between them is
sufficiently small, then the order inwhich themeasurements actually take place is im-
material. However, since quantummechanics has nothing to say about the outcome of
any individual measurement, a precise formulation of this must be a statement about
the relative frequencies of such outcomes, that is, about probabilities. The following
arguments are intended only to motivate what this precise formulation should look
like and how this is related to the commutativity of the corresponding operators. In
the end we will state precisely what we are assuming in the form of Postulate QM6.

We consider two observables A1 and A2 and two Borel sets S1 and S2 inR. Denote
the spectral measures of A1 and A2 by EA1 and EA2 , respectively, and let ψ be some
unit vector inℋ representing a state. We intend to compute the joint probability that
a measurement of A1 is in S1 and a measurement of A2 is in S2, first assuming that
the A1 measurement is performed first and then assuming that the A2 measurement is
performed first. Insisting that these two be the same for all states ψ and for all Borel
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sets S1, S2 ⊆ R will be our way of saying that the order in which the measurements
take place is immaterial. We will then show that this alone implies that A1 and A2
must commute.

Note that each EAi (Si), i = 1, 2, being a projection, is an observable with a discrete
spectrum of eigenvalues {0, 1}. Next, observe that

μψ,A1
(S1) = μψ,EA1 (S1)( {1} ) = ⟨ψ,EA1 (S1)ψ⟩ =

E
A1 (S1)ψ

2
. (6.15)

Exercise 6.2.3. Prove (6.15).

This is the probability that a measurement of A1 in state ψ will yield a value in S1,
that is, the probability that a measurement of EA1 (S1) in state ψ will have outcome 1.
Assuming EA1 (S1)ψ ̸= 0, Lüder’s postulate applied to EA1 (S1) implies that when the
measurement is made, the state ψ collapses to

φ = EA1 (S1)ψ
‖EA1 (S1)ψ‖

.

Now, the probability that a measurement of A2 in state φ will yield a value in S2 is

μφ,A2
(S2) = μφ,EA2 (S2)( {1} ) = ⟨φ,EA2 (S2)φ⟩ =

E
A2 (S2)φ

2
=
‖EA2 (S2)EA1 (S1)ψ‖2

‖EA1 (S1)ψ‖2
.

Assuming that themeasurements ofEA1 (S1) andEA2 (S2) represent independent events,
the probability that a measurement of A1 in stateψ followed “immediately” by a mea-
surement of A2 in state φ will yield values in S1 and S2, respectively, is the product

μφ,A2
(S2) μψ,A1

(S1) =
E

A2 (S2)E
A1 (S1)ψ

2
.

The same argument shows that if the measurements are carried out in the reverse or-
der, the result is

E
A1 (S1)E

A2 (S2)ψ

2
.

In general, there is no reason to suppose that these two joint probabilities are the same.
IfA1 andA2 have the property that theyare the same for all statesψ and all Borel sets S1
and S2 inR, then we will say that the observables A1 and A2 are compatible.

We show now that, assuming there are no superselection rules, the operators cor-
responding to compatible observables must commute. The definition of compatibility
for A1 and A2 implies that for any state ψ and any two Borel sets S1 and S2,

⟨EA1 (S1)E
A2 (S2)ψ, E

A1 (S1)E
A2 (S2)ψ⟩ = ⟨E

A2 (S2)E
A1 (S1)ψ ,E

A2 (S2)E
A1 (S1)ψ ⟩.

Rearranging this using the fact that each EAi (Si) is a projection (self-adjoint and idem-
potent) gives

⟨ψ, [EA1 (S1)E
A2 (S2)E

A1 (S1) − E
A2 (S2)E

A1 (S1)E
A2 (S2)]ψ ⟩ = 0.
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Exercise 6.2.4. Prove this.

If we now assume that the unit vectors ψ in ℋ that correspond to states of our
quantum system exhaust all of the unit vectors inℋ (that is, that there are no supers-
election rules), then it follows from this that

EA1 (S1)E
A2 (S2)E

A1 (S1) − E
A2 (S2)E

A1 (S1)E
A2 (S2) = 0.

From this we obtain

[EA1 (S1)E
A2 (S2) − E

A2 (S2)E
A1 (S1)]

∗
[EA1 (S1)E

A2 (S2) − E
A2 (S2)E

A1 (S1)]

= [EA2 (S2)E
A1 (S1) − E

A1 (S1)E
A2 (S2)] [E

A1 (S1)E
A2 (S2) − E

A2 (S2)E
A1 (S1)]

= EA2 (S2)E
A1 (S1)E

A2 (S2) − E
A1 (S1)E

A2 (S2)E
A1 (S1)E

A2 (S2)

− EA2 (S2)E
A1 (S1)E

A2 (S2)E
A1 (S1) + E

A1 (S1)E
A2 (S2)E

A1 (S1) = 0

because

EA1 (S1)E
A2 (S2)E

A1 (S1)E
A2 (S2) = E

A1 (S1)E
A2 (S2)E

A1 (S1)

and

EA2 (S2)E
A1 (S1)E

A2 (S2)E
A1 (S1) = E

A2 (S2)E
A1 (S1)E

A2 (S2).

Exercise 6.2.5. Show that if T is a bounded operator on a Hilbert space and T∗T = 0,
then T = 0.

Thus,

EA1 (S1)E
A2 (S2) = E

A2 (S2)E
A1 (S1)

for all Borel sets S1, S2 ⊆ R and this is precisely the definition of what it means for
the self-adjoint operators A1 and A2 to commute. Consequently, A1 and A2 can both be
written as functions of some self-adjoint operatorB, and ifB corresponds to an observ-
able (again, no superselection rules), then A1 and A2 are simultaneously measurable
by measuring B.

A finite family of observables A1, . . . ,An is said to be compatible if any two observ-
ables in the family are compatible in the sense we have just defined. Postulate QM6
asserts that for finite families of observables, compatibility is to be fully identifiedwith
commutativity of the corresponding operators and therefore with simultaneous mea-
surability. Motivated by the joint probability formulas derived above, it also extends
the Born–von Neumann formula to include such simultaneously measured values.

Postulate QM6. Letℋ be theHilbert space of some quantum systemandA1, . . . ,An self-
adjoint operators on ℋ corresponding to observables. Then A1, . . . ,An are simultane-
ously measurable if and only if Ai and Aj commute for all i, j = 1, . . . , n. Moreover, in
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this case, if ψ is any state and S1, . . . , Sn are Borel sets inR, then the probability that a
simultaneous measurement of the observables A1, . . . ,An will yield values in S1, . . . , Sn,
respectively, is

E
A1 (S1) ⋅ ⋅ ⋅E

An (Sn)ψ

2
= ⟨ψ, EA1 (S1) ⋅ ⋅ ⋅E

An (Sn)ψ ⟩, (6.16)

where EA1 , . . . ,EAn are the spectral measures of A1, . . . ,An, respectively.

Note that since EAi (Si) commute, EA1 (S1) ⋅ ⋅ ⋅EAn (Sn) is a projection and this gives the
equality in (6.16).

Because of von Neumann’s Theorem 5.6.4, no one argues about the principle that
commuting observables should be simultaneously measurable (in virtually any sense
in which you might define simultaneously measurable). As one might expect, how-
ever, the considerably less obvious converse, that noncommuting observables cannot
be simultaneously measured, has not gone unquestioned. Von Neumann presents an
argument in favor of this converse quite different from the one we have used here (see
pages 223–229 of [vonNeu]), but for the view from the loyal opposition one should
consult [PM]. The issue, of course, is that adopting Postulate QM6 essentially defines
“simultaneous measurability” as commutativity of the corresponding operators and
one can argue about how accurately this definition reflects the physical notion of
“measuring simultaneously.” Mathematical definitions are clear and unambiguous,
but physics is rarely like that.

Postulates QM1–QM6 provide a framework on which to build many of the for-
mal aspects of quantum mechanics, but any suggestion that quantum mechanics as
a whole is somehow contained in these postulates is wildly false. We will spend some
time investigating this formal structure, but when we turn our attention to more con-
crete issues Postulates QM1–QM6will need to be supplemented not only with specific
information about particular quantum systems, but also with general procedures for
implementing the postulates (how does one choose the Hilbert space of the system, or
associate operators to its observables, etc.). Furthermore, whenwe finally come to the
quantummechanical notion of spin (in Chapter 10) wewill find it necessary to append
an additional Postulate QM7 to our list (see Section 10.2).

6.3 Uncertainty relations

We would like to begin by taking a closer look at pairs of observables to which Postu-
late QM6 does not apply. Thus, we consider two self-adjoint operators A : 𝒟(A) → ℋ
and B : 𝒟(B) → ℋ representing observables that are not compatible, that is, do not
commute. We know that A and B are not simultaneously measurable in every state.

Remark 6.3.1. The logical negation of “A and B are simultaneously measurable in ev-
ery state” is “there exist states in which A and B are not simultaneously measurable.”
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However, we have not defined what it means for observables to be simultaneously
measurable in some states, but not in others. There is certainly no obvious reason to
exclude such a possibility, but making sense of it would require a refinement of our
definitions based on a much more careful look at the measurement process than we
have attempted here (see pages 230–231 of [vonNeu]).

Each of the observables A and B has an expected value and a dispersion in every
state and we would like to investigate the relationship between the two dispersions.
This is based on the following simple lemma.

Lemma 6.3.1. Let ℋ be a separable, complex Hilbert space, A : 𝒟(A) → ℋ and B :
𝒟(B) → ℋ self-adjoint operators on ℋ and α and β real numbers. Then, for every ψ ∈
𝒟([A,B]−) = 𝒟(AB) ∩𝒟(BA),

 (A − α)ψ

2  (B − β)ψ


2
≥
1
4
 ⟨ψ, [A,B]−ψ⟩ 2.

Proof. Note first that 𝒟([A − α,B − β]−) = 𝒟([A,B]−) and [A − α,B − β]−ψ = [A,B]−ψ
for every ψ in this domain. Hence, it will suffice to prove the result when α = β = 0. In
this case we just compute

 ⟨ψ, [A,B]−ψ⟩ 2 =  ⟨ψ,ABψ − BAψ⟩ 2 =  ⟨ψ,ABψ⟩ − ⟨ψ,BAψ⟩ 2
=  ⟨Aψ,Bψ⟩ − ⟨Bψ,Aψ⟩


2
= 4  Im ⟨Aψ,Bψ⟩


2

≤ 4 ‖Aψ‖2 ‖Bψ‖2.

Now, ifA and B represent observables,ψ ∈ 𝒟([A,B]−) is a unit vector representing
a state and we take α and β to be the corresponding expected values of A and B in this
state, then, by (6.4), we obtain

σ2ψ(A) σ
2
ψ(B) ≥

1
4
 ⟨ψ, [A,B]−ψ⟩ 2. (6.17)

If A and B commute we know that [A,B]−ψ = 0 for every ψ ∈ 𝒟([A,B]−) so this last
inequality contains no information. Even if A and B do not commute, it is still possi-
ble that [A,B]−ψ = 0 for some or all ψ ∈ 𝒟([A,B]−), but should it happen that some
⟨ψ, [A,B]−ψ⟩ ̸= 0, then we have a lower bound on the product of the two dispersions.
Example 6.3.1. We consider the position operator Q : 𝒟(Q) → L2(R) and momentum
operator P : 𝒟(P)→ L2(R) onR. We saw in Example 5.6.6 that 𝒮(R) ⊆ 𝒟([Q,P]−) and,
for every ψ ∈ 𝒮(R),

[Q,P]−ψ = iℏψ.
Consequently, if ψ is a unit vector, 1

4 |⟨ψ, [Q,P]−ψ⟩|2 = 1
4ℏ

2, so

σ2ψ(Q) σ
2
ψ(P) ≥
ℏ2

4
. (6.18)
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Note that, since 𝒮(R) is dense in the domain of [Q,P]− (in fact, in all of L2(R)) this
inequality is satisfied for every state in𝒟([Q,P]−). One often sees this written in terms
of the standard deviation (the nonnegative square root of the dispersion) as

σψ(Q) σψ(P) ≥
ℏ
2
. (6.19)

The inequality (6.19) (or (6.18)) is called the uncertainty relation for position and mo-
mentum.

Example 6.3.2. As a specific example, let ψn be one of the eigenstates of HB. From
Examples 6.2.4 and 6.2.7 we have

σ2ψn
(Q) σ2ψn
(P) = [ ℏ

mω
(n + 1

2
)][mωℏ(n + 1

2
)] = ℏ2(n + 1

2
)
2
≥
ℏ2

4
,

where equality holds only in the ground state ψ0.

We have made a point of not calling (6.19) the “Heisenberg uncertainty relation,”
although it is not uncommon to find this name attached to it. We will explain our re-
luctance to use this terminology shortly, but, for those who would like to see a name
attached to such a famous inequality, we might suggest the Kennard uncertainty re-
lation in honor of the gentleman who first proved it (see [Kenn]); the more general
result (6.17) is due to Robertson (see [Rob]). We should point out also that in 1930
Schrödinger obtained a version of the uncertainty relation that is stronger than (6.17);
an annotated translation of Schrödinger’s paper is available in [AngBat].

We intend to spend some time sorting out the physical interpretation of the un-
certainty relation (6.19), but first we would like to offer another derivation based on
the following standard result in Fourier analysis (except for the normalization of the
Fourier transform, this is Theorem 1.1 of [FS], which contains a simple proof and a
survey of many related results; still more is available in [Fol1]).

Theorem 6.3.2. Let ψ be any element of L2(R, dq) and α and β any two real numbers.
Then

∫
R

(q − α)2ψ(q)

2dq ∫

R

(p − β)2ψ̂(p)

2dp ≥ ‖ψ‖

4

4
. (6.20)

If ‖ψ‖ = 1, then |ψ(q)|2dq and |ψ̂(p)|2dp are both probability measures on R, the
integrals in (6.20) are their variances and the product of these variances is bounded
below by 1

4 :

∫
R

(q − α)2ψ(q)

2dq ∫

R

(p − β)2ψ̂(p)

2dp ≥ 1

4
. (6.21)
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Intuitively, (6.21) asserts that these probabilitymeasures cannot both be sharply local-
ized at any points α and β inR. In this case we can apply the integral formulas in (6.6)
and (6.7) directly to obtain (6.18). We have

σ2ψ(Q)σ
2
ψ(P) = ∫

R

(q − ⟨Q⟩ψ)
2ψ(q)

2dq ∫

R

( p −
⟨P̂⟩ψ̂
ℏ
)
2
ψ̂(p)

2dp ≥ ℏ

2

4
.

Thefirst thingwewould like tonote about these twoderivations ofσψ(Q)σψ(P) ≥
ℏ
2

is that, except for the identification of Q and P with position and momentum opera-
tors, there is nothing even remotely resembling physics in either of them. The first is
just a special case of a general result on self-adjoint operators, while the second is a
special case of an equally general result about functions and their Fourier transforms.
Next, it is important to recognize that σψ(Q)σψ(P) ≥

ℏ
2 is a statistical statement about

the standard deviations of a large number of measurements of position and momen-
tum on identically prepared systems and, moreover, that each of the standard devi-
ations σψ(Q) and σψ(P) is obtained by making repeated measurement of just one of
the observables (not both simultaneously). Alternatively, one can identify the position
andmomentum observables in stateψwith their corresponding probability measures
|ψ(q)|2dq and |ψ̂(p)|2dp onR and regard σψ(Q)σψ(P) ≥

ℏ
2 as a limitation on the extent

to which bothmeasures can be concentrated about their expected values. In any case,
the essential observation is that one can infer nothing from it regarding the outcome
of any single measurement of position and momentum on a system in state ψ. This
places the inequality (6.19) in sharp contrast with what is usually referred to as the
Heisenberg uncertainty principle, described in the following way by Heisenberg him-
self.

“Actually, at every moment the electron has only an inaccurate position and an inaccurate veloc-
ity, and between these two inaccuracies there is this uncertainty relation.”

Werner Heisenberg

The uncertainty relation to which Heisenberg refers, written in terms of the position
and momentum (rather than velocity) of the electron, is

Δq Δp ≥ ℏ
2
, (6.22)

where Δq and Δp are called the “uncertainty,” or “inaccuracy,” in the position and
momentum measurements of the electron at some instant. These terms are generally
not defined precisely, but only illustrated in various Gedanken experiments for the
measurement of position andmomentum (and, as we will see, they are most certainly
not the same as the statistical quantities σψ(Q) and σψ(P)). The most famous of these
Gedanken experiments we will call the Heisenberg–Bohr microscope. Here one imag-
ines that the position of an electron is determined by “seeing” it in a microscope, that
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is, by hitting the electron with a photon which then scatters off of the electron and
through a lens in which it is visible to an observer.

The quantitative details of the argument involve a bit of optics that we have no
need todiscuss indetail. However, it is useful tohave at least a qualitative appreciation
for what is behind the argument, so we will describe a simplified version in which the
underlying idea, we hope, is clear, but various numerical factors are swept under the
rug by some rough order of magnitude approximations.

Remark 6.3.2. The exposition of an idea should not be construed as an endorsement
of that idea. The Heisenberg–Born microscope has probably outlived its usefulness
and there is much in the following argument that could be and, indeed, should be
and has been criticized. The thrust of the argument is that quantum uncertainty is the
result of what has been called the observer effect, that is, that anymeasurement of po-
sition necessarily involves a discontinuous and unpredictable effect on momentum;
the more delicate the measurement of q, the more pronounced the disturbance of p,
thereby ensuring that the product Δq Δp is inevitably bounded below by some uni-
versal constant. Quantum uncertainty in the form of (6.19) is rigorously proved and
experimentally verified beyond any reasonable doubt, but the same cannot be said of
the arguments we embark upon now, nor even of the conclusion to which these argu-
ments lead. For a more sustained critique of Heisenberg’s version of the uncertainty
principle we refer to [Ozawa] and, especially, [Roz].

The resolving power of the microscope, that is, the minimum distance between
two points that themicroscope can see as two distinct points, determines the accuracy
with which the electron (or any other object) can be located. This resolving power is
determined in part by the construction of the microscope (specifically, the angle θ in
Figure 6.1), but also by the wavelength λsc of the scattered photon. Specifically, let us
suppose that a photon is scattered off of the electron through an angleϕ that sends the
scattered photon into the lens of the microscope, that is, into the cone in Figure 6.1.
Then the resolving power, that is, the “uncertainty” in the position of the electron
along the q-axis (parallel to the motion of the incoming photon), is determined by the
optics of the microscope to be

Δq ≈ λsc
2 sin θ
.

Note that the wavelength λsc of the scattered photon is not the same as the wave-
length λ of the photon impinging upon the electron in Figure 6.1, but the relationship
between them iswell understood. Briefly, the story is as follows. In 1923, Arthur Comp-
ton showed that if one assumes that the scattering of the photon off of the electron is
elastic in the sense that (relativistic) energy and momentum are conserved and that
the energy of a photon is given by the Einstein relation E = hν = hc

λ (Section 4.3), then

λsc − λ =
h

mec
(1 − cos ϕ), (6.23)
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Figure 6.1: Heisenberg–Bohr microscope.

where h is 2πℏ, me is the mass of the electron, c is the speed of light in vacuo and
ϕ is the angle through which the photon is deflected (one can find this argument in
essentially any book on special relativity and, in particular, on pages 88–90 of [Nab5]).
The universal constant h

mec
is called the Compton wavelength of the electron and, in SI

units (Remark 4.2.1), is

h
mec
≈ 2.4263102175 × 10−12m. (6.24)

Note that the change in wavelength depends only on the scattering angle and not on
the incident wavelength. The Compton formula (6.23) has been directly verified ex-
perimentally, beginning with experiments conducted by Compton himself, as have
the assumptions uponwhich it is based (for example, that the recoil electron acquires
exactly the energy andmomentum lost by the incomingphoton). Amoredetailed anal-
ysis of this Compton effect is available in Section 2.9 of [Bohm].

From all of this we conclude that for a fixed θ, one can decrease the uncertainty Δq
arbitrarily by illuminating the electron with photons of small wavelength λ. The elec-
tromagnetic spectrum in Figure 4.1 suggests that one would want to choose gamma
rays (with, say, λ ≈ 10−12m) to accomplish this. But by (6.24), if λ ≈ 10−12m, then λ, λsc
and λ − λsc are all of the same order of magnitude and our approximations will use λ
for all of them. In particular,

Δq ≈ λ
2 sin θ
.

Now, because of their short wavelength gamma rays are quite energetic. According to
the Einstein relations (Section 4.3), the energy of a gamma ray of frequency ν = c

λ is
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E = hν = hc
λ and the magnitude of its momentum is p = hν

c =
h
λ . Now we consider

the component of the scattered photon’s momentum in the q-direction (parallel to
the direction of the incoming gamma ray). All we know about the scattered photon
is that it enters the field of view somewhere in the angular range between −θ and θ
and so this component is somewhere between−p sin θ and p sin θ. Consequently, the
uncertainty in the scattered photon’s momentum is p sin θ − (−p sin θ) = 2p sin θ ≈
2h
λ sin θ (the approximation comes from λsc ≈ λ). The Compton effect ensures that the
momentum lost by the gamma ray when it scatters is precisely the momentum gained
by the electron so the uncertainty in the q-component of the electron’s momentum
after its collision with the photon is also

Δp ≈ 2h
λ

sin θ.

Consequently,

ΔqΔp ≈ [ λ
2 sin θ
][

2h
λ

sin θ] = h.

Since h > ℏ2 this is not as good as ΔqΔp ≥ ℏ2 , but it is sufficient to indicate what is being
claimed here, which is something quite different from our uncertainty relation (6.19).
The Heisenberg uncertainty principle (6.22) is a statement about onemeasurement of
two observables on a single quantum system, whereas (6.19) is a statistical statement
about many independent measurements of these two observables on identical quan-
tum systems.

It is important to clearly make this distinction for several reasons. In the first
place, (6.19) is a rigorousmathematical consequence of themost basic assumptions of
quantummechanics, and should it be found (in the laboratory) to be false, one would
need to completely rethink the foundations of the subject. On the other hand, (6.22)
is not provable (in the mathematical sense) from these basic assumptions alone and
our house of cards could conceivably remain standing if it should prove not to be uni-
versally valid which, incidentally, it appears not to be (see [Ozawa] and [Roz]).

“The Heisenberg uncertainty principle states that the product of the noise in a positionmeasure-
ment and the momentum disturbance caused by that measurement should be no less than the
limit set by Planck’s constant, ℏ/2, as demonstrated by Heisenberg’s thought experiment using
a gamma ray microscope. Here I show that this common assumption is false: a universally valid
trade-off relation between the noise and the disturbance has an additional correlation term.”

– Masanao Ozawa [Ozawa]

“While there is a rigorously proved relationship about uncertainties intrinsic to any quantum sys-
tem, often referred to as ‘Heisenberg’s uncertainty principle,’ Heisenberg originally formulated
his ideas in terms of a relationship between the precision of a measurement and the disturbance
it must create. Although this latter relationship is not rigorously proved, it is commonly believed
(and taught) as an aspect of the broader uncertainty principle. Here, we experimentally observe
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a violation of Heisenberg’s ‘measurement-disturbance relationship,’ using weak measurements
to characterize a quantum system before and after it interacts with a measurement apparatus.”

Rozema et al. [Roz]

The Heisenberg uncertainty principle (6.22) has various extensions in physics to pairs
of observables other than position and momentum. Essentially, one expects such an
uncertainty principle whenever the operators do not commute; we have not intro-
duced these yet, but this occurs, for example, for any two distinct components of an-
gularmomentumor spin. However, one also encounterswhat is called the time-energy
uncertainty principle, usually written as

Δt ΔE ≥ ℏ
2
.

This, however, is of a rather different character since, as we have already mentioned,
time t is not an observable in quantum mechanics, that is, there is no operator cor-
responding to t. We would like to say a bit more about this version of the uncertainty
principle, but this is most conveniently done by taking a slightly different point of
view regarding the formulation of quantum mechanical laws called the “Heisenberg
picture,” so we will postpone what we have to say until Section 6.4.

6.4 Schrödinger and Heisenberg pictures

Let us begin with a brief synopsis of the picture we have painted thus far of quantum
mechanics. A quantum system has associated with it a complex, separable Hilbert
spaceℋ and adistinguished self-adjoint operatorH, called theHamiltonian of the sys-
tem. The states of the system are represented by unit vectors ψ inℋ and these evolve
in time from an initial state ψ(0) according to ψ(t) = Ut(ψ(0)) = e−itH/ℏ(ψ(0)). As a
result, the evolving states satisfy the abstract Schrödinger equation iℏ dψ(t)dt = H(ψ(t)).
Each observable is identified with a self-adjoint operator A that does not change with
time. Neither the state vectors ψ nor the observables A are accessible to direct ex-
perimental measurement. Rather, the link between the formalism and the physics
is contained in the expectation values ⟨A⟩ψ = ⟨ψ,Aψ⟩ and the probability measures
μψ,A(S) = ⟨ψ,EA(S)ψ⟩. These contain all of the information that quantum mechanics
permits us to know about the system.

We would now like to look at this from a slightly different point of view. As the
state evolves, so do the expectation values of any observable. Specifically,

⟨A⟩ψ(t) = ⟨ψ(t),Aψ(t)⟩ = ⟨Ut(ψ(0)),AUt(ψ(0))⟩ = ⟨ψ(0), [U
−1
t AUt]ψ(0)⟩,

because each Ut is unitary. Now, define a (necessarily self-adjoint) operator

A(t) = U−1t AUt
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for each t ∈ R. Thus,

⟨A⟩ψ(t) = ⟨A(t)⟩ψ(0)
for each t ∈ R. The expectation value of A in the evolved state ψ(t) is the same as the
expectation value of the observableA(t) in the initial stateψ(0). Since all of thephysics
is contained in the expectation values, this presents us with the option of regarding
the states as fixed and the observables as evolving in time. From this point of view
our quantum system has a fixed state ψ and the observables evolve in time from some
initial self-adjoint operator A = A(0) according to

A(t) = U−1t AUt = e
itH/ℏAe−itH/ℏ. (6.25)

This is called the Heisenberg picture of quantum mechanics to distinguish it from the
view we have taken up to this point, which is called the Schrödinger picture. Although
these two points of view appear to differ from each other rather trivially, the Heisen-
bergpicture occasionally presents some significant advantages andwewill nowspend
a moment seeing what things look like in this picture.

Heisenberg’s original formulation of quantum mechanics is generally called
matrix mechanics, and here the dynamics of a quantum system is defined by time-
dependent observables given by infinite matrices which evolve according to the
Heisenberg equation (see (6.26) below). We will have a more careful look at the ideas
that led Heisenberg to this in Section 7.1. AlthoughHeisenberg, of course, did not view
the matter in this way, one can arrive at these matrices by choosing an orthonormal
basis for ℋ contained in 𝒟(A(t)) for every t and using it to move from ℋ to ℓ2(N).
The Heisenberg picture is generally regarded as the one most appropriate to quantum
field theory.

We should first note that, when A is the Hamiltonian H, Stone’s Theorem 5.6.2
implies that each Ut leaves𝒟(H) invariant and commutes with H, so

H(t) = U−1t HUt = e
itH/ℏHe−itH/ℏ = H ∀t ∈ R.

The Hamiltonian is constant in time in the Heisenberg picture. For other observables
this is generally not the case, of course, and onewould like to have a differential equa-
tion describing their time evolution in the same way that the Schrödinger equation
describes the time evolution of the states. We will derive such an equation in the case
of observables represented by bounded self-adjoint operators in the Schrödinger pic-
ture. This is a very special case, of course, so we should explain the restriction. In
the unbounded case, a rigorous derivation of the equation is substantially compli-
cated by the fact that in the Heisenberg picture, the operators (and therefore their do-
mains) varywith t, so that the usual domain issues also varywith t. Physicists have the
good sense to ignore all of these issues and just formally differentiate (6.25), thereby
arriving at the very same equation we will derive below. Furthermore, it is not hard
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to show that if A is unbounded and A(t) = U−1t AUt, then, for any Borel function f ,
f (A(t)) = f (A)(t) = U−1t f (A)Ut, so that one can generally study the time evolution of A
in terms of the time evolution of the bounded functions of A and these are bounded
operators. We will have a bit more to say about the unbounded case after we have
proved our theorem. Finally, we recall that, from the point of view of physics, all of
the relevant information is contained in the probability measures ⟨ψ,EA(S)ψ⟩ so that,
in principle, one requires only the time evolution of the (bounded) projections EA(S).

The result we need is a special case of Theorem 3.2, Chapter IV, of [Prug], but be-
cause of its importance to us we will give the proof here as well.

Theorem 6.4.1. Let ℋ be a complex, separable Hilbert space, H : 𝒟(H) → ℋ a self-
adjoint operator on ℋ and Ut = e−itH/ℏ, t ∈ R, the one-parameter group of unitary
operators determined by H. Let A : ℋ → ℋ be a bounded, self-adjoint operator on ℋ
and define, for each t ∈ R, A(t) = U−1t AUt . If ψ and A(t)ψ are in 𝒟(H) for every t ∈ R,
then A(t)ψ satisfies the Heisenberg equation

dA(t)
dt

ψ = − i
ℏ
[A(t),H]−ψ, (6.26)

where the derivative is theℋ-limit

dA(t)
dt

ψ = lim
Δt→0 [A(t + Δt) − A(t)Δt

ψ].

Remark 6.4.1. Let us simplify the notation a bit and write (6.26) as

dA
dt
= −

i
ℏ
[A,H]−. (6.27)

Now compare this with equation (2.65)

df
dt
= {f ,H}

describing the time evolution of a classical observable in the Hamiltonian picture of
mechanics. The analogy is striking and suggests a possible avenue from classical to
quantum mechanics, that is, a possible approach to the quantization of classical me-
chanical systems. The idea is that classical observables should be replaced by self-
adjoint operators and Poisson brackets { , } by the quantum bracket

{ , }ℏ = − iℏ [ , ]−.
This idea, first proposed by Paul Dirac in his doctoral thesis, is the basis for what is
called canonical quantization and we will return to it in Chapter 7.
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Proof. Adding and subtracting U−1t+Δt AUt
Δt to A(t+Δt)−A(t)

Δt gives

A(t + Δt) − A(t)
Δt

= U−1t+Δt A [Ut+Δt − Ut
Δt
] + [

U−1t+Δt − U−1t
Δt
]AUt .

Now, note that

[
Ut+Δt − Ut

Δt
]ψ = Ut+Δtψ − Utψ

Δt
=
UΔt(Utψ) − (Utψ)

Δt
→ −

i
ℏ
HUtψ

as Δt → 0 by Lemma 5.6.1. Since A is bounded and therefore continuous and U−1t+Δt is
strongly continuous in Δt,

U−1t+Δt A [Ut+Δt − Ut
Δt
]ψ → − i

ℏ
U−1t AHUtψ = −

i
ℏ
(U−1t AUt)Hψ = −

i
ℏ
A(t)Hψ

as Δt → 0 (recall that Ut commutes with H by Stone’s Theorem 5.6.2).

Exercise 6.4.1. Show similarly that

[
U−1t+Δt − U−1t

Δt
]AUtψ →

i
ℏ
HA(t)ψ

as Δt → 0.

Combining these two gives

dA(t)
dt

ψ = − i
ℏ
(A(t)Hψ − HA(t)ψ) = − i

ℏ
[A(t),H]−ψ,

as required.

In the physics literature one finds the Heisenberg equation stated quite generally
for operators that are perhaps unbounded and with little attention paid to domain is-
sues. Although one cannot rigorously justify this in full generality, it is very often the
case that a justification is possible in the cases of physical interest. For example, if A
is unbounded, then the domain of − iℏ [A,H]− may be quite small, but very often it is
not (if A is either the position operator Q or the momentum operator P on L2(R) and
H = HB, then this domain includes all of 𝒮(R)). If it should happen that − iℏ [A,H]− is
essentially self-adjoint on its domain, then, denoting its unique self-adjoint extension
also by − iℏ [A,H]−, one can define the time derivative ofA to be this unique self-adjoint
extension so that the Heisenberg equation is satisfied by definition. Very often one
simply has to supply whatever hypotheses are required to justify a calculation and
then check that the hypotheses are satisfied in any case to which the result of the cal-
culation is applied. While such formal calculations are anathema to mathematicians,
physics could not get along without them simply because they get to the heart of the
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matter without distractions. Here is an example (remember that the state ψ does not
depend on t in the Heisenberg picture):

d
dt
⟨A(t) ⟩ψ =

d
dt
⟨ψ,A(t)ψ⟩ = ⟨ψ, dA(t)

dt
ψ⟩

= ⟨ψ,− i
ℏ
[A(t),H]ψ⟩ = ⟨− i

ℏ
[A(t),H]⟩

ψ
. (6.28)

The rate of change of the expectation value of A(t) in state ψ is the expectation value
of − iℏ [A(t),H] in state ψ; we will return to this in Section 7.4.

We will conclude by returning to an issue we left open in the previous section.
There we pointed out that, in addition to the Heisenberg uncertainty principle (6.22)
for position and momentum, physicists commonly employ what is called the time-
energy uncertainty principle, written as

Δt ΔE ≥ ℏ
2
. (6.29)

We also pointed out that, in addition to all of the subtleties buried in the usual deriva-
tion of (6.22) via the Heisenberg microscope, one must now contend with the fact that
t is not an observable in quantum mechanics, so it is not represented by an opera-
tor. There is more, however. Leaving aside the relativistic prohibition of any universal
notion of time, it is not even altogether clear what is meant by t in (6.29) and several
different interpretations are possible (this issue is discussed in great detail in [Busch]).
We will not attempt to sort out all of these subtleties here, but will offer just one pos-
sible interpretation of (6.29).

Remark 6.4.2. There is a reason that physicists believe so strongly that there should
be some sort of uncertainty relation involving time and energy. Special relativity
requires that various well-known classical physical quantities be merged into a
single object in order to ensure relativistic invariance. The most obvious example
is the spacetime position 4-vector (x, y, z, t) which combines the classical spatial
3-vector (x, y, z) and the scalar time t-coordinate. Another example has the energy
as the time coordinate of a 4-vector whose spatial part is the classical momentum.
A physicist will then say, “Well, there you have it; time is to energy as position is
to momentum so, quantum mechanically, time and energy should satisfy an uncer-
tainty relation analogous to that for position and momentum.” Whether you find this
argument persuasive or not is really not the issue since it is intended only to moti-
vate the search for such a relation. As we have already suggested, the difficulty in
implementing this search is due in large measure to the fact that time is not an ob-
servable in quantum mechanics. A reasonable response to this might be, “Well then,
just introduce an operator that represents t.” Regrettably, we will find in Chapter 7
that something called the Stone–von Neumann theorem prohibits doing this in any
physically reasonable way.
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Although t is not an observable in quantummechanics, in the Heisenberg picture
observables are functions of t and the idea is to select (appropriately) some observ-
ableA(t) evolving fromA(0) = A according to the Heisenberg equation (6.26) and let it
measure t for us in someway. Fix some stateψ of the system (which, in the Heisenberg
picture, does not change with t) and consider the expected values ⟨A(t)⟩ψ and stan-
dard deviations σψ(A(t)) of the observables A(t) in this state (we must assume that ψ
is in the domain of every A(t)). Then, by (6.17) and (6.28),

σψ(A(t)) σψ(H) ≥
1
2
 ⟨ψ, [A(t),H]−ψ ⟩  = ℏ2  ⟨ψ,− iℏ [A(t),H]−ψ⟩ 

=
ℏ
2


⟨−

i
ℏ
[A(t),H]−⟩

ψ


,

and so

σψ(A(t)) σψ(H) ≥
ℏ
2



d
dt
⟨A(t) ⟩ψ


.

Evaluating at t = 0 and assuming that d
dt ⟨A(t) ⟩ψ|t=0 ̸= 0 we can define

Δtψ,A =  σψ(A)
d
dt ⟨A(t) ⟩ψ|t=0


,

which can be interpreted as (approximately) the time required for the expected value
of A to change by an amount equal to one standard deviation, that is, for the statistics
of A(t) to change appreciably from that of A. Thus, the “uncertainty” in t is expressed
by the average time taken for the expectation ofA in stateψ to change by one standard
deviation and therefore describes the shortest time scale on which we will be able to
notice changes by using the observable A in state ψ. The Hamiltonian represents the
total energy, so we let ΔE = σψ(H) and obtain

Δψ,At ΔE ≥ ℏ2 .
This, of course, depends on the choice of A andψ, but it is satisfied for any choice of A
andψ satisfying the conditions we just described, so we can let Δt denote the infimum
of the Δψ,At over all such choices and we still have

Δt ΔE ≥ ℏ
2
.

This then is one possible interpretation of the time-energy uncertainty principle.
Whether or not it is the correct interpretation (that is, is actually satisfied by quan-
tum systems) remains to be seen; there is a substantial literature on this and those
interested in pursuing the matter might begin with [Busch].



7 Canonical quantization

7.1 PQ − QP = h
2πi

We have seen in Section 4.3 that Max Planck introduced what we would today call
the quantum hypothesis in 1900 to explain the observed spectrum of blackbody radia-
tion. Planck did not regard his hypothesis as a new, fundamental principle of physics,
but rather as a desperate ploy by which he could arrive at a formula that agreed with
experiment.We sawalso that, in 1905, Einstein took a different view, arguing that elec-
tromagnetic radiation must be regarded as having a dual character. To understand its
interference and diffraction one must think of it as a wave phenomenon, but its inter-
action with matter in, say, the photoelectric effect, can only be accounted for if it is
regarded as a stream of particles (light quanta, or photons), each carrying an amount
of energy proportional to its frequency. Although Einstein’s proposal was initially re-
ceived with considerable skepticism (not to say, derision), the predictions to which it
led were all borne out experimentally, primarily through the work of Robert Millikan.
A corresponding proposal that material particles such as electrons might, under cer-
tain circumstances, exhibit wave-like behavior did not come until 1924, from Louis
de Broglie. In the meantime, however, physicists devoted much effort to investigat-
ing the implications of superimposing various “quantization conditions” on classical
mechanics for understanding such things as the line spectrum of hydrogen (see Fig-
ure 4.3). For example, an electron in an atom was assumed to move along a classical
trajectory according to the laws of classicalmechanics, but only those orbits satisfying
the Born–Sommerfeld quantization condition

∮ p dq = nh, n ∈ Z+, (7.1)

were permitted (the integral is over one period of the orbit in phase space). This cob-
bling together of classical mechanics and ad hoc quantization conditions, known as
the old quantum theory, had its successes, but no underlying logical structure. The
goal was simply to take a classical picture (such as the two-body problem in Exam-
ple 2.2.12) and “quantize” it in some way or another to describe a system that was
viewed as analogous to the classical system, but for which classical mechanics failed
(such as the hydrogen atom). Clearly, some more systematic procedure would be de-
sirable, but this would have to wait for a more precise understanding of the logical
foundations of this new quantummechanics. This understanding eventually emerged
from the work of Heisenberg, Born, Jordan, Dirac and Schrödinger.

In 1925, Heisenberg [Heis1] published a paper the stated intention of which was
“to establish a basis for theoretical quantummechanics founded exclusively upon re-
lationships between quantities which in principle are observable.” The paper is noto-
riously difficult to follow; Nobel laureate Steven Weinberg has referred to it as “pure
magic” (see pages 53–54 of [Weinb]). Max Born and Pascual Jordan [BJ], however, saw

https://doi.org/10.1515/9783110751949-007
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in the bold vision expressed in Heisenberg’s paper a schematic for the logical founda-
tions of the newmechanics. Perhaps the central element in this scheme,which did not
appear directly in Heisenberg’s paper and which was the key to the canonical quan-
tization procedure later suggested by Dirac, is the identity we have chosen as the title
of this section, which, incidentally, is also the epitaph inscribed on the headstone at
Max Born’s burial site in Göttingen.

As we will see in the next few sections, there is a real sense in which this identity
captures the essence of quantum mechanics (in mathematical terms, [P,Q ]− =

h
2πi is

the sole nontrivial relation defining the “Heisenberg Lie algebra”). One should have at
least some notion of where it came from and this is what we will try to provide in this
introductory section. We will offer only a very crude sketch, but one should keep in
mind that even the crudest sketchmust rely on Heisenberg’s inspiration. Some things
are not amenable to mathematical proof and one needs to approach them with an
open mind. Some of what follows in this section may look vaguely like mathematics,
but it almost certainly is not. In particular, we will pretend that infinite matrices be-
have exactly like finite matrices and that any infinite series we write down converges
as nicely as you might want it to converge. The purpose here ismotivation, not deriva-
tion. For those who would like to follow more closely the ideas in [Heis1] and [BJ] we
recommend the two expository papers [AMS] and [FP2].

We will consider a single electron in a periodic orbit about a proton in a hydrogen
atom and will focus our attention on the electron. As we mentioned above, the old
quantum theory viewed the electron as having a classical trajectory in phase space
subject to the laws of classical mechanics, but with the additional constraint that the
Bohr–Sommerfeld quantization condition (7.1) must be satisfied. This constraint has
the effect of forcing the orbit to lie in one of a discrete set of energy levels (shells)
around the nucleus which can be labeled by an integer n = 1, 2, 3, . . . called the princi-
pal quantum number in such a way that the corresponding energies satisfy 0 < E(1) <
E(2) < E(3) < ⋅ ⋅ ⋅ . For each fixed quantum number n the periodic classical orbit can be
expanded in a Fourier series

q(n, t) =
∞

∑
α=−∞

qα(n)e
iαω(n)t , (7.2)

where ω(n) is the fundamental frequency of the orbit and, because q(n, t) is real,
q−α(n) = qα(n). Heisenberg’s position, however, was that this classical orbit is unob-
servable and therefore has no business being built into the foundations of quantum
theory. What he needed then was some meaningful quantum analogue of the elec-
tron’s classical position.

Heisenberg’s motivation is often obscure, but he does make quite explicit use of
some of those aspects of the old quantum theory that seemed clearly to be pointing
in the right direction. Most prominent among these is the correspondence principle of
Niels Bohr. Roughly, one thinks of this principle as asserting that, in some limiting
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sense (say, as ℏ → 0), “quantum mechanics reduces to classical mechanics,” what-
ever that is taken to mean. Since this is likely to be interpreted differently in different
contexts one should not be surprised to see a number of rather disparate statements
all claiming to be the correspondence principle. There are, in fact, at least three com-
monly accepted interpretations of the correspondence principle (one can find these
described succinctly at http://plato.stanford.edu/entries/bohr-correspondence/). The
one that is relevant to our sketch of Heisenberg’s argument is referred to as the selec-
tion rule interpretation. One can find a very detailed discussion of both the meaning
and the consequences of this version of the correspondence principle in the exposi-
tory paper [FP1]. For the purposes of our sketch of Heisenberg’s argument a few brief
comments will suffice.

Themeasurable quantities associated with an atom are those contained in its line
spectrum (Figure 4.3), that is, the frequency and intensity of the spectral lines. These
spectral lines arise from photons emitted when an electron “jumps” from one energy
level to a lower energy level; the difference in the energies determines the frequency
of the emitted photon. The intensity of the spectral line is determined by the prob-
ability per unit time for that transition to occur (the more jumps that occur per unit
time, the brighter the line). The selection rule interpretation of the correspondence
principle asserts that each allowed transition corresponds to one harmonic component
qα(n)eiαω(n)t of the classical motion, with the transition energy and transition probability
corresponding to the harmonic frequency αω(n) and harmonic amplitude qα(n), respec-
tively. Now we will try to understand how this led Heisenberg to a quantum analogue
of each harmonic component.

We begin by defining a skew-symmetric function ω : Z ×Z→ R. For any (n,m) ∈
Z×Z, the valueω(n,m)will be an integralmultiple of 1

ℏ that is related to the frequency
of the photon associatedwith the transition n→ m between the energy levels E(n) and
E(m). If either n or m is less than or equal to zero, ω(n,m) is taken to be zero because
there are no energy levels E(k) with k ≤ 0. The reason for the skew-symmetry can be
explained as follows. If E(n) and E(m) are both permissible energy levels and n > m,
then the transition n→ m is accompanied by the emission of a photon with frequency

ω(n,m) = 1
ℏ
[E(n) − E(m)].

On the other hand, the transition m → n must be accompanied by the absorption of
a photon of the same frequency. Thinking of the emission of a photon by the atom
as adding energy to the universe outside the atom and the absorption of a photon as
subtracting it we are led to define

ω(m, n) = 1
ℏ
[E(m) − E(n)] = −ω(n,m).

Now fix a quantum number n = 1, 2, 3, . . . and consider one of the harmonic com-
ponents

qα(n)e
iαω(n)t (7.3)
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of the classical path. Assume for a moment that 0 < α < n. Then, by the correspon-
dence principle, (7.3) corresponds to the transition

n→ n − α

from the nth to the (n − α)th energy level. Accordingly, we have

ω(n, n − α) = 1
ℏ
[E(n) − E(n − α)] (7.4)

for the frequency of the photon emitted during the transition. Heisenberg tookω(n, n−
α) to be the quantum analogue of the classical frequency αω(n).

Now, if α = 0, our skew-symmetry assumption forces ω(n, n − α) = ω(n, n) = 0.
Furthermore, if α ≥ n, then n−α ≤ 0 and, because there is no energy level E(n−α), we
will take ω(n, n − α) = 0 = ω(n − α, n). Finally, suppose α < 0. Then n − α = n + |α| > n,
soω(n, n−α) = −ω(n−α, n) = 1

ℏ [E(n)−E(n−α)]. Thus, for each fixed quantum number
n = 1, 2, 3, . . . we have defined ω(n,m) and ω(m, n) for all m ∈ Z. Since ω(n,m) = 0
whenever n ≤ 0, this completes the definition of ω : Z ×Z→ R.

Exercise 7.1.1. Show that for any n,m, μ ∈ Z,

ω(n, μ) + ω(μ,m) = ω(n,m).

In particular,

ω(n, n − α) + ω(n − α, n − β) = ω(n, n − β)

for all α, β ∈ Z. We will encounter this identity again quite soon.

To obtain Heisenberg’s quantum version of the classical harmonic component
qα(n)eiαω(n)t one begins with the replacement

eiαω(n)t → eiω(n,n−α)t .

Next Heisenberg introduced quantumanaloguesQ(n, n−α) of the classical amplitudes
qα(n). These are called complex transition amplitudes, or probability amplitudes and
are assumed to have properties that we now describe. For any n,m ∈ Z,

Q(n,m)

is to have the property that |Q(n,m) |2 is a measure of the probability of the transi-
tion n → m, whenever such a transition is permissible. If either n or m is less than or
equal to zero, Q(n,m) is taken to be zero because at least one of the energy levels E(n)
or E(m) does not exist. Heisenberg also introduced a reality condition analogous to
q−α(n) = qα(n) by assuming

Q(m, n) = Q(n,m).
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Precisely what these transition amplitudes are in a given context is to be determined
by certain differential equations proposed by Heisenberg that are direct analogues of
the classical Hamilton equations.

With this Heisenberg’s quantization of the classical harmonic component
qα(n)eiαω(n)t amounts simply to the replacement

qα(n)e
iαω(n)t → Q(n, n − α)eiω(n,n−α)t .

In particular, the quantization of the harmonic component q0(n) is just Q(n, n).
Evidently, Q(n, n) cannot really be regarded as a transition amplitude (since there
is no transition) and so its physical interpretation is not apparent a priori and must
emerge from the rest of the formalism. Note, however, that each Q(n, n) is real and
time-independent (suggesting, perhaps, something conserved). One can learn more
about this in [BJ], [BHJ], [AMS] and [FP2].

The harmonic components qα(n)eiαω(n)t are all simply terms in the infinite Fourier
series expansionof the electron’s classical orbit. Heisenbergwrote that a “similar com-
bination [that is, sum] of the corresponding quantum-theoretical quantities seems to
be impossible in a uniquemanner and therefore not meaningful.” As an alternative to
summing them he simply collected them all together, that is, he suggested that “one
may readily regard the ensemble of quantities”

Q(t) = {Q(n, n − α)eiω(n,n−α)t }n∈N,α∈Z

as a representation of the quantum analogue of the classical position q(t) (we no
longer write q(n, t) because the “ensemble” Q(t) contains contributions correspond-
ing to every quantum number n).

One should take a moment to appreciate the audacity of this idea. The familiar
notion of the classical position of a particle is replaced by an infinite array of complex
numbers – by a physicist, in 1925. One more comment is worth making at this point.
Todaywe are all trained to view any rectangular array of numbers as amatrix and once
we do so the machinery of matrix algebra and matrix analysis is laid before us, free of
charge. In 1925, however,Heisenbergdidnot knowwhat amatrixwas and certainly did
not have this machinery available to him. We could, of course, ignore this historical
anomaly and switch immediately into matrix mode. We feel, however, that this would
not only obscure another of Heisenberg’s remarkable insights, but would also leap
over one of the most interesting parts of this story. For a fewmoments anyway we will
pretend that, with Heisenberg, we have never heard of matrices.

Having decided that the classical notion of the instantaneous position q(t) of
an electron in an atom should be replaced in quantum mechanics by the infinite
array Q(t) of complex numbers, it seemed only natural to Heisenberg that the other
classical observables associated with the system (momentum, the Hamiltonian, etc.)
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shouldhave similar representations. For example, the classicalmomentump(t)would
be replaced by something of the form

P(t) = {P(n, n − α)eiω(n,n−α)t }n∈N,α∈Z.

One might even hazard the guess that ifme is the mass of the electron, then

P(t) = meQ̇(t) = {meiω(n, n − α)Q(n, n − α)e
iω(n,n−α)t }n∈N,α∈Z.

To build a quantum analogue of a Hamiltonian, however, one needs to think a bit
more. Classical observables such as the Hamiltonian are functions of q and p. Even
the classical harmonic oscillator Hamiltonian contains q2 and p2, so one must know
how to “square” Q(t), that is, find a quantum analogue Q2(t) of q2(t).

Remark 7.1.1. Do not jump the gun here. Remember that for the moment, we know
nothing about matrices and, even if we did, it would not be clear at this stage that
matrix multiplication has any physical significance at all in this context. One needs
some physical principle that suggests what it “should” mean to square a set of transi-
tion amplitudes.

To follow Heisenberg’s argument one begins with the corresponding problem as
it would be viewed in the old quantum theory. If q(n, t) = ∑∞α=−∞ qα(n)e

iαω(n)t, then
squaring the Fourier series gives

q2(n, t) = (
∞

∑
α=−∞

qα(n)e
iαω(n)t)(

∞

∑
α=−∞ qα (n)eiα

ω(n)t)
=
∞

∑
α=−∞

∞

∑
α=−∞ qα(n)qα (n)ei(αω(n)+α

ω(n))t .
Set β = α + α and write this as

q2(n, t) =
∞

∑
β=−∞

aβ(n)e
iβω(n)t ,

where

aβ(n) =
∞

∑
α=−∞

qα(n)qβ−α(n).

Now rewrite q2(n, t) once more as

q2(n, t) =
∞

∑
β=−∞

∞

∑
α=−∞

qα(n)qβ−α(n)e
i[ αω(n)+(β−α)ω(n) ]t
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and read off the harmonic components

∞

∑
α=−∞

qα(n)qβ−α(n)e
i[ αω(n)+(β−α)ω(n) ]t .

The problem then is to define an appropriate quantum analogue Q2(n, n − β)eiω(n,n−β)t

of this.
Note that the Fourier frequencies of the factors in this classical product combine

in the simplest possible way in the product (just add them to get αω(n) + (β − α)ω(n)).
Heisenberg then observes that spectral line frequencies do not behave so simply. He
is referring to what is called the Rydberg–Ritz combination rule. This is an empirical
relationship between the frequencies that occur in the line spectrum of any atom, first
noted by Ritz in 1908 for hydrogen. It states that the frequency of any line in the spec-
trum can be expressed as the sum or the difference of the frequencies of two other
lines in the spectrum. Mathematically, this takes the form

ω(n, n − α) + ω(n − α, n − β) = ω(n, n − β) (7.5)

(compare Exercise 7.1.1). From this Heisenberg concludes that it is “an almost neces-
sary consequence” that the quantum analogue of the harmonic component
∑∞α=−∞ qα(n)qβ−α(n)e

i[ αω(n)+(β−α)ω(n) ]t of q2(n, t) be given by

∞

∑
α=−∞

Q(n, n − α)Q(n − α, n − β)ei[ω(n,n−α)+ω(n−α,n−β) ]t . (7.6)

In particular,

Q2(n, n − β) =
∞

∑
α=−∞

Q(n, n − α)Q(n − α, n − β), (7.7)

and this is Heisenberg’s rule for the multiplication of transition amplitudes.
Confronted with (7.7) it becomes increasingly difficult to go on pretending that we

do not know anything aboutmatrices, so it is time to pause and relate the oft-told story
of how Heisenberg’s new quantummechanics becamematrix mechanics. Heisenberg
received his PhD in 1923 under the direction of Arnold Sommerfeld in Munich (his
topic was On the Stability and Turbulence of Fluid Flow). He then moved to Göttingen,
became an assistant to Max Born, and completed his Habilitation in 1924. Born and
Heisenberg worked on calculating the spectral lines of hydrogen. These calculations,
together with what appeared to be fundamental limitations on the applicability of the
old quantum theory (to large atoms, for example), led Heisenberg to believe that a
thoroughgoing re-evaluation of the logical andmathematical foundations of quantum
theory was required. In particular, he felt that quantum theory should be formulated
exclusively in terms of quantities that were directly observable (frequencies and in-
tensities of spectral lines rather than classical positions and momenta of electrons).
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In June of 1925 Heisenberg suffered a severe allergy attack and left Göttingen for Hel-
goland (a small island off the coast of Germany in the North Sea that is essentially free
of pollen). While there he spent his time climbing, memorizing passages from Goethe
and thinking about spectral lines. This last activity culminated in the sort of epiphany
that is not granted to mere mortals such as ourselves. Heisenberg quickly wrote down
his new vision (I think that is the correct term) of quantum mechanics and the result
was the paper [Heis1] that we have been discussing. The strangeness of the ideas in
this paper were apparent to Heisenberg, who was reluctant to submit them for publi-
cation without first showing them to Born and to his friend Wolfgang Pauli. Born and
Pauli, however, were quick to recognize the significance of the paper. Born submitted
it to the Zeitschrift für Physik and Pauli used the ideas it contained to completely solve
the problem of calculating the spectrum of hydrogen.

Born was particularly intrigued with Heisenberg’s rule (7.7) for the multiplication
of transition amplitudes (for his own recollections, see pages 217–218 of [Born2]). Re-
calling lectures from his student days by the mathematician Jakob Rosanes, he soon
recognized it as nothing other than the (to us) familiar rule for matrix multiplication;
as matrices, (Q2(n,m)) = (Q(n,m))2. Note that, by (7.6), the quantum analogue of q2(t),
as a matrix,

Q2(t) = (
∞

∑
α=−∞

Q(n, n − α)Q(n − α,m)ei[ω(n,n−α)+ω(n−α,m) ]t )

is also the matrix square of Q(t). But note also that, by (7.5), every entry in Q2(t) has
precisely the same frequency as the corresponding entry of Q(t). Consequently, these
entries also have the same exponential time factors. As a result one generally does not
bother to keep track of these time factors, but deals instead only with the transition
amplitudes.

Thus, Born has suppliedHeisenbergwith a ready-mademathematical structure in
which to place his view of the foundations of quantummechanics. You cannot please
everyone, however.

“Yes, I know you are fond of tedious and complicated formalism. You are only going to spoil
Heisenberg’s physical ideas by your futile mathematics.”

Wolfgang Pauli to Max Born, July 19, 1925

Quantumanalogues of the higher powers of q(t) and p(t) can then be defined simply in
terms of the corresponding matrix powers. This, in turn, suggests how one might de-
fine the quantum version of any classical observable that is a polynomial (or perhaps
even a power series) in the classical variables q and p, although Heisenberg himself
noted that the noncommutativity of his multiplication rule introduced a “significant
difficulty” (we will get back to this soon). From these observations Born and Pascual
Jordan (another assistant) reshaped Heisenberg’s rather obscure paper into the first
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cogent and systematic foundation for what would henceforth be known asmatrix me-
chanics. This appeared in their paper [BJ], which we will need to follow just a bit fur-
ther since it contains the first appearance of the identity

PQ − QP = h
2πi
,

which is the focus of our attention here. Note that, with Q and P interpreted as matri-
ces, the right-hand side of this identity must be thought of as a scalar matrix, that is,
a multiple of the identity matrix I. For the sake of clarity we will, for the time being at
least, include this explicitly and write

PQ − QP = h
2πi

I . (7.8)

The “significant difficulty” to which Heisenberg alluded is clear enough. Classical
observables are real-valued functions on phase space and these commute under mul-
tiplication,whereasmatrices do not. Suppose one is trying towrite down the quantum
analogue of a classical observable which, as a function of q and p, contains the term
q2p = qqp = qpq = pq2. Replacing q and p with their quantum analogues one has
three options for the order in which to write the matrices and these generally do not
give the same result. The naive quantization procedure we have been hinting at is am-
biguous. For some classical observables such as the harmonic oscillator Hamiltonian
(which contains only q2 and p2), this is not an issue, but in general the difficulty really
is significant. Physicists have devised a great many schemes for removing this am-
biguity each of which gives rise to what we would call a quantization procedure, but
different schemes generally give rise to different physical predictions and one can only
decide which (if any) gives the correct predictions by consulting the experimentalists.
For classical observables that are quadratic functions of q and p there is only one ap-
parent ambiguity, that is, QP versus PQ. One would therefore like to know something
about how they differ, that is, about the commutator PQ − QP.

Heisenberg’s paper [Heis1] contains a great deal more than we have described so
far, but most of this is not our immediate concern ([AMS] contains a detailed anal-
ysis of the entire paper). There is one item we cannot ignore, however. Heisenberg
postulated differential equations entirely analogous to Hamilton’s equations of clas-
sical mechanics that should be satisfied by his quantum analogues of position and
momentum, but he needed also some reinterpretation of the Bohr–Sommerfeld quan-
tization condition (7.1) to ensure discrete energy levels. The condition he proposed
(Equation (16) of [Heis1]) is, in our notation,

4πme

∞

∑
α=−∞

Q(n, α)Q(α, n)ω(α, n) = h, (7.9)

whereme is the mass of the electron and h is Planck’s constant.
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The path which led Heisenberg to (7.9) is not so easy to follow. Writing out the
Born–Sommerfeld condition (7.1) with p = meq̇ and expanding in Fourier series, he
performs a rather odd differentiation with respect to the (discrete) variable n to obtain

h = 2πme

∞

∑
α=−∞

α d
dn
(αω(n)qα(n)q−α(n)).

At this point Heisenberg simply asserts that this equation “has a simple quantum-
theoretical reformulation which is related to Kramers’ dispersion theory” and records
his Equation (16) without further ado.

Remark 7.1.2. Today this would generally be known as Kramers–Heisenberg disper-
sion theory. It concerns itselfwith the scatteringof photonsby electrons that are bound
in an atom andwas a topic of great interest in 1925 because the details of atomic struc-
ture were by then understood to be intimately related to the emission and absorption
of photons. Lacking both the time and the competence to do so properly we will not
attempt to describe precisely how Heisenberg was led from dispersion theory to (7.9),
but will simply refer those interested in hearing this story to Section III.5 of [MR].

There is, however, one observation we would like to make about (7.9). With

Q(t) = (Q(n,m)eiω(n,m)t )

and

P(t) = meQ̇(t) = (meiω(n,m)Q(n,m)e
iω(n,m)t ) = (P(n,m)eiω(n,m)t )

we compute the products PQ and QP as

(PQ)(n,m) =
∞

∑
α=−∞

P(n, α)Q(α,m) = mei
∞

∑
α=−∞

ω(n, α)Q(n, α)Q(α,m)

and, similarly,

(QP)(n,m) = mei
∞

∑
α=−∞

Q(n, α)ω(α,m)Q(α,m).

Now, recalling thatω(n, α) = −ω(α, n)we obtain for the diagonal entries (m = n) of the
commutator PQ − QP

(PQ − QP)(n, n) = −2mei
∞

∑
α=−∞

Q(n, α)Q(α, n)ω(α, n).

Finally, note that Heisenberg’s quantization condition (7.9) is precisely the statement
that

(PQ − QP)(n, n) = h
2πi
, n = 1, 2, 3, . . . ,
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that is, that the diagonal entries of the commutator PQ − QP are all equal to h
2πi . Since

the diagonal entries of PQ − QP are time-independent, these are also all equal to h
2πi .

If Heisenberg noticed that his quantization condition gave rise to this identity,
he did not say so in [Heis1]. Born did notice, however, and conjectured on physical
grounds that the off-diagonal entries of PQ − QP must all be zero. Jordan established
Born’s conjecture by computing the t-derivative of PQ−QP, using Heisenberg’s quan-
tum version of Hamilton’s equations to show that the derivative is zero, and then in-
voking the additional assumption that ω(n,m) ̸= 0 whenever n ̸= m to show that
the off-diagonal elements are zero (the argument is given in some detail in Section IV
of [FP2]).

Whether or not one is willing to take these physical and mathematical arguments
of Heisenberg, Born and Jordan seriously is not really the issue here since the result-
ing identity (7.8) is best regarded as one of the postulates of matrix mechanics and its
viability should be judged on the basis of the predictions to which matrix mechanics
leads. As we emphasized earlier, the goal here was motivation, not derivation. What
we hope to have motivated is the underlying algebraic structure of quantummechan-
ics. In an attempt to unearth a precise definition of this algebraic structure we will
rewrite (7.8) just slightly using [ , ]− for the matrix commutator, writing ℏ for h/2π and
appending to it two trivial commutation relations. This results in what are called the
Born–Heisenberg canonical commutation relations, or quantum canonical commuta-
tion relations, or simply the CCR:

[Q,Q]− = [P,P]− = 0, [P,Q]− = −iℏI . (7.10)

One often sees these relations expressed in the followingway. Define the quantum
bracket { , }ℏ by

{ , }ℏ = −
i
ℏ
[ , ]−.

Then (7.10) can be written

{Q,Q}ℏ = {P,P}ℏ = 0, {Q,P}ℏ = I . (7.11)

In these terms one cannot help but notice the analogywith the n = 1 case of the canon-
ical commutation relations (2.66) for classical mechanics, that is,

{q, q} = {p, p} = 0, {q, p} = 1. (7.12)

The analogy is strengthened by comparing equation (2.65) describing the time evolu-
tion of an observable in classical mechanics

df
dt
= {f ,H}
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with the Heisenberg equation (6.27)

dA
dt
= {A,H}ℏ.

Paul Dirac [Dirac1] was the first to suggest that this analogy might provide a method
of quantizing classical mechanical systems. His suggestion was simply to find a “rea-
sonable”mappingR from the classical observables f , g, . . . to the quantumobservables
R(f ), R(g), . . . (matrices, or operators on a Hilbert space) that sends Poisson brackets
to quantum brackets, that is, satisfies

{f , g}→ {R(f ),R(g)}ℏ

and carries (7.12) to (7.11). As it turns out, this is not only more easily said than done,
it generally cannot be done at all. Nevertheless, this is what physicists usually mean
by canonical quantization. We will have a much more careful look at this in the next
section.

Finally, note that if we let C = −iℏI, then, from (7.10), we have

[P,P]− = [Q,Q]− = [C,C]− = [P,C]− = [Q,C]− = 0, [P,Q]− = C.

If one regards the matrices {P,Q,C} as basis elements for the three-dimensional real
vector space they span, then these commutation relations show that the commuta-
tor provides this vector space with the structure of a (nearly commutative) Lie algebra
with C in the center. Of course, in this introductory section we have been rather cava-
lier about these infinitematrices that are supposed to represent quantumobservables,
so one cannot claim that thismakes any rigorous sense at themoment. In the next sec-
tion we will attempt to rectify this situation.

7.2 Heisenberg algebras and Heisenberg groups

The physical reasoning and formal manipulations of the preceding section were all
intended to simply motivate the rigorous definitions and results that we will describe
now. The objective is to formulate a precise notion of the “canonical quantization” of a
classical mechanical system and discuss the extent to which it can be realized. In the
next two sections we will apply what we learn to the free particle and the harmonic
oscillator. We will need to rely rather heavily on basic information about (matrix) Lie
groups and Lie algebras and, as we have done previously, will take as our principal
references [CM], the lectures by Robert Bryant in [FU], [Hall1], [Knapp], [Nab3], [Sp2]
and [Warner].

We begin with the abstract definition of the algebraic structure to which we were
led by Heisenberg and Born in the previous section. We will describe a few concrete
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models of this structure and some of its basic properties and then generalize to ac-
commodate physical systems more complicated than those discussed in Section 7.1.

The three-dimensional Heisenberg algebra h3 is a three-dimensional, real Lie alge-
bra with a basis {X,Y , Z} relative to which the Lie bracket [ , ] is determined by

[X, Z] = [Y , Z] = 0, [X,Y] = Z. (7.13)

In terms of components we have

[xX + yY + zZ, xX + yY + zZ] = (xy − yx)Z.

Exercise 7.2.1. Show that [A, [B,C]] = 0∀A,B,C ∈ h3 and conclude that the Jacobi
identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 ∀A,B,C ∈ h3.

is satisfied in h3.

Example 7.2.1. It will be useful to have a couple of concrete realizations of h3 so we
will begin with these.
1. For a classical mechanical system with configuration spaceR the phase space is

T∗R = R2 and the algebra of classical observables is C∞(T∗R). This is an infinite-
dimensional, real Lie algebra with the Poisson bracket { , } as the Lie bracket.
Three particular observables are the coordinate functions q and p and the con-
stant function 1. Consider the linear subspace of C∞(T∗R) spanned by {q, p, 1}.
Since

{q, 1} = {p, 1} = 0, {q, p} = 1, (7.14)

this is a Lie subalgebra of C∞(T∗R) isomorphic to h3.
2. The set gl(3;R) of all 3× 3 real matrices is a Lie algebra under matrix commutator.

We consider the subset consisting of those matrices of the form

(
0 x z
0 0 y
0 0 0

) .

Exercise 7.2.2. Show that these form a Lie subalgebra of gl(3;R) that is isomor-
phic to h3.

There are a few things worth noting about h3. Recall that the center of a Lie algebra g
consists of all those B ∈ g such that [A,B] = 0 for all A ∈ g. Certainly, Z is in the center
of h3, but more is true.

Exercise 7.2.3. Show that the center of h3 is the one-dimensional linear subspace
spanned by Z.
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You have shown that (7.13) implies

[[A,B],C] = 0 (7.15)

for all A,B,C ∈ h3. In particular, h3 is a nilpotent Lie algebra, but we have in mind a
different use for (7.15). Every finite-dimensional Lie algebra g is the Lie algebra of some
connected Lie group (this is generally known as Lie’s third theorem). Moreover, there is
a unique simply connected Lie group whose Lie algebra is g. This is true, in particular,
for h3 andwewould like to describe this Lie group. For this wewill identify h3 with the
matrix Lie algebra described in Example 7.2.1.2. In general, one gets from a Lie algebra
to its Lie group via the exponential map, so we will need to exponentiate matrices of
the form

xX + yY + zZ = x(
0 1 0
0 0 0
0 0 0

) + y(
0 0 0
0 0 1
0 0 0

) + z(
0 0 1
0 0 0
0 0 0

) .

Now, recall that if matrices A and B commute, then eA+B = eAeB. Since zZ com-
mutes with everything in h3, we have

exX+yY+zZ = exX+yYezZ .

Since (zZ)2 = 0,

ezZ = I + zZ =(
1 0 z
0 1 0
0 0 1

) .

Similarly,

exX = I + xX =(
1 x 0
0 1 0
0 0 1

)

and

eyY = I + yY =(
1 0 0
0 1 y
0 0 1

) .

Since xX and yY do not commute, exX+yY takes a bit more work. One can appeal to the
Baker–Campbell–Hausdorff formula

eAeB = eA+B+
1
2 [A,B]−+ 1

12 [A,[A,B]−]−− 1
12 [B,[A,B]−]−+⋅⋅⋅,
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which, by virtue of (7.15), simplifies in the case of h3 to

eAeB = eA+B+
1
2 [A,B]− .

There is a very detailed discussion of the Baker–Campbell–Hausdorff formula in
Chapter 4 of [Hall1]. Moreover, Theorem 4.1 of [Hall1] contains an independent proof
of the special case we need for h3. Alternatively, given the simplicity of the matrices,
one can verify the following by direct computation:

exXeyY = exX+yY+
1
2 [xX,yY]− = exX+yY+ 12 xyZ = exX+yYe 1

2 xyZ .

From this we conclude that

exX+yY = exXeyYe−
1
2 xyZ .

Consequently,

eyY+xX = eyYexXe
1
2 xyZ .

Since eyY+xX = exX+yY , we conclude that

exXeyY = exyZeyYexX . (7.16)

Exercise 7.2.4. Put all of this together to show that

exX+yY+zZ =(
1 x z + 1

2xy
0 1 y
0 0 1

) .

Conclude that the exponential map on h3 is a bijection onto the set H3 of all 3 × 3
matrices of the form

(
1 a c
0 1 b
0 0 1

) .

Exercise 7.2.5. Show that

(
1 a c
0 1 b
0 0 1

)(
1 a c

0 1 b

0 0 1
) =(

1 a + a c + c + ab

0 1 b + b

0 0 1
)

and

(
1 a c
0 1 b
0 0 1

)

−1

=(
1 −a −c + ab
0 1 −b
0 0 1

) .



246 | 7 Canonical quantization

Conclude that, under matrix multiplication, H3 is a non-Abelian group whose center
consists precisely of those elements of the form

ecZ =(
1 0 c
0 1 0
0 0 1

) .

To see that H3 is a simply connected Lie group, proceed as follows.

Exercise 7.2.6. Define a map from H3 toR3 by

(
1 a c
0 1 b
0 0 1

)
ϕ
→ (a, b, c) .

Regarding H3 as a topological subspace of the 3 × 3 real matrices (that is, R9), show
that ϕ is a homeomorphism. In particular, ϕ : H3 → R

3 is a global chart on H3 and so
H3 is a differentiable manifold diffeomorphic toR3.

Exercise 7.2.7. Define a multiplicative structure onR3 by

(x, y, z)(x, y, z) = ( x + x, y + y, z + z + xy ).

Show that this defines a group structure onR3 and that ifR3 is given its usual topology
and differentiable structure, it defines a Lie group structure onR3.

Exercise 7.2.8. Show that when R3 is provided with the Lie group structure in the
previous exercise, ϕ : H3 → R

3 is a Lie group isomorphism. Conclude that H3 is the
unique simply connected Lie group whose Lie algebra is h3.

Exercise 7.2.9. There is another way of describing a Lie group structure onR3 that is
isomorphic toH3. For this wewill denote the elements ofR3 by (x, y, u). Show first that
the multiplication defined by

(x, y, u)(x, y, u) = ( x + x, y + y, u + u + 1
2
(xy − xy) )

provides R3 with the structure of a Lie group. Next show that the map (x, y, z) →
(x, y, u) = (x, y, z − 1

2xy) satisfies

(x + x, y + y, z + z + xy)→ ( x + x, y + y, u + u + 1
2
(xy − xy) )

and therefore is an isomorphism with the R3-model of H3 described in the previous
exercises.
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HereH3, thought of either as a group of matrices or asR3 with either of the group
structures just introduced, is called the three-dimensional Heisenberg group. There is
an interesting way of rephrasing our last view of H3 that not only makes the defini-
tion of the group structure appear a bit less odd, but also suggests a rather elegant
generalization. Think ofR3 asR2 ×R = T∗R ×R and define a nondegenerate, skew-
symmetric, bilinear form ω onR2 by

ω( (x, y), (x, y) ) = xy − xy.

This is just the canonical symplectic form on T∗R once it has been identified with a
bilinear form onR2 by using the fact that every tangent space to the vector spaceR2 is
canonically identified withR2. Then the peculiar group structure we have introduced
onR3 can be thought of as a group structure on T∗R ×R defined by

(v, t)(v, t) = ( v + v, t + t + 1
2
ω(v, v) )

for all v, v ∈ T∗R and all t, t ∈ R. As it happens, one can mimic this definition to
associate a “Heisenberg group” and corresponding “Heisenberg algebra” with 𝒱 ×R
for any finite-dimensional symplectic vector space 𝒱 (see pages 116–118 of [Berndt]).
We will not pursue this in such generality here, but will use the idea to deal with
R2n+1 = R2n × R. Since there are really no new ideas involved we will simply record
the facts.

Let n ≥ 1 be an integer. The (2n + 1)-dimensional Heisenberg algebra h2n+1 is a
(2n + 1)-dimensional, real Lie algebra with a basis {X1, . . . ,Xn,Y1, . . . ,Yn, Z} relative to
which the Lie bracket [ , ] is determined by

[Xi,Xj] = [Yi,Yj] = [Xi, Z] = [Yi, Z] = 0, [Xi,Yj] = δijZ, i, j = 1, . . . , n.

Example 7.2.2. The corresponding concrete realizations of h2n+1 are as follows.
1. Let C∞(T∗Rn) = C∞(R2n) be the Lie algebra, relative to the Poisson bracket, of

classical observables for a mechanical system with configuration spaceRn. Then
h2n+1 is isomorphic to the Lie subalgebra of C∞(T∗Rn) generated by {q1, . . . , qn,
p1, . . . , pn, 1}.

2. Let gl(n + 2;R) be the Lie algebra of all (n + 2) × (n + 2) real matrices under the
commutator Lie bracket. Then h2n+1 is isomorphic to the Lie subalgebra of gl(n +
2;R) consisting of those matrices of the form

((((

(

0 x1 x2 ⋅ ⋅ ⋅ xn z
0 0 0 ⋅ ⋅ ⋅ 0 y1

0 0 0 ⋅ ⋅ ⋅ 0 y2
...

...
... ⋅ ⋅ ⋅

...
...

0 0 0 ⋅ ⋅ ⋅ 0 yn

0 0 0 ⋅ ⋅ ⋅ 0 0

))))

)

=(
0 x z
0 0n y
0 0 0

) ,
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where 0n is the n × n zero matrix, 0 is the zero vector inRn and x and y are arbi-
trary vectors inRn (unless it causes some confusion, we will allow the context to
indicate whether the elements ofRn are to be regarded as row or column vectors).

The simply connected Lie group whose Lie algebra is h2n+1 is called the (2n + 1)-
dimensional Heisenberg group and denoted H2n+1. This can be described in a number
of ways. As amatrix group,H2n+1 consists precisely of those (n+2)×(n+2) realmatrices
of the form

((((

(

1 a1 a2 ⋅ ⋅ ⋅ an c
0 1 0 ⋅ ⋅ ⋅ 0 b1

0 0 1 ⋅ ⋅ ⋅ 0 b2
...

...
... ⋅ ⋅ ⋅

...
...

0 0 0 ⋅ ⋅ ⋅ 1 bn

0 0 0 ⋅ ⋅ ⋅ 0 1

))))

)

=(
1 a c
0 In b
0 0 1

) ,

where In is the n×n identity matrix. The matrix exponential map is a bijection of h2n+1
onto H2n+1 and is given by

(
0 x z
0 0n y
0 0 0

) →(
1 x z + 1

2 ⟨x, y⟩
0 In y
0 0 1

) ,

where ⟨x, y⟩ is the usualRn-inner product.
Alternatively, we can identify R2n+1 with R2n × R and define a nondegenerate,

skew-symmetric, bilinear form ω onR2n = Rn ×Rn by

ω(v, v) = ω( (x, y), (x, y) ) = ⟨x, y⟩ − ⟨x, y⟩.

Then H2n+1 is isomorphic toR2n ×R with the group structure defined by

(v, z)(v, z) = ( v + v, z + z + 1
2
ω(v, v) ),

that is,

(x, y, z)(x, y, z) = (x + x, y + y, z + z + 1
2
( ⟨x, y⟩ − ⟨x, y⟩ ) ). (7.17)

Before returning to quantummechanics it is only fair to point out that Heisenberg al-
gebras and Heisenberg groups play decisive roles also in many areas outside of math-
ematical physics (see, for example, [Howe] and [Fol1] for applications to harmonic
analysis).

Now let us see what all of this has to do with Dirac’s proposal for quantizing a
classical mechanical system. Recall that the idea was to find an “appropriate” map-
ping from classical observables to quantum observables that sends Poisson brackets
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to quantum brackets and carries the classical canonical commutation relations (7.12)
to the quantum canonical commutation relations (7.11). We will try to write this out a
bit more carefully and see what happens. For simplicity we will once again focus on
classical systemswith one degree of freedom (configuration spaceR) and then simply
record the more or less obvious generalization to higher dimensions.

Remark 7.2.1. We will also temporarily put aside Heisenberg’s infinite matrices and
return to our previous view of quantum observables as self-adjoint operators on a
separable, complex Hilbert space ℋ. As we mentioned previously, one can get back
to thematrices simply by choosing an orthonormal basis forℋ. This essentially estab-
lishes the mathematical equivalence of Schrödinger’s wave mechanics and Heisen-
berg’s matrix mechanics (see Chapter I, Sections 3 and 4, of [vonNeu] for more on
this, or [Casado] for a brief historical survey).

What Dirac is asking us for then is a map R from C∞(T∗R) to the self-adjoint op-
erators on some separable, complex Hilbert spaceℋ that satisfies

R( {f , g} ) = − i
ℏ
[R(f ),R(g)]−

and carries the classical commutation relations (7.12) for position and momentum to
the quantum commutation relations (7.11) for the corresponding operators.

Exercise 7.2.10. Define π = − iℏR and show that R( {f , g} ) = − iℏ [R(f ),R(g)]− is equiva-
lent to

π( {f , g} ) = [π(f ),π(g)]−. (7.18)

Now, we have already seen that there are all sorts of problems associated with
defining the commutator of two self-adjoint operators. If the operators are unbounded
the commutator may be defined only at zero. Even if they are bounded the commuta-
tor is not self-adjoint, but rather skew-adjoint and one must multiply it by ±i to get
something self-adjoint. Nevertheless, (7.18) at least resembles something familiar. Re-
call that if g1 and g2 are two real Lie algebras with brackets [ , ]1 and [ , ]2, respectively,
then a Lie algebra homomorphism from g1 to g2 is a linear map h : g1 → g2 satisfying
h( [f , g]1 ) = [ h(f ), h(g) ]2 for all f , g ∈ g1. If g2 is a Lie algebra of operators on some vec-
tor space 𝒱 under commutator, then h is called a Lie algebra representation of g1 on 𝒱.
Consequently, if the self-adjoint operators on ℋ formed a Lie algebra (which they do
not), then π would be a representation of the classical observables by quantum ob-
servables onℋ.

To make something like this work will require a bit more finesse. We will begin
by being somewhat less ambitious. The Heisenberg algebra h3 can be identified with
the Lie subalgebra of C∞(T∗R) spanned by {q, p, 1} (Example 7.2.1.1) and we will start
by looking for an appropriate notion of “representation” only for this Lie algebra; we
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will worry later about whether or not such “representations” extend to larger subal-
gebras of C∞(T∗R). We put “representation” in quotes since, for the reasons we have
been discussing, it will be necessary to adapt the definition given above to the infinite-
dimensional context. Eventually, we will opt for the word “realization” instead.

Firstwe should understandwhat cannot be true. The operators in the “representa-
tion” certainly cannot act on a finite-dimensional Hilbert space since the images Q, P
and I of q, p and 1 are required to satisfyQP−PQ = iℏI. In finite dimensionswe can take
the trace on both sides, getting zero on the left, but not on the right. In fact, at least
one of Q or P must be unbounded. To see this suppose, to the contrary, that they are
both bounded and satisfy [Q,P]− = iℏI (whichnowmakes sense on all ofℋ). Induction
then gives [Q,Pn]− = niℏPn−1 for any n ≥ 1. Thus, nℏ ‖Pn−1‖ = ‖QPn − PnQ‖ ≤ 2‖Q‖ ‖Pn‖.
Since P is self-adjoint, it is a normal operator and so ‖Pn‖ = ‖P‖n for any n (see, for
example, Section 58 of [Simm1]). Consequently, nℏ ≤ 2‖Q‖ ‖P‖ for every n and this is
clearly impossible since the right-hand side is a constant.

The conclusion we draw from all of this is that one simply has to deal with un-
bounded operators and all of the difficulties presented by their rather problematic
commutators. There are various ways to do this and we will describe one. The idea,
due to Hermann Weyl and based on Theorems 5.6.3 and 5.6.5, is to replace the rela-
tions (7.11) with another set of relations involving only bounded (in fact, unitary) op-
erators. We emphasize at the outset, however, that these two sets of relations are not
equivalent and we will have to say a bit more about this as we proceed. Before the ab-
stract definitions, however, we will try to get our bearings by looking at an example.

Example 7.2.3. Recall that the position operator Q : 𝒟(Q) → L2(R) (Example 5.2.3)
and momentum operator P : 𝒟(P) → L2(R) (Example 5.2.4) are defined on the
Schwartz space 𝒮(R) by

(Qψ)(q) = qψ(q)

and

(Pψ)(q) = −iℏ d
dq

ψ(q).

Note that 𝒮(R) is invariant under both, that is,

Q : 𝒮(R)→ 𝒮(R)

and

P : 𝒮(R)→ 𝒮(R).

Furthermore, both Q and P are essentially self-adjoint on 𝒮(R) (Exercise G.2.1). The
commutator [P,Q]− is well-defined on 𝒮(R) and we have seen that

[P,Q]−ψ(q) = (PQ − QP)ψ(q) = −iℏψ(q) ∀ψ ∈ 𝒮(R).
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Identifying Q with X, P with Y and iℏ1 with Z we find that the commutation relations
for the Heisenberg algebra h3 are satisfied on 𝒮(R).

The situation described in this example is essentially the closest one can come
to the notion of a “representation” of the Heisenberg algebra h3 by unbounded self-
adjoint operators, so we are led to formulate the following definition. A realization of
h3 on the separable, complex Hilbert spaceℋ consists of a dense linear subspace𝒟 of
ℋ and two operators Q and P onℋ with𝒟 ⊆ 𝒟(Q) and𝒟 ⊆ 𝒟(P) that satisfy:
1. Q : 𝒟 → 𝒟 and P : 𝒟 → 𝒟,
2. [P,Q]−ψ = (PQ − QP)ψ = −iℏψ ∀ψ ∈ 𝒟 and
3. Q and P are essentially self-adjoint on𝒟.

In this casewe say that the unique self-adjoint extensions ofQ and P satisfy the canon-
ical commutation relations.

The realization of h3 described in Example 7.2.3 is called the Schrödinger realiza-
tion of h3. We will need to know a bit more about this example.

Example 7.2.4. We consider again the Schrödinger realization of h3 described in Ex-
ample 7.2.3. As is our custom we will denote the unique self-adjoint extensions of
Q : 𝒮(R) → L2(R) and P : 𝒮(R) → L2(R) by the same symbols Q : 𝒟(Q) → L2(R)
and P : 𝒟(P)→ L2(R). Being self-adjoint, each of these determines a unique strongly
continuous one-parameter group of unitary operators on L2(R), which we will denote
by

{Ut}t∈R = {e
itP}t∈R

and

{Vs}s∈R = {e
isQ}s∈R,

respectively. We have already seen (Example 5.6.1) that the operator eitP is just trans-
lation to the left by ℏt,

(eitPψ)(q) = ψ(q + ℏt)

and (Remark 5.6.2) eisQ is multiplication by eisq:

(eisQψ)(q) = eisqψ(q).

Now note that for any ψ ∈ L2(R),

UtVsψ(q) = e
itPeisQψ(q) = eitP(eisqψ(q))

= eis(q+ℏt)ψ(q + ℏt) = eiℏtseisqψ(q + ℏt)

= eiℏtseisQeitPψ(q)
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= eiℏtsVsUtψ(q),

so

UtVs = e
iℏtsVsUt

on L2(R).
The thing to note now is that if we had known only that these last relations were

satisfied, then the commutation relation [P,Q]−ψ = −iℏψ would have followed from
Theorem 5.6.5 for all ψ ∈ 𝒮(R) (indeed, for all ψ ∈ 𝒟([P,Q]−)), without recourse to Ex-
ample 7.2.3. Furthermore, Theorem 5.6.3 gives the remaining commutation relations of
theHeisenberg algebra, so one canmanufacture the Schrödinger realization of h3 from
relations involving only unitary operators. This is the scenariowewill now generalize.

We will be interested in realizations of h3 that arise in the manner described in
Example 7.2.4. More precisely, suppose ℋ is a separable, complex Hilbert space and
{Ut}t∈R and {Vs}s∈R are two strongly continuous one-parameter groups of unitary op-
erators onℋ. We say that {Ut}t∈R and {Vs}s∈R satisfy theWeyl relations if

UtVs = e
iℏtsVsUt ∀t, s ∈ R. (7.19)

Remark 7.2.2. Although we have reserved the symbol ℏ for the normalized Planck
constant, it is useful now to think of it as representing some (small) positive parame-
ter. It is, after all, an experimentally determined number the value of which not only
depends on the choice of units, but is also uncertain to the extent that the result of
anymeasurement is uncertain. More significantly, viewing ℏ as a parameter opens the
possibility of taking various limits as ℏ→ 0+ since these should, in some appropriate
sense, reproduce the results of classical mechanics (this is the gist of the Bohr corre-
spondence principle).

The following is the corollary to TheoremVIII.14, page 275, of [RS1]; wewill sketch
the ideas behind the proof shortly.

Theorem 7.2.1. Let {Ut}t∈R and {Vs}s∈R be two strongly continuous one-parameter
groups of unitary operators on the separable, complex Hilbert space ℋ that satisfy the
Weyl relations (7.19). Let A : 𝒟(A) → ℋ and B : 𝒟(B) → ℋ be the unique self-adjoint
operators onℋ for which Ut = eitA ∀t ∈ R and Vs = eisB ∀s ∈ R (Stone’s Theorem 5.6.2).
Then there exists a dense linear subspace 𝒟 ⊆ ℋ with 𝒟 ⊆ 𝒟(A) and 𝒟 ⊆ 𝒟(B) and
such that:
1. A : 𝒟 → 𝒟 and B : 𝒟 → 𝒟,
2. [A,B]−ψ = (AB − BA)ψ = −iℏψ ∀ψ ∈ 𝒟 and
3. A and B are essentially self-adjoint on𝒟.

The upshot of this is that a pair of strongly continuous one-parameter groups of uni-
tary operators satisfying the Weyl relations will give rise to a realization of h3, that
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is, to a solution to the canonical commutation relations. The question then is, how
can one produce such pairs of strongly continuous one-parameter groups of unitary
operators? A hint is provided by the identity (7.16) satisfied by the images under the
exponential map of the generators {X,Y , Z} of the Heisenberg algebra. Changing the
notation just a bit we write this as

etXesY = etsZesYetX , t, s ∈ R.

Note that {etX}t∈R and {esY }s∈R are both one-parameter subgroups of the Heisenberg
group H3. Now let us suppose we have a group homomorphism π : H3 → 𝒰(ℋ) from
H3 to the group of unitary operators on some separable, complex Hilbert spaceℋ.

Remark 7.2.3. Such a group homomorphism π : H3 → 𝒰(ℋ) is a “unitary represen-
tation of the Heisenberg group.” A review of what we need to know about these is
contained in Appendix I.

Then

π(etX)π(esY ) = π(etsZ)π(esY )π(etX), t, s ∈ R.

Both {Ut}t∈R = {π(etX)}t∈R and {Vs}s∈R = {π(esY )}s∈R are clearly one-parameter groups
of unitary operators on ℋ; whether they are strongly continuous or not will depend
on π. Since the center of h3 is the one-dimensional subspace spanned by Z and since
the exponential map carries h3 onto H3, each π(etsZ) commutes with π(g) for every
g ∈ H3. For homomorphisms π that are irreducible in a sense defined in Appendix I,
we will show that this implies that π(etsZ)must be a multiple of the identity (Schur’s
Lemma I.0.1) and, since it is unitary, it must be a multiple by some complex number
of modulus one and we begin to get something that looks like (7.19).

Next we would like to provide a sketch of the ideas that go into the proof of Theo-
rem 7.2.1. As motivation, we first recall that any representation of a matrix Lie group G
on a finite-dimensional Hilbert space gives rise to a representation of the correspond-
ing Lie algebra g simply by differentiation at the identity. More precisely, and more
generally, one has the following well-known result (if it is not so well known to you,
see Theorem 3.18 of [Hall1]).

Theorem 7.2.2. Let G andH bematrix Lie groupswith Lie algebras gand h, respectively,
and suppose ϕ : G → H is a Lie group homomorphism. Then there exists a unique real
linear map ϕ̃ : g→ h such that ϕ(eX) = eϕ̃(X) for every X ∈ g. Moreover, ϕ̃ satisfies:
1. ϕ̃( [X,Y]g ) = [ ϕ̃(X), ϕ̃(Y) ]h for all X,Y ∈ g and
2. ϕ̃(X) = d

dtϕ(e
tX)|t=0 = limt→0

ϕ(etX )− 1H
t for all X ∈ g.

Part 1. of the theorem asserts that ϕ̃ is a Lie algebra homomorphism and Part 2. tells us
how to compute it from ϕ. If G is connected and simply connected one can show that,
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conversely, every Lie algebra homomorphism g→ h is ϕ̃ for some Lie group homomor-
phism ϕ : G → H; this is Theorem 5.33 of [Hall1]. All of this is true, in particular, for
finite-dimensional representations of G. For representations on infinite-dimensional
Hilbert spaces the situation is less simple and we will now sketch the issues involved.

Let G be a matrix Lie group and π : G → 𝒰(ℋ) a strongly continuous, unitary rep-
resentation of G on the separable, complex Hilbert space ℋ (see Appendix I). A vec-
tor v ∈ ℋ is called a smooth vector or C∞ vector for π if

g → π(g)v : G → ℋ

is a C∞ map from G toℋ.

Remark 7.2.4. The group G is a matrix Lie group and therefore a finite-dimensional
differentiable manifold, butℋ is (generally) an infinite-dimensional Hilbert space, so
we should say something about what is meant by “C∞” for a map from G to ℋ. The
idea is to regard ℋ as the simplest example of an infinite-dimensional differentiable
manifold, specifically, a Banach manifold modeled on ℋ with a single, global chart
(the identity map on ℋ). Choosing charts on G one can then identify the map G →
ℋ with a family of maps (“coordinate expressions”) from a Euclidean space Rn (n =
dimG) into ℋ exactly as in the finite-dimensional case. The problem then reduces to
defining smoothness for maps between open sets in Banach spaces. There are some
minor technical issues due to the infinite dimensionality of the Banach spaces, but the
general scheme is exactly as in the finite-dimensional case. For our present purposes
we will leave it at this (if you would like to see more details we recommend Chapter 2
of [AMR]).

We letℋ∞(π) denote the set of all smooth vectors for π inℋ. This is clearly a linear
subspace of ℋ and we claim that it is invariant under π : G → 𝒰(ℋ). To see this, let
v ∈ ℋ∞(π) and g0 ∈ G. We show that π(g0)v is inℋ∞(π), that is, that g → π(g)(π(g0)v)
is C∞. But this is clear since this map is the composition of two maps

g → gg0 → π(gg0)v = π(g)(π(g0)v),

the first of which is smooth because G is a Lie group and the second because v ∈
ℋ∞(π). What is not so obvious, however, is thatℋ∞(π) is dense inℋ. This was proved
by Gårding in [Går].

Theorem 7.2.3. Let π : G → 𝒰(ℋ) be a strongly continuous, unitary representation of
the Lie group G on the separable, complex Hilbert space ℋ. Then ℋ∞(π) is a dense,
invariant, linear subspace ofℋ.

For each X in g we define a linear map dπ(X) : ℋ∞(π)→ ℋ by

dπ(X) v = lim
t→0

π(etX) − I
t
(v) = lim

t→0

π(etX)v − v
t
= d
dt
π(etX)v
t=0
, (7.20)

where the limits are inℋ.
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Exercise 7.2.11. Show that the limit in (7.20) exists for every v ∈ ℋ∞(π) and that dπ(X)
depends linearly on X ∈ g.

Next we observe that for each X ∈ g, dπ(X) leaves ℋ∞(π) invariant, that is, v ∈
ℋ∞(π)⇒ dπ(X)v ∈ ℋ∞(π). To see this we must show that g → π(g)dπ(X)v is C∞. But
π is strongly continuous, so

π(g)dπ(X)v = π(g)(lim
t→0

π(etX)v − v
t
) = lim

t→0

π(getX)v − π(g)v
t

= d
dt
π(getX)v

t=0
.

Since g → π(g)v is a C∞ map, it follows that g → π(g)dπ(X)v is C∞ and therefore
dπ(X)v ∈ ℋ∞(π).

Due to the infinite-dimensionality of ℋ it takes a bit of work, but one can also
show that for any X,Y ∈ g,

dπ( [X,Y]g )v = [ dπ(X), dπ(Y) ]−v = ( dπ(X)dπ(Y) − dπ(Y)dπ(X) )v ∀v ∈ ℋ
∞(π),

or, briefly,

dπ( [X,Y]g ) = [ dπ(X), dπ(Y) ]−

onℋ∞(π).
Next we show that for any X ∈ g and any positive constant a, the operator

ia dπ(X) : ℋ∞(π)→ ℋ

is symmetric. To see this note that it clearly suffices to prove the result for a = 1. Also
note that, because π is a unitary representation,

(π(etX))∗ = (π(etX))−1 = π(e−tX).

Now we just compute, for any v,w ∈ ℋ∞(π),

⟨ i dπ(X)v,w ⟩ = ⟨ i lim
t→0

π(etX) − I
t

v, w⟩

= lim
t→0
⟨ i π(e

tX) − I
t

v, w⟩

= lim
t→0
⟨ v, −i (π(e

tX))∗ − I
t

w⟩

= lim
t→0
⟨ v, −i π(e

−tX) − I
t

w⟩

= lim
s→0
⟨ v, i π(e

sX) − I
s

w⟩

= ⟨ v, i dπ(X)w ⟩,

as required. Note that without the i, dπ(X) is skew-symmetric.
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In the best of all possible worlds we would be able to assert next that the opera-
tors i dπ(X) are not merely symmetric, but, in fact, essentially self-adjoint onℋ∞(π).
Regrettably, Dr. Panglosswasmistakenand things are not so simple.However, Edward
Nelson [Nel1] has refined the ideas we have been discussing to prove the following.
Given a strongly continuous, unitary representation π : G → 𝒰(ℋ) of a Lie group G on
a separable, complex Hilbert space ℋ, there is a dense, linear subspace 𝒟 of ℋ with
the following properties:

1. 𝒟 ⊆ ℋ∞(π),
2. 𝒟 is invariant under every i dπ(X), that is, i dπ(X)(𝒟) ⊆ 𝒟 for every X ∈ g,
3. i dπ(X) is essentially self-adjoint on𝒟 for every X ∈ g.

Nelson’s procedure was to consider, instead of the smooth vectorsℋ∞(π) inℋ associ-
atedwithπ, what are calledanalytic vectors. By definition, a vector v ∈ ℋ is an analytic
vector for π : G → 𝒰(ℋ) if the map g → π(g)v : G → ℋ is real analytic. Any real Lie
group admits a unique real analytic manifold structure for which the group opera-
tions are real analytic. In fact, a very famous (and very difficult) theorem of Gleason
and Montgomery–Zippin states that a topological group G admits a real-analytic Lie
group structure if and only if G is a topological manifold (this is generally regarded as
a solution to Hilbert’s fifth problem). Even so, there are a number of plausible alter-
native definitions of an analytic map from G into the Hilbert spaceℋ. We will simply
record the definition adopted by Nelson (page 579 of [Nel1]). Since G is an analytic
manifold it will suffice to define analyticity for a smooth map u : U → ℋ, where U is
an open set inRn (n = dimG) containing the origin. For any compact set K ⊆ U we let

‖u‖K = sup
x∈K

u(x)
ℋ.

We will say that u is analytic on U if it is smooth and, for every x ∈ U, there exists an
ϵ > 0 such that if K is the closed ball of radius ϵ about x, then

∞

∑
k=0

1
k!
∑

1≤i1 ,...,ik≤k


𝜕
𝜕xi1
⋅ ⋅ ⋅ 𝜕
𝜕xik

u
K

si1 ⋅ ⋅ ⋅ sik

is absolutely convergent for sufficiently small si1 , . . . , sik ; for more on analytic vectors,
see [Good].

One can also define the notions of smooth vector and analytic vector for a single
operator A : 𝒟(A)→ ℋ onℋ. Although these are closely related to the corresponding
notions for a representation we will save the definitions for Section 9.2, where we will
discuss in more detail their relevance to self-adjointness.

Nelsonproves that the setℋω(π)of analytic vectors forπ is dense inℋ (Theorem4,
Section 8, of [Nel1]). Next he shows how to produce a dense linear subspace 𝒟 of ℋ
that contains a dense, invariant set of analytic vectors for every i dπ(X), X ∈ g. From
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this Nelson obtains the essential self-adjointness of each i dπ(X) on 𝒟 (this is also
Corollary 2, Section X.6, of [RS2]). As usual, we will use the same symbol i dπ(X) to
denote theunique self-adjoint extension andwill alsowritedπ(X) for theunique skew-
adjoint extension of dπ(X). All of the details are available in [Nel1] andwewill discuss
them no further, but will instead apply what we have learned to the examples of most
interest to us, that is, the Heisenberg group H3 and Heisenberg algebra h3.

Let us suppose that π : H3 → 𝒰(ℋ) is some strongly continuous, unitary rep-
resentation of the Heisenberg group on a separable, complex Hilbert space ℋ. The
Heisenberg algebra h3 is generated by three elements that we have called X, Y and Z
subject to the commutation relations [X, Z] = 0, [Y , Z] = 0 and [X,Y] = Z. We con-
sider the corresponding operators dπ(X), dπ(Y) and dπ(Z). These are all defined and
essentially skew-adjoint on some common dense, invariant subspace𝒟, where

dπ(X)v = d
dx

π(exX)v
x=0
,

dπ(Y)v = d
dy

π(eyY )v
y=0

and

dπ(Z)v = d
dz

π(ezZ)v
z=0
.

Now consider the essentially self-adjoint operators on𝒟 defined by

iℏ dπ(X), iℏ dπ(Y) and iℏ dπ(Z)

and use the same symbols to denote their unique self-adjoint extensions. On 𝒟 we
have

[ iℏ dπ(Y), iℏ dπ(X) ]− = −ℏ
2[ dπ(Y), dπ(X) ]− = ℏ

2dπ( [X,Y] ) = ℏ2dπ(Z).

This much is true for any strongly continuous, unitary representation π of H3. Now,
let us think about ℏ2dπ(Z) for a moment. Suppose we could find a representation π on
some Hilbert space that satisfies dπ(Z) = − iℏ I. Then

[ iℏ dπ(Y), iℏ dπ(X) ]− = −iℏI ,

which would amount to a rigorous version of Heisenberg–Born–Jordan–Dirac quan-
tization of a single classical particle moving in one dimension. The task then is to
construct such a representation. It should come as no surprise that we will look for
a representation that gives rise to the Schrödinger realization of h3, that is, we would
like to find π : H3 → 𝒰(L2(R)) with iℏ dπ(Y) = P, iℏ dπ(X) = Q and iℏ dπ(Z) = I. Note
that this will be the case if we choose π(exX), π(eyY ) and π(ezZ) as follows:

π(exX) = exQ/iℏ, π(eyY ) = eyP/iℏ and π(ezZ) = ezI/iℏ.
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More explicitly, we want

[π(exX)ψ](q) = exq/iℏψ(q), [π(eyY )ψ](q) = ψ(q − y) and

[π(ezZ)ψ](q) = ez/iℏψ(q).
(7.21)

Exercise 7.2.12. Prove the following group theoretic lemma.

Lemma 7.2.4. Let G be a group and let α, β, γ : R → G be homomorphisms of the addi-
tive groupR into G that satisfy

α(x)γ(z) = γ(z)α(x), β(y)γ(z) = γ(z)β(y) and α(x)β(y) = γ(xy)β(y)α(x)

for all x, y, z ∈ R. Then the map π : H3 → G defined by

π(M(x, y, z)) = γ(z)β(y)α(x),

where

M(x, y, z) =(
1 x z
0 1 y
0 0 1

) ,

is a group homomorphism.

Exercise 7.2.13. Apply Lemma 7.2.4 with G = 𝒰(L2(R)), α(x) = exQ/iℏ, β(y) = eyP/iℏ and
γ(z) = ezI/iℏ to obtain a group homomorphism π : H3 → 𝒰(L2(R)). Hint: To verify
the required conditions on α, β and γ you will need the Baker–Campbell–Hausdorff
formula.

Exercise 7.2.14. Show that the homomorphism π : H3 → 𝒰(L2(R)) in Exercise 7.2.13
is strongly continuous. Hint: Recall that α, β and γ are strongly continuous one-
parameter groups of unitary operators on L2(R). Show that

γ(z)β(y)α(x)ψ − ψ
 ≤
α(x)ψ − ψ

 +
β(y)ψ − ψ

 +
γ(z)ψ − ψ

.

This depends on the fact that the operators are unitary. Begin by noting that if S and
T are any two unitary operators on a Hilbert space ℋ, then one can write STv − v =
STv − Sv + Sv − v.

Thus, the homomorphism π : H3 → 𝒰(L2(R)) in Exercise 7.2.13 is a strongly con-
tinuous, unitary representation of H3 satisfying (7.21). We have therefore succeeded
in producing a representation π of the Heisenberg group H3 whose “infinitesimal ver-
sion” dπ reproduces the Schrödinger realization of the Heisenberg algebra h3; π is
called the Schrödinger representation of H3.
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Exercise 7.2.15. Show that the Schrödinger representation π can be written explicitly
as

(π(exX+yY+zZ)ψ )(q) = e(xq+z−
1
2 xy)/iℏψ(q − y). (7.22)

One can show that the smooth vectors for this representation are precisely the
Schwartz functions 𝒮(R) ⊆ L2(R).

Note that it is not the case that every realization of h3 arises in this way as dπ for
some representation π of H3. Those realizations of h3 which do arise in this way are
said to be integrable. To learn more about nonintegrable realizations of h3 one can
consult [Schm1] and [Schm2].

Next we will use (7.22) to show that the Schrödinger representation of H3 is irre-
ducible (see Appendix I). For this we will suppose thatℋ0 is a nonzero, closed, invari-
ant subspace of L2(R) and show that its orthogonal complementℋ⊥0 is trivial so that
ℋ0 must be all of L2(R). Select some nonzero ψ ∈ ℋ0. Then, for any ϕ ∈ ℋ⊥0 ,

ϕ ⊥ π(exX+yY )ψ ∀x, y ∈ R,

that is,

∫
R

e(−i/ℏ)xq e(−i/ℏ)x(
y
2 ) ψ(q − y)ϕ(q) dq = 0.

Exercise 7.2.16. Use the shift property (ExerciseG.2.3) of the Fourier transformℱℏ (Re-
mark G.2.1) to show that this can be written

∫
R

e(−i/ℏ)xq ψ(q − y
2
)ϕ(q + y

2
) dq = 0.

We conclude that the Fourier transform ofψ(q− y2 )ϕ(q +
y
2 ) is zero for every y ∈ R.

Consequently, ψ(q − y
2 )ϕ(q +

y
2 ) = 0 for almost every q ∈ R and for every y ∈ R. Since

the linear transformation (q, y)→ (X,Y) = (q− y2 , q+
y
2 ) is invertible,ψ(X)ϕ(Y) = 0 for

almost all X and Y . Thus, either ψ or ϕ is the zero element of L2(R). But ψ is nonzero
by assumption, so ϕ = 0 ∈ L2(R), as required.

Having discovered one strongly continuous, irreducible, unitary representation
π of H3 whose infinitesimal version dπ gives a realization of h3, that is, a solution to
the canonical commutation relations, one might wonder if there are others floating
around somewhere. Of course, one can always produce such representations that ap-
pear different on the surface by choosing some unitary operator U of L2(R) onto itself
and replacing each π(g) by Uπ(g)U−1. This is cheating, however, since, both mathe-
matically and physically, π and UπU−1 are entirely equivalent (that is, unitarily equiv-
alent). To investigate this question a bit more closely, recall that we pointed out earlier
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that it is often useful to regard ℏ not as some fixed, universal constant, but rather as a
positive parameter that is part of the “input” in the construction of a quantum theory
(see Remark 7.2.2). From this point of view it might be best to write the Schrödinger
representation as πℏ rather than simply π. Now note that two different choices of this
parameter give rise to representations πℏ1 and πℏ2 that are really different, that is, not
unitarily equivalent.

Exercise 7.2.17. Show that if ℏ1 and ℏ2 are distinct positive real numbers, then πℏ1 (e
Z)

and πℏ2 (e
Z) are not unitarily equivalent operators on L2(R).Hint: Unitarily equivalent

operators have the same eigenvalues.

According to Schur’s lemma (Theorem I.0.1), any strongly continuous, irreducible,
unitary representation of H3 must send every element ezZ of the center of H3 to
some multiple of the identity by a unit complex number. The various inequivalent
Schrödinger representations of H3 send ezZ to e(−i/ℏ)zI in the center of 𝒰(L2(R)) and
they are distinguished, one from another, simply by the value of ℏ. It is a remarkable
theorem of Stone and von Neumann that the same statement is true for an irreducible
representation of H3 on anyℋ and that every such representation is unitarily equiva-
lent to the Schrödinger representation with the same ℏ. Indeed, even more is true.

Theorem 7.2.5 (Stone–von Neumann theorem (n = 1)). Let ρ : H3 → 𝒰(ℋ) be a
strongly continuous, unitary representation of the Heisenberg group H3 on a separable,
complex Hilbert space ℋ with ρ(ezZ) = e(−i/ℏ)zidℋ. Then ℋ is the (finite or countably
infinite) direct sum of mutually orthogonal closed subspaces ℋα each of which is in-
variant under ρ and such that the induced representation ρα : H3 → ℋα of H3 on ℋα
( ρα(g) = ρ(g)|ℋα

∀g ∈ H3 ) is unitarily equivalent to the Schrödinger representation
πℏ : H3 → 𝒰(L2(R)). In particular, if ρ is irreducible, then ρ is unitarily equivalent to πℏ.

One often finds the Stone–von Neumann theorem stated in terms of pairs of
strongly continuous one-parameter groups of unitary operators that satisfy the Weyl
relations. This is entirely equivalent to Theorem 7.2.5, so for the proof we will simply
refer to Chapter 14 of [Hall2], Theorem VIII.14, of [RS1] or Theorem 6.4, Chapter IV,
of [Prug]. The expository paper [RosenJ] contains a nice synopsis of more recent work
related to the Stone–vonNeumann theorem (for example, extending it to the fermionic
and supersymmetric systems that we will discuss in Chapter 10).

One can interpret the Stone–von Neumann theorem as asserting that for a fixed
ℏ, there is “really only one” integrable, irreducible solution to the canonical commu-
tation relations and this offers some justification for the physicist’s habit of working
almost exclusively with the abstract commutation relations themselves and not wor-
rying so much about how they are realized. Of course, it is also true that there is “re-
ally only one” separable, infinite-dimensional, complexHilbert space, but it would be
naive to think that it should not matter whichmodel of it one chooses to deal with in a
particular context. The same is true of the CCR andwewill see advantages to choosing
different realizations somewhat later.
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Example 7.2.5. Extending everything we have done to n degrees of freedom involves
no fundamentally new ideas, so we will simply state the facts. We consider a classical
mechanical system with configuration space Rn. Phase space is T∗(Rn) = R2n with
canonical coordinates q1, . . . , qn, p1, . . . , pn relative to which the classical commutation
relations are

{qj, qk} = {pj, pk} = 0 and {qj, pk} = δ
j
k , ∀j, k = 1, . . . , n,

where { , } is the Poisson bracket. Then {q1, . . . , qn, p1, . . . , pn, 1} generate a Lie sub-
algebra of the classical observables C∞(T∗(Rn)) that is isomorphic to the Heisenberg
algebra h2n+1. The Heisenberg group H2n+1 is the unique simply connected Lie group
whose Lie algebra is h2n+1. A realization of h2n+1 on a separable, complex Hilbert
spaceℋ consists of a dense linear subspace𝒟 ofℋ and operatorsQ1, . . . ,Qn,P1, . . . ,Pn
onℋ with𝒟 ⊆ 𝒟(Qj) and𝒟 ⊆ 𝒟(Pk), j, k = 1, . . . , n, that satisfy:

1. Qj : 𝒟 → 𝒟 and Pk : 𝒟 → 𝒟 for all j, k = 1, . . . , n,
2. [Qj,Qk]−ψ = [Pj,Pk]−ψ = 0 and [Pk ,Qj]−ψ = −iℏδ

j
kψ for all j, k = 1, . . . , n and for all

ψ ∈ 𝒟,
3. Q1, . . . ,Qn,P1, . . . ,Pn are all essentially self-adjoint on𝒟.

In this case we say that the unique self-adjoint extensions of Q1, . . . ,Qn,P1, . . . ,Pn, de-
noted by the same symbols, satisfy the canonical commutation relations. If we iden-
tify H2n+1 with Rn × Rn × R, where the multiplication is defined by (7.17), then the
Schrödinger representation of H2n+1 on L2(Rn) is defined by

(πℏ(x, y, z)ψ )(q) = e
( ⟨x,q⟩+z− 12 ⟨x,y⟩ )/iℏ ψ(q − y).

The infinitesimal version dπℏ of πℏ gives the Schrödinger realization of h2n+1:

iℏ dπℏ(Xj)ψ(q) = Q
jψ(q) = qjψ(q),

iℏ dπℏ(Yk)ψ(q) = Pkψ(q) = −iℏ
𝜕ψ
𝜕qk
,

iℏ dπℏ(Z)ψ(q) = ψ(q),

for all j, k = 1, . . . , n and for all ψ in the Schwartz space. Finally we record the appro-
priate version of the Stone–von Neumann theorem.

Theorem 7.2.6 (Stone–von Neumann theorem). Let ρ : H2n+1 → 𝒰(ℋ) be a strongly
continuous, unitary representation of the Heisenberg group H2n+1 on a separable, com-
plex Hilbert space ℋ with ρ(0,0, z) = e(−i/ℏ)zidℋ. Then ℋ is the (finite or countably
infinite) direct sum of mutually orthogonal closed subspacesℋα each of which is invari-
ant under ρ and such that the induced representation ρα : H2n+1 → ℋα of H2n++1 onℋα
( ρα(g) = ρ(g)|ℋα

∀g ∈ H2n+1 ) is unitarily equivalent to the Schrödinger representation
πℏ : H2n+1 → 𝒰(L2(Rn)). In particular, if ρ is irreducible, then ρ is unitarily equivalent
to πℏ.
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At this point we have rather precise information about realizing the classical
canonical commutation relations as self-adjoint operators on a Hilbert space and we
should pause to ask ourselves how close this has gotten us to Dirac’s program for
quantizing classical mechanical systems. Reluctantly, we must admit that the answer
is, “not very close.” Roughly speaking, Dirac asked for a Lie algebra homomorphism
from the classical observables to the quantum observables and, at this point, we have
managed to do this only for the classical observables that live in the Heisenberg alge-
bra h3 and these are all of the form a+bq+ cp for a, b, c ∈ R (to ease the exposition we
will again return to systems with one degree of freedom). Most interesting classical
observables (such as the Hamiltonian) are nonlinear functions of q and p and there-
fore do not live in h3. What we need to do then is try to extend our realizations of h3
to larger Lie subalgebras of C∞(T∗R) that contain the observables we are interested
in quantizing. For the classical free particle and the classical harmonic oscillator the
Hamiltonians are quadratic functions of q and p, so we will begin by trying to extend
just to these. This may seem rather unambitious, but we will see soon that any more
ambitious program is doomed to failure.

Begin by considering the linear subspace 𝒫2(q, p) of C∞(R2) spanned by {1, q, p,
q2, p2, qp}. These are precisely the quadratic classical observables. Computing Poisson
brackets gives, in addition to the commutation relations for h3,

{qp, p} = p, {qp, q} = −q, {p2, q} = −2p, {q2, p} = 2q (7.23)

and

{q
2

2
, p

2

2
} = qp, {qp, p2} = 2p2, {qp, q2} = −2q2. (7.24)

Exercise 7.2.18. Verify all of these.

In particular, 𝒫2(q, p) is closed under Poisson brackets and is therefore a Lie sub-
algebra of C∞(R2). But, according to (7.24), the same is true of the subspace 𝒫H

2 (q, p)
spanned by {q2, p2, qp} consisting of homogeneous quadratic polynomials in q and p.
In fact, 𝒫H

2 (q, p) is isomorphic to a very familiar Lie algebra. Recall that sl(2,R) de-
notes the Lie algebra (under matrix commutator) of all 2 × 2 real matrices with trace
zero. It is spanned by

e = (0 1
0 0
) , f = (0 0

1 0
) and h = (1 0

0 −1
) ,

which satisfy the commutation relations

[e, f ]− = h, [h, e]− = 2e, [h, f ]− = −2f .

Comparing this with (7.24) we find that

p2

2
↔ e, −q

2

2
↔ f , qp↔ h
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defines a Lie algebra isomorphism of 𝒫H
2 (q, p) and sl(2,R) and we will generally just

identify them in this way; sl(2,R) is the Lie algebra of the special linear group SL(2,R)
consisting of all 2× 2 real matrices with determinant one. Despite its seeming simplic-
ity, SL(2,R)and its representations cut a verywide swath inmodernmathematics (see,
for example, [Lang2]). It is a three-dimensional, noncompact Lie group and all of its
nontrivial, irreducible, unitary representations are infinite-dimensional. It is not sim-
ply connected. Indeed, its fundamental group isZ and its universal cover is one of that
rare breed of finite-dimensional Lie groups that are not matrix groups. It has a double
cover Mp(2,R) called the metaplectic group. Note that h3 is also isomorphic to a Lie
subalgebra of 𝒫2(q, p) and we will now show how 𝒫2(q, p) can be reconstructed from
h3 and sl(2,R). The result will identify 𝒫2(q, p) with another well-known Lie algebra.

Remark 7.2.5. We will briefly recall the general notion of the semi-direct product of
Lie groups; details are available in Section I.15 of [Knapp], although we have adopted
a somewhat different notation. Let us begin with two Lie groupsH andN and suppose
that we are given a smooth left action of H on N by automorphisms, that is, a smooth
map τ : H × N → N such that h → τ(h, ⋅ ) is a group homomorphism from H into the
group of automorphisms ofN . Writing τ(h, n) = h ⋅n one then has h1 ⋅ (h2 ⋅n) = (h1h2) ⋅n
and h ⋅ (n1n2) = (h ⋅ n1)(h ⋅ n2). Then the semi-direct product

G = H ×τ N

ofH andN determined by τ is the Lie groupwhose underlyingmanifold is the product
manifold H × N and whose group operations are defined by

(h, n)(h, n) = (hh, n(h ⋅ n)),
1G = (1H , 1N ),

(h, n)−1 = (h−1, h−1 ⋅ n−1).

Exercise 7.2.19. Verify the group axioms and show that G = H ×τ N is a Lie group.

Example 7.2.6. We take H = SL(2,R) and N = H3. It will be convenient to write the
elements of H3 as ( (

x
y ), z ) rather than (x, y, z). Now define τ:SL(2,R) × H3 → H3 by

M ⋅ ((x
y
) , z ) = (M (x

y
) , z )

for everyM ∈ SL(2,R). Write the product in H3 as

((
x
y
) , z )((x



y
) , z ) = ((x + x



y + y
) , z + z + 1

2
ω((x

y
) ,(

x

y
))) ,

where

ω((x
y
) ,(

x

y
)) = xy − xy

is the canonical symplectic form onR2.
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Exercise 7.2.20. Show that ω (M ( xy ),M ( x

y ) ) = ω ( ( xy ), ( xy ) ).

Now we compute

M ⋅ [((x
y
) , z )((x



y
) , z )] = M ⋅ ((x + x



y + y
) , z + z + 1

2
ω((x

y
) ,(

x

y
)))

= (M (x + x


y + y
) , z + z + 1

2
ω((x

y
) ,(

x

y
)))

= (M (x
y
) +M (x



y
) , z + z + 1

2
ω(M (x

y
) ,M (x



y
)))

= (M (x
y
) , z )(M (x



y
) , z ) .

= [M ⋅ ((x
y
) , z )] [M ⋅ ((x



y
) , z )] .

Consequently, each τ(M, ⋅ ) is a homomorphism of H3 and is clearly invertible with
inverse τ(M−1, ⋅ ). Thus, each τ(M, ⋅ ) is a group automorphism of H3.

Exercise 7.2.21. Show that M → τ(M, ⋅ ) is a group homomorphism of SL(2,R) into
the automorphism group Aut(H3) of H3 and that τ:SL(2,R) × H3 → H3 is smooth.

The corresponding semi-direct product

GJ = SL(2,R) ×τ H3

is called the Jacobi group.

To describe the Lie algebra of a semi-direct product of Lie groups we will need
to introduce an analogous “semi-direct product” of Lie algebras (details for this are
available in Section I.4 of [Knapp]). Note that, since the underlying manifold of G =
H ×τ N is the product H × N, the tangent space at the identity in G is just the vector
space direct sum h ⊕ n of the Lie algebras of H and N, so the objective is to define an
appropriate bracket structure on h ⊕ n.

Let b be any real Lie algebra. Denote by End(b) the group of all Lie algebra ho-
momorphisms of b. Recall that any D ∈ End(b) satisfying D([B1,B2]b) = [B1,D(B2)]b +
[D(B1),B2]b for all B1,B2 ∈ b is called a derivation of b. The subset Der(b) of End(b)
consisting of all derivations is itself a Lie algebra under the bracket defined by the
commutator [D,E] = D ∘E −E ∘D for all D,E ∈ Der(b). The following is Proposition 1.22
of [Knapp]. For the statement we will identify a and b with the subspaces of a ⊕ b in
which the second, respectively, first coordinate is zero.

Proposition 7.2.7. Let a and b be two real Lie algebras and suppose π : a → Der(b) is
a Lie algebra homomorphism. Then there is a unique Lie algebra structure on the vector
space direct sum g = a ⊕ b satisfying [A1,A2]g = [A1,A2]a for all A1,A2 ∈ a, [B1,B2]g =



7.2 Heisenberg algebras and Heisenberg groups | 265

[B1,B2]b for all B1,B2 ∈ b and [A,B]g = π(A)(B) for all A ∈ a and all B ∈ b. Moreover,
with this Lie algebra structure, a is a Lie subalgebra of g and b is an ideal in g.

The Lie algebra g described in the proposition is called the semi-direct product of
the Lie algebras a and b determined by π and written a ×π b. The idea now is to show
that if G = H ×τ N, then an appropriate choice of π : h → Der(n) gives g = h ×π n. We
will simply describe how one must choose π, refer to Proposition 1.124 of [Knapp] for
the proof that it works and then write out the example of interest to us.

We consider the Lie group semi-direct product G = H ×τ N, where τ : H × N → N .
Fix an h ∈ H. Then τ(h, ⋅ ) : N → N is a Lie group automorphism. Its derivative at the
identity 1N

τ(h) = D(τ(h, ⋅ ))(1N ) : n→ n

is therefore a Lie algebra isomorphism. This gives a map τ : H → GL(n) from H to the
group of invertible linear transformations on the vector space n. One shows that τ is a
smooth group homomorphism

τ : H → Aut(n)

from H to the automorphism group of n. The derivative of τ at the identity 1H , which
we denote

π = Dτ (1H ),

is therefore a linear map from h to the Lie algebra of Aut(n). Now we note that every
element of the Lie algebra of Aut(n) is, in fact, a derivation of n.

Remark 7.2.6. Note that N is a matrix Lie group, and therefore n is a Lie algebra of
matrices, so Aut(n) is also a matrix Lie group. Its Lie algebra is therefore contained in
End(n). Furthermore, everything in the Lie algebra of Aut(n) is c(0), where c(t) is a
curve in Aut(n) with c(0) = idn. But c(t)([X,Y]) = [c(t)X, c(t)Y] for each t implies that
c(0)([X,Y]) = [c(0)X,Y] + [X, c(0)Y], so c(0) is a derivation. One can show that, in
fact, the Lie algebra of Aut(n) is precisely Der(n) (this is Proposition 1.120 of [Knapp]).

Consequently,

π = Dτ (1H ) : h→ Der(n),

so we can form the Lie algebra semi-direct product h ×π n, and this is precisely the
Lie algebra of H ×τ N (this is Proposition 1.124 of [Knapp]). Now we will work out the
example of interest to us.

Example 7.2.7. Wewill returnnow to the Jacobi groupGJ constructed inExample 7.2.6.
Recall that GJ = SL(2,R) ×τ H3, where τ:SL(2,R) × H3 → H3 is given by

τ(M,((x
y
) , z )) = (M (x

y
) , z ) .
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Now fix anM ∈ SL(2,R) and consider the map τ(M, ⋅ ) : H3 → H3 given by

((
x
y
) , z )→ (M (x

y
) , z ) . (7.25)

We need the derivative of this map at 1H3
= ( ( 00 ),0 ). But, as a manifold, H3 is justR3

and so h3 is also canonically identifiedwithR3. Furthermore, τ(M, ⋅ ) is linear as amap
fromR3 to itself, so its derivative, at any point, is the same linear map and we have

τ(M) = D(τ(M, ⋅ ))(1H3
) = τ(M, ⋅ ),

that is,

τ(M)((x
y
) , z ) = (M (x

y
) , z ) .

Consequently, τ is the map on SL(2,R) that carriesM ∈ SL(2,R) onto the map from h3
to h3 given by (7.25). If we let

M = (a b
c d
) ,

then the matrix of this map relative to the standard basis

e1 = ((
1
0
) ,0) , e2 = ((

0
1
) ,0) , e3 = ((

0
0
) , 1)

is

(
a b 0
c d 0
0 0 1

) .

Consequently, τ is the map that sends

(
a b
c d
)

in SL(2,R) to the automorphism

(
a b 0
c d 0
0 0 1

)

of h3.
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Exercise 7.2.22. Compute π = Dτ(1SL(2,R)) and show that it sends ( α β
γ δ ) in sl(2,R) to

the derivation

(
α β 0
γ δ 0
0 0 0

)

of h3.

We can now describe the Lie algebra

gJ = sl(2,R) ×π h3

of the Jacobi group (called, oddly enough, the Jacobi algebra); gJ is generated by
{X,Y , Z, e, f , h}, where X, Y and Z satisfy the commutation relations of h3

[X, Z] = [Y , Z] = 0, [X,Y] = Z

and e, f and h satisfy the commutation relations of sl(2,R)

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f .

By Proposition 7.2.7, if A ∈ {e, f , h} and B ∈ {X,Y , Z}, then

[A,B] = π(A)(B).

For example,

[h,Y] = π(h)(Y) =(
1 0 0
0 −1 0
0 0 0

)(
0
1
0
) =(

0
−1
0
) = −Y .

Exercise 7.2.23. Show that the only nonzero commutation relations for gJ are

[e,Y] = X, [f ,X] = Y , [h,X] = X, [h,Y] = −Y .

Exercise 7.2.24. The Lie algebra gJ is often described in other, but equivalent terms.
The following exercises are taken from [Berndt].
1. Consider the Lie algebra with basis {H , F,G,P,Q,R} and subject to the commuta-

tion relations

[F,G] = H , [H , F] = 2F, [H ,G] = −2G,
[P,Q] = 2R, [H ,Q] = Q, [H ,P] = −P,
[F,P] = −Q, [G,Q] = −P.

Show that this Lie algebra is isomorphic to gJ .
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2. Let𝒫2(q, p) be the Lie subalgebra of quadratic observables in C∞(T∗R)with basis
{1, q, p, qp, q2, p2}. Show that the map σ : 𝒫2(q, p)→ gJ defined by

σ(1) = 2R, σ(q) = P, σ(p) = Q,

σ(qp) = H , σ(q2) = −2G, σ(p2) = 2F

is a Lie algebra isomorphism.

We can now view the problem of quantizing the quadratic classical observables in
C∞(T∗R) as that of extending the Schrödinger realization of the h3 Lie subalgebra of
C∞(T∗R) to the gJ = sl(2,R) ×π h3 subalgebra.

Remark 7.2.7. According to the Stone–vonNeumann theorem, an appropriate realiza-
tion of gJ must restrict to the Schrödinger realization on h3 if it is to act irreducibly on
the Heisenberg algebra and we take this to be a basic assumption of our quantization
procedure. It is an assumption, however, and one could certainly conceive of doing
without it.

Let us spell this out in more detail. The Schrödinger realization sends 1 to the
identity operator on L2(R) and, on 𝒮(R) ⊆ L2(R), is given by

q → Q : (Qψ)(q) = qψ(q),

p→ P : (Pψ)(q) = −iℏ d
dq

ψ(q)

and satisfies

{p, q}→ − i
ℏ
[P,Q]−.

What we must do is define appropriate images for q2, p2 and qp in such a way that
{ , }→ − iℏ [ , ]−. There is certainly an obvious way to start the process:

q2 → Q2 : (Q2ψ)(q) = q2ψ(q),

p2 → P2 : (P2ψ)(q) = −iℏ d
dq
[(Pψ)(q)] = −ℏ2 d

2

dq2
ψ(q).

The element qp presents a problem, however. One might simply try qp → QP. On the
other hand, in C∞(T∗R), qp = pq, so one might just as well try qp = pq → PQ, and
these are not the same. This is the infamous operator ordering problemof quantization.
For quadratic observables the issue is not so serious since we can think of qp as

qp = 1
2
(qp + pq)
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and take

qp→ 1
2
(QP + PQ),

which is symmetric in Q and P.
We will soon see that this apparent guess is actually forced upon us by the previ-

ous assignments, but one should not come to expect this sort of thing sincewewill see
also that for polynomial observables of higher degree, the mathematics does not dic-
tate a “correct” quantization, but only a number of alternatives fromwhich to choose.
You will establish the essential self-adjointness of Q2, P2 and 1

2 (QP + PQ) shortly and
we will then, as usual, use the same symbols for their unique self-adjoint extensions.

We must, of course, check that these choices preserve the appropriate bracket re-
lations. This is just a little calculus, but worth going through. First note that for any
ψ ∈ 𝒮(R),

[ 1
2
(QP + PQ)ψ](q) = 1

2
[−iℏq d

dq
ψ(q) − iℏ( q d

dq
ψ(q) + ψ(q))]

= −iℏ [q d
dq

ψ(q) + 1
2
ψ(q)],

so we have

1
2
(QP + PQ) = −iℏ( q d

dq
+ 1
2
).

Since {q2, p2} = 4qp, {q2, qp} = 2q2 and {p2, qp} = −2p2, we must show that, on 𝒮(R),

− i
ℏ
[Q2,P2 ]− = 4(

1
2
(QP + PQ)),

− i
ℏ
[Q2, 1

2
(QP + PQ) ]

−
= 2Q2

and

− i
ℏ
[P2, 1

2
(QP + PQ) ]

−
= −2P2.

Exercise 7.2.25. Check at least one of these.

Exercise 7.2.26. Show that Q2, P2 and 1
2 (QP + PQ) are all essentially self-adjoint on

𝒮(R).

At this point we should be fully prepared to quantize classical polynomial observ-
ables up to degree two and we will do some of this in the next two sections. It is not
the case, of course, that every classical observable that one would like to quantize is a
polynomial of degree two. For example, the Hamiltonian for the Higgs boson contains
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a quartic term. We should therefore say something about extending the Schrödinger
realization of h3 beyond the Jacobi algebra gJ . Needless to say, the operator ordering
problems become increasingly severe as the degree increases, but it is not altogether
clear that they cannot be resolved. Nevertheless, they cannot, as we will now see.

We would like to briefly describe an example of what the physicists would call a
no-go theorem. This is basically a statement (sometimes a rigorous theorem) to the
effect that something cannot be done. In the case at hand, the (rigorous) theorem
goes back to Groenewold [Groe] and Van Hove [VH]. We will discuss only the sim-
plest version of the result and will only sketch the idea of the proof (for more details
see [Gotay], [GGT] or Section 5.4 of [Berndt]).

Dirac’s proposed quantization scheme asks for a linear map R from C∞(T∗R) to
the self-adjoint operators on a separable, complexHilbert spaceℋ that satisfiesR(1) =
idℋ and R( {f , g} ) = − iℏ [R(f ),R(g)]−. Thus far we havemanaged to define R only on the
gJ Lie subalgebra of C∞(T∗R) generated by {1, q, p, q2, p2, qp} and we would now like
to know if this map R extends to a larger Lie subalgebra of C∞(T∗R). Alas, one has the
following negative answer.

Theorem 7.2.8 (Groenewold–Van Hove theorem). Let 𝒪 be a Lie subalgebra of
C∞(T∗R) that properly contains the Lie subalgebra 𝒫2(q, p) generated by {1, q, p,
q2, p2, qp}. Then there does not exist a linear map R from 𝒪 to the self-adjoint oper-
ators on L2(R) preserving some fixed dense linear subspace 𝒟 ⊇ 𝒮(R) and satisfying
all of the following:

R(1) = idL2(R),

R( {f , g} ) = − i
ℏ
[R(f ),R(g)]− ∀f , g ∈ 𝒪,

R(q) = Q [ (Qψ)(q) = qψ(q)∀ψ ∈ 𝒮(R) ],

R(p) = P [ (Pψ)(q) = −iℏ d
dq

ψ(q)∀ψ ∈ 𝒮(R) ],

R(q2) = Q2 [ (Q2ψ)(q) = q2ψ(q)∀ψ ∈ 𝒮(R) ],

R(p2) = P2 [ (P2ψ)(q) = −ℏ2 d
2

dq2
ψ(q)∀ψ ∈ 𝒮(R) ].

Wewill describe a fewof the ideas behind the relatively simple proof, butwill refer
to Section 5.4 of [Berndt] formost of the computational details. Let us denote by𝒫(q, p)
the Lie subalgebra ofC∞(T∗R) consisting of all polynomials in q and p (this is actually
a Poisson subalgebra of C∞(T∗R)). Wewill see that no suchmapping R exists even on
a Lie subalgebra of 𝒫(q, p) larger than 𝒫2(q, p). The first step is to note that 𝒫2(q, p) is
actually amaximal Lie subalgebra of𝒫(q, p) (Theorem 5.9 of [Berndt]) so that defining
R on some subalgebra of 𝒫(q, p) that properly contains 𝒫2(q, p) necessarily defines R
on all of𝒫(q, p). Now, wewill assume that such an R exists and derive a contradiction.
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Note that the assumptions we have made about R do not include our earlier
“guess” for R(qp). The reason is that, as we will now show, this follows from the rest.
Indeed, on𝒟 we have

R( {q, p} ) = R(1) = idL2(R) = −
i
ℏ
[R(q),R(p)]− = −

i
ℏ
[Q,P]−,

so

QP − PQ = iℏ idL2(R).

Next, from 4qp = { q2, p2 } we obtain

4R(qp) = − i
ℏ
[R(q2),R(p2)]− = −

i
ℏ
[Q2,P2]− = −

i
ℏ
(Q2P2 − P2Q2)

= − i
ℏ
(Q(QP)P − P(PQ)Q )

= − i
ℏ
(Q(PQ + iℏ idL2(R))P − P(QP − iℏ idL2(R))Q )

= − i
ℏ
(QPQP + iℏQP − PQPQ + iℏPQ )

= − i
ℏ
( (PQ + iℏ idL2(R))(PQ + iℏ idL2(R)) + iℏQP − PQPQ + iℏPQ )

= − i
ℏ
( 2iℏPQ − ℏ2idL2(R) + iℏQP + iℏPQ )

= − i
ℏ
( 2iℏPQ + iℏ(QP − PQ) + iℏQP + iℏPQ ) = 2(QP + PQ)

and therefore

R(qp) = 1
2
(QP + PQ),

as we claimed.
Similar, albeit somewhatmore intricate computations show that R(q3) = Q3. This,

together with q2p = 1
6 { q

3, p2 }, gives

R(q2p) = 1
2
(Q2P + PQ2).

In the same way, R(p3) = P3 together with qp2 = 1
6 { q

2, p3 } gives

R(qp2) = 1
2
(QP2 + P2Q).

Now here is the point. Computing two simple Poisson brackets shows that

q2p2 = 1
9
{ q3, p3 } = 1

3
{ q2p, p2q },
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but, with the identities noted above, one obtains

R( 1
9
{ q3, p3 } ) = − i

9ℏ
[Q3,P3]−

= − 2
3
ℏ2idL2(R) − 2iℏQP + Q

2P2,

whereas

R( 1
3
{ q2p, p2q } ) = − i

12ℏ
[ (Q2P + PQ2), (P2Q + QP2) ]

= − 1
3
ℏ2idL2(R) − 2iℏQP + Q

2P2.

SinceR( 13 { q
2p, p2q } ) ̸= R( 19 { q

3, p3 } ), we find that our assumptions imply thatRmust
assign two different values to the classical observable q2p2 and this is a contradiction.
An R such as the one described in Theorem 7.2.8 cannot exist.

This argument does not, of course, imply that it is impossible to quantize quartic
polynomials such as q2p2 in amanner consistent with the Schrödinger quantization of
𝒫2(q, p). It says only that the assumptionswehavemadedonotuniquelydetermine the
quantization and it is up to us to use whatever additional information is available to
make a choice or to adapt our requirements. Needless to say, this is a huge subject and
one generally best left to the physicists (a relatively concise synopsis writtenwith both
physicists andmathematicians inmind is available in [TAE]). Formore on rigorous no-
go theorems in quantization one can consult [GGT].

In the next two sectionswewill apply the quantizationmapR from the Jacobi alge-
bra gJ ⊆ C∞(T∗R) to the self-adjoint operators on L2(R) to the two simplest examples
of classical mechanical systems with quadratic Hamiltonians, that is, the free particle
and the harmonic oscillator. Needless to say, these are only baby steps toward an un-
derstanding of canonical quantization, even in the case of quadratic Hamiltonians.
For those who rightly insist on something with more physical substance we recom-
mend [Jaffe] as a first step.

7.3 The free quantum particle

A classical free particle ofmassmmoving in one dimension has configuration spaceR
and phase space T∗(R) = R2 with coordinates q and (q, p), respectively. The classical
Hamiltonian is 1

2mp
2, which lives in the quadratic Lie subalgebra gJ of C∞(T∗R) gen-

erated by 1, q, p, q2, p2 and qp. The quantum phase space is taken to be L2(R) and
the map R from gJ to the self-adjoint operators on L2(R) constructed in Section 7.2
assigns to 1, q, p and 1

2mp
2 the operators I = idL2(R),Q,P and H0 =

1
2mP

2. On the
Schwartz space 𝒮(R) these are given by (Qψ)(q) = qψ(q), (Pψ)(q) = −iℏ ddqψ(q) and

(H0ψ)(q) = −
ℏ2

2m
d2
dq2ψ(q), respectively, and they are all essentially self-adjoint on 𝒮(R).
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We recall also that the domain ofH0 is the set of allψ ∈ L2(R) for which Δψ is in L2(R),
where Δψ is the second derivative of ψ thought of as a tempered distribution (Exam-
ple 5.2.8), and that the spectrum of H0 is σ(H0) = [0,∞) (Example 5.4.4). From the
latter it follows that, just as in the classical case, the energy of a free quantum particle
can assume any nonnegative real value, that is, the energy is not “quantized.” Accord-
ing to Postulate QM4 of Chapter 6, an initial stateψ(q,0) of the free particle will evolve
in time according to

ψ(q, t) = e−itH0/ℏψ(q,0).

The evolution operator e−itH0/ℏ is given by

ℱ−1 Qg(p) ℱ ,

where ℱ is the Fourier transform and Qg(p) is multiplication by

g(p) = e−iℏ
2tp2/2m

(see (5.40)). Just to see how all of this works we will compute a couple of examples.
For these we will return to the initial states described in Example 6.2.3 and given by

ψ(q,0) = 1
π1/4

e−q
2/2eiαq,

where α is any real constant. We showed in Example 6.2.3 that for all of these Q has
expected value ⟨Q⟩ψ(q,0) = 0 and dispersion σψ(q,0)(Q) =

1
2 . We will begin with α = 0.

Example 7.3.1. We suppose that the initial state of our free particle is ψ(q,0) =
1

π1/4 e−q2/2 and compute ψ(q, t) = (ℱ−1 Qg(p) ℱ)ψ(q,0). The Fourier transform of ψ(q,0)
was computed in Example G.2.1:

ℱ(ψ(q,0)) = 1
π1/4

e−p
2/2.

Thus,

(Qg(p) ℱ)ψ(q,0) =
1

π1/4
e−

1+i(ℏ2/m)t
2 p2 .

For the inverse Fourier transform of this we recall (Example G.2.2) that if a ∈ C and
Re(a) > 0, then

ℱ(e−aq
2/2) = 1
√a

e−p
2/2a,

where the square root has a branch cut along the negative real axis. Consequently,

ℱ−1(e−p
2/2a) = √a e−aq

2/2.
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In the case at hand,

a = 1
1 + i(ℏ2/m)t

,

so

ψ(q, t) = (ℱ−1 Qg(p) ℱ)ψ(q,0) =
1

π1/4
1

√1 + i(ℏ2/m)t
e−

1
2 (

1
1+i(ℏ2/m)t )q2 .

Now we will rewrite this a bit as follows: 1
1+i(ℏ2/m)t = A + Bi, where A =

1
1+(ℏ4/m2)t2 and

B = − (ℏ
2/m)t

1+(ℏ4/m2)t2 . Thus,

e−
1
2 (

1
1+i(ℏ2/m)t )q2 = e− 12Bq2i e− 12 q2

1+(ℏ4/m2)t2
and

ψ(q, t) = 1
π1/4

1
√1 + i(ℏ2/m)t

e−
1
2Bq

2ie−
1
2

q2

1+(ℏ4/m2)t2 .
Now,√1 + i(ℏ2/m)t has modulus 4√1 + (ℏ4/m2)t2. Combine its phase factor with e−

1
2Bq

2i

and write the result as eiϕ(q,t), where ϕ(q, t) is a real-valued function. Then

ψ(q, t) = 1
4√π

eiϕ(q,t) 1
4√1 + (ℏ4/m2)t2

e−
1
2

q2

1+(ℏ4/m2)t2 .
Consequently,

ψ(q, t)
 =

1
4√π

1
4√1 + (ℏ4/m2)t2

e−
1
2

q2

1+(ℏ4/m2)t2 .
We see then that the evolvedwave function still peaks at q = 0 for every t, but becomes
wider and flatter as t →∞, so that the probability of detecting the particle away from
q = 0 increases.

Things are a bit different if ψ(q,0) = 1
π1/4 e−q2/2eiαq with α ̸= 0.

Exercise 7.3.1. Show that if ψ(q,0) = 1
π1/4 e−q2/2eiαq with α > 0, then

ψ(q, t)
 =

1
4√π

1
4√1 + (ℏ4/m2)t2

e−
1
2
(q−(αℏ2/m)t)2
1+(ℏ4/m2)t2 .

In this case the initial wave function also peaks at q = 0, but the evolving wave func-
tions not only widen and flatten as t → ∞, they also peak at a point that moves to
the right with speed αℏ2/m. The point at which it is most likely to detect the particle is
moving along the q-axis.
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These last examples are rather atypical, of course, since the initial wave function
was chosen in such a way that we could perform all of the required computations
explicitly. Next we will look at much more general initial states and try to represent
the time evolution in terms of an integral kernel as we did for HB in (6.13). The results
we derive will be critical for understanding the Feynman path integral approach to
quantization in Chapter 8.

Example 7.3.2. We consider again the free particle Hamiltonian H0 : 𝒟(H0) → L2(R)
as in Example 5.4.4. It will be useful to start from scratch and look at the Cauchy prob-
lem for the corresponding Schrödinger equation which, onR × (0,∞), takes the form

i 𝜕ψ(q, t)
𝜕t
= − ℏ

2m
𝜕2ψ(q, t)
𝜕q2
, (q, t) ∈ R × (0,∞),

lim
t→0+ ψ(q, t) = ψ0(q), q ∈ R.

(7.26)

We begin with a few general observations. First, one cannot help but notice the simi-
larity between the Schrödinger equation in (7.26) and the heat equation we discussed
in Example G.3.1. Indeed, if one takes α = ℏ/2m and formallymakes the change of vari-
able t → −it, then the Schrödinger equation becomes the heat equation (physicists
would refer to this formal change of variable as analytic continuation from physical
time to imaginary time). In Example G.3.1 we were able to express the solution to the
heat equation in terms of an integral kernel and this gives us reason to hope. Indeed,
throwing caution to the winds one might even conjecture that the Schrödinger kernel
for H0 should be what you get from the heat kernel with α = ℏ/2m by replacing t by it,
that is,

√ m
2πℏti

e mi(q−x)2/2ℏt .

Remarkably enough, this is precisely the kernel wewill eventually arrive at (with√i =
eπi/4 = 1

√2 (1 + i)), but replacing the formal arguments with rigorous ones will require
a little work.

Before getting started on this, however, it will be instructive to digress one more
time and consider some simple, but “unphysical” solutions of the Schrödinger equa-
tion for H0. These are analogues of the plane electromagnetic waves we encountered
in our discussion of Maxwell’s equations in Section 4.2. Specifically, we will consider
functions of the form

ψ(q, t) = e
iℏ (pq−ωt),

where ω is a positive constant and p should be regarded as a parameter, different
choices giving different functions. Computing a few derivatives gives

𝜕ψ
𝜕t
= − i
ℏ
ωe

iℏ (pq−ωt) = − i
ℏ
ωψ(q, t),
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𝜕ψ
𝜕q
= i
ℏ
p e

iℏ (pq−ωt) = i
ℏ
pψ(q, t) (7.27)

and

𝜕2ψ
𝜕q2
= −p

2

ℏ2
e

iℏ (pq−ωt) = −p2
ℏ2

ψ(q, t).

Substituting into the Schrödinger equation in (7.26) gives

1
ℏ
ωψ(q, t) = 1

2mℏ
p2ψ(q, t),

so ψ(q, t) is a (nontrivial) solution if and only if

ω = 1
2m

p2. (7.28)

The condition (7.28) is called a dispersion relation and if we use it to substitute for ω
in ψ(q, t) we obtain the solutions

ψ(q, t) = e
iℏ (pq− t

2m p2). (7.29)

Clearly, for each fixed t, these functions fail miserably to be in L2(R) since

∫
R

ψ(q, t)

2 dq = ∫

R

1 dq =∞.

Nevertheless, we will find them to be useful and informative. For instance, it often
occurs that an honest state (unit vector in L2(R)) is well approximated over a restricted
region of space and time by such a plane wave. Moreover, we will see quite soon that
any solution of the Schrödinger equation in (7.26) can be regarded as a (continuous)
superposition of such plane waves.

Exercise 7.3.2. Show that for t > 0,

∫
R

e
iℏ (pq− t

2m p2)dp = (2πℏ)√ m
2πtℏi

emiq
2/2ℏt , (7.30)

where √i = eπi/4 = 1
√2 (1 + i). Hint: Complete the square in the exponent and use the

Gaussian integral

∫
R

eiax
2
dx = esgn(a)πi/4√ π

|a|
, (7.31)

where a is a nonzero real number and sgn(a) is its sign (see (A.4) in Appendix A).
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We begin with a few general remarks. It is not uncommon in quantummechanics
to encounter functions which one would like to regard as states, eigenfunctions, etc.,
but cannot because they do not live in the appropriate Hilbert space ℋ. The plane
waves ψ(q, t) defined by (7.29) are such functions. Being solutions to the Schrödinger
equation, they look like they should be states, but they are not in L2(R), so they are
not. Physicists would refer to ψ(q, t) as a nonnormalizable state, even though it is not
really a state at all. Similarly, (7.27) shows that if only they were elements of L2(R),
these plane waves would be eigenfunctions of the momentum operator P = −iℏ 𝜕𝜕q
with eigenvalues p. These are often referred to as generalized eigenfunctions of the
momentum operator on R. There are various ways of stepping outside of the Hilbert
space and incorporating such functions into a rigorous formalism, one of which we
have already gotten a hint of in Appendix G. Recall that if 𝒮(R) is the Schwartz space
and 𝒮 (R) is its dual space of tempered distributions, then

𝒮(R) ⊆ L2(R) ⊆ 𝒮 (R).

Note that 𝒮(R) is not a Hilbert space and its Fréchet space topology is strictly finer
than the topology it would inherit as a subspace of L2(R). It is, however, a dense sub-
set of L2(R) in the norm topology of L2(R). In turn, L2(R) is dense in 𝒮 (R). These
circumstances qualify 𝒮(R) ⊆ L2(R) ⊆ 𝒮 (R) as an example of what is called a
rigged Hilbert space or Gelfand triple. Note that although the plane waves ψ(q, t) are
not in L2(R), they are certainly in L1loc(R) and can therefore be regarded as tempered
distributions, that is, as elements of 𝒮 (R). Nonnormalizable states and generalized
eigenfunctions can be thought of as distributions, living not in L2(R), but in the larger
space 𝒮 (R).

Exercise 7.3.3. The position operator Q : 𝒟(Q) → L2(R) has no eigenfunctions in
L2(R) (Qψ = λψ ⇒ (q − λ)ψ(q) = 0 almost everywhere ⇒ ψ = 0 ∈ L2(R)). Explain the
sense in which the Dirac delta δa ∈ 𝒮 (R) is a generalized eigenfunction for Q. Hint:
Use the Fourier transform.

Now, let us get back to the business of solving (7.26). For the time being we will
assume thatψ0 is smooth with compact support and will look for smooth solutions to
the Schrödinger equation on R × (0,∞). Our procedure will be to apply the (spatial)
Fourier transform ℱ , solve for ψ̂(p, t) and then apply ℱ−1 to get ψ(q, t). In this way
one can only find solutions that actually have Fourier transforms, of course, and we
cannot know in advance that there are any. Furthermore, we will assume that there
are solutions sufficiently regular that we can differentiate with respect to t under the
integral sign to show that

ℱ (
𝜕ψ
𝜕t
) =
𝜕ψ̂
𝜕t
.
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Whether or not these assumptions are justified will be determined by whether or not
we find solutions that satisfy them. Applying ℱ to (7.26) gives

𝜕ψ̂
𝜕t
+ iℏ
2m

p2ψ̂ = 0

and

lim
t→0+ ψ̂(p, t) = ψ̂0(p).

The solution to this simple first order, linear initial value problem is

ψ̂(p, t) = ψ̂0(p) e
−i(ℏ/2m)tp2 .

Now we apply ℱ−1 to obtain

ψ(q, t) = ℱ−1(ψ̂0(p) e
−i(ℏ/2m)tp2) = 1

√2π
∫
R

ei (pq−(ℏ/2m)tp
2)ψ̂0(p) dp. (7.32)

The inverse Fourier transform of ψ̂0(p) e−i(ℏ/2m)tp
2
is given by the integral in (7.32)

because ψ0 is assumed to be smooth with compact support (in particular, Schwartz)
and so ψ̂0 is also in 𝒮(R). We should also point out that while the function ψ(q, t)
defined by (7.32) clearly satisfies the Schrödinger equation in (7.26), the boundary
condition in (7.26) is not at all clear, despite the fact that the corresponding limit
for the Fourier transforms is clearly satisfied. We will have more to say about this
shortly.

In (7.32) we are asked to compute the inverse Fourier transform of a product of two
functions of p and this would lead us to expectψ(q, t) to be expressed as a convolution
(see (G.11)). Naturally, the inverse transform of ψ̂0(p) is just ψ0(q), so we need only
worry about the inverse transform of e−i(ℏ/2m)tp

2
. This is something of a problem, how-

ever, since e−i(ℏ/2m)tp
2
is only in L1loc(R), so its inverse Fourier transform exists only as

a distribution. Example G.2.2, where we showed that ℱ−1(e−p
2/2α) = √α e−αp

2/2 when
Re(α) > 0, does not apply directly since, in our present case, α = −mi/ℏt has real part
zero. For this reason, the analysis will be a bit more delicate. For the record, what we
intend to prove is that, with√i = eπi/4,

ψ(q, t) = √ m
2πℏti
∫
R

emi(q−x)
2/2ℏt ψ0(x) dx, (7.33)

which we can write as

ψ(q, t) = ∫
R

K(q, t; x,0)ψ(x,0) dx, (7.34)



7.3 The free quantum particle | 279

where

K(q, t; x,0) = √ m
2πℏti

emi(q−x)
2/2ℏt . (7.35)

Taking the initial condition at t = t0 rather than t = 0 one would obtain instead

ψ(q, t) = ∫
R

K(q, t; x, t0)ψ(x, t0) dx, (7.36)

where

K(q, t; x, t0) = √
m

2πℏ(t − t0)i
emi(q−x)

2/2ℏ(t−t0), (7.37)

which is the propagator, or integral kernel for the free particle Hamiltonian H0, or sim-
ply the Schrödinger kernel for H0. Physicists interpret |K(q, t; x, t0) |2 as the conditional
probability of finding the particle at q ∈ R at time t provided it was detected at the
point x ∈ R at time t0; K(q, t; x, t0) itself is interpreted as the probability amplitude for
getting from x ∈ R at time t0 to q at time t.

Now we proceed with the proof of (7.33). This will rely rather heavily on material
from Appendices A, C and G. As we pointed out above, the result of Example G.2.2
does not apply to e−i(ℏ/2m)tp

2
. However, see the following exercise.

Exercise 7.3.4. Show that for any δ > 0 and any t > 0,

ℱ−1(e−(δ+i)(ℏ/2m)tp
2
) = √

m
ℏt(δ + i)

e−mq
2/2ℏt(δ+i),

where √ refers to the branch of the square root with branch cut along the negative
real axis. Conclude that

ℱ−1(ψ̂0(p)e
−(δ+i)(ℏ/2m)tp2) = √

m
2πℏt(δ + i)

∫
R

e−m(q−x)
2/2ℏt(δ+i)ψ0(x) dx.

Exercise 7.3.5. Combine (7.32) and the previous exercise to show that (7.33) will follow
if we can prove that

∫
R

ei (pq−(ℏ/2m)tp
2)ψ̂0(p) dp = lim

δ→0+ ∫
R

eipqe−(δ+i)(ℏ/2m)tp
2
ψ̂0(p) dp. (7.38)

For the proof of (7.38) we proceed as follows. Fix t > 0. We must show that

I =

∫
R

eipqe−(ℏ/2m)tp
2i(e−(ℏ/2m)tp

2δ − 1)ψ̂0(p) dp

→ 0
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as δ → 0+. Let ϵ > 0 be given. Note that ψ0 ∈ 𝒮(R) ⇒ ψ̂0 ∈ 𝒮(R) so, in particular,
‖ ψ̂0 ‖L1 = ∫R |ψ̂0(p)| dp <∞. Thus, for some sufficiently large R > 0,

I ≤ ∫
R

e
−(ℏ/2m)tp2δ − 1

ψ̂0(p)
 dp = ∫

[−R,R]

e
−(ℏ/2m)tp2δ − 1

ψ̂0(p)
 dp

+ ∫
|p|≥R

e
−(ℏ/2m)tp2δ − 1

ψ̂0(p)
 dp

≤ max
p∈[−R,R]
e
−(ℏ/2m)tp2δ − 1 ∫

[−R,R]

ψ̂0(p)
 dp

+ ∫
|p|≥R

ψ̂0(p)
 dp

< max
p∈[−R,R]
e
−(ℏ/2m)tp2δ − 1 ‖ψ̂0‖L1 +

ϵ
2
.

We fix such an R. Note that all of this is independent of the choice of δ. Now we
conclude the proof by showing that

max
p∈[−R,R]
e
−(ℏ/2m)tp2δ − 1

can be made arbitrarily small by making δ > 0 sufficiently small. But, for any
p ∈ [−R,R] and any t > 0,

0 ≤ tp2δ ≤ tR2δ ⇒ − tR2δ ≤ −tp2δ ≤ 0

⇒ − (ℏ/2m)tR2δ ≤ −(ℏ/2m)tp2δ ≤ 0

⇒ e−(ℏ/2m)tR
2δ ≤ e−(ℏ/2m)tp

2δ ≤ 1

⇒ e−(ℏ/2m)tR
2δ − 1 ≤ e−(ℏ/2m)tp

2δ − 1 ≤ 0

⇒ e
−(ℏ/2m)tp2δ − 1 = 1 − e

−(ℏ/2m)tp2δ ≤ 1 − e−(ℏ/2m)tR
2δ → 0

as δ → 0+. This completes the proof of (7.38) and therefore also of (7.33).
At this point we have shown that

ψ(q, t) = √ m
2πℏti
∫
R

emi(q−x)
2/2ℏt ψ0(x) dx

is a solution to the Schrödinger equation

i 𝜕ψ(q, t)
𝜕t
= − ℏ

2m
𝜕2ψ(q, t)
𝜕q2

in (7.26), but there remains the issue of the initial condition limt→0+ ψ(q, t) = ψ0(q),
that is,

lim
t→0+√ m

2πℏti
∫
R

emi(q−x)
2/2ℏt ψ0(x) dx = ψ0(q). (7.39)
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The corresponding result for the heat equation (Exercise G.3.4) was relatively straight-
forward, but the i in the exponent here introduces rapid oscillations in the integrand
(away from x = q) and substantial complications in the analysis of the integral. We
will prove (7.39) by applying an important technique for the study of such oscillatory
integrals called stationary phase approximation. We have included a proof of this in
Appendix C, but here we will simply state what we need at the moment. This special
case applies to integrals of the form

∫
R

eiTf (x)g(x) dx,

where f is a smooth, real-valued functiononRwith exactly onenondegenerate critical
point x0 ∈ R (f (x0) = 0 and f (x0) ̸= 0), T is a positive real number and g is smooth
with compact support. Then the stationary phase approximation of ∫

R
eiTf (x)g(x)dx is

given by

∫
R

eiTf (x)g(x) dx = (2π
T
)
1/2
e sgn(f

(x0))πi /4 eiTf (x0)

√ |f (x0)|
g(x0) + O(

1
T3/2
) (7.40)

as T → ∞. Recall that this means that there exists a constant M > 0 and a T0 > 0
such that for all T ≥ T0,


∫
R

eiTf (x)g(x) dx − (2π
T
)
1/2
e sgn(f

(x0))πi /4 eiTf (x0)

√ |f (x0)|
g(x0)

≤ M( 1

T3/2
).

To apply this to the integral ∫
R
emi(q−x)

2/2ℏt ψ0(x) dx we take T =
1
t , g(x) = ψ0(x)

and f (x) = m(q − x)2/2ℏ. Then t → 0+ ⇒ T → ∞ and f has exactly one critical point
at q, which is nondegenerate because f (q) = m/ℏ. Substituting all of this into (7.40)
gives

∫
R

emi(q−x)
2/2ℏt ψ0(x) dx = √

2πℏti
m

ψ0(q) + O(t
3/2)

as t → 0+, where√i = eπi/4. Consequently,

√ m
2πℏti
∫
R

emi(q−x)
2/2ℏt ψ0(x) dx = ψ0(q) + O(t)

and this clearly approaches ψ0(q) as t → 0+. This completes the proof of (7.39).
Let us summarize what we have done, incorporating the result of Exercise 7.3.2 as

we go. If the initial value of the wave function, which we will now denote ψ(q,0), is
smooth with compact support, then the time evolution is described by

ψ(q, t) = e−itH0/ℏ(ψ(q,0)) = ∫
R

K(q, t; x,0)ψ(x,0) dx, (7.41)
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where the Schrödinger kernel is given by

K(q, t; x,0) = √ m
2πℏti

emi(q−x)
2/2ℏt = 1

2πℏ
∫
R

e
iℏ (p(q−x)− t

2m p2) dp. (7.42)

If the initial condition is given at t = t0 rather than t = 0, one has instead

ψ(q, t) = e−i(t−t0)H0/ℏ(ψ(q, t0)) = ∫
R

K(q, t; x, t0)ψ(x, t0) dx, (7.43)

where the Schrödinger kernel is

K(q, t; x, t0) = √
m

2πℏ(t − t0)i
emi(q−x)

2/2ℏ(t−t0) = 1
2πℏ
∫
R

e
iℏ (p(q−x)− t−t02m p2) dp. (7.44)

Thus far we have assumed that the initial data ψ0(q) = ψ(q,0) is smooth with
compact support, but one can show that equalities (7.41) and (7.43) remain valid as
long as ψ0 is in L1(R) ∩ L2(R). For an arbitrary element ψ0 in L2(R) these equalities
also remain valid provided the integral is interpreted as an integral in the mean, that
is, as the following L2(R)-limit:

lim
M→∞

∫
[−M,M]

K(q, t; x, t0)ψ(x, t0) dx.

Since we really want to “flow” arbitrary L2 initial states and since this issue will arise
again at several points in the sequel, we will provide the proof (for simplicity we will
take t0 = 0). We begin by expanding (q − x)2 = q2 + x2 − 2qx to write

√ m
2πℏti

emi(q−x)
2/2ℏtψ0(x) = √

m
ℏti

emiq
2/2ℏt 1
√2π
[ emix

2/2ℏtψ0(x) ] e
−i(mq/ℏt)x . (7.45)

The function emix
2/2ℏtψ0(x) is in L2(R) and so it has a Fourier transform

ℱ(emix
2/2ℏtψ0(x))

that is also in L2(R). If χM denotes the characteristic function of the interval [−M,M],
then emix

2/2ℏtψ0(x) χM(x) is in L1(R) ∩ L2(R), so its Fourier transform is

1
√2π
∫
[−M,M]

[ emix
2/2ℏtψ0(x) ] e

−iqx dx.

Because emix
2/2ℏtψ0(x) χM(x) converge in L2(R) to emix

2/2ℏtψ0(x) as M → ∞, their
Fourier transforms converge in L2(R) to ℱ(emix

2/2ℏtψ0(x)) asM →∞, that is,

lim
M→∞

1
√2π
∫
[−M,M]

[ emix
2/2ℏtψ0(x) ] e

−iqx dx = ℱ(emix
2/2ℏtψ0(x))(q)
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in L2(R). Integrating (7.45) over [−M,M] and taking the L2-limit as M → ∞ we there-
fore obtain

lim
M→∞

∫
[−M,M]

√ m
2πℏti

emi(q−x)
2/2ℏtψ0(x) dx = √

m
ℏti

emiq
2/2ℏt ℱ(emix

2/2ℏtψ0(x))(mq/ℏt).

In particular, this limit (in other words, this integral in the mean) exists. Now, for
each M > 0 we let ψM = ψ0 χM . Then, as M → ∞, ψM → ψ0 in L2(R) and therefore
e−itH0/ℏψM → e−itH0/ℏψ0 in L2(R). Thus,

(e−itH0/ℏψ0) (q) = lim
M→∞
(e−itH0/ℏψM) (q)

= lim
M→∞

∫
[−M,M]

√ m
2πℏti

emi(q−x)
2/2ℏtψM(x) dx

= lim
M→∞

∫
[−M,M]

√ m
2πℏti

emi(q−x)
2/2ℏtψ0(x) dx

= ∫
R

√ m
2πℏti

emi(q−x)
2/2ℏtψ0(x) dx,

where the limits are all in L2(R) and the last integral is to be interpreted as an integral
in the mean. Let us summarize all of this in the form of a theorem.

Theorem 7.3.1. Let H0 = −
ℏ2

2mΔ be the free particle Hamiltonian on L2(R). Then H0
is self-adjoint on 𝒟(H0) = {ψ ∈ L2(R) : Δψ ∈ L2(R)}, where Δ is the distributional
Laplacian. For any ψ0 ∈ L2(R)

(e−itH0/ℏψ0) (q) = ∫
R

√ m
2πℏti

emi(q−x)
2/2ℏtψ0(x) dx,

where, if ψ0 ∈ L2(R) − L1(R), the integral must be regarded as an integral in the mean,
that is,

∫
R

√ m
2πℏti

emi(q−x)
2/2ℏtψ0(x) dx = lim

M→∞
∫
[−M,M]

√ m
2πℏti

emi(q−x)
2/2ℏtψ0(x) dx,

where the limit is in L2(R). If ψ0(q) = ψ(q, t0) is the state of the free particle at t = t0,
then its state at time t is

ψ(q, t) = e−i(t−t0)H0/ℏ(ψ(q, t0)) = ∫
R

K(q, t; x, t0)ψ(x, t0) dx,

where

K(q, t; x, t0) = √
m

2πℏ(t − t0)i
emi(q−x)

2/2ℏ(t−t0) = 1
2πℏ
∫
R

e
iℏ (p(q−x)− p22m (t−t0)) dp.
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On occasion it will be convenient to alter the notation we have used thus far by
replacing (x, t0) and (q, t) by (qa, ta) and (qb, tb), respectively, so that

K(qb, tb; qa, ta) = √
m

2πℏ(tb − ta)i
emi(qb−qa)

2/2ℏ(tb−ta)

= 1
2πℏ
∫
R

e
iℏ (p(qb−qa)− p22m (tb−ta)) dp. (7.46)

We call your attention to the term

p(qb − qa) −
p2

2m
(tb − ta)

in the exponent.We have seen this and variants of it before andwewill see themagain
so we should take amoment to pay a bit more attention. Our first encounter with such
a thing in this section was the expression (7.29) for the (nonnormalizable) plane wave
solutions to the Schrödinger equation. These are parametrized by the real number p,
so their integral over −∞ < p < ∞ can be thought of as a continuous superposition
of plane waves of varying frequency ω = 1

2mp
2. Next we recall that the classical La-

grangian for a free particle of mass m moving in one dimension is L(q, q̇) = 1
2mq̇

2.
The corresponding canonical momentum is p = 𝜕L/𝜕q̇ = mq̇ and the Hamiltonian is
H0(q, p) =

1
2mp

2. Consequently,

pq̇ − p
2

2m
= (mq̇)q̇ − 1

2m
(mq̇)2 = 1

2
mq̇2,

so we can think of pq̇ − p2
2m as simply another way of writing the classical free particle

Lagrangian. As a result, for any path α joining α(ta) = qa and α(tb) = qb in R, the
classical action is given by

S(α) =
tb

∫
ta

( pq̇ − p
2

2m
) dt.

Note now that if p is constant on α (as it is on the classical trajectory in Exercise 2.2.3),
we can perform the integrations and obtain

S(α) = p(qb − qa) −
p2

2m
(tb − ta),

aswe did in Exercise 2.2.3.Wewill see in Chapter 8 that the appearance of the classical
action in the propagator is a key ingredient in Feynman’s path integral approach to
quantization.

It is traditional, and will be convenient, to rephrase some of this by defining
K0 : R ×R × (0,∞)→ C by

K0(q, x, t) = K(q, t; x,0) = √
m

2πℏti
emi(q−x)

2/2ℏt .
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Then we can write

ψ(q, t) = ∫
R

K0(q, x, t)ψ(x,0) dx. (7.47)

Exercise 7.3.6. Write the one-dimensional heat kernel (G.16) as

Hα(q, x, t) = 1
√4παt

e−(q−x)
2/4αt .

Here α is required to be a positive real number. Even so, show that by formally tak-
ing α to be the pure imaginary number ℏ2m i, one turns the heat kernel into the free
Schrödinger kernel, that is,

H ℏi/2m(q, x, t) = √ m
2πℏti

emi(q−x)
2/2ℏt = K0(q, x, t).

Exercise 7.3.7. Show that for each fixed x, K0(q, x, t) satisfies the free Schrödinger
equation

i 𝜕K0(q, x, t)
𝜕t
= − ℏ

2m
𝜕2K0(q, x, t)
𝜕q2

onR × (0,∞). Similarly, for each fixed q ∈ R,

i 𝜕K0(q, x, t)
𝜕t
= − ℏ

2m
𝜕2K0(q, x, t)
𝜕x2

onR × (0,∞).

Note that K0(q, x, t) provides a particularly important solution to the Schrödinger
equation in that any other solution can be obtained from it and the initial (t = 0) data
via (7.47). Note also that (7.39) can now be written

lim
t→0+ ∫

R

K0(q, x, t)ψ0(x) dx = ψ0(q) (7.48)

and that this has the following interpretation. If q and t are held fixed, K0(q, x, t)
is certainly an element of L1loc(R) and hence can be regarded as a tempered distri-
bution. Since ψ0(x) can be any element of 𝒮(R), (7.48) simply says that as distribu-
tions

lim
t→0+ K0(q, x, t) = δ(x − q).

One often sees this abbreviated in the literature as simplyK0(q, x,0) = δ(x−q). If we al-
low ourselves this one small indiscretion we can summarize our discussion by saying
that the kernel K0(q, x, t) is a (distributional) solution to the free Schrödinger equation
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that is initially the Dirac delta at q. In the language of partial differential equations
one would say that K(q, x, t) is the fundamental solution to the free Schrödinger equa-
tion.

We will conclude this section by asking you to prove for K0(q, x, t) a few things
you have already proved for the heat kernel (Exercises G.3.5 and G.3.7).

Exercise 7.3.8. Let q, x, z ∈ R, s > 0 and t > 0. Show that

K0(q, x, s + t) = ∫
R

K0(q, z, t)K0(z, x, s) dz.

Hint: See the hint for Exercise G.3.5.

Exercise 7.3.9. Let k ≥ 2 be an integer, q, x, z1, . . . , zk−1 ∈ R and t1, . . . , tk > 0. Show
that

K0(q, x, t1 + ⋅ ⋅ ⋅ + tk) = ∫
Rk−1 K0(q, z1, t1)K0(z1, z2, t2) ⋅ ⋅ ⋅K0(zk−1, x, tk) dz1 ⋅ ⋅ ⋅ dzk−1.

7.4 The quantum harmonic oscillator

7.4.1 Introduction

Having warmed up on the quantization of the classical free particle in dimension one,
we will now turn to a somewhat more challenging example. Recall that the classical
harmonic oscillator has configuration spaceR and phase space T∗R = R2 with coor-
dinates q and (q, p), respectively. The classical Hamiltonian is 1

2mp
2 + mω2

2 q2, wherem
andω are positive constants. The quantum phase space is taken to be L2(R). Since the
Hamiltonian lives in the Jacobi subalgebra gJ of the Lie algebra C∞(T∗R) of classical
observables, we can apply the quantization map R described in Section 7.2 to obtain
its quantum analogue

HB = R(
1
2m

p2 + mω
2

2
q2) = 1

2m
P2 + mω

2

2
Q2,

which, on 𝒮(R), is given by

HB |𝒮(R) = −
ℏ2

2m
d2

dq2
+ mω

2

2
q2.

Wehave already spent a fair amount of timewith this operator on L2(R), but it is worth
the effort to reviewwhatweknow.Wehave shown (Example 5.3.1) thatHB is essentially
self-adjoint on𝒮(R). This followed from the fact that, on𝒮(R), it is symmetric and has
a discrete set of eigenvalues

ℰn = (n +
1
2
)ℏω, n = 0, 1, 2, . . . ,
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with eigenfunctions ψn(q), n = 0, 1, 2, . . . , that live in 𝒮(R) and form an orthonormal
basis for L2(R). Specifically,

ψn(q) =
1
√2nn!
(mω
ℏπ
)
1/4
e−mωq

2/2ℏHn(√
mω
ℏ

q),

where

Hn(x) = (−1)
nex

2 dn

dxn
(e−x

2
)

is the nth Hermite polynomial. The eigenvalues ℰn comprise the entire spectrum

σ(HB) = {ℰn}
∞
n=0 = {(n +

1
2
)ℏω}

∞

n=0

ofHB (Example 5.4.5) and all of the eigenspaces are one-dimensional. These eigenval-
ues are therefore all of the allowed energy levels of the quantum oscillator, so, unlike
the free particle, the energy spectrum of the harmonic oscillator is discrete (quan-
tized). The smallest of these eigenvalues is ℰ0 =

1
2ℏω and the corresponding eigen-

state ψ0 is called the ground state of the oscillator (we emphasize once again that the
lowest allowed energy level is not zero). The remaining ψn, n = 1, 2, . . . , are called ex-
cited states. Writing ψ ∈ L2(R) as ψ = ∑∞n=0⟨ψn,ψ⟩ψn, the domain 𝒟(HB) of HB is just
the set of ψ for which∑∞n=0 ℰn⟨ψn,ψ⟩ψn converges in L2(R), that is, for which

∞

∑
n=0

ℰ2n
 ⟨ψn,ψ⟩


2 <∞.

Since 0 is not an eigenvalue,HB is invertible. Indeed, its inverse is a bounded operator
on all of L2(R) given by

H−1B ϕ =
∞

∑
n=0

1
ℰn
⟨ψn,ϕ⟩ψn

(see (5.26)). In Example 5.5.4 it is shown thatH−1B is a compact operator. The evolution
operator e−itHB/ℏ is given by

e−itHB/ℏψ =
∞

∑
n=0
⟨ψn,ψ ⟩e

−(i/ℏ)ℰntψ

for any ψ ∈ L2(R). The time evolution of an initial state ψ(q, t0) can be written as

ψ(q, t) =
∞

∑
n=0
(∫
R

ψn(x)ψ(x, t0)dx) e
−(i/ℏ)ℰn(t−t0)ψn(q),
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which, at least for sufficiently nice initial data, can be written in terms of an integral
kernel as

ψ(q, t) = ∫
R

K(q, t; x, t0)ψ(x, t0)dx,

where

K(q, t; x, t0) =
∞

∑
n=0

e−(i/ℏ)ℰn(t−t0)ψn(q)ψn(x) =
∞

∑
n=0

e−i(n+
1
2 )ω(t−t0)ψn(q)ψn(x) (7.49)

(see (6.13)). We will expend some effort at the end of this section to obtain a closed
form expression for this kernel analogous to the one we found for the free particle
in the previous section and will see that here too the classical action will put in an
appearance.

The analysis of the quantum harmonic oscillator is greatly illuminated by the in-
troduction of the so-called raising and lowering operators b and b† defined by

b = 1
√2mωℏ

(mωQ + iP)

and

b† = 1
√2mωℏ

(mωQ − iP),

respectively (our discussion of these began in Section 5.14). These are formal adjoints
of each other,

⟨bϕ,ψ⟩ = ⟨ϕ, b†ψ⟩ and ⟨b†ψ,ϕ⟩ = ⟨ψ, bϕ⟩,

and satisfy various algebraic identities, ofwhichwewill recall a few.Designating them
as raising and lowering operators is motivated by

b†ψn = √n + 1ψn+1, n = 0, 1, 2, . . . , and bψn = √nψn−1, n = 1, 2, . . . .

On 𝒮(R) we have [P,Q]− = −iℏ and it follows from this that

[b, b†]− = bb
† − b†b = 1

(see (5.16)). Defining the number operator NB by NB = b†b one obtains

NBψn = nψn,

HB = ℏω(NB +
1
2
)
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and various commutation relations such as

[NB, b
†]− = b

† and [NB, b]− = −b

and

[HB, b
†]− = ℏωb

† and [HB, b]− = −ℏωb.

Note that, in particular, {NB, b, b†, 1} generates a four-dimensional real vector
space of operators (not self-adjoint operators) on L2(R) that is closed under [ , ]− on
𝒮(R). This motivates the following algebraic definition.

Exercise 7.4.1. The oscillator algebra o4 is a four-dimensional real Lie algebra with a
basis {N ,B+,B−,M} subject to the commutation relations

[N ,B+] = B+, [N ,B−] = −B−, [B−,B+] = M, [M,N] = [M,B+] = [M,B−] = 0.

In particular,M is in the center of o4.
1. Verify the Jacobi identity for these commutation relations.
2. Define 3 × 3 matrices

D(N) =(
0 0 0
0 1 0
0 0 0

) , D(B+) =(
0 0 0
0 0 1
0 0 0

) ,

D(B−) =(
0 1 0
0 0 0
0 0 0

) , D(M) =(
0 0 1
0 0 0
0 0 0

) .

Show that {D(N),D(B+),D(B−),D(M)} generates amatrix Lie algebra isomorphic to
o4. Whenever convenient we will simply identify o4 with this matrix Lie algebra.

3. Show that {B+,B−,M} generates a Lie subalgebra of o4 isomorphic to the Heisen-
berg algebra h3.

4. Exponentiate a general element nD(N) + b+D(B+) + b−D(B−) + mD(M) of this Lie
algebra, show that the result is

(
1 b−en m + b−b+
0 en b+
0 0 1

)

and conclude that the exponential map is a bijection from o4 onto the set of 3 × 3
real matrices of the form

(
1 a12 a13
0 a22 a23
0 0 1

)

with a22 > 0. Show that these form a group under matrix multiplication.
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5. Show that the map that sends

(
1 b−en m + b−b+
0 en b+
0 0 1

)

to (n, b+, b−,m) is a bijection ontoR4.
6. The oscillator group is the unique simply connected Lie group O4 with Lie algebra

o4. IdentifyO4 withR4 onwhich the followingmultiplicative structure is defined:

(n, b+, b

−,m
)(n, b+, b−,m) = ( n

 + n, b+ + b+e
n , b− + b−e−n ,

m +m − b−b

+e
−n).

Finally, we should record, just for reference, how to retrieve the position operator Q
and momentum operator P from the raising operator b and the lowering operator b†:

Q = √ ℏ
2mω
(b† + b),

P = i√mωℏ
2
(b† − b).

There is a very great deal to be said about the quantum harmonic oscillator and,
perforce, we cannot say it all here so we should briefly describe what we do intend to
say. In the remainder of this section we would like to focus on two issues. The first is a
bit of folklore according towhich “quantummechanics reduces to classicalmechanics
in the limit as ℏ→ 0.” This is rather vague, of course, but it certainly “should” be true,
at least in somemoral sense. However, itmaynot be entirely clear howonewould even
formulate a precise statement in the hope of being able to prove it. Are certain quan-
tum mechanical “things” supposed to approach various classical “things” as ℏ → 0?
If so, what things? Or perhaps the entire classical path of the particle is somehow sin-
gled out as ℏ → 0? There are many ways to approach this classical limit problem and
we will have a look at just a few, including the famous theorem of Ehrenfest, who
takes a rather different approach that does not involve letting ℏ→ 0. A very thorough
and mathematically rigorous discussion of this problem is available in [Lands]. This
done we will turn our attention to the derivation of a closed form expression for the
Schrödinger kernel of the harmonic oscillator analogous to (7.46) for the free parti-
cle. This will again contain the action of the classical trajectory and will reappear in
Chapter 8 when we turn to the Feynman path integral for the harmonic oscillator.

7.4.2 The classical limit problem

What kinds of classical and quantum “things” could one reasonably expect to be able
to compare in the limit as ℏ→ 0? The observables themselveswould not seem to be an
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obvious choice. Classical observables are real-valued functions onphase space so they
take a real value at any state (q, p). Quantum observables are operators on a Hilbert
space and these certainly do not take real values at a state ψ. Note, however, that in
any state ψ any observable A has an expected value ⟨A⟩ψ = ⟨ψ,Aψ⟩ representing,
roughly, the expected average of a large number of independent measurements of A
in the state ψ and this is a real number associated with the quantum state. Moreover,
even classically one can measure precise values of observables only “in principle” so
that it would seem more physically realistic to deal with probabilities and expected
values. We will now carry out one such comparison for the harmonic oscillator.

We consider first the classical oscillator with Hamiltonian HCL =
1
2mp

2 + mω2

2 q2,
where m and ω are two positive constants, the first being the mass and the second
the natural frequency of the oscillator. The motion of the oscillator is determined by
Hamilton’s equations

q̇ = 𝜕HCL
𝜕p
= 1
m
p,

ṗ = −𝜕HCL
𝜕q
= −mω2q.

These combine to give q̈(t) + ω2q(t) = 0, the general solution to which can be written
in the form q(t) = A cos (ωt + ϕ), where A ≥ 0 and ϕ are constants determined by

A2 = q(0)2 + q̇(0)
2

ω2

and

tan ϕ = q(0)ω
q̇(0)
.

The motion is periodic, of course, with period τ = 2π
ω . The Hamiltonian represents the

total energy E of the system and this is conserved in time, so

E = HCL(0) =
1
2m

p(0)2 + mω
2

2
q(0)2 = m

2
q̇(0)2 + mω

2

2
q(0)2.

From this it follows that

E = mω
2

2
A2,

so the classical motion of the oscillator is constrained to the interval

−A = −√ 2E
mω2 ≤ q ≤ √

2E
mω2 = A.

There is nothingnew in any of this, of course, but nowwewould like towrite down
the classical probability density function PCL(q) for the position of the oscillator mass
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(which we will now take to be a point-mass). This is defined by the property that for
any closed interval J ⊆ [−A,A],

∫
J

PCL(q) dq

is the probability that themasswill be found in the interval J at some randomly chosen
instant t. For this we will approximate the probability by sums that can be interpreted
as Riemann sums and in such a way that the approximations become better as the
partitions become finer. Begin by choosing a partition [q0, q1], [q1, q2], . . . , [qn−1, qn] of
J and noting that the probability of finding the mass in J is the sum of the probabil-
ities of finding it in [qi−1, qi] for i = 1, 2, . . . , n. The probability of finding the mass in
[qi−1, qi] is just the ratio of the time it spends in [qi−1, qi] during one cycle to the total
period of the oscillation. If q∗i is any point in [qi−1, qi] and if we denote by | q̇(q

∗
i ) | the

speed of the mass at q∗i , then the time the mass spends in [qi−1, qi] during one cycle is
approximately

2Δqi
| q̇(q∗i ) |

,

where Δqi = qi −qi−1 (once in each direction; hence, the factor of 2). Consequently, the
probability of finding the mass in [qi−1, qi] is approximately

2 Δqi
| q̇(q∗i ) |
τ
= ω
π

1
| q̇(q∗i ) |

Δqi.

The probability of finding the mass in J is therefore approximately

n
∑
i=1

ω
π

1
| q̇(q∗i ) |

Δqi,

so the probability is given precisely by

∫
J

ω
π

1
| q̇(q) |

dq.

We conclude that

PCL(q) =
ω
π

1
| q̇(q) |
.

We will put this into a more convenient form by noting that the kinetic energy of the
mass is given by K(q) = 1

2m(q̇(q))
2, but also by K(q) = E − mω2

2 q2, so

(q̇(q))2 = 2
m
(E − mω

2

2
q2) = 2

m
(mω

2

2
A2 − mω

2

2
q2) = ω2(A2 − q2).
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The bottom line is

PCL(q) =
1
π

1
√A2 − q2

.

Note that

A

∫
−A

PCL(q) dq = 2 lim
T→A−

T

∫
0

1
π

1
√A2 − q2

dq = 2
π
π
2
= 1,

as it should be. Therefore, PCL(q) defines a Borel probability measure on [−A,A] and,
if f (q) is any measurable function of the position q, its expected value is

⟨f (q)⟩E =
A

∫
−A

1
π

f (q)
√A2 − q2

dq (7.50)

(the subscript is used to emphasize that the oscillator energy is fixed at E). In partic-
ular, the probability of finding the mass in J is the expected value of its characteristic
function χJ with respect to this probability measure.

Nowwe look at the corresponding quantum system. Here “corresponding”means
with the same energy. Classically the energy E of the oscillator can assume any non-
negative value, but the energy of the quantum system must be one of the eigenval-
ues ℰn = (n +

1
2 )ℏω, n = 0, 1, 2, . . . , of the Hamiltonian HB. In order to have a corre-

sponding quantum system at all, we must take E to be one of these. Note, however,
that these eigenvalues depend on ℏ and our goal is to take a limit as ℏ → 0+. In order
to take such a limit and at the same time keep the energy fixed we select a sequence
ℏ0, ℏ1, ℏ2, . . . of positive real numbers such that

(n + 1
2
)ℏnω = E.

Specifically,

ℏn =
2E
(2n + 1)ω

,

sowe can accomplish our purpose by taking the limit as n→∞. The limit ofwhat, you
may ask. For each eigenvalue (n + 1

2 )ℏnω there is precisely one normalized eigenstate

ψn(q) =
1
√2nn!
(mω
ℏnπ
)
1/4
e−mωq

2/2ℏn Hn(√
mω
ℏn

q)

in which this is the measured energy with probability one. If f (q) is a classical observ-
able we have found its classical expectation value ⟨f (q)⟩E in (7.50) and we would like
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to compare this with the limit as n → ∞ of the quantum expectation value of f (Q) in
state ψn(q) which we will write as

⟨f (Q)⟩ψn , ℏn
= ⟨ψn, f (Q)ψn⟩.

We will write this out explicitly and simplify a bit:

⟨f (Q)⟩ψn , ℏn
= ⟨ψn, f (Q)ψn⟩ = ∫

R

ψn(q) f (q)ψn(q) dq = ∫
R

f (q) ψn(q)

2dq

= 1
2nn!√

mω
ℏnπ
∫
R

f (q) e−mωq
2/ℏn Hn(√

mω
ℏn

q)
2
dq

= 1
2nn!√

mω
ℏnπ
√ ℏn
mω
∫
R

f (√ ℏn
mω

u) e−u
2
Hn(u)

2 du.

Since

√ ℏn
mω
= √ 1

mω
2E
(2n + 1)ω

= √ 2E
(2n + 1)ω2 =

A
√2n + 1

,

we have

⟨f (Q)⟩ψn , ℏn
= 1
2nn!√π

∫
R

f ( Au
√2n + 1

) e−u
2
Hn(u)

2 du. (7.51)

What we would like to do is show that, at least for sufficiently nice functions f (q),
the quantum expectation value ⟨f (Q)⟩ψn , ℏn given by (7.51) approaches the classical ex-
pectation value ⟨f (q)⟩E given by (7.50) as n → ∞. We will begin by evaluating the
integral

A

∫
−A

1
π

f (q)
√A2 − q2

dq

for some simple choices of f (q). Suppose, for example, that f (q) = cos (pq), where p is
a real parameter. Then

A

∫
−A

1
π
cos (pq)
√A2 − q2

dq = 2
π

A

∫
0

cos (pq)
√A2 − q2

dq

and the substitution q = A sin θ turns this into

2
π

π/2

∫
0

cos (pA sin θ) dθ.
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Now we recall that the Bessel function of order zero J0(x) has the integral representa-
tion

J0(x) =
2
π

π/2

∫
0

cos (x sin θ) dθ

for all x ∈ R (there are proofs of this in Sections 4.7 and 4.9 of [AAR]). We conclude
that

⟨ cos (pq) ⟩E =
2
π

π/2

∫
0

cos (pA sin θ) dθ = J0(pA).

Note that for f (q) = sin (pq), the integral is zero since the integrand is odd. Conse-
quently,

1
π

A

∫
−A

eipq

√A2 − q2
dq = J0(pA).

For complex-valued functions such as eipq it will be convenient to write ⟨ eipq ⟩E for the
complex number that is the expected value of the real part plus i times the expected
value of the imaginary part, so

⟨ eipq ⟩E = J0(pA).

Now suppose f (q) is a Schwartz function. Then its Fourier transform ̂f (p) is also a
Schwartz function. Write f (q) as

f (q) = ℱ−1( ̂f (p))(q) = 1
√2π
∫
R

eipq ̂f (p) dp

and then

⟨ f (q) ⟩E =
1
π

A

∫
−A

f (q)
√A2 − q2

dq

= 1
π

1
√2π

A

∫
−A

∫
R

eipq

√A2 − q2
̂f (p) dp dq.

We apply Fubini’s theorem to obtain

⟨ f (q) ⟩E =
1
√2π
∫
R

( 1
π

A

∫
−A

eipq

√A2 − q2
dq) ̂f (p) dp,
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and hence

⟨ f (q) ⟩E =
1
√2π
∫
R

J0(pA) ̂f (p) dp. (7.52)

Nowwewill start the whole thing over again by looking at ⟨f (Q)⟩ψn , ℏn when f (q) =
cos (pq). According to (7.51),

⟨ cos(pQ) ⟩ψn , ℏn
= 1
2nn!√π

∫
R

cos( pAu
√2n + 1

) e−u
2
Hn(u)

2 du. (7.53)

Evaluating integrals of this sort is no mean feat and I will not lie to you; I looked it up.
Item number 7.388 (5) on page 806 of [GR] is

∫
R

cos (√2 βu) e−u
2
Hn(u)

2 du = 2nn!√π e−β
2/2 Ln(β

2), (7.54)

where β ∈ R and Ln is the nth Laguerre polynomial

Ln(x) =
n
∑
k=0
(
n
k
) (−1)

k

k!
xk .

With β = pA
√4n+2 this gives

⟨ cos(pQ) ⟩ψn , ℏn
= exp(− p

2A2

8n + 4
) Ln(

p2A2

4n + 2
).

Now we need only take the limit of this as n → ∞. The exponential factor clearly ap-
proaches one, but for the second factor wemust appeal to an old result on the asymp-
totics of Laguerre polynomials. A special case of Theorem 8.1.3 of [Szegö] states that

lim
N→∞

LN (
x2

4N
) = J0(x)

uniformly on compact sets. Consequently,

lim
n→∞

Ln (
p2A2

4n + 2
) = J0(pA)

and therefore

lim
n→∞
⟨ cos(pQ) ⟩ψn , ℏn

= J0(pA) = ⟨ cos (pq) ⟩E ,

as we hoped. Since the integrand is odd, ⟨ sin(pQ) ⟩ψn , ℏn = 0 for every n, so

lim
n→∞
⟨ sin(pQ) ⟩ψn , ℏn

= 0 = ⟨ sin (pq) ⟩E .
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Combining these two gives

lim
n→∞
⟨ eipQ ⟩ψn , ℏn

= J0(pA) = ⟨ e
ipq ⟩E .

Finally,we suppose that f (q) is a Schwartz function.Weknow that ⟨ f (q) ⟩E is given
by (7.52) and must show that limn→∞ ⟨ f (Q) ⟩ψn , ℏn gives the same result.

Exercise 7.4.2. Show that ⟨ f (Q) ⟩ψn , ℏn can be written in the form

⟨ f (Q) ⟩ψn , ℏn
= 1
√2π
∫
R

̂f (p)( 1
2nn!√π

∫
R

eipAu/√2n+1 e−u
2
Hn(u)

2 du) dp

= 1
√2π
∫
R

̂f (p) ⟨ eipQ ⟩ψn , ℏn
dp.

Hint: See the argument leading to (7.52).

Exercise 7.4.3. Show that | ̂f (p) ⟨ eipQ ⟩ψn , ℏn | ≤ |
̂f (p) | for every n and every p. Hint:

Apply the β = 0 case of (7.54).

Note that, since ̂f (p) is a Schwartz function, | ̂f (p) | is integrable. Moreover, the
sequence ̂f (p) ⟨ eipQ ⟩ψn , ℏn converges pointwise to

̂f (p) J0(pA) as n→∞.

Exercise 7.4.4. Use Lebesgue’s dominated convergence theorem to show that

lim
n→∞
⟨ f (Q) ⟩ψn , ℏn

= 1
√2π
∫
R

J0(pA) ̂f (p) dp = ⟨ f (q) ⟩E .

With this we conclude our admittedly rather modest illustration of what might
be meant by (or at least implied by) the assertion that quantum mechanics reduces
to classical mechanics as ℏ → 0. We have shown that for the harmonic oscillator, a
particularly simple set of quantum expectation values approach the corresponding
classical expectation values as ℏ→ 0. There are generalizations of this result to more
general systems and observables, one of which centers on the notion of a (canonical)
coherent state (see Section 5.1 of [Lands] for a brief discussion and numerous refer-
ences).

Examining the behavior of quantum expectation values as ℏ → 0 is not the only
possible approach one might take to somehow “retrieving” classical mechanics from
quantummechanics. In 1927, Paul Ehrenfest [Ehren] studied the time evolution of the
expectation values of position andmomentum for Hamiltonians of the form − ℏ

2

2mΔ+V
and found that they satisfied the classical equations of motion for the position and
momentum variables, that is, Hamilton’s equations (or, if you prefer, Newton’s second
law). This is known in physics as Ehrenfest’s theorem although the argument given by
Ehrenfest was not a rigorous proof of a theorem in the mathematical sense. Neverthe-
less, Ehrenfest’s argument is so simple and suggestive that it is well worth describing
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without worrying too much about technical hypotheses; this done we will briefly con-
sider a rigorous version of the theorem. Whether or not the result can legitimately be
regarded as a transition from quantum to classical mechanics is quite another matter,
however, and we will have a few words to say about that at the end.

For simplicity we will restrict our discussion to systems with one degree of free-
dom. For the record we will also recall, from Section 2.3, the classical picture of such
systems that we are searching for within the formalism of quantum mechanics. The
classical configuration space isM = R and the phase space is T∗M = R2 with canon-
ical coordinates (q, p). We are given some classical Hamiltonian HCL ∈ C∞(T∗M) and
the system evolves along the integral curves of the Hamiltonian vector field XHCL

. If
f ∈ C∞(T∗M) is any classical observable, then its variation along an integral curve of
XHCL

is determined by

df
dt
= {f ,HCL},

where { , } is the Poisson bracket. In particular, when this is applied to the position
observable q and the momentum observable p, one obtains Hamilton’s equations

q̇ = {q,HCL} =
𝜕HCL
𝜕p

and

ṗ = {p,HCL} = −
𝜕HCL
𝜕q
.

Now consider a quantum system with Hilbert space ℋ = L2(R). The Hamilto-
nianH is a self-adjoint operator onℋ and we denote its dense domain𝒟(H). The time
evolution of the system is determined by the abstract Schrödinger equation

dψ(t)
dt
= − i
ℏ
Hψ(t),

so that

ψ(t) = e−itH/ℏψ0,

where ψ0 = ψ(0) is the initial state and e−itH/ℏ is the one-parameter group of unitary
operators determined by Stone’s theorem and H. Now let A be some observable, that
is, a self-adjoint operator on ℋ with dense domain 𝒟(A). Under the assumption that
ψ0 ∈ 𝒟(A) and 𝒟(A) is invariant under e−itH/ℏ for all t we can define the expectation
value of A in state ψ(t) for any t by

⟨A⟩ψ(t) = ⟨ψ(t),Aψ(t) ⟩ = ⟨ e
−itH/ℏψ0,Ae

−itH/ℏψ0 ⟩.
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Replacing the Poisson bracket with the quantumbracket, whatwewould like to assert
as the statement of Ehrenfest’s theorem is

d
dt
⟨A⟩ψ(t) = ⟨−

i
ℏ
[A,H]−⟩

ψ(t)
. (7.55)

The issues here are abundantly clear. Once again we are faced with all of the usual
difficulties associatedwith the commutator of unboundedoperators, but nowwemust
even make sense of its expected value in each state ψ(t). Furthermore, there does not
appear to be any reason to believe that ⟨A⟩ψ(t) is a differentiable (or, for that matter,
even continuous) function of t.

We will address these issues a bit more carefully soon, but let us pretend for a
moment that they do not exist and just compute, as Ehrenfest did. We obtain

d
dt
⟨A⟩ψ(t) =

d
dt
⟨ψ(t),Aψ(t) ⟩ = ⟨ψ(t),Adψ(t)

dt
⟩ +⟨

dψ(t)
dt
,Aψ(t)⟩ (product rule)

= ⟨ψ(t),A(− i
ℏ
Hψ(t))⟩ +⟨− i

ℏ
Hψ(t),Aψ(t)⟩ (Schrödinger equation)

= − i
ℏ
⟨ψ(t),AHψ(t) ⟩ + i

ℏ
⟨Hψ(t),Aψ(t) ⟩

= − i
ℏ
⟨ψ(t),AHψ(t) ⟩ + i

ℏ
⟨ψ(t),HAψ(t) ⟩ (self-adjointness of H)

= − i
ℏ
⟨ψ(t), (AH − HA )ψ(t) ⟩

= ⟨ψ(t),− i
ℏ
[A,H]−ψ(t)⟩

= ⟨− i
ℏ
[A,H]−⟩

ψ(t)
.

This little calculation has all sorts of problems and is certainly not a proof, but
should at least indicate where Ehrenfest’s result might have come from. We would
now like to briefly discuss what can be done to turn it into a rigorous theorem (we will
be sketching some of the ideas in [FrKo] and [FrSc]).

To make rigorous sense of (7.55) one must first see to it that everything in it is
well-defined. Because H and A are two self-adjoint operators on the Hilbert spaceℋ,
in particular, Stone’s theorem guarantees that H generates a unique one-parameter
group of unitary operators e−itH/ℏ, t ∈ R;ψ(t) = e−itH/ℏψ0 is the time evolution of some
initial stateψ0 which wemust assume is in𝒟(A) in order for ⟨A ⟩ψ0

= ⟨ψ0,Aψ0 ⟩ to be
defined. Furthermore, since ⟨A ⟩ψ(t) = ⟨ψ(t),Aψ(t) ⟩, each ψ(t)must also be in 𝒟(A),
that is,𝒟(A)must be invariant under e−itH/ℏ for every t ∈ R. Note that Stone’s theorem
guarantees that𝒟(H) is necessarily invariant under every e−itH/ℏ.

Dealing with ⟨− iℏ [A,H]− ⟩ψ(t) requires a bit more thought due to the problematic
nature of [A,H]− for unbounded operators. Suppose first that we have some ψ that is
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actually in the domain of [A,H]−. Then

⟨ψ, (AH − HA )ψ ⟩ = ⟨ψ,AHψ ⟩ − ⟨ψ,HAψ ⟩ = ⟨Aψ,Hψ ⟩ − ⟨Hψ,Aψ ⟩.

Note that this last expression makes sense for any ψ ∈ 𝒟(A) ∩ 𝒟(H), so we can evade
the annoying issues associated with the commutator [A,H]− if we define

⟨− i
ℏ
[A,H]−⟩

ψ
= − i
ℏ
[⟨Aψ,Hψ ⟩ − ⟨Hψ,Aψ ⟩]

for all ψ ∈ 𝒟(A) ∩𝒟(H). Defined in this way, ⟨− iℏ [A,H]− ⟩ψ(t) will make sense if ψ(t) ∈
𝒟(A) ∩𝒟(H) for all t, that is, if𝒟(A) ∩𝒟(H) is invariant under e−itH/ℏ for every t ∈ R.

At this stage we know that, provided 𝒟(A) ∩ 𝒟(H) is invariant under e−itH/ℏ for
every t ∈ R, both ⟨A ⟩ψ(t) and ⟨−

i
ℏ [A,H]− ⟩ψ(t) will be well-defined for all t in R. Of

course, it is not enough for ⟨A ⟩ψ(t) to be well-defined; it must, by (7.55), be (at least)
differentiable as a function of t. Perhaps the most interesting part of this story is that
our assumption that 𝒟(A) ∩ 𝒟(H) is invariant under e−itH/ℏ for every t ∈ R is already
sufficient to guarantee not only the continuous differentiability of ⟨A ⟩ψ(t), but, in-
deed, also the validity of (7.55). All of this depends on the following rather nontrivial
lemma.

Lemma 7.4.1. Let ℋ be a separable, complex Hilbert space, H : 𝒟(H) → ℋ a self-
adjoint operator on ℋ and A : 𝒟(A) → ℋ a symmetric, closed operator on ℋ. Assume
that𝒟(A)∩𝒟(H) is invariant under e−itH/ℏ for all t ∈ R. Then, for any ψ0 ∈ 𝒟(A)∩𝒟(H),

sup
t∈I
‖Ae−itH/ℏψ0 ‖ <∞

for any bounded interval I ⊂ R.

This is Proposition 2 of [FrSc], where one can find a detailed proof. We will simply
show how it is used to prove the following rigorous version of Ehrenfest’s theorem.

Theorem 7.4.2 (Ehrenfest’s theorem). Let ℋ be a separable, complex Hilbert space
and let H : 𝒟(H) → ℋ and A : 𝒟(A) → ℋ be self-adjoint operators on ℋ. Let e−itH/ℏ,
t ∈ R, be the one-parameter group of unitary operators generated by H and assume
that 𝒟(A) ∩ 𝒟(H) is invariant under e−itH/ℏ for all t ∈ R. For any ψ0 ∈ 𝒟(A) ∩ 𝒟(H) let
ψ(t) = e−itH/ℏψ0 for each t ∈ R and define

⟨A ⟩ψ(t) = ⟨ψ(t),Aψ(t) ⟩

for each t ∈ R. Then ⟨A ⟩ψ(t) is a continuously differentiable real-valued function of the
real variable t and satisfies

d
dt
⟨A⟩ψ(t) = ⟨−

i
ℏ
[A,H]−⟩

ψ(t)
,
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where

⟨− i
ℏ
[A,H]−⟩

ψ(t)
= − i
ℏ
[⟨Aψ(t),Hψ(t) ⟩ − ⟨Hψ(t),Aψ(t) ⟩]

for all t ∈ R.

We will show how this is proved from Lemma 7.4.1 by considering

d
dt
⟨A⟩ψ(t) =

d
dt
⟨ψ(t),Aψ(t) ⟩ = lim

Δt→0

⟨ψ(t + Δt),Aψ(t + Δt) ⟩ − ⟨ψ(t),Aψ(t) ⟩
Δt

.

Exercise 7.4.5. Show that

⟨ψ(t + Δt),Aψ(t + Δt) ⟩ − ⟨ψ(t),Aψ(t) ⟩
Δt

= ⟨Aψ(t + Δt), ψ(t + Δt) − ψ(t)
Δt

⟩

+ ⟨
ψ(t + Δt) − ψ(t)

Δt
,Aψ(t)⟩. (7.56)

Exercise 7.4.6. Use Lemma 5.6.1 to show that

lim
Δt→0

ψ(t + Δt) − ψ(t)
Δt

= − i
ℏ
Hψ(t),

where the limit is inℋ.

Consequently, for the limit of the second term in (7.56) we obtain

lim
Δt→0
⟨
ψ(t + Δt) − ψ(t)

Δt
,Aψ(t)⟩ = i

ℏ
⟨Hψ(t),Aψ(t) ⟩.

The first term in (7.56) uses Lemma 7.4.1 and takes just a bit more work. Note first that
it will suffice to show that

Aψ(t + Δt)→ Aψ(t) weakly inℋ (7.57)

as Δt → 0 since then the first term in (7.56) approaches

− i
ℏ
⟨Aψ(t),Hψ(t) ⟩

and therefore

lim
Δt→0

⟨ψ(t + Δt),Aψ(t + Δt) ⟩ − ⟨ψ(t),Aψ(t) ⟩
Δt

= − i
ℏ
[⟨Aψ(t),Hψ(t) ⟩ − ⟨Hψ(t),Aψ(t) ⟩],

as required. Our task then is to prove (7.57). We will need to borrow another result
from functional analysis. The following is Theorem 1, Chapter V, Section 2, page 126,
of [Yosida].
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Theorem 7.4.3. Letℬ be a separable, reflexive Banach space (in particular, a separable
Hilbert space). Let {xn}∞n=1 be any sequence in ℬ that is norm bounded. Then there is a
subsequence {xnk }

∞
k=1 of {xn}

∞
n=1 that converges weakly to some element of ℬ.

To prove (7.57) we fix a t ∈ R and choose an arbitrary sequence {Δtn}∞n=1 of real
numbers converging to zero. Since Aψ(t + Δtn) = Ae−i(t+Δtn)H/ℏψ0 and since we can
choose a bounded interval I containing all of the t + Δtn, Lemma 7.4.1 implies that
{Aψ(t + Δtn)}∞n=1 is norm bounded. Theorem 7.4.3 then implies that there is a subse-
quence {Aψ(t + Δtnk )}

∞
k=1 of {Aψ(t + Δtn)}

∞
n=1 that converges weakly to some f in ℋ.

We claim that f must be Aψ(t). Since 𝒟(A) is dense in ℋ, it will suffice to show that
⟨ f ,ϕ ⟩ = ⟨Aψ(t),ϕ ⟩ for every ϕ ∈ 𝒟(A). This is proved by the following calculation,
which uses (in order) the weak convergence of {Aψ(t + Δtnk )}

∞
k=1, the self-adjointness

of A, the continuity of ψ(t) in t, the fact that ψ(t) ∈ 𝒟(A) for all t ∈ R and then self-
adjointness again:

⟨ f ,ϕ ⟩ = lim
k→∞
⟨Aψ(t + Δtnk ),ϕ ⟩ = lim

k→∞
⟨ψ(t + Δtnk ),Aϕ ⟩ = ⟨ψ(t),Aϕ ⟩ = ⟨Aψ(t),ϕ ⟩.

Thus, for any sequence Δtn → 0, {Aψ(t+Δtn)}∞n=1 contains subsequences that converge
weakly and all of these must converge to Aψ(t).

Exercise 7.4.7. Show from this that Aψ(t + Δt) converges weakly to Aψ(t) as Δt → 0.

This completes the proof of (7.57), so we have shown, modulo Lemma 7.4.1, that
⟨A ⟩ψ(t) is a differentiable function of t and satisfies

d
dt
⟨A ⟩ψ(t) = −

i
ℏ
[⟨Aψ(t),Hψ(t) ⟩ − ⟨Hψ(t),Aψ(t) ⟩].

Exercise 7.4.8. Show that

d
dt
⟨A ⟩ψ(t) =

2
ℏ
Im ⟨Aψ(t),Hψ(t) ⟩

and use this and what we have proved above to show that ⟨A ⟩ψ(t) is continuously dif-
ferentiable as a function of t, thereby completing the proof of Ehrenfest’s theorem.

Ehrenfest’s theorem is intuitively very appealing and, at first glance, seems to
provide a rather direct link between quantum and classical mechanics. One can ar-
gue, however, that the link is somewhat illusory. To say that the expected value of
the position observable satisfies the classical equation for position does not in any
way imply that there is some sort of “particle” traversing a classical path. Even so,
in some circumstances it is possible to obtain from Ehrenfest’s theorem more con-
vincing quantum-classical associations (see, for example, [SDBS]). Perhaps a more
physically persuasive statement might be something like the following. Suppose that
a wave function ψ initially (at t = 0, say) has an expected value of position that is
“close” in some sense to the classical position at t = 0, that is, |ψ(q,0)|2 peaks sharply
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at this point. Let the system evolve under some Hamiltonian H from ψ(q,0) at t = 0
to ψ(q,T) = e−iTH/ℏψ(q,0) at t = T. Then, as ℏ → 0, |ψ(q,T)|2 will peak sharply at
the position of the classical particle at time T. We should emphasize that this is not
a rigorous theorem, but one can find a heuristic discussion in terms of path integrals
(which we will discuss in Chapter 8) on page 19 of [Schul]. The bottom line here is
that the precise relationship between quantum and classical mechanics has not been
settled to everyone’s (anyone’s?) satisfaction and remains a topic of much discussion.

7.4.3 The propagator

We will conclude this section by deriving an explicit, closed form expression for the
Schrödinger kernel (propagator) for the harmonic oscillator. There are a number of
ways to go about this (see [BB-FF]). Here we will give a direct argument based on the
representation we already have available (see (7.49)). The most common procedure
in the physics literature is to evaluate Feynman’s path integral representation for the
propagator and we will do this in Section 8.3.

To ease the notation a bit we will take t0 = 0 and write (7.49) as

K(q, t; x,0) =
∞

∑
n=0

e−i(n+
1
2 )ωtψn(q)ψn(x).

Recall from the discussion following (6.14) that K(q, t; x,0) is interpreted as the condi-
tional probability amplitude of finding the particle at q at time t if it was detected at x
at time 0. Our computations will show that for fixed x and q, this amplitude acquires
a discontinuous phase change as t passes through a value for which ωt is an integer
multiple of π. These phase shifts, calledMaslov corrections, have observable physical
effects (see [Horv]). To exhibit this behavior most clearly we will begin by assuming
that ωt is not an integer multiple of π and let

κ = ⌊ωt
π
⌋

denote the greatest integer less than ωt
π . We can then find a unique τ satisfying 0 <

ωτ < π with

ωt = κπ + ωτ.

With this the propagator becomes

K(q, t; x,0) = e−i(
π
2 )κ
∞

∑
n=0

e−inκπe−i(n+
1
2 )ωτψn(q)ψn(x).
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Now note that the oscillator eigenfunctions ψn(x) satisfy ψn(−x) = (−1)nψn(x), so

e−inκπψn(x) = (−1)
nκψn(x) = ((−1)

k)nψn(x) = ψn((−1)
κx),

and therefore

K(q, t; x,0) = e−i(
π
2 )κ
∞

∑
n=0

e−i(n+
1
2 )ωτ ψn(q)ψn((−1)

κx).

Now we rewrite the eigenfunctions as follows. With u = √mωℏ q,

ψn(q) =
1
√2nn!
(mω
ℏπ
)
1/4
e−u

2/2Hn(u),

and with v = (−1)κ√mωℏ x,

ψn((−1)
κx) = 1
√2nn!
(mω
ℏπ
)
1/4
e−v

2/2Hn(v).

Consequently,

ψn(q)ψn((−1)
κx) = √mω

ℏπ
e−

1
2 (u

2+v2) Hn(u)Hn(v)
2nn!

,

and therefore

K(q, t; x,0) = √mω
ℏπ

e−
1
2 (iωτ+u

2+v2) e−i(
π
2 )κ
∞

∑
n=0

Hn(u)Hn(v)
2nn!

(e−iωτ)n. (7.58)

At this point we need to appeal to an old result of Mehler which essentially provides a
generating function for Hn(u)Hn(v)

2nn! .

Theorem 7.4.4 (Mehler’s formula). Let Hn be the nth Hermite polynomial and suppose
u and v are fixed real numbers. Then for z ∈ C with |z| < 1,

∞

∑
n=0

Hn(u)Hn(v)
2nn!

zn = 1
√1 − z2

exp(2uvz − (u
2 + v2)z2

1 − z2
).

The usual reference is [Watson], which contains three proofs; another is avail-
able in [Iyen]. This is not quite good enough for our purposes, however. The radius
of convergence of the series expansion in Mehler’s formula is 1 and the expansion is
obviously not valid at z = ±1 on the real line. As it happens, it is valid everywhere else
on the unit circle and this is what we need. This follows at once from another old re-
sult in analysis called Tauber’s theorem (one can find a proof of this in Hardy’s classic
monograph [Hardy]).
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Theorem 7.4.5 (Tauber’s theorem). Suppose f (z) = ∑∞n=0 anz
n on the open unit disc

|z| < 1. Assume that:
1. nan → 0 as n→∞ and
2. for some fixed θ, f (reiθ) approaches a finite limit L as r → 1−.

Then∑∞n=0 an(e
iθ)n = L.

Exercise 7.4.9. Show that Tauber’s theorem implies that Mehler’s formula is valid for
all z ∈ C with |z| ≤ 1 except z = ±1.

Now recall that ωτ satisfies 0 < ωτ < π, so e−iωτ ̸= ±1. Thus, we can substitute
e−iωτ into Mehler’s formula:

∞

∑
n=0

Hn(u)Hn(v)
2nn!

(e−iωτ)n

= 1
√1 − e−2iωτ

exp(2uve
−iωτ − (u2 + v2)e−2iωτ

1 − e−2iωτ
)

= 1
√1 − e−2iωτ

exp(2uv e−iωτ

1 − e−2iωτ
− (u2 + v2) e−2iωτ

1 − e−2iωτ
). (7.59)

Exercise 7.4.10. Show that

1
√1 − e−2iωτ

= e
1
2ωτie−

π
4 i

√2 sin ωτ
,

e−iωτ

1 − e−2iωτ
= − i

2 sin ωτ

and

e−2iωτ

1 − e−2iωτ
= − i cos ωτ

2 sin ωτ
− 1
2
.

Substituting these into (7.59) and simplifying a bit gives

∞

∑
n=0

Hn(u)Hn(v)
2nn!

(e−iωτ)n

= e
1
2 (ωτi+u

2+v2) e−
π
4 i

√2 sin ωτ
exp( i

2 sin ωτ
( (u2 + v2) cos ωτ − 2uv ) ). (7.60)

Now note that sin ωτ = | sin ωt| = (−1)κ sin ωt and cos ωτ = (−1)κ cos ωt and recall
that u = √mωℏ q, v = (−1)κ√mωℏ x and κ = ⌊ωtπ ⌋.
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Exercise 7.4.11. Combine (7.60) and (7.59) to obtain the Feynman–Souriau formula for
the propagator

K(q, t; x,0)

= √
mω

2πℏ | sin ωt|
e−i(

π
2 )(

1
2+⌊

ωt
π ⌋ ) exp( i

ℏ
mω

2 sin ωt
[ (q2 + x2) cos ωt − 2qx ]), (7.61)

which is valid whenever ωt is not an integer multiple of π.

As usual, if the initial state is specified at t = t0 rather than t = 0, the propaga-
tor K(q, t; x, t0) is given by the Feynman–Souriau formula with t replaced by T = t − t0.
As we did for the free particle, we would like to record this for future reference with
(q, t) and (x, t0) replaced by (qb, tb) and (qa, ta), respectively, Letting T = tb− ta we have

K(qb, tb; qa, ta)

= √ mω
2πℏ | sin ωT|

e−i(
π
2 )(

1
2+⌊

ωT
π ⌋ )

× exp( i
ℏ

mω
2 sin ωT

[ (q2a + q
2
b) cos ωT − 2qaqb ] ), (7.62)

which is valid whenever ωT is not an integer multiple of π.

Exercise 7.4.12. Show that as ω → 0, the harmonic oscillator propagator (7.62) ap-
proaches the free particle propagator (7.46).

A few comments are in order. Feynman first derived a formula for the propaga-
tor by evaluating a path integral (see Section 8.3), but his result was less general
than (7.61) in that it did not contain the absolute value symbol around sin ωt nor the
⌊ωtπ ⌋ in the exponential factor, that is, it was valid only when 0 < ωt < π. Souriau
was the first to extend Feynman’s result to obtain (7.61), but the proof we have given is
modeled on [LGM].

The significance of the term ⌊ωtπ ⌋ in (7.61) is quite clear. For a fixed q and x, when
t increases through a value for which ωt is a multiple of π, ⌊ωtπ ⌋ increases by 1 and
K(q, t; x,0) acquires an additional phase factor of e−i(

π
2 ). This is theMaslov correction

referred to earlier. It occurs abruptly as t passes through such a value and, as wemen-
tioned earlier, it has physical effectswhich have been observed, for example, in optics.
Points at which such a Maslov correction occurs are called caustics in physics.

Finally, we would like to draw your attention to the term

S(q, t; x,0) = mω
2 sin ωt

[ (q2 + x2) cos ωt − 2qx ]

in (7.61). You will want to compare this with the result of Exercise 2.2.4 for the action
of the classical harmonic oscillator along a solution curve. We will see in Chapter 8
that the appearance of the classical action in the quantum propagator is a key insight
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into the Feynman path integral approach to quantum mechanics. Just for the record,
we will rewrite (7.61) as

K(q, t; x,0) = √ mω
2πℏ | sin ωt|

e−i(
π
2 )(

1
2+⌊

ωt
π ⌋ ) e

iℏ S(q,t;x,0).
Example 7.4.1. Suppose that at t = 0, the initial wave function is the harmonic oscil-
lator ground state

ψ0(q) = 4√mω
ℏπ

e−mωq
2/2ℏ. (7.63)

Note that

ψ0(q)

2 = √mω
ℏπ

e−mωq
2/ℏ, (7.64)

which is just a Gaussian probability distribution centered at q = 0. We will compute
the time evolution of this state, assuming for simplicity that 0 < ωt < π.

Exercise 7.4.13. What should the result of this calculation look like?

Now,

ψ(q, t) = ∫
R

K(q, t; x,0)ψ0(x) dx

= 4√mω
ℏπ
√ mω
2πℏ sin ωt

e−πi/4

×∫
R

exp( imω
2ℏ sin ωt

[ (q2 + x2) cos ωt − 2qx ] − mω
2ℏ

x2) dx.

One can actually evaluate this Gaussian integral by noting that

imω
2ℏ sin ωt

[ (q2 + x2) cos ωt − 2qx ] − mω
2ℏ

x2

= imωeiωt

2ℏ sin ωt
[ x − e−iωt q ]2 − mω

2ℏ
q2. (7.65)

Indeed,

imωeiωt

2ℏ sin ωt
[ x − e−iωt q ]2 − mω

2ℏ
q2

= imω
2ℏ sin ωt

[ x2eiωt − 2qx + e−iωtq2 ] − mω
2ℏ

q2

= imω
2ℏ sin ωt

[ (q2 + x2) cos ωt − 2qx + i(x2 − q2) sin ωt ] − mω
2ℏ

q2

= imω
2ℏ sin ωt

[ (q2 + x2) cos ωt − 2qx ] − mω
2ℏ
(x2 − q2) − mω

2ℏ
q2
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= imω
2ℏ sin ωt

[ (q2 + x2) cos ωt − 2qx ] − mω
2ℏ

x2.

To compute the integral we write it as follows:

∫
R

exp( imω
2ℏ sin ωt

[ (q2 + x2) cos ωt − 2qx ] − mω
2ℏ

x2) dx

= ∫
R

exp( imωeiωt

2ℏ sin ωt
[ x − e−iωt q ]2 − mω

2ℏ
q2 ) dx

= e−mωq
2/2ℏ ∫

R

exp( imωeiωt

2ℏ sin ωt
[ x − e−iωt q ]2 ) dx

= e−mωq
2/2ℏ ∫

R

e−a(x−b)
2/2dx

= √2π
a
(see (A.6) in Appendix A),

where√ means the principal branch of the square root function,

a = mω
ℏ
( 1 − i cot ωt )

and

b = e−iωtq.

Exercise 7.4.14. Show that

√2π
a
= √2πℏ sin ωt

mω
eπi/4e−iωt/2.

Thus,

∫
R

exp( imω
2ℏ sin ωt

[ (q2 + x2) cos ωt − 2qx ] − mω
2ℏ

x2) dx

= e−mωq
2/2ℏ√2πℏ sin ωt

mω
eπi/4e−iωt/2.

Putting all of this together we obtain

ψ(q, t) = 4√mω
ℏπ
√ mω
2πℏ sin ωt

e−πi/4 (e−mωq
2/2ℏ√2πℏ sin ωt

mω
eπi/4e−iωt/2 )

= e−iωt/2ψ0(q).



7.4 The quantum harmonic oscillator | 309

The result of this calculation is no surprise, of course, since the ground stateψ0(q)
is a stationary state of the harmonic oscillator and hence can change only in phase.
Nevertheless, the calculationwas a nicewarm-up for something that is a bit surprising
and quite interesting.

Exercise 7.4.15. Suppose that at t = 0, the initial wave function is the ground state
translated to the right by some a > 0, that is,

ψ0(q − a) = 4√mω
ℏπ

e−mω(q−a)
2/2ℏ.

Then

|ψ0(q − a) |
2 = √mω
ℏπ

e−mω(q−a)
2/ℏ

is a Gaussian probability distribution centered at q = a. Show that the time evolution
is given by

ψ(q, t) = 4√mω
ℏπ

e−iωt/2 exp(− imω
2ℏ
(2aq sin ωt − a

2

2
sin 2ωt))

⋅ exp(−mω
2ℏ
(q − a cos ωt)2).

The phase admittedly evolves in a rather complicated fashion, but note that

ψ(q, t)

2 = √mω
ℏπ

exp(−mω
ℏ
(q − a cos ωt)2 ),

and this is simply another Gaussian probability distribution, but centered at

q = a cos ωt,

which oscillates back and forth in precisely the same way as the classical harmonic
oscillator. How does one interpret this result physically? Hint: The identity you will
need in place of (7.65) is

imω
2ℏ sin ωt

[ (q2 + x2) cos ωt − 2qx ] − mω
2ℏ
(x − a)2

= imωeiωt

2ℏ sin ωt
[ x − ie−iωt (a sin ωt − iq) ]2 − mω

2ℏ
(q2 − 2aqe−iωt + a2 e−iωt cos ωt),

so verify this as well.

As we did for the free particle in Section 7.3, one generally takes the initial state to
be specified at t = 0 (rather than some t0 > 0) and then suppresses the “0” from the
notation. Here we will define

KB(q, x, t) = K(q, t; x,0).

One can then prove analogues of Exercise 7.3.7 and (7.48) to the effect that KB(q, x, t)
is a fundamental solution to the harmonic oscillator equation and also satisfies the
group property with respect to t expressed in Exercises 7.3.8 and 7.3.9.





8 Path integral quantization

8.1 Motivation

Quantum mechanics, as we have viewed it so far, is a theory of self-adjoint opera-
tors on a Hilbert space and is modeled on the Hamiltonian picture of classical me-
chanics. Paul Dirac, who viewed Lagrangian mechanics as more fundamental than
Hamiltonian, took the first steps toward a Lagrangian formulation of quantum the-
ory in [Dirac3]. Dirac’s suggestions were taken up by Richard Feynman in his Prince-
ton PhD thesis (see [Brown]), the result being what is known today as the Feynman
path integral formulation of quantum theory. Initially, Feynman’s approach to quan-
tummechanicswas largely ignored, but it was not long before physicists came around
to Feynman’s point of view and today path integrals are standard operating procedure
in quantum mechanics, and even more so in quantum field theory. Not surprisingly,
the literature on the subject is vast. The applications in physics are ubiquitous and
the mathematical problem of making some rigorous sense of Feynman’s “integrals”
(which, as we shall see, are not integrals at all in the usually accepted mathematical
sense) has received an enormous amount of attention. As always, our objective here is
exceedingly modest. We will try to give some sense of what is behind Feynman’s idea
and why the idea is so difficult to turn into precise mathematics. We will provide de-
tailed computations of the two simplest cases (the path integral representations of the
propagators for the free quantum particle and the harmonic oscillator). This done we
will briefly discuss how one might go about dealing with path integrals rigorously. By
way of compensation for the modesty of our goals we will try to provide ample refer-
ences to more serious discussions. Here are a few general sources. One can find Feyn-
man’s thesis and a discussion of it in [Brown]; his first published paper on the subject
is [Feyn], which is very readable and highly recommended. For a physics-oriented dis-
cussion of the path integral and many applications a standard reference is [Schul],
but [Fels] might be more congenial for mathematicians. There is a nice, brief survey
of various approaches to a rigorous definition of the path integral in [Mazz1] and a
great many more details in [AHM], [JL] and [Simon2]; also highly recommended is the
paper [Nel3] of Edward Nelson.

We have seen several ways of thinking about the propagator of a quantum me-
chanical system. It is the integral kernel of the evolution operator. It is also the funda-
mental solution to the Schrödinger equation. Physically, K(qb, tb; qa, ta) is the proba-
bility amplitude for detecting a particle at qb at time tb given that it is known to have
been detected at qa at time ta. We have already computed two examples explicitly and
in the next two sections we will compute them again, but the procedure will be very
different indeed.

To understand the rationale behind Feynman’s new perspective on quantumme-
chanics we will begin with a brief recap of our discussion of the two-slit experiment

https://doi.org/10.1515/9783110751949-008
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in Section 4.4. The lessons we learned from this experiment are essentially those enu-
merated by Feynman in Section 1-7, Volume III, of [FLS].
1. Because of the wave-like attributes of particles in quantummechanics (de Broglie

waves) and the resultant interference effects, the probability P that a particular
event (such as the arrival of an electron at some location on a screen) will occur
is represented as the squared modulus P = |ψ|2 of a complex number ψ called the
probability amplitude of the event.

2. When there are several classical alternatives for the way in which the event can
occur and nomeasurements aremade on the system, the probability amplitude of
the event is the sum of the probability amplitudes for each alternative considered
separately. In particular, if there are two possibilities with amplitudes ψ1 and ψ2
and probabilities P1 = |ψ1|

2 and P2 = |ψ2|
2, then the probability amplitude of the

event is ψ1 + ψ2 and the probability of the event is

|ψ1 + ψ2|
2 = |ψ1|

2 + |ψ2|
2 + 2 Re(ψ1ψ2).

The last term represents the effect of interference.
3. Whenameasurement ismade todeterminewhether oneor another of the classical

alternatives in 2. is actually taken, the interference is lost and the probability of
the event is the sum of the probabilities for each alternative taken separately.

In Section 4.4 the appearance of an interference pattern in the two-slit experiment
was explained (qualitatively, at least) by considering the two classical paths from the
electron source S, through one of the slits and on to a point X on the screen, viewing
each as having a certain probability amplitude and appealing to 2. Feynman’s rather
remarkable idea in [Brown] and [Feyn] was that not only these two paths, but every
continuous path from the source to one of the slits and then on to the point on the
screen must contribute to the probability amplitude; not just the “reasonable” ones
either, but all of them, even the crazy ones.

This may sound outlandish at first, but really it is not at all. Indeed, Feynmanwas
led by this seemingly simple experiment to a vastly more general conclusion. His rea-
soning goes something like this. Consider an electron that is emitted (or just detected)
at some point S. The electron wants to get to another point X. What is the probabil-
ity amplitude that it will be able to do this? If there were a wall W with two slits be-
tween S and X, then there would be contributions to the amplitude from (at least) the
two piecewise linear paths from S, through one of the slits, and on to X. If the wall
had three slits instead of two, we would have to sum three amplitudes instead of two,
one for each of the three piecewise linear paths from S to one of the slits and then on
to the point X in question. If the wall had n1 slits we would sum amplitudes over n1
piecewise linear paths, each consisting of two linear segments. But now suppose that
there are two walls W1 and W2 instead of just one, the first with n1 slits and the sec-
ond with n2 slits. These determine n1n2 piecewise linear paths from S to our point X,
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each consisting of three linear segments and each with an amplitude that contributes
to the total amplitude for getting from S to X. If there arem wallsW1,W2, . . . ,Wm with
n1, n2, . . . , nm slits, respectively, then we would sum amplitudes over n1n2 ⋅ ⋅ ⋅ nm piece-
wise linear paths from S to X, each withm + 1 linear segments. Now for the good part.
Asm, n1, n2, . . . , nm become very large, the walls fill up the space between S and X, the
slits drill virtually everything out of the walls and the piecewise linear paths acquire
more and more, but smaller and smaller linear segments. Since any continuous path
from S to X is a uniform limit of such piecewise linear paths, Feynman concludes that,
in the limit, there are no walls and no slits, so the electron is moving through empty
space and every continuous path contributes to the amplitude. Very pretty! Returning to
the two-slit experiment itself, everything is exactly the same except there is one fixed,
immutable wallW with two slits between S and X and we simply carry out Feynman’s
argument between S andW and betweenW and X, that is, we consider only contin-
uous paths that go through one of the two slits in W (the “classical alternatives” in
number 2 above).

The question left unresolved by all of this, of course, is precisely how does each
such path “contribute” to the probability amplitude? The task thenwould be to assign a
probability amplitude to every such continuous path and somehow “add” them. How
these amplitudes should be assigned is not so clear, and it is even less clear how one is
to “add” somanyof them.Wewill try to supply somegeneralmotivation in the remain-
der of this section and then move on to the explicit examples in Sections 8.2 and 8.3.
Not all of us are motivated by the same sort of reasoning, of course. Feynman himself
arrived at his path integral by way of physical arguments and an inspired guess due
to Dirac. In hindsight, there are other approaches more likely to appeal to mathemati-
cians. It is our feeling that one should see both of these, so we will sketch both. In
deference to our intended audience, however, we will begin with the one that is likely
to be most congenial to mathematicians (the idea is due to Nelson [Nel3]).

We should be clear on the problemwewant to address.Wewill generally consider
only quantum systemswith one degree of freedom. TheHilbert space isℋ = L2(R) and
we will assume the Hamiltonian is of the form

H = H0 + V = −
ℏ2

2m
Δ + V = − ℏ

2

2m
d2

dq2
+ V ,

where V is some real-valued function onR that acts on L2(R) as a multiplication op-
erator. We know that H0 = −

ℏ2

2mΔ is defined and self-adjoint on 𝒟(H0) = {ψ ∈ L2(R) :
Δψ ∈ L2(R)}, where Δ is understood in the distributional sense (see Appendix G.2),
and that V is defined and self-adjoint on 𝒟(V) = {ψ ∈ L2(R) : Vψ ∈ L2(R)}, where
(Vψ)(q) = V(q)ψ(q) for every q ∈ R. Now, the sum of two bounded self-adjoint op-
erators is self-adjoint ((A + B)∗ = A∗ + B∗ = A + B), but this is generally not true for
unbounded operators where even the “sum” itself could be problematic. On the other
hand, we really need H = H0 + V to be self-adjoint since otherwise it would not give
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rise to the evolution operator e−itH/ℏ that describes the dynamics (this is Stone’s The-
orem 5.6.2). An enormous amount of work in quantum mechanics has been and still
is devoted to the problem of determining conditions on the potential V sufficient to
ensure the self-adjointness of H0 + V . We will have a very brief look at just a few such
results in Section 9.2. We point out, however, that the case of real interest to us is the
harmonic oscillator potential V = mω2

2 q2 and for this we have already proved the self-
adjointness of HB = H0 +V (see Example 5.3.1). For the remainder of this introduction
we will simply assume that we are dealing with a potential V for which H0 + V is es-
sentially self-adjoint on 𝒟(H0) ∩ 𝒟(V). What we cannot assume, however, is that H0
and V commute and this is the first obstacle in our path. Life would be very simple if
they did commute for then the evolution operator e−itH/ℏ = e−it(H0+V)/ℏ would be just
e−itH0/ℏ e−itV/ℏ and this we know all about. What will get us over this obstacle is the
famous Lie–Trotter–Kato product formula, sometimes called just the Trotter product
formula.

Theorem 8.1.1 (Lie–Trotter–Kato product formula). Let A and B be self-adjoint opera-
tors on the complex, separable Hilbert space ℋ. If A + B is essentially self-adjoint on
𝒟(A + B) = 𝒟(A) ∩𝒟(B), then, for every ψ ∈ ℋ and each t ∈ R,

e−it (A+B)ψ = lim
n→∞
( ( e−i(

t
n )A e−i(

t
n )B )

nψ ) ,

where (A + B) is the (self-adjoint) closure of A + B and the limit is in ℋ. Stated other-
wise, e−it (A+B) is the strong limit of ( e−i(

t
n )A e−i(

t
n )B )n as n → ∞. Furthermore, the limit

is uniform in t on all compact subsets ofR.

The proof of this when eitherℋ is finite-dimensional, or it is infinite-dimensional
and A and B are bounded is straightforward (see Theorem VIII.29 of [RS1]). When the
operators are unbounded and A + B is actually self-adjoint on 𝒟(A) ∩ 𝒟(B) a proof
takes a bit more work, but a concise one can be found in Theorem VIII.30 of [RS1] or
Appendix B of [Nel3]. Assuming only that A + B is essentially self-adjoint on 𝒟(A) ∩
𝒟(B) necessitates a rather different sort of argument and for this one might want to
consult [Ch] or Corollary 11.1.6 of [JL]. There is a generalization of Theorem 8.1.1 in the
context of what are called “contractive semigroups of operators” on Banach spaces
and their “infinitesimal generators.” We will need to discuss this when we consider
the Feynman–Kac formula in Section 9.3. What we need to know about semigroups of
operators is described in Appendix J.

Our objective is to motivate Feynman’s path integral representation for the prop-
agator of the time evolution associated with H = H0 + V . This propagator is the inte-
gral kernel of the time evolution operator. More precisely, it is a function K(q, t; x, t0)
defined by the condition that for any fixed t0, if ψ is the solution to the Schrödinger
equation for H0 + V with initial state ψ( ⋅ , t0), then

ψ(q, t) = ( e−(i/ℏ)(t−t0)(H0+V) ψ( ⋅ , t0) ) (q) = ∫
R

K(q, t; x, t0)ψ(x, t0) dx.
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For the purposes ofmotivationwewill assume thatψ(x, t0) is very nice, say, a Schwartz
function (seeAppendixG.2). Intuitively, the amplitudeψ(q, t) for detecting the particle
at location q at time t is a (continuous) “sum” of weighted amplitudes ψ(x, t0) as x
varies over all of the possible locations of the particle at time t0, the weight being the
propagator K(q, t; x, t0). The procedure will be to write out the limit in

ψ(q, t) = lim
n→∞
( (e−(i/ℏ)(

t−t0
n )H0 e−(i/ℏ)(

t−t0
n )V )

n ψ( ⋅ , t0) ) (q) = ∫
R

K(q, t; x, t0)ψ(x, t0) dx

explicitly and try to read off K(q, t; x, t0).
Itwill streamline thedevelopment abit ifwe adopt a fewnotational changes. First,

let us fix two real numbers ta < tb. The time evolution of the system defines a curve in
ℋ = L2(R), which wewill write as {ψt}t∈R. Wewill specify the initial stateψta = ψ(⋅, ta)
at time ta. For our application of the Lie–Trotter–Kato product formula we will begin
by computing, from (e−(i/ℏ)(tb−ta)V )ψ(⋅ , ta) = e−(i/ℏ)(tb−ta)V(⋅)ψ(⋅ , ta) and from (7.46), that

( e−(i/ℏ)(tb−ta)H0 e−(i/ℏ)(tb−ta)Vψ(⋅ , ta) )(qb)

= ∫
R

K(qb, tb; x, ta) [e
−(i/ℏ)(tb−ta)V(x)ψ(x, ta)] dx

= (
m

2πiℏ(tb − ta)
)

1
2

∫
R

e
i
ℏ
m
2
(qb−x)

2

tb−ta e−
i
ℏ (tb−ta)V(x) ψ(x, ta) dx

= (
m

2πiℏ(tb − ta)
)

1
2

∫
R

e
i
ℏ [

m
2 (

qb−x
tb−ta
)2−V(x)](tb−ta) ψ(x, ta) dx.

Once we get beyond the motivational stage we will want to keep in mind that when
ψta is a general element of L2(R) and not necessarily a Schwartz function, this integral
must be thought of as an integral in the mean (see Theorem 7.3.1).

Now we return to the interval [t0, t]. Fix a positive integer n and subdivide the
interval into n equal subintervals with endpoints t0 < t1 = t0 + Δt < t2 = t1 + Δt <
⋅ ⋅ ⋅ < tn−1 < tn = tn−1 + Δt = t, where Δt =

t−t0
n . Apply the formula we just derived to

the interval [ta, tb] = [t0, t1] and write, instead of x and qb, q0 and q1, respectively. The
result is

( e−(i/ℏ)(t1−t0)H0 e−(i/ℏ)(t1−t0)Vψ(⋅, t0) )(q1)

= (
m

2πiℏ(t1 − t0)
)

1
2

∫
R

e
i
ℏ [

m
2 (

q1−q0
t1−t0
)2−V(q0)](t1−t0) ψ(q0, t0) dq0,

or

( e−(i/ℏ)ΔtH0 e−(i/ℏ)ΔtVψ(⋅, t0) )(q1) = (
m

2πiℏΔt
)

1
2

∫
R

e
i
ℏ [

m
2 (

q1−q0
Δt )

2−V(q0)]Δt ψ(q0, t0) dq0.
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Next we compute

( (e−(i/ℏ)ΔtH0 e−(i/ℏ)ΔtV )2ψ(t0, ⋅) )(q2)

= (e−(i/ℏ)(t2−t1)H0 e−(i/ℏ)(t2−t1)V )(e−(i/ℏ)(t1−t0)H0 e−(i/ℏ)(t1−t0)Vψ(t0, ⋅))(q2)

= (
m

2πiℏΔt
)

2
2

∫
R

e
i
ℏ [

m
2 (

q2−q1
Δt )

2−V(q1)]Δt ∫
R

e
i
ℏ [

m
2 (

q1−q0
Δt )

2−V(q0)]Δt ψ(t0, q0) dq0 dq1

= (
m

2πiℏΔt
)

2
2

∫
R

∫
R

e
i
ℏ [[

m
2 (

q2−q1
Δt )

2−V(q1)]Δt + [
m
2 (

q1−q0
Δt )

2−V(q0)]Δt] ψ(t0, q0) dq0 dq1

= (
m

2πiℏΔt
)

2
2

∫
R

∫
R

e
i
ℏ ∑

2
k=1[

m
2 (

qk−qk−1
Δt )

2−V(qk−1)]Δt ψ(t0, q0) dq0 dq1.

Exercise 8.1.1. Continue inductively in this way to arrive at

( (e−(i/ℏ)ΔtH0 e−(i/ℏ)ΔtV )nψ(t0, ⋅) )(qn)

= (
m

2πiℏΔt
)

n
2

∫
R

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ ∑

n
k=1[

m
2 (

qk−qk−1
Δt )

2−V(qk−1)]Δt ψ(t0, q0) dq0 dq1 . . . dqn−1.

Now let us define

Sn(q0, q1, . . . , qn; t) =
n
∑
k=1
[
m
2
(
qk − qk−1

Δt
)
2
− V(qk−1)]Δt (8.1)

and write

( (e−(i/ℏ)ΔtH0 e−(i/ℏ)ΔtV )nψ(t0, ⋅) )(qn)

= (
m

2πiℏΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

∫
R

e
i
ℏ Sn(q0 ,q1 ,...,qn ;t)ψ(t0, q0) dq0 dq1 ⋅ ⋅ ⋅ dqn−1

= ∫
R

{(
m

2πiℏΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ Sn(q0 ,q1 ,...,qn ;t) dq1 . . . dqn−1 }ψ(t0, q0) dq0.

To make contact with our previous notation we set q0 = x and qn = q and write this
just once more as

( (e−(i/ℏ)ΔtH0 e−(i/ℏ)ΔtV )nψt0 )(q)

= ∫
R

{(
m

2πiℏΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

∫
R

e
i
ℏ Sn(q,q1 ,...,qn−1 ,x;t) dq1 dq2 ⋅ ⋅ ⋅ dqn−1 }ψt0 (x) dx.
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According to the Lie–Trotter–Kato product formula, the sequence of functions of
q on the right-hand side converges in L2 as n→∞ to the evolved state ψt, that is,

ψ(q, t) = lim
n→∞
∫
R

{(
m

2πiℏΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ Sn(q,q1 ,...,qn−1 ,x;t) dq1 . . . dqn−1 }ψ(x, t0) dx. (8.2)

This suggests that the expression in the braces should converge to the propagator. The
limit

lim
n→∞
(

m
2πiℏΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ Sn(q,q1 ,...,qn−1 ,x;t) dq1 . . . dqn−1 (8.3)

is, by definition, the Feynman path integral representation for the propagator K(q, t;
x, t0). The limit in (8.2) is the definition of the Feynman path integral representation for
the wave function ψ(q, t). We will see in the next two sections that for the free particle
and the harmonic oscillator, the limit (8.3) can be computed explicitly and the results
agree with the propagators we found in Sections 7.3 and 7.4.

Note, however, that one cannot deduce the convergence of the path integral (8.3)
to the propagator from the Lie–Trotter–Kato product formula. The reason is that the
propagator is the distributional solution to the Schrödinger equation with initial data
given by a Dirac delta and the Dirac delta is nowhere to be found in L2(R). For more
on the convergence of the path integral to the propagator one can consult [Fuj1]. Con-
vergence in L2(R) implies the pointwise almost everywhere convergence of some sub-
sequence, but one might ask whether or not the limit in (8.2) exists in some stronger
sense. One can, indeed, prove convergence in various stronger senses, but only for
certain restricted classes of potentials V ; for more on this, see [Fuj2] and [Fuj3].

The limit in (8.3) does not seem to involve any “paths” and certainly does not
look like an “integral” in the usual measure theoretic sense (indeed, we will see in
Section 9.3 that it is not). It may seem strange then to refer to it as a “path integral”
and to denote it, as physicists generally do, by some variant of a symbol such as

∫
𝒫R(q,t;x,t0)

e
i
ℏ S(α)𝒟q, (8.4)

where 𝒫R(q, t; x, t0) is the space of continuous paths α inR joining x at time t0 with q
at time t and𝒟q is intended to represent the “measure”

𝒟q = lim
n→∞
(

m
2πiℏΔt
)

n
2

dq1 . . . dqn−1. (8.5)

There is really nothing sensible to say about this “measure”𝒟q except that it is purely
formal and quite meaningless as it stands. On the other hand, e

i
ℏ S(α) is not so obscure.

No doubt the expression in (8.1) for Sn(q0, . . . , qn; t) looks familiar. If we had a smooth
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path α : [t0, t] → R in R describing a classical path in a system with Lagrangian
m
2 q̇

2 − V(q) and if V were continuous, then its classical action would be

S(α; t) =
t

∫
t0

[
m
2
α̇(s)2 − V(α(s))] ds.

But t0 < t1 = t0 + Δt < t2 = t0 + 2Δt < ⋅ ⋅ ⋅ < tn = t0 + nΔt = t is a subdivision of [t0, t]
and if we take qk = α(tk), k = 0, 1, . . . , n, then Sn(q0, . . . , qn; t) is just a Riemann sum
approximation to S(α; t) and approaches S(α; t) as n → ∞. While the classical action
is not defined for a path that is continuous, but not differentiable, the sum in (8.1)
is perfectly well-defined for such paths. Intuitively, at least, we can turn this whole
business around in the following way. Suppose that α : [t0, t]→ R is an arbitrary con-
tinuous path. For any n we have a partition t0 < t1 = t0 + Δt < t2 = t0 + 2Δt < ⋅ ⋅ ⋅ <
tn = t0 + nΔt = t of [t0, t] and we can approximate α by the piecewise linear path with
segments joining (tk−1, qk−1) = (tk−1, α(tk−1)) and (tk , qk) = (tk , α(tk)) for k = 1, . . . , n.
Then Sn(q0, . . . , qn; t) is approximately the action of this polygonal path in a system
with Lagrangian m

2 q̇
2 − V(q). Since any continuous path can be uniformly approxi-

mated arbitrarily well by such piecewise linear paths one should be able to define an
“action” functional S(α) on 𝒫R(q, t; x, t0).

Since𝒟q, as it was introduced in (8.5), is not a measure, or anything else for that
matter, (8.4) certainly cannot be regarded as a Lebesgue integral with respect to 𝒟q.
This does not preclude the possibility that there exists a measure on 𝒫R(q, t; x, t0) rel-
ative to which the integral of e

i
ℏ S(α) is just the limit in (8.3), and this would certainly

be a desirable situation since it would make available all of the rather substantial
machinery of Lebesgue theory. Alas, there is no such measure (this is a theorem of
Cameron [Cam] that we will discuss in Section 9.3). Nevertheless, the Feynman “in-
tegral” is closely related to an honest Lebesgue integral on the space of continuous
paths constructed by Norbert Wiener to model the phenomenon of Brownian motion
and we will have a bit more to say about this in Section 9.3. For the time being it will
be best to think of (8.4) as simply a shorthand notation for the limit (8.3).

Two comments are in order here. First, we note that the original motivation for
thinking of the limit (8.3) as some sort of “integral” will become a bit clearer shortly
when we sketch Feynman’s more physically motivated sum over histories approach.
Second, one can, in fact, rigorously define measures on infinite-dimensional path
spaces such as 𝒫R(q, t; x, t0) and we will briefly look at two means of doing this in
Section 9.3.

The procedure we have just described for arriving at the Feynman path integral
representation of the propagator is not at all the way Feynman thought of it (the Lie–
Trotter–Kato product formula did not exist at the time). We will conclude this intro-
duction by briefly sketching the physical ideas that led Feynman to his path integral
(although we strongly recommend that the reader go directly to [Feyn] instead). The
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underlying philosophy has already been described at the beginning of this section.
The probabilistic interpretation of the propagator and the fact that quantummechan-
ics will not permit us to view a particle as following any particular path led Feynman
to view K(qb, tb; qa, ta) as a sum of contributions, one from each continuous path α
joining the points in question, that is, one from each (classically) possible history of
the particle. One might write this symbolically as

∑
𝒫R(qb ,tb ;qa ,ta)

K(α),

where K(α) is the amplitude assigned to the path α ∈ 𝒫R(qb, tb; qa, ta). On the other
hand, 𝒫R(qb, tb; qa, ta) is rather large, so this might more properly be thought of as a
“continuous sum” or “integral”

∫
𝒫R(qb ,tb ;qa ,ta)

K(α).

This is all very well, but how does one assign an amplitude K(α) to every α ∈
𝒫R(qb, tb; qa, ta) and, once this is done, how does one actually compute this sum/in-
tegral? A proposed answer to the first question comes not from Feynman, but from
Dirac [Dirac3],who suggested that the appropriateweight, or amplitude to be assigned
to any path α should be determined by its classical action S(α) according to

K(α) = e
i
ℏ S(α). (8.6)

Dirac’s reasoning, described in the first three sections of [Dirac3], is not based on di-
rect physical arguments, but rather on formal analogies between classical Lagrangian
mechanics and quantum mechanics that suggested, to Dirac, that the transition am-
plitude between the states ψta and ψtb in quantummechanics “corresponds to”

e
i
ℏ ∫

tb
ta
L dt

in classical mechanics. We will not pretend to share whatever intuitions led Dirac to
this “correspondence,” but will simply ask him to speak for himself by referring those
who are interested to [Dirac3]. In the end it is probably best to regard (8.6) as the sort
of inspired guess that one would expect from Paul Dirac. In hindsight, the recurrence
of e

i
ℏ S in our calculations of the propagators for the free particle (Section 7.3) and har-

monic oscillator (Section 7.4) as well as its emergence from the Lie–Trotter–Kato prod-
uct formula lend support to the idea, but fundamentally this is just a brilliant insight
from a great physicist.

Feynman adopted Dirac’s proposal and so his task was to provide an operational
definition of

∫
𝒫R(qb ,tb ;qa ,ta)

e
i
ℏ S(α).
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Not surprisingly, Feynman’s procedurewas to approximate and take a limit; it is called
time slicing in physics. One chooses a partition ta = t0 < t1 < ⋅ ⋅ ⋅ < tn−1 < tn = tb of
[ta, tb] into n subintervals of length Δt = tb−ta

n . Let q0 = qa and qn = qb. Any choice
of q1, . . . , qn−1 inR gives rise to a piecewise linear path joining (tk−1, qk−1) to (tk , qk) for
k = 1, . . . , n. Then

Sn(q0, q1, . . . , qn−1, qn) =
n
∑
k=1
[
m
2
(
qk − qk−1

Δt
)
2
− V(qk)]Δt

is approximately the classical action of the piecewise linear path if the Lagrangian is
m
2 q̇

2 − V(q) and

e
i
ℏ Sn(q0 ,q1 ,...,qn−1 ,qn)

is the contribution this path makes to the propagator. Another choice of q1, . . . , qn−1
gives another piecewise linear path with another contribution and one obtains the
total contribution of all such piecewise linear paths by adding all of these up, that is,
by integrating over −∞ < qk <∞ for each k = 1, . . . , n:

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ Sn(qa ,q1 ,...,qn−1 ,qb) dq1 . . . dqn−1.

Repeating this procedure over and over with larger and larger n and operating under
the assumption that any continuouspath canbe arbitrarilywell approximatedby such
piecewise linear paths with sufficiently many segments, Feynman would like to take
the limit of these (n − 1)-fold multiple integrals as n →∞. Realizing full well that the
limit will generally not exist, Feynman chooses a normalizing factor of

(
m

2πiℏΔt
)

n
2

to multiply the integrals by in order to ensure convergence. Although Feynman offers
no hint as to how he arrived at an appropriate factor, one might guess that he chose it
in order to guarantee that, in the case of the free particle, his limit not only existed, but
gave the right answer for the propagator (we will see this explicitly when we evaluate
the free particle path integral in the next section).

Thus, Feynman’s definition of his path integral is the same as ours; reinserting the
mythical𝒟q it is

∫
𝒫R(qb ,tb ;qa ,ta)

e
i
ℏ S(α)𝒟q = lim

n→∞
(

m
2πiℏΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ Sn(qa ,q1 ,...,qn−1 ,qb) dq1 . . . dqn−1,

where Δt = tb−ta
n .
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One might reasonably ask why anyone would want to write the Feynman integral
as an integral if it is not really an integral at all. The answer is, in a sense, psycho-
logical. Written as an integral one is inclined to think of it as an integral and to do
things with it and to it that one is accustomed to doing with and to integrals (change
of variables, integration by parts, stationary phase approximation, and so on). Al-
though these things are in no way justified mathematically by the definition they,
quite remarkably, often lead to conclusions that can be verified by othermeans. This is
particularly true in quantum field theory where formal manipulations with path inte-
grals have led to quite extraordinary insights into numerous branches ofmathematics
seemingly unrelated to quantumfield theory. These are, regrettably, beyond our grasp
here (for an introduction to the connections between quantum field theory and topol-
ogy one might begin with [Nash]). We will, however, mention just one rather more
mundane instance of this phenomenon because it bears on our discussion of the clas-
sical limit problem. If one is willing to take ∫𝒫R(qb ,tb ;qa ,ta) e

i
ℏ S(α)𝒟q seriously as an inte-

gral, then one cannot help but notice its formal similarity to the oscillatory integrals
∫
R
ei Tf (x) g(x) dx considered in Appendix B. For certain of these finite-dimensional os-

cillatory integralswe found a stationary phase approximation describing their asymp-
totic behavior as T →∞. For the path integral this would correspond to the classical
limit ℏ → 0+. Permitting oneself the latitude of believing that the path integral is re-
ally an integral and that there is an infinite-dimensional analogue of the stationary
phase approximation, a formal application of the approximation to the integral leads,
just as in the finite-dimensional case, to the conclusion that the dominant contribu-
tions to the path integral come from the stationary points of the action functional and
these are just the classical trajectories (see Section 5 of [KM]). In this sense, the ℏ→ 0+

limit of quantummechanics picks out from among all of the possible paths a particle
might follow precisely the one that classical mechanics says it should follow. Physi-
cists have actually taken this a great deal further. There are circumstances in which
one can prove (in the finite-dimensional context) that the stationary phase approxi-
mation is actually exact. These circumstances are best described in terms of what is
called equivariant cohomology and hence the results are called equivariant localiza-
tion theorems (see, for example, [BGV]). Formally appropriating these results in the
infinite-dimensional context physicists obtain relatively simple closed form expres-
sions for otherwise intractable path integrals. For more on this we will simply refer
those interested to [Szabo].

8.2 Path integral for the free quantum particle

This section (and the next) should be regarded as something of a reality check. We
have already calculated an explicit formula for the propagator K(qb, tb; qa, ta) repre-
senting the probability amplitude that a free particle will be detected at qb at time tb
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given that it was detected at qa at time ta (Section 7.3). Specifically,

K(qb, tb; qa, ta) = √
m

2πiℏ(tb − ta)
e

i
ℏ (

m
2(tb−ta)
(qb−qa)2).

Feynman has assured us that the same propagator can be obtained by “integrating”
e

i
ℏ S(α) over all continuous paths α in R from α(ta) = qa to α(tb) = qb and he has told

us precisely what he means by “integrating.” We will now compute Feynman’s path
integral and see if it comes out right. In the next section we will do the same thing for
the harmonic oscillator.

To get a feel for how the calculations are done and to re-enforce some of the phys-
ical ideas that are behind themwewill begin by looking at the approximation to Feyn-
man’s integral corresponding to a subdivision of the time interval [ta, tb] into just two
subintervals:

t0 = ta < t1 =
ta + tb
2
< tb = t2.

Feynman’s idea is that every continuous path α : [ta, tb]→ R from α(ta) = qa to α(tb) =
qb contributes to the propagator K(qb, tb; qa, ta), so this should be true, in particular,
for any polygonal path starting at q0 = qa at time t0, going through (t1, q1) for some
q1 ∈ R and ending at q2 = qb at time t2. Fix such a path and let Δt =

tb−ta
2 be the length

of each subinterval. Each of the straight line segments is regarded as the classical path
of a free particle joining its endpoints and, thought of in this way, each has a classical
action given, according to Exercise 2.2.3, by

m
2Δt
(qk − qk−1)

2, k = 1, 2.

Thus, the total action associated to the polygonal path is

m
2Δt
[ (q1 − q0)

2 + (q2 − q1)
2 ]

and the contribution this path makes to the propagator is

e
i
ℏ

m
2Δt [ (q1−q0)

2+(q2−q1)2 ].

The collection of all paths of the type we are discussing is obtained by allowing
q1 to vary over −∞ < q1 <∞ and we must “sum” these up, that is, compute

∫
R

e
i
ℏ

m
2Δt [ (q1−q0)

2+(q2−q1)2 ] dq1.

To turn this and the remaining integrals thatwe need to do intoGaussian integrals
that are evaluated in Appendix Awewill need a few algebraic identities.Wewill prove
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the first and then leave the rest for you to do in the same way. We will show that for
any real numbers x, y and z,

(x − y)2 + (z − x)2 = 2( x − y + z
2
)
2
+
(y − z)2

2
(8.7)

(the reason we like this is that x appears only in the first square). To prove this we just
complete the square:

(x − y)2 + (z − x)2 = x2 − 2xy + y2 + z2 − 2xz + x2

= 2x2 − 2x(y + z) + y2 + z2

= 2 [ x2 − x(y + z) + y
2

2
+
z2

2
]

= 2 [ x2 − x(y + z) + (y + z)
2

4
−
(y + z)2

4
+
y2

2
+
z2

2
]

= 2 [( x − y + z
2
)
2
+
y2

2
−
y2 + 2yz + z2

4
+
z2

2
]

= 2 [( x − y + z
2
)
2
+
y2

4
−
2yz
4
+
z2

4
]

= 2( x − y + z
2
)
2
+
(y − z)2

2
.

Exercise 8.2.1. Complete the square to show that for any x, y, z ∈ R,

(x − y)2

2
+ (z − x)2 = 3

2
( x − y + 2z

3
)
2
+
1
3
(y − z)2 (8.8)

and, in general, for any n ≥ 2,

(x − y)2

n − 1
+ (z − x)2 = n

n − 1
( x − y + (n − 1)z

n
)
2
+
1
n
(y − z)2. (8.9)

Now we use (8.7) and the Gaussian integral

∫
R

e
1
2 iau

2
du = √2πi

a
, a > 0 (8.10)

(see Example A.0.1 in Appendix A), to compute

∫
R

e
i
ℏ

m
2Δt [ (q1−q0)

2+(q2−q1)2 ] dq1 = e
i
ℏ

m
2Δt
(q2−q0)

2

2 ∫
R

e
i
ℏ

m
2Δt 2( q1−

q0+q2
2 )

2
dq1

= e
i
ℏ

m
2Δt
(q2−q0)

2

2
1
√2
∫
R

e
1
2 i (

m
ℏΔt )u

2
du
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= e
i
ℏ

m
2Δt
(q2−q0)

2

2
1
√2
√2πiℏΔt

m

=
1
√2
(
2πiℏΔt
m
)
1/2
e

i
ℏ

m
2Δt
(qb−qa)

2

2 .

Let us do this oncemore. Subdivide [ta, tb] into three equal subintervals with end-
points

t0 = ta < t1 = t0 + Δt < t2 = t0 + 2Δt < tb = t3,

where Δt = tb−ta
3 . Let q0 = qa, q3 = qb, and let q1, q2 ∈ R be arbitrary. Now consider the

polygonal path from (t0, q0) to (t3, q3)with segments joining (t0, q0) and (t1, q1), (t1, q1)
and (t2, q2) and (t2, q2) and (t3, q3). Each of the straight line segments is regarded as the
classical path of a free particle joining its endpoints and, thought of in this way, each
has a classical action given, according to Exercise 2.2.3, by

m
2Δt
(qk − qk−1)

2, k = 1, 2, 3.

Thus, the total action associated to the polygonal path is

m
2Δt
[ (q1 − q0)

2 + (q2 − q1)
2 + (q3 − q2)

2 ]

and the contribution this path makes to the propagator is

e
i
ℏ

m
2Δt [ (q1−q0)

2+(q2−q1)2+(q3−q2)2 ].

Now, the collection of all paths of the type we are discussing is obtained by allow-
ing q1 and q2 to vary over (−∞,∞) and we must “sum” these up, that is, compute

∫
R

∫
R

e
i
ℏ

m
2Δt [ (q1−q0)

2+(q2−q1)2+(q3−q2)2 ] dq1 dq2.

For thisweuse the integralwe just evaluated, the algebraic identity (8.8) and theGaus-
sian (8.10):

∫
R

∫
R

e
i
ℏ

m
2Δt [ (q1−q0)

2+(q2−q1)2+(q3−q2)2 ] dq1 dq2

= ∫
R

e
i
ℏ

m
2Δt (q3−q2)

2
∫
R

e
i
ℏ

m
2Δt [ (q1−q0)

2+(q2−q1)2 ] dq1 dq2

= √
1
2
(
2πiℏΔt
m
)
1/2
∫
R

e
i
ℏ

m
2Δt [
(q2−q0)

2

2 +(q3−q2)
2 ] dq2

= √
1
2
(
2πiℏΔt
m
)
1/2
e

i
ℏ

m
2Δt
(q3−q0)

2

3 ∫
R

e
i
ℏ

m
2Δt

3
2 ( q2−

q0+2q3
3 )

2
dq2
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= √
1
2
√ 2
3
(
2πiℏΔt
m
)
2/2
e

i
ℏ

m
2Δt
(q3−q0)

2

3

= √
1
3
(
2πiℏ(tb − ta)

3m
)
2/2
e

i
ℏ (

m
2(tb−ta)
(qb−qa)2).

Exercise 8.2.2. Show by induction that for any n ≥ 2,

∫
R

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ

m
2Δt [ (q1−q0)

2+(q2−q1)2+(q3−q2)2+⋅⋅⋅+(qn−qn−1)2 ] dq1 dq2 . . . dqn−1

= √
1
2
√ 2
3
⋅ ⋅ ⋅√

n − 1
n
(
2πiℏΔt
m
)

n−1
2

e
i
ℏ

m
2Δt
(qn−q0)

2

n

= √
1
n
(
2πiℏ(tb − ta)

nm
)

n−1
2

e
i
ℏ (

m
2(tb−ta)
(qb−qa)2).

Exercise 8.2.3. Show that for any n ≥ 2,

(
2πiℏΔt
m
)
− n2
∫
R

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ

m
2Δt [ (q1−q0)

2+(q2−q1)2+(q3−q2)2+⋅⋅⋅+(qn−qn−1)2 ] dq1 dq2 . . . dqn−1

= √
m

2πiℏ(tb − ta)
e

i
ℏ (

m
2(tb−ta)
(qb−qa)2).

According to Feynman’s instructions we are to take the limit as n→∞ of this last
expression to obtain his path integral. Since n has disappeared, this is not so hard to
do and we have arrived at

∫
𝒫R(qb ,tb ;qa ,ta)

e
i
ℏ S𝒟q = √

m
2πiℏ(tb − ta)

e
i
ℏ (

m
2(tb−ta)
(qb−qa)2) = K(qb, tb; qa, ta).

In the case of the free particle, at least, the Feynman path integral does, indeed, con-
verge (trivially) to the propagator. We turn next to a somewhat more interesting test
case where the limit is not trivial.

8.3 Path integral for the harmonic oscillator

The harmonic oscillator potential is V(q) = mω2

2 q2, so the path integral we need to
evaluate can be written

∫
𝒫R(qb ,tb ;qa ,ta)

e
im
2ℏ ∫

tb
ta
(q̇2−ω2q2) dt𝒟q

= lim
n→∞
(

m
2πiℏΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

e
im
2ℏΔt ∑

n
k=1((qk−qk−1)

2−ω2Δt2q2k) dq1 . . . dqn−1,
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where Δt = tb−ta
n , q0 = q(ta) = qa and qn = q(tb) = qb. Evaluating this limit is alge-

braically quite a bit more involved than it was for the free particle in Section 8.2 and
the result we are looking for is, as we saw in Section 7.4, also rather more involved.
In the hope of minimizing these issues as much as possible we will consider only the
case in which the elapsed time interval T = tb − ta is small enough to ensure that
0 < ωT < π. The adjustments required when νπ < ωT < (ν + 1)π, ν = 1, 2, . . . , are
modest and you may want to keep track of them for yourself as we go along. This will
leave only the behavior whenωT is an integermultiple of π which, as we found in Sec-
tion 7.4, involves Maslov corrections and we will briefly discuss this at the end. With
these assumptions we can record the result we would like to obtain from the evalua-
tion of the path integral (taken from Section 7.4):

√ m
2πiℏ sin ωT

exp( i
ℏ

mω
2 sin ωT

[ (q2a + q
2
b) cos ωT − 2qaqb ] ). (8.11)

Just to get in the proper frame of mind we will write out the n = 3 term in the se-
quence ofmultiple integrals. Asmotivation for some of themanipulationswemention
that the objective is to rewrite the quadratic form ∑nk=1((qk − qk−1)

2 − ω2Δt2q2k) in such
a way that:
1. the terms involving only q0 and qn are exposed and can be pulled out of the inte-

gral and
2. the remaining quadratic form is one to which we can apply a standard Gaussian

integration formula from Appendix A.

For the record, the Gaussian integral we propose to apply is the following. Let A be a
real, symmetric, nondegenerate N × N matrix. Then

∫

RN

e
i
2 ⟨Aq,q⟩+i⟨p,q⟩ dNq = e

Nπi
4 −

νπi
2
√(2π)N

√|det A|
e−

i
2 ⟨A
−1p,p⟩, (8.12)

where q,p ∈ RN , ⟨ , ⟩ denotes the standard inner product onRN and ν is the number
of negative eigenvalues of A (see (A.7) of Appendix A).

To rewrite

3
∑
k=1
((qk − qk−1)

2 − ω2Δt2q2k)

= (q1 − q0)
2 + (q2 − q1)

2 + (q3 − q2)
2 − ω2Δt2q21 − ω

2Δt2q22 − ω
2Δt2q23

appropriately, let q = ( q1q2 ), p = (
q0
q3 ) = (

qa
qb ) and

A2 = (
2 − ω2Δt2 −1
−1 2 − ω2Δt2

) .
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A few quick calculations show that

⟨A2q,q⟩ = 2q
2
1 − ω

2Δt2q21 − 2q1q2 + 2q
2
2 − ω

2Δt2q22,
−2⟨p,q⟩ = −2q0q1 − 2q2q3

and

⟨p,p⟩ = q20 + q
2
3,

so

⟨A2q,q⟩ − 2⟨p,q⟩ + ⟨p,p⟩

= (q21 − 2q0q1 + q
2
0) + (q

2
1 − 2q1q2 + q

2
2) + (q

2
1 − 2q2q3 + q

2
3) − ω

2Δt2q21 − ω
2Δt2q22

=
3
∑
k=1
((qk − qk−1)

2 − ω2Δt2q2k) + ω
2Δt2q23.

Consequently,

e
im
2ℏΔt ∑

3
k=1((qk−qk−1)

2−ω2Δt2q2k) = e
im
2ℏΔt (q

2
a+q

2
b−ω

2Δt2q2b)e
im
2ℏΔt (⟨A2q,q⟩−2⟨p,q⟩ ),

so

∫
R

∫
R

e
im
2ℏΔt ∑

3
k=1((qk−qk−1)

2−ω2Δt2q2k)dq1 dq2

= e
im
2ℏΔt (q

2
a+q

2
b−ω

2Δt2q2b) ∫

R2

e
im
2ℏΔt (⟨A2q,q⟩−2⟨p,q ⟩)d2q

= e
im
2ℏΔt (q

2
a+q

2
b−ω

2Δt2q2b) ∫

R2

e
i
2 ⟨

m
ℏΔt A2q,q ⟩+i⟨− m

ℏΔt p,q ⟩d2q. (8.13)

This integral is just the Gaussian in (8.12) with A = m
ℏΔtA2 and p replaced by − m

ℏΔtp.

Exercise 8.3.1. Show that

det A = ( m
ℏΔt
)
2
det A2 = (

m
ℏΔt
)
2
[(2 − ω2Δt2)2 − 1],

⟨A−1(− m
ℏΔt

p), − m
ℏΔt

p⟩ = m
ℏΔt
⟨A−12 p,p ⟩

and that the eigenvalues of A are given by
m
ℏΔt
(2 − ω2Δt2) ± m

ℏΔt
=

m
ℏΔt
[(2 ± 1) − ω2Δt2]

=
m
ℏΔt
(2 − ω2Δt2) + 2√(− m

ℏΔt
)(−

m
ℏΔt
) cos( kπ

2 + 1
),

for k = 1, 2. The reason for the peculiar expression with the cosine will become clear
shortly.
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This exercise provides us with almost all of the information we would need to
evaluate theGaussian integral in (8.13) using (8.12); almost, but not quite. Theproblem
is the eigenvalues. Their signs depend on the size ofωΔt, so the number ν2 of negative
eigenvalues is not determined and we need this in (8.12). We will now proceed with
the general construction of the nth term in the sequence of multiple integrals defining
the path integral. We will find that, for sufficiently large n, the number of negative
eigenvalues is zero (because we have assumed that 0 < ωT < π) and this will permit
us to do the Gaussian integral and evaluate the limit as n→∞.

Remark 8.3.1. Before getting started we will need to borrow a result from linear alge-
bra. We consider an N × N symmetric, tridiagonal Toeplitz matrix, that is, one of the
form

((((((

(

a b 0 0 0 ⋅ ⋅ ⋅ 0 0
b a b 0 0 ⋅ ⋅ ⋅ 0 0
0 b a b 0 ⋅ ⋅ ⋅ 0 0
0 0 b a b ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

...
...

0 0 0 0 0 ⋅ ⋅ ⋅ a b
0 0 0 0 0 ⋅ ⋅ ⋅ b a

))))))

)

,

where we assume that a and b are nonzero real numbers. Then there are N distinct
real eigenvalues given by

λk = a + 2b cos( kπ
N + 1
), k = 1, . . . ,N ,

and a corresponding set of eigenvectors given by

Vk = ( sin(
1 ⋅ kπ
N + 1
), sin( 2kπ

N + 1
), . . . , sin( Nkπ

N + 1
)), k = 1, . . . ,N .

Oddly enough, all such matrices have the same eigenvectors. One can find a proof of
this and some more general results in [LR].

Now we fix an integer n ≥ 2 and consider the integral

∫
R

⋅ ⋅ ⋅∫
R

e
im
2ℏΔt ∑

n
k=1((qk−qk−1)

2−ω2Δt2q2k) dq1 . . . dqn−1,

where Δt = T
n =

tb−ta
n , q0 = q(ta) = qa and qn = q(tb) = qb. The first step is en-

tirely analogous to the n = 3 case treated above. We introduce an (n − 1) × (n − 1)
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matrix

An−1 =
((((

(

2 − ω2Δt2 −1 0 0 0 ⋅ ⋅ ⋅ 0 0
−1 2 − ω2Δt2 −1 0 0 ⋅ ⋅ ⋅ 0 0
0 −1 2 − ω2Δt2 −1 0 ⋅ ⋅ ⋅ 0 0
0 0 −1 2 − ω2Δt2 −1 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

...
...

0 0 0 0 0 ⋅ ⋅ ⋅ 2 − ω2Δt2 −1
0 0 0 0 0 ⋅ ⋅ ⋅ −1 2 − ω2Δt2

))))

)

and define

q =(

q1
q2
...

qn−1

) ∈ Rn−1

and

p =((

(

q0
0
...
0
qn

))

)

=((

(

qa
0
...
0
qb

))

)

∈ Rn−1.

Exercise 8.3.2. Show that

⟨An−1q,q⟩ − ω
2Δt2q2b − 2⟨p,q⟩ + q

2
a + q

2
b =

n
∑
k=1
((qk − qk−1)

2 − ω2Δt2q2k).

Consequently,

e
im
2ℏΔt ∑

n
k=1((qk−qk−1)

2−ω2Δt2q2k) = e
im
2ℏΔt (q

2
a+q

2
b−ω

2Δt2q2b)e
im
2ℏΔt (⟨An−1q,q⟩−2⟨p,q⟩ ),

so

∫
R

⋅ ⋅ ⋅∫
R

e
im
2ℏΔt ∑

n
k=1((qk−qk−1)

2−ω2Δt2q2k)dq1 . . . dqn−1

= e
im
2ℏΔt (q

2
a+q

2
b−ω

2Δt2q2b) ∫

Rn−1

e
im
2ℏΔt (⟨An−1q,q⟩−2⟨p,q ⟩)dn−1q

= e
im
2ℏΔt (q

2
a+q

2
b−ω

2Δt2q2b) ∫

Rn−1

e
i
2 ⟨

m
ℏΔt An−1q,q ⟩+i⟨− m

ℏΔt p,q ⟩dn−1q.
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This integral is just the Gaussian in (8.12) with A = m
ℏΔtAn−1 and p replaced with −

m
ℏΔtp.

We begin towrite out this Gaussian in terms of the number νn−1 of negative eigenvalues
of An−1 by noting first that

A−1(− m
ℏΔt

p) = −A−1n−1p,

so

⟨A−1(− m
ℏΔt

p), − m
ℏΔt

p⟩ = m
ℏΔt
⟨A−1n−1p,p ⟩

and

√|det A| = ( m
ℏΔt
)

n−1
2
√|det An−1|.

Exercise 8.3.3. Use these and (8.12) to show that

∫

Rn−1

e
i
2 ⟨

m
ℏΔt An−1q,q ⟩+i⟨− m

ℏΔt p,q ⟩dn−1q

= e
(n−1)πi

4 e−
νn−1πi

2 (
m

2πℏΔt
)
− n−12
|det An−1|

− 12 e−
mi
2ℏΔt ⟨A

−1
n−1p,p ⟩,

where νn−1 is the number of negative eigenvalues of An−1.

Exercise 8.3.4. The definition of the path integral requires that, before taking the
limit, we multiply the integral by the normalizing factor ( m

2πiℏΔt )
n/2. In preparation for

this show that

e
(n−1)πi

4 (
m

2πiℏΔt
)
n/2
(

m
2πℏΔt
)
− n−12
= √

m
2πiℏΔt
.

Exercise 8.3.5. Put all of this together to obtain

(
m

2πiℏΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

e
im
2ℏΔt ∑

n
k=1((qk−qk−1)

2−ω2Δt2q2k) dq1 . . . dqn−1

= e−
im
2ℏω

2q2bΔt(e−
νn−1πi

2 √
m

2πiℏΔt |det An−1|
e

im
2ℏΔt (q

2
a+q

2
b−⟨A

−1
n−1p,p ⟩ )) . (8.14)

Since Δt = T
n , the first factor clearly approaches 1 as n → ∞, so we need only worry

about the second factor. For this we will need some fairly detailed information about:
1. det An−1,
2. ⟨An−1p,p ⟩ and
3. νn−1.
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First we will look at the determinant

an−1 = det An−1.

Exercise 8.3.6. Compute the first few of these to show that

a1 = 2 − ω
2Δt2,

a2 = (2 − ω
2Δt2)a1 − 1,

a3 = (2 − ω
2Δt2)a2 − a1,

a4 = (2 − ω
2Δt2)a3 − a2

and then prove by induction that

ak−1 = (2 − ω
2Δt2)ak−2 − ak−3, k ≥ 4.

Hint: Expand the determinants by the cofactors of the last row.

Taking a0 = 1 and a−1 = 0 we have a recurrence relation

ak−1 = (2 − ω
2Δt2)ak−2 − ak−3, k ≥ 2,

and this is what we must solve. We could now apply general results from the theory
of linear, homogeneous, recurrence relations, but let us proceed a bit more directly.
Suppose we have found a solution z to the equation

z + z−1 = 2 − ω2Δt2

(we will actually find somemomentarily). Then our recurrence relation can be written
as

ak−1 = (z + z
−1)ak−2 − ak−3, k ≥ 2.

Now note that al = zl+1, l ≥ 1, is a solution to the recurrence relation since

(z + z−1)ak−2 − ak−3 = (z + z
−1)zk−1 − zk−2 = zk = ak−1

and, similarly, if we let al = (z−1)l+1 = z−l−1, then

(z + z−1)ak−2 − ak−3 = (z + z
−1)z−k+1 − z−k+2 = z−k = ak−1.

By the linearity of the recurrence, al = m1zl+1 + m2z−l−1, l ≥ 1, is also a solution for
any m1 and m2. In order to satisfy the initial conditions we set a−1 = 0, which gives
m1+m2 = 0 and thereforeal = m1(zl+1−z−l−1), and then seta0 = 1, givingm1(z−z−1) = 1.
In particular, z ̸= ±1, so

m1 =
1

z − z−1
= −m2.
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These initial conditions uniquely determine the solution to our recurrence relation to
be

al =
1

z − z−1
(zl+1 − z−l−1) = z

l+1 − z−l−1

z − z−1
.

In particular,

det An−1 = an−1 =
zn − z−n

z − z−1
.

Now we set about finding explicit solutions to the equation z + z−1 = 2 − ω2Δt2.
Since z = 0 is certainly not a solution, this can be written

z2 − (2 − ω2Δt2)z + 1 = 0.

Remark 8.3.2. For the record we mention that

p(z) = z2 − (2 − ω2Δt2)z + 1

is called the characteristic polynomial of our recurrence relation.

An application of the quadratic formula gives

z = 1 − 1
2
ω2Δt2 ± 1

2
ωΔt√ω2Δt2 − 4.

Now, recall that at the very beginning of all of this we fixed an integer n ≥ 2 (the
number of subintervals into which we partitioned [ta, tb]). Ultimately, we are inter-
ested only in the limit as n→∞ and so only in large n. Note that, since Δt = T

n , large n
means smallω2Δt2, so eventually the rootswe just foundwill be complexwith positive
real part. We want to ignore the real roots corresponding to small n, so we will select
some positive integer N0 such that these roots are complex if n > N0. Since n is begin-
ning to play a role now it seems proper to make its appearance explicit by writing z(n)
rather than simply z. Thus, for n > N0, our two roots are given by

z(n) = 1 − 1
2
ω2Δt2 + 1

2
ωΔt√4 − ω2Δt2 i

and its conjugate.

Exercise 8.3.7. Show that | z(n) |2 = 1.

Thus, our two roots lie on the unit circle and are therefore z(n) and z(n)−1.Wewill write
these in polar form as

z(n) = eiθ(n) and z(n)−1 = e−iθ(n).
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Note also that, since 1 and −1 are certainly not roots of the characteristic polynomial
and Im(z(n)) > 0, we can assume that

0 < θ(n) < π ∀n > N0.

Now we can write det An−1 in the form we were after, that is,

det An−1 =
z(n)n − z(n)−n

z(n) − z(n)−1
=
einθ(n) − e−inθ(n)

eiθ(n) − e−iθ(n)
=
sin nθ(n)
sin θ(n)

.

Wewill need to know something about the behavior of θ(n) for large n. For this we
first recall that z(n) + z(n)−1 is equal to both eiθ(n) + e−iθ(n) = 2 cos θ(n) and 2 − ω2Δt2,
so cos θ(n) = 1 − 1

2ω
2Δt2. Moreover, since 0 < θ(n) < π,

θ(n) = arccos(1 − 1
2
ω2Δt2) = arccos(1 − (ω

2T2

2
) n−2). (8.15)

Our first objective is to show that, with θ(n) as in (8.15),

θ(n) = ωΔt + O(n−2) as n→∞,

that is, that there exist an integer N1 ≥ N0 and a positive constantM such that

 θ(n) − ωΔt
 ≤

M
n2
∀n ≥ N1.

For this it will suffice to show that the real-valued function arccos (1 − 1
2x

2) of the real
variable x is x + O(x2) as x → 0+. To do this we would like to apply Taylor’s formula
with a quadratic remainder at x = 0. Unfortunately, this is not differentiable at x = 0.
Indeed, for x ̸= 0,

d
dx

arccos(1 − 1
2
x2) = x
|x|
(1 − x

2

4
)
−1/2
,

so at x = 0 the right-hand derivative is 1 and the left-hand derivative is −1. To remedy
the situation we consider instead

f (x) = {
arccos (1 − 1

2x
2), if x ≥ 0,

− arccos (1 − 1
2x

2), if x ≤ 0.

Then f (x) is differentiable and

f (x) = (1 − x
2

4
)
−1/2
.

Consequently,

f (x) = x
4
(1 − x

2

4
)
−3/2
.
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Now, by Taylor’s formula,

f (x) = f (0) + f (0)x + θ
(c)
2!

x2 = x + c
8
(1 − c

2

4
)
−3/2

x2,

where c is between 0 and x. But, on −1 ≤ c ≤ 1, the function c
8 (1−

c2
4 )
−3/2 is continuous

and therefore bounded by some K > 0, so

 f (x) − x
 ≤ Kx

2.

In particular, if we choose N1 ≥ N0 sufficiently large that ωΔt = ωT
n < 1 whenever

n ≥ N1, then

 θ(n) − ωΔt
 ≤

Kω2T2

n2
∀n ≥ N1,

as required.
Next note that sin (ωT+x) = sin ωT+O(x) as x → 0 implies that sin (ωT+O(n−1)) =

sin ωT + O(O(n−1)) = sin ωT + O(n−1) as n→∞. Thus,

θ(n) = ωT
n
+ O(n−2) ⇒ nθ(n) = ωT + O(n−1) ⇒ sin nθ(n) = sin ωT + O(n−1)

as n→∞.

Exercise 8.3.8. Show that

sin θ(n) = ωT
n
+ O(n−2)

as n→∞.

But sin x = x + O(x2) as x → 0, so sin ωT
n =

ωT
n + O(n

−2) as n→∞, and therefore

sin θ(n) = sin( ωT
n
) + O(n−2)

as n→∞. We will put all of this to use in computing the limits we need for (8.14).
Before moving on to more estimates that we need to compute the limit we will

pause for a moment to draw an important conclusion from what we have so far. We
will show that for sufficiently large n, An−1 has no negative eigenvalues, so νn−1 = 0
(this is a consequence of our assumption that 0 < ωT < π). Begin by fixing some
n ≥ N1. Since An−1 is an (n − 1) × (n − 1) symmetric, tridiagonal Toeplitz matrix, it has
n − 1 distinct real eigenvalues given by

λk = (2 − ω
2Δt2) − 2 cos(kπ

n
), k = 1, . . . , n − 1,

= z(n) + z(n)−1 − 2 cos(kπ
n
), k = 1, . . . , n − 1,
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= 2 cos θ(n) − 2 cos(kπ
n
), k = 1, . . . , n − 1

(see Remark 8.3.1). Now note that λk < 0 if and only if cos θ(n) < cos ( kπn ) and, since
all of the angles are in (0,π), this is the case if and only if

kπ
n
< θ(n).

But

kπ
n
< θ(n) ⇒ kπ

n
< ωΔt + M

n2
⇒

kπ
n
<
ωT
n
+
M
n2

⇒ kπ < ωT + M
n
⇒ k < ωT

π
+
M
π
1
n

⇒ k < 1 + M
π
1
n

and this is clearly not possible for arbitrarily large n unless k = 1.

Exercise 8.3.9. Show directly that 0 < ωT < π implies that for sufficiently large n,
λ1 = (2 −

ω2T2

n2 ) − 2 cos (
π
n ) is positive. Hint: Look at a Taylor polynomial for cos ( πn ).

Thus, we can choose an integer N2 ≥ N1 ≥ N0 such that

νn−1 = 0 ∀n ≥ N2.

Exercise 8.3.10. Show that if ν > 0 is an integer and νπ < ωT < (ν + 1)π, then, for
sufficiently large n, An−1 has precisely ν negative eigenvalues.

Now we will get back to some estimates required to compute the limit as n → ∞
of (8.14). We have already shown that

θ(n) = ωT
n
+ O(n−2) as n→∞.

Exercise 8.3.11. Show that

lim
n→∞

n sin ωT
n
= ωT .

Now write

n sin θ(n)
T sin nθ(n)

=
n sin ωT

n + O(n
−1)

T sin ωT + O(n−1)
=

n sin ωT
n

T sin ωT + O(n−1)
+

O(n−1)
T sin ωT + O(n−1)

.

The second term clearly approaches zero as n→∞ and, by the previous exercise, the
first approaches ω

sin ωT , so

lim
n→∞

n sin θ(n)
T sin nθ(n)

=
ω

sin ωT
.
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Furthermore, since θ(n) = ωT
n + O(n

−2) and 0 < ωT < π,

lim
n→∞



n sin θ(n)
T sin nθ(n)


=

ω
sin ωT
.

Recalling that νn−1 = 0 for n ≥ N2 we find that

lim
n→∞

e
νn−1πi

2 √
m

2πiℏΔt |detAn−1|
= lim

n→∞
√ m
2πiℏ



n sin θ(n)
T sin nθ(n)


= √

mω
2πiℏ sin ωT

.

All that remains for our computation of the limit in (8.14) is to investigate the be-
havior of

e
im
2ℏΔt (q

2
a+q

2
b−⟨A

−1
n−1p,p ⟩ )

as n → ∞. We begin with ⟨A−1n−1p,p ⟩. Denoting the entries in the matrix A−1n−1 by Bi,j
we obtain

A−1n−1p =
((

(

B1,1 ⋅ ⋅ ⋅ B1,n−1
B2,1 ⋅ ⋅ ⋅ B2,n−1
...

...
Bn−2,1 ⋅ ⋅ ⋅ Bn−2,n−1
Bn−1,1 ⋅ ⋅ ⋅ Bn−1,n−1

))

)

((

(

qa
0
...
0
qb

))

)

=((

(

B1,1qa + B1,n−1qb
B2,1qa + B2,n−1qb

...
Bn−2,1qa + Bn−2,n−1qb
Bn−1,1qa + Bn−1,n−1qb

))

)

,

and therefore

⟨A−1n−1p,p ⟩ = (B1,1qa + B1,n−1qb )qa + (Bn−1,1qa + Bn−1,n−1qb )qb.

Exercise 8.3.12. Using the fact that A−1n−1 is
1

det An−1
times the adjoint of An−1, show that

B1,1 = Bn−1,n−1 =
sin (n − 1)θ(n)
sin nθ(n)

and

B1,n−1 = Bn−1,1 =
sin θ(n)
sin nθ(n)

.

From this we find that

⟨A−1n−1p,p ⟩ =
sin (n − 1)θ(n)
sin nθ(n)

(q2a + q
2
b) +

sin θ(n)
sin nθ(n)

(2qaqb),

and therefore

q2a + q
2
b − ⟨A

−1
n−1p,p ⟩ =

1
sin nθ(n)

( ( sin nθ(n) − sin (n − 1)θ(n) )(q2a + q
2
b)

− sin θ(n)(2qaqb) ).
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Exercise 8.3.13. Show that

sin nθ(n) − sin (n − 1)θ(n) = cos nθ(n) sin θ(n) + sin nθ(n) (1 − cos θ(n)).

From this we obtain

im
2ℏΔt
(q2a + q

2
b − ⟨A

−1
n−1p,p ⟩) =

imn
2ℏT sin nθ(n)

[ [ cos nθ(n) sin θ(n)

+ sin nθ(n) (1 − cos θ(n)) ](q2a + q
2
b) − sin θ(n)(2qaqb) ]

=
imω
2ℏ
[(

cos nθ(n)
sin nθ(n)

sin θ(n)
ωT/n
+
1 − cos θ(n)

ωT/n
) (q2a + q

2
b)

−
1

sin nθ(n)
(
sin θ(n)
ωT/n
) (2qaqb) ].

Exercise 8.3.14. Use the various estimates we obtained earlier to show that

lim
n→∞

im
2ℏΔt
(q2a + q

2
b − ⟨A

−1
n−1p,p ⟩) =

imω
2ℏ sin ωT

( (q2a + q
2
b) cos ωT − 2qaqb),

and therefore

lim
n→∞

e
im
2ℏΔt (q

2
a+q

2
b−⟨A

−1
n−1p,p ⟩) = e

i
ℏ

mω
sin ωT ( (q

2
a+q

2
b) cos ωT−2qaqb).

With this we have all of the ingredients required to complete the evaluation of the
harmonic oscillator path integral when 0 < ωT < π.

Exercise 8.3.15. Trace back through all of the results we have obtained in this section
to show that, when 0 < ωT < π,

∫
𝒫R(qb ,tb ;qa ,ta)

e
im
2ℏ ∫

tb
ta
(q̇2−ω2q2) dt𝒟q

= lim
n→∞
(

m
2πiℏΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

e
im
2ℏΔt ∑

n
k=1((qk−qk−1)

2−ω2Δt2q2k) dq1 . . . dqn−1

= lim
n→∞

e−
im
2ℏω

2q2bΔt(e−
νn−1πi

2 √
m

2πiℏΔt |det An−1|
e

im
2ℏΔt (q

2
a+q

2
b−⟨A

−1
n−1p,p ⟩ ))

= √
mω

2πiℏ sin ωT
e

i
ℏ

mω
sin ωT ( (q

2
a+q

2
b) cos ωT−2qaqb ).

Mercifully, this agrees with the result (8.11) we obtained fromMehler’s formula for the
propagator of the quantum harmonic oscillator in Section 7.4.

Exercise 8.3.16. Re-examine the arguments we have just given and make whatever
adjustments are required to handle the case in which νπ < ωT < (ν + 1)π with ν > 0.
Hint: Use Exercise 8.3.10.
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The only issue we have not addressed is the behavior of the path integral as ωT
approaches an integral multiple of π. In Section 7.4 we found that the propagator ex-
periences Maslov corrections at these integral multiples of π and that these amount
to discontinuous jumps in the phase. To see this behavior in the path integral one can
compute the limit, in the distributional sense, of

√ mω
2πiℏ sin ωT

e
i
ℏ

mω
sin ωT ( (q

2
a+q

2
b) cos ωT−2qaqb )

as T approaches, for example, 0. The result is simply the Dirac delta δ(qa − qb). We
will not carry out this calculation, but if you would like to do so yourself we might
suggest (G.12).



9 Sketches of some rigorous results

9.1 Introduction

Let us begin by summarizing Feynman’s prescription for evaluating his path integral
representation of the propagator K(qb, tb; qa, ta) for a particle moving along the q-axis
from qa at time ta to qb at time tb under the influence of a Hamiltonian of the form
H = − ℏ

2

2mΔ+V , assumed to be self-adjoint on some domain𝒟(H) in L2(R). We are told
to slice the t-interval [ta, tb] into n equal subintervals [tk−1, tk], k = 1, . . . , n, of length
Δt = tb−ta

n , with t0 = ta and tn = tb. Now we let q0 = qa and qn = qb and take q1, . . . , qn−1
to be arbitrary real numbers and compute

Sn(qa, q1, . . . , qn−1, qb) =
n
∑
k=1
[
m
2
(
qk − qk−1

Δt
)
2
− V(qk−1)]Δt. (9.1)

Next we are to perform the integrations

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ Sn(qa ,q1 ,...,qn−1 ,qb) dq1 . . . dqn−1, (9.2)

multiply by the normalizing factor

(
m

2πiℏΔt
)
n/2

(9.3)

(where i1/2 = eπi/4) and take the limit as n→∞ to get

∫
𝒫R(qb ,tb ;qa ,ta)

e
i
ℏ S𝒟q = lim

n→∞
(

m
2πiℏΔt
)
n/2
∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ Sn(qa ,q1 ,...,qn−1 ,qb) dq1 . . . dqn−1. (9.4)

The right-hand side is then the definition of the left-hand side.
We found in the previous two sections that this worked out admirably in the

two simplest cases of the free particle (V = 0) and the harmonic oscillator (V(q) =
mω2q2/2), giving us precisely the propagators we had computed by other means
earlier. It is an unfortunate fact of life, however, that for even slightly more compli-
cated potentials the explicit computation of the path integral is, at least, orders of
magnitude more difficult and, at worst, impossible. Physicists have developed many
ingenious schemes for evaluating, or at least approximating, such path integrals
(see [Smir]), but this is really not our concern here. We would like to approach this
from the other end and look for general theorems that address some of the mathemat-
ical issues raised by Feynman’s definition. Here are the issues we have in mind.
1. The potentialsV withwhich onemust deal are dictated by physics and one cannot

simply assume thatH = − ℏ
2

2mΔ+V is self-adjoint; onemust prove it. IfH is not self-
adjoint on some domain, then it cannot be regarded as an observable and, more

https://doi.org/10.1515/9783110751949-009
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to the point here, does not determine a time evolution e−itH/ℏ at all and so there
is no propagator. One would like to see general theorems guaranteeing the self-
adjointness of H for certain classes of physically meaningful potentials V .

2. Since

 e
i
ℏ Sn(qa ,q1 ,...,qn−1 ,qb)  = 1

the exponential in the path integral for the propagator is not Lebesgue integrable
onRn−1 and so the meaning of

∫
R

⋅ ⋅ ⋅∫
R

e
i
ℏ Sn(qa ,q1 ,...,qn−1 ,qb) dq1 . . . dqn−1

is not a priori clear.
3. Even assuming that the issue in 2. can be resolved, Feynman defines his path in-

tegral as a limit (9.4), but does not specify what sort of limit he has in mind and,
of course, limits have the unfortunate habit of not existing when you want them
to exist. We would like to see some general results asserting the existence of the
limit (in some sense) for various classes of physically reasonable potentials.

4. It would be a fine thing if the path “integral” were really an integral in the
Lebesgue sense since this would provide us with an arsenal of very powerful
analytical weapons with which to study it. We would therefore like to know if
there is a measure on the path space 𝒫R(qb, tb; qa, ta) with the property that in-
tegrating e

i
ℏ S with respect to this measure is the same as evaluating Feynman’s

limit (9.4).

It goes without saying that all of these issues have received a great deal of attention
since 1948 and the literature is not only vast, but technically quite imposing. The fol-
lowing sections can be regarded as nothing more than an appetizer, but we will try to
provide sufficient references for those who crave the entire meal.

Before getting started we should point out that much of what we will have to
say, particularly in Section 9.2, was proved in order to deal with very specific physi-
cal situations and that these generally involve more than one degree of freedom. The
classical configuration space of a single particle moving in space, for example, isR3,
not R, so quantization gives rise to the Hilbert space L2(R3), not L2(R). The hydro-
gen atom consists of two particles moving in space so its classical configuration space
isR3 ×R3 = R6 and the corresponding Hilbert space is L2(R6). These additional de-
grees of freedom can substantially increase the technical issues involved in solving
concrete problems, but the corresponding Schrödinger equation is the obvious, natu-
ral generalization of (6.10) and we would like to record it here.

We consider n particles withmassesm1, . . . ,mnmoving inR3. For each k = 1, . . . , n
we denote by qk the position vector of the kth particle and we will label the standard
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coordinates inR3n in such a way that

q1 = (q
1, q2, q3), q2 = (q

4, q5, q6), . . . , qn = (q
3n−2, q3n−1, q3n).

The potential governing themotion of the particles is a real-valued functionV : R3n →
R on R3n and we will write its coordinate expression as V(q1, . . . ,qn). To each k =
1, . . . , n we associate a Laplacian

Δk =
𝜕2

(𝜕q3k−2)2
+
𝜕2

(𝜕q3k−1)2
+
𝜕2

(𝜕q3k)2
,

so that the Laplacian Δ on R3n itself is just the sum of these. The Hamiltonian H is
defined on smooth functions in L2(R3n) by

H = −
n
∑
k=1

ℏ2

2mk
Δk + V . (9.5)

The wave function of this system of n particles is written

ψ(q1, . . . ,qn, t)

and, if smooth, is assumed to satisfy the Schrödinger equation

iℏ 𝜕ψ(q1, . . . ,qn, t)
𝜕t

= (−
n
∑
k=1

ℏ2

2mk
Δk + V)ψ(q1, . . . ,qn, t) (9.6)

in the classical sense. For a single particle of mass m we will generally write q =
(q1, q2, q3) and

iℏ 𝜕ψ(q, t)
𝜕t
= (−
ℏ2

2m
Δ + V)ψ(q, t).

Example 9.1.1. An atom of hydrogen consists of a proton of mass m1 = mp ≈ 1.672 ×
10−27 kg and an electron of mass m2 = me ≈ 9.109 × 10−31 kg interacting through a
potential that is inversely proportional to the distance between them. More precisely,
if q1 and q2 denote the position vectors of the proton and electron, respectively, then
V is given by Coulomb’s law

V(q1,q2) = −
1

4πϵ0
e2

‖q1 − q2‖
,

where−e ≈ −1.602×10−19 C is the charge of the electron (so e is the charge of theproton)
and ϵ0 is the vacuum permittivity (see Section 4.2). According to (9.5) the Hamiltonian
of this system is

H = − ℏ
2

2mp
Δ1 −
ℏ2

2me
Δ2 −

1
4πϵ0

e2

‖q1 − q2‖
. (9.7)
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The form of the Hamiltonian given in (9.7) is not the most convenient for many
purposes. To find something better we will introduce the center of mass coordinates
that we first saw in our discussion of the classical two-body problem (Example 2.2.12).
Define r and R by

r = q1 − q2

and

R = m1q1 +m2q2
m1 +m2

.

Then

q1 = R +
m2r

m1 +m2

and

q2 = R +
m1r

m1 +m2
.

To express the Hamiltonian in terms of the coordinates r and R we let Ψ(q1,q2) be a
function of q1 and q2 and Φ(r,R) the corresponding function of r and R, that is,

Φ(r,R) = Ψ(R + m2r
m1 +m2

,R + m1r
m1 +m2

)

and

Ψ(q1,q2) = Φ(q1 − q2,
m1q1 +m2q2
m1 +m2

).

Now introduce a little notation. Write r = (r1, r2, r3), R = (R1,R2,R3) and let r = ‖r‖.
Define operators

Δr =
𝜕2

(𝜕r1)2
+
𝜕2

(𝜕r2)2
+
𝜕2

(𝜕r3)2

and

ΔR =
𝜕2

(𝜕R1)2
+
𝜕2

(𝜕R2)2
+
𝜕2

(𝜕R3)2
.

Finally, letM = m1 +m2 be the total mass and μ = m1m2
m1+m2

the so-called reduced mass.

Exercise 9.1.1. Show that, in terms of the variables r and R, the Hamiltonian for the
hydrogen atom is given by

H = − ℏ
2

2M
ΔR −
ℏ2

2μ
Δr −

e2

4πϵ0
1
r
. (9.8)
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The real advantage to this form of the Hamiltonian becomes apparent when one
confronts the problem of solving the corresponding Schrödinger equation. In terms
of the variables R and r one can separate variables to obtain two equations, one rep-
resenting the translational motion of the center of mass and the other representing
the motion of the two particles relative to each other. From the second of these one
computes, for example, the possible energy levels (eigenvalues) of the hydrogen atom.
Differences between consecutive energy levels can then be compared directly with the
experimentally determined frequencies of the emission lines in the hydrogen spec-
trum (see Section 4.2). Carrying out these calculations is somewhat tedious, but it
is something that everyone should go through. We recommend proceeding in three
steps. Begin with a relatively painless undergraduate version of the computations (for
example, Sections 2–5 of [Eis]). Proceed then to amore sophisticated, but still physics-
oriented treatment in one of the standard graduate texts (say, Chapter IX, Sections I
and III, of [Mess1]). Finally, for the rigorous version, consult Chapter II, Section 7,
of [Prug].

We should point out that the hydrogen atom, in addition to its significance in
physics, is not entirely unrelated to our leitmotif here. As it happens, there is a natu-
ral generalization of the harmonic oscillator to dimension four and the Schrödinger
equation for the bound states of the hydrogen atom reduces, after a simple change of
variable, to the Schrödinger equation for this four-dimensional oscillator. From this
one can calculate the energy levels of the hydrogen atom by solving the harmonic
oscillator (see [Corn]).

9.2 Self-adjointness of − ℏ22mΔ + V
In this sectionwewould like to have a look at just a few of themany rigorous theorems
that have been proved to establish the self-adjointness (or essential self-adjointness)
of Schrödinger operators − ℏ

2

2mΔ+V for various classes of potentials V . We will prove a
result strong enough to yield the self-adjointness of the Hamiltonian for the hydrogen
atom (Example 9.1.1), but then will be content to state some of the important results
and provide references to the proofs. The best general reference is [RS2], Sections X.1–
X.6, and its Notes to Chapter X. We begin with a famous result of Kato and Rellich that
guarantees the self-adjointness of a sufficiently “small” (in some appropriate sense)
perturbation of a self-adjoint operator.

Theorem 9.2.1 (Kato–Rellich theorem). Let ℋ be a complex, separable Hilbert space,
A : 𝒟(A) → ℋ a self-adjoint operator onℋ and B : 𝒟(B) → ℋ a symmetric operator on
ℋ with𝒟(A) ⊆ 𝒟(B). Suppose there exist real numbers a and b with a < 1 such that

‖Bψ ‖ ≤ a‖Aψ ‖ + b‖ψ ‖
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for every ψ ∈ 𝒟(A). Then

A + B : 𝒟(A)→ ℋ

is self-adjoint.

We begin with a lemma that is just a rather modest extension of Theorem 5.2.3.

Lemma 9.2.2. Letℋ be a complex, separable Hilbert space and A : 𝒟(A) → ℋ a sym-
metric operator. ThenA is self-adjoint if and only if there exists a real number μ for which
Image (A ± μi) = ℋ.

Proof. Certainly, if A is self-adjoint, then there is such a μ by Theorem 5.2.3 (namely,
μ = 1). Conversely, suppose A is symmetric and there exists a real number μ for which
Image (A ± μi) = ℋ. We must show that 𝒟(A∗) = 𝒟(A). Since A is symmetric, 𝒟(A) ⊆
𝒟(A∗) and A∗|𝒟(A) = A. Thus, we let ϕ ∈ 𝒟(A∗) and show that it is in 𝒟(A). Since
Image (A − μi) = ℋ, we can select an η in 𝒟(A) with (A − μi)η = (A∗ − μi)ϕ. Since
𝒟(A) ⊆ 𝒟(A∗), ϕ − η is in𝒟(A∗). Moreover,

(A∗ − μi)(ϕ − η) = (A∗ − μi)ϕ − (A∗ − μi)η = (A∗ − μi)ϕ − (A − μi)η = 0.

But Image (A + μi) = ℋ, so 0 = Image (A + μi)⊥ = Kernel (A + μi)∗ = Kernel (A∗ − μi)
and therefore ϕ = η and, in particular, ϕ ∈ 𝒟(A), as required.

Exercise 9.2.1. Show that a symmetric operator A : 𝒟(A) → ℋ is self-adjoint if and
only if Image (A ± μi) = ℋ for all real μ ̸= 0.

Proof of Kato–Rellich theorem. We intend to apply the previous lemma and show that
for sufficiently large real μ, Image (A + B ± μi) = ℋ. First note that, since A is self-
adjoint, its spectrum is real so, for any nonzero real μ, (A + μi)−1 exists and is defined
on Image (A + μi). But, applying the previous exercise to A, Image (A + μi) = ℋ, so
(A + μi)−1 is defined on all of ℋ. We claim that, in fact, (A + μi)−1 is bounded and
satisfies

 (A + μi)
−1  ≤

1
|μ|
.

To see this, first note that for any ψ ∈ 𝒟(A),

 (A + μi)ψ

2
= ‖Aψ ‖2 + μ2‖ψ ‖2.

Indeed,

 (A + μi)ψ

2
= ⟨Aψ + μiψ,Aψ + μiψ ⟩
= ⟨Aψ,Aψ ⟩ + ⟨Aψ, μiψ ⟩ + ⟨ μiψ,Aψ ⟩ + ⟨ μiψ, μiψ ⟩

= ‖Aψ ‖2 + μi⟨Aψ,ψ ⟩ − μi⟨ψ,Aψ ⟩ + μ2‖ψ ‖2
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= ‖Aψ ‖2 + μi⟨ψ,Aψ ⟩ − μi⟨ψ,Aψ ⟩ + μ2‖ψ ‖2

= ‖Aψ ‖2 + μ2‖ψ ‖2.

It follows that
 (A + μi)ψ

 ≥ |μ| ‖ψ ‖.

Now, for any ϕ ∈ ℋ, applying this to ψ = (A + μi)−1ϕ gives ‖ϕ ‖ ≥ |μ| ‖ (A + μi)−1ϕ ‖,
that is,

 (A + μi)
−1ϕ  ≤

1
|μ|
‖ϕ ‖,

as required.

Exercise 9.2.2. Show that for any ϕ ∈ ℋ,
A(A + μi)

−1ϕ  ≤ ‖ϕ ‖.

Now, for a and b as specified in the Kato–Rellich theorem we have
B(A + μi)

−1ϕ  ≤ a
A(A + μi)

−1ϕ  + b
 (A + μi)

−1ϕ 

≤ a‖ϕ ‖ + b( 1
|μ|
‖ϕ ‖)

and therefore

B(A + μi)
−1ϕ  ≤ ( a +

b
|μ|
) ‖ϕ ‖.

Since a < 1 we can choose |μ| sufficiently large to ensure that a + b
|μ| < 1 and therefore

B(A + μi)
−1  < 1.

Wemake use of this in the following way. Write

A + B + μi = (I + B(A + μi)−1)(A + μi),

where I is the identity operator onℋ. Since
 I − ( I + B(A + μi)

−1)  < 1,

the operator I + B(A + μi)−1 has a bounded inverse given by the Neumann series
∞

∑
n=0
( I − (I + B(A + μi)−1) )n,

where the series converges in the operator norm on ℬ(ℋ) (see Theorem 2, Section 1,
Chapter II, of [Yosida]). In particular, the operator I + B(A + μi)−1 maps ontoℋ. Since
A is self-adjoint, the same is true of A + μi and we conclude that

Image (A + B + μi) = Image (I + B(A + μi)−1)(A + μi) = ℋ.
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Exercise 9.2.3. Check that exactly the same proof shows that

Image (A + B − μi) = ℋ

and conclude that A + B : 𝒟(A)→ ℋ is self-adjoint.

There is also a version of the Kato–Rellich theorem for essential self-adjointness.

Corollary 9.2.3. Letℋ be a complex, separable Hilbert space, A : 𝒟(A)→ ℋ an essen-
tially self-adjoint operator on ℋ and B : 𝒟(B) → ℋ a symmetric operator on ℋ with
𝒟(A) ⊆ 𝒟(B). Suppose there exist real numbers a and b with a < 1 such that

‖Bψ ‖ ≤ a‖Aψ ‖ + b‖ψ ‖

for every ψ ∈ 𝒟(A). Then

A + B : 𝒟(A)→ ℋ

is essentially self-adjoint and

A + B = A + B.

Proof. Since A is essentially self-adjoint, its closure A is its unique self-adjoint exten-
sion. Since B is symmetric, it is closable and therefore B exists and it too is symmetric.
We intend to apply the Kato–Rellich theorem to A and B, so we will first show that
𝒟(A) ⊆ 𝒟(B). Let ψ ∈ 𝒟(A). Since A is characterized by the fact that its graph Gr(A) is
the closure in ℋ ⊕ ℋ of the graph of A, there is a sequence of points ψn in 𝒟(A) with
ψn → ψ and Aψn → Aψ. Since

B(ψn − ψm)
 ≤ a
A(ψn − ψm)

 + b
 (ψn − ψm)

,

the sequence of Bψn is Cauchy in ℋ and so Bψn → ϕ for some ϕ ∈ ℋ. Then, since
B is closed, ψ ∈ 𝒟(B) and ϕ = Bψ. In particular, 𝒟(A) ⊆ 𝒟(B). Furthermore, for any
ψ ∈ 𝒟(A),

‖Bψ ‖ = lim
n→∞
‖Bψn ‖ ≤ lim

n→∞
(a‖Aψn ‖ + b‖ψn ‖) = a‖Aψ ‖ + b‖ψ ‖.

Thus, A and B satisfy the hypotheses of the Kato–Rellich theorem and we conclude
that

A + B : 𝒟(A)→ ℋ

is self-adjoint. In particular, A + B is a closed extension of A + B and therefore also an
extension of A + B. But (A + B)ψn → Aψ + Bψ, so (A + B)ψ = Aψ + Bψ, which means
that A + B is also an extension of A + B, so we conclude that

A + B = A + B.

In particular, A + B is self-adjoint, so A + B is essentially self-adjoint.
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In order to apply these results to Schrödinger operatorsH = − ℏ
2

2mΔ+V wewill need
to do two things.
1. We need to establish the self-adjointness of the free particle Hamiltonian H0 =
− ℏ

2

2mΔ on some appropriate domain𝒟(H0) ⊇ 𝒮(R
3) in L2(R3) and its essential self-

adjointness on 𝒮(R3). We have already done this for the free particle Hamiltonian
onR in Example 5.2.8 and, as we will see, the proof forR3 is virtually identical.

Remark 9.2.1. To streamline the exposition a bit wewill stickwithR3. Everything
we will say is equally true forR andR2, but forRN with N ≥ 4 some adjustments
are occasionally required. We will point some of these out as we proceed, but for
the full story see Chapter X of [RS2].

2. We need to isolate some class of potentials V for which 𝒟(H0) is contained in the
domain𝒟(V) of the multiplication operator V and for which there exist real num-
bers a < 1 and b such that

‖Vψ ‖ ≤ a‖H0ψ ‖ + b‖ψ ‖

for every ψ ∈ 𝒟(H0). Our stated objective is to find such a class of potentials large
enough to include the Coulomb potential for the hydrogen atom. The condition
we eventually decide on may look a bit strange at first sight, so we will use the
hydrogen atom to motivate it in the following example.

Example 9.2.1. Writing the Hamiltonian for the hydrogen atom in the form (9.8), the
potential is given by

V(r) = − e2

4πϵ0
1
r
.

Let χ1 denote the characteristic function of the closed unit ball r ≤ 1 inR3. Then 1 − χ1
is the characteristic function of r > 1 and we can write

V = V1 + V2 = χ1V + (1 − χ1)V .

Exercise 9.2.4. Show that V1 = χ1V is in L2(R3) and V2 = (1 − χ1)V is in L∞(R3).

We intend to show that whenever the potentialV is real-valued and can bewritten
as the sum of an element V1 of L2(R3) and an element V2 of L∞(R3), then H0 + V sat-
isfies the hypotheses of the Kato–Rellich theorem and hence is self-adjoint on𝒟(H0).

Remark 9.2.2. We should say a few words about why we need the Kato–Rellich theo-
rem for both self-adjoint and essentially self-adjoint operators and how we intend to
use them. A Schrödinger operator is initially defined in the classical sense on some
space of differentiable functions (such as 𝒮(R3) or C∞0 (R

3)). Here it is not self-adjoint,
so we would like to find a self-adjoint extension. But this alone is not enough. We
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would like to be sure that there is only one self-adjoint extension since, if there is more
than one, then there is more than one contender for the Hamiltonian of the quantum
system under consideration and, consequently, for the time evolution of that system.
One can see explicitly that different self-adjoint extensions correspond to different
physics in Examples 1 and 2, Section X.1, of [RS2]. But suppose we show that H is
self-adjoint by showing that the potential satisfies the hypotheses of the Kato–Rellich
theorem on𝒟(H0) ⊆ L2(R3). Then it certainly also satisfies these conditions on 𝒮(R3)
and, sinceH0 is essentially self-adjoint on 𝒮(R3), we conclude from the corollary that
H |𝒮(R3) is also essentially self-adjoint and hence has a unique self-adjoint extension,
which must be H. The corollary is a roundabout way of establishing uniqueness.

Now we turn to the first of the two tasks we set ourselves above. For this it will
clearly suffice to consider only the Laplace operator −Δ (we will explain the reason for
leaving the minus sign shortly). We begin with a few remarks on the restriction of −Δ
to 𝒮(R3). Two integrations by parts show that −Δ is symmetric on 𝒮(R3). Indeed, for
ψ and ϕ in 𝒮(R3),

⟨−Δψ,ϕ ⟩ = ∫
R3

−Δψ(q)ϕ(q) d3q

=
3
∑
j=1
∫

R3

−𝜕2j ψ(q)ϕ(q) d
3q

=
3
∑
j=1
∫

R3

𝜕jϕ(q)𝜕jϕ(q) d
3q

=
3
∑
j=1
∫

R3

−ψ(q)𝜕2j ϕ(q) d
3q

= ⟨ψ,−Δϕ ⟩.

Exercise 9.2.5. Show that for ψ ∈ 𝒮(R3),

⟨−Δψ,ψ ⟩ ≥ 0.

We conclude that −Δ is a positive, symmetric operator on 𝒮(R3). The reason this
is of interest is that the Friedrichs extension theorem guarantees the existence of a
positive, self-adjoint extension of−Δ (the positivity of−Δ is the reason for retaining the
minus sign). In the case of−Δon𝒮(R3) there is, in fact, aunique self-adjoint extension,
but this does not follow from the Friedrichs theorem, so we will need a more explicit
construction. This is done just as it was forR in Example 5.2.8 by applying the Fourier
transform (see Section G.4).

For ϕ ∈ 𝒮(R3), it follows from ℱ(𝜕αϕ)(p) = (ip)α(ℱϕ)(p) with α = (0, . . . , 2, . . . ,0)
(2 in the jth slot) that ℱ(𝜕2j ϕ)(p) = −(p

j)2ϕ̂(p) for j = 1, 2, 3. Thus,

ℱ(−Δϕ)(p) = ‖p‖2ϕ̂(p).
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In particular, for every ϕ ∈ 𝒮(R3),

−Δϕ(q) = (ℱ−1Q‖p‖2ℱ)ϕ(q),

whereQ‖p‖2 is themultiplicationoperator onL2(R3)definedby (Q‖p‖2 ϕ̂)(p) = ‖p‖
2ϕ̂(p).

We have noted (in Section G.4) that ℱ(𝜕αψ)(p) = (ip)α(ℱψ)(p) is true even when ψ
is a distribution in L2(R3) provided the derivatives, interpreted in the distributional
sense, are also in L2(R3). If ‖p‖2ϕ̂(p) is also in L2(R3), then we can define −Δ as an
operator on L2(R3) that extends −Δ on 𝒮(R3) by

−Δ : 𝒟(−Δ)→ L2(R3),

−Δψ = (ℱ−1Q‖p‖2ℱ)ψ,

where

𝒟(−Δ) = {ψ : ψ ∈ L2(R3) and ‖p‖2ψ̂ ∈ L2(R3)}.

The domain of −Δ on L2(R3) can, of course, also be written

𝒟(−Δ) = {ψ : ψ ∈ L2(R3) andΔψ ∈ L2(R3)}

and it is worth pointing out that this is the same as the Sobolev space H2(R3) (see
Section G.4). Since −Δ = ℱ−1Q‖p‖2ℱ andℱ : L2(R3)→ L2(R3) is unitary, −Δ is unitarily
equivalent to Q‖p‖2 .

Exercise 9.2.6. Show that Q‖p‖2 : 𝒟(−Δ) → L2(R3) is self-adjoint. Hint: See Exer-
cise 5.2.6 and the discussion preceding it.

According to Lemma 5.2.5, −Δ : 𝒟(−Δ) → L2(R3) is therefore also self-adjoint and this
is what we wanted to prove.

Well, that is not quite all we wanted to prove. We now have one self-adjoint ex-
tension of −Δ|𝒮(R3), but to remove any ambiguities we need to know that it is the only
one. For this wemust show that −Δ|𝒮(R3) is essentially self-adjoint and therefore has a
unique self-adjoint extension. Since the argument is exactly the same as the one given
for 𝒮(R) in Section 5.2 we will leave it for you (if you would prefer a little variety, there
is another argument in Theorem IX.27 (c) of [RS2]).

Exercise 9.2.7. Show that −Δ|𝒮(R3) is essentially self-adjoint by proving that

Image (−Δ|𝒮(R3) ± i)
⊥

are both zero.

Since a positive multiple of −Δ clearly has all of the properties of −Δ that we have
just established, we have completed the first of the tasks we set for ourselves, that is,
the free particle Hamiltonian

H0 = −
ℏ2

2m
Δ
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onR3 is self-adjoint on

𝒟(H0) = {ψ : ψ ∈ L
2(R3) and ‖p‖2ψ̂ ∈ L2(R3)}

= {ψ : ψ ∈ L2(R3) and Δψ ∈ L2(R3)}

= H2(R3)

and essentially self-adjoint on 𝒮(R3). Our second objective takes a bit more work, but
we will begin by stating precisely what it is we would like to prove.

Theorem 9.2.4. Let V be a real-valued, measurable function onR3 that can be written
as V = V1 + V2, where V1 ∈ L2(R3) and V2 ∈ L∞(R3). Then

H = H0 + V = −
ℏ2

2m
Δ + V

is essentially self-adjoint on C∞0 (R
3) and self-adjoint on𝒟(H0).

Exercise 9.2.8. Show that if H = H0 + V = −
ℏ2

2mΔ + V is essentially self-adjoint on
C∞0 (R

n), then it is also essentially self-adjoint on 𝒮(Rn). Hint: Use Corollary 5.2.4.

Theorem 9.2.4 remains true ifR3 is everywhere replaced byR orR2, but forRn with
n ≥ 4 it is not sufficient to assume that V1 is L2 (see Theorem X.29 of [RS2]).

By virtue of Example 9.2.1 we conclude from Theorem 9.2.4 that the Hamiltonian
of the hydrogen atom is self-adjoint on 𝒟(H0); we will see shortly that there is a gen-
eralization of Theorem 9.2.4 that applies to any atom or molecule. For the proof of
Theorem 9.2.4 we will need the following lemma.

Lemma 9.2.5. Let ψ ∈ L2(R3) be in 𝒟(H0). Then ψ is in L∞(R3) and, moreover, for any
a > 0 there exists a real number b, independent of ψ, such that

‖ψ‖L∞ ≤ a ‖H0ψ‖L2 + b ‖ψ‖L2 . (9.9)

Proof. Wewould like to showfirst that ψ̂ ∈ L1(R3). For thiswe recall that, by theHölder
inequality (see, for example, Theorem 2.3 of [LL]), the product of two L2 functions is
an L1 function. Since ψ ∈ 𝒟(H0), we know that ψ ∈ L2(R3), so ψ̂ ∈ L2(R3). Moreover,
Δψ ∈ L2(R3) implies that ‖p‖2ψ̂ ∈ L2(R3). Consequently, (1 + ‖p‖2)ψ̂ is in L2(R3). But
an integration in spherical coordinates shows that

 (1 + ‖p‖
2)
−1 

2
L2 = ∫

R3

1
(1 + ‖p‖2)2

d3p = π2,

so (1 + ‖p‖2)−1 is also in L2(R3). Consequently, the product

ψ̂ = (1 + ‖p‖2)−1(1 + ‖p‖2) ψ̂

is in L1(R3). In particular, ‖ψ̂‖L1 is finite and (by the Hölder inequality again)

‖ψ̂‖L1 ≤
 (1 + ‖p‖

2)
−1 L2
 (1 + ‖p‖

2)ψ̂ L2 ≤ π ( ‖ψ̂‖L2 +
 ‖p‖

2ψ̂L2 ). (9.10)
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Exercise 9.2.9. Show that

‖ψ‖L∞ ≤ (2π)
−3/2‖ψ̂‖L1

and conclude that ψ ∈ L∞(R3).

Since the Fourier transform is an isometry on L2(R3),

‖H0ψ‖L2 =
ℱ(H0ψ)

L2 =
ℏ2

2m
 ‖p‖

2ψ̂ L2

and

‖ψ‖L2 = ‖ψ̂‖L2 ,

so, for any a, b ∈ R,

a ‖H0ψ‖L2 + b ‖ψ‖L2 = a(
ℏ2

2m
)  ‖p‖

2ψ̂ L2 + b ‖ψ̂‖L2 .

From this andExercise 9.2.9we conclude that to prove our lemma itwill suffice to show
that for any a > 0, there exists a b ∈ R such that

‖ψ̂‖L1 ≤ a
  ‖p‖

2ψ̂ L2 + b
 ‖ψ̂‖L2 .

To prove this we fix an arbitrary r > 0 and define ψ̂r by

ψ̂r(p) = r
3ψ̂(rp).

Exercise 9.2.10. Use the scaling property of the Fourier transform (ℱ(ψ(aq)) =
1
|a| ψ̂ (

1
a p) for a ̸= 0 in R) to show that ψ̂r is also the Fourier transform of some

element of𝒟(H0), so that (9.10) is valid for ψ̂r as well, that is,

‖ψ̂r‖L1 ≤ π ( ‖ψ̂r‖L2 +
 ‖p‖

2ψ̂r
L2 ). (9.11)

Now note that

‖ψ̂r‖L1 = ∫

R3

 ψ̂r(p)
 d

3p = r3 ∫
R3

 ψ̂(rp)
 d

3p = r3 ∫
R3

 ψ̂(p
)  r
−3 d3p = ‖ψ̂‖L1 .

Exercise 9.2.11. Show similarly that

‖ψ̂r‖L2 = r
3/2‖ψ̂‖L2

and

 ‖p‖
2ψ̂r
L2 = r

−1/2 ‖p‖
2ψ̂ L2 .
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Substituting all of this into (9.11) gives

‖ψ̂‖L1 ≤ πr
−1/2  ‖p‖

2ψ̂ L2 + πr
3/2 ‖ψ̂‖L2 .

Thus, given an a > 0 we choose r so that πr−1/2 = a and then, with this value of r,
b = πr3/2 will satisfy (9.9), so the proof of the lemma is complete.

Proof of Theorem 9.2.4. We assume that V is a real-valued function onR3 that can be
written as V = V1 + V2, where V1 ∈ L2(R3) and V2 ∈ L∞(R3), and we will apply the
Kato–Rellich Theorem 9.2.1, to show that H = H0 + V is self-adjoint on 𝒟(H0). Since
V , being real-valued, is clearly symmetric as a multiplication operator we must prove
two things:
1. 𝒟(H0) ⊆ 𝒟(V),
2. there exist real numbers a and b with a < 1 such that

‖Vψ ‖L2 ≤ a ‖H0ψ ‖L2 + b ‖ψ ‖L2

for all ψ ∈ 𝒟(H0).

Note that𝒟(V) consists of all thoseψ in L2(R3) for whichVψ is also in L2(R3). Letψ be
in 𝒟(H0). In particular, ψ ∈ L2(R3) and, by Lemma 9.2.5, ψ ∈ L∞(R3). Consequently,
both ‖ψ ‖L2 and ‖ψ ‖L∞ are finite, so

‖Vψ ‖L2 = ‖V1ψ + V2ψ ‖L2 ≤ ‖V1ψ ‖L2 + ‖V2ψ ‖L2 ≤ ‖V1 ‖L2 ‖ψ ‖L∞ + ‖V2 ‖L∞ ‖ψ ‖L2

implies that Vψ is in L2(R3) and therefore𝒟(H0) ⊆ 𝒟(V) as required.
According to Lemma 9.2.5, for any a > 0 there is a b ∈ R for which ‖ψ‖L∞ ≤

a ‖H0ψ‖L2 + b
 ‖ψ‖L2 . Thus,

‖Vψ ‖L2 ≤ ‖V1 ‖L2 ‖ψ ‖L∞ + ‖V2 ‖L∞ ‖ψ ‖L2
≤ a ‖V1 ‖L2 ‖H0ψ ‖L2 + ( b

 ‖V1 ‖L2 + ‖V2 ‖L∞ ) ‖ψ ‖L2 ,

so if we choose a sufficiently small that a = a ‖V1 ‖L2 < 1 and take b = b ‖V1 ‖L2 +
‖V2 ‖L∞ , then ‖Vψ ‖L2 ≤ a ‖H0ψ ‖L2 +b ‖ψ ‖L2 , as required. The argument for the essen-
tial self-adjointness of H on 𝒮(R3) is described in Remark 9.2.2.

We will conclude this section by surveying just a few of the many rigorous the-
orems of this same sort that specify a class of potentials V for which H = H0 + V is
self-adjoint, or at least essentially self-adjoint, on some domain. There is a very de-
tailed account of such results in Sections X.1–X.6 of [RS2] and a guide to even more in
the Notes to Chapter X of this source. The results we describe will generally assert the
essential self-adjointness of H on the space of smooth functions with compact support.
Essential self-adjointness is generally all thatmatters. For example,weneed to be sure
of the existence of a unique self-adjoint operator that agrees with − ℏ

2

2mΔ+V on smooth
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functions, but the precise domain on which this extension is self-adjoint is very often
not relevant (and also very often difficult to determine).

Theorem 9.2.4, from which we obtained the self-adjointness of the Hamiltonian
for the hydrogen atom, is but a special case of a very famous result of Kato [Kato]
which established the self-adjointness of the Hamiltonian for any atom or molecule.
We will describe the Hamiltonian for a neutral (uncharged) atom of atomic number Z.
The nucleus therefore contains Z protons and perhaps some neutrons. Being neutral,
the atom also has Z electrons. We will denote the mass of the nucleus by M and the
mass of each electron by me. We will denote the position vector of the nucleus by
q0 = (q1, q2, q3) and the position vectors of the Z electrons by q1 = (q4, q5, q6), . . . ,qZ =
(q3Z+1, q3Z+2, q3Z+3). For each k = 0, 1, . . . , Z we introduce a Laplacian Δk = 𝜕23k+1+𝜕

2
3k+2+

𝜕23K+3. The potential is determined by the Coulomb interactions between each electron
and the nucleus and the Coulomb interactions between each pair of distinct electrons.
Specifically, the Hamiltonian is defined on C∞0 (R

3Z+3) by

H = − ℏ
2

2M
Δ0 −
ℏ2

2me

Z
∑
k=1

Δk −
1

4πϵ0

Z
∑
k=1

Ze2

‖qk − q0‖
+

1
4πϵ0

Z
∑
k=1
∑
k<j

e2

‖qk − qj‖
(9.12)

and its essential self-adjointness on C∞0 (R
3Z+3) is a consequence of the following re-

sult of Kato (which is Theorem X.16 of [RS2]).

Theorem 9.2.6 (Kato’s theorem). Let {Vk}mk=1 be a collection of real-valued functions on
R3 each of which can be written as Vk = Vk

1 +V
k
2 , where V

k
1 ∈ L

2(R3) and Vk
2 ∈ L
∞(R3).

Let Vk(yk) be themultiplication operator on L2(R3n) obtained by choosing yk to be three
coordinates ofR3n. Finally, let Δ denote the Laplacian onR3n. Then − ℏ

2

2mΔ+∑
m
k=1 V

k(yk)
is essentially self-adjoint on C∞0 (R

3n).

Since a great deal of quantum mechanics focuses on the behavior of atoms and
molecules, Kato’s theorem is arguably the most important self-adjointness result we
will see. Even so, not every physically interesting quantum system has a Hamiltonian
to which one can apply Kato’s theorem to establish self-adjointness. We turn next to
one particularly important example.

Very early on in our discussion of the classical harmonic oscillator we empha-
sized that the potential V(q) = 1

2mω
2q2 provides an accurate model of only the small

displacements of amass on a spring, or a pendulum, or any systemwith one degree of
freedom near the stable equilibrium point at q = 0. When the displacements cannot
be regarded as small, but are not “too large” (for example, the spring is not stretched
out into a straight piece of wire) one corrects the potential by including additional
terms in its Taylor series about the equilibrium point. The simplest example of such a
perturbed harmonic oscillator potential would seem to be

V(q) = 1
2
mω2q2 + αq4, (9.13)

where α is a small positive constant.
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You arewonderingwhywe jumped over the cubic term. Of course, we did not have
to. One can include a multiple of q3 in the potential, but at the cost of rather seriously
distorting the physical situation that one probably has in mind for a “perturbed har-
monic oscillator.” One would think, for example, that the potential for such a system
would be symmetric about the equilibrium point, which it is not with a cubic term.
More seriously, including a q3 term gives a potential that is not bounded from below
and so, for large enough displacements, leads to “runaway” solutions which is hardly
in keeping with any sort of “oscillator.”

A system governed by a potential of the form (9.13) will be referred to as an an-
harmonic oscillator. The natural quantization of such a system leads to a Hamiltonian
which, on the smooth functions in L2(R), is given by

H = HB + αq
4 = −
ℏ2

2m
Δ + 1

2
mω2q2 + αq4 = − ℏ

2

2m
d2

dq2
+
1
2
mω2q2 + αq4, (9.14)

where V = 1
2mω

2q2 + αq4 acts on L2(R) as a multiplication operator. The essential
self-adjointness of H on C∞0 (R) does not follow from the results of Kato, but [RS2] of-
fers five distinct proofs (Section X.2, Example 6; Section X.4, Example 2; Section X.6,
Example 5; Section X.9, Example 2; and Section X.10, Example). The simplest of these
is just an appeal to the following theorem (Theorem X.28 of [RS2]). We will look at an-
other proof in Example 9.2.2. Needless to say, the theoremalso applies to the harmonic
oscillator potential 12mω

2q2 and therefore implies the essential self-adjointness ofHB.

Theorem 9.2.7. Suppose V ∈ L2(Rn)loc is real-valued and V ≥ 0 pointwise almost ev-
erywhere and let Δ be the Laplacian onRn. Then − ℏ

2

2mΔ +V is essentially self-adjoint on
C∞0 (R

n).

Recall that L2(Rn)loc consists of all the measurable complex-valued functions on
Rn that are square integrable on compact subsets of Rn. This is certainly true of a
continuous function such as V(q) = 1

2mω
2q2 + αq4. Moreover, since V(q) ≥ 0 for ev-

ery q ∈ R we conclude from the theorem that the anharmonic oscillator Hamiltonian
is essentially self-adjoint on C∞0 (R). We should also point out that the proof of this
theorem is based on a famous distributional inequality called Kato’s inequality (The-
orem X.27 of [RS2]). One can also replace V ≥ 0 with V ≥ −c for any constant c ≥ 0 so
the essential point is that the potential is bounded from below.

One can extend this to handle some potentials that are not bounded from below.
SupposeV : Rn → R is written as the difference of its positive and negative parts, that
is, V = V+ − V−, where V+(q) = max (V(q),0) and V−(q) = max (−V(q),0). Then one
can prove the following amalgam of Theorems 9.2.4 and 9.2.7 (this is a special case of
Theorem X.29 of [RS2] which also describes the modifications required when n ≥ 4).

Theorem 9.2.8. Let V be a real-valued function on Rn, n = 1, 2, 3, and write V = V+ −
V− = max (V ,0)−max (−V ,0). If V+ ∈ L2(Rn)loc and V− = V−1 +V

−
2 , where V

−
1 ∈ L

2(Rn)

and V−2 ∈ L
∞(Rn), then − ℏ

2

2mΔ + V is essentially self-adjoint on C∞0 (R
n).
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Wewould like to describe onemore result of this sort, primarily because it involves
an idea that we have encountered before. In Section 7.2 we introduced the notions
of smooth and analytic vectors for a unitary representation. We mentioned also that
there were corresponding notions for a single operator A : 𝒟(A) → ℋ and promised
to introduce those notions here and describe their relation to self-adjointness. This is
what we will do now.

We consider a densely defined operator A : 𝒟(A) → ℋ on a complex, separable
Hilbert space ℋ. An element ψ of ℋ is called a smooth or C∞ vector for A if it is an
element of the domain of every power of A, that is, if

ψ ∈
∞

⋂
n=1

𝒟(An).

The set of all C∞ vectors for Awill be denoted C∞(A). Here is some motivation for the
terminology. Supposeℋ = L2(R3) and A is the Laplacian Δ. We have seen that anyψ ∈
𝒟(Δ) is in the Sobolev space H2(R3). Similar arguments show that any ψ ∈ 𝒟(Δ2) is in
H4(R3) and, in general, anyψ ∈ 𝒟(Δn) is inH2n(R3). Consequently, anyψ ∈ ∩∞n=1𝒟(Δ

n)
is in everyHk(R3). Now one can appeal to a Sobolev embedding theorem according to
which any function that is in every Sobolev space Hk(R3) is necessarily smooth, that
is, in C∞(R3) (this is Corollary 1.4 of [TaylM]). Thus, C∞(Δ) consists entirely of smooth
functions on R3 (not every smooth function on R3, of course). All of this is actually
true of any elliptic operator on any L2(Rn).

Due to the usual domain issues it is entirely possible that C∞(A) contains only
the zero vector in ℋ, even if A is essentially self-adjoint ([RS2] leaves as Exercise 39
of Chapter X the construction of a self-adjoint operator A with a domain of essential
self-adjointness that intersects 𝒟(A2) only in the zero vector). If A : 𝒟(A) → ℋ is
self-adjoint, however, then C∞(A) is dense in𝒟(A). This follows from the spectral the-
orem (if EA is the spectral measure associated with A and ψ is any element ofℋ, then
EA(−n, n)ψ, n = 1, 2, . . . , is a dense set of smooth vectors for A).

For any ψ ∈ C∞(A) one can at least write down the power series

∞

∑
k=0

‖Akψ‖
k!

zk , (9.15)

although there is no reason to suppose that it converges for any z ̸= 0. A vector ψ inℋ
is said to be an analytic vector for A if ψ ∈ C∞(A) and the series (9.15) has a nonzero
radius of convergence, which we will denote rA(ψ). The set of all analytic vectors for A
will be denoted Cω(A); it is a linear subspace ofℋ, but might well consist of the zero
vector alone.

Exercise 9.2.12. Show that if A : 𝒟(A)→ ℋ has an eigenvector ψ, then ψ ∈ Cω(A).

The main result on analytic vectors and essential self-adjointness is due to Nel-
son [Nel1]. To state it we need a definition. A subset S of the Hilbert spaceℋ is said to
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be total inℋ if the set of all finite linear combinations of elements of S is dense inℋ;
for example, any basis forℋ is total inℋ.

Theorem 9.2.9 (Nelson’s analytic vector theorem). Let A : 𝒟(A) → ℋ be a symmetric
operator on a complex, separableHilbert spaceℋ. If𝒟(A) contains a total set of analytic
vectors for A, then A is essentially self-adjoint.

The result actually stated in [Nel1] (as Lemma 5.1) is a corollary of this; also see Theo-
rem X.39 of [RS2].

Corollary 9.2.10. Let A : 𝒟(A) → ℋ be a closed, symmetric operator on a complex,
separable Hilbert spaceℋ. Then A is self-adjoint if and only if𝒟(A) contains a total set
of analytic vectors for A.

There are a number ofways to proveNelson’s analytic vector theorem, all of which
require a fair amount of work. We will simply suggest four different sources where
the proofs have rather different flavors and let the interested reader find one that ap-
peals. One can, of course, consult the proof of Lemma 5.1 in Nelson’s paper [Nel1].
Nelson’s theorem also appears as Theorem X.39 in [RS2], Theorem 5.6.2 of [BEH] and
Theorem 2.31 of [Kant].

For positive operators Nelson’s theorem can be strengthened a bit (recall that an
operator A : 𝒟(A) → ℋ is said to be positive if ⟨ψ,Aψ ⟩ ≥ 0 for all ψ ∈ 𝒟(A)). We will
say that a vector ψ inℋ is semi-analytic for A if ψ ∈ C∞(A) and the series

∞

∑
k=0

‖Akψ‖
(2k)!

z2k

has a nonzero radius of convergence. The following is Theorem 1 in [Simon1].

Theorem 9.2.11. Let A : 𝒟(A) → ℋ be a positive, symmetric operator on a complex,
separable Hilbert space ℋ. If 𝒟(A) contains a total set of semi-analytic vectors for A,
then A is essentially self-adjoint.

By way of compensation for not including proofs of these results we would like to
work through an interesting example that will establish the essential self-adjointness
of the anharmonic oscillator Hamiltonian (9.14) on 𝒮(R) and will also give us another
opportunity to make use of the raising and lowering operators for the harmonic oscil-
lator (5.14). This is basically Example 5, Section X.6, of [RS2].

Example 9.2.2 (Anharmonic oscillator Hamiltonian is essentially self-adjoint).
The Hamiltonian for the anharmonic oscillator is given by (9.14), but to keep the arith-
metic tolerable we will take m = 1, ω = 1 and α = 4 and will work in units in which
ℏ = 1. Consequently, our Hamiltonian is given on 𝒮(R) by

H = HB + 4q
4 =

1
2
(−

d2

dq2
+ q2) + 4q4.
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Wewould now like to rewrite H in terms of the raising and lowering operators we
introduced for the harmonic oscillator in Example 5.3.1. We will briefly review what
we need with the choice of constants we have made. On 𝒮(R) we define

b = 1
√2
(Q + iP)

and

b† = 1
√2
(Q − iP),

whereQandP are thepositionandmomentumoperators on𝒮(R). ThenQ = 1
√2 (b+b

†).
The number operator is then defined by NB = b†b and the Hamiltonian HB can be
written

HB = NB +
1
2
.

Recall that we used these operators to produce an orthonormal basis for L2(R) con-
sisting of eigenfunctions {ψn}

∞
n=0 of HB. Specifically, these were given by the Hermite

functions

ψ0(q) = π
−1/4e−q

2/2

and

ψn(q) = (n!)
−1/2bnψ0 =

1
√2nn!

π−1/4e−q
2/2Hn(q), n = 1, 2, 3, . . . ,

whereHn is the nth Hermite polynomial. Our objective is to show that these eigenfunc-
tions of HB are semi-analytic vectors for H and then appeal to Theorem 9.2.11. Since
they lie in 𝒮(R) and not C∞0 (R), this explains our decision to show that H is essen-
tially self-adjoint on 𝒮(R) rather than on C∞0 (R). Here are a few things we proved in
Example 5.3.1 that we will need:

b†ψn = √n + 1ψn+1, n = 0, 1, 2, . . . ,
bψ0 = 0

and

bψn = √nψn−1, n = 1, 2, . . . .

Using these and the fact that ‖ψn‖ = 1 for every n = 0, 1, 2, . . . we find that ‖b†ψn‖ =
√n + 1 for n = 0, 1, 2, . . . , ‖bψ0‖ = 0 and ‖bψn‖ = √n for n = 1, 2, . . . . If we let b♯ denote
one of b, b† or the identity I, then we can conclude from this that

b
♯ψn
 ≤ √n + 1, n = 0, 1, 2, . . . .
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Similarly, ‖b†b†ψn‖ = √n + 1√n + 2, ‖b†bψ0‖ = 0, ‖b†bψn‖ = √n√n for n = 1, 2, . . . ,
‖bb†ψn‖ = √n + 1√n + 1 for n = 0, 1, 2, . . . , ‖bbψ0‖ = 0, ‖bbψ1‖ = 0 and ‖bbψn‖ =
√n√n − 1 for n = 2, 3, . . . . In particular,

b
♯b♯ψn
 ≤ √n + 1√n + 2, n = 0, 1, 2, . . . .

Exercise 9.2.13. Show that for any k = 1, 2, . . . ,

b
♯ k⋅ ⋅ ⋅ b♯ψn

 ≤ √n + 1 . . . √n + k ≤ √(n + k)!, n = 0, 1, 2, 3, . . . .

Next we rewrite the Hamiltonian H in terms of b and b† as follows:

H = HB + 4Q
4

= (NB +
1
2
) + 4Q4

= b†b + 1
2
+ 4( 1
√2
(b + b†))

4

= b†b + 1
2
+ (b + b†)4.

Expanding (b+b†)4 (and taking care not to use commutativity) one sees that it consists
of 16 terms:

bbbb + bbbb† + bbb†b + ⋅ ⋅ ⋅ + b†b†b†b†.

Consequently, H contains 18 terms and, for any k ≥ 1, Hk is a sum of 18k terms. Each
of these terms is a product of the form ckb♯ 4k⋅ ⋅ ⋅ b♯, where b♯ is one of b, b† or I and
0 < c ≤ 1. Consequently,

H
kψn
 ≤ 18

k√n + 1 . . . √n + 4k ≤ 18k√(n + 4k)!.

Exercise 9.2.14. Prove each of the following.
1. The series ∑∞k=0

‖Hkψn‖
(2k)! z

2k converges on |z| < (72)−1/2 for any n = 0, 1, 2, . . . . Con-
clude that each ψn is a semi-analytic vector for H. Hint: Use the ratio test.

2. H is a positive operator on 𝒮(R).
3. {ψn}

∞
n=0 is total in L

2(R).
4. H is essentially self-adjoint on 𝒮(R).
5. The estimates we have obtained do not imply that ψn is an analytic vector for H.

9.3 Brownian motion andWiener measure

We should begin with a little historical perspective.
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“There’s a model, you should realize,
A paradigm of this that is dancing right before your eyes –
For look well when you let the sun peep in a shuttered room
Pouring forth the brilliance of its beams into the gloom,
And you’ll see myriads of motes all moving many ways
Throughout the void and intermingling in the golden rays
As if in everlasting struggle, battling in troops,
Ceaselessly separating and regathering in groups.
From this you can imagine all the motions that take place
Among the atoms that are tossed about in empty space.
For to a certain extent, it is possible for us to trace
Greater things from trivial examples, and discern
In them the trail of knowledge. Another reason you should turn
Your attention to the motes that drift and tumble in the light:
Such turmoil means that there are secret motions, out of sight,
That lie concealed in matter. For you’ll see the motes careen
Off course, and then bounce back again, by means of blows unseen,
Drifting now in this direction, now that, on every side.
You may be sure this starts with atoms; they are what provide
The base of this unrest. For atoms are moving on their own,
Then small formations of them, nearest them in scale, are thrown
Into agitation by unseen atomic blows,
And these strike slightly larger clusters, and on and on it goes –
A movement that begins on the atomic level, by slight
Degrees ascends until it is perceptible to our sight,
So that we can behold the dust motes dancing in the sun,
Although the blows that move them can’t be seen by anyone.”

Lucretius, On the Nature of Things, Book II, lines 89–141 [Lucr]

And yet, we call it Brownian motion; the random movement of minute particles in
a liquid or gas as a result of continuous bombardment by the atoms or molecules
of the surrounding medium (if you have never seen this you may want to visit
https://www.youtube.com/watch?v=cDcprgWiQEY). But this is fair, I suppose, since
the botanist Robert Brown made the first careful observations of the phenomenon by
watching pollen grains through his microscope in the nineteenth century.

Early on a great many potential mechanisms were proposed to explain these ran-
dom motions of the particles observed by Brown, from “They’re alive!” to the view
espoused by Lucretius nearly 2000 years before. The issue was resolved once and for
all, in favor of Lucretius, when Einstein took up the problem in a series of five papers
between 1905 and 1908. We will have nothing more to say about the history of the
problem (if you are interested, consult the first four sections of [Nel4]) and very lit-
tle to say about the details of Einstein’s analysis (all five papers have been translated,
with notes in [Ein4]).What wewill have something to say about is the rigorous path in-
tegral reformulation of Brownian motion devised by Norbert Wiener [Wiener] and the
rather striking similarity its construction bears to that of the Feynman “integral.” We
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will see that it is not possible to modify Wiener’s procedure to turn the Feynman inte-
gral into an actual (Lebesgue) integral and, indeed, that the Feynman integral simply
is not a Lebesgue integral. Nevertheless, the analogy is close enough that Edward Nel-
son [Nel3] was able to establish a link between the two and we will sketch how this is
done in the next section. A much more detailed discussion of all that we will have to
say (and a great deal more) is available in [JL].

One should understand that in his first (1905) paper Einstein did not set out ex-
plicitly to explain the mechanism responsible for the behavior of Brownian particles.
Indeed, at this time Einstein seems to have had access to only very limited information
about earlier work on Brownianmotion. As to the actual purpose of the paper, we will
ask the author to speak for himself.

“In this paper it will be shown that, according to the molecular-kinetic theory of heat, bodies of
microscopically visible size suspended in a liquid will perform movements of such magnitude
that they can be easily observed in a microscope, on account of the molecular motions of heat. It
is possible that the movements to be discussed here are identical with the so-called “Brownian
molecular motion”; however, the information available to me regarding the latter is so lacking in
precision, that I can formno judgment in thematter. If themovement discussed here can actually
be observed (together with the laws relating to it that one would expect to find), then classical
thermodynamics can no longer be looked upon as applicable with precision to bodies even of
dimensions distinguishable in amicroscope: an exact determination of actual atomic dimensions
is then possible.”

Albert Einstein, On the Movement of Small Particles Suspended in a Stationary Liquid Demanded
by the Molecular-Kinetic Theory of Heat [Ein4]

In 1905 the existence of atoms and molecules was by no means universally accepted
among physicists. The molecular-kinetic theory hypothesizes that such things do ex-
ist and that macroscopic properties of fluids such as temperature and pressure can
be accounted for by their properties, such as their kinetic energy. The very precise in-
formation obtained by Einstein about the motion of particles suspended in the fluid
resulting from collisions with these atoms andmolecules and their subsequent exper-
imental confirmation validated the molecular-kinetic theory and, by implication, the
existence of atoms and molecules.

The experimental confirmation of Einstein’s conclusions is largely credited to Jean
Perrin [Per] in 1909, who made careful observations of the motion of individual Brow-
nian particles. Perrin was even led to suggest that a typical Brownian path should
be represented by a continuous, nowhere differentiable curve and to mention in this
regard the famous example of Weierstrass. This is an idealization, of course, since,
however small, there is a nonzero time lapse between collisions and during such a
time interval the particle should not behave so erratically. Nevertheless, we will see
these continuous, nowhere differentiable curves emerge again in the rigorous treat-
ment due toWiener. Themolecular-kinetic theory is, by its very nature, statistical due
to the huge number of particles involved (see Exercise 2.4.1 and the comments that fol-
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low it). Einstein therefore describes the physical situation with a probability density
function ρ(t, q) with q ∈ R.

Remark 9.3.1. Actually, a probability density function ρ(t,q)with q ∈ R3, but we will
restrict ourselves to the one-dimensional situation. One can view this either as an ac-
tual Brownian motion taking place on a line or, more realistically, as one coordinate
of the three-dimensional Brownian motion.

Then ρ(t, q) is interpreted as the probability density that a Brownian particle is at
location q at time t; more precisely, for any measurable subset E ofR,

∫
E

ρ(t, q) dq

is the probability that the particle is somewhere in E at time t. Rather detailed physical
arguments led Einstein to the conclusion that if the particles are not subject to any
external forces (gravity, for instance), ρ(t, q)must satisfy the diffusion equation

𝜕ρ(t, q)
𝜕t
− D 𝜕

2ρ(t, q)
𝜕q2
= 0.

Moreover, assuming that the particles are spheres of (small) radius a, Einstein argued
that the diffusion constant Dmust be given by

D = κBT
6πηa
,

where η is the coefficient of viscosity of the fluid, T is the temperature of the fluid (in
Kelvin) and κB is the Boltzmann constant (see Section 4.3). Let us suppose now that
the Brownian particles under observation all originated at some point qa at the instant
ta. Then the problem we need to solve is

𝜕ρ(t, q)
𝜕t
− D 𝜕

2ρ(t, q)
𝜕q2
= 0, (t, q) ∈ (ta,∞) ×R,

lim
t→t+a

ρ(q, t) = δqa , q ∈ R

(the limit being in the sense of distributions). But we (or rather, you) have already
solved this problem (Example G.3.1 and the exercises therein). Letting

HD(t, q, qa) =
1
√4πDt

e−(q−qa)
2/4Dt , (t, q) ∈ (0,∞) ×R,

denote the heat kernel, that is, the Gaussian distribution with mean qa and standard
deviation√2Dt, the solution is

HD(t − ta, q, qa) =
1

√4πD(t − ta)
e−(q−qa)

2/4D(t−ta), (t, q) ∈ (ta,∞) ×R. (9.16)
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In particular, for any −∞ ≤ α ≤ β ≤∞, the probability that such a Brownian particle,
known to be at qa at time ta, will be in (α, β] at time t > ta is given by

β

∫
α

HD(t − ta, q, qa) dq =
β

∫
α

1
√4πD(t − ta)

e−(q−qa)
2/4D(t−ta) dq.

More generally, if E ⊆ R is any measurable set, then

∫
E

HD(t − ta, q, qa) dq = ∫
E

1
√4πD(t − ta)

e−(q−qa)
2/4D(t−ta) dq (9.17)

is the probability that the particle will be in the set E at time t.
Now suppose ta < t ≤ tb and let ta = t0 < t1 < t2 < ⋅ ⋅ ⋅ < tn−1 < tn = t ≤ tb be a

partition of the interval [ta, t] into n equal subintervals of length Δt = t−ta
n and write

t − ta = (tn − tn−1) + ⋅ ⋅ ⋅ + (t2 − t1) + (t1 − t0).

Exercise 9.3.1. Use Exercise G.3.7 to show that

HD(t − ta, q, qa)

= ∫
R

⋅ ⋅ ⋅∫
R

HD(t1 − t0, q1, q0) ⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1)dq1 ⋅ ⋅ ⋅ dqn−1

= (
1

4πDΔt
)

n
2

∫
R

⋅ ⋅ ⋅∫
R

e−Sn(q0 ,q1 ,...,qn−1 ,qn ;t) dq1 . . . dqn−1, (9.18)

where q0 = qa, qn = q and

Sn(q0, q1, . . . , qn−1, qn; t) =
1
4D

n
∑
k=1
(
qk − qk−1

Δt
)
2
Δt.

One should compare this with the nth approximation to the Feynman integral
in (8.3). There is no potential term since we have not considered Brownian particles
subjected to external forces. Otherwise, the analogy seems clear enough, but onemust
take note of where the analogy breaks down. Simply put, there is no “i” in the expo-
nent in (9.18) so the integrals are not oscillatory, but rather decaying exponentially.We
will see that all of the mathematical difficulties associated with the Feynman integral
arise from the oscillatory nature of the finite-dimensional integrals in its definition.

There is no particularly compelling reason to insist that the partition ta = t0 < t1 <
t2 < ⋅ ⋅ ⋅ < tn−1 < tn = t ≤ tb of [ta, t] be uniform, that is, into intervals of the same
length. For a general partition one simply has instead

HD(t − ta, q, qa)

= ∫
R

⋅ ⋅ ⋅∫
R

HD(t1 − t0, q1, q0) ⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1)dq1 ⋅ ⋅ ⋅ dqn−1
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= [(4πD)n(t1 − t0) ⋅ ⋅ ⋅ (tn − tn−1)]
−1/2
∫
R

⋅ ⋅ ⋅∫
R

e−
1
4D ∑

n
k=1
(qk−qk−1)

2

tk−tk−1 dq1 ⋅ ⋅ ⋅ dqn−1. (9.19)

If, for each j = 1, . . . , n, we have extended real numbers −∞ ≤ αj ≤ βj ≤ ∞, then the
probability that a Brownian particle, known to be at qa at time ta, will be in (α1, β1] at
time t1, in (α2, β2] at time t2, . . . and in (αn, βn] at time tn is given by

βn

∫
αn

⋅ ⋅ ⋅

β1

∫
α1

HD(t1 − t0, q1, q0) ⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1)dq1 ⋅ ⋅ ⋅ dqn

= [(4πD)n(t1 − t0) ⋅ ⋅ ⋅ (tn − tn−1)]
−1/2

βn

∫
αn

⋅ ⋅ ⋅

β1

∫
α1

e−
1
4D ∑

n
k=1
(qk−qk−1)

2

tk−tk−1 dq1 ⋅ ⋅ ⋅ dqn. (9.20)

Again more generally, if Ej ⊆ R is a measurable set for each j = 1, . . . , n, then

∫
En

⋅ ⋅ ⋅∫
E1

HD(t1 − t0, q1, q0) ⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1)dq1 ⋅ ⋅ ⋅ dqn

= [(4πD)n(t1 − t0) ⋅ ⋅ ⋅ (tn − tn−1)]
−1/2
∫
En

⋅ ⋅ ⋅∫
E1

e−
1
4D ∑

n
k=1
(qk−qk−1)

2

tk−tk−1 dq1 ⋅ ⋅ ⋅ dqn (9.21)

is the probability that the particle will be in E1 at time t1, in E2 at time t2, . . . and in En
at time tn.

Exercise 9.3.2. Show that

∫
R

⋅ ⋅ ⋅∫
R

HD(t1 − t0, q1, q0) ⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1) dq1 ⋅ ⋅ ⋅ dqn = 1,

as it should be.

There are physical assumptions about Brownian motion buried in these formu-
las. These are encapsulated abstractly in the probabilistic notion of aWiener process
(also called a Brownianmotion). One of these assumptions arises in the followingway.
Since (9.21) is essentially an iteration of (9.17) in which the individual probabilities are
multiplied there is an implicit assumption that the events are independent; getting
from Ej to Ej+1 does not depend on how the particle got from Ej−1 to Ej. The particle has
no memory.

At about this point in our discussion of the Feynman integral we were instructed
to take the limit as n → ∞. Wiener, however, had a different idea (in 1923). To state
this precisely we will need to introduce a few definitions. We will consider two real
numbers ta < tb and will denote by C[ta, tb] the linear space of continuous real-valued
functions x(t) on [ta, tb]. Supplied with the uniform norm

‖x‖ = max
ta≤t≤tb

x(t)
,
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C[ta, tb] is a real, separable Banach space. Paths of Brownian particles will be rep-
resented by elements of C[ta, tb] that all start at some fixed point at time ta and, for
simplicity, we will take this fixed point (called qa above) to be q = 0. Thus, the space
of Brownian paths is contained in

C0[ta, tb] = {x ∈ C[ta, tb] : x(ta) = 0}.

SinceC0[ta, tb] is a closed linear subspace ofC[ta, tb], it is also a real, separable Banach
space when supplied with the uniform norm. In particular, C0[ta, tb] is a topological
space and so it has a σ-algebra of Borel sets ℬ = ℬ(C0[ta, tb]) (see Remark 2.4.1). This
is, as always, the σ-algebra generated by the open (or closed) subsets of C0[ta, tb], but
there is a more useful description. For any t1, . . . , tn satisfying ta = t0 < t1 < ⋅ ⋅ ⋅ < tn−1 <
tn ≤ tb and any extended real numbers −∞ ≤ αj ≤ βj ≤∞, j = 1, . . . , n, we define

I = I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]) = {x ∈ C0[ta, tb] : x(tj) ∈ (αj, βj]}.

Sets of this form in C0[ta, tb] are called cylinder sets and the collection of all such will
be denoted ℐ.

Proposition 9.3.1. The collection ℐ of cylinder sets in C0[ta, tb] has the following prop-
erties:
1. 0 and C0[ta, tb] are in ℐ,
2. if I1 and I2 are in ℐ, then I1 ∩ I2 is in ℐ,
3. if I is in ℐ, then C0[ta, tb] − I is a finite disjoint union of elements of ℐ.

Proof. Part 1. is clear since

0 = {x ∈ C0[ta, tb] : 1 < x(tb) ≤ 1}

and

C0[ta, tb] = {x ∈ C0[ta, tb] : −∞ < x(tb) ≤∞}.

For 2., let I1 = I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]) and I2 = I(s1, . . . , sm; (γ1, δ1] × ⋅ ⋅ ⋅ ×
(γm, δm]). Let {r1, . . . , rl} = {t1, . . . , tn} ∪ {s1, . . . , sm}. If ri ∈ {t1, . . . , tn} ∩ {s1, . . . , sm}, say
ri = tj = sk, set (μi, νi] = (αj, βj] ∩ (γk , δk]. If ri ∈ {t1, . . . , tn} − {s1, . . . , sm}, say ri = tj, set
(μi, νi] = (αj, βj] and if ri ∈ {s1, . . . , sm}− {t1, . . . , tn}, say ri = sk, set (μj, νj] = (γk , δk]. Then
I1 ∩ I2 = I(r1, . . . , rl; (μ1, ν1] × ⋅ ⋅ ⋅ × (μl, νl]).

Exercise 9.3.3. Show that C0[ta, tb] − I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]) can be written
as a finite disjoint union of elements of ℐ.

Not only is each cylinder set a Borel set in C0[ta, tb], but ℬ is, in fact, the σ-algebra
generated by ℐ. The following is Theorem 3.2.11 of [JL].
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Theorem 9.3.2. The σ-algebra σ(ℐ) generated by the cylinder sets in C0[ta, tb] is the
σ-algebra ℬ = ℬ(C0[ta, tb]) of Borel sets in C0[ta, tb].

Now we can describe Wiener’s idea in the following way. Fix a cylinder set I =
I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]) in C0[ta, tb]. Then (9.20), with q0 = 0, assigns to I
a probability, that is, the probability that a Brownian particle starting at q0 = qa =
0 at time ta will pass through each (αj, βj] at time tj for j = 1, . . . , n. Let us regard
this probability as a “measure” of the size of I in C0[ta, tb] and denote it m(I). Thus,
m(I)measures the likelihood that the path of a Brownian particle will satisfy the con-
ditions that define I. Wiener set himself the task of constructing a (Lebesgue) mea-
sure on some σ-algebra of subsets of C0[ta, tb] containing ℐ that agrees with m(I) for
I ∈ ℐ.

Needless to say, Wiener succeeded admirably. In the intervening years many dif-
ferent constructions of this Wiener measure have been devised, all of which involve
very substantial technical work. We do not intend to go through the details of any of
these, but we will sketch two of them. The first is a very elegant functional analytic ar-
gument due to EdwardNelson (AppendixAof [Nel3]). This arrives quickly at ameasure
with the required properties, but perhaps sacrifices some of the intuitive connection
with Brownian motion and the analogy with the Feynman integral. Nevertheless, it is
a beautiful argument and worth seeing. The second is entirely analogous to the usual
construction of the Lebesgue measure onR, although the technical issues are rather
more substantial; Chapter 3 of [JL] fills in many of these details, but not all, so we will
supply references for the rest.

Remark 9.3.2. The “sketches” wewill offer of theWiener measure are of theminimal-
ist variety. We will endeavor to state the results precisely and prove a few of the most
elementary of them, but there aremany deep and technically difficult issues for which
we will only provide references. We made the decision that a nodding acquaintance
with these ideas was essential for an appreciation of the difficulties inherent in Feyn-
man’s path integral, but that the details would probably be of interest only to those
who incline toward mathematical analysis.

To prepare for Nelson’s construction we should briefly review two items, one a
definition frommeasure theory and the other a theorem from functional analysis (both
are discussed in Sections 55–56 of [Hal1] or one can consult Proposition 6, Section 2,
Chapter 14 and Theorem 8, Section 3, Chapter 14, of [Roy]). We let X denote a locally
compact Hausdorff topological space and𝒜 a σ-algebra on X containing the σ-algebra
ℬ(X)of Borel sets inX. A nonnegativemeasureμon themeasurable space (X,𝒜) is said
to be regular if:
1. μ(K) <∞ for every compact set K ⊆ X,
2. A ∈ 𝒜⇒ μ(A) = inf {μ(U) : U is open in X andA ⊆ U},
3. U ⊆ X open⇒ μ(U) = sup {μ(K) : K is compact in X andK ⊆ U}.
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The following is one version of the Riesz representation theorem, which follows from
Theorem 6.19 of [Rud2].

Theorem 9.3.3 (Riesz representation theorem). Let X be a compact Hausdorff topo-
logical space and C(X) its Banach space of continuous, real-valued functions on X
(with the uniform norm). Let α be a linear functional on C(X) that is nonnegative
(f ∈ C(X) and f (x) ≥ 0∀ x ∈ X ⇒ α(f ) ≥ 0). Then there exists a σ-algebra 𝒜 on X
containing the σ-algebra ℬ(X) of Borel sets on X and a regular measure μ on (X,𝒜) such
that

α(f ) = ∫
X

f (x) dμ(x)

for every f ∈ C(X). Moreover, the restriction of μ to ℬ(X) is unique.

Nonnegative linear functionals are often called positive linear functionals. What-
ever you call them, it is not necessary to assume a priori that they are bounded (con-
tinuous) for this follows automatically. Indeed, suppose α is nonnegative. Then, for
any f ∈ C(X), −‖f ‖ ≤ f (x) ≤ ‖f ‖ ∀x ∈ X and this implies that −α(1)‖f ‖ ≤ α(f ) ≤ α(1)‖f ‖.
Thus, |α(f )| ≤ α(1)‖f ‖, so α is bounded, that is, continuous.

Exercise 9.3.4. Show from this that

‖α‖C(X)∗ = α(1),

where C(X)∗ is the dual of the Banach space C(X).

Exercise 9.3.5. Show that all of this is true for any subalgebra A of C(X) containing 1
and provided with the uniform norm. Specifically, if α is a linear functional on A that
is nonnegative (f ∈ A and f (x) ≥ 0∀x ∈ X ⇒ α(f ) ≥ 0), then α is continuous and
‖α‖A∗ = α(1), where A∗ is the dual of A. Note that A need not be complete, but A∗ is
always a Banach space (Theorem 4.4.4 of [Fried]).

Nelson considers paths starting at some point q0 ∈ R at time t0 = 0, defined on
[0,∞) and taking values inR (actually, inRn, butwewill stick to the one-dimensional
situation). With essentially obvious modifications, the same procedure works equally
well for paths defined on a finite interval [ta, tb] and starting at t0 = ta, but to facilitate
a transition to Nelson’s paper [Nel3] we will do as Nelson did. When we construct the
Wiener measure again using the more familiar procedures from Lebesgue theory we
will return to paths defined on [ta, tb].

Begin by considering the 1-point compactification Ṙ = R ∪ {∞} of R (see, for
example, pages 162–163 of [Simm1]). For each t ∈ [0,∞), let Ṙt be a copy of Ṙ and
consider the product

Ω = ∏
t∈[0,∞)

Ṙt ,
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provided with the Tychonoff product topology. By the Tychonoff theorem (TheoremA,
Section 23, of [Simm1]), Ω is a compact Hausdorff topological space. An elementω ∈ Ω
is then a completely arbitrary curve ω : [0,∞) → Ṙ in Ṙ, perhaps discontinuous
and perhaps passing through the point at infinity. Inside Ω one finds the subset of
continuous curves inR starting at q0 at time t0 = 0.

Weconsider the real Banach spaceC(Ω)of continuous, real-valued functions onΩ.
Keep in mind that C(Ω) is also an algebra with unit 1 under pointwise multiplication.
Nelson produced measures on Ω by defining, for each fixed q0 ∈ R, a nonnegative
linear functional αq0 on C(Ω) and appealing to the Riesz representation theorem. We
will define this linear functional first on a subset of C(Ω) consisting of what are called
finite functions because their value at any ω ∈ Ω depends on only finitely many of the
values ω(t) taken on by ω. Specifically, suppose 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn <∞ and let

F :
n
∏
j=1
Ṙtj → R

be a function defined on the corresponding finite product of copies of Ṙ. Define a
function φ = φF;t1 ,...,tn : Ω→ R by

φ(ω) = φF;t1 ,...,tn (ω) = F(ω(t1), . . . ,ω(tn)). (9.22)

The evaluation map ω→ (ω(t1), . . . ,ω(tn)) is just the projection of Ω onto∏nj=1 Ṙtj and
hence is continuous. Consequently, if F is continuous, then so is φ.

Now we consider the set Cfin(Ω) of all functions on Ω that can be written in the
form φF;t1 ,...,tn for some 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn <∞ and some continuous F. We have just
noticed that these are all continuous on Ω, so

Cfin(Ω) ⊆ C(Ω).

There are, of course, a great many things in C(Ω) that are not in Cfin(Ω), but you will
now show that Cfin(Ω) is uniformly dense in C(Ω).

Exercise 9.3.6. Prove each of the following and then appeal to the Stone–Weierstrass
theorem (Theorem A, Section 36, of [Simm1]) to conclude that Cfin(Ω) is uniformly
dense in C(Ω):
1. Cfin(Ω) is a linear subspace of C(Ω),
2. Cfin(Ω) is a subalgebra of C(Ω) containing the unit element 1,
3. Cfin(Ω) separates points of Ω in the sense that if ω1 ̸= ω2, then there exists a φ ∈

Cfin(Ω) for which φ(ω1) ̸= φ(ω2).
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With q0 ∈ R fixed, but arbitrary, we define, for any finite function φ = φF;t1 ,...,tn ,

αq0 (φ) = αq0 (φF;t1 ,...,tn )

= ∫

Ṙ

⋅ ⋅ ⋅∫

Ṙ

F(q1, . . . , qn)HD(t1 − t0, q1, q0) ⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1)dq1 ⋅ ⋅ ⋅ dqn,

(9.23)

provided the integral exists (t0 = 0 for us right now, but we have included it in the
definition for the sake of symmetry). This requires some interpretation; F is defined
on ∏nj=1 Ṙtj , so q1, . . . , qn are in Ṙ and the integrals must be over Ṙ, which one can
identify with the unit circle S1 by stereographic projection. However, we have not yet
attached any meaning to HD(t, q, q0) when q is the point at infinity in Ṙ. We intend to
define HD(t,∞, q0) = 0 for all t ≥ 0 and all q0 ∈ R. One can either regard this as a
statement about the limit of

HD(t, q, q0) =
1
√4πDt

e−(q−q0)
2/4Dt

as q →∞ in Ṙ or as the physical assumption that the probability density for a Brow-
nian particle to get from any q0 to∞ in any finite time is zero. Interpreted in this way
the integrand in (9.23) is zero at any point (q1, . . . , qn) for which some qj, j = 1, . . . , n,
is the point at infinity so that αq0 (φ) is completely determined by the values of φ on
R× n⋅ ⋅ ⋅ ×R and each integral reduces to an integral overR. Note also that if E1, . . . ,En
aremeasurable sets inR and F(q1, . . . , qn) is defined to be 1 if qj ∈ Ej for each j = 1, . . . , n
and 0 otherwise, then (9.23) reduces to the probability (9.21).

One more remark is in order. We would like αq0 to be a well-defined linear func-
tional on Cfin(Ω), so one must check that if φ(ω) = F(ω(t1), . . . ,ω(tn)) and F does not
depend on some given qj, then the same value for αq0 (φ) results if we defineφ in terms
of the corresponding function of n − 1 variables. But the special case of (9.18)

∫
R

HD(tj − tj−1, qj, qj−1)HD(tj+1 − tj, qj+1, qj)dqj = HD(tj+1 − tj−1, qj+1, qj−1) (9.24)

allows one to integrate out such a variable qj and the result follows from this.
We nowhave awell-defined linear functional αq0 on Cfin(Ω). Furthermore, αq0 (1) =

1 by Exercise 9.3.2 and, sinceHD is nonnegative, αq0 (φ) ≥ 0wheneverφ(ω) ≥ 0∀ω ∈ Ω.
By Exercise 9.3.5, ‖α‖Cfin(Ω)∗ = 1; αq0 is therefore a nonnegative linear functional of
norm 1 on Cfin(Ω). According to the Hahn–Banach theorem (Theorem 4.8.2 of [Fried]),
αq0 has an extension to a bounded linear functional on C(Ω) of norm 1 and, since
Cfin(Ω) is dense in C(Ω), this extension is unique and nonnegative. We will continue
to denote this unique extension by αq0 .

Nowweapply theRiesz representation theorem, Theorem9.3.3, to obtain a regular
measure mq0 on some σ-algebra 𝒜q0 (Ω) on Ω containing the Borel σ-algebra ℬ(Ω) on
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Ω with the property that

αq0 (φ) = ∫
Ω

φ(ω) dmq0 (ω) ∀φ ∈ C(Ω).

Since αq0 (1) = 1, mq0 is, in fact, a probability measure on Ω. For any fixed q0, mq0 is
called aWiener measure on Ω.

Exercise 9.3.7. Show that the Wiener measure of a cylinder set in Ω is the physically
correct probability; part of the exercise is to decide what “physically correct probabil-
ity” means.

One should take careful note of the fact that Nelson’s application of the Riesz rep-
resentation theorem depended in an essential way on the positivity of HD(t, q, q0) =

1
√4πDt e

−(q−q0)2/4Dt . The Schrödinger kernel looks much like this except that D is com-
plex and so the argument breaks down completely. This does not preclude the pos-
sibility that some other argument might produce an analogous (complex) measure
appropriate to the Feynman integral, but wewill see that a theorem of Cameron [Cam]
shows that, in fact, no such measure exists.

This is not exactly what we promised, however. We set out looking for a probabil-
ity measure on the space of continuous paths inR, but the paths in Ω are completely
arbitrary and are even permitted to pass through∞. What one would like to show is
that although Ω is much too large for our purposes, the Wiener measures concentrate
on the subset of Ω consisting of continuous paths that do not pass through∞ in the
sense that this subset has full measure (namely, 1). This, in fact, is where the really
hard work begins. The following theorem, originally due to Wiener, is proved by Nel-
son as Theorem 4 of his paper [Nel3].

Theorem 9.3.4. Fix q0 ∈ R and let

C([0,∞),R) = {ω ∈ Ω : ω is continuous andω(t) ∈ R ∀t ∈ [0,∞)}.

Then C([0,∞),R) is a Borel set in Ω andmq0 (C([0,∞),R)) = 1.

Stated otherwise, the set of points in Ω that correspond to paths that are discon-
tinuous or pass through the point at infinity is, measure theoretically, negligible (has
Wiener measure zero). In the language of probability, an element of Ω is almost surely
real-valued and continuous.

One can obtain more precise information in the following way. Recall that if 0 <
β ≤ 1, a map ω : [0,∞) → R is said to be (locally) Hölder continuous of order β if, for
every 0 < m <∞, there exists anM > 0 such that

ω(s) − ω(t)
 ≤ M | s − t |

β ∀ s, t ∈ [0,m].

Wewill denote by Ωβ the set of all elements in Ω that are Hölder continuous of order β.
The following result combines Corollary 3.4.4 of [JL] and Theorem 5.2 of [Simon2].
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Theorem 9.3.5. Fix q0 ∈ R and 0 < β ≤ 1. Then Ωβ is a Borel set in Ω and

mq0 (Ωβ) = {
1 if 0 < β < 1

2 ,

0 if 1
2 ≤ β ≤ 1.

A path in Ω is almost surely Hölder continuous of order β < 1
2 , but almost surely not

Hölder continuous of order β ≥ 1
2 .

Finally, we address the issue of differentiability. We have seen that Perrin, on the
basis of his experimental results, suggested that the path of a Brownian particlemight
well be modeled by a continuous, nowhere differentiable function of the type first de-
scribed byWeierstrass. Although this seems rather implausible physically it is remark-
able that, in 1933, Paley,Wiener and Zygmund proved that a path in Ω is almost surely
a function of this type. The following is Theorem 1.30 of [MP]; we shouldmention that
this reference focuses on the probabilistic definition of a Brownian motion, which we
have not emphasized here, so one will need to absorb some additional terminology in
order to read the proof. A somewhat less ambitious result (a path in Ω is almost surely
differentiable at most on a subset of Lebesgue measure zero) has a more accessible
proof and is Theorem 3.4.7 of [JL].

Theorem 9.3.6. Fix q0 ∈ R and let

CND([0,∞),R) = {ω ∈ C([0,∞),R) : ω(t) is nowhere differentiable on [0,∞) }.

Then CND([0,∞),R) is a Borel set in Ω andmq0 (CND([0,∞),R)) = 1.

Nowwe will turn to the second construction of Wiener measure, a bit less elegant
perhaps, but also certain to bemore familiar to thosewho recall the usual construction
of the Lebesgue measure onRn. We will begin with a schematic of the procedure; for
the sake of clarity we have included in Appendix F a sketch of some of the basic mea-
sure theory that goes into the construction (Sections 1–2, Chapter 12, of [Roy] contain
everything we will need).

We begin with the underlying set X = C0[ta, tb] and its semi-algebra ℐ of cylinder
sets. In order for the Carathéodorymachinery (see Appendix F) to kick inwe need only
define a pre-measure m on ℐ. The idea is to do this in such a way that for any I ∈ ℐ,
m(I) has the appropriate physical interpretation in terms of Brownian motion. This
gives us no real choice; we must take

m(I) = m(I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]))

=

βn

∫
αn

⋅ ⋅ ⋅

β1

∫
α1

HD(t1 − t0, q1, q0) ⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1) dq1 ⋅ ⋅ ⋅ dqn, (9.25)

where q0 = 0 is the fixed “starting point” for the curves. It will be useful later to have
this written as a Lebesgue integral over the rectangle (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]. We will
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write

m(I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn])) = ∫
(α1 , β1]×⋅⋅⋅×(αn , βn]

Wn(t,q) d
nq, (9.26)

where t = (t1, . . . , tn) with ta = t0 < t1 < ⋅ ⋅ ⋅ < tn−1 < tn ≤ tb, q = (q1, . . . , qn), dnq stands
for Lebesgue measure onRn and

Wn(t,q) = HD(t1 − t0, q1, q0) ⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1) (9.27)

= [(4πD)n(t1 − t0) ⋅ ⋅ ⋅ (tn − tn−1)]
−1/2e−

1
4D ∑

n
k=1
(qk−qk−1)

2

tk−tk−1 (9.28)

and again we recall that q0 = 0.
Before confronting the issue of whether or not this is a pre-measure one should

notice that it is not obviously well-defined. The reason is that an element I of ℐ gener-
ally has many different representations as I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]) and (9.25)
appears to depend on the representation. However, the different representations for
a given I ∈ ℐ cannot be too different; they can differ, one from another, only by the
insertion or deletion of subdivision points s for which the corresponding half-open
interval is (−∞,∞] since it is only these that have no effect on the set of functions in I.
To show that m(I) is well-defined we can begin by choosing from among all of these
representations of I a “minimal” one I(t1, . . . , tn; (α1, β1]× ⋅ ⋅ ⋅×(αn, βn]) in which all such
subdivision points have been deleted so that for each (αj, βj], j = 1, . . . , n, at least one
of αj or βj is finite. Then one need only show that adding to t1, . . . , tn more subdivision
points with “restriction intervals” (−∞,∞] does not alter the value ofm(I). By induc-
tion, it clearly suffices to do this for one point, say, s. Suppose first that t0 < s < t1 so
that the representation for I is

I(s, t1, . . . , tn; (−∞,∞] × (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]).

Now note that if we use this representation in the definition ofm(I), we obtain
βn

∫
αn

⋅ ⋅ ⋅

β1

∫
α1

∞

∫
−∞

HD(s − t0, v, q0)HD(t1 − s, q1, v)

⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1) dvdq1 ⋅ ⋅ ⋅ dqn.

According to (9.24) the first integration (with respect to v) gives
∞

∫
−∞

HD(s − t0, v, q0)HD(t1 − s, q1, v) dv = HD(t1 − t0, q1, q0),

so this is the same as
βn

∫
αn

⋅ ⋅ ⋅

β1

∫
α1

HD(t1 − t0, q1, q0) ⋅ ⋅ ⋅HD(tn − tn−1, qn, qn−1) dq1 ⋅ ⋅ ⋅ dqn,

which is what we wanted to show.
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Exercise 9.3.8. Show that the same argument works if s is in any of the open intervals
(tk−1, tk), k = 2, . . . , n, so m is well-defined on ℐ. Hint: Justify interchanging the order
of integration.

Exercise 9.3.9. Show thatm(0) = 0,m(I) > 0 if I ̸= 0 andm(C0[ta, tb]) = 1.

The good news is that there is only one item left to verify in order to show that m
defines a pre-measure on ℐ, that is, countable additivity. Onemust show that if I1, I2, . . .
are pairwise disjoint elements ofℐ and if I = ⨆∞k=1 Ik is also inℐ, thenm(I) = ∑∞k=1m(Ik).
Once this is done the Carathéodory procedure described in Appendix F produces for
us a measure on C0[ta, tb] that takes the “right” values on cylinder sets. The bad news
is that countable additivity is by far the deepest andmost difficult part of the construc-
tion, that proofs are not so easy to find in the literature and that those one canfind tend
to require a substantial background in stochastic analysis. Our basic source for thema-
terial on Wiener measure [JL] does not include a proof, but suggests a few references,
among them a relatively short proof on pages 13–14 of [Kal]; one can also consult The-
orem 3.1.1 and Appendix A.4 of [GJ] for a proof. We will not attempt to sketch the proof
here. However, one can get some sense of why the argument for countable additiv-
ity must be rather subtle by noting that it must somehow carefully distinguish curves
that are “merely” continuous from those that have derivatives somewhere since, in
the end, the set of curves that are differentiable somewhere will haveWiener measure
zero and so, in a sense, “do not count.” In the functional analytic approach of Nelson
that we described earlier one seems to get countable additivity for free from the Riesz
representation theorem, but only because the deep issues are shifted to showing that
the measure on Ω concentrates on the continuous curves inR.

Modulo this one, admittedly shameless omission on our part we have produced a
pre-measurem on the pre-algebra ℐ of cylinder sets inC0[ta, tb]. Carathéodory’s proce-
dure then provides a complete measure, which we will also denote m, on a σ-algebra
𝒲 of subsets of C0[ta, tb] containing σ(ℐ) = ℬ(C0[ta, tb]); (C0[ta, tb],𝒲 ,m) is, in fact,
the completion of (C0[ta, tb],ℬ(C0[ta, tb]),m|ℬ(C0[ta ,tb])), so𝒲 consists precisely of sets
of the form A ∪ B, where A ∈ ℬ(C0[ta, tb]) and B is a subset of some C ∈ ℬ(C0[ta, tb])
withm(C) = 0. The elements of𝒲 are calledWiener measurable sets;m itself is called
theWiener measure on C0[ta, tb]. More accurately, one should say thatm is theWiener
measure starting at q0 = 0 since this was built into our definition ofm on the cylinder
sets in (9.25); one might even prefer to denote it m0 and use mq0 to indicate the anal-
ogous measure built with starting point q0. Until it becomes necessary to be careful
about the distinction, however, we will stick withm.

This construction of Wiener measure is so analogous to the usual construction of
the Lebesguemeasure onRn thatwewoulddowell to sounda cautionary note.Wiener
measure does not share all of the nice properties of Lebesgue measure onRn. For ex-
ample, it is not translation invariant. Indeed, one can show that there is no nontrivial
translation invariant Borel measure on C0[ta, tb] at all; this is Theorem 3.1.3 of [JL].
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Here is another example. Lebesguemeasure onRn has the property that ifM is amea-
surable set in Rn, then, for any c ∈ R, cM = {cx : x ∈ M} is also measurable. The
analogous statement in C0[ta, tb], however, is false. There exist Wiener measurable
sets M in C0[ta, tb] for which 2M = {2x : x ∈ M} is not Wiener measurable (see [JS] or
Section 4.2 of [JL]).

So far we only know how to compute the Wiener measure of cylinder sets, so we
will try to enlarge our arsenal just a bit. Fix (t1, . . . , tn) with ta = t0 < t1 < ⋅ ⋅ ⋅ < tn ≤ tb
and denote this n-tuple

t = (t1, . . . , tn).

Now define the evaluation map

evt : C0[ta, tb]→ R
n

by

evt(x) = (x(t1), . . . , x(tn))

for every x ∈ C0[ta, tb]. Note that evt is clearly linear and it is bounded because

evt(x)

2
= x(t1)

2 + ⋅ ⋅ ⋅ + x(tn)
2 ≤ n ( max

ta≤t≤tb

x(t)
 )

2
= n ‖x‖2.

Thus, evt is continuous and therefore Borel measurable, that is, for any Borel set A in
Rn,

ev−1t (A) = {x ∈ C0[ta, tb] : (x(t1), . . . , x(tn)) ∈ A}

is a Borel set in C0[ta, tb]. The converse is also true, that is, ev−1t (A) ∈ ℬ(C0[ta, tb]) if
and only if A ∈ ℬ(Rn); this is Proposition 3.5.1 of [JL].

In particular, m( ev−1t (A) ) is defined and we would like to compute it. The result
we will prove is entirely analogous to (9.26). Specifically, we will show that

m( ev−1t (A) ) = ∫
A

Wn(t,q) d
nq,

whereWn(t,q) is given by (9.27). The functionWn(t, ⋅ ) is positive and satisfies

∫
Rn

Wn(t,q) d
nq = 1.

Thus, we can use it to define a probability measure νn onRn by

νn(E) = ∫
E

Wn(t,q) d
nq
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for every Lebesguemeasurable set E inRn. We wish to compare this with the pushfor-
ward measure (evt)∗(m) onRn defined by

( (evt)∗(m) )(E) = m( ev
−1
t (E) )

(see Remark 4.3.3). According to (9.26), the measures νn and (evt)∗(m) agree when E is
a rectangle of the form (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]. But these rectangles generate the Borel
sets ℬ(Rn) inRn, so

νn = (evt)∗(m) on ℬ(Rn).

Consequently, for all A ∈ ℬ(Rn),

m( ev−1t (A) ) = ((evt)∗(m))(A) = νn(A) = ∫
A

Wn(t,q) d
nq,

as required. Note, in particular, that if A has Lebesgue measure zero, then ev−1t (A) has
Wiener measure zero.

We will show now that, in fact, the same is true for any Lebesgue measurable set
inRn. Denote the σ-algebra of Lebesguemeasurable sets inRn by𝒜Leb(R

n) and write
μLeb for the Lebesgue measure..

Theorem 9.3.7. Let t = (t1, . . . , tn) be fixed, where ta = t0 < t1 < ⋅ ⋅ ⋅ < tn ≤ tb. Then

evt : (C0[ta, tb],𝒲)→ (R
n,𝒜Leb(R

n))

defined by

evt(x) = (x(t1), . . . , x(tn))

is measurable and, for any E ∈ 𝒜Leb(R
n),

m( ev−1t (E)) = ∫
E

Wn(t,q) d
nq.

Proof. First we show that evt is measurable. Let E ∈ 𝒜Leb(R
n). Since (Rn,𝒜Leb(R

n),
μLeb) is the completion of (Rn,ℬ(Rn), μLeb|ℬ(Rn)), E can be written as E = A∪B, where
A ∈ ℬ(Rn) and B ⊆ C, where C is in ℬ(Rn) and has μLeb(C) = 0. Now,

ev−1t (E) = ev
−1
t (A) ∪ ev

−1
t (B)

and ev−1t (B) ⊆ ev
−1
t (C). We have just seen that ev−1t (A) and ev

−1
t (C) are in ℬ(C0[ta, tb])

andm( ev−1t (C) ) = 0. But (C0[ta, tb],𝒲 ,m) is the completion of (C0[ta, tb],ℬ(C0[ta, tb]),
m|ℬ(C0[ta ,tb])). It follows that ev

−1
t (E) is in𝒲, so evt is measurable.
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Remark 9.3.3. This shows that if E ⊆ Rn is Lebesgue measurable, then ev−1t (E) is
Wiener measurable. In fact, the converse is also true, that is, ev−1t (E) is Wiener mea-
surable if and only if E is Lebesgue measurable; this is Theorem 3.5.2 of [JL].

Completeness also implies that ev−1t (B) is in𝒲 andm(ev−1t (B)) = 0. Consequently,

m( ev−1t (E) ) = m( ev
−1
t (A) ) = ∫

A

Wn(t,q) d
nq = ∫

E

Wn(t,q) d
nq,

as required.

Note that this result canbe rephrasedby saying that thepushforwardmeasure (evt)∗(m)
onRn agrees with themeasure onRn determined by the density functionWn(t,q) and
the Lebesgue measure.

The Wiener measure of a set of the form ev−1t (E) for E Lebesgue measurable in
Rn can be computed as a finite-dimensional integral. We will now show that, more
generally, the integral with respect to Wiener measure of a function on C0[ta, tb] that
depends only on the values each x ∈ C0[ta, tb] takes at t = (t1, . . . , tn) is just a finite-
dimensional integral over Rn; as we did in Nelson’s construction we will call these
finite functions in C0[ta, tb]. More precisely, we will prove the following.

Theorem 9.3.8. Let t = (t1, . . . , tn) be fixed, where ta = t0 < t1 < ⋅ ⋅ ⋅ < tn ≤ tb, and let
f : Rn → R be a Lebesguemeasurable function. Define φ : C0[ta, tb]→ R by φ = f ∘evt,
that is,

φ(x) = f (x(t1), . . . , x(tn))

for all x ∈ C0[ta, tb]. Then

∫
C0[ta ,tb]

φ(x) dm(x) = ∫
Rn

f (q)Wn(t,q) d
nq,

whereWn(t,q) is given by (9.27) and the equality is interpreted in the strong sense that if
either side is defined, whether finite or infinite, then so is the other side and they agree.

Proof. We have shown that evt : C0[ta, tb] → Rn is measurable so we can apply the
change of variables formula (4.44) to obtain

∫
C0[ta ,tb]

φ(x) dm(x) = ∫
C0[ta ,tb]

(f ∘ evt)(x) dm(x) = ∫
Rn

f (q) d((evt)∗(m))(q).

But we have also shown that d((evt)∗(m))(q) = Wn(t,q) dnq, so the result follows.

We should probably compute one or two simple integrals (many more examples
can be found in Section 3.3 of [JL] and in [GY]). Let us fix t = (t1) with ta = t0 < t1 ≤ tb
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andwrite evt1 for evt. Then evt1 (x) = x(t1) and, for anymeasurable function f : R→ R,
(f ∘ evt1 )(x) = f (x(t1)) and

∫
C0[ta ,tb]

f (x(t1)) dm(x) = ∫
R

f (q1)W1(t1, q1) dq1 = ∫
R

f (q1)HD(t1 − t0, q1, q0) dq1.

Example 9.3.1. Take f to be the identitymaponR, that is, f (q1) = q1. Then (f ∘evt1 )(x) =
evt1 (x) = x(t1), so

∫
C0[ta ,tb]

x(t1) dm(x) = ∫
R

q1W1(t1, q1) dq1

= [4πD(t1 − t0)]
−1/2
∫
R

q1e
− 1
4D
(q1−q0)

2

t1−t0 dq1

= [4πD(t1 − t0)]
−1/2
∫
R

q1e
− 1
4D

q21
t1−t0 dq1

= 0

because the integrand is odd.

Example 9.3.2. Take f to be f (q1) = q21 . Then

∫
C0[ta ,tb]

x(t1)
2 dm(x) = ∫

R

q21 W1(t1, q1) dq1

= [4πD(t1 − t0)]
−1/2
∫
R

q21e
− 1
4D

q21
t1−t0 dq1

= [4πD(t1 − t0)]
−1/2
[4D(t1 − t0)]

3/2
∫
R

u2e−u
2
du

= 2D(t1 − t0),

where we have used the Gaussian integral

∫
R

u2e−u
2
du =
√π
2

(see Exercise A.0.3.2 of Appendix A).

These examples may seem a bit artificial, so we would like to try to get something
more interesting out of Theorem 9.3.8. For this, however, and for other purposes as
well we will need the famous Hille–Yosida theorem and a generalization of the Lie–
Trotter–Kato product formula (Theorem 8.1.1). These are discussed in Appendix J. It
is shown in Example J.0.3 that the heat semigroup {Tt}t≥0 (with D = 1) coincides with
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the semigroup {etΔ}t≥0 generated by minus the Laplacian. We will now use this and
Theorem 9.3.8 to show that heat flow can be represented as a Wiener (path) integral.
We will work on the interval [0, t] for some fixed, but arbitrary t > 0 and will apply
Theorem 9.3.8 to the trivial partition 0 = t0 < t1 = t. For reasons that will become clear
momentarily we will use y1 as the integration variable and write, for any ψ0 ∈ L2(R),

(etΔψ0)(q) = ∫
R

(4πt)−1/2e−(y0−y1)
2/4tψ0(y1) dy1,

where y0 = q. Make the change of variable q1 = y1 − q and q0 = y0 − q = q − q = 0
(which we need to apply Theorem 9.3.8). Then

(etΔψ0)(q) = ∫
R

(4πt)−1/2e(q0−q1)
2/4tψ0(q1 + q) dq1,

where q0 = 0. Now note that, with t = (t1) = (t)written simply as t and q = (q1)written
as q1,

W1(t,q) = W1(t, q1) = (4πt)
−1/2e−(q0−q1)

2/4t ,

so

(etΔψ0)(q) = ∫
R

ψ0(q1 + q)W1(t, q1) dq1 = ∫
C0[0,t]

(f ∘ evt1 )(x) dmt(x),

where f (q1) = ψ0(q1 + q) and we have written mt to emphasize the dependence of the
Wiener measure on t. Since t1 = t we finally arrive at

(etΔψ0)(q) = ∫
C0[0,t]

ψ0(x(t) + q) dmt(x) (9.29)

as the path integral representation for the heat flow. Shortly we will describe a very
substantial extension of this result which combines Theorem 9.3.8 with the Trotter
product formula in order to accommodate a nonzero potential term.

TheWienermeasure of aWienermeasurable setW ∈𝒲 has, in itself, a nice phys-
ical interpretation; m(W) is the probability that a Brownian path starting at q0 = 0
satisfies whatever conditions defineW . Even so, this is not where its real significance
lies for us. Recall that we got into this business in the first place because we were in-
terested in whether or not the Feynman “integral” was really an integral and that the
reason we cared about Feynman integrals was that they describe the time evolution
operators

e−(i/ℏ)(t−t0)(H0+V) (9.30)
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of a quantum system, either directly (8.2) or by way of the propagator (8.3). We will
soon have something to say about whether or not the Feynman “integral” is an inte-
gral in the same sense that theWiener integral is, but first wewould like to see that the
analogous “evolution question” for the heat equation has an entirely satisfactory and
rigorous solution in the context of theWiener integral. The first step in this direction is
the path integral representation (9.29) for etΔ, but nowwewould like to include a (suf-
ficiently nice) potential V and consider the evolution operator et(Δ−V). The result we
will describe is a very special case of the so-called Feynman–Kac formula. To keep the
argument as simple as possible we will make some wildly extravagant assumptions,
but we will mention also a much more general result that is proved in Theorem 12.1.1
of [JL]; there is also a proof fashioned on the Nelson approach to the Wiener integral
in Theorem X.68 of [RS2].

Wewill againwork on the interval [0, t] for some fixed, but arbitrary t > 0 andwill
consider an operator of the form −Δ + V on L2(R), where V : R → R is a real-valued
(potential) function concerning which we will need to make some assumptions. The
assumptions will have to be sufficient to guarantee that −(−Δ+V) = Δ−V generates a
semigroup et(Δ−V) of operators on L2(R) to which we can apply the generalized Trotter
product formula in Theorem J.0.5. Now, in Section 9.2 we isolated a number of condi-
tions on V that ensure the self-adjointness of −Δ + V . In particular, by Theorem 9.2.4,
if V happens to be continuous and bounded, then −Δ + V is self-adjoint on 𝒟(Δ) and
this is what we will assume for our proof. This is our “wildly extravagant” assump-
tion. Everything we will do can be proved under the much weaker assumption that V
satisfies the conditions specified in Theorem 9.2.8; proofs in this case are available in
Theorem 12.1.1 of [JL] and Theorem X.68 of [RS2].

We will not assume that V is nonnegative since we saw in Example J.0.4 that
boundedness is enough to ensure that

et(Δ−V)ψ0 = lim
n→∞
(e

t
nΔe−

t
nV )

nψ0

for everyψ0 ∈ L2(R). Under these assumptions wewill derive a path integral represen-
tation for heat flow. Specifically, we will show that for every ψ0 ∈ L2(R), every t > 0
and (Lebesgue) almost every q ∈ R,

( et(Δ−V)ψ0 )(q) = ∫
C0[0,t]

e−∫
t
0 V(x(s)+q) dsψ0(x(t) + q) dmt(x), (9.31)

where mt is the Wiener measure on C0[0, t] = {x : [0, t] → R : x is continuous and
x(0) = 0}. Note that if V happens to be zero, then this reduces to (9.29). We begin, as
we did for the Feynman integral, by writing out the Trotter products. Fix a t > 0 and
a ψ0 ∈ L2(R). For reasons that will become clear shortly we will use y, y1, . . . , yn as
integration variables. From

(etΔψ0)(q) = ∫
R

(4πt)−1/2e−(q−y)
2/4tψ0(y) dy,
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we conclude that

(etΔ/2e−tV/2ψ0)(q) = (4π(t/2))
−1/2
∫
R

e−(q−y2)
2/4(t/2)e−(t/2)V(y2)ψ0(y2) dy2.

Thus,

[ (etΔ/2e−tV/2)2 ψ0 ](q)

= [ (etΔ/2e−tV/2)( etΔ/2e−tV/2ψ0 ) ](q)

= (4π(t/2))−2/2 ∫
R

e−(q−y1)
2/4(t/2)e−(t/2)V(y1)[∫

R

e−(y1−y2)
2/4(t/2)e−(t/2)V(y2)ψ0(y2) dy2] dy1

= (4π(t/2))−2/2 ∫
R

∫
R

e−
∑2k=1(yk−1−yk )

2

4(t/2) e−(t/2)∑
2
k=1 V(yk)ψ0(y2) dy2 dy1,

where y0 = q. Continuing inductively gives

[ (etΔ/ne−tV/n)n ψ0 ](q)

= (4π(t/n))−n/2 ∫
R

⋅ ⋅ ⋅∫
R

e−
∑nk=1(yk−1−yk )

2

4(t/n) e−(t/n)∑
n
k=1 V(yk)ψ0(yn) dyn ⋅ ⋅ ⋅ dy1, (9.32)

where y0 = q. Now introduce new variables qk = yk − q for k = 0, 1, . . . , n so that q0 = 0
and

[ (etΔ/ne−tV/n)n ψ0 ](q)

= (4π(t/n))−n/2 ∫
R

⋅ ⋅ ⋅∫
R

e−
∑nk=1(qk−1−qk )

2

4(t/n) e−(t/n)∑
n
k=1 V(qk+q)ψ0(qn + q) dqn ⋅ ⋅ ⋅ dq1. (9.33)

Nowwewill use Theorem 9.3.8 to show that the right-hand side of (9.33) can bewritten
as a Wiener integral. We consider the partition 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn = t of [0, t], where
tk = kt/n, k = 0, 1, . . . , n. Let t = (t1, . . . , tn) and q = (q1, . . . , qn) ∈ Rn. Then

Wn(t,q) = (4π(t/n))
−n/2e−

∑nk=1(qk−1−qk )
2

4(t/n) .

Since ψ0 is defined almost everywhere onR, the same is true of

f (q) = f (q1, . . . , qn) = e
−(t/n)∑nk=1 V(qk+q)ψ0(qn + q).

According to Theorem 9.3.8,

∫
Rn

f (q)Wn(t,q) d
nq = ∫

C0[0,t]

(f ∘ evt)(x) dmt(x),
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so we conclude that

[ (etΔ/ne−tV/n)n ψ0 ](q) = ∫
C0[0,t]

e−(t/n)∑
n
k=1 V(x(kt/n)+q)ψ0(x(t) + q) dmt(x).

We have already seen that our hypotheses concerning V imply that, in L2(R),

lim
n→∞
(etΔ/ne−tV/n)n ψ0 = e

t(Δ−V)ψ0.

Convergence in L2(R) implies that some subsequence converges pointwise almost ev-
erywhere, so there is a subsequence {nj}∞j=1 of {n}

∞
n=1 such that for almost every q ∈ R,

lim
j→∞
( (etΔ/nje−tV/nj)nj ψ0 )(q) = ( e

t(Δ−V)ψ0 )(q).

Now, since every x ∈ C0[0, t] is continuous and since we have assumed that V is con-
tinuous,

lim
j→∞

nj
∑
j=1

V(x(jt/nj) + q)(t/nj) =
t

∫
0

V(x(s) + q) ds

because the left-hand side is a limit of Riemann sums for the right-hand side. Conse-
quently,

lim
j→∞

e
− t
nj
∑
nj
j=1 V(x(jt/nj)+q) = e−∫

t
0(V(x(s)+q) ds.

Next observe that x(t) + q = evt(x) + q.

Exercise 9.3.10. Use the fact that ψ0 is defined almost everywhere on R and Theo-
rem 9.3.7 to show that ψ0(x(t) + q) is defined formt-almost every x ∈ C0[0, t].

Thus, formt-almost every x ∈ C0[0, t] and almost every q ∈ R,

lim
j→∞

e−(t/nj)∑
nj
j=1 V(x(jt/nj)+q)ψ0(x(t) + q) = e

−∫
t
0(V(x(s)+q) dsψ0(x(t) + q).

We can therefore complete the proof of (9.31) by showing that we can take the limit

lim
j→∞
∫

C0[0,t]

e−(t/nj)∑
nj
j=1 V(x(jt/nj)+q)ψ0(x(t) + q) dmt(x)

inside the integral. Since theWiener integral is anhonest Lebesgue integralwe are free
to apply the dominated convergence theorem (see, for example, Theorem 1.8 of [LL]).
But sinceV is assumed boundedwe can letM be a positive constant for which |V(u)| ≤
M for every u ∈ R and then

 e
−(t/nj)∑

nj
j=1 V(x(jt/nj)+q)ψ0(x(t) + q)

 ≤ e
(t/nj)∑

nj
j=1 M ψ0(x(t) + q)

 = e
tM ψ0(x(t) + q)

.
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Exercise 9.3.11. Show that

∫
C0[0,t]

etM ψ0(x(t) + q)
 dmt(x) <∞

and conclude that the dominated convergence theorem gives

lim
j→∞
∫

C0[0,t]

e−(t/nj)∑
nj
j=1 V(x(jt/nj)+q)ψ0(x(t) + q) dmt(x)

= ∫
C0[0,t]

e−∫
t
0 V(x(s)+q) dsψ0(x(t) + q) dmt(x).

Putting all of this together gives (9.31) and we have a path integral representation
for the evolution operators et(Δ−V) for the heat/diffusion equation on L2(R) when the
potential is continuous and bounded; wemention oncemore that the same result can
be provedwithmuch less restrictive conditions onV and refer those interested to The-
orem 12.1.1 of [JL] and Theorem X.68 of [RS2].

All of this is very nice and has had an enormous impact on awide range of mathe-
matical disciplines (see, for example, [KacM]), but what wewere really hoping for was
an analogous result for the quantummechanical time evolution operators

eit(Δ−V)

(to stress the similarity with the diffusion operators we have adopted units in which
ℏ = 1 and taken t0 = 0 and m =

1
2 in (9.30)). The similarity of the evolution operators

certainly tempts one to believe that it should be possible to modify the construction
of the Wiener measure to accommodate the quantum evolution. Feynman suspected
something of the sort.

“Some sort of complex measure is being associated with the space of functions x(t). Finite re-
sults can be obtained under unexpected circumstances because the measure is not positive ev-
erywhere, but the contributions from most of the paths largely cancel out. These curious math-
ematical problems are sidestepped by the subdivision process. However, one feels as Cavalieri
must have felt calculating the volume of a pyramid before the invention of calculus.”

Feynman [Feyn], page 8.

Even one of the greatest mathematicians of the twentieth century succumbed to the
temptation.

“It is natural that such a complex measure ... will be just as “good” asWiener measure. ... A strict
proof of this fact does not differ from the corresponding proof for the case of Wiener measure.”

Gel’fand and Yaglom [GY], page 58.
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Cameron [Cam], however, admonishes us that it is sometimes wise to resist tempta-
tion. Let us take amoment to decidewhat onewouldwant from a “Feynmanmeasure”
and then seewhat Cameron has to say about it. In Section 8.1 we discussed Feynman’s
interpretation of the two-slit experiment and how it led to his notion of a path integral.
The idea was to “weight” each classically possible path for the particle with an am-
plitude and “add” these amplitudes with a normalizing factor over all such paths. As
we did for Brownian motion a bit earlier we can consider the following special case.
Let 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn−1 < tn = t be a uniform partition of [0, t] with Δt = t/n and
consider the cylinder set

I = I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn])
= {x ∈ C0[0, t] : x(tj) ∈ (αj, βj], j = 1, . . . , n}.

For a Brownian particle starring at q0 = 0 at t0 = 0 the probability that the particle is
in (αk , βk] at time tk for each k = 1, . . . , n is

βn

∫
αn

⋅ ⋅ ⋅

β1

∫
α1

(4πD(t/n))−n/2e−
1
D ∑

n
k=1
(qk−qk−1)

2

4(t/n) dq1 ⋅ ⋅ ⋅ dqn, (9.34)

where q0 = 0. For a free (V = 0) quantum particle, Feynman’s expression for the
amplitude of a particle passing through (αk , βk] at time tk for each k = 1, . . . , n is

βn

∫
αn

⋅ ⋅ ⋅

β1

∫
α1

(4πi(t/n))−n/2e i∑
n
k=1
(qk−qk−1)

2

4(t/n) dq1 ⋅ ⋅ ⋅ dqn, (9.35)

where we continue to use units in which ℏ = 1 and take t0 = 0 and m = 1
2 . Formally,

at least, (9.35) is just (9.34) with complex “diffusion constant” D = i. The construc-
tion of the Wiener measure begins with (9.34) which is, by definition, the measure
of I = I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]). This definition is fundamentally what is be-
hind the ability of the Wiener integral to represent the evolution operators of the dif-
fusion equation. By the same token, any measure on C0[0, t] that is to provide a path
integral representation for the time evolution of a quantum particle’s probability am-
plitude must begin by assigning the “correct” (according to Feynman) amplitude to
I(t1, . . . , tn; (α1, β1] × ⋅ ⋅ ⋅ × (αn, βn]), that is, (9.35); note that this is complex. The exis-
tence of such a measure is the question addressed by Cameron.

Remark 9.3.4. To state Cameron’s result we should briefly review a few items con-
cerning complex measures (details are available in Section 6.1 of [Rud2]). Let 𝒜 be
a σ-algebra on the set X. A complex measure on the measurable space (X,𝒜) is a
complex-valued map ν : 𝒜→ Cmap on𝒜 that satisfies:
1. ν(0) = 0,
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2. if Ak ∈ 𝒜 for k = 1, 2, . . . with Ak1 ∩ Ak2 = 0 ∀k1 ̸= k2, then

ν(
∞

⨆
k=1

Ak ) =
∞

∑
k=1

ν(Ak),

where the series is required to converge absolutely.

For example, if μ is an ordinary (positive) measure on (X,𝒜) and φ is an element of
L1(X, μ), then ν(A) = ∫A φdμ defines a complex measure on (X,𝒜). For any complex
measure ν on (X,𝒜) one defines the map |ν| on𝒜 by

|ν| (A) = sup∑ν(Ak)
,

where the supremum is taken over all sequences A1,A2, . . . of pairwise disjoint ele-
ments of 𝒜 with A = ⨆∞k=1 Ak . One can show (Theorem 6.2 of [Rud2]) that |ν| is an
ordinary (positive) measure on (X,𝒜); it is called the total variation measure of ν. Fur-
thermore (Theorem 6.4 of [Rud2]), |ν| is a finitemeasure, that is, |ν| (X) < ∞; |ν| (X) is
called the total variation of ν. This is generally expressed by saying that any complex
measure has finite total variation. For example, if ν is given by ν(A) = ∫A φdμ for some
φ ∈ L1(X,𝒜), then the total variation of ν is just the L1 norm of φ.

Cameron [Cam] has shown that there is no complex measure on C0[0, t] with the
property that themeasure of every cylinder set I(t1, . . . , tn; (α1, β1]×⋅ ⋅ ⋅×(αn, βn]) is given
by

βn

∫
αn

⋅ ⋅ ⋅

β1

∫
α1

(4πi(t/n))−n/2ei∑
n
k=1
(qk−qk−1)

2

4(t/n) dq1 ⋅ ⋅ ⋅ dqn.

The proof amounts to showing that if such a measure existed, it would have to have
infinite total variation, which is not possible (see the previous remark). This is not to
say that making rigorous sense of the Feynman integral is hopeless, but only that the
most obvious attempt to do so cannot succeed.Many other, less obvious attempts have
been made over the years and we will have a few words to say about this in the next
section.

9.4 Analytic continuation

The previous section ended onwhatmight be considered a discouraging note.We had
hoped to mimic Wiener’s construction of his (Lebesgue) measure on C0[0, t] and the
path integral representation it gives rise to for the evolution operators of the diffusion
equation in the case of the Schrödinger equation and the quantum time evolution,
thereby exhibiting the Feynman “integral” as an actual integral. Cameron, however,
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has disabused us of the notion that the Feynman integral can be regarded as an in-
tegral in the Lebesgue sense. Even so, this is not the end of the story. One would still
like to fit the Feynman integral into some rigorous mathematical context even if that
context cannot be the familiar Lebesgue theory. Now, one can argue that we already
have a perfectly rigorous definition of the Feynman integral. It is defined as a limit,
which may or may not exist, and one can simply set out to prove various convergence
theorems (see, for example, [Fuj1], [Fuj2] and [Fuj3]). The only obvious issue onemight
take with this is that, in general, knowing simply that a limit exists does not always
tell you a great deal about it. For example, ∑∞n=1

1
n5 certainly converges. The sum of

the series has a name; it is the value ζ (5) of the Riemann zeta function at 5. Is this an
irrational number? To date, no one knows. We intend to look in another direction.

The search for its appropriate rigorous context has been ongoing essentially
since Feynman introduced his integral. Various approaches have been proposed and
one can obtain a brief overview of some of the most successful of these in [Klau]
and [Mazz1]; much more detailed discussions and comparisons are available in [JL].
We will simply illustrate the sort of thing that can be done by focusing on just one
of these. The approach we will describe was historically the first and is probably the
most “obvious” thing to try. The motivation could not be simpler. Let us consider the
free Schrödinger equation

i 𝜕ψ(q, t)
𝜕t
= −
ℏ
2m
𝜕2ψ(q, t)
𝜕q2
.

Now formally introduce a new variable T, picturesquely referred to as imaginary time
and defined by

T = it.

One quick application of the chain rule shows that, in terms of the variables (q,T), the
Schrödinger equation becomes

𝜕ψ(q,T)
𝜕T
−
ℏ
2m
𝜕2ψ(q,T)
𝜕q2
= 0.

Et voilà, we have the heat equation with diffusion constant D = ℏ2m . On the other
hand, the substitution t = −iT formally turns the heat equation with D = ℏ2m into
the Schrödinger equation. This is amusing enough, but since T = it is not a legitimate
change of the (real) variable t, it really contains little usable information beyond a hint
as to how we might want to proceed.

We have learned a fair amount about the heat equation at this point, even path
integral representations for its solutions, and we would like to use the hint provided
by the formal substitution t → −it to build a rigorous bridge from what we know to
what we would like to know. Here is the plan. We begin by fixing a potential func-
tion V : R → R. As we did earlier in our proof of the Feynman–Kac formula we
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would like to illustrate the idea with minimal technical difficulties by assuming that
V is continuous and bounded. This is much more restrictive than necessary and phys-
ically uninteresting, but the idea is the same for the proof of the more general result
that assumes only that V satisfies the conditions specified in Theorem 9.2.8 (see The-
orem 13.3.1 of [JL]). We will also return to the system of units in which ℏ = 1 and
again take m = 1

2 . Given these assumptions we conclude from Theorem 9.2.4 that
H = H0 + V = −Δ + V is self-adjoint on𝒟(Δ). Moreover, since we have assumed that V
is continuous and since every x ∈ C0[0, t] is continuous by definition, the expression

e−∫
t
0 V(x(s)+q) ds

if defined for every x in C0[0, t] and every q ∈ R. Now, the idea is to consider the right-
hand side of the Feynman–Kac formula (9.31), for which we will introduce the new
symbol

(JV (t)ψ)(q) = ∫
C0[0,t]

e−∫
t
0 V(x(s)+q) dsψ(x(t) + q) dmt(x), (9.36)

where ψ is an arbitrary element of L2(R). For each t > 0 and almost every q ∈ R
we have, by the Feynman–Kac formula, (JV (t)ψ)(q) = (et(Δ−V)ψ)(q), or, more simply,
JV (t) = et(Δ−V). Our “hint” above suggests that we try to extend JV (t) as an operator-
valued function of t to the case in which t is pure imaginary. Needless to say, just
making the formal substitution suggested above in theWiener integral ismeaningless,
but we will now see how to do this extension rigorously.

Remark 9.4.1. Wewould like to perform an analytic continuationmuch in the spirit of
classical complex analysis (Chapter 16 of [Roy]) except that the mapping we will want
to continue analytically takes values in the Banach space ℬ(L2(R)) of bounded linear
operators on L2(R). Wemust therefore definewhat wemean by analyticity in this con-
text. There are three natural choices for such a definition depending on the topology
one chooses for ℬ(L2(R)), but, as it happens, these all give rise to the same notion of
analyticity (Sections 3.10–3.14 of [HP] contain the generalization of classical complex
analysis to vector- and operator-valued functions). We will formulate the definition in
the following way. Let D be a domain (connected, open set) in the complex plane C
and suppose f is a mapping from D to ℬ(L2(R)). Then f is said to be analytic on D if
z ∈ D→ ⟨ψ, f (z)ψ⟩ is an ordinaryC-valued analytic map on D for every ψ ∈ L2(R).

The first step is to show that, because we have assumed that V is bounded, each
exponential et(Δ−V), t > 0, is a bounded operator on L2(R); once this is done we can
regard t → JV (t) = et(Δ−V) as a map from (0,∞) to ℬ(L2(R)) and we can try to analyti-
cally continue it to a map from C+ = {z ∈ C : Re(z) > 0} to ℬ(L2(R)). For this analytic
continuation we will actually need, and will now prove, a bit more.
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Recall that −Δ is a positive, self-adjoint operator so ⟨ψ,−Δψ⟩ ≥ 0 for all ψ ∈
𝒟(Δ). Furthermore, since V is real-valued and bounded, ⟨ψ,Vψ⟩ ≥ m ‖ψ‖2, where
m = infq∈R V(q). Consequently,

⟨ψ, (−Δ + V)ψ⟩ ≥ m ‖ψ‖2.

A symmetric operator A : 𝒟(A) → ℋ on a Hilbert spaceℋ is said to be semi-bounded,
or bounded from below, if, for somem ∈ R, ⟨ψ,Aψ⟩ ≥ m ‖ψ‖2 for all ψ ∈ 𝒟(A); equiva-
lently, ⟨ψ, (m − A)ψ⟩ ≤ 0 ∀ψ ∈ 𝒟(A).

Lemma 9.4.1. LetA : 𝒟(A)→ ℋbea self-adjoint, semi-boundedoperator on theHilbert
spaceℋ with ⟨ψ,Aψ⟩ ≥ m ‖ψ‖2 ∀ψ ∈ 𝒟(A). Then the spectrum σ(A) of A is contained in
[m,∞).

Proof. Since A is self-adjoint, σ(A) ⊆ R. We will show that an x < m cannot be in the
spectrum of A. Let ε = m − x. Then ε > 0 and, for any ψ ∈ 𝒟(A),

(x − A)ψ

2
= ⟨(m − A)ψ − εψ, (m − A)ψ − εψ⟩

= ε2‖ψ‖2 + (m − A)ψ

2
− ε⟨ψ, (m − A)ψ⟩ − ε⟨(m − A)ψ,ψ⟩

≥ ε2‖ψ‖2

since the last two terms are greater than or equal to zero. From this it follows that x−A
is injective and, for any φ in the image of x − A,

(x − A)
−1φ ≤

1
ε2
‖φ‖,

so (x − A)−1 is bounded. Thus, x is in neither the point spectrum nor the continuous
spectrum of A. Since A is self-adjoint, its residual spectrum is empty and we conclude
that x ∉ σ(A), so σ(A) ⊆ [m,∞).

Applying this to −Δ + V we find that σ(−Δ + V) ⊆ [m,∞), wherem = infq∈R V(q).

Exercise 9.4.1. Show that this implies that for each fixed z ∈ C+ = {z ∈ C : Re(z) ≥ 0},
the function fz : σ(−Δ + V)→ C defined by fz(u) = e−zu is bounded.

It therefore follows from the functional calculus (Theorem 5.5.7, Part 2.) that the
operator

e−z(−Δ+V) = ez(Δ−V)

is bounded for every z ∈ C+. In particular, t → JV (t) = et(Δ−V) is a map from (0,∞)
to ℬ(L2(R)). Now, if we can analytically extend this map to pure imaginary values of
t, then, by the Feynman–Kac formula, we have extended the Wiener integral on the
right-hand side of (9.31). If this doeswhat the Feynman integral is supposed to do (and
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we will see that it does), then we can regard this extension as a rigorous definition of
the Feynman integral.

An analytic continuation is always easier to find if you know in your heart what
the extension should be in advance and, in this case, we certainly have a reasonable
candidate for the extension of et(Δ−V) to C+, namely, ez(Δ−V) for z ∈ C+. We will show
that z ∈ C+ → ez(Δ−V) ∈ ℬ(L2(R)) is analytic, but we will also need a continuity
condition on the imaginary axis since it is eit(Δ−V) that we are really after.Wewill show
that the map z → ez(Δ−V) is:

1. strongly continuous onC+ and
2. analytic onC+.

The strong continuity is a simple consequence of the functional calculus (specifically,
Theorem 5.5.7, Part 5.). To see this, let {zn}∞n=1 be a sequence in C+ converging to z in
C+. Then {fzn (u)}

∞
n=1 = {e

−znu}∞n=1 converges to e
−zu for each u in σ(Δ − V).

Exercise 9.4.2. Show that the sequence { ‖e−znu‖∞ }∞n=1 is bounded, where ‖e
−znu‖∞ =

sup { | e−znu | : u ∈ σ(Δ − V) }.

By Theorem 5.5.7.5, ezn(Δ−V) converges strongly to ez(Δ−V), so z → ez(Δ−V) is strongly
continuous onC+.

Next we show that z → ez(Δ−V) is analytic on C+. According to Remark 9.4.1 we
must show that for each fixed ψ in L2(R),

z ∈ C+ → ⟨ψ, e
z(Δ−V)ψ⟩ ∈ C

is an analytic complex-valued function of a complex variable. It will suffice to prove
this when ‖ψ‖ = 1. Now, since −Δ + V is self-adjoint on 𝒟(Δ), it has, by the Spec-
tral Theorem 5.5.6, an associated projection-valued measure E onR and, from this, a
corresponding resolution of the identity {Eλ}λ∈R. Together, E and ψ determine a prob-
ability measure ⟨ψ,Eψ⟩ which, by (5.34), is concentrated on the spectrum σ(−Δ + V).
Moreover, by the functional calculus (Theorem 5.5.7),

⟨ψ, e−z(−Δ+V)ψ⟩ = ∫
R

e−zλd⟨ψ,Eλψ⟩ =
∞

∫
m

e−zλd⟨ψ,Eλψ⟩,

since σ(−Δ + V) ⊆ [m,∞), where m = infq∈R V(q). Since we have already shown that
z → ez(Δ−V) is strongly continuous,

z → ⟨ψ, ez(Δ−V)ψ⟩ (9.37)

is a continuous complex-valued function of complex variable. Now, to prove analytic-
ity we will apply Morera’s theorem, which we now recall in the form stated in Theo-
rem 10.17 of [Rud2].
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Theorem 9.4.2 (Morera’s theorem). Let D be a domain in the complex plane C and f :
D→ C a continuous function. If

∫
𝜕Γ

f (z)dz = 0

for every closed triangular region Γ in D, then f is analytic on D (𝜕Γ is the simple closed
contour that is the boundary of Γ).

Thus, we need to show that for any closed triangular region Γ inC+, the integral

∫
𝜕Γ

⟨ψ, e−z(−Δ+V)ψ⟩ dz = ∫
𝜕Γ

[
∞

∫
m

e−zλd⟨ψ,Eλψ⟩] dz (9.38)

is zero. Note that if we could justify interchanging the order of integration, then, since
the Cauchy integral theorem gives

∫
𝜕Γ

e−zλdz = 0

for each λ, the result would follow. For this we need to verify the applicability of Fu-
bini’s theorem. To be clear we will record the form of Fubini’s theorem that we need.
The following is Theorem 8.8 (c) of [Rud2].

Theorem 9.4.3 (Fubini’s theorem). Let (X,𝒜X , μX) and (Y ,𝒜Y , μY ) be σ-finite measure
spaces and let f : X × Y → C be a complex-valued L1 function on the product measure
space (X × Y ,𝒜X×Y , μX × μY ). Let fx : Y → C and f y : X → C be given by fx(y) = f (x, y)
and f y(x) = f (x, y). Then fx ∈ L1(Y , μY ) for μX -almost all x ∈ X and f y ∈ L1(X, μX) for
μY -almost all y ∈ Y. Define

φ(x) = ∫
Y

fx(y) dμY (y)

for μX -almost all x ∈ X and

ψ(y) = ∫
X

f y(x) dμX(x)

for μY -almost all y ∈ Y. Then φ ∈ L1(X, μX), ψ ∈ L1(Y , μY ) and

∫
X

φ(x) dμX(x) = ∫
X×Y

f (x, y) d(μX × μY )(x, y) = ∫
Y

ψ(y) dμY (y).

In particular,

∫
X

[∫
Y

fx(y) dμY (y) ] dμX(x) = ∫
Y

[∫
X

f y(x) dμX(x) ] dμY (y).
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The most obvious difficulty we have in applying Fubini’s theorem to (9.38) is that
we do not (yet) have two measure spaces. The inner integral is fine, being an integral
over [m,∞)with respect to a probabilitymeasure onR. The outer integral, however, is
a contour integral in the complexplane, sowewill need to see if this canbe regardedas
a Lebesgue integral. This is indeed possible, but to do so one requires some properties
of the Lebesgue–Stieltjes integral. In Appendix H.3 it is shown that the contour inte-
gral over 𝜕Γ can be written as a sum of Lebesgue–Stieltjes integrals, so (9.38) is a sum
of iterated integrals, the first integration beingwith respect to the probabilitymeasure
d⟨ψ,Eλψ⟩ and the second being with respect to some Lebesgue–Stieltjes measure dα
which is a finite measure on each edge of the triangle. It will therefore suffice to justify
the application of Fubini’s theorem to each of these integrals. For each of these, Fu-
bini’s theorem requires that the integrandbe anL1 functionwith respect to the product
measure. Now, we have already seen that for each fixed z in C+, e−zλ is bounded on
[m,∞). Moreover, since the triangle Γ is bounded away fromC− = {z ∈ C : Re(z) < 0},
e−zλ is also bounded on 𝜕Γ for each fixed λ. Since a bounded, continuous function on
a finite measure space is integrable, e−zλ is integrable on each product measure space
and the result follows. This completes the proof that z → ⟨ψ, ez(Δ−V)ψ⟩ is analytic
onC+.

We now have an extension of the operator-valued function JV (t), defined on t > 0
by (9.36), to C+ that is strongly continuous on C+ and analytic on C+. Since analytic
functions onC+ are uniquely determined by their values on (0,∞) and since continu-
ity then uniquely determines the extension to C+, this extension is the only one with
these properties. Furthermore, the extension is given explicitly by JV (z) = e−z(−Δ+V) for
z ∈ C+. In particular, for z = it, t ≥ 0, we have

JV (it) = e
−it(−Δ+V) = eit(Δ−V),

and this, according to our Postulate QM4 (Section 6.2), is the unitary time evolution
operator for a quantum system with Hamiltonian H = −Δ + V (in units for which ℏ = 1
andwithm = 1

2 ), so, for any initial stateψ, JV (t)ψ is a solution to the initial value prob-
lem for the corresponding abstract Schrödinger equation (5.41). This is, of course, the
same result we obtained from the Trotter product formula, which gave rise to the Feyn-
man integral in the first place. Since JV (it) is the analytic continuation of the Wiener
integral in (9.36) to the imaginary axis and since it describes the time evolution of a
quantum state, we shall refer to it as the analytic-in-time operator-valued Feynman in-
tegral.

We should mention once again that in this section we have made extremely re-
strictive assumptions about the potential V in order to lay bare the underlying ideas,
but that the result we have arrived at can be proved under much milder hypotheses
(see Theorem 13.3.1 of [JL]).

We will conclude this section by noting that analytic continuation in time is not
the only approach one might have taken here to build a rigorous bridge between the



390 | 9 Sketches of some rigorous results

heat equation and the Schrödinger equation. In his rather remarkable paper [Nel3],
Edward Nelson analytically continued in the mass parameter and was able to obtain
results similar to those we have described here, but for a quite different family of po-
tentials that included some that are highly singular and much closer to the needs of
the physicists. For this one should consult [Nel3] directly, but it is also discussed in
some detail in Section 13.5 of [JL].



10 Fermionic and supersymmetric harmonic
oscillators

10.1 The Stern–Gerlach experiment and spin one-half

Long ago we conceded that our initial foray into the quantum mechanics of particles
such as the electron was incomplete in that we consciously suppressed a critical as-
pect of their behavior known as spin. The time has come now to do what we can to
remedy this. In truth, we cannot do all that we would like to do because spin is a con-
cept that livesmost naturally in the context of relativistic quantummechanics (specif-
ically, the Dirac equation). Nevertheless, wewill try to provide some sense ofwhat this
phenomenon is and how the physicists have incorporated it into their mathematical
model of the quantum world. In this section we will first briefly describe the famous
Stern–Gerlach experiment, in which this very strange behavior was first observed. The
experiment (first performed in 1922) was not originally designed to observe spin. In-
deed, the notion of spin was not introduced until 1925 (by Uhlenbeck and Goudsmit).
While the historical development of these ideas makes for an interesting story, it is a
bit convoluted and, we feel, could only distract us from our purpose here, so we will
not discuss it (if you are interested in this sort of thing you might consult Section IV.3
of [MR]).

We should be clear at the outset. There is nothing like quantum mechanical spin
in classical physics. This behavior is new, bizarre and wholly quantum mechanical.
There is, however, a classical analogy. The analogy is inadequate and can bemislead-
ing if taken too seriously, but it is the best we can do, so we will begin by describing
it.

Imagine a spherical massm of radius amoving through space on a circular orbit
of radius R ≫ a about some point O and, at the same time, spinning around an axis
throughone of its diameters (to a reasonable approximation, the earth does all of this).
Due to its orbital motion, the mass has an angular momentum L = r × (mv) = r × p
(see (2.20)), which we will now call its orbital angular momentum. The spinning of the
mass around its axis contributes additional angular momentum that one calculates
by subdividing the spherical region occupied by the mass into subregions, regarding
each subregion as a mass in a circular orbit about a point on the axis, approximating
its angular momentum, adding all of these and taking the limit as the regions shrink
to points. The resulting integral gives the angular momentum due to rotation. This is
called the rotational angular momentum, is denoted S and is given by

S = Iω,

where I is themoment of inertia of the sphere andω is the angular velocity (ω is along
the axis of rotation in the direction determined by the right-hand rule from the direc-
tion of the rotation). If the mass is assumed to be uniformly distributed throughout

https://doi.org/10.1515/9783110751949-010
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the sphere (in other words, if the sphere has constant density), then an exercise in
calculus gives

S = 2
5
ma2ω.

The total angular momentum of the sphere is L + S.
Now let us suppose, in addition, that the sphere is charged. Due to its orbital

motion the charged sphere behaves like a current loop. As we saw in Section 4.2,
Maxwell’s equations imply that moving charges give rise to magnetic fields. If we as-
sume that our current loop is very small (or, equivalently, that we are viewing it from
a distance) the corresponding magnetic field is that of a magnetic dipole (see Sec-
tions 14-5 and 34-2, Volume II, of [FLS]). All we need to know about this is that this
magnetic dipole is described by a vector μL called its orbital magnetic moment that is
proportional to the orbital angular momentum. Specifically,

μL =
q
2m

L,

where q is the charge of the sphere (which can be positive or negative). Similarly, the
rotational angular momentum of the charge gives rise to a magnetic field that is also
that of a magnetic dipole and is described by a rotational magnetic moment μS given
by

μS =
q
2m

S. (10.1)

The total magnetic moment μ is

μ = μL + μS =
q
2m
(L + S).

The significance of the magnetic moment μ of the dipole is that it describes the
strength and direction of the dipole field and determines the torque

τ = μ × B

experienced by the magnetic dipole when placed in an external magnetic field B. If
the magnetic field B is uniform (that is, constant), then its only effect on the dipole
is to force μ to precess around a cone whose axis is along B in the same way that the
axis of a spinning top precesses around the direction of the earth’s gravitational field
(see Figure 10.1 and Section 2, Chapter 11, of [Eis]). Note that this precession does not
change the projection μ ⋅ B of μ along B.

If the B-field is not uniform, however, there will be an additional translational
force acting on themasswhich, ifm ismoving through the field, will push it off course.
Precisely what this deflection will be depends, of course, on the nature of B, and we
will say a bit more about this in a moment.
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Figure 10.1: Precession. Repro-
duced from author’s book with the
permission of Springer.

Now we can begin our discussion of the Stern–Gerlach experiment (a schematic is
shown in Figure 10.2). We are interested inwhether or not the electron has a rotational
magnetic moment and, if so, whether or not its behavior is adequately described by
classical physics. What we will do is send a certain beam of electrically neutral atoms
through a nonuniform magnetic field B and then let them hit a photographic plate
to record how their paths were deflected by the field. The atoms must be electrically
neutral so that the deflections due to the charge (ofwhichwe are already aware) do not
mask any deflections due to magnetic moments of the atoms. In particular, we cannot
do this with free electrons. The atoms must also have the property that any magnetic
moment they might have could be due only to a single electron somewhere within it.
Stern and Gerlach chose atoms of silver (Ag) which they obtained by evaporating the
metal in a furnace and focusing the resulting gas of Ag atoms into a beam aimed at a
magnetic field.

Silver is a good choice, but for reasons that are not so apparent. A proper expla-
nation requires some hindsight (not all of the information was available to Stern and
Gerlach) as well as some quantum mechanical properties of atoms that we have not
discussed here. Nevertheless, it is worth saying at least once since otherwise one is
left with all sorts of unanswered questions about the validity of the experiment. So,
here it is. The stable isotopes of Ag have 47 electrons, 47 protons and either 60 or 62
neutrons, so, in particular, they are electrically neutral. Since the magnetic moment
is inversely proportional to the mass and since the masses of the proton and neutron
are each approximately 2000 times the mass of the electron, one can assume that any
magnetic moments of the nucleons will have a negligible effect on the magnetic mo-
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Figure 10.2: Stern–Gerlach
experiment. Reproduced from
author’s book with the permis-
sion of Springer.

ment of the atom and can therefore be ignored. Of the 47 electrons, 46 are contained
in closed, inner shells (energy levels), and these, it turns out, can be represented as
a spherically symmetric cloud with no orbital or rotational angular momentum (this
is not at all obvious). The remaining electron is in what is termed the outer 5s-shell,
and an electron in an s-state has no orbital angular momentum (again, not obvious).
Granting all of this, the only possible source of any magnetic moment for a Ag atom is
a rotational angular momentum of its outer 5s-electron. Whatever happens in the ex-
periment is attributable to the electron and the rest of the silver atom is just a package
designed to ensure this.

We will first see what the classical picture of an electron with a rotational mag-
netic moment would lead us to expect in the Stern–Gerlach experiment and will then
describe the results that Stern and Gerlach actually obtained (a more thorough, but
quite readable account of the physics is available Chapter 11 of [Eis]). For this we will
need to bemore specific about themagnetic fieldB thatwe intend to send theAgatoms
through. Let us introduce a coordinate system in Figure 10.2 in such a way that the Ag
atomsmove in the direction of the y-axis and the vertical axis of symmetry of themag-
net is along the z-axis, so that the x-axis is perpendicular to the paper. The magnet
itself can be designed to produce a field that is nonuniform, but does not vary with y,
is predominantly in the z-direction and is symmetric with respect to the yz-plane. The
interaction between the neutral Ag atom (with magnetic moment μ) and the nonuni-
formmagnetic fieldB provides the atomwith a potential energy −μ ⋅B so that the atom
experiences a force

F = ∇(μ ⋅ B) = ∇( μxBx + μyBy + μzBz ). (10.2)

For the sort of magnetic field we have just described, By = 0 and Bz dominates Bx.
From this one finds that the translational motion is governed primarily by

Fz ≈ μz
𝜕Bz
𝜕z

(10.3)
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(see pages 333–334 of [Eis]). The conclusion we draw from this is that the displace-
ments from the intended path of the silver atoms will be in the z-direction (up and
down in Figure 10.2) and the forces causing these displacements are proportional to
the z-component of themagneticmoment.Of course, different orientations of themag-
netic moment μ among the various Ag atoms will lead to different values of μz and
therefore to different displacements. Moreover, due to the random thermal effects of
the furnace, one would expect that the silver atoms exit with their magnetic moments
μ randomly oriented in space so that their z-components could take on any value in
the interval [−|μ|, |μ| ]. As a result, the expectation based on classical physics would
be that the deflected Ag atoms will impact the photographic plate at points that cover
an entire vertical line segment (see the segment labeled “Classical prediction” in Fig-
ure 10.2). Note that writing q = −e for the charge of the electron and m = me for its
mass, we find

Fz ≈ μz
𝜕Bz
𝜕z
= −

e
2me

Sz
𝜕Bz
𝜕z
,

so that the deflection of an individual Ag atom is a measure of the component Sz of S
in the direction of the magnetic field gradient.

This, however, is not at all what Stern andGerlach observed.What they foundwas
that the silver atoms arrived at the screen at only two points, one above and one the
same distance below the y-axis (again, see Figure 10.2). The experiment was repeated
with different orientations of the magnet (that is, different choices for the z-axis) and
different atoms and nothing changed. We seem to be dealing with a very peculiar sort
of “vector” S. The classical picture would have us believe that, however it is oriented
in space, its projection onto any axis is always one of two things. Needless to say, or-
dinary vectors in R3 do not behave this way. What we are really being told is that
the classical picture is simply wrong. The property of electrons that manifests itself in
the Stern–Gerlach experiment is in some ways analogous to what one would expect
classically of a small charged sphere rotating about some axis, but the analogy can
only be taken so far. It is, for example, not possible to make an electron “spin faster
(or slower)” to alter the length of its projection onto an axis. This is always the same;
it is a characteristic feature of the electron. What we are dealing with is an intrinsic
property of the electron that does not depend on its motion (or anything else); for this
reason it is often referred to as the intrinsic angular momentum of the electron, but,
unlike its classical counterpart, it is quantized.

Not only the electron, but every particle (elementary particle, atom, molecule,
etc.) in quantum mechanics is supplied with some sort of intrinsic angular momen-
tum. Although we will make no serious use of this, we will need some of the termi-
nology, so we will briefly describe the general situation here (for more details see, for
example, Chapter 11 of [Eis], or Chapters 14 and 17 of [Bohm]). The basic idea is that
these particles exhibit behaviors that mimic what one would expect of angular mo-
mentum, but that cannot be accounted for by any motion of the particle. To quantify
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these behaviors every particle is assigned a spin quantum number s. The allowed val-
ues of s are

0, 1
2
, 1, 3

2
, 2, 5

2
, . . . ,

n − 1
2
, . . . , (10.4)

where n = 1, 2, 3, 4, 5, . . . . Intuitively, one might think of n as the number of dots that
appear on the photographic plate if a beam of such particles is sent through a Stern–
Gerlach apparatus. According to this scheme an electron has spin 1

2 (n = 2). Par-
ticles with half-integer spin 1

2 ,
3
2 ,

5
2 , . . . are called fermions, while those with integer

spin 0, 1, 2, . . . are called bosons. We will eventually see that fermions and bosons have
very different properties and play very different roles in particle physics. Among the
fermions, particles of spin 1

2 are by far the principal players. Indeed, one must look
long and hard to find a fermion of higher spin. The best known examples are the so-
called Δ baryons, which have spin 3

2 , but you dare not blink if you are looking for one
of these since their mean lifetime is about 5.63 × 10−24 seconds. Among the bosons,
the photon has spin 1 and the very recently observed Higgs boson has spin 0, whereas
the conjectured, but not yet observed graviton has spin 2.

We have seen that the classical vector S used to describe the rotational angular
momentumdoesnot travelwell into thequantumdomain,where it simplydoesnot be-
have the way one expects a vector to behave. Nevertheless, it is still convenient to col-
lect together the quantities Sx, Sy and Sz, measured, for example, by a Stern–Gerlach
apparatus aligned along the x-, y- and z-axes, and refer to the triple

S = (Sx , Sy , Sz)

as the spin vector. Quantum theory decrees that for a particle with spin quantumnum-
ber s, the only allowed values for the “components” Sx, Sy and Sz are

−sℏ, −(s − 1)ℏ, . . . , (s − 1)ℏ, sℏ.

In particular, for a spin 1
2 particle such as the electron there are only two possible

values, for example,

Sz = ±
ℏ
2
,

and these correspond to the two dots in our Stern–Gerlach experiment. As in the clas-
sical case one can associate a spin magnetic moment μS to each spin vector S, but the
classical definition requires an adjustment. For the electron this is given by

μS = ge(
−e
2me
) S, (10.5)

where −e is the charge of the electron, me is the mass of the electron and ge is a di-
mensionless constant called the electron spin g-factor. As it happens, ge is the most
accurately measured constant in physics, with a value of approximately

ge ≈ 2.00231930419922 ± (1.5 × 10
−12)
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(see [OHUG] for more on the measurement of ge). The Dirac equation predicts a value
of ge = 2 and the corrections are accounted for by quantum electrodynamics. This is
one of the reasons that physicists have such confidence in quantum electrodynamics,
and quantum field theory in general, despite the fact that they do not have the sort of
rigorous mathematical foundations that mathematicians would like to see.

With this synopsis of the general situation behind us we will return the particular
case of spin 1

2 and, still more particularly, to the electron. We know that the classical
picture of the electron as a tiny spinning ball cannot describe what is actually ob-
served, so we must look for another picture that can do this. We pointed out at the
beginning of this section that the correct picture is to be found in relativistic quantum
mechanics and the Dirac equation. What we will describe now is the nonrelativistic
precursor of Dirac’s theory due to Wolfgang Pauli [Pauli1].

Whatever this picture is, it must be a quantummechanical one, so we are looking
for aHilbert spaceℋ and some self-adjoint operators on it to represent the observables
Sx, Sy and Sz . Previously we represented the state of the electron by a wave function
ψ(x, y, z) that is in L2(R3), but we now know that the state of a spin 1

2 particle must
depend on more than just x, y, and z since these alone cannot tell us which of the
two paths an electron is likely to follow in a Stern–Gerlach apparatus; we say “likely
to” because we can no longer hope to know more than probabilities. What we would
like to do is isolate some appropriate notion of the “spin state” of the particle that
will provide us with the information we need to describe these probabilities. Now, we
know that the only possible values of Sz are±

ℏ
2 . By analogywith the classical situation

onemight view this as saying that the spin vector S can only be either “up” or “down,”
but nothing in-between. This suggests that we consider wave functions

ψ(x, y, z, σ) (10.6)

that depend on x, y, z and an additional discrete variable σ that can take only two val-
ues, say, σ = 1 and σ = 2 (or, if you prefer, σ = up and σ = down). Then |ψ(x, y, z, 1) |2

would represent the probability density for locating the electron at (x, y, z) with Sz =
ℏ
2 and similarly |ψ(x, y, z, 2) |2 is the probability density for locating the electron at
(x, y, z)with Sz = −

ℏ
2 . Stated this way it sounds a little strange, but note that this is pre-

cisely the same as describing the state of the electron with two functions ψ1(x, y, z) =
ψ(x, y, z, 1) andψ2(x, y, z) = ψ(x, y, z, 2) and this is what wewill do. Specifically, wewill
identify the wave function of a spin 1

2 particle with a (column) vector

(
ψ1(x, y, z)
ψ2(x, y, z)

) ,

where ψ1 and ψ2 are in L2(R3) and

∫

R3

( ψ1(x, y, z)

2
+ ψ2(x, y, z)


2
) dμ = 1
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because the probability of finding the electron somewhere with either Sz =
ℏ
2 or Sz =

− ℏ2 is 1. The Hilbert space is thereforeℋ = L
2(R3) ⊕ L2(R3).

Now we must isolate self-adjoint operators onℋ to represent the observables Sx,
Sy and Sz . Since these observables represent an intrinsic property of a spin

1
2 particle,

independent of x, y and z, we will want the operators to act only on the spin coordi-
nates 1 and 2 and the action should be constant in (x, y, z). Thus, we are simply look-
ing for 2×2 complex, self-adjoint (that is, Hermitian) matrices. Since the only possible
observed values are ± ℏ2 , these must be the eigenvalues of each matrix. There are, of
course, many such matrices floating around, and we must choose three of them. The
motivation for our choice is based on the following exercise and the fact that Sx, Sy and
Sz correspond tomeasurementsmade along the directions of an oriented, orthonormal
basis forR3.

Exercise 10.1.1. Denote by ℛ3 the set of all 2 × 2 complex, Hermitian matrices with
trace zero.
1. Show that every X ∈ ℛ3 can be uniquely written as

X = ( x3 x1 − ix2

x1 + ix2 −x3
) = x1σ1 + x

2σ2 + x
3σ3,

where x1, x2 and x3 are real numbers and

σ1 = (
0 1
1 0
) , σ2 = (

0 −i
i 0
) , σ3 = (

1 0
0 −1
)

are the so-called Pauli spin matrices.
2. Show that, with the operations of matrix addition and (real) scalar multiplica-

tion,ℛ3 is a three-dimensional, real vector space and {σ1, σ2, σ3} is a basis. Conse-
quently,ℛ3 is linearly isomorphic toR3. Furthermore, defining an orientation on
ℛ3 by decreeing that {σ1, σ2, σ3} is an oriented basis, the map X → (x1, x2, x3) is an
orientation preserving isomorphism whenR3 is given its usual orientation.

3. Show that

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2, σ1σ2σ3 = iI ,

where I is the 2 × 2 identity matrix.
4. Show that σ1, σ2, σ3 satisfy the following commutation relations:

[σ1, σ2]− = 2iσ3, [σ2, σ3]− = 2iσ1, [σ3, σ1]− = 2iσ2. (10.7)

5. Show that σ1, σ2, σ3 satisfy the following anticommutation relations:

[σi, σj]+ = 2δijI , i, j = 1, 2, 3, (10.8)

where δij is the Kronecker delta and [A,B]+ = AB + BA is the anticommutator.
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6. Show that if X = x1σ1 + x2σ2 + x3σ3 and Y = y1σ1 + y2σ2 + y3σ3, then

1
2
[X,Y]+ = (x

1y1 + x2y2 + x3y3) I .

Conclude that if one defines an inner product ⟨X,Y⟩ℛ3 onℛ3 by

1
2
[X,Y]+ = ⟨X,Y⟩ℛ3 I ,

then {σ1, σ2, σ3} is an oriented, orthonormal basis forℛ3 andℛ3 is isometric toR3.
We will refer toℛ3 as the spin model ofR3.

7. Regard the matrices σ1, σ2, σ3 as linear operators on C2 (as a two-dimensional,
complex vector space with its standard Hermitian inner product) and show that
each of these operators has eigenvalues ±1 with normalized, orthogonal eigenvec-
tors given as follows:

σ1 :
1
√2
(
1
1
) ,

1
√2
(
1
−1
) ,

σ2 :
1
√2
(
1
i
) ,

1
√2
(
1
−i
) ,

σ3 : (
1
0
) , (

0
1
) .

This spin model of R3 contains a great deal of useful information and we will
return to it shortly, but first we will use the Pauli spin matrices to define the operators
corresponding to the spin components Sx, Sy and Sz . Ordinarilywewoulduse the same
symbols to denote the corresponding operators, but it will be much more convenient
at this point to denote the operators S1, S2 and S3 and also to opt for coordinates x1, x2

and x3 rather than x, y and z. Specifically, we define

S1 =
ℏ
2
σ1, S2 =

ℏ
2
σ2 and S3 =

ℏ
2
σ3. (10.9)

Each of these is clearly Hermitian, and it follows from Exercise 10.1.1.7 that each has
eigenvalues ± ℏ2 . Note that, in terms of S1, S2 and S3, the commutation relations (10.7)
become

[S1, S2]− = iℏS3, [S2, S3]− = iℏS1, [S3, S1]− = iℏS2. (10.10)

In particular, these operators do not commute and so, according to our Postulate QM6,
no pair of them is simultaneously measurable. This we know imposes uncertainty re-
lations on the measurements of the various spin components. Let us just see what
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one of these looks like by applying (6.17) to S3 and S1 for an electron whose state is
described by the two-component wave function

ψ = (ψ1
ψ2
) .

We have

σψ(S3) σψ(S1) ≥
1
2
 ⟨ψ, [S3, S1]−ψ⟩

 =
1
2
 ⟨ψ, iℏS2ψ⟩



=
1
2
 ⟨ψ, i(ℏ

2/2)σ2ψ⟩


=
ℏ2

4


⟨(

ψ1
ψ2
) , (

0 −i
i 0
)(

ψ1
ψ2
)⟩


=
ℏ2

4


⟨(

ψ1
ψ2
) , (
−iψ2
iψ1
)⟩


=
ℏ2

4
ψ1(−iψ2) + ψ2(iψ1)



=
ℏ2

4
 2 Im (ψ1ψ2)

.

Thus,

σψ(S3) σψ(S1) ≥
ℏ2

2
 Im (ψ1ψ2)

.

Exercise 10.1.2. Find an expression for the expectation value ⟨S3⟩ψ of S3 in the state

ψ = (ψ1
ψ2
) .

We should point out that Pauli’s motivation for the introduction of the specific
operators S1, S2 and S3 was not the same as what we have described here. He too was
looking for 2×2, complexHermitianmatriceswith eigenvalues± ℏ2 , but instead of look-
ing for a basis for the copyℛ3 ofR3 he insisted that the matrices he was after satisfy
the commutation relations (10.10). His reason was that these are precisely the same
as the commutation relations satisfied by the components of the quantized (orbital)
angularmomentum (see, for example, Sections 14.2 and 14.3 of [Bohm]) and he sought
to keep spin angular momentum and orbital angular momentum on the same formal
footing since, classically, they really are the same thing.

Having decided to model the spin state of an electron by a two-component wave
function, Pauli [Pauli1] then proposed a Hamiltonian to describe the interaction of
this “spinning” electron with an external electromagnetic field and wrote down a cor-
responding “Schrödinger equation,” now generally known as the Pauli equation. The
solutions to the equation accurately describe the behavior of a nonrelativistic spin 1

2
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charged particle in an electromagnetic field. The equation, however, has two short-
comings. The most obvious is that, in general, one cannot always ignore relativistic
effects in particle physics. More fundamentally, perhaps, is that in Pauli’s treatment
of the spin of the electron is put in by hand and one would prefer to see it arise of its
own accord from somemore fundamental hypothesis (such as relativistic invariance).
Both of these issueswere beautifully resolved byDirac [Dirac2] in 1928 (for a brief taste
of how this was donewemight suggest Section 2.4 of [Nab4]).Wewill not pursue these
matters any further here, but will instead turn to a quite remarkable property of spin
1
2 particles that will lead us unexpectedly into topology and back to the discussion in
Example 2.2.13. One of our objectives is to get some idea of what spinors are and what
they have to do with spin.

The result of the Stern–Gerlach experiment is completely independent of the di-
rection in R3 onto which one chooses to project the spin vector and hence is inde-
pendent of the choice of oriented, orthonormal basis giving rise to the coordinates x1,
x2 and x3. The Pauli Hamiltonian and the corresponding equations of motion there-
fore need to be invariant under such a change of coordinates, that is, invariant under
the action of rotation group SO(3) on the coordinates. This is also true in classical
mechanics, of course, and in this context we have actually dealt with rotational in-
variance when we discussed symmetries of Lagrangians in Section 2.2. Classically the
situation is somewhat more straightforward and it is important to understand why, so
we will begin with a review of the classical picture.

The mathematical objects used to describe the physical quantities that appear in
classical physics (that is, scalars, vectors and tensors) all have perfectly explicit, well-
defined transformation laws under a change of coordinates, so one need only substi-
tute these into the basic equations and check that they retain the same form (F = mA
is a vector equation precisely because both forces and accelerations transform in the
same way and masses remain constant). These transformation laws are defined rigor-
ously in a way that we will now describe.

Remark 10.1.1. Wewill need a few facts about the representations of SO(3). These are
described in a bit more detail in Section 2.4 of [Nab4], but for the full story one can
consult [Gel].

Recall that a representation of the group SO(3) on a finite-dimensional vector
space 𝒱 is a group homomorphism T : SO(3) → GL(𝒱) of SO(3) into the group of
invertible linear operators on 𝒱 (which can be identified with a group of invertible
matrices once a basis for 𝒱 is chosen). In particular,

T(R1R2) = T(R1)T(R2) ∀R1,R2 ∈ SO(3),

T(idR3 ) = id𝒱 and T(R−1) = T(R)−1 for every R ∈ SO(3). The representation T is said
to be irreducible if there is no nontrivial linear subspace of 𝒱 that is invariant under
T(R) for every R ∈ SO(3); every representation of SO(3) can be built from irreducible
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representations. The elements of 𝒱 are called carriers of the representation and these
are used to represent the various physical and geometrical objects of interest. For each
R ∈ SO(3), T(R) : 𝒱 → 𝒱 describes how each carrier transforms under the rotation R.
With a choice of basis each carrier is represented by a set of numbers, that is, compo-
nents, and each T(R) is represented by a matrix which describes the transformation
law for these components under the rotation R. For a real scalar such as the mass one
takes 𝒱 = R and T(R) = idR for every R ∈ SO(3) so that the value is the same in every
coordinate system. For a vector V inR3 such as the momentum, we take 𝒱 = R3 and
T(R) = R for every R ∈ SO(3) because vectors, by definition, transform in the same
way as the coordinates. Specifically, suppose R = (Ri j)i,j=1,2,3 ∈ SO(3) and x̂i = Ri jxj,
i = 1, 2, 3, are the rotated coordinates (here we sum over j = 1, 2, 3). Then the compo-
nents of V in the two coordinate systems are related by

V̂ i = Ri jV
j, i = 1, 2, 3.

Vector fields transform as vectors at each point, that is, if we write R−1 = (Ri j)i,j=1,2,3 so
that xj = Ri jx̂i, then

V̂ i(x̂1, x̂2, x̂3) = (Ri jV
j)(Rk

1x̂k ,Rk
2x̂k ,Rk

3x̂k), i = 1, 2, 3.

For a second rank tensor field S (such as the stress tensor in continuum mechanics),
𝒱 = R9 and T(R) = R ⊗ R is the tensor product of the matrix R with itself, so the nine
components are related by

Ŝij(x̂1, x̂2, x̂3) = (RimR
j
nS

mn)(Rk
1x̂k ,Rk

2x̂k ,Rk
3x̂k), i, j = 1, 2, 3,

where we sum over k,m, n = 1, 2, 3.
Two representations T1 : SO(3) → GL(𝒱1) and T2 : SO(3) → GL(𝒱2) are equivalent

if there exists an invertible linear transformation P : 𝒱1 → 𝒱2 of 𝒱1 onto 𝒱2 for which

T2 = P ∘ T1 ∘ P
−1.

This is the case if and only if there exist bases for 𝒱1 and 𝒱2 relative to which the ma-
trices of T1(R) and T2(R) are the same for every R ∈ SO(3), that is, if and only if they
differ only in a choice of coordinates.

The point to all of this is that the representations of SO(3) determine transforma-
tion laws and each of these expresses a certain type of rotational invariance in the
sense that if the components of two quantities of the same type are equal in one coor-
dinate system, then the components in any rotated coordinate system are also equal
because they transform in the same way.

Let us return now to Pauli’s two-component electron. To establish some sort of
rotational invariance it would seem that what we need is some representation of SO(3)
on the two-dimensional complex vector spaceC2 of pairs

ψ = (ψ1
ψ2
)
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of complex numbers. The good news is that all of the representations of SO(3) are
known. The bad news is that (up to equivalence, that is, up to a change of coordi-
nates) there is only one irreducible representation of SO(3) on C2, namely, the one
that sends every R ∈ SO(3) to the 2×2 identity matrix. This representation leaves every
element of C2 fixed for every rotation R and we claim that this clearly will not do for
our purposes. The reason is simple. Since ψ1 and ψ2 represent the probability ampli-
tudes for detecting the electron with spin up and spin down, respectively, a rotation
that reverses the direction of the z-axis must interchange ψ1 and ψ2 (up to phase),

(
ψ1
ψ2
)→ eiϕ (ψ2

ψ1
) ,

and the one representation we have available does not do this.
All is not lost, however. Indeed, amoment’s thought shouldmake it clear that our

classical picture of rotational invariance has missed an essential feature of quantum
mechanics.Wave functions are determined only up to phase, so, in particular, ±T(R)ψ
describe precisely the same state and so the transformation law/representation is de-
termined only up to sign. Physicists are inclined to say that what we need is not a
representation of SO(3), but rather a “two-valued representation” of SO(3)

R→ ±T(R).

This really makes no sense, of course, since functions are never “two-valued.” Never-
theless, there is a perfectly rigorous construction that will allow us to make sense of
the underlying idea. To describe this wewill need to exploit a remarkable relationship
between SO(3) and the group SU(2) of 2×2 unitarymatrices with determinant 1, specif-
ically, that SU(2) is the universal double covering group of SO(3). Everything we will
need is proved in Appendix A of [Nab3], but we will sketch a few of the ideas to pro-
vide some intuition. SU(2) and SO(3) are both Lie groups (see Section 5.8 of [Nab3]).
The claim is that there exists a smooth, surjective group homomorphism

Spin : SU(2)→ SO(3)

with kernel ±( 1 0
0 1 ) and with the property that each point in SO(3) has an open neigh-

borhood V whose inverse image under Spin is a disjoint union of two open sets in
SU(2), each of which is mapped diffeomorphically onto V by Spin (this last property
is the meaning of “double cover”). In particular, SO(3) is isomorphic to SU(2) /Z2 and
SU(2) is locally diffeomorphic to SO(3). Since SU(2) is homeomorphic to the 3-sphere S3

(Theorem 1.1.4 of [Nab3]), this implies that SO(3) is homeomorphic to real, projective
3-spaceRP3 (Section 1.2 of [Nab3]). With this we can record the fundamental groups
of SU(2) and SO(3) (see pages 117–119 and Theorem 2.4.5 of [Nab3]):

π1(SU(2)) ≅ 1 (SU(2) is simply connected),
π1(SO(3)) ≅ Z2.
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Let us take a moment to see where the map Spin comes from. The most efficient
way to do this is to identify R3 with ℛ3 as in Exercise 10.1.1. Now note that for any
U ∈ SU(2) and any X ∈ ℛ3, UXUT

= UXU−1 is also inℛ3.

Exercise 10.1.3. Prove this.

Consequently, for each U ∈ SU(2) we can define a map

RU : ℛ
3 → ℛ3

by

RU (X) = UXU
T
= UXU−1 ∀X ∈ ℛ3.

Exercise 10.1.4. Show that RU is an orthogonal transformation of ℛ3 for each U ∈
SU(2).

In particular, the determinant of each RU is either 1 or −1.

Exercise 10.1.5. Show that SU(2) consists precisely of those 2 × 2 complex matrices of
the form

(
α β
−β α
) ,

where |α|2 + |β|2 = 1. Also show that if α = a + bi and β = c + di, then the matrix of RU
relative to the oriented, orthonormal basis {σ1, σ2, σ3} forℛ3 is

(
a2 − b2 − c2 + d2 2ab + 2cd −2ac + 2bd
−2ab + 2cd a2 − b2 + c2 − d2 2ad + 2bc
2ac + 2bd 2bc − 2ad a2 + b2 − c2 − d2

) .

Note that thedeterminant of thismatrix is a continuous, real-valued function onSU(2).

Exercise 10.1.6. Show that each RU has determinant 1. Hint: Continuity.

Consequently, we can define Spin : SU(2) → SO(3) by Spin(U) = RU for each U ∈
SU(2).

Exercise 10.1.7. Prove that Spin is a smooth group homomorphism with kernel

±(
1 0
0 1
) .

The proof of surjectivity requires a bit more work and an appeal to Theorem 2.2.2.
It turns out that for any element R of SO(3), expressed in the form described in Theo-
rem 2.2.2, one can simply write down an element U of SU(2) for which Spin(±U) = R
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(details are available on page 398 of [Nab3]). That SU(2) is a double cover for SO(3)
follows from the fact that S3 is a double cover forRP3 (pages 64–65 of [Nab3]).

Now suppose T : SO(3) → GL(𝒱) is a representation of SO(3). Composing with
Spin gives a group homomorphism

T̃ = T ∘ Spin : SU(2)→ GL(𝒱) (10.11)

from SU(2) to GL(𝒱), that is, a representation of SU(2) on 𝒱. Thus, every representa-
tion of SO(3) gives rise to a representation of SU(2). The converse is not true, however.
Specifically, a given representation T̃ : SU(2)→ GL(𝒱) of SU(2) will clearly descend to
a representation of SO(3) if andonly if T̃(−U) = T̃(U) for everyU ∈ SU(2). The represen-
tations of SU(2) that do not satisfy this condition, but instead satisfy T̃(−U) = −T̃(U)
for every U ∈ SU(2) are what the physicists mean when they refer to two-valued rep-
resentations of SO(3), although they are not representations of SO(3) at all, of course.
There certainly is a representation of SU(2) onC2 that satisfies this condition, namely,
the one that sends every element of SU(2) to itself. Up to equivalence this is, in fact,
the only irreducible one and it is traditionally denoted D

1
2 :

D
1
2 : SU(2)→ GL(C2),

D
1
2 (U) = U ∀U ∈ SU(2).

The carriers ( ψ1
ψ2
) ∈ C2 of this representation are called two-component spinors. There

is a great deal of beautifulmathematics hidden in this apparently simple idea of a two-
component spinor. For a synopsis of someof its connectionswith Clifford algebras and
Hopf bundles from the point of view of spin 1

2 physics we recommend [Socol]. For the
full story of Clifford algebras and spinors in general see [LM].

Exercise 10.1.8. Show that

U = ( cos π
2 −i sin π

2
−i sin π

2 cos π
2
)

is in SU(2) and Spin(±U) is a rotation about the x-axis through π (not π/2) and therefore
reverses the direction of the z-axis. Then note that

D
1
2 (U)(ψ1

ψ2
) = e−

π
2 i (

ψ2
ψ1
)

so that, up to phase, D
1
2 (U) just reverses the spin components ψ1 and ψ2 as Stern–

Gerlach insists that it should. Hint: For Spin(±U) use Exercise 10.1.4.

Note that there is an interesting doubling of angles under Spin in the previous ex-
ercise. This is a characteristic feature of Spin and arises because Spin(U)(X) = UXUT
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essentially “squares”U . It is also the feature thatwill leadus to oneof themost remark-
able properties of spin 1

2 particles (and fermions in general). To uncover this property
we will make considerable use of the discussion in Example 2.2.13, so we suggest a
review of this before you proceed.

As we have learned (Example 2.2.13), the physical process of rotating an object in
space is modeled mathematically by a continuous curve α : [t0, t1] → SO(3) in SO(3).
For example,

(
1 0 0
0 cos t − sin t
0 sin t cos t

)

is a rotation through t radians about the x-axis, so the curve α : [0, 2π] → SO(3) de-
fined by this matrix for 0 ≤ t ≤ 2π defines a continuous rotation about the x-axis
through 360∘. This is a loop at the 3 × 3 identity matrix I3×3 in SO(3) and hence it de-
termines an element [α] of the fundamental group π1(SO(3)). On the other hand, the
curve α2 : [0, 4π] → SO(3) defined by the same matrix for 0 ≤ t ≤ 4π (α traversed
twice) defines a rotation about the x-axis through 720∘ and determines the element
[α2] = [α]2 in π1(SO(3)). How does the wave function of a spin 1

2 particle respond to
these two rotations? To answer this we recall that, since Spin : SU(2) → SO(3) is a
covering space, curves in the covered space SO(3) lift uniquely to curves in the cover-
ing space SU(2) once an initial point is selected (see Corollary 1.5.13 of [Nab3]). Since
α begins at I3×3 and Spin(±I2×2) = I3×3, there is a unique curve α̃ : [0, 2π]→ SU(2)with
Spin ∘ α̃ = α and α̃(0) = I2×2.

Exercise 10.1.9. Show that α̃(t) is given by

(
cos t

2 −i sin
t
2

−i sin t
2 cos t

2
) ,

where 0 ≤ t ≤ 2π. Similarly, the unique lift of α2 starting at I2×2 is given by this same
matrix with 0 ≤ t ≤ 4π. Note that the lift of α begins at I2×2 and ends at −I2×2, whereas
the lift of α2 begins and ends at I2×2, passing through −I2×2 along the way.

The response of the two-component spinor wave function ψ = ( ψ1
ψ2
) to these ro-

tations is described by D
1
2 applied to the points along the lifted curves in SU(2). In

particular,

D
1
2 (α̃(0)) (ψ1

ψ2
) = D

1
2 (I2×2)(

ψ1
ψ2
) = (

ψ1
ψ2
) ,

whereas

D
1
2 (α̃(2π)) (ψ1

ψ2
) = D

1
2 (−I2×2)(

ψ1
ψ2
) = −(

ψ1
ψ2
) ,

so a rotation through 360∘ reverses the sign of the wave function.
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Exercise 10.1.10. Show that a rotation through 720∘ returns the wave function to its
original value.

We have therefore found a physical system (namely, a spin 1
2 particle) whosewave

function is changed by a rotation through 360∘, but returns to its original value after
a rotation through 720∘. It certainly does seem strange to our macroscopically con-
ditioned brains that a 360∘ rotation and a 720∘ rotation could result in “something
different,” but this is quantum mechanics, after all, where strange is the order of the
day. Alleviating this feeling of strangeness to some degree is really the point of Dirac’s
ingenious scissors experiment, which we described in Example 2.2.13.

Note, however, that mathematically the difference between α and α2 is not at all
mysterious if we keep in mind that π1(SO(3)) ≅ Z2, but SU(2) is simply connected.
The loop α2 in SO(3) lifts to a loop in SU(2) which must be null-homotopic by simple
connectivity. Pushing the null-homotopy down to SO(3) by Spin shows that α2 itself is
null-homotopic. However, α cannot be null-homotopic since its lift to SU(2) is a path
from I2×2 to −I2×2 and not a loop at all (see the homotopy lifting theorem, Theorem 2.4.1
of [Nab3]). RepresentingZ2 as the multiplicative group {[−1], [1]} of integersmod 2 we
can write all of this symbolically as [α] = [−1] ∈ π1(SO(3)), but [α2] = [α]2 = [−1]2 =
[1] ∈ π1(SO(3)).

The homotopy type of a rotation (thought of as a curve in SO(3)) determines the ef-
fect of the rotation on thewave function of a spin 1

2 particle. This is interesting enough,
but one might wonder whether or not this change in the wave function resulting from
a 2π rotation is actually observable, that is, whether or not it has any physical conse-
quences. After all, ±ψ represent the same state of the particle, so perhaps all of this is
just a peculiarity of themathematical model and not physics at all. For some thoughts
on this, see [AS].

10.2 Anticommutation relations and the fermionic harmonic
oscillator

The quantum systems that we have examined thus far have all arisen in essentially
the same way. One begins with a familiar classical system and chooses some appro-
priate quantization scheme to build a “corresponding” quantum system. Generally,
one then checks that the quantum system approaches the classical system in some
limiting sense (say, as ℏ → 0). We have gotten away with this so far only because
we have conscientiously ignored the existence of particles with half-integer spin and,
in particular, the fact that the electron has spin 1

2 . Having come face-to-face with the
Stern–Gerlach experiment and the bizarre reaction of spin 1

2 particles to rotations,
we should probably not continue to do this. There is a problem, however. Since noth-
ing in the classical world behaves like a fermion, we have nothing to quantize! The
quantummechanics of a fermion systemmust be built from scratch without reference
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to any “corresponding” classical system. This is a big deal because fermion systems
exist in great abundance and are, in a sense, responsible for everything that we see
and experience in the world around us. Every atom is built from spin 1

2 particles (elec-
trons, protons andneutrons and even the quarks fromwhich protons andneutrons are
built). The arrangement of the corresponding elements in the periodic table as well as
all of their chemical properties are explicable only in terms of the quantum theory of
fermions. Even neutron stars and white dwarf stars can exist only because fermions
are subject to what is called the Pauli exclusion principle; indeed, it is thanks to this
principle that we exist to see and experience the world around us (see [Lieb]). In this
sectionwewill describe the standard operating procedure in quantum theory for deal-
ingwith fermions and illustrate the procedure by building a fermionic analogue of the
bosonic harmonic oscillator.

The standard operating procedure to which we referred above is easy to state
(“change the commutators [ , ]− to anticommutators [ , ]+”), but not so easy to mo-
tivate or justify. One can simply say, as one often does in quantum mechanics, that
the proof of the pudding is in the eating, so one must simply be patient and see what
consequences can be drawn and whether or not they jibe with the experimental facts.
This is fine, but rather unsatisfying. After all, someone had to actually think of trying
it and presumably had reasons for doing so.

In this particular case, that person was Pascual Jordan. In 1927 Jordan was trou-
bled by what he perceived to be an inconsistency between, on the one hand, the
canonical quantization procedure of Dirac (Section 7.2) in which one represents clas-
sical (Poisson bracket) commutation relations as operators on a Hilbert space and, on
the other hand, the nature of the intrinsic angular momentum (spin) of an electron.
Very roughly, the idea goes something like this. Dirac’s program would arrive at the
quantum description of the electron with spin by quantizing the classical angular
momentum of a charged spinning sphere. This it would do by identifying canonically
conjugate coordinates for the classical problem and representing them as self-adjoint
operators on a Hilbert space. Now, classically these conjugate coordinates consist of
a projection of the magnetic moment onto some axis, say, Sz, and a corresponding
angular coordinate ϕz . What bothered Jordan was that there is no meaningful (that
is, measurable) quantum analogue of ϕz since, as far as anyone can tell, the electron
behaves like a structureless, point particle, so, in particular, it has no marker on it
that would make such an angle measurable. But now recall from the previous section
that, according to Pauli, the components Si, i = 1, 2, 3, of the spin vector are given by
Si =
ℏ
2σi, i = 1, 2, 3, and that σ1, σ2, σ3 satisfy [σi, σj]+ = 2δij I2×2. It follows that

[Si, Sj]+ =
ℏ2

2
δij I2×2, i, j = 1, 2, 3.
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Now we will define two new operators a and a† that should be compared with (5.14)
and (5.15):

a = 1
ℏ
(S3 + iS1) and a† = 1

ℏ
(S3 − iS1).

Exercise 10.2.1. Show that

[a, a]+ = [a
†, a†]+ = 0 and [a, a†]+ = I2×2 (10.12)

and note that one obtains the same result if S1 is replaced by S2 in the definitions of a
and a†.

The relations in (10.12) are, of course, strikingly similar to the canonical commu-
tation relations, but involve anticommutators rather than commutators. From this one
can at least imagine how anticommutation relations might play a role in the descrip-
tion of fermions andwhatmight have led Jordan to his insight. However, the real story
behind this lies in much greater depths, specifically, in the so-called spin-statistics
theorem of quantum field theory. Even a precise statement of this result would take
us very far outside of our comfort zone here, but we would feel remiss if we did not at
least try to provide some sense of what it is all about.

For those who are quite properly dissatisfied with the brief sketch that follows we
can suggest the following sources for more detailed discussions. The spin-statistics
theorem is, in fact, a rigorous mathematical theorem in axiomatic quantum field the-
ory. The standard reference for the rather demanding proof is [SW], which also pro-
vides a schematic of the Wightman axioms for quantum field theory, but not a great
deal in the way of physical motivation. The original, less rigorous, but more physi-
cally based argument is due to Wolfgang Pauli [Pauli2]. A great deal of effort has been
expended in the search for a simpler proof of the result, but without much success.
Regarding these one can consult [DS2] and [Wight] and the book [DS1], which also
contains some historical perspective and excerpts from many of the seminal papers.

We should emphasize that being a rigorous theorem in axiomatic quantum field
theory should not lead one to assume that the conclusion drawn from the spin-
statistics theorem is an incontestable physical fact. The proof is based on assump-
tions (the Wightman axioms) about the essential prerequisites of any quantum field
theory and these have certainly not gone unquestioned. Furthermore, quantum field
theory is a relativistic theory and quantum mechanics is not so, at our level (the level
of quantum mechanics) the spin-statistics theorem is not a theorem at all and if we
want tomake use of its conclusion (andwe do) this must be introduced as an addition
to our list of Postulates QM1–QM6 (Section 6.2). This is what we will do, but we will
need to build up to it slowly.

The first order of business is to take note of yet one more peculiarity of quantum
mechanics. In both classical and quantum mechanics any two electrons are identi-
cal in the sense that they have precisely the same characteristic properties (classi-
cally, their mass and charge and quantummechanically their mass, charge and spin).
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Classical physics, however, allows one to distinguish even identical particles by sim-
ply keeping track of their trajectories in space (electron number 1 is here and elec-
tron number 2 is there). In quantummechanics particles do not have trajectories, only
wave functions, so this option is not available and one is led to the conclusion that any
two electrons are indistinguishable. Intuitively, this means that the state of a system
consisting of more than one electron remains the same if two of the electrons are in-
terchanged (we will make this more precise in a moment). The same is true of protons
and neutrons and, indeed, of any identical quantum particles.

In order to make more precise the notion of indistinguishable particles as well as
to formulate a version of the spin-statistics theorem we will need to say something
about how quantum mechanics associates a Hilbert space to a system consisting of
more than one particle. This has not come up in our discussions yet and the proce-
dure does not follow from our list of Postulates QM1–QM6, so we will need a new one.
We will also need some basic facts about tensor products of Hilbert spaces. We have
outlined this in Appendix K and will use the notation and terminology established
there.

We consider a quantum system 𝒮 consisting of N particles in space. The Hilbert
space associated to each particle is ℋ = L2(R3). Now consider the tensor product
⊗Nℋ = ⊗NL2(R3), one factor for each particle. The particles are said to be identical
if the action of the symmetric group SN on ⊗NL2(R3) leaves the state of the system in-
variant, that is, if

ψ(xσ(1), . . . ,xσ(N)) = R(σ)ψ(x1, . . . ,xN ) ∀σ ∈ SN ,

where each R(σ) is a complex number of modulus one (phase factor). Note that R is a
homomorphism of SN to the group of unit complex numbers, of which there are only
two, namely, R(σ) = 1 ∀σ ∈ SN and R(σ) = sgn σ ∀σ ∈ SN . We conclude that quantum
particles fall into two types, namely, those for which a system ofN such particles has a
wave function that is symmetric (states are in ⊗NS L

2(R3)) and those for which a system
ofN such particles has awave function that is antisymmetric (states are in ⊗NAL

2(RN )).
The final postulate we add to our list (Postulates QM1–QM6) identifies these two types
and will serve as our version of the spin-statistics theorem.

Postulate QM7. Let 𝒮 be a quantum system consisting of N identical particles in space.
The Hilbert space of each individual particle is L2(R3). Then the states of the system 𝒮
are in ⊗NL2(R3) and are either:
1. symmetric (that is, in ⊗NS L

2(R3)), in which case the particles are bosons (integer
spin), or

2. antisymmetric (that is, in ⊗NAL
2(R3)), in which case the particles are fermions (half-

integer spin).

Themost remarkable aspect of this postulate is the relationship it establishes between
the intrinsic angular momentum (spin) of a particle and the behavior of a system of
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such particles (statistics). It would be a very good thing to be able to offer some sort
of intuitive motivation for this relationship, but, as the saying goes, “I got nothing!”
Indeed, it seems that no one has anything to offer in this regard. Here is the oft-quoted
comment of Richard Feynman.

“We apologize for the fact that we cannot give you an elementary explanation. An explanation
has beenworked out by Pauli from complicated arguments of quantumfield theory and relativity.
He has shown that the two must necessarily go together, but we have not been able to find a way
of reproducing his arguments on an elementary level. It appears to be one of the few places in
physics where there is a rule which can be stated very simply, but for which no one has found a
simple and easy explanation. The explanation is deep down in relativistic quantum mechanics.
This probablymeans that we do not have a complete understanding of the fundamental principle
involved.”

Richard Feynman ([FLS], Volume III, 4-3)

We should point out a particularly important consequence of Postulate QM7. Suppose
𝒮 consists ofN identical fermions (say, electrons). Assume that at some instant, one of
the particles is in a state represented byψ1, another is in a state represented byψ2, . . . ,
and so on. Then the state of the system is represented by Ψ = ψ1 ⊗ ψ2 ⊗ ⋅ ⋅ ⋅ ⊗ ψN ∈
⊗NAL

2(R3). What happens if two of the fermions are in the same state, that is, ψi = ψj
for some 1 ≤ i < j ≤ N? If σij is the permutation that switches i and j and leaves
everything else alone (which is odd), then σij ⋅ Ψ = −Ψ by antisymmetry. But ψi = ψj
clearly implies that σij ⋅Ψ = Ψand these cannot both be true unless Ψ = 0 ∈ ⊗NAL

2(R3),
which is not a state at all. From this we obtain the famous Pauli exclusion principle.

In a system of identical fermions, no two of the fermions can be in the same state.

As we mentioned earlier, this principle is responsible not only for the existence of the
world we see around us, but for our existence as well. Historically, it was not derived
from the spin-statistics theorem (which it predated) and, indeed, it was not “derived”
from anything. Pauli proposed the exclusion principle (for electrons in an atom) as an
ad hoc hypothesis which he found could explain a huge number of otherwise myste-
rious, but incontestable experimental facts. Even after establishing the spin-statistics
theoremandbeing awarded theNobel Prize, Pauli admitted to anuneasy feeling about
the logical status of the exclusion principle.

“Already in my original paper I stressed the circumstance that I was unable to give a logical rea-
son for the exclusion principle or to deduce it from more general assumptions. I had always the
feeling, and I still have it today, that this is a deficiency.”

Wolfgang Pauli ([Pauli3])

Finally, we must try to see what all of this has to do with commutation and anti-
commutation relations. This will take us somewhat outside of our element since it
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Figure 10.3: Pair production.

involves a technique, known as second quantization, that is more specifically geared
toward quantum field theory. For this reason wewill provide only a brief sketch (more
details are available in Section 4.5 of [Fol3] and Sections 12.1 and 12.2 of [BEH]).

The first construction we will require is not particularly well motivated by what
we have done previously, but is easily explained. In elementary particle physics the
interactions that take place generally do not leave the number of particles fixed. For
example, in Figure 10.3 a gamma ray (which, being aphoton, is not visible) enters from
below and, at the vertex joining the two spirals, interacts with a nearby atom, decays
into an electron–positron pair (the spirals) and ejects an electron from the atom (the
third track leaving the vertex). Shortly thereafter the ejected electron emits a gamma
ray (again, not visible) which then also decays into an electron–positron pair with
straighter tracks (the < above of the vertex).

Interactions of this sort are described in quantum field theory and this is not
within our purview, but we will borrow the mathematical device used there to asso-
ciate a Hilbert space to a system with a possibly varying number of particles. We will
restrict our attention to systems of identical fermions, although the procedure ismuch
more general than this (see Section 4.5 of [Fol3] and Sections 12.1 and 12.2 of [BEH]).

We begin with the Hilbert spaceℋ = L2(R3) of a single fermion; this we will refer
to as the one-particle Hilbert space and will also write it as ⊗1Aℋ. For anyN ≥ 1, the an-
tisymmetricNth tensor power ⊗NAℋ ofℋ (see Appendix K) will be called theN-particle
Hilbert space. Also set ⊗0Aℋ = C and refer to this as the zero-particle Hilbert space. The
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algebraic direct sum of the vector spaces ⊗NAℋ

⨁
alg
{⊗NAℋ : N = 0, 1, 2, . . .} = C ⊕alg ℋ ⊕alg ⊗

2
Aℋ ⊕alg . . .

is called thefinite particle space. Anelement of thefiniteparticle spacehasonlyfinitely
manynonzero coordinates, each one ofwhich is anN-particle state in⊗NAℋ for someN .
For each N ≥ 0 we will identify ⊗NAℋ with the subspace of the direct sum in which all
of the coordinates are zero except the Nth. On the other hand, the Hilbert space direct
sum of ⊗NAℋ is called the antisymmetric, or fermionic Fock space ofℋ and is denoted

ℱA(ℋ) =⨁{⊗
N
Aℋ : N = 0, 1, 2, . . .} = C ⊕ ℋ ⊕ ⊗

2
Aℋ ⊕ . . . .

Recall that ifℋ0,ℋ1,ℋ2, . . . are Hilbert spaces, then their Hilbert space direct sumℋ =
⨁∞n=0ℋn is the linear subspace of the vector space direct product∏

∞
n=0ℋn consisting

of all sequences (x0, x1, x2, . . .)with xn ∈ ℋn for each n = 0, 1, 2, . . . and∑
∞
n=0 ‖xn‖

2
ℋn
<∞

and with the inner product defined by

⟨ (xn)
∞
n=0, (yn)

∞
n=0 ⟩ℋ =

∞

∑
n=0
⟨ xn, yn ⟩ℋn

.

The algebraic direct sum of the vector spaces ℋ0,ℋ1,ℋ2, . . . is naturally identified
with a dense linear subspace of⨁∞n=0ℋn. We can therefore identify the elements of
ℱA(L2(R3)) with sequences

(ψ0, ψ1(x1), ψ2(x1,x2), . . . , ψN (x1,x2, . . . ,xN ), . . . ) ,

where

|ψ0 |
2 + ψ1(x1)


2
L2(R3) + ⋅ ⋅ ⋅ +

ψN (x1,x2, . . . ,xN )

2
L2(R3×N⋅⋅⋅×R3) + ⋅ ⋅ ⋅ <∞

and each of the functions is antisymmetric with respect to permutations of its argu-
ments (up to a set of measure zero).

Nowwewould like to define a number of operators on the Fock spaceℱA(ℋ) anal-
ogous to the raising and lowering operators for the bosonic harmonic oscillator. The
difference is that, whereas for the oscillator these operators raised and lowered the
number of energy quanta, we now think of them as creating and annihilating par-
ticles, that is, mapping ⊗NAℋ → ⊗

N+1
A ℋ and ⊗NAℋ → ⊗

N−1
A ℋ, respectively. Begin by

looking in the algebraic direct sum⨁alg(⊗
N
Aℋ) of the particle spaces. For each ϕ ∈ ℋ

we define a(ϕ)† : ⊗NAℋ→ ⊗
N+1
A ℋ to be the linear extension to ⊗NAℋ of the map defined

as follows. If N = 0, then a(ϕ)†(1) = ϕ, and if N ≥ 1, then

a(ϕ)†(ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN ) = √N + 1 (ϕ ⊗A ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN ).
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This defines a linear map on all of⨁alg(⊗
N
Aℋ). Next define a(ϕ) : ⊗

N
Aℋ → ⊗

N−1
A ℋ for

N ≥ 1 to be the linear extension to ⊗NAℋ of the map defined as follows. If N = 1, then
a(ϕ)(ψ) = ⟨ϕ,ψ⟩ℋ, and if N ≥ 2,

a(ϕ)(ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN ) =
1
√N

N
∑
j=1
(−1)j−1⟨ϕ,ψj⟩ℋ(ψ1 ⊗A ⋅ ⋅ ⋅ ψ̂j ⋅ ⋅ ⋅ ⊗A ψN ),

where the hat ̂ indicates that ψj is omitted. To cover N = 0 we can simply take ⊗−1A ℋ
to be the vector space containing only 0 and let a(ϕ) : ⊗0Aℋ → ⊗

−1
A ℋ be the map that

sends everything to 0. The linearmapsa(ϕ) anda(ϕ)† are formal adjoints of each other
with respect to the inner product introduced above, that is, on⨁alg(⊗

N
Aℋ),

⟨ a(ϕ)Ψ,Φ ⟩ = ⟨Ψ, a(ϕ)†Φ⟩.

Exercise 10.2.2. Verify the following special case:

⟨ a(ϕ)(ψ1 ⊗A ψ2 ⊗A ψ3), φ1 ⊗A φ2 ⟩ = ⟨ψ1 ⊗A ψ2 ⊗A ψ3, a(ϕ)
†(φ1 ⊗A φ2) ⟩.

Hint: Show that both sides are equal to

1
√3

1
2!
[ ⟨ψ1,ϕ⟩⟨ψ2,φ1⟩⟨ψ3,φ2⟩ − ⟨ψ1,ϕ⟩⟨ψ2,φ2⟩⟨ψ3,φ1⟩ − ⟨ψ2,ϕ⟩⟨ψ1,φ1⟩⟨ψ3,φ2⟩

+ ⟨ψ2,ϕ⟩⟨ψ1,φ2⟩⟨ψ3,φ1⟩ + ⟨ψ3,ϕ⟩⟨ψ1,φ1⟩⟨ψ2,φ2⟩ − ⟨ψ3,ϕ⟩⟨ψ1,φ2⟩⟨ψ2,φ1⟩ ].

Exercise 10.2.3. Show that on⨁alg(⊗
N
Aℋ):

1. [a(ϕ1)
†, a(ϕ2)

†]+ = 0 and
2. [a(ϕ1), a(ϕ2)]+ = 0.

Next we show that on⨁alg(⊗
N
Aℋ),

[a(ϕ1), a(ϕ2)
†]+ = ⟨ϕ1,ϕ2⟩I , (10.13)

where I is the identity operator onℋ. For this we note first that

a(ϕ1)a(ϕ2)
†(ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN )

= √N + 1 a(ϕ1)(ϕ2 ⊗A ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN )

= ⟨ϕ1,ϕ2⟩(ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN ) +
N
∑
j=1
(−1)j⟨ϕ1,ψj⟩ϕ2 ⊗A ψ1 ⊗A ⋅ ⋅ ⋅ ψ̂j ⋅ ⋅ ⋅ ⊗A ψN .

But also

a(ϕ2)
†a(ϕ1)(ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN )

= a(ϕ2)
†(

1
√N

N
∑
j=1
(−1)j−1⟨ϕ1,ψj⟩ψ1 ⊗A ⋅ ⋅ ⋅ ψ̂j ⋅ ⋅ ⋅ ⊗A ψN)
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=
N
∑
j=1
(−1)j−1⟨ϕ1,ψj⟩ϕ2 ⊗A ψ1 ⊗A ⋅ ⋅ ⋅ ψ̂j ⋅ ⋅ ⋅ ⊗A ψN .

Adding these two gives

[a(ϕ1), a(ϕ2)
†]+(ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN ) = ⟨ϕ1,ϕ2⟩(ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN ),

as required.

Exercise 10.2.4. Use (10.13) to show that on⨁alg(⊗
N
Aℋ),

 a(ϕ)Ψ

2
+  a(ϕ)

†Ψ 
2
= ‖ϕ‖2 ‖Ψ‖2

and conclude from this that a(ϕ) and a(ϕ)† extend uniquely to bounded operators on
the Fock space ℱA(ℋ).

We will use the same symbols a(ϕ) and a(ϕ)† for these extensions and will refer
to them as the annihilation and creation operators onℱA(ℋ), respectively. For systems
of identical fermions they play roles analogous to the lowering and raising operators
we introduced for the bosonic harmonic oscillator.

Finally, suppose {e1, e2, . . .} is an orthonormal basis forℋ and define operators ai
and a†i by

ai = a(ei) and a†i = a(ei)
†, i = 1, 2, . . . .

Then (10.13) and the identities in Exercise 10.2.3 give

[ai, aj]+ = 0, [a
†
i , a
†
j ]+ = 0 and [ai, a

†
j ]+ = δijI , i, j = 1, 2, . . . . (10.14)

These, or (10.13) and the identities in Exercise 10.2.3 that gave rise to them, are gener-
ally referred to as the canonical anticommutation relations.

Our objective here has been to suggest that, just as bosonic systems (like the
bosonic harmonic oscillator) are characterized by commutation relations, fermionic
systems are characterized by anticommutation relations. This is the key to the con-
struction of the so-called “fermionic harmonic oscillator,” to which we turn now.

The construction is based on the picture of the bosonic oscillator in terms of its
lowering (b) and raising (b†) operators, so a reviewof thismaterial in Section 5.3would
probably be in order. In particular, one should recall their commutation relations

[b, b]− = [b
†, b†]− = 0 and [b, b†]− = 1. (10.15)

There is also a corresponding bosonic number operator

NB = b
†b
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in terms of which the bosonic oscillator Hamiltonian can be written

HB =
1
2
ℏω[b†, b]+ = ℏω(NB +

1
2
).

All of the essential physical information about the bosonic oscillator (for example, the
spectrum of the Hamiltonian HB) is contained in any algebra of operators satisfying
these relations. Adopting an algebraic point of view, one could identify the bosonic
harmonic oscillator with this algebra and this choice of Hamiltonian. This is the path
we will follow in the fermionic case.

According to the “standard operating procedure” described at the beginning of
this sectionour coursewould seemclear. Todefinea fermionic analogueof thebosonic
harmonic oscillatorwe are simply to change the commutators in (10.15) to anticommu-
tators:

[f , f ]+ = [f
†, f †]+ = 0 and [f , f †]+ = 1. (10.16)

This raises some issues, however. In the bosonic case, b and b† were defined to be
operators on L2(R) obtained from the canonical quantization of the Poisson bracket
commutation relations for the classical harmonic oscillator. As a result one can, mod-
ulo the usual domain difficulties, make sense of the commutators. As we have gone
to some lengths to emphasize, however, there are no classical fermionic systems and
therefore nothing to quantize, so it is not at all clear where f , f †, 0 and 1 are supposed
to live and what meaning is to be attached to [ , ]+ in (10.16). For this reason we will
need to begin in a somewhat more abstract algebraic setting.

An algebra with involution is a complex algebra 𝒜 with multiplicative unit 1𝒜 on
which is defined a conjugate-linear map A → A† : 𝒜 → 𝒜, called an involution, that
satisfies (A†)† = A and (AB)† = B†A† for all A,B ∈ 𝒜. An element A of 𝒜 is said to
be self-adjoint if A† = A. Since 𝒜 is an algebra, one can define the commutator and
anticommutator on𝒜 ×𝒜 by [A,B]− = AB − BA and [A,B]+ = AB + BA.

An obvious example of an algebra with involution is the algebra ℬ(ℋ) of bounded
operators on a complex Hilbert spaceℋ with the involution † taken to be the Hilbert
space adjoint ∗. If𝒜 is an arbitrary algebra with involution andℋ is a complex Hilbert
space, then a linear map π : 𝒜→ ℬ(ℋ) satisfying π(AB) = π(A)π(B), π(1𝒜) = idℋ and
π(A†) = π(A)∗ for all A,B ∈ 𝒜 is called a representation of𝒜 onℋ. The representation
π is said to be faithful if it is injective so that distinct elements of 𝒜 are represented
by distinct operators. One can also consider representations of 𝒜 by unbounded op-
erators onℋ, but we will have no need to do so here. Indeed, we will actually require
only finite-dimensional Hilbert spaces.

It is common to define the algebras with involution of interest in physics in
terms of generators and relations with the relations specified as commutation or
anticommutation relations. One then establishes the existence of such an algebra
by finding a faithful representation of the generators and relations. For example, we
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would like to identify the fermionic harmonic oscillator algebra with an algebra with
involution containing elements {f , f †,0, 1}, with 0 being the additive identity and 1 the
multiplicative identity and subject to the anticommutation relations

[f , f ]+ = [f
†, f †]+ = 0 and [f , f †]+ = 1. (10.17)

In fact, it is quite easy to construct a concrete representation of this algebra in terms of
spin operators. Specifically, we take the Hilbert spaceℋ to beC2 and defineHermitian
operators onC2 with respect to the standard basis e0 = ( 01 ) and e1 = ( 10 ) forC

2 by

S1 =
ℏ
2
σ1, S2 =

ℏ
2
σ2 and S3 =

ℏ
2
σ3,

where σ1, σ2 and σ3 are the Pauli spin matrices (see Exercise 10.1.1). These satisfy

[Si, Sj]+ =
ℏ2

2
δij1, i, j = 1, 2, 3,

where we denote by 1 the identity operator onC2. Now introduce operators

f = 1
ℏ
(S1 + iS2)

and

f † = 1
ℏ
(S1 − iS2).

Exercise 10.2.5. Show that f † is the adjoint f ∗ of f onC2 and then verify

[f , f ]+ = [f
†, f †]+ = 0 and [f , f †]+ = 1.

The algebra of 2 × 2 complex matrices generated by f , f † and 1 is a concrete faithful
representation of the fermionic harmonic oscillator algebra.

Exercise 10.2.6. Show that, with respect to the standard basis e0 = ( 01 ) and e1 = ( 10 )
forC2,

f = (0 0
1 0
) and f † = (0 1

0 0
) ,

so that fe0 = 0, fe1 = e0, f †e0 = e1 and f †e1 = e0.

We will refer to f † and f as the fermionic creation and annihilation operators, re-
spectively. Pursuing the analogy with the bosonic oscillator we introduce also the
fermionic number operator by

NF = f
†f .
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Note that this is self-adjoint and

N2
F = (f

†f )2 = (1 − ff †)2 = 1 − ff † − ff † + ff †ff †

= 1 − ff † − ff † + f (1 − ff †)f † = 1 − ff † − (ff )(f †f †) = 1 − ff †

= NF ,

so it is also idempotent, that is, NF is a projection. Consequently, NF is an observ-
able and its spectrum consists of just the two eigenvalues 0 and 1. The only possible
observed values of NF are 0 and 1, which is another reflection of the Pauli exclusion
principle (at most one fermion per state).

Exercise 10.2.7. Show that

NF = (
1 0
0 0
) ,

so that NFe0 = 0 ⋅ e0 and NFe1 = 1 ⋅ e1.

In particular, the eigenspaces of NF corresponding to the eigenvalues 0 and 1 are
Span {e0} and Span {e1}, respectively. The states in Span {e0} are said to be unoccupied,
while those in Span {e1} are occupied.

Exercise 10.2.8. Define two new operators onC2 by

f1 = f
† + f and f2 = −i (f

† − f ).

Show that the anticommutation relations (10.17) are equivalent to

[fi, fj]+ = 2δij1, i, j = 1, 2. (10.18)

These are the defining relations for the complex Clifford algebra Cl(2,C). We will not
pursue this any further here, but for those who are interested, the standard introduc-
tion to Clifford algebras is Chapter 1 of [LM].

Taking the analogy with the bosonic oscillator one step further we will introduce
a Hamiltonian HF for the fermionic oscillator by

HF =
1
2
ℏω[f †, f ]− = ℏω(NF −

1
2
). (10.19)

We will call the fermionic harmonic oscillator algebra together with this Hamiltonian
the fermionic harmonic oscillator. Note that, unlike HB, which is symmetric under the
interchange b↔ b†, HF is antisymmetric under f ↔ f †.

Exercise 10.2.9. ShowHF is self-adjoint and that the spectrumofHF is {−
1
2ℏω,

1
2ℏω} so

that these are the only two allowed energy levels for the fermionic harmonic oscillator.
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At the risk of being tedious wewould like to emphasize once again that there is no
classical mechanical system that one can quantize to obtain the fermionic harmonic
oscillator, or any other fermionic system; spin does not exist in classical physics and
therefore neither do fermions. That is not to say, however, that one cannot construct
something “like” a classical systemandaprocedurenotunlike canonical quantization
that will give rise to such systems. Precisely why one would want to do this might not
be so clear. For themoment it will suffice to say that the effort is well rewarded, partic-
ularly when one begins the search for a framework in which bosons and fermions can
be seen from a more unified point of view. This framework is called supersymmetry,
and we will have an ever-so-brief encounter with it in the next section.

Carrying out this program, however, will require a rather abrupt paradigm shift.
The obstacles (both mathematical and psychological) that will confront us are not
unlike those faced by mathematicians wanting to solve polynomial equations before
a rigorous construction of complex numbers. The intuitive solution was simple and
clear; introduce a new “number” i with the formal property that i2 = −1 and write the
solutions to your equation as “numbers” that look like a+bi. Eventually this program
was carried out with enough rigor to satisfy mathematicians, but this step was not en-
tirely trivial and it didnot comefirst. In a similar vein, ifweput aside ourmathematical
scruples for a moment we might even write something like

[ θ1A1, θ2A2 ]− = θ1θ2(A1A2) − θ2θ1(A2A1)

= {
θ1θ2 [A1,A2]−, if θ1 and θ2 commute,
θ1θ2 [A1,A2]+, if θ1 and θ2 anticommute,

where θ1 and θ2 are “numbers,” assuming thatwehave somehowmade senseofwhat it
means for two “numbers” to anticommute. Granting for amoment that this is possible,
one should be able to treat commutators and anticommutators (that is, bosons and
fermions) from a more unified point of view.

The notion that one might use “anticommuting numbers” to build rigorous
“pseudo-classical” models of fermions was first proposed in [Martin]. Subsequently,
the underlying mathematical structures required to do this were extensively devel-
oped (see, for example, [Ber1]).Wewill have a bitmore to say about the issues involved
in constructing a unified point of view for bosons and fermions in the next section.
Here we will limit ourselves to a few remarks on what a pseudo-classical analogue
of a fermion might look like (a more detailed discussion is available in Chapter 7
of [Takh]).

The first order of business, of course, is to decide just what an “anticommuting
number” is supposed to be. Fortuitously, objects of just the sort required have been
well known in mathematics since the nineteenth century; they are called generators
of a Grassmann algebra. Grassmann algebras can be viewed in a number of different
ways (there is a very detailed treatment in Chapter 1, Part I, of [Ber2]). The most di-
rect is in terms of generators and relations. A Grassmann algebra with n generators is
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an associative, unital, complex algebra Gr(n) for which there are generators θ1, . . . , θn
subject to the relations

θiθj + θjθi = 0, i, j = 1, . . . , n. (10.20)

In particular, each of the generators is nilpotent in Gr(n); specifically,

θ2i = 0, i = 1, . . . , n.

Note thatGr(n) canbe realized concretely in severalways. For example, ifAC(θ1, . . . , θn)
is the associative, unital, complex algebra freely generated by θ1, . . . , θn and J is the
two-sided ideal generated by elements of the form θiθj+θjθi, then Gr(n) is the quotient
AC(θ1, . . . , θn)/J. On the other hand, if VC(θ1, . . . , θn) is the complex vector space freely
generatedby θ1, . . . , θn, thenGr(n) is isomorphic to the exterior algebra⋀VC(θ1, . . . , θn)
ofVC(θ1, . . . , θn), that is, the antisymmetric part of the tensor algebra. Fromour present
point of view the best way to think of Gr(n) is as the algebra C[θ1, . . . , θn] of complex
polynomials in the anticommuting variables θ1, . . . , θn, any element α of which can be
written uniquely in the form

α = c0 + c1θ1 + ⋅ ⋅ ⋅ + cnθn + c12θ1θ2 + ⋅ ⋅ ⋅
+ ci1i2 ⋅⋅⋅ikθi1θi2 ⋅ ⋅ ⋅ θik + ⋅ ⋅ ⋅ + c12⋅⋅⋅nθ1θ2 ⋅ ⋅ ⋅ θn, (10.21)

where 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik ≤ n for k = 1, . . . , n and c0, c1, c12, . . . , c12⋅⋅⋅n are all inC. There
are no polynomials of higher degree because the generators are nilpotent.

Exercise 10.2.10. Show that the dimension of Gr(n) as a complex vector space is 2n.

The decomposition (10.21) provides Gr(n) with a grading

Gr(n) =
n
⨁
k=0

Grk(n), (10.22)

where Gr0(n) = C and, for 1 ≤ k ≤ n, Grk(n) consists of those elements that are homo-
geneous of degree k, that is, linear combinations of terms of the form θi1θi2 ⋅ ⋅ ⋅ θik with
1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik ≤ n. We will denote the degree of a homogeneous element α by |α|.
Note that the multiplication in Gr(n) satisfies

Grk(n) ⋅ Grl(n) ⊆ Grk+l(n),

where Grk+l(n) = 0 if k + l > n.

Exercise 10.2.11. Show that if α = θi1θi2 ⋅ ⋅ ⋅ θik and β = θj1θj2 ⋅ ⋅ ⋅ θjl , then

αβ = (−1)klβα,

so for any homogeneous elements α and β,

αβ = (−1)|α| |β| βα.
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If we write the additive group of integers modulo 2 as Z2 = {0, 1}, then (10.22)
provides Gr(n) with aZ2-grading

Gr(n) = Gr0(n) ⊕ Gr1(n),

where Gr0(n) is the direct sum of the Grk(n) with k even and Gr1(n) is the direct sum
of the Grk(n) with k odd. The elements of Gr0(n) are said to be even, while those in
Gr1(n) are said to be odd. Even elements commute with either even elements or odd
elements, but two odd elements anticommute. Of course, an element α of Gr(n) need
not be either even or odd, but it can be written uniquely as the sum α = α0 + α1 of its
even and odd parts.

Next wewill define an involution onGr(n), called complex conjugation, as follows.
If α ∈ Gr(n) is given by (10.21), then

α → α = c0 + c1θ1 ⋅ ⋅ ⋅ + ci1i2 ⋅⋅⋅ikθik ⋅ ⋅ ⋅ θi2θi1 + ⋅ ⋅ ⋅ + c12⋅⋅⋅nθn ⋅ ⋅ ⋅ θ2θ1

(note the reversal of the θ-factors).

Exercise 10.2.12. Show that this does, in fact, define an involution on Gr(n).

We will say that an element α in Gr(n) is real if α = α (these are the self-adjoint ele-
ments) and imaginary if α = −α. Thus, each generator θi is a real element of Gr(n).

Exercise 10.2.13. Show that θi1θi2 ⋅ ⋅ ⋅ θik is real if and only if k(k−1)
2 is an even integer

and it is imaginary otherwise.

Finally we observe that, being a complex vector space of dimension 2n, Gr(n) ad-
mits a standard Hermitian inner product ⟨ , ⟩Gr(n) that can be defined by simply de-
creeing that the basis

{1, θ1, . . . , θn, θ1θ2, . . . , θi1θi2 ⋅ ⋅ ⋅ θik , . . . , θ1θ2 ⋅ ⋅ ⋅ θn},

with 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik ≤ n, is an orthonormal basis and extending ⟨ , ⟩Gr(n) so that it
is linear in the second slot and conjugate linear in the first slot. In particular,

⟨θi1θi2 ⋅ ⋅ ⋅ θik , θj1θj2 ⋅ ⋅ ⋅ θjl⟩Gr(n) = δklδi1j1δi2j2 ⋅ ⋅ ⋅ δik jk .

With this, Gr(n) becomes a finite-dimensional Hilbert space and therefore a Banach
space with the corresponding norm ‖ ‖Gr(n). The results of the following two exercises
will not be called upon here, but are worth seeing.

Exercise 10.2.14. Show that ‖1‖Gr(n) = 1 and ‖ αβ ‖Gr(n) ≤ ‖ α ‖Gr(n) ‖ β ‖Gr(n), so that Gr(n)
is a Banach algebra.Hint: For the definition and a very nice, elementary discussion of
Banach algebras see Chapter Twelve of [Simm1].

Exercise 10.2.15. Show that ‖ αα ‖Gr(n) = ‖ α ‖2Gr(n), so that Gr(n) is a B
∗-algebra. Hint:

See Section 72 of [Simm1].
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We can now return to fermionic systems. We should be clear on how we are in-
terpreting the Grassmann algebra Gr(n), which we will now identify with the alge-
bra C[θ1, . . . , θn] of complex polynomials in the anticommuting variables θ1, . . . , θn.
The generators θ1, . . . , θn are thought of as the fermionic analogues of the ordinary
(commuting) variables q1, . . . , qk , p1, . . . , pk in the phase space of a classical mechani-
cal system although we need not assume that n is even. The polynomials in Gr(n) can
be thought of as functions of θ1, . . . , θn, so the real (that is, self-adjoint) elements of
Gr(n) correspond to the fermionic analogue of classical observables.

Note that, unlike q1, . . . , qk , p1, . . . , pk, the fermionic variables θ1, . . . , θn are not co-
ordinates “in” anything. There is no fermionic analogue of the classical phase space,
only of its algebra of functions. That a mathematical object can be completely char-
acterized by some algebra of functions on it is an idea that goes back to a beautiful
result of Banach and Stone which reconstructs any compact Hausdorff topological
space X as the maximal ideal space of its algebra C(X) of continuous complex-valued
functions (see Section 74 of [Simm1]). This idea has evolved to an extraordinary level
of depth, primarily through the work of Alain Connes on noncommutative geometry
(see [Connes]).

On the other hand, Gr(n) is a finite-dimensional, complex Hilbert space. We will
conclude this section by describing a “Schrödinger-like” representation of the canon-
ical anticommutation relations

[ai, aj]+ = 0, [a
†
i , a
†
j ]+ = 0 and [ai, a

†
j ]+ = δijI , i, j = 1, 2, . . . , n, (10.23)

by multiplication and differentiation operators on Gr(n). Note that the canonical an-
ticommutation relations in (10.14) have i, j = 1, 2, . . . , but (10.23) has i, j = 1, 2, . . . , n. It
is possible to define the Grassmann algebra on an infinite number of anticommuting
variables θ1, θ2, . . . and extend what we are about to do, but this requires more analyt-
ical work and we will simply refer those interested to [Tuyn].

The calculus of anticommuting variables was initiated and developed by Berezin,
but we will require only the most elementary parts of this (see [Ber2] for a thorough
discussion). For each generator θi we define a linear operator

Θi : Gr(n)→ Gr(n)

on Gr(n) that multiplies on the left by θi, that is,

Θiα = θiα.

For example, Θ2(θ1θ2θ3) = −Θ2(θ2θ1θ3) = −θ22θ1θ3 = 0. Next we define the left partial
differentiation operator

𝜕L

𝜕θi
: Gr(n)→ Gr(n)
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onGr(n). It is enough to define the operator on basis elements and extend linearly. The
idea is quite simple. If there is no θi present, the result is zero. If there is a θi present,
move it all the way to the left using anticommutativity and then drop θi. For example,

𝜕L

𝜕θ2
(θ1θ2θ3) = −

𝜕L

𝜕θ2
(θ2θ1θ3) = −θ1θ3.

In general,

𝜕L

𝜕θi
(θi1 ⋅ ⋅ ⋅ θik ) =

k
∑
l=1
(−1)l−1δiilθi1 ⋅ ⋅ ⋅ θ̂il ⋅ ⋅ ⋅ θik ,

where, as usual, the hat ̂ indicates that θil has been omitted. Similarly, we define the
right partial differentiation operator

𝜕R

𝜕θi
: Gr(n)→ Gr(n)

by moving θi all the way to the right, that is,

(θi1 ⋅ ⋅ ⋅ θik )
𝜕R

𝜕θi
=

k
∑
l=1
(−1)k−lδiilθi1 ⋅ ⋅ ⋅ θ̂il ⋅ ⋅ ⋅ θik .

Exercise 10.2.16. Prove the following graded versions of the product rule. For homo-
geneous elements α and β of Gr(n),

𝜕L

𝜕θi
(αβ) = 𝜕

Lα
𝜕θi

β + (−1)|α| α 𝜕
Lβ
𝜕θi

and

(αβ) 𝜕
R

𝜕θi
= α(β 𝜕

R

𝜕θi
) + (−1)|β| (α 𝜕

R

𝜕θi
) β.

Hint: It is enough to do this for basis elements.

First wewill show that, with respect to the inner product ⟨ , ⟩Gr(n), the operators Θi

and 𝜕
L

𝜕θi
are adjoints of each other. Since Gr(n) is finite-dimensional, there are no do-

main issues, so we need only show that ⟨ 𝜕
L

𝜕θi
α, β ⟩Gr(n) = ⟨ α, Θiβ ⟩Gr(n). Moreover, it is

enough to prove this for basis elements, so we must show that

⟨
𝜕L

𝜕θi
(θi1 ⋅ ⋅ ⋅ θik ), θj1 ⋅ ⋅ ⋅ θjl ⟩Gr(n)

(10.24)

is equal to

⟨ θi1 ⋅ ⋅ ⋅ θik , Θi(θj1 ⋅ ⋅ ⋅ θjl ) ⟩Gr(n). (10.25)
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Suppose first that (10.24) is nonzero. Then, in particular, θi = θim for somem = 1, . . . , k.
Thus,

𝜕L

𝜕θi
(θi1 ⋅ ⋅ ⋅ θik ) = (−1)

m−1θi1 ⋅ ⋅ ⋅ θim−1θim+1 ⋅ ⋅ ⋅ θik .

Since (10.24) is nonzero, θi1 ⋅ ⋅ ⋅ θim−1θim+1 ⋅ ⋅ ⋅ θik must be equal to θj1 ⋅ ⋅ ⋅ θjl , so (10.24) is
equal to (−1)m−1. Moreover,

Θi(θj1 ⋅ ⋅ ⋅ θjl ) = Θi(θi1 ⋅ ⋅ ⋅ θim−1θim+1 ⋅ ⋅ ⋅ θik )

= θimθi1 ⋅ ⋅ ⋅ θim−1θim+1 ⋅ ⋅ ⋅ θik
= (−1)m−1θi1 ⋅ ⋅ ⋅ θim−1θimθim+1 ⋅ ⋅ ⋅ θik ,

and therefore (10.25) is also equal to (−1)m−1, as required.

Exercise 10.2.17. Show that if (10.24) is equal to zero, then (10.25) is also equal to zero
and thereby complete the proof that

Θi = (
𝜕L

𝜕θi
)
∗

.

Finally, we will prove that the operators Θi and
𝜕L

𝜕θi
, i = 1, . . . , n, provide an irre-

ducible representation of the canonical anticommutation relations (10.23) on Gr(n).
First we show that

[Θi,Θj]+ = 0, [
𝜕L

𝜕θi
,
𝜕L

𝜕θj
]
+
= 0 and [Θi,

𝜕L

𝜕θj
]
+
= δijI , i, j = 1, . . . , n,

where I is the identity operator on Gr(n).

Exercise 10.2.18. Prove the first two of these.

Now consider

[Θi,
𝜕L

𝜕θj
]
+
(θi1 ⋅ ⋅ ⋅ θik ) = Θi

𝜕L

𝜕θj
(θi1 ⋅ ⋅ ⋅ θik ) +

𝜕L

𝜕θj
Θi (θi1 ⋅ ⋅ ⋅ θik ).

Suppose first that i = j. If θi is not among the factors of θi1 ⋅ ⋅ ⋅ θik , then the first term
is zero and the second term is θi1 ⋅ ⋅ ⋅ θik . If θi is among the factors of θi1 ⋅ ⋅ ⋅ θik , then the
second term is zero and the first term is θi1 ⋅ ⋅ ⋅ θik . In either case, the result is proved.
Now suppose i ̸= j. If θj is among the factors of θi1 ⋅ ⋅ ⋅ θik , then the two terms differ by a
sign, so the sum is zero. If θj is not among the factors of θi1 ⋅ ⋅ ⋅ θik , then both terms are
zero and, again, the result is proved.

All that remains is to show that this representation of the canonical anticommuta-
tion relations by the operators Θi and

𝜕L

𝜕θi
, i = 1, . . . , n, is irreducible, that is, ifV is a lin-

ear subspace of Gr(n) that is invariant under all of these operators, thenV is either the
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subspace consisting only of 0, or it is all of Gr(n). First we note that if π : Gr(n)→ Gr(n)
is any linear map that commutes with all of the Θi and

𝜕L

𝜕θi
, then π must be a complex

multiple of the identity operator on Gr(n). Indeed,

𝜕L

𝜕θi
(π(1)) = π ( 𝜕

L

𝜕θi
(1)) = π(0) = 0

for all i = 1, . . . , n implies that π(1) = c ⋅ 1 for some c ∈ C. But π(θi) = π(Θi(1)) =
Θi(π(1)) = cΘi(1) = cθi. Now, if i1 < i2, then

π(θi1θi2 ) = π(Θi1 (θi2 )) = Θi1(π(θi2 )) = Θi1 (cθi2 ) = cΘi1 (θi2 ) = c(θi1θi2 ).

Continuing inductively gives

π(θi1θi2 ⋅ ⋅ ⋅ θik ) = c(θi1θi2 ⋅ ⋅ ⋅ θik )

and from this it follows that π = cI.
Now suppose that V is a linear subspace of Gr(n) that is invariant under all of the

operators Θi and
𝜕L

𝜕θi
, i = 1, . . . , n.

Exercise 10.2.19. Show that the orthogonal complement V⊥ of V with respect to the
inner product ⟨ , ⟩Gr(n) is also invariant under all of the operators Θi and

𝜕L

𝜕θi
, i = 1, . . . , n.

Let πV : Gr(n) = V ⊕ V⊥ → V be the orthogonal projection onto V . We claim that πV
commutes with all of the operators Θi and

𝜕L

𝜕θi
, i = 1, . . . , n. To see this let v + v⊥ ∈ Gr(n)

with v ∈ V and v⊥ ∈ V⊥. ThenΘi(v+v⊥) = Θi(v)+Θi(v⊥)withΘi(v) ∈ V andΘi(v⊥) ∈ V⊥.
Thus, πV (Θi(v + v⊥)) = Θi(v) = Θi(πV (v + v⊥)), so πV Θi = Θi πV .

Exercise 10.2.20. Show that πV
𝜕L

𝜕θi
= 𝜕

L

𝜕θi
πV .

Consequently, πV = cI for some c ∈ C. Thus, Kernel (πV ) is either {0} (if c ̸= 0) or Gr(n)
(if c = 0). But Kernel (πV ) = V⊥, so V is either Gr(n) or {0}, as required.

There is an important aspect of the calculus of anticommuting variables called
Berezin integration that we have not discussed here. The basics can be found in Sec-
tion 2.3, Chapter 7, of [Takh]; for thewhole story see [Ber1], [Ber2] and [Tuyn]. Section 4
of [Takh] describes the analogue of the Feynmanpath integral for anticommuting vari-
ables, which we will also not discuss here.

10.3 N = 2 supersymmetry and the harmonic oscillator
Supersymmetry (SUSY) is an idea thatwas born in the 1970s in physics. It soon became
the darling of the particle physics community due to the promise it held for resolving
many fundamental questions not addressed by the standardmodel of elementary par-
ticles and, at the same time, spawned an entirely new branch of mathematics, also
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called supersymmetry. We have seen that bosons and fermions behave quite differ-
ently and appear to require very different sorts of theoretical models for their descrip-
tion. SUSY postulates the existence of a new type of quantum symmetry operator that
interchanges bosons and fermions and thereby permits one to view these two seem-
ingly different sorts of animals fromamore unifiedperspective. The idea is clearly very
appealing, but even its most ardent proponents concede that its Achilles heel appears
to be that the proposal is based onphilosophical and aesthetic convictions rather than
experimental facts. Here is how the situation was viewed in 1985 by a physicist whose
work did much to advance the cause of supersymmetry.

“Modern science shares with both the Greek and earlier philosophies the conviction that the ob-
served universe is founded on simple underlying principles which can be understood and elabo-
rated throughdisciplined intellectual endeavor. By theMiddle Ages, this conviction had, in Chris-
tian Europe, become stratified into a system of Natural Philosophy that entirely and consciously
ignored the realities of the physical world and based all its insights on thought, and Faith, alone.
The break with the medieval tradition occurred when the scientific revolution of the 16th and
17th centuries established an undisputed dominance in the exact sciences of fact over idea, of ob-
servation over conjecture, and of practicality over aesthetics. Experiment and observation were
established as the ultimate judge of theory. Modern particle physics, in seeking a single unified
theory of all elementary particles and their fundamental interactions, appears to be reaching the
limits of this process and finds itself forced, in part and often very reluctantly, to revert for guide-
lines to the “medieval” principles of symmetry and beauty.”

Martin Sohnius [Sohn]

This may seem a rather peculiar attitude for theoretical physics, but it is not without
precedent. Paul Dirac believed very strongly thatmathematical beautywas not simply
a useful criterion for, but a decisive guide to physical laws.

“... it is more important to have beauty in one’s equations than to have them fit experiment. ... If
there is not complete agreement between the results of one’s work and experiment, one should
not allow oneself to be too discouraged, because the discrepancy may well be due to minor fea-
tures that are not properly taken into account and that will get cleared up with further develop-
ments of the theory.”

Paul Dirac [Dirac4]

Dirac’s philosophical and aesthetic convictions served him extraordinarily well,
the most obvious example being the relativistic equation for spin 1

2 particles to which
they guided him. The equation predicted the existence of an “antiparticle” for the
electron which, at the time, was nowhere to be found in nature. It was not long, how-
ever, before Carl Anderson found the tracks of these so-called “positrons” in his cloud
chamber, thereby vindicating Dirac’s equation in a rather spectacular way. Supersym-
metrymakes an analogous prediction. Every elementary particle should have an asso-
ciated “superpartner” (the hypothetical superpartner of the electron has been chris-
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tened the “selectron”). None of these supersymmetric pairs is to be found in the cur-
rently known elementary particle zoo, so one must try to produce them as the result
of collisions in particle accelerators. However, the masses of the superpartners are
predicted to be quite large, so enormous amounts of energy would be required to pro-
duce them (E = mc2). Until quite recently such energies were beyond the reach of
even the largest particle accelerators. This changed, however, with the construction
of the Large Hadron Collider (LHC) at CERN in Switzerland, which is capable of pro-
ducing the required energies. For adherents to the SUSY philosophy, the news has not
been good; none of the presumably accessible superpartners has been detected. This
is quite a serious problem for particle physics which, for nearly 45 years, has pinned
its hopes on supersymmetry (one can readmore about this “crisis” in [LS]). Of course,
the new branch of mathematics, also known as supersymmetry, does not really care.
The mathematics is either beautiful, or it is not, either useful, or not, and it happens
to be both. Whatever the eventual fate of SUSY in physics, the subject is still worth
knowing something about.

Before getting started we should be clear on what we can, and cannot, deliver
here. Whether one has in mind the physics or the mathematics, supersymmetry is a
vast and complex subject and we cannot pretend to offer anything even remotely re-
sembling an introduction to either. Although a bit dated now, [Sohn] is a highly re-
garded survey of the physics. For the mathematics one might consult [Tuyn], [Ber2]
and [Vara] or, for a different approach, [Rogers]. Our very modest goal here is to de-
scribe the simplest possible system that exhibits supersymmetry and try to place it
within some general context by defining what is called N = 2 supersymmetry. This
done we will briefly describe a familiar mathematical structure that serves as a model
of N = 2 supersymmetry and as the starting point of Edward Witten’s extremely influ-
ential paper [Witt2] on Morse theory.

What we would like to do is combine the bosonic and fermionic oscillators into
a single quantum system and then describe symmetry operators on this new system
that interchange bosonic and fermionic states. In order to have all of the components
assembled before us we will begin with a synopsis of what we have already done (see
Table 10.1).

The combined system is called the supersymmetric harmonic oscillator or SUSY
harmonic oscillator and its Hilbert space is taken to be

ℋS = ℋB ⊗ℋF = L
2(R) ⊗C2.

The first order of business is to transfer all of the relevant operators onℋB andℋF to
the tensor product. To do this we note the following general construction. Supposeℋ1
andℋ2 are two complex, separable Hilbert spaces and T1 and T2 are operators onℋ1
andℋ2, respectively. If T1 and T2 are bounded, then one defines a bounded operator

T1 ⊗ T2 : ℋ1 ⊗ℋ2 → ℋ1 ⊗ℋ2
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Table 10.1: Bosonic and Fermionic Harmonic Oscillators

Bosonic harmonic oscillator

Hilbert space:ℋB = L2(R)
Lowering operator: b = 1

√2mωℏ
(mωQ + iP)

Raising operator: b† = 1
√2mωℏ
(mωQ − iP)

Commutation relations: [b,b]− = [b†,b†]− = 0, [b,b†]− = 1
Number operator: NB = b†b
Hamiltonian: HB =

1
2ℏω[b

†,b]+ = ℏω(NB +
1
2 )

Orthonormal basis: ψ0 = (
mω
ℏπ )

1/4e−mωq
2/2ℏ, ψn =

1
n! (b
†)nψ0, n = 1,2, . . .

NBψn = nψn, n = 0,1,2, . . .
HBψn = ℰnψn = (n +

1
2 )ℏωψn, n = 0,1,2, . . .

Fermionic harmonic oscillator

Hilbert space:ℋF = C
2

Annihilation operator: f = 1
ℏ (S1 + iS2)

Creation operator: f † = 1
ℏ (S1 − iS2)

Anticommutation relations: [f , f ]+ = [f †, f †]+ = 0, [f , f †]+ = 1
Number operator: NF = f †f
Hamiltonian: HF =

1
2ℏω[f

†, f ]− = ℏω(NF −
1
2 )

Orthonormal basis: e0 = ( 01 ), e1 = ( 10 )
NF e0 = 0 ⋅ e0, NF e1 = 1 ⋅ e1
HF e0 = −

1
2ℏωe0, HF e1 =

1
2ℏωe1

as follows. On the algebraic tensor productℋ1 ⊗alg ℋ2 one defines (T1 ⊗ T2)(ϕ1 ⊗ϕ2) =
(T1ϕ1) ⊗ (T2ϕ2) and then extends by linearity. Since ℋ1 ⊗alg ℋ2 is dense in ℋ1 ⊗ ℋ2,
boundedness gives a unique bounded extension to all of ℋ1 ⊗ ℋ2. If the operators
are unbounded, then one can define T1 ⊗ T2 at least on the algebraic tensor prod-
uct 𝒟(T1) ⊗alg 𝒟(T2), which is again dense in ℋ1 ⊗ ℋ2. We will require only the case
in which one of the two operators is the identity. Since we will have a number of such
identity operators floating aroundwewill abandon the rather nondescript 1 in favor of
idℋB

, idℋF
and idℋS

. We will also eschew the usual custom of using the same symbol
for an operator onℋ1 orℋ2 and the induced operator on the tensor product obtained
by tensoring with the identity. Now define the number operator NS onℋS by

NS = (NB ⊗ idℋF
) + (idℋB

⊗ NF)

and the Hamiltonian HS by

HS = (HB ⊗ idℋF
) + (idℋB

⊗ HF).

Exercise 10.3.1. Prove each of the following, where the products indicate composi-
tions:
1. NB ⊗ idℋF

= (b† ⊗ idℋF
)(b ⊗ idℋF

),
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2. idℋB
⊗ NF = (idℋB

⊗ f †)(idℋB
⊗ f ),

3. HS = ℏω [ (b† ⊗ idℋF
)(b ⊗ idℋF

) + (idℋB
⊗ f †)(idℋB

⊗ f ) ] = ℏωNS.

The next few items on the agenda will be easier to write if we introduce a bit of
notation. If T is an operator on ℋ and T has an eigenvalue λ we will write the corre-
sponding eigenspace Eλ(T). Note that the operator idℋB

⊗ NF onℋB ⊗ℋF is bounded
and given by (idℋB

⊗ NF)(ψ ⊗ (a0e0 + a1e1)) = ψ ⊗ (a1e1).

Exercise 10.3.2. Show that idℋB
⊗NF is self-adjoint and satisfies ( idℋB

⊗NF )
2 = idℋB

⊗
NF so that it is an orthogonal projection. Conclude that its spectrum consists of just the
two eigenvalues λ = 0, 1 and show thatE0(idℋB

⊗NF) = ℋB⊗E0(NF) andE1(idℋB
⊗NF) =

ℋB ⊗ E1(NF).

An essential ingredient in what we would like to do here is a unitary involution τ
onℋS defined by

τ = idℋS
− 2(idℋB

⊗ NF).

We show that τ is, indeed, a unitary involution as follows. We let φ be an element of
ℋS and compute

τ2φ = τ(φ − 2(idℋB
⊗ NF)φ)

= φ − 2(idℋB
⊗ NF)φ − 2(idℋB

⊗ NF)(φ − 2(idℋB
⊗ NF)φ)

= φ − 4(idℋB
⊗ NF)φ + 4(idℋB

⊗ NF)
2φ

= φ,

so τ is an involution:

τ2 = idℋS

Exercise 10.3.3. Show that τ = idℋS
− 2(idℋB

⊗NF) satisfies ⟨τφ, τφ⟩ = ⟨φ,φ⟩ for every
φ ∈ ℋS and conclude that τ is a unitary operator onℋS.

Since τ is an involution, its spectrum consists of just the two eigenvalues λ = 1,−1.
Furthermore, since τφ = φ⇔ φ − 2(idℋB

⊗ NF)φ = φ⇔ (idℋB
⊗ NF)φ = 0,

E1(τ) = E0(idℋB
⊗ NF) = ℋB ⊗ E0(NF).

Similarly,

E−1(τ) = E1(idℋB
⊗ NF) = ℋB ⊗ E1(NF).

Since τ is unitary, ℋS has an orthogonal decomposition as the direct sum of these
eigenspaces. Note that E0(NF) and E1(NF) are both isomorphic toC, so E1(τ) and E−1(τ)
are both copies ofℋB. We will denote them

ℋ+B = E1(τ) = {φ ∈ ℋS : τφ = φ}
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and

ℋ−B = E−1(τ) = {φ ∈ ℋS : τφ = −φ},

so that

ℋS = ℋ
+
B ⊕ℋ

−
B.

The states inℋ+B will be referred to as bosonic, while those inℋ−B are fermionic.

Remark 10.3.1. If we had not already used up the symbolsℋB andℋF for the Hilbert
spaces of the bosonic and fermionic oscillators, wewould have called these subspaces
ℋB andℋF instead ofℋ+B andℋ−B, as is more customary. When we generalize in a few
moments and do not begin with the harmonic oscillators, we will adopt this more
common notation.

Exercise 10.3.4. Show that ifφ is inℋ+B, thenHSφ is also inℋ+B, and ifφ is inℋ−B, then
HSφ is also inℋ−B.

Consequently, we can define operators

H+S : ℋ
+
B → ℋ+B

and

H−S : ℋ
−
B → ℋ−B

by restricting HS. It is often convenient to think of HS as a diagonal matrix acting on
column vectors of states:

HS = (
H+S 0
0 H−S

) :
ℋ+B
⊕
ℋ−B

→
ℋ+B
⊕
ℋ−B

.

TheHamiltonianHS, as you have just shown, preserves the bosonic and fermionic
subspaces of ℋS. Now we will introduce two operators D± that switch them. Specifi-
cally, we define

D+φ = √ℏω (b ⊗ idℋF
)(idℋB
⊗ f †)

and

D−φ = √ℏω (b† ⊗ idℋF
)(idℋB
⊗ f ).

Evaluating each of these at φ = ψ ⊗ A ∈ ℋS gives

D+φ = D+(ψ ⊗ A) = √ℏω (bψ) ⊗ (f †A)

and

D−φ = D−(ψ ⊗ A) = √ℏω (b†ψ) ⊗ (fA).
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Exercise 10.3.5. Prove each of the following:
1. φ ∈ ℋ+B ⇒ D+φ ∈ ℋ−B,
2. φ ∈ ℋ−B ⇒ D−φ ∈ ℋ+B.

Thus,

D+|ℋ+B : ℋ
+
B → ℋ−B

and

D−|ℋ−B : ℋ
−
B → ℋ+B.

Now note that

D+D−φ = D+(√ℏω (b†ψ) ⊗ (fA))

= ℏω ( (b ⊗ idℋF
)(idℋB
⊗ f †) )( (b†ψ) ⊗ (fA) )

= ℏω (b ⊗ idℋF
)( (b†ψ) ⊗ (f †fA) )

= ℏω (bb†ψ) ⊗ (NFA)

and, similarly,

D−D+φ = ℏω (NBψ) ⊗ (ff
†A).

Exercise 10.3.6. Show that

[D+,D−]+ = D
+D− + D−D+ = ℏω (NB ⊗ idℋF

+ idℋB
⊗ NF) = HS .

Next we compute

D+D+φ = √ℏωD+((bψ) ⊗ (f †A)) = ℏω (bbψ) ⊗ (f †f †A) = ℏω (bbψ) ⊗ 0 = 0

and, similarly,

D−D−φ = 0.

It follows from these that

(D+ + D−)2 = D+D+ + D+D− + D−D+ + D−D− = 0 + HS + 0 = HS .

For future reference and in the hope that it might look vaguely familiar we will sum-
marize a few of the identities we have just derived:

D+D+ = 0,
D−D− = 0, (10.26)
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(D+ + D−)2 = HS .

If these do not look familiar you might want to browse through Chapter 6 of [Warner]
or Chapter 2 of [Jost] on Hodge theory. We will return to this shortly.

Soonwewill distill from the examplewe are now investigating the essential ingre-
dients of what is called N = 2 supersymmetry. There are three of them, the first two of
which (a Hilbert spaceℋS of states and a unitary involution τ) we have already seen.
The third is an operator Qwhose square is taken to be the Hamiltonian of the system.
We have just seen what this must be in our example. Define

Q = D+ + D−

so that

Q2 = HS .

From this it follows at once that Q commutes with the Hamiltonian so that

[Q,HS]− = 0.

Exercise 10.3.7. Show that
1. τD+ = −D+τ and
2. τD− = −D−τ

and conclude that

[Q, τ]+ = 0.

Exercise 10.3.8. Show that for φ1,φ2 ∈ ℋS,

⟨φ1,Qφ2 ⟩ = ⟨Qφ1,φ2 ⟩.

At this point we have seen enough of the SUSY oscillator to motivate the general
definition of N = 2 supersymmetry, but there is one last itemwe would like to discuss.
Note that ℋB has an orthonormal basis {ψnb }

∞
nb=0 of eigenstates for HB with energy

ℏω (nb +
1
2 ):

HBψnb = ℏω(nb +
1
2
)ψnb , nb = 0, 1, 2, . . . .

The ground state is ψ0 and has energy 1
2ℏω. All of the eigenspaces are one-

dimensional. Similarly, ℋF has an orthonormal basis {enf }nf=0,1 of eigenstates for
HF with energy ℏω (nf −

1
2 ):

HFenf = ℏω(nf −
1
2
) enf , nf = 0, 1.
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The ground state is e0 and has energy − 12ℏω. All of the eigenspaces are one-
dimensional. Therefore,ℋS has an orthonormal basis consisting of all

ψnb ⊗ enf , nb = 0, 1, 2, . . . , nf = 0, 1.

Each ψnb ⊗ enf is an eigenstate for HS with energy ℏω(nb + nf ) because

HS(ψnb ⊗ enf ) = (HB ⊗ idℋF
)(ψnb ⊗ enf ) + (idℋB

⊗ HF)(ψnb ⊗ enf )

= ℏω(nb +
1
2
)ψnb ⊗ enf + ℏω(nf −

1
2
)ψnb ⊗ enf

= ℏω (nb + nf )ψnb ⊗ enf .

The ground state isψ0⊗e0 and has energy 0.While the ground state is unique, wewill
show now that all of the remaining eigenvalues are degenerate (the eigenspaces have
dimension greater than 1). To see this, fix an nb ≥ 1. Now note that

ψnb ⊗ e0 and ψnb−1 ⊗ e1

have the same energy ℏωnb and

ψnb ⊗ e1 and ψnb+1 ⊗ e0

both have energy ℏω(nb + 1). Also,

ψ0 ⊗ e1 and ψ1 ⊗ e0

both have energy ℏω. One can phrase these results rather suggestively as follows.
The simultaneous creation of one bosonic quantum of energy and annihilation of one
fermionic quantum of energy (or vice versa) leaves the total energy unchanged.

There is much more one could say about the SUSY oscillator (see, for example,
Sections 2.1–2.5 of [Bagchi]), but we would now like to abstract the essential features
of this example in the form of a definition. We will say that a triple

(ℋS , τ, Q )

consisting of a complex, separable Hilbert spaceℋS, a unitary involution τ onℋS and
a self-adjoint operator Q on ℋS that anticommutes with τ is an instance of N = 2 su-
persymmetry. The supersymmetric harmonic oscillator is one such and we will see
another soon. First we would like to develop a few of the elementary consequences of
the definition. We will pursue this only far enough that we can say a few words about
what Edward Witten [Witt2] has called “the most important question about a super-
symmetric theory.”



434 | 10 Fermionic and supersymmetric harmonic oscillators

Since τ is a unitary involution, its spectrumconsists only of the two eigenvalues±1
and ℋS has an orthogonal decomposition into the direct sum of the corresponding
eigenspaces E±1(τ). We define the bosonic and fermionic subspaces ofℋS by

ℋB = E1(τ)

and

ℋF = E−1(τ),

respectively, so that

ℋS = ℋB ⊕ℋF .

The Hamiltonian of (ℋS , τ, Q ) is defined by

HS = Q
2.

There are domain issues here, of course, but these need to be resolved in each example
separately. The same is true of much of what follows. Note that since Q is self-adjoint,

⟨HSψ1,ψ2⟩ = ⟨ψ1,HSψ2⟩,

and since Q anticommutes with τ,

τHS = τQ
2 = (τQ)(Q) = (−Qτ)Q = −Q(τQ) = −Q(−Qτ) = Q2τ = HSτ,

so

[HS , τ]− = 0.

Now, if φ ∈ ℋB, then τφ = φ, so

HSφ = HS(τφ) = τHSφ,

so

τHSφ = τ
2HSφ = HSφ,

and therefore HSφ is also inℋB. Thus,

HS(ℋB) ⊆ ℋB.

Exercise 10.3.9. Prove each of the following:
1. HS(ℋF) ⊆ ℋF ,
2. Q(ℋB) ⊆ ℋF ,
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3. Q(ℋF) ⊆ ℋB.

Thus,HS preserves the bosonic and fermionic subspaces, butQ reverses them.We can
therefore define operators

HB = HS|ℋB
: ℋB → ℋB,

HF = HS|ℋF
: ℋF → ℋF ,

D+ = Q |ℋB
: ℋB → ℋF ,

D− = Q |ℋF
: ℋF → ℋB.

Then

HB = D
−D+

and

HF = D
+D−.

Exercise 10.3.10. Show that for ψ ∈ ℋB and φ ∈ ℋF ,

⟨ψ,D−φ⟩ = ⟨D+ψ,φ⟩.

Exercise 10.3.11. Prove each of the following:
1. Kernel (HB) = Kernel (D+),
2. Kernel (HF) = Kernel (D−),
3. Kernel (HS) = Kernel (Q) = Kernel (D+) ⊕ Kernel (D−).

It is sometimes convenient to write HS and Q as 2 × 2 matrices of operators acting on
column vectors of states:

HS = (
HB 0
0 HF
) = (

D−D+ 0
0 D+D−

) :
ℋB
⊕
ℋF

→
ℋB
⊕
ℋF

,

Q = ( 0 D−

D+ 0
) :

ℋB
⊕
ℋF

→
ℋB
⊕
ℋF

.

Finally, we will define operators Q1 and Q2, called supercharges, or generators of
the supersymmetry. The fact that there are two of them accounts for the “N = 2” in
“N = 2 supersymmetry.” Specifically, we set

Q1 = Q
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and

Q2 = iQτ.

Both of these reverse the bosonic and fermionic subspaces ofℋS and satisfy

Kernel Q1 = Kernel Q2 = Kernel Q = Kernel HS ,

⟨Q1ψ1,ψ2⟩ = ⟨Qψ1,ψ2⟩ = ⟨ψ1,Qψ2⟩ = ⟨ψ1,Q1ψ2⟩

and

⟨Q2ψ1,ψ2⟩ = ⟨iQτψ1,ψ2⟩ = −i⟨ψ1, τQψ2⟩ = i⟨ψ1,Qτψ2⟩ = ⟨ψ1,Q2ψ2⟩.

Moreover,

Q2
1 = Q

2 = HS

and

Q2
2 = −(Qτ)(Qτ) = −Q(τQ)τ = Q(Qτ)τ = Q

2τ2 = Q2 = HS ,

so

Q2
1 = Q

2
2 = HS .

Exercise 10.3.12. Show that

[Q1,Q2]+ = 0.

We can write these last few identities as

[Qi,Qj]+ = 2δijHS , i, j = 1, 2.

Exercise 10.3.13. Show that Q1 and Q2 both commute with the Hamiltonian, that is,

[HS ,Qi]− = 0, i = 1, 2.

The seemingly endless barrage of identities that you are being subjected to actu-
ally has a serious purpose. We are in the process of uncovering a very fundamental
notion in supersymmetry. To fully expose it, however, will require one more identity
and, for this, a few definitions. Operators such as HS that preserve the bosonic and
fermionic subspaces of ℋS are said to be even and to have degree 0 ∈ Z2. Operators
such as Q1 and Q2 that reverse the bosonic and fermionic subspaces ofℋS are said to
be odd and to have degree 1 ∈ Z2. If an operator A is either even or odd we will say
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that it is homogeneous and we will write its degree as |A| ∈ Z2. Since ℋS = ℋB ⊕ ℋF ,
any operator can be written as the sum of an even operator and an odd operator.

As we have seen, some operators satisfy commutation relations and some satisfy
anticommutation relations. To express all of these various relations in a uniform way
we will define the supercommutator of two homogeneous operators A and B onℋS by

[A,B]S = AB − (−1)
|A| |B| BA

and then extend to all operators by decreeing that [ , ]S should be bilinear. Note that
products and sums of degrees are computed inZ2 = {0, 1} and (−1)0 = 1, while (−1)1 =
−1. IfA andB are both odd, then [A,B]S = [A,B]+, while if eitherA orB is even, [A,B]S =
[A,B]−. Note that it follows immediately from this that

[A,B]S = −(−1)
|A| |B|[B,A]S .

The final identity we need is called the super Jacobi identity and it states that

(−1)|A| |C| [A, [B,C]S]S + (−1)
|C| |B| [C, [A,B]S]S + (−1)

|B| |A| [B, [C,A]S]S = 0.

To prove this we need to write out

[A, [B,C]S]S = [A,BC − (−1)
|B| |C|CB]S = [A,BC]S + (−1)

|B| |C|[A,CB]S
= ABC − (−1)|A| |BC| BCA − (−1)|B| |C| (ACB − (−1)|A| |CB| CBA )

= ABC − (−1)|A| |B|+|A| |C| BCA − (−1)|B| |C| (ACB − (−1)|A| |C|+|A| |B| CBA ).

Consequently,

(−1)|A| |C|[A, [B,C]S]S = (−1)
|A| |C|ABC − (−1)|A| |B|BCA

− (−1)|A| |C|+|B| |C|ACB + (−1)|A| |B|+|B| |C|CBA.

Changing the names gives

(−1)|C| |B|[C, [A,B]S]S = (−1)
|C| |B|CAB − (−1)|C| |A|ABC

− (−1)|C| |B|+|A| |B|CBA + (−1)|C| |A|+|A| |B|BAC

and

(−1)|B| |A|[B, [C,A]S]S = (−1)
|B| |A|BCA − (−1)|B| |C|CAB

− (−1)|B| |A|+|C| |A|BAC + (−1)|B| |C|+|C| |A|ACB.

Adding these last three, one sees that everything cancels on the right-hand side.
Here is what we have shown. Let g = g0 ⊕ g1, where g0 is the vector space freely

generated by the even operator HS and g1 is the vector space freely generated by the
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two odd operatorsQ1 andQ2. The elements of g0 are even and of degree0, while those
of g1 are odd and of degree 1. For homogeneous elements A and B in g, define

[A,B]S = AB − (−1)
|A| |B|BA

and extend by bilinearity. Then [Qi,Qj]S = 2δijHS, i, j = 1, 2, and [HS ,Qi]S = 0, i = 1, 2,
imply that

[ gi, gj ]S ⊆ gi+j, i, j ∈ Z2, (10.27)

and for homogeneous elements we have

[A,B]S = −(−1)
|A| |B|[B,A]S (10.28)

and

(−1)|A| |C| [A, [B,C]S]S + (−1)
|C| |B| [C, [A,B]S]S + (−1)

|B| |A| [B, [C,A]S]S = 0. (10.29)

Let us define a Lie superalgebra to be aZ2-graded vector space g = g0 ⊕g1 with a bilin-
earmap [ , ]S : g⊕g→ g satisfying (10.27) and, for homogeneous elements of g, (10.28)
and (10.29). We see then that N = 2 supersymmetry gives rise to a natural Lie superal-
gebra.

Lie superalgebras are sometimes called super Lie algebras, but the terminology
can be misleading since a Lie superalgebra is not a Lie algebra at all. Note, however,
that the restriction of [ , ]S to g0 ×g0 is an ordinary Lie bracket and therefore g0 is a Lie
algebra. For the applications of supersymmetry to particle physics one must proceed
in the other direction, that is, one must begin with a given Lie algebra g0 (such as the
so-called Poincaré algebra) and construct a Lie superalgebra for which g0 is the even
part. Such Lie superalgebras are regarded as the infinitesimal generators of supersym-
metries in the same way that Lie algebras are regarded as infinitesimal generators of
symmetries in mechanics. A proper introduction to this requires very sophisticated
physical ideas that are beyond our level here (one might begin with the preface and
introduction to [Sohn]). The rigorous study of Lie superalgebras was initiated by Kac
in [KacV].

Before leaving the general subject of N = 2 supersymmetry and proceeding to
our final example we would like to say a few words about a fundamental problem in
supersymmetry that has had a profound impact on both physics and mathematics.
Recall that the Hamiltonian for the supersymmetric harmonic oscillator has a ground
state ψ0 ⊗ e0 with energy 0 and that this ground state is unique. Now, in any N = 2
supersymmetric theory the Hamiltonian is, by definition, a square (HS = Q2), so it
follows fromself-adjointness that its spectrumσ(HS) is contained in [0,∞). In general,
0 may or may not be in the spectrum and, if it is, it may or may not be an eigenvalue.
We will let

E0 = inf σ(HS) (10.30)
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and we will consider only the case in which E0 is actually an eigenvalue of HS so that
there exists a ψ0 ∈ ℋS with ‖ψ0‖ = 1 and

HSψ0 = E0ψ0. (10.31)

Then ψ0 is called a ground state of (ℋS , τ, Q ). Note that it follows from this that

HS(Qψ0) = Q(HSψ0) = Q(E0ψ0) = E0(Qψ0). (10.32)

Thus,Qψ0 is also an eigenstate ofHS with energy E0. Let us think about this physically
for a second. We think of ψ0 as the state of some particle, either boson or fermion,
with ground state energy E0, and Qψ0 is the state of another particle, either fermion
or bosonbecauseQ reverses these,with the sameground state energyE0. The particles
corresponding to ψ0 and Qψ0 are called superpartners and quantum field theory has
something to say about these superpartners. Specifically, if the ground state energy
E0 = 0, thenψ0 and Qψ0 must have the samemass; this is not at all obvious, of course.

Theproblemwith this is that bosons and fermionswith the samemasshave simply
not been observed, and if they exist, they should have been observed, since lots of
bosons and fermionshavebeenproduced inparticle accelerators and themass/energy
is the only impediment to the production of particles in accelerators. The conclusion
we draw from this is that a realistic supersymmetric theory cannot have a ground state
energy E0 = 0. There is some terminology in physics used to describe what is going on
here.

An N = 2 supersymmetry (ℋS , τ, Q ) for which E0 = 0 is said to be unbroken; if
E0 > 0, then the supersymmetry (ℋS , τ, Q ) is said to be spontaneously broken. We
have just seen that a realistic supersymmetric theory must be spontaneously broken
and this simply amounts to the requirement that the equation HSψ = 0 has no non-
trivial solutions inℋS or, equivalently (Exercise 10.3.11), the equation

Qψ = 0

has no nontrivial solutions inℋS. Stated otherwise, in a spontaneously broken super-
symmetric theory zero is not an eigenvalue of Q.

Remark 10.3.2. Group theory provides a context in which symmetry breaking in
physics can be defined precisely and studied. We will not pursue this at all and will
say only that if supersymmetry (symmetry between bosons and fermions) is a real
physical symmetry, then the symmetry must have been broken at some point in the
past and is no longer visible to us because we do not observe bosons and fermions
of the same mass. This is analogous to the discovery made by Pierre Curie that, be-
yond a certain critical temperature Tc, ferromagnetic materials lose their magnetic
properties because the alignment of the magnetic moments of the atoms is destroyed
by thermal agitation. For T > Tc the ground state (state of minimal energy) has a
rotational symmetry in the sense that there is no preferred direction in space, but for
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T < Tc this symmetry is destroyed. Note that the rotational symmetry can be restored
by raising the temperature, that is, the ground state energy. It has been suggested
that supersymmetry was visible in the very early universe shortly after the Big Bang
and could become visible again if we had access to accelerators with sufficiently high
energies; so far this does not appear to be working out.

How could one show that Qψ = 0 has no nontrivial solutions in ℋS? Generally,
this is a difficult problem. Typically, Q is some differential operator and we are asking
about its smallest eigenvalue. In some circumstances one can obtain a lower bound on
the energy eigenvalues, and if this happens to be positive, then 0 cannot be an eigen-
value and Qψ = 0 can have no nontrivial solutions. As a rule, however, such direct
estimates are generally inaccessible. Witten [Witt2] proposed an indirect method that
can sometimes provide an answer to our question and we will just briefly describe the
idea.

We have Q written as

Q = ( 0 D−

D+ 0
) :

ℋB
⊕
ℋF

→
ℋB
⊕
ℋF

and will now focus our attention on D+ : ℋB → ℋF . Then D− : ℋF → ℋB is the adjoint
of D+ (Exercise 10.3.10). We will assume that D+ is a Fredholm operator. Recall that a
densely defined, closed operator T : ℋ1 → ℋ2 between separable, complex Hilbert
spaces is Fredholm if it has closed range and both Kernel T and Kernel T∗ are finite-
dimensional. We can then define the Fredholm index of D+ by

ind D+ = dim (Kernel D+) − dim (Kernel D−).

Now, it follows from Exercise 10.3.11 that

dim (Kernel Q) = dim (Kernel D+) + dim (Kernel D−),

so, in particular, if ind D+ ̸= 0, then dim (Kernel Q) ̸= 0 as well, so zero is an
eigenvalue of Q and the supersymmetry is unbroken. In the context of supersym-
metry, ind D+ is generally called theWitten index and computing it for a given super-
symmetric theory is a problem of considerable interest. For those with an interest in
pursuing further some specific examples that arise in physics wemight suggest [Witt1]
or, for a mathematically rigorous treatment, [JLL]. We will say no more about these,
but will move on to Section 10.4 and describe one more example of an N = 2 super-
symmetry (ℋS , τ, Q ).

10.4 N = 2 supersymmetry and Hodge theory
The examplewehave inmind in this section arises, not in physics, but inmathematics.
The idea behind the example is quite simple, but formulating it all precisely enough
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to fit our rigorous definition of N = 2 supersymmetry draws upon quite a surprising
amount of machinery. Since some of this material is likely to exceed the level of pre-
paredness we have heretofore assumed of our generic reader we will spend a bit more
time introducing the ideas as we proceed rather than relegating them to various ap-
pendices. Good sources for much of what we need are [Warner] and [Jost].

We begin with a compact, connected, oriented, smooth, n-dimensional mani-
fold X with a Riemannian metric g. Recall that g assigns to each tangent space Tx(X)
a positive definite inner product gx = ⟨ , ⟩x and that these vary smoothly from
point to point in the sense that if V and W are smooth vector fields on X, then
x ∈ X → ⟨V(x),W(x)⟩x ∈ R is a smooth real-valued function on X. We will de-
note by Ωp(X), p = 0, 1, . . . , n, the C∞(X;R)-module of real-valued p-forms on X. Our
construction will begin with the de Rham complex

0→ Ω0(X)
d0→ Ω1(X)

d1→ Ω2(X)
d2→ ⋅ ⋅ ⋅

dp−1
→ Ωp(X)

dp
→ Ωp+1(X)

dp+1
→ ⋅ ⋅ ⋅

dn−1→ Ωn(X)→ 0, (10.33)

where each dp is the exterior derivative acting on p-forms so that dp+1dp = 0 for each
p = 0, 1, . . . , n − 2. The de Rham cohomology groups with real coefficients are defined
for 0 ≤ p ≤ n by

Hp(X;R) = Kernel (dp)/ Image (dp−1).

In particular, for p = 0 and p = n,

H0(X;R) = Kernel (d0), Hn(X;R) = Ωn(X)/ Image (dn−1).

However, since we are trying to build a complex Hilbert space ℋS we will actually be
interested in complex-valued differential forms. These are obtained simply by tensor-
ing (overR) each Ωp(X) withC thought of as a two-dimensional real vector space.

Exercise 10.4.1. As a reminder, we should review a few facts about the complexifica-
tion of a real vector space 𝒱. For this we regard C as a two-dimensional real vector
space and define 𝒱C = 𝒱 ⊗ C, where the tensor product is over R. If {e1, . . . , en} is a
basis for 𝒱 and if we take {1, i} as a basis forC, then {e1 ⊗ 1, . . . , en ⊗ 1, e1 ⊗ i, . . . , en ⊗ i}
is a basis for 𝒱C as a real vector space.
1. Show that 𝒱C becomes a complex vector space if one defines complex scalar mul-

tiplication by α(v ⊗ β) = v ⊗ (αβ) for all v ∈ 𝒱 and all α, β ∈ C.
2. Show that any element v of 𝒱C can be written as v = v1 ⊗ 1+ v2 ⊗ i, where v1, v2 ∈ 𝒱,

and henceforth adopt the usual notational convention and write this simply as
v1 + v2i.

3. Show that if a1 + a2i ∈ C and v1 + v2i ∈ 𝒱C, then

(a1 + a2i)(v1 + v2i) = (a1v1 − a2v2) + (a1v2 + a2v1)i.
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4. Show that the complex dimension of 𝒱C is equal to the real dimension of 𝒱.
5. Let ⟨ , ⟩ be a positive definite inner product on 𝒱 and define ⟨ , ⟩C : 𝒱C × 𝒱C → C

by

⟨ v1 + v2i, w1 + w2i ⟩
C = ⟨v1,w1⟩ + ⟨v2,w2⟩ + i ( ⟨v1,w2⟩ − ⟨v2,w1⟩ ).

Show that ⟨ , ⟩C is a Hermitian inner product on 𝒱C, complex linear in the second
slot and conjugate linear in the first.

6. Apply this construction toΩp(X)and show that the elements ofΩp(X)C = Ωp(X)⊗C
can be regarded as differential forms with complex-valued coefficients.

One defines dp on Ωp(X) ⊗ C by computing exterior derivatives of real and imaginary
parts. Then the entire apparatus of de Rham theory goes through without change for

0→ Ω0(X) ⊗C
d0→ Ω1(X) ⊗C

d1→ Ω2(X) ⊗C
d2→ ⋅ ⋅ ⋅

dp−1
→ Ωp(X) ⊗C

dp
→ Ωp+1(X) ⊗C

dp+1
→ ⋅ ⋅ ⋅

dn−1→ Ωn(X) ⊗C→ 0. (10.34)

For example, the de Rham cohomology groups with complex coefficients are defined
for 0 ≤ p ≤ n by

Hp(X;C) = Kernel (dp)/ Image (dp−1).

In particular, for p = 0 and p = n,

H0(X;C) = Kernel (d0), Hn(X;C) = Ωn(X)/ Image (dn−1).

We will summarize just those parts of the apparatus that we will need.
The elements of Ω0(X) are simply smooth, real-valued functions on X. Smooth

vector fields on X can also be regarded as functions on X, specifically, as sections of
the tangent bundle TX and smooth 1-forms on X, that is, the elements of Ω1(X), can be
identified with sections of the cotangent bundle T∗X. As it happens, the elements of
any Ωp(X) can be described in a similar way (indeed, this is how p-forms are defined
in Section 2.14 of [Warner]). Since we will soon find this point of view particularly
fruitful, we will pause for a moment to briefly describe the general context in which it
is done (details are available in Section 1.5 of [Jost] and in many other places as well,
for example, Volume I of [Sp2]).

Note that TX and T∗X are manifolds built by supplying a differentiable structure
to the disjoint union of the vector spaces Tx(X) and T∗x (X), for x ∈ X, respectively, and
for each there is a natural smooth projection π onto X (see Appendix D). The general
context we have in mind is contained in the following definitions. LetF denote either
R orC and k a positive integer. Then a k-dimensional smoothF-vector bundle over the
manifold X consists of a smooth manifold E and a smooth map π : E → X of E onto X
such that the following conditions are satisfied:
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1. Each of the fibers π−1(x0) for x0 ∈ X has the structure of a k-dimensional vector
space overF.

2. (Local triviality) For each x0 ∈ X there exists an open neighborhood U of x0 in X
and a diffeomorphism Φ : π−1(U) → U × Fk such that each of the following is
satisfied:
a. π1 ∘Φ = π, where π1 : U ×Fk → U is the projection onto the first factor;
b. for each x ∈ U the map Φx : π−1(x) → Fk defined by Φx = π2 ∘ Φ|π−1(x) is an

F-vector space isomorphism, where π2 : U × Fk → Fk is the projection onto
the second factor.

Here k is called the fiber dimension of the vector bundle and the pair (U ,Φ) is called
a local trivialization of the bundle. By shrinking U if necessary, one can (and we will)
always assume thatU is a coordinate neighborhood for themanifoldX. A section of the
vector bundle is a smooth map s : X → E satisfying π ∘ s = idX . Thus, a section selects
an element in the vector space π−1(x) for each x ∈ X and the selections vary smoothly
with x. The trivial k-dimensional F-vector bundle over X is simply the product E =
X × Fk with π : X × Fk → X being just the projection onto the first factor. Note that
smoothF-valued functions onX can be regarded as sections of the trivial bundleX×F
by simply identifying the function with its graph.

All of the usual operations by which one produces new vector spaces from given
vector spaces (subspaces, duals, direct sums, tensor products, exterior powers, etc.)
have direct analogues for vector bundles which just apply the vector space operations
to the fibers. In particular, one can construct the pth exterior power of the cotangent
bundleT∗X, generally denoted∧p(T∗X). Smooth p-forms onX are then identifiedwith
sections of ∧p(T∗X). Similarly, one can complexify the fibers of T∗X and form the pth
exterior power to obtain a vector bundle denoted ∧p(T∗X ⊗ C). The complex-valued
p-forms on X are just sections of ∧p(T∗X ⊗C).

This point of view is fruitful because it allows us to think of the de Rham com-
plexes (10.33) and (10.34) as sequences of differential operators on sections of vector
bundles, and as we will see, this is not only useful for us, but also suggests the possi-
bility of a vast generalization of what we will describe here.

The fibers of an R-vector bundle are isomorphic copies of some real vector
space 𝒱. If 𝒱 has a positive definite inner product ⟨ , ⟩, then this will induce a posi-
tive definite inner product ⟨ , ⟩x on each fiber π−1(x). In general, a fiber metric on an
R-vector bundle π : E → X is an assignment of a positive definite inner product ⟨ , ⟩x
to each fiber π−1(x) that varies smoothly with x in the sense that x → ⟨s1(x), s2(x)⟩x is
a smooth real-valued function on X for any sections s1 and s2. Local triviality and a
partition of unity argument (see Remark C.0.1) imply that these always exist. If E = TX,
this is just a Riemannian metric. A fiber metric on a C-vector bundle π : E → X is an
assignment of aHermitian inner product ⟨ , ⟩x to each fiber π−1(x) that varies smoothly
with x in the sense that x → ⟨s1(x), s2(x)⟩x is a smooth complex-valued function on X
for any sections s1 and s2.
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Since X is a compact, oriented n-manifold with a Riemannian metric g, there is
a standard procedure for supplying each Ωp(X) with a positive definite inner product
which we will briefly sketch. The metric and the orientation determine a unique vol-
ume form volg ∈ Ωn(X) and any element of Ωn(X) can be uniquely written as some
smooth, real-valued function on X times volg. Moreover, the metric and orientation
also determine, for each p = 0, 1, . . . , n, an isomorphism

∗ : Ωp(X)→ Ωn−p(X),

called the Hodge star operator; the image of β ∈ Ωp(X) under this isomorphism is
denoted ∗β. Consequently, for α, β ∈ Ωp(X), α ∧ ∗β is in Ωn(X), so

α ∧ ∗β = ⟨α , β⟩ volg

for some smooth, real-valued function ⟨α , β⟩ on X called the pointwise inner product
of α and β. One then obtains an inner product on Ωp(X) by integrating over X:

∫
X

α ∧ ∗β = ∫
X

⟨α , β⟩ volg, α, β ∈ Ωp(X).

Applying Exercise 10.4.1.5 to ⟨ , ⟩ on each fiber, one obtains a Hermitian fibermetric on
∧p(T∗X ⊗C)which we will also write simply as ⟨ , ⟩ rather than ⟨ , ⟩C since we will not
have occasion to use the real-valued function again. Integrating then gives an L2-inner
product on Ωp(X) ⊗C:

⟨α, β⟩L2 = ∫
X

⟨α , β⟩ volg, α, β ∈ Ωp(X) ⊗C.

The completion of Ωp(X) ⊗ C with respect to this inner product is called the space of
L2-sections of ∧p(T∗X ⊗ C), or simply the space of L2-forms of degree p on X, and we
will denote it

L2(Ωp(X) ⊗C).

The elements of L2(Ωp(X)⊗C) are, as usual, equivalence classes of sections that differ
only on a set of measure zero, the measure being the one determined by the metric
volume form volg on X. This is a Hilbert space, but, to be clear, it is not the Hilbert
space of the example we are in the process of constructing.

Because we are interested primarily in the construction of a complex Hilbert
spaceℋS for our example of an N = 2 supersymmetry we will henceforth restrict our
attention to the complex case. With respect to the L2-inner products on the smooth
forms, each dp−1 : Ωp−1(X) ⊗ C → Ωp(X) ⊗ C has a formal adjoint δp : Ωp(X) ⊗ C →
Ωp−1(X) ⊗C defined by the condition that for α ∈ Ωp−1(X) ⊗C and β ∈ Ωp(X) ⊗C,

⟨ dp−1α, β ⟩L2 = ⟨ α, δpβ ⟩L2 .
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We have

Ωp−1(X) ⊗C
dp−1
→ Ωp(X) ⊗C

dp
→ Ωp+1(X) ⊗C,

Ωp−1(X) ⊗C
δp
← Ωp(X) ⊗C

δp+1
← Ωp+1(X) ⊗C.

Exercise 10.4.2. Show that δp−1δp = 0 for p = 1, . . . , n.

It follows from basic properties of the Hodge star operator and Stokes’ theorem
that

δp = (−1)
n(p+1)+1 ∗ dn−p∗

(see Proposition 6.2 of [Warner]). Now define, for each p = 0, 1, . . . , n, theHodge Lapla-
cian (also called the Laplace–Beltrami operator)

Δp : Ω
p(X) ⊗C→ Ωp(X) ⊗C

as follows. For p = 0,

Δ0 = δ1d0,

and for p = n,

Δn = dn−1δn,

while for 1 ≤ p ≤ n − 1,

Δp = δp+1dp + dp−1δp.

Note that for α, β ∈ Ωp(X) ⊗C,

⟨Δpα, β ⟩L2 = ⟨ δp+1dpα + dp−1δpα, β ⟩L2
= ⟨ δp+1dpα, β ⟩L2 + ⟨ dp−1δpα, β ⟩L2
= ⟨ dpα, dpβ ⟩L2 + ⟨ δpα, δpβ ⟩L2
= ⟨ α, δp+1dpβ ⟩L2 + ⟨ α, dp−1δpβ ⟩L2
= ⟨ α, Δpβ ⟩L2 ,

so Δp is formally self-adjoint with respect to ⟨ , ⟩L2 for 1 ≤ p ≤ n − 1; the same is true
of Δ0 and Δn. A p-form α in the kernel of Δp (Δpα = 0 ∈ Ωp(X) ⊗ C) is said to be Hodge
harmonic.

Exercise 10.4.3. Show that α ∈ Ωp(X) ⊗C is Hodge harmonic if and only if it is closed
(dpα = 0) and coclosed (δpα = 0). Hint: One direction is obvious; for the other, com-
pute ⟨Δpα, α⟩L2 .
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Remark 10.4.1. Although we will not make any serious use of them we would feel re-
miss if we did not mention two quite deep results that lie at the heart of Hodge theory
(these are proved in great detail in Chapter 6 of [Warner]).

Theorem 10.4.1 (Hodge decomposition theorem). Let X be a compact, connected, ori-
ented, smooth, Riemannian n-manifold and 0 ≤ p ≤ n an integer. Then the space of
Hodge harmonic p-forms is finite-dimensional and Ωp(X) ⊗ C admits an L2-orthogonal
direct sum decomposition

Ωp(X) ⊗C = Image Δp ⊕ Kernel Δp.

Consequently, the equation Δpα = β has a solution inΩp(X)⊗C if and only if β is orthog-
onal to the space of Hodge harmonic p-forms.

Corollary 10.4.2. Each de Rham cohomology class on a compact, oriented, Riemannian
manifold contains a unique Hodge harmonic representative.

We should note in passing that, by the corollary, the pth de Rham cohomology
group of a compact, oriented, Riemannian n-manifold X is isomorphic to the space of
Hodge harmonic p-forms on X for each p = 0, 1, . . . , n. In particular, the Euler char-
acteristic χ(X) of X, which is defined as the alternating sum of the dimensions of the
cohomology groups, is also given by

n
∑
p=0
(−1)p dim (Kernel Δp). (10.35)

But the Euler characteristic is a topological invariant of a compact manifold and this
last formula expresses it in terms of analytic data (the number of independent solu-
tions to the partial differential equations Δpα = 0 on Ωp(X) ⊗C for p = 0, 1, . . . , n). The
expression in (10.35) is called the analytic index of the de Rham complex (10.34) and
it just so happens to be a topological invariant of the underlying manifold. There is
a vast generalization of this scenario due to Atiyah and Singer. We will have nothing
further to say about this other than to suggest [LM] or [Palais1] as sources for those
interested in pursuing it.

Next we need to consolidate all of the spaces of forms Ωp(X) ⊗ C into a single
object. We do this by forming their vector space direct sum:

Ω∗(X) ⊗C =
n
⨁
p=0

Ωp(X) ⊗C.

Wewill identify eachΩp(X)⊗Cwith a subspace of Ω∗(X)⊗C andwrite the elements of
Ω∗(X) ⊗C as sums of elements of these subspaces. We note that Ω∗(X) ⊗C is not only
a complex vector space, but also a C∞(X;C)-module, and we will extend the Hermi-
tian inner products on the Ωp(X)⊗C to Ω∗(X)⊗C by declaring the distinct summands
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Ωp(X) ⊗ C to be mutually orthogonal. Furthermore, we will define linear transforma-
tions

d : Ω∗(X) ⊗C→ Ω∗(X) ⊗C,
δ : Ω∗(X) ⊗C→ Ω∗(X) ⊗C

and

Δ : Ω∗(X) ⊗C→ Ω∗(X) ⊗C

by

d |Ωp(X)⊗C = dp,
δ |Ωp(X)⊗C = δp

and

Δ |Ωp(X)⊗C = Δp,

respectively. The object of real interest, however, is the linear transformation

d + δ : Ω∗(X) ⊗C→ Ω∗(X) ⊗C.

Note that for α ∈ Ωp(X) ⊗C,

(d + δ)α = dpα + δpα ∈ [Ω
p+1(X) ⊗C] ⊕ [Ωp−1(X) ⊗C].

Exercise 10.4.4. Show that d + δ is formally self-adjoint and for α ∈ Ωp(X) ⊗C,

(d + δ)2α = Δpα.

The result of this exercise can bewritten simply as (d+δ)2 = Δ. Let us record this along
with two other identities that we have seen:

d2 = 0,

δ2 = 0, (10.36)

(d + δ)2 = Δ.

These should now be compared with (10.26).
Next define a linear map 𝒯 : Ω∗(X) ⊗C→ Ω∗(X) ⊗C by

𝒯 |Ωp(X)⊗C = (−1)
p,

that is, 𝒯 α = (−1)pα for all α ∈ Ωp(X) ⊗ C. Then 𝒯 clearly preserves the Hermi-
tian inner product on Ω∗(X) ⊗ C, satisfies 𝒯 2 = id Ω∗(X)⊗C and anticommutes with
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d + δ. Consequently, 𝒯 has precisely two eigenvalues, 1 and −1, and Ω∗(X) ⊗ C has
an orthogonal decomposition into the direct sum of the corresponding eigenspaces.
The eigenspace E1(𝒯 ) consists precisely of the forms with even degree, while E−1(𝒯 )
consists of those with odd degree, so we obtain aZ2-grading

Ω∗(X) ⊗C = [Ω0(X) ⊗C] ⊕ [Ω1(X) ⊗C],

where

Ω0(X) ⊗C = ⨁
p≡0mod 2

Ωp(X) ⊗C

and

Ω1(X) ⊗C = ⨁
p≡1mod 2

Ωp(X) ⊗C.

This should all be sounding very familiar, so we will pause for a moment to com-
pare what we have at this point with what we actually want. Here is what we want:

Hilbert space: ℋS

Unitary involution: τ
Supercharge: Q

Hamiltonian: HS = Q
2

And here is what we have:

Ω∗(X) ⊗C
𝒯

d + δ

Δ = (d + δ)2.

Now, Ω∗(X) ⊗ C is a Hermitian inner product space, 𝒯 is a unitary involution on this
inner product space and d + δ is formally self-adjoint and anticommutes with 𝒯 , but
Ω∗(X)⊗C is not a Hilbert space because it is not complete. To produce anN = 2 super-
symmetry we must complete Ω∗(X) ⊗C to a Hilbert space and extend the operators 𝒯
and d+δ to the completion while preserving the desired properties of these operators.
Not surprisingly, this requires some analytic work.

Wementioned earlier that it will be useful to think of the smooth differential forms
on X as sections of vector bundles. The reason is that one can then regard any exte-
rior derivative operator as a first order differential operator on these sections; now we
will see why this is useful. We begin with a few general definitions. Let πE : E → X
and πF : F → X be two complex vector bundles over the compact, connected, ori-
ented, Riemannian n-manifold X with fiber dimensions k and l, respectively, and each
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equipped with a Hermitian fiber metric, denoted ⟨ , ⟩E and ⟨ , ⟩F , respectively. We will
denote the C∞(X;C)-modules of smooth sections of the vector bundles by Γ(E) and
Γ(F), respectively; in particular, these are complex vector spaces. A complex-linear
map

D : Γ(E)→ Γ(F)

is called a (linear) differential operator of order m if, roughly speaking, “it locally looks
like an mth order differential operator onRn.” To make this precise we select an open
coordinate neighborhoodU onXwith coordinates x1, . . . , xn andwith the property that
both E and F have local trivializationsΦE : π−1E (U)→ U ×Ck andΦF : π−1F (U)→ U ×Cl

overU . OnU the sections of E and F can be identified with elements of C∞(U ;Ck) and
C∞(U ;Cl), respectively, and what we require is that for every f ∈ C∞(U ;Ck), Df ∈
C∞(U ;Cl) is of the form

(Df )(x) = ∑
|α|≤m

Aα(x)(𝜕αf )(x), (10.37)

where α is a multi-index (see Appendix G.4), f is a column vector of smooth, complex-
valued functions on U, 𝜕αf is computed entrywise and Aα(x) is some k × l matrix of
smooth, complex-valued functions onU withAα ̸= 0 for some αwith |α| = m. A change
of coordinates shows that this definition is independent of the choice of coordinates,
but it is also possible to give an invariant definition of linear differential operators in
terms of jet bundles (see Section 3, Chapter IV, of [Palais1]).

Example 10.4.1. For our purposes the most important examples are the exterior dif-
ferentiation operators

dp : Ω
p(X) ⊗C→ Ωp+1(X) ⊗C,

which are differential operators of order 1. Just to get an idea of how the notationworks
we will write it out explicitly when p = 1 and n = 3. Thus, we choose an arbitrary coor-
dinate neighborhood U in X with coordinates x1, x2, x3 and above which the exterior
bundles ∧1(T∗X ⊗ C) and ∧2(T∗X ⊗ C) are both trivial. On U we identify the sections
in Γ(∧1(T∗X ⊗ C)) = Ω1(X) ⊗ C and Γ(∧2(T∗X ⊗ C)) = Ω2(X) ⊗ C with elements of
C∞(U ;C3) and C∞(U ;C3), respectively, by identifying forms with their components
relative to the standard bases {dx1, dx2, dx3} and {dx1 ∧ dx2, dx2 ∧ dx3, dx1 ∧ dx3}. Since
α = a1dx1 + a2dx2 + a3dx3 implies d1α = (𝜕1a2 − 𝜕2a1)dx1 ∧ dx2 + (𝜕2a3 − 𝜕3a2)dx2 ∧ dx3 +
(𝜕1a3 − 𝜕3a1)dx1 ∧ dx3, we have

d1(
a1
a2
a3
) =(
𝜕1a2 − 𝜕2a1
𝜕3a2 − 𝜕2a3
𝜕1a3 − 𝜕3a1

)
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=(
0 1 0
0 0 0
0 0 1

)(
𝜕1a1
𝜕1a2
𝜕1a3
) +(
−1 0 0
0 0 1
0 0 0

)(
𝜕2a1
𝜕2a2
𝜕2a3
)

+(
0 0 0
0 −1 0
−1 0 0

)(
𝜕3a1
𝜕3a2
𝜕3a3
)

=(
0 1 0
0 0 0
0 0 1

) 𝜕1(
a1
a2
a3
) +(
−1 0 0
0 0 1
0 0 0

) 𝜕2(
a1
a2
a3
)

+(
0 0 0
0 −1 0
−1 0 0

) 𝜕3(
a1
a2
a3
) .

Although a bit messier to write out explicitly it should be clear that the same sort of
decomposition occurs for any dp : Ωp(X)⊗C→ Ωp+1(X)⊗C, so these are, indeed, first
order differential operators.

To obtain the Hilbert spaceℋS one needs to extend our discussion of the Sobolev
spaces in Appendix G.4 from complex-valued functions onRn to sections of complex
vector bundles. This can be done in a number of ways and we will sketch one of them
(a much more detailed discussion from a more general point of view is available in
Chapters IX andXof [Palais1]). Intuitively, the idea is simple enough. Locally, a section
of πE : E → X is a smooth map from an open set U inRn to Ck and for these we have
defined Sobolev norms, so we would like to piece these together with a partition of
unity (see Remark C.0.1) to get a Sobolev norm on the sections of E, and then complete
the space of sections with respect to this norm to get a Hilbert space. Here are a few
more details.

We will consider an arbitrary complex vector bundle πE : E → X with Hermitian
fiber metric ⟨ , ⟩E over a compact, connected, oriented, Riemannian n-manifold X. We
begin by constructing a specific type of finite open cover for X. Wewill denote by Bn(r)
the open ball of radius r > 0 about the origin in Rn and by B n

(r) its closure in Rn.
At each point x0 in X we can choose a chart φx0 : Ux0 → Bn( 32 ) whose image is Bn( 32 ).
Thus, φx0 : Ux0 → Bn( 32 ) is a diffeomorphism. In particular, Ux0 is contractible, so the
bundle πE : E → X is trivial over Ux0 and π

−1
E (Ux0 ) can be identified with Ux0 ×C

k .

Remark 10.4.2. Any vector bundle over a contractible space is trivial, but this is cer-
tainly not obvious. We will not supply a proof, but will simply send those interested
in seeing one to Section 3, Chapter II, of [Osborn].

Denote by y = (y1, . . . , yn) the coordinates supplied to Ux0 by φx0 . These are also
coordinates on Vx0 = φ

−1
x0 (B

n(1)) ⊆ Ux0 and onWx0 = φ
−1
x0 (B

n( 1√2 )) ⊆ Vx0 ⊆ Ux0 . On Vx0
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we make the change of coordinates

y = (y1, . . . , yn)→ x = (x1, . . . , xn) = 1
√1 − ‖y‖2

(y1, . . . , yn)

to get a new chart ϕx0 on Vx0 andWx0 . Note that ϕx0 (Vx0 ) = R
n and ϕx0 (Wx0 ) = B

n(1).
All of this can be done for any x0 ∈ X, so {Wx0 : x0 ∈ X} is an open cover for X.
By compactness, we can select a finite subcover {W1, . . . ,WN } together with open sets
V1, . . . ,VN and U1, . . . ,UN in X satisfyingWi ⊆ Vi ⊆ V i ⊆ Ui for i = 1, . . . ,N and each of
the following:
1. πE : E → X is trivial over Ui for each i = 1, . . . ,N,
2. there are charts ϕi : Vi → Rn with ϕI (Vi) = Rn and ϕi(Wi) = Bn(1) for i = 1, . . . ,N .

Nowwe select a smoothpartition of unity {χ1, . . . , χN } onX subordinate to {W1, . . . ,WN },
that is, a family of smooth functions χi : X → [0, 1] on X with supports satisfying
supp χi ⊆ Wi for each i = 1, . . . ,N and, for each x ∈ X,∑Ni=1 χi(x) = 1.

Now consider a section s : X → E of E. Since ∑Ni=1 χi(x) = 1 for each x ∈ X, we can
write s as s = ∑Ni=1 si, where si = χis for each i = 1, . . . ,N . In the coordinate trivializa-
tions we have chosen each si can be identified with a smooth, Ck-valued function on
Rn with compact support contained in the unit ball Bn(1). For these we have Sobolev
K-norms (see Appendix G.4), so we can define the Sobolev K-norm of s by

‖s‖HK =
N
∑
i=1
‖si‖HK .

The completion of Γ(E)with respect to this norm is a Hilbert space that we will denote

L2K(E).

In particular, the smooth sections Γ(E) are dense in every L2K(E). Clearly, we made a
greatmany choices in arriving at this definition (trivializations, coordinates, partitions
of unity), but one can show that different choices give rise to equivalent norms and
therefore to the same L2K(E). This is proved in Section 2, Chapter III, of [LM].

We now have available a plethora of Hilbert spaces of sections of our vector bun-
dle πE : E → X which we can arrange in a chain of dense inclusions (compare (G.22))

⋅ ⋅ ⋅ ⊆ L2K(E) ⊆ ⋅ ⋅ ⋅ ⊆ L
2
2(E) ⊆ L

2
1(E) ⊆ L

2
0(E) = L

2(E).

These Sobolev spaces have many properties that make them ideal arenas in which to
study partial differential equations. Although we will need relatively few of these it
seems worthwhile to enumerate some of the most basic properties just to get a sense
of how nice these spaces really are. For the proofs of these and for a great deal more
as well we refer you to any one of our principal references, that is, [Warner], [LM]
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or [Palais1]. Each of these sources also contains a great deal of important informa-
tion about elliptic operators, which is perhaps the most interesting part of the story,
but which we will not consider here.

We let πE : E → X and πF : F → X be two complex vector bundles with fiber
dimensions k and l, respectively, over the compact, connected, oriented, Riemannian
n-manifold X.
1. Every differential operator

D : Γ(E)→ Γ(F)

of orderm extends to a bounded linear operator

DK : L
2
K(E)→ L2K−m(F)

for every K ≥ m.
2. The Hilbert space adjoint of the extension DK of D is the extension of the formal

L2-adjoint D∗ of D:

(DK)
∗ = (D∗)K−m.

3. Let C0(E) denote the continuous sections of E. Then, for K > n
2 ,

L2K(E) ⊆ C
0(E)

in the sense that every equivalence class in L2K(E)has a continuous representative.
4. Let Cr(E) denote the r times continuously differentiable sections of E. Then, for

K > n
2 + r,

L2K(E) ⊆ C
r(E)

in the sense that every equivalence class in L2K(E) has an r times continuously
differentiable representative. Thus, by choosingK sufficiently largewe can ensure
any desired degree of differentiability for the elements of L2K(E). In particular, a
section that is in L2K(E) for every K = 1, 2, . . . is smooth.

5. The inclusion L2K+1(E) ⊆ L2K(E) is compact in the sense that a sequence that is
bounded in L2K+1(E) has a subsequence that converges in L

2
K(E).

Now, finally we can specialize all of thismachinery to construct our example of anN =
2 supersymmetry (ℋS , τ, Q ). The procedure is virtually identical to that for Ω∗(X)⊗C,
but with smooth objects replaced by L2 objects. Begin by considering the complex
vector bundle ∧p(T∗X ⊗C). Then Ωp(X) ⊗C = Γ(∧p(T∗X ⊗C)). The exterior derivative
dp : Γ(∧p(T∗X ⊗ C)) → Γ(∧p+1(T∗X ⊗ C)) is a differential operator of order 1, so it
extends to a bounded operator

dp : L
2
1 (∧

p(T∗X ⊗C) )→ L2 (∧p+1(T∗X ⊗C) )
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that we will also denote dp. The Hilbert space adjoint of this operator is the extension
of the formal L2 adjoint δp+1 : Γ(∧p+1(T∗X ⊗ C)) → Γ(∧p(T∗X ⊗ C)) of dp and will also
be denoted

δp+1 : L
2 (∧p+1(T∗X ⊗C) )→ L21 (∧

p(T∗X ⊗C) ).

Note that, since L21 (∧
p(T∗X ⊗ C) ) is a dense linear subspace of L2 (∧p(T∗X ⊗ C) ), we

can regard dp as an unbounded operator on L2 (∧p(T∗X ⊗C) ). Now defineℋS to be the
Hilbert space direct sum

ℋS =
n
⨁
p=0

L2 (∧p(T∗X ⊗C) )

of the L2 p-forms on X for p = 0, 1, . . . , n. Define operators d and δ on ℋS by
d |L2(∧p(T∗X⊗C)) = dp and δ |L2(∧p(T∗X⊗C)) = δp. Then let

Q = d + δ : ℋS → ℋS

and define τ : ℋS → ℋS by

τ |L2(∧p(T∗X⊗C)) = (−1)
p,

that is, τα = (−1)pα for all α ∈ L2(∧p(T∗X⊗C)). Then τ is a unitary involution onℋS that
commutes with Q, so we have produced all of the required ingredients for (ℋS , τ, Q ).
The corresponding Hamiltonian isHS = Q2 = (d+δ)2 = dδ+δd, which is the extension
of the Hodge Laplacian to⨁n

p=0 L
2
2 (∧

p(T∗X ⊗C) ) regarded as an unbounded operator
onℋS.

Wewill conclude with the recommendation that you proceed from here directly to
the remarkable paper [Witt2] in which this example of anN = 2 supersymmetry drawn
from Hodge theory led Edward Witten to a new view of Morse theory and opened the
door to the extraordinary impact that physics has had on topology in the past four
decades.





A Gaussian integrals
The purpose of this appendix is to evaluate just those Gaussian integrals that we have
need of in the body of the text. Most of these are integrals overR of some real or com-
plex quadratic exponential. Some of these must be regarded as improper Riemann
integrals and some can also be regarded as Lebesgue integrals. Although the relation-
ship between these two is no doubt familiar, it seems prudent to begin by establishing
somenotation to distinguish themand reviewing someof the basic facts. Thismaterial
can be found in most books treating measure and integration ([Apos], in particular,
has everything we will need).

Let [a, b] be a compact interval inR and f a real- or complex-valued function on[a, b]. Then the Riemann integral ∫ba f (x)dx exists if and only if f is continuous almost
everywhere. In this case, the Lebesgue integral ∫[a,b] fdμ also exists and the two are
equal (we will use μ for the Lebesgue measure). If f is Riemann integrable on [a, b] for
all b ≥ a and if the limit limb→∞ ∫ba f (x)dx exists, then the improper Riemann integral
of f over [a,∞) is defined by

∞∫
a

f (x)dx = lim
b→∞

b∫
a

f (x)dx.
The improper Riemann integral ∫a−∞ f (x)dx is defined analogously. If ∫0−∞ f (x)dx and∫∞0 f (x)dx both exist, then one also defines

∫
R

f (x)dx = ∞∫
−∞

f (x)dx = 0∫
−∞

f (x)dx + ∞∫
0

f (x)dx.
If ∫∞−∞ f (x)dx exists, then so does the limit limb→∞ ∫b−b f (x)dx and these two are

equal. However, the limit limb→∞ ∫b−b f (x)dx can exist even when the improper in-
tegral ∫∞−∞ f (x)dx does not (for example, when f (x) = x). When it exists, the limit

limb→∞ ∫b−b f (x)dx is called the Cauchy principal value of ∫∞−∞ f (x)dx. The following is
Theorem 10.31 of [Apos].

Theorem A.0.1. Suppose f is defined on [a,∞) and Lebesgue integrable on [a, b] for
every b ≥ a. Suppose also that there exists a positive constant M with the property that∫[a,b] |f | dμ ≤ M for all b ≥ a. Then f is Lebesgue integrable on [a,∞), limb→∞ ∫[a,b] fdμ
exists and ∫

[a,∞)

fdμ = lim
b→∞
∫
[a,b]

fdμ.
There is an analogous result for functions defined on (−∞, a]. Finally, we record

the following analogue of Theorem A.0.1 for Riemann integrable functions (which is
Theorem 10.33 of [Apos]); there is, of course, a corresponding result for (−∞, a].
https://doi.org/10.1515/9783110751949-011
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Theorem A.0.2. Suppose f is defined on [a,∞) and Riemann integrable on [a, b] for
every b ≥ a. Suppose also that there exists a positive constant M with the property that∫ba |f (x)| dx ≤ M for all b ≥ a. Then the improper Riemann integrals of f and |f | both
exist on [a,∞). Moreover, f is Lebesgue integrable on [a,∞) and

∫
[a,∞)

fdμ = ∞∫
a

f (x)dx.
Now we can begin computing the integrals we need. The first is essentially the

example (or exercise) that one finds in every calculus book in the world. We have

∞∫
−∞

e−x
2
dx = √π = ∫

R

e−x
2
dμ(x). (A.1)

To prove this we will show first that ∫∞−∞ e−x2dx exists so that we can compute it as the
Cauchy principal value. Note first that for x > 1, 0 < e−x2 < xe−x2 , so if b > 1,

b∫
1

e−x
2
dx < b∫

1

xe−x
2
dx = 1

2
(e−1 − e−b2) < 1

2e
.

Consequently,

b∫
0

e−x
2
dx < M,

where

M = 1∫
0

e−x
2
dx + 1

2e
.

In particular, ∫∞0 e−x
2
dx exists.

Exercise A.0.1. Show that ∫0−∞ e−x2dx exists.
We conclude that ∫∞−∞ e−x2dx exists and therefore agrees with its Cauchy principal
value, that is,

∞∫
−∞

e−x
2
dx = lim

b→∞

b∫
−b

e−x
2
dx.
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To compute this we temporarily let I(b) = ∫b−b e−x2dx and compute

I(b)2 = ( b∫
−b

e−x
2
dx)( b∫

−b

e−y
2
dy)

= b∫
−b

( b∫
−b

e−y
2
dy) e−x2dx

= b∫
−b

b∫
−b

e−(x
2+y2)dydx

= ∫∫
[−b,b]×[−b,b]

e−(x
2+y2)dμ(x, y),

where, in the last equality, we have used Fubini’s theorem to turn the iterated integral
into a double integral over the square. Now we will bound this double integral above
and below as follows. Let R1 be the disc of radius b about the origin inR2 and R2 the
disc of radius√2 b about the origin. Then R1 is inscribed in the square [−b, b]× [−b, b]
and R2 is circumscribed about the square. Since e−(x

2+y2) is positive we have∫∫
R1

e−(x
2+y2)dμ(x, y) ≤ I(b)2 ≤ ∫∫

R2

e−(x
2+y2)dμ(x, y),

which, in polar coordinates, gives

2π∫
0

b∫
0

e−r
2
rdrdθ ≤ I(b)2 ≤ 2π∫

0

√2 b∫
0

e−r
2
rdrdθ

and therefore

π(1 − e−b2) ≤ I(b)2 ≤ π(1 − e−2b2).
Thus, limb→∞ I(b)2 = π = ( limb→∞ I(b) )2, so limb→∞ I(b) = √π, that is,

∞∫
−∞

e−x
2
dx = √π.

Exercise A.0.2. Show that ∫
R

e−x
2
dμ(x) = √π.
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Exercise A.0.3. Prove each of the following:
1. ∫∞−∞ xe−x2dx = ∫R xe−x2dμ(x) = 0,
2. ∫∞−∞ x2e−x2dx = ∫R x2e−x2dμ(x) = √π2 , (Hint: Integrate by parts.)
3. for any a > 0,

∞∫
−∞

e−ax
2/2dx = ∫

R

e−ax
2/2dμ(x) = √2π

a
,

4. for a > 0, b, c ∈ R,
∞∫
−∞

e−ax
2/2+bx+cdx = ∫

R

e−ax
2/2+bx+cdμ(x) = √2π

a
e

b2
2a +c.

(Hint: Complete the square.)

All of the examples we have seen so far are integrals that can be regarded either as im-
proper Riemann integrals or Lebesgue integrals. This is not true of the next example.

Example A.0.1. We will prove that for a > 0,
∞∫
−∞

e iax
2/2dx = √2π

a
eπi/4 = √2πi

a
(a > 0), (A.2)

where we have taken the value of √i to be eπi/4. Note that, since | e iax2/2 | = 1 is
not Lebesgue integrable over R, neither is e iax

2/2. Thus, we will need to examine∫0−∞ e iax2/2dx and ∫∞0 e iax
2/2dx separately. Integrals of this sort are often handled by

relating them to contour integrals for functions of a complex variable. Althoughwe in-
tend to take a different approach shortly it is worth the effort to see how this technique
works, so this is what we will do here. Note first that

∞∫
0

e iax
2/2dx = √ 2

a

∞∫
0

eix
2
dx,

so we need only evaluate ∫∞0 eix
2
dx. For this we will consider the contour integral∫

C

eiz
2
dz,

whereC is the closed (slice of pizza) contour consistingof the following three segments
(R is an arbitrary positive real number):

C1 : z1(x) = x, 0 ≤ x ≤ R,
CR : zR(θ) = Reiθ , 0 ≤ θ ≤ π

4
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and −C2, where
C2 : z2(x) = eπi/4x, 0 ≤ x ≤ R.

Since eiz
2
is analytic on all ofC, the Cauchy integral theorem implies that∫C eiz2 dz = 0,

so

0 = ∫
C1

eiz
2
dz + ∫

CR

eiz
2
dz − ∫

C2

eiz
2
dz

= R∫
0

eix
2
dx + ∫

CR

eiz
2
dz − eπi/4 R∫

0

e−x
2
dx.

Exercise A.0.4. Compute the contour integrals over C1 and C2 and verify the second
equality.

Taking the limit as R→∞ gives

∞∫
0

eix
2
dx = eπi/4(√π

2
) + lim

R→∞
∫
CR

eiz
2
dz.

Next we will show that limR→∞ ∫CR eiz2 dz = 0, so that
∞∫
0

eix
2
dx = eπi/4(√π

2
)

and therefore
∞∫
0

e iax
2/2dx = √ 2

a
eπi/4(√π

2
) = 1

2
√2π

a
eπi/4.

For the limit limR→∞ ∫CR eiz2 dz we will need what is called Jordan’s inequality.
Exercise A.0.5. Show that if 0 ≤ ϕ ≤ π/2 and a > 0, then

π/2∫
0

e−a sin ϕdϕ < π
2a
.

Hint: Show that sin ϕ ≥ 2
πϕ for 0 ≤ ϕ ≤ π/2.

Now we observe that, on CR,  eiz2  =  eiR2e2θi  = e−R2 sin 2θ
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and therefore  ∫
CR

eiz
2
dz
 =  π/4∫0 eiR

2e2θi(iReiθ)dθ  ≤ R π/4∫
0

e−R
2 sin 2θdθ

= R
2

π/2∫
0

e−R
2 sin ϕdϕ < π

4R
.

Consequently, limR→∞ ∫CR eiz2 dz = 0 and this completes the proof of

∞∫
0

eix
2
dx = eπi/4(√π

2
).

As we noted earlier this gives us

∞∫
0

e iax
2/2dx = 1

2
√2π

a
eπi/4.

Exercise A.0.6. Show that for a > 0,
∞∫
0

cos(ax2
2
) dx = ∞∫

0

sin(ax2
2
) dx = 1

2
√π
a
.

These are called Fresnel integrals.

Exercise A.0.7. Show that for a > 0,
0∫
−∞

e iax
2/2dx = 1

2
√2π

a
eπi/4

and conclude that
∞∫
−∞

e iax
2/2dx = √2π

a
eπi/4 = √2πi

a
(a > 0),

as required by (A.2).

Exercise A.0.8. Show that if a is any nonzero real number, then

∞∫
−∞

e iax
2/2dx = √2π|a| esgn(a)πi/4 = √2πia (a ∈ R, a ̸= 0), (A.3)

where sgn(a) = 1 if a > 0, sgn(a) = −1 if a < 0 and√i = eπi/4.
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Example A.0.2. Now we would like to describe a different approach that will yield a
more general result.We begin by recalling a result from complex analysis.We consider
the improper Riemann integral ∫∞a f (x, z) dx, where a ∈ R and f (x, z) is a function
of the real variable x in [a,∞) and z is a complex number in some domain D of the
complex planeC. We will assume that:
1. the integral converges for each fixed value of z ∈ D,
2. for each fixed x ∈ [a,∞), f (x, z) is an analytic function of z on D,
3. 𝜕f (x,z)𝜕z is a continuous function of (x, z) ∈ [a,∞) × D,
4. ∫∞a 𝜕f (x,z)𝜕z dx converges uniformly onD. Note that uniform convergencemeans that

there exists a functionM(x) such that | 𝜕f (x,z)𝜕z | ≤ M(x) for all z ∈ D and ∫∞a M(x) dx
converges.

It follows from these assumptions that ∫∞a f (x, z) dx is an analytic function of z on D
(this is 5.32 of [WW]). There is an analogous theorem for ∫a−∞ f (x, z) dx and therefore
also for ∫∞−∞ f (x, z) dx.

Now we consider the function f (x, z) = e−zx2/2, where x ∈ [0,∞) and z is in the
right half (Re(z) > 0) of the complex plane. Then, since

e−zx
2/2 = e−Re(z)x2/2e−i Im(z)x2/2,

we have | e−zx2/2 | = e−Re(z)x
2/2. According to Exercise A.0.3.3, ∫∞0 e−Re(z)x

2/2 dx con-
verges. Consequently, ∫∞0 e−zx

2/2 dx converges uniformly on Re(z) > 0.
Exercise A.0.9. Let f (x, z) = e−zx2/2, where x ∈ [0,∞) and z is in the right half (Re(z) >
0) of the complex plane. Show that ∫∞0 𝜕f (x,z)𝜕z dx converges uniformly on Re(z) > 0.
From this it follows that ∫∞0 e−zx

2/2 dx is an analytic function of z on Re(z) > 0. Sim-
ilarly, ∫0−∞ e−zx2/2 dx is an analytic function of z on Re(z) > 0 and consequently the
same is true of ∫∞−∞ e−zx2/2 dx. Changing the z to an a we conclude that ∫∞−∞ e−ax2/2 dx
is an analytic function of a on Re(a) > 0. Now note that if a is a positive real number,
then Exercise A.0.3.3 gives the value of this integral as √ 2πa . On Re(a) > 0 the prin-
cipal branch of the square root function √ (branch cut along the negative real axis)
is analytic and gives the positive square root of a positive real number. Consequently,√ 2πa is an analytic function of a on Re(a) > 0 that agrees with ∫∞−∞ e−ax2/2 dx on the
positive real axis. As a result, they must agree everywhere on Re(a) > 0 (Corollary to
Theorem 10.18 of [Rud2]), so

∞∫
−∞

e−ax
2/2 dx = √2π

a
(a ∈ C,Re(a) > 0), (A.4)

where√ is the principal branch of the square root function.
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Exercise A.0.10. Show that (A.4) is also true if a is on the imaginary axis. Specifically,
show that

∞∫
−∞

e−αix
2/2dx = √2π

α
e−πi/4 (α > 0)

and
∞∫
−∞

e−αix
2/2dx = √2π|α| eπi/4 (α < 0).

Show also that this can be written as
∞∫
−∞

esgn(α) |α|ix
2/2dx = √2π|α| esgn(α)πi/4. (A.5)

Hint: Exercise A.0.6

Next note that if b is a real number, then the simple substitution x → x + b gives
∞∫
−∞

e−a(x−b)
2/2 dx = ∞∫

−∞

e−ax
2/2 dx = √2π

a
(a ∈ C,Re(a) > 0). (A.6)

Whenb is complex this substitutionmakes no sense since x is real and x+b is complex.
Nevertheless, (A.6) is still true when b is complex. Although we will forego the details
here one can see this by carrying out a contour integral argument analogous to that in
Example A.0.1. Specifically, one shows that for any fixed awith Re(a) > 0, the contour
integral of e−a(z−b)

2/2 over the curve z(x) = x, −∞ < x < ∞ (which we want), is the
same as its contour integral over z(x) = x + b, −∞ < x < ∞ (which we know is √ 2πa ).
This can be done by integrating around the parallelogram with vertices −R, R, R + b
and −R + b, applying the Cauchy integral theorem and showing that, as R → ∞, the
contributions from the two nonhorizontal sides go to zero.

All of the examples we have seen thus far have been one-dimensional integrals,
but in Section 8.3 we also need an n-dimensional Gaussian integral (see (8.12)). The
general context for such integrals is as follows. We are given some real, symmetric,
nonsingular, N × N matrix A = (Aij)i,j=1,...,N . We write the usual inner product on RN

as ⟨x, J⟩ = ∑Ni=1 xiJ i. Then A determines a quadratic form on RN given by ⟨x,Ax⟩ =∑Ni,j=1 Aijxixj. Writing dNx = dx1 ⋅ ⋅ ⋅ dxN , the result we require is
∫
RN

ei⟨x,Ax⟩/2+i⟨x,J⟩dNx = eNπi/4−νπi/2√ (2π)N|detA| e−i⟨A−1J, J⟩ (A.7)

for all J ∈ RN , where ν is the number of negative eigenvalues of A. We will see where
this comes from in amoment, but as a warm-upwewill first prove something simpler.
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Example A.0.3. Suppose in addition thatA is positivedefinite (itsN distinct real eigen-
values are positive). We will show that

∫
RN

ei⟨x,Ax⟩/2dNx = eNπi/4√ (2π)N
detA
. (A.8)

Since A is a real symmetric matrix we can find some orthogonal matrix S with de-
terminant 1 for which SAS−1 = D is the diagonal matrix whose diagonal entries are
the distinct real eigenvalues a1, . . . , aN of A. Since A is positive definite, all of these
eigenvalues are positive, so detA = a1 ⋅ ⋅ ⋅ aN is also positive. Now make the change of
variable y = Sx. Then⟨x,Ax⟩ = ⟨Sx, S(Ax)⟩ = ⟨y,D(Sx)⟩ = ⟨y,Dy⟩ = a1(y1)2 + ⋅ ⋅ ⋅ + aN(yN)2.
Since dNx = |det S| dNy = dNy = dy1 ⋅ ⋅ ⋅ dyN we have∫

RN

ei⟨x,Ax⟩/2dNx = ∫
R

⋅ ⋅ ⋅∫
R

eia1(y
1)2/2+⋅⋅⋅+iaN (yN )2/2dy1 ⋅ ⋅ ⋅ dyN

= ∫
R

⋅ ⋅ ⋅∫
R

eia1(y
1)2/2 ⋅ ⋅ ⋅ eiaN (yN )2/2dy1 ⋅ ⋅ ⋅ dyN

= (∫
R

eia1(y
1)2/2dy1) ⋅ ⋅ ⋅(∫

R

eiaN (y
N )2/2dyN)

= (√2π
a1

eπi/4) ⋅ ⋅ ⋅(√ 2π
aN

eπi/4) (Exercise A.0.10)

= eNπi/4√ (2π)N
detA
,

as required.

Exercise A.0.11. Show that if A is not necessarily positive definite (but still real, sym-
metric and nonsingular), then

∫
RN

ei⟨x,Ax⟩/2dNx = eNπi/4−νπi/2√ (2π)N|detA| ,
where ν is the number of negative eigenvalues ofA.Hint: Exercise A.0.10 and note that
N − 2ν is the signature sgn(A) of A, that is, the number of positive eigenvalues minus
the number of negative eigenvalues.

Now let us try the same sort of thing for ∫
RN ei⟨x,Ax⟩/2+i⟨x,J⟩dNx. We assume only

that A is a real, symmetric, nonsingular, N × N matrix and denote by ν the number
of negative eigenvalues of A and by sgn(A) = N − 2ν the signature of A; J ∈ RN is
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arbitrary. We select an orthogonal matrix S = (Sij)i,j=1,...,N with determinant 1 such that
SAS−1 = D is a diagonal matrix with diagonal entries a1, . . . , aN that are the distinct
real nonzero eigenvalues of A. Making the change of variable y = Sx, one has, exactly
as in the previous example, ⟨x,Ax⟩ = a1(y1)2 + ⋅ ⋅ ⋅ + aN (yN )2. In addition,⟨x, J⟩ = ⟨S−1y, J⟩ = ⟨STy, J⟩ = ⟨y, SJ⟩ = b1y1 + ⋅ ⋅ ⋅ + bNyN ,
where we have written

SJ =(S1jJ j
...

SNjJ j
) =(b1

...
bN
) .

Then∫
RN

ei⟨x,Ax⟩/2+i⟨x,J⟩dNx = ∫
RN

ei[a1(y
1)2/2+b1y1] ⋅ ⋅ ⋅ ei[aN (yN )2/2+bNyN ]dNy

= (∫
R

ei[a1(y
1)2/2+b1y1]dy1) ⋅ ⋅ ⋅(∫

R

ei[aN (y
N )2/2+bNyN ]dyN). (A.9)

Now, for any a ̸= 0 and any b ∈ R we complete the square to obtain∫
R

ei[ay
2/2+by]dy = e−ib2/2a ∫

R

eia(y+
b
a )

2/2dy = e−ib2/2a ∫
R

eiau
2/2du

= e−ib2/2a{{{√ 2π|a| ]e−πi/4, if a < 0,√ 2πa eπi/4, if a > 0.
Applying this to each of the factors in (A.9) and keeping inmind that a1, . . . , aN are the
eigenvalues of A we obtain∫

RN

ei⟨x,Ax⟩/2+i⟨x,J⟩dNx = √ (2π)N|detA| esgn(A)πi/4[e−i∑Nj=1 (bj )22aj ].
Next we note that

N∑
j=1

(bj)2
2aj
= 1
2
⟨SJ,D−1SJ⟩ = 1

2
⟨J, STD−1SJ⟩ = 1

2
⟨J, (S−1D−1S)J⟩= 1

2
⟨J, (S−1(SA−1S−1)S)J⟩ = 1

2
⟨J,A−1J⟩.

With this and sgn(A) = N − 2ν we therefore obtain∫
RN

ei⟨x,Ax⟩/2+i⟨x,J⟩dNx = eNπi/4−νπi/2√ (2π)N|detA| e−i⟨A−1J, J⟩,
as required.



B Morse lemma
The result we would like to prove in this appendix is not particularly difficult, but it
has an enormous number of beautiful ramifications. The subject that evolves from it is
calledMorse theory, but, regrettably, this is not our subject here. Our only excuse for
including a proof (and we would have jumped at any excuse) is that the result, called
theMorse lemma, is a key ingredient in the proof of the stationary phase approxima-
tion to which we will turn in Appendix C. For those who would like to see more we
suggest the following. One of the simpler applications of theMorse lemma is the proof
of Reeb’s elegant topological characterization of the n-dimensional sphere Sn and one
can find this in Section 5-12 of [Nab2]. Milnor’s beautiful book [Milnor] is everyone’s
recommended source for a deeper introduction toMorse theory. Youwill certainly also
want to begin browsing through [Bott] and, if you incline toward physics and/or su-
persymmetry, the very influential paper [Witt2] byWitten. But now to the task at hand.

Theorem B.0.1. Let U be an open ball centered at (a1, . . . , an) in Rn and f : U → R a
smooth, real-valued function on U.
1. There exist smooth, real-valued functions f1, . . . , fn on U satisfying

f (x1, . . . , xn) = f (a1, . . . , an) + x1f1(x1, . . . , xn) + ⋅ ⋅ ⋅ + xnfn(x1, . . . , xn)= f (a1, . . . , an) + n∑
i=1

xifi(x1, . . . , xn)
for all (x1, . . . , xn) ∈ U and

fi(a1, . . . , an) = 𝜕f𝜕xi (a1, . . . , an), i = 1, . . . , n.
2. If f has a critical point at (a1, . . . , an), that is, if 𝜕f

𝜕xi (a1, . . . , an) = 0 for each i = 1, . . . , n,
then there exist smooth functions fij, i, j = 1, . . . , n, on U such that

f (x1, . . . , xn) = f (a1, . . . , an) + n∑
i,j=1

xixjfij(x1, . . . , xn)
and

fij(a1, . . . , an) = 𝜕2f𝜕xi𝜕xj (a1, . . . , an), i, j = 1, . . . , n.
3. (Morse lemma) If f has a critical point at (a1, . . . , an) that is nondegenerate, that is,

for which the Hessian matrix( 𝜕2f𝜕xi𝜕xj (a1, . . . , an) )i,j=1,...,n
https://doi.org/10.1515/9783110751949-012
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is nonsingular, then there is a diffeomorphism φ : U → φ(U) ⊆ Rn,

φ(x1, . . . , xn) = (y1, . . . , yn),
of U onto an open neighborhood φ(U) of (0, . . . ,0) in Rn such that φ(a1, . . . , an) =(0, . . . ,0) and(f ∘ φ−1)(y1, . . . , yn) = f (a1, . . . , an) − (y1)2 − ⋅ ⋅ ⋅ − (yl)2 + (yl+1)2 + ⋅ ⋅ ⋅ + (yn)2 (B.1)

for (y1, . . . , yn) ∈ φ(U), where 0 ≤ l ≤ n is an integer. Moreover, l is the same for any
such diffeomorphism.

Note that f ∘ φ−1 is just f expressed in terms of the coordinates (y1, . . . , yn) on U de-
termined by φ and we will generally write this simply as f (y1, . . . , yn). The content of
the Morse lemma is that any smooth function is, locally, near a nondegenerate critical
point, quadratic in some coordinates.

Proof. We will begin by asking you to simplify the arithmetic just a bit.

Exercise B.0.1. Show that it will suffice to prove the theorem when (a1, . . . , an) =(0, . . . ,0) and f (0, . . . ,0) = 0.
Consequently, wewill assume that f is smooth on the open ballU centered at (0, . . . ,0)
inRn and f (0, . . . ,0) = 0. Note that for any (x1, . . . , xn) in U, t(x1, . . . , xn) = (tx1, . . . , txn)
is also in U for every 0 ≤ t ≤ 1, so we can define

fi(x1, . . . , xn) = 1∫
0

𝜕f𝜕xi (tx1, . . . , txn) dt.
These are clearly smooth on U and

n∑
i=1

xifi(x1, . . . , xn) = n∑
i=1

xi
1∫
0

𝜕f𝜕xi (tx1, . . . , txn) dt
= 1∫

0

n∑
i=1

xi 𝜕f𝜕xi (tx1, . . . , txn) dt
= 1∫

0

d
dt
f (tx1, . . . , txn) dt= f (tx1, . . . , txn)|10= f (x1, . . . , xn).
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Moreover,

fi(0, . . . ,0) = 1∫
0

𝜕f𝜕xi (0, . . . ,0) dt = 𝜕f𝜕xi (0, . . . ,0), i = 1, . . . , n,
and this completes the proof of 1.

To prove 2. we assume, in addition, that 𝜕f
𝜕xi (0, . . . ,0) = 0 for each i = 1, . . . , n and

apply the argument in 1. to 𝜕f
𝜕xi as follows:

f (x1, . . . , xn) = n∑
j=1

xjfj(x1, . . . , xn)
= n∑

j=1
xj

1∫
0

𝜕f𝜕xi (tx1, . . . , txn) dt
= n∑

j=1
xj

1∫
0

n∑
i=1

xi( 1∫
0

𝜕2f𝜕xi𝜕xj (stx1, . . . , stxn) ds) dt
= n∑

i,j=1
xixj( 1∫

0

1∫
0

𝜕2f𝜕xi𝜕xj (stx1, . . . , stxn) ds dt).
Now we let

fij(x1, . . . , xn) = 1∫
0

1∫
0

𝜕2f𝜕xi𝜕xj (stx1, . . . , stxn) ds dt.
Again, each fij is clearly smooth on U and

fij(0, . . . ,0) = 𝜕2f𝜕xi𝜕xj (0, . . . ,0),
so the proof of 2. is complete.

For the proof of 3. we increment our assumptions once more and assume that the
critical point at (0, . . . ,0) is nondegenerate, that is, that the Hessian matrix( 𝜕2f𝜕xi𝜕xj (0, . . . ,0))i,j=1,...,n
is nonsingular. We begin with the result from 2. We have

f (x1, . . . , xn) = n∑
i,j=1

xixjfij(x1, . . . , xn), (B.2)

where

fij(0, . . . ,0) = 𝜕2f𝜕xi𝜕xj (0, . . . ,0). (B.3)
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Exercise B.0.2. Show that we can assume that the functions fij satisfy

fji = fij (B.4)

for all i, j = 1, . . . , n. More precisely, show that the functions f ij = 1
2 (fij + fji) have a

nonsingular Hessian at (0, . . . ,0) and satisfy (B.2), (B.3) and (B.4).
Nowwe consider the quadratic form∑ni,j=1 aijxixj onRn, where aij = fij(0, . . . ,0) for

all i, j = 1, . . . , n. By assumption, the matrix (aij)i,j=1,...,n is nonsingular. In particular, it
is not identically zero, that is, some aij is nonzero. It follows from this that some non-
singular linear transformation of Rn will provide new coordinates x̂1, . . . , x̂n in terms
of which the quadratic form is given by∑ni,j=1 âijx̂ix̂j, where â11 ̸= 0.
Remark B.0.1. This is a standard result about nonzero, real quadratic forms (see, for
example, the Lemma in Section 8, Chapter IX, of [BM]), but we will sketch the proof.
Suppose first that some coefficient on the diagonal is nonzero, say, aii. Consider the
nonsingular linear transformation that interchanges xi and x1, that is, x̂1 = xi, x̂i = x1
and x̂j = xj for j ̸= 1, i. Then â11 = aii ̸= 0. Suppose, on the other hand, that aii = 0
for each i = 1, . . . , n, but aij ̸= 0 for some i ̸= j. The nonsingular linear transformation
that interchanges xi and x1 as well as xj and x2 gives â12 = aij ̸= 0, so we might as well
assume at the outset that a12 ̸= 0. Then the terms in the quadratic form involving x1

and x2 are

a11(x1)2 + 2a12x1x2 + a22(x2)2 = 2a12x1x2
(recall that we are assuming aii = 0 for all i = 1, . . . , n). Now define new coordinates by
x1 = x̂1 + x̂2, x2 = x̂1 − x̂2 and xi = x̂i for i = 3, . . . , n. Then the terms in the quadratic
form involving x̂1 and x̂2 are

2a12x
1x2 = 2a12(x̂1 + x̂2)(x̂1 − x̂2) = 2a12(x̂1)2 − 2a12(x̂2)2,

so â11 = 2a12 ̸= 0, as required.
Rewriting f (x1, . . . , xn) = ∑ni,j=1 xixjfij(x1, . . . , xn) in terms of the coordinates x̂1, . . . ,

x̂n determined by this nonsingular linear transformation gives

f (x̂1, . . . , x̂n) = n∑
i,j=1

x̂ix̂jhij(x̂1, . . . , x̂n),
where the functions hij(x̂1, . . . , x̂n) are smooth and, as above, we can assume that hji =
hij for all i, j = 1, . . . , n. Moreover, computing second derivatives gives

hij(0, . . . ,0) = 𝜕2f𝜕x̂i𝜕x̂j (0, . . . ,0),
and, by construction,

h11(0, . . . ,0) ̸= 0.
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Exercise B.0.3. Show that if A is the nonsingular linear transformation that carries(x1, . . . , xn) to (x̂1, . . . , x̂n), then( 𝜕2f𝜕x̂i𝜕x̂j (0, . . . ,0))i,j=1,...,n = AT ( 𝜕2f𝜕xi𝜕xj (0, . . . ,0))i,j=1,...,nA,
and conclude that ( hij(0, . . . ,0) )i,j=1,...,n is nonsingular.
Now, since h11 is smooth and nonzero at (0, . . . ,0) it must be nonzero on some neigh-
borhood of (0, . . . ,0) and on that neighborhood| h11 |1/2
is smooth andnonzero.Wewill nowmake a coordinate transformation on someneigh-
borhood of (0, . . . ,0) that will alter only x̂1. To see where it comes fromwe recommend
the following exercise.

Exercise B.0.4. Complete the square to show that

h11(x̂1)2 + 2 n∑
j=2

h1jx̂
1x̂j = ±( | h11 |1/2( x̂1 + n∑

j=2

h1j
h11

x̂j ))2 − h11( n∑
j=2

h1j
h11

x̂j )2.
Now define (u1, . . . , un) by{{{{{{{{{{{{{{{

u1 = | h11 |1/2 ( x̂1 +∑nj=2 h1j
h11

x̂j ),
u2 = x̂2,
...
un = x̂n.

This is a smooth map from some neighborhood of (0, . . . ,0) in Rn to Rn carrying(0, . . . ,0) to (0, . . . ,0) and its Jacobian is
( 𝜕u1𝜕x̂1 𝜕u1

𝜕x̂2 ⋅ ⋅ ⋅ 𝜕u1𝜕x̂n
0 1 ⋅ ⋅ ⋅ 0
...

...
...

0 0 ⋅ ⋅ ⋅ 1

) .
The determinant of the Jacobian is therefore𝜕u1𝜕x̂1 = | h11 |1/2 𝜕𝜕x̂1( x̂1 + n∑

j=2

h1j
h11

x̂j ) + 𝜕 | h11 |1/2𝜕x̂1 ( x̂1 + n∑
j=2

h1j
h11

x̂j ),
which, at (0, . . . ,0), is 𝜕u1𝜕x̂1 (0, . . . ,0) =  h11(0, . . . ,0) 1/2 ̸= 0.
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By the inverse function theorem themap is therefore a diffeomorphism of some neigh-
borhoodof (0, . . . ,0) inRn onto another neighborhoodof (0, . . . ,0) inRn and therefore(u1, . . . , un) are coordinates on some neighborhood of (0, . . . ,0) inRn.

Exercise B.0.5. Show that f is given in terms of the coordinates u1, . . . , un by
f (u1, . . . , un) = ±(u1)2 + n∑

i,j=2
uiujgij(u1, . . . , un)

for some smooth functions gij(u1, . . . , un), i, j = 2, . . . , n.
Now we would like to continue inductively, applying the same argument to∑ni,j=2 uiujgij(u1, . . . , un). To do so we must show that the matrix ( gij(0, . . . ,0) )i,j=2,...,n

is nonsingular. But we know that the Hessian of f at (0, . . . ,0), computed in any
coordinates, is nonsingular and

( 𝜕2f𝜕ui𝜕uj (0, . . . ,0))i,j=1,...,n =(
±2 0 ⋅ ⋅ ⋅ 0
0
... ( gij(0, . . . ,0) )i,j=2,...,n
0

) ,
so ( gij(0, . . . ,0) )i,j=2,...,n must be nonsingular as well. As before, we can assume that
gji = gij for all i, j = 2, . . . , n and g22(0, . . . ,0) ̸= 0. Defining v1, . . . , vn by{{{{{{{{{{{{{{{{{{{{{

v1 = u1,
v2 = | g22 |1/2 ( u2 +∑nj=3 g2j

g22
uj ),

v2 = u3,
...
vn = un

gives

n∑
i,j=2

uiujgij(u1, . . . , un) = ±(v2)2 + ∑
i,j=3,...,n

vivjpij(v1, . . . , vn)
and hence

f (v1, . . . , vn) = ±(v1)2 ± (v2)2 + ∑
i,j=3,...,n

vivjpij(v1, . . . , vn)
on some neighborhood of (0, . . . ,0) inRn.

Exercise B.0.6. Explicitly carry out the induction argument required to obtain coor-
dinates y1, . . . , yn on some neighborhood of (0, . . . ,0) in Rn relative to which f (y1, . . . ,
yn) = ±(y1)2 ± ⋅ ⋅ ⋅ ± (yn)2.
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Renumbering the coordinates if necessary we can write

f (y1, . . . , yn) = −(y1)2 − ⋅ ⋅ ⋅ − (yl)2 + (yl+1)2 + ⋅ ⋅ ⋅ + (yn)2
for some integer 0 ≤ l ≤ n.

All that remains is to show that if z1, . . . , zn are local coordinates at (0, . . . ,0) inRn

for which

f (z1, . . . , zn) = −(z1)2 − ⋅ ⋅ ⋅ − (zm)2 + (zm+1)2 + ⋅ ⋅ ⋅ + (zn)2,
thenm = l.
Exercise B.0.7. Compute the Hessian of f at the critical point (0, . . . ,0) in both coor-
dinate systems and show that these matrices are similar.

According to Sylvester’s lawof inertia (Theorem6-z3 of [Her]) thesematricesmust have
the same signature (number of positive eigenvalues minus the number of negative
eigenvalues), so n − 2l = n − 2m, and thereforem = l.

Wewill concludewith a definition and a few remarks. IfU is an open set inRn and
f : U → R is a smooth, real-valued function, then f is said to be aMorse function if all
of its critical points are nondegenerate. Although this sounds like a rather restrictive
condition, there is a sense in which Morse functions are the common state of affairs.
The following is Lemma 5-22 of [Nab2].

Theorem B.0.2. LetU beanopen set inRn andg : U → Ranarbitrary smooth function.
For each b = (b1, . . . , bn) inRn define a smooth function gb : U → R by

gb(x1, . . . , xn) = g(x1, . . . , xn) + b1x1 + ⋅ ⋅ ⋅ + bnxn.
Then the set of all b ∈ Rn for which gb fails to be a Morse function has (Lebesgue)
measure zero inRn.

Intuitively, almost every linear perturbation of any smooth function isMorse. Note
also that the critical points of a Morse function f are isolated in the sense that each
one has an open neighborhood that contains no other critical points (since a sum or
difference of squares has only one critical point, any open set on which f has the form
f (a1, . . . , an) − (y1)2 − ⋅ ⋅ ⋅ − (yl)2 + (yl+1)2 + ⋅ ⋅ ⋅ + (yn)2 contains only the critical point at(y1, . . . , yn) = (0, . . . ,0)). The integer l is called the index of f at the critical point. If l = 0,
then f has a relative minimum at (a1, . . . , an); if l = n, then f has a relative maximum
at (a1, . . . , an). In general, l specifies the number of independent directions in which f
decreases at (a1, . . . , an). Finally, although we will have no need of this, we point out
that the Morse lemma, being purely local, generalizes at once to smooth functions
defined on finite-dimensional manifolds; there is also a version for smooth functions
on Banach spaces (see [Palais2]).





C Stationary phase approximation
Recall that in Example 7.3.2 we found an integral representation for the solution to the
Cauchy problem

i 𝜕ψ(q, t)𝜕t = − ℏ2m 𝜕2ψ(q, t)𝜕q2 , (q, t) ∈ R × (0,∞),
lim
t→0+

ψ(q, t) = ψ0(q), q ∈ R
for the free Schrödinger equation with initial data ψ0(q) (assumed to be smooth with
compact support). Briefly, the procedure was to take the Fourier transform to obtain
the solution

ψ(q, t) = √ m
2πℏti ∫

R

emi(q−x)
2/2ℏt ψ0(x) dx

to the Schrödinger equation and then deal with the problem of showing that this ap-
proached ψ0(q) as t → 0+. Because of the oscillatory nature of the integral, this limit
was not at all straightforward and we had to appeal to what is called its stationary
phase approximation. Our objective in this appendix is to provide the proof of this.
Since such oscillatory integrals arise with great regularity in classical as well as quan-
tum physics and can only rarely be evaluated explicitly, the result we will prove is a
well-worn part of any physicist’s toolkit (see, for example, [GS3] for applications to
geometric optics).

Wewill begin, as we did in Example 7.3.2, by noting (i) that the oscillatory integral
that was under consideration there is of the general form∫

R

eiTf (x)g(x) dx, (C.1)

where T = 1
t , f (x) = m(q − x)2/2ℏ and g(x) = ψ0(x) and (ii) that we were interested in

its asymptotic behavior as T → ∞. We will now assume that both f (x) and g(x) are
smooth and that g(x) has compact support. The intuitive rationale behind the approx-
imation we are looking for goes something like this. The exponential factor eiTf (x) is
oscillatory. Near a point x0 where f (x0) ̸= 0 the rate at which it is oscillating (that is,
the frequency) changes with x and, as T gets large, these oscillations become more
and more rapid near x0. One might expect that these very rapid oscillations near x0
with varying frequencies will (approximately) cancel (real and imaginary parts are
positive as often as they are negative) so that the dominant contributions to the inte-
gral as T → ∞ will come from neighborhoods of points with f (x0) = 0 where f (x) is
nearly constant; we will state this precisely and prove it soon. The problem then is to
compute the contributions due to the critical (that is, stationary) points of f (x). If the
critical point x0 is degenerate (f (x0) = 0), then the behavior of f (x) nearby can be

https://doi.org/10.1515/9783110751949-013
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very complicated and it is difficult to say anything in general. On the other hand, if x0
is a nondegenerate critical point of f (x), then the Morse lemma (Theorem B.0.1.3) im-
plies that, nearby, f is quadratic in some coordinates and one might hope to compute
the contribution as a Gaussian integral. For this reason, we will assume throughout
that f is a Morse function (Appendix B); note that, by virtue of Theorem B.0.2, this is
not as serious a restriction as it might seem. The general result we will prove gives
the following stationary phase approximation in the special case of a Morse function
f : R→ R with exactly one nondegenerate critical point at x0:∫

R

eiTf (x)g(x) dx = (2π
T
)1/2e sgn(f (x0))πi /4 eiTf (x0)√ |f (x0)| g(x0) + O( 1

T3/2
) (C.2)

as T → ∞. Recall that this means that there exist constants M > 0 and T0 > 0 such
that for all T ≥ T0, ∫

R

eiTf (x)g(x) dx − (2π
T
)1/2e sgn(f (x0))πi /4 eiTf (x0)√ |f (x0)| g(x0)  ≤ M( 1

T3/2
).

Althoughwewill give the proof shortly it might be instructive to see a quick, infor-
mal calculation that gives some sense of where the terms in the approximation come
from. For thiswewill take g(x) = 1, but one should keep inmind that this does not have
compact support, so the general result we will prove is not applicable; nevertheless,
the following rough computation is illuminating. Thus, we will consider the integral∫

R

eiTf (x) dx,
where f (x) has a nondegenerate critical point at x0. We approximate f (x) by its second
Taylor polynomial

f (x) ≈ f (x0) + 12 f (x0)(x − x0)2
at x0 and then ∫

R

eiTf (x) dx ≈ ∫
R

eiT[f (x0)+
1
2 f
(x0)(x−x0)2] dx.

But ∫
R

eiT[f (x0)+
1
2 f
(x0)(x−x0)2] dx = eiTf (x0) ∫

R

eiTf
(x0)(x−x0)2/2 dx

= eiTf (x0) ∫
R

eiTf
(x0)x2/2 dx
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= eiTf (x0) ∫
R

eiT sgn(f (x0)) |f (x0)| x2/2 dx

= (2π
T
)1/2e sgn(f (x0))πi /4 eiTf (x0)√ |f (x0)| ,

where the last equality follows from the Gaussian integral (A.5).
For the remainder of this appendix we will consider the following situation. We

consider the Morse function f : Rn → R with finitely many critical points p1, . . . ,pN ,
g : Rn → R is a smooth function with compact support and T > 0 is a real number.
We will consider the integral ∫

Rn

eiTf (x)g(x) dnx
andwill investigate its asymptotic behavior as T →∞. The first order of business is to
confirmour earlier intuitive suspicion that the noncritical points of f do not contribute
to the limit limT→∞ ∫Rn eiTf (x)g(x) dnx. Specifically, we will let U = Rn − {p1, . . . ,pN }
and will show that the integral ∫

U

eiTf (x)g(x) dnx
approaches zero as T →∞. In fact, we will show that for anym = 1, 2, . . . ,∫

U

eiTf (x)g(x) dnx = O(T−m) as T →∞.
Recall that this means that for each such m, there exist positive constants M(m)
and T0(m) such that for all T ≥ T0(m), ∫

U

eiTf (x)g(x) dnx  ≤ M(m)Tm
.

Toprove thiswenote that the gradient of f defines a nonvanishing, smooth vector field

V = ∇f = n∑
j=1

𝜕f𝜕xj 𝜕𝜕xj
on U . Moreover,

V[eiTf (x)] = n∑
j=1

𝜕f𝜕xj eiTf (x)(iT) 𝜕f𝜕xj = iTeiTf (x) ‖V‖2.
Defining the smooth vector fieldW by

W = 1
T‖V‖2 V ,
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we can write this as

eiTf (x) = −iW[eiTf (x)].
Thus, ∫

U

eiTf (x)g(x) dnx = −i∫
U

W[eiTf (x)]g(x) dnx = i∫
U

eiTf (x)W[g(x)] dnx,
where we have integrated by parts componentwise in W and used the fact that g(x)
has compact support. Continuing this computation we obtain∫

U

eiTf (x)g(x) dnx = i∫
U

eiTf (x)( 1
T‖V‖2 V[g(x)]) dnx = 1

T
(i∫

U

eiTf (x)h(x) dnx),
where h(x) = 1

‖V‖2 V[g(x)]. Note that h(x) also has compact support. We find then that ∫
U

eiTf (x)g(x) dnx  ≤ ∫U |h(x)| dnxT

for all T > 0, so ∫
U

eiTf (x)g(x) dnx = O(T−1) as T →∞.
Exercise C.0.1. Use the fact that h(x) also has compact support to repeat the same
argument and show that∫

U

eiTf (x)g(x) dnx = O(T−2) as T →∞
and then continue inductively to obtain∫

U

eiTf (x)g(x) dnx = O(T−m) as T →∞
for everym ≥ 1. In particular

lim
T→∞
∫
U

eiTf (x)g(x) dnx = 0. (C.3)

Now we must handle the critical points. Choose disjoint open balls U1, . . . ,UN
centered at p1, . . . ,pN , respectively, and sufficiently small that on each one f takes
the form (B.1) specified by the Morse lemma. Also let UN+1 = Rn − {p1, . . . ,pN }.
Then {U1, . . . ,UN ,UN+1} is an open cover of Rn. Now we choose a partition of unity{φ1, . . . ,φN ,φN+1} subordinate to this open cover.
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Remark C.0.1. We recall that this means the following. Each φj, j = 1, . . . ,N ,N + 1, is a
smooth function fromRn to [0, 1] with the following properties:
1. The support supp (φj) of φj is contained in Uj for each j = 1, . . . ,N ,N + 1.
2. For each x ∈ Rn,∑N+1j=1 φj(x) = 1.
The existence of such a partition of unity is not obvious, but is proved, for example,
in Theorem 3-11 of [Sp1], Appendix 3, Volume I, of [KN], or Corollary 3.1.5 of [Nab4].

Thus, we can write g(x) = ∑N+1j=1 g(x)φj(x) and so∫
Rn

eiTf (x)g(x) dnx = N+1∑
j=1
∫
Uj

eiTf (x)g(x)φj(x) dnx
= N∑

j=1
∫
Uj

eiTf (x)g(x)φj(x) dnx + ∫
UN+1

eiTf (x)g(x)φN+1(x) dnx. (C.4)

Observe that each g(x)φj(x) has compact support, so we already know that the last
integral above is O(T−m) as T → ∞ for every m = 1, 2, . . . . Now, fix some j = 1, . . . ,N
and, for convenience, write Uj = U, φj = φ and pj = p. Also let g(x)φ(x) = h(x). Then
h(x) has compact support and we will consider the integral∫

U

eiTf (x)h(x) dnx.
Recall that U is an open ball centered at p and we have assumed that it was chosen
sufficiently small that there are local coordinates y1, . . . , yn on U relative to which

f (y) = f (p) + [−(y1)2 − ⋅ ⋅ ⋅ − (yl)2 + (yl+1)2 + ⋅ ⋅ ⋅ + (yn)2]/2 = f (p) + Q(y)/2,
where Q(y) = −(y1)2 − ⋅ ⋅ ⋅− (yl)2 + (yl+1)2 + ⋅ ⋅ ⋅+ (yn)2. Let ( 𝜕x𝜕y ) denote the Jacobian of the
coordinate transformation x = x(y). Then∫

U

eiTf (x)h(x) dnx = ∫
U

eiTf (y)h(y) det(𝜕x𝜕y)  dny.
The function h(y) |det( 𝜕x𝜕y ) | is also smooth with compact support contained in U . We
extend it to all of Rn by taking it to be zero on Rn − U . Call this extension F(y) and
write it as

F(y) = F(p) + y1F1(y) + ⋅ ⋅ ⋅ + ynFn(y),
where F1, . . . , Fn are smooth and have compact support. Then∫

U

eiTf (x)h(x) dnx = F(p) ∫
Rn

eiTf (y) dny + n∑
k=1
∫
Rn

eiTf (y)ykFk(y) dny. (C.5)

Now we will examine each of these integrals separately. Begin by evaluating F(p).
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Exercise C.0.2. Show that φ(p) = 1.
Thus,

F(p) = h(p) det(𝜕x𝜕y)(p)  = g(p) det(𝜕x𝜕y)(p) .
To evaluate |det( 𝜕x𝜕y )(p) | we note that, since p is a critical point of f , the Hessian of f
at p computed in the y-coordinates is related to the Hessian of f at p computed in the
x-coordinates by ( 𝜕2f𝜕yi𝜕yj (p)) = (𝜕x𝜕y (p))T( 𝜕2f𝜕xi𝜕xj (p))(𝜕x𝜕y (p)).
Taking the determinant on both sides gives

1 = det(𝜕x𝜕y)(p) 2 detH(f (x))(p) ,
where we have written H(f (x)) for the Hessian ( 𝜕2f

𝜕xi𝜕xj ) of f in the x-coordinates. Con-
sequently, det(𝜕x𝜕y)(p)  = 1√ |detH(f (x))(p) | ,
so

F(p) = g(p)√ |detH(f (x))(p) | .
Exercise C.0.3. Show that∫

Rn

eiTf (y) dny = (2π
T
)n/2eπi sgn(H(f (x))(p))/4eiTf (p)

and therefore

F(p) ∫
Rn

eiTf (y) dny = (2π
T
)n/2eπi sgn(H(f (x))(p))/4 eiTf (p)√ |detH(f (x))(p) | g(p).

This takes care of the first term in (C.5). Note, in particular, that this term is
O(T−n/2) as T →∞. Keep in mind, however, that all of this has been done for U = Uj,
φ = φj, and p = pj for some fixed j = 1, . . . ,N, so what we will need in (C.4) is the sum

N∑
j=1
∫
Uj

eiTf (x)g(x)φj(x) dnx
= N∑

j=1
(2π
T
)n/2eπi sgn(H(f (x))(pj))/4 eiTf (pj)√ |detH(f (x))(pj) | g(pj). (C.6)

These are all O(t−n/2).
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All that remains is to consider the integrals
n∑
k=1
∫
Rn

eiTf (y)ykFk(y) dny
in (C.5). Fix some k = 1, . . . , n and consider the integral∫

Rn

eiTf (y)ykFk(y) dny.
Compute𝜕𝜕yk (eiTf (y)) = eiTf (y)(iT) 𝜕f𝜕yk = eiTf (y)(iT) 𝜕𝜕yk (f (p) + Q(y)/2) = (±i)TeiTf (y)yk .
Thus,

eiTf (y)yk = (∓i)( 1
T
) 𝜕𝜕yk (eiTf (y)),

so ∫
Rn

eiTf (y)ykFk(y) dny = 1
T
(∓i) ∫

Rn

𝜕𝜕yk (eiTf (y))Fk(y) dNy= 1
T
(±i) ∫

Rn

eiTf (y) 𝜕Fk𝜕yk dny,
where, for the last equality, we integrated by parts and used the fact that Fk has com-
pact support. Since 𝜕Fk

𝜕yk has compact support this last integral has exactly the same
form as the integral ∫

Rn eiTf (x)g(x) dnx with which we began, that is, we can write∫
Rn

eiTf (y)ykFk(y) dny = 1
T
(±i) ∫

Rn

eiTf (y)ϕ(y) dny
and repeat the entire argument to obtain∫

Rn

eiTf (y)ykFk(y) dny = 1
T
(±i)[Φ(p) ∫

Rn

eiTf (y)dny + n∑
k=1

eiTf (y)ykΦk(y) dny].
We have seen that the first term inside the bracket is O(T−n/2), so with the extra factor
of 1

T , the first term on the right-hand side is O(T−n/2−1) and for the rest we pick up yet
another factor of 1

T . Continuing we find that the lowest order terms are the O(T−n/2)
terms in (C.6). Consequently,∫

Rn

eiTf (x)g(x) dnx
= N∑

j=1
(2π
T
)n/2eπi sgn(H(f (x))(pj))/4 eiTf (pj)√ |detH(f (x))(pj) | g(pj) + O( 1

Tn/2+1
). (C.7)
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The first term on the right-hand side of (C.7) is the stationary phase approximation
to the integral on the left-hand side. Note that when n = 1 and there is exactly one
nondegenerate critical point at x0, this reduces to (C.2).

This is really all we need here, but we would like to conclude with a few remarks.
Wehave alreadypointedout theusesmadeof this approximation indealingwith oscil-
latory integrals that cannot be evaluated explicitly.Whatwehavenot pointedout yet is
the remarkable fact that there are circumstances inwhich the stationary phase approx-
imation is exact, that is, the sum on the right-hand side of (C.7) is equal to the integral
on the left, so that the error terms vanish. Precisely when this occurs involves some
rather deep topological issues and the phenomenon itself is best viewed from the per-
spective of localization theorems in equivariant cohomology. For thosewhowould like
to learnmore about this we suggest [Kirwan], [DH], [Atiyah], [AB] and [BGV]. Needless
to say, from the point of view of quantum theory it would be very desirable if some sort
of stationary phase approximation could be established in the infinite-dimensional
context and applied to Feynmanpath “integrals.” Better yet, onewould like analogues
of those finite-dimensional equivariant localization theorems that guarantee the ex-
actness of the approximation. From the rigorous mathematical point of view this is
quite a nontrivial problem (see, however, Section 10.3 of [AHM]). Physicists are unde-
terred by this, of course, as one can see from, for example, [Szabo].



D Tangent and cotangent bundles
Here we would simply like to establish the notation we will be using for the tangent
and cotangent bundles of a smooth manifold. The general definition of a vector bun-
dle, of which these are particular examples, appears in Section 10.4.

We will view TM in the following way. As a set, TM consists of all pairs (p, vp),
where p ∈ M and vp is in the tangent space Tp(M) toM at p. There is a natural projec-
tion π : TM → M of TM onto M defined by π(p, vp) = p. The topology and manifold
structure of TM are defined as follows. Let (U ,ϕ) be a chart onM, where U ⊆ M is an
open set and ϕ is a homeomorphism of U onto the open set ϕ(U) in Rn. Denote the
coordinate functions of (U ,ϕ) by q1, . . . , qn and their coordinate velocity vector fields
by 𝜕q1 , . . . , 𝜕qn . Then, for p ∈ U and vp ∈ Tp(M),

vp = vp(q1)𝜕q1 |p + ⋅ ⋅ ⋅ + vp(qn)𝜕qn |p = vp(qi)𝜕qi |p,
where the summation convention is used in the last equality. We will often write this
without the references to p as

v = v(q1)𝜕q1 + ⋅ ⋅ ⋅ + v(qn)𝜕qn = v(qi)𝜕qi .
Now let Ũ = π−1(U) ⊆ TM and define ϕ̃ : Ũ → ϕ(U) ×Rn ⊆ Rn ×Rn = R2n by

ϕ̃(p, vp) = ( q1(p), . . . , qn(p), q̇1(vp), . . . , q̇n(vp) ),
where

q̇i(vp) = vp(qi), i = 1, . . . , n.
Now, a subset𝒰 ofTM is said to be open inTM if, for every chart (U ,ϕ) onM, ϕ̃(Ũ∩𝒰) is
open inR2n. This determines a topology onTM and, relative to this topology, (Ũ , ϕ̃) are
charts with coordinate functions (q1, . . . , qn, q̇1, . . . , q̇n). These overlap smoothly and
hence determine a differentiable structure for TM. Coordinates of this type that arise
from charts onM are called natural coordinates on TM (physicists also call them gen-
eralized coordinates). The tangent bundle of M = Rn is, as a topological space and
as a differentiable manifold, just the product M × Rn = Rn × Rn, but generally tan-
gent bundles are not topological products. For example, the tangent bundle TS2 of the
2-sphere S2 cannot be the topological product S2 ×R2 since, if it were, then S2 would
admit a continuous, nonvanishing vector field and this would violate a classical (and
rather deep) theorem in topology (see Theorem 16.5 of [Gre]). Any tangent bundle is,
however, locally a product since ϕ̃ : Ũ → ϕ(U) ×Rn ⊆ Rn ×Rn is a homeomorphism.
A (global) section of the tangent bundle TM is a smooth map s : M → TM for which
π ∘ s = idM . Such a section therefore picks out a tangent vector s(p) ∈ Tp(M) at each
p ∈ M and these tangent vectors vary smoothly from point to point in M. One can
therefore identify a section of TM with a smooth vector field onM.

https://doi.org/10.1515/9783110751949-014
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The definition of T∗M is very much like the definition of TM. As a set, T∗M con-
sists of all pairs (p, ηp), where p ∈ M and ηp is an element of the dual T∗p (M) of the
tangent space Tp(M) at p, that is, ηp is a real-valued, linear function on Tp(M). There
is a natural projection π : T∗M → M of T∗M onto M defined by π(p, ηp) = p (unless
it is likely to cause confusion we will use the same symbol for the projection on both
TM and T∗M). If (U ,ϕ) is a chart on M with coordinate functions q1, . . . , qn, then the
basis for T∗p (M) dual to the basis 𝜕q1 |p, . . . , 𝜕qn |p for Tp(M) is given by the coordinate
differentials dq1|p, . . . , dqn|p at p. Thus, for p ∈ M and ηp ∈ T∗p (M),

ηp = ηp(𝜕q1 |p)dq1|p + ⋅ ⋅ ⋅ + ηp(𝜕qn |p)dqn|p,
which we will be inclined to write simply as

η = η(𝜕q1 )dq1 + ⋅ ⋅ ⋅ + η(𝜕qn )dqn = η(𝜕qi )dqi,
where the summation convention is used in the last equality. Define (Ũ , ϕ̃) by Ũ =
π−1(U) ⊆ T∗M and ϕ̃ : Ũ → ϕ(U) ×Rn, where

ϕ̃(p, ηp) = (q1(p), . . . , qn(p), ηp(𝜕q1 |p), . . . , ηp(𝜕qn |p)).
Nowa subset𝒰 ofT∗M is said to be open inT∗M if, for every chart (U ,ϕ) onM, ϕ̃(Ũ∩𝒰)
is open in ϕ(U) × Rn. This determines a topology on T∗M and, relative to this topol-
ogy, (Ũ , ϕ̃) are charts on T∗M. These overlap smoothly and hence determine a differ-
entiable structure forT∗M. Coordinates associatedwith these charts are called natural
coordinates on T∗M and are denoted(q1, . . . , qn, ξ1, . . . , ξn). (D.1)

Thus, the coordinate function ξi on T∗M is given by ξi(p, ηp) = ηp(𝜕qi |p). The cotangent
bundle T∗Rn ofRn is just the product manifoldRn ×Rn, but, as for tangent bundles,
T∗M is generally not just a topological product space. A (global)section of the cotan-
gent bundle T∗M is a smooth map s : M → T∗M for which π ∘ s = idM . Such a section
therefore picks out a covector s(p) ∈ T∗p (M) at each p ∈ M, and these covectors vary
smoothly from point to point inM. One can therefore identify a section of T∗M with a
smooth 1-form onM.



E Poisson and wave equations
In our derivations of the Lorenz and Coulomb gauges (Section 4.2) we required the
existence of smooth solutions to the Poisson equation∇2u = g
and the wave equation ∇2u − 1

c2
𝜕2u𝜕t2 = g

on R3 when the right-hand side g is smooth. These existence and regularity results
are classical and can be deduced from various general theorems on linear partial dif-
ferential equations; standard sources for this are [Evans] and [TaylM]. We will briefly
describe the results available in two other sources that lead directly to the specific
theorems we need and which may be somewhat more accessible.

The paper [Ros] contains an elementary proof of the following existence theorem
for (in particular) the Poisson equation (and, as a bonus, the Malgrange–Ehrenpreis
theorem on the existence of fundamental solutions for arbitrary constant coefficient
linear partial differential equations). We begin by simply stating the result and will
then try to clarify with a few remarks. Recall that L2loc(Rn) consists of all Lebesgue
measurable functions on Rn that are square integrable on every compact subset of
Rn. A constant coefficient linear differential operatorD of orderm onRn is of the form

D = ∑
|α|≤m

Aα𝜕α,
where α is a multi-index (see Appendix G.4) and each Aα a constant.

Theorem E.0.1. Let D be a (nonzero) constant coefficient linear differential operator on
Rn. Then for every g ∈ L2loc(Rn) there exists a u ∈ L2loc(Rn) such that Du = g.

A few remarks are in order. For the Poisson equation, D is just the Laplacian on
Rn. Since the elements of L2loc(Rn) need not be differentiable, the sense in which u ∈
L2loc(Rn) is a solution to Du = g cannot be the usual, classical one (“compute the
derivatives, plug into the equation and get an identity”). What is meant here is that u
is a weak solution to Du = g. We will have much more to say about this when the need
arises, but just to be clear we will state explicitly what is intended here. As motivation
note that if uwere a smooth, classical solution to Du = g with g smooth, then it would
certainly be the case that ⟨Du,φ ⟩ = ⟨ g,φ ⟩ for any smooth function φ with compact
support on Rn, where ⟨ , ⟩ is the L2(Rn) inner product. Performing a few integrations
by parts using the fact that φ has compact support then gives ⟨ u,D∗φ ⟩ = ⟨ g,φ ⟩ for
any suchφ, whereD∗ is the adjoint of the differential operatorD; for the Poisson equa-
tion, D∗ is also the Laplacian (it is worth doing the integrations by parts in this case

https://doi.org/10.1515/9783110751949-015
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just to see this). Having shifted all of the differentiations to φ we can now define a
weak solution of Du = g to be an element of L2loc(Rn) that satisfies ⟨ u,D∗φ ⟩ = ⟨ g,φ ⟩
for any smooth function φwith compact support onRn. Certainly, any smooth g is in
L2loc(Rn), so we are guaranteed the existence of an L2loc(Rn) solution u. For a general D
one can do no better than this, but for the Poisson equation there are elliptic regularity
results available which imply that a weak solution u is necessarily smooth (that part
of elliptic regularity that is directly relevant to the Poisson equation is covered con-
cisely in Chapter 10 of [LL]). Consequently, we get the result we need for the Poisson
equation.

For the wave equation, which is hyperbolic rather than elliptic, we will state an
existence and regularity result for a broader class of equations and for which there is a
self-contained proof available at [Holz]. The following is Theorem 5.1 from this source.
Here ◻ is used to denote the d’Alembertian, or wave operator◻ = ∇2 − 1

c2
𝜕2𝜕t2 ,

where c is a positive constant and we write x = (x1, . . . , xn) ∈ Rn and (t, x) ∈ Rn+1.

Theorem E.0.2. Let u0, u1 be in C∞(Rn) and let b1, . . . , bn, c and g all be in C∞(Rn+1).
Then there exists a unique u ∈ C∞(Rn+1) satisfying◻ u + n∑

k=1
bk(t, x) 𝜕u𝜕xk + c(t, x)u + g(t, x) = 0,

u(0, x) = u0(x),𝜕u𝜕t (0, x) = u1(x).
In particular, the wave equation∇2u − 1

c2
𝜕2u𝜕t2 = g

has lots of smooth solutions if g is smooth.



F Carathéodory procedure

The following review is intended only to establish some notation and terminology and
to recall a fewbasic results thatwewill need in the construction of theWienermeasure
in Section 9.3 (see Sections 1–2, Chapter 12, of [Roy] for details).

Let X denote some nonempty set and 𝒫(X) its power set (the collection of all sub-
sets of X). For any subset 𝒮 ⊆ 𝒫(X) containing 0, a pre-measure on 𝒮 is a nonnegative,
extended real-valued function μ𝒮 : 𝒮 → [0,∞] on 𝒮 that satisfies the following two
conditions (we use⨆ for disjoint unions):
1. μ𝒮 (0) = 0,
2. if Sk ∈ 𝒮 for k = 1, 2, . . . with Sk1 ∩ Sk2 = 0∀ k1 ̸= k2 and if ⨆∞k=1 Sk is in 𝒮, then

μ𝒮( ∞⨆
k=1

Sk ) = ∞∑
k=1

μ𝒮 (Sk).
A semi-algebra on X is a collection ℐ ⊆ 𝒫(X) of subsets of X that contains 0 and X, is
closed under finite intersections and has the property that if A is in ℐ, then X − A can
be written as a finite disjoint union of elements of ℐ. Note that, by Proposition 9.3.1,
the collection ℐ of cylinder sets in C0[ta, tb] is a semi-algebra. It is true, but not at all
obvious that for a fixed q0, the probabilities assigned to cylinder sets by (9.20) define
a pre-measure on ℐ.

An algebra 𝒜 on X is a collection of subsets of X that contains 0 and X and has
the property that A,B ∈ 𝒜 ⇒ A ∪ B ∈ 𝒜 and A − B ∈ 𝒜. Denote by 𝒜(ℐ) ⊆ 𝒫(X)
the algebra generated by the semi-algebra ℐ; 𝒜(ℐ) is just the intersection of all the
algebras in 𝒫(X) containing ℐ. Any pre-measure μℐ on ℐ extends in a natural way to
a pre-measure μ𝒜(ℐ) on 𝒜(ℐ); see Proposition 9 and Exercise 5, Section 2, Chapter 12,
of [Roy].

An algebra on X that is closed under countable unions is called a σ-algebra on X.
The σ-algebra generated by 𝒮 ⊆ 𝒫(X) is the intersection of all the σ-algebras on X
containing 𝒮 and will be denoted σ(𝒮). If ℐ is a semi-algebra and𝒜(ℐ) is the algebra it
generates, then σ(𝒜(ℐ)) = σ(ℐ). A pre-measure μ on some σ-algebra𝒜 in X is called a
measure on themeasurable space (X,𝒜), or simply a measure on X if the σ-algebra is
understood. The elements of 𝒜 are called μ-measurable, or simply measurable, sets.
The triple (X,𝒜, μ) is called a measure space. We should recall also that a measure
space (X,𝒜, μ) is said to be complete if 𝒜 contains all subsets of sets of μ-measure
zero, that is, if A ∈ 𝒜 with μ(A) = 0 and B ⊆ A, then B ∈ 𝒜 (and so μ(B) = 0).
For any measure space (X,𝒜, μ) one can find a complete measure space (X,𝒜0, μ0)
with 𝒜 ⊆ 𝒜0, μ0|𝒜 = μ and 𝒜0 = {A ∪ B : A ∈ 𝒜 andB ⊆ CwithC ∈ 𝒜 and μ(C) =
0}. Then (X,𝒜0, μ0) is called the completion of (X,𝒜, μ); see Proposition 4, Section 1,
Chapter 11, of [Roy]. For example, denoting the σ-algebra of Lebesguemeasurable sets
inRn by 𝒜Leb(Rn) and writing μLeb for the Lebesgue measure, (Rn,𝒜Leb(Rn), μLeb) is
https://doi.org/10.1515/9783110751949-016
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the completion (Rn,ℬ(Rn), μLeb|ℬ(Rn)), where ℬ(Rn) is the σ-algebra of Borel sets in
Rn (the σ-algebra generated by the open, or closed, sets inRn).

Our problem is to describe how to get from a pre-measure on a semi-algebra on
X to a measure on some σ-algebra on X. The standard procedure for doing this is due
to Carathéodory and we will review it briefly. Assume that we are given a pre-measure
μ on the semi-algebra ℐ and that we have extended it to a pre-measure on the alge-
bra 𝒜(ℐ) generated by ℐ. For simplicity we will denote this extended pre-measure
by μ : 𝒜(ℐ) → [0,∞] also. Now let T ∈ 𝒫(X) denote an arbitrary subset of X. An
𝒜(ℐ)-cover of T is a sequence A1,A2, . . . of elements of 𝒜(ℐ) with T ⊆ ⋃∞k=1 Ak . For a
given T there are generally many of these; we define

μ∗(T) = inf{ ∞∑
k=1

μ(Ak)},
where the infimum is over all𝒜(ℐ)-covers {Ak}∞k=1 of T. The function

μ∗ : 𝒫(X)→ [0,∞]
thus defined is called an outer measure on X. What this means is that μ∗ has the fol-
lowing properties (see Lemma 4, Section 2, Chapter 12, of [Roy]):
1. μ∗(0) = 0,
2. A ⊆ B⇒ μ∗(A) ≤ μ∗(B), ∀A,B ∈ 𝒫(X),
3. μ∗(⋃∞k=1 Ak ) ≤ ∑∞k=1 μ∗(Ak), ∀A1,A2, . . . ∈ 𝒫(X).
To turn the countable subadditivity in 3. into countable additivity Carathéodory re-
stricts attention to those subsets of X that “split every other set additively,” as Hal-
mos puts it (page 44 of [Hal1]). More precisely, we will say that a subset M of X is
μ∗-measurable if, for every T ∈ 𝒫(X),

μ∗(T) = μ∗(T ∩M) + μ∗(T ∩ (X −M)).
One can then show that the collection σ(μ∗) of all μ∗-measurable sets is a σ-algebra on
X and that μ∗|σ(μ∗) is a completemeasure on (X, σ(μ∗)); see Theorem 1, Section 1, Chap-
ter 12, of [Roy]. Furthermore, σ(ℐ) = σ(𝒜(ℐ)) ⊆ σ(μ∗) and μ∗|σ(ℐ) = μ; see Lemma 5,
Section 2, Chapter 12, of [Roy]. We will call μ∗|σ(ℐ) the measure induced by the pre-
measure μ and we will use the same symbol μ for both.



G Schwartz space, Fourier transform, distributions
and Sobolev spaces

G.1 Introduction

Eventually, we will need to review, and even generalize, the basic properties of the
Fourier transform on Rn, but for the moment we will consider only the n = 1 case.
We will provide a fairly extensive synopsis, but, again, only a synopsis. All of this
material is accessible in many sources, for example, Sections IX.1 and IX.2 of [RS2],
Sections 4.3.1 and 5.2.1 of [Evans], Sections 2-1 and 2-2 of [SW], Sections 1–3, Chapter VI,
of [Yosida] and Chapters 5–7 of [LL].

G.2 Dimension 1

The Schwartz space 𝒮(R) of rapidly decreasing smooth, complex-valued functions on
R is defined by

𝒮(R) = {f ∈ C∞(R) : ∀k, n = 0, 1, 2, . . . , sup
q∈R

 qkf (n)(q)  <∞},
where f (n)(q) denotes the nth derivative of f (q) and f (0)(q) = f (q). Thus, the elements
of 𝒮(R) are smooth, complex-valued functions onR which, together with all of their
derivatives, decrease in modulus more rapidly than the reciprocal of any polynomial
as q → ±∞. Examples include such things as f (q) = qme−q2/2 for any integerm. More-
over, 𝒮(R) is an infinite-dimensional complex vector space. It also has the topological
structure of a Fréchet space. What this means is the following (one can find a useful
discussion of Fréchet spaces with lots of examples in [Ham]). For each k, n = 0, 1, 2, . . .
we define a semi-norm on 𝒮(R) by‖ f ‖k,n = sup

q∈R

 qkf (n)(q) .
These are semi-norms and not norms because ‖ f ‖k,n = 0 does not, in general, imply
f = 0; for example, if f is a constant function and n > 0. These determine a complete
metric ρ on 𝒮(R) defined by

ρ(f , g) = ∞∑
k,n=0

2−k−n
‖f − g‖k,n

1 + ‖f − g‖k,n
and with the property that for any sequence {fj}∞j=1 in 𝒮(R), ρ(f , fj) → 0 if and only if‖ f − fj ‖k,n → 0 for all k and n. The Fréchet topology on 𝒮(R) is the metric topology
determined by ρ. Note that convergence in this topology is very restrictive. For exam-
ple, the sequence { 1j e−q2/j2 }∞j=1 converges uniformly to zero on all of R, but does not

https://doi.org/10.1515/9783110751949-017
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converge in 𝒮(R) because, for example, 1j e−q2/j2 1,0 = supq∈R

 qj e−q2/j2  = max
x∈R
 xe−x2  = 1√2e .

Note that C∞0 (R) is contained in 𝒮(R); relative to the Fréchet space topology it is, in
fact, dense in 𝒮(R).
Exercise G.2.1. Show that the position operatorQ (Example 5.2.3) andmomentumop-
erator P (Example 5.2.4) are both essentially self-adjoint on the Schwartz space 𝒮(R).

On 𝒮(R) we define the Fourier transform
ℱ : 𝒮(R)→ 𝒮(R)

as follows. For f ∈ 𝒮(R), ℱ f = ̂f is the complex-valued function of a real variable p
defined by (ℱ f )(p) = ̂f (p) = 1√2π ∫

R

e−ipqf (q)dq. (G.1)

Remark G.2.1. We should point out that there are numerous alternative conven-
tions in the literature for the definition of the Fourier transform, most of which
differ from each other only in the choice of various constants (we have adopted
the convention of [RS2]). In harmonic analysis, for example, it is common to de-
fine ̂f (p) = ∫

R
e−2πipqf (q)dq, whereas in quantum mechanics one often sees ̂f (p) =

1
√2πℏ
∫
R
e−ipq/ℏf (q)dq. We will, in fact, use this last convention when it seems prudent

to arrive at the formulas one encounters in the physics literature (in which case we
will write ℱℏ for ℱ). The essential features of the transform are the same for all of
these variants and one need only make a change of variable to keep track of where
the constants appear or disappear. The crucial property of all of these definitions is
that the Fourier transform of a Schwartz function of q is a Schwartz function of p (the
reason this is crucial will become clear when we extend the Fourier transform, first to
L2(R) and then to tempered distributions).

In fact,ℱ is a linear bijection of 𝒮(R) onto 𝒮(R); it is also continuouswith respect
to the Fréchet topology. We will compute just one simple example that we will need
later.

Example G.2.1. For any positive real number α we define f ∈ 𝒮(R) by f (q) = e−αq2/2.
Then (ℱ f )(p) = ̂f (p) = 1√2π ∫

R

e−ipqe−αq
2/2dq = 1√2π ∫

R

e−αq
2/2−ipqdq.
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Making the change of variable t = √ α2 q and then completing the square in the expo-
nent gives ̂f (p) = 1√2π√ 2α ∫

R

e−(t+ip/√2α)
2
e−p

2/2αdt

= e−p2/2α√απ ∫
R

e−(t+ip/√2α)
2
dt.

To evaluate this last integralwewill appeal to the Cauchy integral theorem to conclude
that for every R > 0, ∫CR e−z2dz = 0, where CR is the counterclockwise boundary of the
closed rectangle [−R,R] × [0, p/√2α]. Thus,

0 = R∫
−R

e−t
2
dt + i p/√2α∫

0

e−(R+iτ)
2
dτ − R∫
−R

e−(t+ip/√2α)
2
dt − i p/√2α∫

0

e−(−R+iτ)
2
dτ.

As R→∞ the second and fourth integrals clearly go to zero, so this reduces to∫
R

e−(t+ip/√2α)
2
dt = ∫

R

e−t
2
dt = √π

(for the last equality see (A.1) in Appendix A). Consequently,̂f (p) = e−p2/2α√α . (G.2)

With a bit more work one can show in a similar way that this formula is also true
when α is complexwith positive real part, provided√α is taken to be the branch of the
square root with branch cut along the negative real axis. There is another argument
giving this same result that we will describe in Example G.2.2.

Since ℱ : 𝒮(R)→ 𝒮(R) is a bijection, it has an inverse
ℱ−1 : 𝒮(R)→ 𝒮(R),

and this turns out to be easy to describe. For g ∈ 𝒮(R), ℱ−1g = ǧ is given by(ℱ−1g)(q) = ǧ(q) = 1√2π ∫
R

eipqg(p)dp. (G.3)

Note that ℱ−1 is also Fréchet continuous.
It is worth taking a moment to write out the equality f = ℱ−1(ℱ f ) for f ∈ 𝒮(R)

explicitly in terms of (G.1) and (G.3),

f (q) = 1√2π ∫
R

eipq ̂f (p)dp = ∫
R

( 1
2π
∫
R

e−ipqf (q)dq) eipq dp, (G.4)
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and note its similarity to the Fourier series expansion

f (θ) = ∑
n∈Z
( 1
2π
∫
S1

e−inϕf (ϕ)dϕ) einθ
of a 2π-periodic functiononRor, equivalently, a functionon the circle S1. Bothof these
are, in fact, instances of the samephenomenon, one discrete and one continuous. One
thinks of the value ̂f (p) of the Fourier transform of f at p ∈ R as the pth component of
f (q) in the integral (“continuous sum”) decomposition of f given by (G.4). Motivated
by many of the common applications (such as vibrating strings), one often views q
intuitively as a coordinate in physical space, while p is a frequency. Then (G.4) is a
frequency decomposition of f with ̂f (p) quantifying the “amount” of the frequency p
contained in f (q).

Every element of 𝒮(R) is also an element of L2(R), so we can identify 𝒮(R) with
a linear subspace (not a topological subspace) of L2(R); it is, in fact, dense in L2(R).
ThePlancherel theorem then gives ⟨ ̂f , ĝ⟩ = ⟨f , g⟩∀f , g ∈ 𝒮(R), soℱ extends to a unique
unitary map, also denoted ℱ , of L2(R) onto itself:

ℱ : L2(R)→ L2(R).
This extension is also referred to as the Fourier transform, or sometimes the Fourier–
Plancherel transform, and its inverse

ℱ−1 = ℱ∗ : L2(R)→ L2(R)
will still be called the inverse Fourier transform. For f ∈ L1(R) ∩ L2(R), ̂f can be com-
puted from the same formula (G.1) as for 𝒮(R), but for a general element of L2(R) this
integral need not exist. One way to describe ̂f for an arbitrary element of L2(R) is as
an L2-limit of Fourier transforms of functions in L1(R) ∩ L2(R). Specifically, for every
n ≥ 1 we define fn(q) = f (q) χn(q), where χn is the characteristic function of the interval[−n, n]. Then fn ∈ L1(R) ∩ L2(R) and the monotone convergence theorem implies that,
in L2(R), fn → f as n → ∞. In particular, {fn}∞n=1 is Cauchy in L2(R), so, by Parseval’s
theorem, { ̂fn}∞n=1 is also Cauchy in L2(R) and therefore it converges in L2(R). Computinĝfn from (G.1) one has the following L2-limit for ℱ f = ̂f :

ℱ f = ̂f = lim
n→∞
̂fn.

Weshouldpoint out that, although the (Lebesgue) integral that defines theFourier
transform on 𝒮(R) and L1(R) generally does not exist for f ∈ L2(R), it is nevertheless
the case that the Fourier transform of such an f can be computed as an improper inte-
gral. Indeed, (ℱ f )(p) = ̂f (p) = lim

M→∞

1√2π ∫
[−M,M]

e−ipqf (q)dq, (G.5)
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where the limit is in L2(R). In light of this it is not uncommon to hear it said that
the Fourier transform of an L2(R) function can be written in the form (G.1), provided
the integral is interpreted in the sense of (G.5). We will bow to the tradition of using
the same (Lebesgue) integral symbol to denote the function defined by this L2-limit.
However, since we will face this same issue at several points in the text we would like
to at least have some terminology to distinguish this new notion of “integral.” We will
define it here just for functions onR andwill generalize when the need arises. Let g be
an element of L2(R) and let k : R×R→ C be a functionwith the following properties.
For anyM > 0,
1. k( ⋅ , p) ∈ L1([−M,M]) for almost every p ∈ R,
2. ∫[−M,M] k(q, p) dq is in L2(R) as a function of p.
Then we say that g is the integral in the mean, or themean-square integral of k if

lim
M→∞

∫
[−M,M]

k(q, ⋅ ) dq = g( ⋅ ),
where the limit is in L2(R), that is, if

lim
M→∞

 g( ⋅ ) − ∫
[−M,M]

k(q, ⋅ ) dqL2 = 0.
In this case we will abuse notation a bit and still write

g(p) = ∫
R

k(q, p) dq.
Much of the significance ℱ and ℱ−1 resides in the fact that, on the differentiable

elements of L2(R), they convert differentiation into multiplication and multiplication
into differentiation. Specifically, for f ∈ 𝒮(R), integration by parts gives all of the
following: ( df

dq
)∧(p) = ip ̂f (p), (G.6)( qf (q) )∧(p) = i d ̂f

dp
, (G.7)( p ̂f (p) )∨(q) = −i df

dq
, (G.8)( d ̂f

dp
)∨(q) = −i qf (q). (G.9)

Exercise G.2.2. Prove (G.6), (G.7), (G.8) and (G.9).

We will see many examples of how these are used, but here is a simple one.
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Example G.2.2. We will give another derivation of the Fourier transform of f (q) =
e−αq

2/2 (see Example G.2.1), but this time we will allow α to be complex with positive
real part. Compute the derivative of f (q) to obtain f (q)+αqf (q) = 0. Taking the Fourier
transform then gives ip ̂f (p)+ iα ̂f (p) = 0. Solving the first order equation for ̂f (p) giveŝf (p) = ̂f (0)e−p2/2α. Now, by definition, ̂f (0) = 1

√2π ∫R e−αq2/2dq, and if α is real and
positive, this is just 1

√α . But we saw in Example A.0.2 that this formula is still valid if
α is complex with positive real part provided √α is the principal value of the square
root. Consequently, under these assumptionswe obtain, as promised earlier, the same
formula (G.2) ̂f (p) = e−p2/2α√α
for the Fourier transform.

We will also need to know what the Fourier transform does to a product of two
functions in 𝒮(R). What it does is surprisingly simple. If f , g ∈ 𝒮(R), then fg is also in
𝒮(R) and the convolution of f and g is the function f ∗ g ∈ 𝒮(R) defined by(f ∗ g)(t) = ∫

R

f (t − τ)g(τ) dτ = ∫
R

f (τ)g(t − τ) dτ = (g ∗ f )(t).
Then one can show that (fg)∧ = 1√2π ̂f ∗ ĝ (G.10)

and (f ∗ g)∧ = √2π ̂f ĝ (G.11)

(see Theorem IX.3 of [RS2]).

Exercise G.2.3. Prove the following shift properties of the Fourier transform. For any
f ∈ 𝒮(R) and a inR,

ℱ(f (q − a)) = e−iap ̂f (p)
and

ℱ(eiaqf (q)) = ̂f (p − a).
Exercise G.2.4. Prove the following scaling property of the Fourier transform. For any
f ∈ 𝒮(R) and a ̸= 0 inR,

ℱ(f (aq)) = 1|a| ̂f ( 1a p).
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The Fourier transform also extends to a class of objects much more general than
functions in L2(R) and we will need to deal with this. The topological dual of 𝒮(R) is
the linear space 𝒮(R) of all complex-valued linear functionals on 𝒮(R) that are con-
tinuous with respect to the Fréchet topology. An element T of 𝒮(R) is called a tem-
pereddistributiononR; the Schwartz functions onwhich theyoperate toproduce com-
plex numbers are then called test functions. Every ψ in L1loc(R) (the complex-valued
measurable functions onR that are integrable on compact subsets ofR) gives rise to
a tempered distribution Tψ by defining

Tψ[f ] = ∫
R

f (q)ψ(q)dq
for every f ∈ 𝒮(R). Note that the integral exists due to the fact that ψ is locally in-
tegrable and f decays rapidly as q → ±∞. Distributions of this type are said to be
regular, whereas all other tempered distributions are called singular. One generally
does not bother to distinguish between the function ψ ∈ L1loc(R) and the tempered
distribution Tψ. In particular, since L2(R) ⊆ L1loc(R), every element of L2(R) gives rise
to a tempered distribution, so we can identify L2(R) with a subset of 𝒮(R):

𝒮(R) ⊆ L2(R) ⊆ 𝒮(R).
With this in mind one often allows oneself such abuses of terminology as the phrase
“distributions in L2(R).”We should point out that the dual of a Fréchet space is gener-
ally not aFréchet space, so𝒮(R)doesnot comeequippedwith a ready-made topology.
However, if one defines sequential convergence in 𝒮(R) pointwise on 𝒮(R), that is,
Tj → T if and only if Tj[f ]→ T[f ] inC for every f ∈ 𝒮(R), then every element of 𝒮(R)
is the limit of a sequence in L2(R). Here is an example.

Example G.2.3. Fix a ∈ R and define the Dirac delta at a, denoted

δa : 𝒮(R)→ C,
by

δa[f ] = f (a)
for every f ∈ 𝒮(R). Then δa is clearly linear on 𝒮(R). To show that δa is continuous
on 𝒮(R) we suppose that fj → f in 𝒮(R), that is, ‖f − fj‖k,n → 0 for all k, n = 0, 1, 2, . . . .
We must show that δa[fj] → δa[f ] in C, that is, fj(a) → f (a). But this is precisely the
statement that ‖f − fj‖0,0 → 0. Consequently, δa is a tempered distribution.

Nextwe show that δa is the limit of a sequence of distributions inL2(R). For thiswe
must find a sequence of elementsψj of L2(R)with Tψj

[f ]→ δa[f ]∀ f ∈ 𝒮(R). There are



494 | G Schwartz space, Fourier transform, distributions and Sobolev spaces

manyways to do this, but the simplest choice is to letψj be j/2 times the characteristic
function of the interval [a − 1

j , a + 1
j ]:
ψj = j2 χ [a− 1j , a+ 1j ].

Now let ϵ > 0 be given and choose j so that |f (q) − f (a)| < ϵ for all q ∈ [a − 1
j , a + 1

j ].
Then ∫

R

f (q)ψj(q)dq − f (a) =  j2 a+ 1j∫
a− 1j

f (q)dq − j
2

a+ 1j∫
a− 1j

f (a)dq
=  j2 a+ 1j∫

a− 1j

(f (q) − f (a))dq
≤ j
2

a+ 1j∫
a− 1j

f (q) − f (a) dq
< j
2
ϵ ((a + 1

j
) − (a − 1

j
)) = ϵ,

as required. As wementioned above, this is by nomeans the only way to represent the
Dirac delta as a limit in 𝒮(R) of a family of functions (thought of as distributions).
For future reference we will record just one more. Specifically, one can show that in
𝒮(R),

lim
t→0+

1√2πit ei(q−a)2/2t = δa. (G.12)

One final remark on the Dirac delta is in order. We note that δa is an element of
𝒮(R), but is not Tψ for any ψ in L1loc(R). Nevertheless, it is common, particularly in
the physics literature, to write it as if it were by introducing a fictional object called
the Dirac delta “function” δ(q − a) and writing∫

R

f (q)δ(q − a)dq = f (a)
rather than δa[f ] = f (a). One should understand, however, that this is just notation
and should not to bemistaken for what it looks like, that is, the integral of f (q)δ(q−a)
with respect to Lebesgue measure. Alternatively, one can regard δ(q − a)dq as a name
for the point measure at a onR, in which case ∫

R
f (q)δ(q − a)dq is the integral of f (q)

with respect to this measure.
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Although tempered distributions are, from the point of view of ordinary calculus,
rather singular objects, one can extend the notions of derivative and Fourier transform
to them by shifting these operations to the test functions. Specifically, we define the
distributional derivative of T ∈ 𝒮(R) to be the tempered distribution T defined by

T [f ] = −T[f ].
Note that if T = Tψ, where ψ is a Schwartz function, then ψ  ∈ L1loc(R), and for any
f ∈ 𝒮(R), integration by parts gives

Tψ[f ] = ∫
R

f (q)ψ(q)dq = −∫
R

f (q)ψ (q)dq = −Tψ  [f ],
so the minus sign in the definition is to ensure that T ψ[f ] = Tψ  [f ] when ψ is in 𝒮(R).

In the case of regular distributions for which the distributional derivative is also
regularwewould like to rephrase this slightly. Suppose then thatψ ∈ L1loc(R) and Tψ is
the corresponding regular distribution. Assume that Tψ is also regular, so that T


ψ = Tφ

for some φ ∈ L1loc(R). Then, for every f ∈ 𝒮(R),∫
R

f (q)ψ(q) dq = −∫
R

f (q)φ(q) dq.
Note the resemblance to the integration by parts formulawithφ playing the role of the
derivative of ψ. It is not hard to see that a φ ∈ L1loc(R) with this property (if it exists)
must be unique and we will call it the weak derivative of ψ ∈ L1loc(R). This provides a
natural generalization of the usual notion of derivative that applies to functions that
need not have derivatives in the usual sense. To see how things work out in practice
we will compute a simple example.

Example G.2.4. Define ψ : R→ R by

ψ(x) = {{{{{{{{{{{{{
0 if x ≤ 0,
2x if 0 ≤ x ≤ 1

2 ,
2 − 2x if 1

2 ≤ x ≤ 1,
0 if x ≥ 1.

Note that ψ(x) is certainly in L1loc(R) and, in the usual sense, it is not differentiable
at x = 0, 12 , 1. We will show that ψ(x) has a weak derivative L1loc(R) represented by a
function φ(x) that is defined arbitrarily at x = 0, 12 , 1 and elsewhere is given by

φ(x) = {{{{{{{{{{{{{
0 if x < 0,
2 if 0 < x < 1

2 ,−2 if 1
2 < x < 1,

0 if x > 1.



496 | G Schwartz space, Fourier transform, distributions and Sobolev spaces

Now we must show that for every ϕ ∈ 𝒮(R), ∫
R
ψ(x)ϕ (x) dx = −∫

R
φ(x)ϕ(x) dx. For

this we just compute∫
R

φ(x)ϕ(x) dx = 2 1/2∫
0

ϕ(x) dx − 2 1∫
1/2

ϕ(x) dx
= 2{− 1/2∫

0

xϕ (x) dx + xϕ(x)1/20
}

− 2{− 1∫
1/2

(x − 1)ϕ (x) dx + (x − 1)ϕ(x)11/2}
= − 1/2∫

0

2xϕ (x) dx − 1∫
1/2

(2 − 2x)ϕ (x) dx
= −∫

R

ψ(x)ϕ (x) dx.
Higher order derivatives are defined inductively so that T(n)[f ] = (−1)nT[f (n)]. Sim-

ilarly, we define the Fourier transform and inverse Fourier transform of T to be the dis-
tributions ℱT = T̂ and ℱ−1T = Ť given by(ℱT)[f ] = T[ℱ f ]
and (ℱ−1T)[f ] = T[ℱ−1f ].
Then ℱ and ℱ−1 are inverse bijections of 𝒮(R) onto itself.

Note that if ψ ∈ 𝒮(R) ⊆ L2(R), then its derivative ψ  can be written as ψ  =(ℱ−1 ∘ Qip ∘ ℱ )ψ, where Qip is the operator that multiplies by ip, and this is also in
𝒮(R). Ifψ is in L2(R), but not in𝒮(R), thenwe can regardψ as a tempered distribution
and its distributional derivative is still obtained by applying ℱ−1 ∘ Qip ∘ ℱ . This is a
distribution, but need not be an L2-distribution. Indeed, this will be the case if and
only if ψ satisfies ipψ̂(p) ∈ L2(R). For such ψ ∈ L2(R) the distributional derivative is
again an element of L2(R) and we will call it the L2-derivative of ψ.

Similar remarks apply to higher order derivatives. In particular, as an operator on
L2(R), the second derivative, or one-dimensional Laplacian

Δ = d2

dq2
= ℱ−1 ∘ Q−p2 ∘ ℱ

is defined on

𝒟(Δ) = {ψ ∈ L2(R) : Q−p2 ψ̂ ∈ L2(R)}.
It follows from Lemma 5.2.5 that Δ is self-adjoint on this domain.
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Example G.2.5. From the definition of the Dirac delta it is clear that

δ(n)a [f ] = (−1)nf (n)(a)
for any n = 0, 1, 2, . . . . Furthermore,(ℱδa)[f ] = δa[ℱ f ] = δa[ ̂f ] = ̂f (a) = ∫

R

f (q)e−iaq√2π dq.
As wementioned earlier, when a distribution such asℱδa, takes values that are given
by integration next to some L1loc(R) function it is common to identify the distribution
with the function so that one is likely to see the result of this example written

ℱδa = e−iap√2π .
Similarly, regarding eiaq as a distribution,

ℱ(eiaq) = √2π δa.
To prove this one simply computes from (G.4) that

ℱ(eiaq)[f ] = (eiaq)[ℱ f ] = (eiaq)[ ̂f ] = ∫
R

̂f (p)eiapdp = √2π f (a) = √2π δa[f ].
We will extend all of this material to functions onRn in Section G.4, but first we will
take an important detour to consider the heat kernel onR.

G.3 Heat kernel

We would like to illustrate the role played by Fourier transforms and distributions in
partial differential equations. This will be a recurring theme for us in the text, but for
the moment we will be content with a very important example that exhibits all of the
essential features and to which we will return when we discuss such things as “prop-
agators” and “path integrals.” What we intend to do is compute the one-dimensional
heat kernel and then, through a sequence of exercises, describe a number of its most
important properties. This will serve as a warm-up for the somewhat more involved
case of the Schrödinger kernel and will also lay the foundation for our discussion of
the path integral formulation of quantummechanics, which we take up in Chapter 8.

Example G.3.1. We let D denote a positive real number and consider the following
initial value problem for the one-dimensional heat equation (also called the one-
dimensional diffusion equation):𝜕ψ(t, x)𝜕t − D 𝜕2ψ(t, x)𝜕x2 = 0, (t, x) ∈ (0,∞) ×R, (G.13)

lim
t→0+

ψ(t, x) = ψ0(x), x ∈ R. (G.14)
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Wewill begin by assuming that the initial dataψ0(x) is in the Schwartz space𝒮(R) and
will look for a solution that is also in 𝒮(R) for each t ∈ (0,∞) and for which ψ(t, x)
and 𝜕ψ(t, x)/𝜕t are continuous. The procedurewill be to apply the Fourier transformℱ
(with respect to x) to both sides of the heat equation, solve the resulting equation for
ψ̂(t, p) and then apply the inverse transformℱ−1 to getψ(t, x). Our assumptions ensure
that one can differentiate under the integral sign to obtain(𝜕ψ(t, x)𝜕t )∧ = 𝜕ψ̂(t, p)𝜕t
and hence applying ℱ to (G.13) gives𝜕ψ̂(t, p)𝜕t + Dp2ψ̂(t, p) = 0.
The initial condition becomes

lim
t→0+

ψ̂(t, p) = ψ̂0(p).
The solution to this simple first order initial value problem is

ψ̂(t, p) = ψ̂0(p)e−Dtp2 .
Therefore,ψ(t, x) is the inverse Fourier transformof theproduct of ψ̂0(p)and e−Dtp2 and
this, by (G.11), is 1

√2π times the convolution ofψ0(x) and the inverse transformof e−Dtp
2
.

We have already computed the latter, so we obtain the following explicit formula for
a solution to our initial value problem for the heat equation:

ψ(t, x) = 1√4πDt ∫
R

e−(x−y)
2/4Dtψ0(y) dy. (G.15)

Note that we have used the indefinite article a rather than the definite article the. So-
lutions to the heat equation on R with given initial data need not be unique. This
phenomenon was first investigated by Tychonoff [Tych].

Now define a map HD : (0,∞) ×R ×R→ R by

HD(t, x, y) = H t
D(x, y) = 1√4πDt e−(x−y)2/4Dt . (G.16)

Then

ψ(t, x) = ∫
R

HD(t, x, y)ψ0(y) dy. (G.17)

Note that ψ(t, x) is just the convolution product of ψ0 and Kt
D(x) = 1

√4πDt e
−x2/4Dt:

ψ(t, x) = (Kt
D ∗ ψ0)(x).
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Figure G.1: Gaussian distribu-
tion.

Also note that, since the Gaussian (or normal) distribution with mean μ and standard
deviation σ is defined by

1
σ√2π e−(x−μ)2/2σ2 ,

the function H(t, x, y) can be regarded, for each fixed t > 0 and y ∈ R, as the normal
distribution with mean y and standard distribution √2Dt. As t → 0+, σ → 0 and the
distribution peeksmore andmore sharply at themean (see Figure G.1). Intuitively, one
would say thatHD(t, x, y) approaches the Dirac delta at y as t → 0+. Youwill prove this
shortly.

In physics the positive constant D is called the diffusion constant and knowing
how it is determined by the basic parameters of a physical system is an important
problem. For most mathematical purposes, however, it does not play a significant
role and one can take D = 1. For any fixed value of D > 0 we will call (G.16) the
(one-dimensional) heat kernel. The study of the heat kernel and its generalizations to
higher-dimensional manifolds and manifolds with boundary plays a significant role
in partial differential equations, geometry and mathematical physics (see, for exam-
ple, [RosenS]). Much of what we will have to say about it and its analogue for the
Schrödinger equation rests on the properties we explore now in a sequence of exer-
cises.

Exercise G.3.1. Hold y ∈ R fixed. Show that HD(t, x, y) is a solution to the heat equa-
tion 𝜕𝜕t HD(t, x, y) − D 𝜕2𝜕x2 HD(t, x, y) = 0.
Since HD(t, x, y) is symmetric in x and y, it is also true that𝜕𝜕t HD(t, x, y) − D 𝜕2𝜕y2 HD(t, x, y) = 0
when x ∈ R is held fixed.
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Exercise G.3.2. Hold y ∈ R and t > 0 fixed. Show that∫
R

HD(t, x, y) dx = 1.
Conclude thatHD(t, x, y)determines a family of probabilitymeasuresμt,yD onRparame-
trized by (t, y) ∈ (0,∞) ×R and defined by

μt,yD (M) = ∫
M

HD(t, x, y) dx
for any Lebesgue measurable setM inR.

We will have very little to say about heat flow here. However, the heat/diffusion
equation arises also in the context of Brownian motion and this will play an impor-
tant role in our discussion of Feynman’s path integral in Section 9.3. We will reserve a
more detailed discussion for later, but will mention at this point that the probability
measures μt,yD that we have just introduced have the following physical interpretation.
Suppose that a particle undergoing Brownian motion in R is to be found at y ∈ R
when t = 0. Then, for any measurable set M in R, μt,yD (M) is the probability that the
particle will be found inM at time t. In this case the constantD is determined in a very
specific way by the particles and the fluid in which the motion is taking place.

Exercise G.3.3. Fix y ∈ R and regard t > 0 as a parameter. Then Exercise G.3.2 gives
a one-parameter family of probability measures { μt,yD : t > 0 }. Each of these can be
regarded as a tempered distribution whose value at any f ∈ 𝒮(R) is

μt,yD [f ] = ∫
R

f (x) dμt,yD (x) = ∫
R

f (x)HD(t, x, y) dx.
Show that as t → 0+, these distributions converge in 𝒮(R) to the Dirac delta δy at y,
that is, for any f ∈ 𝒮(R),

lim
t→0+
∫
R

f (x)HD(t, x, y) dx = δy[f ] = f (y).
Hint: For any ϵ > 0,∫

R

f (x)HD(t, x, y) dx − f (y) = ∫
[y−ϵ,y+ϵ]

(f (x) − f (y))HD(t, x, y) dx
+ ∫
R−[y−ϵ,y+ϵ]

(f (x) − f (y))HD(t, x, y) dx.
One can express the content of Exercises G.3.1 and G.3.3 by saying that for a fixed

y, the heat kernel HD(t, x, y) is the fundamental solution to the heat equation, that is,
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it is a solution to 𝜕𝜕t HD(t, x, y) − D 𝜕2𝜕x2 HD(t, x, y) = 0 on (0,∞) × R satisfying the ini-
tial condition HD(0, x, y) = δy, where this last statement is understood in the sense
that for each fixed y, μt,yD converge as distributions to δy as t → 0+; equivalently, the
L2(R) functions HD(t, x, y) of x, regarded as distributions, converge to δy as t → 0+.
Somewhat more generally, for any t0 ∈ R, HD(t − t0, x, y) satisfies𝜕HD(t − t0, x, y)𝜕t − D𝜕2HD(t − t0, x, y)𝜕x2 = 0, (t, x) ∈ (t0,∞) ×R,

lim
t→t+0

HD(t − t0, x, y) = δy , x ∈ R.
Exercise G.3.4. Show that the solution (G.15) to the heat equation (G.13) satisfies the
initial condition ψ(0, x) = ψ0(x) in the sense that limt→0+ ψ(t, x) = ψ0(x) for every
x ∈ R.
Exercise G.3.5. Let x, y, z ∈ R, s > 0 and t > 0. Show that

HD(t + s, x, y) = ∫
R

HD(t, x, z)HD(s, z, y) dz.
Hint: Note that (x − z)2

4t
+ (z − y)2

4s
= s + t

4st
(z − sx + ty

s + t )2 + (x − y)24(s + t) .
Now use the Gaussian integral

∫
R

eiax
2/2dx = esgn(a)πi/4√2π|a| ,

where a is a nonzero real number and sgn(a) is its sign (see (A.3) in Appendix A).
Exercise G.3.6. For each t > 0 define a map Tt on L2(R) by(Ttu)(x) = ∫

R

HD(t, x, y) u(y) dy
for every u ∈ L2(R). Take T0 to be the identity map on L2(R). Show that each Tt is a
bounded linear operator on L2(R) and conclude from Exercise G.3.5 that

Tt+s = TtTs, ∀t, s ≥ 0.
This qualifies {Tt}t≥0 as a semigroup of operators on L2(R). Show that {Tt}t≥0 is strongly
continuous in the sense that

t → 0+ inR implies Ttu→ u in L2(R) ∀u ∈ L2(R).
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Remark G.3.1. We will discuss such strongly continuous semigroups of operators in
more detail in Appendix J.

Show also that the semigroup {Tt}t≥0 is contractive in the sense that the operator norm‖Tt‖ of each Tt satisfies ‖Tt‖ ≤ 1.
Hint: For this last part you will need Young’s inequality, which we will state in the
following form. Suppose p, q and r are integers that satisfy 1 ≤ p, q, r <∞ and

1
p
+ 1
q
= 1
r
+ 1.

If f ∈ Lp(R) and g ∈ Lq(R), then‖f ∗ g‖Lr ≤ ‖f ‖Lp‖g‖Lq ,
where f ∗ g is the convolution product of f and g.

Wewill havemuchmore to say about strongly continuous semigroups of operators
in Appendix J. For the moment we would simply like to introduce a bit of traditional
notation that will be explained somewhat later. Wewill call {Tt}t≥0 the heat semigroup
and write Tt symbolically as

Tt = etDΔ,
where Δ is the one-dimensional Laplacian. This exponential notation can sometimes
be identifiedwith an actual exponential function of an operator, but for the time being
it is best to think of it simply as notation. With it we can write (G.17) as

ψ(t, x) = etDΔψ0(x).
Exercise G.3.7. Let k ≥ 2 be an integer, x, y, z1, . . . , zk−1 ∈ R and t1, . . . , tk > 0. Show
that

HD(t1 + ⋅ ⋅ ⋅ + tk , x, y) = ∫
R

∫
R

⋅ ⋅ ⋅∫
R

HD(t1, x, z1)HD(t2, z1, z2)⋅ ⋅ ⋅HD(tk , zk−1, y) dz1 dz2 ⋅ ⋅ ⋅ dzk−1.
G.4 Dimension n

LetN denote the set of nonnegative integers andNN = N× N⋅ ⋅ ⋅ ×N the set of N-tuples
of nonnegative integers. An element α = (α1, . . . , αN ) ofNN will be called amulti-index.
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For each suchmulti-index αwewrite |α| for the sum α1+⋅ ⋅ ⋅+αN . Ifq = (q1, . . . , qN ) ∈ RN

and ϕ is a smooth real- or complex-valued function onRN , we will denote by 𝜕αϕ the
partial derivative (𝜕αϕ)(q) = ( 𝜕𝜕q1)α1 ⋅ ⋅ ⋅( 𝜕𝜕qN )αN ϕ(q).
If α = (0, . . . ,0), then 𝜕αϕ = ϕ. If α = (1,0,0, . . . ,0,0), (0, 1,0, . . . ,0,0), . . . , (0,0,0, . . . ,
0, 1), we will write 𝜕αϕ as 𝜕1ϕ, 𝜕2ϕ, . . . , 𝜕Nϕ so that 𝜕kϕ = 𝜕ϕ/𝜕qk for k = 1, 2, . . . ,N . We
will write qα for the monomial

qα = (q1)α1 ⋅ ⋅ ⋅ (qN)αN .
The Schwartz space 𝒮(RN ) consists of all smooth, complex-valued functions ϕ onRN

for which

sup
q∈RN

qα(𝜕βϕ)(q)  <∞
for all multi-indices α and β. These are the functions which, together with all of
their partial derivatives, decay more rapidly than the reciprocal of any polynomial in
q1, . . . , qN as ‖q‖→∞. Examples include such things as

ϕ(q) = Q(q)e−c ‖q−q0 ‖2 ,
where c > 0, q0 ∈ RN and Q(q) = ∑|α|≤d aαqα is a polynomial onRN .

On 𝒮(RN ) we can define a countable family of semi-norms‖ϕ‖α,β = sup
q∈RN

qα(𝜕βϕ)(q) ,
parametrized by pairs of multi-indices α, β ∈ NN . Although each ‖ϕ‖α,β is only a semi-
norm, the family of all such has the property that ‖ϕ‖α,β = 0∀α, β ∈ NN ⇒ ϕ = 0, so
these combine to give a metric

ρ(ϕ1,ϕ2) = ∑
α,β∈NN

1
2|α|+|β|

‖ϕ1 − ϕ2‖α,β
1 + ‖ϕ1 − ϕ2‖α,β

that is, moreover, complete (Cauchy sequences converge). We supply 𝒮(RN ) with the
topologydeterminedby thismetric and𝒮(RN ) therebybecomes aFréchet space (again
we refer to [Ham] for a very thorough discussion of Fréchet spaces).

The complex-valued, linear functionals on𝒮(RN ) that are continuouswith respect
to this Fréchet topology are called tempered distributions onRN and the linear space
of all such is denoted 𝒮(RN ). The elements of 𝒮(RN ) are called test functions. Every
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ψ in L1loc(RN ) (complex-valued, measurable functions on RN that are integrable on
compact subsets ofRN ) gives rise to a tempered distribution Tψ by defining

Tψ[ϕ] = ∫
RN

ϕ(q)ψ(q) dNq
for every ϕ ∈ 𝒮(RN ). As in the N = 1 case we will often simply identify Tψ andψ. Since
L2(RN ) ⊆ L1loc(RN ), every L2 function on RN gives rise to a tempered distribution in
this way. Distributions of the form Tψ for someψ ∈ L1loc(RN ) are called regular distribu-
tions, while all of the others are called singular distributions. An example of a singular
distribution is the Dirac delta at a ∈ RN , denoted δa and defined by

δa[ϕ] = ϕ(a) ∀ϕ ∈ 𝒮(RN).
Sequential convergence in 𝒮(RN ) is defined pointwise on 𝒮(RN ), that is, a se-

quence {Tn} in 𝒮(RN ) converges to T in 𝒮(RN ) if and only if {Tn(ϕ)} converges in C
to T(ϕ) for every ϕ ∈ 𝒮(RN ). For any multi-index α, the αth distributional derivative of
a distribution T is defined by 𝜕αT[ϕ] = (−1)|α|T[𝜕αϕ]
for everyϕ ∈ 𝒮(RN ). If T = Tψ for someψ ∈ L1loc(RN ) and if 𝜕αTψ is also regular so that
there exists a (necessarily unique) element 𝜕wα ψ of L1loc(RN )with 𝜕αT = T𝜕wα ψ, then 𝜕wα ψ
is called the αth weak derivative of ψ. This is characterized by∫

RN

ψ(q)(𝜕αϕ)(q) dNq = (−1)|α| ∫
RN

(𝜕wα ψ)(q)ϕ(q) dNq
for every ϕ in 𝒮(RN ) (see Example G.2.4).

It is not uncommon in the literature to drop the w and use the same symbol for
ordinary and weak derivatives. There is no real harm in this since the two coincide
when both make sense. Also note that if we adhere to the convention of identifying
an L1loc(RN ) function with the corresponding regular distribution, then distributional
derivatives andweakderivatives are also identified, provided theweak derivative exists
(the distributional derivative always exists, but it need not be regular).

For α = (1,0,0, . . . ,0,0), (0, 1,0, . . . ,0,0), . . . , (0,0,0, . . . ,0, 1) the weak derivatives𝜕wα ψ are written 𝜕w1 ψ, 𝜕w2 ψ, . . . , 𝜕wNψ. Thus, for each k = 1, . . . ,N,∫
RN

ψ(q) (𝜕kϕ)(q) dNq = − ∫
RN

(𝜕wk ψ)(q)ϕ(q) dNq
for every ϕ ∈ 𝒮(RN ). Similarly we will write 𝜕wk1𝜕wk2ψ for 𝜕wα ψwhen α has 1 in the k1 and
k2 slots and 0 elsewhere; the order is immaterial because of the corresponding result
for smooth functions (Theorem 2-5 of [Sp1]). The weak gradient of ψ is the N-tuple∇wψ = (𝜕w1 ψ, 𝜕w2 ψ, . . . , 𝜕wNψ),
provided each 𝜕wk ψ exists.
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Exercise G.4.1. Suppose ψ1,ψ2 ∈ L1loc(Rn) and the weak derivatives 𝜕wα ψ1 and 𝜕wα ψ2
exist. Let c1, c2 ∈ C. Show that 𝜕wα (c1ψ1 + c2ψ2) exists and is given by 𝜕wα (c1ψ1 + c2ψ2) =
c1𝜕wα ψ1 + c2𝜕wα ψ2.

Weak derivatives share many of the other basic properties of ordinary derivatives
and we will record those we require as the need arises (also see Theorem 1, Sec-
tion 5.2.3, of [Evans]). The particular use we would like to make of weak derivatives at
the moment is the description of certain Hilbert spaces that will play an essential role
when we start looking for domains of differential operators on L2(RN ).

We define the Sobolev space H1(RN ) as follows. As a set, H1(RN ) is the subset of
L1loc(RN ) consisting of those elements that are in L2(RN ) and for which the first order
weak derivatives exist and are also in L2(RN ), that is,

H1(RN) = {ψ ∈ L1loc(RN) : ψ, 𝜕wk ψ ∈ L2(RN), k = 1, 2, . . . ,N}.
The inner product on H1(RN ) is taken to be⟨ψ1,ψ2⟩H1 = ⟨ψ1,ψ2⟩L2 + ⟨𝜕w1 ψ1, 𝜕w1 ψ2⟩L2 + ⋅ ⋅ ⋅ + ⟨𝜕wNψ1, 𝜕wNψ2⟩L2 , (G.18)

so the corresponding norm is

‖ψ‖2H1 = ‖ψ‖2L2 + N∑
k=1

𝜕wk ψ2L2 . (G.19)

With this inner product,H1(RN ) is a Hilbert space (Theorem 2, Section 5.2, of [Evans]).
Relative to the norm topology determined by (G.19), the smooth functions onRN are
dense. Indeed, one can show that the set C∞0 (RN ) of smooth functions with compact
support is dense in H1(RN ) relative to the H1(RN )-norm (Theorem 7.6 of [LL]). In fact,
H1(RN ) is often defined to be the Hilbert space completion of C∞0 (RN ) relative to the
inner product (G.18); see Section 3.3 of [Fried].

It is worth noting that the integration by parts formula∫
RN

ψ(q) (𝜕kϕ)(q) dNq = − ∫
RN

(𝜕wk ψ)(q)ϕ(q) dNq
for every ϕ ∈ 𝒮(RN ), which is essentially the definition of the weak derivatives, gen-
eralizes to an integration by parts formula on H1(RN ): If ψ and ϕ are both in H1(RN ),
then ∫

RN

ψ(q) (𝜕wk ϕ)(q) dNq = − ∫
RN

(𝜕wk ψ)(q)ϕ(q) dNq.
This is Theorem 7.7 of [LL].
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Next define the Sobolev space H2(RN ) to be the subset of L1loc(RN ) consisting of
those elements that are inL2(RN )and forwhich thefirst and secondorderweakderiva-
tives exist and are in L2(RN ), that is,

H2(RN) = {ψ ∈ L1loc(RN) : ψ, 𝜕wk ψ, 𝜕wk1𝜕wk2ψ ∈ L2(RN), k, k1, k2 = 1, 2, . . . ,N}.
Note that H2(RN ) is also a Hilbert space with inner product⟨ψ1,ψ2⟩H2 = ⟨ψ1,ψ2⟩L2 + N∑

k=1
⟨𝜕wk ψ1, 𝜕wk ψ2⟩L2 + N∑

k1=1

N∑
k2=1
⟨𝜕wk1𝜕wk2ψ1, 𝜕wk1𝜕wk2ψ2⟩L2 (G.20)

and corresponding norm‖ψ‖2H2 = ‖ψ‖2L2 + N∑
k=1

𝜕wk ψ2L2 + N∑
k1=1

N∑
k2=1

𝜕wk1𝜕wk2ψ2L2 (G.21)

(Theorem 2, Section 5.2, of [Evans]). As for H1(RN ), one can also define H2(RN ) to
be the Hilbert space completion of C∞0 (RN ) with respect to the inner product defined
by (G.20).

We will need onlyH1(RN ) andH2(RN ), but for integers K ≥ 3, the Sobolev spaces
HK(RN ) are defined analogously, so, as sets,⋅ ⋅ ⋅ ⊆ HK(RN) ⊆ ⋅ ⋅ ⋅ ⊆ H2(RN) ⊆ H1(RN) ⊆ L2(RN), (G.22)

although each of these has a different inner product. Much more refined informa-
tion about these inclusions and about the degree of regularity one can expect of the
elements of a given Sobolev space can be obtained from the so-called Sobolev in-
equalities, which are discussed in detail in Chapter 5 of [Evans]. We mention also
that for Ck-valued functions, the Sobolev norms are defined to be the sum of the
Sobolev norms of the coordinate functions and one thereby obtains Sobolev spaces
of Ck-valued functions. We will use this to generalize the Sobolev norms to sections
of complex vector bundles in Section 10.4.

The Fourier transform of ϕ ∈ 𝒮(RN ) is defined by(ℱϕ)(p) = ϕ̂(p) = 1(2π)N/2 ∫
RN

e−iq⋅pϕ(q) dNq, (G.23)

where q ⋅ p = ∑Ni=1 qipi if q = (q1, . . . , qN ) ∈ RN and p = (p1, . . . , pN ) ∈ RN .
One should really think of theRN in which q lives and theRN in which p lives as

distinct. One often identifies the p copy of RN with the dual of the q copy of RN . In
this case it would be more proper to subscript the components of p as (p1, . . . , pN ) and
think of q ⋅ p = ∑Ni=1 qipi as the natural pairing on RN × (RN )∗ rather than the usual
inner product onRN .
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We have already mentioned (Remark G.2.1) that when N = 1, there are many vari-
ants of this definition, differing one from another by various constants. These same
variants are in use when N > 1, but here there is even more flexibility. Indeed, one
does not alter the essential features of the Fourier transform by taking q ⋅ p to be not
the usual inner product on Rn, but any nondegenerate, symmetric, bilinear form on
RN .

Exercise G.4.2. Let A be an N × N, symmetric, positive definite matrix. Show that the
Fourier transform of

ϕ(q) = e− 12q⋅Aq
is given by

ϕ̂(p) = 1√detA e−
1
2p⋅A
−1p.

Hint: The N = 1 case is Example G.2.1. For N > 1 choose an orthogonal matrix B such
that

BTAB = Λ = diag(λ1, . . . , λN ).
In the integral defining the Fourier transform make the changes of variable q = Bq̃
and p = Bp̃ and apply the N = 1 case N times.

The Fourier transform of a Schwartz function of q is a Schwartz function of p.
Indeed, the mapping ℱ : 𝒮(RN ) → 𝒮(RN ) that sends ϕ to ℱϕ = ϕ̂ is a (Fréchet)
continuous, linear, bijection with a continuous inverse ℱ−1 : 𝒮(RN ) → 𝒮(RN ) given
by (ℱ−1ϕ)(q) = ϕ̌(q) = 1(2π)N/2 ∫

RN

eiq⋅pϕ(p) dNp. (G.24)

This is called the Fourier inversion theorem and is Theorem IX.1 of [RS2].
All of the familiar properties of the Fourier transform onR have analogues onRN .

Here are a few of themost commonly used. For anyϕ,ϕ1,ϕ2 ∈ 𝒮(RN ), anymulti-index
α, any a ̸= 0 inR and any a ∈ RN ,
1. ℱ(𝜕αϕ)(p) = (ip)α(ℱϕ)(p),
2. ℱ((−iq)αϕ)(p) = 𝜕α(ℱϕ)(p),
3. ℱ−1(𝜕αϕ)(q) = (−iq)α(ℱ−1ϕ)(q),
4. ℱ−1((ip)αϕ)(q) = 𝜕α(ℱ−1ϕ)(q),
5. ℱ(ϕ(q − a)) = e−ia⋅pϕ̂(p),
6. ℱ(eia⋅qϕ(q)) = ϕ̂(p − a),
7. ℱ(ϕ(aq)) = 1

|a| ϕ̂ ( 1a p),
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8. ℱ(ϕ1ϕ2)(p) = (2π)−N/2(ϕ̂1 ∗ ϕ̂2)(p), where the convolution product ϕ̂1 ∗ ϕ̂2 is de-
fined by (ϕ̂1 ∗ ϕ̂2)(p) = ∫

RN

ϕ̂1(p − y)ϕ̂2(y) dNy.
Furthermore, ℱ : 𝒮(RN )→ 𝒮(RN ) preserves the L2(RN ) norm, that is,∫

RN

ϕ(q)2dNq = ∫
RN

ϕ̂(p)2dNp
for every ϕ ∈ 𝒮(RN ) (Corollary to Theorem IX.1 of [RS2]). Since 𝒮(RN ) is dense in
L2(RN ) and ℱ carries 𝒮(RN ) onto 𝒮(RN ), this implies that ℱ extends by continuity to
a unitary operator of L2(RN ) onto itself, which we will continue to denote

ℱ : L2(RN)→ L2(RN)
(this is called the Plancherel theorem). We will continue to refer to ℱ : L2(RN ) →
L2(RN ) as the Fourier transform, although it is often called the Fourier–Plancherel
transform. Note that ℱ−1 : 𝒮(RN ) → 𝒮(RN ) extends to the L2(RN )-adjoint of ℱ :
L2(RN )→ L2(RN ). Forϕ in L1(RN )∩L2(RN ),ℱϕ is computed from the integral (G.23),
but for an element of L2(RN ) that is not Lebesgue integrable on RN this integral will
not converge. As in the one-dimensional case one can compute ℱϕ either as a limit
in L2(RN ) of the Fourier transforms of a sequence of functions in L1(RN ) ∩ L2(RN )
converging to ϕ or as(ℱϕ)(p) = ϕ̂(p) = lim

M→∞

1(2π)N/2 ∫
[−M,M]N

e−iq⋅pϕ(q) dNq,
where the limit is in L2(RN ). Also as in the one-dimensional case, the L2-limit on the
right-hand side is generally written simply 1

(2π)N/2 ∫RN e−iq⋅pϕ(q) dNq, but this is a new
use of the integral sign and we would like to extend the terminology to make the dis-
tinction.

Let g be an element of L2(RN ) and let k : RN × RN → C be a function with the
following properties. For anyM > 0,
1. k( ⋅ ,p) ∈ L1([−M,M]N ) for almost every p ∈ RN ,
2. ∫[−M,M]N k(q,p) dNq is in L2(RN ) as a function of p.
Then we say that g is the integral in the mean, or themean-square integral of k if

lim
M→∞

∫
[−M,M]N

k(q, ⋅ ) dNq = g( ⋅ ),
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where the limit is in L2(RN ), that is, if
lim
M→∞

 g( ⋅ ) − ∫
[−M,M]N

k(q, ⋅ ) dNq  L2 = 0.
In this case we will abuse notation a bit and still write

g(p) = ∫
RN

k(q,p) dNq.
The Fourier transform actually extends to all ϕ ∈ L1(RN ) by (G.23), but ϕ̂ will, in

general, only be in the space C0∞(RN ) of continuous functions that vanish at infinity
(|ϕ̂(p)| → 0 as ‖p‖ → ∞). This is the so-called Riemann–Lebesgue lemma (see Theo-
rem IX.7 of [RS2]). Moreover, ℱ maps L1(RN ) into, but not onto C0∞(RN ).

Just as in the one-dimensional case, the Fourier transform and its inverse extend
beyond L2(RN ) to the tempered distributions 𝒮(RN ) ⊇ L2(RN ) via the definitions(ℱT)[ϕ] = T̂[ϕ] = T[ℱϕ] = T[ϕ̂] ∀ϕ ∈ 𝒮(RN)
and (ℱ−1T)[ϕ] = Ť[ϕ] = T[ℱ−1ϕ] = T[ϕ̌] ∀ϕ ∈ 𝒮(RN).
For example,

ℱδa = 1(2π)N/2 e−ia⋅p,
where the function on the right-hand side is identified with the corresponding regular
distribution.

Both ℱ : 𝒮(RN )→ 𝒮(RN ) and ℱ−1 : 𝒮(RN )→ 𝒮(RN ) are still linear bijections.
Moreover, if T is any tempered distribution and f is any function onRN that does not
grow too rapidly (more precisely, has the property that if ϕ is a Schwartz function,
then fϕ is also a Schwartz function), then one can define a distribution fT by(fT)[ϕ] = T[fϕ].
This is certainly the case if f is a polynomial on Rn. With this definition one can
show that properties 1.–4. above are still valid when ϕ is taken to be a distribution
in L2(RN ), provided the distributional derivatives are also in L2(RN ). Thus, even for
distributions, the Fourier transform takes derivatives to products, which is essentially
its raison d’être. For example, if ψ is in L2(RN ) and if 𝜕wk ψ exists and is in L2(RN ) for
each k = 1, . . . ,N, then

ℱ(𝜕wk ψ)(p) = i (pk) ψ̂(p),
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where p = (p1, . . . , pk , . . . , pN ). But ℱ is an isometry on L2(RN ), so 𝜕wk ψ 2L2 = ∫
RN

(pk)2 ψ̂(p)2 dNp.
Consequently,

‖ψ ‖2L2 + N∑
k=1
‖ 𝜕wk ψ ‖2L2 = ∫

RN

(1 + ‖p‖2) ψ̂(p)2 dNp,
and we conclude that if ψ is in H1(RN ), then (1 + ‖p‖2) 12 ψ̂(p) is in L2(RN ) and‖ψ ‖H1 =  (1 + ‖p‖2) 12 ψ̂(p) L2 .
For functions in L2(RN ) it is also true that, conversely, if (1 + ‖p‖2) 12 ψ̂(p) is in L2(RN ),
then ψ is in H1(RN ) (Theorem 7.9 of [LL]). There are analogous Fourier characteriza-
tions of all of the Sobolev spaces (Theorem 7, Section 5.8.4, of [Evans]).



H Stieltjes integrals

H.1 Introduction

In the body of the text we have a number of occasions to draw on properties of the
Riemann–Stieltjes and Lebesgue–Stieltjes integrals, and we will provide a brief de-
scription of what we need here. One can find thorough discussions in Chapter 7
of [Apos], Chapter III of [RiSz.N], Section 1.5 of [Fol2] and Chapter III of [Saks].

H.2 Riemann–Stieltjes integrals

Begin with a closed, bounded interval [a, b] in R and a real-valued function α :[a, b] → R of bounded variation; recall that α is of bounded variation if and only
if it is the difference of two nondecreasing functions (see Section 4 of [RiSz.N] or
Section 3.5 of [Fol2]). Then, for any continuous, real-valued function f on [a, b], the
Riemann–Stieltjes integral of f with respect to α is denoted

b∫
a

f (τ)dα(τ)
and is defined to be the limit of the sums

n∑
k=1

f (τ∗k )[α(τk) − α(τk−1)] = n∑
k=1

f (τ∗k )Δα(τk), (H.1)

as max(τk − τk−1)→ 0, where

a = τ0 < τ1 < ⋅ ⋅ ⋅ < τn = b
and

τk−1 < τ∗k ≤ τk .
That the limit exists and is independent of the choice of thepartitions and thepoints τ∗k
is Theorem 7.27 of [Apos]. If α(τ) = τ this is simply the ordinary Riemann integral.
Moreover, one can often evaluate Riemann–Stieltjes integrals by converting them to
ordinary Riemann integrals. For example, if α is strictly increasing on [a, b] and α

exists and is Riemann integrable on [a, b], then f is integrable with respect to α on[a, b] if and only if fα is Riemann integrable on [a, b] and, in this case,
b∫
a

f (τ)dα(τ) = b∫
a

f (τ)α(τ)dτ. (H.2)

https://doi.org/10.1515/9783110751949-018
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Inmany cases of interest, ∫ba f (τ)dα(τ) can also be regarded as the Lebesgue integral of
f with respect to a certainmeasureμα onRdeterminedbyα. For example, ifα is contin-
uous and increasing, μα is determined by the requirement that for any a ≤ t1 < t2 ≤ b,
the measure of any of the intervals [t1, t2], [t1, t2), (t1, t2] or (t1, t2) is α(t2) − α(t1). This
is quite convenient since it makes such things as the dominated convergence theorem
available for use with Stieltjes integrals. If α and f are complex-valued functions on[a, b], the first of bounded variation and the second continuous, then the definition
is exactly the same, but the products in (H.1) are interpreted as products of complex
numbers. Doing the arithmetic, one finds that if α = α1 + iα2 and f = f1 + if2, then

b∫
a

f (τ)dα(τ) = ( b∫
a

f1(τ)dα1(τ) − b∫
a

f2(τ)dα2(τ))
+ i( b∫

a

f2(τ)dα1(τ) + b∫
a

f1(τ)dα2(τ)) .
Variousmethods of extending these definitions to awider class of functions f on [a, b],
but with α still of bounded variation are discussed in Sections 56 and 57 of [RiSz.N].
Clearly, one can define improper Riemann–Stieltjes integrals by the same limits that
are used to define improper Riemann integrals, but, just as clearly, these limits need
not exist.

H.3 Lebesgue–Stieltjes integrals

What we would like to do first is describe all of the regular Borel measures onR. We
willmake use of some of thematerial described inAppendix F. Note that, with obvious
modifications, the procedurewewill describeworks equallywell for any interval inR.
We begin with the collection of all subsets of R of the form (a, b], (a,∞) or 0, where−∞ ≤ a < b < ∞. The collection of all finite disjoint unions of such sets forms an
algebra 𝒜 and the σ-algebra generated by 𝒜 coincides with the Borel σ-algebra ℬ(R)
of R. Now fix some function α : R → R that is nondecreasing and right-continuous
(limτ→τ+0 α(τ) = α(τ0) for each τ0 ∈ R). Note that if we happen to start with a finite
Borel measure μ onR, then its distribution function α(τ) = μ(−∞, τ] is nondecreasing
and right-continuous. We are basically going to reverse this process. Now define μα by
μα(0) = 0, and

μα( n⨆
k=1
(ak , bk]) = n∑

k=1
( α(bk) − α(ak) )

for any finite family of pairwise disjoint intervals (ak , bk], k = 1, . . . , n. Then μα is a
pre-measure on 𝒜 (Proposition 1.15 of [Fol2]). As we saw in Appendix F, μα then de-
termines an outer measure μ∗α on the power set 𝒫(R) of R. The μ∗α -measurable sets
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form a σ-algebra σ(μ∗α ) on R containing the σ-algebra ℬ(R) generated by 𝒜 and the
restriction of μ∗α to σ(μ∗α ) is a complete measure which, as usual, we will also denote
simply μα. This measure is called the Lebesgue–Stieltjes measure onR determined by
α; it is, in fact, a regular measure onR (Theorem 1.18 of [Fol2]). If α(τ) = τ, then this is
just the ordinary Lebesgue measure onR. We should point out that it is also common
to refer to the regular Borel measure μα|ℬ(R) as the Lebesgue–Stieltjes measure and to
denote it μα as well. The following combines Theorems 1.16 and 1.18 of [Fol2].

Theorem H.3.1. Let α : R → R be any nondecreasing, right-continuous function onR.
Then there exists a unique regular Borelmeasure μα onR such that μα(a, b] = α(b)−α(a)
for all a < b inR. If β is another nondecreasing, right-continuous function, then μα = μβ
if and only if α − β is a constant. Conversely, if μ is a regular Borel measure onR and if
we define

α(τ) = {{{{{{{
μ(0, τ], if τ > 0,
0, if τ = 0,−μ(−τ,0], if τ < 0,

then α is nondecreasing and right-continuous and μ = μα.
If we write limτ→a− α(τ) as α(a−) and limτ→b− α(τ) as α(b−), then one can check

each of the following (this is Exercise 28 in [Fol2]):
1. μα({a}) = α(a) − α(a−),
2. μα[a, b) = α(b−) − α(a−),
3. μα[a, b] = α(b) − α(a−),
4. μα(a, b) = α(b−) − α(a).
The integral associated with the Lebesgue–Stieltjes measure μα is, naturally enough,
called the Lebesgue–Stieltjes integral associatedwith α. If E is a μα-measurable set and
f is a μα-integrable real-valued function on R, then the integral is generally denoted∫E f dμα, ∫E f (τ) dμα(τ) or, more commonly, ∫E f dα or ∫E f (τ) dα(τ); if E is an interval
one generally opts for ∫ba rather than ∫E .

The Lebesgue–Stieltjes integral can be defined for functions α that are of bounded
variation and right-continuous by using the fact that any such α can be written as the
difference α = v1 − v2 of two functions that are nondecreasing (in fact, increasing) and
right-continuous (see Section 3.5 of [Fol2] or Section 4 of [RiSz.N]) and then defining∫

E

f (τ) dα(τ) = ∫
E

f (τ) dv1(τ) − ∫
E

f (τ) dv2(τ).
One can choose v1 and v2 in the following way. Define v1(a) = 0 and, for a < τ ≤ b,
let v1(τ) be the total variation of α on (a, τ]. Then v1 is increasing, as is v2 = α − v1.
It can then be shown that α is right-continuous at τ in [a, b] if and only if v1 is right-
continuous at τ.
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For particularly nice functions there are simple computational formulas for
Lebesgue–Stieltjes integrals. For example, if f is a bounded Borel function on [a, b]
and α is absolutely continuous (Remark 5.2.1), then

b∫
a

f (τ) dα(τ) = b∫
a

f (τ)α(τ) dτ,
where the right-hand side is an ordinary Lebesgue integral. In particular, since a con-
tinuously differentiable function on [a, b] is absolutely continuous, this is true when
f ∈ C0[a, b] and α ∈ C1[a, b]; in this case the Lebesgue–Stieltjes integral agrees with
the Riemann–Stieltjes integral.

As we did for the Riemann–Stieltjes integral, we now define the Lebesgue–
Stieltjes integral when α and f are complex-valued. If α = α1 + iα2 and f = f1 + if2,
where the first is of bounded variation and the second is a bounded Borel function,
then we set

b∫
a

f (τ)dα(τ) = ( b∫
a

f1(τ)dα1(τ) − b∫
a

f2(τ)dα2(τ))
+ i( b∫

a

f2(τ)dα1(τ) + b∫
a

f1(τ)dα2(τ)) .
With this we can describe an example that we will need to make use of in Sec-

tion 9.4. We consider a curve γ : [a, b] → C in the complex plane, which we will
assume is in C1[a, b], and a continuous, complex-valued function F defined on some
open set U ⊆ C containing the image γ[a, b] of γ. Then F ∘ γ : [a, b]→ C is continuous
and the Lebesgue–Stieltjes integral of F ∘ γ with respect to γ is

b∫
a

(F ∘ γ) dγ = b∫
a

F(γ(τ)) γ(τ) dτ,
where the multiplication in the integrand on the right-hand side means complex mul-
tiplication. This is, of course, just what is ordinarily called the contour integral of F
along γ and denoted ∫

γ

F(z) dz.
One handles piecewise C1-curves in the usual way by integrating over each piece and
adding. That is, if γk : [ak , bk]→ C is a C1-curve for each k = 1, . . . , nwith a = a1 < b1 =
a2 < b2 = a3 < ⋅ ⋅ ⋅ < bn−1 = an < bn = b and γk(bk) = γk+1(ak+1) for k = 1, . . . , n − 1 and
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if ∑nk=1 γk : [a, b] → C is the curve that agrees with γk on [ak , bk] for each k = 1, . . . , n,
then

∫
∑nk=1 γk

F(z) dz = n∑
k=1
∫
γk

F(z) dz = n∑
k=1

bk∫
ak

(F ∘ γk) dγk .
The point we want to take out of all of this is the following. A contour integral in the
complex plane over a piecewise C1-curve can be written as a sum of Lebesgue–Stieltjes
integrals.





I Unitary representations and Schur’s lemma
Here we will briefly review the general notion of a strongly continuous, unitary rep-
resentation of a Lie group and provide a proof of the infinite-dimensional version of
Schur’s lemma that we require for our discussion of the Heisenberg group H3 in Sec-
tion 7.2.

We let G be a matrix Lie group (closed subgroup of some general linear group
GL(n,R) or GL(n,C)) and denote its identity element 1G or simply 1 if no confusion
will arise. Let ℋ be a separable, complex Hilbert space (either finite- or infinite-
dimensional) and 𝒰(ℋ) the group of unitary operators on ℋ. A strongly continuous,
unitary representation of G onℋ is a group homomorphism

π : G → 𝒰(ℋ)
such that for each fixed v ∈ ℋ, the map

g → π(g)v : G → ℋ

is continuous in the norm topology ofℋ, that is,

g → g0 in G ⇒ π(g)v − π(g0)v→ 0 inR.
The representation is said to be trivial if it sends every g ∈ G to the identity opera-
tor idℋ = I onℋ.

Exercise I.0.1. We saw in Remark 3.3.2 that for one-parameter groups of unitary oper-
ators, strong continuity is equivalent to a number of apparently weaker assumptions.
Since these are simply unitary representations of the Lie groupR under addition, one
might hope that something similar is true for unitary representations in general. This
iswhat youwill provehere. LetG beamatrix Lie group,ℋ a separable, complexHilbert
space and π : G → 𝒰(ℋ) a group homomorphism. Show that the following are equiv-
alent:
1. π is strongly continuous,
2. π is weakly continuous, that is, for all u, v ∈ ℋ,

g → g0 in G ⇒ ⟨π(g)u, v⟩→ ⟨π(g0)u, v⟩ inC,
3. for each u ∈ ℋ, the map g ∈ G → ⟨π(g)u, u⟩ ∈ C is continuous at e.

Hint: For 3. ⇒ 1. show that ‖π(g)u − π(g0)u ‖2 = 2‖u‖2 − 2 Re ⟨π(g−10 g)u, u⟩ ≤ | ‖u‖2 −⟨π(g−10 g)u, u⟩ |.
A linear subspaceℋ0 ofℋ is said to be invariant under π : G → 𝒰(ℋ) if π(g)(ℋ0) ⊆

ℋ0 for every g ∈ G. The zero subspace {0} and ℋ itself are always invariant. If π :
https://doi.org/10.1515/9783110751949-019
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G → 𝒰(ℋ) is nontrivial and if {0} andℋ are the only closed invariant subspaces, then
π : G → 𝒰(ℋ) is said to be irreducible. If there are closed invariant subspaces other
than {0} and ℋ, then the representation is said to be reducible. In a way we will de-
scribe in Section 7.2, any reducible unitary representation of the Heisenberg group H3
can be built from irreducible unitary representations, so we will concern ourselves
primarily with the latter. Also in Section 7.2 we will describe all irreducible, unitary
representations of H3, modulo a certain equivalence relation that we now introduce.
Two unitary representations π1 : G → 𝒰(ℋ1) and π2 : G → 𝒰(ℋ2) of G are said to be
unitarily equivalent if there exists a unitary equivalence U : ℋ1 → ℋ2 of ℋ1 onto ℋ2
such that

Uπ1(g) = π2(g)U ∀g ∈ G,
that is,

π2(g) = Uπ1(g)U−1 ∀g ∈ G.
Another item that will play a role in our discussion of the Heisenberg group is the
following infinite-dimensional version of Schur’s lemma. The proof is a nice applica-
tion of the spectral theorem, so we will provide the details. A more general version of
Schur’s lemma is proved in Appendix 1 of [Lang3].

Theorem I.0.1 (Schur’s lemma). Let G be a matrix Lie group, ℋ a separable, complex
Hilbert space and π : G → 𝒰(ℋ) a strongly continuous unitary representation of G.
Then π : G → 𝒰(ℋ) is irreducible if and only if the only bounded operators A : ℋ → ℋ
that commute with every π(g)

π(g)A = Aπ(g) ∀g ∈ G
are those of the form A = cI, where c is a complex number and I is the identity operator
onℋ.

Proof. Supposefirst that the onlyboundedoperators that commutewith everyπ(g)are
constant multiples of the identity. We will show that the representation is irreducible.
Letℋ0 be a closed subspace ofℋ that is invariant under every π(g).
Exercise I.0.2. Show that the orthogonal complement ℋ⊥0 of ℋ0 is also invariant un-
der every π(g).
Now, let P : ℋ→ ℋ0 be the orthogonal projection ontoℋ0.

Exercise I.0.3. Show that π(g)P = Pπ(g) for every g ∈ G.
According to our assumption, P is a constant multiple of the identity. Being a projec-
tion, P2 = P, so the constant is either 0 or 1. Thus, ℋ0 = P(ℋ) is either 0 or ℋ, as
required.
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Now, for the converse we will assume that π : G → 𝒰(ℋ) is irreducible and that
A : ℋ → ℋ is a bounded operator that commutes with every π(g). Let A∗ : ℋ → ℋ
denote the adjoint of A (also a bounded operator onℋ).

Exercise I.0.4. Show that A∗ also commutes with every π(g).
Note that 1

2 (A + A∗) and i
2 (A − A∗) are both self-adjoint and both commute with every

π(g). Moreover,
A = 1

2
(A + A∗) + 1

i
[ i
2
(A − A∗)].

Consequently, it will be enough to prove that bounded self-adjoint operators that com-
mute with every π(g)must be constant multiples of the identity. Accordingly, we may
assume that A is self-adjoint. Then, by the Spectral Theorem 5.5.6, A has associated
with it a unique spectral measure EA. Moreover, since A commutes with every π(g), so
doesEA(S) for anyBorel set S ⊆ R (Theorem5.5.7). From this it follows that each closed
linear subspace EA(S)(ℋ) is invariant under π : G → 𝒰(ℋ). But, by irreducibility, this
means that

EA(S)(ℋ) = 0 or EA(S)(ℋ) = ℋ
for every Borel set S inR.

Since A is bounded there exist a1 < b1 in R such that if S ∩ [a1, b1] = 0, then
EA(S) = 0. In particular, EA([a1, b1]) = I. Write[a1, b1] = [a1, a1 + b12

] ∪ [a1 + b1
2
, b1].

Now note that if EA({ a1+b12 }) = I, then the spectral theorem gives A = a1+b1
2 I and we

are done. Otherwise, EA must be I on one of the intervals and 0 on the other. De-
note by [a2, b2] the interval on which it is I. Applying the same argument to [a2, b2]
we either prove the result (at the midpoint) or we obtain an interval [a3, b3] of half
the length of [a2, b2] on which EA is I. Continuing inductively, we either prove the re-
sult in a finite number of steps or we obtain a nested sequence [a1, b1] ⊇ [a2, b2] ⊇[a3, b3] ⊇ ⋅ ⋅ ⋅ of intervals whose lengths approach zero and for which EA([ai, bi]) =
I for every i = 1, 2, 3, . . . . By the Cantor intersection theorem (Theorem C, page 73,
of [Simm1]), ⋂∞i=1[ai, bi] = {c} for some c ∈ R. Since EA(R − [ai, bi] ) = 0 for each i,
0 = EA(⋃∞i=1(R − [ai, bi]) ) = EA(R − ⋂∞i=1[ai, bi] ) = EA(R − {c}). Thus, EA({c}) = I, so
again we have A = cI.
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Let ℰ denote a Banach space and, for each t ≥ 0, let Tt : ℰ → ℰ be a bounded linear
operator on ℰ . If {Tt}t≥0 satisfies
1. T0 = idℰ ,
2. Tt+s = TtTs, ∀t, s ≥ 0, and
3. for each x ∈ ℰ,

t → Ttx : [0,∞)→ ℰ

is continuous,

then {Tt}t≥0 is called a strongly continuous semigroup of operators, or aC0-semigroup of
operators on ℰ . The semigroup of operators associated with the heat flow onR (Exer-
cise G.3.6) is a nice example to keep in mind. We will now describe what is essentially
the simplest example; this uses some basic properties of the exponential of a bounded
operator, all of which are proved essentially as they are for the matrix exponential
function (Chapter IX, Section 6, of [Yosida] contains all of the details).

Example J.0.1. Let ℰ be a Banach space andA : ℰ → ℰ a bounded linear operator on ℰ .
For each t ≥ 0 define Tt : ℰ → ℰ by

Tt = etA = ∞∑
n=0

(tA)n
n! .

Since ‖A‖ < ∞ the series converges, for each fixed t, in the Banach space ℬ(ℰ) of
bounded operators on ℰ to a bounded operator. Clearly, T0 = idℰ , and since tA and
sA commute, e(t+s)A = etAesA, so Tt+s = TtTs. Because A is bounded we actually have a
much stronger continuity condition than the definition requires. Indeed, since

‖Tt − idℰ‖ = ∞∑n=1 (tA)nn!  ≤ ∞∑n=1 tn‖A‖nn! = et ‖A‖ − 1
and et ‖A‖ − 1→ 0 as t → 0+, t → etA is actually continuous as a map into ℬ(ℰ).
Exercise J.0.1. Show that for any x ∈ ℰ,

lim
t→0+

etA(x) − x
t
= Ax

and then that

lim
h→0

e(t+h)A(x) − etA(x)
h

= AetA(x).
https://doi.org/10.1515/9783110751949-020
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Write the second of these as

d
dt
Tt(x) = ATt(x)

and recall that

T0(x) = x.
Since every tangent space to a vector space can be identified with that same vector
space, even in the infinite-dimensional case,we can think of the operatorA as defining
a vector field on ℰ whose value at x ∈ ℰ is Ax ∈ Tx(ℰ). This suggests regarding Tt(x)
as the integral curve of the vector field on ℰ represented by A that starts at T0(x) = x.
This is what we would like to generalize.

One can show, from the uniform boundedness theorem (Theorem 4.5.1 of [Fried],
or Theorem III.9 of [RS1]), that for any C0-semigroup {Tt}t≥0 of operators on a Banach
space ℰ, there exist an ω ∈ R and anM ≥ 0 such that for each t ≥ 0, ‖Tt‖ ≤ Meωt (see
page 246 of [RS2], page 418 of [Lax] or page 232 of [Yosida]). Wewill use this result only
tomotivate the following definitions. Ifω is a real number, then aC0-semigroup {Tt}t≥0
is said to be ω-contractive if ‖Tt‖ ≤ eωt for each t ≥ 0; {Tt}t≥0 is contractive if it is
0-contractive, that is, if ‖Tt‖ ≤ 1 for each t ≥ 0. As a rule, results proved for contractive
semigroups have relatively straightforward extensions to the general case (see Sec-
tion X.8 of [RS2]).

Let {Tt}t≥0 be a C0-semigroup of operators on a Banach space ℰ . We introduce an
operator A, called the infinitesimal generator of {Tt}t≥0, as follows. The domain of A is

𝒟(A) = {x ∈ ℰ : lim
t→0+

Ttx − x
t

exists in ℰ}.
Then A : 𝒟(A)→ ℰ is given, at each x ∈ 𝒟(A), by

Ax = lim
t→0+

Ttx − x
t
.

The following is Theorem 2, Section 7.4.1, of [Evans], Theorem 4, Section 34.1, of [Lax]
and the Proposition in Section X.8 of [RS2].

Theorem J.0.1. Let {Tt}t≥0 be a C0-semigroup of operators on a Banach space ℰ and
A : 𝒟(A)→ ℰ its infinitesimal generator. Then𝒟(A) is a dense linear subspace of ℰ and
A is a closed linear operator on𝒟(A).
Remark J.0.1. Recall that A is closed if, whenever xn ∈ 𝒟(A) for n = 1, 2, . . . , xn → x in
ℰ and Axn → y in ℰ, then x ∈ 𝒟(A) and Ax = y.

Although the following result is proved in [Evans], [Lax] and [Yosida], it is the
key to isolating an appropriate notion of “flow” in the infinite-dimensional context,
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so we will record the simple proof here as well. We will assume that the semigroup
is contractive to simplify the proofs of 3. and 4., but the result is true in general (see
Theorem 2, Section IX.3, of [Yosida]). In the statement of the theorem the derivative of
t → Ttx, for x ∈ ℰ, is defined to be the following limit in ℰ, provided the limit exists:

d
dt
Ttx = limh→0 Tt+hx − Ttxh

.
Theorem J.0.2. Let {Tt}t≥0 be a (contractive) C0-semigroup of operators on a Banach
space ℰ and A : 𝒟(A)→ ℰ its infinitesimal generator. Let x be in𝒟(A). Then:
1. Ttx is in𝒟(A) for all t ≥ 0,
2. ATtx = TtAx for all t ≥ 0,
3. the map t → Ttx is continuously differentiable on t > 0 and
4. d

dtTtx = ATtx for all t > 0.
Proof. Since x ∈ 𝒟(A), the limit lims→0+

Tsx−x
s exists in ℰ and is, by definition, Ax.

Then, for any t ≥ 0,
Ts(Ttx) − Ttx

s
= Ts+tx − Ttx

s
= Tt+sx − Ttx

s
= Tt(Tsx) − Ttx

s
= Tt (Tsx − xs

) .
Since Tt is bounded (continuous), lims→0+

Ts(Ttx)−Ttx
s exists in ℰ and therefore Ttx ∈

𝒟(A), so 1. is proved. Moreover, taking the limit as t → 0+ on both sides gives ATtx =
TtAx, so 2. is proved as well. We will prove 3. and 4. by showing that for any t > 0,

lim
h→0

Tt+hx − Ttx
h
= ATtx

for every x ∈ 𝒟(A). By 2. it is enough to show that limh→0
Tt+hx−Ttx

h = TtAx and for this
we will examine the limits as h→ 0+ and h→ 0− separately. Let h > 0 and note that

Tt+hx − Ttx
h
− TtAx = Tt (Thx − xh

− Ax).
From the definition ofAx and the continuity of Tt, this approaches zero as h→ 0+. For
the limit as h→ 0− we again assume h is positive (and sufficiently small) and consider

Ttx − Tt−hx
h
− TtAx = Tt−h (Thx − xh

− Ax ) + (Tt−hAx − TtAx).
Since {Tt}t≥0 is assumed contractive, ‖Tt−h‖ ≤ 1 and we conclude thatTtx − Tt−hxh

− TtAx ≤ Thx − xh
− Ax + ‖Tt−hAx − TtAx‖.

Both of the terms on the right-hand side approach zero as h → 0+. This shows that
limh→0−

Tt+hx−Ttx
h = ATtx and completes the proof of differentiability and 4. Continuity

of the derivative follows from 4. and the strong continuity of {Tt}t≥0.
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If we regard the infinitesimal generator A as a vector field on 𝒟(A) with values
in ℰ, then, motivated by 4., we call {Tt}t≥0 the flow of A. Also motivated by 4. is the
traditional notation for the semigroup generated by A, that is,

Tt = etA.
This notation is very suggestive and convenient. For example, TtTs = Tt+s becomes
etAesA = e(t+s)A and d

dtTtx = ATtx becomes d
dt e

tAx = AetAx. However, one should keep
in mind that it is only under certain circumstances that etA is literally the exponential
of an operator; this is true, for example, if the infinitesimal generator A happens to be
a bounded operator (Example J.0.1) and we will mention one other instance of this in
a moment.

Typically, one is not given a flow (semigroup of operators) and asked to find the
vector field that gives rise to it (its infinitesimal generator). Rather, one is given a vector
field and would like to know that a flow exists. The crucial question then is, given
an unbounded operator/vector field A, how can one know that it is the infinitesimal
generator for some C0-semigroup of operators? This is the question addressed by the
Hille–Yosida theorem, to which we now turn.

We already know that the infinitesimal generatorA of any C0-semigroup {Tt}t≥0 of
operators on a Banach space ℰ is a densely defined, closed operator on ℰ . In fact, any
such A has two additional properties and, remarkably enough, these two character-
ize infinitesimal generators among the densely defined, closed operators. To describe
these two properties we recall that λ ∈ C is in the resolvent set ρ(A) of the closed op-
erator A if and only if λ −A : 𝒟(A)→ ℰ is one-to-one and onto and that it follows from
this that the resolvent operator Rλ(A) = (λ − A)−1 : ℰ → 𝒟(A) is bounded (Theorem,
Section VIII.1, of [Yosida]). One can then show that if A is the infinitesimal generator
of an ω-contractive semigroup of operators on a Banach space, then:
1. (ω,∞) ⊆ ρ(A) and
2. ‖Rλ(A)‖ = ‖(λ − A)−1‖ ≤ 1

λ−ω ∀λ > ω.
The proof of this amounts to writing Rλ(A) as a Laplace transform

Rλ(A)x = ∞∫
0

e−λsTsx ds

andestimating the integral using ‖Tt‖ ≤ eωt (seeTheorem3(ii), Section 7.4.1, of [Evans],
SectionX.8 of [RS2], Section 34.1 of [Lax] or Section IX.3 of [Yosida]). Remarkably, these
two properties alone characterize the infinitesimal generators of ω-contractive semi-
groups of operators on a Banach space among the densely defined, closed operators.

Theorem J.0.3 (Hille–Yosida theorem). Let ℰ be a Banach space and A : 𝒟(A) → ℰ
a densely defined, closed operator on ℰ . Then A is the infinitesimal generator of an
ω-contractive semigroup of operators on ℰ for some ω ∈ R if and only if
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1. (ω,∞) ⊆ ρ(A) and
2. ‖Rλ(A)‖ = ‖(λ − A)−1‖ ≤ 1

λ−ω ∀λ > ω.
The contractive case of the Hille–Yosida theorem is Theorem X.47a of [RS2] and The-
orem 7, Section 34.2, of [Lax]. The extension to arbitrary C0-semigroups is generally
called the Hille–Yosida–Phillips theorem and is Theorem X.47b of [RS2]. A more gen-
eral result for locally convex, sequentially complete topological vector spaces appears
as the Theorem in Section IX.7 of [Yosida]. Here is a consequence of Hille–Yosida that
we will need.

Theorem J.0.4. Let ℋ be a Hilbert space and T : 𝒟(A) → ℋ an operator on ℋ that is
self-adjoint and positive ( ⟨Tψ,ψ⟩ ≥ 0 ∀ψ ∈ 𝒟(T) ). Then −T generates a contractive
C0-semigroup of operators onℋ.

Proof. Since T is self-adjoint, so is −T. Since T is positive, its spectrum σ(T) is con-
tained in [0,∞), so σ(−T) ⊆ (−∞,0]. Consequently, (0,∞) ⊆ ρ(−T) and condition 1. of
the Hille–Yosida theorem is satisfied. Now suppose λ > 0 and consider the (bounded)
resolvent operator (λ − (−T))−1 = (λ + T)−1. For any ψ ∈ 𝒟(T) = 𝒟(−T),(λ + T)ψ ‖ψ‖ ≥  ⟨(λ + T)ψ,ψ⟩  = λ‖ψ‖2 + ⟨Tψ,ψ⟩ ≥ λ‖ψ‖2,
so (λ + T)ψ ≥ λ‖ψ‖ ∀ψ ∈ 𝒟(T) = 𝒟(λ + T).
Applying this to (λ + T)−1ϕ for any ϕ ∈ ℋ gives(λ + T)−1ϕ ≤ 1λ ‖ϕ‖,
so (λ + T)−1 ≤ 1λ .
This verifies condition 2. of the Hille–Yosida theorem, so we conclude that −T is the
infinitesimal generator for a contractiveC0-semigroupof operators onℋwhichwewill
denote

e−tT .
Wemention that in this case the semigroup operator e−tT really is the exponential

function of the operator −tT in the sense of the functional calculus. That is, if

T = ∫
[0,∞)

λ dEλ

is the spectral decomposition of T, then

e−tT = ∫
[0,∞)

e−tλ dEλ.
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Example J.0.2. LetV : R→ Rbe anonnegative,measurable function. Then the corre-
spondingmultiplicationoperator onL2(R),whichwewill alsodenoteV , is self-adjoint
and positive on 𝒟(V) = {ϕ ∈ L2(R) : Vϕ ∈ L2(R)}. Consequently, −V generates a con-
tractive C0-semigroup e−tV on L2(R).
Example J.0.3. Wehave shown that the operator−Δ : 𝒟(Δ)→ L2(R) is self-adjoint and
positive, so we conclude from Theorem J.0.4 that Δ generates a contractive semigroup

etΔ

of operators on L2(R). Wewould like show that this semigroup coincideswith the heat
semigroup of Exercise G.3.6 (with D = 1).
Remark J.0.2. There is another proof in Example 2, Section 6, Chapter IX, of [Yosida].

Let ψ0 be an arbitrary element of L2(R) and define
ψ(t, x) = (etΔψ0)(t, x).

Part 4. of Theorem J.0.2 implies that

d
dt
ψ(t, x) = Δψ(t, x)

and, moreover,

lim
t→0+

ψ(t, x) = ψ0(x).
Furthermore, by 3. of Theorem J.0.2, ψ(t, x) is continuously differentiable with respect
to t and, by definition, ψ(t, x) is in L2(R) as a function of x for each t. Appealing to
Exercise 6.2.1 we find that

d
dt
ψ(t, x) = 𝜕ψ(t, x)𝜕t ,

so ψ(t, x) is a solution to the heat equation (with D = 1) and satisfies the initial condi-
tion limt→0+ ψ(t, x) = ψ0(x). The heat semigroup also has the property that it carries
ψ0 onto a solution to this initial value problem, but, as we have already mentioned,
solutions to an initial value problem for the heat equation need not be unique so we
can not yet infer that the two semigroups agree. We will approach this somewhat dif-
ferently.

Denote the heat semigroup by {Tt}t≥0 and denote its infinitesimal generator by A.
We will first show that the operators A and Δ agree on the Schwartz space 𝒮(R) ⊆
L2(R). Thus, we let ψ0 be in 𝒮(R). Then(Ttψ0)(x) = ∫

R

1√4πt e−(x−y)2/4tψ0(y) dy = (Kt ∗ ψ0)(x),
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where

Kt(x) = 1√4πt e−x2/4t .
Exercise J.0.2. Compute Fourier transforms and show that

ℱ[Ttψ0](p) = e−tp2ℱ[ψ0](p).
From this we obtain

ℱ [Ttψ0 − ψ0
t
](p) = e−tp2 − 1

t
ℱ[ψ0](p)

and therefore

Ttψ0 − ψ0
t
= ℱ−1[e−tp2 − 1

t
ℱ[ψ0](p)].

Taking the limit as t → 0+ then gives

Aψ0 = ℱ−1[−p2ℱ[ψ0](p)] = Δψ0.
We conclude then that the infinitesimal generatorA of the heat semigroup agrees with
the Laplacian Δ on 𝒮(R). It follows that etA and etΔ agree on 𝒮(R). Now let ψ be an ar-
bitrary element of L2(R). Choose a sequence {ψn}∞n=1 in 𝒮(R) converging toψ in L2(R).
Then, for any n,

etAψ − etΔψ = (etA − etΔ)(ψ − ψn).
Now, etA − etΔ is a bounded operator on L2(R) with norm, say,M. Thus, for any n,etAψ − etΔψ ≤ M‖ψ − ψn‖,
so etAψ = etΔψ in L2(R) and we have shown that the semigroup generated by the
Laplacian is the heat semigroup.

We mentioned earlier that the Trotter product formula has a generalization to the
context of operator semigroups. It is now time to formulate the result we had in mind.
The following is Theorem 9, Appendix B, of [Nel3].

Theorem J.0.5. Let A : 𝒟(A) → ℰ and B : 𝒟(B) → ℰ be linear operators on the Banach
space ℰ that are infinitesimal generators of contractive semigroups on ℰ . Suppose that
A + B : 𝒟(A) ∩ 𝒟(B) → ℰ also generates a contractive semigroup on ℰ . Then, for all
φ ∈ ℰ ,

et(A+B)φ = lim
n→∞
(e t

nAe
t
nB)nφ.
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It is actually enough to assume that the closure of (A + B) |𝒟(A)∩𝒟(B) generates a
contractive semigroup, but the proof requires more work; see Theorem 11.1.4 of [JL],
where this result is obtained froma stillmore general product formula due to Chernoff.

Example J.0.4. LetV : R→ R be a bounded,measurable function onR and letM > 0
be such that |V(x)| ≤ M ∀x ∈ R. We do not assume that V is nonnegative. However,
V +M : R→ R is bounded, measurable and nonnegative. Using the same symbols to
denote the multiplication operators on L2(R) determined by V ,M and V +M, we find
that all of these are bounded and self-adjoint and the operatorV+M is also positive on
L2(R). Consequently,−(V+M)generates a contractive semigroupof operators onL2(R)
and each of the semigroup operators is justmultiplication by the ordinary exponential
e−t(V+M). Moreover, each of the multiplication operators e−tV and e−tM is defined and
bounded and e−t(V+M) = e−tVe−tM . Now, consider also the positive, self-adjoint opera-
tor −Δ : 𝒟(Δ) → L2(R) on L2(R). Then Δ generates the heat semigroup etΔ on L2(R).
Using the fact that the multiplication operator e−tM commutes with every operator on
L2(R) we compute, for any integer n ≥ 1 and any φ ∈ L2(R),

e−tM(e t
nΔe−

t
nV )nφ = (e− tnMe t

nΔe−
t
nV )nφ = (e t

nΔe−
t
n (V+M))nφ.

SinceV +M is bounded, Theorem 9.2.4 implies that −Δ+ (V +M) is self-adjoint on𝒟(Δ)
and, since V + M is nonnegative, −Δ + (V + M) is a positive operator. Consequently,
Δ− (V +M) also generates a contractive semigroup on L2(R), so Theorem J.0.5 implies
that

lim
n→∞
(e t

nΔe−
t
n (V+M))nφ = et(Δ−(V+M))φ = e−tMet(Δ−V)φ.

Consequently,

e−tM lim
n→∞
(e t

nΔe−
t
nV )nφ = e−tMet(Δ−V)φ,

which gives

et(Δ−V)φ = lim
n→∞
(e t

nΔe−
t
nV )nφ.

The thing to note is that, although Theorem J.0.5 does not apply directly to Δ − V , the
conclusion we have arrived at is precisely the same.



K Hilbert space tensor products
We will require some of the basic properties of tensor products of Hilbert spaces. Ev-
erything we need is treated in detail in Chapter II, Sections 6.3–6.5, and Chapter IV,
Section 4.5, of [Prug], but one can also consult Section II.4 of [RS1] for a different,
but equivalent approach. We will just summarize the items we require. For this we let
ℋ1, . . . ,ℋN be complex, separable Hilbert spaces with inner products ⟨ , ⟩1, . . . , ⟨ , ⟩N ,
respectively. Then ℋ1, . . . ,ℋN are, in particular, complex vector spaces, so they have
an algebraic tensor productℋ1⊗alg ⋅ ⋅ ⋅⊗algℋN (Chapter II, Section 6.4, of [Prug]) consist-
ing of all finite linear combinations of elements of the formψ1⊗ ⋅ ⋅ ⋅⊗ψN , whereψi ∈ ℋi
for each i = 1, . . . ,N . Define a complex-valued bilinear map ⟨ , ⟩ onℋ1 ⊗alg ⋅ ⋅ ⋅ ⊗alg ℋN
by ⟨ψ1 ⊗ ⋅ ⋅ ⋅ ⊗ ψN , ϕ1 ⊗ ⋅ ⋅ ⋅ ⊗ ϕN⟩ = ⟨ψ1,ϕ1⟩1 ⋅ ⋅ ⋅ ⟨ψN ,ϕN⟩N .
This defines an inner product onℋ1 ⊗alg ⋅ ⋅ ⋅⊗algℋN (Theorem 6.8, Chapter II, of [Prug])
and the Hilbert space tensor product ℋ1 ⊗ ⋅ ⋅ ⋅ ⊗ ℋN of ℋ1, . . . ,ℋN is defined to be the
completionofℋ1⊗alg⋅ ⋅ ⋅⊗algℋN with respect to this inner product. Note thatℋ1⊗⋅ ⋅ ⋅⊗ℋN
is separable and if {ein}∞n=1 is an orthonormal basis forℋi for each i = 1, . . . ,N, then{ e1n1 ⊗ ⋅ ⋅ ⋅ ⊗ eNnN : 1 ≤ n1, . . . , nN <∞ }
is an orthonormal basis forℋ1 ⊗ ⋅ ⋅ ⋅ ⊗ℋN (Chapter II, Theorem 6.10, of [Prug]).

Ifℋ1, . . . ,ℋN are all the same Hilbert spaceℋ, then we will write the tensor prod-
uct as ⊗Nℋ and call it the Nth tensor power ofℋ. Note that the symmetric group SN of
permutations of {1, . . . ,N} acts naturally on ⊗Nℋ by defining

σ ⋅ (ψ1 ⊗ ⋅ ⋅ ⋅ ⊗ ψN ) = ψσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ ψσ(N)

for every σ ∈ SN and then extending to all of ⊗Nℋ by linearity and the density of the
algebraic tensor product in ⊗Nℋ. We define two closed, linear subspaces of ⊗Nℋ as
follows: ⊗NS ℋ = {Ψ ∈ ⊗Nℋ : σ ⋅Ψ = Ψ ∀σ ∈ SN}
is called the Nth symmetric tensor power ofℋ and⊗NAℋ = {Ψ ∈ ⊗Nℋ : σ ⋅Ψ = (sgn σ)Ψ ∀σ ∈ SN},
where sgn σ is the sign of the permutation σ, is the Nth antisymmetric tensor power
ofℋ. These subspaces of⊗Nℋ are orthogonalwith respect to the inner product defined
above and one defines the projections πS : ⊗Nℋ → ⊗NS ℋ and πA : ⊗Nℋ → ⊗NAℋ to be
the extensions of

πS(ψ1 ⊗ ⋅ ⋅ ⋅ ⊗ ψN ) = 1
N! ∑σ∈SN ψσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ ψσ(N)

https://doi.org/10.1515/9783110751949-021
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and

πA(ψ1 ⊗ ⋅ ⋅ ⋅ ⊗ ψN ) = 1
N! ∑σ∈SN(sgn σ)ψσ(1) ⊗ ⋅ ⋅ ⋅ ⊗ ψσ(N).

One generally writes

πS(ψ1 ⊗ ⋅ ⋅ ⋅ ⊗ ψN ) = ψ1 ⊗S ⋅ ⋅ ⋅ ⊗S ψN

and

πA(ψ1 ⊗ ⋅ ⋅ ⋅ ⊗ ψN ) = ψ1 ⊗A ⋅ ⋅ ⋅ ⊗A ψN .
Then ⊗NS (ℋ) and ⊗NA (ℋ) are the closed linear spans ofψ1⊗S ⋅ ⋅ ⋅⊗SψN andψ1⊗A ⋅ ⋅ ⋅⊗AψN ,
respectively.

The particular examples of most interest to us arise in the following way. Let(X1,𝒜1, μ1) and (X2,𝒜2, μ2) be two measure spaces and consider the corresponding
Hilbert spaces L2(X1,𝒜1, μ1) and L2(X2,𝒜2, μ2). If f ∈ L2(X1,𝒜1, μ1) and g ∈ L2(X2,𝒜2,
μ2), then f (x1)g(x2) represents an element of L2(X1 ×X2,𝒜1 ×𝒜2, μ1 ×μ2) that we denote
f ⋅ g, that is, (f ⋅ g)(x1, x2) = f (x1)g(x2) ∀(x1, x2) ∈ X1 × X2.
With this we can define a linear map from the algebraic tensor product L2(X1,𝒜1,
μ1) ⊗alg L2(X2,𝒜2, μ2) to L2(X1 × X2,𝒜1 ×𝒜2, μ1 × μ2) by

n∑
k=1

akfk ⊗ gk → n∑
k=1

akfk ⋅ gk .
According to Theorem 6.9, Chapter II, of [Prug], this map extends uniquely to a uni-
tary equivalence of the Hilbert space tensor product L2(X1,𝒜1, μ1) ⊗ L2(X2,𝒜2, μ2) onto
L2(X1 × X2,𝒜1 ×𝒜2, μ1 × μ2). In particular, with Lebesgue measure understood, we can
identify, for any n = 1, 2, . . . ,

L2(Rn) ⊗ L2(Rn) ≅ L2(Rn ×Rn) ≅ L2(R2n)
and, by induction, for any N = 1, 2, . . . ,⊗NL2(Rn) ≅ L2(Rn× N⋅ ⋅ ⋅ ×Rn) ≅ L2(RNn).
Thus, we can identify elements of ⊗NL2(Rn)with (equivalence classes of) square inte-
grable functions ψ(x1, . . . ,xN ), where x1, . . . ,xN ∈ Rn. The elements of ⊗NS L2(Rn) then
correspond to functions that are (up to a set of measure zero) symmetric under per-
mutations of their variables,

ψ(xσ(1), . . . ,xσ(N)) = ψ(x1, . . . ,xN ) ∀σ ∈ SN ,
while those in ⊗NAL2(Rn) are antisymmetric,

ψ(xσ(1), . . . ,xσ(N)) = (sgn σ)ψ(x1, . . . ,xN ) ∀σ ∈ SN .
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